
Application Note 120
Cyrix III CPU BIOS
Writer’s Guide

Cyrix Processors

 1 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

REVISION HISTORY

Date Version Revision

11/24/99 1.1 Updated register 49h and DIR1 table

5/20/99 1.0 Updated for Cyrix III

4/19/99 0.43 Format changes, chapter 6.

3/22/99 0.42 Changed processor internal code name from MXs to Cyrix III.

3/17/99 0.41 Page 55: Added Core to Bus Clock Ratio Configuration Register.

2/23/99 0.4 Added Confidential Notice. Made all pages same width.

1/29/99 0.3 Minor changes:
Changed fonts, added revision page, changed DIR table titles

12/14/98 0.2 Cyrix III information added. Completed Table page 32

9/21/98 0.1 Intial First Draft based on App Notes 112 and 118.
C:\documentation\joshua\appnotes\j120ap.fm (confidential)

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 2

Running H/F 2

Table of Contents

1.0 Introduction

1.1 Scope . 3
1.2 Cyrix Configuration Registers . 3
1.3 Summary of Cyrix III, MII, 6x86MX and 6x86 Differences . 4

2.0 Cyrix III CPU Detection

2.1 CPU Detection and Inquiry Flowchart . 5
2.2 CPU Detection Steps . 7
2.3 Standard and Extended CPUID Levels . 8
2.4 Non CPUID Test and Inquiry . 20

3.0 Cyrix III Configuration Register Index Assignments

3.1 Accessing a Configuration Register . 23
3.2 Cyrix III Configuration Register Index Assignments . 23
3.3 Configuration Control Registers (CCR0-6) . 26
3.4 Address Region Registers (ARR0-7) . 33
3.5 Region Control Registers (RCR0-7) . 35
3.6 BIOS Clock Multiplier Setting . 40

4.0 Recommended Cyrix III Configuration Register Settings

4.1 PC Memory Model . 42
4.2 General Recommendations . 44
4.3 Recommended Bit Settings . 45

5.0 Model Specific Registers

5.1 Time Stamp Counter . 50
5.2 Performance Monitoring . 50
5.3 Performance Monitoring Counters 1 and 2 . 51
5.4 Counter Event Counter Register . 51
5.5 PM Control . 52

6.0 Programming Model Differences

6.1 Instruction Set . 57
6.2 Configuring Internal Cyrix III Features . 57
6.3 INVD and WBINVD Instructions . 57
6.4 Control Register 0 (CR0) CD and NW Bits . 57

Appendix A -Sample Code: Detecting a Cyrix CPU . 59
Appendix B -Sample Code: Determining CPU MHz . 60
Appendix C -Example CPU Type and Frequency Detection Program 63
Appendix D -Sample Code: Programming Cyrix III Configuration Registers 65
Appendix E -Sample Code: Controlling the L1 Cache . 66
Appendix F -Example Configuration Register Settings . 67

 3 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

APPLICATION NOTE 120 Cyrix III BIOS Writer’s Guide

1. Introduction

1.1 Scope

This document is intended for Cyrix III system BIOS writers. It is not a stand-alone
document, but a supplement to other Cyrix documentation including the Cyrix III
Data Books, and Cyrix SMM Programmer’s Guide. Recommendations for Cyrix
III detection and configuration register settings are included.

The recommended settings are optimized for performance and compatibility in
Windows95 or Windows NT, Plug and Play (Pnp), PCI-based system. Performance
optimization, CPU detection, chipset initialization, memory discovery, I/O recov-
ery time, and other functions are described in detail.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 4

Running H/F 2

1.2 Cyrix Configuration Registers

The Cyrix III uses on-chip configuration registers to control the on-chip cache, system management mode
(SMM), device identification, and other Cyrix III specific features. The on-chip registers are used to activate
advanced performance features. These performance features may be enabled “globally” in some cases, or
by a user-defined address region. The flexible configuration of the Cyrix III is intended to fit a wide variety
of systems.

BIOS needs to perform 3 basic functions outlined in this document. They are:

1) Identification of Cyrix III cpu, frequency, and performance rating.

2) Set up of Configuration Registers in the cpu to enable features, turn on cache, and set clock multiplier.

3) Set up Address Region Registers and Region Control Registers to control memory accesses.

The Importance of Non-Cacheable Regions

The Cyrix III has fourteen internal user-defined Address Region Registers and Region Control Registers.
Among other attributes, the regions define cacheability of the address regions. Using this cacheability infor-
mation, the Cyrix III is able to implement high performance features, that would otherwise not be possible.
A non-cacheable region implies that read sourcing from the write buffers, data forwarding, data bypassing,
speculative reads, and fill buffer streaming are disabled for memory accesses within that region. Addition-
ally, strong cycle ordering is also enforced.

The Cyrix III also uses these Address Region Registers to setup the write gathering, or write combining, fea-
ture normally used for improving performance of video buffer memory. This feature is enabled differently
from the Intel Celeron. Celeron uses machine specific registers (MSR’s) called memory type and range reg-
isters (MTRR’s). Cyrix III uses the Address Region Registers (ARR’s) and Region Control Registers
(RCR’s) to perform this same feature. Thus BIOS, operating system calls, and video drivers should be
updated with ARR and RCR setup instead of MTRR setup whenever Cyrix III is detected to enable write
combining feature.

 5 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

2. CPU Detection

The Cyrix III cpu can be identified using the CPU_ID instruction as explained below. It can also be
identified using Cyrix specific Device Identification Registers (DIR). The methods for identifying the cpu
and its available features are explained below. Once the Cyrix III cpu is identified, it should be named
correctly as explained in the next section.

2.1 CPU Name and Performance Rating

The Cyrix III uses the performance rating system of speed measurement and reporting. The following table
is used to identify the performance rating of the Cyrix III compared to actual Mhz. The performance rating is
achieved by benchmarking the Cyrix III vs. a Celeron cpu in the same configuration.

2.2 Cyrix CPU Identification and Inquiry Flow Chart

The Cyrix CPU Identification process (Figure1 on page6) consists of up to three tests and three inquiries. If
CPUID is not supported, a 5/2 Test is performed to check if the CPU is a Cyrix part. If CPUID is supported,
a second test is made to see if extended level CPUID is supported.

CPU Name and PR rating Bus Speed Mhz Core Speed Mhz Clock Multiplier

Cyrix III - 433 100 350 3.5

Cyrix III - 466 122 366 3.0

Cyrix III - 500 133 400 3.0

Cyrix III - 533 124 433 3.5

Cyrix III - 533 100 450 4.5

Cyrix III - 566 133 466 3.5

Cyrix III - 600 100 500 5.0

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 6

Running H/F 2

The numbers in parenthesis shown in Figure 1 refer to the supporting paragraphs in this manual.

FIGURE 1. CPU Identification and Inquiry

Note: The testing must be performed in the order shown in Figure 1 or testing may be invalid.

Cyrix CPU Detection and Inquiry

 Supports CPUID? (3.1)

Cyrix CPU (3.2)
 (Perform “CyrixInstead” Test)?

Perform DIR0, DIR1 Inquiry
 (3.4.2)

Supports Extended CPUID?
 (3.3.1)

Perform Extended CPUID Inquiry
(3.3.3)

Perform Standard CPUID
(3.3.2)

Exit

Non-Cyrix CPU

Yes
No

NoYes

YesNo

 7 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

2.3 CPU Detection Steps: CPUID Support Test

In order to avoid an invalid opcode exception on processors that do not support the CPUID instruction, soft-
ware must first verify that the processor supports the CPUID instruction. The presence of the CPUID
instruction is indicated by the ID bit (bit 21) in the EFLAGS register. If this bit can be toggled, the CPUID
instruction is present and enabled on the processor. The following code will check for the presence of the
CPUID instruction.
CPUID Support Test Sample Code*:

pushfd ; get extended flags
pop eax ; store extended flags in eax
mov ebx, eax ; save current flags
xor eax, 200000h ; toggle bit 21
push eax ; put new flags on stack
popfd ; flags updated now in flags
pushfd ; get extended flags
pop eax ; store extended flags in eax
xor eax, ebx ; if bit 21 r/w then eax <> 0
je no_cpuid ; can't toggle id bit (21) no cpuid here

*Note: It has been assumed that the tests for EFLAGS support has been complete prior to this point. If
CPUID is supported, it can be assumed that the CPU is an 80486 or above class processor.

2.3.1 “CyrixInstead” Test

The CPUID instruction level 0 provides vendor information. Following execution of the CPUID instruction
with an input value of “0” in EAX, the EBX, ECX and EDX registers contain the vendor string of the CPU.
To verify that the processor is a Cyrix CPU, the software checks for “CyrixInstead” in the return registers as
shown in the sample code below:

“CyrixInstead” Test Sample Code

mov eax, 0 ; CPUID standard level 0
cpuid
cmp ebx, 'iryC'
jne not_cyrix
cmp edx, 'snIx'
jne not_cyrix
cmp ecx, 'daet'
jne not_cyri

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 8

Running H/F 2

2.4 Standard and Extended CPUID Levels

The CPUID instruction has been extended on recent processors so that additional information can be
obtained from the CPU concerning items including stepping, model, family, type, TLB and cache informa-
tion. The original levels of the CPUID instruction are termed “the standard CPUID levels” and the newer
levels are termed the “extended CPUID levels.”

The standard and extended CPUID levels differ in that the EAX register’s most significant bit is set for the
extended CPUID levels. Both the standard and extended CPUID levels may be executed at any privilege
level. The EAX register provides the input value for the CPUID instruction to indicate what information
should be returned by the instruction.

2.4.1 Extended CPUID Level Support Testing

This test is performed to determine if the CPU supports the extended CPUID levels.

Extended CPUID Instruction support testing consists of executing a CPUID instruction with the EAX regis-
ter initialized to 8000 0000h and testing the return value in EAX. If a value greater than or equal to 8000
0000h is returned to the EAX register by the CPUID instruction, the CPU can execute extended CPUID
instructions. The following sample code tests for Extended CPUID support.

Extended CPUID Instruction Test Sample Code:

mov eax, 80000000h ; try extended cpuid level
cpuid ; execute cpuid instruction
cmp eax, 80000000h ; check if extended levels are supported
jb no_extended ; extended cpuid functions not available

 9 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

2.4.2 Standard CPUID Instruction Inquiry

The CPUID instruction provides processor and feature set information. This instruction may be executed at
any privilege level. The standard CPUID instruction is defined as a CPUID instruction with the EAX regis-
ter initialized to one of the following values:

0000 0000h - maximum standard levels supported and vendor string
0000 0001h - family, model and stepping information
0000 0002h - cache and TLB information

Table 1. summarizes the CPUID values returned by standard CPUID levels on Cyrix III processors.

