
Application Note 129
Cyrix III CPU SMM Design Guide

Cyrix Processors

REVISION HISTORY

Date Version Revision

5/19/99 1.0 Updated for Cyrix III bus protocol

4/9/99 0.21 Typos

4/8/99 0.2 Removed SMAC, MMAC and SMINT

4/6/99 0.1 Initial Version C:\documentation\joshua\appnotes\cIII_smm.fm

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 3

Table of Contents

1.0 Introduction
1.1 Scope .4
1.2 Cyrix SMM Features .5
1.3 Typical SMM Routines .5

2.0 SMM Implementation
2.1 SMM Pins .6
2.2 Cyrix and SL SMM Modes .7
2.3 Configuration Control Registers and SMM .8
2.4 Address regions in Memory .14

3.0 System Management Mode
3.1 Overall Operation .18
3.2 SMM Memory Space .20
3.3 SMM Memory Space Header .21
3.4 SMM Instructions .25
3.5 SMM Operation .27
3.6 SL and Cyrix SMM Operating Modes .28

4.0 SMM Programming Details
4.1 Initializing SMM .30
4.2 SMM Handler Entry State .31
4.3 Maintaining the CPU State .34
4.4 Initializing the SMM Environment. .37
4.5 I/O Restart .38
4.6 I/O Port Shadowing and Emulation .39
4.7 Resume to HLT Instruction .40
4.8 Exiting the SMI Handler .40
4.9 Testing and Debugging SMM Code .41

Appendices
A. Assembler Macros for Cyrix Instructions .42
B. Differences in Cyrix Processors .46

 4 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

APPLICATION NOTE 129 Cyrix III SMM Design Guide

1 Introduction

1.1 Scope

This Programmer's Guide is provided to assist programmers in the creation of soft-
ware that uses the Cyrix™ System Management Mode (SMM) for the Cyrix III
processor. Unless stated otherwise, all information in this manual pertains to the
Cyrix III CPUs.

SMM provides the system designer with another operating mode for the CPU.
Within this document, the standard x86 operating modes (real, V86, and protected)
are referred to as normal mode. Normal-mode operation can be interrupted by an
SMI interrupt that places the processor in System Management Mode (SMM).

SMM can be used to enhance the functionality of the system by providing power
management, register shadowing, peripheral emulation and other system-level
functions. SMM can be totally transparent to all software, including protected-
mode operating systems.

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 5

Cyrix SMM Features

1.2 Cyrix SMM Features

The Cyrix microprocessors provide a register that allows programming of the location and size of the SMM
memory region. The CPUs automatically saves minimal register information, reducing the time needed for SMM
entry and exit. The SMM implementation by Cyrix provides unique instructions that save additional segment
registers. The x86 MOV instruction can be used to save the general purpose registers.

The Cyrix III CPU simplifies I/O trapping by providing I/O type identification and instruction restarting. This
CPU also makes available to the SMM routine information that can simplify peripheral register shadowing.

Cyrix provides a method (setting the SMI_LOCK bit) that prevents the SMM configuration registers from being
accessed. Locking the SMM configuration registers enhances system security from programming errors and
viruses, but at the expense of making debugging more difficult.

1.3 Typical SMM Routines

Upon entry to SMM, the CPU registers that will be used by the SMM routine must be saved. The SMM envi-
ronment is initialized by setting up an Interrupt Descriptor Table, initializing segment limits, and setting up a
stack. If entry to SMM results from an I/O bus cycle, the SMM routine can monitor peripheral activity, shadow
read-only ports, and emulate peripherals in software. If a peripheral is powered down, the SMM routine can
power it up and reissue the I/O instruction. If the SMM routine is not the result of an I/O bus cycle, non-trap SMI
functions can be serviced. If an HLT instruction is interrupted by an SMI then the HLT instruction should be
restarted when the SMM routine is completed. Before normal operation is resumed, any CPU registers modified
during the SMM routine must be restored to their previous state.

6 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

SMM Pins

2 SMM Implementation

This chapter describes the Cyrix SMM System interface. SMM operations for Cyrix microprocessors are similar
to related operations performed by other x86 microprocessors. The Cyrix III supports two SMM modes—Cyrix
SMM mode and SL SMM mode.

The CPU defaults to SL SMM mode. Setting SMM_MODE bit will cause the CPU to operate in Cyrix SMM
mode. SMM_MODE is controlled by CCR6 bit 0.

2.1 SMM Pins

In either SMM mode, there are three functions that need to occur:

1. Signaling when an SMI interrupt should occur,
2. Informing the chipset that the CPU is in SMM mode,
3. Informing the chipset whether the bus cycle is intended for SMM memory

or system memory.

The SMI# pin and the SMM acknowledge bus cycle are used to implement SMM and cover all of these func-
tions.

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 7

Cyrix SMM Mode and SL SMM Mode.

2.2 Cyrix SMM Mode and SL SMM Mode.

The CPU defaults to SL SMM mode. The only difference between SL mode and Cyrix mode is that in Cyrix
Mode, SMM memory accesses can be cached. This support is not built into SL mode, however Cyrix III can run
in SL mode for compatibility.

2.2.1 SMM Enter and Exit

An SMM routine is commenced by asserting the SMI# input pin. When the cpu recognizes the SMI# input, an
SMM acknowledge cycle is generated on the bus.

To enter Cyrix SMM mode, the SMI# pin must be asserted during an interruptible point in program execution.
Once the CPU recognizes the active SMI# input, an SMI acknowledge transaction is generated on the system bus
to inform the chipset that the processor is now in SMM mode.

The SMM routine is terminated with an SMM-specific resume instruction (RSM). When the RSM instruction is
executed, an SMM acknowledge cycle is again generated on the system bus, to inform the chipset that the
processor is no longer in SMM mode.

SMI# is an edge-triggered input pin sampled by two rising edges of CLK. SMI# must meet certain setup and hold
times to be detected on a specific clock edge. To accomplish I/O trapping, the SMI# signal should be asserted
two clocks before the RESPONSE phase for that I/O cycle. Once the CPU recognizes the active SMI# input, the
CPU drives the SMM_MEM bit (EX4#) active for the duration of the SMM routine. The SMM routine is termi-
nated with an SMM-specific resume instruction (RSM).

When the RSM instruction is executed, the CPU negates the SMM_MEM bit after the last bus cycle to SMM
memory.

2.2.2 SMM_MEM - SMM Memory Access Signal

To signal to the chipset that memory accesses are SMM space accesses, the cpu asserts the EX4# bit in request
packet B. This bit is called SMM_MEM. This is done in the request phase of the SMI acknowledge special cycle.
EX4# is the multiplexed signal on address bit seven in the second packet of the request phase. This bit is the only
way the chipset can know if SMM memory is being accessed, and main memory cannot be accessed while
SMM_MEM is set.

8 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

Configuration Control Registers and SMM

2.3 Configuration Control Registers and SMM

This section describes fields in the Configuration Registers that configure SMM operations. Fields not related to
SMM are not described in this manual and are shown as blank fields in the configuration register tables. For a
complete description of the configuration registers, refer to the appropriate data book.

All configuration-register bits related to SMM and power management are cleared to 0 when RESET is asserted.
Asserting INIT# does not affect the configuration registers.

These registers are accessed by writing the register index to I/O port 22h. I/O port 23h is used for data transfer.
Each data transfer to I/O port 23h must be preceded by an I/O port 22h register-index selection, otherwise the
port 23h access will be directed off chip.

Before accessing these registers, all interrupts must be disabled. A problem could occur if an interrupt occurs
after writing to port 22h but before accessing port 23h. The interrupt service routine might access port 22h or
23h. After returning from the interrupt, the access to port 23h would be redirected to another index or possibly
off chip.

An SMI interrupt cannot interrupt accesses to the configuration registers. After writing an index to port 22h in
the CPU configuration space, SMI interrupts are disabled until the corresponding access to port 23h is complete.

The portions of the configuration registers that apply to SMM and power management are described in the fol-
lowing pages.

