AMD ¢

AMDG64 Technology

AMDG64 Architecture
Programmer’s Manual
Volume 1:
Application Programming

Advanced Micro Devices ¢\

AMDA
AMD64 Technology 24592—Rev. 3.11-December 2005

© 2002, 2003, 2004, 2005 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc.
("AMD") products. AMD makes no representations or warranties with respect to the accuracy or
completeness of the contents of this publication and reserves the right to make changes to
specifications and product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this
publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes
no liability whatsoever, and disclaims any express or implied warranty, relating to its products
including, but not limited to, the implied warranty of merchantability, fitness for a particular pur-
pose, or infringement of any intellectual property right.

AMD'’s products are not designed, intended, authorized or warranted for use as components in
systems intended for surgical implant into the body, or in other applications intended to support
or sustain life, or in any other application in which the failure of AMD’s product could create a
situation where personal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any time without
notice.

Trademarks

AMD, the AMD arrow logo, AMD Athlon, and AMD Opteron, and combinations thereof, and 3DNow! are trademarks, and AMD-K6 is a
registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.
Windows NT is a registered trademark of Microsoft Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMDA1

24592—Rev. 3.11-December 2005 AMDG64 Technology
Contents

Figureso iiiiiiiii it iiiitnieeeseseoneonssosesnannnns xi

B = 10) XV

Revision Historyiiiiiiiiiiiitinnnenernnnnnaannns xXvii

o <Y it Vo Xix

About ThisBook i Xix

Audience e e XixX

Contact Information.i .. X1xX

Organizationouiiiiiit it ettt XX

Definitions. oot e XX

Related Documentsc i iiinnn.. xxx1

1 Overview of the AMDG64 Architectureccoo.. 1

1.1 Introduction e 1

New Featureso vt e e e 1

Registers. e 3

Instruction Set. ... i e 4

Media InStructionso vt ittt it it i 5

Floating-Point Instructions.00 ..., 6

1.2 Modes of Operation.0t i, 7

Long Mode e 7

64-Bit Modet e 8

Compatibility Mode 9

Legacy Mode ...t e e 9

2 Memory Modelci ittt inneennnnns 11

2.1 Memory Organizationuuiierinennnnnnnnnn 11

Virtual Memoryottt e 11

Segment Registers.ttt 12

Physical Memoryt 13

Memory Managementuutetineeinennnnnnnnnn 14

2.2 Memory Addressing 16

Byte Ordering. i e 16

64-bit Canonical Addresses, 18

Effective Addresses. i e 18

Address-Size Prefix i e 21

RIP-Relative Addressing., 22

2.3 Pointers e 22

Nearand Far Pointers.ttt 23

2.4 Stack Operation.c.0i i, 23

2.5 Instruction Pointer0t 24

3 General-Purpose Programming.ccovteeennnns 27

Contents iiii

AMDA1

AMD64 Technology 24592—Rev. 3.11-December 2005
3.1 Registers. e 27
Legacy Registerst 28
64-Bit-Mode Registers., 30
Implicit Usesof GPRs. 34

Flags Register et 37
Instruction Pointer Register. 41

3.2 Operandsii it e 41
Data Types . ..o e e 41
Operand Sizes and Overrides. 44
Operand Addressingottt innnnnnnn 46

Data Alignment, 47

3.3 Instruction Summaryttt 48
2 8 1= 5. 48
DataTransfer.......... 49

Data Conversion.ou i, 54

Load Segment Registers.cuiiiiiunnenn.. 58

Load Effective Address. 58
Arithmetic e 59
Rotateand Shift 61
Compareand Test ittt 64
Logical e 67

S 8 = 68
Control Transfer i 69

Flagso e e 75
Input/Output 76
Semaphores e 78
Processor Information. 79

Cache and Memory Managementou... 79
NoOperationuiiiin it 80
System Calls. 81

3.4 General Rules for Instructions in 64-Bit Mode. 81
Address Size. e 81
Canonical AddressFormat 82
Branch-Displacement Size 82
Operand Size it it e e 82

High 32 Bits e e 84
Invalid and Reassigned Instructions 84
Instructions with 64-Bit Default Operand Size............ 85

3.5 Instruction Prefixes. 86
Legacy Prefixesot 86

REX Prefixes o e 90

3.6 Feature Detectiont iiniinnnnn.. 91
3.7 Control Transfers 93
OVeIVIEW. . .ttt i i et e et e e e e 93
Privilege Levels. 94
Procedure Stack......... 95
Jumps ... e 96

v Contents

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology
Procedure Calls 97
Returning from Procedures 100
System Calls. 103
General Considerations for Branching 103
Branching in 64-BitMode 104
Interrupts and Exceptions 105

3.8 Input/Output e 110
/O Addressing i e 111

/O Ordering.t e 112
Protected-Mode I/O 113

3.9 Memory Optimization..............., 114
Accessing Memory.ovu ettt 114
Forcing Memory Order 116
Caches. e e 118

Cache Operation 120

Cache Pollution 122
Cache-Control Instructions.ouueiuenennn.. 123

3.10 Performance Considerations 125
Use Large Operand Sizes i, 126

Use Short Instructionsc0iiiiinnon.. 126
AlignData e 126

Avoid Branches 126
PrefetchData.......... 126

Keep Common Operands in Registers. 127

Avoid True Dependencies. 127

Avoid Store-to-Load Dependencies 127
Optimize Stack Allocation 127
Consider Repeat-Prefix Setup Time 127
Replace GPR with Media Instructions 127
Organize Data in Memory Blocks. 128
128-Bit Media and Scientific Programming 129
4.1 OVEeIVIEW .ottt it et e et e e e 129
Originst e e 129
Compatibility. 129

4.2 Capabilities e 130
Types of Applications 130
Integer Vector Operationscouiuuneen.. 131
Floating-Point Vector Operations 132

Data Conversion and Reordering. 133

Block Operationsc.ou it innennn. 135
Matrix and Special Arithmetic Operations.............. 137
Branch Removal........ 139

4.3 Registers. e 141
XMM RegiSterS . ..o ii ittt ittt e et et 141
MXCSR Registerooii ittt e e e e 142

Other Data Registers.ttt it 146
TFLAGS Registerst 147
Contents v

AMDA1

AMD64 Technology 24592—Rev. 3.11-December 2005
4.4 Operandsii ittt e e 147
Data Types . ..o i e 147
Operand Sizes and Overrides. 149
Operand Addressing 149

Data Alignment, 150
Integer Data Types, 150
Floating-Point Data Types, 152
Floating-Point Number Representation 155
Floating-Point Number Encodings. 158
Floating-Point Rounding. 160

4.5 Instruction Summary—Integer Instructions. 162
SYMtAX . .ottt 162
DataTransfer......... 164

Data Conversion.o vttt ettt 169
DataReordering i, 171
Arithmetic e e 177

Shift .. 184
COMIPATE .« ot ittt e e e e e e 186
Logical e 188
Saveand Restore State.ooiuiiiinnnnon. 189

4.6 Instruction Summary—Floating-Point Instructions. 190
S 2 81 - 5 G 190
DataTransfer......... ..., 190

Data Conversion. ov vttt it ettt 195
DataReordering i, 199
Arithmetic e e 201
00 1101 - U o 208
Logical e 212

4.7 Instruction Effectson Flags.......................... 213
4.8 Instruction Prefixes., 214
Supported Prefixes 214
Special-Use and Reserved Prefixes.................... 214
Prefixes That Cause Exceptions 214

4.9 Feature Detectiont nnn. 215
410 EXCEPLIONS .. iv ittt ittt it et e et e 215
General-Purpose Exceptions 216

SIMD Floating-Point Exception Causes 217

SIMD Floating-Point Exception Priority................ 222

SIMD Floating-Point Exception Masking 224

411 Saving, Clearing, and Passing State 228
Saving and Restoring State 228
Parameter Passing.............. 228
Accessing Operands in MMX™ Registers. 229

412 Performance Considerations 230
Use Small Operand Sizes, 230
Reorganize Data for Parallel Operations 230
Remove Branches 230

vi Contents

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology
Use Streaming Storesiiitin i, 231
AlignData i e 231
Organize Data for Cacheability 231
PrefetchData....... i, 231

Use 128-Bit Media Code for Moving Data. 232
Retain Intermediate Results in XMM Registers 232
Replace GPR Code with 128-bit media Code. 232
Replace x87 Code with 128-Bit Media Code. 232
64-Bit Media Programming..............ccovviunn.n 235
51 Originst e e 235
5.2 Compatibility. 236
5.3 Capabilities e 236
Parallel Operations, 237

Data Conversion and Reordering. 237
Matrix Operationsuiitin i ennnnnnn. 239
SatUration.ottt e e 240
BranchRemoval............ 240
Floating-Point (3DNow!™) Vector Operations........... 242

5.4 Registers. e 243
MMX™ ReGIStEIS. « o vt vttt ettt it ettt et e e 243

Other Registersttt et 244

55 Operands ittt e e 244
Data Types . ..o v e 244
Operand Sizes and Overrides. 246
Operand Addressing, 246

Data Alignment, 247
Integer Data Types, 247
Floating-Point Data Types, 249

5.6 Instruction Summary—Integer Instructions. 251
S 2 81 - 5 G 252

Exit MediaStatettt 253
DataTransfer........ 254

Data Conversion. ou vttt i ettt 256
DataReordering i, 257
Arithmetic e e 261

Shift .. 266
00 1101 - U o 268
Logical e 269
Saveand Restore State.ovuii .. 270

5.7 Instruction Summary—Floating-Point Instructions. 271
2 01 - - S 272

Data Conversion.ottt ittt 272
Arithmetic e e 273
00 1101 - U o 277

5.8 Instruction Effectson Flags.......................... 278
5.9 Instruction Prefixes., 278
Supported Prefixes 278
Contents vii

