
Advanced Micro Devices

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 2:
System Programming

Publication No. Revision Date

24593 3.17 June 2010

AMD64 Technology 24593—Rev. 3.17—June 2010

Trademarks

AMD, the AMD arrow logo, AMD Athlon, and AMD Opteron, and combinations thereof, AMD Virtualization and 3DNow!
are trademarks, and AMD-K6 is a registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2002 – 2010 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fitness for a particular purpose, or infringement
of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other appli-
cations intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

Contents i

24593—Rev. 3.17—June 2010 AMD64 Technology

Contents

Contents . i

Figures. xv

Tables . xxiii

Revision History . xxvii

Preface. xxxi
About This Book. xxxi
Audience . xxxi
Organization . xxxi
Definitions . xxxiii

Terms and Notation . xxxiii
Registers . xl
Endian Order . xliii

Related Documents . xliii

1 System-Programming Overview .1
1.1 Memory Model . 1

Memory Addressing . 2
Memory Organization . 3
Canonical Address Form . 4

1.2 Memory Management . 5
Segmentation . 5
Paging . 7
Mixing Segmentation and Paging . 8
Real Addressing. 10

1.3 Operating Modes . 11
Long Mode. 12
64-Bit Mode. 13
Compatibility Mode. 13
Legacy Modes . 14
System Management Mode (SMM) . 15

1.4 System Registers . 15
1.5 System-Data Structures . 17
1.6 Interrupts . 19
1.7 Additional System-Programming Facilities . 20

Hardware Multitasking . 20
Machine Check . 21
Software Debugging . 21
Performance Monitoring . 22

2 x86 and AMD64 Architecture Differences .23
2.1 Operating Modes . 23

Long Mode. 23
Legacy Mode . 23

ii Contents

AMD64 Technology 24593—Rev. 3.17—June 2010

System-Management Mode . 24
2.2 Memory Model . 24

Memory Addressing . 24
Page Translation. 25
Segmentation . 26

2.3 Protection Checks . 27
2.4 Registers . 28

General-Purpose Registers. 28
128-Bit Media Registers . 28
Flags Register . 28
Instruction Pointer . 28
Stack Pointer . 28
Control Registers . 29
Debug Registers . 29
Extended Feature Register (EFER) . 29
Memory Type Range Registers (MTRRs) . 29
Other Model-Specific Registers (MSRs) . 29

2.5 Instruction Set . 29
REX Prefixes . 29
Segment-Override Prefixes in 64-Bit Mode . 30
Operands and Results . 30
Address Calculations . 30
Instructions that Reference RSP . 31
Branches . 32
NOP Instruction . 34
Single-Byte INC and DEC Instructions. 34
MOVSXD Instruction . 34
Invalid Instructions . 34
FXSAVE and FXRSTOR Instructions. 36

2.6 Interrupts and Exceptions . 36
Interrupt Descriptor Table . 36
Stack Frame Pushes . 37
Stack Switching . 37
IRET Instruction . 37
Task-Priority Register (CR8) . 38
New Exception Conditions . 38

2.7 Hardware Task Switching . 38
2.8 Long-Mode vs. Legacy-Mode Differences . 38

3 System Resources .41
3.1 System-Control Registers . 41

CR0 Register . 42
CR2 and CR3 Registers . 45
CR4 Register . 47
CR1 and CR5–CR7 Registers . 49
64-Bit-Mode Extended Control Registers . 50
CR8 (Task Priority Register, TPR) . 50
RFLAGS Register . 50

Contents iii

24593—Rev. 3.17—June 2010 AMD64 Technology

Extended Feature Enable Register (EFER) . 54
3.2 Model-Specific Registers (MSRs) . 56

System Configuration Register (SYSCFG) . 58
System-Linkage Registers . 59
Memory-Typing Registers . 59
Debug-Extension Registers . 60
Performance-Monitoring Registers . 60
Machine-Check Registers . 60

3.3 Processor Feature Identification . 61

4 Segmented Virtual Memory .63
4.1 Real Mode Segmentation. 63
4.2 Virtual-8086 Mode Segmentation . 64
4.3 Protected Mode Segmented-Memory Models . 64

Multi-Segmented Model . 64
Flat-Memory Model. 65
Segmentation in 64-Bit Mode . 65

4.4 Segmentation Data Structures and Registers . 65
4.5 Segment Selectors and Registers . 67

Segment Selectors . 67
Segment Registers . 68
Segment Registers in 64-Bit Mode . 70

4.6 Descriptor Tables. 71
Global Descriptor Table. 71
Global Descriptor-Table Register . 72
Local Descriptor Table. 73
Local Descriptor-Table Register . 74
Interrupt Descriptor Table . 76
Interrupt Descriptor-Table Register . 77

4.7 Legacy Segment Descriptors . 77
Descriptor Format . 77
Code-Segment Descriptors . 80
Data-Segment Descriptors . 81
System Descriptors . 83
Gate Descriptors . 84

4.8 Long-Mode Segment Descriptors . 86
Code-Segment Descriptors . 86
Data-Segment Descriptors . 87
System Descriptors . 88
Gate Descriptors . 90
Long Mode Descriptor Summary . 92

4.9 Segment-Protection Overview. 93
Privilege-Level Concept . 94
Privilege-Level Types . 94

4.10 Data-Access Privilege Checks . 95
Accessing Data Segments . 95
Accessing Stack Segments. 96

4.11 Control-Transfer Privilege Checks . 98

iv Contents

AMD64 Technology 24593—Rev. 3.17—June 2010

Direct Control Transfers . 98
Control Transfers Through Call Gates. 102
Return Control Transfers . 109

4.12 Limit Checks . 110
Determining Limit Violations . 110
Data Limit Checks in 64-bit Mode . 112

4.13 Type Checks . 112
Type Checks in Legacy and Compatibility Modes . 112
Long Mode Type Check Differences . 113

5 Page Translation and Protection .115
5.1 Page Translation Overview . 115

Page-Translation Options. 118
Page-Translation Enable (PG) Bit . 118
Physical-Address Extensions (PAE) Bit . 119
Page-Size Extensions (PSE) Bit . 119
Page-Directory Page Size (PS) Bit . 119

5.2 Legacy-Mode Page Translation . 120
CR3 Register . 120
Normal (Non-PAE) Paging . 121
PAE Paging . 124

5.3 Long-Mode Page Translation . 128
Canonical Address Form . 128
CR3 . 128
4-Kbyte Page Translation . 129
2-Mbyte Page Translation . 132
1-Gbyte Page Translation . 133

5.4 Page-Translation-Table Entry Fields . 135
Field Definitions . 136
Notes on Access and Dirty Bits . 139

5.5 Translation-Lookaside Buffer (TLB) . 139
Global Pages . 140
TLB Management . 140

5.6 Page-Protection Checks . 143
No Execute (NX) Bit . 143
User/Supervisor (U/S) Bit . 143
Read/Write (R/W) Bit . 144
Write Protect (CR0.WP) Bit . 144

5.7 Protection Across Paging Hierarchy . 144
Access to User Pages when CR0.WP=1 . 146

5.8 Effects of Segment Protection . 146

6 System-Management Instructions .147
6.1 Fast System Call and Return . 150

SYSCALL and SYSRET. 150
SYSENTER and SYSEXIT (Legacy Mode Only) . 152
SWAPGS Instruction . 152

6.2 System Status and Control. 153

Contents v

24593—Rev. 3.17—June 2010 AMD64 Technology

Processor Feature Identification (CPUID). 153
Accessing Control Registers . 153
Accessing the RFLAGs Register . 154
Accessing Debug Registers . 154
Accessing Model-Specific Registers . 154

6.3 Segment Register and Descriptor Register Access . 155
Accessing Segment Registers . 155
Accessing Descriptor-Table Registers . 155

6.4 Protection Checking. 156
Checking Access Rights . 156
Checking Segment Limits . 156
Checking Read/Write Rights . 156
Adjusting Access Rights . 156

6.5 Processor Halt . 157
6.6 Cache and TLB Management . 157

Cache Management . 157
TLB Invalidation . 157

7 Memory System .159
7.1 Single-Processor Memory Access Ordering . 162

Read Ordering . 162
Write Ordering. 163
Read/Write Barriers . 163

7.2 Multiprocessor Memory Access Ordering. 164
7.3 Memory Coherency and Protocol . 167

Special Coherency Considerations . 169
7.4 Memory Types. 170

Memory Barrier Interaction with Memory Types . 172
7.5 Buffering and Combining Memory Writes . 174

Write Buffering . 174
Write Combining . 175

7.6 Memory Caches . 176
Cache Organization and Operation . 176
Cache Control Mechanisms. 179
Cache and Memory Management Instructions . 181
Serializing Instructions . 182

7.7 Memory-Type Range Registers . 183
MTRR Type Fields . 183
MTRRs . 184
Using MTRRs . 190
MTRRs and Page Cache Controls . 191
MTRRs in Multi-Processing Environments. 193

7.8 Page-Attribute Table Mechanism . 193
PAT Register . 193
PAT Indexing . 194
Identifying PAT Support . 195
PAT Accesses . 195
Combined Effect of MTRRs and PAT . 196

vi Contents

AMD64 Technology 24593—Rev. 3.17—June 2010

PATs in Multi-Processing Environments . 197
Changing Memory Type . 197

7.9 Memory-Mapped I/O. 197
Extended Fixed-Range MTRR Type-Field Encodings . 198
IORRs . 200
IORR Overlapping. 202
Top of Memory . 202

8 Exceptions and Interrupts. .205
8.1 General Characteristics . 205

Precision . 205
Instruction Restart . 206
Types of Exceptions. 206
Masking External Interrupts . 207
Masking Floating-Point and Media Instructions . 207
Disabling Exceptions . 207

8.2 Vectors . 208
#DE—Divide-by-Zero-Error Exception (Vector 0) . 211
#DB—Debug Exception (Vector 1) . 211
NMI—Non-Maskable-Interrupt Exception (Vector 2) . 212
#BP—Breakpoint Exception (Vector 3) . 212
#OF—Overflow Exception (Vector 4). 213
#BR—Bound-Range Exception (Vector 5) . 213
#UD—Invalid-Opcode Exception (Vector 6) . 213
#NM—Device-Not-Available Exception (Vector 7) . 214
#DF—Double-Fault Exception (Vector 8). 214
Coprocessor-Segment-Overrun Exception (Vector 9) . 215
#TS—Invalid-TSS Exception (Vector 10) . 216
#NP—Segment-Not-Present Exception (Vector 11) . 217
#SS—Stack Exception (Vector 12) . 217
#GP—General-Protection Exception (Vector 13) . 218
#PF—Page-Fault Exception (Vector 14) . 219
#MF—x87 Floating-Point Exception-Pending (Vector 16). 220
#AC—Alignment-Check Exception (Vector 17) . 221
#MC—Machine-Check Exception (Vector 18) . 222
#XF—SIMD Floating-Point Exception (Vector 19) . 222
User-Defined Interrupts (Vectors 32–255). 223

8.3 Exceptions During a Task Switch . 224
8.4 Error Codes . 224

Selector-Error Code . 224
Page-Fault Error Code . 225

8.5 Priorities. 225
Floating-Point Exception Priorities . 227
External Interrupt Priorities . 228

8.6 Real-Mode Interrupt Control Transfers . 229
8.7 Legacy Protected-Mode Interrupt Control Transfers . 231

Locating the Interrupt Handler . 232
Interrupt To Same Privilege . 233

Contents vii

24593—Rev. 3.17—June 2010 AMD64 Technology

Interrupt To Higher Privilege. 234
Privilege Checks . 235
Returning From Interrupt Procedures . 238

8.8 Virtual-8086 Mode Interrupt Control Transfers . 238
Protected-Mode Handler Control Transfer . 239
Virtual-8086 Handler Control Transfer . 241

8.9 Long-Mode Interrupt Control Transfers . 241
Interrupt Gates and Trap Gates . 241
Locating the Interrupt Handler . 242
Interrupt Stack Frame . 243
Interrupt-Stack Table . 245
Returning From Interrupt Procedures . 246

8.10 Virtual Interrupts . 247
Virtual-8086 Mode Extensions . 248
Protected Mode Virtual Interrupts . 251
Effect of Instructions that Modify EFLAGS.IF . 251

9 Machine Check Mechanism .255
9.1 Determining Machine-Check Support . 255
9.2 Machine-Check Errors. 255

Error Sources . 256
9.3 Machine Check MSRs . 256

Global Status and Control Registers . 257
Error-Reporting Register Banks . 260
Error Codes . 262

9.4 Initializing the Machine-Check Mechanism . 267
9.5 Using Machine Check Features . 267

Handling Machine Check Exceptions . 268
Reporting Correctable Machine Check Errors . 269

10 System-Management Mode. .271
10.1 SMM Differences . 271
10.2 SMM Resources. 272

SMRAM . 272
SMBASE Register . 273
SMRAM State-Save Area . 274
SMM-Revision Identifier. 278
SMRAM Protected Area . 279

10.3 Using SMM . 281
System-Management Interrupt (SMI) . 281
SMM Operating-Environment . 281
Exceptions and Interrupts . 282
Invalidating the Caches . 283
Saving Additional Processor State. 283
Operating in Protected Mode and Long Mode . 284
Auto-Halt Restart. 284
I/O Instruction Restart . 285

10.4 Leaving SMM . 286

viii Contents

AMD64 Technology 24593—Rev. 3.17—June 2010

11 128-Bit, 64-Bit, and x87 Programming .289
11.1 Overview of System-Software Considerations . 289
11.2 Determining Media and x87 Feature Support . 289
11.3 Enabling 128-Bit Media Instructions. 290
11.4 Media and x87 Processor State . 291

128-Bit Media State . 291
64-Bit Media State . 292
x87 State . 294
Saving Media and x87 Processor State . 295

12 Task Management .307
12.1 Hardware Multitasking Overview . 307
12.2 Task-Management Resources . 308

TSS Selector . 310
TSS Descriptor. 310
Task Register . 311
Legacy Task-State Segment . 313
64-Bit Task State Segment. 317
Task Gate Descriptor (Legacy Mode Only). 320

12.3 Hardware Task-Management in Legacy Mode . 320
Task Memory-Mapping . 320
Switching Tasks . 321
Task Switches Using Task Gates . 323
Nesting Tasks . 325

13 Debug and Performance Resources .327
13.1 Software-Debug Resources . 327

Debug Registers . 328
13.2 Breakpoints . 335

Setting Breakpoints . 335
Using Breakpoints . 337
Single Stepping . 339
Breakpoint Instruction (INT3) . 340
Control-Transfer Breakpoint Features . 340

13.3 Performance Optimization. 341
Performance Counters . 342
Performance Event-Select Registers . 343
Using Performance Counters . 346
Time-Stamp Counter . 346

14 Processor Initialization and Long Mode Activation. .349
14.1 Reset and Initialization . 349

Built-In Self Test (BIST) . 349
Clock Multiplier Selection. 350
Processor Initialization State . 350
Multiple Processor Initialization . 352
Fetching the First Instruction. 352

14.2 Hardware Configuration . 353

Contents ix

24593—Rev. 3.17—June 2010 AMD64 Technology

Processor Implementation Information . 353
Enabling Internal Caches . 353
Initializing Media and x87 Processor State . 353
Model-Specific Initialization . 355

14.3 Initializing Real Mode . 356
14.4 Initializing Protected Mode . 356
14.5 Initializing Long Mode . 357
14.6 Enabling and Activating Long Mode . 358

Activating Long Mode. 359
Consistency Checks . 359
Updating System Descriptor Table References . 360
Relocating Page-Translation Tables. 360

14.7 Leaving Long Mode . 361
14.8 Long-Mode Initialization Example . 361

15 Secure Virtual Machine. .367
15.1 The Virtual Machine Monitor . 367
15.2 SVM Hardware Overview . 367

Virtualization Support . 367
Guest Mode . 367
External Access Protection . 368
Interrupt Support . 368
Restartable Instructions . 368
Security Support . 368

15.3 SVM Processor and Platform Extensions . 368
15.4 Enabling SVM . 369
15.5 VMRUN Instruction . 369

Basic Operation . 370
15.6 #VMEXIT . 374
15.7 Intercept Operation . 375

State Saved on Exit . 375
Intercepts During IDT Interrupt Delivery . 376
EXITINTINFO Pseudo-Code . 378

15.8 Instruction Intercepts . 378
15.9 IOIO Intercepts . 381
15.10 MSR Intercepts . 382
15.11 Exception Intercepts . 383

#DE (Divide By Zero) . 384
#DB (Debug) . 384
Vector 2 (Reserved) . 384
#BP (Breakpoint) . 384
#OF (Overflow) . 385
#BR (Bound-Range) . 385
#UD (Invalid Opcode) . 385
#NM (Device-Not-Available) . 385
#DF (Double Fault) . 385
Vector 9 (Reserved) . 385
#TS (Invalid TSS) . 385

x Contents

AMD64 Technology 24593—Rev. 3.17—June 2010

#NP (Segment Not Present). 385
#SS (Stack Fault) . 385
#GP (General Protection) . 385
#PF (Page Fault) . 386
#MF (X87 Floating Point) . 386
#AC (Alignment Check) . 386
#MC (Machine Check) . 386
#XF (SIMD Floating Point). 386

15.12 Interrupt Intercepts. 386
INTR Intercept. 386
NMI Intercept . 386
SMI Intercept . 387
INIT Intercept . 388
Virtual Interrupt Intercept . 388

15.13 Miscellaneous Intercepts . 389
Task Switch Intercept. 389
Ferr_Freeze Intercept. 389
Shutdown Intercept . 389

15.14 VMSAVE and VMLOAD Instructions . 389
15.15 VMCB Clean bits . 390

VMCB Clean Bits . 390
Guidelines for Clearing VMCB Clean Bits . 390
VMCB Clean Field . 392

15.16 TLB Control. 393
TLB Flush . 393
Invalidate Page, Alternate ASID . 394

15.17 Global Interrupt Flag, STGI and CLGI Instructions . 395
15.18 VMMCALL Instruction. 395
15.19 Paged Real Mode. 396
15.20 Event Injection. 396
15.21 Interrupt and Local APIC Support. 397

Physical (INTR) Interrupt Masking in EFLAGS. 397
Virtualizing APIC.TPR . 398
TPR Access in 32-Bit Mode . 398
Injecting Virtual (INTR) Interrupts . 398
Interrupt Shadows . 399
Virtual Interrupt Intercept . 399
Interrupt Masking in Local APIC . 400
INIT Support . 400
NMI Support . 401

15.22 SMM Support . 401
Sources of SMI . 401
Response to SMI . 401
Containerizing Platform SMM . 402

15.23 Last Branch Record Virtualization . 403
Enabling LBR Virualization . 404
Host and Guest LBR Virtualization. 404

Contents xi

24593—Rev. 3.17—June 2010 AMD64 Technology

LBR Virtualization CPUID Feature Detection . 404
15.24 External Access Protection . 404

Device IDs and Protection Domains . 404
Device Exclusion Vector (DEV) . 404
Access Checking . 405
DEV Capability Block. 406
DEV Register Access Mechanism. 407
DEV Control and Status Registers. 408
Unauthorized Access Logging. 410
Secure Initialization Support . 410

15.25 Nested Paging . 411
Traditional Paging versus Nested Paging . 411
Replicated State . 412
Enabling Nested Paging. 413
Nested Paging and VMRUN/#VMEXIT . 413
Nested Table Walk . 413
Nested versus Guest Page Faults, Fault Ordering . 414
Combining Nested and Guest Attributes . 415
Combining Memory Types, MTRRs . 415
Page Splintering. 417
Legacy PAE Mode . 417
A20 Masking . 418
Detecting Nested Paging Support . 418

15.26 Security . 418
15.27 Secure Startup with SKINIT . 418

Secure Loader . 418
Secure Loader Image . 419
Secure Loader Block . 419
Trusted Platform Module. 420
System Interface, Memory Controller and I/O Hub Logic . 421
SKINIT Operation . 421
SL Abort . 422
Secure Multiprocessor Initialization . 422

15.28 Security Exception (#SX) . 423
15.29 SVM Related MSRs . 424

VM_CR MSR (C001_0114h) . 424
IGNNE MSR (C001_0115h) . 425
SMM_CTL MSR (C001_0116h). 425
VM_HSAVE_PA MSR (C001_0117h) . 426

15.30 SVM-Lock . 426
SVM_KEY MSR (C001_0118h) . 426

15.31 SMM-Lock . 426
SmmLock Bit — HWCR[0] . 427
SMM_KEY MSR (C001_0119h) . 427

15.32 TSC Ratio MSR (C000_0104h). 427
15.33 Decode Assists. 428

MOV CRx/DRx Intercepts . 428

xii Contents

AMD64 Technology 24593—Rev. 3.17—June 2010

INTn Intercepts . 429
INVLPG Intercepts . 429
Nested and intercepted #PF . 429
(REP) OUTS and INS . 430

16 Advanced Programmable Interrupt Controller (APIC) .431
16.1 Sources of Interrupts to the Local APIC . 432
16.2 Interrupt Control . 433
16.3 Local APIC . 433

Local APIC Enable . 433
APIC Registers . 434
Local APIC ID. 436
APIC Version Register. 436
Extended APIC Feature Register . 437
Extended APIC Control Register. 437

16.4 Local Interrupts . 438
APIC Timer Interrupt. 440
Local Interrupts LINT0 and LINT1. 442
Performance Monitor Counter Interrupts . 442
Thermal Sensor Interrupts . 442
Extended Interrupts . 443
APIC Error Interrupts . 443
Spurious Interrupts. 445

16.5 Interprocessor Interrupts (IPI) . 445
16.6 Local APIC Handling of Interrupts . 449

Receiving System and IPI Interrupts . 449
Lowest Priority Messages and Arbitration . 450
Accepting System and IPI Interrupts . 451
Selecting and Handling Interrupts . 454

16.7 SVM Support for Interrupts and the Local APIC . 456
Specific End of Interrupt Register . 457
Interrupt Enable Register . 457

17 OS-Visible Workaround Information .459
17.1 Erratum Process Overview . 461

18 Hardware Performance Monitoring and Control .463
18.1 Hardware P-State Control . 463
18.2 Core Performance Boost . 465
18.3 Effective Frequency. 466

Appendix A MSR Cross-Reference .469
A.1 MSR Cross-Reference by MSR Address. 469
A.2 System-Software MSRs. 473
A.3 Memory-Typing MSRs . 474
A.4 Machine-Check MSRs. 476
A.5 Software-Debug MSRs . 477
A.6 Performance-Monitoring MSRs . 478
A.7 Secure Virtual Machine MSRs . 478

Contents xiii

24593—Rev. 3.17—June 2010 AMD64 Technology

A.8 System Management Mode MSRs . 479
A.9 CPUID Name MSR Cross-Reference . 479

Appendix B Layout of VMCB .481
B.1 Layout of VMCB. 481

Appendix C SVM Intercept Exit Codes .487

Index . 489

xiv Contents

AMD64 Technology 24593—Rev. 3.17—June 2010

Figures xv

24593—Rev. 3.17—June 2010 AMD64 Technology

Figures

Figure 1-1. Segmented-Memory Model . 6

Figure 1-2. Flat Memory Model . 7

Figure 1-3. Paged Memory Model. 8

Figure 1-4. 64-Bit Flat, Paged-Memory Model . 9

Figure 1-5. Real-Address Memory Model. 10

Figure 1-6. Operating Modes of the AMD64 Architecture . 12

Figure 1-7. System Registers . 16

Figure 1-8. System-Data Structures. 18

Figure 3-1. Control Register 0 (CR0) . 43

Figure 3-2. Control Register 2 (CR2)—Legacy-Mode . 46

Figure 3-3. Control Register 2 (CR2)—Long Mode . 46

Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging. 46

Figure 3-5. Control Register 3 (CR3)—Legacy-Mode PAE Paging . 46

Figure 3-6. Control Register 3 (CR3)—Long Mode . 46

Figure 3-7. Control Register 4 (CR4) . 47

Figure 3-8. RFLAGS Register . 51

Figure 3-9. Extended Feature Enable Register (EFER). 55

Figure 3-10. AMD64 Architecture Model-Specific Registers. 57

Figure 3-11. System-Configuration Register (SYSCFG) . 58

Figure 4-1. Segmentation Data Structures. 66

Figure 4-2. Segment and Descriptor-Table Registers . 67

Figure 4-3. Segment Selector. 67

Figure 4-4. Segment-Register Format . 69

Figure 4-5. FS and GS Segment-Register Format—64-Bit Mode. 70

Figure 4-6. Global and Local Descriptor-Table Access . 72

Figure 4-7. GDTR and IDTR Format—Legacy Modes . 72

Figure 4-8. GDTR and IDTR Format—Long Mode . 73

Figure 4-9. Relationship between the LDT and GDT . 74

Figure 4-10. LDTR Format—Legacy Mode . 75

Figure 4-11. LDTR Format—Long Mode. 75

Figure 4-12. Indexing an IDT . 77

xvi Figures

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 4-13. Generic Segment Descriptor—Legacy Mode . 78

Figure 4-14. Code-Segment Descriptor—Legacy Mode. 80

Figure 4-15. Data-Segment Descriptor—Legacy Mode . 81

Figure 4-16. LDT and TSS Descriptor—Legacy/Compatibility Modes . 84

Figure 4-17. Call-Gate Descriptor—Legacy Mode . 85

Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode . 85

Figure 4-19. Task-Gate Descriptor—Legacy Mode . 85

Figure 4-20. Code-Segment Descriptor—Long Mode . 86

Figure 4-21. Data-Segment Descriptor—Long Mode . 87

Figure 4-22. System-Segment Descriptor—64-Bit Mode . 89

Figure 4-23. Call-Gate Descriptor—Long Mode . 90

Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode . 91

Figure 4-25. Privilege-Level Relationships . 94

Figure 4-26. Data-Access Privilege-Check Examples. 96

Figure 4-27. Stack-Access Privilege-Check Examples . 97

Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples. 100

Figure 4-29. Conforming Code-Segment Privilege-Check Examples. 101

Figure 4-30. Legacy-Mode Call-Gate Transfer Mechanism . 102

Figure 4-31. Long-Mode Call-Gate Access Mechanism. 103

Figure 4-32. Privilege-Check Examples for Call Gates . 105

Figure 4-33. Legacy-Mode 32-Bit Stack Switch, with Parameters . 107

Figure 4-34. 32-Bit Stack Switch, No Parameters—Legacy Mode. 107

Figure 4-35. Stack Switch—Long Mode. 108

Figure 5-1. Virtual to Physical Address Translation—Long Mode. 117

Figure 5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode. 121

Figure 5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode . 121

Figure 5-4. 4-Kbyte Non-PAE Page Translation—Legacy Mode. 122

Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode . 123

Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode . 123

Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode . 124

Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode . 124

Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode. 125

Figure 5-10. 4-Kbyte PDPE—PAE Paging Legacy-Mode . 126

Figures xvii

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 5-11. 4-Kbyte PDE—PAE Paging Legacy-Mode . 126

Figure 5-12. 4-Kbyte PTE—PAE Paging Legacy-Mode . 126

Figure 5-13. 2-Mbyte PAE Page Translation—Legacy Mode . 127

Figure 5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode . 127

Figure 5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode . 128

Figure 5-16. Control Register 3 (CR3)—Long Mode . 129

Figure 5-17. 4-Kbyte Page Translation—Long Mode. 130

Figure 5-18. 4-Kbyte PML4E—Long Mode . 131

Figure 5-19. 4-Kbyte PDPE—Long Mode . 131

Figure 5-20. 4-Kbyte PDE—Long Mode . 131

Figure 5-21. 4-Kbyte PTE—Long Mode. 131

Figure 5-22. 2-Mbyte Page Translation—Long Mode . 132

Figure 5-23. 2-Mbyte PML4E—Long Mode . 133

Figure 5-24. 2-Mbyte PDPE—Long Mode . 133

Figure 5-25. 2-Mbyte PDE—Long Mode . 133

Figure 5-26. 1-Gbyte Page Translation—Long Mode. 134

Figure 5-27. 1-Gbyte PML4E—Long Mode . 135

Figure 5-28. 1-Gbyte PDPE—Long Mode . 135

Figure 6-1. STAR, LSTAR, CSTAR, and MASK MSRs . 151

Figure 6-2. SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP MSRs . 152

Figure 7-1. Processor and Memory System. 160

Figure 7-2. MOESI State Transitions . 168

Figure 7-3. Cache Organization Example . 177

Figure 7-4. MTRR Mapping of Physical Memory . 185

Figure 7-5. Fixed-Range MTRR . 186

Figure 7-6. MTRRphysBasen Register . 187

Figure 7-7. MTRRphysMaskn Register. 188

Figure 7-8. MTRR defType Register Format . 189

Figure 7-9. MTRR Capability Register Format. 190

Figure 7-10. PAT Register. 193

Figure 7-11. Extended MTRR Type-Field Format (Fixed-Range MTRRs) . 198

Figure 7-12. IORRBasen Register . 201

Figure 7-13. IORRMaskn Register . 202

xviii Figures

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 7-14. Memory Organization Using Top-of-Memory Registers . 203

Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP_MEM2). 203

Figure 8-1. Control Register 2 (CR2) . 220

Figure 8-2. Selector Error Code. 224

Figure 8-3. Page-Fault Error Code . 225

Figure 8-4. Task Priority Register (CR8) . 228

Figure 8-5. Real-Mode Interrupt Control Transfer . 230

Figure 8-6. Stack After Interrupt in Real Mode. 231

Figure 8-7. Protected-Mode Interrupt Control Transfer . 233

Figure 8-8. Stack After Interrupt to Same Privilege Level . 234

Figure 8-9. Stack After Interrupt to Higher Privilege . 235

Figure 8-10. Privilege-Check Examples for Interrupts . 237

Figure 8-11. Stack After Virtual-8086 Mode Interrupt to Protected Mode. 240

Figure 8-12. Long-Mode Interrupt Control Transfer. 242

Figure 8-13. Long-Mode Stack After Interrupt—Same Privilege. 244

Figure 8-14. Long-Mode Stack After Interrupt—Higher Privilege. 245

Figure 8-15. Long-Mode IST Mechanism. 246

Figure 9-1. MCG_CAP Register . 257

Figure 9-2. MCG_STATUS Register . 258

Figure 9-3. MCG_CTL Register . 259

Figure 9-4. CPU Watchdog Timer Register Format . 259

Figure 9-5. MCi_CTL Registers . 261

Figure 9-6. MCi_STATUS Register . 262

Figure 9-7. MCi_MISC1 Addressing . 265

Figure 9-8. Machine Check Miscellaneous Error-Information Register (MCi_MISCj) 265

Figure 10-1. Default SMRAM Memory Map . 273

Figure 10-2. SMBASE Register . 273

Figure 10-3. SMM-Revision Identifier . 279

Figure 10-4. SSM_ADDR Register Format . 280

Figure 10-5. SSM_MASK Register Format . 280

Figure 10-6. I/O Instruction Restart Dword. 286

Figure 11-1. 128-Bit Media-Instruction State . 292

Figure 11-2. 64-Bit Media-Instruction State . 293

Figures xix

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 11-3. x87-Instruction State . 295

Figure 11-4. FSAVE/FNSAVE Image (32-Bit, Protected Mode) . 297

Figure 11-5. FSAVE/FNSAVE Image (32-Bit, Real/Virtual-8086 Modes) . 298

Figure 11-6. FSAVE/FNSAVE Image (16-Bit, Protected Mode) . 299

Figure 11-7. FSAVE/FNSAVE Image (16-Bit, Real/Virtual-8086 Modes) . 300

Figure 11-8. FXSAVE and FXRSTOR Image (64-bit Mode). 302

Figure 11-9. FXSAVE and FXRSTOR Image (Non-64-bit Mode). 303

Figure 12-1. Task-Management Resources . 309

Figure 12-2. Task-Segment Selector . 310

Figure 12-3. TR Format, Legacy Mode. 311

Figure 12-4. TR Format, Long Mode . 312

Figure 12-5. Relationship between the TSS and GDT . 312

Figure 12-6. Legacy 32-bit TSS . 314

Figure 12-7. I/O-Permission Bitmap Example . 317

Figure 12-8. Long Mode TSS Format . 319

Figure 12-9. Task-Gate Descriptor, Legacy Mode Only . 320

Figure 12-10. Privilege-Check Examples for Task Gates . 324

Figure 13-1. Address-Breakpoint Registers (DR0–DR3) . 329

Figure 13-2. Debug-Status Register (DR6) . 330

Figure 13-3. Debug-Control Register (DR7). 331

Figure 13-4. Debug-Control MSR (DebugCtlMSR) . 334

Figure 13-5. Control-Transfer Recording MSRs. 335

Figure 13-6. Performance Counter (PerfCtrn) . 342

Figure 13-7. Performance Event-Select Register (PerfEvtSeln) . 344

Figure 13-8. Time-Stamp Counter (TSC) . 346

Figure 15-1. EXITINTINFO for All Intercepts . 377

Figure 15-2. EXITINFO1 for IOIO Intercept . 382

Figure 15-3. EXITINFO1 for SMI Intercept . 388

Figure 15-4. Layout of VMCB Clean Field. 392

Figure 15-5. EVENTINJ Field in the VMCB . 397

Figure 15-6. Host Bridge DMA Checking. 406

Figure 15-7. Format of DEV_OP Register (in PCI Config Space) . 407

Figure 15-8. Format of DEV_CAP Register (in PCI Config Space). 408

xx Figures

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 15-9. Format of DEV_BASE_HI[n] Registers. 409

Figure 15-10. Format of DEV_BASE_LO[n] Registers . 409

Figure 15-11. Format of DEV_MAP[n] Registers . 410

Figure 15-12. Address Translation with Traditional Paging . 411

Figure 15-13. Address Translation with Nested Paging . 412

Figure 15-14. SLB Example Layout . 420

Figure 15-15. Layout of VM_CR MSR (C001_0114h) . 424

Figure 15-16. Layout of SMM_CTL MSR (C001_0116h) . 425

Figure 15-17. TSC Ratio MSR (C000_0104h) . 427

Figure 16-1. Block Diagram of a Typical APIC Implementation . 431

Figure 16-2. APIC Base Address Register . 434

Figure 16-3. APIC ID Register (APIC Offset 20h) . 436

Figure 16-4. APIC Version Register (APIC Offset 30h). 436

Figure 16-5. Extended APIC Feature Register (APIC Offset 400h) . 437

Figure 16-6. Extended APIC Control Register (APIC Offset 410h) . 438

Figure 16-7. General Local Vector Table Register Format . 439

Figure 16-8. APIC Timer Local Vector Table Register (APIC Offset 320h) . 440

Figure 16-9. Timer Current Count Register (APIC Offset 390h) . 440

Figure 16-10. Timer Initial Count Register (APIC Offset 380h) . 441

Figure 16-11. Divide Configuration Register (APIC Offset 3E0h). 441

Figure 16-12. Local Interrupt 0/1 (LINT0/1) Local Vector Table Register
(APIC Offset 350h/360h) . 442

Figure 16-13. Performance Monitor Counter Local Vector Table Register
(APIC Offset 340h). 442

Figure 16-14. Thermal Sensor Local Vector Table Register (APIC Offset 330h) . 443

Figure 16-15. APIC Error Local Vector Table Register (APIC Offset 370h). 443

Figure 16-16. APIC Error Status Register (APIC Offset 280h) . 444

Figure 16-17. Spurious Interrupt Register (APIC Offset F0h) . 445

Figure 16-18. Interrupt Command Register (APIC Offset 310:300h). 446

Figure 16-19. Remote Read Register (APIC Offset C0h) . 448

Figure 16-20. Logical Destination Register (APIC Offset D0h) . 449

Figure 16-21. Destination Format Register (APIC Offset E0h) . 450

Figure 16-22. Arbitration Priority Register (APIC Offset 90h). 451

Figures xxi

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 16-23. Interrupt Request Register (APIC Offset 270:200h). 452

Figure 16-24. In Service Register (APIC Offset 170:100h) . 453

Figure 16-25. Trigger Mode Register (APIC Offset 1F0:180h) . 454

Figure 16-26. Task Priority Register (APIC Offset 80h). 455

Figure 16-27. Processor Priority Register (APIC Offset A0h) . 455

Figure 16-28. End of Interrupt (APIC Offset B0h) . 456

Figure 16-29. Specific End of Interrupt (APIC Offset 420h) . 457

Figure 16-30. Interrupt Enable Register (APIC Offset 4F0:480h) . 457

Figure 17-1. OSVW MSR0: OSVW_ID_Length . 459

Figure 17-2. OSVW MSR1: OSVW Status. 460

Figure 17-3. OSVW MSRn: OSVW Status. 460

Figure 18-1. P-State Current Limit Register . 464

Figure 18-2. P-State Control Register . 464

Figure 18-3. P-State Status Register . 465

Figure 18-4. Core Performance Boost (MSRC001_0015h) . 465

Figure 18-5. Max Performance Frequency Count (MSR0000_00E7h). 466

Figure 18-6. Actual Performance Frequency Count (MSR0000_00E8h) . 467

xxii Figures

AMD64 Technology 24593—Rev. 3.17—June 2010

Tables xxiii

24593—Rev. 3.17—June 2010 AMD64 Technology

Tables

Table 1-1. Operating Modes. 11

Table 1-2. Interrupts and Exceptions . 20

Table 2-1. Instructions That Reference RSP . 31

Table 2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size . 32

Table 2-3. Invalid Instructions in 64-Bit Mode . 34

Table 2-4. Invalid Instructions in Long Mode . 35

Table 2-5. Reassigned Instructions in 64-Bit Mode. 36

Table 2-6. Differences Between Long Mode and Legacy Mode . 39

Table 4-1. Segment Registers. 69

Table 4-2. Descriptor Types . 79

Table 4-3. Code-Segment Descriptor Types . 81

Table 4-4. Data-Segment Descriptor Types . 82

Table 4-5. System-Segment Descriptor Types (S=0)—Legacy Mode. 83

Table 4-6. System-Segment Descriptor Types—Long Mode . 88

Table 4-7. Descriptor-Entry Field Changes in Long Mode . 92

Table 4-8. Segment Limit Checks in 64-Bit Mode . 112

Table 5-1. Supported Paging Alternatives (CR0.PG=1) . 118

Table 5-2. Physical-Page Protection, CR0.WP=0 . 145

Table 5-3. Effect of CR0.WP=1 on Supervisor Page Access . 146

Table 6-1. System Management Instructions . 147

Table 7-1. Memory Access by Memory Type . 171

Table 7-2. Caching Policy by Memory Type . 172

Table 7-3. Memory Access Ordering Rules . 173

Table 7-4. AMD64 Architecture Cache-Operating Modes . 180

Table 7-5. MTRR Type Field Encodings . 184

Table 7-6. Fixed-Range MTRR Address Ranges. 186

Table 7-7. Combined MTRR and Page-Level Memory Type with Unmodified PAT MSR 191

Table 7-8. PAT Type Encodings . 194

Table 7-9. PAT-Register PA-Field Indexing . 195

Table 7-10. Combined Effect of MTRR and PAT Memory Types . 196

Table 7-11. Serialization Requirements for Changing Memory Types . 197

Table 7-12. Extended Fixed-Range MTRR Type Encodings . 200

Table 8-1. Interrupt-Vector Source and Cause. 209

Table 8-2. Interrupt-Vector Classification . 210

xxiv Tables

AMD64 Technology 24593—Rev. 3.17—June 2010

Table 8-3. Double-Fault Exception Conditions . 215

Table 8-4. Invalid-TSS Exception Conditions . 216

Table 8-5. Stack Exception Error Codes . 218

Table 8-6. General-Protection Exception Conditions . 218

Table 8-7. Data-Type Alignment . 221

Table 8-8. Simultaneous Interrupt Priorities . 226

Table 8-9. Simultaneous Floating-Point Exception Priorities . 228

Table 8-10. Virtual-8086 Mode Interrupt Mechanisms . 239

Table 8-11. Effect of Instructions that Modify the IF Bit . 252

Table 9-1. CPU Watchdog Timer Time Base . 260

Table 9-2. CPU Watchdog Timer Count Select . 260

Table 10-1. AMD64 Architecture SMM State-Save Area . 274

Table 10-2. Legacy SMM State-Save Area (Not used by AMD64 Architecture) . 277

Table 10-3. SMM Register Initialization . 281

Table 11-1. Deriving FSAVE Tag Field from FXSAVE Tag Field. 306

Table 12-1. Effects of Task Nesting. 325

Table 13-1. Breakpoint-Setting Examples . 336

Table 13-2. Breakpoint Location by Condition . 337

Table 13-3. Operating-System Mode and User Mode Bits . 345

Table 14-1. Initial Processor State . 350

Table 14-2. Initial State of Segment-Register Attributes . 352

Table 14-3. x87 Floating-Point State Initialization . 354

Table 14-4. Processor Operating Modes . 358

Table 14-5. Long-Mode Consistency Checks . 360

Table 15-1. Guest Exception or Interrupt Types . 377

Table 15-2. Instruction Intercepts. 379

Table 15-3. Ranges of MSR Permissions Map . 383

Table 15-4. TLB Control Byte Encodings . 394

Table 15-5. Effect of the GIF on Interrupt Handling . 395

Table 15-6. Guest Exception or Interrupt Types . 397

Table 15-7. INIT Handling in Different Operating Modes . 400

Table 15-8. NMI Handling in Different Operating Modes . 401

Table 15-9. SMI Handling in Different Operating Modes . 402

Table 15-10. DEV Capability Block, Overall Layout . 407

Table 15-11. DEV Capability Header (DEV_HDR) (in PCI Config Space) . 407

Table 15-12. Encoding of Function Field in DEV_OP Register . 408

Tables xxv

24593—Rev. 3.17—June 2010 AMD64 Technology

Table 15-13. DEV_CR Control Register . 409

Table 15-14. Combining Guest and Host PAT Types . 417

Table 15-15. Combining PAT and MTRR Types . 417

Table 15-16. EXITINFO1 for MOV CRx . 428

Table 15-17. EXITINFO1 for MOV DRx . 428

Table 15-18. EXITINFO1 for INTn. 429

Table 15-19. EXIINFO1 for INVLPG . 429

Table 15-20. Guest Instruction Bytes. 430

Table 16-1. Interrupt Sources for Local APIC . 432

Table 16-2. APIC Registers . 435

Table 16-3. Divide Values . 441

Table 16-4. Valid ICR Field Combinations . 448

Table A-1. MSRs of the AMD64 Architecture . 469

Table A-2. System-Software MSR Cross-Reference . 473

Table A-3. Memory-Typing MSR Cross-Reference. 474

Table A-4. Machine-Check MSR Cross-Reference . 476

Table A-5. Software-Debug MSR Cross-Reference . 477

Table A-6. Performance-Monitoring MSR Cross-Reference . 478

Table A-7. Secure Virtual Machine MSR Cross-Reference . 478

Table A-8. System Management Mode MSR Cross-Reference . 479

Table A-9. CPUID Namestring MSRs . 479

Table B-1. VMCB Layout, Control Area . 481

Table B-2. VMCB Layout, State Save Area . 484

Table C-1. SVM Intercept Codes . 487

xxvi Tables

AMD64 Technology 24593—Rev. 3.17—June 2010

Revision History xxvii

24593—Rev. 3.17—June 2010 AMD64 Technology

Revision History

Date Revision Description

June 2010 3.17
Replaced missing figures in Chapter 8, ”Exceptions and Interrupts” on page
205.

June 2010 3.16

Updated informatiom on performance monitoring counters in ”Performance-
Monitoring Counter Enable (PCE) Bit” on page 49 and 6.2.5, ”Accessing
Model-Specific Registers” on page 154.
Revised Table 4-1, ”Segment Registers” on page 69.
Add flush by ASID information to section 15.16, ”TLB Control” on page 393.
Added information on VMCB clean field to Chapter15, ”Secure Virtual
Machine” on page 367 and Appendix B, ”Layout of VMCB” on page 481.
Added section 15.9, ”IOIO Intercepts” on page 381.

Added section 15.32, ”TSC Ratio MSR (C000_0104h)” on page 427.
Added section 18.2, ”Core Performance Boost” on page 465.

xxviii Revision History

AMD64 Technology 24593—Rev. 3.17—June 2010

November
2009

3.15

Added section 7.5, ”Buffering and Combining Memory Writes” on page 174
Added MFENCE to list of ”Serializing Instructions” on page 182.

Updated section 7.6.1, ”Cache Organization and Operation” on page
176.
Updated Table 7-3, “Memory Access Ordering Rules”‚ on page 173 and
notes.
Updated 7.4, ”Memory Types” on page 170.

Clarified 5.5.2, ”TLB Management” on page 140.
Added ”Invalidation of Table Entry Upgrades.” on page 141..

Updated ”Speculative Caching of Address Translations” on page 141.

Update ”Handling of D-Bit Updates” on page 142.
Revised and updated section 7.2, ”Multiprocessor Memory Access
Ordering” on page 164 ff.

Added information on long mode segment-limit checks in ”Extended
Feature Enable Register (EFER)” on page 55table on page 55 and
”Long Mode Segment Limit Enable (LMSLE) bit” on page 56 on page
56.

Added discussion of ”Data Limit Checks in 64-bit Mode” on page
112on page 112.

Updated Table 6-1, “System Management Instructions”‚ on page 147.
Updated ”Canonicalization and Consistency Checks” on page 373on page
373.
Added information about the next sequential instruction pointer (nRIP) in
15.7.1, ”State Saved on Exit” on page 375.

Updated priority definition of PAUSE instruction intercept in
Table 15-2, “Instruction Intercepts”‚ on page 379.
Added nRIP field to Table B-1, “VMCB Layout, Control Area”‚ on page 481.
Clarified information on ICEBP event injection, on page 396.
Deleted erroneous statement concerning the operation of the General Local
Vector Table register Mask bit in section 16.4.
Clarified the description of the Interrupt Command Register Delivery Status
bit in section ”Interprocessor Interrupts (IPI)” on page 445on page 445.

Date Revision Description

Revision History xxix

24593—Rev. 3.17—June 2010 AMD64 Technology

September
2007

3.14

Added information on ”Speculative Caching of Address Translations,”
”Caching of Upper Level Translation Table Entries,” ”Use of Cached Entries
When Reporting a Page Fault Exception,” ”Use of Cached Entries When
Reporting a Page Fault Exception,” ”Handling of D-Bit Updates,” ”Invalidation
of Cached Upper-level Entries by INVLPG” on page 142 and ”Handling of
PDPT Entries in PAE Mode” on page 142to section 5.5.2, ”TLB
Management” on page 140.
Added 15.21.7, ”Interrupt Masking in Local APIC” on page 400.
Added 16.3.6, ”Extended APIC Control Register” on page 437; clarified the
use of the ICR DS bit in 16.5, ”Interprocessor Interrupts (IPI)” on page 445.
Added minor clarifications and corrected typographical and formatting
errors.

July 2007 3.13

Added 5.3.5, ”1-Gbyte Page Translation” on page 133.
Added 7.2, ”Multiprocessor Memory Access Ordering” on page 164
Added divide-by-zero exception to Table 8-8, “Simultaneous Interrupt
Priorities”‚ on page 226.
Added information on ”CPU Watchdog Timer Register” on page 259and
”Machine-Check Miscellaneous-Error Information Registers (MCi_MISCj)”
on page 264to Chapter 9.
Added SSE4A support to Chapter 11, ”128-Bit, 64-Bit, and x87
Programming” on page 289.
Added Monitor and MWAIT intercept information to section 15.8, ”Instruction
Intercepts” on page 378 and reorganized intercept information; clarified
15.16.1, ”TLB Flush” on page 393.
Added Monitor and MWAIT intercepts to tables B-1, ”VMCB Layout, Control
Area” on page 481 and C-1, ”SVM Intercept Codes” on page 487.
Added Chapter 16, ”Advanced Programmable Interrupt Controller (APIC)”
on page 431, Chapter 17, ”OS-Visible Workaround Information” on page
459, Chapter 18, ”Hardware Performance Monitoring and Control” on page
463.
Added Table A-7, “Secure Virtual Machine MSR Cross-Reference”‚ on
page 478.
Added minor clarifications and corrected typographical and formatting
errors.

September
2006

3.12 Added numerous minor clarifications.

December
2005

3.11
Added Chapter 15, Secure Virtual Machine. Incorporated numerous factual
corrections and updates.

February 2005 3.10

Corrected Table 8-6, “General-Protection Exception Conditions”‚ on
page 218. Added SSE3 information. Clarified and corrected information on
the CPUID instruction and feature identification. Added information on the
RDTSCP instruction. Clarified information about MTRRs and PATs in
multiprocessing systems.

Date Revision Description

xxx Revision History

AMD64 Technology 24593—Rev. 3.17—June 2010

September
2003

3.09 Corrected numerous minor typographical errors.

April 2003 3.08

Clarified terms in section on FXSAVE/FXSTOR. Corrected several minor
errors of omission. Documentation of CR0.NW bit has been corrected.
Several register diagrams and figure labels have been corrected.
Description of shared cache lines has been clarified in 7.3, ”Memory
Coherency and Protocol” on page 167.

September
2002

3.07
Made numerous small grammatical changes and factual clarifications.
Added Revision History.

Date Revision Description

Preface xxxi

24593—Rev. 3.17—June 2010 AMD64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Audience

This volume (Volume 2) is intended for programmers writing operating systems, loaders, linkers,
device drivers, or system utilities. It assumes an understanding of AMD64 architecture application-
level programming as described in Volume 1.

This volume describes the AMD64 architecture’s resources and functions that are managed by system
software, including operating-mode control, memory management, interrupts and exceptions, task and
state-change management, system-management mode (including power management), multi-
processor support, debugging, and processor initialization.

Application-programming topics are described in Volume 1. Details about each instruction are
described in volumes 3, 4, and 5.

Organization

This volume begins with an overview of system programming and differences between the x86 and
AMD64 architectures. This is followed by chapters that describe the following details of system
programming:

• System Resources—The system registers and processor ID (CPUID) functions.

• Segmented Virtual Memory—The segmented-memory models supported by the architecture and
their associated data structures and protection checks.

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

Volume 6: 128-Bit and 256-Bit XOP and FMA4 Instructions 43479

xxxii Preface

AMD64 Technology 24593—Rev. 3.17—June 2010

• Page Translation and Protection—The page-translation functions supported by the architecture
and their associated data structures and protection checks.

• System-Management Instructions—The instructions used to manage system functions.

• Memory System—The memory-system hierarchy and its resources and protocols, including
memory-characterization, caching, and buffering functions.

• Exceptions and Interrupts—Details about the types and causes of exceptions and interrupts, and
the methods of transferring control during these events.

• Machine-Check Mechanism—The resources and functions that support detection and handling of
machine-check errors.

• System-Management Mode—The resources and functions that support system-management mode
(SMM), including power-management functions.

• 128-Bit, 64-Bit, and x87 Programming—The resources and functions that support use (by
application software) and state-saving (by the operation system) of the 128-bit media, 64-bit
media, and x87 floating-point instructions.

• Multiple-Processor Management—The features of the instruction set and the system resources and
functions that support multiprocessing environments.

• Debug and Performance Resources—The system resources and functions that support software
debugging and performance monitoring.

• Legacy Task Management—Support for the legacy hardware multitasking functions, including
register resources and data structures.

• Processor Initialization and Long-Mode Activation—The methods by which system software
initializes and changes operating modes.

• Mixing Code Across Operating Modes—Things to remember when running programs in different
operating modes.

• Secure Virtual Machine—The system resources that support virtualization development and
deployment.

There are appendices describing details of model-specific registers (MSRs) and machine-check
implementations. Definitions assumed throughout this volume are listed below. The index at the end of
this volume cross-references topics within the volume. For other topics relating to the AMD64
architecture, see the tables of contents and indexes of the other volumes.

Preface xxxiii

24593—Rev. 3.17—June 2010 AMD64 Technology

Definitions

Some of the following definitions assume a knowledge of the legacy x86 architecture. See “Related
Documents” on page xliii for descriptions of the legacy x86 architecture.

Terms and Notation

1011b

A binary value—in this example, a 4-bit value.

F0EAh

A hexadecimal value—in this example a 2-byte value.

[1,2)

A range that includes the left-most value (in this case, 1) but excludes the right-most value (in this
case, 2).

7–4

A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

128-bit media instructions

Instructions that use the 128-bit XMM registers. These are a combination of the SSE and SSE2
instruction sets.

64-bit media instructions

Instructions that use the 64-bit MMX registers. These are primarily a combination of MMX and
3DNow!™ instruction sets, with some additional instructions from the SSE and SSE2 instruction
sets.

16-bit mode

Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

#GP(0)

Notation indicating a general-protection exception (#GP) with error code of 0.

xxxiv Preface

AMD64 Technology 24593—Rev. 3.17—June 2010

absolute

Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

ASID

Address space identifier.

biased exponent

The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte

Eight bits.

clear

To write a bit value of 0. Compare set.

compatibility mode

A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit

To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL

Current privilege level.

CR0–CR4

A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR0.PE = 1

Notation indicating that the PE bit of the CR0 register has a value of 1.

direct

Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data

Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

Preface xxxv

24593—Rev. 3.17—June 2010 AMD64 Technology

doubleword

Two words, or four bytes, or 32 bits.

double quadword

Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSI

The contents of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

EFER.LME = 0

Notation indicating that the LME bit of the EFER register has a value of 0.

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element

See vector.

exception

An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

FF /0

Notation indicating that FF is the first byte of an opcode, and a subopcode in the ModR/M byte has
a value of 0.

flush

An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT

Global descriptor table.

xxxvi Preface

AMD64 Technology 24593—Rev. 3.17—June 2010

GIF

Global interrupt flag.

IDT

Interrupt descriptor table.

IGN

Ignore. Field is ignored.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB

The virtual-8086 mode interrupt-redirection bitmap.

IST

The long-mode interrupt-stack table.

IVT

The real-address mode interrupt-vector table.

LDT

Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents” on page xliii for descriptions of the legacy
x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

long mode

An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

lsb

Least-significant bit.

LSB

Least-significant byte.

Preface xxxvii

24593—Rev. 3.17—June 2010 AMD64 Technology

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory

Unless otherwise specified, main memory.

ModRM

A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset

A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb

Most-significant bit.

MSB

Most-significant byte.

multimedia instructions

A combination of 128-bit media instructions and 64-bit media instructions.

octword

Same as double quadword.

offset

Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed

See vector.

xxxviii Preface

AMD64 Technology 24593—Rev. 3.17—June 2010

PAE

Physical-address extensions.

physical memory

Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

protected mode

A submode of legacy mode.

quadword

Four words, or eight bytes, or 64 bits.

RAZ

Read as zero (0), regardless of what is written.

real-address mode

See real mode.

real mode

A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved

Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software.

Reserved fields may be further qualified as MBZ, RAZ, SBZ or IGN (see definitions).

Software must not depend on the state of a reserved field, nor upon the ability of such fields to
return to a previously written state.

If a reserved field is not marked with one of the above qualifiers, software must not change the state
of that field; it must reload that field with the same values returned from a prior read.

REX

An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing

Addressing relative to the 64-bit RIP instruction pointer.

Preface xxxix

24593—Rev. 3.17—June 2010 AMD64 Technology

SBZ

Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior.

set

To write a bit value of 1. Compare clear.

SIB

A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD

Single instruction, multiple data. See vector.

SSE

Streaming SIMD extensions instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE2

Extensions to the SSE instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE3

Further extensions to the SSE instruction set. See 128-bit media instructions.

sticky bit

A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP

The x87 top-of-stack pointer.

TSS

Task-state segment.

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the 128-bit and 64-bit media instructions use vectors as operands. Vectors are also called
packed or SIMD (single-instruction multiple-data) operands.

(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

xl Preface

AMD64 Technology 24593—Rev. 3.17—June 2010

virtual-8086 mode

A submode of legacy mode.

VMCB

Virtual machine control block.

VMM

Virtual machine monitor.

word

Two bytes, or 16 bits.

x86

See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH–DH

The high 8-bit AH, BH, CH, and DH registers. Compare AL–DL.

AL–DL

The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B–R15B registers, available in 64-bit
mode.

BP

Base pointer register.

CRn

Control register number n.

CS

Code segment register.

eAX–eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX–rSP.

EFER

Extended features enable register.

Preface xli

24593—Rev. 3.17—June 2010 AMD64 Technology

eFLAGS

16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS

32-bit (extended) flags register.

eIP

16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP

32-bit (extended) instruction-pointer register.

FLAGS

16-bit flags register.

GDTR

Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR

Interrupt descriptor table register.

IP

16-bit instruction-pointer register.

LDTR

Local descriptor table register.

MSR

Model-specific register.

r8–r15

The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

rAX–rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

xlii Preface

AMD64 Technology 24593—Rev. 3.17—June 2010

RAX

64-bit version of the EAX register.

RBP

64-bit version of the EBP register.

RBX

64-bit version of the EBX register.

RCX

64-bit version of the ECX register.

RDI

64-bit version of the EDI register.

RDX

64-bit version of the EDX register.

rFLAGS

16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS

64-bit flags register. Compare rFLAGS.

rIP

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP

64-bit instruction-pointer register.

RSI

64-bit version of the ESI register.

RSP

64-bit version of the ESP register.

SP

Stack pointer register.

SS

Stack segment register.

TPR

Task priority register (CR8), a new register introduced in the AMD64 architecture to speed
interrupt management.

Preface xliii

24593—Rev. 3.17—June 2010 AMD64 Technology

TR

Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.

• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

• AMD, CPUID Specification, order# 25481.

• AMD data sheets and application notes for particular hardware implementations of the AMD64
architecture.

• AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.

• AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

• AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.

• AMD, SYSCALL and SYSRET Instruction Specification Application Note, Sunnyvale, CA, 1998.

• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.

• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

xliv Preface

AMD64 Technology 24593—Rev. 3.17—June 2010

• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

• NexGen Inc., Nx586TM Processor Data Book, NexGen Inc., Milpitas, CA, 1993.

Preface xlv

24593—Rev. 3.17—June 2010 AMD64 Technology

• NexGen Inc., Nx686TM Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium® III,
www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.

• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.

• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.

• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.

• Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

xlvi Preface

AMD64 Technology 24593—Rev. 3.17—June 2010

System-Programming Overview 1

24593—Rev. 3.17—June 2010 AMD64 Technology

1 System-Programming Overview

This entire volume is intended for system-software developers—programmers writing operating
systems, loaders, linkers, device drivers, or utilities that require access to system resources. These
system resources are generally available only to software running at the highest-privilege level
(CPL=0), also referred to as privileged software. Privilege levels and their interactions are fully
described in “Segment-Protection Overview” on page 93.

This chapter introduces the basic features and capabilities of the AMD64 architecture that are available
to system-software developers. The concepts include:

• The supported address forms and how memory is organized.

• How memory-management hardware makes use of the various address forms to access memory.

• The processor operating modes, and how the memory-management hardware supports each of
those modes.

• The system-control registers used to manage system resources.

• The interrupt and exception mechanism, and how it is used to interrupt program execution and to
report errors.

• Additional, miscellaneous features available to system software, including support for hardware
multitasking, reporting machine-check exceptions, debugging software problems, and optimizing
software performance.

Many of the legacy features and capabilities are enhanced by the AMD64 architecture to support 64-
bit operating systems and applications, while providing backward-compatibility with existing
software.

1.1 Memory Model

The AMD64 architecture memory model is designed to allow system software to manage application
software and associated data in a secure fashion. The memory model is backward-compatible with the
legacy memory model. Hardware-translation mechanisms are provided to map addresses between
virtual-memory space and physical-memory space. The translation mechanisms allow system
software to relocate applications and data transparently, either anywhere in physical-memory space, or
in areas on the system hard drive managed by the operating system.

In long mode, the AMD64 architecture implements a flat-memory model. In legacy mode, the
architecture implements all legacy memory models.

2 System-Programming Overview

AMD64 Technology 24593—Rev. 3.17—June 2010

1.1.1 Memory Addressing

The AMD64 architecture supports address relocation. To do this, several types of addresses are needed
to completely describe memory organization. Specifically, four types of addresses are defined by the
AMD64 architecture:

• Logical addresses

• Effective addresses, or segment offsets, which are a portion of the logical address.

• Linear (virtual) addresses

• Physical addresses

Logical Addresses. A logical address is a reference into a segmented-address space. It is comprised
of the segment selector and the effective address. Notationally, a logical address is represented as

Logical Address = Segment Selector : Offset

The segment selector specifies an entry in either the global or local descriptor table. The specified
descriptor-table entry describes the segment location in virtual-address space, its size, and other
characteristics. The effective address is used as an offset into the segment specified by the selector.

Logical addresses are often referred to as far pointers. Far pointers are used in software addressing
when the segment reference must be explicit (i.e., a reference to a segment outside the current
segment).

Effective Addresses. The offset into a memory segment is referred to as an effective address (see
“Segmentation” on page 5 for a description of segmented memory). Effective addresses are formed by
adding together elements comprising a base value, a scaled-index value, and a displacement value. The
effective-address computation is represented by the equation

Effective Address = Base + (Scale x Index) + Displacement

The elements of an effective-address computation are defined as follows:

• Base—A value stored in any general-purpose register.

• Scale—A positive value of 1, 2, 4, or 8.

• Index—A two’s-complement value stored in any general-purpose register.

• Displacement—An 8-bit, 16-bit, or 32-bit two’s-complement value encoded as part of the
instruction.

Effective addresses are often referred to as near pointers. A near pointer is used when the segment
selector is known implicitly or when the flat-memory model is used.

Long mode defines a 64-bit effective-address length. If a processor implementation does not support
the full 64-bit virtual-address space, the effective address must be in canonical form (see “Canonical
Address Form” on page 4).

System-Programming Overview 3

24593—Rev. 3.17—June 2010 AMD64 Technology

Linear (Virtual) Addresses. The segment-selector portion of a logical address specifies a segment-
descriptor entry in either the global or local descriptor table. The specified segment-descriptor entry
contains the segment-base address, which is the starting location of the segment in linear-address
space. A linear address is formed by adding the segment-base address to the effective address
(segment offset), which creates a reference to any byte location within the supported linear-address
space. Linear addresses are often referred to as virtual addresses, and both terms are used
interchangeably throughout this document.

Linear Address = Segment Base Address + Effective Address

When the flat-memory model is used—as in 64-bit mode—a segment-base address is treated as 0. In
this case, the linear address is identical to the effective address. In long mode, linear addresses must be
in canonical address form, as described in “Canonical Address Form” on page 4.

Physical Addresses. A physical address is a reference into the physical-address space, typically
main memory. Physical addresses are translated from virtual addresses using page-translation
mechanisms. See “Paging” on page 7 for information on how the paging mechanism is used for
virtual-address to physical-address translation. When the paging mechanism is not enabled, the virtual
(linear) address is used as the physical address.

1.1.2 Memory Organization

The AMD64 architecture organizes memory into virtual memory and physical memory. Virtual-
memory and physical-memory spaces can be (and usually are) different in size. Generally, the virtual-
address space is much larger than physical-address memory. System software relocates applications
and data between physical memory and the system hard disk to make it appear that much more
memory is available than really exists. System software then uses the hardware memory-management
mechanisms to map the larger virtual-address space into the smaller physical-address space.

Virtual Memory. Software uses virtual addresses to access locations within the virtual-memory
space. System software is responsible for managing the relocation of applications and data in virtual-
memory space using segment-memory management. System software is also responsible for mapping
virtual memory to physical memory through the use of page translation. The AMD64 architecture
supports different virtual-memory sizes using the following address-translation modes:

• Protected Mode—This mode supports 4 gigabytes of virtual-address space using 32-bit virtual
addresses.

• Long Mode—This mode supports 16 exabytes of virtual-address space using 64-bit virtual
addresses.

4 System-Programming Overview

AMD64 Technology 24593—Rev. 3.17—June 2010

Physical Memory. Physical addresses are used to directly access main memory. For a particular
computer system, the size of the available physical-address space is equal to the amount of main
memory installed in the system. The maximum amount of physical memory accessible depends on the
processor implementation and on the address-translation mode. The AMD64 architecture supports
varying physical-memory sizes using the following address-translation modes:

• Real-Address Mode—This mode, also called real mode, supports 1 megabyte of physical-address
space using 20-bit physical addresses. This address-translation mode is described in “Real
Addressing” on page 10. Real mode is available only from legacy mode (see “Legacy Modes” on
page 14).

• Legacy Protected Mode—This mode supports several different address-space sizes, depending on
the translation mechanism used and whether extensions to those mechanisms are enabled.

Legacy protected mode supports 4 gigabytes of physical-address space using 32-bit physical
addresses. Both segment translation (see “Segmentation” on page 5) and page translation (see
“Paging” on page 7) can be used to access the physical address space, when the processor is
running in legacy protected mode.

When the physical-address size extensions are enabled (see “Physical-Address Extensions (PAE)
Bit” on page 119), the page-translation mechanism can be extended to support 52-bit physical
addresses. 52-bit physical addresses allow up to 4 petabytes of physical-address space to be
supported. (Currently, the AMD64 architecture supports 40-bit addresses in this mode, allowing up
to 1 terabyte of physical-address space to be supported.

• Long Mode—This mode is unique to the AMD64 architecture. This mode supports up to 4
petabytes of physical-address space using 52-bit physical addresses. Long mode requires the use of
page-translation and the physical-address size extensions (PAE).

1.1.3 Canonical Address Form

Long mode defines 64 bits of virtual-address space, but processor implementations can support less.
Although some processor implementations do not use all 64 bits of the virtual address, they all check
bits 63 through the most-significant implemented bit to see if those bits are all zeros or all ones. An
address that complies with this property is in canonical address form. In most cases, a virtual-memory
reference that is not in canonical form causes a general-protection exception (#GP) to occur. However,
implied stack references where the stack address is not in canonical form causes a stack exception
(#SS) to occur. Implied stack references include all push and pop instructions, and any instruction
using RSP or RBP as a base register.

By checking canonical-address form, the AMD64 architecture prevents software from exploiting
unused high bits of pointers for other purposes. Software complying with canonical-address form on a
specific processor implementation can run unchanged on long-mode implementations supporting
larger virtual-address spaces.

System-Programming Overview 5

24593—Rev. 3.17—June 2010 AMD64 Technology

1.2 Memory Management

Memory management consists of the methods by which addresses generated by software are translated
by segmentation and/or paging into addresses in physical memory. Memory management is not visible
to application software. It is handled by the system software and processor hardware.

1.2.1 Segmentation

Segmentation was originally created as a method by which system software could isolate software
processes (tasks), and the data used by those processes, from one another in an effort to increase the
reliability of systems running multiple processes simultaneously.

The AMD64 architecture is designed to support all forms of legacy segmentation. However, most
modern system software does not use the segmentation features available in the legacy x86
architecture. Instead, system software typically handles program and data isolation using page-level
protection. For this reason, the AMD64 architecture dispenses with multiple segments in 64-bit mode
and, instead, uses a flat-memory model. The elimination of segmentation allows new 64-bit system
software to be coded more simply, and it supports more efficient management of multi-processing than
is possible in the legacy x86 architecture.

Segmentation is, however, used in compatibility mode and legacy mode. Here, segmentation is a form
of base memory-addressing that allows software and data to be relocated in virtual-address space off of
an arbitrary base address. Software and data can be relocated in virtual-address space using one or
more variable-sized memory segments. The legacy x86 architecture provides several methods of
restricting access to segments from other segments so that software and data can be protected from
interfering with each other.

In compatibility and legacy modes, up to 16,383 unique segments can be defined. The base-address
value, segment size (called a limit), protection, and other attributes for each segment are contained in a
data structure called a segment descriptor. Collections of segment descriptors are held in descriptor
tables. Specific segment descriptors are referenced or selected from the descriptor table using a
segment selector register. Six segment-selector registers are available, providing access to as many as
six segments at a time.

Figure 1-1 on page 6 shows an example of segmented memory. Segmentation is described in
Chapter 4, “Segmented Virtual Memory.”

6 System-Programming Overview

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 1-1. Segmented-Memory Model

Flat Segmentation. One special case of segmented memory is the flat-memory model. In the legacy
flat-memory model, all segment-base addresses have a value of 0, and the segment limits are fixed at
4 Gbytes. Segmentation cannot be disabled but use of the flat-memory model effectively disables
segment translation. The result is a virtual address that equals the effective address. Figure 1-2 on
page 7 shows an example of the flat-memory model.

Software running in 64-bit mode automatically uses the flat-memory model. In 64-bit mode, the
segment base is treated as if it were 0, and the segment limit is ignored. This allows an effective
addresses to access the full virtual-address space supported by the processor.

513-201.eps

Effective Address

Selectors

Base

Limit

Base

Limit

Descriptor Table

Virtual Address
Space

Virtual Address

Segment

Segment

DS

ES

FS

GS

CS

SS

System-Programming Overview 7

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 1-2. Flat Memory Model

1.2.2 Paging

Paging allows software and data to be relocated in physical-address space using fixed-size blocks
called physical pages. The legacy x86 architecture supports three different physical-page sizes of
4 Kbytes, 2 Mbytes, and 4 Mbytes. As with segment translation, access to physical pages by lesser-
privileged software can be restricted.

Page translation uses a hierarchical data structure called a page-translation table to translate virtual
pages into physical-pages. The number of levels in the translation-table hierarchy can be as few as one
or as many as four, depending on the physical-page size and processor operating mode. Translation
tables are aligned on 4-Kbyte boundaries. Physical pages must be aligned on 4-Kbyte, 2-Mbyte, or 4-
Mbyte boundaries, depending on the physical-page size.

Each table in the translation hierarchy is indexed by a portion of the virtual-address bits. The entry
referenced by the table index contains a pointer to the base address of the next-lower-level table in the
translation hierarchy. In the case of the lowest-level table, its entry points to the physical-page base
address. The physical page is then indexed by the least-significant bits of the virtual address to yield
the physical address.

Figure 1-3 on page 8 shows an example of paged memory with three levels in the translation-table
hierarchy. Paging is described in Chapter 5, “Page Translation and Protection.”

513-202.eps

Effective Address

Virtual Address
Space

Virtual Address

Flat Segment

8 System-Programming Overview

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 1-3. Paged Memory Model

Software running in long mode is required to have page translation enabled.

1.2.3 Mixing Segmentation and Paging

Memory-management software can combine the use of segmented memory and paged memory.
Because segmentation cannot be disabled, paged-memory management requires some minimum
initialization of the segmentation resources. Paging can be completely disabled, so segmented-
memory management does not require initialization of the paging resources.

Segments can range in size from a single byte to 4 Gbytes in length. It is therefore possible to map
multiple segments to a single physical page and to map multiple physical pages to a single segment.
Alignment between segment and physical-page boundaries is not required, but memory-management
software is simplified when segment and physical-page boundaries are aligned.

513-203.eps

Page Translation Tables

Physical Address
Space

Physical Address

Page Table Base Address

Virtual Address

Physical Page

Table 3Table 2Table 1

System-Programming Overview 9

24593—Rev. 3.17—June 2010 AMD64 Technology

The simplest, most efficient method of memory management is the flat-memory model. In the flat-
memory model, all segment base addresses have a value of 0 and the segment limits are fixed at 4
Gbytes. The segmentation mechanism is still used each time a memory reference is made, but because
virtual addresses are identical to effective addresses in this model, the segmentation mechanism is
effectively ignored. Translation of virtual (or effective) addresses to physical addresses takes place
using the paging mechanism only.

Because 64-bit mode disables segmentation, it uses a flat, paged-memory model for memory
management. The 4 Gbyte segment limit is ignored in 64-bit mode. Figure 1-4 shows an example of
this model.

Figure 1-4. 64-Bit Flat, Paged-Memory Model

513-204.eps

Physical Address
Space

Page Frame

Physical Address

Page Translation Tables

Page Table Base Address

Effective Address

Virtual Address
Space

Virtual Address

Flat Segment

10 System-Programming Overview

AMD64 Technology 24593—Rev. 3.17—June 2010

1.2.4 Real Addressing

Real addressing is a legacy-mode form of address translation used in real mode. This simplified form
of address translation is backward compatible with 8086-processor effective-to-physical address
translation. In this mode, 16-bit effective addresses are mapped to 20-bit physical addresses, providing
a 1-Mbyte physical-address space.

Segment selectors are used in real-address translation, but not as an index into a descriptor table.
Instead, the 16-bit segment-selector value is shifted left by 4 bits to form a 20-bit segment-base
address. The 16-bit effective address is added to this 20-bit segment base address to yield a 20-bit
physical address. If the sum of the segment base and effective address carries over into bit 20, that bit
can be optionally truncated to mimic the 20-bit address wrapping of the 8086 processor by using the
A20M# input signal to mask the A20 address bit.

Real-address translation supports a 1-Mbyte physical-address space using up to 64K segments aligned
on 16-byte boundaries. Each segment is exactly 64K bytes long. Figure 1-5 shows an example of real-
address translation.

Figure 1-5. Real-Address Memory Model

513-205.eps

Effective Address

Selectors

+

0000 Effective Address 0000Selector

Physical Address

019019

019

015

DS

ES

FS

GS

CS

SS

System-Programming Overview 11

24593—Rev. 3.17—June 2010 AMD64 Technology

1.3 Operating Modes

The legacy x86 architecture provides four operating modes or environments that support varying
forms of memory management, virtual-memory and physical-memory sizes, and protection:

• Real Mode.

• Protected Mode.

• Virtual-8086 Mode.

• System Management Mode.

The AMD64 architecture supports all these legacy modes, and it adds a new operating mode called
long mode. Table 1-1 shows the differences between long mode and legacy mode. Software can move
between all supported operating modes as shown in Figure 1-6 on page 12. Each operating mode is
described in the following sections.

Table 1-1. Operating Modes

Mode
System

Software
Required

Application
Recompile
Required

Defaults1

Register
Extensions2

Maximum
GPR

Width
(bits)

 Address
Size
(bits)

Operand
Size
(bits)

Long
Mode3

64-Bit
Mode New

64-bit OS

yes 64
32

yes 64

Compatibility
Mode

no
32

no 32
16 16

Legacy
Mode

Protected
Mode Legacy

32-bit OS
no

32 32

no

32
16 16

Virtual-8086
Mode

16 16 32
Real Mode

Legacy
16-bit OS

Note:
1. Defaults can be overridden in most modes using an instruction prefix or system control bit.
2. Register extensions includes eight new GPRs and eight new XMM registers (also called SSE registers).
3. Long mode supports only x86 protected mode. It does not support x86 real mode or virtual-8086 mode.

12 System-Programming Overview

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 1-6. Operating Modes of the AMD64 Architecture

1.3.1 Long Mode

Long mode consists of two submodes: 64-bit mode and compatibility mode. 64-bit mode supports
several new features, including the ability to address 64-bit virtual-address space. Compatibility mode
provides binary compatibility with existing 16-bit and 32-bit applications when running on 64-bit
system software.

Throughout this document, references to long mode refer collectively to both 64-bit mode and
compatibility mode. If a function is specific to either 64-bit mode or compatibility mode, then those
specific names are used instead of the name long mode.

Before enabling and activating long mode, system software must first enable protected mode. The
process of enabling and activating long mode is described in Chapter 14, “Processor Initialization and

513-206.eps

System
Management

Mode

Real
Mode

Virtual
8086
Mode

Protected
Mode

Long Mode

64-bit
Mode

Compatibility
Mode

EFER.LME=1, CR4.PAE=1
then CR0.PG=1

CR0.PE=1

CR0.PG=0
then EFER.LME=0

CS.L=0

CS.L=1

CS.L=0

CR0.PE=0

EFLAGS.VM=1

EFLAGS.VM=0

RSMSMI#

RSM

SMI#

SMI#

SMI#

RSM

RSM

SMI#RSM

Reset

Reset
Reset

Reset

System-Programming Overview 13

24593—Rev. 3.17—June 2010 AMD64 Technology

Long Mode Activation.” Long mode features are described throughout this document, where
applicable.

1.3.2 64-Bit Mode

64-bit mode, a submode of long mode, provides support for 64-bit system software and applications by
adding the following new features:

• 64-bit virtual addresses (processor implementations can have fewer).

• Register extensions through a new instruction prefix (REX):

- Adds eight GPRs (R8–R15).

- Widens GPRs to 64 bits.

- Adds eight 128-bit streaming SIMD extension (SSE) registers (XMM8–XMM15).

• 64-bit instruction pointer (RIP).

• New RIP-relative data-addressing mode.

• Flat-segment address space with single code, data, and stack space.

The mode is enabled by the system software on an individual code-segment basis. Although code
segments are used to enable and disable 64-bit mode, the legacy segmentation mechanism is largely
disabled. Page translation is required for memory management purposes. Because 64-bit mode
supports a 64-bit virtual-address space, it requires 64-bit system software and development tools.

In 64-bit mode, the default address size is 64 bits, and the default operand size is 32 bits. The defaults
can be overridden on an instruction-by-instruction basis using instruction prefixes. A new REX prefix
is introduced for specifying a 64-bit operand size and the new registers.

1.3.3 Compatibility Mode

Compatibility mode, a submode of long mode, allows system software to implement binary
compatibility with existing 16-bit and 32-bit x86 applications. It allows these applications to run,
without recompilation, under 64-bit system software in long mode, as shown in Table 1-1 on page 11.

In compatibility mode, applications can only access the first 4 Gbytes of virtual-address space.
Standard x86 instruction prefixes toggle between 16-bit and 32-bit address and operand sizes.

Compatibility mode, like 64-bit mode, is enabled by system software on an individual code-segment
basis. Unlike 64-bit mode, however, segmentation functions the same as in the legacy-x86
architecture, using 16-bit or 32-bit protected-mode semantics. From an application viewpoint,
compatibility mode looks like a legacy protected-mode environment. From a system-software
viewpoint, the long-mode mechanisms are used for address translation, interrupt and exception
handling, and system data-structures.

14 System-Programming Overview

AMD64 Technology 24593—Rev. 3.17—June 2010

1.3.4 Legacy Modes

Legacy mode consists of three submodes: real mode, protected mode, and virtual-8086 mode.
Protected mode can be either paged or unpaged. Legacy mode preserves binary compatibility not only
with existing x86 16-bit and 32-bit applications but also with existing x86 16-bit and 32-bit system
software.

Real Mode. In this mode, also called real-address mode, the processor supports a physical-memory
space of 1 Mbyte and operand sizes of 16 bits (default) or 32 bits (with instruction prefixes). Interrupt
handling and address generation are nearly identical to the 80286 processor's real mode. Paging is not
supported. All software runs at privilege level 0.

Real mode is entered after reset or processor power-up. The mode is not supported when the processor
is operating in long mode because long mode requires that paged protected mode be enabled.

Protected Mode. In this mode, the processor supports virtual-memory and physical-memory spaces
of 4 Gbytes and operand sizes of 16 or 32 bits. All segment translation, segment protection, and
hardware multitasking functions are available. System software can use segmentation to relocate
effective addresses in virtual-address space. If paging is not enabled, virtual addresses are equal to
physical addresses. Paging can be optionally enabled to allow translation of virtual addresses to
physical addresses and to use the page-based memory-protection mechanisms.

In protected mode, software runs at privilege levels 0, 1, 2, or 3. Typically, application software runs at
privilege level 3, the system software runs at privilege levels 0 and 1, and privilege level 2 is available
to system software for other uses. The 16-bit version of this mode was first introduced in the 80286
processor.

Virtual-8086 Mode. Virtual-8086 mode allows system software to run 16-bit real-mode software on a
virtualized-8086 processor. In this mode, software written for the 8086, 8088, 80186, or 80188
processor can run as a privilege-level-3 task under protected mode. The processor supports a virtual-
memory space of 1 Mbytes and operand sizes of 16 bits (default) or 32 bits (with instruction prefixes),
and it uses real-mode address translation.

Virtual-8086 mode is enabled by setting the virtual-machine bit in the EFLAGS register
(EFLAGS.VM). EFLAGS.VM can only be set or cleared when the EFLAGS register is loaded from
the TSS as a result of a task switch, or by executing an IRET instruction from privileged software. The
POPF instruction cannot be used to set or clear the EFLAGS.VM bit.

Virtual-8086 mode is not supported when the processor is operating in long mode. When long mode is
enabled, any attempt to enable virtual-8086 mode is silently ignored.

System-Programming Overview 15

24593—Rev. 3.17—June 2010 AMD64 Technology

1.3.5 System Management Mode (SMM)

System management mode (SMM) is an operating mode designed for system-control activities that are
typically transparent to conventional system software. Power management is one popular use for
system management mode. SMM is primarily targeted for use by the basic input-output system
(BIOS) and specialized low-level device drivers. The code and data for SMM are stored in the SMM
memory area, which is isolated from main memory by the SMM output signal.

SMM is entered by way of a system management interrupt (SMI). Upon recognizing an SMI, the
processor enters SMM and switches to a separate address space where the SMM handler is located and
executes. In SMM, the processor supports real-mode addressing with 4 Gbyte segment limits and
default operand, address, and stack sizes of 16 bits (prefixes can be used to override these defaults).

1.4 System Registers

Figure 1-7 on page 16 shows the system registers defined for the AMD64 architecture. System
software uses these registers to, among other things, manage the processor operating environment,
define system resource characteristics, and to monitor software execution. With the exception of the
RFLAGS register, system registers can be read and written only from privileged software.

Except for the descriptor-table registers and task register, the AMD64 architecture defines all system
registers to be 64 bits wide. The descriptor table and task registers are defined by the AMD64
architecture to include 64-bit base-address fields, in addition to their other fields.

As shown in Figure 1-7 on page 16, the system registers include:

• Control Registers—These registers are used to control system operation and some system features.
See “System-Control Registers” on page 41 for details.

• System-Flags Register—The RFLAGS register contains system-status flags and masks. It is also
used to enable virtual-8086 mode and to control application access to I/O devices and interrupts.
See “RFLAGS Register” on page 50 for details.

• Descriptor-Table Registers—These registers contain the location and size of descriptor tables
stored in memory. Descriptor tables hold segmentation data structures used in protected mode. See
“Descriptor Tables” on page 71 for details.

• Task Register—The task register contains the location and size in memory of the task-state
segment. The hardware-multitasking mechanism uses the task-state segment to hold state
information for a given task. The TSS also holds other data, such as the inner-level stack pointers
used when changing to a higher privilege level. See “Task Register” on page 311 for details.

• Debug Registers—Debug registers are used to control the software-debug mechanism, and to
report information back to a debug utility or application. See “Debug Registers” on page 328 for
details.

16 System-Programming Overview

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 1-7. System Registers

Also defined as system registers are a number of model-specific registers included in the AMD64
architectural definition, and shown in Figure 1-7:

• Extended-Feature-Enable Register—The EFER register is used to enable and report status on
special features not controlled by the CRn control registers. In particular, EFER is used to control
activation of long mode. See “Extended Feature Enable Register (EFER)” on page 54 for more
information.

Control Registers

CR0

CR2

CR3

CR4

CR8

System-Flags Register

RFLAGS

Debug Registers

DR0

DR1

DR2

DR3

DR6

DR7

513-260.eps

Memory-Typing Registers

MTRRcap

MTRRdefType

MTRRphysBasen

MTRRphysMaskn

MTRRfixn

PAT

TOP_MEM

TOP_MEM2

Machine-Check Registers

MCG_CAP

MCG_STAT

MCG_CTL

MCi_CTL

MCi_STATUS

MCi_ADDR

MCi_MISC

Performance-Monitoring Registers

TSC

PerfEvtSeln

PerfCtrn

Model-Specific Registers

Descriptor-Table Registers

GDTR

IDTR

LDTR

Task Register

TR

Extended-Feature-Enable Register

EFER

Debug-Extension Registers

DebugCtlMSR

LastBranchFromIP

LastBranchToIP

LastIntFromIP

LastIntToIP

System-Configuration Register

SYSCFG

System-Linkage Registers

STAR

LSTAR

CSTAR

FS.base

GS.base

KernelGSbase

SYSENTER_CS

SYSENTER_ESP

SYSENTER_EIP

SFMASK

System-Programming Overview 17

24593—Rev. 3.17—June 2010 AMD64 Technology

• System-Configuration Register—The SYSCFG register is used to enable and configure system-
bus features. See “System Configuration Register (SYSCFG)” on page 58 for more information.

• System-Linkage Registers—These registers are used by system-linkage instructions to specify
operating-system entry points, stack locations, and pointers into system-data structures. See “Fast
System Call and Return” on page 150 for details.

• Memory-Typing Registers—Memory-typing registers can be used to characterize (type) system
memory. Typing memory gives system software control over how instructions and data are cached,
and how memory reads and writes are ordered. See “MTRRs” on page 184 for details.

• Debug-Extension Registers—These registers control additional software-debug reporting features.
See “Debug Registers” on page 328 for details.

• Performance-Monitoring Registers—Performance-monitoring registers are used to count
processor and system events, or the duration of events. See “Performance Optimization” on
page 341 for more information.

• Machine-Check Registers—The machine-check registers control the response of the processor to
non-recoverable failures. They are also used to report information on such failures back to system
utilities designed to respond to such failures. See “Machine Check MSRs” on page 256 for more
information.

1.5 System-Data Structures

Figure 1-8 on page 18 shows the system-data structures defined for the AMD64 architecture. System-
data structures are created and maintained by system software for use by the processor when running
in protected mode. A processor running in protected mode uses these data structures to manage
memory and protection, and to store program-state information when an interrupt or task switch
occurs.

18 System-Programming Overview

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 1-8. System-Data Structures

As shown in Figure 1-8, the system-data structures include:

• Descriptors—A descriptor provides information about a segment to the processor, such as its
location, size and privilege level. A special type of descriptor, called a gate, is used to provide a
code selector and entry point for a software routine. Any number of descriptors can be defined, but
system software must at a minimum create a descriptor for the currently executing code segment
and stack segment. See “Legacy Segment Descriptors” on page 77, and “Long-Mode Segment
Descriptors” on page 86 for complete information on descriptors.

• Descriptor Tables—As the name implies, descriptor tables hold descriptors. The global-descriptor
table holds descriptors available to all programs, while a local-descriptor table holds descriptors
used by a single program. The interrupt-descriptor table holds only gate descriptors used by

513-261.eps

Segment Descriptors (Contained in Descriptor Tables)

Code

Stack

Data

Gate

Task-State Segment

Local-Descriptor Table

Task-State Segment

Page-Translation Tables

Page-Map Level-4 Page TablePage DirectoryPage-Directory Pointer

Global-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Interrupt-Descriptor Table

Gate Descriptor

Gate Descriptor

. . .

Gate Descriptor

Local-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Descriptor Tables

System-Programming Overview 19

24593—Rev. 3.17—June 2010 AMD64 Technology

interrupt handlers. System software must initialize the global-descriptor and interrupt-descriptor
tables, while use of the local-descriptor table is optional. See “Descriptor Tables” on page 71 for
more information.

• Task-State Segment—The task-state segment is a special segment for holding processor-state
information for a specific program, or task. It also contains the stack pointers used when switching
to more-privileged programs. The hardware multitasking mechanism uses the state information in
the segment when suspending and resuming a task. Calls and interrupts that switch stacks cause the
stack pointers to be read from the task-state segment. System software must create at least one
task-state segment, even if hardware multitasking is not used. See “Legacy Task-State Segment”
on page 313, and “64-Bit Task State Segment” on page 317 for details.

• Page-Translation Tables—Use of page translation is optional in protected mode, but it is required
in long mode. A four-level page-translation data structure is provided to allow long-mode
operating systems to translate a 64-bit virtual-address space into a 52-bit physical-address space.
Legacy protected mode can use two- or three-level page-translation data structures. See “Page
Translation Overview” on page 115 for more information on page translation.

1.6 Interrupts

The AMD64 architecture provides a mechanism for the processor to automatically suspend (interrupt)
software execution and transfer control to an interrupt handler when an interrupt or exception occurs.
An interrupt handler is privileged software designed to identify and respond to the cause of an interrupt
or exception, and return control back to the interrupted software. Interrupts can be caused when
system hardware signals an interrupt condition using one of the external-interrupt signals on the
processor. Interrupts can also be caused by software that executes an interrupt instruction. Exceptions
occur when the processor detects an abnormal condition as a result of executing an instruction. The
term “interrupts” as used throughout this volume includes both interrupts and exceptions when the
distinction is unnecessary.

System software not only sets up the interrupt handlers, but it must also create and initialize the data
structures the processor uses to execute an interrupt handler when an interrupt occurs. The data
structures include the code-segment descriptors for the interrupt-handler software and any data-
segment descriptors for data and stack accesses. Interrupt-gate descriptors must also be supplied.
Interrupt gates point to interrupt-handler code-segment descriptors, and the entry point in an interrupt
handler. Interrupt gates are stored in the interrupt-descriptor table. The code-segment and data-
segment descriptors are stored in the global-descriptor table and, optionally, the local-descriptor table.

When an interrupt occurs, the processor uses the interrupt vector to find the appropriate interrupt gate
in the interrupt-descriptor table. The gate points to the interrupt-handler code segment and entry point,
and the processor transfers control to that location. Before invoking the interrupt handler, the processor
saves information required to return to the interrupted program. For details on how the processor
transfers control to interrupt handlers, see “Legacy Protected-Mode Interrupt Control Transfers” on
page 231, and “Long-Mode Interrupt Control Transfers” on page 241.

20 System-Programming Overview

AMD64 Technology 24593—Rev. 3.17—June 2010

Table 1-2 shows the supported interrupts and exceptions, ordered by their vector number. Refer to
“Vectors” on page 208 for a complete description of each interrupt, and a description of the interrupt
mechanism.

1.7 Additional System-Programming Facilities

1.7.1 Hardware Multitasking

A task is any program that the processor can execute, suspend, and later resume executing at the point
of suspension. During the time a task is suspended, other tasks are allowed to execute. Each task has its
own execution space, consisting of a code segment, data segments, and a stack segment for each
privilege level. Tasks can also have their own virtual-memory environment managed by the page-
translation mechanism. The state information defining this execution space is stored in the task-state
segment (TSS) maintained for each task.

Table 1-2. Interrupts and Exceptions

Vector Description

0 Integer Divide-by-Zero Exception

1 Debug Exception

2 Non-Maskable-Interrupt

3 Breakpoint Exception (INT 3)

4 Overflow Exception (INTO instruction)

5 Bound-Range Exception (BOUND instruction)

6 Invalid-Opcode Exception

7 Device-Not-Available Exception

8 Double-Fault Exception

9
Coprocessor-Segment-Overrun Exception (reserved in
AMD64)

10 Invalid-TSS Exception

11 Segment-Not-Present Exception

12 Stack Exception

13 General-Protection Exception

14 Page-Fault Exception

15 (Reserved)

16 x87 Floating-Point Exception

17 Alignment-Check Exception

18 Machine-Check Exception

19 SIMD Floating-Point Exception

0-255 Interrupt Instructions

Any Hardware Maskable Interrupts

System-Programming Overview 21

24593—Rev. 3.17—June 2010 AMD64 Technology

Support for hardware multitasking is provided by implementations of the AMD64 architecture when
software is running in legacy mode. Hardware multitasking provides automated mechanisms for
switching tasks, saving the execution state of the suspended task, and restoring the execution state of
the resumed task. When hardware multitasking is used to switch tasks, the processor takes the
following actions:

• The processor automatically suspends execution of the task, allowing any executing instructions to
complete and save their results.

• The execution state of a task is saved in the task TSS.

• The execution state of a new task is loaded into the processor from its TSS.

• The processor begins executing the new task at the location specified in the new task TSS.

Use of hardware-multitasking features is optional in legacy mode. Generally, modern operating
systems do not use the hardware-multitasking features, and instead perform task management entirely
in software. Long mode does not support hardware multitasking at all.

Whether hardware multitasking is used or not, system software must create and initialize at least one
task-state segment data-structure. This requirement holds for both long-mode and legacy-mode
software. The single task-state segment holds critical pieces of the task execution environment and is
referenced during certain control transfers.

Detailed information on hardware multitasking is available in Chapter 12, “Task Management,” along
with a full description of the requirements that must be met in initializing a task-state segment when
hardware multitasking is not used.

1.7.2 Machine Check

Implementations of the AMD64 architecture support the machine-check exception. This exception is
useful in system applications with stringent requirements for reliability, availability, and serviceability.
The exception allows specialized system-software utilities to report hardware errors that are generally
severe and non-recoverable. Providing the capability to report such errors can allow complex system
problems to be pinpointed rapidly.

The machine-check exception is described in Chapter 9, “Machine Check Mechanism.” Much of the
error-reporting capabilities is implementation dependent. For more information, developers of
machine-check error-reporting software should also refer to the BIOS writer’s guide for a specific
implementation.

1.7.3 Software Debugging

A software-debugging mechanism is provided in hardware to help software developers quickly isolate
programming errors. This capability can be used to debug system software and application software
alike. Only privileged software can access the debugging facilities. Generally, software-debug support
is provided by a privileged application program rather than by the operating system itself.

The facilities supported by the AMD64 architecture allow debugging software to perform the
following:

22 System-Programming Overview

AMD64 Technology 24593—Rev. 3.17—June 2010

• Set breakpoints on specific instructions within a program.

• Set breakpoints on an instruction-address match.

• Set breakpoints on a data-address match.

• Set breakpoints on specific I/O-port addresses.

• Set breakpoints to occur on task switches when hardware multitasking is used.

• Single step an application instruction-by-instruction.

• Single step only branches and interrupts.

• Record a history of branches and interrupts taken by a program.

The debugging facilities are fully described in “Software-Debug Resources” on page 327. Some
processors provide additional, implementation-specific debug support. For more information, refer to
the BIOS writer’s guide for the specific implementation.

1.7.4 Performance Monitoring

For many software developers, the ability to identify and eliminate performance bottlenecks from a
program is nearly as important as quickly isolating programming errors. Implementations of the
AMD64 architecture provide hardware performance-monitoring resources that can be used by special
software applications to identify such bottlenecks. Non-privileged software can access the
performance monitoring facilities, but only if privileged software grants that access.

The performance-monitoring facilities allow the counting of events, or the duration of events.
Performance-analysis software can use the data to calculate the frequency of certain events, or the time
spent performing specific activities. That information can be used to suggest areas for improvement
and the types of optimizations that are helpful.

The performance-monitoring facilities are fully described in “Performance Optimization” on
page 341. The specific events that can be monitored are generally implementation specific. For more
information, refer to the BIOS writer’s guide for the specific implementation.

x86 and AMD64 Architecture Differences 23

24593—Rev. 3.17—June 2010 AMD64 Technology

2 x86 and AMD64 Architecture Differences

The AMD64 architecture is designed to provide full binary compatibility with all previous AMD
implementations of the x86 architecture. This chapter summarizes the new features and architectural
enhancements introduced by the AMD64 architecture, and compares those features and enhancements
with previous AMD x86 processors. Most of the new capabilities introduced by the AMD64
architecture are available only in long mode (64-bit mode, compatibility mode, or both). However,
some of the new capabilities are also available in legacy mode, and are mentioned where appropriate.

The material throughout this chapter assumes the reader has a solid understanding of the x86
architecture. For those who are unfamiliar with the x86 architecture, please read the remainder of this
volume before reading this chapter.

2.1 Operating Modes

See “Operating Modes” on page 11 for a complete description of the operating modes supported by the
AMD64 architecture.

2.1.1 Long Mode

The AMD64 architecture introduces long mode and its two sub-modes: 64-bit mode and compatibility
mode.

64-Bit Mode. 64-bit mode provides full support for 64-bit system software and applications. The new
features introduced in support of 64-bit mode are summarized throughout this chapter. To use 64-bit
mode, a 64-bit operating system and tool chain are required.

Compatibility Mode. Compatibility mode allows 64-bit operating systems to implement binary
compatibility with existing 16-bit and 32-bit x86 applications. It allows these applications to run,
without recompilation, under control of a 64-bit operating system in long mode. The architectural
enhancements introduced by the AMD64 architecture that support compatibility mode are
summarized throughout this chapter.

Unsupported Modes. Long mode does not support the following two operating modes:

• Virtual-8086 Mode—The virtual-8086 mode bit (EFLAGS.VM) is ignored when the processor is
running in long mode. When long mode is enabled, any attempt to enable virtual-8086 mode is
silently ignored. System software must leave long mode in order to use virtual-8086 mode.

• Real Mode—Real mode is not supported when the processor is operating in long mode because
long mode requires that protected mode be enabled.

2.1.2 Legacy Mode

The AMD64 architecture supports a pure x86 legacy mode, which preserves binary compatibility not
only with existing 16-bit and 32-bit applications but also with existing 16-bit and 32-bit operating

24 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.17—June 2010

systems. Legacy mode supports real mode, protected mode, and virtual-8086 mode. A reset always
places the processor in legacy mode (real mode), and the processor continues to run in legacy mode
until system software activates long mode. New features added by the AMD64 architecture that are
supported in legacy mode are summarized in this chapter.

2.1.3 System-Management Mode

The AMD64 architecture supports system-management mode (SMM). SMM can be entered from both
long mode and legacy mode, and SMM can return directly to either mode. The following differences
exist between the support of SMM in the AMD64 architecture and the SMM support found in previous
processor generations:

• The SMRAM state-save area format is changed to hold the 64-bit processor state. This state-save
area format is used regardless of whether SMM is entered from long mode or legacy mode.

• The auto-halt restart and I/O-instruction restart entries in the SMRAM state-save area are one byte
instead of two bytes.

• The initial processor state upon entering SMM is expanded to reflect the 64-bit nature of the
processor.

• New conditions exist that can cause a processor shutdown while exiting SMM.

• SMRAM caching considerations are modified because the legacy FLUSH# external signal
(writeback, if modified, and invalidate) is not supported on implementations of the AMD64
architecture.

See Chapter 10, “System-Management Mode,” for more information on the SMM differences.

2.2 Memory Model

The AMD64 architecture provides enhancements to the legacy memory model to support very large
physical-memory and virtual-memory spaces while in long mode. Some of this expanded support for
physical memory is available in legacy mode.

2.2.1 Memory Addressing

Virtual-Memory Addressing. Virtual-memory support is expanded to 64 address bits in long mode.
This allows up to 16 exabytes of virtual-address space to be accessed. The virtual-address space
supported in legacy mode is unchanged.

Physical-Memory Addressing. Physical-memory support is expanded to 52 address bits in long
mode and legacy mode. This allows up to 4 petabytes of physical memory to be accessed. The
expanded physical-memory support is achieved by using paging and the page-size extensions.

Implementations can support fewer than 52 physical-address bits. The first implementation of the
AMD64 architecture, for example, supports 40-bit physical addressing in both long mode and legacy
mode.

x86 and AMD64 Architecture Differences 25

24593—Rev. 3.17—June 2010 AMD64 Technology

Effective Addressing. The effective-address length is expanded to 64 bits in long mode. An
effective-address calculation uses 64-bit base and index registers, and sign-extends 8-bit and 32-bit
displacements to 64 bits. In legacy mode, effective addresses remain 32 bits long.

2.2.2 Page Translation

The AMD64 architecture defines an expanded page-translation mechanism supporting translation of a
64-bit virtual address to a 52-bit physical address. See “Long-Mode Page Translation” on page 128 for
detailed information on the enhancements to page translation in the AMD64 architecture. The
enhancements are summarized below.

Physical-Address Extensions (PAE). The AMD64 architecture requires physical-address
extensions to be enabled (CR4.PAE=1) before long mode is entered. When PAE is enabled, all paging
data-structures are 64 bits, allowing references into the full 52-bit physical-address space supported by
the architecture.

Page-Size Extensions (PSE). Page-size extensions (CR4.PSE) are ignored in long mode. Long
mode does not support the 4-Mbyte page size enabled by page-size extensions. Long mode does,
however, support 4-Kbyte and 2-Mbyte page sizes.

Paging Data Structures. The AMD64 architecture extends the page-translation data structures in
support of long mode. The extensions are:

• Page-map level-4 (PML4)—Long mode defines a new page-translation data structure, the PML4
table. The PML4 table sits at the top of the page-translation hierarchy and references PDP tables.

• Page-directory pointer (PDP)—The PDP tables in long mode are expanded from 4 entries to 512
entries each.

• Page-directory pointer entry (PDPE)—Previously undefined fields within the legacy-mode PDPE
are defined by the AMD64 architecture.

CR3 Register. The CR3 register is expanded to 64 bits for use in long-mode page translation. When
long mode is active, the CR3 register references the base address of the PML4 table. In legacy mode,
the upper 32 bits of CR3 are masked by the processor to support legacy page translation. CR3
references the PDP base-address when physical-address extensions are enabled, or the page-directory
table base-address when physical-address extensions are disabled.

Legacy-Mode Enhancements. Legacy-mode software can take advantage of the enhancements
made to the physical-address extension (PAE) support and page-size extension (PSE) support. The
four-level page translation mechanism introduced by long mode is not available to legacy-mode
software.

• PAE—When physical-address extensions are enabled (CR4.PAE=1), the AMD64 architecture
allows legacy-mode software to load up to 52-bit (maximum size) physical addresses into the PDE
and PTE. (Addresses are expanded to the maximum physical address size supported by the
implementation.)

26 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.17—June 2010

• PSE—The use of page-size extensions allows legacy mode software to define 4-Mbyte pages using
the 32-bit page-translation tables. When page-size extensions are enabled (CR4.PSE=1), the
AMD64 architecture enhances the 4-Mbyte PDE to support 40 physical-address bits.

See “Legacy-Mode Page Translation” on page 120 for more information on these enhancements.

2.2.3 Segmentation

In long mode, the effects of segmentation depend on whether the processor is running in compatibility
mode or 64-bit mode:

• In compatibility mode, segmentation functions just as it does in legacy mode, using legacy 16-bit
or 32-bit protected mode semantics.

• 64-bit mode requires a flat-memory model for creating a flat 64-bit virtual-address space. Much of
the segmentation capability present in legacy mode and compatibility mode is disabled when the
processor is running in 64-bit mode.

The differences in the segmentation model as defined by the AMD64 architecture are summarized in
the following sections. See Chapter 4, “Segmented Virtual Memory,” for a thorough description of
these differences.

Descriptor-Table Registers. In long mode, the base-address portion of the descriptor-table registers
(GDTR, IDTR, LDTR, and TR) are expanded to 64 bits. The full 64-bit base address can only be
loaded by software when the processor is running in 64-bit mode (using the LGDT, LIDT, LLDT, and
LTR instructions, respectively). However, the full 64-bit base address is used by a processor running in
compatibility mode (in addition to 64-bit mode) when making a reference into a descriptor table.

A processor running in legacy mode can only load the low 32 bits of the base address, and the high 32
bits are ignored when references are made to the descriptor tables.

Code-Segment Descriptors. The AMD64 architecture defines a new code-segment descriptor
attribute, L (long). In compatibility mode, the processor treats code-segment descriptors as it does in
legacy mode, with the exception that the processor recognizes the L attribute. If a code descriptor with
L=1 is loaded in compatibility mode, the processor leaves compatibility mode and enters 64-bit mode.
In legacy mode, the L attribute is reserved.

The following differences exist for code-segment descriptors in 64-bit mode only:

• The CS base-address field is ignored by the processor.

• The CS limit field is ignored by the processor.

• Only the L (long), D (default size), and DPL (descriptor-privilege level) fields are used by the
processor in 64-bit mode. All remaining attributes are ignored.

Data-Segment Descriptors. The following differences exist for data-segment descriptors in 64-bit
mode only:

• The DS, ES, and SS descriptor base-address fields are ignored by the processor.

x86 and AMD64 Architecture Differences 27

24593—Rev. 3.17—June 2010 AMD64 Technology

• The FS and GS descriptor base-address fields are expanded to 64 bits and used in effective-address
calculations. The 64 bits of base address are mapped to model-specific registers (MSRs), and can
only be loaded using the WRMSR instruction.

• The limit fields and attribute fields of all data-segment descriptors (DS, ES, FS, GS, and SS) are
ignored by the processor.

In compatibility mode, the processor treats data-segment descriptors as it does in legacy mode.
Compatibility mode ignores the high 32 bits of base address in the FS and GS segment descriptors
when calculating an effective address.

System-Segment Descriptors. In 64-bit mode only, The LDT and TSS system-segment descriptor
formats are expanded by 64 bits, allowing them to hold 64-bit base addresses. LLDT and LTR
instructions can be used to load these descriptors into the LDTR and TR registers, respectively, from
64-bit mode.

In compatibility mode and legacy mode, the formats of the LDT and TSS system-segment descriptors
are unchanged. Also, unlike code-segment and data-segment descriptors, system-segment descriptor
limits are checked by the processor in long mode.

Some legacy mode LDT and TSS type-field encodings are illegal in long mode (both compatibility
mode and 64-bit mode), and others are redefined to new types. See “System Descriptors” on page 88
for additional information.

Gate Descriptors. The following differences exist between gate descriptors in long mode (both
compatibility mode and 64-bit mode) and in legacy mode:

• In long mode, all 32-bit gate descriptors are redefined as 64-bit gate descriptors, and are expanded
to hold 64-bit offsets. The length of a gate descriptor in long mode is therefore 128 bits (16 bytes),
versus the 64 bits (8 bytes) in legacy mode.

• Some type-field encodings are illegal in long mode, and others are redefined to new types. See
“Gate Descriptors” on page 90 for additional information.

• The interrupt-gate and trap-gate descriptors define a new field, called the interrupt-stack table
(IST) field.

2.3 Protection Checks

The AMD64 architecture makes the following changes to the protection mechanism in long mode:

• The page-protection-check mechanism is expanded in long mode to include the U/S and R/W
protection bits stored in the PML4 entries and PDP entries.

• Several system-segment types and gate-descriptor types that are legal in legacy mode are illegal in
long mode (compatibility mode and 64-bit mode) and fail type checks when used in long mode.

• Segment-limit checks are disabled in 64-bit mode for the CS, DS, ES, FS, GS, and SS segments.
Segment-limit checks remain enabled for the LDT, GDT, IDT and TSS system segments.

All segment-limit checks are performed in compatibility mode.

28 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.17—June 2010

• Code and data segments used in 64-bit mode are treated as both readable and writable.

See “Page-Protection Checks” on page 143 and “Segment-Protection Overview” on page 93 for
detailed information on the protection-check changes.

2.4 Registers

The AMD64 architecture adds additional registers to the architecture, and in many cases expands the
size of existing registers to 64 bits. The 80-bit floating-point stack registers and their overlaid 64-bit
MMX™ registers are not modified by the AMD64 architecture.

2.4.1 General-Purpose Registers

In 64-bit mode, the general-purpose registers (GPRs) are 64 bits wide, and eight additional GPRs are
available. The GPRs are: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and the new R8–R15
registers. To access the full 64-bit operand size, or the new R8–R15 registers, an instruction must
include a new REX instruction-prefix byte (see “REX Prefixes” on page 29 for a summary of this
prefix).

In compatibility and legacy modes, the GPRs consist only of the eight legacy 32-bit registers. All
legacy rules apply for determining operand size.

2.4.2 128-Bit Media Registers

In 64-bit mode, eight additional 128-bit XMM registers are available, XMM8–XMM15. A REX
instruction prefix is used to access these registers. In compatibility and legacy modes, the XMM
registers consist of the eight 128-bit legacy registers, XMM0–XMM7.

2.4.3 Flags Register

The flags register is expanded to 64 bits, and is called RFLAGS. All 64 bits can be accessed in 64-bit
mode, but the upper 32 bits are reserved and always read back as zeros. Compatibility mode and legacy
mode can read and write only the lower-32 bits of RFLAGS (the legacy EFLAGS).

2.4.4 Instruction Pointer

In long mode, the instruction pointer is extended to 64 bits, to support 64-bit code offsets. This 64-bit
instruction pointer is called RIP.

2.4.5 Stack Pointer

In 64-bit mode, the size of the stack pointer, RSP, is always 64 bits. The stack size is not controlled by
a bit in the SS descriptor, as it is in compatibility or legacy mode, nor can it be overridden by an
instruction prefix. Address-size overrides are ignored for implicit stack references.

x86 and AMD64 Architecture Differences 29

24593—Rev. 3.17—June 2010 AMD64 Technology

2.4.6 Control Registers

The AMD64 architecture defines several enhancements to the control registers (CRn). In long mode,
all control registers are expanded to 64 bits, although the entire 64 bits can be read and written only
from 64-bit mode. A new control register, the task-priority register (CR8 or TPR) is added, and can be
read and written from 64-bit mode. Last, the function of the page-enable bit (CR0.PG) is expanded.
When long mode is enabled, the PG bit is used to activate and deactivate long mode.

2.4.7 Debug Registers

In long mode, all debug registers are expanded to 64 bits, although the entire 64 bits can be read and
written only from 64-bit mode. Expanded register encodings for the decode registers allow up to eight
new registers to be defined (DR8–DR15), although presently those registers are not supported by the
AMD64 architecture.

2.4.8 Extended Feature Register (EFER)

The EFER is expanded by the AMD64 architecture to include a long-mode-enable bit (LME), and a
long-mode-active bit (LMA). These new bits can be accessed from legacy mode and long mode.

2.4.9 Memory Type Range Registers (MTRRs)

The legacy MTRRs are architecturally defined as 64 bits, and can accommodate the maximum 52-bit
physical address allowed by the AMD64 architecture. From both long mode and legacy mode,
implementations of the AMD64 architecture reference the entire 52-bit physical-address value stored
in the MTRRs. Long mode and legacy mode system software can update all 64 bits of the MTRRs to
manage the expanded physical-address space.

2.4.10 Other Model-Specific Registers (MSRs)

Several other MSRs have fields holding physical addresses. Examples include the APIC-base register
and top-of-memory register. Generally, any model-specific register that contains a physical address is
defined architecturally to be 64 bits wide, and can accommodate the maximum physical-address size
defined by the AMD64 architecture. When physical addresses are read from MSRs by the processor,
the entire value is read regardless of the operating mode. In legacy implementations, the high-order
MSR bits are reserved, and software must write those values with zeros. In legacy mode on AMD64
architecture implementations, software can read and write all supported high-order MSR bits.

2.5 Instruction Set

2.5.1 REX Prefixes

REX prefixes are a new family of instruction-prefix bytes used in 64-bit mode to:

• Specify the new GPRs and XMM registers.

• Specify a 64-bit operand size.

30 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.17—June 2010

• Specify additional control registers. One additional control register, CR8, is defined in 64-bit
mode.

• Specify additional debug registers (although none are currently defined).

Not all instructions require a REX prefix. The prefix is necessary only if an instruction references one
of the extended registers or uses a 64-bit operand. If a REX prefix is used when it has no meaning, it is
ignored.

Default 64-Bit Operand Size. In 64-bit mode, two groups of instructions have a default operand size
of 64 bits and thus do not need a REX prefix for this operand size:

• Near branches.

• All instructions, except far branches, that implicitly reference the RSP. See “Instructions that
Reference RSP” on page 31 for additional information.

2.5.2 Segment-Override Prefixes in 64-Bit Mode

In 64-bit mode, the DS, ES, SS, and CS segment-override prefixes have no effect. These four prefixes
are no longer treated as segment-override prefixes in the context of multiple-prefix rules. Instead, they
are treated as null prefixes.

The FS and GS segment-override prefixes are treated as segment-override prefixes in 64-bit mode. Use
of the FS and GS prefixes cause their respective segment bases to be added to the effective address
calculation. See “FS and GS Registers in 64-Bit Mode” on page 70 for additional information on using
these segment registers.

2.5.3 Operands and Results

The AMD64 architecture provides support for using 64-bit operands and generating 64-bit results
when operating in 64-bit mode. See “Operands” in Volume 1 for details.

Operand-Size Overrides. In 64-bit mode, the default operand size is 32 bits. A REX prefix can be
used to specify a 64-bit operand size. Software uses a legacy operand-size (66h) prefix to toggle to 16-
bit operand size. The REX prefix takes precedence over the legacy operand-size prefix.

Zero Extension of Results. In 64-bit mode, when performing 32-bit operations with a GPR
destination, the processor zero-extends the 32-bit result into the full 64-bit destination. Both 8-bit and
16-bit operations on GPRs preserve all unwritten upper bits of the destination GPR. This is consistent
with legacy 16-bit and 32-bit semantics for partial-width results.

2.5.4 Address Calculations

The AMD64 architecture modifies aspects of effective-address calculation to support 64-bit mode.
These changes are summarized in the following sections. See “Memory Addressing” in Volume 1 for
details.

x86 and AMD64 Architecture Differences 31

24593—Rev. 3.17—June 2010 AMD64 Technology

Address-Size Overrides. In 64-bit mode, the default-address size is 64 bits. The address size can be
overridden to 32 bits by using the address-size prefix (67h). 16-bit addresses are not supported in 64-
bit mode. In compatibility mode and legacy mode, address-size overrides function the same as in x86
legacy architecture.

Displacements and Immediates. Generally, displacement and immediate values in 64-bit mode are
not extended to 64 bits. They are still limited to 32 bits and are sign extended during effective-address
calculations. In 64-bit mode, however, support is provided for some 64-bit displacement and
immediate forms of the MOV instruction.

Zero Extending 16-Bit and 32-Bit Addresses. All 16-bit and 32-bit address calculations are zero-
extended in long mode to form 64-bit addresses. Address calculations are first truncated to the
effective-address size of the current mode (64-bit mode or compatibility mode), as overridden by any
address-size prefix. The result is then zero-extended to the full 64-bit address width.

RIP-Relative Addressing. A new addressing form, RIP-relative (instruction-pointer relative)
addressing, is implemented in 64-bit mode. The effective address is formed by adding the
displacement to the 64-bit RIP of the next instruction.

2.5.5 Instructions that Reference RSP

With the exception of far branches, all instructions that implicitly reference the 64-bit stack pointer,
RSP, default to a 64-bit operand size in 64-bit mode (see Table 2-1 for a listing). Pushes and pops of
32-bit stack values are not possible in 64-bit mode with these instructions, but they can be overridden
to 16 bits.

Table 2-1. Instructions That Reference RSP

Mnemonic
Opcode

(hex)
Description

ENTER C8 Create Procedure Stack Frame

LEAVE C9 Delete Procedure Stack Frame

POP reg/mem 8F/0 Pop Stack (register or memory)

POP reg 58-5F Pop Stack (register)

POP FS 0F A1 Pop Stack into FS Segment Register

POP GS 0F A9 Pop Stack into GS Segment Register

POPF, POPFD, POPFQ 9D Pop to rFLAGS Word, Doubleword, or Quadword

PUSH imm32 68 Push onto Stack (sign-extended doubleword)

PUSH imm8 6A Push onto Stack (sign-extended byte)

PUSH reg/mem FF/6 Push onto Stack (register or memory)

PUSH reg 50-57 Push onto Stack (register)

PUSH FS 0F A0 Push FS Segment Register onto Stack

PUSH GS 0F A8 Push GS Segment Register onto Stack

PUSHF, PUSHFD, PUSHFQ 9C Push rFLAGS Word, Doubleword, or Quadword onto Stack

32 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.17—June 2010

2.5.6 Branches

The AMD64 architecture expands two branching mechanisms to accommodate branches in the full 64-
bit virtual-address space:

• In 64-bit mode, near-branch semantics are redefined.

• In both 64-bit and compatibility modes, a 64-bit call-gate descriptor is defined for far calls.

In addition, enhancements are made to the legacy SYSCALL and SYSRET instructions.

Near Branches. In 64-bit mode, the operand size for all near branches defaults to 64 bits (see
Table 2-2 for a listing). Therefore, these instructions update the full 64-bit RIP without the need for a
REX operand-size prefix. The following aspects of near branches default to 64 bits:

• Truncation of the instruction pointer.

• Size of a stack pop or stack push, resulting from a CALL or RET.

• Size of a stack-pointer increment or decrement, resulting from a CALL or RET.

• Size of operand fetched by indirect-branch operand size.

The operand size for near branches can be overridden to 16 bits in 64-bit mode.

The address size of near branches is not forced in 64-bit mode. Such addresses are 64 bits by default,
but they can be overridden to 32 bits by a prefix.

The size of the displacement field for relative branches is still limited to 32 bits.

Far Branches Through Long-Mode Call Gates. Long mode redefines the 32-bi t call -gate
descriptor type as a 64-bit call-gate descriptor and expands the call-gate descriptor size to hold a 64-bit
offset. The long-mode call-gate descriptor allows far branches to reference any location in the
supported virtual-address space. In long mode, the call-gate mechanism is changed as follows:

• In long mode, CALL and JMP instructions that reference call-gates must reference 64-bit call
gates.

• A 64-bit call-gate descriptor must reference a 64-bit code-segment.

Table 2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size

Mnemonic
Opcode

(hex)
Description

CALL E8, FF/2 Call Procedure Near

Jcc many Jump Conditional Near

JMP E9, EB, FF/4 Jump Near

LOOP E2 Loop

LOOPcc E0, E1 Loop Conditional

RET C3, C2 Return From Call (near)

x86 and AMD64 Architecture Differences 33

24593—Rev. 3.17—June 2010 AMD64 Technology

• When a control transfer is made through a 64-bit call gate, the 64-bit target address is read from the
64-bit call-gate descriptor. The base address in the target code-segment descriptor is ignored.

Stack Switching. Automatic stack switching is also modified when a control transfer occurs through
a call gate in long mode:

• The target-stack pointer read from the TSS is a 64-bit RSP value.

• The SS register is loaded with a null selector. Setting the new SS selector to null allows nested
control transfers in 64-bit mode to be handled properly. The SS.RPL value is updated to remain
consistent with the newly loaded CPL value.

• The size of pushes onto the new stack is modified to accommodate the 64-bit RIP and RSP values.

• Automatic parameter copying is not supported in long mode.

Far Returns. In long mode, far returns can load a null SS selector from the stack under the following
conditions:

• The target operating mode is 64-bit mode.

• The target CPL<3.

Allowing RET to load SS with a null selector under these conditions makes it possible for the
processor to unnest far CALLs (and interrupts) in long mode.

Task Gates. Control transfers through task gates are not supported in long mode.

Branches to 64-Bit Offsets. Because immediate values are generally limited to 32 bits, the only way
a full 64-bit absolute RIP can be specified in 64-bit mode is with an indirect branch. For this reason,
direct forms of far branches are eliminated from the instruction set in 64-bit mode.

SYSCALL and SYSRET Instructions. The AMD64 architecture expands the function of the legacy
SYSCALL and SYSRET instructions in long mode. In addition, two new STAR registers, LSTAR and
CSTAR, are provided to hold the 64-bit target RIP for the instructions when they are executed in long
mode. The legacy STAR register is not expanded in long mode. See “SYSCALL and SYSRET” on
page 150 for additional information.

SWAPGS Instruction. The AMD64 architecture provides the SWAPGS instruction as a fast method
for system software to load a pointer to system data-structures. SWAPGS is valid only in 64-bit mode.
An undefined-opcode exception (#UD) occurs if software attempts to execute SWAPGS in legacy
mode or compatibility mode. See “SWAPGS Instruction” on page 152 for additional information.

SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT instructions are invalid in
long mode, and result in an invalid opcode exception (#UD) if software attempts to use them. Software
should use the SYSCALL and SYSRET instructions when running in long mode. See “SYSENTER
and SYSEXIT (Legacy Mode Only)” on page 152 for additional information.

34 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.17—June 2010

2.5.7 NOP Instruction

The legacy x86 architecture commonly uses opcode 90h as a one-byte NOP. In 64-bit mode, the
processor treats opcode 90h specially in order to preserve this NOP definition. This is necessary
because opcode 90h is actually the XCHG EAX, EAX instruction in the legacy architecture. Without
special handling in 64-bit mode, the instruction would not be a true no-operation. Therefore, in 64-bit
mode the processor treats opcode 90h (the legacy XCHG EAX, EAX instruction) as a true NOP,
regardless of a REX operand-size prefix.

This special handling does not apply to the two-byte ModRM form of the XCHG instruction. Unless a
64-bit operand size is specified using a REX prefix byte, using the two-byte form of XCHG to
exchange a register with itself does not result in a no-operation, because the default operation size is 32
bits in 64-bit mode.

2.5.8 Single-Byte INC and DEC Instructions

In 64-bit mode, the legacy encodings for the 16 single-byte INC and DEC instructions (one for each of
the eight GPRs) are used to encode the REX prefix values. The functionality of these INC and DEC
instructions is still available, however, using the ModRM forms of those instructions (opcodes FF /0
and FF /1). See “Single-Byte INC and DEC Instructions in 64-Bit Mode” in Volume 3 for additional
information.

2.5.9 MOVSXD Instruction

MOVSXD is a new instruction in 64-bit mode (the legacy ARPL instruction opcode, 63h, is reassigned
as the MOVSXD opcode). It reads a fixed-size 32-bit source operand from a register or memory and (if
a REX prefix is used with the instruction) sign-extends the value to 64 bits. MOVSXD is analogous to
the MOVSX instruction, which sign-extends a byte to a word or a word to a doubleword, depending on
the effective operand size. See “General-Purpose Instruction Reference” in Volume 3 for additional
information.

2.5.10 Invalid Instructions

Table 2-3 lists instructions that are illegal in 64-bit mode. Table 2-4 on page 35 lists instructions that
are invalid in long mode (both compatibility mode and 64-bit mode). Attempted use of these
instructions causes an invalid-opcode exception (#UD) to occur.

Table 2-3. Invalid Instructions in 64-Bit Mode

Mnemonic
Opcode

(hex)
Description

AAA 37 ASCII Adjust After Addition

AAD D5 ASCII Adjust Before Division

AAM D4 ASCII Adjust After Multiply

AAS 3F ASCII Adjust After Subtraction

BOUND 62 Check Array Bounds

x86 and AMD64 Architecture Differences 35

24593—Rev. 3.17—June 2010 AMD64 Technology

Table 2-5 on page 36 lists the instructions that are no longer valid in 64-bit mode because their
opcodes have been reassigned. The reassigned opcodes are used in 64-bit mode as REX instruction
prefixes.

CALL (far) 9A Procedure Call Far (absolute)

DAA 27 Decimal Adjust after Addition

DAS 2F Decimal Adjust after Subtraction

INTO CE Interrupt to Overflow Vector

JMP (far) EA Jump Far (absolute)

LDS C5 Load DS Segment Register

LES C4 Load ES Segment Register

POP DS 1F Pop Stack into DS Segment

POP ES 07 Pop Stack into ES Segment

POP SS 17 Pop Stack into SS Segment

POPA, POPAD 61 Pop All to GPR Words or Doublewords

PUSH CS 0E Push CS Segment Selector onto Stack

PUSH DS 1E Push DS Segment Selector onto Stack

PUSH ES 06 Push ES Segment Selector onto Stack

PUSH SS 16 Push SS Segment Selector onto Stack

PUSHA,
PUSHAD

60
Push All GPR Words or Doublewords onto
Stack

Redundant Grp1
(undocumented)

82
Redundant encoding of group1 Eb,Ib
opcodes

SALC
(undocumented)

D6 Set AL According to CF

Table 2-4. Invalid Instructions in Long Mode

Mnemonic
Opcode

(hex)
Description

SYSENTER 0F 34 System Call

SYSEXIT 0F 35 System Return

Table 2-3. Invalid Instructions in 64-Bit Mode (continued)

Mnemonic
Opcode

(hex)
Description

36 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.17—June 2010

2.5.11 FXSAVE and FXRSTOR Instructions

The FXSAVE and FXRSTOR instructions are used to save and restore the entire 128-bit media, 64-bit
media, and x87 instruction-set environment during a context switch. The AMD64 architecture
modifies the memory format used by these instructions in order to save and restore the full 64-bit
instruction and data pointers, as well as the XMM8–XMM15 registers. Selection of the 32-bit legacy
format or the expanded 64-bit format is accomplished by using the corresponding operand size with
the FXSAVE and FXRSTOR instructions. When 64-bit software executes an FXSAVE and FXRSTOR
with a 32-bit operand size (no operand-size override) the 32-bit legacy format is used. When 64-bit
software executes an FXSAVE and FXRSTOR with a 64-bit operand size, the 64-bit format is used.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXSAVE and FXRSTOR do not
save or restore the XMM0-XMM15 registers when executed in 64-bit mode at CPL 0. The x87
environment and MXCSR are saved whether fast-FXSAVE/FXRSTOR is enabled or not. Software
can use CPUID to determine whether the fast-FXSAVE/FXRSTOR feature is available (CPUID
function 8000_0001h, EDX bit 25). The fast-FXSAVE/FXRSTOR feature has no effect on
FXSAVE/FXRSTOR in non 64-bit mode or when CPL > 0.

2.6 Interrupts and Exceptions

When a processor is running in long mode, an interrupt or exception causes the processor to enter 64-
bit mode. All long-mode interrupt handlers must be implemented as 64-bit code. The AMD64
architecture expands the legacy interrupt-processing and exception-processing mechanism to support
handling of interrupts by 64-bit operating systems and applications. The changes are summarized in
the following sections. See “Long-Mode Interrupt Control Transfers” on page 241 for detailed
information on these changes.

2.6.1 Interrupt Descriptor Table

The long-mode interrupt-descriptor table (IDT) must contain 64-bit mode interrupt-gate or trap-gate
descriptors for all interrupts or exceptions that can occur while the processor is running in long mode.
Task gates cannot be used in the long-mode IDT, because control transfers through task gates are not
supported in long mode. In long mode, the IDT index is formed by scaling the interrupt vector by 16.
In legacy protected mode, the IDT is indexed by scaling the interrupt vector by eight.

Table 2-5. Reassigned Instructions in 64-Bit Mode

Mnemonic
Opcode

(hex)
Description

ARPL 63
Opcode for MOVSXD instruction in 64-bit
mode. In all other modes, this the Adjust
Requestor Privilege Level instruction opcode.

DEC and INC 40-4F
Decrement by 1, Increment by 1. Two-byte
versions of DEC and INC are still valid.

x86 and AMD64 Architecture Differences 37

24593—Rev. 3.17—June 2010 AMD64 Technology

2.6.2 Stack Frame Pushes

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-
frame pushes, and SS:eSP is pushed only on a CPL change. In long mode, the size of interrupt stack-
frame pushes is fixed at eight bytes, because interrupts are handled in 64-bit mode. Long mode
interrupts also cause SS:RSP to be pushed unconditionally, rather than pushing only on a CPL change.

2.6.3 Stack Switching

Legacy mode provides a mechanism to automatically switch stack frames in response to an interrupt.
In long mode, a slightly modified version of the legacy stack-switching mechanism is implemented,
and an alternative stack-switching mechanism—called the interrupt stack table (IST)—is supported.

Long-Mode Stack Switches. When stacks are switched as part of a long-mode privilege-level
change resulting from an interrupt, the following occurs:

• The target-stack pointer read from the TSS is a 64-bit RSP value.

• The SS register is loaded with a null selector. Setting the new SS selector to null allows nested
control transfers in 64-bit mode to be handled properly. The SS.RPL value is cleared to 0.

• The old SS and RSP are saved on the new stack.

Interrupt Stack Table. In long mode, a new interrupt stack table (IST) mechanism is available as an
alternative to the modified legacy stack-switching mechanism. The IST mechanism unconditionally
switches stacks when it is enabled. It can be enabled for individual interrupt vectors using a field in the
IDT entry. This allows mixing interrupt vectors that use the modified legacy mechanism with vectors
that use the IST mechanism. The IST pointers are stored in the long-mode TSS. The IST mechanism is
only available when long mode is enabled.

2.6.4 IRET Instruction

In compatibility mode, IRET pops SS:eSP off the stack only if there is a CPL change. This allows
legacy applications to run properly in compatibility mode when using the IRET instruction.

In 64-bit mode, IRET unconditionally pops SS:eSP off of the interrupt stack frame, even if the CPL
does not change. This is done because the original interrupt always pushes SS:RSP. Because interrupt
stack-frame pushes are always eight bytes in long mode, an IRET from a long-mode interrupt handler
(64-bit code) must pop eight-byte items off the stack. This is accomplished by preceding the IRET
with a 64-bit REX operand-size prefix.