Undefined bits in the configuration registers are reserved.

2.3.3 I/O Port 22h and 23h Access

Access to internal registers (except PCI) is accomplished via an 8-bit index/data I/O pair. Each data transfer, I/O
Port 23h, must be preceded by a valid index write, I/O Port 22h. All reads from I/O Port 22h produce external I/
O cycles; therefore, the index cannot be read. Accesses that hit within the on-chip configuration registers do not
generate external I/O cycles.

To access the above registers, the programmer uses the Port 22h (index) and Port 23h (data). The access is atomic
when an SMI is involved, but is not atomic when any of the following three conditions are presented: 1) INT, 2)
NMI 3) INIT#. Proper steps must be taken to inhibit these three conditions if a pure atomic operation is to be
achieved. An example of this to prevent an INT sequence would be to use a PUSHF, CLI instruction pair before
doing the Port 22h/23h access with a POPF after the access has been done.

After reset, only configuration registers with indices C0-CFh and FC-FFh are accessible. This prevents potential
conflicts with other devices that use Ports 22h and 23h to access their registers.

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 9

Configuration Control Registers and SMM

2.3.4 Map Enable (MAPEN)

The purpose of MAPEN is to increase the number of registers that can be accessed via Ports 22h/23h. The
MAPEN fields can be thought of as a paging mechanism to the complete register set allowing multiple registers
to share the same index value but providing different functionality. MAPEN must be set correctly to gain access
to the register that is to be modified. MAPEN is located in CCR3[7:4]. It is strongly recommended that the pro-
grammer use the following sequence:

1) Read CCR3.
2) Save CCR3.
3) Modify MAPEN at CCR3[7-4].
4) Access Register via Port 22h/23h access.
5) Restore CCR3 to control the MAPEN field.

There are 256 possible registers available for each MAPEN setting, for a total of 4096.

Note: Registers and MAPEN values not mentioned in this section are either reserved, or not used for SMM. See
Cyrix III databook for complete register information.

2.3.5 Cyrix Configuration Control Registers (CCR0-CCR7)

The Configuration Control Registers (CCR0-CCR7) are used to assign non-cached memory areas, set up SMM,
provide CPU identification information and control various features such as cache write policy and bus locking
control.

CCR1, CCR3, and CCR6 may be written at any time unless the SMI_LOCK (CCR3[0]) is set or an SMI is active.

The following register bits must be set accordingly for SMM operation.

1. Configuration Control Register 1 (CCR1) Bit 3: SM3 = 1
2. Configuration Control Register 3 (CCR3) Bit 0: SMI_LOCK = 0 or 1
3. Configuration Control Register 6 (CCR6) Bit 6: Nested SMI_Enable = 1 or 0
4. Configuration Control Register 6 (CCR6) Bit 0: SMM_MODE = 1 or 0
5. Address Region Register 3 (ARR3) All Bits: SMM Memory Base Address and Size
6. Region Control Register 3 (RCR3) All Bits: SMM Memory Properties

Following are the detailed instructions to program each register bit.

10 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

Configuration Control Registers and SMM

2.3.6 Configuration Control Register 1 (CCR1)

Index: C1h
Default Value: 20h
Access: Read/Write
MAPEN: xxxxh

7 6 5 4 3 2 1 0

SM3 Reserved Reserved Reserved Reserved Reserved Reserved Reserved

Bit Name Description

7 SM3 SMM Address Space Address Region 3:

1 = Address Region 3 is designated as SMM address space.
0 = Address Region 3 is system memory.

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 11

Configuration Control Registers and SMM

2.3.7 Configuration Control Register 3 (CCR3)

Index: C3h
Default Value: 00h
Access: Read/Write
MAPEN: xxxxh

7 6 5 4 3 2 1 0

MAPEN[3-0] Reserved Reserved NMI_EN SMI_LOCK

Bit Name Description

7:4 MAPEN[3-
0]

Map Enable Bits

These four bits enable different combinations of configuration registers.

0001 = All configuration registers are accessible except L2 and BIU.
0000 = Only configuration register with indexes: C0 - CFh, FEh, and FFh are
accessible

1 NMI_EN NMI Enable:

1 = NMI interrupt is recognized while servicing an SMI interrupt.
 NMI_EN should be set only while in SMM after the appropriate SMI interrupt
 service routine has been set up.
0 = NMI disabled while servicing SMI.

0 SMI_LOCK SMI Lock:

1 = The following SMM configuration bits can only be modified while
 in an SMI service routine:

CCR1: SM3
CCR3: NMI_EN
CCR6: SMM_MODE
ARR3: Starting address and block size.

Once set, the features locked by SMI_LOCK cannot be unlocked until the RESET
pin is asserted.

12 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

Configuration Control Registers and SMM

2.3.8 Configuration Control Register 5 (CCR5)

Index: E9h
Default Value: 00h
Access: Read/Write
MAPEN: 0001

7 6 5 4 3 2 1 0

Reserved ARREN Reserved

Bit Name Description

5 ARREN Address Region Registers Enable: Enables address decoding of ARR0-ARRD.

1 = Enables all ARR registers.
0 = Disables all ARR registers. If SM3 is set ARR3 is enabled regardless of the
 setting of ARREN. (SM3 is bit 7 in CCR1.)

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 13

Configuration Control Registers and SMM

2.3.9 Configuration Control Register 6 (CCR6)

Index: EAh:
Default Value: 40h
Access: Read/Write
MAPEN: 0001

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved SMM_MODE

Bit Name Description

0 SMM_MOD
E

SMM Mode:

1 = Enable Cyrix-enhanced SMM mode.
0 = Disable Cyrix-enhanced SMM mode.

14 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

Address Regions in Memory

2.4 Address Regions in Memory

Selected regions of main memory space can be assigned different attributes. These regions are called address
regions. Each address region is defined by a pair of registers—an Address Region Register (ARRn) and a Region
Control Register (RCRn).

The ARRn registers are used to specify the location and size for these regions.

The RCRn registers are used to specify the attributes for these regions.

The number (n) is a hexadecimal number that designates the region number.

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 15

Address Regions in Memory

2.4.10 Address Region Register 3 (ARR3)

Index: C4-C6h
Default Value: 00h
Access: Read/Write
MAPEN: xxxx.

23 16 15 8 7 4 3 0

MAIN MEMORY BASE ADDRESS SIZE

Bit Name Description
23-16 MAIN MEMORY

BASE ADDRESS
Starting address for the particular address region.
Memory address bits A[31-24] defined by ARRn bits 23 - 16
Memory address bits A[23-16] defined by ARRn bits 15 - 8
Memory address bits A[15-12] defined by ARRn bits 7 - 4

3-0 SIZE Size of the particular address region as defined by Table1, “. ARRn Address
Region Size Field Definitions,” on page16.

16 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

Address Regions in Memory

Address region 7 defines total system memory unless superseded by other address region definitions. The SIZE
field is defined in two different way as listed in Table 2-1. If the address region size field is zero, the address region
is disabled. After a reset, all ARR Registers are initialized to 00h. The base address of the ARR address region,
selected by the Base Address field, must be on a block size boundary. For example, a 128KB block is allowed to
have a starting address of 0KB, 128KB, 256KB, and so on. A 512KB block is allowed to have a starting address
of 0KB, 512KB, 1024KB, and so on. Address region 3 defines SMM space when enabled by CCR1 bit 7.

Table 2-1. ARRn Address Region Size Field Definitions

Size
Block Size

ARR0-ARR6 ARR7-ARRB ARRC-ARRD
00h Disable Disable Disable
01h 4 KB 256 KB 256KB
02h 8 KB 512 KB Reserved
03h 16 KB 1 MB
04h 32 KB 2 MB
05h 64 KB 4 MB
06h 128 KB 8 MB
07h 256 KB 16 MB
08h 512 KB 32 MB
09h 1 MB 64 MB
0Ah 2 MB 128 MB
0Bh 4 MB 256 MB
0Ch 8 MB 512 MB
0Dh 16 MB 1 GB
0Eh 32 MB 2 GB
0Fh 4 GB 4 GB

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 17

Address Regions in Memory

2.4.11 Region Control Registers

Region Control Register 3 defines SMM space.

