
APPLICATION NOTE

6x86 BIOS WRITER’S GUIDE

AN867/0496 1/47

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

1.0 Introd uction

1.1 Scope

This document is intended for STST6x86 system BIOS writers. It is not a stand alone document but sup-
plements other SGS-THOMSON and STST6x86 documentation including: STST6x86 Data Book,
STST6x86/PENTIUM(P54C) Bus Interface Differences, SGS-THOMSON SMM Programmer’s Guide.
This document includes recommendations for STST6x86 detection and STST6x86 configuration register
settings. Configuration register settings described in this document apply to STST6x86 step A and
higher.

The recommended settings are optimized for both performance and compatibility in a Windows95, Plug
and Play (PnP), PCI-based system. Issues regarding optimum performance, CPU detection, chipset ini-
tialization, memory discovery, I/O recovery time, and others are described in detail.

1.2 STST6x86 Configuration Registers

The STST6x86 uses on-chip configuration registers to control the on-chip cache, system management
mode (SMM), device identification, and other STST6x86 unique features. The on-chip registers are used
to activate advanced features including performance enhancements. These performance features may
be enabled “globally” in some cases, or by a user-defined address region. The flexible configuration of
the STST6x86 is intended to fit a wide variety of systems.

The Importance of Non-Cacheable Regions

The STST6x86 has eight internal user-defined Address Region Registers. Among other attributes, the
regions define cacheability vs. non-cacheability of the address regions. Using this cacheability informa-
tion, the STST6x86 is able to implement high performance features , that would otherwise not be possi-
ble. A non-cacheable region implies that read sourcing from the write buffers, data forwarding, data
bypassing, speculative reads, and fill buffer streaming are disabled for memory accesses within that
region. Additionally, strong cycle ordering is also enforced. Although negating KEN# during a memory
access on the bus prevents a cache line fill, it does not fully disable these performance features. In other
words, negating KEN# is NOT equivalent to establishing a non-cacheable region in the STST6x86.

2.0 Detecting a SGS-THOMSON STST6x86 CPU

STST6x86 detection must first be determined by the BIOS during Power-On Self Test using the method
described in Section 2.1. Allowing STST6x86 detection using CPUID at runtime is covered in Section
2.4.

It is important to note that the STST6x86’s CPUID instruction is disabled following reset. SGS-THOM-
SON’s compatibility testing has found that some popular software does not correctly check the CPUID
return values (e.g. Vendor Identification String and Family fields). This results in misidentification of CPU
features which may cause a variety of runtime errors. By disabling the CPUID instruction, the STST6x86
CPU is assured to run code compatible with the 486 instruction set and programming model.

APPLICATION NOTE

2/47

Table of Contents

1. Introduction 1

1.1 Scope...... ... 1

1.2 STST6x86 Configuration Registers.. 1

2. Detecting a SGS-THOMSON STST6x86 CPU... 1

2.1 Detecting a SGS-THOMSON CPU .. 3

2.2 Detecting CPU Type and Stepping using DIRs.. 3

2.3 Determining STST6x86 Operating Frequency... 4

2.4 CPUID Instruction .. 5

2.5 EDX Value following Reset 6

3. ST6x86 Configuration Register Index Assignments... 7

3.1 Accessing a Configuration Register... 7

3.2 STST6x86 Configuration Register Index Assignments.. 7

3.3 Configuration Control Registers (CCR0-5.. 9

3.4 Address Region Registers (ARR0-7) ... 12

3.5 Region Control Registers (RCR0-7)... 14

4. Recommended STST6x86 Configuration Register Settings.. 19

4.1 PC Memory Mode 19

4.2 General Recommendations ... 20

4.3 Recommended Bit Settings.. 21

5. Programming Model Differences.. 27

5.1 Instruction Set .. 27

5.2 Configuring Internal STST6x86 Features... 27

5.3 INVD and WBINVD Instructions... 27

5.4 Control Register 0 (CR0) CD and NW Bits .. 27

6. Appendix....... .. 29

6.1 Appendix A - Sample Code: Detecting a SGS-THOMSON CPU... 29

6.2 Appendix B - Sample Code: Determining CPU MHz ... 30

6.3 Appendix C - Example CPU Type and Frequency Detection Program.................................. 33

6.4 Appendix D - Sample Code: Programming STST6x86 Configuration Registers 35

6.5 Appendix E - Sample Code: Controlling the L1 Cache ... 36

6.6 Appendix F - Example Configuration Register Settings... 37

6.7 Appendix G - Sample Code: Enabling FAR COFs in BTB .. 39

6.8 Appendix H - Sample Code: Detecting L2 Cache Burst Mode.............. 41

APPLICATION NOTE

3/47

2.1 Detecting a SGS-THOMSON CPU

Since CPUID is disabled by default, it cannot be used to identify the STST6x86 during BIOS POST. The
correct method for detecting the presence of an STST6x86 microprocessor during BIOS POST is a two
step process. First, a SGS-THOMSON brand CPU must be detected. Second, the CPU’s Device Identi-
fication Registers (DIRs) provide the CPU model and stepping information. Alternate methods of detect-
ing the CPU are not recommended. These include detection algorithms using the value of EDX following
reset, and other signature methods of determining if the CPU is an 8086, 80286, 80386, or 80486.

Detection of a SGS-THOMSON brand CPU is implemented by checking the state of the undefined flags
following execution of the divide instruction which divides 5 by 2 (5*2). The undefined flags in a
SGS-THOMSON microprocessor remain unchanged following the divide. Alternate CPUs modify some
of the undefined flags. Using operands other than 5 and 2 may prevent the algorithm from working cor-
rectly. Appendix A contains example code for detecting a SGS-THOMSON CPU using this method.

2.2 Detecting CPU Type and Stepping using DIRs

Once a SGS-THOMSON brand CPU is detected, the model and stepping of the CPU can be determined.
All SGS-THOMSON CPUs contain Device Identification Registers (DIRs) that exist as part of the config-
uration registers. The DIRs for all SGS-THOMSON CPUs exist at configuration register indexes 0FEh
and 0FFh. (See Chapter 3 for additional information.) Table 2-1 specifies the contents of the STST6x86
DIRs.

DIR0 bits [7:3] = 00110h indicate an STST6x86 CPU is present, DIR0 bits [2:0] indicate the core-to-bus
clock ratio, and DIR1 contains stepping information. Clock ratio information is provided to assist calcula-
tions in determining bus frequency once the CPU’s core frequency has been calculated. Proper bus
speed settings are critical to overall system performance.

APPLICATION NOTE

4/47

x = TBD

2.3 Determining ST6x86 Operating Frequency

Determining the operating frequency of the CPU is normally required for correct initialization of the sys-
tem logic. Typically, a software timing loop with known instruction clock counts is timed using legacy
hardware (the 8254 timer/counter circuits) within the PC. Once the operating frequency of the
STST6x86’s core is known, DIR0 bits (2:0) can be examined to calculate the bus operating frequency.

Careful selection of instructions and operands must be used to replicate the exact clock counts detailed
in the Instruction Set Summary in the STST6x86 Data Book. An example code sequence for determining
the STST6x86’s operating frequency is detailed in Appendix B and Appendix C. The core loop uses a
series of five IDIV instructions within a LOOP instruction. IDIV was chosen because it is an exclusive
instruction meaning that it executes in the STST6x86 x pipeline with no other instruction in the y pipeline.
This allows for more predictable execution times as compared to using non-exclusive instructions.

The STST6x86 instruction clock count for IDIV varies from 17 to 45 clocks for a doubleword divide
depending on the value of the operands. The code example in the appendices uses “0” divided by “1”
which takes only 17 clocks to complete. The LOOP instruction clock count is 1. Therefore, the overall
clock count for the inner loop in this example is 86 clocks.

Table 2.1 STST6x86 Device Identification Register

Register Description Bit Position Contents
Core/Bus Clock

Ratios

DIR0 CPU Model 7-0

30h or32h

31h or33h

35h or37h

34h or36h

1/1

2/1

3/1

4/1

DIR1 Device Stepping 7-0 xxh --

ST6x86

5/47

2.4 CPUID Instruction

The CPUID instruction is disabled following reset to improve compatibility with existing software. It can
be enabled by setting the CPUIDEN bit in configuration register CCR4. It is recommend that all BIOS
vendors include a CPUID enable/disable field in the CMOS setup to allow the end user to enable the
CPUID instruction. CPUID must default to disabled and remain disabled unless enabled by the end user.

The CPUID instruction, opcode 0FA2h , provides information indicating SGS-THOMSON as the vendor
and the family, model, stepping, and CPU features. Additional documentation on the CPUID instruction
and how alternate CPUs execute this instruction can be found in the Pentium Processor User’s Manual,
Volume 3, page 25-62; Pentium Processor User’s Manual, Volume 1, Page 3-7; and Intel’s application
note AP-485.

The EAX register provides the input value for the CPUID instruction. The EAX register is loaded with a
value to indicate what information should be returned by the instruction.

Following execution of the CPUID instruction with an input value of “0” in EAX, the EAX, EBX, ECX and
EDX registers contain the information shown in Figure 2-1. EAX contains the highest input value under-
stood by the CPUID instruction, which for the STST6x86 is “1”. EBX, ECX and EDX contain the vendor
identification string “CyrixInstead”.