Note: xx = stepping revision specific.

Table 1. Summary of Returned
Standard CPUID Values

DESCRIPTION

IN ITIAL

EAX
VALUE

CYRIX III

Maximum
Standard Value

0h 2h

Stepping 1h xxh

Model 1h 5h

Family 1h 6h

Type 1h 0h

TLB/Cache 2h xxh

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 10

Running H/F 2

2.4.3 CPUID Instruction with EAX = 0000 0000h

Standard function 0h (EAX = 0) of the CPUID instruction returns the maximum standard CPUID levels sup-
ported by the current processor to the EAX register. The maximum standard CPUID level is the highest
acceptable value for the EAX register input.
After the instruction is executed registers EBX through EDX contain the vendor string of the processor.
Note that the middle section is placed (out of order) into the EDX register (Table 2).

*Note: The register order is correct.

Table 2. Standard CPUID with EAX = 0000 0000h

REGISTER * CONTENTS

EAX Max Standard Levels

EBX Vendor ID String 1=”CYRI”

EDX Vendor ID String 2=”XINS”

ECX Vendor ID String 3=”TEAD”

 11 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

2.4.4 CPUID Instruction with EAX = 0000 0001h

Standard function 01h (EAX = 1) of the CPUID instruction returns the Processor Type, Family, Model, and
Stepping information of the current processor in EAX (Table 3). The Standard Feature Flags supported are
returned in the EDX register. The other registers upon return are currently reserved.

Standard Feature Flags

The standard feature flags are returned in the EDX register when the CPUID instruction is called with stan-
dard function 01h (EAX = 1). Each flag refers to a specific feature and indicates if that feature is present on
the processor. Some of these features require enabling or have protection control in CR4. Table 4. summa-
rizes the standard feature flags.

Table 3. Standard CPUID with EAX = 0000 0001h

REGISTER CONTENTS

EAX[3:0] Stepping ID=revision specific step id

EAX[7:4] Model=5 h

EAX[11:8] Family=6 h

EAX[15:12] Type=0 h

EAX[31:16] Reserved

EBX Reserved

ECX Reserved

EDX Standard Feature Flags=0080A13D h

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 12

Running H/F 2

Before using any of these features on the processor, the software should check the corresponding feature
flag (Table 4). Attempting to execute an unavailable feature can cause exceptions and unexpected behavior.
For example, software must check bit 4 before attempting to use the Time Stamp Counter instruction.

*Note: The CPUID instruction is disabled by default.

Table 4. Standard Feature Flags Values Returned
in EDX

FEATUR E FLAG

E
D

X
 B

IT

C
R

4
 B

IT

C
Y

R
IX

 II
I

FPU On-Chip 0 - 1

Virtual Mode Extensions (V86) 1 0,1 01

Debug Extension 2 3 1

4 MB Page Size 3 4 1

Time Stamp Counter 4 2 1

RDMSR/WRMSR Instructions 5 8 1

Physical Address Extensions 6 5 0

Machine Check Exception 7 6 0

CMPXCHG8B Instruction Support 8 - 1

On-chip APIC Hardware 9 - 0

Reserved 10 - 0

SYSENTER/SYSEXIT Instructions 11 - 0

Memory Type Range Registers (MTRR) 12 - 0

Page Global Enable (PTE-PGE) 13 7 1

Machine Check Architecture 14 - 0

Conditional Move Instruction (CMOV) 15 - 1

Page Attribute Table 16 - 0

36-Bit Page Size Extensions 17 - 0

Reserved 18-22 - 00000

MMX™ Instructions 23 - 1

Fast FPU Save and Restore 24 - 0

Reserved 25-31 - 0000000

 13 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

2.4.5 CPUID Instruction with EAX = 0000 0002h

Standard function 02h (EAX = 02h) of the CPUID instruction returns information that is specific to the
Cyrix family of processors. Information about the TLB is returned in EAX. Information about the L1 Cache
is returned in EDX. This information is to be looked up in a lookup table. See Table 13 on page 19.

Table 5. Standard CPUID with EAX = 0000 0002h

REGISTER CON TEN TS

EAX TLB Information = 00747701 h

EBX Reserved

ECX Reserved

EDX L1 Cache Information = 00008242 h

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 14

Running H/F 2

2.4.6 Extended CPUID Levels

The extended CPUID Instruction is defined when the EAX register is initialized to one of the following
values (Table 6.):

8000 0000h - Maximum Levels
8000 0001h - Processor Information/Extended features
8000 0002h - Processor Marketing Name
8000 0003h - Processor Marketing Name
8000 0004h - Processor Marketing Name
8000 0005h - TLB/Cache Information

Each of the extended CPUID levels reports information that is specific to the Cyrix family of processors.

*Note: The CPUID instruction is disabled by default.

Table 6. Summary of
Returned Extended CPUID

Values

DESCRIPTION
INITIA L

EAX VALU E
CYRIX III

Extended
Levels

8000 0000h 5 h

TLB Info 8000 0005h TBD

Cache Info 8000 0005h TBD

Table 7. Summary of CPUID Functions

EXTENDED
FUNCTION

DESCRIPTION CYRIX III

8000 0000h Extended Levels X

8000 0001h Extended Processor Info.

Extended Feature Flags

X

8000 0002h Processor Marketing Name X

8000 0003h Processor Marketing Name X

8000 0004h Processor Marketing Name X

8000 0005h TLB & Cache Information X

 15 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

2.4.7 CPUID Instruction with EAX = 8000 0000h

Extended function 8000 0000h (EAX = 8000 0000h) of the CPUID instruction returns the maximum
extended CPUID levels supported by the current processor in EAX (Table 8). The other registers are cur-
rently reserved.

Table 8. Maximum Extended CPUID Level

REGISTER CON TENTS

EAX Maximum Extended Levels = 5 h

EBX Reserved

ECX Reserved

EDX Reserved

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 16

Running H/F 2

2.4.8 CPUID Instruction with EAX = 8000 0001h

Extended function 8000 0001h (EAX = 8000 0001h) of the CPUID instruction returns the Processor Type,
Family, Model, and Stepping information of the current processor in EAX (Table 9). The Extended Feature
Flags supported are returned in EDX. The other registers are currently reserved.

Extended Feature Flags
The extended feature flags are returned in the EDX register when the CPUID instruction is called with
extended function 8000 0001h (EAX = 8000 0001h). Each flag refers to a specific feature and indicates if
that feature is present on the processor. Some of these features require enabling or have protection control in
CR4. Table 10. summarizes the extended feature flags.

Table 9. . Processor Signature and Extended Feature Flags

REGISTER CON TENTS

EAX[3:0] Stepping ID = revision specific step id

EAX[7:4] Model = 5

EAX[11:8] Family = 6

EAX[15:12] Processor Type = 0

EAX[31:16] Reserved

EBX Reserved

ECX Reserved

EDX Extended Feature Flags = 0080A13D

 17 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

Table 10. Extended Feature Flags

FEATURE FLAG EDX BIT CR4 B IT CYR IX III

Floating Point Unit 0 - 1

Virtual Mode Extensions (V86) 1 0,1 01

Debug Extension 2 3 -

Page Size Extensions (4 MByte) 3 4 -

Time Stamp Counter 4 2 X

Cyrix Model-Specific Registers (MSR) 5 8 X

Reserved 6 - -

Machine Check Exception 7 6 -

CMPXCHG8B Instruction 8 - X

SYSCALL and SYSRET Instructions 11 - -

Reserved 12 - -

Global Paging Extension (PTE-PGE) 13 7 -

Reserved 14 - -

Integer Conditional Move Instructions (CMOV) 15 - X

Floating-Point Conditonal Move Instructions 16

Reserved 17-22 - -

MMX™ Instructions 23 - X

Cyrix 6x86MX Multimedia Extensions 24 - X

Reserved 25 - 30 - -

3DNow!™ Instructions 31 - X

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 18

Running H/F 2

2.4.9 CPUID Instruction with EAX = 8000 0002h - 8000 0004h

Extended functions 8000 0002h through 8000 0004h (EAX = 8000 0002h through EAX = 8000 0004h) of
the CPUID instruction returns an ASCII string containing the name of the current processor (Table 11).
These functions eliminate the need to look up the processor name in a lookup table. Software can simply call
these functions to obtain the name of the processor. The string may be 48 ASCII characters long, and is
returned in little endian format. If the name is shorter than 48 characters long, the remaining bytes will be
filled with ASCII NUL character (00h).

Table 11. Official CPU Name

8000 0002H 8000 0003H 8000 0004H

EAX CPU Name 1 EAX CPU Name 5 EAX CPU Name 9

EBX CYRI EBX CPU Name 6 EBX CPU Name 10

ECX X II ECX CPU Name 7 ECX CPU Name 11

EDX I(tm) EDX CPU Name 8 EDX CPU Name 12

 19 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

2.4.10 CPUID Instruction with EAX = 8000 0005h

Extended function 8000 0005h (EAX = 8000 0005h) of the CPUID instruction returns information about the
TLB and L1 Cache to be looked up in a lookup table. Refer to Tables Figure 12 and Figure 13 shown below.

Table 12. Cache and TLB Information

REGISTER CONTEN TS

EAX Reserved

EBX TLB Information

ECX L1 Cache Information

EDX Reserved

Table 13. Cache and Descriptor Lookup Table

CPUID
LEVEL

REGISTER VALUE COMMENTS

Standard EAX
xx xx xx 01h

The CPUID instruction needs to be executed only once with an
input value of 02h to retrieve complete information about the
cache and TLB.Extended EBX

Standard EAX
xx xx 70 xxh TLB is 32 Entry, 4-way set associative, and has 4 KByte Pages

Extended EBX

Standard EDX
xx xx xx 80h

L1 cache is 16 KBytes, 4-way set associative, and has 16 bytes
per line.Extended ECX

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 20

Running H/F 2

2.5 Non-CPUID Testing and Inquiry

The Cyrix III processor supports CPUID to determine processor type. If it is a Cyrix processor, inquires may
also be made to the Device Identification Registers (DIR0 and DIR1) to determine which Cyrix processor is
present.

2.5.1 DIR0, DIR1 Inquiry

After determining that a Cyrix processor without CPUID exists, its Device ID Registers (DIR) can be read to
identify the Cyrix processor type. The Device ID Registers are located using register indexes FEh and FFh.
Access to these registers is achieved by writing the index of the register to I/O port 22h. I/O port 23h is then
used for data transfer. Each port 23h data transfer must be preceded by a port 22h-register index selection;
otherwise the second and later port 23h operations are directed off-chip and produce external I/O cycles.
The Tables 14 and 15 describe the bit definitions for the DIR0 and DIR1 Registers.

