
AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 1:
Application Programming

Publication No. Revision Date

24592 3.08 April 2003

AMD64 Technology 24592—Rev. 3.08—April 2003

Trademarks
AMD, the AMD arrow logo, AMD Athlon, AMD Duron, and combinations thereof, and 3DNow! are trademarks, and Am486, Am5x86,
and AMD-K6 are registered trademarks of Advanced Micro Devices, Inc.
MMX is a trademark and Pentium is a registered trademark of Intel Corporation.
Windows NT is a registered trademark of Microsoft Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

© 2002, 2003 Advanced Micro Devices, Inc. All rights reserved.
The contents of this document are provided in connection with Advanced Micro Devices, Inc.
(“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or
completeness of the contents of this publication and reserves the right to make changes to
specifications and product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this
publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes
no liability whatsoever, and disclaims any express or implied warranty, relating to its products
including, but not limited to, the implied warranty of merchantability, fitness for a particular pur-
pose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as components in
systems intended for surgical implant into the body, or in other applications intended to support
or sustain life, or in any other application in which the failure of AMD’s product could create a
situation where personal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any time without
notice.

Contents iii

24592—Rev. 3.08—April 2003 AMD64 Technology

Contents

Figures .xi

Tables . xv

Revision History . xvii

Preface . xix
About This Book . xix
Audience . xix
Contact Information. xix
Organization . xx
Definitions. xx
Related Documents . xxxi

1 Overview of the AMD64 Architecture . 1

1.1 Introduction . 1
New Features . 1
Registers. 3
Instruction Set . 4
Media Instructions . 5
Floating-Point Instructions. 6

1.2 Modes of Operation. 7
Long Mode . 7
64-Bit Mode . 8
Compatibility Mode . 9
Legacy Mode . 9

2 Memory Model . 11

2.1 Memory Organization . 11
Virtual Memory . 11
Segment Registers. 12
Physical Memory . 13
Memory Management . 14

2.2 Memory Addressing . 16
Byte Ordering. 16
64-bit Canonical Addresses . 18
Effective Addresses. 18
Address-Size Prefix . 21
RIP-Relative Addressing. 22

2.3 Pointers . 22
Near and Far Pointers . 23

2.4 Stack Operation. 23
2.5 Instruction Pointer . 24

3 General-Purpose Programming. 27

iv Contents

AMD64 Technology 24592—Rev. 3.08—April 2003

3.1 Registers. 27
Legacy Registers . 28
64-Bit-Mode Registers . 30
Implicit Uses of GPRs . 34
Flags Register . 37
Instruction Pointer Register. 41

3.2 Operands . 41
Data Types . 41
Operand Sizes and Overrides . 44
Operand Addressing . 46
Data Alignment . 47

3.3 Instruction Summary . 48
Syntax . 48
Data Transfer . 49
Data Conversion. 54
Load Segment Registers . 58
Load Effective Address. 58
Arithmetic . 59
Rotate and Shift . 61
Compare and Test . 64
Logical . 67
String . 68
Control Transfer . 69
Flags . 75
Input/Output . 76
Semaphores . 78
Processor Information. 79
Cache and Memory Management . 79
No Operation . 80
System Calls. 80

3.4 General Rules for Instructions in 64-Bit Mode. 81
Address Size . 81
Canonical Address Format . 81
Branch-Displacement Size . 82
Operand Size . 82
High 32 Bits . 83
Invalid and Reassigned Instructions . 83
Instructions with 64-Bit Default Operand Size. 84

3.5 Instruction Prefixes. 85
Legacy Prefixes . 86
REX Prefixes . 89

3.6 Feature Detection . 90
3.7 Control Transfers . 93

Overview. 93
Privilege Levels . 93
Procedure Stack. 94
Jumps . 95

Contents v

24592—Rev. 3.08—April 2003 AMD64 Technology

Procedure Calls . 96
Returning from Procedures . 99
System Calls. 102
General Considerations for Branching 102
Branching in 64-Bit Mode . 103
Interrupts and Exceptions . 104

3.8 Input/Output . 109
I/O Addressing . 110
I/O Ordering . 111
Protected-Mode I/O . 112

3.9 Memory Optimization . 113
Accessing Memory. 113
Forcing Memory Order . 115
Caches. 117
Cache Operation . 119
Cache Pollution . 121
Cache-Control Instructions. 122

3.10 Performance Considerations . 124
Use Large Operand Sizes . 125
Use Short Instructions . 125
Align Data . 125
Avoid Branches . 125
Prefetch Data . 125
Keep Common Operands in Registers. 125
Avoid True Dependencies. 125
Avoid Store-to-Load Dependencies . 126
Optimize Stack Allocation . 126
Consider Repeat-Prefix Setup Time 126
Replace GPR with Media Instructions 126
Organize Data in Memory Blocks. 126

4 128-Bit Media and Scientific Programming 127

4.1 Overview . 127
Origins . 127
Compatibility . 127

4.2 Capabilities . 128
Types of Applications . 128
Integer Vector Operations . 129
Floating-Point Vector Operations . 130
Data Conversion and Reordering. 131
Block Operations . 133
Matrix and Special Arithmetic Operations. 135
Branch Removal. 137

4.3 Registers. 139
XMM Registers . 139
MXCSR Register . 140
Other Data Registers. 144
rFLAGS Registers . 145

vi Contents

AMD64 Technology 24592—Rev. 3.08—April 2003

4.4 Operands . 145
Data Types . 145
Operand Sizes and Overrides . 147
Operand Addressing . 147
Data Alignment . 148
Integer Data Types . 148
Floating-Point Data Types . 150
Floating-Point Number Representation 152
Floating-Point Number Encodings. 156
Floating-Point Rounding. 158

4.5 Instruction Summary—Integer Instructions. 160
Syntax . 160
Data Transfer . 162
Data Conversion. 166
Data Reordering . 168
Arithmetic . 174
Shift . 181
Compare . 183
Logical . 185
Save and Restore State . 186

4.6 Instruction Summary—Floating-Point Instructions. 187
Syntax . 187
Data Transfer . 187
Data Conversion. 192
Data Reordering . 195
Arithmetic . 197
Compare . 202
Logical . 206

4.7 Instruction Effects on Flags . 207
4.8 Instruction Prefixes. 208

Supported Prefixes . 208
Special-Use and Reserved Prefixes . 208
Prefixes That Cause Exceptions . 208

4.9 Feature Detection . 209
4.10 Exceptions . 209

General-Purpose Exceptions . 210
SIMD Floating-Point Exception Causes 211
SIMD Floating-Point Exception Priority. 216
SIMD Floating-Point Exception Masking 218

4.11 Saving, Clearing, and Passing State 222
Saving and Restoring State . 222
Parameter Passing . 222
Accessing Operands in MMX™ Registers. 223

4.12 Performance Considerations . 224
Use Small Operand Sizes . 224
Reorganize Data for Parallel Operations 224
Remove Branches . 224

Contents vii

24592—Rev. 3.08—April 2003 AMD64 Technology

Use Streaming Stores . 225
Align Data . 225
Organize Data for Cacheability . 225
Prefetch Data . 225
Use 128-Bit Media Code for Moving Data. 226
Retain Intermediate Results in XMM Registers 226
Replace GPR Code with 128-bit media Code. 226
Replace x87 Code with 128-Bit Media Code. 226

5 64-Bit Media Programming . 229

5.1 Overview . 229
Origins . 229
Compatibility . 230

5.2 Capabilities . 230
Parallel Operations . 231
Data Conversion and Reordering. 231
Matrix Operations . 233
Saturation. 234
Branch Removal. 234
Floating-Point (3DNow!™) Vector Operations 236

5.3 Registers. 237
MMX™ Registers. 237
Other Registers . 238

5.4 Operands . 238
Data Types . 238
Operand Sizes and Overrides . 240
Operand Addressing . 240
Data Alignment . 241
Integer Data Types . 241
Floating-Point Data Types . 243

5.5 Instruction Summary—Integer Instructions. 245
Syntax . 246
Exit Media State . 247
Data Transfer . 248
Data Conversion. 250
Data Reordering . 251
Arithmetic . 255
Shift . 260
Compare . 262
Logical . 263
Save and Restore State . 264

5.6 Instruction Summary—Floating-Point Instructions. 265
Syntax . 266
Data Conversion. 266
Arithmetic . 267
Compare . 271

5.7 Instruction Effects on Flags . 272
5.8 Instruction Prefixes. 272

viii Contents

AMD64 Technology 24592—Rev. 3.08—April 2003

Supported Prefixes . 272
Special-Use and Reserved Prefixes . 273
Prefixes That Cause Exceptions . 273

5.9 Feature Detection . 273
5.10 Exceptions . 274

General-Purpose Exceptions . 274
x87 Floating-Point Exceptions (#MF) 276

5.11 Actions Taken on Executing 64-Bit Media Instructions . . . 276
5.12 Mixing Media Code with x87 Code . 278

Mixing Code . 278
Clearing MMX™ State . 278

5.13 State-Saving . 279
Saving and Restoring State . 279
State-Saving Instructions . 279

5.14 Performance Considerations . 280
Use Small Operand Sizes . 280
Reorganize Data for Parallel Operations 281
Remove Branches . 281
Align Data . 281
Organize Data for Cacheability . 281
Prefetch Data . 282
Retain Intermediate Results in MMX Registers 282

6 x87 Floating-Point Programming . 283

6.1 Overview . 283
Origins . 283
Compatibility . 283

6.2 Capabilities . 284
6.3 Registers. 285

x87 Data Registers. 286
x87 Status Word Register . 287
x87 Control Word Register . 291
x87 Tag Word Register . 293
Pointers and Opcode State . 295
x87 Environment . 296
Floating-Point Emulation (CR0.EM) 297

6.4 Operands . 298
Operand Addressing . 298
Data Types . 298
Number Representation . 303
Number Encodings . 306
Precision . 311
Rounding . 312

6.5 Instruction Summary . 313
Syntax . 313
Data Transfer and Conversion . 315
Load Constants . 318
Arithmetic . 318

Contents ix

24592—Rev. 3.08—April 2003 AMD64 Technology

Transcendental Functions . 323
Compare and Test . 325
Stack Management . 328
No Operation . 329
Control . 329

6.6 Instruction Effects on rFLAGS . 333
6.7 Instruction Prefixes. 333
6.8 Feature Detection . 334
6.9 Exceptions . 335

General-Purpose Exceptions . 335
x87 Floating-Point Exception Causes 336
x87 Floating-Point Exception Priority. 340
x87 Floating-Point Exception Masking 342

6.10 State-Saving . 349
Saving and Restoring State . 349
State-Saving Instructions . 349

6.11 Performance Considerations . 350
Replace x87 Code with 128-Bit Media Code. 350
Use FCOMI-FCMOVx Branching . 350
Use FSINCOS Instead of FSIN and FCOS 351
Break Up Dependency Chains . 351

Index. 353

x Contents

AMD64 Technology 24592—Rev. 3.08—April 2003

Figures xi

24592—Rev. 3.08—April 2003 AMD64 Technology

Figures

Figure 1-1. Application-Programming Register Set . 2

Figure 2-1. Virtual-Memory Segmentation . 12

Figure 2-2. Segment Registers . 13

Figure 2-3. Long-Mode Memory Management . 14

Figure 2-4. Legacy-Mode Memory Management . 15

Figure 2-5. Byte Ordering . 17

Figure 2-6. Example of 10-Byte Instruction in Memory. 18

Figure 2-7. Complex Address Calculation (Protected Mode) 19

Figure 2-8. Near and Far Pointers . 23

Figure 2-9. Stack Pointer Mechanism . 24

Figure 2-10.Instruction Pointer (rIP) Register . 25

Figure 3-1. General-Purpose Programming Registers 28

Figure 3-2. General Registers in Legacy and Compatibility Modes. 29

Figure 3-3. General Registers in 64-Bit Mode. 31

Figure 3-4. GPRs in 64-Bit Mode . 32

Figure 3-5. rFLAGS Register—Flags Visible to Application Software . . . 38

Figure 3-6. General-Purpose Data Types. 42

Figure 3-7. Mnemonic Syntax Example. 48

Figure 3-8. BSWAP Doubleword Exchange. 57

Figure 3-9. Privilege-Level Relationships . 94

Figure 3-10.Procedure Stack, Near Call . 97

Figure 3-11.Procedure Stack, Far Call to Same Privilege 98

Figure 3-12.Procedure Stack, Far Call to Greater Privilege 99

Figure 3-13.Procedure Stack, Near Return . 100

Figure 3-14.Procedure Stack, Far Return from Same Privilege 101

Figure 3-15.Procedure Stack, Far Return from Less Privilege 101

Figure 3-16.Procedure Stack, Interrupt to Same Privilege 108

Figure 3-17.Procedure Stack, Interrupt to Higher Privilege 109

Figure 3-18.I/O Address Space . 111

Figure 3-19.Memory Hierarchy Example . 119

Figure 4-1. Parallel Operations on Vectors of Integer Elements 129

xii Figures

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4-2. Parallel Operations on Vectors of Floating-Point Elements . 130

Figure 4-3. Unpack and Interleave Operation . 131

Figure 4-4. Pack Operation . 132

Figure 4-5. Shuffle Operation. 132

Figure 4-6. Move Operations . 134

Figure 4-7. Move Mask Operation . 135

Figure 4-8. Multiply-Add Operation . 136

Figure 4-9. Sum-of-Absolute-Differences Operation 137

Figure 4-10.Branch-Removal Sequence . 138

Figure 4-11.Move Mask Operation . 139

Figure 4-12.128-bit Media Registers . 140

Figure 4-13.128-Bit Media Control and Status Register (MXCSR) 141

Figure 4-14.128-Bit Media Data Types . 146

Figure 4-15.128-Bit Media Floating-Point Data Types 151

Figure 4-16.Mnemonic Syntax for Typical Instruction 160

Figure 4-17.Integer Move Operations. 164

Figure 4-18.MASKMOVDQU Move Mask Operation 165

Figure 4-19.PMOVMSKB Move Mask Operation. 166

Figure 4-20.PACKSSDW Pack Operation. 169

Figure 4-21.PUNPCKLWD Unpack and Interleave Operation 170

Figure 4-22.PINSRW Operation . 172

Figure 4-23.PSHUFD Shuffle Operation . 173

Figure 4-24.PSHUFHW Shuffle Operation . 173

Figure 4-25.Arithmetic Operation on Vectors of Bytes 174

Figure 4-26.PMULxW Multiply Operation. 177

Figure 4-27.PMULUDQ Multiply Operation . 178

Figure 4-28.PMADDWD Multiply-Add Operation. 179

Figure 4-29.PSADBW Sum-of-Absolute-Differences Operation. 181

Figure 4-30.PCMPEQB Compare Operation . 184

Figure 4-31.Floating-Point Move Operations. 189

Figure 4-32.MOVMSKPS Move Mask Operation. 192

Figure 4-33.UNPCKLPS Unpack and Interleave Operation 196

Figure 4-34.SHUFPS Shuffle Operation. 197

Figures xiii

24592—Rev. 3.08—April 2003 AMD64 Technology

Figure 4-35.ADDPS Arithmetic Operation. 198

Figure 4-36.CMPPD Compare Operation . 204

Figure 4-37.COMISD Compare Operation . 206

Figure 4-38.SIMD Floating-Point Detection Process. 217

Figure 5-1. Parallel Integer Operations on Elements of Vectors 231

Figure 5-2. Unpack and Interleave Operation . 232

Figure 5-3. Shuffle Operation (1 of 256) . 233

Figure 5-4. Multiply-Add Operation . 234

Figure 5-5. Branch-Removal Sequence . 235

Figure 5-6. Floating-Point (3DNow!™) Operations 236

Figure 5-7. 64-bit Media Registers . 237

Figure 5-8. 64-Bit Media Data Types . 239

Figure 5-9. 64-Bit Floating-Point (3DNow!) Vector Operand 243

Figure 5-10.Mnemonic Syntax for Typical Instruction 246

Figure 5-11.MASKMOVQ Move Mask Operation . 249

Figure 5-12.PACKSSDW Pack Operation. 252

Figure 5-13.PUNPCKLWD Unpack and Interleave Operation 253

Figure 5-14.PSHUFW Shuffle Operation . 254

Figure 5-15.PSWAPD Swap Operation . 255

Figure 5-16.PMADDWD Multiply-Add Operation. 259

Figure 5-17.PFACC Accumulate Operation . 269

Figure 6-1. x87 Registers. 285

Figure 6-2. x87 Physical and Stack Registers . 286

Figure 6-3. x87 Status Word Register . 288

Figure 6-4. x87 Control Word Register . 291

Figure 6-5. x87 Tag Word Register . 294

Figure 6-6. x87 Pointers and Opcode State . 295

Figure 6-7. x87 Data Types . 299

Figure 6-8. x87 Floating-Point Data Types . 300

Figure 6-9. x87 Packed Decimal Data Type . 302

Figure 6-10.Mnemonic Syntax for Typical Instruction 314

xiv Figures

AMD64 Technology 24592—Rev. 3.08—April 2003

Tables xv

24592—Rev. 3.08—April 2003 AMD64 Technology

Tables

Table 1-1. Operating Modes . 3

Table 1-2. Application Registers and Stack, by Operating Mode 4

Table 2-1. Address-Size Prefixes. 21

Table 3-1. Implicit Uses of Legacy GPRs. 35

Table 3-2. Representable Values of General-Purpose Data Types 43

Table 3-3. Operand-Size Overrides. 45

Table 3-4. rFLAGS for CMOVcc Instructions . 51

Table 3-5. rFLAGS for SETcc Instructions. 66

Table 3-6. rFLAGS for Jcc Instructions . 71

Table 3-7. Legacy Instruction Prefixes . 86

Table 3-8. Instructions that Implicitly Reference RSP in 64-Bit Mode . . 96

Table 3-9. Near Branches in 64-Bit Mode. 103

Table 3-10. Interrupts and Exceptions. 106

Table 4-1. MXCSR Register Reset Values. 142

Table 4-2. Range of Values in 128-Bit Media Integer Data Types 149

Table 4-3. Saturation Examples . 150

Table 4-4. Range of Values in Normalized Floating-Point Data Types . 152

Table 4-5. Example of Denormalization. 154

Table 4-6. NaN Results . 156

Table 4-7. Supported Floating-Point Encodings . 157

Table 4-8. Indefinite-Value Encodings. 158

Table 4-9. Types of Rounding . 159

Table 4-10. Example PANDN Bit Values . 186

Table 4-11. SIMD Floating-Point Exception Flags 212

Table 4-12. Invalid-Operation Exception (IE) Causes 214

Table 4-13. Priority of SIMD Floating-Point Exceptions 216

Table 4-14. SIMD Floating-Point Exception Masks 218

Table 4-15. Masked Responses to SIMD Floating-Point Exceptions. 219

Table 5-1. Range of Values in 64-Bit Media Integer Data Types 242

Table 5-2. Saturation Examples . 242

Table 5-3. Range of Values in 64-Bit Media Floating-Point Data Types 244

Table 5-4. 64-Bit Floating-Point Exponent Ranges 244

Table 5-5. Example PANDN Bit Values . 264

Table 5-6. Mapping Between Internal and Software-Visible Tag Bits . . 277

xvi Tables

AMD64 Technology 24592—Rev. 3.08—April 2003

Table 6-1. Precision Control (PC) Summary . 292

Table 6-2. Types of Rounding . 293

Table 6-3. Mapping Between Internal and Software-Visible Tag Bits . . 294

Table 6-4. Instructions that Access the x87 Environment 297

Table 6-5. Range of Finite Floating-Point Values. 301

Table 6-6. Example of Denormalization. 305

Table 6-7. NaN Results from NaN Source Operands 307

Table 6-8. Supported Floating-Point Encodings . 308

Table 6-9. Unsupported Floating-Point Encodings. 310

Table 6-10. Indefinite-Value Encodings. 311

Table 6-11. Precision Control Field (PC) Values and Bit Precision 311

Table 6-12. Types of Rounding . 312

Table 6-13. rFLAGS Conditions for FCMOVcc . 317

Table 6-14. rFLAGS Values for FCOMI Instruction 326

Table 6-15. Condition-Code Settings for FXAM . 328

Table 6-16. Instruction Effects on rFLAGS . 333

Table 6-17. x87 Floating-Point (#MF) Exception Flags 337

Table 6-18. Invalid-Operation Exception (IE) Causes 338

Table 6-19. Priority of x87 Floating-Point Exceptions 341

Table 6-20. x87 Floating-Point (#MF) Exception Masks 342

Table 6-21. Masked Responses to x87 Floating-Point Exceptions 343

Table 6-22. Unmasked Responses to x87 Floating-Point Exceptions 346

Revision History xvii

24592—Rev. 3.08—April 2003 AMD64 Technology

Revision History xvii

Revision History

Date Revision Description

September, 2002 3.07 Corrected minor organizational problems in sections dealing with ‘Prefetch’
instructions in chapters 3, 4, and 5. Clarified the general description of the
operation of certain 128-bit media instructions in chapter 1. Corrected a factual
error in the description of the FNINIT/FINIT instructions in chapter 6. Corrected
operand descriptions for the CMOVcc instructions in chapter 3. Added Revision
History. Corrected marketing denotations.

xviii Revision History

AMD64 Technology 24592—Rev. 3.08—April 2003

Preface xix

24592—Rev. 3.08—April 2003 AMD64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64
Architecture Programmer’s Manual. This table lists each volume
and its order number.

Audience

This volume (Volume 1) is intended for programmers writing
application programs, compilers, or assemblers. It assumes
prior experience in microprocessor programming, although it
does not assume prior experience with the legacy x86 or
AMD64 microprocessor architecture.

This volume describes the AMD64 architecture’s resources and
functions that are accessible to application software, including
memory, registers, instructions, operands, I/O facilities, and
application-software aspects of control transfers (including
interrupts and exceptions) and performance optimization.

System-programming topics—including the use of instructions
running at a current privilege level (CPL) of 0 (most-
privileged)—are described in Volume 2. Details about each
instruction are described in volumes 3, 4, and 5.

Contact Information

To submit questions or comments concerning this document,
contact our technical documentat ion s taf f at
AMD64.Feedback@amd.com.

Title Order No.

Volume 1, Application Programming 24592

Volume 2, System Programming 24593

Volume 3, General-Purpose and System Instructions 24594

Volume 4, 128-Bit Media Instructions 26568

Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

xx Preface

AMD64 Technology 24592—Rev. 3.08—April 2003

Organization

This volume begins with an overview of the architecture and its
memory organization and is followed by chapters that describe
the four application-programming models available in the
AMD64 architecture:

General-Purpose Programming—This model uses the integer
general-purpose registers (GPRs). The chapter describing it
also describes the basic application environment for
exceptions, control transfers, I/O, and memory optimization
that applies to all other application-programming models.

128-bit Media Programming—This model uses the 128-bit
XMM registers and supports integer and floating-point
operations on vector (packed) and scalar data types.

64-bit Media Programming—This model uses the 64-bit
MMX™ registers and supports integer and floating-point
operations on vector (packed) and scalar data types.

x87 Floating-Point Programming—This model uses the 80-bit
x87 registers and supports floating-point operations on
scalar data types.

Definitions assumed throughout this volume are listed below.
The index at the end of this volume cross-references topics
within the volume. For other topics relating to the AMD64
architecture, see the tables of contents and indexes of the other
volumes.

Definitions

Some of the following definitions assume a knowledge of the
legacy x86 architecture. See “Related Documents” on page xxxi
for further information about the legacy x86 architecture.

Terms and Notation 1011b
A binary value—in this example, a 4-bit value.

F0EAh
A hexadecimal value—in this example a 2-byte value.

[1,2)
A range that includes the left-most value (in this case, 1) but
excludes the right-most value (in this case, 2).

Preface xxi

24592—Rev. 3.08—April 2003 AMD64 Technology

7–4
A bit range, from bit 7 to 4, inclusive. The high-order bit is
shown first.

128-bit media instructions
Instructions that use the 128-bit XMM registers. These are a
combination of the SSE and SSE2 instruction sets.

64-bit media instructions
Instructions that use the 64-bit MMX™ registers. These are
primarily a combination of MMX and 3DNow!™ instruction
sets, with some additional instructions from the SSE and
SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit
address size is active. See legacy mode and compatibility
mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit
address size is active. See legacy mode and compatibility
mode.

64-bit mode
A submode of long mode. In 64-bit mode, the default address
size is 64 bits and new features, such as register extensions,
are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP)
with error code of 0.

absolute
Said of a displacement that references the base of a code
segment rather than an instruction pointer. Contrast with
relative.

biased exponent
The sum of a floating-point value’s exponent and a constant
bias for a particular floating-point data type. The bias makes
the range of the biased exponent always positive, which
allows reciprocation without overflow.

xxii Preface

AMD64 Technology 24592—Rev. 3.08—April 2003

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default
address size is 32 bits, and legacy 16-bit and 32-bit
applications run without modification.

commit
To irreversibly write, in program order, an instruction’s
result to software-visible storage, such as a register
(including flags), the data cache, an internal write buffer, or
memory.

CPL
Current privilege level.

CR0–CR4
A register range, from register CR0 through CR4, inclusive,
with the low-order register first.

CR0.PE = 1
Notation indicating that the PE bit of the CR0 register has a
value of 1.

direct
Referencing a memory location whose address is included in
the instruction’s syntax as an immediate operand. The
address may be an absolute or relative address. Compare
indirect.

dirty data
Data held in the processor’s caches or internal buffers that is
more recent than the copy held in main memory.

displacement
A signed value that is added to the base of a segment
(absolute addressing) or an instruction pointer (relative
addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

Preface xxiii

24592—Rev. 3.08—April 2003 AMD64 Technology

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSI
The contents of a memory location whose segment address is
in the DS register and whose offset relative to that segment
is in the rSI register.

EFER.LME = 0
Notation indicating that the LME bit of the EFER register
has a value of 0.

effective address size
The address size for the current instruction after accounting
for the default address size and any address-size override
prefix.

effective operand size
The operand size for the current instruction after
accounting for the default operand size and any operand-
size override prefix.

element
See vector.

exception
An abnormal condition that occurs as the result of executing
an instruction. The processor’s response to an exception
depends on the type of the exception. For all exceptions
except 128-bit media SIMD floating-point exceptions and
x87 floating-point exceptions, control is transferred to the
handler (or service routine) for that exception, as defined by
the exception’s vector. For floating-point exceptions defined
by the IEEE 754 standard, there are both masked and
unmasked responses. When unmasked, the exception
handler is called, and when masked, a default response is
provided instead of calling the handler.

FF /0
Notation indicating that FF is the first byte of an opcode,
and a subopcode in the ModR/M byte has a value of 0.

flush
An often ambiguous term meaning (1) writeback, if
modified, and invalidate, as in “flush the cache line,” or (2)

xxiv Preface

AMD64 Technology 24592—Rev. 3.08—April 2003

invalidate, as in “flush the pipeline,” or (3) change a value,
as in “flush to zero.”

GDT
Global descriptor table.

IDT
Interrupt descriptor table.

IGN
Ignore. Field is ignored.

indirect
Referencing a memory location whose address is in a
register or other memory location. The address may be an
absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on
page xxxi for descriptions of the legacy x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which
existing 16-bit and 32-bit applications and operating systems
run without modification. A processor implementation of
the AMD64 architecture can run in either long mode or legacy
mode. Legacy mode has three submodes, real mode, protected
mode, and virtual-8086 mode.

long mode
An operating mode unique to the AMD64 architecture. A
processor implementation of the AMD64 architecture can
run in either long mode or legacy mode. Long mode has two
submodes, 64-bit mode and compatibility mode.

Preface xxv

24592—Rev. 3.08—April 2003 AMD64 Technology

lsb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache
memory) that is installed in a particular computer system.

mask
(1) A control bit that prevents the occurrence of a floating-
point exception from invoking an exception-handling
routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a
general-protection exception (#GP) occurs.

memory
Unless otherwise specified, main memory.

ModRM
A byte following an instruction opcode that specifies
address calculation based on mode (Mod), register (R), and
memory (M) variables.

moffset
A direct memory offset. In other words, a displacement that
is added to the base of a code segment (for absolute
addressing) or to an instruction pointer (for addressing
relative to the instruction pointer, as in RIP-relative
addressing).

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions
A combination of 128-bit media instructions and 64-bit media
instructions.

xxvi Preface

AMD64 Technology 24592—Rev. 3.08—April 2003

octword
Same as double quadword.

offset
Same as displacement.

overflow
The condition in which a floating-point number is larger in
magnitude than the largest, finite, positive or negative
number that can be represented in the data-type format
being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal
buffers. External probes originate outside the processor, and
internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy
mode.

relative
Referencing with a displacement (also called offset) from an
instruction pointer rather than the base of a code segment.
Contrast with absolute.

Preface xxvii

24592—Rev. 3.08—April 2003 AMD64 Technology

REX
An instruction prefix that specifies a 64-bit operand size and
provides access to additional registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.
Compare moffset.

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies
address calculation based on scale (S), index (I), and base
(B).

SIMD
Single instruction, multiple data. See vector.

SSE
Streaming SIMD extensions instruction set. See 128-bit
media instructions and 64-bit media instructions.

SSE2
Extensions to the SSE instruction set. See 128-bit media
instructions and 64-bit media instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in
that state until explicitly changed by software.

TOP
The x87 top-of-stack pointer.

TPR
Task-priority register (CR8).

TSS
Task-state segment.

underflow
The condition in which a floating-point number is smaller in
magnitude than the smallest nonzero, positive or negative
number that can be represented in the data-type format
being used.

xxviii Preface

AMD64 Technology 24592—Rev. 3.08—April 2003

vector
(1) A set of integer or floating-point values, called elements,
that are packed into a single operand. Most of the 128-bit
and 64-bit media instructions use vectors as operands.
Vectors are also called packed or SIMD (single-instruction
multiple-data) operands.
(2) An index into an interrupt descriptor table (IDT), used to
access exception handlers. Compare exception.

virtual-8086 mode
A submode of legacy mode.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers In the following list of registers, the names are used to refer
either to a given register or to the contents of that register:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. Compare
AL–DL.

AL–DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and
R8B–R15B registers, available in 64-bit mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the
32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers. Compare rAX–rSP.

Preface xxix

24592—Rev. 3.08—April 2003 AMD64 Technology

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are
AX, BX, CX, DX, DI, SI, BP, and SP. For the 32-bit data size,
these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For
the 64-bit data size, these include RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W
registers, or the 32-bit R8D–R15D registers, or the 64-bit
R8–R15 registers.

xxx Preface

AMD64 Technology 24592—Rev. 3.08—April 2003

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or
the 32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI,
RBP, and RSP registers. Replace the placeholder r with
nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-bit
size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare
RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

Preface xxxi

24592—Rev. 3.08—April 2003 AMD64 Technology

SP
Stack pointer register.

SS
Stack segment register.

TPR
Task priority register, a new register introduced in the
AMD64 architecture to speed interrupt management.

TR
Task register.

Endian Order The x86 and AMD64 architectures address memory using little-
endian byte-ordering. Multibyte values are stored with their
least-significant byte at the lowest byte address, and they are
illustrated with their least significant byte at the right side.
Strings are illustrated in reverse order, because the addresses of
their bytes increase from right to left.

Related Documents
Peter Abel, IBM PC Assembly Language and Programming,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume
II, Prentice-Hall, Englewood Cliffs, NJ, 1991.

AMD data sheets and application notes for particular
hardware implementations of the AMD64 architecture.

AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia
Technology, Sunnyvale, CA, 2000.

AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

AMD, AMD Extensions to the 3DNow!™ and MMX™
Instruction Sets, Sunnyvale, CA, 2000.

Don Anderson and Tom Shanley, Pentium Processor System
Architecture, Addison-Wesley, New York, 1995.

Nabajyoti Barkakati and Randall Hyde, Microsoft Macro
Assembler Bible, Sams, Carmel, Indiana, 1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly
Language Programming, Macmillan Publishing Co., New
York, 1994.

xxxii Preface

AMD64 Technology 24592—Rev. 3.08—April 2003

Barry B. Brey, Programming the 80286, 80386, 80486, and
Pentium Based Personal Computer, Prentice-Hall, Englewood
Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley,
New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly
Language Programming, Windcrest McGraw-Hill, 1993.

Geoff Chappell, DOS Internals, Addison-Wesley, New York,
1994.

Chips and Technologies, Inc. Super386 DX Programmer’s
Reference Manual, Chips and Technologies, Inc., San Jose,
1992.

John Crawford and Patrick Gelsinger, Programming the
80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix
Corporation, Richardson, TX, 1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix
Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode
Table, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix
Corporation, Richardson, TX, 1997.

Jeffrey P. Doyer, Introduction to Protected Mode
Programming, course materials for an onsite class, 1992.

Ray Duncan, Extending DOS: A Programmer's Guide to
Protected-Mode DOS, Addison Wesley, NY, 1991.

William B. Giles, Assembly Language Programming for the
Intel 80xxx Family, Macmillan, New York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley,
New York, 1994.

John L. Hennessy and David A. Patterson, Computer
Architecture, Morgan Kaufmann Publishers, San Mateo, CA,
1996.

Thom Hogan, The Programmer’s PC Sourcebook, Microsoft
Press, Redmond, WA, 1991.

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro,
Peer-to-Peer Communications, Menlo Park, CA, 1997.

IBM Corporation, 486SLC Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

Preface xxxiii

24592—Rev. 3.08—April 2003 AMD64 Technology

IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 80486DX2 Processor Floating Point
Instructions, IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide,
IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, Blue Lightening 486DX2 Data Book, IBM
Corporation, Essex Junction, VT, 1994.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Std 754-1985.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Radix-Independent Floating-Point Arithmetic,
ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86
IBM PC and Compatible Computers, Prentice-Hall, Englewood
Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book,
Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to
Computer Architecture: Using the Intel Pentium, Oxford
University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The
80386/387 Architecture, John Wiley & Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1993.

NexGen Inc., Nx686 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Streaming SIMD
Extensions in the Pentium III, www.x86.org/articles/sse_pt1/
simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC
Programmer’s Bible, Microsoft Press, Redmond, WA, 1993.

PharLap 386|ASM Reference Manual, Pharlap, Cambridge
MA, 1993.

PharLap TNT DOS-Extender Reference Manual, Pharlap,
Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced
Programming, Van Nostrand Reinhold, New York, 1993.

xxxiv Preface

AMD64 Technology 24592—Rev. 3.08—April 2003

Tom Shanley, Protected Mode System Architecture, Addison
Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM
Programming Manual, SGS-Thomson Corporation, 1995.

Walter A. Triebel, The 80386DX Microprocessor, Prentice-
Hall, Englewood Cliffs, NJ, 1992.

John Wharton, The Complete x86, MicroDesign Resources,
Sebastopol, California, 1994.

Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

Chapter 1: Overview of the AMD64 Architecture 1

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 1: Overview of the AMD64 Architecture 1

1 Overview of the AMD64 Architecture

1.1 Introduction

The AMD64 architecture is a simple yet powerful 64-bit,
backward-compatible extension of the industry-standard
(legacy) x86 architecture. It adds 64-bit addressing and expands
register resources to support higher performance for
recompiled 64-bit programs, while supporting legacy 16-bit and
32-bit applications and operating systems without modification
or recompilation. It is the architectural basis on which new
processors can provide seamless, high-performance support for
both the vast body of existing software and new 64-bit software
required for higher-performance applications.

The need for a 64-bit x86 architecture is driven by applications
that address large amounts of virtual and physical memory,
such as high-performance servers, database management
systems, and CAD tools. These applications benefit from both
64-bit addresses and an increased number of registers. The
small number of registers available in the legacy x86
architecture limits performance in computation-intensive
applications. Increasing the number of registers provides a
performance boost to many such applications.

1.1.1 New Features The AMD64 architecture introduces these new features:

Register Extensions (see Figure 1-1 on page 2):

- 8 new general-purpose registers (GPRs).

- All 16 GPRs are 64 bits wide.

- 8 new 128-bit XMM registers.

- Uniform byte-register addressing for all GPRs.

- A new instruction prefix (REX) accesses the extended
registers.

Long Mode (see Table 1-1 on page 3):

- Up to 64 bits of virtual address.

- 64-bit instruction pointer (RIP).

- New instruction-pointer-relative data-addressing mode.

- Flat address space.

2 Chapter 1: Overview of the AMD64 Architecture

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 1-1. Application-Programming Register Set

513-101.eps

Flags Register

Instruction Pointer

General-Purpose
Registers (GPRs)

128-Bit Media
Registers

64-Bit Media and
Floating-Point Registers

Legacy x86 registers, supported in all modes Application-programming registers also include the
128-bit media control-and-status register and the
x87 tag-word, control-word, and status-word registers

63 0 63 0

63 0

127 0

63 0

Register extensions, supported in 64-bit mode

RAX
RBX
RCX
RDX
RBP
RSI
RDI
RSP
R8
R9
R10
R11
R12
R13
R14
R15

MMX0/FPR0
MMX1/FPR1
MMX2/FPR2
MMX3/FPR3
MMX4/FPR4
MMX5/FPR5
MMX6/FPR6
MMX7/FPR7

XMM0
XMM1
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7
XMM8
XMM9
XMM10
XMM11
XMM12
XMM13
XMM14
XMM15

0 RFLAGS

RIP

EFLAGS

EIP

Chapter 1: Overview of the AMD64 Architecture 3

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 1: Overview of the AMD64 Architecture 3

1.1.2 Registers Table 1-2 on page 4 compares the register and stack resources
available to application software, by operating mode. The left
set of columns shows the legacy x86 resources, which are
available in the AMD64 architecture’s legacy and compatibility
modes. The right set of columns shows the comparable
resources in 64-bit mode. Gray shading indicates differences
between the modes. These register differences (not including
stack-width difference) represent the register extensions shown
in Figure 1-1.

Table 1-1. Operating Modes

Operating Mode Operating
System Required

Application
Recompile
Required

Defaults
Register

Extensions

Typical

 Address
Size (bits)

Operand
Size (bits)

GPR
Width (bits)

Long
Mode

64-Bit
Mode

New 64-bit OS

yes 64
32

yes 64

Compatibility
Mode

no
32

no
32

16 16 16

Legacy
Mode

Protected Mode

Legacy 32-bit OS
no

32 32

no

32
16 16

Virtual-8086
Mode 16 16 16

Real Mode Legacy 16-bit OS

4 Chapter 1: Overview of the AMD64 Architecture

AMD64 Technology 24592—Rev. 3.08—April 2003

As Table 1-2 shows, the legacy x86 architecture (called legacy
mode in the AMD64 architecture) supports eight GPRs. In
reality, however, the general use of at least four registers (EBP,
ESI, EDI, and ESP) is compromised because they serve special
purposes when executing many instructions. The AMD64
architecture’s addition of eight new GPRs—and the increased
width of these registers from 32 bits to 64 bits—allows
compilers to substantially improve software performance.
Compilers have more flexibility in using registers to hold
variables. Compilers can also minimize memory traffic—and
thus boost performance—by localizing work within the GPRs.

1.1.3 Instruction Set The AMD64 architecture supports the full legacy x86
instruction set, and it adds a few new instructions to support
long mode (see Table 1-1 for a summary of operating modes).
The application-programming instructions are organized and
described in the following subsets:

General-Purpose Instructions—These are the basic x86
integer instructions used in virtually all programs. Most of

Table 1-2. Application Registers and Stack, by Operating Mode

Register
or Stack

Legacy and Compatibility Modes 64-Bit Mode1

Name Number Size (bits) Name Number Size (bits)

General-Purpose
Registers (GPRs)2

EAX, EBX, ECX,
EDX, EBP, ESI,

EDI, ESP
8 32

RAX, RBX, RCX,
RDX, RBP, RSI,

RDI, RSP, R8–R15
16 64

128-Bit XMM Registers XMM0–XMM7 8 128 XMM0–XMM15 16 128

64-Bit MMX Registers MMX0–MMX73 8 64 MMX0–MMX73 8 64

x87 Registers FPR0–FPR73 8 80 FPR0–FPR73 8 80

Instruction Pointer2 EIP 1 32 RIP 1 64

Flags2 EFLAGS 1 32 RFLAGS 1 64

Stack — 16 or 32 — 64

Note:
1. Gray-shaded entries indicate differences between the modes. These differences (except stack-width difference) are the AMD64

architecture’s register extensions.
2. This list of GPRs shows only the 32-bit registers. 16-bit and 8-bit mappings of the 32-bit registers are also accessible, as described

in “Registers” on page 27.
3. The MMX0–MMX7 registers are mapped onto the FPR0–FPR7 physical registers, as shown in Figure 1-1. The x87 stack registers,

ST(0)–ST(7), are the logical mappings of the FPR0–FPR7 physical registers.

Chapter 1: Overview of the AMD64 Architecture 5

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 1: Overview of the AMD64 Architecture 5

these instructions load, store, or operate on data located in
the general-purpose registers (GPRs) or memory. Some of
the instructions alter sequential program flow program by
branching to other program locations.

128-Bit Media Instructions—These are the streaming SIMD
extension (SSE and SSE2) instructions that load, store, or
operate on data located primarily in the 128-bit XMM
registers. They perform integer and floating-point
operations on vector (packed) and scalar data types.
Because the vector instructions can independently and
simultaneously perform a single operation on multiple sets
of data, they are called single-instruction, multiple-data
(SIMD) instructions. They are useful for high-performance
media and scientific applications that operate on blocks of
data.

64-Bit Media Instructions—These are the multimedia
extension (MMX™ technology) and AMD 3DNow!™
technology instructions. They load, store, or operate on data
located primarily on the 64-bit MMX registers. Like their
128-bit counterparts, described above, they perform integer
and floating-point operations on vector (packed) and scalar
data types. Thus, they are also SIMD instructions and are
useful in media applications that operate on blocks of data.

x87 Floating-Point Instructions—These are the floating-point
instructions used in legacy x87 applications. They load,
store, or operate on data located in the x87 registers.

Some of these application-programming instructions bridge two
or more of the above subsets. For example, there are
instructions that move data between the general-purpose
registers and the XMM or MMX registers, and many of the
integer vector (packed) instructions can operate on either
XMM or MMX registers, although not simultaneously. If
instructions bridge two or more subsets, their descriptions are
repeated in all subsets to which they apply.

1.1.4 Media
Instructions

Media applications—such as image processing, music synthesis,
speech recognition, full-motion video, and 3D graphics
rendering—share certain characteristics:

They process large amounts of data.

They often perform the same sequence of operations
repeatedly across the data.

6 Chapter 1: Overview of the AMD64 Architecture

AMD64 Technology 24592—Rev. 3.08—April 2003

The data are often represented as small quantities, such as 8
bits for pixel values, 16 bits for audio samples, and 32 bits
for object coordinates in floating-point format.

The 128-bit and 64-bit media instructions are designed to
accelerate these applications. The instructions use a form of
vector (or packed) parallel processing known as single-
instruction, multiple data (SIMD) processing. This vector
technology has the following characteristics:

A single register can hold multiple independent pieces of
data. For example, a single 128-bit XMM register can hold 16
8-bit integer data elements, or four 32-bit single-precision
floating-point data elements.

The vector instructions can operate on all data elements in a
register, independently and simultaneously. For example, a
PADDB instruction operating on byte elements of two vector
operands in 128-bit XMM registers performs 16
simultaneous additions and returns 16 independent results
in a single operation.

128-bit and 64-bit media instructions take SIMD vector
technology a step further by including special instructions that
perform operations commonly found in media applications. For
example, a graphics application that adds the brightness values
of two pixels must prevent the add operation from wrapping
around to a small value if the result overflows the destination
register, because an overflow result can produce unexpected
effects such as a dark pixel where a bright one is expected. The
128-bit and 64-bit media instructions include saturating-
arithmetic instructions to simplify this type of operation. A
result that otherwise would wrap around due to overflow or
underflow is instead forced to saturate at the largest or smallest
value that can be represented in the destination register.

1.1.5 Floating-Point
Instructions

The AMD64 architecture provides three floating-point
instruction subsets, using three distinct register sets:

128-Bit Media Instructions support 32-bit single-precision
and 64-bit double-precision floating-point operations, in
addition to integer operations. Operations on both vector
data and scalar data are supported, with a dedicated
floating-point exception-reporting mechanism. These
floating-point operations comply with the IEEE-754
standard.

Chapter 1: Overview of the AMD64 Architecture 7

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 1: Overview of the AMD64 Architecture 7

64-Bit Media Instructions (the subset of 3DNow!™ technology
instructions) support single-precision floating-point
operations. Operations on both vector data and scalar data
are supported, but these instructions do not support
floating-point exception reporting.

x87 Floating-Point Instructions support single-precision,
double-precision, and 80-bit extended-precision floating-
point operations. Only scalar data are supported, with a
dedicated floating-point exception-reporting mechanism.
The x87 floating-point instructions contain special
instructions for performing trigonometric and logarithmic
transcendental operations. The single-precision and double-
precision floating-point operations comply with the IEEE-
754 standard.

Maximum floating-point performance can be achieved using
the 128-bit media instructions. One of these vector instructions
can support up to four single-precision (or two double-
precision) operations in parallel. In 64-bit mode, the AMD64
architecture doubles the number of legacy XMM registers from
8 to 16.

Applications gain additional benefits using the 64-bit media
and x87 instructions. The separate register sets supported by
these instructions relieve pressure on the XMM registers
available to the 128-bit media instructions. This provides
application programs with three distinct sets of floating-point
registers. In addition, certain high-end implementations of the
AMD64 architecture may support 128-bit media, 64-bit media,
and x87 instructions with separate execution units.

1.2 Modes of Operation

Table 1-1 on page 3 summarizes the modes of operation
supported by the AMD64 architecture. In most cases, the
default address and operand sizes can be overridden with
instruction prefixes. The register extensions shown in the
second-from-right column of Table 1-1 are those illustrated in
Figure 1-1 on page 2.

1.2.1 Long Mode Long mode is an extension of legacy protected mode. Long
mode consists of two submodes: 64-bit mode and compatibility
mode. 64-bit mode supports all of the new features and register
extensions of the AMD64 architecture. Compatibility mode

8 Chapter 1: Overview of the AMD64 Architecture

AMD64 Technology 24592—Rev. 3.08—April 2003

supports binary compatibility with existing 16-bit and 32-bit
applications. Long mode does not support legacy real mode or
legacy virtual-8086 mode, and it does not support hardware task
switching.

Throughout this document, references to long mode refer to
both 64-bit mode and compatibility mode. If a function is specific
to either of these submodes, then the name of the specific
submode is used instead of the name long mode.

1.2.2 64-Bit Mode 64-bit mode—a submode of long mode—supports the full range
of 64-bit virtual-addressing and register-extension features.
This mode is enabled by the operating system on an individual
code-segment basis. Because 64-bit mode supports a 64-bit
virtual-address space, it requires a new 64-bit operating system
and tool chain. Existing application binaries can run without
recompilation in compatibility mode, under an operating
system that runs in 64-bit mode, or the applications can also be
recompiled to run in 64-bit mode.

Addressing features include a 64-bit instruction pointer (RIP)
and a new RIP-relative data-addressing mode. This mode
accommodates modern operating systems by supporting only a
flat address space, with single code, data, and stack space.

Register Extensions. 64-bit mode implements register extensions
through a new group of instruction prefixes, called REX
prefixes. These extensions add eight GPRs (R8–R15), widen all
GPRs to 64 bits, and add eight 128-bit XMM registers
(XMM8–XMM15).

The REX instruction prefixes also provide a new byte-register
capability that makes the low byte of any of the sixteen GPRs
available for byte operations. This results in a uniform set of
byte, word, doubleword, and quadword registers that is better
suited to compiler register-allocation.

64-Bit Addresses and Operands. In 64-bit mode, the default virtual-
address size is 64 bits (implementations can have fewer). The
default operand size for most instructions is 32 bits. For most
instructions, these defaults can be overridden on an
instruction-by-instruction basis using instruction prefixes. REX
prefixes specify the 64-bit operand size and new registers.

RIP-Relative Data Addressing. 64-bit mode supports data addressing
relative to the 64-bit instruction pointer (RIP). The legacy x86

Chapter 1: Overview of the AMD64 Architecture 9

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 1: Overview of the AMD64 Architecture 9

architecture supports IP-relative addressing only in control-
transfer instructions. RIP-relative addressing improves the
efficiency of position-independent code and code that
addresses global data.

Opcodes. A few instruction opcodes and prefix bytes are
redefined to allow register extensions and 64-bit addressing.
These differences are described in “General-Purpose
Instructions in 64-Bit Mode” in Volume 3 and “Differences
between Long Mode and Legacy Mode” in Volume 3.

1.2.3 Compatibility
Mode

Compatibility mode—the second submode of long mode—
allows 64-bit operating systems to run existing 16-bit and 32-bit
x86 applications. These legacy applications run in compatibility
mode without recompilation.

Applications running in compatibility mode use 32-bit or 16-bit
addressing and can access the first 4GB of virtual-address
space. Legacy x86 instruction prefixes toggle between 16-bit
and 32-bit address and operand sizes.

As with 64-bit mode, compatibility mode is enabled by the
operating system on an individual code-segment basis. Unlike
64-bit mode, however, x86 segmentation functions the same as
in the legacy x86 architecture, using 16-bit or 32-bit protected-
mode semantics. From the application viewpoint, compatibility
mode looks like the legacy x86 protected-mode environment.
From the operating-system viewpoint, however, address
translation, interrupt and exception handling, and system data
structures use the 64-bit long-mode mechanisms.

1.2.4 Legacy Mode Legacy mode preserves binary compatibility not only with
existing 16-bit and 32-bit applications but also with existing 16-
bit and 32-bit operating systems. Legacy mode consists of the
following three submodes:

Protected Mode—Protected mode supports 16-bit and 32-bit
programs with memory segmentation, optional paging, and
privilege-checking. Programs running in protected mode can
access up to 4GB of memory space.

Virtual-8086 Mode—Virtual-8086 mode supports 16-bit real-
mode programs running as tasks under protected mode. It
uses a simple form of memory segmentation, optional
paging, and limited protection-checking. Programs running
in virtual-8086 mode can access up to 1MB of memory space.

10 Chapter 1: Overview of the AMD64 Architecture

AMD64 Technology 24592—Rev. 3.08—April 2003

Real Mode—Real mode supports 16-bit programs using
simple register-based memory segmentation. It does not
support paging or protection-checking. Programs running in
real mode can access up to 1MB of memory space.

Legacy mode is compatible with existing 32-bit processor
implementations of the x86 architecture. Processors that
implement the AMD64 architecture boot in legacy real mode,
just like processors that implement the legacy x86 architecture.

Throughout this document, references to legacy mode refer to
all three submodes—protected mode, virtual-8086 mode, and real
mode. If a function is specific to either of these submodes, then
the name of the specific submode is used instead of the name
legacy mode.

Chapter 2: Memory Model 11

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 2: Memory Model 11

2 Memory Model

This chapter describes the memory characteristics that apply to
application software in the various operating modes of the
AMD64 architecture. These characteristics apply to all
instructions in the architecture. Several additional system-level
details about memory and cache management are described in
Volume 2.

2.1 Memory Organization

2.1.1 Virtual Memory Virtual memory consists of the entire address space available to
programs. It is a large linear-address space that is translated by
a combination of hardware and operating-system software to a
smaller physical-address space, parts of which are located in
memory and parts on disk or other external storage media.

Figure 2-1 on page 12 shows how the virtual-memory space is
treated in the two submodes of long mode:

64-bit mode—This mode uses a flat segmentation model of
virtual memory. The 64-bit virtual-memory space is treated
as a single, flat (unsegmented) address space. Program
addresses access locations that can be anywhere in the
linear 64-bit address space. The operating system can use
separate selectors for code, stack, and data segments for
memory-protection purposes, but the base address of all
these segments is always 0. (For an exception to this general
rule, see “FS and GS as Base of Address Calculation” on
page 20.)

Compatibility mode—This mode uses a protected, multi-
segment model of virtual memory, just as in legacy
protected mode. The 32-bit virtual-memory space is treated
as a segmented set of address spaces for code, stack, and
data segments, each with its own base address and
protection parameters. A segmented space is specified by
adding a segment selector to an address.

12 Chapter 2: Memory Model

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 2-1. Virtual-Memory Segmentation

Segmented memory has been used as a method by which
operating systems could isolate programs, and the data used by
programs, from each other in an effort to increase the reliability
of systems running multiple programs simultaneously. However,
most modern operating systems do not use the segmentation
features available in the legacy x86 architecture. Instead, these
operating systems handle segmentation functions entirely in
software. For this reason, the AMD64 architecture dispenses
with most of the legacy segmentation functions in 64-bit mode.
This allows new 64-bit operating systems to be coded more
simply, and it supports more efficient management of multi-
programming environments than is possible in the legacy x86
architecture.

2.1.2 Segment
Registers

Segment registers hold the selectors used to access memory
segments. Figure 2-2 on page 13 shows the application-visible
portion of the segment registers. In legacy and compatibility
modes, all segment registers are accessible to software. In 64-
bit mode, only the CS, FS, and GS segments are recognized by

513-107.eps

264 - 1

0

Base Address for
All Segments

Code Segment (CS) Base

Stack Segment (SS) Base

Data Segment (DS) Base

64-Bit Mode
(Flat Segmentation Model)

Legacy and Compatibility Mode
(Multi-Segment Model)

232 - 1

0

data

code

stack

Chapter 2: Memory Model 13

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 2: Memory Model 13

the processor, and software can use the FS and GS segment-
base registers as base registers for address calculation, as
described in “FS and GS as Base of Address Calculation” on
page 20. For references to the DS, ES, or SS segments in 64-bit
mode, the processor assumes that the base for each of these
segments is zero, neither their segment limit nor attributes are
checked, and the processor simply checks that all such
addresses are in canonical form, as described in “64-bit
Canonical Addresses” on page 18.

Figure 2-2. Segment Registers

For details on segmentation and the segment registers, see
“Segmented Virtual Memory” in Volume 2.

2.1.3 Physical
Memory

Physical memory is the installed memory (excluding cache
memory) in a particular computer system that can be accessed
through the processor’s bus interface. The maximum size of the
physical memory space is determined by the number of address
bits on the bus interface. In a virtual-memory system, the large
virtual-address space (also called linear-address space) is
translated to a smaller physical-address space by a combination
of segmentation and paging hardware and software.

Segmentation is illustrated in Figure 2-1 on page 12. Paging is a
mechanism for translating linear (virtual) addresses into fixed-
size blocks called pages, which the operating system can move,
as needed, between memory and external storage media

513-312.eps

15 0

ES

FS

GS

SS

CS

DS

15 0

FS
(Base only)

GS
(Base only)

CS
(Attributes only)

Legacy Mode and
Compatibility Mode

64-Bit
Mode

ignored

ignored

ignored

14 Chapter 2: Memory Model

AMD64 Technology 24592—Rev. 3.08—April 2003

(typically disk). The AMD64 architecture supports an expanded
version of the legacy x86 paging mechanism, one that is able to
translate the full 64-bit virtual-address space into the physical-
address space supported by the particular implementation.

2.1.4 Memory
Management

Memory management consists of the methods by which
addresses generated by programs are translated via
segmentation and/or paging into addresses in physical memory.
Memory management is not visible to application programs. It
is handled by the operating system and processor hardware.
The following description gives a very brief overview of these
functions. Details are given in “System-Management
Instructions” in Volume 2.

Long-Mode Memory Management. Figure 2-3 shows the flow, from
top to bottom, of memory management functions performed in
the two submodes of long mode.

Figure 2-3. Long-Mode Memory Management

In 64-bit mode, programs generate virtual (linear) addresses
that can be up to 64 bits in size. The virtual addresses are

513-184.eps

051

64-Bit Mode

63 0

Paging

051

Compatibility Mode

Segmentation

Paging

031015

Physical Address

Virtual (Linear) Address

Physical Address

Effective AddressSelector

0313263

Virtual Address0

Chapter 2: Memory Model 15

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 2: Memory Model 15

passed to the long-mode paging function, which generates
physical addresses that can be up to 52 bits in size. (Specific
implementations of the architecture can support fewer virtual-
address and physical-address sizes.)

In compatibility mode, legacy 16-bit and 32-bit applications run
using legacy x86 protected-mode segmentation semantics. The
16-bit or 32-bit effective addresses generated by programs are
combined with their segments to produce 32-bit virtual (linear)
addresses that are zero-extended to a maximum of 64 bits. The
paging that follows is the same long-mode paging function used
in 64-bit mode. It translates the virtual addresses into physical
addresses. The combination of segment selector and effective
address is also called a logical address or far pointer. The virtual
address is also called the linear address.

Legacy-Mode Memory Management. Figure 2-4 shows the memory-
management functions performed in the three submodes of
legacy mode.

Figure 2-4. Legacy-Mode Memory Management

513-185.eps

031

Protected Mode

031

Paging

Physical Address (PA)

Linear Address

Virtual-8086 Mode

019

031

Paging

Linear Address

Physical Address (PA)

Real Mode

019

19 031

Linear Address

0 PA

Segmentation

031015

Effective Address (EA)Selector

015

EA

Segmentation

015

Selector

015

EA

Segmentation

015

Selector

16 Chapter 2: Memory Model

AMD64 Technology 24592—Rev. 3.08—April 2003

The memory-management functions differ, depending on the
submode, as follows:

Protected Mode—Protected mode supports 16-bit and 32-bit
programs with table-based memory segmentation, paging,
and privilege-checking. The segmentation function takes 32-
bit effective addresses and 16-bit segment selectors and
produces 32-bit linear addresses into one of 16K memory
segments, each of which can be up to 4GB in size. Paging is
optional. The 32-bit physical addresses are either produced
by the paging function or the linear addresses are used
without modification as physical addresses.

Virtual-8086 Mode—Virtual-8086 mode supports 16-bit
programs running as tasks under protected mode. 20-bit
linear addresses are formed in the same way as in real mode,
but they can optionally be translated through the paging
function to form 32-bit physical addresses that access up to
4GB of memory space.

Real Mode—Real mode supports 16-bit programs using
register-based shift-and-add segmentation, but it does not
support paging. 16-bit effective addresses are zero-extended
and added to a 16-bit segment-base address that is left-
shifted four bits, producing a 20-bit linear address. The
linear address is zero-extended to a 32-bit physical address
that can access up to 1MB of memory space.

2.2 Memory Addressing

2.2.1 Byte Ordering Instructions and data are stored in memory in little-endian byte
order. Little-endian ordering places the least-significant byte of
the instruction or data item at the lowest memory address and
the most-significant byte at the highest memory address.

Figure 2-5 on page 17 shows a generalization of little-endian
memory and register images of a quadword data type. The least-
significant byte is at the lowest address in memory and at the
right-most byte location of the register image.

Chapter 2: Memory Model 17

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 2: Memory Model 17

Figure 2-5. Byte Ordering

Figure 2-6 on page 18 shows the memory image of a 10-byte
instruction. Instructions are byte data types. They are read
from memory one byte at a time, starting with the least-
significant byte (lowest address). For example, the following
instruction specifies the 64-bit instruction MOV RAX,
1122334455667788 instruction that consists of the following ten
bytes:

48 B8 8877665544332211

48 is a REX instruction prefix that specifies a 64-bit operand
size, B8 is the opcode that—together with the REX prefix—
speci f ies the 64 -bi t RAX dest inat ion regis ter, and
8877665544332211 is the 8-byte immediate value to be moved,
where 88 represents the eighth (least-significant) byte and 11
represents the first (most-significant) byte. In memory, the REX
prefix byte (48) would be stored at the lowest address, and the
first immediate byte (11) would be stored at the highest
instruction address.

513-116.eps

Quadword in Memory

Quadword in General-Purpose Register

00hbyte 0

01hbyte 1

02hbyte 2

03hbyte 3

04hbyte 4

05hbyte 5

06hbyte 6

07hbyte 7

063

byte 0byte 1byte 2byte 3byte 4byte 5byte 6byte 7

High (most-significant) Low (least-significant)

High (most-significant)

Low (least-significant)

18 Chapter 2: Memory Model

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 2-6. Example of 10-Byte Instruction in Memory

2.2.2 64-bit Canonical
Addresses

Long mode def ines 64 bi ts of v ir tual address , but
implementations of the AMD64 architecture may support fewer
bits of virtual address. Although implementations might not
use all 64 bits of the virtual address, they check bits 63 through
the most-significant implemented bit to see if those bits are all
zeros or all ones. An address that complies with this property is
said to be in canonical address form. If a virtual-memory
reference is not in canonical form, the implementation causes a
general-protection exception or stack fault.

2.2.3 Effective
Addresses

Programs provide effective addresses to the hardware prior to
segmentation and paging translations. Long-mode effective
addresses are a maximum of 64 bits wide, as shown in Figure 2-3
on page 14. Programs running in compatibility mode generate
(by default) 32-bit effective addresses, which the hardware zero-
extends to 64 bits. Legacy-mode effective addresses, with no
address-size override, are 32 or 16 bits wide, as shown in
Figure 2-4. These sizes can be overridden with an address-size
instruction prefix, as described in “Instruction Prefixes” on
page 85.

There are five methods for generating effective addresses,
depending on the specific instruction encoding:

513-186.eps

00h

01h

02h

03h

04h

05h

06h

07h

08h22

09h11 High (most-significant)

Low (least-significant)48

B8

88

77

66

55

44

33

Chapter 2: Memory Model 19

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 2: Memory Model 19

Absolute Addresses—These addresses are given as
displacements (or offsets) from the base address of a data
segment. They point directly to a memory location in the
data segment.

Instruction-Relative Addresses—These addresses are given as
displacements (or offsets) from the current instruction
pointer (IP), also called the program counter (PC). They are
generated by control-transfer instructions. A displacement
in the instruction encoding, or one read from memory, serves
as an offset from the address that follows the transfer. See
“RIP-Relative Addressing” on page 22 for details about RIP-
relative addressing in 64-bit mode.

ModR/M Addressing—These addresses are calculated using a
scale, index, base, and displacement. Instruction encodings
contain two bytes—MODR/M and optional SIB (scale, index,
base) and a variable length displacement—that specify the
variables for the calculation. The base and index values are
contained in general-purpose registers specified by the SIB
byte. The scale and displacement values are specified
directly in the instruction encoding. Figure 2-7 shows the
components of a complex-address calculation. The resultant
effective address is added to the data-segment base address
to form a linear address, as described in “Segmented Virtual
Memory” in Volume 2. “Instruction Formats” in Volume 3
gives further details on specifying this form of address. The
encoding of instructions specifies how the address is
calculated.

Figure 2-7. Complex Address Calculation (Protected Mode)

+

513-108.eps

*

Effective Address

DisplacementIndex

Scale by 1, 2, 4, or 8

Base

20 Chapter 2: Memory Model

AMD64 Technology 24592—Rev. 3.08—April 2003

Stack Addresses—PUSH, POP, CALL, RET, IRET, and INT
instructions implicitly use the stack pointer, which contains
the address of the procedure stack. See “Stack Operation”
on page 23 for details about the size of the stack pointer.

String Addresses—String instructions generate sequential
addresses using the rDI and rSI registers, as described in
“Implicit Uses of GPRs” on page 34.

In 64-bit mode, with no address-size override, the size of
effective-address calculations is 64 bits. An effective-address
calculation uses 64-bit base and index registers and sign-
extends displacements to 64 bits. Due to the flat address space
in 64-bit mode, virtual addresses are equal to effective
addresses. (For an exception to this general rule, see “FS and
GS as Base of Address Calculation” on page 20.)

Long-Mode Zero-Extension of 16-Bit and 32-Bit Addresses. In long mode,
all 16-bit and 32-bit address calculations are zero-extended to
form 64-bit addresses. Address calculations are first truncated
to the effective-address size of the current mode (64-bit mode or
compatibility mode), as overridden by any address-size prefix.
The result is then zero-extended to the full 64-bit address width.

Because of this, 16-bit and 32-bit applications running in
compatibility mode can access only the low 4GB of the long-
mode virtual-address space. Likewise, a 32-bit address
generated in 64-bit mode can access only the low 4GB of the
long-mode virtual-address space.

Displacements and Immediates. In general, the maximum size of
address displacements and immediate operands is 32 bits. They
can be 8, 16, or 32 bits in size, depending on the instruction or,
for displacements, the effective address size. In 64-bit mode,
displacements are sign-extended to 64 bits during use, but their
actual size (for value representation) remains a maximum of 32
bits. The same is true for immediates in 64-bit mode, when the
operand size is 64 bits. However, support is provided in 64-bit
mode for some 64-bit displacement and immediate forms of the
MOV instruction.

FS and GS as Base of Address Calculation. In 64-bit mode, the FS and
GS segment-base registers (unlike the DS, ES, and SS segment-
base registers) can be used as non-zero data-segment base
registers for address calculations, as described in “Segmented
Virtual Memory” in Volume 2. 64-bit mode assumes all other

Chapter 2: Memory Model 21

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 2: Memory Model 21

data-segment registers (DS, ES, and SS) have a base address of
0.

2.2.4 Address-Size
Prefix

The default address size of an instruction is determined by the
default-size (D) bit and long-mode (L) bit in the current code-
segment descriptor (for details, see “Segmented Virtual
Memory” in Volume 2). Application software can override the
default address size in any operating mode by using the 67h
address-size instruction prefix byte. The address-size prefix
allows mixing 32-bit and 64-bit addresses on an instruction-by-
instruction basis.

Table 2-1 shows the effects of using the address-size prefix in all
operating modes. In 64-bit mode, the default address size is 64
bits. The address size can be overridden to 32 bits. 16-bit
addresses are not supported in 64-bit mode. In compatibility
and legacy modes, the address-size prefix works the same as in
the legacy x86 architecture.

Table 2-1. Address-Size Prefixes

Operating Mode
Default

Address Size
(Bits)

Effective
Address Size

(Bits)

Address-
Size Prefix

(67h)1

Required?

Long Mode

64-Bit Mode 64
64 no

32 yes

Compatibility Mode

32
32 no

16 yes

16
32 yes

16 no

Legacy Mode
(Protected, Virtual-8086, or Real
Mode)

32
32 no

16 yes

16
32 yes

16 no

Note:
1. “no’ indicates that the default address size is used.

22 Chapter 2: Memory Model

AMD64 Technology 24592—Rev. 3.08—April 2003

2.2.5 RIP-Relative
Addressing

RIP-relative addressing—that is, addressing relative to the 64-
bit instruction pointer (also called program counter)—is
available in 64-bit mode. The effective address is formed by
adding the displacement to the 64-bit RIP of the next
instruction.

In the legacy x86 architecture, addressing relative to the
instruction pointer (IP or EIP) is available only in control-
transfer instructions. In the 64-bit mode, any instruction that
uses ModRM addressing (see “ModRM and SIB Bytes” in
Volume 3) can use RIP-relative addressing. The feature is
particularly useful for addressing data in position-independent
code and for code that addresses global data.

Programs usually have many references to data, especially
global data, that are not register-based. To load such a program,
the loader typically selects a location for the program in
memory and then adjusts the program’s references to global
data based on the load location. RIP-relative addressing of data
makes this adjustment unnecessary.

Range of RIP-Relative Addressing. Without RIP-relative addressing,
instructions encoded with a ModRM byte address memory
relative to zero. With RIP-relative addressing, instructions with
a ModRM byte can address memory relative to the 64-bit RIP
using a signed 32-bit displacement. This provides an offset
range of ±2GB from the RIP.

Effect of Address-Size Prefix on RIP-relative Addressing. RIP-relat ive
addressing is enabled by 64-bit mode, not by a 64-bit address-
size. Conversely, use of the address-size prefix does not disable
RIP-relative addressing. The effect of the address-size prefix is
to truncate and zero-extend the computed effective address to
32 bits, like any other addressing mode.

Encoding. For details on instruction encoding of RIP-relative
addressing, see in “RIP-Relative Addressing” in Volume 3.

2.3 Pointers

Pointers are variables that contain addresses rather than data.
They are used by instructions to reference memory. Instructions
access data using near and far pointers. Stack pointers locate
the current stack.

Chapter 2: Memory Model 23

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 2: Memory Model 23

2.3.1 Near and Far
Pointers

Near pointers contain only an effective address, which is used
as an offset into the current segment. Far pointers contain both
an effective address and a segment selector that specifies one
of several segments. Figure 2-8 illustrates the two types of
pointers.

Figure 2-8. Near and Far Pointers

In 64-bit mode, the AMD64 architecture supports only the flat-
memory model in which there is only one data segment, so the
effective address is used as the virtual (linear) address and far
pointers are not needed. In compatibility mode and legacy
protected mode, the AMD64 architecture supports multiple
memory segments, so effective addresses can be combined with
segment selectors to form far pointers, and the terms logical
address (segment selector and effective address) and far pointer
are synonyms. Near pointers can also be used in compatibility
mode and legacy mode.

2.4 Stack Operation

A stack is a portion of a stack segment in memory that is used to
link procedures. Software conventions typically define stacks
using a stack frame, which consists of two registers—a stack-
frame base pointer (rBP) and a stack pointer (rSP)—as shown in
Figure 2-9 on page 24. These stack pointers can be either near
pointers or far pointers.

The stack-segment (SS) register, points to the base address of
the current stack segment. The stack pointers contain offsets
from the base address of the current stack segment. All
instructions that address memory using the rBP or rSP registers
cause the processor to access the current stack segment.

513-109.eps

Far PointerNear Pointer

Effective Address (EA) Effective Address (EA)Selector

24 Chapter 2: Memory Model

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 2-9. Stack Pointer Mechanism

In typical APIs, the stack-frame base pointer and the stack
pointer point to the same location before a procedure call (the
top-of-stack of the prior stack frame). After data is pushed onto
the stack, the stack-frame base pointer remains where it was
and the stack pointer advances downward to the address below
the pushed data, where it becomes the new top-of-stack.

In legacy and compatibility modes, the default stack pointer
size is 16 bits (SP) or 32 bits (ESP), depending on the default-
size (B) bit in the stack-segment descriptor, and multiple stacks
can be maintained in separate stack segments. In 64-bit mode,
stack pointers are always 64 bits wide (RSP).

Further application-programming details on the stack
mechanism are described in “Control Transfers” on page 93.
System-programming details on the stack segments are
described in “Segmented Virtual Memory” in Volume 2.

2.5 Instruction Pointer

The instruction pointer is used in conjunction with the code-
segment (CS) register to locate the next instruction in memory.
The instruction-pointer register contains the displacement
(offset)—from the base address of the current CS segment, or
from address 0 in 64-bit mode—to the next instruction to be
executed. The pointer is incremented sequentially, except for
branch instructions, as described in “Control Transfers” on
page 93.

513-110.eps

Stack-Segment (SS) Base Address

Stack-Frame Base Pointer (rBP)
and Stack Pointer (rSP)

Stack-Segment (SS) Base Address

Stack-Frame Base Pointer (rBP)
Stack Pointer (rSP)

passed data

Stack Frame Before Procedure Call Stack Frame After Procedure Call

Chapter 2: Memory Model 25

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 2: Memory Model 25

In legacy and compatibility modes, the instruction pointer is a
16-bit (IP) or 32-bit (EIP) register. In 64-bit mode, the
instruction pointer is extended to a 64-bit (RIP) register to
support 64-bit offsets. The case-sensitive acronym, rIP, is used to
refer to any of these three instruction-pointer sizes, depending
on the software context.

Figure 2-10 shows the relationship between RIP, EIP, and IP.
The 64-bit RIP can be used for RIP-relative addressing, as
described in “RIP-Relative Addressing” on page 22.

Figure 2-10. Instruction Pointer (rIP) Register

The contents of the rIP are not directly readable by software.
However, the rIP is pushed onto the stack by a call instruction.

The memory model described in this chapter is used by all of
the programming environments that make up the AMD64
architecture. The next four chapters of this volume describe the
application programming environments, which include:

General-purpose programming (Chapter 3 on page 27).

128-bit media programming (Chapter 4 on page 127).

64-bit media programming (Chapter 5 on page 229).

x87 floating-point programming (Chapter 6 on page 283).

513-140.eps

63 31 032

IP

EIP

RIP

rIP

26 Chapter 2: Memory Model

AMD64 Technology 24592—Rev. 3.08—April 2003

Chapter 3: General-Purpose Programming 27

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 27

3 General-Purpose Programming

The general-purpose programming model includes the general-
purpose registers (GPRs), integer instructions and operands
that use the GPRs, program-flow control methods, memory
optimization methods, and I/O. This programming model
includes the original x86 integer-programming architecture,
plus 64-bit extensions and a few additional instructions. Only
the application-programming instructions and resources are
described in this chapter. Integer instructions typically used in
system programming, including all of the privileged
instructions, are described in Volume 2, along with other
system-programming topics.

The general-purpose programming model is used to some extent
by almost all programs, including programs consisting primarily
of 128-bit media instructions, 64-bit media instructions, x87
floating-point instructions, or system instructions. For this
reason, an understanding of the general-purpose programming
model is essential for any programming work using the AMD64
instruction-set architecture.

3.1 Registers

Figure 3-1 on page 28 shows an overview of the registers used in
general-purpose application programming. They include the
general-purpose registers (GPRs), segment registers, flags
register, and instruction-pointer register. The number and
width of available registers depends on the operating mode.

The registers and register ranges shaded light gray in Figure 3-1
are available only in 64-bit mode. Those shaded dark gray are
available only in legacy mode and compatibility mode. Thus, in
64-bit mode, the 32-bit general-purpose, flags, and instruction-
pointer registers available in legacy mode and compatibility
mode are extended to 64-bit widths, eight new GPRs are
available, and the DS, ES, and SS segment registers are ignored.

When naming registers, if reference is made to multiple
register widths, a lower-case r notation is used. For example, the
notation rAX refers to the 16-bit AX, 32-bit EAX, or 64-bit RAX
register, depending on an instruction’s effective operand size.

28 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 3-1. General-Purpose Programming Registers

3.1.1 Legacy Registers In legacy and compatibility modes, all of the legacy x86
registers are available. Figure 3-2 shows a detailed view of the
GPR, flag, and instruction-pointer registers.

513-131.eps

63 31 032

R8

R9

R10

R11

R12

R13

R14

R15

rAX

rBX

rCX

rDX

rBP

rSI

rDI

rSP

63 31 032

rFLAGS

rIP

Available to sofware in all modes

Available to sofware only in 64-bit mode

Ignored by hardware in 64-bit mode

15 0

FS

GS

CS

Segment
Registers

General-Purpose Registers (GPRs)

Flags and Instruction Pointer Registers

ES

SS

DS

Chapter 3: General-Purpose Programming 29

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 29

Figure 3-2. General Registers in Legacy and Compatibility Modes

The legacy GPRs include:

Eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL).

Eight 16-bit registers (AX, BX, CX, DX, DI, SI, BP, SP).

Eight 32-bit registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP,
ESP).

The size of register used by an instruction depends on the
effective operand size or, for certain instructions, the opcode,
address size, or stack size. The 16-bit and 32-bit registers are
encoded as 0 through 7 in Figure 3-2. For opcodes that specify a
byte operand, registers encoded as 0 through 3 refer to the low-
byte registers (AL, BL, CL, DL) and registers encoded as 4
through 7 refer to the high-byte registers (AH, BH, CH, DH).

The 16-bit FLAGS register, which is also the low 16 bits of the
32-bit EFLAGS register, shown in Figure 3-2, contains control
and status bits accessible to application software, as described
in Section 3.1.4, “Flags Register,” on page 37. The 16-bit IP or

513-311.eps

31 15 016

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

AX

16-bit
low
8-bit

high
8-bit 32-bit

BX

CX

DX

SI

DI

BP

SP

AH (4)

BH (7)

CH (5)

DH (6)

AL

BL

CL

DL

SI

DI

BP

SP

FLAGS

IP

31 0

FLAGS

IP

EFLAGS

EIP

0

3

1

2

6

7

5

4

register
encoding

30 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

32-bit EIP instruction-pointer register contains the address of
the next instruction to be executed, as described in Section 2.5,
“Instruction Pointer,” on page 24.

3.1.2 64-Bit-Mode
Registers

In 64-bit mode, eight new GPRs are added to the eight legacy
GPRs, all 16 GPRs are 64 bits wide, and the low bytes of all
registers are accessible. Figure 3-3 on page 31 shows the GPRs,
flags register, and instruction-pointer register available in 64-
bit mode. The GPRs include:

Sixteen 8-bit low-byte registers (AL, BL, CL, DL, SIL, DIL,
BPL, SPL, R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B).

Four 8-bit high-byte registers (AH, BH, CH, DH),
addressable only when no REX prefix is used.

Sixteen 16-bit registers (AX, BX, CX, DX, DI, SI, BP, SP,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W).

Sixteen 32-bit registers (EAX, EBX, ECX, EDX, EDI, ESI,
EBP, ESP, R8D, R9D, R10D, R11D, R12D, R13D, R14D,
R15D).

Sixteen 64-bit registers (RAX, RBX, RCX, RDX, RDI, RSI,
RBP, RSP, R8, R9, R10, R11, R12, R13, R14, R15).

The size of register used by an instruction depends on the
effective operand size or, for certain instructions, the opcode,
address size, or stack size. For most instructions, access to the
extended GPRs requires a REX prefix (Section 3.5.2, “REX
Prefixes,” on page 89). The four high-byte registers (AH, BH,
CH, DH) available in legacy mode are not addressable when a
REX prefix is used.

In general, byte and word operands are stored in the low 8 or 16
bits of GPRs without modifying their high 56 or 48 bits,
respectively. Doubleword operands, however, are normally
stored in the low 32 bits of GPRs and zero-extended to 64 bits.

