

VIA Eden-N

Embedded System Platform Processor

Datasheet

Revision 0.92 October 22, 2004

VIA TECHNOLOGIES, INC.

This is Version 0.92 of the VIA Eden-N Processor Datasheet.

© 2003-2004 VIA Technologies, Inc All Rights Reserved.

VIA reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

This publication neither states nor implies any representations or warranties of any kind, including but not limited to any implied warranty of merchantability or fitness for a particular purpose. No license, express or implied, to any intellectual property rights is granted by this document.

VIA makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication or the information contained herein, and reserves the right to make changes at any time, without notice. VIA disclaims responsibility for any consequences resulting from the use of the information included herein.

Cyrix and VIA C3 are trademarks of VIA Technologies, Inc.

CentaurHauls is a trademark of Centaur Technology Corporation.

AMD, AMD K6, and Athlon are trademarks of Advanced Micro Devices, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Intel, Pentium, Celeron, and MMX are registered trademarks of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

LIFE SUPPORT POLICY

VIA processor products are not authorized for use as components in life support or other medical devices or systems (hereinafter life support devices) unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of VIA.

- 1. Life support devices are devices which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. This policy covers any component of a life support device or system whose failure to perform can cause the failure of the life support device or system, or to affect its safety or effectiveness.

Revision History

Document Release	Date	Revision	Initials	
0.7	11/12/03	For internal use only	CJH	
0.8	11/28/03	Release Candidate		
		Modified Table 3-2		
		BR[1:0] renamed to BREQ[1:0]		
		Added IERR#		
		Added Vcc_Sense		
		Added Vss_Sense		
		Added Vref_cmos		
		Modified Figure 5-1 and Table 5-1 and 5-2		
		Renamed ball A-18 as Vref_cmos		
		Renamed ball G-17 as RSVD (was PREQ)		
		Renamed ball N-17 as IERR (was RSVD)		
		Renamed ball K-5 as Vss_sense (was Vss)		
		Renamed ball P-7 as Vcc_sense (was Vcc)		
		Renamed ball U-12 as RSVD (was BSEL1)		
		Renamed ball U-13 as RSVD (was BSEL0)		
		Fixed Table link in notes of Table 4-4		
		Adjusted formatting in Section 4		
0.9	6/1/04	Updated tables 4-8, 4-12	JW	
0.91	7/30/04	Updated POWERGOOD information in figures 4-5, 4-6 and table 3-2	JW	
0.92	10/22/04	Updated table 4-12	JW	

This page is intentionally left blank.

the contraction of the contracti

Table of Contents

INTROD	OUCTION	1-1
1.1	DATASHEET OUTLINE	1-1
1.2	BASIC FEATURES	1-2
1.3	PROCESSOR VERSIONS	1-2
1.4	COMPATIBILITY	1-3
PROGR	AMMING INTERFACE	2-1
2.1	GENERAL	
2.2	ADDITIONAL FUNCTIONS	2-3
2.3	MACHINE-SPECIFIC FUNCTIONS	2-4
2.3.1	General	2-4
2.3.2	Standard CPUID Instruction Functions	2-4
2.3.3	Extended CPUID Instruction Functions	2-6
2.3.4	Centaur Extended CPUID Instruction Functions	
2.3.5	Processor Identification	
2.3.6	EDX Value after Reset	2-9
2.3.7	Control Register 4 (CR4)	
2.3.8	Machine-Specific Registers	
2.4	OMITTED FUNCTIONS	2-11
HARDW	ARE INTERFACE	3-1
HARDW 3.1	JARE INTERFACE	3-1
HARDW 3.1 <i>3.1.1</i>	JARE INTERFACE	3-1
HARDW 3.1 <i>3.1.1</i> <i>3.1.2</i>	VARE INTERFACE	3-1 3-1 3-2 3-2
HARDW 3.1 3.1.1 3.1.2 3.2	ARE INTERFACE BUS INTERFACE Clarifications Omissions BALL DESCRIPTION	3-1 3-1 3-2 3-2 3-3
HARDW 3.1 3.1.1 3.1.2 3.2 3.3	VARE INTERFACE BUS INTERFACE Clarifications Omissions BALL DESCRIPTION POWER MANAGEMENT	3-1 3-1 3-2 3-2 3-3 3-3
HARDW 3.1 3.1.1 3.1.2 3.2 3.3 3.4	JARE INTERFACE BUS INTERFACE. Clarifications Omissions BALL DESCRIPTION POWER MANAGEMENT TEST & DEBUG	3-1 3-1 3-2 3-3 3-6 3-8
HARDW 3.1 3.1.1 3.1.2 3.2 3.3 3.4 3.4 3.4.1	JARE INTERFACE BUS INTERFACE. Clarifications Omissions. BALL DESCRIPTION POWER MANAGEMENT TEST & DEBUG. BIST	3-1 3-2 3-2 3-3 3-6 3-8 3-8 3-8
HARDW 3.1 3.1.1 3.1.2 3.2 3.3 3.4 3.4.1 3.4.2	JARE INTERFACE BUS INTERFACE. Clarifications Omissions BALL DESCRIPTION POWER MANAGEMENT TEST & DEBUG BIST JTAG	3-1 3-1 3-2 3-2 3-3 3-6 3-8 3-8 3-8 3-8
HARDW 3.1 3.1.1 3.1.2 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3	JARE INTERFACE BUS INTERFACE. Clarifications Omissions. BALL DESCRIPTION POWER MANAGEMENT TEST & DEBUG BIST JTAG Debug Port	3-1 3-2 3-2 3-3 3-3 3-6 3-8 3-8 3-8 3-8 3-8 3-8
HARDW 3.1 3.1.1 3.1.2 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 ELECTH	VARE INTERFACE BUS INTERFACE. Clarifications Omissions. BALL DESCRIPTION POWER MANAGEMENT TEST & DEBUG BIST JTAG. Debug Port RICAL SPECIFICATIONS	3-1 3-1 3-2 3-2 3-3 3-6 3-8
HARDW 3.1 3.1.1 3.1.2 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 ELECTH 4.1	ARE INTERFACE BUS INTERFACE Clarifications Omissions BALL DESCRIPTION POWER MANAGEMENT TEST & DEBUG BIST JTAG Debug Port RICAL SPECIFICATIONS AC TIMING TABLES	3-1 3-1 3-2 3-2 3-3 3-6 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 4-1
HARDW 3.1 3.1.1 3.1.2 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 ELECTE 4.1 4.2	VARE INTERFACE BUS INTERFACE Clarifications Omissions BALL DESCRIPTION POWER MANAGEMENT TEST & DEBUG BIST JTAG Debug Port RICAL SPECIFICATIONS AC TIMING TABLES DC SPECIFICATIONS	3-1 3-1 3-2 3-2 3-3 3-3 3-3 3-6 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-1 4-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3 3 3 3 3 3 3 3
HARDW 3.1 3.1.1 3.1.2 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 ELECTF 4.1 4.2 4.2.1	ARE INTERFACE BUS INTERFACE Clarifications Omissions BALL DESCRIPTION POWER MANAGEMENT TEST & DEBUG BIST JTAG Debug Port RICAL SPECIFICATIONS AC TIMING TABLES DC SPECIFICATIONS Recommended Operating Conditions	3-1 3-1 3-2 3-2 3-3 3-6 3-8 3-8 3-8 3-8 3-8 3-8 3-8 4-1 4-1 4-11 4-11
HARDW 3.1 3.1.1 3.1.2 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 ELECTE 4.1 4.2 4.2.1 4.2.1 4.2.2	ARE INTERFACE BUS INTERFACE Clarifications Omissions BALL DESCRIPTION POWER MANAGEMENT TEST & DEBUG BIST JTAG Debug Port RICAL SPECIFICATIONS AC TIMING TABLES DC SPECIFICATIONS Recommended Operating Conditions Maximum Ratings	3-1 3-1 3-2 3-2 3-3 3-3 3-6 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-8 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1
HARDW 3.1 3.1.1 3.1.2 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 ELECTF 4.1 4.2 4.2.1 4.2.2 4.2.3	ARE INTERFACE BUS INTERFACE. Clarifications Omissions. BALL DESCRIPTION POWER MANAGEMENT TEST & DEBUG BIST JTAG. Debug Port RICAL SPECIFICATIONS AC TIMING TABLES. DC SPECIFICATIONS Recommended Operating Conditions Maximum Ratings DC Characteristics	3-1 3-1 3-2 3-2 3-3 3-6 3-8 3-8 3-8 3-8 3-8 3-8 4-1 4-1 4-1 4-11 4-12 4-13

MECH	IANICAL SPECIFICATIONS	
5.1	NANOBGA PACKAGE	
THER	MAL SPECIFICATIONS	6-1
6.1	INTRODUCTION	
6.2	TYPICAL ENVIRONMENTS	6-1
6.3	MEASURING T _C	
6.4	MEASURING TJ	
6.5	ESTIMATING T _C	
MACH	IINE SPECIFIC REGISTERS	7-1
7.1	GENERAL	
7.2	CATEGORY 1 MSRS	
7.3	CATEGORY 2 MSRS	
	The contraction	

List of Figures

FIGURE 3-1: POWER MANAGEMENT STATE DIAGRAM	
FIGURE 4-1. BCLK GENERIC CLOCK TIMING WAVEFORM	
FIGURE 4-2. VALID DELAY TIMINGS	
FIGURE 4-3. SETUP AND HOLD TIMINGS	
FIGURE 4-4. COLD/WARM RESET AND CONFIGURATION TIMINGS	
FIGURE 4-5. POWER-ON SEQUENCE AND RESET TIMINGS	4-7
FIGURE 4-6. POWER DOWN SEQUENCING AND TIMINGS (VCC LEADING)	
FIGURE 4-7. POWER DOWN SEQUENCING AND TIMINGS (VTT LEADING)	
FIGURE 4-8. STOP GRANT /SLEEP TIMING (BCLK STOPPING METHOD)	
FIGURE 4-9. STOP GRANT/SLEEP TIMING (SLP# ASSERTION METHOD)	
FIGURE 5-1 NANOBGA BALLOUT (TOP VIEW)	
FIGURE 5-2. NANOBGA DIMENSIONS	
ALA CONTRACTION	

List of Tables

TABLE 2-1. CPUID RETURN VALUES (EAX = 0)	2-4
TABLE 2-2. CPUID FEATURE FLAG VALUES (EAX = 1)	2-5
TABLE 2-3. EXTENDED CPUID FUNCTIONS	2-6
TABLE 2-4. L1 CACHE & TLB CONFIGURATION ENCODING	2-7
TABLE 2-5. L2 CACHE CONFIGURATION ENCODING	2-7
TABLE 2-6. CENTAUR EXTENDED CPUID INSTRUCTION FUNCTIONS	2-8
TABLE 2-7. CENTAUR EXTENDED CPUID FEATURE FLAG VALUES	2-8
TABLE 2-8. CR4 BITS	2-10
TABLE 3-1. CORE VOLTAGE SETTINGS	
TABLE 3-2. BALL DESCRIPTIONS	
TABLE 3-3. CLOCK RATIO.	
TABLE 4-1. SYSTEM BUS CLOCK AC SPECIFICATIONS (133 MHz)1	4-1
TABLE 4-2. SYSTEM BUS CLOCK AC SPECIFICATIONS (100 MHz)1	
TABLE 4-3. BUS SIGNAL GROUPS AC SPECIFICATIONS 1,8	
TABLE 4-4. CMOS AND OPEN-DRAIN SIGNAL GROUPS AC SPECIFICATIONS1, 2	
TABLE 4-5. RESET CONFIGURATION AC SPECIFICATIONS AND POWER ON/POWER DOWN TIMINGS	
TABLE 4-6. APIC BUS SIGNAL AC SPECIFICATIONS1	4-4
TABLE 4-7. STOPGRANT/DEEP SLEEP AC SPECIFICATIONS1, 3, 4	4-4
TABLE 4-8. RECOMMENDED OPERATING CONDITIONS	4-11
TABLE 4-9. MAXIMUM RATINGS	4-12
TABLE 4-10. DC CHARACTERISTICS	4-13
TABLE 4-11. CMOS DC CHARACTERISTICS	4-13
TABLE 4-12. THERMAL DESIGN POWER INFORMATION	4-14
TABLE 4-13. VTT-I/O POWER CONSUMPTION	4-15
TABLE 5-1. SIGNAL LISTING (ALPHABETICAL ORDER)	5-3
TABLE 5-2. SIGNAL LISTING IN NUMERICAL ORDER	5-8
TABLE 7-1. CATEGORY 1 MSRs	
TABLE 7-2. CATEGORY 2 MSRs	
TABLE 7-3. BUS CLOCK FREQUENCY RATIO	
TABLE 7-4. FCR BIT ASSIGNMENTS	

SECTION

INTRODUCTION

The VIA Eden-N processor is based on a unique internal architecture and is manufactured using an advanced 0.13μ CMOS technology. This architecture and the process technology provide a highly compatible, high-performance, low-cost and low-power consumption solution for fanless, embedded markets. The VIA Eden-N processor is available at numerous operating frequencies.

When considered individually, the compatibility, function, performance, cost and power dissipation of the VIA Eden-N processor family are all very competitive. When considered as a whole, the VIA Eden-N processor family offers a breakthrough level of *value*.

1.1 DATASHEET OUTLINE

The intent of this datasheet is to make it easy for a direct user—a board designer, a system designer, or a BIOS developer—to use the VIA Eden-N processor.

In the datasheet, Section 1 summarizes the key features of the VIA Eden-N processor. Section 2 specifies the primary programming interface and Section 3 does the same for the bus interface. Sections 4, 5 and 6 specify the classical datasheet topics of AC timings, ballouts and mechanical specifications.

Section 7 documents the VIA Eden-N processor machine specific registers (MSRs).

