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Preface

About This Book

Audience

This book is part of a multivolume work entitled the AMD64
Architecture Programmer’s Manual. This table lists each volume
and its order number.

Title Order No.
Volume 1, Application Programming 24592
Volume 2, System Programming 24593
Volume 3, General-Purpose and System Instructions 24594
Volume 4, 128-Bit Media Instructions 26568
Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

This volume (Volume 1) is intended for programmers writing
application programs, compilers, or assemblers. It assumes
prior experience in microprocessor programming, although it
does not assume prior experience with the legacy x86 or
AMD64 microprocessor architecture.

This volume describes the AMDG64 architecture’s resources and
functions that are accessible to application software, including
memory, registers, instructions, operands, I/O facilities, and
application-software aspects of control transfers (including
interrupts and exceptions) and performance optimization.

System-programming topics—including the use of instructions
running at a current privilege level (CPL) of 0 (most-
privileged)—are described in Volume 2. Details about each
instruction are described in volumes 3, 4, and 5.

Contact Information

To submit questions or comments concerning this document,
contact our technical documentation staff at
AMD64.Feedback@amd.com.
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This volume begins with an overview of the architecture and its
memory organization and is followed by chapters that describe
the four application-programming models available in the
AMDG64 architecture:

m  General-Purpose Programming—This model uses the integer
general-purpose registers (GPRs). The chapter describing it
also describes the basic application environment for
exceptions, control transfers, I/O, and memory optimization
that applies to all other application-programming models.

m  128-bit Media Programming—This model uses the 128-bit
XMM registers and supports integer and floating-point
operations on vector (packed) and scalar data types.

m  64-bit Media Programming—This model uses the 64-bit
MMX™ registers and supports integer and floating-point
operations on vector (packed) and scalar data types.

m  x87 Floating-Point Programming—This model uses the 80-bit
x87 registers and supports floating-point operations on
scalar data types.

Definitions assumed throughout this volume are listed below.
The index at the end of this volume cross-references topics
within the volume. For other topics relating to the AMDG64
architecture, see the tables of contents and indexes of the other
volumes.

Some of the following definitions assume a knowledge of the
legacy x86 architecture. See “Related Documents™ on page xxxi
for further information about the legacy x86 architecture.

1011b

A binary value—in this example, a 4-bit value.
FOEAh

A hexadecimal value—in this example a 2-byte value.
[1,2)

A range that includes the left-most value (in this case, 1) but
excludes the right-most value (in this case, 2).
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7-4
A bit range, from bit 7 to 4, inclusive. The high-order bit is
shown first.

128-bit media instructions

Instructions that use the 128-bit XMM registers. These are a
combination of the SSE and SSE2 instruction sets.

64-bit media instructions

Instructions that use the 64-bit MMX registers. These are
primarily a combination of MMX and 3DNow!™ instruction
sets, with some additional instructions from the SSE and
SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit
address size is active. See legacy mode and compatibility
mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit
address size is active. See legacy mode and compatibility
mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address
size is 64 bits and new features, such as register extensions,
are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP)
with error code of 0.

absolute

Said of a displacement that references the base of a code
segment rather than an instruction pointer. Contrast with
relative.

biased exponent

The sum of a floating-point value’s exponent and a constant
bias for a particular floating-point data type. The bias makes
the range of the biased exponent always positive, which
allows reciprocation without overflow.
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byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default
address size is 32 bits, and legacy 16-bit and 32-bit
applications run without modification.

commit

To irreversibly write, in program order, an instruction’s
result to software-visible storage, such as a register
(including flags), the data cache, an internal write buffer, or
memory.

CPL
Current privilege level.

CRO-CR4

A register range, from register CR0 through CR4, inclusive,
with the low-order register first.

CRO.PE =1

Notation indicating that the PE bit of the CRO register has a
value of 1.

direct

Referencing a memory location whose address is included in
the instruction’s syntax as an immediate operand. The
address may be an absolute or relative address. Compare
indirect.

dirty data

Data held in the processor’s caches or internal buffers that is
more recent than the copy held in main memory.

displacement

A signed value that is added to the base of a segment
(absolute addressing) or an instruction pointer (relative
addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

XXii
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double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSI

The contents of a memory location whose segment address is
in the DS register and whose offset relative to that segment
is in the rSI register.

EFER.LME =0

Notation indicating that the LME bit of the EFER register
has a value of 0.

effective address size

The address size for the current instruction after accounting
for the default address size and any address-size override
prefix.

effective operand size

The operand size for the current instruction after
accounting for the default operand size and any operand-
size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of executing
an instruction. The processor’s response to an exception
depends on the type of the exception. For all exceptions
except 128-bit media SIMD floating-point exceptions and
x87 floating-point exceptions, control is transferred to the
handler (or service routine) for that exception, as defined by
the exception’s vector. For floating-point exceptions defined
by the IEEE 754 standard, there are both masked and
unmasked responses. When unmasked, the exception
handler is called, and when masked, a default response is
provided instead of calling the handler.

FF /0
Notation indicating that FF is the first byte of an opcode,
and a subopcode in the ModR/M byte has a value of 0.

flush

An often ambiguous term meaning (1) writeback, if
modified, and invalidate, as in “flush the cache line,” or (2)
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invalidate, as in “flush the pipeline,” or (3) change a value,
as in “flush to zero.”

GDT
Global descriptor table.

IDT
Interrupt descriptor table.

IGN
Ignore. Field is ignored.

indirect
Referencing a memory location whose address is in a
register or other memory location. The address may be an
absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

T
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on
page xxxi for descriptions of the legacy x86 architecture.

legacy mode
An operating mode of the AMDG64 architecture in which
existing 16-bit and 32-bit applications and operating systems
run without modification. A processor implementation of
the AMDG64 architecture can run in either long mode or legacy
mode. Legacy mode has three submodes, real mode, protected
mode, and virtual-8086 mode.

long mode
An operating mode unique to the AMDG64 architecture. A
processor implementation of the AMD64 architecture can
run in either long mode or legacy mode. Long mode has two
submodes, 64-bit mode and compatibility mode.
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Isb
Least-significant bit.

LSB
Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache
memory) that is installed in a particular computer system.

mask

(1) A control bit that prevents the occurrence of a floating-
point exception from invoking an exception-handling
routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a
general-protection exception (#GP) occurs.

memory
Unless otherwise specified, main memory.

ModRM

A byte following an instruction opcode that specifies
address calculation based on mode (Mod), register (R), and
memory (M) variables.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand
directly, without using a ModRM or SIB byte.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions

A combination of 128-bit media instructions and 64-bit media
instructions.

octword
Same as double quadword.

offset
Same as displacement.
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overflow
The condition in which a floating-point number is larger in
magnitude than the largest, finite, positive or negative
number that can be represented in the data-type format
being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal
buffers. External probes originate outside the processor, and
internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy
mode.

relative
Referencing with a displacement (also called offset) from an
instruction pointer rather than the base of a code segment.
Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.
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To preserve compatibility with future processors, reserved
fields require special handling when read or written by
software.

Reserved fields may be further qualified as MBZ, RAZ, SBZ
or IGN (see definitions).

Software must not depend on the state of a reserved field,
nor upon the ability of such fields to return to a previously
written state.

If a reserved field is not marked with one of the above
qualifiers, software must not change the state of that field; it
must reload that field with the same values returned from a
prior read.

REX
An instruction prefix that specifies a 64-bit operand size and
provides access to additional registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

set
To write a bit value of 1. Compare clear.

SIB

A byte following an instruction opcode that specifies
address calculation based on scale (S), index (I), and base

(B).
SIMD

Single instruction, multiple data. See vector.

SSE
Streaming SIMD extensions instruction set. See 128-bit
media instructions and 64-bit media instructions.

SSE2
Extensions to the SSE instruction set. See 128-bit media
instructions and 64-bit media instructions.

SSE3

Further extensions to the SSE instruction set. See 128-bit
media instructions.
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sticky bit
A bit that is set or cleared by hardware and that remains in
that state until explicitly changed by software.

TOP
The x87 top-of-stack pointer.

TPR
Task-priority register (CRS8).

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in
magnitude than the smallest nonzero, positive or negative
number that can be represented in the data-type format
being used.

vector

(1) A set of integer or floating-point values, called elements,
that are packed into a single operand. Most of the 128-bit
and 64-bit media instructions use vectors as operands.
Vectors are also called packed or SIMD (single-instruction
multiple-data) operands.

(2) An index into an interrupt descriptor table (IDT), used to
access exception handlers. Compare exception.

virtual-8086 mode
A submode of legacy mode.

word
Two bytes, or 16 bits.

x86
See legacy x86.

In the following list of registers, the names are used to refer
either to a given register or to the contents of that register:

AH-DH

The high 8-bit AH, BH, CH, and DH registers. Compare
AL-DL.

XXviii
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AL-DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH-DH.
AL-r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and
R8B-R15B registers, available in 64-bit mode.

BP
Base pointer register.

CRn
Control register number n.

CS

Code segment register.

eAX—-eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the
32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers. Compare rAX-rSP.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are
AX, BX, CX, DX, DI, SI, BP, and SP. For the 32-bit data size,
these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For

Preface

XXix



AMDA

AMDG64 Technology

24592—Rev. 3.10—March 2005

the 64-bit data size, these include RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, and R8-R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8-r15
The 8-bit R8B-R15B registers, or the 16-bit REW-R15W
registers, or the 32-bit R8D-R15D registers, or the 64-bit
R8-R15 registers.

rAX-rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or
the 32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI,
RBP, and RSP registers. Replace the placeholder r with
nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-bit
size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

XXX
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rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.
RFLAGS

Endian Order

64-bit flags register. Compare rFLAGS.

rIP

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare
RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS

Stack segment register.

TPR

Task priority register, a new register introduced in the
AMDG64 architecture to speed interrupt management.

TR
Task register.

The x86 and AMDG64 architectures address memory using little-
endian byte-ordering. Multibyte values are stored with their
least-significant byte at the lowest byte address, and they are
illustrated with their least significant byte at the right side.
Strings are illustrated in reverse order, because the addresses of
their bytes increase from right to left.

Related Documents

m Peter Abel, IBM PC Assembly Language and Programming,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

m Rakesh Agarwal, 80x86 Architecture & Programming: Volume
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Preface

XXXi



AMDA

AMDG64 Technology

24592—Rev. 3.10—March 2005

AMD data sheets and application notes for particular
hardware implementations of the AMDG64 architecture.

AMD, AMD-K6® MMX™ Enhanced Processor Multimedia
Technology, Sunnyvale, CA, 2000.

AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

AMD, AMD Extensions to the 3DNow!™ and MMX™
Instruction Sets, Sunnyvale, CA, 2000.

Don Anderson and Tom Shanley, Pentium® Processor System
Architecture, Addison-Wesley, New York, 1995.
Nabajyoti Barkakati and Randall Hyde, Microsoft Macro
Assembler Bible, Sams, Carmel, Indiana, 1992.
Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly

Language Programming, Macmillan Publishing Co., New
York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and
Pentium Based Personal Computer, Prentice-Hall, Englewood
Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley,
New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly
Language Programming, Windcrest McGraw-Hill, 1993.

Geoff Chappell, DOS Internals, Addison-Wesley, New York,
1994.

Chips and Technologies, Inc. Super386 DX Programmer’s
Reference Manual, Chips and Technologies, Inc., San Jose,
1992.

John Crawford and Patrick Gelsinger, Programming the
80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix
Corporation, Richardson, TX, 1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix
Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode
Table, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix
Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS: A Programmer's Guide to
Protected-Mode DOS, Addison Wesley, NY, 1991.

XXXii

Preface



AMDA

24592—Rev. 3.10-March 2005

AMDG64 Technology

William B. Giles, Assembly Language Programming for the
Intel 80xxx Family, Macmillan, New York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley,
New York, 1994.

John L. Hennessy and David A. Patterson, Computer
Architecture, Morgan Kaufmann Publishers, San Mateo, CA,
1996.

Thom Hogan, The Programmer’s PC Sourcebook, Microsoft
Press, Redmond, WA, 1991.

Hal Katircioglu, Inside the 486, Pentium®, and Pentium Pro,
Peer-to-Peer Communications, Menlo Park, CA, 1997.

IBM Corporation, 486SLC Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 80486DXZ2 Processor Floating Point
Instructions, IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide,
IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, Blue Lightening 486DXZ2 Data Book, IBM
Corporation, Essex Junction, VT, 1994.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Std 754-1985.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Radix-Independent Floating-Point Arithmetic,
ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86
IBM PC and Compatible Computers, Prentice-Hall, Englewood
Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book,
Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to
Computer Architecture: Using the Intel Pentium®, Oxford
University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The
80386/387 Architecture, John Wiley & Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1993.

Preface

XXXl



AMDA

AMDG64 Technology

24592—Rev. 3.10—March 2005

NexGen Inc., Nx686 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Streaming SIMD
Extensions in the Pentium® III, www.x86.org/articles/sse_pt1/
simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC
Programmer’s Bible, Microsoft® Press, Redmond, WA, 1993.

PharLap 386lASM Reference Manual, Pharlap, Cambridge
MA, 1993.

PharLap TNT DOS-Extender Reference Manual, Pharlap,
Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, 1386/i1486 Advanced
Programming, Van Nostrand Reinhold, New York, 1993.

Jeffrey P.  Royer, Introduction to Protected Mode
Programming, course materials for an onsite class, 1992.

Tom Shanley, Protected Mode System Architecture, Addison
Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM
Programming Manual, SGS-Thomson Corporation, 1995.

Walter A. Triebel, The 80386DX Microprocessor, Prentice-
Hall, Englewood Cliffs, NJ, 1992.

John Wharton, The Complete x86, MicroDesign Resources,
Sebastopol, California, 1994.

Web sites and newsgroups:

- www.amd.com

-  news.comp.arch

-  news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

XXXiv

Preface



AMDA

24592—Rev. 3.10—March 2005 AMDG64 Technology

1 Overview of the AMD64 Architecture

11 Introduction

1.1.1 New Features

The AMDG64 architecture is a simple yet powerful 64-bit,
backward-compatible extension of the industry-standard
(legacy) x86 architecture. It adds 64-bit addressing and expands
register resources to support higher performance for
recompiled 64-bit programs, while supporting legacy 16-bit and
32-bit applications and operating systems without modification
or recompilation. It is the architectural basis on which new
processors can provide seamless, high-performance support for
both the vast body of existing software and new 64-bit software
required for higher-performance applications.

The need for a 64-bit x86 architecture is driven by applications
that address large amounts of virtual and physical memory,
such as high-performance servers, database management
systems, and CAD tools. These applications benefit from both
64-bit addresses and an increased number of registers. The
small number of registers available in the legacy x86
architecture limits performance in computation-intensive
applications. Increasing the number of registers provides a
performance boost to many such applications.

The AMDG64 architecture introduces these new features:

m Register Extensions (see Figure 1-1 on page 2):
- 8 new general-purpose registers (GPRs).
- All 16 GPRs are 64 bits wide.
- 8 new 128-bit XMM registers.
- Uniform byte-register addressing for all GPRs.

- A new instruction prefix (REX) accesses the extended
registers.

m  Long Mode (see Table 1-1 on page 3):
- Up to 64 bits of virtual address.
- 64-bit instruction pointer (RIP).
- New instruction-pointer-relative data-addressing mode.

- Flat address space.

Chapter 1: Overview of the AMD64 Architecture 1
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General-Purpose 64-Bit Media and 128-Bit Media
Registers (GPRs) Floating-Point Registers Registers

RAX MMX0/FPRO XMMo
RBX MMX1/FPR1 XMM1
RCX MMX2/FPR2 XMM?2
RDX MMX3/FPR3 XMM3
RBP MMX4/FPR4 XMM4
RSI MMX5/FPR5 XMM5
RDI MMX6/FPR6 XMMe6
RSP MMX7/FPR7 XMM7
R8 63 0 XMM8
R9 XMM9
R10 Flags Register XMM10
RIT ™0 [erLAcs| RFLAGS XM 1
R12 XMM12
s 20 XMM13
R14 Instruction Pointer XMM14
RIS | | ep | rP XMM15

63 0 63 0 127 0

:| Legacy x86 registers, supported in all modes Application-programming registers also include the

128-bit media control-and-status register and the
:| Register extensions, supported in 64-bit mode x87 tag-word, control-word, and status-word registers 513-101.eps

Figure 1-1.  Application-Programming Register Set
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Table 1-1. Operating Modes
feati Defaults Typical
Operating Mode Operating II‘QI;':::;?:;I): Register
System Required | "o . Address | Operand | Extensions GPR
equired | gjze (bits) | Size (bits) Width (bits)
64-Bit
es 64 es 64
Mode y 32 y
:;,‘I’“f New 64-bit OS
ode Compatibility no 32 no 32
Mode 16 16 16
32 32
Protected Mode 32
. 16 16
Legacy 32-bit OS
Legacy Virtual no no
Mode | Virtual-8086
Mode 16 16 16
Real Mode Legacy 16-bit OS

1.1.2 Registers

Table 1-2 on page 4 compares the register and stack resources

available to application software, by operating mode. The left
set of columns shows the legacy x86 resources, which are
available in the AMDG64 architecture’s legacy and compatibility
modes. The right set of columns shows the comparable
resources in 64-bit mode. Gray shading indicates differences
between the modes. These register differences (not including
stack-width difference) represent the register extensions shown
in Figure 1-1.
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Table 1-2. Application Registers and Stack, by Operating Mode

Register Legacy and Compatibility Modes 64-Bit Mode'

or Stack Name Number | Size (bits) Name Number | Size (bits)
e I -
128-Bit XMM Registers XMMO-XMM7 8 128 XMMO-XMM15 16 128
64-Bit MMX Registers | MMX0-MMX7° 8 64 MMX0-MMX73 8 64
x87 Registers FPRO-FPR7* 8 80 FPRO-FPR7* 8 80
Instruction Pointer? EIP 1 32 RIP 1 64
Flags? EFLAGS 1 32 RFLAGS 1 64
Stack - 16 or 32 - 64
Note:

1. Gray-shaded entries indicate differences between the modes. These differences (except stack-width difference) are the AMD64
architecture’s register extensions.

2. This list of GPRs shows only the 32-bit registers. The 16-bit and 8-bit mappings of the 32-bit registers are also accessible, as
described in “Registers” on page 27.

3. The MMX0-MMX7 registers are mapped onto the FPRO-FPR7 physical registers, as shown in Figure 1-1. The x87 stack registers,
ST(0)-ST(7), are the logical mappings of the FPRO-FPR7 physical registers.

1.1.3 Instruction Set

As Table 1-2 shows, the legacy x86 architecture (called legacy
mode in the AMD64 architecture) supports eight GPRs. In
reality, however, the general use of at least four registers (EBP,
ESI, EDI, and ESP) is compromised because they serve special
purposes when executing many instructions. The AMDG64
architecture’s addition of eight new GPRs—and the increased
width of these registers from 32 bits to 64 bits—allows
compilers to substantially improve software performance.
Compilers have more flexibility in using registers to hold
variables. Compilers can also minimize memory traffic—and
thus boost performance—by localizing work within the GPRs.

The AMDG64 architecture supports the full legacy x86
instruction set, and it adds a few new instructions to support
long mode (see Table 1-1 for a summary of operating modes).
The application-programming instructions are organized and
described in the following subsets:

m  General-Purpose Instructions—These are the basic x86
integer instructions used in virtually all programs. Most of
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114 Media
Instructions

these instructions load, store, or operate on data located in
the general-purpose registers (GPRs) or memory. Some of
the instructions alter sequential program flow program by
branching to other program locations.

m 128-Bit Media Instructions—These are the streaming SIMD
extension (SSE and SSE2) instructions that load, store, or
operate on data located primarily in the 128-bit XMM
registers. They perform integer and floating-point
operations on vector (packed) and scalar data types.
Because the vector instructions can independently and
simultaneously perform a single operation on multiple sets
of data, they are called single-instruction, multiple-data
(SIMD) instructions. They are useful for high-performance
media and scientific applications that operate on blocks of
data.

m 64-Bit Media Instructions—These are the multimedia
extension (MMX™ technology) and AMD 3DNow!™
technology instructions. They load, store, or operate on data
located primarily on the 64-bit MMX registers. Like their
128-bit counterparts, described above, they perform integer
and floating-point operations on vector (packed) and scalar
data types. Thus, they are also SIMD instructions and are
useful in media applications that operate on blocks of data.

m  x87 Floating-Point Instructions—These are the floating-point
instructions used in legacy x87 applications. They load,
store, or operate on data located in the x87 registers.