The 64-bit RFLAGS register, shown in Figure 3-3 on page 31,
contains the legacy EFLAGS in its low 32-bit range. The high 32
bits are reserved. They can be written with anything but they
always read as zero (RAZ). The 64-bit RIP instruction-pointer
register contains the address of the next instruction to be
executed, as described in Section 3.1.5, “Instruction Pointer
Register,” on page 41.

Chapter 3: General-Purpose Programming 31

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 31

Figure 3-3. General Registers in 64-Bit Mode

Figure 3-4 on page 32 illustrates another way of viewing the 64-
bit-mode GPRs, showing how the legacy GPRs overlap the
extended GPRs. Gray-shaded bits are not modified in 64-bit
mode.

513-309.eps

63 31 15 7 081632

R8

R9

R10

R11

R12

R13

R14

R15

R8W

R9W

R10W

R11W

R12W

R13W

R14W

R15W

R8D

R9D

R10D

R11D

R12D

R13D

R14D

R15D

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

AXAH*

BH*

CH*

DH*

16-bit 32-bit 64-bit

8

9

10

11

12

13

14

15

0

3

1

2

6

7

5

4

register
encoding

zero-extended
for 32-bit operands

not modified for 8-bit operands

not modified for 16-bit operands

BX

CX

DX

SI

DI

BP

SP

63 31 032

RFLAGS

RIP

0

low
8-bit

R8B

R9B

R10B

R11B

R12B

R13B

R14B

R15B

AL

BL

CL

DL

SIL**

DIL**

BPL**

SPL**

* Not addressable when
a REX prefix is used.

** Only addressable when
a REX prefix is used.

32 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 3-4. GPRs in 64-Bit Mode

63 32 31 16 15 8 7 0

0

Gray areas are not modified in 64-bit mode. AH* AL
AX

0 EAX
RAX

3

BH* BL
BX

0 EBX
RBX

1

CH* CL
CX

0 ECX
RCX

2

DH* DL
DX

0 EDX
RDX

6

SIL**
SI

0 ESI
RSI

7

DIL**
DI

0 EDI
RDI

5

BPL**
BP

0 EBP
RBP

4

SPL**
SP

0 ESP
RSP

8

R8B
R8W

0 R8D
R8

15

R15B
R15W

0 R15D
R15

* Not addressable when a REX prefix is used. ** Only addressable when a REX prefix is used.

Re
gi

st
er

 E
nc

od
in

g

…

Chapter 3: General-Purpose Programming 33

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 33

Default Operand Size. For most instructions, the default operand
size in 64-bit mode is 32 bits. To access 16-bit operand sizes, an
instruction must contain an operand-size prefix (66h), as
described in Section 3.2.2, “Operand Sizes and Overrides,” on
page 44. To access the full 64-bit operand size, most instructions
must contain a REX prefix.

For details on operand size, see Section 3.2.2, “Operand Sizes
and Overrides,” on page 44.

Byte Registers. 64-bit mode provides a uniform set of low-byte,
low-word, low-doubleword, and quadword registers that is well-
suited for register allocation by compilers. Access to the four
new low-byte registers in the legacy-GPR range (SIL, DIL, BPL,
SPL), or any of the low-byte registers in the extended registers
(R8B–R15B), requires a REX instruction prefix. However, the
legacy high-byte registers (AH, BH, CH, DH) are not accessible
when a REX prefix is used.

Zero-Extension of 32-Bit Results. As Figure 3-3 and Figure 3-4 show,
when performing 32-bit operations with a GPR destination in
64-bit mode, the processor zero-extends the 32-bit result into
the full 64-bit destination. 8-bit and 16-bit operations on GPRs
preserve all unwritten upper bits of the destination GPR. This
is consistent with legacy 16-bit and 32-bit semantics for partial-
width results.

Software should explicitly sign-extend the results of 8-bit, 16-
bit, and 32-bit operations to the full 64-bit width before using
the results in 64-bit address calculations.

The following four code examples show how 64-bit, 32-bit, 16-
bit, and 8-bit ADDs work. In these examples, “48” is a REX
prefix specifying 64-bit operand size, and “01C3” and “00C3”
are the opcode and ModRM bytes of each instruction (see
“Opcode Syntax” in Volume 3 for details on the opcode and
ModRM encoding).

Example 1: 64-bit Add:

Before:RAX =0002_0001_8000_2201
 RBX =0002_0002_0123_3301

 48 01C3 ADD RBX,RAX ;48 is a REX prefix for size.

Result:RBX = 0004_0003_8123_5502

34 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Example 2: 32-bit Add:

Before:RAX = 0002_0001_8000_2201
 RBX = 0002_0002_0123_3301

 01C3 ADD EBX,EAX ;32-bit add

 Result:RBX = 0000_0000_8123_5502
 (32-bit result is zero extended)

Example 3: 16-bit Add:

Before:RAX = 0002_0001_8000_2201
 RBX = 0002_0002_0123_3301

 66 01C3 ADD BX,AX ;66 is 16-bit size override

Result:RBX = 0002_0002_0123_5502
 (bits 63:16 are preserved)

Example 4: 8-bit Add:

Before:RAX = 0002_0001_8000_2201
 RBX = 0002_0002_0123_3301

 00C3 ADD BL,AL ;8-bit add

 Result:RBX = 0002_0002_0123_3302
 (bits 63:08 are preserved)

GPR High 32 Bits Across Mode Switches. The processor does not
preserve the upper 32 bits of the 64-bit GPRs across switches
from 64-bit mode to compatibility or legacy modes. When using
32-bit operands in compatibility or legacy mode, the high 32
bits of GPRs are undefined. Software must not rely on these
undef ined bi ts , because they can change from one
implementation to the next or even on a cycle-to-cycle basis
within a given implementation. The undefined bits are not a
function of the data left by any previously running process.

3.1.3 Implicit Uses of
GPRs

Most instructions can use any of the GPRs for operands.
However, as Table 3-1 shows, some instructions use some GPRs
implicitly. Details about implicit use of GPRs are described in
“General-Purpose Instruction Reference” in Volume 3.

Table 3-1 on page 35 shows implicit register uses only for
application instructions. Certain system instructions also make
implicit use of registers. These system instructions are
described in “System Instruction Reference” in Volume 3.

Chapter 3: General-Purpose Programming 35

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 35

Table 3-1. Implicit Uses of Legacy GPRs

Registers1

Name Implicit UsesLow
8-Bit 16-Bit 32-Bit 64-Bit

AL AX EAX RAX2 Accumulator

• Operand for decimal arithmetic, multiply, divide, string,
compare-and-exchange, table-translation, and I/O
instructions.

• Special accumulator encoding for ADD, XOR, and MOV
instructions.

• Used with EDX to hold double-precision operands.
• CPUID processor-feature information.

BL BX EBX RBX2 Base
• Address generation in 16-bit code.
• Memory address for XLAT instruction.
• CPUID processor-feature information.

CL CX ECX RCX2 Count

• Bit index for shift instructions.
• Iteration count for loop and repeated string instructions.
• Jump conditional if zero.
• CPUID processor-feature information.

DL DX EDX RDX2 I/O Address

• Operand for multiply and divide instructions.
• Port number for I/O instructions.
• Used with EAX to hold double-precision operands.
• CPUID processor-feature information.

SIL2 SI ESI RSI2
Source
Index

• Memory address of source operand for string instructions.
• Memory index for 16-bit addresses.

DIL2 DI EDI RDI2
Destination
Index

• Memory address of destination operand for string
instructions.

• Memory index for 16-bit addresses.

BPL2 BP EBP RBP2 Base Pointer • Memory address of stack-frame base pointer.

SPL2 SP ESP RSP2 Stack
Pointer

• Memory address of last stack entry (top of stack).

R8B–R
15B2

R8W–
R15W2

R8D–R
15D2

R8–
R152 None No implicit uses

Note:
1. Gray-shaded registers have no implicit uses.
2. Accessible only in 64-bit mode.

36 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Arithmetic Operations. Several forms of the add, subtract, multiply,
and divide instructions use AL or rAX implicitly. The multiply
and divide instructions also use the concatenation of rDX:rAX
for double-sized results (multiplies) or quotient and remainder
(divides).

Sign-Extensions. The instructions that double the size of operands
by sign extension (for example, CBW, CWDE, CDQE, CWD,
CDQ, CQO) use rAX register implicitly for the operand. The
CWD, CDQ, and CQO instructions also uses the rDX register.

Special MOVs. The MOV instruction has several opcodes that
implicitly use the AL or rAX register for one operand.

String Operations. Many types of string instructions use the
accumulators implicitly. Load string, store string, and scan
string instructions use AL or rAX for data and rDI or rSI for the
offset of a memory address.

I/O-Address-Space Operations. The I/O and string I/O instructions
use rAX to hold data that is received from or sent to a device
located in the I/O-address space. DX holds the device I/O-
address (the port number).

Table Translations. The table translate instruction (XLATB) uses
AL for an memory index and rBX for memory base address.

Compares and Exchanges. Compare and exchange instructions
(CMPXCHG) use the AL or rAX register for one operand.

Decimal Arithmetic. The decimal arithmetic instructions (AAA,
AAD, AAM, AAS, DAA, DAS) that adjust binary-coded decimal
(BCD) operands implicitly use the AL and AH register for their
operations.

Shifts and Rotates. Shift and rotate instructions can use the CL
register to specify the number of bits an operand is to be shifted
or rotated.

Conditional Jumps. Special conditional-jump instructions use the
rCX register instead of flags. The JCXZ and JrCXZ instructions
check the value of the rCX register and pass control to the
target instruction when the value of rCX register reaches 0.

Chapter 3: General-Purpose Programming 37

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 37

Repeated String Operations. With the exception of I /O string
instructions, all string operations use rSI as the source-operand
pointer and rDI as the destination-operand pointer. I/O string
instructions use rDX to specify the input-port or output-port
number. For repeated string operations (those preceded with a
repeat-instruction prefix), the rSI and rDI registers are
incremented or decremented as the string elements are moved
from the source location to the destination. Repeat-string
operations also use rCX to hold the string length, and
decrement it as data is moved from one location to the other.

Stack Operations. Stack operations make implicit use of the rSP
register, and in some cases, the rBP register. The rSP register is
used to hold the top-of-stack pointer (or simply, stack pointer).
rSP is decremented when items are pushed onto the stack, and
incremented when they are popped off the stack. The ENTER
and LEAVE instructions use rBP as a stack-frame base pointer.
Here, rBP points to the last entry in a data structure that is
passed from one block-structured procedure to another.

The use of rSP or rBP as a base register in an address
calculation implies the use of SS (stack segment) as the default
segment. Using any other GPR as a base register without a
segment-override prefix implies the use of the DS data segment
as the default segment.

The push all and pop all instructions (PUSHA, PUSHAD, POPA,
POPAD) implicitly use all of the GPRs.

CPUID Information. The CPUID instruction makes implicit use of
the EAX, EBX, ECX, and EDX registers. Software loads a
function code into EAX, executes the CPUID instruction, and
then reads the associated processor-feature information in
EAX, EBX, ECX, and EDX.

3.1.4 Flags Register Figure 3-5 on page 38 shows the 64-bit RFLAGS register and the
flag bits visible to application software. Bits 15–0 are the
FLAGS register (accessed in legacy real and virtual-8086
modes), bits 31–0 are the EFLAGS register (accessed in legacy
protected mode and compatibility mode), and bits 63–0 are the
RFLAGS register (accessed in 64-bit mode). The name rFLAGS
refers to any of the three register widths, depending on the
current software context.

38 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 3-5. rFLAGS Register—Flags Visible to Application Software

The low 16 bits (FLAGS portion) of rFLAGS are accessible by
application software and hold the following flags:

One control flag (the direction flag DF).

Six status flags (carry flag CF, parity flag PF, auxiliary carry
flag AF, zero flag ZF, sign flag SF, and overflow flag OF).

The direction flag (DF) flag controls the direction of string
operations. The status flags provide result information from
logical and arithmetic operations and control information for
conditional move and jump instructions.

Bits 31–16 of the rFLAGS register contain flags that are
accessible only to system software. These flags are described in
“System Registers” in Volume 2. The highest 32 bits of
RFLAGS are reserved. In 64-bit mode, writes to these bits are
ignored. They are read as zeros (RAZ). The rFLAGS register is
initialized to 02h on reset, so that all of the programmable bits
are cleared to zero.

9 8 7 6 5 4 3 2 1 010111231

A
F

P
F

Z
F

S
F

D
F

O
F

C
F

Reserved or System Flag

Symbol Description Bit
OF Overflow Flag 11
DF Direction Flag 10
SF Sign Flag 7
ZF Zero Flag 6
AF Auxiliary Carry Flag 4
PF Parity Flag 2
CF Carry Flag 0

See Volume 2 for System Flags

3263

Reserved, Read as Zero (RAZ)

1516

Chapter 3: General-Purpose Programming 39

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 39

The effects that rFLAGS bit-values have on instructions are
summarized in the following places:

Conditional Moves (CMOVcc)—Table 3-4 on page 51.

Conditional Jumps (Jcc)—Table 3-5 on page 66.

Conditional Sets (SETcc)—Table 3-6 on page 71.

The effects that instructions have on rFLAGS bit-values are
summarized in “Instruction Effects on RFLAGS” in Volume 3.

The sections below describe each application-visible flag. All of
these flags are readable and writable. For example, the POPF,
POPFD, POPFQ, IRET, IRETD, and IRETQ instructions write
all flags. The carry and direction flags are writable by dedicated
application instructions. Other application-visible flags are
written indirectly by specific instructions. Reserved bits and
bits whose writability is prevented by the current values of
system flags, current privilege level (CPL), or the current
operating mode, are unaffected by the POPFx instructions.

Carry Flag (CF). Bit 0. Hardware sets the carry flag to 1 if the last
integer addition or subtraction operation resulted in a carry
(for addition) or a borrow (for subtraction) out of the most-
significant bit position of the result. Otherwise, hardware clears
the flag to 0.

The increment and decrement instructions—unlike the
addition and subtraction instructions—do not affect the carry
flag. The bit shift and bit rotate instructions shift bits of
operands into the carry flag. Logical instructions like AND, OR,
XOR clear the carry flag. Bit-test instructions (BTx) set the
value of the carry flag depending on the value of the tested bit
of the operand.

Software can set or clear the carry flag with the STC and CLC
instructions, respectively. Software can complement the flag
with the CMC instruction.

Parity Flag (PF). Bit 2. Hardware sets the parity flag to 1 if there is
an even number of 1 bits in the least-significant byte of the last
result of certain operations. Otherwise (i.e., for an odd number
of 1 bits), hardware clears the flag to 0. Software can read the
flag to implement parity checking.

Auxiliary Carry Flag (AF). Bit 4. Hardware sets the auxiliary carry
flag to 1 if the last binary-coded decimal (BCD) operation

40 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

resulted in a carry (for addition) or a borrow (for subtraction)
out of bit 3. Otherwise, hardware clears the flag to 0.

The main application of this flag is to support decimal
arithmetic operations. Most commonly, this flag is used
internally by correction commands for decimal addition (AAA)
and subtraction (AAS).

Zero Flag (ZF). Bit 6. Hardware sets the zero flag to 1 if the last
arithmetic operation resulted in a value of zero. Otherwise (for
a non-zero result), hardware clears the flag to 0. The compare
and test instructions also affect the zero flag.

The zero flag is typically used to test whether the result of an
arithmetic or logical operation is zero, or to test whether two
operands are equal.

Sign Flag (SF). Bit 7. Hardware sets the sign flag to 1 if the last
arithmetic operation resulted in a negative value. Otherwise
(for a positive-valued result), hardware clears the flag to 0.
Thus, in such operations, the value of the sign flag is set equal
to the value of the most-significant bit of the result. Depending
on the size of operands, the most-significant bit is bit 7 (for
bytes), bit 15 (for words), bit 31 (for doublewords), or bit 63 (for
quadwords).

Direction Flag (DF). Bit 10. The direction flag determines the order
in which strings are processed. Software can set the direction
flag to 1 to specify decrementing the data pointer for the next
string instruction (LODSx, STOSx, MOVSx, SCASx, CMPSx,
OUTSx, or INSx). Clearing the direction flag to 0 specifies
incrementing the data pointer. The pointers are stored in the
rSI or rDI register. Software can set or clear the flag with the
STD and CLD instructions, respectively.

Overflow Flag (OF). Bit 11. Hardware sets the overflow flag to 1 to
indicate that the most-significant (sign) bit of the result of the
last signed integer operation differed from the signs of both
source operands. Otherwise, hardware clears the flag to 0. A set
overflow flag means that the magnitude of the positive or
negative result is too big (overflow) or too small (underflow) to
fit its defined data type.

The OF flag is undefined after the DIV instruction and after a
shift of more than one bit. Logical instructions clear the
overflow flag.

Chapter 3: General-Purpose Programming 41

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 41

3.1.5 Instruction
Pointer Register

The instruction pointer register—IP, EIP, or RIP, or simply rIP
for any of the three depending on the context—is used in
conjunction with the code-segment (CS) register to locate the
next instruction in memory. See Section 2.5, “Instruction
Pointer,” on page 24 for details.

3.2 Operands

Operands are either referenced by an instruction's encoding or
included as an immediate value in the instruction encoding.
Depending on the instruction, referenced operands can be
located in registers, memory locations, or I/O ports.

3.2.1 Data Types Figure 3-6 on page 42 shows the register images of the general-
purpose data types. In the general-purpose programming
environment, these data types can be interpreted by instruction
syntax or the software context as the following types of
numbers and strings:

Signed (two's-complement) integers.

Unsigned integers.

BCD digits.

Packed BCD digits.

Strings, including bit strings.

The double quadword data type is supported in the RDX:RAX
registers by the MUL, IMUL, DIV, IDIV, and CQO instructions.
Software can interpret the data types in ways other than those
shown in Figure 3-6 on page 42 but the AMD64 instruction set
does not directly support such interpretations and software
must handle them entirely on its own.

Table 3-2 on page 43 shows the range of representable values
for the general-purpose data types.

42 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 3-6. General-Purpose Data Types

Signed and Unsigned Integers. The architecture supports signed and
unsigned 1 byte, 2 bytes, 4 byte and 8 byte integers. The sign bit
is stored in the most significant bit.

513-326.eps

127

63

63

31

15

7 0

Quadword

Double
Quadword

Doubleword

Word

Byte

0

s

s

s

s

Quadword

Unsigned Integer

Signed Integer

Doubleword

Word

Byte

Bit

8 bytes (64-bit mode only)

s 16 bytes (64-bit mode only)

127
Double
Quadword

0

16 bytes (64-bit mode only)

4 bytes

2 bytes

31

15

7 3

Packed BCD

BCD Digit

0

8 bytes (64-bit mode only)

4 bytes

2 bytes

Chapter 3: General-Purpose Programming 43

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 43

Binary-Coded-Decimal (BCD) Digits. BCD digits have values ranging
from 0 to 9. These values can be represented in binary encoding
with four bits. For example, 0000b represents the decimal
number 0 and 1001b represents the decimal number 9. Values
ranging from 1010b to 1111b are invalid for this data type.
Because a byte contains eight bits, two BCD digits can be stored
in a single byte. This is referred to as packed-BCD. If a single
BCD digit is stored per byte, it is referred to as unpacked-BCD.
In the x87 floating-point programming environment (described
in Section 6, “x87 Floating-Point Programming,” on page 283)
an 80-bit packed BCD data type is also supported, along with
conversions between floating-point and BCD data types, so that
data expressed in the BCD format can be operated on as
floating-point values.

Integer add, subtract, multiply, and divide instructions can be
used to operate on single (unpacked) BCD digits. The result
must be adjusted to produce a correct BCD representation. For
unpacked BCD numbers, the ASCII-adjust instructions are
provided to simplify that correction. In the case of division, the
adjustment must be made prior to executing the integer-divide
instruction.

Similarly, integer add and subtract instructions can be used to
operate on packed-BCD digits. The result must be adjusted to
produce a correct packed-BCD representation. Decimal-adjust

Table 3-2. Representable Values of General-Purpose Data Types

Data Type Byte Word Doubleword Quadword
Double

Quadword2

Signed Integers1 -27 to +(27 -1) -215 to +(215 -1) -231 to +(231 -1) -263 to +(263 -1) -2127 to +(2127 -1)

Unsigned Integers
0 to +28-1
(0 to 255)

0 to +216-1
(0 to 65,535)

0 to +232-1
(0 to 4.29 x 109)

0 to +264-1
(0 to 1.84 x 1019)

0 to +2128-1
(0 to 3.40 x 1038)

Packed BCD Digits 00 to 99 multiple packed BCD-digit bytes

BCD Digit 0 to 9 multiple BCD-digit bytes

Note:
1. The sign bit is the most-significant bit (e.g., bit 7 for a byte, bit 15 for a word, etc.).
2. The double quadword data type is supported in the RDX:RAX registers by the MUL, IMUL, DIV, IDIV, and CQO instructions.

44 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

instructions are provided to simplify packed-BCD result
corrections.

Strings. Strings are a continuous sequence of a single data type.
The string instructions can be used to operate on byte, word,
doubleword, or quadword data types. The maximum length of a
string of any data type is 232-1 bytes, in legacy or compatibility
modes, or 264-1 bytes in 64-bit mode. One of the more common
types of strings used by applications are byte data-type strings
known as ASCII strings, which can be used to represent
character data.

Bit strings are also supported by instructions that operate
specifically on bit strings. In general, bit strings can start and
end at any bit location within any byte, although the BTx bit-
string instructions assume that strings start on a byte boundary.
The length of a bit string can range in size from a single bit up
to 232-1 bits, in legacy or compatibility modes, or 264-1 bits in
64-bit mode.

3.2.2 Operand Sizes
and Overrides

Default Operand Size. In legacy and compatibility modes, the
default operand size is either 16 bits or 32 bits, as determined
by the default-size (D) bit in the current code-segment
descriptor (for details, see “Segmented Virtual Memory” in
Volume 2). In 64-bit mode, the default operand size for most
instructions is 32 bits.

Application software can override the default operand size by
using an operand-size instruction prefix. Table 3-3 on page 45
shows the instruction prefixes for operand-size overrides in all
operating modes. In 64-bit mode, the default operand size for
most instructions is 32 bits. A REX prefix (see Section 3.5.2,
“REX Prefixes,” on page 89) specifies a 64-bit operand size, and
a 66h prefix specifies a 16-bit operand size. The REX prefix
takes precedence over the 66h prefix.

Chapter 3: General-Purpose Programming 45

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 45

There are several exceptions to the 32-bit operand-size default
in 64-bit mode, including near branches and instructions that
implicitly reference the RSP stack pointer. For example, the
near CALL, near JMP, Jcc , LOOPcc , POP, and PUSH
instructions all default to a 64-bit operand size in 64-bit mode.
Such instructions do not need a REX prefix for the 64-bit
operand size. For details, see “General-Purpose Instructions in
64-Bit Mode” in Volume 3.

Effective Operand Size. The term effective operand size describes the
operand size for the current instruction, after accounting for
the instruction’s default operand size and any operand-size
override or REX prefix that is used with the instruction.

Table 3-3. Operand-Size Overrides

Operating Mode
Default

Operand
Size (Bits)

Effective
Operand

Size
(Bits)

Instruction Prefix

66h1 REX

Long
Mode

64-Bit
Mode

322

64 x yes

32 no no

16 yes no

Compatibility
Mode

32
32 no

Not
Applicable

16 yes

16
32 yes

16 no

Legacy Mode
(Protected, Virtual-8086,
or Real Mode)

32
32 no

16 yes

16
32 yes

16 no

Note:
1. “no” indicates that the default operand size is used. “x” means don’t care.
2. Near branches, instructions that implicitly reference the stack pointer, and certain other

instructions default to 64-bit operand size. See “General-Purpose Instructions in 64-Bit Mode”
in Volume 3

46 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Immediate Operand Size. In legacy mode and compatibility modes,
the size of immediate operands can be 8, 16, or 32 bits,
depending on the instruction. In 64-bit mode, the maximum size
of an immediate operand is also 32 bits, except that 64-bit
immediates can be copied into a 64-bit GPR using the MOV
instruction.

When the operand size of a MOV instruction is 64 bits, the
processor sign-extends immediates to 64 bits before using them.
Support for true 64-bit immediates is accomplished by
expanding the semantics of the MOV reg, imm16/32 instructions.
In legacy and compatibility modes, these instructions—opcodes
B8h through BFh—copy a 16-bit or 32-bit immediate
(depending on the effective operand size) into a GPR. In 64-bit
mode, if the operand size is 64 bits (requires a REX prefix),
these instructions can be used to copy a true 64-bit immediate
into a GPR.

3.2.3 Operand
Addressing

Operands for general-purpose instructions are referenced by
the instruction's syntax or they are incorporated in the
instruction as an immediate value. Referenced operands can be
in registers, memory, or I/O ports.

Register Operands. Most general-purpose instructions that take
register operands reference the general-purpose registers
(GPRs). A few general-purpose instructions reference operands
in the RFLAGS register, XMM registers, or MMX™ registers.

The type of register addressed is specified in the instruction
syntax. When addressing GPRs or XMM registers, the REX
instruction prefix can be used to access the extended GPRs or
XMM registers, as described in Section 3.5, “Instruction
Prefixes,” on page 85.

Memory Operands. Many general-purpose instructions can access
operands in memory. Section 2.2, “Memory Addressing,” on
page 16 describes the general methods and conditions for
addressing memory operands.

I/O Ports. Operands in I/O ports are referenced according to the
conventions described in Section 3.8, “Input/Output,” on
page 109.

Immediate Operands. In certain instructions, a source operand—
called an immediate operand, or simply immediate—is included

Chapter 3: General-Purpose Programming 47

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 47

as part of the instruction rather than being accessed from a
register or memory location. For details on the size of
immediate operands, see “Immediate Operand Size” on
page 46.

3.2.4 Data Alignment A data access is aligned if its address is a multiple of its operand
size, in bytes. The following examples illustrate this definition:

Byte accesses are always aligned. Bytes are the smallest
addressable parts of memory.

Word (two-byte) accesses are aligned if their address is a
multiple of 2.

Doubleword (four-byte) accesses are aligned if their address
is a multiple of 4.

Quadword (eight-byte) accesses are aligned if their address
is a multiple of 8.

The AMD64 architecture does not impose data-alignment
requirements for accessing data in memory. However,
depending on the location of the misaligned operand with
respect to the width of the data bus and other aspects of the
hardware implementation (such as store-to-load forwarding
mechanisms), a misaligned memory access can require more
bus cycles than an aligned access. For maximum performance,
avoid misaligned memory accesses.

Performance on many hardware implementations will benefit
from observing the following operand-alignment and operand-
size conventions:

Avoid misaligned data accesses.

Maintain consistent use of operand size across all loads and
stores. Larger operand sizes (doubleword and quadword)
tend to make more efficient use of the data bus and any
data-forwarding features that are implemented by the
hardware.

When using word or byte stores, avoid loading data from the
same doubleword of memory, other than the identical start
addresses of the stores.

48 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

3.3 Instruction Summary

This section summarizes the functions of the general-purpose
instructions. The instructions are organized by functional
group—such as, data-transfer instructions, arithmetic
instructions, and so on. Details on individual instructions are
given in the alphabetically organized “General-Purpose
Instruction Reference” in Volume 3.

3.3.1 Syntax Each instruction has a mnemonic syntax used by assemblers to
specify the operation and the operands to be used for source
and destination (result) data. Figure 3-7 shows an example of
the mnemonic syntax for a compare (CMP) instruction. In this
example, the CMP mnemonic is followed by two operands, a 32-
bit register or memory operand and an 8-bit immediate
operand.

Figure 3-7. Mnemonic Syntax Example

In most instructions that take two operands, the first (left-most)
operand is both a source operand and the destination operand.
The second (right-most) operand serves only as a source.
Instructions can have one or more prefixes that modify default
instruction functions or operand properties. These prefixes are
summarized in Section 3.5, “Instruction Prefixes,” on page 85.
Instructions that access 64-bit operands in a general-purpose
register (GPR) or any of the extended GPR or XMM registers
require a REX instruction prefix.

Unless otherwise stated in this section, the word register means
a general-purpose register (GPR). Several instructions affect
the flag bits in the RFLAGS register. “Instruction Effects on

513-139.eps

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

CMP reg/mem32, imm8

Chapter 3: General-Purpose Programming 49

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 49

RFLAGS” in Volume 3 summarizes the effects that instructions
have on rFLAGS bits.

3.3.2 Data Transfer The data-transfer instructions copy data between registers and
memory.

Move.

MOV—Move

MOVSX—Move with Sign-Extend

MOVZX—Move with Zero-Extend

MOVD—Move Doubleword or Quadword

MOVNTI—Move Non-Temporal Doubleword or Quadword

MOVx copies a byte, word, doubleword, or quadword from a
register or memory location to a register or memory location.
The source and destination cannot both be memory locations.
An immediate constant can be used as a source operand with
the MOV instruction. For MOV, the destination must be of the
same size as the source, but the MOVSX and MOVZX
instructions copy values of smaller size to a larger size by using
sign-extension or zero-extension. The MOVD instruction copies
a doubleword or quadword between a general-purpose register
or memory and an XMM or MMX™ register.

The MOV instruction is in many aspects similar to the
assignment operator in high-level languages. The simplest
example of their use is to initialize variables. To initialize a
register to 0, rather than using a MOV instruction it may be
more efficient to use the XOR instruction with identical
destination and source operands.

The MOVNTI instruction stores a doubleword or quadword from
a register into memory as “non-temporal” data, which assumes
a single access (as opposed to frequent subsequent accesses of
“temporal data”). The operation therefore minimizes cache
pollution. The exact method by which cache pollution is
minimized depends on the hardware implementation of the
instruction. For further information, see Section 3.9, “Memory
Optimization,” on page 113.

Conditional Move.

CMOVcc—Conditional Move If condition

50 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The CMOVcc instructions conditionally copy a word,
doubleword, or quadword from a register or memory location to
a register location. The source and destination must be of the
same size.

The CMOVcc instructions perform the same task as MOV but
work conditionally, depending on the state of status flags in the
RFLAGS register. If the condition is not satisfied, the
instruction has no effect and control is passed to the next
instruction. The mnemonics of CMOVcc instructions indicate
the condition that must be satisfied. Several mnemonics are
often used for one opcode to make the mnemonics easier to
remember. For example, CMOVE (conditional move if equal)
and CMOVZ (conditional move if zero) are aliases and compile
to the same opcode. Table 3-4 on page 51 shows the RFLAGS
values required for each CMOVcc instruction.

In assembly languages, the conditional move instructions
correspond to small conditional statements like:

IF a = b THEN x = y

CMOVcc instructions can replace two instructions—a
conditional jump and a move. For example, to perform a high-
level statement like:

IF ECX = 5 THEN EAX = EBX

without a CMOVcc instruction, the code would look like:

cmp ecx, 5 ; test if ecx equals 5
jnz Continue ; test condition and skip if not met
mov eax, ebx ; move
Continue: ; continuation

but with a CMOVcc instruction, the code would look like:

cmp ecx, 5 ; test if ecx equals to 5
cmovz eax, ebx ; test condition and move

Replacing conditional jumps with conditional moves also has
the advantage that it can avoid branch-prediction penalties that
may be caused by conditional jumps.

Support for CMOVcc instructions depends on the processor
implementation. To find out if a processor is able to perform
CMOVcc instructions, use the CPUID instruction.

Chapter 3: General-Purpose Programming 51

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 51

Table 3-4. rFLAGS for CMOVcc Instructions

Mnemonic Required Flag
State Description

CMOVO OF = 1 Conditional move if overflow

CMOVNO OF = 0 Conditional move if not overflow

CMOVB
CMOVC
CMOVNAE

CF = 1
Conditional move if below
Conditional move if carry
Conditional move if not above or equal

CMOVAE
CMOVNB
CMOVNC

CF = 0
Conditional move if above or equal
Conditional move if not below
Conditional move if not carry

CMOVE
CMOVZ ZF = 1

Conditional move if equal
Conditional move if zero

CMOVNE
CMOVNZ ZF = 0

Conditional move if not equal
Conditional move if not zero

CMOVBE
CMOVNA

CF = 1 or
ZF = 1

Conditional move if below or equal
Conditional move if not above

CMOVA
CMOVNBE

CF = 0 and
ZF = 0

Conditional move if not below or equal
Conditional move if not below or equal

CMOVS SF = 1 Conditional move if sign

CMOVNS SF = 0 Conditional move if not sign

CMOVP
CMOVPE PF = 1

Conditional move if parity
Conditional move if parity even

CMOVNP
CMOVPO

PF = 0 Conditional move if not parity
Conditional move if parity odd

CMOVL
CMOVNGE SF <> OF Conditional move if less

Conditional move if not greater or equal

CMOVGE
CMOVNL SF = OF

Conditional move if greater or equal
Conditional move if not less

CMOVLE
CMOVNG

ZF = 1 or
SF <> OF

Conditional move if less or equal
Conditional move if not greater

CMOVG
CMOVNLE

ZF = 0 and
SF = OF

Conditional move if greater
Conditional move if not less or equal

52 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Stack Operations.

POP—Pop Stack

POPA—Pop All to GPR Words

POPAD—Pop All to GPR Doublewords

PUSH—Push onto Stack

PUSHA—Push All GPR Words onto Stack

PUSHAD—Push All GPR Doublewords onto Stack

ENTER—Create Procedure Stack Frame

LEAVE—Delete Procedure Stack Frame

PUSH copies the specified register, memory location, or
immediate value to the top of stack. This instruction
decrements the stack pointer by 2, 4, or 8, depending on the
operand size, and then copies the operand into the memory
location pointed to by SS:rSP.

POP copies a word, doubleword, or quadword from the memory
location pointed to by the SS:rSP registers (the top of stack) to a
specified register or memory location. Then, the rSP register is
incremented by 2, 4, or 8. After the POP operation, rSP points
to the new top of stack.

PUSHA or PUSHAD stores eight word-sized or doubleword-
sized registers onto the stack: eAX, eCX, eDX, eBX, eSP, eBP,
eSI and eDI, in that order. The stored value of eSP is sampled at
the moment when the PUSHA instruction started. The resulting
stack-pointer value is decremented by 16 or 32.

POPA or POPAD extracts eight word-sized or doubleword-sized
registers from the stack: eDI, eSI, eBP, eSP, eBX, eDX, eCX and
eAX, in that order (which is the reverse of the order used in the
PUSHA instruction). The stored eSP value is ignored by the
POPA instruction. The resulting stack pointer value is
incremented by 16 or 32.

It is a common practice to use PUSH instructions to pass
parameters (via the stack) to functions and subroutines. The
typical instruction sequence used at the beginning of a
subroutine looks like:

push ebp ; save current EBP
mov ebp, esp ; set stack frame pointer value
sub esp, N ; allocate space for local variables

Chapter 3: General-Purpose Programming 53

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 53

The rBP register is used as a stack frame pointer—a base address
of the stack area used for parameters passed to subroutines and
local variables. Positive offsets of the stack frame pointed to by
rBP provide access to parameters passed while negative offsets
give access to local variables. This technique allows creating re-
entrant subroutines.

The ENTER and LEAVE instructions provide support for
procedure calls, and are mainly used in high-level languages.
The ENTER instruction is typically the first instruction of the
procedure, and the LEAVE instruction is the last before the
RET instruction.

The ENTER instruction creates a stack frame for a procedure.
The first operand, size, specifies the number of bytes allocated
in the stack. The second operand, depth, specifies the number of
stack-frame pointers copied from the calling procedure’s stack
(i.e., the nesting level). The depth should be an integer in the
range 0-31.

Typically, when a procedure is called, the stack contains the
following four components:

Parameters passed to the called procedure (created by the
calling procedure).

Return address (created by the CALL instruction).

Array of stack-frame pointers (pointers to stack frames of
procedures with smaller nesting-level depth) which are used
to access the local variables of such procedures.

Local variables used by the called procedure.

All these data are called the stack frame . The ENTER
instruction simplifies management of the last two components
of a stack frame. First, the current value of the rBP register is
pushed onto the stack. The value of the rSP register at that
moment is a frame pointer for the current procedure: positive
offsets from this pointer give access to the parameters passed to
the procedure, and negative offsets give access to the local
variables which will be allocated later. During procedure
execution, the value of the frame pointer is stored in the rBP
register, which at that moment contains a frame pointer of the
calling procedure. This frame pointer is saved in a temporary
register. If the depth operand is greater than one, the array of
depth-1 frame pointers of procedures with smaller nesting level
is pushed onto the stack. This array is copied from the stack

54 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

frame of the calling procedure, and it is addressed by the rBP
register from the calling procedure. If the depth operand is
greater than zero, the saved frame pointer of the current
procedure is pushed onto the stack (forming an array of depth
frame pointers). Finally, the saved value of the frame pointer is
copied to the rBP register, and the rSP register is decremented
by the value of the first operand, allocating space for local
variables used in the procedure. See “Stack Operations” on
page 52 for a parameter-passing instruction sequence using
PUSH that is equivalent to ENTER.

The LEAVE instruction removes local variables and the array of
frame pointers, allocated by the previous ENTER instruction,
from the stack frame. This is accomplished by the following two
steps: first, the value of the frame pointer is copied from the
rBP register to the rSP register. This releases the space
allocated by local variables and an array of frame pointers of
procedures with smaller nesting levels. Second, the rBP register
is popped from the stack, restoring the previous value of the
frame pointer (or simply the value of the rBP register, if the
depth operand is zero). Thus, the LEAVE instruction is
equivalent to the following code:

mov rSP, rBP
pop rBP

3.3.3 Data Conversion The data -convers ion instruct ions perform var ious
transformations of data, such as operand-size doubling by sign
extension, conversion of little-endian to big-endian format,
extraction of sign masks, searching a table, and support for
operations with decimal numbers.

Sign Extension.

CBW—Convert Byte to Word

CWDE—Convert Word to Doubleword

CDQE—Convert Doubleword to Quadword

CWD—Convert Word to Doubleword

CDQ—Convert Doubleword to Quadword

CQO—Convert Quadword to Octword

The CBW, CWDE, and CDQE instructions sign-extend the AL,
AX, or EAX register to the upper half of the AX, EAX, or RAX
register, respectively. By doing so, these instructions create a
double-sized destination operand in rAX that has the same

Chapter 3: General-Purpose Programming 55

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 55

numerical value as the source operand. The CBW, CWDE, and
CDQE instructions have the same opcode, and the action taken
depends on the effective operand size.

The CWD, CDQ and CQO instructions sign-extend the AX, EAX,
or RAX register to all bit positions of the DX, EDX, or RDX
register, respectively. By doing so, these instructions create a
double-sized destination operand in rDX:rAX that has the same
numerical value as the source operand. The CWD, CDQ, and
CQO instructions have the same opcode, and the action taken
depends on the effective operand size.

Flags are not affected by these instructions. The instructions
can be used to prepare an operand for signed division
(performed by the IDIV instruction) by doubling its storage
size.

Extract Sign Mask.

MOVMSKPS—Extract Packed Single-Precision Floating-
Point Sign Mask

MOVMSKPD—Extract Packed Double-Precision Floating-
Point Sign Mask

The MOVMSKPS instruction moves the sign bits of four packed
single-precision floating-point values in an XMM register to the
four low-order bits of a general-purpose register, with zero-
extension. MOVMSKPD does a similar operation for two
packed double-precision floating-point values: it moves the two
sign bits to the two low-order bits of a general-purpose register,
with zero-extension. The result of either instruction is a sign-bit
mask.

Translate.

XLAT—Translate Table Index

The XLAT instruction replaces the value stored in the AL
register with a table element. The initial value in AL serves as
an unsigned index into the table, and the start (base) of table is
specified by the DS:rBX registers (depending on the effective
address size).

This instruction is not recommended. The following instruction
serves to replace it:

MOV AL,[rBX + AL]

56 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

ASCII Adjust.

AAA—ASCII Adjust After Addition

AAD—ASCII Adjust Before Division

AAM—ASCII Adjust After Multiply

AAS—ASCII Adjust After Subtraction

The AAA, AAD, AAM, and AAS instructions perform
corrections of arithmetic operations with non-packed BCD
values (i.e., when the decimal digit is stored in a byte register).
There are no instructions which directly operate on decimal
numbers (either packed or non-packed BCD). However, the
ASCII-adjust instructions correct decimal-arithmetic results.
These instructions assume that an arithmetic instruction, such
as ADD, was performed on two BCD operands, and that the
result was stored in the AL or AX register. This result can be
incorrect or it can be a non-BCD value (for example, when a
decimal carry occurs). After executing the proper ASCII-adjust
instruction, the AX register contains a correct BCD
representation of the result. (The AAD instruction is an
exception to this, because it should be applied before a DIV
instruction, as explained below). All of the ASCII-adjust
instructions are able to operate with multiple-precision decimal
values.

AAA should be applied after addition of two non-packed
decimal digits. AAS should be applied after subtraction of two
non-packed decimal digits. AAM should be applied after
multiplication of two non-packed decimal digits. AAD should be
applied before the division of two non-packed decimal numbers.

Although the base of the numeration for ASCII-adjust
instructions is assumed to be 10, the AAM and AAD
instructions can be used to correct multiplication and division
with other bases.

BCD Adjust.

DAA—Decimal Adjust after Addition

DAS—Decimal Adjust after Subtraction

The DAA and DAS instructions perform corrections of addition
and subtraction operations on packed BCD values. (Packed BCD
values have two decimal digits stored in a byte register, with the
higher digit in the higher four bits, and the lower one in the

Chapter 3: General-Purpose Programming 57

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 57

lower four bits.) There are no instructions for correction of
multiplication and division with packed BCD values.

DAA should be applied after addition of two packed-BCD
numbers. DAS should be applied after subtraction of two
packed-BCD numbers.

DAA and DAS can be used in a loop to perform addition or
subtraction of two multiple-precision decimal numbers stored
in packed-BCD format. Each loop cycle would operate on
corresponding bytes (containing two decimal digits) of
operands.

Endian Conversion.

BSWAP—Byte Swap

The BSWAP instruction changes the byte order of a doubleword
or quadword operand in a register, as shown in Figure 3-8. In a
doubleword, bits 7–0 are exchanged with bits 31–24, and bits
15–8 are exchanged with bits 23–16. In a quadword, bits 7–0 are
exchanged with bits 63–56, bits 15–8 with bits 55–48, bits 23–16
with bits 47–40, and bits 31–24 with bits 39–32. See the
following illustration.

Figure 3-8. BSWAP Doubleword Exchange

A second application of the BSWAP instruction to the same
operand restores its original value. The result of applying the
BSWAP instruction to a 16-bit register is undefined. To swap
bytes of a 16-bit register, use the XCHG instruction.

The BSWAP instruction is used to convert data between little-
endian and big-endian byte order.

07815162331 24

07815162331 24

58 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

3.3.4 Load Segment
Registers

These instructions load segment registers.

LDS, LES, LFS, LGS, LSS—Load Far Pointer

MOV segReg—Move Segment Register

POP segReg—Pop Stack Into Segment Register

The LDS, LES, LFD, LGS, and LSS instructions atomically load
the two parts of a far pointer into a segment register and a
general-purpose register. A far pointer is a 16-bit segment
selector and a 16-bit or 32-bit offset. The load copies the
segment-selector portion of the pointer from memory into the
segment register and the offset portion of the pointer from
memory into a general-purpose register.

The effective operand size determines the size of the offset
loaded by the LDS, LES, LFD, LGS, and LSS instructions. The
instructions load not only the software-visible segment selector
into the segment register, but they also cause the hardware to
load the associated segment-descriptor information into the
software-invisible (hidden) portion of that segment register.

The MOV segReg and POP segReg instructions load a segment
selector from a general-purpose register or memory (for MOV
segReg) or from the top of the stack (for POP segReg) to a
segment register. These instructions not only load the software-
visible segment selector into the segment register but also
cause the hardware to load the associated segment-descriptor
information into the software-invisible (hidden) portion of that
segment register.

In 64-bit mode, the POP DS, POP ES, and POP SS instructions
are invalid.

3.3.5 Load Effective
Address LEA—Load Effective Address

The LEA instruction calculates and loads the effective address
(offset within a given segment) of a source operand and places
it in a general-purpose register.

LEA is related to MOV, which copies data from a memory
location to a register, but LEA takes the address of the source
operand, whereas MOV takes the contents of the memory
location specified by the source operand. In the simplest cases,
LEA can be replaced with MOV. For example:

lea eax, [ebx]

Chapter 3: General-Purpose Programming 59

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 59

has the same effect as:

mov eax, ebx

However, LEA allows software to use any valid addressing mode
for the source operand. For example:

lea eax, [ebx+edi]

loads the sum of EBX and EDI registers into the EAX register.
This could not be accomplished by a single MOV instruction.

LEA has a limited capability to perform multiplication of
operands in general-purpose registers using scaled-index
addressing. For example:

lea eax, [ebx+ebx*8]

loads the value of the EBX register, multiplied by 9, into the
EAX register.

3.3.6 Arithmetic The arithmetic instructions perform basic arithmetic
operations, such as addition, subtraction, multiplication, and
division on integer operands.

Add and Subtract.

ADC—Add with Carry

ADD—Signed or Unsigned Add

SBB—Subtract with Borrow

SUB—Subtract

NEG—Two’s Complement Negation

The ADD instruction performs addition of two integer
operands. There are opcodes that add an immediate value to a
byte, word, doubleword, or quadword register or a memory
location. In these opcodes, if the size of the immediate is
smaller than that of the destination, the immediate is first sign-
extended to the size of the destination operand. The arithmetic
flags (OF, SF, ZF, AF, CF, PF) are set according to the resulting
value of the destination operand.

The ADC instruction performs addition of two integer
operands, plus 1 if the carry flag (CF) is set.

The SUB instruction performs subtraction of two integer
operands.

60 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The SBB instruction performs subtraction of two integer
operands, and it also subtracts an additional 1 if the carry flag is
set.

The ADC and SBB instructions simplify addition and
subtraction of multiple-precision integer operands, because
they correctly handle carries (and borrows) between parts of a
multiple-precision operand.

The NEG instruction performs negation of an integer operand.
The value of the operand is replaced with the result of
subtracting the operand from zero.

Multiply and Divide.

MUL—Multiply Unsigned

IMUL—Signed Multiply

DIV—Unsigned Divide

IDIV—Signed Divide

The MUL instruction performs multiplication of unsigned
integer operands. The size of operands can be byte, word,
doubleword, or quadword. The product is stored in a destination
which is double the size of the source operands (multiplicand
and factor).

The MUL instruction's mnemonic has only one operand, which
is a factor. The multiplicand operand is always assumed to be an
accumulator register. For byte-sized multiplies, AL contains the
multiplicand, and the result is stored in AX. For word-sized,
doubleword-sized, and quadword-sized multiplies, rAX contains
the multiplicand, and the result is stored in rDX and rAX.

The IMUL instruction performs multiplication of signed integer
operands. There are forms of the IMUL instruction with one,
two, and three operands, and it is thus more powerful than the
MUL instruction. The one-operand form of the IMUL
instruction behaves similarly to the MUL instruction, except
that the operands and product are signed integer values. In the
two-operand form of IMUL, the multiplicand and product use
the same register (the first operand), and the factor is specified
in the second operand. In the three-operand form of IMUL, the
product is stored in the first operand, the multiplicand is
specified in the second operand, and the factor is specified in
the third operand.

Chapter 3: General-Purpose Programming 61

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 61

The DIV instruction performs division of unsigned integers.
The instruction divides a double-sized dividend in AH:AL or
rDX:rAX by the divisor specified in the operand of the
instruction. It stores the quotient in AL or rAX and the
remainder in AH or rDX.

The IDIV instruction performs division of signed integers. It
behaves similarly to DIV, with the exception that the operands
are treated as signed integer values.

Division is the slowest of all integer arithmetic operations and
should be avoided wherever possible. One possibility for
improving performance i s to replace div is ion with
multiplication, such as by replacing i/j/k with i/(j*k). This
replacement is possible if no overflow occurs during the
computation of the product. This can be determined by
considering the possible ranges of the divisors.

Increment and Decrement.

DEC—Decrement by 1

INC—Increment by 1

The INC and DEC instructions are used to increment and
decrement, respectively, an integer operand by one. For both
instructions, an operand can be a byte, word, doubleword, or
quadword register or memory location.

These instructions behave in all respects like the corresponding
ADD and SUB instructions, with the second operand as an
immediate value equal to 1. The only exception is that the carry
flag (CF) is not affected by the INC and DEC instructions.

Apart from their obvious arithmetic uses, the INC and DEC
instructions are often used to modify addresses of operands. In
this case it can be desirable to preserve the value of the carry
flag (to use it later), so these instructions do not modify the
carry flag.

3.3.7 Rotate and Shift The rotate and shift instructions perform cyclic rotation or non-
cyclic shift, by a given number of bits (called the count), in a
given byte-sized, word-sized, doubleword-sized or quadword-
sized operand.

When the count is greater than 1, the result of the rotate and
shift instructions can be considered as an iteration of the same

62 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

1-bit operation by count number of times. Because of this, the
descriptions below describe the result of 1-bit operations.

The count can be 1, the value of the CL register, or an
immediate 8-bit value. To avoid redundancy and make rotation
and shifting quicker, the count is masked to the 5 or 6 least-
significant bits, depending on the effective operand size, so that
its value does not exceed 31 or 63 before the rotation or shift
takes place.

Rotate.

RCL—Rotate Through Carry Left

RCR—Rotate Through Carry Right

ROL—Rotate Left

ROR—Rotate Right

The RCx instructions rotate the bits of the first operand to the
left or right by the number of bits specified by the source
(count) operand. The bits rotated out of the destination
operand are rotated into the carry flag (CF) and the carry flag is
rotated into the opposite end of the first operand.

The ROx instructions rotate the bits of the first operand to the
left or right by the number of bits specified by the source
operand. Bits rotated out are rotated back in at the opposite
end. The value of the CF flag is determined by the value of the
last bit rotated out. In single-bit left-rotates, the overflow flag
(OF) is set to the XOR of the CF flag after rotation and the
most-significant bit of the result. In single-bit right-rotates, the
OF flag is set to the XOR of the two most-significant bits. Thus,
in both cases, the OF flag is set to 1 if the single-bit rotation
changed the value of the most-significant bit (sign bit) of the
operand. The value of the OF flag is undefined for multi-bit
rotates.

Bit-rotation instructions provide many ways to reorder bits in an
operand. This can be useful, for example, in character
conversion, including cryptography techniques.

Shift.

SAL—Shift Arithmetic Left

SAR—Shift Arithmetic Right

SHL—Shift Left

Chapter 3: General-Purpose Programming 63

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 63

SHR—Shift Right

SHLD—Shift Left Double

SHRD—Shift Right Double

The SHx instructions (including SHxD) perform shift
operations on unsigned operands. The SAx instructions operate
with signed operands.

SHL and SAL instructions effectively perform multiplication of
an operand by a power of 2, in which case they work as more-
efficient alternatives to the MUL instruction. Similarly, SHR
and SAR instructions can be used to divide an operand (signed
or unsigned, depending on the instruction used) by a power of
2.

Although the SAR instruction divides the operand by a power
of 2, the behavior is different from the IDIV instruction. For
example, shifting -11 (FFFFFFF5h) by two bits to the right (i.e.
divide -11 by 4), gives a result of FFFFFFFDh, or -3, whereas the
IDIV instruction for dividing -11 by 4 gives a result of -2. This is
because the IDIV instruction rounds off the quotient to zero,
whereas the SAR instruction rounds off the remainder to zero
for positive dividends, and to negative infinity for negative
dividends. This means that, for positive operands, SAR behaves
like the corresponding IDIV instruction, and for negative
operands, it gives the same result if and only if all the shifted-
out bits are zeroes, and otherwise the result is smaller by 1.

The SAR instruction treats the most-significant bit (msb) of an
operand in a special way: the msb (the sign bit) is not changed,
but is copied to the next bit, preserving the sign of the result.
The least-significant bit (lsb) is shifted out to the CF flag. In the
SAL instruction, the msb is shifted out to CF flag, and the lsb is
cleared to 0.

The SHx instructions perform logical shift, i.e. without special
treatment of the sign bit. SHL is the same as SAL (in fact, their
opcodes are the same). SHR copies 0 into the most-significant
bit, and shifts the least-significant bit to the CF flag.

The SHxD instructions perform a double shift. These
instructions perform left and right shift of the destination
operand, taking the bits to copy into the most-significant bit
(for the SHRD instruction) or into the least-significant bit (for
the SHLD instruction) from the source operand. These
instructions behave like SHx, but use bits from the source

64 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

operand instead of zero bits to shift into the destination
operand. The source operand is not changed.

3.3.8 Compare and
Test

The compare and test instructions perform arithmetic and
logical comparison of operands and set corresponding flags,
depending on the result of comparison. These instruction are
used in conjunction with conditional instructions such as Jcc or
SETcc to organize branching and conditionally executing blocks
in programs. Assembler equivalents of conditional operators in
high-level languages (do…while, if…then…else, and similar)
also include compare and test instructions.

Compare.

CMP—Compare

The CMP instruction performs subtraction of the second
operand (source) from the first operand (destination), like the
SUB instruction, but it does not store the resulting value in the
destination operand. It leaves both operands intact. The only
effect of the CMP instruction is to set or clear the arithmetic
flags (OF, SF, ZF, AF, CF, PF) according to the result of
subtraction.

The CMP instruction is often used together with the conditional
jump instructions (Jcc), conditional SET instructions (SETcc)
and other instructions such as conditional loops (LOOPcc)
whose behavior depends on flag state.

Test.

TEST—Test Bits

The TEST instruction is in many ways similar to the AND
instruct ion : i t performs logical conjunct ion of the
corresponding bits of both operands, but unlike the AND
instruction it leaves the operands unchanged. The purpose of
this instruction is to update flags for further testing.

The TEST instruction is often used to test whether one or more
bits in an operand are zero. In this case, one of the instruction
operands would contain a mask in which all bits are cleared to
zero except the bits being tested. For more advanced bit testing
and bit modification, use the BTx instructions.

Chapter 3: General-Purpose Programming 65

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 65

Bit Scan.

BSF—Bit Scan Forward

BSR—Bit Scan Reverse

The BSF and BSR instructions search a source operand for the
least-significant (BSF) or most-significant (BSR) bit that is set
to 1. If a set bit is found, its bit index is loaded into the
destination operand, and the zero flag (ZF) is set. If no set bit is
found, the zero flag is cleared and the contents of the
destination are undefined.

Bit Test.

BT—Bit Test

BTC—Bit Test and Complement

BTR—Bit Test and Reset

BTS—Bit Test and Set

The BTx instructions copy a specified bit in the first operand to
the carry flag (CF) and leave the source bit unchanged (BT), or
complement the source bit (BTC), or clear the source bit to 0
(BTR), or set the source bit to 1 (BTS).

These instructions are useful for implementing semaphore
arrays. Unlike the XCHG instruction, the BTx instructions set
the carry flag, so no additional test or compare instruction is
needed. Also, because these instructions operate directly on
bits rather than larger data types, the semaphore arrays can be
smaller than is possible when using XCHG. In such semaphore
applications, bit-test instructions should be preceded by the
LOCK prefix.

Set Byte on Condition.

SETcc—Set Byte if condition

The SETcc instructions store a 1 or 0 value to their byte operand
depending on whether their condition (represented by certain
rFLAGS bits) is true or false, respectively. Table 3-5 on page 66
shows the rFLAGS values required for each SETcc instruction.

66 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Table 3-5. rFLAGS for SETcc Instructions

Mnemonic Required Flag
State Description

SETO OF = 1 Set byte if overflow

SETNO OF = 0 Set byte if not overflow

SETB
SETC
SETNAE

CF = 1

Set byte if below
Set byte if carry
Set byte if not above or equal (unsigned
operands)

SETAE
SETNB
SETNC

CF = 0
Set byte if above or equal
Set byte if not below
Set byte if not carry (unsigned operands)

SETE
SETZ ZF = 1

Set byte if equal
Set byte if zero

SETNE
SETNZ

ZF = 0 Set byte if not equal
Set byte if not zero

SETBE
SETNA

CF = 1 or
ZF = 1

Set byte if below or equal
Set byte if not above (unsigned operands)

SETA
SETNBE

CF = 0 and
ZF = 0

Set byte if not below or equal
Set byte if not below or equal (unsigned
operands)

SETS SF = 1 Set byte if sign

SETNS SF = 0 Set byte if not sign

SETP
SETPE PF = 1 Set byte if parity

Set byte if parity even

SETNP
SETPO PF = 0

Set byte if not parity
Set byte if parity odd

SETL
SETNGE

SF <> OF Set byte if less
Set byte if not greater or equal (signed operands)

SETGE
SETNL SF = OF Set byte if greater or equal

Set byte if not less (signed operands)

SETLE
SETNG

ZF = 1 or
SF <> OF

Set byte if less or equal
Set byte if not greater (signed operands)

SETG
SETNLE

ZF = 0 and
SF = OF

Set byte if greater
Set byte if not less or equal (signed operands)

Chapter 3: General-Purpose Programming 67

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 67

SETcc instructions are often used to set logical indicators. Like
CMOVcc instructions (page 49), SETcc instructions can replace
two instructions—a conditional jump and a move. Replacing
conditional jumps with conditional sets can help avoid branch-
prediction penalties that may be caused by conditional jumps.

If the logical value True (logical 1) is represented in a high-level
language as an integer with all bits set to 1, software can
accomplish such representation by first executing the opposite
SETcc instruction—for example, the opposite of SETZ is
SETNZ—and then decrementing the result.

Bounds.

BOUND—Check Array Bounds

The BOUND instruction checks whether the value of the first
operand, a signed integer index into an array, is within the
minimal and maximal bound values pointed to by the second
operand. The values of array bounds are often stored at the
beginning of the array. If the bounds of the range are exceeded,
the processor generates a bound-range exception.

The primary disadvantage of using the BOUND instruction is its
use of the time-consuming exception mechanism to signal a
failure of the bounds test.

3.3.9 Logical The logical instructions perform bitwise operations.

AND—Logical AND

OR—Logical OR

XOR—Exclusive OR

NOT—One’s Complement Negation

The AND, OR, and XOR instructions perform their respective
logical operations on the corresponding bits of both operands
and store the result in the first operand. The CF flag and OF
flag are cleared to 0, and the ZF flag, SF flag, and PF flag are
set according to the resulting value of the first operand.

The NOT instruction performs logical inversion of all bits of its
operand. Each zero bit becomes one and vice versa. All flags
remain unchanged.

Apart from performing logical operations, AND and OR can test
a register for a zero or non-zero value, sign (negative or
positive), and parity status of its lowest byte. To do this, both

68 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

operands must be the same register. The XOR instruction with
two identical operands is an efficient way of loading the value 0
into a register.

3.3.10 String The string instructions perform common string operations such
as copying, moving, comparing, or searching strings. These
instructions are widely used for processing text.

Compare Strings.

CMPS—Compare Strings

CMPSB—Compare Strings by Byte

CMPSW—Compare Strings by Word

CMPSD—Compare Strings by Doubleword

CMPSQ—Compare Strings by Quadword

The CMPSx instructions compare the values of two implicit
operands of the same size located at seg:[rSI] and ES:[rDI].
After the copy, both the rSI and rDI registers are auto-
incremented (if the DF flag is 0) or auto-decremented (if the DF
flag is 1).

Scan String.

SCAS—Scan String

SCASB—Scan String as Bytes

SCASW—Scan String as Words

SCASD—Scan String as Doubleword

SCASQ—Scan String as Quadword

The SCASx instructions compare the values of a memory
operands in ES:rDI to a value of the same size in the AL/rAX
register. Bits in rFLAGS are set to indicate the outcome of the
comparison. After the comparison, the rDI register is auto-
incremented (if the DF flag is 0) or auto-decremented (if the DF
flag is 1).

Move String.

MOVS—Move String

MOVSB—Move String Byte

MOVSW—Move String Word

MOVSD—Move String Doubleword

MOVSQ—Move String Quadword

Chapter 3: General-Purpose Programming 69

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 69

The MOVSx instructions copy an operand from the memory
location seg:[rSI] to the memory location ES:[rDI]. After the
copy, both the rSI and rDI registers are auto-incremented (if the
DF flag is 0) or auto-decremented (if the DF flag is 1).

Load String.

LODS—Load String

LODSB—Load String Byte

LODSW—Load String Word

LODSD—Load String Doubleword

LODSQ—Load String Quadword

The LODSx instructions load a value from the memory location
seg:[rSI] to the accumulator register (AL or rAX). After the
load, the rSI register is auto-incremented (if the DF flag is 0) or
auto-decremented (if the DF flag is 1).

Store String.

STOS—Store String

STOSB—Store String Bytes

STOSW—Store String Words

STOSD—Store String Doublewords

STOSQ—Store String Quadword

The STOSx instructions copy the accumulator register (AL or
rAX) to a memory location ES:[rDI]. After the copy, the rDI
register is auto-incremented (if the DF flag is 0) or auto-
decremented (if the DF flag is 1).

3.3.11 Control
Transfer

Control-transfer instructions, or branches, are used to iterate
through loops and move through conditional program logic.

Jump.

JMP—Jump

JMP performs an unconditional jump to the specified address.
There are several ways to specify the target address.

Relative Short Jump and Relative Near Jump—The target
address is determined by adding an 8-bit (short jump) or 16-
bit or 32-bit (near jump) signed displacement to the rIP of
the instruction following the JMP. The jump is performed
within the current code segment (CS).

70 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Register-Indirect and Memory-Indirect Near Jump—The target
rIP value is contained in a register or in a memory location.
The jump is performed within the current CS.

Direct Far Jump—For all far jumps, the target address is
outside the current code segment. Here, the instruction
specifies the 16-bit target-address code segment and the 16-
bit or 32-bit offset as an immediate value. The direct far
jump form is invalid in 64-bit mode.

Memory-Indirect Far Jump—For this form, the target address
(CS:rIP) is in a address outside the current code segment. A
32-bit or 48-bit far pointer in a specified memory location
points to the target address.

The size of the target rIP is determined by the effective
operand size for the JMP instruction.

For far jumps, the target selector can specify a code-segment
selector, in which case it is loaded into CS, and a 16-bit or 32-bit
target offset is loaded into rIP. The target selector can also be a
call-gate selector or a task-state-segment (TSS) selector, used
for performing task switches. In these cases, the target offset of
the JMP instruction is ignored, and the new values loaded into
CS and rIP are taken from the call gate or from the TSS.

Conditional Jump.

Jcc—Jump if condition

Conditional jump instructions jump to an instruction specified
by the operand, depending on the state of flags in the rFLAGS
register. The operands specifies a signed relative offset from
the current contents of the rIP. If the state of the corresponding
flags meets the condition, a conditional jump instruction passes
control to the target instruction, otherwise control is passed to
the instruction following the conditional jump instruction. The
flags tested by a specific Jcc instruction depend on the opcode.
In several cases, multiple mnemonics correspond to one opcode.

Table 3-6 on page 71 shows the rFLAGS values required for
each Jcc instruction.

Chapter 3: General-Purpose Programming 71

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 71

Table 3-6. rFLAGS for Jcc Instructions

Mnemonic Required Flag
State Description

JO OF = 1 Jump near if overflow

JNO OF = 0 Jump near if not overflow

JB
JC
JNAE

CF = 1
Jump near if below
Jump near if carry
Jump near if not above or equal

JNB
JNC
JAE

CF = 0
Jump near if not below
Jump near if not carry
Jump near if above or equal

JZ
JE ZF = 1

Jump near if 0
Jump near if equal

JNZ
JNE ZF = 0

Jump near if not zero
Jump near if not equal

JNA
JBE

CF = 1 or
ZF = 1

Jump near if not above
Jump near if below or equal

JNBE
JA

CF = 0 and
ZF = 0

Jump near if not below or equal
Jump near if above

JS SF = 1 Jump near if sign

JNS SF = 0 Jump near if not sign

JP
JPE PF = 1

Jump near if parity
Jump near if parity even

JNP
JPO

PF = 0 Jump near if not parity
Jump near if parity odd

JL
JNGE SF <> OF Jump near if less

Jump near if not greater or equal

JGE
JNL SF = OF

Jump near if greater or equal
Jump near if not less

JNG
JLE

ZF = 1 or
SF <> OF

Jump near if not greater
Jump near if less or equal

JNLE
JG

ZF = 0 and
SF = OF

Jump near if not less or equal
Jump near if greater

72 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Unlike the unconditional jump (JMP), conditional jump
instructions have only two forms—near conditional jumps and
short conditional jumps. To create a far-conditional-jump code
sequence corresponding to a high-level language statement
like:

IF A = B THEN GOTO FarLabel

where FarLabel is located in another code segment, use the
opposite condition in a conditional short jump before the
unconditional far jump. For example:

cmp A,B ; compare operands
jne NextInstr ; continue program if not equal
jmp far ptr WhenNE ; far jump if operands are equal

NextInstr: ; continue program

Three special conditional jump instructions use the rCX
register instead of flags. The JCXZ, JECXZ, and JRCXZ
instructions check the value of the CX, ECX, and RCX registers,
respectively, and pass control to the target instruction when the
value of rCX register reaches 0. These instructions are often
used to control safe cycles, preventing execution when the
value in rCX reaches 0.

Loop.

LOOPcc—Loop if condition

The LOOPcc instructions include LOOPE, LOOPNE, LOOPNZ,
and LOOPZ. These instructions decrement the rCX register by
1 without changing any flags, and then check to see if the loop
condition is met. If the condition is met, the program jumps to
the specified target code.

LOOPE and LOOPZ are synonyms. Their loop condition is met
if the value of the rCX register is non-zero and the zero flag (ZF)
is set to 1 when the instruction starts. LOOPNE and LOOPNZ
are also synonyms. Their loop condition is met if the value of
the rCX register is non-zero and the ZF flag is cleared to 0 when
the instruction starts. LOOP, unlike the other mnemonics, does
not check the ZF flag. Its loop condition is met if the value of
the rCX register is non-zero.

Call.

CALL—Procedure Call

Chapter 3: General-Purpose Programming 73

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 73

The CALL instruction performs a call to a procedure whose
address is specified in the operand. The return address is
placed on the stack by the CALL, and points to the instruction
immediately following the CALL. When the called procedure
finishes execution and is exited using a return instruction,
control is transferred to the return address saved on the stack.

The CALL instruction has the same forms as the JMP
instruction, except that CALL lacks the short-relative (1-byte
offset) form.

Relative Near Call—These specify an offset relative to the
instruction following the CALL instruction. The operand is
an immediate 16-bit or 32-bit offset from the called
procedure, within the same code segment.

Register-Indirect and Memory-Indirect Near Call—These
specify a target address contained in a register or memory
location.

Direct Far Call—These specify a target address outside the
current code segment. The address is pointed to by a 32-bit
or 48-bit far-pointer specified by the instruction, which
consists of a 16-bit code selector and a 16-bit or 32-bit offset.
The direct far call form is invalid in 64-bit mode.

Memory-Indirect Far Call—These specify a target address
outside the current code segment. The address is pointed to
by a 32-bit or 48-bit far pointer in a specified memory
location.

The size of the rIP is in all cases determined by the operand-size
attribute of the CALL instruction. CALLs push the return
address to the stack. The data pushed on the stack depends on
whether a near or far call is performed, and whether a privilege
change occurs. See Section 3.7.5, “Procedure Calls,” on page 96
for further information.

For far CALLs, the selector portion of the target address can
specify a code-segment selector (in which case the selector is
loaded into the CS register), or a call-gate selector, (used for
calls that change privilege level), or a task-state-segment (TSS)
selector (used for task switches). In the latter two cases, the
offset portion of the CALL instruction’s target address is
ignored, and the new values loaded into CS and rIP are taken
from the call gate or TSS.

74 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Return.

RET—Return from Call

The RET instruction returns from a procedure originally called
using the CALL instruction. CALL places a return address
(which points to the instruction following the CALL) on the
stack. RET takes the return address from the stack and
transfers control to the instruction located at that address.

Like CALL instructions, RET instructions have both a near and
far form. An optional immediate operand for the RET specifies
the number of bytes to be popped from the procedure stack for
parameters placed on the stack. See Section 3.7.6, “Returning
from Procedures,” on page 99 for additional information.

Interrupts and Exceptions.

INT—Interrupt to Vector Number

INTO—Interrupt to Overflow Vector

IRET—Interrupt Return Word

IRETD—Interrupt Return Doubleword

IRETQ—Interrupt Return Quadword

The INT instruction implements a software interrupt by calling
an interrupt handler. The operand of the INT instruction is an
immediate byte value specifying an index in the interrupt
descriptor table (IDT), which contains addresses of interrupt
handlers (see Section 3.7.10, “Interrupts and Exceptions,” on
page 104 for further information on the IDT).

The 1-byte INTO instruction calls interrupt 4 (the overflow
exception, #OF), if the overflow flag in RFLAGS is set to 1,
otherwise it does nothing. Signed arithmetic instructions can
be followed by the INTO instruction if the result of the
arithmetic operation can potentially overflow. (The 1-byte INT 3
instruction is considered a system instruction and is therefore
not described in this volume).

IRET, IRETD, and IRETQ perform a return from an interrupt
handler. The mnemonic specifies the operand size, which
determines the format of the return addresses popped from the
stack (IRET for 16-bit operand size, IRETD for 32-bit operand
size, and IRETQ for 64-bit operand size). However, some
assemblers can use the IRET mnemonic for all operand sizes.
Actions performed by IRET are opposite to actions performed

Chapter 3: General-Purpose Programming 75

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 75

by an interrupt or exception. In real and protected mode, IRET
pops the rIP, CS, and RFLAGS contents from the stack, and it
pops SS:rSP if a privilege-level change occurs or if it executes
from 64-bit mode. In protected mode, the IRET instruction can
also cause a task switch if the nested task (NT) bit in the
RFLAGS register is set. For details on using IRET to switch
tasks, see “Task Management” in Volume 2.

3.3.12 Flags The flags instructions read and write bits of the RFLAGS
register that are visible to application software. “Flags
Register” on page 37 illustrates the RFLAGS register.

Push and Pop Flags.

POPF—Pop to FLAGS Word

POPFD—Pop to EFLAGS Doubleword

POPFQ—Pop to RFLAGS Quadword

PUSHF—Push FLAGS Word onto Stack

PUSHFD—Push EFLAGS Doubleword onto Stack

PUSHFQ—Push RFLAGS Quadword onto Stack

The push and pop flags instructions copy data between the
rFLAGS register and the stack. POPF and PUSHF copy 16 bits
of data between the stack and the FLAGS register (the low 16
bits of EFLAGS), leaving the high 48 bits of RFLAGS
unchanged. POPFD and PUSHFD copy 32 bits between the
stack and the RFLAGS register. POPFQ and PUSHFQ copy 64
bits between the stack and the RFLAGS register. Only the bits
illustrated in Figure 3-5 on page 38 are affected. Reserved bits
and bits whose writability is prevented by the current values of
system flags, current privilege level (CPL), or current operating
mode, are unaffected by the POPF, POPFQ, and POPFD
instructions.

For details on stack operations, see “Control Transfers” on
page 93.

Set and Clear Flags.

CLC—Clear Carry Flag

CMC—Complement Carry Flag

STC—Set Carry Flag

CLD—Clear Direction Flag

STD—Set Direction Flag

76 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

CLI—Clear Interrupt Flag

STI—Set Interrupt Flag

These instructions change the value of a flag in the rFLAGS
register that is visible to application software. Each instruction
affects only one specific flag.

The CLC, CMC, and STC instructions change the carry flag
(CF). CLC clears the flag to 0, STC sets the flag to 1, and CMC
inverts the flag. These instructions are useful prior to executing
instructions whose behavior depends on the CF flag—for
example, shift and rotate instructions.

The CLD and STD instructions change the direction flag (DF)
and influence the function of string instructions (CMPSx,
SCASx, MOVSx, LODSx, STOSx, INSx, OUTSx). CLD clears the
flag to 0, and STD sets the flag to 1. A cleared DF flag indicates
the forward direction in string sequences, and a set DF flag
indicates the backward direction. Thus, in string instructions,
the rSI and/or rDI register values are auto-incremented when
DF = 0 and auto-decremented when DF = 1.

Two other instructions, CLI and STI, clear and set the interrupt
flag (IF). CLI clears the flag, causing the processor to ignore
external maskable interrupts. STI sets the flag, allowing the
processor to recognize maskable external interrupts. These
instructions are used primarily by system software—especially,
interrupt handlers—and are described in “Exceptions and
Interrupts” in Volume 2.

Load and Store Flags.

LAHF—Load Status Flags into AH Register

SAHF—Store AH into Flags

LAHF loads the lowest byte of the RFLAGS register into the AH
register. This byte contains the carry flag (CF), parity flag (PF),
auxiliary flag (AF), zero flag (ZF), and sign flag (SF). SAHF
stores the AH register into the lowest byte of the RFLAGS
register.

3.3.13 Input/Output The I/O instructions perform reads and writes of bytes, words,
and doublewords from and to the I/O address space. This address
space can be used to access and manage external devices, and is
independent of the main-memory address space. By contrast,
memory-mapped I/O uses the main-memory address space and is

Chapter 3: General-Purpose Programming 77

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 77

accessed using the MOV instructions rather than the I/O
instructions.

When operating in legacy protected mode or in long mode, the
RFLAGS register’s I/O privilege level (IOPL) field and the I/O-
permission bitmap in the current task-state segment (TSS) are
used to control access to the I/O addresses (called I/O ports). See
“Input/Output” on page 109 for further information.

General I/O.

IN—Input from Port

OUT—Output to Port

The IN instruction reads a byte, word, or doubleword from the
I/O port address specified by the source operand, and loads it
into the accumulator register (AL or eAX). The source operand
can be an immediate byte or the DX register.

The OUT instruction writes a byte, word, or doubleword from
the accumulator register (AL or eAX) to the I/O port address
specified by the destination operand, which can be either an
immediate byte or the DX register.

If the I/O port address is specified with an immediate operand,
the range of port addresses accessible by the IN and OUT
instructions is limited to ports 0 through 255. If the I/O port
address is specified by a in the DX register, all 65,536 ports are
accessible.

String I/O.

INS—Input String

INSB—Input String Byte

INSW—Input String Word

INSD—Input String Doubleword

OUTS—Output String

OUTSB—Output String Byte

OUTSW—Output String Word

OUTSD—Output String Doubleword

The INSx instructions (INSB, INSW, INSD) read a byte, word, or
doubleword from the I/O port specified by the DX register, and
load it into the memory location specified by ES:[rDI].

78 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The OUTSx instructions (OUTSB, OUTSW, OUTSD) write a
byte, word, or doubleword from an implicit memory location
specified by seg:[rSI], to the I/O port address stored in the DX
register.

The INSx and OUTSx instructions are commonly used with a
repeat prefix to transfer blocks of data. The memory pointer
address is not incremented or decremented. This usage is
intended for peripheral I/O devices that are expecting a stream
of data.

3.3.14 Semaphores The semaphore instructions support the implementation of
reliable signaling between processors in a multi-processing
environment, usually for the purpose of sharing resources.

CMPXCHG—Compare and Exchange

CMPXCHG8B—Compare and Exchange Eight Bytes

XADD—Exchange and Add

XCHG—Exchange

The CMPXCHG instruction compares a value in the AL or rAX
register with the first (destination) operand, and sets the
arithmetic flags (ZF, OF, SF, AF, CF, PF) according to the result.
If the compared values are equal, the source operand is loaded
into the destination operand. If they are not equal, the first
operand is loaded into the accumulator. CMPXCHG can be used
to try to intercept a semaphore, i.e. test if its state is free, and if
so, load a new value into the semaphore, making its state busy.
The test and load are performed atomically, so that concurrent
processes or threads which use the semaphore to access a
shared object will not conflict.

The CMPXCHG8B instruction compares the 64-bit values in the
EDX:EAX registers with a 64-bit memory location. If the values
are equal, the zero flag (ZF) is set, and the ECX:EBX value is
copied to the memory location. Otherwise, the ZF flag is
cleared, and the memory value is copied to EDX:EAX.

The XADD instruction exchanges the values of its two
operands, then it stores their sum in the first (destination)
operand.

A LOCK prefix can be used to make the CMPXCHG,
CMPXCHG8B and XADD instructions atomic if one of the
operands is a memory location.

Chapter 3: General-Purpose Programming 79

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 79

The XCHG instruction exchanges the values of its two
operands. If one of the operands is in memory, the processor’s
bus-locking mechanism is engaged automatically during the
exchange, whether of not the LOCK prefix is used.

3.3.15 Processor
Information

CPUID—Processor Identification

The CPUID instruction returns information about the processor
implementation and its support for instruction subsets and
architectural features. Software operating at any privilege level
can execute the CPUID instruction to read this information.
After the information is read, software can select procedures
that optimize performance for a particular hardware
implementation.

Some processor implementations may not support the CPUID
instruction. Support for the CPUID instruction is determined
by testing the RFLAGS.ID bit. If software can write this bit,
then the CPUID instruction is supported by the processor
implementation. Otherwise, execution of CPUID results in an
invalid-opcode exception.

See “Feature Detection” on page 90 for details about using the
CPUID instruction. For a full description of the CPUID
instruction and its function codes, see “CPUID” in Volume 3.

3.3.16 Cache and
Memory
Management

Applications can use the cache and memory-management
instructions to control memory reads and writes to influence
the caching of read/write data. “Memory Optimization” on
page 113 describes how these instructions interact with the
memory subsystem.

LFENCE—Load Fence

SFENCE—Store Fence

MFENCE—Memory Fence

PREFETCHlevel—Prefetch Data to Cache Level level

PREFETCH—Prefetch L1 Data-Cache Line

PREFETCHW—Prefetch L1 Data-Cache Line for Write

CLFLUSH—Cache Line Invalidate

The LFENCE, SFENCE, and MFENCE instructions can be used
to force ordering on memory accesses. The order of memory
accesses can be important when the reads and writes are to a
memory-mapped I /O device , and in mult iprocessor
environments where memory synchronization is required.