1.2 BASIC FEATURES

With the low power dissipation, the VIA Eden-N processor is ideally suited for fanless embedded applications. All versions share the following common features (except as noted):

- World's smallest x86 processor with package size of 15mm x 15 mm
- World's fasted AES encryption using the Advanced Cryptography Engine (ACE)
- Software-compatible with thousands of x86 software applications available
- MMX-compatible instructions
- SSE-compatible instructions
- Two large (64-KB each, 2-way) on-chip caches
- 64-KB Level 2 victim cache (16-way)
- Two large TLBs (128 entries each, 8-way)
- Branch Target Address Cache with 1k entries each identifying 2 branches
- Unique and sophisticated branch prediction mechanisms
- Bus speeds up to 133 MHz
- Extremely low power dissipation
- Very small die-47 mm² in TSMC 0.13µ technology

1.3 PROCESSOR VERSIONS

Typically, there are five specification parameters that characterize different versions of a processor family: package, voltage, maximum case temperature, external bus speed, and internal MHz.

The VIA Eden-N processor family is delivered in a nanoBGA package. The processor core voltage is defined by motherboard strapping options.

The internal operating frequency (MHz) of a particular VIA Eden-N processor is defined by two parameters: the specified external bus speed and the internal bus-clock multiplier. VIA Eden-N processors operate the bus at 133 MHz bus.

The bus-clock multiplier is also configured by motherboard strapping options. Several different clockmultiplier versions are currently offered.

- The VIA Eden-N processor is available at these speed grades:
 - 533 MHz (4.0 x 133-MHz bus)
 - 800 MHz (6.0 x 133-MHz bus)
 - 1.0 GHz (7.5 x 133-MHz bus)
- Future versions of the VIA Eden-N processor may provide other speed grades, bus speed combinations and different core voltages.

More information on these topics is included in Sections 4, 5 and 6 of this datasheet.

1.4 COMPATIBILITY

The VIA Eden-N processor has a unique footprint. Experienced system designers will find the bus protocol and electrical characteristics familiar to prior Eden processors. Currently, BIOS support for the VIA Eden-N processor is available from Award, AMI, Phoenix, and Insyde.

The VIA Eden-N processor integrates termination of bus signals. Physical and bus compatibility is covered in more detail in Section 4 of this datasheet.

The VIA Eden-N processor supports SSE instructions for better video, audio and faster 3D graphics. Other software functions are provided and are identified to software with the CPUID instruction. The VIA Eden-N processor carefully follows the protocol for defining the availability of these optional features. Both the additional and omitted optional features are covered in more detail in Section 2 of this datasheet.

To verify compatibility of the VIA Eden-N processor with real PC applications and hardware, VIA has performed extensive testing of boards and peripherals, thousands of software applications, and over forty operating systems.

This page is intentionally left blank.

The contraction of the contracti

SECTION

2

PROGRAMMING INTERFACE

2.1 GENERAL

The VIA Eden-N processor's functions include:

- All basic x86 instructions, registers, and functions
- All floating-point (numeric processor) instructions, registers and functions
- All basic operating modes: real mode, protect mode, virtual-8086 mode
- System Management Interrupt (SMI) and the associated System Management Mode (SMM)
- All interrupt and exception functions
- All debug functions (including the new I/O breakpoint function)
- All input/output functions
- All tasking functions (TSS, task switch, etc.)
- Processor initialization behavior
- Page Global Enable feature
- MMX[™] instructions
- SSE instructions
- PAT (Page Attribute Table)
- VME (Virtual Mode Enhancements)
- SYSENTER/SYSEXIT functions

However, there are some software differences between the VIA Eden-N processor and the Intel Celeron processor. These differences fall into three groups:

- **Implementation-specific differences.** Examples are cache and TLB testing features, and performance monitoring features that expose the internal implementation features. These types of functions are incompatible among *all* different x86 implementations.
- Omitted functions. Some Intel Celeron processor functions are not provided on the VIA Eden-N processor because they are not used or are not needed in the targeted PC systems. Examples are some specific bus functions such as functional redundancy checking and performance monitoring. Other examples are architectural extensions such as support for Physical Address Extensions, and JTAG boundary scan.

These types of differences are similar to those among various versions of the processors. The CPUID instruction is used by system software to determine whether these features are supported.

 Low-level behavioral differences. A few low-level VIA Eden-N processor functions are different from Intel Celeron because the results are (1) documented in the documentation as undefined, and (2) known to be different for different x86 implementations. That is, compatibility with the Intel Celeron processor for these functions is clearly not needed for software compatibility (or they would not be different across different implementations).

This chapter summarizes the first three types of differences: additional functions, implementation-specific functions and omitted functions. Section 7 contains more details on machine-specific functions.

as, in ae-specific to the specific to the spec Acontio

2.2 ADDITIONAL FUNCTIONS

The VIA Eden-N processor includes a suite of security technologies called Padlock. One Padlock feature is called the Advanced Cryptography Engine (ACE) and provides a high performance implementation of the Advanced Encryption Standard (AES), as specified by the US Government. VIA Eden-N processors also extend Padlock by including two separate Random Number Generators.

Advanced Cryptography Engine: ACE

Padlock's Advanced Cryptography Engine provides the world's fastest AES encryption implementation. Wherever AES software encryption implementations are used today, it can be optimized for ACE with minimal effort. World class AES performance is a user-level instruction away as only one opcode handles encrypt and decrypt functions. See the Padlock ACE programming guide for further details.

Random Number Generator: RNG

VIA Eden-N processors incorporate two random number generators on the processors die for a fast source of entropy. See the Padlock RNG programming guide for further details.

2.3 MACHINE-SPECIFIC FUNCTIONS

2.3.1 GENERAL

All x86 processor implementations provide a variety of *machine-specific functions*. Examples are cache and TLB testing features and performance monitoring features that expose the internal implementation features.

This section describes the VIA Eden-N processor machine-specific functions that are most likely used by software, and compares them to related processors where applicable. Section 7 describes the machine-specific registers (*MSRs*).

This section covers those features of Intel Pentium-compatible processors that are used to commonly identify and control processor features. All Pentium-compatible processors have the same mechanisms, but the bit-specific data values often differ.

2.3.2 STANDARD CPUID INSTRUCTION FUNCTIONS

The CPUID instruction is available on all contemporary x86 processors. The CPUID instruction has two standard functions requested via the EAX register. The first function returns a vendor identification string in registers EBX, ECX, and EDX. The second CPUID function returns an assortment of bits in EAX and EDX that identify the chip version and describe the specific features available. See the following table.

EAX	TITLE	OUTPUT
0	Largest Function Input Value	EAX=1
		EBX,ECX,EDX="CentaurHauls"
1	Processor Signature and Feature Flags	EAX[3:0]=Stepping ID
		EAX[7:4]=Model ID
		EAX[11:8]=Model ID
		EAX[13:12]=Type ID
		EBX,ECX=Reserved
		EDX=Feature Flags (see Table 2-2)

Table 2-1. CPUID Return Values (EAX = 0)

EDX BITS – MEANING	VIA EDEN-N	NOTES
0 – FPU present	1	
1 - Virtual Mode Extension	1	
2 - Debugging Extensions	1	
3 - Page Size Extensions (4MB)	1	
4 – Time Stamp Counter (TSC) supported	1	
5 - Model Specific Registers present	1	
6 - Physical Address Extension	0	
7 - Machine Check Exception	0	C C
8 - CMPXCHG8B instruction	1	1
9 – APIC supported	1	Y
10- Reserved	S	
11- Fast System Call	1	
12- Memory Range Registers	1	
13 - PTE Global Bit supported	1/0	2
14- Machine Check Architecture supported	0	6
15- Conditional Move supported	1	
16- Page Attribute Table	1	
17- 36-bit Page Size Extension	0	
18- Processor serial number	0	
22:19 - Reserved		
23- MMX supported	1	
24- FXSR	1	
25- Streaming SIMD Extension supported	1	
31:26 - Reserved		

The specific feature flag details in EDX when EAX == 1 are listed in Table 2-2.

Notes On CPUID Feature Flags:

General: an "x/y" entry means that the default setting of this bit is x; however the bit (and the underlying function) can be set to y using the FCR MSR.

- 1. The CMPXCHG8B instruction is provided and always enabled. However, to avoid a bug in an early version of Windows NT, it can be disabled in the corresponding CPUID function bit 8. This default can be changed via bit 1 in the FCR MSR.
- 2. The VIA Eden-N processor's support for Page Global Enable can be enabled or disabled by a bit in the FCR. The CPUID bit reports the current setting of this enable control.

2.3.3 EXTENDED CPUID INSTRUCTION FUNCTIONS

The VIA Eden-N processor supports extended CPUID functions that provide additional information on the VIA Eden-N processor. Extended CPUID functions are requested by executing CPUID with EAX set to any value in the range 0x80000000 through 0x80000006.

The following table summarizes the extended CPUID functions.

EAX	TITLE	ОИТРИТ
80000000	Largest Extended Function	EAX=80000006
	Input Value	EBX,ECX,EDX=Reserved
80000001	Processor Signature and Fea-	EAX=Processor Signature
	ture Flags	EBX,ECX=Reserved
		EDX=Extended Feature Flags
8000002	Processor Name String	EAX,EBX,ECX,EDX
8000003	Processor Name String	EAX,EBX,ECX,EDX
80000004	Processor Name String	EAX,EBX,ECX,EDX
80000005	TLB and L1 Cache Information	EAX = Reserved
		EBX = TLB Information
		ECX = L1 Data Cache Information
		EDX = L1 Instruction Cache Information
8000006	L2 Cache Information	EAX, EBX, EDX = Reserved
		ECX = L2 Cache Information

Largest Extended Function Input Value (EAX==0x8000000)

Returns 0x80000006 in EAX, the largest extended function input value.

Processor Signature and Feature Flags (EAX==0x8000001)

Returns processor version information in EAX.

Processor Name String (EAX==0x8000002-0x8000004)

Returns the name of the processor, suitable for BIOS to display on the screen (ASCII). The string can be up to 48 characters in length. If the string is shorter, the rightmost characters are padded with zero. The leftmost characters go in EAX, then EBX, ECX, and EDX. The leftmost character goes in least significant byte (little endian).

For example, the string "VIA Nehemiah" would be returned by extended function EAX=0x80000002 as follows:

EAX = 0x20414956 EBX = 0x6568654E ECX = 0x6861696D EDX = 0x00000000

Since the string is less than 17 bytes, the extended functions EAX=0x80000003 and EAX=0x80000004 return zero in EAX, EBX, ECX and EDX.

L1 Cache Information (EAX == 0x80000005)

Returns information about the implementation of the TLBs and caches:

REGISTER	DESCRIPTION		
EAX	Reserved		
EBX	TLB Information		
EBX[31:24]	D-TLB associativity	8	
EBX[23:16]	D-TLB # entries	128	
EBX[15: 8]	I-TLB associativity	8	
EBX[7: 0]	I-TLB # entries	128	
ECX	L1 Data Cache Information	•	
ECX[31:24]	Size (Kbytes)	64	
ECX[23:16]	Associativity	2	
ECX[15: 8]	Lines per Tag	1	
ECX[7: 0]	Line Size (bytes)	32	
EDX	L1 Instruction Cache Information		
EDX[31:24]	Size (Kbytes)	64	
EDX[23:16]	Associativity	2	
EDX[15: 8]	Lines per Tag		
EDX[7: 0]	Line Size (bytes)	32	

Table 2-4. L1 Cache & TLB Configuration Encoding

Notes On CPUID L1 Cache Associativity:

Stepping 8 has an erratum that will inadvertently report 4-way L1 caches instead of the proper 2-way L1 caches. The erratum is fixed in future steppings.

L2 Cache Information (EAX == 0x8000006)

Returns information about the implementation of the L2 cache:

REGISTER	DESCRIPTION	VALUE
EAX, EBX, EDX	Reserved	
ECX	L2 Data Cache Information	
ECX[31:16]	Size (Kbytes)	64
ECX[15:12]	Associativity	16
ECX[11: 8]	Lines per Tag	1
ECX[7: 0]	Line Size (bytes)	32

Tab	ole 2-5. L	2 Cache	Configuration	Encoding
-----	------------	---------	---------------	----------

2.3.4 CENTAUR EXTENDED CPUID INSTRUCTION FUNCTIONS

The VIA Eden-N processor supports special CPUID functions that provide additional information on the VIA Eden-N processor. Centaur CPUID functions are requested by executing CPUID with EAX set to 0xC0000000 or 0xC0000001.

EAX INPUT	TITLE	ΟυΤΡυΤ
0xC0000000	Largest Centaur Extended Function Input Value	EAX=0xC0000001
0xC0000001	Centaur Extended Feature Flags	EDX=Centaur Extended Feature Flags EAX, EBX, ECX=Reserved

Table 2-6. Centaur Extended CPUID Instruction Functions

Table 2-7. Centaur Extended CPUID Feature Flag Values					
EDX BIT	VALUE				
0	EDX[0]=0 Alternate Instruction Set (AIS) not supported				
0	EDX[0]=1 Alternate Instruction Set (AIS) supported				
4	EDX[1]=0 AIS Disabled				
I	EDX[1]=1 AIS Enabled				
2	EDX[2]=0 Random Number Generator (RNG) Present				
2	EDX[2]=1 Random Number Generator (RNG) Not Present				
2	EDX[3]=0 RNG Disabled				
3	EDX[3]=1 RNG Enabled				
4	EDX[4]=0 Longhaul MSR 0x110A not available				
4	EDX[4]=1 Longhaul MSR 0x110A available				
5	Reserved				
	EDX[6]=0 Advanced Cryptography Engine (ACE) Present				
	EDX[6]=1 Advanced Cryptography Engine (ACE) Not Present				
7	EDX[6]=0 ACE Disabled				
	EDX[6]=1 ACE Enabled				
31:8	Reserved				

2.3.5 PROCESSOR IDENTIFICATION

The VIA Eden-N processor provides a number of machine-specific features. These features are identified by the standard CPUID function EAX=1. Other machine-specific features are controlled by MSRs. Some of these features are not backward compatible with the predecessors in the VIA processor family.