Some of these application-programming instructions bridge two
or more of the above subsets. For example, there are
instructions that move data between the general-purpose
registers and the XMM or MMX registers, and many of the
integer vector (packed) instructions can operate on either
XMM or MMX registers, although not simultaneously. If
instructions bridge two or more subsets, their descriptions are
repeated in all subsets to which they apply.

Media applications—such as image processing, music synthesis,
speech recognition, full-motion video, and 3D graphics
rendering—share certain characteristics:

m They process large amounts of data.

m They often perform the same sequence of operations
repeatedly across the data.

Chapter 1: Overview of the AMD64 Architecture 5
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m The data are often represented as small quantities, such as 8
bits for pixel values, 16 bits for audio samples, and 32 bits
for object coordinates in floating-point format.

The 128-bit and 64-bit media instructions are designed to
accelerate these applications. The instructions use a form of
vector (or packed) parallel processing known as single-
instruction, multiple data (SIMD) processing. This vector
technology has the following characteristics:

m A single register can hold multiple independent pieces of
data. For example, a single 128-bit XMM register can hold 16
8-bit integer data elements, or four 32-bit single-precision
floating-point data elements.

m The vector instructions can operate on all data elementsin a
register, independently and simultaneously. For example, a
PADDB instruction operating on byte elements of two vector
operands in 128-bit XMM registers performs 16
simultaneous additions and returns 16 independent results
in a single operation.

128-bit and 64-bit media instructions take SIMD vector
technology a step further by including special instructions that
perform operations commonly found in media applications. For
example, a graphics application that adds the brightness values
of two pixels must prevent the add operation from wrapping
around to a small value if the result overflows the destination
register, because an overflow result can produce unexpected
effects such as a dark pixel where a bright one is expected. The
128-bit and 64-bit media instructions include saturating-
arithmetic instructions to simplify this type of operation. A
result that otherwise would wrap around due to overflow or
underflow is instead forced to saturate at the largest or smallest
value that can be represented in the destination register.

The AMDG64 architecture provides three floating-point
instruction subsets, using three distinct register sets:

m  128-Bit Media Instructions support 32-bit single-precision
and 64-bit double-precision floating-point operations, in
addition to integer operations. Operations on both vector
data and scalar data are supported, with a dedicated
floating-point exception-reporting mechanism. These
floating-point operations comply with the IEEE-754
standard.
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m  64-Bit Media Instructions (the subset of 3DNow! technology
instructions)  support single-precision floating-point
operations. Operations on both vector data and scalar data
are supported, but these instructions do not support
floating-point exception reporting.

m x87 Floating-Point Instructions support single-precision,
double-precision, and 80-bit extended-precision floating-
point operations. Only scalar data are supported, with a
dedicated floating-point exception-reporting mechanism.
The x87 floating-point instructions contain special
instructions for performing trigonometric and logarithmic
transcendental operations. The single-precision and double-
precision floating-point operations comply with the IEEE-
754 standard.

Maximum floating-point performance can be achieved using
the 128-bit media instructions. One of these vector instructions
can support up to four single-precision (or two double-
precision) operations in parallel. In 64-bit mode, the AMDG64
architecture doubles the number of legacy XMM registers from
8 to 16.

Applications gain additional benefits using the 64-bit media
and x87 instructions. The separate register sets supported by
these instructions relieve pressure on the XMM registers
available to the 128-bit media instructions. This provides
application programs with three distinct sets of floating-point
registers. In addition, certain high-end implementations of the
AMDG64 architecture may support 128-bit media, 64-bit media,
and x87 instructions with separate execution units.

1.2 Modes of Operation

121 Long Mode

Table 1-1 on page 3 summarizes the modes of operation
supported by the AMDG64 architecture. In most cases, the
default address and operand sizes can be overridden with
instruction prefixes. The register extensions shown in the
second-from-right column of Table 1-1 are those illustrated in
Figure 1-1 on page 2.

Long mode is an extension of legacy protected mode. Long
mode consists of two submodes: 64-bit mode and compatibility
mode. 64-bit mode supports all of the new features and register
extensions of the AMDG64 architecture. Compatibility mode

Chapter 1: Overview of the AMD64 Architecture 7
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supports binary compatibility with existing 16-bit and 32-bit
applications. Long mode does not support legacy real mode or
legacy virtual-8086 mode, and it does not support hardware task
switching.

Throughout this document, references to long mode refer to
both 64-bit mode and compatibility mode. If a function is specific
to either of these submodes, then the name of the specific
submode is used instead of the name long mode.

64-bit mode—a submode of long mode—supports the full range
of 64-bit virtual-addressing and register-extension features.
This mode is enabled by the operating system on an individual
code-segment basis. Because 64-bit mode supports a 64-bit
virtual-address space, it requires a new 64-bit operating system
and tool chain. Existing application binaries can run without
recompilation in compatibility mode, under an operating
system that runs in 64-bit mode, or the applications can also be
recompiled to run in 64-bit mode.

Addressing features include a 64-bit instruction pointer (RIP)
and a new RIP-relative data-addressing mode. This mode
accommodates modern operating systems by supporting only a
flat address space, with single code, data, and stack space.

Register Extensions. 64-bit mode implements register extensions
through a new group of instruction prefixes, called REX
prefixes. These extensions add eight GPRs (R8-R15), widen all
GPRs to 64 bits, and add eight 128-bit XMM registers
(XMMS8-XMM15).

The REX instruction prefixes also provide a new byte-register
capability that makes the low byte of any of the sixteen GPRs
available for byte operations. This results in a uniform set of
byte, word, doubleword, and quadword registers that is better
suited to compiler register-allocation.

64-Bit Addresses and Operands. In 64-bit mode, the default virtual-
address size is 64 bits (implementations can have fewer). The
default operand size for most instructions is 32 bits. For most
instructions, these defaults can be overridden on an
instruction-by-instruction basis using instruction prefixes. REX
prefixes specify the 64-bit operand size and new registers.

RIP-Relative Data Addressing. 64-bit mode supports data addressing
relative to the 64-bit instruction pointer (RIP). The legacy x86

Chapter 1: Overview of the AMDG64 Architecture
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1.2.3 Compatibility
Mode

12.4 Legacy Mode

architecture supports IP-relative addressing only in control-
transfer instructions. RIP-relative addressing improves the
efficiency of position-independent code and code that
addresses global data.

Opcodes. A few instruction opcodes and prefix bytes are
redefined to allow register extensions and 64-bit addressing.
These differences are described in “General-Purpose
Instructions in 64-Bit Mode” in Volume 3 and “Differences
Between Long Mode and Legacy Mode” in Volume 3.

Compatibility mode—the second submode of long mode—
allows 64-bit operating systems to run existing 16-bit and 32-bit
x86 applications. These legacy applications run in compatibility
mode without recompilation.

Applications running in compatibility mode use 32-bit or 16-bit
addressing and can access the first 4GB of virtual-address
space. Legacy x86 instruction prefixes toggle between 16-bit
and 32-bit address and operand sizes.

As with 64-bit mode, compatibility mode is enabled by the
operating system on an individual code-segment basis. Unlike
64-bit mode, however, x86 segmentation functions the same as
in the legacy x86 architecture, using 16-bit or 32-bit protected-
mode semantics. From the application viewpoint, compatibility
mode looks like the legacy x86 protected-mode environment.
From the operating-system viewpoint, however, address
translation, interrupt and exception handling, and system data
structures use the 64-bit long-mode mechanisms.

Legacy mode preserves binary compatibility not only with
existing 16-bit and 32-bit applications but also with existing 16-
bit and 32-bit operating systems. Legacy mode consists of the
following three submodes:

m  Protected Mode—Protected mode supports 16-bit and 32-bit
programs with memory segmentation, optional paging, and
privilege-checking. Programs running in protected mode can
access up to 4GB of memory space.

n  Virtual-8086 Mode—Virtual-8086 mode supports 16-bit real-
mode programs running as tasks under protected mode. It
uses a simple form of memory segmentation, optional
paging, and limited protection-checking. Programs running
in virtual-8086 mode can access up to 1MB of memory space.

Chapter 1: Overview of the AMD64 Architecture 9
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m Real Mode—Real mode supports 16-bit programs using
simple register-based memory segmentation. It does not
support paging or protection-checking. Programs running in
real mode can access up to 1MB of memory space.

Legacy mode is compatible with existing 32-bit processor
implementations of the x86 architecture. Processors that
implement the AMDG64 architecture boot in legacy real mode,
just like processors that implement the legacy x86 architecture.

Throughout this document, references to legacy mode refer to
all three submodes—protected mode, virtual-8086 mode, and real
mode. If a function is specific to either of these submodes, then
the name of the specific submode is used instead of the name
legacy mode.

10
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2 Memory Model

This chapter describes the memory characteristics that apply to
application software in the various operating modes of the
AMDG64 architecture. These characteristics apply to all
instructions in the architecture. Several additional system-level
details about memory and cache management are described in
Volume 2.

2.1 Memory Organization

2.1.1 Virtual Memory

Virtual memory consists of the entire address space available to
programs. It is a large linear-address space that is translated by
a combination of hardware and operating-system software to a
smaller physical-address space, parts of which are located in
memory and parts on disk or other external storage media.

Figure 2-1 on page 12 shows how the virtual-memory space is
treated in the two submodes of long mode:

m  64-bit mode—This mode uses a flat segmentation model of
virtual memory. The 64-bit virtual-memory space is treated
as a single, flat (unsegmented) address space. Program
addresses access locations that can be anywhere in the
linear 64-bit address space. The operating system can use
separate selectors for code, stack, and data segments for
memory-protection purposes, but the base address of all
these segments is always 0. (For an exception to this general
rule, see “FS and GS as Base of Address Calculation” on
page 20.)

m  Compatibility mode—This mode uses a protected, multi-
segment model of virtual memory, just as in legacy
protected mode. The 32-bit virtual-memory space is treated
as a segmented set of address spaces for code, stack, and
data segments, each with its own base address and
protection parameters. A segmented space is specified by
adding a segment selector to an address.

Chapter 2: Memory Model
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64-Bit Mode
(Flat Segmentation Model)

2641

Legacy and Compatibility Mode
(Multi-Segment Model)

29241

Code Segment (CS) Base =} -----------

Stack Segment (SS) Base - ---=--~- - -

Base Address for data
All Segments __,. o  DataSegment (DS) Base |- - ---------- 0

513-107eps

Figure 2-1. Virtual-Memory Segmentation

Segmented memory has been used as a method by which
operating systems could isolate programs, and the data used by
programs, from each other in an effort to increase the reliability
of systems running multiple programs simultaneously. However,
most modern operating systems do not use the segmentation
features available in the legacy x86 architecture. Instead, these
operating systems handle segmentation functions entirely in
software. For this reason, the AMDG64 architecture dispenses
with most of the legacy segmentation functions in 64-bit mode.
This allows new 64-bit operating systems to be coded more
simply, and it supports more efficient management of multi-
programming environments than is possible in the legacy x86
architecture.

Segment registers hold the selectors used to access memory
segments. Figure 2-2 on page 13 shows the application-visible
portion of the segment registers. In legacy and compatibility
modes, all segment registers are accessible to software. In 64-
bit mode, only the CS, FS, and GS segments are recognized by

12
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2.1.3 Physical
Memory

the processor, and software can use the FS and GS segment-
base registers as base registers for address calculation, as
described in “FS and GS as Base of Address Calculation” on
page 20. For references to the DS, ES, or SS segments in 64-bit
mode, the processor assumes that the base for each of these
segments is zero, neither their segment limit nor attributes are
checked, and the processor simply checks that all such
addresses are in canonical form, as described in “64-bit
Canonical Addresses” on page 18.

Legacy Mode and 64-Bit
Compatibility Mode Mode
I cs
(Attributes only)
DS ignored
ES ignored
FS
FS (Base only)
GS
GS (Base only)
SS ignored

15 0 15 0

513-312.eps

Figure 2-2. Segment Registers

For details on segmentation and the segment registers, see
“Segmented Virtual Memory” in Volume 2.

Physical memory is the installed memory (excluding cache
memory) in a particular computer system that can be accessed
through the processor’s bus interface. The maximum size of the
physical memory space is determined by the number of address
bits on the bus interface. In a virtual-memory system, the large
virtual-address space (also called linear-address space) is
translated to a smaller physical-address space by a combination
of segmentation and paging hardware and software.

Segmentation is illustrated in Figure 2-1 on page 12. Paging is a
mechanism for translating linear (virtual) addresses into fixed-
size blocks called pages, which the operating system can move,
as needed, between memory and external storage media

Chapter 2: Memory Model
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(typically disk). The AMD64 architecture supports an expanded
version of the legacy x86 paging mechanism, one that is able to
translate the full 64-bit virtual-address space into the physical-
address space supported by the particular implementation.

Memory management consists of the methods by which
addresses generated by programs are translated via
segmentation and/or paging into addresses in physical memory.
Memory management is not visible to application programs. It
is handled by the operating system and processor hardware.
The following description gives a very brief overview of these
functions. Details are given in “System-Management
Instructions” in Volume 2.

Long-Mode Memory Management. Figure 2-3 shows the flow, from
top to bottom, of memory management functions performed in
the two submodes of long mode.

64-Bit Mode Compatibility Mode

0 15 0 31 0

Virtual (Linear) Address |Selector | Effective Address

51

—

63 3 3] 0
| 0 Virtual Address

Paging Paging

A

0 51 v 0

Physical Address | Physical Address

Figure 2-3.

513-184.eps

Long-Mode Memory Management

In 64-bit mode, programs generate virtual (linear) addresses
that can be up to 64 bits in size. The virtual addresses are

14
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passed to the long-mode paging function, which generates
physical addresses that can be up to 52 bits in size. (Specific
implementations of the architecture can support fewer virtual-
address and physical-address sizes.)

In compatibility mode, legacy 16-bit and 32-bit applications run
using legacy x86 protected-mode segmentation semantics. The
16-bit or 32-bit effective addresses generated by programs are
combined with their segments to produce 32-bit virtual (linear)
addresses that are zero-extended to a maximum of 64 bits. The
paging that follows is the same long-mode paging function used
in 64-bit mode. It translates the virtual addresses into physical
addresses. The combination of segment selector and effective
address is also called a logical address or far pointer. The virtual
address is also called the linear address.

Legacy-Mode Memory Management. Figure 2-4 shows the memory-
management functions performed in the three submodes of
legacy mode.

Protected Mode Virtual-8086 Mode Real Mode

0 15 0 15 0 15 0 15 0

| Selector

| Effective Address (EA) | Selector | EA | Selector | EA

31

l 0 19 l 0

19 l 0
Linear Address | Linear Address | Linear Address

Paging Paging

» »
» »

31

\ 0 31 v 0 31 19v 0

| Physical Address (PA) | Physical Address (PA) 0 PA

513-185.eps

Figure 2-4. Legacy-Mode Memory Management
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The memory-management functions differ, depending on the
submode, as follows:

Protected Mode—Protected mode supports 16-bit and 32-bit
programs with table-based memory segmentation, paging,
and privilege-checking. The segmentation function takes 32-
bit effective addresses and 16-bit segment selectors and
produces 32-bit linear addresses into one of 16K memory
segments, each of which can be up to 4GB in size. Paging is
optional. The 32-bit physical addresses are either produced
by the paging function or the linear addresses are used
without modification as physical addresses.

Virtual-8086 Mode—Virtual-8086 mode supports 16-bit
programs running as tasks under protected mode. 20-bit
linear addresses are formed in the same way as in real mode,
but they can optionally be translated through the paging
function to form 32-bit physical addresses that access up to
4GB of memory space.

Real Mode—Real mode supports 16-bit programs using
register-based shift-and-add segmentation, but it does not
support paging. Sixteen-bit effective addresses are zero-
extended and added to a 16-bit segment-base address that is
left-shifted four bits, producing a 20-bit linear address. The
linear address is zero-extended to a 32-bit physical address
that can access up to 1MB of memory space.

2.2 Memory Addressing

22.1 Byte Ordering

Instructions and data are stored in memory in little-endian byte
order. Little-endian ordering places the least-significant byte of
the instruction or data item at the lowest memory address and
the most-significant byte at the highest memory address.

Figure 2-5 on page 17 shows a generalization of little-endian
memory and register images of a quadword data type. The least-
significant byte is at the lowest address in memory and at the
right-most byte location of the register image.

16
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Quadword in Memory byte7 | 07h «— High (mostsignificant)
byte6 ] o6h
byte 5 | osh
byte 4 | 04
byte3 | 03h
byte2 | o2h
byte 1 | o1h
byteO | ooh «— Low (leastsignificant)

High (most-significant) Low (least-significant)

Quadword in General-Purpose Register ¢

byte7 | byte6 | byte5 | byte4 | byte3 byte2 | byte1l byte 0

63 0

513-116.eps

Figure 2-5. Byte Ordering

Figure 2-6 on page 18 shows the memory image of a 10-byte
instruction. Instructions are byte data types. They are read
from memory one byte at a time, starting with the least-
significant byte (lowest address). For example, the following
instruction specifies the 64-bit instruction MOV RAX,
1122334455667788 instruction that consists of the following ten
bytes:

48 B8 8877665544332211

48 is a REX instruction prefix that specifies a 64-bit operand
size, B8 is the opcode that—together with the REX prefix—
specifies the 64-bit RAX destination register, and
8877665544332211 is the 8-byte immediate value to be moved,
where 88 represents the eighth (least-significant) byte and 11
represents the first (most-significant) byte. In memory, the REX
prefix byte (48) would be stored at the lowest address, and the
first immediate byte (11) would be stored at the highest
instruction address.

Chapter 2: Memory Model
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11 09h <«— High (most-significant)
22 08h
33 07h
44 06h
55 05h
66 04h
77 03h
88 02h
B8 0th
48 00h «— Low (least-significant)

513-186.eps

Figure 2-6. Example of 10-Byte Instruction in Memory

Long mode defines 64 bits of virtual address, but
implementations of the AMDG64 architecture may support fewer
bits of virtual address. Although implementations might not
use all 64 bits of the virtual address, they check bits 63 through
the most-significant implemented bit to see if those bits are all
zeros or all ones. An address that complies with this property is
said to be in canonical address form. If a virtual-memory
reference is not in canonical form, the implementation causes a
general-protection exception or stack fault.

Programs provide effective addresses to the hardware prior to
segmentation and paging translations. Long-mode effective
addresses are a maximum of 64 bits wide, as shown in Figure 2-3
on page 14. Programs running in compatibility mode generate
(by default) 32-bit effective addresses, which the hardware zero-
extends to 64 bits. Legacy-mode effective addresses, with no
address-size override, are 32 or 16 bits wide, as shown in
Figure 2-4. These sizes can be overridden with an address-size
instruction prefix, as described in “Instruction Prefixes” on
page 87.

There are five methods for generating effective addresses,
depending on the specific instruction encoding:

18
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Absolute Addresses—These addresses are given as
displacements (or offsets) from the base address of a data
segment. They point directly to a memory location in the
data segment.

Instruction-Relative Addresses—These addresses are given as
displacements (or offsets) from the current instruction
pointer (IP), also called the program counter (PC). They are
generated by control-transfer instructions. A displacement
in the instruction encoding, or one read from memory, serves
as an offset from the address that follows the transfer. See
“RIP-Relative Addressing” on page 22 for details about RIP-
relative addressing in 64-bit mode.