80 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

LFENCE affects ordering on memory reads, but not writes.
SFENCE affects ordering on memory writes, but not reads.
MFENCE orders both memory reads and writes. These
instructions do not take operands. They are simply inserted
between the memory references that are to be ordered. For
details about the fence instructions, see “Forcing Memory
Order” on page 115.

The PREFETCH level , PREFETCH, and PREFETCHW
instructions load data from memory into one or more cache
levels. PREFETCHlevel loads a memory block into a specified
level in the data-cache hierarchy (including a non-temporal
caching level). The size of the memory block is implementation
dependent. PREFETCH loads a cache line into the L1 data
cache. PREFETCHW loads a cache line into the L1 data cache
and sets the cache line’s memory-coherency state to modified, in
anticipation of subsequent data writes to that line. (Both
PREFETCH and PREFETCHW are 3DNow!™ instructions.) For
details about the prefetch instructions, see “Cache-Control
Instructions” on page 122. For a description of MOESI memory-
coherency states, see “Memory System” in Volume 2.

The CLFLUSH instruction writes unsaved data back to memory
for the specified cache line from all processor caches,
invalidates the specified cache, and causes the processor to
send a bus cycle which signals external caching devices to write
back and invalidate their copies of the cache line. CLFLUSH
provides a finer-grained mechanism than the WBINVD
instruction, which writes back and invalidates all cache lines.
Moreover, CLFLUSH can be used at all privilege levels, unlike
WBINVD which can be used only by system software running at
privilege level 0.

3.3.17 No Operation NOP—No Operation

The NOP instructions performs no operation (except
incrementing the instruction pointer rIP by one). It is an
alternative mnemonic for the XCHG rAX, rAX instruction.
Depending on the hardware implementation, the NOP
instruction may use one or more cycles of processor time.

3.3.18 System Calls System Call and Return.

SYSENTER—System Call

SYSEXIT—System Return

Chapter 3: General-Purpose Programming 81

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 81

SYSCALL—Fast System Call

SYSRET—Fast System Return

The SYSENTER and SYSCALL instructions perform a call to a
routine running at current privilege level (CPL) 0—for
example, a kernel procedure—from a user level program (CPL
3). The addresses of the target procedure and (for SYSENTER)
the target stack are specified implicitly through the model-
specific registers (MSRs). Control returns from the operating
system to the callee when the operating system executes a
SYSEXIT or SYSRET instruction. SYSEXIT are SYSRET are
privileged instructions and thus can be issued only by a
privilege-level-0 procedure.

The SYSENTER and SYSEXIT instruct ions form a
complementary pair, as do SYSCALL and SYSRET. SYSENTER
and SYSEXIT are invalid in 64-bit mode. In this case, use the
faster SYSCALL and SYSRET instructions.

For details on these on other system-related instructions, see
“System-Management Instructions” in Volume 2 and “System
Instruction Reference” in Volume 3.

3.4 General Rules for Instructions in 64-Bit Mode

This section provides details of the general -purpose
instructions in 64-bit mode, and how they differ from the same
instructions in legacy and compatibility modes. The differences
apply only to general-purpose instructions. Most of them do not
apply to 128-bit media, 64-bit media, or x87 floating-point
instructions.

3.4.1 Address Size In 64-bit mode, the following rules apply to address size:

Defaults to 64 bits.

Can be overridden to 32 bits (by means of opcode prefix
67h).

Can’t be overridden to 16 bits.

3.4.2 Canonical
Address Format

Bits 63 through the most-significant implemented virtual-
address bit must be all zeros or all ones in any memory
reference. See “64-bit Canonical Addresses” on page 18 for
details. (This rule applies to long mode, which includes both 64-
bit mode and compatibility mode.)

82 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

3.4.3 Branch-
Displacement Size

Branch-address displacements are 8 bits or 32 bits, as in legacy
mode, but are sign-extended to 64 bits prior to using them for
address computations. See “Displacements and Immediates”
on page 20 for details.

3.4.4 Operand Size In 64-bit mode, the following rules apply to operand size:

64-Bit Operand Size Option: If an instruction’s operand size
(16-bit or 32-bit) in legacy mode depends on the default-size
(D) bit in the current code-segment descriptor and the
operand-size prefix, then the operand-size choices in 64-bit
mode are extended from 16-bit and 32-bit to include 64 bits
(with a REX prefix), or the operand size is fixed at 64 bits.
See “General-Purpose Instructions in 64-Bit Mode” in
Volume 3 for details.

Default Operand Size: The default operand size for most
instructions is 32 bits, and a REX prefix must be used to
change the operand size to 64 bits. However, two groups of
instructions default to 64-bit operand size and do not need a
REX prefix: (1) near branches and (2) all instructions,
except far branches, that implicitly reference the RSP. See
“General-Purpose Instructions in 64-Bit Mode” in Volume 3
for details.

Fixed Operand Size: If an instruction’s operand size is fixed
in legacy mode, that operand size is usually fixed at the
same size in 64-bit mode. (There are some exceptions.) For
example, the CPUID instruction always operates on 32-bit
operands, irrespective of attempts to override the operand
size. See “General-Purpose Instructions in 64-Bit Mode” in
Volume 3 for details.

Immediate Operand Size: The maximum size of immediate
operands is 32 bits, as in legacy mode, except that 64-bit
immediates can be MOVed into 64-bit GPRs. When the
operand size is 64 bits, immediates are sign-extended to 64
bits prior to using them. See “Immediate Operand Size” on
page 46 for details.

Shift-Count and Rotate-Count Operand Size: When the
operand size is 64 bits, shifts and rotates use one additional
bit (6 bits total) to specify shift-count or rotate-count,
allowing 64-bit shifts and rotates.

Chapter 3: General-Purpose Programming 83

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 83

3.4.5 High 32 Bits In 64-bit mode, the following rules apply to extension of results
into the high 32 bits when results smaller than 64 bits are
written:

Zero-Extension of 32-Bit Results: 32-bit results are zero-
extended into the high 32 bits of 64-bit GPR destination
registers.

No Extension of 8-Bit and 16-Bit Results: 8-bit and 16-bit
results leave the high 56 or 48 bits, respectively, of 64-bit
GPR destination registers unchanged.

Undefined High 32 Bits After Mode Change: The processor
does not preserve the upper 32 bits of the 64-bit GPRs across
changes from 64-bit mode to compatibility or legacy modes.
In compatibility and legacy mode, the upper 32 bits of the
GPRs are undefined and not accessible to software.

3.4.6 Invalid and
Reassigned
Instructions

The following general-purpose instructions are invalid in 64-bit
mode:

AAA—ASCII Adjust After Addition

AAD—ASCII Adjust Before Division

AAM—ASCII Adjust After Multiply

AAS—ASCII Adjust After Subtraction

BOUND—Check Array Bounds

CALL (far absolute)—Procedure Call Far

DAA—Decimal Adjust after Addition

DAS—Decimal Adjust after Subtraction

INTO—Interrupt to Overflow Vector

JMP (far absolute)—Jump Far

LAHF—Load Status Flags into AH Register

LDS—Load DS Segment Register

LES—Load ES Segment Register

POP DS—Pop Stack into DS Segment

POP ES—Pop Stack into ES Segment

POP SS—Pop Stack into SS Segment

POPA, POPAD—Pop All to GPR Words or Doublewords

PUSH CS—Push CS Segment Selector onto Stack

PUSH DS—Push DS Segment Selector onto Stack

PUSH ES—Push ES Segment Selector onto Stack

84 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

PUSH SS—Push SS Segment Selector onto Stack

PUSHA, PUSHAD—Push All to GPR Words or Doublewords

SAHF—Store AH into Flags

The following general-purpose instructions are invalid in long
mode (64-bit mode and compatibility mode):

SYSENTER—System Call (use SYSCALL instead)

SYSEXIT—System Exit (use SYSRET instead)

The opcodes for the following general-purpose instructions are
reassigned in 64-bit mode:

ARPL—Adjust Requestor Privilege Level. Opcode becomes
the MOVSXD instruction.

DEC (one-byte opcode only)—Decrement by 1. Opcode
becomes a REX prefix. Use the two-byte DEC opcode
instead.

INC (one-byte opcode only)—Increment by 1. Opcode
becomes a REX prefix. Use the two-byte INC opcode
instead.

3.4.7 Instructions
with 64-Bit Default
Operand Size

Most instructions default to 32-bit operand size in 64-bit mode.
However, the following near branches instructions and
instructions that implicitly reference the stack pointer (RSP)
default to 64-bit operand size in 64-bit mode:

Near Branches:

- Jcc—Jump Conditional Near

- JMP—Jump Near

- LOOP—Loop

- LOOPcc—Loop Conditional

Instructions That Implicitly Reference RSP:

- ENTER—Create Procedure Stack Frame

- LEAVE—Delete Procedure Stack Frame

- POP reg/mem—Pop Stack (register or memory)

- POP reg—Pop Stack (register)

- POP FS—Pop Stack into FS Segment Register

- POP GS—Pop Stack into GS Segment Register

- POPF, POPFD, POPFQ—Pop to rFLAGS Word,
Doubleword, or Quadword

Chapter 3: General-Purpose Programming 85

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 85

- PUSH imm32—Push onto Stack (sign-extended
doubleword)

- PUSH imm8—Push onto Stack (sign-extended byte)

- PUSH reg/mem—Push onto Stack (register or memory)

- PUSH reg—Push onto Stack (register)

- PUSH FS—Push FS Segment Register onto Stack

- PUSH GS—Push GS Segment Register onto Stack

- PUSHF, PUSHFD, PUSHFQ—Push rFLAGS Word,
Doubleword, or Quadword onto Stack

The default 64-bit operand size eliminates the need for a REX
prefix with these instructions when registers RAX–RSP (the
first set of eight GPRs) are used as operands. A REX prefix is
still required if R8–R15 (the extended set of eight GPRs) are
used as operands, because the prefix is required to address the
extended registers.

The 64-bit default operand size can be overridden to 16 bits
using the 66h operand-size override. However, it is not possible
to override the operand size to 32 bits, because there is no 32-bit
operand-size override prefix for 64-bit mode. For details on the
operand-size prefix, see “Instruction Prefixes” in Volume 3.

For details on near branches, see “Near Branches in 64-Bit
Mode” on page 103. For details on instructions that implicitly
reference RSP, see “Stack Operand-Size in 64-Bit Mode” on
page 95.

For details on opcodes and operand-size overrides, see
“General-Purpose Instructions in 64-Bit Mode” in Volume 3.

3.5 Instruction Prefixes

An instruction prefix is a byte that precedes an instruction’s
opcode and modifies the instruction’s operation or operands.
Instruction prefixes are of two types:

Legacy Prefixes

REX Prefixes

Legacy prefixes are organized into five groups, in which each
prefix has a unique value. REX prefixes, which enable use of
the AMD64 register extensions in 64-bit mode, are organized as

86 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

a single group in which the value of the prefix indicates the
combination of register-extension features to be enabled.

3.5.1 Legacy Prefixes Table 3-7 shows the legacy prefixes. These are organized into
five groups, as shown in the left-most column of the table. Each
prefix has a unique hexadecimal value. The legacy prefixes can
appear in any order in the instruction, but only one prefix from
each of the five groups can be used in a single instruction. The
result of using multiple prefixes from a single group is
undefined.

There are several restrictions on the use of prefixes. For
example, the address-size prefix changes address size only for a
memory operand, and only a single memory operand can be
overridden in an instruction. In general, the operand-size prefix
cannot be used with x87 floating-point instructions, and when
used with 128-bit or 64-bit media instructions that prefix acts in
a special way to modify the opcode. The repeat prefixes cause
repetition only with certain string instructions, and when used
with 128-bit or 64-bit media instructions the prefixes act in a
special way to modify the opcode. The lock prefix can be used
with only a small number of general-purpose instructions.

Table 3-7 summarizes the functionality of instruction prefixes.
Details about the prefixes and their restrictions are given in
“Instruction Prefixes” in Volume 3.

Table 3-7. Legacy Instruction Prefixes

Prefix Group Mnemonic Prefix Code
(Hex) Description

Operand-Size
Override

none 661
Changes the default operand size of
a memory or register operand, as
shown in Table 3-3 on page 45.

Address-Size
Override none 67

Changes the default address size of
a memory operand, as shown in
Table 2-1 on page 21.

Note:
1. When used with 128-bit or 64-bit media instructions, this prefix acts in a special-purpose way

to modify the opcode.

Chapter 3: General-Purpose Programming 87

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 87

Operand-Size and Address-Size Prefixes. The operand-s i z e and
address-size prefixes allow mixing of data and address sizes on
an instruction-by-instruction basis. An instruction’s default
address size can be overridden in any operating mode by using
the 67h address-size prefix.

Segment
Override

CS 2E Forces use of the CS segment for
memory operands.

DS 3E
Forces use of the DS segment for
memory operands.

ES 26 Forces use of the ES segment for
memory operands.

FS 64 Forces use of the FS segment for
memory operands.

GS 65
Forces use of the GS segment for
memory operands.

SS 36
Forces use of the SS segment for
memory operands.

Lock LOCK F0
Causes certain read-modify-write
instructions on memory to occur
atomically.

Repeat

REP

F31

Repeats a string operation (INS,
MOVS, OUTS, LODS, and STOS) until
the rCX register equals 0.

REPE or
REPZ

Repeats a compare-string or scan-
string operation (CMPSx and SCASx)
until the rCX register equals 0 or the
zero flag (ZF) is cleared to 0.

REPNE or
REPNZ F21

Repeats a compare-string or scan-
string operation
(CMPSx and SCASx) until the rCX
register equals 0 or the zero flag (ZF)
is set to 1.

Table 3-7. Legacy Instruction Prefixes (continued)

Prefix Group Mnemonic Prefix Code
(Hex) Description

Note:
1. When used with 128-bit or 64-bit media instructions, this prefix acts in a special-purpose way

to modify the opcode.

88 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Table 3-3 on page 45 shows the operand-size overrides for all
operating modes. In 64-bit mode, the default operand size for
most general-purpose instructions is 32 bits. A REX prefix
(described in “REX Prefixes” on page 89) specifies a 64-bit
operand size, and a 66h prefix specifies a 16-bit operand size.
The REX prefix takes precedence over the 66h prefix.

Table 2-1 on page 21 shows the address-size overrides for all
operating modes. In 64-bit mode, the default address size is 64
bits. The address size can be overridden to 32 bits. 16-bit
addresses are not supported in 64-bit mode. In compatibility
mode, the address-size prefix works the same as in the legacy
x86 architecture.

For further details on these prefixes, see “Operand-Size
Override Prefix” in Volume 3 and “Address-Size Override
Prefix” in Volume 3.

Segment Override Prefix. The DS segment is the default segment
for most memory operands. Many instructions allow this default
data segment to be overridden using one of the six segment-
override prefixes shown in Table 3-7. Data-segment overrides
will be ignored when accessing data in the following cases:

When a stack reference is made that pushes data onto or
pops data off of the stack. In those cases, the SS segment is
always used.

When the destination of a string is memory it is always
referenced using the ES segment.

Instruction fetches from the CS segment cannot be overridden.
However, the CS segment-override prefix can be used to access
instructions as data objects and to access data stored in the
code segment.

For further details on these prefixes, see “Segment-Override
Prefixes” in Volume 3.

Lock Prefix. The LOCK prefix causes certain read-modify-write
instructions that access memory to occur atomically. The
mechanism for doing so is implementation-dependent (for
example, the mechanism may involve locking of data-cache
lines that contain copies of the referenced memory operands,
and/or bus signaling or packet-messaging on the bus). The
prefix is intended to give the processor exclusive use of shared
memory operands in a multiprocessor system.

Chapter 3: General-Purpose Programming 89

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 89

The prefix can only be used with forms of the following
instructions that write a memory operand: ADC, ADD, AND,
BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, DEC, INC, NEG,
NOT, OR, SBB, SUB, XADD, XCHG, and XOR. An invalid-
opcode exception occurs if LOCK is used with any other
instruction.

For further details on these prefixes, see “Lock Prefix” in
Volume 3.

Repeat Prefixes. There are two repeat prefixes byte codes, F3h
and F2h. Byte code F3h is the more general and is usually
treated as two distinct instructions by assemblers. Byte code
F2h is only used with CMPSx and SCASx instructions:

REP (F3h)—This more generalized repeat prefix repeats its
associated string instruction the number of times specified
in the counter register (rCX). Repetition stops when the
value in rCX reaches 0. This prefix is used with the INS,
LODS, MOVS, OUTS, and STOS instructions.

REPE or REPZ (F3h)—This version of REP prefix repeats its
associated string instruction the number of times specified
in the counter register (rCX). Repetition stops when the
value in rCX reaches 0 or when the zero flag (ZF) is cleared
to 0. The prefix can only be used with the CMPSx and SCASx
instructions.

REPNE or REPNZ (F2h)—The REPNE or REPNZ prefix
repeats its associated string instruction the number of times
specified in the counter register (rCX). Repetition stops
when the value in rCX reaches 0 or when the zero flag (ZF) is
set to 1. The prefix can only be used with the CMPSx and
SCASx instructions.

The size of the rCX counter is determined by the effective
address size. For further details about these prefixes, including
optimization of their use, see “Repeat Prefixes” in Volume 3.

3.5.2 REX Prefixes REX prefixes are a new group of instruction-prefix bytes that
can be used only in 64-bit mode. They enable the AMD64
register extensions. REX prefixes specify the following
features:

Use of an extended GPR register, shown in Figure 3-3 on
page 31.

90 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Use of an extended XMM register, shown in Figure 4-12 on
page 140.

Use of a 64-bit (quadword) operand size, as described in
“Operands” on page 41.

Use of extended control and debug registers, as described in
Volume 2.

REX prefix bytes have a value in the range 40h to 4Fh,
depending on the particular combination of register extensions
desired. With few exceptions, a REX prefix is required to access
a 64-bit GPR or one of the extended GPR or XMM registers. A
few instructions (described in “General-Purpose Instructions in
64-Bit Mode” in Volume 3) default to 64-bit operand size and do
not need the REX prefix to access an extended 64-bit GPR.

An instruction can have only one REX prefix, and one such
prefix is all that is needed to express the full selection of 64-bit-
mode register-extension features. The prefix, if used, must
immediately precede the first opcode byte of an instruction.
Any other placement of a REX prefix is ignored. The legacy
instruction-size limit of 15 bytes still applies to instructions that
contain a REX prefix.

For further details on the REX prefixes, see “REX Prefixes” in
Volume 3.

3.6 Feature Detection

The CPUID instruction provides information about the
processor implementation and its capabilities. Software
operating at any privilege level can execute the CPUID
instruction to collect this information. After the information is
collected, software can select procedures that optimize
performance for a particular hardware implementation. For
example, application software can determine whether the
AMD64 architecture’s long mode is supported by the processor,
and it can determine the processor implementation’s
performance capabilities.

Support for the CPUID instruction is implementation-
dependent, as determined by software’s ability to write the
RFLAGS.ID bit. The following code sample shows how to test
for the presence of the CPUID instruction using.

Chapter 3: General-Purpose Programming 91

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 91

pushfd ; save EFLAGS
pop eax ; store EFLAGS in EAX
mov ebx, eax ; save in EBX for later testing
xor eax, 00200000h ; toggle bit 21
push eax ; push to stack
popfd ; save changed EAX to EFLAGS
pushfd ; push EFLAGS to TOS
pop eax ; store EFLAGS in EAX
cmp eax, ebx ; see if bit 21 has changed
jz NO_CPUID ; if no change, no CPUID

After sof tware has determined that the processor
implementation supports the CPUID instruction, software can
test for support of specific features by loading a function code
(value) into the EAX register and executing the CPUID
instruction. Processor feature information is returned in the
EAX, EBX, ECX, and EDX registers, as described fully in
“CPUID” in Volume 3.

The architecture supports CPUID information about standard
functions and extended functions. In general, standard functions
include the earliest features offered in the x86 architecture.
Extended functions include newer features of the x86 and
AMD64 architectures, such as SSE, SSE2, and 3DNow!
instructions, and long mode.

Standard functions are accessed by loading EAX with the value
0 (standard-function 0) or 1 (standard-function 1) and executing
the CPUID instruction. All software using the CPUID
instruction must execute standard-function 0, which identifies
the processor vendor and the largest standard-function input
value supported by the processor implementation. The CPUID
standard-function 1 returns the processor version and standard-
feature bits.

Software can test for support of extended functions by first
executing the CPUID instruction with the value 8000_0000h in
EAX. The processor returns, in EAX, the largest extended-
function input value defined for the CPUID instruction on the
processor implementation. If the value in EAX is greater than
8000_0000h, extended functions are supported, although
specific extended functions must be tested individually.

92 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The following code sample shows how to test for support of any
extended functions:

mov eax, 80000000h ; query for extended functions
CPUID ; get extended function limit
cmp eax, 80000000h ; is EAX greater than 80000000?
jbe NO_EXTENDEDMSR ; no extended-feature support

If extended functions are supported, software can test for
support of specific extended features. For example, software
can determine whether the processor implementation supports
long mode by executing the CPUID instruction with extended
8000_0001h in the EAX register, then testing to see if bit 29 in
the EDX register is set to 1. The following code sample shows
how to test for long-mode support.

mov eax, 80000001h ; query for function 8000_0001h
CPUID ; get feature bits in EDX
test edx, 20000000h ; test bit 29 in EDX
jnz YES_Long_Mode ; long mode is supported

General-purpose instructions are supported in all hardware
implementations of the AMD64 architecture, except that the
general-purpose instructions discussed below are implemented
only if their associated CPUID function bit is set.

The following functions are reported by CPUID function 1:

CMPXCHG8B, indicated by bit 8.

CMOVcc (conditional moves), indicated by bit 15.

CLFLUSH, indicated by bit 19.

LFENCE and MFENCE, indicated by the SSE2 bit (bit 26).

MOVD, MOVMSKPD, and MOVNTI, indicated by the SSE2
bit (bit 26).

MOVMSKPS, indicated by the SSE bit (bit 25).

PREFETCHlevel, indicated by the SSE bit (bit 25).

SFENCE, indicated by the SSE bit (bit 25).

SYSENTER and SYSEXIT, indicated by bit 11.

The following features are reported by CPUID function
8000_0001h:

MOVSXD, indicated by the long-mode bit (bit 29).

SYSCALL and SYSRET, indicated by bit 11.

PREFETCH and PREFETCHW, indicated by the 3DNow!™
bit (bit 31).

Chapter 3: General-Purpose Programming 93

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 93

Also, implementation of certain media instructions (such as
FXSAVE and FXRSTOR) and system instructions (such as
RDMSR and WRMSR) is indicated by CPUID function bits. See
“Processor Feature Identification” in Volume 2 for a full
description of the CPUID instruction and its function codes.

3.7 Control Transfers

3.7.1 Overview From the application-program’s viewpoint, program-control
flow is sequential—that is, instructions are addressed and
executed sequentially—except when a branch instruction (a
call, return, jump, interrupt, or return from interrupt) is
encountered, in which case program flow changes to the branch
instruction’s target address. Branches are used to iterate
through loops and move through conditional program logic.
Branches cause a new instruction pointer to be loaded into the
rIP register, and sometimes cause the CS register to point to a
different code segment. The CS:rIP values can be specified as
part of a branch instruction, or they can be read from a register
or memory.

Branches can also be used to transfer control to another
program or procedure running at a different privilege level. In
such cases, the processor automatically checks the source
program and target program privileges to ensure that the
transfer is allowed before loading CS:rIP with the new values.

3.7.2 Privilege Levels The processor’s protected modes include legacy protected mode
and long mode (both compatibility mode and 64-bit mode). In
all protected modes and virtual x86 mode, privilege levels are
used to isolate and protect programs and data from each other.
The privilege levels are designated with a numerical value from
0 to 3, with 0 being the most privileged and 3 being the least
privileged. Privilege 0 is normally reserved for critical system-
software components that require direct access to, and control
over, all processor and system resources. Privilege 3 is used by
application software. The intermediate privilege levels (1 and
2) are used, for example, by device drivers and library routines
that access and control a limited set of processor and system
resources.

Figure 3-9 on page 94 shows the relationship of the four
privilege-levels to each other. The protection scheme is
implemented using the segmented memory-management

94 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

mechanism described in “Segmented Virtual Memory” in
Volume 2.

Figure 3-9. Privilege-Level Relationships

3.7.3 Procedure Stack A procedure stack is often used by control transfer operations,
particularly those that change privilege levels. Information
from the calling program is passed to the target program on the
procedure stack. CALL instructions, interrupts, and exceptions
all push information onto the procedure stack. The pushed
information includes a return pointer to the calling program
and, for call instructions, optionally includes parameters. When
a privilege-level change occurs, the calling program’s stack
pointer (the pointer to the top of the stack) is pushed onto the
stack. Interrupts and exceptions also push a copy of the calling
program’s rFLAGs register and, in some cases, an error code
associated with the interrupt or exception.

The RET or IRET control-transfer instructions reverse the
operation of CALLs, interrupts, and exceptions. These return
instructions pop the return pointer off the stack and transfer
control back to the calling program. If the calling program’s
stack pointer was pushed, it is restored by popping the saved
values off the stack and into the SS and rSP registers.

Stack Alignment. Control-transfer performance can degrade
significantly when the stack pointer is not aligned properly.
Stack pointers should be word aligned in 16-bit segments,
doubleword aligned in 32-bit segments, and quadword aligned
in 64-bit mode.

513-236.eps Application Programs

Memory Management
File Allocation
Interrupt Handling

Device-Drivers
Library Routines

Privilege
0

Privilege 1

Privilege 2

Privilege 3

Chapter 3: General-Purpose Programming 95

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 95

Stack Operand-Size in 64-Bit Mode. In 64-bit mode, the stack pointer
size is always 64 bits. The stack size is not controlled by the
default-size (B) bit in the SS descriptor, as it is in compatibility
and legacy modes, nor can it be overridden by an instruction
prefix. Address-size overrides are ignored for implicit stack
references.

Except for far branches, all instructions that implicitly
reference the stack pointer default to 64-bit operand size in 64-
bit mode. Table 3-8 on page 96 lists these instructions.

The default 64-bit operand size eliminates the need for a REX
prefix with these instructions. However, a REX prefix is still
required if R8–R15 (the extended set of eight GPRs) are used as
operands, because the prefix is required to address the
extended registers. Pushes and pops of 32-bit stack values are
not possible in 64-bit mode with these instructions, because
there is no 32-bit operand-size override prefix for 64-bit mode.

3.7.4 Jumps Jump instructions provide a simple means for transferring
program control from one location to another. Jumps do not
affect the procedure stack, and return instructions cannot
transfer control back to the instruction following a jump. Two
general types of jump instruction are available: unconditional
(JMP) and conditional (Jcc).

There are two types of unconditional jumps (JMP):

Near Jumps—When the target address is within the current
code segment.

Far Jumps—When the target address is outside the current
code segment.

Although unconditional jumps can be used to change code
segments, they cannot be used to change privilege levels.

Conditional jumps (Jcc) test the state of various bits in the
rFLAGS register (or rCX) and jump to a target location based
on the results of that test. Only near forms of conditional jumps
are available, so Jcc cannot be used to transfer control to
another code segment.

96 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

3.7.5 Procedure Calls The CALL instruction transfers control unconditionally to a
new address, but unlike jump instructions, it saves a return
pointer (CS:rIP) on the stack. The called procedure can use the
RET instruction to pop the return pointers to the calling
procedure from the stack and continue execution with the
instruction following the CALL.

Table 3-8. Instructions that Implicitly Reference RSP in 64-Bit Mode

Mnemonic Opcode
(hex) Description

Operand Size (bits)

Default
Possible

Overrides1

CALL E8, FF /2 Call Procedure Near

64 16

ENTER C8 Create Procedure Stack Frame

LEAVE C9 Delete Procedure Stack Frame

POP reg/mem 8F /0 Pop Stack (register or memory)

POP reg 58 to 5F Pop Stack (register)

POP FS 0F A1 Pop Stack into FS Segment Register

POP GS 0F A9 Pop Stack into GS Segment Register

POPF
POPFQ 9D Pop to EFLAGS Word or Quadword

PUSH imm32 68 Push onto Stack (sign-extended doubleword)

PUSH imm8 6A Push onto Stack (sign-extended byte)

PUSH reg/mem FF /6 Push onto Stack (register or memory)

PUSH reg 50-57 Push onto Stack (register)

PUSH FS 0F A0 Push FS Segment Register onto Stack

PUSH GS 0F A8 Push GS Segment Register onto Stack

PUSHF
PUSHFQ 9C Push rFLAGS Word or Quadword onto Stack

RET C2, C3 Return From Call (near)

Note:
1. There is no 32-bit operand-size override prefix in 64-bit mode.

Chapter 3: General-Purpose Programming 97

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 97

There are four types of CALL:

Near Call—When the target address is within the current
code segment.

Far Call—When the target address is outside the current
code segment.

Interprivilege-Level Far Call—A far call that changes
privilege level.

Task Switch—A call to a target address in another task.

Near Call. When a near CALL is executed, only the calling
procedure’s rIP (the return offset) is pushed onto the stack.
After the rIP is pushed, control is transferred to the new rIP
value specified by the CALL instruction. Parameters can be
pushed onto the stack by the calling procedure prior to
executing the CALL instruction. Figure 3-10 shows the stack
pointer before (old rSP value) and after (new rSP value) the
CALL. The stack segment (SS) is not changed.

Figure 3-10. Procedure Stack, Near Call

Far Call, Same Privilege. A far CALL changes the code segment, so
the full return pointer (CS:rIP) is pushed onto the stack. After
the return pointer is pushed, control is transferred to the new
CS:rIP value specified by the CALL instruction. Parameters can
be pushed onto the stack by the calling procedure prior to
executing the CALL instruction. Figure 3-11 on page 98 shows
the stack pointer before (old rSP value) and after (new rSP
value) the CALL. The stack segment (SS) is not changed.

513-175.eps

Procedure
Stack

New rSPReturn rIP
Old rSP

Parameters . . .

98 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 3-11. Procedure Stack, Far Call to Same Privilege

Far Call, Greater Privilege. A far CALL to a more -pr iv i leged
procedure performs a stack switch prior to transferring control
to the called procedure. Switching stacks isolates the more-
privileged procedure’s stack from the less-privileged
procedure’s stack, and it provides a mechanism for saving the
return pointer back to the procedure that initiated the call.

Calls to more-privileged software can only take place through a
system descriptor called a call-gate descriptor. Call-gate
descriptors are created and maintained by system software. In
64-bit mode, only indirect far calls (those whose target memory
address is in a register or other memory location) are
supported. Absolute far calls (those that reference the base of
the code segment) are not supported in 64-bit mode.

When a call to a more-privileged procedure occurs, the
processor locates the new procedure’s stack pointer from its
task-state segment (TSS). The old stack pointer (SS:rSP) is
pushed onto the new stack, and (in legacy mode only) any
parameters specified by the count field in the call-gate
descriptor are copied from the old stack to the new stack (long
mode does not support this automatic parameter copying). The
return pointer (CS:rIP) is then pushed, and control is
transferred to the new procedure. Figure 3-12 on page 99 shows
an example of a stack switch resulting from a call to a more-
privileged procedure. “Segmented Virtual Memory” in
Volume 2 provides additional information on privilege-
changing CALLs.

513-176.eps

Procedure
Stack

Return CS
Old rSP

New rSP

Parameters

Return rIP

. . .

Chapter 3: General-Purpose Programming 99

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 99

Figure 3-12. Procedure Stack, Far Call to Greater Privilege

Task Switch. In legacy mode, when a call to a new task occurs, the
processor suspends the currently-executing task and stores the
processor-state information at the point of suspension in the
current task’s task-state segment (TSS). The new task’s state
information is loaded from its TSS, and the processor resumes
execution within the new task.

In long mode, hardware task switching is disabled. Task
switching is fully described in “Segmented Virtual Memory” in
Volume 2.

3.7.6 Returning from
Procedures

The RET instruction reverses the effect of a CALL instruction.
The return address is popped off the procedure stack,
transferring control unconditionally back to the calling
procedure at the instruction following the CALL. A return that
changes privilege levels also switches stacks.

The three types of RET are:

Near Return—Transfers control back to the calling
procedure within the current code segment.

Far Return—Transfers control back to the calling procedure
outside the current code segment.

Interprivilege-Level Far Return—A far return that changes
privilege levels.

513-177.eps

Old
Procedure

Stack

Old SS:rSP
Parameters . . .

Called
Procedure

Stack

New SS:rSP

Parameters *

* Parameters are copied only in
Legacy Mode, not in Long Mode.

Return CS
Return rIP

. . .

Return SS
Return rSP

100 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

All of the RET instruction types can be used with an immediate
operand indicating the number of parameter bytes present on
the stack. These parameters are released from the stack—that is,
the stack pointer is adjusted by the value of the immediate
operand—but the parameter bytes are not actually popped off
of the stack (i.e., read into a register or memory location).

Near Return. When a near RET is executed, the cal l ing
procedure’s return offset is popped off of the stack and into the
rIP register. Execution begins from the newly-loaded offset. If
an immediate operand is included with the RET instruction,
the stack pointer is adjusted by the number of bytes indicated.
Figure 3-13 shows the stack pointer before (old rSP value) and
after (new rSP value) the RET. The stack segment (SS) is not
changed.

Figure 3-13. Procedure Stack, Near Return

Far Return, Same Privilege. A far RET changes the code segment, so
the full return pointer is popped off the stack and into the CS
and rIP registers. Execution begins from the newly-loaded
segment and offset. If an immediate operand is included with
the RET instruction, the stack pointer is adjusted by the
number of bytes indicated. Figure 3-14 on page 101 shows the
stack pointer before (old rSP value) and after (new rSP value)
the RET. The stack segment (SS) is not changed.

513-178.eps

Procedure
Stack

Old rSPReturn rIP

New rSP

Parameters . . .

Chapter 3: General-Purpose Programming 101

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 101

Figure 3-14. Procedure Stack, Far Return from Same Privilege

Far Return, Less Privilege. Privilege-changing far RETs can only
return to less-privileged code segments, otherwise a general-
protection exception occurs. The full return pointer is popped
off the stack and into the CS and rIP registers, and execution
begins from the newly-loaded segment and offset. A far RET
that changes privilege levels also switches stacks. The return
procedure’s stack pointer is popped off the stack and into the
SS and rSP registers. If an immediate operand is included with
the RET instruction, the newly-loaded stack pointer is adjusted
by the number of bytes indicated. Figure 3-15 shows the stack
pointer before (old SS:rSP value) and after (new SS:rSP value)
the RET. “Segmented Virtual Memory” in Volume 2 provides
additional information on privilege-changing RETs.

Figure 3-15. Procedure Stack, Far Return from Less Privilege

513-179.eps

Procedure
Stack

Return CS

New rSP

Old rSP

Parameters

Return rIP

. . .

513-180.eps

Return
Procedure

Stack

New SS:rSP

Parameters . . .

Old
Procedure

Stack

Old SS:rSP

Parameters

Return CS
Return rIP

. . .

Return SS
Return rSP

102 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

3.7.7 System Calls A disadvantage of far CALLs and far RETs is that they use
segment-based protection and privilege-checking. This involves
significant overhead associated with loading new segment
selectors and their corresponding descriptors into the segment
registers. The overhead includes not only the time required to
load the descriptors from memory but also the time required to
perform the privilege, type, and limit checks. Privilege-
changing CALLs to the operating system are slowed further by
the control transfer through a gate descriptor.

SYSCALL and SYSRET. SYSCALL and SYSRET are low-latency
system-call and system-return control-transfer instructions.
They can be used in protected mode. These instructions
eliminate segment-based privilege checking by using pre-
determined target and return code segments and stack
segments. The operating system sets up and maintains the
predetermined segments using special registers within the
processor, so the segment descriptors do not need to be fetched
from memory when the instruct ions are used. The
simplifications made to privilege checking allow SYSCALL and
SYSRET to complete in far fewer processor clock cycles than
CALL and RET.

SYSRET can only be used to return from CPL = 0 procedures
and is not available to application software. SYSCALL can be
used by applications to call operating system service routines
running at CPL = 0. The SYSCALL instruction does not take
operands. Linkage conventions are initialized and maintained
by the operating system. “System-Management Instructions” in
Volume 2 contains detailed information on the operation of
SYSCALL and SYSRET.

SYSENTER and SYSEXIT. The SYSENTER and SYSEXIT
instructions provide similar capabilities to SYSCALL and
SYSRET. However, these instructions can be used only in legacy
mode and are not supported in long mode. SYSCALL and
SYSRET are the preferred instructions for calling privileged
software. See “System-Management Instructions” in Volume 2
for further information on SYSENTER and SYSEXIT.

3.7.8 General
Considerations for
Branching

Branching causes delays which are a function of the hardware-
implementation’s branch-prediction capabilities. Sequential
flow avoids the delays caused by branching but is still exposed
to delays caused by cache misses, memory bus bandwidth, and
other factors.

Chapter 3: General-Purpose Programming 103

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 103

In general, branching code should be replaced with sequential
code whenever practical. This is especially important if the
branch body is small (resulting in frequent branching) and
when branches depend on random data (resulting in frequent
mispredictions of the branch target). In certain hardware
implementations, far branches (as opposed to near branches)
may not be predictable by the hardware, and recursive
functions (those that call themselves) may overflow a return-
address stack.

All calls and returns should be paired for optimal performance.
Hardware implementations that include a return-address stack
can lose stack synchronization if calls and returns are not
paired.

3.7.9 Branching in 64-
Bit Mode

Near Branches in 64-Bit Mode. The long-mode architecture expands
the near-branch mechanisms to accommodate branches in the
full 64-bit virtual-address space. In 64-bit mode, the operand
size for all near branches defaults to 64 bits, so these
instructions update the full 64-bit RIP.

Table 3-9 lists the near-branch instructions.

Table 3-9. Near Branches in 64-Bit Mode

Mnemonic Opcode (hex) Description

Operand Size (bits)

Default
Possible

Overrides1

CALL E8, FF /2 Call Procedure Near

64 16

Jcc
70 to 7F,

0F 80 to 0F 8F Jump Conditional

JCXZ
JECXZ
JRCXZ

E3 Jump on CX/ECX/RCX Zero

JMP EB, E9, FF /4 Jump Near

LOOP E2 Loop

LOOPcc E0, E1 Loop if Zero/Equal or Not Zero/Equal

RET C2, C3 Return From Call (near)

Note:
1. There is no 32-bit operand-size override prefix in 64-bit mode.

104 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The default 64-bit operand size eliminates the need for a REX
prefix with these instructions when registers RAX–RSP (the
first set of eight GPRs) are used as operands. A REX prefix is
still required if R8–R15 (the extended set of eight GPRs) are
used as operands, because the prefix is required to address the
extended registers.

The following aspects of near branches are controlled by the
effective operand size:

Truncation of the instruction pointer.

Size of a stack pop or push, resulting from a CALL or RET.

Size of a stack-pointer increment or decrement, resulting
from a CALL or RET.

Indirect-branch operand size.

In 64-bit mode, all of the above actions are forced to 64 bits.
However, the size of the displacement field for relative
branches is still limited to 32 bits.

The operand size of near branches is fixed at 64 bits without the
need for a REX prefix. However, the address size of near
branches is not forced in 64-bit mode. Such addresses are 64 bits
by default, but they can be overridden to 32 bits by a prefix.

Branches to 64-Bit Offsets. Because immediates are generally
limited to 32 bits, the only way a full 64-bit absolute RIP can be
specified in 64-bit mode is with an indirect branch. For this
reason, direct forms of far branches are invalid in 64-bit mode.

3.7.10 Interrupts and
Exceptions

Interrupts and exceptions are a form of control transfer
operation. They are used to call special system-service routines,
called interrupt handlers, which are designed to respond to the
interrupt or exception condition. Pointers to the interrupt
handlers are stored by the operating system in an interrupt-
descriptor table, or IDT. In legacy real mode, the IDT contains an
array of 4-byte far pointers to interrupt handlers. In legacy
protected mode, the IDT contains an array of 8-byte gate
descriptors. In long mode, the gate descriptors are 16 bytes.
Interrupt gates, task gates, and trap gates can be stored in the
IDT, but not call gates.

Interrupt handlers are usually privileged software because they
typically require access to restricted system resources. System
software is responsible for creating the interrupt gates and

Chapter 3: General-Purpose Programming 105

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 105

storing them in the IDT. “Exceptions and Interrupts” in
Volume 2 contains detailed information on the interrupt
mechanism and the requirements on system software for
managing the mechanism.

The IDT is indexed using the interrupt number, or vector. How
the vector is specified depends on the source, as described
below. The first 32 of the available 256 interrupt vectors are
reserved for internal use by the processor—for exceptions (as
described below) and other purposes.

Interrupts are caused either by software or hardware. The INT,
INT3, and INTO instructions implement a software interrupt by
calling an interrupt handler directly. These are general-purpose
(privilege-level-3) instructions. The operand of the INT
instruction is an immediate byte value specifying the interrupt
vector used to index the IDT. INT3 and INTO are specific forms
of software interrupts used to call interrupt 3 and interrupt 4,
respectively. External interrupts are produced by system logic
which passes the IDT index to the processor via input signals.
External interrupts can be either maskable or non-maskable.

Exceptions usually occur as a result of software execution errors
or other internal-processor errors. Exceptions can also occur in
non-error situations, such as debug-program single-stepping or
address-breakpoint detection. In the case of exceptions, the
processor produces the IDT index based on the detected
condition. The handlers for interrupts and exceptions are
identical for a given vector.

The processor’s response to an exception depends on the type of
the exception. For all exceptions except 128-bit-media and x87
floating-point exceptions, control automatically transfers to the
handler (or service routine) for that exception, as defined by
the exceptions vector. For 128-bit-media and x87 floating-point
exceptions, there is both a masked and unmasked response.
When unmasked, these exceptions invoke their exception
handler. When masked, a default masked response is provided
instead of invoking the exception handler.

Exceptions and software- ini t iated interrupts occur
synchronously with respect to the processor clock. There are
three types of exceptions:

Faults—A fault is a precise exception that is reported on the
boundary before the interrupted instruction. Generally,

106 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

faults are caused by an undesirable error condition
involving the interrupted instruction, although some faults
(such as page faults) are common and normal occurrences.
After the service routine completes, the machine state prior
to the faulting instruction is restored, and the instruction is
retried.

Traps—A trap is a precise exception that is reported on the
boundary following the interrupted instruction. The
instruction causing the exception finishes before the service
routine is invoked. Software interrupts and certain
breakpoint exceptions used in debugging are traps.

Aborts—Aborts are imprecise exceptions. The instruction
causing the exception, and possibly an indeterminate
additional number of instructions, complete execution
before the service routine is invoked. Because they are
imprecise, aborts typically do not allow reliable program
restart.

Table 3-10 shows the interrupts and exceptions that can occur,
together with their vector numbers, mnemonics, source, and
causes. For a detailed description of interrupts and exceptions,
see “Exceptions and Interrupts” in Volume 2.

Control transfers to interrupt handlers are similar to far calls,
except that for the former, the rFLAGS register is pushed onto
the stack before the return address. Interrupts and exceptions
to several of the first 32 interrupts can also push an error code
onto the stack. No parameters are passed by an interrupt. As
with CALLs, interrupts that cause a privilege change also
perform a stack switch.

Table 3-10. Interrupts and Exceptions

Vector Interrupt (Exception) Mnemonic Source Cause

Generated
By General-

Purpose
Instructions

0 Divide-By-Zero-Error #DE Software DIV, IDIV instructions yes

1 Debug #DB Internal Instruction accesses and data
accesses

yes

2 Non-Maskable-Interrupt NMI External External NMI signal no

3 Breakpoint #BP Software INT3 instruction yes

Chapter 3: General-Purpose Programming 107

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 107

4 Overflow #OF Software INTO instruction yes

5 Bound-Range #BR Software BOUND instruction yes

6 Invalid-Opcode #UD Internal Invalid instructions yes

7 Device-Not-Available #NM Internal x87 instructions no

8 Double-Fault #DF Internal Interrupt during an interrupt yes

9 Coprocessor-Segment-
Overrun

— External Unsupported (reserved)

10 Invalid-TSS #TS Internal Task-state segment access and
task switch

yes

11 Segment-Not-Present #NP Internal Segment access through a
descriptor yes

12 Stack #SS Internal
SS register loads and stack
references yes

13 General-Protection #GP Internal Memory accesses and
protection checks

yes

14 Page-Fault #PF Internal Memory accesses when
paging enabled yes

15 Reserved —

16 x87 Floating-Point
Exception-Pending #MF Software

x87 floating-point and 64-bit
media floating-point
instructions

no

17 Alignment-Check #AC Internal Memory accesses yes

18 Machine-Check #MC
Internal
External

Model specific yes

19 SIMD Floating-Point #XF Internal
128-bit media floating-point
instructions no

Table 3-10. Interrupts and Exceptions (continued)

Vector Interrupt (Exception) Mnemonic Source Cause

Generated
By General-

Purpose
Instructions

108 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Interrupt to Same Privilege in Legacy Mode. When an interrupt to a
handler running at the same privilege occurs, the processor
pushes a copy of the rFLAGS register, followed by the return
pointer (CS:rIP), onto the stack. If the interrupt generates an
error code, it is pushed onto the stack as the last item. Control is
then transferred to the interrupt handler. Figure 3-16 shows the
stack pointer before (old rSP value) and after (new rSP value)
the interrupt. The stack segment (SS) is not changed.

Figure 3-16. Procedure Stack, Interrupt to Same Privilege

Interrupt to More Privilege or in Long Mode. When an interrupt to a
more-privileged handler occurs or the processor is operating in
long mode the processor locates the handler’s stack pointer
from the TSS. The old stack pointer (SS:rSP) is pushed onto the
new stack, along with a copy of the rFLAGS register. The return
pointer (CS:rIP) to the interrupted program is then copied to
the stack. If the interrupt generates an error code, it is pushed

20—31 Reserved (Internal and
External)

—

32—255 External Interrupts
(Maskable) — External External interrupt signalling no

0—255 Software Interrupts — Software INT instruction yes

Table 3-10. Interrupts and Exceptions (continued)

Vector Interrupt (Exception) Mnemonic Source Cause

Generated
By General-

Purpose
Instructions

513-182.eps

Old rSP

Interrupt
Handler

Stack

New rSP

Return CS
Return rIP

rFLAGS

Error Code

Chapter 3: General-Purpose Programming 109

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 109

onto the stack as the last item. Control is then transferred to the
interrupt handler. Figure 3-17 shows an example of a stack
switch resulting from an interrupt with a change in privilege.

Figure 3-17. Procedure Stack, Interrupt to Higher Privilege

Interrupt Returns. The IRET, IRETD, and IRETQ instructions are
used to return from an interrupt handler. Prior to executing an
IRET, the interrupt handler must pop the error code off of the
stack if one was pushed by the interrupt or exception. IRET
restores the interrupted program’s rIP, CS, and rFLAGS by
popping their saved values off of the stack and into their
respective registers. If a privilege change occurs or IRET is
executed in 64-bit mode, the interrupted program’s stack
pointer (SS:rSP) is also popped off of the stack. Control is then
transferred back to the interrupted program.

3.8 Input/Output

I/O devices allow the processor to communicate with the
outside world, usually to a human or to another system. In fact,
a system without I/O has little utility. Typical I/O devices
include a keyboard, mouse, LAN connection, printer, storage
devices, and monitor. The speeds these devices must operate at
vary great ly, and usual ly depend on whether the
communication is to a human (slow) or to another machine
(fast). There are exceptions. For example, humans can consume
graphics data at very high rates.

513-181.eps

Old
Procedure

Stack

Old SS:rSP

Interrupt
Handler

Stack

New SS:rSP

Return CS
Return rIP

rFLAGS

Return SS
Return rSP

Error Code

110 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

There are two methods for communicating with I/O devices in
AMD64 processor implementations. One method involves
accessing I/O through ports located in I/O-address space (“I/O
Addressing” on page 110), and the other method involves
accessing I/O devices located in the memory-address space
(“Memory Organization” on page 11). The address spaces are
separate and independent of each other.

I/O-address space was originally introduced as an optimized
means for accessing I/O-device control ports. Then, systems
usually had few I/O devices, devices tended to be relatively low-
speed, device accesses needed to be strongly ordered to
guarantee proper operat ion , and device protect ion
requirements were minimal or non-existent. Memory-mapped
I/O has largely supplanted I/O-address space access as the
preferred means for modern operating systems to interface
with I/O devices. Memory-mapped I/O offers greater flexibility
in protection, vastly more I/O ports, higher speeds, and strong
or weak ordering to suit the device requirements.

3.8.1 I/O Addressing Access to I/O-address space is provided by the IN and OUT
instructions, and the string variants of these instructions, INS
and OUTS. The operation of these instructions are described in
“Input/Output” on page 76. Although not required, processor
implementations generally transmit I/O-port addresses and I/O
data over the same external signals used for memory addressing
and memory data. Different bus-cycles generated by the
processor differentiate I/O-address space accesses from
memory-address space accesses.

I/O-Address Space. Figure 3-18 on page 111 shows the 64 Kbyte
I/O-address space. I/O ports can be addressed as bytes, words, or
doublewords. As with memory addressing, word-I/O and
doubleword-I/O ports are simply two or four consecutively-
addressed byte-I/O ports. Word and doubleword I/O ports can be
aligned on any byte boundary, but there is typically a
performance penalty for unaligned accesses. Performance is
optimized by aligning word-I/O ports on word boundaries, and
doubleword-I/O ports on doubleword boundaries.

Chapter 3: General-Purpose Programming 111

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 111

Figure 3-18. I/O Address Space

Memory-Mapped I/O. Memory-mapped I/O devices are attached to
the system memory bus and respond to memory transactions as
if they were memory devices, such as DRAM. Access to memory-
mapped I/O devices can be performed using any instruction
that accesses memory, but typically MOV instructions are used
to transfer data between the processor and the device. Some I/O
devices may have restrictions on read-modify-write accesses.

Any location in memory can be used as a memory-mapped I/O
address. System software can use the paging facilities to
virtualize memory devices and protect them from unauthorized
access. See “System-Management Instructions” in Volume 2 for
a discussion of memory virtualization and paging.

3.8.2 I/O Ordering The order of read and write accesses between the processor and
an I/O device is usually important for properly controlling
device operation. Accesses to I/O-address space and memory-
address space differ in the default ordering enforced by the
processor and the ability of software to control ordering.

I/O-Address Space. The processor always orders I/O-address space
operations strongly, with respect to other I/O and memory
operations. Software cannot modify the I/O ordering enforced
by the processor. IN instructions are not executed until all
previous writes to I/O space and memory have completed. OUT
instructions delay execution of the following instruction until
all writes—including the write performed by the OUT—have
completed. Unlike memory writes, writes to I/O addresses are
never buffered by the processor.

The processor can use more than one bus transaction to access
an unaligned, multi-byte I/O port. Unaligned accesses to I/O-
address space do not have a defined bus transaction ordering,

513-187.eps

0000

FFFF 216 - 1

0

112 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

and that ordering can change from one implementation to
another. If the use of an unaligned I/O port is required, and the
order of bus transactions to that port is important, software
should decompose the access into multiple, smaller aligned
accesses.

Memory-Mapped I/O. To maximiz e sof tware performance ,
processor implementations can execute instructions out of
program order. This can cause the sequence of memory accesses
to also be out of program order, called weakly ordered. As
described in “Accessing Memory” on page 113, the processor
can perform memory reads in any order, it can perform reads
without knowing whether it requires the result (speculation),
and it can reorder reads ahead of writes. In the case of writes,
multiple writes to memory locations in close proximity to each
other can be combined into a single write or a burst of multiple
writes. Writes can also be delayed, or buffered, by the
processor.

Application software that needs to force memory ordering to
memory-mapped I/O devices can do so using the read/write
barrier instructions: LFENCE, SFENCE, and MFENCE. These
instructions are described in “Forcing Memory Order” on
page 115. Serializing instructions, I/O instructions, and locked
instructions can also be used as read/write barriers, but they
modify program state and are an inferior method for enforcing
strong-memory ordering.

Typically, the operating system controls access to memory-
mapped I/O devices. The AMD64 architecture provides
facilities for system software to specify the types of accesses
and their ordering for entire regions of memory. These facilities
are also used to manage the cacheability of memory regions.
See “System-Management Instructions” in Volume 2 for
further information.

3.8.3 Protected-Mode
I/O

In protected mode, access to the I/O-address space is governed
by the I/O privilege level (IOPL) field in the rFLAGS register,
and the I/O-permission bitmap in the current task-state
segment (TSS).

I/O-Privilege Level. RFLAGS.IOPL governs access to IOPL-
sensitive instructions. All of the I/O instructions (IN, INS, OUT,
and OUTS) are IOPL-sensitive. IOPL-sensitive instructions
cannot be executed by a program unless the program’s current-

Chapter 3: General-Purpose Programming 113

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 113

privilege level (CPL) is numerically less (more privileged) than
or equal to the RFLAGS.IOPL field, otherwise a general-
protection exception (#GP) occurs.

Only sof tware running at CPL = 0 can change the
RFLAGS.IOPL field. Two instructions, POPF and IRET, can be
used to change the field. If application software (or any
software running at CPL>0) attempts to change RFLAGS.IOPL,
the attempt is ignored.

System software uses RFLAGS.IOPL to control the privilege
level required to access I/O-address space devices. Access can
be granted on a program-by-program basis using different
copies of RFLAGS for every program, each with a different
IOPL. RFLAGS.IOPL acts as a global control over a program’s
access to I/O-address space devices. System software can grant
less-privileged programs access to individual I/O devices
(overriding RFLAGS.IOPL) by using the I/O-permission bitmap
stored in a program’s TSS. For details about the I/O-permission
bitmap, see “I/O-Permission Bitmap” in Volume 2.

3.9 Memory Optimization

Generally, application software is unaware of the memory
hierarchy implemented within a particular system design. The
application simply sees a homogenous address space within a
single level of memory. In reality, both system and processor
implementations can use any number of techniques to speed up
accesses into memory, doing so in a manner that is transparent
to applications. Application software can be written to
maximize this speed-up even though the methods used by the
hardware are not visible to the application. This section gives
an overview of the memory hierarchy and access techniques
that can be implemented within a system design, and how
applications can optimize their use.

3.9.1 Accessing
Memory

Implementations of the AMD64 architecture commit the results
of each instruction—i.e., store the result of the executed
instruction in software-visible resources, such as a register
(including flags), the data cache, an internal write buffer, or
memory—in program order, which is the order specified by the
instruction sequence in a program. Transparent to the
application, implementations can execute instructions in any
order and temporarily hold out-of-order results until the

114 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

instructions are committed. Implementations can also
speculatively execute instructions—executing instructions
before knowing their results will be used (for example,
executing both sides of a branch). By executing instructions
out-of-order and speculatively, a processor can boost
application performance by executing instructions that are
ready, rather than delaying them behind instructions that are
waiting for data. However, the processor commits results in
program order (the order expected by software).

When executing instructions out-of-order and speculatively,
processor implementations often find it useful to also allow out-
of-order and speculative memory accesses. However, such
memory accesses are potentially visible to software and system
devices. The following sections describe the architectural rules
for memory accesses. See “Memory System” in Volume 2 for
information on how system software can further specify the
flexibility of memory accesses.

Read Ordering. The ordering of memory reads does not usually
affect program execution because the ordering does not usually
affect the state of software-visible resources. The rules
governing read ordering are:

Out-of-order reads are allowed. Out-of-order reads can occur as
a result of out-of-order instruction execution. The processor
can read memory out-of-order to prevent stalling
instructions that are executed out-of-order.

Speculative reads are allowed. A speculative read occurs when
the processor begins executing a memory-read instruction
before it knows whether the instruction’s result will actually
be needed. For example, the processor can predict a branch
to occur and begin executing instructions following the
predicted branch, before it knows whether the prediction is
valid. When one of the speculative instructions reads data
from memory, the read itself is speculative.

Reads can usually be reordered ahead of writes. Reads are
generally given a higher priority by the processor than
writes because instruction execution stalls if the read data
required by an instruction is not immediately available.
Allowing reads ahead of writes usually maximizes software
performance.

Reads can be reordered ahead of writes, except that a read
cannot be reordered ahead of a prior write if the read is from

Chapter 3: General-Purpose Programming 115

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 115

the same location as the prior write. In this case, the read
instruction stalls until the write instruction is committed.
This is because the result of the write instruction is required
by the read instruction for software to operate correctly.

Some system devices might be sensitive to reads. Normally,
applications do not have direct access to system devices, but
instead call an operating-system service routine to perform the
access on the application’s behalf. In this case, it is system
software’s responsibility to enforce strong read-ordering.

Write Ordering. Writes affect program order because they affect
the state of software-visible resources. The rules governing
write ordering are restrictive:

Generally, out-of-order writes are not allowed. Write
instructions executed out-of-order cannot commit (write)
their result to memory until all previous instructions have
completed in program order. The processor can, however,
hold the result of an out-of-order write instruction in a
private buffer (not visible to software) until that result can
be committed to memory.

System software can create non-cacheable write-combining
regions in memory when the order of writes is known to not
affect system devices. When writes are performed to write-
combining memory, they can appear to complete out of
order relative to other writes. See “Memory System” in
Volume 2 for additional information.

Speculative writes are not allowed. As with out-of-order
writes, speculative write instructions cannot commit their
result to memory until all previous instructions have
completed in program order. Processors can hold the result
in a private buffer (not visible to software) until the result
can be committed.

3.9.2 Forcing Memory
Order

Special instructions are provided for application software to
force memory ordering in situations where such ordering is
important. These instructions are:

Load Fence—The LFENCE instruction forces ordering of
memory loads (reads). All memory loads preceding the
LFENCE (in program order) are completed prior to
completing memory loads following the LFENCE. Memory
loads cannot be reordered around an LFENCE instruction,

116 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

but other non-serializing instructions (such as memory
writes) can be reordered around the LFENCE.

Store Fence—The SFENCE instruction forces ordering of
memory stores (writes). All memory stores preceding the
SFENCE (in program order) are completed prior to
completing memory stores following the SFENCE. Memory
stores cannot be reordered around an SFENCE instruction,
but other non-serializing instructions (such as memory
loads) can be reordered around the SFENCE.

Memory Fence—The MFENCE instruction forces ordering of
all memory accesses (reads and writes). All memory accesses
preceding the MFENCE (in program order) are completed
prior to completing any memory access following the
MFENCE. Memory accesses cannot be reordered around an
MFENCE instruction, but other non-serializing instructions
that do not access memory can be reordered around the
MFENCE.

Although they serve different purposes, other instructions can
be used as read/write barriers when the order of memory
accesses must be strictly enforced. These read/write barrier
instructions force all prior reads and writes to complete before
subsequent reads or writes are executed. Unlike the fence
instructions listed above, these other instructions alter the
software-visible state. This makes these instructions less
general and more difficult to use as read/write barriers than the
fence instructions, although their use may reduce the total
number of instructions executed. The following instructions are
usable as read/write barriers:

Serializing instructions—Serializing instructions force the
processor to commit the serializing instruction and all
previous instructions before the next instruction is fetched
from memory. The serializing instructions available to
applications are CPUID and IRET. A serializing instruction
is committed when the following operations are complete:

- The instruction has executed.

- All registers modified by the instruction are updated.

- All memory updates performed by the instruction are
complete.

- All data held in the write buffers have been written to
memory. (Write buffers are described in “Write
Buffering” on page 119).

Chapter 3: General-Purpose Programming 117

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 117

I/O instructions—Reads from and writes to I/O-address space
use the IN and OUT instructions, respectively. When the
processor executes an I/O instruction, it orders it with
respect to other loads and stores, depending on the
instruction:

- IN instructions (IN, INS, and REP INS) are not executed
until all previous stores to memory and I/O-address space
are complete.

- Instructions following an OUT instruction (OUT, OUTS,
or REP OUTS) are not executed until all previous stores
to memory and I/O-address space are complete, including
the store performed by the OUT.

Locked instructions—A locked instruction is one that
contains the LOCK instruction prefix. A locked instruction
is used to perform an atomic read-modify-write operation on
a memory operand, so it needs exclusive access to the
memory location for the duration of the operation. Locked
instructions order memory accesses in the following way:

- All previous loads and stores (in program order) are
completed prior to executing the locked instruction.

- The locked instruction is completed before allowing
loads and stores for subsequent instructions (in program
order) to occur.

Only certain instructions can be locked. See “Lock Prefix” in
Volume 3 for a list of instructions that can use the LOCK prefix.

3.9.3 Caches Depending on the instruction, operands can be encoded in the
instruction opcode or located in registers, I/O ports, or memory
locations. An operand that is located in memory can actually be
physically present in one or more locations within a system’s
memory hierarchy.

Memory Hierarchy. A system’s memory hierarchy may have some
or all of the following levels:

Main Memory—Main memory is external to the processor
chip and is the memory-hierarchy level farthest from the
processor’s execution units. All physical-memory addresses
are present in main memory, which is implemented using
relatively slow, but high-density memory devices.

External Caches—External caches are external to the
processor chip, but are implemented using lower-capacity,
higher-performance memory devices than system memory.

118 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The system uses external caches to hold copies of
frequently-used instructions and data found in main
memory. A subset of the physical-memory addresses can be
present in the external caches at any time. A system can
contain any number of external caches, or none at all.

Internal Caches—Internal caches are present on the
processor chip itself, and are the closest memory-hierarchy
level to the processor’s execution units. Because of their
presence on the processor chip, access to internal caches is
very fast. Internal caches contain copies of the most
frequently-used instructions and data found in main
memory and external caches, and their capacities are
relatively small in comparison to external caches. A
processor implementation can contain any number of
internal caches, or none at all. Implementations often
contain a first-level instruction cache and first-level data
(operand) cache, and they may also contain a higher-
capacity (and slower) second-level internal cache for storing
both instructions and data.

Figure 3-19 on page 119 shows an example of a four-level
memory hierarchy that combines main memory, external third-
level (L3) cache, and internal second-level (L2) and two first-
level (L1) caches. As the figure shows, the first-level and
second-level caches are implemented on the processor chip, and
the third-level cache is external to the processor. The first-level
cache is a split cache, with separate caches used for instructions
and data. The second-level and third-level caches are unified
(they contain both instructions and data). Memory at the
highest levels of the hierarchy have greater capacity (larger
size), but have slower access, than memory at the lowest levels.

Using caches to store frequently used instructions and data can
result in significantly improved software performance by
avoiding accesses to the slower main memory. Applications
function identically on systems without caches and on systems
with caches, although cacheless systems typically execute
applications more slowly. Application software can, however, be
optimized to make efficient use of caches when they are
present, as described later in this section.

Chapter 3: General-Purpose Programming 119

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 119

Figure 3-19. Memory Hierarchy Example

Write Buffering. Processor implementations can contain write-
buffers attached to the internal caches. Write buffers can also
be present on the interface used to communicate with the
external portions of the memory hierarchy. Write buffers
temporarily hold data writes when main memory or the caches
are busy responding to other memory-system accesses. The
existence of write buffers is transparent to software. However,
some of the instructions used to optimize memory-hierarchy
performance can affect the write buffers, as described in
“Forcing Memory Order” on page 115.

3.9.4 Cache Operation Although the existence of caches is transparent to application
software, a simple understanding how caches are accessed can
assist application developers in optimizing their code to run
efficiently when caches are present.

513-137.eps

Processor

L3 Cache

Main Memory

L2 Cache

L1 Instruction
Cache

L1 Data
Cache

System

Faster
Access

Larger
Size

120 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Caches are divided into fixed-size blocks, called cache lines.
Typically, implementations have either 32-byte or 64-byte cache
lines. The processor allocates a cache line to correspond to an
identically-sized region in main memory. After a cache line is
allocated, the addresses in the corresponding region of main
memory are used as addresses into the cache line. It is the
processor’s responsibility to keep the contents of the allocated
cache line coherent with main memory. Should another system
device access a memory address that is cached, the processor
maintains coherency by providing the correct data back to the
device and main memory.

When a memory-read occurs as a result of an instruction fetch
or operand access, the processor first checks the cache to see if
the requested information is available. A read hit occurs if the
information is available in the cache, and a read miss occurs if
the information is not available. Likewise, a write hit occurs if a
memory write can be stored in the cache, and a write miss
occurs if it cannot be stored in the cache.

A read miss or write miss can result in the allocation of a cache
line, followed by a cache-line fill. Even if only a single byte is
needed, all bytes in a cache line are loaded from memory by a
cache-line fill. Typically, a cache-line fill must write over an
existing cache line in a process called a cache-line replacement.
In this case, if the existing cache line is modified, the processor
performs a cache-line writeback to main memory prior to
performing the cache-line fill.

Cache-line writebacks help maintain coherency between the
caches and main memory. Internally, the processor can also
maintain cache coherency by internally probing (checking) the
other caches and write buffers for a more recent version of the
requested data. External devices can also check a processor’s
caches and write buffers for more recent versions of data by
externally probing the processor. All coherency operations are
performed in hardware and are completely transparent to
applications.

Cache Coherency and MOESI. Implementations of the AMD64
architecture maintain coherency between memory and caches
using a five-state protocol known as MOESI. The five MOESI
states are modified, owned, exclusive, shared, and invalid. See
“Memory System” in Volume 2 for additional information on
MOESI and cache coherency.

Chapter 3: General-Purpose Programming 121

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 121

Self-Modifying Code. Software that writes into a code segment is
classified as self-modifying code. To avoid cache-coherency
problems due to self-modifying code, implementations of the
AMD64 architecture invalidate a cache line during a memory
write if the cache line corresponds to a code-segment memory
location. By invalidating the cache line, the processor is forced
to write the modified instruction into main memory. A
subsequent fetch of the modified instruction goes to main
memory to get the coherent version of the instruction.

3.9.5 Cache Pollution Because cache sizes are limited, caches should be filled only
with data that is frequently used by an application. Data that is
used infrequently, or not at all, is said to pollute the cache
because it occupies otherwise useful cache lines. Ideally, the
best data to cache is data that adheres to the principle of locality.
This principle has two components: temporal locality and spatial
locality.

Temporal locality refers to data that is likely to be used more
than once in a short period of time. It is useful to cache
temporal data because subsequent accesses can retrieve the
data quickly. Non-temporal data is assumed to be used once,
and then not used again for a long period of time, or ever.
Caching of non-temporal data pollutes the cache and should
be avoided.

Cache-control instructions (“Cache-Control Instructions” on
page 122) are available to applications to minimize cache
pollution caused by non-temporal data.

Spatial locality refers to data that resides at addresses
adjacent to or very close to the data being referenced.
Typically, when data is accessed, it is likely the data at
nearby addresses will be accessed in a short period of time.
Caches perform cache-line fills in order to take advantage of
spatial locality. During a cache-line fill, the referenced data
and nearest neighbors are loaded into the cache. If the
characteristics of spacial locality do not fit the data used by
an application, then the cache becomes polluted with a large
amount of unreferenced data.

Applications can avoid problems with this type of cache
pollution by using data structures with good spatial-locality
characteristics.

Another form of cache pollution is stale data. Data that adheres
to the principle of locality can become stale when it is no longer

122 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

used by the program, or won’t be used again for a long time.
Applications can use the CLFLUSH instruction to remove stale
data from the cache.

3.9.6 Cache-Control
Instructions

General control and management of the caches is performed by
system software and not application software. System software
uses special registers to assign memory types to physical-address
ranges, and page-attribute tables are used to assign memory
types to virtual address ranges. Memory types define the
cacheability characteristics of memory regions and how
coherency is maintained with main memory. See “Memory
System” in Volume 2 for additional information on memory
typing.

Instructions are available that allow application software to
control the cacheability of data it uses on a more limited basis.
These instructions can be used to boost an application’s
performance by prefetching data into the cache, and by
avoiding cache pollution. Run-time analysis tools and compilers
may be able to suggest the use of cache-control instructions for
critical sections of application code.

Cache Prefetching. Applications can prefetch entire cache lines
into the caching hierarchy using one of the prefetch
instructions. The prefetch should be performed in advance, so
that the data is available in the cache when needed. Although
load instructions can mimic the prefetch function, they do not
offer the same performance advantage, because a load
instruction may cause a subsequent instruction to stall until the
load completes, but a prefetch instruction will never cause such
a stall. Load instructions also unnecessarily require the use of a
register, but prefetch instructions do not.

The instructions available in the AMD64 architecture for cache-
line prefetching include one SSE instruction and two 3DNow!™
instructions:

PREFETCHlevel—(an SSE instruction) Prefetches read/write
data into a specific level of the cache hierarchy. If the
requested data is already in the desired cache level or closer
to the processor (lower cache-hierarchy level), the data is not
prefetched. If the operand specifies an invalid memory
address, no exception occurs, and the instruction has no
effect. Attempts to prefetch data from non-cacheable
memory, such as video frame buffers, or data from write-
combining memory, are also ignored. The exact actions

Chapter 3: General-Purpose Programming 123

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 123

performed by the PREFETCHlevel instructions depend on
the processor implementation.

- PREFETCHT0—Prefetches temporal data into the entire
cache hierarchy.

- PREFETCHT1—Prefetches temporal data into the
second-level (L2) and higher-level caches, but not into
the L1 cache.

- PREFETCHT2—Prefetches temporal data into the third-
level (L3) and higher-level caches, but not into the L1 or
L2 cache.

- PREFETCHNTA—Prefetches non-temporal data into the
processor, minimizing cache pollution. The specific
technique for minimizing cache pollution is
implementation-dependent and can include such
techniques as allocating space in a software-invisible
buffer, allocating a cache line in a single cache or a
specific way of a cache, etc.

PREFETCH—(a 3DNow!™ instruction) Prefetches read data
into the L1 data cache. Data can be written to such a cache
line, but doing so can result in additional delay because the
processor must signal externally to negotiate the right to
change the cache line’s cache-coherency state for the
purpose of writing to it.

PREFETCHW—(a 3DNow!™ instruction) Prefetches write
data into the L1 data cache. Data can be written to the cache
line without additional delay, because the data is already
prefetched in the modified cache-coherency state. Data can
also be read from the cache line without additional delay.
However, prefetching write data takes longer than
prefetching read data if the processor must wait for another
caching master to first write-back its modified copy of the
requested data to memory before the prefetch request is
satisfied.

The PREFETCHW instruction provides a hint to the processor
that the cache line is to be modified, and is intended for use
when the cache line will be written to shortly after the prefetch
is performed. The processor can place the cache line in the
modified state when it is prefetched, but before it is actually
written. Doing so can save time compared to a PREFETCH
instruction, followed by a subsequent cache-state change due to
a write.

124 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

To prevent a false-store dependency from stalling a prefetch
instruction, prefetched data should be located at least one
cache-line away from the address of any surrounding data write.
For example, if the cache-line size is 32 bytes, avoid prefetching
from data addresses within 32 bytes of the data address in a
preceding write instruction.

Non-Temporal Stores. Non-temporal store instruct ions are
provided to prevent memory writes from being stored in the
cache, thereby reducing cache pollution. These non-temporal
store instructions are specific to the type of register they write:

GPR Non-Temporal Stores—MOVNTI.

XMM Non-Temporal Stores—MASKMOVDQU, MOVNTDQ,
MOVNTPD, and MOVNTPS.

MMX Non-Temporal Stores—MASKMOVQ and MOVNTQ.

Removing Stale Cache Lines. When cache data becomes stale, it
occupies space in the cache that could be used to store
frequently-accessed data. Applications can use the CLFLUSH
instruction to free a stale cache-line for use by other data.
CLFLUSH writes the contents of a cache line to memory and
then invalidates the line in the cache and in all other caches in
the cache hierarchy that contain the line. Once invalidated, the
line is available for use by the processor and can be filled with
other data.

3.10 Performance Considerations

In addition to typical code optimization techniques, such as
those affecting loops and the inlining of function calls, the
following considerations may help improve the performance of
appl icat ion programs wri t ten with general -purpose
instructions.

These are implementation-independent performance
considerations. Other considerations depend on the hardware
implementation. For information about such implementation-
dependent considerations and for more information about
application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware
implementations.

Chapter 3: General-Purpose Programming 125

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 3: General-Purpose Programming 125

3.10.1 Use Large
Operand Sizes

Loading, storing, and moving data with the largest relevant
operand size maximizes the memory bandwidth of these
instructions.

3.10.2 Use Short
Instructions

Use the shortest possible form of an instruction (the form with
fewest opcode bytes). This increases the number of instructions
that can be decoded at any one time, and it reduces overall code
size.

3.10.3 Align Data Data alignment directly affects memory-access performance.
Data alignment is particularly important when accessing
streaming (also called non-temporal) data—data that will not be
reused and therefore should not be cached. Data alignment is
also important in cases where data that is written by one
instruction is subsequently read by a subsequent instruction
soon after the write.

3.10.4 Avoid Branches Branching can be very time-consuming. If the body of a branch
is small, the branch may be replaceable with conditional move
(CMOVcc) instructions, or with 128-bit or 64-bit media
instructions that simulate predicated parallel execution or
parallel conditional moves.

3.10.5 Prefetch Data Memory latency can be substantially reduced—especially for
data that will be used multiple times—by prefetching such data
into various levels of the cache hierarchy. Software can use the
PREFETCHx instructions very effectively in such cases. One
PREFETCHx per cache line should be used.

Some of the best places to use prefetch instructions are inside
loops that process large amounts of data. If the loop goes
through less than one cache line of data per iteration, partially
unroll the loop. Try to use virtually all of the prefetched data.
This usually requires unit-stride memory accesses—those in
which all accesses are to contiguous memory locations.

For data that will be used only once in a procedure, consider
using non-temporal accesses. Such accesses are not burdened
by the overhead of cache protocols.

3.10.6 Keep Common
Operands in Registers

Keep frequently used values in registers rather than in memory.
This avoids the comparatively long latencies for accessing
memory.

3.10.7 Avoid True
Dependencies

Spread out t rue dependencies (wri te - read or f low
dependencies) to increase the opportunities for parallel

126 Chapter 3: General-Purpose Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

execution. This spreading out is not necessary for anti-
dependencies and output dependencies.

3.10.8 Avoid Store-to-
Load Dependencies

Store-to-load dependencies occur when data is stored to
memory, only to be read back shortly thereafter. Hardware
implementations of the architecture may contain means of
accelerating such store-to-load dependencies, allowing the load
to obtain the store data before it has been written to memory.
However, this acceleration might be available only when the
addresses and operand sizes of the store and the dependent
load are matched, and when both memory accesses are aligned.
Performance is typically optimized by avoiding such
dependencies altogether and keeping the data, including
temporary variables, in registers.

3.10.9 Optimize Stack
Allocation

When allocating space on the stack for local variables and/or
outgoing parameters within a procedure, adjust the stack
pointer and use moves rather than pushes. This method of
allocation allows random access to the outgoing parameters, so
that they can be set up when they are calculated instead of
being held in a register or memory until the procedure call. This
method also reduces stack-pointer dependencies.

3.10.10 Consider
Repeat-Prefix Setup
Time

The repeat instruction prefixes have a setup overhead. If the
repeated count is variable, the overhead can sometimes be
avoided by substituting a simple loop to move or store the data.
Repeated string instructions can be expanded into equivalent
sequences of inline loads and stores. For details, see “Repeat
Prefixes” in Volume 3.

3.10.11 Replace GPR
with Media
Instructions

Some integer-based programs can be made to run faster by
using 128-bit media or 64-bit media instructions. These
instructions have their own register sets. Because of this, they
relieve register pressure on the GPR registers. For loads, stores,
adds, shifts, etc., media instructions may be good substitutes for
general-purpose integer instructions. GPR registers are freed
up, and the media instructions increase opportunities for
parallel operations.

3.10.12 Organize Data
in Memory Blocks

Organize frequently accessed constants and coefficients into
cache-line-size blocks and prefetch them. Procedures that
access data arranged in memory-bus-sized blocks, or memory-
burst-sized blocks, can make optimum use of the available
memory bandwidth.

Chapter 4: 128-Bit Media and Scientific Programming 127

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 127

4 128-Bit Media and Scientific Programming

This chapter describes the 128-bit media and scientific
programming model. This model includes all instructions that
access the 128-bit XMM registers—called the 128-bit media
instructions. These instructions perform integer and floating-
point operations primarily on vector operands (a few of the
instructions take scalar operands). They can speed up certain
types of procedures—typically high-performance media and
scientific procedures—by substantial factors, depending on
data-element size and the regularity and locality of data
accesses to memory.

4.1 Overview

4.1.1 Origins The 128-bit media instruction set includes instructions
originally introduced as the streaming SIMD extension (SSE)
and SSE2 instructions. For details on the instruction set origin
of each instruction, see “Instruction Subsets and CPUID
Feature Sets” in Volume 3.

4.1.2 Compatibility 128-bit media instructions can be executed in any of the
architecture’s operating modes. Existing SSE and SSE2 binary
programs run in legacy and compatibility modes without
modification. The support provided by the AMD64 architecture
for such binaries is identical to that provided by legacy x86
architectures.

To run in 64-bit mode, legacy 128-bit media programs must be
recompiled. The recompilation has no side effects on such
programs, other than to provide access to the following
additional resources:

Access to the eight extended XMM registers (for a total of 16
XMM registers).

Access to the eight extended general-purpose registers (for a
total of 16 GPRs).

Access to the extended 64-bit width of all GPRs.

Access to the 64-bit virtual address space.

Access to the RIP-relative addressing mode.

128 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The 128-bit media instructions use data registers, a control and
status register (MXCSR), rounding control, and an exception
reporting and response mechanism that are distinct from and
functionally independent of those used by the x87 floating-
point instructions. Because of this, 128-bit media programming
support usually requires exception handlers that are distinct
from those used for x87 exceptions. This support is provided by
virtually all legacy operating systems for the x86 architecture.