In long mode, an IRET can load a null SS selector from the stack under the following conditions:

• The target operating mode is 64-bit mode.

• The target CPL<3.

Allowing IRET to load SS with a null selector under these conditions makes it possible for the
processor to unnest interrupts (and far CALLs) in long mode.

38 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.17—June 2010

2.6.5 Task-Priority Register (CR8)

The AMD64 architecture allows software to define up to 15 external interrupt-priority classes. Priority
classes are numbered from 1 to 15, with priority-class 1 being the lowest and priority-class 15 the
highest.

A new control register (CR8) is introduced by the AMD64 architecture for managing priority classes.
This register, also called the task-priority register (TPR), uses the four low-order bits for specifying a
task priority. How external interrupts are organized into these priority classes is implementation
dependent. See “External Interrupt Priorities” on page 228 for information on this feature.

2.6.6 New Exception Conditions

The AMD64 architecture defines a number of new conditions that can cause an exception to occur
when the processor is running in long mode. Many of the conditions occur when software attempts to
use an address that is not in canonical form. See “Vectors” on page 208 for information on the new
exception conditions that can occur in long mode.

2.7 Hardware Task Switching

The legacy hardware task-switch mechanism is disabled when the processor is running in long mode.
However, long mode requires system software to create data structures for a single task—the long-
mode task.

• TSS Descriptors—A new TSS-descriptor type, the 64-bit TSS type, is defined for use in long
mode. It is the only valid TSS type that can be used in long mode, and it must be loaded into the TR
by executing the LTR instruction in 64-bit mode. See “TSS Descriptor” on page 310 for additional
information.

• Task Gates—Because the legacy task-switch mechanism is not supported in long mode, software
cannot use task gates in long mode. Any attempt to transfer control to another task through a task
gate causes a general-protection exception (#GP) to occur.

• Task-State Segment—A 64-bit task state segment (TSS) is defined for use in long mode. This new
TSS format contains 64-bit stack pointers (RSP) for privilege levels 0–2, interrupt-stack-table
(IST) pointers, and the I/O-map base address. See “64-Bit Task State Segment” on page 317 for
additional information.

2.8 Long-Mode vs. Legacy-Mode Differences

Table 2-6 on page 39 summarizes several major system-programming differences between 64-bit
mode and legacy protected mode. The third column indicates whether the difference also applies to
compatibility mode. “Differences Between Long Mode and Legacy Mode” in Volume 3 summarizes
the application-programming model differences.

x86 and AMD64 Architecture Differences 39

24593—Rev. 3.17—June 2010 AMD64 Technology

Table 2-6. Differences Between Long Mode and Legacy Mode

Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?

x86 Modes Real and virtual-8086 modes not supported Yes

Task Switching Task switching not supported Yes

Addressing

64-bit virtual addresses No

4-level paging structures
Yes

PAE must always be enabled

Loaded Segment (Usage
during memory reference)

CS, DS, ES, SS segment bases are ignored

No
CS, DS, ES, FS, GS, SS segment limits are ignored

DS, ES, FS, GS attribute are ignored

CS, DS, ES, SS Segment prefixes are ignored

Exception and Interrupt
Handling

All pushes are 8 bytes

Yes
IDT entries are expanded to 16 bytes

SS is not changed for stack switch

SS:RSP is pushed unconditionally

Call Gates

All pushes are 8 bytes

Yes
16-bit call gates are illegal

32-bit call gate type is redefined as 64-bit call gate and is
expanded to 16 bytes

SS is not changed for stack switch

System-Descriptor
Registers

GDT, IDT, LDT, TR base registers expanded to 64 bits Yes

System-Descriptor Table
Entries and Pseudo-
Descriptors

LGDT and LIDT use expanded 10-byte pseudo-descriptors
No

LLDT and LTR use expanded 16-byte table entries

40 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.17—June 2010

System Resources 41

24593—Rev. 3.17—June 2010 AMD64 Technology

3 System Resources

The operating system manages the software-execution environment and general system operation
through the use of system resources. These resources consist of system registers (control registers and
model-specific registers) and system-data structures (memory-management and protection tables).
The system-control registers are described in detail in this chapter; many of the features they control
are described elsewhere in this volume. The model-specific registers supported by the AMD64
architecture are introduced in this chapter.

Because of their complexity, system-data structures are described in separate chapters. Refer to the
following chapters for detailed information on these data structures:

• Descriptors and descriptor tables are described in “Segmentation Data Structures and Registers”
on page 65.

• Page-translation tables are described in “Legacy-Mode Page Translation” on page 120 and “Long-
Mode Page Translation” on page 128.

• The task-state segment is described in “Legacy Task-State Segment” on page 313 and “64-Bit Task
State Segment” on page 317.

Not all processor implementations are required to support all possible features. The last section in this
chapter addresses processor-feature identification. System software uses the capabilities described in
that section to determine which features are supported so that the appropriate service routines are
loaded.

3.1 System-Control Registers

The registers that control the AMD64 architecture operating environment include:

• CR0—Provides operating-mode controls and some processor-feature controls.

• CR2—This register is used by the page-translation mechanism. It is loaded by the processor with
the page-fault virtual address when a page-fault exception occurs.

• CR3—This register is also used by the page-translation mechanism. It contains the base address of
the highest-level page-translation table, and also contains cache controls for the specified table.

• CR4—This register contains additional controls for various operating-mode features.

• CR8—This new register, accessible in 64-bit mode using the REX prefix, is introduced by the
AMD64 architecture. CR8 is used to prioritize external interrupts and is referred to as the task-
priority register (TPR).

• RFLAGS—This register contains processor-status and processor-control fields. The status and
control fields are used primarily in the management of virtual-8086 mode, hardware multitasking,
and interrupts.

42 System Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

• EFER—This model-specific register contains status and controls for additional features not
managed by the CR0 and CR4 registers. Included in this register are the long-mode enable and
activation controls introduced by the AMD64 architecture.

Control registers CR1, CR5–CR7, and CR9–CR15 are reserved.

In legacy mode, all control registers and RFLAGS are 32 bits. The EFER register is 64 bits in all
modes. The AMD64 architecture expands all 32-bit system-control registers to 64 bits. In 64-bit mode,
the MOV CRn instructions read or write all 64 bits of these registers (operand-size prefixes are
ignored). In compatibility and legacy modes, control-register writes fill the low 32 bits with data and
the high 32 bits with zeros, and control-register reads return only the low 32 bits.

In 64-bit mode, the high 32 bits of CR0 and CR4 are reserved and must be written with zeros. Writing
a 1 to any of the high 32 bits results in a general-protection exception, #GP(0). All 64 bits of CR2 are
writable. However, the MOV CRn instructions do not check that addresses written to CR2 are within
the virtual-address limitations of the processor implementation.

All CR3 bits are writable, except for unimplemented physical address bits, which must be cleared to 0.

The upper 32 bits of RFLAGS are always read as zero by the processor. Attempts to load the upper 32
bits of RFLAGS with anything other than zero are ignored by the processor.

3.1.1 CR0 Register

The CR0 register is shown in Figure 3-1 on page 43. The legacy CR0 register is identical to the low 32
bits of this register (CR0 bits 31–0).

System Resources 43

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 3-1. Control Register 0 (CR0)

The functions of the CR0 control bits are (unless otherwise noted, all bits are read/write):

Protected-Mode Enable (PE) Bit. Bit 0. Software enables protected mode by setting PE to 1, and
disables protected mode by clearing PE to 0. When the processor is running in protected mode,
segment-protection mechanisms are enabled.

See “Segment-Protection Overview” on page 93 for information on the segment-protection
mechanisms.

Monitor Coprocessor (MP) Bit. Bit 1. Software uses the MP bit with the task-switched control bit
(CR0.TS) to control whether execution of the WAIT/FWAIT instruction causes a device-not-available
exception (#NM) to occur, as follows:

• If both the monitor-coprocessor and task-switched bits are set (CR0.MP=1 and CR0.TS=1), then
executing the WAIT/FWAIT instruction causes a device-not-available exception (#NM).

• If either the monitor-coprocessor or task-switched bits are clear (CR0.MP=0 or CR0.TS=0), then
executing the WAIT/FWAIT instruction proceeds normally.

63 32

Reserved, MBZ

31 30 29 28 19 18 17 16 15 6 5 4 3 2 1 0

P
G

C
D

N
W

Reserved
A
M

R
W
P

Reserved
N
E

E
T

T
S

E
M

M
P

P
E

Bits Mnemonic Description R/W
63–32 Reserved Reserved, Must be Zero

31 PG Paging R/W
30 CD Cache Disable R/W
29 NW Not Writethrough R/W

28–19 Reserved Reserved
18 AM Alignment Mask R/W

17 Reserved Reserved
16 WP Write Protect R/W
15-6 Reserved Reserved

5 NE Numeric Error R/W
4 ET Extension Type R
3 TS Task Switched R/W

2 EM Emulation R/W
1 MP Monitor Coprocessor R/W
0 PE Protection Enabled R/W

44 System Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

Software typically should set MP to 1 if the processor implementation supports x87 instructions. This
allows the CR0.TS bit to completely control when the x87-instruction context is saved as a result of a
task switch.

Emulate Coprocessor (EM) Bit. Bit 2. Software forces all x87 instructions to cause a device-not-
available exception (#NM) by setting EM to 1. Likewise, setting EM to 1 forces an invalid-opcode
exception (#UD) when an attempt is made to execute any of the 64-bit or 128-bit media instructions.
The exception handlers can emulate these instruction types if desired. Setting the EM bit to 1 does not
cause an #NM exception when the WAIT/FWAIT instruction is executed.

Task Switched (TS) Bit. Bit 3. When an attempt is made to execute an x87 or media instruction while
TS=1, a device-not-available exception (#NM) occurs. Software can use this mechanism—sometimes
referred to as “lazy context-switching”—to save the unit contexts before executing the next instruction
of those types. As a result, the x87 and media instruction-unit contexts are saved only when necessary
as a result of a task switch.

When a hardware task switch occurs, TS is automatically set to 1. System software that implements
software task-switching rather than using the hardware task-switch mechanism can still use the TS bit
to control x87 and media instruction-unit context saves. In this case, the task-management software
uses a MOV CR0 instruction to explicitly set the TS bit to 1 during a task switch. Software can clear
the TS bit by either executing the CLTS instruction or by writing to the CR0 register directly. Long-
mode system software can use this approach even though the hardware task-switch mechanism is not
supported in long mode.

The CR0.MP bit controls whether the WAIT/FWAIT instruction causes an #NM exception when
TS=1.

Extension Type (ET) Bit. Bit 4, read-only. In some early x86 processors, software set ET to 1 to
indicate support of the 387DX math-coprocessor instruction set. This bit is now reserved and forced to
1 by the processor. Software cannot clear this bit to 0.

Numeric Error (NE) Bit. Bit 5. Clearing the NE bit to 0 disables internal control of x87 floating-point
exceptions and enables external control. When NE is cleared to 0, the IGNNE# input signal controls
whether x87 floating-point exceptions are ignored:

• When IGNNE# is 1, x87 floating-point exceptions are ignored.

• When IGNNE# is 0, x87 floating-point exceptions are reported by setting the FERR# input signal
to 1. External logic can use the FERR# signal as an external interrupt.

When NE is set to 1, internal control over x87 floating-point exception reporting is enabled and the
external reporting mechanism is disabled. It is recommended that software set NE to 1. This enables
optimal performance in handling x87 floating-point exceptions.

Write Protect (WP) Bit. Bit 16. Read-only pages are protected from supervisor-level writes when the
WP bit is set to 1. When WP is cleared to 0, supervisor software can write into read-only pages.

See “Page-Protection Checks” on page 143 for information on the page-protection mechanism.

System Resources 45

24593—Rev. 3.17—June 2010 AMD64 Technology

Alignment Mask (AM) Bit. Bit 18. Software enables automatic alignment checking by setting the
AM bit to 1 when eFLAGS.AC=1. Alignment checking can be disabled by clearing either AM or
eFLAGS.AC to 0. When automatic alignment checking is enabled and CPL=3, a memory reference to
an unaligned operand causes an alignment-check exception (#AC).

Not Writethrough (NW) Bit. Bit 29. Ignored. This bit can be set to 1 or cleared to 0, but its value is
ignored. The NW bit exists only for legacy purposes.

Cache Disable (CD) Bit. Bit 30. When CD is cleared to 0, the internal caches are enabled. When CD
is set to 1, no new data or instructions are brought into the internal caches. However, the processor still
accesses the internal caches when CD=1 under the following situations:

• Reads that hit in an internal cache cause the data to be read from the internal cache that reported the
hit.

• Writes that hit in an internal cache cause the cache line that reported the hit to be written back to
memory and invalidated in the cache.

Cache misses do not affect the internal caches when CD=1. Software can prevent cache access by
writing back and invalidating the caches before setting CD to 1 (this avoids caching the instructions
that set CD to 1).

Setting CD to 1 also causes the processor to ignore the page-level cache-control bits (PWT and PCD)
when paging is enabled. These bits are located in the page-translation tables and CR3 register. See
“Page-Level Writethrough (PWT) Bit” on page 137 and “Page-Level Cache Disable (PCD) Bit” on
page 137 for information on page-level cache control.

See “Memory Caches” on page 176 for information on the internal caches.

Paging Enable (PG) Bit. Bit 31. Software enables page translation by setting PG to 1, and disables
page translation by clearing PG to 0. Page translation cannot be enabled unless the processor is in
protected mode (CR0.PE=1). If software attempts to set PG to 1 when PE is cleared to 0, the processor
causes a general-protection exception (#GP).

See “Page Translation Overview” on page 115 for information on the page-translation mechanism.

Reserved Bits. Bits 28–19, 17, 15–6, and 63–32. When writing the CR0 register, software should set
the values of reserved bits to the values found during the previous CR0 read. No attempt should be
made to change reserved bits, and software should never rely on the values of reserved bits. In long
mode, bits 63–32 are reserved and must be written with zero, otherwise a #GP occurs.

3.1.2 CR2 and CR3 Registers

The CR2 (page-fault linear address) register, shown in Figure 3-2 on page 46 and Figure 3-3 on
page 46, and the CR3 (page-translation-table base address) register, shown in Figure 3-4 and
Figure 3-5 on page 46, and Figure 3-6 on page 46, are used only by the page-translation mechanism.

46 System Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 3-2. Control Register 2 (CR2)—Legacy-Mode

Figure 3-3. Control Register 2 (CR2)—Long Mode

See “CR2 Register” on page 219 for a description of the CR2 register.

The CR3 register is used to point to the base address of the highest-level page-translation table.

Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging

Figure 3-5. Control Register 3 (CR3)—Legacy-Mode PAE Paging

Figure 3-6. Control Register 3 (CR3)—Long Mode

31 0

Page-Fault Virtual Address

63 32

Page-Fault Virtual Address

31 0

Page-Fault Virtual Address

31 12 11 5 4 3 2 0

Page-Directory-Table Base Address Reserved
P
C
D

P
W
T

Reserved

31 5 4 3 2 0

Page-Directory-Pointer-Table Base Address
P
C
D

P
W
T

Reserved

63 52 51 32

Reserved, MBZ
Page-Map Level-4 Table Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 5 4 3 2 0

Page-Map Level-4 Table Base Address Reserved
P
C
D

P
W
T

Reserved

System Resources 47

24593—Rev. 3.17—June 2010 AMD64 Technology

The legacy CR3 register is described in “CR3 Register” on page 120, and the long-mode CR3 register
is described in “CR3” on page 128.

3.1.3 CR4 Register

The CR4 register is shown in Figure 3-7. In legacy mode, the CR4 register is identical to the low 32
bits of the register (CR4 bits 31–0). The features controlled by the bits in the CR4 register are model-
specific extensions. Except for the performance-counter extensions (PCE) feature, software can use
the CPUID instruction to verify that each feature is supported before using that feature.

Figure 3-7. Control Register 4 (CR4)

The function of the CR4 control bits are (all bits are read/write):

Virtual-8086 Mode Extensions (VME) Bit. Bit 0. Setting VME to 1 enables hardware-supported
performance enhancements for software running in virtual-8086 mode. Clearing VME to 0 disables
this support. The enhancements enabled when VME=1 include:

• Virtualized, maskable, external-interrupt control and notification using the VIF and VIP bits in the
rFLAGS register. Virtualizing affects the operation of several instructions that manipulate the
rFLAGS.IF bit.

• Selective intercept of software interrupts (INTn instructions) using the interrupt-redirection bitmap
in the TSS.

63 32

Reserved, MBZ

31 11 10 9 8 7 6 5 4 3 2 1 0

Reserved, MBZ
O
S
X

OSF
XSR

P
C
E

P
G
E

M
C
E

P
A
E

P
S
E

D
E

T
S
D

P
V
I

V
M
E

Bits Mnemonic Description R/W
63–11 Reserved Reserved, Must be Zero
10 OSXMMEXCPT Operating System Unmasked Exception Support R/W

9 OSFXSR Operating System FXSAVE/FXRSTOR Support R/W
8 PCE Performance-Monitoring Counter Enable R/W
7 PGE Page-Global Enable R/W

6 MCE Machine Check Enable R/W
5 PAE Physical-Address Extension R/W
4 PSE Page Size Extensions R/W

3 DE Debugging Extensions R/W
2 TSD Time Stamp Disable R/W
1 PVI Protected-Mode Virtual Interrupts R/W

0 VME Virtual-8086 Mode Extensions R/W

48 System Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

Protected-Mode Virtual Interrupts (PVI) Bit. Bit 1. Setting PVI to 1 enables support for protected-
mode virtual interrupts. Clearing PVI to 0 disables this support. When PVI=1, hardware support of two
bits in the rFLAGS register, VIF and VIP, is enabled.

Only the STI and CLI instructions are affected by enabling PVI. Unlike the case when CR0.VME=1,
the interrupt-redirection bitmap in the TSS cannot be used for selective INTn interception.

PVI enhancements are also supported in long mode. See “Virtual Interrupts” on page 247 for more
information on using PVI.

Time-Stamp Disable (TSD) Bit. Bit 2. The TSD bit allows software to control the privilege level at
which the time-stamp counter can be read. When TSD is cleared to 0, software running at any privilege
level can read the time-stamp counter using the RDTSC or RDTSCP instructions. When TSD is set to
1, only software running at privilege-level 0 can execute the RDTSC or RDTSCP instructions.

Debugging Extensions (DE) Bit. Bit 3. Setting the DE bit to 1 enables the I/O breakpoint capability
and enforces treatment of the DR4 and DR5 registers as reserved. Software that accesses DR4 or DR5
when DE=1 causes a invalid opcode exception (#UD).

When the DE bit is cleared to 0, I/O breakpoint capabilities are disabled. Software references to the
DR4 and DR5 registers are aliased to the DR6 and DR7 registers, respectively.

Page-Size Extensions (PSE) Bit. Bit 4. Setting PSE to 1 enables the use of 4-Mbyte physical pages.
With PSE=1, the physical-page size is selected between 4 Kbytes and 4 Mbytes using the page-
directory entry page-size field (PS). Clearing PSE to 0 disables the use of 4-Mbyte physical pages and
restricts all physical pages to 4 Kbytes.

The PSE bit has no effect when physical-address extensions are enabled (CR4.PAE=1). Because long
mode requires CR4.PAE=1, the PSE bit is ignored when the processor is running in long mode.

See “4-Mbyte Page Translation” on page 123 for more information on 4-Mbyte page translation.

Physical-Address Extension (PAE) Bit. Bit 5. Setting PAE to 1 enables the use of physical-address
extensions and 2-Mbyte physical pages. Clearing PAE to 0 disables these features.

With PAE=1, the page-translation data structures are expanded from 32 bits to 64 bits, allowing the
translation of up to 52-bit physical addresses. Also, the physical-page size is selectable between
4 Kbytes and 2 Mbytes using the page-directory-entry page-size field (PS). Long mode requires PAE
to be enabled in order to use the 64-bit page-translation data structures to translate 64-bit virtual
addresses to 52-bit physical addresses.

See “PAE Paging” on page 124 for more information on physical-address extensions.

Machine-Check Enable (MCE) Bit. Bit 6. Setting MCE to 1 enables the machine-check exception
mechanism. Clearing this bit to 0 disables the mechanism. When enabled, a machine-check exception
(#MC) occurs when an uncorrectable machine-check error is encountered.

System Resources 49

24593—Rev. 3.17—June 2010 AMD64 Technology

Regardless of whether machine-check exceptions are enabled, the processor records enabled-errors
when they occur. Error-reporting is performed by the machine-check error-reporting register banks.
Each bank includes a control register for enabling error reporting and a status register for capturing
errors. Correctable machine-check errors are also reported, but they do not cause a machine-check
exception.

See Chapter 9, “Machine Check Mechanism,” for a description of the machine-check mechanism, the
registers used, and the types of errors captured by the mechanism.

Page-Global Enable (PGE) Bit. Bit 7. When page translation is enabled, system-software
performance can often be improved by making some page translations global to all tasks and
procedures. Setting PGE to 1 enables the global-page mechanism. Clearing this bit to 0 disables the
mechanism.

When PGE is enabled, system software can set the global-page (G) bit in the lowest level of the page-
translation hierarchy to 1, indicating that the page translation is global. Page translations marked as
global are not invalidated in the TLB when the page-translation-table base address (CR3) is updated.
When the G bit is cleared, the page translation is not global. All supported physical-page sizes also
support the global-page mechanism. See “Global Pages” on page 140 for information on using the
global-page mechanism.

Performance-Monitoring Counter Enable (PCE) Bit. Bit 8. Setting PCE to 1 allows software
running at any privilege level to use the RDPMC instruction. Software uses the RDPMC instruction to
read the performance-monitoring MSRs, PerfCtrn. Clearing PCE to 0 allows only the most-privileged
software (CPL=0) to use the RDPMC instruction.

FXSAVE/FXRSTOR Support (OSFXSR) Bit. Bit 9. System software must set the OSFXSR bit to 1
to enable use of the 128-bit media instructions. When this bit is set to 1, it also indicates that system
software uses the FXSAVE and FXRSTOR instructions to save and restore the processor state for the
x87, 64-bit media, and 128-bit media instructions.

Clearing the OSFXSR bit to 0 indicates that 128-bit media instructions cannot be used. Attempts to use
those instructions while this bit is clear result in an invalid-opcode exception (#UD). Software can
continue to use the FXSAVE/FXRSTOR instructions for saving and restoring the processor state for
the x87 and 64-bit media instructions.

Unmasked Exception Support (OSXMMEXCPT) Bit. Bit 10. System software must set the
OSXMMEXCPT bit to 1 when it supports the SIMD floating-point exception (#XF) for handling of
unmasked 128-bit media floating-point errors. Clearing the OSXMMEXCPT bit to 0 indicates the
#XF handler is not supported. When OSXMMEXCPT=0, unmasked 128-bit media floating-point
exceptions cause an invalid-opcode exception (#UD). See “SIMD Floating-Point Exception Causes”
in Volume 1 for more information on 128-bit media unmasked floating-point exceptions.

3.1.4 CR1 and CR5–CR7 Registers

Control registers CR1, CR5–CR7, and CR9–CR15 are reserved. Attempts by software to use these
registers result in an undefined-opcode exception (#UD).

50 System Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

3.1.5 64-Bit-Mode Extended Control Registers

In 64-bit mode, additional encodings for control registers are available. The REX.R bit, in a REX
prefix, is used to modify the ModRM reg field when that field encodes a control register, as shown in
“REX Prefixes” in Volume 3. These additional encodings enable the processor to address CR8–CR15.

One additional control register, CR8, is defined in 64-bit mode for all hardware implementations, as
described in “CR8 (Task Priority Register, TPR),” below. Access to the CR9–CR15 registers is
implementation-dependent. Any attempt to access an unimplemented register results in an invalid-
opcode exception (#UD).

3.1.6 CR8 (Task Priority Register, TPR)

The AMD64 architecture introduces a new control register, CR8, defined as the task priority register
(TPR). The register is accessible in 64-bit mode using the REX prefix. See “External Interrupt
Priorities” on page 228 for a description of the TPR and how system software can use the TPR for
controlling external interrupts.

3.1.7 RFLAGS Register

The RFLAGS register contains two different types of information :

• Control bits provide system-software controls and directional information for string operations.
Some of these bits can have privilege-level restrictions.

• Status bits provide information resulting from logical and arithmetic operations. These are written
by the processor and can be read by software running at any privilege level.

Figure 3-8 on page 51 shows the format of the RFLAGS register. The legacy EFLAGS register is
identical to the low 32 bits of the register shown in Figure 3-8 (RFLAGS bits 31–0). The term rFLAGS
is used to refer to the 16-bit, 32-bit, or 64-bit flags register, depending on context.

System Resources 51

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 3-8. RFLAGS Register

The functions of the RFLAGS control and status bits used by application software are described in
“Flags Register” in Volume 1. The functions of RFLAGS system bits are (unless otherwise noted, all
bits are read/write):

Trap Flag (TF) Bit. Bit 8. Software sets the TF bit to 1 to enable single-step mode during software
debug. Clearing this bit to 0 disables single-step mode.

When single-step mode is enabled, a debug exception (#DB) occurs after each instruction completes
execution. Single stepping begins with the instruction following the instruction that sets TF. Single
stepping is disabled (TF=0) when the #DB exception occurs or when any exception or interrupt occurs.

63 32

Reserved, RAZ

31 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved, RAZ
I
D

V
I
P

V
I
F

A
C

V
M

R
F

0
N
T

IOPL
O
F

D
F

I
F

T
F

S
F

Z
F

0
A
F

0
P
F

1
C
F

Bits Mnemonic Description R/W
63–22 Reserved Reserved, Read as Zero

21 ID ID Flag R/W
20 VIP Virtual Interrupt Pending R/W
19 VIF Virtual Interrupt Flag R/W

18 AC Alignment Check R/W
17 VM Virtual-8086 Mode R/W
16 RF Resume Flag R/W

15 Reserved Reserved, Read as Zero
14 NT Nested Task R/W
13-12 IOPL I/O Privilege Level R/W

11 OF Overflow Flag R/W
10 DF Direction Flag R/W
9 IF Interrupt Flag R/W

8 TF Trap Flag R/W
7 SF Sign Flag R/W
6 ZF Zero Flag R/W

5 Reserved Reserved, Read as Zero
4 AF Auxiliary Flag R/W
3 Reserved Reserved, Read as Zero

2 PF Parity Flag R/W
1 Reserved Reserved, Read as One
0 CF Carry Flag R/W

52 System Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

See “Single Stepping” on page 339 for information on using the single-step mode during debugging.

Interrupt Flag (IF) Bit. Bit 9. Software sets the IF bit to 1 to enable maskable interrupts. Clearing this
bit to 0 causes the processor to ignore maskable interrupts. The state of the IF bit does not affect the
response of a processor to non-maskable interrupts, software-interrupt instructions, or exceptions.

The ability to modify the IF bit depends on several factors:

• The current privilege-level (CPL)

• The I/O privilege level (RFLAGS.IOPL)

• Whether or not virtual-8086 mode extensions are enabled (CR4.VME=1)

• Whether or not protected-mode virtual interrupts are enabled (CR4.PVI=1)

See “Masking External Interrupts” on page 207 for information on interrupt masking. See “Accessing
the RFLAGs Register” on page 154 for information on the specific instructions used to modify the IF
bit.

I/O Privilege Level Field (IOPL) Field. Bits 13–12. The IOPL field specifies the privilege level
required to execute I/O address-space instructions (i.e., instructions that address the I/O space rather
than memory-mapped I/O, such as IN, OUT, INS, OUTS, etc.). For software to execute these
instructions, the current privilege-level (CPL) must be equal to or higher than (lower numerical value
than) the privilege specified by IOPL (CPL <= IOPL). If the CPL is lower than (higher numerical value
than) that specified by the IOPL (CPL > IOPL), the processor causes a general-protection exception
(#GP) when software attempts to execute an I/O instruction. See “Protected-Mode I/O” in Volume 1
for information on how IOPL controls access to address-space I/O.

Virtual-8086 mode uses IOPL to control virtual interrupts and the IF bit when virtual-8086 mode
extensions are enabled (CR4.VME=1). The protected-mode virtual-interrupt mechanism (PVI) also
uses IOPL to control virtual interrupts and the IF bit when PVI is enabled (CR4.PVI=1). See “Virtual
Interrupts” on page 247 for information on how IOPL is used by the virtual interrupt mechanism.

Nested Task (NT) Bit. Bit 14, IRET reads the NT bit to determine whether the current task is nested
within another task. When NT is set to 1, the current task is nested within another task. When NT is
cleared to 0, the current task is at the top level (not nested).

The processor sets the NT bit during a task switch resulting from a CALL, interrupt, or exception
through a task gate. When an IRET is executed from legacy mode while the NT bit is set, a task switch
occurs. See “Task Switches Using Task Gates” on page 323 for information on switching tasks using
task gates, and “Nesting Tasks” on page 325 for information on task nesting.

Resume Flag (RF) Bit. Bit 16. The RF bit allows an instruction to be restarted following an
instruction breakpoint resulting in a debug exception (#DB). This bit prevents multiple debug
exceptions from occurring on the same instruction.

System Resources 53

24593—Rev. 3.17—June 2010 AMD64 Technology

The processor clears the RF bit after every instruction is successfully executed, except when the
instruction is:

• An IRET that sets the RF bit.

• JMP, CALL, or INTn through a task gate.

In both of the above cases, RF is not cleared to 0 until the next instruction successfully executes.

When an exception occurs (or when a string instruction is interrupted), the processor normally sets
RF=1 in the rFLAGS image saved on the interrupt stack. However, when a #DB exception occurs as a
result of an instruction breakpoint, the processor clears the RF bit to 0 in the interrupt-stack rFLAGS
image.

For instruction restart to work properly following an instruction breakpoint, the #DB exception
handler must set RF to 1 in the interrupt-stack rFLAGS image. When an IRET is later executed to
return to the instruction that caused the instruction-breakpoint #DB exception, the set RF bit (RF=1) is
loaded from the interrupt-stack rFLAGS image. RF is not cleared by the processor until the instruction
causing the #DB exception successfully executes.

Virtual-8086 Mode (VM) Bit. Bit 17. Software sets the VM bit to 1 to enable virtual-8086 mode.
Software clears the VM bit to 0 to disable virtual-8086 mode. System software can only change this bit
using a task switch or an IRET. It cannot modify the bit using the POPFD instruction.

Alignment Check (AC) Bit. Bit 18. Software enables automatic alignment checking by setting the
AC bit to 1 when CR0.AM=1. Alignment checking can be disabled by clearing either AC or CR0.AM
to 0. When automatic alignment checking is enabled and the current privilege-level (CPL) is 3 (least
privileged), a memory reference to an unaligned operand causes an alignment-check exception (#AC).

Virtual Interrupt (VIF) Bit. Bit 19. The VIF bit is a virtual image of the RFLAGS.IF bit. It is enabled
when either virtual-8086 mode extensions are enabled (CR4.VME=1) or protected-mode virtual
interrupts are enabled (CR4.PVI=1), and the RFLAGS.IOPL field is less than 3. When enabled,
instructions that ordinarily would modify the IF bit actually modify the VIF bit with no effect on the
RFLAGS.IF bit.

System software that supports virtual-8086 mode should enable the VIF bit using CR4.VME. This
allows 8086 software to execute instructions that can set and clear the RFLAGS.IF bit without causing
an exception. With VIF enabled in virtual-8086 mode, those instructions set and clear the VIF bit
instead, giving the appearance to the 8086 software that it is modifying the RFLAGS.IF bit. System
software reads the VIF bit to determine whether or not to take the action desired by the 8086 software
(enabling or disabling interrupts by setting or clearing the RFLAGS.IF bit).

In long mode, the use of the VIF bit is supported when CR4.PVI=1. See “Virtual Interrupts” on
page 247 for more information on virtual interrupts.

Virtual Interrupt Pending (VIP) Bit. Bit 20. The VIP bit is provided as an extension to both virtual-
8086 mode and protected mode. It is used by system software to indicate that an external, maskable
interrupt is pending (awaiting) execution by either a virtual-8086 mode or protected-mode interrupt-

54 System Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

service routine. Software must enable virtual-8086 mode extensions (CR4.VME=1) or protected-
mode virtual interrupts (CR4.PVI=1) before using VIP.

VIP is normally set to 1 by a protected-mode interrupt-service routine that was entered from virtual-
8086 mode as a result of an external, maskable interrupt. Before returning to the virtual-8086 mode
application, the service routine sets VIP to 1 if EFLAGS.VIF=1. When the virtual-8086 mode
application attempts to enable interrupts by clearing EFLAGS.VIF to 0 while VIP=1, a general-
protection exception (#GP) occurs. The #GP service routine can then decide whether to allow the
virtual-8086 mode service routine to handle the pending external, maskable interrupt. (EFLAGS is
specifically referred to in this case because virtual-8086 mode is supported only from legacy mode.)

In long mode, the use of the VIP bit is supported when CR4.PVI=1. See “Virtual Interrupts” on
page 247 for more information on virtual-8086 mode interrupts and the VIP bit.

Processor Feature Identification (ID) Bit. Bit 21. The ability of software to modify this bit
indicates that the processor implementation supports the CPUID instruction. See “Processor Feature
Identification” on page 61 for more information on the CPUID instruction.

3.1.8 Extended Feature Enable Register (EFER)

The extended-feature-enable register (EFER) contains control bits that enable additional processor
features not controlled by the legacy control registers. The EFER is a model-specific register (MSR)
with an address of C000_0080h (see “Model-Specific Registers (MSRs)” on page 56 for more
information on MSRs). It can be read and written only by privileged software. Figure 3-9 on page 55
shows the format of the EFER register.

System Resources 55

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 3-9. Extended Feature Enable Register (EFER)

The function of the EFER bits are (unless otherwise noted, all bits are read/write):

System-Call Extension (SCE) Bit. Bit 0. Setting this bit to 1 enables the SYSCALL and SYSRET
instructions. Application software can use these instructions for low-latency system calls and returns
in a non-segmented (flat) address space. See “Fast System Call and Return” on page 150 for additional
information.

Long Mode Enable (LME) Bit. Bit 8. Setting this bit to 1 enables the processor to activate long mode.
Long mode is not activated until software enables paging some time later. When paging is enabled
after LME is set to 1, the processor sets the EFER.LMA bit to 1, indicating that long mode is not only
enabled but also active. See Chapter 14, “Processor Initialization and Long Mode Activation,” for
more information on activating long mode.

Long Mode Active (LMA) Bit. Bit 10, read-only. This bit indicates that long mode is active. The
processor sets LMA to 1 when both long mode and paging have been enabled by system software. See
Chapter 14, “Processor Initialization and Long Mode Activation,” for more information on activating
long mode.

When LMA=1, the processor is running either in compatibility mode or 64-bit mode, depending on the
value of the L bit in a code-segment descriptor, as shown in Figure 1-6 on page 12.

63 32

Reserved, MBZ

31 15 14 13 12 11 10 9 8 7 1 0

Reserved, MBZ

F
F
X
S
R

L
M
S
L
E

S
V
M
E

N
X
E

L
M
A

M
B
Z

L
M
E

Reserved, RAZ
S
C
E

Bits Mnemonic Description R/W
63–15 Reserved, MBZ Reserved, Must be Zero
14 FFXSR Fast FXSAVE/FXRSTOR R/W

13 LMSLE Long Mode Segment Limit Enable R/W
12 SVME Secure Virtual Machine Enable R/W
11 NXE No-Execute Enable R/W

10 LMA Long Mode Active R
9 Reserved, MBZ Reserved, Must be Zero
8 LME Long Mode Enable R/W

7-1 Reserved, RAZ Reserved, Read as Zero
0 SCE System Call Extensions R/W

56 System Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

When LMA=0, the processor is running in legacy mode. In this mode, the processor behaves like a
standard 32-bit x86 processor, with none of the new 64-bit features enabled.

No-Execute Enable (NXE) Bit. Bit 11. Setting this bit to 1 enables the no-execute page-protection
feature. The feature is disabled when this bit is cleared to 0. See “No Execute (NX) Bit” on page 143
for more information.

Before setting NXE, system software should verify the processor supports the feature by examining
the extended-feature flags returned by the CPUID instruction. For more information, see the CPUID
Specification, order# 25481.

Secure Virtual Machine Enable (SVME) Bit. Bit 12. Enables the SVM extensions. When this bit is
zero, the SVM instructions cause #UD exceptions. EFER.SVME defaults to a reset value of zero. The
effect of turning off EFER.SVME while a guest is running is undefined; therefore, the VMM should
always prevent guests from writing EFER. SVM extensions can be disabled by setting
VM_CR.SVME_DISABLE. For more information, see descriptions of LOCK and SMVE_DISABLE
bits in Section 15.29.1, “VM_CR MSR (C001_0114h),” on page 424.

Long Mode Segment Limit Enable (LMSLE) bit. Bit 13. Setting this bit to 1 enables certain limit
checks in 64-bit mode. See Section 4.12.2, "Data Limit Checks in 64-bit Mode", for more information
on these limit checks.

Fast FXSAVE/FXRSTOR (FFXSR) Bit. Bit 14. Setting this bit to 1 enables the FXSAVE and
FXRSTOR instructions to execute faster in 64-bit mode at CPL 0. This is accomplished by not saving
or restoring the XMM registers (XMM0-XMM15). The FFXSR bit has no effect when the
FXSAVE/FXRSTOR instructions are executed in non 64-bit mode, or when CPL > 0. The FFXSR bit
does not affect the save/restore of the legacy x87 floating-point state, or the save/restore of MXCSR.

Before setting FFXSR, system software should verify whether this feature is supported by examining
the CPUID extended feature flags returned by the CPUID instruction. For more information, see
"Function 8000_0001h: Processor Signature and AMD Features" in Volume 3.

3.2 Model-Specific Registers (MSRs)

Processor implementations provide model-specific registers (MSRs) for software control over the
unique features supported by that implementation. Software reads and writes MSRs using the
privileged RDMSR and WRMSR instructions. Implementations of the AMD64 architecture can
contain a mixture of two basic MSR types:

• Legacy MSRs. The AMD family of processors often share model-specific features with other x86
processor implementations. Where possible, AMD implementations use the same MSRs for the
same functions. For example, the memory-typing and debug-extension MSRs are implemented on
many AMD and non-AMD processors.

• AMD model-specific MSRs. There are many MSRs common to the AMD family of processors but
not to legacy x86 processors. Where possible, AMD implementations use the same AMD-specific
MSRs for the same functions.

System Resources 57

24593—Rev. 3.17—June 2010 AMD64 Technology

Every model-specific register, as the name implies, is not necessarily implemented by all members of
the AMD family of processors. Appendix A, “MSR Cross-Reference,” lists MSR-address ranges
currently used by various AMD and other x86 processors.

The AMD64 architecture includes a number of features that are controlled using MSRs. Those MSRs
are shown in Figure 3-10. The EFER register—described in “Extended Feature Enable Register
(EFER)” on page 54—is also an MSR.

Figure 3-10. AMD64 Architecture Model-Specific Registers

The following sections briefly describe the MSRs in the AMD64 architecture.

513-262.eps

Memory-Typing Registers

MTRRcap

MTRRdefType

MTRRphysBasen

MTRRphysMaskn

MTRRfixn

PAT

TOP_MEM

TOP_MEM2

Machine-Check Registers

MCG_CAP

MCG_STAT

MCG_CTL

MCi_CTL

MCi_STATUS

MCi_ADDR

MCi_MISC

Performance-Monitoring Registers

TSC

PerfEvtSeln

PerfCtrn

System-Linkage Registers

STAR

LSTAR

CSTAR

FS.base

GS.base

KernelGSbase

SYSENTER_CS

SYSENTER_ESP

SYSENTER_EIP

Debug-Extension Registers

DebugCtlMSR

LastBranchFromIP

LastBranchToIP

LastIntFromIP

LastIntToIP

System-Configuration Register

SYSCFG

SFMASK

58 System Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

3.2.1 System Configuration Register (SYSCFG)

The system-configuration register (SYSCFG) contains control bits for enabling and configuring
system bus features. SYSCFG is a model-specific register (MSR) with an address of C001_0010h.
Figure 3-11 on page 58 shows the format of the SYSCFG register. Some features are implementation
specific, and are described in the BIOS writer’s guide for the implementation. Implementation-specific
features are not shown in Figure 3-11.

Figure 3-11. System-Configuration Register (SYSCFG)

The function of the SYSCFG bits are (all bits are read/write unless otherwise noted):

MtrrFixDramEn Bit. Bit 18. Setting this bit to 1 enables use of the RdMem and WrMem attributes in
the fixed-range MTRR registers. When cleared, these attributes are disabled. The RdMem and
WrMem attributes allow system software to define fixed-range IORRs using the fixed-range MTRRs.
See “Extended Fixed-Range MTRR Type-Field Encodings” on page 198 for information on using this
feature.

MtrrFixDramModEn Bit. Bit 19. Setting this bit to 1 allows software to read and write the RdMem
and WrMem bits. When cleared, writes do not modify the RdMem and WrMem bits, and reads return
0. See “Extended Fixed-Range MTRR Type-Field Encodings” on page 198 for information on using
this feature.

MtrrVarDramEn Bit. Bit 20. Setting this bit to 1 enables the TOP_MEM register and the variable-
range IORRs. These registers are disabled when the bit is cleared to 0. See “IORRs” on page 200 and
“Top of Memory” on page 202 for information on using these features.

MtrrTom2En Bit. Bit 21. Setting this bit to 1 enables the TOP_MEM2 register. The register is
disabled when this bit is cleared to 0. See “Top of Memory” on page 202 for information on using this
feature.

31 22 21 20 19 18 17 0

Reserved

T
O
M
2

M
V
D
M

M
F
D
M

M
F
D
E

Reserved

Bits Mnemonic Description R/W
31-22 Reserved
21 TOM2 MtrrTom2En R/W
20 MVDM MtrrVarDramEn R/W

19 MFDM MtrrFixDramModEn R/W
18 MFDE MtrrFixDramEn R/W
17-0 Reserved

System Resources 59

24593—Rev. 3.17—June 2010 AMD64 Technology

3.2.2 System-Linkage Registers

System-linkage MSRs are used by system software to allow fast control transfers between applications
and the operating system. The functions of these registers are:

STAR, LSTAR, CSTAR, and SFMASK Registers. These registers are used to provide mode-
dependent linkage information for the SYSCALL and SYSRET instructions. STAR is used in legacy
modes, LSTAR in 64-bit mode, and CSTAR in compatibility mode. SFMASK is used by the
SYSCALL instruction for rFLAGS in long mode.

FS.base and GS.base Registers. These registers allow 64-bit base-address values to be specified
for the FS and GS segments, for use in 64-bit mode. See “FS and GS Registers in 64-Bit Mode” on
page 70 for a description of the special treatment the FS and GS segments receive.

KernelGSbase Register. This register is used by the SWAPGS instruction. This instruction
exchanges the value located in KernelGSbase with the value located in GS.base.

SYSENTERx Registers. The SYSENTER_CS, SYSENTER_ESP, and SYSENTER_EIP registers
are used to provide linkage information for the SYSENTER and SYSEXIT instructions. These
instructions are only used in legacy mode.

The system-linkage instructions and their use of MSRs are described in “Fast System Call and Return”
on page 150.

3.2.3 Memory-Typing Registers

Memory-typing MSRs are used to characterize, or type, memory. Memory typing allows software to
control the cacheability of memory, and determine how accesses to memory are ordered. The memory-
typing registers perform the following functions:

MTRRcap Register. This register contains information describing the level of MTRR support
provided by the processor.

MTRRdefType Register. This register establishes the default memory type to be used for physical
memory that is not specifically characterized using the fixed-range and variable-range MTRRs.

MTRRphysBasen and MTRRphysMaskn Registers. These registers form a register pair that can
be used to characterize any address range within the physical-memory space, including all of physical
memory. Up to eight address ranges of varying sizes can be characterized using these registers.

MTRRfixn Registers. These registers are used to characterize fixed-size memory ranges in the first 1
Mbytes of physical-memory space.

PAT Register. This register allows memory-type characterization based on the virtual (linear)
address. It is an extension to the PCD and PWT memory types supported by the legacy paging
mechanism. The PAT mechanism provides the same memory-typing capabilities as the MTRRs, but
with the added flexibility provided by the paging mechanism.

60 System Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

TOP_MEM and TOP_MEM2 Registers. These top-of-memory registers allow system software to
specify physical addresses ranges as memory-mapped I/O locations.

Refer to “Memory-Type Range Registers” on page 183 for more information on using these registers.

3.2.4 Debug-Extension Registers

The debug-extension MSRs provide software-debug capability not available in the legacy debug
registers (DR0–DR7). These MSRs allow single stepping and recording of control transfers to take
place. The debug-extension registers perform the following functions:

DebugCtlMSR Register. This register provides control over control-transfer recording and single
stepping, and external-breakpoint reporting and trace messages.

LastBranchx and LastExceptionx Registers. T h e f ou r r eg i s t e r s , L a s t B ra n c hToI P,
LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP, are all used to record the source
and target of control transfers when branch recording is enabled.

Refer to “Control-Transfer Breakpoint Features” on page 340 for more information on using these
debug registers.

3.2.5 Performance-Monitoring Registers

The time-stamp counter and performance-monitoring registers are useful in identifying performance
bottlenecks. There can be any number of performance counters, each numbered from 0 to n. These
registers perform the following functions:

TSC Register. This register is used to count processor-clock cycles. It can be read using the RDMSR
instruction, or it can be read using the either of the read time-stamp counter instructions, RDTSC or
RDTSCP. System software can make RDTSC or RDTSCP available for use by non-privileged
software by clearing the time-stamp disable bit (CR4.TSD) to 0.

PerfEvtSeln Registers. These registers are used to specify the events counted by the corresponding
performance counter, and to control other aspects of its operation.

PerfCtrn Registers. These registers are performance counters that hold a count of processor events
or the duration of events, under the control of the corresponding PerfEvtSeln register. Each PerfCtrn
register can be read using the RDMSR instruction, or they can be read using the read performance-
monitor counter instruction, RDPMC. System software can make RDPMC available for use by non-
privileged software by setting the performance-monitor counter enable bit (CR4.PCE) to 1.

Refer to “Using Performance Counters” on page 346 for more information on using these registers.

3.2.6 Machine-Check Registers

The machine-check registers control the detection and reporting of hardware machine-check errors.
The types of errors that can be reported include cache-access errors, load-data and store-data errors,

System Resources 61

24593—Rev. 3.17—June 2010 AMD64 Technology

bus-parity errors, and ECC errors. Two types of machine-check MSRs are shown in Figure 3-10 on
page 57.

The first type is global machine-check registers, which perform the following functions:

MCG_CAP Register. This register identifies the machine-check capabilities supported by the
processor.

MCG_CTL Register. This register provides global control over machine-check-error reporting.

MCG_STATUS Register. This register reports global status on detected machine-check errors.

The second type is error-reporting register banks, which report on machine-check errors associated
with a specific processor unit (or group of processor units). There can be different numbers of register
banks for each processor implementation, and each bank is numbered from 0 to i. The registers in each
bank perform the following functions:

MCi_CTL Registers. These registers control error-reporting.

MCi_STATUS Registers. These registers report machine-check errors.

MCi_ADDR Registers. These registers report the machine-check error address.

MCi_MISC Registers. These registers report miscellaneous-error information.

Refer to “Using Machine Check Features” on page 267 for more information on using these registers.

3.3 Processor Feature Identification

The CPUID instruction provides information about the processor implementation and its capabilities.
Software operating at any privilege level can execute the CPUID instruction to collect this information.
After the information is collected, software can be tuned to optimize performance and benefit to users.
For example, game software can identify and enable the media capabilities of a particular processor
implementation.

The CPUID instruction supports multiple functions, each providing different information about the
processor implementation, including the vendor, model number, revision (stepping), features, cache
organization, and name. The multifunction approach allows the CPUID instruction to return a detailed
picture of the processor implementation and its capabilities — more detailed information than could be
returned by a single function. This flexibility also allows for the addition of new CPUID functions in
future processor generations.

Function codes are loaded into the EAX register before executing the CPUID instruction. CPUID
functions are divided into two types:

• Standard functions return information about features common to all x86 implementations,
including the earliest features offered in the x86 architecture, as well as information about the
presence of newer features such as SSE, SSE2, and SSE3 instructions.

62 System Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

• Extended functions return information about AMD-specific features, such as the AMD extensions
to the MMX™ and 3DNow!™ instructions, and long mode.

See “CPUID” in Volume 3 for details on the operation of this instruction, and the CPUID Specification
(order# 25481) for information returned by each processor implementation.

Segmented Virtual Memory 63

24593—Rev. 3.17—June 2010 AMD64 Technology

4 Segmented Virtual Memory

The legacy x86 architecture supports a segment-translation mechanism that allows system software to
relocate and isolate instructions and data anywhere in the virtual-memory space. A segment is a
contiguous block of memory within the linear address space. The size and location of a segment within
the linear address space is arbitrary. Instructions and data can be assigned to one or more memory
segments, each with its own protection characteristics. The processor hardware enforces the rules
dictating whether one segment can access another segment.

The segmentation mechanism provides ten segment registers, each of which defines a single segment.
Six of these registers (CS, DS, ES, FS, GS, and SS) define user segments. User segments hold
software, data, and the stack and can be used by both application software and system software. The
remaining four segment registers (GDT, LDT, IDT, and TR) define system segments. System segments
contain data structures initialized and used only by system software. Segment registers contain a base
address pointing to the starting location of a segment, a limit defining the segment size, and attributes
defining the segment-protection characteristics.

Although segmentation provides a great deal of flexibility in relocating and protecting software and
data, it is often more efficient to handle memory isolation and relocation with a combination of
software and hardware paging support. For this reason, most modern system software bypasses the
segmentation features. However, segmentation cannot be completely disabled, and an understanding
of the segmentation mechanism is important to implementing long-mode system software.

In long mode, the effects of segmentation depend on whether the processor is running in compatibility
mode or 64-bit mode:

• In compatibility mode, segmentation functions just as it does in legacy mode, using legacy 16-bit
or 32-bit protected mode semantics.

• 64-bit mode, segmentation is disabled, creating a flat 64-bit virtual-address space. As will be seen,
certain functions of some segment registers, particularly the system-segment registers, continue to
be used in 64-bit mode.

4.1 Real Mode Segmentation

After reset or power-up, the processor always initially enters real mode. Protected modes are entered
from real mode.

As noted in “Real Addressing” on page 10, real mode (real-address mode), provides a physical-
memory space of 1 Mbyte. In this mode, a 20-bit physical address is determined by shifting a 16-bit
segment selector to the left four bits and adding the 16-bit effective address.

Each 64K segment (CS, DS, ES, FS, GS, SS) is aligned on 16-byte boundaries. The segment base is
the lowest address in a given segment, and is equal to the segment selector * 16. The POP and MOV
instructions can be used to load a (possibly) new segment selector into one of the segment registers.

64 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

When this occurs, the selector is updated and the selector base is set to selector * 16. The segment limit
and segment attributes are unchanged, but are normally 64K (the maximum allowable limit) and
read/write data, respectively.

On FAR transfers, CS (code segment) selector is updated to the new value, and the CS segment base is
set to selector * 16. The CS segment limit and attributes are unchanged, but are usually 64K and
read/write, respectively.

If the interrupt descriptor table (IDT) is used to find the real mode IDT see “Real-Mode Interrupt
Control Transfers” on page 229.

The GDT, LDT, and TSS (see below) are not used in real mode.

4.2 Virtual-8086 Mode Segmentation

Virtual-8086 mode supports 16-bit real mode programs running under protected mode (see below). It
uses a simple form of memory segmentation, optional paging, and limited protection checking.
Programs running in virtual-8086 mode can access up to 1MB of memory space.

As with real mode segmentation, each 64K segment (CS, DS, ES, FS, GS, SS) is aligned on 16-byte
boundaries. The segment base is the lowest address in a given segment, and is equal to the segment
selector * 16. The POP and MOV instructions work exactly as in real mode and can be used to load a
(possibly) new segment selector into one of the segment registers. When this occurs, the selector is
updated and the selector base is set to selector * 16. The segment limit and segment attributes are
unchanged, but are normally 64K (the maximum allowable limit) and read/write data, respectively.

FAR transfers, with the exception of interrupts and exceptions, operate as in real mode. On FAR
transfers, the CS (code segment) selector is updated to the new value, and the CS segment base is set to
selector * 16. The CS segment limit and attributes are unchanged, but are usually 64K and read/write,
respectively. Interrupts and exceptions switch the processor to protected mode. (See Chapter 8,
“Exceptions and Interrupts” for more information.)

4.3 Protected Mode Segmented-Memory Models

System software can use the segmentation mechanism to support one of two basic segmented-memory
models: a flat-memory model or a multi-segmented model. These segmentation models are supported
in legacy mode and in compatibility mode. Each type of model is described in the following sections.

4.3.1 Multi-Segmented Model

In the multi-segmented memory model, each segment register can reference a unique base address
with a unique segment size. Segments can be as small as a single byte or as large as 4 Gbytes. When
page translation is used, multiple segments can be mapped to a single page and multiple pages can be
mapped to a single segment. Figure 1-1 on page 6 shows an example of the multi-segmented model.

Segmented Virtual Memory 65

24593—Rev. 3.17—June 2010 AMD64 Technology

The multi-segmented memory model provides the greatest level of flexibility for system software
using the segmentation mechanism.

Compatibility mode allows the multi-segmented model to be used in support of legacy software.
However, in compatibility mode, the multi-segmented memory model is restricted to the first 4 Gbytes
of virtual-memory space. Access to virtual memory above 4 Gbytes requires the use of 64-bit mode,
which does not support segmentation.

4.3.2 Flat-Memory Model

The flat-memory model is the simplest form of segmentation to implement. Although segmentation
cannot be disabled, the flat-memory model allows system software to bypass most of the segmentation
mechanism. In the flat-memory model, all segment-base addresses have a value of 0 and the segment
limits are fixed at 4 Gbytes. Clearing the segment-base value to 0 effectively disables segment
translation, resulting in a single segment spanning the entire virtual-address space. All segment
descriptors reference this single, flat segment. Figure 1-2 on page 7 shows an example of the flat-
memory model.

4.3.3 Segmentation in 64-Bit Mode

In 64-bit mode, segmentation is disabled. The segment-base value is ignored and treated as 0 by the
segmentation hardware. Likewise, segment limits and most attributes are ignored. There are a few
exceptions. The CS-segment DPL, D, and L attributes are used (respectively) to establish the privilege
level for a program, the default operand size, and whether the program is running in 64-bit mode or
compatibility mode. The FS and GS segments can be used as additional base registers in address
calculations, and those segments can have non-zero base-address values. This facilitates addressing
thread-local data and certain system-software data structures. See “FS and GS Registers in 64-Bit
Mode” on page 70 for details about the FS and GS segments in 64-bit mode. The system-segment
registers are always used in 64-bit mode.

4.4 Segmentation Data Structures and Registers

Figure 4-1 on page 66 shows the following data structures used by the segmentation mechanism:

• Segment Descriptors—As the name implies, a segment descriptor describes a segment, including
its location in virtual-address space, its size, protection characteristics, and other attributes.

• Descriptor Tables—Segment descriptors are stored in memory in one of three tables. The global-
descriptor table (GDT) holds segment descriptors that can be shared among all tasks. Multiple
local-descriptor tables (LDT) can be defined to hold descriptors that are used by specific tasks and
are not shared globally. The interrupt-descriptor table (IDT) holds gate descriptors that are used to
access the segments where interrupt handlers are located.

• Task-State Segment—A task-state segment (TSS) is a special type of system segment that contains
task-state information and data structures for each task. For example, a TSS holds a copy of the
GPRs and EFLAGS register when a task is suspended. A TSS also holds the pointers to privileged-

66 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

software stacks. The TSS and task-switch mechanism are described in Chapter 12, “Task
Management.”

• Segment Selectors—Descriptors are selected for use from the descriptor tables using a segment
selector. A segment selector contains an index into either the GDT or LDT. The IDT is indexed
using an interrupt vector, as described in “Legacy Protected-Mode Interrupt Control Transfers” on
page 231, and in “Long-Mode Interrupt Control Transfers” on page 241.

Figure 4-1. Segmentation Data Structures

Figure 4-2 on page 67 shows the registers used by the segmentation mechanism. The registers have the
following relationship to the data structures:

• Segment Registers—The six segment registers (CS, DS, ES, FS, GS, and SS) are used to point to
the user segments. A segment selector selects a descriptor when it is loaded into one of the segment
registers. This causes the processor to automatically load the selected descriptor into a software-
invisible portion of the segment register.

• Descriptor-Table Registers—The three descriptor-table registers (GDTR, LDTR, and IDTR) are
used to point to the system segments. The descriptor-table registers identify the virtual-memory
location and size of the descriptor tables.

• Task Register (TR)—Describes the location and limit of the current task state segment (TSS).

513-263.eps

Segment Descriptors

Code

Stack

Data

Gate

Task-State Segment

Local-Descriptor Table

Global-Descriptor Table (GDT)

Descriptor

Descriptor

. . .

Descriptor

Local-Descriptor Table (LDT)

Descriptor

Descriptor

. . .

Descriptor

Segment Selectors

Selector 1

Selector 2

. . .

Selector n
Interrupt-Descriptor Table (IDT)

Gate Descriptor

Gate Descriptor

. . .

Gate Descriptor

Segmented Virtual Memory 67

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 4-2. Segment and Descriptor-Table Registers

A fourth system-segment register, the TR, points to the TSS. The data structures and registers
associated with task-state segments are described in “Task-Management Resources” on page 308.

4.5 Segment Selectors and Registers

4.5.1 Segment Selectors

Segment selectors are pointers to specific entries in the global and local descriptor tables. Figure 4-3
shows the segment selector format.

Figure 4-3. Segment Selector

15 3 2 1 0

SI TI RPL

Bits Mnemonic Description R/W
15-3 SI Selector Index R/W

2 TI Table Indicator R/W
1-0 RPL Requestor Privilege Level R/W

513-264.eps

DS

ES

FS

GS

Data Segment Registers

CS

Code Segment Register

SS

Stack Segment Register

IDTR

Interrupt-Descriptor-Table Register

GDTR

Global-Descriptor-Table Register

LDTR

Local-Descriptor-Table Register

TR

Task Register

68 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

The selector format consists of the following fields:

Selector Index Field. Bits 15–3. The selector-index field specifies an entry in the descriptor table.
Descriptor-table entries are eight bytes long, so the selector index is scaled by 8 to form a byte offset
into the descriptor table. The offset is then added to either the global or local descriptor-table base
address (as indicated by the table-index bit) to form the descriptor-entry address in virtual-address
space.

Some descriptor entries in long mode are 16 bytes long rather than 8 bytes (see “Legacy Segment
Descriptors” on page 77 for more information on long-mode descriptor-table entries). These expanded
descriptors consume two entries in the descriptor table. Long mode, however, continues to scale the
selector index by eight to form the descriptor-table offset. It is the responsibility of system software to
assign selectors such that they correctly point to the start of an expanded entry.

Table Indicator (TI) Bit. Bit 2. The TI bit indicates which table holds the descriptor referenced by the
selector index. When TI=0 the GDT is used and when TI=1 the LDT is used. The descriptor-table base
address is read from the appropriate descriptor-table register and added to the scaled selector index as
described above.

Requestor Privilege-Level (RPL) Field. Bits 1–0. The RPL represents the privilege level (CPL) the
processor is operating under at the time the selector is created.

RPL is used in segment privilege-checks to prevent software running at lesser privilege levels from
accessing privileged data. See “Data-Access Privilege Checks” on page 95 and “Control-Transfer
Privilege Checks” on page 98 for more information on segment privilege-checks.

Null Selector. Null selectors have a selector index of 0 and TI=0, corresponding to the first entry in
the GDT. However, null selectors do not reference the first GDT entry but are instead used to invalidate
unused segment registers. A general-protection exception (#GP) occurs if a reference is made to use a
segment register containing a null selector in non-64-bit mode. By initializing unused segment
registers with null selectors software can trap references to unused segments.

Null selectors can only be loaded into the DS, ES, FS and GS data-segment registers, and into the
LDTR descriptor-table register. A #GP occurs if software attempts to load the CS register with a null
selector or if software attempts to load the SS register with a null selector in non 64-bit mode or at CPL
3.

4.5.2 Segment Registers

Six 16-bit segment registers are provided for referencing up to six segments at one time. All software
tasks require segment selectors to be loaded in the CS and SS registers. Use of the DS, ES, FS, and GS
segments is optional, but nearly all software accesses data and therefore requires a selector in the DS
register. Table 4-1 on page 69 lists the supported segment registers and their functions.

Segmented Virtual Memory 69

24593—Rev. 3.17—June 2010 AMD64 Technology

The processor maintains a hidden portion of the segment register in addition to the selector value
loaded by software. This hidden portion contains the values found in the descriptor-table entry
referenced by the segment selector. The processor loads the descriptor-table entry into the hidden
portion when the segment register is loaded. By keeping the corresponding descriptor-table entry in
hardware, performance is optimized for the majority of memory references.

Figure 4-4 shows the format of the visible and hidden portions of the segment register. Except for the
FS and GS segment base, software cannot directly read or write the hidden portion (shown as gray-
shaded boxes in Figure 4-4).

Figure 4-4. Segment-Register Format

CS Register. The CS register contains the segment selector referencing the current code-segment
descriptor entry. All instruction fetches reference the CS descriptor. When a new selector is loaded into
the CS register, the current-privilege level (CPL) of the processor is set to that of the CS-segment
descriptor-privilege level (DPL).

Data-Segment Registers. The DS register contains the segment selector referencing the default
data-segment descriptor entry. The SS register contains the stack-segment selector. The ES, FS, and
GS registers are optionally loaded with segment selectors referencing other data segments. Data
accesses default to referencing the DS descriptor except in the following two cases:

Table 4-1. Segment Registers

Segment
Register

Encoding Segment Register Function

ES /0 References optional data-segment descriptor entry

CS /1 References code-segment descriptor entry

SS /2 References stack segment descriptor entry

DS /3 References default data-segment descriptor entry

FS /4 References optional data-segment descriptor entry

GS /5 References optional data-segment descriptor entry

Hidden From Software 513-221.eps

32-Bit Segment Limit

32-Bit Segment Base Address

Segment Attributes

Selector

70 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

• The ES descriptor is referenced for string-instruction destinations.

• The SS descriptor is referenced for stack operations.

4.5.3 Segment Registers in 64-Bit Mode

CS Register in 64-Bit Mode. In 64-bit mode, most of the hidden portion of the CS register is
ignored. Only the L (long), D (default operation size), and DPL (descriptor privilege-level) attributes
are recognized by 64-bit mode. Address calculations assume a CS.base value of 0. CS references do
not check the CS.limit value, but instead check that the effective address is in canonical form.

DS, ES, and SS Registers in 64-Bit Mode. In 64-bit mode, the contents of the ES, DS, and SS
segment registers are ignored. All fields (base, limit, and attribute) in the hidden portion of the segment
registers are ignored.

Address calculations in 64-bit mode that reference the ES, DS, or SS segments are treated as if the
segment base is 0. Instead of performing limit checks, the processor checks that all virtual-address
references are in canonical form.

Neither enabling and activating long mode nor switching between 64-bit and compatibility modes
changes the contents of the visible or hidden portions of the segment registers. These registers remain
unchanged during 64-bit mode execution unless explicit segment loads are performed.

FS and GS Registers in 64-Bit Mode. Unlike the CS, DS, ES, and SS segments, the FS and GS
segment overrides can be used in 64-bit mode. When FS and GS segment overrides are used in 64-bit
mode, their respective base addresses are used in the effective-address (EA) calculation. The complete
EA calculation then becomes (FS or GS).base + base + (scale ∗ index) + displacement. The FS.base
and GS.base values are also expanded to the full 64-bit virtual-address size, as shown in Figure 4-5.
The resulting EA calculation is allowed to wrap across positive and negative addresses.

Figure 4-5. FS and GS Segment-Register Format—64-Bit Mode

In 64-bit mode, FS-segment and GS-segment overrides are not checked for limit or attributes. Instead,
the processor checks that all virtual-address references are in canonical form.

Hidden from Software and Unused in 64-bit Mode 513-267.eps

64-Bit Segment Base Address

32-Bit Segment Limit

Segment Attributes

Selector

Segmented Virtual Memory 71

24593—Rev. 3.17—June 2010 AMD64 Technology

Segment register-load instructions (MOV to Sreg and POP Sreg) load only a 32-bit base-address value
into the hidden portion of the FS and GS segment registers. The base-address bits above the low 32 bits
are cleared to 0 as a result of a segment-register load.

To allow loading all 64 bits of the base address, the FS.base and GS.base hidden descriptor-register
fields are mapped to MSRs. Privileged software (CPL=0) can load the 64-bit base address into FS.base
or GS.base using a single WRMSR instruction. The addresses written into the expanded FS.base and
GS.base registers must be in canonical form. A WRMSR instruction that attempts to write a non-
canonical address to these registers causes a general-protection exception (#GP) to occur.

The FS.base MSR address is C000_0100h while the GS.base MSR address is C000_0101h.

When in compatibility mode, the FS and GS overrides operate as defined by the legacy x86
architecture regardless of the value loaded into the high 32 bits of the hidden descriptor-register base-
address field. Compatibility mode ignores the high 32 bits when calculating an effective address.

4.6 Descriptor Tables

Descriptor tables are used by the segmentation mechanism when protected mode is enabled
(CR0.PE=1). These tables hold descriptor entries that describe the location, size, and privilege
attributes of a segment. All memory references in protected mode access a descriptor-table entry.

As previously mentioned, there are three types of descriptor tables supported by the x86 segmentation
mechanism:

• Global descriptor table (GDT)

• Local descriptor table (LDT)

• Interrupt descriptor table (IDT)

Software establishes the location of a descriptor table in memory by initializing its corresponding
descriptor-table register. The descriptor-table registers and the descriptor tables are described in the
following sections.

4.6.1 Global Descriptor Table

Protected-mode system software must create a global descriptor table (GDT). The GDT contains code-
segment and data-segment descriptor entries (user segments) for segments that can be shared by all
tasks. In addition to the user segments, the GDT can also hold gate descriptors and other system-
segment descriptors. System software can store the GDT anywhere in memory and should protect the
segment containing the GDT from non-privileged software.

Segment selectors point to the GDT when the table-index (TI) bit in the selector is cleared to 0. The
selector index portion of the segment selector references a specific entry in the GDT. Figure 4-6 on
page 72 shows how the segment selector indexes into the GDT. One special form of a segment selector
is the null selector. A null selector points to the first entry in the GDT (the selector index is 0 and
TI=0). However, null selectors do not reference memory, so the first GDT entry cannot be used to

72 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

describe a segment (see “Null Selector” on page 68 for information on using the null selector). The
first usable GDT entry is referenced with a selector index of 1.

Figure 4-6. Global and Local Descriptor-Table Access

4.6.2 Global Descriptor-Table Register

The global descriptor-table register (GDTR) points to the location of the GDT in memory and defines
its size. This register is loaded from memory using the LGDT instruction (see “LGDT and LIDT
Instructions” on page 155). Figure 4-7 shows the format of the GDTR in legacy mode and
compatibility mode.

Figure 4-7. GDTR and IDTR Format—Legacy Modes

Figure 4-8 on page 73 shows the format of the GDTR in 64-bit mode.

513-209.eps

Descriptor Table Base Address Descriptor Table Limit

Global (TI=0)
Local (TI=1)

Descriptor Table

+

+

Global or Local Descriptor-Table Register

Selector Index 000

Selector Index TI Segment Selector

Unused in GDT

513-220.eps

16-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

Segmented Virtual Memory 73

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 4-8. GDTR and IDTR Format—Long Mode

The GDTR contains two fields:

Limit. 2 bytes. These bits define the 16-bit limit, or size, of the GDT in bytes. The limit value is added
to the base address to yield the ending byte address of the GDT. A general-protection exception (#GP)
occurs if software attempts to access a descriptor beyond the GDT limit.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the GDTR and IDTR limit-field sizes are unchanged from the legacy sizes. The
processor does check the limits in long mode during GDT and IDT accesses.

Base Address. 8 bytes. The base-address field holds the starting byte address of the GDT in virtual-
memory space. The GDT can be located at any byte address in virtual memory, but system software
should align the GDT on a doubleword boundary to avoid the potential performance penalties
associated with accessing unaligned data.

The AMD64 architecture increases the base-address field of the GDTR to 64 bits so that system
software running in long mode can locate the GDT anywhere in the 64-bit virtual-address space. The
processor ignores the high-order 4 bytes of base address when running in legacy mode.

4.6.3 Local Descriptor Table

Protected-mode system software can optionally create a local descriptor table (LDT) to hold segment
descriptors belonging to a single task or even multiple tasks. The LDT typically contains code-
segment and data-segment descriptors as well as gate descriptors referenced by the specified task. Like
the GDT, system software can store the LDT anywhere in memory and should protect the segment
containing the LDT from non-privileged software.

Segment selectors point to the LDT when the table-index bit (TI) in the selector is set to 1. The selector
index portion of the segment selector references a specific entry in the LDT (see Figure 4-6 on
page 72). Unlike the GDT, however, a selector index of 0 references the first entry in the LDT (when
TI=1, the selector is not a null selector).

LDTs are described by system-segment descriptor entries located in the GDT, and a GDT can contain
multiple LDT descriptors. The LDT system-segment descriptor defines the location, size, and
privilege rights for the LDT. Figure 4-9 on page 74 shows the relationship between the LDT and GDT
data structures.

513-266.eps

16-Bit Descriptor-Table Limit

64-Bit Descriptor-Table Base Address

74 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

Loading a null selector into the LDTR is useful if software does not use an LDT. This causes a #GP if
an erroneous reference is made to the LDT.

Figure 4-9. Relationship between the LDT and GDT

4.6.4 Local Descriptor-Table Register

The local descriptor-table register (LDTR) points to the location of the LDT in memory, defines its
size, and specifies its attributes. The LDTR has two portions. A visible portion holds the LDT selector,
and a hidden portion holds the LDT descriptor. When the LDT selector is loaded into the LDTR, the
processor automatically loads the LDT descriptor from the GDT into the hidden portion of the LDTR.
The LDTR is loaded in one of two ways:

• Using the LLDT instruction (see “LLDT and LTR Instructions” on page 155).

• Performing a task switch (see “Switching Tasks” on page 321).

Figure 4-10 on page 75 shows the format of the LDTR in legacy mode.

513-208.eps

Global
Descriptor

Table

GDT Limit

GDT Base Address

LDT Selector

LDT Attributes

LDT Limit

LDT Base Address

Local
Descriptor

Table

Global Descriptor Table Register Local Descriptor Table Register

Segmented Virtual Memory 75

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 4-10. LDTR Format—Legacy Mode

Figure 4-11 shows the format of the LDTR in long mode (both compatibility mode and 64-bit mode).

Figure 4-11. LDTR Format—Long Mode

The LDTR contains four fields:

LDT Selector. 2 bytes. These bits are loaded explicitly from the TSS during a task switch, or by using
the LLDT instruction. The LDT selector must point to an LDT system-segment descriptor entry in the
GDT. If it does not, a general-protection exception (#GP) occurs.

The following three fields are loaded automatically from the LDT descriptor in the GDT as a result of
loading the LDT selector. The register fields are shown as shaded boxes in Figure 4-10 and
Figure 4-11.

Base Address. The base-address field holds the starting byte address of the LDT in virtual-memory
space. Like the GDT, the LDT can be located anywhere in system memory, but software should align
the LDT on a doubleword boundary to avoid performance penalties associated with accessing
unaligned data.

Hidden From Software 513-221.eps

32-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

Descriptor Attributes

Selector

Hidden From Software 513-267.eps

64-Bit Descriptor-Table Base Address

32-Bit Descriptor-Table Limit

Descriptor Attributes

Selector

76 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

The AMD64 architecture expands the base-address field of the LDTR to 64 bits so that system
software running in long mode can locate an LDT anywhere in the 64-bit virtual-address space. The
processor ignores the high-order 32 base-address bits when running in legacy mode. Because the
LDTR is loaded from the GDT, the system-segment descriptor format (LDTs are system segments) has
been expanded by the AMD64 architecture in support of 64-bit mode. See “Long Mode Descriptor
Summary” on page 92 for more information on this expanded format. The high-order base-address bits
are only loaded from 64-bit mode using the LLDT instruction (see “LLDT and LTR Instructions” on
page 155 for more information on this instruction).

Limit. This field defines the limit, or size, of the LDT in bytes. The LDT limit as stored in the LDTR
is 32 bits. When the LDT limit is loaded from the GDT descriptor entry, the 20-bit limit field in the
descriptor is expanded to 32 bits and scaled based on the value of the descriptor granularity (G) bit. For
details on the limit biasing and granularity, see “Granularity (G) Bit” on page 79.

If an attempt is made to access a descriptor beyond the LDT limit, a general-protection exception
(#GP) occurs.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the LDTR limit-field size is unchanged from the legacy size. The processor does
check the LDT limit in long mode during LDT accesses.

Attributes. This field holds the descriptor attributes, such as privilege rights, segment presence and
segment granularity.

4.6.5 Interrupt Descriptor Table

The final type of descriptor table is the interrupt descriptor table (IDT). Multiple IDTs can be
maintained by system software. System software selects a specific IDT by loading the interrupt
descriptor table register (IDTR) with a pointer to the IDT. As with the GDT and LDT, system software
can store the IDT anywhere in memory and should protect the segment containing the IDT from non-
privileged software.

The IDT can contain only the following types of gate descriptors:

• Interrupt gates

• Trap gates

• Task gates.

The use of gate descriptors by the interrupt mechanism is described in Chapter 8, “Exceptions and
Interrupts.” A general-protection exception (#GP) occurs if the IDT descriptor referenced by an
interrupt or exception is not one of the types listed above.

IDT entries are selected using the interrupt-vector number rather than a selector value. The interrupt-
vector number is scaled by the interrupt-descriptor entry size to form an offset into the IDT. The
interrupt-descriptor entry size depends on the processor operating mode as follows:

• In long mode, interrupt descriptor-table entries are 16 bytes.

Segmented Virtual Memory 77

24593—Rev. 3.17—June 2010 AMD64 Technology

• In legacy mode, interrupt descriptor-table entries are eight bytes.

Figure 4-12 shows how the interrupt-vector number indexes the IDT.

Figure 4-12. Indexing an IDT

4.6.6 Interrupt Descriptor-Table Register

The interrupt descriptor-table register (IDTR) points to the IDT in memory and defines its size. This
register is loaded from memory using the LIDT instruction (see “LGDT and LIDT Instructions” on
page 155). The format of the IDTR is identical to that of the GDTR in all modes. Figure 4-7 on
page 72 shows the format of the IDTR in legacy mode. Figure 4-8 on page 73 shows the format of the
IDTR in long mode.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the IDTR limit-field size is unchanged from the legacy size. The processor does
check the IDT limit in long mode during IDT accesses.

4.7 Legacy Segment Descriptors

4.7.1 Descriptor Format

Segment descriptors define, protect, and isolate segments from each other. There are two basic types of
descriptors, each of which are used to describe different segment (or gate) types:

• User Segments—These include code segments and data segments. Stack segments are a type of
data segment.

513-207.eps

IDT Base Address IDT Limit

Interrupt
Descriptor Table

*

Interrupt Vector

Descriptor Entry
Size

+

+

Interrupt Descriptor Table Register

78 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

• System Segments—System segments consist of LDT segments and task-state segments (TSS).
Gate descriptors are another type of system-segment descriptor. Rather than describing segments,
gate descriptors point to program entry points.

Figure 4-13 shows the generic format for user-segment and system-segment descriptors. User and
system segments are differentiated using the S bit. S=1 indicates a user segment, and S=0 indicates a
system segment. Gray shading indicates the field or bit is reserved. The format for a gate descriptor
differs from the generic segment descriptor, and is described separately in “Gate Descriptors” on
page 84.

Figure 4-13. Generic Segment Descriptor—Legacy Mode

Figure 4-13 shows the fields in a generic, legacy-mode, 8-byte segment descriptor. In this figure, +0
indicates the address of the descriptor’s first byte, and +4 indicates the address of the descriptor’s fifth
byte. The fields are defined as follows, from least-significant to most-significant bit positions:

Segment Limit. The 20-bit segment limit is formed by concatenating bits 19–16 of byte +4 with bits
15–0 of byte +0. The segment limit defines the segment size, in bytes. The granularity (G) bit controls
how the segment-limit field is scaled (see “Granularity (G) Bit” on page 79). For data segments, the
expand-down (E) bit determines whether the segment limit defines the lower or upper segment-
boundary (see “Expand-Down (E) Bit” on page 82).

If software references a segment descriptor with an address beyond the segment limit, a general-
protection exception (#GP) occurs. The #GP occurs if any part of the memory reference falls outside
the segment limit. For example, a doubleword (4-byte) address reference causes a #GP if one or more
bytes are located beyond the segment limit.

Base Address. The 32-bit base address is formed by concatenating bits 31–24 of byte +4 with bits
7–0 of byte +4, and with bits 15–0 of byte +0. The segment-base address field locates the start of a
segment in virtual-address space.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0

Base Address 31–24 G
D
/
B

A
V
L

Segment Limit
19–16

P DPL S Type Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

Segmented Virtual Memory 79

24593—Rev. 3.17—June 2010 AMD64 Technology

S Bit and Type Field. Bit 12 of byte +4, and bits 11–8 of byte +4. The S and Type fields, together,
specify the descriptor type and its access characteristics. Table 4-2 summarizes the descriptor types by
S-field encoding and gives a cross reference to descriptions of the Type-field encodings.

Descriptor Privilege-Level (DPL) Field. Bits 14–13 of byte +4. The DPL field indicates the
descriptor-privilege level of the segment. DPL can be set to any value from 0 to 3, with 0 specifying the
most privilege and 3 the least privilege. See “Data-Access Privilege Checks” on page 95 and “Control-
Transfer Privilege Checks” on page 98 for more information on how the DPL is used during segment
privilege-checks.

Present (P) Bit. Bit 15 of byte +4. The segment-present bit indicates that the segment referenced by
the descriptor is loaded in memory. If a reference is made to a descriptor entry when P=0, a segment-
not-present exception (#NP) occurs. This bit is set and cleared by system software and is never altered
by the processor.

Available To Software (AVL) Bit. Bit 20 of byte +4. This field is available to software, which can
write any value to it. The processor does not set or clear this field.

Default Operand Size (D/B) Bit. Bit 22 of byte +4. The default operand-size bit is found in code-
segment and data-segment descriptors but not in system-segment descriptors. Setting this bit to 1
indicates a 32-bit default operand size, and clearing it to 0 indicates a 16-bit default size. The effect this
bit has on a segment depends on the segment-descriptor type. See “Code-Segment Default-Operand
Size (D) Bit” on page 81 for a description of the D bit in code-segment descriptors. “Data-Segment
Default Operand Size (D/B) Bit” on page 83 describes the D bit in data-segment descriptors, including
stack segments, where the bit is referred to as the “B” bit.

Granularity (G) Bit. Bit 23 of byte +4. The granularity bit specifies how the segment-limit field is
scaled. Clearing the G bit to 0 indicates that the limit field is not scaled. In this case, the limit equals the
number of bytes available in the segment. Setting the G bit to 1 indicates that the limit field is scaled by
4 Kbytes (4096 bytes). Here, the limit field equals the number of 4-Kbyte blocks available in the
segment.

Setting a limit of 0 indicates a 1-byte segment limit when G = 0. Setting the same limit of 0 when G =
1 indicates a segment limit of 4095.

Table 4-2. Descriptor Types

S Field
Descriptor

Type
Type-Field Encoding

0 (System)

LDT

See Table 4-5 on page 83TSS

Gate

1 (User)
Code See Table 4-3 on page 81

Data See Table 4-4 on page 82

80 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

Reserved Bits. Generally, software should clear all reserved bits to 0, so they can be defined in future
revisions to the AMD64 architecture.

4.7.2 Code-Segment Descriptors

Figure 4-14 shows the code-segment descriptor format (gray shading indicates the bit is reserved). All
software tasks require that a segment selector, referencing a valid code-segment descriptor, is loaded
into the CS register. Code segments establish the processor operating mode and execution privilege-
level. The segments generally contain only instructions and are execute-only, or execute and read-only.
Software cannot write into a segment whose selector references a code-segment descriptor.

Figure 4-14. Code-Segment Descriptor—Legacy Mode

Code-segment descriptors have the S bit set to 1, identifying the segments as user segments. Type-field
bit 11 differentiates code-segment descriptors (bit 11 set to 1) from data-segment descriptors (bit 11
cleared to 0). The remaining type-field bits (10–8) define the access characteristics for the code-
segment, as follows:

Conforming (C) Bit. Bit 10 of byte +4. Setting this bit to 1 identifies the code segment as conforming.
When control is transferred to a higher-privilege conforming code-segment (C=1) from a lower-
privilege code segment, the processor CPL does not change. Transfers to non-conforming code-
segments (C=0) with a higher privilege-level than the CPL can occur only through gate descriptors.
See “Control-Transfer Privilege Checks” on page 98 for more information on conforming and non-
conforming code-segments.

Readable (R) Bit. Bit 9 of byte +4. Setting this bit to 1 indicates the code segment is both executable
and readable as data. When this bit is cleared to 0, the code segment is executable, but attempts to read
data from the code segment cause a general-protection exception (#GP) to occur.

Accessed (A) Bit. Bit 8 of byte +4. The accessed bit is set to 1 by the processor when the descriptor is
copied from the GDT or LDT into the CS register. This bit is only cleared by software.

Table 4-3 on page 81 summarizes the code-segment type-field encodings.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address 31–24 G D
A
V
L

Segment
Limit 19–16

P DPL 1 1 C R A Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

Segmented Virtual Memory 81

24593—Rev. 3.17—June 2010 AMD64 Technology

Code-Segment Default-Operand Size (D) Bit. Bit 22 of byte +4. In code-segment descriptors, the
D bit selects the default operand size and address sizes. In legacy mode, when D=0 the default operand
size and address size is 16 bits and when D=1 the default operand size and address size is 32 bits.
Instruction prefixes can be used to override the operand size or address size, or both.

4.7.3 Data-Segment Descriptors

Figure 4-15 shows the data-segment descriptor format. Data segments contain non-executable
information and can be accessed as read-only or read/write. They are referenced using the DS, ES, FS,
GS, or SS data-segment registers. The DS data-segment register holds the segment selector for the
default data segment. The ES, FS and GS data-segment registers hold segment selectors for additional
data segments usable by the current software task.

The stack segment is a special form of data-segment register. It is referenced using the SS segment
register and must be read/write. When loading the SS register, the processor requires that the selector
reference a valid, writable data-segment descriptor.

Figure 4-15. Data-Segment Descriptor—Legacy Mode

Table 4-3. Code-Segment Descriptor Types

Hex
Value

Type Field

DescriptionBit 11
(Code/Data)

Bit 10 Bit 9 Bit 8

Conforming
(C)

Readable
(R)

Accessed
(A)

8

1

0 0 0 Execute-Only

9 0 0 1 Execute-Only — Accessed

A 0 1 0 Execute/Readable

B 0 1 1 Execute/Readable — Accessed

C 1 0 0 Conforming, Execute-Only

D 1 0 1 Conforming, Execute-Only — Accessed

E 1 1 0 Conforming, Execute/Readable

F 1 1 1
Conforming, Execute/Readable —
Accessed

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address 31–24 G
D
/
B

A
V
L

Segment
Limit 19–16

P DPL 1 0 E W A Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

82 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

Data-segment descriptors have the S bit set to 1, identifying them as user segments. Type-field bit 11
differentiates data-segment descriptors (bit 11 cleared to 0) from code-segment descriptors (bit 11 set
to 1). The remaining type-field bits (10–8) define the data-segment access characteristics, as follows:

Expand-Down (E) Bit. Bit 10 of byte +4. Setting this bit to 1 identifies the data segment as expand-
down. In expand-down segments, the segment limit defines the lower segment boundary while the
base is the upper boundary. Valid segment offsets in expand-down segments lie in the byte range
limit+1 to FFFFh or FFFF_FFFFh, depending on the value of the data segment default operand size
(D/B) bit.

Expand-down segments are useful for stacks, which grow in the downward direction as elements are
pushed onto the stack. The stack pointer, ESP, is decremented by an amount equal to the operand size
as a result of executing a PUSH instruction.

Clearing the E bit to 0 identifies the data segment as expand-up. Valid segment offsets in expand-up
segments lie in the byte range 0 to segment limit.

Writable (W) Bit. Bit 9 of byte +4. Setting this bit to 1 identifies the data segment as read/write. When
this bit is cleared to 0, the segment is read-only. A general-protection exception (#GP) occurs if
software attempts to write into a data segment when W=0.

Accessed (A) Bit. Bit 8 of byte +4. The accessed bit is set to 1 by the processor when the descriptor is
copied from the GDT or LDT into one of the data-segment registers or the stack-segment register. This
bit is only cleared by software.

Table 4-4 summarizes the data-segment type-field encodings.

Table 4-4. Data-Segment Descriptor Types

Hex
Value

Type Field

DescriptionBit 11
(Code/Data)

Bit 10 Bit 9 Bit 8

Expand-
Down

(E)

Writable
(W)

Accessed
(A)

0

0

0 0 0 Read-Only

1 0 0 1 Read-Only — Accessed

2 0 1 0 Read/Write

3 0 1 1 Read/Write — Accessed

4 1 0 0 Expand-down, Read-Only

5 1 0 1 Expand-down, Read-Only — Accessed

6 1 1 0 Expand-down, Read/Write

7 1 1 1 Expand-down, Read/Write — Accessed

Segmented Virtual Memory 83

24593—Rev. 3.17—June 2010 AMD64 Technology

Data-Segment Default Operand Size (D/B) Bit. Bit 22 of byte +4. For expand-down data segments
(E=1), setting D=1 sets the upper bound of the segment at 0_FFFF_FFFFh. Clearing D=0 sets the
upper bound of the segment at 0_FFFFh.

In the case where a data segment is referenced by the stack selector (SS), the D bit is referred to as the
B bit. For stack segments, the B bit sets the default stack size. Setting B=1 establishes a 32-bit stack
referenced by the 32-bit ESP register. Clearing B=0 establishes a 16-bit stack referenced by the 16-bit
SP register.

4.7.4 System Descriptors

There are two general types of system descriptors: system-segment descriptors and gate descriptors.
System-segment descriptors are used to describe the LDT and TSS segments. Gate descriptors do not
describe segments, but instead hold pointers to code-segment descriptors. Gate descriptors are used for
protected-mode control transfers between less-privileged and more-privileged software.

System-segment descriptors have the S bit cleared to 0. The type field is used to differentiate the
various LDT, TSS, and gate descriptors from one another. Table 4-5 summarizes the system-segment
type-field encodings.

Table 4-5. System-Segment Descriptor Types (S=0)—Legacy Mode

Hex
Value

Type Field
(Bits 11–8)

Description

0 0000 Reserved (Illegal)

1 0001 Available 16-bit TSS

2 0010 LDT

3 0011 Busy 16-bit TSS

4 0100 16-bit Call Gate

5 0101 Task Gate

6 0110 16-bit Interrupt Gate

7 0111 16-bit Trap Gate

8 1000 Reserved (Illegal)

9 1001 Available 32-bit TSS

A 1010 Reserved (Illegal)

B 1011 Busy 32-bit TSS

C 1100 32-bit Call Gate

D 1101 Reserved (Illegal)

E 1110 32-bit Interrupt Gate

F 1111 32-bit Trap Gate

84 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 4-16 shows the legacy-mode system-segment descriptor format used for referencing LDT and
TSS segments (gray shading indicates the bit is reserved). This format is also used in compatibility
mode. The system-segments are used as follows:

• The LDT typically holds segment descriptors belonging to a single task (see “Local Descriptor
Table” on page 73).

• The TSS is a data structure for holding processor-state information. Processor state is saved in a
TSS when a task is suspended, and state is restored from the TSS when a task is restarted. System
software must create at least one TSS referenced by the task register, TR. See “Legacy Task-State
Segment” on page 313 for more information on the TSS.

Figure 4-16. LDT and TSS Descriptor—Legacy/Compatibility Modes

4.7.5 Gate Descriptors

Gate descriptors hold pointers to code segments and are used to control access between code segments
with different privilege levels. There are four types of gate descriptors:

• Call Gates—These gates (Figure 4-17 on page 85) are located in the GDT or LDT and are used to
control access between code segments in the same task or in different tasks. See “Control Transfers
Through Call Gates” on page 102 for information on how call gates are used to control access
between code segments operating in the same task. The format of a call-gate descriptor is shown in
Figure 4-17 on page 85.

• Interrupt Gates and Trap Gates—These gates (Figure 4-18 on page 85) are located in the IDT and
are used to control access to interrupt-service routines. “Legacy Protected-Mode Interrupt Control
Transfers” on page 231 contains information on using these gates for interrupt-control transfers.
The format of interrupt-gate and trap-gate descriptors is shown in Figure 4-17 on page 85.

• Task Gates—These gates (Figure 4-19 on page 85) are used to control access between different
tasks. They are also used to transfer control to interrupt-service routines if those routines are
themselves a separate task. See “Task-Management Resources” on page 308 for more information
on task gates and their use.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0

Base Address 31–24 G
I
G
N

A
V
L

Segment
Limit 19–16

P DPL 0 Type Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

Segmented Virtual Memory 85

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 4-17. Call-Gate Descriptor—Legacy Mode

Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode

Figure 4-19. Task-Gate Descriptor—Legacy Mode

There are several differences between the gate-descriptor format and the system-segment descriptor
format. These differences are described as follows, from least-significant to most-significant bit
positions:

Target Code-Segment Offset. The 32-bit segment offset is formed by concatenating bits 31–16 of
byte +4 with bits 15–0 of byte +0. The segment-offset field specifies the target-procedure entry point
(offset) into the segment. This field is loaded into the EIP register as a result of a control transfer using
the gate descriptor.

Target Code-Segment Selector. Bits 31–16 of byte +0. The segment-selector field identifies the
target-procedure segment descriptor, located in either the GDT or LDT. The segment selector is loaded
into the CS segment register as a result of a control transfer using the gate descriptor.

TSS Selector. Bits 31–16 of byte +0 (task gates only). This field identifies the target-task TSS
descriptor, located in any of the three descriptor tables (GDT, LDT, and IDT).

31 16 15 14 13 12 11 8 7 6 5 4 0

Target Code-Segment Offset 31–16 P DPL 0 Type
Reserved

IGN
Parameter Count +4

Target Code-Segment Selector Target Code-Segment Offset 15–0 +0

31 16 15 14 13 12 11 8 7 0

Target Code-Segment Offset 31–16 P DPL 0 Type Reserved, IGN +4

Target Code-Segment Selector Target Code-Segment Offset 15–0 +0

31 16 15 14 13 12 11 8 7 0

Reserved, IGN P DPL 0 Type Reserved, IGN +4

TSS Selector Reserved, IGN +0

86 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

Parameter Count (Call Gates Only). Bits 4–0 of byte +4. Legacy-mode call-gate descriptors
contain a 5-bit parameter-count field. This field specifies the number of parameters to be copied from
the currently-executing program stack to the target program stack during an automatic stack switch.
Automatic stack switches are performed by the processor during a control transfer through a call gate
to a greater privilege-level. The parameter size depends on the call-gate size as specified in the type
field. 32-bit call gates copy 4-byte parameters, and 16-bit call gates copy 2-byte parameters. See
“Stack Switching” on page 106 for more information on call-gate parameter copying.

4.8 Long-Mode Segment Descriptors

The interpretation of descriptor fields is changed in long mode, and in some cases the format is
expanded. The changes depend on the operating mode (compatibility mode or 64-bit mode) and on the
descriptor type. The following sections describe the changes.

4.8.1 Code-Segment Descriptors

Code segments continue to exist in long mode. Code segments and their associated descriptors and
selectors are needed to establish the processor operating mode as well as execution privilege-level. The
new L attribute specifies whether the processor is running in compatibility mode or 64-bit mode (see
“Long (L) Attribute Bit” on page 87). Figure 4-20 shows the long-mode code-segment descriptor
format. In compatibility mode, the code-segment descriptor is interpreted and behaves just as it does in
legacy mode as described in “Code-Segment Descriptors” on page 80.

In Figure 4-20, gray shading indicates the code-segment descriptor fields that are ignored in 64-bit
mode when the descriptor is used during a memory reference. However, the fields are loaded whenever
the segment register is loaded in 64-bit mode.

Figure 4-20. Code-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit mode, and code segments span
all of virtual memory. In this mode, code-segment base addresses are ignored. For the purpose of
virtual-address calculations, the base address is treated as if it has a value of zero.

Segment-limit checking is not performed, and both the segment-limit field and granularity (G) bit are
ignored. Instead, the virtual address is checked to see if it is in canonical-address form.

The readable (R) and accessed (A) attributes in the type field are also ignored.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address 31–24 G D L
A
V
L

Segment
Limit 19–16

P DPL 1 1 C R A Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

Segmented Virtual Memory 87

24593—Rev. 3.17—June 2010 AMD64 Technology

Long (L) Attribute Bit. Bit 21 of byte +4. Long mode introduces a new attribute, the long (L) bit, in
code-segment descriptors. This bit specifies that the processor is running in 64-bit mode (L=1) or
compatibility mode (L=0). When the processor is running in legacy mode, this bit is reserved.

Compatibility mode, maintains binary compatibility with legacy 16-bit and 32-bit applications.
Compatibility mode is selected on a code-segment basis, and it allows legacy applications to coexist
under the same 64-bit system software along with 64-bit applications running in 64-bit mode. System
software running in long mode can execute existing 16-bit and 32-bit applications by clearing the L bit
of the code-segment descriptor to 0.

When L=0, the legacy meaning of the code-segment D bit (see “Code-Segment Default-Operand Size
(D) Bit” on page 81)—and the address-size and operand-size prefixes—are observed. Segmentation is
enabled when L=0. From an application viewpoint, the processor is in a legacy 16-bit or 32-bit
operating environment (depending on the D bit), even though long mode is activated.

If the processor is running in 64-bit mode (L=1), the only valid setting of the D bit is 0. This setting
produces a default operand size of 32 bits and a default address size of 64 bits. The combination L=1
and D=1 is reserved for future use.

“Instruction Prefixes” in Volume 3 describes the effect of the code-segment L and D bits on default
operand and address sizes when long mode is activated. These default sizes can be overridden with
operand size, address size, and REX prefixes.

4.8.2 Data-Segment Descriptors

Data segments continue to exist in long mode. Figure 4-21 shows the long-mode data-segment
descriptor format. In compatibility mode, data-segment descriptors are interpreted and behave just as
they do in legacy mode.

In Figure 4-21, gray shading indicates the fields that are ignored in 64-bit mode when the descriptor is
used during a memory reference. However, the fields are loaded whenever the segment register is
loaded in 64-bit mode.

Figure 4-21. Data-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit mode. The interpretation of the
segment-base address depends on the segment register used:

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address 31–24 G
D
/
B

A
V
L

Segment
Limit 19–16

P DPL 1 0 E W A Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

88 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

• In data-segment descriptors referenced by the DS, ES and SS segment registers, the base-address
field is ignored. For the purpose of virtual-address calculations, the base address is treated as if it
has a value of zero.

• Data segments referenced by the FS and GS segment registers receive special treatment in 64-bit
mode. For these segments, the base address field is not ignored, and a non-zero value can be used
in virtual-address calculations. A 64-bit segment-base address can be specified using model-
specific registers. See “FS and GS Registers in 64-Bit Mode” on page 70 for more information.

Segment-limit checking is not performed on any data segments in 64-bit mode, and both the segment-
limit field and granularity (G) bit are ignored. The D/B bit is unused in 64-bit mode.

The expand-down (E), writable (W), and accessed (A) type-field attributes are ignored.

A data-segment-descriptor DPL field is ignored in 64-bit mode, and segment-privilege checks are not
performed on data segments. System software can use the page-protection mechanisms to isolate and
protect data from unauthorized access.

4.8.3 System Descriptors

In long mode, the allowable system-descriptor types encoded by the type field are changed. Some
descriptor types are modified, and others are illegal. The changes are summarized in Table 4-6. An
attempt to use an illegal descriptor type causes a general-protection exception (#GP).

Table 4-6. System-Segment Descriptor Types—Long Mode

Hex
Value

Type Field
Description

Bit 11 Bit 10 Bit 9 Bit 8

0 0 0 0 0
Reserved (Illegal)

1 0 0 0 1

2 0 0 1 0 64-bit LDT1

3 0 0 1 1

Reserved (Illegal)

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1 Available 64-bit TSS

A 1 0 1 0 Reserved (Illegal)

B 1 0 1 1 Busy 64-bit TSS

C 1 1 0 0 64-bit Call Gate

Note:
1. In 64-bit mode only. In compatibility mode, the type specifies a 32-bit LDT.

Segmented Virtual Memory 89

24593—Rev. 3.17—June 2010 AMD64 Technology

In long mode, the modified system-segment descriptor types are:

• The 32-bit LDT (02h), which is redefined as the 64-bit LDT.

• The available 32-bit TSS (09h), which is redefined as the available 64-bit TSS.

• The busy 32-bit TSS (0Bh), which is redefined as the busy 64-bit TSS.

In 64-bit mode, the LDT and TSS system-segment descriptors are expanded by 64 bits, as shown in
Figure 4-22. In this figure, gray shading indicates the fields that are ignored in 64-bit mode. Expanding
the descriptors allows them to hold 64-bit base addresses, so their segments can be located anywhere in
the virtual-address space. The expanded descriptor can be loaded into the corresponding descriptor-
table register (LDTR or TR) only from 64-bit mode. In compatibility mode, the legacy system-
segment descriptor format, shown in Figure 4-16 on page 84, is used. See “LLDT and LTR
Instructions” on page 155 for more information.

Figure 4-22. System-Segment Descriptor—64-Bit Mode

The 64-bit system-segment base address must be in canonical form. Otherwise, a general-protection
exception occurs with a selector error-code, #GP(selector), when the system segment is loaded.
System-segment limit values are checked by the processor in both 64-bit and compatibility modes,
under the control of the granularity (G) bit.

Figure 4-22 shows that bits 12–8 of dword +12 must be cleared to 0. These bits correspond to the S and
Type fields in a legacy descriptor. Clearing these bits to 0 corresponds to an illegal type in legacy mode

D 1 1 0 1 Reserved (Illegal)

E 1 1 1 0 64-bit Interrupt Gate

F 1 1 1 1 64-bit Trap Gate

31 23 20 19 16 15 14 13 12 11 10 9 8 7 0

Reserved, IGN 0 0 0 0 0 Reserved, IGN +12

Base Address 63–32 +8

Base Address 31–24 G
A
V
L

Segment
Limit 19–16

P DPL 0 Type Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

Table 4-6. System-Segment Descriptor Types—Long Mode (continued)

Hex
Value

Type Field
Description

Bit 11 Bit 10 Bit 9 Bit 8

Note:
1. In 64-bit mode only. In compatibility mode, the type specifies a 32-bit LDT.

90 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

and causes a #GP if an attempt is made to access the upper half of a 64-bit mode system-segment
descriptor as a legacy descriptor or as the lower half of a 64-bit mode system-segment descriptor.

4.8.4 Gate Descriptors

As shown in Table 4-6 on page 88, the allowable gate-descriptor types are changed in long mode.
Some gate-descriptor types are modified and others are illegal. The modified gate-descriptor types in
long mode are:

• The 32-bit call gate (0Ch), which is redefined as the 64-bit call gate.

• The 32-bit interrupt gate (0Eh), which is redefined as the 64-bit interrupt gate.

• The 32-bit trap gate (0Fh), which is redefined as the 64-bit trap gate.

In long mode, several gate-descriptor types are illegal. An attempt to use these gates causes a general-
protection exception (#GP) to occur. The illegal gate types are:

• The 16-bit call gate (04h).

• The task gate (05h).

• The 16-bit interrupt gate (06h).

• The 16-bit trap gate (07h).

In long mode, gate descriptors are expanded by 64 bits, allowing them to hold 64-bit offsets. The 64-bit
call-gate descriptor is shown in Figure 4-23 and the 64-bit interrupt gate and trap gate are shown in
Figure 4-24 on page 91. In these figures, gray shading indicates the fields that are ignored in long
mode. The interrupt and trap gates contain an additional field, the IST, that is not present in the call
gate—see “IST Field (Interrupt and Trap Gates)” on page 91.

Figure 4-23. Call-Gate Descriptor—Long Mode

31 16 15 14 13 12 11 10 9 8 7 0

Reserved, IGN 0 0 0 0 0 Reserved, IGN +12

Target Offset 63–32 +8

Target Offset 31–16 P DPL 0 Type Reserved, IGN +4

Target Selector Target Offset 15–0 +0

Segmented Virtual Memory 91

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode

The target code segment referenced by a long-mode gate descriptor must be a 64-bit code segment
(CS.L=1, CS.D=0). If the target is not a 64-bit code segment, a general-protection exception,
#GP(error), occurs. The error code reported depends on the gate type:

• Call gates report the target code-segment selector as the error code.

• Interrupt and trap gates report the interrupt-vector number as the error code.

A general-protection exception, #GP(0), occurs if software attempts to reference a long-mode gate
descriptor with a target-segment offset that is not in canonical form.

It is possible for software to store legacy and long mode gate descriptors in the same descriptor table.
Figure 4-23 on page 90 shows that bits 12–8 of byte +12 in a long-mode call gate must be cleared to 0.
These bits correspond to the S and Type fields in a legacy call gate. Clearing these bits to 0 corresponds
to an illegal type in legacy mode and causes a #GP if an attempt is made to access the upper half of a
64-bit mode call-gate descriptor as a legacy call-gate descriptor.

It is not necessary to clear these same bits in a long-mode interrupt gate or trap gate. In long mode, the
interrupt-descriptor table (IDT) must contain 64-bit interrupt gates or trap gates. The processor
automatically indexes the IDT by scaling the interrupt vector by 16. This makes it impossible to access
the upper half of a long-mode interrupt gate, or trap gate, as a legacy gate when the processor is
running in long mode.

IST Field (Interrupt and Trap Gates). Bits 2–0 of byte +4. Long-mode interrupt gate and trap gate
descriptors contain a new, 3-bit interrupt-stack-table (IST) field not present in legacy gate descriptors.
The IST field is used as an index into the IST portion of a long-mode TSS. If the IST field is not 0, the
index references an IST pointer in the TSS, which the processor loads into the RSP register when an
interrupt occurs. If the IST index is 0, the processor uses the legacy stack-switching mechanism (with
some modifications) when an interrupt occurs. See “Interrupt-Stack Table” on page 245 for more
information.

31 16 15 14 13 12 11 8 7 3 2 0

Reserved, IGN +12

Target Offset 63–32 +8

Target Offset 31–16 P DPL 0 Type Reserved, IGN IST +4

Target Selector Target Offset 15–0 +0

92 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

Count Field (Call Gates). The count field found in legacy call-gate descriptors is not supported in
long-mode call gates. In long mode, the field is reserved and should be cleared to zero.

4.8.5 Long Mode Descriptor Summary

System descriptors and gate descriptors are expanded by 64 bits to handle 64-bit base addresses in long
mode or 64-bit mode. The mode in which the expansion occurs depends on the purpose served by the
descriptor, as follows:

• Expansion Only In 64-Bit Mode—The system descriptors and pseudo-descriptors that are loaded
into the GDTR, IDTR, LDTR, and TR registers are expanded only in 64-bit mode. They are not
expanded in compatibility mode.

• Expansion In Long Mode—Gate descriptors (call gates, interrupt gates, and trap gates) are
expanded in long mode (both 64-bit mode and compatibility mode). Task gates and 16-bit gate
descriptors are illegal in long mode.

The AMD64 architecture redefines several of the descriptor-entry fields in support of long mode. The
specific change depends on whether the processor is in 64-bit mode or compatibility mode. Table 4-7
summarizes the changes in the descriptor entry field when the descriptor entry is loaded into a segment
register (as opposed to when the segment register is subsequently used to access memory).

Table 4-7. Descriptor-Entry Field Changes in Long Mode

Descriptor
Field

Descriptor
Type

Long Mode

Compatibility Mode 64-Bit Mode

Limit

Code

Same as legacy x86 Same as legacy x86Data

System

Offset Gate Expanded to 64 bits Expanded to 64 bits

Base

Code

Same as legacy x86
Same as legacy x86

Data

System

Selector Gate Same as legacy x86

IST1 Gate Interrupt and trap gates only. (New for long mode.)

S and Type

Code
Same as legacy x86 Same as legacy x86

Data

System
Types 02h, 09h, and 0Bh redefined
Types 01h and 03h are illegal

Gate
Types 0Ch, 0Eh, and 0Fh redefined
Types 04h–07h are illegal

Note:
1. Not available (reserved) in legacy mode.

Segmented Virtual Memory 93

24593—Rev. 3.17—June 2010 AMD64 Technology

4.9 Segment-Protection Overview

The AMD64 architecture is designed to fully support the legacy segment-protection mechanism. The
segment-protection mechanism provides system software with the ability to restrict program access
into other software routines and data.

Segment-level protection remains enabled in compatibility mode. 64-bit mode eliminates most type
checking, and limit checking is not performed, except on accesses to system-descriptor tables.

The preferred method of implementing memory protection in a long-mode operating system is to rely
on the page-protection mechanism as described in “Page-Protection Checks” on page 143. System
software still needs to create basic segment-protection data structures for 64-bit mode. These
structures are simplified, however, by the use of the flat-memory model in 64-bit mode, and the limited
segmentation checks performed when executing in 64-bit mode.

DPL

Code

Same as legacy x86 Same as legacy x86
Data

System

Gate

Present

Code

Same as legacy x86 Same as legacy x86
Data

System

Gate

Default Size
Code

Same as legacy x86

D=0 Indicates 64-bit address, 32-bit data
D=1 Reserved

Data Same as legacy x86

Long1 Code Specifies compatibility mode Specifies 64-bit mode

Granularity

Code

Same as legacy x86 Same as legacy x86Data

System

Available

Code

Same as legacy x86 Same as legacy x86Data

System

Table 4-7. Descriptor-Entry Field Changes in Long Mode (continued)

Descriptor
Field

Descriptor
Type

Long Mode

Compatibility Mode 64-Bit Mode

Note:
1. Not available (reserved) in legacy mode.

94 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

4.9.1 Privilege-Level Concept

Segment protection is used to isolate and protect programs and data from each other. The segment-
protection mechanism supports four privilege levels in protected mode. The privilege levels are
designated with a numerical value from 0 to 3, with 0 being the most privileged and 3 being the least
privileged. System software typically assigns the privilege levels in the following manner:

• Privilege-level 0 (most privilege)—This level is used by critical system-software components that
require direct access to, and control over, all processor and system resources. This can include
BIOS, memory-management functions, and interrupt handlers.

• Privilege-levels 1 and 2 (moderate privilege)—These levels are used by less-critical system-
software services that can access and control a limited scope of processor and system resources.
Software running at these privilege levels might include some device drivers and library routines.
These software routines can call more-privileged system-software services to perform functions
such as memory garbage-collection and file allocation.

• Privilege-level 3 (least privilege)—This level is used by application software. Software running at
privilege-level 3 is normally prevented from directly accessing most processor and system
resources. Instead, applications request access to the protected processor and system resources by
calling more-privileged service routines to perform the accesses.

Figure 4-25 shows the relationship of the four privilege levels to each other.

Figure 4-25. Privilege-Level Relationships

4.9.2 Privilege-Level Types

There are three types of privilege levels the processor uses to control access to segments. These are
CPL, DPL, and RPL.

Current Privilege-Level. The current privilege-level (CPL) is the privilege level at which the
processor is currently executing. The CPL is stored in an internal processor register that is invisible to

513-236.eps Application Programs

Memory Management
File Allocation
Interrupt Handling

Device-Drivers
Library Routines

Privilege
0

Privilege 1

Privilege 2

Privilege 3

Segmented Virtual Memory 95

24593—Rev. 3.17—June 2010 AMD64 Technology

software. Software changes the CPL by performing a control transfer to a different code segment with
a new privilege level.

Descriptor Privilege-Level. The descriptor privilege-level (DPL) is the privilege level that system
software assigns to individual segments. The DPL is used in privilege checks to determine whether
software can access the segment referenced by the descriptor. In the case of gate descriptors, the DPL
determines whether software can access the descriptor reference by the gate. The DPL is stored in the
segment (or gate) descriptor.

Requestor Privilege-Level. The requestor privilege-level (RPL) reflects the privilege level of the
program that created the selector. The RPL can be used to let a called program know the privilege level
of the program that initiated the call. The RPL is stored in the selector used to reference the segment
(or gate) descriptor.

The following sections describe how the CPL, DPL, and RPL are used by the processor in performing
privilege checks on data accesses and control transfers. Failure to pass a protection check generally
causes an exception to occur.

4.10 Data-Access Privilege Checks

4.10.1 Accessing Data Segments

Before loading a data-segment register (DS, ES, FS, or GS) with a segment selector, the processor
checks the privilege levels as follows to see if access is allowed:

1. The processor compares the CPL with the RPL in the data-segment selector and determines the
effective privilege level for the data access. The processor sets the effective privilege level to the
lowest privilege (numerically-higher value) indicated by the comparison.

2. The processor compares the effective privilege level with the DPL in the descriptor-table entry
referenced by the segment selector. If the effective privilege level is greater than or equal to
(numerically lower-than or equal-to) the DPL, then the processor loads the segment register with
the data-segment selector. The processor automatically loads the corresponding descriptor-table
entry into the hidden portion of the segment register.

If the effective privilege level is lower than (numerically greater-than) the DPL, a general-
protection exception (#GP) occurs and the segment register is not loaded.

Figure 4-26 on page 96 shows two examples of data-access privilege checks.

96 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 4-26. Data-Access Privilege-Check Examples

Example 1 in Figure 4-26 shows a failing data-access privilege check. The effective privilege level is 3
because CPL=3. This value is greater than the descriptor DPL, so access to the data segment is denied.

Example 2 in Figure 4-26 shows a passing data-access privilege check. Here, the effective privilege
level is 0 because both the CPL and RPL have values of 0. This value is less than the descriptor DPL,
so access to the data segment is allowed, and the data-segment register is successfully loaded.

4.10.2 Accessing Stack Segments

Before loading the stack segment register (SS) with a segment selector, the processor checks the
privilege levels as follows to see if access is allowed:

513-229.eps

DPL=2

Effective
Privilege

3

≤

Max

CPL=3

RPL=0 Access Denied Data
Segment

Descriptor

CS

Data
Selector

Example 1: Privilege Check Fails

DPL=2

Effective
Privilege

0

≤

Max

CPL=0

RPL=0 Access Allowed Data
Segment

CS

Descriptor

Example 2: Privilege Check Passes

Data
Selector

Segmented Virtual Memory 97

24593—Rev. 3.17—June 2010 AMD64 Technology

1. The processor checks that the CPL and the stack-selector RPL are equal. If they are not equal, a
general-protection exception (#GP) occurs and the SS register is not loaded.

2. The processor compares the CPL with the DPL in the descriptor-table entry referenced by the
segment selector. The two values must be equal. If they are not equal, a #GP occurs and the SS
register is not loaded.

Figure 4-27 shows two examples of stack-access privilege checks. In Example 1 the CPL, stack-
selector RPL, and stack segment-descriptor DPL are all equal, so access to the stack segment using the
SS register is allowed. In Example 2, the stack-selector RPL and stack segment-descriptor DPL are
both equal. However, the CPL is not equal to the stack segment-descriptor DPL, and access to the stack
segment through the SS register is denied.

Figure 4-27. Stack-Access Privilege-Check Examples

513-235.eps

DPL=3

=

CPL=3

RPL=3 Access Allowed Stack
Segment

Descriptor

CS

Stack
Selector

Example 1: Privilege Check Passes

DPL=3

=

CPL=2

RPL=3 Access Denied Stack
Segment

CS

Descriptor

Example 2: Privilege Check Fails

Stack
Selector

98 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

4.11 Control-Transfer Privilege Checks

Control transfers between code segments (also called far control transfers) cause the processor to
perform privilege checks to determine whether the source program is allowed to transfer control to the
target program. If the privilege checks pass, access to the target code-segment is granted. When access
is granted, the target code-segment selector is loaded into the CS register. The rIP register is updated
with the target CS offset taken from either the far-pointer operand or the gate descriptor. Privilege
checks are not performed during near control transfers because such transfers do not change
segments.

The following mechanisms can be used by software to perform far control transfers:

• System-software control transfers using the system-call and system-return instructions. See
“SYSCALL and SYSRET” on page 150 and “SYSENTER and SYSEXIT (Legacy Mode Only)”
on page 152 for more information on these instructions. SYSCALL and SYSRET are the preferred
method of performing control transfers in long mode. SYSENTER and SYSEXIT are not supported
in long mode.

• Direct control transfers using CALL and JMP instructions. These are discussed in the next section,
“Direct Control Transfers.”

• Call-gate control transfers using CALL and JMP instructions. These are discussed in “Control
Transfers Through Call Gates” on page 102.

• Return control transfers using the RET instruction. These are discussed in “Return Control
Transfers” on page 109.

• Interrupts and exceptions, including the INTn and IRET instructions. These are discussed in
Chapter 8, “Exceptions and Interrupts.”

• Task switches initiated by CALL and JMP instructions. Task switches are discussed in Chapter 12,
“Task Management.” The hardware task-switch mechanism is not supported in long mode.

4.11.1 Direct Control Transfers

A direct control transfer occurs when software executes a far-CALL or a far-JMP instruction without
using a call gate. The privilege checks and type of access allowed as a result of a direct control transfer
depends on whether the target code segment is conforming or nonconforming. The code-segment-
descriptor conforming (C) bit indicates whether or not the target code-segment is conforming (see
“Conforming (C) Bit” on page 80 for more information on the conforming bit).

Privilege levels are not changed as a result of a direct control transfer. Program stacks are not
automatically switched by the processor as they are with privilege-changing control transfers through
call gates (see “Stack Switching” on page 106 for more information on automatic stack switching
during privilege-changing control transfers).

Nonconforming Code Segments. Sof tware can pe r form a d i rec t con t ro l t r ans fe r t o a
nonconforming code segment only if the target code-segment descriptor DPL and the CPL are equal
and the RPL is less than or equal to the CPL. Software must use a call gate to transfer control to a

Segmented Virtual Memory 99

24593—Rev. 3.17—June 2010 AMD64 Technology

more-privileged, nonconforming code segment (see “Control Transfers Through Call Gates” on
page 102 for more information).

In far calls and jumps, the far pointer (CS:rIP) references the target code-segment descriptor. Before
loading the CS register with a nonconforming code-segment selector, the processor checks as follows
to see if access is allowed:

1. DPL = CPL Check—The processor compares the target code-segment descriptor DPL with the
currently executing program CPL. If they are equal, the processor performs the next check. If they
are not equal, a general-protection exception (#GP) occurs.

2. RPL ≤ CPL Check—The processor compares the target code-segment selector RPL with the
currently executing program CPL. If the RPL is less than or equal to the CPL, access is allowed. If
the RPL is greater than the CPL, a #GP exception occurs.

If access is allowed, the processor loads the CS and rIP registers with their new values and begins
executing from the target location. The CPL is not changed—the target-CS selector RPL value is
disregarded when the selector is loaded into the CS register.

Figure 4-28 on page 100 shows three examples of privilege checks performed as a result of a far
control transfer to a nonconforming code-segment. In Example 1, access is allowed because CPL =
DPL and RPL ≤ CPL. In Example 2, access is denied because CPL ≠ DPL. In Example 3, access is
denied because RPL > CPL.

100 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples

Conforming Code Segments. On a direct control transfer to a conforming code segment, the target
code-segment descriptor DPL can be lower than (at a greater privilege) the CPL. Before loading the

513-230.eps

Access Allowed

Code
Segment

Example 1: Privilege Check Passes

CS CPL=2

=

DPL=2

Descriptor

RPL=0
Code

Selector
≤

?

Access
Allowed

Access
Allowed

Access Denied

Code
Segment

Example 2: Privilege Check Fails

CS CPL=2

=

DPL=3

Descriptor

RPL=0
Code

Selector
≤

?

Access
Allowed

Access
Denied

Access Denied

Code
Segment

Example 3: Privilege Check Fails

CS CPL=2

=

DPL=2

Descriptor

RPL=3
Code

Selector
≤

?

Access
Denied

Access
Allowed

Segmented Virtual Memory 101

24593—Rev. 3.17—June 2010 AMD64 Technology

CS register with a conforming code-segment selector, the processor compares the target code-segment
descriptor DPL with the currently-executing program CPL. If the DPL is less than or equal to the CPL,
access is allowed. If the DPL is greater than the CPL, a #GP exception occurs.

On an access to a conforming code segment, the RPL is ignored and not involved in the privilege
check.

When access is allowed, the processor loads the CS and rIP registers with their new values and begins
executing from the target location. The CPL is not changed—the target CS-descriptor DPL value is
disregarded when the selector is loaded into the CS register. The target program runs at the same
privilege as the program that called it.

Figure 4-29 shows two examples of privilege checks performed as a result of a direct control transfer
to a conforming code segment. In Example 1, access is allowed because the CPL of 3 is greater than
the DPL of 0. As the target code selector is loaded into the CS register, the old CPL value of 3 replaces
the target-code selector RPL value, and the target program executes with CPL=3. In Example 2, access
is denied because CPL < DPL.

Figure 4-29. Conforming Code-Segment Privilege-Check Examples

513-231.eps

Access Allowed
Code

Segment

Example 1: Privilege Check Passes

CS CPL=3

≥

DPL=0

Descriptor

Code
Selector

Access Denied
Code

Segment

Example 2: Privilege Check Fails

CS CPL=0

≥

DPL=3

Descriptor

Code
Selector

102 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

4.11.2 Control Transfers Through Call Gates

Control transfers to more-privileged code segments are accomplished through the use of call gates.
Call gates are a type of descriptor that contain pointers to code-segment descriptors and control access
to those descriptors. System software uses call gates to establish protected entry points into system-
service routines.

Transfer Mechanism. The pointer operand of a far-CALL or far-JMP instruction consists of two
pieces: a code-segment selector (CS) and a code-segment offset (rIP). In a call-gate transfer, the CS
selector points to a call-gate descriptor rather than a code-segment descriptor, and the rIP is ignored
(but required by the instruction).

Figure 4-30 shows a call-gate control transfer in legacy mode. The call-gate descriptor contains
segment-selector and segment-offset fields (see “Gate Descriptors” on page 84 for a detailed
description of the call-gate format and fields). These two fields perform the same function as the
pointer operand in a direct control-transfer instruction. The segment-selector field points to the target
code-segment descriptor, and the segment-offset field is the instruction-pointer offset into the target
code-segment. The code-segment base taken from the code-segment descriptor is added to the offset
field in the call-gate descriptor to create the target virtual address (linear address).

Figure 4-30. Legacy-Mode Call-Gate Transfer Mechanism

513-233.eps

Virtual-Address
Space

Virtual Address

Code Segment

Far Pointer

DPL Code-Segment Limit

Code-Segment Base

DPL Code-Segment Selector

Code-Segment Offset

Segment Selector Instruction Offset

Descriptor Table

+

Call-Gate
Descriptor

Code-Segment
Descriptor

Segmented Virtual Memory 103

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 4-31 shows a call-gate control transfer in long mode. The long-mode call-gate descriptor
format is expanded by 64 bits to hold a full 64-bit offset into the virtual-address space. Only long-
mode call gates can be referenced in long mode (64-bit mode and compatibility mode). The legacy-
mode 32-bit call-gate types are redefined in long mode as 64-bit types, and 16-bit call-gate types are
illegal.

Figure 4-31. Long-Mode Call-Gate Access Mechanism

A long-mode call gate must reference a 64-bit code-segment descriptor. In 64-bit mode, the code-
segment descriptor base-address and limit fields are ignored. The target virtual-address is the 64-bit
offset field in the expanded call-gate descriptor.

Privilege Checks. Before loading the CS register with the code-segment selector located in the call
gate, the processor performs three privilege checks. The following checks are performed when either
conforming or nonconforming code segments are referenced:

1. The processor compares the CPL with the call-gate DPL from the call-gate descriptor (DPLG).
The CPL must be numerically less than or equal to DPLG for this check to pass. In other words,
the following expression must be true: CPL ≤ DPLG.

513-234.eps

Virtual-Address
Space

Virtual Address

Flat Code-Segment

DPL Code-Segment Limit

Code-Segment Base

DPL Code-Segment Selector

Code-Segment Offset (31:0)

Far Pointer

Segment Selector

Unused

Instruction Offset

Descriptor Table

Code-Segment Offset (63:32)

Call-Gate
Descriptor

Code-Segment
Descriptor

104 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

2. The processor compares the RPL in the call-gate selector with DPLG. The RPL must be
numerically less than or equal to DPLG for this check to pass. In other words, the following
expression must be true: RPL ≤ DPLG.

3. The processor compares the CPL with the target code-segment DPL from the code-segment
descriptor (DPLS). The type of comparison varies depending on the type of control transfer.

- When a call—or a jump to a conforming code segment—is used to transfer control through a
call gate, the CPL must be numerically greater than or equal to DPLS for this check to pass.
(This check prevents control transfers to less-privileged programs.) In other words, the
following expression must be true: CPL � DPLS.

- When a JMP instruction is used to transfer control through a call gate to a nonconforming code
segment, the CPL must be numerically equal to DPLS for this check to pass. (JMP instructions
cannot change CPL.) In other words, the following expression must be true: CPL = DPLS.

Figure 4-32 on page 105 shows two examples of call-gate privilege checks. In Example 1, all privilege
checks pass as follows:

• The call-gate DPL (DPLG) is at the lowest privilege (3), specifying that software running at any
privilege level (CPL) can access the gate.

• The selector referencing the call gate passes its privilege check because the RPL is numerically
less than or equal to DPLG.

• The target code segment is at the highest privilege level (DPLS = 0). This means software running
at any privilege level can access the target code segment through the call gate.

Segmented Virtual Memory 105

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 4-32. Privilege-Check Examples for Call Gates

In Example 2, all privilege checks fail as follows:

• The call-gate DPL (DPLG) specifies that only software at privilege-level 0 can access the gate. The
current program does not have enough privilege to access the call gate because its CPL is 2.

• The selector referencing the call-gate descriptor does not have enough privilege to complete the
reference. Its RPL is numerically greater than DPLG.

513-232.eps

Example 1: Privilege Check Passes

DPLG=3

Call-Gate Descriptor

Code
Segment

CS CPL=2

DPLS=0

Code-Segment Descriptor

Call-Gate
Selector

RPL=3

Example 2: Privilege Check Fails

DPLG=0

Call-Gate Descriptor
Code

Segment

CS CPL=2

DPLS=3

Code-Segment Descriptor

Call-Gate
Selector

RPL=3

Access Allowed

Access Denied

106 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

• The target code segment is at a lower privilege (DPLS = 3) than the currently running software
(CPL = 2). Transitions from more-privileged software to less-privileged software are not allowed,
so this privilege check fails as well.

Although all three privilege checks failed in Example 2, failing only one check is sufficient to deny
access into the target code segment.

Stack Switching. The processor performs an automatic stack switch when a control transfer causes a
change in privilege levels to occur. Switching stacks isolates more-privileged software stacks from
less-privileged software stacks and provides a mechanism for saving the return pointer back to the
program that initiated the call.

When switching to more-privileged software, as is done when transferring control using a call gate, the
processor uses the corresponding stack pointer (privilege-level 0, 1, or 2) stored in the task-state
segment (TSS). The format of the stack pointer stored in the TSS depends on the system-software
operating mode:

• Legacy-mode system software stores a 32-bit ESP value (stack offset) and 16-bit SS selector
register value in the TSS for each of three privilege levels 0, 1, and 2.

• Long-mode system software stores a 64-bit RSP value in the TSS for privilege levels 0, 1, and 2.
No SS register value is stored in the TSS because in long mode a call gate must reference a 64-bit
code-segment descriptor. 64-bit mode does not use segmentation, and the stack pointer consists
solely of the 64-bit RSP. Any value loaded in the SS register is ignored.

See “Task-Management Resources” on page 308 for more information on the legacy-mode and long-
mode TSS formats.

Figure 4-33 on page 107 shows a 32-bit stack in legacy mode before and after the automatic stack
switch. This particular example assumes that parameters are passed from the current program to the
target program. The process followed by legacy mode in switching stacks and copying parameters is:

1. The target code-segment DPL is read by the processor and used as an index into the TSS for
selecting the new stack pointer (SS:ESP). For example, if DPL=1 the processor selects the
SS:ESP for privilege-level 1 from the TSS.

2. The SS and ESP registers are loaded with the new SS:ESP values read from the TSS.

3. The old values of the SS and ESP registers are pushed onto the stack pointed to by the new
SS:ESP.

4. The 5-bit count field is read from the call-gate descriptor.

5. The number of parameters specified in the count field (up to 31) are copied from the old stack to
the new stack. The size of the parameters copied by the processor depends on the call-gate size:
32-bit call gates copy 4-byte parameters and 16-bit call gates copy 2-byte parameters.

6. The return pointer is pushed onto the stack. The return pointer consists of the current CS-register
value and the EIP of the instruction following the calling instruction.

Segmented Virtual Memory 107

24593—Rev. 3.17—June 2010 AMD64 Technology

7. The CS register is loaded from the segment-selector field in the call-gate descriptor, and the EIP is
loaded from the offset field in the call-gate descriptor.

8. The target program begins executing with the instruction referenced by new CS:EIP.

Figure 4-33. Legacy-Mode 32-Bit Stack Switch, with Parameters

Figure 4-34 shows a 32-bit stack in legacy mode before and after the automatic stack switch when no
parameters are passed (count=0). Most software does not use the call-gate descriptor count-field to
pass parameters. System software typically defines linkage mechanisms that do not rely on automatic
parameter copying.

Figure 4-34. 32-Bit Stack Switch, No Parameters—Legacy Mode

Figure 4-35 on page 108 shows a long-mode stack switch. In long mode, all call gates must reference
64-bit code-segment descriptors, so a long-mode stack switch uses a 64-bit stack. The process of

513-224.eps

Parameter n
. . .

Parameter 1
Parameter 2 +(n-2)*4

+(n-1)*4

Old SS:ESP

Old
32-Bit Stack
Before CALL

New
32-Bit Stack
After CALL

Old SS
Old ESP

Old EIP

Parameter n
. . .

Parameter 1
Parameter 2

Old CS +4

+8

+(n*4)+8

+(n*4)+12

+(n*4)

+(n*4)+4

New SS:ESP

Stack Switch

513-225.eps

Old SS:ESP

Old
32-Bit Stack
Before CALL

New
32-Bit Stack
After CALL

Old EIP

Old ESP
Old SS

Old CS +4

+8

+12

New SS:ESP

Stack Switch

108 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

switching stacks in long mode is similar to switching in legacy mode when no parameters are passed.
The process is as follows:

1. The target code-segment DPL is read by the processor and used as an index into the 64-bit TSS
for selecting the new stack pointer (RSP).

2. The RSP register is loaded with the new RSP value read from the TSS. The SS register is loaded
with a null selector (SS=0). Setting the new SS selector to null allows proper handling of nested
control transfers in 64-bit mode. See “Nested Returns to 64-Bit Mode Procedures” on page 110
for additional information.

As in legacy mode, it is desirable to keep the stack-segment requestor privilege-level (SS.RPL)
equal to the current privilege-level (CPL). When using a call gate to change privilege levels, the
SS.RPL is updated to reflect the new CPL. The SS.RPL is restored from the return-target CS.RPL
on the subsequent privilege-level-changing far return.

3. The old values of the SS and RSP registers are pushed onto the stack pointed to by the new RSP.
The old SS value is popped on a subsequent far return. This allows system software to set up the
SS selector for a compatibility-mode process by executing a RET (or IRET) that changes the
privilege level.