Following execution of the CPUID instruction with an input value of “1” loaded in EAX, EAX[15:0] will con-
tain the value of 053x. EDX bit [0] contains a “1” indicating that an FPU is on chip.

switch (EAX)

{

case (0):

EAX := 1

EBX := 69 72 79 43/* ’i’ ’r’ ’y’ ’C’ */

EDX := 73 6e 49 78/* ’s’ ’n’ ’I’ ’x’ */

ECX := 64 61 65 74/* ’d’ ’a’ ’e’ ’t’ */

break

case (1):

EAX[7:0] := 3xh

EAX[15:8] := 05h

EDX[0] := 1 /* 1=FPU Built In,0=No FPU */

break

default:

EAX, EBX, ECX, EDX : Undefined

}

Figure 2-1. Information Returned by the CPUID Instruction

ST6x86

6/47

2.5 EDX Value Following Reset

Some CPU detection algorithms may use the value of the CPU’s EDX register following reset. The
ST6x86’s EDX register contains the data shown below following a reset initiated using the RESET pin:

EDX[31:16] = undefined

EDX[15:8] = 05h

EDX[7:0] = 3x

The value in EDX does not identify the vendor of the CPU. Therefore, EDX alone cannot be used to
determine if a SGS-THOMSON CPU is present. However, BIOS should preserve the contents of EDX so
that applications can use the EDX value when performing a user-defined shutdown (e.g. a reset per-
formed with data 0Ah in the Shutdown Status byte (Index 0Fh) of the CMOS RAM Map).

ST6x86

7/47

3.0 ST6x86 Configuration Register Index Assignments

On-chip configuration registers are used to control the on-chip cache, system management mode and
other ST6x86 unique features.

3.1 Accessing a Configuration Register

Access to the configuration registers is achieved by writing the index of the register to I/O port 22h. I/O
port 23h is then used for data transfer. Each I/O port 23h data transfer must be preceded by an I/O port
22h register index selection, otherwise the second and later I/O port 23h operations are directed off-chip
and produce external I/O cycles. Reads of I/O port 22h are always directed off-chip. Appendix D con-
tains example code for accessing the ST6x86 configuration registers.

3.2 ST6x86 Configuration Register Index Assignments

Table 3-1 lists the ST6x86 configuration register index assignments. After reset, configuration registers
with indexes CO-CFh and FC-FFh are accessible.In order to prevent potential conflicts with other
devices which may use ports 22 and 23h to access their registers, the remaining registers (indexes
00-BFh, D0-FBh) are accessible only if the MAPEN(3-0) bits in CCR3 are set to 1h. With MAPEN(3-0)
set to 1h any access to an index in the 00-FFh range does not create external I/O bus cycles. Registers
with indexes C0-CFh, FC-FFh are accessible regardless of the state of the MAPEN bits. If the register
index number is outside the C0-CFh or FC-FFh ranges, and MAPEN is set to 0h, external I/O bus cycles
occur. Table 3-1 lists the MAPEN values required to access each ST6x86 configuration register. The
configuration registers are described in more detail in the following sections.

The ST6x86 configuration registers can be grouped into four areas:

• Configuration Control Registers (CCRs)

• Address Region Registers (ARRs)

• Region Control Registers (RCRs)

• Device Identification Registers (DIRs)

CCR bits independently control ST6x86 features. ARRs and RCRs together define regions of memory
with specific attributes. DIRs are used for CPU detection as discussed earlier in Chapter 2. All bits in the
configuration registers are initialized to zero following reset unless specified otherwise. The appropriate
configuration register bit settings vary depending on system design. Recommendations for optimal set-
tings for a typical PC environment are discussed in Chapter 4.

ST6x86

8/47

Table 3.1 Configuration Register Index Assignment

x = Don’ t Care

Register Index Register Name Acronym
Width
(BITS) MAPEN(3-0)

00h-BFh Reserved -- -- --

C0h Configuration Control 0 CCR0 8 x

C1h Configuration Control 1 CCR1 8 x

C2h Configuration Control 2 CCR2 8 x

C3h Configuration Control 3 CCR3 8 x

C4h-C6h AddressRegion 0 ARR0 24 x

C7h-C9h AddressRegion 1 ARR1 24 x

CAh-CCh AddressRegion 2 ARR2 24 x

CDh-CFh AddressRegion 3 ARR3 24 x

D0h-D2h AddressRegion 4 ARR4 24 1h

D3h-D5h AddressRegion 5 ARR5 24 1h

D6h-D8h AddressRegion 6 ARR6 24 1h

D9h-DBh AddressRegion 7 ARR7 24 1h

DCh Region Configuration 0 RCR0 8 1h

DDh Region Configuration 1 RCR1 8 1h

DEh Region Configuration 2 RCR2 8 1h

DFh Region Configuration 3 RCR3 8 1h

E0h Region Configuration 4 RCR4 8 1h

E1h Region Configuration 5 RCR5 8 1h

E2h Region Configuration 6 RCR6 8 1h

E3h Region Configuration 7 RCR7 8 1h

E4h-E7h Reserved -- -- --

E8h Configuration Control 4 CCR4 8 1h

E9h Configuration Control 5 CCR5 8 1h

EAh-FDh Reserved -- -- --

FEh Device Identification 0 DIR0 8 x

FFh Device Identification 1 DIR1 8 x

ST6x86

9/47

3.3 Configuration Control Registers (CCR0-5)

There are six CCRs in the ST6x86 which control the cache, power management and other unique fea-
tures. The following paragraphs describe the CCRs and associated bit definitions in detail.

3.3.2 Configuration Control Register 1 (CCR1)

3.3.3 Configuration Control Register 2 (CCR2)

3.3.1 Configuration Control Register 0 (CCR0)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Reserved NC1 Reserved

Table 3.2 CCR0 Bit Definitions

Bit Name Bit No. Description

NC1 1 If set,designates 640KBytes -1MByte address region as non-cacheable.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SM3 Reserved Reserved NO_LOCK Reserved SMAC USE_SMI Reserved

Table 3.3 CCR1 Bit Definitions

Bit Name Bit No. Description

SM3 7 If set, designates Address Region Register 3 for SMM address space.

NO_LOCK 4

If set, all bus cycles are issued with the LOCK# pin negated except page table
accesses and interrupt acknowledge cycles. Interrupt acknowledge cycles are exe-
cuted as locked cycles even though LOCK# is negated. With NO_LOCK set, previ-
ously non-cacheable locked cycles are executed as unlocked cycles and therefore,
may be cached. This results in higher CPU performance. See the section on Region
Configuration Registers (RCR) for more information on eliminating locked CPU bus
cycles only in specific address regions.

SMAC 2

If set, any access to addresses within the SMM address space access system manage-
ment memory instead of main memory. SMI# input is ignored while SMAC is set. Set-
ting SMAC=1 allows access to SMM memory without entering SMM. This is useful for
initializing or testing SMM memory.

USE_SMI 1
If set, SMI# and SMIACT# pins are enabled.

If clear, SMI# pin is ignored and SMIACT# pin is driven inactive.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

USE_SUSP Reserved Reserved WPR1 SUSP_HLT LOCK_NW Reserved Reserved

ST6x86

10/47

Table 3.4 CCR2 Bit Definition

Bit Name Bit No. Description

USE_SUSP 7

If set, SUSP# and SUSPA# pins are enabled.

If clear, SUSP# pin is ignored and SUSPA# pin floats.

These pins should only be enabled if the external system logic (chipset) support
them.

WPR1 4
If set, designates that any cacheable accesses in the 640 KBytes-1MByte address
region are write-protected. With WPR1=1, any attempted write to this range will not
get issued to the external bus.

SUSP_HLT 3
If set, execution of the HLT instruction causes the CPU to enter low power suspend
mode. This bit should be used cautiously since the CPU must recognize and service
an INTR, NMI or SMI to exit the “HLT initiated” suspend mode.

LOCK_NW 2 If set, the NW bit in CR0 becomes read only and the CPU ignores any writes to this bit

3.3.4 Configuration Control Register 3 (CCR3)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MAPEN3 MAPEN2 MAPEN1 MAPEN0 Reserved LINBRST NMI_EN SMI_LOCK

Table 3.5 CCR3 Bit Definitions

Bit Name Bit No. Description

MAPEN(3-0) 7-4

If set to 0001 binary (1h), all configuration registers are accessible.

If clear, only configuration registers with indexes C0-CFh, FEh and FFh are accessi-
ble.

LINBRST 2

If set, the ST6x86 will use a linear address sequence when performing burst cycles.

If clear, the ST6x86 will use a “1+4” address sequence when performing burst
cycles. The “1+4” address sequence is compatible with the Pentium’s burst address
sequence.

NMI_EN 1
If set, NMI interrupt is recognized while in SMM. This bit should only be set while in
SMM, after the appropriate NMI interrupt service routine has been setup.

SMI_LOCK 0

If set, the CPU prevents modification of the following SMM configuration bits, except when operat-
ing in SMM:

CCR1 USE_SMI, SMAC, SM3

CCR3 NMI_EN

ARR3 Starting address and block size.