AMDA1

AMD64 Technology

24592—Rev. 3.11-December 2005

Special-Use and Reserved Prefixes.................... 279
Prefixes That Cause Exceptions 279

510 FeatureDetection............ccouiuiiieeuunnnnneenn. 279
511 EXCePtionS ovit ittt ittt e e e 280
General-Purpose Exceptions 280

x87 Floating-Point Exceptions (#MF) 282

5.12 Actions Taken on Executing 64-Bit Media Instructions .. .282
5.13 Mixing Media Code withx87 Code 284
Mixing Code. ... it e 284
Clearing MMX™ Stateoviniine it 285

514 State-Saving.iiiii i e 285
Saving and Restoring State 285
State-Saving Instructions, 286

5.15 Performance Considerations 287
Use Small Operand Sizes 287
Reorganize Data for Parallel Operations 287
Remove Branches 287
AlignData e e 288
Organize Data for Cacheability 288
PrefetchData........ 288
Retain Intermediate Results in MMX™ Registers 289

x87 Floating-Point Programming00... 291
6.1 OVeIVIEW .ottt it e e e 291
Originst e e 291
Compatibility. 291

6.2 Capabilities e 292
6.3 Registers. e 293
x87 Data Registers. 294

x87 Status Word Register (FSW) 295

x87 Control Word Register (FCW)..................... 299

x87 Tag Word Register (FTW) 301
Pointers and Opcode State........................... 303

Xx87 Environmentttt 304
Floating-Point Emulation (CRO.EM)................... 305

6.4 Operands ittt e e e 306
Operand Addressing, 306

Data Types .. oo vt e e 306
Number Representation................. ..., 310
Number Encodings, 314
Precision.c. i e e 319
Rounding e 320

6.5 Instruction Summaryt 321
S 2 81 = 5 G 321

Data Transfer and Conversion 323

Load Constantsouiitimnn et tnnnneeeennns 327
Arithmetic e 327
Transcendental Functions 332

viii Contents

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology
Compareand Testttt 334

Stack Managementuuuinrnnennnennn. 337
NoOperationui i, 338

Control e 338

6.6 Instruction Effects on rFLAGS 342

6.7 Instruction Prefixes. 342

6.8 Feature Detection 343

6.9 Exceptions e 344
General-Purpose Exceptions 344

x87 Floating-Point Exception Causes 345

x87 Floating-Point Exception Priority.................. 349

x87 Floating-Point Exception Masking 351

6.10 State-Saving........... ... e e 358
State-Saving Instructions 358

6.11 Performance Considerations 359
Replace x87 Code with 128-Bit Media Code. 359

Use FCOMI-FCMOVx Branching 359

Use FSINCOS Instead of FSINand FCOS 360

Break Up Dependency Chains 360

IndexX. ... ottt it i i e i i it et 361
Contents ix

AMDA
AMD64 Technology 24592—Rev. 3.11-December 2005

X Contents

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

Figures
Figure 1-1. Application-Programming RegisterSet. 2
Figure 2-1. Virtual-Memory Segmentation. 12
Figure 2-2. SegmentRegisters.c.uiiiii i innnnn.. 13
Figure 2-3. Long-Mode Memory Management 14
Figure 2-4. Legacy-Mode Memory Management 15
Figure 2-5. ByteOrdering........... ..o iinniennnn.. 17
Figure 2-6. Example of 10-Byte Instructionin Memory............... 18
Figure 2-7. Complex Address Calculation (Protected Mode) 19
Figure 2-8. NearandFarPointers.............. .. iiiiieennn... 23
Figure 2-9. Stack Pointer Mechanism............................. 24
Figure 2-10. Instruction Pointer (rIP) Register 25
Figure 3-1. General-Purpose Programming Registers. 28
Figure 3-2. General Registersin Legacy and Compatibility Modes 29
Figure 3-3. General Registersin 64-BitMode. 31
Figure 3-4. GPRsin64-BitMode 32
Figure 3-5. rFLAGS Register—Flags Visible to Application Software . .38
Figure 3-6. General-PurposeDataTypes, 42
Figure 3-7. MnemonicSyntaxExample 48
Figure 3-8. BSWAP Doubleword Exchange 57
Figure 3-9. Privilege-Level Relationships 94
Figure 3-10. Procedure Stack,NearCall............................ 98
Figure 3-11. Procedure Stack, Far Call to Same Privilege. 99
Figure 3-12. Procedure Stack, Far Call to Greater Privilege. 100
Figure 3-13. Procedure Stack,NearReturn 101
Figure 3-14. Procedure Stack, Far Return from Same Privilege........ 102
Figure 3-15. Procedure Stack, Far Return from Less Privilege 102
Figure 3-16. Procedure Stack, Interrupt to Same Privilege 109
Figure 3-17. Procedure Stack, Interrupt to Higher Privilege 110
Figure 3-18. T/OAddressSpace e 112
Figure 3-19. Memory Hierarchy Example. 120
Figure 4-1. Parallel Operations on Vectors of Integer Elements 131
Figure 4-2. Parallel Operations on Vectors of Floating-Point Elements 132
Figure 4-3. Unpack and Interleave Operation 133
Figure 4-4. PackOperationc.c.iiiiiiinnnnnnnn. 134

Figures Xi

AMDA1

AMD64 Technology 24592—Rev. 3.11-December 2005
Figure 4-5. Shuffle Operation, 134
Figure 4-6. Move Operationsouvtttimnn et uennnneeeennns. 136
Figure 4-7. MoveMaskOperation............oouiiiiiinneenennn. 137
Figure 4-8. Multiply-Add Operation, 138
Figure 4-9. Sum-of-Absolute-Differences Operation................ 139
Figure 4-10. Branch-Removal Sequence........................... 140
Figure 4-11. MoveMask Operation..............c.uiiiieiuneennn.. 141
Figure 4-12. 128-bit MediaRegisters. i veen.. 142
Figure 4-13. 128-Bit Media Control and Status Register (MXCSR) 143
Figure 4-14. 128-BitMediaDataTypes.......... ..., 148
Figure 4-15. 128-Bit Media Floating-Point Data Types 153
Figure 4-16. Mnemonic Syntax for Typical Instruction............... 162
Figure 4-17. Integer Move Operationscouuuuvrreenn. 167
Figure 4-18. MASKMOVDQU Move Mask Operation 168
Figure 4-19. PMOVMSKB Move Mask Operation 169
Figure 4-20. PACKSSDW PackOperation 172
Figure 4-21. PUNPCKLWD Unpack and Interleave Operation 173
Figure 4-22. PINSRWOperationc.uouuiiiiinnneeeeennnn. 175
Figure 4-23. PSHUFD Shuffle Operation 176
Figure 4-24. PSHUFHW Shuffle Operation 176
Figure 4-25. Arithmetic Operation on Vectorsof Bytes. 177
Figure 4-26. PMULxW Multiply Operation 180
Figure 4-27. PMULUDQ Multiply Operation....................... 181
Figure 4-28. PMADDWD Multiply-Add Operation 182
Figure 4-29. PSADBW Sum-of-Absolute-Differences Operation 184
Figure 4-30. PCMPEQB Compare Operation 187
Figure 4-31. Floating-Point Move Operationsc.c..... 192
Figure 4-32. MOVMSKPS Move Mask Operation. 195
Figure 4-33. UNPCKLPS Unpack and Interleave Operation 200
Figure 4-34. SHUFPS ShuffleOperation 201
Figure 4-35. ADDPS ArithmeticOperation 202
Figure 4-36. CMPPD Compare Operation. 210
Figure 4-37. COMISD Compare Operation.................ccovuu... 212
Figure 4-38. SIMD Floating-Point Detection Process 223
Figure 5-1. Parallel Integer Operations on Elements of Vectors 237
Figure 5-2. Unpack and Interleave Operation 238

Xii Figures

AMDA1

24592—Rev. 3.11-December 2005 AMDé64 Technology
Figure 5-3. Shuffle Operation (10f256) 239
Figure 5-4. Multiply-AddOperation 240
Figure 5-5. Branch-RemovalSequence........................... 241
Figure 5-6. Floating-Point (3DNow!™ Instruction) Operations 242
Figure 5-7. 64-bitMediaRegisters. i, 243
Figure 5-8. 64-BitMediaDataTypes.......c.uuiiiiniinnannnnnn. 245
Figure 5-9. 64-Bit Floating-Point (3DNow!) Vector Operand 249
Figure 5-10. Mnemonic Syntax for Typical Instruction............... 252
Figure 5-11. MASKMOVQ Move Mask Operation 255
Figure 5-12. PACKSSDW PackOperationo.ovoo... 258
Figure 5-13. PUNPCKLWD Unpack and Interleave Operation 259
Figure 5-14. PSHUFW Shuffle Operation. 260
Figure 5-15. PSWAPD SwapOperation.ccuuiiueennn... 261
Figure 5-16. PMADDWD Multiply-Add Operation 265
Figure 5-17. PFACC Accumulate Operation. 275
Figure 6-1. x87 Registersoiiiiiiiimnn i, 293
Figure 6-2. x87 Physical and Stack Registers. 294
Figure 6-3. x87 Status Word Register (FSW) 296
Figure 6-4. x87 Control Word Register (FCW) 299
Figure 6-5. x87 TagWord Register (FTW) 302
Figure 6-6. x87 Pointersand OpcodeState........................ 303
Figure 6-7. x87DataTypes...... ..., 307
Figure 6-8. x87 Floating-PointDataTypes........................ 308
Figure 6-9. x87 Packed DecimalDataType 310
Figure 6-10. Mnemonic Syntax for Typical Instruction............... 322
Figures Xiii