Index: DFh
Default Value: 00h
Access: Read/Write
MAPEN: x00x

Only one bit of WP, WT, WG, or RCD may be set.

7 6 5 4 3 2 1 0

Reserved INV_RGN WP WT WG Reserved RCD

BIT
POSITION NAME DESCRIPTION

6 INV_RGN ARR0 Invert Region

1 = applies the controls specified in RCRn to all memory addresses outside the region
specified in ARR0.

5 WP Write-Protect

1 = enables write protect for address region n.
4 WT Write-Through

1 = defines the address region as write through instead of write-back. Any system
ROM that is allowed to be cached by the processor should be defined as write
through.

3 WG Write-Gathering
1 = enables write gathering for address region n.

With WG enabled, multiple byte, word, dword, or quad-word writes to sequential
addresses that would normally occur as individual cycles on the bus are collapsed, or
“gathered” within the processor and then completed as a single write cycle. WG
improves bus utilization and should be used on memory regions that are not sensitive
to gathering.

0 RCD Cache Disable (RCR0 - RCR6 only)

1 = defines the address region n as non-cacheable.

18 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

Overall Operation

3 System Management Mode

System Management Mode (SMM) is a distinct CPU mode that differs from normal CPU x86 operating modes
(real mode, V86 mode, and protected mode) and is most often used to perform power management.

The Cyrix III CPU is backward compatible with the SL-compatible SMM found on previous Cyrix microproces-
sors. The Cyrix III cpu does not support nesting of SMI’s found in previous Cyrix cpus. The Cyrix mode SMM
in the Cyrix III cpu does provide for cacheing of SMM memory.

3.1 Overall Operation

The overall operation of a SMM operation is shown on the next page. SMM is entered using the System Manage-
ment Interrupt (SMI) pin. SMI interrupts have higher priority than any other interrupt, including NMI interrupts.

Upon entering SMM mode, portions of the CPU state are automatically saved in the SMM address memory
space header. The CPU enters real mode and begins executing the SMI service routine in SMM address space.

Execution of a SMM routine starts at the base address in SMM memory address space. Since the SMM routines
reside in SMM memory space, SMM routines can be made totally transparent to all software, including
protected-mode operating systems.

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 19

Overall Operation

SMI Execution Flow Diagram

SMI Sampled Active

CPU State Stored in
SMM Address Header

CPU Enters Real Mode

Execution Begins at
SMM Space Base Address

RSM Instruction Restores
CPU State using Header

 Normal Execution Resumes

20 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

SMM Memory Space

3.2 SMM Memory Space

SMM memory must reside within the bounds of physical memory and not overlap with system memory. SMM
memory space, as illustrated on the next page, is defined by setting the SM3 bit in CCR1 and specifying the base
address and size of the SMM memory space in the ARR3 register.

The base address must be a multiple of the SMM memory space size. For example, a 32 KByte SMM memory
space must be located on a 32KByte address boundary. The memory space size can range from 4 KBytes to
4GBytes. SMM accesses ignore the state of the A20M# input pin and drive the A20 address bit to the unmasked
value.

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 21

SMM Memory Space Header

3.3 SMM Memory Space Header

The SMM Memory Space Header (shown in the figure below) is used to store the CPU state prior to starting an
SMM routine. The fields in this header are described on the next page. After the SMM routine has completed, the
header information is used to restore the original CPU state. The location of the SMM header is determined by
the SMM Header Address Register (SMHR).

EFLAGS

Reserved CS Selector

CS Descriptor(Bits 63-32)

CS Descriptor(Bits 31-0)

DR7

EFLAGS

CR0

Current IP

Next IP

Reserved CPL IS H S P I C

I/O Write Data Size I/O Write Address

 I/O Write Data

 ESI or EDI

31 0

 16 15

 22 21 16 15 13 4 3 2 1 0

4h

8h

Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

22 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

SMM Memory Space Header

SMM Memory Space Header

NAME DESCRIPTION SIZE

DR7 The contents of Debug Register 7. 4 Bytes

EFLAGS The contents of Extended Flags Register. 4 Bytes

CR0 The contents of Control Register 0. 4 Bytes

Current IP The address of the instruction executed prior to servicing SMI interrupt. 4 Bytes

Next IP The address of the next instruction that will be executed after exiting SMM mode. 4 Bytes

CS Selector Code segment register selector for the current code segment. 2 Bytes

CS Descriptor Code segment register descriptor for the current code segment. 8 Bytes

CPL Current privilege level for current code segment. 2 Bits

IS Internal SMI Indicator
If IS =1: current SMM is the result of an internal SMI event.
If IS =0: current SMM is the result of an external SMI event.

1 Bit

H SMI during CPU HALT state indicator
If H = 1: the processor was in a halt or shutdown prior to servicing the SMM inter-
rupt.

1 Bit

P REP INSx/OUTSx Indicator
If P = 1: current instruction has a REP prefix.
If P = 0: current instruction does not have a REP prefix.

 1 Bit

I IN, INSx, OUT, or OUTSx Indicator
If I = 1: if current instruction performed is an I/O WRITE.
If I = 0: if current instruction performed is an I/O READ.

1 Bit

C Code Segment writable Indicator
If C = 1: the current code segment is writable.
If C = 0: the current code segment is not writable.

1 Bit

I/O Data Size Indicates size of data for the trapped I/O write:
 01h = byte
 03h = word
 0Fh = dword

2 Bytes

I/O Write Address I/O Write Address
Processor port used for the trapped I/O write.

 2 Bytes

I/O Write Data I/O Write Data
Data associated with the trapped I/O write.

4 Bytes

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap.

4 Bytes

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 23

SMM Memory Space Header

3.3.1 Current and Next IP Pointers

Included in the header information are the Current and Next IP pointers. The Current IP points to the instruction
executing when the SMI was detected and the Next IP points to the instruction that will be executed after exiting
SMM.

Normally after an SMM routine is completed, the instruction flow begins at the Next IP address. However, if an
I/O trap has occurred, instruction flow should return to the Current IP to complete the I/O instruction.

If SMM has been entered due to an I/O trap for a REP INSx or REP OUTSx instruction, the Current IP and Next
IP fields contain the same address.

If an entry into SMM mode was caused by an I/O trap, the port address, data size and data value associated with
that I/O operation are stored in the SMM header. Note that these values are only valid for I/O operations. The I/O
data is not restored within the CPU when executing a RSM instruction.

Under these circumstances the I and P bits, as well as ESI/EDI field, contain valid information.

Also saved are the contents of debug register 7 (DR7), the extended flags register (EFLAGS), and control regis-
ter 0 (CR0).

24 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

SMM Memory Space Header

3.3.2 SMM Header Address Pointer

The SMM Header Address Pointer Register (SMHR) (shown on the next page) contains the 32-bit SMM Header
pointer. The SMHR address is dword aligned, so the two least significant bits are ignored.

The SMHR valid bit (bit 0) is cleared with every write to ARR3 and during a hardware RESET. Upon entry to
SMM, the SMHR valid bit is examined before the CPU state is saved into the SMM memory space header. When
the valid bit is reset, the SMM header pointer will be calculated (ARR3 base field + ARR3 size field) and loaded
into the SMHR and the valid bit will be set.

If the desired SMM header location is different than the top of SMM memory space then the SMHR register
must be loaded with a new value and valid bit from within the SMI routine before nesting is enabled.

The SMM memory space header can be relocated using the new RDSHR and WRSHR instructions.

SMHR Register

31 2 1 0

SMHR Res V

SMHR Register Bits

BIT
POSITION

DESCRPTION

31 - 2 SMHR header pointer address.