Table 14. DIR0 Bit Definitions

B IT POSIT ION DESCR IPTION

7 - 4 CPU Device Identification Number (read only)

3 - 0 CPU Clock Multiplier (read only)

Table 15. DIR1 Bit Definitions

B IT POSIT ION DESCRIPTION

7 - 4 CPU Step Identification Number (read only)

3 - 0 CPU Revision Identification (read only)

 21 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

Table 16. describes the range of DIR0 values for the different generations of Cyrix CPU’s
Table 16. CPU Generation Values in DIR0

DIR0 VALUES DESCRIPT ION

80h - 8Fh Cyrix III

Table 17. Cyrix III CPU DIR
Values

DIR0
CORE CLOCK TO

 BUS CLOCK RATIO

84h 2.5 x

81h 3.0 x

85h 3.5 x

82h 4.0 x

86h 4.5 x

83h 5.0 x

87h 5.5 x

88h 6.0 x

8Ah 6.5 x

89h 7.0 x

8Bh 7.5 x

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 22

Running H/F 2

3. Cyrix III Configuration Register Index Assignments

On-chip configuration registers are used to control the on-chip cache, system management mode and other
Cyrix III unique features.

3.1 Accessing a Configuration Register

Access to the configuration registers is achieved by writing the index of the register to I/O port 22h. I/O port
23h is then used for data transfer. Each I/O port 23h data transfer must be preceded by an I/O port 22h regis-
ter index selection, otherwise the second and later I/O port 23h operations are directed off-chip and produce
external I/O cycles. Reads of I/O port 22h are always directed off-chip. Appendix D contains example code
for accessing the Cyrix III configuration registers.

3.2 Cyrix III Configuration Register Index
Assignments

The table on the following page lists the Cyrix III configuration register index assignments. After reset, con-
figuration registers with indexes C0-CFh and FC-FFh are accessible. In order to prevent potential conflicts
with other devices which may use ports 22 and 23h to access their registers, the remaining registers (indexes
00-BFh, D0-FBh) are accessible only if the MAPEN(3-0) bits in CCR3 are set to 1h. With MAPEN(3-0) set
to 1h, any access to an index in the 00-FFh range does not create external I/O bus cycles. Registers with
indexes C0-CFh, FC-FFh are accessible regardless of the state of the MAPEN bits. If the register index num-
ber is outside the C0-CFh or FE-FFh ranges, and MAPEN is set to 0h, external I/O bus cycles occur. The
table on the next page lists the MAPEN values required to access each Cyrix III configuration register. The
configuration registers are described in more detail in the following sections.

 23 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

Table 18. Configuration Register Index Assignments

REGISTER
INDEX

REGISTER NA ME ACR ONYM
W IDTH

(BITS)
MAPEN(3-0)

00h-BFh Reserved — — —

C0h Configuration Control 0 CCR0 8 Don’t care

C1h Configuration Control 1 CCR1 8 Don’t care

C2h Configuration Control 2 CCR2 8 Don’t care

C3h Configuration Control 3 CCR3 8 Don’t care

E8h Configuration Control 4 CCR4 8 1h

E9h Configuration Control 5 CCR5 8 1h

EAh Configuration Control 6 CCR6 8 1h

EBh Configuration Control 7 CCR7 8 1h

C4h-C6h Address Region 0 ARR0 24 Don’t care

C7h-C9h Address Region 1 ARR1 24 Don’t care

CAh-CCh Address Region 2 ARR2 24 Don’t care

CDh-CFh Address Region 3 ARR3 24 Don’t care

D0h-D2h Address Region 4 ARR4 24 1h

D3h-D5h Address Region 5 ARR5 24 1h

D6h-D8h Address Region 6 ARR6 24 1h

D9h-DBh Address Region 7 ARR7 24 1h

A4h-A6h Address Region 8 ARR8 24 x01x

A7h-A9h Address Region 9 ARR9 24 x01x

AAh-ACh Address Region A ARRA 24 x01x

ADh-AFh Address Region B ARRB 24 x01x

D0h-D2h Address Region C ARRC 24 x01x

D6h-D8h Address Region D ARRD 24 x01x

DCh Region Configuration 0 RCR0 8 1h

DDh Region Configuration 1 RCR1 8 1h

DEh Region Configuration 2 RCR2 8 1h

DFh Region Configuration 3 RCR3 8 1h

E0h Region Configuration 4 RCR4 8 1h

E1h Region Configuration 5 RCR5 8 1h

E2h Region Configuration 6 RCR6 8 1h

E3h Region Configuration 7 RCR7 8 1h

DCh Region Configuration 8 RCR8 8 x01x

DDh Region Configuration 9 RCR9 8 x01x

DEh Region Configuration A RCRA 8 x01x

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 24

Running H/F 2

DFh Region Configuration B RCRB 8 x01x

E0h Region Configuration C RCRC 8 x01x

E1h Region Configuration D RCRD 8 x01x

E4h-E7h Reserved — — —

EBh-FAh Reserved — — —

FBh Device Identification 2 DIR2 8 1h

FCh Device Identification 3 DIR3 8 1h

FDh Device Identification 4 DIR4 8 1h

FEh Device Identification 0 DIR0 8 Don’t care

FFh Device Identification 1 DIR1 8 Don’t care

48h Bus Configuration Register 1 BCR1 8 0100

49h Bus Configuration Register 2 BCR2 8 0100

41h L2 Configuration Register 1 LCR1 8 0100

20h Table Walk Register 0 TWR0 8 0001

Table 18. Configuration Register Index Assignments

 25 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

The Cyrix III configuration registers can be grouped into five areas:

• Configuration Control Registers (CCRs)

• Address Region Registers (ARRs)

• Region Control Registers (RCRs)

• Device Identification Registers (DIRs)

• Cache and Bus Configuration Registers (BCRs)

CCR bits independently control Cyrix III features. ARRs and RCRs define regions of memory with specific
attributes. DIRs are used for CPU detection as discussed earlier in Chapter 3. All bits in the configuration
registers are initialized to zero following reset unless specified otherwise. The appropriate configuration reg-
ister bit settings vary depending on system design. Optimal settings recommended for a typical PC environ-
ment are discussed in Chapter 5.

3.3 Configuration Control Registers (CCR0-7)

There are seven CCRs in the Cyrix III which control the cache, power management and other unique fea-
tures. The following paragraphs describe the CCRs and associated bit definitions in detail.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 26

Running H/F 2

3.3.1 Configuration Control Register 0 (CCR0)

Table 19. Configuration Control Register 0 (CCR0)

B IT 7 BIT 6 B IT 5 B IT 4 B IT 3 BIT 2 BIT 1 B IT 0

Reserved Reserved Reserved Reserved Reserved Reserved NC1 Reserved

Table 20. CCR0 Bit Definitions

B IT NAME B IT NO. DESCRIPT ION

NC1 1 If = 1, designates 640KBytes -1MByte address region as non-cacheable.

If = 0, designates 640KBytes -1MByte address region as cacheable.

 27 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

3.3.2 Configuration Control Register 1 (CCR1)

Table 21. Configuration Control Register 1 (CCR1)

B IT 7 B IT 6 BIT 5 B IT 4 B IT 3 BIT 2 B IT 1 B IT 0

SM3 Reserved Reserved Reserved Reserved Reserved Reserved Reserved

Table 22. CCR1 Bit Definitions

B IT NAME B IT NO. DESCR IPTION

SM3 7 If = 1, designates Address Region Register 3 as SMM address space.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 28

Running H/F 2

3.3.3 Configuration Control Register 2 (CCR2)

Table 23. Configuration Control Register 2 (CCR2)

BIT 7 B IT 6 B IT 5 BIT 4 BIT 3 BIT 2 B IT 1 BIT 0

Reserved Reserved Reserved WPR1 SUSP_HLT LOCK_NW Reserved Reserved

Table 24. CCR2 Bit Definitions

B IT NAME BIT NO. DESCRIPTION

WPR1 4 If = 1, designates that any cacheable accesses in the 640 KBytes-1MByte address region
are write-protected. With WPR1=1, any attempted write to this range will not update the
internal cache.

SUSP_HLT 3 If = 1, execution of the HLT instruction causes the CPU to enter low power suspend mode.
This bit should be used with caution since the CPU must recognize and service an INTR,
NMI or SMI to exit the “HLT initiated” suspend mode.

LOCK_NW 2 If = 1, the NW bit in CR0 becomes read only and the CPU ignores any writes to this bit.

 29 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

3.3.4 Configuration Control Register 3 (CCR3)

Table 25. Configuration Control Register 3 (CCR3)

B IT 7 B IT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 B IT 0

MAPEN Reserved Reserved NMI_EN SMI_LOCK

Table 26. CCR3 Bit Definitions

B IT NAME BIT NO. DESCRIPTION

MAPEN 7-4 Can be set to access various registers for read and write according to table 18.

NMI_EN 1 If = 1, NMI interrupt is recognized while in SMM. This bit should only be set while in
SMM, after the appropriate NMI interrupt service routine has been setup.

SMI_LOCK 0 If = 1, the CPU prevents modification of the following SMM configuration bits, except
when operating in an SMM service routine:

CCR1 USE_SMI, SMAC, SM3

CCR3 NMI_EN

ARR3 Starting address and block size.

Once set, the SMI_LOCK bit can only be cleared by asserting the RESET pin.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 30

Running H/F 2

3.3.5 Configuration Control Register 4 (CCR4)

Table 27. Configuration Control Register 4 (CCR4)

B IT 7 BIT 6 B IT 5 BIT 4 BIT 3 B IT 2 B IT 1 B IT 0

CPUID Reserved Reserved Reserved Reserved Reserved Reserved Reserved

Table 28. CCR4 Bit Definitions

B IT NAME BIT NO. DESCRIPTION

CPUID 7 If = 1, bit 21 of the EFLAG register is write/readable and the CPUID instruction will exe-
cute normally.

If = 0, bit 21 of the EFLAG register is not write/readable and the CPUID instruction is an
invalid opcode.