AMDA
AMD64 Technology 24592—Rev. 3.11-December 2005

Xiv Figures

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology
Tables
Table 1-1. Operating Modes ittt 3
Table 1-2. Application Registers and Stack, by Operating Mode 4
Table 2-1. Address-Size Prefixes. 21
Table 3-1. ImplicitUsesof GPRs 35
Table 3-2. Representable Values of General-Purpose Data Types...... 44
Table 3-3. Operand-Size Overrides. 46
Table 3-4. rFLAGS for CMOVcc Instructionsccuu.... 52
Table 3-5. rFLAGS for SETcc Instructions., 67
Table 3-6. rFLAGS for JeccInstructionsu it iineen... 72
Table 3-7. Legacy Instruction Prefixes 88
Table 3-8. Instructions that Implicitly Reference RSP in 64-Bit Mode .. 98
Table 3-9. Near Branchesin 64-BitMode. 105
Table 3-10. Interrupts and Exceptions.couiiieeenn... 108
Table 4-1. MXCSR Register Reset Values. 146
Table 4-2. Range of Values in 128-Bit Media Integer Data Types 153
Table 4-3. Saturation Examples 154
Table 4-4. Range of Values in Normalized Floating-Point Data Types .156
Table 4-5. Example of Denormalization........................... 158
Table 4-6. NaN Results i, 160
Table 4-7. Supported Floating-Point Encodings 161
Table 4-8. Indefinite-Value Encodings............................ 162
Table 4-9. Typesof Rounding............. 163
Table 4-10. Example PANDN Bit Values........................... 191
Table 4-11. SIMD Floating-Point Exception Flags 220
Table 4-12. Invalid-Operation Exception (IE) Causes 222
Table 4-13. Priority of SIMD Floating-Point Exceptions 224
Table 4-14. SIMD Floating-Point Exception Masks 226
Table 4-15. Masked Responses to SIMD Floating-Point Exceptions. 227
Table 5-1. Range of Values in 64-Bit Media Integer Data Types 250
Table 5-2. Saturation Examples, 250
Table 5-3. Range of Values in 64-Bit Media Floating-Point Data Types 252
Table 5-4. 64-Bit Floating-Point Exponent Ranges.................. 252
Table 5-5. Example PANDN Bit Values........................... 272
Table 5-6. Mapping Between Internal and Software-Visible Tag Bits . . 286

Tables

AMDA1

AMD64 Technology 24592—Rev. 3.11-December 2005
Table 6-1. Precision Control (PC) Summary 302
Table 6-2. Typesof Rounding............., 303
Table 6-3. Mapping Between Internal and Software-Visible Tag Bits . . 304
Table 6-4. Instructions that Access the x87 Environment............ 307
Table 6-5. Range of Finite Floating-Point Values................... 311
Table 6-6. Example of Denormalization........................... 315
Table 6-7. NaN Results from NaN Source Operands 317
Table 6-8. Supported Floating-Point Encodings 318
Table 6-9. Unsupported Floating-Point Encodings.................. 320
Table 6-10. Indefinite-Value Encodings. 321
Table 6-11. Precision Control Field (PC) Values and Bit Precision 321
Table 6-12. Typesof Rounding i, 322
Table 6-13. rFLAGS Conditions for FCMOVc¢cc 327
Table 6-14. rFLAGS Values for FCOMI Instruction.................. 337
Table 6-15. Condition-Code Settingsfor FXAM 339
Table 6-16. Instruction Effectson rFLAGS......................... 344
Table 6-17. x87 Floating-Point (#MF) Exception Flags 348
Table 6-18. Invalid-Operation Exception (IE) Causes 349
Table 6-19. Priority of x87 Floating-Point Exceptions................ 352
Table 6-20. x87 Floating-Point (#MF) Exception Masks 353
Table 6-21. Masked Responses to x87 Floating-Point Exceptions 354
Table 6-22. Unmasked Responses to x87 Floating-Point Exceptions357

Xvi Tables

AMDA1

24592—Rev. 3.11-December 2005

Revision History

AMD64 Technology

Date Revision | Description

December 2005 3.1 Updated index entries.

February 2005 3.10 Clarified “Self-Modifying Code” on page 123. Made several patches to index
references. Added general descriptions of SSE3 instructions to Chapter 4. Added
description of the CMPXCHG16B instruction to Chapter 3. Corrected minor
typographical errors. Elaborated explanation of PREFETCH/eve/ instructions.

September 2003 3.09 Corrected several factual errors.
September, 2002 3.07 Corrected minor organizational problems in sections dealing with ‘Prefetch’

instructions in chapters 3, 4, and 5. Clarified the general description of the
operation of certain 128-bit media instructions in chapter 1. Corrected a factual
error in the description of the FNINIT/FINIT instructions in chapter 6. Corrected
operand descriptions for the CMOVcc instructions in chapter 3. Added Revision
History. Corrected marketing denotations.

Revision History

Xvil

AMDA
AMDé64 Technology 24592—Rev. 3.11-December 2005

Xviii Revision History

AMDA
24592—Rev. 3.11—-December 2005 AMDG64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64
Architecture Programmer’s Manual. This table lists each volume
and its order number.

Title Order No.
Volume 1, Application Programming 24592
Volume 2, System Programming 24593
Volume 3, General-Purpose and System Instructions 24594
Volume 4, 128-Bit Media Instructions 26568
Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume (Volume 1) is intended for programmers writing
application programs, compilers, or assemblers. It assumes
prior experience in microprocessor programming, although it
does not assume prior experience with the legacy x86 or
AMDG64 microprocessor architecture.

This volume describes the AMDG64 architecture’s resources and
functions that are accessible to application software, including
memory, registers, instructions, operands, I/O facilities, and
application-software aspects of control transfers (including
interrupts and exceptions) and performance optimization.

System-programming topics—including the use of instructions
running at a current privilege level (CPL) of 0 (most-
privileged)—are described in Volume 2. Details about each
instruction are described in volumes 3, 4, and 5.

Contact Information

To submit questions or comments concerning this document,
contact our technical documentation staff at
AMDG64.Feedback@amd.com.

Preface Xix

AMDA1

AMDé64 Technology

Organization

Definitions

Terms and Notation

24592—Rev. 3.11-December 2005

This volume begins with an overview of the architecture and its
memory organization and is followed by chapters that describe
the four application-programming models available in the
AMDG64 architecture:

m General-Purpose Programming—This model uses the integer
general-purpose registers (GPRs). The chapter describing it
also describes the basic application environment for
exceptions, control transfers, I/O, and memory optimization
that applies to all other application-programming models.

m 128-bit Media Programming—This model uses the 128-bit
XMM registers and supports integer and floating-point
operations on vector (packed) and scalar data types.

m 64-bit Media Programming—This model uses the 64-bit
MMX™ registers and supports integer and floating-point
operations on vector (packed) and scalar data types.

m x87 Floating-Point Programming—This model uses the 80-bit
x87 registers and supports floating-point operations on
scalar data types.

Definitions assumed throughout this volume are listed below.
The index at the end of this volume cross-references topics
within the volume. For other topics relating to the AMDG64
architecture, see the tables of contents and indexes of the other
volumes.

Some of the following definitions assume a knowledge of the
legacy x86 architecture. See “Related Documents” on
page xxxii for further information about the legacy x86
architecture.

1011b

A binary value—in this example, a 4-bit value.
FOEAh

A hexadecimal value—in this example a 2-byte value.
[1,2)

A range that includes the left-most value (in this case, 1) but
excludes the right-most value (in this case, 2).

XX

Preface

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

7-4
A bit range, from bit 7 to 4, inclusive. The high-order bit is
shown first.

128-bit media instructions

Instructions that use the 128-bit XMM registers. These are a
combination of the SSE and SSE2 instruction sets.

64-bit media instructions

Instructions that use the 64-bit MMX registers. These are
primarily a combination of MMX and 3DNow!™ instruction
sets, with some additional instructions from the SSE and
SSE2 instruction sets.

16-bit mode

Legacy mode or compatibility mode in which a 16-bit
address size is active. See legacy mode and compatibility
mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit
address size is active. See legacy mode and compatibility
mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address
size is 64 bits and new features, such as register extensions,
are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP)
with error code of 0.

absolute

Said of a displacement that references the base of a code
segment rather than an instruction pointer. Contrast with
relative.

ASID
Address space identifier.

biased exponent

The sum of a floating-point value’s exponent and a constant
bias for a particular floating-point data type. The bias makes

Preface

XXi

AMDA1

AMDé64 Technology

24592—Rev. 3.11-December 2005

the range of the biased exponent always positive, which
allows reciprocation without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default
address size is 32 bits, and legacy 16-bit and 32-bit
applications run without modification.

commit

To irreversibly write, in program order, an instruction’s
result to software-visible storage, such as a register
(including flags), the data cache, an internal write buffer, or
memory.

CPL
Current privilege level.

CRO-CR4

A register range, from register CR0 through CR4, inclusive,
with the low-order register first.

CRO.PE =1

Notation indicating that the PE bit of the CRO register has a
value of 1.

direct
Referencing a memory location whose address is included in
the instruction’s syntax as an immediate operand. The
address may be an absolute or relative address. Compare
indirect.

dirty data

Data held in the processor’s caches or internal buffers that is
more recent than the copy held in main memory.

displacement

A signed value that is added to the base of a segment
(absolute addressing) or an instruction pointer (relative
addressing). Same as offset.

XXii

Preface

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSI

The contents of a memory location whose segment address is
in the DS register and whose offset relative to that segment
is in the rSI register.