4.2 Capabilities

The 128-bit media instructions are designed to support media
and scientific applications. The vector operands used by these
instructions allow applications to operate in parallel on
multiple elements of vectors. The elements can be integers
(from bytes to quadwords) or floating-point (either single-
precision or double-precision). Arithmetic operations produce
signed, unsigned, and/or saturating results.

The availability of several types of vector move instructions and
(in 64-bit mode) twice the legacy number of XMM registers (a
total of 16 such registers) can eliminate substantial memory-
access overhead, making a substantial difference in
performance.

4.2.1 Types of
Applications

Typical media applications well-suited to the 128-bit media
programming model include a broad range of audio, video, and
graphics programs. For example, music synthesis, speech
synthesis, speech recognition, audio and video compression
(encoding) and decompression (decoding), 2D and 3D graphics,
streaming video (up to high-definition TV), and digital signal
processing (DSP) kernels are all likely to experience higher
performance using 128-bit media instructions than using other
types of instructions in AMD64 architecture.

Such applications commonly use small-sized integer or single-
precision floating-point data elements in repetitive loops, in
which the typical operations are inherently parallel. For
example, 8-bit and 16-bit data elements are commonly used for
pixel information in graphics applications, in which each of the
RGB pixel components (red, green, blue, and alpha) are
represented by an 8-bit or 16-bit integer. 16-bit data elements
are also commonly used for audio sampling.

Chapter 4: 128-Bit Media and Scientific Programming 129

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 129

The 128-bit media instructions allow multiple data elements
like these to be packed into 128-bit vector operands located in
XMM registers or memory. The instructions operate in parallel
on each of the elements in these vectors. For example, 16
elements of 8-bit data can be packed into a 128-bit vector
operand, so that all 16 byte elements are operated on
simultaneously, and in pairs of source operands, by a single
instruction.

The 128-bit media instructions also support a broad spectrum of
scientific applications. For example, their ability to operate in
parallel on double-precision floating-point vector elements
makes them well-suited to computations like dense systems of
linear equations, including matrix and vector-space operations
with real and complex numbers. In professional CAD
applications, for example, high-performance physical-modeling
algorithms can be implemented to simulate processes such as
heat transfer or fluid dynamics.

4.2.2 Integer Vector
Operations

Most of the 128-bit media arithmetic instructions perform
parallel operations on pairs of vectors. Vector operations are
also called packed or SIMD (single-instruction, multiple-data)
operations. They take vector operands consisting of multiple
elements, and all elements are operated on in parallel.
Figure 4-1 shows an example of parallel operations on pairs of
16 byte-sized integers in the source operands. The result of the
operation replaces the first source operand. There are also
instructions that operate on vectors of words, doublewords, or
quadwords.

Figure 4-1. Parallel Operations on Vectors of Integer Elements

operand 1

.

.

127 0
operand 2

127 0

operation
operation

513-163.epsresult127 0

130 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

4.2.3 Floating-Point
Vector Operations

There are almost as many 128-bit floating-point instructions as
integer instructions. Figure 4-2 shows an example of parallel
operations on vectors containing four 32-bit single-precision
floating-point values. There are also instructions that operate
on vectors containing two 64-bit double-precision floating-point
values.

Figure 4-2. Parallel Operations on Vectors of Floating-Point Elements

Integer and floating-point instructions can be freely intermixed
in the same procedure. The floating-point instructions allow
media applications such as 3D graphics to accelerate geometry,
clipping, and lighting calculations. Pixel data are typically
integer-based, although both integer and floating-point
instructions are often required to operate completely on the
data. For example, software can change the viewing perspective
of a 3D scene through transformation matrices by using
floating-point instructions in the same procedure that contains
integer operations on other aspects of the graphics data.

128-bit media programs using floating-point instructions are
typically much easier to write and of higher performance than
x87 floating-point programs, because the XMM register file is
flat rather than stack-oriented, there are twice as many
registers (in 64-bit mode), and 128-bit media instructions can
operate on two or four times the number of floating-point
operands as compared with x87 instructions. This ability to
operate in parallel on multiple pairs of floating-point elements
often makes it possible to remove local temporary variables
that would otherwise be needed in x87 floating-point code.

513-164.eps

. .. .

. .

operation
operation

result

operand 1
127 0

127 0

operand 2
127 0

FP single FP single FP single FP single FP single FP single FP single FP single

FP single FP single FP single FP single

Chapter 4: 128-Bit Media and Scientific Programming 131

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 131

4.2.4 Data Conversion
and Reordering

There are instructions that support data conversion of vector
elements, including conversions between integer and floating-
point data types—located in XMM registers, MMX™ registers,
GPR registers, or memory—and conversions of element-
ordering or precision. For example, the unpack instructions
take two vector operands and interleave their low or high
elements. Figure 4-3 shows an unpack and interleave operation
on word-sized elements (PUNCKLWD). If the left-hand source
operand has elements whose value is zero, the operation
converts each element in the low half of the right-hand operand
to a data type of twice its original precision—useful, for
example, in multiply operations in which results may overflow
or underflow.

Figure 4-3. Unpack and Interleave Operation

There are also pack instructions, such as PACKSSDW shown in
Figure 4-4 on page 132, that convert each element in a pair of
vectors to lower precision by selecting the elements in the low
half of each vector. Vector-shift instructions are also supported.
They can scale each element in a vector to higher or lower
values.

513-149.eps

operand 1

result

127 0
operand 2

127 0

127 0

. .. .

132 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4-4. Pack Operation

Figure 4-5 shows one of many types of shuffle operation
(PSHUFD). Here, the second operand is a vector containing
doubleword elements, and an immediate byte provides shuffle
control for up to 256 permutations of the elements. Shuffles are
useful, for example, in color imaging when computing alpha
saturation of RGB values. In this case, a shuffle instruction can
replicate an alpha value in a register so that parallel
comparisons with three RGB values can be performed.

Figure 4-5. Shuffle Operation

There is an instruction that inserts a single word from a general-
purpose register or memory into an XMM register, at a specified

513-150.eps

operand 1

result

127 0

127 0

operand 2
127 0

513-151.eps

result

operand 1
127 0

127 0

operand 2
127 0

Chapter 4: 128-Bit Media and Scientific Programming 133

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 133

location, leaving the other words in the XMM register
unmodified.

4.2.5 Block
Operations

Move instructions—along with unpack instructions—are among
the most frequently used instructions in 128-bit media
procedures. Figure 4-6 on page 134 shows the combined set of
move operations supported by the integer and floating-point
move instructions. These instructions provide a fast way to copy
large amounts of data between registers or between registers
and memory. They support block copies and sequential
processing of contiguous data.

When moving between XMM registers, or between an XMM
register and memory, each integer move instruction can copy up
to 16 bytes of data. When moving between an XMM register and
an MMX or GPR register, an integer move instruction can move
8 bytes of data. The floating-point move instructions can copy
vectors of four single-precision or two double-precision floating-
point operands in parallel.

Streaming-store versions of the move instructions permit
bypassing the cache when storing data that is accessed only
once. This maximizes memory-bus utilization and minimizes
cache pollution. There is also a streaming-store integer move-
mask instruction that stores bytes from one vector, as selected
by mask values in a second vector. Figure 4-7 on page 135 shows
the MASKMOVDQU operation. It can be used, for example, to
handle end cases in block copies and block fills based on
streaming stores.

134 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4-6. Move Operations

513-171.eps

127 0127 0

m
em

or
y

XMMXMM

XMM or MemoryXMM

127 0127 0

127 0127 0

m
em

or
y

XMMXMM or Memory

XMMGPR or Memory
127 063 0

m
em

or
y

XMM GPR or Memory127 0 63 0

m
em

or
y

XMMMMX Register 127 063 0

XMM MMX Register127 0 63 0

Chapter 4: 128-Bit Media and Scientific Programming 135

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 135

Figure 4-7. Move Mask Operation

4.2.6 Matrix and
Special Arithmetic
Operations

The instruction set provides a broad assortment of vector add,
subtract, multiply, divide, and square-root operations for use on
matrices and other data structures common to media and
scientific applications. It also provides special arithmetic
operations including multiply-add, average, sum-of-absolute
differences, reciprocal square-root, and reciprocal estimation.

Media applications often multiply and accumulate vector and
matrix data. In 3D-graphics geometry, for example, objects are
typically represented by triangles, each of whose vertices are
located in 3D space by a matrix of coordinate values, and
matrix transforms are performed to simulate object movement.

128-bit media integer and floating-point instructions can
perform several types of matrix-vector or matrix-matrix
operations, such as addition, subtraction, multiplication, and
accumulation, to effect 3D tranforms of vertices. Efficient
matrix multiplication is further supported with instructions
that can first transpose the elements of matrix rows and
columns. These transpositions can make subsequent accesses to
memory or cache more efficient when performing arithmetic
matrix operations.

operand 1

.

.

127 0
operand 2

127 0

select

select

store address
memory

rDI

513-148.eps

136 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4 -8 shows a vector mult ip ly -add instruct ion
(PMADDWD) that multiplies vectors of 16-bit integer elements
to yield intermediate results of 32-bit elements, which are then
summed pair-wise to yield four 32-bit elements. This operation
can be used with one source operand (for example, a
coefficient) taken from memory and the other source operand
(for example, the data to be multiplied by that coefficient)
taken from an XMM register. It can also be used together with a
vector-add operation to accumulate dot product results (also
called inner or scalar products), which are used in many media
algorithms such as those required for finite impulse response
(FIR) filters, one of the commonly used DSP algorithms.

Figure 4-8. Multiply-Add Operation

There is also a sum-of-absolute-differences instruction
(PSADBW), shown in Figure 4-9 on page 137. This is useful, for
example, in computing motion-estimation algorithms for video
compression.

513-154.eps

operand 1

result

127 0
operand 2

127 0

127 0

intermediate result
255 0

* ***

. . . .

+ ++ +

Chapter 4: 128-Bit Media and Scientific Programming 137

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 137

Figure 4-9. Sum-of-Absolute-Differences Operation

There is an instruction for computing the average of unsigned
bytes or words. The instruction is useful for MPEG decoding, in
which motion compensation involves many byte-averaging
operations between and within macroblocks. In addition to
speeding up these operations, the instruction also frees up
registers and make it possible to unroll the averaging loops.

Some of the arithmetic and pack instructions produce vector
results in which each element saturates independently of the
other elements in the result vector. Such results are clamped
(limited) to the maximum or minimum value representable by
the destination data type when the true result exceeds that
maximum or minimum representable value. Saturating data is
useful for representing physical-world data, such as sound and
color. It is used, for example, when combining values for pixel
coloring.

4.2.7 Branch Removal Branching is a time-consuming operation that, unlike most 128-
bit media vector operations, does not exhibit parallel behavior
(there is only one branch target, not multiple targets, per
branch instruction). In many media applications, a branch
involves selecting between only a few (often only two) cases.
Such branches can be replaced with 128-bit media vector

513-155.eps

operand 1

.

.

127 0
operand 2

127 0

result

00
127 0

low-order
intermediate result

high-order
intermediate result

ABS ∆ABS ∆

ΣΣ

ABS ∆ ABS ∆

138 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

compare and vector logical instructions that simulate
predicated execution or conditional moves.

Figure 4-10 shows an example of a non-branching sequence that
implements a two-way multiplexer—one that is equivalent to
the ternary operator “?:” in C and C++. The comparable code
sequence is explained in “Compare and Write Mask” on
page 183.

The sequence in Figure 4-10 begins with a vector compare
instruction that compares the elements of two source operands
in parallel and produces a mask vector containing elements of
all 1s or 0s. This mask vector is ANDed with one source operand
and ANDed-Not with the other source operand to isolate the
desired elements of both operands. These results are then
ORed to select the relevant elements from each operand. A
similar branch-removal operation can be done using floating-
point source operands.

Figure 4-10. Branch-Removal Sequence

513-170.eps

operand 1 operand 2

FFFF 0000 0000 FFFFFFFF 0000 0000 FFFF

a3 a2 a1 a0a7 a6 a5 a4 b3 b2 b1 b0b7 b6 b5 b4

a3 0000 0000 a0a7 0000 0000 a4 0000 b2 b1 00000000 b6 b5 0000

And And-Not

Compare and Write Mask

a3 b2 b1 a0a7 b6 b5 a4

Or

127 0 127 0

127 0

Chapter 4: 128-Bit Media and Scientific Programming 139

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 139

The min/max compare instructions, for example, are useful for
clamping, such as color clamping in 3D graphics, without the
need for branching. Figure 4-11 illustrates a move-mask
instruction (PMOVMSKB) that copies sign bits to a general-
purpose register (GPR). The instruction can extract bits from
mask patterns, or zero values from quantized data, or sign
bits—resulting in a byte that can be used for data-dependent
branching.

Figure 4-11. Move Mask Operation

4.3 Registers

Operands for most 128-bit media instructions are located in
XMM registers or memory. Operation of the 128-bit media
instructions is supported by the MXCSR control and status
register. A few 128-bit media instructions—those that perform
data conversion or move operations—can have operands
located in MMX™ registers or general-purpose registers
(GPRs).

4.3.1 XMM Registers Sixteen 128-bit XMM data registers, xmm0–xmm15, support
the 128-bit media instructions. Figure 4-12 on page 140 shows
these registers. They can hold operands for both vector and
scalar operations with integer and floating-point data types.
The high eight XMM registers, xmm8–xmm15, are available to
software running in 64-bit mode for instructions that use a REX
prefix (see “REX Prefixes” on page 89).

513-157..eps

GPR XMM127 0

concatenate 16 most-significant bits

0

140 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4-12. 128-bit Media Registers

Upon power-on reset, all 16 XMM registers are cleared to +0.0.
However, initialization by means of the #INIT external input
signal does not change the state of the XMM registers.

4.3.2 MXCSR Register Figure 4-13 on page 141 shows a detailed view of the 128-bit
media-instruction control and status register (MXCSR). All bits
in this register are read/write. The fields within the MXCSR
apply only to operations performed by 128-bit media

513-314.eps

XMM Data Registers
127 0

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm8

xmm9

xmm10

xmm11

xmm12

xmm13

xmm14

xmm15

Available in all modes

Available only in 64-bit mode
31 0

MXCSR128-Bit Media Control and Status Register

Chapter 4: 128-Bit Media and Scientific Programming 141

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 141

instructions. Software can load the register from memory using
the FXRSTOR or LDMXCSR instructions, and it can store the
register to memory using the FXSAVE or STMXCSR
instructions.

Figure 4-13. 128-Bit Media Control and Status Register (MXCSR)

Upon power-on reset, the low 16 bits of the MXCSR are
initialized with the value 1F80h, the bit values of which are
shown in Table 4-1 on page 142. However, initialization by
means of the #INIT external input signal does not change the
state of the XMM registers.

5 4 3 2 1 031

I
E

Z
E

D
E

U
E

O
E

Reserved

9 8 7 610

P
E

I
M

Z
M

D
M

Symbol Description Bits
FZ Flush-to-Zero for Masked Underflow 15
RC Floating-Point Rounding Control 14–13

Exception Masks
PM Precision Exception Mask 12
UM Underflow Exception Mask 11
OM Overflow Exception Mask 10
ZM Zero-Divide Exception Mask 9
DM Denormalized-Operand Exception Mask 8
IM Invalid-Operation Exception Mask 7
DAZ Denormals Are Zeros 6

Exception Flags
PE Precision Exception 5
UE Underflow Exception 4
OE Overflow Exception 3
ZE Zero-Divide Exception 2
DE Denormalized-Operand Exception 1
IE Invalid-Operation Exception 0

1115 14 13 1216

O
M

U
M

P
M

F
Z

R
C

D
A
Z

142 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The bits in the MXCSR register are defined immediately below,
starting with bit 0. The six exception flags (IE, DE, ZE, OE, UE,
PE) are sticky bits. Once set by the processor, such a bit remains
set until software clears it. For details about the causes of SIMD
floating-point exceptions indicated by bits 5–0, see “SIMD
Floating-Point Exception Causes” on page 211. For details
about the masking of these exceptions, see “SIMD Floating-
Point Exception Masking” on page 218.

Invalid-Operation Exception (IE). Bit 0. The processor sets this bit to
1 when an invalid-operation exception occurs. These exceptions
are caused by many types of errors, such as an invalid operand.

Denormalized-Operand Exception (DE). Bit 1. The processor sets this
bit to 1 when one of the source operands of an instruction is in
denormalized form, except that if software has set the

Table 4-1. MXCSR Register Reset Values

Field Bit Description Reset
Bit-Value

IE 0 Invalid-Operation Exception 0

DE 1 Denormalized-Operand Exception 0

ZE 2 Zero-Divide Exception 0

OE 3 Overflow Exception 0

UE 4 Underflow Exception 0

PE 5 Precision Exception 0

DAZ 6 Denormals are Zeros 0

IM 7 Invalid-Operation Exception Mask 1

DM 8 Denormalized-Operand Exception Mask 1

ZM 9 Zero-Divide Exception Mask 1

OM 10 Overflow Exception Mask 1

UM 11 Underflow Exception Mask 1

PM 12 Precision Exception Mask 1

RC 14–13 Floating-Point Rounding Control 00

FZ 15 Flush-to-Zero for Masked Underflow 0

Chapter 4: 128-Bit Media and Scientific Programming 143

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 143

denormals are zeros (DAZ) bit, the processor does not set the
DE bit. (See “Denormalized (Tiny) Numbers” on page 154.)

Zero-Divide Exception (ZE). Bit 2. The processor sets this bit to 1
when a non-zero number is divided by zero.

Overflow Exception (OE). Bit 3. The processor sets this bit to 1 when
the absolute value of a rounded result is larger than the largest
representable normalized floating-point number for the
destination format. (See “Normalized Numbers” on page 153.)

Underflow Exception (UE). Bit 4. The processor sets this bit to 1
when the absolute value of a rounded non-zero result is too
small to be represented as a normalized floating-point number
for the destination format. (See “Normalized Numbers” on
page 153.)

The underflow exception has an unusual behavior. When
masked by the UM bit (bit 11), the processor only reports a UE
exception if the UE occurs together with a precision exception
(PE). Also, see bit 15, the flush-to-zero (FZ) bit.

Precision Exception (PE). Bit 5. The processor sets this bit to 1 when
a floating-point result, after rounding, differs from the
infinitely precise result and thus cannot be represented exactly
in the specified destination format. The PE exception is also
called the inexact-result exception.

Denormals Are Zeros (DAZ). Bit 6. Software can set this bit to 1 to
enable the DAZ mode, if the hardware implementation
supports this mode. In the DAZ mode, when the processor
encounters source operands in the denormalized format it
converts them to signed zero values, with the sign of the
denormalized source operand, before operating on them, and
the processor does not set the denormalized-operand exception
(DE) bit, regardless of whether such exceptions are masked or
unmasked.

Support for the DAZ bit is indicated by the MXCSR Mask field
in the FXSAVE memory image, as described in “Saving Media
and x87 Processor State” in Volume 2. The DAZ mode does not
comply with the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754).

Exception Masks (PM, UM, OM, ZM, DM, IM). Bits 12–7. Software can
set these bits to mask, or clear this bits to unmask, the

144 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

corresponding six types of SIMD floating-point exceptions (PE,
UE, OE, ZE, DE, IE). A bit masks its exception type when set to
1, and unmasks it when cleared to 0.

In general, masking a type of exception causes the processor to
handle all subsequent instances of the exception type in a
default way (the UE exception has an unusual behavior).
Unmasking the exception type causes the processor to branch
to the SIMD floating-point exception service routine when an
exception occurs. For details about the processor’s responses to
masked and unmasked exceptions, see “SIMD Floating-Point
Exception Masking” on page 218.

Floating-Point Rounding Control (RC). Bit 14–13. Software uses these
bits to specify the rounding method for 128-bit media floating-
point operations. The choices are:

00 = round to nearest (default)

01 = round down

10 = round up

11 = round toward zero

For details, see “Floating-Point Rounding” on page 158.

Flush-to-Zero for Masked Underflow (FZ). Bit 15. Setting this bit to 1
causes the processor to set the UE and PE flags and return a
zero result, with the sign of the true result, if an underflow
occurs while the underflow mask (UM) bit is set to 1.

This response does not comply with the IEEE 754 standard, but
it may offer higher performance than can be achieved by
responding to an underflow in this circumstance. The FZ bit is
only effective if the UM bit is set to 1. If the UM bit is cleared to
0, the FZ bit is ignored. For details, see Table 4-15 on page 219.

4.3.3 Other Data
Registers

Some 128-bit media instructions that perform data transfer,
data conversion or data reordering operations (“Data Transfer”
on page 162, “Data Conversion” on page 166, and “Data
Reordering” on page 168) can access operands in the MMX or
general-purpose registers (GPRs). When addressing GPRs
registers in 64-bit mode, the REX instruction prefix can be used
to access the extended GPRs, as described in “REX Prefixes”
on page 89.

Chapter 4: 128-Bit Media and Scientific Programming 145

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 145

For a description of the GPR registers, see “Registers” on
page 27. For a description of the MMX registers, see “MMX™
Registers” on page 237.

4.3.4 rFLAGS
Registers

The COMISS, COMISD, UCOMISS, and UCOMISD instructions,
described in “Compare” on page 202, write flag bits in the
rFLAGS register. For a description of the rFLAGS register, see
“Flags Register” on page 37.

4.4 Operands

Operands for a 128-bit media instruction are either referenced
by the instruction's opcode or included as an immediate value
in the instruction encoding. Depending on the instruction,
referenced operands can be located in registers or memory. The
data types of these operands include vector and scalar floating-
point, and vector and scalar integer.

4.4.1 Data Types Figure 4-14 on page 146 shows the register images of the 128-bit
media data types. These data types can be interpreted by
instruction syntax and/or the software context as one of the
following types of values:

Vector (packed) single-precision (32-bit) floating-point
numbers.

Vector (packed) double-precision (64-bit) floating-point
numbers.

Vector (packed) signed (two's-complement) integers.

Vector (packed) unsigned integers.

Scalar signed (two's-complement) integers.

Scalar unsigned integers.

Hardware does not check or enforce the data types for
instructions. Software is responsible for ensuring that each
operand for an instruction is of the correct data type. If data
produced by a previous instruction is of a type different from
that used by the current instruction, and the current instruction
sources such data, the current instruction may incur a latency
penalty, depending on the hardware implementation.

146 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4-14. 128-Bit Media Data Types

ssss

ss

ssss

ss

ssssssss

ssss

ss

ssssssssssssssss

ssssssss

ssss

ss

ssssssssssssssss

513-316.eps

71523313947556371798795103111119127 0

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

31 2263 5495 86127 118 0

Vector (Packed) Floating-Point Double Precision and Single Precision

Vector (Packed) Unsigned Integer Quadword, Doubleword, Word, Byte

71523313947556371798795103111119127 0

quadwordquadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

quadwordquadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

127 0

Scalar Unsigned Integers

127

double quadword

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

Vector (Packed) Signed Integer Quadword, Doubleword, Word, Byte

significand

exp significand

063 51127 115

exp significand

expsignificandexpsignificandexpsignificandexp

s

s

s

s

31 22 0

Scalar Floating-Point Double Precision and Single Precision

significand

exp significand

63 51 exp

15

31

63

quadword

doubleword

word

7

0

byte

bit

Chapter 4: 128-Bit Media and Scientific Programming 147

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 147

Software can interpret the data types in ways other than those
shown in Figure 4-14—such as bit fields or fractional numbers—
but the 128-bit media instructions do not directly support such
interpretations and software must handle them entirely on its
own.

4.4.2 Operand Sizes
and Overrides

Operand sizes for 128-bit media instructions are determined by
instruction opcodes. Some of these opcodes include an operand-
size override prefix, but this prefix acts in a special way to
modify the opcode and is considered an integral part of the
opcode. The general use of the 66h operand-size override prefix
described in “Instruction Prefixes” on page 85 does not apply
to 128-bit media instructions.

For details on the use of operand-size override prefixes in 128-
bit media instructions, see the opcodes in “128-Bit Media
Instruction Reference” in Volume 4.

4.4.3 Operand
Addressing

Depending on the 128-bit media instruction, referenced
operands may be in registers or memory.

Register Operands. Most 128-bit media instructions can access
source and destination operands in XMM registers. A few of
these instructions access the MMX™ registers, GPR registers,
rFLAGS register, or MXCSR register. The type of register
addressed is specified in the instruction syntax. When
addressing GPR or XMM registers, the REX instruction prefix
can be used to access the extended GPR or XMM registers, as
described in “Instruction Prefixes” on page 208.

Memory Operands. Most 128-bit media instructions can read
memory for source operands, and some of the instructions can
write results to memory. “Memory Addressing” on page 16,
describes the general methods for addressing memory
operands.

Immediate Operands. Immediate operands are used in certain
data-conversion, vector-shift, and vector-compare instructions.
Such instructions take 8-bit immediates, which provide control
for the operation.

I/O Ports. I/O ports in the I/O address space cannot be directly
addressed by 128-bit media instructions, and although memory-
mapped I/O ports can be addressed by such instructions, doing
so may produce unpredictable results, depending on the

148 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

hardware implementation of the architecture. See the data
sheet or software-optimization documentation for particular
hardware implementations.

4.4.4 Data Alignment 128-bit media instructions that access a 128-bit operand in
memory incur a general-protection exception (#GP) if the
operand is not aligned to a 16-byte boundary, except for the
following instructions:

MASKMOVDQU—Masked Move Double Quadword
Unaligned.

MOVDQU—Move Unaligned Double Quadword.

MOVUPD—Move Unaligned Packed Double-Precision
Floating-Point.

MOVUPS—Move Unaligned Packed Single-Precision
Floating-Point.

For other 128-bit media instructions, the architecture does not
impose data -a l ignment requirements . However, the
consequence of storing operands at unaligned locations is that
accesses to those operands may require more processor and bus
cycles than for aligned accesses. See “Data Alignment” on
page 47 for details.

4.4.5 Integer Data
Types

The 128-bit media instructions that support operations on
integer data types are summarized in “Instruction Summary—
Integer Instructions” on page 160. The characteristics of these
data types are described below.

Sign. Many of the 128-bit media instructions have variants for
operating on signed or unsigned integers. For signed integers,
the sign bit is the most-significant bit—bit 7 for a byte, bit 15 for
a word, bit 31 for a doubleword, bit 63 for a quadword, or bit 127
for a double quadword. Arithmetic instructions that are not
specifically named as unsigned perform signed two’s-
complement arithmetic.

Range of Representable Values. Table 4-2 on page 149 shows the
range of representable values for the integer data types.

Chapter 4: 128-Bit Media and Scientific Programming 149

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 149

Saturation. Saturating (also called limiting or clamping)
instructions limit the value of a result to the maximum or
minimum value representable by the applicable data type.
Saturating versions of integer vector-arithmetic instructions
operate on byte-sized and word-sized elements. These
instructions—for example, PACKx, PADDSx, PADDUSx,
PSUBSx, and PSUBUSx—saturate signed or unsigned data at
the vector-element level when the element reaches its
maximum or minimum representable value. Saturation avoids
overflow or underflow errors.

The examples in Table 4-3 on page 150 illustrate saturating and
non-saturating results with word operands. Saturation for other
data-type sizes follows similar rules. Once saturated, the
saturated value is treated like any other value of its type. For
example, if 0001h is subtracted from the saturated value,
7FFFh, the result is 7FFEh.

Table 4-2. Range of Values in 128-Bit Media Integer Data Types

Data-Type
Interpretation Byte Word Doubleword Quadword Double

Quadword

Unsigned
integers

Base-2
(exact) 0 to +28-1 0 to +216-1 0 to +232-1 0 to +264-1 0 to +2128-1

Base-10
(approx.) 0 to 255 0 to 65,535 0 to 4.29 * 109 0 to 1.84 * 1019 0 to 3.40 * 1038

Signed
integers1

Base-2
(exact)

-27 to +(27 -1) -215 to +(215 -1) -231 to +(231 -1) -263 to +(263 -1) -2127 to +(2127 -1)

Base-10
(approx.) -128 to +127 -32,768 to

+32,767
-2.14 * 109 to
+2.14 * 109

-9.22 * 1018
to +9.22 * 1018

-1.70 * 1038
to +1.70 * 1038

Note:
1. The sign bit is the most-significant bit (bit 7 for a byte, bit 15 for a word, bit 31 for doubleword, bit 63 for quadword, bit 127 for

double quadword.).

150 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Arithmetic instructions not specifically designated as
saturating perform non-saturating, two’s-complement
arithmetic.

Other Fixed-Point Operands. The architecture provides specific
support only for integer fixed-point operands—those in which
an implied binary point is always located to the right of bit 0.
Nevertheless, software may use fixed-point operands in which
the implied binary point is located in any position. In such
cases, software is responsible for managing the interpretation
of such implied binary points, as well as any redundant sign bits
that may occur during multiplication.

4.4.6 Floating-Point
Data Types

128-bit media floating-point instructions take vector or scalar
operands, depending on the instruction. The vector instructions
operate in parallel on up to four, or four pairs, of single-
precision floating-point values or up to two, or two pairs, of
double-precision floating-point values. The scalar instructions
operate on only one, or one pair, of single-precision or double-
precision operands.

Floating-Point Data Types. The floating-point data types, shown in
Figure 4-15 on page 151, include 32-bit single precision and 64-
bit double precision. Both formats are fully compatible with the
IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE
Std 754). 128-bit media instructions operate internally on
floating-point data types in the precision specified by each
instruction.

Table 4-3. Saturation Examples

Operation
Non-Saturated

Infinitely Precise
Result

Saturated
Signed Result

Saturated
Unsigned Result

7000h + 2000h 9000h 7FFFh 9000h

7000h + 7000h E000h 7FFFh E000h

F000h + F000h 1E000h E000h FFFFh

9000h + 9000h 12000h 8000h FFFFh

7FFFh + 0100h 80FFh 7FFFh 80FFh

7FFFh + FF00h 17EFFh 7EFFh FFFFh

Chapter 4: 128-Bit Media and Scientific Programming 151

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 151

Figure 4-15. 128-Bit Media Floating-Point Data Types

Both of the floating-point data types consist of a sign
(0 = positive, 1 = negative), a biased exponent (base-2), and a
significand, which represents the integer and fractional parts of
the number. The integer bit (also called the J bit) is implied
(called a hidden integer bit). The value of an implied integer bit
can be inferred from number encodings, as described in
“Floating-Point Number Encodings” on page 156. The bias of
the exponent is a constant which makes the exponent always
positive and allows reciprocation, without overflow, of the
smallest normalized number representable by that data type.

Specifically, the data types are formatted as follows:

Single-Precision Format—This format includes a 1-bit sign, an
8-bit biased exponent whose value is 127, and a 23-bit
significand. The integer bit is implied, making a total of 24
bits in the significand.

Double-Precision Format—This format includes a 1-bit sign,
an 11-bit biased exponent whose value is 1023, and a 52-bit
significand. The integer bit is implied, making a total of 53
bits in the significand.

Table 4-4 on page 152 shows the shows the range of finite values
representable by the two floating-point data types.

063Double Precision

31 0Single Precision 2223

S
Biased

Exponent

5152

Biased
Exponent

S

30

62

S = Sign Bit

S = Sign Bit

Significand
(also Fraction)

Significand
(also Fraction)

152 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

For example, in the single-precision format, the largest normal
number representable has an exponent of FEh and a
significand of 7FFFFFh, with a numerical value of 2127 * (2 –
2–23). Results that overflow above the maximum representable
value return either the maximum representable normalized
number (see “Normalized Numbers” on page 153) or infinity,
with the sign of the true result, depending on the rounding
mode specified in the rounding control (RC) field of the
MXCSR register. Results that underflow below the minimum
representable value return either the minimum representable
normaliz ed number or a denormaliz ed number (see
“Denormalized (Tiny) Numbers” on page 154), with the sign of
the true result, or a result determined by the SIMD floating-
point exception handler, depending on the rounding mode and
the underflow-exception mask (UM) in the MXCSR register
(see “Unmasked Responses” on page 221).

Compatibility with x87 Floating-Point Data Types. The results produced
by 128-bit media floating-point instructions comply fully with
the IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754), because these instructions represent data
in the single-precision or double-precision data types
throughout their operations. The x87 f loating-point
instructions, however, by default perform operations in the
double-extended-precision format. Because of this, x87
instructions operating on the same source operands as 128-bit
media floating-point instructions may return results that are
slightly different in their least-significant bits.

4.4.7 Floating-Point
Number
Representation

A 128-bit media floating-point value can be one of five types, as
follows:

Normal

Table 4-4. Range of Values in Normalized Floating-Point Data Types

Data Type
Range of Normalized1 Values

Base 2 (exact) Base 10 (approximate)

Single Precision 2–126 to 2127 * (2 – 2–23) 1.17 * 10–38 to +3.40 * 1038

Double Precision 2–1022 to 21023 * (2 – 2–52) 2.23 * 10–308 to +1.79 * 10308

Note:
1. See “Floating-Point Number Representation” on page 152 for a definition of “normalized”.

Chapter 4: 128-Bit Media and Scientific Programming 153

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 153

Denormal (Tiny)

Zero

Infinity

Not a Number (NaN)

In common engineering and scientific usage, floating-point
numbers—also called real numbers—are represented in base
(radix) 10. A non-zero number consists of a sign, a normalized
significand, and a signed exponent, as in:

+2.71828 e0

Both large and small numbers are representable in this
notation, subject to the limits of data-type precision. For
example, a million in base-10 notation appears as +1.00000 e6
and -0.0000383 is represented as -3.83000 e-5. A non-zero
number can always be written in normalized form—that is, with
a leading non-zero digit immediately before the decimal point.
Thus, a normalized significand in base-10 notation is a number
in the range [1,10). The signed exponent specifies the number
of positions that the decimal point is shifted.

Unlike the common engineering and scientific usage described
above, 128-bit media floating-point numbers are represented in
base (radix) 2. Like its base-10 counterpart, a normalized base-2
significand is written with its leading non-zero digit
immediately to the left of the radix point. In base-2 arithmetic,
a non-zero digit is always a one, so the range of a binary
significand is [1,2):

+1.fraction ±exponent

The leading non-zero digit is called the integer bit. As shown in
Figure 4-15, the integer bit is omitted (and called the hidden
integer bit) in the single-precision and the double-precision
floating-point formats, because its implied value is always 1 in a
normalized significand (0 in a denormalized significand), and
the omission allows an extra bit of precision.

The following sections describe the number representations.

Normalized Numbers. Normalized floating-point numbers are the
most frequent operands for 128-bit media instructions. These
are finite, non-zero, positive or negative numbers in which the
integer bit is 1, the biased exponent is non-zero and non-
maximum, and the fraction is any representable value. Thus,
the significand is within the range of [1, 2). Whenever possible,

154 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

the processor represents a floating-point result as a normalized
number.

Denormalized (Tiny) Numbers. Denormalized numbers (also called
tiny numbers) are smaller than the smallest representable
normalized numbers. They arise through an underflow
condition, when the exponent of a result lies below the
representable minimum exponent. These are finite, non-zero,
positive or negative numbers in which the integer bit is 0, the
biased exponent is 0, and the fraction is non-zero.

The processor generates a denormalized-operand exception
(DE) when an instruction uses a denormalized source operand.
The processor may generate an underflow exception (UE) when
an instruction produces a rounded, non-zero result that is too
small to be represented as a normalized floating-point number
in the destination format, and thus is represented as a
denormalized number. If a result, after rounding, is too small to
be represented as the minimum denormalized number, it is
represented as zero. (See “Exceptions” on page 209 for specific
details.)

Denormalization may correct the exponent by placing leading
zeros in the significand. This may cause a loss of precision,
because the number of significant bits in the fraction is reduced
by the leading zeros. In the single-precision floating-point
format, for example, normalized numbers have biased
exponents ranging from 1 to 254 (the unbiased exponent range
is from -126 to +127). A true result with an exponent of, say,
-130, undergoes denormalization by right-shifting the
significand by the difference between the normalized exponent
and the minimum exponent, as shown in Table 4-5.

Zero. The floating-point zero is a finite, positive or negative
number in which the integer bit is 0, the biased exponent is 0,
and the fraction is 0. The sign of a zero result depends on the
operation being performed and the selected rounding mode. It

Table 4-5. Example of Denormalization

Significand (base 2) Exponent Result Type

1.0011010000000000 -130 True result

0.0001001101000000 -126 Denormalized result

Chapter 4: 128-Bit Media and Scientific Programming 155

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 155

may indicate the direction from which an underflow occurred,
or it may reflect the result of a division by +∞ or -∞.

Infinity. Infinity is a positive or negative number, +∞ and -∞, in
which the integer bit is 1, the biased exponent is maximum, and
the fraction is 0. The infinities are the maximum numbers that
can be represented in floating-point format. Negative infinity is
less than any finite number and positive infinity is greater than
any finite number (i.e., the affine sense).

An infinite result is produced when a non-zero, non-infinite
number is divided by 0 or multiplied by infinity, or when
infinity is added to infinity or to 0. Arithmetic on infinities is
exact. For example, adding any floating-point number to +∞
gives a result of +∞. Arithmetic comparisons work correctly on
infinities. Exceptions occur only when the use of an infinity as a
source operand constitutes an invalid operation.

Not a Number (NaN). NaNs are non-numbers, lying outside the
range of representable floating-point values. The integer bit is
1, the biased exponent is maximum, and the fraction is non-
zero. NaNs are of two types:

Signaling NaN (SNaN)

Quiet NaN (QNaN)

A QNaN is a NaN with the most-significant fraction bit set to 1,
and an SNaN is a NaN with the most-significant fraction bit
cleared to 0. When the processor encounters an SNaN as a
source operand for an instruction, an invalid-operation
exception (IE) occurs and a QNaN is produced as the result, if
the exception is masked. In general, when the processor
encounters a QNaN as a source operand for an instruction, the
processor does not generate an exception but generates a QNaN
as the result.

The processor never generates an SNaN as a result of a floating-
point operation. When an invalid-operation exception (IE)
occurs due to an SNaN operand, the invalid-operation exception
mask (IM) bit determines the processor’s response, as described
in “SIMD Floating-Point Exception Masking” on page 218.

When a floating-point operation or exception produces a QNaN
result, its value is determined by the rules in Table 4-6 on
page 156.

156 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

4.4.8 Floating-Point
Number Encodings

Supported Encodings. Table 4-7 on page 157 shows the floating-
point encodings of supported numbers and non-numbers. The
number categories are ordered from large to small. In this
affine ordering, positive infinity is larger than any positive
normalized number, which in turn is larger than any positive
denormalized number, which is larger than positive zero, and so
forth. Thus, the ordinary rules of comparison apply between
categories as well as within categories, so that comparison of
any two numbers is well-defined.

The actual exponent field length is 8 or 11 bits, and the fraction
field length is 23 or 52 bits, depending on operand precision.
The single-precision and double-precision formats do not
include the integer bit in the significand (the value of the
integer bit can be inferred from number encodings). Exponents
of both types are encoded in biased format, with respective
biasing constants of 127 and 1023.

Table 4-6. NaN Results

Source Operands
(in either order) NaN Result1

QNaN Any non-NaN floating-point value, or
single-operand instructions Value of QNaN

SNaN Any non-NaN floating-point value or,
single-operand instructions

Value of SNaN converted to a
QNaN2

QNaN QNaN
Value of operand 1

QNaN SNaN

SNaN QNaN Value of operand 1 converted
to a QNaN2

SNaN SNaN

Invalid-Operation Exception (IE) occurs without
QNaN or SNaN source operands

Floating-point indefinite
value3 (a special form of
QNaN)

Note:
1. The NaN result is produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.
3. See “Indefinite Values” on page 157.

Chapter 4: 128-Bit Media and Scientific Programming 157

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 157

Indefinite Values. Floating-point and integer data type each have
a unique encoding that represents an indefinite value. The
processor returns an indefinite value when a masked invalid-
operation exception (IE) occurs.

Table 4-7. Supported Floating-Point Encodings

Classification Sign
 Biased

Exponent1 Significand2

Positive
Non-Numbers

SNaN 0 111 ... 111
1.011 ... 111
to
1.000 ... 001

QNaN 0 111 ... 111
1.111 ... 111
to
1.100 ... 000

Positive
Floating-Point
Numbers

Positive Infinity (+∞) 0 111 ... 111 1.000 ... 000

Positive Normal 0
111 ... 110
to
000 ... 001

1.111 ... 111
to
1.000 ... 000

Positive Denormal 0 000 ... 000
0.111 ... 111
to
0.000 ... 001

Positive Zero 0 000 ... 000 0.000 ... 000

Negative
Floating-Point
Numbers

Negative Zero 1 000 ... 000 0.000 ... 000

Negative Denormal 1 000 ... 000
0.000 ... 001
to
0.111 ... 111

Negative Normal 1
000 ... 001
to
111 ... 110

1.000 ... 000
to
1.111 ... 111

Negative Infinity (-∞) 1 111 ... 111 1.000 ... 000

Negative
Non-Numbers

SNaN 1 111 ... 111
1.000 ... 001
to
1.011 ... 111

QNaN3 1 111 ... 111
1.100 ... 000
to
1.111 ... 111

Note:
1. The actual exponent field length is 8 or 11 bits, depending on operand precision.
2. The “1.” and “0.” prefixes represent the implicit integer bit. The actual fraction field length is

23 or 52 bits, depending on operand precision.
3. The floating-point indefinite value is a QNaN with a negative sign and a significand whose

value is 1.100 ... 000.

158 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

For example, if a floating-point division operation is attempted
using source operands which are both zero, and IE exceptions
are masked, the floating-point indefinite value is returned as
the result. Or, if a floating-point-to-integer data conversion
overflows its destination integer data type, and IE exceptions
are masked, the integer indefinite value is returned as the
result.

Table 4-8 shows the encodings of the indefinite values for each
data type. For floating-point numbers, the indefinite value is a
special form of QNaN. For integers, the indefinite value is the
largest representable negative two’s-complement number,
80...00h. (This value is interpreted as the largest representable
negative number, except when a masked IE exception occurs, in
which case it is interpreted as an indefinite value.)

4.4.9 Floating-Point
Rounding

Bits 14–13 of the MXCSR control and status register (“MXCSR
Register” on page 140) comprise the floating-point rounding
control (RC) field, which specifies how the results of floating-
point computations are rounded. Rounding modes apply to
most arithmetic operations. When rounding occurs, the
processor generates a precision exception (PE). Rounding is not
applied to operations that produce NaN results.

The IEEE 754 standard defines the four rounding modes as
shown in Table 4-9 on page 159.

Table 4-8. Indefinite-Value Encodings

Data Type Indefinite Encoding

Floating-Point

• sign bit = 1
• biased exponent = 111 ... 111
• significand integer bit = 1
• significand fraction = 100 ... 000

Integer
• sign bit = 1
• integer = 000 ... 000

Chapter 4: 128-Bit Media and Scientific Programming 159

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 159

Round to nearest is the default rounding mode. It provides a
statistically unbiased estimate of the true result, and is suitable
for most applications. The other rounding modes are directed
roundings: round up (toward +∞), round down (toward -∞), and
round toward zero. Round up and round down are used in
interval arithmetic, in which upper and lower bounds bracket
the true result of a computation. Round toward zero takes the
smaller in magnitude, that is, always truncates.

The processor produces a floating-point result defined by the
IEEE standard to be infinitely precise. This result may not be
representable exactly in the destination format, because only a
subset of the continuum of real numbers finds exact
representation in any particular floating-point format.
Rounding modifies such a result to conform to the destination
format, thereby making the result inexact and also generating a
precision exception (PE), as described in “SIMD Floating-Point
Exception Causes” on page 211.

Suppose, for example, the following 24-bit result is to be
represented in single-precision format, where “E2 1010”
represents the biased exponent:

1.0011 0101 0000 0001 0010 0111 E2 1010

This result has no exact representation, because the least-
significant 1 does not fit into the single-precision format, which
allows for only 23 bits of fraction. The rounding control field
determines the direction of rounding. Rounding introduces an
error in a result that is less than one unit in the last place (ulp),

Table 4-9. Types of Rounding

RC Value Mode Type of Rounding

00
(default)

Round to nearest
The rounded result is the representable value closest
to the infinitely precise result. If equally close, the
even value (with least-significant bit 0) is taken.

01 Round down
The rounded result is closest to, but no greater than,
the infinitely precise result.

10 Round up The rounded result is closest to, but no less than, the
infinitely precise result.

11 Round toward
zero

The rounded result is closest to, but no greater in
absolute value than, the infinitely precise result.

160 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

that is, the least-significant bit position of the floating-point
representation.

4.5 Instruction Summary—Integer Instructions

This section summarizes functions of the integer instructions in
the 128-bit media instruction subset. These include integer
instructions that use an XMM register for source or destination
and data-conversion instructions that convert from integers to
floating-point formats. For a summary of the floating-point
instructions in the 128-bit media instruction subset, including
data-conversion instructions that convert from floating-point to
integer formats, see “Instruction Summary—Floating-Point
Instructions” on page 187.

The instructions are organized here by functional group—such
as data-transfer, vector arithmetic, and so on. Software running
at any privilege level can use any of these instructions, if the
CPUID instruction reports support for the instructions (see
“Feature Detection” on page 209). More detail on individual
instructions is given in the alphabetically organized “128-Bit
Media Instruction Reference” in Volume 4.

4.5.1 Syntax Each instruction has a mnemonic syntax used by assemblers to
specify the operation and the operands to be used for source
and destination (result) data. The majority of 128-bit media
integer instructions have the following syntax:

MNEMONIC xmm1, xmm2/mem128

Figure 4-16 shows an example of the mnemonic syntax for a
packed add bytes (PADDB) instruction.

Figure 4-16. Mnemonic Syntax for Typical Instruction

513-147.eps

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

PADDB xmm1, xmm2/mem128

Chapter 4: 128-Bit Media and Scientific Programming 161

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 161

This example shows the PADDB mnemonic followed by two
operands, a 128-bit XMM register operand and another 128-bit
XMM register or 128-bit memory operand. In most instructions
that take two operands, the first (left-most) operand is both a
source operand and the destination operand. The second (right-
most) operand serves only as a source. Some instructions can
have one or more prefixes that modify default properties, as
described in “Instruction Prefixes” on page 208.

Mnemonics. The following characters are used as prefixes in the
mnemonics of integer instructions:

CVT—Convert

CVTT—Convert with truncation

P—Packed (vector)

PACK—Pack elements of 2x data size to 1x data size

PUNPCK—Unpack and interleave elements

UNPCK—Unpack and interleave elements

In addition to the above prefix characters, the following
characters are used elsewhere in the mnemonics of integer
instructions:

B—Byte

D—Doubleword

DQ—Double quadword

H—High

L—Low, or Left

PD—Packed double-precision floating-point

PI—Packed integer

PS—Packed single-precision floating-point

Q—Quadword

R—Right

S—Signed, or Saturation, or Shift

SD—Scalar double-precision floating-point

SI—Signed integer

SS—Scalar single-precision floating-point, or Signed
saturation

U—Unsigned, or Unordered, or Unaligned

US—Unsigned saturation

162 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

W—Word

x—One or more variable characters in the mnemonic

For example, the mnemonic for the instruction that packs four
words into eight unsigned bytes is PACKUSWB. In this
mnemonic, the US designates an unsigned result with
saturation, and the WB designates the source as words and the
result as bytes.

4.5.2 Data Transfer The data-transfer instructions copy operands between a
memory location, an XMM register, an MMX™ register, or a
GPR. The MOV mnemonic, which stands for move , is a
misnomer. A copy function is actually performed instead of a
move. A new copy of the source value is created at the
destination address, and the original copy remains unchanged
at its source location.

Move.

MOVD—Move Doubleword or Quadword

MOVQ—Move Quadword

MOVDQA—Move Aligned Double Quadword

MOVDQU—Move Unaligned Double Quadword

MOVDQ2Q—Move Quadword to Quadword

MOVQ2DQ—Move Quadword to Quadword

The MOVD instruction copies a 32-bit or 64-bit value from a
GPR register or memory location to the low-order 32 or 64 bits
of an XMM register, or from the low-order 32 or 64 bits of an
XMM register to a 32-bit or 64-bit GPR or memory location. If
the source operand is a GPR or memory location, the source is
zero-extended to 128 bits in the XMM register. If the source is
an XMM register, only the low-order 32 or 64 bits of the source
are copied to the destination.

The MOVQ instruction copies a 64-bit value from memory to the
low quadword of an XMM register, or from the low quadword of
an XMM register to memory, or between the low quadwords of
two XMM registers. If the source is in memory and the
destination is an XMM register, the source is zero-extended to
128 bits in the XMM register.

The MOVDQA instruction copies a 128-bit value from memory
to an XMM register, or from an XMM register to memory, or
between two XMM registers. If either the source or destination

Chapter 4: 128-Bit Media and Scientific Programming 163

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 163

is a memory location, the memory address must be aligned. The
MOVDQU instruction does the same, except for unaligned
operands.

The MOVDQ2Q instruction copies the low-order 64-bit value in
an XMM register to an MMX register. The MOVQ2DQ
instruction copies a 64-bit value from an MMX register to the
low-order 64 bits of an XMM register, with zero-extension to 128
bits.

Figure 4-17 on page 164 shows the capabilities of the various
integer move instructions. These instructions move large
amounts of data. When copying between XMM registers, or
between an XMM register and memory, a move instruction can
copy up to 16 bytes of data. When copying between an XMM
register and an MMX or GPR register, a move instruction can
copy up to 8 bytes of data. The MOVx instructions—along with
the PUNPCKx instructions—are often among the most
frequently used instructions in 128-bit media integer and
floating-point procedures.

The move instructions are in many respects similar to the
assignment operator in high-level languages. The simplest
example of their use is for initializing variables. To initialize a
register to 0, however, rather than using a MOVx instruction it
may be more efficient to use the PXOR instruction with
identical destination and source operands.

Move Non-Temporal. The move non-temporal instructions are
streaming-store instructions. They minimize pollution of the
cache.

MOVNTDQ—Move Non-Temporal Double Quadword

MASKMOVDQU—Masked Move Double Quadword
Unaligned

The MOVNTDQ instruction stores its second operand (a 128-bit
XMM register value) into its first operand (a 128-bit memory
location). MOVNTDQ indicates to the processor that its data is
non-temporal, which assumes that the referenced data will be
used only once and is therefore not subject to cache-related
overhead (as opposed to temporal data, which assumes that the
data will be accessed again soon and should be cached). The
non-temporal instructions use weakly-ordered, write-combining
buffering of write data, and they minimize cache pollution. The
exact method by which cache pollution is minimized depends

164 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

on the hardware implementation of the instruction. For further
information, see “Memory Optimization” on page 113.

Figure 4-17. Integer Move Operations

MASKMOVDQU is also a non-temporal instruction. It stores
bytes from the first operand, as selected by the mask value in

m
em

or
y

513-173.eps

MOVDQA
MOVDQU

127 0127 0

MOVQ m
em

or
y

XMM Register or Memory
(source)

XMM Register
(destination)

MOVDQA
MOVDQU

127 0127 0

MOVQ

MOVD

XMM Register
(source)

XMM Register or Memory
(destination)

XMM Register
(source)

GPR Register or Memory
(destination)

127 063 0

m
em

or
y

MOVD

XMM Register
(destination)

GPR Register or Memory
(source)

127 0 63 0

m
em

or
y

XMM Register
(source)

MMX Register
(destination)

127 063 0

XMM Register
(destination)

MMX Register
(source)

127 0 63 0

MOVDQ2Q

MOVQ2DQ

Chapter 4: 128-Bit Media and Scientific Programming 165

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 165

the second operand (0 = no write and 1 = write), to a memory
location specified in the rDI and DS registers. The first and
second operands are both XMM registers. The address may be
unaligned. Figure 4-18 shows the MASKMOVDQU operation. It
is useful for the handling of end cases in block copies and block
fills based on streaming stores.

Figure 4-18. MASKMOVDQU Move Mask Operation

Move Mask.

PMOVMSKB—Packed Move Mask Byte

The PMOVMSKB instruction moves the most-significant bit of
each byte in an XMM register to the low-order word of a 32-bit
or 64-bit general-purpose register, with zero-extension. The
instruction is useful for extracting bits from mask patterns, or
zero values from quantized data, or sign bits—resulting in a
byte that can be used for data-dependent branching.
Figure 4-19 on page 166 shows the PMOVMSKB operation.

operand 1

.

.

127 0
operand 2

127 0

select

select

store address
memory

rDI

513-148.eps

166 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4-19. PMOVMSKB Move Mask Operation

4.5.3 Data Conversion The integer data-conversion instructions convert integer
operands to floating-point operands. These instructions take
128-bit integer source operands. For data-conversion
instructions that take 128-bit floating-point source operands,
see “Data Conversion” on page 192. For data-conversion
instructions that take 64-bit source operands, see “Data
Conversion” on page 250 and “Data Conversion” on page 266.

Convert Integer to Floating-Point. These instructions convert integer
data types in XMM registers or memory into floating-point data
types in XMM registers.

CVTDQ2PS—Convert Packed Doubleword Integers to
Packed Single-Precision Floating-Point

CVTDQ2PD—Convert Packed Doubleword Integers to
Packed Double-Precision Floating-Point

The CVTDQ2PS instruction converts four 32-bit signed integer
values in the second operand to four single-precision floating-
point values and writes the converted values in another XMM
register. If the result of the conversion is an inexact value, the
value is rounded. The CVTDQ2PD instruction is analogous to
CVTDQ2PS except that it converts two 64-bit signed integer
values to two double-precision floating-point values.

Convert MMX Integer to Floating-Point. These instructions convert
integer data types in MMX registers or memory into floating-
point data types in XMM registers.

CVTPI2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point

513-157..eps

GPR XMM127 0

concatenate 16 most-significant bits

0

Chapter 4: 128-Bit Media and Scientific Programming 167

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 167

CVTPI2PD—Convert Packed Doubleword Integers to
Packed Double-Precision Floating-Point

The CVTPI2PS instruction converts two 32-bit signed integer
values in an MMX register or a 64-bit memory location to two
single-precision floating-point values and writes the converted
values in the low-order 64 bits of an XMM register. The high-
order 64 bits of the XMM register are not modified.

The CVTPI2PD instruction is analogous to CVTPI2PS except
that it converts two 32-bit signed integer values to two double-
precision floating-point values and writes the converted values
in the full 128 bits of an XMM register.

Before executing a CVTPI2x instruction, software should
ensure that the MMX registers are properly initialized so as to
prevent conflict with their aliased use by x87 floating-point
instructions. This may require clearing the MMX state, as
described in “Accessing Operands in MMX™ Registers” on
page 223.

For a description of 128-bit media instructions that convert in
the opposite direction—floating-point to integer in MMX
registers—see “Convert Floating-Point to MMX™ Integer” on
page 194. For a summary of instructions that operate on MMX
registers, see Chapter 5, “64-Bit Media Programming.”

Convert GPR Integer to Floating-Point. These instructions convert
integer data types in GPR registers or memory into floating-
point data types in XMM registers.

CVTSI2SS—Convert Signed Doubleword or Quadword
Integer to Scalar Single-Precision Floating-Point

CVTSI2SD—Convert Signed Doubleword or Quadword
Integer to Scalar Double-Precision Floating-Point

The CVTSI2SS instruction converts a 32-bit or 64-bit signed
integer value in a general-purpose register or memory location
to a single-precision floating-point value and writes the
converted value in the low-order 32 bits of an XMM register.
The three high-order doublewords in the destination XMM
register are not modified.

The CVTSI2SD instruction converts a 32-bit or 64-bit signed
integer value in a general-purpose register or memory location
to a double-precision floating-point value and writes the
converted value in the low-order 64 bits of an XMM register.

168 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The high-order 64 bits in the destination XMM register are not
modified.

4.5.4 Data Reordering The integer data-reordering instructions pack, unpack,
interleave, extract, insert, and shuffle the elements of vector
operands.

Pack with Saturation. These instructions pack larger data types
into smaller data types, thus halving the precision of each
element in a vector operand.

PACKSSDW—Pack with Saturation Signed Doubleword to
Word

PACKSSWB—Pack with Saturation Signed Word to Byte

PACKUSWB—Pack with Saturation Signed Word to
Unsigned Byte

The PACKSSDW instruction converts each of the four signed
doubleword integers in its two source operands (an XMM
register, and another XMM register or 128-bit memory location)
into signed word integers and packs the converted values into
the destination operand (an XMM register). The PACKSSWB
instruction does the analogous conversion between word
elements in the source vectors and byte elements in the
destination vector. The PACKUSWB instruction does the same
as PACKSSWB except that it converts signed word integers into
unsigned (rather than signed) bytes.

Figure 4-20 on page 169 shows an example of a PACKSSDW
instruction. The operation merges vector elements of 2x size
into vector elements of 1x size, thus reducing the precision of
the vector-element data types. Any results that would otherwise
overflow or underflow are saturated (clamped) at the maximum
or minimum representable value, respectively, as described in
“Saturation” on page 149.

Chapter 4: 128-Bit Media and Scientific Programming 169

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 169

Figure 4-20. PACKSSDW Pack Operation

Conversion from higher-to-lower precision is often needed, for
example, by multiplication operations in which the higher-
precision format is used for source operands in order to prevent
possible overflow, and the lower-precision format is the desired
format for the next operation.

Unpack and Interleave. These instructions interleave vector
elements from the high or low halves of two integer source
operands. They can be used to double the precision of operands.

PUNPCKHBW—Unpack and Interleave High Bytes

PUNPCKHWD—Unpack and Interleave High Words

PUNPCKHDQ—Unpack and Interleave High Doublewords

PUNPCKHQDQ—Unpack and Interleave High Quadwords

PUNPCKLBW—Unpack and Interleave Low Bytes

PUNPCKLWD—Unpack and Interleave Low Words

PUNPCKLDQ—Unpack and Interleave Low Doublewords

PUNPCKLQDQ—Unpack and Interleave Low Quadwords

The PUNPCKHBW instruction copies the eight high-order
bytes from its two source operands (an XMM register, and
another XMM register or 128-bit memory location) and
interleaves them into the 128-bit destination operand (an XMM
register). The bytes in the low-order half of the source operands
are ignored. The PUNPCKHWD, PUNPCKHDQ, and
PUNPCKHQDQ instructions perform analogous operations for

513-150.eps

operand 1

result

127 0

127 0

operand 2
127 0

170 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

words, doublewords, and quadwords in the source operands,
packing them into interleaved words, interleaved doublewords,
and interleaved quadwords in the destination operand.

The PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ, and
PUNPCKLQDQ instructions are analogous to their high-
element counterparts except that they take elements from the
low quadword of each source vector and ignore elements in the
high quadword. Depending on the hardware implementation, if
the source operand for PUNPCKLx and PUNPCKHx
instructions is in memory, only the low 64 bits of the operand
may be loaded.

Figure 4-21 shows an example of the PUNPCKLWD instruction.
The elements are taken from the low half of the source
operands. In this register image, elements from operand2 are
placed to the left of elements from operand1.

Figure 4-21. PUNPCKLWD Unpack and Interleave Operation

If operand 2 is a vector consisting of all zero-valued elements,
the unpack instructions perform the function of expanding
vector elements of 1x size into vector elements of 2x size.
Conversion from lower-to-higher precision is often needed, for
example, prior to multiplication operations in which the higher-
precision format is used for source operands in order to prevent
possible overflow during multiplication.

If both source operands are of identical value, the unpack
instructions can perform the function of duplicating adjacent
elements in a vector.

513-149.eps

operand 1

result

127 0
operand 2

127 0

127 0

. .. .

Chapter 4: 128-Bit Media and Scientific Programming 171

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 171

The PUNPCKx instructions can be used in a repeating
sequence to transpose rows and columns of an array. For
example, such a sequence could begin with PUNPCKxWD and
be followed by PUNPCKxQD. These instructions can also be
used to convert pixel representation from RGB format to color-
plane format, or to interleave interpolation elements into a
vector.

As noted above, and depending on the hardware
implementation, the width of the memory access performed by
the memory-operand forms of PUNPCKLBW, PUNPCKLWD,
PUNPCKLDQ, and PUNPCKLQDQ may be 64 bits, but the
width of the memory access of the memory-operand forms of
PUNPCKHBW, PUNPCKHWD, PUNPCKHDQ, and
PUNPCKHQDQ may be 128 bits. Thus, the alignment
constraints for PUNPCKLx instructions may be less restrictive
than the alignment constraints for PUNPCKHx instructions.
For details, see the documentation for particular hardware
implementations of the architecture.

Another advantage of using PUNPCKLx rather than
PUNPCKHx—also depending on the hardware
implementation—is that it may help avoid potential size
mismatches if a particular hardware implementation uses load-
to-store forwarding. In such cases, store data from either a
quadword store or the lower quadword of a double-quadword
store could be forwarded to PUNPCKLx instructions, but only
store data from a double-quadword store could be forwarded to
PUNPCKHx instructions.

The PUNPCKx instruct ions—along with the MOVx
instructions—are often among the most frequently used
instructions in 128-bit media integer and floating-point
procedures.

Extract and Insert. These instructions copy a word element from a
vector, in a manner specified by an immediate operand.

PEXTRW—Packed Extract Word

PINSRW—Packed Insert Word

The PEXTRW instruction extracts a 16-bit value from an XMM
register, as selected by the immediate-byte operand, and writes
it to the low-order word of a 32-bit or 64-bit general-purpose
register, with zero-extension to 32 or 64 bits. PEXTRW is useful
for loading computed values, such as table-lookup indices, into

172 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

general-purpose registers where the values can be used for
addressing tables in memory.

The PINSRW instruction inserts a 16-bit value from the low-
order word of a general-purpose register or from a 16-bit
memory location into an XMM register. The location in the
destination register is selected by the immediate-byte operand.
The other words in the destination register operand are not
modified. Figure 4-22 shows the operation.

Figure 4-22. PINSRW Operation

Shuffle. These instructions reorder the elements of a vector.

PSHUFD—Packed Shuffle Doublewords

PSHUFHW—Packed Shuffle High Words

PSHUFLW—Packed Shuffle Low Words

The PSHUFD instruction fills each doubleword of the first
operand (an XMM register) by copying any one of the
doublewords in the second operand (an XMM register or 128-bit
memory location). The ordering of the shuffle can occur in one
of 256 possible ways, as specified by the third operand, an
immediate byte. Figure 4-23 on page 173 shows one of the 256
possible shuffle operations.

513-166.eps

xmm

result

127 0
reg32/64/mem16

127 0

15 0

select word position for insert

imm8

Chapter 4: 128-Bit Media and Scientific Programming 173

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 173

Figure 4-23. PSHUFD Shuffle Operation

The PSHUFHW and PSHUFLW instructions are analogous to
PSHUFD, except that they fill each word of the high or low
quadword, respectively, of the first operand by copying any one
of the four words in the high or low quadword of the second
operand. Figure 4-24 shows the PSHUFHW operation.
PSHUFHW and PSHUFLW are useful, for example, in color
imaging when computing alpha saturation of RGB values. In
this case, PSHUFxW can replicate an alpha value in a register
so that parallel comparisons with three RGB values can be
performed.

Figure 4-24. PSHUFHW Shuffle Operation

513-151.eps

result

operand 1
127 0

127 0

operand 2
127 0

513-167.eps

result

operand 1
127 0

127 0

operand 2
127 0

174 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

4.5.5 Arithmetic The integer vector-arithmetic instructions perform an
arithmetic operation on the elements of two source vectors.
Figure 4-25 shows a typical arithmetic operation on vectors of
bytes. Such instructions performs 16 arithmetic operations in
parallel.

Figure 4-25. Arithmetic Operation on Vectors of Bytes

Addition.

PADDB—Packed Add Bytes

PADDW—Packed Add Words

PADDD—Packed Add Doublewords

PADDQ—Packed Add Quadwords

PADDSB—Packed Add with Saturation Bytes

PADDSW—Packed Add with Saturation Words

PADDUSB—Packed Add Unsigned with Saturation Bytes

PADDUSW—Packed Add Unsigned with Saturation Words

The PADDB, PADDW, PADDD, and PADDQ instructions add
each packed 8-bit (PADDB), 16-bit (PADDW), 32-bit (PADDD),
or 64-bit (PADDQ) integer element in the second operand to the
corresponding, same-sized integer element in the first operand
and write the integer result to the corresponding, same-sized
element of the destination. Figure 4-25 on page 174 shows a
PADDB operation. These instructions operate on both signed
and unsigned integers. However, if the result overflows, the
carry is ignored and only the low-order byte, word, doubleword,
or quadword of each result is written to the destination. The

operand 1

.

.

127 0
operand 2

127 0

operation
operation

513-163.epsresult127 0

Chapter 4: 128-Bit Media and Scientific Programming 175

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 175

PADDD instruction can be used together with PMADDWD
(page 178) to implement dot products.

The PADDSB and PADDSW instructions add each 8-bit
(PADDSB) or 16-bit (PADDSW) signed integer element in the
second operand to the corresponding, same-sized signed integer
element in the first operand and write the signed integer result
to the corresponding, same-sized element of the destination.
For each result in the destination, if the result is larger than the
largest, or smaller than the smallest, representable 8-bit
(PADDSB) or 16-bit (PADDSW) signed integer, the result is
saturated to the largest or smallest representable value,
respectively.

The PADDUSB and PADDUSW instructions perform saturating-
add operations analogous to the PADDSB and PADDSW
instructions, except on unsigned integer elements.

Subtraction.

PSUBB—Packed Subtract Bytes

PSUBW—Packed Subtract Words

PSUBD—Packed Subtract Doublewords

PSUBQ—Packed Subtract Quadword

PSUBSB—Packed Subtract with Saturation Bytes

PSUBSW—Packed Subtract with Saturation Words

PSUBUSB—Packed Subtract Unsigned and Saturate Bytes

PSUBUSW—Packed Subtract Unsigned and Saturate Words

The subtraction instructions perform operations analogous to
the addition instructions.

The PSUBB, PSUBW, PSUBD, and PSUBQ instructions subtract
each 8-bit (PSUBB), 16-bit (PSUBW), 32-bit (PSUBD), or 64-bit
(PSUBQ) integer element in the second operand from the
corresponding, same-sized integer element in the first operand
and write the integer result to the corresponding, same-sized
element of the destination. For vectors of n number of
elements, the operation is:

operand1[i] = operand1[i] - operand2[i]

where: i = 0 to n – 1

These instructions operate on both signed and unsigned
integers. However, if the result underflows, the borrow is

176 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

ignored and only the low-order byte, word, doubleword, or
quadword of each result is written to the destination.

The PSUBSB and PSUBSW instructions subtract each 8-bit
(PSUBSB) or 16-bit (PSUBSW) signed integer element in the
second operand from the corresponding, same-sized signed
integer element in the first operand and write the signed
integer result to the corresponding, same-sized element of the
destination. For each result in the destination, if the result is
larger than the largest, or smaller than the smallest,
representable 8-bit (PSUBSB) or 16-bit (PSUBSW) signed
integer, the result is saturated to the largest or smallest
representable value, respectively.

The PSUBUSB and PSUBUSW instructions perform saturating-
add operations analogous to the PSUBSB and PSUBSW
instructions, except on unsigned integer elements.

Multiplication.

PMULHW—Packed Multiply High Signed Word

PMULLW—Packed Multiply Low Signed Word

PMULHUW—Packed Multiply High Unsigned Word

PMULUDQ—Packed Multiply Unsigned Doubleword and
Store Quadword

The PMULHW instruction multiplies each 16-bit signed integer
value in the first operand by the corresponding 16-bit integer in
the second operand, producing a 32-bit intermediate result. The
instruction then writes the high-order 16 bits of the 32-bit
intermediate result of each multiplication to the corresponding
word of the destination. The PMULLW instruction performs the
same multiplication as PMULHW but writes the low-order 16
bits of the 32-bit intermediate result to the corresponding word
of the destination.

Figure 4-26 on page 177 shows the PMULHW and PMULLW
operations. The difference between the two is whether the high
or low half of each intermediate-element result is copied to the
destination result.

Chapter 4: 128-Bit Media and Scientific Programming 177

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 177

Figure 4-26. PMULxW Multiply Operation

The PMULHUW instruction performs the same multiplication
as PMULHW but on unsigned operands. Without this
instruction, it is difficult to perform unsigned integer
multiplies using 128-bit media instructions. The instruction is
useful in 3D rasterization, which operates on unsigned pixel
values.

The PMULUDQ instruction, unlike the other PMULx
instructions, preserves the full precision of results by
multiplying only half of the source-vector elements. It
multiplies the 32-bit unsigned integer values in the first (low-
order) and third doublewords of the source operands, writes the
full 64-bit result of the low-order multiply to the low-order
doubleword of the destination, and writes a corresponding
result of the high-order multiply to the high-order doubleword
of the destination. Figure 4-27 on page 178 shows a PMULUDQ
operation.

513-152.eps

operand 1

result

127 0
operand 2

127 0

127 0

intermediate result

255 0

* ***

. . . .

. . . .

178 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4-27. PMULUDQ Multiply Operation

See “Shift” on page 181 for shift instructions that can be used
to perform multiplication and division by powers of 2.

Multiply-Add. This instruction multiplies the elements of two
source vectors and add their intermediate results in a single
operation.

PMADDWD—Packed Multiply Words and Add Doublewords

The PMADDWD instruction multiplies each 16-bit signed value
in the first operand by the corresponding 16-bit signed value in
the second operand. The instruction then adds the adjacent 32-
bit intermediate results of each multiplication, and writes the
32-bit result of each addition into the corresponding
doubleword of the destination. For vectors of n number of
source elements (src), m number of destination elements (dst),
and n = 2m, the operation is:

dst[j] = ((src1[i] * src2[i]) + (src1[i+1] * src2[i+1]))

where: i = 0 to n – 1
i = 2j

PMADDWD thus performs four signed multiply-adds in
parallel. Figure 4-28 on page 179 shows the operation.

513-153.eps

operand 1

result

127 0
operand 2

127 0

127 0

**

Chapter 4: 128-Bit Media and Scientific Programming 179

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 179

Figure 4-28. PMADDWD Multiply-Add Operation

PMADDWD can be used with one source operand (for example,
a coefficient) taken from memory and the other source operand
(for example, the data to be multiplied by that coefficient)
taken from an XMM register. The instruction can also be used
together with the PADDD instruction (page 174) to compute dot
products. Scaling can be done, before or after the multiply,
using a vector-shift instruction (page 181).

If all four of the 16-bit source operands used to produce a 32-bit
multiply-add result have the value 8000h, the result is
represented as 8000_0000h, because the maximum negative 16-
bit value of 8000h multiplied by itself equals 4000_0000h, and
4000_0000h added to 4000_0000h equals 8000_0000h. The
result of multiplying two negative numbers should be a positive
number, but 8000_0000h is the maximum possible 32-bit
negative number rather than a positive number.

Average.

PAVGB—Packed Average Unsigned Bytes

PAVGW—Packed Average Unsigned Words

513-154.eps

operand 1

result

127 0
operand 2

127 0

127 0

intermediate result
255 0

* ***

. . . .

+ ++ +

180 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The PAVGx instructions compute the rounded average of each
unsigned 8-bit (PAVGB) or 16-bit (PAVGW) integer value in the
first operand and the corresponding, same-sized unsigned
integer in the second operand and write the result in the
corresponding, same-sized element of the destination. The
rounded average is computed by adding each pair of operands,
adding 1 to the temporary sum, and then right-shifting the
temporary sum by one bit-position. For vectors of n number of
elements, the operation is:

operand1[i] = ((operand1[i] + operand2[i]) + 1) ÷ 2

where: i = 0 to n – 1

The PAVGB instruction is useful for MPEG decoding, in which
motion compensation performs many byte-averaging operations
between and within macroblocks. In addition to speeding up
these operations, PAVGB can free up registers and make it
possible to unroll the averaging loops.

Sum of Absolute Differences.

PSADBW—Packed Sum of Absolute Differences of Bytes
into a Word

The PSADBW instruction computes the absolute values of the
differences of corresponding 8-bit signed integer values in the
two quadword halves of both source operands, sums the
differences for each quadword half, and writes the two
unsigned 16-bit integer results in the destination. The sum for
the high-order half is written in the least-significant word of the
destination’s high-order quadword, with the remaining bytes
cleared to all 0s. The sum for the low-order half is written in the
least-significant word of the destination’s low-order quadword,
with the remaining bytes cleared to all 0s.

Figure 4-29 on page 181 shows the PSADBW operation. Sums of
absolute differences are useful, for example, in computing the
L1 norm in motion-est imation a lgor i thms for v ideo
compression.

Chapter 4: 128-Bit Media and Scientific Programming 181

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 181

Figure 4-29. PSADBW Sum-of-Absolute-Differences Operation

4.5.6 Shift The vector-shift instructions are useful for scaling vector
elements to higher or lower precision, packing and unpacking
vector elements, and multiplying and dividing vector elements
by powers of 2.

Left Logical Shift.

PSLLW—Packed Shift Left Logical Words

PSLLD—Packed Shift Left Logical Doublewords

PSLLQ—Packed Shift Left Logical Quadwords

PSLLDQ—Packed Shift Left Logical Double Quadword

The PSLLW, PSLLD, and PSLLQ instructions left-shift each of
the 16-bit, 32-bit, or 64-bit values, respectively, in the first
operand by the number of bits specified in the second operand.
The instructions then write each shifted value into the
corresponding, same-sized element of the destination. The low-
order bits that are emptied by the shift operation are cleared to
0. The first operand is an XMM register. The second operand
can be an XMM register, 128-bit memory location, or immediate
byte.

513-155.eps

operand 1

.

.

127 0
operand 2

127 0

result

00
127 0

low-order
intermediate result

high-order
intermediate result

ABS ∆ABS ∆

ΣΣ

ABS ∆ ABS ∆

182 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

In integer arithmetic, left logical shifts effectively multiply
unsigned operands by positive powers of 2. Thus, For vectors of
n number of elements, the operation is:

operand1[i] = operand1[i] * 2operand2

where: i = 0 to n – 1

The PSLLDQ instruction differs from the other three left-shift
instructions because it operates on bytes rather than bits. It
left-shifts the 128-bit (double quadword) value in an XMM
register by the number of bytes specified in an immediate byte
value.

Right Logical Shift.

PSRLW—Packed Shift Right Logical Words

PSRLD—Packed Shift Right Logical Doublewords

PSRLQ—Packed Shift Right Logical Quadwords

PSRLDQ—Packed Shift Right Logical Double Quadword

The PSRLW, PSRLD, and PSRLQ instructions right-shift each of
the 16-bit, 32-bit, or 64-bit values, respectively, in the first
operand by the number of bits specified in the second operand.
The instructions then write each shifted value into the
corresponding, same-sized element of the destination. The
high-order bits that are emptied by the shift operation are
cleared to 0. The first operand is an XMM register. The second
operand can be an XMM register, 128-bit memory location, or
immediate byte.

In integer arithmetic, right logical bit-shifts effectively divide
unsigned operands by positive powers of 2, or they divide
positive signed operands by positive powers of 2. Thus, For
vectors of n number of elements, the operation is:

operand1[i] = operand1[i] ÷ 2operand2

where: i = 0 to n – 1

The PSRLDQ instruction differs from the other three right-shift
instructions because it operates on bytes rather than bits. It
right-shifts the 128-bit (double quadword) value in an XMM
register by the number of bytes specified in an immediate byte
value. PSRLDQ can be used, for example, to move the high 8
bytes of an XMM register to the low 8 bytes of the register. In

Chapter 4: 128-Bit Media and Scientific Programming 183

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 183

some implementations, however, PUNPCKHQDQ may be a
better choice for this operation.

Right Arithmetic Shift.

PSRAW—Packed Shift Right Arithmetic Words

PSRAD—Packed Shift Right Arithmetic Doublewords

The PSRAx instructions right-shift each of the 16-bit (PSRAW)
or 32-bit (PSRAD) values in the first operand by the number of
bits specified in the second operand. The instructions then
write each shifted value into the corresponding, same-sized
element of the destination. The high-order bits that are
emptied by the shift operation are filled with the sign bit of the
initial value.

In integer arithmetic, right arithmetic shifts effectively divide
signed operands by positive powers of 2. Thus, For vectors of n
number of elements, the operation is:

operand1[i] = operand1[i] ÷ 2operand2

where: i = 0 to n – 1

4.5.7 Compare The integer vector-compare instructions compare two operands,
and they either write a mask or they write the maximum or
minimum value.

Compare and Write Mask.

PCMPEQB—Packed Compare Equal Bytes

PCMPEQW—Packed Compare Equal Words

PCMPEQD—Packed Compare Equal Doublewords

PCMPGTB—Packed Compare Greater Than Signed Bytes

PCMPGTW—Packed Compare Greater Than Signed Words

PCMPGTD—Packed Compare Greater Than Signed
Doublewords

The PCMPEQx and PCMPGTx instruct ions compare
corresponding bytes, words, or doublewords in the two source
operands. The instructions then write a mask of all 1s or 0s for
each compare into the corresponding, same-sized element of
the destination. Figure 4-30 on page 184 shows a PCMPEQB
compare operation. It performs 16 compares in parallel.

184 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4-30. PCMPEQB Compare Operation

For the PCMPEQx instructions, if the compared values are
equal, the result mask is all 1s. If the values are not equal, the
result mask is all 0s. For the PCMPGTx instructions, if the
signed value in the first operand is greater than the signed
value in the second operand, the result mask is all 1s. If the
value in the first operand is less than or equal to the value in
the second operand, the result mask is all 0s.

By specifying the same register for both operands, PCMPEQx
can be used to set the bits in an XMM register to all 1s.