 31 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

3.3.6 Configuration Control Register 5 (CCR5)

Table 29. Configuration Control Register 5 (CCR5)

B IT 7 BIT 6 B IT 5 BIT 4 B IT 3 B IT 2 B IT 1 B IT 0

Reserved Reserved ARREN Reserved Reserved Reserved Reserved WT_ALLOC

Table 30. CCR5 Bit Definitions

B IT NAME B IT NO. DESCRIPTION

ARREN 5 If = 1, enables all Address Region Registers (ARRs). If clear, disables the ARR registers.
If SM3 is set, ARR3 is enabled regardless of the ARREN setting.

WT_ALLOC 0 If = 1, new cache lines are allocated for both read misses and write misses. If = 0, new
cache lines are only allocated on read misses.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 32

Running H/F 2

3.3.7 Configuration Control Register 6 (CCR6)

Table 31. Configuration Control Register 6 (CCR6)

B IT 7 BIT 6 B IT 5 BIT 4 B IT 3 B IT 2 B IT 1 B IT 0

Reserved Reserved Reserved Reserved Reserved Reserved WP_ARR3 SMM_MODE

Table 32. CCR6 Bit Definitions

B IT NAME B IT NO. DESCRIPTION

WP_ARR3 1 If = 1: Memory region defined by ARR3 is write protected when operating outside of
SMM mode.

If = 0: Disable write protection for memory region defined by ARR3.

Reset State = 0.

SMM_MODE 0 If = 1: Enables Cyrix Enhanced SMM mode.

If = 0: Disables Cyrix Enhanced SMM mode.

 33 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

3.3.8 Configuration Control Register 7 (CCR7)

Table 33. Configuration Control Register 7 (CCR7)

B IT 7 BIT 6 B IT 5 B IT 4 BIT 3 BIT 2 BIT 1 B IT 0

Reserved Reserved Reserved 3DNOW_EN Reserved Reserved Reserved Reserved

Table 34. CCR7 Bit Definitions

B IT NAME B IT NO. DESCRIPTION

3DNOW_EN 4 If = 1: 3DNOW instruction set is enabled

If = 0: 3DNOW instruction set it disabled

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 34

Running H/F 2

3.3.9 Table Walk Register 0 (TWR0)

Table 35. Table Walk Register 0 (TWR0)

B IT 7 BIT 6 B IT 5 B IT 4 BIT 3 BIT 2 BIT 1 B IT 0

Reserved Reserved Reserved CACHE_TE Reserved Reserved Reserved Reserved

Table 36. TWR0 Bit Definitions

B IT NAME B IT NO. DESCRIPTION

CACHE_TE 4 If = 1: Cache Page Table Entries and Directory Table Entries. This is a performance
enhancement

If = 0:Do not cache table entries. Performance will be less.

 35 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

3.4 Address Region Registers (ARR0-7)

The Address Region Registers (ARRs) are used to define up to eight memory address regions. Each ARR
has three 8-bit registers associated with it which define the region starting address and block size. The Table
“ARRx Index Assignments” below shows the general format for each ARR and lists the index assignments
for the ARR’s starting address and block size.

The region starting address is defined by the upper 12 bits of the physical address. The region size is defined
by the BSIZE(3-0) bits as shown in the Table “BSIZE (3-0) Bit Definitions” on the next page. The BIOS
and/or its utilities should allow definition of all ARRs. There is one restriction when defining the address
regions using the ARRs. The region starting address must be on a block size boundary. For example, a
128KByte block is allowed to have a starting address of 0KBytes, 128KBytes, 256KBytes, and so on.

Table 37. ARRx Index Assignments

ADD RESS

REGION
REGISTER

STA RTING ADDRESS
REGION

BLOC K SIZE

A31-A24 A23-A16 A15-A12 BSIZE(3-0)

B ITS (7-0) B ITS (7-0) B ITS (7-4) B ITS (3-0)

ARR0 C4h C5h C6h

ARR1 C7h C8h C9h

ARR2 CAh CBh CCh

ARR3 CDh CEh CFh

ARR4 D0h D1h D2h

ARR5 D3h D4h D5h

ARR6 D6h D7h D8h

ARR7 D9h DAh DBh

ARR8 A4h A5h A6h

ARR9 A7h A8h A9h

ARRA AAh ABh ACh

ARRB ADh AEh AFh

ARRC D0h D1h D2h

ARRD D3h D4h D5h

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 36

Running H/F 2

3.5 Region Control Registers (RCR0-D)

The RCRs are used to define attributes, or characteristics, for each of the regions defined by the ARRs. Each
ARR has a corresponding RCR with the general format shown below.

New to the Cyrix III is the Invert Region feature. This feature is controlled by the INV_RGN bit of the
Region Control Registers.

If the INV_RGN bit is set, the controls specified in the RCR (RCD, WT, WG, WP) will be applied to all
memory addresses outside the region specified in the corresponding ARR.

If the INV_RGN bit is cleared, the Cyrix III functions identically to the 6x86 and MII (the controls specified
in the RCR will be applied to all memory addresses inside the region specified by the corresponding ARR).

Table 38. BSIZE (3-0) Bit Definitions

BSIZE(3-0)
ARR(0-6)

REGION SIZE

ARR(7-D)
REGION S IZE

0h

1h

2h

3h

4h

5h

6h

7h

8h

9h

Ah

Bh

Ch

Dh

Eh

Fh

Disabled

4 KBytes

8 KBytes

16 KBytes

32 KBytes

64 KBytes

128 KBytes

256 KBytes

512 KBytes

1 MByte

2 MBytes

4 MBytes

8 MBytes

16 MBytes

32 MBytes

4 GBytes

Disabled

256 KBytes

512 KBytes

1 MByte

2 MBytes

4 MBytes

8 MBytes

16 MBytes

32 MBytes

64 MBytes

128 MBytes

256 MBytes

512 MBytes

1 GBytes

2 GBytes

4 GBytes

 37 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

The INV_RGN bit is defined for RCR(0-6) only. 6x86 Weak Write Ordering and Local Bus Access features
have been eliminated on the Cyrix III. Therefore, bit 5 and bit 1 are reserved bits for the Cyrix III.

Note: RCD is defined for RCR0-RCR6. and RCR8-RCRD. RCE is defined for RCR7 only.

Table 39. RCR Bit Definitions

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Reserved INV_RGN Reserved WT WG WP Reserved RCD/RCE

Table 40. RCR Bit Definitions

B IT NAME B IT NO. DESCRIPTION

RCD 0 Applicable to RCR(0-6) only. If set, the address region specified by the corresponding
ARR is non-cacheable.

RCE 0 Applicable to RCR7 only. If set, the address region specified by ARR7 is cacheable and
implies that address space outside of the region specified by ARR7 is non-cacheable.

W P 2 If set, write protect is enabled for the corresponding region.

W G 3 If set, write gathering is enabled for the corresponding region.

W T 4 If set, write through caching is enabled for the corresponding region.

INV_RGN 6 Applicable to RCR(0-6) only. If set, apply controls specified in RCR to all memory
addresses outside the region specified in the corresponding ARR.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 38

Running H/F 2

3.5.1 Detailed Description of RCR Attributes

Region Cache Disable (RCD)

Setting RCD=1 defines the corresponding address region as non-cacheable. RCD prevents caching of any
access within the specified region. Additionally, RCD implies that high performance features are disabled
for accesses within the specified address region.

Region Cache Enable (RCE)
Setting RCE=1 defines the corresponding address region as cacheable. RCE is applicable to ARR7 only.
RCE in combination with ARR7, is intended to define the Main Memory Region. All memory outside
ARR7 is non-cacheable when RCE is set. This is intended to define all unused memory space as non-cache-
able.

Write Protect (WP)
Setting WP=1 enables write protect for the corresponding address region. With WP enabled, The memory
region is treated as read-only when cached into the cpu cache. During a cache-hit write, the cache will not be
modified. The data will still be written through to main memory however, and it is up to the chipset memory
controller to ignore the main memory write if necessary. This is useful for caching of shadowed ROM data.

Write Gathering (WG)

Setting WG=1 enables write gathering for the corresponding address region. With WG enabled, multiple
byte, word or dword writes to sequential addresses that would normally occur as individual write cycles are
combined and issued as a single write cycle. WG improves bus utilization and should be used for memory
regions that are not sensitive to the “gathering.” WG can be enabled for both cacheable and non-cacheable
regions.

Write Through (WT)
Setting WT=1 defines the corresponding address region as write-through instead of write-back. Any system
ROM that is allowed to be cached by the processor should be defined as write-through.

Note that only one of these properties may be set per region. These are mutually exclusive memory type def-
initions, not properties that can be combines. For example WP basically means read only, thus write gather-
ing and write though are irrelevant. WT means update main memory immediately upon writes, thus this
excludes write gathering. Write gathering also defines when to write out data onto the bus, thus violating
normal write back cache mode.

 39 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

3.5.2 Attributes for Accesses Outside Defined Regions

If an address is accessed that is not in a region defined by the ARRs and ARR7 is defined with RCE=1, the
following conditions apply:

• The memory access is not cached.

• Writes are not gathered.

• Strong write ordering occurs.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 40

Running H/F 2

3.5.3 Attributes for Accesses in Overlapped Regions

If two defined address regions overlap (including NC1 and LBR1) and conflicting attributes are specified,
the following attributes take precedence:

• Write-back is disabled.

• Writes are not gathered.

• Strong write ordering occurs.

• The overlapping regions are non-cacheable.

Since the CCR0 bit NC1 affects cacheability, a potential exists for conflict with the ARR7 main memory
region which also affects cacheability. This overlap in address regions causes a conflict in cacheability. In
this case, NC1 takes precedence over the ARR7/RCE setting because non-cacheability always takes prece-
dence. For example, for the following settings:

• NC1=1

• ARR7 = 0-16 MBytes

• RCR7 bit RCE = 1

The Cyrix III caches accesses as shown in the table below.

Table 41. Cacheability for Example 1

ADDRESS REGION CACHEABLE COM MEN TS

0 to 640 KBytes Yes ARR7/RCE setting.

640 KBytes- 1 MByte No NC1 takes precedence over ARR7/
RCE setting.

1 MByte - 16 MBytes Yes ARR7/RCE setting.

16 MBytes - 4 GBytes No Default setting.

 41 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

3.6 BIOS Core-to-Bus Clock Ratio Configuration Registers

Index: 48h
Default Value:
Access: Read/Write
MAPEN: 0100b

Index: 49h
Default Value:
Access: Read/Write
MAPEN: 0100b

These registers may be used for motherboards that do not have jumpers for selecting the clock ratios. The
following flowchart illustrates the procedure to set the clock multiplier through BIOS.

BIT NAME DESCRIPTION

7 HOTRST_TRIGGERED A read/write bit used to indicate to the BIOS whether hot reset has
been triggered or not. Default value is 0.