System software must not assume that all future processors in the VIA processor family will implement all of the same machine-specific features, or even that these features will be implemented in a backwardcompatible manner. In order to determine if the processor supports particular machine-specific features, system software should follow the following procedure.

Identify the processor as a member of the VIA processor family by checking for a Vendor Identification String of "CentaurHauls" using CPUID with EAX=0. Once this has been verified, system software must determine the processor version in order to properly configure the machine-specific registers.

In general, system software can determine the processor version by comparing the Family and Model Identification fields returned by the CPUID standard, extended, or Centaur extended functions.

If the processor version is not recognized, system software will be unable to activate any machine-specific feature.

2.3.6 EDX VALUE AFTER RESET

After reset the EDX register holds a component identification number as follows:

	31:14	13:12	11:8	7:4	3:0	
EDX	Reserved	Type ID	Family ID	Model ID	Stepping ID	
	18	2	4	4	4	

The specific values for the VIA Eden-N processor are listed here:

PROCESSOR	TYPE ID	FAMILY ID	MODEL ID	STEPPING ID
VIA Eden-N	0	6	9	Begins at 8

2.3.7 CONTROL REGISTER 4 (CR4)

Control register 4 (CR4) controls some of the advanced features of the Celeron processor. The VIA Eden-N processor provides a CR4 with the following specifics:

CR4 BITS - MEANING	VIA EDEN-N	CELERON MODEL 6	CELERON MODEL 8	NOTES
0: VME: Enables VME feature	0/1	0/1	0/1	
1: PVI: Enables PVI feature	0/1	0/1	0/1	
2: TSD: Makes RDTSC inst privileged	0/1	0/1	0/1	
3: DE: Enables I/O breakpoints	0/1	0/1	0/1	
4: PSE: Enables 4-MB pages	0/1	0/1	0/1	
5: PAE: Enables address extensions	r	r	r	
6: MCE: Enables machine check exception	0/1	0/1	0/1	1
7: PGE: Enables global page feature	0/1	0/1	0/1	
8: PCE: Enables RDPMC for all levels	0/1	0/1	0/1	
9: OSFXSR: Enables FXSAVE//FXRSTOR Support	0/1	r	0/1	
10: OSXMMEXCPT: O/S Unmasked Exception Support	0/1	r	0/1	
31:11 – reserved	r	r	r	

Tabl	e 2	2-8.	CR4	Bits
------	-----	------	-----	------

Notes On CR4

General: a "0/1" means that the default setting of this bit is 0 but the bit can be set to (1). A "0" means that the bit is always 0; it cannot be set. An "r" means that this bit is reserved. It appears as a 0 when read, and a GP exception is signaled if an attempt is made to write a 1 to this bit.

1. The VIA Eden-N processor Machine Check has different specifics than the Machine Check function of compatible processors.

2.3.8 MACHINE-SPECIFIC REGISTERS

The VIA Eden-N processor implements the concept of Machine Specific Registers (MSRs). RDMSR and WRMSR instructions are provided and the CPUID instruction identifies that the processor does support MSRs.

In general, the MSRs are not advantageous to application or operating system software and even they are not used. (This is to be expected since the MSRs vary from different processors) Section 7 contains a detailed description of the VIA Eden-N processor's MSRs.

2.4 OMITTED FUNCTIONS

This section summarizes the functions that are not in the VIA Eden-N processor. A bit in the CPUID feature flags indicates whether these feature are present or not.

Physical Address Extensions: PAE

It is absent from the VIA Eden-N processor since our target market are for fanless embedded systems. These systems do not use 2 MB paging; they have greater than 4 GB of system memory.

Page Size Extensions: PSE-36

It is absent since the target operating systems for the VIA Eden-N do not require greater than 4 GB of system memory.

Other Functions

Model specific registers pertaining to Machine Check, and Debug, Performance Monitoring, and Trace features are not supported.

This page is intentionally left blank.

the contraction of the contracti

SECTION

HARDWARE INTERFACE

3.1 BUS INTERFACE

The VIA Eden-N processor bus interface is electrically similar to other VIA Eden processors.

The majority of the pins within the bus interface are involved with the physical memory and I/O interface. The remaining pins are power and ground pins, test and debug support pins, and various ancillary control functions. The pin information and associated functions are listed and described in this section.

Bus-to-Core Frequency Ratio Control

The VIA Eden-N processor supports both fixed and software control of the bus-to-core frequency ratio. At reset, the fixed ratio is used from motherboard strapping options (BR[4:0] signals). Although unsupported on non-PowerSaver processors, this ratio may be adjusted via software using the PowerSaver extensions (documented separately). This adjustment lasts until the next reset.

Bus Frequency Selection

The VIA Eden-N processor bus frequency is provided by the motherboard through motherboard strapping options. The VIA Eden-N processor is designed to operate at bus frequencies of 66, 100, 133, or 200 MHz.

3.1.1 CLARIFICATIONS

Power Supply Voltage

The voltage provided to the processor core is accomplished through motherboard strapping options.

The VIA Eden-N processor expects a voltage mapping corresponding to a mobile VRM like the Maxim 1718. Table 3-1 indicates the voltage range.

VID[4:0]	V _{cc}								
00000	1.750	01000	1.350	10000	0.975	11000	0.775		
00001	1.700	01001	1.300	10001	0.950	11001	0.750		
00010	1.650	01010	1.250	10010	0.925	11010	0.725		
00011	1.600	01011	1.200	10011	0.900	11011	0.700		
00100	1.550	01100	1.150	10100	0.875	11100	0.675		
00101	1.500	01101	1.100	10101	0.850	11101	0.650		
00110	1.450	01110	1.050	10110	0.825	11110	0.625		
00111	1.400	01111	1.000	10111	0.800	11111	0.600		

Table 3-1. Core Voltage Settings

RESET#

The VIA Eden-N processor is reset by the assertion of the RESET# pin.

Thermal Monitoring

An on-die thermal diode supports thermal monitoring via the THERMDN and THERMDP pins.

Advanced Peripheral Interrupt Controller (APIC)

The VIA Eden-N processor supports the APIC. Even if the APIC functionality is not desired, the PICCLK, PICD0, and PICD1 balls must be connected.

3.1.2 OMISSIONS

Breakpoint and Performance Monitoring Signals

The VIA Eden-N processor internally supports instruction and data breakpoints. However, the processor does not support the external indication of breakpoint matches. Similarly, the VIA Eden-N processor contains performance monitoring hooks internally, but it does not support the indication of performance monitoring events.

Error Checking

Because of no support for error checking, the VIA Eden-N processor does not equip with BERR#, BINIT#, AERR#, AP#[1:0], DEP#[7:0], IERR#, RP# and RSP# balls.

3.2 BALL DESCRIPTION

Pin Name	Description	I/O	Clock
A[31:3]#	The address Bus provides addresses for physical memory and external I/O devices. During cache inquiry cycles, A31#-A3# are used as inputs to perform snoop cycles.	I/O	BCLK
A20M#	A20 Mask causes the CPU to make (force to 0) the A20 address bit when driving the external address bus or performing an internal cache access. A20M# is provided to emulate the 1 MByte address wrap-around that occurs on the 8086. Snoop addressing is not affected.	l(1.5V)	ASYNC
ADS#	Address Strobe begins a memory/I/O cycle and indicates the address bus (A31#-A3#) and transaction request signals (REQ#) are valid.	I/O	BCLK
APICEN	APICEN is a hardware strapping option that enables the APIC functionality when con- nected to ground. Otherwise the APIC is disabled.	I	None
BCLK BCLKB	Bus Clock provides the fundamental timing for the VIA Eden-N CPU. The frequency of the VIA Eden-N CPU input clock determines the operating frequency of the CPU's bus.	I(2.5V)	
	For single ended clocking, external timing is referenced to the rising edge of BCLK		
	For differential clocking, external timing is referenced to the crossing point of the rising edge of BCLK and the falling edge of BCLKB		
BNR#	Block Next Request signals a bus stall by a bus agent unable to accept new transac- tions.	I/O	BCLK
BPRI#	Priority Agent Bus Request arbitrates for ownership of the system bus.		BCLK
BR[4:0]	Hardware strapping options for setting the processors internal clock multiplier. VIA Eden-N processors do not have their clock multiplier set to a factory default value. Use jumpers or populate 0Ω resistors to select the rated multiplier. The BR[4:0] balls should be wired to VSS for a value of "0" or wired to OPEN for setting of "1." See Table 3-3 for ratio values.		
BREQ[1:0]#	BREQ[1:0]# signals request access to the system bus.	I/O	None
CFUSE1	Board strapping option to indicate the processor bus speed to software.	I	None
D[63:0]#	Data Bus signals are bi-directional signals which provide the data path between the VIA Eden-N CPU and external memory and I/O devices. The data bus must assert DRDY# to indicate valid data transfer.	I/O	BCLK
DBSY#	Data Bus Busy is asserted by the data bus driver to indicate data bus is in use.	I/O	BCLK
DEFER#	Defer is asserted by target agent (e.g., north bridge) and indicates the transaction can- not be guaranteed as an in-order completion.	I	BCLK
DRDY#	Data Ready is asserted by data driver to indicate that a valid signal is on the data bus.	I/O	BCLK
FERR#	FPU Error Status indicates an unmasked floating-point error has occurred. FERR# is asserted during execution of the FPU instruction that caused the error.	O(1.5V)	ASYNC
FLUSH#	Flush Internal Caches writing back all data in the modified state.	l(1.5V)	ASYNC
HIT#	Snoop Hit indicates that the current cache inquiry address has been found in the cache (exclusive or shared states).	I/O	BCLK
HITM#	Snoop Hit Modified indicates that the current cache inquiry address has been found in the cache and dirty data exists in the cache line (modified state).	I/O	BCLK
IGNNE#	Ignore Numeric Error forces the VIA Eden-N CPU to ignore any pending unmasked FPU errors and allows continued execution of floating point instructions.	l(1.5V)	ASYNC
IERR#	This signal is used for debugging purposes. It should be routed to a test point on the	O(1.5V)	ASYNC

Table 3-2. Ball Descriptions

Pin Name	Description	I/O	Clock
INIT#	Initialization resets integer registers and does not affect internal cache or floating point registers.	l(1.5V)	ASYNC
INTR	Indicates external interrupt. Becomes LINT0 when using the APIC.	l(1.5V)	ASYNC
LOCK#	Lock Status is used by the CPU to signal to the target that the operation is atomic.	I/O	BCLK
NCHCTRL	Control integrated I/O pull-ups. Connect this signal to VTT with a 14Ω resistor.	I	ASYNC
NMI	Indicates Non-Maskable Interrupt. Becomes LINT1 when using the APIC	l(1.5V)	ASYNC
PICCLK	APIC clock for operation with the system I/O APIC	I	APIC
PICD[1:0]	Bi-directional serial pins for communicating APIC messages to the system	I/0	APIC
PLL[2:1]	Decoupled inputs for the processor's internal PLL.	I (Vcc)	ASYNC
PWRGD	Indicates that the processor's VCC is stable.	I (1.5V)	ASYNC
REQ[4:0]#	Request Command is asserted by bus driver to define current transaction type.	■ I/O	BCLK
RESET#	Resets the processor and invalidates internal cache without writing back.	I	BCLK
RS[2:0]#	Response Status signals the completion status of the current transaction when the CPU is the response agent.	I	BCLK
RTTCTRL	Control the output impedance on the on-die termination resistance. Connect this signal to VSS with a 56 Ω resistor if relying upon on-die termination. Connect this signal to VSS with a 110 Ω resistor if relying upon board termination.	Ι	ASYNC
SLP#	Sleep, when asserted in the stop grant state, causes the CPU to enter the sleep state.	I(1.5V)	ASYNC
SMI#	System Management (SMM) Interrupt forces the processor to save the CPU state to the top of SMM memory and to begin execution of the SMI services routine at the be- ginning of the defined SMM memory space. An SMI is a high-priority interrupt than NMI.	I(1.5V)	ASYNC
STPCLK#	Stop Clock causes the CPU to enter the stop grant state.	I(1.5V)	ASYNC
THERMDN THERMDP	The anode/cathode pair of an on-chip thermal diode for measuring the processor core temperature.	0	None
TRDY#	Target Ready indicates that the target is ready to receive a write or write-back transfer from the CPU.	I	BCLK
V _{cc}	Core voltage power supply.	-	
V _{CC_SENSE}	Isolated low impedance trace to processor core power for use in power measurement or VRM feedback.	-	
VID[4:0]	The Voltage Identification signals indicate the core voltage required from system board VRM.	O(1.5V)	ASYNC
V _{REF}	Reference voltage for the processor bus,	-	
$V_{\text{REF}_\text{CMOS}}$	Reference voltage for the CMOS signals.	-	
V _{SS}	Ground power supply.	-	
V _{SS_SENSE}	Isolated low impedance ground trace to processor core for use in power measurement or VRM feedback.	-	
V _{TT}	Processor bus termination voltage power supply.	-	

					-
BR[4]	BR[3]	BR[2]	BR[1]	BR[0]	Bus Ratio
0	0	0	0	0	9.0X
0	0	0	0	1	3.0X
0	0	0	1	0	4.0X
0	0	0	1	1	10.0X
0	0	1	0	0	5.5X
0	0	1	0	1	3.5X
0	0	1	1	0	4.5X
0	0	1	1	1	9.5X
0	1	0	0	0	5.0X
0	1	0	0	1	7.0X
0	1	0	1	0	8.0X
0	1	0	1	1	6.0X
0	1	1	0	0	12.0X
0	1	1	0	1	7.5X
0	1	1	1	0	8.5X
0	1	1	1	1	6.5X
1	0	0	0	0	Reserved
1	0	0	0	1	11.0X
1	0	0	1	0	12.0X
1	0	0	1	1	Reserved
1	0	1	0	0	13.5X
1	0	1	0	1	11.5X
1	0	1	1	0	12.5X
1	0	1	1	1	10.5X
1	1	0	0	0	13.0X
1	1	0	0	1	15.0X
1	1	0	1	0	16.0X
1	1	0	1	1	14.0X
1	1	1	0	0	Reserved
1	1	1	0	1	15.5X
1	1	1	1	0	Reserved
1	1	1	1	1	14.5X

Table 3-3. Clock Ratio

1

3.3 POWER MANAGEMENT

The VIA Eden-N processor provides both static and dynamic power management.

