NEC Electronics Inc.

uPD7810/11, 7810H/11H,
78C10/C11/C14
Microcomputers

8-Bit, Single-Chip,
- With A/D Converter

NEC Electronics Inc. | NEC

uPD7810/11, 7810H/11H,
78C10/C11/C14
Microcomputers

8-Bit, Single-Chip,
With A/D Converter

April 1987
Stock No. 500375
©1987 NEC Electronics Inc./Printed in U.S.A.

NEC Electronics Inc.

NEC

Revision History

June 1985

Aprit 1987

Original issue was uPD7810/7811 NMOS
Microcomputers.

Added pPD7810H/11H (NMOS) and
pPD78C10/C11/C14 (CMOS) Micro-
computers. Because this is a major
revision, additions and changes are not
highlighted by marginal arrows.

Preface

The uPD7810/11, 7810H/11H, 78C10/C11/C14 Micro-
computers User's Manual is directed toward design,
field, and applications engineers and assembly
language programmers.

The arganization of each section and appendix of this
manual follows:

Section 1, Introduction, summarizes the micro-
computer's important features, including registers,
on-chip peripherals, instruction set, part differences,
pin configurations, and block diagram.

Section 2, Pin Functions, describes in detail the
function of signals carried by each pin on the
microcomputer packages.

Section 3, Functional Description, gives overview
information about architecture, registers, memory,
an an-chip peripherals.

Section 4, Port Operation, details the micro-
computer ports, port operating modes, control
registers, memaory mapping, and timing for opcode
fetch, memory read, and memory write. This section
also discusses port emulation mode.

Section 5, Interval Timer,describes the organization
and gperation of the on-chip interval timer and
discusses the timer's comparator registers, clock
sources, and gperation.

Section 6, Multifunction Timer/Event Counter, de-
scribes the features, organization, and cperation of
the 16-bit timer/event counter. The section explains
the counter registers, capture registers, and interrupt
control and output control circuitry. it also gives
examples of program code for operating the timer/
event counter.

Section 7, Serial interface, describes the orga-
nization, operation, and programming of the serial
interface. This section also discusses the receiver,
serial mode registers, and transmission modes and
gives programming examples.

Section 8, Analog-to-Digital Converter, explains
the A/D converter's configuration and operating
modes and gives a programming example.

Section 9, interrupt Control Structure, describes
the hardware configuration of the interrupt controller,
lists interrupt priorities and vector locations, details
the functional elements and operation of the structure,
and discusses interrupt wait times.

Section 10, Reset, Halt, Stop, and Siandby, dis-
cusses the microcomputer’'s operating modes. This
section details the standby mode, reset and halt
operations, and software and hardware stop modes
and discusses releasing both stop and halt modes.

Section 11, Instruction Format, lists instruction for-
mats and conventicns for writing code. The section
also discusses program sequencing, addressing
modes, skip operation timing, and overiay
instructions.

Section 12, Instruction Set, lists the instructions
alphabetically with detailegd descriptions and pro-
gramming examples.

Appendix A, Alphabetical List of instructions, givesa
short descripticn of each instruction.

Appendix B, Abbreviated Instruction Set, erganizes
the instructions by function in a table format with
coded information.

Appendix C, Package Drawings, provides dimen-
sional drawings of the four types of micreccomput-
er packages.

NEC Electronics inc.

NE

Section

)]

"

10

kR

12

CONTENTS
Page Appendix
fntroduction 1-1 A Alphabetical List of Instructions
Pin Functions 2-1 B Abbreviated Instruction Set
Functional Description 3-1 C PackageDrawings
Register Set 3-1
Memory ... 3-3 Table
Inputs and Outputs, 3-5 1-1 Differences Between 7810/7811
Timer/Event Counter 3-8 and 78C10/78C11/78C14
Port Cperation 4-1 2-1 PertCControlMode
POt A e 4-1 2-2 External Memory/Port
PortB . 4-2 Caonfiguration
Port C i 4-2 2-3 Maximum External Memory
Port D 4-4 3-1 ModeRegisters,
PortF o 4-5 3-2 Program Status Word Filags
Timing ... 4-6 3-3 Flag Operations
Memory Expansion 4-8 4-1 Port CModeEnable
Interval Timero iel. 5-1 4-2 Reiationship Between 7811, 7811H,
Multifunction Timer/Event Counter 6-1 78C11, and 78C14 Memory Mapping
Organization 6-1 Register {MM) and Function of PF;-PFg
Operation 6-5 Lines (MODE1 =1, MODEO =10}
Programming Examples 6-9 4-3 Values of MODE1 and MODED Signals
Serial Interface, 7-1 and Function of PF4-PFg Lines in 7810,
Organization 7-1 7810H,78C10 ...
Serial Mode Registers 7-2 4-4 16K Mode Addressing
Cperation ... 7-4 4-5 Combinations of MODEO and MODE1
Prograrmmming Example 7-9 Signals and Corresponding Memory
Analog-to-Digital Converter 8-1 Configuration for ROMIess Parts
Configuration 8-1 6-1 Setting the Interrupt Request Flag
Operation i, 8-2 6-2 Clearingthe Upcounter Based on Cl and
FProgramming Example 8-4 TO Signals
Interrupt Controf Structure 9-1 6-3 Example of Program Code for
Interrupt Sources g-1 Programmable Waveform Output
Functional Elements 9-1 6-4 Example of Program Code for
External Interrupt Sampling 9-4 Initialization Phase of Single-Fulse
SOFTI Instruction Interrupts 9-5 Output Example
interrupt Masking 9-5 6-5 Example of Program Code for INTEIN
Summary of Operation 9-6 interrupt Phase of Single-Pulse
Interrupt Wait Times 9-8 Qutput Example
Multilevel Nesting 9-8 6-6 Example of Program Code for INTE?
Reset, Halt, Stop, and Standby 10-1 Interrupt Phase in Single-Pulse QOutput
Operation, AllParts 10-1 Operation
Cperation, 7810/10H/11/11H 10-3 7-1 Using Timer Count Values to Set Up
QOperation 78C1Q/C11/C14 10-4 BaudRates,
instruction Format 111 7-2 Clock Rates and Equivalent Data
Operands ... 11-1 TransferRates
" Program Sequencing 11-3 7-3 Example of Pregram Code for the
Addressing Modes 11-5 fnitialization Phase of Serial Data
Skip Operation Timing 11-8 Transfer ...
Overlay Instructions 11-8 7-4 Example of Program Code for
Instruction Set 12-1 Transmission Phase of Serial Data
Transfer
7-5 Example of Program Code for Receive-

Enable Phase of Serial
Data Transfero..........

4-5

7-13

iii

NEC Electronics Inc.

Table
7-6

8-1

8-2

8-3
9-1
9-2

9-3
9-4

4-10
4-11

CONTENTS (cont)

Example of Program Cecde for INTSR

Interrupt Service Routine of the Serial
Data Transfer Operation
Cscillation Frequencies and
Conversion Rates
Example of Program Code for
Initialization Phase of

ADC Operation
INTAD Interrupt Processing
Example
Interrupt Priority and Vector
Locations
Interrupt Request Register

Interrupt Test Flag Register
Maximum External Interrupt
Wait Time
Status of Output Pins
Operand Symbols
Operand Definitions
Operand Codes _...........iiiiiiiiinnees
Graphic Symbaois

Pin Configuration, 64-Pin Plastic QUIP
or Shrink DIP
Pin Configuration, 84-Pin Plastic
Miniflat
Pin Contiguration, 68-Pin Plastic Leaded
Chip Carrier (PLCC)
Microcomputer Block Diagram
Register Set
Program Status Word
Memory Map
Zero-Cross Detection
Format of Zero-Cross Detection
Registercoviiiiiooiiiiiire e
Port A Block Diagramoveee-.
Mode A Register (MA)
Block Diagram of a Port A
Output Line
Block Diagram of a Port A
fnput Line
Mode B Register {MB}
Mode C Register (MC)
Mode Control C Register (MCC)
Port C Controf Signal Read
Configuration _
Memory Mapping Register (MM}
Mode F Register (MF)
Opcode Fetch Cycle

Page

7-14

8-2

4-1

4-1
4-2

4-3

4-4
4-4
4-5
4-6

Figure

4-12
4-13
4-14
4-15

4-16

6-3

6-4

6-5

Memory Read Cycle
Memory Write Cycle
Memory Mapping for Various External
Memory Capacities of ROM Parts
Example of 4K ROM Expansion of
ROM Part Memory
Setup of Memory Mapping Register for
ROM Part Memory Expansion
Example
Memory Mapping in ROMless Paris for
Various Memory Configurations
Block Diagram of interval
Timer Circuit
Timer Mode Register ...
Block Diagram of Multifunction
Timer/Event Counter
Block Diagram of Qutput Conirol
Circuit (Showing COy Output)
Timer/Event Counter Mode
Register (ETMM)
Timer/Event Counter Output
Mode Register
Setup Sequence for Timer/Event
Counter ... o
Setting Up ETMM fer Interval Timer
Operation
Timing Sequence of Interval Timer
Operation of Timer/Event Counter ...
Setting Up ETMM for Event Counter
Operation
Timing Sequence for Event Counter
Operation of Timer/Event Counter
Setting Up ETMM for Frequency
Measurement Operation
Timing Sequence for Frequency
Measurement Operation of Timer/Event
Counter ...,
Setting Up ETMM for Pulse-Width
Measurement Cperation
Timing Sequence for Pulse-Width
Measurement Operation of Timer/Event
Counter ...
Example of Setting Up EOM for
Programmable Waveform Output on
COyp
Example of Setting Up ETMM for
Programmable Waveform Output on
CQCqg

_ Timing Sequences for Programmable

Waveform Output Example

6-2

6-3

6-4

6-5

6-6

6-6

6-7

6-7

6-7

6-7

6-8

6-8

6-9

LU LiEul UINLS L.

-,

AT @

Figure

6-17

6-18

6-19

6-20

6-21

6-22

6-23

6-24

B6-25

6-26

6-27

6-28

6-29

CONTENTS (cont)

Flowchart of Step Sequences in
Programmable Waveform Cutput
Example
Setting Up ETMM and EOM for
Programmable Waveform Cutput
Example
Specifying PCg for COqg Output in
Programmable Waveform Qutput
Example
Setup of ETMM for Programmable
Waveform Output Example
Signal Timing for Single-Pulse Qutput
Example
Flowchart of Initialization Phase of
Single-Pulse Output Example
Specifying PCs and PCg for
Single-Pulse Cutput Example
Setup of Interrupt Mask Register for
Initialization Phase of Single-Pulse
QOutput Example
Setup of ETMM for Initialization Phase
of Single-Pulse Qutput Example
Flowchart of INTEIN Interrupt Service
Routine in Single-Pulse Cutput
Example
Setup of ETMM and ECM for INTEIN
Interrupt Phase of Single-Pulse Output
Example
Setup of Interrupt Mask Register for
INTEIN Interrupt Phase of Single-Pulse
Qutput Example
Fiowchart of INTE1 interrupt Service
Routine in Single-Pulse Qutput
Example
Block Diagram of Serial Interface
Transmitter ...
Serial Mode High-Byte Register
Serial Mode Low-Byte Register
Format of Serial Mode Registers in
Asynchronous Mode
Data Format in Asynchronous Mode ..
Format of Serial Mode Registers in
Synchronous Mode
Data Transfer Timing in Synchronous
Mode
Format of Serial Mode Registers in 1/0
Interface Mode
Data Transfer Timing in 1/0 interface
Mode ...
Interconnection Diagram for Serial Data
Transfer Example

Page

6-9

6-10

7-8
7-8

7-9

Figure

7-11

7-12

8-5

8-6

8-7

8-8

Page
Flowchart of Initialization Phase of
Serial Data Transfer Example 7-10
Setup of Serial Mode Registers for
Initialization Phase of Serial Data
Transfer Example 7-12
Setup of TMM for Initialization Phase of
Serial Data Transfer Example 7-1
Port C Specification for Initialization
Phase of Serial Data
Transfer Example 7-11
Enabling Transmission in Serial Data
Transter Example 7-11
Flowchart of Transmission Phase of
Serial Data Transfer Example 7-12
Flowchart of Receive-Enabie Phase of
Serial Data Transfer Example 7-12
Setup cof Interrupt Mask Register in
Receive-Enable Phase of Serial Data
Transter Example 7-13
Flowchart of INSTR interrupt
Processing Phase of Serial Data
Transfer Example 7-13
Block Diagram of Analog-to-Digital
Converter 8-1
A/D Channel Mode Register 8-2
Format of A/D Channel Mode Register
inScan Mode ..., 8-3
Format of A/D Channel Mode Register
inSelectMode 8-3
Memory Map of ADC Programming
Example ... 8-4
Flowchart of Initialization Phase of A/D
Conversion Operation B-4
Setup of A/D Channel Mode Registerfor
ADC Operation Example 8-5
Flowchart of INTAD Interrupt
Processing Phase of ADC Operation
Example ..., 8-7
Block Diagram of nterrupt
Control Block 9-1
Interrupt Mask Register 9-3
Timing for Interrupt Sampling
Pulses ..., 9-4
Interrupt Operating Procedure 9-6
Flowchart 1: Interrupt Processing
Sequence ... §-7
Flowchart 2: Interrupt Processing
SEQUENCE ..ot 9-7
Flowchart of Processing Sequence for
Three Levels of Interrupts 9-8

NEC Electronics Inc. NEC

CONTENTS (cont)

Figure Page Figure Page
10-1 Halt Mode Release Timing 11-1 Execution of JB, CALB, or JEA

by RESET ... 10-2 ‘ Instruction ... 11-3
10-2 Hait Mode Reiease Timing by Interrupt 11-2 Execution of CALL, JMP, or

With Interrupts Enabled 10-2 CALF instruction 11-4
10-3 Halt Mode Release Timing by Interrupt 11-3 Execution of the CALT Instruction 11-4

With Interrupts Disabled 10-3 11-4 Execution of the JR instruction 11-4
10-4 Standby Mode for 7810, 7810H, 7811, 11-5 Execution of the JRE Instruction 11-5

and 7811H ... 10-3 C-1 64-PinPlastic QUIP CA1
10-5 Timing Sequence for Standby C-2 64-Pin Plastic Shrink DIP (750 mil) C-1

Operation ... 10-4 C-3 64-Pin Plastic Miniflat C-2
10-68 Standby Modes for 78C10, 78C11, and C-4 68-Pin Plastic Leaded Chip

T8O i 10-4 Carrier {PLCC) C-3
10-7 Software Stop Mode Release Timing '

Using RESET 10-5
10-8 Software Stop Mode Release Timing .. 10-5
10-8 Releasing Hardware Stop Mode Using

STOP Signal ...l 10-6
1010 RESET Low Before STOP

GoesHigh ... 10-7
10-11 RESET After STOP Goes Low

toHigh ... 10-7

Vi

NEC

Section 'ﬂ
introduction

Description

The uPD7810/7811, uPD7810H/7811H, uPD78C10/
78C11, and gPD78C14 are advanced high-end, stand-
alone microcomputers implemented from a powerful
enhancement of basic 8-bit 7800 architecture. These
microcomputers combine the consistent and simple
8-bit 7800 architecture with the processing capability
of a 16-bit ALU to provide superior speed and efficiency
in a straightforward, easy-to-use configuration. In
addition to containing all the functional blocks required
for acomplete integrated microcomputer, these devices
have unique peripheral capability usually assigned to
external components. This ability allows the micro-
computers to have extensive processing capability ina
single self-contained unit.

Features

O Complete, stand-alone microcomputer on a single
chip
OO 8-bit external/16-bit internal bus architecture
fabricated using MOS silicon technology
0O Instruction time
-1 us shortest instruction time (7810/7811)
— 0.8 us shortest instruction time (7810H/7811H,
78C10/78C11, and 78C14)
0 Clock
~ 12-MHz clock, 0.25-us T-states (7810/7811)
-~ 156-MHz clock, 0.20-us T-states
(7810H/7811H, 78C10/78C11, and 78C14)
O 256-byte RAM
0O ROM
— 4K bytes (7811, (7811H, and 78C11)
— 16K bytes {78C14)
O ROMless version (7810, 7810H, and 78C10)
O Direct addressing of up to 64K bytes
O 40 port lines, plus four edge-sensing inputs
£J Comprehensive, powerful instruction set
— 16-bit data transfers
- 18-bit arithmetic and logic operations
— 8-bit x B-bit multiply operation with 16-bit
results
— Divide operation (8-bit divisor, 16-bit dividend,
16-bit quotient, B-bit remainder}
— 16-bit shift and rotate operations
— 16-bit index operations
{1 12 addressing modes
{1 8-bit and 16-bit data manipulation capability
{] Three external and nine internal interrupts
(O Multileve! subroutine nesting limited only by
memory size
[Seven-level prioritized, vectored interrupt structure
0 Full-duplex USART
[J Eight-channel, 8-bit A/D converter
(3 Two programmable 8-bit interval timers

Ct Multifunction 16-bit timer/event counter

O Zero-cross detection with two inputs

O 8085A-like bus

[1 Standby function

O Single +5-volt power supply

00 Available in 64-pin plastic QUIP, 64-pin plastic
shrink DIP, 64-pin plastic minifiat, and 68-pin
PLCC

Registers

The dual register set organization consists of the folfow-
ing main and alternate registers.

® 8-bit accumulator

* 8-bit vector register

16-bit extended accumuliator

& 8-bit general-purpose registers (six)

These registers and an 8-bit program status word
(PSW]}, 16-bit program counter, 16-bit stack pointer,
16-bit arithmetic fogic unit (ALU), and a 16-bit internal
data bus constitute the main functional units of the
7810/7811, 7810H/7811H, 78C10/78C11, and 78C14.
The 8-bit registers can be used individually or paired as
16-bit registers, enabling operations on 8-and 16-bit
data. The dual register set organization permits swap-
ping data between registers and their alternates for
operation in foreground/background mode. The micro-
computers each contain 40 {/O port lines.

Peripherals

Peripheral functions include a full-duplex USART,
eight-channel/8-bit A/D converter, 16-bit multifunction
timer/event counter, two programmable 8-bit interval
timers that may be paired as a single 16-bit timer or
used as two discrete 8-bit timers, and two zero-cross
detection inputs.

Instruction Set

A powerful, comprehensive instruction set features 16-
bit data transfers, 16-bit arithmetic and logic operations,
16-bit shift and ratate operations, 8-bit by 8-bit multiply
operations with 16-bit results, divide operations (16-bit
dividend, 8-bitdivisor, 16-bit quotient, 8-bit remainder),
and 16-bit index operations. Operating with a 12-MHz
clock, a timing state (T-state) equals one 0.25-us ¢3
clock period (frequency of @3 = fyral/3). Multiply
operations require 8 us t0 execute; divide operations,
less than 15 us. Programming efficiency and flexibility

are turther enhanced by 12 addressing modes.

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Additional features include a seven-leve! prioritized,
vectored interrupt structure, 256 bytes of RAM, 4K
bytes of ROM (7811, 7811H, 78C11) or 16K bytes
(78C14), direct addresing of up to 64K bytes of memory,
multilevel subroutine nesting limited only by memory
size, a standby function, and a single +5-volt power

supply.
Part Ditferences

The following describes differences among the various
parts.

(1) 7810 is the same as 7811 except 7810 does not
contain ROM.

(2) 7810H/7811H (15 MHz) is the same as 7810/7811
{12 MHz) except for the maximum crystal input
frequency.

(3) 7810/7811 and 7810H/7811H are NMOS parts.
(4) 78C10/78C11 and 78C14 are CMQOS parts.

(5) 78C11 (4K-byte ROM) is the same as 78C14
(16K-bhyte ROM) except for ROM size.

(6) 7811, 7811H, 78C11, and 78C14 are "ROM parts.”
(7) 7810, 7810H, and 78C10 are “ROMless parts.”

Table 1-1 shows differences between 7810/7811 and
78C10/78C11/78C14. The various sections of this
manuaj discuss these differences in detail.

Pin Configurations

Figures 1-1, 1-2, and 1-3 are the package pin configu-
ration drawings. They apply 1o all versions of the
microcompduter.

Block Diagram

Figure 1-4 is the block diagram of the 7810/7811, 7810H/
7811H, 78C10/78C11, and 78C14 microcomputers.

Table 1-1. Ditferences Between 7810/7811 and
78C10/78C11/78C14
Features 78C10/78C11/76C14 1810/11

Instruction set

159 instructions
{addition of STOP
instruction)
Additional sr register
operand {ZCM)

HALT instruction

158 instructions

HALT instruction

{12 states) {11 states)
Standby modes
Halt made Yes Yes
Software stop mode Yes No
Hardware stop mode Yes No
Backup RAM 256 bytes 32 bytes

Separate backup
power supply for

7811 RAM.
AfD converter Power down capability. No power-down
When Vapgr is reduced capability
to 0V, A/D converter
power is turned off,
reducing power during
standby modes.
Noise protection
NMI 3 w5 (typical} 12 states
Analog delay circuit
remeves noise
independent of internal
states.
RESET 3 us (typical) 20 states
sTop 500 ns (typical)
Zero-cross Yes No
bias contrat Bias on or off by writing
to ZCM register
State of pins High impedance High or low

at reset (ROMiless parts)

N’l!‘c Seciion 1
Introduction

Figure 1-1. Pin Configuration, 64-Pin Plastic QUIPor Figure 1-2. Pin Configuration, 64-Pin Plastic Minifiat

Shrink DIP
Pag 11 " sa[3 vee Ivoo) (8
pac]2 637 vop [§TOP) £1%
ra:cl3 sz o PiffIgsfessss
:::E: :;g:z: ONO00000000000,
-+ - @ w1 ™
pas (6 $9 [PD4 Pasd 1% “ ® “ “ Dro:
PAG]7 58 [PD2 Paz [] POy
PAT] & 57 [PDz P8y (] O [PDa
PBo]9 56 [PDy PBy [4 as [0} PFy
PB1[] 10 55 [J PDg PBz [[YPFg
PB2 I M 54) PFy PB3 (]] PFs
PB3[] 12 53 [PFg PRa] 7 a5 [eFq
PBa] 13 s2 [PFs #Bs [[PFa
Pes] 14 517 PFq PRg [] PF3
PEg] 15 50 [PF3 ray [] 10 a2 [9Fq
Pez] 16 48 [PF2 PCo/TxD [[]] PFo
PCo/txD] 17 48 [PFy pC1/RxD [] 1 aLE
PC1/RxD [] 13 47 [1PFg PC2/5CK [] 13 39 I WR
PC/SCK [] 19 46 [ALE PCATI/INTE [] RD
pCa/TVINT2 [] 20 as [Wi PCa/TO O ol ;‘:,%cn]
PCa/TO [21 44 [RD PCy/CI[F 16 36 [1 VaRer
pCs/CI [22 43 ['] AV [AVDDI PCe/CO0 O} 3 an7
PCe/COp [] 23 42 [Yaner PCr/CO1] [] ANG
PCT/CO1 [] 24 41 [ANT NN o o @ @ 33 [1 ANS
M] 25 40 [7] AN S o o o J
N1 0] 28 207 aNs e e i~
MODE1 [27 38 [ANG CHug=>gpyrzzzzi
RESET [28 37 {1 AN3 T Qg <
MODED [] 29 36 {] AN2
230 a5 71 ANt Mote: | | forpPDTACTO, TACTL, and TAC 14
X1 3a] ano e
vss []32 331{] Avss .
Note: [| tor uPDTHC10, 78C11, and 78C14
BI-DCAATEA

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Figure 1-3. Pin Conliguration, 68-Pin Plastic Leaded Chip Carrier (PLCC)

MNote:

-
v D oo owow oo N o W 8‘;: E‘JF
PPurbrurrErdEgTse £%
NOO0onOAnnnOnonnoon
- S - - < > B - B S . 4
1c] e aa[] aNg
PD2 [] 62 42 [[] ANS
PD3 [] 63 a1[] AN4
PDa4 [] 64 an [aN3
PDsg [165 39 [ANZ
PDg [66 38 [ANT
POy [] 67 37 [ANO
Vpp [STOP} [] 68 6] aves
vee vooi ({1 O 3517 vss
Pap]2 34 [x1
PAT[]3 axe
PAz 4 32 [l moneEa
pag s 31 |7 AESET
Pag []6 30 [1 MODE1
PAs (] 7 29 [TINTY
pag []8 28 [1 NMI
ic]s 27 [PCr/COn
\8roosnrer22g 02388
0 I O 40 I N I O
TEESfEfEEagE 208
o5 €98
- Y a
s

] tor uPDTBC10, 78C11, und 7RC14

B3-004 3808

Section 1
Introduction

Figure 1-4. Microcompuler Block Diagram

15
X1 O— ey
Osc &
¥ o—— = .
16 o S pF,—Pana15--Aas
Latch - a
PCg/T%0 Ot——— K] A Inc./Dec. “
PCy/AXD e] Serial 1O PC
SP
PC 3! 5K Gt 12
EA
ki A]
o e | 7
b E ’ 8 5 PDy7 - PDytAD7 — ADg
— Program [
NM| C————*{ [nterrugt “ H L _ Memaory
Cantrol EA' "| 4K Byte
[
1NT1 v Iy wPD7EIT
T I Alt, Dala
8 G.A. wPD7BC14 Memory ""|
o E’ (16K Byte) (256-byte)
H' L'
5 7~ PCy
PCy/TIHINTZO— [o— 2N =
Timer
P4 TO Ol < 8 ’> -
v \/
Internal Data Bus ”
P/t Timer!
P! COg O Event /\ /\ -
e t -
PC7/CO; O] e g 1) |6 81 |16 8 5 pBT_PBD
o
AND-ANT lnst. Reg. ’ |
VAREF o _ o] AD
[A¥DD] Converter [
[ME—
A\"cco_“h_._ — Inst.
AVgs Decoder <
-
S S —
Read/Write System Siandby
Contral Controi Control
$ ¢
_ . 0—
AR WR ALE MODEIMODEC RESET V¥pg Veg Vss
(STOP} (Vpp!
Notae: [| for pPD7EC10, TBCT1, 78C14
43-D016SK

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

NEC

Section 2
Pin Functions

This secticn describes the functions of signals carried
by each 7810/7811, 7810H/7811H, 78C10/ 78C11, and
78C14 pin. The descriptions apply to ail parts unless
otherwise specified.

Port A [PA7-PAg]

These eight lines constitute port A, a programmable
8-bit 1/0 port with a latched, three-state output. Each
line may be used independently as an input or an
output. Anyline can be placed ininput or output mode
by the mode A register {MA). Writing a one to the
corresponding bit of register MA sets the port line to
input mode; writing & zero sets the line to output. A
reset places all pert A lines in input mode by writing
ones to all bits of the MA register.

Port B [PB7-PBy]

These eight lines constitute port B, a programmable
8-bit {/0 port with a latched, three-state ocutput. Port B
operates identically to port A, using mode register MB
to set lines o input or output.

Port C [PC7-PCy)

These eight lines constitute port C, a programmable
8-bit {/0 port with a latched, three-state output. Port C
operates in two modes: port mode and control mode.

in port mode, port C operates identically to pori{s A and
B, using mode register MC to set lines to input or
output. In control mode, eachline has a set function as
a specific control signal. Each line can be inde-
pendently set by the mode control C register (MCC) to
operate in either port mode, by setting the corre-
sponding bit of MCC to 0, or control mode by setting
the correspending bit to 1. A reset places all port C
lines in port mode, with all lines designated as input
{(MCC set tc all 0's, MC set to all 1's).

The function of each port C line in control mode is
shown in table 2-1.

Port D [PD7-PDyg]

These eight lines constitute port D. Port D operates as
either multiplexed data/address lines or as a program-
mable 8-bit 170 pert, depending on whether or not
external memory is used.

When no external memory is connected, port D is a
programmable 8-bit I/0 port with a latched, three-state
cutput. It may be enabled as an 8-bit wide output port
or input port or as multipiexed data/address lines by
the memory mapping register {MM). Unlike ports A, B,
C. and F, the individual lines of port D cannoct be
independentiy enabled as input or output.

Table 2-1. Port C Conlrof Mode

Symbol Function

Cp Serial data gutput line {TxD).

PC4 Serial data input line (RxD).

PG Serial clock 1/0 line [§§E}. Provides an output clock
for the internal clock mode or an input line for an
external clock mode.

PC3 Timer input fine (T1}, interrupt request line (INT2), or
one of two zerg-cross detect inputs for an ac signal.

PCq4 Timer output line (TO}. Outputs a square wave from
Timer 0, Timer 1, or the ¢3 internal clock,

PCs Counter input line (Cl). Provides an external clack
pulse input to the timer/event counter.

PCg-PC7 Counter output tines {COy and CQ4, respectivaly).

Programmabie outputs from the timer/event counter.

In the 7811, a reset initializes port D as an 8-bit input
port {all lines go to a high-impedance state). For the
7810, 7810H, and 78C10, a reset initializes port D as
eight multiplexed data/address lines.

Port F [PF7-PFg]

These eight lines constitute port F. Groups of lines of
port F can be enabled as either port lines or address
lines (depending on the amount of external memory
being used) by writing to the memory mapping register
(MM]).

When 256 or fewer bytes of externat memory are used,
port F can be used as a programmable 8-bit 1/0 portin
which each individual line may be designated in-
dependently as an input or an output by programming
the mode F register. The three-state ocutputs are
latched.

When more than 256 bytes of external memory are
used, specific lines become dedicated address lines as
shown in table 2-2. Any port F iine not used as a
dedicated address line in a particular memory configur-
ation is free to be used as a programmable port line, as
designated by the mode F register. When more than
16K of external memaory is used, port F becomes the
upper half of a 16-bit address bus (the lower half is
port D).

Inthe 7811, 7811H,78C11,and 78C14, aresetinitializes
port F as an B-bit input port {(all lines go to a high-
impedance state). Writing to the MM register recon-
figures portF to the appropriate combination of address
and I/0 lines.

2-1

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Table 2-2. External Memory/Port Conliguration

External Memary Porl Configuralion

None PD7-POg 170 port lines
PFy-PFg 170 port lines

1-256 bytes PO7-PDy Multipiexed data/address lines (2)
PFz-PFg 110 port lines

1-4096 bytes PO;-PDg Muitiplexed data/address lines (2}
PFa-PFg Address lines (2]
PFy-PFq {40 port lines

1-16,384 bytes PD;-PDg Multiplexed data/address lines {2)
PF5-PFg Address lines (2}
PF7-FFg t/0 port lines

1-65,536 bytes (1) PDy-PDg Multiplexed data/address lines {2)
PF7-PFg Address lines

Notes:

(1) 48K bytes maximum memory expansion for the 78C14; 60K bytes
for the 7811, 7811H, and 78C11; 64K bytes maximum for the
7810, 7810H, and the 78C10.

(2] PF?-PFU = address lines AB15-AB3
PD7-PDg = address lines AD7-ADg

Inthe 7810, 78104, and 78C1Q, the mode pins (MODEOD
and MODE1) determine the memory configuration.
The appropriate number of port F lines required to
support the memory configuration are initialized as
address lines, and the remaining fines are initialized as
input port lines.

Nonmaskable Interrupt [NMI]

The nonmaskable interrupt is a faliing-edge, Schmitt-
triggered input. Itis always acknowledged at the end of
the current instruction, regardiess of the status of the
mask register or interrupt enable flip-fiop. NMIrequires
an external pullup resistor.

Interrupt Request 1 [INT1]

This input line is the maskable interrupt request INT1.
It is rising-edge triggered, and has a priority level of 3.
This line is also one of two zero-cross detection inputs.

Reset [RESET]

This active-low, Schmitt-triggered input signal initial-
izes the micraocomputer. On reset, all ports are desig-
nated as input ports (on the 7810, 781CH, and 78C10,
port D is designated as an 8-bit address/data bus}, and
the WR and RD signals go high. Program execution
begins from address 0000H upocn removal of the
RESET input signat.

Mode 0 [MODEDOD]

This line should be grounded in the 7811, 7811H,
78C11, and 78C14. In the 7810, 78104, and 78C10, this
line is used in conjunction with MODE1 to specify the
maximum external memory capacity. MODEQ requires
an external pullup resistor. When MODEQ is pulied up,
it is used to output the IO signal during a special
register reference.

The maximum value of the pullup resistor is critical. It
is specified in the data sheet, and the value is a function
of the crystal frequency and the capacitance at the
input pin.

Mode 1 [MODE1]

This line should be puiled up in the 7811, 7811H,
78C11, and 78C14 and is used in conjunction with
MODEQ to specify whether the part has ROM or is
ROMIess. In the ROMIess parts, MODEQ and MODE1
specify the maximum external memory capacity as
shown in table 2-3.

Table 2-3. Maximum External Memory

MOTE | MCOE D Exiernal Mempry
1 0 7811, 7811H, 78C11, and 78C14. Memory
. mapping register determines amount of
external memary.
0 0 7810, 7810H, and 78C10 with 4K bytes
memory (address 0-4095)
0 1 7810. 7810H, and 78C10 with 16K bytes

memary {address 0-16,383)

7810, 7810H. and 78C10 with 64K bytes
memaory {address 0-65536)

When puiled up, MODE1 als¢ cutputs the M1 {machine
cycle 1) signal to indicate the first cycle of each
instruction. This signal is asserted during the opcode
fetch phase of an instruction.

Thie maximum value of the putlup resistor is critical. It
is specified in the datasheet, and the value is a function
of the crysta! frequency and the capacitance at the
input pin.

Crystal 1 [X1]

Thistine is one of two crystal connections for the internal
clock-generator circuit. It may alsobe used asaninput
line for an external ciock source.

NEC

Section 2
Pin Functions

Crystal 2 [X2]

This line is one of two crystat connections for the
internal clock-generator circuit.

Ground [Vss]

This line is the ground potential.

Analog Ground [AVgs]

This line is the ground terminal for the resident analog-
to-digital converter.

Analog Inputs [ANO-AN7]

These eight lines are the analog inputs to the resident
A/D converter. Lines AN4-AN7 may also be used as
four edge-sensing inputs. Whenever a falling edge is
sensed, a test flag (AN4-AN7) is set.

Analog Reference Voltage [VaAreF]

This tine is the reference voltage input for the resident
A/D converter.

Analag Power Supply [AVcci

This is the power supply for the resident A/D converter.
Note that the symbol for the 78C10/78C11/78C14
is AVpp.

Read [RD]

This active-low line strobes data from external memory
or I/O devices onto the data bus. RD is asserted 1o
indicate that the CPU is requesting data from external
memory or i/0 devices. The line stays high for ali other
conditions. :

Write [WR]

This active-low line strobes data from the data bus to
external memory or 1/0 devices. WR is asserted to
indicate that the data bus holds valid data. The line
stays high for all other conditions,

Address Latich Enable [ALE]

This line strobes the address on address lines PDy-PDy
(AD7-ADg) and the necessary lines of PF7-PFg (AB45-
ABg) to external memory, enabling access of external
memory. ALE is asserted when the address bus holds a
valid external memeoery address.

Power Supplies [Veoc and Vpp]

The 7810/7811 and 7810H/7811H have two +5-volt
power inputs. Vg is the primary supply. Vpp supplies
power to the entire 256-byte resident RAM in normal
mode; in standby mode, it maintains the contents of the
upper 32 bytes only.

The 78C10/78C11 and 78C14 have one +5-valt power
input and it is 1abeled Vpp.
Stop [STOP|

In the 78C10/78C11 and 78C14, this is the control
signal for the hardware stop mode. A low level on this
Schmitt-triggered input stops the oscillator,

2-3

LPD7810/11, 7T810H /118
78C10/C11/C14

I

2-4

NEC

Section
Functional Description

3

REGISTER SET

The microcomputer architecture is organized with a
dual register set (figure 3-1), which includes a main
register set and an identical alternate register set. This
dual register set includes a pair of 16-bit extended

accumulators (EA and EA'), a pair of 8-bit accumulators '

(A and A'), a pair of 8-bit vector registers (Vand V'), and
six pairs of 8-bit general-purpose registers (8, G, D, E,
H, L ,and B, C, D' E, H, L.

The 8-bit general-purpose registers may be used
independently or may be coupled to function as 16-bit
registers {BC, DE, HL, or B'C’, D'E’, "H'L").

An 8-bit program status word {PSW), a 16-bit stack
pointer (SP), and a 16-bit program counter (PC)
complete the register set.

A 16-bit ALU, 16-bit internal data path, and the 16-bit
program counter and stack pointer—plus the ability to
pair the general-purpose registers into 16-bit entities—
permits ful! gperation of instructions using either 8-bit
or 16-bit data.

Powerful 16-bit processing includes 16-bit data trans-
fers, 16-bit shift and rotate operations, 16-bit index
operations, 16-bit arithmetic and logic operations, 8-
bit by 8-bit multiplies with 16-bit results, and divide
operations with 8-bit divisar, 16-bit dividend, 16-bit
quotient, and 8-bit remainder. In addition, the ability to
access an alternate set of registers permits simplified
foreground/background programming.

Accumulator [A] and Extended Accumulator [EA]

The microcomputer has an accumulator-oriented archi-
tecture in which most arithmetic and logic operations
are processed via the accumuiator {8-bit operations
using accumulator A and 16-bit operations using
extended accumulator EA). The contents of the two
accumulators, A and EA, can be exchanged with their
alternate registers, A’ and EA, using the EXA instruction.

Vector Register [V]

The vector register can selecta 256-byte work space in
memory. The higher-order 8 bits of the address are

Figure 3-1. Register Set
7 0
PSW
15 0
PC
SP
15 0 "]
EA
7 0 7]
v A — Main
8 c
o E
H L
15 [—
| €A |
7 o 7 0
v A — Alternate
a c
D £
H L
49.0015308

3-1

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

specified by the contents of the vector register. The
lower-order 8 bits of the address are specified in the
immediate data of the instruction. The contents of V
and V' may be exchanged using the EXA instruction.

General-Purpose Registers [B, C, D, E, H, L]

The general-purpose registers, in conjunction with the
accumuiator, perform the majority of arithmetic and
logic operations. Eight-bit operations use accumulator
A and individual general registers; 16-bit operations
use extended accumulator EA and 16-bit general
register pairs. The main register set and the alternate
register set can be used for interrupt processing. The
contents of one set may be exchanged with the other to
facilitate programming and to increase throughput.

The general-purpose registers may be used individually
or paired as 16-bit entities as follows: BC, DE, HL or
8'C’, D’'E’, H'L'. Either of register pairs DE or ML (or
D'E’ or H'L’Y can function as a base register for use in
register indirect addressing, which includes the
autoincrement, autodecrement, and double auto-
increment addressing modes, as well as the base and
base-index addressing modes {see Section 11).

The contents of the main and alternate set of general-
purpose registers may be exchanged using the EXX
instruction. The EXH instruction can be used to
exchange the contents of only the ML and H'L' registers.

Program Counter [PC]

The 16-bit program counter holds the address of the
next instruction to be executed. Upon instruction
execution, the program counter is automatically in-
cremented by the number of bytes contained in the
instruction being executed. When the instruction is a
branch instruction, the program counter is updated by
either the immediate data of the instruction or the
contents of a specified register. A reset clears the
program counter, beginning pregram execution from
address 0000,

Stack Pointer [SP)

The 16-bit stack pointer holds the address of the initial
position of a reserved LIFQ stack area in memory. The
stack pointer is decremented by a subroutine call or
PUSH instruction, or by a vector to an interrupt service
routine. It is incremented by a return from subroutine
or POP instruction. The stack pointer ailows sub-
routines to be nested up to the limit of memory.

Control Registers

In addition to the basic register set, there are several
special mode registers, which cantrol such functions as
port/external memory configuration and operating
parameters for the peripheral interfaces. These mode
registers and their functions are listed in table 3-1.

Table 3-1. Mode Registers

Register Symbo Function

Mode A y MA Designates each line of port A independently as either input or cutput.

Mode B Mg Designates each line of port B independently as either input or cutput.

Mode control C MCC Designates either port mode or contral mode independently tor each line of port C.

Mode C MC Whien register MCC designates a line of port C as a port ling, register MC designates it as
either input or output.

Memory mapping MM 7811, 7811H, 78C11, and 78C14 only. Selects the part or external memory configuration for
ports D and F. Enables or disables access to the internal RAM.

Mode F MF Designates each line of port F independently as either inpirt of output.

Timer mode MM Designates the operating parameters for the TIMERD and TIMER1 8-bit interval timers.

Titmerfevent mode ETMM Designates the parameters for the 16-bit multifunction timer/fevent counter.

Timer/event counter output mode EOM Designates the parameters for the output control circuit of the 16-bit multifunction
timerfevent counter,

Serial mode {high byte/low byte) SMH/SML Designates the operating parameters for the serial interace.

A/D channel mode ANM Designates the operating parameters for the eight-channel, 8-bit anafog-to-digital converter.

interrupt mask {fow byte/ MKL/MKH Designates which interrupts are masked and which are not.

high byte)

Zero-€ross mode Y Selects bias circuitry for ac zero-cross detection.

3-2

NEC

Section 3
Functional Description

Program Status Word [PSW]

The 8-bit PSW (shown in figure 3-2) contains the flags
that indicate the status of the processor immediately
following an instruction execution. The contents of the
PSW are automaticaily saved on the stack in the event

of an interrupt {internal, external, or SOFTI} and are’

restored by the RETI instruction (see Section 9). A
reset clears al! bits of the PSW.

Table 3-2 describes the flags in the PSW; table 3-3 lists
all the intructions that affect the flags.

Figure 3-2. Program Status Word

7] 5

=]

1 a
OICV]

43.0041531A

4 3 2
HC[L‘IlLDl

Table 3-2. Program Status Word Flags

Bit Fiag
o Y

Description

The carry (CY) fiag is set whenever a carry from
bit 7 or bit 15 to the GY bit, or 2 borrow from the
¥ bit to bit 7 or bit 15, occurs. This flag is cleared
tor all other conditions.

1 : This bit is always zero and is not used.

The overlay zero {LO) flag is set whenever an MV
L,byte or LXI H,word instruction s executed.
Subsequent MV! L,byte or LXI K,word instructions
are skipped until another type of instruction is
executed. L0 is cleared for all other instructions.

The gverlay one (L1) flag is set whenever an MVi
A byte instruction is executed, and cleared for all
other instructions. When L1 is set, subsequent
MVi A byte instructions are skipped until another
type of instruction s executed.

The hall-carry (HC) flag is set whenever a carry
from bit 3 occurs during an operatien, or
whenever a borrow from bit 4 to bit 3 occurs. This
1lag is cleared for all other conditions.

The skip (SK) flag is set whenever a skip
conditton accurs, and ¢leared for ail other
conditions.

The zerg {7) flag is set whenever an operation
result equals zero, and cleared for all other
conditions.

7 This bit is always zero and is not used.

Arithmetic and Logic Unit [ALU}

The 16-bit ALU performs the arithmetic and logic
computations required to execute an instruction.
Because of its 16-bit structure, it enables processing of
16-bit data as wel! as 8-bit data.

MEMORY

The 7811, 7811H and 78C11 contain 256 bytes of RAM
and 4K bytes of ROM (the 7810, 7810H, and 78C1C are
ROMIless) and feature direct addressing of up to 64K
bytes of memory. External memory may be configured
up to a maximum of 64K bytes for the 7810, 7810H, and
78C10 and 60K bytes for the 7811, 7811H, and 78C11.
The 78C14 contains 256 bytes of RAM and 16K bytes of
ROM.

in the 7811, 7811H, and 78C11, addresses 00C0H 10
OFFFH are reserved for the resident ROM, and
addresses FFOOH to FFFFH are reserved for the internal
RAM. in the 78C14, addresses 0000H-3FFFH are re-
served for the resident ROM and FFOQH-FFFFH are
reserved for the internal RAM. Figure 3-3 shows the
memaory map.

Figure 3-3. Memory Map

BOQ0H
Reset/Standby
J_ Imternal ROM
4,056 Bytes . od4H IAQQ
T tuPO?811, 7811H, T
and TBC11)
caH IRGA
OFFFH
1000H
Internal ROM
16,384 Bytes 104 IRG 2
{(LPO7EC14)
3FFFH
4000H
Exlernal
Memory 1EH IRQ 3
1,184 Bytes
(POTE11, 7O1TM,
and 7BC11)
:- |
48,895 Bytes | ZcH IRG 4
(nPDTECH4)
FEFFH
FFOOH
{nternal RAM
256 Bytes 28H Q5
FFFFH
EOH iRG &

3
[

4

82H Low ADDR
B3H High ADDA

L.
ET Low ADDA oo
81H High ADDR -

Call"lrahle

y
13
y

BEH Low ADDR
1=H
BFH High ADDRA

COoH
L.
User's Area L.
o (WPD7B11, 7E1TH. 5
ang 7EC11)
OFFFH
User's Area
{nPOTRC14)
IFFFH

43-0015328

3-3

uPD7810/11, 7810H/11H, C
78C10/C11/C14 N E

Table 3-3. Flag Operations

Operations PSWg PSWy PSW, PSW3 PSW; PSW
Repister/Memory Immediate Skip Fi SK #C L1 Lo cY
ADD ADOW ADDX ADI X 0 X a 0 X
ADC ADCW ADCX ACl
SUB SuBwW SUBX sl
SBB SBBW SBBX S8l
DADD
DADC
DSUB
DSBB
EADD
ESUB
ANA ANAW ANAX ANI ANIW X 0 . Q 1 ™
ORA ORAW ORAX ORI ORIW
XRA XRAW XRAX XRI
DAN
DOR
DXR
ADDNC ADDNCW ADDNCX ADINC X X X 0 0 X
- SUBNB SUBNBW SUBNBX SUINB
GTA GTAW GTAX G7I GTIW
LTA LTAW LTAX L7 LTIwW
DADDNC
DSUBNB
DGT
DLT
ONA ONAW ONAX ONI ONIW X X . Q0] .
OFFA OFFAW OFFAX OFH OFFIW
DON
DOFF
NEA NEAW NEAX NEI NEIW X X X 0 0 X
EQA EQAW EQAX EQl E0Iw
DNE
DEQ
INR INRW X X X [} g .
DCR DCRW
DAA ’ X 0 X 0 0 X
RLR RLL SLR SLL 0 . 0 0 X
DRLR ODRLL OSLR OSLL
SLRC SLLC . X . 0 0 X
STC . 0 . 0 0 1
CiLC . 0 . 0 0 0
' MVI A byte : e 0 . 1 0 e
LXI Hword - 0 * 0 1 .
BIT - X . 0 i) .
SK
SKN
SKiT
SKNIT
RETS - 1 . 0] 'Y
~ All other instructions . 0 . 0 | .

1-Set 0-Reset X-Affected (Set or Reset) sNot Affected

3-4

NEC

Section 3
Functional Description

The internai RAM may be disabled by the memory
mapping register, allowing this address space to be
used for external memory. In the ROMless parts, the
entire 84K address space is available for use by
external memory, but the internal RAM must be dis-
abled by the memory mapping register in order for this
256-pyte address space to be available for external
memory.

Interrupt Control

The interrupt structure includes three externa! in-
terrupts and eight internal hardware interrupts, plus a
software (SOFTI) interrupt. These interrupts are
organized into seven levels of pricrity. All interrupts
(except NMI and SOFT!) are controlled via an interrupt
mask flag. Each interrupt category is assigned a
specific vector location.

Vector Locations. To process the various interrupts,
the following vector loccations have been established.

interrugl Name Vector Location Priarity
N 0004H IRQO
INTTO/INTTA 0008H IRQ
INT1/INT2 0010H IRQG2
INTEG/INTE1 0018H RQ3
INTEIN/INTAD 00204 tR4
INTSR/INTST 0028H IRQ5
SOFTI {Soft INT) 0060H IRQ6

Call Address Table. A 64-byte area from address 0080H
to OCBFH holds atable of up to 32 call addresses foruse
by the CALT instruction.