Once set, the SMI_LOCK bit can only be cleared by asserting the RESET pin.

3.3.5 Configuration Control Register 4 (CCR4)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CPUIDEN Reserved Reserved DTE_EN Reserved
IORT(2-0)

ST6x86

11/47

Table 3.6 CCR4 Bit Definitions

Bit Name Bit No. Description

CPUIDEN 7
If set,bit 21 of the EFLAG register is write/readable and the CPUID instruction will execute normally.

If clear, bit 21 of the EFLAG register is not write/readable and the CPUID instruction is an invalid
opcode.

DTE_EN 4 If set, the Directory Table Entrycache is enabled.

IORT(2-0) 2-0

Specifies theminimum number of bus clocks between I/O accesses (I/O recovery time). Thedelay
time is the minimum time from the end of one I/O cycle to the beginning of the next (i.e. BRDY# to
ADS# time).

3.3.6 Configuration Control Register 5 (CCR5)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved ARREN LBR1 Reserved Reserved Reserved

WT_ALLOC

Table 3.7 CCR5 Bit Definitions

Bit Name Bit No. Description

ARREN 5
Ifset, enables all Address Region Registers (ARRs). If clear, disables the ARR registers. If SM3
isset, ARR3 is enabled regardless of the ARREN setting.

LBR1 4
Ifset, LBA# pin is asserted for all accesses to the 640KBytes - 1MByte address region. See sec-
tion 4.3 formore information on enabling/disabling LBA# for specific address regions.

WT_ALLOC 0
Ifset, new cache lines are allocated for both read misses and write misses. If clear, new cache
lines are only allocated on read misses.

0h= 1 clock
1h= 2 clocks
2h 4 clocks

4h= 16 clocks

2h=
3h= 8 clocks

5h= 32 clocks (default value after RESETt)
6h= 64 clocks
7h= no delay

ST6x86

12/47

3.4 Address Region Registers (ARR0-7)

The Address Region Registers (ARRs) are used to define up to eight memory address regions. Each
ARR has three 8-bit registers associated with it which define the region starting address and block size.
Table 3-6 below shows the general format for each ARR and lists the index assignments for the ARR’s
starting address and block size.

The region starting address is defined by the upper 12 bits of the physical address. The region size is
defined by the BSIZE(3-0) bits as shown in Table 3-7. The BIOS and/or its utilities should allow definition
of all ARRs. There is one restriction when defining the address regions using the ARRs. The region
starting address must be on a block size boundary. For example, a 128KByte block is allowed to have a
starting address of 0KBytes, 128KBytes, 256KBytes, and so on.

Table 3.8 ARRx Index Assignments

Address Region
Register Starting Address Region Block Size

A31-A24 A23-A16 A15-A12 BSIZE(3-0)

Bits (7-0) Bits (7-0) Bits (7-4) Bits (3-0)

ARR0 C4h C5h C6h

ARR1 C7h C8h C9h

ARR2 CAh CBh CCh

ARR3 CDh CEh CFh

ARR4 D0h D1h D2h

ARR5 D3h D4h D5h

ARR6 D6h D7h D8h

ARR7 D9h DAh DBh

ST6x86

13/47

Table 3.9 BSIZE(3-0) Bit Definition

BSIZE(3-0) ARR(0-6)
Region Size

ARR7
Region Size

0h

1h

2h

3h

4h

5h

6h

7h

8h

9h

Ah

Bh

Ch

Dh

Eh

Fh

Disabled

4 KBytes

8 KBytes

16 KBytes

32 KBytes

64 KBytes

128 KBytes

256 KBytes

512 KBytes

1 MByte

2 MBytes

4 MBytes

8 MBytes

16 MBytes

32 MBytes

4 GBytes

Disabled

256 KBytes

512 KBytes

1 MByte

2 MBytes

4 MBytes

8 MBytes

16 MBytes

32 MBytes

64 MBytes

128 MBytes

256 MBytes

512 MBytes

1 Gbytes

2 Gbytes

4 GBytes

ST6x86

14/47

3.5 Region Control Registers (RCR0-7)

The RCRs are used to define attributes, or characteristics, for each of the regions defined by the ARRs.
Each ARR has a corresponding RCR with the general format shown below.

Note: RCD is defined for RCR0-RCR6. RCE is defined for RCR7 only.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved NLB WT WG WL WWO RCD/RCE

Table 3.10 RCR Bit Definitions

Bit Name Bit No. Description

RCD 0
Applicable to RCR(0-6) only. If set, the address region specified by the correspond-
ing ARR is non-cacheable.

RCE 0
Applicable to RCR7 only. If set, the address region specified by ARR7 is cacheable
and implies that address space outside of the region specified by ARR7 is
non-cacheable.

WW0 1 If set, weak write ordering is enabled for the corresponding region.

WL 2 If set, weak locking is enabled for the corresponding region.

WG 3 If set, write gathering is enabled for the corresponding region.

WT 4 If set, write through caching is enabled for the corresponding region.

NLB 5 If set, LBA# is negated for the corresponding region.

ST6x86

15/47

3.5.1 Detailed Description of RCR Attributes

Region Cache Disable (RCD)

Setting RCD=1 defines the corresponding address region as non-cacheable. RCD prevents caching of
any access within the specified region. Additionally, RCD implies that high performance features are dis-
abled for accesses within the specified address region. Bus cycles issued to memory addresses within
the specified region are single cycles with the CACHE# pin negated. If KEN# is asserted for a memory
access within a region defined non-cacheable by RCD, the access is not cached.

Region Cache Enable (RCE)

Setting RCE=1 defines the corresponding address region as cacheable. RCE is applicable to ARR7 only.
RCE in combination with ARR7, is intended to define the Main Memory Region. All memory outside ARR7
is non-cacheable when RCE is set. This is intended to define all unused memory space as non-cache-
able. If KEN# is negated for an access within a region defined cacheable by RCE, the access is not
cached.

Weak Write Ordering (WWO)

Setting WWO=1 enables weak write ordering for the corresponding address region. Weak Write Ordering
allows the ST6x86 to retire writes out of sequence to the internal cache only. External write cycles always
occur in sequence (strongly ordered). WWO is only applicable to memory regions that have been cached
and designated as write-back. WWO should never be enabled for memory mapped I/O.

Weak Locking (WL)

Setting WL=1 enables weak locking for the corresponding address region. With WL enabled, all bus
cycles are issued with the LOCK# pin negated except for page table accesses and interrupt acknowl-
edge cycles. WL negates bus locking so that previously non-cacheable cycles can be cached. Typically,
XCHG instructions, instructions preceded by the LOCK prefix, and descriptor table accesses are locked
cycles. Setting WL allows the data for these cycles to be cached.

Weak Locking (WL) implements the same function as NO_LOCK except that NO_LOCK is a global
enable. The NO_LOCK bit of CCR1 enables weak locking for the entire address space, whereas the WL
bit enables weak locking only for specific address regions.

Write Gathering (WG)

Setting WG=1 enables write gathering for the corresponding address region. With WG enabled, multiple
byte, word or dword writes to sequential addresses that would normally occur as individual write cycles
are combined and issued as a single write cycle. WG improves bus utilization and should be used for
memory regions that are not sensitive to the “gathering”. WG can be enabled for both cacheable and
non-cacheable regions.

Write Through (WT)

Setting WT=1 defines the corresponding address region as write-through instead of write-back. Any sys-
tem ROM that is allowed to be cached by the processor should be defined as write-through.

LBA# Not Asserted (NLB)

Setting NLB=1 prevents the ST6x86 from asserting the Local Bus Access (LBA#) output pin for accesses
to that address region. The RCR regions in combination with the LBA# pin can be used to define local
bus address regions. The LBA# signal can then used by external hardware as an indication that
accesses are occurring to the local bus.

ST6x86

16/47

3.5.2 Attributes for Accesses Outside Defined Regions

If an address is accessed and it is not in the region defined by the ARRs and ARR7 is defined with
RCE=1, the following conditions apply:

•The memory access is not cached regardless of the state of KEN#.

•The LBA# pin is asserted.

•Writes are not gathered.

•Strong locking occurs.

•Strong write ordering occurs.

ST6x86

17/47

3.5.3 Attributes for Accesses in Overlapped Regions

If two defined address regions overlap (including NC1 and LBR1) and conflicting attributes are specified,
the following attributes take precedence:

•The LBA# pin is asserted.

•Write-back is disabled.

•Writes are not gathered.

•Strong locking occurs.

•Strong write ordering occurs.

•The overlapping regions are non-cacheable.

Example 1: Overlapping Regions with Conflicting Cacheability

Since the CCR0 bit NC1 affects cacheability, a potential exists for conflict with the ARR7 main memory
region which also affects cacheability. This overlap in address regions with conflicting cacheability is a
typical configuration for a PC environment. In this case, NC1 takes precedence over the ARR7/RCE set-
ting because non-cacheability always takes precedence. For example, for the following settings:

• NC1=1

• ARR7 = 0-16 Mbytes

• RCR7 bit RCE = 1,

The ST6x86 cache accesses are shown in Table 3-11.