ModR/M Addressing—These addresses are calculated using a
scale, index, base, and displacement. Instruction encodings
contain two bytes—MODR/M and optional SIB (scale, index,
base) and a variable length displacement—that specify the
variables for the calculation. The base and index values are
contained in general-purpose registers specified by the SIB
byte. The scale and displacement values are specified
directly in the instruction encoding. Figure 2-7 shows the
components of a complex-address calculation. The resultant
effective address is added to the data-segment base address
to form a linear address, as described in “Segmented Virtual
Memory” in Volume 2. “Instruction Formats” in Volume 3
gives further details on specifying this form of address. The
encoding of instructions specifies how the address is
calculated.

| Base | Index Displacement

* Scaleby1,2,4,0r8

|
l

| Effective Address

513-108.eps

Figure 2-7. Complex Address Calculation (Protected Mode)
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m  Stack Addresses—PUSH, POP, CALL, RET, IRET, and INT
instructions implicitly use the stack pointer, which contains
the address of the procedure stack. See “Stack Operation”
on page 23 for details about the size of the stack pointer.

m String Addresses—String instructions generate sequential
addresses using the rDI and rSI registers, as described in
“Implicit Uses of GPRs” on page 34.

In 64-bit mode, with no address-size override, the size of
effective-address calculations is 64 bits. An effective-address
calculation uses 64-bit base and index registers and sign-
extends displacements to 64 bits. Due to the flat address space
in 64-bit mode, virtual addresses are equal to effective
addresses. (For an exception to this general rule, see “FS and
GS as Base of Address Calculation” on page 20.)

Long-Mode Zero-Extension of 16-Bit and 32-Bit Addresses. In long mode,
all 16-bit and 32-bit address calculations are zero-extended to
form 64-bit addresses. Address calculations are first truncated
to the effective-address size of the current mode (64-bit mode or
compatibility mode), as overridden by any address-size prefix.
The result is then zero-extended to the full 64-bit address width.

Because of this, 16-bit and 32-bit applications running in
compatibility mode can access only the low 4GB of the long-
mode virtual-address space. Likewise, a 32-bit address
generated in 64-bit mode can access only the low 4GB of the
long-mode virtual-address space.

Displacements and Immediates. In general, the maximum size of
address displacements and immediate operands is 32 bits. They
can be 8, 16, or 32 bits in size, depending on the instruction or,
for displacements, the effective address size. In 64-bit mode,
displacements are sign-extended to 64 bits during use, but their
actual size (for value representation) remains a maximum of 32
bits. The same is true for immediates in 64-bit mode, when the
operand size is 64 bits. However, support is provided in 64-bit
mode for some 64-bit displacement and immediate forms of the
MOV instruction.

FS and GS as Base of Address Calculation. In 64-bit mode, the FS and
GS segment-base registers (unlike the DS, ES, and SS segment-
base registers) can be used as non-zero data-segment base
registers for address calculations, as described in “Segmented
Virtual Memory” in Volume 2. 64-bit mode assumes all other

20
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2.2.4 Address-Size
Prefix

data-segment registers (DS, ES, and SS) have a base address of
0.

The default address size of an instruction is determined by the
default-size (D) bit and long-mode (L) bit in the current code-
segment descriptor (for details, see “Segmented Virtual
Memory” in Volume 2). Application software can override the
default address size in any operating mode by using the 67h
address-size instruction prefix byte. The address-size prefix
allows mixing 32-bit and 64-bit addresses on an instruction-by-
instruction basis.

Table 2-1 shows the effects of using the address-size prefix in all
operating modes. In 64-bit mode, the default address size is 64
bits. The address size can be overridden to 32 bits. 16-bit
addresses are not supported in 64-bit mode. In compatibility
and legacy modes, the address-size prefix works the same as in
the legacy x86 architecture.

Table 2-1. Address-Size Prefixes

Address-
Default Effective Size Prefix
Operating Mode AddressSize | Address Size 1
(Bits) (Bits) (67h)
Required?
64 no
64-Bit Mode 64
32 yes
32 no
Long Mode 32
16 yes
Compatibility Mode
32 yes
16
16 no
32 no
32
Legacy Mode 16 yes
(Protected, Virtual-8086, or Real
Mode) ] 32 yes
6
16 no
Note:
1. “No’indicates that the default address size is used.
Chapter 2: Memory Model 21
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RIP-relative addressing—that is, addressing relative to the 64-
bit instruction pointer (also called program counter)—is
available in 64-bit mode. The effective address is formed by
adding the displacement to the 64-bit RIP of the next
instruction.

In the legacy x86 architecture, addressing relative to the
instruction pointer (IP or EIP) is available only in control-
transfer instructions. In the 64-bit mode, any instruction that
uses ModRM addressing (see “ModRM and SIB Bytes” in
Volume 3) can use RIP-relative addressing. The feature is
particularly useful for addressing data in position-independent
code and for code that addresses global data.

Programs usually have many references to data, especially
global data, that are not register-based. To load such a program,
the loader typically selects a location for the program in
memory and then adjusts the program’s references to global
data based on the load location. RIP-relative addressing of data
makes this adjustment unnecessary.

Range of RIP-Relative Addressing. Without RIP-relative addressing,
instructions encoded with a ModRM byte address memory
relative to zero. With RIP-relative addressing, instructions with
a ModRM byte can address memory relative to the 64-bit RIP
using a signed 32-bit displacement. This provides an offset
range of +2GB from the RIP.

Effect of Address-Size Prefix on RIP-relative Addressing. RIP-relative
addressing is enabled by 64-bit mode, not by a 64-bit address-
size. Conversely, use of the address-size prefix does not disable
RIP-relative addressing. The effect of the address-size prefix is
to truncate and zero-extend the computed effective address to
32 bits, like any other addressing mode.

Encoding. For details on instruction encoding of RIP-relative
addressing, see in “RIP-Relative Addressing” in Volume 3.

Pointers are variables that contain addresses rather than data.
They are used by instructions to reference memory. Instructions
access data using near and far pointers. Stack pointers locate
the current stack.
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2.3.1 Near and Far
Pointers

Near pointers contain only an effective address, which is used
as an offset into the current segment. Far pointers contain both
an effective address and a segment selector that specifies one
of several segments. Figure 2-8 illustrates the two types of
pointers.

Near Pointer Far Pointer

| Effective Address (EA) Selector | Effective Address (EA)

513-109.eps

Figure 2-8. Near and Far Pointers

In 64-bit mode, the AMDG64 architecture supports only the flat-
memory model in which there is only one data segment, so the
effective address is used as the virtual (linear) address and far
pointers are not needed. In compatibility mode and legacy
protected mode, the AMDG64 architecture supports multiple
memory segments, so effective addresses can be combined with
segment selectors to form far pointers, and the terms logical
address (segment selector and effective address) and far pointer
are synonyms. Near pointers can also be used in compatibility
mode and legacy mode.

2.4 Stack Operation

A stack is a portion of a stack segment in memory that is used to
link procedures. Software conventions typically define stacks
using a stack frame, which consists of two registers—a stack-
frame base pointer (rBP) and a stack pointer (rSP)—as shown in
Figure 2-9 on page 24. These stack pointers can be either near
pointers or far pointers.

The stack-segment (SS) register, points to the base address of
the current stack segment. The stack pointers contain offsets
from the base address of the current stack segment. All
instructions that address memory using the rBP or rSP registers
cause the processor to access the current stack segment.

Chapter 2: Memory Model
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Stack Frame Before Procedure Call Stack Frame After Procedure Call

Stack-Fr. Base Pointer (rBP .
g aar:j Staasci Polirr:t:r ((rSP§ — Stack-Frame Base Pointer (rBP) —»

Stack Pointer (rSP) — |- - passed data

513-110.eps

Figure 2-9. Stack Pointer Mechanism

2.5

In typical APIs, the stack-frame base pointer and the stack
pointer point to the same location before a procedure call (the
top-of-stack of the prior stack frame). After data is pushed onto
the stack, the stack-frame base pointer remains where it was
and the stack pointer advances downward to the address below
the pushed data, where it becomes the new top-of-stack.

In legacy and compatibility modes, the default stack pointer
size is 16 bits (SP) or 32 bits (ESP), depending on the default-
size (B) bit in the stack-segment descriptor, and multiple stacks
can be maintained in separate stack segments. In 64-bit mode,
stack pointers are always 64 bits wide (RSP).

Further application-programming details on the stack
mechanism are described in “Control Transfers” on page 94.
System-programming details on the stack segments are
described in “Segmented Virtual Memory” in Volume 2.

Instruction Pointer

The instruction pointer is used in conjunction with the code-
segment (CS) register to locate the next instruction in memory.
The instruction-pointer register contains the displacement
(offset)—from the base address of the current CS segment, or
from address 0 in 64-bit mode—to the next instruction to be
executed. The pointer is incremented sequentially, except for
branch instructions, as described in “Control Transfers” on
page 94.
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In legacy and compatibility modes, the instruction pointer is a
16-bit (IP) or 32-bit (EIP) register. In 64-bit mode, the
instruction pointer is extended to a 64-bit (RIP) register to
support 64-bit offsets. The case-sensitive acronym, rIP, is used to
refer to any of these three instruction-pointer sizes, depending
on the software context.

Figure 2-10 shows the relationship between RIP, EIP, and IP.
The 64-bit RIP can be used for RIP-relative addressing, as
described in “RIP-Relative Addressing” on page 22.

EIP rlP

RIP
63 32 31 0

513-140.eps

Figure 2-10. Instruction Pointer (rIP) Register

The contents of the rIP are not directly readable by software.
However, the rIP is pushed onto the stack by a call instruction.

The memory model described in this chapter is used by all of
the programming environments that make up the AMD64
architecture. The next four chapters of this volume describe the
application programming environments, which include:

General-purpose programming (Chapter 3 on page 27).

128-bit media programming (Chapter 4 on page 131).

64-bit media programming (Chapter 5 on page 237).

x87 floating-point programming (Chapter 6 on page 293).
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3 General-Purpose Programming

The general-purpose programming model includes the general-
purpose registers (GPRs), integer instructions and operands
that use the GPRs, program-flow control methods, memory
optimization methods, and I/0. This programming model
includes the original x86 integer-programming architecture,
plus 64-bit extensions and a few additional instructions. Only
the application-programming instructions and resources are
described in this chapter. Integer instructions typically used in
system programming, including all of the privileged
instructions, are described in Volume 2, along with other
system-programming topics.

The general-purpose programming model is used to some extent
by almost all programs, including programs consisting primarily
of 128-bit media instructions, 64-bit media instructions, x87
floating-point instructions, or system instructions. For this
reason, an understanding of the general-purpose programming
model is essential for any programming work using the AMD64
instruction set architecture.

3.1 Registers

Figure 3-1 on page 28 shows an overview of the registers used in
general-purpose application programming. They include the
general-purpose registers (GPRs), segment registers, flags
register, and instruction-pointer register. The number and
width of available registers depends on the operating mode.

The registers and register ranges shaded light gray in Figure 3-1
are available only in 64-bit mode. Those shaded dark gray are
available only in legacy mode and compatibility mode. Thus, in
64-bit mode, the 32-bit general-purpose, flags, and instruction-
pointer registers available in legacy mode and compatibility
mode are extended to 64-bit widths, eight new GPRs are
available, and the DS, ES, and SS segment registers are ignored.

When naming registers, if reference is made to multiple
register widths, a lower-case r notation is used. For example, the
notation rAX refers to the 16-bit AX, 32-bit EAX, or 64-bit RAX
register, depending on an instruction’s effective operand size.
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General-Purpose Registers (GPRs)

rAX
rBX
rcx
rDX
rBP
1Sl
DI
rSP
R8
R9
R10
R1M
R12
Segment
Registers R13
R14
DS R15
Es 63 32 3 0
Flags and Instruction Pointer Registers
GS rFLAGS
SS rlP
15 0 63 32 31 0
[ ] Available to sofware in all modes
[ ] Available to sofware only in 64-bit mode
- Ignored by hardware in 64-bit mode 513-131.eps

Figure 3-1. General-Purpose Programming Registers

311 Legacy Registers In legacy and compatibility modes, all of the legacy x86
registers are available. Figure 3-2 shows a detailed view of the
GPR, flag, and instruction-pointer registers.
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register high  low
encoding 8-bit 8bit 16-bit  32-bit
0 AH@| AL | AX  EAX
3 BH@) | BL BX EBX

1 CHe) | CL X ECX

2 DH@e)| DL DX EDX
6 SI Sl ESI
7 DI DI EDI
5 BP BP EBP
4 SP SP ESP

31 16 15 0

FLAGS FLAGS EFLAGS

IP IP EIP

31 0

513-311.eps

Figure 3-2. General Registers in Legacy and Compatibility Modes

The legacy GPRs include:
m Eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL).
m  Eight 16-bit registers (AX, BX, CX, DX, DI, SI, BP, SP).

= Eight 32-bit registers (EAX, EBX, ECX, EDX, EDI, ESL, EBP,
ESP).

The size of register used by an instruction depends on the
effective operand size or, for certain instructions, the opcode,
address size, or stack size. The 16-bit and 32-bit registers are
encoded as 0 through 7 in Figure 3-2. For opcodes that specify a
byte operand, registers encoded as 0 through 3 refer to the low-
byte registers (AL, BL, CL, DL) and registers encoded as 4
through 7 refer to the high-byte registers (AH, BH, CH, DH).

The 16-bit FLAGS register, which is also the low 16 bits of the
32-bit EFLAGS register, shown in Figure 3-2, contains control
and status bits accessible to application software, as described
in Section 3.1.4, “Flags Register,” on page 38. The 16-bit IP or
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32-bit EIP instruction-pointer register contains the address of
the next instruction to be executed, as described in Section 2.5,
“Instruction Pointer,” on page 24.

In 64-bit mode, eight new GPRs are added to the eight legacy
GPRs, all 16 GPRs are 64 bits wide, and the low bytes of all
registers are accessible. Figure 3-3 on page 31 shows the GPRs,
flags register, and instruction-pointer register available in 64-
bit mode. The GPRs include:

m Sixteen 8-bit low-byte registers (AL, BL, CL, DL, SIL, DIL,
BPL, SPL, R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B).

m Four 8-bit high-byte registers (AH, BH, CH, DH),
addressable only when no REX prefix is used.

m Sixteen 16-bit registers (AX, BX, CX, DX, DI, SI, BP, SP,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W).

m  Sixteen 32-bit registers (EAX, EBX, ECX, EDX, EDI, ESI,
EBP, ESP, R8D, R9D, R10D, R11D, R12D, R13D, R14D,
R15D).

= Sixteen 64-bit registers (RAX, RBX, RCX, RDX, RDI, RSI,
RBP, RSP, R8, R9, R10, R11, R12, R13, R14, R15).

The size of register used by an instruction depends on the
effective operand size or, for certain instructions, the opcode,
address size, or stack size. For most instructions, access to the
extended GPRs requires a REX prefix (Section 3.5.2, “REX
Prefixes,” on page 91). The four high-byte registers (AH, BH,
CH, DH) available in legacy mode are not addressable when a
REX prefix is used.

In general, byte and word operands are stored in the low 8 or 16
bits of GPRs without modifying their high 56 or 48 bits,
respectively. Doubleword operands, however, are normally
stored in the low 32 bits of GPRs and zero-extended to 64 bits.

The 64-bit RFLAGS register, shown in Figure 3-3 on page 31,
contains the legacy EFLAGS in its low 32-bit range. The high 32
bits are reserved. They can be written with anything but they
always read as zero (RAZ). The 64-bit RIP instruction-pointer
register contains the address of the next instruction to be
executed, as described in Section 3.1.5, “Instruction Pointer
Register,” on page 42.
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register ! zero-extended low
encoding: for 32-bit operands 8-bit  16-bit  32-bit  64-bit
0 AR* | AL | AX  EAX  RAX
3 B+ | BL | BX EBX  RBX
1 CH* | CL X ECX RCX
2 DH* | DL DX EDX RDX
6 SIL¥*| Sl ESI RSI
7 DIL**] DI EDI RDI
5 BPL**{ BP EBP RBP
4 SPL**| SP ESP RSP
8 R8B R8W  R8D R8
9 R9B ROW  R9D R9
10 R10B R10W R10D RI10
11 R11B R1IW R1ID RmI
12 R12B R12W R12D R12
13 R13B R13W R13D RI3
14 R14B R14W R14D R4
15 R15B R1I5SW R15D  R15
63 32 31 615 87 0
0 RFLAGS —
RIP
63 32 31 0 * Not addressable when

a REX prefix is used.

** Only addressable when
a REX prefix is used.

Figure 3-3. General Registers in 64-Bit Mode

Figure 3-4 on page 32 illustrates another way of viewing the 64-
bit-mode GPRs, showing how the legacy GPRs overlap the
extended GPRs. Gray-shaded bits are not modified in 64-bit
mode.
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63 32 31 16 15 8 7 0
Gray areas are not modified in 64-bit mode. AH* | AL
0 AX
0 | EAX
RAX
BRF | BL
BX
3 0 | EBX
RBX
|
: X
0 | ECX
RCX
DA | DL
DX
2 0 | EDX
RDX
[ SIc™
SI
6 0 | E‘|SI
. RS
£ | [ DI~
= DI
5 0 | EDI
8 RDI
= [ BPL™ |
BP
> 0 | El|3P
RBP
[ SPC™
SP
4 0 | EéP
RSP
[ ReB
g | R8W
0 | R8D
R8
| RI5B
R15W
b 0 | Rl|5D
R15
* Not addressable when a REX prefix is used. ** Only addressable when a REX prefix is used.

Figure 3-4. GPRs in 64-Bit Mode
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Default Operand Size. For most instructions, the default operand
size in 64-bit mode is 32 bits. To access 16-bit operand sizes, an
instruction must contain an operand-size prefix (66h), as
described in Section 3.2.2, “Operand Sizes and Overrides,” on
page 45. To access the full 64-bit operand size, most instructions
must contain a REX prefix.

For details on operand size, see Section 3.2.2, “Operand Sizes
and Overrides,” on page 45.

Byte Registers. 64-bit mode provides a uniform set of low-byte,
low-word, low-doubleword, and quadword registers that is well-
suited for register allocation by compilers. Access to the four
new low-byte registers in the legacy-GPR range (SIL, DIL, BPL,
SPL), or any of the low-byte registers in the extended registers
(R8B-R15B), requires a REX instruction prefix. However, the
legacy high-byte registers (AH, BH, CH, DH) are not accessible
when a REX prefix is used.

Zero-Extension of 32-Bit Results. As Figure 3-3 and Figure 3-4 show,
when performing 32-bit operations with a GPR destination in
64-bit mode, the processor zero-extends the 32-bit result into
the full 64-bit destination. 8-bit and 16-bit operations on GPRs
preserve all unwritten upper bits of the destination GPR. This
is consistent with legacy 16-bit and 32-bit semantics for partial-
width results.

Software should explicitly sign-extend the results of 8-bit, 16-
bit, and 32-bit operations to the full 64-bit width before using
the results in 64-bit address calculations.

The following four code examples show how 64-bit, 32-bit, 16-
bit, and 8-bit ADDs work. In these examples, “48” is a REX
prefix specifying 64-bit operand size, and “01C3” and “00C3”
are the opcode and ModRM bytes of each instruction (see
“Opcode Syntax” in Volume 3 for details on the opcode and
ModRM encoding).

Example 1: 64-bit Add:

Before:RAX =0002_0001_8000_2201
RBX =0002_0002_0123_3301

48 01C3 ADD RBX,RAX ;48 is a REX prefix for size.

Result:RBX = 0004_0003_8123_5502
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Example 2: 32-bit Add:

Before:RAX = 0002_0001_8000_2201
RBX = 0002_0002_0123_3301

01C3 ADD EBX,EAX ;32-bit add

Result:RBX = 0000_0000_8123_5502
(32-bit result is zero extended)

Example 3: 16-bit Add:

Before:RAX = 0002_0001_8000_2201
RBX = 0002_0002_0123_3301

66 01C3 ADD BX,AX ;66 is 16-bit size override

Result:RBX = 0002_0002_0123_5502
(bits 63:16 are preserved)

Example 4: 8-bit Add:

Before:RAX = 0002_0001_8000_2201
RBX = 0002_0002_0123_3301

00C3 ADD BL,AL ;8-bit add

Result:RBX = 0002_0002_0123_3302
(bits 63:08 are preserved)

GPR High 32 Bits Across Mode Switches. The processor does not
preserve the upper 32 bits of the 64-bit GPRs across switches
from 64-bit mode to compatibility or legacy modes. When using
32-bit operands in compatibility or legacy mode, the high 32
bits of GPRs are undefined. Software must not rely on these
undefined bits, because they can change from one
implementation to the next or even on a cycle-to-cycle basis
within a given implementation. The undefined bits are not a
function of the data left by any previously running process.