Reserved Area. Addresses 00H-0BFH are reserved for
vectar addresses and the call address table and should
not be used for data or work areas.

Work Space. Up to 256 bytes of work space can be
allocated in any available contiguous memory area
using the vector register.

internal RAM

A 256-pbyte area ofinternal RAM is located at addresses
FFOOH-FFFFH. In standby mode, backup power in the
7810/7811 and 7810H/7811H may be provided for 32
bytes of the internal RAM area at addresses FFEOH-
FFFFH.

{n the 78C10/78C11, and 78C14 halt and stop modes,
the 256-byte RAM data will be maintained if Vpp is
above 2.5 volts.

External Memory

Up to 64K bytes of external memory may be used with
the 7810, 7810H, and 78C10. Up to 60K bytes of
external memary at addresses 1000H-FEFFH may be
used withthe 7811, 7811H,and 78C11. Up to 48K bytes
may be used with the 78C14. External memory access
is enabied by the RD, WR, and ALE signals via port D
and portF. Port D multiplexes the low address and data
byte and port F outputs the upper 8 address bits.

INPUTS AND OUPUTS
Ports A,B,C,D,and F

The 7811, 7811H, 78C11, and 78C14 contain up to 40
I/0O portlines depending on the memory configuration.
The 7810, 7810H, and 78C10 contain up to 32 1/0 port
lines. Each portis 8 bits wide. All data written into the
ports by data transfer operations is stored in an output
latch, remaining unchanged until new data is written.
Sincethere are no input latches, the input data must be
held stable until read.

Seriai Interface

A serial interface facilitates communication in a multi-
processor system by allowing the transfer of serial data
between difterent terminals in asynchronous,
synchronous, or 1/Q interface modes.

Analog-to-Digital Converter

An eight-channel, 8-bitsuccessive-approximation type
analog-to-digital converter performs high-precision
conversion of analeg signals into digital format. The
conversion values are held in four conversion resuit
registers {CRy-CR3). The analog input can be set to
either scan mode or select mode.

Edge-Sensing Inputs

In addition to providing analog inputs to the A/D
converter, lines AN4-AN7 can detect the failing edge of
an input signal. When a falling edge is detected, a test
flag is set. This flag can be tested by the SKIT or SKNIT
instruction.

Zero-Cross Detection, 7810/7811, 7810H/7811H

Special circuits are incorporated forthe INT1 and INT2
lines that allow detection of the zero point (average dc
level} being crossed by ac signals on these lines (see
figure 3-4). A zero crossing triggers an interrupt. An
external capacitor is required as shown in figure 3-4.

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Figure 3-4. Zero-Cross Detection

Intarnal Signal
e

AC lnpu‘l-o—o—o—o—o-—»——{}
1pF (

INT1 or INTZ Input

A5-0015334

The zero-cross detection circuitry for each line consists
of a high-gain self-biasing amplifier that maintains the
average dc level of the line. Any level change caused by
arising ac signal crossing above the average dc level is
amplified, setting the logic state to one. The logic state
of one is held until the falling ac signal crosses below
the average dc level. An interrupt is generated when
the INT1 line senses a zero crossing from negative to
positive (arising ac signal), or when the INT2 line senses
a zero crossing from positive to negative {a falling ac
signal).

Since the INT2 line also functions as the TI (input
clock) line inthe interval counter, the zero-cross detect
pulses on line INTZ can be used as an input clock
source, The zero crossing detection may use the
frequency of the 50/60-Hz input power line as a system
timing signal.

A primary function of zero-cross detection is the
generation of interrupis at the zero-cross point,
enabling contro! of voltage-phase sensing devices such
as triacs or silicon controlled rectifiers (SCRs). This
feature also applies to shaft-speed measurement and
angle measurement. When no external capacitors are
connected to the INT1and INT2 lines, they function as
TTL-compatible input pins.

3-6

Zero-Cross Detection, 78C10/78C11 and 78C14

The zero-cross detection for the CMOS 78C10/78C11
and 78C14 is very similar to that of the 7810/7811 and
7810H/7811H. In the CMOS parts, INT1 and INT2 can
be used for zero-cross detection when specified by the
zero-cross mode register (ZCM).

Figure 3-5 shows the format for the zero-cross mode
register, which controls the self-bias for zero-cross
detection. When the Z2C; and ZC» bits are cleared,
self-biasing of the zero-cross detection inputs is
disabled and the bits function as normal digital inputs.
When ZCy and ZC, are set, self-biasing is enabled and
the zero-crossing of an ac signal can be detected by
connecting it through an external capacitor to the pin.
When ZC, or ZCis set, but no external series capacitor
is connected, the input functions as a digital input.
However, some input load current is required and a
suitable external driver circuit must be provided. Also,
when the zero-cross detection circuit is activated,
power supply current flows constantly, even in the stop
modes. This current is relatively small compared to
overall consumption in the operating mode. However,
the current does become significant in the power-
down modes if compared to when the zero-cross
detection function is not activated. A reset sets bits ZC,
and ZC» and activates zero-cross detection.

TIMER/EVENT COUNTER

A programmable 16-hittimer/event counter can provide
the following functions:

Interval timer

Event counter

Frequency measurement.

Pulse-width measurement

Programmabie frequency and duty cycle waveforms

* & & & &

Two programmable 8-bit interval timers may be used
independently or together as a single 16-bit timer. The
timer output TO {PC,) is derived {from the output of the
TMQ or TM1 comparator or the internal clock (¢3).

NEC

Section 3
Functional Description

Figure 3-5. Format of Zero-Cross Deteclion Register

ZC2

e []

INT1 Pin
o Selt bias not generated
1 Sel! pias generation
INT2/TI Pin
a Sel! bias not generated
1 Sel! bias generation

48-001534B

3-7

/PD7810/11, 7810M /1

78C10/C11/C14

T ®

NEC

Section
Port Operation

4,

PORT A

Port A is a programmable 8-bit 1/C port, Each line
{PA7-PAg}contains an I/Q buffer and an output latch
(see tigure 4-1). The mode A register (MA) can de-

signate each line independently as either input or .

output. A line's output buffer is high impedance when
the line is designated as an input line.

Figure 4-2 shaws how each bit in the mode A register
corresponds to a port A line (MAg and PAg, MA and
PAqy, and so on). When a bit in the mode A register is
set, the output buffer of the corresponding pertAline is
disabled and the port line becomes an input line (see
figure 4-4). A port A tine functions as an output line
when the corresponding bitin MA is cleared, enabling
the output buffer (see figure 4-3). Aresetinitializes MA
to all ones, establishing port A as an 8-bit input port.

After reset, the contents of the port A output latches are
undefined.

Figure 4-3. Block Diagram of a Port A Output Line

Wﬂp
il i MA, = 0
© Cutput PA
g Latch n
=
£
L1
o~
=
43015374

Figure 4-4. Block Diagram of a Port A Input Line

Figure 4-1. Port A Block Diagram WAy
£ 4
WR
*m g Output ———3a PAp
P a Latch
w
MA, <
Latch .E R}DI‘
™~
WRp—» Output e
Output Butfer 45-001 5384
é Latch ——OPAg
w
£
B RDO
y 4
-J
ROI
Input
Buffer
—<}
RDO: Read when port is in outpul mode
RDi: Read when port is in Input mode
WAm: Write to mode register
WRp: Write to output lalch
490015354
Figurae 4-2. Mode A Register (MA)
7 g 5 4 3 2 1 Q
MA ! MA7] MAg l MAg] MA, l MAg [MAp I MA 4 I Mag l
Q PAp = Cutput Port
1 PAy = input Port
n=0-7)
7 6 5 4 3 2 1 1]
PA I PA; I PAg l PAsg l PA,4 ! PA3 [PA PAy l PAg
49-0015368

4-1

yPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Output Port Operation

When a line has been designated for output, the output
butier is enabled. Data can be exchanged between the
output latches and the accumuiator by using a data
transfer instruction. When aread operation is executed
on an output line, the contents of the output latch (not
the level at the pin) is transferred to the accumulator,
The bits of an output latch can alsc be set or cleared
using an arithmetic or logic operation instruction
without having to use the accumulator; for exampie,
the instruction ORI PA,byte. Once data is written into
an outputtatch, it remains unchanged until new datais
written into the latch.

Input Port Operation

When a port A line has been designated for input, the
contents of the line can be loaded inte the accumulator
by using a data transferinstruction. The contents of the
line can also be tested directly by an arithmetic or legic
operation instructicn without having to use the
accumulator.

Data transfer instructions address port A as a single
8-bitentity, operating on alf port A lines simultaneously.
in port A write operations, data is written into the port A
output laiches, regardless of whether or not a line has
been designated forinput or cutput. Eventhoughaline
designated for input has had data written inta its output
latch from the accumulator as a result of a write
instruction, the output buffer is heid at a high-
impedance state, prohibiting the data in the cutput
latch from being available at the pin. 8ince there is no
input latch for any port line, the input data must be held
stable when a data transfer or bit test instruction is
executed.

Summary

Port A read and write instructions operate on port A as
a single 8-bit entity. A read instruction (e.g., MOV A,
PA) loads the logic levei at the pin of all input lines or
the contents of the output latches of all output lines
into the accumulator. A write instruction (e.g., MOV
PAA) writes data from the accumulator to the output

Figure 4-5. Mode B Register (MB)

latches, regardless of whether a port line has been
designated for input or cutput. However, since input
fines are three-stated by RDO inactive (see figure 4-1),
and since the gutput buffer is disabled, the data in the
output latches is not available at the pins.

PORT B

This programmable 8-bit IO port (PB7-PBg) funclions
exactly like port A. Each line can be independently
placed in input mode or output mode by using the
mode B register (MB). Each line contains an 1/0 buffer
and an output latch. Setting a bitin the mode B reqgister
places the corresponding portBlineininput mode (the
output buffer goes to a high-impedance state), and
clearing the bit places the line in output mode (the
output buffer is active}. A reset initializes the mode B
register to ali ones, establishing port B as an 8-bitinput
port. Figure 4-5 shows the mode B register format.

PORTC

The individual bits of port C (PC;-PCy) can be enabled
in either of two modes: port mode and control mode. In
port mode, port C has the same port characteristics as
ports A and B. In controi mode, port C provides special
control signals. The mode control C register (MCC)
designates which bits of port C are portlines and which
are control lines {(MCCqy corresponding to PCq, MCC,
correspanding to PC4, and so on). When a bit in the
MCC register is set, the corresponding port C line is
placed in control mode. When the bit is cleared, the
port C line is placed in port mede (see table 4-1). A
reset initializes the MCC register to all zeros, placing all
port C lines in port mode.

Table 4-1. Port C Mode Enable
MCC, =10
Port mode

MCC, =1
Contro! mode

Pcn (n = 0‘?}

7 6 E 4 3

2

MB{ MB; I MBg l MBy l MB, l MBj l MBo l

1 0
VB, l MBq [

0 P8, = Output

P8, = Input
(n=0ta7)

49-0015356

4-2

NEC

Section 4
Port Operation

Port Mode

fn port mode, port C is a programmabie /O port with
each line independently used for input or output as
determined by the mode C register (MC). In the MC
register, bits corresponding to the individual port C
lines (MCgand PCg, MCy and PC,, and so on) are set to
designate an input line or cleared to designate an
output line (see figure 4-6). A reset initializes the MC
register to all ones, establishing port Cas an 8-bitinput
port. In port mode, the operational features of port C

Figure 4-6. Mode C Register (MC)

are identical to those of ports A and B.

Control Mode

In control mode, each port C line is used for a specific
control signal. In the mode control C register (MCC),
bits corresponding to each port C line independently
place the respective line in port mode when cleared, or
place the line in control mode when set. The format of
the MCC register and the function of each line in
control mode is shown in figure 4-7.

7] 5 4 3 2 1 0
MC[MCy l MCg] MCg | MCy4 I MCg] MCy l MG, | MCQJ
0 PCq = Output
PChq = Input
n=0107)
49-0015408
Figure 4-7. Mode Control C Ragister (MCC)

7 6 5 4 3 2 1 0

MCCs

MCCI mMcey] MCCg

MCCy [MCC4] MCC

MCC, MCCq

0 PCy = Part Mode
1 PCp = TxD Qutput

0 PCy = Port Mode
PCq = RxD Input

1] PCs = Port Mode
1 PCo = SCK /0

0 PCy = Port Mode

1 PCq = Tlinput

4] PC4 = Port Mode

1 PC4 = TO OQuipul

0 PCg = Port Made

PC5 = Clinput

0 PCyg = Port Made

1 PCg = COp Qutput

'] PCy = Port Mode

1 PCy = COy Cutput

49-0015418

4-3

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

The status of the contrel signals on the individual port
G lines can be read or tested using an 8-bit port C read
or test instruction when the respective line (figure 4-8)
is in control mode, as follows:

When PC, is used to output control signalis, the signal
status is read into the accumulator or tested using the
port C read or test instruction, respectively.

(1} 1f MCR = 1, the control input buffer is enabled and
the output signal at the PC,, pin is read or tested.

(2) If MC,, = 0, the internal control signal is read or
tested.

When PCp is used to input control signals, MG, = 1.
The control intput buffer is enabled and the status of
the control signal at the PGy, pin can be read into the
accumulator or tested using the port C read or test
instruction, respectively.

PORTD

Inthe 7811, 7811H,78C11,and 78C14, port D (PD7-PDy)
may be enabled as either an 8-bit I/O port or as eight
multiplexed address/data lines. Port D always provides
eight multiplexed address/datalinesin the 7810, 78104,
and 78C14Q.

Figure 4-9. Memory Mapping Register (MM)

Memeory Mapping Register [MM]

This 8-bit register specifies the external memory
capacity used with the ROM parts and configures ports
D and F accordingly. This register also selectively
enables/disables internal RAM access. The format of
the memory mapping register (MM]) is shown in figure
4-9. Bits 2-0 specify the configuration of ports Dand F
and designate port D as either input or output. When
the RAE bit is set, internal RAM access is enabled;
when cleared, access is disabled. Bits 7-4 are un-
defined. A reset clears bits 2-0, but the previous state of
the RAE bit is maintained. For power-up or reset
conditions, the RAE bit should be set according to user
requirements,

Figure 4-8. Port C Control Signal Read Contiguration

Control Qutpul

Butter n
Internal

Contral ' ">L —Orc,
Signal {Control Signal
(ROO) - {MC, =0} ar Qutput)
{RDI) = (MC, = 1)
Internat :
Bus T Contrad Input Buttar n

48-0015424

7] E] 4 3 2

¢

) B S N R T I T

alole 3 POy — FQRg = \nput Port
Eo Single | FF7— PFp = Fort Made
aloli (5] CMP [PO7 - PDg = Outpu: Port
£ PF7 — PPy — Port Mode
el1lp 256 PD7 — PDg = Extension Mode
Byles PF7 — PFp == Porl Mode
o
b POy — PD
1lolo Eo B“(es pF; - pF‘.f = Exlension Mode
< ¥ PF7 - PF4 = Porl Made
K] PDy — PD,
1]1i0] g [!15:5 PF;— ng]: Exlension Mode
o PF7 — PFg = Part Mode
GOKI11| PDy — PDg'_ :
LR Byles PPy - PR " Exiension Made

internal RAM Access

1 Disable

Hote: [1] For the 78£14, this value is 48K,

1 Enable

40.0¢11 5430

4-4

NEC

Section 4
Port Operation

Port D Operation; 7811/7811H, 78C11, 78C14

Inthe 7811, 7811H, 78C11, and 78C14, the function of
port D is based on the amount of external memory
used, as determined by the MM register. When MM,-
MM, = G0 (no external memory), port D functions as 3
programmable B-bit I/0 port. MMy places port D in
input mode when cleared or output mode when set.

Port D operates only as a byte-wide input or output
port; the individual lines cannot be independently
selected as input or output lines. Each port D line
contains an [/O butfer and an output latch. Except for
enabling of the lines as input or output on a byte-wide
basis, port D operates identically to ports A and B.

When any external memory is used (MM>-MM; = 00),
port D functions as eight multiplexed address/data
lines. The 8 fower-order bits of the address are output
in the first phase (T1) of an external memory access
cycle, and 8-bit data is transferred in the second and
third phases (T2 and T3).

Port D Operation; 7810/7810H, 78C10

Inthe 7810, 7810H, and 78C10, PD;-PDgare enabled as
multiplexed address/data lines and operate identically
to when the 7811, 7811H, 78C11, and 78C14 parts are
used with external memory.

Port F Operation, ROM Parts

When 256 or fewer bytes of external memory are used,
lines PF;-PFgare enabled as a programmable 8-bit 1/Q
port whose individual lines can be independently
placed in input or output mode by the mode F register
(MF). fn the MF register, bits corresponding to each
portF line place the respective line in input mode when
set or output mode when cleared (see figure 4-10). A
reset initializes the MF register to all ones, establishing
portF asan 8-bitinput part (all lines at high impedance}.
The port operation of PF;-PFg is identical to that of
ports A and B.

When the amount of external memory, as determined
by the MM register, is between 257 bytes and 4K bytes,
lines PF3-PFg are enabled as dedicated address fines,
and PF;-PF,4 are enabied as port 1/0 fines. When the
amount of external memory is between 4097 bytes and
16K bytes, PFs-PFy are enabled as dedicated address
lines and PF7-PFg are enabled as port 170 lines. When
the amount of external memory exceeds 16K bytes,
PF;-PFg are enabled as dedicated address lines. Table
4-2 shows the relationship between the MM register for
the ROM parts and the function of the PF7-PFy lines.

Table 4-2. Relationship Between 7811, 7811H, 78C11,
and 78C14 Memory Mapping Register
(MM} and Function of PF;-PF, Lines

PORTF (MODET =1, MODEO = 0)
Lines PFy-PFg can function as independent input and MM,-MMg Lines Function External Memary, Bytes
output port lines or as dedicated address lines. The 5y PF7-PFy Port 0 to 256
external memory configuration is determined by the
memory mapping register (MM} in the ROM part and ~ '°0 ﬁg:gg i%:‘rﬁ\ﬁa 25710 4
by the MODED and MOCE1 signais in the ROMless
art 110 FF7-PFg Part 4057 to 16K
part. PFsPFy ABy3-ABg
m PFr-PFy AB45-ABg >18K to 60K max
(48K max in 78C14}
Figure 4-10. Mode F Register (MF)
7 6 8 4 3 2 1 Q
MF | MF;] MFg I MF5] MF, l MF 5 I MF3 I MF, I MFg]
0 PFn = Output Port
1 PF, = Input Port
{n=0ta7}
7 6 5 4 3 2 1 2
PF [PFy I PFg] PF5 J PFy4 l PF3 I PF, [PF4 J PFo
49-0015448

¢PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Port F Operation, ROMIless Parts

in the ROMIess parts, the MODE? and MODEG signals
specify the external memory canfiguration (see table
4-3) and determine the function of the PF;-PFq lines
based an the amount of externai memory used. When
MODE1, MCDEQ = 0, 0, a maximum of 4K bytes of
external memory is specified; PF3-PFg are enabled as
dedicated address lines, and PF4-PF4 are enabled as
port /O lines. A designation of a maximum of 16K of
external memory (MODE1, MODEQ = 0, 1) enables
PFs-PFy as dedicated address lines and PF;-PFg as
port i/0 lines. When more than 16K bytes is specified
{MODE1, MODEQ = 1, 1), PF;-PFg are enabled as
dedicated address lines. The port operation of PF¢-PFg
for the ROMiess parts is identical to that of the RCM
paris.

Table 4-3. Values of MODE1and MODEO Signais and
Function of PF~PFy Lines in 7810,
7810H, 78C10

MOOE] MOOED Lines Funetian External Memory, Bytes
0 0 PF7-PF4 Port 4K max
PFa-PFy ABy1-ABg
0 1 PF7-PFg Part 16K max
PF5-PFg ARq3-ABg
1 1 PF7-PFg ABic-ABg 16K
TIMING

Timing waveforms for opcode fetch, memory read, and
memory write operations are shown in figures 4-11 to
4-13, respectively. One timing state is defined as three
cycles of the crystal clock as shown in figure 4-11.

Figure 4-11. Opcode Fetch Cycle

Timing states are represented by Tp, where n is the
timing state number within a given operating cycle; for
example, T3 = the third timing state of & cycle.

An ordinary read/write operation is executed in three
timing states (9 clock cycles), whereas an opcode fetch
operation requires four timing states (12 clock cycles).
When external memory is not being accessed, the RD
and WR signals remain high throughout the memaory
access.

Opcode Feich Timing

An opcode fetch cycle {figure 4-11} consists of four
timing states (T1-T4). The first two states {T1 and T2)
are required for the program memory read operation
andthe lasttwo (T3 and T4) are required for decoding.
When accessing external memaory, the higher-order 8
bits of the external memory address are continuously
output on lines PF7-PFgduring T1-T4. Since lines PDy-
PDg are enabled as multiplexed address/data lines
when external memory is used, the lower-order 8 bits
of the external memory address are cutput on these
lines during T1 and FD;-PDg go to a high impedance
state at the end of T1. Because the address bits driven
out on PD;-PDg are not cutput continuously, the
tower-order address must be latched externaily.

The ALE signal is used as a strobe for the external
latching of Az-Ag and is output during T1 of every
machine cycle. The RD signal is asserted midway
through T1 and continuously untit the start of T4.

Txtui
Osciliation
Fraquency

e _/j

-

Ay — ABy
{PF7 ~ PFo)

Address

AD7 — ADg

X Address

p

{PD7 — PDg)

Qpcode

alalh

A
N

49-001 5456

4-6

NEC

Section 4
Port Operation

Memory Read Timing

A memory read operation {figure 4-12) consists of
three timing states (T1-T3). Timing for a memory read
operation with respect to pert D and port F lines and
the RD and ALE signais is the same as that of an

opcode fetch operation except that thereisno Tdina

memaory read operation.

Figure 4-12. Memory Read Cycle

Memory Write Timing

A memory write operation (figure 4-13) consists of
three timing states {T1-T3). Timing for memory
addressing and address latching is the same as that for
a memory read operation. The write data is output on
lines PD;-PDg from the beginning of T2 to the end of
T3.

m
1

atal
Osclllation
Frequency

Ale I\

T2 T2

ABy5-ABga
|PF7-PFg]

X

Address

><

ADy-ADg Address

X
. \

-\
/

[PDz-PDg]

Read Data

st

4% -1 5468

Figure 4-13. Memory Write Cycle

‘ .

f_:tal
Osclilation
Frequency

« _/ \L

T2 T3 ‘

AByg — ABg
{PF7 — PFg)

X

Address

ADy — ADg

{PO7 — Phy) Address

X X X

¥rite Data

—
~
X

£
3|

\

/

45-0015478

P D02 Wiy £OTVE 3y
78C10/C11/C14

NEC

MEMORY EXPANSION
ROM Parts

Figure 4-14 shows the memory mapping of the various
external memory configurations. Care must be used
when implementing the 4K or 16K addressing mode in
the ROM parts. In 4K mode, the upper 4 bits of the
program counter {PC) are not output to port F (PFy-
PF4). When the PC contains a value between 1000H
and 1FFFH, the external address put on the address
bus will be between 0 and FFFH. The address decoding
hardware must reflect this.

in 16K mode, the upper 2 bits of the PC are not output.
Physical addressing of external memory must be made
compatible with software addressing. Table 4-4 shows
how the external address differs from the PC contents
in the 16K mode. Note that when the contents of the PC
are between 1000H and 4FFFH, the external memory
addresses are between 0000H and 3FFFH and no two
addresses are the same.

However, when the contents of the PC are between
5000H and BFFFH, the external memory addresses are
the same as when the PC was between 1000 and
4FFFH, Therefore, different PC values can generate
external memory addresses that are the same. This

must be taken into account to avoid incorrectly
accessing the external memory. This situation also
exists for the 4K mode. in the 256-byte and 60K-byte
modes (or 48K-byte in the 78C11), this is not applicable.

Table 4-4. 16K Mode Addressing

PC External Address
0-FFF (0-4085) Not output to address bus
1000-1FFF (4096-8191) 1000-1FFF
2000-2FFF (8192-12,287) 2000-2FFF
30003FFF (12285-16,363) 3000-3FFF
4000-4FFF (16,364-20,479) 0000-OFFF
S000-5FFF (20,480-24575) 1000-1FFF
6000-6FFF 2000-2FFF
7000-7FFF 3000-3FFF
8000-8FFF 0000-0FFF
9000-9FFF 1000-1FFF
ACO0-AFFF 2000-2FFF
BOOO-BFFF 3000-3FFF
CO00-CFFF 0000-0FFF
D00C-DFFF 1000-1FFF
EO0Q-EFFF 2000-2FFF -
FO00-FFFF 3000-3FFF

Figure 4-14. Memory Mapping for Various External Memory Capacities of ROM Parls

256-Byte 4K-Byle 16K-Byte 60K-Ayle
o Porl Mode Expansicn Mode Expansmn Mode Expnnsmn Mode Expansion Model?l
ALY // Y 7 V7 7/////
Intemal RAOM Internal RCM Internai HOM Inlernal AOM /Internal RO/
77727774 MR 19744474 //// VLLLA el
\Exlernal Memory, \ \
_ {256 Byles) b. N Ext:rnta; Klv]lemory N
e AN N \
\Enern at Memory \
(16K}
Not Used 20K \\\
Not Uised
Mot Used
Not Used
[N N [28 by L T8 b Es o3 ol [N BN
\.‘-- - S e -.‘-\ e e -~
O S o IR S SO M S S R A S S L 5
Mote: [1] This value iz S8K for the 78C14.
A9-001 5430

4-8

NEC

Section 4
Port Operation

ROM Parts, Memory Expansion Example

Figure 4-15 shows an example of a 4K ROM expansion.
The internal memory of the ROM part is expanded by
the use of a 4K external ROM. Figure 4-16 shows the

setup of the memory mapping register (MM) for that

configuration.

ROMless Parts

Like the ROM parts, in addition to the internal RAM, the
memory capacity of ROMiess parts can be expanded
using external memory, Since they do not have internal
ROM, they can be used with up to 64K of external
memory. The external memory capacity is determined
by the MODEQ and MODE1 signals rather than by the
memory mapping register as in the ROM parts. Table
4-5 shows the combinations of the MODE1 and MODEQ
signals and the correspending memaory configurations.
Port D is enabied as an 8-bit multiplexed address/data
bus and PF;-PFg can be enabled as higher-order
address lines,

Table 4-5. Combinations of MODEQ and MODE1
Signals and Corresponding Memory
Configuration for ROMless Parts

Maode MOaE? MODED External Memory
4K bytes access 0] 4K bytes

16K bytes access 0 1 16K bytes

84K bytes access 1 1 B4K bytes

Figure 4-15. Example of 4K ROM Expansion of ROM

Part Memory
¥Ycc
Maode 1
Mode O
é uPD7B14]
Qg - 07
RD OE aPDZ732 CE
Ag — Ay Ag— Ayl —
ALE —1
578
- D whEaze3
7~ PDg _
(ADy - ADg) ADy — ADyg TR T+
OE
=
PFy ~ PFg
(ABq; — ABg) {AB1y - ABy)
PRy - PEgK >
40-201 5454

Figure 4-16. Setup of Memory Mapping Register for ROM Part Memory Expansion Example

7 6 5 4 3 2 1 0
— [-] - - Tm=T] 5T
L |

POz — PDp: Extension Mode
! PF3 ~ PFy: Extension Mode
PF7 — PF4: Port Made

Internal RAM Access

a Disahle

1 Enable

49-001550R

4-9

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Since external memory capacity is determined by the
MCDEQ and MODE1 signalsin the ROMIess parts, bits
2-0 in the MM register should be cleared. The RAE bit
and reset operations in the MM register for the ROMiess
parts are the same as for the ROM versions. Memory
mapping for varicus memory configurations is shown
in figure 4-17.

Port Emulation Mode

Port emulation mode (PEM) makes ports D and F
available for 170, even though the processor may be
using all or parts of these ports to access external
memory. PEM is implemented by adding extra external
hardware and utilizes the MODE1 (M1) and MODEQ
(1Q) signals as timing signals.

Refer to the pPD7810/11, 7810H/11H, 78C10/
C11/C14 Applications Manual for details.

4-10

Figure 4-17. Memory Mapping in ROMiess Parts for
Various Memory Configurations

AK-Byte Access

0 [777
’/Externa[
Memury/

T 4K Lk i £

16K-Byte Access

7

External
%Memury

7

a 64K-Byle Access

External
Memory

18K

N\

\-l—- - ~||“ g, h —~
ba
> Inlernaiw ~ Internnlw s internal \\:
Memor Memar: Memuor
64K \ AN BAK AN 64K A LAN
MOBDED = Q MODED =1 MODED = 1
MODEI =0 MODE! =0 MODE] =1

A9-DHS51A

NEC

Section 5
Interval Timer

Circuit Operation

The interval timer circuit consists of two 8-bit interval
timers that can be used independently or cascadedina
16-bit timer configuration (see figure 5-1). The
8-bit interval timers, TIMERQ and TIMER1, and a timer

flip-flop are controlied by the timer mode register

{TMM). Each interval timer consists of an 8-bit up-
counter, an 8-bitcomparator, and an 8-bit timer register
{TMO and TM1, respectively).

Upcounter. This counter is incremented by each input
clock pulse as designated by the timer mode register.

Comparator. This circuit compares the contents of the
upcounter and the timer register. The upcounter is
cleared to O0H when the contents are equal, and
corresponding interrupt requests (INTTQ, INTT1) are
generated. The interrupts can be masked and the
interrupt flags can be tested by skip instructions.

Timer Register. These 8-bit registers, TM0 and TM1,
contain the count for the respective interval timer.

Timer Flip-Flop. The output of this flip-flop is inverted
by either a match signal from the timer registers
{(indicating that the contents of the respective register
and the upcounter are identical) or by an internal clock
pulse (¢3). The flip-flop output is a square wave
one-half the frequency of the input signal. The signal
can be sent to the TO (PCy) pin. It can be used as a
clack input to the timer/event counter if so designated
by the timer/event counter mode register (ETMM), or it
may be used as the serial clock timing source if so
designated by the serial mode register (SMH).

Figure 5-1. Block Diagram of interval Timer Circuit
$1 ——e]
I g PCTO
Frﬁﬁé?a o 7T K
PCy/MI o—| ps ¢ ! To Timer/Event Counter
¥ | ‘ ! or Serial Clock Saurce
i Clear ;
L
12 t Up er o I'
B '
34 i h
!)
! I
! 1
l |
1 t
I | J
Yimer Mode | Timer Ragister 0 | | INTTY
Register | (TMO) 1
I I
I }
| —_———
Notes: 183 = fypg x 1/3
1912 = Iygqr x 1712
HpIBA = fygg) x 17384
fx\wl = Input Crystal Fraquency
48-00 15538

5.1

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Timer Mode Register

This B8-bit register (TMM)} designates the operation
mode of each of the interval timers and the timer flip-
flop. The RESET input initializes the timer mode
register to FFH, clears the upcounters to 00H, resets
the timer flip-flop, and disables the timers. Referring to
figure 5-2, which shows the tormat of the timer mode
register, the function of each bit is described as
follows.

TE4-TFp. These bits control the timer flip-fiop. If TFy-
TFy = 11, the flip-flop is reset {no output). If TF,-TFg
#11, then the bits determine the input clock source of
the Hip-flop.

CK0,-CK0y. These bits select a clock source for
TIMERD. They select aninternal clock {(¢12 or ¢384) or
an external clock (T1), or they disable TIMERO.

TSg. This bit controls the upcounter for TIMERO. It
determines whether the upcounter is to be incremented
or cleared.

Flgure 5-2. Timer Mode Register

CK14-CK1y. These bits select a clock source for
TIMER1. They select an internal clock {¢12 or ¢384) or
an external clock (T1), or they increment TIMER1 when
upcounter 0 = TMQ.

TS4. This bit controls the upcounter for TIMER1. It
determines whether the upcounter is to be incremented
or cleared.

Clock Sources

The pair of 8-bit interval timers choose clock sources
according to the contents of the timer mode register, as
follows.

Internal Clack [¢12]. The designation of this clock
source for the upcounter enables the timer to output
intervals of from 110 256 times 12/fxTa- Witha 12-MHz
crystal, intervals range from 1to 256 us with a resolution
of 1 us.

7 6 5 4 3 2 1 ¢
TMMI 154 CK1y CK1g TSg CKDy CKOp TFy l TFg I
e d ! I

Timer F/F Input Clock Saurce

¢ | When Upcounter 0 Equals TMg
When Upcounter 1 Equals TMy
Internal Clock (¢3)

Timer F/F Reset

011
1410
1

-

Timer Q Input Clock Source
Q | Internal Clock {$12)
Internal Clock (p384)

mfslem]e

1
¢ | External Signal at Ti
1 Digable

Timer 0 Upcounter Operation

Q Count-up

1 Reset to §0H and Stop Counting

Timer 1 input Clock Source

0 | Internal Clock (¢12)
Internal Ciock (p384)

R S Yo =1

1
0 | External Signal at Ti
1 | When Upcounter 0 = TMgt!l

Timer 1 Upcountar Operation

a Count-up

Note: [1] This causes 16-bit timer operation.

1 Reset to 00H and Stop Counting

49-00155<8

-5-2

NEC

Section 5
Interval Timer

Internal Clock [¢384]. The designation of this clock
source for the upcounter enables intervals of 1 to 256
times 384/fyra . Witha 12-MHz crystal, intervals range
from 32 us to 8.19 ms with a resolution of 32 us.

External Clock. The designation of an external clock .

source (Tl input) for the upcounter enables intervals
based on the frequency of the external clock source.
The maximum frequency at thisinputis 1.25 MHz forall
parts except the 7810/7811. The 7810/7811 paris can
accept an input frequency of 1.0 MHz.

Timer Operation

The interval timer begins operation when the timer
register (TMO or TM1) is loaded with an interval time
value and the timer mode register {TMM) is loaded with
operating data.

The upcounter is incremented by each ciock pulse.
The comparator continuously compares the contents
of the upcounter with that of the timer register, and
when the values are equal, an interrupt request {INTTO
or INTT1} is generated. The upcounter is then cleared
to 00H and resumes counting. The count value con-
tained in the timer register controls the interrupt rates.

If the timer flip-flop uses the TIMERQO or TIMER1
output for its clock source, the contents of the timer
flip-flop are inverted when the contents of the up-
counter match the contents of the timer register. This
outputs a square wave on the TO line. The pulse width
of the square wave is equal to the interval contained in
the timer register. If ¢3 is selected as the timer flip-flop
clock source, the output at TO is a square wave of
ane-half the frequency of ¢3. Timer interrupt requests
can be unmasked by clearing bits MKTO and MKT1 in
the interrupt mask register.

16-Bit Interval Timer

TIMERO and TIMER1 can be cascaded creating a 16-bit
timer using the match signal from TIMERO to increment
the TIMERT upcounter. With a 12-MHz crystal, TIMERQ
and TIMER1 together can generate an interval of up to
65 ms using the ¢12 clock ar up to 2.1 seconds using
the @384 clock. With a 15-MHz crystal, the intervals are
52.4 ms to 1.677 seconds.

5-3

uPD7810/11, 7810MH /17!
78C10/C11/C14

NEC

Section @
Multifunction Timer/Event Counter

NEG

ORGANIZATION Upcounter (ECNT)

Capture register (ECPT
The 16-bittimer/event counter can provide the foliowing ng cL:]ountegrl regiéters (E)TMO and ETM1)
functions:

Two comparators

Input clock select circuit

Clear control circuit

Interrupt control circuit

Qutput control circuit

Two mode registers (ETMM and EOM)

+ Interval timing

External event counting

Frequency measurement

Pulse-width measurement

Programmable frequency and duty cycle waveforms
Single-pulse output

Figure 6-1 shows that the main functional blocks of the
timer/event counter inctude the following:

Mode
Reglsters
(ETMM, EOM}

il

internal Bus

Edge Detect

Hotus: ¢12 =1, X1/12

1. System Clock Frequency {MHz)

Figure 6-1. Block Diagram of Multifunction Timer/Event Counter
d Internal Bus v
Timer/Event Counter
Capture Regisier
{ECPT)
I Cutput PCg/C0g
Control
@12 -
Timer/Event
P52 - Clock Counier Upcounter Clear PL/COy
Select Control
(ECNT}
TCQ Signal lrom
Interval Timer l [
F/F CPy
CPy
Comparator —l Comparator = INTEQ
Interrupt
i I 1 | Controt "+ INTE1
Timer/Event Timer/Event
Counter Register 1 Counter Regisler 0
ETM1 EIN
t i (ETMD) p————————= INTEIN

49-001555C

6-1

uPD7810/11, 7T810H/11H,
78C10/C11/C14

NEC

Upcounter [ECNT]

This is a 16-bit counter that is incremented by one each
time it receives a pulse from the input clock select
circuit and is cleared by the clear control circuit. When
the upcounter counts up to FFFFH and overflows {o
0000H, the OV {(overflow) flag is set. The OV flag can be
tested by the SKIT and SKNIT skip instructions. The
OV flag will not cause an interrupt.

Capture Register [ECPT)

This 16-bit buffer register holds the captured contents
of the upcounter. The contents of the upcounter can be
latched into the capture register at the falling edge of
the Cl input (PCs) if the ¢12 clock is the ECNT clock
source or by the falling edge of the TO input when Cl is
the input clock source.

Counter Registers [ETMO and ETM1]

These 16-bit, user-programmable registers contain the
number of clock inputs to be counted.

Comparators

These circuits compare the contents of ETM0 or ETM1
with the contents of the upcounter and issue a match
signai (CP0 or CP1) when the contents are identical,

Input Clock Select Circuit

This circuit selects the input clock to the upcounter as
specified by ETMM. When Cl or TO is selected, it is
sampled by the ¢3 clock (250 ns at 12 MHZz) to provide
noise immunity. The input (either high or low level)
must be present long enough to be sampled by two
clock edges. Therefore, the input must be presentfora
minimum time of 500 ns.

Clear Control Circuit

This circuit clears the upcounter to 0000H as
programmed by ETMM. When cleared, the upcounter
is either stopped or starts counting up from 0000H.

Interrupt Control Circuit

This circuit generates interrupt requests by setting the
interrupt request flag (INTFEO or INTFE1) when one of
the following conditions occurs.

s Contents of ECNT and ETMO are equal.
e Contents of ECNT and ETM1 are equal,

6-2

An external interrupt request flag (INTFEIN) is set
when one of the tollowing conditions occurs. See table
6-1.

» Fali of Cl.
s Fall of TQ.
Table 6-1. Setting the Interrupt Request Flag
ETMM Interrupl Request
ETy ETy ECNT Eaput Flag Sel
0 0 Internal clock {912} Fall of CI
0 1 @12 while Gl input is high level input
1 0 Clinput Fabl of TD
1 1 Clinput while TQ is high level

Output Control Circuit

This circuit is used to output various frequencies and
pulse widths to the CQg and COy outputs. The outputs
vary depending upon the programming of made
registers ETMM and EOM.

Figure 6-2 is a diagram of the COg output circuitry at
pin PCg. There is identical circuitry for the CO4 output
connected to pin PCy

The level flip-tlop {LV0) is the master portion of the CQOyq
output and it contains the next level that will go to the
output latch (the stave portion). The COg output can be
controlled using the ETMM register in combination
with the EOM register. The output can also be controlled
by EOM only.

The CPg, CP4, and EIN inputs are generated by the
timer circuitry. CPg is generated (figure 6-1) when
ECNT =ETMO, CP, is generated when ECNT =ETM?1,
and EIN is generated if a falling edge of Cl or TQ is
detected. The remaining inputs—LDg, LOg, LREy, and
L RE ~-are from the EOM register.

Figure 6-2. Block Diagram of Qutput Control Circuit
{Showing COg Oufput)

Siave
Master {Outpur
(Level F/F} Latch)

LRED s coa

u— Lvo
ck4n @ PCg/CO,

CK

Chy
EIN

INY

49-G01556A

NEC

Section 6

Multifunction Timer/Event Counter

CPy, CP4, and LOg will all clock the slave portion
(output latch} of CGp. When clocked, the output latch,
and hence CQg, will be loaded with the current level in
the LVO Hip-flop. Bits LREp, LRE,, and LDy, respec-
tively, control the set, reset, and invert inputs of LV0.
Both LV0 and LV1 are reset to O after a RESET Input.

Mode Registers

There are two registers {in addition {o the counter
registers ETMO and ETM1) that, when programmed,
control the operation of the timer/event counter. These
registers are the timer/event counter mode register
(ETMM) and the timer/event counter output mode
register (EOM}. Figures 6-3 and 6-4 show the format of
the ETMM and EOM registers, respectively.

The ETMM register is used to specify the ECNT clock
source, when ECNT will be cleared, and when outputs
COp and COq will change. The EOM register is mainly
used to determine how the LVO flip-flop will change.
Bits LOg and LO of the EOM register can be used to
control when COg and GO, will change.

ETMM Register

The contents of ETMM are reset to 00H when the
RESET inputis valid. Bits ETg and ET, specify the input
clock source to the upcounter. Bits EMg and EM;,
specify how and when the ECNT is cleared. Table 6-2
shows in detail the clearing of ECNT when EMg =0 and
EM, = 1. Bits COqq and COy, specify the conditions
when ECNT will cause a CQy output change and bits
CQO1pand COy, specify the conditions when ECNT will
cause a COy output change.

Table 6-2. Cfearing the Upcounter Based on Cf and

T0O Signals
ETMM
&, £ty ECNT Input ECNT Clear
0 0 Internal clock {¢12) Fall of Cl
0 1 12 while Cl input is high level nput
1 0 Clinput Falt of TQ
1 1 Clinput while TO is high tevel

Figure 6-3. Timer/Event Counter Mode Register (ETMM}

7 6 5 4 3 2

1

] SO [COgp] EMy T EMg I ET, l ETg I

E‘mml COyy I CCyp
L 11 L I

ECNT tnpuat Clock Selection

0] 0 | Internal Ciock (¢12)

@12 While C! Input is High
i Input

Cl Input While T is High

01
1186
111

How and When ECNT is Cleared
0]a

ECNT Stops Counting Immediatety and is set 1o 0000H
Free Running; Clear at Every Fuil Count FFFFH

1

9 Ta Clear ot Fali of Clinput (ET; = 0] or
ta Clear at Fall of TO Input (ETy = 1)

1

Clear When ECNT = ETM1

a
1
1

Conditions When ECNT Causes a CO0 Qutpul Change

0|0 | ECNT = ETMO
Use Prohibited

0]t
J1 10§ ECNT = ETM) or at the Fall of €l Input
101

ECNT = ETMO ar
ECNT = ETMI

Caonditions When ECNT Causes a CO1 Qutput Change
0 | ECNT = ETMY
Use Prohibited

[iy N Y

1
0 [ECNT = ETM! r ai the Fall of Cl Ingut
1

ECNT = ETMD ar
ECNT = ETM1

450015548

6-3

4PD7810/11, 7810H/11H, C
76C10/C11/C14 N E

Figure 6-4. Timer/Event Counter Output Mode Register

7 6 L q 3 2 1 L1}
EOM [LREj LRE, LDy LOy LRE, LRE, [LDy I LOg
| I | L..%_,H*_I_
LVD Data Output
0 No Operation
1 Qutput LVQ Content

LVa Level Inversion

0 Disable
1 Enable [1]

LVO0 Set/Reset

0 | 0 | NoQperation[1]
g11 To Reset LV {1]
110] ToSetlva[1]
111 Use Prohibited

Lv1 Daia Quiput

0 No Operation
1 Output LV1 Content

LV1 Level Inversion
a Disable
1 Enable [1]

1V1 Set/Reset

0 | 0] No{Qperation
a1 To Resel LV
110 | ToSetlvr

1 |1 | UseProhibited

Note: [1] If LVO level inversion is enabled [LDy = 1] and either set
L¥0 [LREy = 1 and LREy = 0] or reset LVD [LREy = 0 and
LREp = 1] are enabled, the set or reset will override the
inversion. Inversion wiit only work with LREy = 0 and
LREg = 0. The same concept is frue for LV1.

49-0015578

EOM Register Bits 0-3 of the EOM register control CQg and bits 4-7
. Bits 1- ify w i

This 8-bitregisteris used to control the LVO and LV1 flip-flops f;’snet{o; ﬁ’ r?v1e r?e"ds_ 183 Ot EOM 2?:&;;“&2;0‘ ;’: f\%

and may aiso _be used to qontrol the COp a'nd CO; output latch will change. For example, if EOM is

outputs. All 8 bits may be written to, but only bits 1 and programmed:

5 may be read. The remaining bits will read 0. Figure '

6-4 shows the format of the EOM register. MVl EOM,09H
LVO will be set since LRE, and LREg = 10. |.VQ will be
output to COp immediately (high level) since bit
LQg = 1. COO0 can be set by just one ECM = (Q9H
instruction. However, if the counter were programmed:

SET F/F. MVl EOM,08H
OUTPUT: MVl EOMOIH

NEC

Section 6

Multifunction Timer/Event Counter

LVD will be set when the SET F/F instruction is
executed, but the output COg will not become a high
until the OUTPUT instruction is executed. After the
instruction is executed, bit LOy will become a 0.
Theretore, when using EOM only to control COg, EOM
must be programmed with bit 0 =1 each time the COy
output is to be changed. Usually, bit LOyp is used 10 set
an initial state at COg and ETMM bits COgy and COgg
(bits 5 and 4) control when COg will change for the
remainder of the time.

Bits 1-3 of EOM determine how output CQOq will
change. Bits 4-7 of EOM and bits 6 and 7 of ETMM
perform the corresponding functions on LV1 and
output CO;,

The inversion bit LDy works differently from the set or
reset of LVO using LREgy and LRE, in that it does not
invert COg the first time the invert bit is set. Consider
the following example:

INV1: MVI EOM,03H ;Output LVO, then
sinvert LVO.

INVZ: MVI EOM,03H ;Qutput LVD and invert
VO,

When INV1is executed, LVOwill be output and then inverted.
Therefore, output COq does not change. When INV2is
executed, LVO will be output to COgp and then inverted.
Therefore, COp will not be inverted the firsttime it gets
EQOM=03H. After this, LVOwillinverteachtime EOMis
ioaded with O3H.

OPERATION

The timer/event ¢ounter begins operation when the
timer/event counter registers are loaded with the
appropriate count values and EOM and ETMM are
loaded with the appropriate operating data in the
sequence outlined in figure 6-5,

Operation as an Interval Timer

As an interval timer, the circuit generates interrupts at
programmed time intervals. These intervals may range
from 1 us to 65.535 ms with a resolution of 1 us (at 12

. MHz). To operate the timer/event counter as an interval

timer, the upcounter (ECNT) must be cleared: then the
desired count value must be foaded into the counter
registers (ETMO, ETM1). Bits 0-1 of the mode register
(ETMM) must then be cleared and bits 2-3 set, as
shown in figure 6-6. The timer/event counter now
functions as an interval timer using the internal clock
(912} as the clock source to ECNT.

Figure 6-5. Setup Sequence for Timar/Event
Counter

|

Clear Timer/Event
Counter Upcounter
{ECNT)

RESET Input e

Set Count Value to
Timer/Event Counter
Reg 0,1({(ETMD, 1)

Set Output
Mode Register ;in case of the output of
{EQM] programrnatte square wave

¥

Set Timer/Event
Counter Mode Register
{ETMM)

¥
[Start Counting —I

e INterrUP!