Example 2: Overlapping Regions with Conflicting Local Bus Designations

Since the CCR5 bit LBR1 affects LBA# assertion, a potential exists for conflict with the RCR NLB bit,
which also affects LBA# assertion. Preferably, regions/bits are defined such that there are no conflicting
regions. However, in cases where there is a region overlap the LBR1 bit takes precedence over NLB.
For example, for the following settings:

• LBR1=1

• ARR0 = 0-16 Mbytes

• RCR0 NLB=1,

The ST6x86 LBA# pin’s behaviour is shown in Table 3-12.

Table 3.11 Cacheability for Example 1

Address Region Cacheable Comments

0 to 640 KBytes Yes ARR7/RCE setting.

640 KBytes- 1 MByte No NC1 takes precedence over
ARR7/RCE setting.

1 MByte - 16 MBytes Yes ARR7/RCE setting.

16 MBytes - 4 GBytes No Default setting.

ST6x86

18/47

3.5.4 Attributes for Accesses with Conflicting Signal Pin Inputs

The characteristics of the regions defined by the ARRs and the RCRs may also conflict with indications
by hardware signals (i.e., KEN#, WB/WT#). The following paragraphs describe how conflicts between
register settings and hardware indicators are resolved.

Non-cacheable Regions and KEN#

Regions which have been defined as non-cacheable (RCD=1) by the ARRs and RCRs may conflict with
the assertion of the KEN# input. If KEN# is asserted for an access to a region defined as non-cacheable,
the access is not cached. Regions defined as non-cacheable by the ARRs and RCRs take precedence
over KEN#. The NC1 bit also takes precedence over the KEN# pin. If NC1 is set, any access to the
640k-1 Mbyte address region with KEN# asserted is not cached.

Write-through Regions and WB/WT#

Regions which have been defined as write-through (WT=1) may conflict with the state of the WB/WT#
input to the ST6x86. Regions defined as write-through by the ARRs and RCRs remain write-through
even if WB/WT# is asserted during accesses to these regions. The WT bit in the RCRs takes prece-
dence over the state of the WB/WT# pin in cases of conflict.

Table 3.12 LBA# Behaviour for Example 2

Address Region LBA# Behaviour Comments

0 to 640 KBytes Negated ARR0/NLB0 setting.

640 KBytes- 1 MByte Asserted LBR1 takes precedence over ARR0/NLB0 set-
ting.

1 MByte - 16 MBytes Negated ARR0/NLB0 setting.

16 MBytes - 4 GBytes Asserted Default setting.

ST6x86

19/47

4.0 Recommended ST6x86 Configuration Register Settings

4.1 PC Memory Model

Table 4-1 defines the allowable attributes for a typical PC memory model. Actual recommended configu-
ration register settings for an example PC system are listed in Appendix F.

Notes:

1. Video Buffer Area

A non-cacheable region must be used to enforce strong cycle ordering in this area and to prevent caching of video RAM. The video ram
area is sensitive to bus cycle ordering. The VGA controller can perform logical operations which depend on strong cycle ordering (found in
Windows 3.1 code). Toguarantee that the ST6x86 performs strong cycle ordering, a non-cacheable area must be established to cover the
video ram area.

Video performance is greatly enhanced by gathering writes to Video RAM. For example, video performance benchmarks have been found
to use REP STOSW instructions that would normally execute as a series of sequential 16-bit write cycles. With WG enabled, groups of four
16-bit write cycles are reduced to a single 64-bit write cycle.

2. Video ROM and System ROM

Caching of the Video and System ROM areas is permitted, but is normally non-cacheable because NC1 is set. If these areas are cached,
they must be cached as write-through regions. Benchmarking on ST6x86 systems in a Windows environment has shown no benefit to
caching these ROM areas. Therefore, it is recommended that these areas be set as non-cacheable using the NC1 bit in CCR0.

3. Top of Main Memory-FFFFF FFFh (Unused/PCI Memory Space)

Unused/PCI Memory Space immediately above physical main memory must be defined as non-cacheable to ensure proper operation of
memory sizing software routines and to guarantee strong cycle ordering. Memory discovery routines must occur with cache disabled to pre-
vent read sourcing from the write buffers. Also, PCI memory mapped I/O cards that may exist in this address region may contain control
registers or FIFOs that depend on strong cycle ordering.

The appropriate non-cacheable region must be established using ARR7. For example, if 32 Mbytes (0000000-1FFFFFFh) are installed in
the system, a non-cacheable region must begin at the 32 Mbyte boundary (2000000h) and extend through the top of the address space
(FFFFFFFFh). This is accomplished by using ARR7 (Base = 0000 0000h, BSize=32Mbytes) in combination with RCE=1.

Table 4.1 PC Memory Model

Address Space Address Range Cacheable Weak
Writes

Weak
Locks

Write Gath-
ered

Write-
through NOTES

DOSArea 0-9FFFFh Yes Yes No Yes No

Video Buffer A0000-BFFFFh No No No Yes No Note 1

Video ROM C0000-C7FFFh Yes No No No Yes Note 2

Expansion
Card/ROM Area

C8000h-DFFFFh No No No No No

SystemROM E0000h-FFFFFh Yes No No No Yes Note 2

Extended Memory
100000h-Top of
Main Memory Yes Yes No Yes No

Unused/PCI MMIO
Top of Main Mem-
ory-FFFFFFFFh

No No No No No Note 3

ST6x86

20/47

4.2 General Recommendations

4.2.1 Main Memory

Memory discovery routines should always be executed with the L1 cache disabled. By default, L1 cach-
ing is globally disabled following reset because the CD bit in Control Register 0 (CR0) is set. Always
ensure the L1 cache is disabled by setting the CD bit in CR0 or by programming an ARR to “4 Gbyte
cache disabled” before executing the memory discovery routine. Once BIOS completes memory discov-
ery, ARR7 should be programmed with a base address of 0000000h and with a “Size” equal to the
amount of main memory that was detected.

The intent of ARR7 is to define a cacheable region for main memory and simultaneously define
unused/PCI space as non-cacheable. More restrictive regions are intended to overlay the 640k to
1Mbyte area. Failure to program ARR7 with the correct amount of main memory can result in the follow-
ing:

• Incorrect memory sizing by the operating system eventually resulting in failure,

• PCI devices not working correctly or causing system hangs,

• Low performance if ARR7 is programmed with a smaller size than the actual amount of memory.

If the granularity selection in ARR7 does not accommodate the exact size of main memory, unused
ARRs can be used to fill-in as non-cacheable regions. All unused/PCI memory space must always be
set as non-cacheable.

4.2.2 I/O Recovery Time (IORT)

Back-to-back I/O writes followed by I/O reads may occur too quickly for a peripheral to respond correctly.
Historically, programmers have inserted several “JMP $+2” instructions in the hope that code fetches on
the bus would create sufficient recovery time. The ST6x86’s Branch Target Buffer (BTB) typically elimi-
nates these external code fetches, thus the previous method of guaranteeing I/O recovery no longer
applies. For the ST6x86, one approach to dealing with this issue is to insert I/O write cycles to a dummy
port. I/O write cycles in the form “out imm,reg” are easily implemented as shown below:

OLD IORT NEW IORT

out 21h,al out 21h,al

jmp $+2 out 80h,al

jmp $+2 out 80h,al

jmp $+2 out 80h,al

in al,21h in al,21h

The ST6x86 incorporates an alternative method for implementing I/O recovery time using user selectable
delay settings. See the section on ST6x86 IORT settings below.

4.2.3 BIOS Creation Utilities

BIOS creation utilities or setup screens must have the capability to easily define and modify the contents
of the ST6x86 configuration registers. This allows OEMs and integrators to easily configure these regis-
ter settings with the values appropriate for their system design.

4.2.4 Branch Target Buffer (BTB)

In the default state, the ST6x86 BTB stores target addresses for near change-of-flow instructions (COFs)
only. To enhance the performance of the ST6x86, the BTB should be configured to store target
addresses for both near and far COFs. This feature is controlled through reserved configuration and test
registers. Sample code used to enable this feature is listed in Appendix G.

ST6x86

21/47

4.3 Recommended Bit Settings

4.3.1 NC1

The NC1 bit in CCR0 is a predefined non-cacheable region from 640k to 1MByte. The 640k to 1MByte
region should be non-cacheable to prevent L1 caching of expansion cards using memory mapped i/o
(MMIO). Setting NC1 also implies that the video BIOS and system BIOS are non-cacheable. Experi-
ments with both the ST6x86 and Pentium show that modern operating systems and benchmark applica-
tions (such as WinStone95) are unchanged when caching/non-caching system and video BIOS.

Suggested setting

NC1= 1

4.3.2 NO_LOCK

NO_LOCK enables weak locking for the entire address space. NO_LOCK may cause failures for soft-
ware that requires locked cycles in order to operate correctly.

Suggested setting

NO_LOCK = 0

4.3.3 LOCK_NW

Once set, LOCK_NW prohibits software from changing the NW bit in CR0. Since the definition of the NW
bit is the same for both the ST6x86 and the Pentium, it is not necessary to set this bit.