4. The return pointer is pushed onto the stack. The return pointer consists of the current CS-register
value and the RIP of the instruction following the calling instruction.

5. The CS register is loaded from the segment-selector field in the long-mode call-gate descriptor,
and the RIP is loaded from the offset field in the long-mode call-gate descriptor.

The target program begins execution with the instruction referenced by the new RIP.

Figure 4-35. Stack Switch—Long Mode

All long-mode stack pushes resulting from a privilege-level-changing far call are eight-bytes wide and
increment the RSP by eight. Long mode ignores the call-gate count field and does not support the
automatic parameter-copy feature found in legacy mode. Software can access parameters on the old
stack, if necessary, by referencing the old stack segment selector and stack pointer saved on the new
process stack.

Old SS:RSP

Old
64-Bit Stack
Before CALL

New
64-Bit Stack
After CALL

Old RIP

Old RSP
Old SS

Old CS +8

+16

+24

New RSP

Stack Switch

(SS=0 + new_CPL)

Segmented Virtual Memory 109

24593—Rev. 3.17—June 2010 AMD64 Technology

4.11.3 Return Control Transfers

Returns to calling programs can be performed by using the RET instruction. The following types of
returns are possible:

• Near Return—Near returns perform control transfers within the same code segment, so the CS
register is unchanged. The new offset is popped off the stack and into the rIP register. No privilege
checks are performed.

• Far Return, Same Privilege—A far return transfers control from one code segment to another.
When the original code segment is at the same privilege level as the target code segment, a far
pointer (CS:rIP) is popped off the stack and the RPL of the new code segment (CS) is checked. If
the requested privilege level (RPL) matches the current privilege level (CPL), then a return is made
to the same privilege level. This prevents software from changing the CS value on the stack in an
attempt to return to higher-privilege software.

• Far Return, Less Privilege—Far returns can change privilege levels, but only to a lower-privilege
level. In this case a stack switch is performed between the current, higher-privilege program and
the lower-privilege return program. The CS-register and rIP-register values are popped off the
stack. The lower-privilege stack pointer is also popped off the stack and into the SS register and
rSP register. The processor checks both the CS and SS privilege levels to ensure they are equal and
at a lesser privilege than the current CS.

In the case of nested returns to 64-bit mode, a null selector can be popped into the SS register. See
“Nested Returns to 64-Bit Mode Procedures” on page 110.

Far returns also check the privilege levels of the DS, ES, FS and GS selector registers. If any of
these segment registers have a selector with a higher privilege than the return program, the segment
register is loaded with the null selector.

Stack Switching. The stack switch performed by a far return to a lower-privilege level reverses the
stack switch of a call gate to a higher-privilege level, except that parameters are never automatically
copied as part of a return. The process followed by a far-return stack switch in long mode and legacy
mode is:

1. The return code-segment RPL is read by the processor from the CS value stored on the stack to
determine that a lower-privilege control transfer is occurring.

2. The return-program instruction pointer is popped off the current-program (higher privilege) stack
and loaded into the CS and rIP registers.

3. The return instruction can include an immediate operand that specifies the number of additional
bytes to be popped off of the stack. These bytes may correspond to the parameters pushed onto the
stack previously by a call through a call gate containing a non-zero parameter-count field. If the
return includes the immediate operand, then the stack pointer is adjusted upward by adding the
specified number of bytes to the rSP.

4. The return-program stack pointer is popped off the current-program (higher privilege) stack and
loaded into the SS and rSP registers. In the case of nested returns to 64-bit mode, a null selector
can be popped into the SS register.

110 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

The operand size of a far return determines the size of stack pops when switching stacks. If a far return
is used in 64-bit mode to return from a prior call through a long-mode call gate, the far return must use
a 64-bit operand size. The 64-bit operand size allows the far return to properly read the stack
established previously by the far call.

Nested Returns to 64-Bit Mode Procedures. In long mode, a far call that changes privilege levels
causes the SS register to be loaded with a null selector (this is the same action taken by an interrupt in
long mode). If the called procedure performs another far call to a higher-privileged procedure, or is
interrupted, the null SS selector is pushed onto the stack frame, and another null selector is loaded into
the SS register. Using a null selector in this way allows the processor to properly handle returns nested
within 64-bit-mode procedures and interrupt handlers.

Normally, a RET that pops a null selector into the SS register causes a general-protection exception
(#GP) to occur. However, in long mode, the null selector acts as a flag indicating the existence of
nested interrupt handlers or other privileged software in 64-bit mode. Long mode allows RET to pop a
null selector into SS from the stack under the following conditions:

• The target mode is 64-bit mode.

• The target CPL is less than 3.

In this case, the processor does not load an SS descriptor, and the null selector is loaded into SS
without causing a #GP exception.

4.12 Limit Checks

Except in 64-bit mode, limit checks are performed by all instructions that reference memory. Limit
checks detect attempts to access memory outside the current segment boundary, attempts at executing
instructions outside the current code segment, and indexing outside the current descriptor table. If an
instruction fails a limit check, either (1) a general-protection exception occurs for all other segment-
limit violations or (2) a stack-fault exception occurs for stack-segment limit violations.

In 64-bit mode, segment limits are not checked during accesses to any segment referenced by the CS,
DS, ES, FS, GS, and SS selector registers. Instead, the processor checks that the virtual addresses used
to reference memory are in canonical-address form. In 64-bit mode, as with legacy mode and
compatibility mode, descriptor-table limits are checked.

4.12.1 Determining Limit Violations

To determine segment-limit violations, the processor checks a virtual (linear) address to see if it falls
outside the valid range of segment offsets determined by the segment-limit field in the descriptor. If
any part of an operand or instruction falls outside the segment-offset range, a limit violation occurs.
For example, a doubleword access, two bytes from an upper segment boundary, causes a segment
violation because half of the doubleword is outside the segment.

Segmented Virtual Memory 111

24593—Rev. 3.17—June 2010 AMD64 Technology

Three bits from the descriptor entry are used to control how the segment-limit field is interpreted: the
granularity (G) bit, the default operand-size (D) bit, and for data segments, the expand-down (E) bit.
See “Legacy Segment Descriptors” on page 77 for a detailed description of each bit.

For all segments other than expand-down segments, the minimum segment-offset is 0. The maximum
segment-offset depends on the value of the G bit:

• If G=0 (byte granularity), the maximum allowable segment-offset is equal to the value of the
segment-limit field.

• If G=1 (4096-byte granularity), the segment-limit field is first scaled by 4096 (1000h). Then 4095
(0FFFh) is added to the scaled value to arrive at the maximum allowable segment-offset, as shown
in the following equation:

maximum segment-offset = (limit × 1000h) + 0FFFh

For example, if the segment-limit field is 0100h, then the maximum allowable segment-offset is

(0100h × 1000h) + 0FFFh = 10_1FFFh.

In both cases, the maximum segment-size is specified when the descriptor segment-limit field is
0F_FFFFh.

Expand-Down Segments. Expand-down data segments are supported in legacy mode and
compatibility mode but not in 64-bit mode. With expand-down data segments, the maximum segment
offset depends on the value of the D bit in the data-segment descriptor:

• If D=0 the maximum segment-offset is 0_FFFFh.

• If D=1 the maximum segment-offset is 0_FFFF_FFFFh.

The minimum allowable segment offset in expand-down segments depends on the value of the G bit:

• If G=0 (byte granularity), the minimum allowable segment offset is the segment-limit value plus 1.

For example, if the segment-limit field is 0100h, then the minimum allowable segment-offset is
0101h.

• If G=1 (4096-byte granularity), the segment-limit value in the descriptor is first scaled by 4096
(1000h), and then 4095 (0FFFh) is added to the scaled value to arrive at a scaled segment-limit
value. The minimum allowable segment-offset is this scaled segment-limit value plus 1, as shown
in the following equation:

minimum segment-offset = (limit × 1000) + 0FFFh + 1

For example, if the segment-limit field is 0100h, then the minimum allowable segment-offset is

(0100h × 1000h) + 0FFFh + 1 = 10_1000h.

For expand-down segments, the maximum segment size is specified when the segment-limit value is 0.

112 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

4.12.2 Data Limit Checks in 64-bit Mode

In 64-bit mode, data reads and writes are not normally checked for segment-limit violations. When
EFER.LMSLE = 1, reads and writes in 64-bit mode at CPL > 0, using the DS, ES, FS, or SS segments,
have a segment-limit check applied.

This limit-check uses the 32-bit segment-limit to find the maximum allowable address in the top 4GB
of the 64-bit virtual (linear) address space.

This segment-limit check does not apply to accesses through the GS segment, or to code reads. If the
DS, ES, FS, or SS segment is null or expand-down, the effect of the limit check is undefined.

4.13 Type Checks

Type checks prevent software from using descriptors in invalid ways. Failing a type check results in an
exception. Type checks are performed using five bits from the descriptor entry: the S bit and the 4-bit
Type field. Together, these five bits are used to specify the descriptor type (code, data, segment, or
gate) and its access characteristics. See “Legacy Segment Descriptors” on page 77 for a detailed
description of the S bit and Type-field encodings. Type checks are performed by the processor in
compatibility mode as well as legacy mode. Limited type checks are performed in 64-bit mode.

4.13.1 Type Checks in Legacy and Compatibility Modes

The type checks performed in legacy mode and compatibility mode are listed in the following sections.

Descriptor-Table Register Loads. Loads into the LDTR and TR descriptor-table registers are
checked for the appropriate system-segment type. The LDTR can only be loaded with an LDT
descriptor, and the TR only with a TSS descriptor. The checks are performed during any action that
causes these registers to be loaded. This includes execution of the LLDT and LTR instructions and
during task switches.

Segment Register Loads. The following restrictions are placed on the segment-descriptor types that
can be loaded into the six user segment registers:

• Only code segments can be loaded into the CS register.

• Only writable data segments can be loaded into the SS register.

• Only the following segment types can be loaded into the DS, ES, FS, or GS registers:

- Read-only or read/write data segments.

- Readable code segments.

Table 4-8. Segment Limit Checks in 64-Bit Mode

Memory Address Effect of Limit Check

Linear Address ≤ (0FFFFFFFF_00000000h + 32-bit Limit) Access OK.

Linear Address > (0FFFFFFFF_00000000h + 32-bit Limit) Exception (#GP or #SS)

Segmented Virtual Memory 113

24593—Rev. 3.17—June 2010 AMD64 Technology

These checks are performed during any action that causes the segment registers to be loaded. This
includes execution of the MOV segment-register instructions, control transfers, and task switches.

Control Transfers. Control transfers (branches and interrupts) place additional restrictions on the
segment types that can be referenced during the transfer:

• The segment-descriptor type referenced by far CALLs and far JMPs must be one of the following:

- A code segment

- A call gate or a task gate

- An available TSS (only allowed in legacy mode)

- A task gate (only allowed in legacy mode)

• Only code-segment descriptors can be referenced by call-gate, interrupt-gate, and trap-gate
descriptors.

• Only TSS descriptors can be referenced by task-gate descriptors.

• The link field (selector) in the TSS can only point to a TSS descriptor. This is checked during an
IRET control transfer to a task.

• The far RET and far IRET instructions can only reference code-segment descriptors.

• The interrupt-descriptor table (IDT), which is referenced during interrupt control transfers, can
only contain interrupt gates, trap gates, and task gates.

Segment Access. After a segment descriptor is successfully loaded into one of the segment
registers, reads and writes into the segments are restricted in the following ways:

• Writes are not allowed into read-only data-segment types.

• Writes are not allowed into code-segment types (executable segments).

• Reads from code-segment types are not allowed if the readable (R) type bit is cleared to 0.

These checks are generally performed during execution of instructions that access memory.

4.13.2 Long Mode Type Check Differences

Compatibility Mode and 64-Bit Mode. The following type checks differ in long mode (64-bit mode
and compatibility mode) as compared to legacy mode:

• System Segments—System-segment types are checked, but the following types that are valid in
legacy mode are illegal in long mode:

- 16-bit available TSS.

- 16-bit busy TSS.

- Type-field encoding of 00h in the upper half of a system-segment descriptor to indicate an
illegal type and prevent access as a legacy descriptor.

• Gates—Gate-descriptor types are checked, but the following types that are valid in legacy mode
are illegal in long mode:

114 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.17—June 2010

- 16-bit call gate.

- 16-bit interrupt gate.

- 16-bit trap gate.

- Task gate.

64-Bit Mode. 64-bit mode disables segmentation, and most of the segment-descriptor fields are
ignored. The following list identifies situations where type checks in 64-bit mode differ from those in
compatibility mode and legacy mode:

• Code Segments—The readable (R) type bit is ignored in 64-bit mode. None of the legacy type-
checks that prevent reads from or writes into code segments are performed in 64-bit mode.

• Data Segments—Data-segment type attributes are ignored in 64-bit mode. The writable (W) and
expand-down (E) type bits are ignored. All data segments are treated as writable.

Page Translation and Protection 115

24593—Rev. 3.17—June 2010 AMD64 Technology

5 Page Translation and Protection

The x86 page-translation mechanism (or simply paging mechanism) enables system software to create
separate address spaces for each process or application. These address spaces are known as virtual-
address spaces. System software uses the paging mechanism to selectively map individual pages of
physical memory into the virtual-address space using a set of hierarchical address-translation tables
known collectively as page tables.

The paging mechanism and the page tables are used to provide each process with its own private region
of physical memory for storing its code and data. Processes can be protected from each other by
isolating them within the virtual-address space. A process cannot access physical memory that is not
mapped into its virtual-address space by system software.

System software can use the paging mechanism to selectively map physical-memory pages into
multiple virtual-address spaces. Mapping physical pages in this manner allows them to be shared by
multiple processes and applications. The physical pages can be configured by the page tables to allow
read-only access. This prevents applications from altering the pages and ensures their integrity for use
by all applications.

Shared mapping is typically used to allow access of shared-library routines by multiple applications. A
read-only copy of the library routine is mapped to each application virtual-address space, but only a
single copy of the library routine is present in physical memory. This capability also allows a copy of
the operating-system kernel and various device drivers to reside within the application address space.
Applications are provided with efficient access to system services without requiring costly address-
space switches.

The system-software portion of the address space necessarily includes system-only data areas that
must be protected from accesses by applications. System software uses the page tables to protect this
memory by designating the pages as supervisor pages. Such pages are only accessible by system
software.

Finally, system software can use the paging mechanism to map multiple, large virtual-address spaces
into a much smaller amount of physical memory. Each application can use the entire 32-bit or 64-bit
virtual-address space. System software actively maps the most-frequently-used virtual-memory pages
into the available pool of physical-memory pages. The least-frequently-used virtual-memory pages are
swapped out to the hard drive. This process is known as demand-paged virtual memory.

5.1 Page Translation Overview

The x86 architecture provides support for translating 32-bit virtual addresses into 32-bit physical
addresses (larger physical addresses, such as 36-bit or 40-bit addresses, are supported as a special
mode). The AMD64 architecture enhances this support to allow translation of 64-bit virtual addresses
into 52-bit physical addresses, although processor implementations can support smaller virtual-
address and physical-address spaces.

116 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

Virtual addresses are translated to physical addresses through hierarchical translation tables created
and managed by system software. Each table contains a set of entries that point to the next-lower table
in the translation hierarchy. A single table at one level of the hierarchy can have hundreds of entries,
each of which points to a unique table at the next-lower hierarchical level. Each lower-level table can
in turn have hundreds of entries pointing to tables further down the hierarchy. The lowest-level table in
the hierarchy points to the translated physical page.

Figure 5-1 on page 117 shows an overview of the page-translation hierarchy used in long mode.
Legacy mode paging uses a subset of this translation hierarchy (the page-map level-4 table does not
exist in legacy mode and the PDP table may or may not be used, depending on which paging mode is
enabled). As this figure shows, a virtual address is divided into fields, each of which is used as an offset
into a translation table. The complete translation chain is made up of all table entries referenced by the
virtual-address fields. The lowest-order virtual-address bits are used as the byte offset into the physical
page.

Page Translation and Protection 117

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 5-1. Virtual to Physical Address Translation—Long Mode

Legacy page translation offers a variety of alternatives in translating virtual addresses to physical
addresses. Four physical-page sizes of 4 Kbytes, 2 Mbytes and 4 Mbytes are available. Virtual

513-200.eps

PML4E PDE

Physical
Address

PDPE

PTE

Physical Page
Offset

Sign
Extension

63 0

Page Directory
Offset

Page Map
Level-4 Offset

Page Directory
Pointer Offset

Page Table
Offset

Page Map Base Register CR3

64-Bit Virtual Address

Page Directory Pointer
Table

Page Directory
Table

Physical Page
Frame

Page
Table

Page Map
Level 4
Table

118 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

addresses are 32 bits long, and physical addresses up to the supported physical-address size can be
used. The AMD64 architecture enhances the legacy translation support by allowing virtual addresses
of up to 64 bits long to be translated into physical addresses of up to 52 bits long.

Currently, the AMD64 architecture defines a mechanism for translating 48-bit virtual addresses to 52-
bit physical addresses. The mechanism used to translate a full 64-bit virtual address is reserved and
will be described in a future AMD64 architectural specification.

5.1.1 Page-Translation Options

The form of page-translation support available to software depends on which paging features are
enabled. Four controls are available for selecting the various paging alternatives:

• Page-Translation Enable (CR0.PG)

• Physical-Address Extensions (CR4.PAE)

• Page-Size Extensions (CR4.PSE)

• Long-Mode Active (EFER.LMA)

Not all paging alternatives are available in all modes. Table 5-1 summarizes the paging support
available in each mode.

5.1.2 Page-Translation Enable (PG) Bit

Page translation is controlled by the PG bit in CR0 (bit 31). When CR0.PG is set to 1, page translation
is enabled. When CR0.PG is cleared to 0, page translation is disabled.

The AMD64 architecture uses CR0.PG to activate and deactivate long mode when long mode is
enabled. See “Enabling and Activating Long Mode” on page 358 for more information.

Table 5-1. Supported Paging Alternatives (CR0.PG=1)

Mode

Physical-
Address

Extensions
(CR4.PAE)

Page-Size
Extensions
(CR4.PSE)

Page-
Directory
Pointer
Offset

Page-
Directory
Page Size

Resulting
Physical-
Page Size

Maximum
Virtual

Address

Maximum
Physical
Address

Long
Mode

64-Bit
Mode

Enabled –
PDPE.PS=0

PDE.PS=0 4 Kbyte

64-bit 52-bit
Compatibility
Mode

PDE.PS=1 2 Mbyte

PDPE.PS=1 – 1 Gbyte

Legacy Mode

Enabled –

PDPE.PS=0

PDE.PS=0 4 Kbyte

32-bit

52-bit

PDE.PS=1 2 Mbyte 52-bit

Disabled

Disabled – 4 Kbyte 32-bit

Enabled
PDE.PS=0 4 Kbyte 32-bit

PDE.PS=1 4 Mbyte 40-bit

Page Translation and Protection 119

24593—Rev. 3.17—June 2010 AMD64 Technology

5.1.3 Physical-Address Extensions (PAE) Bit

Physical-address extensions are controlled by the PAE bit in CR4 (bit 5). When CR4.PAE is set to 1,
physical-address extensions are enabled. When CR4.PAE is cleared to 0, physical-address extensions
are disabled.

Setting CR4.PAE=1 enables virtual addresses to be translated into physical addresses up to 52 bits
long. This is accomplished by doubling the size of paging data-structure entries from 32 bits to 64 bits
to accommodate the larger physical base-addresses for physical-pages.

PAE must be enabled before activating long mode. See “Enabling and Activating Long Mode” on
page 358.

5.1.4 Page-Size Extensions (PSE) Bit

Page-size extensions are controlled by the PSE bit in CR4 (bit 4). Setting CR4.PSE to 1 allows
operating-system software to use 4-Mbyte physical pages in the translation process. The 4-Mbyte
physical pages can be mixed with standard 4-Kbyte physical pages or replace them entirely. The
selection of physical-page size is made on a page-directory-entry basis. See “Page Size (PS) Bit” on
page 137 for more information on physical-page size selection. When CR4.PSE is cleared to 0, page-
size extensions are disabled.

The choice of 2 Mbyte or 4 Mbyte as the large physical-page size depends on the value of CR4.PSE
and CR4.PAE, as follows:

• If physical-address extensions are enabled (CR4.PAE=1), the large physical-page size is 2 Mbytes,
regardless of the value of CR4.PSE.

• If physical-address extensions are disabled (CR4.PAE=0) and CR4.PSE=1, the large physical-
page size is 4 Mbytes.

• If both CR4.PAE=0 and CR4.PSE=0, the only available page size is 4 Kbytes.

The value of CR4.PSE is ignored when long mode is active. This is because physical-address
extensions must be enabled in long mode, and the only available page sizes are 4 Kbytes and
2 Mbytes.

In legacy mode, physical addresses up to 40 bits long can be translated from 32-bit virtual addresses
using 32-bit paging data-structure entries when 4-Mbyte physical-page sizes are selected. In this
special case, CR4.PSE=1 and CR4.PAE=0. See “4-Mbyte Page Translation” on page 123 for a
description of the 4-Mbyte PDE that supports 40-bit physical-address translation. The 40-bit physical-
address capability is an AMD64 architecture enhancement over the similar capability available in the
legacy x86 architecture.

5.1.5 Page-Directory Page Size (PS) Bit

The page directory offset entry (PDE) and page directory pointer offset entry (PDPE) are data
structures used in page translation (see Figure 5-1 on page 117). The page-size (PS) bit in the PDE (bit
7, referred to as PDE.PS) selects between standard 4-Kbyte physical-page sizes and larger (2-Mbyte or

120 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

4-Mbyte) physical-page sizes. The page-size (also PS) bit in the PDPE (bit 7, referred to as PDPE.PS)
selects between 2-Mbyte and 1-Gbyte physical-page sizes in long mode.

When PDE.PS is set to 1, large physical pages are used, and the PDE becomes the lowest level of the
translation hierarchy. The size of the large page is determined by the values of CR4.PAE and
CR4.PSE, as shown in Figure 5-1 on page 118. When PDE.PS is cleared to 0, standard 4-Kbyte
physical pages are used, and the PTE is the lowest level of the translation hierarchy.

When PDPE.PS is set to 1, 1-Gbyte physical pages are used, and the PDPE becomes the lowest level of
the translation hierarchy. Neither the PDE nor PTE are used for 1-Gbyte paging.

5.2 Legacy-Mode Page Translation

Legacy mode supports two forms of translation:

• Normal (non-PAE) Paging—This is used when physical-address extensions are disabled
(CR4.PAE=0). Entries in the page translation table are 32 bits and are used to translate 32-bit
virtual addresses into physical addresses as large as 40 bits.

• PAE Paging—This is used when physical-address extensions are enabled (CR4.PAE=1). Entries in
the page translation table are 64 bits and are used to translate 32-bit virtual addresses into physical
addresses as large as 52 bits.

Legacy paging uses up to three levels of page-translation tables, depending on the paging form used
and the physical-page size. Entries within each table are selected using virtual-address bit fields. The
legacy page-translation tables are:

• Page Table—Each page-table entry (PTE) points to a physical page. If 4-Kbyte pages are used, the
page table is the lowest level of the page-translation hierarchy. PTEs are not used when translating
2-Mbyte or 4-Mbyte pages.

• Page Directory—If 4-Kbyte pages are used, each page-directory entry (PDE) points to a page
table. If 2-Mbyte or 4-Mbyte pages are used, a PDE is the lowest level of the page-translation
hierarchy and points to a physical page. In non-PAE paging, the page directory is the highest level
of the translation hierarchy.

• Page-Directory Pointer—Each page-directory pointer entry (PDPE) points to a page directory.
Page-directory pointers are only used in PAE paging (CR4.PAE=1), and are the highest level in the
legacy page-translation hierarchy.

The translation-table-entry formats and how they are used in the various forms of legacy page
translation are described beginning on page 121.

5.2.1 CR3 Register

The CR3 register is used to point to the base address of the highest-level page-translation table. The
base address is either the page-directory pointer table or the page directory table. The CR3 register
format depends on the form of paging being used. Figure 5-2 on page 121 shows the CR3 format when

Page Translation and Protection 121

24593—Rev. 3.17—June 2010 AMD64 Technology

normal (non-PAE) paging is used (CR4.PAE=0). Figure 5-3 shows the CR3 format when PAE paging
is used (CR4.PAE=1).

Figure 5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode

Figure 5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode

The CR3 register fields for legacy-mode paging are:

Table Base Address Field. This field points to the starting physical address of the highest-level
page-translation table. The size of this field depends on the form of paging used:

• Normal (Non-PAE) Paging (CR4.PAE=0)—This 20-bit field occupies bits 31–12, and points to the
base address of the page-directory table. The page-directory table is aligned on a 4-Kbyte
boundary, with the low-order 12 address bits (11–0) assumed to be 0. This yields a total base-
address size of 32 bits.

• PAE Paging (CR4.PAE=1)—This field is 27 bits and occupies bits 31–5. The CR3 register points
to the base address of the page-directory-pointer table. The page-directory-pointer table is aligned
on a 32-byte boundary, with the low 5 address bits (4–0) assumed to be 0.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough indicates whether the highest-
level page-translation table has a writeback or writethrough caching policy. When PWT=0, the table
has a writeback caching policy. When PWT=1, the table has a writethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit 4. Page-level cache disable indicates whether the highest-
level page-translation table is cacheable. When PCD=0, the table is cacheable. When PCD=1, the table
is not cacheable.

Reserved Bits. Reserved fields should be cleared to 0 by software when writing CR3.

5.2.2 Normal (Non-PAE) Paging

Non-PAE paging (CR4.PAE=0) supports 4-Kbyte and 4-Mbyte physical pages, as described in the
following sections.

31 12 11 5 4 3 2 0

Page-Directory-Table Base Address Reserved
P
C

D

P
W

T

Reserved

31 5 4 3 2 0

Page-Directory-Pointer-Table Base Address

P

C
D

P

W
T

Reserved

122 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

4-Kbyte Page Translation. 4-Kbyte physical-page translation is performed by dividing the 32-bit
virtual address into three fields. Each of the upper two fields are used as an index into a two-level page-
translation hierarchy. The virtual-address fields are used as follows, and are shown in Figure 5-4:

• Bits 31–22 index into the 1024-entry page-directory table.

• Bits 21–12 index into the 1024-entry page table.

• Bits 11–0 provide the byte offset into the physical page.

Figure 5-4. 4-Kbyte Non-PAE Page Translation—Legacy Mode

Figure 5-5 on page 123 shows the format of the PDE (page-directory entry), and Figure 5-6 on
page 123 shows the format of the PTE (page-table entry). Each table occupies 4 Kbytes and can hold
1024 of the 32-bit table entries. The fields within these table entries are described in “Page-
Translation-Table Entry Fields” on page 135.

Figure 5-5 shows bit 7 cleared to 0. This bit is the page-size bit (PS), and specifies a 4-Kbyte physical-
page translation.

Virtual Address

Page Offset
Page-Directory

Offset
Page-Table

Offset

01112212231

Physical
Address

PTE

PDE

1010

32

32

Page-Directory Base

1231

CR3

Page-
Directory

Table
Page
Table

4 Kbyte
Physical

Page

12

Page Translation and Protection 123

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode

Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode

4-Mbyte Page Translation. 4-Mbyte page translation is only supported when page-size extensions
are enabled (CR4.PSE=1) and physical-address extensions are disabled (CR4.PAE=0).

PSE defines a page-size bit in the 32-bit PDE format (PDE.PS). This bit is used by the processor
during page translation to support both 4-Mbyte and 4-Kbyte pages. 4-Mbyte pages are selected when
PDE.PS is set to 1, and the PDE points directly to a 4-Mbyte physical page. PTEs are not used in a 4-
Mbyte page translation. If PDE.PS is cleared to 0, or if 4-Mbyte page translation is disabled, the PDE
points to a PTE.

4-Mbyte page translation is performed by dividing the 32-bit virtual address into two fields. Each field
is used as an index into a single-level page-translation hierarchy. The virtual-address fields are used as
follows, and are shown in Figure 5-7 on page 124:

• Bits 31–22 index into the 1024-entry page-directory table.

• Bits 21–0 provide the byte offset into the physical page.

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

124 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode

The AMD64 architecture modifies the legacy 32-bit PDE format in PSE mode to increase physical-
address size support to 40 bits. This increase in address size is accomplished by using bits 20–13 to
hold eight additional high-order physical-address bits. Bit 21 is reserved and must be cleared to 0.

Figure 5-8 shows the format of the PDE when PSE mode is enabled. The physical-page base-address
bits are contained in a split field. The high-order, physical-page base-address bits 39–32 are located in
PDE[20:13], and physical-page base-address bits 31–22 are located in PDE[31:22].

Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode

5.2.3 PAE Paging

PAE paging is used when physical-address extensions are enabled (CR4.PAE=1). PAE paging doubles
the size of page-translation table entries to 64 bits so that the table entries can hold larger physical

31 22 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address [31:22] 0
Physical-Page Base Address

[39:32]

P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

Virtual Address

Page Offset
Page-Directory

Offset

0212231

Physical
Address

PDE

10

40

Page-Directory Base

1231

CR3

Page-
Directory

Table

4 Mbyte
Physical

Page

22

Page Translation and Protection 125

24593—Rev. 3.17—June 2010 AMD64 Technology

addresses (up to 52 bits). The size of each table remains 4 Kbytes, which means each table can hold
512 of the 64-bit entries. PAE paging also introduces a third-level page-translation table, known as the
page-directory-pointer table (PDP).

The size of large pages in PAE-paging mode is 2 Mbytes rather than 4 Mbytes. PAE uses the page-
directory page-size bit (PDE.PS) to allow selection between 4-Kbyte and 2-Mbyte page sizes. PAE
automatically uses the page-size bit, so the value of CR4.PSE is ignored by PAE paging.

4-Kbyte Page Translation. With PAE paging, 4-Kbyte physical-page translation is performed by
dividing the 32-bit virtual address into four fields, each of the upper three fields is used as an index into
a 3-level page-translation hierarchy. The virtual-address fields are described as follows and are shown
in Figure 5-9:

• Bits 31–30 index into a 4-entry page-directory-pointer table.

• Bits 29–21 index into the 512-entry page-directory table.

• Bits 20–12 index into the 512-entry page table.

• Bits 11–0 provide the byte offset into the physical page.

Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode

Virtual Address

Page Offset
Page-Directory

Offset
Page-Table

Offset

011122021293031

Physical
Address

PTE

PDE

PDPE

992

52*

52*

52*

Page-Directory-Pointer Base

531

CR3

Page-
Directory-

Pointer
Table

Page-
Directory

Table

Page
Table

4 Kbyte
Physical

Page

Page-Directory-
Pointer Offset

12

*This is an architectural limit. A given processor
implementation may support fewer bits.

126 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

Figures 5-10 through 5-12 show the legacy-mode 4-Kbyte translation-table formats:

• Figure 5-10 shows the PDPE (page-directory-pointer entry) format.

• Figure 5-11 shows the PDE (page-directory entry) format.

• Figure 5-12 shows the PTE (page-table entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 135.

Figure 5-11 shows the PDE.PS bit cleared to 0 (bit 7), specifying a 4-Kbyte physical-page translation.

Figure 5-10. 4-Kbyte PDPE—PAE Paging Legacy-Mode

Figure 5-11. 4-Kbyte PDE—PAE Paging Legacy-Mode

Figure 5-12. 4-Kbyte PTE—PAE Paging Legacy-Mode

2-Mbyte Page Translation. 2-Mbyte page translation is performed by dividing the 32-bit virtual
address into three fields. Each field is used as an index into a 2-level page-translation hierarchy. The
virtual-address fields are described as follows and are shown in Figure 5-13 on page 127:

63 52 51 32

Reserved, MBZ
Page-Directory Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 5 4 3 2 1 0

Page-Directory Base Address AVL
Reserved,

MBZ

P
C
D

P
W
T

MBZ P

63 62 52 51 32

N

X
Reserved, MBZ

Page-Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Reserved, MBZ
Physical-Page Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

Page Translation and Protection 127

24593—Rev. 3.17—June 2010 AMD64 Technology

• Bits 31–30 index into the 4-entry page-directory-pointer table.

• Bits 29–21 index into the 512-entry page-directory table.

• Bits 20–0 provide the byte offset into the physical page.

Figure 5-13. 2-Mbyte PAE Page Translation—Legacy Mode

Figure 5-14 shows the format of the PDPE (page-directory-pointer entry) and Figure 5-15 on page 128
shows the format of the PDE (page-directory entry). PTEs are not used in 2-Mbyte page translations.

Figure 5-15 on page 128 shows the PDE.PS bit set to 1 (bit 7), specifying a 2-Mbyte physical-page
translation.

Figure 5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode

63 52 51 32

Reserved, MBZ
Page-Directory Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 5 4 3 2 1 0

Page-Directory Base Address AVL
Reserved,

MBZ

P
C
D

P
W
T

MBZ P

Virtual Address

Page Offset
Page-Directory

Offset

02021293031

Physical
Address

PDE

PDPE

92

52*

52*

Page-Directory-Pointer Base Register

531

CR3

Page-
Directory-

Pointer
Table

Page-
Directory

Table

2 Mbyte
Physical

Page

Page-Directory-
Pointer Offset

21

*This is an architectural limit. A given processor
implementation may support fewer bits.

128 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode

5.3 Long-Mode Page Translation

Long-mode page translation requires the use of physical-address extensions (PAE). Before activating
long mode, PAE must be enabled by setting CR4.PAE to 1. Activating long mode before enabling PAE
causes a general-protection exception (#GP) to occur.

The PAE-paging data structures support mapping of 64-bit virtual addresses into 52-bit physical
addresses. PAE expands the size of legacy page-directory entries (PDEs) and page-table entries (PTEs)
from 32 bits to 64 bits, allowing physical-address sizes of greater than 32 bits.

The AMD64 architecture enhances the page-directory-pointer entry (PDPE) by defining previously
reserved bits for access and protection control. A new translation table is added to PAE paging, called
the page-map level-4 (PML4). The PML4 table precedes the PDP table in the page-translation
hierarchy.

Because PAE is always enabled in long mode, the PS bit in the page directory entry (PDE.PS) selects
between 4-Kbyte and 2-Mbyte page sizes, and the CR4.PSE bit is ignored. When 1-Gbyte pages are
supported, the PDPE. PS bit selects the 1-Gbyte page size.

5.3.1 Canonical Address Form

The AMD64 architecture requires implementations supporting fewer than the full 64-bit virtual
address to ensure that those addresses are in canonical form. An address is in canonical form if the
address bits from the most-significant implemented bit up to bit 63 are all ones or all zeros. If the
addresses of all bytes in a virtual-memory reference are not in canonical form, the processor generates
a general-protection exception (#GP) or a stack fault (#SS) as appropriate.

5.3.2 CR3

In long mode, the CR3 register is used to point to the PML4 base address. CR3 is expanded to 64 bits
in long mode, allowing the PML4 table to be located anywhere in the 52-bit physical-address space.
Figure 5-16 on page 129 shows the long-mode CR3 format.

63 62 52 51 32

N
X

Reserved, MBZ
Physical-Page Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address Reserved, MBZ
P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

Page Translation and Protection 129

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 5-16. Control Register 3 (CR3)—Long Mode

The CR3 register fields for long mode are:

Table Base Address Field. Bits 51–12. This 40-bit field points to the PML4 base address. The
PML4 table is aligned on a 4-Kbyte boundary with the low-order 12 address bits (11–0) assumed to be
0. This yields a total base-address size of 52 bits. System software running on processor
implementations supporting less than the full 52-bit physical-address space must clear the
unimplemented upper base-address bits to 0.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough indicates whether the highest-
level page-translation table has a writeback or writethrough caching policy. When PWT=0, the table
has a writeback caching policy. When PWT=1, the table has a writethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit 4. Page-level cache disable indicates whether the highest-
level page-translation table is cacheable. When PCD=0, the table is cacheable. When PCD=1, the table
is not cacheable.

Reserved Bits. Reserved fields should be cleared to 0 by software when writing CR3.

5.3.3 4-Kbyte Page Translation

In long mode, 4-Kbyte physical-page translation is performed by dividing the virtual address into six
fields. Four of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-17 on page 130:

• Bits 63–48 are a sign extension of bit 47, as required for canonical-address forms.

• Bits 47–39 index into the 512-entry page-map level-4 table.

• Bits 38–30 index into the 512-entry page-directory pointer table.

• Bits 29–21 index into the 512-entry page-directory table.

• Bits 20–12 index into the 512-entry page table.

• Bits 11–0 provide the byte offset into the physical page.

Note: The sizes of the sign extension and the PML4 fields depend on the number of virtual address
bits supported by the implementation.

63 52 51 32

Reserved, MBZ
Page-Map Level-4 Table Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 5 4 3 2 0

Page-Map Level-4 Table Base Address Reserved
P
C

D

P
W

T

Reserved

130 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 5-17. 4-Kbyte Page Translation—Long Mode

Figures 5-18 through 5-20 on page 131 and Figure 5-21 on page 131 show the long-mode 4-Kbyte
translation-table formats:

• Figure 5-18 on page 131 shows the PML4E (page-map level-4 entry) format.

• Figure 5-19 on page 131 shows the PDPE (page-directory-pointer entry) format.

• Figure 5-20 on page 131 shows the PDE (page-directory entry) format.

• Figure 5-21 on page 131 shows the PTE (page-table entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 135.

Figure 5-20 on page 131 shows the PDE.PS bit (bit 7) cleared to 0, indicating a 4-Kbyte physical-page
translation.

Virtual Address

Sign Extend

Page-Map
Level-4 Offset

(PML4)

Page-Directory-
Pointer Offset

Page-Directory
Offset

Page-Table
Offset

01112202129303839474863

Physical
Address

PTE

PDE

PDPE

PML4E

9999

52*

52*

52*

52*

1251

CR3

Page-Map
Level-4
Table

Page-
Directory-

Pointer
Table

Page-
Directory

Table
Page
Table

4 Kbyte
Physical

Page

Physical-
Page Offset

Page-Map Level-4

12

*This is an architectural limit. A given processor
implementation may support fewer bits.

Base Address

Page Translation and Protection 131

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 5-18. 4-Kbyte PML4E—Long Mode

Figure 5-19. 4-Kbyte PDPE—Long Mode

Figure 5-20. 4-Kbyte PDE—Long Mode

Figure 5-21. 4-Kbyte PTE—Long Mode

63 62 52 51 32

N
X

Available
Page-Directory-Pointer Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory-Pointer Base Address AVL MBZ
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available
Page-Directory Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory Base Address AVL
M
B
Z

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N

X
Available

Page-Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available
Physical-Page Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

132 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

5.3.4 2-Mbyte Page Translation

In long mode, 2-Mbyte physical-page translation is performed by dividing the virtual address into five
fields. Three of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-22:

• Bits 63–48 are a sign extension of bit 47 as required for canonical address forms.

• Bits 47–39 index into the 512-entry page-map level-4 table.

• Bits 38–30 index into the 512-entry page-directory-pointer table.

• Bits 29–21 index into the 512-entry page-directory table.

• Bits 20–0 provide the byte offset into the physical page.

Figure 5-22. 2-Mbyte Page Translation—Long Mode

Figures 5-23 through 5-25 on page 133 show the long-mode 2-Mbyte translation-table formats (the
PML4 and PDPT formats are identical to those used for 4-Kbyte page translations and are repeated
here for clarity):

• Figure 5-23 on page 133 shows the PML4E (page-map level-4 entry) format.

• Figure 5-24 on page 133 shows the PDPE (page-directory-pointer entry) format.

• Figure 5-25 on page 133 shows the PDE (page-directory entry) format.

Virtual Address

Page OffsetSign Extend

Page-Map
Level-4 Table Offset

(PML4)

Page-Directory-
Pointer Offset

Page-Directory
Offset

0202129303839474863

Physical
Address

PDE

PDPE

PML4E

999

52*

52*

52*

Page-Map
Level-4
Table

Page-
Directory-

Pointer
Table

Page-
Directory

Table

2 Mbyte
Physical

Page

CR3
Page-Map Level-4

1251
*This is an architectural limit. A given processor

implementation may support fewer bits.

21

Base Address

Page Translation and Protection 133

24593—Rev. 3.17—June 2010 AMD64 Technology

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 135. PTEs are not used in 2-Mbyte page translations.

Figure 5-25 shows the PDE.PS bit (bit 7) set to 1, indicating a 2-Mbyte physical-page translation.

Figure 5-23. 2-Mbyte PML4E—Long Mode

Figure 5-24. 2-Mbyte PDPE—Long Mode

Figure 5-25. 2-Mbyte PDE—Long Mode

5.3.5 1-Gbyte Page Translation

In long mode, 1-Gbyte physical-page translation is performed by dividing the virtual address into four
fields. Two of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-26 on page 134:

• Bits 63–48 are a sign extension of bit 47 as required for canonical address forms.

• Bits 47–39 index into the 512-entry page-map level-4 table.

• Bits 38–30 index into the 512-entry page-directory-pointer table.

• Bits 29–0 provide the byte offset into the physical page.

63 62 52 51 32

N
X

Available
Page-Directory-Pointer Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory-Pointer Base Address AVL MBZ
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available
Page-Directory Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory Base Address AVL
M
B
Z

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 52 51 32

N
X

Available
Physical Page Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Physical Page Base Address Reserved, MBZ
P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

134 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 5-26. 1-Gbyte Page Translation—Long Mode

Figure 5-27 and Figure 5-28 on page 135 show the long mode 1-Gbyte translation-table formats (the
PML4 format is identical to the one used for 4-Kbyte page translations and is repeated here for clarity):

• Figure 5-27 shows the PML4E (page-map level-4 entry) format.

• Figure 5-28 shows the PDPE (page-directory-pointer entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 135 in the current volume. PTEs and PDEs are not used in 1-Gbyte page translations.

Figure 5-28 on page 135 shows the PDPE.PS bit (bit 7) set to 1, indicating a 1-Gbyte physical-page
translation.

Virtual Address

Page OffsetSign Extend

Page-Map

Level-4 Table Offset
(PML4)

Page-Directory-
Pointer Offset

029303839474863

Physical
Address

PDPE

PML4E

99

52*

52*

Page-Map
Level-4
Table

Page-
Directory-

Pointer
Table

1 Gbyte
Physical

Page

CR3Page-Map Level-4 Base Address

 1251

*This is an architectural limit. A given processor
implementation may support fewer bits.

30

Page Translation and Protection 135

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 5-27. 1-Gbyte PML4E—Long Mode

Figure 5-28. 1-Gbyte PDPE—Long Mode

1-Gbyte Paging Feature Identification. EDX bit 26 as returned by CPUID function 8000_0001h
indicates 1-Gbyte page support. The EAX register as returned by CPUID function 8000_0019h reports
the number of 1-Gbyte L1 TLB entries supported and EBX reports the number of 1-Gbyte L2 TLB
entries. See the CPUID Specification, order# 25481, for details.

5.4 Page-Translation-Table Entry Fields

The page-translation-table entries contain control and informational fields used in the management of
the virtual-memory environment. Most fields are common across all translation table entries and
modes and occupy the same bit locations. However, some fields are located in different bit positions
depending on the page translation hierarchical level, and other fields have different sizes depending on
which physical-page size, physical-address size, and operating mode are selected. Although these
fields can differ in bit position or size, their meaning is consistent across all levels of the page
translation hierarchy and in all operating modes.

63 62 52 51 32

N
X

Available Page Directory Pointer Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory-Pointer Base Address AVL
I
G
N

M
B
Z

I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N

X
Available Physical Page Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 30 12 11 9 8 7 6 5 4 3 2 1 0

Phy
Page
Base
Addr

Reserved, MBZ
P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

136 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

5.4.1 Field Definitions

The following sections describe each field within the page-translation table entries.

Translation-Table Base Address Field. The translation-table base-address field points to the
physical base address of the next-lower-level table in the page-translation hierarchy. Page data-
structure tables are always aligned on 4-Kbyte boundaries, so only the address bits above bit 11 are
stored in the translation-table base-address field. Bits 11–0 are assumed to be 0. The size of the field
depends on the mode:

• In normal (non-PAE) paging (CR4.PAE=0), this field specifies a 32-bit physical address.

• In PAE paging (CR4.PAE=1), this field specifies a 52-bit physical address.

52 bits correspond to the maximum physical-address size allowed by the AMD64 architecture. If a
processor implementation supports fewer than the full 52-bit physical address, software must clear the
unimplemented high-order translation-table base-address bits to 0. For example, if a processor
implementation supports a 40-bit physical-address size, software must clear bits 51–40 when writing a
translation-table base-address field in a page data-structure entry.

Physical-Page Base Address Field. The physical-page base-address field points to the base
address of the translated physical page. This field is found only in the lowest level of the page-
translation hierarchy. The size of the field depends on the mode:

• In normal (non-PAE) paging (CR4.PAE=0), this field specifies a 32-bit base address for a physical
page.

• In PAE paging (CR4.PAE=1), this field specifies a 52-bit base address for a physical page.

Physical pages can be 4 Kbytes, 2 Mbytes, 4 Mbytes, or 1-Gbyte and they are always aligned on an
address boundary corresponding to the physical-page length. For example, a 2-Mbyte physical page is
always aligned on a 2-Mbyte address boundary. Because of this alignment, the low-order address bits
are assumed to be 0, as follows:

• 4-Kbyte pages, bits 11–0 are assumed 0.

• 2-Mbyte pages, bits 20–0 are assumed 0.

• 4-Mbyte pages, bits 21–0 are assumed 0.

• 1-Gbyte pages, bits 29–0 are assumed 0.

Present (P) Bit. Bit 0. This bit indicates whether the page-translation table or physical page is loaded
in physical memory. When the P bit is cleared to 0, the table or physical page is not loaded in physical
memory. When the P bit is set to 1, the table or physical page is loaded in physical memory.

Software clears this bit to 0 to indicate a page table or physical page is not loaded in physical memory.
A page-fault exception (#PF) occurs if an attempt is made to access a table or page when the P bit is 0.
System software is responsible for loading the missing table or page into memory and setting the P bit
to 1.

Page Translation and Protection 137

24593—Rev. 3.17—June 2010 AMD64 Technology

When the P bit is 0, indicating a not-present page, all remaining bits in the page data-structure entry are
available to software.

Entries with P cleared to 0 are never cached in TLB nor will the processor set the Accessed or Dirty bit
for the table entry.

Read/Write (R/W) Bit. Bit 1. This bit controls read/write access to all physical pages mapped by the
table entry. For example, a page-map level-4 R/W bit controls read/write access to all 128M
(512 × 512 × 512) physical pages it maps through the lower-level translation tables. When the R/W bit
is cleared to 0, access is restricted to read-only. When the R/W bit is set to 1, both read and write access
is allowed. See “Page-Protection Checks” on page 143 for a description of the paging read/write
protection mechanism.

User/Supervisor (U/S) Bit. Bit 2. This bit controls user (CPL 3) access to all physical pages mapped
by the table entry. For example, a page-map level-4 U/S bit controls the access allowed to all 128M
(512 × 512 × 512) physical pages it maps through the lower-level translation tables. When the U/S bit
is cleared to 0, access is restricted to supervisor level (CPL 0, 1, 2). When the U/S bit is set to 1, both
user and supervisor access is allowed. See “Page-Protection Checks” on page 143 for a description of
the paging user/supervisor protection mechanism.

Page-Level Writethrough (PWT) Bit. Bit 3. This bit indicates whether the page-translation table or
physical page to which this entry points has a writeback or writethrough caching policy. When the
PWT bit is cleared to 0, the table or physical page has a writeback caching policy. When the PWT bit is
set to 1, the table or physical page has a writethrough caching policy. See “Memory Caches” on
page 176 for additional information on caching.

Page-Level Cache Disable (PCD) Bit. Bit 4. This bit indicates whether the page-translation table or
physical page to which this entry points is cacheable. When the PCD bit is cleared to 0, the table or
physical page is cacheable. When the PCD bit is set to 1, the table or physical page is not cacheable.
See “Memory Caches” on page 176 for additional information on caching.

Accessed (A) Bit. Bit 5. This bit indicates whether the page-translation table or physical page to
which this entry points has been accessed. The A bit is set to 1 by the processor the first time the table
or physical page is either read from or written to. The A bit is never cleared by the processor. Instead,
software must clear this bit to 0 when it needs to track the frequency of table or physical-page accesses.

Dirty (D) Bit. Bit 6. This bit is only present in the lowest level of the page-translation hierarchy. It
indicates whether the page-translation table or physical page to which this entry points has been
written. The D bit is set to 1 by the processor the first time there is a write to the physical page. The D
bit is never cleared by the processor. Instead, software must clear this bit to 0 when it needs to track the
frequency of physical-page writes.

Page Size (PS) Bit. Bit 7. This bit is present in page-directory entries and long-mode page-directory-
pointer entries. When the PS bit is set in the page-directory-pointer entry (PDPE) or page-directory
entry (PDE), that entry is the lowest level of the page-translation hierarchy. When the PS bit is cleared

138 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

to 0 in all levels, the lowest level of the page-translation hierarchy is the page-table entry (PTE), and
the physical-page size is 4 Kbytes. The physical-page size is determined as follows:

• If EFER.LMA=1 and PDPE.PS=1, the physical-page size is 1 Gbyte.

• If CR4.PAE=0 and PDE.PSE=1, the physical-page size is 4 Mbytes.

• If CR4.PAE=1 and PDE.PSE=1, the physical-page size is 2 Mbytes.

See Table 5-1 on page 118 for a description of the relationship between the PS bit, PAE, physical-page
sizes, and page-translation hierarchy.

Global Page (G) Bit. Bit 8. This bit is only present in the lowest level of the page-translation
hierarchy. It indicates the physical page is a global page. The TLB entry for a global page (G=1) is not
invalidated when CR3 is loaded either explicitly by a MOV CRn instruction or implicitly during a task
switch. Use of the G bit requires the page-global enable bit in CR4 to be set to 1 (CR4.PGE=1). See
“Global Pages” on page 140 for more information on the global-page mechanism.

Available to Software (AVL) Bit. These bits are not interpreted by the processor and are available for
use by system software.

Page-Attribute Table (PAT) Bit. This bit is only present in the lowest level of the page-translation
hierarchy, as follows:

• If the lowest level is a PTE (PDE.PS=0), PAT occupies bit 7.

• If the lowest level is a PDE (PDE.PS=1) or PDPE (PDPE.PS=1), PAT occupies bit 12.

The PAT bit is the high-order bit of a 3-bit index into the PAT register (Figure 7-10 on page 193). The
other two bits involved in forming the index are the PCD and PWT bits. Not all processors support the
PAT bit by implementing the PAT registers. See “Page-Attribute Table Mechanism” on page 193 for a
description of the PAT mechanism and how it is used.

No Execute (NX) Bit. Bit 63. This bit is present in the translation-table entries defined for PAE
paging, with the exception that the legacy-mode PDPE does not contain this bit. This bit is not
supported by non-PAE paging.

The NX bit can only be set when the no-execute page-protection feature is enabled by setting
EFER.NXE to 1 (see “Extended Feature Enable Register (EFER)” on page 54). If EFER.NXE=0, the
NX bit is treated as reserved. In this case, a page-fault exception (#PF) occurs if the NX bit is not
cleared to 0.

This bit controls the ability to execute code from all physical pages mapped by the table entry. For
example, a page-map level-4 NX bit controls the ability to execute code from all 128M
(512 × 512 × 512) physical pages it maps through the lower-level translation tables. When the NX bit
is cleared to 0, code can be executed from the mapped physical pages. When the NX bit is set to 1, code
cannot be executed from the mapped physical pages. See “No Execute (NX) Bit” on page 143 for a
description of the no-execute page-protection mechanism.

Page Translation and Protection 139

24593—Rev. 3.17—June 2010 AMD64 Technology

Reserved Bits. Software should clear all reserved bits to 0. If the processor is in long mode, or if
page-size and physical-address extensions are enabled in legacy mode, a page-fault exception (#PF)
occurs if reserved bits are not cleared to 0.

5.4.2 Notes on Access and Dirty Bits

The processor never sets the Accessed bit or the Dirty bit for a not present page (P = 0). The ordering of
Accessed and Dirty bit updates with respect to surrounding loads and stores is discussed below.

Accessed (A) Bit. The Accessed bit can be set for instructions that are speculatively executed by the
processor.

For example, the Accessed bit may be set by instructions in a mispredicted branch path even though
those instructions are never retired. Thus, software must not assume that the TLB entry has not been
cached in the TLB, just because no instruction that accessed the page was successfully retired.
Nevertheless, a table entry is never cached in the TLB without its Accessed bit being set at the same
time.

The processor does not order Accessed bit updates with respect to loads done by other instructions.

Dirty (D) Bit. The Dirty bit is not updated speculatively. For instructions with multiple writes, the D
bit may be set for any writes completed up to the point of a fault. In rare cases, the Dirty bit may be set
even if a write was not actually performed, including MASKMOVQ with a mask of zero and certain
x87 floating point instructions that cause an exception. Thus software can not assume that the page has
actually been written even where PTE.D is set to 1.

If PTE.D is cleared to 0, software can rely on the fact that the page has not been written.

Dirty bit updates are ordered with respect to other loads and stores. However, to ensure compatibility
with future processors, a serializing operation should be inserted before reading the D bit.

5.5 Translation-Lookaside Buffer (TLB)

When paging is enabled, every memory access has its virtual address automatically translated into a
physical address using the page-translation hierarchy. Translation-lookaside buffers (TLBs), also
known as page-translation caches, nearly eliminate the performance penalty associated with page
translation. TLBs are special on-chip caches that hold the most-recently used virtual-to-physical
address translations. Each memory reference (instruction and data) is checked by the TLB. If the
translation is present in the TLB, it is immediately provided to the processor, thus avoiding external
memory references for accessing page tables.

TLBs take advantage of the principle of locality. That is, if a memory address is referenced, it is likely
that nearby memory addresses will be referenced in the near future. In the context of paging, the
proximity of memory addresses required for locality can be broad—it is equal to the page size. Thus, it
is possible for a large number of addresses to be translated by a small number of page translations. This
high degree of locality means that almost all translations are performed using the on-chip TLBs.

140 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

System software is responsible for managing the TLBs when updates are made to the linear-to-
physical mapping of addresses. A change to any paging data-structure entry is not automatically
reflected in the TLB, and hardware snooping of TLBs during memory-reference cycles is not
performed. Software must invalidate the TLB entry of a modified translation-table entry so that the
change is reflected in subsequent address translations. TLB invalidation is described in “TLB
Management” on page 140. Only privileged software running at CPL=0 can manage the TLBs.

5.5.1 Global Pages

The processor invalidates the TLB whenever CR3 is loaded either explicitly or implicitly. After the
TLB is invalidated, subsequent address references can consume many clock cycles until their
translations are cached as new entries in the TLB. Invalidation of TLB entries for frequently-used or
critical pages can be avoided by specifying the translations for those pages as global. TLB entries for
global pages are not invalidated as a result of a CR3 load. Global pages are invalidated using the
INVLPG instruction.

Global-page extensions are controlled by setting and clearing the PGE bit in CR4 (bit 7). When
CR4.PGE is set to 1, global-page extensions are enabled. When CR4.PGE is cleared to 0, global-page
extensions are disabled. When CR4.PGE=1, setting the global (G) bit in the translation-table entry
marks the page as global.

The INVLPG instruction ignores the G bit and can be used to invalidate individual global-page entries
in the TLB. To invalidate all entries, including global-page entries, disable global-page extensions
(CR4.PGE=0).

5.5.2 TLB Management

Generally, unless system software modifies the linear-to-physical address mapping, the processor
manages the TLB transparently to software. This includes allocating entries and replacing old entries
with new entries. In general, software changes made to paging-data structures are not automatically
reflected in the TLB. In these situations, it is necessary for software to invalidate TLB entries so that
these changes are immediately propagated to the page-translation mechanism.

TLB entries can be explicitly invalidated using operations intended for that purpose or implicitly
invalidated as a result of another operation. TLB invalidation has no effect on the associated page-
translation tables in memory.

Explicit Invalidations. Three mechanisms are provided to explicitly invalidate the TLB:

• The invalidate TLB entry instruction (INVLPG) can be used to invalidate specific entries within
the TLB. This instruction invalidates a page, regardless of whether it is marked as global or not.
The Invalidate TLB entry in a Specified ASID (INVLPGA) operates similarly, but operates on the
specified ASID. See “Invalidate Page, Alternate ASID” on page 394.

• Updates to the CR3 register cause the entire TLB to be invalidated except for global pages. The
CR3 register can be updated with the MOV CR3 instruction. CR3 is also updated during a task
switch, with the updated CR3 value read from the TSS of the new task.

Page Translation and Protection 141

24593—Rev. 3.17—June 2010 AMD64 Technology

• The TLB_CONTROL field of a VMCB can request specific flushes of the TLB to occur when the
VMRUN instruction is executed on that VMCB. See “TLB Flush” on page 393.

Implicit Invalidations. The following operations cause the entire TLB to be invalidated, including
global pages:

• Modifying the CR0.PG bit (paging enable).

• Modifying the CR4.PAE bit (physical-address extensions), the CR4.PSE bit (page-size
extensions), or the CR4.PGE bit (page-global enable).

• Entering SMM as a result of an SMI interrupt.

• Executing the RSM instruction to return from SMM.

• Updating a memory-type range register (MTRR) with the WRMSR instruction.

• External initialization of the processor.

• External masking of the A20 address bit (asserting the A20M# input signal).

• Writes to certain model-specific registers with the WRMSR instruction; see the BIOS and Kernel
Developer's Guide for the processor implementation for more information

Invalidation of Table Entry Upgrades. When a table entry is updated to relax permissions
(removing supervisor, read-only and/or no-execute restrictions) without modifying other hardware-
visible fields, an invalidation is not required, as the hardware will automatically detect such changes.

Speculative Caching of Address Translations. For performance reasons, AMD64 processors may
speculatively load valid address translations into the TLB on false execution paths. Such translations
are not based on references that a program makes from an “architectural state” perspective, but which
the processor may make in speculatively following an instruction path which turns out to be
mispredicted. In general, the processor may create a TLB entry for any linear address for which valid
entries exist in the page table structure currently pointed to by CR3. This may occur for both
instruction fetches and data references. Such entries remain cached in the TLBs and may be used in
subsequent translations. Loading a translation speculatively does not set the A bit.

Caching of Upper Level Translation Table Entries. Similarly, to improve the performance of table
walks on TLB misses, AMD64 processors may save upper level translation table entries in special
table walk caching structures which are kept coherent with the tables in memory via the same
mechanisms as the TLBs—by means of the INVLPG instruction, moves to CR3, and modification of
paging control bits in CR0 and CR4. Like address translations in the TLB, these upper level entries
may also be cached speculatively and by false-path execution. These entries are never cached if their P
(present) bits are set to 0.

Under certain circumstances, an upper-level table entry that cannot ultimately lead to a valid
translation (because there are no valid entries in the lower level table to which it points) may also be
cached. This can happen while executing down a false path, when an in-progress table walk gets
cancelled by the branch mispredict before the low level table entry that would cause a fault is
encountered. Said another way, the fact that a page table has no valid entries does not guarantee that
upper level table entries won't be accessed and cached in the processor, as long as those upper level

142 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

entries are marked as present. For this reason, it is not safe to modify an upper level entry, even if no
valid lower-level entries exist, without first clearing its present bit, followed by an INVLPG
instruction.

Use of Cached Entries When Reporting a Page Fault Exception. On current AMD64 processors,
when any type of page fault exception is encountered by the MMU, any cached upper-level entries that
lead to the faulting entry are flushed (along with the TLB entry, if already cached) and the table walk is
repeated to confirm the page fault using the table entries in memory. This is done because a table entry
is allowed to be upgraded (by marking it as present, or by removing its write, execute or supervisor
restrictions) without explicitly maintaining TLB coherency. Such an upgrade will be found when the
table is re-walked, which resolves the fault. If the fault is confirmed on the re-walk however, a page
fault exception is reported, and upper level entries that may have been cached on the re-walk are
flushed.

Handling of D-Bit Updates. When the processor needs to set the D bit in the PTE for a TLB entry
that is already marked as writable at all cached TLB levels, the table walk that is performed to access
the PTE in memory may use cached upper level table entries. This differs from the fault situation
previously described, in which cached entries aren’t used to confirm the fault during the table walk.

Invalidation of Cached Upper-level Entries by INVLPG. Current AMD64 processors invalidate all
cached upper-level entries (in addition to the targeted TLB entry) on any INVLPG instruction. Future
implementations may however invalidate only those upper-level entries that are on the table walk path
of the address targeted by the INVLPG. Because existing memory management software may rely on
the current behavior, a more selective approach that may be implemented in the future will be
implemented as a software-visible feature that must be explicitly enabled.

Handling of PDPT Entries in PAE Mode. When 32-bit PAE mode is enabled on AMD64 processors
(CR4.PAE is set to 1) a third level of the address translation table hierarchy, the page directory pointer
table (PDPT), is enabled. This table contains four entries. On current AMD64 processors, in native
mode, these four entries are unconditionally loaded into the table walk cache whenever CR3 is written
with the PDPT base address, and remain locked in. At this point they are also checked for reserved bit
violations, and if such violations are present a general protection fault occurs.

Under SVM, however, when the processor is in guest mode with PAE enabled, the guest PDPT entries
are not cached or validated at this point, but instead are loaded and checked on demand in the normal
course of address translation, just like page directory and page table entries. Any reserved bit
violations are detected at the point of use, and result in a page fault (#PF) exception rather than a
general protection (#GP) fault. The cached PDPT entries are subject to displacement from the table
walk cache and reloading from the PDPT, hence software must assume that the PDPT entries may be
read by the processor at any point while those tables are active. Future AMD processors may
implement this same behavior in native mode as well, rather than pre-loading the PDPT entries.

Page Translation and Protection 143

24593—Rev. 3.17—June 2010 AMD64 Technology

5.6 Page-Protection Checks

Two forms of page-level memory protection are provided by the legacy architecture. The first form of
protection prevents non-privileged (user) code and data from accessing privileged (supervisor) code
and data. The second form of protection prevents writes into read-only address spaces. The AMD64
architecture introduces a third form of protection that prevents software from attempting to execute
data pages as instructions. All of these forms of protection are available at all levels of the page-
translation hierarchy.

The processor checks a page for execute permission only when the page translation is loaded into the
instruction TLB as a result of a page-table walk. The remaining protection checks are performed when
a virtual address is translated into a physical address. For those checks, the processor examines the
page-level memory-protection bits in the translation tables to determine if the access is allowed. The
bits involved in these checks are:

• User/Supervisor (U/S)—The U/S bit is introduced in “User/Supervisor (U/S) Bit” on page 137.

• Read/Write (R/W)—The R/W bit is introduced in “Read/Write (R/W) Bit” on page 137.

• Write-Protect Enable (CR0.WP)—The CR0.WP bit is introduced in “Write Protect (WP) Bit” on
page 44.

5.6.1 No Execute (NX) Bit

The NX bit in the page-translation tables specifies whether instructions can be executed from the page.
This bit is not checked during every instruction fetch. Instead, the NX bits in the page-translation-table
entries are checked by the processor when the instruction TLB is loaded with a page translation. The
processor attempts to load the translation into the instruction TLB when an instruction fetch misses the
TLB. If a set NX bit is detected (indicating the page is not executable), a page-fault exception (#PF)
occurs.

The no-execute protection check applies to all privilege levels. It does not distinguish between
supervisor and user-level accesses.

The no-execute protection feature is supported only in PAE-paging mode. It is enabled by setting the
NXE bit in the EFER register to 1 (see “Extended Feature Enable Register (EFER)” on page 54).
Before setting this bit, system software must verify the processor supports the NX feature by checking
the CPUID extended-feature flags (see the CPUID Specification, order# 25481).

5.6.2 User/Supervisor (U/S) Bit

The U/S bit in the page-translation tables determines the privilege level required to access the page.
Conceptually, user (non-privileged) pages correspond to a current privilege-level (CPL) of 3, or least-
privileged. Supervisor (privileged) pages correspond to a CPL of 0, 1, or 2, all of which are jointly
regarded as most-privileged.

When the processor is running at a CPL of 0, 1, or 2, it can access both user and supervisor pages.
However, when the processor is running at a CPL of 3, it can only access user pages. If an attempt is

144 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

made to access a supervisor page while the processor is running at CPL=3, a page-fault exception
(#PF) occurs.

See “Segment-Protection Overview” on page 93 for more information on the protection-ring concept
and CPL.

5.6.3 Read/Write (R/W) Bit

The R/W bit in the page-translation tables specifies the access type allowed for the page. If R/W=1, the
page is read/write. If R/W=0, the page is read-only. A page-fault exception (#PF) occurs if an attempt
is made by user software to write to a read-only page. If supervisor software attempts to write a read-
only page, the outcome depends on the value of the CR0.WP bit (described below).

5.6.4 Write Protect (CR0.WP) Bit

The ability to write to read-only pages is governed by the processor mode and whether write protection
is enabled. If write protection is not enabled, a processor running at CPL 0, 1, or 2 can write to any
physical page, even if it is marked as read-only. Enabling write protection prevents supervisor code
from writing into read-only pages, including read-only user-level pages.

A page-fault exception (#PF) occurs if software attempts to write (at any privilege level) into a read-
only page while write protection is enabled.

5.7 Protection Across Paging Hierarchy

The privilege level and access type specified at each level of the page-translation hierarchy have a
combined effect on the protection of the translated physical page. Enabling and disabling write
protection further qualifies the protection effect on the physical page.

Table 5-2 shows the overall effect that privilege level and access type have on physical-page protection
when write protection is disabled (CR0.WP=0). In this case, when any translation-table entry is
specified as supervisor level, the physical page is a supervisor page and can only be accessed by
software running at CPL 0, 1, or 2. Such a page allows read/write access even if all levels of the page-
translation hierarchy specify read-only access.

Page Translation and Protection 145

24593—Rev. 3.17—June 2010 AMD64 Technology

If all table entries in the translation hierarchy are specified as user level the physical page is a user
page, and both supervisor and user software can access it. In this case the physical page is read-only if
any table entry in the translation hierarchy specifies read-only access. All table entries in the
translation hierarchy must specify read/write access for the physical page to be read/write.

Table 5-3 shows the overall effect that privilege level and access type have on physical-page access
when write protection is enabled (CR0.WP=1). When any translation-table entry is specified as
supervisor level, the physical page is a supervisor page and can only be accessed by supervisor
software. In this case, the physical page is read-only if any table entry in the translation hierarchy
specifies read-only access. All table entries in the translation hierarchy must specify read/write access
for the supervisor page to be read/write.

Table 5-2. Physical-Page Protection, CR0.WP=0

Page-Map Level-4
Entry

Page-Directory-
Pointer Entry

Page-Directory
Entry

Page-Table Entry
Effective Result on

Physical Page

U/S R/W U/S R/W U/S R/W U/S R/W U/S R/W

S — — — — — — —

S R/W
— — S — — — — —

— — — — S — — —

— — — — — — S —

U R U — U — U —

U R1U — U R U — U —

U — U — U R U —

U — U — U — U R

U R/W U R/W U R/W U R/W U R/W

Note:
S = Supervisor Level (CPL=0, 1, or 2), U = User Level (CPL = 3), R = Read-Only Access, R/W = Read/Write Access,

— = Don’t Care.

Note:
1. Supervisor-level programs can access these pages as R/W.

146 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.17—June 2010

5.7.1 Access to User Pages when CR0.WP=1

As shown in Table 5-2 on page 145, read/write access to user-level pages behaves the same as when
write protection is disabled (CR0.WP=0), with one critical difference. When write protection is
enabled, supervisor programs cannot write into read-only user pages.

5.8 Effects of Segment Protection

Segment-protection and page-protection checks are performed serially by the processor, with
segment-privilege checks performed first, followed by page-protection checks. Page-protection checks
are not performed if a segment-protection violation is found. If a violation is found during either
segment-protection or page-protection checking, an exception occurs and no memory access is
performed. Segment-protection violations cause either a general-protection exception (#GP) or a stack
exception (#SS) to occur. Page-protection violations cause a page-fault exception (#PF) to occur.

Table 5-3. Effect of CR0.WP=1 on Supervisor Page Access

Page-Map
Level-4
Entry

Page
Directory-

Pointer
Entry

Page
Directory

Entry

Page Table
Entry

Physical
Page

R/W R/W R/W R/W R/W

R — — —

R
— R — —

— — R —

— — — R

W W W W W

Note:
R = Read-Only Access Type, W = Read/Write Access Type, — = Don’t Care.
Physical page is in supervisor mode, as determined by U/S settings in Table 5-2.

System-Management Instructions 147

24593—Rev. 3.17—June 2010 AMD64 Technology

6 System-Management Instructions

System-management instructions provide control over the resources used to manage the processor
operating environment. This includes memory management, memory protection, task management,
interrupt and exception handling, system-management mode, software debug and performance
analysis, and model-specific features. Most instructions used to access these resources are privileged
and can only be executed while the processor is running at CPL=0, although some instructions can be
executed at any privilege level.

Table 6-1 summarizes the instructions used for system management. These include all privileged
instructions, instructions whose privilege requirement is under the control of system software, non-
privileged instructions that are used primarily by system software, and instructions used to transfer
control to system software. Most of the instructions listed in Table 6-1 are summarized in this chapter,
although a few are introduced elsewhere in this manual, as indicated in the Reference column of
Table 6-1.

For details on individual system instructions, see “System Instruction Reference” in Volume 3.

Table 6-1. System Management Instructions

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

ARPL Adjust Requestor Privilege Level X
“Adjusting Access Rights” on
page 156

CLGI Clear Global Interrupt Flag X
“Global Interrupt Flag, STGI and
CLGI Instructions” on page 395

CLI Clear Interrupt Flag X
“CLI and STI Instructions” on
page 154

CLTS Clear Task-Switched Flag in CR0 X “CLTS Instruction” on page 154

HLT Halt X “Processor Halt” on page 157

INT3 Interrupt to Debug Vector X
“Breakpoint Instruction (INT3)” on
page 340

INVD Invalidate Caches X
“Cache Management” on
page 157

INVLPG Invalidate TLB Entry X “TLB Invalidation” on page 157

INVLPGA
Invalidate TLB Entry in a
Specified ASID

X
“Invalidate Page, Alternate ASID”
on page 394

IRETx Interrupt Return (all forms) X
“Returning From Interrupt
Procedures” on page 238

LAR Load Access-Rights Byte X
“Checking Access Rights” on
page 156

Note:
1. The operating system controls the privilege required to use the instruction.

148 System-Management Instructions

AMD64 Technology 24593—Rev. 3.17—June 2010

LGDT
Load Global-Descriptor-Table
Register

X
“LGDT and LIDT Instructions” on
page 155

LIDT
Load Interrupt-Descriptor-Table
Register

X

LLDT
Load Local-Descriptor-Table
Register

X
“LLDT and LTR Instructions” on
page 155

LMSW Load Machine-Status Word X
“LMSW and SMSW Instructions”
on page 153

LSL Load Segment Limit X
“Checking Segment Limits” on
page 156

LTR Load Task Register X
“LLDT and LTR Instructions” on
page 155

MONITOR Setup Monitor Address X --

MOV CRn Move to/from Control Registers X
“MOV CRn Instructions” on
page 153

MOV DRn Move to/from Debug Registers X
“Accessing Debug Registers” on
page 154

MWAIT Monitor Wait X --

RDMSR Read Model-Specific Register X
“RDMSR and WRMSR
Instructions” on page 154

RDPMC
Read Performance-Monitor
Counter

X “RDPMC Instruction” on page 154

RDTSC Read Time-Stamp Counter X “RDTSC Instruction” on page 154

RDTSCP
Read Time-Stamp Counter and
Processor ID

X
“RDTSCP Instruction” on
page 154

RSM
Return from System-
Management Mode

X “Leaving SMM” on page 286

SGDT
Store Global-Descriptor-Table
Register

X
“SGDT and SIDT Instructions” on
page 155

SIDT
Store Interrupt-Descriptor-Table
Register

X

SKINIT
Secure Init and Jump with
Attestation

X “Security” on page 418

SLDT
Store Local-Descriptor-Table
Register

X
“SLDT and STR Instructions” on
page 155

SMSW Store Machine-Status Word X
“LMSW and SMSW Instructions”
on page 153

Table 6-1. System Management Instructions (continued)

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

Note:
1. The operating system controls the privilege required to use the instruction.

System-Management Instructions 149

24593—Rev. 3.17—June 2010 AMD64 Technology

The following instructions are summarized in this chapter but are not categorized as system
instructions, because of their importance to application programming:

• The CPUID instruction returns information critical to system software in initializing the operating
environment. It is fully described in “Processor Feature Identification” on page 61.

• The PUSHF and POPF instructions set and clear certain RFLAGS bits depending on the processor
operating mode and privilege level. These dependencies are described in “POPF and PUSHF
Instructions” on page 154.

STI Set Interrupt Flag X
“CLI and STI Instructions” on
page 154

STGI Set Global Interrupt Flag X
“Global Interrupt Flag, STGI and
CLGI Instructions” on page 395

STR Store Task Register X
“SLDT and STR Instructions” on
page 155

SWAPGS
Swap GS and KernelGSbase
Registers

X
“SWAPGS Instruction” on
page 152

SYSCALL Fast System Call X
“SYSCALL and SYSRET” on
page 150

SYSENTER System Call X “SYSENTER and SYSEXIT
(Legacy Mode Only)” on page 152SYSEXIT System Return X

SYSRET Fast System Return X
“SYSCALL and SYSRET” on
page 150

UD2 Undefined Operation X
“System Instruction Reference” in
Volume 3

VERR Verify Segment for Reads X “Checking Read/Write Rights” on
page 156VERW Verify Segment for Writes X

VMLOAD Load State from VMCB X
“VMSAVE and VMLOAD
Instructions” on page 389

VMMCALL Call VMM X
“VMMCALL Instruction” on
page 395

VMRUN Run Virtual Machine X “VMRUN Instruction” on page 369

VMSAVE Save State to VMCB X
“VMSAVE and VMLOAD
Instructions” on page 389

WBINVD Writeback and Invalidate Caches X
“Cache Management” on
page 157

WRMSR Write Model-Specific Register X
“RDMSR and WRMSR
Instructions” on page 154

Table 6-1. System Management Instructions (continued)

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

Note:
1. The operating system controls the privilege required to use the instruction.

150 System-Management Instructions

AMD64 Technology 24593—Rev. 3.17—June 2010

• The MOV, PUSH, and POP instructions can be used to load and store segment registers, as
described in “MOV, POP, and PUSH Instructions” on page 155.

6.1 Fast System Call and Return

Operating systems can use both paging and segmentation to implement protected memory models.
Segment descriptors provide the necessary memory protection and privilege checking for segment
accesses. By setting segment-descriptor fields appropriately, operating systems can enforce access
restrictions as needed.

A disadvantage of segment-based protection and privilege checking is the overhead associated with
loading a new segment selector (and its corresponding descriptor) into a segment register. Even when
using the flat-memory model, this overhead still occurs when switching between privilege levels
because code segments (CS) and stack segments (SS) are reloaded with different segment descriptors.

To initiate a call to the operating system, an application transfers control to the operating system
through a gate descriptor (call, interrupt, trap, or task gate). In the past, control was transferred using
either a far CALL instruction or a software interrupt. Transferring control through one of these gates is
slowed by the segmentation-related overhead, as is the later return using a far RET or IRET
instruction. The following checks are performed when control is transferred in this manner:

• Selectors, gate descriptors, and segment descriptors are in the proper form.

• Descriptors lie within the bounds of the descriptor tables.

• Gate descriptors reference the appropriate segment descriptors.

• The caller, gate, and target privileges all allow the control transfer to take place.

• The stack created by the call has sufficient properties to allow the transfer to take place.

In addition to these call-gate checks, other checks are made involving the task-state segment when a
task switch occurs.

6.1.1 SYSCALL and SYSRET

SYSCALL and SYSRET Instructions. SYSCALL and SYSRET are low-latency system call and
return instructions. These instructions assume the operating system implements a flat-memory model,
which greatly simplifies calls to and returns from the operating system. This simplification comes
from eliminating unneeded checks, and by loading pre-determined values into the CS and SS segment
registers (both visible and hidden portions). As a result, SYSCALL and SYSRET can take fewer than
one-fourth the number of internal clock cycles to complete than the legacy CALL and RET
instructions. SYSCALL and SYSRET are particularly well-suited for use in 64-bit mode, which
requires implementation of a paged, flat-memory model.

SYSCALL and SYSRET require that the code-segment base, limit, and attributes (except for CPL) are
consistent for all application and system processes. Only the CPL is allowed to vary. The processor
assumes (but does not check) that the SYSCALL target CS has CPL=0 and the SYSRET target CS has
CPL=3.

System-Management Instructions 151

24593—Rev. 3.17—June 2010 AMD64 Technology

For details on the SYSCALL and SYSRET instructions, see “System Instruction Reference” in
Volume 3.

SYSCALL and SYSRET MSRs. The STAR, LSTAR, and CSTAR registers are model-specific
registers (MSRs) used to specify the target address of a SYSCALL instruction as well as the CS and SS
selectors of the called and returned procedures. The SFMASK register is used in long mode to specify
how rFLAGS is handled by these instructions. Figure 6-1 on page 151 shows the STAR, LSTAR,
CSTAR, and SFMASK register formats.

Figure 6-1. STAR, LSTAR, CSTAR, and MASK MSRs

• STAR—The STAR register has the following fields (unless otherwise noted, all bits are read/write):

- SYSRET CS and SS Selectors—Bits 63–48. This field is used to specify both the CS and SS
selectors loaded into CS and SS during SYSRET. If SYSRET is returning to 32-bit mode
(either legacy or compatibility), this field is copied directly into the CS selector field. If
SYSRET is returning to 64-bit mode, the CS selector is set to this field + 16. SS.Sel is set to this
field + 8, regardless of the target mode. Because SYSRET always returns to CPL 3, the RPL
bits 49–48 should be initialized to 11b.

- SYSCALL CS and SS Selectors—Bits 47–32. This field is used to specify both the CS and SS
selectors loaded into CS and SS during SYSCALL. This field is copied directly into CS.Sel.
SS.Sel is set to this field + 8. Because SYSCALL always switches to CPL 0, the RPL bits
33–32 should be initialized to 00b.

- 32-bit SYSCALL Target EIP—Bits 31–0. This is the target EIP of the called procedure.

The legacy STAR register is not expanded in long mode to provide a 64-bit target RIP address.
Instead, long mode provides two new STAR registers—long STAR (LSTAR) and compatibility
STAR (CSTAR)—that hold a 64-bit target RIP.

• LSTAR and CSTAR—The LSTAR register holds the target RIP of the called procedure in long
mode when the calling software is in 64-bit mode. The CSTAR register holds the target RIP of the
called procedure in long mode when the calling software is in compatibility mode. The WRMSR
instruction is used to load the target RIP into the LSTAR and CSTAR registers. If the RIP written to
either of the MSRs is not in canonical form, a #GP fault is generated on the WRMSR instruction.

63 48 47 32 31 0

STAR C000_0081h SYSRET CS and SS SYSCALL CS and SS 32-bit SYSCALL Target EIP

LSTAR C000_0082h Target RIP for 64-Bit-Mode Calling Software

CSTAR C000_0083h Target RIP for Compatibility-Mode Calling Software

SFMASK C000_0084h Reserved, RAZ SYSCALL Flag Mask

152 System-Management Instructions

AMD64 Technology 24593—Rev. 3.17—June 2010

• SFMASK—The SFMASK register is used to specify which RFLAGS bits are cleared during a
SYSCALL. In long mode, SFMASK is used to specify which RFLAGS bits are cleared when
SYSCALL is executed. If a bit in SFMASK is set to 1, the corresponding bit in RFLAGS is cleared
to 0. If a bit in SFMASK is cleared to 0, the corresponding rFLAGS bit is not modified.

6.1.2 SYSENTER and SYSEXIT (Legacy Mode Only)

SYSENTER and SYSEXIT Instructions. Like SYSCALL and SYSRET, SYSENTER and
SYSEXIT are low-latency system call and return instructions designed for use by system and
application software implementing a flat-memory model. However, these instructions are illegal in
long mode and result in an undefined opcode exception (#UD) if software attempts to use them.
Software should use the SYSCALL and SYSRET instructions when running in long mode.

SYSENTER and SYSEXIT MSRs. Three model-specific registers (MSRs) are used to specify the
target address and stack pointers for the SYSENTER instruction as well as the CS and SS selectors of
the called and returned procedures. The register fields are:

• SYSENTER Target CS—Holds the CS selector of the called procedure.

• SYSENTER Target ESP—Holds the called-procedure stack pointer. The SS selector is updated
automatically to point to the next descriptor entry after the SYSENTER Target CS, and ESP is the
offset into that stack segment.

• SYSENTER Target EIP—Holds the offset into the CS of the called procedure.

Figure 6-2 shows the register formats and their corresponding MSR IDs.

Figure 6-2. SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP MSRs

6.1.3 SWAPGS Instruction

The SWAPGS instruction provides a fast method for system software to load a pointer to system data
structures. SWAPGS can be used upon entering system-software routines as a result of a SYSCALL
instruction or as a result of an interrupt or exception. Before returning to application software,
SWAPGS can restore an application data-structure pointer that was replaced by the system data-
structure pointer.

63 32 31 16 15 0

SYSENTER_CS 174h SYSENTER Target CS

SYSENTER_ESP 175h SYSENTER Target ESP

SYSENTER_EIP 176h SYSENTER Target EIP

System-Management Instructions 153

24593—Rev. 3.17—June 2010 AMD64 Technology

SWAPGS exchanges the base-address value located in the KernelGSbase model-specific register
(MSR address C000_0102h) with the base-address value located in the hidden portion of the GS
selector register (GS.base). This exchange allows the system-kernel software to quickly access kernel
data structures by using the GS segment-override prefix during memory references.

The need for SwapGS arises from the requirement that, upon entry to the OS kernel, the kernel needs
to obtain a 64-bit pointer to its essential data structures. When using SYSCALL to implement system
calls, no kernel stack exists at the OS entry point. Neither is there a straightforward method to obtain a
pointer to kernel structures, from which the kernel stack pointer could be read. Thus, the kernel cannot
save GPRs or reference memory. SwapGS does not require any GPR or memory operands, so no
registers need to be saved before using it. Similarly, when the OS kernel is entered via an interrupt or
exception (where the kernel stack is already set up), SwapGS can be used to quickly get a pointer to the
kernel data structures.

See “FS and GS Registers in 64-Bit Mode” on page 70 for more information on using the GS.base
register in 64-bit mode.

6.2 System Status and Control

System-status and system-control instructions are used to determine the features supported by a
processor, gather information about the current execution state, and control the processor operating
modes.

6.2.1 Processor Feature Identification (CPUID)

CPUID Instruction. The CPUID instruction provides complete information about the processor
implementation and its capabilities. Software operating at any privilege level can execute the CPUID
instruction to collect this information. System software normally uses the CPUID instruction to
determine which optional features are available so the system can be configured appropriately. The
optional features identified by the CPUID instruction are described in “CPUID” in Volume 3.

6.2.2 Accessing Control Registers

MOV CRn Instructions. The MOV CRn instructions can be used to copy data between the control
registers and the general-purpose registers. These instructions are privileged and cause a general-
protection exception (#GP) if non-privileged software attempts to execute them.

LMSW and SMSW Instructions. The machine status word is located in CR0 register bits 15–0. The
load machine status word (LMSW) instruction writes only the least-significant four status-word bits
(CR0[3:0]). All remaining status-word bits (CR0[15:4]) are left unmodified by the instruction. The
instruction is privileged and causes a #GP to occur if non-privileged software attempts to execute it.

The store machine status word (SMSW) instruction stores all 16 status-word bits (CR0[15:0]) into the
target GPR or memory location. The instruction is not privileged and can be executed by all software.

154 System-Management Instructions

AMD64 Technology 24593—Rev. 3.17—June 2010

CLTS Instruction. The clear task-switched bit instruction (CLTS) clears CR0.TS to 0. The CR0.TS
bit is set to 1 by the processor every time a task switch takes place. The bit is useful to system software
in determining when the x87 and multimedia register state should be saved or restored. See “Task
Switched (TS) Bit” on page 44 for more information on using CR0.TS to manage x87-instruction
state. The CLTS instruction is privileged and causes a #GP to occur if non-privileged software attempts
to execute it.

6.2.3 Accessing the RFLAGs Register

The RFLAGS register contains both application and system bits. This section describes the
instructions used to read and write system bits. Descriptions of instruction effects on application flags
can be found in “Flags Register” in Volume 1 and “Instruction Effects on RFLAGS” in Volume 3.

POPF and PUSHF Instructions. The pop and push RFLAGS instructions are used for moving data
between the rFLAGS register and the stack. They are not system-management instructions, but their
behavior is mode-dependent.

CLI and STI Instructions. The clear interrupt (CLI) and set interrupt (STI) instructions modify only
the RFLAGS.IF bit or RFLAGS.VIF bit. Clearing rFLAGS.IF to 0 causes the processor to ignore
maskable interrupts. Setting RFLAGS.IF to 1 causes the processor to allow maskable interrupts.

See “Virtual Interrupts” on page 247 for more information on the operation of these instructions when
virtual-8086 mode extensions are enabled (CR4.VME=1).

6.2.4 Accessing Debug Registers

The MOV DRn instructions are used to copy data between the debug registers and the general-purpose
registers. These instructions are privileged and cause a general-protection exception (#GP) if non-
privileged software attempts to execute them. See “Debug Registers” on page 328 for a detailed
description of the debug registers.

6.2.5 Accessing Model-Specific Registers

RDMSR and WRMSR Instructions. The read/write model-specific register instructions (RDMSR
and WRMSR) can be used by privileged software to access the 64-bit MSRs. See “Model-Specific
Registers (MSRs)” on page 56 for details about the MSRs.

RDPMC Instruction. The read performance-monitoring counter instruction, RDPMC, is used to read
the model-specific performance-monitor registers, PerfCtrn.

RDTSC Instruction. The read time-stamp counter instruction, RDTSC, is used to read the model-
specific time-stamp counter (TSC) register.

RDTSCP Instruction. The read time-stamp counter and processor ID instruction, RDTSCP, is used
to read the model-specific time-stamp counter (TSC) register. as well as the low 32 bits of the
TSC_AUX register (MSR C000_0103h).

System-Management Instructions 155

24593—Rev. 3.17—June 2010 AMD64 Technology

6.3 Segment Register and Descriptor Register Access

The AMD64 architecture supports the legacy instructions that load and store segment registers and
descriptor registers. In some cases the instruction capabilities are expanded to support long mode.

6.3.1 Accessing Segment Registers

MOV, POP, and PUSH Instructions. The MOV and POP instructions can be used to load a selector
into a segment register from a general-purpose register or memory (MOV) or from the stack (POP).
Any segment register, except the CS register, can be loaded with the MOV and POP instructions. The
CS register must be loaded with a far-transfer instruction.

All segment register selectors can be stored in a general-purpose register or memory using the MOV
instruction or pushed onto the stack using the PUSH instruction.

When a selector is loaded into a segment register, the processor automatically loads the corresponding
descriptor-table entry into the hidden portion of the selector register. The hidden portion contains the
base address, limit, and segment attributes.

Segment-load and segment-store instructions work normally in 64-bit mode. The appropriate entry is
read from the system descriptor table (GDT or LDT) and is loaded into the hidden portion of the
segment descriptor register. However, the contents of data-segment and stack-segment descriptor
registers are ignored, except in the case of the FS and GS segment-register base fields—see “FS and
GS Registers in 64-Bit Mode” on page 70 for more information.

The ability to use segment-load instructions allows a 64-bit operating system to set up segment
registers for a compatibility-mode application before switching to compatibility mode.

6.3.2 Accessing Descriptor-Table Registers

LGDT and LIDT Instructions. The load GDTR (LGDT) and load IDTR (LIDT) instructions load a
pseudo-descriptor from memory into the GDTR or IDTR registers, respectively.

LLDT and LTR Instructions. The load LDTR (LLDT) and load TR (LTR) instructions load a system-
segment descriptor from the GDT into the LDTR and TR segment-descriptor registers (hidden
portion), respectively.

SGDT and SIDT Instructions. The store GDTR (SGDT) and store IDTR (SIDT) instructions reverse
the operation of the LGDT and LIDT instructions. SGDT and SIDT store a pseudo-descriptor from the
GDTR or IDTR register into memory.

SLDT and STR Instructions. In all modes, the store LDTR (SLDT) and store TR (STR) instructions
store the LDT or task selector from the visible portion of the LDTR or TR register into a general-
purpose register or memory, respectively. The hidden portion of the LDTR or TR register is not stored.

156 System-Management Instructions

AMD64 Technology 24593—Rev. 3.17—June 2010

6.4 Protection Checking

Several instructions are provided to allow software to determine the outcome of a protection check
before performing a memory access that could result in a protection violation. By performing the
checks before a memory access, software can avoid violations that result in a general-protection
exception (#GP).

6.4.1 Checking Access Rights

LAR Instruction. The load access-rights (LAR) instruction can be used to determine if access to a
segment is allowed, based on privilege checks and type checks. The LAR instruction uses a segment-
selector in the source operand to reference a descriptor in the GDT or LDT. LAR performs a set of
access-rights checks and, if successful, loads the segment-descriptor access rights into the destination
register. Software can further examine the access-rights bits to determine if access into the segment is
allowed.

6.4.2 Checking Segment Limits

LSL Instruction. The load segment-limit (LSL) instruction uses a segment-selector in the source
operand to reference a descriptor in the GDT or LDT. LSL performs a set of preliminary access-rights
checks and, if successful, loads the segment-descriptor limit field into the destination register.
Software can use the limit value in comparisons with pointer offsets to prevent segment limit
violations.

6.4.3 Checking Read/Write Rights

VERR and VERW Instructions. The verify read-rights (VERR) and verify write-rights (VERW) can
be used to determine if a target code or data segment (not a system segment) can be read or written
from the current privilege level (CPL). The source operand for these instructions is a pointer to the
segment selector to be tested. If the tested segment (code or data) is readable from the current CPL, the
VERR instruction sets RFLAGS.ZF to 1; otherwise, it is cleared to zero. Likewise, if the tested data
segment is writable, the VERW instruction sets the RFLAGS.ZF to 1. A code segment cannot be tested
for writability.

6.4.4 Adjusting Access Rights

ARPL Instruction. The adjust RPL-field (ARPL) instruction can be used by system software to
prevent access into privileged-data segments by lower-privileged software. This can happen if an
application passes a selector to system software and the selector RPL is less than (has greater privilege
than) the calling-application CPL. To prevent this surrogate access, system software executes ARPL
with the following operands:

• The destination operand is the data-segment selector passed to system software by the application.

• The source operand is the application code-segment selector (available on the system-software
stack as a result of the CALL into system software by the application).

System-Management Instructions 157

24593—Rev. 3.17—June 2010 AMD64 Technology

ARPL is not supported in 64-bit mode.

6.5 Processor Halt

The processor halt instruction (HLT) halts instruction execution, leaving the processor in the halt state.
No registers or machine state are modified as a result of executing the HLT instruction. The processor
remains in the halt state until one of the following occurs:

• A non-maskable interrupt (NMI).

• An enabled, maskable interrupt (INTR).

• Processor reset (RESET).

• Processor initialization (INIT).

• System-management interrupt (SMI).

6.6 Cache and TLB Management

Cache-management instructions are used by system software to maintain coherency within the
memory hierarchy. Memory coherency and caches are discussed in Chapter 7, “Memory System.”
Similarly, TLB-management instructions are used to maintain coherency between page translations
cached in the TLB and the translation tables maintained by system software in memory. See
“Translation-Lookaside Buffer (TLB)” on page 139 for more information.

6.6.1 Cache Management

WBINVD Instruction. The writeback and invalidate (WBINVD) instruction is used to write all
modified cache lines to memory so that memory contains the most recent copy of data. After the writes
are complete, the instruction invalidates all cache lines. This instruction operates on all caches in the
memory hierarchy, including caches that are external to the processor.

INVD Instruction. The invalidate (INVD) instruction is used to invalidate all cache lines in all caches
in the memory hierarchy. Unlike the WBINVD instruction, no modified cache lines are written to
memory. The INVD instruction should only be used in situations where memory coherency is not
required.

6.6.2 TLB Invalidation

INVLPG Instruction. The invalidate TLB entry (INVLPG) instruction can be used to invalidate
specific entries within the TLB. The source operand is a virtual-memory address that specifies the
TLB entry to be invalidated. Invalidating a TLB entry does not remove the associated page-table entry
from the data cache. See “Translation-Lookaside Buffer (TLB)” on page 139 for more information.

158 System-Management Instructions

AMD64 Technology 24593—Rev. 3.17—June 2010

Memory System 159

24593—Rev. 3.17—June 2010 AMD64 Technology

7 Memory System

This chapter describes:

• Cache coherency mechanisms

• Cache control mechanisms

• Memory typing

• Memory mapped I/O

• Memory ordering rules

• Serializing instructions

Figure 7-1 on page 160 shows a conceptual picture of a processor and memory system, and how data
and instructions flow between the various components. This diagram is not intended to represent a
specific microarchitectural implementation but instead is used to illustrate the major memory-system
components covered by this chapter.

160 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 7-1. Processor and Memory System

The memory-system components described in this chapter are shown as unshaded boxes in Figure 7-1.
Those items are summarized in the following paragraphs.

Main memory is external to the processor chip and is the memory-hierarchy level farthest from the
processor execution units.

Caches are the memory-hierarchy levels closest to the processor execution units. They are much
smaller and much faster than main memory, and can be either internal or external to the processor chip.
Caches contain copies of the most frequently used instructions and data. By allowing fast access to
frequently used data, software can run much faster than if it had to access that data from main memory.
Figure 7-1 shows three caches, all internal to the processor:

513-211.eps

Write-Combining
BuffersL1

Instruction Cache

Write Buffers

L2 Cache

L1
Data Cache

Main Memory

System Bus Interface

Load/Store Unit

Execution Units
Processor Chip

Memory System 161

24593—Rev. 3.17—June 2010 AMD64 Technology

• L1 Data Cache—The L1 (level-1) data cache holds the data most recently read or written by the
software running on the processor.

• L1 Instruction Cache—The L1 instruction cache is similar to the L1 data cache except that it holds
only the instructions executed most frequently. In some processor implementations, the L1
instruction cache can be combined with the L1 data cache to form a unified L1 cache.

• L2 Cache—The L2 (level-2) cache is usually several times larger than the L1 caches, but it is also
slower. It is common for L2 caches to be implemented as a unified cache containing both
instructions and data. Recently used instructions and data that do not fit within the L1 caches can
reside in the L2 cache. The L2 cache can be exclusive, meaning it does not cache information
contained in the L1 cache. Conversely, inclusive L2 caches contain a copy of the L1-cached
information.

Memory-read operations from cacheable memory first check the cache to see if the requested
information is available. A read hit occurs if the information is available in the cache, and a read miss
occurs if the information is not available. Likewise, a write hit occurs if the memory write can be
stored in the cache, and a write miss occurs if it cannot be stored in the cache.

Caches are divided into fixed-size blocks called cache lines. The cache allocates lines to correspond to
regions in memory of the same size as the cache line, aligned on an address boundary equal to the
cache-line size. For example, in a cache with 32-byte lines, the cache lines are aligned on 32-byte
boundaries and byte addresses 0007h and 001Eh are both located in the same cache line. The size of a
cache line is implementation dependent. Most implementations have either 32-byte or 64-byte cache
lines.

The process of loading data into a cache is a cache-line fill. Even if only a single byte is requested, all
bytes in a cache line are loaded from memory. Typically, a cache-line fill must remove (evict) an
existing cache line to make room for the new line loaded from memory. This process is called cache-
line replacement. If the existing cache line was modified before the replacement, the processor
performs a cache-line writeback to main memory when it performs the cache-line fill.

Cache-line writebacks help maintain coherency (consistency) between the caches and main memory.
Internally, the processor can also maintain cache coherency by internally probing (checking) the other
caches and write buffers for a more recent version of the requested data. External devices can also
check processor caches for more recent versions of data by externally probing the processor.
Throughout this document, the term probe is used to refer to external probes, while internal probes are
always qualified with the word internal.

Write buffers temporarily hold data writes when main memory or the caches are busy with other
memory accesses. The existence of write buffers is implementation dependent.

Implementations of the architecture can use write-combining buffers if the order and size of non-
cacheable writes to main memory is not important to the operation of software. These buffers can
combine multiple, individual writes to main memory and transfer the data in fewer bus transactions.

162 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

7.1 Single-Processor Memory Access Ordering

The flexibility in which memory accesses can be ordered is closely related to the flexibility in which a
processor implementation can execute and retire instructions. Instruction execution creates results and
status and determines whether or not the instruction causes an exception. Instruction retirement
commits the results of instruction execution, in program order, to software-visible resources such as
memory, caches, write-combining buffers, and registers, or it causes an exception to occur if
instruction execution created one.

Implementations of the AMD64 architecture retire instructions in program order, but implementations
can execute instructions in any order, subject only to data dependencies. Implementations can also
speculatively execute instructions—executing instructions before knowing they are needed. Internally,
implementations manage data reads and writes so that instructions complete in order. However,
because implementations can execute instructions out of order and speculatively, the sequence of
memory accesses performed by the hardware can appear to be out of program order. The following
sections describe the rules governing memory accesses to which processor implementations adhere.
These rules may be further restricted, depending on the memory type being accessed. Further, these
rules govern single processor operation; see “Multiprocessor Memory Access Ordering” on page 164
for multiprocessor ordering rules.

7.1.1 Read Ordering

Generally, reads do not affect program order because they do not affect the state of software-visible
resources other than register contents. However, some system devices might be sensitive to reads. In
such a situation software can map a read-sensitive device to a memory type that enforces strong read-
ordering, or use read/write barrier instructions to force strong read-ordering.

For cacheable memory types, the following rules govern read ordering:

• Out-of-order reads are allowed to the extent that they can be performed transparently to software,
such that the appearance of in-order execution is maintained. Out-of-order reads can occur as a
result of out-of-order instruction execution or speculative execution. The processor can read
memory and perform cache refills out-of-order to allow out-of-order execution to proceed.

• Speculative reads are allowed. A speculative read occurs when the processor begins executing a
memory-read instruction before it knows the instruction will actually complete. For example, the
processor can predict a branch will occur and begin executing instructions following the predicted
branch before it knows whether the prediction is valid. When one of the speculative instructions
reads data from memory, the read itself is speculative. Cache refills may also be performed
speculatively.

• Reads can be reordered ahead of writes. Reads are generally given a higher priority by the
processor than writes because instruction execution stalls if the read data required by an instruction
is not immediately available. Allowing reads ahead of writes usually maximizes software
performance.

• A read cannot be reordered ahead of a prior write if the read is from the same location as the prior
write. In this case, the read instruction stalls until the write instruction completes execution. The

Memory System 163

24593—Rev. 3.17—June 2010 AMD64 Technology

read instruction requires the result of the write instruction for proper software operation. For
cacheable memory types, the write data can be forwarded to the read instruction before it is
actually written to memory.

7.1.2 Write Ordering

Writes affect program order because they affect the state of software-visible resources. The following
rules govern write ordering:

• Generally, out-of-order writes are not allowed. Write instructions executed out of order cannot
commit (write) their result to memory until all previous instructions have completed in program
order. The processor can, however, hold the result of an out-of-order write instruction in a private
buffer (not visible to software) until that result can be committed to memory.

• It is possible for writes to write-combining memory types to appear to complete out of order,
relative to writes into other memory types. See “Memory Types” on page 170 and “Write
Combining” on page 175 for additional information.

• Speculative writes are not allowed. As with out-of-order writes, speculative write instructions
cannot commit their result to memory until all previous instructions have completed in program
order. Processors can hold the result in a private buffer (not visible to software) until the result can
be committed.

• Write buffering is allowed. When a write instruction completes and commits its result, that result
can be buffered before actually writing the result into a memory location in program order.
Although the write buffer itself is not directly accessible by software, the results in the buffer are
accessible during memory accesses to the locations that are buffered. For cacheable memory types,
the write buffer can be read out-of-order and speculatively read, just like memory.

• Write combining is allowed. In some situations software can relax the write-ordering rules and
allow several writes to be combined into fewer writes to memory. When write-combining is used, it
is possible for writes to other memory types to proceed ahead of (out-of-order) memory-
combining writes, unless the writes are to the same address. Write-combining should be used only
when the order of writes does not affect program order (for example, writes to a graphics frame
buffer).

7.1.3 Read/Write Barriers

When the order of memory accesses must be strictly enforced, software can use read/write barrier
instructions to force reads and writes to proceed in program order. Read/write barrier instructions force
all prior reads or writes to complete before subsequent reads or writes are executed. The LFENCE,
SFENCE, and MFENCE instructions are provided as dedicated read, write, and read/write barrier
instructions (respectively). Serializing instructions, I/O instructions, and locked instructions can also
be used as read/write barriers. Barrier instructions are useful for controlling ordering between differing
memory types as well as within one memory type; see section 7.3.1 for details.

Table 7-1 on page 171 summarizes the memory-access ordering possible for each memory type
supported by the AMD64 architecture.

164 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

7.2 Multiprocessor Memory Access Ordering

The term memory ordering refers to the sequence in which memory accesses are performed by the
memory system, as observed by all processors or programs.

To improve performance of applications, AMD64 processors can speculatively execute instructions
out of program order and temporarily hold out-of-order results. However, certain rules are followed
with regard to normal cacheable accesses on naturally aligned boundaries to WB memory.

From the point of view of a program, in ascending order of priority:

• All loads, stores and I/O operations from a single processor appear to occur in program order to the
code running on that processor and all instructions appear to execute in program order.

In this context:

- Loads do not pass previous loads (loads are not re-ordered). Stores do not pass previous stores
(stores are not re-ordered)

In the examples below all memory values are initialized to zero.

Load A cannot read 0 when Load B reads 1. (This rule may be violated in the case of loads as
part of a string operation, in which one iteration of the string reads 0 for Load A while another
iteration reads 1 for Load B.)

- Stores do not pass loads

Load A and Load B cannot both read 1.

• Stores from a processor appear to be committed to the memory system in program order; however,
stores can be delayed arbitrarily by store buffering while the processor continues operation. For the
code example below, both load A in processor 1 and load B in processor 0 can read 1 from the first
store in each processor. Therefore, stores from a processor may not appear to be sequentially
consistent.

Processor 0 Processor 1

Store A ← 1 Load B

Store B ← 1 Load A

Processor 0 Processor 1

Load A Load B

Store B ← 1 Store A ← 1

Memory System 165

24593—Rev. 3.17—June 2010 AMD64 Technology

- Non-overlapping Loads may pass stores.

All combinations of Load A and Load B values are allowed. Where sequential consistency is
needed (for example in Dekker’s algorithm for mutual exclusion), an MFENCE instruction
should be used between the store and the subsequent load, or a locked access, such as LOCK
XCHG, should be used for the store.

Load A and Load B cannot both read 0.

- Stores to different locations in memory observed from two (or more) other processors will
appear in the same order to all observers. Behavior such as that shown in this code example,

in which processor X sees store A from processor 0 before store B from processor 1, while
processor Y sees store B from processor 1 before store A from processor 0, is not allowed.

Processor 0 Processor 1

Store A ← 1 Store B ← 1

… …

Store A ← 2 Store B ← 2

… …

Load B Load A

Processor 0 Processor 1

Store A ← 1 Store B ← 1

Load B Load A

Processor 0 Processor 1

Store A ← 1 Store B ← 1

MFENCE MFENCE

Load B Load A

Processor 0 Processor 1 Processor X Processor Y

Store A ← 1 Store B ← 1

Load A (1) Load B (1)

Load B (0) Load A (0)

166 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

• Dependent stores between different processors appear to occur in program order, as shown in the
code example below.

If processor 1 reads a value from A (written by processor 0) before carrying out a store to B, and if
processor 2 reads the updated value from B, a subsequent read of A must also be the updated value.

• The local visibility (within a processor) for a memory operation may differ from the global
visibility (from another processor). Using a data bypass, a local load can read the result of a local
store in a store buffer, before the store becomes globally visible. Program order is still maintained
when using such bypasses.

Load A in processor 0 can read 1 using the data bypass, while Load A in processor 1 can read 0.
Similarly, Load B in processor 1 can read 1 while Load B in processor 0 can read 0. Therefore
result r1 = 1, r2 = 0, r3 = 1 and r4 = 0 is allowed. There are no constraints on the relative order of
Store A and Load A in processor 0, and store B and Load B in processor 1.

If a very strong memory ordering model is required that does not allow local store-load bypasses,
an MFENCE instruction should be used between the store and the subsequent load or a
synchronizing instruction such as LOCK XCHG should be used for the store. This memory
ordering is stronger than total store ordering.

The MFENCE instruction ensures that any buffered stores are globally visible before the loads are
allowed to execute, so the result r1 = 1, r2 = 0, r3 = 1 and r4 = 0 is not allowed. Similarly, a LOCK
XCHG would ensure the loads don't execute until its store operation is globally visible.

Processor 0 Processor 1 Processor 2

Store A ← 1

Load A (1)

Store B ← 1

Load B (1)

Load A (1)

Processor 0 Processor 1

Store A ← 1 Store B ← 1

Load r1 A Load r3 B

Load r2 B Load r4 A

Processor 0 Processor 1

Store A ← 1 Store B ← 1

MFENCE MFENCE

Load r1 A Load r3 B

Load r2 B Load r4 A

Memory System 167

24593—Rev. 3.17—June 2010 AMD64 Technology

7.3 Memory Coherency and Protocol

Implementations that support caching support a cache-coherency protocol for maintaining coherency
between main memory and the caches. The cache-coherency protocol is also used to maintain
coherency between all processors in a multiprocessor system. The cache-coherency protocol
supported by the AMD64 architecture is the MOESI (modified, owned, exclusive, shared, invalid)
protocol. The states of the MOESI protocol are:

• Invalid—A cache line in the invalid state does not hold a valid copy of the data. Valid copies of the
data can be either in main memory or another processor cache.

• Exclusive—A cache line in the exclusive state holds the most recent, correct copy of the data. The
copy in main memory is also the most recent, correct copy of the data. No other processor holds a
copy of the data.

• Shared—A cache line in the shared state holds the most recent, correct copy of the data. Other
processors in the system may hold copies of the data in the shared state, as well. If no other
processor holds it in the owned state, then the copy in main memory is also the most recent.

• Modified—A cache line in the modified state holds the most recent, correct copy of the data. The
copy in main memory is stale (incorrect), and no other processor holds a copy.

• Owned—A cache line in the owned state holds the most recent, correct copy of the data. The
owned state is similar to the shared state in that other processors can hold a copy of the most recent,
correct data. Unlike the shared state, however, the copy in main memory can be stale (incorrect).
Only one processor can hold the data in the owned state—all other processors must hold the data in
the shared state.

Figure 7-2 on page 168 shows the general MOESI state transitions possible with various types of
memory accesses. This is a logical software view, not a hardware view, of how cache-line state
transitions. Instruction-execution activity and external-bus transactions can both be used to modify the
cache MOESI state in multiprocessing or multi-mastering systems.

168 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 7-2. MOESI State Transitions

To maintain memory coherency, external bus masters (typically other processors with their own
internal caches) need to acquire the most recent copy of data before caching it internally. That copy can
be in main memory or in the internal caches of other bus-mastering devices. When an external master
has a cache read-miss or write-miss, it probes the other mastering devices to determine whether the
most recent copy of data is held in any of their caches. If one of the other mastering devices holds the
most recent copy, it provides it to the requesting device. Otherwise, the most recent copy is provided
by main memory.

513-212.eps

Reset
INVD, WBINVD

Read Hit

Write Miss (WB memory)

Probe Write Hit

Probe R
ead

 Hit

Probe Write Hit

Read Miss, Exclusive

Probe Read Hit

W
rite Hit

Re
ad

 M
iss

, S
ha

re
d

Pr
ob

e
W

rit
e

Hi
t

Invalid Exclusive

Read Hit
Write Hit

Modified

Write Hit
Owned

Read Hit
Probe Read Hit

Shared

Read Hit
Probe Read Hit

Probe W
rite Hit

Write Hit

Memory System 169

24593—Rev. 3.17—June 2010 AMD64 Technology

There are two general types of bus-master probes:

• Read probes indicate the external master is requesting the data for read purposes.

• Write probes indicate the external master is requesting the data for the purpose of modifying it.

Referring back to Figure 7-2 on page 168, the state transitions involving probes are initiated by other
processors and external bus masters into the processor. Some read probes are initiated by devices that
intend to cache the data. Others, such as those initiated by I/O devices, do not intend to cache the data.
Some processor implementations do not change the data MOESI state if the read probe is initiated by a
device that does not intend to cache the data.

State transitions involving read misses and write misses can cause the processor to generate probes
into external bus masters and to read main memory.

Read hits do not cause a MOESI-state change. Write hits generally cause a MOESI-state change into
the modified state. If the cache line is already in the modified state, a write hit does not change its state.

The specific operation of external-bus signals and transactions and how they influence a cache MOESI
state are implementation dependent. For example, an implementation could convert a write miss to a
WB memory type into two separate MOESI-state changes. The first would be a read-miss placing the
cache line in the exclusive state. This would be followed by a write hit into the exclusive cache line,
changing the cache-line state to modified.

7.3.1 Special Coherency Considerations

In some cases, data can be modified in a manner that is impossible for the memory-coherency protocol
to handle due to the effects of instruction prefetching. In such situations software must use serializing
instructions and/or cache-invalidation instructions to guarantee subsequent data accesses are coherent.

An example of this type of a situation is a page-table update followed by accesses to the physical pages
referenced by the updated page tables. The following sequence of events shows what can happen when
software changes the translation of virtual-page A from physical-page M to physical-page N:

1. Software invalidates the TLB entry. The tables that translate virtual-page A to physical-page M are
now held only in main memory. They are not cached by the TLB.

2. Software changes the page-table entry for virtual-page A in main memory to point to physical-
page N rather than physical-page M.

3. Software accesses data in virtual-page A.

During Step 3, software expects the processor to access the data from physical-page N. However, it is
possible for the processor to prefetch the data from physical-page M before the page table for virtual-
page A is updated in Step 2. This is because the physical-memory references for the page tables are
different than the physical-memory references for the data. Because the physical-memory references
are different, the processor does not recognize them as requiring coherency checking and believes it is
safe to prefetch the data from virtual-page A, which is translated into a read from physical page M.
Similar behavior can occur when instructions are prefetched from beyond the page table update
instruction.

170 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

To prevent this problem, software must use an INVLPG or MOV CR3 instruction immediately after
the page-table update to ensure that subsequent instruction fetches and data accesses use the correct
virtual-page-to-physical-page translation. It is not necessary to perform a TLB invalidation operation
preceding the table update.

7.4 Memory Types

The AMD64 architecture defines the following memory types:

• Uncacheable (UC)—Reads from, and writes to, UC memory are not cacheable. Reads from UC
memory cannot be speculative. Write-combining to UC memory is not allowed. Reads from or
writes to UC memory cause the write buffers to be written to memory and be invalidated prior to
the access to UC memory.

The UC memory type is useful for memory-mapped I/O devices where strict ordering of reads and
writes is important.

• Cache Disable (CD)—The CD memory type is a form of uncacheable memory type that occurs
when caches are disabled (CR0.CD=1). With CD memory, it is possible for the address to be
cached due to an earlier cacheable access, or due to two virtual-addresses aliasing to a single
physical address.

For the L1 data cache and the L2 cache, reads from, and writes to, CD memory that hit the cache
cause the cache line to be invalidated before accessing main memory. If the cache line is in the
modified state, the line is written to main memory and then invalidated.

For the L1 instruction cache, reads from CD memory that hit the cache read the cached instructions
rather than access main memory. Reads that miss the cache access main memory and do not cause
cache-line replacement.

• Write-Combining (WC)—Reads from, and writes to, WC memory are not cacheable. Reads from
WC memory can be speculative.

Writes to this memory type can be combined internally by the processor and written to memory as
a single write operation to reduce memory accesses. For example, four word writes to consecutive
addresses can be combined by the processor into a single quadword write, resulting in one memory
access instead of four.

The WC memory type is useful for graphics-display memory buffers where the order of writes is
not important.

• Write-Protect (WP)—Reads from WP memory are cacheable and allocate cache lines on a read
miss. Reads from WP memory can be speculative.

Writes to WP memory that hit in the cache do not update the cache. Instead, all writes update
memory (write to memory), and writes that hit in the cache invalidate the cache line. Write
buffering of WP memory is allowed.

The WP memory type is useful for shadowed-ROM memory where updates must be immediately
visible to all devices that read the shadow locations.

Memory System 171

24593—Rev. 3.17—June 2010 AMD64 Technology

• Writethrough (WT)—Reads from WT memory are cacheable and allocate cache lines on a read
miss. Reads from WT memory can be speculative.

All writes to WT memory update main memory, and writes that hit in the cache update the cache
line (cache lines remain in the same state after a write that hits a cache line). Writes that miss the
cache do not allocate a cache line. Write buffering of WT memory is allowed.

• Writeback (WB)—Reads from WB memory are cacheable and allocate cache lines on a read miss.
Cache lines can be allocated in the shared, exclusive, or modified states. Reads from WB memory
can be speculative.

All writes that hit in the cache update the cache line and place the cache line in the modified state.
Writes that miss the cache allocate a new cache line and place the cache line in the modified state.
Writes to main memory only take place during writeback operations. Write buffering of WB
memory is allowed.

The WB memory type provides the highest-possible performance and is useful for most software
and data stored in system memory (DRAM).

Table 7-1 shows the memory access ordering possible for each memory type supported by the AMD64
architecture. Table 7-3 on page 173 shows the ordering behavior of various operations on various
memory types in greater detail. Table 7-2 on page 172 shows the caching policy for the same memory
types.

Table 7-1. Memory Access by Memory Type

Memory Access
Allowed

Memory Type

UC/CD WC WP WT WB

Read

Out-of-Order no yes yes yes yes

Speculative no yes yes yes yes

Reorder Before Write no yes yes yes yes

Write

Out-of-Order no yes no no no

Speculative no no no no no

Buffering no yes yes yes yes

Combining1 no yes no yes yes

Note:
1. Write-combining buffers are separate from write buffers.

172 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

7.4.1 Memory Barrier Interaction with Memory Types

Memory types other than WB may allow weaker ordering in certain respects. When the ordering of
memory accesses to differing memory types must be strictly enforced, software can use the LFENCE,
MFENCE or SFENCE barrier instructions to force loads and stores to proceed in program order.
Table 7-3 on page 173 summarizes the cases where a memory barrier must be inserted between two
memory operations.

The table is read as follows: the ROW is the first memory operation in program order, followed by the
COLUMN, which is the second memory operation in program order. The footnotes indicate the rules
for memory ordering.

Table 7-2. Caching Policy by Memory Type

Caching Policy
Memory Type

UC CD WC WP WT WB

Read Cacheable no no no yes yes yes

Write Cacheable no no no no yes yes

Read Allocate no no no yes yes yes

Write Allocate no no no no no yes

Write Hits Update Memory yes2 yes1 yes2 yes3 yes no

Note:
1. For the L1 data cache and the L2 cache, if an access hits the cache, the cache line is invalidated. If the cache line

is in the modified state, the line is written to main memory and then invalidated. For the L1 instruction cache, read
hits access the cache rather than main memory.

2. The data is not cached, so a cache write hit cannot occur. However, memory is updated.
3. Write hits update memory and invalidate the cache line.

Memory System 173

24593—Rev. 3.17—June 2010 AMD64 Technology

Table 7-3. Memory Access Ordering Rules

a — A load (wp, wt, wb, wc, wc+) may pass a previous non-conflicting store (wp, wt, wb, wc,wc+, nt).

b — A load (wc, wc+) may pass a previous load (wp, wt, wb, wc, wc+). To ensure memory order, an
LFENCE instruction must be inserted between the two loads.

c — A store (wp, wt, wb, uc, wc, wc+, nt) may not pass a previous load (wp, wt, wb, uc, wc, wc+, nt).

d — All previous loads and stores complete to memory or I/O space before a memory access for an I/O,
locked or serializing instruction is issued.

e — A load (wp, wt, wb, wc, wc+) may pass a previous non-conflicting store (wp, wt, wb, wc, wc+, nt).
To ensure memory order, an MFENCE instruction must be inserted between the store and the load.

f — A load or store (uc) does not pass a previous load or store (wp, wt, wb, uc, wc, wc+, nt).

g — A store (wp,wt,wb,uc) does not pass a previous store (wp,wt,wb,uc).

h — A store (wc,wc+, nt) may pass a previous store (wp, wt, wb) or non-conflicting store (wc, wc+, nt).
To ensure memory order, an SFENCE instruction must be inserted between these two stores. A store
(wc,wc+, nt) does not pass a previous conflicting store (wc,wc+, nt).

i — A load (wp,wt,wb,wc,wc+) does not pass a previous store (uc).

j — A store (wp,wt,wb) may pass a previous store (wc,wc+, nt). To ensure memory order, an SFENCE
instruction must be inserted between these two stores.

k — All loads and stores associated with the I/O and locked instructions complete to memory (no buffered
stores) before a load or store from a subsequent instruction is issued.

l — All loads and stores complete to memory for the serializing instruction before the subsequent
instruction fetch is issued.

Second Memory Operation

First Memory Operation

Lo
ad

 (
w

p,
 w

t,
w

b)

Lo
ad

 (
uc

)

Lo
ad

 (
w

c,
 w

c+
)

S
to

re
 (

w
p,

 w
t,

w
b)

S
to

re
 (

uc
)

 S
to

re

(w
c,

 w
c+

, n
on

-t
em

po
ra

l)

Lo
ad

/S
to

re
 (

io
)

Lo
ck

 (
at

om
ic

)

S
er

ia
liz

e
in

st
ru

ct
io

ns
/

In
te

rr
up

ts
/E

xc
ep

tio
ns

Load (wp, wt, wb) a f b (lf) c c c d d d

Load (uc) a f b (lf) c c c d d d

Load (wc, wc+) a f b (lf) c c c d d d

Store (wp, wt, wb) e (mf) f e (mf) g g h (sf) d d d

Store (uc) i f i g g h (sf) d d d

Store (wc, wc+, non-temporal) e (mf) f e (mf) j (sf) g h (sf) d d d

Load/Store (io) k k k k k l d, k d, k d, k

Lock (atomic) k k k k k k d, k d, k d, k

Serialize instruction/
Interrupts/Exceptions

l l l l l l d, l d, l d, l

174 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

7.5 Buffering and Combining Memory Writes

7.5.1 Write Buffering

Writes to memory (main memory and caches) can be stored internally by the processor in write buffers
(also known as store buffers) before actually writing the data into a memory location. System
performance can be improved by buffering writes, as shown in the following examples:

• When higher-priority memory transactions, such as reads, compete for memory access with writes,
writes can be delayed in favor of reads, which minimizes or eliminates an instruction-execution
stall due to a memory-operand read.

• When the memory is busy, buffering writes while the memory is busy removes the writes from the
instruction-execution pipeline, which frees instruction-execution resources.

The processor manages the write buffer so that it is transparent to software. Memory accesses check
the write buffer, and the processor completes writes into memory from the buffer in program order.
Also, the processor completely empties the write buffer by writing the contents to memory as a result
of performing any of the following operations:

• SFENCE Instruction—Executing a store-fence (SFENCE) instruction forces all memory writes
before the SFENCE (in program order) to be written into memory (or, for WB type, the cache)
before memory writes that follow the SFENCE instruction. The memory-fence (MFENCE)
instruction has a similar effect, but it forces the ordering of loads in addition to stores.

• Serializing Instructions—Executing a serializing instruction forces the processor to retire the
serializing instruction (complete both instruction execution and result writeback) before the next
instruction is fetched from memory.

• I/O instructions—Before completing an I/O instruction, all previous reads and writes must be
written to memory, and the I/O instruction must complete before completing subsequent reads or
writes. Writes to I/O-address space (OUT instruction) are never buffered.

• Locked Instructions—A locked instruction (an instruction executed using the LOCK prefix) must
complete after all previous reads and writes and before subsequent reads and writes. Locked writes
are never buffered, although locked reads and writes are cacheable.

• Interrupts and Exceptions—Interrupts and exceptions are serializing events that force the
processor to write all results from the write buffer to memory before fetching the first instruction
from the interrupt or exception service routine.

• UC-Memory Reads—UC-memory reads are not reordered ahead of writes.

Write buffers can behave similarly to write-combining buffers because multiple writes may be
collected internally before transferring the data to caches or main memory. See the following section
for a description of write combining.

Memory System 175

24593—Rev. 3.17—June 2010 AMD64 Technology

7.5.2 Write Combining

Write-combining memory uses a different buffering scheme than write buffering described above.
Writes to write-combining (WC) memory can be combined internally by the processor in a buffer for
more efficient transfer to main memory at a later time. For example, 16 doubleword writes to
consecutive memory addresses can be combined in the WC buffers and transferred to main memory as
a single burst operation rather than as individual memory writes.

The following instructions perform writes to WC memory:

• MASKMOVDQU

• MASKMOVQ

• MOVNTDQ

• MOVNTI

• MOVNTPD

• MOVNTPS

• MOVNTQ

• MOVNTSD

• MOVNTSS

WC memory is not cacheable. A WC buffer writes its contents only to main memory.

The size and number of WC buffers available is implementation dependent. The processor assigns an
address range to an empty WC buffer when a WC-memory write occurs. The size and alignment of this
address range is equal to the buffer size. All subsequent writes to WC memory that fall within this
address range can be stored by the processor in the WC-buffer entry until an event occurs that causes
the processor to write the WC buffer to main memory. After the WC buffer is written to main memory,
the processor can assign a new address range on a subsequent WC-memory write.

Writes to consecutive addresses in WC memory are not required for the processor to combine them.
The processor combines any WC memory write that falls within the active-address range for a buffer.
Multiple writes to the same address overwrite each other (in program order) until the WC buffer is
written to main memory.

It is possible for writes to proceed out of program order when WC memory is used. For example, a
write to cacheable memory that follows a write to WC memory can be written into the cache before the
WC buffer is written to main memory. For this reason, and the reasons listed in the previous paragraph,
software that is sensitive to the order of memory writes should avoid using WC memory.

WC buffers are written to main memory under the same conditions as the write buffers, namely when:

• Executing a store-fence (SFENCE) instruction.

• Executing a serializing instruction.

• Executing an I/O instruction.

• Executing a locked instruction (an instruction executed using the LOCK prefix).

176 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

• An interrupt or exception occurs.

WC buffers are also written to main memory when:

• A subsequent non-write-combining operation has a write address that matches the WC-buffer
active-address range.

• A write to WC memory falls outside the WC-buffer active-address range. The existing buffer
contents are written to main memory, and a new address range is established for the latest WC
write.

7.6 Memory Caches

The AMD64 architecture supports the use of internal and external caches. The size, organization,
coherency mechanism, and replacement algorithm for each cache is implementation dependent.
Generally, the existence of the caches is transparent to both application and system software. In some
cases, however, software can use cache-structure information to optimize memory accesses or manage
memory coherency. Such software can use the extended-feature functions of the CPUID instruction to
gather information on the caching subsystem supported by the processor. For more information on
using CPUID in this manner, see the CPUID Specification, order# 25481.

7.6.1 Cache Organization and Operation

Although the detailed organization of a processor cache depends on the implementation, the general
constructs are similar. L1 caches—data and instruction, or unified—and L2 caches usually are
implemented as n-way set-associative caches. Figure 7-3 on page 177 shows a typical logical
organization of an n-way set-associative cache. The physical implementation of the cache can be quite
different.

Memory System 177

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 7-3. Cache Organization Example

As shown in Figure 7-3, the cache is organized as an array of cache lines. Each cache line consists of
three parts: a cache-data line (a fixed-size copy of a memory block), a tag, and other information. Rows
of cache lines in the cache array are sets, and columns of cache lines are ways. In an n-way set-
associative cache, each set is a collection of n lines. For example, in a four-way set-associative cache,
each set is a collection of four cache lines, one from each way.

513-213.eps

Physical Address

Tag Field Index Field Offset Field

= = =

Tag Data Other

. . .

Set 1

Set 2

Set 3

Set 0

Set m-1

Tag Data Other Tag Data Other

. . .Way 1Way 0 Way n-1

Line Data 0,2 Line Data 1,2 Line Data n-1,2

MUX n:1

Hit

Miss MissMiss

Hit
Hit

. . .

Data

Hit Data

Cache

178 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

The cache is accessed using the physical address of the data or instruction being referenced. To access
data within a cache line, the physical address is used to select the set, way, and byte from the cache.
This is accomplished by dividing the physical address into the following three fields:

• Index—The index field selects the cache set (row) to be examined for a hit. All cache lines within
the set (one from each way) are selected by the index field.

• Tag—The tag field is used to select a specific cache line from the cache set. The physical-address
tag field is compared with each cache-line tag in the set. If a match is found, a cache hit is
signalled, and the appropriate cache line is selected from the set. If a match is not found, a cache
miss is signalled.

• Offset—The offset field points to the first byte in the cache line corresponding to the memory
reference. The referenced data or instruction value is read from (or written to, in the case of
memory writes) the selected cache line starting at the location selected by the offset field.

In Figure 7-3 on page 177, the physical-address index field is shown selecting Set 2 from the cache.
The tag entry for each cache line in the set is compared with the physical-address tag field. The tag
entry for Way 1 matches the physical-address tag field, so the cache-line data for Set 2, Way 1 is
selected using the n:1 multiplexor. Finally, the physical-address offset field is used to point to the first
byte of the referenced data (or instruction) in the selected cache line.

Cache lines can contain other information in addition to the data and tags, as shown in Figure 7-3 on
page 177. MOESI state and the state bits associated with the cache-replacement algorithm are typical
pieces of information kept with the cache line. Instruction caches can also contain pre-decode or
branch-prediction information. The type of information stored with the cache line is implementation
dependent.

Self-Modifying Code. Software that writes into the code segment from which it was fetched is
classified as self-modifying code. To avoid cache-coherency problems due to self-modifying code, a
check is made during data writes to see whether the data-memory location corresponds to a code-
segment memory location. If it does, implementations of the AMD64 architecture invalidate the
corresponding instruction-cache line(s) during the data-memory write. Entries in the data cache are
not invalidated, and it is possible for the modified instruction to be cached by the data cache following
the memory write. A subsequent fetch of the modified instruction goes to main memory to get the
coherent version of the instruction. If the data cache holds the most recent copy of the instruction
rather than main memory, it provides that copy.

The processor determines whether a write is in a code segment by internally probing the instruction
cache and prefetched instructions. If the internal probe returns a hit, the instruction-cache line and
prefetched instructions are invalidated. The internal probes into the instruction cache and prefetch
hardware are always performed using the physical address of an instruction in order to avoid potential
aliasing problems associated with using virtual (linear) addresses.

Cross-Modifying Code. Software that stores into a code segment running simultaneously on another
processor with the intent that the other processor execute the written data as code is classified as cross-
modifying code. To avoid cache-coherency issues when using cross-modifying code, the processor
doing the store should provide synchronization between the processors using locked semaphores.

Memory System 179

24593—Rev. 3.17—June 2010 AMD64 Technology

Synchronization for cross-modifying code is not required however, when the code modification is
performed by a single store that's entirely within a naturally aligned quadword. See section 3.3.14
Semaphores in the AMD64 Architecture Programmer’s Manual Volume 1: Application Programming,
order# 24592. The use of cross-modifying code can result in performance degradation.

7.6.2 Cache Control Mechanisms

The AMD64 architecture provides a number of mechanisms for controlling the cacheability of
memory. These are described in the following sections.

