
©

G
eo

d
e™

G
X

m
P

ro
cess

April 2000
Geode™ GXm Processor
Integrated x86 Solution with MMX Support
o
r

In
teg

rated
x86

S
o

lu
tio

n
w

ith
M

M
X

S
u

p
p

o
rt
General Description
The National Semiconductor® Geode™ GXm processor
is an advanced 32-bit x86 compatible processor offering
high performance, fully accelerated 2D graphics, a 64-bit
synchronous DRAM controller and a PCI bus controller,
all on a single chip that is compatible with Intel’s MMX
technology.

The GXm processor core is a proven design that offers
competitive CPU performance. It has integer and floating
point execution units that are based on sixth-generation
technology. The integer core contains a single, six-stage
execution pipeline and offers advanced features such as
operand forwarding, branch target buffers, and extensive
write buffering. A 16 KB write-back L1 cache is accessed
in a unique fashion that eliminates pipeline stalls to fetch
operands that hit in the cache.

In addition to the advanced CPU features, the GXm pro-
cessor integrates a host of functions which are typically
implemented with external components. A full-function

graphics accelerator provides pixel processing and ren-
dering functions.

A separate on-chip video buffer enables >30 fps MPEG1
video playback when used together with the CS5530 I/O
companion chip. Graphics and system memory accesses
are supported by a tightly-coupled synchronous DRAM
(SDRAM) memory controller. This tightly coupled memory
subsystem eliminates the need for an external L2 cache.

The GXm processor includes Virtual System Architec-
ture® (VSA™ technology) enabling XpressGRAPHICS
and XpressAUDIO subsystems as well as generic emula-
tion capabilities. Software handler routines for the Xpress-
GRAPHICS and XpressAUDIO subsystems can be
included in the BIOS and provide compatible VGA and 16-
bit industry standard audio emulation. XpressAUDIO tech-
nology eliminates much of the hardware traditionally asso-
ciated with audio functions.

Geode™ GXm Processor Internal Block Diagram

Write-Back
Unit FPU

Internal Bus Interface Unit

Graphics Memory Display PCI

SDRAM Port CS5530 PCI Bus

Integer
Cache Unit

Integrated
Functions

MMU

(CRT/LCD TFT)

X-Bus

Pipeline Controller Controller Controller

C-Bus
2000 National Semiconductor Corporation www.national.com

National Semiconductor and Virtual System Architecture are registered trademarks of National Semiconductor Corporation.
Geode and VSA are trademarks of National Semiconductor Corporation.
For a complete listing of National Semiconductor trademarks, please visit www.national.com/trademarks.

w

G
eo

d
e™

G
X

m
P

ro
ce

ss
o

r

Features

General Features
� Packaged in:

— 352-Terminal Ball Grid Array (BGA) or
— 320-Pin Staggered Pin Grid Array (SPGA)

� 0.35-micron four layer metal CMOS process

� Split rail design (3.3V I/O and 2.9V core)

32-Bit x86 Processor
� Supports the MMX instruction set extension for the

acceleration of multimedia applications

� Speeds offered up to 266 MHz

� 16 KB unified L1 cache

� Integrated Floating Point Unit (FPU)

� Re-entrant System Management Mode (SMM)
enhanced for VSA

PCI Controller
� Fixed, rotating, hybrid, or ping-pong arbitration

� Supports up to three PCI bus masters

� Synchronous CPU and PCI bus clock frequency

� Supports concurrency between PCI master and L1
cache

Power Management
� Designed to support CS5530 power management

architecture

� CPU only Suspend or full 3V Suspend supported:
— Clocks to CPU core stopped for CPU Suspend
— All on-chip clocks stopped for 3V Suspend
— Suspend refresh supported for 3V Suspend

Virtual Systems Architecture Technology
� Architecture allows OS independent (software) virtual-

ization of hardware functions

� Provides compatible high performance legacy VGA
core functionality

Note: GUI (Graphical User Interface) graphics accel-
eration is pure hardware.

� Provides 16-bit XpressAUDIO subsystem

2D Graphics Accelerator
� Graphics pipeline performance significantly increased

over previous generations by pipelining burst
reads/writes

� Accelerates BitBLTs, line draw, text

� Supports all 256 raster operations

� Supports transparent BLTs

� Runs at core clock frequency

� Full VGA and VESA mode support

� Special "Driver level” instructions utilize internal
scratchpad for enhanced performance

Display Controller
� Video Generator (VG) improves memory efficiency for

display refresh with SDRAM

� Supports a separate MPEG1 video buffer and data
path to enable video acceleration in the CS5530

� Internal palette RAM for use with the CS5530

� Direct interface to CS5530 for CRT and TFT flat panel
support which eliminates need for external RAMDAC

� Hardware frame buffer compressor/decompressor

� Hardware cursor

� Supports up to 1280x1024x8 bpp and 1024x768x16
bpp

XpressRAM Subsystem
� Memory control/interface directly from CPU

� 64-Bit wide memory bus

� Support for:
— Two 168-pin unbuffered DIMMs
— Up to 16 open banks simultaneously
— Single or 16-byte reads (burst length of two)
ww.national.com 2 Revision 3.1

R

Table of Contents
G

eo
d

e™
G

X
m

P
ro

cesso
r

1.0 Architecture Overview . 8
1.1 INTEGER UNIT . 8
1.2 FLOATING POINT UNIT . 9
1.3 WRITE-BACK CACHE UNIT . 9
1.4 MEMORY MANAGEMENT UNIT . 9

1.4.1 Internal Bus Interface Unit . 9
1.5 INTEGRATED FUNCTIONS . 9

1.5.1 Graphics Accelerator . 9
1.5.2 Display Controller . 10
1.5.3 XpressRAM Memory Subsystem . 10
1.5.4 PCI Controller . 10

1.6 GEODE GXM/CS5530 SYSTEM DESIGNS . 11

2.0 Signal Definitions . 13
2.1 PIN ASSIGNMENTS . 13
2.2 SIGNAL DESCRIPTIONS . 24

2.2.1 System Interface Signals . 24
2.2.2 PCI Interface Signals . 26
2.2.3 Memory Controller Interface Signals . 29
2.2.4 Video Interface Signals . 30
2.2.5 Power, Ground, and No Connect Signals . 32
2.2.6 Internal Test and Measurement Signals . 32

2.3 SUBSYSTEM SIGNAL CONNECTIONS . 34
2.4 POWER PLANES . 36

3.0 Processor Programming . 38
3.1 CORE PROCESSOR INITIALIZATION . 38
3.2 INSTRUCTION SET OVERVIEW . 39

3.2.1 Lock Prefix . 39
3.3 REGISTER SETS . 40

3.3.1 Application Register Set . 40
3.3.2 System Register Set . 44
3.3.3 Model Specific Register Set . 59
3.3.4 Time Stamp Counter . 59

3.4 ADDRESS SPACES . 60
3.4.1 I/O Address Space . 60
3.4.2 Memory Address Space . 60

3.5 OFFSET, SEGMENT, AND PAGING MECHANISMS . 61
3.6 OFFSET MECHANISM . 61
3.7 DESCRIPTORS AND SEGMENT MECHANISMS . 62

3.7.1 Real and Virtual 8086 Mode Segment Mechanisms . 62
3.7.2 Segment Mechanism in Protective Mode . 63
3.7.3 GDTR and LDTR Registers . 66
3.7.4 Descriptor Bit Structure . 67
3.7.5 Gate Descriptors . 69

3.8 MULTITASKING AND TASK STATE SEGMENTS . 70
3.9 PAGING MECHANISM . 72
evision 3.1 3 www.national.com

w

Table of Contents (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.10 INTERRUPTS AND EXCEPTIONS . 74
3.10.1 Interrupts . 74
3.10.2 Exceptions . 74
3.10.3 Interrupt Vectors . 75
3.10.4 Interrupt and Exception Priorities . 76
3.10.5 Exceptions in Real Mode . 77
3.10.6 Error Codes . 77

3.11 SYSTEM MANAGEMENT MODE . 78
3.11.1 SMM Enhancements . 79
3.11.2 SMM Operation . 79
3.11.3 The SMI# Pin . 80
3.11.4 SMM Configuration Registers . 80
3.11.5 SMM Memory Space Header . 80
3.11.6 SMM Instructions . 82
3.11.7 SMM Memory Space . 83
3.11.8 SMI Generation . 83
3.11.9 SMI Service Routine Execution . 83

3.12 SHUTDOWN AND HALT . 86
3.13 PROTECTION . 86

3.13.1 Privilege Levels . 86
3.13.2 I/O Privilege Levels . 86
3.13.3 Privilege Level Transfers . 87
3.13.4 Initialization and Transition to Protected Mode . 87

3.14 VIRTUAL 8086 MODE . 88
3.14.1 Memory Addressing . 88
3.14.2 Protection . 88
3.14.3 Interrupt Handling . 88
3.14.4 Entering and Leaving Virtual 8086 Mode . 88

3.15 FLOATING POINT UNIT OPERATIONS . 89
3.15.1 FPU (Floating Point Unit) Register Set . 89
3.15.2 FPU Tag Word Register . 89
3.15.3 FPU Status Register . 89
3.15.4 FPU Mode Control Register . 89

4.0 Integrated Functions . 91
4.1 INTEGRATED FUNCTIONS PROGRAMMING INTERFACE . 92

4.1.1 Graphics Control Register . 92
4.1.2 Control Registers . 94
4.1.3 Graphics Memory . 94
4.1.4 L1 Cache Controller . 95
4.1.5 Display Driver Instructions . 98
4.1.6 CPU_READ/CPU_WRITE Instructions . 99

4.2 INTERNAL BUS INTERFACE UNIT . 100
4.2.1 FPU Error Support . 100
4.2.2 A20M Support . 100
4.2.3 SMI Generation . 100
4.2.4 640 KB to 1 MB Region . 100
4.2.5 Internal Bus Interface Unit Registers . 101
ww.national.com 4 Revision 3.1

R

Table of Contents (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.3 MEMORY CONTROLLER . 103
4.3.1 Memory Array Configuration . 104
4.3.2 Memory Organizations . 105
4.3.3 SDRAM Commands . 106
4.3.4 Memory Controller Register Description . 108
4.3.5 Address Translation . 112
4.3.6 Memory Cycles . 115
4.3.7 SDRAM Interface Clocking . 118

4.4 GRAPHICS PIPELINE . 120
4.4.1 BitBLT/Vector Engine . 120
4.4.2 Master/Slave Registers . 121
4.4.3 Pattern Generation . 121
4.4.4 Source Expansion . 123
4.4.5 Raster Operations . 123
4.4.6 Graphics Pipeline Register Descriptions . 124

4.5 DISPLAY CONTROLLER . 129
4.5.1 Display FIFO . 130
4.5.2 Compression Technology . 130
4.5.3 Motion Video Acceleration Support . 130
4.5.4 Hardware Cursor . 131
4.5.5 Display Timing Generator . 131
4.5.6 Dither and Frame-Rate Modulation . 131
4.5.7 Display Modes . 131
4.5.8 Graphics Memory Map . 135
4.5.9 Display Controller Registers . 136
4.5.10 Memory Organization Registers . 144
4.5.11 Timing Registers . 146
4.5.12 Cursor Position Registers . 149
4.5.13 Color Registers . 150
4.5.14 Palette Access Registers . 151
4.5.15 CS5530 Display Controller Interface . 153

4.6 PCI CONTROLLER . 155
4.6.1 X-Bus PCI Slave . 155
4.6.2 X-Bus PCI Master . 155
4.6.3 PCI Arbiter . 155
4.6.4 Generating Configuration Cycles . 155
4.6.5 Generating Special Cycles . 155
4.6.6 PCI Configuration Space Control Registers . 156
4.6.7 PCI Configuration Space Registers . 157
4.6.8 PCI Cycles . 162

5.0 Virtual Subsystem Architecture . 165
5.1 VIRTUAL VGA . 165

5.1.1 Traditional VGA Hardware . 165
5.2 GXM VIRTUAL VGA . 167

5.2.1 Datapath Elements . 167
5.2.2 Video Refresh . 168
5.2.3 GXm VGA Hardware . 168
5.2.4 VGA Video BIOS . 171
5.2.5 Virtual VGA Register Descriptions . 172
evision 3.1 5 www.national.com

w

Table of Contents (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

6.0 Power Management . 174
6.1 APM SUPPORT . 174
6.2 CPU SUSPEND COMMAND REGISTERS . 174
6.3 SUSPEND MODULATION . 174
6.4 3-VOLT SUSPEND MODE . 174
6.5 SUSPEND MODE AND BUS CYCLES . 175

6.5.1 Initiating Suspend with SUSP# . 175
6.5.2 Initiating Suspend with HALT . 176
6.5.3 Responding to a PCI Access During Suspend Mode . 177
6.5.4 Stopping the Input Clock . 178

6.6 GXM PROCESSOR SERIAL BUS . 179
6.6.1 Serial Packet Transmission . 179

6.7 POWER MANAGEMENT REGISTERS . 179

7.0 Electrical Specifications. 182
7.1 PART NUMBERS . 182
7.2 ELECTRICAL CONNECTIONS . 182

7.2.1 Power/Ground Connections and Decoupling . 182
7.2.2 Power Sequencing the Core and I/O Voltages . 182
7.2.3 NC-Designated Pins . 182
7.2.4 Pull-Up and Pull-Down Resistors . 182
7.2.5 Unused Input Pins . 182

7.3 ABSOLUTE MAXIMUM RATINGS . 183
7.4 OPERATING CONDITIONS . 184
7.5 DC CHARACTERISTICS . 185
7.6 AC CHARACTERISTICS . 186

8.0 Package Specifications . 195
8.1 THERMAL CHARACTERISTICS . 195

8.1.1 Heatsink Considerations . 196
8.2 MECHANICAL PACKAGE OUTLINES . 198

9.0 Instruction Set. 201
9.1 GENERAL INSTRUCTION SET FORMAT . 202

9.1.1 Prefix (Optional) . 203
9.1.2 Opcode . 203
9.1.3 mod and r/m Byte (Memory Addressing) . 205
9.1.4 reg Field . 206
9.1.5 s-i-b Byte (Scale, Indexing, Base) . 207

9.2 CPUID INSTRUCTION . 208
9.2.1 Standard CPUID Levels . 208
9.2.2 Extended CPUID Levels . 210

9.3 PROCESSOR CORE INSTRUCTION SET . 212
9.4 FPU INSTRUCTION SET . 224
9.5 MMX INSTRUCTION SET . 229
9.6 NATIONAL SEMICONDUCTOR EXTENDED MMX INSTRUCTION SET 234
ww.national.com 6 Revision 3.1

R

Table of Contents (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Appendix A Support Documentation . 236
A.1 ORDER INFORMATION . 236
A.2 DATA BOOK REVISION HISTORY . 236
evision 3.1 7 www.national.com

w

G
eo

d
e™

G
X

m
P

ro
ce

ss
o

r

1.0 Architecture Overview
The National Semiconductor Geode GXm processor is
an x86-compatible 32-bit microprocessor. The decoupled
load/store unit (within the memory management unit)
allows multiple instructions in a single clock cycle. Other
features include single-cycle execution, single-cycle
instruction decode, 16 KB write-back cache, and clock
rates up to 266 MHz. These features are made possible
by the use of advanced-process technologies and super-
pipelining.

The GXm processor has low power consumption at all
clock frequencies. Where additional power savings are
required, designers can make use of Suspend mode, Stop
Clock capability, and System Management Mode (SMM).

The GXm processor is divided into major functional blocks
(as shown in Figure 1-1):
• Integer Unit
• Floating Point Unit (FPU)
• Write-Back Cache Unit
• Memory Management Unit (MMU)
• Internal Bus Interface Unit
• Integrated Functions

Instructions are executed in the integer unit and in the
floating point unit. The cache unit stores the most recently
used data and instructions and provides fast access to
this information for the integer and floating point units.

1.1 INTEGER UNIT
The integer unit consists of:
• Instruction Buffer
• Instruction Fetch
• Instruction Decoder and Execution

The superpipelined integer unit fetches, decodes, and
executes x86 instructions through the use of a six-stage
integer pipeline.

The instruction fetch pipeline stage generates, from the
on-chip cache, a continuous high-speed instruction
stream for use by the processor. Up to 128 bits of code
are read during a single clock cycle.

Branch prediction logic within the prefetch unit generates
a predicted target address for unconditional or conditional
branch instructions. When a branch instruction is
detected, the instruction fetch stage starts loading instruc-
tions at the predicted address within a single clock cycle.
Up to 48 bytes of code are queued prior to the instruction
decode stage.

The instruction decode stage evaluates the code stream
provided by the instruction fetch stage and determines the
number of bytes in each instruction and the instruction
type. Instructions are processed and decoded at a maxi-
mum rate of one instruction per clock.

The address calculation function is super-pipelined and
contains two stages, AC1 and AC2. If the instruction
refers to a memory operand, AC1 calculates a linear
memory address for the instruction.

The AC2 stage performs any required memory manage-
ment functions, cache accesses, and register file
accesses. If a floating point instruction is detected by
AC2, the instruction is sent to the floating point unit for
processing.

The execution stage, under control of microcode, exe-
cutes instructions using the operands provided by the
address calculation stage.

Write-back, the last stage of the integer unit, updates the
register file within the integer unit or writes to the
load/store unit within the memory management unit.

Figure 1-1. Internal Block Diagram

Write-Back
Unit FPU

Internal Bus Interface Unit

Graphics Memory Display PCI

SDRAM Port CS5530 PCI Bus

Integer
Cache Unit

Integrated
Functions

MMU

(CRT/LCD TFT)

X-Bus

Pipeline Controller Controller Controller

C-Bus
ww.national.com 8 Revision 3.1

R

Architecture Overview (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

1.2 FLOATING POINT UNIT
The FPU (Floating Point Unit) interfaces to the integer unit
and the cache unit through a 64-bit bus. The FPU is x87-
instruction-set compatible and adheres to the IEEE-754
standard. Because almost all applications that contain
FPU instructions also contain integer instructions, the
GXm processor’s FPU achieves high performance by
completing integer and FPU operations in parallel.

FPU instructions are dispatched to the pipeline within the
integer unit. The address calculation stage of the pipeline
checks for memory management exceptions and
accesses memory operands for use by the FPU. Once the
instructions and operands have been provided to the FPU,
the FPU completes instruction execution independently of
the integer unit.

1.3 WRITE-BACK CACHE UNIT
The 16 KB write-back unified cache is a data/instruction
cache and is configured as four-way set associative. The
cache stores up to 16 KB of code and data in 1024 cache
lines.

The GXm processor provides the ability to allocate a por-
tion of the L1 cache as a scratchpad, which is used to
accelerate the Virtual Systems Architecture algorithms as
well as for some graphics operations.

1.4 MEMORY MANAGEMENT UNIT
The memory management unit (MMU) translates the lin-
ear address supplied by the integer unit into a physical
address to be used by the cache unit and the internal bus
interface unit. Memory management procedures are x86-
compatible, adhering to standard paging mechanisms.

The MMU also contains a load/store unit that is responsi-
ble for scheduling cache and external memory accesses.
The load/store unit incorporates two performance-
enhancing features:

• Load-store reordering that gives priority to memory
reads required by the integer unit over writes to
external memory.

• Memory-read bypassing that eliminates unnecessary
memory reads by using valid data from the execution
unit.

1.4.1 Internal Bus Interface Unit
The internal bus interface unit provides a bridge from the
GXm processor to the integrated system functions (i.e.,
memory subsystem, display controller, graphics pipeline)
and the PCI bus interface.

When external memory access is required, the physical
address is calculated by the memory management unit
and then passed to the internal bus interface unit, which
translates the cycle to an X-Bus cycle (the X-Bus is a
National Semiconductor proprietary internal bus which
provides a common interface for all of the system mod-
ules). The X-Bus memory cycle now is arbitrated between

other pending X-Bus memory requests to the SDRAM
controller before completing.

In addition, the internal bus interface unit provides config-
uration control for up to 20 different regions within system
memory with separate controls for read access, write
access, cacheability, and PCI access.

1.5 INTEGRATED FUNCTIONS
The GXm processor integrates the following functions tra-
ditionally implemented using external devices:

• High-performance 2D graphics accelerator

• Separate CRT and TFT data paths from the display
controller

• SDRAM memory controller

• PCI bridge

The processor has also been enhanced to support
National Semiconductor’s proprietary Virtual System
Architecture (VSA) implementation.

The GXm processor implements a Unified Memory Archi-
tecture (UMA). By using National Semiconductor’s Dis-
play Compression Technology (DCT), the performance
degradation inherent in traditional UMA systems is elimi-
nated.

1.5.1 Graphics Accelerator
The graphics accelerator is a full-featured GUI (Graphical
User Interface) accelerator. The graphics pipeline imple-
ments a bitBLT engine for frame buffer bitBLTs and rect-
angular fills. Additional instructions in the integer unit may
be processed, as the bitBLT engine assists the CPU in the
bitBLT operations that take place between system mem-
ory and the frame buffer. This combination of hardware
and software is used by the display driver to provide very
fast transfers in both directions between system memory
and the frame buffer. The bitBLT engine also draws ran-
domly-oriented vectors, and scanlines for polygon fill. All
of the pipeline operations described in the following list
can be applied to any bitBLT operation.

• Pattern Memory. Render with 8x8 dither, 8x8 mono-
chrome, or 8x1 color pattern.

• Color Expansion. Expand monochrome bitmaps to
full-depth 8- or 16-bit colors.

• Transparency. Suppresses drawing of background
pixels for transparent text.

• Raster Operations. Boolean operation combines
source, destination, and pattern bitmaps.
evision 3.1 9 www.national.com

w

Architecture Overview (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

1.5.2 Display Controller
The display port is a direct interface to the CS5530 which
drives a TFT flat panel display, LCD panel, or a CRT dis-
play.

The display controller (video generator) retrieves image
data from the frame buffer region of memory, performs a
color-look-up if required, inserts the cursor overlay into
the pixel stream, generates display timing, and formats
the pixel data for output to a variety of display devices.
The display controller contains Display Compression
Technology (DCT) that allows the GXm processor to
refresh the display from a compressed copy of the frame
buffer. DCT typically decreases the screen-refresh band-
width requirement by a factor of 15 to 20, further minimiz-
ing bandwidth contention.

1.5.3 XpressRAM Memory Subsystem
The memory controller drives a 64-bit SDRAM port
directly. The SDRAM memory array contains both the
main system memory and the graphics frame buffer. Up to
four module banks of SDRAM are supported. Each mod-
ule bank will have two or four component banks depend-
ing on the memory size and organization. The maximum
configuration is four module banks with four component
banks providing a total of 16 open banks. The maximum
memory size is 1 GB.

The memory controller handles multiple requests for
memory data from the GXm processor, the graphics
accelerator and the display controller. The memory con-
troller contains extensive buffering logic that helps mini-
mize contention for memory bandwidth between graphics
and CPU requests. The memory controller cooperates
with the internal bus controller to determine the cacheabil-
ity of all memory references.

1.5.4 PCI Controller
The GXm processor incorporates a full-function PCI inter-
face module that includes the PCI arbiter. All accesses to
external I/O devices are sent over the PCI bus, although
most memory accesses are serviced by the SDRAM con-
troller. The Internal Bus Interface Unit contains address
mapping logic that determines if memory accesses are
targeted for the SDRAM or for the PCI bus.
ww.national.com 10 Revision 3.1

R

Architecture Overview (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

1.6 GEODE GXM/CS5530 SYSTEM DESIGNS
The GXm Integrated Subsystem with MMX support con-
sists of two chips, the GXm Processor and the CS5530
I/O companion. The subsystem provides high perfor-
mance using 32-bit x86 processing. The two chips inte-
grate video, audio and memory interface functions
normally performed by external hardware.

As described in separate manuals, the CS5530 enables
the full features of the GXm processor with MMX support.
These features include full VGA and VESA video, 16-bit
stereo sound, IDE interface, ISA interface, SMM power

management, and AT compatibility logic. In addition, the
newer CS5530 provides an Ultra DMA/33 interface,
MPEG2 assist, and AC97 Version 2.0 compliant audio.

Figure 1-2 shows a basic block system diagram (refer to
Figure 2-4 on page 34 for detailed subsystem intercon-
nection signals). It includes the National Semiconductor
CS9210 Dual-Scan Flat Panel Display Controller for
designs that need to interface to a DSTN panel (instead of
TFT panel).

Figure 1-2. Geode™ GXm/CS5530 System Block Diagram

YUV Port
(Video)

RGB Port

PCI Interface

SDRAMMD[63:0]

PCI Bus

Geode™ CS5530
I/O Companion

Graphics Data

Video Data

Analog RGB

Digital RGB (to TFT or DSTN Panel)

CRT

TFT
Panel

USB
(2 Ports)

AC97
Codec

Speakers

CD
ROM
Audio

Micro-
phone

GPIO

Port

(Graphics)

Super

ISA Bus

SDRAM

Serial
Packet

Clocks

I/O BIOS
IDE

Devices14.31818
MHz Crystal

IDE Control

System
Clocks

DC-DC & Battery

CS9210
DSTN

Controller

DSTN Panel

Geode™ GXm
Processor

Geode™
evision 3.1 11 www.national.com

w

Architecture Overview (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

The CS9210 converts the digital RGB output of the
CS5530 I/O companion chip to the digital output suitable
for driving a dual-scan color STN (DSTN) flat panel LCD.
It connects to the digital RGB output of a GXm processor
or 55x0 and drives the graphics data onto a dual-scan flat

panel LCD. It can drive all standard dual-scan color STN
flat panels up to 1024x768 resolution. Figure 1-3 shows
an example of a CS9210 interface in a typical GXm Inte-
grated Subsystem.

Figure 1-3. CS9210 Interface System Diagram

DRAM Data

Address Control 13

16

Panel Control 6

24Panel Data
DSTN

Pixel Port
24

Pixel Data

LCD

18

CS5530 CS9210
DSTN

Controller
I/O

DRAM-B
256Kx16 Bit

DRAM-A
256Kx16 Bit

Address Control 13

DRAM Data 16
4

Serial
ConfigurationCompanion

(Control & Data)

Geode™ GXm
Processor

Geode™ Geode™
ww.national.com 12 Revision 3.1

R

G
eo

d
e™

G
X

m
P

ro
cesso

r

2.0 Signal Definitions
This section describes the external interface of the Geode
GXm processor. Figure 2-1 shows the signals organized
by their functional interface groups (internal test and elec-
trical pins are not shown).

2.1 PIN ASSIGNMENTS
The tables in this section use several common abbrevia-
tions. Table 2-1 lists the mnemonics and their meanings.

Figure 2-2 on page 14 shows the pin assignment for the
352 BGA with Tables 2-2 and 2-3 listing the pin assign-
ments sorted by pin number and alphabetically by signal
name, respectively.

Figure 2-3 on page 19 shows the pin assignment for the
320 SPGA with Tables 2-4 and 2-5 listing the pin assign-
ments sorted by pin number and alphabetically by signal
name, respectively.

In Section 2.2 “Signal Descriptions” starting on Page 24 a
description of each signal is provided within its associated
functional group.

Following the signal descriptions, information regarding
subsystem signal connections and split power planes and
decoupling is provided.

.

Figure 2-1. Functional Block Diagram

Table 2-1. Pin Type Definitions

Mnemonic Definition

I Standard input pin.

I/O Bidirectional pin.

O Totem-pole output.

OD Open-drain output structure that allows
multiple devices to share the pin in a
wired-OR configuration

PU Pull-up resistor

PD Pull-down resistor

s/t/s Sustained tri-state, an active-low tri-state
signal owned and driven by one and only
one agent at a time. The agent that
drives an s/t/s pin low must drive it high
for at least one clock before letting it float.
A new agent cannot start driving an s/t/s
signal any sooner than one clock after
the previous owner lets it float. A pull-up
resistor is required to sustain the inactive
state until another agent drives it, and
must be provided by the central resource.

VCC (PWR) Power pin.

VSS (GND) Ground pin

The "#" symbol at the end of a signal
name indicates that the active, or
asserted state occurs when the signal is
at a low voltage level. When "#" is not
present after the signal name, the signal
is asserted when at a high voltage level.

SYSCLK
CLKMODE[2:0]

RESET
INTR

IRQ13
SMI#

SUSP#
SUSPA#

SERIALP

AD[31:0]
C/BE[3:0]#

PAR
FRAME#

IRDY#
TRDY#
STOP#
LOCK#

DEVSEL#
PERR#
SERR#

REQ[2:0]#
GNT[2:0]#

MD[63:0]
MA[12:0]
BA[1:0]
RASA#, RASB#
CASA#, CASB#
CS[3:0]#
WEA#, WEB#
DQM[7:0]
CKEA, CKEB
SDCLK[3:0]
SDCLK_IN
SDCLK_OUT

PCLK
VID_CLK
DCLK
CRT_HSYNC
CRT_VSYNC

FP_VSYNC
FP_HSYNC

ENA_DISP
VID_RDY
VID_VAL
VID_DATA[7:0]
PIXEL[17:0]

Memory
Controller
Interface

Video
Interface
Signals

PCI
Interface

Signals

System
Interface

Signals

Signals

Geode™ GXm
Processor
evision 3.1 13 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Figure 2-2. 352 BGA Pin Assignment Diagram

For order information refer to Section A.1 “Order Information” on page 236.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

AA

AB

AC

AD

AE

AF

Index Corner

VSS VSS AD27 AD24 AD21 AD16 VCC2 FRAM#DEVS# VCC3 PERR# AD15 VSS AD11 CBE0# AD6 VCC2 AD4 AD2 VCC3 AD0 AD1 TEST2 MD2 VSS VSS

VSS VSS AD28 AD25 AD22 AD18 VCC2 CBE2# TRDY# VCC3 LOCK# PAR AD14 AD12 AD9 AD7 VCC2 INTR AD3 VCC3 TEST1 TEST3 MD1 MD33 VSS VSS

AD29 AD31 AD30 AD26 AD23 AD19 VCC2 AD17 IRDY# VCC3 STOP#SERR# CBE1# AD13 AD10 AD8 VCC2 AD5 SMI# VCC3 TEST0 IRQ13 MD32 MD34 MD3 MD35

GNT0# TDI REQ2# VSS CBE3# VSS VCC2 VSS VSS VCC3 VSS VSS VSS VSS VSS VSS VCC2 VSS VSS VCC3 VSS MD0 VSS MD4 MD36 TDN

GNT2#SUSPA#REQ0# AD20 MD6 TDP MD5 MD37

TD0 GNT1# TEST VSS VSS MD38 MD7 MD39

VCC3 VCC3 VCC3 VCC3 VCC3 VCC3 VCC3 VCC3

TMS SUSP#REQ1# VSS VSS MD8 MD40 MD9

FPVSY TCLK RESET VSS VSS MD41 MD10 MD42

VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2

CKM1 FPHSYSERLP VSS VSS MD11 MD43 MD12

CKM2 VIDVAL CKM0 VSS VSS MD44 MD13 MD45

VSS PIX1 PIX0 VSS VSS MD14 MD46 MD15

VIDCLK PIX3 PIX2 VSS VSS MD47 CASA#SYSCLK

PIX4 PIX5 PIX6 VSS VSS WEB# WEA# CASB#

PIX7 PIX8 PIX9 VSS VSS DQM0 DQM4 DQM1

VCC3 VCC3 VCC3 VCC3 VCC3 VCC3 VCC3 VCC3

PIX10 PIX11 PIX12 VSS VSS DQM5 CS2# CS0#

PIX13 CRTHS PIX14 VSS VSS RASA#RASB# MA0

VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2

PIX15 PIX16 CRTVS VSS VSS MA1 MA2 MA3

DCLK PIX17 VDAT6 VDAT7 MA4 MA5 MA6 MA7

PCLK FLT# VDAT4 VSS VOLDET VSS VCC2 VSS VSS VCC3 VSS VSS VSS VSS VSS VSS VCC2 VSS VSS VCC3 VSS DQM6 VSS MA8 MA9 MA10

VRDY VDAT5 VDAT3 VDAT0 EDISP MD63 VCC2 MD62 MD29 VCC3 MD59 MD26 MD56 MD55 MD22 CKEB VCC2 MD51 MD18 VCC3 MD48 DQM3 CS1# MA11 BA0 BA1

VSS VSS VDAT2 SCLK3 SCLK1RWCLK VCC2 SCKIN MD61 VCC3 MD28 MD58 MD25 MD24 MD54 MD21 VCC2 MD20 MD50 VCC3 MD17 DQM7 CS3# MA12 VSS VSS

VSS VSS VDAT1 SCLK0 SCLK2 MD31 VCC2SCKOUTMD30 VCC3 MD60 MD27 MD57 VSS MD23 MD53 VCC2 MD52 MD19 VCC3 MD49 MD16 DQM2 CKEA VSS VSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

AA

AB

AC

AD

AE

AF

Geode™ GXm

352 BGA - Top View

Note: Signal names have been abbreviated in this figure due to space constraints.

= GND terminal
= PWR terminal (VCC2 = VCC_CORE; VCC3 = VCC_IO)

Processor
ww.national.com 14 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

Table 2-2. 352 BGA Pin Assignments - Sorted by Pin Number
X
m

P
ro

cesso
r

Pin
No. Signal Name

A1 VSS

A2 VSS

A3 AD27

A4 AD24

A5 AD21

A6 AD16

A7 VCC2

A8 FRAME#

A9 DEVSEL#

A10 VCC3

A11 PERR#

A12 AD15

A13 VSS

A14 AD11

A15 C/BE0#

A16 AD6

A17 VCC2

A18 AD4

A19 AD2

A20 VCC3

A21 AD0

A22 AD1

A23 TEST2

A24 MD2

A25 VSS

A26 VSS

B1 VSS

B2 VSS

B3 AD28

B4 AD25

B5 AD22

B6 AD18

B7 VCC2

B8 C/BE2#

B9 TRDY#

B10 VCC3

B11 LOCK#

B12 PAR

B13 AD14

B14 AD12

B15 AD9

B16 AD7

B17 VCC2

B18 INTR

B19 AD3

B20 VCC3

B21 TEST1

B22 TEST3

B23 MD1

B24 MD33

B25 VSS

B26 VSS

C1 AD29

C2 AD31

C3 AD30

C4 AD26

C5 AD23

C6 AD19

C7 VCC2

C8 AD17

C9 IRDY#

C10 VCC3

C11 STOP#

C12 SERR#

C13 C/BE1#

C14 AD13

C15 AD10

C16 AD8

C17 VCC2

C18 AD5

C19 SMI#

C20 VCC3

C21 TEST0

C22 IRQ13

C23 MD32

C24 MD34

C25 MD3

C26 MD35

D1 GNT0#

D2 TDI

D3 REQ2#

D4 VSS

D5 C/BE3#

D6 VSS

D7 VCC2

D8 VSS

D9 VSS

D10 VCC3

D11 VSS

D12 VSS

D13 VSS

D14 VSS

D15 VSS

D16 VSS

D17 VCC2

D18 VSS

Pin
No. Signal Name

D19 VSS

D20 VCC3

D21 VSS

D22 MD0

D23 VSS

D24 MD4

D25 MD36

D26 TDN

E1 GNT2#

E2 SUSPA#

E3 REQ0#

E4 AD20

E23 MD6

E24 TDP

E25 MD5

E26 MD37

F1 TDO

F2 GNT1#

F3 TEST

F4 VSS

F23 VSS

F24 MD38

F25 MD7

F26 MD39

G1 VCC3

G2 VCC3

G3 VCC3

G4 VCC3

G23 VCC3

G24 VCC3

G25 VCC3

G26 VCC3

H1 TMS

H2 SUSP#

H3 REQ1#

H4 VSS

H23 VSS

H24 MD8

H25 MD40

H26 MD9

J1 FP_VSYNC

J2 TCLK

J3 RESET

J4 VSS

J23 VSS

J24 MD41

J25 MD10

J26 MD42

Pin
No. Signal Name

K1 VCC2

K2 VCC2

K3 VCC2

K4 VCC2

K23 VCC2

K24 VCC2

K25 VCC2

K26 VCC2

L1 CLKMODE1

L2 FP_HSYNC

L3 SERIALP

L4 VSS

L23 VSS

L24 MD11

L25 MD43

L26 MD12

M1 CLKMODE2

M2 VID_VAL

M3 CLKMODE0

M4 VSS

M23 VSS

M24 MD44

M25 MD13

M26 MD45

N1 VSS

N2 PIXEL1

N3 PIXEL0

N4 VSS

N23 VSS

N24 MD14

N25 MD46

N26 MD15

P1 VID_CLK

P2 PIXEL3

P3 PIXEL2

P4 VSS

P23 VSS

P24 MD47

P25 CASA#

P26 SYSCLK

R1 PIXEL4

R2 PIXEL5

R3 PIXEL6

R4 VSS

R23 VSS

R24 WEB#

R25 WEA#

R26 CASB#

Pin
No. Signal Name

T1 PIXEL7

T2 PIXEL8

T3 PIXEL9

T4 VSS

T23 VSS

T24 DQM0

T25 DQM4

T26 DQM1

U1 VCC3

U2 VCC3

U3 VCC3

U4 VCC3

U23 VCC3

U24 VCC3

U25 VCC3

U26 VCC3

V1 PIXEL10

V2 PIXEL11

V3 PIXEL12

V4 VSS

V23 VSS

V24 DQM5

V25 CS2#

V26 CS0#

W1 PIXEL13

W2 CRT_HSYNC

W3 PIXEL14

W4 VSS

W23 VSS

W24 RASA#

W25 RASB#

W26 MA0

Y1 VCC2

Y2 VCC2

Y3 VCC2

Y4 VCC2

Y23 VCC2

Y24 VCC2

Y25 VCC2

Y26 VCC2

AA1 PIXEL15

AA2 PIXEL16

AA3 CRT_VSYNC

AA4 VSS

AA23 VSS

AA24 MA1

AA25 MA2

AA26 MA3

Pin
No. Signal Name
evision 3.1 15 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

AB1 DCLK

AB2 PIXEL17

AB3 VID_DATA6

AB4 VID_DATA7

AB23 MA4

AB24 MA5

AB25 MA6

AB26 MA7

AC1 PCLK

AC2 FLT#

AC3 VID_DATA4

AC4 VSS

AC5 VOLDET

AC6 VSS

AC7 VCC2

AC8 VSS

AC9 VSS

AC10 VCC3

AC11 VSS

AC12 VSS

AC13 VSS

AC14 VSS

AC15 VSS

Pin
No. Signal Name

AC16 VSS

AC17 VCC2

AC18 VSS

AC19 VSS

AC20 VCC3

AC21 VSS

AC22 DQM6

AC23 VSS

AC24 MA8

AC25 MA9

AC26 MA10

AD1 VID_RDY

AD2 VID_DATA5

AD3 VID_DATA3

AD4 VID_DATA0

AD5 ENA_DISP

AD6 MD63

AD7 VCC2

AD8 MD62

AD9 MD29

AD10 VCC3

AD11 MD59

AD12 MD26

Pin
No. Signal Name

AD13 MD56

AD14 MD55

AD15 MD22

AD16 CKEB

AD17 VCC2

AD18 MD51

AD19 MD18

AD20 VCC3

AD21 MD48

AD22 DQM3

AD23 CS1#

AD24 MA11

AD25 BA0

AD26 BA1

AE1 VSS

AE2 VSS

AE3 VID_DATA2

AE4 SDCLK3

AE5 SDCLK1

AE6 RW_CLK

AE7 VCC2

AE8 SDCLK_IN

AE9 MD61

Pin
No. Signal Name

AE10 VCC3

AE11 MD28

AE12 MD58

AE13 MD25

AE14 MD24

AE15 MD54

AE16 MD21

AE17 VCC2

AE18 MD20

AE19 MD50

AE20 VCC3

AE21 MD17

AE22 DQM7

AE23 CS3#

AE24 MA12

AE25 VSS

AE26 VSS

AF1 VSS

AF2 VSS

AF3 VID_DATA1

AF4 SDCLK0

AF5 SDCLK2

AF6 MD31

Pin
No. Signal Name

AF7 VCC2

AF8 SDCLK_OUT

AF9 MD30

AF10 VCC3

AF11 MD60

AF12 MD27

AF13 MD57

AF14 VSS

AF15 MD23

AF16 MD53

AF17 VCC2

AF18 MD52

AF19 MD19

AF20 VCC3

AF21 MD49

AF22 MD16

AF23 DQM2

AF24 CKEA

AF25 VSS

AF26 VSS

Pin
No. Signal Name

Table 2-2. 352 BGA Pin Assignments - Sorted by Pin Number (Continued)
ww.national.com 16 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

Table 2-3. 352 BGA Pin Assignments - Sorted Alphabetically by Signal Name
X
m

P
ro

cesso
r

Signal Name Type Pin No.

AD0 I/O A21

AD1 I/O A22

AD2 I/O A19

AD3 I/O B19

AD4 I/O A18

AD5 I/O C18

AD6 I/O A16

AD7 I/O B16

AD8 I/O C16

AD9 I/O B15

AD10 I/O C15

AD11 I/O A14

AD12 I/O B14

AD13 I/O C14

AD14 I/O B13

AD15 I/O A12

AD16 I/O A6

AD17 I/O C8

AD18 I/O B6

AD19 I/O C6

AD20 I/O E4

AD21 I/O A5

AD22 I/O B5

AD23 I/O C5

AD24 I/O A4

AD25 I/O B4

AD26 I/O C4

AD27 I/O A3

AD28 I/O B3

AD29 I/O C1

AD30 I/O C3

AD31 I/O C2

BA0 O AD25

BA1 O AD26

CASA# O P25

CASB# O R26

C/BE0# I/O A15

C/BE1# I/O C13

C/BE2# I/O B8

C/BE3# I/O D5

CKEA O AF24

CKEB O AD16

CLKMODE0 I M3

CLKMODE1 I L1

CLKMODE2 I M1

CRT_HSYNC O W2

CRT_VSYNC O AA3

CS0# O V26

CS1# O AD23

CS2# O V25

CS3# O AE23

DCLK I AB1

DEVSEL# s/t/s A9 (PU)

DQM0 O T24

DQM1 O T26

DQM2 O AF23

DQM3 O AD22

DQM4 O T25

DQM5 O V24

DQM6 O AC22

DQM7 O AE22

ENA_DISP O AD5

FLT# I AC2

FP_HSYNC O L2

FP_VSYNC O J1

FRAME# s/t/s A8 (PU)

GNT0# O D1

GNT1# O F2

GNT2# O E1

INTR I B18

IRDY# s/t/s C9 (PU)

IRQ13 O C22

LOCK# s/t/s B11 (PU)

MA0 O W26

MA1 O AA24

MA2 O AA25

MA3 O AA26

MA4 O AB23

MA5 O AB24

MA6 O AB25

MA7 O AB26

MA8 O AC24

MA9 O AC25

MA10 O AC26

MA11 O AD24

MA12 O AE24

MD0 I/O D22

MD1 I/O B23

MD2 I/O A24

MD3 I/O C25

MD4 I/O D24

MD5 I/O E25

MD6 I/O E23

MD7 I/O F25

MD8 I/O H24

MD9 I/O H26

MD10 I/O J25

MD11 I/O L24

MD12 I/O L26

MD13 I/O M25

MD14 I/O N24

MD15 I/O N26

MD16 I/O AF22

MD17 I/O AE21

MD18 I/O AD19

MD19 I/O AF19

Signal Name Type Pin No.

MD20 I/O AE18

MD21 I/O AE16

MD22 I/O AD15

MD23 I/O AF15

MD24 I/O AE14

MD25 I/O AE13

MD26 I/O AD12

MD27 I/O AF12

MD28 I/O AE11

MD29 I/O AD9

MD30 I/O AF9

MD31 I/O AF6

MD32 I/O C23

MD33 I/O B24

MD34 I/O C24

MD35 I/O C26

MD36 I/O D25

MD37 I/O E26

MD38 I/O F24

MD39 I/O F26

MD40 I/O H25

MD41 I/O J24

MD42 I/O J26

MD43 I/O L25

MD44 I/O M24

MD45 I/O M26

MD46 I/O N25

MD47 I/O P24

MD48 I/O AD21

MD49 I/O AF21

MD50 I/O AE19

MD51 I/O AD18

MD52 I/O AF18

MD53 I/O AF16

MD54 I/O AE15

MD55 I/O AD14

MD56 I/O AD13

MD57 I/O AF13

MD58 I/O AE12

MD59 I/O AD11

MD60 I/O AF11

MD61 I/O AE9

MD62 I/O AD8

MD63 I/O AD6

PAR I/O B12

PCLK O AC1

PERR# s/t/s A11 (PU)

PIXEL0 O N3

PIXEL1 O N2

PIXEL2 O P3

PIXEL3 O P2

PIXEL4 O R1

PIXEL5 O R2

Signal Name Type Pin No.

PIXEL6 O R3

PIXEL7 O T1

PIXEL8 O T2

PIXEL9 O T3

PIXEL10 O V1

PIXEL11 O V2

PIXEL12 O V3

PIXEL13 O W1

PIXEL14 O W3

PIXEL15 O AA1

PIXEL16 O AA2

PIXEL17 O AB2

RASA# O W24

RASB# O W25

REQ0# I E3 (PU)

REQ1# I H3 (PU)

REQ2# I D3 (PU)

RESET I J3

RW_CLK O AE6

SDCLK_IN I AE8

SDCLK_OUT O AF8

SDCLK0 O AF4

SDCLK1 O AE5

SDCLK2 O AF5

SDCLK3 O AE4

SERIALP O L3

SERR# OD C12 (PU)

SMI# I C19

STOP# s/t/s C11 (PU)

SUSP# I H2 (PU)

SUSPA# O E2

SYSCLK I P26

TCLK I J2 (PU)

TDI I D2 (PU)

TDN O D26

TDO O F1

TDP O E24

TEST I F3 (PD)

TEST0 O C21

TEST1 O B21

TEST2 O A23

TEST3 O B22

TMS I H1 (PU)

TRDY# s/t/s B9 (PU)

VCC2 PWR A7

VCC2 PWR A17

VCC2 PWR B7

VCC2 PWR B17

VCC2 PWR C7

VCC2 PWR C17

VCC2 PWR D7

VCC2 PWR D17

VCC2 PWR K1

Signal Name Type Pin No.
evision 3.1 17 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Note: PU/PD indicates pin is
internally connected to
a 20-kohm pull-up/-
down resistor.

VCC2 PWR K2

VCC2 PWR K3

VCC2 PWR K4

VCC2 PWR K23

VCC2 PWR K24

VCC2 PWR K25

VCC2 PWR K26

VCC2 PWR Y1

VCC2 PWR Y2

VCC2 PWR Y3

VCC2 PWR Y4

VCC2 PWR Y23

VCC2 PWR Y24

VCC2 PWR Y25

VCC2 PWR Y26

VCC2 PWR AC7

VCC2 PWR AC17

VCC2 PWR AD7

VCC2 PWR AD17

VCC2 PWR AE7

VCC2 PWR AE17

VCC2 PWR AF7

VCC2 PWR AF17

VCC3 PWR A10

VCC3 PWR A20

VCC3 PWR B10

VCC3 PWR B20

VCC3 PWR C10

VCC3 PWR C20

VCC3 PWR D10

VCC3 PWR D20

VCC3 PWR G1

VCC3 PWR G2

VCC3 PWR G3

VCC3 PWR G4

VCC3 PWR G23

VCC3 PWR G24

Signal Name Type Pin No.

VCC3 PWR G25

VCC3 PWR G26

VCC3 PWR U1

VCC3 PWR U2

VCC3 PWR U3

VCC3 PWR U4

VCC3 PWR U23

VCC3 PWR U24

VCC3 PWR U25

VCC3 PWR U26

VCC3 PWR AC10

VCC3 PWR AC20

VCC3 PWR AD10

VCC3 PWR AD20

VCC3 PWR AE10

VCC3 PWR AE20

VCC3 PWR AF10

VCC3 PWR AF20

VID_CLK O P1

VID_DATA0 O AD4

VID_DATA1 O AF3

VID_DATA2 O AE3

VID_DATA3 O AD3

VID_DATA4 O AC3

VID_DATA5 O AD2

VID_DATA6 O AB3

VID_DATA7 O AB4

VID_RDY I AD1

VID_VAL O M2

VOLDET O AC5

VSS GND A1

VSS GND A2

VSS GND A13

VSS GND A25

VSS GND A26

VSS GND B1

VSS GND B2

Signal Name Type Pin No.

VSS GND B25

VSS GND B26

VSS GND D4

VSS GND D6

VSS GND D8

VSS GND D9

VSS GND D11

VSS GND D12

VSS GND D13

VSS GND D14

VSS GND D15

VSS GND D16

VSS GND D18

VSS GND D19

VSS GND D21

VSS GND D23

VSS GND F4

VSS GND F23

VSS GND H4

VSS GND H23

VSS GND J4

VSS GND J23

VSS GND L4

VSS GND L23

VSS GND M4

VSS GND M23

VSS GND N1

VSS GND N4

VSS GND N23

VSS GND P4

VSS GND P23

VSS GND R4

VSS GND R23

VSS GND T4

VSS GND T23

VSS GND V4

VSS GND V23

Signal Name Type Pin No.

VSS GND W4

VSS GND W23

VSS GND AA4

VSS GND AA23

VSS GND AC4

VSS GND AC6

VSS GND AC8

VSS GND AC9

VSS GND AC11

VSS GND AC12

VSS GND AC13

VSS GND AC14

VSS GND AC15

VSS GND AC16

VSS GND AC18

VSS GND AC19

VSS GND AC21

VSS GND AC23

VSS GND AE1

VSS GND AE2

VSS GND AE25

VSS GND AE26

VSS GND AF1

VSS GND AF2

VSS GND AF14

VSS GND AF25

VSS GND AF26

WEA# O R25

WEB# O R24

Signal Name Type Pin No.

Table 2-3. 352 BGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)
ww.national.com 18 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Figure 2-3. 320 SPGA Pin Assignment Diagram

For order information refer to Section A.1 “Order Information” on page 236.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T

U

V

AA

AB

AC

AD

AE

AF

Index Corner

27 28 29 30 31 32 33 34 35 36 37

AG

AH

AJ

AK

AL

AM

W

Y

X

Z

AN

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T

U

V

AA

AB

AC

AD

AE

AF

AG

AH

AJ

AK

AL

AM

W

Y

X

Z

AN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

VCC3 AD25 VSS VCC2 AD16 VCC3 STOP# SERR# VSS AD11 AD8 VCC3 AD2 VCC2 VSS TST0 VCC3 VSS

VSS AD27 CBE3# AD21 AD19 CBE2# TRDY# LOCK# CBE1# AD13 AD9 AD6 AD3 SMI# AD1 TST2 MD33 MD2

VCC3 AD31 AD26 AD23 VCC2 AD18 FRAME# VSS PAR VCC3 AD10 VSS AD4 AD0 VCC2 IRQ13 MD1 MD34 VCC3

AD30 AD29 AD24 AD22 AD20 AD17 IRDY# PERR# AD14 AD12 AD7 INTR TST1 TST3 MD0 MD32 MD3 MD35

REQ0# REQ2# AD28 VSS VCC2 VCC2 VSS DEVSEL# AD15 VSS CBE0# AD5 VSS VCC2 VCC2 VSS MD4 MD36 TDN

GNT0# TDI MD5 TDP

VSS CLKMODE2 VSS VSS MD37 VSS

GNT2# SUSPA#

TDO VSS TEST

REQ1# GNT1#

VCC2 VCC2 VCC2

RESET SUSP#

VCC3 TMS VSS

FPVSYN TCK

SERIALP VSS NC

CKMD1 FPHSYN

CKMD0 VID_VAL PIX0

PIX1 PIX2

VSS VCC3 VSS

PIX3 VID_CLK

PIX6 PIX5 PIX4

NC PIX9

PIX8 VSS PIX7

NC PIX10

VCC3 PIX11 VSS

PIX12 PIX13

VCC2 VCC2 VCC2

CRTHSYN DCLK

PIX14 VSS VCC2

PIX15 PIX16

VSS PIX17 VSS

CRTVSYN VDAT6

MD6 MD38

VCC2 VSS MD7

MD39 MD8

VCC2 VCC2 VCC2

MD40 MD9

VSS MD41 VCC3

MD10 MD42

MD11 VSS MD43

MD44 MD12

MD14 MD13 MD45

MD15 MD46

VSS VCC3 VSS

SYSCLK MD47

WEA# WEB# CASA#

DQM0 CASB#

DQM1 VSS DQM4

CS2# DQM5

VSS CS0# VCC3

RASB# RASA#

VCC2 VCC2 VCC2

VCC2 VSS MA1

MA2 MA0

MA4 MA3

VSS MA5 VSS

MA8 MA6MA10

PCLK FLT# VDAT5 VSS VCC2 MD31 VSS MD60 MD57 VSS MD22 MD52 VSS VCC2 VCC2 VSS BA1 MA9 MA7

VRDY VSS VDAT0 SDCLK0 SDCLK2 SDCLKIN MD29 MD27 MD56 MD55 MD21 MD20 MD50 MD16 DQM3 CS3# VSS BA0

VCC2 VDAT4 VDAT2 SDCLK1 VCC2 RWCLK SDCLKOUT VSS MD58 VCC3 MD23 VSS MD19 MD49 VCC2 DQM6 CKEA MA11 VCC3

VDAT7 VDAT3 ENDIS SDCLK3 MD63 MD30 MD61 MD59 MD25 MD24 MD53 MD51 MD18 MD48 DQM7 DQM2 MA12 VOLDET

VSS VCC2 VDAT1 VSS VCC2 MD62 VCC3 MD28 MD26 VSS MD54 CKEB VCC3 MD17 VCC2 VSS CS1# VCC3 VSS

Note: Signal names have been abbreviated in this figure due to space constraints.

= Denotes GND terminal
= Denotes PWR terminal (VCC2 = VCC_CORE; VCC3 = VCC_IO)

320 SPGA - Top View
Processor

Geode™ GXm
evision 3.1 19 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 2-4. 320 SPGA Pin Assignments - Sorted by Pin Number

Pin
No. Signal Name

A3 VCC3

A5 AD25

A7 VSS

A9 VCC2

A11 AD16

A13 VCC3

A15 STOP#

A17 SERR#

A19 VSS

A21 AD11

A23 AD8

A25 VCC3

A27 AD2

A29 VCC2

A31 VSS

A33 TEST0

A35 VCC3

A37 VSS

B2 VSS

B4 AD27

B6 C/BE3#

B8 AD21

B10 AD19

B12 C/BE2#

B14 TRDY#

B16 LOCK#

B18 C/BE1#

B20 AD13

B22 AD9

B24 AD6

B26 AD3

B28 SMI#

B30 AD1

B32 TEST2

B34 MD33

B36 MD2

C1 VCC3

C3 AD31

C5 AD26

C7 AD23

C9 VCC2

C11 AD18

C13 FRAME#

C15 VSS

C17 PAR

C19 VCC3

C21 AD10

C23 VSS

C25 AD4

C27 AD0

C29 VCC2

C31 IRQ13

C33 MD1

C35 MD34

C37 VCC3

D2 AD30

D4 AD29

D6 AD24

D8 AD22

D10 AD20

D12 AD17

D14 IRDY#

D16 PERR#

D18 AD14

D20 AD12

D22 AD7

D24 INTR

D26 TEST1

D28 TEST3

D30 MD0

D32 MD32

D34 MD3

D36 MD35

E1 REQ0#

E3 REQ2#

E5 AD28

E7 VSS

E9 VCC2

E11 VCC2

E13 VSS

E15 DEVSEL#

E17 AD15

E19 VSS

E21 C/BE0#

E23 AD5

E25 VSS

E27 VCC2

E29 VCC2

E31 VSS

E33 MD4

E35 MD36

E37 TDN

F2 GNT0#

F4 TDI

F34 MD5

F36 TDP

Pin
No. Signal Name

G1 VSS

G3 CLKMODE2

G5 VSS

G33 VSS

G35 MD37

G37 VSS

H2 GNT2#

H4 SUSPA#

H34 MD6

H36 MD38

J1 TDO

J3 VSS

J5 TEST

J33 VCC2

J35 VSS

J37 MD7

K2 REQ1#

K4 GNT1#

K34 MD39

K36 MD8

L1 VCC2

L3 VCC2

L5 VCC2

L33 VCC2

L35 VCC2

L37 VCC2

M2 RESET

M4 SUSP#

M34 MD40

M36 MD9

N1 VCC3

N3 TMS

N5 VSS

N33 VSS

N35 MD41

N37 VCC3

P2 FP_VSYNC

P4 TCLK

P34 MD10

P36 MD42

Q1 SERIALP

Q3 VSS

Q5 NC

Q33 MD11

Q35 VSS

Q37 MD43

R2 CLKMODE1

R4 FP_HSYNC

Pin
No. Signal Name

R34 MD44

R36 MD12

S1 CLKMODE0

S3 VID_VAL

S5 PIXEL0

S33 MD14

S35 MD13

S37 MD45

T2 PIXEL1

T4 PIXEL2

T34 MD15

T36 MD46

U1 VSS

U3 VCC3

U5 VSS

U33 VSS

U35 VCC3

U37 VSS

V2 PIXEL3

V4 VID_CLK

V34 SYSCLK

V36 MD47

W1 PIXEL6

W3 PIXEL5

W5 PIXEL4

W33 WEA#

W35 WEB#

W37 CASA#

X2 NC

X4 PIXEL9

X34 DQM0

X36 CASB#

Y1 PIXEL8

Y3 VSS

Y5 PIXEL7

Y33 DQM1

Y35 VSS

Y37 DQM4

Z2 NC

Z4 PIXEL10

Z34 CS2#

Z36 DQM5

AA1 VCC3

AA3 PIXEL11

AA5 VSS

AA33 VSS

AA35 CS0#

AA37 VCC3

Pin
No. Signal Name

AB2 PIXEL12

AB4 PIXEL13

AB34 RASB#

AB36 RASA#

AC1 VCC2

AC3 VCC2

AC5 VCC2

AC33 VCC2

AC35 VCC2

AC37 VCC2

AD2 CRT_HSYNC

AD4 DCLK

AD34 MA2

AD36 MA0

AE1 PIXEL14

AE3 VSS

AE5 VCC2

AE33 VCC2

AE35 VSS

AE37 MA1

AF2 PIXEL15

AF4 PIXEL16

AF34 MA4

AF36 MA3

AG1 VSS

AG3 PIXEL17

AG5 VSS

AG33 VSS

AG35 MA5

AG37 VSS

AH2 CRT_VSYNC

AH4 VID_DATA6

AH32 MA10

AH34 MA8

AH36 MA6

AJ1 PCLK

AJ3 FTL#

AJ5 VID_DATA5

AJ7 VSS

AJ9 VCC2

AJ11 MD31

AJ13 VSS

AJ15 MD60

AJ17 MD57

AJ19 VSS

AJ21 MD22

AJ23 MD52

AJ25 VSS

Pin
No. Signal Name
ww.national.com 20 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

AJ27 VCC2

AJ29 VCC2

AJ31 VSS

AJ33 BA1

AJ35 MA9

AJ37 MA7

AK2 VID_RDY

AK4 VSS

AK6 VID_DATA0

AK8 SDCLK0

AK10 SDCLK2

AK12 SDCLK_IN

AK14 MD29

AK16 MD27

AK18 MD56

AK20 MD55

AK22 MD21

Pin
No. Signal Name

AK24 MD20

AK26 MD50

AK28 MD16

AK30 DQM3

AK32 CS3#

AK34 VSS

AK36 BA0

AL1 VCC2

AL3 VID_DATA4

AL5 VID_DATA2

AL7 SDCLK1

AL9 VCC2

AL11 RW_CLK

AL13 SDCLK_OUT

AL15 VSS

AL17 MD58

AL19 VCC3

Pin
No. Signal Name

AL21 MD23

AL23 VSS

AL25 MD19

AL27 MD49

AL29 VCC2

AL31 DQM6

AL33 CKEA

AL35 MA11

AL37 VCC3

AM2 VID_DATA7

AM4 VID_DATA3

AM6 ENA_DISP

AM8 SDCLK3

AM10 MD63

AM12 MD30

AM14 MD61

AM16 MD59

Pin
No. Signal Name

AM18 MD25

AM20 MD24

AM22 MD53

AM24 MD51

AM26 MD18

AM28 MD48

AM30 DQM7

AM32 DQM2

AM34 MA12

AM36 VOLDET

AN1 VSS

AN3 VCC2

AN5 VID_DATA1

AN7 VSS

AN9 VCC2

AN11 MD62

AN13 VCC3

Pin
No. Signal Name

AN15 MD28

AN17 MD26

AN19 VSS

AN21 MD54

AN23 CKEB

AN25 VCC3

AN27 MD17

AN29 VCC2

AN31 VSS

AN33 CS1#

AN35 VCC3

AN37 VSS

Pin
No. Signal Name

Table 2-4. 320 SPGA Pin Assignments - Sorted by Pin Number (Continued)
evision 3.1 21 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 2-5. 320 SPGA Pin Assignments - Sorted Alphabetically by Signal Name

Signal Name Type Pin. No.

AD0 I/O C27

AD1 I/O B30

AD2 I/O A27

AD3 I/O B26

AD4 I/O C25

AD5 I/O E23

AD6 I/O B24

AD7 I/O D22

AD8 I/O A23

AD9 I/O B22

AD10 I/O C21

AD11 I/O A21

AD12 I/O D20

AD13 I/O B20

AD14 I/O D18

AD15 I/O E17

AD16 I/O A11

AD17 I/O D12

AD18 I/O C11

AD19 I/O B10

AD20 I/O D10

AD21 I/O B8

AD22 I/O D8

AD23 I/O C7

AD24 I/O D6

AD25 I/O A5

AD26 I/O C5

AD27 I/O B4

AD28 I/O E5

AD29 I/O D4

AD30 I/O D2

AD31 I/O C3

BA0 O AK36

BA1 O AJ33

CASA# O W37

CASB# O X36

C/BE0# I/O E21

C/BE1# I/O B18

C/BE2# I/O B12

C/BE3# I/O B6

CKEA O AL33

CKEB O AN23

CLKMODE0 I S1

CLKMODE1 I R2

CLKMODE2 I G3

CRT_HSYNC O AD2

CRT_VSYNC O AH2

CS0# O AA35

CS1# O AN33

CS2# O Z34

CS3# O AK32

DCLK I AD4

DEVSEL# s/t/s E15 (PU)

DQM0 O X34

DQM1 O Y33

DQM2 O AM32

DQM3 O AK30

DQM4 O Y37

DQM5 O Z36

DQM6 O AL31

DQM7 O AM30

ENA_DISP O AM6

FLT# I AJ3

FP_HSYNC O R4

FP_VSYNC O P2

FRAME# s/t/s C13 (PU)

GNT0# O F2

GNT1# O K4

GNT2# O H2

INTR I D24

IRDY# s/t/s D14 (PU)

IRQ13 O C31

LOCK# s/t/s B16 (PU)

MA0 O AD36

MA1 O AE37

MA2 O AD34

MA3 O AF36

MA4 O AF34

MA5 O AG35

MA6 O AH36

MA7 O AJ37

MA8 O AH34

MA9 O AJ35

MA10 O AH32

MA11 O AL35

MA12 O AM34

MD0 I/O D30

MD1 I/O C33

MD2 I/O B36

MD3 I/O D34

MD4 I/O E33

MD5 I/O F34

MD6 I/O H34

MD7 I/O J37

MD8 I/O K36

MD9 I/O M36

MD10 I/O P34

MD11 I/O Q33

MD12 I/O R36

MD13 I/O S35

MD14 I/O S33

MD15 I/O T34

MD16 I/O AK28

MD17 I/O AN27

MD18 I/O AM26

MD19 I/O AL25

Signal Name Type Pin. No.

MD20 I/O AK24

MD21 I/O AK22

MD22 I/O AJ21

MD23 I/O AL21

MD24 I/O AM20

MD25 I/O AM18

MD26 I/O AN17

MD27 I/O AK16

MD28 I/O AN15

MD29 I/O AK14

MD30 I/O AM12

MD31 I/O AJ11

MD32 I/O D32

MD33 I/O B34

MD34 I/O C35

MD35 I/O D36

MD36 I/O E35

MD37 I/O G35

MD38 I/O H36

MD39 I/O K34

MD40 I/O M34

MD41 I/O N35

MD42 I/O P36

MD43 I/O Q37

MD44 I/O R34

MD45 I/O S37

MD46 I/O T36

MD47 I/O V36

MD48 I/O AM28

MD49 I/O AL27

MD50 I/O AK26

MD51 I/O AM24

MD52 I/O AJ23

MD53 I/O AM22

MD54 I/O AN21

MD55 I/O AK20

MD56 I/O AK18

MD57 I/O AJ17

MD58 I/O AL17

MD59 I/O AM16

MD60 I/O AJ15

MD61 I/O AM14

MD62 I/O AN11

MD63 I/O AM10

NC Q5

NC X2

NC Z2

PAR I/O C17

PCLK O AJ1

PERR# s/t/s D16 (PU)

PIXEL0 O S5

PIXEL1 O T2

PIXEL2 O T4

Signal Name Type Pin. No.

PIXEL3 O V2

PIXEL4 O W5

PIXEL5 O W3

PIXEL6 O W1

PIXEL7 O Y5

PIXEL8 O Y1

PIXEL9 O X4

PIXEL10 O Z4

PIXEL11 O AA3

PIXEL12 O AB2

PIXEL13 O AB4

PIXEL14 O AE1

PIXEL15 O AF2

PIXEL16 O AF4

PIXEL17 O AG3

RASA# O AB36

RASB# O AB34

REQ0# I E1 (PU)

REQ1# I K2 (PU)

REQ2# I E3 (PU)

RESET I M2

RW_CLK O AL11

SDCLK_IN I AK12

SDCLK_OUT O AL13

SDCLK0 O AK8

SDCLK1 O AL7

SDCLK2 O AK10

SDCLK3 O AM8

SERIALP O Q1

SERR# OD A17 (PU)

SMI# I B28

STOP# s/t/s A15 (PU)

SUSP# I M4 (PU)

SUSPA# O H4

SYSCLK I V34

TCLK I P4 (PU)

TDI I F4 (PU)

TDN O E37

TDO O J1

TDP O F36

TEST I J5 (PD)

TEST0 O A33

TEST1 O D26

TEST2 O B32

TEST3 O D28

TMS I N3 (PU)

TRDY# s/t/s B14 (PU)

VCC2 PWR A9

VCC2 PWR A29

VCC2 PWR C9

VCC2 PWR C29

VCC2 PWR E9

VCC2 PWR E11

Signal Name Type Pin. No.
ww.national.com 22 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Note: PU/PD indicates pin is
internally connected to
a 20-kohm pull-up/
down resistor

VCC2 PWR E27

VCC2 PWR E29

VCC2 PWR J33

VCC2 PWR L1

VCC2 PWR L3

VCC2 PWR L5

VCC2 PWR L33

VCC2 PWR L35

VCC2 PWR L37

VCC2 PWR AC1

VCC2 PWR AC3

VCC2 PWR AC5

VCC2 PWR AC33

VCC2 PWR AC35

VCC2 PWR AC37

VCC2 PWR AE5

VCC2 PWR AE33

VCC2 PWR AJ9

VCC2 PWR AJ27

VCC2 PWR AJ29

VCC2 PWR AL1

VCC2 PWR AL9

VCC2 PWR AL29

VCC2 PWR AN3

VCC2 PWR AN9

VCC2 PWR AN29

VCC3 PWR A3

VCC3 PWR A13

VCC3 PWR A25

Signal Name Type Pin. No.

VCC3 PWR A35

VCC3 PWR C1

VCC3 PWR C19

VCC3 PWR C37

VCC3 PWR N1

VCC3 PWR N37

VCC3 PWR U3

VCC3 PWR U35

VCC3 PWR AA1

VCC3 PWR AA37

VCC3 PWR AL19

VCC3 PWR AL37

VCC3 PWR AN13

VCC3 PWR AN25

VCC3 PWR AN35

VID_CLK O V4

VID_DATA0 O AK6

VID_DATA1 O AN5

VID_DATA2 O AL5

VID_DATA3 O AM4

VID_DATA4 O AL3

VID_DATA5 O AJ5

VID_DATA6 O AH4

VID_DATA7 O AM2

VID_RDY I AK2

VID_VAL O S3

VOLDET O AM36

VSS GND A7

VSS GND A19

Signal Name Type Pin. No.

VSS GND A31

VSS GND A37

VSS GND B2

VSS GND C15

VSS GND C23

VSS GND E7

VSS GND E13

VSS GND E19

VSS GND E25

VSS GND E31

VSS GND G1

VSS GND G5

VSS GND G33

VSS GND G37

VSS GND J3

VSS GND J35

VSS GND N5

VSS GND N33

VSS GND Q3

VSS GND Q35

VSS GND U1

VSS GND U5

VSS GND U33

VSS GND U37

VSS GND Y3

VSS GND Y35

VSS GND AA5

VSS GND AA33

VSS GND AE3

Signal Name Type Pin. No.

VSS GND AE35

VSS GND AG1

VSS GND AG5

VSS GND AG33

VSS GND AG37

VSS GND AJ7

VSS GND AJ13

VSS GND AJ19

VSS GND AJ25

VSS GND AJ31

VSS GND AK4

VSS GND AK34

VSS GND AL15

VSS GND AL23

VSS GND AN1

VSS GND AN7

VSS GND AN19

VSS GND AN31

VSS GND AN37

WEA# O W33

WEB# O W35

Signal Name Type Pin. No.

Table 2-5. 320 SPGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)
evision 3.1 23 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

2.2 SIGNAL DESCRIPTIONS

2.2.1 System Interface Signals

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

SYSCLK P26 V34 I System Clock

System Clock runs synchronously with the PCI bus. The internal
clock of the GXm processor is generated by an internal PLL
which multiplies the SYSCLK input and can run up to eight times
faster. The SYSCLK to core clock multiplier is configured using
the CLKMOD[2:0] inputs.

The SYSCLK input is a fixed frequency which can only be
stopped or varied when the GXm processor is in a full 3V Sus-
pend. (Section 6.4 “3-Volt Suspend Mode” on page 174 for
details regarding this mode.)

CLKMODE[2:0] M1, L1,
M3

G3,R2,
S1

I Clock Mode

These signals are used to set the core clock multiplier. The PCI
clock "SYSCLK" is multiplied by the value programmed by CLK-
MODE[2:0] to generate the GXm processor’s core clock.
CLKMODE2 is valid only for GXm processor revision 4.0 and up.
The value read from DIR1 (Device ID Register 1, refer to
page 51) affects the definition of the CLKMODE pins.

If DIR1 = 30h-33h then CLKMODE[1:0]:
00 = SYSCLK multiplied by 4 (Test mode only)
01 = SYSCLK multiplied by 6
10 = SYSCLK multiplied by 7
11 = SYSCLK multiplied by 5

If DIR1 = 34h-4Fh then CLKMODE[1:0]:
00 = SYSCLK multiplied by 4 (Test mode only)
01 = SYSCLK multiplied by 6
10 = SYSCLK multiplied by 7
11 = SYSCLK multiplied by 8

If DIR1 > or = 50h then CLKMODE[2:0]:
000 = SYSCLK multiplied by 4 (Test mode only)
001 = SYSCLK multiplied by 10
010 = SYSCLK multiplied by 9
011 = SYSCLK multiplied by 5
100 = SYSCLK multiplied by 4
101 = SYSCLK multiplied by 6
110 = SYSCLK multiplied by 7
111 = SYSCLK multiplied by 8

RESET J3 M2 I Reset

RESET aborts all operations in progress and places the
GXm processor into a reset state. RESET forces the CPU and
peripheral functions to begin executing at a known state. All data
in the on-chip cache is invalidated.

RESET is an asynchronous input but must meet specified setup
and hold times to guarantee recognition at a particular clock
edge. This input is typically generated during the Power-On-
Reset sequence.

Note: Warm Reset does not require an input on the GXm pro-
cessor since the function is virtualized using SMM.
ww.national.com 24 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

INTR B18 D24 I (Maskable) Interrupt Request

INTR is a level-sensitive input that causes the GXm processor to
Suspend execution of the current instruction stream and begin
execution of an interrupt service routine. The INTR input can be
masked through the Flags Register IF bit. (See Table 3-4 on
page 43 for bit definitions.)

IRQ13 C22 C31 O Interrupt Request Level 13

IRQ13 is asserted if an on-chip floating point error occurs.

When a floating point error occurs, the GXm processor asserts
the IRQ13 pin. The floating point interrupt handler then performs
an OUT instruction to I/O address F0h or F1h. The GXm proces-
sor accepts either of these cycles and clears the IRQ13 pin.

Refer to Section 3.4.1 “I/O Address Space” on page 60 for fur-
ther information on IN/OUT instructions.

SMI# C19 B28 I System Management Interrupt

SMI# is a level-sensitive interrupt. SMI# puts the GXm processor
into System Management Mode (SMM).

SUSP# H2
(PU)

M4
(PU)

I Suspend Request

This signal is used to request that the GXm processor enter Sus-
pend mode. After recognition of an active SUSP# input, the pro-
cessor completes execution of the current instruction, any
pending decoded instructions and associated bus cycles.
SUSP# is ignored following RESET# and is enabled by setting
the SUSP bit in CCR2. (See Table 16 on page 44 for CCR2 bit
definitions.)

Since the GXm processor includes system logic functions as well
as the CPU core, there are special modes designed to support
the different power management states associated with APM,
ACPI, and portable designs. The part can be configured to stop
only the CPU core clocks, or all clocks. When all clocks are
stopped, the external clock can also be stopped. (See Section
6.0 “Power Management” on page 174 for more details regarding
power management states.)

This pin is internally connected to a 20-kohm pull-up resistor.
SUSP# is pulled up when not active.

SUSPA# E2 H4 O Suspend Acknowledge

Suspend Acknowledge indicates that the GXm processor has
entered low-power Suspend mode as a result of SUSP# asser-
tion or execution of a HALT instruction. SUSPA# is enabled by
setting the SUSP bit in CCR2. (See Table 16 on page 44 for
CCR2 bit definitions.)

The SYSCLK input may be stopped after SUSPA# has been
asserted to further reduce power consumption if the system is
configured for 3V Suspend mode. (Section 6.4 “3-Volt Suspend
Mode” on page 174 for details regarding this mode.)

SERIALP L3 Q1 O Serial Packet

Serial Packet is the single wire serial-transmission signal to the
CS5530 chip. The clock used for this interface is the PCI clock
(SYSCLK). This interface carries packets of miscellaneous infor-
mation to the chipset to be used by the VSA software handlers.

2.2.1 System Interface Signals (Continued)

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description
evision 3.1 25 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

2.2.2 PCI Interface Signals

Signal Name
BGA

Pin No.
SPGA
Pin No Type Description

AD[31:0] Refer
toTable

2-3

Refer
toTable

2-5

I/O Multiplexed Address and Data

Addresses and data are multiplexed on the same PCI pins. A bus
transaction consists of an address phase in the cycle in which
FRAME# is asserted followed by one or more data phases. Dur-
ing the address phase, AD[31:0] contain a physical 32-bit
address. For I/O, this is a byte address, for configuration and
memory it is a DWORD address. During data phases, AD[7:0]
contain the least significant byte (LSB) and AD[31:24] contain
the most significant byte (MSB). Write data is stable and valid
when IRDY# is asserted and read data is stable and valid when
TRDY# is asserted. Data is transferred during those SYSCLKS
where both IRDY# and TRDY# are asserted.

C/BE[3:0]# D5,
B8,

C13,
A15

B6,
B12,
B18,
E21

I/O Multiplexed Command and Byte Enables

Bus command and byte enables are multiplexed on the same
PCI pins. During the address phase of a transaction when
FRAME# is active, C/BE[3:0]# define the bus command. During
the data phase C/BE[3:0]# are used as byte enables. The byte
enables are valid for the entire data phase and determine which
byte lanes carry meaningful data. C/BE0# applies to byte 0
(LSB) and C/BE3# applies to byte 3 (MSB).

The command encoding and types are listed below.

0000 = Interrupt Acknowledge
0001 = Special Cycle
0010 = I/O Read
0011 = I/O Write
0100 = Reserved
0101 = Reserved
0110 = Memory Read
0111 = Memory Write
1000 = Reserved
1001 = Reserved
1010 = Configuration Read
1011 = Configuration Write
1100 = Memory Read Multiple
1101 = Dual Address Cycle (Reserved)
1110 = Memory Read Line
1111 = Memory Write and Invalidate

PAR B12 C17 I/O Parity

Parity generation is required by all PCI agents: the master drives
PAR for address and write-data phases, the target drives PAR for
read-data phases. Parity is even across AD[31:0] and
C/BE[3:0]#.

For address phases, PAR is stable and valid one SYSCLK after
the address phase. It has the same timing as AD[31:0] but
delayed by one SYSCLK.

For data phases, PAR is stable and valid one SYSCLK after
either IRDY# is asserted on a write transaction or after TRDY# is
asserted on a read transaction. Once PAR is valid, it remains
valid until one SYSCLK after the completion of the data phase.
(Also see PERR#.)
ww.national.com 26 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

FRAME# A8
(PU)

C13
(PU)

s/t/s Frame

Cycle Frame is driven by the current master to indicate the
beginning and duration of an access. FRAME# is asserted to
indicate a bus transaction is beginning. While FRAME# is
asserted, data transfers continue. When FRAME# is deasserted,
the transaction is in the final data phase.

This pin is internally connected to a 20-kohm pull-up resistor.

IRDY# C9
(PU)

D14
(PU)

s/t/s Initiator Ready

Initiator Ready is asserted to indicate that the bus master is able
to complete the current data phase of the transaction. IRDY# is
used in conjunction with TRDY#. A data phase is completed on
any SYSCLK in which both IRDY# and TRDY# are sampled
asserted. During a write, IRDY# indicates valid data is present
on AD[31:0]. During a read, it indicates the master is prepared to
accept data. Wait cycles are inserted until both IRDY# and
TRDY# are asserted together.

This pin is internally connected to a 20-kohm pull-up resistor.

TRDY# B9
(PU)

B14
(PU)

s/t/s Target Ready

TRDY# is asserted to indicate that the target agent is able to
complete the current data phase of the transaction. TRDY# is
used in conjunction with IRDY#. A data phase is complete on any
SYSCLK in which both TRDY# and IRDY# are sampled
asserted. During a read, TRDY# indicates that valid data is
present on AD[31:0]. During a write, it indicates the target is pre-
pared to accept data. Wait cycles are inserted until both IRDY#
and TRDY# are asserted together.

This pin is internally connected to a 20-kohm pull-up resistor.

STOP# C11
(PU)

A15
(PU)

s/t/s Target Stop

STOP# is asserted to indicate that the current target is request-
ing the master to stop the current transaction. This signal is used
with DEVSEL# to indicate retry, disconnect or target abort. If
STOP# is sampled active while a master, FRAME# will be deas-
serted and the cycle stopped within three SYSCLK cycles. As an
input, STOP# can be asserted in the following cases. 1) If a PCI
master tries to access memory that has been locked by another
master. This condition is detected if FRAME# and LOCK# are
asserted during an address phase. 2) STOP# will also be
asserted if the PCI write buffers are full or if a previously buffered
cycle has not completed. 3) Finally, STOP# can be asserted on
read cycles that cross cache line boundaries. This is conditional
based upon the programming of bit 1 in PCI Control Function 2
Register. (See Table 4-37 on page 156 for programming details.)

This pin is internally connected to a 20-kohm pull-up resistor.

2.2.2 PCI Interface Signals (Continued)

Signal Name
BGA

Pin No.
SPGA
Pin No Type Description
evision 3.1 27 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

LOCK# B11
(PU)

B16
(PU)

s/t/s Lock Operation

LOCK# indicates an atomic operation that may require multiple
transactions to complete. When LOCK# is asserted, nonexclu-
sive transactions may proceed to an address that is not currently
locked (at least 16 bytes must be locked). A grant to start a trans-
action on PCI does not guarantee control of LOCK#. Control of
LOCK# is obtained under it own protocol in conjunction with
GNT#. It is possible for different agents to use PCI while a single
master retains ownership of LOCK#. The arbiter can implement
a complete system lock. In this mode, if LOCK# is active, no
other master can gain access to the system until the LOCK# is
deasserted.

This pin is internally connected to a 20-kohm pull-up resistor.

DEVSEL# A9
(PU)

E15
(PU)

s/t/s Device Select

DEVSEL# indicates that the driving device has decoded its
address as the target of the current access. As an input,
DEVSEL# indicates whether any device on the bus has been
selected. DEVSEL# will also be driven by any agent that has the
ability to accept cycles on a subtractive decode basis. As a mas-
ter, if no DEVSEL# is detected within and up to the subtractive
decode clock, a master abort cycle will result expect for special
cycles which do not expect a DEVSEL# returned.