EFER.LME =0

Notation indicating that the LME bit of the EFER register
has a value of 0.

effective address size

The address size for the current instruction after accounting
for the default address size and any address-size override
prefix.

effective operand size

The operand size for the current instruction after
accounting for the default operand size and any operand-
size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of executing
an instruction. The processor’s response to an exception
depends on the type of the exception. For all exceptions
except 128-bit media SIMD floating-point exceptions and
x87 floating-point exceptions, control is transferred to the
handler (or service routine) for that exception, as defined by
the exception’s vector. For floating-point exceptions defined
by the IEEE 754 standard, there are both masked and
unmasked responses. When unmasked, the exception
handler is called, and when masked, a default response is
provided instead of calling the handler.

FF /0

Notation indicating that FF is the first byte of an opcode,
and a subopcode in the ModR/M byte has a value of 0.

XXiii

AMDA1

AMDé64 Technology 24592—Rev. 3.11-December 2005

flush
An often ambiguous term meaning (1) writeback, if
modified, and invalidate, as in “flush the cache line,” or (2)
invalidate, as in “flush the pipeline,” or (3) change a value,
as in “flush to zero.”

GDT
Global descriptor table.

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN
Ignore. Field is ignored.

indirect
Referencing a memory location whose address is in a
register or other memory location. The address may be an
absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

Ivr
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on
page xxxii for descriptions of the legacy x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which
existing 16-bit and 32-bit applications and operating systems
run without modification. A processor implementation of
the AMDG64 architecture can run in either long mode or legacy

Xxiv Preface

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

mode. Legacy mode has three submodes, real mode, protected
mode, and virtual-8086 mode.

long mode

An operating mode unique to the AMDG64 architecture. A
processor implementation of the AMDG64 architecture can
run in either long mode or legacy mode. Long mode has two
submodes, 64-bit mode and compatibility mode.

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache
memory) that is installed in a particular computer system.

mask

(1) A control bit that prevents the occurrence of a floating-
point exception from invoking an exception-handling
routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a
general-protection exception (#GP) occurs.

memory
Unless otherwise specified, main memory.

ModRM

A byte following an instruction opcode that specifies
address calculation based on mode (Mod), register (R), and
memory (M) variables.

moffset

A 16, 32, or 64-bit offset that specifies a memory operand
directly, without using a ModRM or SIB byte.

msb
Most-significant bit.

MSB
Most-significant byte.

Preface

XXv

AMDA1

AMDé64 Technology

24592—Rev. 3.11-December 2005

multimedia instructions

A combination of 128-bit media instructions and 64-bit media
instructions.

octword
Same as double quadword.

offset
Same as displacement.

overflow

The condition in which a floating-point number is larger in
magnitude than the largest, finite, positive or negative
number that can be represented in the data-type format
being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal
buffers. External probes originate outside the processor, and
internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode

A short name for real-address mode, a submode of legacy
mode.

XXVi

Preface

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

relative

Referencing with a displacement (also called offset) from an
instruction pointer rather than the base of a code segment.
Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved
fields require special handling when read or written by
software.

Reserved fields may be further qualified as MBZ, RAZ, SBZ
or IGN (see definitions).

Software must not depend on the state of a reserved field,
nor upon the ability of such fields to return to a previously
written state.

If a reserved field is not marked with one of the above
qualifiers, software must not change the state of that field; it
must reload that field with the same values returned from a
prior read.

REX
An instruction prefix that specifies a 64-bit operand size and
provides access to additional registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

set
To write a bit value of 1. Compare clear.

SIB

A byte following an instruction opcode that specifies
address calculation based on scale (S), index (I), and base

(B).
SIMD

Single instruction, multiple data. See vector.

SSE

Streaming SIMD extensions instruction set. See 128-bit
media instructions and 64-bit media instructions.

Preface

XXVii

AMDA1

AMDé64 Technology

24592—Rev. 3.11-December 2005

SSE2

Extensions to the SSE instruction set. See 128-bit media
instructions and 64-bit media instructions.

SSE3

Further extensions to the SSE instruction set. See 128-bit
media instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in
that state until explicitly changed by software.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in
magnitude than the smallest nonzero, positive or negative
number that can be represented in the data-type format
being used.

vector

(1) A set of integer or floating-point values, called elements,
that are packed into a single operand. Most of the 128-bit
and 64-bit media instructions use vectors as operands.
Vectors are also called packed or SIMD (single-instruction
multiple-data) operands.

(2) An index into an interrupt descriptor table (IDT), used to
access exception handlers. Compare exception.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

XXViii

Preface

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

Registers

x86
See legacy x86.

In the following list of registers, the names are used to refer
either to a given register or to the contents of that register:

AH-DH

The high 8-bit AH, BH, CH, and DH registers. Compare
AL-DL.

AL-DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH-DH.

AL-r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and
R8B-R15B registers, available in 64-bit mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX-eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the
32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers. Compare rAX-rSP.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

Preface

XXix

AMDA1

AMDé64 Technology

24592—Rev. 3.11-December 2005

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are
AX, BX, CX, DX, DI, SI, BP, and SP. For the 32-bit data size,
these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For
the 64-bit data size, these include RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, and R8-R15.

IDTR
Interrupt descriptor table register.

P
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8-rl5

The 8-bit R8B-R15B registers, or the 16-bit RSW-R15W
registers, or the 32-bit R8§D-R15D registers, or the 64-bit
R8-R15 registers.

rAX-rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or
the 32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI,
RBP, and RSP registers. Replace the placeholder r with
nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-bit
size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

XXX

Preface

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

Endian Order

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare
RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR

Task priority register (CR8), a new register introduced in
the AMDG64 architecture to speed interrupt management.

TR

Task register.

The x86 and AMD64 architectures address memory using little-
endian byte-ordering. Multibyte values are stored with their

Preface

XXXi

AMDA1

AMDé64 Technology

24592—Rev. 3.11-December 2005

least-significant byte at the lowest byte address, and they are
illustrated with their least significant byte at the right side.
Strings are illustrated in reverse order, because the addresses of
their bytes increase from right to left.

Related Documents

Peter Abel, IBM PC Assembly Language and Programming,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume
II, Prentice-Hall, Englewood Cliffs, NJ, 1991.

AMD data sheets and application notes for particular
hardware implementations of the AMD64 architecture.

AMD, AMD-K6® MMX™ Enhanced Processor Multimedia
Technology, Sunnyvale, CA, 2000.

AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

AMD, AMD Extensions to the 3DNow!™ and MMX™
Instruction Sets, Sunnyvale, CA, 2000.

Don Anderson and Tom Shanley, Pentium® Processor System
Architecture, Addison-Wesley, New York, 1995.

Nabajyoti Barkakati and Randall Hyde, Microsoft Macro
Assembler Bible, Sams, Carmel, Indiana, 1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly
Language Programming, Macmillan Publishing Co., New
York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and
Pentium Based Personal Computer, Prentice-Hall, Englewood
Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley,
New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly
Language Programming, Windcrest McGraw-Hill, 1993.

Geoff Chappell, DOS Internals, Addison-Wesley, New York,
1994.

Chips and Technologies, Inc. Super386 DX Programmer’s
Reference Manual, Chips and Technologies, Inc., San Jose,
1992.

John Crawford and Patrick Gelsinger, Programming the
80386, Sybex, San Francisco, 1987.

XXXii

Preface

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix
Corporation, Richardson, TX, 1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix
Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode
Table, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix
Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS: A Programmer's Guide to
Protected-Mode DOS, Addison Wesley, NY, 1991.

William B. Giles, Assembly Language Programming for the
Intel 80xxx Family, Macmillan, New York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley,
New York, 1994.

John L. Hennessy and David A. Patterson, Computer
Architecture, Morgan Kaufmann Publishers, San Mateo, CA,
1996.

Thom Hogan, The Programmer’s PC Sourcebook, Microsoft
Press, Redmond, WA, 1991.

Hal Katircioglu, Inside the 486, Pentium®, and Pentium Pro,
Peer-to-Peer Communications, Menlo Park, CA, 1997.

IBM Corporation, 486SLC Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 80486DX2 Processor Floating Point
Instructions, IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide,
IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, Blue Lightening 486DX2 Data Book, IBM
Corporation, Essex Junction, VT, 1994.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Std 754-1985.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Radix-Independent Floating-Point Arithmetic,
ANSIIEEE Std 854-1987.

Preface

XXXTii

AMDA1

AMDé64 Technology

24592—Rev. 3.11-December 2005

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86
IBM PC and Compatible Computers, Prentice-Hall, Englewood
Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book,
Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to
Computer Architecture: Using the Intel Pentium®, Oxford
University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The
80386/387 Architecture, John Wiley & Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1993.

NexGen Inc., Nx686 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Streaming SIMD
Extensions in the Pentium® III, www.x86.org/articles/sse_pt1/
simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC
Programmer’s Bible, Microsoft® Press, Redmond, WA, 1993.

PharLap 386lASM Reference Manual, Pharlap, Cambridge
MA, 1993.

PharLap TNT DOS-Extender Reference Manual, Pharlap,
Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, 1386/i486 Advanced
Programming, Van Nostrand Reinhold, New York, 1993.

Jeffrey P. Royer, Introduction to Protected Mode
Programming, course materials for an onsite class, 1992.

Tom Shanley, Protected Mode System Architecture, Addison
Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM
Programming Manual, SGS-Thomson Corporation, 1995.

Walter A. Triebel, The 80386DX Microprocessor, Prentice-
Hall, Englewood Cliffs, NJ, 1992.

John Wharton, The Complete x86, MicroDesign Resources,
Sebastopol, California, 1994.