1 Reserved

0 Valid Bit

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 25

SMM Instructions

3.4 SMM Instructions

After entering the SMI service routine, the MOV, SVDC, SVLDT and SVTS instructions, shown in the table
below, can be used to save the complete CPU state information. If the SMI service routine modifies more than
what is automatically saved or forces the CPU to power down, the complete CPU state information must be
saved. Since the CPU is a static device, its internal state is retained when the input clock is stopped. Therefore, an
entire CPU state save is not necessary prior to stopping the input clock.

SMM Instruction Set

INSTRUCTION OPCODE FORMAT DESCRIPTION

 SVDC 0F 78 [mod sreg3 r/m] SVDC mem80, sreg3 Save Segment Register and Descriptor
Saves reg (DS, ES, FS, GS, or SS) to mem80.

 RSDC 0F 79 [mod sreg3 r/m] RSDC sreg3, mem80 Restore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from mem80.
Use RSM to restore CS.
Note: Processing “RSDC CS, Mem80” will produce an
exception.

 SVLDT 0F 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor
Saves Local Descriptor Table (LDTR) to mem80.

 RSLDT 0F 7B [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from mem80.

 SVTS 0F 7C [mod 000 r/m] SVTS mem80 Save TSR and Descriptor
Saves Task State Register (TSR) to mem80.

 RSTS 0F 7D [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

 RSM 0F AA RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored using the
SMM memory space header and execution resumes at
interrupted point.

 RDSHR 0F 36 RDSHR ereg/mem32 Read SMM Header Pointer Register
Saves SMM header pointer to extended register or mem-
ory.

 WRSHR 0F 37 WRSHR ereg/mem32 Write SMM Header Pointer Register
Load SMM header pointer register from extended register
or memory.

Note: mem32 = 32-bit memory location
 mem80 = 80-bit memory location

26 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

SMM Instructions

The SMM instructions can be executed only if:

1. ARR3 Size > 0
2. Current Privilege Level =0
3. SM3 (CCR1-bit 7) = 1

If the above conditions are not met and an attempt is made to execute an SVDC, RSDC, SVLDT, RSLDT,
SVTS, RSTS, RSM, RDSHR, or WDSHR instruction, an invalid opcode exception is generated. These instruc-
tions can be executed outside of defined SMM space provided the above conditions are met.

The SVDC, RSDC, SVLDT, RSLDT, SVTS and RSTS instructions save or restore 80 bits of data, allowing the
saved values to include the hidden portion of the register contents.

The WRSHR instruction loads the contents of either a 32-bit memory operand or a 32-bit register operand into
the SMHR pointer register based on the value of the mod r/m instruction byte. Likewise the RDSHR instruction
stores the contents of the SMHR pointer register to either a 32 bit memory operand or a 32 bit register operand
based on the value of the mod r/m instruction byte.

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 27

SMM Operation

3.5 SMM Operation

This section describes SMM operations. Detailed information and programming follow in later sections.

3.5.1 Entering SMM

Entering SMM requires the assertion of the SMI# pin. SMI interrupts have higher priority than any interrupt
including NMI interrupts.

For the SMI# instruction to be recognized, the configuration register bits must be set as shown in the table below.

Upon entry into SMM, after the SMM header has been saved, the CR0, EFLAGS, and DR7 registers are set to
their reset values. The Code Segment (CS) register is loaded with the base, as defined by the ARR3 register, and
a limit of 4 GBytes. The SMI service routine then begins execution at the SMM base address in real mode.

3.5.2 Saving the CPU State

The programmer must save the value of any registers that may be changed by the SMI service routine. For data
accesses immediately after entering the SMI service routine, the programmer must use CS as a segment override.
I/O port access is possible during the routine but care must be taken to save registers modified by the I/O instruc-
tions. Before using a segment register, the register and the register’s descriptor cache contents should be saved using
the SVDC instruction. While executing in the SMM space, execution flow can transfer to normal memory locations.

3.5.2.1 Program Execution

Hardware interrupts, (INTRs and NMIs), may be serviced during a SMI service routine. If interrupts are to be
serviced while executing in the SMM memory space, the SMM memory space must be within the 0 to 1 MByte
address range to guarantee proper return to the SMI service routine after handling the interrupt.

INTRs are automatically disabled when entering SMM since the IF flag is set to its reset value. Once in SMM, the
INTR can be enabled by setting the IF flag. NMI is also automatically disabled when entering SMM. Once in
SMM, NMI can be enabled by setting NMI_EN in CCR3. If NMI is not enabled, the CPU latches one NMI event
and services the interrupt after NMI has been enabled or after exiting SMM through the RSM instruction.

Requirements for Recognizing SMI#

REGISTER (BIT) SMI#

ARR3 SIZE (3-0) > 0

SM3 CCR1 (7) 1

28 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

SL and Cyrix SMM Operating Modes

Within the SMI service routine, protected mode may be entered and exited as required, and real or protected mode
device drivers may be called.

3.5.2.2 Exiting SMM

To exit the SMI service routine, a Resume (RSM) instruction, rather than an IRET, is executed. The RSM
instruction causes the Cyrix III processor to restore the CPU state using the SMM header information and resume
execution at the interrupted point. If the full CPU state was saved by the programmer, the stored values should be
reloaded prior to executing the RSM instruction using the MOV, RSDC, RSLDT and RSTS instructions.

When the RSM instruction is executed at the end of the SMI handler, the EIP instruction pointer is automatically
read from the NEXT IP field in the SMM header.

When restarting I/O instructions, the value of NEXTIP may need modification. Before executing the RSM
instruction, use a MOV instruction to move the CURRENTIP value to the NEXTIP location as the CURRENT
IP value is valid if an I/O instruction was executing when the SMI interrupt occurred. Execution is then returned
to the I/O instruction rather than to the instruction after the I/O instruction.

A set H bit in the SMM header indicates that a HLT instruction was being executed when the SMI occurred. To
resume execution of the HLT instruction, the NEXTIP field in the SMM header should be decremented by one
before executing RSM instruction.

3.6 SL and Cyrix SMM Operating Modes

There are two SMM modes, SL-compatible mode (default) and Cyrix SMM mode.

3.6.1 SL-Compatible SMM Mode

While in SL-compatible mode, SMM memory space accesses can only occur during an SMI service routine.
While executing an SMI service routine SMM_MEM remains asserted regardless of the address being accessed.
This includes the time when the SMI service routine accesses memory outside the defined SMM memory space.

SMM memory caching is not supported in SL-compatible SMM mode. If a cache inquiry cycle occurs while
SMM_MEM bit is active, any resulting write-back cycle is issued with SMM_MEM asserted. This occurs even
though the write-back cycle is intended for normal memory rather than SMM memory. To avoid this problem it
is recommended that the internal caches be flushed prior to servicing an SMI event. Of course in write-back
mode this could add an indeterminate delay to servicing of SMI.

An interrupt on the SMI# input pin has higher priority than the NMI input. The SMI# input pin is falling edge
sensitive and is sampled on every rising edge of the processor input clock.

Asserting SMI# forces the processor to save the CPU state to memory defined by SMHR register and to begin
execution of the SMI service routine at the beginning of the defined SMM memory space. After the processor

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 29

SL and Cyrix SMM Operating Modes

internally acknowledges the SMI# interrupt, the SMM_MEM output is asserted for the duration of the interrupt
service routine.

When the RSM instruction is executed, the CPU negates the SMM_MEM bit after the last bus cycle to SMM
memory. While executing the SMM service routine, one additional SMI# can be latched for service after resum-
ing from the first SMI.

3.6.2 Cyrix Enhanced SMM Mode

The Cyrix SMM Mode is enabled when bit0 in the CCR6 (SMM_MODE) is set. Only in Cyrix enhanced SMM
mode can SMM memory be chached.

3.6.2.1 Pin Interface

The SMI# pin and SMM acknowledge special cycle behave the same in Cyrix Enhanced SMM mode.

3.6.2.2 Cacheability of SMM Space

In SL-compatible SMM mode, caching is not available, but in Cyrix SMM mode, both code and data caching is
supported. In order to cache SMM data and avoid coherency issues the processor assumes no overlap of main
memory with SMM memory. This implies that a section of main memory must be dedicated for SMM.