This pin is internally connected to a 20-kohm pull-up resistor.

PERR# A11
(PU)

D16
(PU)

s/t/s Parity Error

PERR# is used for reporting of data parity errors during all PCI
transactions except a Special Cycle. The PERR# line is driven
two SYSCLKs after the data in which the error was detected.
This is one SYSCLK after the PAR that is attached to the data.
The minimum duration of PERR# is one SYSCLK for each data
phase in which a data parity error is detected. PERR# must be
driven high for one SYSCLK before being in TRI-STATE mode. A
target asserts PERR# on write cycles if it has claimed the cycle
with DEVSEL#. The master asserts PERR# on read cycles.

This pin is internally connected to a 20-kohm pull-up resistor.

SERR# C12
(PU)

A17
(PU)

OD System Error

System Error may be asserted by any agent for reporting errors
other than PCI parity. The intent is to have the PCI central agent
assert NMI to the processor. When the Parity Enable bit is set in
the Memory Controller Configuration register, SERR# will be
asserted upon detecting a parity error on read operations from
DRAM.

REQ[2:0]# D3,
H3,
E3

(PU)

E3,
K2,
E1

(PU)

I Request Lines

Request indicates to the arbiter that an agent desires use of the
bus. Each master has its own REQ# line. REQ# priorities are
based on the arbitration scheme chosen.

Each of these pins are internally connected to a 20-kohm pull-up
resistor.

2.2.2 PCI Interface Signals (Continued)

Signal Name
BGA

Pin No.
SPGA
Pin No Type Description
ww.national.com 28 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

GNT[2:0]# E1,
F2,
D1

H2,
K4,
F2

O Grant Lines

Grant indicates to the requesting master that it has been granted
access to the bus. Each master has its own GNT# line. GNT#
can be pulled away at any time a higher REQ# is received or if
the master does not begin a cycle within a minimum period of
time (16 SYSCLKs).

2.2.2 PCI Interface Signals (Continued)

Signal Name
BGA

Pin No.
SPGA
Pin No Type Description

2.2.3 Memory Controller Interface Signals

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

Note: The memory controller interface supports two types of memory configurations: SDRAM modules on the sys-
tem board and JEDEC DIMM connectors. Refer to Section 4.3 “Memory Controller” on page 103 for detailed
information regarding signal connections.

MD[63:0] Refer
toTable

2-3

Refer
toTable

2-5

I/O Memory Data Bus

The data bus lines driven to/from system memory.

MA[12:0] Refer
toTable

2-3

Refer
toTable

2-5

O Memory Address Bus

The multiplexed row/column address lines driven to the system
memory.

Supports 256 Mbit SDRAM.

BA[1:0] AD26,
AD25

AJ33,
AK36

O Bank Address Bits

These bits are used to select the component bank within the
SDRAM.

CS[3:0]# AE23,
V25,

AD23,
V26

AK32,
Z34,

AN33,
AA35

O Chip Selects

The chip selects are used to select the module bank within the
system memory. Each chip select corresponds to a specific mod-
ule bank.

If CS# is high, the bank(s) do not respond to RAS#, CAS#, WE#
until the bank is selected again.

RASA#,
RASB#

W24,
W25

AB36,
AB34

O Row Address Strobe

RAS#, CAS#, WE# and CKE are encoded to support the differ-
ent SDRAM commands. RASA# is used with CS[1:0]#. RASB#
is used with CS[3:2]#.

CASA#,
CASB#

P25,
R26

W37,
X36

O Column Address Strobe

RAS#, CAS#, WE# and CKE are encoded to support the differ-
ent SDRAM commands. CASA# is used with CS[1:0]#. CASB#
is used with CS[3:2]#.

WEA#,
WEB#

R25,
R24

W33,
W35

O Write Enable

RAS#, CAS#, WE# and CKE are encoded to support the differ-
ent SDRAM commands. WEA# is used with CS[1:0]#. WEB# is
used with CS[3:2]#.
evision 3.1 29 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

DQM[7:0] Refer
toTable

2-3

Refer
toTable

2-5

O Data Mask Control Bits

During memory read cycles, these outputs control whether the
SDRAM output buffers are driven on the MD bus or not. All DQM
signals are asserted during read cycles.

During memory write cycles, these outputs control whether or
not MD data will be written into the SDRAM.

DQM[7:0] connect directly to the DQM7-0 pins of each connec-
tor.

CKEA,
CKEB

AF24,
AD16

AL33,
AN23

O Clock Enable

For normal operation CKE is held high. CKE goes low during
Suspend.

SDCLK[3:0] AE4,
AF5,
AE5,
AF4

AM8,
AK10,
AL7,
AK8

O SDRAM Clocks

The SDRAM samples all the control, address, and data using
these clocks.

SDCLK_IN AE8 AK12 I SDRAM Clock Input

The GXm processor samples the memory read data on this
clock. Works in conjunction with the SDCLK_OUT signal.

SDCLK_OUT AF8 AL13 O SDRAM Clock Output

This output is routed back to SDCLK_IN. The board designer
should vary the length of the board trace to control skew
between SDCLK_IN and SDCLK.

2.2.3 Memory Controller Interface Signals (Continued)

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

2.2.4 Video Interface Signals

Signal Name
BGA

Pin No
SPGA
Pin No Type Description

PCLK AC1 AJ1 O Pixel Port Clock

Pixel Port Clock represents the pixel dotclock or a 2x multiple of
the dotclock for some 16-bit-per-pixel modes. It determines the
data transfer rate from the GXm processor to the CS5530.

VID_CLK P1 V4 O Video Clock

Video Clock represents the video port clock to the CS5530. This
pin is only used if the Video Port is enabled.

DCLK AB1 AD4 I DOT Clock

The DCLK input is driven from the CS5530 and represents the
pixel dot clock. In some cases, such as when displaying 16 BPP
data with an eight-bit-graphics pixel port, this clock will actually
be a 2x multiple of the dotclock.

CRT_HSYNC W2 AD2 O CRT Horizontal Sync

CRT Horizontal Sync establishes the line rate and horizontal
retrace interval for an attached CRT. The polarity is programma-
ble and depends on the display mode.
ww.national.com 30 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

CRT_VSYNC AA3 AH2 O CRT Vertical Sync

CRT Vertical Sync establishes the screen refresh rate and verti-
cal retrace interval for an attached CRT. The polarity is program-
mable and depends on the display mode.

FP_HSYNC L2 R4 O Flat Panel Horizontal Sync

Flat Panel Horizontal Sync establishes the line rate and horizon-
tal retrace interval for a TFT display. Polarity is programmable
and depends on the display mode.

This signal is an input to the CS5530. The CS5530 re-drives this
signal to the flat panel.

If no flat panel is used in the system, this signal does not need to
be connected.

FP_VSYNC J1 P2 O Flat Panel Vertical Sync

Flat Panel Vertical Sync establishes the screen refresh rate and
vertical retrace interval for a TFT display. Polarity is programma-
ble and depends on the display mode.

This signal is an input to the CS5530. The CS5530 re-drives this
signal to the flat panel.

If no flat panel is used in the system, this signal does not need to
be connected.

ENA_DISP AD5 AM6 O Display Enable

Display Enable indicates the active display portion of a scan line
to the CS5530.

In a CS5530-based system, this signal is required to be con-
nected even if there is no TFT panel in the system.

VID_RDY AD1 AK2 I Video Ready

This input signal indicates that the video FIFO in the CS5530 is
ready to receive more data.

VID_VAL M2 S3 O Video Valid

VID_VAL qualifies valid video data to the CS5530.

VID_DATA[7:0] Refer
to

Refer
toTable

2-5

O Video Data Bus

When the Video Port is enabled, this bus drives Video (Y-U-V)
data synchronous to the VID_CLK output.

PIXEL[17:0] Refer
toTable

2-3

Refer
toTable

2-5

O Graphics Pixel Data Bus

This bus drives graphics pixel data synchronous to the PCLK
output.

2.2.4 Video Interface Signals (Continued)

Signal Name
BGA

Pin No
SPGA
Pin No Type Description
evision 3.1 31 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

2.2.5 Power, Ground, and No Connect Signals

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

VOLDET AC5 AM36 O Voltage Detect

In early schematic revisions this pin was identified as VOLDET.
However, in the production version this pin is a "no connect" and
should be left disconnected.

VSS Refer
toTable

2-3
(Total
of 71)

Refer
toTable

2-5
(Total
of 50)

GND Ground Connection

VCC2 Refer
toTable

2-3
(Total
of 32)

Refer
toTable

2-5
(Total
of 32)

PWR 2.9V (nominal) Core Power Connection

VCC3 Refer
toTable

2-3
(Total
of 32)

Refer
toTable

2-5
(Total
of 18)

PWR 3.3V (nominal) I/O Power Connection

NC -- Q5, X2,
Z2

No Connection

A line designated as NC should be left disconnected.

2.2.6 Internal Test and Measurement Signals

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description

FLT# AC2 AJ3 I Float

Float Outputs force the GXm processor to float all outputs in the
high-impedance state and to enter a power-down state.

RW_CLK AE6 AL11 O Raw Clock

This output is the GXm processor clock. This debug signal can
be used to verify clock operation.

TEST[3:0] B22,
A23,
B21,
C21

D28,
B32,
D26,
A33

O SDRAM Test Outputs

These outputs are used for internal debug only.

TCLK J2
(PU)

P4
(PU)

I Test Clock

JTAG test clock.

This pin is internally connected to a 20-kohm pull-up resistor.

TDI D2
(PU)

F4
(PU)

I Test Data Input

JTAG serial test-data input.

This pin is internally connected to a 20-kohm pull-up resistor.

TDO F1 J1 O Test Data Output

JTAG serial test-data output.
ww.national.com 32 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

TMS H1
(PU)

N3
(PU)

I Test Mode Select

JTAG test-mode select.

This pin is internally connected to a 20-kohm pull-up resistor.

TEST F3
(PD)

J5
(PD)

I Test

Test-mode input.

This pin is internally connected to a 20-kohm pull-down resistor.

TDP E24 F36 O Thermal Diode Positive

TDP is the positive terminal of the thermal diode on the die. The
diode is used to do thermal characterization of the device in a
system. This signal works in conjunction with TDN.

TDN D26 E37 O Thermal Diode Negative

TDN is the negative terminal of the thermal diode on the die. The
diode is used to do thermal characterization of the device in a
system. This signal works in conjunction with TDP.

2.2.6 Internal Test and Measurement Signals

Signal Name
BGA

Pin No.
SPGA

Pin No. Type Description
evision 3.1 33 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

2.3 SUBSYSTEM SIGNAL CONNECTIONS
As previously stated, the GXm Integrated Subsystem with
MMX support consists of two chips: the GXm Processor
and the CS5530 I/O companion. Figure 2-4 shows the

signal connections between the processor and the I/O
companion chip.

Figure 2-4. Subsystem Signal Connections

SYSCLK
SERIALP

IRQ13
SMI#

PCLK

CRT_HSYNC
CRT_VSYNC

PIXEL[17:0]

FP_HSYNC
FP_VSYNC
ENA_DISP

VID_VAL
VID_CLK

VID_DATA[7:0]
VID_RDY

INTR

SUSP#
SUSPA#
AD[31:0]

C/BE[3:0]#
PAR

FRAME#
IRDY#

TRDY#
STOP#
LOCK#

DEVSEL#
PERR#
SERR#
REQ0#

GX_CLK
PSERIAL
IRQ13
SMI#
PCLK

HSYNC
VSYNC

PIXEL[23:0]

FP_HSYNC
FP_VSYNC
FP_ENA_DISP
VID_VAL
VID_CLK
VID_DATA[7:0]
VID_RDY
CPU_RST
INTR

SUSP#
SUSPA#
AD[31:0]
C/BE[3:0]#
PAR
FRAME#
IRDY#
TRDY#
STOP#
LOCK#
DEVSEL#
PERR#
SERR#
REQ#
GNT#GNT0#

Geode™ CS5530
I/O Companion

Exclusive
Interconnect

Signals
(Do not connect to
any other device)

Nonexclusive
Interconnect

Signals
(May also connect

to other circuitry)

Not needed if
CRT only (no TFT)

(Note)

Note: Refer to Figure 2-5 for interconnection of these lines.

RESET

DCLK DCLK

Geode™ GXm
Processor
ww.national.com 34 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Figure 2-5. PIXEL Signal Connections

PIXEL17

PIXEL16

PIXEL15

PIXEL14

PIXEL13

PIXEL12

PIXEL11

PIXEL10

PIXEL9

PIXEL8

PIXEL7

PIXEL6

PIXEL5

PIXEL4

PIXEL3

PIXEL2

PIXEL1

Geode™ CS5530
I/O Companion

PIXEL0

PIXEL23

PIXEL22

PIXEL21

PIXEL20

PIXEL19

PIXEL18

PIXEL17

PIXEL16

PIXEL15

PIXEL14

PIXEL13

PIXEL12

PIXEL11

PIXEL10

PIXEL9

PIXEL8

PIXEL7

PIXEL6

PIXEL5

PIXEL4

PIXEL3

PIXEL2

PIXEL1

PIXEL0

Geode™ GXm
Processor
evision 3.1 35 www.national.com

w

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

2.4 POWER PLANES
Figure 2-6 shows layout recommendations for splitting the
power plane between VCC2 (core: 2.9V) and VCC3 (I/O:
3.3V) volts in the BGA package.

The illustration assumes there is one power plane, and no
components on the back of the board

Figure 2-7 shows layout recommendations for splitting the
power plane between VCC2 (core: 2.9V) and VCC3 (I/O:
3.3V) volts for the GXm in the SPGA package.

Figure 2-6. BGA Recommended Split Power Plane and Decoupling

1 26
A

AF AF

A

261

= High frequency capacitor

= 220µF, low ESR capacitor

= 3.3V connection

= 2.9V connection

Geode™ GXm

352 BGA - Top View

2.9V Plane
(VCC2)

3.3V Plane
(VCC3)

3.3V Plane
(VCC3)

3.3V Plane
(VCC3)

2.9V Plane
(VCC2)

Legend

Processor
ww.national.com 36 Revision 3.1

R

Signal Definitions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Figure 2-7. SPGA Recommended Split Power Plane and Decoupling

1 37

A

AN

A

AN

1 37

2.9V Plane
(VCC2)

3.3V Plane
(VCC3)

3.3V Plane
(VCC3)

3.3V Plane
(VCC3)

3.3V Plane
(VCC3)

2.9V Plane
(VCC2)

To 2.9V
Regulator

Note: Where signals cross plane splits, it is recommended to include AC
decoupling between planes with 47pF capacitors.

= High frequency capacitor

= 220 µF, low ESR capacitor

= 3.3V connection

= 2.9V connection

Legend

320 SPGA - Top View

Geode™ GXm
Processor
evision 3.1 37 www.national.com

w

G
eo

d
e™

G
X

m
P

ro
ce

ss
o

r

3.0 Processor Programming
This section describes the internal operations of the
Geode GXm processor from a programmer’s point of view.
It includes a description of the traditional “core” process-
ing and FPU operations. The integrated function registers
are described at the end of this chapter.

The primary register sets within the processor core
include:

• Application Register Set
• System Register Set
• Model Specific Register Set
• Floating Point Unit Register Set.

The initialization of the major registers within in core are
shown in Table 3-1.

The integrated function sets are located in main memory
space and include:

• Internal Bus Interface Unit Register Set
• Graphics Pipeline Register Set
• Display Controller Register Set
• Memory Controller Register Set
• Power Management Register Set

3.1 CORE PROCESSOR INITIALIZATION
The GXm processor is initialized when the RESET signal
is asserted. The processor is placed in real mode and the
registers listed in Table 3-1 are set to their initialized val-
ues. RESET invalidates and disables the CPU cache, and
turns off paging. When RESET is asserted, the CPU ter-
minates all local bus activity and all internal execution.
During the entire time that RESET is asserted, the inter-
nal pipeline is flushed and no instruction execution or bus
activity occurs.

Approximately 150 to 250 external clock cycles after
RESET is deasserted, the processor begins executing
instructions at the top of physical memory (address loca-
tion FFFFFFF0h). The actual time depends on the clock
scaling in use. Also, an additional 220 clock cycles are
needed when self-test is requested.

Typically, an intersegment jump is placed at FFFFFFF0h.
This instruction will force the processor to begin execution
in the lowest 1 MB of address space.

The following table, Table 3-1, lists the core registers and
illustrates how they are initialized.

Table 3-1. Initialized Core Register Controls

Register Register Name Initialized Contents Comments

EAX Accumulator xxxxxxxxh 00000000h indicates self-test passed.

EBX Base xxxxxxxxh

ECX Count xxxxxxxxh

EDX Data xxxx 04 [DIR0]h DIR0 = Device ID

EBP Base Pointer xxxxxxxxh

ESI Source Index xxxxxxxxh

EDI Destination Index xxxxxxxxh

ESP Stack Pointer xxxxxxxxh

EFLAGS Extended FLAGS 00000002h See Table 3-4 on page 43 for bit definitions.

EIP Instruction Pointer 0000FFF0h

ES Extra Segment 0000h Base address set to 00000000h. Limit set to FFFFh.

CS Code Segment F000h Base address set to FFFF0000h. Limit set to FFFFh.

SS Stack Segment 0000h Base address set to 00000000h. Limit set to FFFFh.

DS Data Segment 0000h Base address set to 00000000h. Limit set to FFFFh.

FS Extra Segment 0000h Base address set to 00000000h. Limit set to FFFFh.

GS Extra Segment 0000h Base address set to 00000000h. Limit set to FFFFh.

IDTR Interrupt Descriptor Table Register Base = 0, Limit = 3FFh

GDTR Global Descriptor Table Register xxxx xxxxh

LDTR Local Descriptor Table Register xxxxh

TR Task Register xxxxh

CR0 Machine Status Word 60000010h See Table 3-7 on page 49 for bit definitions.

CR2 Control Register 2 xxxxxxxxh See Table 3-7 on page 49 for bit definitions.

CR3 Control Register 3 xxxxxxxxh See Table 3-7 on page 49 for bit definitions.

CR4 Control Register 4 00000000h See Table 3-7 on page 49 for bit definitions.

CCR1 Configuration Control 1 00h See Table 3-11 on page 49 for bit definitions.

CCR2 Configuration Control 2 00h See Table 3-11 on page 49 for bit definitions.

CCR3 Configuration Control 3 00h See Table 3-11 on page 49 for bit definitions.

CCR7 Configuration Control 7 00h See Table 3-11 on page 50 for bit definitions.

SMAR0 SMM Address 0 00h See Table 3-11 on page 51 for bit definitions.
ww.national.com 38 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.2 INSTRUCTION SET OVERVIEW
The GXm processor instruction set can be divided into
nine types of operations:

• Arithmetic
• Bit Manipulation
• Shift/Rotate
• String Manipulation
• Control Transfer
• Data Transfer
• Floating Point
• High-Level Language Support
• Operating System Support

GXm processor instructions operate on as few as zero
operands and as many as three operands. An NOP
instruction (no operation) is an example of a zero-operand
instruction. Two-operand instructions allow the specifica-
tion of an explicit source and destination pair as part of
the instruction. These two-operand instructions can be
divided into ten groups according to operand types:

• Register to Register
• Register to Memory
• Memory to Register
• Memory to Memory
• Register to I/O
• I/O to Register
• Memory to I/O
• I/O to Memory
• Immediate Data to Register
• Immediate Data to Memory

An operand can be held in the instruction itself (as in the
case of an immediate operand), in one of the processor’s
registers or I/O ports, or in memory. An immediate oper-
and is fetched as part of the opcode for the instruction.

Operand lengths of 8, 16, 32 or 48 bits are supported as
well as 64 or 80 bits associated with floating-point instruc-
tions. Operand lengths of 8 or 32 bits are generally used
when executing code written for 386- or 486-class (32-bit
code) processors. Operand lengths of 8 or 16 bits are
generally used when executing existing 8086 or 80286
code (16-bit code). The default length of an operand can
be overridden by placing one or more instruction prefixes
in front of the opcode. For example, the use of prefixes
allows a 32-bit operand to be used with 16-bit code or a
16-bit operand to be used with 32-bit code.

Section 9.1 “General Instruction Set Format” on page 202
contains the clock count table that lists each instruction in
the CPU instruction set. Included in the table are the
associated opcodes, execution clock counts, and effects
on the EFLAGS register.

3.2.1 Lock Prefix
The LOCK prefix may be placed before certain instruc-
tions that read, modify, then write back to memory. The
PCI will not be granted access in the middle of locked
instructions. The LOCK prefix can be used with the follow-
ing instructions only when the result is a write operation to
memory.

• Bit Test Instructions (BTS, BTR, BTC)

• Exchange Instructions (XADD, XCHG, CMPXCHG)

• One-Operand Arithmetic and Logical Instructions
(DEC, INC, NEG, NOT)

• Two-Operand Arithmetic and Logical Instructions
(ADC, ADD, AND, OR, SBB, SUB, XOR).

An invalid opcode exception is generated if the LOCK pre-
fix is used with any other instruction or with one of the
instructions above when no write operation to memory
occurs (for example, when the destination is a register).

SMAR1 SMM Address 1 00h See Table 3-11 on page 50 for bit definitions.

SMAR2 SMM Address 2 / SMAR Size 00h See Table 3-11 on page 50 for bit definitions.

DIR0 Device Identification 0 4xh Device ID and reads back initial CPU clock-speed set-
ting. See Table 3-11 on page 51 for bit definitions.

DIR1 Device Identification 1 xxh Stepping and Revision ID (RO). See Table 3-11 on
page 51 for bit definitions.

DR7 Debug Register 7 00000400h See Table 3-13 on page 53 for bit definitions.

Note: x = Undefined value

Table 3-1. Initialized Core Register Controls (Continued)

Register Register Name Initialized Contents Comments
evision 3.1 39 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.3 REGISTER SETS
The accessible registers in the processor are grouped into
three sets:

1) The Application Register Set contains the registers
frequently used by application programmers. Table 3-
2 shows the general purpose, segment, the instruc-
tion pointer and the EFLAGS Registers.

2) The System Register Set contains the registers typi-
cally reserved for operating-systems programmers:
control, system address, debug, configuration, and
test registers.

3) The Model Specific Register (MSR) Set is used to
monitor the performance of the processor or a
specific component within the processor. The model
specific register set has one 64-bit register called the
Time Stamp Counter.

Each of these register sets are discussed in detail in the
subsections that follow. Additional registers to support
integrated GXm processor subsystems are described in
Section 4.1 “Integrated Functions Programming Interface”
on page 92.

3.3.1 Application Register Set
The Application Register Set consists of the registers most
often used by the applications programmer. These regis-
ters are generally accessible, although some bits in the
EFLAGS register are protected.

The General Purpose Register contents are frequently
modified by instructions and typically contain arithmetic
and logical instruction operands.

In real mode, Segment Registers contain the base
address for each segment. In protected mode, the seg-
ment registers contain segment selectors. The segment
selectors provide indexing for tables (located in memory)
that contain the base address for each segment, as well
as other memory addressing information.

The Instruction Pointer Register points to the next
instruction that the processor will execute. This register is
automatically incremented by the processor as execution
progresses.

The EFLAGS Register contains control bits used to
reflect the status of previously executed instructions. This
register also contains control bits that affect the operation
of some instructions.

3.3.1.1 General Purpose Registers
The General Purpose Registers are divided into four data
registers, two pointer registers, and two index registers as
shown in Table 3-2.

The Data Registers are used by the applications pro-
grammer to manipulate data structures and to hold the
results of logical and arithmetic operations. Different por-
tions of general data registers can be addressed by using
different names.

An “E” prefix identifies the complete 32-bit register. An “X”
suffix without the “E” prefix identifies the lower 16 bits of
the register.

The lower two bytes of a data register are addressed with
an “H” suffix (identifies the upper byte) or an “L” suffix (iden-
tifies the lower byte). These _L and _H portions of the
data registers act as independent registers. For example,
if the AH register is written to by an instruction, the AL reg-
ister bits remain unchanged.

The Pointer and Index Registers are listed below.

SI or ESI Source Index

DI or EDI Destination Index

SP or ESP Stack Pointer

BP or EBP Base Pointer

These registers can be addressed as 16- or 32-bit registers,
with the “E” prefix indicating 32 bits. The pointer and index
registers can be used as general purpose registers; how-
ever, some instructions use a fixed assignment of these
registers. For example, repeated string operations always
use ESI as the source pointer, EDI as the destination
pointer, and ECX as a counter. The instructions that use
fixed registers include multiply and divide, I/O access,
string operations, stack operations, loop, variable shift and
rotate, and translate instructions.

The GXm processor implements a stack using the ESP
register. This stack is accessed during the PUSH and
POP instructions, procedure calls, procedure returns,
interrupts, exceptions, and interrupt/exception returns.
The GXm processor automatically adjusts the value of the
ESP during operations that result from these instructions.

The EBP register may be used to refer to data passed on
the stack during procedure calls. Local data may also be
placed on the stack and accessed with BP. This register
provides a mechanism to access tack data in high-level
languages.
ww.national.com 40 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 3-2. Application Register Set

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

General Purpose Registers

AX

AH AL

EAX (Extended A Register)

BX

BH BL

EBX (Extended B Register)

CX

CH CL

ECX (Extended C Register)

DX

DH DL

EDX (Extended D Register)

SI (Source Index)

ESI (Extended Source Index)

DI (Destination Index)

EDI (Extended Destination Index)

BP (Base Pointer)

EBP (Extended Base Pointer)

SP (Stack Pointer)

ESP (Extended Stack Pointer)

Segment (Selector) Registers

CS (Code Segment)

SS (Stack Segment)

DS (D Data Segment)

ES (E Data Segment)

FS (F Data Segment)

GS (G Data Segment)

Instruction Pointer and EFLAGS Registers

EIP (Extended Instruction Pointer)

ESP (Extended FLAGS Register)
evision 3.1 41 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.3.1.2 Segment Registers
The 16-bit segment registers, part of the main memory
addressing mechanism, are described in Section 3.5 “Off-
set, Segment, and Paging Mechanisms” on page 61. The
six segment registers are:

CS - Code Segment
DS - Data Segment
SS - Stack Segment
ES - Extra Segment
FS - Additional Data Segment
GS - Additional Data Segment

The segment registers are used to select segments in
main memory. A segment acts as private memory for dif-
ferent elements of a program such as code space, data
space, and stack space.

There are two segment mechanisms, one for real and vir-
tual 8086 operating modes and one for protective mode.
Initialization and transition to protective mode is described
in Section 3.13.4 “Initialization and Transition to Protected
Mode” on page 87. The segment mechanisms are
described in Section 3.7 “Descriptors and Segment Mech-
anisms” on page 62.

The active segment register is selected according to the
rules listed in Table 3-3 and the type of instruction being
currently processed. In general, the DS register selector is
used for data references. Stack references use the SS
register, and instruction fetches use the CS register. While
some of these selections may be overridden, instruction
fetches, stack operations, and the destination write opera-
tion of string operations cannot be overridden. Special
segment-override instruction prefixes allow the use of
alternate segment registers. These segment registers
include the ES, FS, and GS registers.

3.3.1.3 Instruction Pointer Register
The Instruction Pointer (EIP) Register contains the off-
set into the current code segment of the next instruction to
be executed. The register is normally incremented by the
length of the current instruction with each instruction exe-
cution unless it is implicitly modified through an interrupt,
exception, or an instruction that changes the sequential
execution flow (for example JMP and CALL).

Table 3-3 illustrates the code segment selection rules.

Table 3-3. Segment Register Selection Rules

Type of Memory Reference
Implied (Default)

Segment
Segment-Override

Prefix

Code Fetch CS None

Destination of PUSH, PUSHF, INT, CALL, PUSHA instructions SS None

Source of POP, POPA, POPF, IRET, RET instructions SS None

Destination of STOS, MOVS, REP STOS, REP MOVS instructions ES None

Other data references with effective address using base registers of:
EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

DS

SS

CS, ES, FS, GS, SS

CS, DS, ES, FS, GS
ww.national.com 42 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.3.1.4 EFLAGS Register
The EFLAGS Register contains status information and
controls certain operations on the GXm processor. The
lower 16 bits of this register are referred to as the

EFLAGS register that is used when executing 8086 or
80286 code. Table 3-4 gives the bit formats for the
EFLAGS Register

Table 3-4. EFLAGS Register

Bit Name Flag Type Description

31:22 RSVD -- Reserved: Set to 0.

21 ID System Identification Bit: The ability to set and clear this bit indicates that the CPUID instruction is sup-
ported. The ID can be modified only if the CPUID bit in CCR4 (Index E8h[7]) is set.

20:19 RSVD -- Reserved: Set to 0.

18 AC System Alignment Check Enable: In conjunction with the AM flag (bit 18) in CR0, the AC flag deter-
mines whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults
are enabled.

17 VM System Virtual 8086 Mode: If set while in protected mode, the processor switches to virtual 8086 opera-
tion handling segment loads as the 8086 does, but generating exception 13 faults on privileged
opcodes. The VM bit can be set by the IRET instruction (if current privilege level
is 0) or by task switches at any privilege level.

16 RF Debug Resume Flag: Used in conjunction with debug register breakpoints. RF is checked at instruction
boundaries before breakpoint exception processing. If set, any debug fault is ignored on the next
instruction.

15 RSVD -- Reserved: Set to 0.

14 NT System Nested Task: While executing in protected mode, NT indicates that the execution of the current
task is nested within another task.

13:12 IOPL System I/O Privilege Level: While executing in protected mode, IOPL indicates the maximum current
privilege level (CPL) permitted to execute I/O instructions without generating an exception 13
fault or consulting the I/O permission bit map. IOPL also indicates the maximum CPL allowing
alteration of the IF bit when new values are popped into the EFLAGS register.

11 OF Arithmetic Overflow Flag: Set if the operation resulted in a carry or borrow into the sign bit of the result but
did not result in a carry or borrow out of the high-order bit. Also set if the operation resulted in a
carry or borrow out of the high-order bit but did not result in a carry or borrow into the sign bit of
the result.

10 DF Control Direction Flag: When cleared, DF causes string instructions to auto-increment (default) the
appropriate index registers (ESI and/or EDI). Setting DF causes auto-decrement of the index
registers to occur.

9 IF System Interrupt Enable Flag: When set, maskable interrupts (INTR input pin) are acknowledged and
serviced by the CPU.

8 TF Debug Trap Enable Flag: Once set, a single-step interrupt occurs after the next instruction completes
execution. TF is cleared by the single-step interrupt.

7 SF Arithmetic Sign Flag: Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

6 ZF Arithmetic Zero Flag: Set if result is zero; cleared otherwise.

5 RSVD -- Reserved: Set to 0.

4 AF Arithmetic Auxiliary Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) bit position 3
of the result occurs; cleared otherwise.

3 RSVD -- Reserved: Set to 0.

2 PF Arithmetic Parity Flag: Set when the low-order 8 bits of the result contain an even number of ones; other-
wise PF is cleared.

1 RSVD Reserved: Set to 1.

0 CF Arithmetic Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) the most significant bit
of the result occurs; cleared otherwise.
evision 3.1 43 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.3.2 System Register Set
The system register set, shown in Table 3-5, consists of
registers not generally used by application programmers.
These registers are typically employed by system level
programmers who generate operating systems and mem-
ory management programs. Associated with the system
register set are certain tables and segments which are
listed in Table 3-5.

The Control Registers control certain aspects of the
GXm processor such as paging, coprocessor functions,
and segment protection.

The Descriptor Tables hold descriptors that manage
memory segments and tables, interrupts and task switch-
ing. The tables are defined by corresponding registers.

The two Task State Segments Tables defined by TSS reg-
ister are used to save and load the computer state when
switching tasks.

The Configuration Registers are used to define the
GXm CPU setup including cache management.

The ID registers allow BIOS and other software to identify
the specific CPU and stepping. System Management
Mode (SMM) control information is stored in the SMM reg-
isters.

The Debug Registers provide debugging facilities for the
GXm processor and enable the use of data access break-
points and code execution breakpoints.

The Test Registers provide a mechanism to test the con-
tents of both the on-chip 16 KB cache and the Translation
Lookaside Buffer (TLB). The TLB is used as a cache for
the tables that are used in to translate linear addresses to
physical addresses while paging is enabled.

Table 3-5 lists the system register sets along with their
size and function.

Table 3-5. System Register Set

Group Name Function
Width
(Bits)

Control
Registers

CR0 System Control
Register

32

CR2 Page Fault Linear
Address Register

32

CR3 Page Directory Base
Register

32

CR4 Time Stamp Counter 32

Descriptor
Tables

GDT General Descriptor Table 32

IDT Interrupt Descriptor
Table

32

LDT Local Descriptor Table 16

Descriptor
Table
Registers

GDTR GDT Register 32

IDTR IDT Register 32

LDTR LDT Register 16

Task State
Segment and
Registers

TSS Task State Segment
Tables

16

TR TSS Register Setup 16

Configuration
Registers

CCRn Configuration Control
Registers

8

ID
Registers

DIRn Device Identification
Registers

8

SMM
Registers

SMARn SMM Address Region
Registers

8

SMHRn SMM Header Addresses 8

Performance
Registers

PCR0 Performance Control
Register

8

Debug
Registers

DR0 Linear Breakpoint
Address 0

32

DR1 Linear Breakpoint
Address 1

32

DR2 Linear Breakpoint
Address 2

32

DR3 Linear Breakpoint
Address 3

32

DR6 Breakpoint Status 32

DR7 Breakpoint Control 32

Test
Registers

TR3 Cache Test 32

TR4 Cache Test 32

TR5 Cache Test 32

TR6 TLB Test Control 32

TR7 TLB Test Status 32
ww.national.com 44 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.3.2.1 Control Registers
A map of the Control Registers (CR0, CR2, CR3, and
CR4) is shown in Table 3-6 and the bit definitions are given
in Table 3-7. (These registers should not be confused with
the CRRn registers.) The CR0 register contains system
control bits which configure operating modes and indicate

the general state of the CPU. The lower 16 bits of CR0 are
referred to as the Machine Status Word (MSW).

When operating in real mode, any program can read and
write the control registers. In protected mode, however,
only privilege level 0 (most-privileged) programs can read
and write these registers.

Table 3-6. Control Registers Map

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CR4 Register Control Register 4 (R/W)

RSVD T
S
C

RSVD

CR3 Register Control Register 3 (R/W)

PDBR (Page Directory Base Register) RSVD 0 0 RSVD

CR2 Register Control Register 2 (R/W)

PFLA (Page Fault Linear Address)

CR1 Register Control Register 1 (R/W)

RSVD

CR0 Register Control Register 0 (R/W)

P
G

C
D

N
W

RSVD A
M

R
S
V
D

W
P

RSVD N
E

R
S
V
D

T
S

E
M

M
P

P
E

Machine Status Word (MSW)

Table 3-7. CR4-CR0 Bit Definitions

Bit Name Description

CR4 Register Control Register 4 (R/W)

31:3 RSVD Reserved: Set to 0 (always returns 0 when read).

2 TSC Time Stamp Counter Instruction:
If = 1 RDTSC instruction enabled for CPL = 0 only; reset state.
If = 0 RDTSC instruction enabled for all CPL states.

1:0 RSVD Reserved: Set to 0 (always returns 0 when read).

CR3 Register Control Register 3 (R/W)

31:12 PDBR Page Directory Base Register: Identifies page directory base address on a 4 KB page boundary.

11:0 RSVD Reserved: Set to 0.

CR2 Register Control Register 2 (R/W)

31:0 PFLA Page Fault Linear Address: With paging enabled and after a page fault, PFLA contains the linear address of the
address that caused the page fault.

CR1 Register Control Register 1 (R/W)

31:0 RSVD Reserved

CR0 Register Control Register 0 (R/W)

31 PG Paging Enable Bit: If PG = 1 and protected mode is enabled (PE = 1), paging is enabled. After changing the
state of PG, software must execute an unconditional branch instruction (e.g., JMP, CALL) to have the change
take effect.
evision 3.1 45 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

30 CD Cache Disable: If CD = 1, no further cache line fills occur. However, data already present in the cache continues
to be used if the requested address hits in the cache. Writes continue to update the cache and cache invalida-
tions due to inquiry cycles occur normally. The cache must also be invalidated with a WBINVD instruction to com-
pletely disable any cache activity.

29 NW Not Write-Through: If NW = 1, the on-chip cache operates in write-back mode. In write-back mode, writes are
issued to the external bus only for a cache miss, a line replacement of a modified line, execution of a locked
instruction, or a line eviction as the result of a flush cycle. If NW = 0, the on-chip cache operates in write-through
mode. In write-through mode, all writes (including cache hits) are issued to the external bus. This bit cannot be
changed if LOCK_NW = 1 in CCR2.

18 AM Alignment Check Mask: If AM = 1, the AC bit in the EFLAGS register is unmasked and allowed to enable align-
ment check faults. Setting AM = 0 prevents AC faults from occurring.

16 WP Write Protect: Protects read-only pages from supervisor write access. WP = 0 allows a read-only page to be
written from privilege level 0-2. WP = 1 forces a fault on a write to a read-only page from any privilege level.

5 NE Numerics Exception: NE = 1 to allow FPU exceptions to be handled by interrupt 16. NE = 0 if FPU exceptions
are to be handled by external interrupts.

4 RSVD Reserved: Do not attempt to modify, always 1.

3 TS Task Switched: Set whenever a task switch operation is performed. Execution of a floating point instruction with
TS = 1 causes a DNA fault. If MP = 1 and TS = 1, a WAIT instruction also causes a DNA fault.

2 EM Emulate Processor Extension: If EM = 1, all floating point instructions cause a DNA fault 7.

1 MP Monitor Processor Extension: If MP = 1 and TS = 1, a WAIT instruction causes Device Not Available (DNA)
fault 7. The TS bit is set to 1 on task switches by the CPU. Floating point instructions are not affected by the state
of the MP bit. The MP bit should be set to one during normal operations.

0 PE Protected Mode Enable: Enables the segment based protection mechanism. If PE = 1, protected mode is
enabled. If PE = 0, the CPU operates in real mode and addresses are formed as in an 8086-style CPU. Refer to
Section 3.13 “Protection” on page 86.

Table 3-7. CR4-CR0 Bit Definitions (Continued)

Bit Name Description

Table 3-8. Effects of Various Combinations of EM, TS, and MP Bits

CR0[3:1] Instruction Type

TS EM MP WAIT ESC

0 0 0 Execute Execute

0 0 1 Execute Execute

1 0 0 Execute Fault 7

1 0 1 Fault 7 Fault 7

0 1 0 Execute Fault 7

0 1 1 Execute Fault 7

1 1 0 Execute Fault 7

1 1 1 Fault 7 Fault 7
ww.national.com 46 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.3.2.2 Configuration Registers
The configuration registers listed in Table 3-9 are CPU
registers and are selected by register index numbers. The
registers are accessed through I/O memory locations 22h
and 23h. Registers are selected for access by writing an
index number to I/O Port 22h using an OUT instruction
prior to transferring data through I/O Port 23h.

Each data transfer through I/O Port 23h must be preceded
by a register index selection through I/O Port 22h; other-
wise, subsequent I/O Port 23h operations are directed off-
chip and produce external I/O cycles.

If MAPEN, bit 4 of CCR3 (Index C3h[4]) = 0, external I/O
cycles occur if the register index number is outside the
range C0h-CFh, FEh, and FFh. The MAPEN bit should
remain 0 during normal operation to allow system regis-
ters located at I/O Port 22h to be accessed.

Table 3-9. Configuration Register Summary

Index Type Name
Access

Controlled By*
Default
Value

Reference
(Bit Formats)

C1h R/W CCR1 — Configuration Control 1 SMI_LOCK 00h Table 3-11 on page 49

C2h R/W CCR2 — Configuration Control 2 -- 00h Table 3-11 on page 49

C3h R/W CCR3 — Configuration Control 3 SMI_LOCK 00h Table 3-11 on page 49

E8h R/W CCR4 — Configuration Control 4 MAPEN 85h Table 3-11 on page 50

EBh R/W CCR7 — Configuration Control 7 -- 00h Table 3-11 on page 50

20h R/W PCR — Performance Control MAPEN 07h Table 3-11 on page 50

B0h R/W SMHR0 — SMM Header Address 0 MAPEN xxh Table 3-11 on page 50

B1h R/W SMHR1 — SMM Header Address 1 MAPEN xxh Table 3-11 on page 50

B2h R/W SMHR2 — SMM Header Address 2 MAPEN xxh Table 3-11 on page 50

B3h R/W SMHR3 — SMM Header Address 3 MAPEN xxh Table 3-11 on page 50

B8h R/W GCR — Graphics Control Register MAPEN 00h Table 4-1 on page 92

B9h VGACTL — VGA Control Register -- 00h Table 5-5 on page 173

BAh-
BDh

VGAM0 — VGA Mask Register -- 00h Table 5-5 on page 173

CDh R/W SMAR0 — SMM Address 0 SMI_LOCK 00h Table 3-11 on page 51

CEh R/W SMAR1 — SMM Address 1 SMI_LOCK 00h Table 3-11 on page 51

CFh R/W SMAR2 — SMM Address 2 SMI_LOCK 00h Table 3-11 on page 51

FEh RO DIR0 — Device ID 0 -- 4xh Table 3-11 on page 51

FFh RO DIR1 — Device ID 1 -- xxh Table 3-11 on page 51

Note: *MAPEN = Index C3h[4] (CCR3) and SMI_LOCK = Index C3h[0] (CCR3).
evision 3.1 47 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 3-10. Configuration Register Map

Register
(Index) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Control Registers

CCR1 (C1h) RSVD SMAC USE_SMI RSVD

CCR2 (C2h) USE_SUSP RSVD WT1 SUSP_HLT LOCK_NW RSVD

CCR3 (C3h) LSS_34 LSS_23 LSS_12 MAPEN RSVD NMI_EN SMI_LOCK

CCR4 (E8h) CPUID SMI_NEST RSVD DTE_EN MEM_BYP IORT2 IORT1 IORT0

CCR7 (EBh) RSVD NMI RSVD EMMX

PCR (20h) LSSER RSVD

Device ID Registers

DIR0 (FEh) DID3 DID2 DID1 DID0 RSVD CLKMODE1 RSVD CLMODE0

DIR1 (FFh) SID3 SID2 SID1 SID0 RID3 RID2 RID1 RID0

SMM Base Header Address Registers

SMAR0 (CDh) A31 A30 A29 A28 A27 A26 A25 A24

SMAR1 (CEh) A23 A22 A21 A20 A19 A18 A17 A16

SMAR2 (CFh) A15 A14 A13 A12 SIZE3 SIZE2 SIZE1 SIZE0

SMHR0 (B0h) A7 A6 A5 A4 A3 A2 A1 A0

SMHR1 (B1h) A15 A14 A13 A12 A11 A10 A9 A8

SMHR2 (B2h) A23 A22 A21 A20 A19 A18 A17 A16

SMHR3 (B3h) A31 A30 A29 A28 A27 A26 A26 A24

Graphics/VGA Related Registers

GCR (B8h) RSVD Scratchpad Size Base Address Code

VGACTL (B9h) RSVD Enable SMI
for VGA
memory

B8000h to
BFFFFh

Enable SMI
for VGA
memory

B0000h to
B7FFFh

Enable SMI
for VGA
memory

A0000h to
AFFFFh

VGAM0 (BAh) VGA Mask Register Bits [7:0]

VGAM1 (BBh) VGA Mask Register Bits [15:8]

VGAM2 (BCh) VGA Mask Register Bits [23:16]

VGAM3 (BDh) VGA Mask Register Bits [31:24]
ww.national.com 48 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 3-11. Configuration Registers

Bit Name Description

Index C1h CCR1 — Configuration Control Register 1 (R/W) Default Value = 00h

7:3 RSVD Reserved: Set to 0.

2:1 SMAC System Management Memory Access:

If = 00: SMM is disabled.
If = 01: SMI# pin is active to enter SMM. SMINT instruction is inactive.
If = 10: SMM is disabled.
If = 11: SMINT instruction is active to enter SMM. SMI# pin is inactive.

Note: SMI_LOCK (CCR3[0]) must = 0, or the CPU must be in SMI mode, to write this bit.

0 RSVD Reserved: Set to 0.

Note: Bits 1 and 2 are cleared to zero at reset.

Index C2h CCR2 — Configuration Control Register 2 (R/W) Default Value = 00h

7 USE_SUSP Enable Suspend Pins:

If = 1: SUSP# input and SUSPA# output are enabled.
If = 0: SUSP# input is ignored.

6 RSVD Reserved: This is a test bit that must be set to 0.

5 RSVD Reserved: Set to 0.

4 WT1 Write-Through Region 1:

If = 1: Forces all writes to the address region between 640 KB to 1 MB that hit in the on-chip cache
to be issued on the external bus.

3 SUSP_HLT Suspend on HALT:

If = 1: CPU enters suspend mode following execution of a HALT instruction.

2 LOCK_NW Lock NW Bit:

If = 1: Prohibits changing the state of the NW bit (CR0[29]) (refer to Table 3-7 on page 45).
Set to 1 after setting NW.

1:0 RSVD Reserved: Set to 0.

Note: All bits are cleared to zero at reset.

Index C3h CCR3 — Configuration Control Register 3 (R/W) Default Value = 00h

7 LSS_34 Load/Store Serialize 3 GB to 4 GB:

If = 1: Strong R/W ordering imposed in address range C0000000h to FFFFFFFFh:

6 LSS_23 Load/Store Serialize 2 GB to 3 GB:

If = 1: Strong R/W ordering imposed in address range 80000000h to BFFFFFFFh:

5 LSS_12 Load/Store Serialize 1 GB to 2 GB:

If = 1: Strong R/W ordering imposed in address range 40000000h to 7FFFFFFFh

4 MAPEN Map Enable:

If = 1: All configuration registers are accessible. All accesses to Port 22h are trapped.
If = 0: Only configuration registers Index C1h through CFh, FEh, FFh (CCRn, SMAR, DIRn) are
accessible. Other configuration registers (including PCR, SMHRn, GCR, VGACTL, VGAM0) are not
accessible.

3 SUSP_SMM_EN Enable Suspend in SMM Mode:

0 = SUSP# ignored in SMM mode.

1 = SUSP# recognized in SMM mode.

2 RSVD Reserved: Set to 0.

1 NMI_EN NMI Enable:

If = 1: NMI is enabled during SMM.
If = 0: NMI is not recognized during SMM.

Note: SMI_LOCK (CCR3[0]) must = 0 or the CPU must be in SMI mode to write to this bit.

0 SMI_LOCK SMM Register Lock:

If = 1: SMM Address Region Register (SMAR[31:0]), SMAC (CCR1[2]), USE_SMI (CCR1[1])
cannot be modified unless in SMM routine. Once set, SMI_LOCK can only be cleared by asserting
the RESET pin.

Note: All bits are cleared to zero at reset.
evision 3.1 49 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Index E8h CCR4 — Configuration Control Register 4 (R/W) Default Value = 85h

7 CPUID Enable CPUID Instruction:

If = 1: The ID bit in the EFLAGS register to be modified and execution of the CPUID instruction
occurs as documented in Table 9-2 on page 202.

If = 0: The ID bit can not be modified and execution of the CPUID instruction causes an invalid
opcode exception.

6 SMI_NEST SMI Nest:

If = 1: SMI interrupts can occur during SMM mode. SMI handlers can optionally set SMI_NEST high
to allow higher-priority SMI interrupts while handling the current event

5 FPU_FAST_EN FPU Fast Mode Enable:

If = 0: Disable FPU Fast Mode

If = 1: Enable FPU Fast Mode.

4 DTE_EN Directory Table Entry Cache:

If = 1: Enables directory table entry to be cached.

Cleared to 0 at reset.

3 MEM_BYP Memory Read Bypassing:

If = 1: Enables memory read bypassing.

Cleared to 0 at reset.

2:0 IORT(2:0) I/O Recovery Time: Specifies the minimum number of bus clocks between I/O accesses:

000 = No clock delay 100 = 16-clock delay
001 = 2-clock delay 101 = 32-clock delay (default value after reset)
010 = 4-clock delay 110 = 64-clock delay
011 = 8-clock delay 111 = 128-clock delay

Cleared to 0 at reset.

Note: MAPEN (CCR3[4]) must = 1 to read or write to this register.

Index EBh CCR7 — Configuration Control Register 7 (R/W) Default Value = 00h

7:3 RSVD Reserved: Set to 0.

2 NMI Generate NMI:

0 = Do nothing
1 = Generate NMI

In order to generate multiple NMIs, this bit must be set to zero between each setting of 1.

1 RSVD Reserved: Set to 0.

0 EMMX Extended MMX Instructions Enable:

If = 1: extended MMX instructions are enabled

Index 20h PCR — Performance Control Register (R/W) Default Value = 07h

7 LSSER Load/Store Serialize Enable (Reorder Disable): LSSER should be set to ensure that memory-
mapped I/O devices operating outside of the address range 640K to 1M will operate correctly. For
memory accesses above 1 GB, refer to CCR3[7:5] (LSS_34, LSS_23, LSS_12.)

If = 1: All memory read and write operations will occur in execution order (load/store serializing
enabled, reordering disabled).

If = 0: Memory reads and write can be reordered for optimum performance (load/store serializing
disabled, reordering enabled).

Memory accesses in the address range 640K to 1M will always be issued in execution order.

6 RSVD Reserved: Set to 0.

5 RSVD Reserved: This is a test bit that must be set to 0.

4:0 RSVD Reserved: Set to 0.

Note: MAPEN (CCR3[4]) must = 1 to read or write to this register.

Index B0h, B1h, B2h, B3h SMHR — SMI Header Address Register (R/W) Default Value = xxh

Table 3-11. Configuration Registers (Continued)

Bit Name Description
ww.national.com 50 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Index SMHR Bits SMM Header Address Bits [A31:0]: SMHR address bits [31:0] contain the physical base address
for the SMM header space. For example, bits [31:24] correspond with Index B3h
Refer to Section 3.11.4 “SMM Configuration Registers” on page 80 for more information.

B3h
B2h
B1h
B0h

A[31:24]
A[23:16]
A[15:12]

A[7:0]

Note: MAPEN (CCR3[4]) must = 1 to read or write to this register.

Index CDh, CEh, CFh SMAR — SMM Address Region/Size Register (R/W) Default Value = 00h

Index SMAR Bits SMM Address Region Bits [A31:A12]: SMAR address bits [31:12] contain the base address for
the SMM region.
Bits [31:24] correspond with Index CDh
Bits [23:16] correspond with Index CEh
Bits [15:12] correspond with Index CFh[7:4]

Index CFh allows simultaneous access to SMAR address regions bits SMAR[15:12] and size code
bits SIZE[3:0]. During access, the upper 4-bits of Port 23h hold SMAR[15:12].

Refer to Section 3.11.4 “SMM Configuration Registers” on page 80 for more information.

CDh
CEh

CFh[7:4]

A[31:24]
A[23:16]
A[15:12]

CFh[3:0] SIZE[3:0] SMM Region Size Bits [3:0]: SIZE bits contain the size code for the SMM region. During access
the lower 4-bits of port 23 hold SIZE[3:0]. Index CFh allows simultaneous access to SMAR address
regions bits SMAR[15:12] (see above) and size code bits.

0000 = SMM Disabled 0100 = 32 KB 1000 = 512 KB 1100 = 8 MB
0001 = 4 KB 0101 = 64 KB 1001 = 1 MB 1101 = 16 MB
0010 = 8 KB 0110 = 128 KB 1010 = 2 MB 1110 = 32 MB
0011 = 16 KB 0111 = 256 KB 1011 = 4 MB 1111 = 4 KB (same as
0001)

Note: SMI_LOCK (CCR3[0]) must = 0, or the CPU must be in SMI mode, to write these registers/bits.

Index FEh DIR0 — Device Identification Register 0 (RO) Default Value = 4xh

7:4 DID[3:0] Device ID (Read Only): Identifies device as GXm processor.

3:0 MULT[3:0] Core Multiplier (Read Only) — Identifies the core multiplier set by the CLKMODE[2:0] pins (see
signal descriptions page 21)

If DIR1 (Index FFh) is 30h-4Fh then MULT[3:0]:
0000 = SYSCLK multiplied by 4 (Test mode only)
0001 = SYSCLK multiplied by 6
0010 = SYSCLK multiplied by 4 (Test mode only)
0011 = SYSCLK multiplied by 6
0100 = SYSCLK multiplied by 7
0101 = SYSCLK multiplied by 8
0110 = SYSCLK multiplied by 7
0111 = SYSCLK multiplied by 5
1xxx = Reserved

If DIR1 (Index FFh) is 50h or greater then MULT[3:0]:
0000 = SYSCLK multiplied by 4 (Test mode only)
0001 = SYSCLK multiplied by 10
0010 = SYSCLK multiplied by 4 (Test mode only)
0011 = SYSCLK multiplied by 6
0100 = SYSCLK multiplied by 9
0101 = SYSCLK multiplied by 5
0110 = SYSCLK multiplied by 7
0111 = SYSCLK multiplied by 8
1xxx = Reserved

Index FFh DIR1 -- Device Identification Register 1 (RO) Default Value = xxh

7:0 DIR1 Device Identification Revision (Read Only) — DIR1 indicates device revision number.

If DIR1 is 30h-33h = GXm processor revision 1.0 - 2.3
If DIR1 is 34h-4Fh = GXm processor revision 2.4 - 3.x
If DIR1 is 50h or greater = GXm processor revision 5.0 - 5.4..

Table 3-11. Configuration Registers (Continued)

Bit Name Description
evision 3.1 51 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.3.2.3 Debug Registers
Six debug registers (DR0-DR3, DR6 and DR7) support
debugging on the GXm processor. Memory addresses
loaded in the debug registers, referred to as “breakpoints,”
generate a debug exception when a memory access of
the specified type occurs to the specified address. A
breakpoint can be specified for a particular kind of mem-
ory access such as a read or write operation. Code and
data breakpoints can also be set allowing debug excep-
tions to occur whenever a given data access (read or write
operation) or code access (execute) occurs. The size of
the debug target can be set to 1, 2, or 4 bytes. The debug
registers are accessed through MOV instructions that can
be executed only at privilege level 0 (real mode is always
privilege level 0).

The Debug Address Registers (DR0-DR3) each contain
the linear address for one of four possible breakpoints.
Each breakpoint is further specified by bits in the Debug
Control Register (DR7). For each breakpoint address in
DR0-DR3, there are corresponding fields L, R/W, and
LEN in DR7 that specify the type of memory access asso-
ciated with the breakpoint.

The R/W field can be used to specify instruction execution
as well as data access breakpoints. Instruction execution
breakpoints are always taken before execution of the
instruction that matches the breakpoint. The Debug Reg-
isters are mapped in Table 3-12

Table 3-12. Debug Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR7 Register Debug Control Register 7 (R/W)

LEN3 R/W3 LEN2 R/W2 LEN1 R/W1 LEN0 R/W0 0 0 G
D

0 0 1 0 0 G
3

L
3

G
2

L
2

G
1

L
1

G
0

L0

DR6 Register Debug Status Register 6 (RO)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B
T

B
S

0 1 1 1 1 1 1 1 1 1 B3 B2 B1 B0

DR3 Register‘ Debug Address Register 3 (R/W))

Breakpoint 3 Linear Address

DR2 Register Debug Address Register 2 (R/W)

Breakpoint 2 Linear Address

DR1 Register Debug Address Register 1 (R/W)

Breakpoint 1 Linear Address

DR0 Register Debug Address Register 0 (R/W)

Breakpoint 0 Linear Address

Note: All bits marked as 0 or 1 are reserved and should not be modified.
ww.national.com 52 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

The Debug Status Register (DR6) reflects conditions that
were in effect at the time the debug exception occurred.
The contents of the DR6 register are not automatically
cleared by the processor after a debug exception occurs,
and therefore should be cleared by software at the appro-
priate time. Table 3-13 lists the field definitions for the DR6
and DR7 registers.

Code execution breakpoints may also be generated by
placing the breakpoint instruction (INT3) at the location
where control is to be regained. The single-step feature
may be enabled by setting the TF flag (bit 8) in the
EFLAGS register. This causes the processor to perform a
debug exception after the execution of every instruction.
Debug Registers 6 and 7 are shown in Table 3-13.

Table 3-13. DR7 and DR6 Bit Definitions

Field(s)
Number
of Bits Description

DR7 Register Debug Control Register 7 (R/W)

R/Wn 2 Applies to the DRn breakpoint address register:

00 = Break on instruction execution only
01 = Break on data write operations only
10 = Not used
11 = Break on data reads or write operations.

LENn 2 Applies to the DRn breakpoint address register:

00 = One-byte length
01 = Two-byte length
10 = Not used
11 = Four-byte length.

Gn 1 If = 1: breakpoint in DRn is globally enabled for all tasks and is not cleared by the processor as the
result of a task switch.

Ln 1 If = 1: breakpoint in DRn is locally enabled for the current task and is cleared by the processor as the
result of a task switch.

GD 1 Global disable of debug register access. GD bit is cleared whenever a debug exception occurs.

DR6 Register Debug Status Register 6 (RO)

Bn 1 Bn is set by the processor if the conditions described by DRn, R/Wn, and LENn occurred when the
debug exception occurred, even if the breakpoint is not enabled via the Gn or Ln bits.

BT 1 BT is set by the processor before entering the debug handler if a task switch has occurred to a task with
the T bit in the TSS set.

BS 1 BS is set by the processor if the debug exception was triggered by the single-step execution mode (TF
flag, bit 8, in EFLAGS set).

Note: n = 0, 1, 2, and 3
evision 3.1 53 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.3.2.4 Test Registers
The five test registers are used in testing the processor’s
Translation Lookaside Buffer (TLB) and on-chip cache. TR6
and TR7 are used for TLB testing, and TR3-TR5 are used
for cache testing. Table 3-14 is a register map for the Test
Registers with their bit definitions given in Tables 3-15 and
3-17.

TLB Test Registers
The processor’s TLB is a 32-entry, four-way set associa-
tive memory. Each TLB entry consists of a 24-bit tag and
20-bit data. The 24-bit tag represents the high-order 20
bits of the linear address, a valid bit, and three attribute
bits. The 20-bit data portion represents the upper 20 bits
of the physical address that corresponds to the linear
address.

The TLB Test Data Register (TR7) contains the upper 20
bits of the physical address (TLB data field), three LRU
bits and a control bit. During TLB write operations, the
physical address in TR7 is written into the TLB entry
selected by the contents of TR6. During TLB lookup oper-
ations, the TLB data selected by the contents of TR6 is
loaded into TR7. Table 3-15 lists the bit definitions for TR7
and TR6.

The TLB Test Control Register (TR6) contains a com-
mand bit, the upper 20 bits of a linear address, a valid bit
and the attribute bits used in the test operation. The con-
tents of TR6 are used to create the 24-bit TLB tag during
both write and read (TLB lookup) test operations. The
command bit defines whether the test operation is a read
or a write.

Table 3-14. TLB Test Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR7 Register TLB Test Data Register (R/W)

Physical Address 0 0 TLB LRU 0 0 PL REP 0 0

TR6 Register TLB Test Control Register (R/W)

Linear Address V D D# U U# R R# 0 0 0 0 C
ww.national.com 54 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 3-15. TR7-TR6 Bit Definitions

Bit Name Description

TR7 Register TLB Test Data Register (R/W)

31:12 Physical
Address

Physical Address:

TLB lookup: Data field from the TLB.

TLB write: Data field written into the TLB.

11:10 RSVD Reserved: Set to 0.

9:7 TLB LRU LRU Bits:

TLB lookup: LRU bits associated with the TLB entry before the TLB lookup.

TLB write: Ignored.

4 PL PL Bit:

TLB lookup: If PL = 1, read hit occurred. If PL = 0, read miss occurred.

TLB write: If PL = 1, REP field is used to select the set. If PL = 0, the pseudo-LRU replacement algorithm
is used to select the set.

3:2 REP Set Selection:

TLB lookup: If PL = 1, this field indicates the set in which the tag was found. If PL = 0, undefined data.

TLB write: If PL = 1, this field selects one of the four sets for replacement. If PL = 0, ignored.

1:0 RSVD Reserved: Set to 0.

TR6 Register TLB Test Control Register (R/W)

31:12 Linear
Address

Linear Address:

TLB lookup: The TLB is interrogated per this address. If one and only one match occurs in the TLB, the
rest of the fields in TR6 and TR7 are updated per the matching TLB entry.

TLB write: A TLB entry is allocated to this linear address.

11 V Valid Bit:

TLB write: If V = 1, the TLB entry contains valid data. If V = 0, target entry is invalidated.

10:9
8:7
6:5

D, D#
U, U#
R, R#

Dirty Attribute Bit and its Complement (D, D#)
User/Supervisor Attribute Bit and its Complement (U, U#)
Read/Write Attribute Bit and its Complement (R, R#)

Effect on TLB Lookup Effect on TLB Write

00 = Do not match Undefined
01 = Match if D, U, or R bit is a 0 Clear the bit
10 = Match if D, U, or R bit is a 1 Set the bit
11 = Match if D, U, or R bit is either a 1 or 0 Undefined

4:1 RSVD Reserved: Set to 0.

0 C Command Bit:

If C = 1: TLB lookup.
If C = 0: TLB write.
evision 3.1 55 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Cache Test Registers
The processor’s 16 KB on-chip cache is a four-way set
associative memory that is configured as write-back
cache. Each cache set contains 256 entries. Each entry
consists of a 20-bit tag address, a 16-byte data field, a
valid bit, and four dirty bits.

The 20-bit tag represents the high-order 20 bits of the
physical address. The 16-byte data represents the 16
bytes of data currently in memory at the physical address
represented by the tag. The valid bit indicates whether the
data bytes in the cache actually contain valid data. The
four dirty bits indicate if the data bytes in the cache have
been modified internally without updating external mem-
ory (write-back configuration). Each dirty bit indicates the

status for one double-word (4 bytes) within the 16-byte
data field.

For each line in the cache, there are three LRU bits that
indicate which of the four sets was most recently
accessed. A line is selected using bits [11:4] of the physi-
cal address. Figure 3-1 illustrates the CPU cache archi-
tecture.

The CPU contains three test registers (TR5-TR3) that
allow testing of its internal cache. Bit definitions for the
cache test registers are shown in Table 3-17. Using a 16-
byte cache fill buffer and a 16-byte cache flush buffer,
cache reads and writes may be performed.

.

Figure 3-1. CPU Cache Architecture

D
E
C
O
D
E

255

254

.

.
0

A11-A4

Line
Address

= Cache Entry (153 bits)
Tag Address (20 bits)
Data (128 bits)
Valid Status (1 bit)
Dirty Status (4 bits)

Set 0 Set 1 Set 2 Set 3 LRU

.

.
.
.

.

.
.
.

.

.

152 --- 0 152 --- 0 152 --- 0 152 --- 0 2 --- 0

Table 3-16. Cache Test Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR5 Register (R/W)

RSVD Line Selection Set/
DWORD

Control
Bits

TR4 Register (R/W)

Cache Tag Address 0

V
al

id LRU Bits Dirty Bits 0 0 0

TR3 Register (R/W)

Cache Data
ww.national.com 56 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 3-17. TR5-TR3 Bit Definitions

Bit Name Description

TR5 Register (R/W)

11:4 Line Selection Line Selection:

Physical address bits 11-4 used to select one of 256 lines.

3:2 Set/DWORD Set/DWord Selection:

Cache read: Selects which of the four sets in the cache is used as the source for data
transferred to the cache flush buffer.

Cache write: Selects which of the four sets in the cache is used as the destination for data transferred
from the cache fill buffer.

Flush buffer read: Selects which of the four Dword in the flush buffer is
used during a TR3 read.

Fill buffer write: Selects which of the four Dword in the fill buffer is written during a TR3 write.

1:0 Control Bits Control Bits:

If = 00: flush read or fill buffer write.
If = 01: cache write.
If = 10: cache read.
If = 11: cache flush.

TR4 Register (R/W)

31:12 Upper Tag
Address

Upper Tag Address:

Cache read: Upper 20 bits of tag address of the selected entry.

Cache write: Data written into the upper 20 bits of the tag address of the selected entry.

10 Valid Bit Valid Bit:

Cache read: Valid bit for the selected entry.

Cache write: Data written into the valid bit for the selected entry.

9:7 LRU Bits LRU Bits:

Cache read: The LRU bits for the selected line.
xx1 = Set 0 or Set 1 most recently accessed.
xx0 = Set 2 or Set 3 most recently accessed.
x1x = Most recent access to Set 0 or Set 1 was to Set 0.
x0x = Most recent access to Set 0 or Set 1 was to Set 1.
1xx = Most recent access to Set 2 or Set 3 was to Set 2.
0xx = Most recent access to Set 2 or Set 3 was to Set 3.

Cache write: Ignored.

6:3 Dirty Bits Dirty Bits:

Cache read: The dirty bits for the selected entry (one bit per DWord).

Cache write: Data written into the dirty bits for the selected entry.

2:0 RSVD Reserved: Set to 0.

TR3 Register (R/W)

31:0 Cache Data Cache Data:

Flush buffer read: Data accessed from the cache flush buffer.

Fill buffer write: Data to be written into the cache fill buffer.
evision 3.1 57 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

There are five types of test operations that can be exe-
cuted:

• Flush buffer read
• Fill buffer write
• Cache write
• Cache read
• Cache flush

These operations are described in detail in Table 3-18. To
fill a cache line with data, the fill buffer must be written four

times. Once the fill buffer holds a complete cache line of
data (16 bytes), a cache write operation transfers the data
from the fill buffer to the cache.

To read the contents of a cache line, a cache read opera-
tion transfers the data in the selected cache line to the
flush buffer. Once the flush buffer is loaded, the program-
mer accesses the contents of the flush buffer by executing
four flush buffer read operations.

Table 3-18. Cache Test Operations

Test Operation Code Sequence Action Taken

Flush Buffer Read MOV TR5, 0h

MOV dest,TR3

Set DWORD = 0, control = 00 = flush buffer read.

Flush buffer (31:0) --> dest.

MOV TR5, 4h

MOV dest,TR3

Set DWORD = 1, control = 00 = flush buffer read.

Flush buffer (63:32) --> dest.

MOV TR5, 8h

MOV dest,TR3

Set DWORD = 2, control = 00 = flush buffer read.

Flush buffer (95:64) --> dest.

MOV TR5, Ch

MOV dest,TR3

Set DWORD = 3, control = 00 = flush buffer read.

Flush buffer (127:96) --> dest.

Fill Buffer Write MOV TR5, 0h

MOV TR3, cache_data

Set DWORD = 0, control = 00 = fill buffer write.

Cache_data --> fill buffer (31:0).

MOV TR5, 4h

MOV TR3, cache_data

Set DWORD = 1, control = 00 = fill buffer write.

Cache_data --> fill buffer (63:32).

MOV TR5, 8h

MOV TR3, cache_data

Set DWORD = 2, control = 00 = fill buffer write.

Cache_data --> fill buffer (95:64).

MOV TR5, Ch

MOV TR3, cache_data

Set DWORD = 3, control = 00 = fill buffer write.

Cache_data --> fill buffer (127:96).

Cache Write MOV TR4, cache_tag Cache_tag --> tag address, valid and dirty bits.

MOV TR5, line+set+control=01 Fill buffer (127:0) --> cache line (127:0).

Cache Read MOV TR5, line+set+control=10

MOV dest, TR4

Cache line (127:0) --> flush buffer (127:0).

Cache line tag address, valid/LRU/dirty bits --> dest.

Cache Flush MOV TR5, 3h Control = 11 = cache flush, all cache valid bits = 0.
ww.national.com 58 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.3.3 Model Specific Register Set
The Model Specific Register (MSR) Set is used to monitor
the performance of the processor or a specific component
within the processor.

A MSR can be read using the RDMSR instruction, opcode
0F32h. During a MSR read, the contents of the particular
MSR, specified by the ECX Register, is loaded into the
EDX:EAX Registers.

A MSR can be written using the WRMSR instruction,
opcode 0F30h. During a MSR write, the contents of
EX:EAX are loaded into the MSR specified in the ECX
Register.

The RDMSR and WRMSR instructions are privileged
instructions.

The GXm processor contains one 64-bit Model Specific
Register (MSR10) the Time Stamp Counter (TSC).

3.3.4 Time Stamp Counter
The processor contains a model specific register (MSR)
called the Time Stamp Counter (TSC). The TSC,
(MSR[10]), is a 64-bit counter that counts the internal
CPU clock cycles since the last reset. The TSC uses a
continuous CPU core clock and will continue to count
clock cycles even when the processor is in suspend or
shutdown mode.

The TSC is read using a RDMSR instruction, opcode 0F
32h, with the ECX register set to 10h. During a TSC read,
the contents of the TSC is loaded into the EDX:EAX regis-
ters.

The TSC is written to using a WRMSR instruction, opcode
0F 30h with the ECX register set to 10h. During a TSC
write, the contents of EX:EAX are loaded into the TSC.

The RDMSR and WRMSR instructions are privileged
instructions.

In addition, the TSC can be read using the RDTSC
instruction, opcode 0F 31h. The RDTSC instruction loads
the contents of the TSC into EDX:EAX. The use of the
RDTSC instruction is restricted by the TSC flag (bit 2) in
the CR4 register (refer to Tables 3-6 and 3-7 on pages 45
and 45 for CR4 register information). When the TSC bit =
0, the RDTSC instruction can be executed at any privilege
level. When the TSC bit = 1, the RDTSC instruction can
only be executed at privilege level 0.
evision 3.1 59 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.4 ADDRESS SPACES
The GXm processor can directly address either memory
or I/O space. Figure 3-2 illustrates the range of addresses
available for memory address space and I/O address
space. For the CPU, the addresses for physical memory
range between 00000000h and FFFFFFFFh (4 GBytes).
The accessible I/O addresses space ranges between
00000000h and 0000FFFFh (64 KB). The CPU does not
use coprocessor communication space in upper I/O space
between 800000F8h and 800000FFh as do the 386-style
CPUs. The I/O locations 22h and 23h are used for GXm
processor configuration register access.

3.4.1 I/O Address Space
The CPU I/O address space is accessed using IN and
OUT instructions to addresses referred to as “ports.” The
accessible I/O address space is 64 KB and can be
accessed as 8-bit, 16-bit or 32-bit ports.

The GXm processor configuration registers reside within
the I/O address space at port addresses 22h and 23h and
are accessed using the standard IN and OUT instructions.

The configuration registers are modified by writing the
index of the configuration register to port 22h, and then
transferring the data through port 23h. Accesses to the
on-chip configuration registers do not generate external
I/O cycles. However, each operation on port 23h must be
preceded by a write to port 22h with a valid index value.
Otherwise, subsequent port 23h operations will communi-
cate through the I/O port to produce external I/O cycles with-
out modifying the on-chip configuration registers. Write
operations to port 22h outside of the CPU index range
(C0h-CFh and FEh-FFh) result in external I/O cycles and
do not affect the on-chip configuration registers. Reading
port 22h generates external I/O cycles.

I/O accesses to port address range 3B0h through 3DFh
can be trapped to SMI by the CPU if this option is enabled
in the BC_XMAP_1 register (see SMIB, SMIC, and SMID
bits in Table 4-10 on page 101). Figure 3-2 illustrates the
I/O address space.

3.4.2 Memory Address Space
The processor directly addresses up to 4 GB of physical
memory even though the memory controller addresses
only 1 GB of DRAM. Memory address space is accessed
as bytes, words (16 bits) or DWORDs (32 bits). Words
and DWORDs are stored in consecutive memory bytes
with the low-order byte located in the lowest address. The
physical address of a word or DWORD is the byte address
of the low-order byte.

The processor allows memory to be addressed using nine
different addressing modes. These addressing modes are
used to calculate an offset address, often referred to as an
effective address. Depending on the operating mode of
the CPU, the offset is then combined, using memory man-
agement mechanisms, into a physical address that is
applied to the physical memory devices.

Memory management mechanisms consist of segmenta-
tion and paging. Segmentation allows each program to
use several independent, protected address spaces. Pag-
ing translates a logical address into a physical address
using translation lookup tables. Virtual memory is often
implemented using paging. Either or both of these mecha-
nisms can be used for management of the GXm proces-
sor memory address space.

Figure 3-2. Memory and I/O Address Spaces

Physical
Memory Space

Accessible
Programmed

I/O Space
FFFFFFFFh

0000FFFFh

00000000h

FFFFFFFFh

00000000h

Physical Memory
4 GB

Not
Accessible

64 KB

CPU General
Configuration
Register I/O
Space

00000023h
00000022h
ww.national.com 60 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.5 OFFSET, SEGMENT, AND PAGING MECHANISMS
The mapping of address space into a sequence of mem-
ory locations (often cached) is performed by the offset,
segment and paging mechanisms.

In general, the offset, segment and paging mechanisms
work in tandem as shown below:

instruction offset � offset mechanism � offset address
offset address �� segment mechanism � linear address
linear address �paging mechanism �physical page.

As will be explained, the actual operations depend on sev-
eral factors such as the current operating mode and if
paging is enabled. Note: the paging mechanism uses part
of the linear address as an offset on the physical page.

3.6 OFFSET MECHANISM
In all operating modes, the offset mechanism computes
an offset (effective) address by adding together up to
three values: a base, an index and a displacement. The
base, if present, is the value in one of eight general regis-
ters at the time of the execution of the instruction. The
index, like the base, is a value that is contained in one of
the general registers (except the ESP register) when the
instruction is executed. The index differs from the base in
that the index is first multiplied by a scale factor of 1, 2, 4
or 8 before the summation is made. The third component
added to the memory address calculation is the displace-
ment that is a value supplied as part of the instruction.
Figure 3-3 illustrates the calculation of the offset address.

Nine valid combinations of the base, index, scale factor
and displacement can be used with the CPU instruction
set. These combinations are listed in Table 3-19 on page
61. The base and index both refer to contents of a register
as indicated by [Base] and [Index].

In real mode operation, the CPU only addresses the low-
est 1 MB of memory and the offset contains 16-bits. In
protective mode the offset contains 32 bits. Initialization
and transition to protective mode is described in Section
3.13.4 “Initialization and Transition to Protected Mode” on
page 87.

Figure 3-3. Offset Address Calculation

Table 3-19. Memory Addressing Modes

Index

Base Displacement

Scaling
x1, x2, x4, x8

Offset Address
(Effective Address)

+

Addressing Mode Base Index

Scale
Factor

(SF)
Displacement

(DP)
Offset Address (OA)

Calculation

Direct x OA = DP

Register Indirect x OA = [BASE]

Based x x OA = [BASE] + DP

Index x x OA = [INDEX] + DP

Scaled Index x x x OA = ([INDEX] * SF) + DP

Based Index x x OA = [BASE] + [INDEX]

Based Scaled Index x x x OA = [BASE] + ([INDEX] * SF)

Based Index with
Displacement

x x x OA = [BASE] + [INDEX] + DP

Based Scaled Index with
Displacement

x x x x OA = [BASE] + ([INDEX] * SF) + DP
evision 3.1 61 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.7 DESCRIPTORS AND SEGMENT MECHANISMS
Memory is divided into contiguous regions called “seg-
ments.” The segments allow the partitioning of individual
elements of a program. Each segment provides a zero
address-based private memory for such elements as
code, data and stack space.

The segment mechanisms select a segment in memory.
Memory is divided into an arbitrary number of segments,
each containing usually much less than the 232 byte (4
GByte) maximum.

There are two segment mechanisms, one for Real and
Virtual 8086 Operating Modes, and one for Protective
Mode.

3.7.1 Real and Virtual 8086 Mode Segment
Mechanisms

Real Mode Segment Mechanism
In real mode operation, the CPU addresses only the low-
est 1 MB of memory. In this mode a selector located in
one of the segment registers is used to locate a segment.

To calculate a physical memory address, the 16-bit seg-
ment base address located in the selected segment regis-
ter is multiplied by 16 and then a 16-bit offset address is
added. The resulting 20-bit address is then extended with
twelve zeros in the upper address bits to crate 32-bit phys-
ical address.

The value of the selector (the INDEX field) is multiplied by
16 to produce a base address (Figure 3-4.) The base
address is summed with the instruction offset value to pro-
duce a physical address.

Virtual 8086 Mode Segment Mechanism
In Virtual 8086 mode the operation is performed as in real
mode except that a paging mechanism is added. When
paging is enabled, the paging mechanism translates the
linear address into a physical address using cached look-
up tables (refer to Section 3.9 “Paging Mechanism” on
page 72).

Figure 3-4. Real Mode Address Calculation

Offset Mechanism

Selected Segment
Register

Offset Address

000h

X 16
16

12

20

20

16

32 Linear Address
(Physical Address)

Base Address

12 High Order Address Bits
ww.national.com 62 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.7.2 Segment Mechanism in Protective Mode
The segment mechanism in protective mode is more com-
plex. Basically as in Real and Virtual 8086 modes the off-
set address is added to the segment base address to
produce a linear address (Figure 3-5). However, the cal-
culation of the segment base address is based on the
contents of descriptor tables.

Again, if paging is enabled the linear address is further
processed by the paging mechanism.

A more detailed look at the segment mechanisms for real,
virtual 8086 and protective modes is illustrated in Figure
3-6. In protective mode, the segment selector is cached.
This is illustrated in Figure 3-7 on page 65.

3.7.2.1 Segment Selectors
The segment registers are used to store segment selec-
tors. In protective mode, the segment selectors are

divided in to three fields: the RPL, TI and INDEX fields as
shown in Figure 3-6.

The segments are assigned permission levels to prevent
application program errors from disrupting operating pro-
grams. The Requested Privilege Level (RPL) determines
the Effective Privilege Level of an instruction. RPL = 0 indi-
cates the most privileged level, and RPL = 3 indicates the
least privileged level. Refer to Section 3.13 “Protection” on
page 86.

Descriptor tables hold descriptors that allow management
of segments and tables in address space while in protec-
tive mode. The Table Indicator Bit (TI) in the selector
selects either the General Descriptor Table (GDT) or one
Local Descriptor Tables (LDT) tables. If TI = 0, GDT is
selected; if TI =1, LDT is selected. The 13-bit INDEX field
in the segment selector is used to index a GDT or LDT
table.

Figure 3-5. Protected Mode Address Calculation

Offset Mechanism

Selector Mechanism

Offset Address

32

32

32

32Optional
Physical

Segment Base
Address

AddressPaging Mechanism

Linear
Address Memory
evision 3.1 63 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Figure 3-6. Selector Mechanisms

15 3 2 1 0

INDEX TI INSTRUCTION OFFSET

Segment Selector

Segment Descriptor
Base

GDT or LDT Descriptor Table Main Memory

Segmentp

p = Paging Mechanism

RPL

+
Linear

Address Address
Physical
Address

15 0

INDEX INSTRUCTION OFFSET

Logical Address

Base

Main Memory

Segmentp+
Linear

Address Address
Physical
Address

x 16

p= Paging Mechanism for Virtual 8086 Mode only

Real and Virtual 8086 Modes

Address
Logical

Segment Selector

Protective Mode

Logical Address

x 8
ww.national.com 64 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Figure 3-7. Selector Mechanism Caching

INDEX TI RPL

Selector Load Instruction

15 0
Selector

In Segment
Register

Segment
Descriptor

Segment
Descriptor

Global Descriptor
Table

Local Descriptor
Table

TI = 0

TI = 1

Cached Segment

Segment

Segment

Segment Register
Selected By Decoded

Instruction

Caching

Cached

and Descriptor

Selector
Used If
Available

Base
Address
evision 3.1 65 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.7.3 GDTR and LDTR Registers
The GDT, and LDT descriptor tables are defined by the
Global Descriptor Table Register (GDTR) and the Local
Descriptor Table Register (LDTR) respectively. Some texts
refer to these registers as GDT, and LDT descriptors.

The following instructions are used in conjunction with the
GDT and LDT registers:

• LGDT - Load memory to GDTR
• LLDT - Load memory to LDTR
• SGDT - Store GDTR to memory
• SLDT - Store LDTR to memory

The GDTR is set up in REAL mode using the LGDT
instruction. This is possible as the LGDT instruction is one
of two instructions that directly load a linear address
(instead of a segment relative address) in protective
mode. (The other instruction is the Load Interrupt Descrip-
tor Table [LIDT]).

As shown in Table 3-20, the GDT registers contain a
BASE ADDRESS field and a LIMIT field that define the
GDT tables. (The IDTR is described in Section 3.7.3.2
“Task, Gate and Interrupt Descriptors” on page 67.)

Also shown in Table 3-20, the LDTR is only two bytes wide
as it contains only a SELECTOR field. The contents of the
SELECTOR field point to a descriptor in the GDT.

3.7.3.1 Segment Descriptors
There are several types of descriptors. A segment
descriptor defines the base address, limit and attributes of
a memory segment.