Web sites and newsgroups:
www.amd.com
news.comp.arch

news.comp.lang.asm.x86

XXXiv

Preface

http://www.amd.com

AMDA
24592—Rev. 3.11—-December 2005 AMDG64 Technology

news.intel.microprocessors

news.microsoft

Preface XXXV

AMDA
AMDé64 Technology 24592—Rev. 3.11-December 2005

XXXVi Preface

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

1 Overview of the AMD64 Architecture

1.1 Introduction

1.1.1 New Features

The AMDG64 architecture is a simple yet powerful 64-bit,
backward-compatible extension of the industry-standard
(legacy) x86 architecture. It adds 64-bit addressing and expands
register resources to support higher performance for
recompiled 64-bit programs, while supporting legacy 16-bit and
32-bit applications and operating systems without modification
or recompilation. It is the architectural basis on which new
processors can provide seamless, high-performance support for
both the vast body of existing software and new 64-bit software
required for higher-performance applications.

The need for a 64-bit x86 architecture is driven by applications
that address large amounts of virtual and physical memory,
such as high-performance servers, database management
systems, and CAD tools. These applications benefit from both
64-bit addresses and an increased number of registers. The
small number of registers available in the legacy x86
architecture limits performance in computation-intensive
applications. Increasing the number of registers provides a
performance boost to many such applications.

The AMDG64 architecture introduces these new features:
m Register Extensions (see Figure 1-1 on page 2):

8 new general-purpose registers (GPRs).

All 16 GPRs are 64 bits wide.

8 new 128-bit XMM registers.

Uniform byte-register addressing for all GPRs.

A new instruction prefix (REX) accesses the extended
registers.

m Long Mode (see Table 1-1 on page 3):
Up to 64 bits of virtual address.
64-bit instruction pointer (RIP).
New instruction-pointer-relative data-addressing mode.
Flat address space.

Chapter 1: Overview of the AMD64 Architecture 1

AMDA1

AMDé64 Technology 24592—Rev. 3.11-December 2005
General-Purpose 64-Bit Media and 128-Bit Media
Registers (GPRs) Floating-Point Registers Registers

RAX MMX0/FPRO XMMO
RBX MMX1/FPR1 XMM1
RCX MMX2/FPR2 XMM2
RDX MMX3/FPR3 XMM3
RBP MMX4/FPR4 XMM4
RSI MMX5/FPR5 XMM5
RDI MMX6/FPR6 XMMé
RSP MMX7/FPR7 XMM7
R8 63 0 XMM8
R9 XMM9
R10 Flags Register XMM10
RIL 0 [erLAcs| RFLAGS XM 11
R12 XMM12
R13 o ’ XMM13
R14 Instruction Pointer XMM14
RIS | | ep | rP XMM15

63 0 63 0 127 0

:| Legacy x86 registers, supported in all modes Application-programming registers also include the

128-bit media control-and-status register and the
:| Register extensions, supported in 64-bit mode x87 tag-word, control-word, and status-word registers 513-101.eps

Figure 1-1. Application-Programming Register Set

2 Chapter 1: Overview of the AMD64 Architecture

AMDA
24592—Rev. 3.11—-December 2005 AMDG64 Technology

Table 1-1. Operating Modes

. Application Defaults _ Typical
Operating Mode Operating Recompile Register
System Required | ' L. . Address | Operand | gxtensions GPR
equired | gjze (bits) | Size (bits) Width (bits)
64-Bit
es 64 es 64
Mode ¥ . y
:;:“g New 64-bit OS
0de | compatibility . 32 N 32
Mode 16 6 -
32 32
Protected Mode 3
. 16 16
Legacy 32-bit OS
Legacy Virtual-8086 no no
Mode irtual-
Mode 16 16 16
Real Mode Legacy 16-bit OS
11.2 Registers Table 1-2 on page 4 compares the register and stack resources

available to application software, by operating mode. The left
set of columns shows the legacy x86 resources, which are
available in the AMDG64 architecture’s legacy and compatibility
modes. The right set of columns shows the comparable
resources in 64-bit mode. Gray shading indicates differences
between the modes. These register differences (not including
stack-width difference) represent the register extensions shown
in Figure 1-1.

Chapter 1: Overview of the AMD64 Architecture 3

AMDA1

AMDé64 Technology

24592—Rev. 3.11-December 2005

Table 1-2. Application Registers and Stack, by Operating Mode

Register Legacy and Compatibility Modes 64-Bit Mode'

or Stack Name Number | Size (bits) Name Number | Size (bits)
Ge"_eraI'Purposez EEAI;))((EEBB):J', EEcs)l(8 32 Fr{zAD))((', F:{BB)I(J’, r;g)l(,, 16 64
Registers (GPRs) EDI, ESP RDI, RSP, R8-R15
128-Bit XMM Registers | XMMO0-XMM7 8 128 XMMO-XMM15 16 128
64-Bit MMX Registers | MMX0-MMX7> 8 64 MMX0-MMX7* 8 64
x87 Registers FPRO-FPR7 8 80 FPRO-FPR7> 8 80
Instruction Pointer? EIP 1 32 RIP 1 64
Flag52 EFLAGS 1 32 RFLAGS 1 64
Stack - 16 or 32 - 64
Note:

1. Gray-shaded entries indicate differences between the modes. These differences (except stack-width difference) are the AMD64
architecture’s register extensions.

2. This list of GPRs shows only the 32-bit registers. The 16-bit and 8-bit mappings of the 32-bit registers are also accessible, as
described in “Registers” on page 27.

3. The MMX0-MMX7 registers are mapped onto the FPRO-FPR7 physical registers, as shown in Figure 1-1. The x87 stack registers,
ST(0)-ST(7), are the logical mappings of the FPRO-FPR7 physical registers.

1.1.3 Instruction Set

As Table 1-2 shows, the legacy x86 architecture (called legacy
mode in the AMDG64 architecture) supports eight GPRs. In
reality, however, the general use of at least four registers (EBP,
ESI, EDI, and ESP) is compromised because they serve special
purposes when executing many instructions. The AMDG64
architecture’s addition of eight new GPRs—and the increased
width of these registers from 32 bits to 64 bits—allows
compilers to substantially improve software performance.
Compilers have more flexibility in using registers to hold
variables. Compilers can also minimize memory traffic—and
thus boost performance—by localizing work within the GPRs.

The AMDG64 architecture supports the full legacy x86
instruction set, and it adds a few new instructions to support
long mode (see Table 1-1 for a summary of operating modes).
The application-programming instructions are organized and
described in the following subsets:

m General-Purpose Instructions—These are the basic x86
integer instructions used in virtually all programs. Most of

Chapter 1: Overview of the AMD64 Architecture

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

114 Media
Instructions

these instructions load, store, or operate on data located in
the general-purpose registers (GPRs) or memory. Some of
the instructions alter sequential program flow by branching
to other program locations.

m 128-Bit Media Instructions—These are the streaming SIMD
extension (SSE, SSE2, SSE3) instructions that load, store, or
operate on data located primarily in the 128-bit XMM
registers. They perform integer and floating-point
operations on vector (packed) and scalar data types.
Because the vector instructions can independently and
simultaneously perform a single operation on multiple sets
of data, they are called single-instruction, multiple-data
(SIMD) instructions. They are useful for high-performance
media and scientific applications that operate on blocks of
data.

m 64-Bit Media Instructions—These are the multimedia
extension (MMX™ technology) and AMD 3DNow!™
technology instructions. They load, store, or operate on data
located primarily on the 64-bit MMX registers. Like their
128-bit counterparts, described above, they perform integer
and floating-point operations on vector (packed) and scalar
data types. Thus, they are also SIMD instructions and are
useful in media applications that operate on blocks of data.

m x87 Floating-Point Instructions—These are the floating-point
instructions used in legacy x87 applications. They load,
store, or operate on data located in the x87 registers.

Some of these application-programming instructions bridge two
or more of the above subsets. For example, there are
instructions that move data between the general-purpose
registers and the XMM or MMX registers, and many of the
integer vector (packed) instructions can operate on either
XMM or MMX registers, although not simultaneously. If
instructions bridge two or more subsets, their descriptions are
repeated in all subsets to which they apply.

Media applications—such as image processing, music synthesis,
speech recognition, full-motion video, and 3D graphics
rendering—share certain characteristics:

m They process large amounts of data.

m They often perform the same sequence of operations
repeatedly across the data.

Chapter 1: Overview of the AMD64 Architecture 5

AMDA1

AMDé64 Technology

1.1.5 Floating-Point
Instructions

24592—Rev. 3.11-December 2005

m The data are often represented as small quantities, such as 8
bits for pixel values, 16 bits for audio samples, and 32 bits
for object coordinates in floating-point format.

The 128-bit and 64-bit media instructions are designed to
accelerate these applications. The instructions use a form of
vector (or packed) parallel processing known as single-
instruction, multiple data (SIMD) processing. This vector
technology has the following characteristics:

m A single register can hold multiple independent pieces of
data. For example, a single 128-bit XMM register can hold 16
8-bit integer data elements, or four 32-bit single-precision
floating-point data elements.

m The vector instructions can operate on all data elementsin a
register, independently and simultaneously. For example, a
PADDB instruction operating on byte elements of two vector
operands in 128-bit XMM registers performs 16
simultaneous additions and returns 16 independent results
in a single operation.

128-bit and 64-bit media instructions take SIMD vector
technology a step further by including special instructions that
perform operations commonly found in media applications. For
example, a graphics application that adds the brightness values
of two pixels must prevent the add operation from wrapping
around to a small value if the result overflows the destination
register, because an overflow result can produce unexpected
effects such as a dark pixel where a bright one is expected. The
128-bit and 64-bit media instructions include saturating-
arithmetic instructions to simplify this type of operation. A
result that otherwise would wrap around due to overflow or
underflow is instead forced to saturate at the largest or smallest
value that can be represented in the destination register.