Most instructions can use any of the GPRs for operands.
However, as Table 3-1 shows, some instructions use some GPRs
implicitly. Details about implicit use of GPRs are described in
“General-Purpose Instruction Reference” in Volume 3.

Table 3-1 on page 35 shows implicit register uses only for
application instructions. Certain system instructions also make
implicit use of registers. These system instructions are
described in “System Instruction Reference” in Volume 3.
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Table 3-1. Implicit Uses of GPRs

Registers' .
Name Implicit Uses

Low 8-Bit 16-Bit 32-Bit 64-Bit

* Operand for decimal arithmetic,
multiply, divide, string, compare-
and-exchange, table-translation,
and I/O instructions.

* Special accumulator encoding for
2 . :
AL AX EAX RAX Accumulator | App XOR, and MOV instructions.

* Used with EDX to hold double-
precision operands.

 CPUID processor-feature
information.

* Address generation in 16-bit
code.

* Memory address for XLAT
instruction.

» CPUID processor-feature
information.

BL BX EBX RBX2 Base

« Bit index for shift and rotate
instructions.

* lteration count for loop and
CL X ECX RCX2 Count repeated string instructions.
* Jump conditional if zero.

» CPUID processor-feature
information.

* Operand for multiply and divide
instructions.

* Port number for I/0 instructions.

DL DX EDX RDX? /O Address | « Used with EAX to hold double-
precision operands.

 CPUID processor-feature
information.

Note:
1. Gray-shaded registers have no implicit uses.
2. Accessible only in 64-bit mode.
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Table 3-1. Implicit Uses of GPRs (continued)
Registers' .
Name Implicit Uses
Low 8-Bit 16-Bit 32-Bit 64-Bit
* Memory address of source
operand for string instructions.
5|12 S| ESI RSI2 Source Index P . e u
* Memory index for 16-bit
addresses.
* Memory address of destination
Destination operand for string instructions.
2 DI EDI 2
D RDI Index « Memory index for 16-bit
addresses.
. * Memory address of stack-frame
2 2
BPL BP EBP RBP Base Pointer base pointer.
. * Memory address of last stack
2 2
SPL SP ESP RSP Stack Pointer entry (top of stack).
R8B-R10B2 | R8W-R10W? | R8D-R10D2 R8-R10> | None No implicit uses
* Holds the value of RFLAGS on
2 2 2 2
R12B-R15B2 | R12W-R15W? | R12D-R15D? | Ri2-R15%2 | None No implicit uses
Note:

1. Gray-shaded registers have no implicit uses.
2. Accessible only in 64-bit mode.

Arithmetic Operations. Several forms of the add, subtract, multiply,
and divide instructions use AL or rAX implicitly. The multiply
and divide instructions also use the concatenation of rDX:rAX
for double-sized results (multiplies) or quotient and remainder
(divides).

Sign-Extensions. The instructions that double the size of operands
by sign extension (for example, CBW, CWDE, CDQE, CWD,
CDQ, CQO) use rAX register implicitly for the operand. The
CWD, CDQ, and CQO instructions also uses the rDX register.

Special MOVs. The MOV instruction has several opcodes that
implicitly use the AL or rAX register for one operand.

String Operations. Many types of string instructions use the
accumulators implicitly. Load string, store string, and scan
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string instructions use AL or rAX for data and rDI or rSI for the
offset of a memory address.

I/0-Address-Space Operations. The I/O and string I/O instructions
use rAX to hold data that is received from or sent to a device
located in the I/0-address space. DX holds the device I/0-
address (the port number).

Table Translations. The table translate instruction (XLATB) uses
AL for an memory index and rBX for memory base address.

Compares and Exchanges. Compare and exchange instructions
(CMPXCHG) use the AL or rAX register for one operand.

Decimal Arithmetic. The decimal arithmetic instructions (AAA,
AAD, AAM, AAS, DAA, DAS) that adjust binary-coded decimal
(BCD) operands implicitly use the AL and AH register for their
operations.

Shifts and Rotates. Shift and rotate instructions can use the CL
register to specify the number of bits an operand is to be shifted
or rotated.

Conditional Jumps. Special conditional-jump instructions use the
rCX register instead of flags. The JCXZ and JrCXZ instructions
check the value of the rCX register and pass control to the
target instruction when the value of rCX register reaches 0.

Repeated String Operations. With the exception of I/O string
instructions, all string operations use rSI as the source-operand
pointer and rDI as the destination-operand pointer. I/O string
instructions use rDX to specify the input-port or output-port
number. For repeated string operations (those preceded with a
repeat-instruction prefix), the rSI and rDI registers are
incremented or decremented as the string elements are moved
from the source location to the destination. Repeat-string
operations also use rCX to hold the string length, and
decrement it as data is moved from one location to the other.

Stack Operations. Stack operations make implicit use of the rSP
register, and in some cases, the rBP register. The rSP register is
used to hold the top-of-stack pointer (or simply, stack pointer).
rSP is decremented when items are pushed onto the stack, and
incremented when they are popped off the stack. The ENTER
and LEAVE instructions use rBP as a stack-frame base pointer.
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Here, rBP points to the last entry in a data structure that is
passed from one block-structured procedure to another.

The use of rSP or rBP as a base register in an address
calculation implies the use of SS (stack segment) as the default
segment. Using any other GPR as a base register without a
segment-override prefix implies the use of the DS data segment
as the default segment.

The push all and pop all instructions (PUSHA, PUSHAD, POPA,
POPAD) implicitly use all of the GPRs.

CPUID Information. The CPUID instruction makes implicit use of
the EAX, EBX, ECX, and EDX registers. Software loads a
function code into EAX, executes the CPUID instruction, and
then reads the associated processor-feature information in
EAX, EBX, ECX, and EDX.

Figure 3-5 on page 39 shows the 64-bit RFLAGS register and the
flag bits visible to application software. Bits 15-0 are the
FLAGS register (accessed in legacy real and virtual-8086
modes), bits 31-0 are the EFLAGS register (accessed in legacy
protected mode and compatibility mode), and bits 63-0 are the
RFLAGS register (accessed in 64-bit mode). The name rFLAGS
refers to any of the three register widths, depending on the
current software context.
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63 32

Reserved, Read as Zero (RAZ)

31 16 15 1211109 8 7 6 5 43 2 10

See Volume 2 for System Flags

Reserved or System Flag |
Symbol Description Bit
OF Overflow Flag 11
DF Direction Flag 10
SF Sign Flag 7
ZF Zero Flag 6
AF Auxiliary Carry Flag 4
PF Parity Flag 2
CF Carry Flag 0

Figure 3-5. rFLAGS Register—Flags Visible to Application Software

The low 16 bits (FLAGS portion) of rFLAGS are accessible by
application software and hold the following flags:

m  One control flag (the direction flag DF).

m Six status flags (carry flag CF, parity flag PF, auxiliary carry
flag AF, zero flag ZF, sign flag SF, and overflow flag OF).

The direction flag (DF) flag controls the direction of string
operations. The status flags provide result information from
logical and arithmetic operations and control information for
conditional move and jump instructions.

Bits 31-16 of the rFLAGS register contain flags that are
accessible only to system software. These flags are described in
“System Registers” in Volume 2. The highest 32 bits of
RFLAGS are reserved. In 64-bit mode, writes to these bits are
ignored. They are read as zeros (RAZ). The rFLAGS register is
initialized to 02h on reset, so that all of the programmable bits
are cleared to zero.
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The effects that rFLAGS bit-values have on instructions are
summarized in the following places:

m  Conditional Moves (CMOVcc)—Table 3-4 on page 52.
m  Conditional Jumps (Jcc)—Table 3-5 on page 67.
m  Conditional Sets (SETcc)—Table 3-6 on page 72.

The effects that instructions have on rFLAGS bit-values are
summarized in “Instruction Effects on RFLAGS” in Volume 3.

The sections below describe each application-visible flag. All of
these flags are readable and writable. For example, the POPF,
POPFD, POPFQ, IRET, IRETD, and IRETQ instructions write
all flags. The carry and direction flags are writable by dedicated
application instructions. Other application-visible flags are
written indirectly by specific instructions. Reserved bits and
bits whose writability is prevented by the current values of
system flags, current privilege level (CPL), or the current
operating mode, are unaffected by the POPFx instructions.

Carry Flag (CF). Bit 0. Hardware sets the carry flag to 1 if the last
integer addition or subtraction operation resulted in a carry
(for addition) or a borrow (for subtraction) out of the most-
significant bit position of the result. Otherwise, hardware clears
the flag to 0.

The increment and decrement instructions—unlike the
addition and subtraction instructions—do not affect the carry
flag. The bit shift and bit rotate instructions shift bits of
operands into the carry flag. Logical instructions like AND, OR,
XOR clear the carry flag. Bit-test instructions (BTx) set the
value of the carry flag depending on the value of the tested bit
of the operand.

Software can set or clear the carry flag with the STC and CLC
instructions, respectively. Software can complement the flag
with the CMC instruction.

Parity Flag (PF). Bit 2. Hardware sets the parity flag to 1 if there is
an even number of 1 bits in the least-significant byte of the last
result of certain operations. Otherwise (i.e., for an odd number
of 1 bits), hardware clears the flag to 0. Software can read the
flag to implement parity checking.

Auxiliary Carry Flag (AF). Bit 4. Hardware sets the auxiliary carry
flag to 1 if the last binary-coded decimal (BCD) operation
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resulted in a carry (for addition) or a borrow (for subtraction)
out of bit 3. Otherwise, hardware clears the flag to 0.

The main application of this flag is to support decimal
arithmetic operations. Most commonly, this flag is used
internally by correction commands for decimal addition (AAA)
and subtraction (AAS).

Zero Flag (ZF). Bit 6. Hardware sets the zero flag to 1 if the last
arithmetic operation resulted in a value of zero. Otherwise (for
a non-zero result), hardware clears the flag to 0. The compare
and test instructions also affect the zero flag.

The zero flag is typically used to test whether the result of an
arithmetic or logical operation is zero, or to test whether two
operands are equal.

Sign Flag (SF). Bit 7. Hardware sets the sign flag to 1 if the last
arithmetic operation resulted in a negative value. Otherwise
(for a positive-valued result), hardware clears the flag to 0.
Thus, in such operations, the value of the sign flag is set equal
to the value of the most-significant bit of the result. Depending
on the size of operands, the most-significant bit is bit 7 (for
bytes), bit 15 (for words), bit 31 (for doublewords), or bit 63 (for
quadwords).

Direction Flag (DF). Bit 10. The direction flag determines the order
in which strings are processed. Software can set the direction
flag to 1 to specify decrementing the data pointer for the next
string instruction (LODSx, STOSx, MOVSx, SCASx, CMPSx,
OUTSx, or INSx). Clearing the direction flag to 0 specifies
incrementing the data pointer. The pointers are stored in the
rSI or rDI register. Software can set or clear the flag with the
STD and CLD instructions, respectively.

Overflow Flag (OF). Bit 11. Hardware sets the overflow flag to 1 to
indicate that the most-significant (sign) bit of the result of the
last signed integer operation differed from the signs of both
source operands. Otherwise, hardware clears the flag to 0. A set
overflow flag means that the magnitude of the positive or
negative result is too big (overflow) or too small (underflow) to
fit its defined data type.

The OF flag is undefined after the DIV instruction and after a
shift of more than one bit. Logical instructions clear the
overflow flag.
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The instruction pointer register—IP, EIP, or RIP, or simply rIP
for any of the three depending on the context—is used in
conjunction with the code-segment (CS) register to locate the
next instruction in memory. See Section 2.5, “Instruction
Pointer,” on page 24 for details.

Operands are either referenced by an instruction's encoding or
included as an immediate value in the instruction encoding.
Depending on the instruction, referenced operands can be
located in registers, memory locations, or I/O ports.

Figure 3-6 on page 43 shows the register images of the general-
purpose data types. In the general-purpose programming
environment, these data types can be interpreted by instruction
syntax or the software context as the following types of
numbers and strings:

m  Signed (two's-complement) integers.

m Unsigned integers.

m  BCD digits.

m  Packed BCD digits.

m Strings, including bit strings.

The double quadword data type is supported in the RDX:RAX
registers by the MUL, IMUL, DIV, IDIV, and CQO instructions.
Software can interpret the data types in ways other than those
shown in Figure 3-6 on page 43 but the AMDG64 instruction set

does not directly support such interpretations and software
must handle them entirely on its own.

Table 3-2 on page 44 shows the range of representable values
for the general-purpose data types.
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127 Signed Integer

s 16 bytes (64-bit mode only)

Double
Quadword

5 8 bytes (64-bit mode only) Quadword

63 s 4 bytes Doubleword

3l s 2 bytes Word

15 S Byte

7 0

Unsigned Integer
127 0

16 bytes (64-bit mode only)

Double
Quadword

8 bytes (64-bit mode only) Quadword

63 4 bytes Doubleword

3 2 bytes Word

15 Byte

Packed BCD

BCD Digit
7 3{ Bit

0

513-326.eps

Figure 3-6. General-Purpose Data Types

Signed and Unsigned Integers. The architecture supports signed and
unsigned 1 byte, 2 bytes, 4 byte and 8 byte integers. The sign bit
is stored in the most significant bit.
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Table 3-2. Representable Values of General-Purpose Data Types

Data Type

Double

Quadword Quadword?

Byte Word Doubleword

Signed Integers'

27to+@7-1) | 2Pto+@P-1) | -2 to+(2° 1) | 2% to +(2%%-1) | 2 to +(2'2 A1)

0to +28-1 0 to +2'6-1 0 to +2°2-1 0 to +2541 0 to +2'28-1
Unsigned Integers | 1,555 | (0t065535) | (0t0429x10°) | (0to 1.84x10%) | (0t03.40x 10%)
Packed BCD Digits 00 to 99 multiple packed BCD-digit bytes
BCD Digit 0to9 multiple BCD-digit bytes
Note:

1. The sign bit is the most-significant bit (e.q., bit 7 for a byte, bit 15 for a word, etc.).
2. The double quadword data type is supported in the RDX:RAX registers by the MUL, IMUL, DIV, IDIV, and CQO instructions.

Binary-Coded-Decimal (BCD) Digits. BCD digits have values ranging
from 0 to 9. These values can be represented in binary encoding
with four bits. For example, 0000b represents the decimal
number 0 and 1001b represents the decimal number 9. Values
ranging from 1010b to 1111b are invalid for this data type.
Because a byte contains eight bits, two BCD digits can be stored
in a single byte. This is referred to as packed-BCD. If a single
BCD digit is stored per byte, it is referred to as unpacked-BCD.
In the x87 floating-point programming environment (described
in Section 6, “x87 Floating-Point Programming,” on page 293)
an 80-bit packed BCD data type is also supported, along with
conversions between floating-point and BCD data types, so that
data expressed in the BCD format can be operated on as
floating-point values.

Integer add, subtract, multiply, and divide instructions can be
used to operate on single (unpacked) BCD digits. The result
must be adjusted to produce a correct BCD representation. For
unpacked BCD numbers, the ASCII-adjust instructions are
provided to simplify that correction. In the case of division, the
adjustment must be made prior to executing the integer-divide
instruction.

Similarly, integer add and subtract instructions can be used to
operate on packed-BCD digits. The result must be adjusted to
produce a correct packed-BCD representation. Decimal-adjust

44

Chapter 3: General-Purpose Programming



AMDA

24592—Rev. 3.10—March 2005 AMDG64 Technology

3.2.2 Operand Sizes
and Overrides

instructions are provided to simplify packed-BCD result
corrections.

Strings. Strings are a continuous sequence of a single data type.
The string instructions can be used to operate on byte, word,
doubleword, or quadword data types. The maximum length of a
string of any data type is 2324 bytes, in legacy or compatibility
modes, or 241 bytes in 64-bit mode. One of the more common
types of strings used by applications are byte data-type strings
known as ASCII strings, which can be used to represent
character data.

Bit strings are also supported by instructions that operate
specifically on bit strings. In general, bit strings can start and
end at any bit location within any byte, although the BTx bit-
string instructions assume that strings start on a byte boundary.
The length of a bit string can range in size from a single bit up
to 232-1 bits, in legacy or compatibility modes, or 264._1 bits in
64-bit mode.

Default Operand Size. In legacy and compatibility modes, the
default operand size is either 16 bits or 32 bits, as determined
by the default-size (D) bit in the current code-segment
descriptor (for details, see “Segmented Virtual Memory” in
Volume 2). In 64-bit mode, the default operand size for most
instructions is 32 bits.

Application software can override the default operand size by
using an operand-size instruction prefix. Table 3-3 on page 46
shows the instruction prefixes for operand-size overrides in all
operating modes. In 64-bit mode, the default operand size for
most instructions is 32 bits. A REX prefix (see Section 3.5.2,
“REX Prefixes,” on page 91) specifies a 64-bit operand size, and
a 66h prefix specifies a 16-bit operand size. The REX prefix
takes precedence over the 66h prefix.
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Table 3-3. Operand-Size Overrides
Effective Instruction Prefix
Default Operand
Operating Mode Operand pSize | .
i i . 66h RE
Size (Bits) (Bits)
64 X yes
64-Bit 32? 32 no no
Mode
16 yes no
Long 32 no
Mode 32
Compatibility 16 yes
Mode 32 yes
16
16 no Not
3 no Applicable
32
Legacy Mode 16 yes
(Protected, Virtual-8086,
or Real Mode) 6 32 yes
16 no
Note:
1. A “no” indicates that the default operand size is used. An “x” means “don't care.”
2. Near branches, instructions that implicitly reference the stack pointer, and certain other
instructions default to 64-bit operand size. See “General-Purpose Instructions in 64-Bit Mode”
in Volume 3
There are several exceptions to the 32-bit operand-size default
in 64-bit mode, including near branches and instructions that
implicitly reference the RSP stack pointer. For example, the
near CALL, near JMP, Jcc, LOOPcc, POP, and PUSH
instructions all default to a 64-bit operand size in 64-bit mode.
Such instructions do not need a REX prefix for the 64-bit
operand size. For details, see “General-Purpose Instructions in
64-Bit Mode” in Volume 3.
Effective Operand Size. The term effective operand size describes the
operand size for the current instruction, after accounting for
the instruction’s default operand size and any operand-size
override or REX prefix that is used with the instruction.
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32.3 Operand
Addressing

Immediate Operand Size. In legacy mode and compatibility modes,
the size of immediate operands can be 8, 16, or 32 bits,
depending on the instruction. In 64-bit mode, the maximum size
of an immediate operand is also 32 bits, except that 64-bit
immediates can be copied into a 64-bit GPR using the MOV
instruction.

When the operand size of a MOV instruction is 64 bits, the
processor sign-extends immediates to 64 bits before using them.
Support for true 64-bit immediates is accomplished by
expanding the semantics of the MOV reg, imml6/32 instructions.
In legacy and compatibility modes, these instructions—opcodes
B8h through BFh—copy a 16-bit or 32-bit immediate
(depending on the effective operand size) into a GPR. In 64-bit
mode, if the operand size is 64 bits (requires a REX prefix),
these instructions can be used to copy a true 64-bit immediate
into a GPR.

Operands for general-purpose instructions are referenced by
the instruction's syntax or they are incorporated in the
instruction as an immediate value. Referenced operands can be
in registers, memory, or I/O ports.

Register Operands. Most general-purpose instructions that take
register operands reference the general-purpose registers
(GPRs). A few general-purpose instructions reference operands
in the RFLAGS register, XMM registers, or MMX™ registers.

The type of register addressed is specified in the instruction
syntax. When addressing GPRs or XMM registers, the REX
instruction prefix can be used to access the extended GPRs or
XMM registers, as described in Section 3.5, “Instruction
Prefixes,” on page 87.

Memory Operands. Many general-purpose instructions can access
operands in memory. Section 2.2, “Memory Addressing,” on
page 16 describes the general methods and conditions for
addressing memory operands.

1/0 Ports. Operands in I/O ports are referenced according to the
conventions described in Section 3.8, “Input/Output,” on
page 111.