Figure 4-10 on page 138 shows an example of a non-branching
sequence that implements a two-way multiplexer—one that is
equivalent to the following sequence of ternary operators in C
or C++:

r0 = a0 > b0 ? a0 : b0
r1 = a1 > b1 ? a1 : b1
r2 = a2 > b2 ? a2 : b2
r3 = a3 > b3 ? a3 : b3
r4 = a4 > b4 ? a4 : b4
r5 = a5 > b5 ? a5 : b5
r6 = a6 > b6 ? a6 : b6
r7 = a7 > b7 ? a7 : b7

513-168.epsresult

operand 1
127 0

127 0

operand 2
127 0

imm8

compare

all 1s or 0s all 1s or 0s

compare

.

.

Chapter 4: 128-Bit Media and Scientific Programming 185

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 185

Assuming xmm0 contains the vector a, and xmm1 contains the
vector b, the above C sequence can be implemented with the
following assembler sequence:

MOVQ xmm3, xmm0
PCMPGTW xmm3, xmm2 ; a > b ? 0xffff : 0
PAND xmm0, xmm3 ; a > b ? a: 0
PANDN xmm3, xmm1 ; a > b > 0 : b
POR xmm0, xmm3 ; r = a > b ? a: b

In the above sequence, PCMPGTW, PAND, PANDN, and POR
operate, in parallel, on all four elements of the vectors.

Compare and Write Minimum or Maximum.

PMAXUB—Packed Maximum Unsigned Bytes

PMINUB—Packed Minimum Unsigned Bytes

PMAXSW—Packed Maximum Signed Words

PMINSW—Packed Minimum Signed Words

The PMAXUB and PMINUB instructions compare each of the 8-
bit unsigned integer values in the first operand with the
corresponding 8-bit unsigned integer values in the second
operand. The instructions then write the maximum (PMAXUB)
or minimum (PMINUB) of the two values for each comparison
into the corresponding byte of the destination.

The PMAXSW and PMINSW instructions perform operations
analogous to the PMAXUB and PMINUB instructions, except
on 16-bit signed integer values.

4.5.8 Logical The vector-logic instructions perform Boolean logic operations,
including AND, OR, and exclusive OR.

And.

PAND—Packed Logical Bitwise AND

PANDN—Packed Logical Bitwise AND NOT

The PAND instruction performs a logical bitwise AND of the
values in the first and second operands and writes the result to
the destination.

The PANDN instruction inverts the first operand (creating a
one’s complement of the operand), ANDs it with the second
operand, and writes the result to the destination. Table 4-10 on
page 186 shows an example.

186 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Or.

POR—Packed Logical Bitwise OR

The POR instruction performs a logical bitwise OR of the values
in the first and second operands and writes the result to the
destination.

Exclusive Or.

PXOR—Packed Logical Bitwise Exclusive OR

The PXOR instruction performs a logical bitwise exclusive OR
of the values in the first and second operands and writes the
result to the destination. PXOR can be used to clear all bits in
an XMM register by specifying the same register for both
operands.

4.5.9 Save and
Restore State

These instructions save and restore the entire processor state
for 128-bit media instructions.

Save and Restore 128-Bit, 64-Bit, and x87 State.

FXSAVE—Save XMM, MMX, and x87 State.

FXRSTOR—Restore XMM, MMX, and x87 State.

The FXSAVE and FXRSTOR instructions save and restore the
entire 512-byte processor state for 128-bit media instructions,
64-bit media instructions, and x87 floating-point instructions.
The architecture supports two memory formats for FXSAVE
and FXRSTOR, a 512-byte 32-bit legacy format and a 512-byte
64-bit format. Selection of the 32-bit or 64-bit format is
determined by the effective operand size for the FXSAVE and
FXRSTOR instructions. For details, see “Saving Media and x87
Processor State” in Volume 2.

Table 4-10. Example PANDN Bit Values

Operand1 Bit
Operand1 Bit

(Inverted)
Operand2 Bit PANDN

Result Bit

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

Chapter 4: 128-Bit Media and Scientific Programming 187

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 187

Save and Restore Control and Status.

STMXCSR—Store MXCSR Control/Status Register

LDMXCSR—Load MXCSR Control/Status Register

The STMXCSR and LDMXCSR instructions save and restore
the 32-bit contents of the MXCSR register. For further
information, see “MXCSR Register” on page 140.

4.6 Instruction Summary—Floating-Point Instructions

This section summarizes the functions of the floating-point
instructions in the 128-bit media instruction subset. These
include floating-point instructions that use an XMM register for
source or destination and data-conversion instructions that
convert from floating-point to integers formats. For a summary
of the integer instructions in the 128-bit media instruction
subset, including data-conversion instructions that convert
from integer to floating-point formats, see “Instruction
Summary—Integer Instructions” on page 160.

For a summary of the 64-bit media floating-point instructions,
see “Instruction Summary—Floating-Point Instructions” on
page 265. For a summary of the x87 floating-point instructions,
see “Instruction Summary” on page 313.

The instructions are organized here by functional group—such
as data-transfer, vector arithmetic, and so on. Software running
at any privilege level can use any of these instructions, if the
CPUID instruction reports support for the instructions (see
“Feature Detection” on page 209). More detail on individual
instructions is given in the alphabetically organized “128-Bit
Media Instruction Reference” on page 1.

4.6.1 Syntax The 128-bit media floating-point instructions have the same
syntax rules as those for the 128-bit media integer instructions,
described in “Syntax” on page 160. For an illustration of typical
syntax, see Figure 4-16 on page 160.

4.6.2 Data Transfer The data-transfer instructions copy operands between 32-bit,
64-bit, or 128-bit memory locations and XMM registers. The
MOV mnemonic, which stands for move, is a misnomer. A copy
function is actually performed instead of a move. A new copy of
the source value is created at the destination address, and the
original copy remains unchanged at its source location.

188 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Move.

MOVAPS—Move Aligned Packed Single-Precision Floating-
Point

MOVAPD—Move Aligned Packed Double-Precision
Floating-Point

MOVUPS—Move Unaligned Packed Single-Precision
Floating-Point

MOVUPD—Move Unaligned Packed Double-Precision
Floating-Point

MOVHPS—Move High Packed Single-Precision Floating-
Point

MOVHPD—Move High Packed Double-Precision Floating-
Point

MOVLPS—Move Low Packed Single-Precision Floating-
Point

MOVLPD—Move Low Packed Double-Precision Floating-
Point

MOVHLPS—Move Packed Single-Precision Floating-Point
High to Low

MOVLHPS—Move Packed Single-Precision Floating-Point
Low to High

MOVSS—Move Scalar Single--Precision Floating-Point

MOVSD—Move Scalar Double-Precision Floating-Point

Figure 4-31 on page 189 shows the capabilities of the various
floating-point move instructions.

The MOVAPx instructions copy a vector of four single-precision
floating-point values (MOVAPS) or a vector of two double-
precision floating-point values (MOVAPD) from the second
operand to the first operand—i.e., from an XMM register or 128-
bit memory location or to another XMM register, or vice versa.
A general-protection exception occurs if a memory operand is
not aligned on a 16-byte boundary.

The MOVUPx instructions perform operations analogous to the
MOVAPx instructions, except that unaligned memory operands
do not cause a general-protection exception.

Chapter 4: 128-Bit Media and Scientific Programming 189

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 189

Figure 4-31. Floating-Point Move Operations

The MOVHPS and MOVHPD instructions copy a vector of two
single-precision floating-point values (MOVHPS) or one double-
precision floating-point value (MOVHPD) from a 64-bit memory

513-169.eps

MOVAPS
MOVAPD
MOVUPS
MOVUPD

MOVLPS*
MOVLPD*

127 0127 0

MOVSD

m
em

or
y

XMM Register
(source)

XMM Register
(destination)

XMM Register or Memory
(source)

XMM Register
(destination)

127 0127 0

MOVLHPS

MOVHLPS

MOVHPS*
MOVHPD*

MOVSS

MOVAPS
MOVAPD
MOVUPS
MOVUPD

MOVLPS*
MOVLPD*

MOVSD

MOVHPS*
MOVHPD*

MOVSS

127 0127 0

m
em

or
y

XMM Register
(source)

XMM Register or Memory
(destination)

* These instructions copy data only between memory and regsiter or vice versa, not between two registgers.

190 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

location to the high-order 64 bits of an XMM register, or from
the high-order 64 bits of an XMM register to a 64-bit memory
location. In the memory-to-register case, the low-order 64 bits of
the destination XMM register are not modified.

The MOVLPS and MOVLPD instructions copy a vector of two
single-precision floating-point values (MOVLPS) or one double-
precision floating-point value (MOVLPD) from a 64-bit memory
location to the low-order 64 bits of an XMM register, or from the
low-order 64 bits of an XMM register to a 64-bit memory
location. In the memory-to-register case, the high-order 64 bits
of the destination XMM register are not modified.

The MOVHLPS instruction copies a vector of two single-
precision floating-point values from the high-order 64 bits of an
XMM register to the low-order 64 bits of another XMM register.
The high-order 64 bits of the destination XMM register are not
modified. The MOVLHPS instruction performs an analogous
operation except in the opposite direct (low-order to high-
order), and the low-order 64 bits of the destination XMM
register are not modified.

The MOVSS instruction copies a scalar single-precision
floating-point value from the low-order 32 bits of an XMM
register or a 32-bit memory location to the low-order 32 bits of
another XMM register, or vice versa. If the source operand is an
XMM register, the high-order 96 bits of the destination XMM
register are not modified. If the source operand is a 32-bit
memory location, the high-order 96 bits of the destination XMM
register are cleared to all 0s.

The MOVSD instruction copies a scalar double-precision
floating-point value from the low-order 64 bits of an XMM
register or a 64-bit memory location to the low-order 64 bits of
another XMM register, or vice versa. If the source operand is an
XMM register, the high-order 64 bits of the destination XMM
register are not modified. If the source operand is a memory
location, the high-order 64 bits of the destination XMM register
are cleared to all 0s.

The above MOVSD instruction should not be confused with the
same-mnemonic MOVSD (move string doubleword) instruction
in the general-purpose instruction set. Assemblers distinguish
the two instructions by their operand data types.

Chapter 4: 128-Bit Media and Scientific Programming 191

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 191

Move Non-Temporal. The move non-temporal instructions are
streaming-store instructions. They minimize pollution of the
cache.

MOVNTPS—Move Non-Temporal Packed Single-Precision
Floating-Point

MOVNTPD—Move Non-Temporal Packed Double-Precision
Floating-Point

The MOVNTPx instructions copy four single-precision floating-
point (MOVNTPS) or two double-precision floating-point
(MOVNTPD) values from an XMM register into a 128-bit
memory location.

These instructions indicate to the processor that their data is
non-temporal, which assumes that the data they reference will
be used only once and is therefore not subject to cache-related
overhead (as opposed to temporal data, which assumes that the
data will be accessed again soon and should be cached). The
non-temporal instructions use weakly-ordered, write-combining
buffering of write data, and they minimizes cache pollution.
The exact method by which cache pollution is minimized
depends on the hardware implementation of the instruction.
For further information, see “Memory Optimization” on
page 113.

Move Mask.

MOVMSKPS—Extract Packed Single-Precision Floating-
Point Sign Mask

MOVMSKPD—Extract Packed Double-Precision Floating-
Point Sign Mask

The MOVMSKPS instruction copies the sign bits of four single-
precision floating-point values in an XMM register to the four
low-order bits of a 32-bit or 64-bit general-purpose register, with
zero-extension. The MOVMSKPD instruction copies the sign
bits of two double-precision floating-point values in an XMM
register to the two low-order bits of a general-purpose register,
with zero-extension. The result of either instruction is a sign-bit
mask that can be used for data-dependent branching.
Figure 4-32 on page 192 shows the MOVMSKPS operation.

192 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4-32. MOVMSKPS Move Mask Operation

4.6.3 Data Conversion The floating-point data-conversion instructions convert
floating-point operands to integer operands.

These data-conversion instructions take 128-bit floating-point
source operands. For data-conversion instructions that take 128-
bit integer source operands, see “Data Conversion” on
page 166. For data-conversion instructions that take 64-bit
source operands, see “Data Conversion” on page 250 and “Data
Conversion” on page 266.

Convert Floating-Point to Floating-Point. These instructions convert
floating-point data types in XMM registers or memory into
different floating-point data types in XMM registers.

CVTPS2PD—Convert Packed Single-Precision Floating-
Point to Packed Double-Precision Floating-Point

CVTPD2PS—Convert Packed Double-Precision Floating-
Point to Packed Single-Precision Floating-Point

CVTSS2SD—Convert Scalar Single-Precision Floating-Point
to Scalar Double-Precision Floating-Point

CVTSD2SS—Convert Scalar Double-Precision Floating-
Point to Scalar Single-Precision Floating-Point

The CVTPS2PD instruction converts two single-precision
floating-point values in the low-order 64 bits of the second
operand (an XMM register or a 64-bit memory location) to two
double-precision floating-point values in the destination
operand (an XMM register).

The CVTPD2PS instruction converts two double-precision
floating-point values in the second operand to two single-

513-158.eps

GPR XMM127 0

concatenate 4 sign bits

0

Chapter 4: 128-Bit Media and Scientific Programming 193

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 193

precision floating-point values in the low-order 64 bits of the
destination. The high-order 64 bits in the destination XMM
register are cleared to all 0s. If the result of the conversion is an
inexact value, the value is rounded.

The CVTSS2SD instruction converts a single-precision floating-
point value in the low-order 32 bits of the second operand to a
double-precision floating-point value in the low-order 64 bits of
the destination. The high-order 64 bits in the destination XMM
register are not modified.

The CVTSD2SS instruction converts a double-precision
floating-point value in the low-order 64 bits of the second
operand to a single-precision floating-point value in the low-
order 64 bits of the destination. The three high-order
doublewords in the destination XMM register are not modified.
If the result of the conversion is an inexact value, the value is
rounded.

Convert Floating-Point to XMM Integer. These instructions convert
floating-point data types in XMM registers or memory into
integer data types in XMM registers.

CVTPS2DQ—Convert Packed Single-Precision Floating-
Point to Packed Doubleword Integers

CVTPD2DQ—Convert Packed Double-Precision Floating-
Point to Packed Doubleword Integers

CVTTPS2DQ—Convert Packed Single-Precision Floating-
Point to Packed Doubleword Integers, Truncated

CVTTPD2DQ—Convert Packed Double-Precision Floating-
Point to Packed Doubleword Integers, Truncated

The CVTPS2DQ and CVTTPS2DQ instructions convert four
single-precision floating-point values in the second operand to
four 32-bit signed integer values in the destination. For the
CVTPS2DQ instruction, if the result of the conversion is an
inexact value, the value is rounded, but for the CVTTPS2DQ
instruction such a result is truncated (rounded toward zero).

The CVTPD2DQ and CVTTPD2DQ instructions convert two
double-precision floating-point values in the second operand to
two 32-bit signed integer values in the destination. The high-
order 64 bits in the destination XMM register are cleared to all
0s. For the CVTPD2DQ instruction, if the result of the
conversion is an inexact value, the value is rounded, but for the

194 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

CVTTPD2DQ instruction such a result is truncated (rounded
toward zero).

For a description of 128-bit media instructions that convert in
the opposite direction—integer to floating-point—see “Convert
Integer to Floating-Point” on page 166.

Convert Floating-Point to MMX™ Integer. These instructions convert
floating-point data types in XMM registers or memory into
integer data types in MMX registers.

CVTPS2PI—Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers

CVTPD2PI—Convert Packed Double-Precision Floating-
Point to Packed Doubleword Integers

CVTTPS2PI—Convert Packed Single-Precision Floating-
Point to Packed Doubleword Integers, Truncated

CVTTPD2PI—Convert Packed Double-Precision Floating-
Point to Packed Doubleword Integers, Truncated

The CVTPS2PI and CVTTPS2PI instructions convert two single-
precision floating-point values in the low-order 64 bits of an
XMM register or a 64-bit memory location to two 32-bit signed
integer values in an MMX register. For the CVTPS2PI
instruction, if the result of the conversion is an inexact value,
the value is rounded, but for the CVTTPS2PI instruction such a
result is truncated (rounded toward zero).

The CVTPD2PI and CVTTPD2PI instructions convert two
double-precision floating-point values in an XMM register or a
128-bit memory location to two 32-bit signed integer values in
an MMX register. For the CVTPD2PI instruction, if the result of
the conversion is an inexact value, the value is rounded, but for
the CVTTPD2PI instruction such a result is truncated (rounded
toward zero).

Before executing a CVTxPS2PI or CVTxPD2PI instruction,
software should ensure that the MMX registers are properly
initialized so as to prevent conflict with their aliased use by x87
floating-point instructions. This may require clearing the MMX
state, as described in “Accessing Operands in MMX™
Registers” on page 223.

For a description of 128-bit media instructions that convert in
the opposite direction—integer in MMX registers to floating-
point in XMM registers—see “Convert MMX Integer to

Chapter 4: 128-Bit Media and Scientific Programming 195

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 195

Floating-Point” on page 166. For a summary of instructions that
operate on MMX registers, see Chapter 5, “64-Bit Media
Programming.”

Convert Floating-Point to GPR Integer. These instructions convert
floating-point data types in XMM registers or memory into
integer data types in GPR registers.

CVTSS2SI—Convert Scalar Single-Precision Floating-Point
to Signed Doubleword or Quadword Integer

CVTSD2SI—Convert Scalar Double-Precision Floating-Point
to Signed Doubleword or Quadword Integer

CVTTSS2SI—Convert Scalar Single-Precision Floating-
Point to Signed Doubleword or Quadword Integer, Truncated

CVTTSD2SI—Convert Scalar Double-Precision Floating-
Point to Signed Doubleword or Quadword Integer, Truncated

The CVTSS2SI and CVTTSS2SI instructions convert a single-
precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit or 64-bit
signed integer value in a general-purpose register. For the
CVTSS2SI instruction, if the result of the conversion is an
inexact value, the value is rounded, but for the CVTTSS2SI
instruction such a result is truncated (rounded toward zero).

The CVTSD2SI and CVTTSD2SI instructions convert a double-
precision floating-point value in the low-order 64 bits of an
XMM register or a 64-bit memory location to a 32-bit or 64-bit
signed integer value in a general-purpose register. For the
CVTSD2SI instruction, if the result of the conversion is an
inexact value, the value is rounded, but for the CVTTSD2SI
instruction such a result is truncated (rounded toward zero).

For a description of 128-bit media instructions that convert in
the opposite direction—integer in GPR registers to floating-
point in XMM registers—see “Convert GPR Integer to Floating-
Point” on page 167. For a summary of instructions that operate
on GPR registers , see Chapter 3 , “General -Purpose
Programming.”

4.6.4 Data Reordering The floating-point data-reordering instructions unpack and
interleave, or shuffle the elements of vector operands.

196 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Unpack and Interleave. These instructions interleave vector
elements from the high or low halves of two floating-point
source operands.

UNPCKHPS—Unpack High Single-Precision Floating-Point

UNPCKHPD—Unpack High Double-Precision Floating-
Point

UNPCKLPS—Unpack Low Single-Precision Floating-Point

UNPCKLPD—Unpack Low Double-Precision Floating-Point

The UNPCKHPx instructions copy the high-order two single-
precision floating-point values (UNPCKHPS) or one double-
precision floating-point value (UNPCKHPD) in the first and
second operands and interleave them into the 128-bit
destination. The low-order 64 bits of the source operands are
ignored.

The UNPCKLPx instructions are analogous to their high-
element counterparts except that they take elements from the
low quadword of each source vector and ignore elements in the
high quadword.

Depending on the hardware implementation, if the source
operand for UNPCKHPx or UNPCKLPx is in memory, only the
low 64 bits of the operand may be loaded.

Figure 4-33 shows the UNPCKLPS instruction. The elements
are taken from the low half of the source operands. In this
register image, elements from operand2 are placed to the left of
elements from operand1.

Figure 4-33. UNPCKLPS Unpack and Interleave Operation

513-159.eps

operand 1

result

127 0
operand 2

127 0

127 0

Chapter 4: 128-Bit Media and Scientific Programming 197

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 197

Shuffle. These instructions reorder the elements of a vector.

SHUFPS—Shuffle Packed Single-Precision Floating-Point

SHUFPD—Shuffle Packed Double-Precision Floating-Point

The SHUFPS instruction moves any two of the four single-
precision floating-point values in the first operand to the low-
order quadword of the destination and moves any two of the
four single-precision floating-point values in the second
operand to the high-order quadword of the destination. In each
case, the value of the destination is determined by a field in the
immediate-byte operand.

Figure 4-34 shows the SHUFPS shuffle operation. SHUFPS is
useful, for example, in color imaging when computing alpha
saturation of RGB values. In this case, SHUFPS can replicate an
alpha value in a register so that parallel comparisons with three
RGB values can be performed.

Figure 4-34. SHUFPS Shuffle Operation

The SHUFPD instruction moves either of the two double-
precision floating-point values in the first operand to the low-
order quadword of the destination and moves either of the two
double-precision floating-point values in the second operand to
the high-order quadword of the destination.

4.6.5 Arithmetic The floating-point vector-arithmetic instructions perform an
arithmetic operation on two floating-point operands.

513-160.epsresult

operand 1
127 0

127 0

operand 2
127 0

imm8

muxmux

198 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Addition.

ADDPS—Add Packed Single-Precision Floating-Point

ADDPD— Add Packed Double-Precision Floating-Point

ADDSS—Add Scalar Single-Precision Floating-Point

ADDSD—Add Scalar Double-Precision Floating-Point

The ADDPS instruction adds each of four single-precision
floating-point values in the first operand to the corresponding
single-precision floating-point values in the second operand and
writes the result in the corresponding quadword of the
destination. The ADDPD instruction performs an analogous
operation for two double-precision floating-point values.

Figure 4-35 shows a typical arithmetic operation on vectors of
floating-point single-precision elements—in this case an
ADDPS instruction. The instruction performs four arithmetic
operations in parallel.

Figure 4-35. ADDPS Arithmetic Operation

The ADDSS instruction adds the single-precision floating-point
value in the low-order doubleword of the first operand to the
single-precision floating-point value in the low-order
doubleword of the second operand and writes the result in the
low-order doubleword of the destination. The three high-order
doublewords of the destination are not modified.

The ADDSD instruction adds the double-precision floating-
point value in the low-order quadword of the first operand to
the double-precision floating-point value in the low-order

513-164.eps

. .. .

. .

operation
operation

result

operand 1
127 0

127 0

operand 2
127 0

FP single FP single FP single FP single FP single FP single FP single FP single

FP single FP single FP single FP single

Chapter 4: 128-Bit Media and Scientific Programming 199

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 199

quadword of the second operand and writes the result in the
low-order quadword of the destination. The high-order
quadword of the destination is not modified.

Subtraction.

SUBPS—Subtract Packed Single-Precision Floating-Point

SUBPD—Subtract Packed Double-Precision Floating-Point

SUBSS—Subtract Scalar Single-Precision Floating-Point

SUBSD—Subtract Scalar Double-Precision Floating-Point

The SUBPS instruction subtracts each of four single-precision
floating-point values in the second operand from the
corresponding single-precision floating-point value in the first
operand and writes the result in the corresponding quadword of
the destination. The SUBPD instruction performs an analogous
operation for two double-precision floating-point values.

For vectors of n number of elements, the operations are:

operand1[i] = operand1[i] - operand2[i]

where: = 0 to n – 1

The SUBSS instruction subtracts the single-precision floating-
point value in the low-order doubleword of the second operand
from the corresponding single-precision floating-point value in
the low-order doubleword of the first operand and writes the
result in the low-order doubleword of the destination. The three
high-order doublewords of the destination are not modified.

The SUBSD instruction subtracts the double-precision floating-
point value in the low-order quadword of the second operand
from the corresponding double-precision floating-point value in
the low-order quadword of the first operand and writes the
result in the low-order quadword of the destination. The high-
order quadword of the destination is not modified.

Multiplication.

MULPS—Multiply Packed Single-Precision Floating-Point

MULPD—Multiply Packed Double-Precision Floating-Point

MULSS—Multiply Scalar Single-Precision Floating-Point

MULSD—Multiply Scalar Double-Precision Floating-Point

The MULPS instruction multiplies each of four single-precision
floating-point values in the first operand by the corresponding

200 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

single-precision floating-point value in the second operand and
writes the result in the corresponding doubleword of the
destination. The MULPD instruction performs an analogous
operation for two double-precision floating-point values.

The MULSS instruction multiplies the single-precision floating-
point value in the low-order doubleword of the first operand by
the single-precision floating-point value in the low-order
doubleword of the second operand and writes the result in the
low-order doubleword of the destination. The three high-order
doublewords of the destination are not modified.

The MULSD instruction multiplies the double-precision
floating-point value in the low-order quadword of the first
operand by the double-precision floating-point value in the low-
order quadword of the second operand and writes the result in
the low-order quadword of the destination. The high-order
quadword of the destination is not modified.

Division.

DIVPS—Divide Packed Single-Precision Floating-Point

DIVPD—Divide Packed Double-Precision Floating-Point

DIVSS—Divide Scalar Single-Precision Floating-Point

DIVSD—Divide Scalar Double-Precision Floating-Point

The DIVPS instruction divides each of the four single-precision
floating-point values in the first operand by the corresponding
single-precision floating-point value in the second operand and
writes the result in the corresponding quadword of the
destination. The DIVPD instruction performs an analogous
operation for two double-precision floating-point values. For
vectors of n number of elements, the operations are:

operand1[i] = operand1[i] ÷ operand2[i]

where: i = 0 to n – 1

The DIVSS instruction divides the single-precision floating-
point value in the low-order doubleword of the first operand by
the single-precision floating-point value in the low-order
doubleword of the second operand and writes the result in the
low-order doubleword of the destination. The three high-order
doublewords of the destination are not modified.

The DIVSD instruction divides the double-precision floating-
point value in the low-order quadword of the first operand by

Chapter 4: 128-Bit Media and Scientific Programming 201

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 201

the double-precision floating-point value in the low-order
quadword of the second operand and writes the result in the
low-order quadword of the destination. The high-order
quadword of the destination is not modified.

If accuracy requirements allow, convert floating-point division
by a constant to a multiply by the reciprocal. Divisors that are
powers of two and their reciprocals are exactly representable,
and therefore do not cause an accuracy issue, except for the
rare cases in which the reciprocal overflows or underflows.

Square Root.

SQRTPS—Square Root Packed Single-Precision Floating-
Point

SQRTPD—Square Root Packed Double-Precision Floating-
Point

SQRTSS—Square Root Scalar Single-Precision Floating-
Point

SQRTSD—Square Root Scalar Double-Precision Floating-
Point

The SQRTPS instruction computes the square root of each of
four single-precision floating-point values in the second
operand (an XMM register or 128-bit memory location) and
writes the result in the corresponding doubleword of the
destination. The SQRTPD instruction performs an analogous
operation for two double-precision floating-point values.

The SQRTSS instruction computes the square root of the low-
order single-precision floating-point value in the second
operand (an XMM register or 32-bit memory location) and
writes the result in the low-order doubleword of the destination.
The three high-order doublewords of the destination XMM
register are not modified.

The SQRTSD instruction computes the square root of the low-
order double-precision floating-point value in the second
operand (an XMM register or 64-bit memory location) and
writes the result in the low-order quadword of the destination.
The high-order quadword of the destination XMM register is
not modified.

202 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Reciprocal Square Root.

RSQRTPS—Reciprocal Square Root Packed Single-
Precision Floating-Point

RSQRTSS—Reciprocal Square Root Scalar Single-Precision
Floating-Point

The RSQRTPS instruction computes the approximate
reciprocal of the square root of each of four single-precision
floating-point values in the second operand (an XMM register
or 128-bit memory location) and writes the result in the
corresponding doubleword of the destination.

The RSQRTSS instruction computes the approximate
reciprocal of the square root of the low-order single-precision
floating-point value in the second operand (an XMM register or
32-bit memory location) and writes the result in the low-order
doubleword of the destination. The three high-order
doublewords in the destination XMM register are not modified.

For both RSQRTPS and RSQRTSS, the maximum relative error
is less than or equal to 1.5 * 2–12.

Reciprocal Estimation.

RCPPS—Reciprocal Packed Single-Precision Floating-Point

RCPSS—Reciprocal Scalar Single-Precision Floating-Point

The RCPPS instruction computes the approximate reciprocal of
each of the four single-precision floating-point values in the
second operand (an XMM register or 128-bit memory location)
and writes the result in the corresponding doubleword of the
destination.

The RCPSS instruction computes the approximate reciprocal of
the low-order single-precision floating-point value in the second
operand (an XMM register or 32-bit memory location) and
writes the result in the low-order doubleword of the destination.
The three high-order doublewords in the destination are not
modified.

For both RCPPS and RCPSS, the maximum relative error is less
than or equal to 1.5 * 2–12.

4.6.6 Compare The floating-point vector-compare instructions compare two
operands, and they either write a mask, or they write the
maximum or minimum value, or they set flags. Compare

Chapter 4: 128-Bit Media and Scientific Programming 203

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 203

instructions can be used to avoid branches. Figure 4-10 on
page 138 shows an example of using compare instructions.

Compare and Write Mask.

CMPPS—Compare Packed Single-Precision Floating-Point

CMPPD—Compare Packed Double-Precision Floating-Point

CMPSS—Compare Scalar Single-Precision Floating-Point

CMPSD—Compare Scalar Double-Precision Floating-Point

The CMPPS instruction compares each of four single-precision
f loat ing -point va lues in the f i rs t operand with the
corresponding single-precision floating-point value in the
second operand and writes the result in the corresponding 32
bits of the destination. The type of comparison is specified by
the three low-order bits of the immediate-byte operand. The
result of each compare is a 32-bit value of all 1s (TRUE) or all 0s
(FALSE). Some compare operations that are not directly
supported by the immediate -byte encodings can be
implemented by swapping the contents of the source and
destination operands before executing the compare.

The CMPPD instruction performs an analogous operation for
two double-precision floating-point values. The CMPSS
instruction performs an analogous operation for the single-
precision floating-point values in the low-order 32 bits of the
source operands. The three high-order doublewords of the
destination are not modified. The CMPSD instruction performs
an analogous operation for the double-precision floating-point
values in the low-order 64 bits of the source operands. The high-
order 64 bits of the destination XMM register are not modified.

Figure 4-36 on page 204 shows a CMPPD compare operation.

204 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4-36. CMPPD Compare Operation

Compare and Write Minimum or Maximum.

MAXPS—Maximum Packed Single-Precision Floating-Point

MAXPD—Maximum Packed Double-Precision Floating-
Point

MAXSS—Maximum Scalar Single-Precision Floating-Point

MAXSD—Maximum Scalar Double-Precision Floating-Point

MINPS—Minimum Packed Single-Precision Floating-Point

MINPD—Minimum Packed Double-Precision Floating-Point

MINSS—Minimum Scalar Single-Precision Floating-Point

MINSD—Minimum Scalar Double-Precision Floating-Point

The MAXPS and MINPS instructions compare each of four
single-precision floating-point values in the first operand with
the corresponding single-precision floating-point value in the
second operand and writes the maximum or minimum,
respectively, of the two values in the corresponding doubleword
of the destination. The MAXPD and MINPD instructions
perform analogous operations on pairs of double-precision
floating-point values.

The MAXSS and MINSS instructions compare the single-
precision floating-point value in the low-order 32 bits of the

513-162.epsresult

operand 1
127 0

127 0

operand 2
127 0

imm8

compare

all 1s or 0s all 1s or 0s

compare

Chapter 4: 128-Bit Media and Scientific Programming 205

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 205

first operand with the single-precision floating-point value in
the low-order 32 bits of the second operand and writes the
maximum or minimum, respectively, of the two values in the
low-order 32 bits of the destination. The three high-order
doublewords of the destination XMM register are not modified.

The MAXSD and MINSD instructions compare the double-
precision floating-point value in the low-order 64 bits of the
first operand with the double-precision floating-point value in
the low-order 64 bits of the second operand and writes the
maximum or minimum, respectively, of the two values in the
low-order quadword of the destination. The high-order
quadword of the destination XMM register is not modified.

The MINx and MAXx instructions are useful for clamping
(saturating) values, such as color values in 3D geometry and
rasterization.

Compare and Write rFLAGS.

COMISS—Compare Ordered Scalar Single-Precision
Floating-Point

COMISD—Compare Ordered Scalar Double-Precision
Floating-Point

UCOMISS—Unordered Compare Scalar Single-Precision
Floating-Point

UCOMISD—Unordered Compare Scalar Double-Precision
Floating-Point

The COMISS instruction performs an ordered compare of the
single-precision floating-point value in the low-order 32 bits of
the first operand with the single-precision floating-point value
in the low-order 32 bits of the second operand and sets the zero
flag (ZF), parity flag (PF), and carry flag (CF) bits in the
rFLAGS register to reflect the result of the compare. The OF,
AF, and SF bits in rFLAGS are set to zero.

The COMISD instruction performs an analogous operation on
the double-precision floating-point values in the low-order 64
bits of the source operands. The UCOMISS and UCOMISD
instructions perform an analogous, but unordered, compare
operations. Figure 4-37 on page 206 shows a COMISD compare
operation.

206 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 4-37. COMISD Compare Operation

The difference between an ordered and unordered comparison
has to do with the conditions under which a floating-point
invalid-operation exception (IE) occurs. In an ordered
comparison (COMISS or COMISD), an IE exception occurs if
either of the source operands is either type of NaN (QNaN or
SNaN). In an unordered comparison, the exception occurs only
if a source operand is an SNaN. For a description of NaNs, see
“Floating-Point Number Representation” on page 152. For a
description of exceptions, see “Exceptions” on page 209.

4.6.7 Logical The vector-logic instructions perform Boolean logic operations,
including AND, OR, and exclusive OR.

And.

ANDPS—Logical Bitwise AND Packed Single-Precision
Floating-Point

ANDPD—Logical Bitwise AND Packed Double-Precision
Floating-Point

ANDNPS—Logical Bitwise AND NOT Packed Single-
Precision Floating-Point

ANDNPD—Logical Bitwise AND NOT Packed Double-
Precision Floating-Point

The ANDPS instruction performs a logical bitwise AND of the
four packed single-precision floating-point values in the first
operand and the corresponding four single-precision floating-
point values in the second operand and writes the result in the
destination. The ANDPD instruction performs an analogous

513-161.eps

operand 1
127 0

operand 2
127 0

compare

03163

rFLAGS0

Chapter 4: 128-Bit Media and Scientific Programming 207

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 207

operation on two packed double-precision floating-point values.
The ANDNPS and ANDNPD instructions invert the elements of
the first source vector (creating a one’s complement of each
element), AND them with the elements of the second source
vector, and write the result to the destination.

Or.

ORPS—Logical Bitwise OR Packed Single-Precision
Floating-Point

ORPD—Logical Bitwise OR Packed Double-Precision
Floating-Point

The ORPS instruction performs a logical bitwise OR of four
single-precision floating-point values in the first operand and
the corresponding four single-precision floating-point values in
the second operand and writes the result in the destination. The
ORPD instruction performs an analogous operation on pairs of
two double-precision floating-point values.

Exclusive Or.

XORPS—Logical Bitwise Exclusive OR Packed Single-
Precision Floating-Point

XORPD—Logical Bitwise Exclusive OR Packed Double-
Precision Floating-Point

The XORPS instruction performs a logical bitwise exclusive OR
of four single-precision floating-point values in the first
operand and the corresponding four single-precision floating-
point values in the second operand and writes the result in the
destination. The XORPD instruction performs an analogous
operation on pairs of two double-precision floating-point
values.

4.7 Instruction Effects on Flags

The STMXCSR and LDMXCSR instructions, described in “Save
and Restore State” on page 186, read and write flags in the
MXCSR register. For a description of the MXCSR register, see
“MXCSR Register” on page 140.

The COMISS, COMISD, UCOMISS, and UCOMISD instructions,
described in “Compare” on page 202, write flag bits in the
rFLAGS register. For a description of the rFLAGS register, see
“Flags Register” on page 37.

208 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

4.8 Instruction Prefixes

Instruction prefixes, in general, are described in “Instruction
Prefixes” on page 85. The following restrictions apply to the use
of instruction prefixes with 128-bit media instructions.

4.8.1 Supported
Prefixes

The following prefixes can be used with 128-bit media
instructions:

Address-Size Override—The 67h prefix affects only operands
in memory. The prefix is ignored by all other 128-bit media
instructions.

Operand-Size Override—The 66h prefix is used to form the
opcodes of certain 128-bit media instructions. The prefix is
ignored by all other 128-bit media instructions.

Segment Overrides—The 2Eh (CS), 36h (SS), 3Eh (DS), 26h
(ES), 64h (FS), and 65h (GS) prefixes affect only operands in
memory. In 64-bit mode, the contents of the CS, DS, ES, SS
segment registers are ignored.

REP—The F2 and F3h prefixes do not function as repeat
prefixes for 128-bit media instructions. Instead, they are
used to form the opcodes of certain 128-bit media
instructions. The prefixes are ignored by all other 128-bit
media instructions.

REX—The REX prefixes affect operands that reference a
GPR or XMM register when running in 64-bit mode. It allows
access to the full 64-bit width of any of the 16 extended
GPRs and to any of the 16 extended XMM registers. The
REX prefix also affects the FXSAVE and FXRSTOR
instructions, in which it selects between two types of 512-
byte memory-image format, as described in “Saving Media
and x87 Processor State” in Volume 2. The prefix is ignored
by all other 128-bit media instructions.

4.8.2 Special-Use and
Reserved Prefixes

The following prefixes are used as opcode bytes in some 128-bit
media instructions and are reserved in all other 128-bit media
instructions:

Operand-Size Override—The 66h prefix.

REP—The F2 and F3h prefixes.

4.8.3 Prefixes That
Cause Exceptions

The following prefixes cause an exception:

LOCK—The F0h prefix causes an invalid-opcode exception
when used with 128-bit media instructions.

Chapter 4: 128-Bit Media and Scientific Programming 209

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 209

4.9 Feature Detection

Before executing 128-bit media instructions, software should
determine whether the processor supports the technology by
executing the CPUID instruction. “Feature Detection” on
page 90 describes how software uses the CPUID instruction to
detect feature support. For full support of the 128-bit media
instructions documented here, the following features require
detection:

SSE, indicated by bit 25 of CPUID extended function
8000_0001h.

SSE2, indicated by bit 26 of CPUID extended function
8000_0001h.

FXSAVE and FXRSTOR, indicated by bit 24 of CPUID
standard function 1 and extended function 8000_0001h.DD

Software that runs in long mode should also check for the
following support:

Long Mode, indicated by bit 29 of CPUID extended function
8000_0001h.

See “Processor Feature Identification” in Volume 2 for a full
description of the CPUID instruction and its function codes.

In addition, the operating system must support the FXSAVE
and FXRSTOR instructions (by having set CR4.OSFXSR = 1),
and it may wish to support SIMD floating-point exceptions (by
having set CR4.OSXMMEXCPT = 1). For details, see “System-
Control Registers” in Volume 2.

4.10 Exceptions

Types of Exceptions. 128-bit media instructions can generate two
types of exceptions:

General-Purpose Exceptions, described below in “General-
Purpose Exceptions”

SIMD Floating-Point Exception, described below in “SIMD
Floating-Point Exception Causes” on page 211

Relation to x87 Exceptions. Although the 128-bit media instructions
and the x87 floating-point instructions each have certain
exceptions with the same names, the exception-reporting and

210 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

exception-handling methods used by the two instruction
subsets are distinct and independent of each other. If
procedures using both types of instructions are run in the same
operating environment, separate services routines should be
provided for the exceptions of each type of instruction subset.

4.10.1 General-
Purpose Exceptions

The sections below list general-purpose exceptions generated
and not generated by 128-bit media instructions. For a summary
of the general-purpose exception mechanism, see “Interrupts
and Exceptions” on page 104. For details about each exception
and its potential causes, see “Exceptions and Interrupts” in
Volume 2.

Exceptions Generated. 128-bit media instructions can generate the
following general-purpose exceptions:

#DB—Debug Exception (Vector 1)

#UD—Invalid-Opcode Exception (Vector 6)

#NM—Device-Not-Available Exception (Vector 7)

#DF—Double-Fault Exception (Vector 8)

#SS—Stack Exception (Vector 12)

#GP—General-Protection Exception (Vector 13)

#PF—Page-Fault Exception (Vector 14)

#MF—x87 Floating-Point Exception-Pending (Vector 16)

#AC—Alignment-Check Exception (Vector 17)

#MC—Machine-Check Exception (Vector 18)

#XF—SIMD Floating-Point Exception (Vector 19)

A device-not-available exception (#NM) can occur if an attempt
is made to execute a 128-bit media instruction when the task
switch bit (TS) of the control register (CR0) is set to 1
(CR0.TS = 1).

An invalid-opcode exception (#UD) can occur if:

a required CPUID feature flag is not set (see “Feature
Detection” on page 209), or

an FXSAVE or FXRSTOR instruction is executed when the
floating-point software-emulation (EM) bit in control
register 0 is set to 1 (CR0.EM = 1), or when the operating-
system FXSAVE/FXRSTOR support bit (OSFXSR) in control
register 4 is cleared to 0 (CR4.OSXSR = 0), or

Chapter 4: 128-Bit Media and Scientific Programming 211

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 211

a SIMD floating-point exception occurs when the operating-
system XMM exception support bit (OSXMMEXCPT) in
control register 4 is cleared to 0 (CR4.OSXMMEXCPT = 0).

Only the following 128-bit media instructions, all of which can
access an MMX™ register, can cause an #MF exception:

Data Conversion: CVTPD2PI, CVTPS2PI, CPTPI2PD,
CVTPI2PS, CVTTPD2PI, CVTTPS2PI.

Data Transfer: MOVDQ2Q, MOVQ2DQ.

For details on the system control-register bits, see “System-
Control Registers” in Volume 2. For details on the machine-
check mechanism, see “Machine Check Mechanism” in
Volume 2.

For details on #XF exceptions, see “SIMD Floating-Point
Exception Causes” on page 211.

Exceptions Not Generated. 128-bit media instructions do not
generate the following general-purpose exceptions:

#DE—Divide-by-zero-error exception (Vector 0)

Non-Maskable-Interrupt Exception (Vector 2)

#BP—Breakpoint Exception (Vector 3)

#OF—Overflow exception (Vector 4)

#BR—Bound-range exception (Vector 5)

Coprocessor-segment-overrun exception (Vector 9)

#TS—Invalid-TSS exception (Vector 10)

#NP—Segment-not-present exception (Vector 11)

#MC—Machine-check exception (Vector 18)

For details on all general-purpose exceptions, see “Exceptions
and Interrupts” in Volume 2.

4.10.2 SIMD Floating-
Point Exception
Causes

The SIMD floating-point exception is the logical OR of the six
floating-point exceptions (IE, DE, ZE, OE, UE, PE) that are
reported (signalled) in the MXCSR register’s exception flags
(“MXCSR Register” on page 140). Each of these six exceptions
can be either masked or unmasked by software, using the mask
bits in the MXCSR register.

Exception Vectors. The SIMD floating-point exception is listed
above as #XF (Vector 19) but it actually causes either an #XF

212 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

exception or a #UD (Vector 6) exception, if an unmasked IE,
DE, ZE, OE, UE, or PE exception is reported. The choice of
exception vector is determined by the operating-system XMM
exception support bit (OSXMMEXCPT) in control register 4
(CR4):

When CR4.OSXMMEXCPT = 1, a #XF exception occurs.

When CR4.OSXMMEXCPT = 0, a #UD exception occurs.

SIMD floating-point exceptions are precise. If an exception
occurs when it is masked, the processor responds in a default
way that does not invoke the SIMD floating-point exception
service routine. If an exception occurs when it is unmasked, the
processor suspends processing of the faulting instruction
precisely and invokes the exception service routine.

Exception Types and Flags. SIMD floating-point exceptions are
differentiated into six types, five of which are mandated by the
IEEE 754 standard. These six types and their bit-flags in the
MXCSR register are shown in Table 4-11. The causes and
handling of such exceptions are described below.

The sections below describe the causes for the SIMD floating-
point exceptions. The pseudocode equations in these
descriptions assume logical TRUE = 1 and the following
definitions:

Table 4-11. SIMD Floating-Point Exception Flags

Exception and
Mnemonic MXCSR Bit1

Comparable IEEE 754
Exception

Invalid-operation exception (IE) 0 Invalid Operation

Denormalized operation exception (DE) 1 none

Zero-divide exception (ZE) 2 Division by Zero

Overflow exception (OE) 3 Overflow

Underflow exception (UE) 4 Underflow

Precision exception (PE) 5 Inexact

Note:
1. See “MXCSR Register” on page 140 for a summary of each exception.

Chapter 4: 128-Bit Media and Scientific Programming 213

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 213

Maxnormal

The largest normalized number that can be represented in
the destination format. This is equal to the format’s largest
representable finite, positive or negative value. (Normal
numbers are described in “Normalized Numbers” on
page 153.)

Minnormal

The smallest normalized number that can be represented in
the destination format. This is equal to the format’s smallest
precisely representable positive or negative value with an
unbiased exponent of 1.

Resultinfinite

A result of infinite precision, which is representable when
the width of the exponent and the width of the significand
are both infinite.

Resultround

A result, after rounding, whose unbiased exponent is
infinitely wide and whose significand is the width specified
for the destination format. (Rounding is described in
“Floating-Point Rounding” on page 158.)

Resultround, denormal

A resul t , a f ter rounding and denormal izat ion .
(Denormalization is described in “Denormalized (Tiny)
Numbers” on page 154.)

Masked and unmasked responses to the exceptions are
described in “SIMD Floating-Point Exception Masking” on
page 218. The priority of the exceptions is described in “SIMD
Floating-Point Exception Priority” on page 216.

Invalid-Operation Exception (IE). The IE exception occurs due to one
of the attempted invalid operations shown in Table 4-12 on
page 214.

214 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Denormalized-Operand Exception (DE). The DE exception occurs
when one of the source operands of an instruction is in
denormalized form, as described in “Denormalized (Tiny)
Numbers” on page 154.

Zero-Divide Exception (ZE). The ZE exception occurs when and
instruction attempts to divide zero into a non-zero finite
dividend.

Overflow Exception (OE). The OE exception occurs when the value
of a rounded floating-point result is larger than the largest
representable normalized positive or negative floating-point
number in the destination format. Specifically:

OE = Resultround > Maxnormal

Table 4-12. Invalid-Operation Exception (IE) Causes

Operation Condition

Any Arithmetic Operation, and
CVTPS2PD, CVTPD2PS, CVTSS2SD, CVTSD2SS

A source operand is an SNaN

MAXPS, MAXPD, MAXSS, MAXSD
MINPS, MINPD, MINSS, MINSD
CMPPS, CMPPD, CMPSS, CMPSD
COMISS, COMISD

A source operand is a NaN (QNaN or
SNaN)

ADDPS, ADDPD, ADDSS, ADDSD Source operands are infinities with
opposite signs

SUBPS, SUBPD, SUBSS, SUBSD
Source operands are infinities with
same sign

MULPS, MULPD, MULSS, MULSD Source operands are zero and infinity

DIVPS, DIVPD, DIVSS, DIVSD
Source operands are both infinity or
both zero

SQRTPS, SQRTPD, SQRTSS, SQRTSD Source operand is less than zero
(except ±0 which returns ±0)

Data conversion from floating-point to integer
(CVTPS2PI, CVTPD2PI, CVTSS2SI, CVTSD2SI,
CVTPS2DQ, CVTPD2DQ, CVTTPS2PI,
CVTTPD2PI, CVTTPD2DQ, CVTTPS2DQ,
CVTTSS2SI, CVTTSD2SI)

Source operand is a NaN, infinite, or
not representable in destination data
type

Chapter 4: 128-Bit Media and Scientific Programming 215

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 215

An overflow can occur through computation or through
conversion of higher-precision numbers to lower-precision
numbers.

Underflow Exception (UE). The UE exception occurs when the value
of a rounded, non-zero floating-point result is too small to be
represented as a normalized positive or negative floating-point
number in the destination format. Such a result is called a tiny
number, associated with the “Precision Exception (PE)”
described immediately below.

If UE exceptions are masked by the underflow mask (UM) bit, a
UE exception occurs only if the denormalized form of the
rounded result is imprecise. Specifically:

UE =((UM=0 and (Resultround < Minnormal) or
((UM=1 and (Resultround, denormal) != Resultinfinite)

Underflows can occur, for example, by taking the reciprocal of
the largest representable number, or by converting small
numbers in double-precision format to a single-precision
format, or simply through repeated division. The flush-to-zero
(FZ) bit in the MXCSR offers additional control of underflows
that are masked. See “MXCSR Register” on page 140 for
details.

Precision Exception (PE). The PE exception, also called the inexact-
result exception, occurs when a rounded floating-point result
differs from the infinitely precise result and thus cannot be
represented precisely in the destination format. This exception
is caused by—among other things—rounding of underflow or
overflow results according to the rounding control (RC) field in
the MXCSR, as described in “Floating-Point Rounding” on
page 158.

If an overflow or underflow occurs and the OE or UE exceptions
are masked by the overflow mask (OM) or underflow mask
(UM) bit, a PE exception occurs only if the rounded result (for
OE) or the denormalized form of the rounded result (for UE) is
imprecise. Specifically:

PE =((Resultround, denormal or Resultround) != Resultinfinite) or
(OM=1 and (Resultround > Maxnormal)) or
(UM=1 and (Resultround, denormal < Minnormal))

Software that does not require exact results normally masks
this exception.

216 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

4.10.3 SIMD Floating-
Point Exception
Priority

Table 4-13 shows the priority with which the processor
recognizes multiple, simultaneous SIMD floating-point
exceptions and operations involving QNaN operands. Each
exception type is characterized by its timing, as follows:

Pre-Computation—an exception that is recognized before an
instruction begins its operation.

Post-Computation—an exception that is recognized after an
instruction completes its operation.

For masked (but not unmasked) post-computation exceptions, a
result may be written to the destination, depending on the type
of exception. Operations involving QNaNs do not necessarily
cause exceptions, but the processor handles them with the
priority shown in Table 4-13 relative to the handling of
exceptions.

Figure 4-38 on page 217 shows the prioritized procedure used
by the processor to detect and report SIMD floating-point
exceptions. Each of the two types of exceptions—pre-
computation and post-computation—is handled independently
and completely in the sequence shown. If there are no
unmasked exceptions, the processor responds to masked
exceptions. Because of this two-step process, up to two

Table 4-13. Priority of SIMD Floating-Point Exceptions

Priority Exception or Operation Timing

1 Invalid-operation exception (IE) when accessing
SNaN operand Pre-Computation

2 Operation involving a QNaN operand1 —

3
Any other type of invalid-operation exception (IE) Pre-Computation

Zero-divide exception (ZE) Pre-Computation

4 Denormalized operation exception (DE) Pre-Computation

5
Overflow exception (OE) Post-Computation

Underflow exception (UE) Post-Computation

6 Precision (inexact) exception (PE) Post-Computation

Note:
1. Operations involving QNaN operands do not, in themselves, cause exceptions but they are

handled with this priority relative to the handling of exceptions.

Chapter 4: 128-Bit Media and Scientific Programming 217

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 217

exceptions—one pre-computation, one post-computation—can
be caused by a single instruction.

Figure 4-38. SIMD Floating-Point Detection Process

513-188.epsContinue Execution

Test For
Pre-Computation

Exceptions

Set MXCSR
Exception Flags

Yes

No

No

For Each
Vector
Element

For Each
Exception
Type

Any
Unmasked Exceptions

?

Test For
Pre-Computation

Exceptions

Set MXCSR
Exception Flags

Default
Response

Invoke Exception
Service Routine

Yes

For Each
Vector
Element

For Each
Exception
Type

Any
Unmasked Exceptions

?

No

YesAny
Masked Exceptions

?

218 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

4.10.4 SIMD Floating-
Point Exception
Masking

The six floating-point exception flags have corresponding
exception-flag masks in the MXCSR register, as shown in
Table 4-14.

Each mask bit, when set to 1, inhibits invocation of the
exception handler for that exception and instead causes a
default response. Thus, an unmasked exception is one that
invokes its exception handler when it occurs, whereas a masked
exception continues normal execution using the default
response for the exception type. During power-on initialization,
all exception-mask bits in the MXCSR register are set to 1
(masked).

Masked Responses. The occurrence of a masked exception does
not invoke its exception handler when the exception condition
occurs. Instead, the processor handles masked exceptions in a
default way, as shown in Table 4-15 on page 219.

Table 4-14. SIMD Floating-Point Exception Masks

Exception Mask
and Mnemonic MXCSR Bit Comparable IEEE 754

Exception

Invalid-operation exception mask (IM) 7 Invalid Operation

Denormalized-operand exception mask
(DM) 8 none

Zero-divide exception mask (ZM) 9 Division by Zero

Overflow exception mask (OM) 10 Overflow

Underflow exception mask (UM) 11 Underflow

Precision exception mask (PM) 12 Inexact

Chapter 4: 128-Bit Media and Scientific Programming 219

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 219

Table 4-15. Masked Responses to SIMD Floating-Point Exceptions

Exception Operation1 Processor Response2

Invalid-
operation
exception (IE)

Any of the following, in which one or both operands is an SNaN:
• Addition (ADDPS, ADDPD, ADDSS, ADDSD), or
• Subtraction (SUBPS, SUBPD, SUBSS, SUBSD), or
• Multiplication (MULPS, MULPD, MULSS, MULSD), or
• Division (DIVPS, DIVPD, DIVSS, DIVSD), or
• Square-root (SQRTPS, SQRTPD, SQRTSS, SQRTSD), or
• Data conversion of floating-point to floating-point.

(CVTPS2PD, CVTPD2PS, CVTSS2SD, CVTSD2SS)

Return a QNaN, based on the
rules in Table 4-6 on
page 156.

• Addition of infinities with opposite sign (ADDPS, ADDPD,
ADDSS, ADDSD), or

• Subtraction of infinities with same sign (SUBPS, SUBPD,
SUBSS, SUBSD), or

• Multiplication of zero by infinity (MULPS, MULPD, MULSS,
MULSD), or

• Division of zero by zero or infinity by infinity (DIVPS, DIVPD,
DIVSS, DIVSD), or

• Square-root in which the operand is non-zero negative
(SQRTPS, SQRTPD, SQRTSS, SQRTSD).

Return the floating-point
indefinite value.

Any of the following, in which one or both operands is a NaN:
• Maximum or Minimum (MAXPS, MAXPD, MAXSS, MAXSD

MINPS, MINPD, MINSS, MINSD), or
• Compare (CMPPS, CMPPD, CMPSS, CMPSD COMISS,

COMISD).

Return second source
operand.

Compare, in which one or
both operands is a NaN
(CMPPS, CMPPD, CMPSS,
CMPSD).

Compare is unordered or not-
equal Return mask of all 1s.

All other compares Return mask of all 0s.

Note:
1. For complete details about operations, see “SIMD Floating-Point Exception Causes” on page 211.
2. In all cases, the processor sets the associated exception flag in MXCSR. For details about number representation, see “Floating-

Point Number Representation” on page 152 and “Floating-Point Number Encodings” on page 156.
3. This response does not comply with the IEEE 754 standard, but it offers higher performance.

220 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Invalid-
operation
exception (IE)

Ordered or unordered scalar compare, in which one or both
operands is a NaN (COMISS, COMISD, UCOMISS, UCOMISD).

Set the zero (ZF), parity (PF),
and carry (CF) flags in
rFLAGS.
Clear the overflow (OF), sign
(SF), and auxiliary carry (AF)
flags in rFLAGS.

Data conversion from floating-point to integer, in which source
operand is a NaN, infinity, or is larger than the representable
value of the destination (CVTPS2PI, CVTPD2PI, CVTSS2SI,
CVTSD2SI, CVTPS2DQ, CVTPD2DQ, CVTTPS2PI, CVTTPD2PI,
CVTTPD2DQ, CVTTPS2DQ, CVTTSS2SI, CVTTSD2SI).

Return the integer indefinite
value.

Denormalized-
operand
exception (DE)

One or both operands is denormal Return the result using the
denormal operand(s).

Zero-divide
exception (ZE)

Divide (DIVx) zero with non-zero finite dividend
Return signed infinity, with
sign bit = XOR of the operand
sign bits.

Overflow
exception (OE)

Overflow when rounding
mode = round to nearest

Sign of result is positive Return +∞.

Sign of result is negative Return -∞.

Overflow when rounding
mode = round toward +∞

Sign of result is positive Return +∞.

Sign of result is negative
Return finite negative number
with largest magnitude.

Overflow when rounding
mode = round toward -∞

Sign of result is positive
Return finite positive number
with largest magnitude.

Sign of result is negative Return -∞.

Overflow when rounding
mode = round toward 0

Sign of result is positive Return finite positive number
with largest magnitude.

Sign of result is negative
Return finite negative number
with largest magnitude.

Table 4-15. Masked Responses to SIMD Floating-Point Exceptions (continued)

Exception Operation1 Processor Response2

Note:
1. For complete details about operations, see “SIMD Floating-Point Exception Causes” on page 211.
2. In all cases, the processor sets the associated exception flag in MXCSR. For details about number representation, see “Floating-

Point Number Representation” on page 152 and “Floating-Point Number Encodings” on page 156.
3. This response does not comply with the IEEE 754 standard, but it offers higher performance.

Chapter 4: 128-Bit Media and Scientific Programming 221

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 221

Unmasked Responses. If the processor detects an unmasked
exception, it sets the associated exception flag in the MXCSR
register and invokes the SIMD floating-point exception handler.
The processor does not write a result or change any of the
source operands for any type of unmasked exception. The
exception handler must determine which exception occurred
(by examining the exception flags in the MXCSR register) and
take appropriate action.

In all cases of unmasked exceptions, before calling the
except ion handler, the processor examines the
CR4.OSXMMEXCPT bit to see if it is set to 1. If it is set, the
processor calls the #XF exception (vector 19). If it is cleared,
the processor calls the #UD exception (vector 6). See “System-
Control Registers” in Volume 2 for details.

For details about the operations that can cause unmasked
exceptions, see “SIMD Floating-Point Exception Causes” on
page 211 and Table 4-15.

Using NaNs in IE Diagnostic Exceptions. Both SNaNs and QNaNs can
be encoded with many different values to carry diagnostic
information. By means of appropriate masking and unmasking

Underflow
exception (UE)

Inexact denormalized result

MXCSR flush-to-zero (FZ)
bit = 0

Set PE flag and return
denormalized result.

MXCSR flush-to-zero (FZ)
bit = 1

Set PE flag and return zero,
with sign of true result.3

Precision
exception (PE)

Inexact normalized or
denormalized result

Without OE or UE exception Return rounded result.

With masked OE or UE
exception

Respond as for OE or UE
exception

With unmasked OE or UE
exception

Respond as for OE or UE
exception, and invoke SIMD
exception handler

Table 4-15. Masked Responses to SIMD Floating-Point Exceptions (continued)

Exception Operation1 Processor Response2

Note:
1. For complete details about operations, see “SIMD Floating-Point Exception Causes” on page 211.
2. In all cases, the processor sets the associated exception flag in MXCSR. For details about number representation, see “Floating-

Point Number Representation” on page 152 and “Floating-Point Number Encodings” on page 156.
3. This response does not comply with the IEEE 754 standard, but it offers higher performance.

222 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

of the invalid-operation exception (IE), software can use
signaling NaNs to invoke an exception handler. Within the
constraints imposed by the encoding of SNaNs and QNaNs,
software may freely assign the bits in the significand of a NaN.
See “Not a Number (NaN)” on page 155 for format details.

For example, software can pre-load each element of an array
with a signaling NaN that encodes the array index. When an
application accesses an uninitialized array element, the invalid-
operation exception is invoked and the service routine can
identify that element. A service routine can store debug
information in memory as the exceptions occur. The routine can
create a QNaN that references its associated debug area in
memory. As the program runs, the service routine can create a
different QNaN for each error condition, so that a single test-
run can identify a collection of errors.

4.11 Saving, Clearing, and Passing State

4.11.1 Saving and
Restoring State

In general, system software should save and restore 128-bit
media state between task switches or other interventions in the
execution of 128-bit media procedures. Virtually all modern
operating systems running on x86 processors—like Windows
NT™, UNIX, and OS/2—are preemptive multitasking operating
systems that handle such saving and restoring of state properly
across task switches, independently of hardware task-switch
support. However, application procedures are also free to save
and restore 128-bit media state at any time they deem useful.

Software running at any privilege level may save and restore
128-bit media state by executing the FXSAVE instruction,
which saves not only 128-bit media state but also x87 floating-
point state. Alternatively, software may use multiple move
instructions for saving only the contents of selected 128-bit
media data registers, or the STMXCSR instruction for saving
the MXCSR register state. For details, see “Save and Restore
State” on page 186.

4.11.2 Parameter
Passing

128-bit media procedures can use MOVx instructions to pass
data to other such procedures. This can be done directly, via the
XMM registers, or indirectly by storing data on the procedure
stack. When storing to the stack, software should use the rSP
register for the memory address and, after the save, explicitly
decrement rSP by 16 for each 128-bit XMM register parameter

Chapter 4: 128-Bit Media and Scientific Programming 223

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 223

stored on the stack. Likewise, to load a 128-bit XMM register
from the stack, software should increment rSP by 16 after the
load. There is a choice of MOVx instructions designed for
aligned and unaligned moves, as described in “Data Transfer”
on page 162 and “Data Transfer” on page 187.

The processor does not check the data type of instruction
operands prior to executing instructions. It only checks them at
the point of execution. For example, if the processor executes
an arithmetic instruction that takes double-precision operands
but is provided with single-precision operands by MOVx
instructions, the processor will first convert the operands from
single precision to double precision prior to executing the
arithmetic operation, and the result will be correct. However,
the required conversion may cause degradation of performance.

Because of this possibility of data-type mismatching between
MOVx instructions used to pass parameters and the
instructions in the called procedure that subsequently operate
on the moved data, the calling procedure should save its own
state prior to the call. The called procedure cannot determine
the caller’s data types, and thus it cannot optimize its choice of
instructions for storing a caller’s state.

For further information, see the software optimization
documentation for particular hardware implementations.

4.11.3 Accessing
Operands in MMX™
Registers

Software may freely mix 128-bit media instructions (integer or
floating-point) with 64-bit media instructions (integer or
floating-point) and general-purpose instructions in a single
procedure. There are no restrictions on transitioning from 128-
bit media procedures to x87 procedures, except when a 128-bit
media procedure accesses an MMX™ register by means of a
data-transfer or data-conversion instruction.

In such cases, software should separate such procedures or
dynamic link libraries (DLLs) from x87 floating-point
procedures or DLLs by clearing the MMX state with the EMMS
instruction, as described in “Exit Media State” on page 247. For
further details, see “Mixing Media Code with x87 Code” on
page 278.

224 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

4.12 Performance Considerations

In addition to typical code optimization techniques, such as
those affecting loops and the inlining of function calls, the
following considerations may help improve the performance of
application programs written with 128-bit media instructions.

These are implementation-independent performance
considerations. Other considerations depend on the hardware
implementation. For information about such implementation-
dependent considerations and for more information about
application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware
implementations.

4.12.1 Use Small
Operand Sizes

The performance advantages available with 128-bit media
operations is to some extent a function of the data sizes
operated upon. The smaller the data size, the more data
elements that can be packed into single 128-bit vectors. The
parallelism of computation increases as the number of
elements per vector increases.

4.12.2 Reorganize
Data for Parallel
Operations

Much of the performance benefit from the 128-bit media
instructions comes from the parallelism inherent in vector
operations. It can be advantageous to reorganize data before
performing arithmetic operations so that its layout after
reorganization maximizes the parallelism of the arithmetic
operations.

The speed of memory access is particularly important for
certain types of computation, such as graphics rendering, that
depend on the regularity and locality of data-memory accesses.
For example, in matrix operations, performance is high when
operating on the rows of the matrix, because row bytes are
contiguous in memory, but lower when operating on the
columns of the matrix, because column bytes are not contiguous
in memory and accessing them can result in cache misses. To
improve performance for operations on such columns, the
matrix should first be transposed. Such transpositions can, for
example, be done using a sequence of unpacking or shuffle
instructions.

4.12.3 Remove
Branches

Branch can be replaced with 128-bit media instructions that
simulate predicated execution or conditional moves, as
described in “Branch Removal” on page 137. The branch can be

Chapter 4: 128-Bit Media and Scientific Programming 225

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 225

replaced with 128-bit media instructions that simulate
predicated execution or conditional moves. Figure 4-10 on
page 138 shows an example of a non-branching sequence that
implements a two-way multiplexer.

Where possible, break long dependency chains into several
shorter dependency chains which can be executed in parallel.
This is especially important for floating-point instructions
because of their longer latencies.

4.12.4 Use Streaming
Stores

The MOVNTDQ and MASKMOVDQU instructions store
streaming (non-temporal) data to memory. These instructions
indicate to the processor that the data they reference will be
used only once and is therefore not subject to cache-related
overhead (such as write-allocation). A typical case benefitting
from streaming stores occurs when data written by the
processor is never read by the processor, such as data written to
a graphics frame buffer.

4.12.5 Align Data Data alignment is particularly important for performance when
data written by one instruction is read by a subsequent
instruction soon after the write, or when accessing streaming
(non-temporal) data. These cases may occur frequently in 128-
bit media procedures.

Accesses to data stored at unaligned locations may benefit from
on-the-fly software alignment or from repetition of data at
different alignment boundaries, as required by different loops
that process the data.

4.12.6 Organize Data
for Cacheability

Pack small data structures into cache-line-size blocks. Organize
frequently accessed constants and coefficients into cache-line-
size blocks and prefetch them. Procedures that access data
arranged in memory-bus-sized blocks, or memory-burst-sized
blocks, can make optimum use of the available memory
bandwidth.

For data that will be used only once in a procedure, consider
using non-cacheable memory. Accesses to such memory are not
burdened by the overhead of cache protocols.

4.12.7 Prefetch Data Media applications typically operate on large data sets.
Because of this, they make intensive use of the memory bus.
Memory latency can be substantially reduced—especially for
data that will be used only once—by prefetching such data into
various levels of the cache hierarchy. Software can use the

226 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

PREFETCHx instructions very effectively in such cases, as
described in “Cache and Memory Management” on page 79.

Some of the best places to use prefetch instructions are inside
loops that process large amounts of data. If the loop goes
through less than one cache line of data per iteration, partially
unroll the loop. Try to use virtually all of the prefetched data.
This usually requires unit-stride memory accesses—those in
which all accesses are to contiguous memory locations. Exactly
one PREFETCHx instruction per cache line must be used.

4.12.8 Use 128-Bit
Media Code for
Moving Data

Movements of data between memory, GPR, XMM, and MMX™
registers can take advantage of the parallel vector operations
supported by the 128-bit media MOVx instructions. Figure 4-6
on page 134 illustrates the range of move operations available.

4.12.9 Retain
Intermediate Results
in XMM Registers

Keep intermediate results in the XMM registers as much as
possible, especially if the intermediate results are used shortly
after they have been produced. Avoid spilling intermediate
results to memory and reusing them shortly thereafter. In 64-bit
mode, the architecture’s 16 XMM registers offer twice the
number of legacy XMM registers.

4.12.10 Replace GPR
Code with 128-bit
media Code.

In 64-bit mode, the AMD64 architecture provides twice the
number of general-purpose registers (GPRs) as the legacy x86
architecture, thereby reducing potential pressure on GPRs.
Nevertheless, general-purpose instructions do not operate in
parallel on vectors of elements, as do 128-bit media
instructions. Thus, 128-bit media code supports parallel
operations and can perform better with algorithms and data
that are organized for parallel operations.

4.12.11 Replace x87
Code with 128-Bit
Media Code

One of the most useful advantages of 128-bit media instructions
is the ability to intermix integer and floating-point instructions
in the same procedure, using a register set that is separate from
the GPR, MMX, and x87 register sets. Code written with 128-bit
media floating-point instructions can operate in parallel on four
times as many single-precision floating-point operands as can
x87 floating-point code. This achieves potentially four times the
computational work of x87 instructions that take single-
precision operands. Also, the higher density of 128-bit media
floating-point operands may make it possible to remove local
temporary variables that would otherwise be needed in x87
floating-point code. 128-bit media code is also easier to write
than x87 floating-point code, because the XMM register file is

Chapter 4: 128-Bit Media and Scientific Programming 227

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 4: 128-Bit Media and Scientific Programming 227

flat, rather than stack-oriented, and in 64-bit mode there are
twice the number of XMM registers as x87 registers. Moreover,
when integer and floating-point instructions must be used
together, 128-bit media floating-point instructions avoid the
potential need to save and restore state between integer
operations and floating-point procedures.

228 Chapter 4: 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Chapter 5: 64-Bit Media Programming 229

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 229

5 64-Bit Media Programming

This chapter describes the 64-bit media programming model.
This model includes all instructions that access the MMX™
registers, including the MMX and 3DNow!™ instructions plus
some SSE and SSE2 instructions.

The 64-bit media instructions perform integer and floating-
point operations primarily on vector operands (a few of the
instructions take scalar operands). The MMX integer
operations produce signed, unsigned, and/or saturating results.
The 3DNow! floating-point operations take single-precision
operands and produce saturating results without generating
floating-point exceptions. The instructions that take vector
operands can speed up certain types of procedures by
significant factors, depending on data-element size and the
regularity and locality of data accesses to memory.

The term 64-bit is used in two different contexts within the
AMD64 architecture: the 64-bit media instructions, described
in this chapter, and the 64-bit operating mode, described in “64-
Bit Mode” on page 8.

5.1 Overview

5.1.1 Origins The 64-bit media instructions were introduced in the following
extensions to the legacy x86 architecture:

MMX™ Instructions—These are primarily integer
instructions that use primarily vector operands in 64-bit
MMX registers or memory locations.

AMD 3DNow!™ Instructions—These are primarily floating-
point instructions that use primarily vector operands in
MMX registers or memory locations.

SSE and SSE2 Instructions—These are the streaming SIMD
extension (SSE) and SSE2 instructions. Some of them
perform conversions between operands in the 64-bit MMX
register set and other register sets.

For details on the extension-set origin of each instruction, see
“Instruction Subsets and CPUID Feature Sets” in Volume 3.

230 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

5.1.2 Compatibility 64-bit media instructions can be executed in any of the
architecture’s operating modes. Existing MMX and 3DNow!
binary programs run in legacy and compatibility modes without
modification. The support provided by the AMD64 architecture
for such binaries is identical to that provided by legacy x86
architectures.

To run in 64-bit mode, 64-bit media programs must be
recompiled. The recompilation has no side effects on such
programs, other then to make available the extended general-
purpose registers and 64-bit virtual address space.

The MMX and 3DNow! instructions introduce no additional
registers, status bits, or other processor state to the legacy x86
architecture. Instead, they use the x87 floating-point registers
that have long been a part of most x86 architectures. Because of
this, 64-bit media procedures require no special operating-
system support or exception handlers. When state-saves are
required between procedures, the same instructions that
system software uses to save and restore x87 floating-point state
also save and restore the 64-bit media-programming state.

5.2 Capabilities

The 64-bit media instructions are designed to support
multimedia and communication applications that operate on
vectors of small-sized data elements. For example, 8-bit and 16-
bit integer data elements are commonly used for pixel
information in graphics applications, and 16-bit integer data
elements are used for audio sampling. The 64-bit media
instructions allow multiple data elements like these to be
packed into single 64-bit vector operands located in an MMX
register or in memory. The instructions operate in parallel on
each of the elements in these vectors. For example, 8-bit integer
data can be packed in vectors of eight elements in a single 64-
bit register, so that all eight byte elements are operated on
simultaneously by a single instruction.

Typical applications of the 64-bit media integer instructions
include music synthesis, speech synthesis, speech recognition,
audio and video compression (encoding) and decompression
(decoding), 2D and 3D graphics (including 3D texture
mapping), and streaming video. Typical applications of the 64-
bit media floating-point instructions include digital signal

Chapter 5: 64-Bit Media Programming 231

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 231

processing (DSP) kernels and front-end 3D graphics algorithms,
such as geometry, clipping, and lighting.

These types of applications are referred to as media
applications. Such applications commonly use small data
elements in repetitive loops, in which the typical operations are
inherently parallel. In 256-color video applications, for
example, 8-bit operands in 64-bit MMX registers can be used to
compute transformations on eight pixels per instruction.

5.2.1 Parallel
Operations

Most of the 64-bit media instructions perform parallel
operations on vectors of operands. Vector operations are also
called packed or SIMD (single-instruction, multiple-data)
operations. They take operands consisting of multiple elements
and operate on all elements in parallel. Figure 5-1 shows an
example of an integer operation on two vectors, each containing
16-bit (word) elements. There are also 64-bit media instructions
that operate on vectors of byte or doubleword elements.

Figure 5-1. Parallel Integer Operations on Elements of Vectors

5.2.2 Data Conversion
and Reordering

The 64-bit media instructions support conversions of various
integer data types to floating-point data types, and vice versa.

There are also instructions that reorder vector-element
ordering or the bit-width of vector elements. For example, the
unpack instructions take two vector operands and interleave
their low or high elements. Figure 5-2 on page 232 shows an
unpack operation (PUNPCKLWD) that interleaves low-order
elements of each source operand. If each element of operand 2

513-121.eps

operand 1

result

63 0

63 0

operand 2
63 0

op op op op

232 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

has the value zero, the operation zero-extends each element of
operand 1 to twice its original width. This may be useful, for
example, prior to an arithmetic operation in which the data-
conversion result must be paired with another source operand
containing vector elements that are twice the width of the pre-
conversion (half -size) elements. There are also pack
instructions that convert each element of 2x size in a pair of
vectors to elements of 1x size, with saturation at maximum and
minimum values.

Figure 5-2. Unpack and Interleave Operation

Figure 5-3 on page 233 shows a shuffle operation (PSHUFW), in
which one of the operands provides vector data, and an
immediate byte provides shuffle control for up to 256
permutations of the data.

513-144.eps

operand 1

result

63 0

63 0

operand 2
63 0

Chapter 5: 64-Bit Media Programming 233

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 233

Figure 5-3. Shuffle Operation (1 of 256)

5.2.3 Matrix
Operations

Media applications often multiply and accumulate vector and
matrix data. In 3D graphics applications, for example, objects
are typically represented by triangles, each of whose vertices
are located in 3D space by a matrix of coordinate values, and
matrix transforms are performed to simulate object movement.

64-bit media integer and floating-point instructions can
perform several types of matrix-vector or matrix-matrix
operations, such as addition, subtraction, multiplication, and
accumulation. The integer instructions can also perform
mult iply -accumulate operat ions . Eff ic ient matr ix
multiplication is further supported with instructions that can
first transpose the elements of matrix rows and columns. These
transpositions can make subsequent accesses to memory or
cache more efficient when performing arithmetic matrix
operations.

Figure 5-4 on page 234 shows a vector multiply-add instruction
(PMADDWD) that multiplies vectors of 16-bit integer elements
to yield intermediate results of 32-bit elements, which are then
summed pair-wise to yield two 32-bit elements.

513-126.eps

operand 2operand 1

result

63 0

63 0

63 0

234 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 5-4. Multiply-Add Operation

The operation shown in Figure 5-4 can be used together with
transpose and vector-add operations (see “Addition” on
page 255) to accumulate dot product results (also called inner or
scalar products), which are used in many media algorithms.

5.2.4 Saturation Several of the 64-bit media integer instructions and most of the
64-bit media floating-point instructions produce vector results
in which each element saturates independently of the other
elements in the result vector. Such results are clamped
(limited) to the maximum or minimum value representable by
the destination data type when the true result exceeds that
maximum or minimum representable value.

Saturation avoids the need for code that tests for potential
overflow or underflow. Saturating data is useful for
representing physical-world data, such as sound and color. It is
used, for example, when combining values for pixel coloring.

5.2.5 Branch Removal Branching is a time-consuming operation that, unlike most 64-
bit media vector operations, does not exhibit parallel behavior
(there is only one branch target, not multiple targets, per
branch instruction). In many media applications, a branch
involves selecting between only a few (often only two) cases.

513-119.eps

operand 1

result

63 0

63 0

operand 2
63 0

127 0

*

+ +

Chapter 5: 64-Bit Media Programming 235

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 235

Such branches can be replaced with 64-bit media vector
compare and vector logical instructions that simulate
predicated execution or conditional moves.

Figure 5-5 shows an example of a non-branching sequence that
implements a two-way multiplexer—one that is equivalent to
the ternary operator “?:” in C and C++. The comparable code
sequence is explained in “Compare and Write Mask” on
page 262.

The sequence in Figure 5-5 begins with a vector compare
instruction that compares the elements of two source operands
in parallel and produces a mask vector containing elements of
all 1s or 0s. This mask vector is ANDed with one source operand
and ANDed-Not with the other source operand to isolate the
desired elements of both operands. These results are then
ORed to select the relevant elements from each operand. A
similar branch-removal operation can be done using floating-
point source operands.

Figure 5-5. Branch-Removal Sequence

513-127.eps

operand 1
63 0

operand 2
63 0

FFFF 0000 0000 FFFF

a3 a2 a1 a0 b3 b2 b1 b0

a3 0000 0000 a0 0000 b2 b1 0000

And And-Not

Compare

a3 b2 b1 a0

Or

236 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

5.2.6 Floating-Point
(3DNow!™) Vector
Operations

Floating-point vector instructions using the MMX registers
were introduced by AMD with the 3DNow! technology. These
instructions take 64-bit vector operands consisting of two 32-bit
single-precision floating-point numbers, shown as FP single in
Figure 5-6.