The AMDG64 architecture provides three floating-point
instruction subsets, using three distinct register sets:

m 128-Bit Media Instructions support 32-bit single-precision
and 64-bit double-precision floating-point operations, in
addition to integer operations. Operations on both vector
data and scalar data are supported, with a dedicated
floating-point exception-reporting mechanism. These
floating-point operations comply with the IEEE-754
standard.

Chapter 1: Overview of the AMD64 Architecture

AMDA
24592—Rev. 3.11—-December 2005 AMDG64 Technology

m 64-Bit Media Instructions (the subset of 3DNow! technology
instructions) support single-precision floating-point
operations. Operations on both vector data and scalar data
are supported, but these instructions do not support
floating-point exception reporting.

m x87 Floating-Point Instructions support single-precision,
double-precision, and 80-bit extended-precision floating-
point operations. Only scalar data are supported, with a
dedicated floating-point exception-reporting mechanism.
The x87 floating-point instructions contain special
instructions for performing trigonometric and logarithmic
transcendental operations. The single-precision and double-
precision floating-point operations comply with the IEEE-
754 standard.

Maximum floating-point performance can be achieved using
the 128-bit media instructions. One of these vector instructions
can support up to four single-precision (or two double-
precision) operations in parallel. In 64-bit mode, the AMDG64
architecture doubles the number of legacy XMM registers from
8 to 16.

Applications gain additional benefits using the 64-bit media
and x87 instructions. The separate register sets supported by
these instructions relieve pressure on the XMM registers
available to the 128-bit media instructions. This provides
application programs with three distinct sets of floating-point
registers. In addition, certain high-end implementations of the
AMDG64 architecture may support 128-bit media, 64-bit media,
and x87 instructions with separate execution units.

1.2 Modes of Operation

Table 1-1 on page 3 summarizes the modes of operation
supported by the AMDG64 architecture. In most cases, the
default address and operand sizes can be overridden with
instruction prefixes. The register extensions shown in the
second-from-right column of Table 1-1 are those illustrated in
Figure 1-1 on page 2.

121 Long Mode Long mode is an extension of legacy protected mode. Long
mode consists of two submodes: 64-bit mode and compatibility
mode. 64-bit mode supports all of the new features and register
extensions of the AMDG64 architecture. Compatibility mode

Chapter 1: Overview of the AMD64 Architecture 7

AMDA1

AMDé64 Technology

1.2.2 64-Bit Mode

24592—Rev. 3.11-December 2005

supports binary compatibility with existing 16-bit and 32-bit
applications. Long mode does not support legacy real mode or
legacy virtual-8086 mode, and it does not support hardware task
switching.

Throughout this document, references to long mode refer to
both 64-bit mode and compatibility mode. If a function is specific
to either of these submodes, then the name of the specific
submode is used instead of the name long mode.

64-bit mode—a submode of long mode—supports the full range
of 64-bit virtual-addressing and register-extension features.
This mode is enabled by the operating system on an individual
code-segment basis. Because 64-bit mode supports a 64-bit
virtual-address space, it requires a new 64-bit operating system
and tool chain. Existing application binaries can run without
recompilation in compatibility mode, under an operating
system that runs in 64-bit mode, or the applications can also be
recompiled to run in 64-bit mode.

Addressing features include a 64-bit instruction pointer (RIP)
and a new RIP-relative data-addressing mode. This mode
accommodates modern operating systems by supporting only a
flat address space, with single code, data, and stack space.

Register Extensions. 64-bit mode implements register extensions
through a new group of instruction prefixes, called REX
prefixes. These extensions add eight GPRs (R8-R15), widen all
GPRs to 64 bits, and add eight 128-bit XMM registers
(XMMS8-XMM15).

The REX instruction prefixes also provide a new byte-register
capability that makes the low byte of any of the sixteen GPRs
available for byte operations. This results in a uniform set of
byte, word, doubleword, and quadword registers that is better
suited to compiler register-allocation.

64-Bit Addresses and Operands. In 64-bit mode, the default virtual-
address size is 64 bits (implementations can have fewer). The
default operand size for most instructions is 32 bits. For most
instructions, these defaults can be overridden on an
instruction-by-instruction basis using instruction prefixes. REX
prefixes specify the 64-bit operand size and new registers.

RIP-Relative Data Addressing. 64-bit mode supports data addressing
relative to the 64-bit instruction pointer (RIP). The legacy x86

Chapter 1: Overview of the AMD64 Architecture

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

1.2.3 Compatibility
Mode

12.4 Legacy Mode

architecture supports IP-relative addressing only in control-
transfer instructions. RIP-relative addressing improves the
efficiency of position-independent code and code that
addresses global data.

Opcodes. A few instruction opcodes and prefix bytes are
redefined to allow register extensions and 64-bit addressing.
These differences are described in “General-Purpose
Instructions in 64-Bit Mode” in Volume 3 and “Differences
Between Long Mode and Legacy Mode” in Volume 3.

Compatibility mode—the second submode of long mode—
allows 64-bit operating systems to run existing 16-bit and 32-bit
x86 applications. These legacy applications run in compatibility
mode without recompilation.

Applications running in compatibility mode use 32-bit or 16-bit
addressing and can access the first 4GB of virtual-address
space. Legacy x86 instruction prefixes toggle between 16-bit
and 32-bit address and operand sizes.

As with 64-bit mode, compatibility mode is enabled by the
operating system on an individual code-segment basis. Unlike
64-bit mode, however, x86 segmentation functions the same as
in the legacy x86 architecture, using 16-bit or 32-bit protected-
mode semantics. From the application viewpoint, compatibility
mode looks like the legacy x86 protected-mode environment.
From the operating-system viewpoint, however, address
translation, interrupt and exception handling, and system data
structures use the 64-bit long-mode mechanisms.

Legacy mode preserves binary compatibility not only with
existing 16-bit and 32-bit applications but also with existing 16-
bit and 32-bit operating systems. Legacy mode consists of the
following three submodes:

m Protected Mode—Protected mode supports 16-bit and 32-bit
programs with memory segmentation, optional paging, and
privilege-checking. Programs running in protected mode can
access up to 4GB of memory space.

n Virtual-8086 Mode—Virtual-8086 mode supports 16-bit real-
mode programs running as tasks under protected mode. It
uses a simple form of memory segmentation, optional
paging, and limited protection-checking. Programs running
in virtual-8086 mode can access up to 1IMB of memory space.

Chapter 1: Overview of the AMD64 Architecture 9

AMDA1

AMDé64 Technology

24592—Rev. 3.11-December 2005

m Real Mode—Real mode supports 16-bit programs using
simple register-based memory segmentation. It does not
support paging or protection-checking. Programs running in
real mode can access up to 1MB of memory space.

Legacy mode is compatible with existing 32-bit processor
implementations of the x86 architecture. Processors that
implement the AMDG64 architecture boot in legacy real mode,
just like processors that implement the legacy x86 architecture.

Throughout this document, references to legacy mode refer to
all three submodes—protected mode, virtual-8086 mode, and real
mode. If a function is specific to either of these submodes, then
the name of the specific submode is used instead of the name
legacy mode.

10

Chapter 1: Overview of the AMD64 Architecture

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

2 Memory Model

This chapter describes the memory characteristics that apply to
application software in the various operating modes of the
AMDG64 architecture. These characteristics apply to all
instructions in the architecture. Several additional system-level
details about memory and cache management are described in
Volume 2.

2.1 Memory Organization

2.1.1 Virtual Memory

Virtual memory consists of the entire address space available to
programs. It is a large linear-address space that is translated by
a combination of hardware and operating-system software to a
smaller physical-address space, parts of which are located in
memory and parts on disk or other external storage media.

Figure 2-1 on page 12 shows how the virtual-memory space is
treated in the two submodes of long mode:

m 64-bit mode—This mode uses a flat segmentation model of
virtual memory. The 64-bit virtual-memory space is treated
as a single, flat (unsegmented) address space. Program
addresses access locations that can be anywhere in the
linear 64-bit address space. The operating system can use
separate selectors for code, stack, and data segments for
memory-protection purposes, but the base address of all
these segments is always 0. (For an exception to this general
rule, see “FS and GS as Base of Address Calculation” on
page 20.)

m Compatibility mode—This mode uses a protected, multi-
segment model of virtual memory, just as in legacy
protected mode. The 32-bit virtual-memory space is treated
as a segmented set of address spaces for code, stack, and
data segments, each with its own base address and
protection parameters. A segmented space is specified by
adding a segment selector to an address.

Chapter 2: Memory Model

11

AMDA1

AMDé64 Technology

2.1.2 Segment
Registers

24592—Rev. 3.11-December 2005

64-Bit Mode
(Flat Segmentation Model)

2641

Legacy and Compatibility Mode
(Multi-Segment Model)

252

Code Segment (CS) Base =} ----=------

Stack Segment (SS) Base =} - ---===% - - -

Base Address for data
All Segments . o Data Segment (DS) Base = - - - - - - - - - - - - 0

513-107.eps

Figure 2-1. Virtual-Memory Segmentation

Segmented memory has been used as a method by which
operating systems could isolate programs from the data used by
programs in an effort to increase the reliability of systems
running multiple programs simultaneously. However, most
modern operating systems do not use the segmentation features
available in the legacy x86 architecture. Instead, these
operating systems handle segmentation functions entirely in
software. For this reason, the AMDG64 architecture dispenses
with most of the legacy segmentation functions in 64-bit mode.
This allows new 64-bit operating systems to be coded more
simply, and it supports more efficient management of multi-
tasking environments than is possible in the legacy x86
architecture.