Immediate Operands. In certain instructions, a source operand—
called an immediate operand, or simply immediate—is included
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as part of the instruction rather than being accessed from a
register or memory location. For details on the size of
immediate operands, see “Immediate Operand Size” on
page 47.

A data access is aligned if its address is a multiple of its operand
size, in bytes. The following examples illustrate this definition:

m Byte accesses are always aligned. Bytes are the smallest
addressable parts of memory.

m  Word (two-byte) accesses are aligned if their address is a
multiple of 2.

m  Doubleword (four-byte) accesses are aligned if their address
is a multiple of 4.

»  Quadword (eight-byte) accesses are aligned if their address
is a multiple of 8.

The AMDG64 architecture does not impose data-alignment
requirements for accessing data in memory. However,
depending on the location of the misaligned operand with
respect to the width of the data bus and other aspects of the
hardware implementation (such as store-to-load forwarding
mechanisms), a misaligned memory access can require more
bus cycles than an aligned access. For maximum performance,
avoid misaligned memory accesses.

Performance on many hardware implementations will benefit
from observing the following operand-alignment and operand-
size conventions:

m  Avoid misaligned data accesses.

m Maintain consistent use of operand size across all loads and
stores. Larger operand sizes (doubleword and quadword)
tend to make more efficient use of the data bus and any
data-forwarding features that are implemented by the
hardware.

m  When using word or byte stores, avoid loading data from the
same doubleword of memory, other than the identical start
addresses of the stores.
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3.3

331 Syntax

Instruction Summary

This section summarizes the functions of the general-purpose
instructions. The instructions are organized by functional
group—such as, data-transfer instructions, arithmetic
instructions, and so on. Details on individual instructions are
given in the alphabetically organized “General-Purpose
Instruction Reference” in Volume 3.

Each instruction has a mnemonic syntax used by assemblers to
specify the operation and the operands to be used for source
and destination (result) data. Figure 3-7 shows an example of
the mnemonic syntax for a compare (CMP) instruction. In this
example, the CMP mnemonic is followed by two operands, a 32-
bit register or memory operand and an 8-bit immediate
operand.

CMP reg/mem32, imm8

Mnemonic j

First Source Operand
and Destination Operand

Second Source Operand 513-139.6ps

Figure 3-7. Mnemonic Syntax Example

In most instructions that take two operands, the first (left-most)
operand is both a source operand and the destination operand.
The second (right-most) operand serves only as a source.
Instructions can have one or more prefixes that modify default
instruction functions or operand properties. These prefixes are
summarized in Section 3.5, “Instruction Prefixes,” on page 87.
Instructions that access 64-bit operands in a general-purpose
register (GPR) or any of the extended GPR or XMM registers
require a REX instruction prefix.

Unless otherwise stated in this section, the word register means
a general-purpose register (GPR). Several instructions affect
the flag bits in the RFLAGS register. “Instruction Effects on
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RFLAGS?” in Volume 3 summarizes the effects that instructions
have on rFLAGS bits.

The data-transfer instructions copy data between registers and
memory.

Move.

s MOV—Move

m  MOVSX—Move with Sign-Extend

m MOVZX—Move with Zero-Extend

m  MOVD—Move Doubleword or Quadword

m  MOVNTI—Move Non-Temporal Doubleword or Quadword

MOVx copies a byte, word, doubleword, or quadword from a
register or memory location to a register or memory location.
The source and destination cannot both be memory locations.
An immediate constant can be used as a source operand with
the MOV instruction. For MOV, the destination must be of the
same size as the source, but the MOVSX and MOVZX
instructions copy values of smaller size to a larger size by using
sign-extension or zero-extension. The MOVD instruction copies
a doubleword or quadword between a general-purpose register
or memory and an XMM or MMX register.

The MOV instruction is in many aspects similar to the
assignment operator in high-level languages. The simplest
example of their use is to initialize variables. To initialize a
register to 0, rather than using a MOV instruction it may be
more efficient to use the XOR instruction with identical
destination and source operands.

The MOVNTI instruction stores a doubleword or quadword from
a register into memory as “non-temporal” data, which assumes
a single access (as opposed to frequent subsequent accesses of
“temporal data”). The operation therefore minimizes cache
pollution. The exact method by which cache pollution is
minimized depends on the hardware implementation of the
instruction. For further information, see Section 3.9, “Memory
Optimization,” on page 115.

Conditional Move.
m CMOVcc—Conditional Move If condition
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The CMOVcc instructions conditionally copy a word,
doubleword, or quadword from a register or memory location to
a register location. The source and destination must be of the
same size.

The CMOVcc instructions perform the same task as MOV but
work conditionally, depending on the state of status flags in the
RFLAGS register. If the condition is not satisfied, the
instruction has no effect and control is passed to the next
instruction. The mnemonics of CMOVcc instructions indicate
the condition that must be satisfied. Several mnemonics are
often used for one opcode to make the mnemonics easier to
remember. For example, CMOVE (conditional move if equal)
and CMOVZ (conditional move if zero) are aliases and compile
to the same opcode. Table 3-4 on page 52 shows the RFLAGS
values required for each CMOVcc instruction.

In assembly languages, the conditional move instructions
correspond to small conditional statements like:
IF a = b THEN x =y

CMOVcc instructions can replace two instructions—a
conditional jump and a move. For example, to perform a high-
level statement like:

IF ECX = 5 THEN EAX = EBX

without a CMOVcc instruction, the code would look like:

cmp ecx, 5 ; test if ecx equals b5

jnz Continue ; test condition and skip if not met
mov eax, ebx ; move

Continue: ; continuation

but with a CMOVcc instruction, the code would look like:

cmp ecx, 5 ; test if ecx equals to 5
cmovz eax, ebx ;: test condition and move

Replacing conditional jumps with conditional moves also has
the advantage that it can avoid branch-prediction penalties that
may be caused by conditional jumps.

Support for CMOVcc instructions depends on the processor
implementation. To find out if a processor is able to perform
CMOVcc instructions, use the CPUID instruction.
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Table 3-4. rFLAGS for CMOVcc Instructions

Mnemonic Required Flag Description
State

Ccmovo OF=1 Conditional move if overflow
CMOVNO OF=0 Conditional move if not overflow
CMOVB Conditional move if below
cMovC CF=1 Conditional move if carry
CMOVNAE Conditional move if not above or equal
CMOVAE Conditional move if above or equal
CMOVNB CF=0 Conditional move if not below
CMOVNC Conditional move if not carry
CMOVE JF=1 Conditional move if equal
CMoVvZ - Conditional move if zero
CMOVNE JF=0 Conditional move if not equal
CMOVNZ - Conditional move if not zero
CMOVBE CF=1or Conditional move if below or equal
CMOVNA ZF=1 Conditional move if not above
CMOVA CF=0and Conditional move if not below or equal
CMOVNBE ZF=0 Conditional move if not below or equal
CMOVS SF=1 Conditional move if sign
CMOVNS SF=0 Conditional move if not sign
CMovp PF=1 Conditional move if parity
CMOVPE - Conditional move if parity even
CMOVNP PF=0 Conditional move if not parity
CMovPO - Conditional move if parity odd
CMOVL SF< OF Conditional move if less
CMOVNGE Conditional move if not greater or equal
CMOVGE SF=OF Conditional move if greater or equal
CMOVNL - Conditional move if not less
CMOVLE ZF=1or Conditional move if less or equal
CMOVNG SF< OF Conditional move if not greater
CMOVG ZF=0and Conditional move if greater
CMOVNLE SF=0F Conditional move if not less or equal
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Stack Operations.

s  POP—Pop Stack

m  POPA—Pop All to GPR Words

s  POPAD—Pop All to GPR Doublewords

s  PUSH—Push onto Stack

s  PUSHA—Push All GPR Words onto Stack

s  PUSHAD—Push All GPR Doublewords onto Stack
m ENTER—Create Procedure Stack Frame

m LEAVE—Delete Procedure Stack Frame

PUSH copies the specified register, memory location, or
immediate value to the top of stack. This instruction
decrements the stack pointer by 2, 4, or 8, depending on the
operand size, and then copies the operand into the memory
location pointed to by SS:rSP.

POP copies a word, doubleword, or quadword from the memory
location pointed to by the SS:rSP registers (the top of stack) to a
specified register or memory location. Then, the rSP register is
incremented by 2, 4, or 8. After the POP operation, rSP points
to the new top of stack.

PUSHA or PUSHAD stores eight word-sized or doubleword-
sized registers onto the stack: eAX, eCX, eDX, eBX, eSP, eBP,
eSI and eDI, in that order. The stored value of eSP is sampled at
the moment when the PUSHA instruction started. The resulting
stack-pointer value is decremented by 16 or 32.

POPA or POPAD extracts eight word-sized or doubleword-sized
registers from the stack: eDI, eSI, eBP, eSP, eBX, eDX, eCX and
eAX, in that order (which is the reverse of the order used in the
PUSHA instruction). The stored eSP value is ignored by the
POPA instruction. The resulting stack pointer value is
incremented by 16 or 32.

It is a common practice to use PUSH instructions to pass
parameters (via the stack) to functions and subroutines. The
typical instruction sequence used at the beginning of a
subroutine looks like:

push ebp ; save current EBP
mov ebp, esp ; set stack frame pointer value
sub esp, N ; allocate space for local variables
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The rBP register is used as a stack frame pointer—a base address
of the stack area used for parameters passed to subroutines and
local variables. Positive offsets of the stack frame pointed to by
rBP provide access to parameters passed while negative offsets
give access to local variables. This technique allows creating re-
entrant subroutines.

The ENTER and LEAVE instructions provide support for
procedure calls, and are mainly used in high-level languages.
The ENTER instruction is typically the first instruction of the
procedure, and the LEAVE instruction is the last before the
RET instruction.

The ENTER instruction creates a stack frame for a procedure.
The first operand, size, specifies the number of bytes allocated
in the stack. The second operand, depth, specifies the number of
stack-frame pointers copied from the calling procedure’s stack
(i.e., the nesting level). The depth should be an integer in the
range 0-31.

Typically, when a procedure is called, the stack contains the
following four components:

m Parameters passed to the called procedure (created by the
calling procedure).

m  Return address (created by the CALL instruction).

m  Array of stack-frame pointers (pointers to stack frames of
procedures with smaller nesting-level depth) which are used
to access the local variables of such procedures.

m Local variables used by the called procedure.

All these data are called the stack frame. The ENTER
instruction simplifies management of the last two components
of a stack frame. First, the current value of the rBP register is
pushed onto the stack. The value of the rSP register at that
moment is a frame pointer for the current procedure: positive
offsets from this pointer give access to the parameters passed to
the procedure, and negative offsets give access to the local
variables which will be allocated later. During procedure
execution, the value of the frame pointer is stored in the rBP
register, which at that moment contains a frame pointer of the
calling procedure. This frame pointer is saved in a temporary
register. If the depth operand is greater than one, the array of
depth-1 frame pointers of procedures with smaller nesting level
is pushed onto the stack. This array is copied from the stack
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3.3.3 Data Conversion

frame of the calling procedure, and it is addressed by the rBP
register from the calling procedure. If the depth operand is
greater than zero, the saved frame pointer of the current
procedure is pushed onto the stack (forming an array of depth
frame pointers). Finally, the saved value of the frame pointer is
copied to the rBP register, and the rSP register is decremented
by the value of the first operand, allocating space for local
variables used in the procedure. See “Stack Operations” on
page 53 for a parameter-passing instruction sequence using
PUSH that is equivalent to ENTER.

The LEAVE instruction removes local variables and the array of
frame pointers, allocated by the previous ENTER instruction,
from the stack frame. This is accomplished by the following two
steps: first, the value of the frame pointer is copied from the
rBP register to the rSP register. This releases the space
allocated by local variables and an array of frame pointers of
procedures with smaller nesting levels. Second, the rBP register
is popped from the stack, restoring the previous value of the
frame pointer (or simply the value of the rBP register, if the
depth operand is zero). Thus, the LEAVE instruction is
equivalent to the following code:

mov rSP, rBP

pop rBP

The data-conversion instructions perform various
transformations of data, such as operand-size doubling by sign
extension, conversion of little-endian to big-endian format,
extraction of sign masks, searching a table, and support for
operations with decimal numbers.

Sign Extension.

m  CBW—Convert Byte to Word

s  CWDE—Convert Word to Doubleword

m  CDQE—Convert Doubleword to Quadword

s  CWD—Convert Word to Doubleword

s  CDQ—Convert Doubleword to Quadword

s CQO—Convert Quadword to Octword

The CBW, CWDE, and CDQE instructions sign-extend the AL,
AX, or EAX register to the upper half of the AX, EAX, or RAX

register, respectively. By doing so, these instructions create a
double-sized destination operand in rAX that has the same
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numerical value as the source operand. The CBW, CWDE, and
CDQE instructions have the same opcode, and the action taken
depends on the effective operand size.

The CWD, CDQ and CQO instructions sign-extend the AX, EAX,
or RAX register to all bit positions of the DX, EDX, or RDX
register, respectively. By doing so, these instructions create a
double-sized destination operand in rDX:rAX that has the same
numerical value as the source operand. The CWD, CDQ, and
CQO instructions have the same opcode, and the action taken
depends on the effective operand size.

Flags are not affected by these instructions. The instructions
can be used to prepare an operand for signed division
(performed by the IDIV instruction) by doubling its storage
size.

Extract Sign Mask.

» MOVMSKPS—Extract Packed Single-Precision Floating-
Point Sign Mask

m MOVMSKPD—Extract Packed Double-Precision Floating-
Point Sign Mask

The MOVMSKPS instruction moves the sign bits of four packed
single-precision floating-point values in an XMM register to the
four low-order bits of a general-purpose register, with zero-
extension. MOVMSKPD does a similar operation for two
packed double-precision floating-point values: it moves the two
sign bits to the two low-order bits of a general-purpose register,
with zero-extension. The result of either instruction is a sign-bit
mask.

Translate.
m XLAT—Translate Table Index

The XLAT instruction replaces the value stored in the AL
register with a table element. The initial value in AL serves as
an unsigned index into the table, and the start (base) of table is
specified by the DS:rBX registers (depending on the effective
address size).

This instruction is not recommended. The following instruction
serves to replace it:

MOV AL,[rBX + AL]

56

Chapter 3: General-Purpose Programming



AMDA
24592—Rev. 3.10—March 2005 AMDG64 Technology

ASCII Adjust.

s AAA—ASCII Adjust After Addition
s  AAD—ASCII Adjust Before Division
m  AAM—ASCII Adjust After Multiply
s  AAS—ASCII Adjust After Subtraction

The AAA, AAD, AAM, and AAS instructions perform
corrections of arithmetic operations with non-packed BCD
values (i.e., when the decimal digit is stored in a byte register).
There are no instructions which directly operate on decimal
numbers (either packed or non-packed BCD). However, the
ASCII-adjust instructions correct decimal-arithmetic results.
These instructions assume that an arithmetic instruction, such
as ADD, was performed on two BCD operands, and that the
result was stored in the AL or AX register. This result can be
incorrect or it can be a non-BCD value (for example, when a
decimal carry occurs). After executing the proper ASCII-adjust
instruction, the AX register contains a correct BCD
representation of the result. (The AAD instruction is an
exception to this, because it should be applied before a DIV
instruction, as explained below). All of the ASCII-adjust
instructions are able to operate with multiple-precision decimal
values.

AAA should be applied after addition of two non-packed
decimal digits. AAS should be applied after subtraction of two
non-packed decimal digits. AAM should be applied after
multiplication of two non-packed decimal digits. AAD should be
applied before the division of two non-packed decimal numbers.

Although the base of the numeration for ASCII-adjust
instructions is assumed to be 10, the AAM and AAD
instructions can be used to correct multiplication and division
with other bases.

BCD Adjust.

m DAA—Decimal Adjust after Addition
m DAS—Decimal Adjust after Subtraction

The DAA and DAS instructions perform corrections of addition
and subtraction operations on packed BCD values. (Packed BCD
values have two decimal digits stored in a byte register, with the
higher digit in the higher four bits, and the lower one in the
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lower four bits.) There are no instructions for correction of
multiplication and division with packed BCD values.

DAA should be applied after addition of two packed-BCD
numbers. DAS should be applied after subtraction of two
packed-BCD numbers.

DAA and DAS can be used in a loop to perform addition or
subtraction of two multiple-precision decimal numbers stored
in packed-BCD format. Each loop cycle would operate on
corresponding bytes (containing two decimal digits) of
operands.

Endian Conversion.
s BSWAP—Byte Swap

The BSWAP instruction changes the byte order of a doubleword
or quadword operand in a register, as shown in Figure 3-8. In a
doubleword, bits 7-0 are exchanged with bits 31-24, and bits
15-8 are exchanged with bits 23-16. In a quadword, bits 7-0 are
exchanged with bits 63-56, bits 15-8 with bits 55-48, bits 23-16
with bits 47-40, and bits 31-24 with bits 39-32. See the
following illustration.

31 2423 16 15 8 7 0
I P |
I | | | |
31 2423 16 15 8 7 0

Figure 3-8. BSWAP Doubleword Exchange

A second application of the BSWAP instruction to the same
operand restores its original value. The result of applying the
BSWAP instruction to a 16-bit register is undefined. To swap
bytes of a 16-bit register, use the XCHG instruction.

The BSWAP instruction is used to convert data between little-
endian and big-endian byte order.
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3.3.4 Load Segment
Registers

3.3.5 Load Effective
Address

These instructions load segment registers.

s LDS, LES, LFS, LGS, LSS—Load Far Pointer
s MOV segReg—Move Segment Register
m  POP segReg—Pop Stack Into Segment Register

The LDS, LES, LFD, LGS, and LSS instructions atomically load
the two parts of a far pointer into a segment register and a
general-purpose register. A far pointer is a 16-bit segment
selector and a 16-bit or 32-bit offset. The load copies the
segment-selector portion of the pointer from memory into the
segment register and the offset portion of the pointer from
memory into a general-purpose register.

The effective operand size determines the size of the offset
loaded by the LDS, LES, LFD, LGS, and LSS instructions. The
instructions load not only the software-visible segment selector
into the segment register, but they also cause the hardware to
load the associated segment-descriptor information into the
software-invisible (hidden) portion of that segment register.

The MOV segReg and POP segReg instructions load a segment
selector from a general-purpose register or memory (for MOV
segReg) or from the top of the stack (for POP segReg) to a
segment register. These instructions not only load the software-
visible segment selector into the segment register but also
cause the hardware to load the associated segment-descriptor
information into the software-invisible (hidden) portion of that
segment register.

In 64-bit mode, the POP DS, POP ES, and POP SS instructions
are invalid.

m LEA—Tload Effective Address

The LEA instruction calculates and loads the effective address
(offset within a given segment) of a source operand and places
it in a general-purpose register.

LEA is related to MOV, which copies data from a memory
location to a register, but LEA takes the address of the source
operand, whereas MOV takes the contents of the memory
location specified by the source operand. In the simplest cases,
LEA can be replaced with MOV. For example:

Tea eax, [ebx]
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has the same effect as:

mov eax, ebx
However, LEA allows software to use any valid addressing mode
for the source operand. For example:

lea eax, [ebxt+edi]

loads the sum of EBX and EDI registers into the EAX register.
This could not be accomplished by a single MOV instruction.

LEA has a limited capability to perform multiplication of
operands in general-purpose registers using scaled-index
addressing. For example:

lea eax, [ebx+ebx*8]

loads the value of the EBX register, multiplied by 9, into the
EAX register.

The arithmetic instructions perform basic arithmetic
operations, such as addition, subtraction, multiplication, and
division on integer operands.

Add and Subtract.

m ADC—Add with Carry

m  ADD—Signed or Unsigned Add

s SBB—Subtract with Borrow

m  SUB—Subtract

s  NEG—Two’s Complement Negation

The ADD instruction performs addition of two integer
operands. There are opcodes that add an immediate value to a
byte, word, doubleword, or quadword register or a memory
location. In these opcodes, if the size of the immediate is
smaller than that of the destination, the immediate is first sign-
extended to the size of the destination operand. The arithmetic
flags (OF, SF, ZF, AF, CF, PF) are set according to the resulting
value of the destination operand.