Figure 5-6. Floating-Point (3DNow!™) Operations

The AMD64 architecture’s 3DNow! floating-point instructions
provide a unique advantage over legacy x87 floating-point
instructions: They allow integer and floating-point instructions
to be intermixed in the same procedure, using only the MMX
registers. This avoids the need to switch between integer MMX
procedures and x87 floating-point procedures—a switch that
may involve time-consuming state saves and restores—while at
the same time leaving the 128-bit XMM register resources free
for other applications.

The 3DNow! instructions allow applications such as 3D graphics
to accelerate front-end geometry, clipping, and lighting
calculations. Picture and pixel data are typically integer data
types, although both integer and floating-point instructions are
often required to operate completely on the data. For example,
software can change the viewing perspective of a 3D scene
through transformation matrices by using floating-point
instructions in the same procedure that contains integer
operations on other aspects of the graphics data.

3DNow! programs typically perform better than x87 floating-
point code, because the MMX register file is flat rather than

63 31 032

FP single FP single
63 31 032

FP single FP single

63 31 032

FP single FP single

513-124.eps

63 0 63 0

op op

Chapter 5: 64-Bit Media Programming 237

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 237

stack-oriented and because 3DNow! instructions can operate on
twice as many operands as x87 floating-point instructions. This
ability to operate in parallel on twice as many floating-point
values in the same register space often makes it possible to
remove local temporary variables in 3DNow! code that would
otherwise be needed in x87 floating-point code.

5.3 Registers

5.3.1 MMX™ Registers Eight 64-bit MMX registers, mmx0–mmx7, support the 64-bit
media instructions. Figure 5-7 shows these registers. They can
hold operands for both vector and scalar operations on integer
(MMX) and floating-point (3DNow!) data types.

Figure 5-7. 64-bit Media Registers

The MMX registers are mapped onto the low 64 bits of the 80-
bit x87 floating-point physical data registers, FPR0–FPR7,
described in “Registers” on page 285. However, the x87 stack
register structure, ST(0)–ST(7), is not used by MMX
instructions. The x87 tag bits, top-of-stack pointer (TOP), and
high bits of the 80-bit FPR registers are changed when 64-bit
media instructions are executed. For details about the x87-
related actions performed by hardware during execution of 64-

513-145.eps

MMX Registers
63 0

mmx0

mmx1

mmx2

mmx3

mmx4

mmx5

mmx6

mmx7

238 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

bit media instructions, see “Actions Taken on Executing 64-Bit
Media Instructions” on page 276.

5.3.2 Other Registers Some 64-bit media instructions that perform data transfer, data
conversion or data reordering operations (“Data Transfer” on
page 248, “Data Conversion” on page 250, and “Data
Conversion” on page 266) can access operands in the general-
purpose registers (GPRs) or XMM registers. When addressing
GPRs or XMM registers in 64-bit mode, the REX instruction
prefix can be used to access the extended GPRs or XMM
registers, as described in “REX Prefixes” on page 89. For a
description of the GPR registers, see “Registers” on page 27.
For a description of the XMM registers, see “XMM Registers”
on page 139.

5.4 Operands

Operands for a 64-bit media instruction are either referenced
by the instruction's opcode or included as an immediate value
in the instruction encoding. Depending on the instruction,
referenced operands can be located in registers or memory. The
data types of these operands include vector and scalar integer,
and vector floating-point.

5.4.1 Data Types Figure 5-8 on page 239 shows the register images of the 64-bit
media data types. These data types can be interpreted by
instruction syntax and/or the software context as one of the
following types of values:

Vector (packed) single-precision (32-bit) floating-point
numbers.

Vector (packed) signed (two's-complement) integers.

Vector (packed) unsigned integers.

Scalar signed (two's-complement) integers.

Scalar unsigned integers.

Hardware does not check or enforce the data types for
instructions. Software is responsible for ensuring that each
operand for an instruction is of the correct data type. Software
can interpret the data types in ways other than those shown in
Figure 5-8 on page 239—such as bit fields or fractional
numbers—but the 64-bit media instructions do not directly
support such interpretations and software must handle them
entirely on its own.

Chapter 5: 64-Bit Media Programming 239

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 239

Figure 5-8. 64-Bit Media Data Types

ss ss

ssss

ss

ssssssss

ssss

ss

ssssssss

513-319.eps

715233139475563 0

bytebytebytebytebytebytebytebyte

31 2263 54 0

Vector (Packed) Single-Precision Floating-Point

Vector (Packed) Unsigned Integers

715233139475563 0

doubleworddoubleword

wordwordwordword

doubleworddoubleword

wordwordwordword

bytebytebytebytebytebytebytebyte

Vector (Packed) Signed Integers

significandexpsignificandexp

63

31

15

7 0

s

s

s

s

Unsigned Integers

Signed Integers

quadword

doubleword

word

byte

63

31

15

7

0

quadword

doubleword

word

byte

240 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

5.4.2 Operand Sizes
and Overrides

Operand sizes for 64-bit media instructions are determined by
instruction opcodes. Some of these opcodes include an operand-
size override prefix, but this prefix acts in a special way to
modify the opcode and is considered an integral part of the
opcode. The general use of the 66h operand-size override prefix
described in “Instruction Prefixes” on page 85 does not apply
to 64-bit media instructions.

For details on the use of operand-size override prefixes in 64-bit
media instructions, see the opcodes in “64-Bit Media
Instruction Reference” in Volume 5.

5.4.3 Operand
Addressing

Depending on the 64-bit media instruction, referenced
operands may be in registers or memory.

Register Operands. Most 64-bit media instructions can access
source and destination operands located in MMX registers. A
few of these instructions access the XMM or GPR registers.
When addressing GPR or XMM registers in 64-bit mode, the
REX instruction prefix can be used to access the extended GPR
or XMM registers, as described in “Instruction Prefixes” on
page 272.

64-bit media instructions do not access the rFLAGS register,
and none of the bits in that register are affected by execution of
the 64-bit media instructions.

Memory Operands. Most 64-bit media instructions can read
memory for source operands, and a few of the instructions can
write results to memory. “Memory Addressing” on page 16,
describes the general methods and conditions for addressing
memory operands.

Immediate Operands. Immediate operands are used in certain
data-conversion and vector-shift instructions. Such instructions
take 8-bit immediates, which provide control for the operation.

I/O Ports. I/O ports in the I/O address space cannot be directly
addressed by 64-bit media instructions, and although memory-
mapped I/O ports can be addressed by such instructions, doing
so may produce unpredictable results, depending on the
hardware implementation of the architecture. See the data
sheet or software-optimization documentation for particular
hardware implementations.

Chapter 5: 64-Bit Media Programming 241

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 241

5.4.4 Data Alignment 64-bit media instructions that access a 128-bit operand in
memory incur a general-protection exception (#GP) if the
operand is not aligned to a 16-byte boundary. These instructions
include:

CVTPD2PI—Convert Packed Double-Precision Floating-
Point to Packed Doubleword Integers.

CVTTPD2PI—Convert Packed Double-Precision Floating-
Point to Packed Doubleword Integers, Truncated.

FXRSTOR—Restore XMM, MMX, and x87 State.

FXSAVE—Save XMM, MMX, and x87 State.

For other 64-bit media instructions, the architecture does not
impose data-alignment requirements for accessing 64-bit media
data in memory. Specifically, operands in physical memory do
not need to be stored at addresses which are even multiples of
the operand size, in bytes. However, the consequence of storing
operands at unaligned locations is that accesses to those
operands may require more processor and bus cycles than for
aligned accesses. See “Data Alignment” on page 47 for details.

5.4.5 Integer Data
Types

Most of the MMX instructions support operations on the
integer data types shown in Figure 5-8. These instructions are
summarized in “Instruction Summary—Integer Instructions”
on page 245. The characteristics of these data types are
described below.

Sign. Many of the 64-bit media instructions have variants for
operating on signed or unsigned integers. For signed integers,
the sign bit is the most-significant bit—bit 7 for a byte, bit 15 for
a word, bit 31 for a doubleword, or bit 63 for a quadword.
Arithmetic instructions that are not specifically named as
unsigned perform signed two’s-complement arithmetic.

Maximum and Minimum Representable Values. Table 5-1 on page 242
shows the range of representable values for the integer data
types.

242 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Saturation. Saturating (also called limiting or clamping)
instructions limit the value of a result to the maximum or
minimum value representable by the destination data type.
Saturating versions of integer vector-arithmetic instructions
operate on byte-sized and word-sized elements. These
instructions—for example, PADDSx, PADDUSx, PSUBSx, and
PSUBUSx—saturate signed or unsigned data independently for
each element in a vector when the element reaches its
maximum or minimum representable value. Saturation avoids
overflow or underflow errors.

The examples in Table 5-2 illustrate saturating and non-
saturating results with word operands. Saturation for other
data-type sizes follows similar rules. Once saturated, the
saturated value is treated like any other value of its type. For
example, if 0001h is subtracted from the saturated value,
7FFFh, the result is 7FFEh.

Table 5-1. Range of Values in 64-Bit Media Integer Data Types

Data-Type Interpretation Byte Word Doubleword Quadword

Unsigned
integers

Base-2 (exact) 0 to +28-1 0 to +216-1 0 to +232-1 0 to +264-1

Base-10 (approx.) 0 to 255 0 to 65,535 0 to 4.29 * 109 0 to 1.84 * 1019

Signed integers1

Base-2 (exact) -27 to +(27 -1) -215 to +(215 -1) -231 to +(231 -1) -263 to +(263 -1)

Base-10 (approx.) -128 to +127 -32,768 to
+32,767

-2.14 * 109 to
+2.14 * 109

-9.22 * 1018
to +9.22 * 1018

Table 5-2. Saturation Examples

Operation
Non-Saturated

Infinitely Precise
Result

Saturated
Signed Result

Saturated
Unsigned Result

7000h + 2000h 9000h 7FFFh 9000h

7000h + 7000h E000h 7FFFh E000h

F000h + F000h 1E000h E000h FFFFh

9000h + 9000h 12000h 8000h FFFFh

7FFFh + 0100h 80FFh 7FFFh 80FFh

7FFFh + FF00h 17EFFh 7EFFh FFFFh

Chapter 5: 64-Bit Media Programming 243

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 243

Arithmetic instructions not specifically designated as
saturating perform non-saturating, two’s-complement
arithmetic.

Rounding. There is a rounding version of the integer vector-
multiply instruction, PMULHRW, that multiplies pairs of
signed-integer word elements and then adds 8000h to the lower
word of the doubleword result, thus rounding the high-order
word which is returned as the result.

Other Fixed-Point Operands. The architecture provides specific
support only for integer fixed-point operands—those in which
an implied binary point is located to the right of bit 0.
Nevertheless, software may use fixed-point operands in which
the implied binary point is located in any position. In such
cases, software is responsible for managing the interpretation
of such implied binary points, as well as any redundant sign bits
that may occur during multiplication.

5.4.6 Floating-Point
Data Types

All 64-bit media 3DNow! instructions, except PFRCP and
PFRSQRT, take 64-bit vector operands. They operate in parallel
on two single-precision (32-bit) floating-point values contained
in those vectors.

Figure 5-9 shows the format of the vector operands. The
characteristics of the single-precision floating-point data types
are described below. The 64-bit floating-point media
instructions are summarized in “Instruction Summary—
Floating-Point Instructions” on page 265.

Figure 5-9. 64-Bit Floating-Point (3DNow!) Vector Operand

Single-Precision Format. The single-precision floating-point format
supported by 64-bit media instructions is the same format as
the normalized IEEE 754 single-precision format. This format
includes a sign bit, an 8-bit biased exponent, and a 23-bit

63 62 032 31 3055 54 23 22

Biased
Exponent

S Significand
(also Fraction)

S = Sign Bit

Biased
Exponent

S

S = Sign Bit

Significand
(also Fraction)

244 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

significand with one hidden integer bit for a total of 24 bits in
the significand. The hidden integer bit is assumed to have a
value of 1, and the significand field is also the fraction. The bias
of the exponent is 127. However, the 3DNow! format does not
support other aspects of the IEEE 754 standard, such as
multiple rounding modes, representation of numbers other
than normalized numbers, and floating-point exceptions.

Range of Representable Values and Saturation. Table 5-3 shows the
range of representable values for 64-bit media floating-point
data. Table 5-4 shows the exponent ranges. The largest
representable positive normal number has an exponent of FEh
and a significand of 7FFFFFh, with a numerical value of 2127 *
(2 – 2–23). The smallest representable negative normal number
has an exponent of 01h and a significand of 000000h, with a
numerical value of 2–126.

Results that, after rounding, overflow above the maximum-
representable positive or negative number are saturated
(limited or clamped) at the maximum positive or negative

Table 5-3. Range of Values in 64-Bit Media Floating-Point Data Types

Data-Type Interpretation Doubleword Quadword

 Floating-point

Base-2 (exact) 2–126 to 2127 * (2 – 2–23) Two single-pre-
cision floating-
point double-

words
Base-10 (approx.) 1.17 * 10–38 to +3.40 * 1038

Table 5-4. 64-Bit Floating-Point Exponent Ranges

Biased Exponent Description

FFh Unsupported1

00h Zero

00h<x<FFh Normal

01h 2 (1–127) lowest possible exponent

FEh 2 (254–127) largest possible exponent

Note:
1. Unsupported numbers can be used as source operands but produce undefined results.

Chapter 5: 64-Bit Media Programming 245

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 245

number. Results that underflow below the minimum-
representable positive or negative number are treated as zero.

Floating-Point Rounding. In contrast to the IEEE standard, which
requires four rounding modes, the 64-bit media floating-point
instructions support only one rounding mode, depending on the
instruction. All such instructions use round-to-nearest, except
certain floating-point-to-integer conversion instructions (“Data
Conversion” on page 266) which use round-to-zero.

No Support for Infinities, NaNs, and Denormals. 64-bit media floating-
point instructions support only normalized numbers. They do
not support infinity, NaN, and denormalized number
representations. Operations on such numbers produce
undefined results, and no exceptions are generated. If all
source operands are normalized numbers, these instructions
never produce infinities, NaNs, or denormalized numbers as
results.

This aspect of 64-bit media floating-point operations does not
comply with the IEEE 754 standard. Software must use only
normalized operands and ensure that computations remain
within valid normalized-number ranges.

No Support for Floating-Point Exceptions. The 64-bit media floating-
point instructions do not generate floating-point exceptions.
Software must ensure that in-range operands are provided to
these instructions.

5.5 Instruction Summary—Integer Instructions

This section summarizes the functions of the integer (MMX™
and a few SSE and SSE2) instructions in the 64-bit media
instruction subset. These include integer instructions that use
an MMX register for source or destination and data-conversion
instructions that convert from integers to floating-point
formats. For a summary of the floating-point instructions in the
64-bit media instruction subset, including data-conversion
instructions that convert from floating-point to integer formats,
see “Instruction Summary—Floating-Point Instructions” on
page 265.

The instructions are organized here by functional group—such
as data-transfer, vector arithmetic, and so on. Software running
at any privilege level can use any of these instructions, if the

246 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

CPUID instruction reports support for the instructions (see
“Feature Detection” on page 273). More detail on individual
instructions is given in the alphabetically organized “64-Bit
Media Instruction Reference” in Volume 5.

5.5.1 Syntax Each instruction has a mnemonic syntax used by assemblers to
specify the operation and the operands to be used for source
and destination (result) data. The majority of 64-bit media
integer instructions have the following syntax:

MNEMONIC mmx1, mmx2/mem64

Figure 5-10 shows an example of the mnemonic syntax for a
packed add bytes (PADDB) instruction.

Figure 5-10. Mnemonic Syntax for Typical Instruction

This example shows the PADDB mnemonic followed by two
operands, a 64-bit MMX register operand and another 64-bit
MMX register or 64-bit memory operand. In most instructions
that take two operands, the first (left-most) operand is both a
source operand and the destination operand. The second (right-
most) operand serves only as a source. Some instructions can
have one or more prefixes that modify default properties, as
described in “Instruction Prefixes” on page 272.

Mnemonics. The following characters are used as prefixes in the
mnemonics of integer instructions:

CVT—Convert

CVTT—Convert with truncation

P—Packed (vector)

PACK—Pack elements of 2x data size to 1x data size

PUNPCK—Unpack and interleave elements

513-142.eps

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

PADDB mmx1, mmx2/mem64

Chapter 5: 64-Bit Media Programming 247

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 247

In addition to the above prefix characters, the following
characters are used elsewhere in the mnemonics of integer
instructions:

B—Byte

D—Doubleword

DQ—Double quadword

ID—Integer doubleword

IW—Integer word

PD—Packed double-precision floating-point

PI—Packed integer

PS—Packed single-precision floating-point

Q—Quadword

S—Signed

SS—Signed saturation

U—Unsigned

US—Unsigned saturation

W—Word

x—One or more variable characters in the mnemonic

For example, the mnemonic for the instruction that packs four
words into eight unsigned bytes is PACKUSWB. In this
mnemonic, the PACK designates 2x-to-1x conversion of vector
elements, the US designates unsigned results with saturation,
and the WB designates vector elements of the source as words
and those of the result as bytes.

5.5.2 Exit Media State The exit media state instructions are used to isolate the use of
processor resources between 64-bit media instructions and x87
floating-point instructions.

EMMS—Exit Media State

FEMMS—Fast Exit Media State

These instructions initialize the contents of the x87 floating-
point stack registers—called clearing the MMX state. Software
should execute one of these instructions before leaving a 64-bit
media procedure.

The EMMS and FEMMS instructions both clear the MMX state,
as described in “Mixing Media Code with x87 Code” on
page 278. The instructions differ in one respect: FEMMS leaves

248 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

the data in the x87 stack registers undefined. By contrast,
EMMS leaves the data in each such register as it was defined by
the last x87 or 64-bit media instruction that wrote to the
register. The FEMMS instruction is supported for backward-
compatibility. Software that must be compatible with both
AMD and non-AMD processors should use the EMMS
instruction.

5.5.3 Data Transfer The data-transfer instructions copy operands between a 32-bit
or 64-bit memory location, an MMX register, an XMM register,
or a GPR. The MOV mnemonic, which stands for move, is a
misnomer. A copy function is actually performed instead of a
move.

Move.

MOVD—Move Doubleword

MOVQ—Move Quadword

MOVDQ2Q—Move Double Quadword to Quadword

MOVQ2DQ—Move Quadword to Double Quadword

The MOVD instruction copies a 32-bit or 64-bit value from a
general-purpose register (GPR) or memory location to an MMX
register, or from an MMX register to a GPR or memory location.
If the source operand is 32 bits and the destination operand is
64 bits, the source is zero-extended to 64 bits in the destination.
If the source is 64 bits and the destination is 32 bits, only the
low-order 32 bits of the source are copied to the destination.

The MOVQ instruction copies a 64-bit value from an MMX
register or 64-bit memory location to another MMX register, or
from an MMX register to another MMX register or 64-bit
memory location.

The MOVDQ2Q instruction copies the low-order 64-bit value in
an XMM register to an MMX register.

The MOVQ2DQ instruction copies a 64-bit value from an MMX
register to the low-order 64 bits of an XMM register, with zero-
extension to 128 bits.

The MOVD and MOVQ instructions—along with the PUNPCKx
instructions—are often among the most frequently used
instructions in 64-bit media procedures (both integer and
floating-point). The move instructions are similar to the
assignment operator in high-level languages.

Chapter 5: 64-Bit Media Programming 249

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 249

Move Non-Temporal. The move non-temporal instructions are
called streaming-store instructions. They minimize pollution of
the cache. The assumption is that the data they reference will
be used only once, and is therefore not subject to cache-related
overhead such as write-allocation. For further information, see
“Memory Optimization” on page 113.

MOVNTQ—Move Non-Temporal Quadword

MASKMOVQ—Mask Move Quadword

The MOVNTQ instruction stores a 64-bit MMX register value
into a 64-bit memory location. The MASKMOVQ instruction
stores bytes from the first operand, as selected by the mask
value (most-significant bit of each byte) in the second operand,
to a memory location specified in the rDI and DS registers. The
first operand is an MMX register, and the second operand is
another MMX register. The size of the store is determined by
the effective address size. Figure 5-11 shows the MASKMOVQ
operation.

Figure 5-11. MASKMOVQ Move Mask Operation

The MOVNTQ and MASKMOVQ instructions use weakly-
ordered, write-combining buffering of write data, and they
minimizes cache pollution. The exact method by which cache

operand 1

.

.

63 0
operand 2

63 0

select

select

store address
memory

rDI

513-133.eps

250 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

pol lut ion i s minimiz ed depends on the hardware
implementation of the instruction. For further information, see
“Memory Optimization” on page 113.

A typical case benefitting from streaming stores occurs when
data written by the processor is never read by the processor,
such as data written to a graphics frame buffer. MASKMOVQ is
useful for the handling of end cases in block copies and block
fills based on streaming stores.

Move Mask.

PMOVMSKB—Packed Move Mask Byte

The PMOVMSKB instruction moves the most-significant bit of
each byte in an MMX register to the low-order byte of a 32-bit or
64-bit general-purpose register, with zero-extension. It is useful
for extracting bits from a mask, or extracting zero-point values
from quantized data such as signal samples, resulting in a byte
that can be used for data-dependent branching.

5.5.4 Data Conversion The integer data-conversion instructions convert operands from
integer formats to floating-point formats. They take 64-bit
integer source operands. For data-conversion instructions that
take 32-bit and 64-bit floating-point source operands, see “Data
Conversion” on page 266. For data-conversion instructions that
take 128-bit source operands, see “Data Conversion” on
page 166 and “Data Conversion” on page 192.

Convert Integer to Floating-Point. These instructions convert integer
data types into floating-point data types.

CVTPI2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point

CVTPI2PD—Convert Packed Doubleword Integers to
Packed Double-Precision Floating-Point

PI2FW—Packed Integer To Floating-Point Word Conversion

PI2FD—Packed Integer to Floating-Point Doubleword
Conversion

The CVTPI2Px instructions convert two 32-bit signed integer
values in the second operand (an MMX register or 64-bit
memory location) to two single-precision (CVTPI2PS) or
double-precision (CVTPI2PD) floating-point values. The
instructions then write the converted values into the low-order
64 bits of an XMM register (CVTPI2PS) or the full 128 bits of an

Chapter 5: 64-Bit Media Programming 251

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 251

XMM register (CVTPI2PD). The CVTPI2PS instruction does not
modify the high-order 64 bits of the XMM register.

The PI2Fx instructions are 3DNow! instructions. They convert
two 16-bit (PI2FW) or 32-bit (PI2FD) signed integer values in
the second operand to two single-precision floating-point
values. The instructions then write the converted values into
the destination. If a PI2FD conversion produces an inexact
value, the value is truncated (rounded toward zero).

5.5.5 Data Reordering The integer data-reordering instructions pack, unpack,
interleave, extract, insert, shuffle, and swap the elements of
vector operands.

Pack with Saturation. These instructions pack 2x-sized data types
into 1x-sized data types, thus halving the precision of each
element in a vector operand.

PACKSSDW—Pack with Saturation Signed Doubleword to
Word

PACKSSWB—Pack with Saturation Signed Word to Byte

PACKUSWB—Pack with Saturation Signed Word to
Unsigned Byte

The PACKSSDW instruction converts each 32-bit signed integer
in its two source operands (an MMX register or 64-bit memory
location and another MMX register) into a 16-bit signed integer
and packs the converted values into the destination MMX
register. The PACKSSWB instruction does the analogous
operation between word elements in the source vectors and
byte elements in the destination vector. The PACKUSWB
instruction does the same as PACKSSWB except that it converts
word integers into unsigned (rather than signed) bytes.

Figure 5-12 on page 252 shows an example of a PACKSSDW
instruction. The operation merges vector elements of 2x size
(doubleword-size) into vector elements of 1x size (word-size),
thus reducing the precision of the vector-element data types.
Any results that would otherwise overflow or underflow are
saturated (c lamped) at the maximum or minimum
representable value, respectively, as described in “Saturation”
on page 242.

252 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 5-12. PACKSSDW Pack Operation

Conversion from higher-to-lower precision may be needed, for
example, after an arithmetic operation which requires the
higher-precision format to prevent possible overflow, but which
requires the lower-precision format for a subsequent operation.

Unpack and Interleave. These instructions interleave vector
elements from the high or low half of two source operands. They
can be used to double the precision of operands.

PUNPCKHBW—Unpack and Interleave High Bytes

PUNPCKHWD—Unpack and Interleave High Words

PUNPCKHDQ—Unpack and Interleave High Doublewords

PUNPCKLBW—Unpack and Interleave Low Bytes

PUNPCKLWD—Unpack and Interleave Low Words

PUNPCKLDQ—Unpack and Interleave Low Doublewords

The PUNPCKHBW instruction unpacks the four high-order
bytes from its two source operands and interleaves them into
the bytes in the destination operand. The bytes in the low-order
half of the source operand are ignored. The PUNPCKHWD and
PUNPCKHDQ instructions perform analogous operations for
words and doublewords in the source operands, packing them
into interleaved words and interleaved doublewords in the
destination operand.

The PUNPCKLBW, PUNPCKLWD, and PUNPCKLDQ
instructions are analogous to their high-element counterparts

513-143.eps

operand 1

result

63 0

63 0

operand 2
63 0

Chapter 5: 64-Bit Media Programming 253

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 253

except that they take elements from the low doubleword of each
source vector and ignore elements in the high doubleword. If
the source operand for PUNPCKLx instructions is in memory,
only the low 32 bits of the operand are loaded.

Figure 5-13 shows an example of the PUNPCKLWD instruction.
The elements are taken from the low half of the source
operands. In this register image, elements from operand2 are
placed to the left of elements from operand1.

Figure 5-13. PUNPCKLWD Unpack and Interleave Operation

If one of the two source operands is a vector consisting of all
zero-valued elements, the unpack instructions perform the
function of expanding vector elements of 1x size into vector
elements of 2x size (for example, word-size to doubleword-size).
If both source operands are of identical value, the unpack
instructions can perform the function of duplicating adjacent
elements in a vector.

The PUNPCKx instructions—along with MOVD and MOVQ—
are among the most frequently used instructions in 64-bit
media procedures (both integer and floating-point).

Extract and Insert. These instructions copy a word element from a
vector, in a manner specified by an immediate operand.

PEXTRW—Packed Extract Word

PINSRW—Packed Insert Word

513-144.eps

operand 1

result

63 0

63 0

operand 2
63 0

254 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The PEXTRW instruction extracts a 16-bit value from an MMX
register, as selected by the immediate-byte operand, and writes
it to the low-order word of a 32-bit or 64-bit general-purpose
register, with zero-extension to 32 or 64 bits. PEXTRW is useful
for loading computed values, such as table-lookup indices, into
general-purpose registers where the values can be used for
addressing tables in memory.

The PINSRW instruction inserts a 16-bit value from a the low-
order word of a 32-bit or 64-bit general purpose register or a 16-
bit memory location into an MMX register. The location in the
destination register is selected by the immediate-byte operand.
The other words in the destination register operand are not
modified.

Shuffle and Swap. These instructions reorder the elements of a
vector.

PSHUFW—Packed Shuffle Words

PSWAPD—Packed Swap Doubleword

The PSHUFW instruction moves any one of the four words in its
second operand (an MMX register or 64-bit memory location) to
specified word locations in its first operand (another MMX
register). The ordering of the shuffle can occur in any of 256
possible ways, as specified by the immediate-byte operand.
Figure 5-14 shows one of the 256 possible shuffle operations.
PSHUFW is useful, for example, in color imaging when
computing alpha saturation of RGB values. In this case,
PSHUFW can replicate an alpha value in a register so that
parallel comparisons with three RGB values can be performed.

Figure 5-14. PSHUFW Shuffle Operation

513-126.eps

operand 2operand 1

result

63 0

63 0

63 0

Chapter 5: 64-Bit Media Programming 255

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 255

The PSWAPD instruction swaps (reverses) the order of two 32-
bit values in the second operand and writes each swapped value
in the corresponding doubleword of the destination. Figure 5-15
shows a swap operation. PSWAPD is useful, for example, in
complex-number multiplication in which the elements of one
source operand must be swapped (see “Accumulation” on
page 268 for details). PSWAPD supports independent source
and result operands so that it can also perform a load function.

Figure 5-15. PSWAPD Swap Operation

5.5.6 Arithmetic The integer vector-arithmetic instructions perform an
arithmetic operation on the elements of two source vectors.
Arithmetic instructions that are not specifically named as
unsigned perform signed two’s-complement arithmetic.

Addition.

PADDB—Packed Add Bytes

PADDW—Packed Add Words

PADDD—Packed Add Doublewords

PADDQ—Packed Add Quadwords

PADDSB—Packed Add with Saturation Bytes

PADDSW—Packed Add with Saturation Words

PADDUSB—Packed Add Unsigned with Saturation Bytes

PADDUSW—Packed Add Unsigned with Saturation Words

The PADDB, PADDW, PADDD, and PADDQ instructions add
each 8-bit (PADDB), 16-bit (PADDW), 32-bit (PADDD), or 64-bit
(PADDQ) integer element in the second operand to the

513-132.eps

operand 1

result

63 0
operand 2

63 0

63 0

256 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

corresponding, same-sized integer element in the first operand.
The instructions then write the integer result of each addition
to the corresponding, same-sized element of the destination.
These instructions operate on both signed and unsigned
integers. However, if the result overflows, only the low-order
byte, word, doubleword, or quadword of each result is written to
the destination. The PADDD instruction can be used together
with PMADDWD (page 258) to implement dot products.

The PADDSB and PADDSW instructions perform additions
analogous to the PADDB and PADDW instructions, except with
saturation. For each result in the destination, if the result is
larger than the largest, or smaller than the smallest,
representable 8-bit (PADDSB) or 16-bit (PADDSW) signed
integer, the result is saturated to the largest or smallest
representable value, respectively.

The PADDUSB and PADDUSW instructions perform saturating
additions analogous to the PADDSB and PADDSW instructions,
except on unsigned integer elements.

Subtraction.

PSUBB—Packed Subtract Bytes

PSUBW—Packed Subtract Words

PSUBD—Packed Subtract Doublewords

PSUBQ—Packed Subtract Quadword

PSUBSB—Packed Subtract with Saturation Bytes

PSUBSW—Packed Subtract with Saturation Words

PSUBUSB—Packed Subtract Unsigned and Saturate Bytes

PSUBUSW—Packed Subtract Unsigned and Saturate Words

The subtraction instructions perform operations analogous to
the addition instructions.

The PSUBB, PSUBW, PSUBD, and PSUBQ instructions subtract
each 8-bit (PSUBB), 16-bit (PSUBW), 32-bit (PSUBD), or 64-bit
(PSUBQ) integer element in the second operand from the
corresponding, same-sized integer element in the first operand.
The instructions then write the integer result of each
subtraction to the corresponding, same-sized element of the
destination. These instructions operate on both signed and
unsigned integers. However, if the result underflows, only the

Chapter 5: 64-Bit Media Programming 257

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 257

low-order byte, word, doubleword, or quadword of each result is
written to the destination.

The PSUBSB and PSUBSW instructions perform subtractions
analogous to the PSUBB and PSUBW instructions, except with
saturation. For each result in the destination, if the result is
larger than the largest, or smaller than the smallest,
representable 8-bit (PSUBSB) or 16-bit (PSUBSW) signed
integer, the result is saturated to the largest or smallest
representable value, respectively.

The PSUBUSB and PSUBUSW instructions perform saturating
subtractions analogous to the PSUBSB and PSUBSW
instructions, except on unsigned integer elements.

Multiplication.

PMULHW—Packed Multiply High Signed Word

PMULLW—Packed Multiply Low Signed Word

PMULHRW—Packed Multiply High Rounded Word

PMULHUW—Packed Multiply High Unsigned Word

PMULUDQ—Packed Multiply Unsigned Doubleword and
Store Quadword

The PMULHW instruction multiplies each 16-bit signed integer
value in first operand by the corresponding 16-bit integer in the
second operand, producing a 32-bit intermediate result. The
instruction then writes the high-order 16 bits of the 32-bit
intermediate result of each multiplication to the corresponding
word of the destination. The PMULLW instruction performs the
same multiplication as PMULHW but writes the low-order 16
bits of the 32-bit intermediate result to the corresponding word
of the destination.

The PMULHRW instruction performs the same multiplication
as PMULHW but with rounding. After the multiplication,
PMULHRW adds 8000h to the lower word of the doubleword
result, thus rounding the high-order word which is returned as
the result.

The PMULHUW instruction performs the same multiplication
as PMULHW but on unsigned operands. The instruction is
useful in 3D rasterization, which operates on unsigned pixel
values.

258 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The PMULUDQ instruction, unlike the other PMULx
instructions, preserves the full precision of the result. It
multiplies 32-bit unsigned integer values in the first and second
operands and writes the full 64-bit result to the destination.

See “Shift” on page 260 for shift instructions that can be used
to perform multiplication and division by powers of 2.

Multiply-Add.

PMADDWD—Packed Multiply Words and Add Doublewords

The PMADDWD instruction multiplies each 16-bit signed value
in the first operand by the corresponding 16-bit signed value in
the second operand. The instruction then adds the adjacent 32-
bit intermediate results of each multiplication, and writes the
32-bit result of each addition into the corresponding
doubleword of the destination. PMADDWD thus performs two
signed (16 x 16 = 32) + (16 x 16 = 32) multiply-adds in parallel.
Figure 5-16 on page 259 shows the PMADDWD operation.

The only case in which overflow can occur is when all four of the
16-bit source operands used to produce a 32-bit multiply-add
result have the value 8000h. In this case, the result returned is
8000_0000h, because the maximum negative 16-bit value of
8000h multiplied by itself equals 4000_0000h, and 4000_0000h
added to 4000_0000h equals 8000_0000h. The result of
multiplying two negative numbers should be a positive number,
but 8000_0000h is the maximum possible 32-bit negative
number rather than a positive number.

Chapter 5: 64-Bit Media Programming 259

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 259

Figure 5-16. PMADDWD Multiply-Add Operation

PMADDWD can be used with one source operand (for example,
a coefficient) taken from memory and the other source operand
(for example, the data to be multiplied by that coefficient)
taken from an MMX register. The instruction can also be used
together with the PADDD instruction (page 255) to compute dot
products, such as those required for finite impulse response
(FIR) filters, one of the commonly used DSP algorithms. Scaling
can be done, before or after the multiply, using a vector-shift
instruction (page 260).

For floating-point multiplication operations, see the PFMUL
instruction on page 268. For floating-point accumulation
operations, see the PFACC, PFNACC, and PFPNACC
instructions on page 268.

Average.

PAVGB—Packed Average Unsigned Bytes

PAVGW—Packed Average Unsigned Words

PAVGUSB—Packed Average Unsigned Packed Bytes

The PAVGx instructions compute the rounded average of each
unsigned 8-bit (PAVGB) or 16-bit (PAVGW) integer value in the

513-119.eps

operand 1

result

63 0

63 0

operand 2
63 0

127 0

*

+ +

260 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

first operand and the corresponding, same-sized unsigned
integer in the second operand. The instructions then write each
average in the corresponding, same-sized element of the
destination. The rounded average is computed by adding each
pair of operands, adding 1 to the temporary sum, and then right-
shifting the temporary sum by one bit.

The PAVGB instruction is useful for MPEG decoding, in which
motion compensation performs many byte-averaging operations
between and within macroblocks. In addition to speeding up
these operations, PAVGB can free up registers and make it
possible to unroll the averaging loops.

The PAVGUSB instruction (a 3DNow! instruction) performs a
function identical to the PAVGB instruction, described on
page 259, although the two instructions have different opcodes.

Sum of Absolute Differences.

PSADBW—Packed Sum of Absolute Differences of Bytes
into a Word

The PSADBW instruction computes the absolute values of the
differences of corresponding 8-bit signed integer values in the
first and second operands. The instruction then sums the
differences and writes an unsigned 16-bit integer result in the
low-order word of the destination. The remaining bytes in the
destination are cleared to all 0s.

Sums of absolute differences are used to compute the L1 norm
in motion-estimation algorithms for video compression.

5.5.7 Shift The vector-shift instructions are useful for scaling vector
elements to higher or lower precision, packing and unpacking
vector elements, and multiplying and dividing vector elements
by powers of 2.

Left Logical Shift.

PSLLW—Packed Shift Left Logical Words

PSLLD—Packed Shift Left Logical Doublewords

PSLLQ—Packed Shift Left Logical Quadwords

The PSLLx instructions left-shift each of the 16-bit (PSLLW),
32-bit (PSLLD), or 64-bit (PSLLQ) values in the first operand by
the number of bits specified in the second operand. The
instruct ions then wri te each shi f ted value into the

Chapter 5: 64-Bit Media Programming 261

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 261

corresponding, same-sized element of the destination. The first
and second operands are either an MMX register and another
MMX register or 64-bit memory location, or an MMX register
and an immediate-byte value. The low-order bits that are
emptied by the shift operation are cleared to 0.

In integer arithmetic, left logical shifts effectively multiply
unsigned operands by positive powers of 2.

Right Logical Shift.

PSRLW—Packed Shift Right Logical Words

PSRLD—Packed Shift Right Logical Doublewords

PSRLQ—Packed Shift Right Logical Quadwords

The PSRLx instructions right-shift each of the 16-bit (PSRLW),
32-bit (PSRLD), or 64-bit (PSRLQ) values in the first operand
by the number of bits specified in the second operand. The
instruct ions then wri te each shi f ted value into the
corresponding, same-sized element of the destination. The first
and second operands are either an MMX register and another
MMX register or 64-bit memory location, or an MMX register
and an immediate-byte value. The high-order bits that are
emptied by the shift operation are cleared to 0. In integer
arithmetic, right logical shifts effectively divide unsigned
operands or positive signed operands by positive powers of 2.

PSRLQ can be used to move the high 32 bits of an MMX register
to the low 32 bits of the register.

Right Arithmetic Shift.

PSRAW—Packed Shift Right Arithmetic Words

PSRAD—Packed Shift Right Arithmetic Doublewords

The PSRAx instructions right-shifts each of the 16-bit (PSRAW)
or 32-bit (PSRAD) values in the first operand by the number of
bits specified in the second operand. The instructions then
write each shifted value into the corresponding, same-sized
element of the destination. The high-order bits that are
emptied by the shift operation are filled with the sign bit of the
initial value.

In integer arithmetic, right arithmetic shifts effectively divide
signed operands by positive powers of 2.

262 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

5.5.8 Compare The integer vector-compare instructions compare two operands,
and they either write a mask or they write the maximum or
minimum value.

Compare and Write Mask.

PCMPEQB—Packed Compare Equal Bytes

PCMPEQW—Packed Compare Equal Words

PCMPEQD—Packed Compare Equal Doublewords

PCMPGTB—Packed Compare Greater Than Signed Bytes

PCMPGTW—Packed Compare Greater Than Signed Words

PCMPGTD—Packed Compare Greater Than Signed
Doublewords

The PCMPEQx and PCMPGTx instruct ions compare
corresponding bytes, words, or doubleword in the first and
second operands. The instructions then write a mask of all 1s or
0s for each compare into the corresponding, same-sized element
of the destination.

For the PCMPEQx instructions, if the compared values are
equal, the result mask is all 1s. If the values are not equal, the
result mask is all 0s. For the PCMPGTx instructions, if the
signed value in the first operand is greater than the signed
value in the second operand, the result mask is all 1s. If the
value in the first operand is less than or equal to the value in
the second operand, the result mask is all 0s. PCMPEQx can be
used to set the bits in an MMX register to all 1s by specifying
the same register for both operands.

By specifying the same register for both operands, PCMPEQx
can be used to set the bits in an MMX register to all 1s.

Figure 5-5 on page 235 shows an example of a non-branching
sequence that implements a two-way multiplexer—one that is
equivalent to the following sequence of ternary operators in C
or C++:

r0 = a0 > b0 ? a0 : b0
r1 = a1 > b1 ? a1 : b1
r2 = a2 > b2 ? a2 : b2
r3 = a3 > b3 ? a3 : b3

Assuming mmx0 contains a, and mmx1 contains b, the above C
sequence can be implemented with the following assembler
sequence:

Chapter 5: 64-Bit Media Programming 263

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 263

MOVQ mmx3, mmx0
PCMPGTW mmx3, mmx2 ; a > b ? 0xffff : 0
PAND mmx0, mmx3 ; a > b ? a: 0
PANDN mmx3, mmx1 ; a > b > 0 : b
POR mmx0, mmx3 ; r = a > b ? a: b

In the above sequence, PCMPGTW, PAND, PANDN, and POR
operate, in parallel, on all four elements of the vectors.

Compare and Write Minimum or Maximum.

PMAXUB—Packed Maximum Unsigned Bytes

PMINUB—Packed Minimum Unsigned Bytes

PMAXSW—Packed Maximum Signed Words

PMINSW—Packed Minimum Signed Words

The PMAXUB and PMINUB instructions compare each of the 8-
bit unsigned integer values in the first operand with the
corresponding 8-bit unsigned integer values in the second
operand. The instructions then write the maximum (PMAXUB)
or minimum (PMINUB) of the two values for each comparison
into the corresponding byte of the destination.

The PMAXSW and PMINSW instructions perform operations
analogous to the PMAXUB and PMINUB instructions, except
on 16-bit signed integer values.

5.5.9 Logical The vector-logic instructions perform Boolean logic operations,
including AND, OR, and exclusive OR.

And.

PAND—Packed Logical Bitwise AND

PANDN—Packed Logical Bitwise AND NOT

The PAND instruction performs a bitwise logical AND of the
values in the first and second operands and writes the result to
the destination.

The PANDN instruction inverts the first operand (creating a
one’s complement of the operand), ANDs it with the second
operand, and writes the result to the destination, and writes the
result to the destination. Table 5-5 on page 264 shows an
example.

264 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

PAND can be used with the value 7FFFFFFF7FFFFFFFh to
compute the absolute value of the elements of a 64-bit media
floating-point vector operand. This method is equivalent to the
x87 FABS (floating-point absolute value) instruction.

Or.

POR—Packed Logical Bitwise OR

The POR instruction performs a bitwise logical OR of the values
in the first and second operands and writes the result to the
destination.

Exclusive Or.

PXOR—Packed Logical Bitwise Exclusive OR

The PXOR instruction performs a bitwise logical exclusive OR
of the values in the first and second operands and writes the
result to the destination. PXOR can be used to clear all bits in
an MMX register by specifying the same register for both
operands . PXOR can a lso used with the value
8000000080000000h to change the sign bits of the elements of a
64-bit media floating-point vector operand. This method is
equivalent to the x87 floating-point change sign (FCHS)
instruction.

5.5.10 Save and
Restore State

These instructions save and restore the processor state for 64-
bit media instructions.

Save and Restore 64-Bit Media and x87 State.

FSAVE—Save x87 and MMX State

FNSAVE—Save No-Wait x87 and MMX State

Table 5-5. Example PANDN Bit Values

Operand1 Bit
Operand1 Bit

(Inverted)
Operand2 Bit PANDN

Result Bit

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

Chapter 5: 64-Bit Media Programming 265

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 265

FRSTOR—Restore x87 and MMX State

These instructions save and restore the entire processor state
for x87 f loating-point instructions and 64-bit media
instructions. The instructions save and restore either 94 or 108
bytes of data, depending on the effective operand size.

Assemblers issue FSAVE as an FWAIT instruction followed by
an FNSAVE instruction. Thus, FSAVE (but not FNSAVE)
reports pending unmasked x87 floating-point exceptions before
saving the state. After saving the state, the processor initializes
the x87 state by performing the equivalent of an FINIT
instruction.

Save and Restore 128-Bit, 64-Bit, and x87 State.

FXSAVE—Save XMM, MMX, and x87 State

FXRSTOR—Restore XMM, MMX, and x87 State

The FXSAVE and FXRSTOR instructions save and restore the
entire 512-byte processor state for 128-bit media instructions,
64-bit media instructions, and x87 floating-point instructions.
The architecture supports two memory formats for FXSAVE
and FXRSTOR, a 512-byte 32-bit legacy format and a 512-byte
64-bit format. Selection of the 32-bit or 64-bit format is
determined by the effective operand size for the FXSAVE and
FXRSTOR instructions. For details, see “Saving Media and x87
Processor State” in Volume 2.

FXSAVE and FXRSTOR execute faster than FSAVE/FNSAVE
and FRSTOR. However, unlike FSAVE and FNSAVE, FXSAVE
does not initialize the x87 state, and like FNSAVE it does not
report pending unmasked x87 floating-point exceptions. For
details, see “Saving and Restoring State” on page 279.

5.6 Instruction Summary—Floating-Point Instructions

This section summarizes the functions of the floating-point
(3DNow!™ and a few SSE and SSE2) instructions in the 64-bit
media instruction subset. These include floating-point
instructions that use an MMX™ register for source or
destination and data-conversion instructions that convert from
floating-point to integers formats. For a summary of the integer
instructions in the 64-bit media instruction subset, including
data-conversion instructions that convert from integer to

266 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

floating-point formats, see “Instruction Summary—Integer
Instructions” on page 245.

For a summary of the 128-bit media floating-point instructions,
see “Instruction Summary—Floating-Point Instructions” on
page 187. For a summary of the x87 floating-point instructions,
see “Instruction Summary” on page 313.

The instructions are organized here by functional group—such
as data-transfer, vector arithmetic, and so on. Software running
at any privilege level can use any of these instructions, if the
CPUID instruction reports support for the instructions (see
“Feature Detection” on page 273). More detail on individual
instructions is given in the alphabetically organized “64-Bit
Media Instruction Reference” in Volume 5.

5.6.1 Syntax The 64-bit media floating-point instructions have the same
syntax rules as those for the 64-bit media integer instructions,
described in “Syntax” on page 246, except that the mnemonics
of most floating-point instructions begin with the following
prefix:

PF—Packed floating-point

5.6.2 Data Conversion These data-conversion instructions convert operands from
floating-point to integer formats. The instructions take 32-bit or
64-bit floating-point source operands. For data-conversion
instructions that take 64-bit integer source operands, see “Data
Conversion” on page 250. For data-conversion instructions that
take 128-bit source operands, see “Data Conversion” on
page 166 and “Data Conversion” on page 192.

Convert Floating-Point to Integer.

CVTPS2PI—Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers

CVTTPS2PI—Convert Packed Single-Precision Floating-
Point to Packed Doubleword Integers, Truncated

CVTPD2PI—Convert Packed Double-Precision Floating-
Point to Packed Doubleword Integers

CVTTPD2PI—Convert Packed Double-Precision Floating-
Point to Packed Doubleword Integers, Truncated

PF2IW—Packed Floating-Point to Integer Word Conversion

PF2ID—Packed Floating-Point to Integer Doubleword
Conversion

Chapter 5: 64-Bit Media Programming 267

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 267

The CVTPS2PI and CVTTPS2PI instructions convert two single-
precision (32-bit) floating-point values in the second operand
(the low-order 64 bits of an XMM register or a 64-bit memory
location) to two 32-bit signed integers, and write the converted
values into the first operand (an MMX register). For the
CVTPS2PI instruction, if the conversion result is an inexact
value, the value is rounded as specified in the rounding control
(RC) field of the MXCSR register (“MXCSR Register” on
page 140), but for the CVTTPS2PI instruction such a result is
truncated (rounded toward zero).

The CVTPD2PI and CVTTPD2PI instructions perform
conversions analogous to CVTPS2PI and CVTTPS2PI but for
two double-precision (64-bit) floating-point values.

The 3DNow! PF2IW instruction converts two single-precision
floating-point values in the second operand (an MMX register
or a 64-bit memory location) to two 16-bit signed integer values,
sign-extended to 32-bits, and writes the converted values into
the first operand (an MMX register). The 3DNow! PF2ID
instruction converts two single-precision floating-point values
in the second operand to two 32-bit signed integer values, and
writes the converted values into the first operand. If the result
of either conversion is an inexact value, the value is truncated
(rounded toward zero).

As described in “Floating-Point Data Types” on page 243,
PF2IW and PF2ID do not fully comply with the IEEE-754
standard. Conversion of some source operands of the C type
float (IEEE-754 single-precision)—specifically NaNs, infinities,
and denormals—are not supported. Attempts to convert such
source operands produce undefined results, and no exceptions
are generated.

5.6.3 Arithmetic The floating-point vector-arithmetic instructions perform an
arithmetic operation on two floating-point operands. For a
description of 3DNow! saturation on overflow and underflow
conditions, see “Floating-Point Data Types” on page 243.

Addition.

PFADD—Packed Floating-Point Add

The PFADD instruction adds each single-precision floating-
point value in the first operand (an MMX register) to the
corresponding single-precision floating-point value in the

268 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

second operand (an MMX register or 64-bit memory location).
The instruction then writes the result of each addition into the
corresponding doubleword of the destination.

Subtraction.

PFSUB—Packed Floating-Point Subtract

PFSUBR—Packed Floating-Point Subtract Reverse

The PFSUB instruction subtracts each single-precision floating-
point value in the second operand from the corresponding
single-precision floating-point value in the first operand. The
instruction then writes the result of each subtraction into the
corresponding quadword of the destination.

The PFSUBR instruction performs a subtraction that is the
reverse of the PFSUB instruction. It subtracts each value in the
first operand from the corresponding value in the second
operand. The provision of both the PFSUB and PFSUBR
instructions allows software to choose which source operand to
overwrite during a subtraction.

Multiplication.

PFMUL—Packed Floating-Point Multiply

The PFMUL instruction multiplies each of the two single-
precision floating-point values in the first operand by the
corresponding single-precision floating-point value in the
second operand and writes the result of each multiplication into
the corresponding doubleword of the destination.

Division.

For a description of floating-point division techniques, see
“Reciprocal Estimation” on page 270. Division is equivalent to
multiplication of the dividend by the reciprocal of the divisor.

Accumulation.

PFACC—Packed Floating-Point Accumulate

PFNACC—Packed Floating-Point Negative Accumulate

PFPNACC—Packed Floating-Point Positive-Negative
Accumulate

The PFACC instruction adds the two single-precision floating-
point values in the first operand and writes the result into the

Chapter 5: 64-Bit Media Programming 269

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 269

low-order word of the destination, and it adds the two single-
precision values in the second operand and writes the result
into the high-order word of the destination. Figure 5-17
illustrates the operation.

Figure 5-17. PFACC Accumulate Operation

The PFNACC instruction subtracts the first operand’s high-
order single-precision floating-point value from its low-order
single-precision floating-point value and writes the result into
the low-order doubleword of the destination, and it subtracts
the second operand’s high-order single-precision floating-point
value from its low-order single-precision floating-point value
and writes the result into the high-order doubleword of the
destination.

The PFPNACC instruction subtracts the first operand’s high-
order single-precision floating-point value from its low-order
single-precision floating-point value and writes the result into
the low-order doubleword of the destination, and it adds the two
single-precision values in the second operand and writes the
result into the high-order doubleword of the destination.

PFPNACC is useful in complex-number multiplication, in which
mixed positive-negative accumulation must be performed.
Assuming that complex numbers are represented as two-
element vectors (one element is the real part, the other element
is the imaginary part), there is a need to swap the elements of
one source operand to perform the multiplication, and there is a
need for mixed positive-negative accumulation to complete the

513-183.eps

operand 1

result63 0

operand 2
63 063 0

+ +

270 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

parallel computation of real and imaginary results. The
PSWAPD instruction can swap elements of one source operand
and the PFPNACC instruction can perform the mixed positive-
negative accumulation to complete the computation.

Reciprocal Estimation.

PFRCP—Packed Floating-Point Reciprocal Approximation

PFRCPIT1—Packed Floating-Point Reciprocal, Iteration 1

PFRCPIT2—Packed Floating-Point Reciprocal or Reciprocal
Square Root, Iteration 2

The PFRCP instruction computes the approximate reciprocal of
the single-precision floating-point value in the low-order 32 bits
of the second operand and writes the result into both
doublewords of the first operand.

The PFRCPIT1 instruction performs the first intermediate step
in the Newton-Raphson iteration to refine the reciprocal
approximation produced by the PFRCP instruction. The first
operand contains the input to a previous PFRCP instruction,
and the second operand contains the result of the same PFRCP
instruction.

The PFRCPIT2 instruction performs the second and final step
in the Newton-Raphson iteration to refine the reciprocal
approximation produced by the PFRCP instruction or the
reciprocal square-root approximation produced by the PFSQRT
instructions. The first operand contains the result of a previous
PFRCPIT1 or PFRSQIT1 instruction, and the second operand
contains the result of a PFRCP or PFRSQRT instruction.

The PFRCP instruction can be used together with the
PFRCPIT1 and PFRCPIT2 instructions to increase the accuracy
of a single-precision significand.

Reciprocal Square Root.

PFRSQRT—Packed Floating-Point Reciprocal Square Root
Approximation

PFRSQIT1—Packed Floating-Point Reciprocal Square Root,
Iteration 1

The PFRSQRT instruction computes the approximate
reciprocal square root of the single-precision floating-point
value in the low-order 32 bits of the second operand and writes

Chapter 5: 64-Bit Media Programming 271

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 271

the result into each doubleword of the first operand. The second
operand is a single-precision floating-point value with a 24-bit
significand. The result written to the first operand is accurate
to 15 bits. Negative operands are treated as positive operands
for purposes of reciprocal square-root computation, with the
sign of the result the same as the sign of the source operand.

The PFRSQIT1 instruction performs the first step in the
Newton-Raphson iteration to refine the reciprocal square-root
approximation produced by the PFSQRT instruction. The first
operand contains the input to a previous PFRSQRT instruction,
and the second operand contains the square of the result of the
same PFRSQRT instruction.

The PFRSQRT instruction can be used together with the
PFRSQIT1 instruction and the PFRCPIT2 instruction
(described in “Reciprocal Estimation” on page 270) to increase
the accuracy of a single-precision significand.

5.6.4 Compare The floating-point vector-compare instructions compare two
operands, and they either write a mask or they write the
maximum or minimum value.

Compare and Write Mask.

PFCMPEQ—Packed Floating-Point Compare Equal

PFCMPGT—Packed Floating-Point Compare Greater Than

PFCMPGE—Packed Floating-Point Compare Greater or
Equal

The PFCMPx instructions compare each of the two single-
precision floating-point values in the first operand with the
corresponding single-precision floating-point value in the
second operand. The instructions then write the result of each
comparison into the corresponding doubleword of the
destination. If the comparison test (equal, greater than, greater
or equal) is true, the result is a mask of all 1s. If the comparison
test is false, the result is a mask of all 0s.

Compare and Write Minimum or Maximum.

PFMAX—Packed Floating-Point Maximum

PFMIN—Packed Floating-Point Minimum

The PFMAX and PFMIN instructions compare each of the two
single-precision floating-point values in the first operand with

272 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

the corresponding single-precision floating-point value in the
second operand. The instructions then write the maximum
(PFMAX) or minimum (PFMIN) of the two values for each
comparison into the corresponding doubleword of the
destination.

The PFMIN and PFMAX instructions are useful for clamping,
such as color clamping in 3D geometry and rasterization. They
can also be used to avoid branching.

5.7 Instruction Effects on Flags

64-bit media instructions do not read or write any flags in the
rFLAGS register, nor do they write any exception-status flags in
the x87 status-word register, nor is their execution dependent
on any mask bits in the x87 control-word register. The only x87
state affected by the 64-bit media instructions is described in
“Actions Taken on Executing 64-Bit Media Instructions” on
page 276.

5.8 Instruction Prefixes

Instruction prefixes, in general, are described in “Instruction
Prefixes” on page 85. The following restrictions apply to the use
of instruction prefixes with 64-bit media instructions.

5.8.1 Supported
Prefixes

The following prefixes can be used with 64-bit media
instructions:

Address-Size Override—The 67h prefix affects only operands
in memory. The prefix is ignored by all other 64-bit media
instructions.

Operand-Size Override—The 66h prefix is used to form the
opcodes of certain 64-bit media instructions. The prefix is
ignored by all other 64-bit media instructions.

Segment Overrides—The 2Eh (CS), 36h (SS), 3Eh (DS), 26h
(ES), 64h (FS), and 65h (GS) prefixes affect only operands in
memory. In 64-bit mode, the contents of the CS, DS, ES, SS
segment registers are ignored.

REP—The F2 and F3h prefixes do not function as repeat
prefixes for 64-bit media instructions. Instead, they are used
to form the opcodes of certain 64-bit media instructions. The
prefixes are ignored by all other 64-bit media instructions.

Chapter 5: 64-Bit Media Programming 273

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 273

REX—The REX prefixes affect operands that reference a
GPR or XMM register when running in 64-bit mode. It allows
access to the full 64-bit width of any of the 16 extended
GPRs and to any of the 16 extended XMM registers. The
REX prefix also affects the FXSAVE and FXRSTOR
instructions, in which it selects between two types of 512-
byte memory-image format, as described in “Saving Media
and x87 Processor State” in Volume 2. The prefix is ignored
by all other 64-bit media instructions.

5.8.2 Special-Use and
Reserved Prefixes

The following prefixes are used as opcode bytes in some 64-bit
media instructions and are reserved in all other 64-bit media
instructions:

Operand-Size Override—The 66h prefix.

REP—The F2 and F3h prefixes.

5.8.3 Prefixes That
Cause Exceptions

The following prefixes cause an exception:

LOCK—The F0h prefix causes an invalid-opcode exception
when used with 64-bit media instructions.

5.9 Feature Detection

Before executing 64-bit media instructions, software should
determine whether the processor supports the technology by
executing the CPUID instruction. “Feature Detection” on
page 90 describes how software uses the CPUID instruction to
detect feature support. For full support of the 64-bit media
instructions documented here, the following features require
detection:

MMX™ instructions, indicated by bit 23 of CPUID standard
function 1 and extended function 8000_0001h.

3DNow!™ instructions, indicated by bit 31 of CPUID
extended function 8000_0001h.

MMX extensions, indicated by bit 22 of CPUID extended
function 8000_0001h.

3DNow! extensions, indicated by bit 30 of CPUID extended
function 8000_0001h.

SSE instructions, indicated by bit 25 of CPUID extended
function 8000_0001h.

SSE2 instruction extensions, indicated by bit 26 of CPUID
extended function 8000_0001h.

274 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Software may also wish to check for the following support,
because the FXSAVE and FXRSTOR instructions execute
faster than FSAVE and FRSTOR:

FXSAVE and FXRSTOR, indicated by bit 24 of CPUID
standard function 1 and extended function 8000_0001h.

Software that runs in long mode should also check for the
following support:

Long Mode, indicated by bit 29 of CPUID extended function
8000_0001h.

See “Processor Feature Identification” in Volume 2 for a full
description of the CPUID instruction and its function codes.

If the FXSAVE and FXRSTOR instructions are to be used, the
operating system must support these instructions by having set
CR4.OSFXSR = 1. If the MMX floating-point-to-integer data-
conversion instructions (CVTPS2PI, CVTTPS2PI, CVTPD2PI,
or CVTTPD2PI) are used, the operating system must support
the FXSAVE and FXRSTOR instructions and SIMD floating-
point exceptions (by having set CR4.OSXMMEXCPT = 1). For
details, see “System-Control Registers” in Volume 2.

5.10 Exceptions

64-bit media instructions can generate two types of exceptions:

General-Purpose Exceptions, described below in “General-
Purpose Exceptions”

x87 Floating-Point Exceptions (#MF), described in “x87
Floating-Point Exceptions (#MF)” on page 276

All exceptions that occur while executing 64-bit media
instructions can be handled by legacy exception handlers used
for general-purpose instructions and x87 floating-point
instructions.

5.10.1 General-
Purpose Exceptions

The sections below list exceptions generated and not generated
by general-purpose instructions. For a summary of the general-
purpose exception mechanism, see “Interrupts and
Exceptions” on page 104. For details about each exception and
its potential causes, see “Exceptions and Interrupts” in
Volume 2.

Chapter 5: 64-Bit Media Programming 275

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 275

Exceptions Generated. 64-bit media instructions can generate the
following general-purpose exceptions:

#DB—Debug Exception (Vector 1)

#UD—Invalid-Opcode Exception (Vector 6)

#DF—Double-Fault Exception (Vector 8)

#SS—Stack Exception (Vector 12)

#GP—General-Protection Exception (Vector 13)

#PF—Page-Fault Exception (Vector 14)

#MF—x87 Floating-Point Exception-Pending (Vector 16)

#AC—Alignment-Check Exception (Vector 17)

#MC—Machine-Check Exception (Vector 18)

#XF—SIMD Floating-Point Exception (Vector 19)—Only by
the CVTPS2PI, CVTTPS2PI, CVTPD2PI, and CVTTPD2PI
instructions.

An invalid-opcode exception (#UD) can occur if a required
CPUID feature flag is not set (see “Feature Detection” on
page 273), or if an attempt is made to execute a 64-bit media
instruction and the operating system has set the floating-point
software-emulation (EM) bit in control register 0 to 1
(CR0.EM = 1).

For details on the system control-register bits, see “System-
Control Registers” in Volume 2. For details on the machine-
check mechanism, see “Machine Check Mechanism” in
Volume 2.

For details on #MF exceptions, see “x87 Floating-Point
Exceptions (#MF)” on page 276.

Exceptions Not Generated. 64-bi t media instruct ions do not
generate the following general-purpose exceptions:

#DE—Divide-By-Zero-Error Exception (Vector 0)

Non-Maskable-Interrupt Exception (Vector 2)

#BP—Breakpoint Exception (Vector 3)

#OF—Overflow Exception (Vector 4)

#BR—Bound-Range Exception (Vector 5)

#NM—Device-Not-Available Exception (Vector 7)

Coprocessor-Segment-Overrun Exception (Vector 9)

#TS—Invalid-TSS Exception (Vector 10)

276 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

#NP—Segment-Not-Present Exception (Vector 11)

For details on all general-purpose exceptions, see “Exceptions
and Interrupts” in Volume 2.

5.10.2 x87 Floating-
Point Exceptions
(#MF)

64-bit media instructions do not generate x87 floating-point
(#MF) exceptions as a consequence of their own computations.
However, an #MF exception can occur during the execution of a
64-bit media instruction, due to a prior x87 floating-point
instruction. Specifically, if an unmasked x87 floating-point
exception is pending at the instruction boundary of the next 64-
bit media instruction, the processor asserts the FERR# output
signal. For details about the x87 floating-point exceptions and
the FERR# output signal, as described in “x87 Floating-Point
Exception Causes” on page 336.

5.11 Actions Taken on Executing 64-Bit Media Instructions

The MMX™ registers are mapped onto the low 64 bits of the 80-
bit x87 floating-point physical registers, FPR0–FPR7, described
in “Registers” on page 285. The MMX instructions do not use
the x87 stack-addressing mechanism. However, 64-bit media
instructions write certain values in the x87 top-of-stack pointer,
tag bits, and high bits of the FPR0–FPR7 data registers.

Specifically, the processor performs the following x87-related
actions atomically with the execution of 64-bit media
instructions:

Top-Of-Stack Pointer (TOP)—The processor clears the x87 top-
of-stack pointer (bits 13–11 in the x87 status word register)
to all 0s during the execution of every 64-bit media
instruction, causing it to point to the mmx0 register.

Tag Bits—During the execution of every 64-bit media
instruction, except the EMMS and FEMMS instructions, the
processor changes the tag state for all eight MMX registers
to full, as described below. In the case of EMMS and
FEMMS, the processor changes the tag state for all eight
MMX registers to empty, thus initializing the stack for an x87
floating-point procedure.

Bits 79–64—During the execution of every 64-bit media
instruction that writes a result to an MMX register, the
processor writes the result data to a 64-bit MMX register
(the low 64 bits of the associated 80-bit x87 floating-point

Chapter 5: 64-Bit Media Programming 277

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 277

physical register) and sets the exponent and sign bits (the
high 16 bits of the associated 80-bit x87 floating-point
physical register) to all 1s. In the x87 environment, the
effect of setting the high 16 bits to all 1s indicates that the
contents of the low 64 bits are not finite numbers. Such a
designation prevents an x87 floating-point instruction from
interpreting the data as a finite x87 floating-point number.

The rest of the x87 floating-point processor state—the entire
x87 control-word register, the remaining fields of the status-
word register, and the error pointers (instruction pointer, data
pointer, and last opcode register)—is not affected by the
execution of 64-bit media instructions.

The 2-bit tag fields defined by the x87 architecture for each x87
data register, and stored in the x87 tag-word register (also
called the floating-point tag word, or FTW), characterize the
contents of the MMX registers. The tag bits are visible to
software only after an FSAVE or FNSAVE (but not FXSAVE)
instruction, as described in “Saving Media and x87 Processor
State” in Volume 2. Internally, however, the processor
maintains only a one-bit representation of each 2-bit tag field.
This single bit indicates whether the associated register is
empty or full. Table 5-6 shows the mapping between the 1-bit
internal tag—which is referred to in this chapter by its empty or
full state—and the 2-bit architectural tag.

Table 5-6. Mapping Between Internal and Software-Visible Tag Bits

Architectural State
Internal State1

State Binary Value

Valid 00

Full (0)
Zero 01

Special
(NaN, infinity, denormal)2 10

Empty 11 Empty (1)

Note:
1. For a more detailed description of this mapping, see “Deriving FSAVE Tag Field from FXSAVE

Tag Field” in Volume 2.
2. 64-bit media floating point (3DNow!™) instructions do not support NaNs, infinities, and

denormals.

278 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

When the processor executes an FSAVE or FNSAVE (but not
FXSAVE) instruction, it changes the internal 1-bit tag state to
its 2-bit architectural tag by reading the data in all 80 bits of the
physical data registers and using the mapping in Table 5-6. For
example, if the value in the high 16 bits of the 80-bit physical
register indicate a NaN, the two tag bits for that register are
changed to a binary value of 10 before the x87 status word is
written to memory.

The tag bits have no effect on the execution of 64-bit media
instructions or their interpretation of the contents of the MMX
registers. However, the converse is not true: execution of 64-bit
media instructions that write to an MMX register alter the tag
bits and thus may affect execution of subsequent x87 floating-
point instructions.

For a more detailed description of the mapping shown in
Table 5-6, see “Deriving FSAVE Tag Field from FXSAVE Tag
Field” in Volume 2 and its accompanying text.

5.12 Mixing Media Code with x87 Code

5.12.1 Mixing Code Software may freely mix 64-bit media instructions (integer or
floating-point) with 128-bit media instructions (integer or
floating-point) and general-purpose instructions in a single
procedure. However, before transitioning from a 64-bit media
procedure—or a 128-bit media procedure that accesses an
MMX™ register—to an x87 procedure, or to software that may
eventually branch to an x87 procedure, software should clear
the MMX state, as described immediately below.

5.12.2 Clearing MMX™
State

Software should separate 64-bit media procedures, 128-bit
media procedures, or dynamic link libraries (DLLs) that access
MMX registers from x87 floating-point procedures or DLLs by
clearing the MMX state with the EMMS or FEMMS instruction
before leaving a 64-bit media procedure, as described in “Exit
Media State” on page 247.

64-bit media instructions and x87 floating-point instructions
interpret the contents of their aliased MMX and x87 registers
differently. Because of this, software should not exchange
register data between 64-bit media and x87 floating-point
procedures, or use conditional branches at the end of loops that
might jump to code of the other type. Software must not rely on
the contents of the aliased MMX and x87 registers across such

Chapter 5: 64-Bit Media Programming 279

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 279

code-type transitions. If a transition to an x87 procedure occurs
from a 64-bit media procedure that does not clear the MMX
state, the x87 stack may overflow.

5.13 State-Saving

5.13.1 Saving and
Restoring State

In general, system software should save and restore MMX™ and
x87 state between task switches or other interventions in the
execution of 64-bit media procedures. Virtually all modern
operating systems running on x86 processors—like Windows
NT™, UNIX, and OS/2—are preemptive multitasking operating
systems that handle such saving and restoring of state properly
across task switches, independently of hardware task-switch
support.

No changes are needed to the x87 register-saving performed by
32-bit operating systems, exception handlers, or device drivers.
The same support provided in a 32-bit operating system’s
device-not-available (#NM) exception handler by any of the x87-
register save/restore instructions described below also supports
saving and restoring the MMX registers.

However, application procedures are also free to save and
restore MMX and x87 state at any time they deem useful.

5.13.2 State-Saving
Instructions

Software running at any privilege level may save and restore 64-
bit media and x87 state by executing the FSAVE, FNSAVE, or
FXSAVE instruction. Alternatively, software may use move
instructions for saving only the contents of the MMX registers,
rather than the complete 64-bit media and x87 state. For
example, when saving MMX register values, use eight MOVQ
instructions.

FSAVE/FNSAVE and FRSTOR Instructions. The FSAVE, FNSAVE, and
FRSTOR instructions are described in “Save and Restore 64-Bit
Media and x87 State” on page 264. After saving state with
FSAVE or FNSAVE, the tag bits for all MMX and x87 registers
are changed to empty and thus available for a new procedure.
Thus, FSAVE and FNSAVE also perform the state-clearing
function of EMMS or FEMMS.

FXSAVE and FXRSTOR Instructions. The FSAVE, FNSAVE, and
FRSTOR instructions are described in “Save and Restore 128-
Bit, 64-Bit, and x87 State” on page 265. The FXSAVE and
FXRSTOR instructions execute faster than FSAVE/FNSAVE

280 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

and FRSTOR because they do not save and restore the x87 error
pointers (described in “Pointers and Opcode State” on
page 295) except in the relatively rare cases in which the
exception-summary (ES) bit in the x87 status word (register
image for FXSAVE, memory image for FXRSTOR) is set to 1,
indicating that an unmasked x87 exception has occurred.

Unlike FSAVE and FNSAVE, however, FXSAVE does not alter
the tag bits (thus, it does not perform the state-clearing
function of EMMS or FEMMS). The state of the saved MMX and
x87 registers is retained, thus indicating that the registers may
still be valid (or whatever other value the tag bits indicated
prior to the save). To invalidate the contents of the MMX and
x87 registers after FXSAVE, software must explicitly execute
an FINIT instruction. Also, FXSAVE (like FNSAVE) and
FXRSTOR do not check for pending unmasked x87 floating-
point exceptions. An FWAIT instruction can be used for this
purpose.

For details about the FXSAVE and FXRSTOR memory formats,
see “Saving Media and x87 Processor State” in Volume 2.

5.14 Performance Considerations

In addition to typical code optimization techniques, such as
those affecting loops and the inlining of function calls, the
following considerations may help improve the performance of
application programs written with 64-bit media instructions.

These are implementation-independent performance
considerations. Other considerations depend on the hardware
implementation. For information about such implementation-
dependent considerations and for more information about
application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware
implementations.

5.14.1 Use Small
Operand Sizes

The performance advantages available with 64-bit media
operations is to some extent a function of the data sizes
operated upon. The smaller the data size, the more data
elements that can be packed into single 64-bit vectors. The
parallelism of computation increases as the number of
elements per vector increases.

Chapter 5: 64-Bit Media Programming 281

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 5: 64-Bit Media Programming 281

5.14.2 Reorganize
Data for Parallel
Operations

Much of the performance benefit from the 64-bit media
instructions comes from the parallelism inherent in vector
operations. It can be advantageous to reorganize data before
performing arithmetic operations so that its layout after
reorganization maximizes the parallelism of the arithmetic
operations.

The speed of memory access is particularly important for
certain types of computation, such as graphics rendering, that
depend on the regularity and locality of data-memory accesses.
For example, in matrix operations, performance is high when
operating on the rows of the matrix, because row bytes are
contiguous in memory, but lower when operating on the
columns of the matrix, because column bytes are not contiguous
in memory and accessing them can result in cache misses. To
improve performance for operations on such columns, the
matrix should first be transposed. Such transpositions can, for
example, be done using a sequence of unpacking or shuffle
instructions.

5.14.3 Remove
Branches

Branch can be replaced with 64-bit media instructions that
simulate predicated execution or conditional moves, as
described in “Branch Removal” on page 234. Where possible,
break long dependency chains into several shorter dependency
chains which can be executed in parallel. This is especially
important for floating-point instructions because of their
longer latencies.

5.14.4 Align Data Data alignment is particularly important for performance when
data written by one instruction is read by a subsequent
instruction soon after the write, or when accessing streaming
(non-temporal) data—data that will not be reused and therefore
should not be cached. These cases may occur frequently in 64-
bit media procedures.

Accesses to data stored at unaligned locations may benefit from
on-the-fly software alignment or from repetition of data at
different alignment boundaries, as required by different loops
that process the data.

5.14.5 Organize Data
for Cacheability

Pack small data structures into cache-line-size blocks. Organize
frequently accessed constants and coefficients into cache-line-
size blocks and prefetch them. Procedures that access data
arranged in memory-bus-sized blocks, or memory-burst-sized

282 Chapter 5: 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

blocks, can make optimum use of the available memory
bandwidth.

For data that will be used only once in a procedure, consider
using non-cacheable memory. Accesses to such memory are not
burdened by the overhead of cache protocols.

5.14.6 Prefetch Data Media applications typically operate on large data sets.
Because of this, they make intensive use of the memory bus.
Memory latency can be substantially reduced—especially for
data that will be used only once—by prefetching such data into
various levels of the cache hierarchy. Software can use the
PREFETCHx instructions very effectively in such cases, as
described in “Cache and Memory Management” on page 79.

Some of the best places to use prefetch instructions are inside
loops that process large amounts of data. If the loop goes
through less than one cache line of data per iteration, partially
unroll the loop to obtain multiple iterations of the loop within a
cache line. Try to use virtually all of the prefetched data. This
usually requires unit-stride memory accesses—those in which
all accesses are to contiguous memory locations.

5.14.7 Retain
Intermediate Results
in MMX Registers

Keep intermediate results in the MMX registers as much as
possible, especially if the intermediate results are used shortly
after they have been produced. Avoid spilling intermediate
results to memory and reusing them shortly thereafter.

Chapter 6: x87 Floating-Point Programming 283

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 283

6 x87 Floating-Point Programming

This chapter describes the x87 floating-point programming
model. This model supports all aspects of the legacy x87
floating-point model and complies with the IEEE 754 and 854
standards for binary floating-point arithmetic. In hardware
implementations of the AMD64 architecture, support for
specific features of the x87 programming model are indicated
by the CPUID feature bits, as described in “Feature Detection”
on page 334.

6.1 Overview

6.1.1 Origins In 1979, AMD introduced the first floating-point coprocessor for
microprocessors—the AM9511 arithmetic circuit. This
coprocessor performed 32-bit floating-point operations under
microprocessor control. In 1980, AMD introduced the AM9512,
which performed 64-bit floating-point operations. These
coprocessors were second-sourced as the 8231 and 8232
coprocessors. Before then, programmers working with general-
purpose microprocessors had to use much slower, vendor-
supplied software libraries for their floating-point needs.

In 1985, the Institute of Electrical and Electronics Engineers
published the IEEE Standard for Binary Floating-Point
Arithmetic, also referred to as the ANSI/IEEE Std 754-1985
standard, or IEEE 754. This standard defines the data types,
operations, and exception-handling methods that are the basis
for the x87 floating-point technology implemented in the legacy
x86 architecture. In 1987, the IEEE published a more general
radix-independent version of that standard, called the
ANSI/IEEE Std 854-1987 standard, or IEEE 854 for short. The
AMD64 architecture complies with both the IEEE 754 and
IEEE 854 standards.

6.1.2 Compatibility x87 floating-point instructions can be executed in any of the
architecture’s operating modes. Existing x87 binary programs
run in legacy and compatibility modes without modification.
The support provided by the AMD64 architecture for such
binaries is identical to that provided by legacy x86
architectures.

284 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

To run in 64-bit mode, x87 floating-point programs must be
recompiled. The recompilation has no side effects on such
programs, other then to make available the extended general-
purpose registers and 64-bit virtual address space.

6.2 Capabilities

Floating-point software is typically written to manipulate
numbers that are very large or very small, that require a high
degree of precision, or that result from complex mathematical
operations such as transcendentals. Applications that take
advantage of floating-point operations include geometric
calculations for graphics acceleration, scientific, statistical, and
engineering applications, and process control.

The advantages of using x87 floating-point instructions include:

Representation of all numbers in common, IEEE-754/854
formats, ensuring repeatability of results across all
platforms that conform to IEEE-754/854 standards.

Availability of separate floating-point registers. Depending
on the hardware implementation of the architecture, this
may allow execution of x87 floating-point instructions in
parallel with execution of general-purpose and 128-bit
media instructions.

Instructions that compute absolute value, change-of-sign,
round-to-integer, partial remainder, and square root.

Instructions that compute transcendental values, including
2x-1, cosine, partial arc tangent, partial tangent, sine, sine
with cosine, y*log2x, and y*log2(x+1). The cosine, partial arc
tangent, sine, and sine with cosine instructions use angular
values expressed in radians for operands and results.

Instructions that load common constants, such as log2e,
log210, log102, loge2, Pi, 1, and 0.

x87 instructions operate on data in three floating-point
formats—32-bit single-precision, 64-bit double-precision, and
80-bit double-extended-precision (sometimes called extended
precision)—as well as integer, and 80-bit packed-BCD formats.

x87 instructions carry out all computations using the 80-bit
double-extended-precision format. When an x87 instruction
reads a number from memory in 80-bit double-extended-
precision format, the number can be used directly in

Chapter 6: x87 Floating-Point Programming 285

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 285

computations, without conversion. When an x87 instruction
reads a number in a format other than double-extended-
precision format, the processor first converts the number into
double-extended-precision format. The processor can convert
numbers back to specific formats, or leave them in double-
extended-precision format when writing them to memory.

Most x87 operations for addition, subtraction, multiplication,
and division specify two source operands, the first of which is
replaced by the result. Instructions for subtraction and division
have reverse forms which swap the ordering of operands.

6.3 Registers

Operands for the x87 instructions are located in the x87
registers or memory. Figure 6-1 shows an overview of the x87
registers.