6 Reserved. 0

5:4 BSEL[1- 0] Indicate the P6 bus speed.

3:0 BIOS_CLKRATIO[3-0] Core-to-bus clock ratio as described below.

 BITS (3:0) CLOCK RATIO

4h 2.5

1h 3.0

5h 3.5

2h 4.0

6h 4.5

3h 5.0

7h 5.5

8h 6.0

Ah 6.5

9h 7.0

Bh 7.5

BIT NAME DESCRIPTION

7:1 Reserved

0 BIOS_HOTRESET Writing a 1 to this bit will start the internal reset sequence to the PLL
and load the BIOS_CLKRATIO(3-0) value to the PLL.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 42

Running H/F 2

Program CCR2 bit(3) to 1 to enable suspend on HALT.

Program index register 48h bit(3:0) to the desired clock
ratio, and set bit(7) to 1 to remember that clock ratio has
been programmed.

Program index register 49h bit(0) to 1 to initiate the hot
reset sequence. This bit will be reset automatically upon
the deassertion of hot reset.

 Execute a HALT Instruction

Is Index register 48h bit(7) set to 1?
Yes

No

Continue Boot Up Procedure

 43 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

3.7 L2 Cache Control

Index: 41h
Default Value:
Access: Read/Write
MAPEN: 0100b

BIT NAME DESCRIPTION

3 L2_WT L2 Write Through. All L1 evictions (cache line writes) are
not stored in the L2. If the evicted cache line is modified, the
cache line is written to the P6 bus. If the cache line is in the
shared or exclusive state, it is discarded.

2 L2_ENABLE L2 Enable. All L2 accesses (reads, writes or snoops) will
miss the L2. An eviction from the L1 (cache line write) will
not update the L2. A WBINV instruction must be generated
when changing this bit from a 1 to a 0. The POR value of this
bit is 0.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 44

Running H/F 2

4. PC Memory Model

The table below defines the allowable attributes for a typical PC memory model. Actual recommended con-
figuration register settings for a typical PC system are listed in AppendixF.

Notes 1: Video Buffer Area

A non-cacheable region must be used to enforce strong cycle ordering in this area and to prevent caching of Video RAM. The
Video RAM area is sensitive to bus cycle ordering. The VGA controller can perform logical operations which depend on strong
cycle ordering (found in Windows 3.1 code). To guarantee that the Cyrix III performs strong cycle ordering, a non-cacheable area
must be established to cover the Video RAM area.

Video performance is greatly enhanced by gathering writes to Video RAM. For example, video performance benchmarks have
been found to use REP STOSW instructions that would normally execute as a series of sequential 16-bit write cycles. With WG
enabled, groups of four 16-bit write cycles are reduced to a single 64-bit write cycle.

Table 42. PC Memory Model

ADDRESS
SPACE

ADDRESS
RANGE

CACHEABLE
WRITE

 PROTECTED

WRITE
GATH-
ERED

WRITE-
THROUGH

NOTES

DOS Area 0-9 FFFFh Yes No No No

Video Buffer A 0000-B FFFFh No No Yes No Note 1

Video ROM C 0000-C 7FFFh Yes Yes No No Note 2

Expansion
Card/ROM
Area

C 8000h-D FFFFh No No No No

System ROM E 0000h-F FFFFh Yes Yes No No Note 2

Extended
Memory

10 0000h-

Top of Main Mem-
ory

Yes No Yes No

Unused/PCI
MMIO

Top of Main Mem-
ory-FFFF FFFFh

No No No No Note 3

 45 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

Note 2: Video ROM and System ROM

Caching of the Video and System ROM areas is permitted, but is normally non-cacheable because NC1 is set. If these areas are
cached, they must be cached as write-through regions. Cyrix III system benchmarking in a Windows environment has shown no
benefit to caching these ROM areas. Therefore, it is recommended that these areas be set as non-cacheable using the NC1 bit in
CCR0.

Note 3: Top of Main Memory-FFFF FFFFh (Unused/PCI Memory Space)

Unused/PCI Memory Space immediately above physical main memory must be defined as non-cacheable to ensure proper opera-
tion of memory sizing software routines and to guarantee strong cycle ordering. Memory discovery routines must occur with cache
disabled to prevent read sourcing from the write buffers. Also, PCI memory mapped I/O cards that may exist in this address region
may contain control registers or FIFOs that depend on strong cycle ordering.

The appropriate non-cacheable region must be established using ARR7. For example, if 32 MBytes (000 0000h-1FF FFFFh) are
installed in the system, a non-cacheable region must begin at the 32 MByte boundary (200 0000h) and extend through the top of
the address space (FFFF FFFFh). This is accomplished by using ARR7 (Base = 0000 0000h, BSize = 32 MBytes) in combination
with RCE=1.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 46

Running H/F 2

4.1 General Recommendations

4.1.1 Main Memory

Memory discovery routines should always be executed with the L1 cache disabled. By default, L1 caching is
globally disabled following reset because the CD bit in Control Register 0 (CR0) is set. Always ensure the
L1 cache is disabled by setting the CD bit in CR0 or by programming an ARR to “4 GByte cache disabled”
before executing the memory discovery routine. Once BIOS completes memory discovery, ARR7 should be
programmed with a base address of 000 0000h and with a “Size” equal to the amount of main memory that
was detected.

The intent of ARR7 is to define a cacheable region for main memory and simultaneously define unused/PCI
space as non-cacheable. More restrictive regions are intended to overlay the 640k to 1MByte area. Failure to
program ARR7 with the correct amount of main memory can result in:

• Incorrect memory sizing by the operating system eventually resulting in failure,

• PCI devices not working correctly or causing the system to hang,

• Low performance if ARR7 is programmed with a smaller size than the actual amount of memory.

If the granularity selection in ARR7 does not accommodate the exact size of main memory, unused ARRs
can be used to fill-in as non-cacheable regions. All unused/PCI memory space must always be set as non-
cacheable.

 47 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

4.1.2 BIOS Creation Utilities

BIOS creation utilities or setup screens must have the capability to easily define and modify the contents of
the Cyrix III configuration registers. This allows OEMs and integrators to easily configure these register set-
tings with the values appropriate for their system design.

4.2 Recommended Bit Settings

4.2.1 NC1

The NC1 bit in CCR0 controls the predefined non-cacheable region from 640K to 1MByte. The 640K to
1MByte region should be non-cacheable to prevent L1 caching of expansion cards using memory mapped I/
O (MMIO). Setting NC1 also implies that the video BIOS and system BIOS are non-cacheable. Experiments
with both the Cyrix III and Pentium CPUs have shown that performance is largely unchanged whether the
video BIOS and system BIOS was cached or not. This assumes that a modern operating system was used
and that the measurements are taken with a recent benchmark applications, such as WinStone95.

Recommended setting: NC1 = 1

4.2.2 LOCK_NW

Once set, LOCK_NW prohibits software from changing the NW bit in CR0. Since the definition of the NW
bit is the same for both the Cyrix III and the Pentium, it is not necessary to set this bit.

Recommended setting: LOCK_NW = 0

4.2.3 WPR1

WPR1 forces cacheable accesses in the 640k to 1MByte address region to be write-protected. If NC1 is set
(recommended setting), all caching is disabled from 640k to 1MByte and WPR1 is not required. However, if
ROM areas within the 640k-1MByte address region are cached, WPR1 should be set to protect against
errant self-modifying code.

Recommended setting: WPR1 = 0 unless ROM areas are cached

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 48

Running H/F 2

4.2.4 MAPEN

When set to 1h, the MAPEN bits allow access to all Cyrix III configuration registers including indices out-
side the C0h-CFh and FCh-FFh ranges. MAPEN should be set to 1h only to access specific configuration
registers and then should be cleared immediately after the access is complete.

Recommended setting: MAPEN(3-0) = 0 except for specific configuration register accesses

4.2.5 CPUID

When set, the CPUID bit enables the CPUID instruction. By default, the CPUID instruction is enabled
(CPUID = 1).

When enabled, the CPUID opcode is enabled and the CPUID bit in the EFLAGS can be modified. The
CPUID instruction can then be called to inspect the type of CPU present.

When the CPUID instruction is disabled (CPUID = 0), the CPUID opcode 0FA2 causes an invalid opcode
exception. Additionally, the CPUID bit in the EFLAGS register cannot be modified by software.

Recommended setting: CPUID = 1

4.2.6 WT_ALLOC

Write Allocate (WT_ALLOC) allows L1 cache write misses to cause a cache line allocation. This feature
improves the L1 cache hit rate resulting in higher performance. Especially useful for Windows applications.

Recommended setting: WT_ALLOC = 1

4.2.7 ARREN

The ARREN bit enables or disables all eight ARRs. When ARREN is cleared (default), the ARRs can be
safely programmed. Most systems will need to use at least one address region register (ARR). Therefore,
ARREN should always be set after the ARRs and RCRs have been initialized.

Recommended setting: ARREN = 1 after initializing ARR0-ARR7, RCR0-RCR7

 49 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

4.2.8 ARR7 and RCR7

Address Region 7 (ARR7) defines the Main Memory Region (MMR). This region specifies the amount of
cacheable main memory and it’s attributes. Once BIOS completes memory discovery, ARR7 should be
programmed with a base address of 000 0000h and with a “Size” equal to the amount of main memory
installed in the system. Memory accesses outside of this region are defined as non-cacheable to ensure com-
patibility with PCI devices.

Recommended settings:
ARR7 Base Addr= 0000 0000h
ARR7 Block Size= amount of main memory
RCR7 RCE = 0
RCR7 WL = 0
RCR7 WG = 1
RCR7 WT = 0

If the granularity selection in ARR7 does not accommodate the exact size of main memory, unused ARRs
can be used to fill-in as non-cacheable regions (RCD = 1) as shown in the table below. All unused/PCI mem-
ory space must always be set as non-cacheable.

Table 43. ARR Settings for Various Main Memory Sizes

MEM ARR7 ARR6 ARR5 ARR4

SIZE
(MB)

BASE
(HEX)

SIZE
(MB)

BASE
(HEX)

SIZE
(MB)

BASE
(HEX)

SIZE
(MB)

BASE
(HEX)

SIZE
(MB)

8 0 8

16 0 16

24 0 32 0180 0000 8

32 0 32

40 0 64 0300 0000 16 0280 0000 8

48 0 64 0300 0000 16

64 0 64

72 0 128 0600 0000 32 0500 0000 16 0480 0000 8

80 0 128 0600 0000 32 0500 0000 16

96 0 128 0600 0000 32

128 0 128

160 0 256 0E00 0000 32 0C00 0000 32 0A00 0000 32

192 0 256 0E00 0000 32 0C00 0000 32

256 0 256

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 50

Running H/F 2

4.2.9 Regions above Main Memory

Memory regions above main memory such as memory mapped i/o and write gathering or write combining
regions for video memory can be setup using ARRs as well. The memory map table below gives an example
of how to setup entire memory up to 4G to include physical memory, i/o space, write gathering regions for
video, and uncacheable unused space.