The GDT or LDT can hold several types of descriptors. In
particular, the segment descriptors are stored in either of
two registers, the GDT, or the LDT as shown in Table 3-
20). Either of these tables can store as many as 8,192
(213) eight-byte selectors taking as much as 64 KB of
memory.

The first descriptor in the GDT (location 0) is not used by
the CPU and is referred to as the “null descriptor.”

Types of Segment Descriptors
The type of memory segments are defined by correspond-
ing types of segment descriptors:

• Code Segment Descriptors
• Data Segment Descriptors
• Stack Segment Descriptors
• LDT Segment Descriptors

Table 3-20. GDTR, LDTR and IDTR Registers

47 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GDT Register Global Descriptor Table Register

BASE LIMIT

IDT Register Interrupt Descriptor Table Register

BASE LIMIT

LDT Register Local Descriptor Table Register

SELECTOR
ww.national.com 66 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.7.3.2 Task, Gate and Interrupt Descriptors
Besides segment descriptors there are descriptors used
in task switching, switching between tasks with different
priority and those used to control interrupt functions:

• Task State Segment Table Descriptors
• Gate Table Descriptors
• Interrupt Descriptors.

All descriptors have some things in common. They are all
eight bytes in length and have three fields (BASE, LIMIT
and TYPE). The BASE field defines the starting location
for the table or segment. The LIMIT field defines the size
and the TYPE field depends on the type of descriptor.
One of the main functions of the TYPE field is to define
the access rights to the associated segment or table.

Interrupt Descriptor Table
The Interrupt Descriptor Table is an array of 256 8-byte (4-
byte for real mode) interrupt descriptors, each of which is
used to point to an interrupt service routine. Every inter-
rupt that may occur in the system must have an associ-
ated entry in the IDT. The contents of the IDTR are
completely visible to the programmer through the use of
the SIDT instruction.

The IDT descriptor table is defined by the Interrupt
Descriptor Table Register (IDTR). Some texts refer to this
register as an IDT descriptor.

The following instructions are used in conjunction with the
IDTR registers:

• LIDT - Load memory to IDTR
• SIDT - Store IDTR to memory

The IDTR is set up in REAL mode using the LIDT instruc-
tion. This is possible as the LIDT instructions is only one
of two instructions that directly load a linear address
(instead of a segment relative address) in protective
mode.

As previously shown in Table 3-20, the IDTR contains a
BASE ADDRESS field and a LIMIT field that define the
IDT tables.

3.7.4 Descriptor Bit Structure
The bit structure for application and system descriptors is
shown in Table 3-21. The explanation of the TYPE field is
shown in Table 3-23 on page 68.

Table 3-21. Application and System Segment Descriptors

31 31 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Memory Offset +4

BASE[31:24] G D 0 A
V
L

LIMIT[19:16] P DPL S TYPE BASE[23:16]

Memory Offset +0

BASE[15:0] LIMIT[15:0]

Table 3-22. Application and System Segment Descriptors Bit Definitions

Bit
Memory
Offset Name Description

31:24 +4 BASE Segment Base Address: Three fields which collectively define the base location for the segment in
4 GB physical address space.7:0 +4

31:16 +0

19:16 +4 LIMIT Segment Limit: Two fields that define the size of the segment based on the Segment Limit
Granularity Bit.

If G = 1: Limit value interpreted in units of 4 KB.
If G = 0: Limit value is interpreted in bytes.

15:0 +0

23 +4 G Segment Limit Granularity Bit: Defines LIMIT multiplier.

If G = 1: Limit value interpreted in units of 4 KB. Segment size ranges from 1 byte to 1 MB.
If G = 0: Limit value is interpreted in bytes. Segment size ranges from 4 KB to 4 GB.

22 +4 D Default Length for Operands and Effective Addresses:

If D = 1: Code segment = 32-bit length for operands and effective addresses
If D = 0: Code segment = 16-bit length for operands and effective addresses
If D = 1: Data segment = Pushes, calls and pop instructions use 32-bit ESP register
If D = 0: Data segment = Stack operations use 16-bit SP register

20 +4 AVL Segment Available: This field is available for use by system software.
evision 3.1 67 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

15 +4 P Segment Present:

If = 1: Segment is memory segment allocated.

If = 0: The BASE and LIMIT fields become available for use by the system. Also, If = 0, a segment-
not-present exception generated when selector for the descriptor is loaded into a segment register
allowing virtual memory management.

14:13 +4 DPL Descriptor Privilege Level:

If = 00: Highest privilege level
If = 11: Low privilege level

12 +4 S Descriptor Type:

If = 1: Code or data segment
If = 0: System segment

11:8 +4 TYPE Segment Type: Refer to Table 3-23 on page 68 for TYPE bit definitions.
Bit 11 = Executable
Bit 10 = Conforming if bit 12 = 1
Bit 10 = Expand Down if bit 12 = 0
Bit 9 = Readable, if Bit 12 = 1
Bit 9 = Writable, if Bit 12 = 0
Bit 8 = Accessed

Table 3-22. Application and System Segment Descriptors Bit Definitions (Continued)

Bit
Memory
Offset Name Description

Table 3-23. Application and System Segment Descriptors TYPE Bit Definitions

TYPE
Bits [11:8]

System Segment and Gate Types
Bit 12 = 0

Application Segment Types
Bit 12 = 1

Num SEWA TYPE (Data Segments)

0 0000 Reserved Data Read-Only

1 0001 Available 16-Bit TSS Data Read-Only, accessed

2 0010 LDT Data Read/Write

3 0011 Busy 16-Bit TSS Data Read/Write accessed

4 0100 16-Bit Call Gate Data Read-Only, expand down

5 0101 Task Gate Data Read-Only, expand down, accessed

6 0110 16-Bit Interrupt Gate Data Read/Write, expand down

7 0111 16-Bit Trap Gate Data Read/Write, expand down, accessed

Num SCRA TYPE (Code Segments)

8 1000 Reserved Code Execute-Only

9 1001 Available 32-Bit TSS Code Execute-Only, accessed

A 1010 Reserved Code Execute/Read

B 1011 Busy 32-Bit TSS Code Execute/Read, accessed

C 1100 32-Bit Call Gate Code Execute/Read, conforming

D 1101 Reserved Code Execute/Read, conforming, accessed

E 1110 32-Bit Interrupt Gate Code Execute/Read-Only, conforming

F 1111 32-Bit Trap Gate Code Execute/Read-Only, conforming accessed

S = Code Segment (not Data Segment)
E = Expand Down
W = Write Enable

A = Accessed
C = Conforming Code Segment
R = Read Enable
ww.national.com 68 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.7.5 Gate Descriptors
Four kinds of gate descriptors are used to provide protec-
tion during control transfers: call gates, trap gates, inter-
rupt gates and task gates. (For more information on
protection refer to Section 3.13 “Protection” on page 86.)

Call Gate Descriptor (CGD). Call gates are used to
define legal entry points to a procedure with a higher priv-
ilege level. The call gates are used by CALL and JUMP
instructions in much the same manner as code segment
descriptors. When the CPU decodes an instruction and
sees it refers to a call gate descriptor in the GDT table or a
LDT table, the call gate is used to point to another
descriptor in the table that defines the destination code
segment.

The following privilege levels are tested during the transfer
through the call gate:
• CPL = Current Privilege Level
• RPL = Segment Selector Field
• DPL = Descriptor Privilege Level in the call gate

descriptor.
• DPL = Descriptor Privilege Level in the destination

code segment.

The maximum value of the CPL and RPL must be equal
or less than the gate DPL. For a JMP instruction the desti-
nation DPL equals the CPL. For a CALL instruction the
destination DPL is less or equals the CPL.

Conforming Code Segments. Transfer to a procedure
with a higher privilege level can also be accomplished by
bypassing the use of call gates, if the requested proce-
dure is to be executed in a conforming code segment.
Conforming code segments have the C bit set in the
TYPE field in their descriptor.

The bit structure and definitions for gate descriptors are
shown in Tables 3-24 and Table 3-25 on page 69.

Table 3-24. Gate Descriptors

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Memory Offset +4

OFFSET[31:16] P DPL 0 TYPE 0 0 0 PARAMETERS

Memory Offset +0

SELECTOR[15:0] OFFSET[15:0]

Table 3-25. Gate Descriptors Bit Definitions

Bit
Memory
Offset Name Description

31:16 +4 OFFSET Offset: Offset used during a call gate to calculate the branch target.

15:0 +0

31:16 +0 SELECTOR Segment Selector

15 +4 P Segment Present

14:13 +4 DPL Descriptor Privilege Level

11:8 +4 TYPE Segment Type:

0100 = 16-bit call gate 1100 = 32-bit call gate
0101 = Task gate 1110 = 32-bit interrupt gate
0110 = 16-bit interrupt gate 1111 = 32-bit trap gate
0111 = 16-bit trap gate

4:0 +4 PARAMETERS Parameters: Number of parameters to copy from the caller’s stack to the called proce-
dure’s stack.
evision 3.1 69 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.8 MULTITASKING AND TASK STATE SEGMENTS
The CPU enables rapid task switching using JMP and
CALL instructions that refer to Task State Segments
(TSS). During a switch, the complete task state of the cur-
rent task is stored in its TSS, and the task state of the
requested task is loaded from its TSS. The TSSs are
defined through special segment descriptors and gates.

The Task Register (TR) holds 16-bit descriptors that con-
tain the base address and segment limit for each task
state segment. The TR is loaded and stored via the LTR
and STR instructions, respectively. The TR can only be
accessed only during protected mode and can be loaded
when the privilege level is 0 (most privileged). When the
TR is loaded, the TR selector field indexes a TSS descrip-
tor that must reside in the Global Descriptor Table (GDT).

Only the 16-bit selector of a TSS descriptor in the TR is
accessible. The BASE, TSS LIMT and ACCESS RIGHT
fields are program invisible.

During task switching, the processor saves the current
CPU state in the TSS before starting a new task. The TSS
can be either a 386/486-type 32-bit TSS (see Table 3-26) or a
286-type 16-bit TSS (see Table 3-27 on page 71).

Task Gate Descriptors. A task gate descriptor provides
controlled access to the descriptor for a task switch. The
DPL of the task gate is used to control access. The selec-
tor’s RPL and the CPL of the procedure must be a higher
level (numerically less) than the DPL of the descriptor.
The RPL in the task gate is not used.

The I/O Map Base Address field in the 32-bit TSS points
to an I/O permission bit map that often follows the TSS at
location +68h.

Table 3-26. 32-Bit Task State Segment (TSS) Table

31 16 15 0

I/O Map Base Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T +64h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Selector for Task’s LDT +60h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GS +5Ch

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FS +58h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DS +54h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS +50h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CS +4Ch

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ES +48h

EDI +44h

ESI +40h

EBP +3Ch

ESP +38h

EBX +34h

EDX +30h

ECX +2Ch

EAX +28h

EFLAGS +24h

EIP +20h

CR3 +1Ch

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS for CPL = 2 +18h

ESP for CPL = 2 +14h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS for CPL = 1 +10h

ESP for CPL = 1 +Ch

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS for CPL = 0 +8h

ESP for CPL = 0 +4h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Back Link (Old TSS Selector) +0h

Note: 0 = Reserved
ww.national.com 70 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 3-27. 16-Bit Task State Segment (TSS) Table

15 0

Selector for Task’s LDT +2Ah

DS +28h

SS +26h

CS +24h

ES +22h

DI +20h

SI +1Eh

BP +1Ch

SP +1Ah

BX +18h

DX +16h

CX +14h

AX +12h

EFLAGS +10h

IP +Eh

SS for Privilege Level 0 +Ch

SP for Privilege Level 1 +Ah

SS for Privilege Level 1 +8h

SP for Privilege Level 1 +6h

SS for Privilege Level 0 +4h

SP for Privilege Level 0 +2h

Back Link (Old TSS Selector) +0h
evision 3.1 71 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.9 PAGING MECHANISM
The paging mechanism translates a linear address to its
corresponding physical address. If the required page is
not currently present in RAM, an exception is generated.
When the operating system services the exception, the
required page can be loaded into memory and the instruc-
tion restarted. Pages are either 4 KB or 1 MB in size. The
CPU defaults to 4 KB pages that are aligned to 4 KB
boundaries.

A page is addressed by using two levels of tables as illus-
trated in Figure 3-8. Bits[31:22] of the 32-bit linear
address, the Directory Table Index (DTI) are used to

locate an entry in the page directory table. The page
directory table acts as a 32-bit master index to up to 1 K
individual second-level page tables. The selected entry in
the page directory table, referred to as the directory table
entry (DTE), identifies the starting address of the second-
level page table. The page directory table itself is a page
and is, therefore, aligned to a 4 KB boundary. The physi-
cal address of the current page directory table is stored in
the CR3 control register, also referred to as the Page
Directory Base Register (PDBR).

Figure 3-8. Paging Mechanism

Directory Table Index
(DTI)

Page Table Index
(PTI)

Page Frame Offset
(PFO)

31 22 21 12 11 0

Linear
Address

DTE Cache
2-Entry

Fully Associative

Main TLB
32-Entry

4-Way Set
Associative

DTE

0

4 KB

PTE

0

4 KB Physical Page

4 GB

-4 KB

-0

0

External Memory

Directory Table Page Table Memory

CR3

Control
Register

1

0

31

0

ww.national.com 72 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Bits [21:12] of the 32-bit linear address, referred to as the
Page Table Index (PTI), locate a 32-bit entry in the sec-
ond-level page table. This Page Table Entry (PTE) con-
tains the base address of the desired page frame. The
second-level page table addresses up to 1K individual
page frames. A second-level page table is 4 KB in size
and is itself a page. Bits [11:0] of the 32-bit linear address,
the Page Frame Offset (PFO), locate the desired physical
data within the page frame.

Since the page directory table can point to 1 K page
tables, and each page table can point to 1 K page frames,
a total of 1 M page frames can be implemented. Since
each page frame contains 4 KB, up to 4 GB of virtual
memory can be addressed by the CPU with a single page
directory table.

Along with the base address of the page table or the page
frame, each directory table entry or page table entry con-
tains attribute bits and a present bit as illustrated in Table
3-28.

If the present bit (P) is set in the DTE, the page table is
present and the appropriate page table entry is read. If P
= 1 in the corresponding PTE (indicating that the page is
in memory), the accessed and dirty bits are updated, if
necessary, and the operand is fetched. Both accessed
bits are set (DTE and PTE), if necessary, to indicate that
the table and the page have been used to translate a linear
address. The dirty bit (D) is set before the first write is made
to a page.

The present bits must be set to validate the remaining bits
in the DTE and PTE. If either of the present bits are not
set, a page fault is generated when the DTE or PTE is
accessed. If P = 0, the remaining DTE/PTE bits are avail-
able for use by the operating system. For example, the
operating system can use these bits to record where on
the hard disk the pages are located. A page fault is also
generated if the memory reference violates the page pro-
tection attributes.

Translation Look-Aside Buffer
The translation look-aside buffer (TLB) is a cache for the
paging mechanism and replaces the two-level page table
lookup procedure for TLB hits. The TLB is a four-way set
associative 32-entry page table cache that automatically
keeps the most commonly used page table entries in the
processor. The 32-entry TLB, coupled with a 4 K page
size, results in coverage of 128 KB of memory addresses.

The TLB must be flushed when entries in the page tables
are changed. The TLB is flushed whenever the CR3 regis-
ter is loaded. An individual entry in the TLB can be flushed
using the INVLPG instruction.

DTE Cache
The DTE cache caches the two most recent DTEs so that
future TLB misses only require a single page table read to
calculate the physical address. The DTE cache is dis-
abled following reset and can be enabled by setting the
DTE_EN bit in CCR4[4] (Index E8h).

Table 3-28. Directory Table Entry (DTE) and Page Table Entry (PTE)

Bit Name Description

31:12 BASE
ADDRESS

Base Address: Specifies the base address of the page or page table.

11:9 AVAILABLE Available: Undefined and Available to the Programmer

8:7 RSVD Reserved: Unavailable to programmer

6 D Dirty Bit:

PTE format — If = 1: Indicates that a write access has occurred to the page.
DTE format — Reserved.

5 A Accessed Flag: If set, indicates that a read access or write access has occurred to the page.

4:3 RSVD Reserved: Set to 0.

2 U/S User/Supervisor Attribute:

If = 1: Page is accessible by User at privilege level 3.
If = 0: Page is accessible by Supervisor only when CPL ≤ 2.

1 W/R Write/Read Attribute:

If = 1: Page is writable.
If = 0: Page is read only.

0 P Present Flag:

If = 1: The page is present in RAM and the remaining DTE/PTE bits are validated
If = 0: The page is not present in RAM and the remaining DTE/PTE bits are available for use by the pro-
grammer.
evision 3.1 73 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.10 INTERRUPTS AND EXCEPTIONS
The processing of either an interrupt or an exception
changes the normal sequential flow of a program by trans-
ferring program control to a selected service routine.
Except for SMM interrupts, the location of the selected
service routine is determined by one of the interrupt vec-
tors stored in the interrupt descriptor table.

True interrupts are hardware interrupts and are generated
by signal sources external to the processor. All exceptions
(including so-called software interrupts) are produced inter-
nally by the processor.

3.10.1 Interrupts
External events can interrupt normal program execution
by using one of the three interrupt pins on the GXm pro-
cessor:

• Non-maskable Interrupt (NMI pin)
• Maskable Interrupt (INTR pin)
• SMM Interrupt (SMI# pin)

For most interrupts, program transfer to the interrupt rou-
tine occurs after the current instruction has been com-
pleted. When the execution returns to the original
program, it begins immediately following the interrupted
instruction.

The NMI interrupt cannot be masked by software and
always uses interrupt vector 2 to locate its service routine.
Since the interrupt vector is fixed and is supplied inter-
nally, no interrupt acknowledge bus cycles are performed.
This interrupt is normally reserved for unusual situations
such as parity errors and has priority over INTR interrupts.

Once NMI processing has started, no additional NMIs are
processed until an IRET instruction is executed, typically
at the end of the NMI service routine. If NMI is re-asserted
before execution of the IRET instruction, one and only one
NMI rising edge is stored and then processed after execu-
tion of the next IRET.

During the NMI service routine, maskable interrupts may
be enabled. If an unmasked INTR occurs during the NMI
service routine, the INTR is serviced and execution
returns to the NMI service routine following the next IRET.
If a HALT instruction is executed within the NMI service
routine, the CPU restarts execution only in response to
RESET, an unmasked INTR or a System Management
Mode (SMM) interrupt. NMI does not restart CPU execu-
tion under this condition.

The INTR interrupt is unmasked when the Interrupt
Enable Flag (IF, bit 9) in the EFLAGS register is set to 1.
Except for string operations, INTR interrupts are acknowl-
edged between instructions. Long string operations have
interrupt windows between memory moves that allow
INTR interrupts to be acknowledged.

When an INTR interrupt occurs, the processor performs
an interrupt-acknowledge bus cycle. During this cycle, the
CPU reads an 8-bit vector that is supplied by an external
interrupt controller. This vector selects which of the 256
possible interrupt handlers will be executed in response to
the interrupt.

The SMM interrupt has higher priority than either INTR or
NMI. After SMI# is asserted, program execution is passed
to an SMI service routine that runs in SMM address space
reserved for this purpose. The remainder of this section
does not apply to the SMM interrupts. SMM interrupts are
described in greater detail later in this section.

3.10.2 Exceptions
Exceptions are generated by an interrupt instruction or a
program error. Exceptions are classified as traps, faults or
aborts depending on the mechanism used to report them
and the restartability of the instruction which first caused
the exception.

A Trap exception is reported immediately following the
instruction that generated the trap exception. Trap excep-
tions are generated by execution of a software interrupt
instruction (INTO, INT3, INTn, BOUND), by a single-step
operation or by a data breakpoint.

Software interrupts can be used to simulate hardware
interrupts. For example, an INTn instruction causes the
processor to execute the interrupt service routine pointed
to by the nth vector in the interrupt table. Execution of the
interrupt service routine occurs regardless of the state of
the IF flag (bit 9) in the EFLAGS register.

The one byte INT3, or breakpoint interrupt (vector 3), is a
particular case of the INTn instruction. By inserting this
one byte instruction in a program, the user can set break-
points in the code that can be used during debug.
ww.national.com 74 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Single-step operation is enabled by setting the TF bit (bit
8) in the EFLAGS register. When TF is set, the CPU gen-
erates a debug exception (vector 1) after the execution of
every instruction. Data breakpoints also generate a debug
exception and are specified by loading the debug regis-
ters (DR0-DR7) with the appropriate values.

A Fault exception is reported before completion of the
instruction that generated the exception. By reporting the
fault before instruction completion, the processor is left in
a state that allows the instruction to be restarted and the
effects of the faulting instruction to be nullified. Fault
exceptions include divide-by-zero errors, invalid opcodes,
page faults and coprocessor errors. Debug exceptions
(vector 1) are also handled as faults (except for data
breakpoints and single-step operations). After execution
of the fault service routine, the instruction pointer points to
the instruction that caused the fault.

An Abort exception is a type of fault exception that is
severe enough that the CPU cannot restart the program at
the faulting instruction. The double fault (vector 8) is the
only abort exception that occurs on the processor.

3.10.3 Interrupt Vectors
When the processor services an interrupt or exception,
the current program’s instruction pointer and flags are
pushed onto the stack to allow resumption of execution of
the interrupted program. In protected mode, the processor
also saves an error code for some exceptions. Program
control is then transferred to the interrupt handler (also
called the interrupt service routine). Upon execution of an
IRET at the end of the service routine, program execution
resumes at the instruction pointer address saved on the
stack when the interrupt was serviced.

3.10.3.1 Interrupt Vector Assignments
Each interrupt (except SMI#) and exception is assigned
one of 256 interrupt vector numbers as shown in Table 3-
29. The first 32 interrupt vector assignments are defined
or reserved. INT instructions acting as software interrupts
may use any of interrupt vectors, 0 through 255.

The non-maskable hardware interrupt (NMI) is assigned
vector 2. Illegal opcodes including faulty FPU instructions
will cause an illegal opcode exception, interrupt vector 6.
NMI interrupts are enabled by setting bit 2 of the CCR7
register (Index EBh[2] = 1, see Table 3-11 on page 49 for
register format).

In response to a maskable hardware interrupt (INTR), the
processor issues interrupt acknowledge bus cycles used to
read the vector number from external hardware. These vec-
tors should be in the range 32 to 255 as vectors 0 to 31 are
predefined. In PCs, vectors 8 through 15 are used.

3.10.3.2 Interrupt Descriptor Table
The interrupt vector number is used by the processor to
locate an entry in the interrupt descriptor table (IDT). In
real mode, each IDT entry consists of a four-byte far
pointer to the beginning of the corresponding interrupt
service routine. In protected mode, each IDT entry is an
8-byte descriptor. The Interrupt Descriptor Table Register
(IDTR) specifies the beginning address and limit of the
IDT. Following reset, the IDTR contains a base address of
0h with a limit of 3FFh.

The IDT can be located anywhere in physical memory as
determined by the IDTR. The IDT may contain different
types of descriptors: interrupt gates, trap gates and task
gates. Interrupt gates are used primarily to enter a hard-
ware interrupt handler. Trap gates are generally used to
enter an exception handler or software interrupt handler. If
an interrupt gate is used, the Interrupt Enable Flag (IF) in
the EFLAGS register is cleared before the interrupt han-
dler is entered. Task gates are used to make the transition
to a new task.

Table 3-29. Interrupt Vector Assignments

Interrupt
Vector Function

Exception
Type

0 Divide error Fault

1 Debug exception Trap/Fault*

2 NMI interrupt

3 Breakpoint Trap

4 Interrupt on overflow Trap

5 BOUND range exceeded Fault

6 Invalid opcode Fault

7 Device not available Fault

8 Double fault Abort

9 Reserved

10 Invalid TSS Fault

11 Segment not present Fault

12 Stack fault Fault

13 General protection fault Trap/Fault

14 Page fault Fault

15 Reserved

16 FPU error Fault

17 Alignment check exception Fault

18:31 Reserved

32:55 Maskable hardware interrupts Trap

0:255 Programmed interrupt Trap

Note: *Data breakpoints and single steps are traps. All other
debug exceptions are faults.
evision 3.1 75 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.10.4 Interrupt and Exception Priorities
As the CPU executes instructions, it follows a consistent
policy for prioritizing exceptions and hardware interrupts.
The priorities for competing interrupts and exceptions are
listed in Table 3-30. SMM interrupts always take prece-
dence. Debug traps for the previous instruction and next
instructions are handled as the next priority. When NMI
and maskable INTR interrupts are both detected at the
same instruction boundary, the GXm processor services
the NMI interrupt first.

The CPU checks for exceptions in parallel with instruction
decoding and execution. Several exceptions can result
from a single instruction. However, only one exception is

generated upon each attempt to execute the instruction.
Each exception service routine should make the appropri-
ate corrections to the instruction and then restart the
instruction. In this way, exceptions can be serviced until
the instruction executes properly.

The CPU supports instruction restart after all faults,
except when an instruction causes a task switch to a task
whose task state segment (TSS) is partially not present. A
TSS can be partially not present if the TSS is not page
aligned and one of the pages where the TSS resides is
not currently in memory.

Table 3-30. Interrupt and Exception Priorities

Priority Description Notes

0 Warm Reset. Caused by the assertion of WM_RST.

1 SMM hardware interrupt. SMM interrupts are caused by SMI# asserted and always have
highest priority.

2 Debug traps and faults from previous instruction. Includes single-step trap and data breakpoints specified in the
debug registers.

3 Debug traps for next instruction. Includes instruction execution breakpoints specified in the debug
registers.

4 Non-maskable hardware interrupt. Caused by NMI asserted.

5 Maskable hardware interrupt. Caused by INTR asserted and IF = 1.

6 Faults resulting from fetching the next instruction. Includes segment not present, general protection fault and page
fault.

7 Faults resulting from instruction decoding. Includes illegal opcode, instruction too long, or privilege violation.

8 WAIT instruction and TS = 1 and MP = 1. Device not available exception generated.

9 ESC instruction and EM = 1 or TS = 1. Device not available exception generated.

10 Floating point error exception. Caused by unmasked floating point exception with NE = 1.

11 Segmentation faults (for each memory reference
required by the instruction) that prevent transferring
the entire memory operand.

Includes segment not present, stack fault, and general protection
fault.

12 Page Faults that prevent transferring the entire
memory operand.

13 Alignment check fault.
ww.national.com 76 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.10.5 Exceptions in Real Mode
Many of the exceptions described in Table 3-29 on page
75 are not applicable in real mode. Exceptions 10, 11, and
14 do not occur in real mode. Other exceptions have
slightly different meanings in real mode as listed in Table
3-31.

3.10.6 Error Codes
When operating in protected mode, the following exceptions
generate a 16-bit error code:

• Double Fault
• Alignment Check
• Invalid TSS
• Segment Not Present
• Stack Fault
• General Protection Fault
• Page Fault

The error code format and bit definitions are shown in
Table 3-32. Bits [15:3] (selector index) are not meaningful
if the error code was generated as the result of a page
fault. The error code is always zero for double faults and
alignment check exceptions.

Table 3-31. Exception Changes in Real Mode

Vector
Number

Protected Mode
Function

Real Mode
Function

8 Double fault. Interrupt table limit overrun.

10 Invalid TSS. Does not occur.

11 Segment not
present.

Does not occur.

12 Stack fault. SS segment limit overrun.

13 General protection
fault.

CS, DS, ES, FS, GS seg-
ment limit overrun. In pro-
tected mode, an error is
pushed. In real mode, no
error is pushed.

14 Page fault. Does not occur.

Table 3-32. Error Codes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Selector Index S2 S1 S0

Table 3-33. Error Code Bit Definitions

Fault
Type

Selector Index
(Bits 15:3) S2 (Bit 2) S1 (Bit 1) S0 (Bit 0)

Page
Fault

Reserved. Fault caused by:

0 = Not present page
1 = Page-level protection

violation

Fault occurred during:

0 = Read access
1 = Write access

Fault occurred during

0 = Supervisor access
1 = User access.

IDT Fault Index of faulty IDT
selector.

Reserved 1 If = 1, exception occurred while
trying to invoke exception or
hardware interrupt handler.

Segment
Fault

Index of faulty
selector.

TI bit of faulty selector 0 If =1, exception occurred while
trying to invoke exception or
hardware interrupt handler.
evision 3.1 77 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.11 SYSTEM MANAGEMENT MODE
System Management Mode (SMM) is usually employed
for system power management or software-transparent
emulation of I/O peripherals. SMM mode is entered
through a hardware signal “System Management Inter-
rupt” (SMI# pin) that has a higher priority than any other
interrupt, including NMI. An SMM interrupt can also be
triggered from software using an SMINT instruction. Fol-
lowing an SMM interrupt, portions of the CPU state are
automatically saved, SMM mode is entered, and program
execution begins at the base of SMM address space (Fig-
ure 3-9).

The GXm processor extends System Management Mode
(SMM) to support the virtualization of many devices,
including VGA video. The SMM mechanism can be trig-
gered not only by I/O activity, but by access to selected
memory regions. For example, SMM interrupts are gener-
ated when VGA addresses are accessed. As will be
described, other SMM enhancements have reduced SMM
overhead and improved virtualization-software perfor-
mance

Figure 3-9. System Management Memory Address Space

FFFFFFFFh

00000000h

Non-SMM SMM

Potential
SMM Address

Space
Physical

Memory Space

FFFFFFFFh

00000000h

4 KB to 32 MB

Physical Memory

4 GB

Defined
SMM

Address
Space
ww.national.com 78 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.11.1 SMM Enhancements
Eight SMM instructions have been added to the x86
instruction set that permit initiating SMM through software
and saving and restoring the total CPU state when in
SMM.

The SMM header now:

• Stores 32-bits memory addresses.

• Stores 32-bit memory data.

• Differentiates memory and I/O accesses.

• Indicates if an SMM interrupt was generated by access
to a VGA region.

The SMM service code is now cacheable. An SMAR reg-
ister specifies the SMM region code base and limit. An
SMHR register specifies the physical address for the
SMM header. The SMI_NEST bit enables the nesting of
SMM interrupts.

3.11.2 SMM Operation
SMM execution flow is summarized in Figure 3-10. Enter-
ing SMM requires the assertion of the SMI# pin for at least
two SYSCLK periods or execution of the SMINT instruction.
For the SMI# signal or SMINT instruction to be recog-
nized, configuration register bits must be set as shown in
Table 3-34. (The configuration registers are discussed in
detail in Section 3.3.2.2 “Configuration Registers” on page
47.)

After triggering an SMM through the SMI# pin or a SMINT
instruction, selected CPU state information is automati-
cally saved in the SMM memory space header located at
the top of SMM memory space. After saving the header,
the CPU enters real mode and begins executing the SMM
service routine starting at the SMM memory region base
address.

The SMM service routine is user definable and may con-
tain system or power management software. If the power
management software forces the CPU to power down or if
the SMM service routine modifies more registers than are
automatically saved, the complete CPU state information
should be saved.

Figure 3-10. SMM Execution Flow

Table 3-34. SMI# and SMINT Recognition
Requirements

Register Bits SMI# SMINT

USE_SMI, CCR1[1] (Index C1h) 1 1

SMAC, CCR1[2] (Index C1h) 0 1

SIZE[3:0], SMAR3[3:0] (Index CFh) >0 >0

SMI# Sampled Active or
SMINT Instruction Executed

CPU State Stored in SMM
Address Space Header

Program Flow Transfers
to SMM Address Space

CPU Enters Real Mode

Execution Begins at SMM
Address Space Base Address

RSM Instruction Restores CPU
State Using Header Information

Normal Execution Resumes
evision 3.1 79 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.11.3 The SMI# Pin
External chipsets can generate an SMI based on numer-
ous asynchronous events, including power management
timers, I/O address trapping, external devices, audio FIFO
events, and others. Since SMI# is edge sensitive, the
chipset must generate an edge for each of the events
above, requiring arbitration and storage of multiple SMM
events. These functions are provided by the CS5530 I/O
companion device. The processor generates an SMI
when the external pin changes from high-to-low or when
an RSM occurs if SMI# has not remained low since the
initiation of the previous SMI.

3.11.4 SMM Configuration Registers
The SMAR register specifies the base location of SMM
code region and its size limit. This SMAR register is identi-
cal to many of the National Semconductor processors.

A new configuration control register called SMHR has
been added to specify the 32-bit physical address of the
SMM header. The SMHR address must be 32-bit aligned
as the bottom two bits are ignored by the microcode.
Hardware will detect write operations to SMHR, and sig-
nal the microcode to recompute the header address.
Access to these registers is enabled by MAPEN (Index
C3h[4]).

The SMAR register writes to the SMM header when the
SMAR register is changed. For this reason, changes to
the SMAR register should be completed prior to setting up
the SMM header. The configuration registers bit formats
are detailed in Table 3-11 on page 49.

3.11.5 SMM Memory Space Header
Tables 3-35 and show the SMM header. A memory
address field has been added to the end (offset –40h) of
the header for the GXm processor. Memory data will be
stored overlapping the I/O data, since these events can-
not occur simultaneously. The I/O address is valid for both
IN and OUT instructions, and I/O data is valid only for
OUT. The memory address is valid for read and write
operations, and memory data is valid only for write opera-
tions.

With every SMI interrupt or SMINT instruction, selected
CPU state information is automatically saved in the SMM
memory space header located at the top of SMM address
space. The header contains CPU state information that is
modified when servicing an SMM interrupt. Included in
this information are two pointers. The current IP points to
the instruction executing when the SMI was detected, but
it is valid only for an internal I/O SMI.

The Next IP points to the instruction that will be executed
after exiting SMM. The contents of Debug Register 7
(DR7), the Extended FLAGS Register (EFLAGS), and
Control Register 0 (CR0) are also saved. If SMM has
been entered due to an I/O trap for a REP INSx or REP
OUTSx instruction, the Current IP and Next IP fields con-
tain the same addresses. In addition, the I and P fields con-
tain valid information.

If entry into SMM is the result of an I/O trap, it is useful for
the programmer to know the port address, data size and
data value associated with that I/O operation. This informa-
tion is also saved in the header and is valid only if SMI# is
asserted during an I/O bus cycle. The I/O trap information is
not restored within the CPU when executing a RSM instruction.

Table 3-35. SMM Memory Space Header

Mem.
Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-4h DR7

–8h EFLAGS

–Ch CR0

–10h Current IP

–14h Next IP

–18h RSVD CS Selector

–1Ch CS Descriptor [63:32]

–20h CS Descriptor [31:0]

–24h RSVD RSVD N V X M H S P I C

–28h I/O Data Size I/O Address [15:0]

–2Ch I/O or Memory Data [31:0] (Note)

–30h Restored ESI or EDI

–32h Memory Address [31:0]

Note: Check the M bit at offset 24h to determine if the data is memory or I/O.
ww.national.com 80 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 3-36. SMM Memory Space Header Description

Name Description Size

DR7 Debug Register 7: The contents of Debug Register 7. 4 Bytes

EFLAGS Extended FLAGS Register: The contents of Extended FLAGS Register. 4 Bytes

CR0 Control Register 0: The contents of Control Register 0. 4 Bytes

Current IP Current Instruction Pointer: The address of the instruction executed prior to servicing SMM
interrupt.

4 Bytes

Next IP Next Instruction Pointer: The address of the next instruction that will be executed after exiting
SMM.

4 Bytes

CS Selector Code Segment Selector: Code segment register selector for the current code segment. 2 Bytes

CS Descriptor Code Segment Descriptor: Encoded descriptor bits for the current code segment. 8 Bytes

N Nested SMI Status: Flag that determines whether an SMI occurred during SMM (i.e., nested) 1 Bit

V SoftVGA SMI Status: SMI was generated by an access to VGA region. 1 Bit

X External SMI Status:

If = 1: SMI generated by external SMI# pin
If = 0: SMI internally generated by Internal Bus Interface Unit.

1 Bit

M Memory or I/O Access: 0 = I/O access; 1 = Memory access. 1 Bit

H Halt Status: Indicates that the processor was in a halt or shutdown prior to servicing the SMM
interrupt.

1 Bit

S Software SMM Entry Indicator:

If = 1: Current SMM is the result of an SMINT instruction.
If = 0: Current SMM is not the result of an SMINT instruction.

1 Bit

P REP INSx/OUTSx Indicator:

If = 1: Current instruction has a REP prefix.
If = 0: Current instruction does not have a REP prefix.

1 Bit

I IN, INSx, OUT, or OUTSx Indicator:

If = 1: Current instruction performed is an I/O WRITE.
If = 0: Current instruction performed is an I/O READ.

1 Bit

C CS Writable: Code Segment Writable

If = 1: CS is writable
If = 0: CS is not writable

1 Bit

I/O Data Size Indicates size of data for the trapped I/O cycle:

01h = byte
03h = word
0Fh = DWORD

2 Bytes

I/O Address Processor port used for the trapped I/O cycle. 2 Bytes

I/O or Memory Data Data associated with the trapped I/O or memory cycleS. 4 Bytes

Restored ESI or EDI Restored ESI or EDI Value: Used when it is necessary to repeat a REP OUTSx or REP INSx
instruction when one of the I/O cycles caused an SMI# trap.

4 Bytes

Memory Address Physical address of the operation that caused the SMI. 4 Bytes

Note: INSx = INS, INSB, INSW or INSD instruction.
OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.
evision 3.1 81 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.11.6 SMM Instructions
The GXm processor core automatically saves the minimal
amount of CPU state information when entering an SMM
cycle that allows fast SMM service-routine entry and exit.
After entering the SMM service routine, the MOV, SVDC,
SVLDT and SVTS instructions can be used to save the
complete CPU state information. If the SMM service rou-
tine modifies more state information than is automatically
saved or if it forces the CPU to power down, the complete
CPU state information must be saved. Since the CPU is a
static device, its internal state is retained when the input
clock is stopped. Therefore, an entire CPU-state save is
not necessary before stopping the input clock.

The SMM instructions, listed in Table 3-37, can be exe-
cuted only if all the conditions listed below are met.

1) USE_SMI = 1.

2) SMAR SIZE > 0.

3) Current Privilege level = 0.

4) SMAC bit is high or the CPU is in an SMI service
routine.

If any one of the conditions above is not met and an
attempt is made to execute an SVDC, RSDC, SVLDT,
RSLDT, SVTS, RSTS, or RSM instruction, an invalid
opcode exception is generated. The SMM instructions can
be executed outside of defined SMM space provided the
conditions above are met.

The SMINT instruction can be used by software to enter
SMM. The SMINT instruction can only be used outside an
SMM routine if all the conditions listed below are true.

1) USE_SMI = 1

2) SMAR size > 0

3) Current Privilege Level = 0

4) SMAC = 1

If SMI# is asserted to the CPU during a software SMI, the
hardware SMI# is serviced after the software SMI has
been exited by execution of the RSM instruction.

All the SMM instructions (except RSM and SMINT) save
or restore 80 bits of data, allowing the saved values to
include the hidden portion of the register contents.

Table 3-37. SMM Instruction Set

Instruction Opcode Format Description

SVDC 0F 78h [mod sreg3 r/m] SVDC mem80, sreg3 Save Segment Register and Descriptor

Saves reg (DS, ES, FS, GS, or SS) to mem80.

RSDC 0F 79h [mod sreg3 r/m] RSDC sreg3, mem80 Restore Segment Register and Descriptor

Restores reg (DS, ES, FS, GS, or SS) from mem80. Use RSM
to restore CS.
Note: Processing “RSDC CS, Mem80” will produce an excep-
tion.

SVLDT 0F 7Ah [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor

Saves Local Descriptor Table (LDTR) to mem80.

RSLDT 0F 7Bh [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor

Restores Local Descriptor Table (LDTR) from mem80.

SVTS 0F 7Ch [mod 000 r/m] SVTS mem80 Save TSR and Descriptor

Saves Task State Register (TSR) to mem80.

RSTS 0F 7Dh [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor

Restores Task State Register (TSR) from mem80.

SMINT 0F 38h SMINT Software SMM Entry

CPU enters SMM. CPU state information is saved in SMM
memory space header and execution begins at SMM base
address.

RSM 0F AAh RSM Resume Normal Mode

Exits SMM. The CPU state is restored using the SMM memory
space header and execution resumes at interrupted point.

Note: smem80 = 80-bit memory location.
ww.national.com 82 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.11.7 SMM Memory Space
SMM memory space is defined by specifying the base
address and size of the SMM memory space in the SMAR
register. The base address must be a multiple of the SMM
memory space size. For example, a 32 KB SMM memory
space must be located at a 32 KB address boundary. The
memory space size can range from 4 KB to 32 MB. Execu-
tion of the interrupt begins at the base of the SMM memory
space.

SMM memory space accesses are always cacheable,
which allows SMM routines to run faster.

3.11.8 SMI Generation
Virtualization software depends on processor-specific
hardware to generate SMI interrupts for each memory or
I/O access to the device being implemented. The GXm
processor implements SMI generation for VGA accesses.
Memory write operations in regions A0000h to AFFFFh,
B0000h to B7FFFh, and B8000h to BFFFFh generate an
SMI.

Memory reads are not trapped by the GXm processor.
The GXm processor traps I/O addresses for VGA in the
following regions: 3B0h to 3BFh, 3C0h to 3CFh, and 3D0h
to 3DFh. Memory-write trapping is performed during
instruction decode in the processor core. I/O read and
write trapping is implemented in the Internal Bus Interface
Unit of the GXm processor.

The SMI-generation hardware requires two additional
configuration registers to control and mask SMI interrupts
in the VGA memory space: VGACTL and VGAM. The
VGACTL register has a control bit for each address range
shown above. The VGAM register has 32 bits that can
selectively disable 2 KB regions within the VGA memory.
The VGAM applies only to the A0000h-to-AFFFFh region.
If this region is not enabled in VGA_CTL, then the con-
tents of VGAM is ignored. The purpose of VGAM is to pre-
vent SMI from occurring when non-displayed VGA
memory is accessed. This is an enhancement which
improves performance for double-buffered applications.
The format of each register is shown in Chapter 4 of this
document.

3.11.9 SMI Service Routine Execution
Upon entry into SMM, after the SMM header has been
saved, the CR0, EFLAGS, and DR7 registers are set to
their reset values. The Code Segment (CS) register is
loaded with the base, as defined by the SMAR register,
and a limit of 4 GBytes. The SMI service routine then
begins execution at the SMM base address in real mode.

The programmer must save the value of any registers that
may be changed by the SMI service routine. For data
accesses immediately after entering the SMI service rou-
tine, the programmer must use CS as a segment override.
I/O port access is possible during the routine but care
must be taken to save registers modified by the I/O
instructions. Before using a segment register, the register
and the register’s descriptor cache contents should be saved
using the SVDC instruction.

Hardware interrupts, INTRs and NMIs, may be serviced
during an SMI service routine. If interrupts are to be ser-
viced while executing in the SMM memory space, the
SMM memory space must be within the address range of
0 to 1 MB to guarantee proper return to the SMI service
routine after handling the interrupt.

INTRs are automatically disabled when entering SMM
since the IF flag (EFLAGS register, bit 9) is set to its reset
value. Once in SMM, the INTR can be enabled by setting
the IF flag. An NMI event in SMM can be enabled by set-
ting NMI_EN high in the CCR3 register (Index C3h[1]). If
NMI is not enabled while in SMM, the CPU latches one
NMI event and services the interrupt after NMI has been
enabled or after exiting SMM through the RSM instruction.
The processor is always in real mode in SMM, but it may
exit to either real or protected mode depending on its
state when SMM was initiated. The IDT (Interrupt Descrip-
tor Table) indicates which state it will exit to.

Within the SMI service routine, protected mode may be
entered and exited as required, and real or protected
mode device drivers may be called.

To exit the SMI service routine, a Resume (RSM) instruc-
tion, rather than an IRET, is executed. The RSM instruc-
tion causes the GXm processor core to restore the CPU
state using the SMM header information and resume exe-
cution at the interrupted point. If the full CPU state was
saved by the programmer, the stored values should be
reloaded before executing the RSM instruction using the
MOV, RSDC, RSLDT and RSTS instructions.

3.11.9.1 SMI Nesting
The SMI mechanism supports nesting of SMI interrupts
through the SMI handler, the SMI_NEST bit in CCR4[6]
(Index E8h), and the Nested SMI Status bit (bit N in the
SMM header, see Table on page 80). Nesting is an impor-
tant capability in allowing high-priority events, such as
audio virtualization, to interrupt lower-priority SMI code for
VGA virtualization or power management. SMI_NEST
controls whether SMI interrupts can occur during SMM.
SMI handlers can optionally set SMI_NEST high to allow
higher-priority SMI interrupts while handling the current
event.

The SMI handler is responsible for managing the SMI
header data for nested SMI interrupts. The SMI header
must be saved before SMI_NEST is set high, and
SMI_NEST must be cleared and its header information
restored before an RSM instruction is executed.

The Nested SMI Status bit has been added to the SMM
header to show whether the current SMI is nested. The
processor sets Nested SMI Status high if the processor
was in SMM when the SMI was taken. The processor
uses Nested SMI Status on exit to determine whether the
processor should stay in SMM.

When SMI nesting is disabled, the processor holds off
external SMI interrupts until the currently executing SMM
code exits. When SMI nesting is enabled, the processor
can proceed with the SMI. The SMI handler will guarantee
evision 3.1 83 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

that no internal SMIs are generated in SMM, so the pro-
cessor ignores such events. If the internal and external
SMI signals are received simultaneously, then the internal
SMI is given priority to avoid losing the event.

The state diagram of the SMI_NEST and Nested SMI Sta-
tus bits are shown in Figure 3-11 with each state
explained next.

A. When the processor is outside of SMM, Nested SMI
Status is always clear and SMI_NEST is set high.

B. The first-level SMI interrupt is received by the
processor. The microcode clears SMI_NEST, sets
Nested SMI Status high and saves the previous
value of Nested SMI Status (0) in the SMI header.

C. The first-level SMI handler saves the header and
sets SMI_NEST high to re-enable SMI interrupts
from SMM.

D. A second-level (nested) SMI interrupt is received by
the processor. This SMI is taken even though the
processor is in SMM because the SMI_NEST bit is

set high. The microcode clears SMI_NEST, sets
Nested SMI Status high and saves the previous
value of Nested SMI Status (1) in the SMI header.

E. The second-level SMI handler saves the header and
sets SMI_NEST to re-enable SMI interrupts within
SMM. Another level of nesting could occur during
this period.

F. The second-level SMI handler clears SMI_NEST to
disable SMI interrupts, then restores its SMI header.

G. The second-level SMI handler executes an RSM.
The microcode sets SMI_NEST, and restores the
Nested SMI Status (1) based on the SMI header.

H. The first-level SMI handler clears SMI_NEST to
disable SMI interrupts, then restores its SMI header.

I. The first-level SMI handler executes an RSM. The
microcode sets SMI_NEST high and restores the
Nested SMI Status (0) based on the SMI header.

When the processor is outside of SMM, Nested SMI Sta-
tus is always clear and SMI_NEST is set high.

Figure 3-11. SMI Nesting State Machine

SMI_NEST

Nested SMI Status

A B C D E F G H I
ww.national.com 84 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.11.9.2 CPU States Related to SMM and Suspend
Mode

The state diagram shown in Figure 3-12 illustrates the var-
ious CPU states associated with SMM and Suspend
mode. While in the SMI service routine, the GXm proces-
sor core can enter Suspend mode either by (1) executing
a halt (HLT) instruction or (2) by asserting the SUSP#
input.

During SMM operations and while in SUSP#-initiated
Suspend mode, an occurrence of either NMI or INTR is

latched. (In order for INTR to be latched, the IF flag,
EFLAGS register bit 9, must be set.) The INTR or NMI is
serviced after exiting Suspend mode.

If Suspend mode is entered through a HLT instruction
from the operating system or application software, the
reception of an SMI# interrupt causes the CPU to exit
Suspend mode and enter SMM. If Suspend mode is
entered through the hardware (SUSP# = 0) while the
operating system or application software is active, the
CPU latches one occurrence of INTR, NMI, and SMI#.

Figure 3-12. SMM and Suspend Mode State Diagram

Suspend Mode
(SUSPA# = 0)

Suspend Mode
(SUSPA# = 0)

Suspend Mode
(SUSPA# = 0)

NMI or INTR

HLT* IRET*

RSM*
SMI# = 0

SMINT*

SUSP# = 1

SUSP# = 0

Interrupt Service
Routine

Interrupt Service
Routine

OS/Application
Software

SMI Service Routine
(SMI# = 0)

NMI or INTR

RESET

SMI# = 0

(INTR, NMI and SMI# latched)

Non-SMM Operations
SMM Operations

Interrupt Service
Routine

Suspend Mode
(SUSPA# = 0)

(INTR and NMI latched)

NMI or INTR IRET*

SUSP# = 0 SUSP# = 1

IRET*

HLT*

NMI or INTR

*Instructions
evision 3.1 85 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.12 SHUTDOWN AND HALT
The Halt Instruction (HLT) stops program execution and
generates a special Halt bus cycle. The GXm processor
core then drives out a special Stop Grant bus cycle and
enters a low-power Suspend mode if the SUSP_HLT bit in
CCR2 (Index C2h[3]) is set. SMI#, NMI, INTR with inter-
rupts enabled (IF bit in EFLAGS = 1), or RESET forces
the CPU out of the halt state. If the halt state is inter-
rupted, the saved code segment and instruction pointer
specify the instruction following the HLT.

Shutdown occurs when a severe error is detected that
prevents further processing. The most common severe
error is the triple fault, a fault event while handling a dou-
ble fault. Setting the IDT or the GDT limit to zero will
cause a triple fault.

An NMI input or a reset can bring the processor out of
shutdown. An NMI will work if the IDT limit is large
enough, at least 000Fh, to contain the NMI interrupt vec-
tor and if the stack has enough room. The stack must be
large enough to contain the vector and flag information
(the stack pointer must be greater than 0005h).

3.13 PROTECTION
Segment protection and page protection are safeguards
built into the GXm processor’s protected-mode architec-
ture that deny unauthorized or incorrect access to
selected memory addresses. These safeguards allow
multitasking programs to be isolated from each other and
from the operating system. This section concentrates on
segment protection.

Selectors and descriptors are the key elements in the seg-
ment protection mechanism. The segment base address,
size, and privilege level are established by a segment
descriptor. Privilege levels control the use of privileged
instructions, I/O instructions and access to segments and
segment descriptors. Selectors are used to locate seg-
ment descriptors.

Segment accesses are divided into two basic types, those
involving code segments (e.g., control transfers) and
those involving data accesses. The ability of a task to
access a segment depends on the:

• segment type
• instruction requesting access
• type of descriptor used to define the segment
• associated privilege levels (described next)

Data stored in a segment can be accessed only by code
executing at the same or a more privileged level. A code
segment or procedure can only be called by a task exe-
cuting at the same or a less privileged level.

3.13.1 Privilege Levels
The values for privilege levels range between 0 and 3.
Level 0 is the highest privilege level (most privileged), and
level 3 is the lowest privilege level (least privileged). The
privilege level in real mode is zero.

The Descriptor Privilege Level (DPL) is the privilege
level defined for a segment in the segment descriptor. The
DPL field specifies the minimum privilege level needed to
access the memory segment pointed to by the descriptor.

The Current Privilege Level (CPL) is defined as the cur-
rent task’s privilege level. The CPL of an executing task is
stored in the hidden portion of the code segment register
and essentially is the DPL for the current code segment.

The Requested Privilege Level (RPL) specifies a selec-
tor’s privilege level. RPL is used to distinguish between
the privilege level of a routine actually accessing memory
(the CPL), and the privilege level of the original requester
(the RPL) of the memory access. If the level requested by
RPL is less than the CPL, the RPL level is accepted and
the Effective Privilege Level (EPL) is changed to the RPL
value. If the level requested by RPL is greater than CPL,
the CPL overrides the requested RPL and EPL becomes
the CPL value.

The lesser of the RPL and CPL is called the Effective Privi-
lege Level (EPL). Therefore, if RPL = 0 in a segment selec-
tor, the EPL is always determined by the CPL. If RPL = 3,
the EPL is always 3 regardless of the CPL.

For a memory access to succeed, the EPL must be at
least as privileged as the Descriptor Privilege Level (EPL
≤ DPL). If the EPL is less privileged than the DPL (EPL >
DPL), a general protection fault is generated. For exam-
ple, if a segment has a DPL = 2, an instruction accessing
the segment only succeeds if executed with an EPL ≤ 2.

3.13.2 I/O Privilege Levels
The I/O Privilege Level (IOPL) allows the operating sys-
tem executing at CPL = 0 to define the least privileged
level at which IOPL-sensitive instructions can uncondition-
ally be used. The IOPL-sensitive instructions include CLI,
IN, OUT, INS, OUTS, REP INS, REP OUTS, and STI.
Modification of the IF bit in the EFLAGS register is also
sensitive to the I/O privilege level.

The IOPL is stored in the EFLAGS register (bits [31:12]).
An I/O permission bit map is available as defined by the
32-bit Task State Segment (TSS). Since each task can
have its TSS, access to individual I/O ports can be
granted through separate I/O permission bit maps.

If CPL ≤ IOPL, IOPL-sensitive operations can be per-
formed. If CPL > IOPL, a general protection fault is gener-
ated if the current task is associated with a 16-bit TSS. If
the current task is associated with a 32-bit TSS and CPL
> IOPL, the CPU consults the I/O permission bitmap in the
TSS to determine on a port-by-port basis whether or not I/O
instructions (IN, OUT, INS, OUTS, REP INS, REP OUTS)
are permitted. The remaining IOPL-sensitive operations
generate a general protection fault.
ww.national.com 86 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.13.3 Privilege Level Transfers
A task’s CPL can be changed only through intersegment
control transfers using gates or task switches to a code
segment with a different privilege level. Control transfers
result from exception and interrupt servicing and from
execution of the CALL, JMP, INT, IRET and RET instruc-
tions.

There are five types of control transfers that are summa-
rized in Table 3-38. Control transfers can be made only
when the operation causing the control transfer references
the correct descriptor type. Any violation of these descriptor
usage rules causes a general protection fault.

Any control transfer that changes the CPL within a task
results in a change of stack. The initial values for the stack
segment (SS) and stack pointer (ESP) for privilege levels
0, 1, and 2 are stored in the TSS. During a JMP or CALL
control transfer, the SS and ESP are loaded with the new
stack pointer and the previous stack pointer is saved on
the new stack. When returning to the original privilege
level, the RET or IRET instruction restores the SS and
ESP of the less-privileged stack.

3.13.3.1 Gates
Gate descriptors described in Section 3.7.5 “Gate
Descriptors” on page 69, provide protection for privilege
transfers among executable segments. Gates are used to
transition to routines of the same or a more privileged
level. Call gates, interrupt gates and trap gates are used for
privilege transfers within a task. Task gates are used to
transfer between tasks.

Gates conform to the standard rules of privilege. In other
words, gates can be accessed by a task if the effective
privilege level (EPL) is the same or more privileged than
the gate descriptor’s privilege level (DPL).

3.13.4 Initialization and Transition to Protected Mode
The GXm processor core switches to real mode immedi-
ately after RESET. While operating in real mode, the sys-
tem tables and registers should be initialized. The GDTR
and IDTR must point to a valid GDT and IDT, respectively. The
size of the IDT should be at least 256 bytes, and the GDT
must contain descriptors that describe the initial code and
data segments.

The processor can be placed in protected mode by setting
the PE bit (CR0 register bit 0). After enabling protected
mode, the CS register should be loaded and the instruc-
tion decode queue should be flushed by executing an
intersegment JMP. Finally, all data segment registers
should be initialized with appropriate selector values.

Table 3-38. Descriptor Types Used for Control Transfer

Type of Control Transfer Operation Types
Descriptor
Referenced

Descriptor
Table

Intersegment within the same privilege
level.

JMP, CALL, RET, IRET* Code Segment GDT or LDT

Intersegment to the same or a more
privileged level. Interrupt within task
(could change CPL level).

CALL Gate Call GDT or LDT

Interrupt Instruction, Exception,
External Interrupt

Trap or Interrupt Gate IDT

Intersegment to a less privileged level
(changes task CPL).

RET, IRET* Code Segment GDT or LDT

Task Switch via TSS CALL, JMP Task State Segment GDT

Task Switch via Task Gate CALL, JMP Task Gate GDT or LDT

IRET**, Interrupt Instruction,
Exception, External Interrupt

Task Gate IDT

Note: *NT = 0 (Nested Task bit in EFLAGS, bit 14)
**NT =1 (Nested Task bit in EFLAGS, bit 14)
evision 3.1 87 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

3.14 VIRTUAL 8086 MODE
Both real mode and virtual 8086 (V86) modes are sup-
ported by the GXm processor, allowing execution of 8086
application programs and 8086 operating systems. V86
mode allows the execution of 8086-type applications, yet
still permits use of the paging and protection mechanisms.
V86 tasks run at privilege level 3. Before entry, all seg-
ment limits must be set to FFFFh (64K) as in real mode.

3.14.1 Memory Addressing
While in V86 mode, segment registers are used in an
identical fashion to real mode. The contents of the Seg-
ment register are multiplied by 16 and added to the offset
to form the Segment Base Linear Address. The GXm pro-
cessor permits the operating system to select which pro-
grams use the V86 address mechanism and which
programs use protected mode addressing for each task.

The GXm processor also permits the use of paging when
operating in V86 mode. Using paging, the 1 MB address
space of the V86 task can be mapped to any region in the
4 GB linear address space.

The paging hardware allows multiple V86 tasks to run
concurrently, and provides protection and operating sys-
tem isolation. The paging hardware must be enabled to
run multiple V86 tasks or to relocate the address space of
a V86 task to physical address space other than 0.

3.14.2 Protection
All V86 tasks operate with the least amount of privilege
(level 3) and are subject to all CPU protected mode protec-
tion checks. As a result, any attempt to execute a privi-
leged instruction within a V86 task results in a general
protection fault.

In V86 mode, a slightly different set of instructions are
sensitive to the I/O privilege level (IOPL) than in protected
mode. These instructions are: CLI, INT n, IRET, POPF,
PUSHF, and STI. The INT3, INTO and BOUND variations
of the INT instruction are not IOPL sensitive.

3.14.3 Interrupt Handling
To fully support the emulation of an 8086-type machine,
interrupts in V86 mode are handled as follows. When an
interrupt or exception is serviced in V86 mode, program
execution transfers to the interrupt service routine at privi-
lege level 0 (i.e., transition from V86 to protected mode
occurs). The VM bit in the EFLAGS register (bit 17) is
cleared. The protected mode interrupt service routine
then determines if the interrupt came from a protected
mode or V86 application by examining the VM bit in the
EFLAGS image stored on the stack. The interrupt service
routine may then choose to allow the 8086 operating sys-
tem to handle the interrupt or may emulate the function of
the interrupt handler. Following completion of the interrupt
service routine, an IRET instruction restores the EFLAGS
register (restores VM = 1) and segment selectors and
control returns to the interrupted V86 task.

3.14.4 Entering and Leaving Virtual 8086 Mode
V86 mode is entered from protected mode by either exe-
cuting an IRET instruction at CPL = 0 or by task switching.
If an IRET is used, the stack must contain an EFLAGS
image with VM = 1. If a task switch is used, the TSS must
contain an EFLAGS image containing a 1 in the VM bit
position. The POPF instruction cannot be used to enter
V86 mode since the state of the VM bit is not affected.
V86 mode can only be exited as the result of an interrupt
or exception. The transition out must use a 32-bit trap or
interrupt gate that must point to a non-conforming privi-
lege level 0 segment (DPL = 0), or a 32-bit TSS. These
restrictions are required to permit the trap handler to IRET
back to the V86 program.
ww.national.com 88 Revision 3.1

R

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

3.15 FLOATING POINT UNIT OPERATIONS
The FPU is x87-instruction-set compatible and adheres to
the IEEE-754 standard. Because most applications that
contain FPU instructions intermix with integer instructions,
the GXm processor’s FPU achieves high performance by
completing integer and FPU operations in parallel.

3.15.1 FPU (Floating Point Unit) Register Set
In addition to the registers described to this point, the FPU
within the CPU provides the user eight data registers
accessed in a stack-like manner, a control register, and a
status register. The CPU also provides a data register tag
word that improves context switching and stack perfor-
mance by maintaining empty/non-empty status for each of
the eight data registers. In addition, registers contain
pointers to (a) the memory location containing the current
instruction word and (b) the memory location containing
the operand associated with the current instruction word
(if any).

3.15.2 FPU Tag Word Register
The CPU maintains a tag word register that is divided into
eight tag word fields. These fields assume one of four val-
ues depending on the contents of their associated data
registers: Valid (00), Zero (01), Special (10), and Empty
(11). Note: Denormal, Infinity, QNaN, SNaN and unsup-
ported formats are tagged as “Special”. Tag values are
maintained transparently by the CPU and are only avail-
able to the programmer indirectly through the FSTENV and
FSAVE instructions. The tag word with tag fields for each
associated physical register, tag(n), is shown in Table 3-39
on page 90.

3.15.3 FPU Status Register
The FPU communicates status information and operation
results to the CPU through the status register. The fields
in the FPU status register are detailed in Table 3-39 on
page 90. These fields include information related to
exception status, operation execution status, register sta-
tus, operand class, and comparison results. This register
is continuously accessible to the CPU regardless of the
state of the Control or Execution Units.

3.15.4 FPU Mode Control Register
The FPU Mode Control Register (MCR) shown in Table 3-
39 on page 90 is used by the GXm processor to specify
the operating mode of the FPU. The MCR register fields
include information related to the rounding mode selected,
the amount of precision to be used in the calculations, and
the exception conditions which should be reported to the
GXm processor using traps. The user controls precision,
rounding, and exception reporting by setting or clearing
appropriate bits in the MCR.
evision 3.1 89 www.national.com

w

Processor Programming (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 3-39. FPU Registers

Bit Name Description

FPU Tag Word Register (R/W) (Note)

15:14 TAG7 TAG7: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

13:12 TAG6 TAG6: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

11:10 TAG5 TAG5: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

9:8 TAG4 TAG4: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

7:6 TAG3 TAG3: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

5:4 TAG2 TAG2: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

3:2 TAG1 TAG1: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

1:0 TAG0 TAG0: 00 = Valid; 01 = Zero; 10 = Special; 11 = Empty.

FPU Status Register (R/W) (Note)

15 B Copy of ES bit (bit 7 this register)

14 C3 Condition code bit 3

13:11 S Top-of-Stack: Register number that points to the current TOS.

10:8 C[2:0] Condition code bits [2:0]

7 ES Error indicator: Set to 1 if unmasked exception detected.

6 SF Stack Full: FPU Status Register: or invalid register operation bit.

5 P Precision error exception bit

4 U Underflow error exception bit

3 O Overflow error exception bit

2 Z Divide-by-zero exception bit

1 D Denormalized-operand error exception bit

0 I Invalid operation exception bit

FPU Mode Control Register (R/W) (Note)

15:12 RSVD Reserved: Set to 0.

11:10 RC Rounding Control Bits:
00 = Round to nearest or even
01 = Round towards minus infinity
10 = Round towards plus infinity
11 = Truncate

9:8 PC Precision Control Bits:
00 = 24-bit mantissa
01 = Reserved
10 = 53-bit mantissa
11 = 64-bit mantissa

7:6 RSVD Reserved: Set to 0.

5 P Precision error exception bit

4 U FPU Mode Control Register

3 O Overflow error exception bit

2 Z Divide-by-zero exception bit

1 D Denormalized-operand error exception bit

0 I Invalid-operation exception bit

Note: R/W only through the environment at store and restore commands.
ww.national.com 90 Revision 3.1

R

G
eo

d
e™

G
X

m
P

ro
cesso

r

4.0 Integrated Functions
The Geode GXm processor integrates a memory control-
ler, graphics pipeline and display controller in a Unified
Memory Architecture (UMA). UMA simplifies system
designs and significantly reduces overall system costs
associated with high chip count, small footprint notebook
designs. Performance degradation in traditional UMA sys-
tems is reduced through the use of National Semiconduc-
tor’s Display Compression Technology (DCT).

Figure 4-1 shows the major functional blocks of the GXm
processor and how the internal bus interface unit operates
as the interface between the processor’s core units and
the integrated functions.

This section details how the integrated functions and inter-
nal bus interface unit operate and their respective regis-
ters.

Figure 4-1. Internal Block Diagram

Write-Back
Unit FPU

Internal Bus Interface Unit

Graphics Memory Display PCI

SDRAM Port CS5530 PCI Bus

Integer
Cache Unit

Integrated
Functions

MMU

(CRT/LCD TFT)

X-Bus

Pipeline Controller Controller Controller

C-Bus
evision 3.1 91 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.1 INTEGRATED FUNCTIONS PROGRAMMING INTERFACE
The GXm processor performs mapping for the dedicated
cache, graphics pipeline, display controller, memory con-
troller, and graphics memory, including the frame buffer. It
maps these to high memory addresses or GXm processor
memory space. The base address for these is controlled
by the Graphics Configuration Register (GCR, Index B8h),
which specifies address bits [31:30] in physical memory.

Figure 4-2 on page 93 shows the address map for the
GXm processor. When accessing the GXm processor
memory space, address bits [29:24] must be zero. This
allows the GXm processor a linear address space with a
total of 16 MB. Address bit 23 divides this space into 8 MB
for control (bit 23 = 0) and 8 MB for graphics memory (bit
23 = 1). In control space, bits [22:16] are not decoded, so
the programmer should set them to zero. Address bit 15
divides the remaining 64 KB address space into scratch-
pad RAM and PCI access (bit 15 = 0) and control regis-
ters (bit 15 = 1).

Device drivers must be responsible for performing physi-
cal-to-virtual memory-address translation, including allo-

cation of selectors that point to the GXm processor. The
processor may be accessed in protected mode by creat-
ing a selector with the physical address shown in Table 4-
1, and a limit of 16 MB. A selector with a 64 KB limit is
large enough to access all of the GXm processor’s regis-
ters and scratchpad RAM.

4.1.1 Graphics Control Register
The GXm processor incorporates graphics functions that
require registers to implement and control them. Most of
these registers are memory mapped and physically
located in the logical units they control. The mapping of
these units is controlled by this configuration register. The
Graphics Control Register (GCR, Index B8h) is I/O-
mapped because it must be accessed before memory
mapping can be enabled. Refer to Section 3.3.2.2 “Con-
figuration Registers” on page 47 for information on how to
access this register.

Table 4-1. GCR Register

Bit Name Description

Index B8h GCR Register (R/W) Default Value = 00h

7:4 RSVD Reserved: Set to 0.

3:2 SP Scratchpad Size: Specifies the size of the scratchpad cache.

00 = 0 KB
01 = 2 KB
10 = 3 KB
11 = 4 KB

1:0 GX GXm Base Address: Specifies the physical address for the base (GX_BASE) of the scratchpad RAM, the
graphics memory (frame buffer, compression buffer, etc.) and the other memory mapped registers.

00 = Scratchpad RAM, Graphics Subsystem, and memory-mapped configuration registers are disabled.
01 = Scratchpad RAM and control registers start at GX_BASE = 40000000h.
10 = Scratchpad RAM and control registers start at GX_BASE = 80000000h.
11 = Scratchpad RAM and control registers start at GX_BASE = C0000000h.
ww.national.com 92 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Figure 4-2. Geode™ GXm Processor Memory Space

Conventional Memory

UMBs and Expansion ROMs

Video BIOS

System BIOS

Extended Memory

PCI Access

Scratchpad

VGA/MDA
Frame Buffers

(Soft VGA and/or PCA/ISA)

Internal Bus IF Unit Registers

Graphics Pipeline Registers

SMM System Code

(Frame Buffer, etc.)

PCI Access

ROM Access
(256 KB)

0h

A0000h (640 KB)

C0000h

E0000h

100000h (1 MB)

E8000h

GX_BASE+8000h

GX_BASE+9000h
GX_BASE+400000h

GX_BASE+800000h

GX_BASE+1000000h

FFFC0000h

FFFFFFFFh (4 GB)

Extended Memory

Graphics Memory
(Frame Buffer, etc.)

0h

A0000h (640 KB)

C0000h

E0000h

100000h (1 MB)

E8000h
Shadowed Video BIOS

Shadowed System BIOS

SMM System Code

Physical Address Map

DRAM Map

MAX

*GBADD or Top of DRAM *Top of DRAM

PCI Access

PCI Access

Display Controller Registers

Memory Controller Registers

Graphics Memory

* See BC_DRAM_TOP Table 4-10 on page 101 or MC_GBASE_ADD on page 111.

(See Table 4-29 on page 136)

(See Table 4-24 on page 124)

(See Table 4-9 on page 101)

GX_BASE (See Table
4-1 on page 92)

FFFF FFFFh
MAX

Conventional Memory

UMBs and
Expansion ROMs

GX_BASE+8500h

GX_BASE+8400h
(See Table 4-15 on page 108)

GX_BASE+8300h

GX_BASE+8100h

(See Table 4-5 on page 97)

GX_BASE+1000h

Power Management Registers
(See Table 6-1 on page 179)
evision 3.1 93 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.1.2 Control Registers
The control registers for the GXm processor use 32 KB of
the memory map, starting at GX_BASE+8000h (see Fig-
ure 4-2 on page 93). This area is divided into internal bus
interface unit, graphics pipeline, display controller, mem-
ory controller, and power management sections:

• The internal bus interface unit maps 100h locations
starting at GX_BASE+8000h.

• The graphics pipeline maps 200h locations starting at
GX_BASE+8100h.

• The display controller maps 100h locations starting at
GX_BASE+8300h.

• The memory controller maps 100h locations starting at
GX_BASE+8400h

• GX_BASE+8500h-8FFFh is dedicated to power
management registers for the serial packet transmis-
sion control, the user-defined power management
address space, Suspend Refresh, and SMI status for
Suspend/Resume.

The register descriptions are contained in the individual
subsections of this chapter. Accesses to undefined regis-
ters in the GXm processor control register space will not
cause a hardware error.

4.1.3 Graphics Memory
The GXm processor’s graphics memory is mapped into 8
MB starting at GX_BASE+800000h. This area includes
the frame buffer memory and storage for internal display
controller state. The frame buffer is a linear map whose
size depends on the current resolution setup in the mem-
ory controller. Frame buffer scan lines are not contiguous
in many resolutions, so software that renders to the frame
buffer must use a skip count to advance between scan
lines. The display controller uses the graphics memory
that lies between scan lines for internal state. For this rea-
son, accessing graphics memory between the end of a
scan line and the start of another can cause display prob-
lems. The skip count for all supported resolutions is
shown in Table 4-2.

Graphics memory is allocated from system DRAM by the
system BIOS. The graphics memory size is programmed
by setting the graphics memory base address in the mem-
ory controller. Display drivers communicate with system
BIOS about resolution changes, to ensure that the correct
amount of graphics memory is allocated. When a graphics
resolution change requires an increased amount of graph-
ics memory, the system must be rebooted! The reason for
this restriction is that no mechanism exists to recover sys-
tem DRAM from the operating system without rebooting.

Table 4-2. Display Resolution Skip Counts

Screen
Resolution

Pixel
Depth

Skip
Count

640x480 8 bits 1024

640x480 16 bits 2048

800x600 8 bits 1024

800x600 16 bits 2048

1024x768 8 bits 1024

1024x768 16 bits 2048
ww.national.com 94 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.1.4 L1 Cache Controller
The GXm processor contains an on-board 16 KB unified
data/instruction L1 cache. It operates in write-back mode.
Since the memory controller is also on-board, the L1
cache requires no external logic to maintain coherency. All
DMA cycles automatically snoop the L1 cache. For
improved graphics performance, part of the L1 cache
operates as a scratchpad RAM to be used by the graphics
pipeline as a BLT Buffer.

The CD bit (Cache Disable, bit 30) in CR0 globally con-
trols the operating mode of the L1 cache. LCD and LWT,
Local Cache Disable and Local Write-through bits in the
Translation Lookaside Buffer, control the mode on a page-
by-page basis. Additionally, memory configuration control
can specify certain memory regions as non-cacheable.

If the cache is disabled, no further cache line fills occur.
However, data already present in the cache continues to
be used. For the cache to be completely disabled, the
cache must be invalidated with a WBINVD instruction
after the cache has been disabled.

Write-back caching improves performance by relieving
congestion on slower external buses. With four dirty bits,
the cache marks dirty locations on a double-word basis.
This further reduces the number of double-word bus write

operations needed during a replacement or flush opera-
tion.

The GXm processor will cache SMM regions. This speeds
up system management overhead to allow for hardware
emulation such as VGA.

The cache of the GXm processor provides the ability to
redefine 2 KB, 3 KB, or 4 KB of the L1 cache to be
scratchpad memory. The scratchpad area is memory
mapped to the upper memory region defined by the GCR
register (Index B8h). The valid bits for the scratchpad
RAM will always be true and the scratchpad RAM loca-
tions will never be flushed to memory. The scratchpad
RAM serves as a general purpose high speed RAM and
as a BLT buffer for the graphics pipeline. Incrementing
BLT buffer address registers have been added to enable
the graphics pipeline to access this memory as a BLT
buffer. A 16-byte line buffer dedicated to the graphics
pipeline accesses has been added to minimize graphics
interference with normal CPU operation.

Table 4-3 summarizes the registers contained in the L1
cache. These registers do not have default values and
must be initialized before use. Table 4-4 on page 96 gives
the register/bit formats.

Table 4-3. L1 Cache BitBLT Register Summary

Mnemonic Name Function

L1_BB0_BASE
L1 Cache BitBLT 0 Base Address

Contains the address offset to the first byte of BLT Buffer 0 in the scratch-
pad memory.

L1_BB0_POINTER
L1 Cache BitBLT 0 Pointer

Contains the address offset to the current line of BLT Buffer 0 in the
scratchpad memory.

L1_BB1_BASE
L1 Cache BitBLT 1 Base Address

Contains the offset to the first byte of BLT Buffer 1 in the scratchpad mem-
ory.

L1_BB1_POINTER
L1 Cache BitBLT 1 Pointer

Contains the address offset to the current line of BLT Buffer 1 in the
scratchpad memory.

Note: For information on accessing these registers, refer to Section 4.1.6 “CPU_READ/CPU_WRITE Instructions”
on page 99.
evision 3.1 95 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 4-4. L1 Cache BitBLT Registers

Bit Name Description

L1_BB0_BASE Register (R/W) Default Value = None

15:12 RSVD Reserved: Set to 0.

11:4 INDEX BitBLT 0 Base Index: The index to the starting line of BLT Buffer 0.

3:0 BYTE BitBLT 0 Starting Byte: Determines which byte of the starting line is the beginning of BLT Buffer 0.

L1_BB0_POINTER Register (R/W) Default Value = None

15:12 RSVD Reserved: Set to 0.

11:4 INDEX BitBLT 0 Pointer Index: The index to the current line of BLT Buffer 0.

3:0 RSVD Reserved: Set to 0.

L1_BB1_Base Register (R/W) Default Value = None

15:12 RSVD Reserved: Set to 0.

11:4 INDEX BitBLT 1 Base Index: The index to the starting line of BLT Buffer 1.

3:0 BYTE BitBLT 1 Starting Byte: Determines which byte of the starting line is the beginning of BLT Buffer 1.

L1_BB1_POINTER Register (R/W) Default Value = None

15:12 RSVD Reserved: Set to 0.

11:4 INDEX BitBLT 1 Pointer Index: The index to the current line of BLT Buffer 1.

3:0 RSVD Reserved: Set to 0.
ww.national.com 96 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.1.4.1 Scratchpad Memory
The scratchpad RAM is a dedicated high-speed memory
cache that contains BLT buffers, SMM header, and a
scratchpad area for display drivers. It provides both L1
cache performance and a dedicated resource that cannot
be thrown out by other system activity. The configuration
of the scratchpad is based on graphics resolution and is
described in Table 4-5.

The scratchpad memory is part of the on-chip L1 cache
memory. The memory size is controlled by bits in the GCR
register (Index B8h). The scratchpad memory can be dis-
abled, or sized to 2 KB, 3 KB, or 4 KB. The remaining L1
cache size is 16 KB minus the scratchpad size, and all of
the scratchpad area is subtracted from a single way.

The scratchpad memory is used by display drivers and
virtualization software. Because this resource must be
tightly controlled to avoid conflicts, application software
and third-party drivers should avoid accesses to the
scratchpad area.

The display driver creates and manages two BLT buffers
from within the scratchpad area. These BLT buffers are
used to transfer source data from system memory into the
frame buffer, or for destination data from system memory

or the frame buffer. The graphics pipeline accesses the
BLT buffers for many common operations, including Bit-
BLT transfers, output primitives, and raster text. Display
drivers also use a small portion of the scratchpad as an
extended register file, since scratchpad read and write
accesses are very fast compared to normal memory oper-
ations.

The virtualization software uses the scratchpad area to
store critical SMM information, including the SMI header
and SMM system state. No SMM code currently resides in
the scratchpad area, although this is an option for future
products.

When the BLT buffer pointer is used (refer to Table 4-8 on
page 99) addresses outside the scratchpad range will
wrap around back into the scratchpad RAM. Table 4-5
shows the allocation of scratchpad memory for the 2 KB
and 3 KB configurations of the scratchpad. The 2 KB con-
figuration uses GX_BASE+0800h to GX_BASE+1000h.
The 3 KB configuration uses GX_BASE+0400h to
GX_BASE+1000h. These configurations are fixed by the
system BIOS during boot and cannot be changed without
rebooting the system.

Table 4-5. Scratchpad Organization

2 KB Configuration 3 KB Configuration

DescriptionOffset Size Offset Size

GX_BASE + 0EE0h 288 bytes GX_BASE + 0EE0h 288 bytes SMM scratchpad

GX_BASE + 0E60h 128 bytes GX_BASE + 0E60h 128 bytes Driver scratchpad

GX_BASE + 0B30h 816 bytes GX_BASE + 0930h 1328 bytes BLT Buffer 0

GX_BASE + 0800h 816 bytes GX_BASE + 0400h 1328 bytes BLT Buffer 1
evision 3.1 97 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.1.5 Display Driver Instructions
The GXm processor has four instructions to access pro-
cessor core registers. Table 4-6 shows these instructions.

Adding CPU instructions does not create a compatibility
problem for applications that may depend on receiving
illegal opcode traps. The solution is to make these instruc-
tions generate an illegal opcode trap unless a compatibil-
ity bit is explicitly set. The GXm processor uses the
scratchpad size field (bits [3:2] in GCR, Index B8h) to

enable or disable all of the graphics instructions. If the
scratchpad size bits are zero, meaning that none of the
cache is defined as scratchpad, then hardware will
assume that the graphics controller is not being used and
the graphics instructions will be disabled. Any other
scratchpad size will enable all of the new instructions.
Note that the base address of the memory map in the
GCR register can still be set up to allow access to the
memory controller registers.

Table 4-6. Display Driver Instructions

Syntax Opcode Description

BB0_RESET 0F3A Reset the BLT Buffer 0 pointer to the base.

BB1_RESET 0F3B Reset the BLT Buffer 1 pointer to the base.

CPU_WRITE 0F3C Write data to CPU internal register.

CPU_READ 0F3D Read data from CPU internal register.
ww.national.com 98 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.1.6 CPU_READ/CPU_WRITE Instructions
The GXm processor has several internal registers that
control the BLT buffer and power management circuitry in
the dedicated cache subsystem. To avoid adding addi-
tional instructions to read and write these registers, the
GXm processor has a general mechanism to access inter-
nal CPU registers with reasonable performance. The
GXm processor has two special instructions to read and
write CPU registers: CPU_READ and CPU_WRITE. Both
instructions fetch a 32-bit register address from EBX as
shown in Table 4-7 and Table 4-8. CPU_WRITE uses EAX
for the source data, and CPU_READ uses EAX as the

destination. Both instructions always transfer 32 bits of
data.

These instructions work by initiating a special I/O transac-
tion where the high address bit is set. This provides a very
large address space for internal CPU registers.

The BLT buffer base registers define the starting physical
addresses of the BLT buffers located within the dedicated
L1 cache. The dedicated cache can be configured for up
to 4 KB, so 12 address bits are required for each base
address.

Table 4-7. CPU-Access Instructions

Syntax Opcode Registers Length

CPU_WRITE 0F3Ch EBX = 32-bit address, EAX = Source 2 bytes

CPU_READ 0F3Dh EBX = 32-bit address, EAX = Destination 2 bytes

Table 4-8. Address Map for CPU-Access Registers

Register EBX Address Description

L1_BB0_BASE FFFFFF0Ch BLT Buffer 0 base address (see Table 4-4 on page 96).

L1_BB1_BASE FFFFFF1Ch BLT Buffer 1 base address (see Table 4-4 on page 96).

L1_BB0_POINTER FFFFFF2Ch BLT Buffer 0 pointer address (see Table 4-4 on page 96).