The ADC instruction performs addition of two integer
operands, plus 1 if the carry flag (CF) is set.

The SUB instruction performs subtraction of two integer
operands.
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The SBB instruction performs subtraction of two integer
operands, and it also subtracts an additional 1 if the carry flag is
set.

The ADC and SBB instructions simplify addition and
subtraction of multiple-precision integer operands, because
they correctly handle carries (and borrows) between parts of a
multiple-precision operand.

The NEG instruction performs negation of an integer operand.
The value of the operand is replaced with the result of
subtracting the operand from zero.

Multiply and Divide.

s  MUL—Multiply Unsigned
m IMUL—Signed Multiply

m DIV—Unsigned Divide

m IDIV—Signed Divide

The MUL instruction performs multiplication of unsigned
integer operands. The size of operands can be byte, word,
doubleword, or quadword. The product is stored in a destination
which is double the size of the source operands (multiplicand
and factor).

The MUL instruction's mnemonic has only one operand, which
is a factor. The multiplicand operand is always assumed to be an
accumulator register. For byte-sized multiplies, AL contains the
multiplicand, and the result is stored in AX. For word-sized,
doubleword-sized, and quadword-sized multiplies, rAX contains
the multiplicand, and the result is stored in rDX and rAX.

The IMUL instruction performs multiplication of signed integer
operands. There are forms of the IMUL instruction with one,
two, and three operands, and it is thus more powerful than the
MUL instruction. The one-operand form of the IMUL
instruction behaves similarly to the MUL instruction, except
that the operands and product are signed integer values. In the
two-operand form of IMUL, the multiplicand and product use
the same register (the first operand), and the factor is specified
in the second operand. In the three-operand form of IMUL, the
product is stored in the first operand, the multiplicand is
specified in the second operand, and the factor is specified in
the third operand.
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The DIV instruction performs division of unsigned integers.
The instruction divides a double-sized dividend in AH:AL or
rDX:rAX by the divisor specified in the operand of the
instruction. It stores the quotient in AL or rAX and the
remainder in AH or rDX.

The IDIV instruction performs division of signed integers. It
behaves similarly to DIV, with the exception that the operands
are treated as signed integer values.

Division is the slowest of all integer arithmetic operations and
should be avoided wherever possible. One possibility for
improving performance is to replace division with
multiplication, such as by replacing i/j/k with i/(j*k). This
replacement is possible if no overflow occurs during the
computation of the product. This can be determined by
considering the possible ranges of the divisors.

Increment and Decrement.

s DEC—Decrement by 1
s INC—Increment by 1

The INC and DEC instructions are used to increment and
decrement, respectively, an integer operand by one. For both
instructions, an operand can be a byte, word, doubleword, or
quadword register or memory location.

These instructions behave in all respects like the corresponding
ADD and SUB instructions, with the second operand as an
immediate value equal to 1. The only exception is that the carry
flag (CF) is not affected by the INC and DEC instructions.

Apart from their obvious arithmetic uses, the INC and DEC
instructions are often used to modify addresses of operands. In
this case it can be desirable to preserve the value of the carry
flag (to use it later), so these instructions do not modify the
carry flag.

The rotate and shift instructions perform cyclic rotation or non-
cyclic shift, by a given number of bits (called the count), in a
given byte-sized, word-sized, doubleword-sized or quadword-
sized operand.

When the count is greater than 1, the result of the rotate and
shift instructions can be considered as an iteration of the same
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1-bit operation by count number of times. Because of this, the
descriptions below describe the result of 1-bit operations.

The count can be 1, the value of the CL register, or an
immediate 8-bit value. To avoid redundancy and make rotation
and shifting quicker, the count is masked to the 5 or 6 least-
significant bits, depending on the effective operand size, so that
its value does not exceed 31 or 63 before the rotation or shift
takes place.

Rotate.

m RCL—Rotate Through Carry Left

m  RCR—Rotate Through Carry Right
m  ROL—Rotate Left

=  ROR—Rotate Right

The RCx instructions rotate the bits of the first operand to the
left or right by the number of bits specified by the source
(count) operand. The bits rotated out of the destination
operand are rotated into the carry flag (CF) and the carry flag is
rotated into the opposite end of the first operand.

The ROx instructions rotate the bits of the first operand to the
left or right by the number of bits specified by the source
operand. Bits rotated out are rotated back in at the opposite
end. The value of the CF flag is determined by the value of the
last bit rotated out. In single-bit left-rotates, the overflow flag
(OF) is set to the XOR of the CF flag after rotation and the
most-significant bit of the result. In single-bit right-rotates, the
OF flag is set to the XOR of the two most-significant bits. Thus,
in both cases, the OF flag is set to 1 if the single-bit rotation
changed the value of the most-significant bit (sign bit) of the
operand. The value of the OF flag is undefined for multi-bit
rotates.

Bit-rotation instructions provide many ways to reorder bits in an
operand. This can be useful, for example, in character
conversion, including cryptography techniques.

Shift.

m  SAL—Shift Arithmetic Left

m  SAR—Shift Arithmetic Right
m  SHL—Shift Left
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s  SHR—Shift Right
s  SHLD—Shift Left Double
s  SHRD—Shift Right Double

The SHx instructions (including SHxD) perform shift
operations on unsigned operands. The SAx instructions operate
with signed operands.

SHL and SAL instructions effectively perform multiplication of
an operand by a power of 2, in which case they work as more-
efficient alternatives to the MUL instruction. Similarly, SHR
and SAR instructions can be used to divide an operand (signed
or unsigned, depending on the instruction used) by a power of
2.

Although the SAR instruction divides the operand by a power
of 2, the behavior is different from the IDIV instruction. For
example, shifting -11 (FFFFFFF5h) by two bits to the right (i.e.
divide -11 by 4), gives a result of FFFFFFFDh, or -3, whereas
the IDIV instruction for dividing —11 by 4 gives a result of -2.
This is because the IDIV instruction rounds off the quotient to
zero, whereas the SAR instruction rounds off the remainder to
zero for positive dividends, and to negative infinity for negative
dividends. This means that, for positive operands, SAR behaves
like the corresponding IDIV instruction, and for negative
operands, it gives the same result if and only if all the shifted-
out bits are zeroes, and otherwise the result is smaller by 1.

The SAR instruction treats the most-significant bit (msb) of an
operand in a special way: the msb (the sign bit) is not changed,
but is copied to the next bit, preserving the sign of the result.
The least-significant bit (Isb) is shifted out to the CF flag. In the
SAL instruction, the msb is shifted out to CF flag, and the Isb is
cleared to 0.

The SHx instructions perform logical shift, i.e. without special
treatment of the sign bit. SHL is the same as SAL (in fact, their
opcodes are the same). SHR copies 0 into the most-significant
bit, and shifts the least-significant bit to the CF flag.

The SHxD instructions perform a double shift. These
instructions perform left and right shift of the destination
operand, taking the bits to copy into the most-significant bit
(for the SHRD instruction) or into the least-significant bit (for
the SHLD instruction) from the source operand. These
instructions behave like SHx, but use bits from the source
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3.3.8 Compare and
Test

operand instead of zero bits to shift into the destination
operand. The source operand is not changed.

The compare and test instructions perform arithmetic and
logical comparison of operands and set corresponding flags,
depending on the result of comparison. These instruction are
used in conjunction with conditional instructions such as Jcc or
SETcc to organize branching and conditionally executing blocks
in programs. Assembler equivalents of conditional operators in
high-level languages (do...while, if...then...else, and similar)
also include compare and test instructions.

Compare.
m  CMP—Compare

The CMP instruction performs subtraction of the second
operand (source) from the first operand (destination), like the
SUB instruction, but it does not store the resulting value in the
destination operand. It leaves both operands intact. The only
effect of the CMP instruction is to set or clear the arithmetic
flags (OF, SF, ZF, AF, CF, PF) according to the result of
subtraction.

The CMP instruction is often used together with the conditional
jump instructions (Jcc), conditional SET instructions (SETcc)
and other instructions such as conditional loops (LOOPcc)
whose behavior depends on flag state.

Test.
m TEST—Test Bits

The TEST instruction is in many ways similar to the AND
instruction: it performs logical conjunction of the
corresponding bits of both operands, but unlike the AND
instruction it leaves the operands unchanged. The purpose of
this instruction is to update flags for further testing.

The TEST instruction is often used to test whether one or more
bits in an operand are zero. In this case, one of the instruction
operands would contain a mask in which all bits are cleared to
zero except the bits being tested. For more advanced bit testing
and bit modification, use the BTx instructions.
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Bit Scan.

m BSF—Bit Scan Forward
m BSR—Bit Scan Reverse

The BSF and BSR instructions search a source operand for the
least-significant (BSF) or most-significant (BSR) bit that is set
to 1. If a set bit is found, its bit index is loaded into the
destination operand, and the zero flag (ZF) is set. If no set bit is
found, the zero flag is cleared and the contents of the
destination are undefined.

Bit Test.

m BT—Bit Test

m  BTC—Bit Test and Complement
m BTR—Bit Test and Reset

m  BTS—Bit Test and Set

The BTx instructions copy a specified bit in the first operand to
the carry flag (CF) and leave the source bit unchanged (BT), or
complement the source bit (BTC), or clear the source bit to 0
(BTR), or set the source bit to 1 (BTS).

These instructions are useful for implementing semaphore
arrays. Unlike the XCHG instruction, the BTx instructions set
the carry flag, so no additional test or compare instruction is
needed. Also, because these instructions operate directly on
bits rather than larger data types, the semaphore arrays can be
smaller than is possible when using XCHG. In such semaphore
applications, bit-test instructions should be preceded by the
LOCK prefix.

Set Byte on Condition.
m  SETcc—Set Byte if condition

The SETcc instructions store a 1 or 0 value to their byte operand
depending on whether their condition (represented by certain
rFLAGS bits) is true or false, respectively. Table 3-5 on page 67
shows the rFLAGS values required for each SETcc instruction.
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Table 3-5. rFLAGS for SETcc Instructions
Mnemonic Required Flag Description
State
SETO OF=1 Set byte if overflow
SETNO OF=0 Set byte if not overflow
Set byte if below
SETB Set byte if carry
SETC CF=1 . .
Set byte if not above or equal (unsigned
SETNAE
operands)
SETAE Set byte if above or equal
SETNB CF=0 Set byte if not below
SETNC Set byte if not carry (unsigned operands)
SETE TF=1 Set byte if equal
SETZ a Set byte if zero
SETNE 7F=0 Set byte if not equal
SETNZ - Set byte if not zero
SETBE CF=1or Set byte if below or equal
SETNA IF=1 Set byte if not above (unsigned operands)
Set byte if not below or equal
SETA CF=0and . .
SETNBE 7F=0 Set byte if not below or equal (unsigned
operands)
SETS SF=1 Set byte if sign
SETNS SF=0 Set byte if not sign
SETP PF=1 Set byte if parity
SETPE - Set byte if parity even
SETNP PF=0 Set byte if not parity
SETPO - Set byte if parity odd
SETL Set byte if less
SETNGE SF<OF Set byte if not greater or equal (signed operands)
SETGE SF=OF Set byte if greater or equal
SETNL - Set byte if not less (signed operands)
SETLE ZF=1or Set byte if less or equal
SETNG SF < OF Set byte if not greater (signed operands)
SETG ZF=0and Set byte if greater
SETNLE SF=0F Set byte if not less or equal (signed operands)
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SETcc instructions are often used to set logical indicators. Like
CMOVcc instructions (page 50), SETcc instructions can replace
two instructions—a conditional jump and a move. Replacing
conditional jumps with conditional sets can help avoid branch-
prediction penalties that may be caused by conditional jumps.

If the logical value True (logical 1) is represented in a high-level
language as an integer with all bits set to 1, software can
accomplish such representation by first executing the opposite
SETcc instruction—for example, the opposite of SETZ is
SETNZ—and then decrementing the result.

Bounds.
m  BOUND—Check Array Bounds

The BOUND instruction checks whether the value of the first
operand, a signed integer index into an array, is within the
minimal and maximal bound values pointed to by the second
operand. The values of array bounds are often stored at the
beginning of the array. If the bounds of the range are exceeded,
the processor generates a bound-range exception.

The primary disadvantage of using the BOUND instruction is its
use of the time-consuming exception mechanism to signal a
failure of the bounds test.

The logical instructions perform bitwise operations.

m AND—Logical AND

m OR—Logical OR

s  XOR—Exclusive OR

m NOT—One’s Complement Negation

The AND, OR, and XOR instructions perform their respective
logical operations on the corresponding bits of both operands
and store the result in the first operand. The CF flag and OF
flag are cleared to 0, and the ZF flag, SF flag, and PF flag are
set according to the resulting value of the first operand.

The NOT instruction performs logical inversion of all bits of its
operand. Each zero bit becomes one and vice versa. All flags
remain unchanged.

Apart from performing logical operations, AND and OR can test
a register for a zero or non-zero value, sign (negative or
positive), and parity status of its lowest byte. To do this, both
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3.3.10 String

operands must be the same register. The XOR instruction with
two identical operands is an efficient way of loading the value 0
into a register.

The string instructions perform common string operations such
as copying, moving, comparing, or searching strings. These
instructions are widely used for processing text.

Compare Strings.

m  CMPS—Compare Strings

m  CMPSB—Compare Strings by Byte

m  CMPSW—Compare Strings by Word

m  CMPSD—Compare Strings by Doubleword

m  CMPSQ—Compare Strings by Quadword

The CMPSx instructions compare the values of two implicit
operands of the same size located at seg:[rSI] and ES:[rDI].
After the copy, both the rSI and rDI registers are auto-

incremented (if the DF flagis 0) or auto-decremented (if the DF
flagis 1).

Scan String.

m SCAS—Scan String

m  SCASB—Scan String as Bytes

s SCASW—Scan String as Words

m  SCASD—Scan String as Doubleword

m  SCASQ—Scan String as Quadword

The SCASx instructions compare the values of a memory
operands in ES:rDI to a value of the same size in the AL/rAX
register. Bits in rFLAGS are set to indicate the outcome of the
comparison. After the comparison, the rDI register is auto-

incremented (if the DF flag is 0) or auto-decremented (if the DF
flagis 1).

Move String.

m  MOVS—Move String

m  MOVSB—Move String Byte

s MOVSW—Move String Word

m  MOVSD—Move String Doubleword
m  MOVSQ—Move String Quadword
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The MOVSx instructions copy an operand from the memory
location seg:[rSI] to the memory location ES:[rDI]. After the
copy, both the rSI and rDI registers are auto-incremented (if the
DF flag is 0) or auto-decremented (if the DF flagis 1).

Load String.

s LODS—Load String

m  LODSB—Load String Byte

m LODSW—Load String Word

s  LODSD—Load String Doubleword

m LODSQ—Load String Quadword

The LODSx instructions load a value from the memory location
seg:[rSI] to the accumulator register (AL or rAX). After the
load, the rSI register is auto-incremented (if the DF flag is 0) or
auto-decremented (if the DF flagis 1).

Store String.

s  STOS—Store String

m  STOSB—Store String Bytes

m  STOSW—Store String Words

s  STOSD—Store String Doublewords

s STOSQ—Store String Quadword

The STOSx instructions copy the accumulator register (AL or
rAX) to a memory location ES:[rDI]. After the copy, the rDI
register is auto-incremented (if the DF flag is 0) or auto-
decremented (if the DF flagis 1).

3311 Control Control-transfer instructions, or branches, are used to iterate

Transfer through loops and move through conditional program logic.
Jump.

s JMP—Jump

JMP performs an unconditional jump to the specified address.

There are several ways to specify the target address.

m  Relative Short Jump and Relative Near Jump—The target
address is determined by adding an 8-bit (short jump) or 16-
bit or 32-bit (near jump) signed displacement to the rIP of
the instruction following the JMP. The jump is performed
within the current code segment (CS).
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m  Register-Indirect and Memory-Indirect Near Jump—The target
rIP value is contained in a register or in a memory location.
The jump is performed within the current CS.

m  Direct Far Jump—For all far jumps, the target address is
outside the current code segment. Here, the instruction
specifies the 16-bit target-address code segment and the 16-
bit or 32-bit offset as an immediate value. The direct far
jump form is invalid in 64-bit mode.

m  Memory-Indirect Far Jump—TFor this form, the target address
(CS:rIP) is in a address outside the current code segment. A
32-bit or 48-bit far pointer in a specified memory location
points to the target address.

The size of the target rIP is determined by the effective
operand size for the JMP instruction.

For far jumps, the target selector can specify a code-segment
selector, in which case it is loaded into CS, and a 16-bit or 32-bit
target offset is loaded into rIP. The target selector can also be a
call-gate selector or a task-state-segment (TSS) selector, used
for performing task switches. In these cases, the target offset of
the JMP instruction is ignored, and the new values loaded into
CS and rIP are taken from the call gate or from the TSS.

Conditional Jump.
m  Jcc—Jump if condition

Conditional jump instructions jump to an instruction specified
by the operand, depending on the state of flags in the rFLAGS
register. The operands specifies a signed relative offset from
the current contents of the rIP. If the state of the corresponding
flags meets the condition, a conditional jump instruction passes
control to the target instruction, otherwise control is passed to
the instruction following the conditional jump instruction. The
flags tested by a specific Jcc instruction depend on the opcode.
In several cases, multiple mnemonics correspond to one opcode.

Table 3-6 on page 72 shows the rFLAGS values required for
each Jcc instruction.
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Table 3-6. rFLAGS for Jcc Instructions
Mnemonic Required Flag Description
State
Jo OF=1 Jump near if overflow
INO OF=0 Jump near if not overflow
JB Jump near if below
JC CF=1 Jump near if carry
JNAE Jump near if not above or equal
INB Jump near if not below
INC CF=0 Jump near if not carry
JAE Jump near if above or equal
174 7E=1 Jump near if 0
JE - Jump near if equal
INZ ZF=0 Jump near if not zero
JNE - Jump near if not equal
JNA CF=1or Jump near if not above
JBE IF=1 Jump near if below or equal
JNBE CF=0and Jump near if not below or equal
JA IF=0 Jump near if above
N SF=1 Jump near if sign
JNS SF=0 Jump near if not sign
Jp PF=1 Jump near if parity
JPE a Jump near if parity even
JNP PF=0 Jump near if not parity
JPO a Jump near if parity odd
L Jump near if less
JNGE SF<OF Jump near if not greater or equal
JGE SF=OF Jump near if greater or equal
INL a Jump near if not less
ING ZF=1or Jump near if not greater
JLE SF< OF Jump near if less or equal
JNLE ZF=0and Jump near if not less or equal
JG SF=0F Jump near if greater
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Unlike the unconditional jump (JMP), conditional jump
instructions have only two forms—near conditional jumps and
short conditional jumps. To create a far-conditional-jump code
sequence corresponding to a high-level language statement
like:

IF A =B THEN GOTO FarlLabel
where FarLabel is located in another code segment, use the

opposite condition in a conditional short jump before the
unconditional far jump. For example:

cmp A,B ; compare operands

Jne NextInstr ; continue program if not equal

Jmp far ptr WhenNE ; far jump if operands are equal
NextInstr: ; continue program

Three special conditional jump instructions use the rCX
register instead of flags. The JCXZ, JECXZ, and JRCXZ
instructions check the value of the CX, ECX, and RCX registers,
respectively, and pass control to the target instruction when the
value of rCX register reaches 0. These instructions are often
used to control safe cycles, preventing execution when the
value in rCX reaches 0.

Loop.
m  LOOPcc—Loop if condition

The LOOPcc instructions include LOOPE, LOOPNE, LOOPNZ,
and LOOPZ. These instructions decrement the rCX register by
1 without changing any flags, and then check to see if the loop
condition is met. If the condition is met, the program jumps to
the specified target code.

LOOPE and LOOPZ are synonyms. Their loop condition is met
if the value of the rCX register is non-zero and the zero flag (ZF)
is set to 1 when the instruction starts. LOOPNE and LOOPNZ
are also synonyms. Their loop condition is met if the value of
the rCX register is non-zero and the ZF flag is cleared to 0 when
the instruction starts. LOOP, unlike the other mnemonics, does
not check the ZF flag. Its loop condition is met if the value of
the rCX register is non-zero.