Suggested setting

LOCK_NW = 0

4.3.4 WPR1

WPR1 forces cacheable accesses in the 640k to 1MByte address region to be write-protected. If NC1 is
set (recommended setting), all caching is disabled from 640k to 1MByte and WPR1 is not required.
However, if ROM areas within the 640k-1MByte address region are cached, WPR1 should be set to pro-
tect against errant self-modifying code.

Suggested setting

WPR1 = 0 unless ROM areas are cached

4.3.5 LINBRST

Linear Burst (LINBRST) allows for an alternate address sequence for burst cycles. The system logic and
motherboard design must also support this feature in order for the ST6x86 to function properly with this
bit enabled. Linear Burst provides higher performance than the default “1+4” burst sequence, but should
only be enabled if the system is designed to support it.

If the system does support linear burst, BIOS should enable this feature in both the system logic and the
ST6x86 prior to enabling the L1 cache.

Suggested setting

LINBRST = 0 unless linear burst supported by the system

4.3.6 MAPEN

When set to 1h, the MAPEN bits allow access to all ST6x86 configuration registers including indexes out-
side the C0h-CFh and FCh-FFh ranges. MAPEN should be set to 1h only to access specific configura-
tion registers and then should be cleared after the access is complete.

Suggested setting

MAPEN(3-0)= 0 except for specific configuration register accesses

ST6x86

22/47

4.3.7 IORT

I/O recovery time specifies the minimum number of bus clocks between I/O accesses for the CPU’s bus
controller. The system logic typically also has a built-in method to select the amount of I/O recovery
time. It is preferred to configure the system logic with the I/O recovery time setting and set the CPU for a
minimum I/O recovery time delay.

Suggested setting

IORT(2-0) = 7

4.3.8 DTE_EN

DTE_EN allows Directory Table Entries (DTE) to be cached on the ST6x86. This provides a perfor-
mance improvement for some applications that access and modify the page tables frequently.

Suggested setting

DTE_EN = 1

4.3.9 CPUIDEN

When set, the CPUIDEN bit enables the CPUID instruction and CPUID detection. By default, the CPUID
instruction is disabled (CPUIDEN=0). In the default state, the CPUID opcode 0FA2 causes an invalid
opcode exception. Additionally, the CPUID bit in the EFLAGS register cannot be modified by software.
When enabled the CPUID opcode is enabled and the CPUID bit in the EFLAGS can be modified. The
CPUID instruction can then be called to inspect the type of CPU present.

CPUID is disabled by default to guarantee compatibility with popular software that improperly uses
CPUID and misidentifies the ST6x86. Misidentification of the processor can eventually result in runtime
failures.

Suggested setting

CPUIDEN = 0

4.3.10 WT_ALLOC

Write Allocate (WT_ALLOC) allows L1 cache write misses to cause a cache line allocation. This feature
improves the L1 cache hit rate resulting in higher performance especially for Windows applications.

Suggested setting

WT_ALLOC= 1

4.3.11 LBR1

LBR1when set causes the LBA# (Local Bus Access) pin to be asserted for accesses between 640k to
1MByte. This feature is not used for most systems.

Suggested setting

LBR1= 0

ST6x86

23/47

4.3.12 ARREN

The ARREN bit enables/disables all eight ARRs. When ARREN is cleared (default), the ARRs can be
safely programmed. Most systems will need to use at least one address region register (ARR). There-
fore, ARREN should always be set after the ARRs and RCRs have been initialized.

Suggested setting

ARREN = 1 after initializing ARR0-ARR7, RCR0-RCR7

4.3.13 ARR7 and RCR7

Address Region 7 (ARR7) defines the Main Memory Region (MMR). This region specifies the amount of
cacheable main memory and it’s attributes. Once BIOS completes memory discovery, ARR7 should be
programmed with a base address of 0000000h and with a “Size” equal to the amount of main memory
installed in the system. Memory accesses outside this region are defined as non-cacheable to ensure
compatibility with PCI devices.

Suggested settings

ARR7 Base Addr= 0000 0000h

ARR7 Block Size= amount of main memory

RCR7 RCE= 1

RCR7 WWO= 1

RCR7 WL= 0

RCR7 WG= 1

RCR7 WT= 0

RCR7 NLB= 0

If the granularity selection in ARR7 does not accommodate the exact size of main memory, unused
ARRs can be used to fill-in as non-cacheable regions (RCD = 1) as shown in Table 4-2. All unused/PCI
memory space must always be set as non-cacheable

ST6x86

24/47

4.3.14 SMM Features

The ST6x86 supports SMM mode through the use of the SMI# and SMIACT# pins, and a dedicated
memory region for the SMM address space. SMM features must be enabled prior to servicing any SMI
interrupts. The following paragraphs describe each of the SMM features and recommended settings.

USE_SMI

Prior to servicing SMI interrupts, SMM-capable systems must enable the SMM pins by setting
USE_SMI=1. The SMM hardware pins (SMI# and SMIACT#) are disabled by default.

SMAC

If set, any access to addresses within the SMM address space accesses SMM memory instead of main
memory. Setting SMAC allows access to the SMM memory without servicing an SMI. Additionally,
SMAC allows use of the SMINT instruction (software SMI). This bit may be enabled to initialize or test
SMM memory but should be cleared for normal operation.

Table 4.2 ARR Settings for Various Main Memory Sizes

Mem ARR7 ARR6 ARR5 ARR4

SIZE
(MB)

Base
(hex)

Size
(MB)

Base
(hex) Size (MB) Base (hex) Size (MB) Base (hex) Size (MB)

8 0 8

16 0 16

24 0 32 0180 0000 8

32 0 32

40 0 64 0300 0000 16 0280 0000 8

48 0 64 0300 0000 16

64 0 64

72 0 128 0600 0000 32 0500
0000

16 0480
0000

8

80 0 128 0600 0000 32 0500
0000

16

96 0 128 0600 0000 32

128 0 128

160 0 256 0E00 0000 32 0C00 0000 32 0A00 0000 32

192 0 256 0E00 0000 32 0C00 0000 32

256 0 256

ST6x86

25/47

SM3 and ARR3

Address Region Register 3 (ARR3) can be used to define the System Management Address Region
(SMAR). Systems that use SMM features must use ARR3 to establish a base and limit for the SMM
address space.

Only ARR3 can be used to establish the SMM region.

Typically, SMAR overlaps normal address space. RCR3 defines the attributes for both the SMM
address region AND the normal address space. If SMAR overlaps main memory, write gathering should
be enabled for ARR3. If SMAR overlaps video memory, ARR3 should be set as non-cacheable and write
gathering should be enabled.

NMI_EN

The NMI_EN bit allows NMI interrupts to occur within an SMI service routine. If this feature is enabled,
the SMI service routine must guarantee that the IDT is initialized properly to allow the NMI to be serviced.
Most systems do not require this feature.

SMI_LOCK

Once the SMM features are initialized in the configuration registers, they can be permanently locked
using the SMI_LOCK bit. Locking the SMM related bits and registers prevents applications from tamper-
ing with these settings. Even if SMM is not implemented, setting SMI_LOCK in combination with
SMAC=0 prevents software SMIs from occurring.

Once SMI_LOCK is set, it can only be cleared by a processor RESET. Consequently, setting SMI_LOCK
makes system/BIOS/SMM debugging difficult. To alleviate this problem, SMI_LOCK must be imple-
mented as a user selectable ”Secure SMI (enable/disable)” feature in CMOS setup. If SMI_LOCK is not
user selectable, it is recommended that SMI_LOCK = 0 to facilitate system debug.

Suggested settings for systems not using SMM

USE_SMI = 0

SMAC = 0

SM3 = 0

ARR3 = may be used as normal address region register

SMI_LOCK = 0

NMI_EN = 0

Suggested settings for systems using SMM

USE_SMI = 1

SMAC = 0

SM3 = 1

ARR3 Base Addr = as required

ARR3 Block Size= as required

SMI_LOCK = 0

NMI_EN = 0

ST6x86

26/47

4.3.15 Power Management Features

SUSP_HALT

Suspend on Halt (SUSP_HLT) permits the CPU to enter a low power suspend mode when a HLT instruc-
tion is executed. Although this provides some power management capability, it is not optimal.

Suggested setting

SUSP_HALT = 0

USE_SUSP

In addition to the HLT instruction, low power suspend mode may be activated using the SUSP# input pin.
In response to the SUSP# input, the SUSPA# output indicates when the ST6x86 has entered low power
suspend mode. Systems that support the ST6x86’s low power suspend feature via the hardware pins
must set USE_SUSP to enable these pins.

Suggested setting

USE_SUSP = 0 unless hardware suspend pins supported

ST6x86

27/47

5.0 Programming Model Differences

5.1 Instruction Set

The ST6x86 supports the 486 instruction set. Pentium extensions for virtual mode, additional debug
capability, and internal counters are not supported.

5.2 Configuring Internal ST6x86 Features

The ST6x86 supports configuring internal features through I/O ports. The ST6x86 does not support con-
figuring internal features through the WRMSR and RDMSR instructions which are treated as invalid
opcodes.