Pesmo——= Tarrmtinal Dutput

¥

49-0015%94
Figure 6-6. Setling Up ETMM for Interval Timer Operation
T 6 5 4 3 2 1 0
ETMM o 0] l 1] 1 1 I Q I [
L il d
To Count the Internal Clocks
To Ciear ECNT if ECNT and
ETM1 Contents Coincide
430015606

6-5

4PDT810/11, T8ICLL11HK,
78C10/C11/C14

NEC

The upcounter (ECNT) is incremented every 12 cycles
of the external oscillator by using the ¢12 clock (1 us
when operating at 12 MHz). The comparator con-
tinuous!y compares the contents of the upcounter with
ETMO and ETM1T. When the upcounter equals either
ETMO or ETM1, the timer/event counter generates an
internal interrupt {INTEC or INTE1). When the contents
of the upcounter and ETM1 are equal, the upcounteris
cleared and counting resumes from 0000H. In this way,
the timer/event counter marks intervais based on the
countvalue contained in ETM1. This cperational timing
sequence is diagramed in figure 6-7. The INTEQ and
INTE1 interrupts can be masked by setting interrupt
mask register bits MKEO and MKE1.

Figure 6-7 Timing Sequence of interval Timer
Operation of Timer/Event Counler

Internal
Clock (412)
Ecurt:oum--—-—-q\ {no\) Cni\) fnnsl
CPO !
]
CcP1—t
| { I
ntee |
i
' :
et | J (((‘:l
]
i
Gtart . interrupt ECNT Interrupl ECNT Inferrupt
(Set ETMM) Accepted Cleared Accepted Cleared Accepted
Remarks: E-}:s f :‘{m-—.:n:m. n; Countec Yalue)
49001564

Operation as an Event Counter

The number of puises input from the Ci {PC3s) input can
be counted by ¢clearing the upcounter, then lcading the
appropriate operating data in the lower-order 4 bits of
ETMM as shown in figure 6-8. The external pulses from
the Clinput are synchronized by the internal clock, and
the upcounter is incremented at the falling edge of
each puise. The count value can be read atany time by
the program.

When the lower-order 4 bits of the mode register are
loaded with the values shown in figure 6-8, the overflow
flag (CV) is set when the upcounter increments from
FFFFH tc 0000H. The overflow tlag can be tested by
skip instructions SKIT and SKNIT. When the value of
the upcounter equals the count value contained in
either ETMOorETM1, aninterrupt (INTEC or INTE1} is
generated. Figure 6-2 shows the timing sequence for
the event counter operation.

Figure 6-9. Timing Sequence for Event Caunter
Operation of Timer/Event Counter

™\
q
Internal ‘
Signal 4 4 ~
ECNT

A5-001 5634

Internal
Clock {¢3)

Ctinput

Frequency Measurement

The number of Ci input puises per time interval can be
counted by setting the timer/event counter to count
while the interval timer output (TO) is high. The
upceunter must first be cleared by programming ETMM
with O0H and then locading the appropriate operating
data in the lower-crder bits of ETMM as shown in figure
6-10.

The upcounter is incremented by each clock input on
the Cl input during the time TO is hetd high. At the
falling edge of TO, an internal interrupt (INTEIN) is
generated, the contents of the upcounter are transferred
to the timer/event counter capture register {(ECPT),
and the upcounter is cleared. Since the C! pulses are
input to the upcounter only when TQ is high, the
upcounter counts the number of Cl input pulses per
time interval measured by TO and puts the result in the
capture register. Dividing the value in ECPT by the time
interval generated on TO gives the frequency of the ClI
input. Thetiming sequence for this operationis shown
in figure 6-11.

Figure 6-8. Setting Up ETMM for Event Counter Operation

7 & 5 4 k]

ETMM r 1] o 4} a a

Count of Cl input

Free Running, Clear After Full-Count

49-0015628

6-6

Fo

NEC

cection O

Multifunction Timer/Event Counter

Figure 6-10. Selling Up ETMM for Frequency Measurement Operation

To Count ClInput While TO is High

Ta Clear ECNT at Fall of TG

490015648

Figure 6-11. Timing Sequence for Frequency
Measurement Operation of

Timer/Event Counter

Timer Output {TO)

L \
\1 Interrupt Accepted
ECNT Cantent Transferred to ECPT

ECNT Cleared

Clinput ‘

ECNT Input \

INTERN

bR

This operation requires that the Cl input has a high or
low pulse width of no less than 16 timing states (4 us at
12 MHz). If this requirement is not met, this function
cannot be performed. The puise width can be calculated
by multiplying the value in ECPT by 1 us (the period of
the ¢12 clock). The timing sequence for this operation
is shown in figure 6-13.

Figure 6-13. Timing Sequence for Pulse-Width
Measurement Operation of Timer/Event

45-D015854

Pulse-Width Measurement

The width of the Gt input pulses can be measured by
counting the number of clock pulses that occur in the
time the Ci! ling is held high. The upcounter must be
cleared, and then ETMM must be programmed as
shown in figure 6-12.

When the Cl input goes high, the internal clock (¢12)
becomes the clock source for the upcounter and the
upcounter is incremented at each clock pulse. When
the CIl input goes ilow, internal interrupt INTEIN is
generated, the contents of the upcounterare transferred
to the capture register (ECPT), and the upcounter is
then cleared.

s
R 1111 AR .
Iy

Interrupt

Accepled
ECNT Conlent
Transterred 12 ECPT
ECNT Creared

A5-O01587TA

Figure 6-12. Setting Up ETMM for Puise-Width Measurement Operaticn

To Count ¢ 12 While Cl Qutput is High

To Clear ECNT at Fali of Cl Input
48-0015668

pPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Programmable Waveform Output

The timer/event counter can output a programmable
frequency and a programmable duty-cycle waveform
at two outputs. These outputs are designated CQOg and
CC4, and operate identically. For a programmable
waveform cutput, the upcounter must be cieared and
the desired count value loaded into ETM0 and ETM1.
The appropriate operational data should then be loaded
into the output mode register (ECOM) and the counter
mode register (ETMM}, as shown in figures 6-14 and
6-15, respectively. Setting EOM to 05H resets COQto a
low and setting EOM to G2H enables the inversion of
LvO.

The upcounter is incremented by each pulse of the
internal ciock (¢12). The comparator compares the
contents of the upcounter te both ETMO and ETM1. If
the upcounter is equal to either, then a match signai
(CPQ or CP1) and internal interrupt (INTEQ or INTET)
are generated. Each time a match signal is generated,
LVO is output to CQq and then LVO is inverted. If the
contents of the upcounter and ETM1 are equal, the
upcounter is cleared and counting resumes from
0COQH. Interrupts INTEQ and INTE1 ¢an be masked by
setting bits MKEO and MKE1 in the interrupt mask
register. Figure 6-16 shows the timing sequence for this
operation.

Figure 6-14. Example of Seifing Up EOM for Programmable Waveform Quiput on CQ,

7 & 5 4 a 2 1 0
ECOM 0 0 0 0 0 1 o t
{] L
L¥0 Contents are Qutpurt
LV0 Reset
7 & 5 4 3 2 1 a
EOM 0 0 0 0 0 o 1 0

V0 Level Inversion Enable
49-0015688

Figure 6-15. Example of Setting Up ETMM for Programmable Wavelorm Output on COp

To Count Internal Clocks

To Clear ENCT by the Coincidence

of ECNT and ETM1

To Qutput LVO by the Coincidence

of ECNT and ETMO or ECNT and ETM{
49-0015698

6-8

- L

NEC

Section 6

Multifunction Timer/Event Counter

Figure 6-16. Timing Sequences for Programmable

Waveform Output Example

internal Clock
[A8-)

ECNT Count a

TN
NVZ
T
STED

8
o~

Start ECNT Cleared ECNT Cleared

Mote: ETMO = m
ETMt = n{m: n:m, n: Counted Values)

49 Q015704

PROGRAMMING EXAMPLES
Programmable Waveform Output

in this example, the programmable waveform is output
trom COyp; the low-level value is 200 us and the high-
level value is 300 gs. The sequence of events is shown
infigure 6-17 and described below in steps (a) through
{(d}). Table 6-3 gives examples of program codes for
each step.

Figure 6-17. Flowchart of Step Sequences in

Programmable Waveform Output

Example
' ENTER '
Step
Timec/Event Counter {a)
is Initialized
L
PortC
is Initialized b}
Count Yalue [e]
is Set
ETMM and ECM id]
are Set
Waveform
is Qutput to COy
49-D015F1A

Tabie 6-3. Example of Program Code for
Programmable Waveform Gulput

S CTIMER/EVENT COUNTER INITIALIZATION® > ===**

INIT: MVI A 00H Step (a)
MOV ETMMA Clear timer/event Counter.
MVl EOM,05H Initialize CQg autput.
Myl EOMG2H ;Enable LVO inversion,
MV A 40H Step (b)
MOV MCCA .Set PCg to made control.
LXI EA00CBH Low level: 200 us at 12 MHz. Step (c)
DMOV ETMOEA :Count value to ETMO.
Lx EA,0tF4R :High level: 300 g5 at 12 MHz.
OMOV ETM1EA ;Countvalue to ETM1.
START: MVl AJ3CH Step (d)
MOV ETMM A ;Set timer/event counter mode
. and start.

(a) The upcounter is cleared. The LVO flip-flop is
cleared and sent to the output latch, driving the
COgoutput low and enabling LVO inversion. Figure
6-18 shows how these events are set up in ETMM
and EOM.

(b) tn the mode control C register (MCC), the PCg line
is specified for COqoutput as shown in figure 6-19.

(c) Register ETMO s set to 00C8H {low level =200 us at
12 MHz} and register ETM1 is set to 01F4H (interval
= 500 us at 12 MHz). ETMO defines the low-level
pulse width of the signal, and ETM1 defines the
period of the waveform output at COy,

(d) Various operating conditions are specified in the
timer/event counter mode register (ETMM) as shown
in figure 6-20. The internal clock {¢12) is specified
as the clock source to the upcounter by bitsQand 1.
The condition to clear the upcounter when the
contents of the upcounter and ETM1 are equal is
specified by bits 2 and 3. The condition to output
the CQg signal when the contents of the upcounter
and either ETMO or ETM1 are equal is specified by
bits 4 and 5 (figure 6-20).

6-9

uPD7810/11, 7810H/11H,
78C10/C11/C14 NEC

Figure 6-18. Sefting Up ETMM and EOM for Programmable Wavefaorm Qutput Example

7 [5 4 3 2 1 0
ETMM I 0 l 0 [0] 0 l 0 l 0] 1]
L red
ECNT Contents are Cleared and
Count-up Operation is Slopped
7 b 5 L) 3 2 1 0
ECOM [1] l 0 0 o 0 1 0 1
L i
- L ¥0 Contents are Qutput
LVO is Reset
7 6 s 4 3 2 1 0
ECM L] 0 0 0 1] L]] 1] 0
LVO Level can be Inverted
’ 49.0015726
Figure 6-19. Specifying PC¢ for COg Output in Programmable Waveform Qutput Example
7 [5 4 3 2 1 0
MCC [x I] I X I x I X 1 x l x I x]
PCgis Specified tor COg OQutput
490015738
Figure 6-20. Setup of EYMM for Programmable Waveform Qutput Example
7 [5 4 3 2 1 o
Emm'nlo]1}1l1]1|olo|
| 11 It]
ECNT Input Clock:
faternal Clock (¢12)
ECNT Clear Mode: Caincidence
Between ECNT and ETM1
COy Qutput Timing: Coincidence
Between Either ECNT ana
ETMOor ECNT and ETM1
490015748

6-10

NEC

Section 6

Multifunction Timer/Event Counter

Single-Pulse Qutput

In this example, a single pulse is output from COy after
a specified time has slapsed from the fall of the ClI
input. Inthe figure 6-21timing diagram, a 200-us pulse is
output 100 us fotlowing the fall of Cl.

The phases in this operation include initialization,
processing of the INTE!IN interrupt generated at the
falling edge of Cl input, and processing of the INTE1
interrupt generated when the contents of the upcounter
and ETM1 are equal.

Figure 6-21. Signal Timing for Singie-Puise
Output Example
]
COp
100 o5 far—pel - 200 25—
INTEIN INTE1
40015794

Initialization Phase. Initialization is flowcharted in
figure 6-22 and described in steps (a) through (d)
below.

(a) Theupcounteriscleared {figure 6-18). The contents
of the LVD and the COyp output are driven low by
resetting the LVO level flip-flop (figure 6-19).

(b) The PCs line is specified for Cl input and the PCg
line is specified for COg output, as shown in figure
6-23.

fc) The INTEIN interrupt is enabled and the INTAD
interrupt {which has the same vector location) is
masked, as shown in figure 6-24.

(d) Basic operating conditions of the timer/event
counter are established by the counter mode
register (ETMM), as shown in figure 6-25. Bits 0
and 1 specify the internal clock {¢12) as the clock
source to the upcounter. Bits 2 and 3 specify that
the upcounter is free-running (it is cleared at full
count and continues counting from 0000H).

Figure 6-22. Flowchart of Initialization Phase of
Single-Puise Output Example

‘ ENTER '

L Step
ETMM
is Cleared
EQM [a]
is Initialized
PartC
is Initialized {b]

:

Interrupt Mask
Registers MKH fel
and MKL are set

‘

ETMM
is [nitialized (al

49-001576A

Table 6-4 gives exampies of program codes for each
step in the initialization phase.

Table 6-4. Example of Program Code for Initialization
Phase of Single-Puise Quiput Example

F****TIMER/EVENT COUNTER INITIALIZATION® " ***"**"

INIT: MV AGOH Step {a)
MOV ETMM.A :Clear timer/event counter.
Mvi EOM0SH JInitialize COp = 0.
Myl . ABOH ;PCs = Cl, PCg = COy. Step (b)
MGV MCC.A :Set port made control.
ANI MKL 7FH JINTEIN enable. Step {c)
ORI MKH,0FH Mask INTAD. Step (d)
START: MV A04H :ECNT free running. .
MOV ETMMA Set timerfevent counter

;mode and start.

6-11

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Figure 6-23. Specilying PCs and PCg for Single- Pulse Output Example

7 6 5 4 3 2 1 o
MCC I x l 1 [1 l x [x l x l x l x l
PC5is Specified for Cl Input
PCg is Specified for COq Output
49-D01577B
Figure 6-24. Sefup of Interrupt Mask Register for Initialization Phase of Single-Puise Output Example
7 6 5 4 3 2 1 0
MKL I a] X l X [x] x] X l x l x |
INTEIN Mask is Released
7 6 5 4 3 2 i g
MKH I X [x l x J x l x] X l X l 1 |

|—lNTAD is Masked

49-0015788

Figure 6-25. Setup of ETMM lor Initialization Phase of Single-Pulse Oufput Example

T

| o | o

ETMM I 0

ECNT Input Clock: Internal Clock {¢12)

ECNT Ciear Mode: Free Running
49-00157968

INTEIN Interrupt Phase. After initiatization, when the
Ciinput goes low, the valuein the upcounteris latched
into the timer/event counter capture register (ECPT),
andinternal interruptINTEIN is generated. The INTEIN
interrupt phase, flowcharted in figure 6-26, is described
below in steps (a), (b), and (c}.

{a} ETMQ is loaded with the value in the capture
register plus 0064H (100 us) to establish the time
interval of 100 us after the falling edge of Cl input.
ETM1 is toaded with the vaiue in the capture
register plus 012CH (i.e., 300 us after the falling
edge of Cl) to establish a pulse width of 200 us (at
12 MHz).

6-12

{b} The timer/event counter mode register (EOM} will
be used to control COp when the contents of the
upcounterand either ETMC or ETM1 areequal. The
LVO level inversion bit (LDg) is set. Figure 6-27
shows the operating parameters set up in ETMM
and EGM.

The INTE1 interrupt is enabled and the INTEQD
interrupt is masked by the interrupt mask register,
as shown in figure 6-28.

(c)

NE C Section 6
Muitifunction Timer/Event Counter

Figure 6-26. Flowchart of INTEIN Interrupt Service
Routine in Single-Puise Oulput Example

' EINSY ’

! Step
l_Caunt Values are Set I {al
Timer/Event Counter {b]
Mode is Set
Interrupt Mask [c]
Register is S5et

RET!

45-0(11 5308

Figure 6-27. Setup of ETMM and EOM for INTEIN Interrupt Phase of Single-Pulse Output Example

7 6 5 4 3 2 1 o
ETMM I 4}] 0 l 1 [1] 0 [1 I 0 | o J
{ il I |
ECNT Input Clock: Internal Clock {p12)
ECMNT Ciear Mode: Free Aunning
CQOp Cutput Timing: Change COg when either
ECHT and ETMO or ECNT and ETM1 are Equal.
7 3 5 4 3 2 1 g

EQOM [0 l 0 I 0 [0 I o [0 L1 [] |

LY0 Level Inversion is Enabled

45-0015818

Figure 6-28. Setup of Interrupt Mask Register for INTEIN Interrupt Phase of Single-Puise Outpuf Example

wo [x T o1+ 1> [+ 1 x> 1+]

INTEQ Is Masked

INTEY Mask |s Released

43-0015828

6-13

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Table 6-5 gives examples of program codes for each
step in the INTEIN interrupt phase. The JMP EINSV
instruction should be stored in the INTEIN interrupt
start address 0020H.

Table 6-5. Example of Program Code for INTEIN
interrupt Phase of Single-Pulse Oulput
Example

S “TIMER/EVENT COUNTER INTEARUPT WHEN CI GOES LDW**=*=""="
EINSV: EXA

:Save accumulator.

EXX :Save registers.

DMOV EAECPT ;Get ECPT. Step {a)

LXI B.0064H

DADD EAB Low level: 300 s at 12 MHz

DMOV ETMDEA ;Set count value in ETMO.

Lxi B,DOCAH :Load BC with 200.

DADD EA.B High level: 200 us at 12 MKz,

DMOV ETMY,EA ;Set count value in ETMI.

Myt AMH Step (b}

MOV ETMM.A Set ETMM

MV EQGM,02H ;8et LVD inversion enable.

ANl MKL,08FH ;INTE1 unmasked and Step (¢}
JINTED masked.

EXX :Recover register.

EXA ;Recover accumulator.

£l

RETI

INTE1 Interrupt Phase. After the program in table 6-5is
executed, ECNT starts counting up. When ECNT =
ETMO, COy is set high and ECNT continues counting
up. When ECNT =ETM?1, interrupt INTE1 is generated.
The INTE1 interrupt phase is described in steps (a) and
{b} below. Figure 6-29 is the flowchart.

(a) The timer/event counter output mode register
(EOM) designates that COg output operations be
stopped,

{b) Internal interrupt INTE1 is masked by the setup in
the interrupt mask register,

6-14

Table 6-6 gives examples of program codes for each
step in the INTE1 interrupt phase.

Table 6-6. Example of Pragram Code for INTE?
interrupt Phase In Single-Pulse Qutput
Oparation

**""*TIMER/EVENY COUNTER INTERRUPT WHEN ECNT == ETH] *eev """

EISV: MVI EOM,00H Step (a)
ORI MKL 40H ;INTET disable. Step {b)
H
RETI

Figure 6-29. Flowchartf of INTET interrupt Service
Rouline in Single-Pulse Output Example

' EISV '
v Step
| COp Reset I (a]
Interrupt Mask [b]
Register is Set

¥
' RETI ’

49.001 5834

NEC

Section
Serial Interface

7

ORGANIZATION

The microcomputer contains a serial interface that
permits communications in either asynchronous,
synchronous, or I/0 interface mode.

The serial interface consists of three lines: the RxD .
serial data input line, the TxD serial data output line,
and the SCK serial 1/0 clock line. Operation is con-
frolled by the serial mode register. The receiver and
transmitter each contain a control section, a conversion
register (parallel-to-serial or serial-to-parallel), and a
buffer register. This allows full-duplex operation in the
asynchronous mode. Since the same clock is used for
transmit and receive, half-duplex operation is available
in synchronous and I/0 mode. A block diagram of the
serial interface is shown in figure 7-1,

Transmitter

Parallel-to-Serial Conversion Register. This register
converts the parallel data loaded from the transmit
buffer register into serial data that is sent out on the
TxD line.

Figure 7-1.

Transmit Buffer. Parallel data intended for transmission
is temporarily stored in this register. The new contents
of this register are transferred to the parallel-to-serial
conversion register atter datain the conversion register
has been transmitted. When the transmit buffer register
is empty, the INTST interrupt request is generated.

Transmit Control Circuit. This circuit controls the
entire transmitter and generates ali required signals.

Receiver

Serial-to-Parallel Conversion Register, This register
converts the serial data input from the RxD line into
parallel data and transfers it to the receive buffer
register.

Receive Bufter. This register temporarily holds the
parallel data sent from the serial-to-paraitel conversion
register. When the receive buffer register is full, the
INTSR interrupt request is generated.

Receive Control Circuit. This circuit controls the
receiver and generates all the required control signals.,

Block Diagram of Serlal Inferface Transmitier

& i internal Bus _P
INTSR | Receive Buffer Serial Mode Transmit Butfer _EJ_I_S_'I;
(RxB) Register {TxB)
| Setial Register Serial Register
PCp‘RKDD_D'— - [s_‘_p] {P-=5]
]
3
Receive Contrnl p——» ER Transmit Control
b
PCZ/SCK O
-— 24
<} ! 9384 1
{#—— Interval Timer Fri $2a=tga1 % 57
7] $384 =ty x 51
fxtal: Oscillation Frequency (MHz) of Crystal
PCo/TxD O ‘<-‘l
49-0015848

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

SERIAL MODE REGISTERS

There are two serial made registers: serial mode high-byte
and serial mode low-byte. These specify the operating
conditions (such as data tength) of the serial interface.

Serial Mode High-Byte

Figure 7-2 shows the format of the serial mode high-
byte register. The functian of each bit is described as
follows.

SK2-5K4. These bits determine the clock source by
selecting either aninternal clock (¢24, ¢384, orinterval
timer F/F) or an external clock. When ¢24 or ¢384
internal clock is specified, the serial clock rate fgok is
based on the following equations in which fyTa, is the
crystal oscillation frequency.

(1) Internal cliock ¢24;
fsck = fxaL — 24

{2) Internal clock ¢384;
fsck = fxTaL + 384

Figure 7-2. Serial Mode High-Byte Registfer

When the clock source is the interval timer F/F, the
serial clock rate fgck is based on the following
equations. {C represents the interval timer count value.)

{1} Timer upcounter input clock = ¢12:
fsok = fxraL — 24C

(2) Timer upcounter input clock = ¢384:
fsok = txtaL + 768C

(3) interval timer F/F clock = ¢3 {timer not counting):
fsck = fxtaL +~ 6

TxE. The transmitter enabte bit controls whether or not
data is to be sent. If this bit is cleared, the TxD line is
driven high, preventing data from being sentout onthe
line. When this bit is set, either newly written or
previously stored serial data in the transmit bufier
register can be sent out on the TxD line.

7 [} 5 4 3

2

b 0

SMHI 0] TSK l IGE l SE I RAxE] TxE l 5K, , 5K, l

SCK Setection

Interval Timer F/F
Internai Clock {¢:384)
internal Ctock (424}
External Clock

c
0
D
1
1

o l=10

Send Enabhie
0 Disahle

1 Enable

Receive Enable
0 Disabie

1 Enable

Sync Search Mede
o Search Mode Off

1 Bit Search Enabled

110 Interface Mode

a Sync Mode

1 110 Interface Mode
SCK Trigger

o Disable

1 Enable

4890015858

7-2

NEC

Section 7
Serial Interface

If the logic state of the TxE bit changes fromaoneto a
zero, data transmission is inhibited after the serial data
currently held in the paraliel-to-serial conversion
register is transmitted, preventing the transmission of
any serial data held in the transmit buffer register. This

data will not be lost, but will remain in the transmit -

buffer register until transmission is enabled (i.e., when
the logic state of Txk changes to a one).

RxE. The receive enable bit controls whether or not
serial data is to be received. When set, reception is
enabled; when cleared, reception is disabled.

SE. This bit enables the search mode during syn-
chronous data transmissions. When SE is set, the
contents of the receive serial-to-parallel conversion
register are transferred to the receive buffer register
each time a data bit is received (search mode). This
generates the INTSR serial receive interrupt. When SE
is cleared (search mode off), the contents of the serial-
to-parallel conversion register are transterred to the
receive buffer register after a byte of serial data has

Figure 7-3. Serial Mode Low-Byle Register

been received (byte mode). This generates the INTSR
serial receive interrupt.

IOE. Two bits in the serial mode low-byte register
(SML} select between synchronous or asynchronous
operation. When synchronous operation is selected in
the SML, the IOE (input/output enable} bit in the SMH
selects between synchronous mode or 1/Q interface
mode. When this bit is cleared, synchronous mode is
enabled; when set, the I/Q interface mode is selected.

TSK. This bit starts the internal serial clock when data
is to be received in 1/Q interface mode, When the TSK
bit is set, eight clock pulses are generated and a data
bit is read on the rising edge of each clock pulse. After
eight clock pulses, reception is completed and the TSK
bit is automatically cleared.

Serial Mode Low-Byte

Figure 7-3 shows the format of the serial mode low-byte
register. The function of each bit is described as
follows.

7 6 5 q

2 1 0

L2|82|B1|

SML L]_F—Ll EP]PEN]l :]

] L |

Clock Rate
[1) Synchronous Made
0 1 x1
1 0| x16
1 1 x 64

Character Length
4] 0 —

¢ {1
1 1} 7 Hits.
1 1 B Bits

Parity Enable
a Disable

1 Enable

Parity Generation/Check
a Odd

1 Even

Number of Stop Bits

¢ | @ | Synchronous Mode
a 1 1 8it

140]| —

111 2 Bits

49-0015868

7-3

uPD7810/11, 7810k /44H,
78C10/C11/C14

NEC

B»-B4. These bits select either asynchronous or
synchronous mode. B, and By, = 00 selects the
synchronous mode,

Lo-L4. These bits select the character length.

PEN. This bit enables or disables parity, When PEN is
set, a parity bit is added to each character transmitted
and a parity check is conducted on all data received.
Anerrorflagissetifany errors are encountered. When
this bit is cleared, the parity operation is disabled.

EP. This bit selects between even (EP = 1) or odd
(EP = 0) parity.

$5-54. These bits select the number of stop bits
transmitted in asynchronous mode. In the synchronous
mode, the bits should be set to 00.

OPERATION

The serial interface supports three methods of data
transmission: asynchronous mode, synchronous mode,
and {/O interface mode.

Asynchronous Mode

This mode of operation uses start and stop bits to
synchronize the transmission and reception of data. To
enable this mode, several operating parameters such
as length of transmission characters, clock rate, number
ot stop bits, parity selection, etc., must be established
using the serial mode registers as shown in tigure 7-4.

When an internal clock source is specified, the data
transfer rate B in bits/second is_determined by the
clock rate using the following formutas in which:

fx1aL = crystal oscillation freguency in Hz
n = clock rate division (16 or 64)
C = timer count value

{1) Internal clock ¢24:
B = fyral + 24n

(2) Internal clock ¢384:
B = fxtaL *+ 384n

(3) Interval timer F/F when the timer upcounter clock
source is internat clock ¢12:
B = fyraL + 24nC

{4) Interval timer F/F when the timer upcounter clock
source is internal clock ¢384:
B = fytaL + 768nC

() Whenthe interval timer F/F clock source is internal
clock ¢3:
B = fxtaL + 6n

Table 7-1 shows the timer count values (C) required to
set up data transfers at baud rates ranging from 110 to
9600 b/s. The clock source to the timer upcounter is
@12 (B = fxraL + 24nC).

Table 7-1. Using Timer Count Vaiues To Set Up
Baud Rates

Timer Count Yalue [C)
fyraL = 7.3728 MHz fyrar = 118592 MHz2

Data Transfer

Rate, b/s n=16 n = 64 n=16 n =64
9600 2 3

4800 4 1 6

2400 8 2 12 3
1200 16 4 24 6
600 32 8 48 12
300 64 16 96 24
150 128 32 192 48
110 175 44 262 &5

Data Transmission. Data transmission is enabled in
asynchronous mode by setting the TxE bit in the serial
mode high-byte register (SMH). The MOV TXB, A instruc-
tion writes data from the accumulatar into the transmit
bufter. When the contents of the parallel-to-serial
register have been transmitted, the new contents are
automatically transferred to the parallel-to-seriaf con-
version register. Cne or two stop bits and a start bit are
added to the serial data. A parity bit (odd or even) may
be added if desired. The completed character is then
sent out on the TxD line, beginning with the least-
significant bit (LSB). See figure 7-5.

A serial transmission interrupt request (INTST) is
generated when the transmit buffer register is empty.
The interrupt may be disabled by setting the MKST bit
of the MKH interrupt mask register. |f additional data is
written into the transmit buffer register before the
register has become empty, the original contents are
overwritten and destroyed. Therefore, when writing to
the transmit buffer register, check that the serial
transmission interrupt request flag (INTFST) is set,
indicating that the transmit buffer is empty.

Figure 7-5. Dala Format In Asynchronous Mods

LAY -

i i
Marking| StartBit | Og Ty Dy Marking
J)
L
N=67 1or 2 Stop Bils

Odd, Even or No Parity

45-001 5888

li‘ Section 7
Serial Interface

Figure 7-4. Format of Serfal Mode Registers in Asynchronous Mode

7 & 5 4 3 2 1 0
SML [Sy l Sy I EP l PEN I Ly 1 Ly I By I 8y I
 UUOTRUIUVITTOUTUT | L . It]
Clock Rate
1 G x 16
1 1 x 64
Character Length
LU L
4] 1 —
1 0 7 Bits
1 1 8 Bits
Parity Enable
0 Disable
1 Enable
Parity Generation/Check
a Qdd
1 Even
Number of Stop Bits
] 1 1 Bit
1 0 -
1 1 2 Bits
7 B 5 4 3 F4 1 0
SMHI 0] o] 0 l 0 I RxE I TxE I SKo] SK4]
SCK Selection
a a Interval Timer F/F
0 Internal Clock (4384)
1 0 | internal Clock (¢24)
1 1 External Clock
Send Enabte
¢ Disable
1 Enable
Receive Enable
0 Disable
1 Enable
49-001587C

7-5

4,PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

When the TxE bit in SMH is cleared and the transmit
butfer is empty, data transmission on the TxD line is
disabled. When transmission is enabled, data is sent
outonthe TxD line atthe fall of SCK at arate of 1/16 or
1/64 of the serial clock frequency. The equivalent data
transfer rates based on a master clock of 12 MHz are
shown in table 7-2.

Data Reception, Data reception is enabled in asyn-
chronous mode by setting the RxE bit in the serial
mode high-byte register {SMH). There is a valid start bit
when a low level on the RxD input is detected 1/2 bit
time after the initial detection of a low level on the RxD
input line. This start bit procedure prevents data
reception from being incorrectly initiated by noise on
the RxD line. After a valid start bit, character, parity, and
stop bits are sampled every bit time starting from the
center of the start bit.

Data received from the RxD line is written into the
serial-to-parailel conversion register and transferred
to the receive buffer. When the receive buffer is full, an
INTSR interrupt request is generated. This interrupt
can be masked by setting the MKSR bit in the interrupt
mask register. The error flag (ER} in the interrupt flag
register is set if a parity, framing, or overrun error
occurs. Because no interrupts are generated by an
error condition, the error condition must be tested
using the SKIT or SKNIT skip instruction.

The equivalent data transfer rates based on a master
clock of 12 MHz are shown in table 7-2.

Tabie 7-2. Clock Rates and Equivalent Data
Transter Rates

Internal Clock _E:!ernal Clock

e Uata Transfer Data Transfer
Clock Bate SCK Fate SCK fate
x1{1) 500 kHz {@24) 500 kbis 660 kHz B60 kb/s
1 MHz 1Mb/s (2)
x16 2MHz (p3)/2 125kb/s 2 MHz 125 kb/s
x4 31.25 kb/s 3125 kb/s

Notes:

(1) Ataclockrate of x1 serial clock frequency, RxD and SCK mustbe
synchronized externally.

(2) Two stop bits are required when data is being received at data
transfer rates ranging from 860 kb/s to 1 Mb/s.

Synchronous Mode

In the synchronous mode, data transfers are syn-
chronized with the serial ciock. Character lengths are
fixed at 8 bits, and there is no parity. Figure 7-6 shows
the format of the serial mode registers in synchronous
mode.

7-8

As shown in figure 7-7, data is transmitted in 8-bit
quantities beginning with the least-significant bit (LSB)
at the falling edge of SCK. in synchronous mode, data
is received at the rising edge of SCK.

Data Transmission. Data transmission in synchronous
mode is enabled by setting the TxE bit in the SMH
register. The data to be transmitted is written into the
transmit buffer by the MOV TXB,A instruction. When
the previous data transmission has been completed,
the new contents of the transmit buffer are automatically
transferred to the paralfel-to-seriaf conversion register,
converted into serial data, and sentout on the TxD line
atthe falling edge of SCK. The transmission data rate is
equal to the SCK clock rate.

After all data has been transferred from the transmit
buffer, an INTST interrupt request is generated. The
interrupt can be masked by setting the MKST bit in the
interrupt mask register. Data transmission is disabled
onthe TxD line when the TxE bitin SMH is cleared. The
TxD line will be marking when the transit buffer is
empty or when TxE is 0.

Data Reception. Data reception in synchronous mode
is enabled by setting the RxE bit in the SMH register.
Synchronously transmitted serial data is received on
the rising edge of SCK. There are two different methods
by which synchronous data may be received: bit
search mode and byte mode. The SE bit in the SMH
register determines the method of data reception.

When the SE bit is set, the contents of the serial-ta-
parallel conversion register are transferred to the
receive buffer each time a bitis received at the RxD pin,
generating the INTSR serial receive interrupt. However,
when the SE bitis cleared, the contents of the serial-to-
parallel conversion register are not transferred to the
receive buffer register until 8 bits have been received,
at which time the INTSR serial receive interrupt is
generated. In either case, the INTSR interrupt can be
masked by setting the MKSR bit in the interrupt mask
register.

Far bit-oriented protocols, SEis setand SYNC detection
is done on a bit-basis by a search program. Once SYNC
Is detected, the SE bitis reset and byte-long characters
are received. For byte-oriented protocols, SE is always
reset.

Seclion 7
Serial Interface

vy
C

Figure 7-6. Format of Serial Mode Regisiers in Synchronous Mode

7 6 E] 4 3 2 1 o

W ST S I I I C

Synchronous Mode

Character Length Fixed to B Bits

Parity Disatle

7 § 5 4 3 2 1 0
sunra] o | o ISEIR1E1T1E15K215K1J

Seiection

Internal Clock {»384)
Internal Clock [424)
External Clock

CK

1] 1] Interval Timer F/F
0

1

1

alel=

Send Enable
U Disable
1 Enable

Aeceive Enable

i] Disahble
1 Enable

Syne Search Mode

0 Search Moage Ott
1 Bit Search
49-HH1 5888
Figure 7-7 Data Transfer Timing in Synchronous Mode
] 7 0 1 2 k| 4 3] 7 4 1 2

g

s X XX)(X—XXXXXX.

M58 (L58 M58 (L3B

A Dala Transler *

Note: Data ls received on rising edge of SCK.
Data is lransmitted on fatling edga of SCK.

4450019500

7-7

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

I/0 Interface Mode

In 1/Q interface mode, data transfers are controlled by
the serial clock, which may be external or internal.
Character lengths are fixed at 8 bits and no parity bits
are added. Figure 7-8 shows how the serial mode
register is formatted in 1/0 interface mode.

Datais transmitted at the falling edge of SCK, beginning
with the most-significant bit (MSB), and data is received
in I/0 interface mode at the rising edge of SCK.

Characters are synchronized by the serial clock, which
may use either an internal or external clock source, as
determined by the SMH register. When an internal
clock source is used, eight clock pulses are output on
the SCK line for each character transfer. When using an
external clock source, a clock must be supplied that
generates eight clock pulses and stops.

Figure 7-8. Format of Serlal Mode Registers in 1/0O interface Mode

7 & 5 4 3 2 1 Q
SML I [] 0 I 0 l 0] 1 I 1 | 0 [0]
L Il Il |
Synchranaus Made
Character Langth Fixed to 8 Bits
Parity Disable
7 6 5 4 3 2 1 0
SMH | 0 | TSK | 1 l 0 | RxE I TxE l SKo I 8Ky I
I |
SCK Setection
0 a Interval Timer FiF
0 1 Internal Clock {4384
1 0 internal Clack (¢24)
1 1 External Clock
Send Enable
i] Disable
1 Enable

RAeceive Enable

a Disatsle

1 Enatle

110 Interface Mode

K Trigger

0 Disabie
1 Enakble

45.0015328

7-8

Serial Interface

Figure 7-9 shows data transfer timing in 1/Q interface
mode.

Data Transmission. Data transmission in I7Q interface
mode is enabled by setting the TxE bit in the SMH
register. Data is written into the transmit buffer by a
MOV TXB,A instructicon, and when the data transmission
of the previous byte has been completed, the transmit
butfer contents are automatically transferred to the
parallel-to-serial conversion register. Eight SCK pulses
areautomatically generated and the data is transmitted
on the TxD line at the failing edge of SCK, beginning
with the most-significant bit.

When the contents of the transmit buffer have been
transmitted, the INTST serial transmit interrupt request
is generated. The interrupt may be masked by setting
the MKST bit in the interrupt mask register.

Data Reception. Data reception in I/0 interface mode
is enabled by setting the RxE bit in the SMH register. If
an internal clock source is used for the serial ¢lock, the
serial clock must be started by setting the TSK bit in the
SMH register. The serial data is then received on the
RxD line at the rising edge of SCK. After 8 bits of data
have been received into the serial-to-parallel conversion
register, the datais transferred to the receive buffer and
the INTSR serial receive interrupt request is generated.
If an external clock source is used for the serial clock,
all data sent synchronously with SCK is loaded into the
serial-to-parallel conversion register at the rising edge
of SCK. The INTSR interrupt can be masked by setting
the MKSR bit in the interrupt mask register. The high
level of the eighth SCK must be at least six clock
periods iong.

Figure 7-9. Data Transfer Timing In 170 Interface Mode.

PROGRAMMING EXAMPLE

To illustrate operation and pragramming concepts of
the serial interface, an example of a program that
transfers data asynchronously between the serial
interface of the 7811 and a gPDB251A USART follows.
Although references are made to the 7811, this example
applies to all the parts in this manual.

In this example, the 7811 is set up as follows:

Clock oscillator 11.0592 MHz
Serial clock Interval timer F/F
Data transfer rate 110 b/s

Clock rate division 16

Character length 8 bits

Number of stop bits 2

Parity Even

As shown by the interconnection diagram in figure
7-10, three lines are needed o execute the transfer: a
serial data input (RxD), a serial data output (TxD}, and
a control line (CTS). The PCy line is used as the CTS
control line on the 7811 side.

Figure 7-10. Interconnection Diagram for Serial Data
Transter Example
¥ec
ET8(PCy) % [
Tx0 RAxD
Rzl T
wPD7611 ”’:,‘;:f:;‘
' =€
Baud Aate
Genersior]
AxC
AS-001593A

Serial
Dala

XX XX XX

Note: Data is received on rising edge of SCK.__
Data is transmitted on falling edge of SCK.

XKy X X X

A3-0015918

7-9

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Initialization

The first phase of the serial data transfer is initialization,
which is outlined in figure 7-11 and described below in
steps (a) through {d).

Because the count value exceeds 255 (FFH},
TIMERO and TIMER1 are cascaded into a 16-bit
timer configuration with TM0 = 131 (83H) and
TM1 =2,

(a) Various operating parameters such as character Figure 7-11. Flowchartof Initialization Phase of Serlal
length, clock rate, number of stop bits, serial clock Data Transfer Example
source, parity-checking characteristics, etc., are
specified in the serial mode registers as shown in

{b) Because the serial clock uses the interval timer F/F Step
as the clock source, counter operation parameters Serial Interface 13)
and the counter value are specified by the timer Mode is Set
mode register as shown in figure 7-13. For this ‘
programming example, the count value is de- is |::$:a;ed L]
termined to be 262 using the following equation, ;

f = clock oscillation frequency (Hz) Port C e}
n = clock rate division is Initiatized
B = data transfer rate (b/s) !
C = count value Transmission 141
5 is Enahled
f__ _11.0592 x 10 i
= = =262
¢ 24nB 24 x 16 x 110 49-001£648
Figure 7-12. Setup of Serial Mode Registers for Initialization Phase of Serial Data Transfer Example
7 6] a 3 2 1 0
SML[‘II111'1II 1I1Iol
| IO— | L T i
Clock Rate: 1§
Character Length: 8 Bits
Parity Check: Enabled
Odd/Even Parity: Even
Stop Bit Number: 2 Bits
7 3 5 4 3 2 1 0
sw [T] o oo [oo o]
L 4
Serial Clock: Intervat Timer F/F
49-0015958

7-10

Nl!'c Section 7
Serial Interface

{c) As shown in figure 7-14, port C is initialized by (d) Transmission is enabled by setting the TxE bit in
establishing PCy as the TxD line, PCy as the RxD the SMH register as shown in figure 7-15.
line, and PC; as an output port line outputting a
high-level signal. PCy, can be designated for serial
clock input or output by the MCC register.

Figure 7-13. Setup of TMM for Initialization Phase of Serial Dala Transter Example

T § 5 4 3 2 1 0
[0o [1] 1+ o [o o] o]+ |
| L 1 |
TIMER F/F Input when Upcounter = TM1
TIMEROD Count Input is Set for ¢12
TIMERQ is Counted Ugp
TIMER1 Count Input when Upcounter 0 = TMO
TIMER1 i{s Counted Up
49-0015868
Figure 7-14. Port C Specification for Initialization Phase of Serial Data Transfer Example
7 §] 4 k] 2 1 L}
Mcc['alex]x]x|1l1|1]
——PCqy: TxD Terminal
PC4: RxD Terminal
PCy: SCK 11D
PCy: Port Mode
7 5] H 4 a 2 1 0
PC I 1 l H l x] H I x I X l X [X I
PC; Output Latch "1"
7 6 5 4 3 2 1 0
MC [0 l x [x | H l x l x [X [X —I
PC7 = Qutput Port
43-0015978
Figure 7-15. Enabling Transmission In Serial Data Transfer Example
7 -] 5 4 3 2 1 a
s | | [[T [[1]
{] { — J
Preceding Condition
Transmission Is Enatied
Preceding Condition
43-001548H

7-11

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Table 7-3 is an example of program code {or each step
in the initialization phase of the serial data transfer.

Table 7-3. Example of Program Code for the
Initialization Phase of Serial Data Transler

eseeswranseessSERIAL INTERFACE INITIALIZATION =<t s eeeees

SINIT: MYl SMH.00H ;Internal serial ciock {timer F/F} Step (a)
MVl AOFEH x16, even parity, 8-hit
:character, 2 stop bits.
MOV SMLA ;Set serial made.
MVl A83H . Step (b)
MOV TMOA 1Set timer register.
Myl A02H Baud rate =100 bfs.
MOV TM1A :
Myl TMMETH -Set timer mode and start.
Myl A07H :Set port C mode contral. Step (c)
MOV MCCA :TxD, RxD, SCK available.
ORI PC80H :PG7 output latch = 1.
Mvi AGOH JInitialize port C.
MOV MC.A ;Port C output mode.
ORIl SMH04H :Transmit enable. Step ().

Data Transmission

Inthis phase of the serial data transfer example, thecontents
of the accumulator {one byte) are seriaily transmitted
andthe interrupt request flag (INTFST) is tested rather
than using the INTST serial transmit interrupt. The
sequence is outlined in figure 7-16 and described below
in steps (a) and {b).

{(a) To determine if the transmit buffer is empty, the
INTFST interrupt request flag is tested.

(b) The contents of the accumuiator are transferred to
the transmit buffer register.

Table 7-4 is an example of program code foreach byte
transmitted. Interrupt masks are set in the data
reception subroutine. This operation in the 7811
assumes that the 4PD8251A USART has been enabled
for the reception of serial data.

Table 7-4. Exampie of Program Code for Transmission
Phase of Serial Dala Transfer

:oﬂainttttntTRnNSMlT SERUIBEtonatttt‘t-ttto'titt

TRNS: SKIT FST Test FST, skip if FST = 1. Step (a)
JR TRNS ;Wait until FST = 1.
MOV TXBA ;Output transmit data. Step (b)

Data Reception

Receive-Enable Phase. The INTSR interruptis used for
serial data reception, requiring the allocation of memory
space for storage of received data, determination of the
number of bytes to be received, setup of the interrupt
mask register, etc., before serial data can be received.

7-12

The receive-enable phase c¢f the serial data transfer
exampie is outlined in figure 7-17 and described below
in steps {a) through (e).

{a) Memory address where the received data is 1o be
stored is specified by register pairHL. The address
2000H is specitied in this example.

(b) Number of bytes to be received is specified by
general-purpose register C. For this exampie, 16
{(10H) bytes are specified.

Figure 7-16. Flowchart of Transmission Phase of
Serial Data Transfer Exampie

49-001 5894

Figure 7-17 Flowchart of Receive-Enable Phase of
Serial Data Transfer Example

RVEN
Step
Memory Address [a]
is Initiatized
Number of Received [b]
Bytes i{s Initialized
Interrupt Mask
Register fel
is Initialized
Data Reception [d]
is Enabled
IGE T
EXIiT
43-001600A

NEC

Section 7
Serial Interface

(c) As shown in figure 7-18, the MKSR bit in the
interrupt mask register is cleared, enabiing the
INTSR interrupt. The INTST interrupt mask is set,
masking the INTST interrupt. {INTST and INTSR
have the same priority.)

{d) RxE bit in the SMH register is set, enabling the’

reception of serial data.
(e} PCy line is set low, enabling the CTS line.

Table 7-& is an example of program code for each step
in the receive-enable phase of serial data transfer. After
all required parameter settings for the receive enable
phase have been made, the INTSR interrupt is gen-
erated each time the specified data string is received.

Table 7-5. Example of Program Code for Receive-
Enable Phase of Serial Data Transfer

:.ﬂi'ﬁiiﬁitt.ltttﬂEcEluE EN‘BLEQOQ*'*I'.I'!“Q‘

RVEN: LXI H.2000H ;Set data pointer (HL = 2000H). Step (a)
Myl C.OFH :Set data caunter {C = OFH). Step (b}
EXX ;
MYI MKH.O5H ;INTST masked and INTSR unmasked. Step (¢}
ORI SMH.08H :Receive enabled. Step (d)
AN! PC.TFH LT85 =90, Step (e)

interrupt Phase. The INTSR interrupt steps listed
below are outlined in figure 7-19.

(a) Received data is checked for errors. If an error is
found, a jump is made to the error processing
routine.

(b) Received data is stored in memary.

{¢) Acheckismadetodetermineifthereceivebufferis
full. If not, processing continues through the main
stream of the program.

(d) If the receive buffer is full, the PCy line is driven
high, disabling the CTS line. As a result, trans-
mission from the xPD8251A is stopped.

(e) RxE bit in the SMH register is cleared, disabling
serial data reception,

{f) MKSR bit in the interrupt mask register is set,
disabling INTSR interrupts.

Figure 7-19. Flowcharl of INTSR interrupt Processing
Phase of Serial Data Transfer Example

Error Process

Data s Stored b
In Memary

fe]

Y
CTS(PC) «-1

Reception is [e]
Disabled

!

Interrupt Mask
HAegister i
is Specitied

‘ AETI '

45001 BO2A

Figure 7-18. Setup of Interrupt Mask Register In Receive-Enabie Phase of Serlal Data Transter Example

7 B 5 4 3

[o o Jo o

MKH] 0

'——INTAD is Masked

INTSR Mask is Released

INTST is Masked

49-0016018

7-13

ﬂh"ul blvi i.l’ [} Qnuu;. . s

78C10/C11/C14

- hﬁ ﬂ

NI

Table 7-6 is an example of program code for each step
in the INTSR interrupt service routine. The JMP RECV
instruction should be located at vector address 0028H.