Call.
m CALL—Procedure Call
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The CALL instruction performs a call to a procedure whose
address is specified in the operand. The return address is
placed on the stack by the CALL, and points to the instruction
immediately following the CALL. When the called procedure
finishes execution and is exited using a return instruction,
control is transferred to the return address saved on the stack.

The CALL instruction has the same forms as the JMP
instruction, except that CALL lacks the short-relative (1-byte
offset) form.

m  Relative Near Call—These specify an offset relative to the
instruction following the CALL instruction. The operand is
an immediate 16-bit or 32-bit offset from the called
procedure, within the same code segment.

m  Register-Indirect and Memory-Indirect Near Call—These
specify a target address contained in a register or memory
location.

m  Direct Far Call—These specify a target address outside the
current code segment. The address is pointed to by a 32-bit
or 48-bit far-pointer specified by the instruction, which
consists of a 16-bit code selector and a 16-bit or 32-bit offset.
The direct far call form is invalid in 64-bit mode.

m  Memory-Indirect Far Call—These specify a target address
outside the current code segment. The address is pointed to
by a 32-bit or 48-bit far pointer in a specified memory
location.

The size of the rIP is in all cases determined by the operand-size
attribute of the CALL instruction. CALLs push the return
address to the stack. The data pushed on the stack depends on
whether a near or far call is performed, and whether a privilege
change occurs. See Section 3.7.5, “Procedure Calls,” on page 98
for further information.

For far CALLs, the selector portion of the target address can
specify a code-segment selector (in which case the selector is
loaded into the CS register), or a call-gate selector, (used for
calls that change privilege level), or a task-state-segment (TSS)
selector (used for task switches). In the latter two cases, the
offset portion of the CALL instruction’s target address is
ignored, and the new values loaded into CS and rIP are taken
from the call gate or TSS.
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Return.
m RET—Return from Call

The RET instruction returns from a procedure originally called
using the CALL instruction. CALL places a return address
(which points to the instruction following the CALL) on the
stack. RET takes the return address from the stack and
transfers control to the instruction located at that address.

Like CALL instructions, RET instructions have both a near and
far form. An optional immediate operand for the RET specifies
the number of bytes to be popped from the procedure stack for
parameters placed on the stack. See Section 3.7.6, “Returning
from Procedures,” on page 101 for additional information.

Interrupts and Exceptions.

m  INT—Interrupt to Vector Number

m  INTO—Interrupt to Overflow Vector

s IRET—Interrupt Return Word

s IRETD—Interrupt Return Doubleword
s IRETQ—Interrupt Return Quadword

The INT instruction implements a software interrupt by calling
an interrupt handler. The operand of the INT instruction is an
immediate byte value specifying an index in the interrupt
descriptor table (IDT), which contains addresses of interrupt
handlers (see Section 3.7.10, “Interrupts and Exceptions,” on
page 106 for further information on the IDT).

The 1-byte INTO instruction calls interrupt 4 (the overflow
exception, #OF), if the overflow flag in RFLAGS is set to 1,
otherwise it does nothing. Signed arithmetic instructions can
be followed by the INTO instruction if the result of the
arithmetic operation can potentially overflow. (The 1-byte INT 3
instruction is considered a system instruction and is therefore
not described in this volume).

IRET, IRETD, and IRETQ perform a return from an interrupt
handler. The mnemonic specifies the operand size, which
determines the format of the return addresses popped from the
stack (IRET for 16-bit operand size, IRETD for 32-bit operand
size, and IRETQ for 64-bit operand size). However, some
assemblers can use the IRET mnemonic for all operand sizes.
Actions performed by IRET are opposite to actions performed
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by an interrupt or exception. In real and protected mode, IRET
pops the rIP, CS, and RFLAGS contents from the stack, and it
pops SS:rSP if a privilege-level change occurs or if it executes
from 64-bit mode. In protected mode, the IRET instruction can
also cause a task switch if the nested task (NT) bit in the
RFLAGS register is set. For details on using IRET to switch
tasks, see “Task Management” in Volume 2.

The flags instructions read and write bits of the RFLAGS
register that are visible to application software. “Flags
Register” on page 38 illustrates the RFLAGS register.

Push and Pop Flags.

»  POPF—Pop to FLAGS Word

m  POPFD—Pop to EFLAGS Doubleword

s  POPFQ—Pop to RFLAGS Quadword

s PUSHF—Push FLAGS Word onto Stack

s  PUSHFD—Push EFLAGS Doubleword onto Stack

s  PUSHFQ—Push RFLAGS Quadword onto Stack

The push and pop flags instructions copy data between the
rFLAGS register and the stack. POPF and PUSHF copy 16 bits
of data between the stack and the FLAGS register (the low 16
bits of EFLAGS), leaving the high 48 bits of RFLAGS
unchanged. POPFD and PUSHFD copy 32 bits between the
stack and the RFLAGS register. POPFQ and PUSHFQ copy 64
bits between the stack and the RFLAGS register. Only the bits
illustrated in Figure 3-5 on page 39 are affected. Reserved bits
and bits whose writability is prevented by the current values of
system flags, current privilege level (CPL), or current operating

mode, are unaffected by the POPF, POPFQ, and POPFD
instructions.

For details on stack operations, see “Control Transfers” on
page 94.

Set and Clear Flags.

m CLC—Clear Carry Flag

s CMC—Complement Carry Flag
m STC—Set Carry Flag

s  CLD—Clear Direction Flag

m  STD—Set Direction Flag
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3.3.13 Input/Output

m CLI—Clear Interrupt Flag
m  STI—Set Interrupt Flag

These instructions change the value of a flag in the rFLAGS
register that is visible to application software. Each instruction
affects only one specific flag.

The CLC, CMC, and STC instructions change the carry flag
(CF). CLC clears the flag to 0, STC sets the flag to 1, and CMC
inverts the flag. These instructions are useful prior to executing
instructions whose behavior depends on the CF flag—for
example, shift and rotate instructions.

The CLD and STD instructions change the direction flag (DF)
and influence the function of string instructions (CMPSx,
SCASx, MOVSx, LODSx, STOSx, INSx, OUTSx). CLD clears the
flag to 0, and STD sets the flag to 1. A cleared DF flag indicates
the forward direction in string sequences, and a set DF flag
indicates the backward direction. Thus, in string instructions,
the rSI and/or rDI register values are auto-incremented when
DF = 0 and auto-decremented when DF = 1.

Two other instructions, CLI and STI, clear and set the interrupt
flag (IF). CLI clears the flag, causing the processor to ignore
external maskable interrupts. STI sets the flag, allowing the
processor to recognize maskable external interrupts. These
instructions are used primarily by system software—especially,
interrupt handlers—and are described in “Exceptions and
Interrupts” in Volume 2.

Load and Store Flags.

m LAHF—Load Status Flags into AH Register
m SAHF—Store AH into Flags

LAHF loads the lowest byte of the RFLAGS register into the AH
register. This byte contains the carry flag (CF), parity flag (PF),
auxiliary flag (AF), zero flag (ZF), and sign flag (SF). SAHF
stores the AH register into the lowest byte of the RFLAGS
register.

The I/0 instructions perform reads and writes of bytes, words,
and doublewords from and to the I/0 address space. This address
space can be used to access and manage external devices, and is
independent of the main-memory address space. By contrast,
memory-mapped 1/0 uses the main-memory address space and is
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accessed using the MOV instructions rather than the I/0
instructions.

When operating in legacy protected mode or in long mode, the
RFLAGS register’s I/O privilege level (IOPL) field and the I/O-
permission bitmap in the current task-state segment (TSS) are
used to control access to the I/O addresses (called I/0 ports). See
“Input/Output” on page 111 for further information.

General I/0.

s IN—Input from Port
s OUT—Output to Port

The IN instruction reads a byte, word, or doubleword from the
I/0 port address specified by the source operand, and loads it
into the accumulator register (AL or eAX). The source operand
can be an immediate byte or the DX register.

The OUT instruction writes a byte, word, or doubleword from
the accumulator register (AL or eAX) to the I/O port address
specified by the destination operand, which can be either an
immediate byte or the DX register.

If the I/O port address is specified with an immediate operand,
the range of port addresses accessible by the IN and OUT
instructions is limited to ports 0 through 255. If the I/O port
address is specified by a in the DX register, all 65,536 ports are
accessible.

String 1/0.

m  INS—Input String

m  INSB—Input String Byte

. INSW—Input String Word

m  INSD—Input String Doubleword

s OUTS—Output String

s OUTSB—Output String Byte

s OUTSW—Output String Word

s OUTSD—Output String Doubleword

The INSx instructions (INSB, INSW, INSD) read a byte, word, or

doubleword from the I/O port specified by the DX register, and
load it into the memory location specified by ES:[rDI].

78

Chapter 3: General-Purpose Programming



AMDA

24592—Rev. 3.10—March 2005 AMDG64 Technology

3.3.14 Semaphores

The OUTSx instructions (OUTSB, OUTSW, OUTSD) write a
byte, word, or doubleword from an implicit memory location
specified by seg:[rSI], to the I/O port address stored in the DX
register.

The INSx and OUTSx instructions are commonly used with a
repeat prefix to transfer blocks of data. The memory pointer
address is not incremented or decremented. This usage is
intended for peripheral I/O devices that are expecting a stream
of data.

The semaphore instructions support the implementation of
reliable signaling between processors in a multi-processing
environment, usually for the purpose of sharing resources.

s CMPXCHG—Compare and Exchange

m CMPXCHG8B—Compare and Exchange Eight Bytes

s CMPXCHG16B—Compare and Exchange Sixteen Bytes
m XADD—Exchange and Add

m XCHG—Exchange

The CMPXCHG instruction compares a value in the AL or rAX
register with the first (destination) operand, and sets the
arithmetic flags (ZF, OF, SF, AF, CF, PF) according to the result.
If the compared values are equal, the source operand is loaded
into the destination operand. If they are not equal, the first
operand is loaded into the accumulator. CMPXCHG can be used
to try to intercept a semaphore, i.e. test if its state is free, and if
so, load a new value into the semaphore, making its state busy.
The test and load are performed atomically, so that concurrent
processes or threads which use the semaphore to access a
shared object will not conflict.

The CMPXCHGSB instruction compares the 64-bit values in the
EDX:EAX registers with a 64-bit memory location. If the values
are equal, the zero flag (ZF) is set, and the ECX:EBX value is
copied to the memory location. Otherwise, the ZF flag is
cleared, and the memory value is copied to EDX:EAX.

The CMPXCHG16B instruction compares the 128-bit value in
the RDX:RAX and RCX:RBX registers with a 128-bit memory
location. If the values are equal, the zero flag (ZF) is set, and
the RCX:RBX value is copied to the memory location.
Otherwise, the ZF flag is cleared, and the memory value is
copied to rDX:rAX.

Chapter 3: General-Purpose Programming 79



AMDA

AMDG64 Technology

3.3.15 Processor
Information

3.3.16 Cache and

24592—Rev. 3.10—March 2005

The XADD instruction exchanges the values of its two
operands, then it stores their sum in the first (destination)
operand.

A LOCK prefix can be used to make the CMPXCHG,
CMPXCHGS8B and XADD instructions atomic if one of the
operands is a memory location.

The XCHG instruction exchanges the values of its two
operands. If one of the operands is in memory, the processor’s
bus-locking mechanism is engaged automatically during the
exchange, whether of not the LOCK prefix is used.

m CPUID—Processor Identification

The CPUID instruction returns information about the processor
implementation and its support for instruction subsets and
architectural features. Software operating at any privilege level
can execute the CPUID instruction to read this information.
After the information is read, software can select procedures
that optimize performance for a particular hardware
implementation.

Some processor implementations may not support the CPUID
instruction. Support for the CPUID instruction is determined
by testing the RFLAGS.ID bit. If software can write this bit,
then the CPUID instruction is supported by the processor
implementation. Otherwise, execution of CPUID results in an
invalid-opcode exception.

See “Feature Detection” on page 92 for details about using the
CPUID instruction. For a full description of the CPUID
instruction and its function codes, see “CPUID” in Volume 3
and the AMD Processor Recognition Application Note, order#
20734.

Applications can use the cache and memory-management

Memory instructions to control memory reads and writes to influence
Management the caching of read/write data. “Memory Optimization” on
page 115 describes how these instructions interact with the
memory subsystem.
m LFENCE—Load Fence
m SFENCE—Store Fence
s  MFENCE—Memory Fence
s PREFETCHIevel—Prefetch Data to Cache Level level
80 Chapter 3: General-Purpose Programming



AMDA

24592—Rev. 3.10—March 2005 AMDG64 Technology

3.3.17 No Operation

PREFETCH—Prefetch L1 Data-Cache Line
PREFETCHW—Prefetch 1.1 Data-Cache Line for Write
CLFLUSH—Cache Line Invalidate

The LFENCE, SFENCE, and MFENCE instructions can be used
to force ordering on memory accesses. The order of memory
accesses can be important when the reads and writes are to a
memory-mapped I/O device, and in multiprocessor
environments where memory synchronization is required.
LFENCE affects ordering on memory reads, but not writes.
SFENCE affects ordering on memory writes, but not reads.
MFENCE orders both memory reads and writes. These
instructions do not take operands. They are simply inserted
between the memory references that are to be ordered. For
details about the fence instructions, see “Forcing Memory
Order” on page 117.

The PREFETCHIevel, PREFETCH, and PREFETCHW
instructions load data from memory into one or more cache
levels. PREFETCHIevel loads a memory block into a specified
level in the data-cache hierarchy (including a non-temporal
caching level). The size of the memory block is implementation
dependent. PREFETCH loads a cache line into the L1 data
cache. PREFETCHW loads a cache line into the L1 data cache
and sets the cache line’s memory-coherency state to modified, in
anticipation of subsequent data writes to that line. (Both
PREFETCH and PREFETCHW are 3DNow!™ instructions.) For
details about the prefetch instructions, see “Cache-Control
Instructions” on page 124. For a description of MOESI memory-
coherency states, see “Memory System” in Volume 2.

The CLFLUSH instruction writes unsaved data back to memory
for the specified cache line from all processor caches,
invalidates the specified cache, and causes the processor to
send a bus cycle which signals external caching devices to write
back and invalidate their copies of the cache line. CLFLUSH
provides a finer-grained mechanism than the WBINVD
instruction, which writes back and invalidates all cache lines.
Moreover, CLFLUSH can be used at all privilege levels, unlike
WBINVD which can be used only by system software running at
privilege level 0.

m  NOP—No Operation
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The NOP instructions performs no operation (except
incrementing the instruction pointer rIP by one). It is an
alternative mnemonic for the XCHG rAX, rAX instruction.
Depending on the hardware implementation, the NOP
instruction may use one or more cycles of processor time.

System Call and Return.

SYSENTER—System Call
SYSEXIT—System Return
SYSCALL—Fast System Call
SYSRET—Fast System Return

The SYSENTER and SYSCALL instructions perform a call to a
routine running at current privilege level (CPL) O—for
example, a kernel procedure—from a user level program (CPL
3). The addresses of the target procedure and (for SYSENTER)
the target stack are specified implicitly through the model-
specific registers (MSRs). Control returns from the operating
system to the callee when the operating system executes a
SYSEXIT or SYSRET instruction. SYSEXIT are SYSRET are
privileged instructions and thus can be issued only by a
privilege-level-0 procedure.

The SYSENTER and SYSEXIT instructions form a
complementary pair, as do SYSCALL and SYSRET. SYSENTER
and SYSEXIT are invalid in 64-bit mode. In this case, use the
faster SYSCALL and SYSRET instructions.

For details on these on other system-related instructions, see
“System-Management Instructions” in Volume 2 and “System
Instruction Reference” in Volume 3.

3.4 General Rules for Instructions in 64-Bit Mode

3.4.1 Address Size

This section provides details of the general-purpose
instructions in 64-bit mode, and how they differ from the same
instructions in legacy and compatibility modes. The differences
apply only to general-purpose instructions. Most of them do not
apply to 128-bit media, 64-bit media, or x87 floating-point
instructions.

In 64-bit mode, the following rules apply to address size:
m  Defaults to 64 bits.
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Can be overridden to 32 bits (by means of opcode prefix
67h).

Can’t be overridden to 16 bits.

Bits 63 through the most-significant implemented virtual-
address bit must be all zeros or all ones in any memory
reference. See “64-bit Canonical Addresses” on page 18 for
details. (This rule applies to long mode, which includes both 64-
bit mode and compatibility mode.)

Branch-address displacements are 8 bits or 32 bits, as in legacy
mode, but are sign-extended to 64 bits prior to using them for
address computations. See “Displacements and Immediates”
on page 20 for details.

In 64-bit mode, the following rules apply to operand size:

64-Bit Operand Size Option: If an instruction’s operand size
(16-bit or 32-bit) in legacy mode depends on the default-size
(D) bit in the current code-segment descriptor and the
operand-size prefix, then the operand-size choices in 64-bit
mode are extended from 16-bit and 32-bit to include 64 bits
(with a REX prefix), or the operand size is fixed at 64 bits.
See “General-Purpose Instructions in 64-Bit Mode” in
Volume 3 for details.

Default Operand Size: The default operand size for most
instructions is 32 bits, and a REX prefix must be used to
change the operand size to 64 bits. However, two groups of
instructions default to 64-bit operand size and do not need a
REX prefix: (1) near branches and (2) all instructions,
except far branches, that implicitly reference the RSP. See
“General-Purpose Instructions in 64-Bit Mode” in Volume 3
for details.

Fixed Operand Size: If an instruction’s operand size is fixed
in legacy mode, that operand size is usually fixed at the
same size in 64-bit mode. (There are some exceptions.) For
example, the CPUID instruction always operates on 32-bit
operands, irrespective of attempts to override the operand
size. See “General-Purpose Instructions in 64-Bit Mode” in
Volume 3 for details.

Immediate Operand Size: The maximum size of immediate
operands is 32 bits, as in legacy mode, except that 64-bit
immediates can be MOVed into 64-bit GPRs. When the
operand size is 64 bits, immediates are sign-extended to 64
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bits prior to using them. See “Immediate Operand Size” on
page 47 for details.

Shift-Count and Rotate-Count Operand Size: When the
operand size is 64 bits, shifts and rotates use one additional
bit (6 bits total) to specify shift-count or rotate-count,
allowing 64-bit shifts and rotates.
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345 High 32 Bits In 64-bit mode, the following rules apply to extension of results
into the high 32 bits when results smaller than 64 bits are

written:

Zero-Extension of 32-Bit Results: 32-bit results are zero-
extended into the high 32 bits of 64-bit GPR destination
registers.

No Extension of 8-Bit and 16-Bit Results: 8-bit and 16-bit
results leave the high 56 or 48 bits, respectively, of 64-bit
GPR destination registers unchanged.

Undefined High 32 Bits After Mode Change: The processor
does not preserve the upper 32 bits of the 64-bit GPRs across
changes from 64-bit mode to compatibility or legacy modes.
In compatibility and legacy mode, the upper 32 bits of the
GPRs are undefined and not accessible to software.

3.4.6 Invalid and The following general-purpose instructions are invalid in 64-bit
Reassigned mode:
Instructions

AAA—ASCII Adjust After Addition
AAD—ASCII Adjust Before Division
AAM—ASCII Adjust After Multiply

AAS—ASCII Adjust After Subtraction
BOUND—Check Array Bounds

CALL (far absolute)—Procedure Call Far
DAA—Decimal Adjust after Addition
DAS—Decimal Adjust after Subtraction
INTO—Interrupt to Overflow Vector

JMP (far absolute)—Jump Far

LDS—Load DS Segment Register

LES—Load ES Segment Register

POP DS—Pop Stack into DS Segment

POP ES—Pop Stack into ES Segment

POP SS—Pop Stack into SS Segment

POPA, POPAD—Pop All to GPR Words or Doublewords
PUSH CS—Push CS Segment Selector onto Stack
PUSH DS—Push DS Segment Selector onto Stack
PUSH ES—Push ES Segment Selector onto Stack
PUSH SS—Push SS Segment Selector onto Stack
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s PUSHA, PUSHAD—Push All to GPR Words or Doublewords

The following general-purpose instructions are invalid in long
mode (64-bit mode and compatibility mode):

m SYSENTER—System Call (use SYSCALL instead)
m SYSEXIT—System Exit (use SYSRET instead)

The opcodes for the following general-purpose instructions are
reassigned in 64-bit mode:

m  ARPL—Adjust Requestor Privilege Level. Opcode becomes
the MOVSXD instruction.

m DEC (one-byte opcode only)—Decrement by 1. Opcode
becomes a REX prefix. Use the two-byte DEC opcode
instead.

m INC (one-byte opcode only)—Increment by 1. Opcode
becomes a REX prefix. Use the two-byte INC opcode
instead.