5.3 INVD and WBINVD Instructions

The INVD and WBINVD instructions are used to invalidate the contents of the internal and external
caches. The WBINVD instruction first writes back any modified lines in the cache and then invalidates
the contents. It ensures that cache coherency with system memory is maintained regardless of the
cache operating mode. Following invalidation of the internal cache, the CPU generates special bus
cycles to indicate that external caches should also write back modified data and invalidate their contents.

On the ST6x86, the INVD functions identically to the WBINVD instruction. The ST6x86 always writes all
modified internal cache data to external memory prior to invalidating the internal cache contents. In con-
trast, the Pentium invalidates the contents of its internal caches without writing back the “dirty” data to
system memory. The Pentium behavior can potentially result in a data incoherency between the CPU’s
internal cache and system memory.

5.4 Control Register 0 (CR0) CD and NW Bits

The CPU’s CR0 register contains, among other things, the CD and NW which are used to control the
on-chip cache. CR0, like the other system level registers, is only accessible to programs running at the
highest privilege level. Table 5.1 lists the cache operating modes for the possible states of the CD and
NW bits.

The CD and NW bits are set to one (cache disabled) after reset. For highest performance the cache
should be enabled in write-back mode by clearing the CD and NW bits to 0. Sample code for enabling
the cache is listed in Appendix E. To completely disable the cache, it is recommended that CD and NW
be set to 1 followed by execution of the WBINVD instruction. The ST6x86 cache always accepts invali-
dation cycles even when the cache is disabled. Setting CD=0 and NW=1 causes a General Protection
fault on the Pentium, but is allowed on the ST6x86 to globally enable write-through caching.

ST6x86

28/47

Table 5.1 Cache Operating Mode

CD NW OPERATING MODES

1 1

Cache disabled.

Read hits access the cache.

Read misses do not cause line fills.

Write hits update the cache and system memory.

Write hits change exclusive lines to modified.

Shared lines remain shared after write hit.

Write misses access memory.

Inquiry and invalidation cycles are allowed.

System memory coherency maintained.

1 0

Cache disabled.

Read hits access the cache.

Read misses do not cause line fills.

Write hits update the cache.

Only write hits to shared lines and write misses update system memory.

Write misses access memory.

Inquiry and invalidation cycles are allowed.

System memory coherency maintained.

0 1

Cache enabled in Write-through mode.

Read hits access the cache.

Read misses may cause line fills.

Write hits update the cache and system memory.

Write misses access memory.

Inquiry and invalidation cycles are allowed.

System memory coherency maintained.

0 0

Cache enabled in Write-back mode.

Read hits access the cache.

Read misses may cause line fills.

Write hits update the cache.

Write misses access memory and may cause line fills if write allocation is enabled.

Inquiry and invalidation cycles are allowed.

System memory coherency maintained.

ST6x86

29/47

6.0 Appendix

6.1 Appendix A - Sample Code: Detecting a SGS-THOMSON CPU

_issgsproc near
.386
xor ax, ax ; clear ax
sahf ; clear flags, bit 1 always=1 in flags
mov ax, 5
mov bx, 2
div bl ; operation that doesn’t change flags
lahf ; get flags
cmp ah, 2 ; check for change in flags
jne not_sgs ; flags changed, therefore NOT SGS
mov ax, 1 ; TRUE SGS CPU
jmp done

not_sgs:
mov ax, 0 ; FALSE NON-SGS CPU

done:

ret
_issgs endp
_TEXT ends
end

Figure 1

assume cs:_TEXT
public _issgs
_TEXT segment byte public ‘CODE’
;*************** **
; Function: int issgs ()
;
; Purpose: Determine if SGS-THOMSON CPU is present.
; Technique: SGS-THOMSON CPUs do not change flags where flags
; change in an undefined manner on other CPUs
; Inputs: none
; Output: ax = 1 SGS-THOMSON present, 0 if not
;*************** **

ST6x86

30/47

6.2 Appendix B - Sample Code: Determining CPU MHz

PortB EQU 061h
Timer_Ctrl_Reg EQU 043h
Timer_2_Data EQU 042h
stk$dx EQU 10 ;dx register offset
stk$ax EQU 14 ;dx register offset
stack$ax EQU [bp]+stk$ax
stack$dx EQU [bp]+stk$dx
Loop_Count EQU [bp+16]+4

.386p

_cpu_speed proc near
pushf ;save interrupt flag
pusha ;pushes 16 bytes on stack
mov bp,sp ;init base ptr

continued

assume cs:_TEXT
public _cpu_speed
_TEXT segment para public ’CODE’

comment~
*** *****************
Function: unsigned long _cpu_speed(unsigned int)

”C” style caller
Purpose: calculate elapsed time req’d to complete a loop of IDIVs

Technique: Use the PC’s high resolution timer/counter chip (8254)
to measure elapsed time of a software loop consisting
of the IDIV and LOOP instruction.

Definitions: The 8254 receives a 1.19318MHz clock (0.8380966 usec).
One ”tick” is equal to one rising clock edge applied

to the 8254 clock input.
Inputs: ax = no. of loops for cpu_speed_loop
Returns: ax = no. of 1.19318MHz clk ticks req’d to complete a loop

dx = state of 8254 out pin

Figure 2

ST6x86

31/47

;-------initialize the 8254 counter to ”0”, known value
mov al,0b0h
out Timer_Ctrl_Reg, al ;control word to set channel 2 count
out 80h,al ;I/O recovery time
mov al,0ffh
out Timer_2_Data, al ;init count to 0, lsb
out 80h,al ;I/O recovery time
out Timer_2_Data, al ;init count to 0, msb

;-------get the number of loops from the caller’s stack
mov cx,Loop_Count ;loop count

;-------load dividend & divisor, clk count for IDIV depend on operands!
xor edx,edx ;dividend EDX:EAX
xor eax,eax
mov ebx,1 ;divisor

;-------enable the timer/counter’s clock. Begin timed portion of test!
xchg ax, di ;save ax for moment
or al, 1
out PortB, al ;enable timer/counter 2 clk
xchg ax, di ;restore ax

;-------this is the core loop.
ALIGN 16

cpu_speed_loop:
idiv ebx
idiv ebx
idiv ebx
idiv ebx
idiv ebx
loop cpu_speed_loop

;-------disable the timer/counter’s clk. End timed portion of test!
mov ax, di
and al, 0FEH
out PortB, al

Figure 2

continued

ST6x86

32/47

;-------send latch status command to the timer/counter
mov al, 0c8h ;latch status and count
out Timer_Ctrl_Reg, al
out 80h,al ;I/O recovery time

;-------read status byte, and count value ”ticks” from the timer/cntr
in al, Timer_2_Data ;read status
out 80h,al ;I/O recovery time
mov dl, al
and dx, 080h
shr dx, 7
in al, Timer_2_Data ;read LSB
out 80h,al ;I/O recovery time
mov bl, al
in al, Timer_2_Data ;read MSB
out 80h,al ;I/O recovery time
mov bh, al
not bx ;invert count

;-------send command to clear the timer/counter
mov al, 0b6h
out Timer_Ctrl_Reg, al ;clear channel 2 count
out 80h,al ;I/O recovery time
xor al, al
out Timer_2_Data, al ;set count to 0, lsb
out 80h,al ;I/O recovery time
out Timer_2_Data, al ;set count to 0, msb

;-------put return values on the stack for the caller
mov [bp+stk$ax], bx
mov [bp+stk$dx], dx
popa
popf ;restores interrupt flag
ret

_cpu_speed endp
.8086
_TEXT ENDS
END

Figure 2

ST6x86

33/47

6.3 Appendix C - Example CPU Type and Frequency Detection Program

/

Figure 3

/* include directives */
#include <stdio.h>

/* constants */
#define TTPS 1193182 //high speed Timer Ticks per second in Mhz
#define MHZ 1000000 //number of clocks in 1 Mhz
#define LOOP_COUNT 0x2000 //core loop iterations
#define RUNS 10 //number of runs to average
#define DIVS 5 //# of IDIV instructions in the core loop
#define ST6x86_IDIV_CLKS 17 //known clock counts for ST6x86
#define ST6x86_LOOP_CLKS 1
#define P54_IDIV_CLKS 46 //known clock counts for P54
#define P54_LOOP_CLKS 7

/* prototypes */
unsigned int issgs (void); //detects SGS cpu
unsigned long cpu_speed(unsigned int); //core timing loop

main(){

/* declarations */
unsigned char uc_sgs_cpu = 0; //SGS cpu? 0=no, 1=yes
unsigned int i_runs = 0; //number of runs to avg
unsigned int ui_idiv, ui_loop = 0; //instruction clk counts

* *** ***************
function: main() WCP 8/22/95
Purpose: a driver program to demonstrate:

CPU detection
CPU core frequency in Mhz.