L1_BB1_POINTER FFFFFF3Ch BLT Buffer 1 pointer address (see Table 4-4 on page 96).

PM_BASE FFFFFF6Ch Power management base address (see Table 6-3 on page 181).

PM_MASK FFFFFF7Ch Power management address mask (see Table 6-3 on page 181).
evision 3.1 99 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.2 INTERNAL BUS INTERFACE UNIT
The Geode GXm processor’s internal bus interface unit
provides control and interface functions to the internal C-
Bus (processor core, FPU, graphics pipeline, and L1
cache) and X-Bus (PCI controller, display controller, mem-
ory controller, and graphics accelerator) paths, provides
control for several sections of memory, and plays an
important part in the virtual VGA function.

The internal bus interface unit performs, without loss of
compatibility, the functions that previously required the
external pins IGNNE# and A20M#.

The internal bus interface unit provides configuration con-
trol for up to 20 different regions within system memory. It
provides 19 configurable memory regions in the address
space between 640 KB and 1 MB, with separate control
for read access, write access, cacheability, and PCI
access.

The memory configuration control includes a top-of-mem-
ory register and hardware support for VGA emulation
plus, the capability to program 20 regions of the memory
map for different ROM configurations, and to locate mem-
ory-mapped I/O.

4.2.1 FPU Error Support
The FERR# (floating point error) and IGNNE# (ignore
numeric error) pins of the 486 microprocessor have been
replaced with an IRQ13 (interrupt request 13) pin. In DOS
systems, FPU errors are reported by the external vector
13. This mode of operation is specified by clearing the NE
bit (bit 5) in the CR0 register. If the NE bit is active, the
IRQ13 output of the GXm processor is always driven inac-
tive. If the NE bit is cleared, the GXm processor drives
IRQ13 active when the ES bit (bit 7) in the FPU Status
Register is set high. Software must respond to this inter-
rupt with an OUT instruction of an 8-bit operand to F0h or
F1h. When the OUT cycle occurs, the IRQ13 pin is driven
inactive and the FPU starts ignoring numeric errors. When
the ES bit is cleared, the FPU resumes monitoring
numeric errors.

4.2.2 A20M Support
The GXm processor provides an A20M bit in the
BC_XMAP_1 Register (GX_BASE+ 8004h[21]) to replace
the A20M# pin on the 486 microprocessor. When the
A20M bit is set high, all non-SMI accesses will have
address bit 20 forced to zero. External hardware must do
an SMI trap on I/O locations that toggle the A20M# pin.
The SMI software can then change the A20M bit as
desired.

This maintains compatibility with software that depends
on wrapping the address at bit 20.

4.2.3 SMI Generation
The internal bus interface unit can generate SMI inter-
rupts whenever an I/O cycle in the VGA address range is
3B0h-3BFh and 3C0h-3CFh. An I/O cycle to 3D0h-3DFh
can be trapped. In case an external VGA card is present,
the Internal Bus Interface Unit default values will not gen-
erate an interrupt on VGA accesses. (Refer to Section
5.2.3.1 “SMI Generation” on page 168 for instructions on
how to configure the registers to generate the SMI inter-
rupt.)

4.2.4 640 KB to 1 MB Region
There are 19 configurable memory regions located
between 640 KB and 1 MB. Three of the regions are
A0000h-AFFFFh, B0000h-B7FFFh, and B8000h-
BFFFFh. The area between C0000h and FFFFFh is
divided into 16 KB segments to form the remaining 16
regions. Each of these regions has four control bits to
allow any combination of read-access, write-access,
cache, and PCI-access capabilities (Table 4-11 on page
102).

In addition, each of the three regions defined in the
A0000h-BFFFh area of memory has a VGA control bit that
can cause the graphics pipeline to handle accesses to
that section of memory (see Table 5-3 on page 170).
ww.national.com 100 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.2.5 Internal Bus Interface Unit Registers
The Internal Bus Interface Unit maps 100h locations start-
ing at GX_BASE+8000h. Refer to Section 4.1.2 “Control
Registers” on page 94 for instructions on accessing these
registers.

Table 4-9 summarizes the four 32-bit registers contained
in the Internal Bus Interface Unit and Table 4-10 gives the
register/bit formats.

Table 4-9. Internal Bus Interface Unit Register Summary

GX_BASE+
Memory Offset Type Name/Function

Default
Value

8000h-8003h R/W BC_DRAM_TOP

Top of DRAM: Contains the highest available address of system memory not
including the memory that is set aside for graphics memory, which corresponds to
1 GByte of memory. The largest possible value for the register is 3FFFFFFFh.

3FFFFFFFh

8004h-8007h R/W BC_XMAP_1

Memory X-Bus Map Register 1 (A and B Region Control: Contains the region
control of the A and B regions and the SMI controls required for VGA emulation.
PCI access to internal registers and the A20M function are also controlled by this
register.

00000000h

8008h-800Bh R/W BC_XMAP_2

Memory X-Bus Map Register 2 (C and D Region Control): Contains region con-
trol fields for eight regions in the address range C0h through DCh.

00000000h

800Ch-800Fh R/W BC_XMAP_3

Memory X-Bus Map Register 3 (E and F Region Control): Contains the region
control fields for memory regions in the address range E0h through FCh.

00000000h

Table 4-10. Internal Bus Interface Unit Registers

Bit Name Description

GX_BASE+8000h-8003h BC_DRAM_TOP Register (R/W) Default Value = 3FFFFFFFh

31:30 RSVD Reserved: Set to 0.

29:17 TOP OF
DRAM

Top of DRAM: Maximum value is FFFh.

16:0 1FFFF Granularity: Must be set to 1FFFFh (128 KB).

GX_BASE+8004h-8007h BC_XMAP_1 Register (R/W) Default Value = 00000000h

31:29 RSVD Reserved: Set to 0.

28 GEB8 Graphics Enable for B8 Region: Allow memory R/W operations for address range B8000h-BFFFFh be
directed to the graphics pipeline: 0 = Disable; 1 = Enable.

(Used for VGA emulation.)

27:24 B8 B8 Region: Region control field for address range B8000h-BFFFFh.

Note: Refer to Table 4-11 for decode.

23 RSVD Reserved: Set to 0.

22 PRAE PCI Register Access Enable: Allow PCI Slave to access internal registers on the X-Bus:
0 = Disable; 1 = Enable.

21 A20M Address Bit 20 Mask: Address bit 20 is always forced to a zero except for SMI accesses:
0 = Disable; 1 = Enable.

20 GEB0 Graphics Enable for B0 Region: Allow memory R/W operations for address range B0000h-B7FFFh be
directed to the graphics pipeline: 0 = Disable; 1 = Enable.

(Used for VGA emulation.)

19:16 B0 B0 Region: Region control field for address range B0000h-B7FFFh.

Note: Refer to Table 4-11 for decode.

15 SMID SMID: All I/O accesses for address range 3D0h-3DFh generate an SMI: 0 = Disable; 1 = Enable.

(Used for VGA virtualization.)

14 SMIC SMIC: All I/O accesses for address range 3C0h-3CFh generate an SMI: 0 = Disable; 1 = Enable.

(Used for VGA virtualization.)

13 SMIB SMIB: All I/O accesses for address range 3B0h-3BFh generate an SMI: 0 = Disable; 1 = Enable

(Used for VGA virtualization.)
evision 3.1 101 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

12:8 RSVD Reserved: Set to 0.

7 XPD X-Bus Pipeline Disable: When cleared, the address for the next cycle can be driven on the internal X-
Bus before the completion of the data phase of the current cycle.

6 GNWS X-Bus Graphics Pipe No Wait State: Data driven on X-Bus from graphics pipeline:
0 = 1 full clock before X_DSX is asserted
1 = On the same clock in which X_RDY is asserted

5 XNWS X-Bus No Wait State: Data driven on X-Bus from Internal Bus Interface Unit:
0 = 1 full clock before X_DSX is asserted
1 = On the same clock in which X_RDY is asserted

4 GEA Graphics Enable for A Region: Memory R/W operations for address range A0000h-AFFFFh are
directed to the graphics pipeline: 0 = Disable; 1 = Enable.

(Used for VGA emulation.)

3:0 A0 A0 Region: Region control field for address range A0000h-AFFFFh.

Note: Refer to Table 4-11 for decode.

GX_BASE+8008h-800Bh BC_XMAP_2 Register (R/W) Default Value = 00000000h

31:28 DC DC Region: Region control field for address range DC000h to DFFFFh.

27:24 D8 D8 Region: Region control field for address range D8000h to DBFFFh.

23:20 D4 D4 Region: Region control field for address range D4000h to D7FFFh.

19:16 D0 D0 Region: Region control field for address range D0000h to D3FFFh.

15:12 CC CC Region: Region control field for address range CC000h to CFFFFh.

11:8 C8 C8 Region: Region control field for address range C8000h to CBFFF.

7:4 C4 C4 Region: Region control field for address range C4000h to C7FFFh.

3:0 C0 C0 Region: Region control field for address range C0000h to C3FFFh.

Note: Refer to Table 4-11 for decode.

GX_BASE+800Ch-800Fh BC_XMAP_3 Register (R/W) Default Value = 00000000h

31:28 FC FC Region: Region control field for address range FC000h to FFFFFh.

27:24 F8 F8 Region: Region control field for address range F8000h to FBFFFh.

23:20 F4 F4 Region: Region control field for address range F4000h to F7FFFh.

19:16 F0 F0 Region: Region control field for address range F0000h to F3FFFh.

15:12 EC EC Region: Region control field for address range EC000h to EFFFFh.

11:8 E8 E8 Region: Region control field for address range E8000h to EBFFFh.

7:4 E4 E4 Region: Region control field for address range E4000h to E7FFFh.

3:0 E0 E0 Region: Region control field for address range E0000h to E3FFFh.

Note: Refer to Table 4-11 for decode.

Table 4-10. Internal Bus Interface Unit Registers (Continued)

Bit Name Description

Table 4-11. Region-Control-Field Bit Definitions

Bit
Position Function

3 PCI Accessible: The PCI slave can access this memory if this bit is set high and if the appropriate Read or Write Enable
bit is also set high.

2 Cache Enable: Caching this region of memory is inhibited if this bit is cleared.

1 Write Enable: Write operations to this region of memory are allowed if this bit is set high. If this bit is cleared, then write
operations in this region are directed to the PCI master.

0 Read Enable: Read operations to this region of memory are allowed if this bit is set high. If this bit is cleared then read
operations in this region are directed to the PCI master.

Note: If Cache Enable = 1 and Write Enable = 1, the Write Enable determination occurs after the data has passed the cache. Since
the cache does write update, write data will change the cache if the address is cached. If a read then occurs to that address.
the data will come from the written data that is in the cache even though the address is not writable. If this must be avoided
then do not make the region cacheable.
ww.national.com 102 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.3 MEMORY CONTROLLER
The memory controller operates with the Processor Inter-
face (X-Bus), Display Controller Interface, Graphics Pipe-
line Interface, and the SDRAM Interface.

The GXm processor supports LVTTL (low voltage TTL)
technology. LVTTL technology allows the SDRAM inter-
face of the memory controller to run at frequencies up to
100 MHz.

The SDRAM clock is a function of the core clock. The
SDRAM bus can be run at speeds that range between 66

MHz and 100 MHz. The core clock can be divided down
from two to five in half clock increments to generate the
SDRAM clock. SDRAM frequencies between 79 MHz and
100 MHz are only supported for certain types of closed
systems and strict design rules must be adhered to. For
further details, please contact your local National Semi-
conductor technical support representative.

A basic block diagram of the memory controller is shown
in Figure 4-3.

Figure 4-3. Memory Controller Block Diagram

Address

Processor/PCI

Display Controller

Graphics Pipeline

Processor/PCI Address

Processor I/F

Display Controller I/F

Graphics Pipeline I/F

Arbiter
SDRAM

RASA#,RASB#

CKEA#, CKEB#

WEA#/WEB#

Configuration

MA[12:0]

BA[1:0]
Display Controller Address

Graphics Pipeline Address

Processor/PCI Data

Display Controller Data

Graphics Pipeline Data

Processor/PCI

Display Controller

MD[63:0]

Read Buffer
(16 Bytes)

Sequence
Controller

Timing
Controller

Registers

Control/MUX

Write Buffer (16 Bytes)

Write Buffer (16 Bytes)

Graphics Controller
Write Buffer (16 Bytes)

Control

Control

Control

DQM[7:0]

CASA#,CASB#

CS[3:0]#

REF

Clock Divider
2, 2.5, 3, 3.5, 4 SDCLK[3:0]Core Clock (ph2)
evision 3.1 103 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.3.1 Memory Array Configuration
The memory controller supports up to two 64-bit, 168-pin
unbuffered SDRAM modules (DIMM). Each DIMM
receives a unique set of RAS, CAS, WE, and CKE lines.
Each DIMM can have one or two 64-bit DIMM banks.
Each DIMM bank is selected by a unique chip select (CS).
There are four chip select signals to choose between a
total of four DIMM banks. Each DIMM bank also receives
a unique SDCLK. Each DIMM bank can have two or four

component banks. Component bank selection is done
through the bank address (BA) lines.

For example, 16 Mb SDRAMS have two component
banks and 64 Mb SDRAMs have two or four component
banks. For single DIMM bank modules, the memory con-
troller can support two DIMMS with a maximum of eight
component banks. For dual DIMM bank modules, the
memory controller can support two DIMMs with a maxi-
mum of 16 component banks. Up to 16 banks can be
open at the same time.

Figure 4-4. Memory Array Configuration

MA[12:0]
BA[1:0]

MD[63:0]
DQM[7:0]

RASA#
CASA#
WEA#

CS1#
CS0#

CKEA
SDCLK0
SDCLK1

RASB#
CASB#
WEB#

CS3#
CS2#

CKEB
SDCLK2
SDCLK3

A[12:0]
BA[1:0]
MD[63:0]
DQM[7:0]
RAS#
CAS#
WE#
S0#, S2#

CKE0
CK0, CK2

A[12:0]
BA[1:0]
MD[63:0]
DQM[7:0]
RAS#
CAS#
WE#

S1#, S3#
CKE1

CK1, CK3

Bank 0 Bank 1

A[12:0]
BA[1:0]
MD[63:0]
DQM[7:0]
RAS#
CAS#
WE#
S0#, S2#

CKE0
CK0, CK2

A[12:0]
BA[1:0]
MD[63:0]
DQM[7:0]
RAS#
CAS#
WE#

S1#, S3#
CKE1

CK1, CK3

Bank 0 Bank 1

DIMM 1

DIMM 0

Geode™ GXm
Processor
ww.national.com 104 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.3.2 Memory Organizations
The memory controller supports JEDEC standard synchronous DRAMs in 16 Mb and 64 Mb configurations. Supported
configurations are shown in Table 4-12.

Table 4-12. Synchronous DRAM Configurations

Depth Organization
Row

Address Column Address
Bank

Address
Total # of

Address bits

1 1 Mx16 A10-A0 A7-A0 BA0 20

2 2 Mx8 A10-A0 A8-A0 BA0 21

2 Mx32 A10-A0 A7-A0 BA1-BA0 21

2 Mx32 A10-A0 A8-A0 BA0 21

2 Mx32 A11-A0 A6-A0 BA1-BA0 21

2 Mx32 A12-A0 A6-A0 BA0 21

4 4 Mx4 A10-A0 A9-A0 BA0 22

4 Mx16 A11-A0 A7-A0 BA1-BA0 22

4 Mx16 A12-A0 A7-A0 BA0 22

4 Mx16 A10-A0 A9-A0 BA0 22

8 8 Mx8 A11-A0 A8-A0 BA1-BA0 23

8 Mx8 A12-A0 A8-A0 BA0 23

8 Mx32 A11-A0 A8-A0 BA1-BA0 23

8 Mx32 A12-A0 A7-A0 BA1-BA0 23

16 16 Mx4 A11-A0 A9-A0 BA1-BA0 24

16 Mx4 A12-A0 A9-A0 BA0 24

16 Mx16 A12-A0 A8-A0 BA1-BA0 24

16 Mx16 A11-A0 A9-A0 BA1-BA0 24

32 32 Mx8 A12-A0 A9-A0 BA1-BA0 25

64 64 Mx4 A12-A0 A9-A0,A11 BA1-BA0 26
evision 3.1 105 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.3.3 SDRAM Commands
This subsection discusses the SDRAM commands sup-
ported by the memory controller. Table 4-13 summarizes
these commands followed by detailed operational infor-
mation regarding each command.

MRS — The Mode Register command defines the specific
mode of operation of the SDRAM. This definition includes
the selection of burst length, burst type, and CAS latency.
CAS latency is the delay, in clock cycles, between the reg-
istration of a read command and the availability of the first
piece of output data.

The burst length is programmed by address bits MA[2:0],
the burst type by address bit MA3 and the CAS latency by
address bits MA[6:4].

The memory controller only supports a burst length of two
and burst type of interleave.

The field value on MA[12:0] and BA[1:0] during the MRS
cycle are as shown in Table 4-14.

PRE — The precharge command is used to deactivate
the open row in a particular bank or the open row in both
component banks. Address pin MA10 determines whether
one or both banks are to be precharged. In the case
where only one component bank is to be precharged,
BA[1:0] selects which bank. Once a bank has been pre-
charged, it is in the Idle state and must be activated prior
to any read or write commands.

Table 4-13. Basic Command Truth Table

Name Command CS RAS CAS WE

MRS Mode Register Set L L L L

PRE Bank Precharge L L H L

ACT Bank activate/row-
address entry

L L H H

WRT Column address
entry/Write operation

L H L L

READ Column address
entry/Read operation

L H L H

DESL Control input inhibit/
No operation

H X X X

REFR* CBR Refresh or Auto
Refresh

L L L H

Note: *This command is CBR (CAS-before-RAS) refresh
when CKE is high and self refresh when CKE is low.

Table 4-14. Address Line Programming during MRS Cycles

BA[1:0] MA[12:7] MA[6:4] MA3 MA2 MA1 MA0

00 000000 CAS Latency:

000 = Reserved
010 = 2 CLK
100 = 4 CLK
110 = 6 CLK
001 = 1 CLK
011 = 3 CLK
101 = 5 CLK
111 = 7 CLK

1 0 0 1
ww.national.com 106 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

ACT — The activate command is used to open a row in a
particular bank for a subsequent access. The value on the
BA lines selects the bank, and the address on the MA
lines selects the row. This row remains open for accesses
until a precharge command is issued to that bank. A pre-
charge command must be issued before opening a differ-
ent row in the same bank.

READ — The read command is used to initiate a burst
read access to an active row. The value on the BA lines
select the component bank, and the address provided by
the MA lines select the starting column location. The
memory controller does not perform auto precharge dur-
ing read operations. Valid data-out from the starting col-
umn address is available following the CAS latency after
the read command. The DQM signals are asserted low
during read operations.

WRT — The write command is used to initiate a burst
write access to an active row. The value on the BA liens
select the component bank, and the address provided by
the MA lines select the starting column location. The
memory controller does not perform auto precharge dur-
ing write operations. This leaves the page open for subse-
quent accesses. Data appearing on the MD lines is
written to the DQM logic level appearing coincident with
the data. If the DQM signal is registered low, the corre-
sponding data will be written to memory. If the DQM is
driven high, the corresponding data will be ignored, and a
write will not be executed to that location.

REF — Auto refresh is used during normal operation and
is analogous to the CAS-before-RAS (CBR) refresh in
conventional DRAMs.During auto refresh the address bits
are "don’t care". The memory controller precharges all
banks prior to an auto refresh cycle. Auto refresh cycles
are issued approximately 15 µs apart.

The self refresh command is used to retain data in the
SDRAMs even when the rest of the system is powered
down. The self refresh command is similar to an auto
refresh command except CKE is disabled (low). The
memory controller issues a self refresh command during
3V Suspend mode when all the internal clocks are
stopped.

4.3.3.1 SDRAM Initialization Sequence
After the clocks have started and stabilized, the memory
controller SDRAM initialization sequence begins:

1) Precharge all component banks
2) Perform eight refresh cycles
3) Perform an MRS cycle
4) Perform eight refresh cycles

This sequence is compatible with the majority of SDRAMs
available from the various vendors.
evision 3.1 107 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.3.4 Memory Controller Register Description
The Memory Controller maps 100h locations starting at
GX_BASE+8400h. Refer to Section 4.1.2 “Control Regis-
ters” on page 94 for instructions on accessing these regis-
ters.

Table 4-15 summarizes the 32-bit registers contained in
the memory controller. Table 4-16 gives detailed regis-
ter/bit formats.

Table 4-15. Memory Controller Register Summary

GX_BASE+
Memory Offset Type Name/Function Default Value

8400h-8403h R/W MC_MEM_CNTRL1

Memory Controller Control Register 1: Memory controller configuration informa-
tion e.g., refresh interval, SDCLK ratio, etc.

248C0040h

8404h-8407h R/W MC_MEM_CNTRL2

Memory Controller Control Register 2: Memory controller configuration informa-
tion to control SDCLK.

00000801h

8408h-840Bh R/W MC_BANK_CFG

Memory Controller Bank Configuration: Contains the configuration information for
the each of the two DIMMs in the memory array. BIOS programs this register dur-
ing boot by running an autosizing routine on the memory.

41104110h

840Ch-840Fh R/W MC_SYNC_TIM1

Memory Controller Synchronous Timing Register 1: SDRAM memory timing
information - This register controls the memory timing of all four banks of DRAM.
BIOS programs this register based on the processor frequency and the SDCLK
divide ratio.

2A733225h

8414h-8417h R/W MC_GBASE_ADD

Memory Controller Graphics Base Address Register: This register sets the
graphics memory base address, which is programmable on 512 KB boundaries.
The display controller and the graphics pipeline generate a 20-bit DWORD offset
that is added to the graphics memory base address to form the physical memory
address. Typically, the graphics memory region is located at the top of physical
memory.

00000000h

8418h-841Bh R/W MC_DR_ADD

Memory Controller Dirty RAM Address Register: This register is used to set the
Dirty RAM address index for processor diagnostic access. This register should be
initialized before accessing the MC_DR_ACC register

00000000h

841Ch-841Fh R/W MC_DR_ACC

Memory Controller Dirty RAM Access Register: This register is used to access
the Dirty RAM. A read/write to this register will access the Dirty RAM at the
address specified in the MC_DR_ADD register.

0000000xh

Table 4-16. Memory Controller Registers

Bit Name Description

GX_BASE+ 8400h-8403h MC_MEM_CNTRL1 (R/W) Default Value = 248C0040h

31:29 MDHDCTL MD High Drive Control: Controls the high drive and slew rate of the memory data bus (MD[63:0]):

000 = Tristate
001 = Smallest drive strength
010 -110 = Represents gradual drive strength increase
111 = Highest drive strength

28:26 MABAHDCTL MA/BA High Drive Control: Controls the high drive and slew rate of the memory address bus includ-
ing the memory bank address bus (MA[12:0] and BA[1:0]):

000 = Tristate
001 = Smallest drive strength
010 -110 = Represents gradual drive strength increase
111 = Highest drive strength
ww.national.com 108 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

25:23 MEMHDCTL Control High Drive/Slew Control: Controls the high drive and slew rate of the memory control sig-
nals (CASA#, CASB#, RASA#, RASB#, CKEA, CKEB, WEA#, WEA#, DQM[7:0], and CS[3:0]#):

000 = Tristate
001 = Smallest drive strength
010 -110 = Represents gradual drive strength increase
111 = Highest drive strength

22 RSVD Reserved: Set to 0.

21 RSVD Reserved: Must be set to 0. Wait state on the X-Bus x_data during read cycles - for debug only.

20:18 SDCLKRATE SDRAM Clock Ratio: Selects SDRAM clock ratio:

000 = Reserved 100 = ÷ 3.5
001 = ÷ 2 101 = ÷ 4
010 = ÷ 2.5 110 = ÷ 4.5
011 = ÷ 3 (Default) 111 = ÷ 5

Ratio does not take effect until the SDCLKSTRT bit (bit 17 of this register) transitions from 0 to 1.

17 SDCLKSTRT Start SDCLK: Start operating SDCLK using the new ratio and shift value (selected in bits [20:18] of
this register): 0 = Clear; 1 = Enable.

This bit should be cleared every time before a one is written to it in order to start SDCLK or to change
the shift value.

16:8 RFSHRATE Refresh Interval: This field determines the number of processor core clocks multiplied by 64 between
refresh cycles to the DRAM. By default, the refresh interval is 00h. This implies that refresh is turned
off by default.

7:6 RFSHSTAG Refresh Staggering: This field determines number of clocks between REF commands to different
banks during refresh cycles:

00 = 0 SDRAM clocks 10 = 2 SDRAM clocks
01 = 1 SDRAM clocks (Default) 11 = 4 SDRAM clocks

Staggering is used to help reduce power spikes during refresh. When only DIMM0 is installed and it
has only one DIMM bank, then this field must be set to 00.

5 2CLKADDR Two Clock Address Setup: Assert memory address for one extra clock before CS# is asserted:
0 = Disable; 1 = Enable.

This can be used to compensate for address setup at high frequencies.

4 RFSHTST Test Refresh: This bit, when set high, generates a refresh request. This bit is only used for testing
purposes.

3 XBUSARB X-Bus Round Robin: When enabled, processor requests are arbitrated at the same priority level than
graphics pipeline requests and non-critical display controller requests. When disabled, processor
requests are arbitrated at a higher priority level. High priority display controller requests always have
the highest arbitration priority: 0 = Enable; 1 = Disable.

2 VGAWRP VGA Wrap Enable: Allow memory wrapping into the VGA memory address space from A0000h to
BFFFFh: 0 = Disable; 1 = Enable.

1 RSVD Reserved: Set to 0.

0 SDRAMPRG Program SDRAM: When this bit is set the memory controller will program the SDRAM MRS register
using LTMODE in MC_SYNC_TIM1.

This bit should be cleared every time before a one is written to it in order to program the SDRAM.

GX_BASE+8404h-8407h MC_MEM_CNTRL2 (R/W) Default Value = 00000801h

31:18 RSVD Reserved: Set to 0.

17:16 SDCLKRISE SDCLK Rising Delay: Controls the delay between the core clock and the rising edge of SDCLK dur-
ing all modes. (Set by BIOS.)

15:14 SDCLKFALL SDCLK Falling Delay: Controls the delay between the core clock and the falling edge of SDCLK dur-
ing 2.5 and 3.5 clock modes. (Set by BIOS.)

13:11 SDCLKHDCTL SDCLK High Drive/Slew Control: Controls the high drive and slew rate of SDCLK[3:0] and
SDCLK_OUT.

000 = Highest drive strength. (No braking applied in the pads)
001 = Smallest drive strength
010 -110 = Represent gradual drive strength increase
111 = Highest drive strength

10 SDCLKOMSK Mask SDCLK_OUT: 0 = Not masked; 1 = Mask.

Table 4-16. Memory Controller Registers (Continued)

Bit Name Description
evision 3.1 109 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

9 SDCLK3MSK Mask SDCLK3: 0 = Not masked; 1 = Mask.

8 SDCLK2MSK Mask SDCLK2: 0 = Not masked; 1 = Mask

7 SDCLK1MSK Mask SDCLK1: 0 = Not masked; 1 = Mask.

6 SDCLK0MSK Mask SDCLK0: 0 = Not masked; 1 = Mask

5:3 SHFTSDCLK Shift SDCLK: This function allows shifting SDCLK to meet SDRAM setup and hold time requirements.
The shift function will not take effect until the SDCLKSTRT bit (bit 17 of MC_MEM_CNTRL1) transi-
tions from 0 to 1:

000 = No shift 100 = Shift 2 core clocks
001 = Shift 0.5 core clock 101 = Shift 2.5 core clocks
010 = Shift 1 core clock 110 = Shift 3 core clocks
011 = Shift 1.5 core clock 111 = Reserved

Note: Refer to Figure 4-10 for an example of SDCLK shifting.

2 RSVD Reserved: Set to 0.

1 RD Read Data Phase: Selects if read data is latched one or two core clock after the rising edge of
SDCLK: 0 = 1 core clock; 1 = 2 core clocks.

0 FSTRDMSK Fast Read Mask: Do not allow core reads to bypass the request FIFO: 0 = Disable; 1 = Enable.

GX_BASE+8408h-840Bh MC_BANK_CFG (R/W) Default Value = 41104110h

31 RSVD Reserved: Set to 0.

30 DIMM1_
MOD_BNK

DIMM1 Module Banks: Selects the number of module banks per DIMM for DIMM1:

0 = 1 Module bank
1 = 2 Module banks

29 RSVD Reserved: Set to 0.

28 DIMM1_
COMP_BNK

DIMM1 Component Banks: Selects the number of component banks per module bank for DIMM1:

0 = 2 Component banks
1 = 4 Component banks

27 RSVD Reserved: Set to 0.

26:24 DIMM1_SZ DIMM1 Size: Selects the size of DIMM1:

000 = 4 MB 010 = 16 MB 100 = 64 MB 110 = 256 MB
001 = 8 MB 011 = 32 MB 101 = 128 MB 111 = 512 MB

23 RSVD Reserved: Set to 0.

22:20 DIMM1_PG_SZ DIMM1 Page Size: Selects the page size of DIMM1:

000 = 1 KB 010 = 4 KB 1xx = 16 KB
001 = 2 KB 011 = 8 KB 111 = DIMM1 not installed

When DIMM1 is not installed, program all other DIMM1 fields to 0.

19:15 RSVD Reserved: Set to 0.

14 DIMM0_
MOD_BNK

DIMM0 Module Banks: Selects number of module banks per DIMM for DIMM0:

0 = 1 Module bank
1 = 2 Module banks

13 RSVD Reserved: Set to 0.

12 DIMM0_
COMP_BNK

DIMM0 Component Banks: Selects the number of component banks per module bank for DIMM0:

0 = 2 Component banks
1 = 4 Component banks

11 RSVD Reserved: Set to 0.

10:8 DIMM0_SZ DIMM0 Size: Selects the size of DIMM1:

000 = 4 MB 010 = 16 MB 100 = 64 MB 110 = 256 MB
001 = 8 MB 011 = 32 MB 101 = 128 MB 111 = 512 MB

7 RSVD Reserved: Set to 0.

6:4 DIMM0_PG_SZ DIMM0 Page Size: Selects the page size of DIMM0:

000 = 1 KB 010 = 4 KB 1xx = 16 KB
001 = 2 KB 011 = 8 KB 111 = DIMM0 not installed

When DIMM0 is not installed, program all other DIMM0 fields to 0.

3:0 RSVD Reserved: Set to 0.

Table 4-16. Memory Controller Registers (Continued)

Bit Name Description
ww.national.com 110 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

GX_BASE+840Ch-840Fh MC_SYNC_TIM1 (R/W) Default Value = 2A733225h

31 RSVD Reserved: Set to 0.

30:28 LTMODE CAS Latency (LTMODE): CAS latency is the delay, in clock cycles, between the registration of a read
command and the availability of the first piece of output data (BIOS interrogates EEPROM across the
I2C interface to determine this value):

000 = Reserved 010 = 2 CLK 100 = 4 CLK 110 = 6 CLK
001 = 1 CLK 011 = 3 CLK 101 = 5 CLK 111 = 7 CLK

This field will not take effect until SDRAMPRG (bit 0 of MC_MEM_CNTRL1) transitions from 0 to 1.

ERRATA: CAS Latency of 1 CLK is not currently supported.

27:24 RC REF to REF/ACT Command Period (tRC): Minimum number of SDRAM clock between REF and
REF/ACT commands:

0000 = Reserved 0100 = 5 CLK 1000 = 9 CLK 1100 = 13 CLK
0001 = 2 CLK 0101 = 6 CLK 1001 = 10 CLK 1101 = 14 CLK
0010 = 3 CLK 0110 = 7 CLK 1010 = 11 CLK 1110 = 15 CLK
0011 = 4 CLK 0111 = 8 CLK 1011 = 12 CLK 1111 = 16 CLK

23:20 RAS ACT to PRE Command Period (tRAS): Minimum number of SDRAM clocks between ACT and PRE
commands:

0000 = Reserved 0100 = 5 CLK 1000 = 9 CLK 1100 = 13 CLK
0001 = 2 CLK 0101 = 6 CLK 1001 = 10 CLK 1101 = 14 CLK
0010 = 3 CLK 0110 = 7 CLK 1010 = 11 CLK 1110 = 15 CLK
0011 = 4 CLK 0111 = 8 CLK 1011 = 12 CLK 1111 = 16 CLK

19 RSVD Reserved: Set to 0.

18:16 RP PRE to ACT Command Period (tRP): Minimum number of SDRAM clocks between PRE and ACT
commands:

000 = Reserved 010 = 2 CLK 100 = 4 CLK 110 = 6 CLK
001 = 1 CLK 011 = 3 CLK 101 = 5 CLK 111 = 7 CLK

15 RSVD Reserved: Set to 0.

14:12 RCD Delay Time ACT to READ/WRT Command (tRCD): Minimum number of SDRAM clock between ACT
and READ/WRT commands:

000 = Reserved 010 = 2 CLK 100 = 4 CLK 110 = 6 CLK
001 = 1 CLK 011 = 3 CLK 101 = 5 CLK 111 = 7 CLK

11 RSVD Reserved: Set to 0.

10:8 RRD ACT(0) to ACT(1) Command Period (tRRD): Minimum number of SDRAM clocks between ACT and
ACT command to two different component banks within the same module bank. The memory control-
ler does not perform back-to-back Activate commands to two different component banks without a
READ or WIRTE command between them. Hence, this field should be set to 001.

7 RSVD Reserved: Set to 0.

6:4 DPL Data-in to PRE command period (tDPL): Minimum number of SDRAM clocks from the time the last
write datum is sampled till the bank is precharged:

000 = Reserved 010 = 2 CLK 100 = 4 CLK 110 = 6 CLK
001 = 1 CLK 011 = 3 CLK 101 = 5 CLK 111 = 7 CLK

3:0 RSVD Reserved: Set to 0 or leave unchanged.

GX_BASE+8414h-8417h MC_GBASE_ADD (R/W) Default Value = 00000000h

31:18 RSVD Reserved: Set to 0.

17 TE Test Enable TEST[3:0]:
0 = TEST[3:0] are driven low
1 = TEST[3:0] pins are used to output test information

16 TECTL Test Enable Shared Control Pins:
0 = RASB#, CASB#, CKEB, WEB# are driven low
1 = RASB#, CASB#, CKEB, WEB# are used to output test information

15:12 SEL Select: This field is used for debug purposes only.

11 RSVD Reserved: Set to 0.

Table 4-16. Memory Controller Registers (Continued)

Bit Name Description
evision 3.1 111 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.3.5 Address Translation
The memory controller supports two address translations
depending on the method used to interleave pages.

4.3.5.1 High Order Interleaving
High Order Interleaving (HOI) uses the most significant
address bits to select which bank the page is located in.
This has the effect of allowing any mixture of DIMM types.
However, it spreads the pages over wide address ranges.
For example, two 8 MB DIMMs contain a total of four com-
ponent pages. Two pages are together in one DIMM sepa-
rated from the other two pages by 8 MB.

4.3.5.2 Low Order Interleaving
Low Order Interleaving (LOI) uses the least significant bits
after the page bits to select which bank the page is
located in. This requires that memory is a power of 2, that
the number of banks is a power of 2, and that the page
sizes are the same. In other words, the DIMMs have to be
of the same type. However, LOI does give a good benefit
by providing a moving page throughout memory. Using
the same example as above, two banks would be on one
DIMM and the next two banks would be on the second
DIMM, but they would be linear in address space. For an
eight bank system that has 1 KB address (8 KB data)
pages, there would be an effective moving page of 64 KB
of data.

4.3.5.3 Physical Address to DRAM Address
Conversion

Auto LOI is in effect whenever the two DIMMs have the
same number of DIMM banks, component banks, module
sizes and page sizes.

Tables 4-17 and Table 4-18 on page 113 give Auto LOI
address conversion examples when two DIMMs of the
same size are used in a system. Table 4-17 shows a one
DIMM bank conversion example, while Table 4-18 shows
a two DIMM bank example.

Table 4-19 and Table 4-20 on page 114 give Non-Auto LOI
address conversion examples when either one or two
DIMMs of different sizes are used in a system. Table 4-19
shows a one DIMM bank address conversion example,
while Table 4-20 shows a two DIMM bank example. The
addresses are computed on a per DIMM basis.

Since the DRAM interface is 64 bits wide, the lower three
bits of the physical address get mapped onto the
DQM[7:0] lines. Thus, the address conversion tables
(Tables 4-17 through 4-20) show the physical address
starting from A3.

10:0 GBADD Graphics Base Address: This field indicates the graphics memory base address, which is program-
mable on 512 KB boundaries. This field corresponds to address bits [29:19].

Note that BC_DRAM_TOP must be set to a value lower than the Graphics Base Address.

GX_BASE+8418h-841Bh MC_DR_ADD (R/W) Default Value = 00000000h

31:10 RSVD Reserved: Set to 0.

9:0 DRADD Dirty RAM Address: This field is the address index that is used to access the Dirty RAM with the
MC_DR_ACC register. This field does not auto increment.

GX_BASE+841Ch-841Fh MC_DR_ACC (R/W) Default Value = 0000000xh

31:2 RSVD Reserved: Set to 0.

1 D Dirty Bit: This bit is read/write accessible.

0 V Valid Bit: This bit is read/write accessible.

Table 4-16. Memory Controller Registers (Continued)

Bit Name Description
ww.national.com 112 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 4-17. Auto LOI -- 2 DIMMs, Same Size, 1 DIMM Bank

1 K Page Size 2 K Page Size 4 K Page Size 1 K Page Size 2 K Page Size 4 Page Size

Row Col Row Col Row Col Row Col Row Col Row Col

Address 2 Component Banks 4 Component Banks

MA12 A24 -- A25 -- A26 A25 -- A26 -- A27

MA11 A23 -- A24 -- A25 A24 -- A25 -- A26

MA10 A22 -- A23 -- A24 A23 -- A24 -- A25

MA9 A21 -- A22 -- A23 A22 A9 A23 -- A24

MA8 A20 -- A21 -- A22 A11 A21 A8 A22 -- A23 A11

MA7 A19 -- A20 A10 A21 A10 A20 A7 A21 A10 A22 A10

MA6 A18 A9 A19 A9 A20 A9 A19 A6 A20 A9 A21 A9

MA5 A17 A8 A18 A8 A19 A8 A18 A5 A19 A8 A20 A8

MA4 A16 A7 A17 A7 A18 A7 A17 A4 A18 A7 A19 A7

MA3 A15 A6 A16 A6 A17 A6 A16 A3 A17 A6 A18 A6

MA2 A14 A5 A15 A5 A16 A5 A15 A8 A16 A5 A17 A5

MA1 A13 A4 A14 A4 A15 A4 A14 A7 A15 A4 A16 A4

MA0 A12 A3 A13 A3 A14 A3 A13 A6 A14 A3 A15 A3

CS0#/CS1# A11 A12 A13 A12 A13 A14

CS2#/CS#3 -- -- -- -- -- --

BA0/BA1 A10 A11 A12 A11/A10 A12/A11 A13/A12

Table 4-18. Auto LOI -- 2 DIMMs, Same Size, 2 DIMM Banks

1 K Page Size 2 K Page Size 4 K Page Size 1 K Page Size 2 Page Size 4 K Page Size

Row Col Row Col Row Col Row Col Row Col Row Col

Address 2 Component Banks 4 Component Banks

MA12 A25 -- A26 -- A27 A26 -- A27 -- A28 --

MA11 A24 -- A25 -- A26 A25 -- A26 -- A27 --

MA10 A23 -- A24 -- A25 A24 -- A25 -- A26 --

MA9 A22 -- A23 -- A24 A23 -- A24 -- A25 --

MA8 A21 -- A22 -- A23 A11 A22 -- A23 -- A24 A11

MA7 A20 -- A21 A10 A22 A10 A21 -- A22 A10 A23 A10

MA6 A19 A9 A20 A9 A21 A9 A20 A9 A21 A9 A22 A9

MA5 A18 A8 A19 A8 A20 A8 A19 A8 A20 A8 A21 A8

MA4 A17 A7 A18 A7 A19 A7 A18 A7 A19 A7 A20 A7

MA3 A16 A6 A17 A6 A18 A6 A17 A6 A18 A6 A19 A6

MA2 A15 A5 A16 A5 A17 A5 A16 A5 A17 A5 A18 A5

MA1 A14 A4 A15 A4 A16 A4 A15 A4 A16 A4 A17 A4

MA0 A13 A3 A14 A3 A15 A3 A14 A3 A15 A3 A16 A3

CS0#/CS1# A12 A13 A14 A13 A14 A15

CS2#/CS3# A11 A12 A13 A12 A13 A14

BA0/BA1 A10 A11 A12 A11/A10 A12/A11 A13/A12
evision 3.1 113 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 4-19. Non-Auto LOI -- 1 or 2 DIMMs, Different Sizes, 1 DIMM Bank

1 K Page Size 2 K Page Size 4 K Page Size 1 K Page Size 2 K Page Size 4 K Page Size

Row Col Row Col Row Col Row Col Row Col Row Col

Address 2 Component Banks 4 Component Banks

MA12 A23 -- A24 -- A25 -- A24 -- A25 -- A26

MA11 A22 -- A23 -- A24 -- A23 -- A24 -- A25

MA10 A21 -- A22 -- A23 -- A22 -- A23 -- A24

MA9 A20 -- A21 -- A22 -- A21 -- A22 -- A23

MA8 A19 -- A20 -- A21 A11 A20 -- A21 -- A22 A11

MA7 A18 -- A19 A10 A20 A10 A19 -- A20 A10 A21 A10

MA6 A17 A9 A18 A9 A19 A9 A18 A9 A19 A9 A20 A9

MA5 A16 A8 A17 A8 A18 A8 A17 A8 A18 A8 A19 A8

MA4 A15 A7 A16 A7 A17 A7 A16 A7 A17 A7 A18 A7

MA3 A14 A6 A15 A6 A16 A6 A15 A6 A16 A6 A17 A6

MA2 A13 A5 A14 A5 A15 A5 A14 A5 A15 A5 A16 A5

MA1 A12 A4 A13 A4 A14 A4 A13 A4 A14 A4 A15 A4

MA0 A11 A3 A12 A3 A13 A3 A12 A3 A13 A3 A14 A3

CS0#/CS1# -- -- -- -- -- --

CS2#/CS3# -- -- -- -- -- --

BA0/BA1 A10 A11 A12 A11/A10 A12/A11 A13/A12

Table 4-20. Non-Auto LOI -- 1 or 2 DIMMs, Different Sizes, 2 DIMM Banks

1 K Page Size 2 K Page Size 4 K Page Size 1 K Page Size 2 K Page Size 4 K Page Size

Row Col Row Col Row Col Row Col Row Col Row Col

Address 2 Component Banks 4 Component Banks

MA12 A24 -- A25 -- A26 -- A25 -- A26 -- A27 --

MA11 A23 -- A24 -- A25 -- A24 -- A25 -- A26 --

MA10 A22 -- A23 -- A24 -- A23 -- A24 -- A25 --

MA9 A21 -- A22 -- A23 -- A22 -- A23 -- A24 --

MA8 A20 -- A21 -- A22 A11 A21 -- A22 -- A23 A11

MA7 A19 -- A20 A10 A21 A10 A20 -- A21 A10 A22 A10

MA6 A18 A9 A19 A9 A20 A9 A19 A9 A20 A9 A21 A9

MA5 A17 A8 A18 A8 A19 A8 A18 A8 A19 A8 A20 A8

MA4 A16 A7 A17 A7 A18 A7 A17 A7 A18 A7 A19 A7

MA3 A15 A6 A16 A6 A17 A6 A16 A6 A17 A6 A18 A6

MA2 A14 A5 A15 A5 A16 A5 A15 A5 A16 A5 A17 A5

MA1 A13 A4 A14 A4 A15 A4 A14 A4 A15 A4 A16 A4

MA0 A12 A3 A13 A3 A14 A3 A13 A3 A14 A3 A15 A3

CS0#/CS1# A11 A12 A13 A12 A13 A14

CS2#/CS3# -- --

BA0/BA1 A10 A11 A12 A11/A10 A12/A11 A13/A12
ww.national.com 114 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.3.6 Memory Cycles
Figures 4-5 through Figure 4-8 on page 117 illustrate vari-
ous memory cycles that the memory controller supports.
The following subsections describe some of the sup-
ported cycles.

SDRAM Read Cycle
Figure 4-5 shows a SDRAM read cycle. The figure
assumes that a previous ACT command has presented
the row address for the read operation. Note that the burst
length for the READ command is always two.

Figure 4-5. Basic Read Cycle with a CAS Latency of Two

SDCLK

CS#

RAS#

CAS#

WE#

DQM

MD

MA COL n

n n+1
evision 3.1 115 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

SDRAM Write Cycle
Figure 4-6 shows a SDRAM write cycle. The burst length for the WRT command is 2.

Figure 4-6. Basic Write Cycle

SDCLK

CS#

RAS#

CAS#

WE#

MA COL n

n n+1MD

n n+1DQM
ww.national.com 116 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

SDRAM Refresh Cycle
Figure 4-7 shows a SDRAM auto refresh cycle. The mem-
ory controller always precedes the refresh cycle with a
PRE command to all banks.

Page Miss
Figure 4-8 shows a Read/WRT command after a page
miss cycle. In order to program the new row address, a
PRE command must be issued followed by an ACT com-
mand.

Figure 4-7. Auto Refresh Cycle

Figure 4-8. Read/WRT Command to a New Row Address

SDCLK

CS#

RAS#

CAS#

WE#

MA[10]

SDCLK

COMMAND

ADDRESS

tRP tRCD

PRE NOP NOP ACT NOP NOP R/W NOP

ROW COLBA
evision 3.1 117 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.3.7 SDRAM Interface Clocking
The GXm processor drives the SDCLK to the SDRAMs;
one for each DIMM bank. All the control, data, and
address signals driven by the memory controller are sam-
pled by the SDRAM at the rising edge of SDCLK. SDCLK-
OUT is a reference signal used to generate SDCLKIN.
Read data is sampled by the memory controller at the ris-
ing edge of SDCLKIN.

The delay for SDCLKIN must be designed so that it lags
the SDCLKs at the DRAM by approximately 2ns. The
delay should also include the SDCLK transmission line
delay. The SDCLK traces on the board need to be laid out
so there is no skew between each of the four sinks. These
guidelines allow the memory interface to be closer to the
DRAM specifications. They improve performance by run-
ning the SDCLK up to frequencies of 100 MHz and a CAS
latency of two.

Figure 4-9. SDCLKIN Clocking

DIMM
0

DIMM
1

SDCLK[3:0]

Delay

SDCLKOUT

SDCLKIN

SDCLK0

SDCLK1

SDCLK2

SDCLK3
Geode™ GXm
Processor
ww.national.com 118 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

The SDRAM interface timings are programmable. The
SHFTSDCLK bits in the MC_MEM_CNTRL2 register can
be used to change the relationship between SDCLK and
the control/address/data signals. To meet setup and hold
time requirements for SDRAM across different board lay-
outs, the SHFTSDCLK bits are used. SHFTSDCLK bit val-
ues are selected based upon the SDRAM signals loads
and the core frequency (refer to Table 7-10 on page 190).

Figure 4-10 shows an example of how the SHFTSDCLK
bits setting affects SDCLK. The PCI clock is the input
clock to the GXm processor. The core clock is the internal
processor clock that is multiplied up. The memory control-

ler runs off this processor clock. The memory clock is gen-
erated by dividing down the processor clock. SDCLK is
generated from the memory clock. In the example dia-
gram, the processor clock is running 6X times the PCI
clock and the memory clock is running in divide by 3
mode.

The SDRAM control, address, and data signals are driven
off edge "x" of the memory clock to be setup before edge
"y". With no shift applied, the control signals could end up
being latched on edge "x". A shift value of two or three
could be used so that SDCLK at the SDRAM is centered
around when the control signals change.

Figure 4-10. Effects of SHFTSDCLK Programming Bits Example

0 1 2 3 4 5 6

PCI Clock

Core Clock

Memory
Clock

(Internal)

(Internal)

CNTRL

SDCLK

SDCLK

(Note)

(Note)

Note: The first SDCLK shows how SDCLK operates with the SHFTSDCLK bits = 000, no shift.
The second SDCLK shows how SDCLK operates with the SHFTSDCLK bits = 001, shift 0.5 core clock.
(See MC_MEMCNTRL2 bits [5:3], Table 4-16 on page 108 , for remaining decode values.)

1 0234Shift =

Valid

x y

x y
evision 3.1 119 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.4 GRAPHICS PIPELINE
The graphics pipeline of the GXm processor includes a
BitBLT/vector engine which has been optimized for
Microsoft Windows. The hardware supports pattern gen-
eration, source expansion, pattern/source transparency,
and 256 ternary raster operations. The block diagram of
the graphics pipeline is shown in Figure 4-11.

4.4.1 BitBLT/Vector Engine
BLTs are initiated by writing to the GP_BLT_MODE regis-
ter, which specifies the type of source data (none, frame
buffer, or BLT buffer), the type of the destination data
(none, frame buffer, or BLT buffer), and a source expan-
sion flag.

Figure 4-11. Graphics Pipeline Block Diagram

Pattern
Hardware

Raster Operation

Output Aligner

BE PAT SRC DSTBE

Internal Bus
Interface Unit

Graphics

Scratchpad RAM

BitBLT Buffers
and

Memory

X-Bus

C-Bus

Pipeline

BE = Byte Enable
PAT = Pattern Data
SRC = Source Data
DST = Destination Data

Output Aligner

Source
Expansion

Control Logic

DRAM Interface Register Access

Controller

Key:
ww.national.com 120 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

The BLT buffers in the dedicated cache temporarily store
source and destination data, typically on a scan line basis.
The hardware automatically loads frame-buffer data
(source or destination) into the BLT buffers for each scan
line. The software is responsible for making sure that this
does not overflow the memory allocated for the BLT buff-
ers. When the source data is a bitmap, the data is loaded
directly into the BLT buffer before starting the BLT.

Vectors are initiated by writing to the
GP_VECTOR_MODE register (GX_BASE+8204h), which
specifies the direction of the vector and a “read destina-
tion data” flag. If the flag is set, the hardware will read
destination data along the vector and store it temporarily
in BLT Buffer 0.

4.4.2 Master/Slave Registers
When starting a BitBLT or vector operation, the graphics
pipeline registers are latched from the master registers to
the slave registers. A second BitBLT or vector operation
can then be loaded into the master registers while the first
operation is rendered. If a second BLT is pending in the
master registers, any write operations to the graphics

pipeline registers will corrupt the values of the pending
BLT. Software must prevent this from happening by check-
ing the “BLT Pending” bit in the GP_BLT_STATUS register
(GX_BASE+820Ch[2].

Most of the graphics pipeline registers are latched directly
from the master registers to the slave registers when
starting a new BitBLT or vector operation. Some registers,
however, use the updated slave values if the master regis-
ters have not been written, which allows software to ren-
der successive primitives without loading some of the
registers as outlined in Table 4-21.

4.4.3 Pattern Generation
The graphics pipeline contains hardware support for 8x8
monochrome patterns (expanded to two colors), 8x8
dither patterns (expanded to four colors), and 8x1 color
patterns. The pattern hardware, however, does not main-
tain a pattern origin, so the pattern data must be justified
before it is loaded into the GXm processor’s registers. For
solid primitives, the pattern hardware is disabled and the
pattern color is always sourced from the
GP_PAT_COLOR_0 register (GX_BASE+8110h).

Table 4-21. Graphics Pipeline Registers

Master Function

GP_DST_XCOOR Next X position along vector.

Master register if written, otherwise:
Unchanged slave if BLT, source mode = bitmap.
Slave + width if BLT, source mode = text glyph

GP_DST_YCOOR Next Y position along vector.

Master register if written, otherwise:
Slave +/- height if BLT, source mode = bitmap.
Unchanged slave if BLT, source mode = text glyph.

GP_INIT_ERROR Master register if written, otherwise:
Initial error for the next pixel along the vector.

GP_SRC_YCOOR Master register if written, otherwise:
Slave +/- height if BLT, source mode = bitmap.
evision 3.1 121 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.4.3.1 Monochrome Patterns
Monochrome patterns are selected by setting the pattern
mode to 01b in the GP_RASTER_MODE register
(GX_BASE+ 8200h). Those pixels corresponding to a
clear bit (0) in the pattern are rendered using the color
specified in the GP_PAT_COLOR_0 register, and those
pixels corresponding to a set bit (1) in the pattern are ren-
dered using the color specified in the GP_PAT_COLOR_1
register (GX_BASE+8112h).

If the pattern transparency bit is set high in the
GP_RASTER_MODE register, those pixels corresponding
to a clear bit in the pattern data are not drawn.

Monochrome patterns use bits [63:0] of the pattern data.
Bits [7:0] correspond to the first row of the pattern, and bit
7 corresponds to the leftmost pixel on the screen. This is
illustrated in Figure 4-12.

Figure 4-12. Example of Monochrome Patterns

4.4.3.2 Dither Patterns
Dither patterns are selected by setting the pattern mode
to 10 b in the GP_RASTER_MODE register (Table 4-25
on page 125). Two bits of pattern data are used for each
pixel, allowing color expansion to four colors. The colors
are specified in the GP_PAT_COLOR_0 through
GP_PAT_COLOR_3 registers (Table 4-25 on page 125).

Dither patterns use all 128 bits of pattern data. Bits [15:0]
correspond to the first row of the pattern (the lower byte
contains the LSB of the pattern color and the upper byte
contains the MSB of the pattern color). This is illustrated
in Figure 4-13.

Figure 4-13. Example of Dither Patterns

GP_PAT_DATA_0 = 0x80412214

GP_PAT_DATA_1 = 0x08142241

14

22

41

80

41

22

14

08

00AA

4411

00AA

1155

00AA

4411

00AA

1155

GP_PAT_DATA_0 = 0x441100AA

GP_PAT_DATA_1 = 0x115500AA

GP_PAT_DATA_2 = 0x441100AA

GP_PAT_DATA_3 = 0x115500AA
ww.national.com 122 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.4.3.3 Color Patterns
Color patterns are selected by setting the pattern mode to
11 b in the GP_RASTER_MODE register. Bits [63:0] are
used to hold a row of pattern data for an 8-BPP pattern,
with bits [7:0] corresponding to the leftmost pixel of the
row. Likewise, bits [127:0] are used for a 16-BPP color
pattern, with bits [15:0] corresponding to the leftmost pixel
of the row.

To support an 8x8 color pattern, software must load the
pattern data for each row.

4.4.4 Source Expansion
The graphics pipeline contains hardware support for color
expansion of source data (primarily used for text). Those
pixels corresponding to a clear bit (0) in the source data
are rendered using the color specified in the
GP_SRC_COLOR_0 register (GX_BASE+810Ch), and
those pixels corresponding to a set bit (1) in the source
data are rendered using the color specified in the
GP_SRC_COLOR_1 register (GX_BASE+810Eh).

If the source transparency bit is set in the
GP_RASTER_MODE register, those pixels corresponding
to a clear bit (0) in the source data are not drawn.

4.4.5 Raster Operations
The GP_RASTER_MODE register specifies how the pat-
tern data, source data (color-expanded if necessary), and
destination data are combined to produce the output from
the graphics pipeline. The definition of the ROP valu
matches that of the Microsoft API. This allows Windows
display drivers to load the raster operation directly into
hardware. Table 4-22 illustrates this definition. Some com-
mon raster operations are described in Table 4-23.

Table 4-22. GP_RASTER_MODE Bit Patterns

Pattern
(bit)

Source
(bit)

Destination
(bit)

Output
(bit)

0 0 0 ROP[0]

0 0 1 ROP[1]

0 1 0 ROP[2]

0 1 1 ROP[3]

1 0 0 ROP[4]

1 0 1 ROP[5]

1 1 0 ROP[6]

1 1 1 ROP[7]

Table 4-23. Common Raster Operations

ROP Description

F0h Output = Pattern

CCh Output = source

5Ah Output = Pattern XOR destination

66h Output = Source XOR destination

55h Output = ~Destination
evision 3.1 123 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.4.6 Graphics Pipeline Register Descriptions
The graphics pipeline maps 200h locations starting at
GX_BASE+8100h. Refer to Section 4.1.2 “Control Regis-
ters” on page 94 for instructions on accessing these regis-
ters.

Table 4-24 summarizes the graphics pipeline registers
and Table 4-25 on page 125 gives detailed register/bit for-
mats.

Table 4-24. Graphics Pipeline Configuration Register Summary

GX_BASE+
Memory Offset Type Name / Function Default Value

8100h-8103h R/W GP_DST/START_Y/XCOOR

Destination/Starting Y and X Coordinates Register — In BLT mode this register
specifies the destination Y and X positions for a BLT operation. In Vector mode it
specifies the starting Y and X positions in a vector.

00000000h

8104-8107h R/W GP_WIDTH/HEIGHT and GP_VECTOR_LENGTH/INIT_ERROR

Width/Height or Vector Length/Initial Error Register — In BLT mode this register
specifies the BLT width and height in pixels. In Vector mode it specifies the vector
initial error and pixel length.

00000000h

8108h-810Bh R/W GP_SRC_X/YCOOR and GP_AXIAL/DIAG_ERROR

Source X/Y Coordinate Axial/Diagonal Error Register — In BLT mode this register
specifies the BLT X and Y source. In Vector mode it specifies the axial and diago-
nal error for rendering a vector.

00000000h

810Ch-810Fh R/W GP_SRC_COLOR_0 and GP_SCR_COLOR_1

Source Color Register — Determines the colors used when expanding mono-
chrome source data in either the 8-BPP mode or the 16-BPP mode.

00000000h

8110h-8113h R/W GP_PAT_COLOR_0 and GP_PAT_COLOR_1

Graphics Pipeline Pattern Color 0 and 1 Registers — These two registers deter-
mine the colors used when expanding pattern data.

00000000h

8114h-8117h R/W GP_PAT_COLOR_2 and GP_PAT_COLOR_3

Graphics Pipeline Pattern Color 2 and 3 Registers — These two registers deter-
mine the colors used when expanding pattern data.

00000000h

8120h-8123h R/W GP_PAT_DATA 0 through 3

Graphics Pipeline Pattern Data Registers 0 through 3 — Together these registers
contain 128 bits of pattern data.

GP_PAT_DATA_0 corresponds to bits [31:0] of the pattern data.

GP_PAT_DATA_1 corresponds to bits [63:32] of the pattern data.

GP_PAT_DATA_2 corresponds to bits [95:64] of the pattern data.

GP_PAT_DATA_3 corresponds to bits [127:96] of the pattern data.

00000000h

8124h-8127h R/W 00000000h

8128h-812Bh R/W 00000000h

812Ch-812Fh R/W 00000000h

8140h-8143h
(Note)

R/W GP_VGA_WRITE

Graphics Pipeline VGA Write Patch Control Register — Controls the VGA mem-
ory write path in the graphics pipeline.

xxxxxxxxh

8144h-8147h
(Note)

R/W GP_VGA_READ

Graphics Pipeline VGA Read Patch Control Register — Controls the VGA mem-
ory read path in the graphics pipeline.

00000000h

8200h-8203h R/W GP_RASTER_MODE

Graphics Pipeline Raster Mode Register — This register controls the manipula-
tion of the pixel data through the graphics pipeline. Refer to Section 4.4.5 “Raster
Operations” on page 123.

00000000h

8204h-8207h R/W GP_VECTOR_MODE

Graphics Pipeline Vector Mode Register — Writing to this register initiates the
rendering of a vector.

00000000h

8208h-820Bh R/W GP_BLT_MODE

Graphics Pipeline BLT Mode Register — Writing to this initiates a BLT operation.

00000000h

Note: The registers at GX_BASE+8140, 8144h, 8210h, and 8217h are located in the area designated for the graphics pipeline but
are used for VGA emulation purposes. Refer to Table 5-5 on page 173 for these register’s bit formats.
ww.national.com 124 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

820Ch-820Fh R/W GP_BLT_STATUS

Graphics Pipeline BLT Status Register — Contains configuration and status infor-
mation for the BLT engine. The status bits are contained in the lower byte of the
register.

00000000h

8210h-8213h
(Note)

R/W GP_VGA_BASE

Graphics Pipeline VGA Memory Base Address Register — Specifies the offset of
the VGA memory, starting from the base of graphics memory.

xxxxxxxxh

8214h-8217h
(Note)

R/W GP_VGA_LATCH

Graphics Pipeline VGA Display Latch Register — Provides a memory mapped
way to read or write the VGA display latch.

xxxxxxxxh

Table 4-24. Graphics Pipeline Configuration Register Summary (Continued)

GX_BASE+
Memory Offset Type Name / Function Default Value

Note: The registers at GX_BASE+8140, 8144h, 8210h, and 8217h are located in the area designated for the graphics pipeline but
are used for VGA emulation purposes. Refer to Table 5-5 on page 173 for these register’s bit formats.

Table 4-25. Graphics Pipeline Configuration Registers

Bit Name Description

GX_BASE+8100h-8103h GP_DST/START_X/YCOOR Register (R/W) Default Value = 00000000h

31:16 DESTINATION/STARTING Y POSITION (SIGNED):

BLT Mode — Specifies the destination Y position for a BLT operation.

Vector Mode — Specifies the starting Y position in a vector.

15:0 DESTINATION/STARTING X POSITION (SIGNED):

BLT Mode — Specifies the destination X position for a BLT operation.

Vector Mode — Specifies the starting X position in a vector.

GX_BASE+8104h-8107h GP_WIDTH/HEIGHT and Default Value = 00000000h
GP_VECTOR_LENGTH/INIT_ERROR Register (R/W)

31:16 PIXEL_WIDTH or VECTOR_LENGTH (UNSIGNED):

BLT Mode — Specifies the width, in pixels, of a BLT operation. No pixels are rendered for a width of zero.

Vector Mode — Bits [31:30] are reserved in this mode allowing this 14-bit field to specify the length, in pixels, of a vector. No
pixels are rendered for a length of zero. This field is limited to 14 bits due to a lack of precision in the registers used to hold
the error terms.

15:0 PIXEL_HEIGHT or VECTOR_INITIAL_ERROR (UNSIGNED):

BLT Mode — Specifies the height, in pixels, of a BLT operation. No pixels are rendered for a height of zero.

Vector Mode — Specifies the initial error for renderng a vector.

GX_BASE+8108h-810Bh GP_SCR_X/YCOOR and GP_AXIAL/DIAG_ERROR Register (R/W) Default Value = 00000000h

31:16 SRC_X_POS or VECTOR_AXIAL_ERROR (SIGNED):

BLT Mode — Specifies the source X position for a BLT operation.

Vector Mode — Specifies the axial error for rendering a vector.

15:0 SRC_Y_POS or VECTOR_DIAG_ERROR (SIGNED):

Source Y Position (Signed) — Specifies the source Y position for a BLT operation.

Vector Mode — Specifies the diagonal error for rendering a vector.

GX_BASE+810Ch-810Fh GP_SRC_COLOR Register (R/W) Default Value = 00000000h

8-BPP Mode

31:24 GP_SRC_COLOR_0:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_SRC_COLOR_0 when rendering 8-BPP
data.

23:16

15:8 GP_SRC_COLOR_1:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_SRC_COLOR_1 when rendering 8-BPP
data.

7:0

16-BPP Mode

31:16 GP_SRC_COLOR_0: 16-BPP Color (RGB)

15:0 GP_SRC_COLOR_1: 16-BPP Color (RGB)
evision 3.1 125 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Note: The Graphics Pipeline Source Color Register specifies the colors used when expanding monochrome source data in either the
8-BPP mode or the 16-BPP mode. Those pixels corresponding to clear bits (0) in the source data are rendered using
GP_SRC_COLOR_0 and those pixels corresponding to set bits (1) in the source data are rendered using
GP_SRC_COLOR_1.

GX_BASE+8110h-8113h GP_PAT_COLOR_A Register (R/W) Default Value = 00000000h

8-BPP Mode

31:24 GP_PAT_COLOR_0:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_PAT_COLOR_0 when rendering 8-BPP
data.

23:16

15:8 GP_PAT_COLOR_1:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_PAT_COLOR_1 when rendering 8-BPP
data.

7:0

16-BPP Mode

31:16 GP_PAT_COLOR_0: 16-BPP Color (RGB)

15:0 GP_PAT_COLOR_1: 16-BPP Color (RGB)

Note: The Graphics Pipeline Pattern Color A and B Registers specify the colors used when expanding pattern data.

GX_BASE+8114h-8117h GP_PAT_COLOR_B Register (R/W) Default Value = 00000000h

8-BPP Mode

31:24 GP_PAT_COLOR_2:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_PAT_COLOR_2 when rendering 8-BPP
data.

23:16

15:8 GP_PAT_COLOR_3:

8-BPP Color Index — The color index must be duplicated in the upper byte of GP_PAT_COLOR_3 when rendering 8-BPP
data.

7:0

16-BPP Mode

31:16 GP_PAT_COLOR_2: 16-BPP Color (RGB)

15:0 GP_PAT_COLOR_3: 16-BPP Color (RGB)

Note: The Graphics Pipeline Pattern Color A and B Registers specify the colors used when expanding pattern data.

GX_BASE+8120h-8123h GP_PAT_DATA_0 Register (R/W) Default Value = 00000000h

31:0 GP Pattern Data Register 0: The Graphics Pipeline Pattern Data Registers 0 through 3 together contain 128 bits of pat-
tern data. The GP_PAT_DATA_0 register corresponds to bits [31:0] of the pattern data.

GX_BASE+8124h-8127h GP_PAT_DATA_1 Register (R/W) Default Value = 00000000h

31:0 GP Pattern Data Register 1: The Graphics Pipeline Pattern Data Registers 0 through 3 together contain 128 bits of pat-
tern data. The GP_PAT_DATA_1 register corresponds to bits [63:32] of the pattern data.

GX_BASE+8128h-812Bh GP_PAT_DATA_2 Register (R/W) Default Value = 00000000h

31:0 GP Pattern Data Register 2: The Graphics Pipeline Pattern Data Registers 0 through 3 together contain 128 bits of pat-
tern data. The GP_PAT_DATA_2 register corresponds to bits [95:64] of the pattern data.

GX_BASE+812Ch-812Fh GP_PAT_DATA_3 Register (R/W) Default Value = 00000000h

31:0 GP Pattern Data Register 3: The Graphics Pipeline Pattern Data Registers 0 through 3 together contain 128 bits of pat-
tern data. The GP_PAT_DATA_3 register corresponds to bits [127:96] of the pattern data.

GX_BASE+8140h-8143h GP_VGA_WRITE Register (R/W) Default Value = xxxxxxxxh

Note that the registers at GX_BASE+82140h and 8144h are located in the area designated for the graphics pipeline but are used for
VGA emulation purposes. Refer to Table 5-5 on page 173 for these register’s bit formats.

GX_BASE+8144h-8147h GP_VGA_READ Register (R/W) Default Value = 00000000h

Note that the registers at GX_BASE+82140h and 8144h are located in the area designated for the graphics pipeline but are used for
VGA emulation purposes. Refer to Table 5-5 on page 173 for these register’s bit formats.

Table 4-25. Graphics Pipeline Configuration Registers (Continued)

Bit Name Description
ww.national.com 126 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

GX_BASE+8200h-8203h GP_RASTER_MODE Register (R/W) Default Value = 00000000h

31:13 RSVD Reserved: Set to 0.

12 TB Transparent BLIT: When set, this bit enables transparent BLIT. The source color data will be compared to a
color key and if it matches, that pixel will not be drawn. The color key value is stored in the BLIT buffer as
destination data. The raster operation must be set to C6h, and the pattern registers must be all F’s for this
mode to work properly.

11 ST Source Transparency: Enables transparency for monochrome source data. Those pixels corresponding to
clear bits in the source data are not drawn.

10 PT Pattern Transparency: Enables transparency for monochrome pattern data. Those pixels corresponding to
clear bits in the pattern data are not drawn.

9:8 PM Pattern Mode: Specifies the format of the pattern data.

00 = Indicates a solid pattern. The pattern data is always sourced from the GP_PAT_COLOR_0 register.

01 = Indicates a monochrome pattern. The pattern data is sourced from the GP_PAT_COLOR_0 and
GP_PAT_COLOR_1 registers.

10 = Indicates a dither pattern. All four pattern color registers are used.

11 =Indicates a color pattern. The pattern data is sourced directly from the pattern data registers.

7:0 ROP Raster Operation: Specifies the raster operation for pattern, source, and destination data.

GX_BASE+8204h-8207h GP_VECTOR_MODE Register (R/W) Default Value = 00000000h

31:4 RSVD Reserved: Set to 0.

3 DEST Read Destination Data: Indicates that frame-buffer destination data is required.

2 DMIN Minor Direction: Indicates a positive minor axis step.

1 DMAJ Major Direction: Indicates a positive major axis step.

0 YMAJ Major Direction: Indicates a Y Major vector.

GX_BASE+8208h-820Bh GP_BLT_MODE Register (R/W) Default Value = 00000000h

31:9 RSVD Reserved: Set to 0.

8 Y Reverse Y Direction: Indicates a negative increment for the Y position. This bit is used to control the direc-
tion of screen to screen BLTs to prevent data corruption in overlapping windows.

7:6 SM Source Mode: Specifies the format of the source data.

00 = Source is a color bitmap.

01 = Source is a monochrome bitmap (use source color expansion).

10 = Unused.

11 = Source is a text glyph (use source color expansion). This differs from a monochrome bitmap in that the
X position is adjusted by the width of the BLT and the Y position remains the same.

5 RSVD Reserved: Set to 0.

4:2 RD Destination Data: Specifies the destination data location.

000 = No destination data is required. The destination data into the raster operation unit is all ones.

010 = Read destination data from BLT Buffer 0.

011 = Read destination data from BLT Buffer 1.

100 = Read destination data from the frame buffer (store temporarily in BLT Buffer 0).

101 = Read destination data from the frame buffer (store temporarily in BLT Buffer 1).

1:0 RS Source Data: Specifies the source data location.

00 = No source data is required. The source data into the raster operation unit is all ones.

01 = Read source data from the frame buffer (temporarily stored in BLT Buffer 0).

10 = Read source data from BLT Buffer 0.

11 = Read source data from BLT Buffer 1.

Table 4-25. Graphics Pipeline Configuration Registers (Continued)

Bit Name Description
evision 3.1 127 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

GX_BASE+820Ch-820Fh GP_BLT_STATUS Register (R/W) Default Value = 00000000h

31:10 RSVD Reserved: Set to 0.

9 W Screen Width: Selects a frame-buffer width of 2048 bytes (default is 1024 bytes).

8 M 16-BPP Mode: Selects a pixel data format of 16 BPP (default is 8 BPP).

7:3 RSVD Reserved: Set to 0.

2 BP (RO) BLT Pending (Read Only): Indicates that a BLT operation is pending in the master registers.

The “BLT Pending” bit must be clear before loading any of the graphics pipeline registers. Loading registers
when this bit is set high will destroy the values for the pending BLT.

1 PB (RO) Pipeline Busy (Read Only): Indicates that the graphics pipeline is processing data.

The “Pipeline Busy” bit differs from the “BLT Busy” bit in that the former only indicates that the graphics pipe-
line is processing data. The “BLT Busy” bit also indicates that the memory controller has not yet processed
all of the requests for the current operation.

The “Pipeline Busy” bit must be clear before loading a BLT buffer if the previous BLT operation used the
same BLT buffer.

0 BB (RO) BLT Busy (Read Only): Indicates that a BLT / vector operation is in progress.

The “BLT Busy” bit must be clear before accessing the frame buffer directly.

GX_BASE+8210h-8213h GP_VGA_BASE (R/W) Default Value = xxxxxxxxh

Note that the registers at GX_BASE+8210h and 8214h are located in the area designated for the graphics pipeline but are used for
VGA emulation purposes. Refer to Table 5-5 on page 173 for these register’s bit formats.

GX_BASE+8214h-8217h GP_VGA_LATCH Register (R/W) Default Value = xxxxxxxxh

Note that the registers at GX_BASE+8210h and 8214h are located in the area designated for the graphics pipeline but are used for
VGA emulation purposes. Refer to Table 5-5 on page 173 for these register’s bit formats.

Table 4-25. Graphics Pipeline Configuration Registers (Continued)

Bit Name Description
ww.national.com 128 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.5 DISPLAY CONTROLLER
The GXm processor incorporates a display controller that
retrieves display data from the memory controller and for-
mats it for output on a variety of display devices. The GXm
processor can directly connect to an active matrix TFT
LCD flat panel or to an external RAMDAC for CRT display
or both. The display controller includes a display FIFO,
compression/decompression (CODEC) hardware, hard-

ware cursor, a 256-entry-by-18-bit palette RAM (plus
three extension colors), display timing generator, dither
and frame-rate-modulation circuitry for TFT panels, and
flexible output formatting logic. A diagram of the display
controller subsystem is shown in Figure 4-14.

Figure 4-14. Display Controller Block Diagram

Memory
Data

Compressed

Codec

Cursor

Palette
Extensions

Palette

Dither
Output

RAMDAC

Panel

Control Registers TimingMemoryMemory
Address

Output
Control

Pseudo/True
Color Mux

32

64

Line Buffer
(64x32 bit)

Display
FIFO

(64x64 bit)

Latch

8

2

32

RAM
(264x18

9

16

18

Palette Data

and
FRM

Format

8

18

18

Addr.
Logic

Generatorand
Control Logic

Address
Generator

20

9

18

bit)
evision 3.1 129 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.5.1 Display FIFO
The display controller contains a large (64x64 bit) FIFO for
queuing up display data from the memory controller as it
is required for output to the screen. The memory control-
ler must arbitrate between the display controller requests
and other requests for memory access from the micropro-
cessor core, L1 cache controller, and the graphics pipe-
line.

Since display data is required in real time, this data is the
highest priority in the system. Without efficient memory
management, system performance would suffer dramati-
cally due to the constant display-refresh requests from the
display controller. The large size of the display FIFO is
desirable so that the FIFO may primarily be loaded during
times when there is no other request pending to the
DRAM controller and so that the memory controller can
stay in page mode for a long period of time when servicing
the display FIFO. When a priority request from the cache
or graphics pipeline occurs, if the display FIFO has
enough data queued up, the DRAM controller can imme-
diately service the request without concern that the dis-
play FIFO will underflow. If the display FIFO is below a
programmable threshold, a high-priority request will be
sent to the DRAM controller, which will take precedence
over any other requests that are pending.

The display FIFO is 64 bits wide to accommodate high-
speed burst read operations from the DRAM controller at
maximum memory bandwidth. In addition to the normal
pixel data stream, the display FIFO also queues up cursor
patterns.

4.5.2 Compression Technology
To reduce the system memory contention caused by the
display refresh, the display controller contains compres-
sion and decompression logic for compressing the frame
buffer image in real time as it is sent to the display. It com-
bines this compressed display buffer into the extra off-
screen memory within the graphics memory aperture.
Coherency of the compressed display buffer is maintained
by use of dirty and valid bits for each line. The dirty and
valid RAM is contained on-chip for maximum efficiency.
Whenever a line has been validly compressed, it will be
retrieved from the compressed display buffer for all future
accesses until the line becomes dirty again. Dirty lines will
be retrieved from the normal uncompressed frame buffer.

The compression logic has the ability to insert a program-
mable number of "static" frames, during which time dirty
bits are ignored and the valid bits are read to determine
whether a line should be retrieved from the frame buffer or
compressed display buffer. The less frequently the dirty
bits are sampled, the more frequently lines will be
retrieved from the compressed display buffer. This allows
a programmable screen image update rate (as opposed to
refresh rate). Generally, an update rate of 30 frames per
second is adequate for displaying most types of data,
including real- time video. However, if a flat panel display
is used that has a slow response time, such as 100 ms,
the image need not be updated faster than ten frames per
second, since the panel could not display changes
beyond that rate.

The compression algorithm used in the GXm processor
commonly achieves compression ratios between 10:1 and
20:1, depending on the nature of the display data. This
high level of compression provides higher system perfor-
mance by reducing typical latency for normal system
memory access, higher graphics performance by increas-
ing available drawing bandwidth to the DRAM array, and
much lower power consumption by significantly reducing
the number of off-chip DRAM accesses required for
refreshing the display. These advantages become even
more pronounced as display resolution, color depth, and
refresh rate are increased and as the size of the installed
DRAM increases.

As uncompressed lines are fed to the display, they will be
compressed and stored in an on-chip compressed line
buffer (64x32 bits). Lines will not be written back to the
compressed display buffer in the DRAM unless a valid
compression has resulted, so there is no penalty for
pathological frame buffer images where the compression
algorithm breaks down.

4.5.3 Motion Video Acceleration Support
The display controller of the GXm processor supports the
CS5530 and future I/O companion chips’ hardware motion
video acceleration by reading the off-screen video buffer
and serializing the video data onto the RAMDAC port. The
display controller supplies video data to the I/O compan-
ion chips in either interleaved YUV4:2:2 format or
RGB5:6:5 format. The I/O companion chips can then
scale and filter the data, apply color space conversion to
YUV data, and mix the video data with graphics data also
supplied by the display controller.
ww.national.com 130 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.5.4 Hardware Cursor
The display controller contains hardware cursor logic to
allow overlay of the cursor image onto the pixel data
stream. Overhead for updating this image on the screen is
kept to a minimum by requiring that only the X and Y posi-
tion be changed. This eliminates "submarining" effects
commonly associated with software cursors. The cursor,
32x32 pixels with two bits per pixel, is loaded into off-
screen memory within the graphics memory aperture. The
two-bit code selects color 0, color 1, transparent, or back-
ground-color inversion for each pixel in the cursor (see
Table 4-31 on page 144. The two cursor colors will be
stored as extensions to the normal 256-entry palette at
locations 100h and 101h. These palette extensions will be
used when driving a flat panel or a RAMDAC operating in
16 BPP (bits per pixel) mode. For 8 BPP operation using
an external RAMDAC, the DC_CURSOR_COLOR regis-
ter (GX_BASE+8360h) should be programmed to set the
indices for the cursor colors. To avoid corruption of the
cursor colors by an application program that modifies the
external palette, care should be taken to program the cur-
sor color indices to one of the static color indices. Since
Microsoft Windows typically uses only black and white
cursor colors and these are static colors, this kind of prob-
lem should rarely occur.

4.5.5 Display Timing Generator
The display controller features a fully programmable tim-
ing generator for generating all timing control signals for
the display. The timing control signals include horizontal
and vertical sync and blank signals in addition to timing for
active and overscan regions of the display. The timing
generator is similar in function to the CRTC of the original
VGA, although programming is more straightforward. Pro-
gramming of the timing registers will generally happen via
a BIOS INT10 call during a mode set. When programming
the timing registers directly, extreme care should be taken
to ensure that all timing is compatible with the display
device.

The timing generator supports overscan to maintain full
backward compatibility with the VGA. This feature is sup-
ported primarily for CRT display devices since flat panel
displays have fixed resolutions and do not provide for
overscan. However, the GXm processor supports a mech-
anism to center the display when a display mode is
selected having a lower resolution than the panel resolu-
tion. The border region is effectively stretched to fill the
remainder of the screen. The border color is at palette
extension 104h. For 8 BPP operation with an external
RAMDAC, the DC_BORDER_COLOR register
(GX_BASE+8368h) should also be programmed.

4.5.6 Dither and Frame-Rate Modulation
The display controller supports 2x2 dither and two-level
frame-rate modulation (FRM) to increase the apparent
number of colors displayed on 9-bit or 12-bit TFT panels.
Dither and FRM are individually programmable. With dith-
ering and FRM enabled, 185,193 colors are possible on a
9-bit TFT panel, and 226,981 colors are possible on a 12-
bit TFT panel.

4.5.7 Display Modes
The GXm processor supports 640x480, 800x600, and
1024x768 display resolutions at both 8 and 16 bits per
pixel. In addition, 1280x1024 resolution is supported at 8
bits per pixel only. Two 16-bit display formats are sup-
ported: RGB 5-6-5 and RGB 5-5-5. All CRT modes use
VESA-compatible timing. Table 4-26 on page 132 gives
the supported CRT display modes.
evision 3.1 131 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 4-26. TFT Panel Display Modes

Resolution
Simultaneous

Colors

Refresh
Rate
(Hz)

DOTCLK
Rate

(MHz)
PCLK
(MHz)

Panel
Type

Maximum Displayed
Colors (Note 1)

640x480
(Note 2)

8 BPP
256 colors out of a
palette of 256

60 25.175 25.175 9-bit 573 = 185,193

12-bit 613 = 226,981

18-bit 43 = 262,144

16 BPP
64 K colors
5-6-5

60 25.175 25.175 9-bit 29x57x29 = 47,937

12-bit 31x61x31 = 58,621

18-bit 32x64x32 = 65,535

800x600
(Note 2)

8 BPP
256 colors out of a
palette of 256

60 40.0 40.0 9-bit 573 = 185,193

12-bit 613 = 226,981

18-bit 643 = 262,144

16 BPP
64 K Colors
5-6-5

60 40.0 40.0 9-bit 29x57x29 = 47,937

12-bit 31x61x31 = 58,621

18-bit 32x64x32 = 65,535

1024x768 8 BPP
256 colors out of a
palette of 256

60 65 32.5 9-bit/18-I/F 573 = 185,193

16 BPP
64 K colors
5-6-5

60 65 32.5 9-bit/18-I/F 29x57x29 = 47,937

Notes: 1) 9-bit and 12-bit panels use FRM and dither to increase displayed colors. (See Section 4.5.6 “Dither and
Frame-Rate Modulation” on page 131.)