Table 7-6. Example of Program Code for INTSR
Interrupt Service Routine of the Serial
Data Transfer Operation

;++***RECEIVE SERVICE™"**"**"

RECV: EXA ;Save accumulator. Step {a)
EXX :Save register,
SKNIT ER Test €R {lag; skip if ER = 0.
JMP ERROR ;Jump to ERROR routine.
MOV ARXB Input received data. Step (b}
STAX H+ :Store received data to memory.
DCR € :Skip next instruction if Step (¢}
;buffer full.
JR RECD :
ORI PC.80K 0TS -1, Step (d)
ANI SMH,0F7H :Receive disable. Step (e)
ORl MKH,02H ;INYSR disabled. Step (f)
RECO: £XX :Recover register,
EXA ;Recover accumulator.
£ :Enable interrupt.
AETI Return

7-14

NEC

Section
Analog-to-Digital Converter

CONFIGURATION

An eight-channel, 8-bit, successive-approximation,
analog-to-digital converter provides on-board signal
processing capability. As shown in figure 8-1, the A/D
converter (ADC) consists of an input circuit, a 256-

resistor ladder, a voltage comparator, a successive- -

approximation register (SAR), and four conversion
result registers (CR0-CR3). Two modes of anatog input
selection are provided: scan mode and select mode.

Conversion Process

The eight analog inputs are multiplexed internally,
according tc the contents of the A/D channel mode
register (ANM). The selected analog input is sampled
by the ADC, and sent to the voltage comparator where
the difference between the instantaneous analoeg input
voltage and the voltage tap in the resistor ladder is
amptified.

The resistor ladder is connected between the ADC
reference voitage terminal (Vaper) and the ADC ground
terminai (AVgg}. The resistor ladder decoder driven by
an 8-bit successive-approximation register (SAR)
selects the voltage tap in the resistor ladder that
matches the analog input voltage.

As anexample, if bit7 inthe SAR is setat the start of the
cenversion process, the voltage tap equivalent to 1/2
VAREF is designated, and the voitage of the current
analog input is compared with this value. 1f the voltage

exceeds the value, SAR; remains set; if the voltage is
less than this value, SARy is cleared.

Then bit 6 in the SAR is set, and the voltage tap
equivalent to either 3/4 or 1/4 Vaper (depending on
whether or not bit 7 is set) is designated, and the
voitage on the analog input is compared with this
value.

When all 8 bits have been setor cleared in this manner,
a voltage tap in the resistor ladder whose voliage
matches the anaiog input will have been found. The
8-bitnumberin the SAR is the digital representation of
the instantaneous analog input and it will be fatched:
into one of the CR registers.

Power Supply

An independent power supply line, AVcg, is used for
the ADC for greater voltage stability and noise immunity.
In all CMOS parts, if Vager is reduced to 0 volts, the
A/D converter power is off. This is a useful feature in
standby modes. Capacitors shouid be connected from
Varer toground and from each analog input to ground
to decouple noise. Capacitor size should be 100 pF to
1000 pF.

A/D Channel Mode Register

The A/D channel mode register (ANM) is 8 bits iong
and is used to establish operating parameters for the
ADC. The format of the register is shown in figure 8-2.

Figure 8-1. Block Diagram of Analog-to- Digilal Converter
Resistor Ladder
ANOG— | Sampling & Hnming_: i
AN1O——] |
ANZO— : : |
AN3 O—— I 1 . H 1
ANb o} Cireait | < l : | é—i—o ¥ AREF
ANE O 5 RIZ
ANE O——r : g t : i
& 4 H
ANT L. _____ J Comgarator E | i g
K]
|
ﬁ Contral SAR (8 | %
onira — .
AD Chan_nei) | A2
Mode Register I I i Avss
|
& Internal Bua q
CRO (8} CR1(8) CR2 (8) CR318)
6 Intermal Bua q
45-0016038

8-1

LPD7810/11, 7S810H/11H,
78C10/C11/C14

NEC

Figure 8-2. A/D Channel Mode Register

7] 5 4 3 2 1 ¢
ANM[- I -] — IFR IAlelANH IANlulms]
1 |
Operation Mode Designation
0 Scan Mode
1 Select Mode
Analeg Input Designation

0[0]0 |AND

4] a 1 AN

0 1 Q | AN2

0 1 1 | AN3

1 0410 [ANd

1 0] 1 | AaNS

] 1 a ANG

1 1 1 ANT

0 Oscillation Frequelnc'y Mare
Than ¢ MHz {192 Timing States)

1 Oscillation Frequency § MHz
or Less (144 Timing States)

490016048
Bit 0 (MS) determines if scan mode or select mode is Scan Mode

used. Bits 1, 2, and 3 (ANIg-ANI») selectively enable
the individual analog input lines. Optimum conversion
frequency based on oscillation frequency fxyaL i
selected by bit 4 (FR) as follows.

FR == 0: Conversion rate = 192 timing states; fyta,
above 8 MHz.

FR = 1: Conversion rate = 144 timing states; fy7aL
below 8 MHz.

Oscillation frequencies and corresponding conversion
rates are shown in table 8-1. The ANM register can be
read to determine which analog input is selected for
the current conversion. A RESET clears the A/D
channel mode register to 00H.

Table 8-1. Oscillation Frequencies and Conversion
Rates

lyaL {MHz2) 12 N w 9 8 7 6

FR Bit 6 0 o0 1 1 1 1

Converslon Speed [ws) 48 524 576 48 54 BT 72

OPERATION

The ADC operates either in scan mode or select mode
as designated by the MS bit in the A/D channel mode
register (ANM.

8-2

When bit 0 of ANM is cleared (MS = 0}, scan mode is
enabled. Bit 3 of the ANM (ANI3y) determines which
four inputs are scanned. Analog input lines ANO-AN3
(ANIl; =0) or AN4-AN7 (ANI, = 1) are enabled in scan
mode by the ANM register as shown in figure 8-3. Bits 1
and 2 have no function in scan mode.

When ANl is cleared, analog input lines ANO-AN3 are
enabled in order starting with ANO, and the digital
equivalent of each converted analog value is stored in
the respective conversion result register (i.e., the result
from ANQ is stored in CRQ, the resuft from AN1 is stored
in CR1, etc.).

When ANIls is set, analog input lines AN4-AN7 are
enabled in order starting with AN4. The results are
stored in least-significant to most-significant order in
the canversion result registers (i.e., the result from AN4
is stored in CRO, the result from AN5 in CR1, etc.).

When ali four conversion result registers contain
results, the INTAD interrupt request is generated. The
INTAD interrupt can be masked by setting the MKAD
bit in the interrupt mask register.

Section 8
Analog-to-Digital Converter

NEC

Figure 8-3. Format of A/D Channel Mode Register in Scan Mode

7 [5 4 3 2 1 4

Y e S N W e B

LScan Mode

Analog Input Designation
0 | ANO-AN3

1 ANS-ANT

0 | Oscillation Frequency
More Than 9 MHz

1 Oscillation Frequency
9MHz arless

49-001605B

The conversion process is continued from either the
ANO or AN4 input, independent of whether or not the
interrupt is accepted, with new results stored in the
respective conversion result registers. This will con-
tinue untit the ANM register is madified. In this mode,
up to four analog signals can be converted to digital
form with a minimal amount of software.

Select Mode

1f bit 0 of ANM is set (MS = 1), select mode is enabied.
ANM bits 1-3 (ANIg-ANI7) determine which of the eight
analog inputs will be converted (see figure 8-4).

The analog input from the line designated in the ANM
register is converted and stored in a conversion resuft

register. The first conversion resuitis stored in CRO, the
second in CR1, etc., until all four registers hold
conversion results, at which time an INTAD interruptis
generated. This interrupt may be masked by setting the
MKAD bit in the interrupt mask register.

New results are continually stored in the conversion
registers as they are processed, regardiess of whether
or not the interrupt is acknowledged, so that the
conversion registers always contain the most recent
conversion results. This operation is continued until
the ANM register is modified. This mode of operation is
particularty useful in maximizing noise immunity or in
averaging conversion signals.

Figure 8-4. Format of A/D Channel Mode Register in Select Mode

7 & 5 4 3

i 0

Awmhw—l-—l—lm IAN|2]AN11lAN|OI 1 I

| L
Selecl Mode

Anatog Input Designation

0 Q 0 | AND
a 4 1 AN1
Q 1 0 | ANZ
[1 1 AN3
1 0 3 AN4
1 a 1 ANS
1 1 0 | ANB
1 1 1 AN7

Oscillation Frequency
More Than 9 MHz

1 QOscillation Frequency
9 MHz or Less

49-001606B

8-3

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

PROGRAMMING EXAMPLE

The foltowing example illustrates operation and
programming concepts of the ADC. The scan mode is
used and the conversion results from analog lines ANQ-
AN7 are each sampled eight times and stored in
memory locations 1000H-103FH (figure 8-5).

The signals on analcg input lines ANO-AN3 are con-
verted to digital form, and the results are stored in the
following focations.

ANO 1000H-1003H
AN1 1008H-1008H
ANZ 1010H-1013H
AN3 1018H-101BH

Next, the signals on analog input lines AN4-ANY are
converted to digital form, and the results are stored in
the following locations

AN4 1020H-1023H
ANS 1028H-102BH
ANG 1030H-1033H
ANTY 1038H-103BH

Once again, the signals on analoginput lines ANO-AN3
are converted to digital form, with the results stored in
new memory locations, as follows.

ANO 1004H-1007H
AN1 160CH-100FH
AN? 1014H-1017H

AN3 11 CH-101FH

Finally, the conversion process is completed when the
signals on analog input lines AN4-AN7 are converted
to digital form for the second time, with the results
stored in the following new locations.

AN4 1024H-1027H
ANS 102CH-102FH
ANG 1034H-1037H
ANT 103CH-103FH

Figure 8-5. Memory Map of ADC Programming

Example

i 3 A B € D E F

o 1 2 3 4 5 & 7
1000H —y
1008H b AN1
1010M b AN2
1018H b AN
1020H |- ANG
1028H ha— ANS
1030H [+ ANE
1038M -+ ANT

48001607 A

84

Initialization

The initialization phase of the conversion process is
outlined in figure 8-8 and described below in steps (a)
through {e}.

{a) The starting address where the conversion results
are to be stored is specified in register pair HL. In
this example, the starting address is 1000H.

{b) General-purpose registers B, C, D, and E are used
as counters to staore each A/D converted value into
the appropriate memory location. General-purpose
register B is also used as an overall counter to test
that four results are obtained for each set of four
analog inputs {ANO-AN3 and AN4-AN7). Accord-
ingly, register B is set to 03H, and registers C, B,
and E are each set to O1H.

{c) The ANM register designates the scan mode and
enables ANG-AN3 as the analog inputs as shown in
figure 8-7.

(d) A skip instruction is used to ctear the INTFAD
interrupt request flag prior to clearing the MKAD
interrupt mask bit. This ensures that the contents
of the conversion registers are filled with newly-
converted values before an interrupt is generated.

(e} The MKAD bit in the interrupt mask register is
cleared, enabting the INTAD interrupt.

Fiowchart of initialization Phase of A/D
Conversion Operation

Figure 8-6.

Memaory Address
is Set (a]
HL-#1000H

Siep

Counter is Set
Be3
Ca1 in]
D1
E-1

1

A/D Channe!
Mode Register le]
is Setl

l

[wiraniscieareds | fa

1

interrupt
Mask Register [e}
is Bet

450016084

NEC

Section 8
Analog-to-Digital Converter

Figure 8-7. Setup of A/D Channel Mode Register for ADC Operation Example

7 3 5 4 3

ANM I 0 I ¢ l Q l Q [o

|—Scan Mode

AMNO-ANI Terminals

Oscillation Frequency ~ % MHz

49-0016098

Tabie 8-2 is an example of program code for each step
in the initialization phase of the ADC operation.

Table 8-2. Example of Program Code for
initlatization Phase of ADC Opaeration

*e***A/D CONVERTER INITIALIZATIQN®*» " *****

ADIN: LXF H,1000H :Set data pointer. Step {a}
LX{ B.0301H SetcountersinBand C. Step (b)
LXl DO101H ;Set counters in D and E.
EXX :Save register set Step (c)
Myi ANM,00H Jfor interrupt processing.
SKIT FAD :Reset INTFAD. Step (d)
NOP
ANl MKH.OFEH :INTAD enabie. Step (e)

Interrupt Processing

In the INTAD interrupt routine of ADC operation, the
conversion results are transferred from the conversion resuit
- registers to specitied locations in memory. Figure 8-8 is
a flowchart of the INTAD interrupt processing phase
described below in steps (a) through (f).

(a) The contents of CRO-CR3 are transferred to
specified memaory locations.

(b) Test to determine if four interrupts have been
generated for each set of four analog inputs. If not,
general-purpose register pair HL is incremented
until the fourth interrupt is generated, at which time
a2 jump is made to path (¢) of the flow chart.
General-purpose register B is used as a counter to
tabulate the number of interrupts generated.

When step (b} is completed the first time, memory
locations 1000H-1003H, 1008H-1008H, 1010H-1013H,
and 1M8H-101BH will have been filled with four
sets of readings from ANQG-AN3.

(c)

{d)

Address 1020H is specified as the start of the next
block {for analog inputs AN4-AN7) and general-
purpose register B is set to 03H. To switch between
one set of analog inputs and the other, the ANI, bit
in the A/D channel mode register must be
complemented. When step (c) is completed,
memory locations 1020H-1023H, 1028H-102BH,
1030H-1033H, and 1038H-103BH will have been
filled with four sets of readings from AN4-AN7.

After the results from analog input lines AN4-AN7
are stored in the specified memory locations
beginning from address 1020H, a jump is made to
path (d) of the flowchart. General-purpose register
C is used as a counter to test if a result has been
obtained for each of the four lines.

The general-purpose register pair HL is used to
specify the starting address (1004H) where the
second ccnversion results of analog input lines
ANO-ANS are to be stored. Register B is set to 03H
and register C tc 00H. The ANI; bitin ANM must be
inverted to switch from one set of analog input lines
to the other. When step (d) is completed, memory
locations 1004H-1007H, 100CH-100FH, 1014H-
017H, and 101CH-101FH will have been filled with.
four sets of readings from ANQO-ANS.

After the results from these inputs are stored in
memory, a jump is made to path (e) of the flow
chart. General-purpose register D is used as a
countertotestif the A/D values have been stored in
memory.

8-5

4PD7810/11, 7810H/11H,

78C10/C11/C14

NE

Figure 8-8. Flowcharl of INTAD interrupt Processing Phase of ADC Operation Example

............mu\n

Contents of
CRI-CRA
Are Stored

inty Memory

INTAL
4 Times

Memory Address

Specification
ML+ HL + 1
le]
Memory Address
Specification
HL — 1020H
10244 ¥
Campl 4]
Mamory Address
Specification
HL -- T004H N
l Memary Addresa
Memory Address Specitication
Counter Specifleation HL = 1000H
Speclfication HL ---1024H 1
L0 l
Caunter
Counter Specification
Specification [y |
Ce0 D1
D—0 E+1
{ |
Counter
Spesification
B3
AlD Channel Made
Reglster
Spacification
ANi7 Bit-Level
. Inversion
RET

A3-00ET0C

8-6

NEG

section 8
Analog-to-Digital Converter

(e) For the second conversion results of AN4-AN7,

{f)

address 1024H is specified in general-purpose
register pair HL as the beginning memory location.
General-purpose register B is set to 03H, and
general-purpose register O is cleared. A switch
from one set of analog input lines to the other is
made by inverting the AN(s bitin ANM. When step
(e) is completed, memory {ocations 1024H-1027H,
102CH-102FH, 1034H-1037H, and 103CH-103FH wili
have been filled with four sets of readings from
ANO-AN3.

After the results from lines AN4-AN7 have been
transferred to the respective mapped memory
locations, ajump is made to path (f) of the flowchart.
General-purpose register E is used as a counter to
test if a result has been abtained for ali four lines.

The conversion results are now stored in memory
locations 1000H to 103FH.

Table 8-3 is an example of program code for each step
in the INTAD interrupt processing routine of the ADC
operation. Forthis exampie, the JIMP ADSE instruction
should be located at the INTAD interrupt vector address
{0020H).

Table 8-3.

INTAD Interrupt Processing Example

;" TASD CONVERTER SERVIGE“*******

ADSE:

ARIN:

ARSTO:

ARSTI:

ARSTZ:

RETD:
RETI:

RETZ;

EXA Save accumutator.

EXX :Save register.

MOV A CRO ;Store A/D conversion data Step {a)

STAX H ;to memory.

MOV ACARt

STAX H+8H ;Store A/D conversion data

MOV ACR2 ;toc memory.

STAX H+10H ;Store A/D conversion data

MOV ACR3 ;to memory.

STAX H+18H ;Store A/D conversion data
;to memory.

DCR 8 ;Decrement counter; skip Step (b)
;if borrow.

JR ARIN ;Four not done.

DCR C ;First ANO-AN3 done. Step {c)

JA ARSTO

MOV AD First AN4-ANT dane.

OCR A Step (d)

JR ARSTH

MOV AE ;Second ANO-AN3 done.

DCR A Step (e)

JR ARST2

LXt HI000H ;Second AN4-AN7 done; set Step (f)
,data pointer.

LXI DOWH ;Setcounter.

MVl C.01H :Set counter.

JR RETT)

INX H Increment HL. Step {b)

JR RET2

LXI H1020H :Setdata pointer. Step (c)

JR RET1

LX1 H16047 ;Set data pointer. Step {a)

MOV DA

JR RETO

{XI H1024H :Set data pointer. Step (g)

MOV EA

M¥l D,00H

Mwi (00K

M¥l B,03H

XAl ANM.04H ;Invert ANl bit.

EXA :Recover accumalator.

EXX :Recover register.

El :Enable interrupt.

RETI :Return.

R d o gl N -rg-s mr LAd
P . khy Lhtil.t,l‘

78C10/ C1‘|/C14

NEC

8-8

NEC

Section
Interrupt Control Structure

9

INTERRUPT SOURCES

The interrupt structure includes three external interrupt
sources (NMI, INT1, INT2), eight internal interrupt
sources (INTTO, INTT1, INTEQ, INTEL, INTEIN, INTAD,
INTSR, and INTST), and one software interrupt
(SOETI). Interrupts are organized into seven priority
levels, with an interrupt vector Jocation assigned to
each priority level. The priority organization is shown
in table 941,

FUNCTIONAL ELEMENTS

The functional elements of the interrupt controller
consist of the interrupt request register, interrupt mask
register, priority control circuit, interrupt test control

circuit, interrupt enable flip-flop, and interrupt test flag

register. The block diagram is shown in figure 9-1.

Table 9-1. Interrupt Priority and Vecior Locations
Internal/ interrupt interrupt Address
Priority External Source Inferrupt Condition fecimat Hexadecimal
1 External NMI Falling edge 4 0004
2 Internal INTTO tnterval counter TMO = upcaunterl 8 0008
INTT1 interval counter TM1 = upcounter?
3 External INTH Rising edge 16 0010
INT2 Falling edge
4 Internal INTEQ When upcounter = ETMQ in the timer/event counter 24 0018
INTEA When upcounter = ETM1 in the timer/event counter
5 Internal INTEIN in the timer/event counter, if the upcouster ciock is R 0020
{a) @12: interrupt on falling edge of Cl
(b) CI: interrupt on taliing edge of TO
INTAD AfD converter registers CRO-CA3 have new values
6 Internal INTSR Serial receive buffer full 40 0028
INTST Serial transmit buffer empty
7 Internal SOFT! instruction 96 0060
Figure 9-1. Block Diagram of Interrupt Control Block
] s narmenier] ——= INTFNMI
INTTD ————i
INTT ——en > e L Skip Contral
INT G————iee] 1F
HTZ O, INTFHMI
INTED —rrrmeriid :sg:‘;:: Mok
INTE] ———— Rogister SOFTI
INTEIN =i Imerrum
- Generation
INTAD il
INTSRA ———eip] Enaple
ANTST i} >
El—5 [+]
Priority —A
Cantral
OF ———am INTFN M e——s]
ER oo Test e TF 3
E—— a j: o
sa nerglisgter _é
Inlerrupt F
Address [
ANT-ANS -
:> SOFTI—e
43-0016118

91

uPD7810/11, 781CH/T1H,
78C10/C11/C14

NEC

Interrupt Request Register

This register contains the interrupt request flags that
indicate which interrupt requests have been generated.
The function of each flag is given in table 9-2.

Interrupt Test Control Circuit

This circuit enables the execution of a skip instruction
(SKIT or SKNIT) to test the status of the interrupt
request flags and interrupt test flags.

Table 9-2. [Interrupt Request Register Interrupt Enable Flip-Flop
Flag Function This flip-flop determines whether or not all maskable
INTFNMI This flag is set at the faliing edge of the NMI input. interrupts are enabled. When this flip-flop is set by the
INTFTO Indicates a match between TIMO and its sacounter has E! instruction, all unmasked interrupts are enabfed.
o"ccufmds_ ¢ pcou When cleared by a RESET input or the DI instruction,
- _r : allinterrupts are disabled. When an interrupt request is
INTFT1 anl:;f?:ds a match between TIM1 and its upcounter has accepted, the flip-flop is reset, inhibiting the acknowi-
_ - — edgment of any interrupts while the current interrupt
INTF This flag is set at the rising edge of INT1. is being processed. If an El instruction is executed in
INTF2 This tlag is set at the falling edge of INT2. an interrupt service routine, the flip-flop is again set,
INTFEO Indicates a match between ETMO and its upcounter inthe and the highest unmasked interrupt request will be
timer/event counter has occurred. accepled.
INTFE1 Indicates a match between ETM1 and its upcounter in the .
timer/event counter has occurred. Interrupt Test Flag Register
INTFEIN Indicates a faliing edge of Cl input or tatling edge of TO This register contains seven test flags that indicate
output has occurred. various error conditions or special conditions. The
INTFAD Indicates that the last of four conversion results for function of each flag is shown in table 9-3.
registers CRO-CR3 1s complete.
INTFSR Indicates the receive buifer is fulf. Table 9-3. Interrupt Test Flag Register
INTFST Indicates the transmit buifer is empty. Flag Function
oy The overflow flag is set when ECNT (upcounter in the
interrupt Mask Register timerfevent counter} averflows from FFFFH to 0000H.
These two 8-bit registers (MKH and MKL) contain the ER The error flag is set when a parity errar, framing error, or
mask bits corresponding to each maskable interrupt; overrun error is detected in the reception of serial data.
NMI and SOFTI cannot be masked. When set, a bit S8 The standby flag is set by a rising Vpg input.
masks the respective interrupt. Amaskable interruptis Anaan7 Each of these flags is set whenever a falling edge is

unmasked if the corresponding mask bit is cleared. All
bits are set by a RESET input. Therefore, all maskable
interrupts are masked after a RESET. Figure 9-2
identifies the bits of the interrupt mask registers.

Priority Control Circuit

This circuit controls the order in whichinterrupts are to
be accepted if more than one unmasked interrupt has
been requested at the same time. Interrupts with the
higher priority level are accepted and processed before
those with a lower priority level (see table 9-1).

sensed on the corresponding input line if that ling is used
as an edge-sensing input.

The status of each flag in the interrupt test fiag register
can be tested using a SKIT or SKNIT instruction.

E

Section 9
Interrupt Control Structure

Figure 9-2.

interrupt Mask Registar

7 &] 1 3 2 1 0

MKL I MKEIN] MKE1 l MKEOD] MK2 l MIK1 I MKT1] MKTO I _ l

Unmasks INTTO

To Mask INTTQ

Unmasks INTT1

To Mask INTT1

Unmasks INTY

To Mask INT1

Unmasks INT2

To Mask INT2

Unmasks INTEQ

To Mask INTEQ

Unmasks INTE1

Ta Mask INTE?

Unmasks INTEIN

Ta Mask INTEIN

T T T e T T

Unmasks INTAD

To Mask INTAD

Unmasks INTSR

To Mask INTSR

Unmasks INTST

To Mask INTST

453-p01612C

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

EXTERNAL INTERRUPT SAMPLING

Jo prevent improper operation due to noise inter-
ference, the active/inactive levefs of the NMI, INT1, and
INT2 signals are sampled by the ¢12 clock {1 us at 12
MHz). These signals must remain at & low or high level
long enough to be sampled by three ¢12 clock pulses
in order to be considered valid.

As illustrated in figure 9-3, signals with a minimum
duration of three ¢12 clock periods (3 us at 12 MHz) wili
be recognized as interrupt requests and signals with a
duration of less than two ¢12 clock periods (2 us at 12
MHz) will be treated as noise and ignored. Signals
between two and three clock pericds long may or may
not be recognized depending on where they occur with
respect to the ¢12 ciock.

In the CMQGS parts, the NMI input is protected from
noise by an analog circuit that requires the high or low
level to be stable for 10 us. INT1 and INT2 function the
same way in the CMQOS parts as in the NMOS parts.

NMI Input

This nonmaskable interrupt signal is falling-edge
triggered. If the sampling pulse detects that the NM]
signal falls from high level to low level, and the NMI
signal is held at aiow level for a minimum of three ¢12
clock periods, then the INTFNMI flag in the interrupt
request register is set. The CMQOS parts require 10 us.

Figure 9-3. Timing for interrupt Sampling Pulses

The interrupt request register is checked at the end of
each instruction, and if a nonmaskable interrupt has
been generated, a caltis made to the vectorlocation of
the service routine for the nonmaskable interrupt,
regardless of the status of the interrupt enabie flip-flop
or-interrupt mask register. The INTFNMI interrupt
request flag is reset automatically when ajump is made
to the vector location. The NM! input may be sampled
by testing the INTFNMI flag with a SKIT or SKNIT
instruction. The NM! input should be puiled up with an
external resistor to prevent false interrupts. The
recommended pull-up resistor value is 10 kQ.

INTt Input

This is a rising-edge triggered maskable interrupt with
a pricrity level of 3. If the INT1 signal rises from low
level to high level, and the INT1 signal is heid at a high
ievel fora minimum of three ¢12 clock periods, then the
INTF1 interrupt request flag in the interrupt request
register is set.

If, at the end of an instruction, a check of the interrupt
request register indicates that the INTF1 flag is set,
INT? is unmasked, and no higher priority unmasked
interrupts are present, a jump is made to vector
location 0010H.

INTZ2 Input

Thisinterrupt functions the same as the INT1 interrupt,
except that the interrupt occurs on the failing edge of
the input.

Sampfing Pulse
[knternal]

i

INT1

INTFNMI

Interrupt Accepted

S

INTF1,2

&
i

450014138

9-4

NEC

Section 9
Interrupt Control Structure

SOFTI INSTRUCTION INTERRUPTS

The generation of a program-controlled, nonmasked
interrupt is provided by the SOFTI instruction, which
causes a call to vector location 0060H independent of
the status of the interrupt enable flip-flop or interrupt
mask register. Uniike other interrupts, execution of a
SOFTI interrupt does not disable other interrupts.

If the SOFTI instruction is encountered and no in-
terrupts are present, the SOFTI interrupt will be ex-
ecuted independent of DI or El. Once the SOFTI
instruction has been executed, NM! can interrupt. If
interrupts are enabled, any other active unmasked
interrupt will be accepted.

SOFTI s the lowest priority interrupt of all the interrupts.
When the SOFTI instruction is fetched and decoded,
the processcr waits until the next M1T1 time and
decides at that time what to do. If no other interrupt
request flags are set, SOF Tl starts. If any otherinterrupt
flag is set, that interrupt will be serviced before SOFTI.
When no interrupt request flags are set, SOFTI will be
executed.

The SOFTl instruction is executed even if preceded by
an instruction producing a skip condition (i.e. an
arithmetic or logical operation, an autoincrement or
autodecrement, a shift, a skip, or a return-from-sub-
routine instruction), When the SOFT{ instruction is
executed, the 5K flag in the PSW is set and its value
retained in the stack area. When the program returns
from the SOFT! interrupt processing routine, the SK
flag previously set in the PSW is restored, and the
program skips the instruction foliowing the SOFTI{
instruction.

INTERRUPT MASKING

Except for the NMI and the SOFTI interrupts, each
priority tevel and corresponding vector location is
shared by two different maskable interrupt sources,
which may be independently or jointly enabled. The
enabling/disabling of maskable interrupts is done
through the use of mask bits in the interrupt mask
register. Each mask bit in the interrupt mask register
corresponds to a maskableinterrupt requestflagin the
interrupt request register.

Enabling One Interrupt Source per Pricrity Level

To enable a single interrupt at a specific priority level,
the mask bit corresponding to that interrupt is cleared
and the mask bit for the other interrupt at that priority
level is set. When the corresponding interrupt request
tlags in the interrupt request register are set, indicating
that interrupt requests for those sources have been
generated, the interrupt whose mask bit is set will be
ignored, and the one whose mask bit is cleared wili be
accepted—nprovided no interrupts of a higher priority
are pending and maskable interrupts have been enabled
by the interrupt enable flip-flop.

The interrupt request flag for the masked interrupt witl
remain set until tested by a skip instruction. The
interrupt request flag for the nonmasked interrupt will
be automaticaliy cleared by the hardware jump to the
interrupt address.

Enabling Both Interrupts at the Same Priority
Level

If the mask bits of both interrupt scurces at the same
priority level are cleared, then both interrupts will be
enabled. Either interrupt can then be accepted if the
corresponding interrupt request flag is set. The user
must getermine which interrupt has occurred by testing
the interrupt flags with the SKIT or SKNIT instructions.
If both interrupt reqguest flags are set at the same time,
the sequence of interrupt processing is determined by
a skip instruction at the beginning of the interrupt
service routine. When both interrupts ata given priority
level are enabled, the interrupt request flags for those
interrupts are not reset by hardware, but by the
execution of the skip instruction.

9-5

B.—Fﬁ.kﬁ PN I ahatale B RPN
,UP b i bRy kb L s okl

78C10/C11/C14

NEC

SUMMARY OF OPERATION

For external interrupts, the ¢12 clock sampling puises
determine if an interrupt request signal is legitimate or
spurious noise, 1f legitimate, the corresponding in-
terrupt request flag is set. For internal interrupts, the
interrupt request flag is immediately set upon genera-
tion of the interrupt request. Once aninterrupt request

Figure 9-4. Inlerrupl Operaling Procedure

flag has been set, interrupt processing is identica! for
both external and internal interrupts. Figure 9-4 shows
the following steps.

(1} The interrupt request flags are checked at the last
timing cycle of every instruction. The flag for any
interrupt that has a mask bit set is not checked.

STARAT

L

Ol State?

Are ail Flags
Masked?

[ResetsINTFNMI

Checks Unmasked

INTFX

2 or Mare

!

Priority
Check

I

wﬂags

Mo, of

L
1 Mext Instruction

Highest
Priority

Interrupt [

i

uardware Resets INTFX

Saves the Contents of
PSW and PC to
Stack Memory

!

] PC «. Interrupt Address

To Interrugt Handier Routine .

45-001814C

9-6

NEC

Section 9
interrupt Control Structure

(2) When more than oneinterrupt request flagis found
to be set, the priority level of each interrupt is
checked. The interrupt with the highest priority is
serviced first, and the interrupt request flags of the
remaining interrupts will stay set until each is
serviced in order of priority.

(3) Whenan interrupt is accepted, the interruptenable
flip-flop is reset, disabling maskable interrupts
{(NMiI and SOFTI cannot be masked) during
processing of the current interrupt. Any pending
unmasked interrupts (interrupts whose corre-
sponding interrupt request flags have remained
set from the previous step) are serviced in order of
priority. This process is repeated until all pending
interrupts have been serviced.

(4) Whenever an interrupt is accepted, the corre-
sponding interrupt request flag is automatically
reset—except if both interrupt sources at the same
priority level are enabled by the corresponding
mask bits. In this case, the execution of a skip
instruction {SKIT or SKNIT) resets each flag.

{5) When an interrupt is accepted, the contents of the
PSW are saved in the stack. Next, the higher-order
byte of the program counter is saved, followed by
the lower-order byte of the program counter.

(6) The program then executes a call to the vector
location for the interrupt accepted and executes
the interrupt service routine. It takes 16 timing
states (250 ns/state at 12 MHz) to complete these
steps and begin the interrupt service routine. At the
end of the interrupt service routine, an RETI
instruction is executed. This instruction returns the
program to the address following the last executed
instruction prior to the interrupt. The saved contents
of the PSW and program counter are loaded from
the stack-restoring the values contained in the
P3W and program counter at the point where the
interrupt was accepted--allowing the program to
resume operation from that point.

it takes 16 timing states {250 ns/state at 12 MHz) to go
from the beginning of step (2) to the first interrupt
instruction, which is located at the interrupt vector
location.

Figure 9-5 depicts the sequence when only one interrupt
source at a given priority level is enabled by the
corresponding mask bit. Figure 9-6 depicts the se-
quence when both interrupt sources at the same
priority level are enabled by the corresponding mask
bits.

Figure 9-5. Flowchart 1: interrupt Processing
Sequence

Register Saving
Interrupt
Service Program

Register Restoration

INT e

AG-D16158

Figure 9-6. Flowchart 2: interrupt Processing

Sequence

1. Register Saving
2. Jump to GO10H

INTY
merrupl Service
Pragram

INT1ar
INT2

INt2
Interrupt Service
Pragram

Register
Aestoration

Continue

450016164

B et Tt P

78C10/C11/C14

L v A L

- fo—— -

\

INTERRUPT WAIT TIMES

Three factors determine external interrupt wait times.
These factors and the corresponding number of timing
states (one timing state = 250 ns at 12 MHz) for each
are outlined in table 9-4. The sum of the timing states
forthese factors represents the wait time from the point
atwhich an external interruptrequest isasynchronously
generated by the CPU to the point at which the first
instruction in the interrupt service routine is executed.
Thiswait time differs according to the type of instruction
being executed at the time the interrupt is generated
and the timing inherent in the interrupt generated.

Table 9-4 shows maximum wait times. For the first
factor, the time required to set the interrupt request flag
after an interrupt request has been generated is 14
timing states. Thisincludes 12 timing states toensure a
iegitimate external interrupt signal and 2 timing states
to set the interrupt request flag.

A worst case is assumed forthe second factor, allowing
58timing states for a divide instruction, which requires
the longest time of all instructions to complete. The
interrupt request flags are checked at the end of every
instruction (requiring two timing states) and the second
factor time depends on the type of instruction being
executed. This value can range from 4 timing states
(minimum instruction time of 2 plus 2 to check the
flags) to 59timing states {maximum instruction time of
57 pius 2 to check the flags).

The third factor reguires 16 timing states to allow for
the time required to save the contents of the PSW and
the program counter on the stack.

Table 9-4. Maximum External Interrupt Wait Time

Number
Factor Description af States
1 Eliminate noise signals 14
2 Execute the instruction (division instruction} 59
3 Automatic saving 18
TOTAL 89
(One state = 250 ns at 12 MHz) {22.25 us)

MULTILEVEL NESTING

All internal and external interrupts are recognized
when an El instruction is executed. During aninterrupt
subroutine, if the El instruction is executed and the
interrupt request flag of the current interrupt is reset,
the highest priority interrupt of the pending interrupts
will be serviced. The new interrupt could be of lower
priority than the one being serviced. This permits the
nesting of many interrupts, which are serviced in
priarity arder with the lower-priority interrupts kept
pending until ali higher-priority interrupts have been
serviced.

Note: I both interrupt sources tfor the same priority
level are enabled, the interrupt source must be
determined by the interrupt service routine.

Suchinterrupt nesting allows prioritized sequencing of
interrupt-controlied subroutines. The number of sub-
routine levetls can be extended all the way out to the full
capacity of memaory, allowing virtually unlimited sub-
routine nesting. An example of an interrupt sequence
involving three levels of interrupts is shown in figure
9-7.

Figure 9-7 Flowchart of Processing Sequence for
Three Levels of interrupts

Main Frogram Being
Executed

{0010H)
El {G00aH)
1=
{D018H)
INT1 Ei
E
CRIMKH,02H ;Mask INTSR
INTEg —w/ INTSR INTSA ned
{Interrupt —aed — — —
Hera) Accepted
ANI MKH OFDH Unmask INTSR
L
Centinue Main {Q02BH)
Program 1

RETI
RET!

Et
RETI

4900161 A

NEC

Reset, Halt, Stop, and Standby

Section

10

OPERATION, ALL PARTS
Reset Operation

H a low-level signalis input on the RESET line and held
low foraminimum of 20 timing states (5us at 12 MHz in

the 7810, 7810H, 7811, and 7811H) or for a minimum of -

10 ws in the 78C10, 78C11, and 78C14, the micro-
computer is initialized and the following operations are
performed.

(1} Interrupt enable {flip-tlop is cleared, disabling the
acknowledgement of maskable interrupts.

(2) Interrupt mask register is set, disabling all mask-
able interrupt sources; interrupt request flags are
tleared and all pending interrupts are reset.

(3) PSW register is cleared.
(4) Program counter is cleared to 0G00H.

{5) In the 7811, 7811H, 78C11, and 78C14 configu-
ration, the mode A, mode B, mode C, and mode F
registers are sef to FFH. Bits 0-2 in the memory
mapping register and mode controi C register are
cleared, initializing ports A, B, C, D, and I as 8-bit
input ports (all lines in high-impedance state).

{6) Inthe7810,7810H, and 78C10, port D is initialized
as 8-bit multiplexed address/data lines and port F
is initialized as address outputs or port inputs as

‘specified by the MODEQD and MODET pins. The
remaining port A, B, and C lines are initialized as
input ports,

{7) Alltest flags except the SB flag are cleared. The
SB flag and RAE bit are unchanged.

{8) Timer mode register {TMM) is initialized to FFH
and the timer flip-flop is reset.

{9) Timer/event counter mode registers (ETMM and
EOM) are cleared.

(10) Serial mode high-byte register (SMH}) is cleared
and serial mode low-byte register (SML) is in-
itialized to 48H.

(11) A/D channel mode register (ANM) is cleared.

(12) WRand RD signals go high in the NMOS parts. In
the CMOS parts, WR, RD, and ALE become high
impedance.

(13) For the 78C10, 78C11, and 78C14 only, bits ZC,4
and ZC, of the ZCM register are set to 1.

The contents of the following are undefined.
(1) Stack pointer (8P).

(2) Accumuiators Aand EA and alternate accumulators
A and EA'.

(3) Allgeneral-purposeregisters{(V,B,C,0,E,H, L, Vv,
B, C, D,E, H, and L"

(4) Outputiatches of all port lines.

(%) Timer 0 and timer 1 registers (TMO and TiM1).

(6) Timer/event counter registers (ETMO and ETM1).
(7) RAE bit in the memory mapping register.

(8) Data memory.

After the RESET signal is released, program execution
begins from address Q000H.

Halt Operation

When a HLT instruction is executed, the processor
enters haltmode. The CPU stops operation and idlesin
the M3T2 state. A reset or an interrupt will cause the
microcomputer to exit this mode. All on-chip pe-
ripherals will continue to operate normally during the
halt mode.

in the halt mode, the CPU clock stops and program
execution halts. However, the contents of all registers
and internal RAM are maintained. The timers, timer/
event counter, serial interface, A/D converter, and
interrupt control circuitry operate normally. The status
of the output pins is shown in table 10-1.

Table 10-1. Status of Qutput Pins

Pin Miccocomputer Externat Expansion

PA7-PAG Data holding Data holding

PB7-PBy Dataholding Data holding

PCz-PCy Data holding Data holding

PB7-POy Data holding High impedance

PF;-PFy Data holding Next address holding {pins that
cutput addresses)
Data holding (pins that output
port data)

WR.RD High level High level

ALE High level High level

10-1

Y R AL T R L oy

78C10/C11/C14

NEG

When a HLT instruction is executed, halt mode is
entered except if an interrupt flag for an unmasked
interrupt is set. The halt mode is released by any
unmasked interrupt or by a hardware reset. Since halt
mode is released by an interrupt request, the CPU will
not enter halt mode if an unmasked interrupt is panding.
To enter halt mode in an area of program execution
where an interrupt may be pending, you may:

(1) Process the pending interrupt.
(2) Resettheinterruptrequestflagviaaskipinstruction.

{3) Mask all interrupts that are not necessary for
releasing the halt mode.

If halt mode is released by RESET, the contents of RAM
are retained, but the contents of the registers are
undefined. The halt mode is released when RESET
goes low. When RESET returns to a high level, program
execution begins at address 00C0H (see figure 10-1).

Figure 10-1. Halt Mode Release Timing by RESET

Halt Mode Release by Interrupt Requests

When halt mode is released by an @:l interrupt
request, the program jumps to the NMI interrupt
address (0004H). it does not go to the next location

af;er the HLT instruction.

When halt mode is released by an unmasked interrupt,
the operation following release depends on whether
interrupts are enabled or disabled. If interrupts are
enabled (El Hip-flop = 1), the program then jumps to
the respective interrupt address (figure 10-2). If in-
terrupts are disabled (El flip-flop = 0), execution starts
with the instruction following the MLT instruction (see
figure 10-3). Note that the interrupt request flag (INTFX)
remains set and must be tested with a skip instruction
to be cleared.

CPU Cperation

Execution af Ingiructinn in Addrass 0.

X

HESET

A9-0016218

Figure 10-2. Hait Mode Release Timing by Interrupt Wi

th Interrupts Enabled

HLT

Interrupt Execution

CPY Operation

INTFX

i
/ Xlnterrupt Roullne
\
; A
- L.

El F.’Fr‘l/

490016228

10-2

LM

Crrtimm A0

Heset, nait, Stop, and Standby

OPERATION, 7810/10H/11/11H

Parts 7810, 7810H, 7811, and 781 1H contain a normal,
standby, and halt mede as shown in figure 10-4. They
do not contain a stop mode.

A special circuit is provided that allows backup power
to be supplied to maintain 32 bytes of internal RAM
{addresses 65,5604-65,535) as well as the value of the
RAE bit in the memory mapping register and the value
of the SB {standby) flag in the event of loss of main
power. The +5-volt main power supply is input to the
Ve line and the +5-volt backup power supply is input
to the Vpp line. In normal operation, the single +5-volt
main power supply input on the Ve line is used.

Standby made is initiated in order to use the backup
power supply input on the Vpp line to power the RAE
bit, 5B flag, and the 32 bytes of internal RAM.

in standby mode, the RAE bit is cleared, preventing
access of the interna! RAM by the CPU, thus protecting

" the contents of RAM from being affected by power

instability on the V¢ line. Also, RESET goes low when
exiting standby mode, and program operation begins
fromaddress 0000H as in a normal reset operation; the
SB flag indicates that recovery is being made from a
standby condition.

Figure 10-3. Halt Mode Release Timing by Interrupt With interrupts Disabled

Next Instruction after HLT Instrugtion {5 Execuled

CPU Operation HLT ‘:,;

INTFX

RESET
EIF/F=0 / /

48-00168238

Figure 10-4. Standby Mode for 7810, 7810H, 7811,

and 7811H

¥r Power Loss

Normal

Cperatign Mode

HLT instructian

interrupt

45 0016194

10-3

©PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

The SB flag is set at the rising edge of Vpp at power-up,
and can be reset by a SKIT or SKNIT skip instruction.,
Recovery from a standby condition (as opposed to a
power-up) can therefore be determined by testing the
5B flag using a skip instruction. {f the flag is set, a
normal power-up has occurred, and if cleared, a
standby recovery has occurred.

A standby operation consists of the following sequence
of events {figure 10-5).

(1) Adropin Vg voltage is detected by user-supplied
circuitry, generating a nonmaskable interrupt
(NM1).

(2) Data to be maintained during power-down should
be saved by the interrupt service routine in the
protected 32-byte area of internal RAM priorto Vee
dropping below the specified operating level. The
program should clear the RAE bit in the memory
mapping reqister.

(3) RESET is asserted. The contents of the protected
32-byteinternal RAM area and the value of the RAE
bit and SB flag are maintained by the backup power
supply evenif Vg voltage drops below the required
operating level.

(4) When the voltage on Ve returns to normal and the
oscillator stabjlizes, RESET is released and program
operation begins from address 0000H.

(5) The SBflagistested todetermine if a power-upora
standby recovery has occurred. if returning from
standby, S8 =0; if starting from power-up, SB =1.
For standby recovery, the RAE bit must be set to
read the saved data.

Figure 10-5. Timing Sequence for Standby Operation

OPERATION, 78C10/C11/C14

Farts v8C10, 78C11, and 78C14 contain normal, halt,
and stop modes, which interrelate as shown in figure
10-6. The standby mode consists of the halt, software
step, and hardware stop modes.

RAM Retention in Stop Mode

internal RAM data wili be retained during software and
hardware stop modes as long as Vpp is maintained at
or above 2.5 volts. Lowering Vpp to 2.5 volts reduces
power consumption in the stop mode. Vpp can be
lowered only after the stop mode is entered, and must
return to operational level before the stop mode is
released.

Software Stop Mode

When the STCP instruction is executed, the CPU
enters the stop mode and all clocks are stopped.
Program execution stops and the contents of internal
RAM are saved, the timer upcounter is cleared, and all
on-chip peripherals stop; only NMl and RESET circuitry
remain active. The status ofthe output pins is the same
as for the halt mode (see table 10-1).

Internal interrupts should be masked before execution
of the STOP instruction. Otherwise, during the stop
mode release, the oscillation stabilization period
foilowing the stop mode may cause an erroneous
internal interrupt operation. The oscillator stabifization
time is obtained from the crystal manufacturer's
specification.

Figure 10-6. Standby Modes for 78C10, 78C 11,
and 78C14

I~

5H Flag l[5]
f 4§
! le—— Standby)]
SB Flag Test Operation SB Flag Tesl
i -—]
Datz 58 Set
Saving

A9-00 6188

10-4

HLT
instruction

Interrupt
with DI

Inlerrupt
with El

Narmal
Operation

lnsiruction

Hardware
STOP input

Mote: El = Enabled Interrupls
01 = Disabled Interrupls

45-00" 6204

NEG

Section 10
Reset, Halt, Stop, and Standby

A RESET input or an NMI request can release the
software stop mode. Asserting RESET low releases the
processor from the stop state, puts it in the reset state,
and starts the clock oscillator. The circuit must hold
RESET low (see manufacturer's specification for the
time} by the user's circuit to allow the oscillator to
stabilize (see figure 10-7). When RESET releases the
software stop mode, the contents of the internal RAM
are maintained and the contents of the reqgisters are
undefined.

When RESET goes high, program execution begins at
0000H, just as for a power-on reset, Since both RESET
and power-up cause the CPU to start program exe-
cution at location 0000H, the standby flag (SB) can be
used to distinguish between a power-up or RESET
release of stop mode. When Vpp crosses the rated
voltage going from a low to high level, the SB flagis set.
Execution of a skip instruction clears the fiag. By
testing the SB flag at the start of the reset routine, the

user can distinguish whether a RESET or power-up
caused the start.

When an NMI interrupt request releases software stop
mode, TIMER 1is used ta start CPU operation. Because
of this feature, oscillator stabilization time can be
achieved without adding external hardware. To use this
feature, the timer must be programmed prior to
execution of the STOP instruction. Using the stabili-
zation time required by the oscillataor, program the
number of counts equivalent to this time into the timer
register TM1, and then set the timer mode register
(TMM) for timer mode. TIMER1 can generate a delay of
up to 65 ms with a 12-MHz crystal.

The timer upcounter is cleared on entering the software
stop mode. When the stop mode is released by an NMi
input, the timer begins counting up, according to the
mode specified prior to entering the stop mode, When
the contents of the upcounter maich the contents of
TM1, program execution starts as shown in figure 10-8.