ADDRESS SPACE ARR START SIZE
RCR

BIT(7)
RCD/E

RCR
BIT(2)

WP

RCR
BIT(3)
WG

RCR
BIT(4)

WT

Main Memory ARR7 0 Physical
Memory

1 0 0 0

Memory mapped i/o space ARR8 Physical
Memory

i/o space
size

1 0 0 0

Write gathering region ARR9 i/o space
top

Write
Gathering
region size

0 0 1 0

Uncacheable region ARRA Write
Gathering
region top

4G minus
top of
Write

Gathering
Region

1 0 0 0

 51 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

4.2.10 SMM Features

The Cyrix III supports SMM mode through the use of the SMI# and SMIACT# pins, and a dedicated mem-
ory region for the SMM address space. SMM features must be enabled prior to servicing any SMI interrupts.
The following paragraphs describe each of the SMM features and recommended settings.

SM3 and ARR3
Address Region Register 3 (ARR3) can be used to define the System Management Address Region
(SMAR). Systems that use SMM features must use ARR3 to establish a base and limit for the SMM
address space.

Only ARR3 can be used to establish the SMM region.

Typically, SMAR overlaps normal address space. RCR3 defines the attributes for both the SMM address
region and the normal address space. If SMAR overlaps main memory, write gathering should be enabled
for ARR3. If SMAR overlaps video memory, ARR3 should be set as non-cacheable and write gathering
should be enabled.

NMI_EN
The NMI_EN bit allows NMI interrupts to occur within an SMI service routine. If this feature is enabled, the
SMI service routine must guarantee that the IDT is initialized properly to allow the NMI to be serviced.
Most systems do not require this feature.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 52

Running H/F 2

SMI_LOCK
Once the SMM features are initialized in the configuration registers, they can be permanently locked using
the SMI_LOCK bit. Locking the SMM related bits and registers prevents applications from tampering with
these settings. Even if SMM is not implemented, setting SMI_LOCK in combination with SMAC=0 pre-
vents software SMIs from occurring.

Once SMI_LOCK is set, it can only be cleared by a processor RESET. Consequently, setting SMI_LOCK
makes system/BIOS/SMM debugging difficult. To alleviate this problem, SMI_LOCK must be imple-
mented as a user selectable “Secure SMI (enable/disable)” feature in CMOS setup. If SMI_LOCK is not
user selectable, it is recommended that SMI_LOCK = 0 to allow for system debug.

Suggested settings for systems not using SMM:

SM3 = 0
ARR3 = may be used as normal address region register
SMI_LOCK = 0
NMI_EN = 0

Suggested settings for systems using SMM:

SM3 = 1
ARR3 Base Addr = as required
ARR3 Block Size = as required
SMI_LOCK = 0
NMI_EN = 0

4.2.11 Power Management Features

SUSP_HALT
Suspend on Halt (SUSP_HLT) permits the CPU to enter a low power suspend mode when a HLT instruction
is executed. Although this provides some power management capability, it is not optimal.

Suggested setting:
SUSP_HALT = 1

 53 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

5. Model Specific Registers

The Cyrix III contains four model specific registers (MSR0 - MSR3). These 64-bit registers are listed in the
table below.

The MSR registers can be read using the RDMSR instruction, opcode 0F32h. During an MSR register read,
the contents of the particular MSR register, specified by the ECX register, is loaded into the EDX:EAX reg-
isters.
The MSR registers can be written using the WRMSR instruction, opcode 0F30h. During a MSR register
write the contents of EDX:EAX are loaded into the MSR register specified in the ECX register.

The RDMSR and WRMSR instructions are privileged instructions.

5.1 Time Stamp Counter

The Time Stamp Counter (TSC) Register (MSR10) is a 64-bit counter that counts the internal CPU clock
cycles since the last reset. The TSC uses a continuous CPU core clock and will continue to count clock
cycles even when the Cyrix III is suspend mode or shutdown.
The TSC can be accessed using the RDMSR and WRMSR instructions. In addition, the TSC can be read
using the RDTSC instruction, opcode 0F31h. The RDTSC instruction loads the contents of the TSC into
EDX:EAX. The use of the RDTSC instruction is restricted by the Time Stamp Disable, (TSD) flag in CR4.
When the TSD flag is 0, the RDTSC instruction can be executed at any privilege level. When the TSD flag
is 1, the RDTSC instruction can only be executed at privilege level 0.

5.2 Performance Monitoring

Performance monitoring allows counting of over a hundred different event occurrences and durations. Two
48-bit counters are used: Performance Monitor Counter 0 and Performance Monitor Counter 1. These two
performance monitor counters are controlled by the Counter Event Control Register (MSR11). The perfor-

Table 44. Machine Specific Register

REGISTER
 DESCRIPTION

MSR
ADDRESS

REGISTER

Time Stamp Counter (TSC) 10h MSR10

Counter Event Selection and
Control Register

11h MSR11

Performance Counter #0 12h MSR12

Performance Counter #1 13h MSR13

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 54

Running H/F 2

mance monitor counters use a continuous CPU core clock and will continue to count clock cycles even when
the Cyrix III is in suspend mode or shutdown.

5.3 Performance Monitoring Counters 1 and 2

The 48-bit Performance Monitoring Counters (PMC) Registers (MSR12, MSR13) count events as specified
by the counter event control register.
The PMCs can be accessed by the RDMSR and WRMSR instructions. In addition, the PMCs can be read by
the RDPMC instruction, opcode 0F33h. The RDPMC instruction loads the contents of the PMC register
specified in the ECX register into EDX:EAX. The use of RDPMC instructions is restricted by the Perfor-
mance Monitoring Counter Enable, (PCE) flag in C4.
When the PCE flag is set to 1, the RDPMC instruction can be executed at any privilege level. When the PCE
flag is 0, the RDPMC instruction can only be executed at privilege level 0.

5.4 Counter Event Control Register

Register MSR 11h controls the two internal counters, #0 and #1. The events to be counted have been chosen
based on the micro-architecture of the Cyrix III processor. The control register for the two event counters is
described on page 46.

 55 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

5.5 Performance Monitor Control

5.5.1 Counter Type Control

The Counter Type bit determines whether the counter will count clocks or events. When counting clocks the
counter operates as a timer.

5.5.2 CPL Control

The Current Privilege Level (CPL) can be used to determine if the counters are enabled. The CP02 bit in the
MSR 11 register enables counting when the CPL is less than three, and the CP03 bit enables counting when
CPL is equal to three. If both bits are set, counting is not dependent on the CPL level; if neither bit is set,
counting is disabled.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 56

Running H/F 2

2
6

2
5

2
4

2
3

2
2

21 16 15 10 9 8 7 6 5 0

T
C
1
*

P
M
1

C
T
1

C
P
1
3

C
P
1
2

TC1* RESERVED T
C
0
*

P
M
0

C
T
0

C
P
0
3

C
P
0
2

TC0*

*Note: Split Fields

Table 45. Counter Event Control Register

Table 46. Counter Event Control Register Bit Definitions

BIT
POSITION

NAME DESCRIPTION

25 RSV Reserved

24 CT1 Counter #1 Counter Type
If = 1: Count clock cycles
If = 0: Count events (reset state).

23 CP13 Counter #1 CPL 3 Enable
If = 1: Enable counting when CPL=3.
If = 0: Disable counting when CPL=3. (reset state)

22 CP12 Counter #1 CPL Less Than 3 Enable
If = 1: Enable counting when CPL < 3.
If = 0: Disable counting when CPL < 3. (reset state)

26, 21 - 16 TC1(5-0) Counter #1 Event Type
Reset state = 0

9 RSV Reserved

8 CT0 Counter #0 Counter Type
If = 1: Count clock cycles
If = 0: Count events (reset state).

7 CP03 Counter #0 CPL 3 Enable
If = 1: Enable counting when CPL=3.
If = 0: Disable counting when CPL=3. (reset state)

6 CP02 Counter #0 CPL Less Than 3 Enable
If = 1: Enable counting when CPL < 3.
If = 0: Disable counting when CPL < 3. (reset state)

10, 5 - 0 TC0(5-0) Counter #0 Event Type
Reset state = 0

Note: Bits 10 - 15 are reserved.

 57 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

5.5.3 Event Type and Description

The events that can be counted by the performance monitoring counters are listed in Figure 47. Each of the
127 event types is assigned an event number. A particular event number to be counted is placed in one of
the MSR 11 Event Type fields. There is a separate field for counter #0 and #1.

The events are divided into two groups. The occurrence type events and duration type events. The occur-
rence type events, such as hardware interrupts, are counted as single events. The duration type events such
as “clock while bus cycles are in progress” count the number of clock cycles that occur during the event.

During occurrence type events, the PM pins are configured to indicate the counter has incremented The PM
pins will then assert every time the counter increments in regards to an occurrence event. Under the same
PM control, for a duration event the PM pin will stay asserted for the duration of the event.

Table 47. Event Type Register

NUMBER
COUNTER

0
COUNTER

1
DESCRIPTION TYPE

00h yes yes Data Reads Occurrence

01h yes yes Data Writes Occurrence

02h yes yes Data TLB Misses Occurrence

03h yes yes Cache Misses: Data Reads Occurrence

04h yes yes Cache Misses: Data Writes Occurrence

05h yes yes Data Writes that hit on Modified or Exclusive Liens Occurrence

06h yes yes Data Cache Lines Written Back Occurrence

07h yes yes External Inquiries Occurrence

08h yes yes External Inquires that hit Occurrence

09h yes yes Memory Accesses in both pipes Occurrence

0Ah yes yes Cache Bank conflicts Occurrence

0Bh yes yes Misaligned data references Occurrence

0Ch yes yes Instruction Fetch Requests Occurrence

0Dh yes yes L2 TLB Code Misses Occurrence

0Eh yes yes Cache Misses: Instruction Fetch Occurrence

0Fh yes yes Any Segment Register Load Occurrence

10h yes yes Reserved Occurrence

11h yes yes Reserved Occurrence

12h yes yes Any Branch Occurrence

13h yes yes BTB hits Occurrence

14h yes yes Taken Branches or BTB hits Occurrence

15h yes yes Pipeline Flushes Occurrence

16h yes yes Instructions executed in both pipes Occurrence

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 58

Running H/F 2

17h yes yes Instructions executed in Y pipe Occurrence

18h yes yes Clocks while bus cycles are in progress Duration

19h yes yes Pipe Stalled by full write buffers Duration

1Ah yes yes Pipe Stalled by waiting on data memory reads Duration

1Bh yes yes Pipe Stalled by writes to not-Modified or not-Exclusive cache
lines.