Cache Disable. Bit 30 of the CR0 register is the cache-disable bit, CR0.CD. Caching is enabled
when CR0.CD is cleared to 0, and caching is disabled when CR0.CD is set to 1. When caching is
disabled, reads and writes access main memory.

Software can disable the cache while the cache still holds valid data (or instructions). If a read or write
hits the L1 data cache or the L2 cache when CR0.CD=1, the processor does the following:

1. Writes the cache line back if it is in the modified or owned state.

2. Invalidates the cache line.

3. Performs a non-cacheable main-memory access to read or write the data.

If an instruction fetch hits the L1 instruction cache when CR0.CD=1, the processor reads the cached
instructions rather than access main memory.

The processor also responds to cache probes when CR0.CD=1. Probes that hit the cache cause the
processor to perform Step 1. Step 2 (cache-line invalidation) is performed only if the probe is
performed on behalf of a memory write or an exclusive read.

Writethrough Disable. Bit 29 of the CR0 register is the not writethrough disable bit, CR0.NW. In
early x86 processors, CR0.NW is used to control cache writethrough behavior, and the combination of
CR0.NW and CR0.CD determines the cache operating mode.

In early x86 processors, clearing CR0.NW to 0 enables writeback caching for main memory,
effectively disabling writethrough caching for main memory. When CR0.NW=0, software can disable
writeback caching for specific memory pages or regions by using other cache control mechanisms.
When software sets CR0.NW to 1, writeback caching is disabled for main memory, while
writethrough caching is enabled.

In implementations of the AMD64 architecture, CR0.NW is not used to qualify the cache operating
mode established by CR0.CD. Table 7-4 shows the effects of CR0.NW and CR0.CD on the AMD64
architecture cache-operating modes.

180 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

Page-Level Cache Disable. Bit 4 of all paging data-structure entries controls page-level cache
disable (PCD). When a data-structure-entry PCD bit is cleared to 0, the page table or physical page
pointed to by that entry is cacheable, as determined by the CR0.CD bit. When the PCD bit is set to 1,
the page table or physical page is not cacheable. The PCD bit in the paging data-structure base-register
(bit 4 in CR3) controls the cacheability of the highest-level page table in the page-translation hierarchy.

Page-Level Writethrough Enable. Bit 3 of all paging data-structure entries is the page-level
writethrough enable control (PWT). When a data-structure-entry PWT bit is cleared to 0, the page
table or physical page pointed to by that entry has a writeback caching policy. When the PWT bit is set
to 1, the page table or physical page has a writethrough caching policy. The PWT bit in the paging
data-structure base-register (bit 3 in CR3) controls the caching policy of the highest-level page table in
the page-translation hierarchy.

The corresponding PCD bit must be cleared to 0 (page caching enabled) for the PWT bit to have an
effect.

Memory Typing. Two mechanisms are provided for software to control access to and cacheability of
specific memory regions:

• The memory-type range registers (MTRRs) control cacheability based on physical addresses. See
“MTRRs” on page 184 for more information on the use of MTRRs.

• The page-attribute table (PAT) mechanism controls cacheability based on virtual addresses. PAT
extends the capabilities provided by the PCD and PWT page-level cache controls. See “Page-
Attribute Table Mechanism” on page 193 for more information on the use of the PAT mechanism.

System software can combine the use of both the MTRRs and PAT mechanisms to maximize control
over memory cacheability.

If the MTRRs are disabled in implementations that support the MTRR mechanism, the default
memory type is set to uncacheable (UC). Memory accesses are not cached even if the caches are
enabled by clearing CR0.CD to 0. Cacheable memory types must be established using the MTRRs in
order for memory accesses to be cached.

Cache Control Precedence. The cache-control mechanisms are used to define the memory type and
cacheability of main memory and regions of main memory. Taken together, the most restrictive
memory type takes precedence in defining the caching policy of memory. The order of precedence is:

1. Uncacheable (UC)

Table 7-4. AMD64 Architecture Cache-Operating Modes

CR0.CD CR0.NW Cache Operating Mode

0 0 Cache enabled with a writeback-caching policy.

0 1 Invalid setting—causes a general-protection exception (#GP).

1 0
Cache disabled. See “Cache Disable” on page 179.

1 1

Memory System 181

24593—Rev. 3.17—June 2010 AMD64 Technology

2. Write-combining (WC)

3. Write-protected (WP)

4. Writethrough (WT)

5. Writeback (WB)

For example, assume a large memory region is designated a writethrough type using the MTRRs.
Individual pages within that region can have caching disabled by setting the appropriate page-table
PCD bits. However, no pages within that region can have a writeback caching policy, regardless of the
page-table PWT values.

7.6.3 Cache and Memory Management Instructions

Data Prefetch. The prefetch instructions are used by software as a hint to the processor that the
referenced data is likely to be used in the near future. The processor can preload the cache line
containing the data in anticipation of its use. PREFETCH provides a hint that the data is to be read.
PREFETCHW provides a hint that the data is to be written. The processor can mark the line as
modified if it is preloaded using PREFETCHW.

Memory Ordering. Instructions are provided for software to enforce memory ordering (serialization)
in weakly-ordered memory types. These instructions are:

• SFENCE (store fence)—forces all memory writes (stores) preceding the SFENCE (in program
order) to be written into memory before memory writes following the SFENCE.

• LFENCE (load fence)—forces all memory reads (loads) preceding the LFENCE (in program
order) to be read from memory before memory reads following the LFENCE.

• MFENCE (memory fence)—forces all memory accesses (reads and writes) preceding the
MFENCE (in program order) to be written into or read from memory before memory accesses
following the MFENCE.

Cache Line Flush. The CLFLUSH instruction (writeback, if modified, and invalidate) takes the byte
memory-address operand (a linear address), and checks to see if the address is cached. If the address is
cached, the entire cache line containing the address is invalidated. If any portion of the cache line is
dirty (in the modified or owned state), the entire line is written to main memory before it is invalidated.
CLFLUSH affects all caches in the memory hierarchy—internal and external to the processor. The
checking and invalidation process continues until the address has been invalidated in all caches.

In most cases, the underlying memory type assigned to the address has no effect on the behavior of this
instruction. However, when the underlying memory type for the address is UC or WC (as defined by
the MTRRs), the processor does not proceed with checking all caches to see if the address is cached. In
both cases, the address is uncacheable, and invalidation is unnecessary. Write-combining buffers are
written back to memory if the corresponding physical address falls within the buffer active-address
range.

Cache Writeback and Invalidate. Unlike the CLFLUSH instruction, the WBINVD instruction
operates on the entire cache, rather than a single cache line. The WBINVD instruction first writes back

182 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

all cache lines that are dirty (in the modified or owned state) to main memory. After writeback is
complete, the instruction invalidates all cache lines. The checking and invalidation process continues
until all internal caches are invalidated. A special bus cycle is transmitted to higher-level external
caches directing them to perform a writeback-and-invalidate operation.

Cache Invalidate. The INVD instruction is used to invalidate all cache lines. Unlike the WBINVD
instruction, dirty cache lines are not written to main memory. The process continues until all internal
caches have been invalidated. A special bus cycle is transmitted to higher-level external caches
directing them to perform an invalidation.

The INVD instruction should only be used in situations where memory coherency is not required.

7.6.4 Serializing Instructions

Serializing instructions force the processor to retire the serializing instruction and all previous
instructions before the next instruction is fetched. A serializing instruction is retired when the
following operations are complete:

• The instruction has executed.

• All registers modified by the instruction are updated.

• All memory updates performed by the instruction are complete.

• All data held in the write buffers have been written to memory.

Serializing instructions can be used as a barrier between memory accesses to force strong ordering of
memory operations. Care should be exercised in using serializing instructions because they modify
processor state and affect program flow. The instructions also force execution serialization, which can
significantly degrade performance. When strongly-ordered memory accesses are required, but
execution serialization is not, it is recommended that software use the memory-ordering instructions
described on page 181.

The following are serializing instructions:

• Non-Privileged Instructions

- CPUID

- IRET

- RSM

- MFENCE

• Privileged Instructions

- MOV CRn

- MOV DRn

- LGDT, LIDT, LLDT, LTR

- SWAPGS

- WRMSR

Memory System 183

24593—Rev. 3.17—June 2010 AMD64 Technology

- WBINVD, INVD

- INVLPG

7.7 Memory-Type Range Registers

The AMD64 architecture supports three mechanisms for software access-control and cacheability-
control over memory regions. These mechanisms can be used in place of similar capabilities provided
by external chipsets used with early x86 processors.

This section describes a control mechanism that uses a set of programmable model-specific registers
(MSRs) called the memory-type-range registers (MTRRs). The MTRR mechanism provides system
software with the ability to manage hardware-device memory mapping. System software can
characterize physical-memory regions by type (e.g., ROM, flash, memory-mapped I/O) and assign
hardware devices to the appropriate physical-memory type.

Another control mechanism is implemented as an extension to the page-translation capability and is
called the page attribute table (PAT). It is described in “Page-Attribute Table Mechanism” on
page 193. Like the MTRRs, PAT provides system software with the ability to manage hardware-device
memory mapping. With PAT, however, system software can characterize physical pages and assign
virtually-mapped devices to those physical pages using the page-translation mechanism. PAT may be
used in conjunction with the MTTR mechanism to maximize flexibility in memory control.

Finally, control mechanisms are provided for managing memory-mapped I/O. These mechanisms
employ extensions to the MTRRs and a separate feature called the top-of-memory registers. The
MTRR extensions include additional MTRR type-field encodings for fixed-range MTRRs and
variable-range I/O range registers (IORRs). These mechanisms are described in “Memory-Mapped
I/O” on page 197.

7.7.1 MTRR Type Fields

The MTRR mechanism provides a means for associating a physical-address range with a memory type
(see “Memory Types” on page 170). The MTRRs contain a type field used to specify the memory type
in effect for a given physical-address range.

There are two variants of the memory type-field encodings: standard and extended. Both the standard
and extended encodings use type-field bits 2–0 to specify the memory type. For the standard
encodings, bits 7–3 are reserved and must be zero. For the extended encodings, bits 7–5 are reserved,
but bits 4–3 are defined as the RdMem and WrMem bits. “Extended Fixed-Range MTRR Type-Field
Encodings” on page 198 describes the function of these extended bits and how software enables them.
Only the fixed-range MTRRs support the extended type-field encodings. Variable-range MTRRs use
the standard encodings.

Table 7-5 on page 184 shows the memory types supported by the MTRR mechanism and their
encoding in the MTRR type fields referenced throughout this section. Unless the extended type-field
encodings are explicitly enabled, the processor uses the type values shown in Table 7-5.

184 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

If the MTRRs are disabled in implementations that support the MTRR mechanism, the default
memory type is set to uncacheable (UC). Memory accesses are not cached even if the caches are
enabled by clearing CR0.CD to 0. Cacheable memory types must be established using the MTRRs to
enable memory accesses to be cached.

7.7.2 MTRRs

Both fixed-size and variable-size address ranges are supported by the MTRR mechanism. The fixed-
size ranges are restricted to the lower 1 Mbyte of physical-address space, while the variable-size
ranges can be located anywhere in the physical-address space.

Figure 7-4 on page 185 shows an example mapping of physical memory using the fixed-size and
variable-size MTRRs. The areas shaded gray are not mapped by the MTRRs. Unmapped areas are set
to the software-selected default memory type.

Table 7-5. MTRR Type Field Encodings

Type Value Type Name Type Description

00h UC—Uncacheable
All accesses are uncacheable. Write combining is not allowed.
Speculative accesses are not allowed

01h WC—Write-Combining
All accesses are uncacheable. Write combining is allowed.
Speculative reads are allowed

04h WT—Writethrough
Reads allocate cache lines on a cache miss. Cache lines are not
allocated on a write miss. Write hits update the cache and main
memory.

05h WP—Write-Protect
Reads allocate cache lines on a cache miss. All writes update main
memory. Cache lines are not allocated on a write miss. Write hits
invalidate the cache line and update main memory.

06h WB—Writeback
Reads allocate cache lines on a cache miss, and can allocate to
either the shared, exclusive, or modified state. Writes allocate to the
modified state on a cache miss.

Memory System 185

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 7-4. MTRR Mapping of Physical Memory

MTRRs are 64-bit model-specific registers (MSRs). They are read using the RDMSR instruction and
written using the WRMSR instruction. See “Memory-Typing MSRs” on page 474 for a listing of the
MTRR MSR numbers. The following sections describe the types of MTRRs and their function.

Fixed-Range MTRRs. The fixed-range MTRRs are used to characterize the first 1 Mbyte of physical
memory. Each fixed-range MTRR contains eight type fields for characterizing a total of eight memory
ranges. Fixed-range MTRRs support extended type-field encodings as described in “Extended Fixed-
Range MTRR Type-Field Encodings” on page 198. The extended type field allows a fixed-range
MTRR to be used as a fixed-range IORR. Figure 7-5 on page 186 shows the format of a fixed-range
MTRR.

513-214.eps

0F_FFFFh
10_0000h

0_FFFF_FFFF_FFFFh

256 Kbytes

256 Kbytes

512 Kbytes

Physical Memory

Up to 8 Variable Ranges

64 4-Kbyte Ranges

16 16-Kbyte Ranges

8 64-Kbyte Ranges

Default (Unmapped) Ranges

00_0000h

186 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 7-5. Fixed-Range MTRR

For the purposes of memory characterization, the first 1 Mbyte of physical memory is segmented into
a total of 88 non-overlapping memory ranges, as follows:

• The 512 Kbytes of memory spanning addresses 00_0000h to 07_FFFFh are segmented into eight
64-Kbyte ranges. A single MTRR is used to characterize this address space.

• The 256 Kbytes of memory spanning addresses 08_0000h to 0B_FFFFh are segmented into 16 16-
Kbyte ranges. Two MTRRs are used to characterize this address space.

• The 256 Kbytes of memory spanning addresses 0C_0000h to 0F_FFFFh are segmented into 64 4-
Kbyte ranges. Eight MTRRs are used to characterize this address space.

Table 7-6 shows the address ranges corresponding to the type fields within each fixed-range MTRR.
The gray-shaded heading boxes represent the bit ranges for each type field in a fixed-range MTTR. See
Table 7-5 on page 184 for the type-field encodings.

63 56 55 48 47 40 39 32

Type Type Type Type

31 24 23 16 15 8 7 0

Type Type Type Type

Table 7-6. Fixed-Range MTRR Address Ranges

Physical Address Range (in hexadecimal)
Register Name

63–56 55–48 47–40 39–32 31–24 23–16 15–8 7–0

70000–
7FFFF

60000–
6FFFF

50000–
5FFFF

40000–
4FFFF

30000–
3FFFF

20000–
2FFFF

10000–
1FFFF

00000–
0FFFF

MTRRfix64K_00000

9C000–
9FFFF

98000–
9BFFF

94000–
97FFF

90000–
93FFF

8C000–
8FFFF

88000–
8BFFF

84000–
87FFF

80000–
83FFF

MTRRfix16K_80000

BC000–
BFFFF

B8000–
BBFFF

B4000–
B7FFF

B0000–
B3FFF

AC000–
AFFFF

A8000–
ABFFF

A4000–
A7FFF

A0000–
A3FFF

MTRRfix16K_A0000

C7000–
C7FFF

C6000–
C6FFF

C5000–
C5FFF

C4000–
C4FFF

C3000–
C3FFF

C2000–
C2FFF

C1000–
C1FFF

C0000–
C0FFF

MTRRfix4K_C0000

CF000–
CFFFF

CE000–
CEFFF

CD000–
CDFFF

CC000–
CCFFF

CB000–
CBFFF

CA000–
CAFFF

C9000–
C9FFF

C8000–
C8FFF

MTRRfix4K_C8000

D7000–
D7FFF

D6000–
D6FFF

D5000–
D5FFF

D4000–
D4FFF

D3000–
D3FFF

D2000–
D2FFF

D1000–
D1FFF

D0000–
D0FFF

MTRRfix4K_D0000

DF000–
DFFFF

DE000–
DEFFF

DD000–
DDFFF

DC000–
DCFFF

DB000–
DBFFF

DA000–
DAFFF

D9000–
D9FFF

D8000–
D8FFF

MTRRfix4K_D8000

E7000–
E7FFF

E6000–
E6FFF

E5000–
E5FFF

E4000–
E4FFF

E3000–
E3FFF

E2000–
E2FFF

E1000–
E1FFF

E0000–
E0FFF

MTRRfix4K_E0000

Memory System 187

24593—Rev. 3.17—June 2010 AMD64 Technology

Variable-Range MTRRs. The variable-range MTRRs can be used to characterize any address range
within the physical-memory space, including all of physical memory. Up to eight address ranges of
varying sizes can be characterized using the MTRR. Two variable-range MTRRs are used to
characterize each address range: MTRRphysBasen and MTRRphysMaskn (n is the address-range
number from 0 to 7). For example, address-range 3 is characterized using the MTRRphysBase3 and
MTRRphysMask3 register pair.

Figure 7-6 shows the format of the MTRRphysBasen register and Figure 7-7 on page 188 shows the
format of the MTRRphysMaskn register. The fields within the register pair are read/write.

MTRRphysBasen Registers. The fields in these variable-range MTRRs, shown in Figure 7-6, are:

• Type—Bits 7–0. The memory type used to characterize the memory range. See Table 7-5 on
page 184 for the type-field encodings. Variable-range MTRRs do not support the extended type-
field encodings.

• Range Physical Base-Address (PhysBase)—Bits 51–12. The memory-range base-address in
physical-address space. PhysBase is aligned on a 4-Kbyte (or greater) address in the 52-bit
physical-address space supported by the AMD64 architecture. PhysBase represents the most-
significant 40-address bits of the physical address. Physical-address bits 11–0 are assumed to be 0.

Figure 7-6. MTRRphysBasen Register

EF000–
EFFFF

EE000–
EEFFF

ED000–
EDFFF

EC000–
ECFFF

EB000–
EBFFF

EA000–
EAFFF

E9000–
E9FFF

E8000–
E8FFF

MTRRfix4K_E8000

F7000–
F7FFF

F6000–
F6FFF

F5000–
F5FFF

F4000–
F4FFF

F3000–
F3FFF

F2000–
F2FFF

F1000–
F1FFF

F0000–
F0FFF

MTRRfix4K_F0000

FF000–
FFFFF

FE000–
FEFFF

FD000–
FDFFF

FC000–
FCFFF

FB000–
FBFFF

FA000–
FAFFF

F9000–
F9FFF

F8000–
F8FFF

MTRRfix4K_F8000

63 52 51 32

Reserved, MBZ PhysBase
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 8 7 0

PhysBase
Reserved,

MBZ
Type

Bits Mnemonic Description R/W
63-52 Reserved Reserved, Must be Zero
51-12 PhysBase Range Physical Base Address R/W

11-8 Reserved Reserved, Must be Zero
7-0 Type Default Memory Type R/W

Table 7-6. Fixed-Range MTRR Address Ranges (continued)

Physical Address Range (in hexadecimal)
Register Name

63–56 55–48 47–40 39–32 31–24 23–16 15–8 7–0

188 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

MTRRphysMaskn Registers. The fields in these variable-range MTRRs, shown in Figure 7-7, are:

• Valid (V)—Bit 11. Indicates that the MTRR pair is valid (enabled) when set to 1. When the valid bit
is cleared to 0 the register pair is not used.

• Range Physical Mask (PhysMask)—Bits 51–12. The mask value used to specify the memory
range. Like PhysBase, PhysMask is aligned on a 4-Kbyte physical-address boundary. Bits 11–0 of
PhysMask are assumed to be 0.

Figure 7-7. MTRRphysMaskn Register

PhysMask and PhysBase are used together to determine whether a target physical-address falls within
the specified address range. PhysMask is logically ANDed with PhysBase and separately ANDed with
the upper 40 bits of the target physical-address. If the results of the two operations are identical, the
target physical-address falls within the specified memory range. The pseudo-code for the operation is:

MaskBase = PhysMask AND PhysBase
MaskTarget = PhysMask AND Target_Address[51:12]
if MaskBase = MaskTarget

then Target_Address_In_Range
else Target_Address_Not_In_Range

Variable Range Size and Alignment. The size and alignment of variable memory-ranges (MTRRs)
and I/O ranges (IORRs) are restricted as follows:

• The boundary on which a variable range is aligned must be equal to the range size. For example, a
memory range of 16 Mbytes must be aligned on a 16-Mbyte boundary.

• The range size must be a power of 2 (2n, 52 > n > 11), with a minimum allowable size of 4 Kbytes.
For example, 4 Mbytes and 8 Mbytes are allowable memory range sizes, but 6 Mbytes is not
allowable.

63 52 51 32

Reserved, MBZ PhysMask
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 10 0

PhysMask V Reserved, MBZ

Bits Mnemonic Description R/W
63-52 Reserved Reserved, Must be Zero

51-12 PhysMask Range Physical Mask R/W
11 V MTRR Pair Enable (Valid) R/W
10-0 Reserved Reserved, Must be Zero

Memory System 189

24593—Rev. 3.17—June 2010 AMD64 Technology

PhysMask and PhysBase Values. Software can calculate the PhysMask value using the following
procedure:

1. Subtract the memory-range physical base-address from the upper physical-address of the memory
range.

2. Subtract the value calculated in Step 1 from the physical memory size.

3. Truncate the lower 12 bits of the result in Step 2 to create the PhysMask value to be loaded into
the MTRRphysMaskn register. Truncation is performed by right-shifting the value 12 bits.

For example, assume a 32-Mbyte memory range is specified within the 52-bit physical address space,
starting at address 200_0000h. The upper address of the range is 3FF_FFFFh. Following the process
outlined above yields:

1. 3FF_FFFFh–200_0000h = 1FF_FFFFh

2. F_FFFF_FFFF_FFFF–1FF_FFFFh = F_FFFF_FE00_0000h

3. Right shift (F_FFFF_FE00_0000h) by 12 = FF_FFFF_E000h

In this example, the 40-bit value loaded into the PhysMask field is FF_FFFF_E000h.

Software must also truncate the lower 12 bits of the physical base-address before loading it into the
PhysBase field. In the example above, the 40-bit PhysBase field is 00_0000_2000h.

Default-Range MTRRs. Physical addresses that are not within ranges established by fixed-range and
variable-range MTRRs are set to a default memory-type using the MTRRdefType register. The format
of this register is shown in Figure 7-8.

Figure 7-8. MTRR defType Register Format

63 32

Reserved, MBZ

31 12 11 10 9 8 7 0

Reserved, MBZ E
F
E

Res,
MBZ

Type

Bits Mnemonic Description R/W
63-12 Reserved Reserved, Must be Zero

11 E MTRR Enable R/W
10 FE Fixed Range Enable R/W
9-8 Reserved Reserved, Must be Zero

7-0 Type Default Memory Type R/W

190 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

The fields within the MTRRdefType register are read/write. These fields are:

• Type—Bits 7–0. The default memory-type used to characterize physical-memory space. See
Table 7-5 on page 184 for the type-field encodings. The extended type-field encodings are not
supported by this register.

• Fixed-Range Enable (FE)—Bit 10. All fixed-range MTRRs are enabled when FE is set to 1.
Clearing FE to 0 disables all fixed-range MTRRs. Setting and clearing FE has no effect on the
variable-range MTRRs. The FE bit has no effect unless the E bit is set to 1 (see below).

• MTRR Enable (E)—Bit 11. This is the MTRR enable bit. All fixed-range and variable-range
MTRRs are enabled when E is set to 1. Clearing E to 0 disables all fixed-range and variable-range
MTRRs and sets the default memory-type to uncacheable (UC) regardless of the value of the Type
field.

7.7.3 Using MTRRs

Identifying MTRR Features. Software determines whether a processor supports the MTRR
mechanism by executing the CPUID instruction with either function 1 or function 8000_0001h. If
MTRRs are supported, bit 12 in the EDX register is set to 1 by CPUID. See “Processor Feature
Identification” on page 61 for more information on the CPUID instruction.

The MTRR capability register (MTRRcap) is a read-only register containing information describing
the level of MTRR support provided by the processor. Figure 7-9 shows the format of this register. If
MTRRs are supported, software can read MTRRcap using the RDMSR instruction. Attempting to
write to the MTRRcap register causes a general-protection exception (#GP).

Figure 7-9. MTRR Capability Register Format

63 32

Reserved

31 11 10 9 8 7 0

Reserved
W
C

R
e
s

F
I
X

VCNT

Bits Mnemonic Description R/W
63-11 Reserved Reserved

10 WC Write Combining R
9 Reserved Reserved

8 FIX Fixed-Range Registers R
7-0 VCNT Variable-Range Register Count R

Memory System 191

24593—Rev. 3.17—June 2010 AMD64 Technology

The MTRRcap register field are:

• Variable-Range Register Count (VCNT)—Bits 7–0. The VCNT field contains the number of
variable-range register pairs supported by the processor. For example, a processor supporting eight
register pairs returns a 08h in this field.

• Fixed-Range Registers (FIX)—Bit 8. The FIX bit indicates whether or not the fixed-range registers
are supported. If the processor returns a 1 in this bit, all fixed-range registers are supported. If the
processor returns a 0 in this bit, no fixed-range registers are supported.

• Write-Combining (WC)—Bit 10. The WC bit indicates whether or not the write-combining
memory type is supported. If the processor returns a 1 in this bit, WC memory is supported,
otherwise it is not supported.

7.7.4 MTRRs and Page Cache Controls

When paging and the MTRRs are both enabled, the address ranges defined by the MTRR registers can
span multiple pages, each of which can characterize memory with different types (using the PCD and
PWT page bits). When caching is enabled (CR0.CD=0 and CR0.NW=0), the effective memory-type is
determined as follows:

1. If the page is defined as cacheable and writeback (PCD=0 and PWT=0), then the MTRR defines
the effective memory-type.

2. If the page is defined as not cacheable (PCD=1), then UC is the effective memory-type.

3. If the page is defined as cacheable and writethrough (PCD=0 and PWT=1), then the MTRR
defines the effective memory-type unless the MTRR specifies WB memory, in which case WT is
the effective memory-type.

Table 7-7 lists the MTRR and page-level cache-control combinations and their combined effect on the
final memory-type, if the PAT register holds the default settings.

Table 7-7. Combined MTRR and Page-Level Memory Type with
Unmodified PAT MSR

MTRR
Memory Type

Page
PCD Bit

Page
PWT Bit

Effective
Memory-Type

UC — — UC

WC

0 — WC

1 0 WC1

1 1 UC

WP
0 — WP

1 — UC

Note:
1. The effective memory-type resulting from the combination of PCD=1, PWT=0, and

an MTRR WC memory type is implementation dependent.

192 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

Large Page Sizes. When paging is enabled, software can use large page sizes (2 Mbytes and
4 Mbytes) in addition to the more typical 4-Kbyte page size. When large page sizes are used, it is
possible for multiple MTRRs to span the memory range within a single large page. Each MTRR can
characterize the regions within the page with different memory types. If this occurs, the effective
memory-type used by the processor within the large page is undefined.

Software can avoid the undefined behavior in one of the following ways:

• Avoid using multiple MTRRs to characterize a single large page.

• Use multiple 4-Kbyte pages rather than a single large page.

• If multiple MTRRs must be used within a single large page, software can set the MTRR type fields
to the same value.

• If the multiple MTRRs must have different type-field values, software can set the large page PCD
and PWT bits to the most restrictive memory type defined by the multiple MTRRs.

Overlapping MTRR Registers. If the address ranges of two or more MTRRs overlap, the following
rules are applied to determine the memory type used to characterize the overlapping address range:

1. Fixed-range MTRRs, which characterize only the first 1 Mbyte of physical memory, have
precedence over variable-range MTRRs.

2. If two or more variable-range MTRRs overlap, the following rules apply:

a. If the memory types are identical, then that memory type is used.

b. If at least one of the memory types is UC, the UC memory type is used.

c. If at least one of the memory types is WT, and the only other memory type is WB, then the
WT memory type is used.

d. If the combination of memory types is not listed Steps A through C immediately above, then
the memory type used is undefined.

WT
0 — WT

1 — UC

WB

0 0 WB

0 1 WT

1 — UC

Table 7-7. Combined MTRR and Page-Level Memory Type with
Unmodified PAT MSR (continued)

MTRR
Memory Type

Page
PCD Bit

Page
PWT Bit

Effective
Memory-Type

Note:
1. The effective memory-type resulting from the combination of PCD=1, PWT=0, and

an MTRR WC memory type is implementation dependent.

Memory System 193

24593—Rev. 3.17—June 2010 AMD64 Technology

7.7.5 MTRRs in Multi-Processing Environments

In multi-processing environments, the MTRRs located in all processors must characterize memory in
the same way. Generally, this means that identical values are written to the MTRRs used by the
processors. This also means that values CR0.CD and the PAT must be consistent across processors.
Failure to do so may result in coherency violations or loss of atomicity. Processor implementations do
not check the MTRR settings in other processors to ensure consistency. It is the responsibility of
system software to initialize and maintain MTRR consistency across all processors.

7.8 Page-Attribute Table Mechanism

The page-attribute table (PAT) mechanism extends the page-table entry format and enhances the
capabilities provided by the PCD and PWT page-level cache controls. PAT (and PCD, PWT) allow
memory-type characterization based on the virtual (linear) address. The PAT mechanism provides the
same memory-typing capabilities as the MTRRs but with the added flexibility of the paging
mechanism. Software can use both the PAT and MTRR mechanisms to maximize flexibility in
memory-type control.

7.8.1 PAT Register

Like the MTRRs, the PAT register is a 64-bit model-specific register (MSR). The format of the PAT
registers is shown in Figure 7-10. See “Memory-Typing MSRs” on page 474 for more information on
the PAT MSR number and reset value.

Figure 7-10. PAT Register

The PAT register contains eight page-attribute (PA) fields, numbered from PA0 to PA7. The PA fields
hold the encoding of a memory type, as found in Table 7-8 on page 194. The PAT type-encodings
match the MTRR type-encodings, with the exception that PAT adds the 07h encoding. The 07h
encoding corresponds to a UC- type. The UC- type (07h) is identical to the UC type (00h) except it can
be overridden by an MTRR type of WC.

Software can write any supported memory-type encoding into any of the eight PA fields. An attempt to
write anything but zeros into the reserved fields causes a general-protection exception (#GP). An
attempt to write an unsupported type encoding into a PA field also causes a #GP exception.

63 59 58 56 55 51 50 48 47 43 42 40 41 35 34 32

Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

194 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

The PAT register fields are initiated at processor reset to the default values shown in Table 7-9 on
page 195.

7.8.2 PAT Indexing

PA fields in the PAT register are selected using three bits from the page-table entries. These bits are:

• PAT (page attribute table)—The PAT bit is bit 7 in 4-Kbyte PTEs; it is bit 12 in 2-Mbyte and 4-
Mbyte PDEs. Page-table entries that don’t have a PAT bit (PML4 entries, for example) assume PAT
= 0.

• PCD (page cache disable)—The PCD bit is bit 4 in all page-table entries. The PCD from the PTE
or PDE is selected depending on the paging mode.

• PWT (page writethrough)—The PWT bit is bit 3 in all page-table entries. The PWT from the PTE
or PDE is selected depending on the paging mode.

Table 7-9 on page 195 shows the various combinations of the PAT, PCD, and PWT bits used to select a
PA field within the PAT register. Table 7-9 also shows the default memory-type values established in
the PAT register by the processor after a reset. The default values correspond to the memory types
established by the PCD and PWT bits alone in processor implementations that do not support the PAT
mechanism. In such implementations, the PAT field in page-table entries is reserved and cleared to 0.
See “Page-Translation-Table Entry Fields” on page 135 for more information on the page-table
entries.

Table 7-8. PAT Type Encodings

Type Value Type Name Type Description

00h UC—Uncacheable
All accesses are uncacheable. Write combining is not allowed.
Speculative accesses are not allowed.

01h WC—Write-Combining
All accesses are uncacheable. Write combining is allowed.
Speculative reads are allowed.

04h WT—Writethrough
Reads allocate cache lines on a cache miss, but only to the shared
state. Cache lines are not allocated on a write miss. Write hits
update the cache and main memory.

05h WP—Write-Protect

Reads allocate cache lines on a cache miss, but only to the shared
state. All writes update main memory. Cache lines are not allocated
on a write miss. Write hits invalidate the cache line and update main
memory.

06h WB—Writeback
Reads allocate cache lines on a cache miss, and can allocate to
either the shared or exclusive state. Writes allocate to the modified
state on a cache miss.

07h
UC–

(UC minus)

All accesses are uncacheable. Write combining is not allowed.
Speculative accesses are not allowed. Can be overridden by an
MTRR with the WC type.

Memory System 195

24593—Rev. 3.17—June 2010 AMD64 Technology

7.8.3 Identifying PAT Support

Software determines whether a processor supports the PAT mechanism by executing the CPUID
instruction with either function 1 or function 8000_0001h. If PAT is supported, bit 16 in the EDX
register is set to 1 by CPUID. See “Processor Feature Identification” on page 61 for more information
on the CPUID instruction.

If PAT is supported by a processor implementation, it is always enabled. The PAT mechanism cannot
be disabled by software. Software can effectively avoid using PAT by:

• Not setting PAT bits in page-table entries to 1.

• Not modifying the reset values of the PA fields in the PAT register.

In this case, memory is characterized using the same types that are used by implementations that do
not support PAT.

7.8.4 PAT Accesses

In implementations that support the PAT mechanism, all memory accesses that are translated through
the paging mechanism use the PAT index bits to specify a PA field in the PAT register. The memory
type stored in the specified PA field is applied to the memory access. The process is summarized as:

1. A virtual address is calculated as a result of a memory access.

2. The virtual address is translated to a physical address using the page-translation mechanism.

3. The PAT, PCD and PWT bits are read from the corresponding page-table entry during the virtual-
address to physical-address translation.

4. The PAT, PCD and PWT bits are used to select a PA field from the PAT register.

5. The memory type is read from the appropriate PA field.

6. The memory type is applied to the physical-memory access using the translated physical address.

Table 7-9. PAT-Register PA-Field Indexing

Page-Table Entry Bits PAT Register
Field

Default
Memory TypePAT PCD PWT

0 0 0 PA0 WB

0 0 1 PA1 WT

0 1 0 PA2 UC–1

0 1 1 PA3 UC

1 0 0 PA4 WB

1 0 1 PA5 WT

1 1 0 PA6 UC–1

1 1 1 PA7 UC

Note:
1. Can be overridden by WC memory type set by an MTRR.

196 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

Page-Translation Table Access. The PAT bit exists only in the PTE (4-K paging) or PDEs (2/4
Mbyte paging). In the remaining upper levels (PML4 PDP, 4K PDEs), only the PWT and PCD bits are
used to index into the first 4 entries in the PAT register. The resulting memory type is used for the next
lower paging level.

7.8.5 Combined Effect of MTRRs and PAT

The memory types established by the PAT mechanism can be combined with MTRR-established
memory types to form an effective memory-type. The combined effect of MTRR and PAT memory
types are shown in Figure 7-10. In the AMD64 architecture, reserved and undefined combinations of
MTRR and PAT memory types result in undefined behavior. If the MTRRs are disabled in
implementations that support the MTRR mechanism, the default memory type is set to uncacheable
(UC).

Table 7-10. Combined Effect of MTRR and PAT Memory Types

PAT Memory Type MTRR Memory Type Effective Memory Type

UC UC, WC, WP, WT, WB UC

UC-

UC UC

WC WC

WP, WT, WB UC1

WC — WC

WP

UC UC

WC UC1

WP WP

WT UC1

WB WP

WT

UC UC

WC, WP UC1

WT, WB WT

WB

UC UC

WC WC

WP WP

WT WT

WB WB

Note:
1. Previously reserved (undefined) combinations are set to the UC memory type by

the AMD64 architecture.

Memory System 197

24593—Rev. 3.17—June 2010 AMD64 Technology

7.8.6 PATs in Multi-Processing Environments

In multi-processing environments, values of CR0.CD and the PAT must be consistent across all
processors and the MTRRs located in all processors must characterize memory in the same way
(identical values are written to the MTRRs used by the processors). Failure to do so may result in
coherency violations or loss of atomicity. Processor implementations do not check the MTRR,
CR0.CD and PAT values in other processors to ensure consistency. It is the responsibility of system
software to initialize and maintain consistency across all processors.

7.8.7 Changing Memory Type

A physical page should not have multiple memory types assigned to it through different virtual
mappings. This may result in a loss of cache coherency, leading to stale data and unpredictable
behavior. For this reason, certain precautions must be taken when changing the memory type of a page.
In particular, when changing from a cachable memory type (WB, WP, WT) to an uncachable type
(WC, UC, CD) the caches must be flushed, because speculative execution by the processor may have
resulted in memory being cached even though it was not programatically referenced. The following
table summarizes the serialization requirements for safely changing memory types.

Table 7-11. Serialization Requirements for Changing Memory Types

7.9 Memory-Mapped I/O

Processor implementations can independently direct reads and writes to either system memory or
memory-mapped I/O. The method used for directing those memory accesses is implementation
dependent. In some implementations, separate system-memory and memory-mapped I/O buses can be
provided at the processor interface. In other implementations, system memory and memory-mapped
I/O share common data and address buses, and system logic uses sideband signals from the processor
to route accesses appropriately. Refer to AMD data sheets and application notes for more information
about particular hardware implementations of the AMD64 architecture.

New Type

WB WT WP UC WC

O
ld

 T
yp

e

WB – a a b b

WT a – a b b

WP a a – b b

UC a a a – a

WC a a a a –
Note:

a. Remove the previous mapping (make it not present in the page tables); Flush the TLBs including
the TLBs of other processors that may have used the mapping, even speculatively; Create a
new mapping in the page tables using the new type.

b. In addition to the steps described in note a, software should flush the page from the caches of
any processor that may have used the previous mapping.

198 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

The I/O range registers (IORRs), and the top-of-memory registers allow system software to specify
where memory accesses are directed for a given address range. The MTRR extensions are described in
the following section. “IORRs” on page 200 describes the IORRs and “Top of Memory” on page 202
describes the top-of-memory registers. In implementations that support these features, the default
action taken when the features are disabled is to direct memory accesses to memory-mapped I/O.

7.9.1 Extended Fixed-Range MTRR Type-Field Encodings

The fixed-range MTRRs support extensions to the type-field encodings that allow system software to
direct memory accesses to system memory or memory-mapped I/O. The extended MTRR type-field
encodings use previously reserved bits 4–3 to specify whether reads and writes to a physical-address
range are to system memory or to memory-mapped I/O. The format for this encoding is shown in
Figure 7-11 on page 198. The new bits are:

• WrMem—Bit 3. When set to 1, the processor directs write requests for this physical address range
to system memory. When cleared to 0, writes are directed to memory-mapped I/O.

• RdMem—Bit 4. When set to 1, the processor directs read requests for this physical address range to
system memory. When cleared to 0, reads are directed to memory-mapped I/O.

The type subfield (bits 2–0) allows the encodings specified in Table 7-5 on page 184 to be used for
memory characterization.

Figure 7-11. Extended MTRR Type-Field Format (Fixed-Range MTRRs)

These extensions are enabled using the following bits in the SYSCFG MSR:

• MtrrFixDramEn—Bit 18. When set to 1, RdMem and WrMem attributes are enabled. When
cleared to 0, these attributes are disabled. When disabled, accesses are directed to memory-mapped
I/O space.

• MtrrFixDramModEn—Bit 19. When set to 1, software can read and write the RdMem and
WrMem bits. When cleared to 0, writes do not modify the RdMem and WrMem bits, and reads
return 0.

To use the MTRR extensions, system software must first set MtrrFixDramModEn=1 to allow
modification to the RdMem and WrMem bits. After the attribute bits are properly initialized in the
fixed-range registers, the extensions can be enabled by setting MtrrFixDramEn=1.

RdMem and WrMem allow the processor to independently direct reads and writes to either system
memory or memory-mapped I/O. The RdMem and WrMem controls are particularly useful when
shadowing ROM devices located in memory-mapped I/O space. It is often useful to shadow such
devices in RAM system memory to improve access performance, but writes into the RAM location can

7 5 4 3 2 0

Reserved RdMem WrMem Type

Memory System 199

24593—Rev. 3.17—June 2010 AMD64 Technology

corrupt the shadowed ROM information. The MTRR extensions solve this problem. System software
can create the shadow location by setting WrMem = 1 and RdMem = 0 for the specified memory range
and then copy the ROM location into itself. Reads are directed to the memory-mapped ROM, but
writes go to the same physical addresses in system memory. After the copy is complete, system
software can change the bit values to WrMem = 0 and RdMem = 1. Now reads are directed to the faster
copy located in system memory, and writes are directed to memory-mapped ROM. The ROM responds
as it would normally to a write, which is to ignore it.

Not all combinations of RdMem and WrMem are supported for each memory type encoded by bits
2–0. Table 7-12 on page 200 shows the allowable combinations. The behavior of reserved encoding
combinations (shown as gray-shaded cells) is undefined and results in unpredictable behavior.

200 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

7.9.2 IORRs

The IORRs operate similarly to the variable-range MTRRs. The IORRs specify whether reads and
writes in any physical-address range map to system memory or memory-mapped I/O. Up to two
address ranges of varying sizes can be controlled using the IORRs. A pair of IORRs are used to control
each address range: IORRBasen and IORRMaskn (n is the address-range number from 0 to 1).

Figure 7-12 on page 201 shows the format of the IORRBasen registers and Figure 7-13 on page 202
shows the format of the IORRMaskn registers. The fields within the register pair are read/write.

The intersection of the IORR range with the equivalent effective MTRR range follows the same type
encoding table (Table 7-12) as the fixed-range MTRR, where the RdMem/WrMem and memory type
are directly tied together.

IORRBasen Registers. The fields in these IORRs are:

• WrMem—Bit 3. When set to 1, the processor directs write requests for this physical address range
to system memory. When cleared to 0, writes are directed to memory-mapped I/O.

Table 7-12. Extended Fixed-Range MTRR Type Encodings

RdMem WrMem Type Implication or Potential Use

0 0

0 (UC) UC I/O

1 (WC) WC I/O

4 (WT) WT I/O

5 (WP) WP I/O

6 (WB) Reserved

0 1

0 (UC)
Used while creating a shadowed ROM

1 (WC)

4 (WT)

Reserved5 (WP)

6 (WB)

1 0

0 (UC) Used to access a shadowed ROM

1 (WC)
Reserved

4 (WT)

5 (WP)
WP Memory

(Can be used to access shadowed ROM)

6 (WB) Reserved

1 1

0 (UC) UC Memory

1 (WC) WC Memory

4 (WT) WT Memory

5 (WP) Reserved

6 (WB) WB Memory

Memory System 201

24593—Rev. 3.17—June 2010 AMD64 Technology

• RdMem—Bit 4. When set to 1, the processor directs read requests for this physical address range to
system memory. When cleared to 0, reads are directed to memory-mapped I/O.

• Range Physical-Base-Address (PhysBase)—Bits 51–12. The memory-range base-address in
physical-address space. PhysBase is aligned on a 4-Kbyte (or greater) address in the 52-bit
physical-address space supported by the AMD64 architecture. PhysBase represents the most-
significant 40-address bits of the physical address. Physical-address bits 11–0 are assumed to be 0.

The format of these registers is shown in Figure 7-12.

Figure 7-12. IORRBasen Register

IORRMaskn Registers. The fields in these IORRs are:

• Valid (V)—Bit 11. Indicates that the IORR pair is valid (enabled) when set to 1. When the valid bit
is cleared to 0 the register pair is not used for memory-mapped I/O control (disabled).

• Range Physical-Mask (PhysMask)—Bits 51–12. The mask value used to specify the memory
range. Like PhysBase, PhysMask is aligned on a 4-Kbyte physical-address boundary. Bits 11–0 of
PhysMask are assumed to be 0.

The format of these registers is shown in Figure 7-13 on page 202.

63 52 51 32

Reserved, MBZ
PhysBase

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 5 4 3 0

PhysBase Reserved, MBZ
R
d

W
r

Reserved,
MBZ

Bits Mnemonic Description R/W
63-52 Reserved Reserved, Must be Zero
51-12 PhysBase Range Physical Base Address R/W
11-5 Reserved Reserved, Must be Zero

4 Rd RdMem Enable R/W
3 Wr WrMem Enable R/W
2-0 Reserved Reserved, Must be Zero

202 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 7-13. IORRMaskn Register

The operation of the PhysMask and PhysBase fields is identical to that of the variable-range MTRRs.
See page 188 for a description of this operation.

7.9.3 IORR Overlapping

The use of overlapping IORRs is not recommended. If overlapping IORRs are specified, the resulting
behavior is implementation-dependent.

7.9.4 Top of Memory

The top-of-memory registers, TOP_MEM and TOP_MEM2, allow system software to specify physical
addresses ranges as memory-mapped I/O locations. Processor implementations can direct accesses to
memory-mapped I/O differently than system I/O, and the precise method depends on the
implementation. System software specifies memory-mapped I/O regions by writing an address into
each of the top-of-memory registers. The memory regions specified by the TOP_MEM registers are
aligned on 8-Mbyte boundaries as follows:

• Memory accesses from physical address 0 to one less than the value in TOP_MEM are directed to
system memory.

• Memory accesses from the physical address specified in TOP_MEM to FFFF_FFFFh are directed
to memory-mapped I/O.

• Memory accesses from physical address 1_0000_0000h to one less than the value in TOP_MEM2
are directed to system memory.

• Memory accesses from the physical address specified in TOP_MEM2 to the maximum physical
address supported by the system are directed to memory-mapped I/O.

Figure 7-14 on page 203 shows how the top-of-memory registers organize memory into separate
system-memory and memory-mapped I/O regions.

63 52 51 32

Reserved, MBZ PhysMask
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 10 0

PhysMask V Reserved, MBZ

Bits Mnemonic Description R/W
63-52 Reserved Reserved, Must be Zero
51-12 PhysMask Range Physical Mask R/W
11 V I/O Register Pair Enable (Valid) R/W

10-0 Reserved Reserved, Must be Zero

Memory System 203

24593—Rev. 3.17—June 2010 AMD64 Technology

The intersection of the top-of-memory range with the equivalent effective MTRR range follows the
same type encoding table (Table 7-12 on page 200) as the fixed-range MTRR, where the
RdMem/WrMem and memory type are directly tied together.

Figure 7-14. Memory Organization Using Top-of-Memory Registers

Figure 7-15 shows the format of the TOP_MEM and TOP_MEM2 registers. Bits 51–23 specify an 8-
Mbyte aligned physical address. All remaining bits are reserved and ignored by the processor. System
software should clear those bits to zero to maintain compatibility with possible future extensions to the
registers. The TOP_MEM registers are model-specific registers. See “Memory-Typing MSRs” on
page 474 for information on the MSR address and reset values for these registers.

Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP_MEM2)

63 52 51 32

Reserved, IGN
Top-of-Memory Physical Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 23 22 0

Top-of-Memory Physical Address Reserved, IGN

513-269.eps

Physical Memory

TOP_MEM

Memory-Mapped
I/O

System Memory

Memory-Mapped
I/O

System Memory

TOP_MEM - 1

TOP_MEM2
TOP_MEM2 - 1

0

4GB - 1
4GB

Maximum System Memory

204 Memory System

AMD64 Technology 24593—Rev. 3.17—June 2010

The TOP_MEM register is enabled by setting the MtrrVarDramEn bit in the SYSCFG MSR (bit 20) to
1. The TOP_MEM2 register is enabled by setting the MtrrTom2En bit in the SYSCFG MSR (bit 21) to
1. The registers are disabled when their respective enable bits are cleared to 0. When the top-of-
memory registers are disabled, memory accesses default to memory-mapped I/O space.

Exceptions and Interrupts 205

24593—Rev. 3.17—June 2010 AMD64 Technology

8 Exceptions and Interrupts

Exceptions and interrupts force control transfers from the currently-executing program to a system-
software service routine that handles the interrupting event. These routines are referred to as exception
handlers and interrupt handlers, or collectively as event handlers. Typically, interrupt events can be
handled by the service routine transparently to the interrupted program. During the control transfer to
the service routine, the processor stops executing the interrupted program and saves its return pointer.
The system-software service routine that handles the exception or interrupt is responsible for saving
the state of the interrupted program. This allows the processor to restart the interrupted program after
system software has handled the event.

When an exception or interrupt occurs, the processor uses the interrupt-vector number as an index into
the interrupt-descriptor table (IDT). An IDT is used in all processor operating modes, including real
mode (also called real-address mode), protected mode, and long mode.

Exceptions and interrupts come from three general sources:

• Exceptions occur as a result of software execution errors or other internal-processor errors.
Exceptions also occur during non-error situations, such as program single stepping or address-
breakpoint detection. Exceptions are considered synchronous events because they are a direct
result of executing the interrupted instruction.

• Software interrupts occur as a result of executing interrupt instructions. Unlike exceptions and
external interrupts, software interrupts allow intentional triggering of the interrupt-handling
mechanism. Like exceptions, software interrupts are synchronous events.

• External interrupts are generated by system logic in response to an error or some other event
outside the processor. They are reported over the processor bus using external signalling. External
interrupts are asynchronous events that occur independently of the interrupted instruction.

Throughout this section, the term masking can refer to either disabling or delaying an interrupt. For
example, masking external interrupts delays the interrupt, with the processor holding the interrupt as
pending until it is unmasked. With floating-point exceptions (128-bit media and x87), masking
prevents an interrupt from occurring and causes the processor to perform a default operation on the
exception condition.

8.1 General Characteristics

Exceptions and interrupts have several different characteristics that depend on how events are reported
and the implications for program restart.

8.1.1 Precision

Precision describes how the exception is related to the interrupted program:

• Precise exceptions are reported on a predictable instruction boundary. This boundary is generally
the first instruction that has not completed when the event occurs. All previous instructions (in

206 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

program order) are allowed to complete before transferring control to the event handler. The
pointer to the instruction boundary is saved automatically by the processor. When the event
handler completes execution, it returns to the interrupted program and restarts execution at the
interrupted-instruction boundary.

• Imprecise exceptions are not guaranteed to be reported on a predictable instruction boundary. The
boundary can be any instruction that has not completed when the interrupt event occurs. Imprecise
events can be considered asynchronous, because the source of the interrupt is not necessarily
related to the interrupted instruction. Imprecise exception and interrupt handlers typically collect
machine-state information related to the interrupting event for reporting through system-diagnostic
software. The interrupted program is not restartable.

8.1.2 Instruction Restart

As mentioned above, precise exceptions are reported on an instruction boundary. The instruction
boundary can be reported in one of two locations:

• Most exceptions report the boundary before the instruction causing the exception. In this case, all
previous instructions (in program order) are allowed to complete, but the interrupted instruction is
not. No program state is updated as a result of partially executing an interrupted instruction.

• Some exceptions report the boundary after the instruction causing the exception. In this case, all
previous instructions—including the one executing when the exception occurred—are allowed to
complete.

Program state can be updated when the reported boundary is after the instruction causing the
exception. This is particularly true when the event occurs as a result of a task switch. In this case,
the general registers, segment-selector registers, page-base address register, and LDTR are all
updated by the hardware task-switch mechanism. The event handler cannot rely on the state of
those registers when it begins execution and must be careful in validating the state of the segment-
selector registers before restarting the interrupted task. This is not an issue in long mode, however,
because the hardware task-switch mechanism is disabled in long mode.

8.1.3 Types of Exceptions

There are three types of exceptions, depending on whether they are precise and how they affect
program restart:

• Faults are precise exceptions reported on the boundary before the instruction causing the
exception. Generally, faults are caused by an error condition involving the faulted instruction. Any
machine-state changes caused by the faulting instruction are discarded so that the instruction can
be restarted. The saved rIP points to the faulting instruction.

• Traps are precise exceptions reported on the boundary following the instruction causing the
exception. The trapped instruction is completed by the processor and all state changes are saved.
The saved rIP points to the instruction following the faulting instruction.

• Aborts are imprecise exceptions. Because they are imprecise, aborts typically do not allow reliable
program restart.

Exceptions and Interrupts 207

24593—Rev. 3.17—June 2010 AMD64 Technology

8.1.4 Masking External Interrupts

General Masking Capabilities. Software can mask the occurrence of certain exceptions and
interrupts. Masking can delay or even prevent triggering of the exception-handling or interrupt-
handling mechanism when an interrupt-event occurs. External interrupts are classified as maskable or
nonmaskable:

• Maskable interrupts trigger the interrupt-handling mechanism only when RFLAGS.IF=1.
Otherwise they are held pending for as long as the RFLAGS.IF bit is cleared to 0.

• Nonmaskable interrupts (NMI) are unaffected by the value of the rFLAGS.IF bit. However, the
occurrence of an NMI masks further NMIs until an IRET instruction is executed.

Masking During Stack Switches. The processor delays recognition of maskable external interrupts
and debug exceptions during certain instruction sequences that are often used by software to switch
stacks. The typical programming sequence used to switch stacks is:

1. Load a stack selector into the SS register.

2. Load a stack offset into the ESP register.

If an interrupting event occurs after the selector is loaded but before the stack offset is loaded, the
interrupted-program stack pointer is invalid during execution of the interrupt handler.

To prevent interrupts from causing stack-pointer problems, the processor does not allow external
interrupts or debug exceptions to occur until the instruction immediately following the MOV SS or
POP SS instruction completes execution.

The recommended method of performing this sequence is to use the LSS instruction. LSS loads both
SS and ESP, and the instruction inhibits interrupts until both registers are updated successfully.

8.1.5 Masking Floating-Point and Media Instructions

Any x87 floating-point exceptions can be masked and reported later using bits in the x87 floating-point
status register (FSW) and the x87 floating-point control register (FCW). The floating-point exception-
pending exception is used for unmasked x87 floating-point exceptions (see “#MF—x87 Floating-
Point Exception-Pending (Vector 16)” on page 220).

The SIMD floating-point exception is used for unmasked 128-bit media floating-point exceptions (see
“#XF—SIMD Floating-Point Exception (Vector 19)” on page 222). 128-bit media floating-point
exceptions are masked using the MXCSR register. The exception mechanism is not triggered when
these exceptions are masked. Instead, the processor handles the exceptions in a default manner.

8.1.6 Disabling Exceptions

Disabling an exception prevents the exception condition from being recognized, unlike masking an
exception which prevents triggering the exception mechanism after the exception is recognized. Some
exceptions can be disabled by system software running at CPL=0, using bits in the CR0 register or
CR4 register:

208 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

• Alignment-check exception (see “#AC—Alignment-Check Exception (Vector 17)” on page 221).

• Device-not-available exception (see “#NM—Device-Not-Available Exception (Vector 7)” on
page 214).

• Machine-check exception (see “#MC—Machine-Check Exception (Vector 18)” on page 222).

The debug-exception mechanism provides control over when specific breakpoints are enabled and
disabled. See “Breakpoints” on page 335 for more information on how breakpoint controls are used
for triggering the debug-exception mechanism.

8.2 Vectors

Specific exception and interrupt sources are assigned a fixed vector-identification number (also called
an “interrupt vector” or simply “vector”). The interrupt vector is used by the interrupt-handling
mechanism to locate the system-software service routine assigned to the exception or interrupt. Up to
256 unique interrupt vectors are available. The first 32 vectors are reserved for predefined exception
and interrupt conditions. Software-interrupt sources can trigger an interrupt using any available
interrupt vector.

Table 8-1 on page 209 lists the supported interrupt-vector numbers, the corresponding exception or
interrupt name, the mnemonic, the source of the interrupt event, and a summary of the possible causes.

Exceptions and Interrupts 209

24593—Rev. 3.17—June 2010 AMD64 Technology

Table 8-2 on page 210 shows how each interrupt vector is classified. Reserved interrupt vectors are
indicated by the gray-shaded rows.

Table 8-1. Interrupt-Vector Source and Cause

Vector Exception/Interrupt Mnemonic Cause

0 Divide-by-Zero-Error #DE DIV, IDIV, AAM instructions

1 Debug #DB Instruction accesses and data accesses

2 Non-Maskable-Interrupt #NMI External NMI signal

3 Breakpoint #BP INT3 instruction

4 Overflow #OF INTO instruction

5 Bound-Range #BR BOUND instruction

6 Invalid-Opcode #UD Invalid instructions

7 Device-Not-Available #NM x87 instructions

8 Double-Fault #DF
Exception during the handling of another
exception or interrupt

9 Coprocessor-Segment-Overrun — Unsupported (Reserved)

10 Invalid-TSS #TS Task-state segment access and task switch

11 Segment-Not-Present #NP Segment register loads

12 Stack #SS SS register loads and stack references

13 General-Protection #GP Memory accesses and protection checks

14 Page-Fault #PF Memory accesses when paging enabled

15 Reserved —

16
x87 Floating-Point Exception-
Pending

#MF x87 floating-point instructions

17 Alignment-Check #AC Misaligned memory accesses

18 Machine-Check #MC Model specific

19 SIMD Floating-Point #XF 128-bit media floating-point instructions

20—29 Reserved —

30 Security Exception #SX Security-sensitive event in host

31 Reserved —

0—255 External Interrupts (Maskable) #INTR External interrupts

0—255 Software Interrupts — INTn instruction

210 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

The following sections describe each interrupt in detail. The format of the error code reported by each
interrupt is described in “Error Codes” on page 224.

Table 8-2. Interrupt-Vector Classification

Vector Interrupt (Exception) Type Precise Class2

0 Divide-by-Zero-Error Fault
yes

Contributory

1 Debug Fault or Trap

Benign

2 Non-Maskable-Interrupt — —

3 Breakpoint
Trap

yes

4 Overflow

5 Bound-Range

Fault6 Invalid-Opcode

7 Device-Not-Available

8 Double-Fault Abort no

9 Coprocessor-Segment-Overrun

10 Invalid-TSS

Fault yes
Contributory

11 Segment-Not-Present

12 Stack

13 General-Protection

14 Page-Fault
Benign or

Contributory

15 Reserved

16
x87 Floating-Point Exception-
Pending Fault

no

Benign17 Alignment-Check yes

18 Machine-Check Abort no

19 SIMD Floating-Point Fault yes

20—29 Reserved

30 Security Exception – yes Contributory

31 Reserved

0—255 External Interrupts (Maskable)
—1 —1 Benign

0—255 Software Interrupts

Note:
1. External interrupts are not classified by type or whether or not they are precise.
2. See “#DF—Double-Fault Exception (Vector 8)” on page 214 for a definition of benign and con-

tributory classes.

Exceptions and Interrupts 211

24593—Rev. 3.17—June 2010 AMD64 Technology

8.2.1 #DE—Divide-by-Zero-Error Exception (Vector 0)

A #DE exception occurs when the denominator of a DIV instruction or an IDIV instruction is 0. A
#DE also occurs if the result is too large to be represented in the destination.

#DE cannot be disabled.

Error Code Returned. None.

Program Restart. #DE is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #DE.

8.2.2 #DB—Debug Exception (Vector 1)

When the debug-exception mechanism is enabled, a #DB exception can occur under any of the
following circumstances:

• Instruction execution.

• Instruction single stepping.

• Data read.

• Data write.

• I/O read.

• I/O write.

• Task switch.

• Debug-register access, or general detect fault (debug register access when DR7.GD=1).

• Executing the INT1 instruction (opcode 0F1h).

#DB conditions are enabled and disabled using the debug-control register, DR7 and RFLAGS.TF.
Each #DB condition is described in more detail in “Breakpoints” on page 335.

Error Code Returned. None. #DB information is returned in the debug-status register, DR6.

Program Restart. #DB can be either a fault-type or trap-type exception. In the following cases, the
saved instruction pointer points to the instruction that caused the #DB:

• Instruction execution.

• Invalid debug-register access, or general detect.

In all other cases, the instruction that caused the #DB is completed, and the saved instruction pointer
points to the instruction after the one that caused the #DB.

The RFLAGS.RF bit can be used to restart an instruction following an instruction breakpoint resulting
in a #DB. In most cases, the processor clears RFLAGS.RF to 0 after every instruction is successfully
executed. However, in the case of the IRET, JMP, CALL, and INTn (through a task gate) instructions,
RFLAGS.RF is not cleared to 0 until the next instruction successfully executes.

212 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

When a non-debug exception occurs (or when a string instruction is interrupted), the processor
normally sets RFLAGS.RF to 1 in the RFLAGS image that is pushed on the interrupt stack. A
subsequent IRET back to the interrupted program pops the RFLAGS image off the stack and into the
RFLAGS register, with RFLAGS.RF=1. The interrupted instruction executes without causing an
instruction breakpoint, after which the processor clears RFLAGS.RF to 0.

However, when a #DB exception occurs, the processor clears RFLAGS.RF to 0 in the RFLAGS image
that is pushed on the interrupt stack. The #DB handler has two options:

• Disable the instruction breakpoint completely.

• Set RFLAGS.RF to 1 in the interrupt-stack rFLAGS image. The instruction breakpoint condition is
ignored immediately after the IRET, but reoccurs if the instruction address is accessed later, as can
occur in a program loop.

8.2.3 NMI—Non-Maskable-Interrupt Exception (Vector 2)

An NMI exception occurs as a result of system logic signalling a non-maskable interrupt to the
processor.

Error Code Returned. None.

Program Restart. NMI is an interrupt. The processor recognizes an NMI at an instruction boundary.
The saved instruction pointer points to the instruction immediately following the boundary where the
NMI was recognized.

Masking. NMI cannot be masked. However, when an NMI is recognized by the processor,
recognition of subsequent NMIs are disabled until an IRET instruction is executed.

8.2.4 #BP—Breakpoint Exception (Vector 3)

A #BP exception occurs when an INT3 instruction is executed. The INT3 is normally used by debug
software to set instruction breakpoints by replacing instruction-opcode bytes with the INT3 opcode.

#BP cannot be disabled.

Error Code Returned. None.

Program Restart. #BP is a trap-type exception. The saved instruction pointer points to the byte after
the INT3 instruction. This location can be the start of the next instruction. However, if the INT3 is used
to replace the first opcode bytes of an instruction, the restart location is likely to be in the middle of an
instruction. In the latter case, the debug software must replace the INT3 byte with the correct
instruction byte. The saved RIP instruction pointer must then be decremented by one before returning
to the interrupted program. This allows the program to be restarted correctly on the interrupted-
instruction boundary.

Exceptions and Interrupts 213

24593—Rev. 3.17—June 2010 AMD64 Technology

8.2.5 #OF—Overflow Exception (Vector 4)

An #OF exception occurs as a result of executing an INTO instruction while the overflow bit in
RFLAGS is set to 1 (RFLAGS.OF=1).

#OF cannot be disabled.

Error Code Returned. None.

Program Restart. #OF is a trap-type exception. The saved instruction pointer points to the
instruction following the INTO instruction that caused the #OF.

8.2.6 #BR—Bound-Range Exception (Vector 5)

A #BR exception can occur as a result of executing the BOUND instruction. The BOUND instruction
compares an array index (first operand) with the lower bounds and upper bounds of an array (second
operand). If the array index is not within the array boundary, the #BR occurs.

#BR cannot be disabled.

Error Code Returned. None.

Program Restart. #BR is a fault-type exception. The saved instruction pointer points to the BOUND
instruction that caused the #BR.

8.2.7 #UD—Invalid-Opcode Exception (Vector 6)

A #UD exception occurs when an attempt is made to execute an invalid or undefined opcode. The
validity of an opcode often depends on the processor operating mode. A #UD occurs under the
following conditions:

• Execution of any reserved or undefined opcode in any mode.

• Execution of the UD2 instruction.

• Use of the LOCK prefix on an instruction that cannot be locked.

• Use of the LOCK prefix on a lockable instruction with a non-memory target location.

• Execution of an instruction with an invalid-operand type.

• Execution of the SYSENTER or SYSEXIT instructions in long mode.

• Execution of any of the following instructions in 64-bit mode: AAA, AAD, AAM, AAS, BOUND,
CALL (opcode 9A), DAA, DAS, DEC, INC, INTO, JMP (opcode EA), LDS, LES, POP (DS, ES,
SS), POPA, PUSH (CS, DS, ES, SS), PUSHA, SALC.

• Execution of the ARPL, LAR, LLDT, LSL, LTR, SLDT, STR, VERR, or VERW instructions when
protected mode is not enabled, or when virtual-8086 mode is enabled.

• Execution of any 128-bit media instruction when CR4.OSFXSR is cleared to 0. (For further
information, see “FXSAVE/FXRSTOR Support (OSFXSR) Bit” on page 49.

214 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

• Execution of any 128-bit media instruction (uses XMM registers), or 64-bit media instruction
(uses MMX™ registers) when CR0.EM = 1.

• Execution of any 128-bit media floating-point instruction (uses XMM registers) that causes a
numeric exception when CR4.OSXMMEXCPT = 0.

• Use of the DR4 or DR5 debug registers when CR4.DE = 1.

• Execution of RSM when not in SMM mode.

See the specific instruction description (in the other volumes) for additional information on invalid
conditions.

#UD cannot be disabled.

Error Code Returned. None.

Program Restart. #UD is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #UD.

8.2.8 #NM—Device-Not-Available Exception (Vector 7)

A #NM exception occurs under any of the following conditions:

• An FWAIT/WAIT instruction is executed when CR0.MP=1 and CR0.TS=1.

• Any x87 instruction other than FWAIT is executed when CR0.EM=1.

• Any x87 instruction is executed when CR0.TS=1. The CR0.MP bit controls whether the
FWAIT/WAIT instruction causes an #NM exception when TS=1.

• Any 128-bit or 64-bit media instruction when CR0.TS=1.

#NM can be enabled or disabled under the control of the CR0.MP, CR0.EM, and CR0.TS bits as
described above. See “CR0 Register” on page 42 for more information on the CR0 bits used to control
the #NM exception.

Error Code Returned. None.

Program Restart. #NM is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #NM.

8.2.9 #DF—Double-Fault Exception (Vector 8)

A #DF exception can occur when a second exception occurs during the handling of a prior (first)
exception or interrupt handler.

Usually, the first and second exceptions can be handled sequentially without resulting in a #DF. In this
case, the first exception is considered benign, as it does not harm the ability of the processor to handle
the second exception.

In some cases, however, the first exception adversely affects the ability of the processor to handle the
second exception. These exceptions contribute to the occurrence of a #DF, and are called contributory

Exceptions and Interrupts 215

24593—Rev. 3.17—June 2010 AMD64 Technology

exceptions. If a contributory exception is followed by another contributory exception, a double-fault
exception occurs. Likewise, if a page fault is followed by another page fault or a contributory
exception, a double-fault exception occurs.

Table 8-3 shows the conditions under which a #DF occurs. Page faults are either benign or
contributory, and are listed separately. See the “Class” column in Table 8-2 on page 210 for
information on whether an exception is benign or contributory.

If a third interrupting event occurs while transferring control to the #DF handler, the processor shuts
down. Only an NMI, RESET, or INIT can restart the processor in this case. However, if the processor
shuts down as it is executing an NMI handler, the processor can only be restarted with RESET or INIT.

#DF cannot be disabled.

Error Code Returned. Zero.

Program Restart. #DF is an abort-type exception. The saved instruction pointer is undefined, and the
program cannot be restarted.

8.2.10 Coprocessor-Segment-Overrun Exception (Vector 9)

This interrupt vector is reserved. It is for a discontinued exception originally used by processors that
supported external x87-instruction coprocessors. On those processors, the exception condition is
caused by an invalid-segment or invalid-page access on an x87-instruction coprocessor-instruction
operand. On current processors, this condition causes a general-protection exception to occur.

Error Code Returned. Not applicable.

Program Restart. Not applicable.

Table 8-3. Double-Fault Exception Conditions

First Interrupting Event Second Interrupting Event

Contributory Exceptions
• Divide-by-Zero-Error Exception
• Invalid-TSS Exception
• Segment-Not-Present Exception
• Stack Exception
• General-Protection Exception

Invalid-TSS Exception
Segment-Not-Present Exception
Stack Exception
General-Protection Exception

Page Fault Exception

Page Fault Exception
Invalid-TSS Exception
Segment-Not-Present Exception
Stack Exception
General-Protection Exception

216 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

8.2.11 #TS—Invalid-TSS Exception (Vector 10)

A #TS exception occurs when an invalid reference is made to a segment selector as part of a task
switch. A #TS also occurs during a privilege-changing control transfer (through a call gate or an
interrupt gate), if a reference is made to an invalid stack-segment selector located in the TSS. Table 8-4
lists the conditions under which a #TS occurs and the error code returned by the exception mechanism.

#TS cannot be disabled.

Error Code Returned. See Table 8-4 for a list of error codes returned by the #TS exception.

Program Restart. #TS is a fault-type exception. If the exception occurs before loading the segment
selectors from the TSS, the saved instruction pointer points to the instruction that caused the #TS.
However, most #TS conditions occur due to errors with the loaded segment selectors. When an error is
found with a segment selector, the hardware task-switch mechanism completes loading the new task
state from the TSS, and then triggers the #TS exception mechanism. In this case, the saved instruction
pointer points to the first instruction in the new task.

In long mode, a #TS cannot be caused by a task switch, because the hardware task-switch mechanism
is disabled. A #TS occurs only as a result of a control transfer through a gate descriptor that results in
an invalid stack-segment reference using an SS selector in the TSS. In this case, the saved instruction
pointer always points to the control-transfer instruction that caused the #TS.

Table 8-4. Invalid-TSS Exception Conditions

Selector
Reference

Error Condition Error Code

Task-State
Segment

TSS limit check on a task switch
TSS Selector Index

TSS limit check on an inner-level stack pointer

LDT Segment

LDT does not point to GDT

LDT Selector Index
LDT reference outside GDT

GDT entry is not an LDT descriptor

LDT descriptor is not present

Code Segment

CS reference outside GDT or LDT

CS Selector Index
Privilege check (conforming DPL > CPL)

Privilege check (non-conforming DPL ≠ CPL)

Type check (CS not executable)

Data Segment
Data segment reference outside GDT or LDT

DS, ES, FS or GS Selector Index
Type check (data segment not readable)

Stack Segment

SS reference outside GDT or LDT

SS Selector Index
Privilege check (stack segment descriptor DPL ≠ CPL)

Privilege check (stack segment selector RPL ≠ CPL)

Type check (stack segment not writable)

Exceptions and Interrupts 217

24593—Rev. 3.17—June 2010 AMD64 Technology

8.2.12 #NP—Segment-Not-Present Exception (Vector 11)

An #NP occurs when an attempt is made to load a segment or gate with a clear present bit, as described
in the following situations:

• Using the MOV, POP, LDS, LES, LFS, or LGS instructions to load a segment selector (DS, ES, FS,
and GS) that references a segment descriptor containing a clear present bit (descriptor.P=0).

• Far transfer to a CS that is not present.

• Referencing a gate descriptor containing a clear present bit.

• Referencing a TSS descriptor containing a clear present bit. This includes attempts to load the TSS
descriptor using the LTR instruction.

• Attempting to load a descriptor containing a clear present bit into the LDTR using the LLDT
instruction.

• Loading a segment selector (CS, DS, ES, FS, or GS) as part of a task switch, with the segment
descriptor referenced by the segment selector having a clear present bit. In long mode, an #NP
cannot be caused by a task switch, because the hardware task-switch mechanism is disabled.

When loading a stack-segment selector (SS) that references a descriptor with a clear present bit, a
stack exception (#SS) occurs. For information on the #SS exception, see the next section, “#SS—Stack
Exception (Vector 12).”

#NP cannot be disabled.

Error Code Returned. The segment-selector index of the segment descriptor causing the #NP
exception.

Program Restart. #NP is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that loaded the segment selector resulting in the #NP. See “Exceptions During a Task
Switch” on page 224 for a description of the consequences when this exception occurs during a task
switch.

8.2.13 #SS—Stack Exception (Vector 12)

An #SS exception can occur in the following situations:

• Implied stack references in which the stack address is not in canonical form. Implied stack
references include all push and pop instructions, and any instruction using RSP or RBP as a base
register.

• Attempting to load a stack-segment selector that references a segment descriptor containing a clear
present bit (descriptor.P=0).

• Any stack access that fails the stack-limit check.

#SS cannot be disabled.

Error Code Returned. The error code depends on the cause of the #SS, as shown in Table 8-5 on
page 218:

218 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

Program Restart. #SS is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #SS. See “Exceptions During a Task Switch” on page 224 for a
description of the consequences when this exception occurs during a task switch.

8.2.14 #GP—General-Protection Exception (Vector 13)

Table 8-6 describes the general situations that can cause a #GP exception. The table is not an
exhaustive, detailed list of #GP conditions, but rather a guide to the situations that can cause a #GP. If
an invalid use of an AMD64 architectural feature results in a #GP, the specific cause of the exception is
described in detail in the section describing the architectural feature.

#GP cannot be disabled.

Error Code Returned. As shown in Table 8-6, a selector index is reported as the error code if the
#GP is due to a segment-descriptor access. In all other cases, an error code of 0 is returned.

Program Restart. #GP is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #GP. See “Exceptions During a Task Switch” on page 224 for a
description of the consequences when this exception occurs during a task switch.

Table 8-5. Stack Exception Error Codes

Stack Exception Cause Error Code

Stack-segment descriptor present bit is clear SS Selector Index

Stack-limit violation 0

Stack reference using a non-canonical address 0

Table 8-6. General-Protection Exception Conditions

Error Condition Error Code

Any segment privilege-check violation, while loading a segment register.

Selector Index

Any segment type-check violation, while loading a segment register.

Loading a null selector into the CS, SS, or TR register.

Accessing a gate-descriptor containing a null segment selector.

Referencing an LDT descriptor or TSS descriptor located in the LDT.

Attempting a control transfer to a busy TSS (except IRET).

In 64-bit mode, loading a non-canonical base address into the GDTR or IDTR.

In long mode, accessing a system or call-gate descriptor whose extended type field is not 0.

In long mode, accessing a system descriptor containing a non-canonical base address.

In long mode, accessing a gate descriptor containing a non-canonical offset.

In long mode, accessing a gate descriptor that does not point to a 64-bit code segment.

In long mode, accessing a 16-bit gate descriptor.

In long mode, attempting a control transfer to a TSS or task gate.

Exceptions and Interrupts 219

24593—Rev. 3.17—June 2010 AMD64 Technology

8.2.15 #PF—Page-Fault Exception (Vector 14)

A #PF exception can occur during a memory access in any of the following situations:

• A page-translation-table entry or physical page involved in translating the memory access is not
present in physical memory. This is indicated by a cleared present bit (P=0) in the translation-table
entry.

• An attempt is made by the processor to load the instruction TLB with a translation for a non-
executable page.

• The memory access fails the paging-protection checks (user/supervisor, read/write, or both).

• A reserved bit in one of the page-translation-table entries is set to 1. A #PF occurs for this reason
only when CR4.PSE=1 or CR4.PAE=1.

#PF cannot be disabled.

CR2 Register. The virtual (linear) address that caused the #PF is stored in the CR2 register. The
legacy CR2 register is 32 bits long. The CR2 register in the AMD64 architecture is 64 bits long, as
shown in Figure 8-1 on page 220. In AMD64 implementations, when either software or a page fault
causes a write to the CR2 register, only the low-order 32 bits of CR2 are used in legacy mode; the
processor clears the high-order 32 bits.

Any segment limit-check or non-canonical address violation (except when using the SS
register).

0

Accessing memory using a null segment register.

Writing memory using a read-only segment register.

Using a 128-bit media instruction requiring 16-byte alignment with a memory operand not
aligned on a 16-byte boundary.

Attempting to execute code that is past the CS segment limit or at a non-canonical RIP.

Executing a privileged instruction while CPL > 0.

Executing an instruction that is more than 15 bytes long.

Writing a 1 into any register field that is reserved, must be zero (MBZ).

Using WRMSR to write a read-only MSR.

Using WRMSR to write a non-canonical value into an MSR that must be canonical.

Using WRMSR to set an invalid type encoding in an MTRR or the PAT MSR.

0
Enabling paging while protected mode is disabled.

Setting CR0.NW=1 while CR0.CD=0.

Any long-mode consistency-check violation.

Table 8-6. General-Protection Exception Conditions (continued)

Error Condition Error Code

220 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 8-1. Control Register 2 (CR2)

Error Code Returned. The page-fault error code is pushed onto the page-fault exception-handler
stack. See “Page-Fault Error Code” on page 225 for a description of this error code.

Program Restart. #PF is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #PF. See “Exceptions During a Task Switch” on page 224 for a
description of what can happen if this exception occurs during a task switch.

8.2.16 #MF—x87 Floating-Point Exception-Pending (Vector 16)

The #MF exception is used to handle unmasked x87 floating-point exceptions. An #MF occurs when
all of the following conditions are true:

• CR0.NE=1.

• An unmasked x87 floating-point exception is pending. This is indicated by an exception bit in the
x87 floating-point status-word register being set to 1

• The corresponding mask bit in the x87 floating-point control-word register is cleared to 0.

• The FWAIT/WAIT instruction or any waiting floating-point instruction is executed.

If there is an exception mask bit (in the FPU control word) set, the exception is not reported. Instead,
the x87-instruction unit responds in a default manner and execution proceeds normally.

The x87 floating-point exceptions reported by the #MF exception are (including mnemonics):

• IE—Invalid-operation exception (also called #I), which is either:

- IE alone—Invalid arithmetic-operand exception (also called #IA), or

- SF and IE together—x87 Stack-fault exception (also called #IS).

• DE—Denormalized-operand exception (also called #D).

• ZE—Zero-divide exception (also called #Z).

• OE—Overflow exception (also called #O).

• UE—Underflow exception (also called #U).

• PE—Precision exception (also called #P or inexact-result exception).

Error Code Returned. None. Exception information is provided by the x87 status-word register. See
“x87 Floating-Point Programming” in Volume 1 for more information on using this register.

Program Restart. #MF is a fault-type exception. The #MF exception is not precise, because multiple
instructions and exceptions can occur before the #MF handler is invoked. Also, the saved instruction

63 0

Page-Fault Virtual Address

Exceptions and Interrupts 221

24593—Rev. 3.17—June 2010 AMD64 Technology

pointer does not point to the instruction that caused the exception resulting in the #MF. Instead, the
saved instruction pointer points to the x87 floating-point instruction or FWAIT/WAIT instruction that
is about to be executed when the #MF occurs. The address of the last instruction that caused an x87
floating-point exception is in the x87 instruction-pointer register. See “x87 Floating-Point
Programming” in Volume 1 for information on accessing this register.

Masking. Each type of x87 floating-point exception can be masked by setting the appropriate bits in
the x87 control-word register. See “x87 Floating-Point Programming” in Volume 1 for more
information on using this register.

#MF can also be disabled by clearing the CR0.NE bit to 0. See “Numeric Error (NE) Bit” on page 44
for more information on using this bit.

8.2.17 #AC—Alignment-Check Exception (Vector 17)

An #AC exception occurs when an unaligned-memory data reference is performed while alignment
checking is enabled.

After a processor reset, #AC exceptions are disabled. Software enables the #AC exception by setting
the following register bits:

• CR0.AM=1.

• RFLAGS.AC=1.

When the above register bits are set, an #AC can occur only when CPL=3. #AC never occurs when
CPL < 3.

Table 8-7 lists the data types and the alignment boundary required to avoid an #AC exception when the
mechanism is enabled.

Table 8-7. Data-Type Alignment

Supported Data Type
Required Alignment

(Byte Boundary)

Word 2

Doubleword 4

Quadword 8

Bit string 2, 4 or 8 (depends on operand size)

128-bit media 16

64-bit media 8

Segment selector 2

32-bit near pointer 4

32-bit far pointer 2

48-bit far pointer 4

x87 Floating-point single-precision 4

222 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

Error Code Returned. Zero.

Program Restart. #AC is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #AC.

8.2.18 #MC—Machine-Check Exception (Vector 18)

The #MC exception is model specific. Processor implementations are not required to support the #MC
exception, and those implementations that do support #MC can vary in how the #MC exception
mechanism works.

The exception is enabled by setting CR4.MCE to 1. The machine-check architecture can include
model-specific masking for controlling the reporting of some errors. Refer to Chapter 9, “Machine
Check Mechanism,” for more information.

Error Code Returned. None. Error information is provided by model-specific registers (MSRs)
defined by the machine-check architecture.

Program Restart. #MC is an abort-type exception. There is no reliable way to restart the program. If
the EIPV flag (EIP valid) is set in the MCG_Status MSR, the saved CS and rIP point to the instruction
that caused the error. If EIP is clear, the CS:rIP of the instruction causing the failure is not known or the
machine check is not related to a specific instruction.

8.2.19 #XF—SIMD Floating-Point Exception (Vector 19)

The #XF exception is used to handle unmasked 128-bit media floating-point exceptions. A #XF
exception occurs when all of the following conditions are true:

• A 128-bit media floating-point exception occurs. The exception causes the processor to set the
appropriate exception-status bit in the MXCSR register to 1.

• The exception-mask bit in the MXCSR that corresponds to the 128-bit media floating-point
exception is clear (=0).

• CR4.OSXMMEXCPT=1, indicating that the operating system supports handling of 128-bit media
floating-point exceptions.

The exception-mask bits are used by software to specify the handling of 128-bit media floating-point
exceptions. When the corresponding mask bit is cleared to 0, an exception occurs under the control of
the CR4.OSXMMEXCPT bit. However, if the mask bit is set to 1, the 128-bit media floating-point unit
responds in a default manner and execution proceeds normally.

x87 Floating-point double-precision 8

x87 Floating-point extended-precision 8

x87 Floating-point save areas 2 or 4 (depends on operand size)

Table 8-7. Data-Type Alignment (continued)

Supported Data Type
Required Alignment

(Byte Boundary)

Exceptions and Interrupts 223

24593—Rev. 3.17—June 2010 AMD64 Technology

The CR4.OSXMMEXCPT bit specifies the interrupt vector to be taken when an unmasked 128-bit
media floating-point exception occurs. When CR4.OSXMMEXCPT=1, the #XF interrupt vector is
taken when an exception occurs. When CR4.OSXMMEXCPT=0, the #UD (undefined opcode)
interrupt vector is taken when an exception occurs.

The 128-bit media floating-point exceptions reported by the #XF exception are (including
mnemonics):

• IE—Invalid-operation exception (also called #I).

• DE—Denormalized-operand exception (also called #D).

• ZE—Zero-divide exception (also called #Z).

• OE—Overflow exception (also called #O).

• UE—Underflow exception (also called #U).

• PE—Precision exception (also called #P or inexact-result exception).

Each type of 128-bit media floating-point exception can be masked by setting the appropriate bits in
the MXCSR register. #XF can also be disabled by clearing the CR4.OSXMMEXCPT bit to 0.

Error Code Returned. None. Exception information is provided by the 128-bit media floating-point
MXCSR register. See “128-Bit Media and Scientific Programming” in Volume 1 for more information
on using this register.

Program Restart. #XF is a fault-type exception. Unlike the #MF exception, the #XF exception is
precise. The saved instruction pointer points to the instruction that caused the #XF.

8.2.20 User-Defined Interrupts (Vectors 32–255)

User-defined interrupts can be initiated either by system logic or software. They occur when:

• System logic signals an external interrupt request to the processor. The signalling mechanism and
the method of communicating the interrupt vector to the processor are implementation dependent.

• Software executes an INTn instruction. The INTn instruction operand provides the interrupt vector
number.

Both methods can be used to initiate an interrupt into vectors 0 through 255. However, because vectors
0 through 31 are defined or reserved by the AMD64 architecture, software should not use vectors in
this range for purposes other than their defined use.

Error Code Returned. None.

Program Restart. The saved instruction pointer depends on the interrupt source:

• External interrupts are recognized on instruction boundaries. The saved instruction pointer points
to the instruction immediately following the boundary where the external interrupt was
recognized.

224 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

• If the interrupt occurs as a result of executing the INTn instruction, the saved instruction pointer
points to the instruction after the INTn.

Masking. The ability to mask user-defined interrupts depends on the interrupt source:

• External interrupts can be masked using the rFLAGS.IF bit. Setting rFLAGS.IF to 1 enables
external interrupts, while clearing rFLAGS.IF to 0 inhibits them.

• Software interrupts (initiated by the INTn instruction) cannot be disabled.

8.3 Exceptions During a Task Switch

An exception can occur during a task switch while loading a segment selector. Page faults can also
occur when accessing a TSS. In these cases, the hardware task-switch mechanism completes loading
the new task state from the TSS, and then triggers the appropriate exception mechanism. No other
checks are performed. When this happens, the saved instruction pointer points to the first instruction in
the new task.

In long mode, an exception cannot occur during a task switch, because the hardware task-switch
mechanism is disabled.

8.4 Error Codes

The processor exception-handling mechanism reports error and status information for some
exceptions using an error code. The error code is pushed onto the stack by the exception-mechanism
during the control transfer into the exception handler. The error code has two formats: a selector
format for most error-reporting exceptions, and a page-fault format for page faults. These formats are
described in the following sections.

8.4.1 Selector-Error Code

Figure 8-2 shows the format of the selector-error code.

Figure 8-2. Selector Error Code

The information reported by the selector-error code includes:

• EXT—Bit 0. If this bit is set to 1, the exception source is external to the processor. If cleared to 0,
the exception source is internal to the processor.

• IDT—Bit 1. If this bit is set to 1, the error-code selector-index field references a gate descriptor
located in the interrupt-descriptor table (IDT). If cleared to 0, the selector-index field references a

31 16 15 3 2 1 0

Reserved Selector Index
T
I

I
D
T

E
X
T

Exceptions and Interrupts 225

24593—Rev. 3.17—June 2010 AMD64 Technology

descriptor in either the global-descriptor table (GDT) or local-descriptor table (LDT), as indicated
by the TI bit.

• TI—Bit 2. If this bit is set to 1, the error-code selector-index field references a descriptor in the
LDT. If cleared to 0, the selector-index field references a descriptor in the GDT. The TI bit is
relevant only when the IDT bit is cleared to 0.

• Selector Index—Bits 15–3. The selector-index field specifies the index into either the GDT, LDT,
or IDT, as specified by the IDT and TI bits.

Some exceptions return a zero in the selector-error code.

8.4.2 Page-Fault Error Code

Figure 8-3 shows the format of the page-fault error code.

Figure 8-3. Page-Fault Error Code

The information reported by the page-fault error code includes:

• P—Bit 0. If this bit is cleared to 0, the page fault was caused by a not-present page. If this bit is set
to 1, the page fault was caused by a page-protection violation.

• R/W—Bit 1. If this bit is cleared to 0, the access that caused the page fault is a memory read. If this
bit is set to 1, the memory access that caused the page fault was a write. This bit does not
necessarily indicate the cause of the page fault was a read or write violation.

• U/S—Bit 2. If this bit is cleared to 0, an access in supervisor mode (CPL=0, 1, or 2) caused the
page fault. If this bit is set to 1, an access in user mode (CPL=3) caused the page fault. This bit does
not necessarily indicate the cause of the page fault was a privilege violation.

• RSV—Bit 3. If this bit is set to 1, the page fault is a result of the processor reading a 1 from a
reserved field within a page-translation-table entry. This type of page fault occurs only when
CR4.PSE=1 or CR4.PAE=1. If this bit is cleared to 0, the page fault was not caused by the
processor reading a 1 from a reserved field.

• I/D—Bit 4. If this bit is set to 1, it indicates that the access that caused the page fault was an
instruction fetch. Otherwise, this bit is cleared to 0. This bit is only defined if no-execute feature is
enabled (EFER.NXE=1 && CR4.PAE=1).

8.5 Priorities

To allow for consistent handling of multiple-interrupt conditions, simultaneous interrupts are
prioritized by the processor. The AMD64 architecture defines priorities between groups of interrupts,

31 4 3 2 1 0

Reserved I/D
R
S
V

U
/
S

R
/

W
P

226 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

and interrupt prioritization within a group is implementation dependent. Table 8-8 shows the interrupt
priorities defined by the AMD64 architecture.

When simultaneous interrupts occur, the processor transfers control to the highest-priority interrupt
handler. Lower-priority interrupts from external sources are held pending by the processor, and they
are handled after the higher-priority interrupt is handled. Lower-priority interrupts that result from
internal sources are discarded. Those interrupts reoccur when the high-priority interrupt handler
completes and transfers control back to the interrupted instruction. Software interrupts are discarded as
well, and reoccur when the software-interrupt instruction is restarted.

Table 8-8. Simultaneous Interrupt Priorities

Interrupt
Priority

Interrupt Condition
Interrupt
Vector

(High)
0

Processor Reset —

Machine-Check Exception 18

1

External Processor Initialization (INIT)

—SMI Interrupt

External Clock Stop (Stpclk)

2
Data, and I/O Breakpoint (Debug Register)

1
Single-Step Execution Instruction Trap (rFLAGS.TF=1)

3 Non-Maskable Interrupt 2

4 Maskable External Interrupt (INTR) 32—255

5

Instruction Breakpoint (Debug Register) 1

Code-Segment-Limit Violation 13

Instruction-Fetch Page Fault 14

6

Invalid Opcode Exception 6

Device-Not-Available Exception 7

Instruction-Length Violation (> 15 Bytes) 13

7

Divide-by-zero Exception 0

Invalid-TSS Exception 10

Segment-Not-Present Exception 11

Stack Exception 12

General-Protection Exception 13

Data-Access Page Fault 14

Floating-Point Exception-Pending Exception 16

Alignment-Check Exception 17

SIMD Floating-Point Exception 19

Exceptions and Interrupts 227

24593—Rev. 3.17—June 2010 AMD64 Technology

8.5.1 Floating-Point Exception Priorities

Floating-point exceptions (128-bit media and x87 floating-point) can be handled in one of two ways:

• Unmasked exceptions are reported in the appropriate floating-point status register, and a software-
interrupt handler is invoked. See “#MF—x87 Floating-Point Exception-Pending (Vector 16)” on
page 220 and “#XF—SIMD Floating-Point Exception (Vector 19)” on page 222 for more
information on the floating-point interrupts.

• Masked exceptions are also reported in the appropriate floating-point status register. Instead of
transferring control to an interrupt handler, however, the processor handles the exception in a
default manner and execution proceeds.

If the processor detects more than one exception while executing a single floating-point instruction, it
prioritizes the exceptions in a predictable manner. When responding in a default manner to masked
exceptions, it is possible that the processor acts only on the high-priority exception and ignores lower-
priority exceptions. In the case of vector (SIMD) floating-point instructions, priorities are set on sub-
operations, not across all operations. For example, if the processor detects and acts on a QNaN operand
in one sub-operation, the processor can still detect and act on a denormal operand in another sub-
operation.

When reporting 128-bit media floating-point exceptions before taking an interrupt or handling them in
a default manner, the processor first classifies the exceptions as follows:

• Input exceptions include SNaN operand (#I), invalid operation (#I), denormal operand (#D), or
zero-divide (#Z). Using a NaN operand with a maximum, minimum, compare, or convert
instruction is also considered an input exception.

• Output exceptions include numeric overflow (#O), numeric underflow (#U), and precision (#P).

Using the above classification, the processor applies the following procedure to report the exceptions:

1. The exceptions for all sub-operations are prioritized.

2. The exception conditions for all sub-operations are logically ORed together to form a single set of
exceptions covering all operations. For example, if two sub-operations produce a denormal result,
only one denormal exception is reported.

3. If the set of exceptions includes any unmasked input exceptions, all input exceptions are reported
in MCXSR, and no output exceptions are reported. Otherwise, all input and output exceptions are
reported in MCXSR.

4. If any exceptions are unmasked, control is transferred to the appropriate interrupt handler.

Table 8-9 on page 228 lists the priorities for simultaneous floating-point exceptions.

228 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

8.5.2 External Interrupt Priorities

The AMD64 architecture allows software to define up to 15 external interrupt-priority classes. Priority
classes are numbered from 1 to 15, with priority-class 1 being the lowest and priority-class 15 the
highest. The organization of these priority classes is implementation dependent. A typical method is to
use the upper four bits of the interrupt vector number to define the priority. Thus, interrupt vector 53h
has a priority of 5 and interrupt vector 37h has a priority of 3.

A new control register (CR8) is introduced by the AMD64 architecture for managing priority classes.
This register, called the task-priority register (TPR), uses its four low-order bits to specify a task
priority. The remaining 60 bits are reserved and must be written with zeros. Figure 8-4 shows the
format of the TPR.

The TPR is available only in 64-bit mode.

Figure 8-4. Task Priority Register (CR8)

System software can use the TPR register to temporarily block low-priority interrupts from
interrupting a high-priority task. This is accomplished by loading TPR with a value corresponding to
the highest-priority interrupt that is to be blocked. For example, loading TPR with a value of 9 (1001b)
blocks all interrupts with a priority class of 9 or less, while allowing all interrupts with a priority class

Table 8-9. Simultaneous Floating-Point Exception Priorities

Exception
Priority

Exception Condition

(High)
0

SNaN Operand

#I
NaN Operand of Maximum, Minimum, Compare, and
Convert Instructions (Vector Floating-Point)

Stack Overflow (x87 Floating-Point)

Stack Underflow (x87 Floating-Point)

1 QNaN Operand —

2
Invalid Operation (Remaining Conditions) #I

Zero Divide #Z

3 Denormal Operand #D

4
Numeric Overflow #O

Numeric Underflow #U

5
(Low)

Precision #P

63 4 3 0

Reserved, MBZ
Task Priority

(TPR)

Exceptions and Interrupts 229

24593—Rev. 3.17—June 2010 AMD64 Technology

of 10 or more to be recognized. Loading TPR with 0 enables all external interrupts. Loading TPR with
15 (1111b) disables all external interrupts. The TPR is cleared to 0 on reset.

System software reads and writes the TPR using a MOV CR8 instruction. The MOV CR8 instruction
requires a privilege level of 0. Programs running at any other privilege level cannot read or write the
TPR, and an attempt to do so results in a general-protection exception (#GP).

A serializing instruction is not required after loading the TPR, because a new priority level is
established when the MOV instruction completes execution. For example, assume two sequential TPR
loads are performed, in which a low value is first loaded into TPR and immediately followed by a load
of a higher value. Any pending, lower-priority interrupt enabled by the first MOV CR8 is recognized
between the two MOVs.

The TPR is an architectural abstraction of the interrupt controller (IC), which prioritizes and manages
external interrupt delivery to the processor. The IC can be an external system device, or it can be
integrated on the chip like the local advanced programmable interrupt controller (APIC). Typically, the
IC contains a priority mechanism similar, if not identical to, the TPR. The IC, however, is
implementation dependent, and the underlying priority mechanisms are subject to change. The TPR,
by contrast, is part of the AMD64 architecture.

Effect of IC on TPR. The features of the implementation-specific IC can impact the operation of the
TPR. For example, the TPR might affect interrupt delivery only if the IC is enabled. Also, the mapping
of an external interrupt to a specific interrupt priority is an implementation-specific behavior of the IC.

8.6 Real-Mode Interrupt Control Transfers

In real mode, the IDT is a table of 4-byte entries, one entry for each of the 256 possible interrupts
implemented by the system. The real mode IDT is often referred to as an interrupt-vector table, or
IVT. Table entries contain a far pointer (CS:IP pair) to an exception or interrupt handler. The base of
the IDT is stored in the IDTR register, which is loaded with a value of 00h during a processor reset.
Figure 8-5 on page 230 shows how the real-mode interrupt handler is located by the interrupt
mechanism.

230 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 8-5. Real-Mode Interrupt Control Transfer

When an exception or interrupt occurs in real mode, the processor performs the following:

1. Pushes the FLAGS register (EFLAGS[15:0]) onto the stack.

2. Clears EFLAGS.IF to 0 and EFLAGS.TF to 0.

3. Saves the CS register and IP register (RIP[15:0]) by pushing them onto the stack.

4. Locates the interrupt-handler pointer (CS:IP) in the IDT by scaling the interrupt vector by four
and adding the result to the value in the IDTR.

5. Transfers control to the interrupt handler referenced by the CS:IP in the IDT.

Figure 8-6 on page 231 shows the stack after control is transferred to the interrupt handler in real
mode.

513-239.eps

Interrupt-Descriptor
Table

4
* +

IDT Base Address

Interrupt-Descriptor-Table Register

Interrupt Vector CS

Offset

Memory

Interrupt Handler

Exceptions and Interrupts 231

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 8-6. Stack After Interrupt in Real Mode

An IRET instruction is used to return to the interrupted program. When an IRET is executed, the
processor performs the following:

1. Pops the saved CS value off the stack and into the CS register. The saved IP value is popped into
RIP[15:0].

2. Pops the FLAGS value off of the stack and into EFLAGS[15:0].

3. Execution begins at the saved CS.IP location.

8.7 Legacy Protected-Mode Interrupt Control Transfers

In protected mode, the interrupt mechanism transfers control to an exception or interrupt handler
through gate descriptors. In protected mode, the IDT is a table of 8-byte gate entries, one for each of
the 256 possible interrupt vectors implemented by the system. Three gate types are allowed in the IDT:

• Interrupt gates.

• Trap gates.

• Task gates.

If a reference is made to any other descriptor type in the IDT, a general-protection exception (#GP)
occurs.

Interrupt-gate control transfers are similar to CALLs and JMPs through call gates. The interrupt
mechanism uses gates (interrupt, trap, and task) to establish protected entry-points into the exception
and interrupt handlers.

The remainder of this chapter discusses control transfers through interrupt gates and trap gates. If the
gate descriptor in the IDT is a task gate, a TSS-segment selector is referenced, and a task switch

513-243.eps

Interrupt-Handler and
Interrupted-Program

Stack

SS:SP

+2

+4

Return IP

Return CS

Return FLAGS

232 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

occurs. See Chapter 12, “Task Management,” for more information on the hardware task-switch
mechanism.

8.7.1 Locating the Interrupt Handler

When an exception or interrupt occurs, the processor scales the interrupt-vector number by eight and
uses the result as an offset into the IDT. If the gate descriptor referenced by the IDT offset is an
interrupt gate or a trap gate, it contains a segment-selector and segment-offset field (see “Legacy
Segment Descriptors” on page 77 for a detailed description of the gate-descriptor format and fields).
These two fields perform the same function as the pointer operand in a far control-transfer instruction.
The gate-descriptor segment-selector field points to the target code-segment descriptor located in
either the GDT or LDT. The gate-descriptor segment-offset field is the instruction-pointer offset into
the interrupt-handler code segment. The code-segment base taken from the code-segment descriptor is
added to the gate-descriptor segment-offset field to create the interrupt-handler virtual address (linear
address).

Figure 8-7 on page 233 shows how the protected-mode interrupt handler is located by the interrupt
mechanism.

Exceptions and Interrupts 233

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 8-7. Protected-Mode Interrupt Control Transfer

8.7.2 Interrupt To Same Privilege

When a control transfer to an exception or interrupt handler at the same privilege level occurs (through
an interrupt gate or a trap gate), the processor performs the following:

1. Pushes the EFLAGS register onto the stack.

2. Clears the TF, NT, RF, and VM bits in EFLAGS to 0.

*

Interrupt Vector

+

513-240.eps

Virtual-Address
Space

Interrupt Handler

Code Segment

+

Interrupt
Descriptor Table

Code-Segment Offset

CS Selector DPL

Global or Local
Descriptor Table

Code-Segment Base

CS Limit DPL

Interrupt-Descriptor-Table Register

IDT Base Address IDT Limit

8

234 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

3. The processor handles EFLAGS.IF based on the gate-descriptor type:

- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.

- If the gate descriptor is a trap gate, EFLAGS.IF is not modified.

4. Saves the return CS register and EIP register (RIP[31:0]) by pushing them onto the stack. The CS
value is padded with two bytes to form a doubleword.

5. If the interrupt has an associated error code, the error code is pushed onto the stack.

6. The CS register is loaded from the segment-selector field in the gate descriptor, and the EIP is
loaded from the offset field in the gate descriptor.

7. The interrupt handler begins executing with the instruction referenced by new CS:EIP.

Figure 8-8 shows the stack after control is transferred to the interrupt handler.

Figure 8-8. Stack After Interrupt to Same Privilege Level

8.7.3 Interrupt To Higher Privilege

When a control transfer to an exception or interrupt handler running at a higher privilege occurs
(numerically lower CPL value), the processor performs a stack switch using the following steps:

1. The target CPL is read by the processor from the target code-segment DPL and used as an index
into the TSS for selecting the new stack pointer (SS:ESP). For example, if the target CPL is 1, the
processor selects the SS:ESP for privilege-level 1 from the TSS.

2. Pushes the return stack pointer (old SS:ESP) onto the new stack. The SS value is padded with two
bytes to form a doubleword.

3. Pushes the EFLAGS register onto the new stack.

4. Clears the following EFLAGS bits to 0: TF, NT, RF, and VM.

Interrupt-Handler and
Interrupted Program

Stack

Return EIP

Return CS

Return EFLAGS

Error Code SS:ESP

+4

+8

+12

513-242.eps

Return CS

Return EFLAGS

Return EIP SS:ESP

+4

+8

With Error Code With No Error Code

Exceptions and Interrupts 235

24593—Rev. 3.17—June 2010 AMD64 Technology

5. The processor handles the EFLAGS.IF bit based on the gate-descriptor type:

- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.

- If the gate descriptor is a trap gate, EFLAGS.IF is not modified.

6. Saves the return-address pointer (CS:EIP) by pushing it onto the stack. The CS value is padded
with two bytes to form a doubleword.

7. If the interrupt-vector number has an error code associated with it, the error code is pushed onto
the stack.

8. The CS register is loaded from the segment-selector field in the gate descriptor, and the EIP is
loaded from the offset field in the gate descriptor.

9. The interrupt handler begins executing with the instruction referenced by new CS:EIP.

Figure 8-9 shows the new stack after control is transferred to the interrupt handler.

Figure 8-9. Stack After Interrupt to Higher Privilege

8.7.4 Privilege Checks

Before loading the CS register with the interrupt-handler code-segment selector (located in the gate
descriptor), the processor performs privilege checks similar to those performed on call gates. The
checks are performed when either conforming or nonconforming interrupt handlers are referenced:

1. The processor reads the gate DPL from the interrupt-gate or trap-gate descriptor. The gate DPL is
the minimum privilege-level (numerically-highest value) needed by a program to access the gate.
The processor compares the CPL with the gate DPL. The CPL must be numerically less-than or
equal-to the gate DPL for this check to pass.

Interrupt-Handler Stack

Return SS

Return EIP

Return CS

Return EFLAGS

Return ESP

Error Code New SS:ESP

+4

+8

+12

+16

+20

513-241.eps

Return SS

Return CS

Return EFLAGS

Return ESP

Return EIP New SS:ESP

+4

+8

+12

+16

With Error Code With No Error Code

236 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

2. The processor compares the CPL with the interrupt-handler code-segment DPL. For this check to
pass, the CPL must be numerically greater-than or equal-to the code-segment DPL. This check
prevents control transfers to less-privileged interrupt handlers.

Unlike call gates, no RPL comparison takes place. This is because the gate descriptor is referenced in
the IDT using the interrupt-vector number rather than a selector, and no RPL field exists in the
interrupt-vector number.

Exception and interrupt handlers should be made reachable from software running at any privilege
level that requires them. If the gate DPL value is too low (requiring more privilege), or the interrupt-
handler code-segment DPL is too high (runs at lower privilege), the interrupt control transfer can fail
the privilege checks. Setting the gate DPL=3 and interrupt-handler code-segment DPL=0 makes the
exception handler or interrupt handler reachable from any privilege level.

Figure 8-10 on page 237 shows two examples of interrupt privilege checks. In Example 1, both
privilege checks pass:

• The interrupt-gate DPL is at the lowest privilege (3), which means that software running at any
privilege level (CPL) can access the interrupt gate.

• The interrupt-handler code segment is at the highest-privilege level, as indicated by DPL=0. This
means software running at any privilege can enter the interrupt handler through the interrupt gate.

Exceptions and Interrupts 237

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 8-10. Privilege-Check Examples for Interrupts

In Example 2, both privilege checks fail:

• The interrupt-gate DPL specifies that only software running at privilege-level 0 can access the
gate. The current program does not have a high enough privilege level to access the interrupt gate,
since its CPL is set at 2.

513-244.epsExample 2: Privilege Check Fails

DPL=0

Gate Descriptor

Access Denied

Interrupt
Handler

CS CPL=2

≤

DPL=3

Code Descriptor

Interrupt Vector

≥

?

Access
Denied

Access
Denied

Example 1: Privilege Check Passes

DPL=3

Gate Descriptor

Access Allowed

Interrupt
Handler

CS CPL=2

≤

DPL=0

Code Descriptor

Interrupt Vector

≥

?

Access
Allowed

Access
Allowed

238 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

• The interrupt handler has a lower privilege (DPL=3) than the currently-running software (CPL=2).
Transitions from more-privileged software to less-privileged software are not allowed, so this
privilege check fails as well.

Although both privilege checks fail, only one such failure is required to deny access to the interrupt
handler.

8.7.5 Returning From Interrupt Procedures

A return to an interrupted program should be performed using the IRET instruction. An IRET is a far
return to a different code segment, with or without a change in privilege level. The actions of an IRET
in both cases are described in the following sections.

IRET, Same Privilege. Before performing the IRET, the stack pointer must point to the return EIP. If
there was an error code pushed onto the stack as a result of the exception or interrupt, that error code
should have been popped off the stack earlier by the handler. The IRET reverses the actions of the
interrupt mechanism:

1. Pops the return pointer off of the stack, loading both the CS register and EIP register (RIP[31:0])
with the saved values. The return code-segment RPL is read by the processor from the CS value
stored on the stack to determine that an equal-privilege control transfer is occurring.

2. Pops the saved EFLAGS image off of the stack and into the EFLAGS register.

3. Transfers control to the return program at the target CS:EIP.

IRET, Less Privilege. If an IRET changes privilege levels, the return program must be at a lower
privilege than the interrupt handler. The IRET in this case causes a stack switch to occur:

1. The return pointer is popped off of the stack, loading both the CS register and EIP register
(RIP[31:0]) with the saved values. The return code-segment RPL is read by the processor from the
CS value stored on the stack to determine that a lower-privilege control transfer is occurring.

2. The saved EFLAGS image is popped off of the stack and loaded into the EFLAGS register.

3. The return-program stack pointer is popped off of the stack, loading both the SS register and ESP
register (RSP[31:0]) with the saved values.

4. Control is transferred to the return program at the target CS:EIP.

8.8 Virtual-8086 Mode Interrupt Control Transfers

This section describes interrupt control transfers as they relate to virtual-8086 mode. Virtual-8086
mode is not supported by long mode. Therefore, the control-transfer mechanism described here is not
applicable to long mode.

When a software interrupt occurs (not external interrupts, INT1, or INT3) while the processor is
running in virtual-8086 mode (EFLAGS.VM=1), the control transfer that occurs depends on three
system controls:

Exceptions and Interrupts 239

24593—Rev. 3.17—June 2010 AMD64 Technology

• EFLAGS.IOPL—This field controls interrupt handling based on the CPL. See “I/O Privilege Level
Field (IOPL) Field” on page 52 for more information on this field.

Setting IOPL<3 redirects the interrupt to the general-protection exception (#GP) handler.

• CR4.VME—This bit enables virtual-mode extensions. See “Virtual-8086 Mode Extensions (VME)
Bit” on page 47 for more information on this bit.

• TSS Interrupt-Redirection Bitmap—The TSS interrupt-redirection bitmap contains 256 bits, one
for each possible INTn vector (software interrupt). When CR4.VME=1, the bitmap is used by the
processor to direct interrupts to the handler provided by the currently-running 8086 program
(bitmap entry is 0), or to the protected-mode operating-system interrupt handler (bitmap entry is
1). See “Legacy Task-State Segment” on page 313 for information on the location of this field
within the TSS.

If IOPL<3, CR4.VME=1, and the corresponding interrupt redirection bitmap entry is 0, the processor
uses the virtual-interrupt mechanism. See “Virtual Interrupts” on page 247 for more information on
this mechanism.

Table 8-10 summarizes the actions of the above system controls on interrupts taken when the
processor is running in virtual-8086 mode.

8.8.1 Protected-Mode Handler Control Transfer

Control transfers to protected-mode handlers from virtual-8086 mode differ from standard protected-
mode transfers in several ways. The processor follows these steps in making the control transfer:

1. Reads the CPL=0 stack pointer (SS:ESP) from the TSS.

2. Pushes the GS, FS, DS, and ES selector registers onto the stack. Each push is padded with two
bytes to form a doubleword.

3. Clears the GS, FS, DS, and ES selector registers to 0. This places a null selector in each of the
four registers

4. Pushes the return stack pointer (old SS:ESP) onto the new stack. The SS value is padded with two
bytes to form a doubleword.

Table 8-10. Virtual-8086 Mode Interrupt Mechanisms

EFLAGS.IOPL CR4.VME
TSS Interrupt
Redirection

Bitmap Entry
Interrupt Mechanism

0, 1, or 2

0 —
General-Protection Exception

1 1

1 0 Virtual Interrupt

3

0 —
Protected-Mode Handler

1 1

1 0 Virtual 8086 Handler

240 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

5. Pushes the EFLAGS register onto the new stack.

6. Clears the following EFLAGS bits to 0: TF, NT, RF, and VM.

7. Handles EFLAGS.IF based on the gate-descriptor type:

- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.

- If the gate descriptor is a trap gate, EFLAGS.IF is not modified.

8. Pushes the return-address pointer (CS:EIP) onto the stack. The CS value is padded with two bytes
to form a doubleword.

9. If the interrupt has an associated error code, pushes the error code onto the stack.

10. Loads the segment-selector field from the gate descriptor into the CS register, and loads the offset
field from the gate descriptor into the EIP register.

11. Begins execution of the interrupt handler with the instruction referenced by the new CS:EIP.

Figure 8-11 shows the new stack after control is transferred to the interrupt handler with an error code.

Figure 8-11. Stack After Virtual-8086 Mode Interrupt to Protected Mode

An IRET from privileged protected-mode software (CPL=0) to virtual-8086 mode reverses the stack-
build process. After the return pointer, EFLAGS, and return stack-pointer are restored, the processor
restores the ES, DS, FS, and GS registers by popping their values off the stack.

With Error Code

Return SS

Return EIP

Return CS

Return EFLAGS

Return ESP

Error Code New SS:ESP
(From TSS, CPL=0)

+4

+8

+12

+16

+20

Return ES

Return DS

Return FS

Return GS

+24

+28

+32

+36

513-249.eps

With No Error Code

Return SS

Return CS

Return EFLAGS

Return ESP

Return EIP New SS:ESP

+4

+8

+12

+16

+20Return ES

Return DS

Return FS

Return GS

+24

+28

+32

Interrupt-Handler Stack

Exceptions and Interrupts 241

24593—Rev. 3.17—June 2010 AMD64 Technology

8.8.2 Virtual-8086 Handler Control Transfer

When a control transfer to an 8086 handler occurs from virtual-8086 mode, the processor creates an
interrupt-handler stack identical to that created when an interrupt occurs in real mode (see Figure 8-6
on page 231). The processor performs the following actions during a control transfer:

1. Pushes the FLAGS register (EFLAGS[15:0]) onto the stack.

2. Clears the EFLAGS.IF and EFLAGS.RF bits to 0.

3. Saves the CS register and IP register (RIP[15:0]) by pushing them onto the stack.

4. Locates the interrupt-handler pointer (CS:IP) in the 8086 IDT by scaling the interrupt vector by
four and adding the result to the virtual (linear) address 0. The value in the IDTR is not used.

5. Transfers control to the interrupt handler referenced by the CS:IP in the IDT.

An IRET from the 8086 handler back to virtual-8086 mode reverses the stack-build process.

8.9 Long-Mode Interrupt Control Transfers

The long-mode architecture expands the legacy interrupt-mechanism to support 64-bit operating
systems and applications. These changes include:

• All interrupt handlers are 64-bit code and operate in 64-bit mode.

• The size of an interrupt-stack push is fixed at 64 bits (8 bytes).

• The interrupt-stack frame is aligned on a 16-byte boundary.

• The stack pointer, SS:RSP, is pushed unconditionally on interrupts, rather than conditionally based
on a change in CPL.

• The SS selector register is loaded with a null selector as a result of an interrupt, if the CPL changes.

• The IRET instruction behavior changes, to unconditionally pop SS:RSP, allowing a null SS to be
popped.

• A new interrupt stack-switch mechanism, called the interrupt-stack table or IST, is introduced.

8.9.1 Interrupt Gates and Trap Gates

Only long-mode interrupt and trap gates can be referenced in long mode (64-bit mode and
compatibility mode). The legacy 32-bit interrupt-gate and 32-bit trap-gate types (0Eh and 0Fh, as
described in “System Descriptors” on page 88) are redefined in long mode as 64-bit interrupt-gate and
64-bit trap-gate types. 32-bit and 16-bit interrupt-gate and trap-gate types do not exist in long mode,
and software is prohibited from using task gates. If a reference is made to any gate other than a 64-bit
interrupt gate or a 64-bit trap gate, a general-protection exception (#GP) occurs.

The long-mode gate types are 16 bytes (128 bits) long. They are an extension of the legacy-mode gate
types, allowing a full 64-bit segment offset to be stored in the descriptor. See “Legacy Segment
Descriptors” on page 77 for a detailed description of the gate-descriptor format and fields.

242 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

8.9.2 Locating the Interrupt Handler

When an interrupt occurs in long mode, the processor multiplies the interrupt-vector number by 16 and
uses the result as an offset into the IDT. The gate descriptor referenced by the IDT offset contains a
segment-selector and a 64-bit segment-offset field. The gate-descriptor segment-offset field contains
the complete virtual address for the interrupt handler. The gate-descriptor segment-selector field points
to the target code-segment descriptor located in either the GDT or LDT. The code-segment descriptor
is only used for privilege-checking purposes and for placing the processor in 64-bit mode. The code
segment-descriptor base field, limit field, and most attributes are ignored.

Figure 8-12 shows how the long-mode interrupt handler is located by the interrupt mechanism.

Figure 8-12. Long-Mode Interrupt Control Transfer

*

Interrupt Vector

+

513-245.eps

Virtual-Address
Space

Interrupt Handler

Interrupt-Descriptor
Table

Code-Segment Offset

CS Selector DPL

Global- or Local-
Descriptor Table

Code-Segment Base

CS Limit DPL

Interrupt-Descriptor-Table Register

IDT Base Address IDT Limit

16

Exceptions and Interrupts 243

24593—Rev. 3.17—June 2010 AMD64 Technology

8.9.3 Interrupt Stack Frame

In long mode, the return-program stack pointer (SS:RSP) is always pushed onto the interrupt-handler
stack, regardless of whether or not a privilege change occurs. Although the SS register is not used in
64-bit mode, SS is pushed to allow returns into compatibility mode. Pushing SS:RSP unconditionally
presents operating systems with a consistent interrupt-stack-frame size for all interrupts, except for
error codes. Interrupt service-routine entry points that handle interrupts generated by non-error-code
interrupts can push an error code on the stack for consistency.

In long mode, when a control transfer to an interrupt handler occurs, the processor performs the
following:

1. Aligns the new interrupt-stack frame by masking RSP with FFFF_FFFF_FFFF_FFF0h.

2. If IST field in interrupt gate is not 0, reads IST pointer into RSP.

3. If a privilege change occurs, the target DPL is used as an index into the long-mode TSS to select a
new stack pointer (RSP).

4. If a privilege change occurs, SS is cleared to zero indicating a null selector.

5. Pushes the return stack pointer (old SS:RSP) onto the new stack. The SS value is padded with six
bytes to form a quadword.

6. Pushes the 64-bit RFLAGS register onto the stack. The upper 32 bits of the RFLAGS image on
the stack are written as zeros.

7. Clears the TF, NT, and RF bits in RFLAGS bits to 0.

8. Handles the RFLAGS.IF bit according to the gate-descriptor type:

- If the gate descriptor is an interrupt gate, RFLAGS.IF is cleared to 0.

- If the gate descriptor is a trap gate, RFLAGS.IF is not modified.

9. Pushes the return CS register and RIP register onto the stack. The CS value is padded with six
bytes to form a quadword.

10. If the interrupt-vector number has an error code associated with it, pushes the error code onto the
stack. The error code is padded with four bytes to form a quadword.

11. Loads the segment-selector field from the gate descriptor into the CS register. The processor
checks that the target code-segment is a 64-bit mode code segment.

12. Loads the offset field from the gate descriptor into the target RIP. The interrupt handler begins
execution when control is transferred to the instruction referenced by the new RIP.

Figure 8-13 on page 244 shows the stack after control is transferred to the interrupt handler.

244 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 8-13. Long-Mode Stack After Interrupt—Same Privilege

Interrupt-Stack Alignment. In legacy mode, the interrupt-stack pointer can be aligned at any address
boundary. Long mode, however, aligns the stack on a 16-byte boundary. This alignment is performed
by the processor in hardware before pushing items onto the stack frame. The previous RSP is saved
unconditionally on the new stack by the interrupt mechanism. A subsequent IRET instruction
automatically restores the previous RSP.

Aligning the stack on a 16-byte boundary allows optimal performance for saving and restoring the 16-
byte XMM registers. The interrupt handler can save and restore the XMM registers using the faster 16-
byte aligned loads and stores (MOVAPS), rather than unaligned loads and stores (MOVUPS).
Although the RSP alignment is always performed in long mode, it is only of consequence when the
interrupted program is already running at CPL=0, and it is generally used only within the operating-
system kernel. The operating system should put 16-byte aligned RSP values in the TSS for interrupts
that change privilege levels.

Stack Switch. In long mode, the stack-switch mechanism differs slightly from the legacy stack-
switch mechanism (see “Interrupt To Higher Privilege” on page 234). When stacks are switched
during a long-mode privilege-level change resulting from an interrupt, a new SS descriptor is not
loaded from the TSS. Long mode only loads an inner-level RSP from the TSS. However, the SS
selector is loaded with a null selector, allowing nested control transfers, including interrupts, to be
handled properly in 64-bit mode. The SS.RPL is set to the new CPL value. See “Nested IRETs to 64-
Bit Mode Procedures” on page 247 for additional information.

Return SS

Return CS

Error Code

With Error Code

Return RIP

Return RFLAGS

Return RSP

RSP

+8

+16

+24

+32

+40

Return SS

Return CS

With No Error Code

Return RIP

Return RFLAGS

Return RSP

RSP

+8

+16

+24

+32

Interrupt-Handler Stack

Exceptions and Interrupts 245

24593—Rev. 3.17—June 2010 AMD64 Technology

The interrupt-handler stack that results from a privilege change in long mode looks identical to a long-
mode stack when no privilege change occurs. Figure 8-14 shows the stack after the switch is
performed and control is transferred to the interrupt handler.

Figure 8-14. Long-Mode Stack After Interrupt—Higher Privilege

8.9.4 Interrupt-Stack Table

In long mode, a new interrupt-stack table (IST) mechanism is introduced as an alternative to the
modified legacy stack-switch mechanism described above. The IST mechanism provides a method for
specific interrupts, such as NMI, double-fault, and machine-check, to always execute on a known-
good stack. In legacy mode, interrupts can use the hardware task-switch mechanism to set up a known-
good stack by accessing the interrupt service routine through a task gate located in the IDT. However,
the hardware task-switch mechanism is not supported in long mode.

When enabled, the IST mechanism unconditionally switches stacks. It can be enabled on an individual
interrupt-vector basis using a new field in the IDT gate-descriptor entry. This allows some interrupts to
use the modified legacy mechanism, and others to use the IST mechanism. The IST mechanism is only
available in long mode.

The IST mechanism uses new fields in the 64-bit TSS format and the long-mode interrupt-gate and
trap-gate descriptors:

• Figure 12-8 on page 319 shows the format of the 64-bit TSS and the location of the seven IST
pointers. The 64-bit TSS offsets from 24h to 5Bh provide space for seven IST pointers, each of
which are 64 bits (8 bytes) long.

Return SS

Return CS

Error Code

With Error Code

Return RIP

Return RFLAGS

Return RSP

New RSP
(from TSS)

SS=0
(if CPL changes)

+8

+16

+24

+32

+40

Return SS

Return CS

Without Error Code

Return RIP

Return RFLAGS

Return RSP

New RSP
(from TSS)

SS=0
(if CPL changes)

+8

+16

+24

+32

Interrupt-Handler Stack

246 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

• The long-mode interrupt-gate and trap-gate descriptors define a 3-bit IST-index field in bits 2–0 of
byte +4. Figure 4-24 on page 91 shows the format of long-mode interrupt-gate and trap-gate
descriptors and the location of the IST-index field.

To enable the IST mechanism for a specific interrupt, system software stores a non-zero value in the
interrupt gate-descriptor IST-index field. If the IST index is zero, the modified legacy stack-switching
mechanism (described in the previous section) is used.

Figure 8-15 shows how the IST mechanism is used to create the interrupt-handler stack. When an
interrupt occurs and the IST index is non-zero, the processor uses the index to select the corresponding
IST pointer from the TSS. The IST pointer is loaded into the RSP to establish a new stack for the
interrupt handler. The SS register is loaded with a null selector if the CPL changes and the SS.RPL is
set to the new CPL value. After the stack is loaded, the processor pushes the old stack pointer,
RFLAGS, the return pointer, and the error code (if applicable) onto the stack. Control is then
transferred to the interrupt handler.

Figure 8-15. Long-Mode IST Mechanism

8.9.5 Returning From Interrupt Procedures

As with legacy mode, a return to an interrupted program in long mode should be performed using the
IRET instruction. However, in long mode, the IRET semantics are different from legacy mode:

• In 64-bit mode, IRET pops the return-stack pointer unconditionally off the interrupt-stack frame
and into the SS:RSP registers. This reverses the action of the long-mode interrupt mechanism,

513-248.eps

Return SS

Return CS

Error Code

64-Bit
Interrupt-Handler Stack

Return RIP

Return RFLAGS

Return RSP

+8

+16

+24

+32

+40

IST

Long-Mode
Interrupt- or Trap-
Gate Descriptor

64-Bit TSS

RSP0 : RSP2

IST1 : IST7
RSP

SS=0

Exceptions and Interrupts 247

24593—Rev. 3.17—June 2010 AMD64 Technology

which saves the stack pointer whether or not a privilege change occurs. IRET also allows a null
selector to be popped off the stack and into the SS register. See “Nested IRETs to 64-Bit Mode
Procedures” on page 247 for additional information.

• In compatibility mode, IRET behaves as it does in legacy mode. The SS:ESP is popped off the
stack only if a control transfer to less privilege (numerically greater CPL) is performed. Otherwise,
it is assumed that a stack pointer is not present on the interrupt-handler stack.

The long-mode interrupt mechanism always uses a 64-bit stack when saving values for the interrupt
handler, and the interrupt handler is always entered in 64-bit mode. To work properly, an IRET used to
exit the 64-bit mode interrupt-handler requires a series of eight-byte pops off the stack. This is
accomplished by using a 64-bit operand-size prefix with the IRET instruction. The default stack size
assumed by an IRET in 64-bit mode is 32 bits, so a 64-bit REX prefix is needed by 64-bit mode
interrupt handlers.

Nested IRETs to 64-Bit Mode Procedures. In long mode, an interrupt causes a null selector to be
loaded into the SS register if the CPL changes (this is the same action taken by a far CALL in long
mode). If the interrupt handler performs a far call, or is itself interrupted, the null SS selector is pushed
onto the stack frame, and another null selector is loaded into the SS register. Using a null selector in
this way allows the processor to properly handle returns nested within 64-bit-mode procedures and
interrupt handlers.

The null selector enables the processor to properly handle nested returns to 64-bit mode (which do not
use the SS register), and returns to compatibility mode (which do use the SS register). Normally, an
IRET that pops a null selector into the SS register causes a general-protection exception (#GP) to
occur. However, in long mode, the null selector indicates the existence of nested interrupt handlers
and/or privileged software in 64-bit mode. Long mode allows an IRET to pop a null selector into SS
from the stack under the following conditions:

• The target mode is 64-bit mode.

• The target CPL<3.

In this case, the processor does not load an SS descriptor, and the null selector is loaded into SS
without causing a #GP exception.

8.10 Virtual Interrupts

The term virtual interrupts includes two classes of extensions to the interrupt-handling mechanism:

• Virtual-8086 Mode Extensions (VME)—These allow virtual interrupts and interrupt redirection in
virtual-8086 mode. VME has no effect on protected-mode programs.

• Protected-Mode Virtual Interrupts (PVI)—These allow virtual interrupts in protected mode when
CPL=3. Interrupt redirection is not available in protected mode. PVI has no effect on virtual-8086-
mode programs.

Because virtual-8086 mode is not supported in long mode, VME extensions are not supported in long
mode. PVI extensions are, however, supported in long mode.

248 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

8.10.1 Virtual-8086 Mode Extensions

The virtual-8086-mode extensions (VME) enable performance enhancements for 8086 programs
running as protected tasks in virtual-8086 mode. These extensions are enabled by setting CR4.VME
(bit 0) to 1. The extensions enabled by CR4.VME are:

• Virtualizing control and notification of maskable external interrupts with the EFLAGS VIF (bit 19)
and VIP (bit 20) bits.

• Selective interception of software interrupts (INTn instructions) using the TSS interrupt
redirection bitmap (IRB).

Background. Legacy-8086 programs expect to have full access to the EFLAGS interrupt flag (IF) bit,
allowing programs to enable and disable maskable external interrupts. When those programs run in
virtual-8086 mode under a multitasking protected-mode environment, it can disrupt the operating
system if programs enable or disable interrupts for their own purposes. This is particularly true if
interrupts associated with one program can occur during execution of another program. For example, a
program could request that an area of memory be copied to disk. System software could suspend the
program before external hardware uses an interrupt to acknowledge that the block has been copied.
System software could subsequently start a second program which enables interrupts. This second
program could receive the external interrupt indicating that the memory block of the first program has
been copied. If that were to happen, the second program would probably be unprepared to handle the
interrupt properly.

Access to the IF bit must be managed by system software on a task-by-task basis to prevent corruption
of system resources. In order to completely manage the IF bit, system software must be able to
interrupt all instructions that can read or write the bit. These instructions include STI, CLI, PUSHF,
POPF, INTn, and IRET. These instructions are part of an instruction class that is IOPL-sensitive. The
processor takes a general-protection exception (#GP) whenever an IOPL-sensitive instruction is
executed and the EFLAGS.IOPL field is less than the CPL. Because all virtual-8086 programs run at
CPL=3, system software can interrupt all instructions that modify the IF bit by setting IOPL<3.

System software maintains a virtual image of the IF bit for each virtual-8086 program by emulating the
actions of IOPL-sensitive instructions that modify the IF bit. When an external maskable-interrupt
occurs, system software checks the state of the IF image for the current virtual-8086 program to
determine whether the program is masking interrupts. If the program is masking interrupts, system
software saves the interrupt information until the virtual-8086 program attempts to re-enable
interrupts. When the virtual-8086 program unmasks interrupts with an IOPL-sensitive instruction,
system software traps the action with the #GP handler.

The performance of a processor can be significantly degraded by the overhead of trapping and
emulating IOPL-sensitive instructions, and the overhead of maintaining images of the IF bit for each
virtual-8086 program. This performance loss can be eliminated by running virtual-8086 programs
with IOPL set to 3, thus allowing changes to the real IF flag from any privilege level. Unfortunately,
this can leave critical system resources unprotected.

Exceptions and Interrupts 249

24593—Rev. 3.17—June 2010 AMD64 Technology

In addition to the performance problems caused by virtualizing the IF bit, software interrupts (INTn
instructions) cannot be masked by the IF bit or virtual copies of the IF bit. The IF bit only affects
maskable external interrupts. Software interrupts in virtual-8086 mode are normally directed to the
real mode interrupt-vector table (IVT), but it can be desirable to redirect certain interrupts to the
protected-mode interrupt-descriptor table (IDT).

The virtual-8086-mode extensions are designed to support both external interrupts and software
interrupts, with mechanisms that preserve high performance without compromising protection.
Virtualization of external interrupts is supported using two bits in the EFLAGS register: the virtual-
interrupt flag (VIF) bit and the virtual-interrupt pending (VIP) bit. Redirection of software interrupts is
supported using the interrupt-redirection bitmap (IRB) in the TSS. A separate TSS can be created for
each virtual-8086 program, allowing system software to control interrupt redirection independently for
each virtual-8086 program.