The VIA Eden-N processor supports five power management states: NORMAL, QUICKSTART, SLEEP, DEEP SLEEP and DEEPER SLEEP.

Using dynamic power management techniques, the VIA Eden-N processor reduces power consumption in the NORMAL state. In NORMAL state, the on-chip arrays, selected datapaths, and the associated control logic are powered down when not in use. Also, units that are in use attempt to minimize switching of inactive nodes.

- NORMAL state is the normal operating state for the processor.
- QUICKSTART state is the low power state where most of the processor clocks do not toggle. It is
 entered when the STPCLK# signal is asserted or when the processor executes the HALT instruction. Snoop cycles are supported in this state.
- SLEEP state is the low power state where only the processor's PLL (phase lock loop) toggles. It is entered from STOP GRANT state when the processor samples the SLP# signal asserted. Snoop cycles that occur while in SLEEP state or during a transition into or out of SLEEP state will cause unpredictable behavior.
- DEEP SLEEP state is a very low power state. It is entered when the BCLK signal is stopped while the processor is in the SLEEP state. Snoop cycles are completely ignored in this state.
- DEEPER SLEEP state is the lowest power state. It is entered when the processor core voltage is lowered while the processor is in the DEEP SLEEP state. Snoop cycles are completely ignored in this state.

A COMPRE

3.4 TEST & DEBUG

3.4.1 BIST

A Built-in Self-Test (BIST) can be requested as part of the VIA Eden-N processor reset sequence by holding INIT# asserted as RESET# is de-asserted.

The VIA Eden-N processor BIST performs the following general functions:

- A hardware-implemented exhaustive test of (1) all internal microcode ROM, and (2) the X86 instruction decode, instruction generation, and entry point generation logic.
- An extensive microcode test of all internal registers and datapaths.
- An extensive microcode test of data and instruction caches, their tags, and associated TLBs.

BIST requires about four million internal clocks.

EAX Value After Reset

The result of a BIST is indicated by a code in EAX. EAX is normally zero after reset. If a BIST is requested as part of the Reset sequence, EAX will contain the BIST results. A 0 in EAX after BIST Reset means that no failure was detected. Any value other than zero indicates an error has occurred during BIST.

3.4.2 JTAG

The VIA Eden-N processor owns a JTAG scan interface that is used for test functions and the proprietary Debug Port. However, the VIA Eden-N processor does not offer a fully compatible IEEE 1149.1 JTAG function.

From a practical user viewpoint, JTAG does not exist and the associated pins (TCLK, and so forth) should not be used.

3.4.3 DEBUG PORT

Certain processors have a proprietary Debug Port that uses the JTAG scan mechanism to control internal debug features ("probe mode").

The VIA Eden-N processor does not have a debug interface.

SECTION

ELECTRICAL SPECIFICATIONS

4.1 AC TIMING TABLES

SYMBOL	PARAMETER	MIN	MAX	UNIT	FIGURE	NOTES				
	System Bus Frequency		133	MHz	N					
T _{1S}	BCLK Period	7.5	7.65	ns	Figure 4-1	(2)				
T _{1Sabs}	BCLK Period – Instantaneous Minimum	7.25		S	/	(2)				
T_{2S}	BCLK Period Stability		<u>+</u> 250	ps		(2),(3),(4)				
T _{3S}	BCLK High Time	1.4		ns	Figure 4-1	at>2.0V				
T_{4S}	BCLK Low Time	1.4		ns	Figure 4-1	at<0.5V				
T _{5S}	BCLK Rise Time	0.4	1.6	ns	Figure 4-1	(5)				
T_{6S}	BCLK Fall Time	0.4	1.6	ns	Figure 4-1	(5)				

Table 4-1. System Bus Clock AC Specifications (133 MHz)¹

Notes:

- 1. All AC timings for bus and CMOS signals are referenced to the rising edge of BCLK at 1.25V.
- 2. Period, jitter, skew and offset are all measured at 1.25V.
- 3. Not 100% tested. Specified by design/characterization
- 4. Measured on the rising edge of adjacent BCLKs at 1.25V. The jitter present must be accounted for as a component of BCLK skew between devices.
- 5. Measured between 0.5V and 2.0V.

SYMBOL	PARAMETER	MIN	MAX	UNIT	FIGURE	NOTES
	System Bus Frequency		100	MHz		
T _{1S1}	BCLK Period	10		ns	Figure 4-1	(2)
T_{1S1abs}	BCLK Period – Instantaneous Minimum	9.75		ns		(2)
T _{2S1}	BCLK Period Stability		<u>+</u> 250	ps		(2), (3), (4)
T _{3S1}	BCLK High Time	2.70		ns	Figure 4-1	At>2.0V
T _{4S1}	BCLK Fall Time	2.45		ns	Figure 4-1	At<0.5V
T _{5S1}	BCLK Rise Time	0.4	1.6	ns	Figure 4-1	(5)
T _{6S1}	BCLK Fall Time	0.4	1.6	ns	Figure 4-1	(5)

Table 4-2. System Bus Clock AC Specifications (100 MHz)¹

Notes:

- 1. All AC timings for bus and CMOS signals are referenced to the rising edge of BCLK at 1.25V.
- 2. Period, jitter, skew and offset are all measured at 1.25V.
- 3. Not 100% tested. Specified by design/characterization
- 4. Measured on the rising edge of adjacent BCLKs at 1.25V. The jitter present must be accounted for as a component of BCLK skew between devices.
- 5. Measured between 0.5V and 2.0V.

SYMBOL	PARAMETER	MIN	MAX	UNIT	FIGURE	NOTES
T ₇	Bus Output Valid Delay	0.40	3.25	ns	Figure 4-2	
T ₈	Bus Input Setup Time	0.95		ns		(2), (3), (6)
		1.30			Figure 4-4	(7)
T ₉	Bus Input Hold Time	1		ns	7	(4)
					Figure 4-4	
T ₁₀	RESET# Pulse Width	1		ms	Figure 4-4	(5)
				•	•	•

Table 4-3. Bus Signal Groups AC Specifications^{1,8}

Notes:

- 1. All AC timings for Bus and CMOS signals are referenced to the rising edge of BCLK at 1.25V. All bus signals are referenced at VREF. Unless specified, all timings apply to both 100 MHz and 133 MHz bus frequencies.
- 2. RESET# can be asserted (active) asynchronously, but must be deasserted synchronously.
- 3. Specification is for a minimum 0.4V swing from VREF-200 mV to VREF+200 mV.
- 4. Specification is for a maximum 0.8V swing from VTT-0.8V to VTT.
- 5. After VCC, VTT and BCLK all become stable and then PWRGOOD is asserted.
- 6. Applies to processors supporting 133 MHz bus clock frequency.
- 7. Applies to processors supporting 100 MHz bus clock frequency.
- 8. Rtt=56 Ω internally or terminated to VTT externally; VREF=2/3 VTT; Load = 50 Ω

SYMBOL	PARAMETER	MIN	MAX	UNIT	FIGURE	NOTES
T ₁₄	1.5V Input Pulse Width, except PWRGOOD and LINT[1:0]	2		BCLKs	Figure 4-2	Active and inactive states
T _{14B}	LINT[1:0] Input Pulse Width	6		BCLKs	Figure 4-2	(3)
T ₁₅	PWRGOOD Inactive Pulse Width	2		μs	Figure 4-5	(4)

Table 4-4. CMOS and Open-drain Signal GROUPS AC Specifications ^{1,}	2
--	---

Notes:

- 1. All AC timings for CMOS and Open-drain signals are referenced to the rising edge of BCLK at 1.25V. All CMOS and Open-drain signals are referenced at 1.0V.
- 2. Minimum output pulse width on CMOS outputs is 2 BCLKs.
- 3. This specification only applies when the APIC is enabled and the LINT[1:0] signals are configured as edge triggered interrupts with fixed delivery, otherwise specification T_{14} applies.
- When driven inactive, or after VCC, VTT and BCLK become stable. PWRGOOD must remain below VIL18_{MAX} until all the voltage planes meet the voltage tolerance specifications in Table 4-8 and BCLK meet the BCLK AC specifications in Table 4-1 and Table 4-2 for a least 2 μs.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	FIGURE	NOTES
T ₁₆	Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0) Setup Time	4		5	BCLKs	Figure 4-4	Before deas- sertion of RESET#
T ₁₇	Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0) Hold Time	2		20	BCLKs	Figure 4-4	After clock that deasserts RESET#
T ₁₈	RESET#/PWRGOOD Setup Time	1	6.		ms	Figure 4-5	Before deas- sertion of RESET# ¹
T _{18B}	VCC to PWRGOOD Setup Time		10		ms	Figure 4-5	
T _{18D}	RESET# inactive to Valid Outputs	1			BCLK	Figure 4-4	
T _{18E}	RESET# inactive to Drive Signals	4			BCLKs	Figure 4-4	
T _{19A}	Time from VCC(nominal)-12% to PWRGOOD low		A	0	ns		VCC(nominal) is the VID voltage setting
T _{19B}	All outputs valid after PWRGOOD low	0			ns		
T _{19C}	All inputs required valid after PWRGOOD low	0			ns		
T _{20B}	All outputs valid after VTT-12%	0			ns	Figure 4-7	
T _{20C}	All inputs required valid after VTT-12%	0			ns	Figure 4-7	
T _{20D}	VID, BSEL signals valid after VTT-12%	0			ns	Figure 4-7	

Table 4-5. Reset Configuration AC Specifications and Power On/Power Down Timings

Notes:

1. At least 1 ms must pass after PWRGOOD rises above VIH18min and BCLK meet their AC timing specification until RESET# may be de-asserted.

SYMBOL	PARAMETER	MIN	MAX	UNIT	FIGURE	NOTES
T ₂₁	PICCLK Frequency	2	33.3	MHz		(2)
T ₂₂	PICCLK Period	30	500	ns	Figure 4-1	
T ₂₃	PICCLK High Time	10.5		ns	Figure 4-1	at>1.6V
T ₂₄	PICCLK Low Time	10.5		ns	Figure 4-1	at<0.4V
T ₂₅	PICCLK Rise Time	0.25	3.0	ns	Figure 4-1	(0.4V-1.6V)
T ₂₆	PICCLK Fall Time	0.25	3.0	ns	Figure 4-1	(1.6V-0.4V)
T ₂₇	PICD[1:0] Setup Time	8.0		ns		(3)
T ₂₈	PICD[1:0] Hold Time	2.5		ns		(3)
T ₂₉	PICD[1:0] Valid Delay (Rising Edge)	1.5	8.7	ns	•	(3),(4)
	PICD[1:0] Valid Delay (Falling Edge)	1.5	12.0	ns		

Table 4-6. APIC Bus Signal AC Specifications¹

Notes:

- 1. All AC timing for APIC signals referenced to the rising edge PICCLK at 1.0V. All CMOS signals are referenced at 1.0V.
- 2. The minimum frequency is 2MHz when PICD0 is at 1.5V at reset referenced to PICCLK Rising Edge.
- 3. For open-drain signals, Valid Delay is synonymous with Float Delay.
- 4. Valid delay timings for these signals are specified into 150Ω to 1.5V and 0pF of external load. For real system timings these specifications must be derated for external capacitance at 105ps/pF.

SYMBOL	PARAMETER	MIN	MAX	UNIT	FIGURE	NOTES
T ₄₅	Stop Grant Cycle Completion to SLP# assertion or	100		BCLKs	Figure 4-8,	
	BCLK stopped		C		Figure 4-9	
T ₄₆	Stop Grant Cycle Completion to Input Signals Stable		0	μs	Figure 4-8,	
					Figure 4-9	
T ₄₇	Sleep PLL Lock Latency	0	30	μs	Figure 4-8,	(2)
					Figure 4-9	
T ₄₈	STPCLK# Hold Time from PLL Lock	0		μs	Figure 4-8,	
					Figure 4-9	
T ₄₉	Input Signal Hold Time from STPCLK# Deassertion	8		BCLKs	Figure 4-8,	
	/				Figure 4-9	
T ₆₀	BCLK Settling Time		150	ns		

Table 4-7. StopGrant/Deep Sleep AC Specifications^{1, 3, 4}

Notes:

1.Input Signals other than RESET# and BPRI# must be held constant in the Stop Grant state.

2. The BCLK Settling Time specification (T60) applies to all sleep state exits under all conditions.

- 3.In Figure 4-8 after SLP# is asserted, BCLK can be stopped and the processor will enter the Deep Sleep state. To exit the Deep Sleep state, all timings shown in Figure 4-9 must be observed.
- 4. Vcore must be at nominal stable voltage before Deep Sleep exit after a Deeper Sleep transition.

Figure 4-2. Valid Delay Timings

Figure 4-4. Cold/Warm Reset and Configuration Timings

Figure 4-5. Power-on Sequence and Reset Timings

` ^{مر} قدر ۲

Figure 4-6. Power Down Sequencing and Timings (VCC Leading)

Figure 4-7. Power Down Sequencing and Timings (VTT Leading)

Figure 4-8. Stop Grant /Sleep Timing (BCLK Stopping Method)

Figure 4-9. Stop Grant/Sleep Timing (SLP# Assertion Method)

4.2 DC SPECIFICATIONS

4.2.1 RECOMMENDED OPERATING CONDITIONS

Functional operation of the VIA Eden-N processor is guaranteed if the conditions in Table 4-8 are met. Sustained operation outside of the recommended operating conditions may damage the device.