2) All 640x480 and 800x600 modes can be run in simultaneous display with CRT.
ww.national.com 132 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 4-27. TFT Panel Data Bus Formats

Panel Data
Bus Bit

18-Bit
TFT

12-Bit
TFT

9-Bit TFT

640x480 1024x768

17 R5 R5 R5 R5 Even

16 R4 R4 R4 R4

15 R3 R3 R3 R3

14 R2 R2 R5 Odd

13 R1 R4

12 R0 R3

11 G5 G5 G5 G5 Even

10 G4 G4 G4 G4

9 G3 G3 G3 G3

8 G2 G2 G5 Odd

7 G1 G4

6 G0 G3

5 B5 B5 B5 B5 Even

4 B4 B4 B4 B4

3 B3 B3 B3 B3

2 B2 B2 B5 Odd

1 B1 B4

0 B0 B3
evision 3.1 133 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 4-28. CRT Display Modes

Resolution
Simultaneous

Colors
Refresh Rate

(Hz)
DOTCLK Rate

(MHz)
PCLK
(MHz)

Graphics Port
Width (Bits)

640x480 8 BPP
256 colors out of a
palette of 256

60 25.175 25.175 8

72 31.5 31.5 8

75 31.5 31.5 8

16 BPP
64 K colors
RGB 5-6-5

60 25.175 50.35 8

25.175 16

72 31.5 63.0 8

31.5 16

75 31.5 63.0 8

31.5 16

800x600 8 BPP
256 colors out of a
palette of 256

60 40.0 40.0 8

72 50.0 50.0 8

75 49.5 49.5 8

16 BPP
64 K colors
RGB 5-6-5

60 40.0 80.0 8

40.0 16

72 50.0 100 8

50.0 16

75 49.5 99 8

49.5 16

1024x768 8 BPP
256 colors out of a
palette of 256

60 65.0 65.0 8

70 75.0 75.0 8

75 78.5 78.5 8

16 BPP
64 K colors
RGB 5-6-5

60 65.0 65.0 16

70 75.0 75.0 16

75 78.5 78.5 16

1280x1024 8 BPP
256 colors out of a
palette of 256

60 108.0 108.0 8

54.0 16

75 135.0 67.5 16
ww.national.com 134 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.5.8 Graphics Memory Map
The GXm processor supports a maximum of 4 MB of
graphics memory and will map it to an address space (see
Figure 4-2 on page 93) higher than the maximum amount
of installed RAM. The graphics memory aperture physi-
cally resides at the top of the installed system RAM. The
start address and size of the graphics memory aperture
are programmable on 128 KB boundaries. Typically, the
system BIOS sets the size and start address of the graph-
ics memory aperture during the boot process based on
the amount of installed RAM, user defined CMOS set-
tings, and display resolution. The graphics pipeline and
display controller address the graphics memory with a 20-
bit offset (address bits [21:2]) and four byte enables into
the graphics memory aperture. The graphics memory
stores several buffers that are used to generate the dis-
play: the frame buffer, compressed display buffer, VGA
memory, and cursor pattern(s). Any remaining off-screen
memory within the graphics aperture may be used by the
display driver as desired or not at all.

4.5.8.1 DC Memory Organization Registers
The display controller contains a number of registers that
allow full programmability of the graphics memory organi-
zation. This includes starting offsets for each of the buffer
regions described above, line delta parameters for the
frame buffer and compression buffer, as well as com-
pressed line-buffer size information. The starting offsets

for the various buffers are programmable for a high
degree of flexibility in memory organization.

4.5.8.2 Frame Buffer and Compression Buffer
Organization

The GXm processor supports primary display modes
640x480, 800x600, and 1024x768 at both 8 BPP and 16
BPP, and 1280x1024 at 8 BPP. Pixels will be packed into
DWORDs as shown in Figure 4-15.

In order to simplify address calculations by the rendering
hardware, the frame buffer is organized in an XY fashion
where the offset is simply a concatenation of the X and Y
pixel addresses. All 8 BPP display modes with the excep-
tion of 1280x1024 resolution will use a 1024-byte line
delta between the starting offsets of adjacent lines. All 16
BPP display modes and 1280x1024x8 BPP display
modes will use a 2048-byte line delta between the starting
offsets of adjacent lines. If there is room, the space
between the end of a line and the start of the next line will
be filled with the compressed display data for that line,
thus allowing efficient memory utilization. For 1024x768
display modes, the frame-buffer line size is the same as
the line delta, so no room is left for the compressed dis-
play data between lines. In this case, the compressed dis-
play buffer begins at the end of the frame buffer region
and is linearly mapped.

Figure 4-15. Pixel Arrangement Within a DWORD

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address 3h 2h 1h 0h

Pixel Org - 8 BPP (3,0) (2,0) (1,0) (0,0)

Pixel Org - 16 BPP (1,0) (0,0)

(1023,0)

(1023, 1023)

(0, 0)

(0, 1023)

DWORD 0
evision 3.1 135 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.5.8.3 VGA Display Support
The graphics pipeline contains full hardware support for
the VGA front end. The VGA data is stored in a 256 KB
buffer located in graphics memory. The main task for Soft-
VGA is converting the data in the VGA buffer to an 8 BPP
frame buffer that can be displayed by the GXm proces-
sor’s hardware.

For some modes, the display controller can display the
VGA data directly and the data conversion is not neces-
sary. This includes standard VGA mode 13h and the vari-
ations of that mode used in several games; the display
controller can also directly display VGA planar graphics
modes D, E, F, 10, 11, and 12. Likewise, the hardware can
directly display all of the higher-resolution VESA modes.
Since the frame buffer data is written directly to memory
instead of travelling across an external bus, the GXm pro-
cessor outperforms typical VGA cards for these modes.

The display controller, however, does not directly support
text modes. SoftVGA must then convert the characters
and attributes in the VGA buffer to an 8 BPP frame buffer
the hardware uses for display refresh. See Section 4 “Vir-
tual Subsystem Architecture” for SoftVGA details.

4.5.8.4 Cursor Pattern Memory Organization
The cursor overlay patterns are loaded to independent
memory locations, usually mapped above the frame buffer
and compressed display buffer (off-screen). The cursor
buffer must start on a 16-byte aligned boundary. It is lin-
early mapped, and is always 256 bytes in size. If there is
enough room (256 bytes) after the compression-buffer line
but before the next frame-buffer line starts, the cursor pat-
tern may be loaded into this area to make efficient use of
the graphics memory.

Each pattern is a 32x32-pixel array of 2-bit codes. The
codes are a combination of AND mask and XOR mask for
a particular pixel. Each line of an overlay pattern is stored
as two DWORDs, with each DWORD containing the AND
masks for 16 pixels in the upper word and the XOR masks
for 16 pixels in the lower word. DWORDs are arranged
with the leftmost pixel block being least significant and the
rightmost pixel block being most significant. Pixels within
words are arranged with the leftmost pixels being most
significant and the rightmost pixels being least significant.

Multiple cursor patterns may be loaded into the off-screen
memory. An application may simply change the cursor
start offset to select a new cursor pattern. The new cursor
pattern will be used at the start of the next frame scan.

4.5.9 Display Controller Registers
The Display Controller maps 100h locations starting at
GX_BASE+8300h. Refer to Section 4.1.2 “Control Regis-
ters” on page 94 for instructions on accessing these regis-
ters.

The Display Controller Registers are divided into six cate-
gories:
• Configuration and Status Registers
• Memory Organization Registers
• Timing Registers
• Cursor and Line Compare Registers
• Color Registers
• Palette and RAM Diagnostic Registers

Table 4-29 summarizes these registers and locations and
the following subsections give detailed register/bit for-
mats.

Table 4-29. Display Controller Register Summary

GX_BASE+
Memory Offset Type Name/Function

Default
Value

Configuration and Status Registers

8300h-8303h R/W DC_UNLOCK

Display Controller Unlock — This register is provided to lock the most critical memory-
mapped display controller registers to prevent unwanted modification (write operations).
Read operations are always allowed.

00000000h

8304h-8307h R/W DC_GENERAL_CFG

Display Controller General Configuration — General control bits for the display controller.

00000000h

8308h-830Bh R/W DC_TIMING_CFG

Display Controller Timing Configuration — Status and control bits for various display
timing functions.

xx000000h

830Ch-830Fh R/W DC_OUTPUT_CFG

Display Controller Output Configuration — Status and control bits for pixel output
formatting functions.

xx000000h

Memory Organization Registers

8310h-8313h R/W DC_FB_ST_OFFSET

Display Controller Frame Buffer Start Address — Specifies offset at which the frame buffer
starts.

xxxxxxxxh
ww.national.com 136 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

8314h-8317h R/W DC_CB_ST_OFFSET

Display Controller Compression Buffer Start Address — Specifies offset at which the com-
pressed display buffer starts.

xxxxxxxxh

8318h-831Bh R/W DC_CURS_ST_OFFSET

Display Controller Cursor Buffer Start Address — Specifies offset at which the cursor mem-
ory buffer starts.

xxxxxxxxh

831Ch-831Fh -- Reserved 00000000h

8320h-8323h R/W DC_VID_ST_OFFSET

Display Controller Video Start Address — Specifies offset at which the video buffer starts.

xxxxxxxxh

8324h-8327h R/W DC_LINE_DELTA

Display Controller Line Delta — Stores line delta for the graphics display buffers.

xxxxxxxxh

8328h-832Bh R/W DC_BUF_SIZE

Display Controller Buffer Size — Specifies the number of bytes to transfer for a line of
frame buffer data and the size of the compressed line buffer.

xxxxxxxxh

832Ch-832Fh -- Reserved 00000000h

Timing Registers

8330h-8333h R/W DC_H_TIMING_1

Display Controller Horizontal and Total Timing — Horizontal active and total timing
information.

xxxxxxxxh

8334h-8337h R/W DC_H_TIMING_2

Display Controller CRT Horizontal Blanking Timing — CRT horizontal blank timing
information.

xxxxxxxxh

8338h-833Bh R/W DC_H_TIMING_3

Display Controller CRT Sync Timing — CRT horizontal sync timing information.

xxxxxxxxh

833Ch-833Fh R/W DC_FP_H_TIMING

Display Controller Flat Panel Horizontal Sync Timing: Horizontal sync timing information for
an attached flat panel display.

xxxxxxxxh

8340h-8343h R/W DC_V_TIMING_1

Display Controller Vertical and Total Timing — Vertical active and total timing information.
The parameters pertain to both CRT and flat panel display.

xxxxxxxxh

8344h-8247h R/W DC_V_TIMING_2

Display Controller CRT Vertical Blank Timing — Vertical blank timing information.

xxxxxxxxh

8348h-834Bh R/W DC_V_TIMING_3

Display Controller CRT Vertical Sync Timing — CRT vertical sync timing information.

xxxxxxxxh

834Ch-834Fh R/W DC_FP_V_TIMING

Display Controller Flat Panel Vertical Sync Timing — Flat panel vertical sync timing
information.

xxxxxxxxh

Cursor and Line Compare Registers

8350h-8353h R/W DC_CURSOR_X

Display Controller Cursor X Position — X position information of the hardware cursor.

xxxxxxxxh

8354h-8357h RO DC_V_LINE_CNT

Display Controller Vertical Line Count — This read only register provides the current scan-
line for the display. It is used by software to time update of the frame buffer to avoid tearing
artifacts.

xxxxxxxxh

8358h-835Bh R/W DC_CURSOR_Y

Display Controller Cursor Y Position — Y position information of the hardware cursor.

xxxxxxxxh

835Ch-835Fh R/W DC_SS_LINE_CMP

Display Controller Split-Screen Line Compare — Contains the line count at which the lower
screen begins in a VGA split-screen mode.

xxxxxxxxh

Table 4-29. Display Controller Register Summary (Continued)

GX_BASE+
Memory Offset Type Name/Function

Default
Value
evision 3.1 137 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Color Registers

8360h-8363h R/W DC_CURSOR_COLOR

Display Controller Cursor Color — Contains the 8-bit indices for the cursor colors.

xxxxxxxxh

8364h-8367h -- Reserved 00000000h

8368h-836Bh R/W DC_BORDER_COLOR

Display Controller Border Color — Contains the 8-bit index for the border or overscan color.

xxxxxxxxh

836Ch-836Fh -- Reserved 00000000h

Palette and RAM Diagnostic Registers

8370h-8373h R/W DC_PAL_ADDRESS

Display Controller Palette Address — This register should be written with the address
(index) location to be used for the next access to the DC_PAL_DATA register.

xxxxxxxxh

8374h-8377h R/W DC_PAL_DATA

Display Controller Palette Data — Contains the data for a palette access cycle.

xxxxxxxxh

8378h-837Bh R/W DC_DFIFO_DIAG

Display Controller Display FIFO Diagnostic — This register is provided to enable testability
of the Display FIFO RAM.

xxxxxxxxh

837Ch-837Fh R/W DC_CFIFO_DIAG

Display Controller Compression FIFO Diagnostic — This register is provided to enable test-
ability of the Compressed Line Buffer (FIFO) RAM.

xxxxxxxxh

Table 4-29. Display Controller Register Summary (Continued)

GX_BASE+
Memory Offset Type Name/Function

Default
Value
ww.national.com 138 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.5.9.1 Configuration and Status Registers
The Configuration and Status Registers group consists of
four 32-bit registers located at GX_BASE+8300h-830Ch.
These registers are described below and Table 4-30 gives
their bit formats.

• Display Controller Unlock (DC_UNLOCK)
- This register is provided to lock the most critical

memory-mapped display controller registers to
prevent unwanted modification (write operations).
Read operations are always allowed.

• Display Controller General Configuration
(DC_GENERAL_CFG)
- General control bits for the display controller.

• Display Controller Timing Configuration
(DC_TIMING_CFG)
- Status and control bits for various display timing

functions.

• Display Controller Output Configuration
(DC_OUTPUT_CFG)
- Status and control bits for pixel output formatting

functions.

Table 4-30. Display Controller Configuration and Status Registers

Bit Name Description

GX_BASE+8300h-8303h DC_UNLOCK Register (R/W) Default Value = 00000000h

31:16 RSVD Reserved: Set to 0.

15:0 UNLOCK_
CODE

Unlock Code: This register must be written with the value 4758h in order to write to the protected regis-
ters. The following registers are protected by the locking mechanism.

DC_GENERAL_CFG DC_CB_ST_OFFSET,
DC_BUF_SIZE, DC_V_TIMING_2
DC_TIMING_CFG, DC_CURS_ST_OFFSET,
DC_H_TIMING_1, DC_V_TIMING_3
DC_OUTPUT_CFG, DC_H_TIMNG_2,
DC_FP_H_TIMING DC_FB_ST_OFFSET,
DC_LINE_DELTA, DC_FP_V_TIMING

GX_BASE+8304h-8307h DC_GENERAL_CFG (R/W) Default Value = 00000000h

31 DDCK Divide Dot Clock: Divide internal DOTCLK by two relative to PCLK (pertains only to 16 BPP display
modes utilizing an eight-bit RAMDAC): 0 = Disable; 1 = Enable.

30 DPCK Divide Pixel Clock: Divide PCLK by two relative to internal DOTCLK (pertains only to display modes that
pack two pixels together such as 1280x1024 on an external CRT only): 0 = Disable; 1 = Enable.

29 VRDY Video Ready Protocol: 0 = Low speed video port, use with V2.3 and older.
1 = High speed video port, use with V2.4 and newer.

28 VIDE Video Enable: Motion video port: 0 = Disable; 1 = Enable.

27 SSLC Split-screen Line Compare: VGA line compare function: 0 = Disable; 1 = Enable.

When enabled, the internal line counter will be compared to the value programmed in the DC_SS
_LINE_CMP register. If it matches, the frame buffer address will be reset to zero. This enables a split
screen function.

26 CH4S Chain 4 Skip: Allow display controller to read every 4th DWORD from the frame buffer for compatibility
with the VGA: 0 = Disable; 1 = Enable.

25 DIAG FIFO Diagnostic Mode: This bit allows testability of the on-chip Display FIFO and Compressed Line
Buffer via the diagnostic access registers. A low-to-high transition will reset the Display FIFO’s R/W point-
ers and the Compressed Line Buffer’s read pointer. 0 = Normal operation; 1 = Enable.

24 LDBL Line Double: Allow line doubling for emulated VGA modes: 0 = Disable; 1 = Enable.

If enabled, this will cause each odd line to be replicated from the previous line as the data is sent to the dis-
play. Timing parameters should be programmed as if no pixel doubling is used, however, the frame buffer
should be loaded with half the normal number of lines.

23 CKWR Clock Write: This bit will be output directly to an external clock chip or SYNDAC. The bit should be pulsed
high and low by the software to strobe data into the chip.

Note that this bit can be used in conjunction with the DACRS[2:0] pins.

22:20 DAC_RS[2:0] RAMDAC Register Selects: This 3-bit field sets the register select inputs to the external RAMDAC for the
next cycle. It is used to allow access to the extended register set of the RAMDAC. Alternatively, these bits
may be used in selecting the frequency for an external clock chip or SYNDAC. If more than eight frequency
selections are required, the RAMDAC extended register programming sequence must be used or the addi-
tional select bit must be provided by some other means.
evision 3.1 139 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

19 RTPM Real-Time Performance Monitoring: Allows real-time monitoring of a variety of internal GXm
processor signals by multiplexing the signals onto the CLKWR and DACRS[2:0] pins:
0 = Disable (Normal operation); 1 = Enable.

The CLKWR pin should not be fed to a clock chip or SYNDAC when this mode of operation is used, a dif-
ferent programming scheme should be used for the clock chip using the DACRS[2:0] signals and RAM-
DACRD# and RAMDACWR# signals. The selection of output signals is made using bits [27:16] of the
DC_BUF_SIZE register. The lower 12 bits of this field will select one of eight outputs for each pin.

18 FDTY Frame Dirty Mode: Allow entire frame to be flagged as dirty whenever a pixel write occurs to the frame
buffer (this is provided for modes that use a linearly mapped frame buffer for which the line delta is not
equal to 1024 or 2048 bytes): 0 = Disable; 1 = Enable.

When disabled, dirty bits are set according to the Y address of the pixel write.

17 RSVD Reserved: Set to 0.

16 CMPI Compressor Insert Mode: Insert one static frame between update frames: 0 = Disable; 1 = Enable.

An update frame is referred to as a frame in which dirty lines will be allowed to be updated. Conversely, a
static frame is referred to as a frame in which dirty lines will not be updated (although the image may not
be static, since lines that are not compressed successfully must be retrieved from the uncompressed
frame buffer).

15:12 DFIFO
HI-PRI END

LVL

Display FIFO High Priority End Level: This field specifies the depth of the display FIFO (in 64-bit entries
x 4) at which a high-priority request previously issued to the memory controller will end. The value is
dependent upon display mode.

This register should always be non-zero and should be larger than the start level.

11:8 DFIFO
HI-PRI

START LVL

Display FIFO High Priority Start Level: This field specifies the depth of the display FIFO (in 64-bit entries
x 4) at which a high-priority request will be sent to the memory controller to fill up the FIFO. The value is
dependent upon display mode.

This register should always be nonzero and should be less than the high-priority end level.

7:6 DCLK_
MUL

DCLK Multiplier: This 2-bit field specifies the clock multiplier for the input DCLK pin. After the input clock
is optionally multiplied, the internal DOTCLK, PCLK, and FPCLK may be divided as necessary.

00 = Forced Low
01 = 1 x DCLK
10 = 2 x DCLK
11 = 4 x DCLK

5 DECE Decompression Enable: Allow operation of internal decompression hardware:
0 = Disable; 1 = Enable.

4 CMPE Compression Enable: Allow operation of internal compression hardware: 0 = Disable; 1 = Enable

3 PPC Pixel Panning Compatibility: This bit has the same function as that found in the VGA.

Allow pixel alignment to change when crossing a split-screen boundary - it will force the pixel alignment to
be 16-byte aligned: 0 = Disable; 1 = Enable.

If disabled, the previous alignment will be preserved when crossing a split-screen boundary.

2 DVCK Divide Video Clock: Selects frequency of VID_CLK pin:

0 = VID_CLK pin frequency is equal to one-half (½) the frequency of the core clock.
1 = VID_CLK pin frequency is equal to one-fourth (¼) the frequency of the core clock.

Note: Bit 28 (VIDE) must be set to 1 for this bit to be valid.

1 CURE Cursor Enable: Allow operation of internal hardware cursor: 0 = Disable; 1 = Enable.

0 DFLE Display FIFO Load Enable: Allow the display FIFO to be loaded from memory:
0 = Disable; 1 = Enable.

If disabled, no write or read operations will occur to the display FIFO.

If enabled, a flat panel should be powered down prior to setting this bit low. Similarly, if active, a CRT
should be blanked prior to setting this bit low.

Table 4-30. Display Controller Configuration and Status Registers (Continued)

Bit Name Description
ww.national.com 140 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

GX_BASE+8308h-830Bh DC_TIMING_CFG Register (R/W) Default Value = xxx00000h

31 VINT
(RO)

Vertical Interrupt (Read Only): Is a vertical interrupt pending? 0 = No; 1 = Yes.

This bit is provided to maintain backward compatibility with the VGA. It corresponds to VGA port 3C2h bit
7.

30 VNA
(RO)

Vertical Not Active (Read Only): Is the active part of a vertical scan is in progress (i.e. retrace, blanking,
or border)? 0 = Yes; 1 = No.

This bit is provided to maintain backward compatibility with the VGA. It corresponds to VGA port 3BA/3DA
bit 3.

29 DNA
(RO)

Display Not Active (Read Only): Is the active part of a line is being displayed (i.e. retrace, blanking, or
border)? 0 = Yes; 1 = No.

This bit is provided to maintain backward compatibility with the VGA. It corresponds to VGA port 3BA/3DA
bit 0.

28 SENS
(RO)

Monitor Sense (Read Only): This bit returns the result of the voltage comparator test of the RGB lines
from the external RAMDAC. The value will be a low level if one or more of the comparators exceed the 340
mV level indicating an unloaded line.

This bit can be tested repeatedly to determine the loading on the red, green, and blue lines by loading the
palette with various values. The BIOS can then determine whether a color, monochrome, or no monitor is
attached. If no RAMDAC is attached, the BIOS should assume that a color panel is attached and operate
in color mode. For VGA emulation, read operations to port 3C2 bit 4 are redirected here.

27 DDCI
(RO)

DDC Input (Read Only): This bit returns the value from the DDCIN pin that should reflect the value from
pin 12 of the VGA connector. It is used to provide support for the VESA Display Data Channel standard
level DDC1.

26:20 RSVD Reserved: Set to 0.

19:17 PWR_SEQ
DELAY

Power Sequence Delay: This 3-bit field sets the delay between edges for the power sequencing control
logic. The actual delay is this value multiplied by one frame period (typically 16ms).

Note that a value of zero will result in a delay of only one DOTCLK period.

16 BKRT Blink Rate:

0 = Cursor blinks on every 16 frames for a duration of 8 frames (approximately 4 times per second) and
VGA text characters will blink on every 32 frames for a duration of 16 frames (approximately 2 times per
second).

1 = Cursor blinks on every 32 frames for a duration of 16 frames (approximately 2 times per second) and
VGA text characters blink on every 64 frames for a duration of 32 frames (approximately 1 time per sec-
ond).

15 PXDB Pixel Double: Allow pixel doubling to stretch the displayed image in the horizontal dimension:
0 = Disable; 1 = Enable.

If bit 15 is enabled, timing parameters should be programmed as if no pixel doubling is used, however, the
frame buffer should be loaded with half the normal pixels per line. Also, the FB_LINE_SIZE parameter in
DC_BUF_SIZE should be set for the number of bytes to be transferred for the line rather than the number
displayed.

14 INTL Interlace Scan: Allow interlaced scan mode:

0 = Disable (non-interlaced scanning is supported)

1 = Enable (If a flat panel is attached, it should be powered down before setting this bit.)

13 PLNR VGA Planar Mode: This bit must be set high for all VGA planar display modes.

12 FCEN Flat Panel Center: Allows the border and active portions of a scan line to be qualified as “active” to a flat
panel display via the ENADISP signal. This allows the use of a large border region for centering the flat
panel display. 0 = Disable; 1 = Enable.

When disabled, only the normal active portion of the scan line will be qualified as active.

11 FVSP Flat Panel Vertical Sync Polarity:

0 = Causes TFT vertical sync signal to be normally low, generating a high pulse during sync interval.

1 = Causes TFT vertical sync signal to be normally high, generating a low pulse during sync interval.

10 FHSP Flat Panel Horizontal Sync Polarity:

0 = Causes TFT horizontal sync signal to be normally low, generating a high pulse during sync interval.

1 = Causes TFT horizontal sync signal to be normally high, generating a low pulse during sync interval.

Table 4-30. Display Controller Configuration and Status Registers (Continued)

Bit Name Description
evision 3.1 141 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

9 CVSP CRT Vertical Sync Polarity:

0 = Causes CRT VSYNC signal to be normally low, generating a high pulse during the retrace interval.

1 = Cause CRT VSYNC signal to be normally high, generating a low pulse during the retrace interval.

8 CHSP CRT Horizontal Sync Polarity:

0 = Causes CRT HSYNC signal to be normally low, generating a high pulse during the retrace interval.

1 = Causes CRT HSYNC signal to be normally high, generating a low pulse during the retrace interval.

7 BLNK Blink Enable: Blink circuitry: 0 = Disable; 1 = Enable.

If enabled, the hardware cursor will blink as well as any pixels. This is provided to maintain compatibility
with VGA text modes. The blink rate is determined by the bit 16 (BKRT).

6 VIEN Vertical Interrupt Enable: Generate a vertical interrupt on the occurrence of the next vertical sync pulse:

0 = Disable, vertical interrupt is cleared;
1 = Enable.

This bit is provided to maintain backward compatibility with the VGA.

5 TGEN Timing Generator Enable: Allow timing generator to generate the timing control signals for the display.

0 = Disable, the Timing Registers may be reprogrammed, and all circuitry operating on the DOTCLK will be
reset.

1 = Enable, no write operations are permitted to the Timing Registers.

4 DDCK DDC Clock: This bit is used to provide the serial clock for reading the DDC data pin. This bit is multiplexed
onto the CRTVSYNC pin, but in order for it to have an effect, the VSYE bit must be set low to disable the
normal vertical sync. Software should then pulse this bit high and low to clock data into the GXm proces-
sor.

This feature is provided to allow support for the VESA Display Data Channel standard level DDC1.

3 BLKE Blank Enable: Allow generation of the composite blank signal to the display device:
0 = Disable; 1 = Enable.

When disabled, the BLANK# output will be a static low level. This allows VESA DPMS compliance.

2 VSYE Horizontal Sync Enable: Allow generation of the horizontal sync signal to a CRT display device:
0 = Disable; 1 = Enable.

When disabled, the HSYNC output will be a static low level. This allows VESA DPMS compliance.

Note that this bit only applies to the CRT; the flat panel HSYNC is controlled by the automatic power
sequencing logic.

1 HSYE Vertical Sync Enable: Allow generation of the vertical sync signal to a CRT display device:
0 = Disable; 1 = Enable.

When disabled, the VSYNC output will be a static low level. This allows VESA DPMS compliance.

Note that this bit only applies to the CRT; the flat panel VSYNC is controlled by the automatic power
sequencing logic.

0 FPPE Flat Panel Power Enable: On a low-to-high transition this bit will enable the flat panel power-up sequence
to begin. This will first turn on VDD to the panel, then start the clocks, syncs, and pixel bus, then turn on
the LCD bias voltage, and finally the backlight.

On a high-to-low transition, this bit will disable the outputs in the reverse order.

GX_BASE+830Ch-830Fh DC_OUTPUT_CFG Register (R/W) Default Value = xxx00000h

31:16 RSVD Reserved: Set to 0.

15 DIAG Compressed Line Buffer Diagnostic Mode: This bit will allow testability of the Compressed Line Buffer
via the diagnostic access registers. A low-to-high transition will reset the Compressed Line Buffer write
pointer. 0 = Disable (Normal operation); 1 = Enable.

14 CFRW Compressed Line Buffer Read/Write Select: Enables the read/write address to the Compressed Line
Buffer for use in diagnostic testing of the RAM.

0 = Write address enabled

1 = Read address enabled

13 PDEH Panel Data Enable High:

0 = The PANEL[17:9] data bus to be driven to a logic low level to effectively blank an attached flat panel
display or disable the upper pixel data bus for 16-bit pixel port RAMDACs.

1 = If no flat panel is attached, the PANEL[17:9] data bus will be driven with active pixel data. If a flat panel
is attached, setting this bit high will have no effect − the upper panel bus will be driven based upon the
power sequencing logic.

Table 4-30. Display Controller Configuration and Status Registers (Continued)

Bit Name Description
ww.national.com 142 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

12 PDEL Panel Data Enable Low:

0 = This bit will cause the PANEL[8:0] data bus to be driven to a logic low level to effectively blank an
attached flat panel display or disable the lower panel data bus if it is not required.

1= If no flat panel is attached, the PANEL[8:0] data bus will be driven with active pixel data. If a flat panel is
attached, setting this bit high will have no effect − the lower panel bus will be driven based upon the power
sequencing logic.

11 PRMP Palette Re-map:

0 = The modified codes are sent to the RAMDAC and the external palette should uses the modified map-
ping.

1 = Bits [8:1] of the palette output register are routed to the RAMDAC data bus. The GXm processor inter-
nal palette RAM may be loaded with 8-bit VGA indices to translate the modified codes stored in display
memory so that the RAMDAC data bus will contain the expected indices. The modified codes are used to
achieve character blinking in VGA text modes. This mode should be set high set high only for desktop sys-
tems with no flat panel attached. It should only be necessary when 8514/A or VESA standard feature con-
nector support is required.

10 CKSL Clock Select: Selects output used to clock PANEL[17:0], FPHSYNC, FPVSYNC, and ENADISP output
pins.

1 = PCLK

0 = FPCLK (based upon the power sequencing logic)

This bit should be high when using a 16-bit RAMDAC.

9 FRMS Frame Rate Modulation Select:

0 = Enables FRM circuitry to change the pattern displayed every frame.

1 = Enables FRM circuitry to change the pattern displayed every two frames (to allow for slower response
time liquid crystal materials).

8 3/4ADD 3- or 4-bit Add:

0 = Enables dither and FRM circuitry to operate on the 3 most significant bits of each color component for
9-bit TFT panels.

1 = Enables the dither and FRM circuitry to operate on the 4 most significant bits of each color component
for 12-bit TFT panels.

7 RSVD Reserved: Must be set to 0.

6 RSVD Reserved: Must be set to 0.

5 RSVD Reserved: Must be set to 0.

4 DITE Dither Enable: Allow a 2x2 spatial dither on the 3-bit or 4-bit color value. Note that dither will not be sup-
ported for 12-bit TFT panels when FRM is enabled. 0 = Disable; 1 = Enable.

3 FRME Frame-Rate Modulation Enable: Allow FRM to be performed on the 3-bit or 4-bit color value using the
next most significant bit after the least significant bit sent to the panel.

0 = Disable (no FRM performed);
1 = Enable.

2 PCKE PCLK Enable:

0 = PCLK is disabled and a low logic level is driven off-chip. Also, the RAMDAC data bus is driven low.
1 = Enable PCLK to be driven off-chip.

This clock operates the RAMDAC interface.

1 16FMT 16 BPP Format: Selects RGB display mode:

0 = RGB 5-6-5 mode
1 = RGB 5-5-5 display mode

This bit is only significant if 8 BPP is low, indicating 16 BPP mode.

0 8BPP 8 BPP / 16 BPP Select:

0 = 16-bit per pixel display mode is selected. (Bit 1 of OUTPUT_CONFIG will indicate the format of the 16
bit data.)

1 = 8-bit-per-pixel display mode is selected. This is the also the mode used in VGA emulation.

Table 4-30. Display Controller Configuration and Status Registers (Continued)

Bit Name Description
evision 3.1 143 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.5.10 Memory Organization Registers
The GXm processor utilizes a graphics memory aperture
that is up to 4 MB in size. The base address of the graph-
ics memory aperture is stored in the DRAM controller.
The graphics memory is made up of the normal uncom-
pressed frame buffer, compressed display buffer, and cur-
sor buffer. Each buffer begins at a programmable offset
within the graphics memory aperture.

The various memory buffers are arranged so as to effi-
ciently pack the data within the graphics memory aper-
ture. This requires flexibility in the way that the buffers are
arranged when different display modes are in use. The
cursor buffer is a linear block so addressing is straightfor-
ward. The frame buffer and compressed display buffer are
arranged based upon scan lines. Each scan line has a
maximum number of valid or active DWORDs and a delta,
that when added to the previous line offset, points to the
next line. In this way, the buffers may be stored as linear
blocks or as logical blocks as may be desired.

The Memory Organization Registers group consists of six
32-bit registers located at GX_BASE+8310h-8328h.
These registers are described below and Table 4-31 gives
their bit formats.

• Display Controller Frame Buffer Start Address
(DC_FB_ST_OFFSET)
- Specifies the offset at which the frame buffer starts.

• Display Controller Compression Buffer Start Address
(DC_CB_ST_OFFSET)
- Specifies the offset at which the compressed display

buffer starts.

• Display Controller Cursor Buffer Start Address
(DC_CURS_ST_OFFSET)
- Specifies the offset at which the cursor memory

buffer starts.

• Display Controller Video Start Address
(DC_VID_ST_OFFSET)
- Specifies the offset at which the video buffer starts.

• Display Controller Line Delta (DC_LINE_DELTA)
- Stores the line delta for the graphics display buffers.

• Display Controller Buffer Size (DC_BUF_SIZE)
- Specifies the number of bytes to transfer for a line of

frame buffer data and the size of the compressed
line buffer. (The compressed line buffer will be invali-
dated if it exceeds the CB_LINE_SIZE, bits [15:9].)

Table 4-31. Display Controller Memory Organization Registers

Bit Name Description

GX_BASE+8310h-8313h DC_FB_ST_OFFSET Register (R/W) Default Value = xxxxxxxxh

31:22 RSVD Reserved: Set to 0.

21:0 FB_START
_OFFSET

Frame Buffer Start Offset: This value represents the byte offset of the starting location of the displayed
frame buffer. This value may be changed to achieve panning across a virtual desktop or to allow multiple
buffering.

When this register is programmed to a nonzero value, the compression logic should be disabled. The
memory address defined by bits [21:4] will take effect at the start of the next frame scan. The pixel offset
defined by bits [3:0] will take effect immediately (in general, it should only change during vertical blank-
ing).

GX_BASE+8314h-8317h DC_CB_ST_OFFSET Register (R/W) Default Value = xxxxxxxxh

31:22 RSVD Reserved: Set to 0.

21:0 CB_START
_OFFSET

Compressed Display Buffer Start Offset: This value represents the byte offset of the starting location
of the compressed display buffer. Bits [3:0] should always be programmed to zero so that the start offset
is aligned to a 16-byte boundary. This value should change only when a new display mode is set due to
a change in size of the frame buffer.
ww.national.com 144 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

GX_BASE+8318h-831Bh DC_CUR_ST_OFFSET Register (R/W) Default Value = xxxxxxxxh

31:22 RSVD Reserved: Set to 0.

21:0 CUR_START
_OFFSET

Cursor Start Offset: This value represents the byte offset of the starting location of the cursor display
pattern. Bits [1:0] should always be programmed to zero so that the start offset is DWORD aligned. The
cursor data will be stored as a linear block of data. The active cursor will always be 32x32x2 bits in size.
Multiple cursor patterns may be loaded into off-screen memory. The start offset is loaded at the start of a
frame. Each cursor pattern will be exactly 256 bytes in size. Note that if there is a Y offset for the cursor
pattern, the cursor start offset should be set to point to the first displayed line of the cursor pattern. The
cursor code for a given pixel is determined by an AND mask and an XOR mask. Each line of a cursor will
be stored as two DWORDs, with each DWORD containing the AND masks for 16 pixels in the upper
word and the XOR masks for 16 pixels in the lower word. DWORDs will be arranged with the leftmost
block of 16 pixels being least significant and the rightmost block being most significant. Pixels within
words will be arranged with the leftmost pixels being most significant and the rightmost pixels being least
significant. The 2-bit cursor codes are as follows.

AND XOR Displayed

0 0 Cursor Color 0
0 1 Cursor Color 1
1 0 Transparent − Background Pixel
1 1 Inverted − Bit-wise Inversion of Background Pixel

GX_BASE+831Ch-831Fh Reserved Default Value = 00000000h

GX_BASE+8320h-8323h DC_VID_ST_OFFSET Register (R/W) Default Value = xxxxxxxxh

31:21 RSVD Reserved: Set to 0.

20:0 VID_START
_OFFSET

Video Buffer Start Offset Value: This is the value for the Video Buffer Start Offset. It represents the
starting location for Video Buffer. Bits [3:0] should always be programmed as zero so that the start offset
is aligned to a 16 byte boundary.

GX_BASE+8324h-8327h DC_LINE_DELTA Register (R/W) Default Value = xxxxxxxxh

31:22 RSVD Reserved: Set to 0.

21:12 CB_LINE_
DELTA

Compressed Display Buffer Line Delta: This value represents number of DWORDs that, when added
to the starting offset of the previous line, will point to the start of the next compressed line in memory. It
is used to always maintain a pointer to the starting offset for the compressed display buffer line being
loaded into the display FIFO.

11:10 RSVD Reserved: Set to 0.

9:0 FB_LINE_
DELTA

Frame Buffer Line Delta: This value represents number of DWORDs that, when added to the starting
offset of the previous line, will point to the start of the next frame buffer line in memory. It is used to
always maintain a pointer to the starting offset for the frame buffer line being loaded into the display
FIFO.

GX_BASE+8328h-832Bh DC_BUF_SIZE Register (R/W) Default Value = xxxxxxxxh

31:30 RSVD Reserved: Set to 0.

29:16 VID_BUF_
SIZE

Video Buffer Size: These bits set the video buffer size, in 64-byte segments. The maximum size is 1
MB.

15:9 CB_LINE_
SIZE

Compressed Display Buffer Line Size: This value represents the number of DWORDs for a valid com-
pressed line plus 1. It is used to detect an overflow of the compressed data FIFO. It should never be
larger than 41h or 65Dh since the maximum size of the compressed data FIFO is 64 DWORDs.

8:0 FB_LINE_
SIZE

Frame Buffer Line Size: This value specifies the number of QWORDS (8-byte segments) to transfer for
each display line from the frame buffer.

If panning is enabled, this value can generally be programmed to the displayed number of QWORDS + 2
so that enough data is transferred to handle any possible alignment. Extra pixel data in the FIFO at the
end of a line will automatically be discarded.

GX_BASE+832Ch-832Fh Reserved Default Value = 00000000h

Table 4-31. Display Controller Memory Organization Registers (Continued)

Bit Name Description
evision 3.1 145 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.5.11 Timing Registers
The GXm processor timing registers control the genera-
tion of sync, blanking, and active display regions. They
provide complete flexibility in interfacing to both CRT and
flat panel displays. These registers will generally be pro-
grammed by the BIOS from an INT 10h call or by the
extended mode driver from a display timing file. Note that
the horizontal timing parameters are specified in character
clocks, which actually means pixels divided by 8, since all
characters are bit mapped. For interlaced display the ver-
tical counter will be incremented twice during each display
line, so vertical timing parameters should be programmed
with reference to the total frame rather than a single field.

The Timing Registers group consists of six 32-bit registers
located at GX_BASE+8330h-834Ch. These registers are
described below and Table 4-32 gives their bit formats.

• Display Controller Horizontal and Total Timing
(DC_H_TIMING_1)
- Contains horizontal active and total timing informa-

tion.

• Display Controller CRT Horizontal Blanking Timing
(DC_H_TIMING_2 Register)
- Contains CRT horizontal blank timing information.

• Display Controller CRT Sync Timing
(DC_H_TIMING_3)

- Contains CRT horizontal sync timing information.
Note, however, that this register should also be
programmed appropriately for flat panel only display
since the horizontal sync transition determines when
to advance the vertical counter.

• Display Controller Flat Panel Horizontal Sync Timing
(DC_FP_H_TIMING)
- Contains horizontal sync timing information for an

attached flat panel display.

• Display Controller Vertical and Total Timing
(DC_V_TIMING_1)
- Contains vertical active and total timing information.

The parameters pertain to both CRT and flat panel
display.

• Display Controller CRT Vertical Blank Timing
(DC_V_TIMING_2)
- Contains vertical blank timing information.

• Display Controller CRT Vertical Sync Timing
(DC_V_TIMING_3)
- Contains CRT vertical sync timing information.

• Display Controller Flat Panel Vertical Sync Timing
(DC_FP_V_TIMING)
- Contains flat panel vertical sync timing information.

Table 4-32. Display Controller Timing Registers

Bit Name Description

GX_BASE+8330h-8333h DC_H_TIMING_1 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:19 H_TOTAL Horizontal Total: This field represents the total number of character clocks for a given scan line
minus 1. Note that the value is necessarily greater than the H_ACTIVE field because it includes bor-
der pixels and blanked pixels. For flat panels, this value will never change. The field [26:16] may be
programmed with the pixel count minus 1, although bits [18:16] are ignored. The horizontal total is
programmable on 8-pixel boundaries only.

18:16 RSVD Reserved: These bits are readable and writable but have no effect.

15:11 RSVD Reserved: Set to 0.

10:3 H_ACTIVE Horizontal Active: This field represents the total number of character clocks for the displayed por-
tion of a scan line minus 1. The field [10:0] may be programmed with the pixel count minus 1,
although bits [2:0] are ignored. The active count is programmable on 8-pixel boundaries only. Note
that for flat panels, if this value is less than the panel active horizontal resolution (H_PANEL), the
parameters H_BLANK_START, H_BLANK_END, H_SYNC_START, and H_SYNC_END should be
reduced by the value of H_ADJUST (or the value of H_PANEL - H_ACTIVE / 2)to achieve horizontal
centering.

2:0 RSVD Reserved: These bits are readable and writable but have no effect.

Note: Note also that for simultaneous CRT and flat panel display the H_ACTIVE and H_TOTAL parameters pertain to both.

GX_BASE+8334h-8337h DC_H_TIMING_2 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:19 H_BLK_END Horizontal Blank End: This field represents the character clock count at which the horizontal blank-
ing signal becomes inactive minus 1. The field [26:16] may be programmed with the pixel count
minus 1, although bits [18:16] are ignored. The blank end position is programmable on 8-pixel
boundaries only.

18:16 RSVD Reserved: These bits are readable and writable but have no effect.

15:11 RSVD Reserved: Set to 0.
ww.national.com 146 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

10:3 H_BLK_START Horizontal Blank Start: This field represents the character clock count at which the horizontal
blanking signal becomes active minus 1. The field [10:0] may be programmed with the pixel count
minus 1, although bits [2:0] are ignored. The blank start position is programmable on 8-pixel bound-
aries only.

2:0 RSVD Reserved: These bits are readable and writable but have no effect.

Note: A minimum of four character clocks is required for the horizontal blanking portion of a line in order for the timing generator to
function correctly.

GX_BASE+8338h-833Bh DC_H_TIMING_3 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:19 H_SYNC_END Horizontal Sync End: This field represents the character clock count at which the CRT horizontal
sync signal becomes inactive minus 1. The field [26:16] may be programmed with the pixel count
minus 1, although bits [18:16] are ignored. The sync end position is programmable on 8-pixel bound-
aries only.

18:16 RSVD Reserved: These bits are readable and writable but have no effect.

15:11 RSVD Reserved: Set to 0.

10:3 H_SYNC_START Horizontal Sync Start: This field represents the character clock count at which the CRT horizontal
sync signal becomes active minus 1. The field [10:0] may be programmed with the pixel count minus
1, although bits [2:0] are ignored. The sync start position is programmable on 8-pixel boundaries
only.

2:0 RSVD Reserved: These bits are readable and writable but have no effect.

Note: This register should also be programmed appropriately for flat panel only display since the horizontal sync transition deter-
mines when to advance the vertical counter.

GX_BASE+833Ch-833Fh C_FP_H_TIMING Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:16 FP_H_SYNC
_END

Flat Panel Horizontal Sync End: This field represents the pixel count at which the flat panel hori-
zontal sync signal becomes inactive minus 1.

15:11 RSVD Reserved: Set to 0.

10:0 FP_H_SYNC
_START

Flat Panel Horizontal Sync Start: This field represents the pixel count at which the flat panel hori-
zontal sync signal becomes active minus 1.

Note: All values are specified in pixels rather than character clocks to allow precise control over sync position. Note, however, that for
flat panels which combine two pixels per panel clock, these values should be odd numbers (even pixel boundary) to guarantee
that the sync signal will meet proper setup and hold times.

GX_BASE+8340h-8343h DC_V_TIMING_1 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:16 V_TOTAL Vertical Total: This field represents the total number of lines for a given frame scan minus 1. Note
that the value is necessarily greater than the V_ACTIVE field because it includes border lines and
blanked lines. If the display is interlaced, the total number of lines must be odd, so this value should
be an even number.

15:11 RSVD Reserved: Set to 0.

10:0 V_ACTIVE Vertical Active: This field represents the total number of lines for the displayed portion of a frame
scan minus 1. Note that for flat panels, if this value is less than the panel active vertical resolution
(V_PANEL), the parameters V_BLANK_START, V_BLANK_END, V_SYNC_START, and
V_SYNC_END should be reduced by the following value (V_ADJUST) to achieve vertical centering:
V_ADJUST = (V_PANEL - V_ACTIVE) / 2

If the display is interlaced, the number of active lines should be even, so this value should be an odd
number.

Note: All values are specified in lines.

GX_BASE+8344h-8347h DC_V_TIMING_2 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:16 V_BLANK_END Vertical Blank End: This field represents the line at which the vertical blanking signal becomes
inactive minus 1. If the display is interlaced, no border is supported, so this value should be identical
to V_TOTAL.

15:11 RSVD Reserved: Set to 0.

Table 4-32. Display Controller Timing Registers (Continued)

Bit Name Description
evision 3.1 147 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

10:0 V_BLANK_
START

Vertical Blank Start: This field represents the line at which the vertical blanking signal becomes
active minus 1. If the display is interlaced, this value should be programmed to V_ACTIVE plus 1.

Note: All values are specified in lines. For interlaced display, no border is supported, so blank timing is implied by the total/active tim-
ing.

GX_BASE+8348h-834Bh DC_V_TIMING_3 Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:16 V_SYNC_END Vertical Sync End: This field represents the line at which the CRT vertical sync signal becomes
inactive minus 1.

15:11 RSVD Reserved: Set to 0.

10:0 V_SYNC_START Vertical Sync Start: This field represents the line at which the CRT vertical sync signal becomes
active minus 1. For interlaced display, note that the vertical counter is incremented twice during each
line and since there are an odd number of lines, the vertical sync pulse will trigger in the middle of a
line for one field and at the end of a line for the subsequent field.

Note: All values are specified in lines.

GX_BASE+834Ch-834Fh DC_FP_V_TIMING Register (R/W) Default Value = xxxxxxxxh

31:27 RSVD Reserved: Set to 0.

26:16 FP_V_SYNC
_END

Flat Panel Vertical Sync End: This field represents the line at which the flat panel vertical sync sig-
nal becomes inactive minus 2. Note that the internal flat panel vertical sync is latched by the flat
panel horizontal sync prior to being output to the panel.

15:11 RSVD Reserved: Set to 0.

10:0 FP_VSYNC
_START

Flat Panel Vertical Sync Start: This field represents the line at which the internal flat panel vertical
sync signal becomes active minus 2. Note that the internal flat panel vertical sync is latched by the
flat panel horizontal sync prior to being output to the panel.

Note: All values are specified in lines.

Table 4-32. Display Controller Timing Registers (Continued)

Bit Name Description
ww.national.com 148 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.5.12 Cursor Position Registers
The Cursor Position Registers contain pixel coordinate
information for the cursor. These values are not latched by
the timing generator until the start of the frame to avoid
tearing artifacts when moving the cursor.

The Cursor Position group consists of four 32-bit registers
located at GX_BASE+8350h-835Ch. These registers are
described below and Table 4-33 gives their bit formats.

• Display Controller Cursor X Position (DC_CURSOR_X)
- Contains the X position information of the hardware

cursor.

• Display Controller Vertical Line Count
(DC_V_LINE_CNT)
- This register is read only. It provides the current

scanline for the display. It is used by software to time
update of the frame buffer to avoid tearing artifacts.

• Display Controller Cursor Y Position (DC_CURSOR_Y)
- Contains the Y position information of the hardware

cursor.

• Display Controller Split-Screen Line Compare
(DC_SS_LINE_CMP)
- Contains the line count at which the lower screen

begins in a VGA split-screen mode.

Table 4-33. Display Controller Cursor Position Registers

Bit Name Description

GX_BASE+8350h-8353h DC_CURSOR_X Register (R/W) Default Value = xxxxxxxxh

31:16 RSVD Reserved: Set to 0.

15:11 X_OFFSET X Offset: This field represents the X pixel offset within the 32x32 cursor pattern at which the displayed
portion of the cursor is to begin. Normally, this value is set to zero to display the entire cursor pattern, but
for cursors for which the "hot spot" is not at the left edge of the pattern, it may be necessary to display
the rightmost pixels of the cursor only as the cursor moves close to the left edge of the display.

10:0 CURSOR_X Cursor X: This field represents the X coordinate of the pixel at which the upper left corner of the cursor
is to be displayed. This value is referenced to the screen origin (0,0) which is the pixel in the upper left
corner of the screen.

GX_BASE+8354h-8357h DC_V_LINE_CNT Register (RO) Default Value = xxxxxxxxh

31:11 RSVD Reserved (Read Only)

10:0 V_LINE_CNT
(RO)

Vertical Line Count (Read Only): This value is the current scanline of the display.

Note: The value in this register is driven directly off of the DOTCLK, and consequently it is not synchronized with the CPU clock. Soft-
ware should read this register twice and compare the result to ensure that the value is not transitioning.

GX_BASE+8358h-835Bh DC_CURSOR_Y Register (R/W) Default Value = xxxxxxxxh

31:16 RSVD Reserved: Set to 0.

15:11 Y_OFFSET Y Offset: This field represents the Y line offset within the 32x32 cursor pattern at which the displayed
portion of the cursor is to begin. Normally, this value is set to zero to display the entire cursor pattern, but
for cursors for which the "hot spot" is not at the top edge of the pattern, it may be necessary to display
the bottommost lines of the cursor only as the cursor moves close to the top edge of the display. Note
that if this value is nonzero, the CUR_START_OFFSET must be set to point to the first cursor line to be
displayed.

10 RSVD Reserved: Set to 0.

9:0 CURSOR_Y Cursor Y: This field represents the Y coordinate of the line at which the upper left corner of the cursor is
to be displayed. This value is referenced to the screen origin (0,0) which is the pixel in the upper left cor-
ner of the screen.

This field is alternately used as the line-compare value for a newly-programmed frame buffer start offset.
This is necessary for VGA programs that change the start offset in the middle of a frame. In order to use
this function, the hardware cursor function should be disabled.

GX_BASE+835Ch-835Fh DC_SS_LINE_CMP Register (R/W) Default Value = xxxxxxxxh

31:11 RSVD Reserved: Set to 0.

10:0 SS_LINE_CM
P

Split-Screen Line Compare: This is the line count at which the lower screen begins in a VGA split-
screen mode.

Note: When the internal line counter hits this value, the frame buffer address is reset to 0. This function is enabled with the SSLC bit
in the DC_GENERAL_CFG register.
evision 3.1 149 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.5.13 Color Registers
These registers are used in 8 BPP display mode with an
external RAMDAC for passing cursor and border color
indices to the palette in the RAMDAC. For the flat panel
color translation, the cursor and border color data is
loaded into palette extensions as described in the Palette
Access Registers section.

The Color Registers group consists of two 32-bit registers
located at GX_BASE+8360h-8368h. These registers are
described below and Table 4-34 gives their bit formats.

• Display Controller Cursor Color
(DC_CURSOR_COLOR)
- Contains the 8-bit indices for the cursor colors.

• Display Controller Border Color
(DC_BORDER_COLOR)

Contains the 8-bit index for the border or overscan color.

Table 4-34. Display Controller Color Registers

Bit Name Description

GX_BASE+8360h-8363h DC_CURSOR_COLOR Register (R/W) Default Value = xxxxxxxxh

31:16 RSVD Reserved: Set to 0.

15:8 CURS_CLR_1 Cursor Color 1: This is the 8-bit index to the external palette for the cursor color 1. It should point to
a reserved or static color.

7:0 CURS_CLR_0 Cursor Color 0: This is the 8-bit index to the external palette for the cursor color 0. It should point to
a reserved or static color.

GX_BASE+8364h-8367h Reserved Default Value = 00000000h

GX_BASE+8368h-836Bh DC_BORDER_COLOR Register (RO) Default Value = xxxxxxxxh

31:8 RSVD Reserved: Set to 0.

7:0 BORDER_CLR Border Color: This is the 8-bit index to the external palette for the border color. It should point to a
reserved or static color.

GX_BASE+836Ch-836Fh Reserved Default Value = 00000000h
ww.national.com 150 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.5.14 Palette Access Registers
These registers are used for accessing the internal palette
RAM and extensions. In addition to the standard 256
entries for 8 BPP color translation, the GXm processor
palette has extensions for cursor colors and overscan
(border) color.

The Palette Access Register group consists of four 32-bit
registers located at GX_BASE+8370h-837Ch. These reg-
isters are described below and Table 4-35 gives their bit
formats.

• Display Controller Palette Address
(DC_PAL_ADDRESS)
- This register should be written with the address

(index) location to be used for the next access to the
DC_PAL_DATA register.

• Display Controller Palette Data (DC_PAL_DATA)
- Contains the data for a palette access cycle.

• Display Controller Display FIFO Diagnostic
(DC_DFIFO_DIAG)
- This register is provided to enable testability of the

Display FIFO RAM.

• Display Controller Compression FIFO Diagnostic
(DC_CFIFO_DIAG)
- This register is provided to enable testability of the

Compressed Line Buffer (FIFO) RAM.

Table 4-35. Display Controller Palette and RAM Diagnostic Registers

Bit Name Description

GX_BASE+8370h-8373h DC_PAL_ADDRESS Register (R/W) Default Value = xxxxxxxxh

31:9 RSVD Reserved: Set to 0.

8:0 PALETTE_ADDR Palette Address: This 9-bit field specifies the address to be used for the next access to the
DC_PAL_DATA register. Each access to the data register will automatically increment the palette
address register. If non-sequential access is made to the palette, the address register must be
loaded between each non-sequential data block. The address ranges are as follows.

Address Color
0h - FFh Standard Palette Colors
100h Cursor Color 0
101h Cursor Color 1
102h Reserved
103h Reserved
104h Overscan Color
105h - 1FFh Not Valid

Note that in general, 18-bit values will be loaded for all color extensions. However, if a 16 BPP mode
is active, only the appropriate most significant bits will be used (5-5-5 or 5-6-5). If an 8 BPP display
mode is active and an external RAMDAC is used, the cursor index will be obtained from the
DC_CURSOR_COLOR register. The border index will be obtained from the DC_BORDER_COLOR
register.

GX_BASE+8374h-8377h DC_PAL_DATA Register (R/W) Default Value = xxxxxxxxh

31:18 RSVD Reserved: Set to 0.

17:0 PALETTE_DATA Palette Data: This 18-bit field contains the read or write data for a palette access.

Note: When a read or write to the palette RAM occurs, the previous output value will be held for one additional DOTCLK period. This
effect should go unnoticed and will provide for sparkle-free update. Prior to a read or write to this register, the
DC_PAL_ADDRESS register should be loaded with the appropriate address. The address automatically increments after each
access to this register, so for sequential access, the address register need only be loaded once

GX_BASE+8378h-837Bh DC_DFIFO_DIAG Register (R/W) Default Value = xxxxxxxxh
evision 3.1 151 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

31:0 DISPLAY FIFO
DIAGNOSTIC

DATA

Display FIFO Diagnostic Read or Write Data: Before this register is accessed, the DIAG bit in
DC_GENERAL_CFG register should be set high and the DFLE bit should be set low. Since, each
FIFO entry is 64 bits, an even number of write operations should be performed. Each pair of write
operations will cause the FIFO write pointer to increment automatically. After all write operations
have been performed, a single read of don't care data should be performed to load data into the out-
put latch. Each subsequent read will contain the appropriate data which was previously written.
Each pair of read operations will cause the FIFO read pointer to increment automatically. A pause of
at least four core clocks should be allowed between subsequent read operations to allow adequate
time for the shift to take place.

GX_BASE+837Ch-837Fh DC_CFIFO_DIAG Register (R/W) Default Value = xxxxxxxxh

31:0 COMPRESSED
FIFO DIAGNOS-

TIC DATA

Compressed Data FIFO Diagnostic Read or Write Data: Before this register is accessed, the
DIAG bit in DC_GENERAL_CFG register should be set high and the DFLE bit should be set low.
Also, the DIAG bit in DC_OUTPUT_CFG should be set high and the CFRW bit in
DC_OUTPUT_CFG should be set low. After each write, the FIFO write pointer will automatically
increment. After all write operations have been performed, the CFRW bit of DC_OUTPUT_CFG
should be set high to enable read addresses to the FIFO and a single read of don't care data should
be performed to load data into the output latch. Each subsequent read will contain the appropriate
data which was previously written. After each read, the FIFO read pointer will automatically incre-
ment.

Table 4-35. Display Controller Palette and RAM Diagnostic Registers (Continued)

Bit Name Description
ww.national.com 152 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.5.15 CS5530 Display Controller Interface
As previously stated in Section 1.6 “Geode GXM/CS5530
System Designs” on page 11, the GXm processor inter-
faces with either the CS5530 I/O companion chip. This
section will discuss the specifics on signal connections
between the two devices with regards to the display con-
troller.

When the GXm processor is used in a system with the
CS5530 I/O companion chip, the need for an external
RAMDAC is eliminated. The CS5530 contains the DACs,
a video accelerator engine, and the TFT interface.

A GXm processor and CS5530-based system supports
both portable and desktop configurations. Figure 4-16
shows the signal connections for both types of systems.

Figure 4-16. Display Controller Signal Connections

DCLK

PCLK

FP_HSYNC
FP_VSYNC
ENA_DISP

VID_RDY

VID_CLK

VID_DATA[7:0]
PIXEL[17:12]

PIXEL[11:6]

HSYNC
VSYNC

R[5:0]
G[5:0]
B[5:0]

CLK

VDD
12VBKL

Pin 13
Pin 14

Pin 3
Pin 2
Pin 1

Geode™ GXm
Processor

Power
Control

TFT

ENAB

VGA
Pin 15
Pin 12

Flat

Geode™ CS5530
I/O Companion

DCLK

PCLK

FP_HSYNC
FP_VSYNC
FP_DISP_ENA
VID_RDY

VID_CLK

VID_DATA[7:0]
PIXEL[23:18]*
PIXEL[15:10]*

PIXEL[5:0]
VID_VAL

CRT_HSYNC
CRT_VSYNC

PIXEL[7:2]*
VID_VAL
HSYNC
VSYNC

FP_ENA_VDD
FP_ENA_BKL

FP_DISP_ENA_OUT

FP_HSYNC
FP_VSYNC

FP_CLK

FP_DATA[17:12]
FP_DATA[11:16]

FP_DATA[5:0]

Logic

HSYNC_OUT
VSYNC_OUT

IOUTR
IOUTG
IOUTB

DDC_SCL
DDC_SDA

Panel

Port

Portable
Configuration
evision 3.1 153 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.5.15.1 CS5530 Video Port Data Transfer
VID_VAL indicates that the GXm processor has placed
valid data on VID_DATA[7:0]. VID_RDY indicates that the
CS5530 is ready to accept the next byte of video data.

VID_DATA[7:0] is advanced when both VID_VAL and
VID_RDY are asserted. VID_RDY is driven one clock
early to the GXm processor while VID_VAL is driven coin-
cident with VID_DATA[7:0]. A sample interface functional
timing diagram is shown in Figure 4-17.

Figure 4-17. Video Port Data Transfer (CS5530)

VID_CLK

VID_VAL 8 CLKs 8 + 3 CLKs

VID_RDY 3 CLKs

4 CLKs
VID_DATA

8 CLKs 1 2
CLK CLKs

1
CLK

2
CLKs

2
CLKs

4 CLKs

Note: VID_CLK = CORE_CLK/2

[7:0]
ww.national.com 154 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.6 PCI CONTROLLER
The GXm processor includes an integrated PCI controller
with the following features.

4.6.1 X-Bus PCI Slave
• 16-byte PCI write buffer
• 16-byte PCI read buffer from X-bus
• Supports cache line bursting
• Write/Inv line support
• Pacing of data for read or write operations with X-bus
• No active byte enable transfers supported

4.6.2 X-Bus PCI Master
• 16 byte X-bus to PCI write buffer
• Configuration read/write Support
• Int Acknowledge support
• Lock conversion
• Support fast back-to-back cycles as slave

4.6.3 PCI Arbiter
• Fixed, rotating, hybrid, or ping-pong arbitration

(programmable)
• Support four masters, three on PCI
• Internal REQ for CPU
• Master retry mask counter
• Master dead timer
• Resource or total system lock support

4.6.4 Generating Configuration Cycles
Configuration space is a physical address space unique to
PCI. Configuration Mechanism #1 must be used by soft-
ware to generate configuration cycles. Two DWORD I/O
locations are used in this mechanism. The first DWORD
location (CF8h) references a read/write register that is
named CONFIG_ADDRESS. The second DWORD
address (CFCh) references a register named
CONFIG_DATA. The general method for accessing con-
figuration space is to write a value into
CONFIG_ADDRESS that specifies the PCI bus, device on
that bus, and configuration register in that device being
accessed. A read or write to CONFIG_DATA will then
cause the bridge to translate that CONFIG_ADDRESS
value to the requested configuration cycle on the PCI bus.

4.6.5 Generating Special Cycles
A special cycle is a broadcast message to the PCI bus.
Two hardcoded special cycle messages are defined in the
command encode: HALT and SHUTDOWN. Software can
also generate special cycles by using special cycle gener-
ation for configuration mechanism #1 as described in the
PCI Specification 3.6.4.1.2 and briefly described here. To
initiate a special cycle from software, the host must write a
value to CONFIG_ADDRESS encoded as shown in Table
4-36.

The next value written to CONFIG_DATA is the encoded
special cycle. Type 0 or Type 1 conversion will be based
on the Bus Bridge number matching the GXm processor’s
bus number of 00h.

Table 4-36. Special-Cycle Code to CONFIG_ADDRESS

31 30 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 Bus No. = Bridge 1 1 1 1 1 1 1 1 0 0 0 0 0 0 T T

CONFIG
ENABLE

RSVD BUS NUMBER DEVICE NUMBER FUNCTION
NUMBER

REGISTER NUMBER TRANS
LATION
TYPE

Note: See Table 4-37 on page 156, bits [1:0] for translation type.
evision 3.1 155 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.6.6 PCI Configuration Space Control Registers
There are two registers in this category:
CONFIG_ADDRESS and CONFIG_DATA.

The CONFIG_ADDRESS register contains the address
information for the next configuration space access to
CONFIG_DATA. Only DWORD accesses are permitted to

this register all others will be forwarded as normal I/O
cycles to the PCI bus.

The CONFIG_DATA register contains the data that is sent
or received during a PCI configuration space access.

Table 4-37 gives the bit formats for these two registers.

Table 4-37. PCI Configuration Registers

Bit Name Description

I/O Offset 0CF8h-0CFBh CONFIG_ADDRESS Register (R/W) Default Value = 00000000h

31 CFG_EN Config Enable: Determines when accesses should be translated to configuration cycles on the PCI
bus, or treated as a normal I/O operation. This register will be updated only on full DWORD I/O oper-
ations to the CONFIG_ADDRESS. Any other accesses are treated as normal I/O cycles in order to
allow I/O devices to use BYTE or WORD registers at the same address an remain unaffected. Once
bit 31 is set high, subsequent accesses to CONFIG_DATA are then translated to configuration
cycles.

1 = Generate configuration cycles
0 = Normal I/O cycles

30:24 RSVD Reserved: Set to 0.

23:16 BUS Bus: Specifies a PCI bus number in the hierarchy of 1 to 256 buses.

15:11 DEVICE Device: Selects a device on a specified bus. A device value of 00h will select the GXm processor if
the bus number is also 00h. DEVICE values of 01h to 15h will be mapped to AD[31:11], so only 21 of
the 32 possible devices are supported. A DEVICE value of 00001b will map to AD[11] while a device
of 10101b will map to AD[31].

10:8 FUNCTION Function: Selects a function in a multi-function device.

7:2 REGISTER Register: Chooses a configuration DWORD space register in the selected device.

1:0 TT Translation Type Bits: These bits indicate if the configuration access is local or one that requires
translation through other bridges to another PCI bus. When an access occurs to the CONFIG_DATA
address and the specified bus number matches the GXm processor’s bus number (00h), then a
Type 0 translation takes place.

For a Type 0 translation, the CONFIG_ADDRESS register values are translated to AD lines on the
PCI bus. Note that bits 10:2 are passed unchanged. The DEVICE value is mapped to one of 21 AD
lines. The translation type bits are set to 00 to indicate a transaction on the local PCI bus.

When an access occurs to the CONFIG_DATA address and the specified bus number is not 00h
(Type 1), the GXm processor passes this cycle to the PCI bus by copying the contents of the
CONFIG_ADDRESS register onto the AD lines during the address phase of the cycle while driving
the translation type bits AD[1:0] to 01.

I/O Offset 0CFCh-0CFFh CONFIG_DATA (R/W) Default Value = 00000000h

31:0 CONFIG_DATA Configuration Data Register: Contains the data that is sent or received during a PCI configuration
space access. The register accessed is determined by the value in the CONFIG_ADDRESS regis-
ter. The CONFIG_DATA register supports BYTE, WORD, or DWORD accesses. To access this reg-
ister, bit 31 of the CONFIG_ADDRESS register must be set to 0 and a full DWORD I/O access must
be done. Configuration cycles are performed when bit 31 of the CONFIG_ADDRESS register is set
to 1
ww.national.com 156 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.6.7 PCI Configuration Space Registers
To access the internal PCI configuration registers of the
GXm processor, the Configuration Address Register
(CONFIG_ADDRESS) must be written as a DWORD
using the format shown in Table 4-38. Any other size will
be interpreted as an I/O write to Port 0CF8h. Also, when
entering the Configuration Index, only the six most signifi-

cant bits of the offset are used, and the two least signifi-
cant bits must be 00b.

Table 4-39 summarizes the registers located within the
Configuration Space. The tables that follow, give detailed
register/bit formats.

Table 4-38. Format for Accessing the Internal PCI Configuration Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 RESERVED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Configuration Index 0 0

Table 4-39. PCI Configuration Space Register Summary

Index Type Name Default Value

00h-01h RO Vendor Identification 1078h

02h-03h RO Device Identification 0001h

04h-05h R/W PCI Command 0007h

06h-07h R/W Device Status 0280h

08h RO Revision Identification 00h

09h-0Bh RO Class Code 060000h

0Ch RO Cache Line Size 00h

0Dh R/W Latency Timer 0Dh

0Eh-3Fh -- Reserved 00h

40h R/W PCI Control Function 1 00h

41h R/W PCI Control Function 2 96h

42h -- Reserved 00h

43h R/W PCI Arbitration Control 1 80h

44h R/W PCI Arbitration Control 2 00h

45h-FFh -- Reserved 00h
evision 3.1 157 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 4-40. PCI Configuration Registers

Bit Name Description

Index 00h-01h Vendor Identification Register (RO) Default Value = 1078h

31:0 VID (RO) Vendor Identification Register (Read Only): The combination of this value and the device ID uniquely
identifies any PCI device. The Vendor ID is the ID given to national Semiconductor Corporation by the
PCI SIG.

Index 02h-03h Device Identification Register (RO) Default Value = 0001h

31:0 DIR (RO) Device Identification Register (Read Only): This value along with the vendor ID uniquely identifies any
PCI device.

Index 04h-05h PCI Command Register (R/W) Default Value = 0007h

15:10 RSVD Reserved: Set to 0.

9 FBE Fast Back-to-Back Enable: As a master, the GXm processor does not support this function.

This bit returns 0.

8 SERR SERR# Enable: This is used as an output enable gate for the SERR# driver.

7 WAT Wait Cycle Control: GXm processor does not do address/ data stepping.

This bit is always set to 0.

6 PE Parity Error Response:
0 = GXm processor ignores parity errors on the PCI bus.
1 = GXm processor checks for parity errors.

5 VPS VGA Palette Snoop: GXm processor does not support this function.

This bit is always set to 0.

4 MS Memory Write and Invalidate Enable: As a master, the GXm processor does not support this function.

This bit is always set to 0.

3 SPC Special Cycles: GXm processor does not respond to special cycles on the PCI bus.

This bit is always set to 0.

2 BM Bus Master:
0 = GXm processor does not perform master cycles on the PCI.
1 = GXm processor can act as a bus master on the PCI.

1 MS Memory Space: GXm processor will always respond to memory cycles on the PCI.

This bit is always set to 1.

0 IOS I/O Space: GXm processor will not respond to I/O accesses from the PCI.

This bit is always set to 1.

Index 06h-07h PCI Device Status Register (RO, R/W Clear) Default Value = 0280h

15 DPE Detected Parity Error: When a parity error is detected, this bit is set to 1.

This bit can be cleared to 0 by writing a 1 to it.

14 SSE Signaled System Error: This bit is set whenever SERR# is driven active.

13 RMA Received Master Abort: This bit is set whenever a master abort cycle occurs. A master abort will occur
whenever a PCI cycle is not claimed except for special cycles.

This bit can be cleared to 0 by writing a 1 to it.

12 RTA Received Target Abort: This bit is set whenever a target abort is received while the GXm processor is
master of the cycle.

This bit can be cleared to 0 by writing a 1 to it.

11 STA Signaled Target Abort: This bit is set whenever the GXm processor signals a target abort. A target
abort is signaled when an address parity occurs for an address that hits in the GXm processor’s address
space.

This bit can be cleared to 0 by writing a 1 to it.

10:9 DT Devise Timing:

00 = Fast
01 = Medium
10 = Slow
11 = Reserved

The GXm processor performs medium DEVSEL# active for addresses that hit into the GXm processor
address space. These two bits are always set to 01.
ww.national.com 158 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

8 DPD Data Parity Detected: This bit is set when three conditions are met.
1) GXm processor asserted PERR# or observed PERR# asserted;
2) GXm processor is the master for the cycle in which the PERR# occurred; and
3) PE (bit 6 of Command Register) is enabled.

This bit can be cleared to 0 by writing a 1 to it.

7 FBS Fast Back-to-Back Capable: As a target, the processor is capable of accepting Fast Back-to-Back
transactions.

This bit is always set to 1.

6:0 RSVD Reserved: Set to 0.

Index 08h Revision Identification Register (RO) Default Value = 00h

7:0 RID (RO) Revision ID (Read Only): This register contains the revision number of the GXm design.

Index 09h-0Bh Class Code Register (RO) Default Value = 060000h

23:16 CLASS Class Code: The class code register is used to identify the generic function of the device. The
GXm processor is classified as a host bridge device (06).

15:0 RSVD (RO) Reserved (Read Only)

Index 0Ch Cache Line Size Register (RO) Default Value = 00h

7:0 CACHELINE Cache Line Size (Read Only): The cache line size register specifies the system cacheline size in units
of 32-bit words. This function is not supported in the GXm processor.

Index 0Dh Latency Timer Register (R/W) Default Value = 00h

7:5 RSVD Reserved: Set to 0.

4:0 LAT_TIMER Latency Timer: The latency timer as used in this implementation will prevent a system lockup resulting
from a slave the does not responded to the master. If the register value is set to 00h, the timer is dis-
abled. Otherwise, Timer represents the 5 MSBs of an 8-bit counter. The counter will reset on each valid
data transfer. If the counter expires before the next TRDY# is received active, then the slave is consid-
ered to be incapable of responding, and the master will stop the transaction with a master abort and flag
an SERR# active. This would also keep the master from being retried forever by a slave device that con-
tinues to issue retries. In these cases, the master will also stop the cycle with a master abort.

Index 0Eh-3Fh Reserved Default Value = 00h

Index 40h PCI Control Function 1 Register (R/W) Default Value = 00h

7 RSVD Reserved: Set to 0.

6 SW Single Write Mode: PCI slave supports:

0 = Multiple PCI write cycles

1 = Single cycle write transfers on the PCI bus. The slave will perform a target disconnect with the first
data transferred.

5 SR Single Read Mode: PCI slave supports:

0 = Multiple PCI read cycles.

1 = Single cycle read transfers on the PCI bus. The slave will perform a target disconnect with the first
data transferred.

4 RXBNE Force Retry when X-Bus Buffers are Not Empty:

0 = PCI slave accepts the PCI cycle with data in the PCI master write buffers. The data in the PCI master
write buffers will not be affected or corrupted. The PCI master holds request active indicating the need to
access the PCI bus.

1 = PCI slave retries cycles if the PCI master X-bus write buffers contain buffered data.

3 SWBE PCI Slave Write Buffer Enable: PCI slave write buffers: 0 = Disable; 1 = Enable.

2 CLRE PCI Cache Line Read Enable: Read operations from the PCI into the GXm processor:

0 = Single cycle unless a read multiple or memory read line command is used.
1 = Cause a cache line read to occur.

1 XBE X-Bus Burst Enable: PCI slave acting as a master performs burst cycles on the X-bus on write-back
invalidate cycles from the PCI. 0 = Disable; 1 = Enable.

(This bit does not control read bursting; bit 2 does.)

0 RSVD Reserved: Should return a value of 0.

Table 4-40. PCI Configuration Registers (Continued)

Bit Name Description
evision 3.1 159 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Index 41h PCI Control Function 2 Register (R/W) Default Value = 96h

7 RSVD Reserved: Set to 0.

6 RW_CLK RAW Clock: A debug signal used to view internal clock operation. 0 = Disable; 1 = Enable.

5 PFS PERR# forces SERR#: PCI master drives an active SERR# anytime it also drives or receives an active
PERR#: 0 = Disable; 1 = Enable.

4 XWB X-Bus to PCI Write Buffer: Enable GXm processor PCI master’s X-Bus write buffers (non-locked mem-
ory cycles are buffered, I/O cycles and lock cycles are not buffered): 0 = Disable; 1 = Enable.

3:2 SDB Slave Disconnect Boundary: PCI slave issues a disconnect with data when it crosses line boundary:

00 = 128 bytes
01 = 256 bytes
10 = 512 bytes
11 = 1024 bytes

Works in conjunction with bit 1.

1 SDBE Slave Disconnect Boundary Enable:
0 = PCI slave disconnects on boundaries set by bits [3:2].
1 = PCI disconnects on cache line boundary which is 16 bytes.

0 XWS X-Bus Wait State Enable: The PCI slave acting as a master on the X-bus will insert wait states on write
cycles for data setup time. 0 = Disable; 1 = Enable.

Index 43h PCI Arbitration Control 1 Register (R/W) Default Value = 80h

7 BG Bus Grant:
0 = Grants bus regardless of X-bus buffers.
1 = Grants bus only if X-bus buffers are empty.

6 RSVD Reserved: Set to 1.

5 RME2 REQ2# Retry Mask Enable: Arbiter allows the REQ2# to be masked based on the master retry mask in
bits [2:1]: 0 = Disable; 1 = Enable.

4 RME1 REQ1# Retry Mask Enable: Arbiter allows the REQ1# to be masked based on the master retry mask in
bits [2:1]: 0 = Disable; 1 = Enable.

3 RME0 REQ0# Retry Mask Enable: Arbiter allows the REQ0# to be masked based on the master retry mask in
bits [2:1]: 0 = Disable; 1 = Enable.

2:1 MRM Master Retry Mask: When a target issues a retry to a master, the arbiter can mask the request from the
retried master in order to allow other lower order masters to gain access to the PCI bus:

00 = No retry mask
01 = Mask for 16 PCI clocks
10 = Mask for 32 PCI clocks
11 = Mask for 64 PCI clocks

0 HXR Hold X-bus on Retries: Arbiter holds the X-Bus X_HOLD for two additional clocks to see if the retried
master will request the bus again: 0 = Disable; 1 = Enable

(This may prevent retry thrashing in some cases.)

Table 4-40. PCI Configuration Registers (Continued)

Bit Name Description
ww.national.com 160 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Index 44h PCI Arbitration Control 2 Register (R/W) Default Value = 00h

7 PP Ping-Pong:
0 = Arbiter grants the processor bus per the setting of bits [2:0].
1 = Arbiter grants the processor bus ownership of the PCI bus every other arbitration cycle.

6:4 FAC Fixed Arbitration Controls: These bits control the priority under fixed arbitration. The priority table is as
follows (priority listed highest to lowest):

000 = REQ0#, REQ1#, REQ2#
001 = REQ1#, REQ0#, REQ2#
010 = REQ0#, REQ2#,REQ1#
011 = Reserved
100 = REQ1#, REQ2#, REQ0#
101 = Reserved
110 = REQ2#, REQ1#, REQ0#
111 = REQ2#, REQ0#, REQ1#

Note: The rotation arbitration bits [2:0] must be set to 000 for full fixed arbitration. If rotation bits are not
set to 000, then hybrid arbitration will occur. If Ping-Pong is enabled (bit 7 = 1), the processor will
have priority every other arbitration. In this mode, the arbiter grants the PCI bus to a master and
ignores all other requests. When the master finishes, the processor will be guaranteed access. At
this point PCI requests will again be recognized. This will switch arbitration from CPU-to-PCI to
CPU-to-PCI, etc.

3 RSVD Reserved: Set to 0.

45h-FFh -- Reserved

Table 4-40. PCI Configuration Registers (Continued)

Bit Name Description
evision 3.1 161 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.6.8 PCI Cycles
The following sections and diagrams provide the func-
tional relationships for PCI cycles.

4.6.8.1 PCI Read Transaction
A PCI read transaction consists of an address phase and
one or more data phases. Data phases may consist of
wait cycles and a data transfer. Figure 4-18 illustrates a
PCI read transaction. In this example, there are three data
phases.

The address phase begins on clock 2 when FRAME# is
asserted. During the address phase, AD[31:0] contains a

valid address and C/BE[3:0]# contains a valid bus com-
mand. The first data phase begins on clock 3. During the
data phase, AD[31:0] contains data and C/BE[3:0]# indi-
cate which byte lanes of AD[31:0] carry valid data. The
first data phase completes with zero delay cycles. How-
ever, the second phase is delayed one cycle because the
target was not ready so it deasserted TRDY# on clock 5.
The last data phase is delayed one cycle because the
master deasserted IRDY# on clock 7.

For additional information refer to Chapter 3.3.1, Read
Transaction, of the PCI Local Bus Specification, Revision
2.1.

Figure 4-18. Basic Read Operation

CLK

FRAME#

AD

C/BE#

DATA-1 DATA-2 DATA-3ADDR

BUS CMD BE#s

IRDY#

TRDY#

DEVSEL#

BUS TRANSACTION

ADDR
PHASE

DATA
PHASE

DATA
PHASE

DATA
PHASE

D
A

TA
T

R
A

N
S

F
E

R

W
A

IT

W
A

IT

D
A

TA
T

R
A

N
S

F
E

R

W
A

IT

D
A

TA
T

R
A

N
S

F
E

R

ww.national.com 162 Revision 3.1

R

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

4.6.8.2 PCI Write Transaction
A PCI write transaction is similar to a PCI read transac-
tion, consisting of an address phase and one or more data
phases. Since the master provides both address and
data, no turnaround cycle is required following the
address phase. The data phases work the same for both
read and write transactions. Figure 4-19 illustrates a write
transaction.

The address phase begins on clock 2 when FRAME# is
asserted. The first and second data phases complete
without delays. During data phase 3, the target inserts
three wait cycles by deasserting TRDY#.

For additional information refer to Chapter 3.3.2, Write
Transaction, of the PCI Local Bus Specification, Revision
2.1.