VIF and VIP Extensions for External Interrupts. When VME extensions are enabled, the IF-
modifying instructions normally trapped by system software are allowed to execute. However, instead
of modifying the IF bit, they modify the EFLAGS VIF bit. This leaves control over maskable interrupts
to the system software. It can also be used as an indicator to system software that the virtual-8086
program is able to, or is expecting to, receive external interrupts.

When an unmasked external interrupt occurs, the processor transfers control from the virtual-8086
program to a protected-mode interrupt handler. If the interrupt handler determines that the interrupt is
for the virtual-8086 program, it can check the state of the VIF bit in the EFLAGS value pushed on the
stack for the virtual-8086 program. If the VIF bit is set (indicating the virtual-8086 program attempted
to unmask interrupts), system software can allow the interrupt to be handled by the appropriate virtual-
8086 interrupt handler.

If the VIF bit is clear (indicating the virtual-8086 program attempted to mask interrupts) and the
interrupt is for the virtual-8086 program, system software can hold the interrupt pending. System
software holds an interrupt pending by saving appropriate information about the interrupt, such as the
interrupt vector, and setting the virtual-8086 program's VIP bit in the EFLAGS image on the stack.
When the virtual-8086 program later attempts to set IF, the previously set VIP bit causes a general-
protection exception (#GP) to occur. System software can then pass the saved interrupt information to
the virtual-8086 interrupt handler.

To summarize, when the VME extensions are enabled (CR4.VME=1), the VIF and VIP bits are set and
cleared as follows:

• VIF Bit—This bit is set and cleared by the processor in virtual-8086 mode in response to an
attempt by a virtual-8086 program to set and clear the EFLAGS.IF bit. VIF is used by system
software to determine whether a maskable external interrupt should be passed on to the virtual-
8086 program, emulated by system software, or held pending. VIF is also cleared during software
interrupts through interrupt gates, with the original VIF value preserved in the EFLAGS image on
the stack.

• VIP Bit—System software sets and clears this bit in the EFLAGS image saved on the stack after an
interrupt. It can be set when an interrupt occurs for a virtual-8086 program that has a clear VIF bit.

250 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

The processor examines the VIP bit when an attempt is made by the virtual-8086 program to set
the IF bit. If VIP is set when the program attempts to set IF, a general-protection exception (#GP)
occurs before execution of the IF-setting instruction. System software must clear VIP to avoid
repeated #GP exceptions when returning to the interrupted instruction.

The VIF and VIP bits can be used by system software to minimize the overhead associated with
managing maskable external interrupts because virtual copies of the IF flag do not have to be
maintained by system software. Instead, VIF and VIP are maintained during context switches along
with the remaining EFLAGS bits.

Table 8-11 on page 252 shows how the behavior of instructions that modify the IF bit are affected by
the VME extensions.

Interrupt Redirection of Software Interrupts. In virtual-8086 mode, software interrupts (INTn
instructions) are trapped using a #GP exception handler if the IOPL is less than 3 (the CPL for virtual-
8086 mode). This allows system software to interrupt and emulate 8086-interrupt handlers. System
software can set the IOPL to 3, in which case the INTn instruction is vectored through a gate descriptor
in the protected-mode IDT. System software can use the gate to control access to the virtual-8086
mode interrupt-vector table (IVT), or to redirect the interrupt to a protected-mode interrupt handler.

When VME extensions are enabled, for INTn instructions to execute normally, vectoring directly to a
virtual-8086 interrupt handler through the virtual-8086 IVT (located at address 0 in the virtual-address
space of the task). For security or performance reasons, however, it can be necessary to intercept INTn
instructions on a vector-specific basis to allow servicing by protected-mode interrupt handlers. This is
performed by using the interrupt-redirection bitmap (IRB), located in the TSS and enabled when
CR4.VME=1. The IRB is available only in virtual-8086 mode.

Figure 12-6 on page 314 shows the format of the TSS, with the interrupt redirection bitmap located
near the top. The IRB contains 256 bits, one for each possible software-interrupt vector. The most-
significant bit of the IRB controls interrupt vector 255, and is located immediately before the IOPB
base. The least-significant bit of the IRB controls interrupt vector 0.

The bits in the IRB function as follows:

• When set to 1, the INTn instruction behaves as if the VME extensions are not enabled. The
interrupt is directed through the IDT to a protected-mode interrupt handler if IOPL=3. If IOPL<3,
the INTn causes a #GP exception.

• When cleared to 0, the INTn instruction is directed through the IVT for the virtual-8086 program
to the corresponding virtual-8086 interrupt handler.

Only software interrupts can be redirected using the IRB mechanism. External interrupts are
asynchronous events that occur outside the context of a virtual-8086 program. Therefore, external
interrupts require system-software intervention to determine the appropriate context for the interrupt.
The VME extensions described in “VIF and VIP Extensions for External Interrupts” on page 249 are
provided to assist system software with external-interrupt intervention.

Exceptions and Interrupts 251

24593—Rev. 3.17—June 2010 AMD64 Technology

8.10.2 Protected Mode Virtual Interrupts

The protected-mode virtual-interrupt (PVI) bit in CR4 enables support for interrupt virtualization in
protected mode. When enabled, the processor maintains program-specific VIF and VIP bits similar to
the manner defined by the virtual-8086 mode extensions (VME). However, unlike VME, only the STI
and CLI instructions are affected by the PVI extension. When a program is running at CPL=3, it can
use STI and CLI to set and clear its copy of the VIF flag without causing a general-protection
exception. The last section of Table 8-11 on page 252 describes the behavior of instructions that
modify the IF bit when PVI extensions are enabled.

The interrupt redirection bitmap (IRB) defined by the VME extensions is not supported by the PVI
extensions.

8.10.3 Effect of Instructions that Modify EFLAGS.IF

Table 8-11 on page 252 shows how the behavior of instructions that modify the IF bit are affected by
the VME and PVI extensions. The table columns specify the following:

• Operating Mode—the processor mode in effect when the instruction is executed.

• Instruction—the IF-modifying instruction.

• IOPL—the value of the EFLAGS.IOPL field.

• VIP—the value of the EFLAGS.VIP bit.

• #GP—indicates whether the conditions in the first four columns cause a general-protection
exception (#GP) to occur.

• Effect on IF Bit—indicates the effect the conditions in the first four columns have on the
EFLAGS.IF bit and the image of EFLAGS.IF on the stack.

• Effect on VIF Bit—indicates the effect the conditions in the first four columns have on the
EFLAGS.VIF bit and the image of EFLAGS.VIF on the stack.

252 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

Table 8-11. Effect of Instructions that Modify the IF Bit

Operating Mode Instruction IOPL VIP #GP Effect on IF Bit Effect on VIF Bit

Real Mode
CR0.PE=0
EFLAGS.VM=0
CR4.VME=0
CR4.PVI=0

CLI

no

IF = 0

STI IF = 1

PUSHF EFLAGS.IF Stack Image = IF

POPF IF = EFLAGS.IF stack image

INTn
EFLAGS.IF Stack Image = IF
IF = 0

IRET IF = EFLAGS.IF Stack Image

Protected Mode
CR0.PE=1
EFLAGS.VM=0
CR4.VME=x
CR4.PVI=0

CLI
≥CPL no IF = 0

<CPL yes —

STI
≥CPL no IF = 1

<CPL yes —

PUSHF x

no

EFLAGS.IF Stack Image = IF

POPF
≥CPL IF = EFLAGS.IF Stack Image

<CPL No Change

INTn gate

x

EFLAGS.IF Stack Image = IF
IF = 0

IRET
IF = EFLAGS.IF Stack Image

IRETD

Virtual-8086
Mode

CR0.PE=1
EFLAGS.VM=1
CR4.VME=0
CR4.PVI=x

CLI
3 no IF = 0

< 3 yes —

STI
3 no IF = 1

< 3 yes —

PUSHF
3 no EFLAGS.IF Stack Image = IF

< 3 yes —

POPF
3 no IF = EFLAGS.IF Stack Image

< 3 yes —

INTn gate
3 no

EFLAGS.IF Stack Image = IF
IF = 0

< 3 yes —

IRET
3 no IF = EFLAGS.IF Stack Image

< 3 yes —

IRETD
3 no IF = EFLAGS.IF Stack Image

< 3 yes —

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

Exceptions and Interrupts 253

24593—Rev. 3.17—June 2010 AMD64 Technology

Virtual-8086
Mode
with VME
Extensions

CR0.PE=1
EFLAGS.VM=1
CR4.VME=1
CR4.PVI=x

CLI
3

x no
IF = 0 No Change

<3 No Change VIF = 0

STI

3 x no IF = 1 No Change

<3
0 no No Change VIF = 1

1 yes —

PUSHF
3

x no
EFLAGS.IF Stack Image = IF Not Pushed

<3 Not Pushed EFLAGS.IF Stack Image = VIF

PUSHFD
3

x
no EFLAGS.IF Stack Image = IF EFLAGS.VIF Stack Image = VIF

<3 yes —

POPF

3 x no IF = EFLAGS.IF Stack Image No Change

<3
0 no No Change VIF = EFLAGS.IF Stack Image

1 yes —

POPFD
3

x
no IF = EFLAGS.IF Stack Image No Change

<3 yes —

INTn gate

3

x no

EFLAGS.IF Stack Image = IF
IF = 0

No Change

<3 No Change
EFLAGS.IF Stack Image = VIF
VIF = 0

IRET

3 x no IF = EFLAGS.IF Stack Image No Change

<3

0 no No Change VIF = EFLAGS.IF Stack Image

1
no1 No Change VIF = EFLAGS.IF Stack Image

yes2 —

IRETD
3

x
no IF = EFLAGS.IF Stack Image VIF = EFLAGS.IF Stack Image

<3 yes —

Table 8-11. Effect of Instructions that Modify the IF Bit (continued)

Operating Mode Instruction IOPL VIP #GP Effect on IF Bit Effect on VIF Bit

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

254 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.17—June 2010

Protected Mode
with PVI
Extensions

CR0.PE=1
EFLAGS.VM=0
CR4.VME=x
CR4.PVI=1
CPL=3

CLI
3

x no
IF = 0 No Change

<3 No Change VIF = 0

STI

3 x no IF = 1 No Change

<3
0 no No Change VIF = 1

1 yes —

PUSHF

x x no

EFLAGS.IF Stack Image = IF
Not Pushed

PUSHFD EFLAGS.VIF Stack Image = VIF

POPF
IF = EFLAGS.IF Stack Image

No Change

POPFD VIF = 0

INTn gate
EFLAGS.IF Stack Image = IF
IF = 0 (if interrupt gate)

No Change

IRET
IF = EFLAGS.IF Stack Image

No Change

IRETD VIF = EFLAGS.VIF Stack Image

Table 8-11. Effect of Instructions that Modify the IF Bit (continued)

Operating Mode Instruction IOPL VIP #GP Effect on IF Bit Effect on VIF Bit

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

Machine Check Mechanism 255

24593—Rev. 3.17—June 2010 AMD64 Technology

9 Machine Check Mechanism

The machine-check mechanism allows the processor to detect and report a variety of hardware errors.
The types of errors that can be reported include:

• Cache errors associated with reading and writing data, probing, cache-line fills, and cache-line
writebacks.

• Parity errors associated with the caches and TLBs.

• ECC errors associated with the caches and DRAM.

• Bus errors associated with reading and writing on the processor external bus.

Software can enable the processor to report machine-check errors through the machine-check
exception (for additional information, see “#MC—Machine-Check Exception (Vector 18)” on
page 222). Most machine-check error conditions do not allow reliable restarting of interrupted
programs. System software instead uses the machine-check mechanism to report the source of
hardware problems for possible servicing.

The basic machine-check mechanism is consistent across processor implementations, but the error-
reporting registers are model specific. Processor implementations are not required to support the
mechanism, and those implementations that do support it can vary in how the mechanism works.

9.1 Determining Machine-Check Support

The availability of machine-check registers and support of the machine-check exception is
implementation dependent. System software executes the CPUID instruction to determine whether a
processor implements these features. After CPUID is executed, the values of the machine-check
architecture (MCA) bit and the machine-check exception (MCE) bit loaded in the EDX register
indicate whether the processor implements the machine-check registers and the machine-check
exception, respectively. See “Processor Feature Identification” on page 61 for more information on
using the CPUID instruction to determine the level of machine-check support.

Once system software determines that the machine-check registers are available, it must determine the
extent of processor support for the machine-check mechanism. This is accomplished by reading the
machine-check capabilities register (MCG_CAP). See “Machine-Check Global-Capabilities Register”
on page 257 for more information on interpreting the MCG_CAP contents.

Implementation-specific information concerning the machine-check mechanism can be found in the
BIOS writer’s guide for the implementation.

9.2 Machine-Check Errors

The following classes of machine-check errors are defined for the AMD64 architecture:

256 Machine Check Mechanism

AMD64 Technology 24593—Rev. 3.17—June 2010

• Recoverable—The error has been corrected by the processor. Recoverable errors do not cause a
machine check exception (#MC). However, the error is still logged in the machine-check registers.
It is the responsibility of system software to periodically poll the machine-check registers to
determine whether recoverable errors have occurred.

• Fatal/Unrecoverable—The error cannot be corrected by the processor. Unrecoverable errors cause
a machine check exception if CR4.MCE is set to 1.

In both cases, the contents of the machine-check registers are maintained through a warm reset, which
allows errors to be reported even if a reset occurs.

9.2.1 Error Sources

Implementations can detect errors from any number of sources located within the various processor
units. Those processor units can include the following:

• Data-Cache Unit (DC)—Includes the cache structures that hold data and tags, the data TLBs, and
cache-probing logic.

• Instruction-Cache Unit (IC)—Includes the cache structures that hold instructions and tags, the
instruction TLBs, and cache-probing logic.

• Bus Unit (BU)—Includes the L2 cache and any external caches.

• Load/Store Unit (LS)—Includes logic used to manage loads and stores.

• Northbridge (NB)—Includes the system-bus interface and DRAM controller.

A given processor implementation can monitor machine-check errors in sources other than those listed
above. The number is implementation-specific and is determined by examining the MCG_CAP
register (see “Machine-Check Global-Capabilities Register” on page 257). For further information,
see the documentation for particular implementations of the architecture.

9.3 Machine Check MSRs

The AMD64 architecture defines a set of model-specific registers (MSRs) in support of the machine-
check mechanism. These registers include:

• Global-status and global-control registers:

- Machine-check global-capabilities register (MCG_CAP).

- Machine-check global-status register (MCG_STATUS).

- Machine-check global-control register (MCG_CTL).

- CPU watchdog timer register (CPU_WATCHDOG_TIMER)

• Error-reporting register banks, each containing:

- Machine-check control register (MCi_CTL).

- Machine-check status register (MCi_STATUS).

- Machine-check address register (MCi_ADDR).

Machine Check Mechanism 257

24593—Rev. 3.17—June 2010 AMD64 Technology

- Machine-check miscellaneous error-information register (MCi_MISCj).

Each error-reporting register bank is associated with a specific processor unit (or group of
processor units).

• CPU Watchdog Timer register (CPU_WATCHDOG_TIMER)

In some cases, the machine-check handler cannot be invoked due to an error, the error-reporting
registers retain their values through a warm reset. (A warm reset is a reset that occurs while the
processor is powered up, as opposed to a cold reset, which occurs during power-up.) This allows the
BIOS or other system-boot software to recover and report information associated with the error.

The RDMSR and WRMSR instructions are used to read and write the machine-check MSRs. See
“Machine-Check MSRs” on page 476 for a listing of the machine-check MSR numbers and their reset
values. The following sections describe each machine-check MSR and its function.

9.3.1 Global Status and Control Registers

The global-status and global-control MSRs supported by the machine-check mechanism include the
MCG_CAP, MCG_STATUS, and MCG_CTL registers.

Machine-Check Global-Capabilities Register. Figure 9-1 shows the format of the machine-check
global-capabilities register (MCG_CAP). MCG_CAP is a read-only register that specifies the
machine-check mechanism capabilities supported by the processor implementation.

Figure 9-1. MCG_CAP Register

The fields within the MCG_CAP register are:

• Count—Bits 7–0. This field specifies how many error-reporting register banks are supported by the
processor implementation.

63 32

Reserved

31 9 8 7 0

Reserved

C
T
L
P

Count

Bits Mnemonic Description R/W
63–9 Reserved
8 CTLP MCG_CTL_PMCG_CTL register present R

7-0 Count Number of reporting banks R

258 Machine Check Mechanism

AMD64 Technology 24593—Rev. 3.17—June 2010

• MCG_CTL_PMCG_CTL Register Present (CTLP)—Bit 8. This bit specifies whether or not the
MCG_CTL_PMCG_CTL register is supported by the processor. When the bit is set to 1, the
register is supported. When the bit is cleared to 0, the register is unsupported.

All remaining bits in the MCG_CAP register are reserved. Writing values to the MCG_CAP register
produces undefined results.

Machine-Check Global-Status Register. Figure 9-2 shows the format of the machine-check global-
status register (MCG_STATUS). MCG_STATUS provides basic information about the processor state
after the occurrence of a machine-check error.

Figure 9-2. MCG_STATUS Register

The fields within the MCG_STATUS register are:

• Restart-IP Valid (RIPV)—Bit 0. When this bit is set to 1, the interrupted program can be reliably
restarted at the instruction addressed by the instruction pointer pushed onto the stack by the
machine-check error mechanism. If this bit is cleared to 0, the interrupted program cannot be
reliably restarted.

• Error-IP Valid (EIPV)—Bit 1. When this bit is set to 1, the instruction that is referenced by the
instruction pointer pushed onto the stack by the machine-check error mechanism is responsible for
the machine-check error. If this bit is cleared to 0, it is possible that the instruction referenced by
the instruction pointer is not responsible for the machine-check error.

• Machine Check In-Progress (MCIP)—Bit 2. When this bit is set to 1, it indicates that a machine-
check error is in progress. If another machine-check error occurs while this bit is set, the processor
enters the shutdown state. The processor sets this bit whenever a machine check exception is
generated. Software is responsible for clearing it after the machine check exception is handled.

All remaining bits in the MCG_STATUS register are reserved.

63 32

Reserved

31 3 2 1 0

Reserved

M
C
I
P

E
I
P
V

R
I
P
V

Bits Mnemonic Description R/W
63–3 Reserved

2 MCIP Machine Check In-Progress R/W
1 EIPV Error IP Valid Flag R/W
0 RIPV Restart IP Valid Flag R/W

Machine Check Mechanism 259

24593—Rev. 3.17—June 2010 AMD64 Technology

Machine-Check Global-Control Register. Figure 9-3 shows the format of the machine-check
global-control register (MCG_CTL). MCG_CTL is used by software to control reporting machine-
check errors from various sources. Each error-reporting register bank supported by the processor is
controlled by a corresponding enable bit in this register. Setting all bits to 1 in this register enables all
error-reporting register banks. The number of controls and how they are used is implementation-
specific (for further information, see the documentation for particular implementations of the
architecture). The presence of the MCG_CTL register is indicated by the MCG_CAP register
MCG_CTL_P bit, described on page 257.

Figure 9-3. MCG_CTL Register

CPU Watchdog Timer Register. The CPU watchdog timer is used to generate a machine check
condition when an instruction does not complete within a time period specified by the CPU Watchdog
Timer register. The timer restarts the count each time an instruction completes, when enabled by the
CPU Watchdog Timer Enable bit. The time period is determined by the Count Select and Time Base
fields. The timer does not count during halt or stop-grant. The machine check condition is controlled
by the appropriate MCi_CTL register.

The format of the CPU watchdog timer is shown in Figure 9-4.

Figure 9-4. CPU Watchdog Timer Register Format

CPU Watchdog Timer Enable (EN) - Bit 0. This bit specifies whether the CPU Watchdog Timer is
enabled. When the bit is set to 1, the timer increments and generates a machine check when the timer
expires. When cleared to 0, the timer does not increment and no machine check is generated.

63 2 1 0
E
N
6
3

… Error-Reporting Register-Bank Enable Bits …
E
N
2

E
N
1

E
N
0

63 32

Reserved, MBZ

31 7 6 3 2 1 0

Reserved, MBZ CS TB
E
N

Bits Mnemonic Description R/W
63–7 Reserved Reserved, Must be Zero

6–3 CS CPU Watchdog Timer Count Select R/W
2–1 TB CPU Watchdog Timer Time Base R/W
0 EN CPU Watchdog Timer Enable R/W

260 Machine Check Mechanism

AMD64 Technology 24593—Rev. 3.17—June 2010

CPU Watchdog Timer Time Base (TB) - Bits 2-1. Specifies the time base for the time-out period
indicated in the Count Select field. The allowable time base values are provided in Table 9-1.
.

CPU Watchdog Timer Count Select (CS) - Bits 6-3. Specifies the time period required for the CPU
Watchdog Timer to expire. The time period is this value times the time base specified in the Time Base
field. The allowable values are shown in Table 9-2.

9.3.2 Error-Reporting Register Banks

Error-reporting register banks contain the following registers:

• Machine-check control registers (MCi_CTL).

• Machine-check status register (MCi_STATUS).

• Machine-check address register (MCi_ADDR).

• Machine-check miscellaneous error-information register (MCi_MISCj).

The i in each register name corresponds to the number of a supported register bank. Each error-
reporting register bank is associated with a specific processor unit (or group of processor units). The
number of error-reporting register banks is implementation-specific. For more information, see the

Table 9-1. CPU Watchdog Timer Time Base

Bits Time Base

00b 1 millisecond

01b 1 microsecond

10b 5 nanoseconds

11b Reserved

Table 9-2. CPU Watchdog Timer Count Select

Bits Value

0000b 4095

0001b 2047

0010b 1023

0011b 511

0100b 255

0101b 127

0110b 63

0111b 31

1000b 8191

1001b 16383

1010b-
1111b

Reserved

Machine Check Mechanism 261

24593—Rev. 3.17—June 2010 AMD64 Technology

BIOS and Kernel Developer’s Guide for AMD Athlon™ 64 and AMD Opteron™ Processors (order#
26094) for particular implementations of the AMD64 architecture.

Software reads the MCG_CAP register to determine the number of supported register banks. The first
error-reporting register (MC0_CTL) always starts with MSR address 400h, followed by
MC0_STATUS (401h), MC0_ADDR (402h), and MC0_MISC (403h). Error-reporting-register MSR
addresses are assigned sequentially through the remaining supported register banks. Using this
information, software can access all error-reporting registers in an implementation-independent
manner.

Machine-Check Control Registers. The machine-check control registers (MCi_CTL), as shown in
Figure 9-5, contain an enable bit for each error source within an error-reporting register bank. Setting
an enable bit to 1 enables error-reporting for the specific feature controlled by the bit, and clearing the
bit to 0 disables error reporting for the feature. For more information, see the BIOS and Kernel
Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors (order# 26094) for
particular implementations of the AMD64 architecture.

Figure 9-5. MCi_CTL Registers

Machine-Check Status Registers. Each error-reporting register bank includes a machine-check
status register (MCi_STATUS) that the processor uses to report machine-check error information. The
machine-check mechanism writes the status-register bits when an error is detected, and sets the valid
bit in the register (bit 63) to 1, indicating that the status information is valid. Error reporting for the
detected error does not need to be enabled for the processor to write the status register. Error reporting
must be enabled for the error to result in a machine-check exception. Software is responsible for
clearing the status register after the exception has been handled. Attempting to write a value other than
0 to an MCi_STATUS register will raise a general protection (#GP) exception.

Figure 9-6 on page 262 shows the format of the MCi_STATUS register.

63 2 1 0
E
N
6
3

… Error-Reporting Register-Bank Enable Bits …
E
N
2

E
N
1

E
N
0

262 Machine Check Mechanism

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 9-6. MCi_STATUS Register

9.3.3 Error Codes

When a machine-check error occurs, the processor loads an error code into the appropriate
MCi_STATUS register MCA error-code field. The MCi_STATUS.VAL bit is set to 1, indicating that
the MCi_STATUS register contents are valid. The machine-check mechanism also allows the
processor to load a model-specific error code into the MCi_STATUS register.

MCA error-codes are used to report errors in the memory hierarchy, the system bus, and the system-
interconnection logic. Error-codes are divided into subfields that are used to describe the cause of an
error. The information is implementation specific. It includes the location in the memory hierarchy
where the error occurred and the type of transaction that caused the error. For further information, see
the documentation for particular implementations of the architecture.

The fields within the MCi_STATUS register are:

• MCA Error Code—Bits 15–0. This field encodes information about the error, including:

- The type of transaction that caused the error.

- The memory-hierarchy level involved in the error.

- The type of request that caused the error.

- Other information concerning the transaction type.

63 62 61 60 59 58 57 56 32

V
A
L

O
V
E
R

U
C

E
N

M
I
S
C
V

A
D
D
R
V

P
C
C

Other Information

31 16 15 0

Model-Specific Error Code MCA Error Code

Bits Mnemonic Description R/W
63 VAL Valid R/W*
62 OVER Status Register Overflow R/W*
61 UC Uncorrected Error R/W*

60 EN Error Condition Enabled R/W*
59 MISCV Miscellaneous-Error Register Valid R/W*
58 ADDRV Error-Address Register Valid R/W*

57 PCC Processor-Context Corrupt R/W*
56–32 Other Information R/W*
31–16 Model-Specific Error Code R/W*

15–0 MCA Error Code R/W*
*Applications can only clear this bit to 0.

Machine Check Mechanism 263

24593—Rev. 3.17—June 2010 AMD64 Technology

See the appropriate implementation specific BIOS and kernel developer’s guide for information on
the format and encoding of the MCA error code.

• Model-Specific Error Code—Bits 31–16. This field encodes model-specific information about the
error. For further information, see the documentation for particular implementations of the
architecture.

• Other Information—Bits 56–32. This field holds model-specific error information. Software
should not rely on the field definitions being consistent between processor implementations.
Presently, the bits in this field are defined as:

- Bits 44–32—Reserved.

- Bit 45—When set to 1, this bit indicates the error is an uncorrectable ECC error.

- Bit 46—When set to 1, this bit indicates the error is a correctable ECC error.

- Bits 54–47—This field holds the ECC syndrome when an ECC error occurs.

- Bits 56–55—Reserved.

• PCC—Bit 57. When set to 1, this bit indicates that the processor state is likely to be corrupt due to
the machine-check error. In this case, it is possible software cannot restart the processor reliably.
When this bit is cleared to 0, the processor state is not corrupted by the machine-check error. If the
PCC bit is set in any error bank, the processor will clear RIPV and EIPV in the MCG_Status
register.

• ADDRV—Bit 58. When set to 1, this bit indicates that the address saved in the corresponding error-
reporting address register (MCi_ADDR) is valid, and contains the address where the error was
detected. When this bit is cleared to 0, MCi_ADDR does not contain a valid error address.

• MISCV—Bit 59. When set to 1, this bit indicates that additional information about the machine-
check error is saved in the corresponding error-reporting miscellaneous register (MCi_MISC).
This bit is cleared to 0 when the MCi_MISC registers are not implemented.

• EN—Bit 60. When set to 1, this bit indicates that the error condition is enabled in the
corresponding error-reporting control register (MCi_CTL). Errors disabled by MCi_CTL do not
cause a machine-check exception, but the machine-check mechanism can log errors when error
reporting is disabled in MCi_CTL.

• UC—Bit 61. When set to 1, this bit indicates that the processor did not correct the error condition.
When this bit is cleared to 0, the processor corrected the error condition.

• OVER—Bit 62. This bit is set to 1 by the processor if the VAL bit is already set to 1 as the
processor attempts to load error information into MCi_STATUS. This indicates that the results of a
previous machine-check error are still in the MCi_STATUS register. In this situation, the machine-
check mechanism handles the contents of MCi_STATUS as follows:

- Status for an enabled error replaces status for a disabled error.

- Status for an uncorrectable error replaces status for a correctable error.

- Status for an enabled uncorrectable error is never replaced.

264 Machine Check Mechanism

AMD64 Technology 24593—Rev. 3.17—June 2010

• VAL—Bit 63. This bit is set to 1 by the processor if the contents of MCi_STATUS are valid.
Software should clear the VAL bit after reading the MCi_STATUS register, otherwise a subsequent
machine-check error sets the OVER bit as described above.

Machine-Check Address Registers. Each error-reporting register bank includes a machine-check
address register (MCi_ADDR) that the processor uses to report the address associated with the
machine-check error. The address field can hold either a virtual (linear) or physical address, depending
on the type of error. For further information, see the documentation for particular implementations of
the architecture. The contents of this register are valid only if the ADDRV bit in the corresponding
MCi_STATUS register is set to 1.

Machine-Check Miscellaneous-Error Information Registers (MCi_MISCj). Each error-reporting
register bank can include a machine-check miscellaneous (thresholding) register that the processor
uses to report additional error information associated with error thresholding:

Error thresholding is a mechanism provided by hardware to:

• count machine check correctable errors

• (optionally) generate an APIC-based interrupt when a programmed number of correctable errors
has been counted. Software can program the error count required to cause the interrupt.

Processor hardware counts correctable errors and ensures that multiple correctable error sources do not
share the same thresholding register. Software can use this information to predict which components
might soon fail due to uncorrectable errors and schedule their replacement. Whether other errors
(uncorrectable or deferred) are also counted is implementation dependent.

Threshold counters increment for machine-check correctable errors that are conditioned to be
“logged”. To enable error logging:

• machine checks must be globally enabled for the bank, and

• other implementation-specific mechanisms that allow logging of machine checks for the bank
must be enabled. Logging is different from reporting, so reporting does not have to be enabled
(MCi_CTL[ErrorReportingEnable] = 0) to increment the threshold counters.

There are two types of machine check miscellaneous error-information (thresholding) registers:

• MCi_MISC0—the first thresholding register in the bank. It has the following characteristics:

- valid only if the MISCV bit in the corresponding MCi_STATUS register is set to 1.

- located at the MSR address of the associated MCi_CTL +3.

- indicates the existence of additional thresholding registers for the bank when
MCi_MISC0[BlkPtr] > 0.

• MCi_MISCj (j > 0)—Additional thresholding registers in the bank, with the following
characteristics:

- up to 8 additional MCi_MISCj registers can be supported per bank

- thresholding registers reside in contiguous error MSR blocks, with MCi_MISC1 addressed by:

Machine Check Mechanism 265

24593—Rev. 3.17—June 2010 AMD64 Technology

 MCi_MISC1 address = C000_0400h + (MCi_MISC0[BlkPtr] << 3)

(See Figure 9-7 below.)

Figure 9-7. MCi_MISC1 Addressing

Figure 9-8. Machine Check Miscellaneous Error-Information Register (MCi_MISCj)

63 62 61 60 56 55 52 51 50 49 48 47 32

V
A
L

C
T
R
P

L
K
D

Reserved LVTOFF

C
N
T
E

I
N
T
T

O
F

ERRCT

31 24 23 0

BLKP Reserved

Bits Mnemonic Description R/W Reset
63 VAL Valid R 1b

62 CTRP Counter Present R 1b
61 LKD Locked R/W 0b

60–56 Reserved
55–52 LVTOFF LVT Offset R/W 0000b
51 CNTE Counter Enable R/W 0b

50–49 INTT Interrupt Type R/W 00b
48 OF Overflow R/W Xb
47–32 ERRCT Error Counter R/W XXXXh

31–24 BLKP Block pointer for additional MISC registers R
23–0 Reserved

MCi_CTL

MCi_STATUS

MCi_ADDR

C000_0400h + (MCi_MISC0[BlkPtr] << 3)
MCi_MISC1

MCi_MISC2

MCi_MISC3

MCi_MISC4

MCi_MISC0

266 Machine Check Mechanism

AMD64 Technology 24593—Rev. 3.17—June 2010

The fields within the MCi_MISCj register are:

• Valid (VAL)—Bit 63. When set to 1, indicates that the counter present (CTRP) and block pointer
(BLKP) fields in this register are valid.

• Counter Present (CTRP)—Bit 62. When set to 1, indicates the presence of a threshold counter.

• Locked (LKD)—Bit 61. When set to 1, indicates that the threshold counter is not available for OS
use. If this is the case, writes to bits [60:0] of this register are ignored and do not generate a fault.
Software must check the Locked bit before writing into the thresholding register.

This field is write-enabled by MSR C001_0015 Hardware Configuration Register
[MCSTATUSWrEn].

• LVT Offset (LVTOFF)—Bits 55–52. This field specifies the address of the APIC LVT entry to
deliver the threshold counter interrupt. Software must initialize the APIC LVT entry before
enabling the threshold counter to generate the APIC interrupt; otherwise, undefined behavior may
result.

APIC LVT address = (MCi_MISC[LvtOff] << 4) + 500h

• Counter Enable (CNTE)—Bit 51. When set to 1, counting of implementation-dependent errors is
enabled; otherwise, counting is disabled.

• Interrupt Type (INTT)—Bits 50–49. The value of this field specifies the type of interrupt signaled
when the value of the overflow bit changes from 0 to 1.

- 00b = No interrupt

- 01b = APIC-based interrupt

- 10b = Reserved

- 11b = Reserved

• Overflow (OF)—Bit 48. The value of this field is maintained through a warm reset. This bit is set
by hardware when the error counter increments to its maximum implementation-supported value
(from FFFEh to FFFFh for the maximum implementation-supported value). This is defined as the
threshold level. When the overflow bit is set, the interrupt selected by the interrupt type field is
generated. Software must reset this bit to zero in the interrupt handler routine when they update the
error counter.

• Error Counter (ERRCT)—Bits 47–32. This field is maintained through a warm reset. The size of
the threshold counter is implementation-dependent. Implementations with less than 16 bits fill the
most significant unimplemented bits with zeros.

Software enumerates the counter bits to discover the size of the counter and the threshold level
(when counter increments to the maximum count implemented). Software sets the starting error
count as follows:

Starting error count = threshold level – desired software error count to cause overflow

The error counter is incremented by hardware when errors for the associated error counter are
logged. When this counter overflows, it stays at the maximum error count (with no rollover).

• Block pointer for additional MISC registers (BLKP)—Bits 31–24. This field is only valid when
valid (VAL) bit is set. When non-zero, this field is used to calculate a pointer to a contiguous MISC

Machine Check Mechanism 267

24593—Rev. 3.17—June 2010 AMD64 Technology

MSR block as follows: MCi_MISC1 = (MCi_MISC0[BlkPtr] shifted left 3 bits) + C000_0400h.
BlkPtr has the same value for all MCi_MISCj.

For more information, see the appropriate BIOS and Kernel Developer’s Guide for the processor for its
implementation of the AMD64 architecture.

9.4 Initializing the Machine-Check Mechanism

Following a processor reset, all machine-check error-reporting enable bits are disabled. System
software must enable these bits before machine-check errors can be reported. Generally, system
software should initialize the machine-check mechanism using the following process:

• Execute the CPUID instruction and verify that the processor supports the machine-check exception
(MCE) and machine-check registers (MCA). MCE is supported when EDX bit 7 is set to 1, and
MCA is supported when EDX bit 14 is set to 1. Software should not proceed with initializing the
machine-check mechanism if the machine-check registers are not supported.

• If the machine-check registers are supported, system software should take the following steps:

- Check to see if the MCG_CTL_P bit in the MCG_CAP register is set to 1. If it is, then the
MCG_CTL register is supported by the processor. If the MCG_CTL register is supported,
software should set its enable bits to 1 for the machine-check features it uses. Software can
load MCG_CTL with all 1s to enable all machine-check features.

- Read the COUNT field from the MCG_CAP register to determine the number of error-
reporting register banks supported by the processor. For each error-reporting register bank,
software should set the enable bits to 1 in the MCi_CTL register for the error types it wants the
processor to report. Software can load each MCi_CTL with all 1s to enable all error-reporting
mechanisms.

The error-reporting register banks are numbered from 0 to one less than the value found in the
MCG_CAP.COUNT field. For example, if the COUNT field indicates five register banks are
supported, they are numbered 0 to 4.

- For each error-reporting register bank, software should clear all status fields in the
MCi_STATUS register by writing all 0s to the register.

It is possible that valid error-status is already reported by the MCi_STATUS registers at the
time software clears them. The status can reflect fatal errors recorded before a warm reset, or
errors recorded during the system power-up and boot process. Before clearing the
MCi_STATUS registers, software should examine their contents and log any errors found.

• As a final step in the initialization process, system software should enable the machine-check
exception by setting CR4.MCE (bit 6) to 1.

9.5 Using Machine Check Features

System software can detect and handle machine-check errors using two methods:

268 Machine Check Mechanism

AMD64 Technology 24593—Rev. 3.17—June 2010

• Software can periodically examine the machine-check status registers for reported errors, and log
any errors found.

• Software can enable the machine-check exception (#MC). When an uncorrectable error occurs, the
processor immediately transfers control to the machine-check exception handler. In this case,
system software provides a machine-check exception handler that, at a minimum, logs detected
errors. The exception handler can be designed for a specific processor implementation or can be
generalized to work on multiple implementations.

9.5.1 Handling Machine Check Exceptions

The processor uses the interrupt control-transfer mechanism to invoke an exception handler after a
machine-check exception occurs. This requires system software to initialize the interrupt-descriptor
table (IDT) with either an interrupt gate or a trap gate that references the interrupt handler. See
“Legacy Protected-Mode Interrupt Control Transfers” on page 231 and “Long-Mode Interrupt Control
Transfers” on page 241 for more information on interrupt control transfers.

At a minimum, the machine-check exception handler must be capable of logging errors for later
examination. This can be a sufficient implementation for some handlers. More thorough exception-
handler implementations can analyze the error to determine if it is unrecoverable, and whether it can be
recovered in software.

Machine-check exception handlers that attempt to correct unrecoverable errors must be thorough in
their analysis and their corrective actions. The following guidelines should be used when writing such
a handler:

• All status registers in the error-reporting register banks must be examined to identify the cause or
causes of the machine-check exception. Read the COUNT field from MCG_CAP to determine the
number of status registers supported by the processor. The status registers are numbered from 0 to
one less than the value found in the MCG_CAP.COUNT field. For example, if the COUNT field
indicates five status registers are supported, they are named MC0_STATUS to MC4_STATUS.

• Check the valid bit in each status register (MCi_STATUS.VAL). The MCi_STATUS register does
not need to be examined when its valid bit is clear.

• Check the valid MCi_STATUS registers to see if error recovery is possible. Error recovery is not
possible when:

- The processor-context corrupt bit (MCi_STATUS.PCC) is set to 1.

- The error-overflow status bit (MCi_STATUS.OVER) is set to 1. This bit indicates that more
than one machine-check error occurred, but only one error is reported by the status register.

If error recovery is not possible, the handler should log the error information and return to the
operating system.

• Check the MCi_STATUS.UC bit to see if the processor corrected the error. If UC=1, the processor
did not correct the error, and the exception handler must correct the error before restarting the
interrupted program. If the handler cannot correct the error, it should log the error information and
return to the operating system.

Machine Check Mechanism 269

24593—Rev. 3.17—June 2010 AMD64 Technology

• When identifying the error condition, portable exception handlers should examine only the
MCi_STATUS register MCA error-code field. See “Error Codes” on page 262 for information on
interpreting this field.

• If the MCG_STATUS.RIPV bit is set to 1, the interrupted program can be restarted reliably at the
instruction-pointer address pushed onto the exception-handler stack. If RIPV=0, the interrupted
program cannot be restarted reliably at that location, although it can be restarted at that location for
debugging purposes.

• When logging errors, particularly those that are not recoverable, check the MCG_STATUS.EIPV
bit to see if the instruction-pointer address pushed onto the exception-handler stack is related to the
machine-check error. If EIPV=0, the address is not guaranteed to be related to the error.

• Before exiting the machine-check handler, be sure to clear MCG_STATUS.MCIP to 0. MCIP
indicates a machine-check exception occurred. If this bit is set when another machine-check
exception occurs, the processor enters the shutdown state.

• When an exception handler is able to, at a minimum, successfully log an error condition, the
MCi_STATUS registers should be cleared to 0 before exiting the machine-check handler. Software
is responsible for clearing at least the MCi_STATUS.VAL bits.

• Additional machine-check exception-handler portability can be added by having the handler use
the CPUID instruction to identify the processor and its capabilities. Implementation-specific
software can be added to the machine-check exception handler based on the processor information
reported by CPUID.

9.5.2 Reporting Correctable Machine Check Errors

Machine-check exceptions do not occur if the error is correctable by the processor. If system software
wishes to log and report correctable machine-check errors, a system-service routine must be provided
to check the contents of the machine-check status registers for correctable errors. The service routine
can be invoked by system software on a periodic basis, or it can be manually invoked by the user as
needed.

If the processor supports the machine-check registers, a service routine that reports correctable errors
should perform the following:

• Examine each status register (MCi_STATUS) in the error-reporting register banks. For each
MCi_STATUS register with a set valid bit (VAL=1), the service routine should:

- Save the contents of the MCi_STATUS register.

- Save the contents of the corresponding MCi_ADDR register if MCi_STATUS.ADDRV=1.

- Save the contents of the corresponding MCi_MISC register if MCi_STATUS.MISCV=1.

- Check to see if MCG_STATUS.MCIP=1, which indicates that the machine-check exception
handler is in progress. If this is the case, then the machine-check exception handler has called
the service routine to log the errors. In this situation, the error-logging service routine should
determine whether or not the interrupted program is restartable, and report the determination
back to the exception handler. The program is not restartable if either of the following is true:

- MCi_STATUS.PCC=1, which indicates the processor context is corrupted, or

270 Machine Check Mechanism

AMD64 Technology 24593—Rev. 3.17—June 2010

- MCG_STATUS.RIPV=0, which indicates the interrupted program cannot be restarted reliably
at the instruction-pointer address pushed onto the exception-handler stack.

• Once the information found in the error-reporting register banks is saved, the MCi_STATUS
register should be cleared to 0. This allows the processor to properly report any subsequent errors
in the MCi_STATUS registers.

• The service routine can save the time-stamp counter with each error logged. This can help in
determining how frequently errors occur. For further information, see “Time-Stamp Counter” on
page 346.

• In multiprocessor configurations, the service routine can save the processor-node identifier. This
can help locate a failing multiprocessor-system component, which can then be isolated from the
rest of the system. For further information, see the documentation for particular implementations
of the architecture.

System-Management Mode 271

24593—Rev. 3.17—June 2010 AMD64 Technology

10 System-Management Mode

System-management mode (SMM) is an operating mode designed for system-control activities like
power management. Normally, these activities are transparent to conventional operating systems and
applications. SMM is used by system-specific BIOS (basic input-output system) and specialized low-
level device drivers, rather than the operating system.

The SMM interrupt-handling mechanism differs substantially from the standard interrupt-handling
mechanism described in Chapter 8, “Exceptions and Interrupts.” SMM is entered using a special
external interrupt called the system-management interrupt (SMI). After an SMI is received by the
processor, the processor saves the processor state in a separate address space, called SMRAM. The
SMM-handler software and data structures are also located in the SMRAM space. Interrupts and
exceptions that ordinarily cause control transfers to the operating system are disabled when SMM is
entered. The processor exits SMM, restores the saved processor state, and resumes normal execution
by using a special instruction, RSM.

In SMM, address translation is disabled and addressing is similar to real mode. SMM programs can
address up to 4 Gbytes of physical memory. See “SMM Operating-Environment” on page 281 for
additional information on memory addressing in SMM.

The following sections describe the components of the SMM mechanism:

• “SMM Resources” on page 272—this section describes SMRAM, the SMRAM save-state area
used to hold the processor state, and special SMRAM save-state entries used in support of SMM.

• “Using SMM” on page 281—this section describes the mechanism of entering and exiting SMM.
It also describes SMM memory allocation, addressing, and interrupts and exceptions.

Of these mechanisms, only the format of the SMRAM save-state area differs between the AMD64
architecture and the legacy architecture.

10.1 SMM Differences

There are functional differences between the SMM support in the AMD64 architecture and the SMM
support found in previous architectures. These are:

• The SMRAM state-save area layout is changed to hold the 64-bit processor state.

• The initial processor state upon entering SMM is expanded to reflect the 64-bit nature of the
processor.

• New conditions exist that can cause a processor shutdown while in SMM.

• The auto-halt restart and I/O-instruction restart entries in the SMRAM state-save area are one byte
each instead of two bytes each.

• SMRAM caching considerations are modified because the legacy FLUSH# external signal
(writeback, if modified, and invalidate) is not supported on implementations of the AMD64
architecture.

272 System-Management Mode

AMD64 Technology 24593—Rev. 3.17—June 2010

• Some previous AMD x86 processors saved and restored the CR2 register in the SMRAM state-
save area. This register is not saved by the SMM implementation in the AMD64 architecture.
SMM handlers that save and restore CR2 must perform the operation in software.

10.2 SMM Resources

The SMM resources supported by the processor consist of SMRAM, the SMRAM state-save area, and
special entries within the SMRAM state-save area. In addition to the save-state area, SMRAM
includes space for the SMM handler.

10.2.1 SMRAM

SMRAM is the memory-address space accessed by the processor when in SMM. The default size of
SMRAM is 64 Kbytes and can range in size between 32 Kbytes and 4 Gbytes. System logic can use
physically separate SMRAM and main memory, directing memory transactions to SMRAM after
recognizing SMM is entered, and redirecting memory transactions back to system memory after
recognizing SMM is exited. When separate SMRAM and main memory are used, the system designer
needs to provide a method of mapping SMRAM into main memory so that the SMI handler and data
structures can be loaded.

Figure 10-1 on page 273 shows the default SMRAM memory map. The default SMRAM code-
segment (CS) has a base address of 0003_0000h (the base address is automatically scaled by the
processor using the CS-selector register, which is set to the value 3000h). This default SMRAM-base
address is known as SMBASE. A 64-Kbyte memory region, addressed from 0003_0000h to
0003_FFFFh, makes up the default SMRAM memory space. The top 32 Kbytes (0003_8000h to
0003_FFFFh) must be supported by system logic, with physical memory covering that entire address
range. The top 512 bytes (0003_FE00h to 0003_FFFFh) of this address range are the default SMM
state-save area. The default entry point for the SMM interrupt handler is located at 0003_8000h.

System-Management Mode 273

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 10-1. Default SMRAM Memory Map

10.2.2 SMBASE Register

The format of the SMBASE register is shown in Figure 10-2. SMBASE is an internal processor
register that holds the value of the SMRAM-base address. SMBASE is set to 30000h after a processor
reset.

Figure 10-2. SMBASE Register

In some operating environments, relocation of SMRAM to a higher memory area can provide more
low memory for legacy software. SMBASE relocation is supported when the SMM-base relocation bit
in the SMM-revision identifier (bit 17) is set to 1. In processors implementing the AMD64
architecture, SMBASE relocation is always supported.

Software can only modify SMBASE (relocate the SMRAM-base address) by entering SMM,
modifying the SMBASE image stored in the SMRAM state-save area, and exiting SMM. The SMM-

513-250.eps

SMM State-Save Area

SMRAM

0003_FFFFh

0003_FE00h

0003_8000h

0003_0000h

SMM Handler

(SMBASE+8000h)

(SMBASE)

(SMBASE+FFFFh)

031

SMRAM Base

274 System-Management Mode

AMD64 Technology 24593—Rev. 3.17—June 2010

handler entry point must be loaded at the new memory location specified by SMBASE+8000h. The
next t ime SMM is entered, the processor saves its state in the new state-save area at
SMBASE+0FE00h, and begins executing the SMM handler at SMBASE+8000h. The new SMBASE
address is used for every SMM until it is changed, or a hardware reset occurs.

When SMBASE is used to relocate SMRAM to an address above 1 Mbyte, 32-bit address-size-
override prefixes must be used to access this memory. This is because addressing in SMM behaves as it
does in real mode, with a 16-bit default operand size and address size. The values in the 16-bit
segment-selector registers are left-shifted four bits to form a 20-bit segment-base address. Without
using address-size overrides, the maximum computable address is 10FFEFh.

Because SMM memory-addressing is similar to real-mode addressing, the SMBASE address must be
less than 4 Gbytes. Physical-address extensions (CR4.PAE) should not be enabled in SMM, restricting
the SMRAM address space to the range 0h to 0FFFF_FFFFh.

10.2.3 SMRAM State-Save Area

When an SMI occurs, the processor saves its state in the 512-byte SMRAM state-save area during the
control transfer into SMM. The format of the state-save area defined by the AMD64 architecture is
shown in Table 10-1. This table shows the offsets in the SMRAM state-save area relative to the
SMRAM-base address. The state-save area is located between offset 0_FE00h (SMBASE+0_FE00h)
and offset 0_FFFFh (SMBASE+0_FFFFh). Software should not modify offsets specified as read-only
or reserved, otherwise unpredictable results can occur.

Table 10-1. AMD64 Architecture SMM State-Save Area

Offset (Hex)
from SMBASE

Contents Size
Allowable

Access

FE00h

ES

Selector Word

Read-Only
FE02h Attributes Word

FE04h Limit Doubleword

FE08h Base Quadword

FE10h

CS

Selector Word

Read-Only
FE12h Attributes Word

FE14h Limit Doubleword

FE18h Base Quadword

FE20h

SS

Selector Word

Read-Only
FE22h Attributes Word

FE24h Limit Doubleword

FE28h Base Quadword

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

System-Management Mode 275

24593—Rev. 3.17—June 2010 AMD64 Technology

FE30h

DS

Selector Word

Read-Only
FE32h Attributes Word

FE34h Limit Doubleword

FE38h Base Quadword

FE40h

FS

Selector Word

Read-Only
FE42h Attributes Word

FE44h Limit Doubleword

FE48h Base Quadword

FE50h

GS

Selector Word

Read-Only
FE52h Attributes Word

FE54h Limit Doubleword

FE58h Base Quadword

FE60h–FE63h

GDTR

Reserved 4 Bytes

Read-Only
FE64h Limit Word

FE66h–FE67h Reserved 2 Bytes

FE68h Base Quadword

FE70h

LDTR

Selector Word

Read-Only
FE72h Attributes Word

FE74h Limit Doubleword

FE78h Base Quadword

FE80h–FEB3h

IDTR

Reserved 4 Bytes

Read-Only
FE84h Limit Word

FEB6h–FEB7h Reserved 2 Bytes

FE88h Base Quadword

FE90h

TR

Selector Word

Read-Only
FE92h Attributes Word

FE94h Limit Doubleword

FE98h Base Quadword

FEA0h I/O Instruction Restart RIP Quadword Read-Only

FEA8h I/O Instruction Restart RCX Quadword Read-Only

FEB0h I/O Instruction Restart RSI Quadword Read-Only

FEB8h I/O Instruction Restart RDI Quadword Read-Only

FEC0h I/O Instruction Restart Dword Doubleword Read-Only

FEC4h–FEC7h Reserved 4 Bytes —

Table 10-1. AMD64 Architecture SMM State-Save Area (continued)

Offset (Hex)
from SMBASE

Contents Size
Allowable

Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

276 System-Management Mode

AMD64 Technology 24593—Rev. 3.17—June 2010

FEC8h I/O Instruction Restart Byte
Read/Write

FEC9h Auto-Halt Restart Byte

FECAh—FECFh Reserved 5 Bytes —

FED0h EFER Quadword Read-Only

FED8h SVM Guest Quadword

Read-OnlyFEE0h SVM Guest VMCB Physical Address Quadword

FEE8h SVM Guest Virtual Interrupt Quadword

FEF0h—FEFBh Reserved 10 Bytes —

FEFCh SMM-Revision Identifier1 Doubleword Read-Only

FF00h SMBASE Doubleword Read/Write

FF04h—FF1Fh Reserved 27 Bytes —

FF20h SVM Guest PAT Quadword

Read-Only

FF28h SVM Host EFER Quadword

FF30h SVM Host CR4 Quadword

FF38h SVM Host CR3 Quadword

FF40h SVM Host CR0 Quadword

FF48h CR4 Quadword

Read-OnlyFF50h CR3 Quadword

FF58h CR0 Quadword

FF60h DR7 Quadword
Read-Only

FF68h DR6 Quadword

FF70h RFLAGS Quadword Read/Write

FF78h RIP Quadword

Read/Write

FF80h R15 Quadword

FF88h R14 Quadword

FF90h R13 Quadword

FF98h R12 Quadword

FFA0h R11 Quadword

FFA8h R10 Quadword

FFB0h R9 Quadword

FFB8h R8 Quadword

Table 10-1. AMD64 Architecture SMM State-Save Area (continued)

Offset (Hex)
from SMBASE

Contents Size
Allowable

Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

System-Management Mode 277

24593—Rev. 3.17—June 2010 AMD64 Technology

A number of other registers are not saved or restored automatically by the SMM mechanism. See
“Saving Additional Processor State” on page 283 for information on using these registers in SMM.

As a reference for legacy processor implementations, the legacy SMM state-save area format is shown
in Table 10-2. Implementations of the AMD64 architecture do not use this format.

FFC0h RDI Quadword

Read/Write

FFC8h RSI Quadword

FFD0h RBP Quadword

FFD8h RSP Quadword

FFE0h RBX Quadword

FFE8h RDX Quadword

FFF0h RCX Quadword

FFF8h RAX Quadword

Table 10-2. Legacy SMM State-Save Area (Not used by AMD64
Architecture)

Offset (Hex)
from SMBASE

Contents Size
Allowable

Access

FE00h—FEF7h Reserved 248 Bytes —

FEF8h SMBASE Doubleword Read/Write

FEFCh SMM-Revision Identifier Doubleword Read-Only

FF00h I/O Instruction Restart Word
Read/Write

FF02h Auto-Halt Restart Word

FF04h—FF87h Reserved 132 Bytes —

FF88h GDT Base Doubleword Read-Only

FF8Ch—FF93h Reserved Quadword —

FF94h IDT Base Doubleword Read-Only

FF98h—FFA7h Reserved 16 Bytes —

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

Table 10-1. AMD64 Architecture SMM State-Save Area (continued)

Offset (Hex)
from SMBASE

Contents Size
Allowable

Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

278 System-Management Mode

AMD64 Technology 24593—Rev. 3.17—June 2010

10.2.4 SMM-Revision Identifier

The SMM-revision identifier specifies the SMM version and the available SMM extensions
implemented by the processor. Software reads the SMM-revision identifier from offset FEFCh in the
SMM state-save area of SMRAM. This offset location is compatible with earlier versions of SMM.
Software must not write to this location. Doing so can produce undefined results. Figure 10-3 on
page 279 shows the format of the SMM-revision identifier.

FFA8h ES Doubleword

Read-Only

FFACh CS Doubleword

FFB0h SS Doubleword

FFB4h DS Doubleword

FFB8h FS Doubleword

FFBCh GS Doubleword

FFC0h LDT Base Doubleword
Read-Only

FFC4h TR Doubleword

FFC8h DR7 Doubleword
Read-Only

FFCCh DR6 Doubleword

FFD0h EAX Doubleword

Read/Write

FFD4h ECX Doubleword

FFD8h EDX Doubleword

FFDCh EBX Doubleword

FFE0h ESP Doubleword

FFE4h EBP Doubleword

FFE8h ESI Doubleword

FFECh EDI Doubleword

FFF0h EIP Doubleword Read/Write

FFF4h EFLAGS Doubleword Read/Write

FFF8h CR3 Doubleword
Read-Only

FFFCh CR0 Doubleword

Table 10-2. Legacy SMM State-Save Area (Not used by AMD64
Architecture) (continued)

Offset (Hex)
from SMBASE

Contents Size
Allowable

Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

System-Management Mode 279

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 10-3. SMM-Revision Identifier

The fields within the SMM-revision identifier are:

• SMM-revision Level—Bits 15–0. Specifies the version of SMM supported by the processor. The
SMM-revision level is of the form 0_xx64h, where xx starts with 00 and is incremented for later
revisions to the SMM mechanism.

• I/O Instruction Restart—Bit 16. When set to 1, the processor supports restarting I/O instructions
that are interrupted by an SMI. This bit is always set to 1 by implementations of the AMD64
architecture. See “I/O Instruction Restart” on page 285 for information on using this feature.

• SMM Base Relocation—Bit 17. When set to 1, the processor supports relocation of SMRAM. This
bit is always set to 1 by implementations of the AMD64 architecture. See “SMBASE Register” on
page 273 for information on using this feature.

All remaining bits in the SMM-revision identifier are reserved.

10.2.5 SMRAM Protected Area

Two areas are provided as safe areas for SMM code and data that are not readily accessable by non-
SMM applications. The SMI handler can be located in one of these two ranges, or it can be located
outside of these ranges.

The ASeg range is located at a fixed address from A_0000h to B_FFFFh. The TSeg range is located at
a variable base specified by the SMM_ADDR MSR with a variable size specified by the SMM_MASK
MSR. These ranges must never overlap.

Each CPU memory access is in the TSeg range if the following is true:

Phys Addr[51:17] & SSM_MASK[51:17] = SMM_ADDR[51:17] & SSM_MASK[51:17].

513-251eps

SMM-Revision Level

015161731

Reserved

Description Bits

SMM-Revision Level
I/O Instruction Restart
SMM Base Relocation

15:0
16
17

18

1 1

280 System-Management Mode

AMD64 Technology 24593—Rev. 3.17—June 2010

For example, if the TSeg range spans 256K bytes starting at address 10_0000h, then SSM_ADDR
=0010_0000h and SSM_MASK=FFFC_0000h (with zeros in bits 16:0). This results in a TSeg address
range from 0010_0000 to 0013_FFFFh.

Figure 10-4. SSM_ADDR Register Format

• SMM TSeg Base Address (BASE)—Bits 51-17. Specifies the base address of the TSeg range of
protected addresses.

Figure 10-5. SSM_MASK Register Format

• ASeg Address Range Enable (AE)—Bit 0. Specifies whether the ASeg address range is enabled for
protection. When the bit is set to 1, the ASeg address range is enabled for protection. When cleared
to 0, the ASeg address range is disabled for protection.

63 52 51 32

Reserved, MBZ
BASE

(This is an architectural limit. A given implementation may support fewer bits.)

31 17 16 0

BASE Reserved, MBZ

Bits Mnemonic Description R/W
63–52 Reserved Reserved, Must be Zero
51–17 BASE SMM TSeg Base Address R/W
16–0 Reserved Reserved, Must be Zero

63 52 51 32

Reserved, MBZ
MASK

(This is an architectural limit. A given implementation may support fewer bits.)

31 17 16 2 1 0

MASK Reserved, MBZ TE AE

Bits Mnemonic Description R/W
63–52 Reserved Reserved, Must be Zero

51–17 MASK TSeg Mask R/W
16–2 Reserved Reserved, Must be Zero
1 TE Tseg Address Range Enable R/W

0 AE Aseg Address Range Enable R/W

System-Management Mode 281

24593—Rev. 3.17—June 2010 AMD64 Technology

• TSeg Address Range Enable (TE)—Bit 1. Specifies whether the TSeg address range is enabled for
protection. When the bit is set to 1, the TSeg address range is enabled for protection. When cleared
to 0, the TSeg address range is disabled for protection.

• TSeg Mask (MASK)—Bits 51-17. Specifies the mask used to determine the TSeg range of protected
addresses. The Phys address[51:17] is in the TSeg range if the following is true:

Phys Addr[51:17] & SSM_MASK[51:17] = SMM_ADDR[51:17] & SSM_MASK[51:17].

10.3 Using SMM

10.3.1 System-Management Interrupt (SMI)

SMM is entered using the system-management interrupt (SMI). SMI is an external non-maskable
interrupt that operates differently from and independently of other interrupts. SMI has priority over all
other external interrupts, including NMI (see “Priorities” on page 225 for a list of the interrupt
priorities). SMIs are disabled when in SMM, which prevents reentrant calls to the SMM handler.

When an SMI is received by the processor, the processor stops fetching instructions and waits for
currently-executing instructions to complete and write their results. The SMI also waits for all buffered
memory writes to update the caches or system memory. When these activities are complete, the
processor uses implementation-dependent external signalling to acknowledge back to the system that
it has received the SMI.

10.3.2 SMM Operating-Environment

The SMM operating-environment is similar to real mode, except that the segment limits in SMM are 4
Gbytes rather than 64 Kbytes. This allows an SMM handler to address memory in the range from 0h to
0FFFF_FFFFh. As with real mode, segment-base addresses are restricted to 20 bits in SMM, and the
default operand-size and address-size is 16 bits. To address memory locations above 1 Mbyte, the
SMM handler must use the 32-bit operand-size-override and address-size-override prefixes.

After saving the processor state in the SMRAM state-save area, a processor running in SMM sets the
segment-selector registers and control registers into a state consistent with real mode. Other registers
are also initialized upon entering SMM, as shown in Table 10-3.

Table 10-3. SMM Register Initialization

Register Initial SMM Contents

CS

Selector SMBASE right-shifted 4 bits

Base SMBASE

Limit FFFF_FFFFh

Attr Read-Write-Execute

282 System-Management Mode

AMD64 Technology 24593—Rev. 3.17—June 2010

10.3.3 Exceptions and Interrupts

All hardware interrupts are disabled upon entering SMM, but exceptions and software interrupts are
not disabled. If necessary, the SMM handler can re-enable hardware interrupts. Software that handles
interrupts in SMM should consider the following:

• SMI—If an SMI occurs while the processor is in SMM, it is latched by the processor. The latched
SMI occurs when the processor leaves SMM.

• NMI—If an NMI occurs while the processor is in SMM, it is latched by the processor, but the NMI
handler is not invoked until the processor leaves SMM with the execution of an RSM instruction. A
pending NMI causes the handler to be invoked immediately after the RSM completes and before
the first instruction in the interrupted program is executed.

An SMM handler can unmask NMI interrupts by simply executing an IRET. Upon completion of
the IRET instruction, the processor recognizes the pending NMI, and transfers control to the NMI
handler. Once an NMI is recognized within SMM using this technique, subsequent NMIs are
recognized until SMM is exited. Later SMIs cause NMIs to be masked, until the SMM handler
unmasks them.

• Exceptions—Exceptions (internal processor interrupts) are not disabled and can occur while in
SMM. Therefore, the SMM-handler software should be written to avoid generating exceptions.

• Software Interrupts—The software-interrupt instructions (BOUND, INTn, INT3, and INTO) can
be executed while in SMM. However, it is not recommended that the SMM handler use these
instructions.

• Maskable Interrupts—RFLAGS.IF is cleared to 0 by the processor when SMM is entered.
Software can re-enable maskable interrupts while in SMM, but it must follow the guidelines listed
below for handling interrupts.

• Debug Interrupts—The processor disables the debug interrupts when SMM is entered by clearing
DR7 to 0 and clearing RFLAGS.TF to 0. The SMM handler can re-enable the debug facilities
while in SMM, but it must follow the guidelines listed below for handling interrupts.

DS, ES, FS, GS, SS

Selector 0000h

Base 0000_0000_0000_0000h

Limit FFFF_FFFFh

Attr Read-Write

RIP 0000_0000_0000_8000h

RFLAGS 0000_0000_0000_0002h

CR0
PE, EM, TS, PG bits cleared to 0.
All other bits are unmodified.

CR4 0000_0000_0000_0000h

DR7 0000_0000_0000_0400h

EFER 0000_0000_0000_0000h

Table 10-3. SMM Register Initialization (continued)

Register Initial SMM Contents

System-Management Mode 283

24593—Rev. 3.17—June 2010 AMD64 Technology

• INIT—The processor does not recognize INIT while in SMM.

Because the RFLAGS.IF bit is cleared when entering SMM, the HLT instruction should not be
executed in SMM without first setting the RFLAGS.IF bit to 1. Setting this bit to 1 allows the
processor to exit the halt state by using an external maskable interrupt.

In the cases where an SMM handler must accept and handle interrupts and exceptions, several
guidelines must be followed:

• Interrupt handlers must be loaded and accessible before enabling interrupts.

• A real-mode interrupt-vector table located at virtual (linear) address 0 is required.

• Segments accessed by the interrupt handler cannot have a base address greater than 20 bits because
of the real-mode addressing used in SMM. In SMM, the 16-bit value stored in the segment-selector
register is left-shifted four bits to form the 20-bit segment-base address, like real mode.

• Only the IP (rIP[15:0]) is pushed onto the stack as a result of an interrupt in SMM, because of the
real-mode addressing used in SMM. If the SMM handler is interrupted at a code-segment offset
above 64 Kbytes, then the return address on the stack must be adjusted by the interrupt-handler,
and a RET instruction with a 32-bit operand-size override must be used to return to the SMM
handler.

• If the interrupt-handler is located below 1 Mbyte, and the SMM handler is located above 1 Mbyte,
a RET instruction cannot be used to return to the SMM handler. In this case, the interrupt handler
can adjust the return pointer on the stack, and use a far CALL to transfer control back to the SMM
handler.

10.3.4 Invalidating the Caches

The processor can cache SMRAM-memory locations. If the system implements physically separate
SMRAM and system memory, it is possible for SMRAM and system memory locations to alias into
identical cache locations. In some processor implementations, the cache contents must be written to
memory and invalidated when SMM is entered and exited. This prevents the processor from using
previously-cached main-memory locations as aliases for SMRAM-memory locations when SMM is
entered, and vice-versa when SMM is exited.

Implementations of the AMD64 architecture do not require cache invalidation when entering and
exiting SMM. Internally, the processor keeps track of SMRAM and system-memory accesses
separately and properly handles situations where aliasing occurs. Cached system memory and
SMRAM locations can persist across SMM mode changes. Removal of the requirement to writeback
and invalidate the cache simplifies SMM entry and exit and allows SMM code to execute more rapidly.

10.3.5 Saving Additional Processor State

Several registers are not saved or restored automatically by the SMM mechanism. These are:

• The 128-bit media instruction registers.

• The 64-bit media instruction registers.

• The x87 floating-point registers.

284 System-Management Mode

AMD64 Technology 24593—Rev. 3.17—June 2010

• The page-fault linear-address register (CR2).

• The task-priority register (CR8).

• The debug registers, DR0, DR1, DR2, and DR3.

• The memory-type range registers (MTRRs).

• Model-specific registers (MSRs).

These registers are not saved because SMM handlers do not normally use or modify them. If an SMI
results in a processor reset (due to powering down the processor, for example) or the SMM handler
modifies the contents of the unsaved registers, the SMM handler should save and restore the original
contents of those registers. The unsaved registers, along with those stored in the SMRAM state-save
area, need to be saved in a non-volatile storage location if a processor reset occurs. The SMM handler
should execute the CPUID instruction to determine the feature set available in the processor, and be
able to save and restore the registers required by those features.

The SMM handler can execute any of the 128-bit media, 64-bit media, or x87 instructions. A simple
method for saving and restoring those registers is to use the FXSAVE and FXRSTOR instructions,
respectively, if it is supported by the processor. See “Saving Media and x87 Processor State” on
page 295 for information on saving and restoring those registers.

Floating-point exceptions can occur when the SMM handler uses media or x87 floating-point
instructions. If the SMM handler uses floating-point exception handlers, they must follow the usage
guidelines established in “Exceptions and Interrupts” on page 282. A simple method for dealing with
floating-point exceptions while in SMM is to simply mask all exception conditions using the
appropriate floating-point control register. When the exceptions are masked, the processor handles
floating-point exceptions internally in a default manner, and allows execution to continue
uninterrupted.

10.3.6 Operating in Protected Mode and Long Mode

Software can enable protected mode from SMM and it can also enable and activate long mode. An
SMM handler can use this capability to enter 64-bit mode and save additional processor state that
cannot be accessed from outside 64-bit mode (for example, the most-significant 32 bits of CR2).

10.3.7 Auto-Halt Restart

The auto-halt restart entry is located at offset FEC9h in the SMM state-save area. The size of this field
is one byte, as compared with two bytes in previous versions of SMM.

When entering SMM, the processor loads the auto-halt restart entry to indicate whether SMM was
entered from the halt state, as follows:

• Bit 0 indicates the processor state upon entering SMM:

- When set to 1, the processor entered SMM from the halt state.

- When cleared to 0, the processor did not enter SMM from the halt state.

• Bits 7–1 are cleared to 0.

System-Management Mode 285

24593—Rev. 3.17—June 2010 AMD64 Technology

The SMM handler can write the auto-halt restart entry to specify whether the return from SMM should
take the processor back to the halt state or to the instruction-execution state specified by the SMM
state-save area. The values written are:

• Clear to 00h—The processor returns to the state specified by the SMM state-save area.

• Set to any non-zero value—The processor returns to the halt state.

If the return from SMM takes the processor back to the halt state, the HLT instruction is not re-
executed. However, the halt special bus-cycle is driven on the processor bus after the RSM instruction
executes.

The result of entering SMM from a non-halt state and returning to a halt state is not predictable.

10.3.8 I/O Instruction Restart

The I/O-instruction restart entry is located at offset FEC8h in the SMM state-save area. The size of this
field is one byte, as compared with two bytes in previous versions of SMM. The I/O-instruction restart
mechanism is supported when the I/O-instruction restart bit (bit 16) in the SMM-revision identifier is
set to 1. This bit is always set to 1 in the AMD64 architecture.

When an I/O instruction is interrupted by an SMI, the I/O-instruction restart entry specifies whether
the interrupted I/O instruction should be re-executed following an RSM that returns from SMM. Re-
executing a trapped I/O instruction is useful, for example, when an I/O write is performed to a
powered-down disk drive. When this occurs, the system logic monitoring the access can issue an SMI
to have the SMM handler power-up the disk drive and retry the I/O write. The SMM handler does this
by querying system logic and detecting the failed I/O write, asking system logic to initiate the disk-
drive power-up sequence, enabling the I/O instruction restart mechanism, and returning from SMM.
Upon returning from SMM, the I/O write to the disk drive is restarted.

When an SMI occurs, the processor always clears the I/O-instruction restart entry to 0. If the SMI
interrupted an I/O instruction, then the SMM handler can modify the I/O-instruction restart entry as
follows:

• Clear to 00h (default value)—The I/O instruction is not restarted, and the instruction following the
interrupted I/O-instruction is executed. When a REP (repeat) prefix is used with an I/O instruction,
it is possible that the next instruction to be executed is the next I/O instruction in the repeat loop.

• Set to any non-zero value—The I/O instruction is restarted.

While in SMM, the handler must determine the cause of the SMI and examine the processor state at the
time the SMI occurred to determine whether or not an I/O instruction was interrupted.
Implementations provide state information in the SMM save-state area to assist in this determination:

• I/O Instruction Restart DWORD—indicates whether the SMI interrupted an I/O instruction, and
saves extra information describing the I/O instruction.

• I/O Instruction Restart RIP—the RIP of the interrupted I/O instruction.

• I/O Instruction Restart RCX—the RCX of the interrupted I/O instruction.

• I/O Instruction Restart RSI—the RSI of the interrupted I/O instruction.

286 System-Management Mode

AMD64 Technology 24593—Rev. 3.17—June 2010

• I/O Instruction Restart RDI—the RDI of the interrupted I/O instruction.

Figure 10-6. I/O Instruction Restart Dword

The fields are as follows:

• PORT—Intercepted I/O port

• SZ32—32-bit I/O port size

• SZ16—16-bit I/O port size

• SZ8—8-bit I/O port size

• REP—Repeated port access

• STR—String based port access (INS, OUTS)

• VAL—Valid (SMI was detected during an I/O instruction.)

• TYPE—Access type (0 = OUT instruction, 1 = IN instruction).

10.4 Leaving SMM

Software leaves SMM and returns to the interrupted program by executing the RSM instruction. RSM
causes the processor to load the interrupted state from the SMRAM state-save area and then transfer
control back to the interrupted program. RSM cannot be executed in any mode other than SMM,
otherwise an invalid-opcode exception (#UD) occurs.

An RSM causes a processor shutdown if an invalid-state condition is found in the SMRAM state-save
area. Only an external reset, external processor-initialization, or non-maskable external interrupt
(NMI) can cause the processor to leave the shutdown state. The invalid SMRAM state-save-area
conditions that can cause a processor shutdown during an RSM are:

• CR0.PE=0 and CR0.PG=1.

• CR0.CD=0 and CR0.NW=1.

• Certain reserved bits are set to 1, including:

- Any CR0 bit in the range 63–32 is set to 1.

- Any unsupported bit in CR3 is set to 1.

- Any unsupported bit in CR4 is set to 1.

- Any DR6 bit or DR7 bit in the range 63–32 is set to 1.

- Any unsupported bit in EFER is set to 1.

31 16 15 7 6 5 4 3 2 1 0

PORT Reserved
S
Z
32

S
Z
16

S
Z
8

R
E
P

S
T
R

V
A
L

T
Y
P
E

System-Management Mode 287

24593—Rev. 3.17—June 2010 AMD64 Technology

• Invalid returns to long mode, including:

- EFER.LME=1, CR0.PG=1, and CR4.PAE=0.

- EFER.LME=1, CR0.PG=1, CR4.PAE=1, CS.L=1, and CS.D=1.

• The SSM revision identifier is modified.

Some SMRAM state-save-area conditions are ignored, and the registers, or bits within the registers,
are restored in a default manner by the processor. This avoids a processor shutdown when an invalid
condition is stored in SMRAM. The default conditions restored by the processor are:

• The EFER.LMA register bit is set to the value obtained by logically ANDing the SMRAM values
of EFER.LME, CR0.PG, and CR4.PAE.

• The rFLAGS.VM register bit is set to the value obtained by logically ANDing the SMRAM values
of rFLAGS.VM, CR0.PE, and the inverse of EFER.LMA.

• The base values of FS, GS, GDTR, IDTR, LDTR, and TR are restored in canonical form. Those
values are sign-extended to bit 63 using the most-significant implemented bit.

• Unimplemented segment-base bits in the CS, DS, ES, and SS registers are cleared to 0.

288 System-Management Mode

AMD64 Technology 24593—Rev. 3.17—June 2010

128-Bit, 64-Bit, and x87 Programming 289

24593—Rev. 3.17—June 2010 AMD64 Technology

11 128-Bit, 64-Bit, and x87 Programming

This chapter describes the system-software implications of supporting applications that use the 128-bit
media, 64-bit media, and x87 instructions. Throughout this chapter, these instructions are collectively
referred to as media and x87 (media/x87) instructions. A complete listing of the instructions that fall in
this category—and the detailed operation of each instruction—can be found in volumes 4 and 5. Refer
to Volume 1 for information on using these instructions in application software.

11.1 Overview of System-Software Considerations

Processor implementations can support different combinations of the 128-bit media, 64-bit media, and
x87 instruction sets. Two sets of registers—independent of the general-purpose registers—support
these instructions. The 128-bit media instructions operate on the XMM registers, and the 64-bit media
and x87-instructions operate on the aliased MMX™/x87 registers. The 128-bit media and x87
floating-point instruction sets have special status registers, control registers, exception vectors, and
system-software control bits for managing the operating environment. System software that supports
use of these instructions must be able to manage these resources properly including:

• Detecting support for the instruction set, and enabling any optional features, as necessary.

• Saving and restoring the processor media or x87 state.

• Execution of floating-point instructions (media or x87) can produce exceptions. System software
must supply exception handlers for all unmasked floating-point exceptions.

11.2 Determining Media and x87 Feature Support

The support of 128-bit media, 64-bit media, and x87 instructions is implementation dependent. System
software executes the CPUID instruction to determine whether a processor implements any of these
features (see “Processor Feature Identification” on page 61 for more information on using the CPUID
instruction). After CPUID is executed with function 1 and function 8000_0001h, feature support can
be determined by examining the contents of the ECX and EDX registers. General guidelines for
determining feature support are given in the list below. A few instructions belong to more than one
instruction subset. Refer to “Instruction Subsets and CPUID Feature Sets” in Volume 3 for specific
information.

• 128-bit media instructions are supported when:

- EDX[25] = 1 for SSE instructions. (Returned by CPUID function 1.)

- EDX[26] = 1 for SSE2 instructions. (Returned by CPUID function 1.)

- ECX[0] = 1 for SSE3 instructions. (Returned by CPUID function 1).

- ECX[6] = 1 for SSE4A support (Returned by CPUID function 8000_0001h)

• 64-bit media instructions are supported when:

- EDX[23]=1 for MMX instructions. (Returned by CPUID 1 and function 8000_0001h.)

290 128-Bit, 64-Bit, and x87 Programming

AMD64 Technology 24593—Rev. 3.17—June 2010

- EDX[22]=1 for AMD extensions to MMX instructions. (Returned by CPUID function
8000_0001h.)

- EDX[31]=1 for AMD 3DNow!™ instructions. (Returned by CPUID function 8000_0001h.)

- EDX[30]=1 for AMD extensions to 3DNow! instructions. (Returned by CPUID function
8000_0001h.)

• x87 floating-point instructions are supported when:

- EDX[0]=1. (Returned by CPUID function 1 and function 8000_0001h.)

• FXSAVE and FXRSTOR instructions are supported when:

- EDX[24]=1. These instructions save and restore the entire media and x87 processor state.
(Returned by CPUID function 1 and function 8000_0001h.)

If software attempts to execute an instruction belonging to an unsupported instruction subset, an
invalid-opcode exception (#UD) occurs. For a summary of instruction subsets, see “Instruction
Subsets and CPUID Feature Sets” in Volume 3.

11.3 Enabling 128-Bit Media Instructions

Use of the 128-bit media instructions requires system software to support SSE, SSE2, SSE3 and/or
SSE4a features, but also the FXSAVE and FXRSTOR instructions, which are used to save and restore
the 128-bit media state (see “FXSAVE and FXRSTOR Instructions” on page 300). When these
instructions are supported, system software must set CR4.OSFXSR=1 to let the processor know that
the software uses these instructions. When the processor detects CR4.OSFXSR=1, it allows execution
of the 128-bit media instructions. If system software does not set CR4.OSFXSR to 1, attempts to
execute 128-bit media instructions cause an invalid-opcode exception (#UD).

System software must also clear the CR0.EM (emulate coprocessor) bit to 0, otherwise an attempt to
execute a 128-bit media instruction causes a #UD exception.

System software should also set the CR0.MP (monitor coprocessor) bit to 1. When CR0.EM=0 and
CR0.MP=1, all media instructions, x87 instructions, and the FWAIT/WAIT instructions cause a
device-not-available exception (#NM) when the CR0.TS bit is set. System software can use the #NM
exception to perform lazy context switching, saving and restoring media and x87 state only when
necessary after a task switch. See “CR0 Register” on page 42 for more information.

System software must supply an exception handler if unmasked 128-bit media floating-point
exceptions are allowed to occur. When an unmasked exception is detected, the processor transfers
control to the SIMD floating-point exception (#XF) handler provided by the operating system. System
sof tware must l et the processor know that the #XF handler is avai lab le by set t ing
CR4.OSXMMEXCPT to 1. If this bit is set to 1, the processor transfers control to the #XF handler
when it detects an unmasked exception, otherwise a #UD exception occurs. When the processor
detects a masked exception, it handles it in a default manner regardless of the CR4.OSXMMEXCPT
value.

128-Bit, 64-Bit, and x87 Programming 291

24593—Rev. 3.17—June 2010 AMD64 Technology

11.4 Media and x87 Processor State

The media and x87 processor state includes the contents of the registers used by 128-bit media, 64-bit
media, and x87 instructions. System software that supports such applications must be capable of
saving and restoring these registers.

11.4.1 128-Bit Media State

Figure 11-1 on page 292 shows the registers whose contents are affected by execution of 128-bit
media instructions. These include:

• xmm0–xmm15—Sixteen 128-bit media registers. In legacy and compatibility modes, software
access is limited to the first eight registers, XMM0–XMM7.

• MXCSR—The 32-bit control and status register.

All of the above registers are visible to 128-bit media application software. Refer to “128-Bit Media
and Scientific Programming” in Volume 1 for more information on these registers.

292 128-Bit, 64-Bit, and x87 Programming

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 11-1. 128-Bit Media-Instruction State

11.4.2 64-Bit Media State

Figure 11-2 on page 293 shows the register contents that are affected by execution of 64-bit media
instructions. These registers include:

• mmx0–mmx7—Eight 64-bit media registers.

• FSW—Two fields (TOP and ES) in the 16-bit x87 status word register.

• FTW—The 16-bit x87 tag word.

513-270.eps

XMM Data Registers
127 0

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm8

xmm9

xmm10

xmm11

xmm12

xmm13

xmm14

xmm15

31 0

128-Bit Media Control and Status Register MXCSR

128-Bit, 64-Bit, and x87 Programming 293

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 11-2. 64-Bit Media-Instruction State

The 64-bit media instructions and x87 floating-point instructions share the same physical data
registers. Figure 11-2 shows how the 64-bit registers (MMX0–MMX7) are aliased onto the low 64 bits
of the 80-bit x87 floating-point physical data registers (FPR0–FPR7). Refer to “64-Bit Media
Programming” in Volume 1 for more information on these registers.

Of the registers shown in Figure 11-2, only the eight 64-bit MMX registers are visible to 64-bit media
application software. The processor maintains the contents of the two fields of the x87 status word—
top-of-stack-pointer (TOP) and exception summary (ES)—and the 16-bit x87 tag word during
execution of 64-bit media instructions, as described in “Actions Taken on Executing 64-Bit Media
Instructions” in Volume 1.

64-bit media instructions do not generate x87 floating-point exceptions, nor do they set any status
flags. However, 64-bit media instructions can trigger an unmasked floating-point exception caused by
a previously executed x87 instruction. 64-bit media instructions do this by reading the x87 FSW.ES bit
to determine whether such an exception is pending.

513-272.eps

MMX Data Registers
79 0

mmx0

mmx1

mmx2

mmx3

mmx4

mmx5

mmx6

mmx7

015

6364

fpr0

fpr1

fpr2

fpr3

fpr4

fpr5

fpr6

fpr7

FSW

ESTOP

FTWx87 Tag Word

x87 Status Word
Visible to application software

Written by processor hardware

294 128-Bit, 64-Bit, and x87 Programming

AMD64 Technology 24593—Rev. 3.17—June 2010

11.4.3 x87 State

Figure 11-3 on page 295 shows the registers whose contents are affected by execution of x87 floating-
point instructions. These registers include:

• fpr0–fpr7—Eight 80-bit floating-point physical registers.

• FCW—The 16-bit x87 control word register.

• FSW—The 16-bit x87 status word register.

• FTW—The 16-bit x87 tag word.

• Last x87 Instruction Pointer—This value is a pointer (32-bit, 48-bit, or 64-bit, depending on
effective operand size and mode) to the last non-control x87 floating-point instruction executed.

• Last x87 Data Pointer—The pointer (32-bit, 48-bit, or 64-bit, depending on effective operand size
and mode) to the data operand referenced by the last non-control x87 floating-point instruction
executed, if that instruction referenced memory; if it did not, then this value is implementation
dependent.

• Last x87 Opcode—An 11-bit permutation of the instruction opcode from the last non-control x87
floating-point instruction executed.

Of the registers shown in Figure 11-3 on page 295, only FPR0–FPR7, FCW, and FSW are directly
updated by x87 application software. The processor maintains the contents of the FTW, instruction and
data pointers, and opcode registers during execution of x87 instructions. Refer to “Registers” in
Volume 1 for more information on these registers.

The 11-bit instruction opcode register holds a permutation of the two-byte instruction opcode from the
last non-control x87 instruction executed by the processor. (For a definition of non-control x87
instruction, see “Control” in Volume 1.) The opcode field is formed as follows:

• Opcode Register Field[10:8] = First x87 opcode byte[2:0].

• Opcode Register Field[7:0] = Second x87 opcode byte[7:0].

For example, the x87 opcode D9 F8h is stored in the opcode register as 001_1111_1000b. The low-
order three bits of the first opcode byte, D9h (1101_1001b), are stored in opcode-register bits 10–8.
The second opcode byte, F8h (1111_1000b), is stored in bits 7–0 of the opcode register. The high-
order five bits of the first opcode byte (1101_1b) are not needed because they are identical for all x87
instructions.

128-Bit, 64-Bit, and x87 Programming 295

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 11-3. x87-Instruction State

11.4.4 Saving Media and x87 Processor State

In most cases, operating systems, exception handlers, and device drivers should save and restore the
media and/or x87 processor state between task switches or other interventions in the execution of 128-
bit, 64-bit, or x87 procedures. Application programs are also free to save and restore state at any time.

In general, system software should use the FXSAVE and FXRSTOR instructions to save and restore
the entire media and x87 processor state. The FSAVE/FNSAVE and FRSTOR instructions can be used
for saving and restoring the x87 state. Because the 64-bit media registers are physically aliased onto
the x87 registers, the FSAVE/FNSAVE and FRSTOR instructions can also be used to save and restore
the 64-bit media state. However, FSAVE/FNSAVE and FRSTOR do not save or restore the 128-bit
media state.

Tag Word

Status Word

Control Word

513-271.eps

x87 Data Registers
79 0

fpr0

fpr1

fpr2

fpr3

fpr4

fpr5

fpr6

fpr7

015

63

010

Last x87 Instruction Pointer

Last x87 Data Pointer

Opcode

FCW

FSW

FTWx87 Tag Word

x87 Status Word

x87 Control Word

296 128-Bit, 64-Bit, and x87 Programming

AMD64 Technology 24593—Rev. 3.17—June 2010

FSAVE/FNSAVE and FRSTOR Instructions. The FSAVE/FNSAVE and FRSTOR instructions save
and restore the entire register state for 64-bit media instructions and x87 floating-point instructions.
The FSAVE instruction stores the register state, but only after handling any pending unmasked-x87
floating-point exceptions. The FNSAVE instruction stores the register state but skips the reporting and
handling of these exceptions. The state of all MMX/FPR registers is saved, as well as all other x87
state (the control word register, status word register, tag word, instruction pointer, data pointer, and last
opcode). After saving this state, the tag state for all MMX/FPR registers is changed to empty and is
thus available for a new procedure.

Starting on page 297, Figure 11-4 through Figure 11-7 show the memory formats used by the
FSAVE/FNSAVE and FRSTOR instructions when storing the x87 state in various processor modes
and using various effective-operand sizes. This state includes:

• x87 Data Registers

- FPR0–FPR7 80-bit physical data registers.

• x87 Environment

- FCW: x87 control word register

- FSW: x87 status word register

- FTW: x87 tag word

- Last x87 instruction pointer

- Last x87 data pointer

- Last x87 opcode

The eight data registers are stored in the 80 bytes following the environment information. Instead of
storing these registers in their physical order (FPR0–FPR7), the processor stores the registers in the
their stack order, ST(0)–ST(7), beginning with the top-of-stack, ST(0).

128-Bit, 64-Bit, and x87 Programming 297

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 11-4. FSAVE/FNSAVE Image (32-Bit, Protected Mode)

Bit Offset Byte
Offset31 16 15 0

ST(7)
(79–48)

+68h

… …

ST(1)
(15–0)

ST(0)
(79–64)

…

ST(0)
(63–32)

…

ST(0)
(31–0)

+1Ch

Reserved, IGN
Data DS Selector

(15–0)
+18h

Data Offset
(31–0)

+14h

00000b
Instruction Opcode

(10–0)
Instruction CS Selector

(15–0)
+10h

Instruction Offset
(31–0)

+0Ch

Reserved, IGN x87 Tag Word (FTW) +08h

Reserved, IGN x87 Status Word (FSW) +04h

Reserved, IGN x87 Control Word (FCW) +00h

298 128-Bit, 64-Bit, and x87 Programming

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 11-5. FSAVE/FNSAVE Image (32-Bit, Real/Virtual-8086 Modes)

Bit Offset Byte
Offset31 16 15 0

ST(7)
(79–48)

+68h

… …

ST(1)
(15–0)

ST(0)
(79–64)

…

ST(0)
(63–32)

…

ST(0)
(31–0)

+1Ch

0000b
Data Offset

(31–16)
0000 0000 0000b +18h

Reserved, IGN
Data Offset

(15–0)
+14h

0000b
Instruction Offset

(31–16)
0

Instruction Opcode
(10–0)

+10h

Reserved, IGN
Instruction Offset

(15–0)
+0Ch

Reserved, IGN x87 Tag Word (FTW) +08h

Reserved, IGN x87 Status Word (FSW) +04h

Reserved, IGN x87 Control Word (FCW) +00h

128-Bit, 64-Bit, and x87 Programming 299

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 11-6. FSAVE/FNSAVE Image (16-Bit, Protected Mode)

Bit Offset Byte
Offset31 16 15 0

Not Part of x87 State
ST(7)

(79–64)
+5Ch

… …

ST(0)
(79–48)

+14h

ST(0)
(47–16)

+10h

ST(0)
(15–0)

Data DS Selector
(15–0)

+0Ch

Data Offset
(15–0)

Instruction CS Selector
(15–0)

+08h

Instruction Offset
(15–0)

x87 Tag Word (FTW) +04h

x87 Status Word (FSW) x87 Control Word (FCW) +00h

300 128-Bit, 64-Bit, and x87 Programming

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 11-7. FSAVE/FNSAVE Image (16-Bit, Real/Virtual-8086 Modes)

FLDENV/FNLDENV and FSTENV Instructions. T he F LD EN V /F N LD EN V a nd F S T EN V
instructions load and store only the x87 floating-point environment. These instructions, unlike the
FSAVE/FNSAVE and FRSTOR instructions, do not save or restore the x87 data registers. The
FLDENV/FSTENV instructions do not save the full 64-bit data and instruction pointers. 64-bit
applications should use FXSAVE/FXRSTOR, rather than FLDENV/FSTENV. The format of the saved
x87 environment images for protected mode and real/virtual mode are the same as those of the first 14-
bytes of the FSAVE/FNSAVE images for 16-bit operands or 32/64-bit operands, respectively. See
Figure 11-4 on page 297, Figure 11-5 on page 298, Figure 11-6 on page 299, and Figure 11-7.

FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions save and restore
the entire 128-bit media, 64-bit media, and x87 state. These instructions usually execute faster than
FSAVE/FNSAVE and FRSTOR because they do not normally save and restore the x87 exception
pointers (last-instruction pointer, last data-operand pointer, and last opcode). The only case in which
they do save the exception pointers is the relatively rare case in which the exception-summary bit in the

Bit Offset Byte
Offset31 16 15 0

Not Part of x87 State
ST(7)

(79–64)
+5Ch

… …

ST(0)
(79–48)

+14h

ST(0)
(47–16)

+10h

ST(0)
(15–0)

Data

(19–16)
0000 0000 0000b +0Ch

Data Offset (15–0)
Instruc.

(19–16)
0

Instruction Opcode
(10–0)

+08h

Instruction Offset (15–0) x87 Tag Word (FTW) +04h

x87 Status Word (FSW) x87 Control Word (FCW) +00h

128-Bit, 64-Bit, and x87 Programming 301

24593—Rev. 3.17—June 2010 AMD64 Technology

x87 status word (FSW.ES) is set to 1, indicating that an unmasked exception has occurred. The
FXSAVE and FXRSTOR memory format contains fields for storing these values.

Unlike FSAVE and FNSAVE, the FXSAVE instruction does not alter the x87 tag word. Therefore, the
contents of the shared 64-bit MMX and 80-bit FPR registers can remain valid after an FXSAVE
instruction (or any other value the tag bits indicated before the save). Also, FXSAVE (like FNSAVE)
does not check for pending unmasked-x87 floating-point exceptions.

Figure 11-8 on page 302 shows the memory format of the media x87 state in long mode. When in 64-
bit mode using a 64-bit operand size, the format shown in Figure 11-8 is used. If a 32-bit operand size
is used (in 64-bit mode), the memory format is the same, except that RIP and RDS are stored as
sel:offset pointers, as shown in Figure 11-9 on page 303.

302 128-Bit, 64-Bit, and x87 Programming

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 11-8. FXSAVE and FXRSTOR Image (64-bit Mode)

F E D C B A 9 8 7 6 5 4 3 2 1 0 Byte

Reserved, IGN +1F0h

… …

Reserved, IGN +1A0h

XMM15 +190h

XMM14 +180h

XMM13 +170h

XMM12 +160h

XMM11 +150h

XMM10 +140h

XMM9 +130h

XMM8 +120h

XMM7 +110h

XMM6 +100h

XMM5 +F0h

XMM4 +E0h

XMM3 +D0h

XMM2 +C0h

XMM1 +B0h

XMM0 +A0h

Reserved, IGN ST(7) +90h

Reserved, IGN ST(6) +80h

Reserved, IGN ST(5) +70h

Reserved, IGN ST(4) +60h

Reserved, IGN ST(3) +50h

Reserved, IGN ST(2) +40h

Reserved, IGN ST(1) +30h

Reserved, IGN ST(0) +20h

MXCSR_MASK MXCSR RDP1 +10h

RIP1 FOP 0 FTW FSW FCW +00h

1. Stored as sel:offset if operand size is 32 bits. 32bit sel:offset format of the pointers is shown in figure 11-9.

128-Bit, 64-Bit, and x87 Programming 303

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 11-9. FXSAVE and FXRSTOR Image (Non-64-bit Mode)

Software can read and write all fields within the FXSAVE and FXRSTOR memory image. These fields
include:

• FCW—Bytes 01h–00h. x87 control word.

• FSW—Bytes 03h–02h. x87 status word.

• FTW—Byte 04h. x87 tag word. See “FXSAVE Format for x87 Tag Word” on page 304 for
additional information on the FTW format saved by the FXSAVE instruction.

• (Byte 05h contains the value 00h.)

• FOP—Bytes 07h–06h. last x87 opcode.

• Last x87 Instruction Pointer—A pointer to the last non-control x87 floating-point instruction
executed by the processor:

F E D C B A 9 8 7 6 5 4 3 2 1 0 Byte

Reserved, IGN +1F0h

… …

Reserved, IGN +120h

XMM7 +110h

XMM6 +100h

XMM5 +F0h

XMM4 +E0h

XMM3 +D0h

XMM2 +C0h

XMM1 +B0h

XMM0 +A0h

Reserved, IGN ST(7) +90h

Reserved, IGN ST(6) +80h

Reserved, IGN ST(5) +70h

Reserved, IGN ST(4) +60h

Reserved, IGN ST(3) +50h

Reserved, IGN ST(2) +40h

Reserved, IGN ST(1) +30h

Reserved, IGN ST(0) +20h

MXCSR_MASK MXCSR rsrvd, IGN DS DP +10h

rsrvd, IGN CS EIP FOP 0 FTW FSW FCW +00h

304 128-Bit, 64-Bit, and x87 Programming

AMD64 Technology 24593—Rev. 3.17—June 2010

- RIP (64-bit format)—Bytes 0Fh–08h. 64-bit offset into the code segment (used without a CS
selector).

- EIP (32-bit format)—Bytes 0Bh–08h. 32-bit offset into the code segment.

- CS (32-bit format)—Bytes 0Dh–0Ch. Segment selector portion of the pointer.

• Last x87 Data Pointer—If the last non-control x87 floating point instruction referenced memory,
this value is a pointer to the data operand referenced by the last non-control x87 floating-point
instruction executed by the processor:

- RDP (64-bit format)—Bytes 17h–10h. 64-bit offset into the data segment (used without a DS
selector).

- DP (32-bit format)—Bytes 13h–10h. 32-bit offset into the data segment.

- DS (32-bit format)—Bytes 15h–14h. Segment selector portion of the pointer.

If the last non-control x87 instruction did not reference memory, then the value in the pointer is
implementation dependent.

• MXCSR—Bytes 1Bh–18h. 128-bit media-instruction control and status register. This register is
saved only if CR4.OSFXSR is set to 1.

• MXCSR_MASK—Bytes 1Fh–1Ch. Set bits in MXCSR_MASK indicate supported feature bits in
MXCSR. For example, if bit 6 (the DAZ bit) in the returned MXCSR_MASK field is set to 1, the
DAZ mode and the DAZ flag in MXCSR are supported. Cleared bits in MXCSR_MASK indicate
reserved bits in MXCSR. If software attempts to set a reserved bit in the MXCSR register, a #GP
exception will occur. To avoid this exception, after software clears the FXSAVE memory image
and executes the FXSAVE instruction, software should use the value returned by the processor in
the MXCSR_MASK field when writing a value to the MXCSR register, as follows:

- MXCSR_MASK = 0: If the processor writes a zero value into the MXCSR_MASK field, the
denormals-are-zeros (DAZ) mode and the DAZ flag in MXCSR are not supported. Software
should use the default mask value, 0000_FFBFh (bit 6, the DAZ bit, and bits 31–16 cleared to
0), to mask any value it writes to the MXCSR register to ensure that all reserved bits in
MXCSR are written with 0, thus avoiding a #GP exception.

- MXCSR_MASK … 0: If the processor writes a non-zero value into the MXCSR_MASK field,
software should AND this value with any value it writes to the MXCSR register.

• MMXn/FPRn—Bytes 9Fh–20h. Shared 64-bit media and x87 floating-point registers. As in the
case of the x87 FSAVE instruction, these registers are stored in stack order ST(0)–ST(7). The
upper six bytes in the memory image for each register are reserved.

• XMMn—Bytes 11Fh–A0h. 128-bit media registers. These registers are saved only if
CR4.OSFXSR is set to 1.

FXSAVE Format for x87 Tag Word. Rather than saving the entire x87 tag word, FXSAVE saves a
single-byte encoded version. FXSAVE encodes each of the eight two-bit fields in the x87 tag word as
follows:

• Two-bit values of 00, 01, and 10 are encoded as a 1, indicating the corresponding x87 FPRn
register holds a value.

128-Bit, 64-Bit, and x87 Programming 305

24593—Rev. 3.17—June 2010 AMD64 Technology

• A two-bit value of 11 is encoded as a 0, indicating the corresponding x87 FPRn is empty.

For example, assume an FSAVE instruction saves an x87 tag word with the value 83F1h. This tag-
word value describes the x87 FPRn contents as follows:

When an FXSAVE is used to write the x87 tag word to memory, it encodes the value as E3h. This
encoded version describes the x87 FPRn contents as follows:

If necessary, software can decode the single-bit FXSAVE tag-word fields into the two-bit field FSAVE
uses by examining the contents of the corresponding FPR registers saved by FXSAVE. Table 11-1 on
page 306 shows how the FPR contents are used to find the equivalent FSAVE tag-field value. The
fraction column refers to fraction portion of the extended-precision significand (bits 62–0). The
integer bit column refers to the integer-portion of the significand (bit 63). See “x87 Floating-Point
Programming” in Volume 1 for more information on floating-point numbering formats.

x87 Register FPR7 FPR6 FPR5 FPR4 FPR3 FPR2 FPR1 FPR0

Tag Word Value (hex) 8 3 F 1

Tag Value (binary) 10 00 00 11 11 11 00 01

Meaning Special Valid Valid Empty Empty Empty Valid Zero

x87 Register FPR7 FPR6 FPR5 FPR4 FPR3 FPR2 FPR1 FPR0

Encoded Tag Byte
 (hex)

E 3

Tag Value (binary) 1 1 1 0 0 0 1 1

Meaning Valid Valid Valid Empty Empty Empty Valid Valid

306 128-Bit, 64-Bit, and x87 Programming

AMD64 Technology 24593—Rev. 3.17—June 2010

Performance Considerations. When system software supports multi-tasking, it must be able to save
the processor state for one task and load the state for another. For performance reasons, the media
and/or x87 processor state is usually saved and loaded only when necessary. System software can save
and load this state at the time a task switch occurs. However, if the new task does not use the state,
loading the state is unnecessary and reduces performance.

The task-switch bit (CR0.TS) is provided as a lazy context-switch mechanism that allows system
software to save and load the processor state only when necessary. When CR0.TS=1, a device-not-
available exception (#NM) occurs when an attempt is made to execute a 128-bit media, 64-bit media,
or x87 instruction. System software can use the #NM exception handler to save the state of the
previous task, and restore the state of the current task. Before returning from the exception handler to
the media or x87 instruction, system software must clear CR0.TS to 0 to allow the instruction to be
executed. Using this approach, the processor state is saved only when the registers are used.

In legacy mode, the hardware task-switch mechanism sets CR0.TS=1 during a task switch (see “Task
Switched (TS) Bit” on page 44 for more information). In long mode, the hardware task-switching is
not supported, and the CR0.TS bit is not set by the processor. Instead, the architecture assumes that
system software handles all task-switching and state-saving functions. If CR0.TS is to be used in long
mode for controlling the save and restore of media or x87 state, system software must set and clear it
explicitly.

Table 11-1. Deriving FSAVE Tag Field from FXSAVE Tag Field

Encoded
FXSAVE
Tag Field

Exponent Integer Bit2 Fraction1 Type of Value
Equivalent

FSAVE
Tag Field

1 (Valid)

All 0s

0 All 0s Zero 01 (Zero)

0 Not all 0s Denormal

10 (Special)
1 All 0s

Pseudo Denormal
1 Not all 0s

Neither
all 0s

nor all 1s

0

don’t care

Unnormal

1 Normal 00 (Valid)

All 1s

0
Pseudo Infinity
or Pseudo NaN

10 (Special)
1

All 0s Infinity

Not all 0s NaN

0 (Empty) don’t care Empty 11 (Empty)

Note:
1. Bits 62–0 of the significand. Bit 62, the most-significant bit of the fraction, is also called the M bit.
2. Bit 63 of the significand, also called the J bit.

Task Management 307

24593—Rev. 3.17—June 2010 AMD64 Technology

12 Task Management

This chapter describes the hardware task-management features. All of the legacy x86 task-
management features are supported by the AMD64 architecture in legacy mode, but most features are
not available in long mode. Long mode, however, requires system software to initialize and maintain
certain task-management resources. The details of these resource-initialization requirements for long
mode are discussed in “Task-Management Resources” on page 308.

12.1 Hardware Multitasking Overview

A task (also called a process) is a program that the processor can execute, suspend, and later resume
executing at the point of suspension. During the time a task is suspended, other tasks are allowed to
execute. Each task has its own execution space, consisting of:

• Code segment and instruction pointer.

• Data segments.

• Stack segments for each privilege level.

• General-purpose registers.

• rFLAGS register.

• Local-descriptor table.

• Task register, and a link to the previously-executed task.

• I/O-permission and interrupt-permission bitmaps.

• Pointer to the page-translation tables (CR3).

The state information defining this execution space is stored in the task-state segment (TSS)
maintained for each task.

Support for hardware multitasking is provided in legacy mode. Hardware multitasking provides
automated mechanisms for switching tasks, saving the execution state of the suspended task, and
restoring the execution state of the resumed task. When hardware multitasking is used to switch tasks,
the processor takes the following actions:

• Suspends execution of the task, allowing any executing instructions to complete and save their
results.

• Saves the task execution state in the task TSS.

• Loads the execution state for the new task from its TSS.

• Begins executing the new task at the location specified in the new task TSS.

Software can switch tasks by branching to a new task using the CALL or JMP instructions. Exceptions
and interrupts can also switch tasks if the exception or interrupt handlers are themselves separate tasks.
IRET can be used to return to an earlier task.

308 Task Management

AMD64 Technology 24593—Rev. 3.17—June 2010

12.2 Task-Management Resources

The hardware-multitasking features are available when protected mode is enabled (CR0.PE=1).
Protected-mode software execution, by definition, occurs as part of a task. While system software is
not required to use the hardware-multitasking features, it is required to initialize certain task-
management resources for at least one task (the current task) when running in protected mode. This
single task is needed to establish the protected-mode execution environment. The resources that must
be initialized are:

• Task-State Segment (TSS)—A segment that holds the processor state associated with a task.

• TSS Descriptor—A segment descriptor that defines the task-state segment.

• TSS Selector—A segment selector that references the TSS descriptor located in the GDT.

• Task Register—A register that holds the TSS selector and TSS descriptor for the current task.

Figure 12-1 on page 309 shows the relationship of these resources to each other in both 64-bit and 32-
bit operating environments.

Task Management 309

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 12-1. Task-Management Resources

A fifth resource is available in legacy mode for use by system software that uses the hardware-
multitasking mechanism to manage more than one task:

• Task-Gate Descriptor—This form of gate descriptor holds a reference to a TSS descriptor and is
used to control access between tasks.

513-254.eps

32-Bit Limit64-Bit or 32-Bit Base Address Attributes

Task Register (Hidden From Software)
015

TSS Selector

Task Register (Visible)

Global-Descriptor
Table

TSS Descriptor

I/O-Bitmap Base Address

I/O-Permission Bitmap

Interrupt-Redirection Bitmap

Task-State Segment

+

310 Task Management

AMD64 Technology 24593—Rev. 3.17—June 2010

The task-management resources are described in the following sections.

12.2.1 TSS Selector

TSS selectors are selectors that point to task-state segment descriptors in the GDT. Their format is
identical to all other segment selectors, as shown in Figure 12-2.

Figure 12-2. Task-Segment Selector

The selector format consists of the following fields:

Selector Index. Bits 15–3. The selector-index field locates the TSS descriptor in the global-
descriptor table.

Table Indicator (TI) Bit. Bit 2. The TI bit must be cleared to 0, which indicates that the GDT is used.
TSS descriptors cannot be located in the LDT. If a reference is made to a TSS descriptor in the LDT, a
general-protection exception (#GP) occurs.

Requestor Privilege-Level (RPL) Field. Bits 1–0. RPL represents the privilege level (CPL) the
processor is operating under at the time the TSS selector is loaded into the task register.

12.2.2 TSS Descriptor

The TSS descriptor is a system-segment descriptor, and it can be located only in the GDT. The format
for an 8-byte, legacy-mode and compatibility-mode TSS descriptor can be found in “System
Descriptors” on page 83. The format for a 16-byte, 64-bit mode TSS descriptor can be found in
“System Descriptors” on page 88.

The fields within a TSS descriptor (all modes) are described in “Descriptor Format” on page 77. The
following additional information applies to TSS descriptors:

• Segment Limit—A TSS descriptor must have a segment limit value of at least 67h, which defines a
minimum TSS size of 68h (104 decimal) bytes. If the limit is less than 67h, an invalid-TSS
exception (#TS) occurs during the task switch. When an I/O-permission bitmap, interrupt-
redirection bitmap, or additional state information is included in the TSS, the limit must be set to a
value large enough to enclose that information. In this case, if the TSS limit is not large enough to

15 3 2 1 0

Selector Index TI RPL

Bits Mnemonic Description
15-3 Selector Index
2 TI Table Indicator
1-0 RPL Requestor Privilege Level

Task Management 311

24593—Rev. 3.17—June 2010 AMD64 Technology

hold the additional information, a #GP exception occurs when an attempt is made to access beyond
the TSS limit. No check for the larger limit is performed during the task switch.

• Type—Four system-descriptor types are defined as TSS types, as shown in Table 4-5 on page 83.
Bit 9 is used as the descriptor busy bit (B). This bit indicates that the task is busy when set to 1, and
available when cleared to 0. Busy tasks are the currently running task and any previous (outer)
tasks in a nested-task hierarchy. Task recursion is not supported, and a #GP exception occurs if an
attempt is made to transfer control to a busy task. See “Nesting Tasks” on page 325 for additional
information.

In long mode, the 32-bit TSS types (available and busy) are redefined as 64-bit TSS types, and only
64-bit TSS descriptors can be used. Loading the task register with an available 64-bit TSS causes
the processor to change the TSS descriptor type to indicate a busy 64-bit TSS. Because long mode
does not support task switching, the TSS-descriptor busy bit is never cleared by the processor to
indicate an available 64-bit TSS.

Sixteen-bit TSS types are illegal in long mode. A general-protection exception (#GP) occurs if a
reference is made to a 16-bit TSS.

12.2.3 Task Register

The task register (TR) points to the TSS location in memory, defines its size, and specifies its
attributes. As with the other descriptor-table registers, the TR has two portions. A visible portion holds
the TSS selector, and a hidden portion holds the TSS descriptor. When the TSS selector is loaded into
the TR, the processor automatically loads the TSS descriptor from the GDT into the hidden portion of
the TR.

The TR is loaded with a new selector using the LTR instruction. The TR is also loaded during a task
switch, as described in “Switching Tasks” on page 321.

Figure 12-3 shows the format of the TR in legacy mode.

Figure 12-3. TR Format, Legacy Mode

Hidden From Software 513-221.eps

32-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

Descriptor Attributes

Selector

312 Task Management

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 12-4 shows the format of the TR in long mode (both compatibility mode and 64-bit mode).

Figure 12-4. TR Format, Long Mode

The AMD64 architecture expands the TSS-descriptor base-address field to 64 bits so that system
software running in long mode can access a TSS located anywhere in the 64-bit virtual-address space.
The processor ignores the 32 high-order base-address bits when running in legacy mode. Because the
TR is loaded from the GDT, the system-segment descriptor format has been expanded to 16 bytes by
the AMD64 architecture in support of 64-bit mode. See “System Descriptors” on page 88 for more
information on this expanded format. The high-order base-address bits are only loaded from 64-bit
mode using the LTR instruction. Figure 12-5 shows the relationship between the TSS and GDT.

Figure 12-5. Relationship between the TSS and GDT

Hidden From Software 513-267.eps

64-Bit Descriptor-Table Base Address

32-Bit Descriptor-Table Limit

Descriptor Attributes

Selector

513-210.eps

Global
Descriptor

Table

GDT Limit

GDT Base Address

Task Selector

TSS Attributes

TSS Limit

TSS Base Address

Task
State

Segment

Global Descriptor Table Register Task Register

Task Management 313

24593—Rev. 3.17—June 2010 AMD64 Technology

Long mode requires the use of a 64-bit TSS type, and this type must be loaded into the TR by
executing the LTR instruction in 64-bit mode. Executing the LTR instruction in 64-bit mode loads the
TR with the full 64-bit TSS base address from the 16-byte TSS descriptor format (compatibility mode
can only load 8-byte system descriptors). A processor running in either compatibility mode or 64-bit
mode uses the full 64-bit TR.base address.

12.2.4 Legacy Task-State Segment

The task-state segment (TSS) is a data structure in memory that the processor uses to save and restore
the execution state for a task when a task switch occurs. Figure 12-6 on page 314 shows the format of a
legacy 32-bit TSS.

314 Task Management

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 12-6. Legacy 32-bit TSS

Bit Offset Byte
Offset31 16 15 0

I/O-Permission Bitmap (IOPB) (Up to 8 Kbytes)
IOPB
Base

Interrupt-Redirection Bitmap (IRB) (Eight 32-Bit Locations)

↑
↓

Operating-System Data Structure
↑
↓

I/O-Permission Bitmap Base Address Reserved, IGN T +64h

Reserved, IGN LDT Selector +60h

Reserved, IGN GS +5Ch

Reserved, IGN FS +58h

Reserved, IGN DS +54h

Reserved, IGN SS +50h

Reserved, IGN CS +4Ch

Reserved, IGN ES +48h

EDI +44h

ESI +40h

EBP +3Ch

ESP +38h

EBX +34h

EDX +30h

ECX +2Ch

EAX +28h

EFLAGS +24h

EIP +20h

CR3 +1Ch

Reserved, IGN SS2 +18h

ESP2 +14h

Reserved, IGN SS1 +10h

ESP1 +0Ch

Reserved, IGN SS0 +08h

ESP0 +04h

Reserved, IGN Link (Prior TSS Selector) +00h

Task Management 315

24593—Rev. 3.17—June 2010 AMD64 Technology

The 32-bit TSS contains three types of fields:

• Static fields are read by the processor during a task switch when a new task is loaded, but are not
written by the processor when a task is suspended.

• Dynamic fields are read by the processor during a task switch when a new task is loaded, and are
written by the processor when a task is suspended.

• Software-defined fields are read and written by software, but are not read or written by the
processor. All but the first 104 bytes of a TSS can be defined for software purposes, minus any
additional space required for the optional I/O-permission bitmap and interrupt-redirection bitmap.

TSS fields are not read or written by the processor when the LTR instruction is executed. The LTR
instruction loads the TSS descriptor into the TR and marks the task as busy, but it does not cause a task
switch.

The TSS fields used by the processor in legacy mode are:

• Link—Bytes 01h–00h, dynamic field. Contains a copy of the task selector from the previously-
executed task. See “Nesting Tasks” on page 325 for additional information.

• Stack Pointers—Bytes 1Bh–04h, static field. Contains the privilege 0, 1, and 2 stack pointers for
the task. These consist of the stack-segment selector (SSn), and the stack-segment offset (ESPn).

• CR3—Bytes 1Fh–1Ch, static field. Contains the page-translation-table base-address (CR3)
register for the task.

• EIP—Bytes 23h–20h, dynamic field. Contains the instruction pointer (EIP) for the next instruction
to be executed when the task is restored.

• EFLAGS—Bytes 27h–24h, dynamic field. Contains a copy of the EFLAGS image at the point the
task is suspended.

• General-Purpose Registers—Bytes 47h–28h, dynamic field. Contains a copy of the EAX, ECX,
EDX, EBX, ESP, EBP, ESI, and EDI values at the point the task is suspended.

• Segment-Selector Registers—Bytes 59h–48h, dynamic field. Contains a copy of the ES, CS, SS,
DS, FS, and GS, values at the point the task is suspended.

• LDT Segment-Selector Register—Bytes 63h–60h, static field. Contains the local-descriptor-table
segment selector for the task.

• T (Trap) Bit—Bit 0 of byte 64h, static field. This bit, when set to 1, causes a debug exception
(#DB) to occur on a task switch. See “Breakpoint Instruction (INT3)” on page 340 for additional
information.

• I/O-Permission Bitmap Base Address—Bytes 67h–66h, static field. This field represents a 16-bit
offset into the TSS. This offset points to the beginning of the I/O-permission bitmap, and the end of
the interrupt-redirection bitmap.

• I/O-Permission Bitmap—Static field. This field specifies protection for I/O-port addresses (up to
the 64K ports supported by the processor), as follows:

- Whether the port can be accessed at any privilege level.

- Whether the port can be accessed outside the privilege level established by EFLAGS.IOPL.

316 Task Management

AMD64 Technology 24593—Rev. 3.17—June 2010

- Whether the port can be accessed when the processor is running in virtual-8086 mode.

Because one bit is used per 8-byte I/O-port, this bitmap can take up to 8 Kbytes of TSS space. The
bitmap can be located anywhere within the first 64 Kbytes of the TSS, as long as it is above byte
103. The last byte of the bitmap must contain all ones (0FFh). See “I/O-Permission Bitmap” on
page 316 for more information.

• Interrupt-Redirection Bitmap—Static field. This field defines how each of the 256-possible
software interrupts is directed in a virtual-8086 environment. One bit is used for each interrupt, for
a total bitmap size of 32 bytes. The bitmap can be located anywhere above byte 103 within the first
64 Kbytes of the TSS. See “Interrupt Redirection of Software Interrupts” on page 250 for
information on using this field.

The TSS can be paged by system software. System software that uses the hardware task-switch
mechanism must guarantee that a page fault does not occur during a task switch. Because the processor
only reads and writes the first 104 TSS bytes during a task switch, this restriction only applies to those
bytes. The simplest approach is to align the TSS on a page boundary so that all critical bytes are either
present or not present. Then, if a page fault occurs when the TSS is accessed, it occurs before the first
byte is read. If the page fault occurs after a portion of the TSS is read, the fault is unrecoverable.

I/O-Permission Bitmap. The I/O-permission bitmap (IOPB) allows system software to grant less-
privileged programs access to individual I/O ports, overriding the effect of RFLAGS.IOPL for those
devices. When an I/O instruction is executed, the processor checks the IOPB only if the processor is in
virtual x86 mode or the CPL is greater than the RFLAGS.IOPL field. Each bit in the IOPB corresponds
to a byte I/O port. A word I/O port corresponds to two consecutive IOPB bits, and a doubleword I/O
port corresponds to four consecutive IOPB bits. Access is granted to an I/O port of a given size when
all IOPB bits corresponding to that port are clear. If any bits are set, a #GP occurs.

The IOPB is located in the TSS, as shown by the example in Figure 12-7 on page 317. Each TSS can
have a different copy of the IOPB, so access to individual I/O devices can be granted on a task-by-task
basis. The I/O-permission bitmap base-address field located at byte 66h in the TSS is an offset into the
TSS locating the start of the IOPB. If all 64K IO ports are supported, the IOPB base address must not
be greater than 0DFFFh, otherwise accesses to the bitmap cause a #GP to occur. An extra byte must be
present after the last IOPB byte. This byte must have all bits set to 1 (0FFh). This allows the processor
to read two IOPB bytes each time an I/O port is accessed. By reading two IOPB bytes, the processor
can check all bits when unaligned, multi-byte I/O ports are accessed.

Task Management 317

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 12-7. I/O-Permission Bitmap Example

Bits in the IOPB sequentially correspond to I/O port addresses. The example in Figure 12-7 shows bits
12 through 15 in the second doubleword of the IOPB cleared to 0. Those bit positions correspond to
byte I/O ports 44h through 47h, or alternatively, doubleword I/O port 44h. Because the bits are cleared
to zero, software running at any privilege level can access those I/O ports.

By adjusting the TSS limit, it may happen that some ports in the I/O-address space have no
corresponding IOPB entry. Ports not represented by the IOPB will cause a #GP exception. Referring
again to Figure 12-7, the last IOPB entry is at bit 23 in the fourth IOPB doubleword, which
corresponds to I/O port 77h. In this example, all ports from 78h and above will cause a #GP exception,
as if their permission bit was set to 1.

12.2.5 64-Bit Task State Segment

Although the hardware task-switching mechanism is not supported in long mode, a 64-bit task state
segment (TSS) must still exist. System software must create at least one 64-bit TSS for use after
activating long mode, and it must execute the LTR instruction, in 64-bit mode, to load the TR register
with a pointer to the 64-bit TSS that serves both 64-bit-mode programs and compatibility-mode
programs.

The legacy TSS contains several fields used for saving and restoring processor-state information. The
legacy fields include general-purpose register, EFLAGS, CR3 and segment-selector register state,
among others. Those legacy fields are not supported by the 64-bit TSS. System software must save and
restore the necessary processor-state information required by the software-multitasking
implementation (if multitasking is supported). Figure 12-8 on page 319 shows the format of a 64-bit
TSS.

The 64-bit TSS holds several pieces of information important to long mode that are not directly related
to the task-switch mechanism:

• RSPn—Bytes 1Bh–04h. The full 64-bit canonical forms of the stack pointers (RSP) for privilege
levels 0 through 2.

Bit Offset Byte
Offset31 16 15 0

1111_1111 IOPB+Ch

IOPB+8h

0 0 0 0 IOPB+4h

IOPB

I/O-Permission Bitmap Base Address +64h

. . .

+00h

318 Task Management

AMD64 Technology 24593—Rev. 3.17—June 2010

• ISTn—Bytes 5Bh–24h. The full 64-bit canonical forms of the interrupt-stack-table (IST) pointers.
See “Interrupt-Stack Table” on page 245 for a description of the IST mechanism.

• I/O Map Base Address—Bytes 67h–66h. The 16-bit offset to the I/O-permission bit map from the
64-bit TSS base. The function of this field is identical to that in a legacy 32-bit TSS. See “I/O-
Permission Bitmap” on page 316 for more information.

Task Management 319

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 12-8. Long Mode TSS Format

Bit Offset Byte
Offset31 16 15 0

I/O-Permission Bitmap (IOPB) (Up to 8 Kbytes)
IOPB
Base

↑
↓

↑
↓

I/O Map Base Address Reserved, IGN +64h

Reserved, IGN
+60h

+5Ch

IST7[63:32] +58h

IST7[31:0] +54h

IST6[63:32] +50h

IST6[31:0] +4Ch

IST5[63:32] +48h

IST5[31:0] +44h

IST4[63:32] +40h

IST4[31:0] +3Ch

IST3[63:32] +38h

IST3[31:0] +34h

IST2[63:32] +30h

IST2[31:0] +2Ch

IST1[63:32] +28h

IST1[31:0] +24h

Reserved, IGN
+20h

+1Ch

RSP2[63:32] +18h

RSP2[31:0] +14h

RSP1[63:32] +10h

RSP1[31:0] +0Ch

RSP0[63:32] +08h

RSP0[31:0] +04h

Reserved, IGN +00h

320 Task Management

AMD64 Technology 24593—Rev. 3.17—June 2010

12.2.6 Task Gate Descriptor (Legacy Mode Only)

Task-gate descriptors hold a selector reference to a TSS and are used to control access between tasks.
Unlike a TSS descriptor or other gate descriptors, a task gate can be located in any of the three
descriptor tables (GDT, LDT, and IDT). Figure 12-9 shows the format of a task-gate descriptor.

Figure 12-9. Task-Gate Descriptor, Legacy Mode Only

The task-gate descriptor fields are:

• System (S) and Type—Bits 12 and 11–8 (respectively) of byte +4. These bits are encoded by
software as 00101b to indicate a task-gate descriptor type.

• Present (P)—Bit 15 of byte +4. The segment-present bit indicates the segment referenced by the
gate descriptor is loaded in memory. If a reference is made to a segment when P=0, a segment-not-
present exception (#NP) occurs. This bit is set and cleared by system software and is never altered
by the processor.

• Descriptor Privilege-Level (DPL)—Bits 14–13 of byte +4. The DPL field indicates the gate-
descriptor privilege level. DPL can be set to any value from 0 to 3, with 0 specifying the most
privilege and 3 the least privilege.

12.3 Hardware Task-Management in Legacy Mode

This section describes the operation of the task-switch mechanism when the processor is running in
legacy mode. None of these features are supported in long mode (either compatibility mode or 64-bit
mode).

12.3.1 Task Memory-Mapping

The hardware task-switch mechanism gives system software a great deal of flexibility in managing the
sharing and isolation of memory—both virtual (linear) and physical—between tasks.

Segmented Memory. The segmented memory for a task consists of the segments that are loaded
during a task switch and any segments that are later accessed by the task code. The hardware task-
switch mechanism allows tasks to either share segments with other tasks, or to access segments in
isolation from one another. Tasks that share segments actually share a virtual-address (linear-address)
space, but they do not necessarily share a physical-address space. When paging is enabled, the virtual-
to-physical mapping for each task can differ, as is described in the following section. Shared segments

31 16 15 14 13 12 11 8 7 0

Reserved, IGN P DPL S Type Reserved, IGN +4

TSS Selector Reserved, IGN +0

Task Management 321

24593—Rev. 3.17—June 2010 AMD64 Technology

do share physical memory when paging is disabled, because virtual addresses are used as physical
addresses.

A number of options are available to system software that shares segments between tasks:

• Sharing segment descriptors using the GDT. All tasks have access to the GDT, so it is possible for
segments loaded in the GDT to be shared among tasks.

• Sharing segment descriptors using a single LDT. Each task has its own LDT, and that LDT selector
is automatically saved and restored in the TSS by the processor during task switches. Tasks,
however, can share LDTs simply by storing the same LDT selector in multiple TSSs. Using the
LDT to manage segment sharing and segment isolation provides more flexibility to system
software than using the GDT for the same purpose.

• Copying shared segment descriptors into multiple LDTs. Segment descriptors can be copied by
system software into multiple LDTs that are otherwise not shared between tasks. Allowing
segment sharing at the segment-descriptor level, rather than the LDT level or GDT level, provides
the greatest flexibility to system software.

In all three cases listed above, the actual data and instructions are shared between tasks only when the
tasks’ virtual-to-physical address mappings are identical.

Paged Memory. Each task has its own page-translation table base-address (CR3) register, and that
register is automatically saved and restored in the TSS by the processor during task switches. This
allows each task to point to its own set of page-translation tables, so that each task can translate virtual
addresses to physical addresses independently. Page translation must be enabled for changes in CR3
values to have an effect on virtual-to-physical address mapping. When page translation is disabled, the
tables referenced by CR3 are ignored, and virtual addresses are equivalent to physical addresses.

12.3.2 Switching Tasks

The hardware task-switch mechanism transfers program control to a new task when any of the
following occur:

• A CALL or JMP instruction with a selector operand that references a task gate is executed. The
task gate can be located in either the LDT or GDT.

• A CALL or JMP instruction with a selector operand that references a TSS descriptor is executed.
The TSS descriptor must be located in the GDT.

• A software-interrupt instruction (INTn) is executed that references a task gate located in the IDT.

• An exception or external interrupt occurs, and the vector references a task gate located in the IDT.

• An IRET is executed while the EFLAGS.NT bit is set to 1, indicating that a return is being
performed from an inner-level task to an outer-level task. The new task is referenced using the
selector stored in the current-task link field. See “Nesting Tasks” on page 325 for additional
information. The RET instruction cannot be used to switch tasks.

When a task switch occurs, the following operations are performed automatically by the processor:

322 Task Management

AMD64 Technology 24593—Rev. 3.17—June 2010

• The processor performs privilege-checking to determine whether the currently-executing program
is allowed to access the target task. If this check fails, the task switch is aborted without modifying
the processor state, and a general-protection exception (#GP) occurs. The privilege checks
performed depend on the cause of the task switch:

- If the task switch is initiated by a CALL or JMP instruction through a TSS descriptor, the
processor checks that both the currently-executing program CPL and the TSS-selector RPL are
numerically less-than or equal-to the TSS-descriptor DPL.

- If the task switch takes place through a task gate, the CPL and task-gate RPL are compared
with the task-gate DPL, and no comparison is made using the TSS-descriptor DPL. See “Task
Switches Using Task Gates” on page 323.

- Software interrupts, hardware interrupts, and exceptions all transfer control without checking
the task-gate DPL.

- The IRET instruction transfers control without checking the TSS-descriptor DPL.

• The processor performs limit-checking on the target TSS descriptor to verify that the TSS limit is
greater than or equal to 67h (at least 104 bytes). If this check fails, the task switch is aborted
without modifying the processor state, and an invalid-TSS exception (#TS) occurs.

• The current-task state is saved in the TSS. This includes the next-instruction pointer (EIP),
EFLAGS, the general-purpose registers, and the segment-selector registers.

Up to this point, any exception that occurs aborts the task switch without changing the processor
state. From this point forward, any exception that occurs does so in the context of the new task. If
an exception occurs in the context of the new task during a task switch, the processor finishes
loading the new-task state without performing additional checks. The processor transfers control to
the #TS handler after this state is loaded, but before the first instruction is executed in the new task.
When a #TS occurs, it is possible that some of the state loaded by the processor did not participate
in segment access checks. The #TS handler must verify that all segments are accessible before
returning to the interrupted task.

• The task register (TR) is loaded with the new-task TSS selector, and the hidden portion of the TR is
loaded with the new-task descriptor. The TSS now referenced by the processor is that of the new
task.

• The current task is marked as busy. The previous task is marked as available or remains busy, based
on the type of linkage. See “Nesting Tasks” on page 325 for more information.

• CR0.TS is set to 1. This bit can be used to save other processor state only when it becomes
necessary. For more information, see the next section, “Saving Other Processor State.”

• The new-task state is loaded from the TSS. This includes the next-instruction pointer (EIP),
EFLAGS, the general-purpose registers, and the segment-selector registers. The processor clears
the segment-descriptor present (P) bits (in the hidden portion of the segment registers) to prevent
access into the new segments, until the task switch completes successfully.

• The LDTR and CR3 registers are loaded from the TSS, changing the virtual-to-physical mapping
from that of the old task to the new task. Because this is done in the middle of accessing the new
TSS, system software must guarantee that TSS addresses are translated identically in all tasks.

Task Management 323

24593—Rev. 3.17—June 2010 AMD64 Technology

• The descriptors for all previously-loaded segment selectors are loaded into the hidden portion of
the segment registers. This sets or clears the P bits for the segments as specified by the new
descriptor values.

If the above steps complete successfully, the processor begins executing instructions in the new task
beginning with the instruction referenced by the CS:EIP far pointer loaded from the new TSS. The
privilege level of the new task is taken from the new CS segment selector’s RPL.

Saving Other Processor State. The processor does not automatically save the registers used by the
media or x87 instructions. Instead, the processor sets CR0.TS to 1 during a task switch. Later, when an
attempt is made to execute any of the media or x87 instructions while TS=1, a device-not-available
exception (#NM) occurs. System software can then save the previous state of the media and x87
registers and clear the CR0.TS bit to 0 before executing the next media/x87 instruction. As a result, the
media and x87 registers are saved only when necessary after a task switch.