30 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

Initializing SMM

4 SMM Programming Details

This section provides detailed SMM information and programming examples.

4.1 Initializing SMM

Many systems have memory controllers that aid in the initialization of SMM memory. Cyrix SMM features
allow the initialization of SMM memory without external hardware memory remapping.

When loading SMM memory with an SMM interrupt handler it is important that the SMI# does not occur before
the handler is loaded.

To load SMM memory with a program it is first necessary to enable SMM memory without enabling the SMI
pins. The SMM region is physically mapped to allow memory access within the SMM region. A REP MOV
instruction can then be used to transfer the program to SMM memory.

SMM space can be located anywhere in the 4-GByte address range. However, if the location of SMM space is
above 1 MByte, the value in CS will truncate the segment above 16bits when stored from the stack. This would
prohibit calls or interrupts from real mode without restoring the 32-bit features of the cpu because of the incor-
rect return address on the stack.

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 31

SMM Handler Entry State

; load SMM memory from system memory (Cyrix SMM mode only)

include SMIMAC.INC
SMMBASE = 68000h
SMMSIZE = 4000h ;SMM SIZE is 16K
SMI = 1 shl 1

;interrupts should be disabled here
mov al, 0cdh ;SMM base<A31-A24>
out 22h, al ;select
mov al, 00h ;set high SMM address to 00
out 23h, al ;write value
mov al, 0ceh ;index SMM base<A23-A16>
out 22h, al ;select
mov al, 06h ;set mid SMM address to 06h
out 23h, al ;write value
mov al, 0cfh ;SMM base<A15-A12> & SIZE
out 22h, al ;select
mov al, 083h ;set SMM lower addr. 80h, 16K
out 23h, al ;write value
mov ax, SMMBASE shr 4
mov es, ax
mov edi, 0 ;es:di = start of the SMM area
mov esi, offset SMI_ROUTINE ;start of copy of SMM
mov ax, seg SMI_ROUTINE ;routine in main memory
mov ds, ax
mov ecx, (SMI_ROUTINE_LENGTH+3)/4 ;calc. length

; this line copies the SMM routine from DS:ESI to ES:EDI
rep
movs dword ptr es:[edi],dword ptr ds:[esi]

4.2 SMM Handler Entry State

Before entering an SMM routine, certain portions of the CPU state are saved at the top of SMM memory. To
optimize the speed of SMM entry and exit, the CPU saves the minimum CPU state information necessary for an
SMI interrupt handler to execute and return to the interrupted context.

The information is saved to the relocatable SMM header at the top of the defined SMM region (starting at SMM
base + size - 30h) as shown in the Figure (page 22). Only the CS, EIP, EFLAGS, CR0, and DR7 are saved upon
entry to SMM. Data accesses must use a CS segment override to save other registers and access data in SMM
memory. To use any other segment register, the SMM programmer must first save the contents using the SVDC
instruction for segment registers or MOV operations for general purpose registers (See Cyrix SMM instruction
description on Page 25). It is possible to save all the CPU registers as needed. See Section 4.3 (Page 2-34) for an
example of saving and restoring the entire CPU state.

32 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

SMM Handler Entry State

Upon execution of a RSM instruction, control is returned to NEXT_IP. The value of NEXT_IP may need to be
modified for restarting I/O instructions. This modification is a simple move of the CURRENT_IP value to the
NEXT_IP location. Execution is then returned to the I/O instruction, rather than to the instruction after the I/O
instruction.

This CURRENT_IP value is valid only if the instruction executing when the SMI occurred was an I/O
instruction. The table below lists the SMM header information needed to restart an I/O instruction. The restarting
of I/O instructions may also require modifications to the ESI, ECX and EDI depending on the instruction.

The EFLAGS, CR0 and DR7 registers are set to their reset values upon entry to the SMI handler. Resetting these
registers has implications for setting breakpoints using the debug registers. Breakpoints in SMM address space
cannot be set prior to the SMI interrupt using debug registers. A debugger will only be able to set a code break-

 I/O Trap Information

BIT DESCRIPTION SIZE

H HALT Indicator
If = 1: The CPU was in a halt or shut down prior to serving the SMM interrupt.
If = 0: The CPU was not in a halt or shut down prior to serving the SMM interrupt.

1 bit

S Software SMM Entry Indicator
S=1, if current SMM is the result of an SMINT instruction. (Impossible)
S=0, if current SMM is not the result of an SMINT instruction.

1 bit

P REP INSx/OUTSx Indicator
If = 1: Current instruction does not have a REP prefix
If = 0: Current instruction has a REP prefix

1 bit

I IN, INSx, OUT, or OUTSx Indicator
If = 1: Current instruction performed an I/O WRITE
If = 0: Current instruction performed an I/O READ

1 bit

I/O Data Size Indicates size of data for the trapped I/O write:
 01h = byte
 03h = word
 0Fh = dword

2 Bytes

I/O Write
Address

I/O Write Address
Processor port used for the trapped I/O write.

 2 Bytes

I/O Write Data I/O Write Data
Data associated with the trapped I/O write.

4 Bytes

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap.

4 Bytes

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 33

SMM Handler Entry State

point using INT 3 outside of the SMM handler. See Section 4.9 (Page 2-42) for restrictions on debugging SMM
code. Once the SMI has occurred and the debugger has control in SMM space, the debug registers can be used
for the remainder of the SMI handler execution.

Upon SMM entry, I/O trap information is stored in the SMM memory space header. This information allows
restarting of I/O instructions, as well as the easy emulation of I/O functions by the SMM handler. This data is
valid only if the instruction executing when the SMI occurred was an I/O instruction. In the Cyrix III cpu, both
I/O reads and I/O write traps result in valid I/O fields and current P and I field values.

If the H bit in the SMM header is set, a HLT instruction was being executed when the SMI occurred. To resume
execution of the HLT instruction, the field NEXT-IP in the SMM header should be decremented by one before
executing RSM instruction.

The values found in the I/O trap information fields are specified below for all cases.

Valid I/O Trap Cases

VALID CASES P I
I/O WRITE
DATA SIZE

I/O W RITE

ADDRESS
I/O W RITE DATA

ESI OR
EDI

Not an I/O instruction x x x x x x

IN al 0 0 01h I/O Address xxxxxxxx EDI

IN ax 0 0 03h I/O Address xxxxxxxx EDI

IN eax 0 0 0Fh I/O Address xxxxxxxx EDI

INSB 0 0 01h I/O Address xxxxxxxx EDI

INSW 0 0 03h I/O Address xxxxxxxx EDI

INSD 0 0 0Fh I/O Address xxxxxxxx EDI

REP INSB 1 0 01h I/O Address xxxxxxxx EDI

REP INSW 1 0 03h I/O Address xxxxxxxx EDI

REP INSD 1 0 0Fh I/O Address xxxxxxxx EDI

OUT al 0 1 01h I/O Address xxxxxxdd ESI

OUT ax 0 1 03h I/O Address xxxxdddd ESI

OUT eax 0 1 0Fh I/O Address dddddddd ESI

OUTSB 0 1 01h I/O Address xxxxxxdd ESI

OUTSW 0 1 03h I/O Address xxxxdddd ESI

OUTSD 0 1 0Fh I/O Address dddddddd ESI

REP OUTSB 1 1 01h I/O Address xxxxxxdd ESI

REP OUTSW 1 1 03h I/O Address xxxxdddd ESI

REP OUTSD 1 1 0Fh I/O Address dddddddd ESI

34 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

Maintaining the CPU State

Upon SMM entry, the CPU enters the state described in table below.

4.3 Maintaining the CPU State

The following registers are not automatically saved on SMM entry or restored on SMM exit.

General Purpose Registers: EAX, EBX, ECX, EDX
Pointer and Index Registers: EBP, ESI, EDI, ESP
Selector/Segment Registers: DS, ES, SS, FS, GS
Descriptor Table Registers: GDTR, IDTR, LDTR, TR
Control Registers: CR2, CR3
Debug Registers: DR0, DR1, DR2, DR3, DR6
Configuration Registers: all valid configuration registers
FPU Registers: Entire FPU state.