Duration

1Ch yes yes Locked Bus Cycles Occurrence

1Dh yes yes I/O Cycles Occurrence

1Eh yes yes Non-cacheable Memory Requests Occurrence

1Fh yes yes Pipe Stalled by Address Generation Interlock Duration

20h yes yes Reserved

21h yes yes Reserved

22h yes yes Floating Point Operations Occurrence

23h yes yes Breakpoint Matches on DR0 register Occurrence

24h yes yes Breakpoint Matches on DR1 register Occurrence

25h yes yes Breakpoint Matches on DR2 register Occurrence

26h yes yes Breakpoint Matches on DR3 register Occurrence

27h yes yes Hardware Interrupts Occurrence

28h yes yes Data Reads or Data Writes Occurrence

29h yes yes Data Read Misses or Data Write Misses Occurrence

2Bh yes no MMX Instruction Executed in X pipe Occurrence

2Bh no yes MMX Instruction Executed in Y pipe Occurrence

2Dh yes no EMMS Instruction Executed Occurrence

2Dh no yes Transition Between MMX Instruction and FP Instructions Occurrence

2Eh no yes Reserved

2Fh yes no Saturating MMX Instructions Executed Occurrence

2Fh no yes Saturations Performed Occurrence

30h yes no Reserved

31h yes no MMX Instruction Data Reads Occurrence

32h yes no Reserved

32h no yes Taken Branches Occurrence

33h no yes Reserved

34h yes no Reserved

34h no yes Reserved

35h yes no Reserved

35h no yes Reserved

36 yes no Reserved

36 no yes Reserved

37 yes no Returns Predicted Incorrectly Occurrence

Table 47. Event Type Register

NUMBER
COUNTER

0
COUNTER

1
DESCRIPTION TYPE

 59 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

37 no yes Return Predicted (Correctly and Incorrectly) Occurrence

38 yes no MMX Instruction Multiply Unit Interlock Duration

38 no yes MODV/MOVQ Store Stall Due to Previous Operation Duration

39 yes no Returns Occurrence

39 no yes RSB Overflows Occurrence

3A yes no BTB False Entries Occurrence

3A no yes BTB Miss Prediction on a Not-Taken Back Occurrence

3B yes no Number of Clock Stalled Due to Full Write Buffers While
Executing

Duration

3B no yes Stall on MMX Instruction Write to E or M Line Duration

3C - 3Fh yes yes Reserved Duration

40h yes yes L2 TLB Misses (Code or Data) Occurrence

41h yes yes L1 TLB Data Miss Occurrence

42h yes yes L1 TLB Code Miss Occurrence

43h yes yes L1 TLB Miss (Code or Data) Occurrence

44h yes yes TLB Flushes Occurrence

45h yes yes TLB Page Invalidates Occurrence

46h yes yes TLB Page Invalidates that hit Occurrence

47h yes yes Reserved

48h yes yes Instructions Decoded Occurrence

49h yes yes Reserved

Table 47. Event Type Register

NUMBER
COUNTER

0
COUNTER

1
DESCRIPTION TYPE

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 60

Running H/F 2

6. Programming Model Differences

6.1 Instruction Set

The Cyrix III supports the Pentium Pro instruction set plus MMX instructions. Pentium extensions for vir-
tual mode are not supported.

6.2 Configuring Internal Cyrix III Features

The Cyrix III supports configuring internal features through I/O ports.

6.3 INVD and WBINVD Instructions

The INVD and WBINVD instructions are used to invalidate the contents of the internal and external caches.
The WBINVD instruction first writes back any modified lines in the cache and then invalidates the contents.
It ensures that cache coherency with system memory is maintained regardless of the cache operating mode.
Following invalidation of the internal cache, the CPU generates a special bus cycle to indicate that external
caches should also write back modified data and invalidate their contents.

On the Cyrix III, the INVD functions differently from the WBINVD instruction. If the L2 is enabled, the
Cyrix III will just invalidate the internal cache contents.

6.4 Control Register 0 (CR0) CD and NW Bits

The CPU’s CR0 register contains, among other things, the CD and NW bits which are used to control the on-
chip cache. CR0, like the other system level registers, is only accessible to programs running at the highest
privilege level. The table on the following page lists the cache operating modes for all possible states of the
CD and NW bits.

The CD and NW bits are set to one (cache disabled) after reset. For highest performance the cache should be
enabled in write-back mode by clearing the CD and NW bits to 0. Sample code for enabling the cache is
listed in Appendix E. To completely disable the cache, it is recommended that CD and NW be set to 1 fol-
lowed by execution of the WBINVD instruction. The Cyrix III cache always accepts invalidation cycles
even when the cache is disabled. Setting CD=0 and NW=1 causes a General Protection fault on the Pentium,
but is allowed on the Cyrix III to globally enable write-through caching.

 61 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

Table 48. Cache Operating Modes

CD NW OPERATING MODES

1 1 Cache disabled.
Read hits access the cache.
Read misses do not cause line fills.
Write hits update the cache and system memory.
Write hits change exclusive lines to modified.
Shared lines remain shared after write hit.
Write misses access memory.
Inquiry and invalidation cycles are allowed.
System memory coherency maintained.

1 0 Cache disabled.
Read hits access the cache.
Read misses do not cause line fills.
Write hits update the cache.
Only write hits to shared lines and write misses update system memory.
Write misses access memory.
Inquiry and invalidation cycles are allowed.
System memory coherency maintained.

0 1 Cache enabled in Write-through mode.
Read hits access the cache.
Read misses may cause line fills.
Write hits update the cache and system memory.
Write misses access memory.
Inquiry and invalidation cycles are allowed.
System memory coherency maintained.

0 0 Cache enabled in Write-back mode.
Read hits access the cache.
Read misses may cause line fills.
Write hits update the cache.
Write misses access memory and may cause line fills if write allocation is
enabled.
Inquiry and invalidation cycles are allowed.
System memory coherency maintained.

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 62

Running H/F 2

7. Appendixes

Appendix A.- Sample Code: Detecting a Cyrix CPU

assume cs:_TEXT
public _iscyrix
_TEXT segment byte public ‘CODE’
;***
; Function: int iscyrix ()
;
; Purpose: Determine if Cyrix CPU is present
; Technique: Cyrix CPUs do not change flags where flags
; change in an undefined manner on other CPUs
; Inputs: none
; Output: ax == 1 Cyrix present, 0 if not
;***
_iscyrix proc near

.386
xor ax, ax ; clear ax
sahf ; clear flags, bit 1 always=1 in flags
mov ax, 5
mov bx, 2
div bl ; operation that doesn’t change flags
lahf ; get flags
cmp ah, 2 ; check for change in flags
jne not_cyrix ; flags changed, therefore NOT CYRIX
mov ax, 1 ; TRUE Cyrix CPU
jmp done

not_cyrix:
mov ax, 0 ; FALSE NON-Cyrix CPU

done:
ret

_iscyrix endp
_TEXT ends
end

 63 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

Appendix B. Sample Code: Determining CPU MHz

assume cs:_TEXT
public _cpu_speed
_TEXT segment para public 'CODE'

comment~
**
 Function: unsigned long _cpu_speed(unsigned int)
 "C" style caller
 Purpose: calculate elapsed time req'd to complete a loop of IDIVs

 Technique: Use the PC's high resolution timer/counter chip (8254)
 to measure elapsed time of a software loop consisting
 of the IDIV and LOOP instruction.
 Definitions: The 8254 receives a 1.19318MHz clock (0.8380966 usec).
 One "tick" is equal to one rising clock edge applied

 to the 8254 clock input.

 Inputs: ax = no. of loops for cpu_speed_loop
 Returns: ax = no. of 1.19318MHz clk ticks req'd to complete a loop
 dx = state of 8254 out pin
***~
PortB EQU 061h
Timer_Ctrl_Reg EQU 043h
Timer_2_Data EQU 042h
stk$dx EQU 10 ;dx register offset
stk$ax EQU 14 ;dx register offset
stack$ax EQU [bp]+stk$ax
stack$dx EQU [bp]+stk$dx
Loop_Count EQU [bp+16]+4

.386p

_cpu_speed proc near
 pushf ;save interrupt flag
 pusha ;pushes 16 bytes on stack
 mov bp,sp ;init base ptr

 cli ;disable interrupts

;-------disable clock to timer/counter 2
 in al, PortB
 and al, 0feh
 out 80h,al ;I/O recovery time
 out PortB, al
 mov di, ax

;-------initialize the 8254 counter to "0", known value
 mov al,0b0h
 out Timer_Ctrl_Reg, al ;control word to set channel 2 count
 out 80h,al ;I/O recovery time
 mov al,0ffh
 out Timer_2_Data, al ;init count to 0, lsb
 out 80h,al ;I/O recovery time

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 64

Running H/F 2

 out Timer_2_Data, al ;init count to 0, msb

;-------get the number of loops from the caller's stack
 mov cx,Loop_Count ;loop count

;-------load dividend & divisor, clk count for IDIV depend on operands!
 xor edx,edx ;dividend EDX:EAX
 xor eax,eax
 mov ebx,1 ;divisor

;-------enable the timer/counter's clock. Begin timed portion of test!
 xchg ax, di ;save ax for moment
 or al, 1
 out PortB, al ;enable timer/counter 2 clk
 xchg ax, di ;restore ax

;-------this is the core loop.
 ALIGN 16
cpu_speed_loop:
 idiv ebx
 idiv ebx
 idiv ebx
 idiv ebx
 idiv ebx
 loop cpu_speed_loop

;-------disable the timer/counter's clk. End timed portion of test!
 mov ax, di
 and al, 0FEH
 out PortB, al

;-------send latch status command to the timer/counter
 mov al, 0c8h ;latch status and count
 out Timer_Ctrl_Reg, al
 out 80h,al ;I/O recovery time