12.3.3 Task Switches Using Task Gates

When a control transfer to a new task occurs through a task gate, the processor reads the task-gate DPL
(DPLG) from the task-gate descriptor. Two privilege checks, both of which must pass, are performed
on DPLG before the task switch can occur successfully:

• The processor compares the CPL with DPLG. The CPL must be numerically less than or equal to
DPLG for this check to pass. In other words, the following expression must be true: CPL ≤ DPLG.

• The processor compares the RPL in the task-gate selector with DPLG. The RPL must be
numerically less than or equal to DPLG for this check to pass. In other words, the following
expression must be true: RPL ≤ DPLG.

Unlike call-gate control transfers, the processor does not read the DPL from the target TSS descriptor
(DPLS) and compare it with the CPL when a task gate is used.

Figure 12-10 on page 324 shows two examples of task-gate privilege checks. In Example 1, the
privilege checks pass:

• The task-gate DPL (DPLG) is at the lowest privilege (3), specifying that software running at any
privilege level (CPL) can access the gate.

• The selector referencing the task gate passes its privilege check because the RPL is numerically
less than or equal to DPLG.

In Example 2, both privilege checks fail:

• The task-gate DPL (DPLG) specifies that only software at privilege-level 0 can access the gate. The
current program does not have enough privilege to access the task gate, because its CPL is 2.

• The selector referencing the task-gate descriptor does not have a high enough privilege to complete
the reference. Its RPL is numerically greater than DPLG.

Although both privilege checks failed in the example, if only one check fails, access into the target task
is denied.

324 Task Management

AMD64 Technology 24593—Rev. 3.17—June 2010

Because the legacy task-switch mechanism is not supported in long mode, software cannot use task
gates in long mode. Any attempt to transfer control to another task using a task gate in long mode
causes a general-protection exception (#GP) to occur.

Figure 12-10. Privilege-Check Examples for Task Gates

513-255.eps

Example 1: Privilege Check Passes

DPLG=3

Task-Gate Descriptor
Task-State
Segment

CS CPL=2

DPLS

TSS Descriptor

Task-Gate
Selector

RPL=3

Example 2: Privilege Check Fails

DPLG=0

Task-Gate Descriptor

CS CPL=2

DPLS

TSS Descriptor

Task-Gate
Selector

RPL=3

Task-State
Segment

Access Allowed

Access Denied

Task Management 325

24593—Rev. 3.17—June 2010 AMD64 Technology

12.3.4 Nesting Tasks

The hardware task-switch mechanism supports task nesting through the use of EFLAGS nested-task
(NT) bit and the TSS link-field. The manner in which these fields are updated and used during a task
switch depends on how the task switch is initiated:

• The JMP instruction does not update EFLAGS.NT or the TSS link-field. Task nesting is not
supported by the JMP instruction.

• The CALL instruction, INTn instructions, interrupts, and exceptions can only be performed from
outer-level tasks to inner-level tasks. All of these operations set the EFLAGS.NT bit for the new
task to 1 during a task switch, and copy the selector for the previous task into the new-task link
field.

• An IRET instruction which returns to another task only occurs when the EFLAGS.NT bit for the
current task is set to 1, and only can be performed from an inner-level task to an outer-level task.
When an IRET results in a task switch, the new task is referenced using the selector stored in the
current-TSS link field. The EFLAGS.NT bit for the current task is cleared to 0 during the task
switch.

Table 12-1 summarizes the effect various task-switch initiators have on EFLAGS.NT, the TSS link-
field, and the TSS-busy bit. (For more information on the busy bit, see the next section, “Preventing
Recursion.”)

Programs running at any privilege level can set EFLAGS.NT to 1 and execute the IRET instruction to
transfer control to another task. System software can keep control over improperly nested-task
switches by initializing the link field of all TSSs that it creates. That way, improperly nested-task
switches always transfer control to a known task.

Preventing Recursion. Task recursion is not allowed by the hardware task-switch mechanism. If
recursive-task switches were allowed, they would replace a previous task-state image with a newer
image, discarding the previous information. To prevent recursion from occurring, the processor uses

Table 12-1. Effects of Task Nesting

Task-Switch
Initiator

Old Task New Task

EFLAGS.NT
Link

(Selector)
Busy EFLAGS.NT

Link
(Selector)

Busy

JMP — —
Clear to 0
(was 1)

— — Set to 1

CALL
INTn

Interrupt
Exception

—
—

(Was 1)
Set to 1 Old Task Set to 1

IRET
Clear to 0
(was 1)

—
Clear to 0
(was 1)

—

Note:
“—” indicates no change is made.

326 Task Management

AMD64 Technology 24593—Rev. 3.17—June 2010

the busy bit located in the TSS-descriptor type field (bit 9 of byte +4). Use of this bit depends on how
the task switch is initiated:

• The JMP instruction clears the busy bit in the old task to 0 and sets the busy bit in the new task to 1.
A general-protection exception (#GP) occurs if an attempt is made to JMP to a task with a set busy
bit.

• The CALL instruction, INTn instructions, interrupts, and exceptions set the busy bit in the new
task to 1. The busy bit in the old task remains set to 1, preventing recursion through task-nesting
levels. A general-protection exception (#GP) occurs if an attempt is made to switch to a task with a
set busy bit.

• An IRET to another task (EFLAGS.NT must be 1) clears the busy bit in the old task to 0. The busy
bit in the new task is not altered, because it was already set to 1.

Table 12-1 on page 325 summarizes the effect various task-switch initiators have on the TSS-busy bit.

Debug and Performance Resources 327

24593—Rev. 3.17—June 2010 AMD64 Technology

13 Debug and Performance Resources

Testing, debug, and performance optimization consume a significant portion of the time needed to
develop a new computer or software product and move it successfully into production. To stay
competitive, product developers need tools that allow them to rapidly detect, isolate, and correct
problems before a product is shipped. The goal of the debug and performance features incorporated
into processor implementations of the AMD64 architecture is to support the tool chain solutions used
in software-product and hardware-product development.

The debug and performance resources that can be supported by AMD64 architecture implementations
include:

• Software Debug—The AMD64 architecture supports the legacy software-debug facilities,
including the debug registers (DR0–DR7), debug exception, and breakpoint exception. Additional
features are provided using model-specific registers (MSRs). These registers are used to set
breakpoints on branches, interrupts, and exceptions and to single step from one branch to the next.
The software-debug capability is described in “Software-Debug Resources” on page 327.

• Performance Monitoring—Model-specific registers (MSRs) are provided to monitor events within
an implementation of the AMD64 architecture. A set of control registers allow the selection of
events to be monitored and a corresponding set of counter registers track the frequency of
monitored events. These features are used to support software-performance and hardware-
performance tuning. Performance monitoring is described in “Performance Optimization” on
page 341.

A given processor implementation may include additional debug capabilities that allow monitoring
program execution and manipulation of processor state to be manipulated. These resources are
typically intended for BIOS and platform development and, if available, are described in the BIOS and
Kernel Developer’s Guide for AMD Athlon™ 64 and AMD Opteron™ Processors (order# 26094) for
information specific to a particular processor.

13.1 Software-Debug Resources

Software can program breakpoints into the debug registers, causing a #DB exception when matches
occur on instruction-memory addresses, data-memory addresses, or I/O addresses. The breakpoint
exception (#BP) is also supported to allow software to set breakpoints by placing INT3 instructions in
the instruction memory for a program. Program control is transferred to the breakpoint exception
(#BP) handler when an INT3 instruction is executed.

In addition to the debug features supported by the debug registers (DR0–DR7), the processor also
supports features supported by model-specific registers (MSRs). Together, these capabilities provide a
rich set of breakpoint conditions, including:

328 Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

• Breakpoint On Address Match—Breakpoints occur when the address stored in a address-
breakpoint register matches the address of an instruction or data reference. Up to four address-
match breakpoint conditions can be set by software.

• Single Step All Instructions—Breakpoints can be set to occur on every instruction, allowing a
debugger to examine the contents of registers as a program executes.

• Single Step Control Transfers—Breakpoints can be set to occur on control transfers, such as calls,
jumps, interrupts, and exceptions. This can allow a debugger to narrow a problem search to a
specific section of code before enabling single stepping of all instructions.

• Breakpoint On Any Instruction—Breakpoints can be set on any specific instruction using either the
address-match breakpoint condition or using the INT3 instruction to force a breakpoint when the
instruction is executed.

• Breakpoint On Task Switch—Software forces a #DB exception to occur when a task switch is
performed to a task with the T bit in the TSS set to 1. Debuggers can use this capability to enable or
disable debug conditions for a specific task.

Problem areas can be identified rapidly using the information supplied by the debug registers when
breakpoint conditions occur:

• Special conditions that cause a #DB exception are recorded in the DR6 debug-status register,
including breakpoints due to task switches and single stepping. The DR6 register also identifies
which address-breakpoint register (DR0–DR3) caused a #DB exception due to an address match.
When combined with the DR7 debug-control register settings, the cause of a #DB exception can be
identified.

• To assist in analyzing the instruction sequence a processor follows in reaching its current state, the
source and destination addresses of control-transfer events are saved by the processor. These
include branches (calls and jumps), interrupts, and exceptions. Debuggers can use this information
to narrow a problem search to a specific section of code before single stepping all instructions.

13.1.1 Debug Registers

The AMD64 architecture supports the legacy debug registers, DR0–DR7. These registers are
expanded to 64 bits by the AMD64 architecture. In legacy mode and in compatibility mode, only the
lower 32 bits are used. In these modes, writes to a debug register fill the upper 32 bits with zeros, and
reads from a debug register return only the lower 32 bits. In 64-bit mode, all 64 bits of the debug
registers are read and written. Operand-size prefixes are ignored.

The debug registers can be read and written only when the current-protection level (CPL) is 0 (most
privileged). Attempts to read or write the registers at a lower-privilege level (CPL>0) cause a general-
protection exception (#GP).

Several debug registers described below are model-specific registers (MSRs). See “Software-Debug
MSRs” on page 477 for a listing of the debug-MSR numbers and their reset values. Some processor
implementations include additional MSRs used to support implementation-specific software debug
features. For more information on these registers and their capabilities, refer to the BIOS writer’s guide
for the implementation.

Debug and Performance Resources 329

24593—Rev. 3.17—June 2010 AMD64 Technology

Address-Breakpoint Registers (DR0-DR3). Figure 13-1 shows the format of the four address-
breakpoint registers, DR0-DR3. Software can load a virtual (linear) address into any of the four
registers, and enable breakpoints to occur when the address matches an instruction or data reference.
The MOV DRn instructions do not check that the virtual addresses loaded into DR0–DR3 are in
canonical form. Breakpoint conditions are enabled using the debug-control register, DR7 (see “Debug-
Control Register (DR7)” on page 331).

Figure 13-1. Address-Breakpoint Registers (DR0–DR3)

Reserved Debug Registers (DR4, DR5). The DR4 and DR5 registers are reserved and should not be
used by software. These registers are aliased to the DR6 and DR7 registers, respectively. When the
debug extensions are enabled (CR4.DE=1) attempts to access these registers cause an invalid-opcode
exception (#UD).

Debug-Status Register (DR6). Figure 13-2 on page 330 shows the format of the debug-status
register, DR6. Debug status is loaded into DR6 when an enabled debug condition is encountered that
causes a #DB exception.

63 0

Breakpoint 0 64-bit Virtual (linear) Address

63 0

Breakpoint 1 64-bit Virtual (linear) Address

63 0

Breakpoint 2 64-bit Virtual (linear) Address

63 0

Breakpoint 3 64-bit Virtual (linear) Address

330 Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 13-2. Debug-Status Register (DR6)

Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared by software after
the contents have been read. Register fields are:

• Breakpoint-Condition Detected (B3–B0)—Bits 3–0. The processor updates these four bits on
every debug breakpoint or general-detect condition. A bit is set to 1 if the corresponding address-
breakpoint register detects an enabled breakpoint condition, as specified by the DR7 Ln, Gn, R/Wn
and LENn controls, and is cleared to 0 otherwise. For example, B1 (bit 1) is set to 1 if an address-
breakpoint condition is detected by DR1.

• Debug-Register-Access Detected (BD)—Bit 13. The processor sets this bit to 1 if software
accesses any debug register (DR0–DR7) while the general-detect condition is enabled
(DR7.GD=1).

• Single Step (BS)—Bit 14. The processor sets this bit to 1 if the #DB exception occurs as a result of
single-step mode (rFLAGS.TF=1). Single-step mode has the highest-priority among debug
exceptions. Other status bits within the DR6 register can be set by the processor along with the BS
bit.

• Task-Switch (BT)—Bit 15. The processor sets this bit to 1 if the #DB exception occurred as a result
of task switch to a task with a TSS T-bit set to 1.

All remaining bits in the DR6 register are reserved. Reserved bits 31–16 and 11–4 must all be set to 1,
while reserved bit 12 must be cleared to 0. In 64-bit mode, the upper 32 bits of DR6 are reserved and
must be written with zeros. Writing a 1 to any of the upper 32 bits results in a general-protection
exception, #GP(0).

63 32

MBZ

31 16 15 14 13 12 11 4 3 2 1 0

Read as 1s
B
T

B
S

B
D

R
A
Z

Read as 1s
B
3

B
2

B
1

B
0

Bits Mnemonic Description R/W
63–16 Reserved MBZ

15 BT Breakpoint Task Switch R/W
14 BS Breakpoint Single Step R/W
13 BD Breakpoint Debug Access Detected R/W

12 Reserved Read as Zero
11-4 Reserved Read as 1s
3 B3 Breakpoint #3 Condition Detected R/W

2 B2 Breakpoint #2 Condition Detected R/W
1 B1 Breakpoint #1 Condition Detected R/W
0 B0 Breakpoint #0 Condition Detected R/W

Debug and Performance Resources 331

24593—Rev. 3.17—June 2010 AMD64 Technology

Debug-Control Register (DR7). Figure 13-3 shows the format of the debug-control register, DR7.
DR7 is used to establish the breakpoint conditions for the address-breakpoint registers (DR0–DR3)
and to enable debug exceptions for each address-breakpoint register individually. DR7 is also used to
enable the general-detect breakpoint condition.

Figure 13-3. Debug-Control Register (DR7)

The fields within the DR7 register are all read/write. These fields are:

• Local-Breakpoint Enable (L3–L0)—Bits 6, 4, 2, and 0 (respectively). Software individually sets
these bits to 1 to enable debug exceptions to occur when the corresponding address-breakpoint
register (DRn) detects a breakpoint condition while executing the current task. For example, if L1

63 32

MBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LEN3 R/W3 LEN2 R/W2 LEN1 R/W1 LEN0 R/W0 RAZ
G
D

RAZ
R
A
1

G
E

L
E

G
3

L
3

G
2

L
2

G
1

L
1

G
0

L
0

Bits Mnemonic Description R/W
63–32 Reserved MBZ

31-30 LEN3 Length of Breakpoint #3 R/W
29-28 R/W3 Type of Transaction(s) to Trap R/W
27-26 LEN2 Length of Breakpoint #2 R/W

25-24 R/W2 Type of Transaction(s) to Trap R/W
23-22 LEN1 Length of Breakpoint #1 R/W
21-20 R/W1 Type of Transaction(s) to Trap R/W

19-18 LEN0 Length of Breakpoint #0 R/W
17-16 R/W0 Type of Transaction(s) to Trap R/W
15-14 Reserved Read as 0s

13 GD General Detect Enabled R/W
12-11 Reserved Read as 0s
10 Reserved Read as 1

9 GE Global Exact Breakpoint Enabled R/W
8 LE Local Exact Breakpoint Enabled R/W
7 G3 Global Exact Breakpoint #3 Enabled R/W

6 L3 Local Exact Breakpoint #3 Enabled R/W
5 G2 Global Exact Breakpoint #2 Enabled R/W
4 L2 Local Exact Breakpoint #2 Enabled R/W

3 G1 Global Exact Breakpoint #1 Enabled R/W
2 L1 Local Exact Breakpoint #1 Enabled R/W
1 G0 Global Exact Breakpoint #0 Enabled R/W

0 L0 Local Exact Breakpoint #0 Enabled R/W

332 Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

(bit 2) is set to 1 and an address-breakpoint condition is detected by DR1, a #DB exception occurs.
These bits are cleared to 0 by the processor when a hardware task-switch occurs.

• Global-Breakpoint Enable (G3–G0)—Bits 7, 5, 3, and 1 (respectively). Software sets these bits to
1 to enable debug exceptions to occur when the corresponding address-breakpoint register (DRn)
detects a breakpoint condition while executing any task. For example, if G1 (bit 3) is set to 1 and an
address-breakpoint condition is detected by DR1, a #DB exception occurs. These bits are never
cleared to 0 by the processor.

• Local-Enable (LE)—Bit 8. Software sets this bit to 1 in legacy implementations to enable exact
breakpoints while executing the current task. This bit is ignored by implementations of the
AMD64 architecture. All breakpoint conditions, except certain string operations preceded by a
repeat prefix, are exact.

• Global-Enable (GE)—Bit 9. Software sets this bit to 1 in legacy implementations to enable exact
breakpoints while executing any task. This bit is ignored by implementations of the AMD64
architecture. All breakpoint conditions, except certain string operations preceded by a repeat
prefix, are exact.

• General-Detect Enable (GD)—Bit 13. Software sets this bit to 1 to cause a debug exception to
occur when an attempt is made to execute a MOV DRn instruction to any debug register
(DR0–DR7). This bit is cleared to 0 by the processor when the #DB handler is entered, allowing
the handler to read and write the DRn registers. The #DB exception occurs before executing the
instruction, and DR6.BD is set by the processor. Software debuggers can use this bit to prevent the
currently-executing program from interfering with the debug operation.

• Read/Write (R/W3–R/W0)—Bits 29–28, 25–24, 21–20, and 17–16 (respectively). Software sets
these fields to control the breakpoint conditions used by the corresponding address-breakpoint
registers (DRn). For example, control-field R/W1 (bits 21–20) controls the breakpoint conditions
for the DR1 register. The R/Wn control-field encodings specify the following conditions for an
address-breakpoint to occur:

- 00—Only on instruction execution.

- 01—Only on data write.

- 10—This encoding is further qualified by CR4.DE as follows:

. CR4.DE=0—Condition is undefined.

. CR4.DE=1—Only on I/O read or I/O write.

- 11—Only on data read or data write.

• Length (LEN3–LEN0)—Bits 31–30, 27–26, 23–22, and 19–18 (respectively). Software sets these
fields to control the range used in comparing a memory address with the corresponding address-
breakpoint register (DRn). For example, control-field LEN1 (bits 23–22) controls the breakpoint-
comparison range for the DR1 register.

The value in DRn defines the low-end of the address range used in the comparison. LENn is used
to mask the low-order address bits in the corresponding DRn register so that they are not used in
the address comparison. To work properly, breakpoint boundaries must be aligned on an address

Debug and Performance Resources 333

24593—Rev. 3.17—June 2010 AMD64 Technology

corresponding to the range size specified by LENn. The LENn control-field encodings specify the
following address-breakpoint-comparison ranges:

- 00—1 byte.

- 01—2 byte, must be aligned on a word boundary.

- 10—8 byte, must be aligned on a quadword boundary. (Long mode only; otherwise undefined.)

- 11—4 byte, must be aligned on a doubleword boundary.

If the R/Wn field is used to specify instruction breakpoints (R/Wn=00), the corresponding LENn
field must be set to 00. Setting LENn to any other value produces undefined results.

All remaining bits in the DR7 register are reserved. Reserved bits 15–14 and 12–11 must all be cleared
to 0, while reserved bit 10 must be set to 1. In 64-bit mode, the upper 32 bits of DR7 are reserved and
must be written with zeros. Writing a 1 to any of the upper 32 bits results in a general-protection
#GP(0) exception.

64-Bit-Mode Extended Debug Registers. In 64-bit mode, additional encodings for debug registers
are available. The REX.R bit, in a REX prefix, is used to modify the ModRM reg field when that field
encodes a control register, as shown in “REX Prefixes” in Volume 3. These additional encodings
enable the processor to address DR8–DR15.

Access to the DR8–DR15 registers is implementation-dependent. The architecture does not require
any of these extended debug registers to be implemented. Any attempt to access an unimplemented
register results in an invalid-opcode exception (#UD).

Debug-Control MSR (DebugCtlMSR). Figure 13-4 on page 334 shows the format of the debug-
control MSR, DebugCtlMSR. DebugCtlMSR provides additional debug controls over control-transfer
recording and single stepping, and external-breakpoint reporting and trace messages. DebugCtlMSR is
an MSR and is read and written using the RDMSR and WRMSR instructions.

334 Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 13-4. Debug-Control MSR (DebugCtlMSR)

The fields within the DebugCtlMSR register are:

• Last-Branch Record (LBR)—Bit 0, read/write. Software sets this bit to 1 to cause the processor to
record the source and target addresses of the last control transfer taken before a debug exception
occurs. The recorded control transfers include branch instructions, interrupts, and exceptions. See
“Control-Transfer Breakpoint Features” on page 340 for more details on the registers. See
Figure 13-5 on page 335 for the format of the control-transfer recording MSR's.

• Branch Single Step (BTF)—Bit 1, read/write. Software uses this bit to change the behavior of the
rFLAGS.TF bit. When this bit is cleared to 0, the rFLAGS.TF bit controls instruction single
stepping, (normal behavior). When this bit is set to 1, the rFLAGS.TF bit controls single stepping
on control transfers. The single-stepped control transfers include branch instructions, interrupts,
and exceptions. Control-transfer single stepping requires both BTF=1 and rFLAGS.TF=1. See
“Control-Transfer Breakpoint Features” on page 340 for more details on control-transfer single
stepping.

• Performance-Monitoring/Breakpoint Pin-Control (PBi)—Bits 5–2, read/write. Software uses
these bits to control the type of information reported by the four external performance-
monitoring/breakpoint pins on the processor. When a PBi bit is cleared to 0, the corresponding
external pin (BPi) reports performance-monitor information. When a PBi bit is set to 1, the
corresponding external pin (BPi) reports breakpoint information.

All remaining bits in the DebugCtlMSR register are reserved.

Control-Transfer Recording MSRs. Figure 13-5 on page 335 shows the format of the 64-bit
control-transfer recording MSRs: LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and

63 32

Reserved

31 6 5 4 3 2 1 0

Reserved
P
B
3

P
B
2

P
B
1

P
B
0

B
T
F

L
B
R

Bits Mnemonic Description R/W
63-6 Reserved
5 PB3 Performance Monitoring Pin Control R/W
4 PB2 Performance Monitoring Pin Control R/W

3 PB1 Performance Monitoring Pin Control R/W
2 PB0 Performance Monitoring Pin Control R/W
1 BTF Branch Single Step R/W

0 LBR Last-Branch Record R/W

Debug and Performance Resources 335

24593—Rev. 3.17—June 2010 AMD64 Technology

LastExceptionFromIP. These registers are loaded automatically by the processor when the
DebugCtlMSR.LBR bit is set to 1. These MSRs are read-only.

Figure 13-5. Control-Transfer Recording MSRs

13.2 Breakpoints

13.2.1 Setting Breakpoints

Breakpoints can be set to occur on either instruction addresses or data addresses using the breakpoint-
address registers, DR0–DR3 (DRn). The values loaded into these registers represent the breakpoint-
location virtual address. The debug-control register, DR7, is used to enable the breakpoint registers
and to specify the type of access and the range of addresses that can trigger a breakpoint.

Software enables the DRn registers using the corresponding local-breakpoint enable (Ln) or global-
breakpoint enable (Gn) found in the DR7 register. Ln is used to enable breakpoints only while the
current task is active, and it is cleared by the processor when a task switch occurs. Gn is used to enable
breakpoints for all tasks, and it is never cleared by the processor.

The R/Wn fields in DR7, along with the CR4.DE bit, specify the type of access required to trigger a
breakpoint when an address match occurs on the corresponding DRn register. Breakpoints can be set to
occur on instruction execution, data reads and writes, and I/O reads and writes. The R/Wn and
CR4.DE encodings used to specify the access type are described on page 332 of “Debug-Control
Register (DR7).”

The LENn fields in DR7 specify the size of the address range used in comparison with data or
instruction addresses. LENn is used to mask the low-order address bits in the corresponding DRn
register so that they are not used in the address comparison. Breakpoint boundaries must be aligned on
an address corresponding to the range size specified by LENn. Assuming the access type matches the
type specified by R/Wn, a breakpoint occurs if any accessed byte falls within the range specified by

63 0

LastBranchToIP - 64-bit Segment Offset (RIP)

63 0

LastBranchFromIP - 64-bit Segment Offset (RIP)

63 0

LastExceptionToIP - 64-bit Segment Offset (RIP)

63 0

LastExceptionFromIP - 64-bit Segment Offset (RIP)

336 Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

LENn. For instruction breakpoints, LENn must specify a single-byte range. The LENn encodings used
to specify the address range are described on page 332 of “Debug-Control Register (DR7).”

Table 13-1 shows several examples of data accesses, and whether or not they cause a #DB exception to
occur based on the breakpoint address in DRn and the breakpoint-address range specified by LENn. In
this table, R/Wn always specifies read/write access.

Table 13-1. Breakpoint-Setting Examples

Data-Access
Address

(hexadecimal)

Access Size
(bytes)

Byte-Addresses in Data-
Access

(hexadecimal)

Breakpoint-Address
Range

(hexadecimal)
Result

DRn=F000, LENn=00 (1 Byte)

EFFB 8
EFFB, EFFC, EFFD, EFFE,
EFFF, F000, F001

F000

#DB

EFFE
2 EFFE, EFFF —

4 EFFE, EFFF, F000, F001
#DB

F000 1 F000

F001 2 F001, F002
—

F005 4 F005, F006, F007, F008

DRn=F004, LENn=11 (4 Bytes)

EFFB 8
EFFB, EFFC, EFFD, EFFE,
EFFF, F000, F001

F004–F007
—EFFE

2 EFFE, EFFF

4 EFFE, EFFF, F000, F001

F000 1 F000

F001 2 F001, F002

F005 4 F005, F006, F007, F008 #DB

DRn=F005, LENn=10 (8 Bytes)

EFFB 8
EFFB, EFFC, EFFD, EFFE,
EFFF, F000, F001

F000–F007

#DB

EFFE
2 EFFE, EFFF —

4 EFFE, EFFF, F000, F001

#DB
F000 1 F000

F001 2 F001, F002

F005 4 F005, F006, F007, F008

Note:
“—” indicates no #DB occurs.

Debug and Performance Resources 337

24593—Rev. 3.17—June 2010 AMD64 Technology

13.2.2 Using Breakpoints

A debug exception (#DB) occurs when an enabled-breakpoint condition is encountered during
program execution. The debug-handler must check the debug-status register (DR6), the conditions
enabled by the debug-control register (DR7), and the debug-control MSR (DebugCtlMSR), to
determine the #DB cause. The #DB exception corresponds to interrupt-vector 1. See “#DB—Debug
Exception (Vector 1)” on page 211.

Instruction breakpoints and general-detect conditions cause the #DB exception to occur before the
instruction is executed, while all other breakpoint and single-stepping conditions cause the #DB
exception to occur after the instruction is executed. Table 13-2 summarizes where the #DB exception
occurs based on the breakpoint condition.

Instruction breakpoints and general-detect conditions have a lower interrupt-priority than the other
breakpoint and single-stepping conditions (see “Priorities” on page 225). Data-breakpoint conditions
on the previous instruction occur before an instruction-breakpoint condition on the next instruction.
However, if instruction and data breakpoints can occur as a result of executing a single instruction, the
instruction breakpoint occurs first (before the instruction is executed), followed by the data breakpoint
(after the instruction is executed).

Instruction Breakpoints. Instruction breakpoints are set by loading a breakpoint-address register
(DRn) with the desired instruction virtual-address, and then setting the corresponding DR7 fields as
follows:

• Ln or Gn is set to 1 to enable the breakpoint for either the local task or all tasks, respectively.

• R/Wn is set to 00b to specify that the contents of DRn are to be compared only with the virtual
address of the next instruction to be executed.

• LENn must be set to 00b.

When a #DB exception occurs due to an instruction breakpoint-address in DRn, the corresponding Bn
field in DR6 is set to 1 to indicate that a breakpoint condition occurred. The breakpoint occurs before
the instruction is executed, and the breakpoint-instruction address is pushed onto the debug-handler

Table 13-2. Breakpoint Location by Condition

Breakpoint Condition Breakpoint Location

Instruction
Before Instruction is Executed

General Detect

Data Write Only

After Instruction is Executed1Data Read or Data Write

I/O Read or I/O Write

Single Step1
After Instruction is Executed

Task Switch

Note:
1. Repeated operations (REP prefix) can breakpoint between iterations.

338 Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

stack. If multiple instruction breakpoints are set, the debug handler can use the Bn field to identify
which register caused the breakpoint.

Returning from the debug handler causes the breakpoint instruction to be executed. Before returning
from the debug handler, the rFLAGS.RF bit should be set to 1 to prevent a reoccurrence of the #DB
exception due to the instruction-breakpoint condition. The processor ignores instruction-breakpoint
conditions when rFLAGS.RF=1, until after the next instruction (in this case, the breakpoint
instruction) is executed. After the next instruction is executed, the processor clears rFLAGS.RF to 0.

Data Breakpoints. Data breakpoints are set by loading a breakpoint-address register (DRn) with the
desired data virtual-address, and then setting the corresponding DR7 fields as follows:

• Ln or Gn is set to 1 to enable the breakpoint for either the local task or all tasks, respectively.

• R/Wn is set to 01b to specify that the data virtual-address is compared with the contents of DRn
only during a memory-write. Setting this field to 11b specifies that the comparison takes place
during both memory reads and memory writes.

• LENn is set to 00b, 01b, 11b, or 10b to specify an address-match range of one, two, four, or eight
bytes, respectively. Long mode must be active to set LENn to 10b.

When a #DB exception occurs due to a data breakpoint address in DRn, the corresponding Bn field in
DR6 is set to 1 to indicate that a breakpoint condition occurred. The breakpoint occurs after the data-
access instruction is executed, which means that the original data is overwritten by the data-access
instruction. If the debug handler needs to report the previous data value, it must save that value before
setting the breakpoint.

Because the breakpoint occurs after the data-access instruction is executed, the address of the
instruction following the data-access instruction is pushed onto the debug-handler stack. Repeated
string instructions, however, can trigger a breakpoint before all iterations of the repeat loop have
completed. When this happens, the address of the string instruction is pushed onto the stack during a
#DB exception if the repeat loop is not complete. A subsequent IRET from the #DB handler returns to
the string instruction, causing the remaining iterations to be executed. Most implementations cannot
report breakpoints exactly for repeated string instructions, but instead report the breakpoint on an
iteration later than the iteration where the breakpoint occurred.

I/O Breakpoints. I/O breakpoints are set by loading a breakpoint-address register (DRn) with the
I/O-port address to be trapped, and then setting the corresponding DR7 fields as follows:

• Ln or Gn is set to 1 to enable the breakpoint for either the local task or all tasks, respectively.

• R/Wn is set to 10b to specify that the I/O-port address is compared with the contents of DRn only
during execution of an I/O instruction. This encoding of R/Wn is valid only when debug extensions
are enabled (CR4.DE=1).

• LENn is set to 00b, 01b, or 11b to specify the breakpoint occurs on a byte, word, or doubleword
I/O operation, respectively.

The I/O-port address specified by the I/O instruction is zero extended by the processor to 64 bits before
comparing it with the DRn registers.

Debug and Performance Resources 339

24593—Rev. 3.17—June 2010 AMD64 Technology

When a #DB exception occurs due to an I/O breakpoint in DRn, the corresponding Bn field in DR6 is
set to 1 to indicate that a breakpoint condition occurred. The breakpoint occurs after the instruction is
executed, which means that the original data is overwritten by the breakpoint instruction. If the debug
handler needs to report the previous data value, it must save that value before setting the breakpoint.

Because the breakpoint occurs after the instruction is executed, the address of the instruction following
the I/O instruction is pushed onto the debug-handler stack, in most cases. In the case of INS and OUTS
instructions that use the repeat prefix, however, the breakpoint occurs after the first iteration of the
repeat loop. When this happens, the I/O-instruction address can be pushed onto the stack during a #DB
exception if the repeat loop is not complete. A subsequent return from the debug handler causes the
next I/O iteration to be executed. If the breakpoint condition is still set, the #DB exception reoccurs
after that iteration is complete.

Task-Switch Breakpoints. Breakpoints can be set in a task TSS to raise a #DB exception after a task
switch. Software enables a task breakpoint by setting the T bit in the TSS to 1. When a task switch
occurs into a task with the T bit set, the processor completes loading the new task state. Before the first
instruction is executed, the #DB exception occurs, and the processor sets DR6.BT to 1, indicating that
the #DB exception occurred as a result of task breakpoint.

The processor does not clear the T bit in the TSS to 0 when the #DB exception occurs. Software must
explicitly clear this bit to disable the task breakpoint. Software should never set the T-bit in the debug-
handler TSS if a separate task is used for #DB exception handling, otherwise the processor loops on
the debug handler.

General-Detect Condition. General-detect is a special debug-exception condition that occurs when
software running at any privilege level attempts to access any of the DRn registers while DR7.GD is
set to 1. When a #DB exception occurs due to the general-detect condition, the processor clears
DR7.GD to 0 and sets DR6.BD to 1. Clearing DR7.GD to 0 allows the debug handler to access the
DRn registers without causing infinite #DB exceptions.

A debugger enables general detection to prevent other software from accessing and interfering with the
debug registers while they are in use by the debugger. The exception is taken before executing the
MOV DRn instruction so that the DRn contents are not altered.

13.2.3 Single Stepping

Single-step breakpoints are enabled by setting the rFLAGS.TF bit to 1. When single stepping is
enabled, a #DB exception occurs after every instruction is executed until it is disabled by clearing
rFLAGS.TF to 0. However, the instruction that sets the TF bit, and the instruction that follows it, is not
single stepped.

When a #DB exception occurs due to single stepping, the processor clears rFLAGS.TF to 0 before
entering the debug handler, so that the debug handler itself is not single stepped. The processor also
sets DR6.BS to 1, which indicates that the #DB exception occurred as a result of single stepping. The
rFLAGS image pushed onto the debug-handler stack has the TF bit set, and single stepping resumes
when a subsequent IRET pops the stack image into the rFLAGS register.

340 Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

Single-step breakpoints have a higher priority than external interrupts. If an external interrupt occurs
during single stepping, control is transferred to the #DB handler first, causing the rFLAGS.TF bit to be
cleared to 0. Next, before the first instruction in the debug handler is executed, the processor transfers
control to the pending-interrupt handler. This allows external interrupts to be handled outside of
single-step mode.

The INTn, INT3, and INTO instructions clear the rFLAGS.TF bit to 0 when they are executed. If a
debugger is used to single-step software that contains these instructions, it must emulate them instead
of executing them.

The single-step mechanism can also be set to single step only control transfers, rather than single step
every instruction. See “Single Stepping Control Transfers” on page 341 for additional information.

13.2.4 Breakpoint Instruction (INT3)

The INT3 instruction, or the INTn instruction with an operand of 3, can be used to set breakpoints that
transfer control to the breakpoint-exception (#BP) handler rather than the debug-exception handler.
When a debugger uses the breakpoint instructions to set breakpoints, it does so by replacing the first
bytes of an instruction with the breakpoint instruction. The debugger replaces the breakpoint
instructions with the original-instruction bytes to clear the breakpoint.

INT3 is a single-byte instruction while INTn with an operand of 3 is a two-byte instruction. The
instructions have slightly different effects on the breakpoint exception-handler stack. See “#BP—
Breakpoint Exception (Vector 3)” on page 212 for additional information on this exception.

13.2.5 Control-Transfer Breakpoint Features

A control transfers is accomplished by using one of following instructions:

• JMP, CALL, RET

• Jcc, JrCXZ, LOOPcc

• JMPF, CALLF, RETF

• INTn, INT 3, INTO, ICEBP

• Exceptions, IRET

• SYSCALL, SYSRET, SYSENTER, SYSEXIT

• INTR, NMI, SMI, RSM

Recording Control Transfers. Sof tware enables cont ro l - t ransfer record ing by se t t ing
DebugCtlMSR.LBR to 1. When this bit is set, the processor updates the recording MSR's
automatically when control transfers occur:

• LastBranchFromIP and LastBranchToIP Registers—On branch instructions, the
LastBranchFromIP register is loaded with the segment offset of the branch instruction, and the
LastBranchToIP register is loaded with the first instruction to be executed after the branch. On
interrupts and exceptions, the LastBranchFromIP register is loaded with the segment offset of the

Debug and Performance Resources 341

24593—Rev. 3.17—June 2010 AMD64 Technology

interrupted instruction, and the LastBranchToIP register is loaded with the offset of the interrupt or
exception handler.

• LastExceptionFromIP and LastExceptionToIP Registers—The processor loads these from the
LastBranchFromIP register and the LastBranchToIP register, respectively, when most interrupts
and exceptions are taken. These two registers are not updated, however, when #DB or #MC
exceptions are taken, or the ICEBP instruction is executed.

The processor automatically disables control-transfer recording when a debug exception (#DB) occurs
by clearing DebugCtlMSR.LBR to 0. The contents of the control-transfer recording MSRs are not
altered by the processor when the #DB occurs. Before exiting the debug-exception handler, software
can set DebugCtlMSR.LBR to 1 to re-enable the recording mechanism.

Debuggers can trace a control transfer backward from a bug to its source using the recording MSRs
and the breakpoint-address registers. The debug handler does this by updating the breakpoint registers
from the recording MSRs after a #DB exception occurs, and restarting the program. The program takes
a #DB exception on the previous control transfer, and this process can be repeated. The debug handler
cannot simply copy the contents of the recording MSR into the breakpoint-address register. The
recording MSRs hold segment offsets, while the debug registers hold virtual (linear) addresses. The
debug handler must calculate the virtual address by reading the code-segment selector (CS) from the
interrupt-handler stack, then reading the segment-base address from the CS descriptor, and adding that
base address to the offset in the recording MSR. The calculated virtual-address can then be used as a
breakpoint address.

Single Stepping Control Transfers. Software can enable control-transfer single stepping by setting
DebugCtlMSR.BTF to 1 and rFLAGS.TF to 1. The processor automatically disables control-transfer
single stepping when a debug exception (#DB) occurs by clearing DebugCtlMSR.BTF to 0.
rFLAGS.TF is also cleared when a #DB exception occurs. Before exiting the debug-exception handler,
software must set both DebugCtlMSR.BTF and rFLAGS.TF to 1 to restart single stepping.

When enabled, this single-step mechanism causes a #DB exception to occur on every branch
instruction, interrupt, or exception. Debuggers can use this capability to perform a “coarse” single step
across blocks of code (bound by control transfers), and then, as the problem search is narrowed, switch
into a “fine” single-step mode on every instruction (DebugCtlMSR.BTF=0, rFLAGS.TF=1).

Debuggers can use both the single-step mechanism and recording mechanism to support full backward
and forward tracing of control transfers.

13.3 Performance Optimization

The AMD64 architecture supports the performance-monitoring features introduced in earlier
processor implementations. These features allow the selection of events to be monitored, and include a
set of corresponding counter registers that track the frequency of monitored events. Software tools can
use these features to identify performance bottlenecks, such as sections of code that have high cache-
miss rates or frequently mispredicted branches. This information can then be used as a guide for

342 Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

improving or eliminating performance problems through software optimizations or hardware-design
improvements.

The performance-monitoring features include:

• A set of performance-counter registers that count the frequency or duration of specific processor
events.

• A set of performance-event-select registers used to specify the events that are tracked by the
performance-counter registers.

• A time-stamp counter that can be used to count processor-clock cycles over time.

• A set of instruction-based sampling registers to profile instruction fetch performance.

• A set of instruction-based sampling registers to profile instruction execution performance.

Implementations are not required to support the performance counters and the event-select registers,
the time-stamp counter, nor the instruction-based sampling registers for instruction fetch or instruction
execution sampling. The presence of these features can be determined by executing the CPUID
instruction, and checking the returned feature bits to determine their availability. See “Processor
Feature Identification” on page 61 for more information on using the CPUID instruction.

The registers used in support of performance monitoring are model-specific registers (MSRs). See
“Performance-Monitoring MSRs” on page 478 for a listing of the performance-monitoring MSR
numbers and their reset values.

Each feature, and its use, is described in the following sections.

13.3.1 Performance Counters

Performance counters are used to count specific processor events, such as data-cache misses, or the
duration of events, such as the number of clocks it takes to return data from memory after a cache miss.
During event counting, the processor increments the counter when it detects an occurrence of the
event. During duration measurement, the processor counts the number of processor clocks it takes to
complete an event. Each performance counter can be used to count one event, or measure the duration
of one event, at a time.

Implementations of the AMD64 architecture can support any number of performance counters,
PerfCtrn. The length, in bits, of the performance counters is also implementation dependent, but the
maximum length supported is 64 bits. Figure 13-6 shows the format of the PerfCtrn register.

Figure 13-6. Performance Counter (PerfCtrn)

63 0

PerfCtrn

Debug and Performance Resources 343

24593—Rev. 3.17—June 2010 AMD64 Technology

The PerfCtrn registers are model-specific registers that can be read using a special read performance-
monitoring counter instruction, RDPMC. The RDPMC instruction loads the contents of the PerfCtrn
register specified by the ECX register, into the EDX register and the EAX register. The high 32 bits are
loaded into EDX, and the low 32 bits are loaded into EAX. RDPMC can be executed only at CPL=0,
unless system software enables use of the instruction at all privilege levels. RDPMC can be enabled for
use at all privilege levels by setting CR4.PCE (the performance-monitor counter-enable bit) to 1.
When CR4.PCE = 0 and CPL > 0, attempts to execute RDPMC result in a general-protection
exception (#GP).

The performance counters can also be read and written by system software running at CPL = 0 using
the RDMSR and WRMSR instructions, respectively. Writing the performance counters can be useful
if software wants to count a specific number of events, and then trigger an interrupt when that count is
reached. An interrupt can be triggered when a performance counter overflows (see “Counter
Overflow” on page 346 for additional information). Software should use the WRMSR instruction to
load the count as a two’s-complement negative number into the performance counter. This causes the
counter to overflow after counting the appropriate number of times.

The performance counters are not guaranteed to produce identical measurements each time they are
used to measure a particular instruction sequence, and they should not be used to take measurements of
very small instruction sequences. The RDPMC instruction is not serializing, and it can be executed
out-of-order with respect to other instructions around it. Even when bound by serializing instructions,
the system environment at the time the instruction is executed can cause events to be counted before
the counter value is loaded into EDX:EAX.

13.3.2 Performance Event-Select Registers

Performance event-select registers (PerfEvtSeln) are 64-bit registers used to specify the events counted
by the performance counters, and to control other aspects of their operation. Each performance counter
supported by the implementation has a corresponding event-select register that controls its operation.
Figure 13-7 on page 344 shows the format of the PerfEvtSeln register.

344 Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 13-7. Performance Event-Select Register (PerfEvtSeln)

The fields within the PerfEvtSeln register are:

• Event Mask[11:8]—Bits 35-32, read/write. This field extends the Event Mask (bits 7-0) from 8 bits
to 12 bits. See Event Mask

• Host Only (HO)–Bit 41, read/write. Software sets this bit to 1 to enable counting in the
corresponding PerfCtrn when the processor is in host mode. Clearing this bit to 0 disables counting
in the corresponding PerfCtrn when the processor is in host mode. If GO = HO = 1, or if GO = HO
= 0, counting in the corresponding PerfCtrn is enabled when the processor is in either guest mode
or host mode.

• Guest Only (GO)—Bit 40, read/write. Software sets this bit to 1 to enable counting in the
corresponding PerfCtrn when the processor is in guest mode. Clearing this bit to 0 disables
counting in the corresponding PerfCtrn when the processor is in guest mode. If GO = HO = 1, or if
GO = HO = 0, counting in the corresponding PerfCtrn is enabled when the processor is in either
guest mode or host mode.

63 42 41 40 39 36 35 32

Reserved
H
O

G
O

Reserved
Event

Mask[11–8]

31 24 23 22 21 20 19 18 17 16 15 8 7 0

Counter Mask
I
N
V

E
N

R
e
s

I
N
T

P
C

E
O
S

U
S
R

Unit Mask Event Mask[7–0]

Bits Mnemonic Description R/W
63-42 Reserved

41 HO Host Only R/W
40 GO Guest Only R/W
39-36 Reserved

35-32 Event Mask[11-8] R/W

31-24 Counter Mask R/W

23 INV Invert Mask R/W
22 EN Counter Enable R/W
21 Reserved

20 INT Interrupt Enable R/W
19 PC Pin Control R/W
18 E Edge Detect R/W

17 OS Operating-System Mode R/W
16 USR User Mode R/W
15-8 Unit Mask R/W

7-0 Event Mask[7–0] R/W

Debug and Performance Resources 345

24593—Rev. 3.17—June 2010 AMD64 Technology

• Event Mask—Bits 7–0, read/write. This field specifies both the event or event duration to be
counted by the corresponding PerfCtrn register. The events that can be counted are implementation
dependent. For more information, refer to the BIOS writer’s guide for the implementation.

• Unit Mask—Bits 15–8, read/write. This field can be used to specify a particular processor unit to
be monitored, if the event counted can be produced by multiple units within the processor.
Implementations can also use this field to further specify or qualify a monitored event.

• Operating-System Mode (OS) and User Mode (USR)—Bits 17–16 (respectively), read/write.
Software uses these bits to control the privilege level at which event counting is performed
according to Table 13-3.

• Edge Detect (E)—Bit 18, read/write. Software sets this bit to 1 to count the number of edge
transitions from the negated to asserted state. This feature is useful when coupled with event-
duration monitoring, as it can be used to calculate the average time spent in an event. Clearing this
bit to 0 disables edge detection.

• Pin Control (PC)—Bit 19, read/write. Software sets this bit to 1 to cause the external PMi pins on
the processor to toggle when the counter overflows. When this bit is cleared to 0, the processor
toggles the PMi pins each time it increments the performance counter.

• Interrupt Enable (INT)—Bit 20, read/write. Software sets this bit to 1 to enable an interrupt to
occur when the performance counter overflows (see “Counter Overflow” on page 346 for
additional information). Clearing this bit to 0 disables the triggering of the interrupt.

• Counter Enable (EN)—Bit 22, read/write. Software sets this bit to 1 to enable the PerfEvtSeln
register, and counting in the corresponding PerfCtrn register. Clearing this bit to 0 disables the
register pair.

• Invert Mask (INV)—Bit 23, read/write. Software sets this bit to 1 to invert the comparison result
performed on the counter-mask field, so that a less-than or equal-to comparison can be performed.
Clearing this bit to 0 leaves the comparison result alone, so that a greater-than or equal-to
comparison is reported.

• Counter Mask—Bits 31–24, read/write. This field is used to set a threshold for counting multiple
events that can occur in a single clock. If the number of events occurring in the single clock is
greater than or equal to this field, the corresponding PerfCtrn register is incremented. PerfCtrn is
not incremented if the number of events is less than the count mask.

Table 13-3. Operating-System Mode and User Mode Bits

OS Mode
(Bit 17)

USR Mode
(Bit 16)

Event Counting

0 0 No counting.

0 1 Only at CPL > 0.

1 0 Only at CPL = 0.

1 1 At all privilege levels.

346 Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

The INV bit, when set, causes the PerfCtrn register to be incremented when the comparison is less
than or equal to the count mask. In this case, PerfCtrn is not incremented if the number of events is
greater than the count mask.

The performance event-select registers can be read and written only by system software running at
CPL = 0 using the RDMSR and WRMSR instructions, respectively. Any attempt to read or write these
registers at CPL > 0 causes a general-protection exception to occur.

13.3.3 Using Performance Counters

Starting and Stopping. Performance counting in a PerfCtrn register is initiated by setting the
corresponding PerfEvtSeln.EN bit to 1. Counting is stopped by clearing PerfEvtSeln.EN to 0.
Software must initialize the remaining PerfEvtSeln fields with the appropriate setup information
before or at the same time EN is set. Counting begins when the WRMSR instruction that sets
PerfEvtSeln.EN to 1 completes execution. Counting stops when the WRMSR instruction that clears
PerfEvtSeln.EN to 0 completes execution.

Counter Overflow. Some processor implementations support an interrupt-on-overflow capability
that allows an interrupt to occur when one of the PerfCtrn registers overflows. The source and type of
interrupt is implementation dependent. Some implementations cause a debug interrupt to occur, while
others make use of the local APIC to specify the interrupt vector and trigger the interrupt when an
overflow occurs. Software controls the triggering of an interrupt by setting or clearing the
PerfEvtSeln.INT bit.

If system software makes use of the interrupt-on-overflow capability, an interrupt handler must be
provided that can record information relevant to the counter overflow. Before returning from the
interrupt handler, the performance counter can be re-initialized to its previous state so that another
interrupt occurs when the appropriate number of events are counted.

13.3.4 Time-Stamp Counter

The time-stamp counter (TSC) is used to count processor-clock cycles. The TSC is cleared to 0 after a
processor reset. After a reset, the TSC is incremented by one for every processor clock cycle. Each
time the TSC is read, it returns a monotonically-larger value than the previous value read from the
TSC. When the TSC contains all ones, it wraps to zero. The TSC in a 1-GHz processor counts for
almost 600 years before it wraps. Figure 13-8 shows the format of the 64-bit time-stamp counter
(TSC).

Figure 13-8. Time-Stamp Counter (TSC)

The TSC is a model-specific register that can also be read using one of the special read time-stamp
counter instructions, RDTSC(Read Time-Stamp Counter (TSC)) or RDTSCP (Read Time-Stamp

63 0

TSC

Debug and Performance Resources 347

24593—Rev. 3.17—June 2010 AMD64 Technology

Counter and Processor ID). The RDTSC and RDTSCP instructions load the contents of the TSC into
the EDX register and the EAX register. The high 32 bits are loaded into EDX, and the low 32 bits are
loaded into EAX. The RDTSC and RDTSCP instructions can be executed at any privilege level and
from any processor mode. However, system software can disable the RDTSC or RDTSCP instructions
for programs that run at CPL > 0 by setting CR4.TSD (the time-stamp disable bit) to 1. When
CR4.TSD = 1 and CPL > 0, attempts to execute RDSTC or RDSTCP result in a general-protection
exception (#GP).

Some implementations allow the TSC register to be read and written using the RDMSR and WRMSR
instructions, respectively. Support of this capability, however, is not required by the architecture, and
software should avoid using these instructions to access the TSC. The programmer should use the
CPUID instruction to determine whether these features are supported. If EDX bit 4 (as returned by
CPUID function 1) is set, then the processor supports TSC, the RDTSC instruction and CR4.TSD. If
EDX bit 27 returned by CPUID function 8000_0001h is set, then the processor supports the RDTSCP
instruction.

The TSC register can be used by performance-analysis applications, along with the performance-
monitoring registers, to help determine the relative frequency of an event or its duration. Software can
also use the TSC to time software routines to help identify candidates for optimization. In general, the
TSC should not be used to take very short time measurements, because the resulting measurement is
not guaranteed to be identical each time it is made. The RDTSC instruction (unlike the RDTSCP
instruction) is not serializing, and can be executed out-of-order with respect to other instructions
around it. Even when bound by serializing instructions, the system environment at the time the
instruction is executed can cause additional cycles to be counted before the TSC value is loaded into
EDX:EAX.

The behavior of the RDTSC (Read Time-Stamp Counter (TSC)) and RDTSCP (Read Time-Stamp
Counter and Processor ID) is implementation dependent. When using these instructions, programmers
must be aware that the TSC counts at a constant rate, but may be affected by power management events
(such as frequency changes), depending on the processor implementation. Consult the BIOS and
kernel developer’s guide for your AMD processor implementation for information concerning the
effect of power management on the TSC.

348 Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.17—June 2010

Processor Initialization and Long Mode Activation 349

24593—Rev. 3.17—June 2010 AMD64 Technology

14 Processor Initialization and Long Mode
Activation

This chapter describes the hardware actions taken following a processor reset and the steps that must
be taken to initialize processor resources and activate long mode. In some cases the actions required
are implementation-specific with references made to the appropriate implementation-specific
documentation.

14.1 Reset and Initialization

System logic initializes the processor in one of two ways. One method is to assert an external reset
signal (typically designated RESET#). The other method, referred to here as INIT, is performed using
implementation-dependent external signalling. Both initialization techniques place the processor in
real mode and initialize processor resources to a known, consistent state from which software can
begin execution. The differences between the two methods are:

• RESET#—This method provides an optional built-in self test (BIST) that can be performed as part
of the RESET# process.

• INIT—This method does not modify the following state:

- Memory hierarchy, including internal and external caches.

- 128-bit media, 64-bit media, or x87 resources.

- Memory-type range registers (MTRRs).

- Machine-check registers.

Some, but not all, model-specific registers (MSRs) are modified by an INIT.

BIST cannot be performed as part of the INIT process.

The processor always performs RESET# after it is powered up, but RESET# can be performed at any
time. An INIT can be performed at any time after the processor is powered up.

14.1.1 Built-In Self Test (BIST)

An optional built-in self-test can be performed after RESET# is asserted. The mechanism for
triggering the BIST is implementation-specific, and can be found in the hardware documentation for
the implementation. The number of processor cycles BIST can consume before completing is also
implementation-specific but typically consumes several million cycles.

BIST can be used by system implementations to assist in verifying system integrity, thereby improving
system reliability, availability, and serviceability. The internal BIST hardware generally tests all
internal array structures for errors. These structures can include (but are not limited to):

• All internal caches, including the tag arrays as well as the data arrays.

• All TLBs.

350 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.17—June 2010

• Internal ROMs, such as the microcode ROM and floating-point constant ROM.

• Branch-prediction structures.

EAX is loaded with zero if BIST completes without detecting errors. If any hardware faults are
detected during BIST, a non-zero value is loaded into EAX.

14.1.2 Clock Multiplier Selection

The internal processor clock runs at some multiple of the system clock. The processor-to-system clock
multiple does not have to be fixed by a processor implementation but instead can be programmable
through hardware or software, or some combination of the two. For information on selecting the
processor-clock multiplier, refer to the BIOS writer’s guide for the implementation.

14.1.3 Processor Initialization State

Table 14-1 shows the initial processor state following either RESET# or INIT. Except as indicated,
processor resources generally are set to the same value after either RESET# or INIT.

Table 14-1. Initial Processor State

Processor Resource Reset (RESET#) Value Initialization (INIT) Value

CR0 0000_0000_6000_0010h
CD and NW are unchanged
Bit 4 (reserved) = 1
All others = 0

CR2, CR3, CR4 0

CR8 0 Not modified

RFLAGS 0000_0000_0000_0002h

EFER 0

RIP 0000_0000_0000_FFF0h

CS

Selector = F000h
Base = 0000_0000_FFFF_0000h
Limit = FFFFh
Attributes = See Table 14-2 on page 352

DS, ES, FS, GS, SS

Selector = 0000h

Base = 0

Limit = FFFFh

Attributes = See Table 14-2 on page 352

GDTR, IDTR
Base = 0

Limit = FFFFh

LDTR, TR

Selector = 0000h
Base = 0

Limit = FFFFh

Attributes = See Table 14-2 on page 352

Processor Initialization and Long Mode Activation 351

24593—Rev. 3.17—June 2010 AMD64 Technology

Table 14-2 on page 352 shows the initial state of the segment-register attributes (located in the hidden
portion of the segment registers) following either RESET# or INIT.

RAX
0
(non-zero if BIST is run and fails)

0

RDX
Family/Model/Stepping, including extended family and extended
model—see “Processor Implementation Information” on page 353

RBX, RCX, RBP, RSP, RDI, RSI,
R8, R9, R10, R11, R12, R13, R14,
R15

0

x87 Floating-Point State

FPR0–FPR7 = 0

Control Word = 0040h
Status Word = 0000h
Tag Word = 5555h
Instruction CS = 0000h
Instruction Offset = 0
x87 Instruction Opcode = 0
Data-Operand DS = 0000h
Data-Operand Offset = 0

Not modified

64-Bit Media State MMX0–MMX7 = 0 Not modified

128-Bit Media State
XMM0–XMM15 = 0
MXCSR = 1F80h

Not modified

Memory-Type Range Registers
See “Memory-Typing MSRs” on
page 474

Not modified

Machine-Check Registers
See “Machine-Check MSRs” on
page 476

Not modified

DR0, DR1, DR2, DR3 0

DR6 0000_0000_FFFF_0FF0h

DR7 0000_0000_0000_0400h

Time-Stamp Counter 0 Not modified

Performance-Monitor Resources
See “Performance-Monitoring
MSRs” on page 478

Not modified

Other Model-Specific Registers
See “MSR Cross-Reference” on
page 469

Not modified

Instruction and Data Caches
Invalidated Not modified

Instruction and Data TLBs

APIC Enabled Not modified

SMRAM Base Address (SMBASE) 0003_0000h Not modified

Table 14-1. Initial Processor State (continued)

Processor Resource Reset (RESET#) Value Initialization (INIT) Value

352 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.17—June 2010

14.1.4 Multiple Processor Initialization

Following reset in multiprocessor configurations, the processors use a multiple-processor initialization
protocol to negotiate which processor becomes the bootstrap processor. This bootstrap processor then
executes the system initialization code while the remaining processors wait for software initialization
to complete. For further information, see the documentation for particular implementations of the
architecture.

14.1.5 Fetching the First Instruction

After a RESET# or INIT, the processor is operating in 16-bit real mode. Normally within real mode,
the code-segment base-address is formed by shifting the CS-selector value left four bits. The base
address is then added to the value in EIP to form the physical address into memory. As a result, the
processor can only address the first 1 Mbyte of memory when in real mode.

However, immediately following RESET# or INIT, the CS-selector register is loaded with F000h, but
the CS base-address is not formed by left-shifting the selector. Instead, the CS base-address is
initialized to FFFF_0000h. EIP is initialized to FFF0h. Therefore, the first instruction fetched from
memory is located at physical-address FFFF_FFF0h (FFFF_0000h + 0000_FFF0h).

The CS base-address remains at this initial value until the CS-selector register is loaded by software.
This can occur as a result of executing a far jump instruction or call instruction, for example. When CS
is loaded by software, the new base-address value is established as defined for real mode (by left
shifting the selector value four bits).

Table 14-2. Initial State of Segment-Register Attributes

Attribute
Value

(Binary)
Description

G 0 Byte Granularity

D/B 0 16-Bit Segment

L (CS Only) 0 Legacy-Mode Segment

P 1 Segment is Present

DPL 00 Privilege-Level 0

S and
Type

Code
Segment

S = 1
Type = 1010

Executable/Readable Code Segment

Data
Segment

S = 1
Type = 0010

Read/Write Data Segment

LDTR
S = 0
Type = 0010

LDT

TR
S = 0
Type = 0011

Busy 16-Bit TSS

Processor Initialization and Long Mode Activation 353

24593—Rev. 3.17—June 2010 AMD64 Technology

14.2 Hardware Configuration

14.2.1 Processor Implementation Information

Software can read processor-identification information from the EDX register immediately following
RESET# or INIT. This information can be used to initialize software to perform processor-specific
functions. The information stored in EDX is defined as follows:

• Stepping ID (bits 3–0)—This field identifies the processor-revision level.

• Extended Model (bits 19–16) and Model (bits 7–4)—These fields combine to differentiate
processor models within a instruction family. For example, two processors may share the same
microarchitecture but differ in their feature set. Such processors are considered different models
within the same instruction family. This is a split field, comprising an extended-model portion in
bits 19–16 with a legacy portion in bits 7–4

• Extended Family (bits 27–20) and Family (bits 11–8)—These fields combine to differentiate
processors by their microarchitecture.

The CPUID instruction can be used to obtain the same information. This is done by executing CPUID
with either function 1 or function 8000_0001h. Additional information about the processor and the
features supported can be gathered using CPUID with other feature codes. See “Processor Feature
Identification” on page 61 for additional information.

14.2.2 Enabling Internal Caches

Following a RESET# (but not an INIT), all instruction and data caches are disabled, and their contents
are invalidated (the MOESI state is set to the invalid state). Software can enable these caches by
clearing the cache-disable bit (CR0.CD) to zero (RESET# sets this bit to 1). Software can further
refine caching based on individual pages and memory regions. Refer to “Cache Control Mechanisms”
on page 179 for more information on cache control.

Memory-Type Range Registers (MTRRs). Fo l low ing a RESET# (bu t n o t a n I NI T) , t h e
MTRRdefType register is cleared to 0, which disables the MTRR mechanism. The variable-range and
fixed-range MTRR registers are not initialized and are therefore in an undefined state. Before enabling
the MTRR mechanism, the initialization software (usually BIOS) must load these registers with a
known value to prevent unexpected results. Clearing these registers, for example, sets memory to the
uncacheable (UC) type.

14.2.3 Initializing Media and x87 Processor State

Some resources used by x87 floating-point instructions and 128-bit media instructions must be
initialized by software before being used. Initialization software can use the CPUID instruction to
determine whether the processor supports these instructions, and then initialize their resources as
appropriate.

x87 Floating-Point State Initialization. Table 14-3 on page 354 shows the differences between the
initial x87 floating-point state following a RESET# and the state established by the FINIT/FNINIT

354 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.17—June 2010

instruction. An INIT does not modify the x87 floating-point state. The initialization software can
execute an FINIT or FNINIT instruction to prepare the x87 floating-point unit for use by application
software. The FINIT and FNINIT instructions have no effect on the 64-bit media state.

Initialization software should also load the MP, EM, and NE bits in the CR0 register as appropriate for
the operating system. The recommended settings for implementations of the AMD64 architecture are:

• MP=1—Setting MP to 1 causes a device-not-available exception (#NM) to occur when the
FWAIT/WAIT instruction is executed and the task-switched bit (CR0.TS) is set to 1. This supports
operating systems that perform lazy context-switching of x87 floating-point state.

• EM=0—Clearing EM to 0 allows the x87 floating-point unit to execute instructions rather than
causing a #NM exception (CR0.EM=1). System software sets EM to 1 only when software
emulation of x87 instructions is desired.

• NE=1—Setting NE to 1 causes x87 floating-point exceptions to be handled by the floating-point
exception-pending exception (#MF) handler. Clearing this bit causes the processor to externally
indicate the exception occurred, and an external device can then cause an external interrupt to
occur in response.

Refer to “CR0 Register” on page 42 for additional information on these control bits.

64-Bit Media State Initialization. There are no special requirements placed on software to initialize
the processor state used by 64-bit media instructions. This state is initialized completely by the
processor following a RESET#. System software should leave CR0.EM cleared to 0 to allow execution
of the 64-bit media instructions. If CR0.EM is set to 1, attempted execution of the 64-bit media
instructions causes an invalid-opcode exception (#UD).

Table 14-3. x87 Floating-Point State Initialization

x87 Floating-Point
Resource

RESET#
FINIT/FNINIT
Instructions

FPR0–FPR7 0 Not modified

Control Word

0040h
• Round to nearest
• Single precision
• Unmask all exceptions

037Fh
• Round to nearest
• Extended precision
• Mask all exceptions

Status Word 0000h

Tag Word 5555h (FPRn contain zero) FFFFh (FPRn are empty)

Instruction CS 0000h

Instruction Offset 0

x87 Instruction
Opcode

0

Data-Operand DS 0000h

Data-Operand Offset 0

Processor Initialization and Long Mode Activation 355

24593—Rev. 3.17—June 2010 AMD64 Technology

The 64-bit media state is not modified by an INIT.

128-Bit Media State Initialization. BIOS or system software must also prepare the processor to
allow execution of 128-bit media instructions. The required preparations include:

• Leaving CR0.EM cleared to 0 to allow execution of the 128-bit media instructions. If CR0.EM is
set to 1, attempted execution of the 128-bit media instructions causes an invalid-opcode exception
(#UD).

• Enabling the 128-bit media instructions by setting CR4.OSFXSR to 1. Software cannot execute the
128-bit media instructions unless this bit is set. Setting this bit also indicates that system software
uses the FXSAVE and FXRSTOR instructions to save and restore, respectively, the 128-bit media
state. These instructions also save and restore the 64-bit media state and x87 floating-point state.

• Indicating that system software uses the SIMD floating-point exception (#XF) for handling 128-bit
media floating-point exceptions. This is done by setting CR4.OSXMMEXCPT to 1.

• Setting (optionally) the MXCSR mask bits to mask or unmask 128-bit media floating-point
exceptions as desired. Because this register can be read and written by application software, it is
not absolutely necessary for system software to initialize it.

Refer to “CR4 Register” on page 47 for additional information on these CR4 control bits.

14.2.4 Model-Specific Initialization

Implementations of the AMD64 architecture can contain model-specific features and registers that are
not initialized by the processor and therefore require system-software initialization. System software
must use the CPUID instruction to determine which features are supported. Model-specific features
are generally configured using model-specific registers (MSRs), which can be read and written using
the RDMSR and WRMSR instructions, respectively.

Some of the model-specific features are pervasive across many processor implementations of the
AMD64 architecture and are therefore described within this volume. These include:

• System-call extensions, which must be enabled in the EFER register before using the SYSCALL
and SYSRET instructions. See “System-Call Extension (SCE) Bit” on page 55 for information on
enabling these instructions.

• Memory-typing MSRs. See “Memory-Type Range Registers (MTRRs)” on page 353 for
information on initializing and using these registers.

• The machine-check mechanism. See “Initializing the Machine-Check Mechanism” on page 267
for information on enabling and using this capability.

• Extensions to the debug mechanism. See “Software-Debug Resources” on page 327 for
information on initializing and using these extensions.

• The performance-monitoring resources. See “Performance Optimization” on page 341 for
information on initializing and using these resources.

Initialization of other model-specific features used by the page-translation mechanism and long mode
are described throughout the remainder of this section.

356 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.17—June 2010

Some model-specific features are not pervasive across processor implementations and are therefore
not described in this volume. For more information on these features and their initialization
requirements, refer to the BIOS writer’s guide for the implementation.

14.3 Initializing Real Mode

A basic real-mode (real-address-mode) operating environment must be initialized so that system
software can initialize the protected-mode operating environment. This real-mode environment must
include:

• A real-mode IDT for vectoring interrupts and exceptions to the appropriate handlers while in real
mode. The IDT base-address value in the IDTR initialized by the processor can be used, or system
software can relocate the IDT by loading a new base-address into the IDTR.

• The real-mode interrupt and exception handlers. These must be loaded before enabling external
interrupts.

Because the processor can always accept a non-maskable interrupt (NMI), it is possible an NMI
can occur before initializing the IDT or the NMI handler. System hardware must provide a
mechanism for disabling NMIs to allow time for the IDT and NMI handler to be properly
initialized. Alternatively, the IDT and NMI handler can be stored in non-volatile memory that is
referenced by the initial values loaded into the IDTR.

Maskable interrupts can be enabled by setting EFLAGS.IF after the real-mode IDT and interrupt
handlers are initialized.

• A valid stack pointer (SS:SP) to be used by the interrupt mechanism should interrupts or
exceptions occur. The values of SS:SP initialized by the processor can be used.

• One or more data-segment selectors for storing the protected-mode data structures that are created
in real mode.

Once the real-mode environment is established, software can begin initializing the protected-mode
environment.

14.4 Initializing Protected Mode

Protected mode must be entered before activating long mode. A minimal protected-mode environment
must be established to allow long-mode initialization to take place. This environment must include the
following:

• A protected-mode IDT for vectoring interrupts and exceptions to the appropriate handlers while in
protected mode.

• The protected-mode interrupt and exception handlers referenced by the IDT. Gate descriptors for
each handler must be loaded in the IDT.

• A GDT which contains:

- A code descriptor for the code segment that is executed in protected mode.

Processor Initialization and Long Mode Activation 357

24593—Rev. 3.17—June 2010 AMD64 Technology

- A read/write data segment that can be used as a protected-mode stack. This stack can be used
by the interrupt mechanism if interrupts or exceptions occur.

Software can optionally load the GDT with one or more data segment descriptors, a TSS descriptor,
and an LDT descriptor for use by long-mode initialization software.

After the protected-mode data structures are initialized, system software must load the IDTR and
GDTR (and optionally, the LDTR and TR) with pointers to those data structures. Once these registers
are initialized, protected mode can be enabled by setting CR0.PE to 1.

If legacy paging is used during the long-mode initialization process, the page-translation tables must
be initialized before enabling paging. At a minimum, one page directory and one page table are
required to support page translation. The CR3 register must be loaded with the starting physical
address of the highest-level table supported in the page-translation hierarchy. After these structures are
initialized and protected mode is enabled, paging can be enabled by setting CR0.PG to 1.

14.5 Initializing Long Mode

From protected mode, system software can initialize the data structures required by long mode and
store them anywhere in the first 4 Gbytes of physical memory. These data structures can be relocated
above 4 Gbytes once long mode is activated. The data structures required by long mode include the
following:

• An IDT with 64-bit interrupt-gate descriptors. Long-mode interrupts are always taken in 64-bit
mode, and the 64-bit gate descriptors are used to transfer control to interrupt handlers running in
64-bit mode. See “Long-Mode Interrupt Control Transfers” on page 241 for more information.

• The 64-bit mode interrupt and exception handlers to be used in 64-bit mode. Gate descriptors for
each handler must be loaded in the 64-bit IDT.

• A GDT containing segment descriptors for software running in 64-bit mode and compatibility
mode, including:

- Any LDT descriptors required by the operating system or application software.

- A TSS descriptor for the single 64-bit TSS required by long mode.

- Code descriptors for the code segments that are executed in long mode. The code-segment
descriptors are used to specify whether the processor is operating in 64-bit mode or
compatibility mode. See “Code-Segment Descriptors” on page 86, “Long (L) Attribute Bit” on
page 87, and “CS Register” on page 69 for more information.

- Data-segment descriptors for software running in compatibility mode. The DS, ES, and SS
segments are ignored in 64-bit mode. See “Data-Segment Descriptors” on page 87 for more
information.

- FS and GS data-segment descriptors for 64-bit mode, if required by the operating system. If
these segments are used in 64-bit mode, system software can also initialize the full 64-bit base
addresses using the WRMSR instruction. See “FS and GS Registers in 64-Bit Mode” on
page 70 for more information.

358 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.17—June 2010

The existing protected-mode GDT can be used to hold the long-mode descriptors described above.

• A single 64-bit TSS for holding the privilege-level 0, 1, and 2 stack pointers, the interrupt-stack-
table pointers, and the I/O-redirection-bitmap base address (if required). This is the only TSS
required, because hardware task-switching is not supported in long mode. See “64-Bit Task State
Segment” on page 317 for more information.

• The 4-level page-translation tables required by long mode. Long mode also requires the use of
physical-address extensions (PAE) to support physical-address sizes greater than 32 bits. See
“Long-Mode Page Translation” on page 128 for more information.

If paging is enabled during the initialization process, it must be disabled before enabling long mode.
After the long-mode data structures are initialized, and paging is disabled, software can enable and
activate long mode.

14.6 Enabling and Activating Long Mode

Long mode is enabled by setting the long-mode enable control bit (EFER.LME) to 1. However, long
mode is not activated until software also enables paging. When software enables paging while long
mode is enabled, the processor activates long mode, which the processor indicates by setting the long-
mode-active status bit (EFER.LMA) to 1. The processor behaves as a 32-bit x86 processor in all
respects until long mode is activated, even if long mode is enabled. None of the new 64-bit data sizes,
addressing, or system aspects available in long mode can be used until EFER.LMA=1.

Table 14-4 shows the control-bit settings for enabling and activating the various operating modes of
the AMD64 architecture. The default address and data sizes are shown for each mode. For the methods
of overriding these default address and data sizes, see “Instruction Prefixes” in Volume 3.

Table 14-4. Processor Operating Modes

Mode

Encoding
Default

Address
Size

(bits)2

Default
Data
Size

(bits)2

E
F

E
R

.L
M

A
1

C
S

.L

C
S

.D

Long
Mode

64-Bit
Mode

1

1 0 64 32

Compatibility
Mode

0
1 32 32

0 16 16

Legacy Mode 0 x
1 32 32

0 16 16

Note:
1. EFER.LMA is set by the processor when software sets EFER.LME and CR0.PG

according to the sequence described in “Activating Long Mode” on page 359.
2. See “Instruction Prefixes” in Volume 1 for overrides to default sizes.

Processor Initialization and Long Mode Activation 359

24593—Rev. 3.17—June 2010 AMD64 Technology

Long mode uses two code-segment-descriptor bits, CS.L and CS.D, to control the operating
submodes. If long mode is active, CS.L = 1, and CS.D = 0, the processor is running in 64-bit mode, as
shown in Table 14-4 on page 358. With this encoding (CS.L=1, CS.D=0), default operand size is 32
bits and default address size is 64 bits. Using instruction prefixes, the default operand size can be
overridden to 64 bits or 16 bits, and the default address size can be overridden to 32 bits.

The final encoding of CS.L and CS.D in long mode (CS.L=1, CS.D=1) is reserved for future use.

When long mode is active and CS.L is cleared to 0, the processor is in compatibility mode, as shown in
Table 14-4 on page 358. In compatibility mode, CS.D controls default operand and address sizes
exactly as it does in the legacy x86 architecture. Setting CS.D to 1 specifies default operand and
address sizes as 32 bits. Clearing CS.D to 0 specifies default operand and address sizes as 16 bits.

14.6.1 Activating Long Mode

Switching the processor to long mode requires several steps. In general, the sequence involves
disabling paging (CR0.PG=0), enabling physical-address extensions (CR4.PAE=1), loading CR3,
enabling long mode (EFER.LME=1), and finally enabling paging (CR0.PG=1).

Specifically, software must follow this sequence to activate long mode:

1. If starting from page-enabled protected mode, disable paging by clearing CR0.PG to 0. This
requires that the MOV CR0 instruction used to disable paging be located in an identity-mapped
page (virtual address equals physical address).

2. In any order:

- Enable physical-address extensions by setting CR4.PAE to 1. Long mode requires the use of
physical-address extensions (PAE) in order to support physical-address sizes greater than 32
bits. Physical-address extensions must be enabled before enabling paging.

- Load CR3 with the physical base-address of the level-4 page-map-table (PML4). See “Long-
Mode Page Translation” on page 128 for details on creating the 4-level page translation tables
required by long mode.

- Enable long mode by setting EFER.LME to 1.

3. Enable paging by setting CR0.PG to 1. This causes the processor to set the EFER.LMA bit to 1.
The instruction following the MOV CR0 that enables paging must be a branch, and both the MOV
CR0 and the following branch instruction must be located in an identity-mapped page.

14.6.2 Consistency Checks

The processor performs long-mode consistency checks whenever software attempts to modify any of
the control bits directly involved in activating long mode (EFER.LME, CR0.PG, and CR4.PAE). A
general-protection exception (#GP) occurs when a consistency check fails. Long-mode consistency
checks ensure that the processor does not enter an undefined mode or state that results in unpredictable
behavior.

Long-mode consistency checks cause a general-protection exception (#GP) to occur if:

360 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.17—June 2010

• An attempt is made to enable or disable long mode while paging is enabled.

• Long mode is enabled, and an attempt is made to enable paging before enabling physical-address
extensions (PAE).

• Long mode is enabled, and an attempt is made to enable paging while CS.L=1.

• Long mode is active and an attempt is made to disable physical-address extensions (PAE).

Table 14-5 summarizes the long-mode consistency checks made during control-bit transitions.

14.6.3 Updating System Descriptor Table References

Immediately after activating long mode, the system-descriptor-table registers (GDTR, LDTR, IDTR,
TR) continue to reference legacy descriptor tables. The tables referenced by these descriptors all reside
in the lower 4 Gbytes of virtual-address space. After activating long mode, 64-bit operating-system
software should use the LGDT, LLDT, LIDT, and LTR instructions to load the system descriptor-table
registers with references to the 64-bit versions of the descriptor tables. See “Descriptor Tables” on
page 71 for details on descriptor tables in long mode.

Long mode requires 64-bit interrupt-gate descriptors to be stored in the interrupt-descriptor table
(IDT). Software must not allow exceptions or interrupts to occur between the time long mode is
activated and the subsequent update of the interrupt-descriptor-table register (IDTR) that establishes a
reference to the 64-bit IDT. This is because the IDTR continues to reference a 32-bit IDT immediately
after long mode is activated. If an interrupt or exception occurred before updating the IDTR, a legacy
32-bit interrupt gate would be referenced and interpreted as a 64-bit interrupt gate, with unpredictable
results.

External interrupts can be disabled using the CLI instruction. Non-maskable interrupts (NMI) and
system-management interrupts (SMI) must be disabled using external hardware. See “Long-Mode
Interrupt Control Transfers” on page 241 for more information on long mode interrupts.

14.6.4 Relocating Page-Translation Tables

The long-mode page-translation tables must be located in the first 4 Gbytes of physical-address space
before activating long mode. This is necessary because the MOV CR3 instruction used to initialize the
page-map level-4 base address must be executed in legacy mode before activating long mode. Because
the MOV CR3 is executed in legacy mode, only the low 32 bits of the register are written, which limits
the location of the page-map level-4 translation table to the low 4 Gbytes of memory. Software can

Table 14-5. Long-Mode Consistency Checks

Control Bit Transition Check

EFER.LME
0 → 1 If (CR0.PG=1) then #GP(0)

1 → 0 If (CR0.PG=1) then #GP(0)

CR0.PG 0 → 1
If ((EFER.LME=1) & (CR4.PAE=0) then #GP(0)
If ((EFER.LME=1) & (CS.L=1)) then #GP(0)

CR4.PAE 1 → 0 If (EFER.LMA=1) then #GP(0)

Processor Initialization and Long Mode Activation 361

24593—Rev. 3.17—June 2010 AMD64 Technology

relocate the page tables anywhere in physical memory, and re-initialize the CR3 register, after long
mode is activated.

14.7 Leaving Long Mode

To return from long mode to legacy protected mode with paging enabled, software must deactivate and
disable long mode using the following sequence:

1. Switch to compatibility mode and place the processor at the highest privilege level (CPL=0).

2. Deactivate long mode by clearing CR0.PG to 0. This causes the processor to clear the LMA bit to
0. The MOV CR0 instruction used to disable paging must be located in an identity-mapped page.
Once paging is disabled, the processor behaves as a standard 32-bit x86 processor.

3. Load CR3 with the physical base-address of the legacy page tables.

4. Disable long mode by clearing EFER.LME to 0.

5. Enable legacy page-translation by setting CR0.PG to 1. The instruction following the MOV CR0
that enables paging must be a branch, and both the MOV CR0 and the following branch
instruction must be located in an identity-mapped page.

14.8 Long-Mode Initialization Example

Following is sample code that outlines the steps required to place the processor in long mode.

mydata segment para
;;
;
; This generic data-segment holds pseudo-descriptors used
; by the LGDT and LIDT instructions.
;
;;
;
; Establish a temporary 32-bit GDT and IDT.
;
pGDT32 label fword ; Used by LGDT.
 dw gdt32_limit ; GDT limit ...
 dd gdt32_base ; and 32-bit GDT base
pIDT32 label fword ; Used by LIDT.
 dw idt32_limit ; IDT limit ...
 dd idt32_base ; and 32-bit IDT base
;
; Establish a 64-bit GDT and IDT (64-bit linear base-
; address)
;
pGDT64 label tbyte ; Used by LGDT.
 dw gdt64_limit ; GDT limit ...
 dq gdt64_base ; and 64-bit GDT base
pIDT64 label tbyte ; Used by LIDT.

362 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.17—June 2010

 dw idt64_limit ; IDT limit ...
 dq idt64_base ; and 64-bit IDT base
mydata ends ; end of data segment
code16 segment para use16 ; 16-bit code segment
;;;
; 16-bit code, real mode
;
;;
;
; Initialize DS to point to the data segment containing
; pGDT32 and PIDT32. Set up a real-mode stack pointer, SS:SP,
; in case of interrupts and exceptions.
;

cli
mov ax, seg mydata
mov ds, ax
mov ax, seg mystack
mov ss, ax
mov sp, esp0

;
; Use CPUID to determine if the processor supports long mode. ;

mov eax, 80000000h ; Extended-function 8000000h.
cpuid ; Is largest extended function
cmp eax, 80000000h ; any function > 80000000h?
jbe no_long_mode ; If not, no long mode.
mov eax, 80000001h ; Extended-function 8000001h.
cpuid ; Now EDX = extended-features flags.
bt edx, 29 ; Test if long mode is supported.
jnc no_long_mode ; Exit if not supported.

;
; Load the 32-bit GDT before entering protected mode.
; This GDT must contain, at a minimum, the following
; descriptors:
; 1) a CPL=0 16-bit code descriptor for this code segment.
; 2) a CPL=0 32/64-bit code descriptor for the 64-bit code.
; 3) a CPL=0 read/write data segment, usable as a stack
; (referenced by SS).
;
; Load the 32-bit IDT, in case any interrupts or exceptions
; occur after entering protected mode, but before enabling
; long mode).
;
; Initialize the GDTR and IDTR to point to the temporary
; 32-bit GDT and IDT, respectively.
;

lgdt ds:[pGDT32]
lidt ds:[pIDT32]

;
; Enable protected mode (CR0.PE=1).
;

Processor Initialization and Long Mode Activation 363

24593—Rev. 3.17—June 2010 AMD64 Technology

mov eax, 000000011h
mov cr0, eax

;
; Execute a far jump to turn protected mode on.
; code16_sel must point to the previously-established 16-bit
; code descriptor located in the GDT (for the code currently
; being executed).
;

db 0eah ;Far jump...
dw offset now_in_prot;to offset...
dw code16_sel ;in current code segment.

;;;
; At this point we are in 16-bit protected mode, but long
; mode is still disabled.
;
;;
now_in_prot:
;
; Set up the protected-mode stack pointer, SS:ESP.
; Stack_sel must point to the previously-established stack
; descriptor (read/write data segment), located in the GDT.
; Skip setting DS/ES/FS/GS, because we are jumping right to
; 64-bit code.
;

mov ax, stack_sel
mov ss, ax
mov esp, esp0

;
; Enable the 64-bit page-translation-table entries by
; setting CR4.PAE=1 (this is _required_ before activating
; long mode). Paging is not enabled until after long mode
; is enabled.
;

mov eax, cr4
bts eax, 5
mov cr4, eax

;
; Create the long-mode page tables, and initialize the
; 64-bit CR3 (page-table base address) to point to the base
; of the PML4 page table. The PML4 page table must be located
; below 4 Gbytes because only 32 bits of CR3 are loaded when
; the processor is not in 64-bit mode.
;

mov eax, pml4_base ; Pointer to PML4 table (<4GB).
mov cr3, eax ; Initialize CR3 with PML4 base.

;
; Enable long mode (set EFER.LME=1).
;

mov ecx, 0c0000080h ; EFER MSR number.
rdmsr ; Read EFER.
bts eax, 8 ; Set LME=1.

364 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.17—June 2010

wrmsr ; Write EFER.
;
; Enable paging to activate long mode (set CR0.PG=1)
;

mov eax, cr0 ; Read CR0.
bts eax, 31 ; Set PE=1.
mov cr0, eax ; Write CR0.

;
; At this point, we are in 16-bit compatibility mode
; (LMA=1, CS.L=0, CS.D=0).
; Now, jump to the 64-bit code segment. The offset must be
; equal to the linear address of the 64-bit entry point,
; because 64-bit code is in an unsegmented address space.
; The selector points to the 32/64-bit code selector in the
; current GDT.
;

db 066h
db 0eah
dd start64_linear
dw code64_sel

code16ends ; End of the 16-bit code segment
;;;
;;
;;; Start of 64-bit code
;;
;
;;
code64 para use64
start64: ; At this point, we're using 64-bit code
;
; Point the 64-bit RSP register to the stack’s _linear_
; address. There is no need to set SS here, because the SS
; register is not used in 64-bit mode.
;

mov rsp, stack0_linear
;
; This LGDT is only needed if the long-mode GDT is to be
; located at a linear address above 4 Gbytes. If the long
; mode GDT is located at a 32-bit linear address, putting
; 64-bit descriptors in the GDT pointed to by [pGDT32] is
; just fine. pGDT64_linear is the _linear_ address of the
; 10-byte GDT pseudo-descriptor.
;
; The new GDT should have a valid CPL0 64-bit code segment
; descriptor at the entry-point corresponding to the current
; CS selector. Alternatively, a far transfer to a valid CPL0
; 64-bit code segment descriptor in the new GDT must be done
; before enabling interrupts.
;

lgdt [pGDT64_linear]
;

Processor Initialization and Long Mode Activation 365

24593—Rev. 3.17—June 2010 AMD64 Technology

; Load the 64-bit IDT. This is _required_, because the 64-bit
; IDT uses 64-bit interrupt descriptors, while the 32-bit
; IDT used 32-bit interrupt descriptors. pIDT64_linear is
; the _linear_ address of the 10-byte IDT pseudo-descriptor.
;

lidt [pIDT64_linear]
;
; Set the current TSS. tss_sel should point to a 64-bit TSS
; descriptor in the current GDT. The TSS is used for
; inner-level stack pointers and the IO bit-map.
;

mov ax, tss_sel
ltr ax

;
; Set the current LDT. ldt_sel should point to a 64-bit LDT
; descriptor in the current GDT.
;

mov ax, ldt_sel
lldt ax

;
; Using fs: and gs: prefixes on memory accesses still uses
; the 32-bit fs.base and gs.base. Reload these 2 registers
; before using the fs: and gs: prefixes. FS and GS can be
; loaded from the GDT using a normal “mov fs,foo” type
; instructions, which loads a 32-bit base into FS or GS.
; Alternatively, use WRMSR to assign 64-bit base values to
; MSR_FS_base or MSR_GS_base.
;

mov ecx, MSR_FS_base
mov eax, FsbaseLow
mov edx, FsbaseHi
wrmsr

;
; Reload CR3 if long-mode page tables are to be located above
; 4 Gbytes. Because the original CR3 load was done in 32-bit
; legacy mode, it could only load 32 bits into CR3. Thus, the
; current page tables are located in the lower 4 Gbytes of
; physical memory. This MOV to CR3 is only needed if the
; actual long-mode page tables should be located at a linear
; address above 4 Gbytes.
;

mov rax, final_pml4_base ; Point to PML4
mov cr3, rax ; Load 64-bit CR3

;
; Enable interrupts.
;

sti ; Enabled INTR
<insert 64-bit code here>

366 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.17—June 2010

Secure Virtual Machine 367

24593—Rev. 3.17—June 2010 AMD64 Technology

15 Secure Virtual Machine

AMD Virtualization™ (AMD-V™) architecture is designed to provide enterprise-class server
virtualization software technology that facilitates virtualization development and deployment. An
SVM enabled virtual machine architecture should provide hardware resources that allow a single
machine to run multiple operating systems efficiently, while maintaining secure, resource-guaranteed
isolation.

15.1 The Virtual Machine Monitor

A virtual machine monitor (VMM), also known as a hypervisor, consists of software that controls the
execution of multiple guest operating systems on a single physical machine. The VMM provides each
guest the appearance of full control over a complete computer system (memory, CPU, and all
peripheral devices). The use of the term host refers to the execution context of the VMM. World switch
refers to the operation of switching between the host and guest.

Fundamentally, VMMs work by intercepting and emulating in a safe manner sensitive operations in
the guest (such as changing the page tables, which could give a guest access to memory it is not
allowed to access). The AMD SVM provides hardware assists to improve performance and facilitate
implementation of virtualization.

15.2 SVM Hardware Overview

SVM processor support provides a set of hardware extensions designed to enable economical and
efficient implementation of virtual machine systems. Generally speaking, hardware support falls into
two complementary categories: virtualization support and security support.

15.2.1 Virtualization Support

The AMD virtual machine architecture is designed to provide:

• Mechanisms for fast world switch between VMM and guest

• The ability to intercept selected instructions or events in the guest

• External (DMA) access protection for memory.

• Assists for interrupt handling and virtual interrupt support

• A guest/host tagged TLB to reduce virtualization overhead.

15.2.2 Guest Mode

This new processor mode is entered through the VMRUN instruction. When in guest mode, the
behavior of some x86 instructions changes to facilitate virtualization.

368 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

15.2.3 External Access Protection

Guests may be granted direct access to selected I/O devices. Hardware support is designed to prevent
devices owned by one guest from accessing memory owned by another guest (or the VMM).

15.2.4 Interrupt Support

To facilitate efficient virtualization of interrupts, the following support is provided under control of
VMCB flags:

Intercepting physical interrupt delivery. The VMM can request that physical interrupts cause a
running guest to exit, allowing the VMM to process the interrupt.

Virtual interrupts. The VMM can inject virtual interrupts into the guest. Under control of the VMM,
a virtual copy of the EFLAGS.IF interrupt mask bit, and a virtual copy of the APIC's task priority
register are used transparently by the guest instead of the physical resources.

Sharing a physical APIC. SVM allows multiple guests to share a physical APIC while guarding
against malicious or defective guests that might leave high-priority interrupts unacknowledged forever
(and thus shut out other guest's interrupts).

15.2.5 Restartable Instructions

SVM is designed to safely restart, with the exception of task switches, any intercepted instruction
(either atomic or idempotent) after the intercept.

15.2.6 Security Support

To further enable secure initialization SVM provides additional System support.

Attestation. The SKINIT instruction and associated system support (the Trusted Platform Module, or
TPM) allow for verifiable startup of trusted software (such as a VMM), based on secure hash
comparison.

15.3 SVM Processor and Platform Extensions

SVM hardware extensions can be grouped into the following categories:

• State switch—VMRUN, VMSAVE, VMLOAD instructions, global interrupt flag (GIF), and
instructions to manipulate the latter (STGI, CLGI). (“VMRUN Instruction” on page 369,
“VMSAVE and VMLOAD Instructions” on page 389, “Global Interrupt Flag, STGI and CLGI
Instructions” on page 395.)

• Intercepts—allow the VMM to intercept sensitive operations in the guest. (“Intercept Operation”
on page 375 through “Miscellaneous Intercepts” on page 389)

Secure Virtual Machine 369

24593—Rev. 3.17—June 2010 AMD64 Technology

• Interrupt and APIC assists—physical interrupt intercepts, virtual interrupt support, APIC.TPR
virtualization. (“Global Interrupt Flag, STGI and CLGI Instructions” on page 395 and “Interrupt
and Local APIC Support” on page 397)

• SMM intercepts and assists (“SMM Support” on page 401)

• External (DMA) access protection (“External Access Protection” on page 404)

• Nested paging support for two levels of address translation. (“Nested Paging” on page 411)

• Security—SKINIT instruction. (“Secure Startup with SKINIT” on page 418)

15.4 Enabling SVM

The VMRUN, VMLOAD, VMSAVE, CLGI, VMMCALL, and INVLPGA instructions can be used
when the EFER.SVME is set to 1; otherwise, these instructions generate a #UD exception. The
SKINIT and STGI instructions can be used when either the EFER.SVME bit is set to 1 or the
ECX.SKINIT bit, as returned by CPUID function 8000_0001h, is set to 1; otherwise, these
instructions generate a #UD exception.

Before enabling SVM, software should detect whether SVM can be enabled using the following
algorithm:

if (CPUID 8000_0001.ECX[SVM] == 0)
 return SVM_NOT_AVAIL;

if (VM_CR.SVMDIS == 0)
 return SVM_ALLOWED;

if (CPUID 8000_000A.EDX[SVM_LOCK]==0)
 return SVM_DISABLED_AT_BIOS_NOT_UNLOCKABLE
 // the user must change a BIOS setting to enable SVM
else return SVM_DISABLED_WITH_KEY;
 // SVMLock may be unlockable; consult the BIOS or TPM to obtain the key.

15.5 VMRUN Instruction

The VMRUN instruction is the cornerstone of SVM. VMRUN takes, as a single argument, the physical
address of a 4KB-aligned page, the virtual machine control block (VMCB), which describes a virtual
machine (guest) to be executed. The VMCB contains:

• a list of instructions or events in the guest (e.g., write to CR3) to intercept,

• various control bits that specify the execution environment of the guest or that indicate special
actions to be taken before running guest code, and

• guest processor state (such as control registers, etc.).

370 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

15.5.1 Basic Operation

The VMRUN instruction has an implicit addressing mode of [rAX]. Software must load RAX (EAX in
32-bit mode) with the physical address of the VMCB, a 4-Kbyte-aligned page that describes a virtual
machine to be executed. The portion of RAX used in forming the address is determined by the current
effective address size.

The VMCB is accessed by physical address and should be mapped as writeback (WB) memory.

VMRUN is available only at CPL-0. A #GP exception is raised if the CPL is greater than 0.
Furthermore, the processor must be in protected mode and EFER.SVME must be set to 1, otherwise, a
#UD exception is raised.

The VMRUN instruction saves some host processor state information in the host state-save area in
main memory at the physical address specified in the VM_HSAVE_PA MSR; it then loads
corresponding guest state from the VMCB state-save area. VMRUN also reads additional control bits
from the VMCB that allow the VMM to flush the guest TLB, inject virtual interrupts into the guest,
etc.

The VMRUN instruction then checks the guest state just loaded. If an illegal state has been loaded, the
processor exits back to the host (see “#VMEXIT” on page 374).

Otherwise, the processor now runs the guest code until an intercept event occurs, at which point the
processor suspends guest execution and resumes host execution at the instruction following the
VMRUN. This is called a #VMEXIT and is described in detail in “#VMEXIT” on page 374.

VMRUN saves or restores a minimal amount of state information to allow the VMM to resume
execution after a guest has exited. This allows the VMM to handle simple intercept conditions quickly.
If additional guest state information must be saved or restored (e.g., to handle more complex intercepts
or to switch to a different guest), the VMM can employ the VMSAVE and VMLOAD instructions (see
“VMSAVE and VMLOAD Instructions” on page 389).

Saving Host State. To assure that the host can resume operation after #VMEXIT, VMRUN saves at
least the following host state information at the physical address specified in the new MSR
VM_HSAVE_PA:

• CS.SEL, NEXT_RIP—The CS selector and rIP of the instruction following the VMRUN. On
#VMEXIT the host resumes running at this address.

• RFLAGS, RAX—Host processor mode and the register used by VMRUN to address the VMCB.

• SS.SEL, RSP—Stack pointer for host.

• CR0, CR3, CR4, EFER—Paging/operating mode for host.

• IDTR, GDTR—The pseudo-descriptors. VMRUN does not save or restore the host LDTR.

• ES.SEL and DS.SEL.

Processor implementations may store only part or none of host state in the memory area pointed to by
VM_HSAVE_PA MSR and may store some or all host state in hidden on-chip memory. Different

Secure Virtual Machine 371

24593—Rev. 3.17—June 2010 AMD64 Technology

implementations may choose to save the hidden parts of the host’s segment registers as well as the
selectors. For these reasons, software must not rely on the format or contents of the host state save area,
nor attempt to change host state by modifying the contents of the host save area.

Loading Guest State. After saving host state, VMRUN loads the following guest state from the
VMCB:

• CS, rIP—Guest begins execution at this address. The hidden state of the CS segment register is
also loaded from the VMCB.

• RFLAGS, RAX.

• SS, RSP—Includes the hidden state of the SS segment register.

• CR0, CR2, CR3, CR4, EFER—Guest paging mode. Writing paging-related control registers with
VMRUN does not flush the TLB since address spaces are switched. See section 15.16, “TLB
Control,” on page 393.

• INTERRUPT_SHADOW—This flag indicates whether the guest is currently in an interrupt
lockout shadow; see “Interrupt Shadows” on page 399.

• IDTR, GDTR.

• ES and DS—Includes the hidden state of the segment registers.

• DR6 and DR7—The guest’s breakpoint state.

• V_TPR—The guest’s virtual TPR.

• V_IRQ—The flag indicating whether a virtual interrupt is pending in the guest.

• CPL—If the guest is in real mode, the CPL is forced to 0; if the guest is in v86 mode, the CPL is
forced to 3. Otherwise, the CPL saved in the VMCB is used.

The processor checks the loaded guest state for consistency. If a consistency check fails while loading
guest state, the processor performs a #VMEXIT. For additional information, see “Canonicalization
and Consistency Checks” on page 373.

If the guest is in PAE paging mode according to the registers just loaded and nested paging is not
enabled, the processor will also read the four PDPEs pointed to by the newly loaded CR3 value; setting
any reserved bits in the PDPEs also causes a #VMEXIT.

It is possible for the VMRUN instruction to load a guest rIP that is outside the limit of the guest code
segment or that is non-canonical (if running in long mode). If this occurs, a #GP fault is delivered
inside the guest; the rIP falling outside the limit of the guest code segment is not considered illegal
guest state.

After all guest state is loaded, and intercepts and other control bits are set up, the processor reenables
interrupts by setting GIF to 1. It is assumed that VMM software cleared GIF some time before
executing the VMRUN instruction, to ensure an atomic state switch.

Some processor models allow the VMM to designate certain guest VMCB fields as “clean,” meaning
that they haven't been modified relative to the current state of hardware. This allows the hardware to

372 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

optimize execution of VMRUN. See section 15.15, “VMCB State Caching,” on page 390, for details
on which fields may be affected by this. The descriptions below assume all fields are loaded.

Control Bits. Besides loading guest state, the VMRUN instruction reads various control fields from
the VMCB; most of these fields are not written back to the VMCB on #VMEXIT, since they cannot
change during guest execution:

• TSC_OFFSET—an offset to add when the guest reads the TSC (time stamp counter). Guest writes
to the TSC can be intercepted and emulated by changing the offset (without writing the physical
TSC). This offset is cleared when the guest exits back to the host.

• V_INTR_PRIO, V_INTR_VECTOR, V_IGN_TPR—fields used to describe a virtual interrupt for
the guest (see “Injecting Virtual (INTR) Interrupts” on page 398).

• V_INTR_MASKING—controls whether masking of interrupts (in EFLAGS.IF and TPR) is to be
virtualized (see Section 15.21 on page 397).

• The address space ID (ASID) to use while running the guest. (See the CPUID Specification, order#
25481, for feature identification, including how many ASIDs are implemented.)

• A field to control flushing of the TLB during a VMRUN (see Section 15.16).

• The intercept vector describing the active intercepts for the guest. On exit from the guest, the
internal intercept registers are cleared so no host operations will be intercepted.

Segment State in the VMCB. The segment registers are stored in the VMCB in a format similar to
that for SMM: both base and limit are fully expanded; segment attributes are stored as 12-bit values
formed by the concatenation of bits 55–52 and 47–40 from the original 64-bit (in-memory) segment
descriptors; the descriptor “P” bit is used to signal NULL segments (P==0) where permissible and/or
relevant. When loaded from the VMCB, only some of the attribute bits are observed by hardware,
depending on the segment register in question:

• CS—D, L, R (null code segments are not allowed).

• SS—B, P, DPL, E, W (null stack segments allowed in 64-bit mode only).

• DS, ES, FS, GS —D, P, DPL, E, W, Code/Data.

• LDTR—Only the P bit is observed.

• TR—Only TSS type (32 or 16 bit) is relevant, since a null TSS is not allowed.

The VMM should follow these rules when storing segment attributes into the VMCB:

• For NULL segments, set all attribute bits to zero; otherwise, write the concatenation of bits
[55–52] and [47–40] from the original 64-bit (in-memory) segment descriptors.

• The processor reads the current privilege level from the CPL field in the VMCB, not from SS.DPL.
However, SS.DPL should match the CPL field.

• When in virtual x86 or real mode, the processor ignores the CPL field in the VMCB and forces the
values of 3 and 0, respectively.

When examining segment attributes after a #VMEXIT:

Secure Virtual Machine 373

24593—Rev. 3.17—June 2010 AMD64 Technology

• Test the Present (P) bit to check whether a segment is NULL; note that CS and TR never contain
NULL segments and so their P bit is ignored;

• Retrieve the CPL from the CPL field in the VMCB, not from any segment DPL.

Canonicalization and Consistency Checks. The VMRUN instruction performs consistency
checks on guest state and #VMEXIT performs the appropriate subset of these consistency checks on
host state. Illegal guest state combinations cause a #VMEXIT with error code VMEXIT_INVALID.
The following conditions are considered illegal state combinations:

• EFER.SVME is zero.

• CR0.CD is zero and CR0.NW is set.

• CR0[63–32] are not zero.

• Any MBZ bit of CR3 is set.

• Any MBZ bit of CR4 is set.

• DR6[63–32] are not zero.

• DR7[63–32] are not zero.

• Any MBZ bit of EFER is set.

• EFER.LMA or EFER.LME is non-zero and this processor does not support long mode.

• EFER.LME and CR0.PG are both set and CR4.PAE is zero.

• EFER.LME and CR0.PG are both non-zero and CR0.PE is zero.

• EFER.LME, CR0.PG, CR4.PAE, CS.L, and CS.D are all non-zero.

• The VMRUN intercept bit is clear.

• The MSR or IOIO intercept tables extend to a physical address that is greater than or equal to the
maximum supported physical address.

• Illegal event injection (see Section 15.20 on page 396).

• ASID is equal to zero.

VMRUN can load a guest value of CR0 with PE = 0 but PG = 1, a combination that is otherwise illegal
(see Section 15.19).

In addition to consistency checks, VMRUN and #VMEXIT canonicalize (i.e., sign-extend to 63 bits)
all base addresses in the segment registers that have been loaded.

On processor models that support designation of clean fields, the final merged hardware state is used
for consistency checks; this may include state from fields marked as clean, if the processor choose to
ignore the indication.

VMRUN and TF/RF Bits in EFLAGS. When considering interactions of VMRUN with the TF and
RF bits in EFLAGS, one must distinguish between the behavior of host as opposed to that of the guest.

From the host point of view, VMRUN acts like a single instruction, even though an arbitrary number of
guest instructions may execute before a #VMEXIT effectively completes the VMRUN. As a single

374 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

host instruction, VMRUN interacts with EFLAGS.RF and EFLAGS.TF like ordinary instructions.
EFLAGS.RF suppresses any potential instruction breakpoint match on the VMRUN, and EFLAGS.TF
causes a #DB trap after the VMRUN completes on the host side (i.e., after the #VMEXIT from the
guest). As with any normal instruction, completion of the VMRUN instruction clears the host
EFLAGS.RF bit.

The value of EFLAGS.RF from the VMCB affects the first guest instruction. When VMRUN loads a
guest value of 1 for EFLAGS.RF, that value takes effect and suppresses any potential (guest)
instruction breakpoint on the first guest instruction. When VMRUN loads a guest value of 1 in
EFLAGS.TF, that value does not cause a trace trap between the VMRUN and the first guest
instruction, but rather after completion of the first guest instruction.

Host values of EFLAGS have no effect on the guest and guest values of EFLAGS have no effect on the
host.

See also Section 15.7.1 on page 375 regarding the value of EFLAGS.RF saved on #VMEXIT.

15.6 #VMEXIT

When an intercept triggers, the processor performs a #VMEXIT (i.e., an exit from the guest to the host
context).

On #VMEXIT, the processor:

• Disables interrupts by clearing the GIF, so that after the #VMEXIT, VMM software can complete
the state switch atomically.

• Writes back to the VMCB the current guest state—the same subset of processor state as is loaded
by the VMRUN instruction, including the V_IRQ, V_TPR, and the INTERRUPT_SHADOW bits.

• Saves the reason for exiting the guest in the VMCB’s EXITCODE field; additional information
may be saved in the EXITINFO1 or EXITINFO2 fields, depending on the intercept.

• Clears all intercepts.

• Resets the current ASID register to zero (host ASID).

• Clears the V_IRQ and V_INTR_MASKING bits inside the processor.

• Clears the TSC_OFFSET inside the processor.

• Reloads the host state previously saved by the VMRUN instruction. The processor reloads the
host’s CS, SS, DS, and ES segment registers and, if required, re-reads the descriptors from the
host’s segment descriptor tables, depending on the implementation. The segment descriptor tables
must be mapped as present and writable by the host's page tables. Software should keep the host’s
segment descriptor tables consistent with the segment registers when executing VMRUN
instructions. Immediately after #VMEXIT, the processor still contains the guest value for LDTR.
So for CS, SS, DS, and ES, the VMM must only use segment descriptors from the global descriptor
table. Any exception encountered while reloading the host segments causes a shutdown.

Secure Virtual Machine 375

24593—Rev. 3.17—June 2010 AMD64 Technology

• If the host is in PAE mode, the processor reloads the host's PDPEs from the page table indicated by
the host's CR3. If the PDPEs contain illegal state, the processor causes a shutdown.

• Forces CR0.PE = 1, RFLAGS.VM = 0.

• Sets the host CPL to zero.

• Disables all breakpoints in the host DR7 register.

• Checks the reloaded host state for consistency; any error causes the processor to shutdown. If the
host’s rIP reloaded by #VMEXIT is outside the limit of the host’s code segment or non-canonical
(in the case of long mode), a #GP fault is delivered inside the host.

15.7 Intercept Operation

Various instructions and events (such as exceptions) in the guest can be intercepted by means of
control bits in the VMCB. The two primary classes of intercepts supported by SVM are instruction and
exception intercepts.

Exception intercepts. Exception intercepts are checked when normal instruction processing must
raise an exception—before resolving possible double-fault conditions according to table 8-3 and
before attempting delivery of the exception (which includes pushing an exception frame, accessing the
IDT, etc.).

For some exceptions, the processor still writes certain exception-specific registers even if the
exception is intercepted. (See the descriptions in Section 15.11 on page 383 and following for details.)
When an external or virtual interrupt is intercepted, the interrupt is left pending.

When an intercept occurs while the guest is in the process of delivering a non-intercepted interrupt or
exception using the IDT, SVM provides additional information on #VMEXIT (See Section 15.7.2 on
page 376).

Instruction intercepts. These occur at well-defined points in instruction execution—before the
results of the instruction are committed, but ordered in an intercept-specific priority relative to the
instruction’s exception checks. Generally, instruction intercepts are checked after simple exceptions
(such as #GP—when CPL is incorrect—or #UD) have been checked, but before exceptions related to
memory accesses (such as page faults) and exceptions based on specific operand values. There are
several exceptions to this guideline, e.g., the RSM instruction. Instruction breakpoints for the current
instruction and pending data breakpoint traps from the previous instruction are designed to be checked
before instruction intercepts.

15.7.1 State Saved on Exit

When triggered, intercepts write an EXITCODE into the VMCB identifying the cause of the intercept.
The EXITINTINFO field signals whether the intercept occurred while the guest was attempting to
deliver an interrupt or exception through the IDT; a VMM can use this information to transparently
complete the delivery (see “Event Injection” on page 396). Some intercepts provide additional

376 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

information in the EXITINFO1 and EXITINFO2 fields in the VMCB; see the individual intercept
descriptions for details.

The guest state saved in the VMCB is the processor state as of the moment the intercept triggers. In the
x86 architecture, traps (as opposed to faults) are detected and delivered after the instruction that
triggered them has completed execution. Accordingly, a trap intercept takes place after the execution
of the instruction that triggered the trap in the first place. The saved guest state thus includes the effects
of executing that instruction.

Example: Assume a guest instruction triggers a data breakpoint (#DB) trap which is in turn
intercepted. The VMCB records the guest state after execution of that instruction, so that the saved
CS:rIP points to the following instruction, and the saved DR7 includes the effects of matching the data
breakpoint.

The next sequential instruction pointer (nRIP) is saved in the guest VMCB control area at location C8h
on all #VMEXITs that are due to instruction intercepts, as defined in Section 15.8 on page 378, as well
as MSR and IOIO intercepts and exceptions caused by the INT3, INTO, and BOUND instructions. For
all other intercepts, nRIP is reset to zero.

The nRIP is the RIP that would be pushed on the stack if the current instruction were subject to a trap-
style debug exception, if the intercepted instruction were to cause no change in control flow. If the
intercepted instruction would have caused a change in control flow, the nRIP points to the next
sequential instruction rather than the target instruction.

Some exceptions write special registers even when they are intercepted; see the individual descriptions
in “Exception Intercepts” on page 383 for details.

The feature is indicated by EDX[3] as returned by CPUID extended function 8000_000A.

15.7.2 Intercepts During IDT Interrupt Delivery

It is possible for an intercept to occur while the guest is attempting to deliver an exception or interrupt
through the IDT (e.g., #PF because the VMM has paged out the guest’s exception stack). In some
cases, such an intercept can result in the loss of information necessary for transparent resumption of
the guest. In the case of an external interrupt, for example, the processor will already have performed
an interrupt acknowledge cycle with the PIC or APIC to obtain the interrupt type and vector, and the
interrupt is thus no longer pending.

To recover from such situations, all intercepts indicate (in the EXITINTINFO field in the VMCB)
whether they occurred during exception or interrupt delivery though the IDT. This mechanism allows
the VMM to complete the intercepted interrupt delivery, even when it is no longer possible to recreate
the event in question.

Secure Virtual Machine 377

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 15-1. EXITINTINFO for All Intercepts

Despite the instruction name, the events raised by the INT1 (also known as ICEBP), INT3 and INTO
instructions (opcodes F1h, CCh and CEh) are considered exceptions for the purposes of
EXITINTINFO, not software interrupts. Only events raised by the INTn instruction (opcode CDh) are
considered software interrupts.

• Error Code Valid—Bit 11. Set to 1 if the guest exception would have pushed an error code;
otherwise cleared to zero.

• Valid—Bit 31. Set to 1 if the intercept occurred while the guest attempted to deliver an exception
through the IDT; otherwise cleared to zero.

• Errorcode—Bits 63–32. If EV is set to 1, holds the error code that the guest exception would have
pushed; otherwise is undefined.

In the case of multiple exceptions, EXITINTINFO records the aggregate information on all exceptions
but the last (intercepted) one.

Example: A guest raises a #GP during delivery of which a #NP is raised (a scenario that, according to
x86 rules, resolves to a #DF), and an intercepted #PF occurs during the attempt to deliver the #DF.
Upon intercept of the #PF, EXITINTINFO indicates that the guest was in the process of delivering a

63 32 31 30 12 11 10 8 7 0

ERRORCODE V Reserved, 0 EV TYPE VECTOR

Bits Mnemonic Description
63–32 ERRORCODE Error Code

31 V Valid
30–12 Reserved, 0
11 EV Error Code Valid

10–8 TYPE Qualifies the guest exception or interrupt. Table 15-1
shows possible values returned and their corresponding
interrupt or exception types. Values not indicated are
unused and reserved.

7–0 VECTOR 8-bit IDT vector of the interrupt or exception.

Table 15-1. Guest Exception or Interrupt Types

Value Type

0 External or virtual interrupt (INTR)

2 NMI

3 Exception (fault or trap)

4 Software interrupt (caused by INTn instruction)

378 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

#DF when the #PF occurred. The information about the intercepted page fault itself is encoded in the
EXITCODE, EXITINFO1 and EXITINFO2 fields. If the VMM decides to repair and dismiss the #PF,
it can resume guest execution by re-injecting (see “Event Injection” on page 396) the fault recorded in
EXITINTINFO. If the VMM decides that the #PF should be reflected back to the guest, it must
combine the event in EXITINTINFO with the intercepted exception according to x86 rules (see table
8-3). In this case, a #DF plus a #PF would result in a triple fault or shutdown.

15.7.3 EXITINTINFO Pseudo-Code

When delivering exceptions or interrupts in a guest, the processor checks for exception intercepts and
updates the value of EXITINTINFO should an intercept occur during exception delivery. The
following pseudo-code outlines how the processor delivers an event (exception or interrupt) E.

if E is an exception and is intercepted:
 #VMEXIT(E)
E = (result of combining E with any prior events)

if (result was #DF and #DF is intercepted):
 #VMEXIT(#DF)
if (result was shutdown and shutdown is intercepted):
 #VMEXIT(#shutdown)
EXITINTINFO = E // Record the event the guest is delivering.

Attempt delivery of E through the IDT
Note that this may cause secondary exceptions

Once an exception has been successfully taken in the guest:

EXITINTINFO.V = 0 // Delivery succeeded; no #VMEXIT.
Dispatch to first instruction of handler

When an exception triggers an intercept, the EXITCODE, and optionally EXITINFO1 and
EXITINFO2, fields always reflect the intercepted exception, while EXITINTINFO, if marked valid,
indicates the prior exception the guest was attempting to deliver when the intercept occurred.

15.8 Instruction Intercepts

Table 15-2 specifies the instructions that check a given intercept and, where relevant, how the intercept
is prioritized relative to exceptions.

Secure Virtual Machine 379

24593—Rev. 3.17—June 2010 AMD64 Technology

Table 15-2. Instruction Intercepts

Instruction Intercept Checked By Priority

Read/Write of CR0
MOV TO/FROM CR0, LMSW,
SMSW, CLTS

Checks non-memory exceptions (CPL, illegal bit
combinations, etc.) before the intercept. For
LMSW and SMSW, checks SVM intercepts before
checking memory exceptions.

Read/Write of CR3
(excluding task
switch)

MOV TO/FROM CR3 (not checked
by task switch operations)

Checks non-memory exceptions first, then the
intercept. If the intercept triggers on a write, the
intercept happens before the TLB is flushed. If
PAE is enabled, the loading of the four PDPEs can
cause a #GP; that exception is checked after the
intercept check, so the VMM handling a CR3
intercept cannot rely on the PDPEs being legal; it
must examine them in software if necessary.
The reads and writes of CR3 that occur in
VMRUN, #VMEXIT or task switches are not
subject to this intercept check.

Read/Write of other
CRs

MOV TO/FROM CRn
All normal exception checks take precedence over
the SVM intercepts.

Read/Write of Debug
Registers, DRn

MOV TO/FROM DRn. (Not
checked by implicit DR6/DR7
writes.)

All normal exception checks take precedence over
the SVM intercepts.

Selective CR0 Write
Intercept

MOV TO CR0, LMSW

Checks non-memory exceptions (CPL, illegal bit
combinations, etc.) before the intercept. For
LMSW and SMSW, checks SVM intercepts before
checking memory exceptions.
The selective write intercept on CR0 triggers only
if a bit other than CR0.TS or CR0.MP is being
changed by the write. In particular, this means that
CLTS does not check this intercept.
When both selective and non-selective CR0-write
intercepts are active at the same time, the non-
selective intercept takes priority. With respect to
exceptions, the priority of this intercept is the same
as the generic CR0-write intercept.
The LMSW instruction treats the selective CR0-
write intercept as a non-selective intercept (i.e., it
intercepts regardless of the value being written).

Reading or Writing
IDTR, GDTR, LDTR,
TR

LIDT, SIDT, LGDT, SGDT, LLDT,
SLDT, LTR, STR

The SVM intercept is checked after #UD and #GP
exception checks, but before any memory access
is performed.

RDTSC RDTSC Checks all exceptions before the SVM intercept.

RDPMC RDPMC Checks all exceptions before the SVM intercept.

PUSHF PUSHF Takes priority over any exceptions.

POPF POPF Takes priority over any exceptions.

380 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

CPUID CPUID No exceptions to check.

RSM RSM The intercept takes priority over any exceptions.

IRET IRET The intercept takes priority over any exceptions.

Software Interrupt INTn

The intercept occurs before any exceptions are
checked. The CS:rIP reported on #VMEXIT are
those of the intercepted INTn instruction.
Though the INTn instruction may dispatch through
IDT vectors in the range of 0–31, those events
cannot be intercepted by means of exception
intercepts (see “Exception Intercepts” on
page 383).

INVD INVD
Exceptions (#GP) are checked before the
intercept.

PAUSE PAUSE (opcode F3 90h).

No exceptions to check.
VMRUN copies the VMCB.PauseFilterCount into
an internal counter. Each PAUSE instruction
decrements the counter, and the PAUSE intercept
only occurs if the counter goes below zero while
the PAUSE intercept is enabled. The
VMCB.PauseFilterCount field is not written by the
processor. Certain events, including SMI, can
cause the internal count to be reloaded from the
VMCB.
VMCB.PauseFilterCount support is indicated by
EDX[10] as returned by CPUID extended function
8000_000A. If This feature is not supported or
VMCB.PauseFilterCount = 0, then the first PAUSE
instruction can be intercepted.

HLT HLT
Checks all exceptions before checking for this
intercept.

INVLPG INVLPG Checks all exceptions (#GP) before the intercept.

INVLPGA INVLPGA Checks all exceptions (#GP) before the intercept.

VMRUN VMRUN
Checks exceptions (#GP) before the intercept.

The current implementation requires that the
VMRUN intercept always be set in the VMCB.

VMLOAD VMLOAD Checks exceptions (#GP) before the intercept.

VMSAVE VMSAVE Checks exceptions (#GP) before the intercept.

VMMCALL VMMCALL
The intercept takes priority over exceptions.
VMMCALL causes #UD in the guest if it is not
intercepted.

STGI STGI Checks exceptions (#GP) before the intercept.

CLGI CLGI Checks exceptions (#GP) before the intercept.

SKINIT SKINIT Checks exceptions (#GP) before the intercept.

Table 15-2. Instruction Intercepts (continued)

Instruction Intercept Checked By Priority

Secure Virtual Machine 381

24593—Rev. 3.17—June 2010 AMD64 Technology

15.9 IOIO Intercepts

The VMM can intercept IOIO instructions (IN, OUT, INS, OUTS) on a port-by-port basis by means of
the SVM I/O permissions map.

I/O Permissions Map. The I/O Permissions Map (IOPM) occupies 12 Kbytes of contiguous physical
memory. The table is structured as a linear array of 64K+3 bits (two 4-Kbyte pages, and the first three
bits of a third 4-Kbyte page) and must be aligned on a 4-Kbyte boundary; the physical base address of
the IOPM is specified in the IOPM_BASE_PA field in the VMCB and loaded into the processor by the
VMRUN instruction. The VMRUN instruction ignores the lower 12 bits of the address specified in the
VMCB. If the address of the last byte in the table is greater than or equal to the maximum supported
physical address, this is treated as illegal VMCB state and causes a #VMEXIT(VMEXIT_INVALID).

Each bit in the table corresponds to an 8-bit I/O port. Bit 0 in the table corresponds to I/O port 0, bit 1
to I/O port 1 and so on. A bit set to 1 indicates that accesses to the corresponding port should be
intercepted. The IOPM is accessed by physical address, and should reside in memory that is mapped as
writeback (WB).

IN and OUT Behavior. If the IOIO_PROT intercept bit is set, the IOPM table controls port access.
For IN/OUT instructions that access more than a single byte, the permission bits for all bytes are
checked; if any bit is set to 1, the I/O operation is intercepted.

RDTSCP RDTSCP Checks all exceptions before the SVM intercept.

ICEBP ICEBP(opcode F1h).

Although the ICEBP instruction dispatches
through IDT vector 1, that event is not
interceptable by means of the #DB exception
intercept.

WBINVD WBINVD Checks exceptions (#GP) before the intercept.

MONITOR MONITOR Checks all exceptions before the intercept.

MWAIT MWAIT

Checks all exceptions before the intercept. There
are conditional and unconditional MWAIT
intercepts. The conditional MWAIT intercept is
checked before the unconditional MWAIT
intercept.
When both conditional and unconditional MWAIT
intercepts are active, the conditional intercept is
checked first. A hypervisor that sets both
intercepts will receive the conditional MWAIT
intercept exit code for a guest MWAIT instruction
that would have entered a low-power state, and
will receive the unconditional MWAIT intercept exit
code for a guest MWAIT instruction that would not
have entered the low-power state.

Table 15-2. Instruction Intercepts (continued)

Instruction Intercept Checked By Priority

382 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

Exceptions related to virtual x86 mode, IOPL, or the TSS-bitmap are checked before the SVM
intercept check. All other exceptions are checked after the SVM intercept check.

I/O Intercept Information. When an IOIO intercept triggers, the following information (describing
the intercepted operation in order to facilitate emulation) is saved in the VMCB’s EXITINFO1 field:

Figure 15-2. EXITINFO1 for IOIO Intercept

The rIP of the instruction following the IN/OUT is saved in EXITINFO2, so that the VMM can easily
resume the guest after I/O emulation.

15.10 MSR Intercepts

The VMM can intercept RDMSR and WRMSR instructions by means of the SVM MSR permissions
map (MSRPM) on a per-MSR basis.

MSR Permissions Map. The MSR permissions bitmap consists of a number of smaller separate
bitmaps of 2K bytes each covering a defined range of 8K MSRs. Four of these smaller bitmaps reside
in two physical pages (8KB, covering 32K MSRs). One 8Kbyte range is used for the Pentium®

compatible MSRs, the next 8K range is used for the AMD sixth generation x86 processor (AMD-K6®)
MSRs, and the third 8K range for the AMD seventh and eighth generation x86 processors (e.g., the
AMD Athlon™ and AMD Opteron™) MSRs. If the MSR_PROT intercept is active, any attempt to
read or write an MSR not covered by the bitmap will automatically cause an intercept.

31 16 15 12 10 9 8 7 6 5 4 3 2 1 0

PORT Reserved SEG
A
64

A
32

A
16

S
Z
32

S
Z
16

S
Z
8

R
E
P

S
T
R

0

T
Y
P
E

Bits Mnemonic Description
31–16 PORT Intercepted I/O port

15–13 Reserved, SBZ
12–10 SEG Effective segment number (see section 15.33.5)
9 A64 64-bit address

8 A32 32-bit address
7 A16 16-bit address
6 SZ32 32-bit operand size

5 SZ16 16-bit operand size
4 SZ8 8-bit operand size
3 REP Repeated port access

2 STR String based port access (INS, OUTS)
1 0

0 TYPE Access Type (0 = OUT instruction, 1 = IN instruction)

Secure Virtual Machine 383

24593—Rev. 3.17—June 2010 AMD64 Technology

The MSRPM is accessed by physical address, and should reside in memory that is mapped as
writeback (WB). The MSRPM must be aligned on a 4KB boundary. The physical base address of the
MSRPM is specified in MSRPM_BASE_PA field in the VMCB and is loaded into the processor by the
VMRUN instruction. The VMRUN instruction ignores the lower 12 bits of the address specified in the
VMCB, and if the address of the last byte in the table is greater than or equal to the maximum
sup po r t ed p hys i ca l a dd r e s s , t h i s i s t r e a t ed a s i l l ega l VMCB s t a t e an d ca use s a
#VMEXIT(VMEXIT_INVALID).

Table 15-3 defines the ranges of the MSR permissions map. For each MSR mapped by the table, two
bits are allocated—the lower order of the two bits controls read access to the MSR, and the higher
order of the two bits controls write access. A bit value of 1 indicates that the operation is intercepted.

RDMSR and WRMSR Behavior. If the MSR_PROT bit in the VMCB’s intercept vector is clear,
RDMSR/WRMSR instructions are not intercepted.

RDMSR and WRMSR instructions check for exceptions and intercepts in the following order:

• Exceptions common to all MSRs (e.g., #GP if not at CPL-0)

• Check SVM intercepts in the MSR permission map, if the MSR_PROT intercept is requested.

• Exceptions specific to a given MSR (including password protection, unimplemented MSRs,
reserved bits, etc.)

MSR Intercept Information. On #VMEXIT, the processor indicates in the VMCB’s EXITINFO1
whether a RDMSR (EXITINFO1 = 0) or WRMSR (EXITINFO1 = 1) was intercepted.

15.11 Exception Intercepts

When intercepting exceptions that define an error code (normally pushed onto the exception stack), the
SVM hardware delivers that error code in the VMCB’s EXITINFO1 field; the exception vector
number can be derived from the EXITCODE. The CS.SEL and rIP saved in the VMCB on an
exception-intercept match those that would otherwise have been pushed onto the exception stack
frame, except that when an interrupt-based instruction causes an intercept, the rIP of the instruction is
stored in the VMCB, rather than the rIP of the next instruction. The interrupt-based instructions are
INT3 (opcode CC), INTO, and BOUND.

Unless otherwise noted below, no special registers are written before an exception is intercepted. For
details on guest state saved in the VMCB, see Section 15.7.1.

Table 15-3. Ranges of MSR Permissions Map

Byte Offset MSR Range Current Usage

000h–7FFh 0000_0000h–0000_1FFFh Pentium®-compatible MSRs

800h–FFFh C000_0000h–C000_1FFFh AMD Sixth Generation x86 Processor MSRs and SYSCALL

1000h–17FFh C001_0000h–C001_1FFFh AMD Seventh and Eighth Generation Processor MSRs

1800h–1FFFh XXXX_XXXX–XXXX_XXXX reserved

384 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

External interrupts and software interrupts (INTn instruction) do not check the exception intercepts,
even when they use a vector in the range 0 to 31.

Exceptions that occur during the handling of a prior exception are checked for intercepts before being
combined with the prior exception (e.g., into a double-fault). If the result of combining exceptions is a
double-fault or shutdown, the processor checks whether those are intercepted before attempting
delivery.

Example: Assume that the VMM intercepts #GP and #DF exceptions, and the guest raises a (non-
intercepted) #NP, during the delivery of which it also gets a #GP (e.g., due to an illegal IDT entry)—a
situation that, according to x86 semantics, results in a #DF. In this case, #VMEXIT signals an
intercepted #GP, not an intercepted #DF and fills EXITINTINFO with the #NP fault. On the other
hand, if only the #DF intercept were active in this scenario, #VMEXIT would signal an intercepted
#DF.

The following subsections detail the individual intercepts.

15.11.1 #DE (Divide By Zero)

The EXITINFO1 and EXITINFO2 fields are undefined.

15.11.2 #DB (Debug)

The #DB exception can have fault-type (e.g., instruction breakpoint) or trap-type (e.g., data
breakpoint) behavior; accordingly the intercept differs in what state is saved in the VMCB (see “State
Saved on Exit” on page 375). In either case, however, the value saved for DR6 and DR7 matches what
would be visible to a #DB exception handler (i.e., both #DB faults and traps are permitted to write
DR6 and DR7 before the intercept). The EXITINFO1 and EXITINFO2 fields are undefined.

Fault-type #DB exceptions, whether indicated in EXITCODE or EXITINTINFO, cause the CS:rIP
saved in the VMCB to indicate the instruction that caused the #DB exception. Trap-type #DB
exceptions cause the VMCB’s CS:rIP to indicate the instruction following the instruction that caused
the exception. A vector 1 exception generated by the single byte INT1 instruction (also known as
ICEBP) does not trigger the #DB intercept. Software should use the dedicated ICEBP intercept to
intercept ICEBP (see “Instruction Intercepts” on page 378).

15.11.3 Vector 2 (Reserved)

This intercept bit is not implemented; use the NMI intercept (Section 15.12.2) instead. The effect of
setting this bit is undefined.

15.11.4 #BP (Breakpoint)

This intercept applies to the trap raised by the single byte INT3 (opcode CCh) instruction. The
EXITINFO1 and EXITINFO2 fields are undefined. The CS:rIP reported on #VMEXIT are those of the
INT3 instruction.

Secure Virtual Machine 385

24593—Rev. 3.17—June 2010 AMD64 Technology

15.11.5 #OF (Overflow)

This intercept applies to the trap raised by the INTO (opcode CEh) instruction. The EXITINFO1 and
EXITINFO2 fields are undefined.

15.11.6 #BR (Bound-Range)

This intercept applies to the fault raised by the BOUND instruction. The EXITINFO1 and
EXITINFO2 fields are undefined.

15.11.7 #UD (Invalid Opcode)

The EXITINFO1 and EXITINFO2 fields are undefined.

15.11.8 #NM (Device-Not-Available)

The EXITINFO1 and EXITINFO2 fields are undefined.

15.11.9 #DF (Double Fault)

The EXITINFO1 and EXITINFO2 fields are undefined. The rIP value saved in the VMCB is
undefined (as is the case for the rIP value pushed on the stack for #DF exceptions). If a double fault is
intercepted, the exceptions leading up to the double fault will have written any status registers
normally written by those exceptions.

15.11.10 Vector 9 (Reserved)

This intercept is not implemented. The effect of setting this bit is undefined.