If the SMM routine will use any of these registers, their contents must be saved after entry into the SMM routine
and then restored prior to exit from SMM. Additionally, if power is to be removed from the CPU and the system
is required to return to the same system state after power is reapplied, then the entire CPU state must be saved to
a non-volatile memory subsystem such as a hard disk.

SMM Entry State

REGISTER
REGISTER

CONTENT
COMM ENTS

CS SMM base CS limit is set to 4 GBytes

EIP 0000 0000h Begins execution at the base of SMM memory

EFLAGS 0000 0002h Reset State

DR7 0000 0400h Traps disabled

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 35

Maintaining the CPU State

4.3.1 Maintaining Common CPU Registers

The following is an example of the instructions needed to save the entire CPU state and restore it. This code
sequence will work from real mode if the conditions needed to execute Cyrix SMM instructions are met (see
Section 2.3). Configuration registers would also need to be saved if power is to be removed.

; Save and Restore the common CPU registers.
; The information automatically saved in the
; header on entry to SMM is not saved again.
include SMIMAC.INC

.386P ;required for SMIMAC.INC macro
mov cs:save_eax,eax
mov cs:save_ebx,ebx
mov cs:save_ecx,ecx
mov cs:save_edx,edx
mov cs:save_esi,esi
mov cs:save_edi,edi
mov cs:save_ebp,ebp
mov cs:save_esp,esp
svdc cs:,save_ds,ds
svdc cs:,save_es,es
svdc cs:,save_fs,fs
svdc cs:,save_gs,gs
svdc cs:,save_ss,ss
svldt cs:,save_ldt ;sldt is not valid in real mode
svts cs:,save_tsr ;str is not valid in real mode
db 66h ;32bit version saves everything
sgdt fword ptr cs:[save_gdt]
db 66h ;32bit version saves everything
sidt fword ptr cs:[save_idt]

; at the end of the SMM routine the following code
; sequence will reload the entire CPU state

mov eax,cs:save_eax
mov ebx,cs:save_ebx
mov ecx,cs:save_ecx
mov edx,cs:save_edx
mov esi,cs:save_esi
mov edi,cs:save_edi
mov ebp,cs:save_ebp
mov esp,cs:save_esp
rsdc ds,cs:,save_ds
rsdc es,cs:,save_es
rsdc fs,cs:,save_fs
rsdc gs,cs:,save_gs
rsdc ss,cs:,save_ss
rsldt cs:,save_ldt
rsts cs:,save_tsr

36 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

Maintaining the CPU State

db 66h
lgdt fword ptr cs:[save_gdt]
db 66h
lidt fword ptr cs:[save_idt]

; the data space so save the CPU state is in
; the Code Segment for this example
save_ds dt ?
save_es dt ?
save_fs dt ?
save_gs dt ?
save_ss dt ?
save_ldt dt ?
save_tsr dt ?
save_eax dd ?
save_ebx dd ?
save_ecx dd ?
save_edx dd ?
save_esi dd ?
save_edi dd ?
save_ebp dd ?
save_esp dd ?
save_gdt df ?
save_idt df ?

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 37

Maintaining the CPU State

4.3.2 Maintaining Control Registers

CR0 is maintained in the SMM header. CR2 and CR3 should be saved if the SMM routine will be entering pro-
tected mode and enabling paging. Most SMM routines will not need to enable paging. However, if the CPU will
be powered off, these registers should be saved.

4.3.3 Maintaining Debug Registers

DR7 is maintained in the SMM Header. Since DR7 is automatically initialized to the reset state on entry to
SMM, the Global Disable bit (DR7 bit 13) will be cleared. This allows the SMM routine to access all of the
Debug Registers. Returning from the SMM handler will reload DR7 with its previous value. In most cases, SMM
routines will not make use of the Debug Registers and they will need to be saved only if the CPU needs to be
powered down.

4.3.4 Maintaining Configuration Control Registers

The SMM routine should be written so that it maintains the Configuration Control Registers in the same state as
they were initialized by the BIOS at power-up.

4.3.5 Maintaining FPU State

If power will be removed from the CPU or if the SMM routine will execute FPU instructions, then the FPU state
should be maintained for the application running before SMM was entered. If the FPU state is to be saved and
restored from within SMM, there are certain guidelines that must be followed to make SMM completely trans-
parent to the application program.

The complete state of the FPU can be saved and restored with the FNSAVE and FNRSTOR instructions.
FNSAVE is used instead of the FSAVE because FSAVE will wait for the FPU to check for existing error condi-
tions before storing the FPU state. If there is an unmasked FPU exception condition pending, the FSAVE instruc-
tion will wait until the exception condition is serviced. To maintain transparency for the application program, the
SMM routine should not service this exception. If the FPU state is restored with the FNRSTOR instruction
before returning to normal mode, the application program can correctly service the exception. Any FPU instruc-
tions can be executed within SMM once the FPU state has been saved.

38 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

Initializing the SMM Environment

The information saved with the FSAVE instruction varies depending on the operating mode of the CPU. To save
and restore all FPU information, the 32-bit protected mode version of the FPU save and restore instruction
should be used. This can be accomplished by using the following code example:

; Save the FPU state
mov eax,CR0
or eax,00000001h
mov CR0,eax ;set the PE bit in CR0
jmp $+2 ;clear the prefetch que
db 66h ;do 32bit version of fnsave
fnsave [save_fpu] ;saves fpu state to

;the address DS:[save_fpu]
mov eax,CR0
and eax, 0FFFFFFFEh ;clear PE bit in CR0
mov CR0,eax ;return to real mode

;now the SMM routine can do any FPU instruction.
;Restore the FPU state before executing a RSM

FNINIT ;initialize the FPU to a valid state
mov eax,CR0
or eax,00000001h
mov CR0,eax ;set the PE bit in CR0
jmp $+2 ;clear the prefetch que
db 66h ;do 32bit version of fnsave
frstor [save_fpu] ;restore the FPU state

;Some assemblers may require
;use of the fnrstor instruction

mov eax,CR0
and eax, 0FFFFFFFEh ;clear PE bit in CR0
mov CR0,eax ;return to real mode

Be sure that all interrupts are disabled before using this method for entering protected mode. Any attempt to
load a selector register while in protected mode will shutdown the CPU since no GDT is set up. Setting up a
GDT and doing a long jump to enter protected mode will also work correctly.

4.4 Initializing the SMM Environment

After entering SMM and saving the CPU registers that will be used by the SMM routine, a few registers need to
be initialized.

Segment registers need to be initialized if the CPU was operating in protected mode when the SMI interrupt
occurred. Segment registers that will be used by the SMM routine should be loaded with known limits before
they are used. The protected mode application could have set a segment limit to less than 64K. To avoid a protec-

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 39

Initializing the SMM Environment

tion error, all segment registers can be given limits of 4 GBytes. This can be done with the Cyrix RSDC instruc-
tion and will allow access to the full 4GBytes of possible system memory without entering protected mode.
Once the limits of a segment register are set, the base can be changed by use of the MOV instruction.

If necessary, an Interrupt Descriptor Table (IDT) should be set up in SMM memory before any interrupts or
exceptions occur. The Descriptor Table Register can be loaded with an LIDT instruction to point to a small IDT
in SMM memory that can handle the possible interrupts and exceptions that might occur while in the SMM rou-
tine.

A stack should always be set up in SMM memory so that stack operations done within SMM do not affect the
system memory.