Figure 10-7. Software Stop Mode Release Timing Using RESET

Executuon of Instruction in Address 0000H

CPU Oparaticn sTOP ;;‘

fﬂ“@m

“Wan

A5-0016248

Figure 10-8. Software Stop Mode Release Timing
inlerrupt Execution a! location (K04H
CPU Operation S5TOR ;; Interrupt Routine

osC

rr

- INTFNMI . }
N ¥ — o —
i
Wllt {Frogummable]—«-l

Coincidence
Signal from

TIMER ¥ z i3

LX i

A5-0016258

10-5

4PD7810/11, T810H/11H,
78C10/C11/C14

NEC

Unlike normal timer operation, when TIMER1 generates
a match, the interrupt request flag is not set by the
coincidence signal; the timer mode register (TMM)
is set to FF, causing the timer to cease operation.
Regardless of whether or not interrupts are disabled,
the program jumps to address 0004H when the timer
coincidence signal occurs.

For long oscillator stabilization times, it may be
necessary to use TIMERD and TIMER1 in the 16-bit
cascade mode.

Hardware Stop Mode

The processor also enters stop mode when the STOP
input is asserted low for at least 500 ns. In hardware

stop mode, all clocks are stopped and none of the
on-chip peripherals function. Only the contents of
internal RAM are retained and only the STOP and
RESET circuitry operate. Ail output pins become high
impedance. Following release of the stop mode, the
contents of the internal registers are undefined.

The only way 1o release the hardware stop mode is to
cause the STOP signal to go from low to high. When
this happens, the oscillator starts. If RESET is high
after STOP goes high, the CPU waits 65 ms and begins
executing the program at location 0000H (see figure
10-9). The 85-ms delay altows the oscillator to stabilize.

Flgure 10-9. Releasing Hardware Stop Mode Using STOP Signal

CPU Opemiicn

Execution of
tnstructicn in
Address 0

Wait Approx. §5 ms
at 12Mhz Crystal

A
g,

Inatruction
Execution

OSC

X
e rUUUUULLLLL

450016268

10-6

NEC

Section 10
Reset, Halt, Stop, and Standby

The hardware stop mode wiil not be released by
asserting the RESET signal low; however, the stop
mode may be released while RESET is low by changing
the STOP signat from low to high. When this situation
occurs (see figure 10-10), program execution will start
from lacation 000CH when RESET goes from tow to
high without the CPU waiting 65 ms for the oscillator to
stabilize. Thus, external circuitry must be provided to
ensure that RESET stays low long enough for the
oscillator to stabilize after STOP goes from low to high.

Figure 10-10. RESET Low Before STOP Goes High

If the RESET signal goes low less than 65 ms after
STOP goes high (see figure 10-11), the CPU will startits
65-ms delay, but the automatic delay circuitry will be
terminated by RESET going low. Again, additional
circuiry is required to ensure that the RESET signal

stays low long enough to provide the required oscilatar

stabilization delay before RESET goes high and starts
program execution. As in the software stop mode, the
SB flag should be used to determine if program
execution starting at location 0000H is the result of
power-up or stop mode,

Execution of

o,
-~

Inatruction In
Address 0

-

Instruction
Execution

CPU Operatian x :_ \ _,’

'

RESET

QsC
o
7

45-0016278

-,
—_

Instruction
Execution

P65 s, —en

Execution of
instruction In
Addreas (]

CPU Operation

/

Walt —-t

e
-

RESET

it
7

i

\

- UUUTTUUHU UYL

43-016288

10-7

4PD7810/11, 7810H/11H
78C10/C11/C14 ' N E C

10-8

NEC

Instruction Format

Section

1

OPERANDS

Table 11-1 lists the operand symbols appearing in the
instruction set (Section 12) and abbreviated instruction
set (Appendix B}. Table 11-2 defines the operands and
table 11-3 provides operand codes. Table 11-4 defines
the graphic symbals used in describing instruction
operation.

Table 11-1. Operand Symbols

Symbal Allawable Operands

Ragistaers

r V,AB.C,DEHKL

1 EAH, EAL,B,C, D, E H, L

ré ABC

Specilaf Reglsters

LY P&, PB, PC, PD, PF, MKH, MKL, ANM, SMH, SML, EOM,

ETMM, TMM, MM, MCC, MA, MB, MC, MF, TXB,
TMO, TM1, ZCM (ZCM in 78C10/C11/G14 anly)

511 PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, ECM, TMM, RXB,
CRO, CR1, CRZ, CR3

512 PA, PB, PC, PD, PF, MKH, ANM, MKL, SMH, EOM, TMM

sr3 ETMO, ETM1

sr4 ECNT, ECPT

Ragister Pairs

p SP. 8 0.H

rp1 V,B,D,H EA
rp2 SP,B,D,H, EA
rp3 B, 0, H

Register Pair Addressing

rpa B, b, H, B+ ,H+ ,D— H-—

rpat B,D.H

rpa2 B, 0, H, 0+, H+, D—, H—, D+byte, H+A, H+B,
H+EA, H+byte

rpal 0, H, O0++, H++, D+byte, H+A, H+B, H+EA, H+byte

Flags

f CY, HC, Z

Interrupt Flags

irf INTENMI, INTFTG, INTFT1, INTF1, INTF2, INTFEQ, INTFET,
INTFEIN, INTFAD, INTFSR, INTFST, ER, OV, AN4, ANS, ANG,
AN7, 5B

Immediate Dafa

wa 8-bit immediate data (low byte of working register address)

ward 16-bit immediate data

byte 8-bit immediate data

bit 3-bit immediate data (by, by, bg)

Table 11-2. Operand Definitions

Special Registers (sr-sr4)

PA =Port A
PB=FortB
PC = PortC

PG =Port b

PF =Port F

MA = Mode A

MB = Mode 8

MC = Mode C

MCC = Mode contro! C
ME = Mode £

MM = Memory mapping

TMO = Timer register 0

TM1 = Timer register 1

TMM = Timing mode

ETMO = Timer/event counter
register 0

ETM1 = Timer/event counter
register 1

ZCM = Zero-cross mode
control register

ECNT = Timer/event
counter upcaunier
ECPT = Timer/fevent

counter capture
ETMM = Timer/event
counter mode

EOM = Timer/event
counter gutput mode

TXB = Transmit buffer

RXB = Receive buffer

SMH = Serial mode high

SML = Serial mode fow

MKH = Mask high

MKL = Mask low

ANM = A/D channgl mode

CRO to CA3 = A/D conversion
result 0-3

Register Pairs (rp-rp3)

SP = Stack painter H=HL
D=0t EA = Extended accumulator
Register Pair Addressing {rpa-rpa3)
B =(BG) D++ = (DE)++
D = (DE) H4+ = (HL)+~+
H=(HL) D+byte = (DE~byte)
D+={DE}+ H+byte = (HL+byte)
H+ = (HL)+ H+A = (HL+A)
D~ = (DE)— H+B = (HL+B)
H— = (HL)— H+EA = (HL+EA)
Fiags (1}
CY =Carry HC = Half-carry Z=Zero
interrupt Flags (irf)
INTENMI = NMI interrupt flag INTFEIN = FEIN
INTFAD = FAD
INTFTO = FT0 INTFSR = FSR
INTFT1 =FT1 iNTFST = FST
iNTF1 =F1 ER = Error
INTF2 =F2 0V = Overtlow
INTFEQ = FEQ AN4 to AN7 = Analog input 4-7
INTFE1 = FE1 5B = Standby

M L AL AT - E C
78C10/C11/C14 ZN

Table 11-3. Operand Codes

Registers (r, r2) Spacial Registers (sr3})
Rz f Ro Reg T s Ug Special Aeg
510 o v | 0 ETMO
0 o 1 A -1 ETM1
0 1 D B Special Registars (srd)
c
0 ! ! 5 Vg Special Reg
] g 2 E 0 EGNT
1 1 0 H 1 ECPT
1 1 1 L 1 Regisler Palrs (rp, rp2, rp3)
Registers (r1) P Py Py FRegPair rp rp2 rpd
T, T3 To By 0|0 © &P
0 0 0 EAH 0] 1 BC
0 0 1 EAL Q 1 0 DE
0 1 0 B ¢ 1 1 HL
0 1 1 C
i 0 0 D 1] 0 EA A
1 0 1 £ Register Palrs (rp1}
1 0 H
: 1 1 L 0 O Gq Req Pair
Special Registers (sr, sri, sr2) g g (1] ;g
S S4 S3 8 8 Sg OSpeclalRey sr o srl 82 0 1 0 DE
5 0 o 0o o 0 rPa A S i
0 0 0 ¢ 0 1 PB
0 ¢ 0 0 1 0 PC Register Palr Addressing (rpa, rpal, rpa2)
0 G 0 1 1 PO ;
g 0 0 1 0 1 PF Ay R N Aq Addressing m rpal 5?3?
0 0 0 1 1 0 MKH [t} G 0 0 -
0 0 0 1 i 1 MKL 0) 0 " (8C}
0 0 1 0 G g ANM
6 0o 1 0 ©0 1 SMH 0 (041 0 OB
A A 0 0 1 1 (HL)
0 0 1) 1] SML 0 1 0 0 (DE)+
b 0 1 0 1 1 EOM T T 0 |1 0 1
0 0 1 1 0 0 ETMM 0y 10 e
[1 1 1 {HL)—
0o 0 v v o 1 TwM I T 10 1 1 (DE+byte)
0 1 o 0 1] 0 MM 1 1 0 0 {(HL+A}
0 1 0 0 0 1 MCC 1 1 i 1 (HL+B)
0 i ¢ ¢ 1 0 MA 1 1 1 0 (HL+EA)
o 1 0 0 1 1 MB 1 1 1 1 (Ht.+byte} -
0 1 0 1 0 0 MO
0 1 0 1 3 1 MF Reglister Pair Addressing (rpa3)
0 1 1] 0 0 X8 1 G B & £y Addressing
0 1 1 0 0 1 AxB T ¢ 0 1 0 (OF
¢ 1 1 0 1 0 TMO ¢ o 1T {H)
8 1 1 0 1 1 TM ¢ 1 0 0 DB+
- 0 1 0 1 (HL)++
1 0]] 0 0 CRO 1 g i 1 (DE+byte)
1 0] 0 0 1 CR1 1 1] 0 {HL+A)
1 0 0 0 1 0 CR2 1 1 0 1 {HL+B)
1 0 0 0 1 1 CR3 1 1 1 0 {HL+EA)
1 0 1 0 0 o0 zm L v Hiye

NEC

Section 11
Instruction Format

Table 11-3. Operand Codes {cont)

Flags (1}
Fg F] Fn Flag
0 D 0

0 1 0 CY
0 1 1 HC
1 0 0 z

Register Branching

The contents of either the general-purpose register
pair BC or the extended accumulator EA are loaded
into the PC, causing a jump to the new location stored

_in the PC upon execution of the JB, CALB, or JEA

instruction. See figure 11-1.

interrupt Fiags (irf) Figure 11-1. Executionof JB, CALB, or JEA Instruction
i3 I3 Iz I lg Flag
0 0 0] 0 0 NMI JB
0 0 © 0 F10 CALB
0 0 0 1 0 FT1 7 07 0
0 0 0 1 1 F1 B c
] 0 1 0 0 F2 L [|
0 0 1 0 1 FEO
0] 1 1 0 FE1
0 0 i 1 1 FEIN
0 1 0 0 0 FAD b ;5 "17 ‘]
0 1 0 0 1 FSR
0 1 0 1 ¢ FST
] 1 0 1 1 ER
0 1 1 0 (t ov
1 0 0 ¢ 0 AN4 JEA
1] 1] 0 i ANS 15 87]
f 0 ¢ 1t 0 AN EA [| |
3 D 0 1 1 ANT
1 0 1 6 0 SB
15 87 0
Table 11-4. Graphic Symbols pc | |]
Symbol Descriptian 48-00NB3BA
— Transfer direction, result
A Logica! product (logical AND)
v Logicat sum (logical CR)
¥ Exclusive-0R
— Complement
. Concatenation
PROGRAM SEQUENCING

The address of the next instruction is generally in-
dicated by the program counter {PC), which is usually
automatically incremented by the number of bytes
contained in the current instruction being
executed. A branch operation, however, loads a given
address into the PC, which causes the program to
branch out of normal pregram sequence and go
directly to that location. There are several branching
methods, and these include: register branching,
immediate-data branching, direct branching, relative
branching, and extended-relative branching.

PANNPOAN 144 TLIORS S44ES

78C10/C11/C14

rNEC

immediate-Data Branching

The immediate data contained in the second and third
bytes of the instructicn is loaded into the PC, causing a
branch to the new location stored in the PC upon
execution of the IMP word, CALL word, or CALF word
instruction. See figure 11-2.

For the CALF instruction, instead of the second and
third bytes, the lower-order 3 bits of the first byte and
the contents of the second byte are loaded into the PC
as shown in figure 11-2. This resuits in a call within a
fixed area of memory of 000-7FFH from the current PC
location.

Direct Branching

The contents of the memary location specified by bits
0-4 of the data following the instruction code are used,
causing a branch to the new location stored in the PC
upon execution of the CALT instruction. See fig-
urg 11-3.

Retative Branching

The value obtained by adding the byte count of the
current instruction plus 1 and an offset obtained from
the lower-order 6 bits of the data following the in-
struction code is added to the PC. The offset is treated
as a signed twa’'s complement (—31 to + 31) with bit 5
used as the sign bit. This causes a jump 10 the new
address in the PC upon execution of the JR instruction.
See figure 11-4.

Figure 11-2. Execution of CALL, JMP, or CALF

Instruction
7 a
CALL or JMP
{ow Address
High Address
15 87 a
pc [[-]
7 32 g
cALF | tay
fa
15 1110 87 0
pcfooo0 1| i]
' 490016394

Figure 11-3. Execution of the CALT Instruction

CALT Byte
¥ 6 5 4 0
) InstructionCodel 1040 [ta]
15 9 7 6 & 14

Table Address =| 0 6 D 0D C 0 0 0

lo

10| ta

Memary

T
Value = 128 + Zia

Table Address

(128H + 2taH) Low Address

Table Address
(128H + 1 + 2taH)

High Address

15

87 0

PC |

!]

49-0016404

Figure 11-4. Execution of the JR Instruction

JA Word
7 B 5]
nstuction 1 1] jeispl]
15 0
i PC +1 i
+
15 654 0
X s |
-
| idispl
15) 0
pc |]
S=0:X=alg
S=1X=all1
4901641 A

NEC

Section 11
Instruction Format

Extended-Relative Branching

The value obtained by adding the byte count of the
next instruction and an offset obtained from the lower-
order 9 bits of the immediate data following the
instruction code is loaded into the PC. The offset is
treated as a signed two's complement {(—255 to +255).
Bit 0 of the first byte of the instruction is used as the
sign bit. This causes a jump to the new address in the
PC upon execution of the JRE instruction. See figure
11-5.

Figure 11-5. Execution of the JRE Instruction

JAE Word
lor100131]5]
i jdisp! i
15 0
[PC + 2 |
+
15 987 0
X 151 i
L. T i
l jdisp
15 0
pc | B
S=0:X=alio
§=1:X=al1
49-0016424

ADDRESSING MODES
Register Addressing

Registers are specified as shown in table 11-1. Both
8- and 16-hit registers may be specified, with general-
purpose registers specified as individual B-bit registers
or as certain 16-bit pairs.

Example 1. In this example of a MOV r1,Ainstruction, E
is used for operand r1 and a comment is appended to
the instruction. A semicolon introduces the comment.
The comment has no effect on instruction execution.

{nstruction:

MOV EA (E) ™ {A)
Instruction Code:

0001 1101 {1DH)

Example 2. This example of a DCX rp instruction
(00P(Pg 0011) uses register pair HL,

Instruction:

DCX H (HL) *~ (HL} — 1
Instruction Code:

011 0011 (33H)

Register-Indirect Addressing

This mode of addressing specifies the contents of a
register pair as the operand address. A special form of
this mode uses either register pair DE or HL as a 16-bit
base register. In this mode, the contents of the base
register specify the operand address in the auto-
increment, autodecrement, double-autoincrement,
base, and base-index addressing modes.

In register-indirect addressing, registers are specified
as shown in tabfe 11-1.

This example of an LDAX rpa2 instruction {A3010
1AzA 1 Ag) uses register pair BC.

Instruction:

LDAX B (A}~ ((BC})

instruction Code:
0010 1001 (29H)

Autoincrement Addressing

This is a special mode of register-indirect addresing
using register pairs DE or HL.. The contents of DE orHL
specity the operand address. The contents are in-
cremented by 1 after addressing memory. The operand
is specified as follows.

Symbol Operand
rpa D+, H+
rpa2 D+, H+

STAX. This example of a STAX rpa2 instruction {A;011
1A2A Ag) uses register pair DE,

Instruction:
STAX D+ ((DE)) + (A),

Instruction Code:
0011 1100

{DE) +— (DE) + 1

(3CH)

PRPYTONS N JAS M e s APy
‘J'h QSHLGJ [A S T SR G

78C10/C11/C14

A Py N

Ay VL~

BLOCK. In the BL.OCK instruction, the operands are
implicit in the instruction. This operation requires the
use of register pair HL as the socurce address register,
register pair DE as the destination address register, and
register C as a counter. After data is transferred from
the source address to the destination address, both
register pairs HL and DE are automatically incremented
as follows.

BLOCK J(DEY) = {{HL)), (DE} = (DE)+1,

{HL) == (HL) +1, (C}y+—(C)—1

RET or POP. No operand is specified for either a return
or pop instruction. Each is used to restore data saved
on the stack by loading the contents of the stack
pointer into the program counter and automatically
incrementing the stack pointer. Symbolically, for the
return instruction, the operation looks like this.

RET {PCL) == {{SP)), (PCH} == ({(SP} + 1)),
(SP)y+— (SP)+ 2

Autodecrement Addressing

The contents of either register pair DE or HL specify
the operand address. After memory addressing, the
contents are decremented by 1. The operand is specified
as follows.

Symbol Operand
rpa D, H—
rpa2 D—, H-

Example 1. This example of an ADDX rpa instruction
(0111 0000 1100 0AzAqAp) uses register pair HL.

Instruction:
ADDX H— (A} (AY+ ((HL)), (HL) = {(HL) — 1

instruction Code:
0111 0000 1100 0111 (TOCTH)

Example 2. When an interrupt is accepted, or when a
CALL or PUSH instruction is executed, no operand is
specified. These instructions save the contents of the
procgram counter and PSW in the stack and then
decrement the stack pointer. Using the SOF Tl interrupt,
this operation is shown symbolically as follows.
SOFTI {(SP)— 1) + (PSW),

{(SP) — 2) +~ (PC) + 1(up),

{(SP —3) = (PC) + 1),

J{(SP) ~= (8P) ~ 3,

H{PC) = 0060H

{HB) = high byte, (LB} = low byte

11-6

Double-Autcincrement Addressing

The contents of either register pair DE or HL specity
the operand address. After memory transfer, the con-
tents of the register pair are incremented by 2. This is
used for 16-bit data transfers between the extended
accumulator and mapped memaory. The operand is
specified as follows.

Symbol Operand
rpald D4+, Hi+

This example of an STEAX rpa3instruction (0100 1000
1001 C3-Cp) uses register pair HL.

Instruction:
STEAX H++ H{(HL)) — (EAL),
H{(HL) + 1) ~— {EAH),

(HL)Y = (HL) + 2

Instruction Code:

0100 1000 1001 0101 (4895H)

Base Addressing

The contents of either register pair DE or HL and an
offset obtained from the data following the instruction
code are added to specify the operand address. The
operand is specified as follows:

Symbol QOperand
rpaz D+byte, H+byte
rpa3 D+byte, H+byte

In this example of an STAX rpa2 instruction (A3011
1AzA 1Ay dy-dg dg-dg), the register pair is HL and the
offset value is 10H.

Instruction:

STAX H+10H ({HL) -+ 10H} “— (A)
Instruction Code:

1011 1111 Q000 001G BFO2H

NEC

Scclion 11
Instruction Format

Base-lndex Addressing

The sum of the contents of the base register (either
register pair DE or HL) and the contents of a designated
register {register A, B, or EA) specities the operand
address. The gperand is specified as follows.

Symbol QOperand
rpa2 H+A, H+8, H+EA
rpad H+A, H+B, H+EA

In this exampie of an LDAX rpaZ2 instruction (A3010
1AsA1Ag), register pair HL is used as the base register
and register B provides the offset.

Instruction:

LDAX H+B {(A) * ((HL) +(B))

instruction Code:
110 1101 (ADH)

Working-Register Addressing

The vector register (register V) holds the upper byte of
the operand address. The immediate data foilowing the
instruction code specifies the lower-order hyte of the
address. This allocates a 256-byte area in memory for
use as working registers or scratch-pad memory. The
operand is specified as follows:

Symbol Operand
wa A label not to exceed FFH

The foliowing example of a DCRW wa instruction (0011
00QC dy-d4 da-dg) specifies 77H in the operand.

Instruction:
DCRW 77H

Instruction Code:
o1t 0000 0111 01N (3077H)

if the contents of register V are equal to 20H, the
eoperand address is 2077H and the working register is
decremented by 1.

Accumulator-Indirect Addressing

The centents of the memory {ocation addressed by PC
+ 3 + A are loaded into register C and the contents of
the memory location addressed by PC+ 3+ A+ 1 are
loaded into register B. This addressing mode is initiated
by the TABLE instruction,

in this example, the contents of the accumulator are
equal to 0, the contents of the PC are equal to 100H,
and the instruction looks like this:

TABLE H{C) + (103H), (B) *— (104H)

Immediate Addressing

The operand is specified by the data byte immediately
following the instruction code. The cperand is specified
as follows:

Symbol Operand

byte 8 bits of data

tn this exampie of an AD1 A byte instruction {0100 0110
d7-d4 ds-dp), 79H is specified in the immediate data.

Instruction:

ADI A79H [(A) == (A) + 79H

Instruction Code:

G10c 0110 0111 1001 {4678H)

Extended-Immediate Addressing

The address of the operand is specified by the data
word immediately following the instruction code. The
operand is specified as follows:

Symbol Operand

byte A value which does not exceed FFFFH

In this example of an LX1 rp2,word instruction (0P»P4Pg
0100 dy-dg dy5-dg), register pair HL is specified as the
destination and 3F54H is specified in the immediate
data.

Instruction;

LXI H,3F54H (HL) * 3F54H

Instruction Code:
c011 0100 0101
(34543FH)

¢ci00 0011 1111

Direct Addressing

The operand is located at the address immediately
following the instruction code. The operand is specified
as follows.

Symbol Operand

word A value not to exceed FFFFH

Example 1. In this example of a MOV r,word instruction
(0111 Q000 0110 1R2R1H0 d7-d0 d15-d3), register B is
specified as the destination and EEFFH is specified in
the second word.

[

Instruction;

MOV B,0EEFFH (B) ~— (EEFFH)

Instruction Code:
0111 0000 0110 1010 1111 1111
{(TOBAFFEEH)

11 1110

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Example 2. In thisexample of an SDED word instruction
(0111 0000 0010 1110 dy-dg dis-dg), the label DST
refers to location 4000H.

Instruction:
SDED DST

Instruction Code:
0111 0000 €010
(702E0040H)

1110 0000 0000 C100 0000

SKIP OPERATION TIMING

Descriptions of the instructions in Section 12 and
Appendix B include the number of timing states. For
the timing state requirements, two numbers ate given.
The firstis the number of timing states required to fetch
and execute the instruction. A second value in paren-
theses indicates the number of timing states used
when the instruction is skipped; this includes fetching.

When an instruction is skipped, all bytes of the instruc-
tion are fetched but they are not executed. Idle states
are generated, and the sum of idle states for ail the
bytes in the instruction equals the number of timing
states used when that instruction is skipped. Specific
bytes have a prescribed number of idie states; for
instance, a byte of opcode generates four idle states
and a byte of immediate data generates three idle
states.

For example, MVi sr2,byte (0110 0100 53000 0525415
d;-dg}, is a three-byte instruction with the opcode
consisting of the first and second bytes and the third
byte containing the immediate data. The two opcode
bytes generate 4 idle states each and the byte of
immediate data generates 3 idle states, for a total of 11
timing states when this instruction is skipped.

OVERLAY INSTRUCTIONS

The instruction set contains three instructions divided
into two groups, A and B.

Group Instruction Flag
A MVI A byte L1
B MVI L.byte and LXI Hword LO

The overlay feature is used when one of these instruc-
tions is encountered in a program and one or more
consecutive locations contain the same instruction.
The program will execute the first instruction encoun-
tered in the sequence and the remaining instructions
will be ignored as if they were NOP instructions. The
program will continue to do this until an instruction ofa
ditferent type is encountered. At this point the program
will start executing the instructions normalty.

If the pragram encounters an instruction in group A,
the L1 flag is set. If the program encounters an
instruction in group B, the LOflag is set. These flags will
stay set until the program encounters an instruction of
adifferenttype, at which time they reset. If an interrupt
occurs during the execution of an overlay instruction,
theLOand L1 fiagsare saved in bits 2 and 3 respectively
of the PSW. After servicing the interrupt, the PSW will
be restered and the program can continue testing
subsequent instructions against LO and L1.

The following program illustrates the use of the overlay
instructions. This program will clear one of these
registers: W, X, Y, or Z. The registers are located in the
following memory locations and are four bytes long.

Lecation: 1000H Register W Register X
1008H Register ¥ Register Z
1010H

The pragram to clear one of the registers is:

CLW: MV L,COH ;Clear register W.
CLX; MV L,C4H ;Clear register X.
CL¥Y: MV L,08H ;Clear register Y.
CLZ: MVI LOCH ;Clear register Z.
MV! H,10H ;Load register H with
10H.
MVI C.03H :Set counter.
XRA AA Clear A.
LOQOP: STAX H+ W((HLY} — GOH,

J(HLY +— (HL) + 1

oDcr C 1Skip if barrow.
JR LOOP
RET

To clear register X, 04H is loaded into register L. MV
L,08H and MVIL,0CH are the remaining overlay instruc-
tions and they are ignored and repiaced by 14 idle
cycles (NOPs). The high-order byte of the register is
putintoregister H by the MVI H,10H instruction and the
starting address of register X (1004H) is contained in
register pair HL. The remaining part of the program
clears register X.

A PETY N

Q. F WA ~4

Section
Instruction Set

12

ACI A byte
Add immediate data byte to A with carry.
(A) ~ {(A) + byte + (CY)

I
byte

instruction Code: 56H, byte

Adds the immediate data byte and CY flag to the
contents of the accumulator and stores the result in the
accumulator.

Bytes: 2
T-States: 7 (7)

Flag Bits Affected:
z
SK+—0
HC
LO-—0
t1+—a0
CY

Example:

AC! A 20H ;Add 20H to accumulator.

Flag Bits Affected:
z
SK+40
HC
L0—a0
L1-—20
03 4
Example:;
ACH D,20H ;Add 20H to D-register and

sinclude carry.

ACI sr2,byte
Addimmediate data byte to special register with carry.
(sr2) +— {sr2} + byte + {CY)

AC]| rbyte
Add immediate data byte to register with carry,
(r) — (r) + byte + (CY)

T
byte

tnstruction Code: 745(0-7}H, byte

Addsthe contents of registerr (V,A,B,C,D,E, H, orL},
designated by Rp-Rg (0-7), and the CY bit with the
immediate data byte. Leaves the resultin the designated
register.
Bytes: 3

T-States: 11 (11)

T
byte

Instruction Code:
645(0-3, 5-7)H, byte
B64D{0, 1, 3, 5)H, byte

Adds the immediate data byte and the CY flag to the
contents of special register sr2 (PA, PB, PC, PD, PF,
MKH, MKL, ANM, SMH, EOM, or TMM), designated
by §3-S¢g (0-3, 5-9, B, D), and leaves the result in the
designated special register.

Bytes: 3
T-States: 20 (11)

Flag Bits Affected:
Z
SK=—0¢
HC
LG+ 0
LT+0
Cy

Example;
ACI PD,20H ;Add 20H to port D and

include carry.

12-1

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

ADC A r
Add register to A with carry.
(A) (A} + (1} +(CY)

Instruction Code: 60B(0-7)H

Adds the carry bit (CY) to the contents of registerr {V,
A, B, C,D, E, H, orL), designated by Ro-Rg (0-7), and
the accumutator and feaves the sum in the accumulator.

Bytes: 2
T-States: 8 {8)

Flag Bits Affected:
z
SK+—0
HC
Lo+0
t1+—0
CcY

Example:
ADC AE :Add the contents of A and the
;E-register including the CY

:and leave the result in A.

Flag Bits Affected:
Z
SK—0
HC
LO-—0
110
CY

Example:

Routine to add register pair DE to register pair HL
and store the sum in HL.

MOV AE (A) ~ (E)

ADD LA (L) (L) + {A)

MOV AD (A~ (D)

ADC HA A(H) ~ (H) + {(A) + (CY)
ADCW wa

Add working register to A with carry.
(A} == (A) + ({V) * wa) + {CY)

ADCrA
Add A to register with carry.
{r) +— (n) + (A} + {CY)

Instruction Code: 605(0-7}H

Adds the contents of the accumulator and that of
registerr (V, A, B, C, D, E, H, orl), designated by Rz-Ryp
(0-7), and the CY flag and leaves the sum in the
designated register.

Bytes: 2
T-States: 8 (8)

12-2

T 1 I i T |

T
offset

Instruction Code: 74D0H, offset

Adds the contents of the accumulator to the contents
of the working register, including the carry, and stores
the resuit in the accumulator. The working register is
addressed by the V-register (high-order 8 bits) and the
offset {low-order 8 bits).

Bytes: 3
T-States: 14 {(11)

Fiag Bits Affected:
Z
SK*0
HC
Lo—0C
L1+0C
CcY

Example:
MVI V,0FFH
ADCW 20H :Add contents of FF20H to

:accumulator.

Y s P

Y VA

Section 12
Instruction Set

ADCX rpa
Add memory addressed by register pair to A with carry.
{(A) *— (A + {{rpa)) + (CY}

Instruction Code: 70D(1-7)H

Adds the contents of the accumulator, including the
carry flag, to the contents of memory addressed by
register pair rpa (BC, DE, HL, DE+, HL+, DE-, or HL-)
and stores the result in the accumulator. The register
pair is designated by Ag-Ag (1-7).

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
z
SK—0
HC
Lo+ 0
Lt1+—o0
CY

Example:
ADCX H ;Add memory location
;specified by HL to A with

;carry.

Flag Bits Affected
Z
SK*10
HC
Lto~Q
L1—0
cY

Example:

ADD AC :Add Ato C and leave resultin A.

ADD A
Add A to register.
(r) == () +(A)

ADD A,r
Add register to A.
(A) = (A) + (1)

Instruction Code: 60C(0-7)H

Adds the contents of registerr (V. A,B,C, D, E, H, or L),
designated by Rs-Rgp (0-7), to the contents of the
accumiHator and stores the result in the accumuliator,

Bytes: 2
T-States: 8 (8)

Instruction Code: §04(0-7)H

Adds the contents of the accumulator to register r (V,
A, B, C, D, E H, or L) and stores the result in the
register. The register is designated by Ro-Rg (0-7).

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
pd
SK+-0
HC
LO—0
L1-0Q
CY

Example:

ADD DA ;Add AtoDand leave resultin D,

ADDNC A
Addregisterto A; skip next instruction if carry not set,
(A) +— (A) + {r}), SK/NC

Instruction Code: 60A(0-7)H

12-3

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Adds the contents of registerr {V, A, B, C,D, E, H, orL),
designated by Rz-Rg (0-7), to the accumulator and
stores the result in the accumulator. if no carry is
generated, the next instruction is skipped.

Bytes: 2
T-States: 8 (8)
Flag Bits Affected:

Example:
ADDNC LA ;Add A to L and leave result
;in L. Skip next instruction it
:no carry is generated.
ADI H,1 H—H+1

If no carry is present after adding A and L, the ADI
instruction is skipped and the addition is complete.
If a carry is present, finish the addition by adding 1
to H.

Z
5K
HC ADDNCW wa
LO-—0
L1 0 Add warking register to A; skip next instruction if no
cY carry.
Example: (A) = {A) + {{V) * wa)}, SK/NC
ADDNC AD ;Add A to D and leave resuit 7 0
iin A. Skip next instruction if o 1 1 ' 1 0 ! 1 T o
;NO carry is generated.
T T | T T T
ADDNC r,A 1 0 1 0 0] o 0

Add A to register; skip next instruction if carry not set.
{r) = {n) + (A), SK/NC

instruction Code: 602{0-7)H

Adds the contents of the accumulator to register r {V,
A, B, C, D, E H, orl), designated by Rs-Ry (0-7), and
stores the resultin the register. If no carry is generated,
the next instruction is skipped.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
z
SK
HC
10+—0
L1-—0
Cy

12-4

| T T T
offset

Instruction Code: 7T4A0H, offset

Adds the contents of the accumulator to the contents
of the working register and stores the resuit in the
accumulator. If no carry is generated, the next in-
struction is skipped. The working registeris addressed
by the V-register (8 high-order address bits) and the
offset (8 low-order address bits).

Bytes: 3
T-States: 14 (11)

Flag Bits Affected:
Z
8K
HC
Lo+—0
L1~0
CY

Exampie:
MVI V,0F0H
ADDNCW 10H ;Add A to contents of location
[OFQ10H and leave result in A,
;Skig this instruction if no

carry is generated.

RET

NEC

T, R
e i e N s

Instruction Set

ADDNCX rpa

Add memory addressed by register pair to A; skip next
instruction if no carry.,

(A) — (A) + ({rpa)), SK/NC

Instruction Code; TO0A{1-7)H

Adds the contents of memory addressed by register
pair rpa (BC, DE, HL, DE+, ML+, DE-, or HL-),
designated by Az-Ag (1-7), to the contenis of the
accumulator and stores the result in the accumulator.
i no carry is generated by the addition, then the next
instruction is skipped.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
4
SK
HC
LO-0
L1=D
cY

Example:
Add the contents of addresses 1100H and 1000H,
and store the sum at location 1200H if a carry is
generated. If no carry, jump to EXIT.

BEGIN: LXI H,1200H ;(HL) = 1200H
LXI D,1000H ;{DE) = 1000H
MOV AT100H (A) = (1100H)
ADDNCX D+ ((A) ~
{A) + ((DE)),
({DE) = (DE) +1
STAX H J(HLYY = (A)
JMP EXIT Finished; exit.
ADDW wa

Add working register to A.

(A) == (A) + ((V) » wa)

I 1 1 i
offset

instruction Code: 74COH, offset

Adds the contents of the accumulator to the contents
of the working register and stores the result in the
accumulator.

Bytes: 3
T-States: 14 (11)

Flag Bits Affected:
Z
SK+0
HC
L0+~ 0
Lt=+0
cY
Example:

MVI
ADDW

V,FOM
10H

;Add contents of location
;FO10H to A and leave result
Jin A,

ADDX rpa
Add memory to A.
(A) *= (A) + ((rpa))

Instruction Code: 70C(1-7)H

Adds the contents of memory addressed by register
pair rpa (BC, DE, HL, DE+, HL+, DE-, or HL-),
designated by A,-Ag (1-7}), 10 the contents of the
accumulator and stores the result in the accumulator.

12-5

4PD7810/11, 7810H/11H,
78C10/C11/C14

Bytes: 2
T-States: 11 (8)

Fiag Bits Affected:
Z
SK=0
HC
LO+0
L1+ 0
cY
Example:

Add the contents of addresses 100H and 200H and
store the sum in the accumulator.

BEGIN: LXI H,200H ;(HL) =— 200H
MOV AA00H {A) ~ (100H)
ADDX H ((A) — (A) -+ ((HLY)
JMP EXIT :Finished; exit.
ADI Abyte

Add immediate data byte to A.
(A) = (A) + byte

1
byte

Instruction Code; 46H, byte

Adds the value of the accumulator to the.immediate
data byte and leaves the result in the accumulator.

Bytes: 2
T-States: 7 {7)

Flag Bits Affected:
Z
SK+0
HC
LO+0
Lt+0
cY

Example:
ADI A,20H ;Add 20H to the accumulator

:without the carry.

ADI r,byte
Add immediate data byte to register.
{r} = (r) + byte

12-8

T
byte

Instruction Code: 744{0-7)H, byte

Adds the contents of registerr (V, A,B,C,D,E, H, orL},
designated by Rp-Hg {0-7), to the immediate data byte
and leaves the result in the designated register.

Bytes: 3
T-States: 11 (11)

Flag Bits Affected:
4
SK+0
HC
L0~—0
110
CY

Example;

ADI D,20H ;Add 20H to the D-register.

ADI sr2 byte
Add immediate data byte to special register.
(sr2) +— (sr2) + byte

Instruction Code:
644(0-3, 5-7T)H, byte
64C(0, 1, 3, 5)H, byte

Adds the contents of special register sr2 (PA, PB, PC,
PD, PF, MKH, MKL, ANM, SMH, EOM, or TMM),
designated by $3-Sp (0-3, 5-9, B, D), to the immediate
data byte and leaves the result in the designated
special register.

NEC

Section 12
Instruction Set

Bytes: 3
T-States: 20 {11)

Flag Bits Affected:
Z
SK—0
HC
LO+—Q
L1=0
CY
Example:

ADI PD,20H ;Add 20H to the contents of
;port D.

ADINC A,byte

Add immediate data byte tc A; skip next instruction if
cdarry not set.

(A) <= (A) + byte, SK/NC

T
byte

Instruction Code: 26H, byte

Adds the value of the accumulator to the immediate
data byte and leaves the result in the accumulator.
Skips the next instruction if no carry is generated.

Bytes: 2
T-States: 7 {7)

Flag Bits Affected:
Z
SK
HC
Lo+—0
L1+0
CY

Example:

ADING A 20H ;Add 20H to contents of
;accumulator and skip next
sinstruction if no carry is

.generated.

ADINC r,byte

Add immediate data byte to register; skip next in-
struction if no carry.

(r) * (r) + byte, SK/NC

"7

T
byte

Instruction Code: 742{0-7)H, byte

Adds the contents of registerr (V,A,B,C, D, E, H,orL),
designated by R,-Rg {0-7), to the immediate data byte
and leaves the resuit in the designated register. If no
carry is generated by the addition, then the next
instruction is skipped.

Bytes: 3
T-States: 11 {11)

Flag Bits Affected:
Z
SK
HC
Lo—0
Lt+0
CcY
Example:

ADINC D,20H
MV AD

;Add 20H to D-register.
;Skip this instruction if no
,Carry is generated.

ADINC sr2,byte

Add immediate data byte to special register; skip next
instruction i no carry.

{sr2) +— (sr2) + byte, SK/NC

12-7

LIBFNIOAN JAA TEOSARSE foANE

78C10/C11/C14

NEC

Instruction Code:
642(0-3, 5-7)H, byte
64A(0, 1, 3, 5}H, byte

Adds the contents of special register sr2 (PA, PB, PC,
PD, PF, MKH, MKL, ANM, SMH, EOM, or TMM),
designated by S3-Sp {0-3, 5-9, B, D), to the immediate
data byte and leaves the result in the designhated
special register. 1f no carry is generated, then the next
instruction is skipped.

Bytes: 3
T-States: 20 (11)

Flag Bits Affected:
Z
SK
HC
LO=0
L1+=0
cY

Example:
ADINC ;Add 20H to contents of

port D.

;8kip this instruction if no

;carry was generated.

PD,20H

MOV APD

ANA A r
AND register with A.
(A) == (A) AND ()

1 0 0 0 1 Ro R, Rg

Instruction Code: 608(8-F)H

Performs iogical AND between the contents of the
accumulator and register r (V, A, B, C, D, E, H, or L)
designated by Rj-Ry (0-7). Leaves the result in the
accumulator.

Bytes: 2
T-States: 8(8)

12-8.

Flag Bits Affected:
Z
SK*—0
LO—0
L1+—20

Example:
ANA AC (AND the accumutator with

;the C-register.

ANA 1 A
AND A with register.
(r) == {r) AND (A)

Instruction Code: 600(8-F)H

Performs logical AND between the contents of register
r{v,A, 8, C, 0 E, H,orL), designated by Ry-Rq (0-7),
and that of the accumulator. Leaves the result in the
register.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
Z
SK—20
Lo+ 0
L1240

Example:
ANA CA ;AND the accumulator with

.the C-register.

ANAW wa
AND working register with A,
(A) — {A) AND {{V) * wa)

offset

Instruction Code: 7488H, offset

NEC

Section 12
Instruction Set

instruction Code: 7488H, offset

Performs a logical AND between the contents of the
accumulator and the contents of a working register,
and leaves the result in the accumulator.

Bytes: 3
T-States; 14 (11)

Flag Bits Affected:
b4
SK+0
LO+-0
L1=0

Example:
MVI V,OFFH
ANAW 10H ;AND the accumulator with
;the contenis of memory

Jlocation FF10H.,

1 1 1

[
byte

ANAX rpa
AND memory addressed by register pair with A,
(A) =~ (A) AND ({rpa))

Instruction Code: 708(8-F)H

Performs a Togical AND between the contents of the
accumulator and the contents of the memory location
addressed by register pairrpa (BC, DE, ML, DE+, HL+,
DE—, or HL-). The register pair is designated by As-Ag
(1-7). Leaves the result in the accumuiator.

Bytes: 2
T-States: 11 (8)

Flag Bits Atfected:
z
SK+0
Lo-—0
L1+ 0

Example:

ANAX D J{A) = (A) AND ((DE)).

instruction Code: 07H, byte

Performs alogical AND of the contents of the accumu-
lator with the immediate data byte and leaves the
result in the accumulator.

Bytes: 2
T-States: 7 (7)

Flag Bits Affected:
Z
SK=*0
Lo=90
L1+0

Example:

ANI A20H :AND 20H to the accumulator.

ANI r,byte
AND immediate data byte with register.
(r) = {r}) AND byte

ANI A byte
AND immediate data byte with A.
(A) = {A) AND byte

1 1 {

T
byte

Instruction Code: 740(8-F)H

Performs a logical AND of the contents of registerr (V,
A B, C, D, E H, orlL), designated by Ry-Rg (0-7), with
the immediate data byte. Leaves the result in the
designated register.

Bytes: 3
T-States: 11 (11}

Flag Bits Affected:
Z
SK=0
LG+ 0
L1+—0

Example:

ANI D,20H JAND 20H to D-register.

12-9

yPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

ANI sr2,byte
AND immediate data byte with special register.
(sr2} = {sr2) AND byte

T
byte

Instruction Code:
640(8-B, D-F)H, byte
648(8, 9, B, D,)H, byte

Performs a logical AND of the contents of special
register sr2 (PA, PB, PC, PD, PF, MKH, MKL, ANM,
SMH, EOM, or TMM), designated by $3-S¢ (0-3, 5-9, B,
D), with the immediate data byte, leaving the result in
the designated special register.

Bytes: 3
T-States: 20 (11)

Flag Bits Affected:
z
SK+0
Lc+~—0
L1+—0

Example:

ANI PD,20H ;AND 20H to part D,

Bytes: 3
T-States: 19 (10)

Flag Bits Affected:
Z
SK—0
LO—0
L1—¢

Example:
MVI V,0FFH
ANIW 10H,20H ;AND 20H to contents of
:memory location FF{0H and
Jeave result in FF10H.

BIT bit,wa
Bittest working register and skip next instruction if set.

If {bit) = 1 then skip next instruction

o 1 0 1|1 B B B

| 1 1 I I i

T
offset

ANIW wa,byte
AND immediate data byte with working register.
({V)* wa) + ((V) » wa) AND byte

I ! 1 I 1 I

T
offset

T
byte

Instruction Code: 0SH, offset, byte

Performs a logical AND of the immediate data byte with
the contents of the working register and stores the
result in the working register.

12-10

Instruction Code: 5(8-F)H, offset

Skips the next instruction if the bit designated by By-Bg
(0-7) in the working register is set to 1.

Bytes: 2
T-States: 10 {7)
Flag Bits Affected:

SK
LO~— 0
L1+90
Example:
MVI V. FOH :If bit 3 of the contents of
BIT 3,0FFH address FOFFH is high, the JR
JR $+1 sinstruction is skipped and the
RET RET instruction is executed.

NEC

Section 12
Instruction Set

BLOCK
Block data transfer.

({(DE)) *— ({(HL)), (DE) =~ (DE) + 1, {HL} =~ {HL) + 1,
{C) *— (C} — 1, end when decrementing C creates a
borrow.

7 0

T | 3 I T T
0 V] 1 1 0 0 0

Instruction Code: 31H

Moves blocks of C + 1 bytes of data, up to 256 bytes.
The contents of the source (pointed to by ML) are
transferred to the destination (pointed to by DE). The
number of bytes to be transferred is the contents of
register C + 1. After each transfer, DE and ML are
automatically incremented by 1 and C is decremented
by 1. Execution ends when C is decremented from 00 to
FFH. This instruction may be interrupted and the
transfer will continue atthe end of the interrupt service
routine.

Bytes: 1
T-States: 13(C + 1), (4)
Flag Bits Affected:

SK+—0
Lo<0
L1+0
CY
Example:
LX HM,1000H ;Source
LXI D,20004 ;Destination
MVI C,30 ;Count
BLOCK 31 bytes will be transferred
Jfrom an area in memory
;starting at location 1000H to
.an area in memory starting at
slocation 2000H.
CALB

Call subroutine using BC indirect.

(PC) = (PC) + 2, ({8P)— 1)« (PCH), ((SP) —2) =~
(PCL), (SP) == (8P} — 2, (PC) - (BC)

Instruction Code: 4829H

Calis a subroutine whose starting address is in register
pair BC. Saves the address of the next instruction on
the stack. Transfers contents of BC into the program
counter.

Bytes: 2
T-States: 17 (8)
Flag Bits Affected:

SK+—0

L0+—0

L1+0
Example:

LXI 8,300H
CALB

:The address we want to go to.
:This causes the program to
;go to 300K.

CALF word
Call subroutine in fixed area.

(PC) < (PC) + 2, ({SP) — 1) == (PCH), ({SP) — 2) ~
(PCL), {SP} *~ (SP) ~ 2, (PCy5-PCqq) — 00001,
(PC19-PCg * faH, (PCy-PCy) = tal

T
tal.

Instruction Code: 7{8-F)}{G-F}{0-F)H

Executes a subroutine located in the second 2K of
memory. Causes the address of the next instruction to
be pushed on the stack. The value 000018 is written
over the high five bits of the program counter. The 11
bits of immediate data (faH and fal) form the lower 11
bits of the address that will be executed next. The
address should be in the range of 0800H to OFFFH.

Bytes: 2
T-States: 13 (7)

Flag Bits Affected:
SK+0
LO+0
L1=0

Example:

CALF 100H ;Calls subroutine at 900H.

12-11

pPD7810/11, 7810H/11H, N E C
78C10/C11/C14

CALL word Bytes: 1
Call subroutine direct. T-States: 16 (4}
(PC) ~— (PC} + 3, {(SP)— 1) ~— (PCH)}, ((SP} —2) — Flag Bits Affected:
(PCL), (SP} +— {SP) — 2, (PC} *~ call address SK+ ¢
Lo~—20
7 0
T T T T T T L1+20
0 1 0 0 0 0 0 0
Exampile:
T ' T I T T T CALT 140 ;Call the subroutine whose
fow address ;address is located at 149,
T T T | T T T
high address cLc
Cilear carry.
Instruction Code: 40H, low, high (CY) — 0
Adds 3to the program counter to get the address of the 7
next instruction. Pushes the contents of the program T T 1 T T T

counter ontc the top of the stack. The operands
specified by low and high addresses in the CALL
instruction are then loaded into the PC to point to the ! 1 J
address in memory where the first opcode of a
subroutine is to be fetched,

Bytes: 3
T-States: 16 (10)

Instruction Code: 482AH

Clears carry flag.

Bytes: 2

Flag Bits Affected: _

SK 0§ T-States: 8 (8)

Lto+=—o0 Flag Bits Affected:

LT=—0 SK*0
Example: [L_? : g

CALL 1234H ;Causes the subroutine at CY 0

;1234H to be executed.
Exampie:
CALT byte CLC ECauses the carry flag to be
.cleared.