Figure 4-19. Basic Write Operation

CLK

FRAME#

AD

C/BE#

DATA-2 DATA-3ADDR

IRDY#

TRDY#

DEVSEL#

BUS TRANSACTION

ADDR
PHASE

DATA
PHASE

DATA
PHASE

DATA
PHASE

D
A

T
A

T
R

A
N

S
F

E
R

W
A

IT

W
A

IT

W
A

IT

D
A

T
A

T
R

A
N

S
F

E
R

DATA-1

BE#’s-2 BE#’s-3BUS CMD BE#’s-1

D
A

T
A

T
R

A
N

S
F

E
R

evision 3.1 163 www.national.com

w

Integrated Functions (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

4.6.8.3 PCI Arbitration
An agent requests the bus by asserting its REQ#. Based
on the arbitration scheme set in the PCI Arbitration Con-
trol 2 Register (Index 44h), the GX PCI arbiter will grant
the request by asserting GNT#. Figure 4-20 illustrates
basic arbitration.

REQ#-a is asserted at clock 1. The PCI GXm processor
arbiter grants access to Agent A by asserting GNT#-a on
clock 2. Agent A must begin a transaction by asserting
FRAME# within 16 clocks, or the GX PCI arbiter will
remove GNT#. Also, it is possible for Agent A to lose bus
ownership sooner if another agent with higher priority
requests the bus. However, in this example, Agent A
starts the transaction on clock 3 by asserting FRAME#
and completes its transaction. Since Agent A requests
another transaction, REQ#-a remains asserted. When
FRAME# is asserted on clock 3, the GXm processor’s PCI
arbiter determines Agent B should go next, asserts
GNT#-b and deasserts GNT#-a on clock 4. Agent B
requires only a single transaction. It completes the trans-
action, then deasserts FRAME# and REQ#-b on clock 6.

The GXm processor’s PCI arbiter can then grant access
to agent A, and does so on clock 7. Note that all buffers
must flush before a grant is given to a new agent.

For additional information refer to Chapter 3.4.1, Arbitra-
tion Signaling Protocol, of the PCI Local Bus Specifica-
tion, Revision 2.1.

4.6.8.4 PCI Halt Command
Halt is a broadcast message from the processor indicating
it has executed a halt instruction. The PCI Special Cycle
command is used to broadcast the message to all agents
on the bus segment. During the address phase of the Halt
Special cycle, C/BE[3:0]# = 0001 and AD[31:0] are driven
to random values. During the data phase, C/BE[3:0]# =
1100 indicating bytes 1 and 0 are valid and AD[15:0] =
0001h.

For additional information, refer to Chapter 3.7.2, Special
Cycle, and Appendix A, Special Cycle Messages, of the
PCI Local Bus Specification, Revision 2.1.

Figure 4-20. Basic Arbitration

CLK

REQ#-a

REQ#-b

GNT#-a

GNT#-b

FRAME#

AD
DATAADDR DATAADDR

access-a access-b
ww.national.com 164 Revision 3.1

R

G
eo

d
e™

G
X

m
P

ro
cesso

r

5.0 Virtual Subsystem Architecture
This section describes the Virtual Subsystem Architec-
ture® (VSA™) as implemented with the Geode GXm pro-
cessor(s) and VSA enhanced I/O companion device(s).
VSA provides a framework to enable software implemen-
tation of traditionally hardware-only components. VSA
software executes in System Management Mode (SMM),
enabling it to execute transparently to the operating sys-
tem, drivers and applications.

The VSA design is based upon a simple model for replac-
ing hardware components with software. Hardware to be
virtualized is merely replaced with simple access detec-
tion circuitry which asserts the processor’s SMI# (System
Management Interrupt) pin when hardware accesses are
detected. The current execution stream is immediately
preempted, and the processor enters SMM. The SMM
system software then saves the processor state, initializes
the VSA execution environment, decodes the SMI source
and dispatches handler routines which have registered
requests to service the decoded SMI source. Once all
handler routines have completed, the processor state is
restored and normal execution resumes. In this manner,
hardware accesses are transparently replaced with the
execution of SMM handler software.

Historically, SMM software was used primarily for the sin-
gle purpose of facilitating active power management for
notebook designs. That software’s only function was to
manage the power up and down of devices to save power.
With high performance processors now available, it is fea-
sible to implement, primarily in SMM software, PC capa-
bilities traditionally provided by hardware. In contrast to
power management code, this virtualization software gen-
erally has strict performance requirements to prevent
application performance from being significantly
impacted.

Several functions can be virtualized in a GXm processor
based design using the VSA environment. The VSA
enhanced chipsets provide programmable resources to
trap both memory and I/O accesses. However, specific
hardware is included to support the virtualization of VGA
core compatibility and audio functionality in the system.

The hardware support for VGA emulation resides com-
pletely inside the GXm processor. Legacy VGA accesses
do not generate off-chip bus cycles. However, the VSA
support hardware for
XpressAUDIO resides in the CS5530 I/O companion
device and is described in the CS5530 specification.

5.1 VIRTUAL VGA
The GXm processor reduces the burden of PC-legacy
hardware by using a balanced mix of hardware and soft-
ware to provide the same functionality. The graphics pipe-
line contains full hardware support for the VGA “front-
end”, the logic that controls read and write operations to
the VGA frame buffer (located in graphics memory). For
some modes, the hardware can also provide direct display
of the data in the VGA buffer. Virtual VGA traps frame
buffer accesses only when necessary, but it must trap all
VGA I/O accesses to maintain the VGA state and properly
program the graphics pipeline and display controller.

VGA functionality with the GXm processor includes the
standard VGA modes (VGA, EGA, CGA, and MDA) as
well as the higher-resolution VESA modes. The CGA and
MDA modes (modes 0 through 7) require that Virtual VGA
convert the data in the VGA buffer to a separate 8-BPP
frame buffer that the hardware can use for display refresh.

The remaining modes, VGA, EGA, and VESA, can be dis-
played directly by the hardware, with no data conversion
required. For these modes, Virtual VGA outperforms typi-
cal VGA cards because the frame buffer data does not
travel across an external bus.

Display drivers for popular GUI (graphical user interface)
based operating systems are provided by National Semi-
conductor which enable a full featured 2D hardware accel-
erator to be used instead of the emulated VGA core.

5.1.1 Traditional VGA Hardware
A VGA card consists of display memory and control regis-
ters. The VGA display memory shows up in system mem-
ory between addresses A0000h and BFFFFh. It is
possible to map this memory to three different ranges
within this 128 KB block.

The first range is
- A0000h to B0000h for EGA and VGA modes,

the second range is
- B0000h to B7FFFh for MDA modes,

and the third range is
- B8000h to BFFFFh for CGA modes.

The VGA control registers are mapped to the I/O address
range from 3B0h to 3DFh. The VGA registers are
accessed with an indexing scheme that provides more
registers than would normally fit into this range. Some
registers are mapped at two locations, one for mono-
chrome, and another for color.

The VGA hardware can be accessed by calling BIOS rou-
tines or by directly writing to VGA memory and control
registers. DOS always calls BIOS to set up the display
mode and render characters. Many other applications
access the VGA memory and control registers directly.
The VGA card can be set up to a virtually unlimited num-
ber of modes. However, many applications use one of the
predefined modes specified by the BIOS routine which
sets up the display mode. The predefined modes are
translated into specific VGA control register setups by the
BIOS. The standard modes supported by VGA cards are
shown in Table 5-1.
evision 3.1 165 www.national.com

w

Virtual Subsystem Architecture (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

A VGA is made up of several functional units.

• The frame buffer is 256 KB of memory that provides
data for the video display. It is organized as 64 K 32-bit
DWORDs.

• The sequencer decomposes word and DWORD CPU
accesses into byte operations for the graphics
controller. It also controls a number of miscellaneous
functions, including reset and some clocking controls.

• The graphics controller provides most of the interface
between CPU data and the frame buffer. It allows the
programmer to read and write frame buffer data in
different formats. Plus provides ROP (raster operation)
and masking functions.

• The CRT controller provides video timing signals and
address generation for video refresh. It also provides a
text cursor.

• The attribute controller contains the video refresh
datapath, including text rasterization and palette
lookup.

• The general registers provide status information for
the programmer as well as control over VGA-host
address mapping and clock selection. This is all
handled in hardware by the graphics pipeline.

It is important to understand that a VGA is constructed of
numerous independent functions. Most of the register
fields correspond to controls that were originally built out
of discrete logic or were part of a dedicated controller
such as the 6845. The notion of a VGA “mode” is a higher-
level convention to denote a particular set of values for the
registers. Many popular programs do not use standard
modes, preferring instead to produce their own VGA set-
ups that are optimal for their purposes.

5.1.1.1 VGA Memory Organization
The VGA memory is organized as 64 K 32-bit DWORDs.
This organization is usually presented as four 64 KB
“planes”. A plane consists of one byte out of every

DWORD. Thus, plane 0 refers to the least significant byte
from every one of the 64 K DWORDs. The addressing
granularity of this memory is a DWORD, not a byte; that is,
consecutive addresses refer to consecutive DWORDs.
The only provision for byte-granularity addressing is the
four-byte enable signals used for writes. In C parlance,

single_plane_byte = (dword_fb[address] >>
(plane * 8)) & 0xFF;

When dealing with VGA, it is important to recognize the
distinction between host addresses, frame buffer
addresses, and the refresh address pipe. A VGA control-
ler contains lots of hardware to translate between these
address spaces in different ways, and understanding
these translations is critical to understanding the entire
device. In standard four-plane graphics modes, a frame-
buffer DWORD provides eight 4-bit pixels. The left-most
pixel comes from bit 7 of each plane, with plane 3 provid-
ing the most significant bit.

pixel[i].bit[j] = dword_fb[address].bit[j*8 + (7-i)]

5.1.1.2 VGA Front End
The VGA front end consists of address and data transla-
tions between the CPU and the frame buffer. This func-
tionality is contained within the graphics controller and
sequencer components. Most of the front end functionality
is implemented in the VGA read and write hardware of the
GXm processor. An important axiom of the VGA is that
the front end and back end are controlled independently.
There are no register fields that control the behavior of
both pieces. Terms like “VGA odd/even mode” are there-
fore somewhat misleading; there are two different controls
for odd/even functionality in the front end, and two sepa-
rate controls in the refresh path to cause “sensible”
refresh behavior for frame buffer contents written in
odd/even mode. Normally, all these fields would be set up
together, but they don’t have to be. This sort of orthogonal
behavior gives rise to the enormous number of possible
VGA “modes”. The CPU end of the read and write pipes is
one byte wide. Word and DWORD accesses from the

Table 5-1. Standard VGA Modes

Category Mode
Text or

Graphics Resolution Format Type

Software 0,1 Text 40x25 Characters CGA

2,3 Text 80x25 Characters CGA

4,5 Graphics 320x200 2 BPP CGA

6 Graphics 640x200 1 BPP CGA

7 Text 80x25 Characters MDA

Hardware 0Dh Graphics 320x200 4 BPP EGA

0Eh Graphics 640x200 4 BPP EGA

0Fh Graphics 640x350 1 BPP EGA

10h Graphics 640x350 4 BPP EGA

11h Graphics 640x480 1 BPP VGA

12h Graphics 640x480 4 BPP VGA

13h Graphics 320x200 8 BPP VGA
ww.national.com 166 Revision 3.1

R

Virtual Subsystem Architecture (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

CPU to VGA memory are broken down into multiple byte
accesses by the sequencer. For example, a word write to
A0000h (in a VGA graphics mode) is processed as if it
were two-byte write operations to A0000h and A0001h.

5.1.1.3 Address Mapping
When a VGA card sees an address on the host bus, bits
[31:15] determine whether the transaction is for the VGA.
Depending on the mode, addresses 000AXXXX,
000B{0XXX}XXX, or 000B{1XXX}XXXX can decode into
VGA space. If the access is for the VGA, bits [15:0] pro-
vide the DWORD address into the frame buffer (however,
see odd/even and Chain 4 modes, below). Thus, each
byte address on the host bus addresses a DWORD in
VGA memory.

On a write transaction, the byte enables are normally
driven from the sequencer’s MapMask register. The VGA
has two other write address mappings that modify this
behavior. In odd/even (Chain 2) write mode, bit 0 of the
address is used to enable bytes 0 and 2 (if zero) or bytes
1 and 3 (if one). In addition, the address presented to the
frame buffer has bit 0 replaced with the PageBit field of
the Miscellaneous Output register. Chain 4 write mode is
similar; only one of the four byte enables is asserted,
based on bits [1:0] of the address, and bits [1:0] of the
frame buffer address are set to zero. In each of these
modes, the MapMask enables are logically ANDed into
the enables that result from the address.

5.2 GXM VIRTUAL VGA
The GXm processor provides VGA compatibility through a
mixture of hardware and software. The processor core
contains SMI generation hardware for VGA memory write
operations. The bus controller contains SMI generation
hardware for VGA I/O read and write operations. The
graphics pipeline contains hardware to detect and pro-
cess reads and writes to VGA memory. VGA memory is
partitioned from system memory.

5.2.1 Datapath Elements
The graphics controller contains several elements that
convert between host data and frame buffer data.

The rotator simply rotates the byte written from the host
by 0 to 7 bits to the right, based on the RotateCount field
of the DataRotate register. It has no effect in the read
path.

The display latch is a 32-bit register that is loaded on
every read access to the frame buffer. All 32 bits of the
frame buffer DWORDs are loaded into the latch.

The write-mode unit converts a byte from the host into a
32-bit value. A VGA has four write modes:

• Write Mode 0:
- Bit n of byte b comes from one of two places,

depending on bit b of the EnableSetReset register. If
that bit is zero, it comes from bit n of the host data. If
that bit is one, it comes from bit b of the SetReset
register. This mode allows the programmer to set

some planes from the host data and the others from
SetReset.

• Write Mode 1:
- All 32 bits come directly out of the display latch; the

host data is ignored. This mode is used for screen-
to-screen copies.

• Write Mode 2:
- Bit n of byte b comes from bit b of the host data; that

is, the four LSBs of the host data are each replicated
through a byte of the result. In conjunction with the
BitMask register, this mode allows the programmer
to directly write a 4-bit color to one or more pixels.

• Write Mode 3:
- Bit n of byte b comes from bit b of the SetReset

register. The host data is ANDed with the BitMask
register to provide the bit mask for the write (see
below).

The read mode unit converts a 32-bit value from the
frame buffer into a byte. A VGA has two read modes:

• Read Mode 0:
- One of the four bytes from the frame buffer is

returned, based on the value of the ReadMapSelect
register. In Chain 4 mode, bits [1:0] of the read
address select a plane. In odd/even read mode, bit 0
of the read address replaces bit 0 of ReadMapSe-
lect.

• Read Mode 1:
- Bit n of the result is set to 1 if bit n in every byte b

matches bit b of the ColorCompare register; other-
wise it is set to 0. There is a ColorDon’tCare register
that can exclude planes from this comparison. In
four-plane graphics modes, this provides a conver-
sion from 4 BPP to 1 BPP.

The ALU is a simple two-operand ROP unit that operates
on writes. Its operating modes are COPY, AND, OR, and
XOR. The 32-bit inputs are:

1) the output of the write-mode unit and

2) the display latch (not necessarily the value at the
frame buffer address of the write).

An application that wishes to performs ROPs on the
source and destination must first byte read the address (to
load the latch) and then immediately write a byte to the
same address. The ALU has no effect in Write Mode 1.

The bit mask unit does not provide a true bit mask.
Instead, it selects between the ALU output and the display
latch. The mask is an 8-bit value, and bit n of the mask
makes the selection for bit n of all four bytes of the result
(a zero selects the latch). No bit masking occurs in Write
Mode 1.

The VGA hardware of the GXm processor does not imple-
ment Write Mode 1 directly, but it can be indirectly imple-
mented by setting the BitMask to zero and the ALU mode
to COPY.
evision 3.1 167 www.national.com

w

Virtual Subsystem Architecture (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

5.2.2 Video Refresh
VGA refresh is controlled by two units: the CRT controller
(CRTC) and the attribute controller (ATTR). The CRTC
provides refresh addresses and video control; the ATTR
provides the refresh datapath, including pixel formatting
and internal palette lookup.

The VGA back end contains two basic clocks: the dot
clock (or pixel clock) and the character clock. The Clock-
Select field of the Miscellaneous Output register selects a
“master clock” of either 25 MHz or 28 MHz. This master
clock, optionally divided by two, drives the dot clock. The
character clock is simply the dot clock divided by eight or
nine.

The VGA supports four basic pixel formats. Using text for-
mat, the VGA interprets frame buffer values as ASCII
characters, foreground/background attributes, and font
data. The other three formats are all “graphics modes”,
known as APA (All Points Addressable) modes. These for-
mats could be called CGA-compatible (odd/even four
bits/pixel), EGA-compatible (4-plane four bits/pixel), and
VGA-compatible (pixel-per-byte eight bits/pixel). The for-
mat is chosen by the ShiftRegister field of the Graphics
Controller Mode register.

The refresh address pipe is an integral part of the CRTC,
and has many configuration options. Refresh can begin at
any frame buffer address. The display width and the frame
buffer pitch (scan-line delta) are set separately. Multiple
scan lines can be refreshed from the same frame buffer
addresses. The LineCompare register causes the refresh
address to be reset to zero at a particular scan line, pro-
viding support for vertical split-screen.

Within the context of a single scan line, the refresh
address increments by one on every character clock.
Before being presented to the frame buffer, refresh
addresses can be shifted by 0, 1, or 2 bits to the left.
These options are often mis-named Byte, Word, and Dou-
bleword modes. Using this shifter, the refresh unit can be
programmed to skip one out of two or three out of four
DWORDs of refresh data. As an example of the utility of
this function, consider Chain 4 mode, described earlier.
Pixels written in Chain 4 mode occupy one out of every
four DWORDs in the frame buffer. If the refresh path is put
into “Doubleword” mode, the refresh will come only from
those DWORDs writable in Chain 4. This is how VGA
mode 13h works.

In text mode, the ATTR has a lot of work to do. At each
character clock, it pulls a DWORD of data out of the frame
buffer. In that DWORD, plane 0 contains the ASCII char-
acter code, and plane 1 contains an attribute byte. The
ATTR uses plane 0 to generate a font lookup address and
read another DWORD. In plane 2, this DWORD contains a
bit-per-pixel representation of one scan line in the appro-
priate character glyph. The ATTR transforms these bits
into eight pixels, obtaining foreground and background
colors from the attribute byte. The CRTC must refresh
from the same memory addresses for all scan lines that
make up a character row; within that row, the ATTR must

fetch successive scan lines from the glyph table so as to
draw proper characters. Graphics modes are somewhat
simpler. In CGA-compatible mode, a DWORD provides
eight pixels. The first four pixels come from planes 0 and
2; each 4-bit pixel gets bits [3:2] from plane 2, and bits
[1:0] from plane 0. The remaining four pixels come from
planes 1 and 3. The EGA-compatible mode also gets
eight pixels from a DWORD, but each pixel gets one bit
from each plane, with plane 3 providing bit 3. Finally,
VGA-compatible mode gets four pixels from each
DWORD; plane 0 provides the first pixel, plane 1 the next,
and so on. The 8 BPP mode uses an option to provide
every pixel for two dot clocks, thus allowing the refresh
pipe to keep up (it only increments on character clocks)
and meaning that the 320-pixel-wide mode 13h really has
640 visible pixels per line. The VGA color model is
unusual. The ATTR contains a 16-entry color palette with
6 bits per entry. Except for 8 BPP modes, all VGA configu-
rations drive four bits of pixel data into the palette, which
produces a 6-bit result. Based on various control regis-
ters, this value is then combined with other register con-
tents to produce an 8-bit index into the DAC. There is a
ColorPlaneEnable register to mask bits out of the pixel
data before it goes to the palette; this is used to emulate
four-color CGA modes by ignoring the top two bits of each
pixel. In 8 BPP modes, the palette is bypassed and the
pixel data goes directly to the DAC

5.2.3 GXm VGA Hardware
The GXm processor core contains hardware to detect
VGA accesses and generate SMI interrupts. The graphics
pipeline contains hardware to detect and process reads
and writes to VGA memory. The VGA memory on the
GXm processor is partitioned from system memory. The
GXm processor has the following hardware components
to assist the VGA emulation software.

• SMI Generation
• VGA Range Detection
• VGA Sequencer
• VGA Write/Read Path
• VGA Address Generator
• VGA Memory

5.2.3.1 SMI Generation
VGA emulation software is notified of VGA memory
accesses by an SMI generated in dedicated circuitry in
the processor core that detects and traps memory
accesses. The SMI generation hardware for VGA memory
addresses is in the second stage of instruction decoding
on the processor core. This is the earliest stage of instruc-
tion decode where virtual addresses have been translated
to physical addresses. Trapping after the execution stage
is impractical, because memory write buffering will allow
subsequent instructions to execute.

The VGA emulation code requires the SMI to be gener-
ated immediately when a VGA access occurs. The SMI
generation hardware can optionally exclude areas of VGA
memory, based on a 32-bit register which has a control bit
for each 2 KB region of the VGA memory window. The
ww.national.com 168 Revision 3.1

R

Virtual Subsystem Architecture (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

control bit determines whether or not an SMI interrupt is
generated for the corresponding region. The purpose of
this hardware is to allow the VGA emulation software to
disable SMI interrupts in VGA memory regions that are
not currently displayed.

For direct display modes (8 BPP or 16 BPP) in the display
controller, Virtual VGA can operate without SMI genera-
tion.

The SMI generation circuit on the GXm processor has
configuration registers to control and mask SMI interrupts
in the VGA memory space.

5.2.3.2 VGA Memory Addresses
SMI generation can be configured to trap VGA memory
accesses in one of the following ranges:

A0000h to AFFFFh (EGA,VGA),
B0000h to B7FFFh (MDA),
or B8000h to BFFFFh (CGA).

Range selection is accomplished through programmable
bits in the VGACTL register (Index B9h). Fine control can
be exercised within the range selected to allow off-screen
accesses to occur without generating SMIs.

SMI generation can also separately control the following
I/O ranges: 3B0h to 3BFh, 3C0h to 3CFh, and 3D0h to

3DFh. The BC_XMAP_1 register (GX_BASE+8004h) in
the Internal Bus Interface Unit has an enable/disable bit
for each of the address ranges above.

5.2.3.3 VGA Configuration Registers
Table 5-2 summarizes the VGA Configuration Registers.
Detailed register/bit formats are given in Table 5-3.

5.2.3.4 VGA Control Register
The VGA control register (VGACTL) provides control for
SMI generation through an enable bit for memory address
ranges A0000h to BFFFFh. Each bit controls whether or
not SMI is generated for accesses to the corresponding
address range. The default value of this register is zero so
that VGA accesses will not be trapped on systems with an
external VGA card.

5.2.3.5 VGA Mask Registers
The VGA Mask register (VGAM) has 32 bits that can
selectively mask 2 KB regions within the VGA memory
region A0000h to AFFFFh. If none of the three regions is
enabled in VGACTL, then the contents of VGAM are
ignored. VGAM can be used to prevent the occurrence of
SMI when non-displayed VGA memory is accessed. This
is an enhancement that improves performance for double-
buffered applications only.

Table 5-2. VGA Configuration Registers Summary

Index Name Description Default

B9h VGACTL VGA Control Register 00h (SMI generation disabled)

BAh-BDh VGAM VGA Mask Register Don’t Care
evision 3.1 169 www.national.com

w

Virtual Subsystem Architecture (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 5-3. VGA Configuration Registers

Bit Description

Index B9h VGACTL Register (R/W) Default Value = 00h

7:3 Reserved: Set to 0.

2 SMI generation for VGA memory range B8000h to BFFFFh: 0 = Disable; 1 = Enable

1 SMI generation for VGA memory range B0000h to B7FFFh: 0 = Disable; 1 = Enable.

0 SMI generation for VGA memory range A0000h to AFFFFh: 0 = Disable; 1 = Enable

Index BAh-BDh VGAM Register (R/W) Default Value = xxxxxxxxh

31 SMI generation for address range AF800h to AFFFFh: 0 = Disable; 1 = Enable.

30 SMI generation for address range AF000h to AF7FFh: 0 = Disable; 1 = Enable.

29 SMI generation for address range AE800h to AEFFFh: 0 = Disable; 1 = Enable.

28 SMI generation for address range AE000h to AE7FFh: 0 = Disable; 1 = Enable.

27 SMI generation for address range AD800h to ADFFFh: 0 = Disable; 1 = Enable.

26 SMI generation for address range AD000h to AD7FFh: 0 = Disable; 1 = Enable.

25 SMI generation for address range AC800h to ACFFFh: 0 = Disable; 1 = Enable.

24 SMI generation for address range AC000h to AC7FFh: 0 = Disable; 1 = Enable.

23 SMI generation for address range AB800h to ABFFFh: 0 = Disable; 1 = Enable.

22 SMI generation for address range AB000h to AB7FFh: 0 = Disable; 1 = Enable.

21 SMI generation for address range AA800h to AAFFFh: 0 = Disable; 1 = Enable.

20 SMI generation for address range AA000h to AA7FFh: 0 = Disable; 1 = Enable.

19 SMI generation for address range A9800h to A9FFFh: 0 = Disable; 1 = Enable.

18 SMI generation for address range A9000h to A97FFh: 0 = Disable; 1 = Enable.

17 SMI generation for address range A8800h to A8FFFh: 0 = Disable; 1 = Enable.

16 SMI generation for address range A8000h to A87FFh: 0 = Disable; 1 = Enable.

15 SMI generation for address range A7800h to A7FFFh: 0 = Disable; 1 = Enable.

14 SMI generation for address range A7000h to A77FFh: 0 = Disable; 1 = Enable.

13 SMI generation for address range A6800h to A6FFFh: 0 = Disable; 1 = Enable.

12 SMI generation for address range A6000h to A67FFh: 0 = Disable; 1 = Enable.

11 SMI generation for address range A5800h to A5FFFh: 0 = Disable; 1 = Enable.

10 SMI generation for address range A5000h to A57FFh: 0 = Disable; 1 = Enable.

9 SMI generation for address range A4800h to A4FFFh: 0 = Disable; 1 = Enable.

8 SMI generation for address range A4000h to A47FFh: 0 = Disable; 1 = Enable.

7 SMI generation for address range A3800h to A3FFFh: 0 = Disable; 1 = Enable.

6 SMI generation for address range A3000h to A37FFh: 0 = Disable; 1 = Enable.

5 SMI generation for address range A2800h to A2FFFh: 0 = Disable; 1 = Enable.

4 SMI generation for address range A2000h to A27FFh: 0 = Disable; 1 = Enable.

3 SMI generation for address range A1800h to A1FFFh: 0 = Disable; 1 = Enable.

2 SMI generation for address range A1000h to A17FFh: 0 = Disable; 1 = Enable.

1 SMI generation for address range A0800h to A0FFFh: 0 = Disable; 1 = Enable.

0 SMI generation for address range A0000h to A07FFh: 0 = Disable; 1 = Enable.
ww.national.com 170 Revision 3.1

R

Virtual Subsystem Architecture (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

5.2.3.6 VGA Range Detection
The VGA range detection circuit is similar to the SMI gen-
eration hardware, however, it resides in the bus controller
address mapping unit. The purpose of this hardware is to
notify the graphics pipeline when accesses to the VGA
memory range A0000h to BFFFFh are detected. The
graphics pipeline has VGA read and write path hardware
to process VGA memory accesses. The VGA range
detection can be configured to trap VGA memory
accesses in one or more of the following ranges: A0000h
to AFFFFh (EGA,VGA), B0000h to B7FFFh (MDA), or
B8000h to BFFFFh (CGA).

5.2.3.7 VGA Sequencer
The VGA sequencer is located at the front end of the
graphics pipeline. The purpose of the VGA sequencer is
to divide up multiple-byte read and write operations into a
sequence of single-byte read and write operations. 16-bit
or 32-bit X-bus write operations to VGA memory are
divided into 8-bit write operations and sent to the VGA
write path. 16-bit or 32-bit X-bus read operations from
VGA memory are accumulated from 8-bit read operations
over the VGA read path. The sequencer generates the
lower two bits of the address.

5.2.3.8 VGA Write/Read Path
The VGA write path implements standard VGA write oper-
ations into VGA memory. No SMI is generated for write
path operations when the VGA access is not displayed.
When the VGA access is displayed, an SMI is generated
so that the SMI emulation can update the frame buffer.
The VGA write path converts 8-bit write operations from
the sequencer into 32-bit VGA memory write operations.
The operations performed by the VGA write path include
data rotation, raster operation (ALU), bit masking, plane
select, plane enable, and write modes.

The VGA read path implements standard VGA read oper-
ations from VGA memory. No SMI is needed for read-path
operations. The VGA read path converts 32-bit read oper-
ations from VGA memory to 8-bit data back to the
sequencer. The basic operations performed by the VGA
read path include color compare, plane-read select, and
read modes.

5.2.3.9 VGA Address Generator
The VGA address generator translates VGA memory
addresses up to address where the VGA memory resides
on the GXm processor. The VGA address generator
requires the address from the VGA access (A0000h to
BFFFFh), the base of the VGA memory on the GXm pro-
cessor, and various control bits. The control bits are nec-
essary because addressing is complicated by odd/even
and Chain 4 addressing modes.

5.2.3.10 VGA Memory
The VGA memory requires 256 KB of memory organized
as 64 KB by 32 bits. The VGA memory is implemented as
part of system memory. The GXm processor partitions
system memory into two areas, normal system memory
and graphics memory. System memory is mapped to the
normal physical address of the DRAM, starting at zero
and ending at memory size. Graphics memory is mapped
into high physical memory, contiguous to the registers and
dedicated cache of the GXm processor. The graphics
memory includes the frame buffer, compression buffer,
cursor memory, and VGA memory. The VGA memory is
mapped on a 256 KB boundary to simplify the address
generation.

5.2.4 VGA Video BIOS
The video BIOS supports the VESA BIOS Extensions
(VBE) Version 1.2 and 2.0, as well as all standard VGA
BIOS calls. It interacts with Virtual VGA through the use of
several extended VGA registers. These are virtual regis-
ters contained in the VSA code for Virtual VGA. (These
registers are defined in a separate document.)
evision 3.1 171 www.national.com

w

Virtual Subsystem Architecture (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

5.2.5 Virtual VGA Register Descriptions
This section describes the registers contained in the
graphics pipeline used for VGA emulation. The graphics
pipeline maps 200h locations starting at
GX_BASE+8100h. Refer to Section 4.1.2 “Control Regis-

ters” on page 94 for instructions on accessing these regis-
ters.

The registers are summarized in Table 5-4, followed by
detailed bit formats in Table 5-5 on page 173.

Table 5-4. Virtual VGA Register Summary

GX_BASE+
Memory Offset Type Function Default Value

8210h-8213h R/W GP_VGA_BASE VGA

Graphics Pipeline VGA Memory Base Address Register — Specifies the offset
of the VGA memory, starting from the base of graphics memory.

xxxxxxxxh

8214h-8217h R/W GP_VGA_LATCH

Graphics Pipeline VGA Display Latch Register — Provides a memory mapped
way to read or write the VGA display latch.

xxxxxxxxh

8140h-8143h R/W GP_VGA_WRITE

Graphics Pipeline VGA Write Patch Control Register — Controls the VGA mem-
ory write path in the graphics pipeline.

xxxxxxxxh

8144h-8147h R/W GP_VGA_READ

Graphics Pipeline VGA Read Patch Control Register — Controls the VGA mem-
ory read path in the graphics pipeline.

00000000h
ww.national.com 172 Revision 3.1

R

Virtual Subsystem Architecture (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 5-5. Virtual VGA Registers

Bit Name Description

GX_BASE+8210h-8213h GP_VGA_BASE (R/W) Default Value = xxxxxxxxh

31:14 RSVD Reserved: Set to 0.

13:8 VGA_BASE
(RO)

Base Address (Read Only): The VGA base address is added to the graphics memory base to
specify where VGA memory starts. The VGA base address provides longword address bits 19:14
when mapping VGA accesses into graphics memory. This allows the VGA base address to start on
any 64 KB boundary within the 4 MB of graphics memory.

7:6 RSVD Reserved: Set to 0.

5:0 VGA_BASE
(WO)

Base Address (Write Only): The VGA base address is added to the graphics memory base to
specify where VGA memory starts. The VGA base address provides longword address bits 19:14
when mapping VGA accesses into graphics memory. This allows the VGA base address to start on
any 64 KB boundary within the 4 MB of graphics memory.

GX_BASE+8214h-8217h GP_VGA_LATCH Register (R/W) Default Value = xxxxxxxxh

31:0 LATCH Display Latch: Specifies the value in the VGA display latch. VGA read operations cause VGA
frame-buffer data to be latched in the display latch. VGA write operations can use the display latch
as a source of data for VGA frame-buffer write operations.

GX_BASE+8140h-8143h GP_VGA_WRITE Register (R/W) Default Value = xxxxxxxxh

31:28 RSVD Reserved: Set to 0.

27:24 MAP_MASK Map Mask: Enables planes 3 through 0 for writing. Combined with chain control to determine the
final enables.

23:21 RSVD Reserved: Set to 0.

20 W3 Write Mode 3: Selects write mode 3 by using the bit mask with the rotated data.

19 W2 Write Mode 2: Selects write mode 2 by controlling set/reset.

18:16 RC Rotate Count: Controls the eight bit rotator.

15:12 SRE Set/Reset Enable: Enables the set/reset value for each plane.

11:8 SR Set/Reset: Selects 1 or 0 for each plane if enabled.

7:0 BIT_MASK Bit Mask: Selects data from the data latches (last read data).

GX_BASE+8144h-8147h GP_VGA_READ Register (R/W) Default Value = 00000000h

31:18 RSVD Reserved: Set to 0.

17:16 RMS Read Map Select: Selects which plane to read in read mode 0 (Chain 2 and Chain 4 inactive).

15 F15 Force Address Bit 15: Forces address bit 15 to 0.

14 PC4 Packed Chain 4:— Provides 64 KB of packed pixel addressing when used with Chain 4 mode. This
bit causes the VGA addresses to be shifted right by 2 bits.

13 C4 Chain 4 Mode: Selects Chain 4 mode for both read operations and write operations.

12 PB Page Bit: Becomes LSB of address if COE is set high.

11 COE Chain Odd/Even: Selects PB rather than A0 for least-significant VGA address bit.

10 W2 Write Chain 2 Mode: Selects Chain 2 mode for write operations.

9 R2 Read Chain 2 Mode: Selects Chain 2 mode for read operations.

8 RM Read Mode: Selects between read mode 0 (normal) and read mode 1 (color compare).

7:4 CCM Color Compare Mask: Selects planes to include in the color comparison (read mode 1).

3:0 CC Color Compare: Specifies value of each plane for color comparison (read mode 1).
evision 3.1 173 www.national.com

w

G
eo

d
e™

G
X

m
P

ro
ce

ss
o

r

6.0 Power Management
The power management resources provided by a com-
bined Geode GXm processor and CS5530-based system
have been designed to support a full-featured notebook
implementation. The extent to which these resources are
employed depends on the application and the discretion
of the system designer.

The three greatest power consumers in a notebook sys-
tem are the display, the hard drive and the CPU. Manag-
ing power for the first two is relatively straightforward and
is discussed in the Geode CS5530 I/O companion speci-
fication. Managing CPU power can be more difficult since
detecting inactive (Idle) states by monitoring external
activity is imperfect as well as inefficient.

The GXm processor and CS5530 I/O companion chip
contain the most advanced power management features
for reducing the power consumption of the processor in
the system while delivering the highest performance in
any mobile processor. The GXm processor supports the
following CPU power management features:

• APM Support
• CPU Suspend Command Registers (CS5530)
• Suspend Modulation
• 3 Volt Suspend
• GXm Integrated Processor Serial Bus

6.1 APM SUPPORT
Many notebook computers rely solely on the APM
(Advanced Power Management) driver for DOS, Windows
3.1 and Windows 95 operating systems to manage power
to the CPU. APM provides several services that enhance
the system power management by determining when the
CPU is idle. For the CPU, APM is theoretically the best
approach but there are some drawbacks.

1. APM is an OS-specific driver which may not be avail-
able for some operating systems.

2. Application support is inconsistent. Some applica-
tions in foreground may prevent idle calls.

The components for APM support are:

• Software CPU Suspend control via the CS5530 CPU
Suspend Command Register (ACh).

• Software SMI entry via the Software SMI Register
(D0h). This allows the APM BIOS to be part of the SMI
handler.

6.2 CPU SUSPEND COMMAND REGISTERS
Power management system software can invoke the
SUSP#/SUSPA# protocol with the “CPU Suspend Com-
mand” and the “Suspend Notebook Command” registers
in the CS5530. If the SUSP#/SUSPA# protocol is invoked,
all pending SMIs are serviced and SMI# is deasserted.
Then SUSP# is asserted by the CS5530 and, subse-
quently, SUSPA# is returned by the GXm processor.
When a condition that ends the “Suspend” state exists,
SMI# is re-asserted. At this point, if the PLL in the GXm
processor has not been stopped, then SUSP# is deas-

serted. SUSP# is never deasserted until SUSPA# has
been sampled active (low).

Note: The SMI# pin is a unidirectional line from the
CS5530 to the GXm processor. It is active low.
When SMI is initiated from a normal mode, the
SMI# pin is asserted low and is held low until the
SMI source is cleared. At that time, SMI# is de-
asserted.

6.3 SUSPEND MODULATION
The hardware provided to support the GXm processor’s
power management works by assuming that the GXm
processor is Idle and reducing power until activity is
detected. Most power management schemes in the indus-
try run the system at full speed until a period of inactivity
is detected. National Semiconductor’s more aggressive
approach yields lower power consumption. When activity
is detected, the GXm processor is instantly converted to
full speed for a programmed duration. This is called Sus-
pend Modulation.

Suspend Modulation acts as backup for cases where
APM doesn’t correctly detect an Idle condition in the sys-
tem. As long as it is enabled, it will only become active in
the background. The “Suspend Modulation Enable Regis-
ter” in the CS5530 enables the Suspend Modulation fea-
ture.

The “Suspend Modulation ON Count Register” in the
CS5530 is an 8-bit counter that represents the number of
32 µs intervals that the SUSP# pin will be asserted to the
GXm processor. This counter, together with the “Suspend
Modulation OFF Count Register” and the IRQ/Video
Speedup Registers, performs the Suspend Modulation
function for GXm processor’s power management. The
ratio of the on count to the off count sets up an effective
(emulated) clock frequency, allowing the power manager
in the system to reduce the GXm processor’s power con-
sumption.

6.4 3-VOLT SUSPEND MODE
The GXm processor and CS5530 support stopping the
processor and system clocks using the 3-Volt Suspend
Mode. If configured (refer to the CS5530 specification),
the CS5530 asserts the SUSP_3V pin after the
SUSP#/SUSPA# handshake. SUSP_3V is intended to be
connected to the output enable of a clock synthesizer or
buffer chip so that the clocks to the GXm processor
(SYSCLK), the CS5530 (PCI_CLK), and other system
devices are stopped. The SUSP_3V pin is asserted on
any write to the CS5530’s “CPU Suspend Command Reg-
ister” or “Suspend Notebook Command Register” with bit
0 of the “Clock Stop Control Register” set.

The GXm processor has two low-power Suspend modes.
The mode implemented is determined by bit 0 in the PM
Clock Stop Control Register. One mode (bit 0 clear) turns
off the internal clocks to everything except the internal dis-
play and memory controllers, thereby keeping the display
active. The second mode, which is lower power, turns off
all internal clocks generated from SYSCLK. This mode is
ww.national.com 174 Revision 3.1

R

Power Management (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

selected by setting bit 0 in the PM Clock Stop Control
Register. If you are using DRAMs without self refresh, you
must supply a 32 kHz clock to the CLK32KHZ bit to keep
the refresh circuitry active when using the lower-power
Suspend mode.

While also in 3-Volt Suspend Mode, the CS5530 contin-
ues to decrement all of its device timers, and it responds
to external SMI interrupts using the 32 kHz clock input
(CLK32KHz) pin. Any SMI event, timer or pin, causes the
CS5530 to deassert the SUSP_3V pin, starting the sys-
tem clocks. The CS5530 holds SUSP# active for a pre-
programmed period that varies from 0 to 16 ms, which
allows the clocks to settle. After this period expires, the
CS5530 deasserts SUSP#. SMI# is held active for the
entire period, so that the GXm processor status registers
are updated.

The SUSP_3V pin can be active either high or low. The
pin is an input during POR, and is sampled to determine
its inactive state. This allows a designer to match the
active state of SUSP_3V to the inactive state for a clock
driver output enable with a pull-up or pull-down resistor.

6.5 SUSPEND MODE AND BUS CYCLES
The following subsections describe the bus cycles when
the Suspend mode is implemented.

6.5.1 Initiating Suspend with SUSP#
The GXm processor has two low-power Suspend modes.
The mode is selected by bit 0 in the PM Clock Stop Con-
trol Register. One mode (bit 0 cleared) turns off the inter-
nal clocks to everything but the internal Display and
Memory Controllers, keeping the display active. A lower-

power mode turns off all internal clocks generated from
SYSCLK. This mode is selected by setting bit 0 in the PM
Clock Stop Control Register. If the bit is set and DRAMS
without self-refresh are used, a 32 KHz clock must be
supplied to the CLK32KHZ input to keep the refresh circuit
active.

The GXm processor enters the Suspend mode in
response to SUSP# input assertion only when certain
conditions are met. First, the USE_SUSP bit must be set
in CCR2 (Index C2h[7]). In addition, execution of the cur-
rent instructions and any pending decoded instructions
and associated bus cycles must be completed. SUSP# is
sampled on the rising edge of SYSCLK, and must meet
specified setup and hold times to be recognized at a par-
ticular SYSCLK edge.

When all conditions are met, the SUSPA# output is
asserted. The time from assertion of SUSP# to the activa-
tion of SUSPA# depends on which instructions were
decoded prior to assertion of SUSP#. Normally, once
SUSP# has been sampled inactive the SUSPA# output
will be deactivated within two clocks. However, the deacti-
vation of SUSPA# may be delayed until the end of an
active refresh cycle.

If the CPU is already in a Suspend mode initiated by
SUSP#, one occurrence of NMI, INTR and SMI# is stored
for execution after Suspend mode is exited. The CPU also
allows PCI accesses during a SUSP#-initiated Suspend
mode (see Figure 6-1). If the CPU is in the middle of a
PCI access when SUSP# is asserted, the assertion of
SUSPA# will be delayed until the PCI access is com-
pleted.

Figure 6-1. SUSP#-Initiated Suspend Mode

SYSCLK

SUSP#

SUSPA#
evision 3.1 175 www.national.com

w

Power Management (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

6.5.2 Initiating Suspend with HALT
The CPU also enters Suspend mode as a result of execut-
ing a HALT instruction if the SUSP_HALT bit in CCR2
(Index C2h[3]) is set. Suspend mode is then exited upon
recognition of an NMI, an unmasked INTR, or an SMI#.
Normally SUSPA# is deactivated within six SYSCLKS
from the detection of an active interrupt. However, the

deactivation of SUSPA# may be delayed until the end of
an active refresh cycle.

The CPU also allows PCI accesses during a HALT-initi-
ated Suspend mode. If the CPU is in the middle of a PCI
access when the Halt instruction is executed, the asser-
tion of SUSPA# will be delayed until the PCI access is
completed.

Figure 6-2. HALT-Initiated Suspend Mode

SYSCLK

FRAME#

C/BE[3:0]#

AD[15:0]

IRDY#

INTR, NMI,

SUSPA#

O XI

I XX

SMI#

HALT
ww.national.com 176 Revision 3.1

R

Power Management (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

6.5.3 Responding to a PCI Access During Suspend
Mode

The GXm processor can temporarily exit Suspend mode
to handle PCI accesses. If an unmasked REQx# is
asserted, the GXm processor will deassert SUSPA# and
exit the Suspend mode to respond to the PCI access. A
PCI access is completed when FRAME# is inactive and
TRDY# or STOP# are active. If SUSP# is asserted when

the PCI access is completed, the GXm processor will
assert SUSPA# and return to a SUSP#-initiated Suspend
mode. If it was a HALT-initiated Suspend mode and no
active interrupts have been recognized, the CPU will
assert SUSPA# and return to a HALT-initiated Suspend
mode.

Figure 6-3. PCI Access During Suspend Mode

SYSCLK

REQx#

TRDY#

SUSP#

SUSPA#

FRAME#
evision 3.1 177 www.national.com

w

Power Management (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

6.5.4 Stopping the Input Clock
Because the GXm processor is a static device, the input
clock (SYSCLK) can be stopped and restarted without
any loss of internal CPU data. If DRAMS are used that do
not have self-refresh, bit 0 of the PM Clock Stop Control
Register must be set to a one and the CLK32KHZ input
must be continuously applied to keep the refresh circuitry
running. The SYSCLK input can be stopped at either a
logic high or logic low state. The required sequence for
stopping SYSCLK is to initiate CPU Suspend mode, wait
for the assertion of SUSPA# by the processor, and then
stop the input clock.

The CPU remains suspended until SYSCLK is restarted
and the Suspend mode is exited as described earlier.
While SYSCLK is stopped, the processor can no longer
sample and respond to any input stimulus including
REQx#, NMI, SMI#, INTR, and RESET inputs.

Figure 6-4 illustrates the recommended sequence for
stopping the SYSCLK using SUSP# to initiate Suspend
mode. SYSCLK may be started prior to or following nega-
tion of the SUSP# input. The figure includes the
SUSP_3V pin from the CS5530 which is used to stop the
external clocks.

Figure 6-4. Stopping SYSCLK During Suspend Mode

SYSCLK

SUSP#

SUSP_3V

SMI Event, Timer or Pin

SUSPA#

(CS5530)
ww.national.com 178 Revision 3.1

R

Power Management (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

6.6 GXM PROCESSOR SERIAL BUS
The power management logic of the GXm processor pro-
vides the CS5530 with information regarding the GXm
processor productivity. If the GXm processor is deter-
mined to be relatively inactive, the GXm processor power
consumption can be greatly reduced by entering the Sus-
pend Modulation mode.

Although the majority of the system power management
logic is implemented in the CS5530, a small amount of
logic is required within the GXm processor to provide
information from the graphics controller that is not exter-
nally visible otherwise. The GXm processor implements a
simple serial communications mechanism to transmit the
CPU status to the CS5530. The GXm processor accumu-
lates CPU events in a 8-bit register, “PM Serial Packet
Register” (GX_BASE+850Ch, see Table 6-1), which is
serially transmitted out of the GXm processor every 1 to
10 µs. The transmission frequency is set with the “PM
Serial Packet Control Register” (GX_BASE+8504h, see
Table 6-1).

6.6.1 Serial Packet Transmission
The GXm processor transmits the contents of the “PM
Serial Packet Register” on the SERIALP output pin to the
PSERIAL input pin of the CS5530. The GXm processor
holds SERIALP low until the transmission interval counter
(GX_BASE+8504h[4:3]) has elapsed. Once the counter
has elapsed, PSERIAL is held high for two SYSCLKs to

indicate the start of packet transmission. The contents of
the packet register are then shifted out starting from bit 7
down to bit 0. PSERIAL is held high for one SYSCLK to
indicate the end of packet transmission and then remains
low until the next transmission interval. After the packet
transmission has completed, the packet contents are
cleared.

6.7 POWER MANAGEMENT REGISTERS
The GXm processor contains the power management
registers for the serial packet transmission control, the
user-defined power management address space, Sus-
pend Refresh, and SMI status for Suspend/Resume.
These registers are memory mapped (GX_BASE+8500h-
8FFFh) in the address space of the GXm processor and
are described in the following sections. Refer to Section
4.1.2 “Control Registers” on page 94 for instructions on
accessing these registers.

Note, however, the PM_BASE and PM_MASK registers
are accessed with the CPU_READ and CPU_WRITE
instructions. Refer to Section 4.1.6
“CPU_READ/CPU_WRITE Instructions” on page 99 for
more information regarding these instructions.

Table 6-1 summarizes the above mentioned registers.
Tables 6-2 and 6-3 starting on page 180 give these regis-
ter’s bit formats.

Table 6-1. Power Management Register Summary

GX_BASE+
Memory Offset Type Name/Function Default Value

Control and Status Registers

8500h-8503h R/W PM_STAT_SMI

PM SMI Status Register — Contains System Management Mode (SMM) status
information used by SoftVGA.

xxxxxx00h

8504h-8507h R/W PM_CNTRL_TEN

PM Serial Packet Control Register — Sets the serial packet transmission frequency
and enables specific CPU events to be recorded in the serial packet.

xxxxxx00h

8508h-850Bh R/W PM_CNTRL_CSTP

PM Clock Stop Control Register — Enables the 3-V Suspend Mode for the GXm
processor.

xxxxxx00h

850Ch-850Fh R/W PM_SER_PACK

PM Serial Packet Register — Transmits the contents of the serial packet.

xxxxxx00h

Programmable Address Region Registers

FFFF FF6Ch R/W PM_BASE

PM Base Register — Contains the base address for the programmable memory
range decode. This register, in combination with the PM_MASK register, is used to
generate a memory range decode which sets bit 1 in the serial transmission packet.

00000000h

FFFF FF7Ch R/W PM_MASK

PM Mask Register — The address mask for the PM_BASE register

00000000h
evision 3.1 179 www.national.com

w

Power Management (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 6-2. Power Management Control and Status Registers

Bit Name Description

GX_BASE+8500h-8503h PM_STAT_SMI Register (R/W) Default Value = xxxxxx00h

31:8 RSVD Reserved — These bits are not used. Do not write to these bits.

7:3 RSVD Reserved — Set to 0.

2 SMI_MEM SMI VGA Emulation Memory — This bit is set high if a SMI was generated for VGA emulation in
response to a VGA memory access. An SMI can be generated on a memory access to one of three
regions in the A0000h-to-BFFFFh range as specified in the BC_XMAP_1 register.

1 SMI_IO SMI VGA Emulation I/O — This bit is set high if a SMI was generated for VGA emulation in
response to an I/O access. An SMI can be generated on a I/O access to one of three regions in the
3B0h-to-3DFh range as specified in the BC_XMAP_1 register.

0 SMI_PIN SMI Pin — When set high, this bit indicates that the SMI# input pin has been asserted to the
GXm processor.

Note: These bits are “sticky” bits and can only be cleared with a write of ‘1’ to the respective bit.

GX_BASE+8504h-8507h PM_CNTRL_TEN Register (R/W) Default Value = xxxxxx00h

31:8 RSVD Reserved — These bits are not used. Do not write to these bits.

7:6 RSVD Reserved — Set to 0.

5 X_TEST (WO) Transmission Test (Write Only) — Setting this bit causes the GXm processor to immediately trans-
mit the current contents of the serial packet. This bit is write only and is used primarily for test. This
bit returns 0 on a read.

4:3 X_FREQ Transmission Frequency — This field indicates the time between serial packet transmissions.
Serial packet transmissions occur at the selected interval only if at least one of the packet bits is set
high: 00 = Disable transmitter; 01 = 1 ms; 10 = 5 ms; 11 = 10 ms.

2 CPU_RD CPU Activity Read Enable — Setting this bit high enables reporting of CPU Level-1 cache read
misses that are not a result of an instruction fetch. This bit is a don’t-care if the CMEN bit is not set
high

1 CPU_EN CPU Activity Master Enable — Setting this bit high enables reporting of CPU Level-1 cache
misses in bit 6 of the serial transmission packet. When enabled, the CPU Level-1 cache miss activity
is reported on any read (assuming the CREN is set high) or write access excluding misses that
resulted from an instruction fetch.

0 VID_EN Video Event Enable — Setting this bit high enables video decode events to be reported in bit 0 of
the serial transmission packet. CPU or graphics-pipeline accesses to the graphics memory and dis-
play-controller-register accesses are also reported.

GX_BASE+8508h-850Bh PM_CNTRL_CSTP Register (R/W) Default Value = xxxxxx00h

31:8 RSVD Reserved — These bits are not used. Do not write to these bits.

7:1 RSVD Reserved — Set to 0.

0 CLK_STP Clock Stop — This bit configures the GXm processor for Suspend Refresh Mode or 3-Volt Suspend
Mode:

0 = Suspend Refresh Mode. The clocks to the memory and display controller are active.
1 = 3-Volt Suspend Mode. All internal clocks are stopped.

Note: When this register is set high and the Suspend input pin (SUSP#) is asserted, the GXm processor stops all it’s internal clocks,
and asserts the Suspend Acknowledge output pin (SUSPA#). Once SUSPA# is asserted the GXm processor’s SYSCLK input
can be stopped. If this register is cleared, the internal memory-controller and display-controller clocks are not stopped on the
SUSP#/SUSPA# sequence, and the SYSCLK input can not be stopped.

GX_BASE+850Ch-850Fh PM_SER_PACK Register (R/W) Default Value = xxxxxx00h

31:8 RSVD Reserved — These bits are not used. Do not write to these bits.

7 VID_IRQ Video IRQ — This bit indicates the occurrence of a video vertical sync pulse. This bit is set at the
same timer that the VINT (Vertical Interrupt) bit is set in the DC_TIMING_CFG register. The VINT bit
has a corresponding enable bit (VIEN) in the DC_TIM_CFG register.

6 CPU_ACT CPU Activity — This bit indicates the occurrence of a level 1 cache miss that was not a result of an
instruction fetch. This bit has a corresponding enable bit in the PM_CNTL_TEN register.

5:2 RSVD Reserved — Set to 0.

1 USR_DEF Programmable Address Decode — This bit indicates the occurrence of a programmable memory
address decode. This bit is set based on the values of the PM_BASE register and the PM_MASK
register. The PM_BASE register can be initialized to any address in the full 128 MB address range.
ww.national.com 180 Revision 3.1

R

Power Management (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

0 VID_DEC Video Decode — This bit indicates that the CPU has accessed either the Display Controller regis-
ters or the graphics memory region. This bit has a corresponding enable bit in the
PM_CNTRL_TEN.

Note: The GXm processor transmits the contents of the serial packet only when a bit in the packet register is set and the interval
counter has elapsed. The CS5530 decodes the serial packet after each transmission. Once a bit in the packet is set, it will
remain set until the completion of the next packet transmission. Successive events of the same type that occur between packet
transmissions are ignored. Multiple unique events between packet transmissions will accumulate in this register.

Table 6-2. Power Management Control and Status Registers (Continued)

Bit Name Description

Table 6-3. Power Management Programmable Address Region Registers

Bit Name Description

Index FFFFFF6Ch PM_BASE Register (R/W) Default Value = 0000000h

31:28 RSVD Reserved — Set to 0.

27:2 BASE_ADDR Base Address — This is the word-aligned base address for the programmable memory range com-
pare. The actual address range is determined with this field and the PM_MASK register value.

1:0 RSVD Reserved — Set to 0.

Index FFFFFF7Ch PM_MASK Register (R/W) Default Value = 0000000h

31:28 RSVD Reserved — Set to 0.

27:2 ADR_MASK Address Mask — This field is the address mask for the BASE_ADDR field in the PM_BASE regis-
ter. If a bit in the ADR_MASK field is cleared the corresponding bit in the BASE_ADDR field must
match the processor address. If a bit in the mask field is set high, the corresponding bit in the
BASE_ADDR field always compares. If the processor cycle type matches the values of the WE and
RE bits, and all bits in the BADD field match the processor address based on the ADR_MASK field,
bit 1 will be set high in the serial transmission packet.

1 WE Write Enable — Compare memory write cycles with BASE_ADDR and ADR_MASK:
0 = Disable; 1 = Enable.

0 RE Read Enable — Compare memory read cycles with BASE_ADDR and ADR_MASK:
0 = Disable; 1 = Enable
evision 3.1 181 www.national.com

w

G
eo

d
e™

G
X

m
P

ro
ce

ss
o

r

7.0 Electrical Specifications
This section provides information on electrical connec-
tions, absolute maximum ratings, required operating con-
ditions, DC characteristics, and AC characteristics for the
Geode GXm processor. All voltage values in the Electrical
Specifications are with respect to VSS unless otherwise
noted. For detailed information on the PCI bus electrical
specification refer to Chapter 4 of the PCI Bus Specifica-
tion, Revision 2.1.

7.1 PART NUMBERS
The following part numbers designate the various speeds
available. For all speeds, the VCC2 voltage is 2.9V nominal
and the VCC3 voltage is 3.3V nominal.

7.2 ELECTRICAL CONNECTIONS

7.2.1 Power/Ground Connections and Decoupling
Testing and operating the GXm processor requires the
use of standard high frequency techniques to reduce par-
asitic effects. These effects can be minimized by filtering
the DC power leads with low-inductance decoupling
capacitors, using low-impedance wiring, and by utilizing
all of the VCC2, VCC3, and VSS pins.

7.2.2 Power Sequencing
the Core and I/O Voltages

With two voltages connected to the GXm processor, it is
important that the voltages come up in the correct order.
VCC2 should come up at or before VCC3. There are no
additional timing requirements related to this sequence.

7.2.3 NC-Designated Pins
Pins designated NC (No Connection) should be left dis-
connected. Connecting an NC pin to a pull-up/-down
resistor, or an active signal could cause unexpected
results and possible circuit malfunctions.

7.2.4 Pull-Up and Pull-Down Resistors
Table 7-2 lists the input pins that are internally connected
to a 20-kohm pull-up/-down resistor. When unused, these
inputs do not require connection to an external pull-up/-
down resistor.

7.2.5 Unused Input Pins
All inputs not used by the system designer and not listed
in Table 7-2 should be kept at either ground or VCC3. To
prevent possible spurious operation, connect active-high
inputs to ground through a 20-kohm (±10%) pull-down
resistor and active-low inputs to VCC3 through a 20-kohm
(±10%) pull-up resistor.

Table 7-1. Part Numbers

Core
Frequency

(MHz)
Temperature
(Degree C) Part Marking

266 70 GXm-266P 2.9V 70C

85 GXm-266P 2.9V 85C

70 GXm-266B 2.9V 70C

85 GXm-266B 2.9V 85C

233 70 GXm-233P 2.9V 70C

85 GXm-233P 2.9V 85C

70 GXm-233B 2.9V 70C

85 GXm-233B 2.9V 85C

200 70 GXm-200P 2.9V 70C

85 GXm-200P 2.9V 85C

70 GXm-200B 2.9V 70C

85 GXm-200B 2.9V 85C

180 70 GXm-180P 2.9V 70C

85 GXm-180P 2.9V 85C

70 GXm-180B 2.9V 70C

85 GXm-180B 2.9V 85C

Note: B = BGA Package
P = SPGA Package

Table 7-2. Pins with 20-kohm Internal Resistor

Signal Name
BGA

Ball No.
SPGA

Pin No. PU/PD

SUSP#* H2 M4 Pull-up

FRAME# A8 C13 Pull-up

IRDY# C9 D14 Pull-up

TRDY# B9 B14 Pull-up

STOP# C11 A15 Pull-up

LOCK# B11 B16 Pull-up

DEVSEL# A9 E15 Pull-up

PERR# A11 D16 Pull-up

SERR# C12 A17 Pull-up

REQ[2:0]# D3,
H3,
E3

E3,
K2,
E1

Pull-up

TCLK J2 P4 Pull-up

TMS H1 N3 Pull-up

TDI D2 F4 Pull-up

TEST F3 J5 Pull-down

Note: *SUSP# is pulled up when not active.
ww.national.com 182 Revision 3.1

R

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

7.3 ABSOLUTE MAXIMUM RATINGS
Table 7-3 lists absolute maximum ratings for the GXm pro-
cessor. Stresses beyond the listed ratings may cause per-
manent damage to the device. Exposure to conditions beyond
these limits may (1) reduce device reliability and (2) result
in premature failure even when there is no immediately
apparent sign of failure. Prolonged exposure to conditions
at or near the absolute maximum ratings may also result

in reduced useful life and reliability. These are stress rat-
ings only and do not imply that operation under any condi-
tions other than those listed under Table 7-4 on page 184
is possible.

Table 7-3. Absolute Maximum Ratings

Parameter Min Max Units Notes

Operating Case Temperature –65 110 °C Power Applied

Storage Temperature –65 150 °C No Bias

Supply Voltage 3.2 V

Voltage On Any Pin –0.5 6.0 V

Input Clamp Current, IIK –0.5 10 mA Power Applied

Output Clamp Current, IOK 25 mA Power Applied
evision 3.1 183 www.national.com

w

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

7.4 OPERATING CONDITIONS
Table 7-4 lists the operating conditions for the GXm processor.

Table 7-4. Operating Conditions

Symbol Parameter Min Max Units Notes

TC Operating Case Temperature 0 70 °C For Desktop Applications

TC Operating Case Temperature 0 85 °C For Notebook Applications

VCC2 Supply Voltage (2.9V nominal) 2.75 3.05 V

VCC3 Supply Voltage (3.3V nominal) 3.14 3.46 V

VIH High-Level Input Voltage:

All input and I/O pins except
SDRAM Interface and SYSCLK

2.0 5.5 V Note 1

SDRAM Interface 2.0 VCC3+0.5 V Note 2

SYSCLK 2.7 5.5 V Note 1

VIL Low-Level Input Voltage:

All except PCI bus and SYSCLK –0.5 0.8 V

PCI bus –0.5 0.3*VCC3 V

SYSCLK –0.5 0.4 V

IOH High-Level Output Current –2 mA VO = VOH (Min)

IOL Low-Level Output Current 5 mA VO = VOL (Max)

Notes: 1) This parameter indicates that these pins are tolerant to the PCI 5 Volt Signaling Environment DC
specification.

2) SDRAM Interface Pins: BA[1:0], CAS[A:B]#, CKE[A:B], CS[3:0]#, DQM[7:0], MA[12:0], MD[63:0], RASA#,
RASB#, SDCLK_IN, SDCLK_OUT, SDCLK[3:0], TEST[3:0], WE[A:B]#
ww.national.com 184 Revision 3.1

R

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

7.5 DC CHARACTERISTICS
DC characteristics were measured under the operating conditions listed in Table 7-4 on page 184.

Table 7-5. DC Characteristics

Symbol Parameter Min Max Units Notes

VOL Output Low Voltage 0.4 V IOL = 5 mA

VOH Output High Voltage 2.4 V IOH = –2 mA

II Input Leakage Current for all input pins except
those with internal PU/PDs

±10 µA 0 < VIN < VCC3,
See Table 7-2

IIH Input Leakage Current for all pins with
internal PDs.

200 µA VIH = 2.4 V,
See Table 7-2

IIL Input Leakage Current for all pins with
internal PUs.

–400 µA VIL = 0.35 V,
See Table 7-2

ICC Active ICC:

Core ICC2 at fCLK = 180 MHz
I/O ICC3 at fCLK = 180 MHz

2.25
0.400

A Note 1

Core ICC2 at fCLK = 200 MHz
I/O ICC3 at fCLK = 200 MHz

2.55
0.405

Core ICC2 at fCLK = 233 MHz
I/O ICC3 at fCLK = 233M Hz

2.85
0.410

Core ICC2 at fCLK = 266 MHz
I/O ICC3 at fCLK = 266 MHz

3.10
0.415

ICCSM Suspend Mode ICC:

Core ICC2 at fCLK = 180 MHz
I/O ICC3 at fCLK = 180 MHz

18
8

mA Notes 1 and 4

Core ICC2 at fCLK = 200 MHz
I/O ICC3 at fCLK = 200 MHz

22
9

Core ICC2 at fCLK = 233 MHz
I/O ICC3 at fCLK = 233 MHz

25
10

Core ICC2 at fCLK = 266 MHz
I/O ICC3 at fCLK = 266 MHz

28
11

ICCSS Standby ICC (Suspend and CLK Stopped):

Core ICC2 at fCLK = 0 MHz
I/O ICC3 at fCLK = 0 MHz

10
5

mA Notes 1 and 3

CIN Input Capacitance 16 pF f = 1 MHz, Note 2

COUT Output or I/O Capacitance 16 pF f = 1 MHz, Note 2

CCLK CLK Capacitance 12 pF f = 1 MHz, Note 2

Notes: 1. fCLK ratings refer to internal clock frequency.

2. Not 100% tested.

3. All inputs are at 0.2 V or VCC3 – 0.2 (CMOS levels). All inputs are held static and all outputs are unloaded
(static IOUT = 0 mA).

4. All inputs are at 0.2 V or VCC3 – 0.2 (CMOS levels). All inputs except clock are held static and all outputs are unloaded
(static IOUT = 0 mA).
evision 3.1 185 www.national.com

w

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

7.6 AC CHARACTERISTICS
The following tables list the AC characteristics including
output delays, input setup requirements, input hold
requirements and output float delays. The rising-clock-
edge reference level VREF, and other reference levels are
shown in Table 7-6. Input or output signals must cross
these levels during testing.

Input setup and hold times are specified minimums that
define the smallest acceptable sampling window for which
a synchronous input signal must be stable for correct oper-
ation.

All AC tests are at VCC2 = 2.75V to 3.05V (2.9V nominal),
TC = 0oC to 70oC or 85o, CL = 50 pF unless otherwise
specified.

Figure 7-1. Drive Level and Measurement Points for Switching Characteristics

Table 7-6. Drive Level and Measurement Points
for Switching Characteristics

Symbol Voltage (V)

VREF 1.5

VIHD 2.4

VILD 0.4

CLK

OUTPUTS

INPUTS

VIHD

VILD

VREF

Valid Input

Valid Output n+1Valid Output n

VREF

VREF

VILD

VIHD

Min

Max

Legend: A = Maximum Output Delay Specification
B = Minimum Output Delay Specification
C = Minimum Input Setup Specification
D = Minimum Input Hold Specification

TX

B
A

C D
ww.national.com 186 Revision 3.1

R

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Figure 7-1 SYSCLK Timing and Measurement Points

Table 7-7. Clock Signals

Symbol ParameterT

180 MHz (6x)
(Note)

200 MHz (6x)
(Note)

233 MHz (7x)
(Note)

266 MHz (8x)
(Note)

UnitsMin Max Min Max Min Max Min Max

t1 SYSCLK Period 33.3 30.0 30.0 30.0 ns

t2 SYSCLK Period Stability ±250 ±250 ±250 ±250 ps

t3 SYSCLK High Time 10 10 10 10 ns

t4 SYSCLK Low Time 10 10 10 10 ns

t5 SYSCLK Fall Time 0.15 2.0 0.15 2.0 0.15 2.0 0.15 2.0 ns

t6 SYSCLK Rise Time 0.15 2.0 0.15 2.0 0.15 2.0 0.15 2.0 ns

t7 DCLK Period 7.3 7.3 7.3 7.3 ns

t8 DCLK Rise/Fall Time 3.0 3.0 3.0 3.0 ns

t9 SDCLK_OUT,
SDCLK[3:0] Period

14.5 19.5 13 17 11 16 10 13 ns

t10 SDCLK_OUT,
SDCLK[3:0] High Time

7.5 6.5 5.5 5 ns

t11 SDCLK_OUT,
SDCLK[3:0] Low Time

7.5 6.5 5.5 5 ns

t12 SDCLK_OUT,
SDCLK[3:0] Fall Time

0.15 2.0 0.15 2.0 0.15 2.0 0.15 2.0 ns

t13 SDCLK_OUT,
SDCLK[3:0] Rise Time

0.15 2.0 0.15 2.0 0.15 2.0 0.15 2.0 ns

Note: SDCLK timings (t9-t13) assume an SDCLK that is a "divide by 3" from the internal core clock. Hence:
180 MHz (6x) = 60.0 MHz SDCLK
200 MHz (6x) = 66.7 MHz SDCLK
233 MHz (7x) = 77.7 MHz SDCLK
266 MHz (8x) = 88.7 MHz SDCLK

SYSCLK

1.5V

VIH (Min)

VIL (Max)

t3

t1

t6 t5t4
evision 3.1 187 www.national.com

w

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Figure 7-2. DCLK Timing and Measurement Points

Figure 7-3. SDCLK, SDCLK[3:0] Timing and Measurement Points

Table 7-8. System Signals

DCLK

t8

t7

SDCLK,

1.5V

VIH (Min)

VIL (Max)

t10

t9

t13 t12t11
SDCLK[3:0]

Parameter Min Max Unit Notes

Setup Time for RESET, INTR 5 ns Note

Hold Time for RESET, INTR 2 ns Note

Setup Time for SMI#, SUSP#, FLT# 5 ns

Hold Time for SMI#, SUSP#, FLT# 2 ns

Valid Delay for IRQ13, SUSPA# 2 15 ns

Valid Delay for SERIALP 2 15 ns

Note: The system signals may be asynchronous. The setup/hold times are required for determining static
behavior.
ww.national.com 188 Revision 3.1

R

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 7-9. PCI Interface Signals

Figure 7-4. Output Timing

Figure 7-5. Input Timing

Symbol Parameter Min Max Unit Notes

tVAL1 Delay Time, SYSCLK to Signal Valid for Bused
Signals

2 11 ns

tVAL2 Delay Time, SYSCLK to Signal Valid for GNT# 2 12 ns Note

tON Delay Time, Float to Active 2 ns

tOFF Delay Time, Active to Float 28 ns

tSU1 Input Setup Time for Bused Signals 7 ns

tSU2 Input Setup Time for REQ# 12 ns Note

tH Input Hold Time to SYSCLK 0 ns

Note: GNT# and REQ# are point-to-point signals. All other PCI interface signals are bused.
Refer to Chapter 4 of PCI Local Bus Specification, Revision 2.1, for more detailed information.

SYSCLK

TRISTATE

OUTPUT

OUTPUT

tVAL1,2

tOFF

tON

SYSCLK

INPUT

tHtSU1,2
evision 3.1 189 www.national.com

w

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 7-10. SDRAM Interface Signals

Figure 7-6. Output Valid Timing

Figure 7-7. Setup and Hold Timings - Read Data In

Symbol Parameter Min Max Unit

t1 CNTRL* Output Valid from SDCLK[3:0] Equation Number =
–1.5 (see below)

Equation Number =
–1.0 (see below)

ns

t2 MA[12:0], BA[1:0] Output Valid from
SDCLK[3:0]

Equation Number =
–1.7 (see below)

Equation Number =
–1.2 (see below)

ns

t3 MD[63:0] Output Valid from
SDCLK[3:0]

Equation Number =
–1.6 (see below)

Equation Number =
–0.3 (see below)

ns

t4 MD[63:0] Read Data in Setup to
SDCLKIN

0 ns

t5 MD[63:0] Read Data Hold to SDCLKIN 2.0 ns

*CNTRL = RASA#, RASB# CASA#, CASB#, WEA#, WEB#, CKEA, CKEB, DQM[7:0], CS[3:0]#.
Load = 50pF, Core Vcc = 2.9, I/O Vcc = 3.3V, 25°C.

Output Valid Equation: Use Min or Max number in equation: Min# or Max# + (x * y)
Where: x = shift value applied to SHFTSDCLK field and y = (core clock period) ÷ 2
Note that SHFTSDCLK field = GX_BASE+8404h[5:3], see page 109.

Equation Example:
A 200 MHz GXm processor running a 66 MHz SDRAM bus, with a shift value of 2:

t1 Min = –1.5 + (2 * (5 ÷ 2)) = 3.5 ns
t1 Max = –1.0 + (2 * (5 ÷ 2)) = 4.0 ns

SDCLK[3:0]

CNTRL, MA[12:0],
BA[1:0], MD[63:0]

t1, t2, t3

Valid

SDCLKIN

MD[63:0]
Read Data In

t4
t5

t6
t7

Data Valid Data Valid
ww.national.com 190 Revision 3.1

R

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 7-11. Video Interface Signals

Figure 7-8. Graphics Port Timing

Symbol Parameter Min Max Unit

t1 PCLK Period 7.4 40 ns

t2 PCLK High Time 3 ns

t3 PCLK Low Time 3 ns

t4 PIXEL[17:0], CRT_HSYNC, CRT_VSYNC, FP_HSYNC,
FP_VSYNC, ENA_DISP Valid Delay from PCLK Rising Edge

2 5 ns

t5 VID_CLK Period 8.5 ns

t6 VID_RDY Setup to VID_CLK Rising Edge 5 ns

t7 VID_RDY Hold to VID_CLK Rising Edge 2 ns

t8 VID_VAL, VID_DATA[7:0] Valid Delay from VID_CLK Rising Edge 2 5 ns

t9 DCLK Period 7.4 ns

t10 DCLK Rise/Fall Time 3 ns

tcyc DCLK Duty Cycle 40 60 %

t1

t2 t3

t4

PCLK

PIXEL[17:0],
CRT_HSYNC, CRT_VSYNC,

FP_HSYNC, FP_VSYNC,
ENA_DISP
evision 3.1 191 www.national.com

w

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Figure 7-9. Video Port Timing

Figure 7-10. DCLK Timing

t5

t8

VID_VAL

VID_CLK

VID_DATA[7:0]

t6

t7

VID_RDY

DCLK

t10t9
ww.national.com 192 Revision 3.1

R

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 7-12. JTAG AC Specification

Figure 7-11. TCK Timing and Measurement Points

Symbol Parameter Min Max Unit

TCK Frequency (MHz) 25 MHz

t1 TCK Period 40 ns

t2 TCK High Time 10 ns

t3 TCK Low Time 10 ns

t4 TCK Rise Time 4 ns

t5 TCK Fall Time 4 ns

t6 TDO Valid Delay 3 25 ns

t7 Non-test Outputs Valid Delay 3 25 ns

t8 TDO Float Delay 30 ns

t9 Non-test Outputs Float Delay 36 ns

t10 TDI, TMS Setup Time 8 ns

t11 Non-test Inputs Setup Time 8 ns

t12 TDI, TMS Hold Time 7 ns

t13 Non-test Inputs Hold Time 7 ns

TCK

1.5 V

VIH(Min)

VIL(Max)

t2

t1

t4 t5

t3
evision 3.1 193 www.national.com

w

Electrical Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Figure 7-12. JTAG Test Timings

TCK

TDI,

TMS

1.5 V

t10

t8

t12

t6

t7 t9

t11 t13

TDO

Output

Signals

Input

Signals
ww.national.com 194 Revision 3.1

R

G
eo

d
e™

G
X

m
P

ro
cesso

r

8.0 Package Specifications
The thermal characteristics and mechanical dimensions
for the Geode GXm processor are provided on the follow-
ing pages.

8.1 THERMAL CHARACTERISTICS
Table 8-1 shows the junction-to-case thermal resistance
of the SPGA and BGA package and can be used to calcu-
late the junction (die) temperature under any given cir-
cumstance.

Note that there is no specification for maximum junction
temperature given since the operation of both SPGA and
BGA devices are guaranteed to a case temperature range
of 0°C to 85°C. As long as the case temperature of the
device is maintained within this range, the junction tem-
perature of the die will also be maintained within its allow-
able operating range. However, the die (junction)
temperature under a given operating condition can be cal-
culated by using the following equation:

TJ = TC + (P * θJC)

where:

TJ = Junction temperature (°C)

TC = Case temperature at top center of package (°C)

P = Power dissipation (W)

θJC = Junction-to-case thermal resistance (°C/W)

As stated previously, a maximum junction temperature is
not specified since a maximum case temperature is.
Therefore, the following equation can be used to calculate
the maximum thermal resistance required of the thermal
solution for a given maximum ambient temperature:

where:

θCS = Max case-to-heatsink thermal resistance
(°C/W) allowed for thermal solution.

θSA = Max heatsink-to-ambient thermal resistance
(°C/W) allowed for thermal solution.

TA = Max ambient temperature (°C)

TC = Max case temperature at top center of package
(°C)

P = Max power dissipation (W)

If thermal grease is used between the case and heatsink,
θCS will reduce to about 0.01 °C/W. Therefore, the above
equation can be simplified to:

where:

θCA = θCS = Max case-to-ambient thermal resistance
(°C/W) allowed for thermal solution.

The calculated θCA value (examples shown in Table 8-2)
represents the maximum allowed thermal resistance of
the selected cooling solution which is required to maintain
the 85°C case temperature for the application in which the
device is used.

These examples are given for reference only. The actual
value used for Maximum Power (P) and ambient tempera-
ture (TA) is determined by the system designer based on
system configuration, extremes of the operating environ-
ment, and whether active thermal management (via Sus-
pend Modulation) of the processor is employed.

Table 8-1. Junction-to-Case Thermal Resistance
for SPGA and BGA Packages

Package θJC

SPGA 1.7 °C/W

BGA 1.1 °C/W

θCS θSA+
TC TA–

P
----------------------=

θCA

TC TA–

P
----------------------=
evision 3.1 195 www.national.com

w

Package Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

8.1.1 Heatsink Considerations
As described previously, Table 8-2 shows the maximum
allowed thermal resistance of a heatsink for particular
operating environments. The calculated values, defined
as θCA, represent the required ability of a particular heat-
sink to transfer heat generated by the processor from its
case into the air, thereby maintaining the case tempera-
ture at or below 85°C. Because θCA is a measure of ther-
mal resistivity, it is inversely proportional to the heatsink’s
ability to dissipate heat or it’s thermal conductivity.

Note: A "perfect" heatsink would be able to maintain a
case temperature equal to that of the ambient air
inside the system chassis.

Looking at Table 8-2, it can be seen that as ambient tem-
perature (TA) increases, θCA decreases, and that as power
consumption of the processor (P) increases, θCA
decreases. Thus, the ability of the heatsink to dissipate
thermal energy must increase as the processor power
increases and as the temperature inside the enclosure
increases.

While θCA is a useful parameter to calculate, heatsinks are
not typically specified in terms of a single θCA. This is
because the thermal resistivity of a heatsink is not con-
stant across power or temperature. In fact, heatsinks
become slightly less efficient as the amount of heat they
are trying to dissipate increases. For this reason, heatsinks
are typically specified by graphs that plot heat dissipation
(in watts) vs. mounting surface (case) temperature rise
above ambient (in °C). This method is necessary because
ambient and case temperatures fluctuate constantly dur-
ing normal operation of the system. The system designer
must be careful to choose the proper heatsink by match-
ing the required θCA with the thermal dissipation curve of
the device under the entire range of operating conditions in
order to make sure that a case temperature of 85°C is
never surpassed.

Table 8-2. Case-to-Ambient Thermal Resistance Examples @ 85°C

Core Voltage
(VCC2)

Core
Frequency

Maximum
Power

θCA for Different Ambient Temperatures (°C/W)

20°C 25°C 30°C 35°C 40°C

2.9V

(Nominal)

266 MHz 7.7W 8.44 7.79 7.14 6.49 5.84

233 MHz 7.1W 9.15 8.45 7.75 7.04 6.34

200 MHz 6.4W 10.16 9.38 8.59 7.81 7.03

180 MHz 6.0W 10.83 10.00 9.17 8.33 7.50
ww.national.com 196 Revision 3.1

R

Package Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

To choose the proper heatsink, the system designer must
make sure that the calculated θCA falls above the curve
(shaded area). The curve itself defines the minimum tem-
perature rise above ambient that the heatsink can main-
tain.

See Figure 8-1 as an example of a particular heatsink
under consideration.

Figure 8-1. Heatsink Example

Example 1
Assume P (max) = 5W and TA (max) = 40°C.

Therefore:

In this case, the heatsink under consideration is more than
adequate since at 5W worst case, it can maintain a 40°C
case temperature rise above ambient (θCA = 9) when a
maximum of 45°C (θCA = 8) is required.

Example 2
Assume P (max) = 10W and TA (max) = 40°C.

Therefore:

In this case, the heatsink under consideration is NOT ade-
quate to maintain the 45°C case temperature rise above
ambient for a 9W processor.

For more information on thermal design considerations or
heatsink properties, refer to the Product Selection Guide of
any leading vendor of Thermal Engineering solutions.

0

10

20

30

40

50

2 4 6 8 10

θCA = 45/9 = 5

Heat Dissipated - Watts

θCA = 45/5 = 9

M
ou

nt
in

g
S

ur
fa

ce
Te

m
pe

ra
tu

re
R

is
e

A
bo

ve
A

m
bi

en
t–

°C

θCA

TC TA–

P
----------------------=

θCA
85 40–()

5
----------------------=

θCA 9=

θCA

TC TA–

P
----------------------=

θCA
85 40–()

9
----------------------=

θCA 5=
evision 3.1 197 www.national.com

w

Package Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

8.2 MECHANICAL PACKAGE OUTLINES
Dimensions for the BGA package are shown in Figure 8-2. Figure 8-3 shows the SPGA dimensions. Table 8-3 gives the
legend for the symbols used in both package outlines.