Figure 6-1. x87 Registers

Tag Word

Status Word

Control Word

513-321.eps

x87 Data Registers
79 0

fpr0

fpr1

fpr2

fpr3

fpr4

fpr5

fpr6

fpr7

015

63

010

Instruction Pointer (rIP)

Data Pointer (rDP)

Tag Word

Status Word

Control Word

Opcode

286 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

These registers include eight 80-bit data registers, three 16-bit
registers that hold the x87 control word, status word, and tag
word, two 64-bit registers that hold instruction and data
pointers, and an 11-bit register that holds a permutation of an
x87 opcode.

6.3.1 x87 Data
Registers

Figure 6-2 shows the eight 80-bit data registers in more detail.
Typically, x87 instructions reference these registers as a stack.
x87 instructions store operands only in these 80-bit registers or
in memory. They do not (with two exceptions) access the GPR
registers, and they do not access the XMM registers.

Figure 6-2. x87 Physical and Stack Registers

Stack Organization. The bank of eight physical data registers,
FPR0–FPR7, are organized internally as a stack, ST(0)–ST(7).
The stack functions like a circular modulo-8 buffer. The stack
top can be set by software to start at any register position in the
bank. Many instructions access the top of stack as well as
individual registers relative to the top of stack.

Stack Pointer. Bits 13–11 of the x87 status word (“x87 Status Word
Register” on page 287) are the top-of-stack pointer (TOP). The
TOP specifies the mapping of the stack registers onto the
physical registers. The TOP contains the physical-register index
of the location of the top of stack, ST(0). Instructions that load
operands from memory into an x87 register first decrement the

513-134.eps

79 0

13 11

fpr0

TOP

x87
Status
Word fpr1

fpr2

fpr3

fpr4

fpr5

fpr6

fpr7

ST(6)

ST(7)

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

Chapter 6: x87 Floating-Point Programming 287

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 287

stack pointer and then copy the operand (often with conversion
to the double-extended-precision format) from memory into the
decremented top-of-stack register. Instructions that store
operands from an x87 register to memory copy the operand
(often with conversion from the double-extended-precision
format) in the top-of-stack register to memory and then
increment the stack pointer.

Figure 6-2 shows the mapping between stack registers and
physical registers when the TOP has the value 2. Modulo-8
wraparound addressing is used. Pushing a new element onto
this stack—for example with the FLDZ (floating-point load
+0.0) instruction—decrements the TOP to 1, so that ST(0) refers
to FPR1, and the new top-of-stack is loaded with +0.0.

The architecture provides alternative versions of many
instructions that either modify or do not modify the TOP as a
side effect. For example, FADDP (floating-point add and pop)
behaves exactly like FADD (floating-point add), except that it
pops the stack after completion. Programs that use the x87
registers as a flat register file rather than as a stack would use
non-popping versions of instructions to ensure that the TOP
remains unchanged. However, loads (pushes) without
corresponding pops can cause the stack to overflow, which
occurs when a value is pushed or loaded into an x87 register
that is not empty (as indicated by the register’s tag bits). To
prevent overflow, the FXCH (floating-point exchange)
instruction can be used to access stack registers, giving the
appearance of a flat register file, but all x87 programs must be
aware of the register file’s stack organization.

The FINCSTP and FDECSTP instructions can be used to
increment and decrement, respectively, the TOP, modulo-8,
allowing the stack top to wrap around to the bottom of the
eight-register file when incremented beyond the top of the file,
or to wrap around to the top of the register file when
decremented beyond the bottom of the file. Neither the x87 tag
word nor the contents of the floating-point stack itself is
updated when these instructions are used.

6.3.2 x87 Status Word
Register

The 16-bit x87 status word register contains information about
the state of the floating-point unit, including the top-of-stack
pointer (TOP), four condition-code bits, exception-summary
flag, stack-fault flag, and six x87 floating-point exception flags.
Figure 6-3 on page 288 shows the format of this register. All bits

288 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

can be read and written, however values written to the B and ES
bits (bits 15 and 7) are ignored.

The FRSTOR and FXRSTOR instructions load the status word
from memory. The FSTSW, FNSTSW, FSAVE, FNSAVE,
FXSAVE, FSTENV, and FNSTENV instructions store the status
word to memory. The FCLEX and FNCLEX instructions clear
the exception flags. The FINIT and FNINIT instructions clear
all bits in the status-word.

Figure 6-3. x87 Status Word Register

The bits in the x87 status word are defined immediately below,
starting with bit 0. The six exception flags (IE, DE, ZE, OE, UE,
PE) plus the stack fault (SF) flag are sticky bits. Once set by the
processor, such a bit remains set until software clears it. For
details about the causes of x87 exceptions indicated by bits 6–0,
see “x87 Floating-Point Exception Causes” on page 336. For
details about the masking of x87 exceptions, see “x87 Floating-
Point Exception Masking” on page 342.

9 8 7 6 5 4 3 2 1 0101112131415

P
E

O
E

E
S

C
0

C
1

I
E

Z
E

U
E

S
FTOPC

3
B C

2
D
E

Symbol Description Bits
B x87 Floating-Point Unit Busy 15
C3 Condition Code 14
TOP Top of Stack Pointer 13–11

000 = FPR0
111 = FPR7

C2 Condition Code 10
C1 Condition Code 9
C0 Condition Code 8
ES Exception Status 7
SF Stack Fault 6

x87 Exception Flags
PE Precision Exception 5
UE Underflow Exception 4
OE Overflow Exception 3
ZE Zero-Divide Exception 2
DE Denormalized Operation Exception 1
IE Invalid Operation Exception 0

Chapter 6: x87 Floating-Point Programming 289

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 289

Invalid-Operation Exception (IE). Bit 0. The processor sets this bit to
1 when an invalid-operation exception occurs. These exceptions
are caused by many types of errors, such as an invalid operand
or by stack faults. When a stack fault causes an IE exception,
the stack fault (SF) exception bit is also set.

Denormalized-Operand Exception (DE). Bit 1. The processor sets this
bit to 1 when one of the source operands of an instruction is in
denormalized form. (See “Denormalized (Tiny) Numbers” on
page 304.)

Zero-Divide Exception (ZE). Bit 2. The processor sets this bit to 1
when a non-zero number is divided by zero.

Overflow Exception (OE). Bit 3. The processor sets this bit to 1 when
the absolute value of a rounded result is larger than the largest
representable normalized floating-point number for the
destination format. (See “Normalized Numbers” on page 304.)

Underflow Exception (UE). Bit 4. The processor sets this bit to 1
when the absolute value of a rounded non-zero result is too
small to be represented as a normalized floating-point number
for the destination format. (See “Normalized Numbers” on
page 304.)

The underflow exception has an unusual behavior. When
masked by the UM bit (bit 4 of the x87 control word), the
processor only reports a UE exception if the UE occurs together
with a precision exception (PE).

Precision Exception (PE). Bit 5. The processor sets this bit to 1 when
a floating-point result, after rounding, differs from the
infinitely precise result and thus cannot be represented exactly
in the specified destination format. The PE exception is also
called the inexact-result exception.

Stack Fault (SF). Bit 6. The processor sets this bit to 1 when a stack
overflow (due to a push or load into a non-empty stack register)
or stack underflow (due to referencing an empty stack register)
occurs in the x87 stack-register file. When either of these
conditions occur, the processor also sets the invalid-operation
exception (IE) flag, and the processor distinguishes overflow
from underflow by writing the condition-code 1 (C1) bit (C1 = 1
for overflow, C1 = 0 for underflow). Unlike the flags for the

290 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

other x87 exceptions, the SF flag does not have a corresponding
mask bit in the x87 control word.

If, subsequent to the instruction that caused the SF bit to be
set, a second invalid-operation exception (IE) occurs due to an
invalid operand in an arithmetic instruction (i.e., not a stack
fault), and if software has not cleared the SF bit between the
two instructions, the SF bit will remain set.

Exception Status (ES). Bit 7. The processor calculates the value of
this bit at each instruction boundary and sets the bit to 1 when
one or more unmasked floating-point exceptions occur. If the
ES bit has already been set by the action of some prior
instruction, the processor invokes the #MF exception handler
when the next non-control x87 or 64-bit media instruction is
executed. (See “Control” on page 329 for a definition of control
instructions).

The ES bit can be written, but the written value is ignored. Like
the SF bit, the ES bit does not have a corresponding mask bit in
the x87 control word.

Top-of-Stack Pointer (TOP). Bits 13–11. The TOP contains the
physical register index of the location of the top of stack, ST(0).
It thus specifies the mapping of the x87 stack registers,
ST(0)–ST(7), onto the x87 physical registers, FPR0–FPR7. The
processor changes the TOP during any instructions that pushes
or pops the stack. For details on how the stack works, see “Stack
Organization” on page 286.

Condition Codes (C3–C0). Bits 14 and 10–8. The processor sets these
bits according to the result of arithmetic, compare, and other
instructions. In certain cases, other status-word flags can be
used together with the condition codes to determine the result
of an operation, including stack overflow, stack underflow, sign,
least-significant quotient bits, last-rounding direction, and out-
of-range operand. For details on how each instruction sets the
condition codes, see “x87 Floating-Point Instruction
Reference” in Volume 5.

x87 Floating-Point Unit Busy (B). Bit 15. The processor sets the value
of this bit equal to the calculated value of the ES bit, bit 7. This
bit can be written, but the written value is ignored. The bit is
included only for backward-compatibility with the 8087
coprocessor, in which it indicates that the coprocessor is busy.

Chapter 6: x87 Floating-Point Programming 291

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 291

For further details about the x87 floating-point exceptions, see
“x87 Floating-Point Exception Causes” on page 336.

6.3.3 x87 Control
Word Register

The 16-bit x87 control word register allows software to manage
certain x87 processing options, including rounding, precision,
and masking of the six x87 floating-point exceptions (any of
which is reported as an #MF exception). Figure 6-4 shows the
format of the control word. All bits, except reserved bits, can be
read and written.

The FLDCW, FRSTOR, and FXRSTOR instructions load the
control word from memory. The FSTCW, FNSTCW, FSAVE,
FNSAVE, and FXSAVE instructions store the control word to
memory. The FINIT and FNINIT instructions initialize the
control word with the value 037Fh, which specifies round-to-
nearest, all exceptions masked, and double-extended precision
(64-bit).

Figure 6-4. x87 Control Word Register

Symbol Description Bits
Y Infinity Bit (80287 compatibility) 12
RC Rounding Control 11–10
PC Precision Control 9–8

#MF Exception Masks
PM Precision Exception Mask 5
UM Underflow Exception Mask 4
OM Overflow Exception Mask 3
ZM Zero-Divide Exception Mask 2
DM Denormalized Operation Exception Mask 1
IM Invalid Operation Exception Mask 0

9 8 7 6 5 4 3 2 1 0101112131415

P
M

O
M

P
C

R
C

I
M

Z
M

U
M

D
M

Rounding-Control (RC) Specification
00b = Round to nearest (default)
01b = Round down
10b = Round up
11b = Round toward zero

Reserved

Y

Precision-Control (PC) Specification
00b = Single Precision
01b = reserved
10b = Double Precision
11b = Double-Extended Precision (default)

292 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Starting from bit 0, the bits are:

Exception Masks (PM, UM, OM, ZM, DM, IM). Bits 5–0. Software can
set these bits to mask, or clear this bits to unmask, the
corresponding six types of x87 floating-point exceptions (PE,
UE, OE, ZE, DE, IE), which are reported in the x87 status word
as described in “x87 Status Word Register” on page 287. A bit
masks its exception type when set to 1, and unmasks it when
cleared to 0.

Masking a type of exception causes the processor to handle all
subsequent instances of the exception type in a default way.
Unmasking the exception type causes the processor to branch
to the #MF exception service routine when an exception occurs.
For details about the processor’s responses to masked and
unmasked exceptions, see “x87 Floating-Point Exception
Causes” on page 336.

Precision Control (PC). Bits 9–8. Software can set this field to
specify the precision of x87 floating-point calculations, as
shown in Table 6-1. Details on each precision are given in “Data
Types” on page 298. The default precision is double-extended-
precision. Precision control affects only the FADDx, FSUBx,
FMULx, FDIVx, and FSQRT instructions. For further details on
precision, see “Precision” on page 311.

Rounding Control (RC). Bits 11–10. Software can set this field to
specify how the results of x87 instructions are to be rounded.
Table 6-2 on page 293 lists the four rounding modes, which are
defined by the IEEE 754 standard.

Table 6-1. Precision Control (PC) Summary

PC Value
(binary) Data Type

00 Single precision

01 reserved

10 Double precision

11 Double-extended precision (default)

Chapter 6: x87 Floating-Point Programming 293

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 293

Round-to-nearest is the default rounding mode. It provides a
statistically unbiased estimate of the true result, and is suitable
for most applications. Rounding modes apply to all arithmetic
operations except comparison and remainder. They have no
effect on operations that produce not-a-number (NaN) results.
For further details on rounding, see “Rounding” on page 312.

Infinity Bit (Y). Bit 12. This bit is obsolete. It can be read and
written, but the value has no meaning. On pre-386 processor
implementations, the bit specified the affine (Y = 1) or
projective (Y = 0) infinity. The AMD64 architecture uses only
the affine infinity, which specifies distinct positive and
negative infinity values.

6.3.4 x87 Tag Word
Register

The x87 tag word register contains a 2-bit tag field for each x87
physical data register. These tag fields characterize the
register’s data. Figure 6-5 on page 294 shows the format of the
tag word.

Table 6-2. Types of Rounding

RC Value Mode Type of Rounding

00
(default)

Round to nearest
The rounded result is the representable value closest
to the infinitely precise result. If equally close, the
even value (with least-significant bit 0) is taken.

01 Round down
The rounded result is closest to, but no greater than,
the infinitely precise result.

10 Round up The rounded result is closest to, but no less than, the
infinitely precise result.

11 Round toward
zero

The rounded result is closest to, but no greater in
absolute value than, the infinitely precise result.

294 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 6-5. x87 Tag Word Register

In the memory image saved by the instructions described in
“x87 Environment” on page 296, each x87 physical data
register has two tag bits with are encoded according to the Tag
Values shown in Figure 6-5. Internally, the hardware may
maintain only a single bit that indicates whether the associated
register is empty or full. The mapping between such a 1-bit
internal tag and the 2-bit software-visible architectural
representation saved in memory is shown in Table 6-3. In such a
mapping, whenever software saves the tag word, the processor
expands the internal 1-bit tag state to the 2-bit architectural
representation by examining the contents of the x87 registers,
as described in “128-Bit, 64-Bit, and x87 Programming” in
Volume 2.

The FINIT and FNINIT instructions write the tag word so that it
specifies all floating-point registers as empty. Execution of 64-
bit media instructions that write to an MMX register alter the
tag bits by setting all the registers to full, and thus they may

9 8 7 6 5 4 3 2 1 0101112131415

TAG
(FPR6)

TAG
(FPR7)

TAG
(FPR4)

TAG
(FPR5)

TAG
(FPR2)

TAG
(FPR3)

TAG
(FPR1)

TAG
(FPR1)

Tag Values
00 = Valid
01 = Zero
10 = Special
11 = Empty

Table 6-3. Mapping Between Internal and Software-Visible Tag Bits

Architectural State (Software-Visible)
Hardware State

State Bit Value

Valid 00

Full
Zero 01

Special
(NaN, infinity, denormal, or unsupported) 10

Empty 11 Empty

Chapter 6: x87 Floating-Point Programming 295

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 295

affect execution of subsequent x87 floating-point instructions.
For details, see “Mixing Media Code with x87 Code” on
page 278.

6.3.5 Pointers and
Opcode State

The x87 instruction pointer, instruction opcode, and data
pointer are part of the x87 environment (non-data processor
state) that is loaded and stored by the instructions described in
“x87 Environment” on page 296. Figure 6-6 illustrates the
pointer and opcode state. Execution of all x87 instructions—
except control instructions (see “Control” on page 329)—
causes the processor to store this state in hardware.

For convenience, the pointer and opcode state is illustrated
here as registers. However, the manner of storing this state in
hardware depends on the hardware implementation. The
AMD64 architecture specifies only the software-visible state
that is saved in memory. (See “Media and x87 Processor State”
in Volume 2 for details of the memory images.)

Figure 6-6. x87 Pointers and Opcode State

Last x87 Instruction Pointer. The contents of the 64 -b i t las t -
instruction pointer depends on the operating mode, as follows:

64-Bit Mode—The pointer contains the 64-bit RIP offset of
the last non-control x87 instruction executed (see “Control”
on page 329 for a definition of control instructions). The 16-
bit code-segment (CS) selector is not saved. (It is the
operating system’s responsibility to ensure that the 64-bit
state-restoration is executed in the same code segment as
the preceding 64-bit state-store.)

Legacy Protected Mode, Legacy Virtual-8086 Mode, and
Compatibility Mode—The pointer contains the 16-bit code-
segment (CS) selector and the 16-bit or 32-bit eIP offset,

513-138.eps

63

010

Instruction Pointer (rIP)

Data Pointer

Opcode

296 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

depending on the effective operand size, of the last non-
control x87 instruction executed.

Legacy Real Mode—The pointer contains the 16-bit or 32-bit
eIP offset of the last non-control x87 instruction executed.

The FINIT and FNINIT instructions clears all bits in this
pointer.

Last x87 Opcode. The 11 -bi t instruct ion opcode holds a
permutation of the two-byte instruction opcode from the last
non-control x87 floating-point instruction executed by the
processor. The opcode field is formed as follows:

Opcode Field[10:8] = First x87-opcode byte[2:0].

Opcode Field[7:0] = Second x87-opcode byte[7:0].

For example, the x87 opcode D9 F8 (floating-point partial
remainder) is stored as 001_1111_1000b. The low-order three
bits of the first opcode byte, D9 (1101_1001b), are stored in bits
10–8. The second opcode byte, F8 (1111_1000b), is stored in bits
7–0. The high-order five bits of the first opcode byte (1101_1b)
are not needed because they are identical for all x87
instructions.

Last x87 Data Pointer. The contents of the 64-bit data pointer
depends on the operating mode, as follows:

64-Bit Mode—The pointer contains the 64-bit offset of the
last memory operand accessed by the last non-control x87
instruction executed.

Legacy Protected Mode, Legacy Virtual-8086 Mode, and
Compatibility Mode—The pointer contains the 16-bit data-
segment (DS) selector and the 16-bit or 32-bit offset of the
last memory operand accessed by the last non-control x87
instruction executed.

Legacy Real Mode—The pointer contains the 16-bit or 32-bit
offset of the last memory operand accessed by the last non-
control x87 instruction executed.

The FINIT and FNINIT instructions clears all bits in this
pointer.

6.3.6 x87
Environment

The x87 environment—or non-data processor state—includes
the following processor state:

x87 control word register (FCW)

Chapter 6: x87 Floating-Point Programming 297

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 297

x87 status word register (FSW)

x87 tag word (FTW)

last x87 instruction pointer

last x87 data pointer

last x87 opcode

Table 6-4 lists the x87 instructions can access this x87 processor
state.

For details on how the x87 environment is stored in memory, see
“Media and x87 Processor State” in Volume 2.

6.3.7 Floating-Point
Emulation (CR0.EM)

The operating system can set the floating-point software-
emulation (EM) bit in control register 0 (CR0) to 1 to allow

Table 6-4. Instructions that Access the x87 Environment

Instruction Description State Accessed

FINIT Floating-Point Initialize Entire Environment

FNINIT Floating-Point No-Wait Initialize Entire Environment

FNSAVE Floating-Point No-Wait Save State Entire Environment

FRSTOR Floating-Point Restore State Entire Environment

FSAVE Floating-Point Save State Entire Environment

FLDCW Floating-Point Load x87 Control Word x87 Control Word

FNSTCW Floating-Point No-Wait Store Control Word x87 Control Word

FSTCW Floating-Point Store Control Word x87 Control Word

FNSTSW Floating-Point No-Wait Store Status Word x87 Status Word

FSTSW Floating-Point Store Status Word x87 Status Word

FLDENV Floating-Point Load x87 Environment
Environment, Not
Including x87 Data
Registers

FNSTENV Floating-Point No-Wait Store Environment
Environment, Not
Including x87 Data
Registers

FSTENV Floating-Point Store Environment
Environment, Not
Including x87 Data
Registers

298 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

software emulation of x87 instructions. If the operating system
has set CR0.EM = 1, the processor does not execute x87
instructions. Instead, a device-not-available exception (#NM)
occurs whenever an attempt is made to execute such an
instruction, except that setting CR0.EM to 1 does not cause an
#NM exception when the WAIT or FWAIT instruction is
executed. For details, see “System-Control Registers” in
Volume 2.

6.4 Operands

6.4.1 Operand
Addressing

Operands for x87 instructions are referenced by the opcodes.
Operands can be located either in x87 registers or memory.
Immediate operands are not used in x87 floating-point
instructions, and I/O ports cannot be directly addressed by x87
floating-point instructions.

Memory Operands. Most x87 floating-point instructions can take
source operands from memory, and a few of the instructions can
write results to memory. The following sections describe the
methods and conditions for addressing memory operands:

“Memory Addressing” on page 16 describes the general
methods and conditions for addressing memory operands.

“Instruction Prefixes” on page 333 describes the use of
address-size instruction overrides by 64-bit media
instructions.

Register Operands. Most x87 floating-point instructions can read
source operands from and write results to x87 registers. Most
instructions access the ST(0)–ST(7) register stack. For a few
instructions, the register types also include the x87 control
word register, the x87 status word register, and (for FSTSW and
FNSTSW) the AX general-purpose register.

6.4.2 Data Types Figure 6-7 on page 299 shows register images of the x87 data
types. These include three scalar floating-point formats (80-bit
double-extended-precision, 64-bit double-precision, and 32-bit
single-precision), three scalar signed-integer formats
(quadword, doubleword, and word), and an 80-bit packed
binary-coded decimal (BCD) format. Although Figure 6-7 shows
register images of the data types, the three signed-integer data
types can exist only in memory. All data types are converted
into an 80-bit format when they are loaded into an x87 register.

Chapter 6: x87 Floating-Point Programming 299

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 299

Figure 6-7. x87 Data Types

Floating-Point Data Types. The floating-point data types, shown in
Figure 6-8 on page 300, include 32-bit single precision, 64-bit
double precision, and 80-bit double-extended precision. The
default precision is double-extended precision, and all
operands loaded into registers are converted into double-
extended precision format.

All x87 instruction (except FADDx, FSUBx, FSUBRx, FMULx,
FDIVx, FDIVRx, and FSQRT) operate on register values in
double-extended precision format. The FADDx, FSUBx,
FSUBRx, FMULx, FDIVx, FDIVRx, and FSQRT instructions
operate on floating-point data types in the precision specified
by the precision control (PC) bit in the x87 control word.

All three floating-point formats are compatible with the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std
754 and 854), except for the rounding effects caused by the

s

513-317.eps

63

31

31

22

15 0

0

0

Quadword

Doubleword

Words

s

s

Signed Integer

Binary-Coded Decimal (BCD)

Floating-Point

8 bytes

4 bytes

63

63

51

Double Precision

Single Precisions

s

2 bytes

79

79

079 71

Double-Extended
Precision

Packed Decimal

s i

significand

exp significand

exp significand

exp

s

300 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

processor’s internal representation of values in double-
extended-precision format.

Figure 6-8. x87 Floating-Point Data Types

All of the floating-point data types consist of a sign
(0 = positive, 1 = negative), a biased exponent (base-2), and a
significand, which represents the integer and fractional parts of
the number. The integer bit (also called the J bit) is either
implied (called a hidden integer bit) or explicit, depending on
the data type. The value of an implied integer bit can be
inferred from number encodings, as described in “Number
Encodings” on page 306. The bias of the exponent is a constant
which makes the exponent always positive and allows
reciprocation, without overflow, of the smallest normalized
number representable by that data type.

Specifically, the data types are formatted as follows:

Single-Precision Format—This format includes a 1-bit sign, an
8-bit biased exponent whose value is 127, and a 23-bit

063Double Precision

31 0Single Precision

079

22

S Biased
Exponent

78

23

S
Biased

Exponent

6364

5152

Biased
Exponent

S

Fraction

30

62

Double-Extended Precision

S = Sign Bit

S = Sign Bit

S = Sign Bit

I

62

I = Integer Bit

Significand
(also Fraction)

Significand

Significand
(also Fraction)

Chapter 6: x87 Floating-Point Programming 301

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 301

significand. The integer bit is implied, making a total of 24
bits in the significand.

Double-Precision Format—This format includes a 1-bit sign,
an 11-bit biased exponent whose value is 1023, and a 52-bit
significand. The integer bit is implied, making a total of 53
bits in the significand.

Double-Extended-Precision Format—This format includes a 1-
bit sign, a 15-bit biased exponent whose value is 16,383, and
a 64-bit significand, which includes one explicit integer bit.

Table 6-5 shows the range of finite values representable by the
three x87 floating-point data types.

For example, in the single-precision format, the largest normal
number representable has an exponent of FEh and a
significand of 7FFFFFh, with a numerical value of 2127 * (2 –
2–23). Results that overflow above the maximum representable
value return either the maximum representable normalized
number (see “Normalized Numbers” on page 304) or infinity,
with the sign of the true result, depending on the rounding
mode specified in the rounding control (RC) field of the x87
control word. Results that underflow below the minimum
representable value return either the minimum representable
normaliz ed number or a denormaliz ed number (see
“Denormalized (Tiny) Numbers” on page 304), with the sign of
the true result, or a result determined by the x87 exception
handler, depending on the rounding mode, precision mode, and
underflow-exception mask (UM) in the x87 control word (see
“Unmasked Responses” on page 346).

Table 6-5. Range of Finite Floating-Point Values

Data Type
Range of Finite Values1

Precision
Base 2 Base 10

Single Precision 2–126 to 2127 * (2 – 2–23) 1.17 * 10–38 to +3.40 * 1038 24 bits

Double Precision 2–1022 to 21023 * (2 – 2–52) 2.23 * 10–308 to +1.79 * 10308 53 bits

Double-Extended Precision 2–16382 to 216383 * (2 – 2–63) 3.37 * 10–4932 to +1.18 * 104932 64 bits

Note:
1. See “Number Representation” on page 303.

302 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Integer Data Type. The integer data types, shown in Figure 6-7 on
page 299, include two’s-complement 16-bit word, 32-bit
doubleword, and 64-bit quadword. These data types are used in
x87 instructions that convert signed integer operands into
floating-point values. The integers can be loaded from memory
into x87 registers and stored from x87 registers into memory.
The data types cannot be moved between x87 registers and
other registers.

For details on the format and number-representation of the
integer data types, see “Data Types” on page 41.

Packed-Decimal Data Type. The 80-bit packed-decimal data type,
shown in Figure 6-9, represents an 18-digit decimal integer
using the binary-coded decimal (BCD) format. Each of the 18
digits is a 4-bit representation of an integer. The 18 digits use a
total of 72 bits. The next-higher seven bits in the 80-bit format
are reserved (ignored on loads, zeros on stores). The high bit
(bit 79) is a sign bit.

Figure 6-9. x87 Packed Decimal Data Type

Two x87 instructions operate on the packed-decimal data type.
The FBLD (floating-point load binary-coded decimal) and
FBSTP (floating-point store binary-coded decimal integer and
pop) instructions push and pop, respectively, a packed-decimal
memory operand between the floating-point stack and memory.
FBLD converts the value being pushed to a double-extended-
precision floating-point value. FBSTP rounds the value being
popped to an integer.

For details on the format and use of 4-bit BCD integers, see
“Binary-Coded-Decimal (BCD) Digits” on page 43.

079

Precision — 18 Digits, 72 Bits Used, 4-Bits/Digit

71

S
Ignore

or
Zero

Description Bits
Ignored on Load, Zeros on Store 78-72
Sign Bit 79

78 72

Chapter 6: x87 Floating-Point Programming 303

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 303

6.4.3 Number
Representation

Of the following types of floating-point values, six are
supported by the architecture and three are not supported:

Supported Values

- Normal

- Denormal (Tiny)

- Pseudo-Denormal

- Zero

- Infinity

- Not a Number (NaN)

Unsupported Values

- Unnormal

- Pseudo-Infinity

- Pseudo-NaN

The supported values can be used as operands in x87 floating-
point instructions. The unsupported values cause an invalid-
operation exception (IE) when used as operands.

In common engineering and scientific usage, floating-point
numbers—also called real numbers—are represented in base
(radix) 10. A non-zero number consists of a sign, a normalized
significand, and a signed exponent, as in:

+2.71828 e0

Both large and small numbers are representable in this
notation, subject to the limits of data-type precision. For
example, a million in base-10 notation appears as +1.00000 e6
and -0.0000383 is represented as -3.83000 e-5. A non-zero
number can always be written in normalized form—that is, with
a leading non-zero digit immediately before the decimal point.
Thus, a normalized significand in base-10 notation is a number
in the range [1,10). The signed exponent specifies the number
of positions that the decimal point is shifted.

Unlike the common engineering and scientific usage described
above, x87 floating-point numbers are represented in base
(radix) 2. Like its base-10 counterpart, a normalized base-2
significand is written with its leading non-zero digit
immediately to the left of the radix point. In base-2 arithmetic,
a non-zero digit is always a one, so the range of a binary
significand is [1,2):

+1.fraction ±exponent

304 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The leading non-zero digit is called the integer bit, and in the
x87 double-extended-precision floating-point format this
integer bit is explicit, as shown in Figure 6-8. In the x87 single-
precision and the double-precision floating-point formats, the
integer bit is simply omitted (and called the hidden integer bit),
because its implied value is always 1 in a normalized
significand (0 in a denormalized significand), and the omission
allows an extra bit of precision.

The following sections describe the supported number
representations.

Normalized Numbers. Normalized floating-point numbers are the
most frequent operands for x87 instructions. These are finite,
non-zero, positive or negative numbers in which the integer bit
is 1, the biased exponent is non-zero and non-maximum, and the
fraction is any representable value. Thus, the significand is
within the range of [1, 2). Whenever possible, the processor
represents a floating-point result as a normalized number.

Denormalized (Tiny) Numbers. Denormalized numbers (also called
tiny numbers) are smaller than the smallest representable
normalized numbers. They arise through an underflow
condition, when the exponent of a result lies below the
representable minimum exponent. These are finite, non-zero,
positive or negative numbers in which the integer bit is 0, the
biased exponent is 0, and the fraction is non-zero.

The processor generates a denormalized-operand exception
(DE) when an instruction uses a denormalized source operand.
The processor may generate an underflow exception (UE) when
an instruction produces a rounded, non-zero result that is too
small to be represented as a normalized floating-point number
in the destination format, and thus is represented as a
denormalized number. If a result, after rounding, is too small to
be represented as the minimum denormalized number, it is
represented as zero. (See “Exceptions” on page 335 for specific
details.)

Denormalization may correct the exponent by placing leading
zeros in the significand. This may cause a loss of precision,
because the number of significant bits in the fraction is reduced
by the leading zeros. In the single-precision floating-point
format, for example, normalized numbers have biased
exponents ranging from 1 to 254 (the unbiased exponent range

Chapter 6: x87 Floating-Point Programming 305

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 305

is from -126 to +127). A true result with an exponent of, say,
-130, undergoes denormalization by right-shifting the
significand by the difference between the normalized exponent
and the minimum exponent, as shown in Table 6-6.

Pseudo-Denormalized Numbers. Pseudo-denormalized numbers are
positive or negative numbers in which the integer bit is 1, the
biased exponent is 0, and the fraction is any value. The
processor accepts pseudo-denormal source operands but it does
not produce pseudo-denormal results. When a pseudo-denormal
number is used as a source operand, the processor treats the
arithmetic value of its biased exponent as 1 rather then 0, and
the processor generates a denormalized-operand exception
(DE).

Zero. The floating-point zero is a finite, positive or negative
number in which the integer bit is 0, the biased exponent is 0,
and the fraction is 0. The sign of a zero result depends on the
operation being performed and the selected rounding mode. It
may indicate the direction from which an underflow occurred,
or it may reflect the result of a division by +∞ or -∞.

Infinity. Infinity is a positive or negative number, +∞ and -∞, in
which the integer bit is 1, the biased exponent is maximum, and
the fraction is 0. The infinities are the maximum numbers that
can be represented in floating-point format. Negative infinity is
less than any finite number and positive infinity is greater than
any finite number (i.e., the affine sense).

An infinite result is produced when a non-zero, non-infinite
number is divided by 0 or multiplied by infinity, or when
infinity is added to infinity or to 0. Arithmetic on infinities is
exact. For example, adding any floating-point number to +∞
gives a result of +∞. Arithmetic comparisons work correctly on
infinities. Exceptions occur only when the use of an infinity as a
source operand constitutes an invalid operation.

Table 6-6. Example of Denormalization

Significand (base 2) Exponent Result Type

1.0011010000000000 -130 True result

0.0001001101000000 -126 Denormalized result

306 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Not a Number (NaN). NaNs are non-numbers, lying outside the
range of representable floating-point values. The integer bit is
1, the biased exponent is maximum, and the fraction is non-
zero. NaNs are of two types:

Signaling NaN (SNaN)

Quiet NaN (QNaN)

A QNaN is a NaN with the most-significant fraction bit set to 1,
and an SNaN is a NaN with the most-significant fraction bit
cleared to 0. When the processor encounters an SNaN as a
source operand for an instruction, an invalid-operation
exception (IE) occurs and a QNaN is produced as the result, if
the exception is masked. In general, when the processor
encounters a QNaN as a source operand for an instruction—in
an instruction other than FxCOMx, FISTx, or FSTx—the
processor does not generate an exception but generates a QNaN
as the result.

The processor never generates an SNaN as a result of a floating-
point operation. When an invalid-operation exception (IE)
occurs due to an SNaN operand, the invalid-operation exception
mask (IM) bit determines the processor’s response, as described
in “x87 Floating-Point Exception Masking” on page 342.

When a floating-point operation or exception produces a QNaN
result, its value is derived from the source operands according
to the rules shown in Table 6-7 on page 307.

6.4.4 Number
Encodings

Supported Encodings. Table 6-8 on page 308 shows the floating-
point encodings of supported numbers and non-numbers. The
number categories are ordered from large to small. In this
affine ordering, positive infinity is larger than any positive
normalized number, which in turn is larger than any positive
denormalized number, which is larger than positive zero, and so
forth. Thus, the ordinary rules of comparison apply between
categories as well as within categories, so that comparison of
any two numbers is well-defined.

The actual exponent field length is 8, 11, or 15 bits, and the
fraction field length is 23, 52, or 63 bits, depending on operand
precision.

Chapter 6: x87 Floating-Point Programming 307

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 307

The single-precision and double-precision formats do not
include the integer bit in the significand (the value of the
integer bit can be inferred from number encodings). The
double-extended-precision format explicitly includes the
integer in bit 63 and places the most-significant fraction bit in
bit 62. Exponents of all three types are encoded in biased
format, with respective biasing constants of 127, 1023, and
16,383.

Table 6-7. NaN Results from NaN Source Operands

Source Operand
(in either order)1 NaN Result2

QNaN Any non-NaN floating-point value
(or single-operand instruction) Value of QNaN

SNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of SNaN,
converted to a QNaN3

QNaN QNaN
Value of QNaN with the
larger significand4

QNaN SNaN Value of QNaN

SNaN QNaN Value of QNaN

SNaN SNaN
Value of SNaN with the
larger significand4

Note:
1. This table does not include NaN source operands used in FxCOMx, FISTx, or FSTx instructions.
2. A NaN result is produced when the floating-point invalid-operation exception is masked.
3. The conversion is done by changing the most-significant fraction bit to 1.
4. If the significands of the source operands are equal but their signs are different, the NaN

result is undefined.

308 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Table 6-8. Supported Floating-Point Encodings

Classification Sign
 Biased

Exponent1 Significand2

Positive
Non-Numbers

SNaN 0 111 ... 111
1.011 ... 111
to
1.000 ... 001

QNaN 0 111 ... 111
1.111 ... 111
to
1.100 ... 000

Positive
Floating-Point
Numbers

Positive Infinity (+∞) 0 111 ... 111 1.000 ... 000

Positive Normal 0
111 ... 110
to
000 ... 001

1.111 ... 111
to
1.000 ... 000

Positive Pseudo-
Denormal3

0 000 ... 000
1.111 ... 111
to
1.000 ... 001

Positive Denormal 0 000 ... 000
0.111 ... 111
to
0.000 ... 001

Positive Zero 0 000 ... 000 0.000 ... 000

Note:
1. The actual exponent field length is 8, 11, or 15 bits, depending on operand precision.
2. The “1.” and “0.” prefixes represent the implicit or explicit integer bit. The actual fraction field

length is 23, 52, or 63 bits, depending on operand precision.
3. Pseudo-denormals can only occur in double-extended-precision format, because they

require an explicit integer bit.
4. The floating-point indefinite value is a QNaN with a negative sign and a significand whose

value is 1.100 ... 000.

Chapter 6: x87 Floating-Point Programming 309

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 309

Unsupported Encodings. Table 6-9 on page 310 shows the encodings
of unsupported values. These values can exist only in the
double-extended-precision format, because they require an
explicit integer bit. The processor does not generate them as
results, and they cause an invalid-operation exception (IE)
when used as source operands.

Indefinite Values. Floating-point, integer, and packed-decimal
data types each have a unique encoding that represents an
indefinite value. The processor returns an indefinite value when
a masked invalid-operation exception (IE) occurs.

For example, if a floating-point arithmetic operation is
attempted using a source operand which is in an unsupported
format, and IE exceptions are masked, the floating-point

Negative
Floating-Point
Numbers

Negative Zero 1 000 ... 000 0.000 ... 000

Negative Denormal 1 000 ... 000
0.000 ... 001
to
0.111 ... 111

Negative Pseudo-
Denormal3

1 000 ... 000
1.000 ... 001
to
1.111 ... 111

Negative Normal 1
000 ... 001
to
111 ... 110

1.000 ... 000
to
1.111 ... 111

Negative Infinity (-∞) 1 111 ... 111 1.000 ... 000

Negative
Non-Numbers

SNaN 1 111 ... 111
1.000 ... 001
to
1.011 ... 111

QNaN4 1 111 ... 111
1.100 ... 000
to
1.111 ... 111

Table 6-8. Supported Floating-Point Encodings (continued)

Classification Sign
 Biased

Exponent1 Significand2

Note:
1. The actual exponent field length is 8, 11, or 15 bits, depending on operand precision.
2. The “1.” and “0.” prefixes represent the implicit or explicit integer bit. The actual fraction field

length is 23, 52, or 63 bits, depending on operand precision.
3. Pseudo-denormals can only occur in double-extended-precision format, because they

require an explicit integer bit.
4. The floating-point indefinite value is a QNaN with a negative sign and a significand whose

value is 1.100 ... 000.

310 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

indefinite value is returned as the result. Or, if an integer store
instruction overflows its destination data type, and IE
exceptions are masked, the integer indefinite value is returned
as the result.

Table 6-10 on page 311 shows the encodings of the indefinite
values for each data type. For floating-point numbers, the
indefinite value is a special form of QNaN. For integers, the
indefinite value is the largest representable negative two’s-
complement number, 80...00h. (This value is interpreted as the
largest representable negative number, except when a masked
IE exception occurs, in which case it is interpreted as an
indefinite value.) For packed-decimal numbers, the indefinite
value has no other meaning than indefinite.

Table 6-9. Unsupported Floating-Point Encodings

Classification Sign Biased Exponent1 Significand2

Positive Pseudo-NaN 0 111 ... 111
0.111 ... 111
to
0.000 ... 001

Positive Pseudo-Infinity 0 111 ... 111 0.000 ... 000

Positive Unnormal 0
111 ... 110
to
000 ... 001

0.111 ... 111
to
0.000 ... 000

Negative Unnormal 1
000 ... 001
to
111 ... 110

0.000 ... 000
to
0.111 ... 111

Negative Pseudo-Infinity 1 111 ... 111 0.000 ... 000

Negative Pseudo-NaN 1 111 ... 111
0.000 ... 001
to
0.111 ... 111

Note:
1. The actual exponent field length is 15 bits.
2. The “0.” prefix represent the explicit integer bit. The actual fraction field length is 63 bits.

Chapter 6: x87 Floating-Point Programming 311

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 311

6.4.5 Precision Bits 9–8 of the x87 control word (“x87 Control Word Register”
on page 291) comprise the precision control (PC) field, which
specifies the precision of floating-point calculations for the
FADDx, FSUBx, FMULx, FDIVx, and FSQRT instructions, as
shown in Table 6-11.

The default precision is double-extended-precision. Selecting
double-precision or single-precision reduces the size of the
significand to 53 bits or 24 bits, respectively, to satisfy the IEEE
standard for these floating-point types. This allows exact
replication, on different IEEE-compliant processors, of
calculations done using these lower-precision data types. When
using reduced precision, rounding clears the unused bits on the
right of the significand to 0s.

Table 6-10. Indefinite-Value Encodings

Data Type Indefinite Encoding

Floating-Point

• sign bit = 1
• biased exponent = 111 ... 111
• significand integer bit = 1
• significand fraction = 100 ... 000

Integer
• sign bit = 1
• integer = 000 ... 000

Packed-Decimal

• bit 79 (sign bit) = 1
• bits 78–72 = 1111111
• bits 71–64 = 11111111
• bits 63–0 = any value

Table 6-11. Precision Control Field (PC) Values and Bit Precision

PC Field Data Type Precision (bits)

00 Single precision 241

01 reserved 01

10 Double precision 531

11 Double-extended precision 64

Note:
1. The single-precision and double-precision bit counts include the implied integer bit.

312 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

6.4.6 Rounding Bits 11–10 of the x87 control word (“x87 Control Word Register”
on page 291) comprise the rounding control (RC) field, which
specifies how the results of x87 floating-point computations are
rounded. Rounding modes apply to most arithmetic operations
but not to comparison or remainder. They have no effect on
operations that produce NaN results.

The IEEE 754 standard defines the four rounding modes as
shown in Table 6-12.

Round to nearest is the default rounding mode. It provides a
statistically unbiased estimate of the true result, and is suitable
for most applications. The other rounding modes are directed
roundings: round up (toward +∞), round down (toward -∞), and
round toward zero. Round up and round down are used in
interval arithmetic, in which upper and lower bounds bracket
the true result of a computation. Round toward zero takes the
smaller in magnitude, that is, always truncates.

The processor produces a floating-point result defined by the
IEEE standard to be infinitely precise. This result may not be
representable exactly in the destination format, because only a
subset of the continuum of real numbers finds exact
representation in any particular floating-point format.
Rounding modifies such a result to conform to the destination
format, thereby making the result inexact and also generating a
precision exception (PE), as described in “x87 Floating-Point
Exception Causes” on page 336.

Table 6-12. Types of Rounding

RC Value Mode Type of Rounding

00
(default)

Round to nearest
The rounded result is the representable value closest
to the infinitely precise result. If equally close, the
even value (with least-significant bit 0) is taken.

01 Round down
The rounded result is closest to, but no greater than,
the infinitely precise result.

10 Round up The rounded result is closest to, but no less than, the
infinitely precise result.

11 Round toward
zero

The rounded result is closest to, but no greater in
absolute value than, the infinitely precise result.

Chapter 6: x87 Floating-Point Programming 313

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 313

Suppose, for example, the following 24-bit result is to be
represented in single-precision format, where “E2 1010”
represents the biased exponent:

1.0011 0101 0000 0001 0010 0111 E2 1010

This result has no exact representation, because the least-
significant 1 does not fit into the single-precision format, which
allows for only 23 bits of fraction. The rounding control field
determines the direction of rounding. Rounding introduces an
error in a result that is less than one unit in the last place (ulp),
that is, the least-significant bit position of the floating-point
representation.

6.5 Instruction Summary

This section summarizes the functions of the x87 floating-point
instructions. The instructions are organized here by functional
group—such as data-transfer, arithmetic, and so on. More detail
on individual instructions is given in the alphabetically
organized “x87 Floating-Point Instruction Reference” in
Volume 5.

Software running at any privilege level can use any of these
instructions, if the CPUID instruction reports support for the
instructions (see “Feature Detection” on page 334). Most x87
instructions take floating-point data types for both their source
and destination operands, although some x87 data-conversion
instructions take integer formats for their source or destination
operands.

6.5.1 Syntax Each instruction has a mnemonic syntax used by assemblers to
specify the operation and the operands to be used for source
and destination (result) data. Many of x87 instructions have the
following syntax:

MNEMONIC st(j), st(i)

Figure 6-10 on page 314 shows an example of the mnemonic
syntax for a floating-point add (FADD) instruction.

314 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Figure 6-10. Mnemonic Syntax for Typical Instruction

This example shows the FADD mnemonic followed by two
operands, both of which are 80-bit stack-register operands. Most
instructions take source operands from an x87 stack register
and/or memory and write their results to a stack register or
memory. Only two of the instructions (FSTSW and FNSTSW)
can access a general-purpose registers (GPR), and none access
the 128-bit media (XMM) registers. Although the MMX™
registers map to the x87 registers, the contents of the MMX
registers cannot be accessed meaningfully using x87
instructions.

Instructions can have one or more prefixes that modify default
operand properties. These prefixes are summarized in
“Instruction Prefixes” on page 85.

Mnemonics. The following characters are used as prefixes in the
mnemonics of integer instructions:

F—x87 Floating-point

In addition to the above prefix characters, the following
characters are used elsewhere in the mnemonics of x87
instructions:

B—Below, or BCD

BE—Below or Equal

CMOV—Conditional Move

c—Variable condition

E—Equal

I—Integer

513-146.eps

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

FADD st(0), st(i)

Chapter 6: x87 Floating-Point Programming 315

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 315

LD—Load

N—No Wait

NB—Not Below

NBE—Not Below or Equal

NE—Not Equal

NU—Not Unordered

P—Pop

PP—Pop Twice

R—Reverse

ST—Store

U—Unordered

x—One or more variable characters in the mnemonic

For example, the mnemonic for the store instruction that stores
the top-of-stack and pops the stack is FSTP. In this mnemonic,
the F means a floating-point instruction, the ST means a store,
and the P means pop the stack.

6.5.2 Data Transfer
and Conversion

The data transfer and conversion instructions copy data—in
some cases with data conversion—between x87 stack registers
and memory or between stack positions.

Load or Store Floating-Point.

FLD—Floating-Point Load

FST—Floating-Point Store Stack Top

FSTP—Floating-Point Store Stack Top and Pop

The FLD instruction pushes the source operand onto the top-of-
stack, ST(0). The source operand may be a single-precision,
double-precision, or double-extended-precision floating-point
value in memory or the contents of a specified stack position,
ST(i).

The FST instruction copies the value at the top-of-stack, ST(0),
to a specified stack position, ST(i), or to a 32-bit or 64-bit
memory location. If the destination is a memory location, the
value copied is first converted to a single-precision or double-
precision floating-point value. If the top-of-stack value is a
single-precision or double-precision value, FSTP converts it
according to the rounding control (RC) field of the x87 control
word. If the top-of-stack value is a NaN or an infinity, FST

316 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

truncates the stack-top exponent and significand to fit the
destination size.

The FSTP instruction is similar to FST, except that FSTP can
also store to an 80-bit memory location and it pops the stack
after the store. FSTP can be used to clean up the x87 stack at
the end of an x87 procedure by removing one register of
preloaded data from the stack.

Convert and Load or Store Integer.

FILD—Floating-Point Load Integer

FIST—Floating-Point Integer Store

FISTP—Floating-Point Integer Store and Pop

The FILD instruction converts the 16-bit, 32-bit, or 64-bit source
signed integer in memory into a double-extended-precision
floating-point value and pushes the result onto the top-of-stack,
ST(0).

The FIST instruction converts and rounds the source value in
the top-of-stack, ST(0), to a signed integer and copies it to the
specified 16-bit or 32-bit memory location. The source may be
any floating-point data type, including a single-precision,
double-precision, or double-extended-precision floating-point
value. The type of rounding is determined by the rounding
control (RC) field of the x87 control word. The default is round-
to-nearest.

The FISTP instruction is similar to FIST, except that FISTP can
also store the result to a 64-bit memory location and it pops
ST(0) after the store.

Convert and Load or Store BCD.

FBLD—Floating-Point Load Binary-Coded Decimal

FBSTP—Floating-Point Store Binary-Coded Decimal Integer
and Pop

The FBLD and FBSTP instructions, respectively, push and pop
an 80-bit packed BCD memory value on and off the top-of-stack,
ST(0). FBLD first converts the value being pushed to a double-
extended-precision floating-point value. FBSTP rounds the
value being popped to an integer, using the rounding mode
specified by the RC field, and converts the value to an 80-bit

Chapter 6: x87 Floating-Point Programming 317

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 317

packed BCD value. Thus, no FRNDIT (round-to-integer)
instruction is needed prior to FBSTP.

Conditional Move.

FCMOVB—Floating-Point Conditional Move If Below

FCMOVBE—Floating-Point Conditional Move If Below or
Equal

FCMOVE—Floating-Point Conditional Move If Equal

FCMOVNB—Floating-Point Conditional Move If Not Below

FCMOVNBE—Floating-Point Conditional Move If Not Below
or Equal

FCMOVNE—Floating-Point Conditional Move If Not Equal

FCMOVNU—Floating-Point Conditional Move If Not
Unordered

FCMOVU—Floating-Point Conditional Move If Unordered

The FCMOVcc instructions copy the contents of a specified
stack position, ST(i), to the top-of-stack, ST(0), if the specified
rFLAGS condition is met. Table 6-13 specifies the flag
combinations for each conditional move.

Table 6-13. rFLAGS Conditions for FCMOVcc

Condition Mnemonic rFLAGS Register State

Below B Carry flag is set (CF = 1)

Below or Equal BE Either carry flag or zero flag is set
(CF = 1 or ZF = 1)

Equal E Zero flag is set (ZF = 1)

Not Below NB Carry flag is not set (CF = 0)

Not Below or Equal NBE Neither carry flag nor zero flag is set
(CF = 0, ZF = 0)

Not Equal NE Zero flag is not set (ZF = 0)

Not Unordered NU Parity flag is not set (PF = 0)

Unordered U Parity flag is set (PF = 1)

318 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Exchange.

FXCH—Floating-Point Exchange

The FXCH instruction exchanges the contents of a specified
stack position, ST(i), with the top-of-stack, ST(0). The top-of-
stack pointer is left unchanged. In the form of the instruction
that specifies no operand, the contents of ST(1) and ST(0) are
exchanged.

Extract.

FXTRACT—Floating-Point Extract Exponent and
Significand

The FXTRACT instruction copies the unbiased exponent of the
original value in the top-of-stack, ST(0), and writes it as a
floating-point value to ST(1), then copies the significand and
sign of the original value in the top-of-stack and writes it as a
floating-point value with an exponent of zero to the top-of-
stack, ST(0).

6.5.3 Load Constants Load 0, 1, or Pi.

FLDZ—Floating-Point Load +0.0

FLD1—Floating-Point Load +1.0

FLDPI—Floating-Point Load Pi

The FLDZ, FLD1, and FLDPI instructions, respectively, push
the f loating-point constant value, +0.0, +1.0, and Pi
(3.141592653...), onto the top-of-stack, ST(0).

Load Logarithm.

FLDL2E—Floating-Point Load Log2 e

FLDL2T—Floating-Point Load Log2 10

FLDLG2—Floating-Point Load Log10 2

FLDLN2—Floating-Point Load Ln 2

The FLDL2E, FLDL2T, FLDLG2, and FLDLN2 instructions,
respectively, push the floating-point constant value, log2e,
log210, log102, and loge2, onto the top-of-stack, ST(0).

6.5.4 Arithmetic The arithmetic instructions support addition, subtraction,
multiplication, division, change-sign, round, round to integer,
partial remainder, and square root. In most arithmetic
operations, one of the source operands is the top-of-stack, ST(0).

Chapter 6: x87 Floating-Point Programming 319

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 319

The other source operand can be another stack entry, ST(i), or a
floating-point or integer operand in memory.

The non-commutative operations of subtraction and division
have two forms, the direct FSUB and FDIV, and the reverse
FSUBR and FDIVR. FSUB, for example, subtracts the right
operand from the left operand, and writes the result to the left
operand. FSUBR subtracts the left operand from the right
operand, and writes the result to the left operand. The FADD
and FMUL operations have no reverse counterparts.

Addition.

FADD—Floating-Point Add

FADDP—Floating-Point Add and Pop

FIADD—Floating-Point Add Integer to Stack Top

The FADD instruction syntax has forms that include one or two
explicit source operands. In the one-operand form, the
instruction reads a 32-bit or 64-bit floating-point value from
memory, converts it to the double-extended-precision format,
adds it to ST(0), and writes the result to ST(0). In the two-
operand form, the instruction adds both source operands from
stack registers and writes the result to the first operand.

The FADDP instruction syntax has forms that include zero or
two explicit source operands. In the zero-operand form, the
instruction adds ST(0) to ST(1), writes the result to ST(1), and
pops the stack. In the two-operand form, the instruction adds
both source operands from stack registers, writes the result to
the first operand, and pops the stack.

The FIADD instruction reads a 16-bit or 32-bit integer value
from memory, converts it to the double-extended-precision
format, adds it to ST(0), and writes the result to ST(0).

Subtraction.

FSUB—Floating-Point Subtract

FSUBP—Floating-Point Subtract and Pop

FISUB—Floating-Point Integer Subtract

FSUBR—Floating-Point Subtract Reverse

FSUBRP—Floating-Point Subtract Reverse and Pop

FISUBR—Floating-Point Integer Subtract Reverse

320 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The FSUB instruction syntax has forms that include one or two
explicit source operands. In the one-operand form, the
instruction reads a 32-bit or 64-bit floating-point value from
memory, converts it to the double-extended-precision format,
subtracts it from ST(0), and writes the result to ST(0). In the
two-operand form, both source operands are located in stack
registers. The instruction subtracts the second operand from
the first operand and writes the result to the first operand.

The FSUBP instruction syntax has forms that include zero or
two explicit source operands. In the zero-operand form, the
instruction subtracts ST(0) from ST(1), writes the result to
ST(1), and pops the stack. In the two-operand form, both source
operands are located in stack registers. The instruction
subtracts the second operand from the first operand, writes the
result to the first operand, and pops the stack.

The FISUB instruction reads a 16-bit or 32-bit integer value
from memory, converts it to the double-extended-precision
format, subtracts it from ST(0), and writes the result to ST(0).

The FSUBR and FSUBRP instructions perform the same
operations as FSUB and FSUBP, respectively, except that the
source operands are reversed. Instead of subtracting the second
operand from the first operand, FSUBR and FSUBRP subtract
the first operand from the second operand.

Multiplication.

FMUL—Floating-Point Multiply

FMULP—Floating-Point Multiply and Pop

FIMUL—Floating-Point Integer Multiply

The FMUL instruction syntax has forms that include one or two
explicit source operands that may be single-precision or double-
precision floating-point values or 16-bit or 32-bit integer values.
In the one-operand form, the instruction reads a value from
memory, multiplies ST(0) by the memory operand, and writes
the result to ST(0). In the two-operand form, both source
operands are located in stack registers. The instruction
multiplies the first operand by the second operand and writes
the result to the first operand.

The FMULP instruction syntax has forms that include zero or
two explicit source operands. In the zero-operand form, the
instruction multiplies ST(1) by ST(0), writes the result to ST(1),

Chapter 6: x87 Floating-Point Programming 321

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 321

and pops the stack. In the two-operand form, both source
operands are located in stack registers. The instruction
multiplies the first operand by the second operand, writes the
result to the first operand, and pops the stack.

The FIMUL instruction reads a 16-bit or 32-bit integer value
from memory, converts it to the double-extended-precision
format, multiplies ST(0) by the memory operand, and writes the
result to ST(0).

Division.

FDIV—Floating-Point Divide

FDIVP—Floating-Point Divide and Pop

FIDIV—Floating-Point Integer Divide

FDIVR—Floating-Point Divide Reverse

FDIVRP—Floating-Point Divide Reverse and Pop

FIDIVR—Floating-Point Integer Divide Reverse

The FDIV instruction syntax has forms that include one or two
source explicit operands that may be single-precision or double-
precision floating-point values or 16-bit or 32-bit integer values.
In the one-operand form, the instruction reads a value from
memory, divides ST(0) by the memory operand, and writes the
result to ST(0). In the two-operand form, both source operands
are located in stack registers. The instruction divides the first
operand by the second operand and writes the result to the first
operand.

The FDIVP instruction syntax has forms that include zero or
two explicit source operands. In the zero-operand form, the
instruction divides ST(1) by ST(0), writes the result to ST(1),
and pops the stack. In the two-operand form, both source
operands are located in stack registers. The instruction divides
the first operand by the second operand, writes the result to the
first operand, and pops the stack.

The FIDIV instruction reads a 16-bit or 32-bit integer value
from memory, converts it to the double-extended-precision
format, divides ST(0) by the memory operand, and writes the
result to ST(0).

The FDIVR and FDIVRP instructions perform the same
operations as FDIV and FDIVP, respectively, except that the
source operands are reversed. Instead of dividing the first

322 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

operand by the second operand, FDIVR and FDIVRP divide the
second operand by the first operand.

Change Sign.

FABS—Floating-Point Absolute Value

FCHS—Floating-Point Change Sign

The FABS instruction changes the top-of-stack value, ST(0), to
its absolute value by clearing its sign bit to 0. The top-of-stack
value is always positive following execution of the FABS
instruction. The FCHS instruction complements the sign bit of
ST(0). For example, if ST(0) was +0.0 before the execution of
FCHS, it is changed to -0.0.

Round.

FRNDINT—Floating-Point Round to Integer

The FRNDINT instruction rounds the top-of-stack value, ST(0),
to an integer value, although the value remains in double-
extended-precision floating-point format. Rounding takes place
according to the setting of the rounding control (RC) field in
the x87 control word.

Partial Remainder.

FPREM—Floating-Point Partial Remainder

FPREM1—Floating-Point Partial Remainder

The FPREM instruction returns the remainder obtained by
dividing ST(0) by ST(1) and stores it in ST(0). If the exponent
difference between ST(0) and ST(1) is less than 64, all integer
bits of the quotient are calculated, guaranteeing that the
remainder returned is less in magnitude that the divisor in
ST(1). If the exponent difference is equal to or greater than 64,
only a subset of the integer quotient bits, numbering between
32 and 63, are calculated and a partial remainder is returned.
FPREM can be repeated on a partial remainder until reduction
is complete. It can be used to bring the operands of
transcendental functions into their proper range. FPREM is
supported for software written for early x87 coprocessors.
Unlike the FPREM1 instruction, FPREM does not calculate the
partial remainder as specified in IEEE Standard 754.

Chapter 6: x87 Floating-Point Programming 323

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 323

The FPREM1 instruction works like FPREM, except that the
FPREM1 quotient is rounded using round-to-nearest mode,
whereas FPREM truncates the quotient.

Square Root.

FSQRT—Floating-Point Square Root

The FSQRT instruction replaces the contents of the top-of-
stack, ST(0), with its square root.

6.5.5 Transcendental
Functions

The transcendental instructions compute trigonometric
functions, inverse trigonometric functions, logarithmic
functions, and exponential functions.

Trigonometric Functions.

FSIN—Floating-Point Sine

FCOS—Floating-Point Cosine

FSINCOS—Floating-Point Sine and Cosine

FPTAN—Floating-Point Partial Tangent

FPATAN—Floating-Point Partial Arctangent

The FSIN instruction replaces the contents of the top-of-stack,
ST(0), with its sine, in radians.

The FCOS instruction replaces the contents of the top-of-stack,
ST(0), with its cosine, in radians.

The FSINCOS instruction computes both the sine and cosine of
ST(0), in radians, and writes the sine to ST(0) and pushes the
cosine onto the stack. Frequently, a piece of code that needs to
compute the sine of an argument also needs to compute the
cosine of that same argument. In such cases, use the FSINCOS
instruction to compute both functions concurrently, which is
faster than using separate FSIN and FCOS instructions.

The FPTAN instruction replaces the contents of the top-of-
stack, ST(0), with its tangent, in radians, and pushes the value
1.0 onto the stack.

The FPATAN instruction computes θ = arctan (Y/X), in which X
is located in ST(0) and Y in ST(1). The result, θ, is written over
Y in ST(1), and the stack is popped.

FSIN, FCOS, FSINCOS, and FPTAN are architecturally
restricted in their argument range. Only arguments with a

324 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

magnitude of less than or equal to 263 can be evaluated. If the
argument is out of range, the C2 condition-code bit in the x87
status word is set to 1, and the argument is returned as the
result. If software detects an out-of-range argument, the
FPREM or FPREM1 instruction can be used to reduce the
magnitude of the argument before using the FSIN, FCOS,
FSINCOS, or FPTAN instruction again.

Logarithmic Functions.

F2XM1—Floating-Point Compute 2x–1

FSCALE—Floating-Point Scale

FYL2X—Floating-Point y * log2x

FYL2XP1—Floating-Point y * log2(x +1)

The F2XM1 instruction computes Y = 2X – 1. X is located in
ST(0) and must fall between -1 and +1. Y replaces X in ST(0). If
ST(0) is out of range, the instruction returns an undefined
result but no x87 status-word exception bits are affected.

The FSCALE instruction replaces ST(0) with ST(0) times 2n,
where n is the value in ST(1) truncated to an integer. This
provides a fast method of multiplying by integral powers of 2.

The FYL2X instruction computes Z = Y * log2 X. X is located in
ST(0) and Y is located in ST(1). X must be greater than 0. The
result, Z, replaces Y in ST(1), which becomes the new top-of-
stack because X is popped off the stack.

The FYL2XP1 instruction computes Z = Y * log2(X + 1). X
located in ST(0) and must be in the range 0 < |X| < (1 - 2½ / 2). Y
is taken from ST(1). The result, Z, replaces Y in ST(1), which
becomes the new top-of-stack because X is popped off the stack.

Accuracy of Transcendental Results. x87 computations are carried out
in double-extended-precision format, so that the transcendental
functions provide results accurate to within one unit in the last
place (ulp) for each of the floating-point data types.

Argument Reduction Using Pi. The FPREM and FPREM1
instructions can be used to reduce an argument of a
trigonometric function by a multiple of Pi. The following
example shows a reduction by 2π:

sin(n*2π + x) = sin(x) for all integral n

Chapter 6: x87 Floating-Point Programming 325

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 325

In this example, the range is 0 ≤ x < 2π in the case of FPREM or -
π ≤ x ≤ π in the case of FPREM1. Negative arguments are
reduced by repeatedly subtracting -2π . See “Partial
Remainder” on page 322 for details of the instructions.

6.5.6 Compare and
Test

The compare-and-test instructions set and clear flags in the
rFLAGS register to indicate the relationship between two
operands (less, equal, greater, or unordered).

Floating-Point Ordered Compare.

FCOM—Floating-Point Compare

FCOMP—Floating-Point Compare and Pop

FCOMPP—Floating-Point Compare and Pop Twice

FCOMI—Floating-Point Compare and Set Flags

FCOMIP—Floating-Point Compare and Set Flags and Pop

The FCOM instruction syntax has forms that include zero or one
explicit source operands. In the zero-operand form, the
instruction compares ST(1) with ST(0) and writes the x87
status-word condition codes accordingly. In the one-operand
form, the instruction reads a 32-bit or 64-bit value from memory,
compares it with ST(0), and writes the x87 condition codes
accordingly.

The FCOMP instruction performs the same operation as FCOM
but also pops ST(0) after writing the condition codes.

The FCOMPP instruction performs the same operation as
FCOM but also pops both ST(0) and ST(1). FCOMPP can be
used to initialize the x87 stack at the end of an x87 procedure
by removing two registers of preloaded data from the stack.

The FCOMI instruction compares the contents of ST(0) with the
contents of another stack register and writes the ZF, PF, and CF
flags in the rFLAGS register as shown in Table 6-14 on page 326.
If no source is specified, ST(0) is compared to ST(1). If ST(0) or
the source operand is a NaN or in an unsupported format, the
flags are set to indicate an unordered condition.

The FCOMIP instruction performs the same comparison as
FCOMI but also pops ST(0) after writing the rFLAGS bits.

326 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

For comparison-based branches, the combination of FCOMI and
FCMOVcc is faster than the classical method of using FxSTSW
AX to copy condition codes through the AX register to the
rFLAGS register, where they can provide branch direction for
conditional operations.

The FCOMx instructions perform ordered compares, as
opposed to the FUCOMx instructions. See the description of
ordered vs. unordered compares immediately below.

Floating-Point Unordered Compare.

FUCOM—Floating-Point Unordered Compare

FUCOMP—Floating-Point Unordered Compare and Pop

FUCOMPP—Floating-Point Unordered Compare and Pop
Twice

FUCOMI—Floating-Point Unordered Compare and Set
Flags

FUCOMIP—Floating-Point Unordered Compare and Set
Flags and Pop

The FUCOMx instructions perform the same operations as the
FCOMx instructions, except that the FUCOMx instructions
generate an invalid-operation exception (IE) only if any
operand is an unsupported data type or a signaling NaN
(SNaN), whereas the ordered-compare FCOMx instructions
generate an invalid-operation exception if any operand is an
unsupported data type or any type of NaN. For a description of
NaNs, see “Number Representation” on page 303.

Integer Compare.

FICOM—Floating-Point Integer Compare

FICOMP—Floating-Point Integer Compare and Pop

Table 6-14. rFLAGS Values for FCOMI Instruction

Flag ST(0) > ST(i) ST(0) < ST(i) ST(0) = ST(i) Unordered

ZF 0 0 1 1

PF 0 0 0 1

CF 0 1 0 1

Chapter 6: x87 Floating-Point Programming 327

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 327

The FICOM instruction reads a 16-bit or 32-bit integer value
from memory, compares it with ST(0), and writes the condition
codes in the same way as the FCOM instruction.

The FICOMP instruction performs the same operations as
FICOM but also pops ST(0).

Test.

FTST—Floating-Point Test with Zero

The FTST instruction compares ST(0) with zero and writes the
condition codes in the same way as the FCOM instruction.

Classify.

FXAM—Floating-Point Examine

The FXAM instruction determines the type of value in ST(0)
and sets the condition codes accordingly, as shown in Table 6-15
on page 328.

328 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

6.5.7 Stack
Management

The stack management instructions move the x87 top-of-stack
pointer (TOP) and clear the contents of stack registers.

Stack Control.

FDECSTP—Floating-Point Decrement Stack-Top Pointer

FINCSTP—Floating-Point Increment Stack-Top Pointer

The FINCSTP and FDECSTP instructions increment and
decrement, respectively, the TOP, modulo-8. Neither the x87 tag
word nor the contents of the floating-point stack itself is
updated.

Clear State.

FFREE—Free Floating-Point Register

Table 6-15. Condition-Code Settings for FXAM

C3 C2 C0 C11 Meaning

0 0 0 0 +unsupported

0 0 0 1 -unsupported

0 0 1 0 +NAN

0 0 1 1 -NAN

0 1 0 0 +normal

0 1 0 1 -normal

0 1 1 0 +infinity

0 1 1 1 -infinity

1 0 0 0 +0

1 0 0 1 -0

1 0 1 0 +empty

1 0 1 1 -empty

1 1 0 0 +denormal

1 1 0 1 -denormal

Note:
1. C1 is the sign of ST(0).

Chapter 6: x87 Floating-Point Programming 329

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 329

The FFREE instruction frees a specified stack register by
setting the x87 tag-word bits for the register to all 1s, indicating
empty. Neither the stack-register contents nor the stack pointer
is modified by this instruction.

6.5.8 No Operation This instruction uses processor cycles but generates no result.

FNOP—Floating-Point No Operation

The FNOP instruction has no operands and writes no result. Its
purpose is simply to delay execution of a sequence of
instructions.

6.5.9 Control The control instructions are used to initialize, save, and restore
x87 processor state and to manage x87 exceptions.

Initialize.

FINIT—Floating-Point Initialize

FNINIT—Floating-Point No-Wait Initialize

The FINIT and FNINIT instructions set all bits in the x87
control-word, status-word, and tag word registers to their
default values. Assemblers issue FINIT as an FWAIT
instruction followed by an FNINIT instruction. Thus, FINIT (but
not FNINIT) reports pending unmasked x87 floating-point
exceptions before performing the initialization.

Both FINIT and FNINIT write the control word with its
initialization value, 037Fh, which specifies round-to-nearest, all
exceptions masked, and double-extended-precision. The tag
word indicates that the floating-point registers are empty. The
status word and the four condition-code bits are cleared to 0.
The x87 pointers and opcode state (“Pointers and Opcode
State” on page 295) are all cleared to 0.

The FINIT instruction should be used when pending x87
floating-point exceptions are being reported (unmasked). The
no-wait instruction, FNINIT, should be used when pending x87
floating-point exceptions are not being reported (masked).

Wait for Exceptions.

FWAIT or WAIT—Wait for Unmasked x87 Floating-Point
Exceptions

330 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

The FWAIT and WAIT instructions are synonyms. The
instruction forces the processor to test for and handle any
pending, unmasked x87 floating-point exceptions.

Clear Exceptions.

FCLEX—Floating-Point Clear Flags

FNCLEX—Floating-Point No-Wait Clear Flags

These instructions clear the status-word exception flags, stack-
fault flag, and busy flag. They leave the four condition-code bits
undefined.

Assemblers issue FCLEX as an FWAIT instruction followed by
an FNCLEX instruction. Thus, FCLEX (but not FNCLEX)
reports pending unmasked x87 floating-point exceptions before
clearing the exception flags.

The FCLEX instruction should be used when pending x87
floating-point exceptions are being reported (unmasked). The
no-wait instruction, FNCLEX, should be used when pending
x87 floating-point exceptions are not being reported (masked).

Save and Restore x87 Control Word.

FLDCW—Floating-Point Load x87 Control Word

FSTCW—Floating-Point Store Control Word

FNSTCW—Floating-Point No-Wait Store Control Word

These instructions load or store the x87 control-word register as
a 2-byte value from or to a memory location.

The FLDCW instruction loads a control word. If the loaded
control word unmasks any pending x87 floating-point
exceptions, these exceptions are reported when the next non-
control x87 or 64-bit media instruction is executed.

Assemblers issue FSTCW as an FWAIT instruction followed by
an FNSTCW instruction. Thus, FSTCW (but not FNSTCW)
reports pending unmasked x87 floating-point exceptions before
storing the control word.

The FSTCW instruction should be used when pending x87
floating-point exceptions are being reported (unmasked). The
no-wait instruction, FNSTCW, should be used when pending x87
floating-point exceptions are not being reported (masked).

Chapter 6: x87 Floating-Point Programming 331

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 331

Save x87 Status Word.

FSTSW—Floating-Point Store Status Word

FNSTSW—Floating-Point No-Wait Store Status Word

These instructions store the x87 status word either at a
specified 2-byte memory location or in the AX register. The
second form, FxSTSW AX, is used in older code to copy
condition codes through the AX register to the rFLAGS register,
where they can be used for conditional branching using general-
purpose instructions. However, the combination of FCOMI and
FCMOVcc provides a faster method of conditional branching.

Assemblers issue FSTSW as an FWAIT instruction followed by
an FNSTSW instruction. Thus, FSTSW (but not FNSTSW)
reports pending unmasked x87 floating-point exceptions before
storing the status word.

The FSTSW instruction should be used when pending x87
floating-point exceptions are being reported (unmasked). The
no-wait instruction, FNSTSW, should be used when pending x87
floating-point exceptions are not being reported (masked).

Save and Restore x87 Environment.

FLDENV—Floating-Point Load x87 Environment

FNSTENV—Floating-Point No-Wait Store Environment

FSTENV—Floating-Point Store Environment

These instructions load or store the entire x87 environment
(non-data processor state) as a 14-byte or 28-byte block,
depending on effective operand size, from or to memory.

When executing FLDENV, any exception flags are set in the
new status word, and these exceptions are unmasked in the
control word, a floating-point exception occurs when the next
non-control x87 or 64-bit media instruction is executed.

Assemblers issue FSTENV as an FWAIT instruction followed by
an FNSTENV instruction. Thus, FSTENV (but not FNSTENV)
reports pending unmasked x87 floating-point exceptions before
storing the status word.

The x87 environment includes the x87 control word register, x87
status word register, x87 tag word, last x87 instruction pointer,
last x87 data pointer, and last x87 opcode. See “Media and x87

332 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Processor State” in Volume 2 for details on how the x87
environment is stored in memory.

Save and Restore x87 and 64-Bit Media State.

FSAVE—Save x87 and MMX State.

FNSAVE—Save No-Wait x87 and MMX State.

FRSTOR—Restore x87 and MMX State.

These instructions save and restore the entire processor state
for x87 f loating-point instructions and 64-bit media
instructions. The instructions save and restore either 94 or 108
bytes of data, depending on the effective operand size.

Assemblers issue FSAVE as an FWAIT instruction followed by
an FNSAVE instruction. Thus, FSAVE (but not FNSAVE)
reports pending unmasked x87 floating-point exceptions before
saving the state.

After saving the state, the processor initializes the x87 state by
performing the equivalent of an FINIT instruction. For details,
see “Saving and Restoring State” on page 349.

Save and Restore x87, 128-Bit, and 64-Bit State.

FXSAVE—Save XMM, MMX, and x87 State.

FXRSTOR—Restore XMM, MMX, and x87 State.

The FXSAVE and FXRSTOR instructions save and restore the
entire 512-byte processor state for 128-bit media instructions,
64-bit media instructions, and x87 floating-point instructions.
The architecture supports two memory formats for FXSAVE
and FXRSTOR, a 512-byte 32-bit legacy format and a 512-byte
64-bit format. Selection of the 32-bit or 64-bit format is
determined by the effective operand size for the FXSAVE and
FXRSTOR instructions. For details, see “Saving Media and x87
Processor State” in Volume 2.

FXSAVE and FXRSTOR execute faster than FSAVE/FNSAVE
and FRSTOR. However, unlike FSAVE and FNSAVE, FXSAVE
does not initialize the x87 state, and like FNSAVE it does not
report pending unmasked x87 floating-point exceptions. For
details, see “Saving and Restoring State” on page 349.

Chapter 6: x87 Floating-Point Programming 333

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 333

6.6 Instruction Effects on rFLAGS

The rFLAGS register is described in “Flags Register” on
page 37. Table 6-16 summarizes the effect that x87 floating-
point instructions have on individual flags within the rFLAGS
register. Only instructions that access the rFLAGS register are
shown—all other x87 instructions have no effect on rFLAGS.

The following codes are used within the table:

Mod—The flag is modified.

Tst—The flag is tested.

Gray shaded cells indicate the flag is not affected by the
instruction.

6.7 Instruction Prefixes

Instruction prefixes, in general, are described in “Instruction
Prefixes” on page 85. The following restrictions apply to the use
of instruction prefixes with x87 instructions.

Supported Prefixes. The following prefixes can be used with x87
instructions:

Operand-Size Override—The 66h prefix affects only the
FLDENV, FSTENV, FNSTENV, FSAVE, FNSAVE, and
FRSTOR instructions, in which it selects between a 16-bit
and 32-bit memory-image format. The prefix is ignored by all
other x87 instructions.

Address-Size Override—The 67h prefix affects only operands
in memory, in which it selects between a 16-bit and 32-bit
addresses. The prefix is ignored by all other x87 instructions.

Table 6-16. Instruction Effects on rFLAGS

Instructio
n

Mnemonic

rFLAGS Mnemonic and Bit Number

RF
16

NT
14

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

FCMOVcc Tst Tst Tst

FCOMI
FCOMIP
FUCOMI
FUCOMIP

Mo
d

Mo
d

Mo
d

334 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Segment Overrides—The 2Eh (CS), 36h (SS), 3Eh (DS), 26h
(ES), 64h (FS), and 65h (GS) prefixes specify a segment.
They affect only operands in memory. In 64-bit mode, the CS,
DS, ES, SS segment overrides are ignored.

REX—The REX prefix affects only the FXSAVE and
FXRSTOR instructions, in which it selects between two
types of 512-byte memory-image format, as described in
“Saving Media and x87 Processor State” in Volume 2. The
prefix is ignored by all other x87 instructions.

Ignored Prefixes. The following prefixes are ignored by x87
instructions:

REP—The F3h and F2h prefixes.

Prefixes That Cause Exceptions. The following prefixes cause an
exception:

LOCK—The F0h prefix causes an invalid-opcode exception
when used with x87 instructions.

6.8 Feature Detection

Before executing x87 floating-point instructions, software
should determine if the processor supports the technology by
executing the CPUID instruction. “Feature Detection” on
page 90 describes how software uses the CPUID instruction to
detect feature support. For full support of the x87 floating-point
features, the following feature must be present:

On-Chip Floating-Point Unit, indicated by bit 0 of CPUID
standard function 1 and CPUID extended function
8000_0001h.

CMOVcc (conditional moves), indicated by bit 15 of CPUID
standard function 1 and CPUID extended function
8000_0001h. This bit indicates support for x87 floating-point
conditional moves (FCMOVcc) whenever the On-Chip
Floating-Point Unit bit (bit 0) is also set.

Software may also wish to check for the following support,
because the FXSAVE and FXRSTOR instructions execute
faster than FSAVE and FRSTOR:

FXSAVE and FXRSTOR, indicated by bit 24 of CPUID
standard function 1 and extended function 8000_0001h.

Chapter 6: x87 Floating-Point Programming 335

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 335

Software that runs in long mode should also check for the
following support:

Long Mode, indicated by bit 29 of CPUID extended function
8000_0001h.

See “Processor Feature Identification” in Volume 2 for a full
description of the CPUID instruction and its function codes.