Most instructions default to 32-bit operand size in 64-bit mode.
However, the following near branches instructions and
instructions that implicitly reference the stack pointer (RSP)
default to 64-bit operand size in 64-bit mode:

m  Near Branches:
- Jecc—Jump Conditional Near
- JMP—]Jump Near
- LOOP—Loop
- LOOPcc—Loop Conditional
m Instructions That Implicitly Reference RSP:
- ENTER—Create Procedure Stack Frame
- LEAVE—Delete Procedure Stack Frame
- POP reg/mem—Pop Stack (register or memory)
- POP reg—Pop Stack (register)
-  POP FS—Pop Stack into FS Segment Register
-  POP GS—Pop Stack into GS Segment Register

- POPF, POPFD, POPFQ—Pop to rFLAGS Word,
Doubleword, or Quadword

- PUSH imm32—Push onto Stack (sign-extended
doubleword)

-  PUSH imm8—Push onto Stack (sign-extended byte)
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- PUSH reg/mem—Push onto Stack (register or memory)
- PUSH reg—Push onto Stack (register)

-  PUSH FS—Push FS Segment Register onto Stack

-  PUSH GS—Push GS Segment Register onto Stack

- PUSHF, PUSHFD, PUSHFQ—Push rFLAGS Word,
Doubleword, or Quadword onto Stack

The default 64-bit operand size eliminates the need for a REX
prefix with these instructions when registers RAX-RSP (the
first set of eight GPRs) are used as operands. A REX prefix is
still required if R8-R15 (the extended set of eight GPRs) are
used as operands, because the prefix is required to address the
extended registers.

The 64-bit default operand size can be overridden to 16 bits
using the 66h operand-size override. However, it is not possible
to override the operand size to 32 bits, because there is no 32-bit
operand-size override prefix for 64-bit mode. For details on the
operand-size prefix, see “Instruction Prefixes” in Volume 3.

For details on near branches, see “Near Branches in 64-Bit
Mode” on page 105. For details on instructions that implicitly
reference RSP, see “Stack Operand-Size in 64-Bit Mode” on
page 96.

For details on opcodes and operand-size overrides, see
“General-Purpose Instructions in 64-Bit Mode” in Volume 3.

3.5 Instruction Prefixes

3.5.1 Legacy Prefixes

An instruction prefix is a byte that precedes an instruction’s
opcode and modifies the instruction’s operation or operands.
Instruction prefixes are of two types:

m Legacy Prefixes
m REX Prefixes

Legacy prefixes are organized into five groups, in which each
prefix has a unique value. REX prefixes, which enable use of
the AMDG64 register extensions in 64-bit mode, are organized as
a single group in which the value of the prefix indicates the
combination of register-extension features to be enabled.

Table 3-7 shows the legacy prefixes. These are organized into
five groups, as shown in the left-most column of the table. Each
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prefix has a unique hexadecimal value. The legacy prefixes can
appear in any order in the instruction, but only one prefix from
each of the five groups can be used in a single instruction. The
result of using multiple prefixes from a single group is
undefined.

There are several restrictions on the use of prefixes. For
example, the address-size prefix changes address size only for a
memory operand, and only a single memory operand can be
overridden in an instruction. In general, the operand-size prefix
cannot be used with x87 floating-point instructions, and when
used with 128-bit or 64-bit media instructions that prefix acts in
a special way to modify the opcode. The repeat prefixes cause
repetition only with certain string instructions, and when used
with 128-bit or 64-bit media instructions the prefixes act in a
special way to modify the opcode. The lock prefix can be used
with only a small number of general-purpose instructions.

Table 3-7 summarizes the functionality of instruction prefixes.
Details about the prefixes and their restrictions are given in
“Instruction Prefixes” in Volume 3.

Table 3-7. Legacy Instruction Prefixes

. .| Prefix Code .
Prefix Group | Mnemonic (Hex) Description

Changes the default operand size of
none 66' a memory or register operand, as
shown in Table 3-3 on page 46.

Operand-Size
Override

Changes the default address size of
none 67 a memory operand, as shown in
Table 2-1 on page 21.

Address-Size
Override

Note:

1. When used with 128-bit or 64-bit media instructions, this prefix acts in a special-purpose way
to modify the opcode.
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Table 3-7. Legacy Instruction Prefixes (continued)

. . | Prefix Code .
Prefix Group | Mnemonic (Hex) Description
Forces use of the CS segment for
Cs 2E
memory operands.
Forces use of the DS segment for
DS 3E
memory operands.
Forces use of the ES segment for
ES 26
Segment memory operands.
Override Fs 61 Forces use of the FS segment for
memory operands.
Forces use of the GS segment for
GS 65
memory operands.
Forces use of the SS segment for
SS 36
memory operands.
Causes certain read-modify-write
Lock LOCK Fo instructions on memory to occur
atomically.
Repeats a string operation (INS,
REP MOVS, OUTS, LODS, and STOS) until
the rCX register equals 0.
1
F3 Repeats a compare-string or scan-
REPE or string operation (CMPSx and SCASx)
Repeat REPZ until the rCX register equals 0 or the
zero flag (ZF) is cleared to 0.
Repeats a compare-string or scan-
string operation
RE'E';'IEZ‘” k' (CMPSx and SCASX) until the rCX
register equals 0 or the zero flag (ZF)
is setto 1.
Note:
1. When used with 128-bit or 64-bit media instructions, this prefix acts in a special-purpose way
to modify the opcode.

Operand-Size and Address-Size Prefixes. The operand-size and
address-size prefixes allow mixing of data and address sizes on
an instruction-by-instruction basis. An instruction’s default
address size can be overridden in any operating mode by using
the 67h address-size prefix.
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Table 3-3 on page 46 shows the operand-size overrides for all
operating modes. In 64-bit mode, the default operand size for
most general-purpose instructions is 32 bits. A REX prefix
(described in “REX Prefixes” on page 91) specifies a 64-bit
operand size, and a 66h prefix specifies a 16-bit operand size.
The REX prefix takes precedence over the 66h prefix.

Table 2-1 on page 21 shows the address-size overrides for all
operating modes. In 64-bit mode, the default address size is 64
bits. The address size can be overridden to 32 bits. 16-bit
addresses are not supported in 64-bit mode. In compatibility
mode, the address-size prefix works the same as in the legacy
x86 architecture.

For further details on these prefixes, see “Operand-Size
Override Prefix” in Volume 3 and “Address-Size Override
Prefix” in Volume 3.

Segment Override Prefix. The DS segment is the default segment
for most memory operands. Many instructions allow this default
data segment to be overridden using one of the six segment-
override prefixes shown in Table 3-7. Data-segment overrides
will be ignored when accessing data in the following cases:

m  When a stack reference is made that pushes data onto or
pops data off of the stack. In those cases, the SS segment is
always used.

m When the destination of a string is memory it is always
referenced using the ES segment.

Instruction fetches from the CS segment cannot be overridden.
However, the CS segment-override prefix can be used to access
instructions as data objects and to access data stored in the
code segment.

For further details on these prefixes, see “Segment-Override
Prefixes” in Volume 3.

Lock Prefix. The LOCK prefix causes certain read-modify-write
instructions that access memory to occur atomically. The
mechanism for doing so is implementation-dependent (for
example, the mechanism may involve locking of data-cache
lines that contain copies of the referenced memory operands,
and/or bus signaling or packet-messaging on the bus). The
prefix is intended to give the processor exclusive use of shared
memory operands in a multiprocessor system.
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3.5.2 REX Prefixes

The prefix can only be used with forms of the following
instructions that write a memory operand: ADC, ADD, AND,
BTC, BTR, BTS, CMPXCHG, CMPXCHGS8B, DEC, INC, NEG,
NOT, OR, SBB, SUB, XADD, XCHG, and XOR. An invalid-
opcode exception occurs if LOCK is used with any other
instruction.

For further details on these prefixes, see “Lock Prefix” in
Volume 3.

Repeat Prefixes. There are two repeat prefixes byte codes, F3h
and F2h. Byte code F3h is the more general and is usually
treated as two distinct instructions by assemblers. Byte code
F2h is only used with CMPSx and SCASx instructions:

s REP (F3h)—This more generalized repeat prefix repeats its
associated string instruction the number of times specified
in the counter register (rCX). Repetition stops when the
value in rCX reaches 0. This prefix is used with the INS,
LODS, MOVS, OUTS, and STOS instructions.

s REPE or REPZ (F3h)—This version of REP prefix repeats its
associated string instruction the number of times specified
in the counter register (rCX). Repetition stops when the
value in rCX reaches 0 or when the zero flag (ZF) is cleared
to 0. The prefix can only be used with the CMPSx and SCASx
instructions.

m REPNE or REPNZ (F2h)—The REPNE or REPNZ prefix
repeats its associated string instruction the number of times
specified in the counter register (rCX). Repetition stops
when the value in rCX reaches 0 or when the zero flag (ZF) is
set to 1. The prefix can only be used with the CMPSx and
SCASx instructions.

The size of the rCX counter is determined by the effective
address size. For further details about these prefixes, including
optimization of their use, see “Repeat Prefixes” in Volume 3.

REX prefixes are a new group of instruction-prefix bytes that
can be used only in 64-bit mode. They enable the 64-bit register
extensions. REX prefixes specify the following features:

m Use of an extended GPR register, shown in Figure 3-3 on
page 31.

m Use of an extended XMM register, shown in Figure 4-12 on
page 144.
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m Use of a 64-bit (quadword) operand size, as described in
“Operands” on page 42.

m  Use of extended control and debug registers, as described in
Volume 2.

REX prefix bytes have a value in the range 40h to 4Fh,
depending on the particular combination of register extensions
desired. With few exceptions, a REX prefix is required to access
a 64-bit GPR or one of the extended GPR or XMM registers. A
few instructions (described in “General-Purpose Instructions in
64-Bit Mode” in Volume 3) default to 64-bit operand size and do
not need the REX prefix to access an extended 64-bit GPR.

An instruction can have only one REX prefix, and one such
prefix is all that is needed to express the full selection of 64-bit-
mode register-extension features. The prefix, if used, must
immediately precede the first opcode byte of an instruction.
Any other placement of a REX prefix is ignored. The legacy
instruction-size limit of 15 bytes still applies to instructions that
contain a REX prefix.

For further details on the REX prefixes, see “REX Prefixes” in
Volume 3.

3.6 Feature Detection

The CPUID instruction provides information about the
processor implementation and its capabilities. Software
operating at any privilege level can execute the CPUID
instruction to collect this information. After the information is
collected, software can select procedures that optimize
performance for a particular hardware implementation. For
example, application software can determine whether the
AMDG64 architecture’s long mode is supported by the processor,
and it can determine the processor implementation’s
performance capabilities.

Support for the CPUID instruction is implementation-
dependent, as determined by software’s ability to write the
RFLAGS.ID bit. The following code sample shows how to test
for the presence of the CPUID instruction.
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pushfd ; save EFLAGS
pop eax ; store EFLAGS in EAX
mov ebx, eax ; save in EBX for Tater testing
Xxor eax, 00200000h ; toggle bit 21
push eax ; push to stack
popfd ; save changed EAX to EFLAGS
pushfd ; push EFLAGS to TOS
pop eax ; store EFLAGS in EAX
cmp eax, ebx ; see if bit 21 has changed
Jz NO_CPUID ; if no change, no CPUID

After software has determined that the processor
implementation supports the CPUID instruction, software can
test for support of specific features by loading a function code
(value) into the EAX register and executing the CPUID
instruction. Processor feature information is returned in the
EAX, EBX, ECX, and EDX registers, as described fully in
“CPUID” in Volume 3.

The architecture supports CPUID information about standard
functions and extended functions. In general, standard functions
include the earliest features offered in the x86 architecture.
Extended functions include newer features of the x86 and
AMDG64 architectures, such as SSE, SSE2, SSE3, and 3DNow!
instructions, and long mode.

Standard functions are accessed by loading EAX with the value
0 (standard-function 0) or 1 (standard-function 1) and executing
the CPUID instruction. All software using the CPUID
instruction must execute standard-function 0, which identifies
the processor vendor and the largest standard-function input
value supported by the processor implementation. The CPUID
standard-function 1 returns the processor version and standard-
feature bits.

Software can test for support of extended functions by first
executing the CPUID instruction with the value 8000_0000h in
EAX. The processor returns, in EAX, the largest extended-
function input value defined for the CPUID instruction on the
processor implementation. If the value in EAX is greater than
8000_0000h, extended functions are supported, although
specific extended functions must be tested individually.
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The following code sample shows how to test for support of any
extended functions:

mov eax, 80000000h ; query for extended functions
CPUID ; get extended function Timit
cmp eax, 80000000h ;: 1s EAX greater than 800000007
jbe NO_EXTENDEDMSR ; no extended-feature support

If extended functions are supported, software can test for
support of specific extended features. For example, software
can determine whether the processor implementation supports
long mode by executing the CPUID instruction with extended
8000_0001h in the EAX register, then testing to see if bit 29 in
the EDX register is set to 1. The following code sample shows
how to test for long-mode support.

mov eax, 80000001h ; query for function 8000_0001h
CPUID ; get feature bits in EDX

test edx, 20000000h ; test bit 29 in EDX

Jjnz YES_Long_Mode ; long mode is supported

With a few exceptions, general-purpose instructions are
supported in all hardware implementations of the AMDG64
architecture, Exceptional instructions are implemented only if
their associated CPUID function bit is set. The implementation
of certain media instructions (such as FXSAVE and FXRSTOR)
and system instructions (such as RDMSR and WRMSR) is also
indicated by CPUID function bits. See “CPUID” in the AMD64
Architecture Programmer’s Manual Volume 3: General Purpose and
System Instructions, order# 24594, and the AMD Processor
Recognition Application Note, order# 20734, for a full description
of the CPUID instruction, all CPUID standard and extended
functions, and the proper interpretation of returned values.

3.7 Control Transfers

371 Overview

From the application-program’s viewpoint, program-control
flow is sequential—that is, instructions are addressed and
executed sequentially—except when a branch instruction (a
call, return, jump, interrupt, or return from interrupt) is
encountered, in which case program flow changes to the branch
instruction’s target address. Branches are used to iterate
through loops and move through conditional program logic.
Branches cause a new instruction pointer to be loaded into the
rIP register, and sometimes cause the CS register to point to a
different code segment. The CS:rIP values can be specified as
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3.72 Privilege Levels

part of a branch instruction, or they can be read from a register
Or memory.

Branches can also be used to transfer control to another
program or procedure running at a different privilege level. In
such cases, the processor automatically checks the source
program and target program privileges to ensure that the
transfer is allowed before loading CS:rIP with the new values.

The processor’s protected modes include legacy protected mode
and long mode (both compatibility mode and 64-bit mode). In
all protected modes and virtual x86 mode, privilege levels are
used to isolate and protect programs and data from each other.
The privilege levels are designated with a numerical value from
0 to 3, with 0 being the most privileged and 3 being the least
privileged. Privilege 0 is normally reserved for critical system-
software components that require direct access to, and control
over, all processor and system resources. Privilege 3 is used by
application software. The intermediate privilege levels (1 and
2) are used, for example, by device drivers and library routines
that access and control a limited set of processor and system
resources.

Figure 3-9 on page 95 shows the relationship of the four
privilege-levels to each other. The protection scheme is
implemented using the segmented memory-management
mechanism described in “Segmented Virtual Memory” in
Volume 2.

Memory Management
File Allocation
Interrupt Handling

Device-Drivers
Library Routines

Privilege
0

Privilege 1

Privilege 2

Privilege 3

513-236.¢ps Application Programs

Figure 3-9. Privilege-Level Relationships
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A procedure stack is often used by control transfer operations,
particularly those that change privilege levels. Information
from the calling program is passed to the target program on the
procedure stack. CALL instructions, interrupts, and exceptions
all push information onto the procedure stack. The pushed
information includes a return pointer to the calling program
and, for call instructions, optionally includes parameters. When
a privilege-level change occurs, the calling program’s stack
pointer (the pointer to the top of the stack) is pushed onto the
stack. Interrupts and exceptions also push a copy of the calling
program’s rFLAGs register and, in some cases, an error code
associated with the interrupt or exception.

The RET or IRET control-transfer instructions reverse the
operation of CALLs, interrupts, and exceptions. These return
instructions pop the return pointer off the stack and transfer
control back to the calling program. If the calling program’s
stack pointer was pushed, it is restored by popping the saved
values off the stack and into the SS and rSP registers.

Stack Alignment. Control-transfer performance can degrade
significantly when the stack pointer is not aligned properly.
Stack pointers should be word aligned in 16-bit segments,
doubleword aligned in 32-bit segments, and quadword aligned
in 64-bit mode.

Stack Operand-Size in 64-Bit Mode. In 64-bit mode, the stack pointer
size is always 64 bits. The stack size is not controlled by the
default-size (B) bit in the SS descriptor, as it is in compatibility
and legacy modes, nor can it be overridden by an instruction
prefix. Address-size overrides are ignored for implicit stack
references.

Except for far branches, all instructions that implicitly
reference the stack pointer default to 64-bit operand size in 64-
bit mode. Table 3-8 on page 98 lists these instructions.

The default 64-bit operand size eliminates the need for a REX
prefix with these instructions. However, a REX prefix is still
required if R8-R15 (the extended set of eight GPRs) are used as
operands, because the prefix is required to address the
extended registers. Pushes and pops of 32-bit stack values are
not possible in 64-bit mode with these instructions, because
there is no 32-bit operand-size override prefix for 64-bit mode.
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3.74 Jumps

Jump instructions provide a simple means for transferring
program control from one location to another. Jumps do not
affect the procedure stack, and return instructions cannot
transfer control back to the instruction following a jump. Two
general types of jump instruction are available: unconditional
(JMP) and conditional (Jcc).

There are two types of unconditional jumps (JMP):

m  Near Jumps—When the target address is within the current
code segment.

m  Far Jumps—When the target address is outside the current
code segment.

Although unconditional jumps can be used to change code
segments, they cannot be used to change privilege levels.

Conditional jumps (Jcc) test the state of various bits in the
rFLAGS register (or rCX) and jump to a target location based
on the results of that test. Only near forms of conditional jumps
are available, so Jcc cannot be used to transfer control to
another code segment.
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Table 3-8. Instructions that Implicitly Reference RSP in 64-Bit Mode

Operand Size (bits)
Mnemonic Opcode Description Possible
(hex) Default .y
Overrides
CALL E8, FF /2 | Call Procedure Near
ENTER cs Create Procedure Stack Frame
LEAVE &) Delete Procedure Stack Frame
POP reg/mem 8F /0 Pop Stack (register or memory)
POP reg 58 to 5F | Pop Stack (register)
POP FS OF A1 Pop Stack into FS Segment Register
POP GS OF A9 Pop Stack into GS Segment Register
EgEEQ 9D Pop to EFLAGS Word or Quadword
64 16
PUSH imm32 68 Push onto Stack (sign-extended doubleword)
PUSH imm8 6A Push onto Stack (sign-extended byte)
PUSH reg/mem FF /6 Push onto Stack (register or memory)
PUSH reg 50-57 Push onto Stack (register)
PUSH FS OF A0 Push FS Segment Register onto Stack
PUSH GS OF A8 Push GS Segment Register onto Stack
Egg::ﬁQ 9C Push rFLAGS Word or Quadword onto Stack
RET Q,aG Return From Call (near)
Note:
1. There is no 32-bit operand-size override prefix in 64-bit mode.

3.75 Procedure Calls

The CALL instruction transfers control unconditionally to a
new address, but unlike jump instructions, it saves a return
pointer (CS:rIP) on the stack. The called procedure can use the
RET instruction to pop the return pointers t