Call table address.
(PC} = (PC)+ 1, ((SP}—1) — (PCH), ((SP) —2)~ DAA
(PCL), (8P) = (8P} — 2, (PCH) ~ (129 + 2ta), . .
(PCL) — (128 + 2ta) Decimal adjust A.

7 Q -

T T T T T T Conditien Operation

1 0 a ta4 ta"j 232 ta1 taO (AS_A{]} =g {A?'M) <gand {CY) =0 (A}~ (A)
instruction Code: {8-9){(0-F)H (HC) =0 (A7-Aq) =10 or {CY) =1 {A) *— (A) + 60H
Causes the address of the next instruction to be (Aa-Ag) = 10 (A7-Aq) <8 and (CY) =0 (A) = (A} + 06H
pushed on the stack and loads a memory addressfram (HC) =0 {A7-Aq) 29 or (CY) =1 (A} = (A) + 66H
a table into the PC. PCL is loaded from memory (AzAgt<2 (A7-Aq) <% and (LY} =10 {A) = (A} + O6H
address 128H + 2taH and PCH is loaded from memory (g — (Ar-Ag) = 100r (CY} =1 (A) +— (A} + 66H

address 129H + 2taH. The table resides in memory
addresses 128H-191H, and the subroutine address
calledis two bytes. See “Direct Branching” in Section 11.

12-12

Section 12
Instruction Set

Instruction Code: 61H

Converts the value in the accumulator from binary to
binary-coded decimal. Judges the contents of the
accumulator, carry and half-carry, and then decimal
revises the accumulator according to the table above.
This instruction has meaning only after executing an
arithmetic operation.

Bytes: 1
T-States: 4 (4)
Flag Bits Affected:

Example:
DADC EAH ;Causes the 16-bit value in EA
;and i6-bit value in HL to be
;added together with the CY
;flag. Results are stored in EA,
DADD EA,rp3

Add register pair to EA.
(EA) ~~ (EA) + (rp3)

Z
SK+—0 .
HC Instruction Code: 74C(5-7)H
LO—0 Adds the contents of register pair rp3 (BC, DE, or HL),
L1+0 designated by P1-Pq {1-3), to the extended accumulator
Cy and stores the result in the extended accumulator.
Example: Bytes: 2
MVI Ab4 .
ADI A18 ;Accumuiator contents = 70, T-States: 11 (8)
DAA ;Accumullator contents Flag Bits Affected:
;now = B3. Z
SK+—0
DADC EA,rp3 P
Add contents of register pair to EA with carry. L1+ 0
(EA) — (EA) + (rp3) + (CY) cY
7 Example:
T T I T T T
o 1 1 1]06 1 0o o DADD EBAH
T | 1 T T I DADDNC EA,rpS

Instruction Code: 74D(5-7)H

Adds the CY flag and the contents of register pair rp3
(BC, DE, or HL}, designated by P41-Pg (1-3), to the
extended accumulator and stores the result in the
extended accumuliator.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
Z
SK0
HC
LO~-0
L1+0
Ccy

Add register pair to £A and skip next instruction if no
carry.

(EA) = (EA) + (rp3), SK/NC

Instruction Code: 74A(5-7)H

Adds the contents of register pair rp3 (BC, DE, or HL),
designated by P1-Pg (1-3}, to the extended accumulator
and stores the resultin the extended accumulator. 1f no
carry is generated, the next instruction is skipped.

12-13

4PD7810/11, 7810H/11H,
78C10/C11/C14

Bytes: 2
T-States: 11 (8)
Flag Bits Affecied:

1 0 1] 0 0 Ry Rg

Z
SK
HC
Lo+—0
L1+ 0
cY
Example:
DADDNC EAH :Causes the 16-bit value in EA
JMP $-+5 ;and the 16-bit value in HL to
RET ;be added together. The
:results are stored in EA. If no
.carry is generated, the JMP
will be skipped.
DAN EA,rp3

AND register pair with EA.
(EA) «— (EA) AND (rp3)

Instruction Code: 748(D-F)H

Performs logical AND of the contents of register pair
rp3 (BC, DE, or HL), designated by Py-Pg (1-3), with the
extended accumulator. Stores the result in the ex-
tended accumulator.

Bytes: 2
T-States: 11 (8)
Flag Bits Affected:

instruction Code: 3(1-3)H

Decrements by 1 the contents of register r2 (A, B, or C})
designated by Rq-Rg (1-3). It a borrow is generated
{when (r2) goes from 00H to FFH} by the decrement,
the next instruction is skipped.

Bytes: 1
T-States: 4 (4)

Flag Bits Affected:
z
SK
HC
Lo+—20
L1+-0
cY

Example:

DCR H ;Causes the 16-bit value in HL
;to be decremented. The MOV
;instruction is skipped on
:borrow.

MOV AC

DCRW wa

Decrement working register and skip next instruction if
borrow.

((V) * wa) = ({V) * wa) — 1, SK/B

o o 1 1|loe o o

|) i L] 1

T
offset

Z
SK+~0
LO~—0
L1=—0
Example:
DAN EAH :Causes the 18-bit value in EA
10 be ANDed with the 16-bit
:value in HL. The results are
:stored in EA.
DCR r2

Decrement register and skip nextinstruction if borrow.
(r2) < (r2) — 1, SK/B

12-14

Instruction Code: 30H, offset

Decrements by 1 the contents of the working register.
{faborrow is generated {(when {(V) *wa) goes trom 00H
to FFH), then the next instruction is skipped.

Byles: 2
T-States: 16 (7)

Flag Bits Affected:
zZ
SK
HC
LO+=0
L1+0
Cy

NEC

Section 12
Instruction Set

DEQ EA,rp3
Skip next instruction if reqister pair equals EA.
(EA)} — (rp3), SK/(EA) = (1p3)

Example:
MVI V.0FH
DCRW 20H ;Decrements contents of
location OF20H. The MV
;instruction is skipped on
‘borrow.
MVI AT0H
DCX EA
Decrement EA.
(EA) +— (EA) — 1
7 0
T T T T 1 |
1 0 1 0 1 0 0 1

Instruction Code: ASH
Decrement EA by 1.
Bytes: 1

T-States: 7 (4)

Flag Bits Affected:
SK-*—0
LO-0
L1-0

Example:
DCX EA

DCX rp
Decrement register pair.

(rp} == (rp) —1

7 0
| | | i) 1
o o0 P, Pplo 0o 1

Instruction Code: (0-3)3H

Decrements by 1 a 16-bit register pair rp (5P, BC, DE,
or HL). P4-Pg {0-3} select the register pair.

Bytes: 1
T-States: 7 (4)

Flag Bits Affected:
SK=—0
Lo-0
L1+0

Example:
DCX H

Instruction Code: 74F(D-F)H

Subtracts the contents of register pair rp3 (BC, DE, or
HL), designated by P{-Pg {1-3), from the extended
accumulator. If the subtraction results in zero, (EA) =
{rp3), then the next instruction is skipped. The values
of the register pair and the extended accumulator are
not affected.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
Z
HC
SK
Lo+0
L1+ 0
104
txample:

DEQ
RET

EABC ;If BC and EA are equal, the

:RET instruction is skipped.

DGT EA,rp3
Skip next instruction if EA greater than register pair.
(EA) — [(rp3) + 1], SK/AEA) > (rp3)

tnstruction Code: 74A(D-F)H

Subtracts the contents plus 1 of register pair rp3 (BG,
DE, or HL), designated by P-Pg (1-3), from the
extended accumulator. If the subtraction results in no
borrow bheing generated, (EA)} > (rp3), the next
instruction is skipped. The contents of EA and the
register pair are not affected.

12-15

©PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Byles: 2
T-States: 11 {8)

Fiag Bits Atfected:
Z
HC
SK
LO~0
L1+—0
CY
Example:

DGT
RET

EA.B If EA is larger than BC, the

;RET instruction is skipped.

Bytes: 2
T-States: 59 (8)

Flag Bits Affected:
SK—0
L0—20
L1+0

Example:

DIV 8 ;Divide EA by B.

DI
Disable interrupt.

Disables maskabhle interrupts.
7
1 0 1 1 1 0 1

Instruction Code: BAH

tnhibits all interrupts except NMi and SOFTI in-
struction. Until the Ef instruction is executed, no more
maskable interrupts wiil be accepted.

Bytes: 1
T-States: 4 {4)
Flag Bits Affected:

DLT EA,rp3
Skip next instruction if register pair greater than EA.
(EA) — (rp3), SK/{rp3) > (EA)

Instruction Code: 74B(D-F)H

Subtracts the contents of register pair rp3 (BC, DE, or
HL), designated by Py-Pg (1-3), from the extended
accumaulator. Skips the next instruction if a borrow is
generated, (rp3) > (EA). The contents of EA and the
register pair are not affected.

Byles: 2
T-States: 11 (8)

SK+—0 Flag Bits Affected:
Lo—¢0 Z-
L1+—0 SK
HC
Example: 10— g
DI Turn oft all maskable interrupts. L1+0
CcY
DIV r2 Example:
Divide EA by register. DLT EA,B JEA—BC
— - , RET 1t BC is larger than EA, the
(EA) == (EA)/(r2), r2 =~ remainder ;RET instruction is skipped.
7
T T T T T T
0o 1 0 0 |1 0 0 DMOV EA,rp3

instruction Code: 483(D-F)H

Unsigned division divides the contents of the extended
accumulator by that of r2 (A, B, or C) designated by
Ry-Rg (1-3). Stores the quotient in the extended
accumulator and the remainder in r2,

12-16

Move register pair to EA.

(EAL)} = (rp3L), (EAH) “— (rp3H)
7 0
1 0 1 0 0 1 P4 Po

Instruction Code: A{5-7)H

NEC

Section 12
Instruction Set

Moves the contents of register pair rp3 (BC, DE, or HL),
designated by P4-Py (1-3), into the extended
accumulator.

Bytes: 1
T-States: 4 (4)

Flag Bits Affected:
SK+—0
LO+—0
L1-—0
Example:
LXI H,1234H ;Put 1234H in HL.

DMOV EAH ;Copies contents of HL into
;accumulator.

DMOV EA,sr4
Move special register to EA.
(EA) ~— (sr4)

Bytes: 1
T-States: 4 (4)

Flag Bits Affected:
SK*0
LO~-0
11--0
Example:

Lxl EA1234H ;Moves 1234H to register
DMOV HEA ;pair HL.

DMOV sr3,EA
Move EA to special register.
{sr3} — (EA)

instruction Code: 48C(0, 1)H

Moves the contents of sr4 (ECNT or ECPT) designated
by Vg (0-1} inte the extended accumulator.

Bytes: 2
T-States: 14 (8)
Flag Bits Affected:
SK+~—4Q
L0+—0
L1+0
Example:

DMOV EA,ECNT ;Moves the value of ECNT
iinto EA.

DMOV rp3.EA
Move EA to register pair.

{rp3L) — (EAL), {rp3H) ~ {(EAH)

7 0
1 H I T T 1
10 1 1 {06 1 P P

instruction Code: B{5-7)H

Moves the contents of the extended accumulator into
register pair rp3(BC, DE, or HL), designated by
P1-Pg (1-3).

[nstruction Code: 48D(2,3)H
Transters the contents of EA into sr3 (ETMO or ETM1),
designated by Up (0-1).
Bytes: 2
T-States: 14 (8)
Flag Bits Affected:
SK+10
Lo+—20
L1+—20
Example:

DMOV ETMO,EA Moves the value of EA into
‘ETMO.

DNE EA,rp3

Skip next instruction if register pair not egual
to EA,

(EA) — (rp3), SK/(EA) # (rp3)

{nstruction Code: 7T4E(D-F)H

12-17

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Subtracts the contents of register pair rp3 (BC, DE,
HL), designated by P4-Pg (1-3), from the extended
accumulator. If the subtraction is not zero, {EA) #
(rp3), then the next instruction is skipped. The contents
of the extended accumulator and the register pair are
not affected.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
z
HC
SK
LO-—0
L1~0
CY
Example:

DNE
RET

EA.BC 1f BC and EA are not equal,
:the RET instruction is

;skipped.

Exampie:
COFF EA,BC ;If the logicai AND between
RET ;BC and EA equals 0, the RET
sinstruction is skipped,
DON EA,rp3

Skip next instruction if on-test register pair with EA is
not zerq.

(EA} AND (rp3), SK/NZ

DOFF EA,rp3

Skip next instruction if off-test register pair with EA
is zero.

(EA) AND (rp3), SK/Z

fnstruction Code: 74D{D-F}H

Performs a 16-bit logical AND between the extended
accumuiator and the register pair rp3 (BC, DE, or HL},
designated by P1-Pg (1-3}. If the logical AND resuits in
zero, the next instruction is skipped. The contents of
the extended accumulator and the register pair are not
affected.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
Z
SK
LO+—0
L1—0

12-18

Instruction Code: 74C(D-F)H

Performs a 16-bit icgical AND between the extended
accumulator and register pair rp3 (BC, DE, or HL),
designated by P¢-Pg {1-3). If the logical AND is not
zero, then the next instruction is skipped. The contents
of the extended accumulator and register pair are not
affected.

Bytes: 2
T-States: 11 (8)
Fiag Bits Affected:

2
SK
LO=—0
L1+—0
Example:
DON EA.BC ;If the logical AND between
RET ;BC and EA is not equai to 0,
'the RET instruction is
skipped.
DOR EA p3

GR register pair with EA.
(EA} < (EA)} OR (rp3)

Instruction Code: 749(D-F)H

NEC

Section 12
Instruction Set

Performs a 16-bit logical OR between the extended
accumulator and register pair rp3 (BC, DE, or HL)
designated by P4-Pg (1-3). The result is left in the
extended accumulator.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
Z
SK =<0
100
L1+-0

Example:

DOR EABC ;Do alogical OR between EA

:and BC.

DRLL EA
Rotate EA logical left one with carry.
(EAq41) * (EAq), (EAp) *— (CY), (CY) *~ {EAgg)

Instruction Code: 48B4H

Performs a 16-bit rotate left by 1 of the extended
accumulator through the CY bit.

Y 15

Cc

_.I

€4

il

-

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
SK 0
LO «—- 0
L1+0
cY

Example:
DRLL EA

Instruction Code: 48B0H

Performs a 16-bit rotate right by 1 of the extended
accumulator through the CY bit.

c

—

EA

Yl_‘-fs — CII_

Bytes: 2
T-States: 8 (8)
Flag Bits Affected:

SK—0
LO—0
L1+0
cY

Example:
BPRLR EA

DSBB EA,rp3
Subtract register pair from EA with borrow.
(EA) == (EA) — (rp3) — (CY)

DRLR EA
Rotate EA logical right one with carry.
(EAn-1) *= (EAn}, (EA45) *— (CY). (CY) — (EAg)

Instruction Code: 74F({5-7)H

Subtracts the contents of register pair rp3 (BC, DE, or
HL), designated by PPy (1-3), from the extended
accumulator including the CY flag, and stores the
resuit in the extended accumulator.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:

Z

SK+*—¢0
HC

Lo 0
L1+0
CY

12-19

4PD7810/11, 7810H/11H,

NEC

78C10/C11/C14
Example: Bytes: 2
DSeB EAH T-States: 8 (8)
Flag Bits Affected:
DSLL EA SK 0
Shift EA logical left one into carry. to+~0
L1+40
(EAn+1) = (EAp), (EAg) *= 0, (CY) = (EAs5) cY
7 0
T T 1 T T T Example:
0 1 0 0 1 0 0 DSLR EA
1 I i H 1 I
1 0 1 0 0 1 0 0 DSUB EA,rp3

Instruction Code; 48A4H

Performs a 16-bit shift left by 1 of the extended
accumulatorinto the CY. A zerois shifted into the LSB.

EA

cY 15 o
! oo

—

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
SK+0
Lo+ 0
L1-0
cY

Example:
DSLL EA

Subtract register pair from EA.
(EA) =~ (EA) — (rp3)

DSLR EA
Shift EA logical right one into carry.
(EAn—1) *~ (EAp), (EAqs) == 0, (GY) =~ (EA)

Instruction Code: 48A0H

Performs a 16-bit shift right by 1 of the extended
accumulatorintothe CY. A zeroisshifted into the MSB.

EA

15
0-——-0{7 —

0 cyY

12-20

Instruction Code: 74E(5-7)H

Subtracts the contents of register pair rp3 (BC, DE, or
HL), designated by P-Pg {1-3), from the extended
accumulator and stores the result in the extended
accumulator.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
4
SK -0
HC
1g+0
{10
CcY

Example:

DSUB EAH

DSUBNB EA,rp3

Subtract register pair from EA and skip next instruction
if EA greater than or equal to register pair.

(EA) ~— (EA) — (rp3}, SK/EA = (rp3)

Instruction Code: 74B{5-7)H

NEC

Section 12
Instruction Set

Subtracts the contents of register pair rp3 (BC, DE, or
HL), designated by Py-Pg (1-3), from the extended
accumulator and stores the result in the extended
accumulator. If no borrow is generated, (EA)} = (rp3),
the next instruction is skipped.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
pd
SK
HC
l0—0
L1—0
cY
Example:

DSUBNB EAH
MVI AT0H

;Subtract (ML) from (EA).
;Skip MVI instruction on
:borrow.

DXR EA,rp3
Exclusive-OR register pair with EA.
{EA) ~ (EA) XOR (rp3)

Instruction Code: 749(5-7)H

Performs a 16-bit exclusive-OR of the contents of reg-
ister pair rp3 (BC, DE, or HL}, designated by Fy-Py
(1-3), with the extended accumulator and stores the
result in the extended accumulator.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
Z
SK+0
Lo—0
L1-—0

Example:

DXR EAH

EADD EA,r2
Add register to EA.
(EA) ~— (EA) + (r2)

Instruction Code: 704(1-3)H

Adds the contents of register r2 (A, B, or C), designated
by Ry{-Rg (1-3), to the lower 8 bits of the extended
accumulator and stores the result in the extended
accumulator.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
Z
SK+ 0
HC
LO=—20
10
CcY

Exampie:

EADD EAB

El
Enable interrupt.

Turn on maskable interrupts.

1" 0 1 0 1 0 1

instruction Code: AAH

Enables all unmasked interrupts. After the El instruc-
tion is executed, no intercupts will be accepted until the
next instruction is executed. Therefore, if El is the [ast
instruction preceding a return from interrupt, the
return will be executed before another interrupt is
accepted and the registers restored. This saves stack
space. The NMI| and SOFT! will always be recognized
independent of DY or EL

Bytes: 1
T-States: 4 (4)

Flag Bits Affected:
SK=-0
Lo 0
L1+0

Example:
El

12-21

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

EQAAT
Skip next instruction if register equal to accumulator.
{A) — (r}, SK/EQ

1 1 1 1 1 Ry R, Rg

Instruction Code: 60F(8-F)H

Subtracts the contents of reqgisterr (V, A, B, G, D, E, H,
orl), designated by Ra-Rg {0-7), from the accumulator.
If the result is zero, (A) = (r), the next instruction is
skipped. The contents of the accumulator and register
are not affected.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
z
SK
HC
Lto-20
L1—0
CY

Example:
MVi AOFFH
EQA AC
RET

;If register C = FF, then the
\RET is skipped.

EQATA
Skip next instruction it accumulator equal to register.
(r) — (A}, SK/EQ

instruction Code: 607(8-F)H

Subtracts the contents of the accumulator fromr (V, A,
B, C, D, &£, H, or L), designated by Ry-Ry (0-7). If the
result is zero, {r) = A}, then the next insiruction is
skipped. Neither the accumulator nor the register con-
tents are affected. :

Bytes: 2

T-States: 8 (8)

12-22

Flag Bits Affected:;
2
SK
HC
L0+—0
L1+0
CcY
Exampie:

EQA C.A
RET

:Compare A with C,
;Skip this instruction if A= C.

EQAW wa

Skip next instruction if working register equal to
accumulator.

(A} — {{V) »~ wa), SK/EQ

I { T I I !

T
offset

instruction Code: 74F8H, offset

Subtracts the contents of a working register to be
addressed by the V-register {8-bit, high-order address)
and the cffset (8-bit, low-order address) from the
accumulator. If the result is zero, (A) = {(V) * wa), the
next instruction is skipped. Neither the accumulator
nor the working register contents are affected.

Bytes: 3
T-States: 14 (11)

Flag Bits Affected:
Z
SK
HC
LO+—0
L1+0
CY

Example:
MVI V,0FH
EQAW 10H
RET

;Compare the contents of
location OF10H with the
;accumulator. Skip this
sinstruction if (A) = (OF10H).

- L ——

re

Section 12
Instruction Set

EQAX rpa

Skip next instruction if memory addressed by register
pair equal to accumulator.

(A) ~ ((rpa)), SK/EQ

instruction Code: 70F(9-F)H

Subtracts the contents of memory addressed by
register pair rpa (BC, DE, HL, DE+, HiL+, DE—, or
HL—), designated by Ap-Ag (1-7), from the accumulator,
If the result is zero, (A) = {rpa), the nextinstruction will
be skipped. Neither the accumulator nor the memory
contents are affected.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
Z
SK
HC
Lo—0
L1+0
cY
Example:

EQAX D
RET

;Compare memory pointed to
by D with the accumulator.
:Bkip this instruction if the
;result is zero ((A) = (memory)).

Bytes: 2
T-States: 7 (7}

Flag Bits Affected:
z
SK
HC
LO~—0
L1==0
CY

Example:

EQI A20H ;CGompare 20H with
;accumulator.
;Skip this instruction if

(A} = 20H.

RET

EQI r,byte

Skip next instruction if immediate data byte equal to
register.

(r) — byte, SK/EQ

EQ! A,byte

Skip next instruction if immediate data byte equai to
accumulator.

(A) — byte, SK/EQ

T
byte

Instruction Code: 77H, byte

Subtracts the immediate data byte from the contents of
the accumulator. if the result is zero, (A) = data byte,

the next instruction is skipped. The contents of the

accumulator are not affected.

I 1 |

T
byte

Instruction Code: 747(8-F)H, byte

Subtracts the immediate data byte from the contents of
aregisterr (V, A, B, C, D, E, H, or L), designated by
Ro-Rg (0-7), from the accumulator. Skips the next
instruction if the result is zero, {r} = data byte. The
contents of the register are not affected.

Bytes: 3
T-States: 11 (11)

Flag Bits Affected:
z
SK
HC
LO*-Q
L1=-0
102 4
Example:

EQI V,20H
RET

;Compare 20H with V-register.
;Skip this instruction if
(V) = 20H.

12-23

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

EQI sr2,byte

Skip next instruction if immediate data byte equal to
special register.

{sr2) — byte, SK/EQ

T
byte

Instruction Code:
647(8-B, D-F)H, byte
64F(8, 9, B, D))H, byte

Subtracts the immediate data byte from the contents of
special register sr2 (PA, PB, PC, PD, PF, MKH, MKL,
ANM, SMH, EOM, cr TMM) designated by S3-5p (0-3,
5-9, B, D). If the resuitis zerg, (sr2) = data byte, the next
instruction is skipped. The contents of the special
register are not affected.

Bytes: 3
T-States: 14 (11)

Flag Bits Affected:
z
SK
HC
Lo—20
Lt=—0
cy
Example:

EQI PD,20H
RET

:Compare 20H with PD.
:Skip this instruction if
/(PD) = 20H,

Instruction Code: 75H, offset, byte

Subtracts the immediate data byte from the contents of
the working register addressed by the V-register (8
high-order address bits) and the offset (8 lower-arder
address bits). If the resultis zero, ((V) *wa) = data byte,
the next instruction is skipped. The contents of the
working register are not affected.

Bytes: 3
T-States: 13 (10)

Flag Bits Affected:
Zz
SK
HC
Lo=—20
L1+—0
cY

Example:
MVI V,BOH
EQIW 10H,20H ;Compare 20K with contents
RET ;of location 8010H. Skip RET if
;the result is zero.

ESUB EA,r2
Subtract register from EA,
(EA) == (EA) — (r2)

EQIW wa,byte

Skip next instruction if immediate data byte equal to
working register.

({V) * wa) — byte, SK/EQ

12-24

Instruction Code: 706(1-3)H

Subtracts the contents of register r2 (A, B, or C),
designated by R1-Rg (1-3), irom the extended accumu-
lator and stores the result in the extended accumuliator.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
z
SK*+0
HC
LO=0
L1+—0
CY

Example;

ESUB EAB

NEC

Section 12
Instruction Set

EXA
Exchange V, A, and EA with V', A’ and EA’.
(V) = (V'), (A} — (A"), (EA)} «—— (EA)

T T T T T]
0 0 0 1 0 0 c 0

Instruction Code: 10H

Exchanges register V with V', A with A’, EA with EA".
Bytes: 1

T-States: 4 (4)

Flag Bits Affected:
SK+—Q
to~—20
L1+-0

Example:

EXA ;Exchange registers V, A, and
JEA with V', A', and EA’.

EXH
Exchange HL with H'L".
{HL) «— (H'L")

0 1 0 1 0 0 0

Instruction Code: S0H

Exchanges register pair HL with H'L".
Bytes: 1

T-States: 4 (4)

Flag Bits Affected:
SK+—40
LO+—0
L1+—0

Example:

EXH ;Exchange registers HL and #{'L".

instruction Code: 11H

Exchangesthecontents of registers B, C, D, E, M, and L
with alternate registers B*, C*', D', E', H', and L".

Bytes: 1

*T-States: 4 (4)

Flag Bits Affected:
SK+—0
LO+—20
Lt=—0

Example:
EXX ;Exchange registers B, C, D,
;E.H, and L with 8, C', D, E',
H, and L.

GTA A r
Skip next instruction if A greater than register.
(A} — [(r} + 1], SK/(A} > (n)

EXX
Exchange register sets.
{B) «— (B}, (C) =—(C"), (D) ~— (D),
(E) «— (E), (H) «— (H}, (L) — (L)
7 B 0

T T T T ¥ T
0 0 1 0 0 0 1

Instruction Code: 60A(8-F)H

Subtracts the contents of registerr (V, A, B, C, D, E, H,
or L), designated by Rs-Rg (0-7), pius 1 from the
accumulator. if no borrow is generated by the sub-
traction, (A) > {r), the nextinstruction is skipped. Does
not affect the contents of the accumulator or the
register.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
zZ
SK
HC
LO—0
L1+<0
CY

Example;
GTA AC ;Compare A with C.
RET ;This instruction is skipped if
A > C,

12-25

UEBTEIO 4%, TS ILND, ATy
78C10/C11/C14 [‘ b
GTATrA Subtracts the contents of a working register to be

Skip next instruction if register greater than A,

(r) — [(A) + 1], SK/(n) > (A)

Instruction Code: 602(8-F)H

Subtracts the contents of the accumutator plus 1 from
the contents of register r (V, A, B, C, D, E, H, or L}
designated by R2-Rg (0-7). If no borrow is generated,
{r) > (A), the next instruction is skipped. Does not
affect the contents of the accumulator or the register.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
Z
SK
HC
Lo+—20
t1—20
cY
Example:

GTA C.A
RET

:Subtract A from C.
Af C is greater than A, this
;instruction is skipped.

GTAW wa
Skip next instruction if A greater than working register.
(AY — [{(V) »wa) + 1], SK/(A}> ((V) * wa)

I I I t i i

T
offset

Instruction Code: 74A8H, offset

12-26

addressed by the V-register (8-bit high-order address)
and the offset {B-bit iow-orderaddress) plus 1 from the
accumulator. If no borrow is generated, (A) > ((V) = wa},
the next instruction is skipped. Does not affect the
accumulator or the working register.

Bytes: 3
T-States: 14 (11)

Flag Bits Affected:
Z
SK=0
HC
Lc+—290
L1+ 0
cy

Example:
MV V,0FH
GTAW 10H
RET

:Compare the contents of
Jlocation CF10H with the
;accumulator. Skip RET if no
;borrow generated (A > V),

GTAX rpa

Skip next instruction if accumulator greater than
memory addressed by register pair.

(A) — [((rpa)) + 1], SK/(A} > MEM

Instruction Code: 7CA(9-F)H

Subtracts the contents of the memory location that is
addressed by register pairrpa {(BC, DE, HL, DE+, HL+,
DE—, or HL-), designated by As-Ag {1-7), plus 1 from
the accumulator. The nextinstruction will be skipped if
no borrow, (A) > memory location, is generated. Does
not affect the contents of accumuiator or memaory.

Bytes: 2
T-States: 11 (8)

NEC

Section 12
Instruction Set

Fiag Bits Affected:

Z
SK
HC
LO—2Q
t1+—0
CY
Example:
GTAX D ;Compare memory pointed to
by DE with accumulator.
RET ;This instruction is skipped if
:no borrow is generated
{(A) > ({DE))).
GTI A,byte

Skip next instruction if accumulator greater than
immediate data byte.,

(A) — [byte + 1], SK/{A) > byte

T
byte

instruction Code: 27H, byte

Subtracts the immediate data byte plus 1 from the
accumulator. If no borrow is generated, (A) > data
byte, then the next instruction is skipped. Does not
affect the contents of the accumulator.

Bytes: 2
T-States: 7 (7)

Flag Bits Aftected:
Z
HC
SK
LO-—0
Li+—90
cY

Example:
GTI A 20H
RET ;3kip this instruction if A >

120H,

(r) — {byte + 1], SK/(r} > byte

:
byte

Instruction Code: 742(8-F}H, byte

Subtracts the immediate data byte pius 1 from the
contents of register r (V, A, B, C, D, E, H, or L)
designated by Ry-Rg (0-7). If no borrow is generated,
(r) > data byte, the next instruction is skipped. Does
not affect the contents of the register.

Bytes: 3
T-States: 11 (11)

Flag Bits Affected:
Z
HC
SK
Le+—o0
L1+0Q
cY

Example:
GTI D,20H
RET ;Skip this instruction if

D > 20H.

GTI sr2,byte

- Skip next instruction if special register greater than

immediate data byte.
(sr2) — [byte + 1}, SK/(sr2) > byte

T
byte

GTi r,byte

Skip nextinstruction if register greater than immaediate
data byte.

Instruction Code;
642(8-B, D-F)H, byte
684A(8, 9, B, D)H, byte

12-27

«2D7810/11, 7810H/11H,
78C10/C11/C14

NEC

Subtract the immediate data byte plus 1 from the
contents of special register sr2 (PA, PB, PC, PD, PF,
MKH, MKL, ANM, SMH, EOM, or TMM}, designated by
53-Sp (0-3, 5-9, B, D). If no borrow is generated, (sr2) >
data byte, skip the next instruction. Does not affect the
contents of the register.

Bytes: 3
T-5tates: 14 {11)

Flag Bits Affected:
Z
SK
HC
L0
L1-—0
CY

Example:
GTI PD,20H
RET ;Skip this instruction if port D

> 20H.

Exampie;
MV
GTIW
RET

V,070H
10H,20H
:Skip this instruction if the

GTIW wa,byte

Skip next instruction if working register greater than
immediate data byte.

(V) * wa) — [byte + 1], SK/((V) * wa) > byte

0 0 1 0 0 1 0

1 I i 1 1 '

T
offset

T
byte

Instruction Code: 25H, offset, byte

Subtracts the immediate data byte plus 1 from the
contents of the working register addressed by the V-
register {8 high-order address bits) and the offset (8
lower-order address bits). if no borrow is generated,
{(V) * wa) >> data byte, the next instruction is skipped.
Does not affect the contents of the working register.

Bytes: 3
T-States: 13 (10)

Flag Bits Affected:
Z
SK
HC
LO~0
L1+—0
cY

12-28

:contents of location 7010H
> 20,

HLT
Stop processing.

Instruction Code: 4838H

Suspends CPU operation by setting the HALT flip-flop
until a subsequent interrupt or reset is received. While
in the halt state, the CPU repeats the M3 T2 cycle.

Bytes: 2

T-States:
11 (8), NMOS parts
12 (8}, CMQS parts

Flag Bits Affected:
SK+0
LO=0
L1=0

Example:
HLT Stop all processing until an .

interrupt or reset.

INR r2
Increment register and skip next instruction if carry.
(r2} «— (r2) +1, SK/CY

o 1 o0 o0|o o R R

Instruction Code: 4(1-3}H

Increments by 1 the contents of register r2 (A, B, or C}
designated by R1-Rg (1-3). {fa carry is generated by the
increment, the next instruction is skipped.

Bytes: 1
T-States: 4 (4)

NEC

Section 12
Instruction Set

Flag Bits Affected:

Z

SK

LO—20

L1—0

HC

cY

Example:

INR A ;Causes the value in A to be
sincremented by 1.

RET ;This instruction is skipped if
;A increments from OFFH
ito O0H.

INRW wa

Increment working register and skip next instruction if
carry.

{{(V)*wa)~ ((V)*wa) +1, SK/CY

offset

Instruction Code: 20H, offset

Increments by 1 the contents of the working register
designated by the V-register (high-order 8 bits) and the
offset (low-order 8 bits). If a carry is generated, the next
instruction is skipped.

Bytes: 2
T-States: 16 (7)

Fiag Bits Affected:
Z
SK
HC
LO+0
L1+0
CY

Example:
MVI V,0FFH
INRW 20H
RET

;Increments location OFF20H.
Jfacarry is generated, RET
.is skipped.

Instruction Code: A8H

increment the extended accumulater by 1,
Bytes: 1

T-States: 7 (4)

Flag Bits Affected:
SK+0
LO+—0
Lt1+—20

Example:

INX EA ;Causes EA to be incremented by 1.

INX rp

Increment register pair.

{rp) ~— {rp) +1

Instruction Code: {0-3)2H

Increments register pair rp (SP, BC, DE, or HL) by 1.
P4-Pg (0-3} select the register pair.

Bytes: 1
T-States: 7 {4)
Flag Bits Affected:
SK+0
LO=—90
L1+0
Example:

INX H ;Causes HL to be incremented by 1.

INX EA
Increment EA.
(EA) ~ (EA} +1

12-29

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

JB
Jump BC indirect.
(PCH) == (B), (PCL) =~ (C)

0 0 1 0 0 0

Instruction Code: 21H

L oads the contents of the BC register pair into the
program counter. The BC register pair is not affected
and the next opcode fetch will be from the address that
is in BC.

Bytes: 1

T-States: 4 (4)

Flag Bits Affected:

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
SK+0
Lo*~-0
L1 *0

Exampie;

JEA (3o 1o address in EA.

JMP word
Jump direct.
(PC) + word

low address

SK=—0
L0+ 0
L1+ 0
Example:
MVI A 0H {(A) = O offset into
table.
TABLE ;(BC) = address from
;table.
JB ;Jump to address in BC.
TBO: DW WORD ;Table addresses start
;here.
JEA
Jump EA indirect.
(PC) +~ (EA)
7 0
| T T | T T
0 1 0 0 1 0 0 0

Instruction Code: 4828H

Loads the contents of the extended accumulator into
the program counter. The extended accumulatoris not
affected and the next opcode fetch will be from the
address that is in EA.

12-30

| T T
high address

Instruction Code: 54H, low, high

Loads theimmediate address into the program counter.
The first byte of immediate data is loaded into the low
byte of the program counter; the second byte is loaded
inta the high byte of the program counter. The program
will start executing from the new address in the PC.
Bytes: 3

T-States: 10 {10)

Flag Bits Affected:

SK—0
LO— 0
L1+ 0
Example:
JMP NEXT ;Go to address labeled
(NEXT.
MV!Y AS ‘This instruction will be
;skipped.
NEXT: RET ;This is the next instruction.

NEC

Section 12
instruction Set

JR word
Jump relative.
(PC) — (PC) + 1 + jdisp1

0

7
T T T
1 1 jdisp1 5-4

1 T
jdisp1 3-0

instruction Code: {C-F)(0-F)H

The contents in the program counter are incremented
by 1, and this 6-bitsigned displacementis added to the
vajuein the program counter. This jumpinstructionisa
one-byte instruction with a range of +32 to —31 bytes
with respectto the current PCvafue. The jump displace-
ment is added to the pregram counter, sign extended,
causing the next M1 cycle to occur at this address. If
the 4R instruction is executed at 100, the range of the
jump is from 68 to 132. See "Relative Branching” in
Section 11.

Bytes: 1
T-States: 10 (4)

Flag Bits Affected:
SK+—40
Lc+—o
L1+—0

Example: Fifl 20H bytes of memory with 30H.

CLM: LXI C,500H ;Starting point.
MVI C,1FH ;Amount of memaory to
:be filled.
MV A0 ;ASCII 30H.
LOQP: STAX D+ :Put 30H in memory and
iincrement DE,
DCR C ;Count off loop count,
JR LOOFP ;Loop until finished.
RET ;Back to caller alf
Hfinished.
JRE word

Jump relative extended.
(PC) ~— (PC) + 2 +idisp

| | I I I {

f
jdispL

Instruction Code: 4(E, F} (C-F)H

This jump instruction is a two-byte instruction with a
range of +255 to --255 bytes. The current value of the
program counter is incremented by 2; then, the jump
displacement is added tc the program counter. The
second byte of the instructionis the displacement. The
lowest bit of the first byte is the sign. If the JR
instruction is executed at 1000, the range of the jump is
from 747 tc 1257.

Bytes: 2
T-States: 10 (7)
Fiag Bits Affected:

SK+—0
LO~—0
L1+—0
Example:
JRE ZIPPY ;Jump around storage
;locations.
DS 200H ;Defined storage of 200H
:bytes.
ZIPPY: MVI A3 Put3in A,

LBCD word
Load register pair BC direct.
(C) ~— (word), (B} * (word + 1)

I I 1 i 1 L

]
low address

T T T
high address

Instruction Code: 701FH, low, high

Loads 16 bits into register pair BC. The contents of C
are replaced by the contents of memory at the location
pointed t¢ by immediate address. The contents of Bare
replaced by the contents of memory at the next higher
location.
Bytes: 4

T-States: 20 (14)

12-31

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Flag Bits Atfected:

SK+—0
LO=-—0
L1—20
Example:
LBCD ZtPPY :Load BC with the
:contents of ZIPPY.
RET :At this point,
:BC = 1234H.
ZIPPY: DW 1234H :16-bit number.
LDAW wa

Load A with working register.
{A) * (V) » wa)

1 I I

I
offset

Instruction Code: 01H, offset

Loads the accumulator with the contents of the work-
ing register. The working register is designated by
concatenating the contents of the V-register with the
offset.

Bytes: 2
T-States: 10 (7)
Flag Bits Atfected:
SK=10
LO=—0
10
Example:

Mvi V. 80H
LDAW 23H

:Load the accumulator with
;contents of B023H.

LDAX rpa2
L.oad A with memory addressed by register pair.

(A) = ((rpa2))

Instruction Code:
2(9-F}H, byte
A{B-F)H, byte

12-32

Loads the accumuiator with the contents of memory
addressed by register pair rpa2 (BC, DE, HL, DE+,
HL+, DE—, HL—, DE+byte, HL+A, HL+B, HL+EA, or
HL+byte) as designated by Az-Ag (1-7, B-F}. if auto-
increment or decrement is designated, the contents ot
register pair (DE or HL) are automatically incremented
or decremented by 1 after Igading the accumulator. 1f
rpa? is designated with DE+byte or HL+byte, the
memaory address is the sum of the contents of DE or HL
and the data byte of the instruction. Similacty, the
contents of HL and that of register A, B, or EA are
added if RL+A, HL+B, or HL+EA is designated.

The number of bytes and T-states varies depending on
the register pair designated (see {ollowing table).

B 0 K H+4,

0+, H+. H+B,
rpaz O0—. H—- 0+byle H+EA H-+byte
Bytes 1 2 1 2
T-states 7(4) 13 (7} 13{7) 13{7N

Flag Bits Affected:
SK+—0
Lo+~—40
L1-0

Example: To load memory address 120H to A.

EXAMP: LXI H,100H (HL) < 100H
MVI B,2CH (B) =~ 20H
LDAX H+B H(A) + (120H)
LDEAX rpal

Load EA with contenis of memory addressed by
register pair.

(EAL) +— ({rpad)), (EAH) + {(rpad) +1)

1 0 0 0 Cs Cs Cy Cy

T
byte

Instruction Code: 488(2-5, B-F)H, byte

NEC

Section 12
instruction Set

Loads the lower-arder bits (EAL) of the extended
accumulator with the contents of memory addressed
by register pair rpa3 (DE, HL, DE++, HL++, DE+byte,
HL+A, HL+B, HL+EA, or HL+byte) as designated by
C3-Cq {2-5, B-F). Loads EAH with the contents
addressed by (rpa3) + 1.

it DE+byte or HL+byte is designated as rpa3d, the
memaory is addressed by the sum of the contents of DE
or HL and the data byte. {f the source memory is
addressed by HL+A, HL+B, or HL+EA, memory is
addressed by the sum of the contents of HL and
register (A, B, or EA).

The number of bytes and T-states varies depending on
the register pair designated (see following table).

Flag Bits Affected:

SK—0
{00
Lti—20
Example:
: LDED Z{PPY :Load DE with the
:contents of ZIPPY.
RET At this point,
:DE = 1234H,
ZIPPY: DwW 1234H ;just a number.
LHLD word

Load register pair HL direct.
(L) + (word), {(H) *— (word) +1)

H+A,
0 H, -+8,
rpad D-++, H++ 0+ byte H+EA H+hyte
Bytes 2 3 2 3
T-states 14 (8) 20 (11} 20{11) 20 (11}

Flag Bits Affected:
SK+=0
Lo-—40
L1+—90
Example:
EXAMP: LDEAX HL++

I I I I I 1

T
low address

T T T T 4
high address

LDED word
L.oad register pair DE direct.
(E) = (waord), (D) ~ (word +1)

1 | 1 4 1
low address

i T T
high address

Instruction Code: 702FH, low, high

The contents of E are replaced by the contents of
memory pointed to by word. The contents of D are
reptaced by the contents of memory at location
word + 1. F

Bytes: 4 *
T-States: 20 (14)

Instruction Code: 703FH, low, high

The contents of L are replaced by the contents of the
memory location pointed to by word. The contents ot H
are replaced by the contents of memory at tocation
word + 1.

Bytes: 4
T-States: 20 (14)
Flag Bits Affected:

SK—20
L0+—20
L1+0
Example:
LHLD ZIPPY :Load HL with the
:contents of ZiPPY.
RET ;At this point,
‘HL = 1234H,
ZIPPY: DW 1234H ;Jjust a number.
LSPD word

Load SP register direct.
(SPL} *— {word}, {SPH) — (word + 1}

12-33

4PD7810/11, 7810H/11H,

NEC

78C10/C11/C14
7 0 Flag Bits Affected:
Ty T 1T]o 0 0 o z
SK
| T T 1 T T HC
o o o o |1 1 1 1 L0=—0
Lt 0
CY
1 T T ¥ T T T
low address Example:
LTA AC
T T T T T T | RET - ;This instruction is skipped if
high address -C> A
Instruction Code: 700FH, low, high
LTA A

The contents of SPL are replaced by the contents of
memory at location word and the contents of SPH are
replaced by the contents of memory at location
word + 1.

Bytes: 4
T-States: 20 (14}
Flag Bits Affected:

SK+—0
Lo—0
L1+ 90
Example:
LSPD ZIPPY ;Load SP with the
:contents of ZIPPY.
RET J(SP) = 1234H,
ZIPPY DW 1234H ;just a number,
LTA Ar

Skip next instruction if register greater than A.
(A) ~ (1), SK/{r} > (A)

Instruction Code: 60B(8-F}H

Subtracts the contents of registerr (V, A, B, C, D, E, H,
or L) designated by Ry-Rg (0-7) from the contents of the
accumulator. If a borrow is generated, (r} > (A), the
nextinstruction is skipped. Does not affect the contents
of the accumulator or the register,

Bytes: 2

T-States: 8(8) -~ - s e

12-34

(A)— (V) = wa), SK/((V) * wa) > (A)

Skip next instruction it A greater than register.
(r) = {A), SK/(A)> (1}

Instruction Code: 603(8-F)H

Subtracts the contents of the accumulator from the
contents of register r (V, A, B, C, D, E, H, or L)
designated by Ro-Rg (0-7). If a borrow is generated by
the subtraction, (A) > (r}), the next instruction is
skipped. The contents of the accumulator and the
register are not affected.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
Zz
SK
HC
Lo~ 0
L1=—0
CY
Example:
LTA C.A

RET ;This instruction is skipped if
A C.

LTAW wa

Skip nextinstruction if working register greater than A.

LR PR P

Section 12
Instruction Set

T T | T
offset

Instruction Code: 74B8H, offset

Subtracts the contents of the working register from the
accumulator. If a borrow is generated, ({V) * wa) > (A},
the next instruction is skipped. Does not affect the
contents of the working register or the accumulator,

Bytes: 3
T-States: 14 (11)

Flag Bits Affected;
Z
SK
HC
LO~0
L1+=0
cY

Example:
MV1 V,0FH
LTAW 10H
RET :Skip this instruction if

:(OF10H) > (A).

LTAX rpa

Skip next instruction if memory addressed by register
pair greater than accumulator.

(A} — ((rpa)}. SK/((rpa)) > (A)

Instruction Code: 70B(2-F}H

Subtracts the contents of the memory location that is
addressed by register pairrpa (BC, DE, HL, DE+, ML+,
DE—, or HL—) designated by As-Ag {1-7) from the
accumulator. The next instruction will be skipped if a
borrow is generated, ((rpa)) >.(A). Does not affect the
contents of the accumulator or memory.

Bytes: 2
T-States: 11 (8)

Flag Bits Atfected:
z
- 8K
HC
LO=~-0
L1=0
cy

Example:
LTAX D
RET ;This instruction skipped if

;memory greater than A.

LTI A,byte

Skip next instruction if immediate data byte greater
than A.

{A) — byte, SK/byte > (A)

T
byte

Instruction Code: 37H, byte

Subtracts the immediate data byte from the accumu-
lator. If a borrow is generated, data byte > (A), then the
nextinstruction is skipped. Does not affect the contents
of the accumulator.

Bytes: 2
T-States: 7 (7)

Fiag Bits Affected:
Z
SK
HC
LO0
L1 0
CcY

Example:
LTI A20H
RET :Skip this instruction if

20H > A,

12-35

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

LTI r,byte

Skip next instruction if immediate data byte greater
than register.

(r) — byte, SK/byte > (r}

LB] I

T
byte

Instruction Code: 743(8-F)H, byte

Subtracts the immediate data byte from the contents of
registerr(V, A, B, C, D, E, H, orL) designated by Rz-Rg
(0-7).1fa borrow is generated, data byte > (r), then the
next instruction is skipped. Does not affect the contents
of the reqgister.

Bytes: 3
T-States: 11 (11)

Fiag Bits Affected:
Z
SK
HC
LO—0
L1+0
cY
Exampie:

LTI D,20H
RET

:Compare (B) with 20H.
;Skip this instruction if a
‘barrow (D < 20H).

LTI sr2,byte

Skip next instruction if immediate data byte greater
than special register.

{sr2) — byte, SK/byte > (sr2)

1
byte

Instruction Code: .
643(8-B, D-F)H, byte
648(8, 9, B, DJH, byte

12-36

Subtracts the immediate data byte from the contents of
special register sr2 {(PA, PB, PC, PD, PF, MKH, MKL,
ANM, SMH, EOM, or TMM) designated by S$3-Sg
(0-3, 5-9, 8, D). If a borrow is generated, data byte >
(sr2), then the next instruction is skipped. Does not
affect the contents of the register.

Bytes: 3
T-States: 14 (11)

Fiag Bits Affected:
Z
SK
HC
LO+0
L1=0
CY
Example:
LTt PD,20H ;Subtract 20H from port D.

RET :Skip this instruction if a
;borrow is generated.

LTIW wa,byte

Skip next instruction if immediate data byte greater
than working register.