PARAMETER	MIN	NOM	MAX	UNITS	NOTES
Operating Case Temperature	0		85	°C	
		0.90		V	
V _{CORE} Voltage		0.95		v	
		1.00		V	
V _{CORE} Static Tolerance	-2%		+2%	V	(1)
V _{CORE} Dynamic Tolerance	-5%		+5%	v	(2)
V _{TT} Voltage		1.25		V	1.25V±3% (3)
IV_{TT} Termination Supply Current			800	mA	(4)
V _{REF}	-2%	2/3 V _{TT}	+2%	V	
R _{TT}	50	56	115	Ω	(5)
V _{1.5} – 1.5V Supply Voltage	1.365		1.635	V	

Table 4-8. Recommended Operating Condi
--

Notes:

- 1. DC measurement. Regulator Circuit should support current draw up to 15A.
- 2. AC noise measured with bandwidth limited to 20MHz
- 3. Boards must hold V_{TT} to $1.25V \pm 9\%$ while the bus is active and $1.25V \pm 3\%$ when bus is idle.
- 4. DC measurement. Measured with 250 µs sampling rate.
- $5.R_{TT}$ is controlled by RTTCTRL pin. RTTCTRL should be 56Ω when relying upon on-die bus termination. RTTCTRL should be 110Ω when relying upon board termination.

4.2.2 MAXIMUM RATINGS

While functional operation is not guaranteed beyond the operating ranges listed in Table 4-8, the device may be subjected to the limits specified in Table 4-9 without causing long-term damage.

These conditions must not be imposed on the device for a sustained period—any such sustained imposition may damage the device. Likewise exposure to conditions in excess of the maximum ratings may damage the device.

			0	
PARAMETER	MIN	MAX	UNITS	NOTES
Storage Temperature	-65	150	°C	
Supply Voltage (V _{cc})	-0.5	1.6	V	•
CMOS I/O Voltage	-0.5	V _{CMOS} +0.5	V	
I/O Voltage	-0.5	V _{TT} +0.5	V	

the contraction of the contracti

N

4.2.3 DC CHARACTERISTICS

PARAMETER	MIN	MAX	UNITS	NOTES
I _{OL} – Low level output current	-9.0		mA	@ V = V _{OL(max)}
V _{OH} – High Level Output Voltage		V_{TT}	V	
V _{OL} – Low Level Output Voltage	0	0.4	V	@ I _{ol} = -8mA
I _L – Input Leakage Current		± 15	μA	
I_{LU} – Input Leakage Current for inputs with pull-ups		200	μA	
I_{LD} – Input Leakage Current for inputs with pull-downs		-400	μA	

Table 4-10. DC Characteristics

			3	
PARAMETER	MIN	MAX	UNITS	NOTES
V _{IL} Input Low Voltage	-0.58	0.700	V	
V _{IH1.5} – Input High Voltage	V _{REF} + 0.2	V _{TT}	V	(2)
V _{IH2.5} – Input High Voltage	2.0	3.18	V	(3)
V _{OL} – Low Level Output Voltage		0.40	V	@ I _{OL}
V _{OH} – High Level Output Voltage	Ó	V _{CMOS}	v	(1)
I _{OL} – Low Level Output Current	9	•	mA	@ V _{ol}
I _{LI} – Input Leakage Current		±100	μA	(4)
I _{LO} – Output Leakage Current		±100	μA	(4)
S signals are open drain.	5:0	27		

Table 4-11, CMOS DC Characteristics

Notes:

- 1. All CMOS signals are open drain.
- 2. Applies to all CMOS signals except BCLK.
- 3. Applies only to BCLK.
- 4. Leakage current is specified for the range between VSS and VCC. I/O's are diode clamped to the VCC and VSS rails. BCLK has three series diodes between the input and VCC and a single diode between the input and VSS. All other signals have a single diode between the signal and VCC and another single diode between the signal and VSS.

4.2.4 POWER DISSIPATION

Table 4-12 gives the core power consumption information for the VIA Eden-N processor at various operating frequencies and voltages. Note that this does not include the power consumed by the I/O pads.

PARAMETER	TDP MAX ^{1,2}	UNITS	NOTES
Normal Mode			
Eden-N 533 MHz 900mV	2.5	W	
Eden-N 533 MHz 900mV	3.0	W	0
Eden-N 800 MHz 950mV	50	W	85°C, 2, 4
Eden-N 1.0 GHz 1.0V	7.0	W	
StopGrant / AutoHalt Mode			
Eden-N 900mV	1.00	w	
Eden-N 900mV	1.09	W	
Eden-N 950mV	1.21	ĊW	50°C, 2
Eden-N 1.0V	1.81	w	
Sleep Mode			
Eden-N 900mV	1.02	W	
Eden-N 900mV	1.23	w	
Eden-N 950mV	1.23	W	50°C, 2
Eden-N 1.0V	1.81	W	
Deep Sleep Mode			
Eden-N 900mV	0.81	W	
Eden-N 900mV	0.90	W	05 ⁰ 0 0
Eden-N 950mV	0.99	W	35 C, 2
Eden-N 1.0V	1.31	W	
Deeper Sleep Mode			
Eden-N 900mV	0.25	W	
Eden-N 900mV	0.25	W	a - 9-
Eden-N 950mV	0.25	W	35°C, 2
Eden-N 1.0V	0.25	W	

 Table 4-12. Thermal Design Power Information

Notes:

- 1. 100% tested. Consider these numbers as the factory maximum. The factory will reject processors that exceed these values.
- 2. The above power consumption is preliminary and based on case temperature as noted.
- 3. All normal mode frequencies use 133MHz as the CPU clock frequency.
- 4. Conservative thermal solutions must be designed to account for worst-case core and I/O power consumption.

PARAMETER	TYPICAL	МАХ	UNITS	NOTES
PTT-I/O – I/O Operating Power Consumption	0.3	1.2	W	

Table 4-13. VTT-I/O Power Consumption

This page is intentionally left blank.

SECTION

MECHANICAL SPECIFICATIONS

5.1 NANOBGA PACKAGE

The VIA Eden-N processor is available in a unique ball grid array, nanoBGA. It is designed for small form factor motherboards and facilitates compact and economical surface mounting. The VIA Eden-N bus is functionally similar to prior Eden CPU's but is obviously not mechanically compatible.

A CONTROM

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
A	• VSS	O D23#	O D26#	O D33#	O D29#	O D34#	O D38#	O D39#	O D42#	O D41#	O D47#	O D59#	O D57#	O D58#	O D50#	O D60#	O D61#	O VREF	A
в	O D19#	• VSS	O D16#	O D21#	O D31#	O D28#	O D22#	O D37#	O D44#	O D49#	O D51#	O D63#	O D48#	O D54#	O D53#	O D56#	O BR4	CMOS O VREF	В
С	O D7#	O D30#	• VSS	O D25#	O D32#	O D35#	O D43#	O D36#	O D45#	O D27#	O D40#	O D52#	O D55#	O D46#	O D62#	CFUSE1	O APICEN	N VTT	С
D	O D13#	O D24#	O D20#	O VCC	• VSS	O VCC	• VTT	O VCC	• VSS	O VCC	VSS	• VTT	• VSS	O VCC	VSS	VTT	• VTT	VTT	D
Е	O D11#	O D2#	O D3#	O VCC	• VSS	O VCC	• VSS	o vcc	• VSS	O VCC	VSS	O VCC	• VSS	O VCC	VSS	O RSVD	• VTT	VTT	Е
F	O D10#	O D9#	O D14#	VSS	O VCC	VSS	O VCC	VSS	O VCC	• VSS	O VCC	• VSS	O VCC	VSS	O VCC	O DVIDEN	O PICD0	O PICCLK	F
G	0 D12#	O D17#	O D18#	VTT	• VSS	O VCC	• VSS	o vcc	• VSS	O VCC	VSS	O VCC	VSS	O VCC	VSS	O RSVD	O RSVD	VSS	G
Н	O D8#	O D1#	O D5#	• VSS	O VCC	VSS	O VCC	VSS	O VCC	• VSS	O VCC	• VSS	O VCC	vss	o VCC	O PICD1	O NMI	O BCLK	н
J	O D15#	O D6#	O D4#	O VCC	• VSS	O VCC	• VSS	o vcc	• VSS	O VCC	VSS	O VCC	• VSS	O VCC	VSS	0 INTR	O BR3	O BCLKB	J
K	O D0#	O RESET#	O BREQ1	#VSS	O VCC	VSS	O VCC	VSS	O VCC	• VSS	O VCC	VSS	O VCC	VSS	0 VCC1		O L BR2	VSS	K
L	O A26#	O A29#	O A18#	VCC	• VSS	O VCC	• VSS	O VCC	• VSS	O VCC	VSS	O VCC	VSS	O VCC	VSS I	ORTICIR	O L BR1	O PLL2	L
М	0 A27#	O A30#	O A23#	VTT	O VCC	VSS	o VCC	O FLUSH#	O BR0	O PLL1	М								
N	VSS	O A24#	0 A20#	O VCC	• VSS	O VCC	• VSS	O VCC	• VSS	O VCC	VSS	O VCC	VSS	O VCC	VSS S	O STPCLK#	O IERR#	VSS	N
Ρ	O A17#	O A31#	0 A25#	VSS	O VCC	VSS	VCC SENSE	VSS	O VCC	VSS	O VCC	VSS	O VCC	VSS	O VCC	O INIT#	O VID3	O FERR#	Ρ
R	O A19#	O A22#	0 A21#	VSS	O VCC	VSS	VTT	VSS	O VCC	vss	o vcc	VTT	O VCC	VSS	o vcc	O RSVD	O VID4	0 A20M#	R
т	0 A28#	O RSVD	VSS	O A3#	0 A6#	0 A4#	O A14#	O REQ1#	O BPRI#	O REQ3#	O # HIT#	O DBSY#	O BREQ	O)# SLP#	O RSVD	O RSVD	O SMI#	O IGNNE#	Ţ
U	0 A10#	VSS	O A12#	O A16#	0 A9#	O A11#	0 A7#	O REQ4#	O REQ0#	O RS1#	O TRDY#	O RSVD	O RSVD	O RS2#	O ADS#	THRMD	O THRMD	0 N ^{RSVD}	U
v	VSS	0 A15#	O A5#	0 A13#	0 A8#	VSS	O BNR#	REQ2#	O DEFER#	O # LOCK#	HITM#	ORDY#	O RS0#	O PWRGE	O VIDO	VID2	VID1	RSVD	v
	1	2	3	4	5	6		8	9	10	11	12	13	14	15	16	17	18	
				\bigcirc				\bigcirc						0					
		VSS		VCC		VTT		Othe			7								
	Figure 5-1 nanoBGA Ballout (Top View)																		
				7							Y	7							
			7							V									
									\geq	7									

Ball Name	Ball No.	Туре	
A3#	T-4	AGTL I/O	
A4#	T-6	AGTL I/O	
A5#	V-3	AGTL I/O	
A6#	T-5	AGTL I/O	
A7#	U-7	AGTL I/O	
A8#	V-5	AGTL I/O	
A9#	U-5	AGTL I/O	
A10#	U-1	AGTL I/O	
A11#	U-6	AGTL I/O	
A12#	U-3	AGTL I/O	
A13#	V-4	AGTL I/O	
A14#	T-7	AGTL I/O	
A15#	V-2	AGTL I/O	
A16#	U-4	AGTL I/O	
A17#	P-1	AGTL I/O	
A18#	L-3	AGTL I/O	
A19#	R-1	AGTL I/O	
A20#	N-3	AGTL I/O	
A20M#	R-18	CMOS Input	
A21#	R-3	AGTL I/O	
A22#	R-2	AGTL I/O	
A23#	M-3	AGTL I/O	91
A24#	N-2	AGTL I/O	
A25#	P-3	AGTL I/O	
A26#	L-1	AGTL I/O	
A27#	M-1	AGTL I/O	
A28#	T-1	AGTL I/O	
A29#	L-2	AGTL I/O	~
A30#	M-2	AGTL I/O	
A31#	P-2	AGTL I/O	
ADS#	U-15	AGTL I/O	
APIC_EN	C-17	Power/Other	
BCLK	H-18	System Bus Clock	
BCLKB	J-18	System Bus Clock	
BNR#	V-7	AGTL I/O	
BPRI#	T-9	AGTL Input	
BR0	M-17	Power/Other	
BR1	L-17	Power/Other	

Table 5-1. Signal Listing (Alphabetical Order)

Ļ	Ball Name	Ball No.	Туре
_	BR2	K-17	Power/Other
_	BR3	J-17	Power/Other
	BR4	B-17	Power/Other
	BREQ0#	T-13	AGTL I/O
	BREQ1#	K-3	AGTL I/O
_	CFUSE1	C-16	Power/Other
_	D0#	K-1	AGTL I/O
	D1#	H-2	AGTL I/O
_	D2#	E-2	AGTL I/O
_	D3#	E-3	AGTL I/O
_	D4#	J-3	AGTL I/O
_	D5#	H-3	AGTL I/O
_	D6#	J-2	AGTL I/O
_	D7#	C-1	AGTL I/O
_	D8#	H-1	AGTL I/O
_	D9#	F-2	AGTL I/O
_	D10#	F-1	AGTL I/O
_	D11#	E-1	AGTL I/O
	D12#	G-1	AGTL I/O
	D13#	D-1	AGTL I/O
-	D14#	F-3	AGTL I/O
_	D15#	J-1	AGTL I/O
_	D16#	В-3	AGTL I/O
	D17#	G-2	AGTL I/O
	D18#	G-3	AGTL I/O
_	D19#	B-1	AGTL I/O
	D20#	D-3	AGTL I/O
_	D21#	B-4	AGTL I/O
	D22#	B-7	AGTL I/O
	D23#	A-2	AGTL I/O
	D24#	D-2	AGTL I/O
	D25#	C-4	AGTL I/O
	D26#	A-3	AGTL I/O
	D27#	C-10	AGTL I/O
	D28#	B-6	AGTL I/O
	D29#	A-5	AGTL I/O
	D30#	C-2	AGTL I/O
	D31#	B-5	AGTL I/O