Figure 8-2. 352-Terminal BGA Mechanical Package Outline

Sym

Millimeters Inches

Min Max Min Max

A 1.45 2.23 0.057 0.088

A1 0.50 0.70 0.020 0.028

A2 0.43 0.83 0.017 0.033

aaa 0.20 0.008

B 0.60 0.90 0.024 0.035

D 34.80 35.20 1.370 1.386

D1 31.55 31.95 1.242 1.258

D2 32.80 35.20 1.291 1.386

E1 1.12 1.42 0.044 0.056

F 0.35 0.014

S1 1.42 1.82 0.056 0.072

F

D2

A01 Index Chamfer
1.5 mm on a side
45 Degree Angle

CU Heat
Spreader

.889
REF.

S1D1

D

D

1.5

1.5

E1

B

A1
A2

A

Seating
Plane

aaa Z

Z

ww.national.com 198 Revision 3.1

R

Package Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Figure 8-3. 320-Pin SPGA Mechanical Package Outline

F

D

A01 index mark
.030" blank circle
inside .060" filled
circle to form donut

45 CHAMFER

Pin C3

2.29
1.52 REF. (INDEX CORNER)

1.65
REF.

S1
D1

D

D

o

Sym

Millimeters Inches

Min Max Min Max

A 2.51 3.07 0.099 0.121

B 0.43 0.51 0.017 0.020

D 49.28 49.91 1.940 1.965

D1 45.47 45.97 1.790 1.810

E1 2.41 2.67 0.095 0.105

E2 1.14 1.40 0.045 0.055

F -- 0.127
Diag

-- 0.005
Diag

L 2.97 3.38 0.117 0.133

S1 1.65 2.16 0.065 0.085

SEATING
PLANE

L

E2
E1

B

A

evision 3.1 199 www.national.com

w

Package Specifications (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 8-3. Mechanical Package Outline Legend

Symbol Meaning

A Distance from seating plane datum to highest point of body

A1 Solder ball height

A2 Laminate thickness (excluding heat spreader)

aaa Coplanarity

B Pin or solder ball diameter

D Largest overall package outline dimension

D1 Length from outer pin center to outer pin center

D2 Heat spreader outline dimension

E1 BGA: Solder ball pitch
SPGA: Linear spacing between true pin position centerlines

E2 Diagonal spacing between true pin position centerlines

F Flatness

L Distance from seating plane to tip of pin

S1 Length from outer pin/ball center to edge of laminate
ww.national.com 200 Revision 3.1

R

G
eo

d
e™

G
X

m
P

ro
cesso

r

9.0 Instruction Set
This section summarizes the Geode GXm processor
instruction set and provides detailed information on the
instruction encodings. The instruction set is broken into
four categories:

• Processor Core Instruction Set - listed in Table 9-27 on
page 213

• FPU Instruction Set - listed in Table 9-29 on page 225

• MMX Instruction Set - listed in Table 9-31 on page 230

• National Semiconductor Extended MMX Instruction Set
- listed in Table 9-33 on page 235

These tables provide information on the instruction encod-
ing, and the instruction clock counts for each instruction.
The clock count values for these tables are based on the
following assumptions

1. All clock counts refer to the microprocessor core
internal clock frequency. For example, clock doubled
GXm processor cores will reference a clock
frequency that is twice the bus frequency.

2. The instruction has been prefetched, decoded and is
ready for execution.

3. Bus cycles do not require wait states.

4. There are no local bus HOLD requests delaying
processor access to the bus.

5. No exceptions are detected during instruction execu-
tion.

6. If an effective address is calculated, it does not use
two general register components. One register,
scaling and displacement can be used within the
clock count shown. However, if the effective address
calculation uses two general register components,
add one clock to the clock count shown.

7. All clock counts assume aligned 32-bit memory/IO
operands.

8. If instructions access a 32-bit operand on odd
addresses, add one clock for read or write and add
two clocks for read and write.

9. For non-cached memory accesses, add two clocks
(clock doubled GXm processor cores) or four clocks
(clock tripled GXm processor cores), assuming zero
wait state memory accesses.

10. Locked cycles are not cacheable. Therefore, using the
LOCK prefix with an instruction adds additional clocks
as specified in item 9 above.
evision 3.1 201 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

9.1 GENERAL INSTRUCTION SET FORMAT
Depending on the instruction, the GXm processor core
instructions follow the general instruction format shown in
Table 9-1.

These instructions vary in length and can start at any byte
address. An instruction consists of one or more bytes that
can include prefix bytes, at least one opcode byte, a mod
r/m byte, an s-i-b byte, address displacement, and imme-

diate data. An instruction can be as short as one byte and
as long as 15 bytes. If there are more than 15 bytes in the
instruction, a general protection fault (error code 0) is gen-
erated.

The fields in the general instruction format at the byte
level are summarized in Table 9-2 and detailed in the fol-
lowing subsections.

Table 9-1. General Instruction Set Format

Prefix (optional) Opcode

Register and Address Mode Specifier

Address
Displacement

Immediate
Data

mod r/m Byte s-i-b Byte

mod reg r/m ss index base

0 or More Bytes 1 or 2 Bytes 7:6 5:3 2:0 7:6 5:3 2:0 0, 8, 16, or 32 Bits 0, 8, 16, or 32 Bits

Table 9-2. Instruction Fields

Field Name Description

Prefix (optional) Prefix Field(s): One or more optional fields that are used to specify segment register override, address
and operand size, repeat elements in string instruction, LOCK# assertion.

Opcode Opcode Field: Identifies instruction operation.

mod Address Mode Specifier: Used with r/m field to select addressing mode.

reg General Register Specifier: Uses reg, sreg3 or sreg2 encoding depending on opcode field.

r/m Address Mode Specifier: Used with mod field to select addressing mode.

ss Scale factor: Determines scaled-index address mode.

index Index: Determines general register to be used as index register.

base Base: Determines general register to be used as base register.

Address Displacement Displacement: Determines address displacement.

Immediate Data Immediate Data: Immediate-data operand used by instruction.
ww.national.com 202 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

9.1.1 Prefix (Optional)
Prefix bytes can be placed in front of any instruction to
modify the operation of that instruction. When more than
one prefix is used, the order is not important. There are
five types of prefixes that can be used:

1. Segment Override explicitly specifies which segment
register the instruction will use for effective address
calculation.

2. Address Size switches between 16-bit and 32-bit
addressing by selecting the non-default address size.

3. Operand Size switches between 16-bit and 32-bit
operand size by selecting the non-default operand
size.

4. Repeat is used with a string instruction to cause the
instruction to be repeated for each element of the
string.

5. Lock is used to assert the hardware LOCK# signal
during execution of the instruction.

Table 9-3 lists the encoding for different types of prefix
bytes.

9.1.2 Opcode
The opcode field specifies the operation to be performed
by the instruction. The opcode field is either one or two
bytes in length and may be further defined by additional
bits in the mod r/m byte. Some operations have more than
one opcode, each specifying a different form of the opera-
tion. Certain opcodes name instruction groups. For exam-
ple, opcode 80h names a group of operations that have
an immediate operand and a register or memory operand.
The reg field may appear in the second opcode byte or in
the mod r/m byte.

The opcode may contain w, d, s and eee opcode fields as
shown in the Table 9-27 on page 213

9.1.2.1 w Field (Operand Size)
When used, the 1-bit w field selects the operand size dur-
ing 16-bit and 32-bit data operations. See Table 9-4.

Table 9-3. Instruction Prefix Summary

Prefix Encoding Description

ES: 26h Override segment default, use ES
for memory operand.

CS: 2Eh Override segment default, use CS
for memory operand.

SS: 36h Override segment default, use SS
for memory operand.

DS: 3Eh Override segment default, use DS
for memory operand.

FS: 64h Override segment default, use FS
for memory operand.

GS: 65h Override segment default, use GS
for memory operand.

Operand
Size

66h Make operand size attribute the
inverse of the default.

Address
Size

67h Make address size attribute the
inverse of the default.

LOCK F0h Assert LOCK# hardware signal.

REPNE F2h Repeat the following string
instruction.

REP/REPE F3h Repeat the following string
instruction.

Table 9-4. w Field Encoding

w
Field

Operand Size

16-Bit Data
Operations

32-Bit Data
Operations

0 8 bits 8 bits

1 16 bits 32 bits
evision 3.1 203 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

9.1.2.2 d Field (Operand Direction)
When used, the d field (bit 1) determines which operand is
taken as the source operand and which operand is taken
as the destination. See Table 9-5.

9.1.2.3 s Field (Immediate Data Field Size)
When used, the s field (bit 1) determines the size of the
immediate data field. If the s bit is set, the immediate field
of the opcode is 8 bits wide and is sign-extended to match
the operand size of the opcode. See Table 9-6.

9.1.2.4 eee Field (MOV-Instruction Register
Selection)

The eee field (bits [5:3]) is used to select the control,
debug and test registers in the MOV instructions. The type
of register and base registers selected by the eee field are
listed in Table 9-7. The values shown in Table 9-7 are the
only valid encodings for the eee bits.

Table 9-5. d Field Encoding

d
Field

Direction of
Operation

Source
Operand

Destination
Operand

0 Register-to-Register
or
Register-to-Memory

reg mod r/m
or
mod ss-index-
base

1 Register-to-Register
or
Memory-to-Register

mod r/m
or
mod ss-index-
base

reg

Table 9-6. s Field Encoding

s
Field

Immediate Field Size

8-Bit
Operand Size

16-Bit
Operand Size

32-Bit
Operand Size

0 (or not
present)

8 bits 16 bits 32 bits

1 8 bits 8 bits
(sign-extended)

8 bits
(sign-extended)

Table 9-7. eee Field Encoding

eee Field Register Type Base Register

000 Control Register CR0

010 Control Register CR2

011 Control Register CR3

100 Control Register CR4

000 Debug Register DR0

001 Debug Register DR1

010 Debug Register DR2

011 Debug Register DR3

110 Debug Register DR6

111 Debug Register DR7

011 Test Register TR3

100 Test Register TR4

101 Test Register TR5

110 Test Register TR6

111 Test Register TR7
ww.national.com 204 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

9.1.3 mod and r/m Byte (Memory Addressing)
The mod and r/m fields within the mod r/m byte, select the
type of memory addressing to be used. Some instructions
use a fixed addressing mode (e.g., PUSH or POP) and
therefore, these fields are not present. Table 9-8 lists the
addressing method when 16-bit addressing is used and a
mod r/m byte is present. Some mod r/m field encodings
are dependent on the w field and are shown in Table 9-8.

Table 9-8. General Registers Selected by mod
r/m Fields and w Field

mod r/m

16-Bit
Operation

32-Bit
Operation

w = 0 w = 1 w = 0 w = 1

11 000 AL AX AL EAX

11 001 CL CX CL ECX

11 010 DL DX DL EDX

11 011 BL BX BL EBX

11 100 AH SP AH ESP

11 101 CH BP CH EBP

11 110 DH SI DH ESI

11 111 BH DI BH EDI

Table 9-9. mod r/m Field Encoding

mod
Field

r/m
Field

16-Bit Address
Mode with

mod r/m Byte

32-Bit Address
Mode with mod r/m
Byte and No s-i-b

Byte Present

00 000 DS:[BX+SI] DS:[EAX]

00 001 DS:[BX+DI] DS:[ECX]

00 010 SS:[BP+SI] DS:[EDX]

00 011 SS:[BP+DI] DS:[EBX]

00 100 DS:[SI] s-i-b is present
(See Table 9-15)

00 101 DS:[DI] DS:[d32]

00 110 DS:[d16] DS:[ESI]

00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX+SI+d8] DS:[EAX+d8]

01 001 DS:[BX+DI+d8] DS:[ECX+d8]

01 010 SS:[BP+SI+d8] DS:[EDX+d8]

01 011 SS:[BP+DI+d8] DS:[EBX+d8]

01 100 DS:[SI+d8] s-i-b is present
(See Table 9-15)

01 101 DS:[DI+d8] SS:[EBP+d8]

01 110 SS:[BP+d8] DS:[ESI+d8]

01 111 DS:[BX+d8] DS:[EDI+d8]

10 000 DS:[BX+SI+d16] DS:[EAX+d32]

10 001 DS:[BX+DI+d16] DS:[ECX+d32]

10 010 SS:[BP+SI+d16] DS:[EDX+d32]

10 011 SS:[BP+DI+d16] DS:[EBX+d32]

10 100 DS:[SI+d16] s-i-b is present
(See Table 9-15)

10 101 DS:[DI+d16] SS:[EBP+d32]

10 110 SS:[BP+d16] DS:[ESI+d32]

10 111 DS:[BX+d16] DS:[EDI+d32]

11 xxx See Table 9-8. See Table 9-8

Note: Note: d8 refers to 8-bit displacement, and d16 refers to
16-bit displacement.
evision 3.1 205 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

9.1.4 reg Field
The reg field (Table 9-10) determines which general regis-
ters are to be used. The selected register is dependent on
whether a 16- or 32-bit operation is current and on the sta-
tus of the w bit.

9.1.4.1 sreg2 Field (ES, CS, SS, DS Register
Selection)

The sreg2 field (Table 9-11) is a 2-bit field that allows one
of the four 286-type segment registers to be specified.

9.1.4.2 sreg3 Field (FS and GS Segment Register
Selection)

The sreg3 field (Table 9-12) is 3-bit field that is similar to
the sreg2 field, but allows use of the FS and GS segment
registers.

Table 9-10. General Registers Selected
by reg Field

reg

16-Bit Operation 32-Bit Operation

w = 0 w = 1 w = 0 w = 1

000 AL AX AL EAX

001 CL CX CL ECX

010 DL DX DL EDX

011 BL BX BL EBX

100 AH SP AH ESP

101 CH BP CH EBP

110 DH SI DH ESI

111 BH DI BH EDI

Table 9-11. sreg2 Field Encoding

sreg2 Field Segment Register Selected

00 ES

01 CS

10 SS

11 DS

Table 9-12. sreg3 Field Encoding

sreg3 Field Segment Register Selected

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 Undefined

111 Undefined
ww.national.com 206 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

9.1.5 s-i-b Byte (Scale, Indexing, Base)
The s-i-b fields provide scale factor, indexing and a base
field for address selection. The ss, index and base fields
are described next.

9.1.5.1 ss Field (Scale Selection)
The ss field (Table 9-13) specifies the scale factor used in
the offset mechanism for address calculation. The scale
factor multiplies the index value to provide one of the com-
ponents used to calculate the offset address.

9.1.5.2 index Field (Index Selection)
The index field (Table 9-14) specifies the index register
used by the offset mechanism for offset address calcula-
tion. When no index register is used (index field = 100),
the ss value must be 00 or the effective address is unde-
fined.

9.1.5.3 Base Field (s-i-b Present)
In Table 9-9 on page 205, the note “s-i-b present” for cer-
tain entries forces the use of the mod and base field as
listed in Table 9-15. The first two digits in the first column
of Table 9-15 identify the mod bits in the mod r/m byte.
The last three digits in the first column of this table identi-
fies the base fields in the s-i-b byte.

Table 9-13. ss Field Encoding

ss Field Scale Factor

00 x1

01 x2

01 x4

11 x8

Table 9-14. index Field Encoding

Index Field Index Register

000 EAX

001 ECX

010 EDX

011 EBX

100 none

101 EBP

110 ESI

111 EDI

Table 9-15. mod base Field Encoding

mod Field
within

mode/rm
Byte

(bits 7:6)

base Field
within
s-i-b
Byte

(bits 2:0)

32-Bit Address Mode
with mod r/m and s-i-b

Bytes Present

00 000 DS:[EAX+(scaled index)]

00 001 DS:[ECX+(scaled index)]

00 010 DS:[EDX+(scaled index)]

00 011 DS:[EBX+(scaled index)]

00 100 SS:[ESP+(scaled index)]

00 101 DS:[d32+(scaled index)]

00 110 DS:[ESI+(scaled index)]

00 111 DS:[EDI+(scaled index)]

01 000 DS:[EAX+(scaled index)+d8]

01 001 DS:[ECX+(scaled index)+d8]

01 010 DS:[EDX+(scaled index)+d8]

01 011 DS:[EBX+(scaled index)+d8]

01 100 SS:[ESP+(scaled index)+d8]

01 101 SS:[EBP+(scaled index)+d8]

01 110 DS:[ESI+(scaled index)+d8]

01 111 DS:[EDI+(scaled index)+d8]

10 000 DS:[EAX+(scaled index)+d32]

10 001 DS:[ECX+(scaled index)+d32]

10 010 DS:[EDX+(scaled index)+d32]

10 011 DS:[EBX+(scaled index)+d32]

10 100 SS:[ESP+(scaled index)+d32]

10 101 SS:[EBP+(scaled index)+d32]

10 110 DS:[ESI+(scaled index)+d32]

10 111 DS:[EDI+(scaled index)+d32]
evision 3.1 207 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

9.2 CPUID INSTRUCTION
The CPUID instruction (opcode 0FA2) allows the software
to make processor inquiries as to the vendor, family,
model, stepping, features and also provides cache infor-
mation. The GXm with MMX supports both the standard
and National Semiconductor extended CPUID levels.

The presence of the CPUID instruction is indicated by the
ability to change the value of the ID Flag, bit 21 in the
EFLAGS register.

The CPUID level allows the CPUID instruction to return
different information in the EAX, EBX, ECX, and EDX reg-
isters. The level is determined by the initialized value of
the EAX register before the instruction is executed. A
summary of the CPUID levels is shown in Table 9-16.

9.2.1 Standard CPUID Levels
The standard CPUID levels are part of the standard x86
instruction set.

9.2.1.1 CPUID Instruction with EAX = 00000000h
Standard function 0h (EAX = 0) of the CPUID instruction
returns the maximum standard CPUID levels as well as
the processor vendor string.

After the instruction is executed, the EAX register contains
the maximum standard CPUID levels supported. The
maximum standard CPUID level is the highest acceptable
value for the EAX register input. This does not include the
extended CPUID levels.

The EBX through EDX registers contain the vendor string
of the processor as shown in Table 9-17.

9.2.1.2 CPUID Instruction with EAX = 00000001h
Standard function 01h (EAX = 1) of the CPUID instruction
returns the processor type, family, model, and stepping
information of the current processor in the EAX register
(see Table 9-18). The EBX and ECX registers are
reserved.

The standard feature flags supported are returned in the
EDX register as shown in Table 9-19 on page 209. Each
flag refers to a specific feature and indicates if that feature
is present on the processor. Some of these features have
protection control in CR4. Before using any of these fea-
tures on the processor, the software should check the cor-
responding feature flag. Attempting to execute an
unavailable feature can cause exceptions and unexpected
behavior. For example, software must check bit 4 before
attempting to use the Time Stamp Counter instruction.

Table 9-16. CPUID Levels Summary

CPUID
Type

Initialized
EAX

Register
Returned Data in EAX, EBX,

ECX, EDX Registers

Standard 00000000h Maximum standard levels, CPU
vendor string

Standard 00000001h Model, family, type and features

Standard 00000002h TLB and cache information

Extended 80000000h Maximum extended levels

Extended 80000001h Extended model, family, type and
features

Extended 80000002h CPU marketing name string

Extended 80000003h

Extended 80000004h

Extended 80000005h TLB and L1 cache description

Table 9-17. CPUID Data Returned when EAX = 0

Register
(Note) Returned Contents Description

EAX 2 Maximum Standard
Level

EBX 69 72 7943
(iryC)

Vendor ID String 1

EDX 73 6E 4978
(snlx)

Vendor ID String 2

ECX 64 61 6574
(daet)

Vendor ID String 3

Note: The register column is intentionally out of order.

Table 9-18. EAX, EBX, ECX CPUID Data
Returned when EAX = 1

Register
Returned
Contents Description

EAX[3:0] xx Stepping ID

EAX[7:4] 4 Model

EAX[11:8] 5 Family

EAX[15:12] 0 Type

EAX[31:16] - Reserved

EBX - Reserved

ECX - Reserved
ww.national.com 208 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

9.2.1.3 CPUID Instruction with EAX = 00000002h
Standard function 02h (EAX = 02h) of the CPUID instruc-
tion returns information that is specific to the National
Semiconductor family of processors. Information about
the TLB is returned in EAX as shown in Table 9-20. Infor-
mation about the L1 cache is returned in EDX.

Table 9-19. EDX CPUID Data
Returned when EAX = 1

EDX
Returned
Contents* Feature Flag

CR4
Bit

EDX[0] 1 FPU On-Chip -

EDX[1] 0 Virtual Mode Extension -

EDX[2] 0 Debug Extensions -

EDX[3] 0 Page Size Extensions -

EDX[4] 1 Time Stamp Counter 2

EDX[5] 1 RDMSR / WRMSR
Instructions

-

EDX[6] 0 Physical Address
Extensions

-

EDX[7] 0 Machine Check Exception -

EDX[8] 1 CMPXCHG8B Instruction -

EDX[9] 0 On-Chip APIC Hardware -

EDX[10] 0 Reserved -

EDX[11] 0 SYSENTER / SYSEXIT
Instructions

-

EDX[12] 0 Memory Type Range
Registers

-

EDX[13] 0 Page Global Enable -

EDX[14] 0 Machine Check
Architecture

-

EDX[15] 1 Conditional Move
Instructions

-

EDX[16] 0 Page Attribute Table -

EDX[22:17] 0 Reserved -

EDX[23] 1 MMX Instructions -

EDX[24] 0 Fast FPU Save and
Restore

-

EDX[31:25] 0 Reserved -

Note: *0 = Not supported

Table 9-20. Standard CPUID with
EAX = 00000002h

Register
Returned
Contents Description

EAX xx xx 70 xxh TLB is 32 Entry, 4-way set asso-
ciative, and has 4 KByte Pages

EAX xx xx xx 01h The CPUID instruction needs to
be executed only once with an
input value of 02h to retrieve
complete information about the
cache and TLB

EBX Reserved

ECX Reserved

EDX xx xx xx 80h L1 cache is 16 KBytes, 4-way set
associated, and has 16 bytes per
line.
evision 3.1 209 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

9.2.2 Extended CPUID Levels
Testing for extended CPUID instruction support can be
accomplished by executing a CPUID instruction with the
EAX register initialized to 80000000h. If a value greater
than or equal to 80000000h is returned to the EAX regis-
ter by the CPUID instruction, the processor supports
extended CPUID levels.

9.2.2.1 CPUID Instruction with
EAX = 8000000h

Extended function 80000000h (EAX = 80000000h) of the
CPUID instruction returns the maximum extended CPUID
levels supported by the current processor in EAX (Table 9-
21). The EBX, ECX, and EDX registers are currently
reserved.

9.2.2.2 CPUID Instruction with
EAX = 8000 0001h

Extended function 80000001h (EAX = 80000001h) of the
CPUID instruction returns the processor type, family,
model, and stepping information of the current processor
in EAX. The EBX and ECX registers are reserved.

The extended feature flags supported are returned in the
EDX register as shown in Table 9-23. Each flag refers to a
specific feature and indicates if that feature is present on
the processor. Some of these features have protection
control in CR4. Before using any of these features on the
processor, the software should check the corresponding
feature flag.

Table 9-21. Maximum Extended CPUID Level

Register
Returned
Contents Description

EAX 80000005h Maximum Extended CPUID
Level (six levels)

EBX - Reserved

ECX - Reserved

EDX - Reserved

Table 9-22. EAX, EBX, ECX CPUID Data
Returned when EAX = 80000001h

Register
Returned
Contents Description

EAX[3:0] xx Stepping ID

EAX[7:4] 4 Model

EAX[11:8] 5 Family

EAX[15:12] 0 Processor Type

EAX[31:16] - Reserved

EBX - Reserved

ECX - Reserved

Table 9-23. EDX CPUID Data Returned
when EAX = 80000001h

EDX
Returned
Contents* Feature Flag

CR4
Bit

EDX[0] 1 FPU On-Chip -

EDX[1] 0 Virtual Mode Extension -

EDX[2] 0 Debugging Extension -

EDX[3] 0 Page Size Extension
(4 MB)

-

EDX[4] 1 Time Stamp Counter 2

EDX[5] 1 National Semiconductor
Model-Specific Registers
(via RDMSR / WRMSR
Instructions)

-

EDX[6] 0 Reserved -

EDX[7] 0 Machine Check Exception -

EDX[8] 1 CMPXCHG8B Instruction -

EDX[9] 0 Reserved -

EDX[10] 0 Reserved -

EDX[11] 0 SYSCALL / SYSRET
Instruction

-

EDX[12] 0 Reserved -

EDX[13] 0 Page Global Enable -

EDX[14] 0 Reserved -

EDX[15] 1 Integer Conditional Move
Instruction

-

EDX[16] 0 FPU Conditional Move
Instruction

-

EDX[22:17] 0 Reserved -

EDX[23] 1 MMX -

EDX[24] 1 6x86MX Multimedia
Extensions

-

Note: 0 = Not supported
ww.national.com 210 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

9.2.2.3 CPUID Instruction with
EAX = 80000002h, 80000003h, 80000004h

Extended functions 80000002h through 80000004h (EAX
= 80000002h, EAX = 80000003h, EAX = 80000004h) of
the CPUID instruction return an ASCII string containing
the name of the current processor. These functions elimi-
nate the need to look up the processor name in a lookup
table. Software can simply call these functions to obtain
the name of the processor. The string may be 48 ASCII
characters long, and is returned in little endian format. If
the name is shorter than 48 characters long, the remain-
ing bytes will be filled with ASCII NUL character (00h).

9.2.2.4 CPUID Instruction with
EAX = 80000005h

Extended function 80000005h (EAX = 80000005h) of the
CPUID instruction returns information about the TLB and
L1 cache to be looked up in a lookup table. Refer to Table
9-25.

Table 9-24. Official CPU Name

80000002h 80000003h 80000004h

EAX CPU Name
1

EAX CPU Name
5

EAX CPU Name
9

EBX CPU Name
2

EBX CPU Name
6

EBX CPU Name
10

ECX CPU Name
3

ECX CPU Name
7

ECX CPU Name
11

EDX CPU Name
4

EDX CPU Name
8

EDX CPU Name
12

Table 9-25. Standard CPUID with
EAX = 80000005h

Register
Returned
Contents Description

EAX -- Reserved

EBX xx xx 70 xxh TLB is 32 Entry, 4-way set
associative, and has 4 KByte
Pages

EBX xx xx xx 01h The CPUID instruction needs
to be executed only once with
an input value of 02h to retrieve
complete information about the
cache and TLB

ECX xx xx xx 80h L1 cache is 16 KBytes, 4-way
set associated, and has 16
bytes per line.

EDX -- Reserved
evision 3.1 211 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

9.3 PROCESSOR CORE INSTRUCTION SET
The instruction set for the GXm processor core is summa-
rized in Table 9-27 on page 213. The table uses several
symbols and abbreviations that are described next and
listed in Table 9-26.

Opcodes
Opcodes are given as hex values except when they
appear within brackets as binary values.

Clock Counts
The clock counts listed in the instruction set summary
table are grouped by operating mode (Real and Pro-
tected) and whether there is a register/cache hit or a
cache miss. In some cases, more than one clock count is
shown in a column for a given instruction, or a variable is
used in the clock count.

Flags
There are nine flags that are affected by the execution of
instructions. The flag names have been abbreviated and vari-
ous conventions used to indicate what effect the instruc-
tion has on the particular flag.

Table 9-26. Processor Core Instruction Set
Table Legend

Symbol or
Abbreviation Description

Opcode

Immediate 8-bit data

Immediate 16-bit data

Full immediate 32-bit data (8, 16, 32 bits)

+ 8-bit signed displacement

+++ Full signed displacement (16, 32 bits)

Clock Count

/ Register operand/memory operand.

n Number of times operation is repeated.

L Level of the stack frame.

| Conditional jump taken | Conditional jump not
taken.
(e.g. “4|1” = 4 clocks if jump taken, 1 clock if
jump not taken)

\ CPL ≤ IOPL \ CPL > IOPL
(where CPL = Current Privilege Level, IOPL =
I/O Privilege Level)

Flags

OF Overflow Flag

DF Direction Flag

IF Interrupt Enable Flag

TF Trap Flag

SF Sign Flag

ZF Zero Flag

AF Auxiliary Flag

PF Parity Flag

CF Carry Flag

x Flag is modified by the instruction.

- Flag is not changed by the instruction.

0 Flag is reset to “0”.

1 Flag is set to “1”.

u Flag is undefined following execution the
instruction.
ww.national.com 212 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 9-27. Processor Core Instruction Set Summary

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes

AAA ASCII Adjust AL after Add 37 u - - - u u x u x 3 3

AAD ASCII Adjust AX before Divide D5 0A u - - - x x u x u 7 7

AAM ASCII Adjust AX after Multiply D4 0A u - - - x x u x u 19 19

AAS ASCII Adjust AL after Subtract 3F u - - - u u x u x 3 3

ADC Add with Carry

Register to Register 1 [00dw] [11 reg r/m] x - - - x x x x x 1 1 b h

Register to Memory 1 [000w] [mod reg r/m] 1 1

Memory to Register 1 [001w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 010 r/m]### 1 1

Immediate to Accumulator 1 [010w] ### 1 1

ADD Integer Add

Register to Register 0 [00dw] [11 reg r/m] x - - - x x x x x 1 1 b h

Register to Memory 0 [000w] [mod reg r/m] 1 1

Memory to Register 0 [001w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 000 r/m]### 1 1

Immediate to Accumulator 0 [010w] ### 1 1

AND Boolean AND

Register to Register 2 [00dw] [11 reg r/m] 0 - - - x x u x 0 1 1 b h

Register to Memory 2 [000w] [mod reg r/m] 1 1

Memory to Register 2 [001w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 100 r/m]### 1 1

Immediate to Accumulator 2 [010w] ### 1 1

ARPL Adjust Requested Privilege Level

From Register/Memory 63 [mod reg r/m] - - - - - x - - - 9 a h

BB0_Reset Set BLT Buffer 0 Pointer to the Base 0F 3A 2 2

BB1_Reset Set BLT Buffer 1 Pointer to the Base 0F 3B 2 2

BOUND Check Array Boundaries

If Out of Range (Int 5) 62 [mod reg r/m] - - - - - - - - - 8+INT 8+INT b, e g,h,j,k,r

If In Range 7 7

BSF Scan Bit Forward

Register, Register/Memory 0F BC [mod reg r/m] - - - - - x - - - 4/9+n 4/9+n b h

BSR Scan Bit Reverse

Register, Register/Memory 0F BD [mod reg r/m] - - - - - x - - - 4/11+n 4/11+n b h

BSWAP Byte Swap 0F C[1 reg] - - - - - - - - - 6 6

BT Test Bit

Register/Memory, Immediate 0F BA [mod 100 r/m]# - - - - - - - - x 1 1 b h

Register/Memory, Register 0F A3 [mod reg r/m] 1/7 1/7

BTC Test Bit and Complement

Register/Memory, Immediate 0F BA [mod 111 r/m]# - - - - - - - - x 2 2 b h

Register/Memory, Register 0F BB [mod reg r/m] 2/8 2/8

BTR Test Bit and Reset

Register/Memory, Immediate 0F BA [mod 110 r/m]# - - - - - - - - x 2 2 b h

Register/Memory, Register 0F B3 [mod reg r/m 2/8 2/8

BTS Test Bit and Set

Register/Memory 0F BA [mod 101 r/m] - - - - - - - - x 2 2 b h

Register (short form) 0F AB [mod reg r/m] 2/8 2/8
evision 3.1 213 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

CALL Subroutine Call

Direct Within Segment E8 +++ - - - - - - - - - 3 3 b h,j,k,r

Register/Memory Indirect Within Segment FF [mod 010 r/m] 3/4 3/4

Direct Intersegment
-Call Gate to Same Privilege
-Call Gate to Different Privilege No Par’s
-Call Gate to Different Privilege m Par’s
-16-bit Task to 16-bit TSS
-16-bit Task to 32-bit TSS
-16-bit Task to V86 Task
-32-bit Task to 16-bit TSS
-32-bit Task to 32-bit TSS
-32-bit Task to V86 Task

9A [unsigned full offset,
selector]

9 14
24
45

51+2m
183
189
123
186
192
126

Indirect Intersegment
-Call Gate to Same Privilege
-Call Gate to Different Privilege No Par’s
-Call Gate to Different Privilege m Par’s
-16-bit Task to 16-bit TSS
-16-bit Task to 32-bit TSS
-16-bit Task to V86 Task
-32-bit Task to 16-bit TSS
-32-bit Task to 32-bit TSS
-32-bit Task to V86 Task

FF [mod 011 r/m] 11 15
25
46

52+2m
184
190
124
187
193
127

CBW Convert Byte to Word 98 - - - - - - - - - 3 3

CDQ Convert Doubleword to Quadword 99 - - - - - - - - - 2 2

CLC Clear Carry Flag F8 - - - - - - - - 0 1 1

CLD Clear Direction Flag FC - 0 - - - - - - - 4 4

CLI Clear Interrupt Flag FA - - 0 - - - - - - 6 6 m

CLTS Clear Task Switched Flag 0F 06 - - - - - - - - - 7 7 c l

CMC Complement the Carry Flag F5 - - - - - - - - x 3 3

CMOVA/CMOVNBE Move if Above/Not Below or Equal

Register, Register/Memory 0F 47 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVBE/CMOVNA Move if Below or Equal/Not Above

Register, Register/Memory 0F 46 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVAE/CMOVNB/CMOVNC Move if Above or Equal/Not Below/Not Carry

Register, Register/Memory 0F 43 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVB/CMOVC/CMOVNAE Move if Below/Carry/Not Above or Equal

Register, Register/Memory 0F 42 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVE/CMOVZ Move if Equal/Zero

Register, Register/Memory 0F 44 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVNE/CMOVNZ Move if Not Equal/Not Zero

Register, Register/Memory 0F 45 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVG/CMOVNLE Move if Greater/Not Less or Equal

Register, Register/Memory 0F 4F [mod reg r/m] - - - - - - - - - 1 1 r

CMOVLE/CMOVNG Move if Less or Equal/Not Greater

Register, Register/Memory 0F 4E [mod reg r/m] - - - - - - - - - 1 1 r

CMOVL/CMOVNGE Move if Less/Not Greater or Equal

Register, Register/Memory 0F 4C [mod reg r/m] - - - - - - - - - 1 1 r

CMOVGE/CMOVNL Move if Greater or Equal/Not Less

Register, Register/Memory 0F 4D [mod reg r/m] - - - - - - - - - 1 1 r

CMOVO Move if Overflow

Register, Register/Memory 0F 40 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVNO Move if No Overflow

Register, Register/Memory 0F 41 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVP/CMOVPE Move if Parity/Parity Even

Register, Register/Memory 0F 4A [mod reg r/m] - - - - - - - - - 1 1 r

CMOVNP/CMOVPO Move if Not Parity/Parity Odd

Register, Register/Memory 0F 4B [mod reg r/m] - - - - - - - - - 1 1 r

Table 9-27. Processor Core Instruction Set Summary (Continued)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes
ww.national.com 214 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

CMOVS Move if Sign

Register, Register/Memory 0F 48 [mod reg r/m] - - - - - - - - - 1 1 r

CMOVNS Move if Not Sign

Register, Register/Memory 0F 49 [mod reg r/m] - - - - - - - - - 1 1 r

CMP Compare Integers

Register to Register 3 [10dw] [11 reg r/m] x - - - x x x x x 1 1 b h

Register to Memory 3 [101w] [mod reg r/m] 1 1

Memory to Register 3 [100w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 111 r/m] ### 1 1

Immediate to Accumulator 3 [110w] ### 1 1

CMPS Compare String A [011w] x - - - x x x x x 6 6 b h

CMPXCHG Compare and Exchange

Register1, Register2 0F B [000w] [11 reg2 reg1] x - - - x x x x x 6 6

Memory, Register 0F B [000w] [mod reg r/m] 6 6

CMPXCHG8B Compare and Exchange 8 Bytes 0F C7 [mod 001 r/m] - - - - - - - - -

CPUID CPU Identification 0F A2 - - - - - - - - - 12 12

CPU_READ Read Special CPU Register 0F 3C 1 1

CPU_WRITE Write Special CPU Register 0F 3D 1 1

CWD Convert Word to Doubleword 99 - - - - - - - - - 2 2

CWDE Convert Word to Doubleword Extended 98 - - - - - - - - - 3 3

DAA Decimal Adjust AL after Add 27 - - - - x x x x x 2 2

DAS Decimal Adjust AL after Subtract 2F - - - - x x x x x 2 2

DEC Decrement by 1

Register/Memory F [111w] [mod 001 r/m] x - - - x x x x - 1 1 b h

Register (short form) 4 [1 reg] 1 1

DIV Unsigned Divide

Accumulator by Register/Memory
Divisor: Byte

Word
Doubleword

F [011w] [mod 110 r/m] - - - - x x u u -
20
29
45

20
29
45

b,e e,h

ENTER Enter New Stack Frame

Level = 0 C8 ##,# - - - - - - - - - 13 13 b h

Level = 1 17 17

Level (L) > 1 17+2*L 17+2*L

HLT Halt F4 - - - - - - - - - 10 10 l

IDIV Integer (Signed) Divide

Accumulator by Register/Memory
Divisor: Byte

Word
Doubleword

F [011w] [mod 111 r/m] - - - - x x u u -
20
29
45

20
29
45

b,e e,h

IMUL Integer (Signed) Multiply

Accumulator by Register/Memory
Multiplier: Byte

Word
Doubleword

F [011w] [mod 101 r/m] x - - - x x u u x
4
5
15

4
5
15

b h

Register with Register/Memory
Multiplier: Word

Doubleword

0F AF [mod reg r/m]
5
15

5
15

Register/Memory with Immediate to Register2
Multiplier: Word

Doubleword

6 [10s1] [mod reg r/m] ###
6
16

6
16

IN Input from I/O Port

Fixed Port E [010w] # - - - - - - - - - 8 8/22 m

Variable Port E [110w] 8 8/22

INS Input String from I/O Port 6 [110w] - - - - - - - - - 11 11/25 b h,m

Table 9-27. Processor Core Instruction Set Summary (Continued)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes
evision 3.1 215 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

INC Increment by 1

Register/Memory F [111w] [mod 000 r/m] x - - - x x x x - 1 1 b h

Register (short form) 4 [0 reg] 1 1

INT Software Interrupt

INT i CD # - - x 0 - - - - - 19 b,e g,j,k,r

Protected Mode:
-Interrupt or Trap to Same Privilege
-Interrupt or Trap to Different Privilege
-16-bit Task to 16-bit TSS by Task Gate
-16-bit Task to 32-bit TSS by Task Gate
-16-bit Task to V86 by Task Gate
-16-bit Task to 16-bit TSS by Task Gate
-32-bit Task to 32-bit TSS by Task Gate
-32-bit Task to V86 by Task Gate
-V86 to 16-bit TSS by Task Gate
-V86 to 32-bit TSS by Task Gate
-V86 to Privilege 0 by Trap Gate/Int Gate

33
55
184
190
124
187
193
127
187
193
64

INT 3 CC INT INT

INTO
If OF==0
If OF==1 (INT 4)

CE
4

INT
4

INT

INVD Invalidate Cache 0F 08 - - - - - - - - - 20 20 t t

INVLPG Invalidate TLB Entry 0F 01 [mod 111 r/m] - - - - - - - - - 15 15

IRET Interrupt Return

Real Mode CF x x x x x x x x x 13 g,h,j,k,r

Protected Mode:
-Within Task to Same Privilege
-Within Task to Different Privilege
-16-bit Task to 16-bit Task
-16-bit Task to 32-bit TSS
-16-bit Task to V86 Task
-32-bit Task to 16-bit TSS
-32-bit Task to 32-bit TSS
-32-bit Task to V86 Task

20
39
169
175
109
172
178
112

JB/JNAE/JC Jump on Below/Not Above or Equal/Carry

8-bit Displacement 72 + - - - - - - - - - 1 1 r

Full Displacement 0F 82 +++ 1 1

JBE/JNA Jump on Below or Equal/Not Above

8-bit Displacement 76 + - - - - - - - - 1 1 r

Full Displacement 0F 86 +++ 1 1

JCXZ/JECXZ Jump on CX/ECX Zero E3 + - - - - - - - - - 2 2 r

JE/JZ Jump on Equal/Zero

8-bit Displacement 74 + - - - - - - - - 1 1 r

Full Displacement 0F 84 +++ 1 1

JL/JNGE Jump on Less/Not Greater or Equal

8-bit Displacement 7C + - - - - - - - - 1 1 r

Full Displacement 0F 8C +++ 1 1

JLE/JNG Jump on Less or Equal/Not Greater

8-bit Displacement 7E + - - - - - - - - 1 1 r

Full Displacement 0F 8E +++ 1 1

Table 9-27. Processor Core Instruction Set Summary (Continued)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes
ww.national.com 216 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

JMP Unconditional Jump

8-bit Displacement EB + - - - - - - - - 1 1 b h,j,k,r

Full Displacement E9 +++ 1 1

Register/Memory Indirect Within Segment FF [mod 100 r/m] 1/3 1/3

Direct Intersegment
-Call Gate Same Privilege Level
-16-bit Task to 16-bit TSS
-16-bit Task to 32-bit TSS
-16-bit Task to V86 Task
-32-bit Task to 16-bit TSS
-32-bit Task to 32-bit TSS
-32-bit Task to V86 Task

EA [unsigned full offset,
selector]

8 12
22
186
192
126
189
195
129

Indirect Intersegment
-Call Gate Same Privilege Level
-16-bit Task to 16-bit TSS
-16-bit Task to 32-bit TSS
-16-bit Task to V86 Task
-32-bit Task to 16-bit TSS
-32-bit Task to 32-bit TSS
-32-bit Task to V86 Task

FF [mod 101 r/m] 10 13
23
187
193
127
190
196
130

JNB/JAE/JNC Jump on Not Below/Above or Equal/Not Carry

8-bit Displacement 73 + - - - - - - - - 1 1 r

Full Displacement 0F 83 +++ 1 1

JNBE/JA Jump on Not Below or Equal/Above

8-bit Displacement 77 + - - - - - - - - 1 1 r

Full Displacement 0F 87 +++ 1 1

JNE/JNZ Jump on Not Equal/Not Zero

8-bit Displacement 75 + - - - - - - - - 1 1 r

Full Displacement 0F 85 +++ 1 1

JNL/JGE Jump on Not Less/Greater or Equal

8-bit Displacement 7D + - - - - - - - - 1 1 r

Full Displacement 0F 8D +++ 1 1

JNLE/JG Jump on Not Less or Equal/Greater

8-bit Displacement 7F + - - - - - - - - 1 1 r

Full Displacement 0F 8F +++ 1 1

JNO Jump on Not Overflow

8-bit Displacement 71 + - - - - - - - - 1 1 r

Full Displacement 0F 81 +++ 1 1

JNP/JPO Jump on Not Parity/Parity Odd

8-bit Displacement 7B + - - - - - - - - 1 1 r

Full Displacement 0F 8B +++ 1 1

JNS Jump on Not Sign

8-bit Displacement 79 + - - - - - - - - 1 1 r

Full Displacement 0F 89 +++ 1 1

JO Jump on Overflow

8-bit Displacement 70 + - - - - - - - - 1 1 r

Full Displacement 0F 80 +++ 1 1

JP/JPE Jump on Parity/Parity Even

8-bit Displacement 7A + - - - - - - - - 1 1 r

Full Displacement 0F 8A +++ 1 1

JS Jump on Sign

8-bit Displacement 78 + - - - - - - - - 1 1 r

Full Displacement 0F 88 +++ 1 1

LAHF Load AH with Flags 9F - - - - - - - - - 2 2

LAR Load Access Rights

From Register/Memory 0F 02 [mod reg r/m] - - - - - x - - - 9 a g,h,j,p

LDS Load Pointer to DS C5 [mod reg r/m] - - - - - - - - - 4 9 b h,i,j

Table 9-27. Processor Core Instruction Set Summary (Continued)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes
evision 3.1 217 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

LEA Load Effective Address

No Index Register 8D [mod reg r/m] - - - - - - - - - 1 1

With Index Register 1 1

LES Load Pointer to ES C4 [mod reg r/m] - - - - - - - - - 4 9 b h,i,j

LFS Load Pointer to FS 0F B4 [mod reg r/m] - - - - - - - - - 4 9 b h,i,j

LGDT Load GDT Register 0F 01 [mod 010 r/m] - - - - - - - - - 10 10 b,c h,l

LGS Load Pointer to GS 0F B5 [mod reg r/m] - - - - - - - - - 4 9 b h,i,j

LIDT Load IDT Register 0F 01 [mod 011 r/m] - - - - - - - - - 10 10 b,c h,l

LLDT Load LDT Register

From Register/Memory 0F 00 [mod 010 r/m] - - - - - - - - - 8 a g,h,j,l

LMSW Load Machine Status Word

From Register/Memory 0F 01 [mod 110 r/m] - - - - - - - - - 11 11 b,c h,l

LODS Load String A [110 w] - - - - - - - - - 3 3 b h

LSL Load Segment Limit

From Register/Memory 0F 03 [mod reg r/m] - - - - - x - - - 9 a g,h,j,p

LSS Load Pointer to SS 0F B2 [mod reg r/m] - - - - - - - - - 4 10 a h,i,j

LTR Load Task Register

From Register/Memory 0F 00 [mod 011 r/m] - - - - - - - - - 9 a g,h,j,l

LEAVE Leave Current Stack Frame C9 - - - - - - - - - 4 4 b h

LOOP Offset Loop/No Loop E2 + - - - - - - - - - 2 2 r

LOOPNZ/LOOPNE Offset E0 + - - - - - - - - - 2 2 r

LOOPZ/LOOPE Offset E1 + - - - - - - - - - 2 2 r

MOV Move Data

Register to Register 8 [10dw] [11 reg r/m] - - - - - - - - - 1 1 b h,i,j

Register to Memory 8 [100w] [mod reg r/m] 1 1

Register/Memory to Register 8 [101w] [mod reg r/m] 1 1

Immediate to Register/Memory C [011w] [mod 000 r/m] ### 1 1

Immediate to Register (short form) B [w reg] ### 1 1

Memory to Accumulator (short form) A [000w] +++ 1 1

Accumulator to Memory (short form) A [001w] +++ 1 1

Register/Memory to Segment Register 8E [mod sreg3 r/m] 1 6

Segment Register to Register/Memory 8C [mod sreg3 r/m] 1 1

MOV Move to/from Control/Debug/Test Regs

Register to CR0/CR2/CR3/CR4 0F 22 [11 eee reg] - - - - - - - - - 20/5/5 18/5/6 l

CR0/CR2/CR3/CR4 to Register 0F 20 [11 eee reg] 6 6

Register to DR0-DR3 0F 23 [11 eee reg] 10 10

DR0-DR3 to Register 0F 21 [11 eee reg] 9 9

Register to DR6-DR7 0F 23 [11 eee reg] 10 10

DR6-DR7 to Register 0F 21 [11 eee reg] 9 9

Register to TR3-5 0F 26 [11 eee reg] 16 16

TR3-5 to Register 0F 24 [11 eee reg] 8 8

Register to TR6-TR7 0F 26 [11 eee reg] 11 11

TR6-TR7 to Register 0F 24 [11 eee reg] 3 3

MOVS Move String A [010w] - - - - - - - - - 6 6 b h

MOVSX Move with Sign Extension

Register from Register/Memory 0F B[111w] [mod reg r/m] - - - - - - - - - 1 1 b h

MOVZX Move with Zero Extension

Register from Register/Memory 0F B[011w] [mod reg r/m] - - - - - - - - - 1 1 b h

MUL Unsigned Multiply

Accumulator with Register/Memory
Multiplier: Byte

Word
Doubleword

F [011w] [mod 100 r/m] x - - - x x u u x
4
5
15

4
5
15

b h

Table 9-27. Processor Core Instruction Set Summary (Continued)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes
ww.national.com 218 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

NEG Negate Integer F [011w] [mod 011 r/m] x - - - x x x x x 1 1 b h

NOP No Operation 90 - - - - - - - - - 1 1

NOT Boolean Complement F [011w] [mod 010 r/m] - - - - - - - - - 1 1 b h

OIO Official Invalid Opcode 0F FF - - x 0 - - - - - 1 8-125

OR Boolean OR

Register to Register 0 [10dw] [11 reg r/m] 0 - - - x x u x 0 1 1 b h

Register to Memory 0 [100w] [mod reg r/m] 1 1

Memory to Register 0 [101w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 001 r/m] ### 1 1

Immediate to Accumulator 0 [110w] ### 1 1

OUT Output to Port

Fixed Port E [011w] # - - - - - - - - - 14 14/28 m

Variable Port E [111w] 14 14/28

OUTS Output String 6 [111w] - - - - - - - - - 15 15/29 b h,m

POP Pop Value off Stack

Register/Memory 8F [mod 000 r/m] - - - - - - - - - 1/4 1/4 b h,i,j

Register (short form) 5 [1 reg] 1 1

Segment Register (ES, SS, DS) [000 sreg2 111] 1 6

Segment Register (FS, GS) 0F [10 sreg3 001] 1 6

POPA Pop All General Registers 61 - - - - - - - - - 9 9 b h

POPF Pop Stack into FLAGS 9D x x x x x x x x x 8 8 b h,n

PREFIX BYTES

Assert Hardware LOCK Prefix F0 - - - - - - - - - m

Address Size Prefix 67

Operand Size Prefix 66

Segment Override Prefix
-CS
-DS
-ES
-FS
-GS
-SS

2E
3E
26
64
65
36

PUSH Push Value onto Stack

Register/Memory FF [mod 110 r/m] - - - - - - - - - 1/3 1/3 b h

Register (short form) 5 [0 reg] 1 1

Segment Register (ES, CS, SS, DS) [000 sreg2 110] 1 1

Segment Register (FS, GS) 0F [10 sreg3 000] 1 1

Immediate 6 [10s0] ### 1 1

PUSHA Push All General Registers 60 - - - - - - - - - 11 11 b h

PUSHF Push FLAGS Register 9C - - - - - - - - - 2 2 b h

RCL Rotate Through Carry Left

Register/Memory by 1 D [000w] [mod 010 r/m] x - - - - - - - x 3 3 b h

Register/Memory by CL D [001w] [mod 010 r/m] u - - - - - - - x 8 8

Register/Memory by Immediate C [000w] [mod 010 r/m] # u - - - - - - - x 8 8

RCR Rotate Through Carry Right

Register/Memory by 1 D [000w] [mod 011 r/m] x - - - - - - - x 4 4 b h

Register/Memory by CL D [001w] [mod 011 r/m] u - - - - - - - x 8 8

Register/Memory by Immediate C [000w] [mod 011 r/m] # u - - - - - - - x 8 8

RDMSR Read Tmodel Specific Register 0F 32 - - - - - - - - -

RDTSC Read Time Stamp Counter 0F 31 - - - - - - - - -

REP INS Input String F3 6[110w] - - - - - - - - - 17+4n 17+4n\
32+4n

b h,m

REP LODS Load String F3 A[110w] - - - - - - - - - 9+2n 9+2n b h

REP MOVS Move String F3 A[010w] - - - - - - - - - 12+2n 12+2n b h

Table 9-27. Processor Core Instruction Set Summary (Continued)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes
evision 3.1 219 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

REP OUTS Output String F3 6[111w] - - - - - - - - - 24+4n 24+4n\
39+4n

b h,m

REP STOS Store String F3 A[101w] - - - - - - - - - 9+2n 9+2n b h

REPE CMPS Compare String

Find non-match F3 A[011w] x - - - x x x x x 11+4n 11+4n b h

REPE SCAS Scan String

Find non-AL/AX/EAX F3 A[111w] x - - - x x x x x 9+3n 9+3n b h

REPNE CMPS Compare String

Find match F2 A[011w] x - - - x x x x x 11+4n 11+4n b h

REPNE SCAS Scan String

Find AL/AX/EAX F2 A[111w] x - - - x x x x x 9+3n 9+3n b h

RET Return from Subroutine

Within Segment C3 - - - - - - - - - 3 3 b g,h,j,k,r

Within Segment Adding Immediate to SP C2 ## 3 3

Intersegment CB 10 13

Intersegment Adding Immediate to SP CA ## 10 13

Protected Mode: Different Privilege Level
-Intersegment
-Intersegment Adding Immediate to SP

35
35

ROL Rotate Left

Register/Memory by 1 D[000w] [mod 000 r/m] x - - - - - - - x 2 2 b h

Register/Memory by CL D[001w] [mod 000 r/m] u - - - - - - - x 2 2

Register/Memory by Immediate C[000w] [mod 000 r/m] # u - - - - - - - x 2 2

ROR Rotate Right

Register/Memory by 1 D[000w] [mod 001 r/m] x - - - - - - - x 2 2 b h

Register/Memory by CL D[001w] [mod 001 r/m] u - - - - - - - x 2 2

Register/Memory by Immediate C[000w] [mod 001 r/m] # u - - - - - - - x 2 2

RSDC Restore Segment Register and Descriptor 0F 79 [mod sreg3 r/m] - - - - - - - - - 11 11 s s

RSLDT Restore LDTR and Descriptor 0F 7B [mod 000 r/m] - - - - - - - - - 11 11 s s

RSTS Restore TSR and Descriptor 0F 7D [mod 000 r/m] - - - - - - - - - 11 11 s s

RSM Resume from SMM Mode 0F AA x x x x x x x x x 57 57 s s

SAHF Store AH in FLAGS 9E - - - - x x x x x 1 1

SAL Shift Left Arithmetic

Register/Memory by 1 D[000w] [mod 100 r/m] x - - - x x u x x 1 1 b h

Register/Memory by CL D[001w] [mod 100 r/m] u - - - x x u x x 2 2

Register/Memory by Immediate C[000w] [mod 100 r/m] # u - - - x x u x x 1 1

SAR Shift Right Arithmetic

Register/Memory by 1 D[000w] [mod 111 r/m] x - - - x x u x x 2 2 b h

Register/Memory by CL D[001w] [mod 111 r/m] u - - - x x u x x 2 2

Register/Memory by Immediate C[000w] [mod 111 r/m] # u - - - x x u x x 2 2

SBB Integer Subtract with Borrow

Register to Register 1[10dw] [11 reg r/m] x - - - x x x x x 1 1 b h

Register to Memory 1[100w] [mod reg r/m] 1 1

Memory to Register 1[101w] [mod reg r/m] 1 1

Immediate to Register/Memory 8[00sw] [mod 011 r/m] ### 1 1

Immediate to Accumulator (short form) 1[110w] ### 1 1

SCAS Scan String A [111w] x - - - x x x x x 2 2 b h

SETB/SETNAE/SETC Set Byte on Below/Not Above or Equal/Carry

To Register/Memory 0F 92 [mod 000 r/m] - - - - - - - - - 1 1 h

SETBE/SETNA Set Byte on Below or Equal/Not Above

To Register/Memory 0F 96 [mod 000 r/m] - - - - - - - - - 1 1 h

SETE/SETZ Set Byte on Equal/Zero

To Register/Memory 0F 94 [mod 000 r/m] - - - - - - - - - 1 1 h

Table 9-27. Processor Core Instruction Set Summary (Continued)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes
ww.national.com 220 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

SETL/SETNGE Set Byte on Less/Not Greater or Equal

To Register/Memory 0F 9C [mod 000 r/m] - - - - - - - - - 1 1 h

SETLE/SETNG Set Byte on Less or Equal/Not Greater

To Register/Memory 0F 9E [mod 000 r/m] - - - - - - - - - 1 1 h

SETNB/SETAE/SETNC Set Byte on Not Below/Above or Equal/Not Carry

To Register/Memory 0F 93 [mod 000 r/m] - - - - - - - - - 1 1 h

SETNBE/SETA Set Byte on Not Below or Equal/Above

To Register/Memory 0F 97 [mod 000 r/m] - - - - - - - - - 1 1 h

SETNE/SETNZ Set Byte on Not Equal/Not Zero

To Register/Memory 0F 95 [mod 000 r/m] - - - - - - - - - 1 1 h

SETNL/SETGE Set Byte on Not Less/Greater or Equal

To Register/Memory 0F 9D [mod 000 r/m] - - - - - - - - - 1 1 h

SETNLE/SETG Set Byte on Not Less or Equal/Greater

To Register/Memory 0F 9F [mod 000 r/m] - - - - - - - - - 1 1 h

SETNO Set Byte on Not Overflow

To Register/Memory 0F 91 [mod 000 r/m] - - - - - - - - - 1 1 h

SETNP/SETPO Set Byte on Not Parity/Parity Odd

To Register/Memory 0F 9B [mod 000 r/m] - - - - - - - - - 1 1 h

SETNS Set Byte on Not Sign

To Register/Memory 0F 99 [mod 000 r/m] - - - - - - - - - 1 1 h

SETO Set Byte on Overflow

To Register/Memory 0F 90 [mod 000 r/m] - - - - - - - - - 1 1 h

SETP/SETPE Set Byte on Parity/Parity Even

To Register/Memory 0F 9A [mod 000 r/m] - - - - - - - - - 1 1 h

SETS Set Byte on Sign

To Register/Memory 0F 98 [mod 000 r/m] - - - - - - - - - 1 1 h

SGDT Store GDT Register

To Register/Memory 0F 01 [mod 000 r/m] - - - - - - - - - 6 6 b,c h

SIDT Store IDT Register

To Register/Memory 0F 01 [mod 001 r/m] - - - - - - - - - 6 6 b,c h

SLDT Store LDT Register

To Register/Memory 0F 00 [mod 000 r/m] - - - - - - - - - 1 a h

STR Store Task Register

To Register/Memory 0F 00 [mod 001 r/m] - - - - - - - - - 3 a h

SMSW Store Machine Status Word 0F 01 [mod 100 r/m] - - - - - - - - - 4 4 b,c h

STOS Store String A [101w] - - - - - - - - - 2 2 b h

SHL Shift Left Logical

Register/Memory by 1 D [000w] [mod 100 r/m] x - - - x x u x x 1 1 b h

Register/Memory by CL D [001w] [mod 100 r/m] u - - - x x u x x 2 2

Register/Memory by Immediate C [000w] [mod 100 r/m] # u - - - x x u x x 1 1

SHLD Shift Left Double

Register/Memory by Immediate 0F A4 [mod reg r/m] # u - - - x x u x x 3 3 b h

Register/Memory by CL 0F A5 [mod reg r/m] 6 6

SHR Shift Right Logical

Register/Memory by 1 D [000w] [mod 101 r/m] x - - - x x u x x 2 2 b h

Register/Memory by CL D [001w] [mod 101 r/m] u - - - x x u x x 2 2

Register/Memory by Immediate C [000w] [mod 101 r/m] # u - - - x x u x x 2 2

SHRD Shift Right Double

Register/Memory by Immediate 0F AC [mod reg r/m] # u - - - x x u x x 3 3 b h

Register/Memory by CL 0F AD [mod reg r/m] 6 6

SMINT Software SMM Entry 0F 38 - - - - - - - - - 84 84 s s

Table 9-27. Processor Core Instruction Set Summary (Continued)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes
evision 3.1 221 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

STC Set Carry Flag F9 - - - - - - - - 1 1 1

STD Set Direction Flag FD - 1 - - - - - - - 4 4

STI Set Interrupt Flag FB - - 1 - - - - - - 6 6 m

SUB Integer Subtract

Register to Register 2 [10dw] [11 reg r/m] x - - - x x x x x 1 1 b h

Register to Memory 2 [100w] [mod reg r/m] 1 1

Memory to Register 2 [101w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 101 r/m] ### 1 1

Immediate to Accumulator (short form) 2 [110w] ### 1 1

SVDC Save Segment Register and Descriptor 0F 78 [mod sreg3 r/m] - - - - - - - - - 20 20 s s

SVLDT Save LDTR and Descriptor 0F 7A [mod 000 r/m] - - - - - - - - - 20 20 s s

SVTS Save TSR and Descriptor 0F 7C [mod 000 r/m] - - - - - - - - - 21 21 s s

TEST Test Bits

Register/Memory and Register 8 [010w] [mod reg r/m] 0 - - - x x u x 0 1 1 b h

Immediate Data and Register/Memory F [011w] [mod 000 r/m] ### 1 1

Immediate Data and Accumulator A [100w] ### 1 1

VERR Verify Read Access

To Register/Memory 0F 00 [mod 100 r/m] - - - - - x - - - 8 a g,h,j,p

VERW Verify Write Access

To Register/Memory 0F 00 [mod 101 r/m] - - - - - x - - - 8 a g,h,j,p

WAIT Wait Until FPU Not Busy 9B - - - - - - - - - 1 1

WBINVD Write-Back and Invalidate Cache 0F 09 - - - - - - - - - 23 23 t t

WRMSR Write to Model Specific Register 0F 30 - - - - - - - - -

XADD Exchange and Add

Register1, Register2 0F C[000w] [11 reg2 reg1] x - - - x x x x x 2 2

Memory, Register 0F C[000w] [mod reg r/m] 2 2

XCHG Exchange

Register/Memory with Register 8[011w] [mod reg r/m] - - - - - - - - - 2 2 b,f f,h

Register with Accumulator 9[0 reg] 2 2

XLAT Translate Byte D7 - - - - - - - - - 5 5 h

XOR Boolean Exclusive OR

Register to Register 3 [00dw] [11 reg r/m] 0 - - - x x u x 0 1 1 b h

Register to Memory 3 [000w] [mod reg r/m] 1 1

Memory to Register 3 [001w] [mod reg r/m] 1 1

Immediate to Register/Memory 8 [00sw] [mod 110 r/m] ### 1 1

Immediate to Accumulator (short form) 3 [010w] ### 1 1

Table 9-27. Processor Core Instruction Set Summary (Continued)

Instruction Opcode

Flags
Real
Mode

Prot’d
Mode

Real
Mode

Prot’d
Mode

O D I T S Z A P C
F F F F F F F F F

Clock Count
(Reg/Cache Hit) Notes
ww.national.com 222 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Instruction Notes for Instruction Set Summary

Notes a through c apply to Real Address Mode only:
a. This is a Protected Mode instruction. Attempted execution in

Real Mode will result in exception 6 (invalid opcode).

b. Exception 13 fault (general protection) will occur in Real
Mode if an operand reference is made that partially or fully
extends beyond the maximum CS, DS, ES, FS, or GS seg-
ment limit (FFFFH). Exception 12 fault (stack segment limit vio-
lation or not present) will occur in Real Mode if an operand
reference is made that partially or fully extends beyond the
maximum SS limit.

c. This instruction may be executed in Real Mode. In Real
Mode, its purpose is primarily to initialize the CPU for Pro-
tected Mode.

d. -

Notes e through g apply to Real Address Mode and Protected
Virtual Address Mode:
e. An exception may occur, depending on the value of the oper-

and.

f. LOCK# is automatically asserted, regardless of the presence
or absence of the LOCK prefix.

g. LOCK# is asserted during descriptor table accesses.

Notes h through r apply to Protected Virtual Address Mode
only:
h. Exception 13 fault will occur if the memory operand in CS,

DS, ES, FS, or GS cannot be used due to either a segment
limit violation or an access rights violation. If a stack limit is
violated, an exception 12 occurs.

i. For segment load operations, the CPL, RPL, and DPL must
agree with the privilege rules to avoid an exception 13 fault.
The segment’s descriptor must indicate “present” or exception
11 (CS, DS, ES, FS, GS not present). If the SS register is
loaded and a stack segment not present is detected, an
exception 12 occurs.

j. All segment descriptor accesses in the GDT or LDT made by
this instruction will automatically assert LOCK# to maintain
descriptor integrity in multiprocessor systems.

k. JMP, CALL, INT, RET, and IRET instructions referring to
another code segment will cause an exception 13, if an appli-
cable privilege rule is violated.

l. An exception 13 fault occurs if CPL is greater than 0 (0 is the
most privileged level).

m. An exception 13 fault occurs if CPL is greater than IOPL.

n. The IF bit of the flag register is not updated if CPL is greater
than IOPL. The IOPL and VM fields of the flag register are
updated only if CPL = 0.

o. The PE bit of the MSW (CR0) cannot be reset by this instruc-
tion. Use MOV into CRO if desiring to reset the PE bit.

p. Any violation of privilege rules as apply to the selector oper-
and does not cause a Protection exception, rather, the zero
flag is cleared.

q. If the coprocessor’s memory operand violates a segment limit
or segment access rights, an exception 13 fault will occur
before the ESC instruction is executed. An exception 12 fault
will occur if the stack limit is violated by the operand’s starting
address.

r. The destination of a JMP, CALL, INT, RET, or IRET must be in
the defined limit of a code segment or an exception 13 fault
will occur.

Note s applies to National Semiconductor-specific SMM in-
structions:
s. All memory accesses to SMM space are non-cacheable. An

invalid opcode exception 6 occurs unless SMI is enabled and
SMAR size > 0, and CPL = 0 and [SMAC is set or if in an SMI
handler].

Note t applies to cache invalidation instruction with the
cache operating in write-back mode:
t. The total clock count is the clock count shown plus the num-

ber of clocks required to write all “modified” cache lines to
external memory.
evision 3.1 223 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

9.4 FPU INSTRUCTION SET
The processor core is functionally divided into the FPU,
and the integer unit. The FPU processes floating point
instructions only and does so in parallel with the integer
unit.

For example, when the integer unit detects a floating point
instruction without memory operands, after two clock
cycles the instruction passes to the FPU for execution.
The integer unit continues to execute instructions while
the FPU executes the floating point instruction. If another
FPU instruction is encountered, the second FPU instruc-
tion is placed in the FPU queue. Up to four FPU instruc-
tions can be queued. In the event of an FPU exception,
while other FPU instructions are queued, the state of the
CPU is saved to ensure recovery.

The instruction set for the FPU is summarized in Table 9-
29 on page 225. The table uses abbreviations that are
described in Table 9-28.

Table 9-28. FPU Instruction Set Table Legend

Abbr. Description

n Stack register number

TOS Top of stack register pointed to by SSS in the
status register.

ST(1) FPU register next to TOS

ST(n) A specific FPU register, relative to TOS

M.WI 16-bit integer operand from memory

M.SI 32-bit integer operand from memory

M.LI 64-bit integer operand from memory

M.SR 32-bit real operand from memory

M.DR 64-bit real operand from memory

M.XR 80-bit real operand from memory

M.BCD 18-digit BCD integer operand from memory

CC FPU condition code

Env Regs Status, Mode Control and Tag Registers,
Instruction Pointer and Operand Pointer
ww.national.com 224 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 9-29. FPU Instruction Set Summary

FPU Instruction Opcode Operation
Clock
Count Notes

F2XM1 Function Evaluation 2x-1 D9 F0 TOS <--- 2TOS-1 92 - 108 2

FABS Floating Absolute Value D9 E1 TOS <--- | TOS | 2 2

FADD Floating Point Add

Top of Stack DC [1100 0 n] ST(n) <--- ST(n) + TOS 4 - 9

80-bit Register D8 [1100 0 n] TOS <--- TOS + ST(n) 4 - 9

64-bit Real DC [mod 000 r/m] TOS <--- TOS + M.DR 4 - 9

32-bit Real D8 [mod 000 r/m] TOS <--- TOS + M.SR 4 - 9

FADDP Floating Point Add, Pop DE [1100 0 n] ST(n) <--- ST(n) + TOS; then pop TOS

FIADD Floating Point Integer Add

32-bit integer DA [mod 000 r/m] TOS <--- TOS + M.SI 8 - 14

16-bit integer DE [mod 000 r/m] TOS <--- TOS + M.WI 8 - 14

FCHS Floating Change Sign D9 E0 TOS <--- - TOS 2

FCLEX Clear Exceptions (9B) DB E2 Wait then Clear Exceptions 5

FNCLEX Clear Exceptions DB E2 Clear Exceptions 3

FCMOVB Floating Point Conditional Move if
Below

DA [1100 0 n] If (CF=1) ST(0) <--- ST(n) 4

FCMOVE Floating Point Conditional Move if
Equal

DA [1100 1 n] If (ZF=1) ST(0) <--- ST(n) 4

FCMOVBE Floating Point Conditional Move if
Below or Equal

DA [1101 0 n] If (CF=1 or ZF=1) ST(0) <--- ST(n) 4

FCMOVU Floating Point Conditional Move if
Unordered

DA [1101 1 n] If (PF=1) ST(0) <--- ST(n) 4

FCMOVNB Floating Point Conditional Move if
Not Below

DB [1100 0 n] If (CF=0) ST(0) <--- ST(n) 4

FCMOVNE Floating Point Conditional Move if
Not Equal

DB [1100 1 n] If (ZF=0) ST(0) <--- ST(n) 4

FCMOVNBE Floating Point Conditional Move if
Not Below or Equal

DB [1101 0 n] If (CF=0 and ZF=0) ST(0) <--- ST(n) 4

FCMOVNU Floating Point Conditional Move if
Not Unordered

DB [1101 1 n] If (DF=0) ST(0) <--- ST(n) 4

FCOM Floating Point Compare

80-bit Register D8 [1101 0 n] CC set by TOS - ST(n) 4

64-bit Real DC [mod 010 r/m] CC set by TOS - M.DR 4

32-bit Real D8 [mod 010 r/m] CC set by TOS - M.SR 4

FCOMP Floating Point Compare, Pop

80-bit Register D8 [1101 1 n] CC set by TOS - ST(n); then pop TOS 4

64-bit Real DC [mod 011 r/m] CC set by TOS - M.DR; then pop TOS 4

32-bit Real D8 [mod 011 r/m] CC set by TOS - M.SR; then pop TOS 4

FCOMPP Floating Point Compare, Pop
Two Stack Elements

DE D9 CC set by TOS - ST(1); then pop TOS and
ST(1)

4

FCOMI Floating Point Compare Real and Set EFLAGS

80-bit Register DB [1111 0 n] EFLAG set by TOS - ST(n) 4

FCOMIP Floating Point Compare Real and Set EFLAGS, Pop

80-bit Register DF [1111 0 n] EFLAG set by TOS - ST(n); then pop TOS 4

FUCOMI Floating Point Unordered Compare Real and Set EFLAGS

80-bit Integer DB [1110 1 n] EFLAG set by TOS - ST(n) 9 - 10

FUCOMIP Floating Point Unordered Compare Real and Set EFLAGS, Pop

80-bit Integer DF [1110 1 n] EFLAG set by TOS - ST(n); then pop TOS 9 - 10

FICOM Floating Point Integer Compare

32-bit integer DA [mod 010 r/m] CC set by TOS - M.WI 9 - 10

16-bit integer DE [mod 010 r/m] CC set by TOS - M.SI 9 - 10

FICOMP Floating Point Integer Compare, Pop

32-bit integer DA [mod 011 r/m] CC set by TOS - M.WI; then pop TOS 9 - 10

16-bit integer DE [mod 011 r/m CC set by TOS - M.SI; then pop TOS 9 - 10
evision 3.1 225 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

FCOS Function Evaluation: Cos(x) D9 FF TOS <--- COS(TOS) 92 - 141 1

FDECSTP Decrement Stack pointer D9 F6 Decrement top of stack pointer 4

FDIV Floating Point Divide

Top of Stack DC [1111 1 n] ST(n) <--- ST(n) / TOS 24 - 34

80-bit Register D8 [1111 0 n] TOS <--- TOS / ST(n) 24 - 34

64-bit Real DC [mod 110 r/m] TOS <--- TOS / M.DR 24 - 34

32-bit Real D8 [mod 110 r/m] TOS <--- TOS / M.SR 24 - 34

FDIVP Floating Point Divide, Pop DE [1111 1 n] ST(n) <--- ST(n) / TOS; then pop TOS 24 - 34

FDIVR Floating Point Divide Reversed

Top of Stack DC [1111 0 n] TOS <--- ST(n) / TOS 24 - 34

80-bit Register D8 [1111 1 n] ST(n) <--- TOS / ST(n) 24 - 34

64-bit Real DC [mod 111 r/m] TOS <--- M.DR / TOS 24 - 34

32-bit Real D8 [mod 111 r/m] TOS <--- M.SR / TOS 24 - 34

FDIVRP Floating Point Divide Reversed, Pop DE [1111 0 n] ST(n) <--- TOS / ST(n); then pop TOS 24 - 34

FIDIV Floating Point Integer Divide

32-bit Integer DA [mod 110 r/m] TOS <--- TOS / M.SI 34 - 38

16-bit Integer DE [mod 110 r/m] TOS <--- TOS / M.WI 34 - 38

FIDIVR Floating Point Integer Divide Reversed

32-bit Integer DA [mod 111 r/m] TOS <--- M.SI / TOS 34 - 38

16-bit Integer DE [mod 111 r/m] TOS <--- M.WI / TOS 34 - 38

FFREE Free Floating Point Register DD [1100 0 n] TAG(n) <--- Empty 4

FINCSTP Increment Stack Pointer D9 F7 Increment top-of-stack pointer 2

FINIT Initialize FPU (9B)DB E3 Wait, then initialize 8

FNINIT Initialize FPU DB E3 Initialize 6

FLD Load Data to FPU Register

Top of Stack D9 [1100 0 n] Push ST(n) onto stack 2

64-bit Real DD [mod 000 r/m] Push M.DR onto stack 2

32-bit Real D9 [mod 000 r/m] Push M.SR onto stack 2

FBLD Load Packed BCD Data to FPU Register DF [mod 100 r/m] Push M.BCD onto stack 41 - 45

FILD Load Integer Data to FPU Register

64-bit Integer DF [mod 101 r/m] Push M.LI onto stack 4 - 8

32-bit Integer DB [mod 000 r/m] Push M.SI onto stack 4 - 6

16-bit Integer DF [mod 000 r/m] Push M.WI onto stack 3 - 6

FLD1 Load Floating Const.= 1.0 D9 E8 Push 1.0 onto stack 4

FLDCW Load FPU Mode Control Register D9 [mod 101 r/m] Ctl Word <--- Memory 4

FLDENV Load FPU Environment D9 [mod 100 r/m] Env Regs <--- Memory 30

FLDL2E Load Floating Const.= Log2(e) D9 EA Push Log2(e) onto stack 4

FLDL2T Load Floating Const.= Log2(10) D9 E9 Push Log2(10) onto stack 4

FLDLG2 Load Floating Const.= Log10(2) D9 EC Push Log10(2) onto stack 4

FLDLN2 Load Floating Const.= Ln(2) D9 ED Push Loge(2) onto stack 4

FLDPI Load Floating Const.= π D9 EB Push πonto stack 4

FLDZ Load Floating Const.= 0.0 D9 EE Push 0.0 onto stack 4

FMUL Floating Point Multiply

Top of Stack DC [1100 1 n] ST(n) <--- ST(n) × TOS 4 - 9

80-bit Register D8 [1100 1 n] TOS <--- TOS × ST(n) 4 - 9

64-bit Real DC [mod 001 r/m] TOS <--- TOS × M.DR 4 - 8

32-bit Real D8 [mod 001 r/m] TOS <--- TOS × M.SR 4 - 6

FMULP Floating Point Multiply & Pop DE [1100 1 n] ST(n) <--- ST(n) × TOS; then pop TOS 4 - 9

FIMUL Floating Point Integer Multiply

32-bit Integer DA [mod 001 r/m] TOS <--- TOS × M.SI 9 - 11

16-bit Integer DE [mod 001 r/m] TOS <--- TOS × M.WI 8 - 10

Table 9-29. FPU Instruction Set Summary (Continued)

FPU Instruction Opcode Operation
Clock
Count Notes
ww.national.com 226 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

FNOP No Operation D9 D0 No Operation 2

FPATAN Function Eval: Tan-1(y/x) D9 F3 ST(1) <--- ATAN[ST(1) / TOS]; then pop TOS 97 - 161 3

FPREM Floating Point Remainder D9 F8 TOS <--- Rem[TOS / ST(1)] 82 - 91

FPREM1 Floating Point Remainder IEEE D9 F5 TOS <--- Rem[TOS / ST(1)] 82 - 91

FPTAN Function Eval: Tan(x) D9 F2 TOS <--- TAN(TOS); then push 1.0 onto stack 117 - 129 1

FRNDINT Round to Integer D9 FC TOS <--- Round(TOS) 10 - 20

FRSTOR Load FPU Environment and Register DD [mod 100 r/m] Restore state 56 - 72

FSAVE Save FPU Environment and Register (9B)DD [mod 110 r/m] Wait, then save state 57 - 67

FNSAVE Save FPU Environment and Register DD [mod 110 r/m] Save state 55 - 65

FSCALE Floating Multiply by 2n D9 FD TOS <--- TOS × 2(ST(1)) 7 - 14

FSIN Function Evaluation: Sin(x) D9 FE TOS <--- SIN(TOS) 76 - 140 1

FSINCOS Function Eval.: Sin(x)& Cos(x) D9 FB temp <--- TOS;
TOS <--- SIN(temp); then
push COS(temp) onto stack

145 - 161 1

FSQRT Floating Point Square Root D9 FA TOS <--- Square Root of TOS 59 - 60

FST Store FPU Register

Top of Stack DD [1101 0 n] ST(n) <--- TOS 2

64-bit Real DD [mod 010 r/m] M.DR <--- TOS 2

32-bit Real D9 [mod 010 r/m] M.SR <--- TOS 2

FSTP Store FPU Register, Pop

Top of Stack DB [1101 1 n] ST(n) <--- TOS; then pop TOS 2

80-bit Real DB [mod 111 r/m] M.XR <--- TOS; then pop TOS 2

64-bit Real DD [mod 011 r/m] M.DR <--- TOS; then pop TOS 2

32-bit Real D9 [mod 011 r/m] M.SR <--- TOS; then pop TOS 2

FBSTP Store BCD Data, Pop DF [mod 110 r/m] M.BCD <--- TOS; then pop TOS 57 - 63

FIST Store Integer FPU Register

32-bit Integer DB [mod 010 r/m] M.SI <--- TOS 8 - 13

16-bit Integer DF [mod 010 r/m] M.WI <--- TOS 7 - 10

FISTP Store Integer FPU Register, Pop

64-bit Integer DF [mod 111 r/m] M.LI <--- TOS; then pop TOS 10 - 13

32-bit Integer DB [mod 011 r/m] M.SI <--- TOS; then pop TOS 8 - 13

16-bit Integer DF [mod 011 r/m] M.WI <--- TOS; then pop TOS 7 - 10

FSTCW Store FPU Mode Control Register (9B)D9 [mod 111 r/m] Wait Memory <--- Control Mode Register 5

FNSTCW Store FPU Mode Control Register D9 [mod 111 r/m] Memory <--- Control Mode Register 3

FSTENV Store FPU Environment (9B)D9 [mod 110 r/m] Wait Memory <--- Env. Registers 14 - 24

FNSTENV Store FPU Environment D9 [mod 110 r/m] Memory <--- Env. Registers 12 - 22

FSTSW Store FPU Status Register (9B)DD [mod 111 r/m] Wait Memory <--- Status Register 6

FNSTSW Store FPU Status Register DD [mod 111 r/m] Memory <--- Status Register 4

FSTSW AX Store FPU Status Register to AX (9B)DF E0 Wait AX <--- Status Register 4

FNSTSW AX Store FPU Status Register to AX DF E0 AX <--- Status Register 2

FSUB Floating Point Subtract

Top of Stack DC [1110 1 n] ST(n) <--- ST(n) - TOS 4 - 9

80-bit Register D8 [1110 0 n] TOS <--- TOS - ST(n 4 - 9

64-bit Real DC [mod 100 r/m] TOS <--- TOS - M.DR 4 - 9

32-bit Real D8 [mod 100 r/m] TOS <--- TOS - M.SR 4 - 9

FSUBP Floating Point Subtract, Pop DE [1110 1 n] ST(n) <--- ST(n) - TOS; then pop TOS 4 - 9

FSUBR Floating Point Subtract Reverse

Top of Stack DC [1110 0 n] TOS <--- ST(n) - TOS 4 - 9

80-bit Register D8 [1110 1 n] ST(n) <--- TOS - ST(n) 4 - 9

64-bit Real DC [mod 101 r/m] TOS <--- M.DR - TOS 4 - 9

32-bit Real D8 [mod 101 r/m] TOS <--- M.SR - TOS 4 - 9

FSUBRP Floating Point Subtract Reverse, Pop DE [1110 0 n] ST(n) <--- TOS - ST(n); then pop TOS 4 - 9

Table 9-29. FPU Instruction Set Summary (Continued)

FPU Instruction Opcode Operation
Clock
Count Notes
evision 3.1 227 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

FPU Instruction Summary Notes

All references to TOS and ST(n) refer to stack layout prior to exe-
cution.

Values popped off the stack are discarded.

A pop from the stack increments the top of stack pointer.

A push to the stack decrements the top of stack pointer.

Notes:
1. For FCOS, FSIN, FSINCOS and FPTAN, time shown is for

absolute value of TOS < 3p/4. Add 90 clock counts for argu-
ment reduction if outside this range.

For FCOS, clock count is 141 if TOS < π/4 and clock count is
92 if π/4 < TOS > π/2.

For FSIN, clock count is 81 to 82 if absolute value of TOS <
π/4.