((V}) * wa) — byte, SK/byte > {(V) * wa)

I i 1 1 i I

T
offset

1
byte

Instruction Code: 35H, offset, byte

Subtracts the immediate data byte from the contents of
the waorking register addressed by the V-register (8
high-arder address bits) and the offset (8 lower-order
address bits). If a borrow is generated, data byte >
({V) *=wa), the next instruction is skipped. The contents
of the working register are not affected.

Bytes: 3
T-States: 13 (10)

Filag Bits Affected:
rd
SK
HC
Lo+—20
L1+0
cyY

NEC

Section 12
Instruction Set

Example:
MVI V.80H
LTIW 10H,20H
RET :Skip this instruction if

-(8010H) < 20H.

LX!I rp2,word
Load register pair with immediate data.

(rp2) — word

T
low byle

T i I

1 |
high byte

Instruction Code: (0-4)4H, low, high

Loads the immediate data bytes into register pair rp2
(BC, DE, HL, SP, or EA) designated by P»-Pg (0-4). If
HL is the designated register pair, then the L0 fiag is
set. Subsequent LXI H,word instructions are skipped

until another type of instruction is executed.
Bytes: 3
T-States: 10 (10)

Fiag Bits Atfected:
SK—40
L0+~ (rp2 =HL)
LO~ {rp2 # HL)
L1+—0

Example:

L1 LXI H,2000H ;Depending on where this

L2: LXI H.4000H ;sequence is entered, either

L3: LXi H,6000H ;2000H, 4000H, or 6000H
SHLD OFFO0OH ;will be stored at location

;FFOCH.
MOV ri,A
Move A to register.
{r1) == (A)
7 c
1 T] T T i
#] 0 g 1 1 To T4 Ta

Instruction Code: 1(8-F)H

Transfers 8 bits of data from the contents of the
accumulator toregister r1 (EAH, EAL, B, C, B, E, H, or
L} as designated by T»-Tq (0-7).

Bytes: 1
T-States: 4 (4)

Flag Bits Affected:
SK=0
LO=0
L1~—20

Example:
MOV C.A ;Move the contents of A into C.

MOV A r1
Move register to A.
(A} *—(r1}

Instruction Code: 0(8-F}H

Transfers 8 bits of data from the contents of register r1
(EAH, EAL, B, C, D, E H, orL) as designated by T>-Tg
(0-7H) to the accumulator.

Bytes: 1
T-States: 4 (4)

Flag Bits Affected:
SK+0
Lo+—o0
L1+—¢

Example:
MOV AC ‘Move the contents of C into A.

MOV sr,A
Move A to special register.

(sr) == (A)

Instruction Code:
4DC(0-3, 5-DjH
4DD(0-4, 7,8 A, BJH
4DEBH

12-37

uPD7840/4%, T64C1L/ 0L,
78C10/C11/C14

Transfers 8 bits of data from the accumulator to special
registersr (PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH,
SML, ECM, ETMM, TMM, MM, MCC, MA, MB, MC, MF,
ZCM, TXB, TMO, or TM1) as designated by S55-5q (0-3,
5-0, 10-14, 17, 18, 1A, 1B, or 28).

Bytes: 2
T-States: 10 (8)

Flag Bits Affected:
SK=—0
LO+0
L1 =0

Example:

MOV PAA ;Move the contents of A to

;port A latch,

MOV A,;sr
Move special register 1o A.
(A) == (sr1)

Instruction Code;
4CC(0-3, 5-8, B, D)H
4CD(9)H
4CE(0-3)H

Transfers 8 bits of data from the contents of special
register sr1 (PA, PB, PC, PD, PF, MKH, MKL, ANM,
SMH, EOM, TMM, RXB, CRC, CR1, CR2, or CR3) as
designated by 55-S¢ (0-3, 5-9, B, D, 19, 20-23) to the
accumuiator.

Bytes: 2
T-States: 10 (B)

Flag Bits Affected:
SK+—0
LO+—0
L1+0

Example:

MOV ATMM Move the contents of timer

;mode register into A.

MOV r,word

Move memory 1o register.

{r) = (word)

12-38

|

I 1 I I 1 1

T
low address

T T T] T
high address

Instruction Code: 706(8-F)H, low, high

Transfers 8 bits of data from the contents ¢f memory as
addressed by the third (low address) and fourth {high
address) bytes toregisterr (V. A, B,C, D, E, H,ori) as
designated by R»-Rp (0-7).

Bytes: 4
T States: 17 (14)

Flag Bits Affected:
SK =0
LO—¢
L1-—0

Example;
MOV V,1234H ;Move the contents of memaory

Jlocation 1234H into V.

MOV word,r
Move register to memory.

(word) +— ()

1 I I I I I

T
low address

T T T H T
high address

Instruction Code: 707(8-F)H, low, high

Transfers B bits of data from the contents of register r
(V,A, B, C D, EH, orl)asdesignated by Ry-Rg (0-7) to
memory as addressed by the third (low address) and
fourth (high address) bytes.

NEC

Section 12
Instruction Set

Bytes: 4
T-States: 17 (14)

Flag Bits Affected:
SK-—0
to~—o0
L1~—0

Example:

MOV 1234H,V ;Move the contents of V into

;memory location 1234H.

MUL r2
Multiply A by register.
(EA) *— {A) x (r2)

Instruction Code: 482(D-F)H

Performs an 8-bit by 8-bit unsigned multiplication of
the contents of the accumulator by that of register r2
{A,B, orC)asdesignated by R1-Rg (1-3) and leaves the
16-bit product in the extended accumulator.

Bytes: 2
T-States: 32 (8)
Flag Bits Affected:

SK-—20

Lto—2o0

L1+0
Example:

MUL C ;Multiply A by C, result in EA.

instruction Code:
640(0-3, 5-7)H, byte
648(0, 1, 3, 5)H, byte

Transfers the immediate data byte (third byte) to
special register sr2 (PA, PB, PC, PD, PF, MKH, MKL,
ANM, SMH, EOM, or TMM), designated by S3-S; (0-3,
5-9, B, D).

Bytes: 3
T-States: 14 {11}
Flag Bits Affected:
SK—¢0C
LO+—0
Li—0
Example:

MVi PD,20H ;Move 20H into port D.

MVI r,byte
Move immediate data byte tc register.
(r) +— byte

T
byte

MVI sr2,byte
Move immediate data byte to special register,

(sr2) ~ byte

Instruction Code: 6{B-F)H, data

Transfers the immediate data byte to registerr (V, A, B,
C, D, E, H, or L), designated by Rs-Rg (0-7). If A is the
designated register, then all further MVI A,byte in-
structions will be skipped until another instruction type
is encountered. Then, L1 is cleared. If L is the
designated register, then all further MVI L byte in-
structions will be skipped untif anotherinstruction type
is encountered; then, LO is cleared.

12-39

4PD7810/11, 7810H/11H,
78C10/C11/C14

Bytes: 2
T-States: 7 (7)
Flag Bits Affected:

r=A4 r=L All Others
SK—10 SK—10 SK+~0
Lc—0 LG +~—1 LG =0
L1—1 Li—0 L1-—0
Example:
MVI A,30H :Depending on where this
MVI A31H 'sequence is entered, ASCII G,
MVI A,32H 1, or 2 is output to port A.

MOV PAA

MVIW wa,byte
Move immediate data byte to working register.

((V) » wa) ~— byte

T T T i
offset

T
byte

Instruction Code: 71H, offset, byte

Transfers the immediata data byte to the working
register addressed by the V-register {8 high-order
address bits) and the offset (8 lower-order address
bits).
Bytes: 3
T-States: 13 (10)
Flag Bits Affected:

SK+0

LO+~—0C

L1+—0
Example:

MV V,12H Put12Hin V.
MVIW 10H,20H ;Store 20H at address 1210H.

MVIX rpal,byte
Move immediate data byte to memory.

({rpal)) *— byte

12-40

T
byte

instruction Code: 4(9-B}H, byte

Transfers the immediate data byte to the memory
addressed by register pair rpal (BC, DE, or HL) as
designated by Aq-Ag (1-3).

Bytes: 2
T-States: 10 (7)

Flag Bits Affected:
SK+0
LO—0
L1+0

Example:
MVIX B.9 :Put a 9 at memory location

;specitied by register pair BC.

NEA Ar
Skip next instruction if register net equat to A.
(A) — (), SK/(r) # (A)

Instruction Code: 60E(8-F)H

Subtracts the contents of registerr (V, A, B, C, D, E, H,
or L), designated by Ro-Rg (0-7), from the contents of
the accumulator. If the result is other than zero, (A} #
(r), the next instruction is skipped. Dees not affect the
contents of the accumulator or the register.

Bytes: 2
T-States: 8 (8)
Flag Bits Aftected:

Z

SK

HC

LO -0
Lt1+—20
cY

b e

NEC

Section 12
Instruction Set

Example:
NEA AC
RET i This instruction is skipped if
AFEC,
NEATA

Skip next instruction if A not equal to register.
(r) — {A), SK/(A} # ()

Instruction Code: 606(B-F)H

Subtracts the contents of the accumulator from register
r{v, A B, C, D, E, H, or L) designated by Ro-Rg (0-7). 1f
the result is other than zero, {(A) # (r}), the next
instruction is skipped. The contents of the register or
accumulator are not affected.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
Z
SK
HC
LO+—0
L1+—0
cY

Example:
NEA C.A
RET ;If A notequalto C, RET is

iskipped.

NEAW wa

Skip next instruction if A not equal to the working
register.

(A} — ((V) *wa), SK/(A) = ({V)*wa)

{ I I 1] 1

I
offset

Instruction Code: 74EBH, offset

Subtracts the contents of the accumulator from the
contents of the waorking register addressed by the V-
register (8-bit high-arder address) and the offset {8-hit
low-order address). If the result is other than zero, (A)
((V) = wa), the next instruction is skipped. The
contents of the accumulator or working register are not
affected.

Bytes: 3
T-States: 14 (11)

Flag Bits Affected:
Z
SK
HC
L0+~0
L1+0
CY

Example:
MVI(V,0AH
NEAW 10H
RET ;Skip this instruction if
;contents of accumulator # to
;contents of memory location

0A10H,

NEAX rpa

Skip next instruction it A not equal to memory ad-
dressed by register pair.

(A} — ((rpa)), SK/(A}# ((rpa))

instruction Code: T0E(9-F)H

Subtracts the contents of the memory location
addressed by register pairrpa (BC, DE, HL, DE+, HL+,
DE—, or HL—), designated by Az-Ag (1-7), from the
accumulator. The next instruction will be skipped if the
result is other than zero, (A} # ((rpa)). Does not affect
the contents of the accumulator and memory.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
4
SK
HC
Lo~—90
L1<—0
CY

12-41

AV bk ad b NS By d bR ens ey

78C10/C11/C14
Example: Flag Bits Affected:
MVl A20H Z
NEAX D {(D}) = 20H HC
RET ;Skip this instruction if (A) = 20H. SK
LO+—0
L1~—0
NEGA cyY
Negateﬁ Example:
(Ay+— (A)+ 1 NEI A 204
7 0 RET ;Skip this instruction if A # 20H,
T T T T T
o 1 0 o0 }1 0 o0
NE! r,byte

Instruction Code: 483AH

Takes two's complement of the contents of the
accumulator.

Bytes: 2
T-States. 8 (8)

Flag Bits Affected:
SK+—0
L0~~0
11+-0

Example:
NEGA ;Take two's complement of A,

Skip nextinstruction if register not equal to immediate
data byte.

{r} — byte, SK/{r) # byie

T
byte

NEI A,byte

Skip next instruction if A not equal to immediate data
byte.

(A) — byte, SK/(A) # byte

T
byte

Instruction Code: 67H, byte

Subtracts the immediate data byte from the contents of
the accumulator. If the result is other than zero, (A) #
data byte, then the next instruction is skipped. Does
not affect the contents of the accumulator.

Bytes: 2
T-States: 7 (7)

12-42

Instruction Code: 746(B-F}H, byte

Subtracts theimmediate data byte from the contents of
registerr(V,A,B,C, D, E, H, orL), designated by Rs-Rg
(0-7). If the result is otherthan zero, (r) # data byte, the
next instruction is skipped. Does not affect the contents
of the register.

Bytes: 3
T-States: 11 (11)

Flag Biis Affected:
Z
HC
SK
LO+Q
Li=0
CcY
Example:

NEI D,20H
RET 1Skip this instruction if D # 20H.

e meea e

NEC

Section 12
Instruction Set

NEI sr2,byte

Skip next instruction if special register not equal to
immediate data byte.

(sr2) — byte, SK/(sr2) +# byte

|
byte

Instruction Code;
648(8-B, D-F)H, byte
B4E(8, 9, B, DJH, byte

Subtracts the immediate data byte from the contents of
special register sr2 (PA, PB, PC, PD, PF, MKH, MKL,
ANM, SMH, EOM, or TMM]), designated by $3-5¢ (0-3,
5-9, B, D). If the result is other than zero, (sr2} # data
byte, the next instruction is skipped. Does not affect
the contents of the register.

Bytes: 3
T-States: 14 {11)

Ftag Bits Affected:
Z
SK
HC
Lo—0
L1=0
cY
Example;

NEI PD,20H
RET

:Compare 20H with port D.
:Skip this instruction if port D
7= 20H.

NEIW wa,byte

Skip next instruction if working register not equal to
immediate data byte.

({V) *» wa) — byte, SK/({V) * wa) # byte

T T T !
offset

T T T T
byte

Instruction Code: 65H, offset, byte

Subtracts the immediate data byte from the contents of
the working register addressed by the V-register (8
high-order address bits) and the offset (8 lower-order
address bits). If the resultis other than zero, ((V) *wa) #
data byte, the next instruction is skipped. Does not
affect the contents of the warking register.

Bytes: 3
T-States: 13 {(10)

Flag Bits Affected:
Z
SK
HC
Lo=-Q
L1+0
CY

Example:
MVI V. 0AAH
NEIW 10H,20H
RET :Skip this instruction if
;contents of location AATOH

3 20H.

NOP
No operation.
(PC) + (PC) +1

Instruction Code: 00H

This instruction does not perform an operation, but
uses up four clock cycles.

12-43

4PD7810/11, 781CH/15L,
78C10/C11/C14

Bytes: 1
T-States: 4 (4)

lag Bits Affected:
SK+—0
LO+—0
L1+ 0

Example:

NOP :No operation.

OFFA A r
Skip next instruction if off-test register with A is zero.
(A} AND (), SK/Z

instruction Code: 60D(8-F)H

Performs logical AND of the contents of the accumu-
tator with the contents of registerr (V, A, B, C,D, E, H,
or L), designated by Rp-Rq (0-7). 1f the resultis zero, the
nextinstructionis skipped. Does not affect the contents
of the accumulator or the register.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
z
SK
L0 0
L1+0
Example:

OFFA AC
RET

JAND A with C.
:This instruction is skipped if
;the result is zero.

OFFAW wa

Skip next instruction if off-test working register with A
is zero.

(A) AND ((V} * wa), SK/Z

12-44

I I | { I I

T
offset

Instruction Code: 740D8H, offset

Performs logical AND of the contents of a working
register to be addressed by the V-register (8-bit high-
order address) and the offset (8-bit low-order address)
with the accumulator. it the result is zero, the next
instruction is skipped. Does not affect the contents of
the accumulator or the working register.

Bytes: 3
T-States: 14 (11)

Flag Bits Affected:
z
SK
LO--0
L1=-0

Example:
MWV A 02H
MVI V,06H
OFFAW 10H
RET :Skip this instruction if bit 1 of

Jocation 0810H is not set.

OFFAX rpa

Skip next instruction if off-test memory addressed by
register pair with A is zero.

(A} AND ({rpa)). SK/Z

Instruction Code: 70D({9-F)H

NEC

Section 12
Instruction Set

Performs & logical AND of the contents of the memory
location that is addressed by register pairrpa (BC, DE,
HL, DE+, HL+, DE—, or HL—), designated by As-Ap
{1-7), with the accumulator. The next instruction is
skipped if the result is zero. Does not affect the
contents of the accumulator or the memory.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
Z
SK
LO—0
L1=0

Example:
LXI D,0FO00H
MVI A.B0H
OFFAX D
RET ;This instruction skipped if bit

;7 of location FOOOH is not set.

OFF1 A,byte

Skip next instruction if off-test immediate data byte
with A is zero.

{A) AND byte, SK/Z

T
byte

Instruction Code: 57H, byte

Performs a logical AND with the accumulator and the
immediate data byte. If the result is zero, the next
instruction is skipped. Does not affect the contents of
the accumulator.

Bytes: 2
T-States:; 7 (7)

Flag Bits Affected:
Z
5K
LO+0
L1—0
Exampie:

OFF|
RET

A20H
:3Skip this instruction if bit 5 of
:the accumulator is not set.

OFFI r,byte

Skip next instruction if off-test immediate data hyte
with register js zero.

(r) AND byte, SK/Z

1
byte

Instruction Code: 745(8-F}H, byte

Performs a logical AND with the immediate data byte
and the contents of registerr (V, A, B, C, D, E, H,or L)
designated by Ra-Rg (0-7). If the result is zero, the next
instruction wili be skipped. Does not affect the contents
of the register.

Bytes: 3
T-States: 11 (11)

Flag Bits Affected:
b4
SK
LO*-0
L1=0
Example:

QOFFI
RET

D,20H
;This instruction is skipped it
bit § in register D is not set.

OFFI sr2,byte

Skip next instruction if off-test immediate data byte
with special register is zero.

(sr2) AND byte, SK/Z

I
byte

Instruction Code:
645(8-B, D-F)H, byte
6403(8, 9, B, D)H, byte

12-45

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Performs alogical AND of the immediate data byte with
the contents of special register sr2 (PA, PB, PC, PD, PF,
MKH, MKL, ANM, SMH, EOM, or TMM) designated by
S3-5g {0-3, 5-8, B, D}. If the result is zero, the next
instruction is skipped. Does not affect the contents of
the register.

Bytes: 3
T-States: 14 (11)

Fiag Bits Atffected:
Z
SK
LO+—0
L1+0
Example:

OFFI
RET

PD,20H
;Skip this instruction it bit 5 of
port O is not set.

Example:
Mvi V,0FH
OFFIW 10H,20H
RET :Skip this instruction if bit 5 of
Jlocation OF10H is not set.
ONA A r

Skip next instruction if on-test register with A is not
zero.

(A) AND (r), SK/NZ

OFFIW wa,byte

Skip next instruction if off-test immediate data byte
with working register is zero.

((V) * wa) AND byte, SK/Z

T T T T
offset

T
byte

Instruction Code: 55H, offset, data

Pertorms a logical AND of the immediate data byte with
the contents of the working register addressed by the
V-register (8 high-order address bits) and the offset (8
low-order address bits). If the result is zero, the next
instruction is skipped. Does not affect the contents of
the working register.

Bytes: 3
T-States: 13 {10)

Fiag Bits Affected:
Z
SK
Lo+—0
L1+—0

12-46

Instruction Code: 60C(8-FiH

Performs a logicai AND between the contents of the
accumuiator and the contents of reqister r (V, A, B, G,
D, E, H, or L), designated by Rs-Rq {0-7). If the result is
not zero, the next instruction is skipped. Does not
affect the contents of the accumutater or the register.

Bytes: 2
T-States: 8 (8)

Fiag Bits Affected:
z
SK
LO=D
Lt1+=0
Example:

ONA AC
RET

:AND A with C.
‘This instruction is skipped if
;the result is not zero,

ONAW wa

Skip next instruction if on-test working register with A
is nat zero.

(A) AND ((V) * wa), SK/NZ

1 I T

1
offset

Instruction Code: 74C8H, offset

NEC

Section 12
Iinstruction Set

Performs a logical AND between the contents of a
working register to be addressed by the V-register (8-
bit high-order address) and the offset (8-bit low order
address) with the accurnulator. If the result is not zero,
the next instruction is skipped. Does not affect the
contents of the accumulator or the working register.

Bytes: 3
T-States: 14 (11)

Fiag Bits Affected:
Z
SK
LO =0
L1+-0

Example:
MVI AOFFH
MVI V,0FH
ONAW 10H
RET ;Skip this instruction if any bit
;of working register location
;0F10H is set.

ONAX rpa

Skip next instruction if off-test memory addressed by
register pair with A is not zero.

(A) AND ((rpa)}, SK/NZ

Instruction Code: 70C(9-F)H

Performs a logital AND between the contents of
memory addressed by register pair rpa (BG, DE, HL,
DE+, HL+, DE—, or HL—), designated by Ax-Ag (1-7),
and the accumulator. The next instruction is skipped if
the result is not zero. Does not affect the contents of
memory or the accumulator.

Bytes: 2
T-States: 11 (8)
Flag Bits Aftected:

Z

SK

100

L1+—0

Example:
MVI A, 80H
ONAX D
RET ;This instruction skipped if bit
;7 of the memory location
;pointed to by register D is set.
ONI A,byte

Skip next instruction if on-test immediate data byte
with A is not zero.

(A) AND byte, SK/NZ

T
byte

Instruction Code: 47H, byte

Performs a logical AND with the accumulator and the
immediate data byte. [f the result is not zero, the next
instruction is skipped. Does not affect the contents of
the accumulator.

Bytes: 2
T-States: 7 (7)
Flag Bits Atfected:

Z
SK
Lg=0
L1190
Example:
ON| A 20H ;AND 20H with the
;accumulator.
RET ;8kip this instruction if the
;result is not zero,
ONI r,byte

Skip next instruction if on-test immediate data byte
with register is not zero.

(r) AND byte, SK/NZ

1
byte

Instruction Code; 744(8-F)H, byte

12-47

4PD7810/11, 78610H/11H,
78C10/C11/C14

NEC

Performs a logical AND with the immediate data byte
and the contents of registerr (V,A,B,C,. D, E,H, or L}
designated by Ro-Rg (0-7). If the resultis not zero, the
next instruction will be skipped. Does not affect the
contents of the register.

Bytes: 3
T-States: 11 (11)

Flag Bits Affected:
Z
SK
LO-—0
L1-—0

Example:
ONI D.20H
RET ;Skip this instruction if bit 5 of

;register D is set.

ONI sr2,byte

Skip next instruction if on-test immediate data byte
with special register is not zero.

(sr2) AND byte, SK/NZ

T
byte

{nstruction Code:
644(8-8, D-F)H, byte
64C(8, 9, B, D)H, byte

Performs logical AND of the immediate data byte with
the contents of special register sr2 {(PA, P8, PC, PD, PF,
MKH, MKL, ANM, SMH, EOM, or TMM} designated by
53-8y {0-3, 5-9, B, D). If the result is not zero, skip the
next instruction. Does not atfect the contents of the
register.

Bytes: 3
T-States: 14 {11)

Flag Bits Affected:
Z
SK
LO+—20
L1-—0

12-48

Example:
ONI PD,20H
RET ;Skip this instruction if bit 5 of
;port D is set.
ONIW wa,byte

Skip next instruction if on-test immediate data byte
with working register is not zero.

((V) = wa} AND byte, SK/NZ

T T T T
offset

"
byte

Instruction Code: 45H, offset, byte

Performs a logical AND with the immediate data byte
and the contents of the working register addressed by
the V-register (8 high-order address bits) and the offset
(8 low-order address bits). If the result is not zero, the
next instruction is skipped. Does not affect the con-
tents of the working register.

Bytes: 3
T-States: 13 {10)

Ftag Bits Affected:
z
SK
Lo-—4q
L1290

Example: ;
MVI V,0FH :
ONIW 10H.20H
RET :Skip this instruction if bit § of

;the working register location
JOF10H is set.

NI

Instruction Set

ORA A
OR A with register.
(A) =~ (A) OR (r)

1 0 0 1 1 Rs Ry Rg

Instruction Code: 609(8-F)H

Performs a logical OR between the contents of the
accumulator and the contents of registerr (V, A, B, C,
D, E, H, or L), designated by R»-Rg (0-7}. Stores the
result in the accumulator.

Bytes: 2
T-States: 8 (8)

Fiag Bits Affected:
Z
SK+0
LO—C
L1-—0

Example:

ORA AC ;OR C with A

Example:

ORA C.A ;OR A with C.

ORAW wa
OR working register with A,
{A) ~ (A) OR ({V) * wa)

ORA A
OR register with A,
{r) = (r} CR (A)

0 0 0 1 1 Ra Ry Ro

Instruction Code: 601(8-F)H

Performs a logical OR of the contents of the accumu-
lator with the contents of registerr (V, A, B, C, D, E, H,
orl), designated by Ro-Rg {0-7}. Stores the result in the
designated register.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
z
SK=+0
LO+—0
L1+0

T
offset

Instruction Code: 7498H, ofiset

Performs a logical OR of the contents of a working
register to be addressed by the V-register (8-bit high-
order address) and the offset (8-bit low-order address)
with the accumulator. Stores the result in the
accumufator.

Bytes: 3
T-States: 14 (11)

Flag Bits Affected:
Z
SK+—0
LoO+0
L1290

Exampie:
MV V.C0H
ORAW 10H ;OR the working register

;0010H with A.

ORAX rpa
OR memory addressed by register pair with A.
(A} =~ (A) OR {{rpa))

1 0 0 1|1 A A Ag

Instruction Code; 709(8-F)H

Performs a logicat OR between the contents of
memory addressed by register pair rpa (BC, DE, HL,
DE+, HL+, DE—, or HL—), designated by As-Ag (1-7),
with the accumulator. The result is stored in the
accumulator.

12-49

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
Z
SK+—0
LO+—0
L1+—0

Example:
ORAX D ;OR memory pointed to by DE

;:with the accumulator.

ORI A,byte
OR immediate data byte with A.
{(A) =~ (A) OR byte

1] I

T
byte

Instruction Code: 17H, byte

Performs a logical OR with the accumulator and the
immediate data byte. The result is stored in the
accumulator.

Bytes: 2
T-States: 7 (7)

Flag Bits Affected:
b4
SK+0
LO+—0
i1+0
Example:
ORI A20H ;OR 20H with the

;accumulator.

Instruction Code: 741(8-F)H, byte

Performs a logical OR with the immediate data byte
and the contents of registerr (V. A, B, C, D, E, H, or L),
designated by Ry-Rg (0-7). The result is stared in the
designated register.

Bytes: 3
T-States: 11 {11)

Flag Bits Affected:
4
SK~—0
Lo-~—0
L1120

Example:

ORI D,20H ;OR 20H with D.

ORI sr2,byte
OR immediate data byte with special register.
(sr2) = (sr2) OR byte

ORI r,byte
OR immediate data byte with register.
{r) = {r) OR byte

T
byte

Instruction Code:
641(8-8, D-F)H, byte
649(8, 9, B, D)H, byte

Performs a logical OR of the immediate data byte with
the contents of special register sr2 (PA, PB, PC, PD, PF,
MKH, MKL, ANM, SMH, EOM, or TMM) designated by
53-8g (0-3, 5-9, B, D). The result is stored in the
designated special register.

Bytes: 3
T-States: 20 (11)

Flag Bits Affected:
Z
SK=20
LO+Q
L1i+0
Example:

ORI PD,20H ;Do alogical OR with port D
;and 20H. This sets bit PDs.

f oL rmen L e .

NEC

Section 12
Instruction Set

QORIW wa,byte
CR immediate data byte with working register.
((V) = wa) ~— ((V) *wa) OR byte

T T | T
offsat

T
byte

Instruction Code: 15H, offset, byte

Performs a legical OR between the immediate daia
byte and the contents of the working register addressed
by the V-register (8 high-order address bits) and the
offset (8 low-order address bits). Theresultis storedin
the working register.

Bytes: 3
T-States: 19 (10}

Flag Bits Affected:
Z
SK+—0
LO=-0Q
t1+0

Example:
MVI V,0FFH
ORIW 10H,20H ;OR 2CH with the working
register at (FF10H).

PGP rp1

Pop register pair off stack.

(rp1L) == ((SP)), (rp1H)=—((SP}+1), (SP)=—(SP)+2
7 0

1 I 1 | I I
1 0 1 0 0 Qo Q4 Qo

[nstruction Code; A{D-4)H

The top two bytes of the memory stack are popped inte
register pairrpi (VA, BC, DE, HL, or EA) as designated
by Q5-Qq (0-4). Then the stack pointer is incremented
twice.

Bytes: 1

T-States: 10 {4)

Flag Bits Affected:
SK+—0
LO0—0
L1+0

Example:
POP H :Get 16-bit value from top of

stack into HL. SP +— SP + 2.

PUSH rp1

Push register pair on stack.

((SP) — 1) == rp1H, ((SP})—2) ~ rplL,
(SP)+— (8P)—2

7 0
{ 1 I { 1 [
1 0 1 1 0 Q Qi Qo

Instruction Code: B(0-4)H

The 18-bit value of register pairrp1 (VA, BC, DE, HL, or
EA), designated by Q»-Qg (0-4), is pushed into the top
two bytes of the stack. Then the stack pointer is
decremented by 2 to pointto the next available location.

Bytes: 1
T-States: 13 (4)

Flag Bits Affected:
SK-—0
Lo+—a0
L1—0

Example:
PUSH H :Save 16-bit value of HL on -

;top of stack. SP — SP — 2.

RET
Return trom subroutine.
{PCL) ~— {{8P)}, (PCH}*((&P)+1), {(8P)+—(SP)+2

1 0 1 1 1 0 0 0

Instructicn Code: B8H

The top two bytes of the stack are removed from the
stack and loaded into the program counter and the SP
is incremented by 2.

Bytes: 1
T-States: 10 (4)

12-51

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Flag Bits Affected:
SK+0
Lo~—0
L1+—0

Example:

RET ;Return from subroutine.

RETI
Return from interrupt.

{PCL) *~ ({SP)), {PCH) =~ ({SP}+ 1}, (PSW) — ((SP)
+2}, (SP) ~— (SP)+3

0 1 1 0 0 0 1 0

Instruction Code: 62H

The top two bytes of the stack are removed from the
stack and placed into the program counter. The next
byte is popped into the PSW and the SP is incremented
by 3.
Bytes: 1
T-States: 13 (4)
Flag Bits Affected:

SK=0

LO+0

L1+-0
Example:

RETI ;Return from interrupt.

Flag Bits Affected:
SK 1
LO~—Q
Li+o0

Example:
RETS :Return from subroutine and

;skip next instruction,

RLD
Rotate left digit,

(Ag-Ag) =~ ((HL7-HL4)), ((HL7-HL4)) == ((HL5-HL)),
{(HL3-HLg)) =~ (Az-Ag)

RETS

Return from subroutine and skip next instruction,
{PCL) ~{(SP)), {PCH)*—({SP)+1), (SP)—(SP}+2
7 0
1 0 1 1 1 0 0 1

Instruction Code: B9H

The top two bytes of the stack are popped into the
program counter and the SPis incremented by 2. Then
the instruction pointed to by the PC is skipped.

Bytes: 1
T-States: 10 (4)

12-52

instruction Code: 4838H

Rotates the four high bits in memory addressed by HL
to the four low bits in the accumulator. Rotates the four
low bits in memory to the high four bits in memary.
Rotates left the low four bits in the accumulatorinto the
four low bits of memory addressed by HL. The four
high bits in the accumulator are not affected by this
instruction.

Accumulator Byte Painted to by HL in Memory

Bytes: 2
T-States: 17 (8)
Flag Bits Atfected:
SK+~0
L0=—20
L1+—20Q

NEC

Section 12
Instruction Set

Example;
RLD

{A) {(HL)
|1 o1 0I1 11 nl

Before ALD |1 g1 U[GT D1|

After ALD I1ﬂ10]1010| I111ﬂl0101]

RLL r2
Rotate register left one through carry.
(Fm+1*~ (2}, (r2p) == {CY), (CY) * (r2y)

Instruction Code: 483(5-7)H

Performs a 1-bit ieft rotate through carry with the
contents of registerr2 (A, B, or C), designated by Ry-Rg
{1-3).

2

% cY H? D]‘_I

——

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
SK+—0
LOC+—0
L1+—20C
CcY

Example:
RLL C

Instruction Code: 483(1-3)H

This instruction does a 1-bit right rotate through carry
with the contents of register r2 (A, B, or C}), designated
by Ry-Rp {1-3).

r2

.{ cY]’[? —— Ul_-

Bytes: 2
T-States: 8§ (8)

Flag Bits Affected:
SK+0
LO+0
L1+0
CY

Example;

RLR C ;Rotate right C through carry.

RRD
Rotate right digit.

((HL7-HL4)) *— (As-Ag), ((HLs-HLg)) “— ((HL7-Hig)),
(Az-Ag) <~ ((HLa-HLg))

RLR r2
Rotate register right one through carry.

(12m—1) = {r2m). {r27} == (CY), (CY) *~ (r2p)

Instruction Code: 4838H

Rotates right the low four bits in the accumulator into
the high four bits of memory addressed by HL, and
rotates the four high bits in memory tc the low four bits
in memory. Rotates the four low bits in memory to the
four low bits in the accumuiator. The four high bits in
the accumulator are not atfected by this instruction.

(A) [{any

1 1 11—

7 4 1] 7 o

12-53

yPDT810/11, 7810H/11H, C
78C10/C11/C14 N E

Bytes: 2 7
1 T T T T T
T-States: 17 (8) Q 1 1 0 0 Y] 0
Flag Bits Affected:
SK = 0 T T | T T |
0 1 1 1 0 R Ry Ao
LO+—D :
L1+—0 Instruction Code: 607(0-7)H
Example: Subtracts the contents of the accumulator, including
RRD the carry flag, from the contents of register r (V, A, B, C,
D, E, H, orL), designated by Ry-Rg (0-7), and stores the
(A) {(HL)} result in the designated register.
HBetare RRD I0101 0110] [0111[1110] Bytes:2
T-States: 8 (8)
After RRD |o 101 11 11 o] [o 1t o[o 11 1| Fiag Bits Affected:
z
SK+~0
HC
SBB A,r Lg+0
Subtract register from A with borrow. L1+o
cY
(A) = (A) — () — (CY)
7 0 Example: _
I T T 1 T T SBB C.A ;Subtract A from C with carry.
0 1 1 0 0 0 0 0
T T T T T T SBBW wa
1 1 1 1 0 Rz Ry Ro Subtract waorking register trom A with barrow.
Instruction Code: 60F(0-7}H (A) *= (A} — ({V) = wa) — (CY}
Subtracts the contents of registerr (V, A, B, C, D, E, H, ? T T T T T T g
orlL), designated by Ro-Rg (0-7), from the accumulator, 0 1 1 1 0° 1 0
including the carry flag, and stores the result in the
accumuiator. T T T T T T
1 1 1 1 0 0 0 0
Bytes: 2
T-States: 8 (B) 1 T T T T T 1
offset
Flag Bits Affected:
SK o Instruction Code: 74F0H, offset
HG Subtracts the CY bit and the contents of a working
LO =0 register to be addressed by the V-register (8-bit high-
L1+0 order address) and the offset {8-bit low-order address)
CY from the accumulator and stores the result in the
accumulator.
Example:
SB8 AC :Subtract C from A with Bytes: 3
:borrow. T-States: 14 (11)
: Flag Bits Affected:
SBB 1A 5
Subtract A from register with borrow. ﬁ'ém 0
{r) ~— {r) — {A) — (CY) LO~0
E1+0
cY

12-54

N

Seclion 12
Instruction Set

Example:
MVI V,0FFH
SBBW 10H ;Subtract working register
;0FF10H from accumulator.
SBBX rpa

Subtract memaory addressed by register pair from A
with borrow.

(A) == (A) — ({rpa)) — (CY)}

Instruction Code: 70F(1-7)H

Subtracts the contents of the memory location
addressed by register pairrpa (BC, DE, HL, DE+, HL+,
DE—, or HL—), designated by Ao-Ag (1-7), and the CY
flag from the accumulator. The resuit is stored in the
accumulator.

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
z
SK—0
HC
Lo+0
L1+-0
cY

Exampie:
SBB8X D ;Subtract memory pointed to
1oy DE and the CY flag from

-accumulator.

SBCD word
Store register pair BC direct.
(word) < {C), (word + 1) ~ (B)

T T T T 1
low address

T T T T T
high address

Instruction Code: 701EH, low, high

The contents of C are stored at location waord, and the
contents of B are stored at location word + 1.

Byies: 4
T-States: 20 {14)

Flag Bits Affected:
SK=0
Lo+—0
L1+0

Example:

SBCD 1000H ;C is stored at 1000H and B

;at 1001H.

SBI A byte
Subtract immediate data byte from A with borrow.
(A} == (A) ~ byte — (CY)

T
byte

Instruction Code: 76H, byte

Subtracts the immediate data byte, including the carry,
from the contents of the accumulator and stores the
result in the accumulator.

Bytes: 2
T-States: 7 {7)

Flag Bits Affected:
Z
SK+0
HC
LO+0
L1+0
cY

Example:
SBt A20H ;Subtract 20H plus carry

from A.

SBI r,byte

Subtract immediate data byte from register with
borrow.

(r} = (1) — byte — {CY)

12-55

uPD7810/11, T810H/11H,
78C10/C11/C14

NEC

T
byte

instruction Code: 747(0-7)H, byte

Subtracts the immediate data byte plus carry from the
contents of register r (V, A, B, C, D, € H, or L),
designated by Ra-Rg (0-7). The result is stored in the
register.

Bytes: 3
T-States: 11 {11)

Flag Bits Affected:
Z
SK+—0
HC
LO+Q
L1+40
cY

Example:
SBI bD,20H ‘Subtract 20H plus carry

from D.

SBI sr2,byte

Subtract immediate data byte from special register
with borrow.

(sr2) = (sr2) — byte — (CY)

instruction Code:
B647(0-3, 5-7)H, byte
B64F(0, 1, 3, 5)H, byte

Subtracts the immediate data byte plus carry from the
contents of special register sr2 (PA, PB, PC, PD, PF,
MKH, MKL., ANM, SMH, EOM, or TMM). The register is
designated by S3-Sg (0-3,5-8, B, D). Theresultis stored
in the designated special register.

12-56

Bytes: 3
T-States: 20 (11}

Flag Bits Affected:
Z
SK—20
HC
LO—0
L1 0
cY

Example:
SBI PD,20H ;Subtract 20H plus carry from

port .

SDED word
Store register pair DE direct.
(word) *— (E}, {word + 1} ~— (D)

I I i I { T

T
low address

T T T T]
high address

Instruction Code: 702EH, low, high

The contents of E are stored in memory at focation
word, and the contents ot D are stored in memary at
location word + 1.

Bytes: 4
T-States: 20 {14}

Flag Bits Affected:
SK=—0
Lo-—20
£1~—0C

Example;

SDED 100CH :E is stored at 1000H and D at

;1001H.

SHLD word
Store register pair HL direct.
(word) = (L), (word + 1) ~— (H)

Sccetion 12
Instruction Set

I I I | { I

T
low address

SKIT irf
Skip next instruction if interrupt flag is set.

skipifirt = 1;irf is reset.

I T T T 1
high address

Instruction Code: 703EH, low, high

The contents of L are stored in memory at location
word, and the contents of H are stored in memory at
lecation word + 1.

Bytes: 4
T-States: 20 (14)

Fiag Bits Affected:
SK+—0
LG+ 0
L1+—0

Exampie:

SHLD 1000H ;L is stored at 1000H and H

;at 1001H.

SK f
Skip next instruction if flag is set.
skip if f =1

Instruction Code: 480(A-CiH

Skips the next instruction if flag f (CY, HC, or 2),
designated by Fs-Fg (2-4), is set to 1.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
SK
Lo—20
L1+0

Example:

SK Z
RET

Skip if zero.
‘This instruction skipped if Z flag set.

Instruction Code:
484(0-C)H,
485({0-4)H

Skips the next instruction if interrupt request flag irf
(INTENML, INTFTO, INTFT1, INTF1, INTF2, INTFEQ,
INTFET, INTFEIN, INTFAD, INTFSR, INTFST, ER, OV,
AN4, ANG, ANG, AN7, or SB) as designated by I4-Iy
{0-C, 10-14), is set to 1. Reset the checked interrupt
request flag. {f the tested flag is 0, the next instruction is
executed.

Bytes: 2
T-States: 8 (8)
Flag Bits Affected:

SK
Lo-—0
L1+—0
Example:
SKIT AN4 ;Skip and reset interrupt flag
1AN4 if analog 4 flag is set (1).
. RET ;This instruction skipped if
;AN4 flag set.
SKN {
Skip next instruction if flag is not set.
skipiff=40
7

Instruction Code: 481(A-C)H

Skips the next instruction if flag f (CY, HC, or 2)
designated by Fo-Fy {2-4) is reset to O.

Bytes: 2
T-States: 8 (8)

12-567

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Flag Bits Affected:
SK
Lo=0
L1+0
Example:

SKN Z
RET

Skip if not zero.
; This instruction skipped if Z
iflag cleared.

SKNIT irf
Skip next instruction if interrupt flag is not set.

skip if irf == 0; irf is reset.

Instruction Code;
486(0-C)H,
487 (0-4)H

Skips the next instruction if interrupt request flag irf
{INTFNMI, INTFTO, INTFT1, INTF1, INTF2, INTFEOQ,
INTFET, INTFEIN, INTFAD, INTFSR, INTFST, ER, OV,
AN4, ANS, ANG, AN7, or SB) as designated by l4-lg
(0-C, 10-14}, is reset to 0. If the flag is set to 1, it will be
reset to 0 and not skip the next instruction.

Bytes: 2
T-States: 8 (8)
Flag Bits Affected:

SK
L0+ 0
L1+ 0
Example:
SKNIT AN4 :Skip if analog 4 interrupt flag
;AN4 is reset (0).
RET ;This instruction skipped if
:AN4 is reset.
SLLr2

Shift register left one through carry.
(F2m+1) = (2m), (r2p) == 0, (CY} *~ (r2y)

Instruction Code: 482 (5-7}H
12-58

Performs a logical left shift through carry with the
contents of registerr2 (A, B, or C) designated by Rq-Rg
{1-3). Reqgister bit 0 is loaded with 0.

r2

ICY HT —— {i‘_a

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
SK=-0
Lo 0
L1+0
CcY

Example:

SLL C ;Shift left C through carry.

SLLC r2
Shift register left one; skip next instruction if carry.
(F2m+1) *= (r2m). (r20) = 0, (CY) *~ (r2;). SK/C

Instruction Code; 480(5-7)H

Performs a logical left shift through carry with the
contents of register r2 (A, B, or C), designated by Ry-Ry
(1-3). If a carry is generated, the next instruction is
skipped.

r2

ey 7 0
L —— [

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
SK
La+—20
L1+—0
CcY
Exampie:

SLLC C
RET

;Shift left C through carry.
:Skip this instruction if
carry = 1is generated.

NEC

Section 12
Instruction Set

SLR r2
Shitt register right one through carry.
(r2m—1) "= (2m), (r27) == 0, (CY) *— (+r2g)

instruction Code: 482(1-3)H

Performs a logical right shift through carry with the
contents of register r2 (A, B, or C}, designated by R,-Rg
(1-3). Register bit 7 is loaded with zero.

r2

7
0’*" —_—

OI—_-.‘ICY I

Bytes: 2
T-States: B (8)

Flag Bits Affected:
SK—10
Lo-—20
L1-0
CY

Example:

SLR C :Rotate right C through carry.

7 r2 0 CyY

°—| 1]

—————lipe

Bytes: 2

"T-States: 8 (8)

Flag Bits Atfected:
SK
Lo+—0
Li+40
CY
Example:

SLRC c
RET

;Rotate right C through carry.
;Skip this instruction if carry
true.

SLRC r2
Shift register right one; skip next instruction if carry.

(r2m—1) *~ (r2m), (r27) == 0, {CY) *~ (r2g), SK/C

Instruction Code: 480(1-3}H

Performs a logical right shift through carry with the
contents of registerr2 (A, B, or C), designated by R1-Rp
{1-3). If a carry is generated, the next instruction is
skipped.

SOFTI

Software interrupt.

(PC) =— (PC} + 1, (8P—1) — (PSW), (SP-2) —
(PCH), {(8P-3) =— {PCL}, {SP) =~ {SP)-3, (PC) ~—
0060H

7 0
| T T i T T
0 1 1 1 0 0 1

Instruction Code: 72H

Performs a software interrupt. Stores the PSW and
program counter on the stack. It then vectors to the
address at location 60H in memaory.

Bytes: 1
T-States: 16 (4)

Flag Bits Affected:
SK+—0
Ld+—20
L1—0

Example:
SOFTI ;Vector to interrupt routine at

:location 0OGOH.

12-59

uPD7810/11, T810H/11H.

78C10/C1 /G 14 IS F WA~
SSPD word Flag Bits Affected:
Store stack pointer direct. Eg :{?
{word) +— (SPL), {word + 1) = (S5PH) L1+~—0

7 T , ' |] | 0 Example:

0 1 1 1 0 0 0 0 MVI V,00H

STAW 10H ;Store the accumulator in
| T T T T T ;working register 0010H.
0 0 0 4] 1 1 1 0
STAX rpa2

T H 1 T
low address

1 ; T T T
high address

Instruction Code: 700EH, low, high

The contents of SPL are stored in memory at [ocation
word, and SPH is stored in memory at location word
+1.

Bytes: 1
T-States: 20 (14)

Flag Bits Affected:
SK+—0
LO—0
L1+0

Example:

SSPD 1000H :SPL is stored at 1000H ang

/SPH at 1001H.

STAW wa
‘Store A to working register.
((V)* wa) = (A)

0 1 1 o 0 o 1 1

T I I 1 I §

1
offset

Instruction Code: 63H, offset

Stores the contents of the accumulater in the working
register as addressed by the V-register (8-bit high-
order address} and the offset (B-bit low-order address).

Bytes: 2
T-States: 10 {7)

12-60

Store A to memory addressed by register pair.
{{rpa2)) == {A)

instruction Code:
3(9-F)H, byte
B(B-F)H, byte

Stores the contents of the accumulator in memory
addressed by register pair rpa2 (BC, DE, HL, DE+,
HL+, DE~, HL—, DE+byte, HL+A, HL+B, HL+EA, or
HL+byte), as designated by Ag-Ag (1-7, B-F).

H the autoincrement or decrement is designated, the
contents of register pair (OE or HL) are automatically
incremented or decremented by 1 after storing the
accumulator.

If rpa2 is designated with DE+byte or HL+byte, the
memory is addressed by the sum of the contents of DE
or Hi. and the data byte of the instruction. Similarly the
contents of HL. and that of register A, B, or EA are
added if HLFA, HL+B, or HL+EA is designated.

The number of bytes and T-states change with the
designation of rpaz:

B, O, H,
0+ Ht, H+A, H+8.
rpa - H- D+byte H+EA H+byte
Bytes 1 2 1 2
States T4 13(7) 13N 13(0)
Flag Bits Atfected:
SK+-0
LO*0
L1+ 0

NEC

Section 12
Instruction Set

Example: To store A at memory locations 1000H and
1011H.

LXi D,1000H ;(DE) -— 1000H
STAX D+ y(1000H) ~— (A),
(DE) — 1001H
STAX D+10H ;{1011H) ~— (A),
{(DE) = 1001H
STC
Set carry.
(CY) ~— 1
7 0
T T T T T T
0 1 0 0 1 0 0 0

Instruction Code: 4828H
Sets the carry flag to 1.
Bytes: 2

T-States: 8 (8)

Flag Bits Affected:
SK=—20
LC+0
L1-0
CY =1

Example:
STC

Stores the low-arder byte (EAL) of the extended
accumulator in memory addressed by register pair
rpad (DE, HL, DE++, HL++, DE+byte, HL+A, HL+B,
HL+EA, or HL+byte), as designated by C4-Cq (2-5,
8-F), and EAH in memory addressed by rpa3 + 1.

if DE+byte or Hi+byte is designated as rpa3, the
memory is addressed by the sum of the contenis of the
register pair and the data byte. If the destination
memory is addressed by HL+A, HL+B, or HL+EA, it is
addressed by the sum of the contents of HL and
register (A, B, or EA).