Ball Name	Ball No.	Туре	
D32#	C-5	AGTL I/O	
D33#	A-4	AGTL I/O	
D34#	A-6	AGTL I/O	
D35#	C-6	AGTL I/O	
D36#	C-8	AGTL I/O	
D37#	B-8	AGTL I/O	
D38#	A-7	AGTL I/O	
D39#	A-8	AGTL I/O	
D40#	C-11	AGTL I/O	
D41#	A-10	AGTL I/O	
D42#	A-9	AGTL I/O	
D43#	C-7	AGTL I/O	
D44#	B-9	AGTL I/O	
D45#	C-9	AGTL I/O	
D46#	C-14	AGTL I/O	
D47#	A-11	AGTL I/O	
D48#	B-13	AGTL I/O	
D49#	B-10	AGTL I/O	
D50#	A-15	AGTL I/O	
D51#	B-11	AGTL I/O	5
D52#	C-12	AGTL I/O	
D53#	B-15	AGTL I/O	
D54#	B-14	AGTL I/O	
D55#	C-13	AGTL I/O	
D56#	B-16	AGTL I/O	
D57#	A-13	AGTL I/O	
D58#	A-14	AGTL I/O	
D59#	A-12	AGTL I/O	
D60#	A-16	AGTL I/O	
D61#	A-17	AGTL I/O	
D62#	C-15	AGTL I/O	
D63#	B-12	AGTL I/O	
DBSY#	T-12	AGTL I/O	
DEFER#	V-9	AGTL Input	
DRDY#	V-12	AGTL I/O	
DVIDEN	F-16	Power/Other	
FERR#	P-18	CMOS Output	
FLUSH#	M-16	CMOS Input	

(Continued)

\			
	Ball Name	Ball No.	Туре
	HIT#	T-11	AGTL I/O
	HITM#	V-11	AGTL I/O
	IGNNE#	T-18	CMOS Input
	INIT#	P-16	CMOS Input
	INTR	J-16	CMOS Input
	LOCK#	V-10	AGTL I/O
	NCHCTRL	K-16	Power/Other
	NMI	H-17	CMOS Input
	PICCLK	F-18	APIC Clock Input
	PICD0	F-17	APIC I/O
	PICD1	H-16	APIC I/O
	PLL1	M-18	Power/Other
	PLL2	L-18	Power/Other
	PWRGD	V-14	CMOS Input
	REQ0#	Ú-9	AGTL I/O
	REQ1#	T-8	AGTL I/O
	REQ2#	V-8	AGTL I/O
	REQ3#	T-10	AGTL I/O
	REQ4#	U-8	AGTL I/O
	Reserved	E-16	Reserved for future use
	Reserved	G-16	Reserved for future use
,	Reserved	G-17	Reserved for future use
	IERR#	N-17	CMOS Output
	Reserved	R-16	Reserved for future use
	Reserved	T-2	Reserved for future use
	Reserved	T-15	Reserved for future use
	Reserved	T-16	Reserved for future use
	Reserved	U-12	Reserved for future use
$\overline{}$	Reserved	U-13	Reserved for future use
<i>Y</i>	Reserved	U-18	Reserved for future use
	Reserved	V-18	Reserved for future use
	RESET#	K-2	AGTL Input
	RS0#	V-13	AGTL Input
	RS1#	U-10	AGTL Input
	RS2#	U-14	AGTL Input
	RTTCTRL	L-16	Power/Other
	SLP#	T-14	CMOS Input
	SMI#	T-17	CMOS Input

Ball Name	Ball No.	Туре	
STPCLK#	N-16	CMOS Input	
THERMDN	U-17	Power/Other	
THERMDP	U-16	Power/Other	
TRDY#	U-11	AGTL Input	
V _{cc}	D-4	Power/Other	
V _{CC}	D-6	Power/Other	
V _{cc}	D-8	Power/Other	
V _{cc}	D-10	Power/Other	
V _{cc}	D-14	Power/Other	
V _{cc}	E-4	Power/Other	
V _{cc}	E-6	Power/Other	
V _{cc}	E-8	Power/Other	
V _{cc}	E-10	Power/Other	
V _{cc}	E-12	Power/Other	
V _{cc}	E-14	Power/Other	
Vcc	F-5	Power/Other	
V _{cc}	F-7	Power/Other	
V _{cc}	F-9	Power/Other	
V _{cc}	F-11	Power/Other	
Vcc	F-13	Power/Other	
V _{cc}	F-15	Power/Other	
V _{cc}	G-6	Power/Other	
V _{cc}	G-8	Power/Other	
V _{CC}	G-10	Power/Other	
V _{CC}	G-12	Power/Other	
V _{cc}	G-14	Power/Other	
V _{cc}	H-5	Power/Other	
Vcc	H-7	Power/Other	
V _{cc}	H-9	Power/Other	
V _{cc}	H-11	Power/Other	
V _{cc}	H-13	Power/Other	
V _{cc}	H-15	Power/Other	
V _{cc}	J-4	Power/Other	
V _{cc}	J-6	Power/Other	
V _{cc}	J-8	Power/Other	
Vcc	J-10	Power/Other	
V _{cc}	J-12	Power/Other	
V _{cc}	J-14	Power/Other	

Ball Name	Ball No.	Туре
V _{cc}	K-5	Power/Other
V _{cc}	K-7	Power/Other
V _{cc}	K-9	Power/Other
V _{cc}	K-11	Power/Other
V _{cc}	K-13	Power/Other
Vcc	K-15	Power/Other
Vcc	L-4	Power/Other
V _{cc}	L-6	Power/Other
V _{cc}	L-8	Power/Other
V _{cc}	L-10	Power/Other
Vcc	L-12	Power/Other
V _{cc}	L-14	Power/Other
V _{cc}	M-5	Power/Other
V _{cc}	M-7	Power/Other
V _{cc}	М-9	Power/Other
V _{cc}	M-11	Power/Other
V _{cc}	M-13	Power/Other
V _{cc}	M-15	Power/Other
Vcc	N-4	Power/Other
Vcc	N-6	Power/Other
V _{cc}	N-8	Power/Other
Vcc	N-10	Power/Other
Vcc	N-12	Power/Other
Vcc	N-14	Power/Other
V _{cc}	P-5	Power/Other
V _{cc}	P-9	Power/Other
V _{cc}	P-11	Power/Other
Vcc	P-13	Power/Other
V _{cc}	P-15	Power/Other
V _{cc}	R-5	Power/Other
V _{cc}	R-9	Power/Other
V _{cc}	R-11	Power/Other
V _{cc}	R-13	Power/Other
V _{cc}	R-15	Power/Other
V _{CC SENSE}	P-7	Power/Other
VID0	V-15	Power/Other
VID1	V-17	Power/Other
VID2	V-16	Power/Other

Ball Name	Ball No.	Туре	
VID3	P-17	Power/Other	
VID4	R-17	Power/Other	
VREF	B-18	Power/Other	
V _{REF_CMOS}	A-18	Power/Other	
V _{SS}	A-1	Power/Other	
V _{SS}	B-2	Power/Other	
V _{SS}	C-3	Power/Other	
V _{SS}	D-5	Power/Other	
V _{SS}	D-9	Power/Other	
V _{SS}	D-11	Power/Other	
V _{SS}	D-13	Power/Other	
V _{SS}	D-15	Power/Other	
V _{SS}	E-5	Power/Other	
V _{SS}	E-7	Power/Other	
V _{SS}	E-9	Power/Other	
V _{SS}	E-11	Power/Other	
V _{SS}	E-13	Power/Other	
V _{SS}	E-15	Power/Other	
V _{SS}	F-4	Power/Other	
V _{SS}	F-6	Power/Other	
V _{SS}	F-8	Power/Other	,
V _{SS}	F-10	Power/Other	
V _{SS}	F-12	Power/Other	
V _{SS}	F-14	Power/Other	
V _{SS}	G-5	Power/Other)
V _{SS}	G-7	Power/Other	
V _{SS}	G-9	Power/Other	
V _{SS}	G-11	Power/Other	_
V _{SS}	G-13	Power/Other	
V _{SS}	G-15	Power/Other	
V _{SS}	G-18	Power/Other	
V _{SS}	H-4	Power/Other	
V _{SS}	H-6	Power/Other	
V _{SS}	H-8	Power/Other	
V _{SS}	H-10	Power/Other	
V _{SS}	H-12	Power/Other	
V _{SS}	H-14	Power/Other	
V _{SS}	J-5	Power/Other	

(Continued)

	Ball Name	Ball No.	Туре
	V _{SS}	J-7	Power/Other
	V _{SS}	J-9	Power/Other
	V _{SS}	J-11	Power/Other
	V _{SS}	J-13	Power/Other
	V _{SS}	J-15	Power/Other
	V _{SS}	K-6	Power/Other
	V _{SS}	K-8	Power/Other
	V _{SS}	K-10	Power/Other
	V _{SS}	K-12	Power/Other
	V _{SS}	K-14	Power/Other
	V _{SS}	K-18	Power/Other
	V _{SS}	L-5	Power/Other
	V _{SS}	L-7	Power/Other
	V_{SS}	L-9	Power/Other
	V _{SS}	L-11	Power/Other
	V _{SS}	L-13	Power/Other
	V _{SS}	L-15	Power/Other
	V _{SS}	M-6	Power/Other
	Vss	M-8	Power/Other
	V _{SS}	M-10	Power/Other
	V _{ss}	M-12	Power/Other
	V _{SS}	M-14	Power/Other
	Vss	N-1	Power/Other
× C	V _{ss}	N-5	Power/Other
	V _{ss}	N-7	Power/Other
	V _{SS}	N-9	Power/Other
	Vss	N-11	Power/Other
	V _{SS}	N-13	Power/Other
$\overline{}$	V _{SS}	N-15	Power/Other
<i>y</i>	V_{SS}	N-18	Power/Other
	V _{SS}	P-4	Power/Other
	V _{SS}	P-6	Power/Other
	V _{SS}	P-8	Power/Other
	V _{SS}	P-10	Power/Other
	V_{SS}	P-12	Power/Other
	V _{SS}	P-14	Power/Other
	V _{SS}	R-4	Power/Other
	V _{SS}	R-6	Power/Other

(Continued)

Ball Name	Ball No.	Туре	
V_{SS}	R-8	Power/Other	
V _{SS}	R-10	Power/Other	
V _{SS}	R-14	Power/Other	
V_{SS}	T-3	Power/Other	
V_{SS}	U-2	Power/Other	
V_{SS}	V-1	Power/Other	
V _{SS}	V-6	Power/Other	
V _{SS_SENSE}	K-4	Power/Other	
V _{TT}	C-18	Power/Other	
V _{TT}	D-7	Power/Other	
V _{TT}	D-12	Power/Other	
V _{TT}	D-16	Power/Other	
V _{TT}	D-17	Power/Other	
V _{TT}	D-18	Power/Other	Ġ,
V _{TT}	E-17	Power/Other	
V _{TT}	E-18	Power/Other	
V _{TT}	G-4	Power/Other	
V _{TT}	M-4	Power/Other	
V _{TT}	R-7	Power/Other	
V _{TT}	R-12	Power/Other	

Ball Name	Ball No.	Туре	
V _{SS}	A-1	Power/Other	
D23#	A-2	AGTL I/O	
D26#	A-3	AGTL I/O	
D33#	A-4	AGTL I/O	
D29#	A-5	AGTL I/O	
D34#	A-6	AGTL I/O	
D38#	A-7	AGTL I/O	
D39#	A-8	AGTL I/O	
D42#	A-9	AGTL I/O	
D41#	A-10	AGTL I/O	
D47#	A-11	AGTL I/O	
D59#	A-12	AGTL I/O	
D57#	A-13	AGTL I/O	
D58#	A-14	AGTL I/O	
D50#	A-15	AGTL I/O	
D60#	A-16	AGTL I/O	
D61#	A-17	AGTL I/O	
V _{REF CMOS}	A-18	Power/Other	
D19#	B-1	AGTL I/O	
V _{SS}	B-2	Power/Other	
D16#	B-3	AGTL I/O	
D21#	B-4	AGTL I/O	
D31#	B-5	AGTL I/O	
D28#	B-6	AGTL I/O	\rightarrow
D22#	B-7	AGTL I/O	
D37#	B-8	AGTL I/O	
D44#	В-9	AGTL I/O	
D49#	B-10	AGTL I/O	
D51#	B-11	AGTL I/O	
D63#	B-12	AGTL I/O	
D48#	B-13	AGTL I/O	
D54#	B-14	AGTL I/O	
D53#	B-15	AGTL I/O	
D56#	B-16	AGTL I/O	
BR4	B-17	Power/Other	
VREF	B-18	Power/Other	
D7#	C-1	AGTL I/O	
D30#	C-2	AGTL I/O	