15.11.11 #TS (Invalid TSS)

The EXITINFO1 and EXITINFO2 fields are undefined. The rIP value saved in the VMCB may point
to either the instruction causing the task switch, or to the first instruction of the incoming task. See
“Task Switch Intercept” on page 389 for information in the EXITINFO1 and EXITINFO2 fields.

15.11.12 #NP (Segment Not Present)

The EXITINFO1 field contains the error code that would be pushed on the stack by a #NP exception.
The EXITINFO2 field is undefined.

15.11.13 #SS (Stack Fault)

The EXITINFO1 field contains the error code that would be pushed on the stack by a #SS exception.
The EXITINFO2 field is undefined.

15.11.14 #GP (General Protection)

The EXITINFO1 field contains the error code that would be pushed on the stack by a #GP exception.

386 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

15.11.15 #PF (Page Fault)

This intercept is tested before CR2 is written by the exception. The error code saved in EXITINFO1 is
the same as would be pushed onto the stack by a non-intercepted #PF exception in protected mode.
The faulting address is saved in the EXITINFO2 field in the VMCB. Even when the guest is running in
paged real mode, the processor will deliver the (protected-mode) page-fault error code in EXITINFO1,
for the VMM to use in analyzing the intercepted #PF. The processor may provide additional
instruction decode assist information. (See section 15.9, “IOIO Intercepts,” on page 381.)

15.11.16 #MF (X87 Floating Point)

This intercept is tested after the floating point status word has been written, as is the case for a normal
FP exception. The EXITINFO1 and EXITINFO2 fields are undefined.

15.11.17 #AC (Alignment Check)

The EXITINFO1 field contains the error code that would be pushed on the stack by an #AC exception.
The EXITINFO2 field is undefined.

15.11.18 #MC (Machine Check)

The SVM intercept is checked after all #MC-specific registers have been written, but before other
guest state is modified. When #MC is being intercepted, a machine-check exits to the VMM, whenever
possible, and shuts down the processor only when this is not a reasonable option. The EXITINFO1 and
EXITINFO2 fields are undefined.

15.11.19 #XF (SIMD Floating Point)

This intercept is tested after the SIMD status word (MXCSR) has been written, as is the case for a
normal FP exception. The EXITINFO1 and EXITINFO2 fields are undefined.

15.12 Interrupt Intercepts

External interrupts, when intercepted, cause a #VMEXIT; the interrupt is held pending so that the
interrupt can eventually be taken in the VMM. Exception intercepts do not apply to external or
software interrupts, so it is not possible to intercept an interrupt by means of the exception intercepts,
even if the interrupt should happen to use a vector in the range from 0 to 31.

15.12.1 INTR Intercept

This intercept affects physical, as opposed to virtual, maskable interrupts. See “Virtual Interrupt
Intercept” on page 399 for virtualization of maskable interrupts.

15.12.2 NMI Intercept

This intercept affects non-maskable interrupts.

Secure Virtual Machine 387

24593—Rev. 3.17—June 2010 AMD64 Technology

15.12.3 SMI Intercept

This intercept affects System Management Mode Interrupts (SMIs); see “SMM Support” on page 401
for details on SMI handling.

When this intercept triggers, bit 0 of the EXITINFO1 field distinguishes whether the SMI was caused
internally by I/O Trapping (bit 0 = 0), or asserted externally (bit 0 = 1).

If the SMI was asserted while the guest was executing an I/O instruction, extra information (describing
the I/O instruction) is saved in the upper 32 bits of EXITINFO1, and the rIP of the I/O instruction is
saved in EXITINFO2. EXITINFO1 indicates that SMI was asserted during an I/O instruction when the
VALID bit is set.

If the SMI wasn't asserted during an I/O instruction, the extra EXITINFO1 and EXITINFO2 bits are
undefined.

The SMI intercept is ignored when HWCR[SMMLOCK] is set.

388 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 15-3. EXITINFO1 for SMI Intercept

15.12.4 INIT Intercept

The INIT intercept allows the VMM to intercept the assertion of INIT while a guest is running; see
“INIT Support” on page 400 for a discussion of the INIT-redirection feature.

15.12.5 Virtual Interrupt Intercept

This intercept is taken just before a guest takes a virtual interrupt. When the intercept triggers, the
virtual interrupt has not been taken, and remains pending in the guest's VMCB V_IRQ field. This
intercept is not required for handling fixed local APIC interrupts, but may be used for emulating
ExtINT interrupt delivery mode (which is not masked by the TPR), or legacy PICs in auto-EOI mode.

63 48 47 44 43 42 41 40 39 38 37 36 35 34 33 32

PORT BRP T
F

R
A
Z

A
64

A
32

A
16

S
Z
32

S
Z
16

S
Z
8

R
E
P

S
T
R

V
A
L

T
Y
P
E

31 12 10 1 0

Reserved
0

SEG
Reserved

0

S
M
I
S
R
C

Bits Mnemonic Description
63–48 PORT Intercepted I/O port
47–44 BRP I/O breakpoint matches

43 TF EFLAGS TF value
42 Reserved, RAZ
41 A64 64-bit address

40 A32 32-bit address
39 A16 16-bit address
38 SZ32 32-bit operand size

37 SZ16 16-bit operand size
36 SZ8 8-bit operand size
35 REP Repeated port access

34 STR String based port access (INS, OUTS)
33 VAL Valid (SMI was detected during an I/O instruction)

32 TYPE Access Type (0 = OUT instruction, 1 = IN instruction)

31–13 Reserved, 0
12–10 SEG Effective segment number (see section 15.33.5)
9–1 Reserved, 0

0 SMISRC SMI source (0 = internal, 1 = external)

Secure Virtual Machine 389

24593—Rev. 3.17—June 2010 AMD64 Technology

15.13 Miscellaneous Intercepts

The SVM architecture includes intercepts to handle task switches, processor freezes due to FERR, and
shutdown operations.

15.13.1 Task Switch Intercept

Checked by—Any instruction or event that causes a task switch (e.g., JMP, CALL, exceptions,
interrupts, software interrupts).

Priority—The intercept is checked before the task switch takes place but after the incoming TSS and
task gate (if one was involved) have been checked for correctness.

Task switches can modify several resources that a VMM may want to protect (CR3, EFLAGS, LDT).
However, instead of checking various intercepts (e.g., CR3 Write, LDTR Write) individually, task
switches check only a single intercept bit.

On #VMEXIT, the following information is delivered in the VMCB:

• EXITINFO1[15–0] holds the segment selector identifying the incoming TSS.

• EXITINFO2[31–0] holds the error code to push in the new task, if applicable; otherwise, this field
is undefined.

• EXITINFO2[63–32] holds auxiliary information for the VMM:

- EXITINFO2[36]—Set to 1 if the task switch was caused by an IRET; else cleared to 0.

- EXITINFO2[38]—Set to 1 if the task switch was caused by a far jump; else cleared to 0.

- EXITINFO2[44]—Set to 1 if the task switch has an error code; else cleared to 0.

- EXITINFO2[48]—The value of EFLAGS.RF that would be saved in the outgoing TSS if the
task switch were not intercepted.

15.13.2 Ferr_Freeze Intercept

Checked when the processor freezes due to assertion of FERR (while IGNNE is deasserted, and legacy
handling of FERR is selected in CR0.NE), i.e., while the processor is waiting to be unfrozen by an
external interrupt.

15.13.3 Shutdown Intercept

When this intercept occurs, any condition that normally causes a shutdown causes a #VMEXIT to the
VMM instead. After an intercepted shutdown, the state saved in the VMCB is undefined.

15.14 VMSAVE and VMLOAD Instructions

The VMSAVE and VMLOAD instructions take the physical address of a VMCB in rAX. These
instructions complement the state save/restore abilities of VMRUN instruction and #VMEXIT. They

390 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

provide access to hidden processor state that software cannot otherwise access, as well as additional
privileged state.

VMSAVE saves the following state to the VMCB indicated by rAX:

• FS, GS, TR, LDTR (including all hidden state)

• KernelGsBase

• STAR, LSTAR, CSTAR, SFMASK

• SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

VMLOAD loads the corresponding state from the VMCB. VMLOAD and VMSAVE are available
only at CPL-0 (#GP otherwise), and in protected mode with SVM enabled in EFER.SVME (#UD
otherwise).

15.15 VMCB State Caching

VMCB state caching allows the processor to cache certain guest register values in hardware between a
#VMEXIT and subsequent VMRUN instructions and use the cached values to improve context-switch
performance. Depending on the particular processor implementation, VMRUN loads each guest
register value either from the VMCB or from the VMCB state cache, as specified by the value of the
VMCB Clean field in the VMCB.

The SVM architecture uses the physical address of the VMCB as a unique identifier for the guest
virtual CPU for the purposes of deciding whether the cached copy belongs to the guest. For the
purposes of VMCB state caching, the ASID is not a unique identifier for a guest virtual CPU.

15.15.1 VMCB Clean Bits

The VMCB Clean field (VMCB 0C0h: 0-31) controls which guest register values are loaded from the
VMCB state cache on VMRUN. Each set bit in the VMCB Clean field allows the processor to load
one guest register or group of registers from the hardware cache; each clear bit requires that the
processor load the guest register from the VMCB. The clean bits are a hint, since any given processor
implementation may ignore bits that are set to 1 on any given VMRUN, unconditionally loading the
associated register value(s) from the VMCB. Clean bits that are set to zero are always honored.

This field is backward-compatible to CPUs that do not support VMCB state caching; older CPUs
neither cache VMCB state nor read the VMCB Clean field.

Older hypervisors that are not aware of VMCB state caching and obey the SBZ property of undefined
VMCB fields will not enable VMCB state caching.

15.15.2 Guidelines for Clearing VMCB Clean Bits

The hypervisor must clear specific bits in the VMCB Clean field every time it explicitly modifies the
associated guest state in the VMCB. The guest's execution can cause cached state to be updated, but

Secure Virtual Machine 391

24593—Rev. 3.17—June 2010 AMD64 Technology

the hypervisor is not responsible for setting VMCB Clean bits corresponding to any state changes
caused by guest execution.

The hypervisor must clear the entire VMCB field to 0 for a guest, in these circumstances:

• This is the first time a particular guest is run.

• The hypervisor executes the guest on a different CPU core than one used the last time that guest
was executed.

• The hypervisor has moved the guest's VMCB to a different physical page since the last time that
guest was executed.

Failure to clear the VMCB Clean bits to zero in these cases may result in undefined behavior.

The CPU automatically treats the VMCB Clean field as zero on the current VMRUN, in these cases:

• The hypervisor executes a guest that is not currently cached—the CPU compares the VMCB
physical address against all cached VMCB physical addresses and treats the VMCB Clean field as
zero, if no cached VMCB address matches.

• An SMI was taken since the last VMRUN.

392 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

15.15.3 VMCB Clean Field

The layout of the VMCB Clean field is illustrated in Figure 15-4 on page 392.

Figure 15-4. Layout of VMCB Clean Field

Undefined bits are ignored and reserved for future implementations. For forward compatibility, the
hypervisor can write FFFF_FFFFh to this field to indicate that it has not changed any VMCB contents
other than the fields described below as explicitly uncached. The hypervisor should write 0h to
indicate that the VMCB is new or potentially inconsistent with the CPU's cached copy, as occurs when
the hypervisor has allocated a new location for an existing VMCB from a list of free pages and does
not track whether that page had recently been used as a VMCB for another guest. If any VMCB fields
(excluding explicitly uncached fields) have been modified, all clean bits that are undefined (within the
scope of the hypervisor) must be cleared to zero. See also section 15.15.2, “Guidelines for Clearing
VMCB Clean Bits,” on page 390.

31 11 10 9 8 7 6 5 4 3 2 1 0

Ignored
L
B
R

C
R
2

S
E
G

DT
D
R
x

C
R
x

N
P

T
P
R

A
S
I
D

I
O
P
M

I

Bits Mnemonic Description

31–11 Ignored

10 LBR DbgCtlMsr, br_from/to, lastint_from/to

9 CR2 CR2

8 SEG CS/DS/SS/ES Sel/Base/Limit/Attr, CPL

7 DT GDT/IDT Limit and Base

6 DRx DR6, DR7

5 CRx CR0, CR3, CR4, EFER

4 NP Nested Paging: NCR3, PAT, Nested_Paging_En

3 TPR
V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR,
V_INTR_MASKING, V_INTR_VECTOR (Offset
60h–67h)

2 ASID ASID

1 IOPM IOMSRPM: IOPM_BASE, MSRPM_BASE

0 I
Intercepts: all the intercept vectors, TSC offset, Pause
Filter Count

Secure Virtual Machine 393

24593—Rev. 3.17—June 2010 AMD64 Technology

The following are explicitly not cached and not represented by Clean bits:

• TLB_Control

• Interrupt shadow

• VMCB status fields (Exitcode, EXITINFO1, EXITINFO2, EXITINTINFO, Decode Assist, etc.)

• Event injection

• RFLAGS, RIP, RSP, RAX

15.16 TLB Control

TLB entries are tagged with Address Space Identifier (ASID) bits to distinguish different host and/or
guest address spaces. The VMM can choose a software strategy in which it keeps multiple shadow
page tables (SPTs) and/or multiple nested page tables in processors that support nested paging up-to-
date; the VMM can allocate a different ASID for each SPT or nested page table. (See section 15.25,
“Nested Paging,” on page 411.) This allows switching to a new process in a guest (i.e., a new CR3
value, which means a new SPT or nested page table) without flushing the TLBs.

For each guest address space, the VMM is responsible for setting up a shadow page table or nested
page table that maps guest linear addresses to system physical addresses. In shadow paging, the VMM
sets the CR3 field in the guest VMCB to point to the system physical address of this shadow page
table. The VMM is responsible for updating the shadow page table when the guest changes the page
table or paging control state, and the VMM updates the access and dirty bits of the guest page table.

The VMRUN instruction and #VMEXIT write the CR0, CR3, CR4 and EFER registers — these writes
do not flush the TLB. The VMM is responsible for explicitly invalidating any guest translations that
may be affected by its actions; there are two mechanisms available, as described in the next two
sections.

When running with SVM enabled, global page table entries (PTEs) are global only within an ASID,
not across ASIDs.

Software Rule. When the VMM changes a guest’s paging mode by changing entries in the guest’s
VMCB, the VMM must ensure that the guest’s TLB entries are flushed from the TLB. The relevant
VMCB state includes:

• CR0—PG, WP, CD, NW.

• CR3—Any bit.

• CR4—PGE, PAE, PSE.

• EFER—NXE, LMA, LME.

15.16.1 TLB Flush

TLB flush operations function identically whether or not SVM is enabled (e.g., MOV-TO-CR3 flushes
non-global mappings, whereas MOV-TO-CR4 flushes global and non-global mappings). TLB flush
operations must not be assumed to affect all ASIDs. If a VMM sets the intercept bit for any guest

394 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

action that would have flushed the TLB, the #VMEXIT intercept occurs and the TLB is not flushed; it
is the VMM's responsibility to flush the TLB appropriately. In implementations that do not provide a
way to selectively flush all translations of a single specified ASID, software may effectively flush the
guest's TLB entries by allocating a new ASID for the guest and not reusing the old ASID until the
entire TLB has been flushed at least once.

The TLB_CONTROL field in the VMCB provides the commands specified by the control byte
encodings shown in Table 15-4. The first two commands are available on all processors that support

SVM; other commands are optionally available as indicated by CPUID.

When the VMM sets the TLB_CONTROL field to 1, the VMRUN instruction flushes the TLB for all
ASIDs, for both global and non-global pages. The VMRUN instruction reads, but does not change, the
value of the TLB_CONTROL field.

A MOV-to-CR3, a task switch that changes CR3, and clearing or setting the CR4.PGE bit affects only
the TLB entries belonging to the current ASID, regardless of whether the operation occurred in host or
guest mode. The current ASID is 0 when the CPU is not inside a guest context.

All TLB entries belonging to all ASIDs are flushed by SMI, RSM, MTRR modifications, IORR
modifications, and access to other system MSRs that affect address translation.

If a hypervisor modifies a nested page table by decreasing permission levels, clearing present bits, or
changing address translations and intends to return to the same ASID, it should use either TLB
command 011b or 001b.

15.16.2 Invalidate Page, Alternate ASID

The INVLPGA instruction allows the VMM to selectively invalidate the TLB mapping for a given
virtual page and a given ASID. The linear address is specified in the implicit register operand rAX; the
ASID is specified in ECX.

Table 15-4. TLB Control Byte Encodings

Encoding Function Definition

000b Do not flush

001b Flush entire TLB (Should be used only by legacy hyervisors.)

011b Flush this guest's TLB entries

111b Flush this guest's non-global TLB entries

Secure Virtual Machine 395

24593—Rev. 3.17—June 2010 AMD64 Technology

15.17 Global Interrupt Flag, STGI and CLGI Instructions

The global interrupt flag (GIF) is a bit that controls whether interrupts and other events can be taken by
the processor. The STGI and CLGI instructions set and clear, respectively, the GIF. Table 15-5 shows
how the value of the GIF affects how interrupts and exceptions are handled.

15.18 VMMCALL Instruction

This instruction is meant as a way for a guest to explicitly call the VMM. No CPL checks are
performed, so the VMM can decide whether to make this instruction legal at the user-level or not.

If VMMCALL instruction is not intercepted, the instruction raises a #UD exception.

Table 15-5. Effect of the GIF on Interrupt Handling

Interrupt source GIF==0 GIF ==1

Debug exception or trap,
due to breakpoint register
match

Ignored and discarded Normal operation

Debug trace trap due to
EFLAGS.TF

Normal operation Normal operation

RESET# Normal operation Normal operation

INIT Held pending until GIF==1 Normal operation, see Table 15-7 on page 400

NMI Held pending until GIF==1 Normal operation, see Table 15-8 on page 401

External SMI Held pending until GIF==1 Normal operation, see Table 15-9 on page 402

Internal SMI (I/O Trapping) Ignored and discarded Normal operation, see Table 15-9 on page 402

INTR and vINTR Held pending until GIF==1 Normal operation

#SX (Security Exception) n/a1 Normal operation

Machine Check
If possible (implementation-
dependent), held pending until
GIF==1, otherwise shutdown.

Normal operation

DBREQ# (enter HDT)
Normal operation Normal operation

(VM_CR.DPD always controls DBREQ)

A20M
Normal operation Normal operation

 (VM_CR.DIS_A20M controls A20 masking)

Other implementation-
specific but non-
architecturally-visible
interrupts (STPCLK,
IGNNE toggle, ECC scrub)

Normal operation Normal operation

Note:
1. #SX is caused only by an INIT signal that has been “redirected” (i.e., converted to an #SX; see Section 15.28 on

page 423); the conversion only happens when GIF==1, as the INIT is simply held pending otherwise.

396 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

15.19 Paged Real Mode

To facilitate virtualization of real mode, the VMRUN instruction may legally load a guest CR0 value
with PE = 0 but PG = 1. Likewise, the RSM instruction is permitted to return to paged real mode. This
processor mode behaves in every way like real mode, with the exception that paging is applied. The
intent is that the VMM run the guest in paged-real mode at CPL0, and with page faults intercepted.
The VMM is responsible for setting up a shadow page table that maps guest physical memory to the
appropriate system physical addresses.

The behavior of running a guest in paged real mode without intercepting page faults to the VMM is
undefined.

15.20 Event Injection

The VMM can inject exceptions or interrupts (collectively referred to as events) into the guest by
setting bits in the VMCB’s EVENTINJ field prior to executing the VMRUN instruction. The format of
the field is shown in Table 15-5 on page 397. The encoding matches that of the EXITINTINFO field.
When an event is injected by means of this mechanism, the VMRUN instruction causes the guest to
take the specified exception or interrupt unconditionally before executing the first guest instruction.

Injected events are treated in every way as though they had occurred normally in the guest (in
particular, they are recorded in EXITINTINFO) with the following exceptions:

• Injected events are not subject to intercept checks. (Note, however, that if secondary exceptions
occur during delivery of an injected event, those exceptions are subject to exception intercepts.)

• An injected NMI does not block delivery of further NMIs.

• If the VMM attempts to inject an event that is impossible for the guest mode (e.g., a #BR exception
when the guest is in 64-bit mode), the event injection will fail and no guest state instructions will be
executed; VMRUN will immediately exit with an error code of VMEXIT_INVALID.

• Injecting an exception (TYPE = 3) with vectors 3 or 4 behaves like a trap raised by INT3 and INTO
instructions, respectively, in which case the processor checks the DPL of the IDT descriptor before
dispatching to the handler.

• Software interrupts cannot be properly injected if the processor does not support the NextRIP field,
indicated by EDX[3] = 1 as returned by CPUID function 8000_000A. Hypervisor software should
emulate the event injection of software interrupts if NextRIP is not supported.

• Event injection does not support injection of intercepted #DB faults that are the result of a guest
ICEBP instruction. ICEBP does not perform DPL checks, as does INTn injection. Hypervisor
software should emulate the injection of ICEBP.

Secure Virtual Machine 397

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 15-5. EVENTINJ Field in the VMCB

The fields in EVENTINJ are as follows:

• VECTOR—Bits 7–0. The 8-bit IDT vector of the interrupt or exception. If TYPE is 2 (NMI), the
VECTOR field is ignored.

• TYPE—Bits 10–8. Qualifies the guest exception or interrupt to generate. Table 15-6 shows
possible values and their corresponding interrupt or exception types. Values not indicated are
unused and reserved.

• EV (Error Code Valid)—Bit 11. Set to 1 if the exception should push an error code onto the stack;
clear to 0 otherwise.

• V (Valid)—Bit 31. Set to 1 if an event is to be injected into the guest; clear to 0 otherwise.

• ERRORCODE—Bits 63–32. If EV is set to 1, the error code to be pushed onto the stack, ignored
otherwise.

VMRUN exits with VMEXIT_INVALID if either:

• Reserved values of TYPE have been specified, or

• TYPE = 3 (exception) has been specified with a vector that does not correspond to an exception
(this includes vector 2, which is an NMI, not an exception).

15.21 Interrupt and Local APIC Support

SVM hardware support is designed to ensure efficient virtualization of interrupts.

15.21.1 Physical (INTR) Interrupt Masking in EFLAGS

To prevent the guest from blocking maskable interrupts (INTR), SVM provides a VMCB control bit,
V_INTR_MASKING, which changes the operation of EFLAGS.IF and accesses to the TPR by means
of the CR8 register. While running a guest with V_INTR_MASKING cleared to zero:

63 32 31 30 12 11 10 8 7 0

ERRORCODE V Reserved, SBZ EV TYPE VECTOR

Table 15-6. Guest Exception or Interrupt Types

Value Type

0 External or virtual interrupt (INTR)

2 NMI

3 Exception (fault or trap)

4 Software interrupt (INTn instruction)

398 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

• EFLAGS.IF controls both virtual and physical interrupts.

While running a guest with V_INTR_MASKING set to 1:

• The host EFLAGS.IF at the time of the VMRUN is saved and controls physical interrupts while the
guest is running.

• The guest value of EFLAGS.IF controls virtual interrupts only.

15.21.2 Virtualizing APIC.TPR

SVM provides a virtual TPR register, V_TPR, for use by the guest; its value is loaded from the VMCB
by VMRUN and written back to the VMCB by #VMEXIT. The APIC's TPR always controls the task
priority for physical interrupts, and the V_TPR always controls virtual interrupts.

While running a guest with V_INTR_MASKING cleared to 0:

• Writes to CR8 affect both the APIC's TPR and the V_TPR register.

• Reads from CR8 operate as they would without SVM.

While running a guest with V_INTR_MASKING set to 1:

• Writes to CR8 affect only the V_TPR register.

• Reads from CR8 return V_TPR.

15.21.3 TPR Access in 32-Bit Mode

The mechanism for TPR virtualization described in section 15.21.2 applies only to accesses that are
performed using the CR8 register. However, in 32-bit mode, the TPR is traditionally accessible only by
using a memory-mapped register. Typically, a VMM virtualizes such TPR accesses by not mapping
the APIC page addresses in the guest. A guest access to that region then causes a #PF intercept to the
VMM, which inspects the guest page tables to determine the physical address and, after recognizing
the physical address as belonging to the APIC, finally invokes software emulation code.

To improve the efficiency of TPR accesses in 32-bit mode, SVM makes CR8 available to 32-bit code
by means of an alternate encoding of MOV TO/FROM CR8 (namely, MOV TO/FROM CR0 with a
LOCK prefix). To achieve better performance, 32-bit guests should be modified to use this access
method, instead of the memory-mapped TPR. (For details, see “MOV (CRn)” on page 286 of the
AMD64 Programmer’s Reference Volume 3: General Purpose and System Instructions, order# 24594.)

The alternate encodings of the MOV TO/FROM CR8 instructions are available even if SVM is
disabled in EFER.SVME. They are available in both 64-bit and 32-bit mode.

15.21.4 Injecting Virtual (INTR) Interrupts

Virtual Interrupts allow the host to pass an interrupt (#INTR) to a guest. While inside a guest, the
virtual interrupt follows the same rules that a real interrupt follows (virtual #INTR is not taken until
EFLAGS.IF is 1, the guest's TPR has enabled interrupts at the same priority as that of the pending
virtual interrupt).

Secure Virtual Machine 399

24593—Rev. 3.17—June 2010 AMD64 Technology

SVM provides an efficient mechanism by which the VMM can inject virtual interrupts into a guest:

• As described in Section 15.12.1, the VMM can intercept physical interrupts that arrive while a
guest is running, by activating the INTR intercept in the VMCB.

• As described in Section 15.21.4, the VMM can virtualize the interrupt masking logic by setting the
V_INTR_MASKING bit in the VMCB.

• The three VMCB fields V_IRQ, V_INTR_PRIO, and V_INTR_VECTOR indicate whether there
is a virtual interrupt pending, and, if so, what its vector number and priority are. The VMRUN
instruction loads this information into corresponding on-chip registers.

• The processor takes a virtual INTR interrupt if

- V_IRQ and V_INTR_PRIO indicate that there is a virtual interrupt pending whose priority is
greater than the value in V_TPR,

- interrupts are enabled in EFLAGS.IF,

- interrupts are enabled using GIF, and

- the processor is not in an interrupt shadow (see Section 15.21.5 on page 399).

The only other difference between virtual INTR handling and normal interrupt handling is that, in
the latter case, the interrupt vector is obtained from the V_INTR_VECTOR register (as opposed to
running an INTAK cycle to the local APIC).

• The V_IGN_TPR field in the VMCB can be set to indicate that the currently pending virtual
interrupt is not subject to masking by TPR. The priority comparison against V_TPR is omitted in
this case. This mechanism can be used to inject ExtINT-type interrupts into the guest.

• When the processor dispatches a virtual interrupt (through the IDT), V_IRQ is cleared after
checking for intercepts of virtual interrupts and before the IDT is accessed.

• On #VMEXIT, V_IRQ is written back to the VMCB, allowing the VMM to track whether a virtual
interrupt has been taken.

• Physical interrupts take priority over virtual interrupts, whether they are taken directly or through a
#VMEXIT.

• On #VMEXIT, the processor clears its internal copies of V_IRQ and V_INTR_MASKING, so
virtual interrupts do not remain pending in the VMM, and interrupt control reverts to normal.

15.21.5 Interrupt Shadows

The x86 architecture defines the notion of an interrupt shadow—a single-instruction window during
which interrupts are not recognized. For example, the instruction after an STI instruction that sets
EFLAGS.IF (from zero to one) does not recognize interrupts or certain debug traps. The VMCB
INTERRUPT_SHADOW field indicates whether the guest is currently in an interrupt shadow. This
information is saved on #VMEXIT and loaded on VMRUN.

15.21.6 Virtual Interrupt Intercept

When virtualizing interrupt handling, a VMM typically needs only gain control when new interrupts
for a guest arrive or are generated, and when the guest issues an EOI (end-of-interrupt). In some

400 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

circumstances, it may also be necessary for the VMM to gain control at the moment interrupts become
enabled in the guest (i.e., just before the guest takes a virtual interrupt). The VMM can do so by
enabling the VINTR intercept.

15.21.7 Interrupt Masking in Local APIC

When guests have direct access to devices, interrupts arriving at the local APIC can usually be
dismissed only by the guest that owns the device causing the interrupt. To prevent one guest from
blocking other guests’ interrupts (by never processing their own), the VMM can mask pending
interrupts in the local APIC, so they do not participate in the prioritization of other interrupts.

SVM introduces the following APIC features:

• A 256-bit IER (interrupt enable) register is added to the local APIC. This register resets to all ones
(enabling all 256 vectors). Software can read and write the IER by means of the memory-mapped
APIC page.

• Only vectors that are enabled in the IER participate in the APIC computation of the highest-
priority pending interrupt.

• The VMM can issue specific end-of-interrupt (EOI) commands to the local APIC, allowing the
VMM to clear pending interrupts in any order, rather than always targeting the interrupt with
highest-priority.

15.21.8 INIT Support

The INIT signal interrupts the processor at the next instruction boundary and causes an unconditional
control transfer. INIT reinitializes the control registers, segment registers and GP registers in a manner
similar to RESET#, but does not alter the contents of most MSRs, caches or numeric coprocessor (x87
or SSE) state, and then transfers control to the same instruction address as RESET# (physical address
FFFFFFF0h). Unlike RESET#, INIT is not expected to be visible to the memory controller, and hence
will not trigger automatic clearing of trusted memory pages by memory controller hardware.

To maintain the security of such pages, the VMM can request that INITs be redirected and turned into
#SX exceptions by setting the R_INIT bit in the VM_CR MSR (see section 15.29.1, “VM_CR MSR
(C001_0114h),” on page 424). This allows the VMM to gain control when an INIT is requested. The
VMM may thus disable the redirection of INIT and then cause the platform to reassert INIT, at which
point the processor will respond in the normal manner. The actions initiated by the INIT pin may also
be initiated by an incoming APIC INIT interrupt; the mechanisms described here apply in either case.
Table 15-7 summarizes the handling of INITs.

Table 15-7. INIT Handling in Different Operating Modes

GIF INIT Intercept INIT Redirect Processor Response to INIT

0 x x Hold pending until GIF = 1.

Secure Virtual Machine 401

24593—Rev. 3.17—June 2010 AMD64 Technology

15.21.9 NMI Support

The VMM can intercept non-maskable interrupts (NMI) using a VMCB control bit (see Table 15-8).
When intercepted, NMIs cause an exit from the guest and are held pending.

15.22 SMM Support

This section describes SVM support for virtualization of System Management Mode (SMM).

15.22.1 Sources of SMI

Various events can cause an assertion of a system management interrupt (SMI); these are classified
into three categories

• Internal, synchronous (also known as I/O Trapping)—implementation-specific IOIO or config
space trapping in the CPU itself; always synchronous in response to an IN or OUT instruction. I/O
Trapping is set up by means of MSRs and can be brought under the control of the VMM by
intercepting guest access to those MSRs.

• External, synchronous—IOIO trapping in response to (and synchronous with) IN or OUT
instructions, but generated by an external agent (typically the Southbridge).

• External, asynchronous—generated externally in response to an external, physical event, e.g.,
closing a laptop lid, temperature sensor triggering, etc.

15.22.2 Response to SMI

How hardware responds to SMIs is a function of whether SMM interrupts are being intercepted and
whether interrupts are enabled globally, as shown in Table 15-9.

1

1 x #VMEXIT(INIT), INIT is still pending.

0
0 Taken normally.

1 #SX, INIT is no longer pending.

Table 15-8. NMI Handling in Different Operating Modes

GIF NMI Intercept Processor Response to NMI

0 X Hold pending until GIF=1.

1
1 #VMEXIT(NMI), NMI is still pending.

0 Taken normally.

Table 15-7. INIT Handling in Different Operating Modes

GIF INIT Intercept INIT Redirect Processor Response to INIT

402 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

By intercepting SMIs, the VMM can gain control before the processor enters SMM.

15.22.3 Containerizing Platform SMM

In some usage scenarios, the VMM may not trust the existing platform SMM code, or may otherwise
want to ensure that the SMM does not operate in the context of certain guests or the hypervisor. To
address these cases, SVM provides the ability to containerize SMM code, i.e., run it inside a guest,
with the full protection mechanisms of the VMM in place. In other scenarios, the VMM may not want
to exert control over SMM.

There are three solutions for the VMM to control SMM handlers:

• The simplest solution is to not intercept SMI signals. SMIs encountered while in a guest context
are taken from within the guest context. In this case, the SMM handler is not subject to any
intercepts set up by the VMM and consequently runs outside of the virtualization controls. The
state saved in the SMM State-Save area as seen by the SMM handler reflects the state of the guest
that had been running at the time the SMI was encountered. When the SMM handler executes the
RSM instruction, the processor returns to executing in the guest context, and any modifications to
the SMM State-Save area made by the SMM handler is reflected in the guest state.

• A hypervisor may want to emulate all SMI-based I/O interceptions for a guest and to take SMI
signals only in the hypervisor context. The hypervisor should set all IOIO intercept bits and the
SMI intercept bit for the guest to ensure that there is no possibility of encountering synchronous
(internal or external) SMI signals while running the guest. Any #VMEXIT(SMI) encountered is
then known to be due to an external, asynchronous SMI. The hypervisor may respond to the
#VMEXIT(SMI) by executing the STGI instruction, which causes the pending SMI to be taken
immediately. When an SMI due to an I/O instruction is pending, the effect of executing STGI in the
hypervisor is undefined. To handle a pending SMI due to an I/O instruction, the hypervisor must
either containerize SMM or not intercept SMI.

• The most involved solution is to containerize SMM by placing it in a guest. Containerizing gives
the VMM full control over the state that the SMM handler can access.

Containerizing Platform SMM. A VMM can containerize SMM by creating its own trusted SMM
hypervisor and use that handler to run the platform SMM code in a container. The SMM hypervisor
may be the same code as the VMM itself, or may be an entirely different set of code. The trusted SMM
hypervisor sets up a guest context to run the platform SMM as a guest. The guest context consists of a
VMCB and related state and the guest's (real or virtual) SMM save area. The SMM hypervisor

Table 15-9. SMI Handling in Different Operating Modes

GIF
Intercept

SMI
Internal SMI External SMI

0 x Lost. Hold pending until GIF=1.

1
1

Exit guest,
code #VMEXIT(SMI), SMI is not pending.

#VMEXIT(SMI), SMI is still pending.

0 Taken normally. Taken normally.

Secure Virtual Machine 403

24593—Rev. 3.17—June 2010 AMD64 Technology

emulates SMM entry, including setup of the SMM save area, and emulates RSM at the end of SMM
operation. The guest executes the platform SMM code in paged real mode with appropriate SVM
intercepts in place, thus ensuring security.

For this approach to work, the VMM may need to write the SMM_BASE MSR, as well as related
SMM control registers. As part of the emulation of SMM entry and RSM, the VMM needs to access
the SMM_CTL MSR (see section 15.29.3, “SMM_CTL MSR (C001_0116h),” on page 425).
However, these actions conflict with any BIOS that locks SMM control registers.

A VMM can determine if it is running with a compatible BIOS setup by checking the SMMLOCK bit
in the HWCR MSR (described in the applicable BIOS and Kernel Developer's Guide for your
processor). If the bit is 1, the BIOS has locked the SMM control registers and the VMM is unable to
move them or insert its own SMM hypervisor.

As the processor physically enters SMM, the SMRAM regions are remapped. The VMM design must
ensure that none of its code or data disappears when the SMRAM areas are mapped or unmapped.
Also note that the ASEG region of the SMRAM overlaps with a portion of video memory, so the SMM
hypervisor should not attempt to write diagnostic messages to the screen. Any attempt by guests to
relocate any of the SMRAM areas (by means of certain MSR writes) must also be intercepted to
prevent malicious SMM code from interfering with VMM operation.

Writes to the SMM_CTL MSR cause a #GP if the BIOS has locked the SMM control registers.

15.23 Last Branch Record Virtualization

The AMD64 debug control MSR (DebugCtl) provides the processor control of control-transfer
recording and other debug tasks. (See Chapter 13, “Debug and Performance Resources,” on page 327,
for more detailed information on these subjects.) Software sets the last-branch record (DebugCtl.LBR)
bit to 1 to cause the processor to record the source and target addresses of the last control transfer taken
before a debug exception. These control transfers include branch instructions, interrupts, and
exceptions. Recorded information is stored in four MSRs:

• LastBranchFromIP—Holds the segment offset of the source instruction pointer (rIP).

• LastBranchToIP—Holds the segment offset of the target rIP.

• LastExceptionFromIP—Updated with the previous value of LastBranchFromIP during interrupts
and exceptions (except #DB exceptions caused by debug breakpoint and ICEBP).

• LastExceptionToIP—Updated with the previous value of LastBranchToIP during interrupts and
exceptions (except #DB exceptions caused by debug breakpoint and ICEBP).

Under SVM, the contents of the control-transfer recording MSRs must be exchanged between values
tracked by host and guest. This is done by activating LBR virtualization in the guest VMCB control
area.

404 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

15.23.1 Enabling LBR Virualization

Setting the LBR_VIRTUALIZATION_ENABLE bit to 1 in the VMCB control area enables LBR
virtualization. When LBR virtualization is enabled, the VMM stores an image of the DebugCtl MSR
and of each of the pointers stored in the control-transfer recording MSRs in four fields in the VMCB
state save area.

• DBGCTL—Holds the guest value of the DebugCTL MSR.

• BR_FROM—Holds the guest value of the LastBranchFromIP MSR.

• BR_TO—Holds the guest value of the LastBranchToIP MSR.

• LASTEXCPFROM—Holds the guest value of the LastExceptionToIP MSR.

• LASTEXCPTO—Holds the guest value of the LastExceptionFromIP MSR.

15.23.2 Host and Guest LBR Virtualization

When VMCB.LBR_VIRTUALIZATION_ENABLE[0] is set, VMRUN saves all five host control-
transfer MSRs in the host save area, and then loads the same five MSRS for the guest from the VMCB
save area. Similarly, #VMEXIT saves the guest's MSRs and loads the host's MSRs to and from their
respective save areas.

15.23.3 LBR Virtualization CPUID Feature Detection

EDX bit 1 as returned by CPUID function 8000_000Ah reports the LBR virtualization feature on
AMD64 processors.

15.24 External Access Protection

By securing the virtual address translation mechanism, the VMM can restrict guest CPU accesses to
memory. However, should the guest have direct access to DMA-capable devices, an additional
protection mechanism is required. SVM provides multiple protection domains which can restrict
device access to physical memory on a per-page basis. This is accomplished via control logic in the
Northbridge’s host bridge which governs any external access port (e.g., PCI or HyperTransport™
technology interfaces).

15.24.1 Device IDs and Protection Domains

The Northbridge’s host bridge provides a number of protection domains. Each protection domain has
associated with it a device exclusion vector (DEV) that specifies the per-page access rights of devices
in that domain. Devices are identified by a HyperTransport™ bus/unitID (device ID) and the host
bridge contains a lookup table of fixed size that maps device IDs to a protection domain.

15.24.2 Device Exclusion Vector (DEV)

A DEV is a contiguous array of bits in physical memory; each bit in the DEV (in little-endian order)
corresponds to one 4-Kbyte page in physical memory.

Secure Virtual Machine 405

24593—Rev. 3.17—June 2010 AMD64 Technology

The physical address of the base of a DEV must be 4-Kbyte-aligned and stored in one of the
DEVBASE registers, which are accessed through an indirection mechanism in the DEVCTL PCI
Configuration Space function block in the host bridge (see “DEV Control and Status Registers” on
page 408). The DEV protection hardware is not operational until enabled by setting a control bit in the
DEV Control Register, also in the DEVCTL function block.

The DEV may have to cover part of MMIO space beyond the DRAM. Especially in 64-bit systems, the
operating system should map MMIO space starting immediately after the DRAM area and building
up, as opposed to starting down from the maximum physical address.

Host Bridge and Processor DEV Caching. For improved performance, the host bridge may cache
portions of the DEV. Any such cached information can be invalidated by setting the DEV_FLUSH flag
in the DEV control register to 1. Software must set this flag after modifying DEV contents to ensure
that the protection logic uses the updated values. The host bridge automatically clears this flag when
the flush operation completes. After setting this flag, software should monitor it until it has cleared, in
order to synchronize DEV updates with subsequent activity.

By default, the host bridge probes the processor caches for the latest data when it accesses the DEV in
DRAM. However, it is possible to disable probing by means of the DEV_CR register (see “DEV_CR
Register” on page 408); this is recommended in the case of unified memory architecture (UMA)
graphics systems. If cache probing is disabled, host bridge reads of the DEV will not check processor
caches for more recent copies. This requires software on the CPU to map the memory containing the
DEV as uncacheable (UC) or write-through (WT). Alternatively, software must perform a CLFLUSH
before it can expect a change to the DEV to be visible by the Northbridge (and before software flushes
the DEV cache in the host controller).

Multiprocessor Issues. Device-originated memory requests are checked against the DEV at the
point of entry to the system—the Northbridge to which the device is physically attached. Each
Northbridge can have its own set of domains, device-to-domain mappings, and DEV tables (e.g.,
domain #2 on one node can encompass different devices, and can have different access rights than
domain #2 on another node). Thus, the number of protection domains available to software can scale
with the number of Northbridges in the system.

15.24.3 Access Checking

Memory Space Accesses. When a memory-space read or write request is received on an external
host bridge port, the host bridge maps the HyperTransport bus device ID to a protection domain
number, which in turn selects the DEV defining the access permissions for the device (see
Figure 15-6 on page 406). The host bridge then checks the memory address against the DEV contents
by indexing into the DEV with the PFN portion of the address (bits 39–12). The PFN is used as a bit
index within the DEV. If the bit read from the DEV is set to 1, the host bridge inhibits the access by
returning all ones for the data for a read request, or suppressing the store operation on a write request.
A Master Abort error response will be returned to the requesting device.

Peer-to-peer memory accesses routed up to the host bridge are also subjected to checks against the
DEV. Peer-to-peer transfers that may be occurring behind bridges are not checked.

406 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

DEV checks are applied before addresses are translated by the GART. The DEV table is never
consulted by accesses originating in the CPU.

I/O Space Accesses. The host bridge can be configured to reject all I/O space accesses from
devices, by setting the IOSPE bit in the DEV_CR control register (see “DEV_CR Register” on
page 408). I/O space peer-to-peer transfers behind bridges are not checked.

Config Space Accesses. Major aspects of host bridge functionality are configured by means of
control registers that are accessed through PCI configuration space. Because this is potentially
accessible by means of device peer-to-peer transfers, the host bridge always blocks access to this space
from anything other than the CPU.

Figure 15-6. Host Bridge DMA Checking

15.24.4 DEV Capability Block

The presence of DEV support is indicated through a new PCI capability block. The capability block
also provides access to the registers that control operation of the DEV feature.

The DEV capability block in PCI space contains three 32-bit words: the capability header
(DEV_HDR), and two registers (DEV_OP and DEV_DATA) which serve as an indirection
mechanism for accessing the actual DEV control and status registers.

DEV Cache

with
 Domain#

Tagged

DEV Table
Walker

HyperTransport

to
Domain#

(Zero if No Match)

Bus/Dev ID

Physical Address

DEV_BASE/LIMIT[0]

DEV_BASE/LIMIT[1]

DEV_BASE/LIMIT[2]

DEV_BASE/LIMIT[3]

Domain#Bus/Dev ID

TM

Secure Virtual Machine 407

24593—Rev. 3.17—June 2010 AMD64 Technology

DEV Capability Header. The DEV capability header (DEV_HDR) is defined in Table 15-11.

15.24.5 DEV Register Access Mechanism

The Northbridge’s DEV control and status registers are accessed through an indirection mechanism:
writing the DEV_OP register selects which internal register is to be accessed, and the DEV_DATA
register can be read or written to access the selected register.

Figure 15-7 shows the format of the DEV_OP register. The DEV_DATA register reflects the format of
the DEV register selected in DEV_OP.

Figure 15-7. Format of DEV_OP Register (in PCI Config Space)

The FUNCTION field in the DEV_OP register selects the function/register to read or write according
to the encoding in Table 15-12; for blocks of registers that have multiple instances (e.g., multiple
DEV_BASE_HI/LO registers), the INDEX field selects the instance; otherwise it is ignored.

Table 15-10. DEV Capability Block, Overall Layout

Byte Offset Register Comments

0 DEV_HDR Capability block header

4 DEV_OP Selects control/status register to access

8 DEV_DATA Read/write to access register selected in DEV_OP

Table 15-11. DEV Capability Header (DEV_HDR) (in PCI Config Space)

Bit(s) Definition

31–22 Reserved, MBZ

21 Interrupt Reporting Capability

20 Machine Check Exception Reporting Capability

19 Reserved, MBZ

18–16 DEV Capability Block Type; hardwired to 000b.

15–8 PCI Capability pointer; points to next capability in list

7–0 PCI Capability ID; hardwired to 0x0F

31 16 15 8 7 0

Reserved, MBZ FUNCTION INDEX

408 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

For example, to write the DEV_BASE_HI register for protection domain number 2, software sets
DEV_OP.FUNCTION to 1, and DEV_OP.INDEX to 2, and then writes the desired 32-bit value into
DEV_DATA. As the DEV_OP and DEV_DATA registers are accessed through PCI config space (ports
0CF8h–0CFFh), they may be secured from unauthorized access by software executing on the
processor by appropriate settings in the SVM I/O protection bitmap. These registers are also protected
by the host bridge from external access as described in “Config Space Accesses” on page 406.

15.24.6 DEV Control and Status Registers

The DEV control and status registers are accessible by means of the indirection mechanism; these
registers are not directly visible in PCI config space.

DEV_CAP Register. Read-only register; holds implementation specific information: the number of
protection domains supported, the number of DEV_MAP registers (which map device/unit IDs to
domain numbers), and the revision ID.

Figure 15-8. Format of DEV_CAP Register (in PCI Config Space)

The initial implementation provide four domains and three map registers.

DEV_CR Register. This is the main control register for the DEV mechanism; it is cleared to zero by
RESET.

Table 15-12. Encoding of Function Field in DEV_OP Register

Function Code RegisterType Number of Instances

0 DEV_BASE_LO multiple

1 DEV_BASE_HI multiple

2 DEV_MAP multiple

3 DEV_CAP single

4 DEV_CR single

5 DEV_ERR_STATUS single

6 DEV_ERR_ADDR_LO single

7 DEV_ERR_ADDR_HI single

31 24 23 16 15 8 7 0

Reserved, RAZ N_MAPS N_DOMAINS REVISION

Secure Virtual Machine 409

24593—Rev. 3.17—June 2010 AMD64 Technology

DEV_BASE Address/Limit Registers. The DEV base address registers (one set per domain) each
point to the physical address of a DEV table corresponding to a protection domain. The address and
size are encoded in a pair (high/low) of 32-bit registers. The N_DOMAINS field in DEV_CAP
indicates how many (pairs of) DEV_BASE registers are implemented. The register format is as shown
in Figures 15-9 and 15-10.

Figure 15-9. Format of DEV_BASE_HI[n] Registers

Figure 15-10. Format of DEV_BASE_LO[n] Registers

Fields of the DEV_BASE_HI and DEV_BASE_LO registers are defined as follows:

• Valid (V)—Bit 0. Indicates whether a DEV table has been defined for the given protection domain;
if this bit is clear, software can leave the other fields undefined, and no protection checks are
performed for memory references in this domain.

Table 15-13. DEV_CR Control Register

Bit(s) Definition

31-7 Reserved, MBZ

6
DEV table walk probe disable.
0 = Use probe on DEV walk; 1 = Do not use probe

5
SL_DEV_EN. Enable bit for limited memory protection, see Section 15.24.8 on
page 410. Set to “1” by SKINIT instruction, can be cleared by software.

4
Invalidate DEV cache. Software must set this bit to 1 to invalidate the DEV cache;
cleared by hardware when invalidation is complete.

3
Enable MCE reporting.
0 = Do not generate MCE; 1 = Generate MCE on errors.

2
I/O space protection enable (IOSPEN)
0 = Allow upstream I/O cycles; 1 = Block.

1
Memory clear disable. If non-zero, memory-clearing on reset is disabled.
This bit is not writable until the memory is enabled.

0 DEV global enable bit. If zero, DEV protection is turned off.

31 8 7 0

Reserved, MBZ BASEADDRESS[39–32]

31 12 11 7 6 2 1 0

BASEADDRESS[31–12] Reserved, MBZ SIZE P V

410 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

• Protect (P)—Bit 1. Indicates whether accesses to addresses beyond the address range covered by
the DEV are legal (P=0) or illegal (P=1).

• SIZE—Bits 6–2. Specifies how much memory the DEV covers, expressed increments of 4GB *
2size. In other words, a DEV table covers a minimum of 4GB, and can expand by powers of two.

DEV_MAP Registers. The DEV_MAP registers assign protection domain numbers to device-
originated requests by matching the device ID (HT bus and unit number) associated with the request
against bus and unit numbers in the registers. If no match is found in any of the registers, a domain
number of zero is returned. The number of DEV_MAP registers implemented by the chip is indicated
by the N_MAPS field in DEV_CAP.

The format of the DEV_MAP registers is shown in Figure 15-11.

Figure 15-11. Format of DEV_MAP[n] Registers

The fields of the DEV_MAP[n] registers are defined as follows:

• UNIT0—Bits 4–0. Specifies the first of two HyperTransport link unit numbers on the bus number
specified by the BUSNO field.

• V0—Bit 5. Indicates whether UNIT0 is valid (no matches occur on invalid entries).

• UNIT1—Bits 10–6. Specifies the second of two HyperTransport link unit numbers on the bus
number specified by the BUSNO field.

• V1—Bit 11. Indicates whether UNIT1 is valid (no matches occur on invalid entries).

• BUSNO—Bits 19–12. Specifies a HyperTransport link bus number.

• DOM0—Bits 25–20. Specifies the protection domain for the first HyperTransport link unit.

• DOM1—Bits 31–26. Specifies the protection domain for the second HyperTransport link unit.

15.24.7 Unauthorized Access Logging

Any attempted unauthorized access by devices to DEV-protected memory is logged by the host bridge
in the DEV_Error_Status and DEV_Error_Address registers for possible inspection by the VMM.

15.24.8 Secure Initialization Support

The host bridge contains additional logic that operates in conjunction with the SKINIT instruction to
provide a limited form of memory protection during the secure startup protocol. This provides
protection for a Secure Loader image in memory, allowing it to, among other things, set up full DEV
protection. (See “Secure Startup with SKINIT” on page 418 for detailed operation of SKINIT.)

31 26 25 20 19 12 11 10 6 5 4 0

DOM1 DOM0 BUSNO V1 UNIT1 V0 UNIT0

Secure Virtual Machine 411

24593—Rev. 3.17—June 2010 AMD64 Technology

The host bridge logic includes a hidden (not accessible to software) SL_DEV_BASE address register.
SL_DEV_BASE points to a 64KB-aligned 64KB region of physical memory. When SL_DEV_EN is
1, the 64KB region defined by SL_DEV_BASE is protected from external access (as if it were
protected by the DEV), as well as from any access (both CPU and external accesses) via GART-
translated addresses. Additionally, the SL_DEV mechanism, when enabled, blocks all device accesses
to PCI Configuration space.

15.25 Nested Paging

The optional SVM nested paging feature provides for two levels of address translation, thus
eliminating the need for the VMM to maintain shadow page tables.

15.25.1 Traditional Paging versus Nested Paging

Figure 15-12 on page 411 shows how a page in the linear address space is mapped to a page in the
physical address space in traditional (single-level) address translation. Control register CR3 contains
the physical address of the base of the page tables (PT, represented by the shaded box in the figure),
which governs the address translation.

Figure 15-12. Address Translation with Traditional Paging

With nested paging enabled, two levels of address translation are applied; refer to Figure 15-13 below.

• Both guest and host levels have their own copy of CR3, referred to as gCR3 and nCR3,
respectively.

• Guest page tables (gPT) map guest linear addresses to guest physical addresses. The guest page
tables are in guest physical memory, and are pointed to by gCR3.

• Nested page tables (nPT) map guest physical addresses to system physical addresses. The nested
page tables are in system physical memory, and are pointed to by nCR3.

• The most-recently used translations from guest linear to system physical address are cached in the
TLB and used on subsequent guest accesses.

Linear Space

PT

0

0

CR3

412 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

It is important to note that gCR3 and the guest page table entries contain guest physical addresses, not
system physical addresses. Hence, before accessing a guest page table entry, the table walker first
translates that entry’s guest physical address into a system physical address.

Figure 15-13. Address Translation with Nested Paging

The VMM can give each guest a different ASID, so that TLB entries from different guests can coexist
in the TLB. The ASID value of zero is reserved for the host; if the VMM attempts to execute VMRUN
with a guest ASID of zero, the result is #VMEXIT(VMEXIT_INVALID).

15.25.2 Replicated State

Most processor state affecting paging is replicated for host and guest. This includes the paging
registers CR0, CR3, CR4, EFER and PAT. CR2 is not replicated but is loaded by VMRUN. The
MTRRs are not replicated.

While nested paging is enabled, all (guest) references to the state of the paging registers by x86 code
(MOV to/from CRn, etc.) read and write the guest copy of the registers; the VMM's versions of the
registers are untouched and continue to control the second level translations from guest physical to
system physical addresses. In contrast, when nested paging is disabled, the VMM's paging control
registers are stored in the host state save area and the paging control registers from the guest VMCB
are the only active versions of those registers.

Guest Linear

gPT

0

0

Host Linear

0

nPT

0

Guest Physical

pa
ge

d
by

gC
R

3gCR3

nCR3

PT

CR3 (used by VMM)

System Physical

paged by

the VMM’s CR3

p
ag

ed
 b

y

n
C

R
3

TL
B

 E
nt

ry VMM

gPT

p
ag

ed
 b

y

n
C

R
3

Secure Virtual Machine 413

24593—Rev. 3.17—June 2010 AMD64 Technology

15.25.3 Enabling Nested Paging

The VMRUN instruction enables nested paging when the NP_ENABLE bit in the VMCB is set to 1.
The VMCB contains the hCR3 value for the page tables for the extra translation. The extra translation
uses the same paging mode as the VMM used when it executed the most recent VMRUN.

Nested paging is automatically disabled by #VMEXIT.

Nested paging is allowed only if the host has paging enabled. CPUID function 8000_000A.EDX[0]
indicates that nested paging is available. If VMRUN is executed with hCR0.PG cleared to zero and
NP_ENABLE set to 1, VMRUN terminates with #VMEXIT(VMEXIT_INVALID).

15.25.4 Nested Paging and VMRUN/#VMEXIT

When VMRUN is executed with nested paging enabled (NP_ENABLE = 1), the paging registers are
affected as follows:

• VMRUN saves the VMM’s CR3 in the host save area.

• VMRUN loads the guest paging state from the guest VMCB into the guest registers (i.e., VMRUN
loads CR3 with the VMCB CR3 field, etc.). The guest PAT register is loaded from G_PAT field in
the VMCB.

• VMRUN loads nCR3, the version of CR3 to be used while the nested-paging guest is running,
from the N_CR3 field in the VMCB. The other host paging-control bits (hCR4.PAE, etc.) remain
the same as they were in the VMM at the time VMRUN was executed.

When VMRUN is executed with nested paging enabled (NP_ENABLE = 1), the following conditions
are considered illegal state combinations, in addition to those mentioned in “Canonicalization and
Consistency Checks” on page 373:

• Any MBZ bit of nCR3 is set.

• Any G_PAT.PA field has an unsupported type encoding or any reserved field in G_PAT has a non-
zero value. (See section 7.8.1, “PAT Register,” on page 193.)

When #VMEXIT occurs with nested paging enabled:

• #VMEXIT writes the guest paging state (gCR3, gCR0, etc.) back into the VMCB. nCR3 is not
saved back into the VMCB.

• #VMEXIT need not reload any host paging state other than CR3 from the host save area, though an
implementation is free to do so.

15.25.5 Nested Table Walk

When the guest is running with nested paging enabled, a TLB miss causes several nested table walks:

• Guest Page Tables—the gCR3 register specifies a guest physical address, as do the entries in the
guest's page tables. These guest physical addresses must be translated to system physical addresses
using the nested page tables. Nested page table level faults can occur on these accesses, including
write faults due to setting of accessed and dirty bits in the guest page table.

414 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

• Final Guest-Physical Page—once a guest linear to guest physical mapping is known, guest
permissions can be checked. If the guest page tables allow the access, the guest physical address is
walked in the nested page tables to find the system physical address.

Table walks for guest page tables are always treated as user writes at the nested page table level. For
this reason,

• the page must be writable by user at the nested page table level, or else a #VMEXIT(NPF) is
raised, and

• the dirty and accessed bits are always set in the nested page table entries that were touched during
nested page table walks for guest page table entries.

A table walk for the guest page itself is always treated as a user access at the nested page table level,
but is treated as a data read, data write, or code read, depending on the guest access.

If the guest has paging disabled (gCR0.PG = 0), there are no guest page table entries to be translated in
the nested page tables. In this case, the final guest-physical address is equal to the guest-linear address,
and is still translated in the nested page tables.

15.25.6 Nested versus Guest Page Faults, Fault Ordering

In nested paging, page faults can be raised at either the guest or nested page table level. Nested walks
proceed in the following order; faults are generated in the same order:

1. Walk the guest page table entries in the nested page table. Dirty/Accessed bits are set as needed in
the nested page table. Any nested page table faults result in #VMEXIT(NPF).

2. As the guest page table walk proceeds from the top of the page table to the last entry, any not-
present entries or reserved bits in the guest page table entries at each level of the guest walk cause
#PF in the guest. Guest dirty and accessed bits are set as needed in the guest page tables during the
walk. Steps 1 and 2 are repeated for each level of the guest page table that is traversed.

3. Once the guest physical address for the guest access has been determined, check the guest
permissions; any fault at this point causes a #PF in the guest.

4. Perform the final translation from guest physical to system physical using the nested page table;
any fault during this translation results in a #VMEXIT(NPF).

Nested page faults are entirely a function of the nested page table and VMM processor mode. Nested
faults cause a #VMEXIT(NPF) to the VMM. The faulting guest physical address is saved in the
VMCB's EXITINFO2 field; EXITINFO1 delivers an error code similar to a #PF error code:

• Bit 0 (P)—cleared to 0 if the nested page was not present, 1 otherwise

• Bit 1 (RW)—set to 1 if the nested page table level access was a write. Note that host table walks for
guest page tables are always treated as data writes.

• Bit 2 (US)—always 1, since all guest accesses are treated as user accesses at the nested level

• Bit 3 (RSV)—set to 1 if reserved bits were set in the corresponding nested page table entry

Secure Virtual Machine 415

24593—Rev. 3.17—June 2010 AMD64 Technology

• Bit 4 (ID)—set to 1 if the nested page table level access was a code read. Note that nested table
walks for guest page tables are always treated as data writes, even if the access itself is a code read

In addition, the VMCB contents for nested page faults indicate whether the page fault was encountered
during the nested page table walk for a guest page TLB entry, or for the final nested walk for the guest
physical address, as indicated by EXITINFO1[33:32]:

• Bit 32—set to 1 if nested page fault occurred while translating the guest’s final physical address

• Bit 33—set to 1 if nested page fault occurred while translating the guest page tables

Guest faults are entirely a function of the guest page tables and processor mode; they are delivered to
the guest as normal #PF exceptions without any VMM intervention, unless the VMM is intercepting
guest #PF exceptions. Bits 32 and 33 of EXITINFO1 are written during nested page faults to indicate
whether the page fault was encountered during the nested page table walk for a guest page table's table
entries, or if the fault was encountered during the nested page table walk for the translation of the final
guest physical address.

The processor may provide additional instruction decode assist information. (See section 15.9, “IOIO
Intercepts,” on page 381.)

15.25.7 Combining Nested and Guest Attributes

Any access to guest physical memory is subjected to a permission check by examining the mapping of
the guest physical address in the nested page table.

A page is considered writable by the guest only if it is marked writable at both the guest and nested
page table levels. Note that the guest’s gCR0.WP affects only the interpretation of the guest page table
entry; setting gCR0.WP cannot make a page writable at any CPL in the guest, if the page is marked
read-only in the nested page table. The host hCR0.WP bit is ignored under nested paging.

A page is considered executable by the guest only if it is marked executable at both the guest and
nested page table levels. If the EFER.NXE bit is cleared for the guest, all guest pages are executable at
the guest level. Similarly, if the EFER.NXE bit is cleared for the host, all nested page table mappings
are executable at the underlying nested level.

Some attributes are taken from the guest page tables and operating modes only. A page is considered
global within the guest only if is marked global in the guest page tables; the nested page table entry and
host hCR4.PGE are irrelevant. Global pages are only global within their ASID.

A page is considered user in the guest only if it is marked as user at the guest level. The page must be
marked user in the nested page table to allow any guest access at all.

15.25.8 Combining Memory Types, MTRRs

When nested paging is disabled, the processor behaves as though there is no gPAT register. When
nested paging is enabled, the processor combines guest and nested page table memory types. Registers
that affect memory types include:

416 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

• The PCD/PWT/PATi bits in the nested and guest page table entries.

• The PCD/PWT bits in the nested CR3 and guest CR3 registers.

• The guest PAT type (obtained by appropriately indexing the gPAT register).

• The host PAT type (obtained by appropriately indexing the host’s PAT register).

• The MTRRs (which are referenced based only on system physical address).

• gCR0.CD and hCR0.CD.

Note that there is no hardware support for guest MTRRs; the VMM can simulate their effect by
altering the memory types in the nested page tables. Note that the MTRRs are only applied to system
physical addresses.

The rules for combining memory types when constructing a guest TLB entry are:

• Nested and guest PAT types are combined according to Table 15-14 on page 417, producing a
“combined PAT type”

• the combined PAT type is further combined with the MTRR type according to Table 15-15 on
page 417, where the relevant MTRRs are determined by the system physical address.

• either gCR0.CD or hCR0.CD can disable caching

Memory Consistency Issues. Because the guest uses extra fields to determine the memory type, the
VMM may use a different memory type to access a given piece of memory than does the guest. If one
access is cacheable and the other is not, the VMM and guest could observe different memory images,
which is undesirable. (MP systems are particularly sensitive to this problem when the VMM desires to
migrate a virtual processor from one physical processor to another.)

To address this issue, the following mechanisms are provided:

• VMRUN and #VMEXIT flush the write combiners. This ensures that all writes to WC memory by
the guest are visible to the host (or vice-versa) regardless of memory type. (It does not ensure that
cacheable writes by one agent are properly observed by WC reads or writes by the other agent.)

• A new memory type WC+ is introduced. WC+ is an uncacheable memory type, and combines
writes in write-combining buffers like WC. Unlike WC (but like the CD memory type), accesses to
WC+ memory also snoop the caches on all processors (including self-snooping the caches of the
processor issuing the request) to maintain coherency. This ensures that cacheable writes are
observed by WC+ accesses.

• When combining nested and guest memory types that are incompatible with respect to caching, the
WC+ memory type is used instead of WC (and Table 15-15 on page 417 ensures that the snooping
behavior is retained regardless of the host MTRR settings). Refer to Table 15-14 on page 417 or
details.

Table 15-14 shows how guest and host PAT types are combined into an effective PAT type. When
interpreting this table, recall (a) that guest and host PAT types are not combined when nested paging is
disabled and (b) that the intent is for the VMM to use its PAT type to simulate guest MTRRs.

Secure Virtual Machine 417

24593—Rev. 3.17—June 2010 AMD64 Technology

The existing AMD64 table that defines how PAT types are combined with the physical MTRRs is
extended to handle CD and WC+ PAT types as shown in Table 15-15.

15.25.9 Page Splintering

When an address is mapped by guest and nested page table entries with different page sizes, the TLB
entry that is created matches the size of the smaller page.

15.25.10 Legacy PAE Mode

The behavior of PAE mode in a nested-paging guest differs slightly from the behavior of (host-only)
legacy PAE mode, in that the guest’s four PDPEs are not loaded into the processor at the time CR3 is
written. Instead, the PDPEs are accessed on demand as part of a table walk. This has the side-effect
that illegal bit combinations in the PDPEs are not signaled at the time that CR3 is written, but instead
when the faulty PDPE is accessed as part of a table walk.

This means that an operating system cannot rely on the behavior when the in-memory PDPEs are
different than the in-processor copy.

Table 15-14. Combining Guest and Host PAT Types

Host PAT Type

UC UC– WC WP WT WB
G

u
es

t
PA

T
 T

yp
e

UC UC UC UC UC UC UC

UC– UC UC– WC UC UC UC

WC WC WC WC WC+ WC+ WC+

WP UC UC UC WP UC WP

WT UC UC UC UC WT WT

WB UC UC WC WP WT WB

Table 15-15. Combining PAT and MTRR Types

MTRR Type

UC WC WP WT WB

E
ff

ec
ti

ve
 P

A
T

 T
yp

e

UC UC CD CD CD CD

UC– UC WC CD CD CD

WC WC WC WC WC WC

WC+ WC WC WC+ WC+ WC+

WP UC CD WP CD WP

WT UC CD CD WT WT

WB UC WC WP WT WB

418 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

15.25.11 A20 Masking

There is no provision for applying A20 masking to guest physical addresses; the VMM can emulate
A20 masking by changing the nested page mappings accordingly.

15.25.12 Detecting Nested Paging Support

Nested Paging is an optional feature of SVM and is not available in all implementations of SVM-
capable processors. The CPUID instruction should be used to detect nested paging support on a
particular processor (see the CPUID Specification, order# 24581, for the details of processor feature
identification and support).

15.26 Security

SVM provides additional hardware support that is designed to facilitate the construction of trusted
software systems. While the security features described in this section are orthogonal to SVM’s
virtualization support (and are not required for processor virtualization), the two form building blocks
for trusted systems.

SKINIT Instruction. The SKINIT instruction and associated system support (the Trusted Platform
Module or TPM) are designed to allow for verifiable startup of trusted software (such as a VMM),
based on secure hash comparison.

Security Exception. A security exception (#SX) is used to signal certain security-critical events.

15.27 Secure Startup with SKINIT

The SKINIT instruction is one of the keys to creating a “root of trust” starting with an initially
untrusted operating mode. SKINIT reinitializes the processor to establish a secure execution
environment for a software component called the secure loader (SL) and starts execution of the SL in a
way that cannot be tampered with. SKINIT also copies the secure loader executable image to an
external device, such as a Trusted Platform Module (TPM) for verification using unique bus
transactions that preclude SKINIT operation from being emulated by software in a way that the TPM
could not readily detect. (Detailed operation is described in Section 15.27.4.)

15.27.1 Secure Loader

A secure loader (SL) typically initializes SVM hardware mechanisms and related data structures, and
initiates execution of a trusted piece of software such as a VMM or VMM (referred to as a Security
Kernel, or SK, in this document), after first having validated the identity of that software.

One of the main features of SKINIT allows SVM protections to be reliably enabled after the system is
already up and running in a non-trusted mode — there is no requirement to change the typical x86
platform boot process.

Secure Virtual Machine 419

24593—Rev. 3.17—June 2010 AMD64 Technology

Exact details of the handoff from the SL to an SK are dependent on characteristics of the SL, SK and
the initial untrusted operating environment. However, there are specific requirements for the SL image,
as described in Section 15.27.2.

15.27.2 Secure Loader Image

The secure loader (SL) image contains all code and initialized data sections of a secure loader. This
code and initial data are used to initialize and start a security kernel in a completely safe manner,
including setting up DEV protection for memory allocated for use by SL and SK. The SL image is
loaded into a region of memory called the secure loader block (SLB) and can be no larger than
64Kbyte (see “Secure Loader Block” on page 419). The SL image is defined to start at byte offset 0 in
the SLB.

The first word (16 bits) of the SL image must specify the SL entry point as an unsigned offset into the
SL image. The second word must contain the length of the image in bytes; the maximum length
allowed is 65535 bytes. These two values are used by the SKINIT instruction. The layout of the rest of
the image is determined by software conventions. The image typically includes a digital signature for
validation purposes. The digital signature hash must include the entry point and length fields. SKINIT
transfers the SL image to the TPM for validation prior to starting SL execution (see “SKINIT
Operation” on page 421 for further details of this transfer). The SL image for which the hash is
computed must be ready to execute without prior manipulation.

15.27.3 Secure Loader Block

The secure loader block is a 64Kbyte range of physical memory which may be located at any 64Kbyte-
aligned address below 4Gbyte. The SL image must have been loaded into the SLB starting at offset 0
before executing SKINIT. The physical address of the SLB is provided as an input operand (in the
EAX register) to SKINIT, which sets up special protection for the SLB against device accesses (i.e.,
the DEV need not be activated yet).

The SL must be written to execute initially in flat 32-bit protected mode with paging disabled. A base
address can be derived from the value in EAX to access data areas within the SL image using
base+displacement addressing, to make the SL code position-independent.

Memory between the end of the SL image and the end of the SLB may be used immediately upon entry
by the SL as secure scratch space, such as for an initial stack, before DEV protections are set up for the
rest of memory. The amount of space required for this will limit the maximum size of the SL image,
and will depend on SL implementation. SKINIT sets the ESP register to the appropriate top-of-stack
value (EAX + 10000h).

Figure 15-14 on page 420 illustrates the layout of the SLB, showing where EAX and ESP point after
SKINIT execution. Labels in italics indicate suggested uses; other labels reflect required items.

420 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 15-14. SLB Example Layout

15.27.4 Trusted Platform Module

The trusted platform module, or TPM, is an essential part of full trusted system initialization. This
device is attached to an LPC link off the system I/O hub. It recognizes special SKINIT transactions,
receives the SL image sent by SKINIT and verifies the signature. Based on the outcome, the device
decides whether or not to cooperate with the SL or subsequent SK. The TPM typically contains sealed
storage containing cryptographic keys and other high-security information that may be specific to the
platform.

SL Stack

SL Code
and

Static Data

SL Entry Point

SL Header

Length EP Offset

31 16 15 0

64 KB

SL Runtime
Data Area

SL Image
(Hash Area)

Post SKINIT ESP

Post SKINIT EAX

Secure Virtual Machine 421

24593—Rev. 3.17—June 2010 AMD64 Technology

15.27.5 System Interface, Memory Controller and I/O Hub Logic

SKINIT uses special support logic in the processor’s system interface unit, the internal controller and
the I/O hub to which the TPM is attached. SKINIT uses special transactions that are unique to SKINIT,
along with this support logic, designed to securely transmit the SL Image to the TPM for validation.

The use of this special protocol should allow the TPM to reliably detect true execution, as opposed to
emulation, of a trusted Secure Loader, which in turn provides a reliable means for verifying the
subsequent loading and startup of a trusted Security Kernel.

15.27.6 SKINIT Operation

The SKINIT instruction is intended to be used primarily in normal mode prior to the VMM taking
control.

SKINIT takes the physical base address of the SLB as its only input operand in EAX, and performs the
following steps:

1. Reinitialize processor state in the same manner as for the INIT signal, then enter flat 32-bit
protected mode with paging off. The CS selector is set to 8h and CS is read only. The SS selector
is set to 10h and SS is read/write and expand-up. The CS and SS bases are cleared to 0 and limits
are set to 4G. DS, ES, FS and GS are left as 16-bit real mode segments and the SL must reload
these with protected mode selectors having appropriate GDT entries before using them. Initialized
data in the SLB may be referenced using the SS segment override prefix until DS is reloaded. The
general purpose registers are cleared except for EAX, which points to the start of the secure
loader, EDX, which contains model, family and stepping information, and ESP, which contains
the initial stack pointer for the secure loader. Cache contents remain intact, as do the x87 and SSE
control registers. Most MSRs also retain their values, except those which might compromise
SVM protections. The EFER MSR, however, is cleared. The DPD, R_INIT and DIS_A20M flags
in the VM_CR register are unconditionally set to 1.

2. Form the SLB base address by clearing bits 15–0 of EAX (EAX is updated), and enable the
SL_DEV protection mechanism (see “Secure Initialization Support” on page 410) to protect the
64-Kbyte region of physical memory starting at the SLB base address from any device access.

3. In multiprocessor operation, perform an interprocessor handshake as described in Section 15.27.8
on page 422.

4. Read the SL image from memory and transmit it to the TPM in a manner that cannot be emulated
by software.

5. Signal the TPM to complete the hash and verify the signature. If any failures have occurred along
the way, the TPM will conclude that no valid SL was started.

6. Clear the Global Interrupt Flag. This disables all interrupts, including NMI, SMI and INIT and
ensures that the subsequent code can execute atomically. If the processor enters the shutdown
state (due to a triple fault for instance) while GIF is clear, it can only be restarted by means of a
RESET.

422 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

7. Update the ESP register to point to the first byte beyond the end of the SLB (SLB base + 65536),
so that the first item pushed onto the stack by the SL will be at the top of the SLB.

8. Add the unsigned 16-bit entry point offset value from the SLB to the SLB base address to form
the SL entry point address, and jump to it.

The validation of the SL image by the TPM is a one-way transaction as far as SKINIT is concerned. It
does not depend on any response from the TPM after transferring the SL image before jumping to the
SL entry point, and initiates execution of the Secure Loader unconditionally. Because of the processor
initialization performed, SKINIT does not honor instruction or data breakpoint traps, or trace traps due
to EFLAGS.TF.

Pending interrupts. Device interrupts that may be pending prior to SKINIT execution due to
EFLAGS.IF being clear, or that assert during the execution of SKINIT, will be held pending until
software subsequently sets GIF to 1. Similarly, SMI, INIT and NMI interrupts that assert after the start
of SKINIT execution will also be held pending until GIF is set to 1.

Debug Considerations. SKINIT automatically disables various implementation-specific hardware
debug features. A debug version of the SL can reenable those features by clearing the VM_CR.DPD
flag immediately upon entry.

15.27.7 SL Abort

If the SL determines that it cannot properly initialize a valid SK, it must cause GIF to be set to 1 and
clear the VM_CR MSR to re-enable normal processor operation.

15.27.8 Secure Multiprocessor Initialization

The following standard APIC features are used for secure MP initialization:

• The concept of a single Bootstrap Processor (BSP) and multiple Application Processors (APs).

• The INIT interprocessor interrupt (IPI), which puts the target processors into a halted state which is
responsive only to a subsequent Startup IPI.

• The Startup IPI causes target processors to begin execution at a location in memory that is
specified by the Boot Processor and conveyed along with the Startup IPI. The operation of the
processor in response to a Startup IPI is slightly modified to support secure initialization, as
described below.

A Startup IPI normally causes an AP to start execution at a location provided by the IPI. To support
secure MP startup, each AP responds to a startup IPI by additionally clearing its GIF and setting the
DPD, R_INIT and DIS_A20M flags in the VM_CR register if, and only if, the BSP has indicated that
it has executed an SKINIT. All other aspects of Startup IPI behavior remain unchanged.

Software Requirements for Secure MP initialization. The driver that starts the SL must execute on
the BSP. Prior to executing the SKINIT instruction, the driver must save any processor-specific system
register contents to memory for restoration after reinitialization of the APs. The driver should also put
all APs in an idle state. The driver must first confirmed that all APs are idle and then it must issue an

Secure Virtual Machine 423

24593—Rev. 3.17—June 2010 AMD64 Technology

INIT IPI to all APs and wait for its local APIC busy indication to clear. This places the APs into a
halted state which is responsive only to a subsequent Startup IPI. APs will still respond to snoops for
cache coherency. The driver may execute SKINIT at any time after this point. Depending on processor
implementation, a fixed delay of no more than 1000 processor cycles may be necessary before
executing SKINIT to ensure reliable sensing of APIC INIT state by the SKINIT.

AP Startup Sequence. While the SL starts executing on the BSP, the APs remain halted in APIC
INIT state. Either the SL or the SK may issue the Startup IPI for the APs at whatever point is deemed
appropriate. The Startup IPI conveys an 8-bit vector specified by the software that issues the IPI to the
APs. This vector provides the upper 8 bits of a 20-bit physical address. Therefore, the AP startup code
must reside in the lower 1Mbyte of physical memory—with the entry point at offset 0 on that particular
page.

In response to the Startup IPI, the APs start executing at the specified location in 16-bit real mode. This
AP startup code must set up protections on each processor as determined by the SL or SK. It must also
set GIF to re-enable interrupts, and restore the pre-SKINIT system context (as directed by the SL or
SK executing on the BSP), before resuming normal system operation.

The SL must guarantee the integrity of the AP startup sequence, for example by including the startup
code in the hashed SL image and setting up DEV protection for it before copying it to the desired area.
The AP startup code does not need to (and should not) execute SKINIT.

Pending interrupts. Device interrupts that may be pending on an AP prior to the APIC INIT IPI due
to EFLAGS.IF being clear, or that assert any time after the processor has accepted the INIT IPI, will be
held pending through the subsequent Startup IPI, and remain pending until software sets GIF to 1 on
that AP. Similarly, SMI, INIT, and NMI interrupts that assert after the processor has accepted the INIT
IPI will also be held pending until GIF is set to 1.

Aborting MP initialization. In the event that the SL or SK on the BSP decides to abort SVM system
initialization for any reason, the following clean-up actions must be performed by SL code executing
on each processor before returning control to the original operating environment:

• The BSP and all APs that responded to the Startup IPI must restore GIF and clear VM_CR on each
processor for normal operation.

• For each processor that has a distinct memory controller associated with it, the SL_DEV_EN flag
in the DEV control register must be cleared in order to restore normal device accessibility to the
64KB SL memory range.

Any secure context created by the SL that should not be exposed to untrusted code should be cleaned
up as appropriate before these steps are taken.

15.28 Security Exception (#SX)

The Security Exception fault signals security-sensitive events that occur while executing the VMM, in
the form of an exception so that the VMM may take appropriate action. (A VMM would typically
intercept comparable sensitive events in the guest.) In the current implementation, the only use of the

424 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

#SX is to redirect external INITs into an exception so that the VMM may — among other possibilities
— destroy sensitive information before re-issuing the INIT, this time without redirection. The INIT
redirection is controlled by the VM_CR.R_INIT bit.

The #SX exception dispatches to vector 30, and behaves like other fault-class exceptions such as
General Protection Fault (#GP). The #SX exception pushes an error code. The only error code
currently defined is 1, and indicates redirection of INIT has occurred.

The #SX exception is a contributory fault.

15.29 SVM Related MSRs

SVM uses the following MSRs for various control purposes. These MSRs are available regardless of
whether SVM is enabled in EFER.SVME. For details on implementation-specific features, see the
AMD BIOS and Kernel Developer’s Guide for your processor implementation.

15.29.1 VM_CR MSR (C001_0114h)

The VM_CR MSR controls certain global aspects of SVM. The layout of the MSR is shown in
Figure 15-15.

Figure 15-15. Layout of VM_CR MSR (C001_0114h)

The individual fields are as follows:

• DPD—Bit 0. If set, disables HDT and certain internal debug features.

• R_INIT—Bit 1. If set, non-intercepted INIT signals are converted into an #SX exception.

• DIS_A20M—Bit 2. If set, disables A20 masking.

• LOCK—Bit 3. When this bit is set, writes to LOCK and SVMDIS are silently ignored. When this
bit is clear, VM_CR bits 3 and 4 can be written. Once set, LOCK can only be cleared using the
SVM_KEY MSR (see section 15.30, “SVM-Lock,” on page 426.) This bit is not affected by INIT
or SKINIT.

• SVMDIS—Bit 4. When this bit is set, writes to EFER treat the SVME bit as MBZ. When this bit is
clear, EFER.SVME can be written normally. This bit does not prevent CPUID from reporting that
SVM is available. Setting SVMDIS while EFER.SVME is 1 generates a #GP fault, regardless of
the current state of VM_CR.LOCK. This bit is not affected by SKINIT. It is cleared by INIT when
LOCK is cleared to 0; otherwise, it is not affected.

63 5 4 3 2 1 0

Reserved, MBZ SVMDIS LOCK DIS_A20M R_INIT DPD

Secure Virtual Machine 425

24593—Rev. 3.17—June 2010 AMD64 Technology

15.29.2 IGNNE MSR (C001_0115h)

The read/write IGNNE MSR is used to set the state of the processor-internal IGNNE signal directly.
This is only useful if IGNNE emulation has been enabled in the HW_CR MSR (and thus the external
signal is being ignored). Bit 0 specifies the current value of IGNNE; all other bits are MBZ.

15.29.3 SMM_CTL MSR (C001_0116h)

The write-only SMM_CTL MSR provides software control over SMM signals.

Figure 15-16. Layout of SMM_CTL MSR (C001_0116h)

Writing individual bits causes the following actions:

• DISMISS—Bit 0. Clear the processor-internal “SMI pending” flag.

• ENTER—Bit 1. Enter SMM: map the SMRAM memory areas, record whether NMI was currently
blocked and block further NMI and SMI interrupts.

• SMI_CYCLE—Bit 2. Send SMI special cycle.

• EXIT—Bit 3. Exit SMM: unmap the SMRAM memory areas, restore the previous masking status
of NMI and unconditionally reenable SMI.

• RSM_CYCLE—Bit 4. Send RSM special cycle.

Writes to the SMM_CTL MSR cause a #GP if the BIOS has locked the SMM control registers by
setting HWCR[SMMLOCK].

Conceptually, the bits are processed in the order of ENTER, SMI_CYCLE, DISMISS, RSM_CYCLE,
EXIT, though only the following bit combinations may be set together in a single write (for all other
combinations of more than one bit, behavior is undefined):

• ENTER + SMI_CYCLE

• DISMISS + ENTER

• DISMISS + ENTER + SMI_CYCLE

• EXIT + RSM_CYCLE

The VMM must ensure that ENTER and EXIT operations are properly matched, and not nested,
otherwise processor behavior is undefined. Also undefined are ENTER when the processor is already
in SMM, and EXIT when the processor is not in SMM.

63 5 4 3 2 1 0

Reserved, MBZ RSM_CYCLE EXIT SMI_CYCLE ENTER DISMISS

426 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

15.29.4 VM_HSAVE_PA MSR (C001_0117h)

The 64-bit read/write VM_SAVE_PA MSR holds the physical address of a 4KB block of memory
where VMRUN saves host state, and from which #VMEXIT reloads host state. The VMM software is
expected to set up this register before issuing the first VMRUN instruction. Software must not attempt
to read or write the host save-state area directly.

Writing this MSR causes a #GP if:

• any of the low 12 bits of the address written are nonzero, or

• the address written is greater than or equal to the maximum supported physical address for this
implementation.

15.30 SVM-Lock

The SVM-Lock feature allows software to prevent EFER.SVME from being set, either
unconditionally or with a 64-bit key to re-enable SVM functionality.

Support for SVM-Lock is indicated by EDX bit 2 as returned by CPUID function 8000_000Ah. On
processors that support the SVM-Lock feature, SKINIT and STGI can be executed even if
EFER.SVME=0. See descriptions of LOCK and SVMDIS bits in section 15.29.1, “VM_CR MSR
(C001_0114h),” on page 424. When the SVM-Lock feature is not available, hypervisors can use the
read-only VM_CR.SVMDIS bit to detect SVM (see section 15.4, “Enabling SVM,” on page 369).

15.30.1 SVM_KEY MSR (C001_0118h)

The write-only SVM_KEY MSR is used to create a password-protected mechanism to clear
VM_CR.LOCK.

When VM_CR.LOCK is zero, writes to SVM_KEY MSR set the 64-bit SVM Key value.

When VM_CR.LOCK is one, writes to SVM_KEY MSR compare the written value to the SVM Key
value; if the values match and are non-zero, the VM_CR.LOCK bit is cleared. If the values mismatch
or the SVM Key value is zero, the write to SVM_KEY is ignored, and VM_CR.LOCK is unmodified.
Software should read VM_CR.LOCK after writing SVM_KEY to determine whether the unlock
succeeded.

If SVM Key is zero when VM_CR.LOCK is one, VM_CR.LOCK can only be cleared by a processor
reset.

To preserve the security of the SVM key, reading the SVM_KEY MSR always returns zero.

15.31 SMM-Lock

The SMM-Lock feature allows software to prevent System Management Interrupts (SMI) from being
intercepted in SVM. The SmmLock bit is located in the HWCR MSR register.

Secure Virtual Machine 427

24593—Rev. 3.17—June 2010 AMD64 Technology

15.31.1 SmmLock Bit — HWCR[0]

The SmmLock bit (bit 0) is located in the HWCR MSR (C001_0015h). When SmmLock is clear, it can
be set to one. Once set, the bit cannot be cleared by software and writes to it are ignored. SmmLock can
only be cleared using the SMM_KEY MSR (see section 15.31.2), or by a processor reset. This bit is
not affected by INIT or SKINIT. When SmmLock is set, other SMM configuration registers cannot be
written. See the model-specific BKDG for details. For complete information on the HWCR register,
see the appropriate BIOS and kernel developer’s guide for your processor.

15.31.2 SMM_KEY MSR (C001_0119h)

The write-only SMM_KEY MSR is used to create a password-protected mechanism to clear
SmmLock.

When SmmLock is zero, writes to SMM_KEY MSR set the 64-bit SMM Key value.

When SmmLock is one, writes to SMM_KEY MSR compare the written value to the SMM Key value;
if the values match and are non-zero, the SmmLock bit is cleared. If the values mismatch or the SMM
Key value is zero, the write to SMM_KEY is ignored, and SmmLock is unmodified. Software should
read SmmLock after writing SMM_KEY to determine whether the unlock succeeded.

If SMM_Key MSR is equal to zero when SmmLock is one, SmmLock can only be cleared by a
processor reset.

To preserve the security of the SMM key, reading SMM_KEY MSR always returns zero.

15.32 TSC Ratio MSR (C000_0104h)

The TSC Ratio MSR allows the hypervisor to control the guest's view of the Time Stamp Counter. It
can make the TSC appear to run faster or slower than the hardware TSC.

The layout of the TSC Ratio MSR is illustrated in Figure 15-4 on page 392.

Figure 15-17. TSC Ratio MSR (C000_0104h)

63 40 39 32 31 0

Reserved, MBZ Integer Part Fractional Part

Bits Mnemonic Description

63–40 Reserved, MBZ

39–32 Fractional Part

31–0 I Integer Part

428 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

The TSC Ratio MSR contains a fixed-point number in 8.32 format (that is, it has 8 bits of integer part
and 32 bits of fractional part). This number is the ratio of the desired TSC frequency to the normal
operating frequency of the CPU (P-state 0, or P0, frequency; see section 18.1, “Hardware P-State
Control,” on page 463). The default value of the TSC Ratio MSR is 1.0000000000, so that the default
TSC Frequency matches the P0 frequency. If the P0 frequency is changed, then the TSC Frequency
still uses the TSC Ratio MSR value, which is then applied to the new P0 frequency.

Note that TSCFreq = P0 frequency * TSCRatio, so TSCRatio = (Desired TSCFreq) / P0 frequency.

15.33 Decode Assists

Decode assists are provided to allow hypervisors to decode guest instructions more efficiently. Use the
CPUID instruction to verify that decode assists are available on your AMD64 processor. (See CPUID
Specification, order# 25481, for further information.)

15.33.1 MOV CRx/DRx Intercepts

The EXITINFO1 field holds a flag indicating whether the instruction was a MOV CRx and the number
of the GPR operand. MOV-to-CR instructions always set bit 63 and provide the GPR number, except
for CR0 as specified below.

MOV-to-CR0 Special Case. If the instruction is MOV-to-CR, the GPR number is provided; if the
instruction is LMSW or CLTS, no additional information is provided and bit 63 is not set.

MOV-from-CR0 Special Case. If the instruction is MOV-from-CR, the GPR number is provided and
bit 63 is set; if the instruction is SMSW, no information is provided and bit 63 is not set.

Table 15-16. EXITINFO1 for MOV CRx

Bit Offsets Field Contents

3:0 GPR number

62:4 0

63
Instruction was MOV CRx—set to1 if the instruction
was a MOV CRx instruction; cleared to 0 otherwise.

Table 15-17. EXITINFO1 for MOV DRx

Bit Offsets Field Contents

3:0 GPR number

63:4 0

Secure Virtual Machine 429

24593—Rev. 3.17—June 2010 AMD64 Technology

15.33.2 INTn Intercepts

EXITINFO1 records the immediate value of the interrupt number for INT n instructions. See Table
15-18.

15.33.3 INVLPG Intercepts

EXITINFO1 provides the linear address after segment base addition and address size masking produce
the effective address size. See Table 15-19.

15.33.4 Nested and intercepted #PF

In the case of a Nested Page Fault or intercepted #PF, guest instruction bytes at guest CS:RIP are
stored into the 16-byte wide field Guest Instruction Bytes, summarized in Table 15-20 on page 430.
Up to 15 bytes are recorded, read from guest CS:RIP. If a faulting condition occurs, such as not-present
page or exceeding the CS limit, then EXITINFO1 records as many bytes as could be fetched. The
number of bytes fetched is put into the first byte of this field. Zero indicates that no bytes were fetched.
The default number of bytes is always 15. Fewer bytes are returned only if a fault occurs while
fetching.

This field is filled in only during data page faults. Instruction-fetch page faults provide no additional
information.

Table 15-18. EXITINFO1 for INTn

Bit Offsets Field Contents

7:0 Software interrupt number

63:8 0

Table 15-19. EXIINFO1 for INVLPG

Bit Offsets Field Contents

63:0 Linear address

430 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.17—June 2010

All other intercepts clear bits 0:7 in this field to zero (to indicate an invalid condition);
implementations may leave the other bytes untouched.

15.33.5 (REP) OUTS and INS

Bits 12:10 of the EXITINFO1 field provide the effective segment number (the default segment is DS).
(For segment register encodings, see Table A-12, “ModRM Register References, 16-Bit Addressing”
on page 364, in AMD64 Architecture Programmer’s Manual Volume 3: General-Purpose and System
Instructions.)

For definitions of the remaining bits of this field, see Section 15.9 on page 381.

INS provides the effective segment (always ES, encoded as 0).

On intercepted SMI-on-I/O, bits 12:10 of EXITINFO1 encode the segment. For definitions of the
remaining bits of this field, see section 15.12.3 on page 387.

Table 15-20. Guest Instruction Bytes

Bit Offsets Field Contents

3:0 Number of bytes fetched

4:7 0

127:8 Instruction bytes

Advanced Programmable Interrupt Controller (APIC) 431

24593—Rev. 3.17—June 2010 AMD64 Technology

16 Advanced Programmable Interrupt
Controller (APIC)

The Advanced Programmable Interrupt Controller (APIC) provides interrupt support on AMD64
architecture processors. The local APIC accepts interrupts from the system and delivers them to the
local CPU core interrupt handler.

Support for an enabled APIC feature is indicated by EDX bit 9 as returned by CPUID
function 0000_0001h.

The APIC block diagram is provided in Figure 16-1.

Figure 16-1. Block Diagram of a Typical APIC Implementation

APIC Error APIC Error APIC Error

Local
APIC

Local
APIC

Local
APIC

CPU#1
CPU
Core

Interrupt
Handler

CPU#2
CPU
Core

Interrupt
Handler

CPU#N
CPU
Core

Interrupt
Handler

 Interrupt Messages

IOAPIC PICI/O Interrupts

 Interrupt Messages

Legacy
Interrupts

APIC Timer

PerfMonCntr

ThermalSensor

Extended Intr

APIC Timer

PerfMonCntr

ThermalSensor

Extended Intr

APIC Timer

PerfMonCntr

ThermalSensor

Extended Intr

Signalled
Message

Interrupts

432 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

16.1 Sources of Interrupts to the Local APIC

Each CPU core has an associated local APIC which receives interrupts from the following sources:

• I/O interrupts from the IOAPIC interrupt controller (including LINT0 and LINT1)

• Legacy interrupts (INTR and NMI) from the legacy interrupt controller

• Message Signalled Interrupts

• Interprocessor Interrupts (IPIs) from other local APICs. Interprocessor Interrupts are used to send
interrupts or to execute system wide functions between CPU cores in the system, including the
originating CPU core (self-interrupt).

• Locally generated interrupts within the local APIC. The local APIC receives local interrupts from
the APIC timer, Performance Monitor Counters, thermal sensors, APIC errors and extended
interrupts from implementation specific sources.

The sources of interrupts for the local APIC are provided in Table 16-1.

Table 16-1. Interrupt Sources for Local APIC

Source Description
Message Type to

Local APIC

I/O interrupts

System interrupts from I/O devices or system hardware
received through the I/O APIC and sent to the local
APIC as interrupt messages. They may be edge-
triggered or level-sensitive.

Fixed, Lowest Priority, SMI,
NMI, INIT, Restart, External

interrupt, LINT0, LINT1

Legacy Interrupts
Legacy interrupts (INT and NMI) from the PIC and sent
to the local APIC as interrupt messages.

NMI, INT

Interprocessor (IPI)
Interprocessor interrupts. Used for interrupt forwarding,
system-wide functions, or software self-interrupts.

Fixed, lowest priority, SMI,
read request, NMI, INIT,

Restart, External interrupt

APIC Timer
Local interrupt from the programmed APIC timer
reaches zero, under control of TIMER_LVT.

Fixed

Performance Monitor
Counter

Local interrupt from the performance monitoring counter
when it overflows, under control of PERF_CNT_LVT.

Fixed, SMI, or NMI

Thermal Sensor
Local interrupt from internal thermal sensors when it
has tripped, under control of THERMAL_LVT.

Fixed, SMI, or NMI

Extended
Interrupt[3:0]

Local Interrupts from programmable internal CPU core
sources, under the control of the
EXTENDED_INTERRUPT[3:0]_LVT.

Fixed, SMI, NMI, or
External interrupt

APIC Internal Error
Local interrupt when an error is detected within the local
APIC, under control of ERROR_LVT.

Fixed, SMI, or NMI

Advanced Programmable Interrupt Controller (APIC) 433

24593—Rev. 3.17—June 2010 AMD64 Technology

16.2 Interrupt Control

I/O, legacy and interprocessor interrupts are sent via interrupt messages. The interrupt messages
contain the following information:

• Destination address of the local APIC.

• VECTOR[7:0] indicating interrupt priority of up to 256 interrupt vectors. This information is
captured in the IRR register for Fixed and Lowest Priority interrupt message types.

• Trigger Mode indicating edge triggered or level-sensitive (which requires and EOI response to the
source).

• Message Type[3:0] indicating the type of interrupt to be presented to the local APIC. For Fixed and
Lowest Priority message types, the interrupt is processed through the target local APIC. For all
other message types, the interrupt is sent directly to the destination CPU core. There is a 5-line
interrupt interface to the CPU core for INTR, SMI, NMI, INIT and STARTUP interrupts. For
locally-generated interrupts, control is provided by local vector tables or LVTs. Separate LVTs are
provided for each interrupt source, allowing for unique entry point for each source. The LVT
contains the VECTOR[7:0], trigger mode and message type as well as other fields associated with
the specific interrupt. The message type may be Fixed, SMI, NMI, or External interrupt. A Mask
bit is also provided to mask the interrupt.

16.3 Local APIC

16.3.1 Local APIC Enable

The local APIC is controlled by the APIC enable bit (AE) in the APIC Base Address Register
(MSR 0000 001Bh). See Figure 16-2 on page 434.

When AE is set to 1, the local APIC is enabled and all interrupt types are accepted. When AE is cleared
to 0, the local APIC is disabled, including all local vector table interrupts.

Software can disable the local APIC, using the APIC_SW_EN bit in the Spurious Interrupt Vector
Register (APIC_F0). When this bit is cleared to zero, the local APIC is temporarily disabled:

• SMI, NMI, INIT, Startup, Remote Read, and LINT interrupts may be accepted.

• Pending interrupts in the ISR and IRR are held.

• Further fixed, lowest-priority, and ExtInt interrupts are not accepted.

• All LVT entry mask bits are set and cannot be cleared.

434 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 16-2. APIC Base Address Register

The fields within the APIC Base Address register are as follows:

• Boot Strap CPU Core (BSC)—Bit 8. The BSC bit indicates that this CPU core is the boot core of
the BSP. Each CPU core that is not the boot core of the boot processor is an AP (Application
Processor).

• APIC Enable (AE)—Bit 11. This is the APIC enable bit. The local APIC is enabled and all
interruption types are accepted when AE is set to 1. Clearing AE to 0 disables the local APIC, and
no local vector table interrupts are supported.

• APIC Base Address (ABA)—Bits 51-12. Specifies the base physical address for the APIC register
set. The address is extended by 12 bits at the least significant end to form a base address that is
reset to a value of 0 FEE0 0000h.

16.3.2 APIC Registers

The local APIC is made up of APIC registers (see Table 16-2) and associated hardware used to control
delivery of interrupts to the associated CPU core interrupt handler. All APIC registers are memory-
mapped into the 4-Kbyte APIC register space, and are accessed with memory reads and writes. The
memory address is indicated as:

APIC Register address = APIC Base Address + Offset

where the APIC Base Address must point to an uncacheable memory region, and is located in APIC
Base Address Register, MSR 0000_001Bh. See Figure 16-2.

Registers are aligned on 128-bit boundaries, and are normally 32 bits in length. Doubleword registers
should be accessed with doubleword loads and stores aligned on a 128-bit boundary.

63 52 51 32

Reserved, MBZ
ABA

(This is an architectural limit. A given implementation may support fewer bits)

31 12 11 10 9 8 7 0

ABA
A
E

Res,
MBZ

B
S

C

Reserved, MBZ

Bits Mnemonic Description R/W
63-52 Reserved Reserved, Must be Zero
51-12 ABA APIC Base Address R/W
11 AE APIC Enable R/W

10-9 Reserved Reserved, Must be Zero
8 BSC Boot Strap CPU Core RO
7-0 Reserved Reserved, Must be Zero

Advanced Programmable Interrupt Controller (APIC) 435

24593—Rev. 3.17—June 2010 AMD64 Technology

The state of the APIC registers after reset is provided in Table 16-2.

Table 16-2. APIC Registers

Offset Name Reset

20h APIC ID Register ??000000h

30h APIC Version Register 80??0010h

80h Task Priority Register (TPR) 00000000h

90h Arbitration Priority Register (APR) 00000000h

A0h Processor Priority Register (PPR) 00000000h

B0h End of Interrupt Register (EOI) –

C0h Remote Read Register 00000000h

D0h Logical Destination Register (LDR) 00000000h

E0h Destination Format Register (DFR) FFFFFFFF

F0h Spurious Interrupt Vector Register 000000FFh

100-170h In-Service Register (ISR) 00000000h

180-1F0h Trigger Mode Register (TMR) 00000000h

200-270h Interrupt Request Register (IRR) 00000000h

280h Error Status Register (ESR) 00000000h

300h Interrupt Command Register Low (bits 31:0) 00000000h

310h Interrupt Command Register High (bits 63:32) 00000000h

320h Timer Local Vector Table Entry 00010000h

330h Thermal Local Vector Table Entry 00010000h

340h Performance Counter Local Vector Table Entry 00010000h

350h Local Interrupt 0 Vector Table Entry 00010000h

360h Local Interrupt 1 Vector Table Entry 00010000h

370h Error Vector Table Entry 00010000h

380h Timer Initial Count Register 00000000h

390h Timer Current Count Register 00000000h

3E0h Timer Divide Configuration Register 00000000h

400h Extended APIC Feature Register 00040007h

410h Extended APIC Control Register 00000000h

420h Specific End of Interrupt Register (SEOI) –

480-4F0h Interrupt Enable Registers (IER) FFFFFFFFh

500-530h Extended Interrupt [3:0] Local Vector Table Registers 00000000h

436 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

16.3.3 Local APIC ID

Unique local APIC IDs are assigned to each CPU core in the system. The value is determined by
hardware, based on the number of CPU cores on the processor and the node ID of the processor.

The APIC ID is located in the APIC ID register at APIC offset 20h. See Figure 16-3. It is model
dependent, whether software can modify the APIC ID Register. The initial value of the APIC ID (after
a reset) is the value returned in CPUID function 0000_0001h_EBX[31:24].

Figure 16-3. APIC ID Register (APIC Offset 20h)

• APIC ID (AID)—Bits 31-24. The APIC ID field contains the unique APIC ID value assigned to
this specific CPU core. A given implementation may use some bits to represent the CPU core and
other bits represent the processor.

16.3.4 APIC Version Register

A version register is provided to allow software to identify which APIC version is used. Bits 7:0 of the
APIC Version Register indicate the version number of the APIC implementation.

The number of entries in the local vector table are specified in bits 23:16 of the register as the
maximum number minus one.

Bit 31 indicates the presence of extended APIC registers which have an offset starting at 400h.

Figure 16-4. APIC Version Register (APIC Offset 30h)

31 24 23 0

AID Reserved, MBZ

Bits Mnemonic Description R/W
31-24 AID APIC ID R/W

23-0 Reserved Reserved, Must be Zero

31 30 24 23 16 15 8 7 0
E
A
S

Reserved, MBZ MLE Reserved, MBZ VER

Bits Mnemonic Description R/W
31 EAS Extended APIC Register Space Present RO

30-24 Reserved Reserved, Must be Zero
23-16 MLE Max LVT Entries RO
15-8 Reserved Reserved, Must be Zero

7-0 VER Version RO

Advanced Programmable Interrupt Controller (APIC) 437

24593—Rev. 3.17—June 2010 AMD64 Technology

The fields within the APIC Version register are as follows:

• Version (VER)—Bits 7-0. The VER field indicates the version number of the APIC
implementation. The local APIC implementation is identified with a value=1Xh (20h-FFh are
reserved).

• Max LVT Entries (MLE)—Bits 23-16. The MLE field specifies the number of entries in the local
vector table minus one.

• Extended APIC Register Space Present (EAS)—Bit 31. The EAS bit when set to 1 indicates the
presence of an extended APIC register space, starting at offset 400h.

16.3.5 Extended APIC Feature Register

The Extended APIC Feature Register indicates the number of extended Local Vector Table registers in
the local APIC, whether the Interrupt Enable Registers are present, and whether the 8-bit Extended
APIC ID and Specific End Of Interrupt (SEOI) Register are supported.

Figure 16-5. Extended APIC Feature Register (APIC Offset 400h)

• Extended LVT Count (XLC)—(Bits 23–16) Specifies the number of extended local vector table
registers in the local APIC.

• Extended APIC ID Capability (XAIDC)—(Bit 2) Indicates that the processor is capable of
supporting an 8-bit APIC ID.

• Specific End of Interrupt Capable—(Bit 1) Indicates that the Specific End Of Interrupt Register is
present.

• Interrupt Enable Register Capable—(Bit 0) Read-only. Indicates that the Interrupt Enable
Registers are present.

16.3.6 Extended APIC Control Register

This bit enables writes to the interrupt enable registers.

31 24 23 16 15 3 0

Reserved, MBZ XLC Reserved, MBZ

X
A
I
D
C

S
N
I
C

I
N
C

Bits Mnemonic Description R/W
31-24 Reserved Reserved, Must be Zero

23-16 XLC Extended LVT Count RO
15-3 Reserved Reserved, Must be Zero
2 XAIDC Extended APIC ID Capable RO

1 SNIC Specific End of Interrupt Capable RO
0 INC Interrupt Enable Register Capable RO

438 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 16-6. Extended APIC Control Register (APIC Offset 410h)

• Extended APIC ID Enable (XAIDN)—Bit 2. Setting XAIDN to 1 enables the upper four bits of the
APIC ID field described in “APIC ID Register (APIC Offset 20h)” on page 436. Clearing this bit,
specifies a 4-bit APIC ID using only the lower four bits of the APIC ID field of the APIC ID
register.

• Enable SEOI Generation (SN)—Bit 1. Read-write. This bit enables Specific End of Interrupt
(SEOI) generation when a write to the specific end of interrupt register is received.

• Enable Interrupt Enable Registers (IERN)—Bit 0. This bit enables writes to the interrupt enable
registers.

16.4 Local Interrupts

The local APIC handles the following local interrupts:

• APIC Timer

• Local Interrupt 0 (LINT0)

• Local Interrupt 1 (LINT1)

• Performance Monitor Counters

• Thermal Sensors

• APIC internal error

• Extended (Implementation dependent)

A separate entry in the local vector table is provided for each interrupt to allow software to specify:

• Whether the interrupt is masked or not.

• The delivery status of the interrupt.

• The message type.

• The unique address vector.

• For LINT0 and LINT1 interrupts, the trigger mode, remote IRR, and input pin polarity.

31 3 2 1 0

Reserved, MBZ

X
A
I
D
N

S
N

I
E
R
N

Bits Mnemonic Description R/W
31-3 Reserved Reserved, Must be Zero
2 XAIDN Extended APIC ID Enable. R/W

1 SN Enable SEOI Generation R/W
0 IERN Version R/W

Advanced Programmable Interrupt Controller (APIC) 439

24593—Rev. 3.17—June 2010 AMD64 Technology

• For the APIC timer interrupt, the timer mode.

The general format of a Local Vector Table Register is shown in Figure 16-7.

Figure 16-7. General Local Vector Table Register Format

The fields within the General Local Vector Table register are as follows:

• Vector (VEC)—Bits 7-0. The VEC field contains the vector that is sent for this interrupt source
when the message type is fixed. It is ignored when the message type is NMI and is set to 00h when
the message type is SMI. Valid values for the vector field are from 16 to 255. A value of 0 to 15
when the message type is fixed results in an illegal vector APIC error.

• Message Type (MT)—Bits 10-8. The MT field specifies the delivery mode sent to the CPU core
interrupt handler. The legal values are:

- 000b = Fixed - The vector field specifies the interrupt delivered.

- 010b = SMI - An SMI interrupt is delivered. In this case, the vector field should be set to 00h.

- 100b = NMI - A NMI interrupt is delivered with the vector field being ignored.

- 111b = External interrupt is delivered.

• Delivery Status (DS)—Bit 12. The DS bit indicates the interrupt delivery status. The DS bit is set to
1 when the interrupt is pending at the CPU core interrupt handler. After a successful delivery of the
interrupt, the associated bit in the IRR is set and this bit is cleared to zero. See Section 16.6.2,
“Lowest Priority Messages and Arbitration,” on page 450 for details. The bit is cleared to 0 when
the interrupt is idle.

• Remote IRR (RIR)—Bit 14. The RIR bit is set to 1 when the local APIC accepts an LINT0 or
LINT1 interrupt with the trigger mode=1 (level sensitive). The bit is cleared to 0 when the interrupt
completes, as indicated when an EOI is received.

31 18 17 16 15 14 13 12 11 10 8 7 0

Reserved, MBZ
T
M

M

M
T
G

M

R
I

R

R
e
s

D
S

R
e
s

MT VEC

Bits Mnemonic Description R/W
31-18 Reserved Reserved, Must be Zero
17 TMM Timer Mode R/W
16 M Mask R/W

15 TGM Trigger Mode R/W
14 RIR Remote IRR RO
13 Reserved Reserved, Must be Zero

12 DS Delivery Status RO
11 Reserved Reserved, Must be Zero
10-8 MT Message Type R/W

7-0 VEC Vector R/W

440 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

• Trigger Mode (TGM)—Bit 15. Specifies how interrupts to the local APIC are triggered. The TGM
bit is set to 1 when the interrupt is level-sensitive. It is cleared to 0 when the interrupt is edge-
triggered. When the message type is SMI or NMI, the trigger mode is edge triggered.

• Mask (M)—Bit 16. When the M bit is set to 1, reception of the interrupt is disabled. When the M
bit is cleared to 0, reception of the interrupt is enabled.

• Timer Mode (TMM)—Bit 17. Specifies the timer mode for the APIC Timer interrupt. The TMM bit
set to 1 indicates periodic timer interrupts. The TMM bit cleared to 0 indicates one-shot operation.

16.4.1 APIC Timer Interrupt

The APIC timer is a programmable 32-bit counter used by software to time operations or events. The
timer can operate in two modes, periodic and one-shot, under the control of bit 17 (Timer Mode) in
APIC Timer Local Vector Table Register (see Figure 16-8). In one-shot mode, the APIC timer is set to
a programmable initial value and decrements at a programmable clock rate. When the timer value
reaches zero, an APIC timer interrupt is generated under the control of bit 16 (Mask) in the APIC
Timer Local Vector Table Register. In periodic mode, the APIC timer is initialized again when it
reaches zero, and it starts to decrement again. Another APIC timer interrupt is generated when the
timer value reaches zero.

Figure 16-8. APIC Timer Local Vector Table Register (APIC Offset 320h)

Three APIC registers are defined for the APIC timer function:

• Current Count Register (CCR) is the actual APIC timer. It is initialized to a start count loaded from
the ICR and then decrements. The APIC timer interrupt is generated when the CCR value reaches
zero. The counting rate is controlled by the DCR. See Figure 16-9.

• Initial Count Register (ICR) contains the start count value for the APIC timer. See Table 16-10.

• Divide Configuration Register (DCR) controls the counting rate of the APIC timer by dividing the
CPU core clock by a programmable amount. See Figure 16-11. Refer to the BIOS and kernel
developer’s guide for the specific implementation of the base clock rate.

Figure 16-9. Timer Current Count Register (APIC Offset 390h)

31 18 17 16 15 13 12 11 8 7 0

Reserved, MBZ
T
M

M

M Res
D

S
Res VEC

31 0

APICTCC

Bits Mnemonic Description R/W
31-0 APICTCC APIC Timer Current Count RO

Advanced Programmable Interrupt Controller (APIC) 441

24593—Rev. 3.17—June 2010 AMD64 Technology

• APIC Timer Current Count (APICTCC)—Bits 31-0. The APICTCC field contains the current
value of the APIC timer.

Figure 16-10. Timer Initial Count Register (APIC Offset 380h)

• APIC Timer Initial Count (APICTIC)—Bits 31-0. The APICTIC field contains the value that is
loaded into the APIC Timer Current Count Register when the APIC timer is initialized.

Figure 16-11. Divide Configuration Register (APIC Offset 3E0h)

• Divide Value (DV)—Bits 3, and 1-0. The DV field specifies the value of the CPU core clock
divisor. Table 16-3 lists the allowable values.

Table 16-3. Divide Values

31 0

APICTIC

Bits Mnemonic Description R/W
31-0 APICTIC APIC Timer Initial Count R/W

31 4 3 2 1 0

Reserved, MBZ
D
V

R
e
s

DV

Bits Mnemonic Description R/W
31-4, 2 Reserved Reserved, Must be Zero
3, 1-0 DV Divide Value R/W

Bits 3, 1-0 Resulting Timer Divide
000b Divide by 2
001b Divide by 4
010b Divide by 8
011b Divide by 16
100b Divide by 32
101b Divide by 64
110b Divide by 128
111b Divide by 1

442 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

16.4.2 Local Interrupts LINT0 and LINT1

When the target local APIC receives an interrupt message from an IOAPIC with the LINT0 or LINT1
message type, the appropriate local interrupt is generated under the control of bit 16 (Mask) in the
APIC LINT0 or LINT1 Local Vector Table Register. See Figure 16-12.

Figure 16-12. Local Interrupt 0/1 (LINT0/1) Local Vector Table Register
(APIC Offset 350h/360h)

In addition to the normal LVT control bits (mask, delivery status and vector offset), the LINT0/LINT1
interrupts provide the following controls:

• Trigger Mode - indicates whether the interrupt pin is edge triggered or level sensitive when the
message type is fixed.

• Remote IRR - When the trigger mode indicates level, this flag is set when the local APIC accepts
the interrupt, and is reset when the local APIC receives an EOI. When the flag is set, no additional
local interrupt requests are sent to the local APIC, and they remain pending.

16.4.3 Performance Monitor Counter Interrupts

When a performance monitor counter overflows, an APIC interrupt is generated under the control of
bit 16 (Mask) in the APIC Performance Monitor Counter Local Vector Table Register. See
Figure 16-13 on page 442.

Figure 16-13. Performance Monitor Counter Local Vector Table Register
(APIC Offset 340h)

16.4.4 Thermal Sensor Interrupts

When a thermal event occurs, an APIC interrupt is generated under the control of bit 16 (Mask) in the
APIC Thermal Sensor Local Vector Table Register. See Figure 16-14. Refer to the BIOS and kernel
developer’s guide for the specific implementation. This interrupt may not be supported in all
implementations.

31 17 16 15 14 13 12 11 10 8 7 0

Reserved, MBZ M
T
G
M

R
I
R

R
e
s

D
S

R
e
s

MT VEC

31 17 16 15 13 12 11 10 8 7 0

Reserved, MBZ M Res
D
S

R
e
s

MT VEC

Advanced Programmable Interrupt Controller (APIC) 443

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 16-14. Thermal Sensor Local Vector Table Register (APIC Offset 330h)

16.4.5 Extended Interrupts

The local interrupts are extended to include more LVT registers, to allow additional interrupt sources.
The additional sources are model dependent and can include:

• Counter overflow from the Machine Check Miscellaneous Threshold Register. See “Machine-
Check Miscellaneous-Error Information Registers (MCi_MISCj)” on page 264 for details.

• ECC Error Count Threshold in memory system.

• Instruction Sampling.

The LVT register used for each interrupt source is specified by the control register associated with the
source.

The Extended LVT Count field (bits 23:16) of the Extended APIC Feature Register specifies the
number of extended LVT registers. Currently there are four additional LVT registers defined, Extended
Interrupt [3:0], Local Vector Table Register, located at APIC [530:500]. (See section Section 16.7.1,
“Specific End of Interrupt Register,” on page 457 and Figure 16-5 on page 437.)

16.4.6 APIC Error Interrupts

Errors that are detected while handling interrupts cause an APIC error interrupt to be generated under
the control of bit 16 (Mask) in the APIC Error Local Vector Table Register. See Figure 16-15 on
page 443.

Figure 16-15. APIC Error Local Vector Table Register (APIC Offset 370h)

The error information is recorded in the APIC Error Status Registers. The APIC Error Status Register
is a read-write register. Writes to the register cause the internal error state to be recorded in the register,
clearing the original error. See Figure 16-16.

31 17 16 15 13 12 11 10 8 7 0

Reserved, MBZ M Res
D
S

R
e
s

MT VEC

31 17 16 15 13 12 11 10 8 7 0

Reserved, MBZ M Res
D
S

R
e
s

MT VEC

444 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 16-16. APIC Error Status Register (APIC Offset 280h)

The fields within the APIC Error Status register are as follows:

• Sent Accept Error (SAE)—Bit 2. The SAE bit when set to 1 indicates that a message sent by the
local APIC was not accepted by any other APIC.

• Receive Accept Error (RAE)—Bit 3. The RAE bit when set to 1 indicates that a message received
by the local APIC was not accepted by this or any other APIC

• Sent Illegal Vector (SIV)—Bit 5. The SIV bit when set to 1 indicates that the local APIC attempted
to send a message with an illegal vector value.

• Receive Illegal Vector (RIV)—Bit 6. The RIV bit when set to 1 indicates that the local APIC has
received a message with an illegal vector value.

• Illegal Register Address (IRA)—Bit 7. The IRA bit when set to 1 indicates that an access to an
unimplemented register location within the local APIC register range (APIC Base Address + 4
Kbytes) was attempted.

31 8 7 6 5 4 3 2 1 0

Reserved, MBZ
I
R
A

R
I
V

S
I
V

R
e
s

R
A
E

S
A
E

Res,
MBZ

Bits Mnemonic Description R/W
31-8 Reserved, Must be Zero

7 IRA Illegal Register Address R/W
6 RIV Received Illegal Vector R/W
5 SIV Sent Illegal Vector R/W

4 Reserved, Must be Zero
3 RAE Receive Accept Error R/W
2 SAE Sent Accept Error R/W

1-0 Reserved, Must be Zero

Advanced Programmable Interrupt Controller (APIC) 445

24593—Rev. 3.17—June 2010 AMD64 Technology

16.4.7 Spurious Interrupts

A timing issue exists between software and hardware that, though rare, results in spurious interrupts.
In the event that the task priority is set to or above the level of the interrupt to be serviced while the
interrupt is being acknowledged, the local APIC delivers a spurious interrupt to the CPU core instead,
with the vector number specified by the Vector field of the Spurious Interrupt Register. The ISR is
unaffected by the spurious interrupt, so the interrupt handler completes without sending an EOI back
to the issuing local APIC.

Figure 16-17. Spurious Interrupt Register (APIC Offset F0h)

The fields within the Spurious Interrupt register are as follows:

• Vector (VEC)—Bits 7-0. The VEC field contains the vector that is sent to the CPU core in the event
of a spurious interrupt.

• APIC Software Enable (ASE)—Bit 8. The ASE bit when set to 0 disables the local APIC
temporarily. When the local APIC is disabled, SMI, NMI, INIT, Startup, Remote Read, and LINT
interrupts may be accepted; pending interrupts in the ISR and IRR are held, but further fixed,
lowest-priority, and ExtInt interrupts are not accepted. All LVT entry mask bits are set and cannot
be cleared. Setting the ASE bit to 1, enables the local APIC.

• Focus CPU Core Checking (FCC)—Bit 9. The FCC bit when set to 1 disables focus CPU core
checking when the lowest-priority message type is used. A CPU core is the focus of an interrupt if
it is already servicing that interrupt (ISR=1) or if it has a pending request for that interrupt
(IRR=1). Clearing the FCC bit to 0 disables focus CPU core checking.

16.5 Interprocessor Interrupts (IPI)

A local APIC can send interrupts to other local APICs (or itself) using software-initiated
Interprocessor Interrupts (IPIs) using the Interrupt Command Register (ICR). Writing into the low
order doubleword of the ICR causes the IPI to be sent.

31 10 9 8 7 0

Reserved, MBZ

F

C
C

A

S
E

VEC

Bits Mnemonic Description R/W
31-10 Reserved Reserved, Must be Zero
9 FCC Focus CPU Core Checking R/W

8 ASE APIC Software Enable R/W
7-0 VEC Vector R/W

446 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

The ICR can issue the following types of interrupt messages:

• basic interrupt message to another local APIC, including forwarding an interrupt that was received
but not serviced

• basic interrupt message to the same local APIC (self-interrupt)

• system management interrupt (SMI)

• remote read message to another local APIC to read one of its APIC registers.

• non-maskable interrupt (NMI) delivered to another local APIC

• initialization message (INIT) to all local APICs to be reset to their initialization state and await a
startup message.

• startup message (SIPI) to the target local APICs, pointing to a start-up routine.

The format of the Interrupt Command Register is shown in Figure 16-18.

Figure 16-18. Interrupt Command Register (APIC Offset 310:300h)

The fields within the Interrupt Command register are as follows:

• Vector (VEC)—Bits 7-0. The function of this field varies with the Message Type field. The VEC
field contains the vector that is sent for this interrupt source for fixed and lowest priority message
types.

63 56 55 32

DES Reserved, MBZ

31 20 19 18 17 16 15 14 13 12 11 10 8 7 0

Reserved, MBZ DSH RRS
T
G
M

L
R
e
s

D
S

D
M

MT VEC

Bits Mnemonic Description R/W
63-56 DES Destination R/W
55-20 Reserved Reserved, Must be Zero
19-18 DSH Destination Shorthand R/W

17-16 RRS Remote Read Status RO
15 TGM Trigger Mode R/W
14 L Level R/W

13 Reserved Reserved, Must be Zero
12 DS Delivery Status RO
11 DM Destination Mode R/W

10-8 MT Message Type R/W
7-0 VEC Vector R/W

Advanced Programmable Interrupt Controller (APIC) 447

24593—Rev. 3.17—June 2010 AMD64 Technology

• Message Type (MT)—Bits 10-8. The MT field specifies the message type sent to the CPU core
interrupt handler. The legal values are:

- 000b = Fixed - The IPI delivers an interrupt to the target local APIC specified in Destination
field.

- 001b = Lowest Priority - The IPI delivers an interrupt to the local APIC executing at the lowest
priority of all local APICs that match the destination logical ID specified in the Destination
field. See Section 16.6.1, “Receiving System and IPI Interrupts,” on page 449.

- 010b = SMI - The IPI delivers an SMI interrupt to target local APIC(s). The trigger mode is
edge-triggered and the Vector field must = 00h.

- 011b = Remote read - The IPI delivers a read request to read an APIC register in the target local
APIC specified in Destination field. The trigger mode is edge triggered and the Vector field
specifies the APIC offset of the APIC register to be read. The Remote Status field provides the
current status of the remote read access after it has been issued. Data is returned from the target
local APIC and captured in the Remote Read Register of the issuing local APIC. See
Figure 16-19 on page 448.

- 100b = NMI - The IPI delivers a non-maskable interrupt to the target local APIC specified in
the Destination field. The Vector field is ignored.

- 101b = INIT - The IPI delivers an INIT request to the target local APIC(s) specified in the
Destination field, causing the CPU core to assume the INIT state. The trigger mode is edge-
triggered, and the Vector field must =00h.

- 110b = Startup - The IPI delivers a start-up request (SIPI) to the target local APIC(s) specified
in Destination field, causing the CPU core to start processing the BIOS boot-strap routine
whose address is specified by the Vector field.

- 111b = External interrupt - The IPI delivers an external interrupt to the target local APIC
specified in Destination field. The interrupt can be delivered even if the APIC is disabled.

• Destination Mode (DM)—Bit 11. The DM bit when set to 1 specifies a logical destination which
may be one or more local APICs with a common destination logical ID. When cleared to 0, the DM
bit specifies a physical destination which indicates a single local APIC ID.

• Delivery Status (DS)—Bit 12. The DS bit indicates the interrupt delivery status. The DS bit is set to
1 when the local APIC has sent the IPI and is waiting for it to be accepted by another local APIC
(the ICR is not idle). Clearing the DS bit indicates that the target local APIC is idle. Code may
repeatedly write ICRL without polling the DS bit; all requested IPIs will be delivered.

• Level (L)—Bit 14. The L bit when set to 1 indicates assert. Clearing the L bit to 0 indicates
deassert.

• Trigger Mode (TGM)—Bit 15. Specifies how IPIs to the local APIC are triggered. The TGM bit is
set to 1 when the interrupt is level-sensitive. It is cleared to 0 when the interrupt is edge-triggered.

• Remote Read Status (RRS)—Bits 17-16. The RRS field indicates the current read status of a
Remote Read from another local APIC. The encoding for this field is as follows:

- 00b = Read was invalid

448 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

- 01b = Delivery pending

- 10b = Delivery done and access was valid. Data available in Remote Read Register.

- 11b = Reserved

• Destination Shorthand (DSH)—Bits 19-18. The DSH field indicates whether a shorthand notation
is used, and provides a quick way to specify a destination for a message. It replaces the Destination
field, when the destination field is not required (DS>00b), allowing software to use a single write
to the low order ICR. The encoding are as follows:

- 00b = Destination - The Destination field is required to specify the destination.

- 01b = Self - The issuing APIC is the only destination.

- 10b = All including self - The IPI is sent to all local APICs including itself (destination
field=FFh).

- 11b = All excluding self - The IPI is sent to all local APICs except itself (destination
field=FFh).

Note that if the lowest priority is used, the message could end up being reflected back to this
local APIC. If DS=1xb, the destination mode is ignored and physical is automatically used.

• Destination (DES)—Bits 63-56. The DES field identifies the target local APIC(s) for the IPI and
contains the destination encoding used when the Destination Shorthand field=00b. The field
indicates the target local APIC when the destination mode=0 (physical), and the destination logical
ID (as indicated by LDR and DFR) when the destination mode=1 (logical).

Figure 16-19. Remote Read Register (APIC Offset C0h)

• Remote Read Data (RRD)—Bits 31-0. The RRD field contains the data resulting from a valid
completion of a remote read interprocessor interrupt.

Not all combinations of ICR fields are valid. Only the combinations indicated in Table 16-4 are valid.

Table 16-4. Valid ICR Field Combinations

31 0

RRD

Bits Mnemonic Description R/W
31-0 RRD Remote Read Data RO

Message Type Trigger Mode Level Destination Shorthand

Fixed
Edge x x

Level Assert x

Advanced Programmable Interrupt Controller (APIC) 449

24593—Rev. 3.17—June 2010 AMD64 Technology

16.6 Local APIC Handling of Interrupts

16.6.1 Receiving System and IPI Interrupts

Each local APIC verifies the destination ID, the destination mode and the message type of an APIC
interrupt to determine if it is the target of the interrupt.

The destination mode is either physical or logical. In physical destination mode, the APIC ID of the
destination is compared with the unique APIC ID value of each local APIC to select the target local
APIC. If the destination APIC ID=FFh, the interrupt is broadcasted and accepted by all local APICs. In
physical destination mode, the lowest priority message type is not supported.

In logical destination mode, all local APICs use the Logical Destination Register and the Destination
Format Register to determine if the interrupt is directed to them. The logical ID of the destination is
compared with the value in the Logical Destination Register (see Figure 16-20) of all local APICs.
This value is loaded by software and is not unique, allowing for the interrupt to be sent to a group of
local APICs for handling.

Figure 16-20. Logical Destination Register (APIC Offset D0h)

• Destination Logical ID (DLID)—Bits 31-24. The DLID field contains the logical APIC ID
assigned to this specific CPU core. The logical APIC ID is not unique, allowing for interrupts to be
sent to multiple local APICs.

Two interrupt models are defined for the logical destination mode, the flat model and the cluster
model, under the control of the Destination Format Register. See Figure 16-21.

Lowest Priority, SMI, NMI, INIT
Edge x Destination or all excluding self.

Level Assert Destination or all excluding self

Startup x x Destination or all excluding self
Note: x indicates a don’t care.

31 24 23 0

DLID Reserved, MBZ

Bits Mnemonic Description R/W
31-24 DLID Destination Logical ID R/W
23-0 Reserved Reserved, Must be Zero

Message Type Trigger Mode Level Destination Shorthand

450 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 16-21. Destination Format Register (APIC Offset E0h)
• Model (MOD)—Bits 31-28. The MOD field controls which format to use when accepting

interrupts in logical destination mode. The allowable values are 0h= cluster model and Fh=flat
model.

With the flat model, up to eight unique logical APIC ID values can be provided by software by setting
a different bit in the LDR. When the logical ID of the destination is compared with the LDR, if any bit
position is set in both fields, this local APIC is a valid destination. A broadcast to all local APICs
occurs when the LDR is set to all ones.

In the cluster model, bits 31:28 of the logical ID of the destination are compared with bits 31:28 of the
LDR. If there is a match, then bits 27:24 are tested for matching ones, similar to the flat model. If bits
31:28 match, and any of bits 27:24 are set in both fields, this local APIC is a valid destination. The
cluster model allows for 15 unique clusters to be defined, with each cluster having four unique logical
APIC values to be addressed. In cluster logical destination mode, lowest priority message type is not
supported.

In both the flat model and the cluster model, if the destination field = FFh, the interrupt is accepted by
all local APICs.

16.6.2 Lowest Priority Messages and Arbitration

In the case where the interrupt is valid for several local APICs in logical destination mode with a
lowest priority message type, the interrupt is accepted by the local APIC with the lowest arbitration
priority, as indicated by the Arbitration Priority field in the Arbitration Priority Register (APR). The
value in the Arbitration Priority field indicates the current priority for a pending interrupt or task, or an
interrupt being serviced by the CPU core. See Figure 16-22.

31 28 27 0

MOD Reserved, MBZ

Bits Mnemonic Description R/W
31-28 MOD Model R/W
27-0 Reserved Reserved, Must be Zero

Advanced Programmable Interrupt Controller (APIC) 451

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 16-22. Arbitration Priority Register (APIC Offset 90h)

The fields within the Arbitration Priority register are as follows:

• Arbitration Priority Sub-class (APS)—Bits 3-0. The APS field indicates the current sub-priority to
handle arbitrated interrupts to be serviced by the CPU core.

• Arbitration Priority (AP)—Bits 7-4. The AP field indicates the current priority to handle arbitrated
interrupts to be serviced by the CPU core. The priority is used to arbitrate between CPU cores to
determine which core accepts a lowest-priority interrupt request.

The value in the Arbitration Priority field is equal to the highest priority of the Task Priority field of the
Task Priority Register (TPR), the highest bit set in the In-Service Register (ISR) vector, or the highest
bit set in the Interrupt Request Register (IRR) vector. The value in the Arbitration Priority Sub-class
field is equal to the Task Priority Sub-class if the APR is equal to the TPR, and zero otherwise.