; SMM environment initialization example
include SMIMAC.INC ; see Appendix A

rsdc ds,cs:,seg4G ;DS is a 4GByte segment, base=0
rsdc es,cs:,seg4G ;ES is a 4GByte segment, base=0
rsdc fs,cs:,seg4G ;FS is a 4GByte segment, base=0
rsdc gs,cs:,seg4G ;GS is a 4GByte segment, base=0
rsdc ss,cs:,seg4G ;SS is a 4GByte segment, base=0
lidt cs:smm_idt ;load IDT base and limit for

;SMM's IDT
mov esp, smm_stack
jmp continue_smm_code

;
;descriptor of 4GByte data segment for use by rsdc
seg4G dw 0ffffh ; limit 4G

dw 0 ; base = 0
db 0 ; base = 0
db 10010011B ; data segment, DPL=0,P=1
db 8fh ; limit = 4G,
db 0h ; base = 0
dw 0 ; segment register = 0

smm_idt dw smm_idt_limit
dd smm_idt_base

40 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

I/O Restart

4.5 I/O Restart

Often when implementing a power management design, peripherals are required to be powered down by the sys-
tem when not in use. When an I/O instruction is issued to a powered down device, the SMM routine is called to
power up the peripheral and then reissue the I/O instruction. Cyrix CPUs make it easy to restart the I/O instruc-
tion that has generated an SMI interrupt.

The system will generate an SMI interrupt when an I/O bus cycle to a powered-down peripheral is detected. The
SMM routine should interrogate the system hardware to find out if the SMI was caused by an I/O trap. By check-
ing the SMM header information, the SMM routine can determine the type of I/O instruction that was trapped. If
the I/O instruction has a REP prefix, the ECX register needs to be incremented before restarting the instruction.
If the I/O trap was on a string I/O instruction, the ESI or EDI registers must be restored to their previous value
before restarting the instruction.
The following code example shows how easy I/O restart is with the Cyrix CPU.

include SMIMAC.INC ;see Appendix A
;Restart the interrupted instruction

mov eax,dword ptr cs:[SMI_CURRENTIP]
mov dword ptr cs:[SMI_NEXTIP],eax
mov al,byte ptr cs:[SMI_BITS]

;test for REP instruction
bt ax,2 ;rep instruction?

 ;(result to Carry)
adc ecx,0 ;if so, increment ecx
test al,1 shl 1 ;test bit 1 to see

;if an OUTS or INS
jnz out_instr

; A port read (INS or IN) instruction caused the
; chipset to generate an SMI instruction.
; Restore EDI from SMM header.

mov edi, dword ptr cs:[SMI_ESIEDI]
jmp common1

; A port write (OUTS or OUT) instruction caused the
; chipset to generate an SMI instruction.
; Restore ESI from SMM header.
out_instr:

mov esi, dword ptr cs:[SMI_ESIEDI]
common1:

4.6 I/O Port Shadowing and Emulation

Some system peripherals contain write-only ports. In a system that performs power management, these peripher-
als need to be powered off and then reinitialized when their functions are needed later. The Cyrix SMM imple-
mentation makes it very easy to monitor the last value written to specific I/O ports. This process is known as

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 41

Resume to HLT Instruction

shadowing. If the system can generate an SMI whenever specific I/O addresses get accessed, the SMM routine
can, transparently to the system, monitor the port activity. The SMM header contains the address of the I/O write
as well as the data. In addition, information is saved which indicates whether it is a byte, word or dword write.
With this information, shadowing system write-only ports becomes trivial.

Some peripheral components contain registers that must be programmed in a specific order. If an SMI interrupt
occurs while an application is accessing this type of peripheral, the SMI routine must be sure to reload the
peripheral registers to the same stage before returning to normal mode. If the SMM routine needs to access such
a peripheral, the previous normal-mode state must be restored. The previous accesses that were shadowed by
previous SMM calls can be used to reload the peripheral registers back to the stage where the application was
interrupted. The application can then continue where it left off accessing the peripheral.

In a similar way, the Cyrix SMM implementation allows the SMM routine to emulate the function of peripheral
components in software.

4.7 Resume to HLT Instruction

To make an SMI interrupt truly transparent to the system, an SMI interrupt from a HLT instruction should return
to the HLT instruction. There are known cases with DOS software where returning from an SMI handler to the
instruction following the HLT will cause a system error. To determine if a HLT instruction was interrupted by
the SMI, the H bit in the SMM header must be interrogated. If the H bit is set, the SMI interrupted a HLT
instruction. To restart the HLT instruction simply decrement the NEXT_IP field in the SMM header.

The H bit is not available on a Cx486DX2/DX4.

;This is the start of specific code to check if the SMI
;occurred while in a HLT instruction. If it did, then
;resume back to the HLT instruction when SMI is finished.

include SMIMAC.INC ;see Appendix A

mov ax,cs:word ptr[SMI_BITS] ;get H bit
test ax,0010h ;check if H=1
je not_hlt ;was not a HLT
dec cs:dword ptr[SMI_NEXTIP] ;decrement NEXT_IP

not_hlt:

42 Cyrix Application Note 129- Cyrix III SMM DESIGN GUIDE

Appendix

4.8 Exiting the SMI Handler

When the RSM instruction is executed at the end of the SMI handler, the EIP is
loaded from the SMM header at the address (SMMbase + SMMsize - 14h) called
NEXT_IP. This permits the instruction to be restarted if NEXT_IP was modified by
the SMM program. The values of ECX, ESI, and EDI, prior to the execution of the
instruction that was interrupted by SMI, can be restored from information in the
header which pertains to the INx and OUTx instructions. See Section 3.6 for an
example program to restart an I/O instruction. The only registers that are restored
from the SMM header are CS, NEXT_IP, EFLAGS, CR0, and DR7. All other reg-
isters which were modified by the SMM program need to be restored before execut-
ing the RSM instruction.

4.9 Testing and Debugging SMM Code

An SMI routine can be debugged with standard debugging tools, such as DOS
DEBUG, if the following requirements are met:

1. The debugger will only be able to set a code break point using INT 3 outside of
the SMI handler. The debug control register DR7 is set to the reset value upon
entry to the SMI handler. Therefore, any break conditions in DR0-3 will be dis-
abled after entry to SMM. Debug registers can be used if they are set after entry
to the SMI handler and if debug registers DR0-3 are saved.

2. The debugger must be running in real mode and the SMM routine must not
enter protected mode. This insures that normal system interrupts, BIOS calls
and the debugger will work correctly from SMM mode.

3. Before an INT 3 break point is executed, all segment registers should have their
limits modified to 64K, or larger, within the SMM routine.

Cyrix Application Note 129- Cyrix III SMM DESIGN GUIDE 43

Appendix

 APPENDIX A

44 Cyrix Application Note 129- Cyrix III SMM DESIGN GUIDE

Appendix

5 Assembler Macros For Cyrix Instructions

The include file, SMIMAC.INC, provides a complex set of macros which generate
SMM opcodes along with the appropriate mod/rm bytes. In order to function, the
macros require that the labels which are accessed correspond to the specified seg-
ment. Thus segment overrides must be passed to the macro as an argument.

Do not specify a segment override if the default segment for an address is being
used. If an address size override is used, a final argument of ‘1’ must be passed to
the macro as well. Address size overrides must be presented explicitly to prevent
the assembler from generating them automatically and breaking the macros.