Returns: 0 if successful

Required source code modules
ST6x86_stat.c main() module (this file)
id.asm cpu identification code
clock.asm cpu timing loop

Compile and Link instructions for Borland C++ or equivalent:
bcc ST6x86_stat.c id.asm clock.asm

************************ **/

continued

ST6x86

34/47

float f_total_core_clks = 0; //calculated core clocks
float f_total_time = 0; //measured time
float f_mhz = 0; //mhz

/* ********** determine if SGS CPU is present ************** */
//dectect if SGS CPU is present

uc_sgs_cpu = issgs(); //1=sgs, 0=non-sgs

//display a msg

if(uc_sgs_cpu) printf(”\nSGS-THOMSON CPU present! ”);
else printf(”\nSGS-THOMSON CPU not present! ”);

/* ******************** determine CPU Mhz ******************** */

//count # of hi speed ”timer ticks” to complete several runs of core loop
for (i_runs = 0 ; i_runs < RUNS ; i_runs++) {
ul_tt_cnt = cpu_speed(ui_core_loop_cntr);

ul_tt_sum += ul_tt_cnt; //sum them all together

}//end for

//compute the avg number of high speed ”timer ticks” for the several runs

f_mtt = ul_tt_sum / RUNS; //compute the average

//initialize variables with the ”known” clock counts for a ST6x86 or P54

if(uc_sgs_cpu)ui_idiv=ST6x86_IDIV_CLKS; else ui_idiv=P54_IDI V_CLKS;
if(uc_sgs_cpu)ui_loop=ST6x86_LOOP_CLKS; else ui_loop=P54_LOO P_CLKS;

//determine the total number of core clocks.(5 idivs are in the core loop)
f_total_core_clks = (float)ui_core_loop_cntr * (ui_idiv * DIVS + ui_loop);

float f_mtt = 0; //measured timer ticks
unsigned int ui_core_loop_cntr = LOOP_COUNT; //core loop iterations
unsigned long ul_tt_cnt, ul_tt_sum = 0; //timer tick counts, sum

Figure 3

}// end main

return(0);
printf(”The core clock frequency is: %3.1f MHz\n\n”,f_mhz);

//display a msg

f_mhz = f_mhz / MHZ; //convert to Mhz
f_mhz = f_total_core_clks / f_total_time;

//frequency can be found by the ratio of core clks to the total time.

f_total_time = f_mtt / TTPS;
//ratio of measured timer ticks(mtt) to timer ticks per second(TTPS).
//the time it took to complete the core loop can be determined by the

ST6x86

35/47

6.4 Appendix D- Sample Code : Programming ST6x86 Configuration Registers

6.4.1 Reading/Writing Configuration Registers

Figure 4

6.4.2 Setting MAPEN

Sample code for setting NC1=1 in CCR0.
pushf ;save the if flag
cli; ;disable interrupts
mov al, 0c0h ;set index for CCR0
out 22h, al; ;select CCR0 register
in al, 23h ;READ current CCR0 valueREAD

mov ah, al
or ah, 2h; ;MODIFY,set NC1 bitMODIFY

mov al, 0c0h ;set index for CCR0
out 22h, al ;select CCR0 register
mov al, ah
out 23h,al ;WRITE new value to CCR0WRITE
popf ;restore if flag

Sample code for setting MAPEN=1 in CCR3 to allow access to all of the

pushf ;save the if flag
cli; ;disable interrupts
mov al, 0c3h ;set index for CCR3
out 22h, al ;select CCR3 register
in al, 23h ;current CCR3 valueREAD

mov ah, al
and ah,0Fh ;clear upper nibble of ah
or ah, 10h; ;MODIFY,set MAPEN(3-0)MODIFY

mov al, 0c3h ;set index for CCR3
out 22h, al ;select CCR3 register
mov al, ah
out 23h,al ;WRITE new value to CCR3WRITE

popf ;restore if flag

configuration registers.

Figure 5

ST6x86

36/47

6.5 Appendix E - Sample Code: Controlling the L1 Cache

6.5.1 Enabling the L1 Cache

6.5.2 Disabling the L1 Cache

;reading/writing CR0 is a privileged operation.

mov eax, cr0
and eax, 09fffffffh ;clear the CD=0, NW=0 bits to enable write-back
mov cr0, eax ;control register 0 write
wbinvd ;optional, by flushing the L1 cache here it

;ensures the L1 cache is completely clean

mov eax, cr0
or eax, 060000000h ;set the CD=1, NW=1 bits to disable caching
mov cr0, eax ;control register 0 write
wbinvd

Figure 6

Figure 7

ST6x86

37/47

6.6 Appendix F - Example Configuration Register Settings

Below is an example of optimized ST6x86 settings for a 16 MByte system with PCI. Since SMI address
space overlaps Video RAM at A0000h, WG is set to maintain the settings of the underlying region ARR0.
If SMI address space overlapped system memory at 30000h, only WWO and WG would be set. If SMI
address space overlapped FLASH ROM at E0000h, only RCD would be set. Power management fea-
tures are disabled in this example system.

Table 6.6 Configuration Register Settings

Register Bit(s) Setting Description

CCR0 NC1 1 Disables caching from 640k-1MByte.

CCR1

USE_SMI

SMAC

NO_LOCK

SM3

1

0

0

1

Enables SMI# and SMIACT# pins.

Always clear SMAC for normal operation.

Enforces strong locking for compatibility.

Sets ARR3 as SMM address region.

CCR2

LOCK_NW

SUSP_HLT

WPR1

USE_SUSP

0

0

0

0

Locking NW bit not required.

Power management not required for this system.

ROM areas not cached, so WPR1 not required.

Power management not required for this system.

CCR3

SMI_LOCK

NMI_EN

LINBRST

MAPEN(3-0)

0

0

0

0

Locks SMI feature as initialized.

Servicing NMIs during SMI not required.

Linear burst not supported in this system.

Always clear MAPEN for normal operation.

CCR4

IORT(2-0)

DTE_EN

CPUIDEN

7

1

0

Sets IORT to minimum setting.

Enables DTE cache.

Disables CPUID instruction for compatibility.

CCR5

WT_ALLOC

LBR1

ARREN

1

0

1

Enables write allocation for performance.

LBA# pin not required.

Enables all ARRs.

ARR0
BASE ADDR

BLOCK SIZE

A0000h

6h

Video buffer base address = A0000h.

Video buffer block size = 128KBytes.

RCR0

RCD

WWO

WL

WG

WT

NLB

1

0

0

1

0

0

Caching disabled for compatibility. Caching also disabled
via NC1.

Write gathering enabled for performance.

ARR1
BASE ADDR

BLOCK SIZE

C0000h

7h

Expansion Card/ ROM base address = C0000h.

Expansion Card/ROM block size = 256KBytes.

continued

ST6x86

38/47

RCR1

RCD

WWO

WL

WG

WT

NLB

1

0

0

0

0

0

Caching disabled forcompatibility. Caching also disabled via NC1.

ARR3
BASE ADDR

BLOCK SIZE

A0000h

4h

SMM address region base address

SMM address space = 32 KBytes

RCR3

RCD

WWO

WL

WG

WT

NLB

1

0

0

1

0

0

Caching disabled due to overlap with video buffer.

Writegathering enabled due to overlap with video buffer.

ARR7
BASE ADDR

BLOCK SIZE

0h

7h

Main memory base address = 0h.

Main memory size = 16 MBytes.

RCR7

RCE

WWO

WL

WG

WT

NLB

1

1

0

1

0

0

Caching, weak write ordering, and write gathering enabled for main
memory.

ARR(2,4-6)
BASE ADDR

BLOCK SIZE

0

0
ARR(2,4-6) disabled (default state).

RCR(2,4-6)

RCD

WWO

WL

WG

WT

NLB

0

0

0

0

0

0

RCR(2,4-6) not required due to corresponding ARRs dis-
abled (default state).

Table 6.6 Configuration Register Settings

ST6x86

39/47

6.7 Appendix G - Sample Code: Enabling FAR COFs in BTB

;-------First, set MAPEN to allow access to all ST6x86 configuration regs
mov al, 0C3h ;READ
out 22h, al
in al, 23h

mov ah, al ;MODIFY
or ah, 10h
and ah, 1Fh

mov al, 0C3h ;WRITE
out 22h, al
mov al, ah
out 23h, al

;------Enable ST6x86 test register opcodes
mov al, 30h ;READ debug register (index 30)
out 22h, al
in al, 23h

mov ah, al ;MODIFY enable tr opcodes
or ah, (1 SHL 6)

mov al, 30h ;WRITE debug reg (index 30h)
out 22h, al
mov al, ah
out 23h, al

;-------Enable FAR COF hits (index 5, bit 1)
mov ebx,28h ;select index 5
movtr _tr1,_ebx
db 0Fh,26h,0CBh ;opcodes for movtr _tr1,_ebx

movtr _eax,_tr2 ;READ test reg index 5
db 0Fh,24h,0D0h ;opcodes for movtr _eax,_tr2
and eax,0FFFFFFFDh ;MODIFY

Figure 8

continued

Below is sample code that enables FAR COFs in the BTB.