6.9 Exceptions

Types of Exceptions. x87 instructions can generate two types of
exceptions:

General-Purpose Exceptions, described below in “General-
Purpose Exceptions”

x87 Floating-Point Exceptions (#MF), described in “x87
Floating-Point Exception Causes” on page 336

Relation to 128-Bit Media Exceptions. Although the x87 floating-point
instructions and the 128-bit media instructions each have
certain exceptions with the same names, the exception-
reporting and exception-handling methods used by the two
instruction subsets are distinct and independent of each other.
If procedures using both types of instructions are run in the
same operating environment, separate services routines should
be provided for the exceptions of each type of instruction
subset.

6.9.1 General-Purpose
Exceptions

The sections below list general-purpose exceptions generated
and not generated by x87 floating-point instructions. For a
summary of the general-purpose exception mechanism, see
“Interrupts and Exceptions” on page 104. For details about
each exception and its potential causes, see “Exceptions and
Interrupts” in Volume 2.

Exceptions Generated. x87 instructions can generate the following
general-purpose exceptions:

#DB—Debug Exception (Vector 1)

#BP—Breakpoint Exception (Vector 3)

#UD—Invalid-Opcode Exception (Vector 6)

#NM—Device-Not-Available Exception (Vector 7)

#DF—Double-Fault Exception (Vector 8)

336 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

#SS—Stack Exception (Vector 12)

#GP—General-Protection Exception (Vector 13)

#PF—Page-Fault Exception (Vector 14)

#MF—x87 Floating-Point Exception-Pending (Vector 16)

#AC—Alignment-Check Exception (Vector 17)

#MC—Machine-Check Exception (Vector 18)

For details on #MF exceptions, see “x87 Floating-Point
Exception Causes” below.

Exceptions Not Generated. x87 instructions do not generate the
following general-purpose exceptions:

#DE—Divide-by-zero-error exception (Vector 0)

Non-Maskable-Interrupt Exception (Vector 2)

#OF—Overflow exception (Vector 4)

#BR—Bound-range exception (Vector 5)

Coprocessor-segment-overrun exception (Vector 9)

#TS—Invalid-TSS exception (Vector 10)

#NP—Segment-not-present exception (Vector 11)

#MC—Machine-check exception (Vector 18)

#XF—SIMD floating-point exception (Vector 19)

For details on all general-purpose exceptions, see “Exceptions
and Interrupts” in Volume 2.

6.9.2 x87 Floating-
Point Exception
Causes

The x87 floating-point exception-pending (#MF) exception
listed above in “General-Purpose Exceptions” is actually the
logical OR of six exceptions that can be caused by x87 floating-
point instructions. Each of the six exceptions has a status flag in
the x87 status word and a mask bit in the x87 control word. A
seventh exception, stack fault (SF), is reported together with
one of the six maskable exceptions and does not have a mask
bit.

If a #MF exception occurs when its mask bit is set to 1 (masked),
the processor responds in a default way that does not invoke the
#MF exception service routine. If an exception occurs when its
mask bit is cleared to 0 (unmasked), the processor suspends
processing of the faulting instruction (if possible) and, at the
boundary of the next non-control x87 or 64-bit media
instruction (see “Control” on page 329), determines that an

Chapter 6: x87 Floating-Point Programming 337

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 337

unmasked exception is pending—by checking the exception
status (ES) flag in the x87 status word—and invokes the #MF
exception service routine.

#MF Exception Types and Flags. The #MF exceptions are of six types,
five of which are mandated by the IEEE 754 standard. These six
types and their bit-flags in the x87 status word are shown in
Table 6-17. A stack fault (SF) exception is always accompanied
by an invalid-operation exception (IE). A summary of each
exception type is given in “x87 Status Word Register” on
page 287.

The sections below describe the causes for the #MF exceptions.
Masked and unmasked responses to the exceptions are
described in “x87 Floating-Point Exception Masking” on
page 342. The priority of #MF exceptions are described in “x87
Floating-Point Exception Priority” on page 340.

Invalid-Operation Exception (IE). The IE exception occurs due to one
of the attempted operations shown in Table 6-18 on page 338.
An IE exception may also be accompanied by a stack fault (SF)
exception. See “Stack Fault (SF)” on page 339.

Table 6-17. x87 Floating-Point (#MF) Exception Flags

Exception and Mnemonic
x87 Status-
Word Bit1

Comparable IEEE 754
Exception

Invalid-operation exception (IE) 0 Invalid Operation

Invalid-operation exception (IE)
with stack fault (SF) exception

0 and 6 none

Denormalized-operand exception (DE) 1 none

Zero-divide exception (ZE) 2 Division by Zero

Overflow exception (OE) 3 Overflow

Underflow exception (UE) 4 Underflow

Precision exception (PE) 5 Inexact

Note:
1. See “x87 Status Word Register” on page 287 for a summary of each exception.

338 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Denormalized-Operand Exception (DE). The DE exception occurs in
any of the following cases:

Denormalized Operand (any precision)—An arithmetic
instruction uses an operand of any precision that is in

Table 6-18. Invalid-Operation Exception (IE) Causes

Operation Condition

Arithmetic
(IE exception)

Any Arithmetic Operation
• A source operand is an SNaN, or
• A source operand is an unsupported data type (pseudo-

NaN, pseudo-infinity, pseudo-denormal, or unnormal)

FADD, FADDP Source operands are infinities with opposite signs

FSUB, FSUBP, FSUBR,
FSUBRP Source operands are infinities with same sign

FMUL, FMULP Source operands are zero and infinity

FDIV, FDIVP, FDIVR,
FDIVRP

Source operands are both infinities or both zeros

FSQRT Source operand is less than zero (except ±0 which returns ±0)

FYL2X Source operand is less than zero (except ±0 which returns ±∞)

FYL2XP1 Source operand is less than minus one

FCOS, FPTAN, FSIN,
FSINCOS Source operand is infinity

FCOM, FCOMP, FCOMPP,
FCOMI, FCOMIP A source operand is a QNaN

FUCOM, FUCOMP,
FUCOMPP, FUCOMI,
FUCOMIP

A source operand is an SNaN

FPREM, FPREM1 Dividend is infinity or divisor is zero

FIST, FISTP Source operand overflows destination data type

FXCH A source register is specified empty by the its tag bits

FBSTP Source operand overflows packed BCD data type

Stack
(IE and SF exceptions) Stack overflow or underflow1

Note:
1. The processor sets condition code C1 = 1 for overflow, C1 = 0 for underflow.

Chapter 6: x87 Floating-Point Programming 339

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 339

denormalized form, as described in “Denormalized (Tiny)
Numbers” on page 304.

Denormalized Single-Precision or Double-Precision Load—An
instruction loads a single-precision or double-precision (but
not double-extended-precision) operand, which is in
denormalized form, into an x87 register.

Zero-Divide Exception (ZE). The ZE exception occurs when:

Divisor is Zero—An FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, or
FIDIVR instruction attempts to divide zero into a non-zero
finite dividend.

Source Operand is Zero—An FYL2X or FXTRACT instruction
uses a source operand that is zero.

Overflow Exception (OE). The OE exception occurs when the value
of a rounded floating-point result is larger than the largest
representable normalized positive or negative floating-point
number in the destination format, as shown in Table 6-5 on
page 301. An overflow can occur through computation or
through conversion of higher-precision numbers to lower-
precision numbers. See “Precision” on page 311. Integer and
BCD overflow is reported via the invalid-operation exception.

Underflow Exception (UE). The UE exception occurs when the value
of a rounded, non-zero floating-point result is too small to be
represented as a normalized positive or negative floating-point
number in the destination format, as shown in Table 6-5 on
page 301. Integer and BCD underflow is reported via the
invalid-operation exception.

Precision Exception (PE). The PE exception, also called the inexact-
result exception, occurs when a floating-point result, after
rounding, differs from the infinitely precise result and thus
cannot be represented exactly in the specified destination
format. Software that does not require exact results normally
masks this exception. See “Precision” on page 311 and
“Rounding” on page 312.

Stack Fault (SF). The SF exception occurs when a stack overflow
(due to a push or load into a non-empty stack register) or stack
underflow (due to referencing an empty stack register) occurs
in the x87 stack-register file. The empty and non-empty
conditions are shown in Table 6-3 on page 294. When either of
these conditions occur, the processor also sets the invalid-

340 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

operation exception (IE) flag, and it sets or clears the condition-
code 1 (C1) bit to indicate the direction of the stack fault
(C1 = 1 for overflow, C1 = 0 for underflow). Unlike the flags for
the other x87 exceptions, the SF flag does not have a
corresponding mask bit in the x87 control word.

6.9.3 x87 Floating-
Point Exception
Priority

Table 6-19 shows the priority with which the processor
recognizes multiple, simultaneous SIMD floating-point
exceptions and operations involving QNaN operands. Each
exception type is characterized by its timing, as follows:

Pre-Computation—an exception that is recognized before an
instruction begins its operation.

Post-Computation—an exception that is recognized after an
instruction completes its operation.

For post-computation exceptions, a result may be written to the
destination, depending on the type of exception and whether
the destination is a register or memory location. Operations
involving QNaNs do not necessarily cause exceptions, but the
processor handles them with the priority shown in Table 6-19 on
page 341 relative to the handling of exceptions.

Chapter 6: x87 Floating-Point Programming 341

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 341

For exceptions that occur before the associated operation (pre-
operation, as shown in Table 6-19), if an unmasked exception
occurs, the processor suspends processing of the faulting
instruction but it waits until the boundary of the next non-
control x87 or 64-bit media instruction to be executed before
invoking the associated exception service routine. During this
delay, non-x87 instructions may overwrite the faulting x87
instruction’s source or destination operands in memory. If that
occurs, the x87 service routine may be unable to perform its job.

To prevent such problems, analyze x87 procedures for potential
exception-causing situations and insert a WAIT or other safe
x87 instruction immediately after any x87 instruction that may
cause a problem.

Table 6-19. Priority of x87 Floating-Point Exceptions

Priority Exception or Operation Timing

1 Invalid-operation exception (IE) with stack fault
(SF) due to underflow

Pre-Computation

2 Invalid-operation exception (IE) with stack fault
(SF) due to overflow Pre-Computation

3
Invalid-operation exception (IE) when accessing
unsupported data type Pre-Computation

4 Invalid-operation exception (IE) when accessing
SNaN operand

Pre-Computation

5 Operation involving a QNaN operand1 —

6
Any other type of invalid-operation exception (IE) Pre-Computation

Zero-divide exception (ZE) Pre-Computation

7 Denormalized operation exception (DE) Pre-Computation

8
Overflow exception (OE) Post-Computation

Underflow exception (UE) Post-Computation

9 Precision (inexact) exception (PE) Post-Computation

Note:
1. Operations involving QNaN operands do not, in themselves, cause exceptions but they are

handled with this priority relative to the handling of exceptions.

342 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

6.9.4 x87 Floating-
Point Exception
Masking

The six floating-point exception flags in the x87 status word
have corresponding exception-flag masks in the x87 control
word, as shown in Table 6-20.

Each mask bit, when set to 1, inhibits invocation of the #MF
exception handler and instead continues normal execution
using the default response for the exception type. During
initialization with FINIT or FNINIT, all exception-mask bits in
the x87 control word are set to 1 (masked). At processor reset,
all exception-mask bits are cleared to 0 (unmasked).

Masked Responses. The occurrence of a masked exception does
not invoke its exception handler when the exception condition
occurs. Instead, the processor handles masked exceptions in a
default way, as shown in Table 6-21 on page 343.

Table 6-20. x87 Floating-Point (#MF) Exception Masks

Exception Mask
and Mnemonic

x87 Control-Word
Bit1

Invalid-operation exception mask (IM) 0

Denormalized-operand exception mask (DM) 1

Zero-divide exception mask (ZM) 2

Overflow exception mask (OM) 3

Underflow exception mask (UM) 4

Precision exception mask (PM) 5

Note:
1. See “x87 Status Word Register” on page 287 for a summary of each exception.

Chapter 6: x87 Floating-Point Programming 343

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 343

Table 6-21. Masked Responses to x87 Floating-Point Exceptions

Exception and
Mnemonic

Type of
Operation1 Processor Response

Invalid-operation
exception (IE)2

Any Arithmetic Operation:
Source operand is an SNaN Set IE flag, and return a QNaN value.

Any Arithmetic Operation:
Source operand is an
unsupported data type
or
FADD, FADDP: Source operands
are infinities with opposite signs
or
FSUB, FSUBP, FSUBR, FSUBRP:
Source operands are infinities
with same sign
or
FMUL, FMULP: Source operands
include zero and infinity
or
FDIV, FDIVP, FDIVR, FDIVRP:
Source operands are both
infinities or both are zeros
or
FSQRT: Source operand is less
than zero (except ±0 which
returns ±0)
or
FYL2X: Source operand is less
than zero (except ±0 which
returns ±∞)

or
FYL2XP1: Source operand is less
than minus one

Set IE flag, and return the floating-point indefinite
value3.

Note:
1. See “Instruction Summary” on page 313 for the types of instructions.
2. Includes invalid-operation exception (IE) together with stack fault (SF).
3. See “Indefinite Values” on page 309.

344 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Invalid-operation
exception (IE)2

FCOS, FPTAN, FSIN, FSINCOS:
Source operand is ∞
or
FPREM, FPREM1: Dividend is
infinity or divisor is 0

Set IE flag, return the floating-point indefinite value3,
and clear condition code C2 to 0.

FCOM, FCOMP, or FCOMPP: One
or both operands is a NaN
or
FUCOM, FUCOMP, or FUCOMPP:
One or both operands is an
SNaN

Set IE flag, and set C3–C0 condition codes to reflect the
result.

FCOMI or FCOMIP: One or both
operands is a NaN
or
FUCOMI or FUCOMIP: One or
both operands is an SNaN

Set IE flag, and writes the zero (ZF), parity (PF), and
carry (CF) flags in rFLAGS according to the result.

FIST, FISTP: Source operand
overflows destination data type Set IE flag, and return the integer indefinite value3.

FXCH: A source register is
specified empty by the its tag bits

Set IE flag, and perform exchange using floating-point
indefinite value3 as content for empty register(s).

FBSTP: Source operand
overflows packed BCD data type

Set IE flag, and return the packed-decimal indefinite
value3.

Denormalized-operand exception (DE)
Set DE flag, and return the result using the denormal
operand(s).

Zero-divide
exception (ZE)

FDIV, FDIVP, FDIVR, FDIVRP,
FIDIV, or FIDIVR: Divisor is 0

Set ZE flag, and return signed ∞ with sign bit = XOR of
the operand sign bits.

FYL2X: ST(0) is 0 and ST(1) is a
non-zero floating-point value

Set ZE flag, and return signed ∞ with sign bit =
complement of sign bit for ST(1) operand.

FXTRACT: Source operand is 0
Set ZE flag, write ST(0) = 0 with sign of operand, and
write ST(1) = –∞.

Table 6-21. Masked Responses to x87 Floating-Point Exceptions (continued)

Exception and
Mnemonic

Type of
Operation1 Processor Response

Note:
1. See “Instruction Summary” on page 313 for the types of instructions.
2. Includes invalid-operation exception (IE) together with stack fault (SF).
3. See “Indefinite Values” on page 309.

Chapter 6: x87 Floating-Point Programming 345

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 345

Overflow exception
(OE)

Round to nearest
• If sign of result is positive, set OE flag, and return +∞.

• If sign of result is negative, set OE flag, and return -∞.

Round toward +∞
• If sign of result is positive, set OE flag, and return +∞.

• If sign of result is negative, set OE flag, and return
finite negative number with largest magnitude.

Round toward -∞
• If sign of result is positive, set OE flag, and return

finite positive number with largest magnitude.

• If sign of result is negative, set OE flag, and return -∞.

Round toward 0

• If sign of result is positive, set OE flag and return finite
positive number with largest magnitude.

• If sign of result is negative, set OE flag and return
finite negative number with largest magnitude.

Underflow exception (UE)

• If result is both denormal (tiny) and inexact, set UE
flag and return denormalized result.

• If result is denormal (tiny) but not inexact, return
denormalized result but do not set UE flag.

Precision exception
(PE)

Without overflow or underflow
Set PE flag, return rounded result, write C1 condition
code to specify round-up (C1 = 1) or not round-down
(C1 = 0).

With masked overflow or
underflow

Set PE flag and respond as for the OE or UE exceptions.

With unmasked overflow or
underflow for register destination

Set PE flag, respond as for the OE or UE exception, and
call OE or UE service routine.

With unmasked overflow or
underflow for memory
destination

Ignore PE exception, and assert FERR# as for an
unmasked exception. The destination and the TOP are
not changed.

Table 6-21. Masked Responses to x87 Floating-Point Exceptions (continued)

Exception and
Mnemonic

Type of
Operation1 Processor Response

Note:
1. See “Instruction Summary” on page 313 for the types of instructions.
2. Includes invalid-operation exception (IE) together with stack fault (SF).
3. See “Indefinite Values” on page 309.

346 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Unmasked Responses. The processor handles unmasked
exceptions as shown in Table 6-22.

Table 6-22. Unmasked Responses to x87 Floating-Point Exceptions

Exception and
Mnemonic

Type of
Operation Processor Response1

Invalid-operation exception (IE)
Set IE and ES flags, and call the #MF service routine. The
destination and the TOP are not changed. Invalid-operation exception (IE)

with stack fault (SF)

Denormalized-operand exception (DE)
Set DE and ES flags, and call the #MF service routine. The
destination and the TOP are not changed.

Zero-divide exception (ZE)
Set ZE and ES flags, and call the #MF service routine. The
destination and the TOP are not changed.

Overflow exception (OE)

• If the destination is memory, set OE and ES flags, and call the
#MF service routine. The destination and the TOP are not
changed.

• If the destination is an x87 register:

- divide true result by 224576,
- round significand according to PC precision control and RC

rounding control (or round to double-extended precision
for instructions not observing PC precision control),

- write C1 condition code according to rounding (C1 = 1 for
round up, C1 = 0 for round toward zero),

- write result to destination,
- pop or push stack if specified by the instruction,
- set OE and ES flags, and call the #MF service routine.

Note:
1. For all unmasked exceptions, the processor’s response also includes assertion of the FERR# output signal at the completion of

the instruction that caused the exception.

Chapter 6: x87 Floating-Point Programming 347

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 347

FERR# and IGNNE# Signals. In all unmasked-exception responses,
the processor also asserts the FERR# output signal at the
completion of the instruction that caused the exception. The
exception is serviced at the boundary of the next non-control
x87 or 64-bit media instruction following the instruction that
caused the exception. (See “Control” on page 329 for a
definition of control instructions.)

Underflow exception (UE)

• If the destination is memory, set UE and ES flags, and call the
#MF service routine. The destination and the TOP are not
changed.

• If the destination is an x87 register:

- multiply true result by 224576,
- round significand according to PC precision control and RC

rounding control (or round to double-extended precision
for instructions not observing PC precision control),

- write C1 condition code according to rounding (C1 = 1 for
round up, C1 = 0 for round toward zero),

- write result to destination,
- pop or push stack if specified by the instruction,
- set UE and ES flags, and call the #MF service routine.

Precision exception
(PE)

Without overflow or
underflow

Set PE and ES flags, return rounded result, write C1 condition
code to specify round-up (C1 = 1) or not round-down (C1 = 0),
and call the #MF service routine.

With masked overflow or
underflow

Set PE and ES flags, respond as for the OE or UE exception, and
call the #MF service routine. With unmasked overflow

or underflow for register
destination

With unmasked overflow
or underflow for
memory destination

Do not set PE flag, and set ES flag. The destination and the TOP
are not changed.

Table 6-22. Unmasked Responses to x87 Floating-Point Exceptions (continued)

Exception and
Mnemonic

Type of
Operation Processor Response1

Note:
1. For all unmasked exceptions, the processor’s response also includes assertion of the FERR# output signal at the completion of

the instruction that caused the exception.

348 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

System software controls x87 floating-point exception reporting
using the numeric error (NE) bit in control register 0 (CR0), as
follows:

If CR0.NE = 1, internal processor control over x87 floating-
point exception reporting is enabled. In this case, an #MF
exception occurs when the FERR# output signal is asserted.
It is recommended that system software set NE to 1. This
enables optimal performance in handling x87 floating-point
exceptions.

If CR0.NE = 0, internal processor control of x87 floating-
point exceptions is disabled and the external IGNNE# input
signal controls whether x87 floating-point exceptions are
ignored, as follows:

- When IGNNE# is 1, x87 floating-point exceptions are
ignored.

- When IGNNE# is 0, x87 floating-point exceptions are
reported by setting the FERR# input signal to 1. External
logic can use the FERR# signal as an external interrupt.

Using NaNs in IE Diagnostic Exceptions. Both SNaNs and QNaNs can
be encoded with many different values to carry diagnostic
information. By means of appropriate masking and unmasking
of the invalid-operation exception (IE), software can use
signaling NaNs to invoke an exception handler. Within the
constraints imposed by the encoding of SNaNs and QNaNs,
software may freely assign the bits in the significand of a NaN.
See the section “Not a Number (NaN)” on page 306 for format
details.

For example, software can pre-load each element of an array
with a signaling NaN that encodes the array index. When an
application accesses an uninitialized array element, the invalid-
operation exception is invoked and the service routine can
identify that element. A service routine can store debug
information in memory as the exceptions occur. The routine can
create a QNaN that references its associated debug area in
memory. As the program runs, the service routine can create a
different QNaN for each error condition, so that a single test-
run can identify a collection of errors.

Chapter 6: x87 Floating-Point Programming 349

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 349

6.10 State-Saving

6.10.1 Saving and
Restoring State

In general, system software should save and restore x87 state
between task switches or other interventions in the execution
of x87 floating-point procedures. Virtually all modern operating
systems running on x86 processors—like Windows NT™, UNIX,
and OS/2—are preemptive multitasking operating systems that
handle such saving and restoring of state properly across task
switches, independently of hardware task-switch support.
However, application procedures are also free to save and
restore x87 state at any time they deem useful.

6.10.2 State-Saving
Instructions

FSAVE/FNSAVE and FRSTOR Instructions. Application software can
save and restore the x87 state by executing the FSAVE (or
FNSAVE) and FRSTOR instructions. Alternatively, software
may use multiple FxSTx (floating-point store stack top)
instructions for saving only the contents of the x87 data
registers, rather than the complete x87 state.

The FSAVE instruction stores the state, but only after handling
any pending unmasked x87 floating-point exceptions, whereas
the FNSAVE instruction skips the handling of these exceptions.
The state of all x87 data registers is saved, as well as all x87
environment state (the x87 control word register, status word
register, tag word, instruction pointer, data pointer, and last
opcode register). After saving this state, the tag bits for all x87
registers are changed to empty and thus available for a new
procedure.

FXSAVE and FXRSTOR Instructions. Application software can save
and restore the 128-bit media state, 64-bit media state, and x87
floating-point state by executing the FXSAVE and FXRSTOR
instructions. The FXSAVE and FXRSTOR instructions execute
faster than FSAVE/FNSAVE and FRSTOR because they do not
save and restore the x87 pointers (last instruction pointer, last
data pointer, and last opcode, described in “Pointers and
Opcode State” on page 295) except in the relatively rare cases
in which the exception-summary (ES) bit in the x87 status word
(the ES register image for FXSAVE, or the ES memory image
for FXRSTOR) is set to 1, indicating that an unmasked x87
exception has occurred.

Unlike FSAVE and FNSAVE, however, FXSAVE does not alter
the tag bits. The state of the saved x87 data registers is
retained, thus indicating that the registers may still be valid (or

350 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

whatever other value the tag bits indicated prior to the save).
To invalidate the contents of the x87 data registers after
FXSAVE, software must explicit ly execute an FINIT
instruction. Also, FXSAVE (like FNSAVE) and FXRSTOR do
not check for pending unmasked x87 floating-point exceptions.
An FWAIT instruction can be used for this purpose.

The architecture supports two memory formats for FXSAVE
and FXRSTOR, a 512-byte 32-bit legacy format and a 512-byte
64-bit format, used in 64-bit mode. Selection of the 32-bit or 64-
bit format is determined by the effective operand size for the
FXSAVE and FXRSTOR instructions. For details, see “Saving
Media and x87 Processor State” in Volume 2.

6.11 Performance Considerations

In addition to typical code optimization techniques, such as
those affecting loops and the inlining of function calls, the
following considerations may help improve the performance of
application programs written with x87 floating-point
instructions.

These are implementation-independent performance
considerations. Other considerations depend on the hardware
implementation. For information about such implementation-
dependent considerations and for more information about
application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware
implementations.

6.11.1 Replace x87
Code with 128-Bit
Media Code

Code written with 128-bit media floating-point instructions can
operate in parallel on four times as many single-precision
floating-point operands as can x87 floating-point code. This
achieves potentially four times the computational work of x87
instructions that use single-precision operands. Also, the higher
density of 128-bit media floating-point operands may make it
possible to remove local temporary variables that would
otherwise be needed in x87 floating-point code. 128-bit media
code is easier to write than x87 floating-point code, because the
XMM register file is flat rather than stack-oriented, and, in 64-
bit mode there are twice the number of XMM registers as x87
registers.

6.11.2 Use FCOMI-
FCMOVx Branching

Depending on the hardware implementat ion of the
architecture, the combination of FCOMI and FCMOVcc is often

Chapter 6: x87 Floating-Point Programming 351

24592—Rev. 3.08—April 2003 AMD64 Technology

Chapter 6: x87 Floating-Point Programming 351

faster than the classical approach using FxSTSW AX
instructions for comparison-based branches that depend on the
condition codes for branch direction, because FNSTSW AX is
often a serializing instruction.

6.11.3 Use FSINCOS
Instead of FSIN and
FCOS

Frequently, a piece of code that needs to compute the sine of an
argument also needs to compute the cosine of that same
argument. In such cases, use the FSINCOS instruction to
compute both trigonometric functions concurrently, which is
faster than using separate FSIN and FCOS instructions to
accomplish the same task.

6.11.4 Break Up
Dependency Chains

Parallelism can be increased by breaking up dependency chains
or by evaluating multiple dependency chains simultaneously
(explicitly switching execution between them). Depending on
the hardware implementation of the architecture, the FXCH
instruction may prove faster than FST/FLD pairs for switching
execution between dependency chains.

352 Chapter 6: x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.08—April 2003

Index 353

24592—Rev. 3.08—April 2003 AMD64 Technology

Symbols
#AC exception ... 107
#BP exception ... 106
#BR exception... 107
#DB exception... 106
#DE exception... 106
#DF exception... 107
#GP exception... 107
#MC exception .. 107
#MF exception 107, 276, 290
#NM exception.. 107
#NP exception... 107
#OF exception... 107
#PF exception ... 107
#SS exception.. 107
#TS exception.. 107
#UD exception 107, 212
#XF exception................................... 107, 212

Numerics
128-bit media programming..................... 127
16-bit mode... xxi
32-bit mode... xxi
3DNow!™ instructions 229
64-bit media programming....................... 229
64-bit mode... xxi, 8

A
AAA instruction.................................... 56, 83
AAD instruction.................................... 56, 83
AAM instruction 56, 83
AAS instruction 56, 83
aborts ... 106
absolute address ... 19
ADC instruction.. 59
ADD instruction.. 59
addition.. 59
ADDPD instruction................................... 198
ADDPS instruction 198
addressing

absolute address 19
address size 21, 81, 87
branch address ... 82
canonical form ... 18
complex address....................................... 19
effective address 18
I/O ports .. 147, 240
IP-relative ... 19, 22
linear... 13, 15

memory... 16
operands................................... 46, 147, 240
PC-relative ... 19, 22
RIP-relative.................................... xxvii, 22
stack address ... 20
string address .. 20
virtual... 13, 15
x87 stack... 287

ADDSD instruction 198
ADDSS instruction................................... 198
AF bit .. 39
affine ordering 156, 306
AH register ... 29, 30
AL register.. 29, 30
alignment

128-bit media 148, 225
64-bit media ... 241
general-purpose............................... 47, 125

AND instruction ... 67
ANDNPD instruction 206
ANDNPS instruction................................ 206
ANDPD instruction 206
ANDPS instruction................................... 206
arithmetic instructions 59, 174, 197, 255,

267, 318
ARPL instruction 84
array bounds ... 67
ASCII adjust instructions.......................... 56
auxiliary carry flag..................................... 39
AX register ... 29, 30

B
B bit ... 290
BCD data type .. 302
BCD digits ... 43
BH register.. 29, 30
biased exponent xxi, 151, 157, 300, 308
binary-coded-decimal (BCD) digits 43
bit scan instructions................................... 65
bit strings .. 44
bit test instructions.................................... 65
BL register .. 29, 30
BOUND instruction.............................. 67, 83
BP register .. 29, 30
BPL register.. 30
branch removal 137, 184, 234, 262
branch-address displacements 82
branches 93, 102, 125, 224

Index

354 Index

AMD64 Technology 24592—Rev. 3.08—April 2003

BSF instruction ... 65
BSR instruction... 65
BSWAP instruction 57
BT instruction ... 65
BTC instruction... 65
BTR instruction .. 65
BTS instruction ... 65
busy (B) bit .. 290
BX register .. 29, 30
byte ordering... 16, 57
byte registers... 33

C
C3–C0 bits ... 290
cache .. 117

cachability .. 225
coherency.. 120
line .. 120
management..................................... 79, 122
pollution ... 121
prefetching ... 122
stale lines.. 124

cache management instructions................ 79
CALL instruction 72, 83, 96
caller-save parameter passing 222
canonical address form 18
carry flag ... 39
CBW instruction.. 54
CDQ instruction.. 54
CDQE instruction 54
CF bit ... 39
CH register .. 29, 30
CL register... 29, 30
clamping .. 149
CLC instruction... 75
CLD instruction .. 75
clearing the MMX state 223, 247, 278
CLFLUSH instruction 79
CLI instruction.. 76
CMC instruction.. 75
CMOVcc instructions.................................. 49
CMP instruction.. 64
CMPPD instruction................................... 203
CMPPS instruction 203
CMPS instruction.. 68
CMPSB instruction 68
CMPSD instruction............................. 68, 203
CMPSQ instruction..................................... 68
CMPSS instruction 203
CMPSW instruction.................................... 68
CMPXCHG instruction............................... 78
CMPXCHG8B instruction 78

COMISD instruction 205
COMISS instruction 205
commit... xxii, 113
compare instructions 64, 183, 202, 262, 271,

325
compatibility mode xxii, 9
complex address ... 19
condition codes (C3–C0).......................... 290
conditional moves 49, 317
constants ... 318
control instructions (x87) 329
control transfers 19, 69, 93
control word.. 291
CPUID instruction 79, 90, 209, 273, 334
CQO instruction ... 54
CR0.EM bit ... 297
CVTDQ2PD instruction 166
CVTDQ2PS instruction............................ 166
CVTPD2DQ instruction 193
CVTPD2PI instruction..................... 194, 266
CVTPD2PS instruction 192
CVTPI2PD instruction..................... 167, 250
CVTPI2PS instruction 166, 250
CVTPS2DQ instruction............................ 193
CVTPS2PD instruction 192
CVTPS2PI instruction 194, 266
CVTSD2SI instruction 195
CVTSD2SS instruction 192
CVTSI2SD instruction 167
CVTSI2SS instruction.............................. 167
CVTSS2SD instruction 192
CVTSS2SI instruction.............................. 195
CVTTPD2DQ instruction......................... 193
CVTTPD2PI instruction 194, 266
CVTTPS2DQ instruction 193
CVTTPS2PI instruction 194, 266
CVTTSD2SI instruction........................... 195
CVTTSS2SI instruction 195
CWD instruction... 54
CWDE instruction 54
CX register.. 29, 30

D
DAA instruction 56, 83
DAS instruction 56, 83
data conversion instructions 54, 166, 192,

250, 266, 315
data reordering instructions ... 168, 195, 251
data transfer instructions. 49, 162, 187, 248,

315
data types

128-bit media ... 145

Index 355

24592—Rev. 3.08—April 2003 AMD64 Technology

128-bit media floating-point 156
64-bit media.. 238
general-purpose 41
mismatched .. 223
x87... 298, 306

DAZ bit .. 143
DE bit......................... 142, 143, 214, 289, 338
DEC instruction 61, 84
decimal adjust instructions 56
decrement.. 61
default address size 21
default operand size 33
denormalized numbers..................... 154, 304
denormalized-operand exception (DE) . 214,

338
dependencies .. 125
DF bit ... 40
DH register.. 29, 30
DI register ... 29, 30
DIL register ... 30
direct far jump...................................... 70, 73
direct referencing xxii
direction flag... 40
displacements xxii, 20, 82
DIV instruction ... 60
division .. 60
DIVPD instruction.................................... 200
DIVPS instruction..................................... 200
DIVSD instruction 200
DIVSS instruction..................................... 200
DL register .. 29, 30
DM bit .. 143, 292
dot product .. 136, 234
double quadword xxiii
double-extended-precision format 301
double-precision format................... 151, 301
doubleword.. xxii
DX register .. 29, 30

E
EAX register ... 29, 30
eAX–eSP register.................................. xxviii
EBP register .. 29, 30
EBX register.. 29, 30
ECX register.. 29, 30
EDI register... 29, 30
EDX register ... 29, 30
effective address................................... 18, 58
effective address size xxiii
effective operand size xxiii, 45
EFLAGS register................................... 29, 37
eFLAGS register xxix

EIP register... 25
eIP register .. xxix
element .. xxiii
EM bit.. 297
EMMS instruction 247, 278
empty... 277, 294
emulation (EM) bit 297
endian byte-ordering xxxi, 16, 57
ENTER instruction 52
environment

x87 .. 296, 331
ES bit... 290
ESI register... 29, 30
ESP register.. 29, 30
exception status (ES) bit 290
exceptions .. xxiii, 104

#MF causes 276, 336
#XF causes ... 211
128-bit media ... 209
64-bit media ... 274
denormalized-operand (DE)......... 214, 338
general-purpose..................................... 104
inexact-result 215, 339
invalid-operation (IE) 213, 337
masked responses.......................... 218, 342
masking .. 218, 342
overflow (OE)................................. 214, 339
post-computation........................... 216, 340
precision (PE) 215, 339
pre-computation 216, 340
priority ... 216, 340
SIMD floating-point causes 211
stack fault (SF) 339
underflow (UE).............................. 215, 339
unmasked responses 346
x87 .. 335
zero-divide (ZE)............................. 214, 339

exit media state.. 247
explicit integer bit 300
exponent xxi, 151, 157, 300, 308
extended functions 91
external interrupts................................... 105
extract instructions 171, 253, 318

F
F2XM1 instruction 324
FABS instruction 322
FADD instruction 319
FADDP instruction................................... 319
far calls.. 97
far jumps... 95
far returns ... 100

356 Index

AMD64 Technology 24592—Rev. 3.08—April 2003

fault.. 105
FBLD instruction 316
FBSTP instruction 316
FCMOVcc instructions 317
FCOM instruction..................................... 325
FCOMI instruction.................................... 325
FCOMIP instruction 325
FCOMP instruction................................... 325
FCOMPP instruction 325
FCOS instruction 323
FCW register ... 296
FDECSTP instruction............................... 328
FDIV instruction....................................... 321
FDIVP instruction 321
FDIVR instruction.................................... 321
FDIVRP instruction.................................. 321
feature detection .. 90
FEMMS instruction 247, 278
FERR# output signal................................ 347
FFREE instruction 329
FICOM instruction.................................... 327
FICOMP instruction 327
FIDIV instruction 321
FIMUL instruction.................................... 321
FINCSTP instruction................................ 328
FINIT instruction...................................... 329
FIST instruction.. 316
FISTP instruction 316
FISUB instruction..................................... 320
flags instructions .. 75
FLAGS register 29, 37
FLD instruction... 315
FLD1 instruction....................................... 318
FLDL2E instruction.................................. 318
FLDL2T instruction.................................. 318
FLDLG2 instruction 318
FLDLN2 instruction 318
FLDPI instruction..................................... 318
FLDZ instruction 318
floating-point data types

128-bit media.. 150
3DNow! ™... 243
64-bit media.. 243
x87... 299

flush ... xxiii
flush-to-zero (FZ) bit 144
FMUL instruction..................................... 320
FMULP instruction................................... 320
FNINIT instruction................................... 329
FNOP instruction...................................... 329
FNSAVE instruction 264, 265, 279, 332

FPATAN instruction................................. 323
FPR0–FPR7 registers............................... 286
FPREM instruction 322
FPREM1 instruction 323
FPTAN instruction 323
FPU control word 291
FPU status word 287
FRNDINT instruction 322
FRSTOR instruction 265, 279, 332
FS register .. 20
FSAVE instruction 264, 265, 279, 332
FSCALE instruction................................. 324
FSIN instruction....................................... 323
FSINCOS instruction 323
FST instruction... 315
FSTP instruction 316
FSUB instruction...................................... 320
FSUBP instruction 320
FSUBR instruction................................... 320
FSUBRP instruction 320
FSW register... 297
FTST instruction 327
FTW register... 297
FUCOMx instructions.............................. 326
full ... 277, 294
FXAM instruction 327
FXCH instruction..................................... 318
FXRSTOR instruction 186, 265, 279, 332
FXSAVE instruction 186, 265, 279, 332
FXTRACT instruction.............................. 318
FYL2X instruction 324
FYL2XP1 instruction............................... 324
FZ bit... 144

G
general-purpose programming.................. 27
general-purpose registers (GPRs)............. 27
GPR registers.. 27
GS register .. 20

H
hidden integer bit 151, 153, 300, 304

I
I/O .. 109

address space... 110
addresses.. 77, 110
instructions .. 76
memory-mapped.................................... 111
ports.................................. 77, 110, 147, 240
privilege level .. 112

IDIV instruction ... 60
IE bit.................................. 142, 213, 289, 337

Index 357

24592—Rev. 3.08—April 2003 AMD64 Technology

IEEE 754 Standard 143, 152, 283, 299
IGN.. xxiv
IGNNE# input signal 348
IM bit ... 143, 292
immediate operands....................... 20, 46, 82
implied integer bit............................ 151, 300
IMUL instruction.. 60
IN instruction.. 77
INC instruction 61, 84
increment .. 61
indefinite value

floating-point.................................. 157, 309
integer... 157, 309
packed-decimal 309

indirect ... xxiv
inexact-result exception... 143, 215, 289, 339
infinity ... 155, 305
infinity bit (Y)... 293
initialization

MSCSR register 141
x87 control word 291
XMM registers.. 140

inner product 136, 234
input/output (I/O) 109
INS instruction.. 77
INSB instruction ... 77
INSD instruction... 77
insert instructions............................. 171, 253
instruction pointer...................................... 24
instruction prefixes

128-bit media.. 208
64-bit media.. 272
general-purpose 85
x87... 333

instruction set ... 4
instruction-relative address 19
instructions

128-bit media.................................. 127, 187
64-bit media.................................... 245, 265
floating-point.......... 130, 187, 236, 265, 283
general-purpose 48
I/O.. 117
invalid in 64-bit mode.............................. 83
locked.. 117
memory ordering 115
prefixes 85, 208, 272, 333
serializing ... 116
x87... 313

INSW instruction .. 77
INT instruction.. 74
integer bit.......................... 151, 153, 300, 304

integer data types
128-bit media ... 148
64-bit media ... 241
general-purpose....................................... 41
x87 .. 302

interleave instructions..................... 196, 252
interrupt vector.. 105
interrupts and exceptions 74, 104
INTO instruction 74, 83
invalid-operation exception (IE)..... 213, 337
IOPL .. 112
IP register ... 25
IP-relative addressing 19, 22
IRET instruction .. 74
IRETD instruction...................................... 74
IRETQ instruction...................................... 74

J
J bit.. 151, 300
Jcc instructions 70, 95
JMP instruction.................................... 69, 83

L
LAHF instruction 76, 83
last data pointer 296
last instruction pointer............................ 295
last opcode .. 296
LDMXCSR instruction............................. 187
LDS instruction 58, 83
LEA instruction.. 58
LEAVE instruction..................................... 52
legacy mode ... xxiv, 9
legacy x86 .. xxiv
LES instruction 58, 83
LFENCE instruction 79
LFS instruction... 58
LGS instruction .. 58
limiting.. 149
linear address 13, 15
LOCK prefix ... 88
LODS instruction 69
LODSB instruction 69
LODSD instruction..................................... 69
LODSQ instruction..................................... 69
LODSW instruction.................................... 69
logarithmic functions............................... 324
logarithms ... 318
logical instructions............. 67, 185, 206, 263
logical shift ... 63
long mode... xxiv, 7
LOOPcc instructions 72
LSB .. xxv
lsb .. xxv

358 Index

AMD64 Technology 24592—Rev. 3.08—April 2003

LSS instruction ... 58

M
mask... xxv, 143, 292
masked responses 218, 342
MASKMOVDQU instruction............ 163, 249
matrix operations 135, 233
MAXPD instruction.................................. 204
MAXPS instruction................................... 204
MAXSD instruction 204
MAXSS instruction................................... 204
MBZ.. xxv
memory

addressing .. 16
hierarchy... 117
management....................................... 14, 79
model .. 11
optimization ... 113
ordering .. 113
physical... 13
segmented .. 12
virtual ... 11
weakly ordered....................................... 112

memory management instructions 79
memory-mapped I/O 76, 111
MFENCE instruction.................................. 79
MINPD instruction 204
MINPS instruction.................................... 204
MINSD instruction.................................... 204
MINSS instruction 204
MMX registers .. 237
MMX™ instructions 229
modes

16-bit .. xxi
32-bit .. xxi
64-bit .. xxi, 8
compatibility xxii, 9
legacy ... xxiv, 9
long... xxiv, 7
mode switches .. 34
operating .. 3, 7
protected xxvi, 9, 16, 93
real ... xxvi
real mode.. 10, 16
virtual-8086 xxviii, 9, 16

moffset... xxv
MOV instruction ... 49
MOV segReg instruction 58
MOVAPD instruction................................ 188
MOVAPS instruction 188
MOVD instruction....................... 49, 162, 248
MOVDQ2Q instruction 162, 248

MOVDQA instruction 162
MOVDQU instruction 162
MOVHLPS instruction............................. 188
MOVHPD instruction............................... 188
MOVHPS instruction 188
MOVLHPS instruction............................. 188
MOVLPD instruction 188
MOVLPS instruction................................ 188
MOVMSKPD instruction 55, 191
MOVMSKPS instruction.................... 55, 191
MOVNTDQ instruction 163, 249
MOVNTI instruction 49
MOVNTPD instruction 191
MOVNTPS instruction 191
MOVNTQ instruction............................... 249
MOVQ instruction 162, 248
MOVQ2DQ instruction 162, 248
MOVS instruction....................................... 68
MOVSB instruction 68
MOVSD instruction............................ 68, 188
MOVSQ instruction.................................... 68
MOVSS instruction 188
MOVSW instruction 68
MOVSX instruction.................................... 49
MOVUPD instruction............................... 188
MOVUPS instruction 188
MOVZX instruction.................................... 49
MSB ... xxv
msb .. xxv
MSR.. xxix
MUL instruction... 60
MULPD instruction.................................. 199
MULPS instruction 199
MULSD instruction.................................. 199
MULSS instruction 199
multiplication ... 60
multiply-add...................................... 136, 233

N
NaN.. 155, 306
near branches ... 103
near calls... 97
near jumps .. 95
near returns .. 100
NEG instruction ... 59
NMI interrupt ... 106
non-temporal data.................................... 121
non-temporal moves 163, 191, 249
non-temporal stores 124, 225
NOP instruction.. 80
normalized numbers 153, 154, 303, 304
not a number (NaN) 155, 306

Index 359

24592—Rev. 3.08—April 2003 AMD64 Technology

NOT instruction .. 67
number encodings

128-bit media floating-point 156
x87... 306

number representation
128-media floating-point 153
64-bit media floating-point 243
x87 floating-point................................... 303

O
octword ... xxvi
OE bit................................. 143, 214, 289, 339
OF bit ... 40
offset ... xxvi
OM bit .. 143, 292
opcode.. 296
operand size 33, 44, 82, 84, 87, 125, 224, 280
operands

128-bit media.. 145
64-bit media.. 238
addressing .. 46
general-purpose 41
x87... 298

operating modes 3, 7
OR instruction... 67
ordered compare............................... 206, 326
ORPD instruction 207
ORPS instruction...................................... 207
OSXMMEXCPT bit................................... 212
OUT instruction.. 77
OUTS instruction.. 77
OUTSB instruction 77
OUTSD instruction..................................... 77
OUTSW instruction 77
overflow .. xxvi
overflow exception (OE) 214, 339
overflow flag.. 40

P
pack instructions 168, 251
packed....................................... xxvi, 129, 231
packed BCD digits 43
packed-decimal data type........................ 302
PACKSSDW instruction 168, 251
PACKSSWB instruction.................... 168, 251
PACKUSWB instruction................... 168, 251
PADDB instruction 174, 255
PADDD instruction........................... 174, 255
PADDQ instruction........................... 174, 255
PADDSB instruction 174, 256
PADDSW instruction........................ 174, 256
PADDUSB instruction 174
PADDUSW instruction............................. 174

PADDW instruction.......................... 174, 255
PAND instruction 185, 263
PANDN instruction 185, 263
parallel operations 128, 231
parameter passing.................................... 222
parity flag ... 39
partial remainder..................................... 322
PAVGB instruction 179, 259
PAVGUSB instruction 260
PAVGW instruction 179, 259
PC field ... 292, 311
PCMPEQB instruction 183, 262
PCMPEQD instruction..................... 183, 262
PCMPEQW instruction.................... 183, 262
PCMPGTB instruction 183, 262
PCMPGTD instruction..................... 183, 262
PCMPGTW instruction 183, 262
PC-relative addressing......................... 19, 22
PE bit................................. 143, 215, 289, 339
performance considerations

128-bit media ... 224
64-bit media ... 280
general-purpose..................................... 124
x87 .. 350

PEXTRW instruction 171, 253
PF bit... 39
PF2ID instruction..................................... 266
PF2IW instruction.................................... 266
PFACC instruction 268
PFADD instruction................................... 267
PFCMPEQ instruction 271
PFCMPGE instruction 271
PFCMPGT instruction 271
PFMAX instruction.................................. 271
PFMIN instruction 271
PFMUL instruction 268
PFNACC instruction 269
PFPNACC instruction 269
PFRCP instruction 270
PFRCPIT1 instruction 270
PFRCPIT2 instruction 270
PFRSQIT1 instruction 271
PFRSQRT instruction.............................. 270
PFSUB instruction 268
PFSUBR instruction 268
physical memory .. 13
Pi.. 318, 324
PI2FD instruction..................................... 250
PI2FW instruction.................................... 250
PINSRW instruction......................... 171, 253
PM bit.. 143, 292

360 Index

AMD64 Technology 24592—Rev. 3.08—April 2003

PMADDWD instruction.................... 178, 258
PMAXSW instruction....................... 185, 263
PMAXUB instruction 185, 263
PMINSW instruction 185, 263
PMINUB instruction......................... 185, 263
PMOVMSKB instruction 165, 250
PMULHRW instruction............................ 257
PMULHUW instruction 176, 257
PMULHW instruction 176, 257
PMULLW instruction 176, 257
PMULUDQ instruction 176, 258
pointers.. 22
POP instruction..................................... 52, 83
POP segReg instruction 58
POPA instruction 52, 83
POPAD instruction 52, 83
POPF instruction .. 75
POPFD instruction 75
POPFQ instruction 75
POR instruction 186, 264
post-computation exceptions........... 216, 340
precision control (PC) field 292, 311
precision exception (PE).................. 215, 339
pre-computation exceptions 216, 340
PREFETCH instruction 79, 123
prefetching 122, 125, 225
PREFETCHlevel instruction 79, 122
PREFETCHNTA instruction.................... 123
PREFETCHT0 instruction....................... 123
PREFETCHT1 instruction....................... 123
PREFETCHT2 instruction....................... 123
PREFETCHW instruction.................. 79, 123
prefixes

128-bit media.. 208
64-bit media.. 272
general-purpose 85
REX... 30
x87... 333

priority of exceptions 216, 340
privilege level 93, 108
procedure calls.. 96
procedure stack... 94
processor features 90
processor identification 79
processor vendor... 91
processor version .. 91
program order ... 113
programming model

128-bit media.. 127
64-bit media.. 229
general-purpose 27

x87 .. 283
protected mode xxvi, 9, 16
PSADBW instruction 180, 260
pseudo-denormalized numbers............... 305
pseudo-infinity ... 303
pseudo-NaN... 303
PSHUFD instruction................................ 172
PSHUFHW instruction 172
PSHUFLW instruction 172
PSHUFW instruction 254
PSLLD instruction 181, 260
PSLLDQ instruction................................. 181
PSLLQ instruction 181, 260
PSLLW instruction 181, 260
PSRAD instruction........................... 183, 261
PSRAW instruction 183, 261
PSRLD instruction 182, 261
PSRLDQ instruction 182
PSRLQ instruction 182, 261
PSRLW instruction........................... 182, 261
PSUBB instruction 175, 256
PSUBD instruction........................... 175, 256
PSUBQ instruction........................... 175, 256
PSUBSB instruction 175, 257
PSUBSW instruction........................ 175, 257
PSUBUSB instruction 175
PSUBUSW instruction............................. 175
PSUBW instruction 175, 256
PSWAPD instruction................................ 255
PUNPCKHBW instruction............... 169, 252
PUNPCKHDQ instruction 169
PUNPCKHQDQ instruction 169
PUNPCKHWD instruction 169
PUNPCKLBW instruction 169, 252
PUNPCKLDQ instruction................ 169, 252
PUNPCKLQDQ instruction..................... 169
PUNPCKLWD instruction 169, 252
PUSH instruction 52, 83
PUSHA instruction 52, 84
PUSHAD instruction 52, 84
PUSHF instruction..................................... 75
PUSHFD instruction.................................. 75
PUSHFQ instruction.................................. 75
PXOR instruction............................. 186, 264

Q
QNaN... 155, 306
quadword ... xxvi
quiet NaN (QNaN)............................ 155, 306

R
R8B–R15B registers 30
R8D–R15D registers................................... 30

Index 361

24592—Rev. 3.08—April 2003 AMD64 Technology

r8–r15.. xxix
R8–R15 registers... 30
R8W–R15W registers 30
range of values

128-bit media.. 151
64-bit media.................................... 241, 244
x87... 301

RAX register ... 30
rAX–rSP... xxx
RAZ... xxvi
RBP register .. 30
rBP register ... 23
RBX register.. 30
RC field 144, 292, 312
RCL instruction .. 62
RCPPS instruction.................................... 202
RCPSS instruction.................................... 202
RCR instruction.. 62
RCX register ... 30
RDI register... 30
RDX register ... 30
read order.. 114
real address mode. See real mode
real mode...................................... xxvi, 10, 16
real numbers 153, 303
reciprocal estimation........................ 202, 270
reciprocal square root 202, 270
register extensions 1, 3, 8
registers ... 3

128-bit media.. 139
64-bit media.. 237
eAX–eSP... xxviii
eFLAGS.. xxix
EIP... 25
eIP .. xxix
extensions... 1, 3
IP ... 25
MMX ... 237
r8–r15... xxix
rAX–rSP.. xxx
rFLAGS... xxx
RIP .. 25
rIP.. xxx, 25
segment... 20
x87 control word 291
x87 last data pointer.............................. 296
x87 last opcode....................................... 296
x87 last-instruction pointer 295
x87 physical.. 286
x87 stack ... 286
x87 status word 287

x87 tag word... 293
XMM... 139

relative ... xxvi
remainder ... 322
REP prefix .. 89
REPE prefix.. 89
repeat prefixes 89, 126
REPNE prefix... 89
REPNZ prefix ... 89
REPZ prefix.. 89
reset... 141
restoring state .. 349
RET instruction.................................... 74, 99
revision history... xvii
REX prefixes 8, 30, 89
RFLAGS register 30, 37
rFLAGS register xxx
RIP register .. 25, 30
rIP register.. xxx, 25
RIP-relative addressing xxvii, 22
ROL instruction.. 62
ROR instruction ... 62
rotate instructions...................................... 61
rounding

128-bit media 144, 158
64-bit media 243, 245
x87 .. 292, 312, 322

rounding control (RC) field..... 144, 292, 312
RSI register... 30
RSP register.. 30, 96
rSP register... 23
RSQRTPS instruction 202
RSQRTSS instruction 202

S
SAHF instruction 76, 84
SAL instruction .. 62
SAR instruction.. 62
saturation

128-bit media ... 149
64-bit media ... 242

saving state 186, 222, 264, 279, 349
SBB instruction... 59
scalar product................................... 136, 234
SCAS instruction.. 68
SCASB instruction 68
SCASD instruction 68
SCASQ instruction 68
SCASW instruction 68
scientific programming............................ 129
segment override.. 88
segment registers 20

362 Index

AMD64 Technology 24592—Rev. 3.08—April 2003

segmented memory 12
self-modifying code 121
semaphore instructions.............................. 78
set... xxvii
SETcc instructions...................................... 65
SF bit ... 40, 289, 339
SFENCE instruction................................... 79
shift instructions......................... 61, 181, 260
SHL instruction... 62
SHLD instruction.. 63
SHR instruction .. 63
SHRD instruction 63
shuffle instructions................... 172, 197, 254
SHUFPD instruction 197
SHUFPS instruction................................. 197
SI register .. 29, 30
sign............................. 148, 157, 241, 308, 322
sign extension ... 54
sign flag ... 40
sign masks ... 55
signaling NaN (SNaN) 155, 306
significand......................... 151, 157, 300, 308
SIL register.. 30
SIMD floating-point exceptions 211
SIMD operations 129, 231
single-instruction, multiple-data (SIMD) ... 5
single-precision format............. 151, 243, 300
SNaN .. 155, 306
software interrupts 74, 105
SP register ... 29, 30
spatial locality... 121
speculative execution............................... 114
SPL register... 30
SQRTPD instruction................................. 201
SQRTPS instruction 201
SQRTSD instruction 201
SQRTSS instruction.................................. 201
square root 201, 270, 323
SSE... xxvii
SSE instructions................................ 127, 229
SSE-2.. xxvii
SSE-2 instructions............................. 127, 229
ST(0)–ST(7) registers 286
stack ... 94, 222

address.. 20
allocation .. 126
frame... 23, 52
operand size ... 95
operations... 52
pointer .. 23, 94
x87 stack fault.. 339

x87 stack management 328
x87 stack overflow................................. 339
x87 stack underflow 339

stack fault (SF) exceptions...................... 339
standard functions 91
state saving 186, 222, 264, 279, 349
status word.. 287
STC instruction .. 75
STD instruction .. 75
STI instruction.. 76
sticky bits xxvii, 142, 288
STMXCSR instruction 187
STOS instruction .. 69
STOSB instruction...................................... 69
STOSD instruction 69
STOSQ instruction 69
STOSW instruction 69
streaming store......... 133, 163, 191, 225, 249
string address ... 20
string instructions 68, 77
strings.. 44
SUB instruction .. 59
SUBPD instruction................................... 199
SUBPS instruction 199
SUBSD instruction 199
SUBSS instruction.................................... 199
subtraction.. 59
sum of absolute differences 260
swap instructions...................................... 254
SYSCALL instruction 102
SYSECALL instruction.............................. 81
SYSENTER instruction 80, 84, 102
SYSEXIT instruction 80, 84, 102
SYSRET instruction........................... 81, 102
system call and return instructions.. 80, 102

T
tag bits... 276, 293
tag word... 293
task switch .. 99
task-state segment (TSS)........................... 99
temporal locality 121
TEST instruction .. 64
test instructions.................................. 64, 325
tiny numbers............. 154, 214, 215, 304, 338
TOP field... 286, 290
top-of-stack pointer (TOP)....... 276, 286, 290
transcendental instructions 323
trap .. 106
trigonometric functions........................... 323
TSS... xxvii

Index 363

24592—Rev. 3.08—April 2003 AMD64 Technology

U
UCOMISD instruction.............................. 205
UCOMISS instruction............................... 205
UE bit 143, 215, 289, 339
ulp .. 159, 313
UM bit.. 143, 292
underflow .. xxvii, 339
underflow exception (UE) 215, 339
unit in the last place (ulp) 159, 313
unmask .. 143, 292
unmasked responses......................... 221, 346
unnormal numbers 303
unordered compare 206, 326
unpack instructions 169, 196, 252
UNPCKHPD instruction 196
UNPCKHPS instruction........................... 196
UNPCKLPD instruction........................... 196
UNPCKLPS instruction............................ 196
unsupported number types...................... 303

V
vector ... xxviii, 105
vector operations 129, 231
virtual address 13, 15
virtual memory ... 11
virtual-8086 mode....................... xxviii, 9, 16

W
weakly ordered memory........................... 112
write buffers.. 119
write combining.. 115
write order... 115

X
x87 control word register 291
x87 environment 296, 331
x87 floating-point programming.............. 283
x87 status word register 287
x87 tag word register................................ 293
XADD instruction....................................... 78
XCHG instruction....................................... 78
XLAT instruction .. 55
XMM registers .. 139
XOR instruction.. 67
XORPD instruction................................... 207
XORPS instruction 207

Y
Y bit ... 293

Z
ZE bit 143, 214, 289, 339
zero... 154, 305
zero flag ... 40

zero-divide exception (ZE) 214, 339
zero-extension................................. 20, 33, 83
ZF bit... 40
ZM bit.. 143, 292

364 Index

AMD64 Technology 24592—Rev. 3.08—April 2003

	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Contact Information
	Organization
	Definitions
	Related Documents

	1 Overview of the AMD64 Architecture
	1.1 Introduction
	1.1.1 New Features
	1.1.2 Registers
	1.1.3 Instruction Set
	1.1.4 Media Instructions
	1.1.5 Floating-Point Instructions

	1.2 Modes of Operation
	1.2.1 Long Mode
	1.2.2 64-Bit Mode
	Register Extensions
	64-Bit Addresses and Operands
	RIP-Relative Data Addressing
	Opcodes

	1.2.3 Compatibility Mode
	1.2.4 Legacy Mode

	2 Memory Model
	2.1 Memory Organization
	2.1.1 Virtual Memory
	2.1.2 Segment Registers
	2.1.3 Physical Memory
	2.1.4 Memory Management
	Long-Mode Memory Management
	Legacy-Mode Memory Management

	2.2 Memory Addressing
	2.2.1 Byte Ordering
	2.2.2 64-bit Canonical Addresses
	2.2.3 Effective Addresses
	Long-Mode Zero-Extension of 16-Bit and 32-Bit Addresses
	Displacements and Immediates
	FS and GS as Base of Address Calculation

	2.2.4 Address-Size Prefix
	2.2.5 RIP-Relative Addressing
	Range of RIP-Relative Addressing
	Effect of Address-Size Prefix on RIP-relative Addressing
	Encoding

	2.3 Pointers
	2.3.1 Near and Far Pointers

	2.4 Stack Operation
	2.5 Instruction Pointer

	3 General-Purpose Programming
	3.1 Registers
	3.1.1 Legacy Registers
	3.1.2 64-Bit-Mode Registers
	Default Operand Size
	Byte Registers
	Zero-Extension of 32-Bit Results
	GPR High 32 Bits Across Mode Switches

	3.1.3 Implicit Uses of GPRs
	Arithmetic Operations
	Sign-Extensions
	Special MOVs
	String Operations
	I/O-Address-Space Operations.
	Table Translations
	Compares and Exchanges
	Decimal Arithmetic
	Shifts and Rotates
	Conditional Jumps
	Repeated String Operations
	Stack Operations
	CPUID Information

	3.1.4 Flags Register
	Carry Flag (CF)
	Parity Flag (PF)
	Auxiliary Carry Flag (AF)
	Zero Flag (ZF)
	Sign Flag (SF)
	Direction Flag (DF)
	Overflow Flag (OF)

	3.1.5 Instruction Pointer Register

	3.2 Operands
	3.2.1 Data Types
	Signed and Unsigned Integers
	Binary-Coded-Decimal (BCD) Digits
	Strings

	3.2.2 Operand Sizes and Overrides
	Default Operand Size
	Effective Operand Size
	Immediate Operand Size

	3.2.3 Operand Addressing
	Register Operands
	Memory Operands
	I/O Ports
	Immediate Operands

	3.2.4 Data Alignment

	3.3 Instruction Summary
	3.3.1 Syntax
	3.3.2 Data Transfer
	Move
	Conditional Move
	Stack Operations

	3.3.3 Data Conversion
	Sign Extension
	Extract Sign Mask
	Translate
	ASCII Adjust
	BCD Adjust
	Endian Conversion

	3.3.4 Load Segment Registers
	3.3.5 Load Effective Address
	3.3.6 Arithmetic
	Add and Subtract
	Multiply and Divide
	Increment and Decrement

	3.3.7 Rotate and Shift
	Rotate
	Shift

	3.3.8 Compare and Test
	Compare
	Test
	Bit Scan
	Bit Test
	Set Byte on Condition
	Bounds

	3.3.9 Logical
	3.3.10 String
	Compare Strings
	Scan String
	Move String
	Load String
	Store String

	3.3.11 Control Transfer
	Jump
	Conditional Jump
	Loop
	Call
	Return
	Interrupts and Exceptions

	3.3.12 Flags
	Push and Pop Flags
	Set and Clear Flags
	Load and Store Flags

	3.3.13 Input/Output
	General I/O
	String I/O

	3.3.14 Semaphores
	3.3.15 Processor Information
	3.3.16 Cache and Memory Management
	3.3.17 No Operation
	3.3.18 System Calls
	System Call and Return

	3.4 General Rules for Instructions in 64-Bit Mode
	3.4.1 Address Size
	3.4.2 Canonical Address Format
	3.4.3 Branch- Displacement Size
	3.4.4 Operand Size
	3.4.5 High 32 Bits
	3.4.6 Invalid and Reassigned Instructions
	3.4.7 Instructions with 64-Bit Default Operand Size

	3.5 Instruction Prefixes
	3.5.1 Legacy Prefixes
	Operand-Size and Address-Size Prefixes
	Segment Override Prefix
	Lock Prefix
	Repeat Prefixes

	3.5.2 REX Prefixes

	3.6 Feature Detection
	3.7 Control Transfers
	3.7.1 Overview
	3.7.2 Privilege Levels
	3.7.3 Procedure Stack
	Stack Alignment
	Stack Operand-Size in 64-Bit Mode

	3.7.4 Jumps
	3.7.5 Procedure Calls
	Near Call
	Far Call, Same Privilege
	Far Call, Greater Privilege
	Task Switch

	3.7.6 Returning from Procedures
	Near Return
	Far Return, Same Privilege
	Far Return, Less Privilege

	3.7.7 System Calls
	SYSCALL and SYSRET
	SYSENTER and SYSEXIT

	3.7.8 General Considerations for Branching
	3.7.9 Branching in 64- Bit Mode
	Near Branches in 64-Bit Mode
	Branches to 64-Bit Offsets

	3.7.10 Interrupts and Exceptions
	Interrupt to Same Privilege in Legacy Mode
	Interrupt to More Privilege or in Long Mode
	Interrupt Returns

	3.8 Input/Output
	3.8.1 I/O Addressing
	I/O-Address Space
	Memory-Mapped I/O

	3.8.2 I/O Ordering
	I/O-Address Space
	Memory-Mapped I/O

	3.8.3 Protected-Mode I/O
	I/O-Privilege Level

	3.9 Memory Optimization
	3.9.1 Accessing Memory
	Read Ordering
	Write Ordering

	3.9.2 Forcing Memory Order
	3.9.3 Caches
	Memory Hierarchy
	Write Buffering

	3.9.4 Cache Operation
	Cache Coherency and MOESI
	Self-Modifying Code

	3.9.5 Cache Pollution
	3.9.6 Cache-Control Instructions
	Cache Prefetching
	Non-Temporal Stores
	Removing Stale Cache Lines

	3.10 Performance Considerations
	3.10.1 Use Large Operand Sizes
	3.10.2 Use Short Instructions
	3.10.3 Align Data
	3.10.4 Avoid Branches
	3.10.5 Prefetch Data
	3.10.6 Keep Common Operands in Registers
	3.10.7 Avoid True Dependencies
	3.10.8 Avoid Store-to- Load Dependencies
	3.10.9 Optimize Stack Allocation
	3.10.10 Consider Repeat-Prefix Setup Time
	3.10.11 Replace GPR with Media Instructions
	3.10.12 Organize Data in Memory Blocks

	4 128-Bit Media and Scientific Programming
	4.1 Overview
	4.1.1 Origins
	4.1.2 Compatibility

	4.2 Capabilities
	4.2.1 Types of Applications
	4.2.2 Integer Vector Operations
	4.2.3 Floating-Point Vector Operations
	4.2.4 Data Conversion and Reordering
	4.2.5 Block Operations
	4.2.6 Matrix and Special Arithmetic Operations
	4.2.7 Branch Removal

	4.3 Registers
	4.3.1 XMM Registers
	4.3.2 MXCSR Register
	Invalid-Operation Exception (IE)
	Denormalized-Operand Exception (DE)
	Zero-Divide Exception (ZE)
	Overflow Exception (OE)
	Underflow Exception (UE)
	Precision Exception (PE)
	Denormals Are Zeros (DAZ)
	Exception Masks (PM, UM, OM, ZM, DM, IM)
	Floating-Point Rounding Control (RC)
	Flush-to-Zero for Masked Underflow (FZ)

	4.3.3 Other Data Registers
	4.3.4 rFLAGS Registers

	4.4 Operands
	4.4.1 Data Types
	4.4.2 Operand Sizes and Overrides
	4.4.3 Operand Addressing
	Register Operands
	Memory Operands
	Immediate Operands
	I/O Ports

	4.4.4 Data Alignment
	4.4.5 Integer Data Types
	Sign
	Range of Representable Values
	Saturation
	Other Fixed-Point Operands

	4.4.6 Floating-Point Data Types
	Floating-Point Data Types
	Compatibility with x87 Floating-Point Data Types

	4.4.7 Floating-Point Number Representation
	Normalized Numbers
	Denormalized (Tiny) Numbers
	Zero
	Infinity
	Not a Number (NaN)

	4.4.8 Floating-Point Number Encodings
	Supported Encodings
	Indefinite Values

	4.4.9 Floating-Point Rounding

	4.5 Instruction Summary—Integer Instructions
	4.5.1 Syntax
	Mnemonics

	4.5.2 Data Transfer
	Move
	Move Non-Temporal
	Move Mask

	4.5.3 Data Conversion
	Convert Integer to Floating-Point
	Convert MMX Integer to Floating-Point
	Convert GPR Integer to Floating-Point

	4.5.4 Data Reordering
	Pack with Saturation
	Unpack and Interleave
	Extract and Insert
	Shuffle

	4.5.5 Arithmetic
	Addition
	Subtraction
	Multiplication
	Multiply-Add
	Average
	Sum of Absolute Differences

	4.5.6 Shift
	Left Logical Shift
	Right Logical Shift
	Right Arithmetic Shift

	4.5.7 Compare
	Compare and Write Mask
	Compare and Write Minimum or Maximum

	4.5.8 Logical
	And
	Or
	Exclusive Or

	4.5.9 Save and Restore State
	Save and Restore 128-Bit, 64-Bit, and x87 State
	Save and Restore Control and Status

	4.6 Instruction Summary—Floating-Point Instructions
	4.6.1 Syntax
	4.6.2 Data Transfer
	Move
	Move Non-Temporal
	Move Mask

	4.6.3 Data Conversion
	Convert Floating-Point to Floating-Point
	Convert Floating-Point to XMM Integer
	Convert Floating-Point to MMX™ Integer
	Convert Floating-Point to GPR Integer

	4.6.4 Data Reordering
	Unpack and Interleave
	Shuffle

	4.6.5 Arithmetic
	Addition
	Subtraction
	Multiplication
	Division
	Square Root
	Reciprocal Square Root
	Reciprocal Estimation

	4.6.6 Compare
	Compare and Write Mask
	Compare and Write Minimum or Maximum
	Compare and Write rFLAGS

	4.6.7 Logical
	And
	Or
	Exclusive Or

	4.7 Instruction Effects on Flags
	4.8 Instruction Prefixes
	4.8.1 Supported Prefixes
	4.8.2 Special-Use and Reserved Prefixes
	4.8.3 Prefixes That Cause Exceptions

	4.9 Feature Detection
	4.10 Exceptions
	Types of Exceptions
	Relation to x87 Exceptions
	4.10.1 General- Purpose Exceptions
	Exceptions Generated
	Exceptions Not Generated

	4.10.2 SIMD Floating- Point Exception Causes
	Exception Vectors
	Exception Types and Flags
	Invalid-Operation Exception (IE)
	Denormalized-Operand Exception (DE)
	Zero-Divide Exception (ZE)
	Overflow Exception (OE)
	Underflow Exception (UE)
	Precision Exception (PE)

	4.10.3 SIMD Floating- Point Exception Priority
	4.10.4 SIMD Floating- Point Exception Masking
	Masked Responses
	Unmasked Responses
	Using NaNs in IE Diagnostic Exceptions

	4.11 Saving, Clearing, and Passing State
	4.11.1 Saving and Restoring State
	4.11.2 Parameter Passing
	4.11.3 Accessing Operands in MMX™ Registers

	4.12 Performance Considerations
	4.12.1 Use Small Operand Sizes
	4.12.2 Reorganize Data for Parallel Operations
	4.12.3 Remove Branches
	4.12.4 Use Streaming Stores
	4.12.5 Align Data
	4.12.6 Organize Data for Cacheability
	4.12.7 Prefetch Data
	4.12.8 Use 128-Bit Media Code for Moving Data
	4.12.9 Retain Intermediate Results in XMM Registers
	4.12.10 Replace GPR Code with 128-bit media Code.
	4.12.11 Replace x87 Code with 128-Bit Media Code

	5 64-Bit Media Programming
	5.1 Overview
	5.1.1 Origins
	5.1.2 Compatibility

	5.2 Capabilities
	5.2.1 Parallel Operations
	5.2.2 Data Conversion and Reordering
	5.2.3 Matrix Operations
	5.2.4 Saturation
	5.2.5 Branch Removal
	5.2.6 Floating-Point (3DNow!™) Vector Operations

	5.3 Registers
	5.3.1 MMX™ Registers
	5.3.2 Other Registers

	5.4 Operands
	5.4.1 Data Types
	5.4.2 Operand Sizes and Overrides
	5.4.3 Operand Addressing
	Register Operands
	Memory Operands
	Immediate Operands
	I/O Ports

	5.4.4 Data Alignment
	5.4.5 Integer Data Types
	Sign
	Maximum and Minimum Representable Values
	Saturation
	Rounding
	Other Fixed-Point Operands

	5.4.6 Floating-Point Data Types
	Single-Precision Format
	Range of Representable Values and Saturation
	Floating-Point Rounding
	No Support for Infinities, NaNs, and Denormals
	No Support for Floating-Point Exceptions

	5.5 Instruction Summary—Integer Instructions
	5.5.1 Syntax
	Mnemonics

	5.5.2 Exit Media State
	5.5.3 Data Transfer
	Move
	Move Non-Temporal
	Move Mask

	5.5.4 Data Conversion
	Convert Integer to Floating-Point

	5.5.5 Data Reordering
	Pack with Saturation
	Unpack and Interleave
	Extract and Insert
	Shuffle and Swap

	5.5.6 Arithmetic
	Addition
	Subtraction
	Multiplication
	Multiply-Add
	Average
	Sum of Absolute Differences

	5.5.7 Shift
	Left Logical Shift
	Right Logical Shift
	Right Arithmetic Shift

	5.5.8 Compare
	Compare and Write Mask
	Compare and Write Minimum or Maximum

	5.5.9 Logical
	And
	Or
	Exclusive Or

	5.5.10 Save and Restore State
	Save and Restore 64-Bit Media and x87 State
	Save and Restore 128-Bit, 64-Bit, and x87 State

	5.6 Instruction Summary—Floating-Point Instructions
	5.6.1 Syntax
	5.6.2 Data Conversion
	Convert Floating-Point to Integer

	5.6.3 Arithmetic
	Addition
	Subtraction
	Multiplication
	Division
	Accumulation
	Reciprocal Estimation
	Reciprocal Square Root

	5.6.4 Compare
	Compare and Write Mask
	Compare and Write Minimum or Maximum

	5.7 Instruction Effects on Flags
	5.8 Instruction Prefixes
	5.8.1 Supported Prefixes
	5.8.2 Special-Use and Reserved Prefixes
	5.8.3 Prefixes That Cause Exceptions

	5.9 Feature Detection
	5.10 Exceptions
	5.10.1 General- Purpose Exceptions
	Exceptions Generated
	Exceptions Not Generated

	5.10.2 x87 Floating- Point Exceptions (#MF)

	5.11 Actions Taken on Executing 64-Bit Media Instructions
	5.12 Mixing Media Code with x87 Code
	5.12.1 Mixing Code
	5.12.2 Clearing MMX™ State

	5.13 State-Saving
	5.13.1 Saving and Restoring State
	5.13.2 State-Saving Instructions
	FSAVE/FNSAVE and FRSTOR Instructions
	FXSAVE and FXRSTOR Instructions

	5.14 Performance Considerations
	5.14.1 Use Small Operand Sizes
	5.14.2 Reorganize Data for Parallel Operations
	5.14.3 Remove Branches
	5.14.4 Align Data
	5.14.5 Organize Data for Cacheability
	5.14.6 Prefetch Data
	5.14.7 Retain Intermediate Results in MMX Registers

	6 x87 Floating-Point Programming
	6.1 Overview
	6.1.1 Origins
	6.1.2 Compatibility

	6.2 Capabilities
	6.3 Registers
	6.3.1 x87 Data Registers
	Stack Organization
	Stack Pointer

	6.3.2 x87 Status Word Register
	Invalid-Operation Exception (IE)
	Denormalized-Operand Exception (DE)
	Zero-Divide Exception (ZE)
	Overflow Exception (OE)
	Underflow Exception (UE)
	Precision Exception (PE)
	Stack Fault (SF)
	Exception Status (ES)
	Top-of-Stack Pointer (TOP)
	Condition Codes (C3–C0)
	x87 Floating-Point Unit Busy (B)

	6.3.3 x87 Control Word Register
	Exception Masks (PM, UM, OM, ZM, DM, IM)
	Precision Control (PC)
	Rounding Control (RC)
	Infinity Bit (Y)

	6.3.4 x87 Tag Word Register
	6.3.5 Pointers and Opcode State
	Last x87 Instruction Pointer
	Last x87 Opcode
	Last x87 Data Pointer

	6.3.6 x87 Environment
	6.3.7 Floating-Point Emulation (CR0.EM)

	6.4 Operands
	6.4.1 Operand Addressing
	Memory Operands
	Register Operands

	6.4.2 Data Types
	Floating-Point Data Types
	Integer Data Type
	Packed-Decimal Data Type

	6.4.3 Number Representation
	Normalized Numbers
	Denormalized (Tiny) Numbers
	Pseudo-Denormalized Numbers
	Zero
	Infinity
	Not a Number (NaN)

	6.4.4 Number Encodings
	Supported Encodings
	Unsupported Encodings
	Indefinite Values

	6.4.5 Precision
	6.4.6 Rounding

	6.5 Instruction Summary
	6.5.1 Syntax
	Mnemonics

	6.5.2 Data Transfer and Conversion
	Load or Store Floating-Point
	Convert and Load or Store Integer
	Convert and Load or Store BCD
	Conditional Move
	Exchange
	Extract

	6.5.3 Load Constants
	Load 0, 1, or Pi
	Load Logarithm

	6.5.4 Arithmetic
	Addition
	Subtraction
	Multiplication
	Division
	Change Sign
	Round
	Partial Remainder
	Square Root

	6.5.5 Transcendental Functions
	Trigonometric Functions
	Logarithmic Functions
	Accuracy of Transcendental Results
	Argument Reduction Using Pi

	6.5.6 Compare and Test
	Floating-Point Ordered Compare
	Floating-Point Unordered Compare
	Integer Compare
	Test
	Classify

	6.5.7 Stack Management
	Stack Control
	Clear State

	6.5.8 No Operation
	6.5.9 Control
	Initialize
	Wait for Exceptions
	Clear Exceptions
	Save and Restore x87 Control Word
	Save x87 Status Word
	Save and Restore x87 Environment
	Save and Restore x87 and 64-Bit Media State
	Save and Restore x87, 128-Bit, and 64-Bit State

	6.6 Instruction Effects on rFLAGS
	6.7 Instruction Prefixes
	Supported Prefixes
	Ignored Prefixes
	Prefixes That Cause Exceptions

	6.8 Feature Detection
	6.9 Exceptions
	Types of Exceptions
	Relation to 128-Bit Media Exceptions
	6.9.1 General-Purpose Exceptions
	Exceptions Generated
	Exceptions Not Generated

	6.9.2 x87 Floating- Point Exception Causes
	#MF Exception Types and Flags
	Invalid-Operation Exception (IE)
	Denormalized-Operand Exception (DE)
	Zero-Divide Exception (ZE)
	Overflow Exception (OE)
	Underflow Exception (UE)
	Precision Exception (PE)
	Stack Fault (SF)

	6.9.3 x87 Floating- Point Exception Priority
	6.9.4 x87 Floating- Point Exception Masking
	Masked Responses
	Unmasked Responses
	FERR# and IGNNE# Signals
	Using NaNs in IE Diagnostic Exceptions

	6.10 State-Saving
	6.10.1 Saving and Restoring State
	6.10.2 State-Saving Instructions
	FSAVE/FNSAVE and FRSTOR Instructions
	FXSAVE and FXRSTOR Instructions

	6.11 Performance Considerations
	6.11.1 Replace x87 Code with 128-Bit Media Code
	6.11.2 Use FCOMI- FCMOVx Branching
	6.11.3 Use FSINCOS Instead of FSIN and FCOS
	6.11.4 Break Up Dependency Chains

	Index