;SMM Instruction Macros - SMIMAC.INC
;Macros which generate mod/rm automatically

svdc MACRO segover,addr,reg,adover
 domac segover,addr,reg,adover,78h
 ENDM
rsdc MACRO reg,segover,addr,adover
 domac segover,addr,reg,adover,79h
 ENDM
svldt MACRO segover,addr,adover
 domac segover,addr,es,adover,7ah
 ENDM
rsldt MACRO segover,addr,adover
 domac segover,addr,es,adover,7bh
 ENDM
svts MACRO segover,addr,adover
 domac segover,addr,es,adover,7ch
 ENDM
rsts MACRO segover,addr,adover
 domac segover,addr,es,adover,7dh
 ENDM
rsm MACRO
 db 0fh,0aah
 ENDM
smint MACRO

 db 0fh,7eh
 ENDM
;Sub-Macro used by the above macro

Cyrix Application Note 129- Cyrix III SMM DESIGN GUIDE 45

Appendix

domac MACRO segover,addr,reg,adover,op
 local place1,place2,count
 count = 0
 ifnb <adover>
 count=count+1
 endif
 ifnb <segover>
 count=count+1
 endif
 if (count eq 0)
 nop ;expanding the opcode one byte
 endif
 place1 = $
;pull off the proper prefix byte count
 mov word ptr segover addr,reg
 org place1+count
 mov word ptr segover addr,reg
 place2 = $
;patch the opcode
 org place1+(count*2)-1
 db 0Fh,op
 org place2
ENDM

;Offset Definition for access into SMM space
SMI_SAVE STRUC
$ESIEDI DD ?
$IOWDATA DD ?
$IOWADDR DW ?
$IOWSIZE DW ?
$BITS DD ?
$CSSELL DD ?
$CSSELH DD ?
$CS DW ?
$RES1 DW ?
$NEXTIP DD ?
$CURRENTIP DD ?
$CR0 DD ?
$EFLAGS DD ?
$DR7 DD ?
SMI_SAVE ENDS
SMI_ESIEDI EQU ($ESIEDI + SMMSIZE - SIZE SMI_SAVE)
SMI_IOWDATA EQU ($IOWDATA+ SMMSIZE - SIZE SMI_SAVE)
SMI_IOWADDR EQU ($IOWADDR+ SMMSIZE - SIZE SMI_SAVE)
SMI_IOWSIZE EQU ($IOWSIZE+ SMMSIZE - SIZE SMI_SAVE)

46 Cyrix Application Note 129- Cyrix III SMM DESIGN GUIDE

Appendix

SMI_BITS EQU ($BITS + SMMSIZE - SIZE SMI_SAVE)
SMI_CSSELL EQU ($CSSELL + SMMSIZE - SIZE SMI_SAVE)
SMI_CSSELH EQU ($CSSELH + SMMSIZE - SIZE SMI_SAVE)
SMI_CS EQU ($CS + SMMSIZE - SIZE SMI_SAVE)
SMI_RES1 EQU ($RES1 + SMMSIZE - SIZE SMI_SAVE)
SMI_NEXTIP EQU ($NEXTIP + SMMSIZE - SIZE SMI_SAVE)
SMI_CURRENTIP EQU ($CURRENTIP+ SMMSIZE -SIZE SMI_SAVE)
SMI_CR0 EQU ($CR0 + SMMSIZE - SIZE SMI_SAVE)
SMI_EFLAGS EQU ($EFLAGS + SMMSIZE - SIZE SMI_SAVE)
SMI_DR7 EQU ($DR7 + SMMSIZE - SIZE SMI_SAVE)

SMM Instruction macro example: TEST.ASM

.MODEL SMALL

.386
;SMM Macro Examples

include smimac.inc

0000 .DATA
0000 0A*(??) there db 10 dup (?)
000A .CODE
0000 2E 0F 78 1E 004E svdc cs:,hello,ds
0006 2E 0F 79 1E 004E rsdc ds,cs:,hello
000C 2E 0F 79 2E 004E rsdc gs,cs:,hello
0012 2E 67 2E 0F 78 9C 58 0000004E svdc cs:,[eax+ebx*2+hello],1
001D 67| 0F 78 23 svdc ,[ebx],fs,1

0021 0F 78 2E 0000 svdc ,there,gs
0026 2E 0F 7A 06 004E svldt cs:,hello
002C 2E 0F 7B 06 004E rsldt cs:,hello

0032 2E 0F 7D 06 004E rsts cs:,hello
0038 2E 67 2E 0F 7C 84 58 0000004E svts cs:,[eax+ebx*2+hello],1
0043 67| 0F 7A 03 svldt ,[ebx],1
0047 0F 7C 06 0000 svts ,there
004C 0F AA rsm

004E 0A*(??) hello db 10 dup (?)
end

47 Cyrix Application Note 129- Cyrix III SMM DESIGN GUIDE

 APPENDIX B

48 Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE

Testing and Debugging SMM Code

6 Differences in Cyrix Processors

The table below lists the major differences between the 6x86, 6x86MX M II, and Cyrix III CPUs as related to
System Management Mode.

Differences Between Cyrix CPUs

FEATURE 6X86 6X86MXI MI I AND MI I MOBILE CYRIX III

SMAC
CCR1 - bit 2

Available Available Available Not Available

MMAC
CCR1 - bit 3

Not available Valid only. if
SMM_MODE=0.

Valid only. if
SMM_MODE=0.

Not Available.

SM3
CCR1 - bit 7

Must be set to define reg-
ister index CDh CEh and
CFh as SMAR.

Must be set to define reg-
ister index CDh CEh and
CFh as SMAR.

Must be set to define reg-
ister index CDh CEh and
CFh as SMAR.

Must be set to define reg-
ister index CDh CEh and
CFh as SMAR.

SMIACT
CCR3 - bit3

Always in SL SMM
mode.

Use SMM_MODE
CCR6_Bit 0

Use SMM_MODE
CCR6_Bit 0

Not Available

SMI# acknowledged
when:

CPL=0 &
USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
SMAC=0 &
(in normal mode)

CPL=0 &
USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
SMAC=0 &
(in normal mode)

CPL=0 &
USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
SMAC=0 &
(in normal mode)

CPL=0 &
USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
(in normal mode)

Cyrix Specific SMM
instructions are valid
when:

CPL=0 & USE_SMI=1
& (ARR3 size > 0) &
SM3=1 &
(SMAC=1 or
 in SMM mode)

CPL=0 & USE_SMI=1
& (ARR3 size > 0) &
SM3=1 &
(SMAC=1 or
 in SMM mode)

CPL=0 & USE_SMI=1
& (ARR3 size > 0) &
SM3=1 &
(SMAC=1 or
 in SMM mode)

CPL=0 & USE_SMI=1
& (ARR3 size > 0) &
SM3=1 &
(in SMM mode)

H bit in SMM header Valid Valid Valid Valid

I/O trap information I/O Data Size,
I/O Address and
I/O Data valid for both I/
O reads and
writes trapped by an SMI.

I/O Data Size,
I/O Address and
I/O Data valid for both I/
O reads and
writes trapped by an SMI.

I/O Data Size,
I/O Address and
I/O Data valid for both I/
O reads and
writes trapped by an SMI.

I/O Data Size,
I/O Address and
I/O Data valid for both I/
O reads and
writes trapped by an SMI.

CS limit on entry to
SMM

4 GByte limit 4 GByte limit 4 GByte limit 4 GByte limit

CR0 value on entry to
SMM

6000 0010h
if LOCK_NW=1 then
NW is not changed

6000 0010h
if LOCK_NW=1 then
NW is not changed

6000 0010h
if LOCK_NW=1 then
NW is not changed

6000 0010h
if LOCK_NW=1 then
NW is not changed

Cyrix Application Note 129 - Cyrix III SMM DESIGN GUIDE 49

Testing and Debugging SMM Code

©1999 Copyright Via Technologies. All rights reserved.

Printed in the United States of America

Trademark Acknowledgments:

Cyrix is a registered trademark of Via Technologies.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Order Number: 94xxx-xx

Via-Cyrix

2703 North Central Expressway

Richardson, Texas 75080-2010

United States of America

Via-Cyrix (Cyrix) reserves the right to make changes in the devices or specifications described herein without notice. Before de sign-in or
order placement, customers are advised to verify that the information is current on which orders or design activities are based. Cyrix warrants
its products to conform to current specifications in accordance with Cyrix’ standard warranty. Testing is performed to the extent necessary as
determined by Cyrix to support this warranty. Unless explicitly specified by customer order requirements, and agreed to in writing by Cyrix,
not all device characteristics are necessarily tested. Cyrix assumes no liability, unless specifically agreed to in writing, for customers’ product
design or infringement of patents or copyrights of third parties arising from use of Cyrix devices. No license, either express or implied, to
Cyrix patents, copyrights, or other intellectual property rights pertaining to any machine or combination of Cyrix devices is he reby granted.
Cyrix products are not intended for use in any medical, life saving, or life sustaining system. Information in this document is subject to
change without notice.