Ball Name	Ball No.	Туре
V _{SS}	C-3	Power/Other
D25#	C-4	AGTL I/O
D32#	C-5	AGTL I/O
D35#	C-6	AGTL I/O
D43#	C-7	AGTL I/O
D36#	C-8	AGTL I/O
D45#	C-9	AGTL I/O
D27#	C-10	AGTL I/O
D40#	C-11	AGTL I/O
D52#	C-12	AGTL I/O
D55#	C-13	AGTL I/O
D46#	C-14	AGTL I/O
D62#	C-15	AGTL I/O
CFUSE1	C-16	Power/Other
APICEN	C-17	Power/Other
V _{TT}	C-18	Power/Other
D13#	D-1	AGTL I/O
D24#	D-2	AGTL I/O
D20#	D-3	AGTL I/O
V _{cc}	D-4	Power/Other
V _{SS}	D-5	Power/Other
V _{cc}	D-6	Power/Other
νπ	D-7	Power/Other
V _{cc}	D-8	Power/Other
V _{SS}	D-9	Power/Other
V _{cc}	D-10	Power/Other
V _{SS}	D-11	Power/Other
V _{TT}	D-12	Power/Other
V _{SS}	D-13	Power/Other
V _{CC}	D-14	Power/Other
V _{SS}	D-15	Power/Other
V _{TT}	D-16	Power/Other
V _{TT}	D-17	Power/Other
V _{TT}	D-18	Power/Other
D11#	E-1	AGTL I/O
D2#	E-2	AGTL I/O
D3#	E-3	AGTL I/O
V _{CC}	E-4	Power/Other

Ball Name	Ball No.	Туре	
V _{SS}	E-5	Power/Other	
V _{cc}	E-6	Power/Other	
V _{SS}	E-7	Power/Other	
V _{cc}	E-8	Power/Other	
V _{SS}	E-9	Power/Other	
V _{cc}	E-10	Power/Other	
V _{SS}	E-11	Power/Other	
V _{cc}	E-12	Power/Other	
V _{SS}	E-13	Power/Other	
V _{cc}	E-14	Power/Other	
V _{SS}	E-15	Power/Other	
Reserved	E-16	Reserved for future use	
V _{TT}	E-17	Power/Other	
V _{TT}	E-18	Power/Other	
D10#	F-1	AGTL I/O	
D9#	F-2	AGTL I/O	
D14#	F-3	AGTL I/O	
V _{SS}	F-4	Power/Other	
V _{cc}	F-5	Power/Other	
V _{SS}	F-6	Power/Other	
V _{cc}	F-7	Power/Other	
V _{SS}	F-8	Power/Other	J Y
V _{cc}	F-9	Power/Other	
V _{SS}	F-10	Power/Other	
V _{cc}	F-11	Power/Other	\sim (
V_{SS}	F-12	Power/Other	\bigcirc
V _{cc}	F-13	Power/Other	
V _{SS}	F-14	Power/Other	
V _{cc}	F-15	Power/Other	
DVIDEN	F-16	Power/Other	
PICD0	F-17	APIC I/O	
PICCLK	F-18	APIC Clock Input	
D12#	G-1	AGTL I/O	
D17#	G-2	AGTL I/O	
D18#	G-3	AGTL I/O	
V _{TT}	G-4	Power/Other	
V _{SS}	G-5	Power/Other	
V _{cc}	G-6	Power/Other	

, Ball Name	Ball No.	Туре
V _{ss}	G-7	Power/Other
V _{cc}	G-8	Power/Other
V _{ss}	G-9	Power/Other
V _{cc}	G-10	Power/Other
V _{SS}	G-11	Power/Other
V _{CC}	G-12	Power/Other
V _{ss}	G-13	Power/Other
V _{CC}	G-14	Power/Other
V _{SS}	G-15	Power/Other
Reserved	G-16	Reserved for future use
Reserved	G-17	Reserved for future use
V _{SS}	G-18	Power/Other
D8#	H-1	AGTL I/O
D1#	H-2	AGTL I/O
D5#	H-3	AGTL I/O
V _{SS}	H-4	Power/Other
V _{cc}	H-5	Power/Other
V _{SS}	H-6	Power/Other
Vcc	H-7	Power/Other
V _{SS}	H-8	Power/Other
V _{cc}	H-9	Power/Other
V _{SS}	H-10	Power/Other
Vcc	H-11	Power/Other
V _{SS}	H-12	Power/Other
V _{cc}	H-13	Power/Other
V _{SS}	H-14	Power/Other
Vcc	H-15	Power/Other
PICD1	H-16	APIC I/O
NMI	H-17	CMOS Input
BCLK	H-18	System Bus Clock
D15#	J-1	AGTL I/O
D6#	J-2	AGTL I/O
D4#	J-3	AGTL I/O
V _{cc}	J-4	Power/Other
V _{SS}	J-5	Power/Other
Vcc	J-6	Power/Other
V _{SS}	J-7	Power/Other
V _{CC}	J-8	Power/Other

Ball Name	Ball No.	Туре	
V _{SS}	J-9	Power/Other	
V _{cc}	J-10	Power/Other	
V _{SS}	J-11	Power/Other	
V _{CC}	J-12	Power/Other	
V _{SS}	J-13	Power/Other	
V _{cc}	J-14	Power/Other	
V _{SS}	J-15	Power/Other	
INTR	J-16	CMOS Input	
BR3	J-17	Power/Other	
BCLKB	J-18	System Bus Clock	
D0#	K-1	AGTL I/O	
RESET#	K-2	AGTL Input	
BREQ1#	K-3	AGTL I/O	
V _{SS SENSE}	K-4	Power/Other	
V _{cc}	K-5	Power/Other	
V _{SS}	K-6	Power/Other	
V _{cc}	K-7	Power/Other	
V _{SS}	K-8	Power/Other	
V _{CC}	K-9	Power/Other	
V _{SS}	K-10	Power/Other	5
V _{cc}	K-11	Power/Other	
V _{SS}	K-12	Power/Other	
V _{cc}	K-13	Power/Other	
V _{SS}	K-14	Power/Other	
V _{cc}	K-15	Power/Other	
NCHCTRL	K-16	Power/Other	
BR2	K-17	Power/Other	
V _{SS}	K-18	Power/Other	
A26#	L-1	AGTL I/O	
A29#	L-2	AGTL I/O	
A18#	L-3	AGTL I/O	
Vcc	L-4	Power/Other	
V _{SS}	L-5	Power/Other	
V _{CC}	L-6	Power/Other	
V _{SS}	L-7	Power/Other	
Vcc	L-8	Power/Other	
V _{SS}	L-9	Power/Other	
V _{cc}	L-10	Power/Other	

`	, Ball Name	Ball No.	Туре
	V _{SS}	L-11	Power/Other
	V _{cc}	L-12	Power/Other
	V _{SS}	L-13	Power/Other
	V _{cc}	L-14	Power/Other
	V _{SS}	L-15	Power/Other
	RTTCTRL	L-16	Power/Other
	BR1	L-17	Power/Other
	PLL2	L-18	Power/Other
	A27#	M-1	AGTL I/O
	A30#	M-2	AGTL I/O
	A23#	M-3	AGTL I/O
	V _{TT}	M-4	Power/Other
	V _{cc}	M-5	Power/Other
	V _{SS}	M-6	Power/Other
	Vcc	M-7	Power/Other
	V _{ss}	M-8	Power/Other
	V _{cc}	M-9	Power/Other
	V _{SS}	M-10	Power/Other
	Vcc	M-11	Power/Other
	V _{SS}	M-12	Power/Other
	V _{cc}	M-13	Power/Other
	V _{SS}	M-14	Power/Other
	Vcc	M-15	Power/Other
	FLUSH#	M-16	CMOS Input
	BR0	M-17	Power/Other
	PLL1	M-18	Power/Other
	Vss	N-1	Power/Other
	A24#	N-2	AGTL I/O
$\overline{\frown}$	A20#	N-3	AGTL I/O
<i>Y</i>	V _{cc}	N-4	Power/Other
	V _{SS}	N-5	Power/Other
	V _{CC}	N-6	Power/Other
	V _{SS}	N-7	Power/Other
	V _{CC}	N-8	Power/Other
	V _{SS}	N-9	Power/Other
	V _{cc}	N-10	Power/Other
	V _{SS}	N-11	Power/Other
	V _{cc}	N-12	Power/Other

Ball Name	Ball No.	Туре	
V _{SS}	N-13	Power/Other	
V _{CC}	N-14	Power/Other	
V _{SS}	N-15	Power/Other	
STPCLK#	N-16	CMOS Input	
IERR#	N-17	CMOS Output	
V _{SS}	N-18	Power/Other	
A17#	P-1	AGTL I/O	
A31#	P-2	AGTL I/O	
A25#	P-3	AGTL I/O	
V_{SS}	P-4	Power/Other	
V _{cc}	P-5	Power/Other	
V_{SS}	P-6	Power/Other	
V_{CC_SENSE}	P-7	Power/Other	
V _{SS}	P-8	Power/Other	
V _{CC}	P-9	Power/Other	
V _{ss}	P-10	Power/Other	
V _{CC}	P-11	Power/Other	
V _{SS}	P-12	Power/Other	
V _{CC}	P-13	Power/Other	
V _{SS}	P-14	Power/Other	
V _{CC}	P-15	Power/Other	
INIT#	P-16	CMOS Input	JY
VID3	P-17	Power/Other	
FERR#	P-18	CMOS Output	
A19#	R-1	AGTL I/O	\sim C
A22#	R-2	AGTL I/O	
A21#	R-3	AGTL I/O	
V _{SS}	R-4	Power/Other	
V _{cc}	R-5	Power/Other	
V _{SS}	R-6	Power/Other	
V _{TT}	R-7	Power/Other	
V _{SS}	R-8	Power/Other	
V _{cc}	R-9	Power/Other	
V _{SS}	R-10	Power/Other	
V _{cc}	R-11	Power/Other	
V _{TT}	R-12	Power/Other	
V _{cc}	R-13	Power/Other	
V _{SS}	R-14	Power/Other	

ſ	, Ball Name	Ball No.	Туре
	V _{cc}	R-15	Power/Other
	Reserved	R-16	Reserved for future use
	VID4	R-17	Power/Other
	A20M#	R-18	CMOS Input
	A28#	T-1	AGTL I/O
	Reserved	T-2	Reserved for future use
	V _{ss}	T-3	Power/Other
	A3#	T-4	AGTL I/O
	A6#	T-5	AGTL I/O
	A4#	T-6	AGTL I/O
	A14#	T-7	AGTL I/O
	REQ1#	T-8	AGTL I/O
	BPRI#	T-9	AGTL Input
	REQ3#	T-10	AGTL I/O
	HIT#	T-11	AGTL I/O
	DBSY#	T-12	AGTL I/O
	BREQ0#	T-13	AGTL I/O
	SLP#	T-14	CMOS Input
	Reserved	T-15	Reserved for future use
	Reserved	T-16	Reserved for future use
	SMI#	T-17	CMOS Input
	IGNNE#	T-18	CMOS Input
	A10#	U-1	AGTL I/O
	V _{SS}	U-2	Power/Other
	A12#	U-3	AGTL I/O
	A16#	U-4	AGTL I/O
	A9#	U-5	AGTL I/O
	A11#	U-6	AGTL I/O
	A7#	U-7	AGTL I/O
	REQ4#	U-8	AGTL I/O
	REQ0#	U-9	AGTL I/O
	RS1#	U-10	AGTL Input
	TRDY#	U-11	AGTL Input
	Reserved	U-12	Reserved for future use
	Reserved	U-13	Reserved for future use
	RS2#	U-14	AGTL Input
	ADS#	U-15	AGTL I/O
l	THERMDP	U-16	Power/Other

(Continued)

This page is intentionally left blank.

the contraction the contraction of the contraction

SECTION

6

THERMAL SPECIFICATIONS

6.1 INTRODUCTION

The VIA Eden-N processor is specified for operation with device case temperatures in the range of 0°C to 85°C. Operation outside of this range will result in functional failures and may potentially damage the device.

Care must be taken to ensure that the case temperature remains within the specified range at all times during operation. An effective heat sink with adequate airflow is therefore a requirement during operation.

6.2 TYPICAL ENVIRONMENTS

Typical thermal solutions involve three components: a heat sink, an interface material between the heat sink and the package, and a source of airflow. The best thermal solutions rely on the use of all three components. To the extent that any of these components are not used, the other components must be improved to compensate for such omission. In particular, the use of interface material such as thermal grease, silicone paste, or graphite paper can make a 40°C difference in the case temperature. Likewise, the imposition of airflow is realistically a requirement.

6.3 MEASURING T_C

The case temperature (T_c) should be measured by attaching a thermocouple to the center of the VIA Eden-N package. The heat produced by the processor is very localized so measuring the case temperature anywhere else will underestimate the case temperature.

The presence of a thermocouple is inherently invasive; effort must be taken to minimize the effect of the measurement. The thermocouple should be attached to the processor through a small hole drilled in the heat sink. Thermal grease should be used to ensure that the thermocouple makes good contact with the package, but the thermocouple should not come in direct contact with the heat sink.

Physical Test Conditions

Case temperature measurements should be made in the worst case operating environments. Ideally, systems should be maximally configured and tested at the worst-case ambient temperature.

Test Patterns

During normal operation, the processor attempts to minimize power consumption. Consequently, normal power consumption is much lower than the maximum power consumption. Thermal testing should be done while running software, which causes the processor to operate at its thermal limits.

6.4 MEASURING T_J

The junction temperature of the die can be measured by using the processor's on-chip diode.

6.5 ESTIMATING T_C

The VIA Eden-N processor's case temperature can be estimated based on the general characteristics of the thermal environment. This estimate is not intended as a replacement for actual measurement.