2. For F2XM1, clock count is 92 if absolute value of TOS < 0.5.

3. For FPATAN, clock count is 97 if ST(1)/TOS < π/32.

4. For FYL2XP1, clock count is 170 if TOS is out of range and
regular FYL2X is called.

5. The following opcodes are reserved:
D9D7, D9E2, D9E7, DDFC, DED8, DEDA, DEDC, DEDD,
DEDE, DFFC.

If a reserved opcode is executed, and unpredictable results
may occur (exceptions are not generated).

FISUB Floating Point Integer Subtract

32-bit Integer DA [mod 100 r/m] TOS <--- TOS - M.SI 14 - 29

16-bit Integer DE [mod 100 r/m] TOS <--- TOS - M.WI 14 - 27

FISUBR Floating Point Integer Subtract Reverse

32-bit Integer Reversed DA [mod 101 r/m] TOS <--- M.SI - TOS 14 - 29

16-bit Integer Reversed DE [mod 101 r/m] TOS <--- M.WI - TOS 14 - 27

FTST Test Top of Stack D9 E4 CC set by TOS - 0.0 4

FUCOM Unordered Compare DD [1110 0 n] CC set by TOS - ST(n) 4

FUCOMP Unordered Compare, Pop DD [1110 1 n] CC set by TOS - ST(n); then pop TOS 4

FUCOMPP Unordered Compare, Pop two
elements

DA E9 CC set by TOS - ST(I); then pop TOS and
ST(1)

4

FWAIT Wait 9B Wait for FPU not busy 2

FXAM Report Class of Operand D9 E5 CC <--- Class of TOS 4

FXCH Exchange Register with TOS D9 [1100 1 n] TOS <--> ST(n) Exchange 3

FXTRACT Extract Exponent D9 F4 temp <--- TOS;
TOS <--- exponent (temp); then
push significant (temp) onto stack

11 - 16

FLY2X Function Eval. y × Log2(x) D9 F1 ST(1) <--- ST(1) × Log2(TOS); then pop TOS 145 - 154

FLY2XP1 Function Eval. y × Log2(x+1) D9 F9 ST(1) <--- ST(1) × Log2(1+TOS); then pop TOS 131 - 133 4

Table 9-29. FPU Instruction Set Summary (Continued)

FPU Instruction Opcode Operation
Clock
Count Notes
ww.national.com 228 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

9.5 MMX INSTRUCTION SET
The CPU is functionally divided into the FPU unit, and the
integer unit. The FPU has been extended to process both
MMX instructions and floating point instructions in parallel
with the integer unit. Revision 3.1

For example, when the integer unit detects a MMX
instruction, the instruction passes to the FPU unit for exe-
cution. The integer unit continues to execute instructions
while the FPU unit executes the MMX instruction. If
another MMX instruction is encountered, the second
MMX instruction is placed in the MMX queue. Up to four
MMX instructions can be queued.

The MMX instruction set is summarized in Table 9-31 on
page 230. The abbreviations used in the table are listed in
Table 9-30.

Table 9-30. MMX Instruction Set Table Legend

Abbreviation Description

<---- Result written

[11 mm reg] Binary or binary groups of digits

mm One of eight 64-bit MMX registers

reg A general purpose register

<--sat-- If required, the resultant data is saturated
to remain in the associated data range

<--move-- Source data is moved to result location

[byte] Eight 8-bit bytes are processed in parallel

[word] Four 16-bit word are processed in parallel

[dword] Two 32-bit double words are processed in
parallel

[qword] One 64-bit quad word is processed

[sign xxx] The byte, word, double word or quad word
most significant bit is a sign bit

mm1, mm2 MMX Register 1, MMX Register 2

mod r/m Mod and r/m byte encoding (page 6-6 of
this manual)

pack Source data is truncated or saturated to
next smaller data size, then concatenated.

packdw Pack two double words from source and
two double words from destination into four
words in destination register.

packwb Pack four words from source and four
words from destination into eight bytes in
destination register.
evision 3.1 229 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Table 9-31. MMX Instruction Set Summary

MMX Instructions Opcode Operation and Clock Count (Latency/Throughput)

EMMS Empty MMX State 0F77 Tag Word <--- FFFFh (empties the floating point tag word) 1/1

MOVD Move Doubleword

Register to MMX Register 0F6E [11 mm reg] MMX reg [qword] <--move, zero extend-- reg [dword] 1/1

MMX Register to Register 0F7E [11 mm reg] reg [qword] <--move-- MMX reg [low dword] 5/1

Memory to MMX Register 0F6E [mod mm r/m] MMX regr[qword] <--move, zero extend-- memory[dword] 1/1

MMX Register to Memory 0F7E [mod mm r/m] Memory [dword] <--move-- MMX reg [low dword] 1/1

MOVQ Move Quardword

MMX Register 2 to MMX Register 1 0F6F [11 mm1 mm2] MMX reg 1 [qword] <--move-- MMX reg 2 [qword] 1/1

MMX Register 1 to MMX Register 2 0F7F [11 mm1 mm2] MMX reg 2 [qword] <--move-- MMX reg 1 [qword] 1/1

Memory to MMX Register 0F6F [mod mm r/m] MMX reg [qword] <--move-- memory[qword] 1/1

MMX Register to Memory 0F7F [mod mm r/m] Memory [qword] <--move-- MMX reg [qword] 1/1

PACKSSDW Pack Dword with Signed Saturation

MMX Register 2 to MMX Register 1 0F6B [11 mm1 mm2] MMX reg 1 [qword] <--packdw, signed sat-- MMX reg 2, MMX reg 1 1/1

Memory to MMX Register 0F6B [mod mm r/m] MMX reg [qword] <--packdw, signed sat-- memory, MMX reg 1/1

PACKSSWB Pack Word with Signed Saturation

MMX Register 2 to MMX Register 1 0F63 [11 mm1 mm2] MMX reg 1 [qword] <--packwb, signed sat-- MMX reg 2, MMX reg 1 1/1

Memory to MMX Register 0F63 [mod mm r/m] MMX reg [qword] <--packwb, signed sat-- memory, MMX reg 1/1

PACKUSWB Pack Word with Unsigned Saturation

MMX Register 2 to MMX Register 1 0F67 [11 mm1 mm2] MMX reg 1 [qword] <--packwb, unsigned sat-- MMX reg 2, MMX reg 1 1/1

Memory to MMX Register 0F67 [mod mm r/m] MMX reg [qword] <--packwb, unsigned sat-- memory, MMX reg 1/1

PADDB Packed Add Byte with Wrap-Around

MMX Register 2 to MMX Register 1 0FFC [11 mm1 mm2] MMX reg 1 [byte] <---- MMX reg 1 [byte] + MMX reg 2 [byte] 1/1

Memory to MMX Register 0FFC [mod mm r/m] MMX reg[byte] <---- memory [byte] + MMX reg [byte] 1/1

PADDD Packed Add Dword with Wrap-Around

MMX Register 2 to MMX Register 1 0FFE [11 mm1 mm2] MMX reg 1 [sign dword] <---- MMX reg 1 [sign dword] + MMX reg 2 [sign dword] 1/1

Memory to MMX Register 0FFE [mod mm r/m] MMX reg [sign dword] <---- memory [sign dword] + MMX reg [sign dword] 1/1

PADDSB Packed Add Signed Byte with Saturation

MMX Register 2 to MMX Register 1 0FEC [11 mm1 mm2] MMX reg 1 [sign byte] <--sat-- MMX reg 1 [sign byte] + MMX reg 2 [sign byte] 1/1

Memory to Register 0FEC [mod mm r/m] MMX reg [sign byte] <--sat-- memory [sign byte] + MMX reg [sign byte] 1/1

PADDSW Packed Add Signed Word with Saturation

MMX Register 2 to MMX Register 1 0FED [11 mm1 mm2] MMX reg 1 [sign word] <--sat-- MMX reg 1 [sign word] + MMX reg 2 [sign word] 1/1

Memory to Register 0FED [mod mm r/m] MMX reg [sign word] <--sat-- memory [sign word] + MMX reg [sign word] 1/1

PADDUSB Add Unsigned Byte with Saturation

MMX Register 2 to MMX Register 1 0FDC [11 mm1 mm2] MMX reg 1 [byte] <--sat-- MMX reg 1 [byte] + MMX reg 2 [byte] 1/1

Memory to Register 0FDC [mod mm r/m] MMX reg [byte] <--sat-- memory [byte] + MMX reg [byte] 1/1

PADDUSW Add Unsigned Word with Saturation

MMX Register 2 to MMX Register 1 0FDD [11 mm1 mm2] MMX reg 1 [word] <--sat-- MMX reg 1 [word] + MMX reg 2 [word] 1/1

Memory to Register 0FDD [mod mm r/m] MMX reg [word] <--sat-- memory [word] + MMX reg [word] 1/1

PADDW Packed Add Word with Wrap-Around

MMX Register 2 to MMX Register 1 0FFD [11 mm1 mm2] MMX reg 1 [word] <---- MMX reg 1 [word] + MMX reg 2 [word] 1/1

Memory to MMX Register 0FFD [mod mm r/m] MMX reg [word] <---- memory [word] + MMX reg [word] 1/1

PAND Bitwise Logical AND

MMX Register 2 to MMX Register 1 0FDB [11 mm1 mm2] MMX reg 1 [qword] <--logic AND-- MMX reg 1 [qword], MMX reg 2 [qword] 1/1

Memory to MMX Register 0FDB [mod mm r/m] MMX reg [qword] <--logic AND-- memory [qword], MMX reg [qword]

PANDN Bitwise Logical AND NOT

MMX Register 2 to MMX Register 1 0FDF [11 mm1 mm2] MMX reg 1 [qword] <--logic AND -- NOT MMX reg 1 [qword], MMX reg 2 [qword] 1/1

Memory to MMX Register 0FDF [mod mm r/m] MMX reg [qword] <--logic AND-- NOT MMX reg [qword], Memory [qword] 1/1

PCMPEQB Packed Byte Compare for Equality

MMX Register 2 with MMX Register 1 0F74 [11 mm1 mm2] MMX reg 1 [byte] <--FFh-- if MMX reg 1 [byte] = MMX reg 2 [byte]
MMX reg 1 [byte]<--00h-- if MMX reg 1 [byte] NOT = MMX reg 2 [byte]

1/1

Memory with MMX Register 0F74 [mod mm r/m] MMX reg [byte] <--FFh-- if memory[byte] = MMX reg [byte]
MMX reg [byte] <--00h-- if memory[byte] NOT = MMX reg [byte]

1/1
ww.national.com 230 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

PCMPEQD Packed Dword Compare for Equality

MMX Register 2 with MMX Register 1 0F76 [11 mm1 mm2] MMX reg 1 [dword] <--FFFF FFFFh-- if MMX reg 1 [dword] = MMX reg 2
[dword]
MMX reg 1 [dword]<--0000 0000h--if MMX reg 1[dword] NOT = MMX reg 2
[dword]

1/1

Memory with MMX Register 0F76 [mod mm r/m] MMX reg [dword] <--FFFF FFFFh-- if memory[dword] = MMX reg [dword]
MMX reg [dword] <--0000 0000h-- if memory[dword] NOT = MMX reg [dword]

1/1

PCMPEQW Packed Word Compare for Equality

MMX Register 2 with MMX Register 1 0F75 [11 mm1 mm2] MMX reg 1 [word] <--FFFFh-- if MMX reg 1 [word] = MMX reg 2 [word]
MMX reg 1 [word]<--0000h-- if MMX reg 1 [word] NOT = MMX reg 2 [word]

1/1

Memory with MMX Register 0F75 [mod mm r/m] MMX reg [word] <--FFFFh-- if memory[word] = MMX reg [word]
MMX reg [word] <--0000h-- if memory[word] NOT = MMX reg [word]

1/1

PCMPGTB Pack Compare Greater Than Byte

MMX Register 2 to MMX Register 1 0F64 [11 mm1 mm2] MMX reg 1 [byte] <--FFh-- if MMX reg 1 [byte] > MMX reg 2 [byte]
MMX reg 1 [byte]<--00h-- if MMX reg 1 [byte] NOT > MMX reg 2 [byte]

1/1

Memory with MMX Register 0F64 [mod mm r/m] MMX reg [byte] <--FFh-- if memory[byte] > MMX reg [byte]
MMX reg [byte] <--00h-- if memory[byte] NOT > MMX reg [byte]

1/1

PCMPGTD Pack Compare Greater Than Dword

MMX Register 2 to MMX Register 1 0F66 [11 mm1 mm2] MMX reg 1 [dword] <--FFFF FFFFh-- if MMX reg 1 [dword] > MMX reg 2
[dword]
MMX reg 1 [dword]<--0000 0000h--if MMX reg 1 [dword]NOT > MMX reg 2
[dword]

1/1

Memory with MMX Register 0F66 [mod mm r/m] MMX reg [dword] <--FFFF FFFFh-- if memory[dword] > MMX reg [dword]
MMX reg [dword] <--0000 0000h-- if memory[dword] NOT > MMX reg [dword]

1/1

PCMPGTW Pack Compare Greater Than Word

MMX Register 2 to MMX Register 1 0F65 [11 mm1 mm2] MMX reg 1 [word] <--FFFFh-- if MMX reg 1 [word] > MMX reg 2 [word]
MMX reg 1 [word]<--0000h-- if MMX reg 1 [word] NOT > MMX reg 2 [word]

1/1

Memory with MMX Register 0F65 [mod mm r/m] MMX reg [word] <--FFFFh-- if memory[word] > MMX reg [word]
MMX reg [word] <--0000h-- if memory[word] NOT > MMX reg [word]

1/1

PMADDWD Packed Multiply and Add

MMX Register 2 to MMX Register 1 0FF5 [11 mm1 mm2] MMX reg 1 [dword] <--add-- [dword]<---- MMX reg 1 [sign word]*MMX reg
2[sign word]

2/1

Memory to MMX Register 0FF5 [mod mm r/m] MMX reg 1 [dword] <--add-- [dword] <---- memory [sign word] * Memory [sign
word]

2/1

PMULHW Packed Multiply High

MMX Register 2 to MMX Register 1 0FE5 [11 mm1 mm2] MMX reg 1 [word] <--upper bits-- MMX reg 1 [sign word] * MMX reg 2 [sign
word]

2/1

Memory to MMX Register 0FE5 [mod mm r/m] MMX reg 1 [word] <--upper bits-- memory [sign word] * Memory [sign word] 2/1

PMULLW Packed Multiply Low

MMX Register 2 to MMX Register 1 0FD5 [11 mm1 mm2] MMX reg 1 [word] <--lower bits-- MMX reg 1 [sign word] * MMX reg 2 [sign word] 2/1

Memory to MMX Register 0FD5 [mod mm r/m] MMX reg 1 [word] <--lower bits-- memory [sign word] * Memory [sign word] 2/1

POR Bitwise OR

MMX Register 2 to MMX Register 1 0FEB [11 mm1 mm2] MMX reg 1 [qword] <--logic OR-- MMX reg 1 [qword], MMX reg 2 [qword] 1/1

Memory to MMX Register 0FEB [mod mm r/m] MMX reg [qword] <--logic OR-- MMX reg [qword], memory[qword] 1/1

PSLLD Packed Shift Left Logical Dword

MMX Register 1 by MMX Register 2 0FF2 [11 mm1 mm2] MMX reg 1 [dword] <--shift left, shifting in zeroes by MMX reg 2 [dword]-- 1/1

MMX Register by Memory 0FF2 [mod mm r/m] MMX reg [dword] <--shift left, shifting in zeroes by memory[dword]-- 1/1

MMX Register by Immediate 0F72 [11 110 mm] # MMX reg [dword] <--shift left, shifting in zeroes by [im byte]-- 1/1

PSLLQ Packed Shift Left Logical Qword

MMX Register 1 by MMX Register 2 0FF3 [11 mm1 mm2] MMX reg 1 [qword] <--shift left, shifting in zeroes by MMX reg 2 [qword]-- 1/1

MMX Register by Memory 0FF3 [mod mm r/m] MMX reg [qword] <--shift left, shifting in zeroes by [qword]-- 1/1

MMX Register by Immediate 0F73 [11 110 mm] # MMX reg [qword] <--shift left, shifting in zeroes by [im byte]-- 1/1

PSLLW Packed Shift Left Logical Word

MMX Register 1 by MMX Register 2 0FF1 [11 mm1 mm2] MMX reg 1 [word] <--shift left, shifting in zeroes by MMX reg 2 [word]-- 1/1

MMX Register by Memory 0FF1 [mod mm r/m] MMX reg [word] <--shift left, shifting in zeroes by memory[word]-- 1/1

MMX Register by Immediate 0F71 [11 110mm] # MMX reg [word] <--shift left, shifting in zeroes by [im byte]-- 1/1

Table 9-31. MMX Instruction Set Summary (Continued)

MMX Instructions Opcode Operation and Clock Count (Latency/Throughput)
evision 3.1 231 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

PSRAD Packed Shift Right Arithmetic Dword

MMX Register 1 by MMX Register 2 0FE2 [11 mm1 mm2] MMX reg 1 [dword] <--arith shift right, shifting in zeroes by MMX reg 2 [dword--] 1/1

MMX Register by Memory 0FE2 [mod mm r/m] MMX reg [dword] <--arith shift right, shifting in zeroes by memory[dword]-- 1/1

MMX Register by Immediate 0F72 [11 100 mm] # MMX reg [dword] <--arith shift right, shifting in zeroes by [im byte]-- 1/1

PSRAW Packed Shift Right Arithmetic Word

MMX Register 1 by MMX Register 2 0FE1 [11 mm1 mm2] MMX reg 1 [word] <--arith shift right, shifting in zeroes by MMX reg 2 [word]-- 1/1

MMX Register by Memory 0FE1 [mod mm r/m] MMX reg [word] <--arith shift right, shifting in zeroes by memory[word--] 1/1

MMX Register by Immediate 0F71 [11 100 mm] # MMX reg [word] <--arith shift right, shifting in zeroes by [im byte]-- 1/1

PSRLD Packed Shift Right Logical Dword

MMX Register 1 by MMX Register 2 0FD2 [11 mm1 mm2] MMX reg 1 [dword] <--shift right, shifting in zeroes by MMX reg 2 [dword]-- 1/1

MMX Register by Memory 0FD2 [mod mm r/m] MMX reg [dword] <--shift right, shifting in zeroes by memory[dword]-- 1/1

MMX Register by Immediate 0F72 [11 010 mm] # MMX reg [dword] <--shift right, shifting in zeroes by [im byte]-- 1/1

PSRLQ Packed Shift Right Logical Qword

MMX Register 1 by MMX Register 2 0FD3 [11 mm1 mm2] MMX reg 1 [qword] <--shift right, shifting in zeroes by MMX reg 2 [qword] 1/1

MMX Register by Memory 0FD3 [mod mm r/m] MMX reg [qword] <--shift right, shifting in zeroes by memory[qword] 1/1

MMX Register by Immediate 0F73 [11 010 mm] # MMX reg [qword] <--shift right, shifting in zeroes by [im byte] 1/1

PSRLW Packed Shift Right Logical Word

MMX Register 1 by MMX Register 2 0FD1 [11 mm1 mm2] MMX reg 1 [word] <--shift right, shifting in zeroes by MMX reg 2 [word] 1/1

MMX Register by Memory 0FD1 [mod mm r/m] MMX reg [word] <--shift right, shifting in zeroes by memory[word] 1/1

MMX Register by Immediate 0F71 [11 010 mm] # MMX reg [word] <--shift right, shifting in zeroes by imm[word] 1/1

PSUBB Subtract Byte With Wrap-Around

MMX Register 2 to MMX Register 1 0FF8 [11 mm1 mm2] MMX reg 1 [byte] <---- MMX reg 1 [byte] subtract MMX reg 2 [byte] 1/1

Memory to MMX Register 0FF8 [mod mm r/m] MMX reg [byte] <---- MMX reg [byte] subtract memory [byte] 1/1

PSUBD Subtract Dword With Wrap-Around

MMX Register 2 to MMX Register 1 0FFA [11 mm1 mm2] MMX reg 1 [dword] <---- MMX reg 1 [dword] subtract MMX reg 2 [dword] 1/1

Memory to MMX Register 0FFA [mod mm r/m] MMX reg [dword] <---- MMX reg [dword] subtract memory [dword] 1/1

PSUBSB Subtract Byte Signed With Saturation

MMX Register 2 to MMX Register 1 0FE8 [11 mm1 mm2] MMX reg 1 [sign byte] <--sat-- MMX reg 1 [sign byte] subtract MMX reg 2 [sign
byte]

1/1

Memory to MMX Register 0FE8 [mod mm r/m] MMX reg [sign byte] <--sat-- MMX reg [sign byte] subtract memory [sign byte] 1/1

PSUBSW Subtract Word Signed With Saturation

MMX Register 2 to MMX Register 1 0FE9 [11 mm1 mm2] MMX reg 1 [sign word] <--sat-- MMX reg 1 [sign word] subtract MMX reg 2 [sign
word]

1/1

Memory to MMX Register 0FE9 [mod mm r/m] MMX reg [sign word] <--sat-- MMX reg [sign word] subtract memory [sign word] 1/1

PSUBUSB Subtract Byte Unsigned With Saturation

MMX Register 2 to MMX Register 1 0FD8 [11 mm1 mm2] MMX reg 1 [byte] <--sat-- MMX reg 1 [byte] subtract MMX reg 2 [byte] 1/1

Memory to MMX Register 0FD8 [11 mm reg] MMX reg [byte] <--sat-- MMX reg [byte] subtract memory [byte] 1/1

PSUBUSW Subtract Word Unsigned With Saturation

MMX Register 2 to MMX Register 1 0FD9 [11 mm1 mm2] MMX reg 1 [word] <--sat-- MMX reg 1 [word] subtract MMX reg 2 [word] 1/1

Memory to MMX Register 0FD9 [11 mm reg] MMX reg [word] <--sat-- MMX reg [word] subtract memory [word] 1/1

PSUBW Subtract Word With Wrap-Around

MMX Register 2 to MMX Register 1 0FF9 [11 mm1 mm2] MMX reg 1 [word] <---- MMX reg 1 [word] subtract MMX reg 2 [word] 1/1

Memory to MMX Register 0FF9 [mod mm r/m] MMX reg [word] <---- MMX reg [word] subtract memory [word] 1/1

PUNPCKHBW Unpack High Packed Byte, Data to Packed Words

MMX Register 2 to MMX Register 1 0F68 [11 mm1 mm2] MMX reg 1 [byte] <--interleave-- MMX reg 1 [up byte], MMX reg 2 [up byte] 1/1

Memory to MMX Register 0F68 [11 mm reg] MMX reg [byte] <--interleave-- memory [up byte], MMX reg [up byte] 1/1

PUNPCKHDQ Unpack High Packed Dword, Data to Qword

MMX Register 2 to MMX Register 1 0F6A [11 mm1 mm2] MMX reg 1 [dword] <--interleave-- MMX reg 1 [up dword], MMX reg 2 [up
dword]

1/1

Memory to MMX Register 0F6A [11 mm reg] MMX reg [dword] <--interleave-- memory [up dword], MMX reg [up dword] 1/1

PUNPCKHWD Unpack High Packed Word, Data to Packed Dwords

MMX Register 2 to MMX Register 1 0F69 [11 mm1 mm2] MMX reg 1 [word] <--interleave-- MMX reg 1 [up word], MMX reg 2 [up word] 1/1

Memory to MMX Register 0F69 [11 mm reg] MMX reg [word] <--interleave-- memory [up word], MMX reg [up word] 1/1

Table 9-31. MMX Instruction Set Summary (Continued)

MMX Instructions Opcode Operation and Clock Count (Latency/Throughput)
ww.national.com 232 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

PUNPCKLBW Unpack Low Packed Byte, Data to Packed Words

MMX Register 2 to MMX Register 1 0F60 [11 mm1 mm2] MMX reg 1 [word] <--interleave-- MMX reg 1 [low byte], MMX reg 2 [low byte] 1/1

Memory to MMX Register 0F60 [11 mm reg] MMX reg [word] <--interleave-- memory [low byte], MMX reg [low byte] 1/1

PUNPCKLDQ Unpack Low Packed Dword, Data to Qword

MMX Register 2 to MMX Register 1 0F62 [11 mm1 mm2] MMX reg 1 [word] <--interleave-- MMX reg 1 [low dword], MMX reg 2 [low
dword]

1/1

Memory to MMX Register 0F62 [11 mm reg] MMX reg [word] <--interleave-- memory [low dword], MMX reg [low dword] 1/1

PUNPCKLWD Unpack Low Packed Word, Data to Packed Dwords

MMX Register 2 to MMX Register 1 0F61 [11 mm1 mm2] MMX reg 1 [word] <--interleave-- MMX reg 1 [low word], MMX reg 2 [low word] 1/1

Memory to MMX Register 0F61 [11 mm reg] MMX reg [word] <--interleave-- memory [low word], MMX reg [low word] 1/1

PXOR Bitwise XOR

MMX Register 2 to MMX Register 1 0FEF [11 mm1 mm2] MMX reg 1 [qword] <--logic exclusive OR-- MMX reg 1 [qword], MMX reg 2
[qword]

1/1

Memory to MMX Register 0FEF [11 mm reg] MMX reg [qword] <--logic exclusive OR-- memory[qword], MMX reg [qword] 1/1

Table 9-31. MMX Instruction Set Summary (Continued)

MMX Instructions Opcode Operation and Clock Count (Latency/Throughput)
evision 3.1 233 www.national.com

w

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

9.6 NATIONAL SEMICONDUCTOR EXTENDED MMX INSTRUCTION SET
National Semiconductor has added instructions to its
implementation of the MMX Architecture in order to facili-
tate writing of multimedia applications. In general, these
instructions allow more efficient implementation of multi-
media algorithms, or more precision in computation than
can be achieved using the basic set of MMX instructions.
All of the added instructions follow the SIMD (single
instruction, multiple data) format. Many of the instructions
add flexibility to the MMX architecture by allowing both
source operands of an instruction to be preserved, while
the result goes to a separate register that is derived from
the input.

Table 9-33 on page 235 summarizes the Extended MMX
Instructions. The abbreviations used in the table are listed
in Table 9-32.

Configuration control register CCR7(0) at location EBh
must be set to allow the execution of the Extended MMX
instructions.

Table 9-32. Extend MMX Instruction Set Table
Legend

Abbreviation Description

<---- Result written

[11 mm reg] Binary or binary groups of digits

mm One of eight 64-bit MMX registers

reg A general purpose register

<--sat-- If required, the resultant data is saturated
to remain in the associated data range

<--move-- Source data is moved to result location

[byte] Eight 8-bit bytes are processed in parallel

[word] Four 16-bit WORD are processed in paral-
lel

[dword] Two 32-bit DWORDs are processed in par-
allel

[qword] One 64-bit QWORD is processed

[sign xxx] The BYTE, WORD, DWORD or QWORD
most significant bit is a sign bit

mm1, mm2 MMX Register 1, MMX Register 2

mod r/m Mod and r/m byte encoding (page 6-6 of
this manual)

pack Source data is truncated or saturated to
next smaller data size, then concatenated.

packdw Pack two DWORDs from source and two
DWORDs from destination into four
WORDs in destination register.

packwb Pack four WORDs from source and four
WORDs from destination into eight BYTEs
in destination register.
ww.national.com 234 Revision 3.1

R

Instruction Set (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

Table 9-33. Extended MMX Instruction Set Summary

MMX Instructions Opcode Operation and Clock Count

PADDSIW Packed Add Signed Word with Saturation Using Implied Destination

MMX Register plus MMX Register to Implied Register 0F51 [11 mm1 mm2] Sum signed packed word from MMX register/memory --->
signed packed word in MMX register, saturate, and write result
---> implied register

1

Memory plus MMX Register to Implied Register 0F51 [mod mm r/m] 1

PAVEB Packed Average Byte

MMX Register 2 with MMX Register 1 0F50 [11 mm1 mm2] Average packed byte from the MMX register/memory with
packed byte in the MMX register. Result is placed in the MMX
register.

1

Memory with MMX Register 0F50 [mod mm r/m] 1

PDISTIB Packed Distance and Accumulate with Implied Register

Memory, MMX Register to Implied Register 0F54 [mod mm r/m] Find absolute value of difference between packed byte in
memory and packed byte in the MMX register. Using unsigned
saturation, accumulate with value in implied destination regis-
ter.

2

PMACHRIW Packed Multiply and Accumulate with Rounding

Memory to MMX Register 0F5E[mod mm r/m] Multiply the packed word in the MMX register by the packed
word in memory. Sum the 32-bit results pairwise. Accumulate
the result with the packed signed word in the implied destina-
tion register.

2

PMAGW Packed Magnitude

MMX Register 2 to MMX Register 1 0F52 [11 mm1 mm2] Set the destination equal ---> the packed word with the largest
magnitude, between the packed word in the MMX regis-
ter/memory and the MMX register.

2

Memory to MMX Register 0F52 [mod mm r/m] 2

PMULHRIW Packed Multiply High with Rounding, Implied Destination

MMX Register 2 to MMX Register1 0F5D [11 mm1 mm2] Packed multiply high with rounding and store bits 30 - 15 in
implied register.

2

Memory to MMX Register 0F5D [mod mm r/m] 2

PMULHRW Packed Multiply High with Rounding

MMX Register 2 to MMX Register 1 0F59 [11 mm1 mm2] Multiply the signed packed word in the MMX register/memory
with the signed packed word in the MMX register. Round with
1/2 bit 15, and store bits 30 - 15 of result in the MMX register.

2

Memory to MMX Register 0F59 [mod mm r/m] 2

PMVGEZB Packed Conditional Move If Greater Than or Equal to Zero

Memory to MMX Register 0F5C [mod mm r/m] Conditionally move packed byte from memory ---> packed byte
in the MMX register if packed byte in implied MMX register is
greater than or equal ---> zero.

1

PMVLZB Packed Conditional Move If Less Than Zero

Memory to MMX Register 0F5B [mod mm r/m] Conditionally move packed byte from memory ---> packed byte
in the MMX register if packed byte in implied MMX register is
less than zero.

1

PMVNZB Packed Conditional Move If Not Zero

Memory to MMX Register 0F5A [mod mm r/m] Conditionally move packed byte from memory ---> packed byte
in the MMX register if packed byte in implied MMX register is
not zero.

1

PMVZB Packed Conditional Move If Zero

Memory to MMX Register 0F58 [mod mm r/m] Conditionally move packed byte from memory ---> packed byte
in the MMX register if packed byte in implied the MMX register
is zero.

1

PSUBSIW Packed Subtracted with Saturation Using Implied Destination

MMX Register 2 to MMX Register 1 0F55 [11 mm1 mm2] Subtract signed packed word in the MMX register/memory from
signed packed word in the MMX register, saturate, and write
result ---> implied register.

1

Memory to MMX Register 0F55 [mod mm r/m] 1
evision 3.1 235 www.national.com

www.national.com 236 Revision 3.1

G
eo

d
e™

G
X

m
P

ro
ce

ss
o

r
Appendix A Support Documentation

A.1 ORDER INFORMATION

A.2 DATA BOOK REVISION HISTORY
This document is a report of the revision/creation process
of the data book for the GXm processor. Any revisions

(i.e., additions, deletions, parameter corrections, etc.) are
recorded in the tables below.

Order Number Part Marking
Core

Frequency (MHz)
Temperature
(Degree C) Package

30070-53 GXm-266P 2.9V 70C 266 70 SPGA

30071-53 GXm-266P 2.9V 85C 266 85 SPGA

30170-53 GXm-266B 2.9V 70C 266 70 BGA

30171-53 GXm-266B 2.9V 85C 266 85 BGA

30050-33 GXm-233P 2.9V 70C 233 70 SPGA

30054-33 GXm-233P 2.9V 85C 233 85 SPGA

30150-33 GXm-233B 2.9V 70C 233 70 BGA

30151-33 GXm-233B 2.9V 85C 233 85 BGA

30040-23 GXm-200P 2.9V 70C 200 70 SPGA

30044-23 GXm-200P 2.9V 85C 200 85 SPGA

30140-23 GXm-200B 2.9V 70C 200 70 BGA

30141-23 GXm-200B 2.9V 85C 200 85 BGA

30030-23 GXm-180P 2.9V 70C 180 70 SPGA

30034-23 GXm-180P 2.9V 85C 180 85 SPGA

30130-23 GXm-180B 2.9V 70C 180 70 BGA

30131-23 GXm-180B 2.9V 85C 180 85 BGA

Table A-1. Revision History

Revision #
(PDF Date) Revisions / Comments

0.0 (2/5/98) Creation phase

0.1 (2/25/98) Creation phase continues - added functional description.

0.2 (3/24/98) Creation phase continues - added 233 MHz parameters.

0.3 (4/22/98) Creation phase continues - added 266 MHz numbers.

1.0 (8/13/98) All sections complete - added 300 MHz numbers, added Index.

2.0 (10/29/98) Major change is new values for 352 BGA Mechanical.

3.0 (9/21/99) Converted to National Semiconductor format and updated for addendum revision 3.0.

3.1 (4/6/00) Formatting changes and one change from engineering. See Table A-2 for details.

Table A-2. Edits to Current Revision

Section Revision

3.0 Processor
Programming

• Combined bits 1 and 2 of Configuration Control Register 1 in Table 3-11 on page 52.

7.0 Electricals • All references to Recommended Operating Conditions became Operating Conditions.
• Table 7-3 on page 183 - Changed supply voltage from 3.6V to 3.2V.

R

Index
G

eo
d

e™
G

X
m

P
ro

cesso
r

A
Absolute Maximum Ratings 183
AC Characteristics 186
Accessing 157
Address Spaces 60

Directory Table Entry (DTE) 73
DTE Cache 73
I/O Address Space 60
Memory Address Space 60
Memory Addressing Modes 61
Offset Mechanism 61
Page Frame Offset (PFO) 73
Page Table Entry (PTE) 73
Paging Mechanism 72
Translation Look-Aside Buffer 74

Address Translation 108
Application Register Set 40

B
BGA Ball Assignments by Ball Number 15
BGA Ball Assignments by Pin Name 17
BGA Ball Assignments Diagram 14

C
Cache

BB0_BASE 95
BB0_POINTER 95
BB1_BASE 95
BB1_POINTER 95
GCR register (Index B8h) 95
L1 cache 95
scratchpad memory 95
Write-back caching 95

Cache Controller 95
Cache Disable, bit 30 95
Cache Test Operations 58
call gate 69

Current Privilege Level 69
Descriptor Privilege Level 69
Descriptor Privilege Level in Destination 69
Descriptors Bit Definitions 69
Segment Selector Field 69

CCR1
System Management Memory Access 49

CCR1 Configuration Control Register 1 Index C1h 49
CCR2

Enable Suspend Pins 49
Lock NW Bit 49
Suspend on HALT 49
Write-Through Region 1 49

CCR2 Configuration Control Register 2 Index C2h 49
CCR3

Load/Store Serialize 1 GByte to 2 GBytes 49
Load/Store Serialize 2 GBytes to 3 GBytes 49
Load/Store Serialize 3 GBytes to 4 GBytes 49
Map Enable 49
NMI Enable 49
SMM Register Lock 49

CCR3 Configuration Control Register 3 Index C3h 49
CCR4

Directory Table Entry Cache 50
Enable CPUID Instruction 50
I/O Recovery Time 50
Memory Read Bypassing 50
SMI Nest 50

CCR4 Configuration Control Register 4 Index E8h 50

CCR7
Cyrix Extended MMX Instructions Enable 50
NMI Enabl 50

CCR7 Configuration Control Register 7 Index EBh 50
Clock Mode 24
Configuration Register Map 48

Control Registers 48
Device ID Registers 48
Graphics/VGA Related Registers 48
SMM Base Header Address Registers 48

Configuration Register Summary 47
Conforming Code Segments 69
Control Transfer 87
CPU_READ 99
CPU_READ/WRITE

EAX instructions 99
EBX instructions 99

CPU_WRITE 99
CPUID Instruction 208

EAX = 0000 0000h 208
EAX = 0000 0001h 208
EAX = 0000 0002h 209
EAX = 8000 0000h 210
EAX = 8000 0001h 210
EAX = 8000 0002h 211
EAX = 8000 0003h 211
EAX = 8000 0004h 211
EAX = 8000 0005h 211

CPUID Levels 208
CPUID Levels, Extended 210
CR0 Register 45

Alignment Check Mask 46
Cache Disable 46
Emulate Processor Extension 46
Monitor Processor Extension 46
Not Write-Through 46
Numerics Exception 46
Paging Enable Bit 45
Protected Mode Enable 46
Task Switched 46
Write Protect 46

CR2 Register 45
Page Fault Linear Address 45

CR3 Register 45
Page Directory Base Register 45

CR4 Register 45
Time Stamp Counter Instruction 45

D
DC Characteristics 185
Descriptor Bit Structure 67
Descriptor Types 87
Descriptors

Gate 67
gate 69
Interrupt 67
Task 67

Device Select 28
DEVSEL 28
DIMM 112
DIR0

Device ID 51
DIR0 Device Identification Register 0 Index FEh 51
DIR1

Device Identification Revision 51
DIR1 Device Identification Register 1 Index FFh 51
evision 3.1 237 www.national.com

w

Index (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

Directory Table Entry 73
Display Controller 129–154

Buffer Organization 135
CODEC hardware 129
Compression Logic 130
Compression Technology 130
CRT Display Modes 134
Cursor Pattern Memory 136
DC Memory Organization 135
DC_CURSOR_COLOR Register (BX_BASE+8360h) 131
Display FIFO 130
Display Modes 131
Display Timing 131
Dither/Frame-Rate Modulation (FRM) 131
Graphics Memory Map 135
Hardware Cursor 131
Memory Management 130
Pixel Arrangement Within a DWORD 135
RAMDAC 129
TFT LCD flat panel 129
TFT Panel Data Bus Formats 133
TFT Panel Display Modes 132
VESA-compatible 131
VGA Display Support 136

Display Controller Block Diagram 129
Display Controller Registers 136

Configuration and Status Registers 139
DC_BORDER_COLOR (8368h-836Bh) 138
DC_BUF_SIZE (8328h-832Bh) 137
DC_CB_ST_OFFSET (8314h-8317h) 137
DC_CFIFO_DIAG (837Ch-837Fh) 138
DC_CURS_ST_OFFSET (8318h-831Bh) 137
DC_CURSOR_COLOR (83680h-8363h) 138
DC_CURSOR_X (8350h-8353h) 137
DC_CURSOR_Y (8358h-835Bh) 137
DC_DFIFO_DIAG (8378h-837Bh) 138
DC_FB_ST_OFFSET (8310h-8313h) 136
DC_FP_H_TIMING (833Ch-833Fh) 137
DC_FP_V_TIMING (834Ch-834Fh) 137
DC_GENERAL_CFG (8304h-8307h) 136
DC_H_TIMING_1 (8330h-8333h) 137
DC_H_TIMING_2 (8334h-8337h) 137
DC_H_TIMING_3 (8338h-833Bh) 137
DC_LINE_DELTA (8324h-8327h) 137
DC_OUTPUT_CFG (830Ch-830Fh) 136
DC_PAL_ADDRESS (8370h-8373h) 138
DC_PAL_DATA (8374h-8377h) 138
DC_SS_LINE_CMP (835Ch-835Fh) 137
DC_TIMING_CFG (8308h-830Bh) 136
DC_UNLOCK (8300h-8303h) 136
DC_V_LINE_CNT (8354h-8357h) 137
DC_V_TIMING_1 (8340h-8343h) 137
DC_V_TIMING_2 (8344h-8247h) 137
DC_V_TIMING_3 (8348h-834Bh) 137
DC_VID_ST_OFFSET (8320h-8323h) 137
Memory Organization Registers 144

Display Driver
BB0_RESET 98
BB1_RESET 98
CPU_READ 98
CPU_WRITE 98
Scratchpad 98

Display Driver Instructions 98
DR6 Register 53

Bn 53
BS 53

BT 53
DR7 and DR6 Bit Definitions 53
DR7 Register 53

GD 53
Gn 53
LENn 53
Ln 53
R/Wn 53

DRAM Address Conversion 112

E
EBP register 40
EFLAGS Register 43

Alignment Check Enable (AM) 43
Auxiliary Carry Flag 43
Carry Flag 43
CPUID instruction 43
Direction Flag (DF) 43
I/O Privilege Level (IOPL) 43
Identification Bit 43
Interrupt Enable 43
Nested Task (NT) 43
Resume Flag (RF) 43
Sign Flag 43
Trap Enable Flag 43
Virtual 8086 Mode (VM) 43

EFLAGS register, bit 9 83
EGA 165
Electrical Connections 182

NC-Designated Pins 182
Power/Ground Connections 182
Pull-Up/Pull-Down Resisters 182
Unused Input Pins 182

Electrical Specifications 182
Absolute Maximum Ratings 183
AC Characteristics 186
Clock Signals 187
DC Characteristics Table 185
DCLK Timing 192
Graphics Port Timing 191
JTAG AC Specification 193
JTAG Test Timings 194
Output Valid Timing 190
Part Numbers 182
PCI Interface Signals 189
SDRAM Interface Signals 190
Setup and Hold Timings 190
SYSCLK Timing 187
System Signals 188
TCK Timing and Measurement Points 193
Video Interface Signals 191
Video Port Timing 192

Exceptions 74
Abort 75
Fault 75
Trap 74

Extended MMX Instruction Set 234
Extended MMX™ Instruction Set

Configuration Control Rregister 234
Legend 234

F
Fields - index 207
Fields - mod and r/m 205
Fields - sreg3 206
Fields - ss 207
floating point error 25
ww.national.com 238 Revision 3.1

R

Index (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

FPU
Mode Control Register 89
Register Set 89
Status Register 89
Tag Word Register 89

FPU Instruction Set 224
Summary Notes 228

FPU Mode Control Register 90
Denormalized-operand error exception bit 90
Divide-by-zero exception bit 90
Invalid-operation exception bit 90
Overflow error exception bit 90
Precision Control Bits 90
Precision error exception bit 90
Rounding Control Bits 90

FPU Operations 89
FPU Registers 90
FPU Status Register 90

Condition code bit 3 90
Condition code bits 90
Copy of ES bit 90
Denormalized-operand error exception bit 90
Divide-by-zero exception bit 90
Error indicator 90
Invalid operation exception bit 90
Overflow error exception bit 90
Precision error exception bit 90
Stack Full 90
Top-of-Stack 90
Underflow error exception bit 90

FPU Tag Word Register (TAG7:0] 90
frame buffer 94

G
Gates 87
General Purpose Registers 40
Global Descriptor Table Register (GDTR) 66
Grant Lines 29
Graphics Memory (GX_BASE+800000h) 94
Graphics Pipeline 120–128

BitBLT/vector engine 120
Color Patterns 123
Diagonal Error Register (108h-810Bh) 124
Dither Patterns 122
Error Register (8104-8107h) 124
GP_BLT_MODE 120
GP_BLT_MODE (8208h-820Bh) 124
GP_BLT_STATUS (820Ch-820Fh) 125
GP_DST/START_Y/XCOOR (8100h-8103h) 124
GP_DST_XCOOR 121
GP_DST_YCOOR 121
GP_INIT_ERROR 121
GP_PAT_COLOR_0 register 122
GP_PAT_COLOR_1 (GX_BASE+8112h) 122
GP_PAT_COLOR_A (8110h) 124
GP_PAT_COLOR_B (8114h) 124
GP_PAT_DATA (8120h-812Fh) 124
GP_RASTER_MODE (8200h-8203h) 124
GP_RASTER_MODE (GX_BASE+ 8200h) 122
GP_RASTER_MODE Bit Patterns 123
GP_SRC_COLOR (810Ch-810Fh) 124
GP_SRC_COLOR_0 (GX_BASE+810Ch) 123
GP_SRC_YCOOR 121
GP_VECTOR_MODE (8204h-8207h) 124
GP_VGA_BASE (8210h-8213h) 125

GP_VGA_LATCH (8214h-8217h) 125
GP_VGA_READ (8200h-8203h) 124
GP_VGA_WRITE (8140h-8143h) 124
Master/Slave Registers 121
Monochrome Patterns 122
Pattern Generation 121

graphics pipeline 165, 166
Graphics Pipeline Block Diagram 120

H
HALT 25
High Order Interleaving 112

I
I/O Address Space 60
Initialization 38
Initialization, CPU 38
Initiator Ready

IRDY 27
TRDY 27

Instruction Fields 202
Instruction Set 39

eee Field Encoding 204
Index Field 207
Memory Addressing 205
mod base Field Encoding table 207
mod r/m Field Encoding 205
Opcode 203
prefix bytes 203
reg Field 206
s-i-b Byte 207
s-i-b present 207
sreg2 field 206
sreg3 206
ss Field 207
w Field Operand Size 203

instruction set 201
Instruction Set Format Table 202
Instruction Set Formats 201
Instruction Set Overview 39
Instructions

Bit Test Instructions 39
Exchange Instructions 39
One-operand Arithmetic and Logical 39
Two-operand Arithmetic and Logical 39

Instuction Prefix Summary 203
Integrated Functions 91
Integrated Functions Programming Interface 92
Interleaving 112
Internal Bus Interface 100–102
Internal Bus Interface Unit

640KB to 1MB 100
C-Bus 100
FPU Error Support 100
Graphics 100
IRQ13 100
L1 cache 100
Processor Core 100
Region Control Field Bit Definitions 102
Registers (GX_BASE+8000h) 101
SMI Interrupts 100
VGA Access 100
X-Bus 100

Internal Bus Interface Unit Diagram 91
Internal Bus Interface Unit Registers
evision 3.1 239 www.national.com

w

Index (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

BC_DRAM_TOP (8000h-8003h) 101
BC_XMAP_1 (8004h-8007h) 101
BC_XMAP_2 (8008h-800Bh) 101
BC_XMAP_3 (800Ch-800Fh) 101

Internal Test Signals
Ifloat 32
Raw Clock 32
SDRAM Test Outputs 32
Test 33
Test Clock 32
Test Data Input 32
Test Data Output 32
Thermal Diode Negative (TDN) 33
Thermal Diode Positive (TDP) 33

Interrupt
Interrupt and Exception Priorities 76

Interrupt Descriptor Table 75
Interrupt Request Level 13 25
Interrupts 74

INTR 74
NMI 74
Real Mode Error Codes 77
Real Mode, Exceptions 77
SMM 74
Vector A 75

INTR 43, 74, 76, 83, 85, 86
invalid opcode 39
IRET instruction 43

L
Legacy VGA 165
Local Descriptor Table Register (LDTR) 66
LOCK 28
Lock Prefix 39
Low Order Interleaving 112

M
MediaGX™ Virtual VGA 167
Memory Address Space 60
Memory Addressing

Paging Mechanism 72
Memory Addressing Modes 61
Memory Controller 103–119

Auto LOI 112
1 DIMM Bank 113
2 DIMM Banks 113

Block Diagram 103
DRAM Address Conversion 112
DRAM Configuration 105
Graphics Pipeline 103
Memory Array Configuration 104
Memory Cycles 115
Memory Organization 105
Non-Auto LOI

1 DIMM Bank 114
2 DIMM Banks 114

Page Miss 117
Processor Interface 103
SDRAM 104
SDRAM Commands 106

ACT 107
MRS 106
PRE 106
READ 107
WRT 107

SDRAM Initialization Sequence 107
SDRAM Interface 103

SDRAM Interface Clocking 118
CAS latency 118

SDRAM Read Cycle 115
SDRAM Refresh Cycle 117
SDRAM Write Cycle 116
SHFTSDCLK 119
X-Bus 103

Memory Controller Interface Signals
Bank Address Bits 29
Chip Selects 29
Clock Enable 30
Column Address Strobe 29
Data Mask Control Bits 30
Memory Address Bus 29
Row Address Strobe 29
SDRAM Clocks 30
Write Enable 29

Memory Controller Register 108
MC_BANK_CFG (8408h-840Bh) 108
MC_DR_ACC (841Ch-841Fh) 108
MC_DR_ADD (8418h-841Bh) 108
MC_GBASE_ADD (8414h-8417h) 108
MC_MEM_CNTRL1 (8400h-8403h) 108
MC_MEM_CNTRL2 (8404h-8407h) 108
MC_SYNC_TIM1 (840Ch-840Fh) 108

Memory Data Bus 29
MMX Instruction Set 229
Multiplexed Address

PCI pins 26
Multiplexed Command

Configuration Read 26
Configuration Write 26
Dual Address Cycle 26
Memory Read Line 26
Memory Read Multiple 26
Memory Write and Invalidate 26
Special Cycle 26

Multiplexed Command and Byte Enables
Interrupt Acknowledge 26

Multitasking 70

N
NMI 49, 74, 75, 76, 78, 83, 85, 86
notebook computers 174

O
Overflow Flag 43

P
Package Outlines 198
Package Specifications 195
Page Table Entry 73
palette lookup 166
PCI Arbitration 164
PCI Configuration Registers

Access Format 157
Bus 156
Cache Line Size (0Ch) 157
Class Code (09h-0Bh) 157
CONFIG ENABLE 156
CONFIG_DATA 0CFCh-0CFFh 156
Device 156
Device Identification (02h-03h) 157
Device Status (06h-07h) 157
Latency Timer (0Dh) 157
PCI Arbitration Control 1 (43h) 157
PCI Arbitration Control 2 (44h) 157
ww.national.com 240 Revision 3.1

R

Index (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

PCI Command (04h-05h) 157
PCI Control Function 1 (40h) 157
PCI Control Function 2 (41h) 157
Register 156
Revision Identification (08h) 157
Translation Type Bits 1

0 156
Vendor Identification (00h-01h) 157

PCI Configuration Registers 0CF8h-0CFBh 156
PCI Controller 155

CONFIG_ADDRESS 155
Configuration Cycles 155
PCI Arbiter 155
Space Control Registers 156
Special Cycles 155
X-Bus PCI Master 155
X-Bus PCI Slave 155

PCI Cycles 162
PCI Halt Command 164
PCI Interface Signals

Frame 27
Initiator Ready 27
Lock Operation 28
Multiplexed Address and Data 26
Multiplexed Command and Byte Enables 26
Parity 26
Parity Error 28
Request Lines 28
Target Ready 27
Target Stop 27

PCI Local Bus Specification 162
PCI Read Transactions 162
PCI Special Cycle Command 164
PCI Write Transactions 163
PCR Performance Control Register Index 20h 50
PERR 28
Pixel Arrangement Within a DWORD 135
Pointer and Index Registers

ECX Counter 40
EDI Destination Pointer 40
ESI Source Pointer 40
ESP Register 40
PUSH and POP Instructions 40

Power and Ground Connections and Decoupling 182
Power Management 174

3-Volt Suspend Mode 174
Advanced Power Management (APM) 174
CPU Suspend Command Registers 174
Initiating Suspend with HALT 176
Initiating Suspend with SUSP 175
Processor Serial Bus 179
Responding to a PCI Access During Suspend Mode 177
Serial Packet Transmission 179
Stopping the Input Clock 178
Suspend Mode and Bus Cycles 175
Suspend Modulation 174

Power Management Registers 179
PM_BASE (FFFF FF6Ch) 179
PM_CNTRL_CSTP (8508h-850Bh) 179
PM_CNTRL_TEN (8504h-8507h) 179
PM_MASK (FFFF FF7Ch) 179
PM_SER_PACK (850Ch-850Fh) 179
PM_STAT_SMI (8500h-8503h) 179

Power Planes 36–37
Power, Ground, No Connect

Ground (VSS) 32

Power, Ground, No Connect Signals
Ground (VSS) 32
No Connect (NC) 32
Power Connect (VCC2) 32
Power Connect (VCC3) 32
Voltage Detect(VOLDET) 32

Privilege Level Transfers 87
Privilege Levels (CPL, DPL and RPL) 86
Privilege Levels (I/O) 86
Processor Core Instruction Set 212

Clock Counts 212
Flags 212
Legend 212
Opcodes 212

Processor Initialization 38
Programming Interface 38
Protected Mode, Initialization and Transition 87
Protection 86

Current Privilege Level (CPL) 86
Descriptor Privilege Level (DPL) 86
Requested Privilege Level (RPL) 86

Protection - V86 Mode 88

R
Register Controls 38
Register Sets 40

Application
Flags Register 40
General Purpose Register 40
Instruction Pointer Register 40
Segment Registers 40

Flags Register 43
General Purpose 40

Data Registers 40
Pointer and Index Registers 40

Instruction Pointer 42
Selection Rules 42

Model Specific Register 40
System Register Set 40, 44

Registers
Application Register 40
Model Specific Register 59

REQ 28
RESET 38
ROP (raster operation) 166
Row Address Strobe

CAS 29
CKE 29
RAS 29
RASA 29
RASB 29
WE 29

S
Scratchpad

2KB configurations 97
3KB configurations 97
SMM information 97

Scratchpad RAM 97
SDRAM Clocks

SDCLK_IN 30
SDCLK_OUT 30

Segment Register Selection Rules 42
Segment Registers 42
Serial Packet

CX5520 25
evision 3.1 241 www.national.com

w

Index (Continued)
G

eo
d

e™
G

X
m

P
ro

ce
ss

o
r

VSA 25
Shutdown and Halt 86
Signal Definitions 13–23
Signal Descriptions 24

Cyrix Internal Test and Measurement Signals 32
Memory Controller Interface Signals 29–30
PCI Interface Signals 26–29
Power, Ground and No Connect Signals 32
System Interface Signals 24–25
Video Interface Signals 30–31

Signals - INTR 74
Signals - NMI 74
Signals - SMM 74
SIZE

SMM Region Size Bits 51
Skip Counts 94
SMAR

SMM Address Region Bits 51
SMAR SMM Address Region Register Indices CDh, CEH, CFh
51
SMHR

SMM Header Address 51
SMHR SMI Header Address Indices B0h, B1h, B2h, B3h 50
SMI

Configuration Registers 80
Generation 83

SMI# 74, 75, 78
pin 80

SMI# pin 174
SMM 78

CPU States 85
Instructions 82
Memory Space 83
Memory Space Header 80
Operation 79
SMI Enhancements 79
SMI Events 80
SMI Nested States 84
SMI Nesting 83
SMI Service Routine Execution 83
SMI# Pin 80
Suspend Mode 85
Suspend Mode CPU States 85

SMM Memory Space Header Description 81
SPGA Pin Assignments by Pin Number 20
SPGA Pin Assignments by Signal Name 22
SPGA Pin Assignments Diagram 19
STOP 27
Subsystem Signal Connections 34–35
Suspend 59, 85, 86
Suspend Mode 25
System Error 28

NMI 28
System Interface Signals

Interrupt Request 25
Reset 24
Serial Packet 25
Suspend Acknowledge 25
Suspend Request 25
System Clock 24
System Management Interrupt 25

System Management Interrupt (SMI#) 165
System Register Set 44
System Register Sets

Cache Test Registers 56
Configuration Registers 47

Debug Registers 47
Gate Descriptors 69
Task Register 69, 70

System Registers 44–59
Configuration Registers 47
Control Registers 45
Debug Registers 52
Model Specific Register (MSR) 59
Segment Descriptor Table Registers 66
Test Registers 54

T
Task Gate Descriptors 70
Task Register (TR) 70
Task State Segments 70
Thermal Characteristics 195
TR3 Register 57

Cache Data 57
TR4 Register 57

Dirty Bits 57
LRU Bits 57
Upper Tag Address 57
Valid Bit 57

TR5 Register 57
Control Bits 57
Line Selection 57

TR6 Register 55
Command Bit 55
Dirty Attribute Bit 55
Linear Address 55
Valid Bit 55

TR7 Register 55
LRU Bits 55
Physical Address 55
PL Bit 55
Set Selection 55

Translation Lookaside Buffer 95

V
V86 Mode

Entering and Leaving 88
Interrupt Handling 88
Memory Addressing 88

VESA 165
VGA Address Mapping 167

MapMask register 167
Miscellaneous Output register 167

VGA Configuration Registers 169
VGA Control Register (B9h) 169
VGA Mask Register (BAh-BDh) 169

VGA Front End 166
VGA function

attribute controller 166
CRT controller 166
frame buffer 166
general registers 166
graphics controller 166
sequencer 166

VGA Hardware 165, 168
SMI Generation 168
VGA Address Generator 168
VGA Memory 168
VGA Range Detection 168
VGA Sequencer 168
VGA Write/Read Path 168

VGA Memory 171
ww.national.com 242 Revision 3.1

R

Index (Continued)
G

eo
d

e™
G

X
m

P
ro

cesso
r

frame buffer address 166
host address 166
refresh address 166

VGA Memory Addresses 169
VGA Memory Organization 166
VGA Range Detection 171
VGA Sequencer 171
VGA Video BIOS 171
VGA Video Refresh 168

All Points Addressable mode (APA) 168
attribute controller (ATTR) 168
CGA mode 168
Chain 4 mode 168
ClockSelect field 168
ColorPlaneEnable register 168
CRT controller (CRTC) 168
LineCompare register 168
Miscellaneous Output register 168
ShiftRegister field 168

VGA Write/Read Path 171
Video Data Bus

VID_CLK 31
Video Interface Signals

CRT Horizontal Sync 30
CRT Vertical Sync 31
Display Enable 31
Dotclock 30
Flat Panel Horizontal Sync 31
Flat Panel Vertical Sync 31
Graphics Pixel Data Bus 31
Pixel Port Clock 30
Video Clock 30
Video Data Bus 31
Video Ready 31
Video Valid 31

video refresh 166
Virtual 8086 Mode (V86) 88
Virtual Subsystem Architecture (VSA) 165
Virtual VGA 165

ColorCompare register 167
ColorDon’tCare register 167
Datapath Elements 167

read mode unit 167
write-mode unit 167

DataRotate register 167
ReadMapSelect register 167
SetReset register 167
SMI Generation 168

Virtual VGA Register Descriptions 172
VIrtual VGA Registers

GP_VGA_WRITE (8140h-8143h) 172
Virtual VGA Registers

GP_VGA_BASE VGA (8210h-8213h) 172
GP_VGA_LATCH (8214h-8217h) 172
GP_VGA_READ (8144h-8147h) 172

X
XpressAUDIO 165
evision 3.1 243 www.national.com

G
eo

d
e™

G
X

m
P

ro
ce

ss
o

r
In

te
g

ra
te

d
x8

6
S

o
lu

ti
o

n
w

it
h

M
M

X
S

u
p

p
o

rt

N

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.

2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

National Semiconductor
Europe

Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Francais Tel: +33 (0) 1 41 91 8790

National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: ap.support@nsc.com

National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507

www.national.com

ational does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

	List of Figures
	Figure 1-1.� Internal Block Diagram
	Figure 1-2.� Geode™ GXm/CS5530 System Block Diagram
	Figure 1-3.� CS9210 Interface System Diagram
	Figure 2-1.� Functional Block Diagram
	Figure 2-2.� 352 BGA Pin Assignment Diagram
	Figure 2-3.� 320 SPGA Pin Assignment Diagram
	Figure 2-4.� Subsystem Signal Connections
	Figure 2-5.� PIXEL Signal Connections
	Figure 2-6.� BGA Recommended Split Power Plane and Decoupling
	Figure 2-7.� SPGA Recommended Split Power Plane and Decoupling
	Figure 3-1.� CPU Cache Architecture
	Figure 3-2.� Memory and I/O Address Spaces
	Figure 3-3.� Offset Address Calculation
	Figure 3-4.� Real Mode Address Calculation
	Figure 3-5.� Protected Mode Address Calculation
	Figure 3-6.� Selector Mechanisms
	Figure 3-7.� Selector Mechanism Caching
	Figure 3-8.� Paging Mechanism
	Figure 3-9.� System Management Memory Address Space
	Figure 3-10.� SMM Execution Flow
	Figure 3-11.� SMI Nesting State Machine
	Figure 3-12.� SMM and Suspend Mode State Diagram
	Figure 4-1.� Internal Block Diagram
	Figure 4-2.� Geode™ GXm Processor Memory Space
	Figure 4-3.� Memory Controller Block Diagram
	Figure 4-4.� Memory Array Configuration
	Figure 4-5.� Basic Read Cycle with a CAS Latency of Two
	Figure 4-6.� Basic Write Cycle
	Figure 4-7.� Auto Refresh Cycle
	Figure 4-8.� Read/WRT Command to a New Row Address
	Figure 4-9.� SDCLKIN Clocking
	Figure 4-10.� Effects of SHFTSDCLK Programming Bits Example
	Figure 4-11.� Graphics Pipeline Block Diagram
	Figure 4-12.� Example of Monochrome Patterns
	Figure 4-13.� Example of Dither Patterns
	Figure 4-14.� Display Controller Block Diagram
	Figure 4-15.� Pixel Arrangement Within a DWORD
	Figure 4-16.� Display Controller Signal Connections
	Figure 4-17.� Video Port Data Transfer (CS5530)
	Figure 4-18.� Basic Read Operation
	Figure 4-19.� Basic Write Operation
	Figure 4-20.� Basic Arbitration
	Figure 6-1.� SUSP#-Initiated Suspend Mode
	Figure 6-2.� HALT-Initiated Suspend Mode
	Figure 6-3.� PCI Access During Suspend Mode
	Figure 6-4.� Stopping SYSCLK During Suspend Mode
	Figure 7-1.� Drive Level and Measurement Points for Switching Characteristics
	Figure 7-2.� DCLK Timing and Measurement Points
	Figure 7-3.� SDCLK, SDCLK[3:0] Timing and Measurement Points
	Figure 7-4.� Output Timing
	Figure 7-5.� Input Timing
	Figure 7-6.� Output Valid Timing
	Figure 7-7.� Setup and Hold Timings - Read Data In
	Figure 7-8.� Graphics Port Timing
	Figure 7-9.� Video Port Timing
	Figure 7-10.� DCLK Timing
	Figure 7-11.� TCK Timing and Measurement Points
	Figure 7-12.� JTAG Test Timings
	Figure 8-1.� Heatsink Example
	Figure 8-2.� 352-Terminal BGA Mechanical Package Outline
	Figure 8-3.� 320-Pin SPGA Mechanical Package Outline

	List of Tables
	Table 2-1.� Pin Type Definitions
	Table 2-2.� 352 BGA Pin Assignments - Sorted by Pin Number
	Table 2-3.� 352 BGA Pin Assignments - Sorted Alphabetically by Signal Name
	Table 2-4.� 320 SPGA Pin Assignments - Sorted by Pin Number
	Table 2-5.� 320 SPGA Pin Assignments - Sorted Alphabetically by Signal Name
	Table 3-1.� Initialized Core Register Controls �
	Table 3-2.� Application Register Set
	Table 3-3.� Segment Register Selection Rules
	Table 3-4.� EFLAGS Register
	Table 3-5.� System Register Set
	Table 3-6.� Control Registers Map
	Table 3-7.� CR4-CR0 Bit Definitions �
	Table 3-8.� Effects of Various Combinations of EM, TS, and MP Bits
	Table 3-9.� Configuration Register Summary
	Table 3-10.� Configuration Register Map
	Table 3-11.� Configuration Registers �
	Table 3-12.� Debug Registers
	Table 3-13.� DR7 and DR6 Bit Definitions
	Table 3-14.� TLB Test Registers
	Table 3-15.� TR7-TR6 Bit Definitions �
	Table 3-16.� Cache Test Registers
	Table 3-17.� TR5-TR3 Bit Definitions
	Table 3-18.� Cache Test Operations
	Table 3-19.� Memory Addressing Modes
	Table 3-20.� GDTR, LDTR and IDTR Registers
	Table 3-21.� Application and System Segment Descriptors
	Table 3-22.� Application and System Segment Descriptors Bit Definitions �
	Table 3-23.� Application and System Segment Descriptors TYPE Bit Definitions �
	Table 3-24.� Gate Descriptors
	Table 3-25.� Gate Descriptors Bit Definitions
	Table 3-26.� 32-Bit Task State Segment (TSS) Table
	Table 3-27.� 16-Bit Task State Segment (TSS) Table
	Table 3-28.� Directory Table Entry (DTE) and Page Table Entry (PTE)
	Table 3-29.� Interrupt Vector Assignments
	Table 3-30.� Interrupt and Exception Priorities
	Table 3-31.� Exception Changes in Real Mode
	Table 3-32.� Error Codes
	Table 3-33.� Error Code Bit Definitions
	Table 3-34.� SMI# and SMINT Recognition Requirements
	Table 3-35.� SMM Memory Space Header
	Table 3-36.� SMM Memory Space Header Description
	Table 3-37.� SMM Instruction Set
	Table 3-38.� Descriptor Types Used for Control Transfer
	Table 3-39.� FPU Registers
	Table 4-1.� GCR Register
	Table 4-2.� Display Resolution Skip Counts
	Table 4-3.� L1 Cache BitBLT Register Summary
	Table 4-4.� L1 Cache BitBLT Registers
	Table 4-5.� Scratchpad Organization
	Table 4-6.� Display Driver Instructions
	Table 4-7.� CPU-Access Instructions
	Table 4-8.� Address Map for CPU-Access Registers
	Table 4-9.� Internal Bus Interface Unit Register Summary
	Table 4-10.� Internal Bus Interface Unit Registers�
	Table 4-11.� Region-Control-Field Bit Definitions
	Table 4-12.� Synchronous DRAM Configurations
	Table 4-13.� Basic Command Truth Table
	Table 4-14.� Address Line Programming during MRS Cycles
	Table 4-15.� Memory Controller Register Summary
	Table 4-16.� Memory Controller Registers �
	Table 4-17.� Auto LOI -- 2 DIMMs, Same Size, 1 DIMM Bank
	Table 4-18.� Auto LOI -- 2 DIMMs, Same Size, 2 DIMM Banks
	Table 4-19.� Non-Auto LOI -- 1 or 2 DIMMs, Different Sizes, 1 DIMM Bank
	Table 4-20.� Non-Auto LOI -- 1 or 2 DIMMs, Different Sizes, 2 DIMM Banks
	Table 4-21.� Graphics Pipeline Registers
	Table 4-22.� GP_RASTER_MODE Bit Patterns
	Table 4-23.� Common Raster Operations
	Table 4-24.� Graphics Pipeline Configuration Register Summary �
	Table 4-25.� Graphics Pipeline Configuration Registers �
	Table 4-26.� TFT Panel Display Modes
	Table 4-27.� TFT Panel Data Bus Formats
	Table 4-28.� CRT Display Modes
	Table 4-29.� Display Controller Register Summary �
	Table 4-30.� Display Controller Configuration and Status Registers �
	Table 4-31.� Display Controller Memory Organization Registers �
	Table 4-32.� Display Controller Timing Registers �
	Table 4-33.� Display Controller Cursor Position Registers �
	Table 4-34.� Display Controller Color Registers
	Table 4-35.� Display Controller Palette and RAM Diagnostic Registers�
	Table 4-36.� Special-Cycle Code to CONFIG_ADDRESS
	Table 4-37.� PCI Configuration Registers
	Table 4-38.� Format for Accessing the Internal PCI Configuration Registers
	Table 4-39.� PCI Configuration Space Register Summary
	Table 4-40.� PCI Configuration Registers �
	Table 5-1.� Standard VGA Modes
	Table 5-2.� VGA Configuration Registers Summary
	Table 5-3.� VGA Configuration Registers
	Table 5-4.� Virtual VGA Register Summary
	Table 5-5.� Virtual VGA Registers
	Table 6-1.� Power Management Register Summary �
	Table 6-2.� Power Management Control and Status Registers �
	Table 6-3.� Power Management Programmable Address Region Registers
	Table 7-1.� Part Numbers
	Table 7-2.� Pins with 20-kohm Internal Resistor
	Table 7-3.� Absolute Maximum Ratings
	Table 7-4.� Operating Conditions
	Table 7-5.� DC Characteristics
	Table 7-6.� Drive Level and Measurement Points for Switching Characteristics
	Table 7-7.� Clock Signals
	Table 7-8.� System Signals
	Table 7-9.� PCI Interface Signals
	Table 7-10.� SDRAM Interface Signals
	Table 7-11.� Video Interface Signals
	Table 7-12.� JTAG AC Specification
	Table 8-1.� Junction-to-Case Thermal Resistance for SPGA and BGA Packages
	Table 8-2.� Case-to-Ambient Thermal Resistance Examples @ 85˚C
	Table 8-3.� Mechanical Package Outline Legend
	Table 9-1.� General Instruction Set Format
	Table 9-2.� Instruction Fields
	Table 9-3.� Instruction Prefix Summary
	Table 9-4.� w Field Encoding
	Table 9-5.� d Field Encoding
	Table 9-6.� s Field Encoding
	Table 9-7.� eee Field Encoding
	Table 9-8.� General Registers Selected by mod r/m Fields and w Field
	Table 9-9.� mod r/m Field Encoding
	Table 9-10.� General Registers Selected by reg Field
	Table 9-11.� sreg2 Field Encoding
	Table 9-12.� sreg3 Field Encoding
	Table 9-13.� ss Field Encoding
	Table 9-14.� index Field Encoding
	Table 9-15.� mod base Field Encoding
	Table 9-16.� CPUID Levels Summary
	Table 9-17.� CPUID Data Returned when EAX = 0
	Table 9-18.� EAX, EBX, ECX CPUID Data Returned when EAX = 1
	Table 9-19.� EDX CPUID Data Returned when EAX = 1�
	Table 9-20.� Standard CPUID with EAX = 00000002h
	Table 9-21.� Maximum Extended CPUID Level
	Table 9-22.� EAX, EBX, ECX CPUID Data Returned when EAX = 80000001h
	Table 9-23.� EDX CPUID Data Returned when EAX = 80000001h
	Table 9-24.� Official CPU Name
	Table 9-25.� Standard CPUID with EAX = 80000005h
	Table 9-26.� Processor Core Instruction Set Table Legend
	Table 9-27.� Processor Core Instruction Set Summary �
	Table 9-28.� FPU Instruction Set Table Legend
	Table 9-29.� FPU Instruction Set Summary �
	Table 9-30.� MMX Instruction Set Table Legend
	Table 9-31.� MMX Instruction Set Summary �
	Table 9-32.� Extend MMX Instruction Set Table Legend
	Table 9-33.� Extended MMX Instruction Set Summary �
	Table A-1.� Revision History
	Table A-2.� Edits to Current Revision

	1.0 Architecture Overview
	1.1 Integer Unit
	1.2 Floating Point Unit
	1.3 Write-Back Cache Unit
	1.4 Memory Management Unit
	1.4.1 Internal Bus Interface Unit

	1.5 Integrated Functions
	1.5.1 Graphics Accelerator
	1.5.2 Display Controller
	1.5.3 XpressRAM Memory Subsystem
	1.5.4 PCI Controller

	1.6 Geode GXM/CS5530 System Designs

	2.0 Signal Definitions
	2.1 Pin Assignments
	2.2 Signal Descriptions
	2.2.1 System Interface Signals �
	2.2.2 PCI Interface Signals �
	2.2.3 Memory Controller Interface Signals �
	2.2.4 Video Interface Signals �
	2.2.5 Power, Ground, and No Connect Signals �
	2.2.6 Internal Test and Measurement Signals

	2.3 Subsystem Signal Connections
	2.4 Power Planes

	3.0 Processor Programming
	3.1 Core Processor Initialization
	3.2 Instruction Set Overview
	3.2.1 Lock Prefix

	3.3 Register Sets
	3.3.1 Application Register Set
	3.3.1.1 General Purpose Registers
	3.3.1.2 Segment Registers
	3.3.1.3 Instruction Pointer Register
	3.3.1.4 EFLAGS Register

	3.3.2 System Register Set
	3.3.2.1 Control Registers
	3.3.2.2 Configuration Registers
	3.3.2.3 Debug Registers
	3.3.2.4 Test Registers

	3.3.3 Model Specific Register Set
	3.3.4 Time Stamp Counter

	3.4 Address Spaces
	3.4.1 I/O Address Space
	3.4.2 Memory Address Space

	3.5 Offset, Segment, and Paging Mechanisms
	3.6 Offset Mechanism
	3.7 Descriptors and Segment Mechanisms
	3.7.1 Real and Virtual 8086 Mode Segment Mechanisms
	3.7.2 Segment Mechanism in Protective Mode
	3.7.2.1 Segment Selectors

	3.7.3 GDTR and LDTR Registers
	3.7.3.1 Segment Descriptors
	3.7.3.2 Task, Gate and Interrupt Descriptors

	3.7.4 Descriptor Bit Structure
	3.7.5 Gate Descriptors

	3.8 Multitasking and Task State Segments
	3.9 Paging Mechanism
	3.10 Interrupts and Exceptions
	3.10.1 Interrupts
	3.10.2 Exceptions
	3.10.3 Interrupt Vectors
	3.10.3.1 Interrupt Vector Assignments
	3.10.3.2 Interrupt Descriptor Table

	3.10.4 Interrupt and Exception Priorities
	3.10.5 Exceptions in Real Mode
	3.10.6 Error Codes

	3.11 System Management Mode
	3.11.1 SMM Enhancements
	3.11.2 SMM Operation
	3.11.3 The SMI# Pin
	3.11.4 SMM Configuration Registers
	3.11.5 SMM Memory Space Header
	3.11.6 SMM Instructions
	3.11.7 SMM Memory Space
	3.11.8 SMI Generation
	3.11.9 SMI Service Routine Execution
	3.11.9.1 SMI Nesting
	3.11.9.2 CPU States Related to SMM and Suspend Mode

	3.12 Shutdown and Halt
	3.13 Protection
	3.13.1 Privilege Levels
	3.13.2 I/O Privilege Levels
	3.13.3 Privilege Level Transfers
	3.13.3.1 Gates

	3.13.4 Initialization and Transition to Protected Mode

	3.14 Virtual 8086 Mode
	3.14.1 Memory Addressing
	3.14.2 Protection
	3.14.3 Interrupt Handling
	3.14.4 Entering and Leaving Virtual 8086 Mode

	3.15 Floating Point Unit Operations
	3.15.1 FPU (Floating Point Unit) Register Set
	3.15.2 FPU Tag Word Register
	3.15.3 FPU Status Register
	3.15.4 FPU Mode Control Register

	4.0 Integrated Functions
	4.1 Integrated Functions Programming Interface
	4.1.1 Graphics Control Register
	4.1.2 Control Registers
	4.1.3 Graphics Memory
	4.1.4 L1 Cache Controller
	4.1.4.1 Scratchpad Memory

	4.1.5 Display Driver Instructions
	4.1.6 CPU_READ/CPU_WRITE Instructions

	4.2 Internal Bus Interface Unit
	4.2.1 FPU Error Support
	4.2.2 A20M Support
	4.2.3 SMI Generation
	4.2.4 640 KB to 1 MB Region
	4.2.5 Internal Bus Interface Unit Registers

	4.3 Memory Controller
	4.3.1 Memory Array Configuration
	4.3.2 Memory Organizations
	4.3.3 SDRAM Commands
	4.3.3.1 SDRAM Initialization Sequence

	4.3.4 Memory Controller Register Description
	4.3.5 Address Translation
	4.3.5.1 High Order Interleaving
	4.3.5.2 Low Order Interleaving
	4.3.5.3 Physical Address to DRAM Address Conversion

	4.3.6 Memory Cycles
	4.3.7 SDRAM Interface Clocking

	4.4 Graphics Pipeline
	4.4.1 BitBLT/Vector Engine
	4.4.2 Master/Slave Registers
	4.4.3 Pattern Generation
	4.4.3.1 Monochrome Patterns
	4.4.3.2 Dither Patterns
	4.4.3.3 Color Patterns

	4.4.4 Source Expansion
	4.4.5 Raster Operations
	4.4.6 Graphics Pipeline Register Descriptions

	4.5 Display Controller
	4.5.1 Display FIFO
	4.5.2 Compression Technology
	4.5.3 Motion Video Acceleration Support
	4.5.4 Hardware Cursor
	4.5.5 Display Timing Generator
	4.5.6 Dither and Frame-Rate Modulation
	4.5.7 Display Modes
	4.5.8 Graphics Memory Map
	4.5.8.1 DC Memory Organization Registers
	4.5.8.2 Frame Buffer and Compression Buffer Organization
	4.5.8.3 VGA Display Support
	4.5.8.4 Cursor Pattern Memory Organization

	4.5.9 Display Controller Registers
	4.5.9.1 Configuration and Status Registers

	4.5.10 Memory Organization Registers
	4.5.11 Timing Registers
	4.5.12 Cursor Position Registers
	4.5.13 Color Registers
	4.5.14 Palette Access Registers
	4.5.15 CS5530 Display Controller Interface
	4.5.15.1 CS5530 Video Port Data Transfer

	4.6 PCI Controller
	4.6.1 X-Bus PCI Slave
	4.6.2 X-Bus PCI Master
	4.6.3 PCI Arbiter
	4.6.4 Generating Configuration Cycles
	4.6.5 Generating Special Cycles
	4.6.6 PCI Configuration Space Control Registers
	4.6.7 PCI Configuration Space Registers
	4.6.8 PCI Cycles
	4.6.8.1 PCI Read Transaction
	4.6.8.2 PCI Write Transaction
	4.6.8.3 PCI Arbitration
	4.6.8.4 PCI Halt Command

	5.0 Virtual Subsystem Architecture
	5.1 Virtual VGA
	5.1.1 Traditional VGA Hardware
	5.1.1.1 VGA Memory Organization
	5.1.1.2 VGA Front End
	5.1.1.3 Address Mapping

	5.2 GXm Virtual VGA
	5.2.1 Datapath Elements
	5.2.2 Video Refresh
	5.2.3 GXm VGA Hardware
	5.2.3.1 SMI Generation
	5.2.3.2 VGA Memory Addresses
	5.2.3.3 VGA Configuration Registers
	5.2.3.4 VGA Control Register
	5.2.3.5 VGA Mask Registers
	5.2.3.6 VGA Range Detection
	5.2.3.7 VGA Sequencer
	5.2.3.8 VGA Write/Read Path
	5.2.3.9 VGA Address Generator
	5.2.3.10 VGA Memory

	5.2.4 VGA Video BIOS
	5.2.5 Virtual VGA Register Descriptions

	6.0 Power Management
	6.1 APM Support
	6.2 CPU Suspend Command Registers
	6.3 Suspend Modulation
	6.4 3-Volt Suspend Mode
	6.5 Suspend Mode and Bus Cycles
	6.5.1 Initiating Suspend with SUSP#
	6.5.2 Initiating Suspend with HALT
	6.5.3 Responding to a PCI Access During Suspend Mode
	6.5.4 Stopping the Input Clock

	6.6 GXm Processor Serial Bus
	6.6.1 Serial Packet Transmission

	6.7 Power Management Registers

	7.0 Electrical Specifications
	7.1 Part Numbers
	7.2 Electrical Connections
	7.2.1 Power/Ground Connections and Decoupling
	7.2.2 Power Sequencing the Core and I/O Voltages
	7.2.3 NC-Designated Pins
	7.2.4 Pull-Up and Pull-Down Resistors
	7.2.5 Unused Input Pins

	7.3 Absolute Maximum Ratings
	7.4 Operating Conditions
	7.5 DC Characteristics
	7.6 AC Characteristics

	8.0 Package Specifications
	8.1 Thermal Characteristics
	8.1.1 Heatsink Considerations

	8.2 Mechanical Package Outlines

	9.0 Instruction Set
	9.1 General Instruction Set Format
	9.1.1 Prefix (Optional)
	9.1.2 Opcode
	9.1.2.1 w Field (Operand Size)
	9.1.2.2 d Field (Operand Direction)
	9.1.2.3 s Field (Immediate Data Field Size)
	9.1.2.4 eee Field (MOV-Instruction Register Selection)

	9.1.3 mod and r/m Byte (Memory Addressing)
	9.1.4 reg Field
	9.1.4.1 sreg2 Field (ES, CS, SS, DS Register Selection)
	9.1.4.2 sreg3 Field (FS and GS Segment Register Selection)

	9.1.5 s-i-b Byte (Scale, Indexing, Base)
	9.1.5.1 ss Field (Scale Selection)
	9.1.5.2 index Field (Index Selection)
	9.1.5.3 Base Field (s-i-b Present)

	9.2 CPUID Instruction
	9.2.1 Standard CPUID Levels
	9.2.1.1 CPUID Instruction with EAX = 00000000h
	9.2.1.2 CPUID Instruction with EAX = 00000001h
	9.2.1.3 CPUID Instruction with EAX = 00000002h

	9.2.2 Extended CPUID Levels
	9.2.2.1 CPUID Instruction with EAX = 8000000h
	9.2.2.2 CPUID Instruction with EAX = 8000 0001h
	9.2.2.3 CPUID Instruction with EAX = 80000002h, 80000003h, 80000004h
	9.2.2.4 CPUID Instruction with EAX = 80000005h

	9.3 Processor Core Instruction Set
	9.4 FPU Instruction Set
	9.5 MMX Instruction Set
	9.6 National Semiconductor Extended MMX Instruction Set

	Appendix A Support Documentation
	A.1 Order Information
	A.2 Data Book Revision History