;-------read status byte, and count value "ticks" from the timer/cntr
 in al, Timer_2_Data ;read status
 out 80h,al ;I/O recovery time
 mov dl, al
 and dx, 080h
 shr dx, 7

 in al, Timer_2_Data ;read LSB
 out 80h,al ;I/O recovery time
 mov bl, al
 in al, Timer_2_Data ;read MSB
 out 80h,al ;I/O recovery time
 mov bh, al

 not bx ;invert count

;-------send command to clear the timer/counter
 mov al, 0b6h
 out Timer_Ctrl_Reg, al ;clear channel 2 count
 out 80h,al ;I/O recovery time
 xor al, al

 65 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

 out Timer_2_Data, al ;set count to 0, lsb
 out 80h,al ;I/O recovery time
 out Timer_2_Data, al ;set count to 0, msb

;-------put return values on the stack for the caller
 mov [bp+stk$ax], bx
 mov [bp+stk$dx], dx

 popa
 popf ;restores interrupt flag
 ret
_cpu_speed endp

.8086
_TEXT ENDS
END

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 66

Running H/F 2

Appendix C. Example CPU Type and Frequency Detection Program

/* **
 function: main() WCP 8/22/95
 Purpose: a driver program to demonstrate:
 CPU detection
 CPU core frequency in Mhz.
 Returns: 0 if successful

 Required source code modules
 m1_stat.c main() module (this file)
 id.asm cpu identification code
 clock.asm cpu timing loop

 Compile and Link instructions for Borland C++ or equivalent:
 bcc m1_stat.c id.asm clock.asm
*** */
/* include directives */
 #include <stdio.h>

/* constants */
 #define TTPS 1193182 //high speed Timer Ticks per second in Mhz
 #define MHZ 1000000 //number of clocks in 1 Mhz
 #define LOOP_COUNT 0x2000 //core loop iterations
 #define RUNS 10 //number of runs to average
 #define DIVS 5 //# of IDIV instructions in the core loop
 #define Cyrix III_IDIV_CLKS 17 //known clock counts for Cyrix III
 #define Cyrix III_LOOP_CLKS 1
 #define P54_IDIV_CLKS 46 //known clock counts for P54
 #define P54_LOOP_CLKS 7

/* prototypes */
 unsigned int iscyrix(void); //detects cyrix cpu
 unsigned long cpu_speed(unsigned int); //core timing loop

 main(){

 /* declarations */
 unsigned char uc_cyrix_cpu = 0; //Cyrix cpu? 0=no, 1=yes
 unsigned int i_runs = 0; //number of runs to avg
 unsigned int ui_idiv, ui_loop = 0; //instruction clk counts
 unsigned long ul_tt_cnt, ul_tt_sum = 0; //timer tick counts, sum
 unsigned int ui_core_loop_cntr = LOOP_COUNT; //core loop iterations
 float f_mtt = 0; //measured timer ticks
 float f_total_core_clks = 0; //calculated core clocks
 float f_total_time = 0; //measured time
 float f_mhz = 0; //mhz

/* ********** determine if Cyrix CPU is present ************** */

 //detect if Cyrix CPU is present
 uc_cyrix_cpu = iscyrix(); //1=cyrix, 0=non-cyrix

 //display a msg
 if(uc_cyrix_cpu) printf("\nCyrix CPU present! ");

 67 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

 else printf("\nCyrix CPU not present! ");

/* ******************** determine CPU Mhz ******************** */

 //count # of hi speed "timer ticks" to complete several runs of core loop
 for (i_runs = 0 ; i_runs < RUNS ; i_runs++) {
 ul_tt_cnt = cpu_speed(ui_core_loop_cntr);
 ul_tt_sum += ul_tt_cnt; //sum them all together
 }//end for

 //compute the avg number of high speed "timer ticks" for the several runs
 f_mtt = ul_tt_sum / RUNS; //compute the average

 //initialize variables with the "known" clock counts for a Cyrix III or P54
 if(uc_cyrix_cpu)ui_idiv=Cyrix III_IDIV_CLKS; else ui_idiv=P54_IDIV_CLKS;
 if(uc_cyrix_cpu)ui_loop=Cyrix III_LOOP_CLKS; else ui_loop=P54_LOOP_CLKS;

 //determine the total number of core clocks. (5 idivs are in the core loop)
 f_total_core_clks = (float)ui_core_loop_cntr * (ui_idiv * DIVS + ui_loop);

 //the time it took to complete the core loop can be determined by the
 //ratio of measured timer ticks(mtt) to timer ticks per second(TTPS).
 f_total_time = f_mtt / TTPS;

 //frequency can be found by the ratio of core clks to the total time.
 f_mhz = f_total_core_clks / f_total_time;
 f_mhz = f_mhz / MHZ; //convert to Mhz

 //display a msg
 printf("The core clock frequency is: %3.1f MHz\n\n",f_mhz);

 return(0);

 } //end main

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 68

Running H/F 2

Appendix D.- Sample Code: Programming Cyrix III Configuration Registers

Reading/Writing Configuration Registers

Sample code for setting NC1=1 in CCR0.

pushf ;save the if flag
cli ;disable interrupts
mov al, 0c0h ;set index for CCR0
out 22h, al ;select CCR0 register
in al, 23h ;READ current CCR0 valueREAD

mov ah, al
or ah, 2h ;MODIFY, set NC1 bitMODIFY

mov al, 0c0h ;set index for CCR0
out 22h, al ;select CCR0 register
mov al, ah
out 23h,al ;WRITE new value to CCR0WRITE
popf ;restore if flag

Setting MAPEN

Sample code for setting MAPEN=1 in CCR3 to allow access to all
 the configuration registers.

pushf ;save the if flag
cli ;disable interrupts
mov al, 0c3h ;set index for CCR3
out 22h, al ;select CCR3 register
in al, 23h ;current CCR3 valueREAD

mov ah, al
and ah,0Fh ;clear upper nibble of ah
or ah, 10h ;MODIFY, set MAPEN(3-0)MODIFY

mov al, 0c3h ;set index for CCR3
out 22h, al ;select CCR3 register
mov al, ah
out 23h,al ;WRITE new value to CCR3WRITE
popf ;restore if flag

 69 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

Appendix E. - Sample Code: Controlling the L1 Cache

Enabling the L1 Cache

;reading/writing CR0 is a privileged operation.

mov eax, cr0
and eax, 09fffffffh;clear the CD=0, NW=1 bits to enable write-back
mov cr0, eax ;control register 0 write
wbinvd ;optional, by flushing the L1 cache here it

;ensures the L1 cache is completely clean

Disabling the L1 Cache

mov eax, cr0
or eax, 060000000h ;set the CD=1, NW=1 bits to disable caching
mov cr0, eax ;control register 0 write
wbinvd

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 70

Running H/F 2

Appendix F. - Example Configuration Register Settings

Below is an example of optimized Cyrix III settings for a 16 MByte system with PCI. Since SMI address
space overlaps Video RAM at A0000h, WG is set to maintain the settings of the underlying region ARR0.
If SMI address space overlapped system memory at 30000h, WG would be set. If SMI address space over-
lapped FLASH ROM at E0000h, only RCD would be set. Power management features are disabled in this
example system.

Table 49. Configuration Register Settings Example

REGISTER BIT(S) SETTING DESCRIPTION

CCR0 NC1 1 Disables caching from 640k-1MByte.

CCR1 SM3 1 Sets ARR3 as SMM address region.

CCR2 LOCK_NW

SUSP_HLT

WPR1

0

0

0

Locking NW bit not required.

Power management not required for this system.

ROM areas not cached, so WPR1 not required.

CCR3 SMI_LOCK

NMI_EN

MAPEN(3-0)

0

0

0

Locks SMI feature as initialized.

Servicing NMIs during SMI not required.

Always clear MAPEN for normal operation.

CCR4 CPUIDEN 1 Enables CPUID instruction.

CCR5 WT_ALLOC

ARREN

1

1

Enables write allocation for performance.

Enables all ARRs.

ARR0 BASE ADDR

BLOCK SIZE

A0000h

6h

Video buffer base address = A0000h.

Video buffer block size = 128KBytes.

RCR0 RCD

WP

WG

WT

INV_RGN

1

0

0

0

0

Caching disabled for compatibility. Caching also disabled
via NC1.

ARR1 BASE ADDR

BLOCK SIZE

C0000h

7h

Expansion Card/ ROM base address = C 0000h.

Expansion Card/ROM block size = 256KBytes.

RCR1 RCD

WP

WG

WT

INV_RGN

1

0

0

0

0

Caching disabled for compatibility. Caching also disabled
via NC1.

ARR3 BASE ADDR

BLOCK SIZE

A0000h

4h

SMM address region base address

SMM address space = 32 KBytes

 71 Cyrix Application Note 120 - Cyrix III BIOS Writer’s Guide

Running H/F 2

RCR3 RCD

WP

WG

WT

INV_RGN

1

0

0

0

0

Caching disabled due to overlap with video buffer.

ARR7 BASE ADDR

BLOCK SIZE

0h

7h

Main memory base address = 0h.

Main memory size = 16 MBytes.

RCR7 RCE

WP

WG

WT

1

0

0

Caching enabled for main memory.

ARR(2,4-6) BASE ADDR

BLOCK SIZE

0

0

ARR(2,4-6) disabled (default state).

RCR(2,4-6) RCD

WP

WG

WT

INV_RGN

0

0

0

0

0

RCR(2,4-6) not required due to corresponding ARRs dis-
abled (default state).

Table 49. Configuration Register Settings Example

 Cyrix Application Note 120: Cyrix III BIOS Writer’s Guide 72

Running H/F 2

©1999 Copyright Via Technologies. All rights reserved.

Printed in the United States of America

Trademark Acknowledgments:

Cyrix is a registered trademark of Via Technologies.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Via-Cyrix

2703 North Central Expressway

Richardson, Texas 75080-2010

United States of America

Via-Cyrix (Cyrix) reserves the right to make changes in the devices or specifications described herein without notice. Before design-in
or order placement, customers are advised to verify that the information is current on which orders or design activities are bas ed. Cyrix
warrants its products to conform to current specifications in accordance with Cyrix’ standard warranty. Testing is performed to the
extent necessary as determined by Cyrix to support this warranty. Unless explicitly specified by customer order requirements, and
agreed to in writing by Cyrix, not all device characteristics are necessarily tested. Cyrix assumes no liability, unless specifically agreed
to in writing, for customers’ product design or infringement of patents or copyrights of third parties arising from use of Cyrix devices.
No license, either express or implied, to Cyrix patents, copyrights, or other intellectual property rights pertaining to any machine or
combination of Cyrix devices is hereby granted. Cyrix products are not intended for use in any medical, life saving, or life sustaining
system. Information in this document is subject to change without notice.