Segment registers hold the selectors used to access memory
segments. Figure 2-2 on page 13 shows the application-visible
portion of the segment registers. In legacy and compatibility
modes, all segment registers are accessible to software. In 64-
bit mode, only the CS, FS, and GS segments are recognized by

12

Chapter 2: Memory Model

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

2.1.3 Physical
Memory

the processor, and software can use the FS and GS segment-
base registers as base registers for address calculation, as
described in “FS and GS as Base of Address Calculation” on
page 20. For references to the DS, ES, or SS segments in 64-bit
mode, the processor assumes that the base for each of these
segments is zero, neither their segment limit nor attributes are
checked, and the processor simply checks that all such
addresses are in canonical form, as described in “64-bit
Canonical Addresses” on page 18.

Legacy Mode and 64-Bit
Compatibility Mode Mode
cs
s (Attributes only)
DS ignored
ES ignored
FS
FS (Base only)
GS
GS (Base only)
SS ignored

15 0 15 0

513-312.eps

Figure 2-2. Segment Registers

For details on segmentation and the segment registers, see
“Segmented Virtual Memory” in Volume 2.

Physical memory is the installed memory (excluding cache
memory) in a particular computer system that can be accessed
through the processor’s bus interface. The maximum size of the
physical memory space is determined by the number of address
bits on the bus interface. In a virtual-memory system, the large
virtual-address space (also called linear-address space) is
translated to a smaller physical-address space by a combination
of segmentation and paging hardware and software.

Segmentation is illustrated in Figure 2-1 on page 12. Pagingis a
mechanism for translating linear (virtual) addresses into fixed-
size blocks called pages, which the operating system can move,
as needed, between memory and external storage media

Chapter 2: Memory Model

13

AMDA1

AMDé64 Technology

2.14 Memory
Management

24592—Rev. 3.11-December 2005

(typically disk). The AMDG64 architecture supports an expanded
version of the legacy x86 paging mechanism, one that is able to
translate the full 64-bit virtual-address space into the physical-
address space supported by the particular implementation.

Memory management strategies translate addresses generated
by programs into addresses in physical memory using
segmentation and/or paging. Memory management is not
visible to application programs. It is handled by the operating
system and processor hardware. The following description gives
a very brief overview of these functions. Details are given in
“System-Management Instructions” in Volume 2.

Long-Mode Memory Management. Figure 2-3 shows the flow, from
top to bottom, of memory management functions performed in
the two submodes of long mode.

64-Bit Mode Compatibility Mode

0 15 0 31 0

Virtual (Linear) Address |Selector | Effective Address

51

—

63 3 3] 0
| 0 Virtual Address

Paging Paging

A

0 51 v 0

Physical Address | Physical Address

513-184.eps

Figure 2-3. Long-Mode Memory Management

In 64-bit mode, programs generate virtual (linear) addresses
that can be up to 64 bits in size. The virtual addresses are
passed to the long-mode paging function, which generates

14

Chapter 2: Memory Model

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

15 0

physical addresses that can be up to 52 bits in size. (Specific
implementations of the architecture can support fewer virtual-
address and physical-address sizes.)

In compatibility mode, legacy 16-bit and 32-bit applications run
using legacy x86 protected-mode segmentation semantics. The
16-bit or 32-bit effective addresses generated by programs are
combined with their segments to produce 32-bit virtual (linear)
addresses that are zero-extended to a maximum of 64 bits. The
paging that follows is the same long-mode paging function used
in 64-bit mode. It translates the virtual addresses into physical
addresses. The combination of segment selector and effective
address is also called a logical address or far pointer. The virtual
address is also called the linear address.

Legacy-Mode Memory Management. Figure 2-4 shows the memory-
management functions performed in the three submodes of
legacy mode.

Protected Mode Virtual-8086 Mode Real Mode

0 15 0 15 0 15 0 15 0

| Selector

| Effective Address (EA) | Selector | EA | Selector | EA

L Segmentation L Segmentation

31

l 0 19 l 0 19 l 0

Linear Address | Linear Address | Linear Address

Paging Paging

31

» »
» »

\ 0 31 v 0 31 19v 0

| Physical Address (PA) | Physical Address (PA) 0 PA

513-185.eps

Figure 2-4. Legacy-Mode Memory Management

Chapter 2: Memory Model 15

AMDA1

AMDé64 Technology

24592—Rev. 3.11-December 2005

The memory-management functions differ, depending on the
submode, as follows:

Protected Mode—Protected mode supports 16-bit and 32-bit
programs with table-based memory segmentation, paging,
and privilege-checking. The segmentation function takes 32-
bit effective addresses and 16-bit segment selectors and
produces 32-bit linear addresses into one of 16K memory
segments, each of which can be up to 4GB in size. Paging is
optional. The 32-bit physical addresses are either produced
by the paging function or the linear addresses are used
without modification as physical addresses.

Virtual-8086 Mode—Virtual-8086 mode supports 16-bit
programs running as tasks under protected mode. 20-bit
linear addresses are formed in the same way as in real mode,
but they can optionally be translated through the paging
function to form 32-bit physical addresses that access up to
4GB of memory space.

Real Mode—Real mode supports 16-bit programs using
register-based shift-and-add segmentation, but it does not
support paging. Sixteen-bit effective addresses are zero-
extended and added to a 16-bit segment-base address that is
left-shifted four bits, producing a 20-bit linear address. The
linear address is zero-extended to a 32-bit physical address
that can access up to 1MB of memory space.

2.2 Memory Addressing

2.2.1 Byte Ordering

Instructions and data are stored in memory in little-endian byte
order. Little-endian ordering places the least-significant byte of
the instruction or data item at the lowest memory address and
the most-significant byte at the highest memory address.

Figure 2-5 on page 17 shows a generalization of little-endian
memory and register images of a quadword data type. The least-
significant byte is at the lowest address in memory and at the
right-most byte location of the register image.

16

Chapter 2: Memory Model

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

Quadword in Memory | byte7 | o7h <« High (mostsignificant)
byte 6 | o6h
byte 5 | osh
byte 4 | 04h
byte3 | o3h
byte2 | o2h
byte 1 | o1h
byteO | ooh «— Low (least-significant)

High (most-significant) Low (least-significant)

Quadword in General-Purpose Register J

byte7 | byte6 | byte5 | byte4 | byte3 byte2 | byte1l byte 0

63 0

513-116.eps

Figure 2-5. Byte Ordering

Figure 2-6 on page 18 shows the memory image of a 10-byte
instruction. Instructions are byte data types. They are read
from memory one byte at a time, starting with the least-
significant byte (lowest address). For example, the following
instruction specifies the 64-bit instruction MOV RAX,
1122334455667788 instruction that consists of the following ten
bytes:

48 B8 8877665544332211

48 is a REX instruction prefix that specifies a 64-bit operand
size, B8 is the opcode that—together with the REX prefix—
specifies the 64-bit RAX destination register, and
8877665544332211 is the 8-byte immediate value to be moved,
where 88 represents the eighth (least-significant) byte and 11
represents the first (most-significant) byte. In memory, the REX
prefix byte (48) would be stored at the lowest address, and the
first immediate byte (11) would be stored at the highest
instruction address.

Chapter 2: Memory Model

17

AMDA1

AMDé64 Technology

2.2.2 64-bit Canonical
Addresses

2.2.3 Effective
Addresses

24592—Rev. 3.11-December 2005

11 09h «— High (most-significant)
22 08h
33 07h
44 06h
55 05h
66 04h
77 03h
88 02h
B8 oth
48 00h «— Low (least-significant)

513-186.eps

Figure 2-6. Example of 10-Byte Instruction in Memory

Long mode defines 64 bits of virtual address, but
implementations of the AMDG64 architecture may support fewer
bits of virtual address. Although implementations might not
use all 64 bits of the virtual address, they check bits 63 through
the most-significant implemented bit to see if those bits are all
zeros or all ones. An address that complies with this property is
said to be in canonical address form. If a virtual-memory
reference is not in canonical form, the implementation causes a
general-protection exception or stack fault.

Programs provide effective addresses to the hardware prior to
segmentation and paging translations. Long-mode effective
addresses are a maximum of 64 bits wide, as shown in Figure 2-3
on page 14. Programs running in compatibility mode generate
(by default) 32-bit effective addresses, which the hardware zero-
extends to 64 bits. Legacy-mode effective addresses, with no
address-size override, are 32 or 16 bits wide, as shown in
Figure 2-4. These sizes can be overridden with an address-size
instruction prefix, as described in “Instruction Prefixes” on
page 87.

There are five methods for generating effective addresses,
depending on the specific instruction encoding:

18

Chapter 2: Memory Model

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

Absolute Addresses—These addresses are given as
displacements (or offsets) from the base address of a data
segment. They point directly to a memory location in the
data segment.

Instruction-Relative Addresses—These addresses are given as
displacements (or offsets) from the current instruction
pointer (IP), also called the program counter (PC). They are
generated by control-transfer instructions. A displacement
in the instruction encoding, or one read from memory, serves
as an offset from the address that follows the transfer. See
“RIP-Relative Addressing” on page 22 for details about RIP-
relative addressing in 64-bit mode.