Case temperature can be estimated where,

 $T_A \equiv$ Ambient Temperature

 $T_C \equiv Case Temperature$

 $\theta_{CA} \equiv$ case-to-ambient thermal resistance

 $\theta_{JA} \equiv$ junction-to-ambient thermal resistance

 $\theta_{\rm JC} \equiv$ junction-to-case thermal resistance ()

 $P \equiv power consumption (Watts)$

and,

technologia entitica The nanoBGA with heat spreader has $\theta_{JC} = 0.9^{\circ}C/W$.

$$T_J = T_C + (P * \theta_{JC})$$

$$T_{A} = T_{J} - (P * \theta_{JA})$$

$$T_A = T_C - (P * \theta_{CA})$$

 $\theta_{CA} = \theta_{IA} - \theta_{IC}$

This page is intentionally left blank.

the contraction the contraction of the contraction

SECTION

MACHINE SPECIFIC REGISTERS

7.1 GENERAL

Table 7-1 and Table 7-2 summarize the VIA Eden-N processor machine-specific registers (MSRs). Further description of each MSR follows the table. MSRs are read using the RDMSR instruction and written using the WRMSR instruction.

There are four basic groups of MSRs (not necessarily with contiguous addresses). Other than as defined below, a reference to an undefined MSR causes a General Protection exception.

1. Generally these registers can have some utility to low-level programs (like BIOS).

Note that some of the MSRs (address 0 to 0x4FF) have no function in the VIA Eden-N processor. These MSRs do not cause a GP when used on the VIA Eden-N processor; instead, reads to these MSRs return zero, and writes are ignored. Some of these undocumented MSRs may have ill side effects when written to indiscriminately. Do not write to undocumented MSRs.

- 2. There are some undocumented internal-use MSRs used for low-level hardware testing purposes. Attempts to read or write these undocumented MSRs cause unpredictable and disastrous results; so don't use MSRs that are not documented in this datasheet!
- 3. MSRs used for cache and TLB testing. These use MSR addresses that are not used on compatible processor. These test functions are very low-level and complicated to use. They are not documented in this datasheet but the information will be provided to customers given an appropriate justification

MSRs are not reinitialized by the bus INIT interrupt; the setting of MSRs is preserved across INIT.

		<u> </u>	<u></u>			
MSR	MSR NAME	ECX	EDX	EAX	TYPE	NOTES
TSC	Time Stamp Counter	10h	TSC[63:32]	TSC[31:0]	RW	
EBL_CR_POWERON	EBL_CR_POWERON	2Ah	n/a	Control bits	RW	
PERFCTR0	Performance counter 0	C1h	TSC[39:32]	TSC[31:0]	RW	1
PERFCTR1	Performance counter 1	C2h	0	Count[31:0]	RW	
BBL_CR_CTL3	L2 Hardware Disabled	11Eh	n/a	00800000h	RO	
EVNTSEL0	Event counter 0 select	186h	n/a	00470079h	RO	1
EVNTSEL1	Event counter 1 select	187h	n/a	Control bits	RW	
MTRR	MTRRphysBase0	200h	Control bits	Control bits	RW	
MTRR	MTRRphysMask0	201h	Control bits	Control bits	RW	
MTRR	MTRRphysBase1	202h	Control bits	Control bits	RW	
MTRR	MTRRphysMask1	203h	Control bits	Control bits	RW	
MTRR	MTRRphysBase2	204h	Control bits	Control bits	RW	
MTRR	MTRRphysMask2	205h	Control bits	Control bits	RW	
MTRR	MTRRphysBase3	206h	Control bits	Control bits	RW	
MTRR	MTRRphysMask3	207h	Control bits	Control bits	RW	
MTRR	MTRRphysBase4	208h	Control bits	Control bits	RW	
MTRR	MTRRphysMask4	209h	Control bits	Control bits	RW	5
MTRR	MTRRphysBase5	20Ah	Control bits	Control bits	RW	
MTRR	MTRRphysMask5	20Bh	Control bits	Control bits	RW	
MTRR	MTRRphysBase6	20Ch	Control bits	Control bits	RW	
MTRR	MTRRphysMask6	20Dh	Control bits	Control bits	RW	
MTRR	MTRRphysBase7	20Eh	Control bits	Control bits	RW	
MTRR	MTRRphysMask7	20Fh	Control bits	Control bits	RW	
MTRR	MTRRfix64K_00000	250h	Control bits	Control bits	RW	
MTRR	MTRRfix16K_80000	258h	Control bits	Control bits	RW	
MTRR	MTRRfix16K_A0000	259h	Control bits	Control bits	RW	
MTRR	MTRRfix4K_C0000	268h	Control bits	Control bits	RW	
MTRR	MTRRfix4K_C8000	269h	Control bits	Control bits	RW	
MTRR	MTRRfix4K_D0000	26Ah	Control bits	Control bits	RW	
MTRR	MTRRfix4K_D8000	26Bh	Control bits	Control bits	RW	
MTRR	MTRRfix4K_E0000	26Ch	Control bits	Control bits	RW	
MTRR	MTRRfix4K_E8000	26Dh	Control bits	Control bits	RW	
MTRR	MTRRfix4K_F0000	26Eh	Control bits	Control bits	RW	
MTRR	MTRRfix4K_F8000	26Fh	Control bits	Control bits	RW	
MTRR	MTRRdefType	2FFh	Control bits	Control bits	RW	

Table 7-1. Category 1 MSRs

Notes:

1. PERFCTR0 is an alias for the lower 40 bits of the Time Stamp Counter. EVNTSEL0 is a read only MSR that reflects this limitation.

				-		
MSR	MSR NAME	ECX	EDX	EAX	TYPE	NOTES
FCR	Feature Control Reg	1107h	n/a	FCR value	RW	
FCR2	Feature Control Reg 2	1108h	FCR2_Hi	FCR2 value	RW	1
FCR3	Feature Control Reg 3	1109h	FCR3_Hi	FCR3 value	WO	1

Table 7-2. Category 2 MSRs

Notes:

1. FCR2 and FCR3 provide system software with the ability to specify the Vendor ID string returned by the CPUID instruction.

A contraction of the contraction

7.2 CATEGORY 1 MSRS

10H: TSC (TIME STAMP COUNTER)

VIA Eden-N processor has a 64-bit MSR that materializes the Time Stamp Counter (TSC). System increments the TSC once per processor clock. The TSC is incremented even during AutoHalt or StopClock. A WRMSR to the TSC will clear the upper 32 bits of the TSC.

2AH: EBL_CR_POWERON

31:27	27	26	25:22	21:20	19:18	17:15	14	13	12:0
Res '11000 '	BF4	Low- PowerEn '1'	BF[3:0]	Res	BSEL	Res	1MPOV	IOQDepth	Reserved (Ignored on write; returns 0 on read)
5	1	1	4	2	2	3	1		13

100Donth.	$0 = \ln Order Oueue Dopth with up to 8 transactions$
ioqueptii.	0 – In Order Queue Depuir with up to 8 transactions
	1 = 1 transaction
1MPOV:	0 = Power on Reset Vector at 0xFFFFFF0 (4Gbytes)
	1 = Power on Reset Vector at 0x000FFFF0 (1 Mbyte)
BSEL:	01 = 133 MHz Bus
	10 = 100 MHz Bus

TA COT A

BF[4:0]:	Bus Clock Frequency Ratio
----------	----------------------------------

Clock Multiplier	MSR 0x2A [27]	MSR 0x2A [25:22]	
5.0	0	0000b	
16.0	0	0001b	
Reserved	0	0010b	
10.0	0	0011b	
5.5	0	0100b	
Reserved	0	0101b	
Reserved	0	0110b	
9.5	0	0111b	
9.0	0	1000b	
7.0	0	1001b	
8.0	0	1010b	
6.0	0	1011b	r
12.0	0	1100b	
7.5	0	1101b	
8.5	0	1110b	
6.5	0	1111b	
9.0	1	0000b	
11.0	1	0001b	
12.0	1	0010b	
10.0	1	0011b	
13.5	1	0100b	
11.5	1	0101b	
12.5	1	0110b	
10.5	1	0111b	
13.0	1	1000b	
15.0	1	1001b	
16.0	1	1010b	
14.0	1	1011b	
12.0	1	1100b	
15.5	1	1101b	
Reserved	1	1110b	
14.5	1	1111b	

Table 7-3. Bus Clock Frequency Ratio

LowPowerEn: This bit always set to '1'

1

0C1H-C2H: PERFCTR0 & PERFCTR1

These are events counters 0 and 1. VIA Eden-N processor's PERFCTR0 is an alias for the lower 40 bits of the TSC.

11EH: BBL_CR_CTL3

31:24	23	22:0
Reserved	L2_Hdw_Disable '1'	<i>Reserved</i> (Ignored on write; returns 0 on read)
8	1	23

the contraction of the contracti The VIA Eden-N processor does contain an L2 cache. For compatibility, this read-only MSR indicates to the BIOS or system software that the L2 is disabled even if the L2 is enabled.

L2 Hdw Disable: This bit always set to '1'
8

	31:24	23:16	15:9	8:0			
	Reserved	Reserved	Reserved	CTR0 Event			

8

186H: EVNTSEL0 (EVENT COUNTER 0 SELECT)

PERFCTR0 is an alias for the lower 40 bits of the Time Stamp Counter. EVNTSEL0 is a read only MSR
which reflects this limitation. The CTR0_Event Select field always returns 0x0079, which corresponds to
counting of processor clocks.

7

Select = 79h

9

187H: EVNTSEL1 (EVENT COUNTER 1 SELECT)

31:24	23:16	15:9	8:0	
Reserved	Reserved	Reserved	CTR1 Event Select	
8	8	7	9	

VIA Eden-N processor have two MSRs that contain bits defining the behavior of the two hardware event counters: PERFCTR0 and PERFCTR1.

The CTR1_Event_Select control field defines which of several possible events is counted. The possible Event Select values for PERFCTR1 are listed in the table below. Note that CTR1_Event_Select is a 9-bit field.

The EVNTSEL1 register should be written before PERFCTR1 is written to initialize the counter. The counts are not necessarily perfectly exact; the counters are intended for use over a large number of events and may differ by one or two counts from what might be expected.

Most counter events are internal implementation-dependent debug functions, having no meaning to software. The counters that can have end-user utility are:

EVENT	DESCRIPTION
C0h	Instructions executed
1C0h	Instructions executed and string iterations
79h	Internal clocks (default event for CTR0)

7.3 CATEGORY 2 MSRS

1107H: FCR (FEATURE CONTROL REGISTER)

The FCR controls the major optional feature capabilities of the VIA Eden-N processor. Table 7-4 contains the bit values for the FCR. The default settings shown for the FCR bits are not necessarily exact. The actual settings can be changed as part of the manufacturing process and thus a particular VIA Eden-N processor version can have slightly different default settings than shown here. All reserved bit values of the FCR must be preserved by using a read-modify-write sequence to update the FCR.

BIT	NAME	DESCRIPTION	DEFAULT
0	ALTINST	Reserved for test & special uses	0
1	ECX8	Enables CPUID reporting CMPXCHG8B	1
2		Reserved	0
3		Reserved	0
4		Reserved	0
5	DSTPCLK	Disables supporting STPCLK	0
6		Reserved	0
7	EPGE	Enables CR4.PGE and CPUID.PGE (Page Global Enable)	1
8	DL2	Disables L2 Cache	0
9		Reserved	1
10		Reserved	0
11		Reserved	0
12	EBRPRED	Enables Branch Prediction	1
13	DIC	Disables I-Cache	0
14	DDC	Disables D-Cache	0
31:15		Reserved	0/1

Table	7-4	FCR	Bit	Assic	inments
Iable	·			ASSIC	

ALTINST:	0 = Normal x86 instruction execution.				
	1 = Alternate instruction set execution is enabled (see details below)				
ECX8:	0 = The CPUID instruction does not report the presence of the CMPXCHG8B instruction (CX8 = 0). The instruction actually exists and operates correctly, however.				
	1 = The CPUID instruction reports that the CMPXCHG8B instruction is supported (CX8				

- = 1).
- **DSTPCLK:** 0 = STPCLK interrupt properly supported.
 - 1 = Ignores SPCLK interrupt.
- **EPGE:** 0 = The processor does not support Page Global Enable and therefore CPUID Feature Flags reports EDX[13]=0; attempts to set CR4.PGE are ignored.

	1 = The processor supports Page Global Enable and therefore CPUID Feature Flags reports EDX[13]=1; CR4.PGE can be set to 1.
DL2:	0 = L2 Cache enabled. 1 = L2 Cache disabled.
EBRPRED:	0 = Disables branch prediction function.1 = Enables branch prediction function.
DIC:	0 = Enables use of I-Cache. 1 = Disables use of I-Cache: cache misses are performed as single transfer bus cycles, PCD is de-asserted. This overrides any setting of CR0.CD and CR0.NW.
DDC:	0 = Enables use of D-Cache. 1 = Disables use of D-Cache: same semantics as for DIC except for D-Cache.

1108H: FCR2 (FEATURE CONTROL REGISTER 2)

This MSR contains more feature control bits — many of which are undefined. It is important that all reserved bits are preserved by using a read-modify-write sequence to update the MSR.

			63:32				
Last 4 characters of Alternate Vendor ID string							
				19		2	6
31:15		14	13:12	11:8	7:4	3:0	
Reserved		AVS	Res	Family ID	Model ID	Res	
17		1	2	4	4	4	Y
AVS:	0 = The 0	CPUID ir	struction v	endor ID is "O	CentaurHauls	"	
1 = The CPUID instruction returns the alternate Vendor ID. The first 8 characters of the alternate Vendor ID are stored in FCR3 and the last 4 characters in FCR2[63:32]. These 12 characters are undefined after RESET and may be loaded by system software using WRMSR.							
Family ID: This field will be returned as the family ID field by subsequent uses of the CPUID in- struction							
Model ID: This field will be returned as the model ID field by subsequent uses of the CPUID struction						nt uses of the CPUID in-	

1109H: FCR (FEATURE CONTROL REGISTER 3)

This MSR contains the first 8 characters of the alternate Vendor ID. The alternate Vendor ID is returned by the CPUID instruction when FCR2[AVS] is set to '1'. FCR3 is a write-only MSR.

63:32 First 4 characters of Alternate Vendor ID string 31:0 Middle 4 characters of Alternate Vendor ID string