ST6x86

40/47

movtr _tr2,_eax ;WRITE new data to test reg 5
db 0Fh,26h,0D0h ;opcodes for movtr _tr2,_eax

mov debug_reg_0,eax ;save value for later

;-------Disable ST6x86 Test Register Opcodes
mov al, 30h ;READ debug reg DBR0
out 22h, al
in al, 23h

mov ah, al ;MODIFY
and ah, 0BFh ;turn off tr opcodes

mov al, 30h ;WRITE
out 22h, al
mov al, ah
out 23h, al

;-------Restore mapen to default state
mov al, 0C3h ;READ
out 22h, al
in al, 23h

mov ah, al ;MODIFY
and ah, 0Fh ;turn off mapen

mov al, 0C3h ;WRITE
out 22h, al
mov al, ah
out 23h, al

Figure 8

ST6x86

41/47

6.8 Appendix H - Sample Code: Detecting L2 Cache Burst Mode

;version m510 ;remove comment for TASM

DOSSEG
.MODEL SMALL
.DATA

Msg_1db 0dh,0ah

db ’ISLINBUR.EXE checks if L2 SRAMs are in Linear Burst Mode or’
db 0dh,0ah
db ’Toggle Burst mode for the SIS5511 chipset and the STST6x86 CPU.’
db 0dh,0ah

db ’$’
Msg_2 db 0dh,0ah
db ’Test complete!’
db 0dh,0ah
db ’$’
Msg_yes db 0dh,0ah
db ’The L2 SRAMs correctly operate in linear burst mode.’
db 0dh,0ah
db ’$’
Msg_no db 0dh,0ah
db ’ERROR: The L2 SRAMs incorrectly operate in linear burst mode.’
db 0dh,0ah
db ’$’

*** ****************************

continued

Purpose: This example program detects if the Linear Burst mode is supported.
Method: There are 3 components (CPU, chipset, SPBSRAM) that must agree on the

burst order.The CPU and chipset burst order can be determined by inspecting each
devices’ internal configuration registers. The SPBSRAM devices must be interrogated
by a software algorithm (below) to determine if ”linear burst mode” is enabled/
supported correctly.

Algorithm: If the CPU and chipset are programmed for linear burst mode and a known data
pattern exists in memory, then the burst mode of the SPBSRAMs can be
determined by performing a cache line burst and then inspecting the data pattern.

Application: In this example, the SIS5511 chipset is used with a SGS-THOMSON STST6x86
CPU.

Environment: This program is a REAL mode DOS program to serve as an example. This
example algorithm should be ported to BIOS.

Warnings: For simplicity, this program does not check to see which CPU or chipset is
present nor does it check to see if the CPU is in the REAL mode before
executing protected instructions. Also, this program blindly overwrites data in the
8000h segment of memory.

** **

Figure 9

ST6x86

42/47

index_port dw 0CF8h
data_port dw 0CFCh
pci_index dd 80000000h

.STACK 100h

.CODE

.STARTUP

.486P

pushf
cli

;-------display a msg using a DOS call
mov ax,seg Msg_1
mov ds,ax
mov dx,offset Msg_1 ;set msg_1 start
mov ah,9h ;print string function
int 21h ;DOS int

;-------disable the L1 internal cache
call cache_off
out 80h,al ;write to PC diagnostic port

;-------setup a work space in main memory to perform burst mode tests
;and initialize the memory work space with a known pattern
push ds
mov ax,8000h ;choose segment 8000h
mov ds,ax
mov al,0001h
mov byte ptr ds:[0],al ;init memory locations
inc al
mov byte ptr ds:[8h],al
inc al
mov byte ptr ds:[10h],al
inc al
mov byte ptr ds:[18h],al
pop ds

;-------enable the SiS5511 chipset’s linear burst mode
mov al,51h ;al=reg to read
call r_pci_reg ;READ al=reg contents
mov ah,al
or ah,8 ;MODIFY set linbrst bit
mov al,51h
call w_pci_reg ;WRITE

;-------enable the CPU’s linear burst mode
call en_linbrst

;-------enable L1 caching
call cache_on continued

Figure 9

ST6x86

43/47

Figure 9

;-------burst several cache lines so that address 80000h is in the L2
;cache, but NOT in the L1 cache.

push ds
mov ax,8000h ;choose segment 8000h
mov ds,ax
mov al,byte ptr ds:[0h] ;do a line fill to L2 and L1
mov al,byte ptr ds:[1000h] ;fill L1 line 1
mov al,byte ptr ds:[2000h] ;fill L1 line 1
mov al,byte ptr ds:[3000h] ;fill L1 line 1
mov al,byte ptr ds:[4000h] ;fill L1 line 1,
;now 80000h exists only in the
;L2 cache (not in L1 anymore!)

;---burst a cache line so that address 80000h will hit the L2 cache SRAMs
mov al,byte ptr ds:[8h]

;***** Burst Pattern Table *****
;if SRAMs in linear burst mode, then

;L1 will be filled with:
; byte data
; 0 01h
; 8 02h
; 10 03h
; 18 04h

;if SRAMs in toggle burst mode, then
;L1 will be filled with:

; byte data
; 0 03h
; 8 02h
; 10 01h
; 18 04h

;-------Compare the cache line to the Burst Pattern Table above. The
;signature of the pattern will determine if the burst was
;linear or toggle.
mov al, byte ptr ds:[10h] ;check byte ds:[10] in the L1
cmp al,3h ;it will be a 1 if toggle mode
pop ds ;it will be a 3 if linear mode
jnz not_linear

is_linear:
mov dx,offset Msg_yes ;SRAMs in linear burst mode
jmp over_not
not_linear:
mov dx,offset Msg_no ;SRAMs in toggle burst mode
over_not:
wbinvd

;------disable L1 internal cache
call cache_off continued

ST6x86

44/47

Figure 9

;-------restore chipset to toggle mode burst order
mov al,51h ;al=reg to read
call r_pci_reg ;READ al=reg contents
mov ah,al
and ah,0f7h ;MODIFY clr linbrst bit
mov al,51h
call w_pci_reg ;WRITE

call dis_linbrst

;-------restore L1 caching
call cache_on

done:
popf

;-------display a msg using a DOS call
mov ax,seg Msg_2
mov ds,ax
mov ah,9h ;print string function
int 21h ;DOS int

;--------return to the operating system
.EXIT

comment~********************************* ************* ******************
function r_pci_reg
purpose read the pci register at the index in al
inputs al= the index of the pci register
returns al= the data read from the pci reg

*** ************* *****************~
r_pci_reg PROC

pushf
push eax
push dx
cli

mov dx,index_port
and eax,0FFh
or eax,pci_index
out dx,eax

and al,3
mov dx,data_port
add dl,al
in al,dx
xchg al,bl ;preserve rtn value

mov eax,pci_index continued

ST6x86

45/47

mov dx,index_port
out dx,eax

pop dx
pop eax
popf

xchg al,bl
ret

r_pci_reg ENDP

comment~********************************* *******************************
function w_pci_reg
inputs al= the index of the pci register ah= the data to write
outputs modifies chipset registers directly
returns none

*** ******************************~
w_pci_reg proc

pushf
push eax
push bx
push dx
cli

mov bx,ax ;preserve input value(s)

mov dx,index_port
and eax,0FFh
or eax,pci_index
out dx,eax

and al,3
mov dx,data_port
add dl,al
mov al,bh ;recall data to write
out dx,al

mov eax,pci_index
mov dx,index_port
out dx,eax

pop dx
pop bx
pop eax
popf
ret
w_pci_reg ENDP

continued

Figure 9

ST6x86

46/47

comment~********************************* *******************************
function en_linbrst
purpose enable the STST6x86 linbrst bit
inputs none
outputs modifies the STST6x86 CPU registers directly
returns none

*** ******************************~
en_linbrst PROC

mov ax,0C3C3h ;set LINBRST
out 22h,al
in al,23h
xchg ah,al
or ah,4
out 22h,al
xchg ah,al
out 23h,al

ret
en_linbrst ENDP

comment~********************************* *******************************
function dis_linbrst
purpose disable the STST6x86 linbrst bit
inputs none
outputs modifies the STST6x86 CPU registers directly
returns none

*** ******************************~
dis_linbrst PROC

mov ax,0C3C3h
out 22h,al
in al,23h
xchg ah,al
and ah,0fbh ;clear the linbrst bit
out 22h,al
xchg ah,al
out 23h,al

ret
dis_linbrst ENDP

comment~********************************* *******************************
function cache_off
purpose disables the L1 cache
inputs none
returns none

*** ******************************~
cache_off PROC

continued

Figure 9

ST6x86

47/47

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the

consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No

license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications men-

tioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without

express written approval of SGS-THOMSON Microelectronics.

 1996 SGS-THOMSON Microelectronics – Printed In Italy – All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia – Brazil – Canada – China – France – Germany – Hong Kong – Italy – Japan – Korea – Malaysia – Malta – Morocco

The Netherlands – Singapore – Spain – Sweden – Switzerland – Taiwan – Thailand – United Kingdom – U.S.A.

pushf
push eax
cli
mov eax,cr0
or eax,60000000h
mov cr0,eax
wbinvd
jmp $+2
pop eax
popf
ret
cache_off ENDP

comment~********************************* *******************************
function cache_on
purpose enables the L1 cache
inputs none
returns none

*** ******************************~
cache_on PROC
pushf
push eax
cli
mov eax,cr0
and eax,9FFFFFFFh
mov cr0,eax
pop eax
popf
ret
cache_on ENDP

END

Figure 9