If focus CPU core checking is enabled (Spurious Interrupt Register bit 9=0), the focus CPU core for an
interrupt can always accept the interrupt. A CPU core is the focus of an interrupt if it is already
servicing that interrupt (corresponding ISR bit is set) or if it already has a pending request for that
interrupt (corresponding IRR bit is set). If there is no focus CPU core for an interrupt or if focus CPU
core checking is disabled (Spurious Interrupt Register bit 9=1), all target local APICs identified as
candidates for the interrupt arbitrate to determine which is executing with the lowest arbitration
priority. If there is a tie for lowest priority, the local APIC with the highest APIC ID is selected.

16.6.3 Accepting System and IPI Interrupts

If the local APIC accepting the interrupt determines that the message type for the interrupt request
indicates SMI, NMI, INIT, STARTUP or ExtINT, it sends the interrupt directly to the CPU core for
handling. If the message type is fixed or lowest priority, the accepting local APIC places the interrupt
into an open slot in either the IRR or ISR registers. If there is no free slot, the interrupt is rejected and
sent back to the sender with a retry request.

Three 256-bit acceptance registers support interrupts accepted by the local APIC. Bits 255:16
correspond to interrupt vectors 255:16 with 255 being the highest priority; bits 15:0 are reserved.

• Interrupt Request Register (IRR), which contains interrupt requests that have been accepted but
have not been sent to the CPU core for interrupt handling. When a system interrupt is accepted, the

31 8 7 4 3 0

Reserved, MBZ AP APS

Bits Mnemonic Description R/W
31-8 Reserved Reserved, Must be Zero

7-4 AP Arbitration Priority RO
3-0 APS Arbitration Priority Sub-class RO

452 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

associated bit corresponding to the interrupt vector is set in the IRR. When the CPU core requests a
new interrupt, the local APIC selects the highest priority IRR interrupt and sends it to the CPU
core. The local APIC then sets the corresponding bit in the ISR and resets the associated IRR bit.
See Figure 16-23 on page 452.

• In-Service Register (ISR) contains the bit map of the interrupts that have been sent to the CPU core
and are still being serviced. When the CPU core writes to the EOI register indicating completion of
the interrupt processing, the associated ISR bit is reset and a new interrupt is selected from the IRR
register. If a higher priority interrupt is accepted by the local APIC while the CPU core is servicing
another interrupt, the higher priority interrupt is sent directly to the CPU core (before the current
interrupt finishes processing) and the associated IRR bit is set. The CPU core interrupts the current
interrupt handler to service the higher priority interrupt. When the interrupt handler for the higher
priority interrupt completes, the associated IRR bit is reset and the interrupt handler returns to
complete the previous interrupt handler routine. If a second interrupt with the same interrupt vector
number is received by the local APIC while the IRR bit is set, the local APIC sets the ISR bit. No
more than two interrupts can be pending for the same interrupt vector number. Subsequent
interrupt requests to the same interrupt vector number will be rejected. See Figure 16-24 on
page 453.

• Trigger Mode Register (TMR) indicates the trigger mode of the interrupt and determines whether
an EOI message is sent to the I/O APIC for level-sensitive interrupts. When the interrupt is
accepted by the local APIC and the IRR bit is set, the associated TMR bit is set for level-sensitive
interrupts or reset for edge-triggered interrupts. At the end of the interrupt handler routine, when
the EOI is received at the local APIC, an EOI message is sent to the I/O APIC if the associated
TMR bit is set for a system interrupt. See Figure 16-25 on page 454.

Figure 16-23. Interrupt Request Register (APIC Offset 270:200h)

• Interrupt Request bits (IR)—Bits 255-16. The corresponding request bit is set when an interrupt is
accepted by the local APIC. The interrupt request registers provide a bit per interrupt to indicate
that the corresponding interrupt has been accepted by the local APIC. Interrupts are mapped as
follows:

255 16 15 0

IR Res, MBZ

Bits Mnemonic Description R/W
255-16 IR Interrupt Request bits RO
15-0 Reserved Reserved, Must be Zero

Register Interrupt Number

IRR (APIC offset 200h) 31–16

IRR (APIC offset 210h) 63–32

Advanced Programmable Interrupt Controller (APIC) 453

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 16-24. In Service Register (APIC Offset 170:100h)

• In Service bits (IS)—Bits 255–16. These bits are set when the corresponding interrupt is being
serviced by the CPU core. The in-service registers provide a bit per interrupt to indicate that the
corresponding interrupt is being serviced by the CPU core. Interrupts are mapped as follows:

IRR (APIC offset 220h) 95–64

IRR (APIC offset 230h) 127–96

IRR (APIC offset 240h) 159–128

IRR (APIC offset 250h) 191–160

IRR (APIC offset 260h) 223–192

IRR (APIC offset 270h) 255–224

255 16 15 0

IS Res, MBZ

Bits Mnemonic Description R/W
255-16 IS In Service bits RO
15-0 Reserved Reserved, Must be Zero

Register Interrupt Number

ISR (APIC offset 100h) 31–16

ISR (APIC offset 110h) 63–32

ISR (APIC offset 120h) 95–64

ISR (APIC offset 130h) 127–96

ISR (APIC offset 140h) 159–128

ISR (APIC offset 150h) 191–160

ISR (APIC offset 160h) 223–192

ISR (APIC offset 170h) 255–224

Register Interrupt Number

454 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 16-25. Trigger Mode Register (APIC Offset 1F0:180h)

• Trigger Mode bits (TM)—Bits 255–16. These bits provide a bit per interrupt to indicate the
assertion mode of each interrupt. Interrupts are mapped as follows:

16.6.4 Selecting and Handling Interrupts

Interrupts are selected by the local APIC for delivery to the CPU core interrupt handler on a priority
determined by the interrupt vector number. Of the 15 priority levels, 15 is the highest and 1 is the
lowest. The priority level for an interrupt is equal to the interrupt vector number divided by 16,
rounded down to the nearest integer, with vector 0F:00h reserved. Therefore, interrupt vectors 79h and
70h have the same priority level. The high-order hex digit indicates the priority level while the low-
order hex digit indicates the priority within the same priority level.

Two registers are used to determine the priority threshold for selecting interrupts to be delivered to the
CPU core, the Task Priority Register (TPR) and the Processor Priority Register (PPR). Software uses
the TPR to set a priority threshold for interrupts to the CPU core, allowing the OS to block specific
interrupts. See Figure 16-26 on page 455 for more details on the TPR.

The value in the Task Priority field is set by software to set a threshold priority at which the processor
is to be interrupted. The value varies from 0 (all interrupts are allowed) to 15 (all interrupts with fixed
delivery mode are inhibited). See Figure 16-26.

255 16 15 0

TM Res, MBZ

Bits Mnemonic Description R/W
255-16 TM Trigger Mode bits RO

15-0 Reserved Reserved, Must be Zero

Register Interrupt Number

TMR (APIC offset 180h) 31–16

TMR (APIC offset 190h) 63–32

TMR (APIC offset 1A0h) 95–64

TMR (APIC offset 1B0h) 127–96

TMR (APIC offset 1C0h) 159–128

TMR (APIC offset 1D0h) 191–160

TMR (APIC offset 1E0h) 223–192

TMR (APIC offset 1F0h) 255–224

Advanced Programmable Interrupt Controller (APIC) 455

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 16-26. Task Priority Register (APIC Offset 80h)

The fields within the Task Priority register are as follows:

• Task Priority Sub-class (TPS)—Bits 3–0. The TPS field indicates the current sub-priority to be
used when arbitrating lowest-priority messages. This field is written with zero when TPR is written
using the architectural CR8 register.

• Task Priority (TP)—Bits 7–4. The TP field indicates the current priority to be used when a core is
deciding when to handle interrupts. A value of zero allows all interrupts; a value of Fh disables all
interrupts. TP is also used to arbitrate between CPU cores to determine which core accepts a
lowest-priority interrupt request. This field can also be written using the architectural CR8 register.

The PPR is set by the CPU core and represents the current priority level at which the CPU core is
executing. The PPR determines whether a pending interrupt in the local APIC can be selected for
interrupt handling in the CPU core. The value set by hardware is either the interrupt priority level of
the highest priority ISR bit set or the value in the TPR, whichever is higher. The PPR is equal to the
TPR when the CPU core is not servicing a higher priority interrupt. See Figure 16-27 on page 455.

Figure 16-27. Processor Priority Register (APIC Offset A0h)

The fields within the Processor Priority register are as follows:

• Processor Priority Sub-class (PPS)—Bits 3-0. The PPS field is set to the Task Priority sub-class
field of the Task Priority Register (TPR) if the PP field is equal to the Task Priority field of the
TPR.

31 8 7 4 3 0

Reserved, MBZ TP TPS

Bits Mnemonic Description R/W
31-8 Reserved Reserved, Must be Zero

7-4 TP Task Priority R/W
3-0 TPS Task Priority Sub-class R/W

31 8 7 4 3 0

Reserved, MBZ PP PPS

Bits Mnemonic Description R/W
31-8 Reserved Reserved, Must be Zero
7-4 PP Processor Priority RO

3-0 PPS Processor Priority Sub-class RO

456 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

• Processor Priority (PP)—Bits 7-4. The PP field indicates the CPU core’s current priority for
servicing a task or interrupt, and is used to determine if any pending interrupts should be serviced.
It is the higher value of either the interrupt priority level of the highest priority ISR bit set or the
value in the TPR.

Pending interrupts must have a higher priority level than the value in the PPR to be selected by the
local APIC for interrupt handling in the core; otherwise, they remain pending in the IRR until the PPR
is lowered below the pending interrupt priority level. No pending interrupts are selected by the local
APIC when the TPR=15.

The local APIC selects the highest priority pending interrupt (highest priority IRR) when the CPU core
is ready, and sends the interrupt (with the IRR vector) to the CPU core. The local APIC resets the
highest priority IRR bit and sets the associated ISR bit.

As part of the completion of the interrupt handling routine, software writes a value of zero to the End-
of-Interrupt Register (EOI) in the local APIC, which causes the local APIC to reset the associated ISR
bit. The EOI register is a write-only register.

If a higher priority interrupt is accepted by the local APIC while the CPU core is servicing another
interrupt, the higher priority interrupt is sent directly to the CPU core (before the current interrupt
finishes processing) and the associated IRR bit is set. The CPU core interrupts the current interrupt
handler to service the higher priority interrupt. When the interrupt handler for the higher priority
interrupt completes, the associated IRR bit is reset and the interrupt handler returns to complete the
previous interrupt handler routine.

Figure 16-28. End of Interrupt (APIC Offset B0h)

• End of Interrupt (EOI)—Bits 31-0. Write-only operation signals end of interrupt processing to
source of interrupt.

16.7 SVM Support for Interrupts and the Local APIC

The SVM hypervisor uses the Extended APIC Feature Register, Extended APIC Control Register,
Specific End of Interrupt Register (SEOI), and Interrupt Enable Register (IER) to control virtualized
interrupts. When guests have direct access to devices, interrupts arriving at the local APIC can usually
be dismissed only by the guest that owns the device causing the interrupt. To prevent one guest from

31 0

EOI

Bits Mnemonic Description R/W
31-0 EOI End of Interrupt WO

Advanced Programmable Interrupt Controller (APIC) 457

24593—Rev. 3.17—June 2010 AMD64 Technology

blocking other guests’ interrupts (by never processing their own), the VMM can mask pending
interrupts in the local APIC, so they do not participate in the prioritization of other interrupts.

16.7.1 Specific End of Interrupt Register

Software issues a specific EOI (SEOI) by writing the vector number of the interrupt to the new SEOI
register in the local APIC. The SEOI register is located at offset 420h in the APIC space. The SEOI
register format is shown in Figure 16-29.

Figure 16-29. Specific End of Interrupt (APIC Offset 420h)

The IER is made available to software by means of eight 32-bit registers in the local APIC; bit i of the
256-bit IER is located at bit position (i mod 32) in the local APIC register IER[i / 32]. The eight IER
registers are located at offsets 480h, 490h, ...,4F0h in APIC space. The IER format is shown in Figure
16-30.

16.7.2 Interrupt Enable Register

Figure 16-30. Interrupt Enable Register (APIC Offset 4F0:480h)

• Interrupt Enable (IE)—Bits 255–16. Interrupts are mapped as follows:

31 8 7 0

Reserved, MBZ VECTOR

Bits Mnemonic Description R/W
31-8 Reserved Reserved, Must be Zero

7-0 VECTOR Vector Number of Interrupt R/W

255 16 15 0

IE Res, MBZ

Bits Mnemonic Description R/W
255-16 IE Interrupt Enable R/W
15-0 Res Reserved, Must be Zero

Register Interrupt Number

IER (APIC offset 480h) 31–16

IER (APIC offset 490h) 63–32

IER (APIC offset 4A0h) 95–64

458 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.17—June 2010

The IER and SEOI registers are located in the APIC Extended Space area. The presence of the APIC
Extended Space area is indicated by bit 31 of the APIC Version Register (at offset 30h in APIC space).

The presence of the IER and SEOI functionality is identified by bits 0 and 1, respectively, of the APIC
Extended Feature Register (located at offset 400h in APIC space). IER and SEOI are enabled by
setting bits 0 and 1, respectively, of the APIC Extended Control Register (located at offset 410h).

Only vectors that are enabled in IER participate in APIC's computation of the highest-priority pending
interrupt. The reset value of IER is all ones.

IER (APIC offset 4B0h) 127–96

IER (APIC offset 4C0h) 159–128

IER (APIC offset 4D0h) 191–160

IER (APIC offset 4E0h) 223–192

IER (APIC offset 4F0h) 255–224

Register Interrupt Number

OS-Visible Workaround Information 459

24593—Rev. 3.17—June 2010 AMD64 Technology

17 OS-Visible Workaround Information

Operating systems may provide a workaround for hardware errata. These operating system-visible
workarounds (OSVW) may be temporary and should be removed when an erratum is corrected on
hardware in a subsequent release.

Hardware provides software with a mechanism for determining the up-to-date status of OSVWs.
Support for this feature is indicated by ECX bit 9 as returned by CPUID function 8000_0001h.

A unique OSVW ID number is assigned to each erratum. The OSVW ID number corresponds exactly
to the same status bit (En) in the OSVW MSR1–N. The OSVW ID number and bit position for the
erratum, once assigned, are global across all AMD processors; the OSVW ID and bit position will not
be re-used. The OSVW ID range starts at 0, which corresponds to bit 0 of OSVW MSR1.

The OSVW MSRs are defined as follows:

• OSVW MSR0 contains the OSVW_ID_Length field, used to indicate the number of valid OSVW
ID bits. Refer to Figure 17-1 for the MSR format.

• OSVW MSR1–n contains the variable length bit status field, where each bit indicates that a
processor model is affected by OS-visible erratum, and whether the OS needs to apply a
workaround. Refer to Figure 17-2 and Figure 17-3 on page 460 for the MSR format.

The bank of OSVW MSRs are located at address C001_0140h, starting with OSVW MSR0.

The OSVW MSRs are meant as read-only registers for the OS. The OS should never write into these
registers. Hardware allows BIOS writes to these registers.

Figure 17-1. OSVW MSR0: OSVW_ID_Length

OSVW_ID_Length—Bits 15–0. The number of valid OSVW_ID bits. If a specific erratum has an
OSVW ID that is greater than or equal to the OSVW_ID_Length, the erratum is unknown to the latest
release. Otherwise, the associated status bit in the OSVW MSR1-n can be checked to see if a
workaround is required.

63 16 15 0

Reserved OSVW_ID_Length

Bits Mnemonic Description R/W
63–16 Reserved
15–0 OSVW_ID_Length Highest OSVW ID R/W

460 OS-Visible Workaround Information

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 17-2. OSVW MSR1: OSVW Status

Figure 17-3. OSVW MSRn: OSVW Status

OS Valid Workaround Status (OSVW E[i])—Bits n–0. Each bit indicates that a processor model is
affected by OS-visible erratum and whether the OS needs to apply a workaround.

For the status bit:

1 = Hardware contains the erratum, and an OS software workaround is required.
0 = Hardware has corrected the erratum, so an OS software workaround is not necessary.

The location of an OSVW ID status bit within a bank of OSVW MSRs is determined as follows:

• MSR address = OSVW_MSR0 + 1 + floor (OSVW_ID /64)

• Bit offset in MSR = OSVW_ID mod 64

If a specific erratum has an OSVW_ID that is greater than or equal to the OSVW_ID_LENGTH,
hardware does not know about the erratum and the processor model must be used to determine whether
the workaround must be applied.

63 62 1 0

E63 E62 ... E1 E0

63 62 1 0

En+63 En+62 ... En+1 En

Bits Mnemonic Description R/W
n–0 OSVW E[i] OS valid workaround status R/W

OS-Visible Workaround Information 461

24593—Rev. 3.17—June 2010 AMD64 Technology

17.1 Erratum Process Overview

Following is an overview of the AMD erratum process:

• When an OS-visible erratum is discovered, AMD assigns a unique OSVW ID to the erratum and
publishes to OS vendors the starting range of affected processor models and suggested
workarounds.

• AMD works with BIOS vendors and OEMs in parallel to develop a firmware update to extend the
OSVW_ID_Length field in OSVW MSR0 to include the new OSVW ID and set the associated
status bit in OSVW MSR1-N for affected silicon revisions to report the new OSVW ID as
requiring a workaround.

• OS vendors schedule the workaround into their release schedules and eventually release it.

• The OS detection logic for the workaround first checks whether the processor OSVW MSRs
record the erratum by comparing the OSVW ID of the erratum with the OSVW_ID_Length field in
OSVW MSR0.

• If the erratum OSVW ID is greater than or equal to the OSVW_ID_length, the current hardware
does not know about this erratum. In this case, the OS compares the processor model ID with the
starting model ID that AMD supplied with the erratum to determine if the workaround should be
applied.

• If the errata OSVW ID is less than the OSVW_ID_Length, the hardware is aware of the errata. In
this case, the OS uses the state of the associated OSVW ID status bit to conditionally apply the
workaround. If the associated status bit=1, the workaround is applied.

• Once AMD fixes the erratum in a future release, the associated OSVW status bit is reset, indicating
that the workaround is no longer necessary. As a result, the OS detection logic does not apply to the
workaround.

462 OS-Visible Workaround Information

AMD64 Technology 24593—Rev. 3.17—June 2010

Hardware Performance Monitoring and Control 463

24593—Rev. 3.17—June 2010 AMD64 Technology

18 Hardware Performance Monitoring and
Control

The AMD64 architecture provides several mechanisms by which software can control processor
performance;

• The hardware P-state control interface allows dynamic control of performance states.

• Core performance boost (CPB) dynamically monitors processor activity and generates an
approximation of power consumption.

• The effective frequency interface provides a measure of the actual core performance over a
specified period of time.

18.1 Hardware P-State Control

P-states are operational performance states (states in which the processor is executing instructions, i.e.,
running software) characterized by unique frequency of operation for a CPU core. The hardware P-
state control interface supports dynamic P-state changes in up to 16 P-states called P-states 0 through
15 or P0 though P15. P0 is the highest power, highest performance P-state; each ascending P-state
number represents a lower-power, lower performance P-state than the prior P-state number.

Core P-states are dynamically controlled by software. Each CPU core contains one set of P-state
control registers. Software controls the P-states of each CPU core independently; however, hardware
may include interdependencies that affect the P-state achieved by each core.

Hardware provides the highest P-state value in the PstateMaxVal field of the P-State Current Limit
Register. P-states may be limited to a lower performance value under certain conditions. The current P-
state limit is dynamic and is specified in the CurPstateLimit field of the P-State Current Limit Register.

Software requests a core P-state change by writing a 4-bit index corresponding to the desired core P-
state number to the P-State Control Register of the appropriate core. For example, to request the P3
state for core 0, software writes 3h to the core 0’s PstateCmd field in MSR C001_0062h. If the P-state
value is greater than the value in PstateMaxVal, the value written is clipped to that value.

As the current P-state limit changes, the P-state for the CPU core is either set to the software-requested
P-state value or the new current P-state limit, whichever is the higher P-state value.

The current P-state value can be read using the P-State Status Register. The P-State Current Limit
Register and the P-State Status Register are read-only registers. Writes to these registers cause a #GP
exception. Support for hardware P-state control is indicated by EDX bit 7 as returned by CPUID
function 8000_0007h. Figure 18-1 shows the format of the P-State Current Limit register.

464 Hardware Performance Monitoring and Control

AMD64 Technology 24593—Rev. 3.17—June 2010

Figure 18-1. P-State Current Limit Register

The fields within the P-State Current Limit register are:

• Current P-State Limit (CurPstateLimit)—Bits 3–0. Provides the current P-state limit, which is the
lowest P-state value (highest-performance state) that is currently supported by the hardware. This
is a dynamic value controlled by hardware. Reset value is implementation specific.

• P-State Maximum Value (PstateMaxVal)—Bits 7–4. Specifies the highest P-state value (lowest
performance state) supported by the hardware. Attempts to change the current P-state number to a
higher value by writes to the P-State Control Register are clipped to the value of this field. Reset
value is implementation specific.

Figure 18-2. P-State Control Register

• P-State Change Command (PstateCmd)—Bits 3–0. Writes to this field cause the CPU core to
change to the indicated P-state number, which may be clipped by the PstateMaxVal field of the P-
State Current Limit Register. Reset value is implementation specific.

63 8 7 4 3 0

Reserved, Must Be Zero PstateMaxVal CurPstateLimit

Bits Mnemonic Description R/W
63–8 Reserved, must be zero
7–4 PstateMaxVal P-state maximum value R
3–0 CurPstateLimit Current P-state limit R

63 4 3 0

Reserved, Must Be Zero PstateCmd

Bits Mnemonic Description R/W
63–4 Reserved, must be zero
3–0 PstateCmd P-state change command R/W

63 4 3 0

Reserved, Must Be Zero CurPstate

Hardware Performance Monitoring and Control 465

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 18-3. P-State Status Register

• Current P-State (CurPstate)—Bits 3–0. This field provides the current P-state of the CPU core
regardless of the source of the P-state change, including writes to the P-State Control Register:
0=P-state 0, 1=P-state 1, etc. The value of this field is updated when the frequency transitions to a
new value associated with the P-state. Reset value is implementation specific.

18.2 Core Performance Boost

Core performance boost (CPB) dynamically monitors processor activity to create an estimate of power
consumption. If the estimated processor consumption is below an internally defined power limit and
software has requested P0 on a given core, hardware may transition the core to a frequency and voltage
beyond those defined for P0. If the estimated power consumption exceeds the defined power limit,
some or all cores are limited to the frequency and voltage defined by P0. CPB ensures that average
power consumption over a thermally significant time period remains at or below the defined power
limit.

CPB can be disabled using the CPBDis field of the Hardware Configuration Register (HWCR MSR)
on the appropriate core. When CPB is disabled, hardware limits the frequency and voltage of the core
to those defined by P0.

Support for core performance boost is indicated by EDX bit 9 as returned by CPUID function
8000_0007h.

Figure 18-4. Core Performance Boost (MSRC001_0015h)

Bits Mnemonic Description R/W
63–4 Reserved, must be zero
3–0 CurPstate Current P-state R

63 25 0

Reserved, Must Be Zero Reserved, Must Be Zero

Bits Mnemonic Description R/W

63–26 Reserved

25 CPBDis Core Performance Boost Disable R/W

24–0 Reserved, must be zero

466 Hardware Performance Monitoring and Control

AMD64 Technology 24593—Rev. 3.17—June 2010

Core Performance Boost Disable (CpbDis)—Bit 25. Specifies whether core performance boost is
enabled or disabled. 0 = Enabled. 1 = Disabled.

18.3 Effective Frequency

The effective frequency interface allows software to discern the average, or effective, frequency of a
core over a configurable window of time. This provides software a measure of actual performance
rather than forcing software to assume that the current frequency of the core is the frequency of the last
P-state requested.

The effective frequency of a core can be determined using the Max Performance Frequency Clock
Count (MPERF) register and the Actual Performance Frequency Clock Count (APERF) register.
Software performs the following steps:

1. Write 0 to both the MPERF and APERF.

2. Read both MPERF and APERF.

3. Effective frequency = (value read from APERF / value read from MPERF) * P0 frequency.

The amount of time that elapses between steps 1 and 2 is determined by software. This allows software
to define the time window that frequency is averaged over. It is software’s responsibility to disable
interrupts or any other events that may occur in between the write of each MSR in step 1 and between
the read of each MSR in step 2. Software determines the P0 frequency using ACPI defined data
structures.

The effective frequency interface only counts clock cycles while the core is in the ACPI defined C0
state.

Only the ratio between MPERF and APERF is architecturally defined. Software should not assume
any specific definition of the MPERF or APERF registers.

Support for effective frequency is indicated by ECX bit 0 as returned by CPUID function 0000_0006h.

Figure 18-5. Max Performance Frequency Count (MSR0000_00E7h)

Maximum Performance Frequency Clock Count (MPERF) – Bits 63-0. Specifies the denomina-
tor of the effective frequency ratio.

63 0

MPERF

Bits Mnemonic Description R/W

63–0 MPERF Max Performance Frequency Clock Count R/W

Hardware Performance Monitoring and Control 467

24593—Rev. 3.17—June 2010 AMD64 Technology

Figure 18-6. Actual Performance Frequency Count (MSR0000_00E8h)

Actual Performance Frequency Clock Count (APERF) – Bits 63-0. Specifies the numerator of the
effective frequency ratio.

63 0

APERF

Bits Mnemonic Description R/W

63–0 APERF Actual Performance Frequency Clock Count R/W

468 Hardware Performance Monitoring and Control

AMD64 Technology 24593—Rev. 3.17—June 2010

MSR Cross-Reference 469

24593—Rev. 3.17—June 2010 AMD64 Technology

Appendix A MSR Cross-Reference

This appendix lists the MSRs that are defined in the AMD64 architecture. The AMD64 architecture
supports some of the same MSRs as previous versions of the x86 architecture and implementations
thereof. Where possible, the AMD64 architecture supports the same MSRs, for the same functions, as
these previous architectures and implementations.

The first section lists the MSRs according to their MSR address, and it gives a cross reference for
additional information. The remaining sections list the MSRs by their functional group. Those sections
also give a brief description of the register and specify the register reset value.

Some MSRs are implementation-specific For information about these MSRs, see the documentation
for specific implementations of the AMD64 architecture.

A.1 MSR Cross-Reference by MSR Address

Table A-1 lists the MSRs in the AMD64 architecture in order of MSR address.

Table A-1. MSRs of the AMD64 Architecture

MSR Address MSR Name
Functional

Group
Cross-Reference

0010h TSC Performance “Time-Stamp Counter” on page 346

001Bh APIC_BASE
System
Software

“Local APIC Enable” on page 433

00E7h MPERF Performance “Effective Frequency” on page 466

00E8h APERF Performance “Effective Frequency” on page 466

00FEh MTRRcap Memory Typing “Identifying MTRR Features” on page 190

0174h SYSENTER_CS
System
Software

“SYSENTER and SYSEXIT MSRs” on page 1520175h SYSENTER_ESP

0176h SYSENTER_EIP

0179h MCG_CAP

Machine Check

“Machine-Check Global-Capabilities Register” on
page 257

017Ah MCG_STATUS
“Machine-Check Global-Status Register” on
page 258

017Bh MCG_CTL
“Machine-Check Global-Control Register” on
page 259

01D9h DebugCtlMSR Software Debug
“Debug-Control MSR (DebugCtlMSR)” on
page 333

470 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.17—June 2010

01DBh LastBranchFromIP

Software Debug “Control-Transfer Recording MSRs” on page 334
01DCh LastBranchToIP

01DDh LastExceptionFromIP

01DEh LastExceptionToIP

0200h MTRRphysBase0

Memory Typing “Variable-Range MTRRs” on page 187

0201h MTRRphysMask0

0202h MTRRphysBase1

0203h MTRRphysMask1

0204h MTRRphysBase2

0205h MTRRphysMask2

0206h MTRRphysBase3

0207h MTRRphysMask3

0208h MTRRphysBase4

0209h MTRRphysMask4

020Ah MTRRphysBase5

020Bh MTRRphysMask5

020Ch MTRRphysBase6

020Dh MTRRphysMask6

020Eh MTRRphysBase7

020Fh MTRRphysMask7

0250h MTRRfix64K_00000

Memory Typing “Fixed-Range MTRRs” on page 185

0258h MTRRfix16K_80000

0259h MTRRfix16K_A0000

0268h MTRRfix4K_C0000

0269h MTRRfix4K_C8000

026Ah MTRRfix4K_D0000

026Bh MTRRfix4K_D8000

026Ch MTRRfix4K_E0000

026Dh MTRRfix4K_E8000

026Eh MTRRfix4K_F0000

026Fh MTRRfix4K_F8000

0277h PAT
Memory Typing

“PAT Register” on page 193

02FFh MTRRdefType “Default-Range MTRRs” on page 189

Table A-1. MSRs of the AMD64 Architecture (continued)

MSR Address MSR Name
Functional

Group
Cross-Reference

MSR Cross-Reference 471

24593—Rev. 3.17—June 2010 AMD64 Technology

0400h MC0_CTL

Machine Check
See the documentation for particular
implementations of the architecture.

0404h MC1_CTL

0408h MC2_CTL

040Ch MC3_CTL

0410h MC4_CTL

0414h MC5_CTL

0401h MC0_STATUS

Machine Check “Machine-Check Status Registers” on page 261

0405h MC1_STATUS

0409h MC2_STATUS

040Dh MC3_STATUS

0411h MC4_STATUS

0415h MC5_STATUS

0402h MC0_ADDR

Machine Check “Machine-Check Address Registers” on page 264

0406h MC1_ADDR

040Ah MC2_ADDR

040Eh MC3_ADDR

0412h MC4_ADDR

0416h MC5_ADDR

0403h MC0_MISC

Machine Check
“Machine-Check Miscellaneous-Error Information
Registers (MCi_MISCj)” on page 264

0407h MC1_MISC

040Bh MC2_MISC

040Fh MC3_MISC

0413h MC4_MISC

0417h MC5_MISC

C000_0080h EFER
System
Software

“Extended Feature Enable Register (EFER)” on
page 54

C000_0081h STAR

System
Software

“SYSCALL and SYSRET MSRs” on page 151
C000_0082h LSTAR

C000_0083h CSTAR

C000_0084h SF_MASK

C000_0100h FS.Base System
Software

“FS and GS Registers in 64-Bit Mode” on
page 70C000_0101h GS.Base

C000_0102h KernelGSbase
System
Software

“SWAPGS Instruction” on page 152

C000_0103h TSC_AUX
System
Software

“RDTSCP Instruction” on page 154

Table A-1. MSRs of the AMD64 Architecture (continued)

MSR Address MSR Name
Functional

Group
Cross-Reference

472 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.17—June 2010

C000_0408h MC4_MISC1

Machine Check
“Machine-Check Miscellaneous-Error Information
Registers (MCi_MISCj)” on page 264

C000_0409h MC4_MISC2

C000_040Ah MC4_MISC3

C001_0000h PerfEvtSel0

Performance
“Performance Event-Select Registers” on
page 343

C001_0001h PerfEvtSel1

C001_0002h PerfEvtSel2

C001_0003h PerfEvtSel3

C001_0004h PerfCtr0

Performance “Performance Counters” on page 342
C001_0005h PerfCtr1

C001_0006h PerfCtr2

C001_0007h PerfCtr3

C001_0010h SYSCFG Memory Typing
“System Configuration Register (SYSCFG)” on
page 58

C001_0016h IORRBase0

Memory Typing “IORRs” on page 200
C001_0017h IORRMask0

C001_0018h IORRBase1

C001_0019h IORRMask1

C001_001Ah TOP_MEM
Memory Typing “Top of Memory” on page 202

C001_001Dh TOP_MEM2

C001_0030h

Processor_Name_String CPUID Name
See appropriate BIOS and kernel developer’s
guide for details.

C001_0031h

C001_0032h

C001_0033h

C001_0034h

C001_0035h

C001_0056h SMI_Trigger_IO_Cycle SMM
See appropriate BIOS and kernel developer’s
guide for details.

C001_0061h P-State Current Limit

SMM
“Hardware Performance Monitoring and Control”
on page 463

C001_0062h P-State Control

C001_0063h P-State Status

C001_0074h CPU_Watchdog_Timer Machine Check “CPU Watchdog Timer Register” on page 259

C001_0104h TSC Ratio SVM “TSC Ratio MSR (C000_0104h)” on page 427

C001_0111h SMBASE

SMM

“SMBASE Register” on page 273

C001_0112h SMM_ADDR
“SMRAM Protected Area” on page 279

C001_0113h SMM_MASK

C001_0114h VM_CR SVM “SVM Related MSRs” on page 424

Table A-1. MSRs of the AMD64 Architecture (continued)

MSR Address MSR Name
Functional

Group
Cross-Reference

MSR Cross-Reference 473

24593—Rev. 3.17—June 2010 AMD64 Technology

A.2 System-Software MSRs

Table A-2 lists the MSRs defined for general use by system software in controlling long mode and in
allowing fast control transfers between applications and the operating system.

C001_0115h IGNNE SVM “SVM Related MSRs” on page 424

C001_0116h SMM_CTL SVM “SVM Related MSRs” on page 424

C001_0117h VM_HSAVE_PA SVM “SVM Related MSRs” on page 424

C001_0118h SVM_KEY_MSR SVM “SVM-Lock” on page 426

C001_0119h SMM_KEY_MSR SMM “SMM-Lock” on page 426

C001_011Ah Local_SMI_Status SMM
See appropriate BIOS and kernel developer’s
guide for details.

C001_0140h OSVW_ID_Length
OSVM

“OS-Visible Workaround Information” on
page 459C001_0141h OSVM Status

Table A-2. System-Software MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

0000_001Bh APIC_BASE
See appropriate BIOS and kernel developer’s
guide for details.

0000_0000_FEE0_0x00h

C000_0080h EFER
Contains control bits that enable extended
features supported by the processor,
including long mode.

0000_0000_0000_0000h

C000_0081h STAR

In legacy mode, used to specify the target
address of a SYSCALL instruction, as well as
the CS and SS selectors of the called and
returned procedures.

undefined

C000_0082h LSTAR
In 64-bit mode, used to specify the target RIP
of a SYSCALL instruction.

undefined

C000_0083h CSTAR
In compatibility mode, used to specify the
target RIP of a SYSCALL instruction.

undefined

C000_0084h SF_MASK SYSCALL Flags Mask undefined

C000_0100h FS.Base
Contains the 64-bit base address in the
hidden portion of the FS register (the base
address from the FS descriptor).

0000_0000_0000_0000h

C000_0101h GS.Base
Contains the 64-bit base address in the
hidden portion of the GS register (the base
address from the GS descriptor).

0000_0000_0000_0000h

Table A-1. MSRs of the AMD64 Architecture (continued)

MSR Address MSR Name
Functional

Group
Cross-Reference

474 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.17—June 2010

A.3 Memory-Typing MSRs

Table A-3 lists the MSRs used to control memory-typing and the page-attribute-table mechanism.

C000_0102h KernelGSbase

The SWAPGS instruction exchanges the
value in KernelGSbase with the value in
GS.base, providing a fast method for system
software to load a pointer to system data-
structures.

undefined

C000_0103h TSC_AUX
The RDTSCP instruction copies the value of
this MSR into the ECX register.

0000_0000_0000_0000h

0174h SYSENTER_CS
In legacy mode, used to specify the CS
selector of the procedure called by
SYSENTER.

undefined

0175h SYSENTER_ESP
In legacy mode, used to specify the stack
pointer for the procedure called by
SYSENTER.

undefined

0176h SYSENTER_EIP
In legacy mode, used to specify the EIP of the
procedure called by SYSENTER.

undefined

Table A-3. Memory-Typing MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

00FEh MTRRcap
A read-only register containing information
describing the level of MTRR support
provided by the processor.

0000_0000_0000_0508h

0200h MTRRphysBase0

Specifies the memory-range base address
in physical-address space of a variable-
range memory region. These registers
also specify the memory type used for the
memory region.

undefined

0202h MTRRphysBase1

0204h MTRRphysBase2

0206h MTRRphysBase3

0208h MTRRphysBase4

020Ah MTRRphysBase5

020Ch MTRRphysBase6

020Eh MTRRphysBase7

Table A-2. System-Software MSR Cross-Reference (continued)

MSR
Address

MSR
Name

Description Reset Value

MSR Cross-Reference 475

24593—Rev. 3.17—June 2010 AMD64 Technology

0201h MTRRphysMask0

Specifies the size of a variable-range
memory region.

Valid (bit 11) = 0
All Other Bits Undefined

0203h MTRRphysMask1

0205h MTRRphysMask2

0207h MTRRphysMask3

0209h MTRRphysMask4

020Bh MTRRphysMask5

020Dh MTRRphysMask6

020Fh MTRRphysMask7

0250h MTRRfix64K_00000

Fixed-range MTRRs used to characterize
the first 1 Mbyte of physical memory. Each
64-bit register contains eight type fields for
characterizing a total of eight memory
ranges.
• MTRRfix64K_n characterizes 64 Kbyte

ranges.
• MTRRfix16K_n characterizes 16 Kbyte

ranges.
• MTRRfix4K_n characterizes 4 Kbyte

ranges.

undefined

0258h MTRRfix16K_80000

0259h MTRRfix16K_A0000

0268h MTRRfix4K_C0000

0269h MTRRfix4K_C8000

026Ah MTRRfix4K_D0000

026Bh MTRRfix4K_D8000

026Ch MTRRfix4K_E0000

026Dh MTRRfix4K_E8000

026Eh MTRRfix4K_F0000

026Fh MTRRfix4K_F8000

0277h PAT
Used to extend the page-table entry
format, allowing memory-type
characterization on a physical-page basis.

0007_0406_0007_0406h

02FFh MTRRdefType
Sets the default memory-type for physical
addresses not within ranges established
by fixed-range and variable-range MTRRs.

0000_0000_0000_0000h

C001_0010h SYSCFG
Contains control bits for enabling and
configuring system bus features.

0000_0000_0002_0601h

C001_0016h IORRBase0 Specifies the memory-range base address
in physical-address space of a variable-
range I/O region.

undefined
C001_0018h IORRBase1

C001_0017h IORRMask0 Specifies the size of a variable-range I/O
region.

Valid (bit 11) = 0
All Other Bits UndefinedC001_0019h IORRMask1

C001_001Ah TOP_MEM
Sets the boundary between system
memory and memory-mapped I/O for
addresses below 4 Gbytes.

0000_0000_0400_0000h

C001_001Dh TOP_MEM2
Sets the boundary between system
memory and memory-mapped I/O for
addresses above 4 Gbytes.

undefined

Table A-3. Memory-Typing MSR Cross-Reference (continued)

MSR
Address

MSR
Name

Description Reset Value

476 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.17—June 2010

A.4 Machine-Check MSRs

Table A-4 lists the MSRs used in support of the machine-check mechanism.

Table A-4. Machine-Check MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

0179h MCG_CAP
A read-only register that specifies the
machine-check mechanism capabilities
supported by the processor.

0000_0000_0000_010xh

017Ah MCG_STATUS
Provides basic information about the
processor state immediately after the
occurrence of a machine-check error.

undefined

017Bh MCG_CTL
Controls global reporting of machine-
check errors from various sources.

0000_0000_0000_0000h

0400h MC0_CTL
Controls error reporting for the data-
cache-unit register bank.

0000_0000_0000_0000h

0404h MC1_CTL
Controls error reporting for the
instruction-cache-unit register bank.

0000_0000_0000_0000h

0408h MC2_CTL
Controls error reporting for the bus-unit
register bank.

0000_0000_0000_0000h

040Ch MC3_CTL
Controls error reporting for the load/store-
unit register bank.

0000_0000_0000_0000h

0410h MC4_CTL
Controls error reporting for the
Northbridge register bank.

0000_0000_0000_0000h

0414h MC5_CTL
Controls error reporting for the execution
unit register bank.

0000_0000_0000_0000h

0401h MC0_STATUS

Status registers for each error-reporting
register bank, used to report machine-
check error information for the specified
register bank.

undefined

0405h MC1_STATUS

0409h MC2_STATUS

040Dh MC3_STATUS

0411h MC4_STATUS

0415h MC5_STATUS

0402h MC0_ADDR

Reports the instruction memory-address
or data memory-address responsible for
the machine-check error for the specified
register bank.

undefined

0406h MC1_ADDR

040Ah MC2_ADDR

040Eh MC3_ADDR

0412h MC4_ADDR

0416h MC5_ADDR

MSR Cross-Reference 477

24593—Rev. 3.17—June 2010 AMD64 Technology

A.5 Software-Debug MSRs

Table A-5 lists the MSRs used in support of the software-debug architecture.

0403h MC0_MISC

Reports miscellaneous information about
the machine-check error for the specified
register bank.

c00x_xxxx_xx00_0000

0407h MC1_MISC

040Bh MC2_MISC

040Fh MC3_MISC

0413h MC4_MISC

0417h MC5_MISC

C000_0408h MC4_MISC1

c00x_xxxx_0000_0000C000_0409h MC4_MISC2

C000_040Ah MC4_MISC3

C001_0074h CPU_Watchdog_Timer
Timer that can cause a machine check
error if no operation completes after a
specified time period.

0000_0000_0000_0000h

Table A-5. Software-Debug MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

01D9h DebugCtlMSR

Provides debug controls for control-transfer
recording and control-transfer single
stepping, and external-breakpoint reporting
and trace messages.

0000_0000_0000_0000h

01DBh LastBranchFromIP
During control-transfer recording, this
register is loaded with the segment offset of
the control-transfer source.

undefined

01DCh LastBranchToIP
During control-transfer recording, this
register is loaded with the segment offset of
the control-transfer target.

undefined

01DDh LastExceptionFromIP

When an interrupt occurs during control-
transfer recording, this register is loaded
with LastBranchFromIP before
LastBranchFromIP is updated.

undefined

01DEh LastExceptionToIP

When an interrupt occurs during control-
transfer recording, this register is loaded
with LastBranchToIP before LastBranchToIP
is updated.

undefined

Table A-4. Machine-Check MSR Cross-Reference (continued)

MSR
Address

MSR
Name

Description Reset Value

478 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.17—June 2010

A.6 Performance-Monitoring MSRs

Table A-6 lists the MSRs used in support of performance monitoring, including the time-stamp
counter.

A.7 Secure Virtual Machine MSRs

Table A-7 lists the MSRs used in support of SVM functions.

Table A-6. Performance-Monitoring MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

0010h TSC
Counts processor-clock cycles. It is
incremented once for each processor-clock
cycle.

0000_0000_0000_0000h

C001_0000h PerfEvtSel0
For the corresponding performance counter,
this register specifies the events counted, and
controls other aspects of counter operation.

undefined
C001_0001h PerfEvtSel1

C001_0002h PerfEvtSel2

C001_0003h PerfEvtSel3

C001_0004h PerfCtr0
Used to count specific processor events, or
the duration of events, as specified by the
corresponding PerfEvtSeln register.

undefined
C001_0005h PerfCtr1

C001_0006h PerfCtr2

C001_0007h PerfCtr3

Table A-7. Secure Virtual Machine MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

C001_0114h VM_CR
Controls certain global aspects of
SVM.

undefined

C001_0115h IGNNE
Sets the state of the processor-
internal IGNNE signal.

C001_0116h SMM_CTL
Provides software control over SMM
signals.

C001_0117h VM_HSAVE_PA

Holds the physical address of a block
of memory where VMRUN saves host
state, and from which #VMEXIT
reloads host state.

C001_0118h SVM_KEY
Creates a password-protected
mechanism to clear VM_CR.LOCK.

C001_0119h SMM_KEY
Creates a password-protected
mechanism to clear SmmLock.

MSR Cross-Reference 479

24593—Rev. 3.17—June 2010 AMD64 Technology

A.8 System Management Mode MSRs

Table A-8 lists the MSRs used in support of SMM functions.

A.9 CPUID Name MSR Cross-Reference

Table A-9 lists the MSRs used to support CPUID namestring.

Table A-8. System Management Mode MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

C001_0111h SMBASE Contains the SMRAM base address. 0000_0000_0003_0000h

C001_0112h SMM_ADDR
Contains the base address of protected
memory for the SMM Handler.

0000_0000_0000_0000h

C001_0113h SMM_MASK
Contains a mask which determines the
size of the protected area for the SMM
handler.

0000_0000_0000_0000h

C001_011Ah Local_SMI_Status

Contains status associated with SMI
sources local to the CPU core. See the
appropriate BIOS and kernel developer’s
guide for details.

0000_0000_0000_0000h

C001_0056h SMI_Trigger_IO_Cycle

Specifies an IO cycle that may be
generated when a local SMI trigger event
occurs. See the appropriate BIOS and
kernel developer’s guide for details.

0000_0000_0000_0000h

Table A-9. CPUID Namestring MSRs

MSR
Address

MSR
Name

Description
Reset
Value

C001_0030h

Processor_Name_String
See appropriate BIOS and kernel developer’s guide
and processor revision guide for details.

C001_0031h

C001_0032h

C001_0033h

C001_0034h

C001_0035h

480 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.17—June 2010

Layout of VMCB 481

24593—Rev. 3.17—June 2010 AMD64 Technology

Appendix B Layout of VMCB

B.1 Layout of VMCB

The VMCB is divided into two areas—the first one contains various control bits including the
intercept vector and the second one contains saved guest state.

Table B-1 describes the layout of the control area of the VMCB, which starts at offset zero within the
VMCB page. The control area is padded to a size of 1024 bytes. All unused bytes must be zero, as they
are reserved for future expansion. It is recommended that software “bzero” any newly allocated
VMCB.

Table B-1. VMCB Layout, Control Area

Byte Offset Bit(s) Function

000h
15–0 Intercept reads of CR0–15, respectively.

31–16 Intercept writes of CR0–15, respectively.

004h
15–0 Intercept reads of DR0–15, respectively.

31–16 Intercept writes of DR0–15, respectively.

008h 31–0 Intercept exception vectors 0–31, respectively.

00Ch

0 Intercept INTR (physical maskable interrupt).

1 Intercept NMI.

2 Intercept SMI.

3 Intercept INIT.

4 Intercept VINTR (virtual maskable interrupt).

5
Intercept CR0 writes that change bits other than
CR0.TS or CR0.MP.

6 Intercept reads of IDTR.

7 Intercept reads of GDTR.

8 Intercept reads of LDTR.

9 Intercept reads of TR.

10 Intercept writes of IDTR.

11 Intercept writes of GDTR.

12 Intercept writes of LDTR.

13 Intercept writes of TR.

14 Intercept RDTSC instruction.

15 Intercept RDPMC instruction.

482 Layout of VMCB

AMD64 Technology 24593—Rev. 3.17—June 2010

00Ch (continued)

16 Intercept PUSHF instruction.

17 Intercept POPF instruction.

18 Intercept CPUID instruction.

19 Intercept RSM instruction.

20 Intercept IRET instruction.

21 Intercept INTn instruction.

22 Intercept INVD instruction.

23 Intercept PAUSE instruction.

24 Intercept HLT instruction.

25 Intercept INVLPG instruction.

26 Intercept INVLPGA instruction.

27
IOIO_PROT—Intercept IN/OUT accesses to selected
ports.

28
MSR_PROT—intercept RDMSR or WRMSR accesses
to selected MSRs.

29 Intercept task switches.

30
FERR_FREEZE: intercept processor “freezing” during
legacy FERR handling.

31 Intercept shutdown events.

010h

0 Intercept VMRUN instruction.

1 Intercept VMMCALL instruction.

2 Intercept VMLOAD instruction.

3 Intercept VMSAVE instruction.

4 Intercept STGI instruction.

5 Intercept CLGI instruction.

6 Intercept SKINIT instruction.

7 Intercept RDTSCP instruction.

8 Intercept ICEBP instruction.

9 Intercept WBINVD instruction.

10 Intercept MONITOR instruction

11 Intercept MWAIT instruction unconditionally

12
Intercept MWAIT instruction if Monitor hardware is
armed.

31—13 RESERVED, SBZ

014h–03Dh RESERVED, SBZ

03Eh 15–0 PAUSE Filter Count

Table B-1. VMCB Layout, Control Area (continued)

Byte Offset Bit(s) Function

Layout of VMCB 483

24593—Rev. 3.17—June 2010 AMD64 Technology

040h 63–0
IOPM_BASE_PA—Physical base address of IOPM (bits
11:0 are ignored).

048h 63–0
MSRPM_BASE_PA—Physical base address of
MSRPM (bits 11:0 are ignored).

050h 63–0 TSC_OFFSET—To be added in RDTSC and RDTSCP.

058h

31–0 Guest ASID.

39–32

TLB_CONTROL
000b—Do nothing
001b—Flush entire TLB on VMRUN (all entries, all
ASIDs, Should only be used by legacy hypervisors.)
011b—Flush this guest’s TLB entries.
111b—Flush this guest’s non-global TLB entries.

63–40 RESERVED, SBZ

060h

7–0

V_TPR—The virtual TPR for the guest; currently bits
3:0 are used for a 4-bit virtual TPR value; bits 7:4 are
SBZ.

NOTE: This value is written back to the VMCB at #VMEXIT.

8
V_IRQ—If nonzero, virtual INTR is pending.

NOTE: This value is written back to the VMCB at #VMEXIT.

15–9 RESERVED, SBZ

19–16 V_INTR_PRIO—Priority for virtual interrupt.

20
V_IGN_TPR—If nonzero, the current virtual interrupts
ignores the (virtual) TPR.

23–21 RESERVED, SBZ

24
V_INTR_MASKING—Virtualize masking of INTR
interrupts (see “Virtualizing APIC.TPR” on page 398).

31–25 RESERVED, SBZ

39–32 V_INTR_VECTOR—Vector to use for this interrupt.

63–40 RESERVED, SBZ

068h
0

INTERRUPT_SHADOW—Guest is in an interrupt
shadow; (see “Interrupt Shadows” on page 399).

Note: This value is written back to the VMCB at #VMEXIT.

63–1 RESERVED, SBZ

070h 63–0 EXITCODE

078h 63–0 EXITINFO1

080h 63–0 EXITINFO2

088h 63–1 EXITINTINFO

090h
0 NP_ENABLE—Enable nested paging.

63–1 RESERVED, SBZ

Table B-1. VMCB Layout, Control Area (continued)

Byte Offset Bit(s) Function

484 Layout of VMCB

AMD64 Technology 24593—Rev. 3.17—June 2010

The state-save area within the VMCB starts at offset 400h into the VMCB page; Table B-2 describes
the fields within the state-save area; note that the table lists offsets relative to the state-save area (not
the VMCB as a whole).

098h–0A7h RESERVED. SBZ

0A8h 63–0
EVENTINJ—Event injection (see “Event Injection” on
page 396 for details).

0B0h 63–1
N_CR3—Nested page table CR3 to use for nested
paging.

0B8h
0

LBR_VIRTUALIZATION_ENABLE
0—Do nothing.
1—Enable LBR virtualization.

63–1 RESERVED, SBZ.

0C0h 0–31 VMCB Clean Bits

0C8h 63–0 nRIP—Next sequential instruction pointer

0D0h
7–0 Number of bytes fetched

127–8 Guest instruction bytes

All other fields up to 3FFh RESERVED, SBZ

Table B-2. VMCB Layout, State Save Area

Offset Size Contents Notes

000h word

ES

selector

002h word attrib

004h dword limit

008h qword base Only lower 32 bits are implemented.

010h word

CS

selector

012h word attrib

014h dword limit

018h qword base Only lower 32 bits are implemented.

020h word

SS

selector

022h word attrib

024h dword limit

028h qword base Only lower 32 bits are implemented.

030h word

DS

selector

032h word attrib

034h dword limit

038h qword base Only lower 32 bits are implemented.

Table B-1. VMCB Layout, Control Area (continued)

Byte Offset Bit(s) Function

Layout of VMCB 485

24593—Rev. 3.17—June 2010 AMD64 Technology

040h word

FS

selector

042h word attrib

044h dword limit

048h qword base

050h word

GS

selector

052h word attrib

054h dword limit

058h qword base

060h word

GDTR

selector reserved

062h word attrib reserved

064h dword limit Only lower 16 bits are implemented.

068h qword base

070h word

LDTR

selector

072h word attrib

074h dword limit

078h qword base

080h word

IDTR

selector reserved

082h word attrib reserved

084h dword limit Only lower 16 bits are implemented.

088h qword base

090h word

TR

selector

092h word attrib

094h dword limit

098h qword base

0A0h–0CAh RESERVED

0CBh byte CPL
If the guest is real-mode then the CPL is
forced to 0; if the guest is virtual-mode then
the CPL is forced to 3.

0CCh dword RESERVED

0D0h qword EFER

0D8h–147h RESERVED

148h qword CR4

150h qword CR3

158h qword CR0

160h qword DR7

168h qword DR6

170h qword RFLAGS

Table B-2. VMCB Layout, State Save Area (continued)

Offset Size Contents Notes

486 Layout of VMCB

AMD64 Technology 24593—Rev. 3.17—June 2010

178h qword RIP

180h–1D7h RESERVED

1D8h qword RSP

1E0h–1F7h RESERVED

1F8h qword RAX

200h qword STAR

208h qword LSTAR

210h qword CSTAR

218h qword SFMASK

220h qword KernelGsBase

228h qword SYSENTER_CS

230h qword SYSENTER_ESP

238h qword SYSENTER_EIP

240h qword CR2

248h–267h RESERVED

268h qword G_PAT
Guest PAT—only used if nested paging
enabled.

270h qword DBGCTL
Guest DBGCTL MSR—only used if the LBR
registers are virtualized.

278h qword BR_FROM
Guest LastBranchFromIP MSR—only used
if the LBR registers are virtualized.

280h qword BR_TO
Guest LastBranchToIP MSR—only used if
the LBR registers are virtualized.

288h qword LASTEXCPFROM
Guest LastExceptionFromIP MSR—Only
used if the LBR registers are virtualized.

290h qword LASTEXCPTO
Guest LastExceptionToIP MSR—Only used
if the LBR registers are virtualized.

298h to end of VMCB RESERVED

Table B-2. VMCB Layout, State Save Area (continued)

Offset Size Contents Notes

SVM Intercept Exit Codes 487

24593—Rev. 3.17—June 2010 AMD64 Technology

Appendix C SVM Intercept Exit Codes

When the VMRUN instruction exits (back to the host), an exit/reason code is stored in the EXITCODE
field in the VMCB. The exit codes are defined in Table C-1. Intercept exit codes 0h–89h equal the bit
position of the corresponding flag in the VMCB’s intercept vector.

Table C-1. SVM Intercept Codes

Code Name Cause

0h–Fh VMEXIT_CR[0–15]_READ read of CR 0 through 15, respectively

10h–1Fh VMEXIT_CR[0–15]_WRITE write of CR 0 through 15, respectively

20h–2Fh VMEXIT_DR[0–15]_READ read of DR 0 through 15, respectively

30h–3Fh VMEXIT_DR[0–15]_WRITE write of DR 0 through 15, respectively

40h–5Fh VMEXIT_EXCP[0–31] exception vector 0–31, respectively

60h VMEXIT_INTR physical INTR (maskable interrupt)

61h VMEXIT_NMI physical NMI

62h VMEXIT_SMI
physical SMI (the EXITINFO1 field provides more
information)

63h VMEXIT_INIT physical INIT

64h VMEXIT_VINTR virtual INTR

65h VMEXIT_CR0_SEL_WRITE
write of CR0 that changed any bits other than CR0.TS
or CR0.MP

66h VMEXIT_IDTR_READ read of IDTR

67h VMEXIT_GDTR_READ read of GDTR

68h VMEXIT_LDTR_READ read of LDTR

69h VMEXIT_TR_READ read of TR

6Ah VMEXIT_IDTR_WRITE write of IDTR

6Bh VMEXIT_GDTR_WRITE write of GDTR

6Ch VMEXIT_LDTR_WRITE write of LDTR

6Dh VMEXIT_TR_WRITE write of TR

6Eh VMEXIT_RDTSC RDTSC instruction

6Fh VMEXIT_RDPMC RDPMC instruction

70h VMEXIT_PUSHF PUSHF instruction

71h VMEXIT_POPF POPF instruction

72h VMEXIT_CPUID CPUID instruction

73h VMEXIT_RSM RSM instruction

74h VMEXIT_IRET IRET instruction

75h VMEXIT_SWINT software interrupt (INTn instructions)

76h VMEXIT_INVD INVD instruction

488 SVM Intercept Exit Codes

AMD64 Technology 24593—Rev. 3.17—June 2010

77h VMEXIT_PAUSE PAUSE instruction

78h VMEXIT_HLT HLT instruction

79h VMEXIT_INVLPG INVLPG instructions

7Ah VMEXIT_INVLPGA INVLPGA instruction

7Bh VMEXIT_IOIO
IN or OUT accessing protected port (the EXITINFO1
field provides more information)

7Ch VMEXIT_MSR RDMSR or WRMSR access to protected MSR

7Dh VMEXIT_TASK_SWITCH task switch

7Eh VMEXIT_FERR_FREEZE
FP legacy handling enabled, and processor is frozen in
an x87/mmx instruction waiting for an interrupt

7Fh VMEXIT_SHUTDOWN Shutdown

80h VMEXIT_VMRUN VMRUN instruction

81h VMEXIT_VMMCALL VMMCALL instruction

82h VMEXIT_VMLOAD VMLOAD instruction

83h VMEXIT_VMSAVE VMSAVE instruction

84h VMEXIT_STGI STGI instruction

85h VMEXIT_CLGI CLGI instruction

86h VMEXIT_SKINIT SKINIT instruction

87h VMEXIT_RDTSCP RDTSCP instruction

88h VMEXIT_ICEBP ICEBP instruction

89h VMEXIT_WBINVD WBINVD instruction

8Ah VMEXIT_MONITOR MONITOR instruction

8Bh VMEXIT_MWAIT MWAIT instruction

8Ch VMEXIT_MWAIT_CONDITIONAL MWAIT instruction, if Monitor hardware is armed.

400h VMEXIT_NPF
Nested paging: host-level page fault occurred
(EXITINFO1 contains fault error code; EXITINFO2
contains the guest physical address causing the fault.)

–1 VMEXIT_INVALID Invalid guest state in VMCB

Table C-1. SVM Intercept Codes (continued)

Code Name Cause

Index 489

24593—Rev. 3.17—June 2010 AMD64 Technology

Symbols

#AC.. 221
#BP .. 212
#BR.. 213
#D ... 220, 223
#DB.. 211
#DE.. 211
#DF .. 214
#GP .. 218
#I... 220, 223
#IA... 220
#IS.. 220
#MC ... 222
#MF ... 220
#NM... 214
#NP .. 217
#O ... 220, 223
#OF .. 213
#P.. 220, 223
#PF... 219
#SS... 217
#SX .. 423
#TS .. 216
#U ... 220, 223
#UD ... 213
#VMEXIT.. 370, 371
#XF .. 222
#Z.. 220, 223

Numerics

128-bit media instructions
enabling... 290
feature identification ... 289
MXCSR... 291
saving state .. 295
XMM registers .. 28, 291

16-bit mode.. xxxiii
1-Gbyte page... 133
32-bit mode.. xxxiii
64-bit media instructions

causing #MF exception 293
feature identification ... 289
initializing... 354, 355
MMX registers ... 292
saving state .. 295

64-bit mode... xxxiii, 13

A

A bit .. 80, 82, 137
A20 Masking ... 418
abort ... 206
AC bit ... 53
access checking ... 405
accessed (A)

code segment.. 80
data segment .. 82
page-translation tables... 137

address space identifier (ASID) 393
address-breakpoint registers (DR0-DR3).................. 329
addressing

RIP-relative ... xxxviii
address-size prefix.. 31
ADDRV bit ... 263
Advanced Programmable Interrupt Controller (APIC)......

 431
alignment check (rFLAGS.AC) 53, 221
alignment mask (CR0.AM)............................... 45, 221
alignment-check exception (#AC) 45, 53, 221
AM bit .. 45
AP startup sequence ... 423
APIC... 431

base address ... 434
enable .. 434
error interrupts.. 443
internal error .. 432
registers ... 434
timer interrupt .. 440
version register ... 436

APIC.TPR... 398
APIC.TPR virtualization... 369
Application Processors (APs).................................. 422
Arbitration... 450
architecture differences... 23
ARPL instruction ... 156
ASID .. 393
attributes ... 76
available to software (AVL)

descriptor ... 79
page-translation tables... 138

AVL bit ... 79, 138

B

B3–B0 bits .. 330
base address........................... 73, 75, 78, 121, 129, 136
BD bit ... 330

Index

490 Index

AMD64 Technology 24593—Rev. 3.17—June 2010

benign exception.. 214
biased exponent .. xxxiv
BIST... 349
Boot Strap CPU Core ... 434
bootstrap processor .. 352
Bootstrap Processor (BSP)...................................... 422
BOUND instruction ... 213
bound-range exception (#BR) 213
BR_FROM.. 404
BR_TO ... 404
branches.. 32
breakpoint ... 335

determining cause... 337
on address match ... 328, 338
on any instruction ... 328
on I/O.. 338
on instruction ... 337
on task switch ... 328, 340
setting address.. 335
specifying address-match length 335

breakpoint exception (#BP) 212
BS bit ... 330
BT bit ... 330
BTF bit ... 334
built-in self test (BIST)... 349

C

C bit ... 80
cache

control mechanisms .. 179
control precedence.. 180
enabling... 353
index ... 178
invalidate ... 182
line.. 161
offset ... 178
organization ... 176
self-modifying code .. 178
set ... 177
tag... 178
way ... 177
writeback and invalidate...................................... 181

cache disable (CD) bit 45, 179
cache disable (CD), memory type............................ 170
cache-coherency protocol 167

losing coherency... 169
CALL

See call gate and control transfer.
call gate ... 84, 102

count field.. 86
count field, long mode .. 92
descriptor, long mode.. 32
jump through.. 104
parameters ... 106

privilege checks .. 103
stack switch.. 106
stack switch, long mode 33, 107

canonical address form 4, 128
CD bit ... 45, 179
CD memory type.. 170
CLFLUSH... 181, 405
CLGI .. 380, 395
CLI instruction .. 154
clock multiplier.. 350
CLTS .. 154, 379
code segment ... 26, 69, 80

64-bit mode.. 70
accessed (A)... 80
conforming (C)... 80
default-operand size (D) .. 81
ignored fields in 64-bit mode 86
long bit (L)... 26, 87
long mode .. 86
readable (R) ... 80
type field.. 80

coherency, cache .. 161
commit... xxxiv
commit, instruction results 162
compatibility mode .. xxxiv, 13
config space accesses ... 406
conforming (C), code segment 80
consistency checks, long mode................................ 359
containerized SMM code .. 402
contributory exception.. 214
control registers ... 29, 41
control transfer .. 98

See also call gate and interrupt.
call gate ... 102
direct ... 98
far, conforming code segment 100
far, nonconforming code segment........................... 98
interrupt to higher privilege 234
interrupt to same privilege 233
parameters.. 106
stack switch.. 106

control-transfer recording MSRs 334
coprocessor-segment-overrun exception................... 215
count field ... 92, 257
counter mask field.. 345
CPL .. 94, 371

definition ... 94
in call gate protection .. 103
in data segment protection 95
in interrupt to higher privilege.............................. 235
in page protection ... 143
in protecting conforming CS................................ 100
in protecting nonconforming CS 99
in stack segment protection.................................... 97

Index 491

24593—Rev. 3.17—June 2010 AMD64 Technology

privileged instructions... 147
SYSCALL, SYSRET assumptions....................... 150

CPU watchdog timer register 259
CPUID.. 54, 61, 153, 380, 404

nested paging ... 418
CR0... 42, 370, 371

alignment mask (AM) 45, 221
cache disable (CD) .. 45, 179
emulate coprocessor (EM).............................. 44, 290
extension type (ET) .. 44
monitor coprocessor (MP) 43
not write-through (NW) 45, 179
numeric error (NE) .. 44, 221
paging enable (PG) .. 45, 118
protection enable (PE)................................ 43, 64, 71
task switched (TS) ... 44, 154
write protect (WP) ... 44, 144

CR1.. 49
CR2... 45, 219, 371
CR3................ 25, 45, 46, 120, 128, 315, 370, 371, 411

non-PAE paging ... 120
PAE paging ... 46, 120
PAE paging, long mode....................................... 128
page-level cache disable (PCD) 121, 129
page-level write-through (PWT) 121, 129
table-base address.. 121, 129

CR4... 47, 370, 371
debugging extensions (DE).................................... 48
machine-check enable (MCE)......................... 48, 222
OS #XF support (OSXMMEXCPT).............. 222, 290
OS FXSAVE/FXRSTOR support (OSFXSR)........ 290
page-global enable (PGE) 49, 140
page-size extensions (PSE)..................... 48, 119, 123
performance counter enable (PCE).......... 49, 154, 343
physical-address extensions (PAE) 48, 119, 128
protected-mode virtual interrupts (PVI) 48
time-stamp disable (TSD) 48, 154, 347
virtual-8086 mode extensions (VME).............. 47, 248

CR5–CR7 ... 49
CR8... 50, 228
CR9–CR15.. 49
CS register ... 69, 371

selector .. 370
CSTAR register 151, 471, 473

D

D bit .. 81, 87, 137
D/B bit.. 79, 83
Data Limit Checks ... 112
Data limit checks ... 112
data prefetch, cache.. 181
data segment... 26, 69, 81

64-bit mode.. 70
accessed (A)... 82

default operand size (D) .. 83
expand down (E)... 82
FS and GS.. 27, 70
ignored fields in 64-bit mode 87
long mode .. 87
privilege checks .. 95
type field.. 82
writable (W)... 82

DAZ bit... 304
DBGCTL .. 404
DE bit ... 48
DE exception ... 220, 223
debug .. 21, 422

See breakpoint and single-step.
debug exception (#DB).............................. 52, 211, 337
debug registers... 29, 328

address-breakpoint registers (DR0-DR3) 329
control-transfer recording MSRs 334
debug-control MSR (DebugCtlMSR).................... 333
debug-control register (DR7) 331
reserved (DR4, DR5) .. 329

debug-control MSR (DebugCtlMSR)....................... 333
debug-control register (DR7) 331
DebugCtlMSR register 333, 469, 477
debugging extensions (CR4.DE)................................ 48
DEC instruction ... 34
default operand size

B bit, stack segment .. 83
D bit, code segment .. 81
D bit, data segment 83, 110
D/B bit, descriptor .. 79
with expand down... 111

denormalized-operand exception (DE) 220, 223
denormals-are-zeros (DAZ) mode 304
descriptor .. 65, 77

available to software (AVL) 79
code segment.. 26
data segment .. 26
default operand size (D/B)..................................... 79
DPL.. 79, 95, 320
gate ... 27
granularity (G).. 79
long mode .. 86
present (P).. 79, 320
S field .. 79, 320
segment base .. 78
segment limit.. 78
system segment .. 27
TSS ... 310
type field.. 79, 320

descriptor table .. 65, 71
global-descriptor table (GDT)................................ 67
interrupt-descriptor table (IDT).............................. 36
local-descriptor table (LDT) 67

492 Index

AMD64 Technology 24593—Rev. 3.17—June 2010

descriptor-table registers..................................... 26, 66
64-bit mode.. 92
GDTR ... 72
IDTR... 77
LDTR.. 74

DEV base address registers..................................... 409
DEV caching... 405
DEV capability block... 406
DEV register access ... 407
DEV_BASE_HI/LO registers 407
DEV_CAP register .. 408
DEV_CR register... 408
DEV_DATA ... 406, 407
DEV_HDR.. 406
DEV_MAP registers 408, 410
DEV_OP.. 406, 407
DEVBASE registers... 405
device exclusion vector (DEV)................................ 404
device ID .. 404
device-not-available exception (#NM) 43, 44, 214
differences (architectural) ... 23
direct referencing.. xxxiv
dirty (D), page-translation tables 137
displacement ... 31
displacements ... xxxiv
divide-by-zero-error exception (#DE) 211
double quadword ... xxxv
double-fault exception (#DF) 214
doubleword ... xxxv
DP field .. 304
DPL.. 95

data segment, 64-bit mode..................................... 88
definition ... 95
in call gate protection.. 103
in data segment protection..................................... 95
in interrupt stack switch 234
in interrupt to higher privilege 235
in protecting conforming CS................................ 100
in protecting nonconforming CS 99
in stack segment protection 97
in stack switching ... 106

DPL field ... 79, 320
DR0-DR3 registers .. 329
DR4, DR5 registers.. 329
DR6 register ... 329, 371
DR7 register ... 331, 371
DS field .. 304
DS register ... 69, 70, 371
DS.SEL... 370

E

E bit... 82, 345

eAX–eSP register.. xl
EFER register 29, 54, 370, 371, 471, 473

fast FXSAVE/FXRSTOR (FFXSR) 56
long mode active (LMA) 55, 358
long mode enable (LME)............................... 55, 358
no-execute enable (NXE) 56
system-call extension (SCE) 55

EFER.SVME... 369, 370
effective address .. 2, 25
effective address size .. xxxv
effective operand size ... xxxv
EFLAGS

See rFLAGS.
eFLAGS register .. xli
EIP

See rIP.
eIP register .. xli
EIPV bit .. 258
element ... xxxv
EM bit... 44, 354
emulate coprocessor (CR0.EM)......................... 44, 290
EN bit ... 263, 345
enabling SVM ... 369
endian byte-ordering .. xliii
End-of-Interrupt Register (EOI) 456
environment... 296
error code

page fault ... 225
selector .. 224

ES register... 70, 371
ES.SEL ... 370
ESP

See rSP.
ET bit.. 44
event handler, definition.. 205
event injection ... 396
event mask field ... 345
EVENTINJ.. 396, 397
exception handler, definition 205
Exception intercept

#DE... 384
exception intercept

#AC... 386
#BP ... 384
#BR... 385
#DB... 384
#DF ... 385
#GP ... 385
#MC .. 386
#MF .. 386
#NM.. 385
#NP ... 385
#OF ... 385

Index 493

24593—Rev. 3.17—June 2010 AMD64 Technology

#PF ... 386
#SS ... 385
#TS ... 385
#UD .. 385
#XF... 386
vector 2.. 384
Vector 9 ... 385

Exception Intercepts... 383
exceptions ... xxxv

abort.. 206
benign ... 214
contributory ... 214
definition of ... 205
definition of vector ... 208
differences in long mode 36
error code, page fault .. 225
error code, selector ... 224
fault... 206
floating-point priorities 227
imprecise ... 206
maskable 128-bit media floating point.................. 207
maskable x87 floating point................................. 207
masking during stack switches............................. 207
precise ... 205
priorities .. 225
trap.. 206
while in SMM .. 282

exclusive state, MOESI .. 167
EXITINFO1.. 382
expand down (E)

data segment .. 82
stack segment.. 82, 111

exponent .. xxxiv
extended family field.. 353
Extended Interrupts.. 443
extended model field .. 353
extension type (CR0.ET) .. 44

F

family field.. 353
far control transfer ... 98
far return .. 33, 109
fast FXSAVE/FXRSTOR ... 56
fault .. 206
FCW register .. 294, 296, 303
feature identification .. 61
FENCE ... 163
FFXSR bit... 56
fill, cache-line.. 161
first instruction .. 352
flat segmentation ... 6, 9, 65
FLDENV, FSTENV instructions 300
floating-point exception pending (#MF)................... 220

caused by 64-bit media instructions...................... 293
floating-point exception priorities............................ 227
flush.. xxxv
FOP register .. 303
FPR registers ... 294, 296
FS and GS ... 27, 70
FS register ... 70
FS.Base register ... 471, 473
FSAVE, FRSTOR instructions 296
FSW register.................................... 292, 294, 296, 303
FTW register 292, 294, 296, 303
FXSAVE, FXRSTOR instructions 36, 49, 300

32-bit memory image .. 303
64-bit memory image .. 302
x87 tag word format.. 304

G

G bit ... 79, 138
G3–G0 bits .. 332
gate descriptors .. 27

call gate ... 84
DPL... 95
ignored fields in long mode 90
illegal types in long mode...................................... 90
interrupt gate .. 84
long mode .. 90, 92
redefined types in long mode 90
target-segment offset ... 85
target-segment selector.. 85
task gate... 84
trap gate ... 84

GD bit... 332
GDT ... 71
GDTR.. 72, 370, 371, 379
GE bit ... 332
general detect fault ... 211, 339
general-protection exception (#GP) 218
general-purpose registers (GPRs) 28
GIF ... 395
global descriptor table (GDT) 67, 71

base address, 64-bit mode...................................... 73
first entry ... 71
limit check, long mode .. 73

global descriptor-table register (GDTR) 72
base address ... 73
limit... 73
loading... 155
storing ... 155

global interrupt flag (GIF)....................................... 395
global page (G), page-translation tables 138
global pages... 49, 140
granularity (G), descriptor................................. 79, 110
GS register .. 70

494 Index

AMD64 Technology 24593—Rev. 3.17—June 2010

GS.Base register ... 471, 473
guest mode.. 367
Guest page tables (gPT) ... 411

H

halt ... 157
Hardware errata ... 459
HLT... 157, 380
host .. 367
hypervisor ... 367

I

I/O interrupts ... 432
I/O Permissions Map.. 381
I/O privilege level field (rFLAGS.IOPL).................... 52
I/O space accesses ... 406
I/O, memory-mapped ... 197
I/O-permission bitmap

in 32-bit TSS.. 315
in 64-bit TSS.. 318

I/O-permission bitmap (IOPB)................................ 316
ICEBP .. 381
ID bit .. 54
IDT... 76
IDTR .. 77, 370, 371, 379
IE exception ... 220, 223
IF bit.. 52, 252
IGN ... xxxvi
illegal state .. 370
immediate operand... 31
imprecise exceptions and interrupts 206
IN/OUT .. 381
INC instruction.. 34
indirect .. xxxvi
inexact-result exception................................... 220, 223
INIT .. 349, 400
initialization .. 349
initialization (INIT).. 349

processor state.. 350
In-Service Register .. 452
instructions (system-management) 147
INT bit.. 345
INT3 instruction ... 212, 340
integer bit.. 305
intercept.. 368

Ferr_Freeze... 388, 389
shutdown ... 389
task switch ... 388

Intercept Exit Codes... 487
Interprocessor interrupt (IPI)............................ 422, 445

INIT .. 422
Startup... 422

Interrupt Control .. 433
interrupt descriptor table (IDT) 76

limit check, long mode .. 77
interrupt descriptor-table register (IDTR) 77

loading... 155
storing ... 155

interrupt flag (rFLAGS.IF)................................ 52, 154
interrupt gate ... 84, 241

IST field... 91
interrupt handler, definition..................................... 205
interrupt intercept... 386

INIT .. 388
INTR ... 386
NMI .. 386
SMI ... 387
virtual .. 388

interrupt redirection.. 239, 250
Interrupt Request Register 451
interrupt shadows ... 399
INTERRUPT_SHADOW 371
interrupt-descriptor table (IDT)

index... 205, 232, 242
protected mode ... 231
real-address mode ... 229

interrupt-redirection bitmap 316
interrupts

definition of external ... 205
definition of software .. 205
definition of vector.. 208
differences in long mode 36
external .. 223
external maskable ... 207
external nonmaskable.. 207
external-interrupt priorities 228
imprecise ... 206
long mode summary.. 241
precise ... 205
priorities .. 225
returning from 64-bit mode.................................. 246
returns ... 238
software ... 223
stack alignment, long mode 244
stack pointer push, long mode.............................. 243
stack switch, long mode 37, 244
to higher privilege... 234
to same privilege... 233
while in SMM .. 282

interrupt-stack table (IST)............................ 37, 91, 245
in 64-bit TSS .. 318

interrupt-vector table .. 229
INTn... 380
INTn instruction .. 223, 340
INTO instruction.. 213
INV bit.. 345

Index 495

24593—Rev. 3.17—June 2010 AMD64 Technology

invalid arithmetic-operand exception 220
invalid state, MOESI .. 167
invalidate page... 394
invalid-opcode exception (#UD)......................... 34, 213
invalid-operation exception (IE) 220, 223
invalid-TSS exception (#TS)................................... 216
INVD .. 157, 182, 380
INVLPG ... 380
INVLPG instruction.. 140, 157
INVLPGA.. 380, 394
IOPB ... 315, 316
IOPL .. 382
IOPL field .. 52, 239
IOPL-sensitive instruction 248
IOPM ... 381
IOPM_BASE_PA .. 381
IORRBasen registers............................... 200, 472, 475
IORRMaskn registers...................................... 201, 475
IORRs, variable-range.. 200
IOSPE .. 406
IRET .. 380

less privilege .. 238
long mode... 37, 246
same privilege .. 238

IST field.. 91

J

J bit .. 306
jump

See call gate and control transfer.

K

KernelGSbase register 153, 471, 474

L

L bit.. 87
L1 data cache .. 161
L1 instruction cache... 161
L2 cache ... 161
L3–L0 bits .. 331
LAR instruction... 156
last branch record virtualization 403
LastBranchFromIP... 403
LastBranchFromIP register 470, 477
LastBranchToIP... 403
LastBranchToIP register 470, 477
LastExceptionFromIP .. 403
LastExceptionToIP... 403
LASTEXCPFROM .. 404
LASTEXCPTO ... 404
LastIntFromIP register 470, 477
LastIntToIP register .. 470, 477

LBR bit ... 334
LBR_VIRTUALIZATION_ENABLE...................... 404
LDT.. 73

selector field... 315
LDTR ... 74, 379
LE bit.. 332
Legacy Interrupts ... 432
legacy mode .. xxxvi, 14, 23
legacy PAE mode ... 417
legacy x86 .. xxxvi
LEN3–LEN0 bits ... 332
LFENCE instruction... 181
LGDT ... 155, 379
LIDT... 155, 379
limit ... 73, 76, 78, 310
linear address... 3
Link field .. 315
LINT0... 442
LINT1... 442
LLDT.. 155, 379
LMA bit .. 55
LME bit .. 55
LMSLE... 56
LMSW.. 153, 379
load ordering ... 181
Local APIC ... 433

ID.. 436
interrupt masking.. 400, 456

local descriptor table (LDT) 67, 73
base address, 64-bit mode...................................... 76
limit check, long mode .. 76

local descriptor-table register (LDTR) 74
attributes .. 76
base address ... 75
hidden portion .. 74
LDT selector .. 75
limit... 76
loading... 155
storing ... 155

Local Interrupts ... 438
locality .. 139
logging

unauthorized access .. 410
logical address ... 2
long attribute (L)

code segment.. 87
effect on D bit... 87

long mode ... xxxvi, 12, 23
activating ... 359
consistency checks.. 359
differences from legacy mode 38
enabling ... 358
enabling versus activating.................................... 358

496 Index

AMD64 Technology 24593—Rev. 3.17—June 2010

GDT requirements .. 357
IDT requirements ... 357
leaving... 361
page translation-table requirements 358
relocating descriptor tables 360
relocating page tables.. 360
TSS requirements ... 358
use of CS.L and CS.D... 359

long mode active (EFER.LMA) 55, 358
long mode enable (EFER.LME)......................... 55, 358
LSB... xxxvi
lsb ... xxxvi
LSTAR register....................................... 151, 471, 473
LTR ... 155, 379

M

M bit... 306
machine check

error codes ... 262
error sources .. 256
error-reporting address register (MCi_ADDR) 264
error-reporting control register (MCi_CTL) 261
error-reporting miscellaneous register (MCi_MISC)......

 264
error-reporting register banks............................... 260
error-reporting status register (MCi_STATUS) 261
global-capabilities register (MCG_CAP) 257
global-control register (MCG_CTL)..................... 259
global-status register (MCG_STATUS) 258
initialization ... 267

machine check registers.. 256
machine-check enable (CR4.MCE) 48, 222
machine-check exception (#MC)............................. 222

fatal ... 256
recoverable .. 256

mask... xxxvii
masking

definition of interrupt.. 205
MBZ... xxxvii
MCA error code field ... 262
MCE bit .. 48
MCG_CAP register................................. 257, 469, 476
MCG_CTL register................................. 259, 469, 476
MCG_CTL_P bit ... 258
MCG_STATUS register........................... 258, 469, 476
MCi_ADDR registers.............................. 264, 471, 476
MCi_CTL registers 261, 471, 476
MCi_MISC registers 471, 477
MCi_STATUS registers 261, 471, 476
MCIP bit ... 258
memory .. 159
memory addressing

canonical address form.. 4

effective address ... 2
linear address ... 3
logical address.. 2
near pointers... 2
physical address.. 3
real address .. 10
RIP-relative address .. 31
segment offset .. 2
virtual address .. 3

memory consistency... 416
memory management ... 5
memory serialization .. 181
memory system.. 159
memory type.. 170

determining effective... 191
memory types

combining .. 415
memory-access ordering

description ... 162
read ordering .. 162
write ordering... 163

memory-mapped I/O
directing reads and writes to 198, 202

memory-type range register (MTRR)......................... 29
combined with PAT... 196
effect of paging cache controls............................. 191
effects with large page sizes................................. 192
fixed range ... 185
identifying features ... 190
initial value .. 353
IORRBase.. 200
IORRMask... 201
MTRRcap .. 190
MTRRdefType ... 190
MTRRfix16K ... 186
MTRRfix4K... 186
MTRRfix64K ... 186
MTRRphysBase ... 187
MTRRphysMask .. 188
overlapping ranges .. 192
type field, default .. 183
type field, extended... 198
variable range ... 187
variable range size and alignment......................... 188

MFENCE instruction.. 181
MISCV bit... 263
MMX registers... 292
model field .. 353
model-specific error code field 263
model-specific registers (MSRs)................... 29, 56, 154

control-transfer recording 334
debug extensions .. 60
debug-control MSR (DebugCtlMSR).................... 333
FS.base .. 71

Index 497

24593—Rev. 3.17—June 2010 AMD64 Technology

GS.base ... 71
initializing.. 355
machine check... 60, 256
memory typing .. 59, 184
PAT ... 193
performance monitoring................................. 60, 342
SYSCFG.. 58
system linkage... 59, 151
time-stamp counter .. 60, 346
TOP_MEM .. 202
TOP_MEM2 .. 202

modes ... 11
16-bit.. xxxiii
32-bit.. xxxiii
64-bit... xxxiii, 13
compatibility .. xxxiv, 13
legacy .. xxxvi, 14
long... xxxvi, 12
protected.. xxxviii, 14
real .. xxxviii, 4, 14
virtual-8086 .. xl, 14

modified state, MOESI... 167
MOESI ... 167
moffset.. xxxvii
monitor coprocessor (CR0.MP)................................. 43
MOV CRn instruction .. 153
MOV DRn instruction .. 154
MOV TO CR0 ... 379
MOV TO/FROM CR0.. 379
MOV TO/FROM CRn.. 379
MOV TO/FROM DRn.. 379
MOVSXD instruction... 34
MP bit.. 43, 354
MSB... xxxvii
msb .. xxxvii
MSR... xli
MSR permissions map (MSRPM) 382
MSR_PROT .. 383
MSRs ... 56
MTRRcap register 190, 469, 474
MTRRdefType register............................ 190, 470, 475
MTRRfix16K_n registers 186
MTRRfix4K_n registers ... 186
MTRRfix64K_n registers 186, 470, 475
MtrrFixDramEn bit ... 58, 198
MtrrFixDramModEn bit 58, 198
MTRRphysBasen registers 187, 470, 474
MTRRphysMaskn registers 188, 475
MTRRs.. 184, 416
MtrrTom2En bit.. 58, 204
MtrrVarDramEn bit... 58, 204
multiprocessor issues ... 405
MXCSR register .. 291

field ... 304
MXCSR_MASK field ... 304

N

NE bit ... 44, 354
near branch

operand size, 64-bit mode...................................... 32
near control transfer ... 98
near pointers .. 2
near return ... 109
Nested page tables (hPT) .. 411
nested paging... 411
nested task (rFLAGS.NT) 52, 325
nestedtable walk .. 413
NEXT_RIP.. 370
NMI.. 212
NMI support .. 401
no-execute (NX)

page protection ... 143
page-translation tables, bit in 138

nonmaskable interrupt exception (NMI)................... 212
while in SMM .. 282

non-PAE paging... 120
CR3 format .. 120

NOP instruction ... 34
not write-through (CR0.NW) 45, 179
NP_ENABLE .. 413
NT bit ... 52
null selector ... 68

64-bit mode far return ... 110
interrupt return from 64-bit mode......................... 247
long mode interrupts 244, 246
long mode stack switch 108

numeric error (CR0.NE) 44, 221
NW bit .. 45
NX bit... 138, 143
NXE bit... 56

O

octword ... xxxvii
OE exception ... 220, 223
offset... xxxvii, 85
operand-size prefix... 30
operating modes... 11
OS bit ... 345
OS FXSAVE/FXRSTOR support (CR4.OSFXSR).... 290
OS unmasked exception support (CR4.OSXMMEXCPT).

 222, 290
OSFXSR bit .. 49
OS-visible workarounds (OSVW) 459

OSVW ID .. 459
OSVW status.. 461

498 Index

AMD64 Technology 24593—Rev. 3.17—June 2010

OSVW_ID_Length... 461
OSXMMEXCPT bit... 49
OVER bit .. 263
overflow.. xxxvii
overflow exception (#OF)....................................... 213
overflow exception (OE) 220, 223
owned state, MOESI .. 167

P

P bit... 79, 136, 320
packed .. xxxvii
PAE .. 371
PAE bit .. 48, 119
PAE paging .. 25, 120

CR3 format ... 46, 120
CR3 format, long mode....................................... 128
legacy mode ... 124
long mode.. 129

page directory.. 120
page size (PS) 119, 123, 125

page directory pointer 120, 125
page faults

guest level.. 414
page size (PS), page-translation tables 137
page splintering ... 417
page table.. 120
page translation ... 115
page-attribute table (PAT) 193

combined with MTRR .. 196
effect on memory access 195
identifying support ... 195
indexing... 194
page-translation tables, bit in 138

Paged Real Mode... 396
page-fault exception (#PF)................ 136, 143, 144, 219
page-fault virtual address.. 219
page-global enable (CR4.PGE) 49, 140
page-level cache disable (PCD)............................... 180

CR3, bit in ... 121
page-translation tables, bit in 137

page-level write-through (PWT).............................. 180
CR3, bit in ... 121
page-translation tables, bit in 137

page-map level-4 ... 128
page-size extensions (CR4.PSE) 25, 26, 48, 119, 123

40-bit physical address support 119, 124
unsupported in long mode 119

page-translation cache .. 139
page-translation tables.. 25

accessed (A)... 137
available to software (AVL)................................. 138
dirty (D) .. 137
global page (G) .. 138

hierarchy.. 117
no-execute.. 138
page directory entry (PDE) 120
page size (PS)... 137
page table entry (PTE) .. 120
page-attribute table (PAT) 138
page-directory pointer entry (PDPE) 25, 120, 125
page-level cache disable (PCD)............................ 137
page-level write-through (PWT)........................... 137
page-map level-4 entry (PML4E) 25, 128
physical-page base address 136
present (P).. 136
read/write (R/W)... 137
translation-table base address............................... 136
user/supervisor (U/S) .. 137

paging ... 7, 25, 115
See also PAE paging and non-PAE paging.
effect of segment protection................................. 146
protection across translation hierarchy.................. 144
protection checks .. 143
supported translations ... 117

paging enable (CR0.PG) 45, 118
activating long mode 118, 359

parameter count field.. 86
PAT... 416

See page-attribute table (PAT).
PAT bit .. 138
PAT register .. 193, 470, 475
PAUSE.. 380
PBi bits ... 334
PC bit.. 345
PCC bit ... 263
PCD bit .. 121, 129, 137
PCE bit ... 49
PDE.. 120
PDPE... 120, 371, 417
PE bit.. 43
PE exception.. 220, 223
PerfCtrn registers 342, 472, 478
PerfEvtSeln registers 343, 472, 478
performance counter... 154
performance counter enable (CR4.PCE)...... 49, 154, 343
Performance Monitor Counter Interrupts.................. 442
performance optimization 22, 341
performance-monitoring counter

overflow... 346
PerfCtrn ... 342
PerfEvtSeln .. 343
starting and stopping ... 346

PG bit ... 45, 118
PGE bit ... 49
physical address ... 3, 24

as index into cache.. 178

Index 499

24593—Rev. 3.17—June 2010 AMD64 Technology

physical memory ... 4
physical-address extensions (CR4.PAE) 25, 48, 119, 128

activating long mode.................................... 119, 359
See also PAE paging.

POP instruction ... 154
POPF.. 379
precise exceptions and interrupts............................. 205
precision exception (PE).................................. 220, 223
PREFETCH instruction.. 181
present (P)

descriptor.. 79, 320
page-translation tables .. 136

principle of locality .. 139
priorities, interrupt ... 225
privilege level .. 94
probe, cache ... 161, 168

during cache disable ... 179
processor feature identification (rFLAGS.ID)............. 54
processor halt .. 157
processor state ... 350
protected mode xxxviii, 14, 370

initial operating environment 356
protected-mode virtual interrupts (CR4.PVI).............. 48
protection checks

adjusting RPL .. 156
call gate ... 103
checking access rights... 156
data segment .. 95
direct call, conforming .. 100
direct call, nonconforming..................................... 98
enabling... 64
far return.. 109
interrupt return ... 238
interrupt to higher privilege 235
limit check, 64-bit mode...................................... 110
long mode changes ... 27
long mode interrupt .. 244
long mode interrupt return................................... 246
stack segment... 96
type check.. 112
verifying read/write access 156

protection domains... 404
protection enable (CR0.PE) 43, 64, 71
PS bit... 119, 137
PSE bit.. 48
PSE paging ... 25
P-State .. 463

control ... 463
current limit register ... 463
status register ... 465

PTE .. 120
PUSH instruction... 154
PUSHF ... 379

PVI bit .. 48
PWT bit ... 121, 129, 137

Q

quadword ... xxxviii

R

R bit.. 80
R/W bit ... 137, 144
R/W3–R/W0 bits ... 332
r8–r15 ... xli
RAX ... 370, 371
rAX–rSP ... xli
RAZ... xxxviii
RdMem, MTRR type field 58, 198
RDMSR ... 56, 154, 382
RDP field .. 304
RDPMC ... 49, 343, 379
RDPMC instruction.. 154
RDTSC 48, 60, 154, 346, 379
RDTSCP 48, 60, 154, 346, 381
read hit.. 161
read miss ... 161
read ordering ... 181
read/write (R/W)

page protection ... 144
page-translation tables, bit in 137

readable (R), code segment 80
real address.. 10
real address mode. See real mode
real mode .. xxxviii, 4, 14

initial operating environment 356
registers

See also entries for individual registers.
128-bit media registers (XMM).............................. 28
address-breakpoint registers (DR0-DR3) 329
control registers .. 29, 41
control-transfer recording MSRs 334
CR0... 42
CR2... 219
CR3.. 25, 46, 120, 128
CR4... 47
CSTAR .. 151
debug registers.. 29, 328
debug-control MSR (DebugCtlMSR).................... 333
debug-control register (DR7) 331
debug-extension MSRs.. 60
descriptor-table registers.................................. 26, 66
eAX–eSP .. xl
EFER... 29, 54
eFLAGS... xli
eIP... xli
FPR ... 294, 296

500 Index

AMD64 Technology 24593—Rev. 3.17—June 2010

FS and GS.. 70
FS.base .. 71
GDTR ... 72
GPRs... 28
GS.base ... 71
IDTR... 77
IORRBase.. 200
IORRMask... 201
last x87 data pointer............................. 294, 296, 304
last x87 instruction pointer 294, 296, 303
LDTR.. 74
LSTAR .. 151
machine-check MSRs ... 60
MCG_CAP .. 257
MCG_CTL .. 259
MCG_STATUS .. 258
MCi_ADDR .. 264
MCi_CTL.. 261
MCi_MISC.. 264
MCi_STATUS.. 261
memory-type range register (MTRR) 29, 59, 184
MMX .. 292
model-specific registers (MSRs) 29
MTRR, fixed range... 185
MTRR, variable range... 187
MTRRcap.. 190
MTRRdefType ... 190
MTRRfix16K... 186
MTRRfix4K... 186
MTRRfix64K... 186
MTRRphysBase ... 187
MTRRphysMask .. 188
MXCSR... 291
PAT ... 193
PerfCtrn... 342
PerfEvtSeln.. 343
performance-monitoring MSRs.............................. 60
r8–r15.. xli
rAX–rSP.. xli
rFLAGS... xlii, 28, 50
rIP.. xlii
rSP .. 28
segment registers .. 68
STAR .. 151
SYSCFG.. 58
SYSENTER_CS... 152
SYSENTER_EIP.. 152
SYSENTER_ESP... 152
system-linkage MSRs ... 59
task-priority register (CR8)....................... 38, 50, 228
time-stamp counter .. 60, 346
TOP_MEM ... 58, 202
TOP_MEM2 ... 58, 202
x87 FCW .. 294, 296, 303
x87 floating-point processor state 294
x87 FSW 292, 294, 296, 303

x87 FTW 292, 294, 296, 303
x87 opcode.. 294, 296, 303
XMM registers ... 291

relative ... xxxviii
replacement, cache-line .. 161
replicated state ... 412
reserved.. xxxviii
reset .. 349

processor state .. 350
RESET# signal .. 349
resume flag (rFLAGS.RF) 52, 211, 339
RET instruction ... 109

from 64-bit mode.. 110
long mode .. 33, 109
popping null selector, 64-bit mode 110
stack switch.. 109

retire, instruction.. 162
revision history .. xxvii
REX prefix .. 29
RF bit.. 52
RFLAGS ... 370, 371
rFLAGS .. 28, 50

alignment check (AC) 53, 221
I/O privilege level field (IOPL) 52
interrupt flag (IF).. 52, 154
nested task (NT) ... 52, 325
processor feature identification (ID) 54
resume flag (RF).................................... 52, 211, 339
trap flag (TF).. 51
virtual interrupt (VIF) 53, 249
virtual interrupt pending (VIP)....................... 53, 249
virtual-8086 mode (VM) 53

rFLAGS register ... xlii
RIP ... 371
rIP .. 28
rIP register.. xlii
RIP-relative address ... 31
RIP-relative addressing...................................... xxxviii
RIPV bit.. 258
RPL ... 68, 95, 310

adjusting .. 156
definition ... 95
in call gate protection .. 104
in data segment protection 95
in far return .. 109
in IRET instruction ... 238
in protecting conforming CS................................ 101
in protecting nonconforming CS 99
in stack segment protection.................................... 97

RSM .. 271, 286, 380
RSP .. 370, 371
rSP.. 28

call gate stack switch... 106

Index 501

24593—Rev. 3.17—June 2010 AMD64 Technology

implicit reference.. 31

S

S bit... 79, 320
SBZ... xxxix
SCE bit ... 55
secure initialization .. 410
secure loader (SL).. 418
secure loader (SL) image.. 419
secure loader block .. 419
secure MP initialization.. 422
security exception (#SX) 418, 423
segment base ... 78
segment limit... 78
segment offset ... 2
segment registers ... 66, 68

64-bit mode.. 70
accessing ... 155
hidden portion .. 69
initializing unused registers 68

segmentation ... 5, 26
64-bit mode.. 65
combining with paging.. 8
flat segmentation .. 6, 9, 65
multi-segmented model ... 64

segment-not-present exception (#NP) 217
segment-override prefix.. 30
selector 66, 67, 68, 75, 85, 310
selector index .. 68
self-modifying code ... 178
SEOI Register .. 437, 457
serializing instructions.. 182
set.. xxxix
SF exception.. 220
SFENCE instruction... 181
SGDT .. 155, 379
shadow page tables (SPTs) 393
shared state, MOESI .. 167
shut down.. 215
SIDT ... 155, 379
SIMD floating-point exception (#XF)......... 49, 222, 290
single-step

all instructions... 328, 339
control-transfers .. 328, 341

SKINIT.. 380, 410, 418
SL abort .. 422
SLDT .. 155, 379
SMBASE register .. 273
SMI .. 271

external, synchronous ... 401
internal, synchronous .. 401
xternal, asynchronous ... 401

SMM .. 271
SMM interrupts ... 282
SMM revision identifier.. 278
SMM state-save area .. 274
SMM_CTL MSR ... 425
SMRAM ... 272
SMRAM state-save area ... 274
SMSW .. 379
SMSW instruction.. 153
specific EOI (SEOI) ... 457
speculative execution.. 162
SPT... 393
Spurious Interrupts... 445
SS register ... 70, 371
SS.SEL ... 370
SSE.. xxxix
SSE2.. xxxix
SSE3.. xxxix
stack exception (#SS) ... 217
stack pointers

in 32-bit TSS .. 315
in 64-bit TSS .. 317

stack segment .. 69, 81
64-bit mode.. 70
default operand size (D) .. 83
expand down (E)... 82
privilege checks .. 96

stack switch
call gate ... 106
call gate, long mode 33, 107
far return .. 109
interrupt ... 234
interrupt return ... 238
interrupt, long mode.. 37

stack-fault exception (SF) 220
STAR register ... 151, 471, 473
state switch.. 368
status word .. 153
stepping ID field .. 353
STGI... 380, 395
STI instruction ... 154
sticky bits ... xxxix
store ordering .. 181
STR .. 379
STR instruction.. 155
supervisor page .. 143
SVM support ... 401
SWAPGS instruction .. 152
SYSCALL Flag Mask register 151
SYSCALL, SYSRET instructions 55, 150
SYSCFG register 58, 472, 475

MtrrFixDramEn.. 58, 198

502 Index

AMD64 Technology 24593—Rev. 3.17—June 2010

MtrrFixDramModEn...................................... 58, 198
MtrrTom2En .. 204
MtrrVarDramEn .. 58, 204

SYSENTER_CS register 152, 469, 474
SYSENTER_EIP register 152, 469, 474
SYSENTER_ESP register 152, 469, 474
SYSENTER, SYSEXIT instructions 152

illegal in long mode .. 152
system call and return... 150
system data structures .. 17
system management interrupt (SMI)......... 271, 281, 401

while in SMM .. 282
system management mode (SMM) 15, 24, 401

leaving... 286
long mode differences... 271
operating environment .. 281
revision identifier ... 278
saving processor state ... 283
SMBASE register ... 273
SMRAM.. 272
state-save area, AMD64 architecture 274
state-save area, legacy ... 277

system registers ... 15
system segment .. 27, 78, 83

ignored fields in 64-bit mode................................. 89
illegal types in long mode...................................... 88
long mode.. 88
type field.. 83

system-call extension (EFER.SCE) 55
system-linkage MSRs.. 59, 151

T

T bit.. 315
table indicator, selector... 68
tagged TLB ... 368
task gate.. 84

in task switching... 323
long mode.. 92

Task Register (TR)... 66
task register (TR) ... 311

loading .. 155
selector .. 310
storing ... 155

task switch ... 307, 321
disabled in long mode ... 38
lazy context switch .. 44, 306
nesting tasks... 325
preventing recursion ... 325

task switched (CR0.TS)..................................... 44, 154
task, execution space.. 307
task-priority register (CR8).......................... 38, 50, 228
task-state segment (TSS)

descriptor... 310

dynamic fields .. 315
I/O-permission bitmap 315, 318
interrupt-redirection bitmap 316
interrupt-stack table .. 318
legacy 32-bit... 313
link field .. 325
software-defined fields .. 315
stack pointers ... 315, 317
static fields ... 315

TF bit.. 51
Thermal Sensor.. 432
Thermal Sensor Interrupts....................................... 442
TI bit... 68, 310
time-stamp counter... 154, 346
time-stamp disable (CR4.TSD) 48, 154, 347
TLB.. 138, 139, 370, 371

explicit invalidation..................................... 140, 157
implicit invalidation .. 141

TLB Control .. 393
TLB entry upgrades.. 141
TLB flush.. 393
TLB_CONTROL ... 394
top of memory ... 202
TOP_MEM register........................... 58, 202, 472, 475
TOP_MEM2 register 58, 202, 472, 475
TPM ... 420
TPR register ... 38, 50, 228
TR register ... 308, 311, 379
translation lookaside buffer (TLB)........................... 139
trap ... 206
trap flag (rFLAGS.TF).. 51
trap gate .. 84, 241
Trigger Mode Register.. 452
Trusted Platform Module (TPM) 418
trusted software.. 418
TS bit.. 44
TSC register ... 346, 469, 478
TSD bit ... 48
TSS... xxxix, 308, 313
TSS descriptor ... 308
TSS selector .. 85, 308
type check ... 112
Type field ... 79, 311, 320

U

U/S bit .. 137, 143
UC bit ... 263
UC memory type.. 170
UD2 instruction ... 213
UE exception ... 220, 223
uncacheable (UC-), memory type 193
uncacheable (UC), memory type 170

Index 503

24593—Rev. 3.17—June 2010 AMD64 Technology

underflow... xxxix
underflow exception (UE)................................ 220, 223
unit mask field... 345
user page... 143
user segment.. 77
user/supervisor (U/S)

page protection... 143
page-translation tables, bit in 137

USR bit... 345

V

V_IGN_TPR ... 399
V_INTR_MASKING... 397
V_INTR_PRIO.. 399
V_INTR_VECTOR ... 399
V_IRQ... 371, 399
V_TPR .. 371, 398, 399
VAL bit ... 264
Variable-range IORRs .. 200
vector... xxxix
vector, interrupt ... 208
VERR instruction .. 156
VERW instruction.. 156
VIF bit .. 53
VIP bit .. 53
virtual #INTR.. 398
virtual address ... 3, 24
virtual interrupt (rFLAGS.VIF) 53, 249
virtual interrupt pending (rFLAGS.VIP) 53, 249
virtual interrupts 52, 53, 247, 249, 368
virtual interrupts, protected mode............................ 251
virtual machine control block (VMCB).................... 369
virtual machine monitor ... 367
virtual memory .. 3
virtual-8086 mode... xl, 14

interrupt to protected mode.................................. 239
interrupts ... 238

virtual-8086 mode (rFLAGS.VM)............................. 53
virtual-8086 mode extensions (CR4.VME) 47, 248
VM bit .. 53
VM_HSAVE_AREA.. 370
VM_SAVE_PA MSR ... 426
VMCB.. 370
VME .. 248
VME bit... 47, 239
VMLOAD.. 370, 380, 389
VMM ... 367
VMMCALL... 380, 395
VMRUN ... 367, 369, 370, 380
VMSAVE... 370, 380, 389

W

W bit... 82
WAIT/FWAIT instruction ... 43
WB memory type... 171
WBINVD... 157, 181, 381
WC memory type... 170
WC+... 416
world switch .. 367
WP bit... 44, 144
WP memory type ... 170
writable (W), data segment 82
write buffer.. 161, 174

emptying.. 174
write hit... 161
write miss.. 161
write ordering .. 163, 181
write protect (CR0.WP) .. 44

page protection ... 144
write-back (WB), memory type 171
writeback, cache line .. 161
write-combining (WC), memory type 170
write-combining buffer 161, 175

emptying.. 175
write-protect (WP), memory type 170
write-though (WT), memory type 171
WrMem, MTRR type field................................ 58, 198
WRMSR .. 56, 154, 382
WT memory type ... 171

X

x87 control word..................................... 294, 296, 303
x87 data pointer register 294, 296, 304
x87 environment .. 296
x87 floating-point instructions

feature identification ... 290
initializing.. 353
processor state .. 294
saving state... 295

x87 floating-point state, initialization....................... 351
x87 instruction pointer register 294, 296, 303
x87 opcode register 294, 296, 303
x87 status word................................ 292, 294, 296, 303
x87 tag word.................................... 292, 294, 296, 303

FXSAVE format ... 304
XMM registers... 291

Z

ZE exception ... 220, 223
zero extension.. 30, 31
zero-divide exception (ZE).............................. 220, 223

504 Index

AMD64 Technology 24593—Rev. 3.17—June 2010

	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Organization
	Definitions
	Terms and Notation
	Registers
	Endian Order

	Related Documents

	1 System-Programming Overview
	1.1 Memory Model
	1.1.1 Memory Addressing
	1.1.2 Memory Organization
	1.1.3 Canonical Address Form

	1.2 Memory Management
	1.2.1 Segmentation
	1.2.2 Paging
	1.2.3 Mixing Segmentation and Paging
	1.2.4 Real Addressing

	1.3 Operating Modes
	1.3.1 Long Mode
	1.3.2 64-Bit Mode
	1.3.3 Compatibility Mode
	1.3.4 Legacy Modes
	1.3.5 System Management Mode (SMM)

	1.4 System Registers
	1.5 System-Data Structures
	1.6 Interrupts
	1.7 Additional System-Programming Facilities
	1.7.1 Hardware Multitasking
	1.7.2 Machine Check
	1.7.3 Software Debugging
	1.7.4 Performance Monitoring

	2 x86 and AMD64 Architecture Differences
	2.1 Operating Modes
	2.1.1 Long Mode
	2.1.2 Legacy Mode
	2.1.3 System-Management Mode

	2.2 Memory Model
	2.2.1 Memory Addressing
	2.2.2 Page Translation
	2.2.3 Segmentation

	2.3 Protection Checks
	2.4 Registers
	2.4.1 General-Purpose Registers
	2.4.2 128-Bit Media Registers
	2.4.3 Flags Register
	2.4.4 Instruction Pointer
	2.4.5 Stack Pointer
	2.4.6 Control Registers
	2.4.7 Debug Registers
	2.4.8 Extended Feature Register (EFER)
	2.4.9 Memory Type Range Registers (MTRRs)
	2.4.10 Other Model-Specific Registers (MSRs)

	2.5 Instruction Set
	2.5.1 REX Prefixes
	2.5.2 Segment-Override Prefixes in 64-Bit Mode
	2.5.3 Operands and Results
	2.5.4 Address Calculations
	2.5.5 Instructions that Reference RSP
	2.5.6 Branches
	2.5.7 NOP Instruction
	2.5.8 Single-Byte INC and DEC Instructions
	2.5.9 MOVSXD Instruction
	2.5.10 Invalid Instructions
	2.5.11 FXSAVE and FXRSTOR Instructions

	2.6 Interrupts and Exceptions
	2.6.1 Interrupt Descriptor Table
	2.6.2 Stack Frame Pushes
	2.6.3 Stack Switching
	2.6.4 IRET Instruction
	2.6.5 Task-Priority Register (CR8)
	2.6.6 New Exception Conditions

	2.7 Hardware Task Switching
	2.8 Long-Mode vs. Legacy-Mode Differences

	3 System Resources
	3.1 System-Control Registers
	3.1.1 CR0 Register
	3.1.2 CR2 and CR3 Registers
	3.1.3 CR4 Register
	3.1.4 CR1 and CR5–CR7 Registers
	3.1.5 64-Bit-Mode Extended Control Registers
	3.1.6 CR8 (Task Priority Register, TPR)
	3.1.7 RFLAGS Register
	3.1.8 Extended Feature Enable Register (EFER)

	3.2 Model-Specific Registers (MSRs)
	3.2.1 System Configuration Register (SYSCFG)
	3.2.2 System-Linkage Registers
	3.2.3 Memory-Typing Registers
	3.2.4 Debug-Extension Registers
	3.2.5 Performance-Monitoring Registers
	3.2.6 Machine-Check Registers

	3.3 Processor Feature Identification

	4 Segmented Virtual Memory
	4.1 Real Mode Segmentation
	4.2 Virtual-8086 Mode Segmentation
	4.3 Protected Mode Segmented-Memory Models
	4.3.1 Multi-Segmented Model
	4.3.2 Flat-Memory Model
	4.3.3 Segmentation in 64-Bit Mode

	4.4 Segmentation Data Structures and Registers
	4.5 Segment Selectors and Registers
	4.5.1 Segment Selectors
	4.5.2 Segment Registers
	4.5.3 Segment Registers in 64-Bit Mode

	4.6 Descriptor Tables
	4.6.1 Global Descriptor Table
	4.6.2 Global Descriptor-Table Register
	4.6.3 Local Descriptor Table
	4.6.4 Local Descriptor-Table Register
	4.6.5 Interrupt Descriptor Table
	4.6.6 Interrupt Descriptor-Table Register

	4.7 Legacy Segment Descriptors
	4.7.1 Descriptor Format
	4.7.2 Code-Segment Descriptors
	4.7.3 Data-Segment Descriptors
	4.7.4 System Descriptors
	4.7.5 Gate Descriptors

	4.8 Long-Mode Segment Descriptors
	4.8.1 Code-Segment Descriptors
	4.8.2 Data-Segment Descriptors
	4.8.3 System Descriptors
	4.8.4 Gate Descriptors
	4.8.5 Long Mode Descriptor Summary

	4.9 Segment-Protection Overview
	4.9.1 Privilege-Level Concept
	4.9.2 Privilege-Level Types

	4.10 Data-Access Privilege Checks
	4.10.1 Accessing Data Segments
	4.10.2 Accessing Stack Segments

	4.11 Control-Transfer Privilege Checks
	4.11.1 Direct Control Transfers
	4.11.2 Control Transfers Through Call Gates
	4.11.3 Return Control Transfers

	4.12 Limit Checks
	4.12.1 Determining Limit Violations
	4.12.2 Data Limit Checks in 64-bit Mode

	4.13 Type Checks
	4.13.1 Type Checks in Legacy and Compatibility Modes
	4.13.2 Long Mode Type Check Differences

	5 Page Translation and Protection
	5.1 Page Translation Overview
	5.1.1 Page-Translation Options
	5.1.2 Page-Translation Enable (PG) Bit
	5.1.3 Physical-Address Extensions (PAE) Bit
	5.1.4 Page-Size Extensions (PSE) Bit
	5.1.5 Page-Directory Page Size (PS) Bit

	5.2 Legacy-Mode Page Translation
	5.2.1 CR3 Register
	5.2.2 Normal (Non-PAE) Paging
	5.2.3 PAE Paging

	5.3 Long-Mode Page Translation
	5.3.1 Canonical Address Form
	5.3.2 CR3
	5.3.3 4-Kbyte Page Translation
	5.3.4 2-Mbyte Page Translation
	5.3.5 1-Gbyte Page Translation

	5.4 Page-Translation-Table Entry Fields
	5.4.1 Field Definitions
	5.4.2 Notes on Access and Dirty Bits

	5.5 Translation-Lookaside Buffer (TLB)
	5.5.1 Global Pages
	5.5.2 TLB Management

	5.6 Page-Protection Checks
	5.6.1 No Execute (NX) Bit
	5.6.2 User/Supervisor (U/S) Bit
	5.6.3 Read/Write (R/W) Bit
	5.6.4 Write Protect (CR0.WP) Bit

	5.7 Protection Across Paging Hierarchy
	5.7.1 Access to User Pages when CR0.WP=1

	5.8 Effects of Segment Protection

	6 System-Management Instructions
	6.1 Fast System Call and Return
	6.1.1 SYSCALL and SYSRET
	6.1.2 SYSENTER and SYSEXIT (Legacy Mode Only)
	6.1.3 SWAPGS Instruction

	6.2 System Status and Control
	6.2.1 Processor Feature Identification (CPUID)
	6.2.2 Accessing Control Registers
	6.2.3 Accessing the RFLAGs Register
	6.2.4 Accessing Debug Registers
	6.2.5 Accessing Model-Specific Registers

	6.3 Segment Register and Descriptor Register Access
	6.3.1 Accessing Segment Registers
	6.3.2 Accessing Descriptor-Table Registers

	6.4 Protection Checking
	6.4.1 Checking Access Rights
	6.4.2 Checking Segment Limits
	6.4.3 Checking Read/Write Rights
	6.4.4 Adjusting Access Rights

	6.5 Processor Halt
	6.6 Cache and TLB Management
	6.6.1 Cache Management
	6.6.2 TLB Invalidation

	7 Memory System
	7.1 Single-Processor Memory Access Ordering
	7.1.1 Read Ordering
	7.1.2 Write Ordering
	7.1.3 Read/Write Barriers

	7.2 Multiprocessor Memory Access Ordering
	7.3 Memory Coherency and Protocol
	7.3.1 Special Coherency Considerations

	7.4 Memory Types
	7.4.1 Memory Barrier Interaction with Memory Types

	7.5 Buffering and Combining Memory Writes
	7.5.1 Write Buffering
	7.5.2 Write Combining

	7.6 Memory Caches
	7.6.1 Cache Organization and Operation
	7.6.2 Cache Control Mechanisms
	7.6.3 Cache and Memory Management Instructions
	7.6.4 Serializing Instructions

	7.7 Memory-Type Range Registers
	7.7.1 MTRR Type Fields
	7.7.2 MTRRs
	7.7.3 Using MTRRs
	7.7.4 MTRRs and Page Cache Controls
	7.7.5 MTRRs in Multi-Processing Environments

	7.8 Page-Attribute Table Mechanism
	7.8.1 PAT Register
	7.8.2 PAT Indexing
	7.8.3 Identifying PAT Support
	7.8.4 PAT Accesses
	7.8.5 Combined Effect of MTRRs and PAT
	7.8.6 PATs in Multi-Processing Environments
	7.8.7 Changing Memory Type

	7.9 Memory-Mapped I/O
	7.9.1 Extended Fixed-Range MTRR Type-Field Encodings
	7.9.2 IORRs
	7.9.3 IORR Overlapping
	7.9.4 Top of Memory

	8 Exceptions and Interrupts
	8.1 General Characteristics
	8.1.1 Precision
	8.1.2 Instruction Restart
	8.1.3 Types of Exceptions
	8.1.4 Masking External Interrupts
	8.1.5 Masking Floating-Point and Media Instructions
	8.1.6 Disabling Exceptions

	8.2 Vectors
	8.2.1 #DE—Divide-by-Zero-Error Exception (Vector 0)
	8.2.2 #DB—Debug Exception (Vector 1)
	8.2.3 NMI—Non-Maskable-Interrupt Exception (Vector 2)
	8.2.4 #BP—Breakpoint Exception (Vector 3)
	8.2.5 #OF—Overflow Exception (Vector 4)
	8.2.6 #BR—Bound-Range Exception (Vector 5)
	8.2.7 #UD—Invalid-Opcode Exception (Vector 6)
	8.2.8 #NM—Device-Not-Available Exception (Vector 7)
	8.2.9 #DF—Double-Fault Exception (Vector 8)
	8.2.10 Coprocessor-Segment-Overrun Exception (Vector 9)
	8.2.11 #TS—Invalid-TSS Exception (Vector 10)
	8.2.12 #NP—Segment-Not-Present Exception (Vector 11)
	8.2.13 #SS—Stack Exception (Vector 12)
	8.2.14 #GP—General-Protection Exception (Vector 13)
	8.2.15 #PF—Page-Fault Exception (Vector 14)
	8.2.16 #MF—x87 Floating-Point Exception-Pending (Vector 16)
	8.2.17 #AC—Alignment-Check Exception (Vector 17)
	8.2.18 #MC—Machine-Check Exception (Vector 18)
	8.2.19 #XF—SIMD Floating-Point Exception (Vector 19)
	8.2.20 User-Defined Interrupts (Vectors 32–255)

	8.3 Exceptions During a Task Switch
	8.4 Error Codes
	8.4.1 Selector-Error Code
	8.4.2 Page-Fault Error Code

	8.5 Priorities
	8.5.1 Floating-Point Exception Priorities
	8.5.2 External Interrupt Priorities

	8.6 Real-Mode Interrupt Control Transfers
	8.7 Legacy Protected-Mode Interrupt Control Transfers
	8.7.1 Locating the Interrupt Handler
	8.7.2 Interrupt To Same Privilege
	8.7.3 Interrupt To Higher Privilege
	8.7.4 Privilege Checks
	8.7.5 Returning From Interrupt Procedures

	8.8 Virtual-8086 Mode Interrupt Control Transfers
	8.8.1 Protected-Mode Handler Control Transfer
	8.8.2 Virtual-8086 Handler Control Transfer

	8.9 Long-Mode Interrupt Control Transfers
	8.9.1 Interrupt Gates and Trap Gates
	8.9.2 Locating the Interrupt Handler
	8.9.3 Interrupt Stack Frame
	8.9.4 Interrupt-Stack Table
	8.9.5 Returning From Interrupt Procedures

	8.10 Virtual Interrupts
	8.10.1 Virtual-8086 Mode Extensions
	8.10.2 Protected Mode Virtual Interrupts
	8.10.3 Effect of Instructions that Modify EFLAGS.IF

	9 Machine Check Mechanism
	9.1 Determining Machine-Check Support
	9.2 Machine-Check Errors
	9.2.1 Error Sources

	9.3 Machine Check MSRs
	9.3.1 Global Status and Control Registers
	9.3.2 Error-Reporting Register Banks
	9.3.3 Error Codes

	9.4 Initializing the Machine-Check Mechanism
	9.5 Using Machine Check Features
	9.5.1 Handling Machine Check Exceptions
	9.5.2 Reporting Correctable Machine Check Errors

	10 System-Management Mode
	10.1 SMM Differences
	10.2 SMM Resources
	10.2.1 SMRAM
	10.2.2 SMBASE Register
	10.2.3 SMRAM State-Save Area
	10.2.4 SMM-Revision Identifier
	10.2.5 SMRAM Protected Area

	10.3 Using SMM
	10.3.1 System-Management Interrupt (SMI)
	10.3.2 SMM Operating-Environment
	10.3.3 Exceptions and Interrupts
	10.3.4 Invalidating the Caches
	10.3.5 Saving Additional Processor State
	10.3.6 Operating in Protected Mode and Long Mode
	10.3.7 Auto-Halt Restart
	10.3.8 I/O Instruction Restart

	10.4 Leaving SMM

	11 128-Bit, 64-Bit, and x87 Programming
	11.1 Overview of System-Software Considerations
	11.2 Determining Media and x87 Feature Support
	11.3 Enabling 128-Bit Media Instructions
	11.4 Media and x87 Processor State
	11.4.1 128-Bit Media State
	11.4.2 64-Bit Media State
	11.4.3 x87 State
	11.4.4 Saving Media and x87 Processor State

	12 Task Management
	12.1 Hardware Multitasking Overview
	12.2 Task-Management Resources
	12.2.1 TSS Selector
	12.2.2 TSS Descriptor
	12.2.3 Task Register
	12.2.4 Legacy Task-State Segment
	12.2.5 64-Bit Task State Segment
	12.2.6 Task Gate Descriptor (Legacy Mode Only)

	12.3 Hardware Task-Management in Legacy Mode
	12.3.1 Task Memory-Mapping
	12.3.2 Switching Tasks
	12.3.3 Task Switches Using Task Gates
	12.3.4 Nesting Tasks

	13 Debug and Performance Resources
	13.1 Software-Debug Resources
	13.1.1 Debug Registers

	13.2 Breakpoints
	13.2.1 Setting Breakpoints
	13.2.2 Using Breakpoints
	13.2.3 Single Stepping
	13.2.4 Breakpoint Instruction (INT3)
	13.2.5 Control-Transfer Breakpoint Features

	13.3 Performance Optimization
	13.3.1 Performance Counters
	13.3.2 Performance Event-Select Registers
	13.3.3 Using Performance Counters
	13.3.4 Time-Stamp Counter

	14 Processor Initialization and Long Mode Activation
	14.1 Reset and Initialization
	14.1.1 Built-In Self Test (BIST)
	14.1.2 Clock Multiplier Selection
	14.1.3 Processor Initialization State
	14.1.4 Multiple Processor Initialization
	14.1.5 Fetching the First Instruction

	14.2 Hardware Configuration
	14.2.1 Processor Implementation Information
	14.2.2 Enabling Internal Caches
	14.2.3 Initializing Media and x87 Processor State
	14.2.4 Model-Specific Initialization

	14.3 Initializing Real Mode
	14.4 Initializing Protected Mode
	14.5 Initializing Long Mode
	14.6 Enabling and Activating Long Mode
	14.6.1 Activating Long Mode
	14.6.2 Consistency Checks
	14.6.3 Updating System Descriptor Table References
	14.6.4 Relocating Page-Translation Tables

	14.7 Leaving Long Mode
	14.8 Long-Mode Initialization Example

	15 Secure Virtual Machine
	15.1 The Virtual Machine Monitor
	15.2 SVM Hardware Overview
	15.2.1 Virtualization Support
	15.2.2 Guest Mode
	15.2.3 External Access Protection
	15.2.4 Interrupt Support
	15.2.5 Restartable Instructions
	15.2.6 Security Support

	15.3 SVM Processor and Platform Extensions
	15.4 Enabling SVM
	15.5 VMRUN Instruction
	15.5.1 Basic Operation

	15.6 #VMEXIT
	15.7 Intercept Operation
	15.7.1 State Saved on Exit
	15.7.2 Intercepts During IDT Interrupt Delivery
	15.7.3 EXITINTINFO Pseudo-Code

	15.8 Instruction Intercepts
	15.9 IOIO Intercepts
	15.10 MSR Intercepts
	15.11 Exception Intercepts
	15.11.1 #DE (Divide By Zero)
	15.11.2 #DB (Debug)
	15.11.3 Vector 2 (Reserved)
	15.11.4 #BP (Breakpoint)
	15.11.5 #OF (Overflow)
	15.11.6 #BR (Bound-Range)
	15.11.7 #UD (Invalid Opcode)
	15.11.8 #NM (Device-Not-Available)
	15.11.9 #DF (Double Fault)
	15.11.10 Vector 9 (Reserved)
	15.11.11 #TS (Invalid TSS)
	15.11.12 #NP (Segment Not Present)
	15.11.13 #SS (Stack Fault)
	15.11.14 #GP (General Protection)
	15.11.15 #PF (Page Fault)
	15.11.16 #MF (X87 Floating Point)
	15.11.17 #AC (Alignment Check)
	15.11.18 #MC (Machine Check)
	15.11.19 #XF (SIMD Floating Point)

	15.12 Interrupt Intercepts
	15.12.1 INTR Intercept
	15.12.2 NMI Intercept
	15.12.3 SMI Intercept
	15.12.4 INIT Intercept
	15.12.5 Virtual Interrupt Intercept

	15.13 Miscellaneous Intercepts
	15.13.1 Task Switch Intercept
	15.13.2 Ferr_Freeze Intercept
	15.13.3 Shutdown Intercept

	15.14 VMSAVE and VMLOAD Instructions
	15.15 VMCB State Caching
	15.15.1 VMCB Clean Bits
	15.15.2 Guidelines for Clearing VMCB Clean Bits
	15.15.3 VMCB Clean Field

	15.16 TLB Control
	15.16.1 TLB Flush
	15.16.2 Invalidate Page, Alternate ASID

	15.17 Global Interrupt Flag, STGI and CLGI Instructions
	15.18 VMMCALL Instruction
	15.19 Paged Real Mode
	15.20 Event Injection
	15.21 Interrupt and Local APIC Support
	15.21.1 Physical (INTR) Interrupt Masking in EFLAGS
	15.21.2 Virtualizing APIC.TPR
	15.21.3 TPR Access in 32-Bit Mode
	15.21.4 Injecting Virtual (INTR) Interrupts
	15.21.5 Interrupt Shadows
	15.21.6 Virtual Interrupt Intercept
	15.21.7 Interrupt Masking in Local APIC
	15.21.8 INIT Support
	15.21.9 NMI Support

	15.22 SMM Support
	15.22.1 Sources of SMI
	15.22.2 Response to SMI
	15.22.3 Containerizing Platform SMM

	15.23 Last Branch Record Virtualization
	15.23.1 Enabling LBR Virualization
	15.23.2 Host and Guest LBR Virtualization
	15.23.3 LBR Virtualization CPUID Feature Detection

	15.24 External Access Protection
	15.24.1 Device IDs and Protection Domains
	15.24.2 Device Exclusion Vector (DEV)
	15.24.3 Access Checking
	15.24.4 DEV Capability Block
	15.24.5 DEV Register Access Mechanism
	15.24.6 DEV Control and Status Registers
	15.24.7 Unauthorized Access Logging
	15.24.8 Secure Initialization Support

	15.25 Nested Paging
	15.25.1 Traditional Paging versus Nested Paging
	15.25.2 Replicated State
	15.25.3 Enabling Nested Paging
	15.25.4 Nested Paging and VMRUN/#VMEXIT
	15.25.5 Nested Table Walk
	15.25.6 Nested versus Guest Page Faults, Fault Ordering
	15.25.7 Combining Nested and Guest Attributes
	15.25.8 Combining Memory Types, MTRRs
	15.25.9 Page Splintering
	15.25.10 Legacy PAE Mode
	15.25.11 A20 Masking
	15.25.12 Detecting Nested Paging Support

	15.26 Security
	15.27 Secure Startup with SKINIT
	15.27.1 Secure Loader
	15.27.2 Secure Loader Image
	15.27.3 Secure Loader Block
	15.27.4 Trusted Platform Module
	15.27.5 System Interface, Memory Controller and I/O Hub Logic
	15.27.6 SKINIT Operation
	15.27.7 SL Abort
	15.27.8 Secure Multiprocessor Initialization

	15.28 Security Exception (#SX)
	15.29 SVM Related MSRs
	15.29.1 VM_CR MSR (C001_0114h)
	15.29.2 IGNNE MSR (C001_0115h)
	15.29.3 SMM_CTL MSR (C001_0116h)
	15.29.4 VM_HSAVE_PA MSR (C001_0117h)

	15.30 SVM-Lock
	15.30.1 SVM_KEY MSR (C001_0118h)

	15.31 SMM-Lock
	15.31.1 SmmLock Bit — HWCR[0]
	15.31.2 SMM_KEY MSR (C001_0119h)

	15.32 TSC Ratio MSR (C000_0104h)
	15.33 Decode Assists
	15.33.1 MOV CRx/DRx Intercepts
	15.33.2 INTn Intercepts
	15.33.3 INVLPG Intercepts
	15.33.4 Nested and intercepted #PF
	15.33.5 (REP) OUTS and INS

	16 Advanced Programmable Interrupt Controller (APIC)
	16.1 Sources of Interrupts to the Local APIC
	16.2 Interrupt Control
	16.3 Local APIC
	16.3.1 Local APIC Enable
	16.3.2 APIC Registers
	16.3.3 Local APIC ID
	16.3.4 APIC Version Register
	16.3.5 Extended APIC Feature Register
	16.3.6 Extended APIC Control Register

	16.4 Local Interrupts
	16.4.1 APIC Timer Interrupt
	16.4.2 Local Interrupts LINT0 and LINT1
	16.4.3 Performance Monitor Counter Interrupts
	16.4.4 Thermal Sensor Interrupts
	16.4.5 Extended Interrupts
	16.4.6 APIC Error Interrupts
	16.4.7 Spurious Interrupts

	16.5 Interprocessor Interrupts (IPI)
	16.6 Local APIC Handling of Interrupts
	16.6.1 Receiving System and IPI Interrupts
	16.6.2 Lowest Priority Messages and Arbitration
	16.6.3 Accepting System and IPI Interrupts
	16.6.4 Selecting and Handling Interrupts

	16.7 SVM Support for Interrupts and the Local APIC
	16.7.1 Specific End of Interrupt Register
	16.7.2 Interrupt Enable Register

	17 OS-Visible Workaround Information
	17.1 Erratum Process Overview

	18 Hardware Performance Monitoring and Control
	18.1 Hardware P-State Control
	18.2 Core Performance Boost
	18.3 Effective Frequency

	Appendix A MSR Cross-Reference
	A.1 MSR Cross-Reference by MSR Address
	A.2 System-Software MSRs
	A.3 Memory-Typing MSRs
	A.4 Machine-Check MSRs
	A.5 Software-Debug MSRs
	A.6 Performance-Monitoring MSRs
	A.7 Secure Virtual Machine MSRs
	A.8 System Management Mode MSRs
	A.9 CPUID Name MSR Cross-Reference

	Appendix B Layout of VMCB
	B.1 Layout of VMCB

	Appendix C SVM Intercept Exit Codes
	Index