ModR/M Addressing—These addresses are calculated using a
scale, index, base, and displacement. Instruction encodings
contain two bytes—MODR/M and optional SIB (scale, index,
base) and a variable length displacement—that specify the
variables for the calculation. The base and index values are
contained in general-purpose registers specified by the SIB
byte. The scale and displacement values are specified
directly in the instruction encoding. Figure 2-7 shows the
components of a complex-address calculation. The resultant
effective address is added to the data-segment base address
to form a linear address, as described in “Segmented Virtual
Memory” in Volume 2. “Instruction Formats” in Volume 3
gives further details on specifying this form of address. The
encoding of instructions specifies how the address is
calculated.

| Base | Index Displacement

* Scaleby1,2,4,0r8

|
l

| Effective Address

513-108.eps

Figure 2-7. Complex Address Calculation (Protected Mode)

Chapter 2: Memory Model

19

AMDA1

AMDé64 Technology

24592—Rev. 3.11-December 2005

m Stack Addresses—PUSH, POP, CALL, RET, IRET, and INT
instructions implicitly use the stack pointer, which contains
the address of the procedure stack. See “Stack Operation”
on page 23 for details about the size of the stack pointer.

m String Addresses—String instructions generate sequential
addresses using the rDI and rSI registers, as described in
“Implicit Uses of GPRs” on page 34.

In 64-bit mode, with no address-size override, the size of
effective-address calculations is 64 bits. An effective-address
calculation uses 64-bit base and index registers and sign-
extends displacements to 64 bits. Due to the flat address space
in 64-bit mode, virtual addresses are equal to effective
addresses. (For an exception to this general rule, see “FS and
GS as Base of Address Calculation” on page 20.)

Long-Mode Zero-Extension of 16-Bit and 32-Bit Addresses. In long mode,
all 16-bit and 32-bit address calculations are zero-extended to
form 64-bit addresses. Address calculations are first truncated
to the effective-address size of the current mode (64-bit mode or
compatibility mode), as overridden by any address-size prefix.
The result is then zero-extended to the full 64-bit address width.

Because of this, 16-bit and 32-bit applications running in
compatibility mode can access only the low 4GB of the long-
mode virtual-address space. Likewise, a 32-bit address
generated in 64-bit mode can access only the low 4GB of the
long-mode virtual-address space.

Displacements and Inmediates. In general, the maximum size of
address displacements and immediate operands is 32 bits. They
can be 8, 16, or 32 bits in size, depending on the instruction or,
for displacements, the effective address size. In 64-bit mode,
displacements are sign-extended to 64 bits during use, but their
actual size (for value representation) remains a maximum of 32
bits. The same is true for immediates in 64-bit mode, when the
operand size is 64 bits. However, support is provided in 64-bit
mode for some 64-bit displacement and immediate forms of the
MOV instruction.

FS and GS as Base of Address Calculation. In 64-bit mode, the FS and
GS segment-base registers (unlike the DS, ES, and SS segment-
base registers) can be used as non-zero data-segment base
registers for address calculations, as described in “Segmented
Virtual Memory” in Volume 2. 64-bit mode assumes all other

20

Chapter 2: Memory Model

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

2.2.4 Address-Size
Prefix

data-segment registers (DS, ES, and SS) have a base address of
0.

The default address size of an instruction is determined by the
default-size (D) bit and long-mode (L) bit in the current code-
segment descriptor (for details, see “Segmented Virtual
Memory” in Volume 2). Application software can override the
default address size in any operating mode by using the 67h
address-size instruction prefix byte. The address-size prefix
allows mixing 32-bit and 64-bit addresses on an instruction-by-
instruction basis.

Table 2-1 shows the effects of using the address-size prefix in all
operating modes. In 64-bit mode, the default address size is 64
bits. The address size can be overridden to 32 bits. 16-bit
addresses are not supported in 64-bit mode. In compatibility
and legacy modes, the address-size prefix works the same as in
the legacy x86 architecture.

Table 2-1. Address-Size Prefixes

Address-
Default Effective Size Prefix
Operating Mode AddressSize | Address Size b
(Bits) (Bits) (67h)
Required?
64 no
64-Bit Mode 64
32 yes
32 no
Long Mode 32
16 yes
Compatibility Mode
32 yes
16
16 no
32 no
32
Legacy Mode 16 yes
(Protected, Virtual-8086, or Real
Mod e) 6 32 yes
16 no
Note:
1. “No’indicates that the default address size is used.
Chapter 2: Memory Model 21

AMDA1

AMDé64 Technology

2.2.5 RIP-Relative

Addressing

23

Pointers

24592—Rev. 3.11-December 2005

RIP-relative addressing—that is, addressing relative to the 64-
bit instruction pointer (also called program counter)—is
available in 64-bit mode. The effective address is formed by
adding the displacement to the 64-bit RIP of the next
instruction.

In the legacy x86 architecture, addressing relative to the
instruction pointer (IP or EIP) is available only in control-
transfer instructions. In the 64-bit mode, any instruction that
uses ModRM addressing (see “ModRM and SIB Bytes” in
Volume 3) can use RIP-relative addressing. The feature is
particularly useful for addressing data in position-independent
code and for code that addresses global data.

Programs usually have many references to data, especially
global data, that are not register-based. To load such a program,
the loader typically selects a location for the program in
memory and then adjusts the program’s references to global
data based on the load location. RIP-relative addressing of data
makes this adjustment unnecessary.

Range of RIP-Relative Addressing. Without RIP-relative addressing,
instructions encoded with a ModRM byte address memory
relative to zero. With RIP-relative addressing, instructions with
a ModRM byte can address memory relative to the 64-bit RIP
using a signed 32-bit displacement. This provides an offset
range of +2GB from the RIP.

Effect of Address-Size Prefix on RIP-relative Addressing. RIP-relative
addressing is enabled by 64-bit mode, not by a 64-bit address-
size. Conversely, use of the address-size prefix does not disable
RIP-relative addressing. The effect of the address-size prefix is
to truncate and zero-extend the computed effective address to
32 bits, like any other addressing mode.

Encoding. For details on instruction encoding of RIP-relative
addressing, see in “RIP-Relative Addressing” in Volume 3.

Pointers are variables that contain addresses rather than data.
They are used by instructions to reference memory. Instructions
access data using near and far pointers. Stack pointers locate
the current stack.

22

Chapter 2: Memory Model

AMDA1

24592—Rev. 3.11—-December 2005 AMDG64 Technology

2.3.1 Near and Far
Pointers

Near pointers contain only an effective address, which is used
as an offset into the current segment. Far pointers contain both
an effective address and a segment selector that specifies one
of several segments. Figure 2-8 illustrates the two types of
pointers.

Near Pointer Far Pointer

| Effective Address (EA) Selector | Effective Address (EA)

513-109.eps

Figure 2-8. Near and Far Pointers

In 64-bit mode, the AMD64 architecture supports only the flat-
memory model in which there is only one data segment, so the
effective address is used as the virtual (linear) address and far
pointers are not needed. In compatibility mode and legacy
protected mode, the AMDG64 architecture supports multiple
memory segments, so effective addresses can be combined with
segment selectors to form far pointers, and the terms logical
address (segment selector and effective address) and far pointer
are synonyms. Near pointers can also be used in compatibility
mode and legacy mode.

2.4 Stack Operation

A stack is a portion of a stack segment in memory that is used to
link procedures. Software conventions typically define stacks
using a stack frame, which consists of two registers—a stack-
frame base pointer (rBP) and a stack pointer (rSP)—as shown in
Figure 2-9 on page 24. These stack pointers can be either near
pointers or far pointers.

The stack-segment (SS) register, points to the base address of
the current stack segment. The stack pointers contain offsets
from the base address of the current stack segment. All
instructions that address memory using the rBP or rSP registers
cause the processor to access the current stack segment.

Chapter 2: Memory Model

23

AMDA1

AMDé64 Technology

24592—Rev. 3.11-December 2005

Stack Frame Before Procedure Call Stack Frame After Procedure Call

Stack-Frame Base Pointer (rBP)

and Stack Pointer (1SP) — Stack-Frame Base Pointer (rBP) —»

Stack-Segment (SS) Base Address —» Stack-Segment (SS) Base Address —»

Stack Pointer (rSP) — |- - passed dafa __

513-110.eps

Figure 2-9. Stack Pointer Mechanism

In typical APIs, the stack-frame base pointer and the stack
pointer point to the same location before a procedure call (the
top-of-stack of the prior stack frame). After data is pushed onto
the stack, the stack-frame base pointer remains where it was
and the stack pointer advances downward to the address below
the pushed data, where it becomes the new top-of-stack.

In legacy and compatibility modes, the default stack pointer
size is 16 bits (SP) or 32 bits (ESP), depending on the default-
size (B) bit in the stack-segment descriptor, and multiple stacks
can be maintained in separate stack segments. In 64-bit mode,
stack pointers are always 64 bits wide (RSP).

Further application-programming details on the stack
mechanism are described in “Control Transfers” on page 94.
System-programming details on the stack segments are
described in “Segmented Virtual Memory” in Volume 2.

2.5 Instruction Pointer

The instruction pointer is used in conjunction with the code-
segment (CS) register to locate the next instruction in memory.
The instruction-pointer register contains the displacement
(offset)—from the base address of the current CS segment, or
from address 0 in 64-bit mode—to the next instruction to be
executed. The pointer is incremented sequentially, except for
branch instructions, as described in “Control Transfers” on
page 94.

24

Chapter 2: Memory Model

AMDA
24592—Rev. 3.11—-December 2005 AMDG64 Technology

In legacy and compatibility modes, the instruction pointer is a
16-bit (IP) or 32-bit (EIP) register. In 64-bit mode, the
instruction pointer is extended to a 64-bit (RIP) register to
support 64-bit offsets. The case-sensitive acronym, rIP, is used to
refer to any of these three instruction-pointer sizes, depending
on the software context.

Figure 2-10 shows the relationship between RIP, EIP, and IP.
The 64-