The number of bytes and states change with the desig-
ration of rpa3:

STEAX rpa3
Store EA to memory addressed by register pair.
- ((rpad)) == (EAL), ((rpa3) + 1) “— (EAH)

1 0 0 1 Cs C, Gy Co

B, H, 0++, H+A, H+8,

rgad H++ b +byle H+EA H+byte
Bytes 2 3 2 3
States 14(8) 20(11) 20 {11} 20(1)
Flag Bits Affected:

SK+—0

LO+—20

L1+0

Example: To store EAL at 100H and 112H and EAH at
101H and 113H.

Lxl! D,100H
STEAX D4+

:(DE) *— 100H
{(100H) ~— (EAL),
;(101H) ~— (EAH),
(DE) ~— (102)H
{(112H) (EAL),
J(113H) — (EAH),
:(DE) — 102H

STEAX D+1CH

STOP
Stop oscillator (78C10, 78C11, and 78C14 only).

Stop oscillator

T
byte

tnstruction Code: 489(2-5, B-F)H, byte

instruction Code: 48BBH

12-61

4PD7810/11, 7810H/11H,
78C10/C11/C14

NEC

The oscillator stops, the CPU stops executing
instructions, and all on-chip peripherais stop. Only
internal RAM retains its values and only the NM! and
RESET inputs are recognized.

Bytes: 2
T-States: 12 (8)
Flag Bits Affected: Undefined

Example:
STOP

SUB Ar
Subtraci register from A.
(A) == (A) —(n)

Instruction Code: 60E(C-7)H

Subtracts the contents of registerr (V, A, 8,C, D, E, H,
or L}, designated by Ro-Rq (0-7), from the accumulator
and leaves the result in the accumutator.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
z
SK+—0
HC
LO+—0
L1420
Cy

Example:

sSuB A C Subtract C from A.

SUB r,A
Subtract A from register.
(r) = {) — (A)

Instruction Code: 606{0-7)H

12-62

Subtracts the contents of the accumulator from the
contents of registerr (V, A, B, C, D, £, H, or L) desig-
nated by Rs-Rg {0-7). Leaves the result in the
designated register.

Bytes:‘ 2
T-States: 8 (8)

Flag Bits Affected:
Z
SK=0
HC
LO+—0
L1—40
CY

Example;
MOV AC
suUB CA ‘G — A =0 which clears CY

;and HC. Set the Z flag.

SUBNB A,r

Subtract register from A; skip next instruction if A
greater than or equai to register.

(A) *= (A) — (r), SK/(A)={r)

Instruction Code: 608(0-7)H

Subtracts the contents of registerr (V, A, B, C, D, E, H,
or L), designated by Ry-Rg (0-7), from the accumulator.
t eaves the result in the accumuiator. If no borrow is
generated, {A) = (r}, the next instruction is skipped.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
2
SK
HC
LO+—0
Lt1+—o0
CcY

NI C

Wb kebb bl N

Instruction Set

Example:
SUBNB AD
MOV AC MOV instruction is skipped if
;no borrow is generated.
SUBNB r,A

Subtract A from register; skip next instruction if register
greater than or equal to A.

(r) == (1} = (A), SK/{r} = (A)

Instruction Code: 603{0-7)H

Subtracts the contents of the accumulator from the
contents of register r (V, A, B, C, D, E, H, or L),
designated by Ra-Rgp (0-7), and leaves the result in the
designated register. If no borrow is generated, (r) =
(A), the next instruction is skipped.

Bytes: 2
T-States: B (8)

Fiag Bits Afiected:
z
SK
HC
LO+—0
L1+-0
Cy
Example:

SUBNB L,A
Sul H,1

;Sequence subtracts A from ML,

SUUBNBW wa

Subtract working register from A; skip next instruction
if Ais greater than or equal to working register.

(A} "= (A) = {(V) » wa}, SK/{A) = ((V) * wa)

I 1 { I | I

I
offset

Instruction Code: 748B0H, offset

Subtracts the contents of a working register from the
accumulator, and stores the result in the accumulator.
If no borrow is generated, (A) = ((V) * wa}, the next
instruction is skipped. The working register is
addressed by the V-register (8 high-order address bits)
and the offset (8 low-order address bits).

Bytes: 3
T-States: 14 (11)
Flag Bits Affected:

Z
SK
HC
LO+—0
L1+0
(04 4
Example:
WORK EQU 0EOH ;WORK = 0EQH
LOCA EQU 0 LOCA=0Q
MVI V.WORK WV = 0EOH
SUBNBW LOCA ;A = A — (OECOOH)
RET ;This instruction is
;skipped if (A)
= (EQOOH).
SUBNBX rpa

Subtract memory addressed by register pair from A:
skip next instruction if A is greater than or equal to
memory.

(A) *= {A) — ((rpa)), SK/(A)= ((rpa))

instruction Code: 708(1-7)H

Subtracts the contents of memory from the accumu-
lator and stores the result in the accumulator. |f no
borrow is generated, (A) = ((rpa)), the next instruction
is skipped. Memory is addressed by register pair rpa
{BC, DE, HL, DE+, HL+, DE—, or HL—), designated by
Ag-Ag (1-7).

Bytes: 2
T-States: 11 (8)

12-63

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Flag Bits Affected:
4
SK
HC
LoD
L1—0
CcY

Example;
SUBNBX B :Subtract memory addressed

by BC from accumulator.

:This instruction is skipped if

J(A) = ((BC))

RET

SUBW wa
Subtract working register from A.
(A) == (A} —~ ({V) * wa)

I] I { 1 1]

1
offset

Instruction Code: 74EQH, offset

Subtracts the contents of a working register from the
accumulator and leaves the result in the accumulator,
The working register is addressed by the V-register (8
high-order address bits)” and offset (8 low-order
address bits).

Bytes: 3
T-States:; 14 (11)

Flag Bits Affected:
Z
SK—0
HC
LO+0
L1+~—0
CcY

Example:
MV V.80H
suBw 10H :Subtract the working register

:8010H from the accumulator.

12-64

SUBX rpa
Subtract memory addressed by register pair from A.
(A) — (A) ~ ((rpa))

Instruction Code: T0E(1-T)H

Subtracts the contents of memory from the accumula-
tor and leaves the result in the accumulator. The
memory is addressed by register pair rpa (BC, DE, HL,
DE+, HL+, DE—, or HL~), as designated by Az-Ag
(1-7).

Bytes: 2
T-States: 11 (8)

Flag Bits Affected:
Z
SK—0
HC
Lo+ 0
L1-—0
cY

Example:
SUBX D :Subtract memory pointed to

:by DE from the accumulator.

SUI A,byte
Subtract immediate data byte from A.
(A} *~ (A) — byte

i
byte

Instruction Code: 66HM, byte

Subtracts the immediate data byte from the accumu-
lator and leaves the result in the accumulator.

Bytes: 2
T-States: 7 ()

NEG

Seoerfror gy
Instruction Set

Fiag Bits Affected:
Z
SK*—0
HC
Lad+=0
L1=-0
cY
Example:
su A,20H :Subtract 20H from the

;accumulator.

SUI 7,byte
Subtract immediate data byte from register.
{r) = (r) — byte

L) 1 1 1 I 1

bylle

Instruction Code: 746(0-7)H, byte

Subtracts the immediate data byte from the contents of
registerr (V, A, B, C, D, E, H, orL) and ieaves the resuit
stored in the register. The register is designated by
R2-Rg (0-7).

Bytes: 3
T-States: 11 (11)

rlag Bits Affected:
zZ
SK=0
HC
LO~—0
L1—0
Cy

Example;

Sl D,20H ;Subtract 20H from register D.

SUIl sr2,byte
Subtract immediate data byte from special register.
(sr2) +— {sr2) — byte

Instruction Code:
646(0-3, 5-7)H, byte
B84E(0, 1, 3, 51H, byte

Subtracts the immediate data byte from the contents of
special register sr2 (PA, PB, PC, PD, PF, MKH, MKL,
ANM, SMH, EOM, or TMM). The register is designated
by S3-S¢ (0-3, 5-9, B, D). The result is stored in the
designated special register.

Bytes: 3
T-States: 20 (11)

Flag Bits Affected:
Z
SK+0
HC
L3—0
L1+—¢
cy
Example:

Sul PD,20H ;Subtract 20H from port D and
feave resuit in port D,

SUINB A,byte

Subtract immediate data byte from A; skip next
instruction if A is greater than or equal to data byte.

(A} =~ (A) — byte, SK/(A) = byte

i 1 I i] {

T
byte

Instruction Code: 36H, byte

12-65

|

uPD7810/11, 7810H/11H,
78C10/C11/C14

NEC

Subtracts the immediate data byte from the contents of
the accumulator and stores the result in the accumu-
lator. if no borrow is generated, (A) = byte, the next
instruction is skipped.

Bytes: 2
T-States: 7 (7)

Flag Bits Affected:
zZ
SK
HC
LO+~—0
L1+0
CY
Example:

SUINB
RET

A20H :Subtract 20H from A.
;Skip this instruction if no

;borrow is generated.

Example:
SUINB L,20H :Subtract 20H from L.
St H,1 :Subtract 1 from H if borrow

;from previous instruction.

SUINB sr2,byte

Subtract immediate data byte from special register;
skip next instruction if special register greater than or
equal to byte.

(sr2) ~— (sr2) — byte, SK/(sr2) = byte

SUINB r,byte

Subtract immediate data byte from register; skip next
instruction it register is greater than or equal
to byte.

(r) = (r) — byte, SK/{r) = byte

1 I I

|
byte

Instruction Code: 743(0-7)H, byte

Subtracts the immediate data byte from the contents of
registerr (V, A, B,C, D, E, H, or L), designated by Ra-Rp
(0-7). The result is stored in the register. 1f no borrow is
generated, (r) = byte, the next instruction is skipped.

Bytes: 3
T-States: 11 {11)

Flag Bits Atfected:
Z
SK
HC
L0+—0
L1+0
) 4

12-66

Instruction Code:
643(0-3, 5-7}H, byte
648(0, 1, 3, 5)H, byte

Subtracts the immediate data byte from the contents of
special register sr2 (PA, PB, PG, PD, PF, MKH, MKL,,
ANM, SMH, EOM, or TMM}, designated by S3-Sg (0-3,
5-9, B, D). Stores the result in the designated special
register. SKips the next instruction if no borrow is
generated: (sr2) = byte.

Bytes: 3

T-States: 20 {11)

Flag Bits Affected:
Z
SK
HC
Lo+—20
L1190
CcY
Example: -

SUINB
RET

PD,20H ;Subtract 20H from port D.
:Skip this instruction if no
;borrow is generated.

TABLE
Table look-up.
(C) = ((PC) + 3+ (A)), (B) =~ ({PC) + 3+ (A) +1)

Section 12
instruction Set

Instruction Code: 48A8H

Loads the contents of a table addressed by ((PC) + 3+
(A)) intothe C-registerand {{PC) +3 + (A} +1) into the
B-register.
Bytes: 2
T-States: 17 (8)
Flag Bits Affected:

SK=—10

L0—0o0

L1+0

Example: Table location depends on value in A.

Performs an exclusive-OR of the contents of the
accumulator with the contents of register r (V, A, B, C,
D, E, H, orL). The register is designated by Ry-Rp {0-7).
Stores the result in the accumulator.

Bytes: 2
T-States: 8 (8)

Flag Bits Affected:
2
SK~—40
LO~—0
L1+0

Example:

XRA AC ;Exclusive-OR C with A,

XRA r A
Exclusive-OR A with register,
(r) *— (r) XCR (A)

T 7 T T 1 T
PC Value] Label | Instruction l Comments 0 1 1 0 0 0 0
TEO: MW AD iLise of
Tz MV AT mewuen T B —
H . Jnstructions
PC — 2 SLL A :Shift accumulator left 1 0 0 0 1 0 RZ R‘l F‘0
PG TABLE ;BC +- tahle pddress
PC + 2 18 - P B Instruction Code: 601(0-7)H
PC + 3
PC + 4 FA=0 Performs an exclusive-OR between the contents of the
PC 4+ 5 = accumulator and the contents of registerr {V, A, B, C,
A = 1 D, E, H, or L). Register is designated by Rs-Rg (0-7).
PC+6 . Stores the result in the designated register.
PC +7
A =2 Bytes: 2
PC+8
Tabre - T-States: 8 (8)
in Memory .
Flag Bits Affected:
zZ
SK+0
LO+—0
L1 0
XRA A r Example:
A ' lusive- i .
Exclusive-OR register with A. XRA C. Exclusive-OR A with C
XRAW wa

(A) == (A} XOR {r)
7

Instruction Code: 609(0-7)H

Exclusive-OR working register with A.

12-67

HP 76!01 Iill, I.l [VI IL. In.jf;IL NN

78C10/C11/C14

NEC

(A) *— (A) XOR ((V) * wa)

I I i i I I

T
offset

Instruction Code: 7490H, offset

Performs an exclusive-OR between the contents of a
working register with the accumulator. Stores the
result in the accumulator. The working register is
addressed by the V-register (high-crder 8 bits of
address) and the offset (low-order 8 bits).

Bytes: 3
T-States: 14 (11)

Flag Bits Affected:
z
SK—0
Lo—20
L1+0
Example:
MVI V,OFFH
XRAW 10H :Exclusive-OR working
;register located at FF10H with
;the accumulator.

XRAX rpa

Exclusive-OR memory addressed by register pair
with A

(A) =~ (A) XOR ({rpa))

fnstruction Code: 709{1-7)H

Performs logical exclusive-OR between the contents
of memory that is addressed by register pair rpa {(BC,
DE, HL, DE+, HL.+, DE—, or HL-), designated by Az-Ag
{(1-7}, and the accumulator. The result is stored in the
accumulator,

Bytes: 2

T-States: 11 (8)

12-68

Flag Bits Affected:
Z
SK+—0
L0O—0
L1290

Example:
XRAX 0] :Exclusive-OR memory
;pointed to by DE with the

;accumulator.

XRI A,byte
Exclusive-OR immediate data byte with A.
(A) ~ (A} XOR byte

T
byte

instruction Code: 16H, byte

Perfarms an exclusive-OR with the accumulator and
the immediate data byte. The result is stored in the
accumulator.

Bytes: 2
T-States; 7 (7)

Flag Bits Affected:
z
SK+0
LO+—0
L1290

Example:
XRI A.BOH ;Complements bit 7 of

:accumulator.

XR1 r,byte
Exciusive-O8& immediate data byte with register.
{r) *— (r) XOR byte

T
byte

tnstruction Code: 741(0-7)H, byte

1N

section 12
Instruction Set

Performs an exclusive-OR with the immediate data
byte and the contents of registerr (V. A, B,C, D, £, H, or
L). designated by Ro-Rq (0-7). Theresultis stored in the
register.

Bytes: 3
T-States: 11 {11)

Flag Bits Affected:
Z
SK+0
L0+—0
L1+ 0

Example:
XRI D, 20H ;Compiements bit 5 of register D.

XRI sr2,byte
Exclusive-OR immediate data byte with special register.
(sr2) +— (sr2) XOR byte

Instruction Caode:
641(0-3, 5-7}H, byte
649(0, 1, 3, 5)H, byte

Performs an exclusive-OR of the immediate data byte
with the contents of special register sr2 (PA, PB, PC,
PD, PF, MKH, MKL, ANM, SMH, EOM, or TMM),
designated by S3-Sg (0-3, 5-9, B, D). The resultis stored
in the designated special register.

Bytes: 3
T-States: 20 (11)

Flag Bits Affected:
Z
SK~—4¢0
LO+0
Lt+0
Example:

XRI PD,0FFH ;Result is the complement of
;svalue in port D.

12-69

4PD7810/11, 7810H/11H, NEC
78C10/C11/C14

12-70

NEC

Appendix A

Alphabetical List of Instructions

Instruction Description Skip Condition

ACI A byte Add immediate data byte to A with carry.

ACI r.byte Add immediate data byte to register with carry.

ACI srg,byte Add immediate data byte to special register with carry.

ADC Ar Add register to A with carry.

ADC rA Add A to register with carry.

ADCW wa Add working register to A with carry.

ADCX rpa Add memory addressed by register pair to A with carry.

ADD Ar Add register to A.

ADD r.A Add A to register.

ADDNC A Add register to A and skip next instruction if no carry. SK/NC

ADDNC rA Add A to register and skip next instruction if no carry. SK/NC

ADDNCWwa Add working register to A and skip next instruction if SK/NC
no carry.

ADDNCX rpa Add memory addressed by register pair {0 A and skip next SK/NC
instruction if no carry.

ADDW wa Add working register to A.

ADDX rpa Add memory to A,

ADI A,byte Add immediate data byte to A.

ADI r,byte Add immediate data byte to register.

ADI sre,byte Add immediate data byte to special register.

ADINC A, byte Add immediate data byte to A and skip next SK/NC
instruction if no carry.

ADINC rbyte Add immediate data byte to register and skip next instruction SK/NC
if no carry.

ADINC sr2byte Add immediate data byte to special register and skip SK/NC
next instruction if no carry.

ANA Ar AND register with A,

ANA rA AND A with register.

ANAW wa AND working register with A.

ANAX rpa AND memory addressed by register pair with A.

ANI A byte AND immediate data byte with A.

ANI r.byte AND immediate data byte with register.

ANI sr2,byte AND immediate data byte with special register.

ANIW wa,byte AND immediate data byte with working register.

BIT bit,wa Bit test working register and skip next instruction if set. SK=1

BLOCK Block data transfer,

CALB Cail subroutine using BC indirect.

CALF word Call subroutine in fixed area.

CALL word Call subroutine direct,

CALT byte Call table address.

CcLC Clear carry.

DAA Decimal adjust A.

DADC EA,p3 Add contents of register pair to EA with carry.

DADD EAp3 Add register pair to EA.

DADDNC EA,rp3 Add register pair to EA and skip next instruction if no carry. SK/NC

4PD7810/11, 7810H/11H,

NEC

78C10/C11/C14

Instruction Description Skip Condition
DAN EA,rp3 AND register pair with EA.

DCR re Decrement register and skip next instruction if borrow. SK/B

DCRW wa Decrement working register and skip next instruction if borrow. SK/B

DCX EA Decrement EA.

DCX p Decrement register pair.

DEQ EA.rp3 Skip next instruction if register pair equals EA. SK/EQ

DGT EA,7p3
DI

Skip the next instruction if EA greater than register pair.
Disable interrupt.

SK/(EA) > (rp3)

DIv r2 Divide EA by register.

DLT EA,rp3 Skip next instruction if register pair greater than EA. SK/(rp3) > (EA)
DMOV EA,rp3 Move register pair to EA.

MOV EA,sr4 Move special register to EA.

DMQOV rp3.EA Move EA to register pair.

DMOV sr3,EA Move EA to special register.

DNE EA,rp3 Skip next instruction if register pair not equal to EA. SK/(EA) # {rp3)
DOFF EA.rp3 Skip next instruction if off-test register pair with EA is zero. SK/Z

DON EA,rp3

DOR EA,rp3

Bkip next instruction if on-test (AND) of register pair with EA is
not zero.
OR register pair with EA.

SK/NZ

DRLL EA Rotate EA logical left one with carry.

DRLR EA Rotate EA logical right one with carry.
DSEB EA,p3 Subtract register pair from EA with borrow.
DSLL EA Shift EA logical left one into carry.

DSLR EA Shift EA logical right one into carry.

DSuUB EA,rp3 Subtract register pair from EA.

DSUBNB EA,rp3

DXR EA.rp3

Subtract register pair from EA and skip next instruction if EA is
greater than or equal to register pair.
Exclusive-OR register pair with EA.

SK/(EA)} = (rp3)

EADD EA 2 Add register to EA.

El Enable interrupt.

EQA Ar Skip next instruction if register equal to accumulator. SK/EQ

EQA rA Skip next instruction if accurnulator equal to register. SK/EQ

EQAW - wa Skip next instruction if working register equal to accumulator. SK/EQ

EQAX rpa Skip next instruction if memory addressed by register pairequaito SK/EQ
accumulator.

EQI A byte Skip next instruction i immediate data byte equal to accumulator. SK/EQ

EQI r.byte Skip next instuction if immediate data byte equal to register. SK/EQ

EQI sr2,byte Skip next instruction if immediate data byte equal to special register. SK/EQ

EQIW wa,byte Skip next instruction if immediate data byte equal to working register. SK/EQ

ESUB EA,r2 Subtract register from EA.

EXA Exchange V, A, and EA with V', A’, and EA’.

EXH Exchange HL with H'L".

EXX Exchange register sets BC, DE, HL with B8'C’, D'E’, H'L*

NEC

Appendix A

Alphabetical List of Instructions

Instruction Description Skip Condition

GTA Ar Skip next instruction if A greater than register. S5K/(A) = (1)

GTA r.A Skip next instruction if register greater than A. SK/(r) > (A)

GTAW wa Skip next instruction if A greater than working register, SK/A > ((V)awa)

GTAX rpa Skip next instruction if accumulator greater than memory SK/(A} > MEM
addressed by register pair.

GTI A byte Skip next instruction if accumulator greater than immediate SK/(A) > byte
data byte.

GTI r.byte Skip next instruction if register greater than immediate data byte. SK/(r) >> byte

GTI sr2,byte Skip next instruction if special register greater than immediate SK/(sr2) > byte
data byte.

GTIW wa,byte Skip next instruction if working register greater than immediate SK/({V)swa) > byte
data byte.

HLT Halt.

INR r2 Increment register and skip next instruction if carry. SK/CY

INRW wa Increment working register and skip next instruction if carry, SK/CY

INX EA increment EA.

INX p Increment register pair.

JB Jump BC indirect,

JEA Jump EA indirect.

JMP word Jump direct.

JR word Jump reiative.

JRE word Jump relative extended.

L8cD word Load register pair BC direct.

LDAW wa l.oad A with working register.

LDAX rpa2 Load A with memory addressed by register pair,

LDEAX rpa3 Load EA with contents of memory addressed by register pair.

LDED word Load register pair DE direct.

LHLD word L.oad register pair HL direct.

LSPD word Load SP register direct.

LTA Ar Skip next instruction if register greater than A. SKAN > (A)

LTA rA Skip next instruction if A greater than register. SK/(A) > (r)

LTAW wa Skip next instruction if working register greater than A, SK/((V)ewa) > {A)

LTAX rpa SKip next instruction if memory addressed by register pair greater SK/((rpa)) > (A)
than accumulator.

LTI A byte Skip next instruction if immediate data byte greater than A. SK/byte > (A)

LTI r.byte Skip next instruction if immediate data byte greater than register. SK/byte > (r)

LTI srg,byte Skip next instruction if immediate data byte greater than special SK/byte > (sr2)
register.

LTIW wa,byte Skip next instruction if immediate data byte greater than SK/byte > ((V)ewa)
working register.

LXI rp2.word Load register pair with immediate data

MOV r1,A Move A to register.

MOV Ar1 Move regqister to A.

uPD7810/11, 7810H/11H, NEC
78C10/C11/C14

Instruction Description Skip Condition
MOV srA Move A to special register.
MOV A.srl Move special register to A.
MOV r.word Move memory to register.
MOV word,r Move registier to memory.
MUL r2 Multiply A by register.
MVI sr2,byte Move immediate data byte to special register.
MVI r.byte Move immediate data byte to register.
MVIW wa,byte Move immediate data byte to working register.
MVIX rpal,byte Move immediate data byte to memaory.
NEA Ar Skip next instruction if register not equal to A. SK/(r) # {A)
NEA rA Skip next instruction if A nct equal to register. SK/(A) # (1)
NEAW wa Skip next instruction if A not equal to working register, SK/(A) # {{V)swa)
NEAX rpa Skip next instruction if A not equal to memory addressed by SK/(A) # {(rpa))
register pair.
NEGA Negate A.
NEI A, byte Skip next instruction if A not equal to immediate data byte. SK/(A) # byte
NEI r.byte Skip next instruction if register not equal to immediate data byte. SK/(r) #* byte
NEI sr2,byte Skip next instruction if special register not equal to immediate SK/(sr2) # byte
data byte.
NEIW wa, byte Skip next instruction if working register not equal to immediate SK/((V)swa) # byte
data byte.
NOP No operation.
OFFA Ar . Skip next instruction if off-test (AND) register with A is zero. SK/Z
OFFAW wa Skip next instruction if off-test (AND) working register with A SK/Z
is zero.
QFFAX rpa Skip next instruction if off-test (AND) memory addressed by SK/Z
register pair with A is zero.
OFF!1 A byte Skip next instruction if off-test {AND) immediate data byte with SK/Z
A is zero. -
OFFI r.byte Skip next instruction if off-test (AND} immediate data byte with SK/Z

register is zero.

OFFI sr2,byte Skip next instruction if off-test (AND} immediate data byte with SK/Z
special register is zero.

OFFIW wa,byte Skip next instruction if off-test (AND} immediate data byte with SK/Z
working register is zero.

ONA Ar Skip next instruction if on-test (AND]} register with A is not zero. SK/NZ

ONAW wa Skip next instruction if on-test (AND} working register with SK/NZ
A is not zero.

ONAX rpa Skip next instruction if off-test (AND) memory addressed by SK/NZ
register pair with A is not zero.

ON{ A byte Skip next instruction if on-test (AND) immediate data byte with SK/NZ
A is not zero.

ONI r.byte Skip next instruction if on-test (AND) immediate data byte with SK/NZ
register is not zero.

ONI sr2,byte Skip next instruction if cn-test {AND) immediate data byte with SK/NZ

special register is not zero.

-~ M, gy -

LN~

Appendix A

Alpnhabetical List of Instructions
Instruction Description Skip Condition
ONIW wa,byte Skip next instruction if on-test (AND) immediate data byte with SK/NZ
working register is not zero.
ORA Ar OR A with register.
ORA rA OR register with A,
ORAW wa OR working register with A.
ORAX rpa OR memory addressed by register pair with A.
ORI A byte OR immediate data byte with A,
ORI r.byte OR immediate data byte with register.
ORI sr2,byte OR immediate data byte with special register.
ORIW wabyte OR immediate data byte with working register.
POP rpl Pop register pair off stack.
PUSH rp1 Push register pair on stack.
RET Return from subroutine.
RETI Return from interrupt.
RETS Return from subroutine and skip next instruction.
RLD Rotate left digit.
RLL r2 Rotate register left one through carry.
RLR r2 Rotate register right one through carry.
RRD Rotate right digit.
SBB Ar Subtract register from A with borrow.
SBB rA Subtract A from register with borrow.
SBBW wa Subtract working register from A with borrow.
SBBX rpa Subtract memory addressed by register pair from A with borrow.
SBCDO word Store register pair BC direct.
SBI A byte Subtract immediate data byte from A with borrow.
SBI r.byte Subtract immediate data byte from register with borrow,
SBI sr2, byte Subtract immediate data byte from special register with borrow.
SDED word Store register pair DE direct.
SHLD word Store register pair HL direct.
8K f Skip next instruction if flag is set. SK/f =1
SKIT irf Skip next instruction if interrupt flag is set. SK/irf =1
SKN f Skip next instruction if no flag is set. SK/f= 0
SKNIT irf Skip next instruction if no interrupt flag is set. SK/irf=0
SLL r2 Shift register left one through carry.
SLLC r2 Shift register left one; skip next instruction if carry. SK/C
SLR - 2 Shift register right one through carry.
SLRC r2 Shift register right one; skip next instruction if carry. SK/C
SOFTI Software interrupt.
SSPD word Store stack pointer direct,
STAW wa Store A to working register.
STAX rpa2 Store A to memory addressed by register pair.

A5

4PD7810/11, 7810H/11H,

NEC

78C10/C11/C14

Instruction Description Skip Condition

STC Set carry.

STEAX rpa3 Store EA to memory addressed by register pair.

STOP Stop oscillator.

suB AT Subtract register from A.

SuUB r.A Subtract A from register.

SUBNB Ar Subtract register from A; skip next instruction if A is greater than SK/{A) = (r)
or equal to register.

SUBNB 1A, Subtract A from register; skip next instruction if register is SK/(r) = (A)
greater than or equal to A.

SUBNBW wa Subtract working register from A; skip next instruction if A is SK/(A) = ({V)ewa)
greater than or equal to working register.

SUBNBX rpa Subtract memory addressed by register pair from A; skip next SK/(A) = ((rpa})
instruction if A is greater than or equal to memary.

SUBW wa Subtract working register from A.

SUBX rpa Subtract memory addressed by register pair from A.

Sl A byte Subtract immediate data byte from A.

SuUl r.byte Subtract immediate data byte from register.

sul sr2,byte Subtract immediate data byte from special register.

SUINB A byte Subtract immediate data byte from A; skip next instruction it Ais SK/{A) = byte
greater than or equal {0 byte.

SUINB rbyte Subtract immediate data byte from register; skip next instruction SK/(r) = byte
if register is greater than or equal to byte.

SUINB sr2,byte, Subtract immediate data byte from special register; skip next SK/(sr2) = byte
instruction if special register is greater than or equal to byte,

TABLE Table look-up.

XRA Ar Exciusive-OR register with A.

XRA r,A Exclusive-OR A with register.

XRAW wa Exclusive-OR working register with A.

XRAX rpa Exclusive-OR memory addressed by register pair with A,

XRI A byte Exclusive-OR immediate data byte with A.

XRI r,byte Exclusive-OR immediate data byte with register.

XRI sre2,byte Exclusive-OR immediate data byte with special register.

A-6

Appendix

Abbreviated Instruction Set

‘9AGq+H 40 a34g+Q = ceds {eleg) £g (¥}

"93AQ+H 40 'VI4+H 'G+H

"W+H ‘B14q+- = geds Jo Zed) eseo sajeoipul sevIs up { 7} ysess jo apis by (g)
"91Ag+H 20 B1AQ+Q = zedl :{ejeq) zg (2)

S3]RIS pf UOIINIISUI R}AY-Y
SOIEIS 0} 1(, YUM) UolDnIIsUI BjAq-¢
$91B18 £ 1, Uit} uononisut a1Ag-g

SB{RIS || UONDNIISUt JAG-C
SIIBIS § UDNDRJISUI 3JAQ-2
SIEIS p .UONONAISUl 9)Aq-L

(SMQII0} SB 1B 531B)S 9ip! Ul 'uonlpued dixs ey 404 {1}

B-1

'SAIGN
3 v Od ¢ ¢+ 0 06 1L 0 ¢ {(Hedy) — (Hv3) '(edd) — (v3) £ar'y3
t ¥ b 4 1 0 1L 1 0 {Hy3) — {Hgdy) (v3) — {Tgd)} w3 ‘gl AOWG
1ajsuey eeg 11g-9)
Mm0J1aq 3 pug
+2) b= (0) — (0} "1 + (K} (H)
1 xgl E 0 0 0 4 4+ 0 0 '} + 30 — (30} "{OH) — (G 320719
i) 0 0 0 0 1 0 1 O () e (1) {H) e (H) HX3
1 ¥ 6 0 0 0 1 0 0 0 (V) e (02 (W) = (0 LAY o (A} vX3
{1) == (D '(H) o (H {3~ 3
i ¥ i 0 0 0 L 0 0 0 {@) — (@ (2} {9} (D) (B Xx3
4 {gatoN} 112 (z ;oK) vjeg Dby 'y 2y ¢ 0 1 o0 By ((zedy) — {y} geds, Xval
2 {Es0N} €112 {z =108} BI1RQ Oy iy oy ¢ 4 1 ¢ Sy (v) — ((zed))} geds, X¥18
Z ol 18510 it 0 0 06 0 0 0 O {(emle{p)) s (v} B, M0
2z o 19SH0 b L0 8 0 4 10 {v) — ({em)eo{pl} M, MYLS
2 o 33:41] kv ot 00 1 O BjAq — (|d)) BiAq' edl, XIAW
2jeg
3 £l 18540 S I T O T T a1Ag — ({em)e{p)} B1Ag 'em, MIAW
2ieg
£ ¥l ilges o0 0 0 0 Fg 00 L 0D L 10 4G — (255) akg2is
2 ! wieq b bty L 0t L O 8lAg — (1) MAQ's, AN
ppe by 1ppe Mo}
p il Oy W L L oL LoD 0 0 0 0 4 4 1 0 -~ {8} — {piom) 1'piom
ppe yBiK Jppe Mo
] U % by 1 o6 4 1 o0 0 0 0 0 ¢ 4 O {P1om) — (1) plom
Z ot Ug lg ¢g 85 ¥g S5 | | 0 0 L L 0 0 & O (1s) — () 18"y,
P o 0g lg &g g ¥#g Sg 4 | b0t L 0 0 1L O) — s} ys,
3 ¥ L S N S I B - w'y .
i b O M4 Lt o0 o) 1) v AGW
Jasued Bie(11g-g
UORIpUOY s3l4g (1 aj0K) g 1 2 & v & 9 1 g 1 2 £ ¥ & 9 L toljedadg puesadg djuoUaMK
dnig aEs v [.
7] I3
apo) uohietedp

19§ uoNONJISu}

4& Z 8 Oy 'y @ 0 L 0 1L 0 D 0 0 0 0 L | O W)+ +) =) v
' [8 O % 0 L0) 1 00 0 0 0 L L 0 AN+ W+ W) —v) Iy aay
_E 2 g % 'y &% 0 0o 0 I O 0 0 0 0 0 L L 0 W+ - v
. ? g O4 Yy 24 0 0 0 1 I 0 0 0 06 0 + L 0 b+ —y) Iy ooy
N [4a1sBay] anawuslly 119-8
T 2 i) {1 + (v} + € + {0d)) — (8)
00 0 L 0 L 0 1 0 0 ¢ L 0 B0 L+ O v+ ¢+ (3d)) — (D) 378v1
314q ybiy
£ 0 31AQ mo 0 0 1t 0 % Y e o {piom) . (gdJ) promgd, X1
2+ (S} — {4S)
L ot b ‘% 0 0 L 0 M+ (S — (Hidd) {igsh) - (Nida) 1l d0d
2 — 1d8) — {dg) '(Nd1) — ({g ~ (49)))
L g R Hd) (- {g9)) 1 HSNd
(¥ 210N) e1EQ
£ {cawonoz/ye 0 Mg ey p o 0 3 0 0 0 L ¢ 0 + 0 ((-+(edd)) — 4y} ([geds) — (v3) gedl XvIa
Jppe ybiy 1ppe ma ,
b 02 A O O 0 0 0 0 v L + 0 (L -+ prom) — (H4g) "(piom) — {14s) paom (dST
. 1ppe yhy Ippe MO
12 02 [O 00 0 0 L 1L L 0 (L + piom) . (H) "{prom) o (T} prom 047
ppe yGiy 1ppe Mo
b 0z O 00 0 0 L 1L 1 9 (L + piow) — (0) '(psom) —. (3} plom g3anm
Jppe ybIH ppe mo)
b 2 S O O T S (O B 0 0 0 0 L L + 0 (L +piom) — (@) '{piom} . (7)) piom a1
(v a10N) B1E()
€ (acNogryk P to by oL o0 g o1 0 0 0 L 0 0 } 0 (HYD—{ls+{eed)) () — ([ceds)) gedi XVals
Ippe ybiy IppE Mo
n 4 02 6 L L L 00 0 0 0 00 0 + t | O (HdS) — (1 + pJom) "(14S) — (pios) piom adss
L JPpE UBIH Jppe Mo _
¥ 02 O b b L L L 00 00 0 0 L L L 0 (H) — (1 + p1om) ‘() — (piom) piom QIS
Y ppe ybiy Ippe mo
¢ b 0 G L L L 0 L 0 0 0000}k L O (@) — (1 + piow) @) — (piow) piom 0308
R . Jppe by ippe so7 .
ﬂ,w ™ b 02 G L L L L 0 ¢ 0 0 00 0 L t L 0 (8) — (1 + piom) '(Q) — (piom} piom 108s
..AI.N Z v % 0 0 0 0 0 F + 00O+ 00 O (115) - (v3) #IS'v3
x F/ vl o0n 1 0 0 L 0 L I 0 0 0 v 0 0 L O . (vl) — ls) w3 'ess ADWO
P. w (3 llugo| sajsuely ejeq 11g-g|
e ey ucnipuny sajig {1 a1oN) e L Z t v 5 9 £ 1 2 £ ¥ §5 9 ¢ uonedady Puesadp HuoWau
ﬁ_..- =) diyg alels vd £R
pa = za 18
w..- m apo7 uoiesady
AN (juo2) 35 uononJisu]

B-2

Appendix B

Abbreviated Instruction Set

Z L by by 2y | L 0 0 00 0 0 L L L 0 ((ed)) A (v) — () B XVHO
2 11 Oy by 2y | 0 0 0 I 00 0 0 3V L L 0 ((ed1)) v {y) — (y} ed AYNY
MoL0q oN F/ i Oy 'y 2y 0 | L 0 0 0 0 0 L t L0 ({eds)) ~ (v} — {y) edi XENENS
[il Oy ty 29y 0 & 1L L 00 00 1L kL O (A0} — ((eda)} — (v} — {v) edl X848
2 11 Oy w2y 0 0 3 L 00 0C 0 I L 10 (ed)) —{y) — {y) ed Xans
Aues oN 2 1} Oy 'wey 0 0 L 0 I 00O C L L L D {(ed)) + {y) — {y}) edi XONGOY
2 11 by ly ey 0 3 0 L | D 0O OO L ¢ I D (AD) + ((ed)}) + (¢) - {y) ed: Xaay
Z 1 by w2y 0 0 0 L 1 0 00 0 L 1 L 0D ((edd)) + (v) — (¥} ed. Xaov
(Alowaw] apaugyiay 1g-8
0497 Z 8 Oy e L 1L 0 L c 006 0 0 | 4 O vyl ry ¥440
19z oN 2 8 Oy by ey 1L o 0 L ¢ 000 0 6 L 40 vy 1y ¥NO
0187 4 8 Oy 'y 2% v L L L O 6 0 0 0 0 } { 0 - v
0497 2 8 I T 000 0 0 L | 0 {N—(v} 1y Y03
0.3z ON 2 8 O oL 0L b0 ¢ 00 0D L L O - v
0J3Z ON 2 8 I T 0 00 0 0 } + O -y vy Y3N
701108 [8 % W% L Lot 00 0 0 00 0 L L O W - vy
moLog 2 g I G T 0 0 6 0 0 4+ L O M- Iy vil
M0110G ON 2 8 Cy 'y & L 0 I § O 00 0 C 0 ¢t 1L 0 i—-—() v
#0140Q ON Z g by 'y % L 0 L 0 | 00 0 C 6 4 L O b— -y 1y V19
4 g Oy 'y % 0 1.0 0 O 000 00 0 J } O WA~ vl
Z g Oy 'y 29 0 L 0 O | 00 00Ol | O a0 1y VHX
2 8 Oy 'y 2 + L 0 0 O 00 00 01 | O Mal—-{ v
2 8 Oy by 2d L L 0 O | ¢ 00 0 0 L 4 O WA —~(w) 1y YHO
2 8 0y 'y 24) 0 0 0 O 006 00 0 L | O v~ v
Z 3 O ' L 0 0 0 | 6 6 0 0 0 L | 0 vivi—(v) Iy YNV
M0J10Q ON F/ 8 Oy ey o L Lt 00O 00 0 0 0 L L 0 WM-—= v
mollog oN F 8 Oy 'y % o 1 L 0 & 6 0 00 0 L L 0 - —{y) Uy ANENS
F 8 Oy by 0 L L L 0 0 0 0 0 0 b 1 O AN —(- () v
[/ 8 Gy by S 0 ¢ L) 00000 1 L O A=W -MW—=0 Iy 495
] g Oy 2% o0 0 I L O 00 0 0 0 L L 0 V-) v
2 g bulye o 0 1 1 0 0 0 0 ¢ L 4 O - —iv) 1y ans
Ales oN]] 0y ‘W2 0 0 L 0 O c o0 0 0) | O W+ W) v
Alea oN 2 8 Oy b 2 0 0 L 0 | 00 0 0 0 L L D H+iy)—y) 1Y INQQY
(uo3] [JaisiBay] anawyilsy itg-8
uajyipuog saig (1 230N] 0D I 2 E ¥ & 8 (L g 1 2 £ v 5 9 [uojeladg puriadg Tuowauy
dixg xeis ve x|
) 8

apo9 uopesadg

(3uo09) 195 uoljonIsU]

B-3

NEC

UPDTEIC/ 1%, TTICILL,
78C10/C11/C14

eleg
£ 02 lglg e g 1 | 1 f§ 9 0 4L 0 0t L O {AD) — o1hq — (18} — (225} @uhg'zas .
eleg
£ 1 By 'ty o 1 L L0 0 0 L 0 L 1 40 (A3 —ahg — (1) — {2} =uhg
2 ¢ Beg 0 L + 0 L L 30 {AD) —aihg — {y} — (¥} @siAq'Y, s
ejeq
g ® %S ise% o0 0 L L% 0 0 L 0 0 L LD oAy — (2i8) — (225) mAq's
geg
£ b O Wag o L otoO 0 6t 0 L 1L 10 oy - (1) = ()} siAqY)
2 e Eleg 0 L L 0 0 L L O olAg — (v} — () 8lAQ'y. ns
eeg
Asres oN g 02 isiss o0 0 + 0B85 0 0 L 0 0 3 3 O NAG + (8) — {208) BIAQ'US
Bieg
Aiea o g W Gy by %9 0 0 L 0 O 6 0+ 0 4 4 b0 NG+ () (1 kg
Aues oN 2 2 weg g L 086 1 0O B+ v} — {v) akg'y, ONIOY
ejeg
£ 4 % s2% 9 1 0 4 %8 0 0D L O O L b O {AD) + 314 + {218) — {218) AAQ's
ejeq)
£ 18 by g% 0 4 0 1L O 0o 6 4 0 L t 1 0 (AD)+ akg + (1) — () Q¥AQH
Z fi BjEg g L 4 6 L 0 b 0 (A} + 9140 + () — () 9iAQ'y, 12y
BlEQ
£ 02 %lgég ¢ 0 0 t % 0 0 L O O b O eIAq + (248) — {15) 214q 'S
BlEQ
£ i O ly% 0 0 0 L O 00 ¢t 0 ¢+ 4 4+ O ahg + (1) — () ;iAqs
2] eleg 0 4 L 00 0 1 o0 nAg + {v) — (v) aike'y, v
EL2[] GRjpatuL
0197 2 ik N lyey | Lo bt 9 0 0 0 1 1 10 (fedn)) v {y) ed: Xv440
0132 ON F/ ik Wwlydqy t 0 0 t 1 90 0 0 4 + 4 0 (fed) vyl eds XYNG
0187 2 1 O Wy L Loy g 0 ¢ 0 1 & 10 {eds)) —{y} eds XvD3
0192 ON 2 1 Oy by 2y | 0 L 1 6 00 0 + 1 1 O {leds)) ~ (v} eds XViIN
M0LOR H 31 Oy w2y 4 4 L 0 | 00 0 0 t Lt t O {ed)) — (v} = xvi
M0310Q ON 2 31 Oy by &y | 0 1 B 6 ¢ 0 0 & i b 0 1 —{led))—(y; eds XV19
2 1 O lydy 0 L 0 0 00 0 0 L L 4 O ({edMnly) — {v) 2di Xvex
fiuoal [Aanwap wewig)(ay i8-8
uofipuag sadg {1 s1oN) Bt 2 E ¥ S5 §% ([g 1 T £ ¢ & 9 L uoRi3dg pueiadp ajuoALY
dixs ams 4] %]
FTY)

ap0] vopRiHlg

(juo0d) jog uUOIONIISU]

M e Y U e b

Abbreviated Instruction Set

s

B2Q
0137 ON £ 1 LTI 1] 0 0 0 i 1 ahg — (1) aifql
0132 0N Z l 211 § n o0 i alkg — {y) a1AqQ'y, 13N
ejeq
M02109 £ ¥l Og lg 25 | | &g 0 0 0 0 1 alhq — (zs) akq'zss
ejeg
Mollog £ 11 Oy 'y % 1 o 0 00 0 L 1 nkg— {1} e1AgY
moling 2] Bj2(1 0t | kg —(y) AAg'y, H1
BR(
M01I0q ON £ ¥l bg ls %3 | g 00 0 0 1 { — alAq — (21s) 3AQ'2IS
BIE(
M01i0q ON £ H Oy 'y 20 | D 0 00 01 I L—alhg— () alAgu
Moiloq oN Z L ele(3 0o 1 L — a4 —(y) aka'y, 119
EIE(]
£ 02 Iglg¢g o | 0% 0 0 0 0 alAq A {zus) - {215} BIAQ'AS
Bj2(
£ L o W0 L 0 0 0 [A} (1) B1AQ'
Z i eBjeq 0 0 L 0 kg4 (v) — (v} 91AQ'y, 18X
eleQ
£ % gl g | | 0% 00 0 0 kg A (215) — {215) alAQ'ps
eieq .
£ i g by @ 1oL 0 0 D 0 0 1 4 A A () — () akgu
z l BlE(] } 0 1 0 akg A lyY) — (v) 9AQ'y, 140
eleg
£ 0 0g lg &g | ¢ 8 0 0 0 ¢ aAq v (218) — {21} aikg's
eleq :
g 1l Oy by 24 | 0 g 0 6 0 01 1 nAgy (1) — () 2AQu
Z l Bleg I 0 0 0 akq v iy) — (v} a1ig'v, INV
gjeq
M0.i0G ON £ ® O0g lg %5 g | £g 0 0 0) AAg — (8) — (215) 3IAQYS
104
MO1IQ ON £ i By w2 0 L 0 0 0 0 60 L1 alig —) — () AAQU
#01109 ON rA ! Bleq 0 0t 1 aig — () — (v) kg, ANING
(03] e 81195 LW|
Mappua] salig (1 20y) o0 1 Z E ¥ 9 ! D £ ¥ S uopRIHQ puRIIl] JUOWIUN
dixs CH ¥a td
W)

2p01 UoRiadp

{Juo9) Jog uoljanIIsu]

B-&6

4PD7810/11, 7810H/11H,
78C10/C11/C14

19SH0

£ bl 0 0 0 L 0 } 0 01 0 {lemps{Al v iv) () em MYNY
10830
M0130G ON £ ¥l 0 0 0 0 | 3 0 0 & 0 ((eme(a) — (v} — (v) em MANENS
19540
£ ¥ 0 00 0} 1 0 0 01 1 0 {AD) — ((em)e(aA)) - (¥} — {¥) em MB8s
1950
g 2 000 00 ! 00 0oLl 0 ({em)sia) — (v} — () &m Mans
185440
AlJED ON £ ¥l 0 00D 0 O 0 1 0 90 [A 0 {(emie{A) +(y) — (¥) EM MONaay
198H0
£ bl 00 0 0 | 8 0 0+ 0 (AD) + (em}e{A)) + (V) — () Em MOV
19540
£ 48 00 0 0 0 I 0 0t ot 0 {(em)s(p)) + {¢) — (v} Em Maay
Jai516ay Buryaom
BlE(]
0192 £ ¥ 0g lg g | | tg 00 00 1 0 alAq v {215) AlAQ'TIs
eleq
oz £ il Oy yooy 3 | 0 0 0 0 Ll 0 aig v (1) aiAQu
.8z Z l eleg 8 0 1L 0 0 akg v iy} aldg'y, 440
gleg
049z 0N £ 4! 05 bg 25 | ¢ g 0 00 | 0 AAq v (i) k'S
2R
0432 ON £ I Oy Wy e | 0 0 0 0+ | 0 adgv () akgl
0J3zZ ON 2 L ejeq i 00 0 0 sfg v () aiig'y, INO
eeq
197 £ vl 0g lg &g | | g5 00 0 0 ! 0 a)Ag — (g18) @ihq'zis
e
oJaz £ 18 Oy by %y 1 4 0 0 @ G b 1 0 akg— (1) aAg.
0137 Z l ElE(§ I S § 0 slhg — (v} =4g'y, [¢3]
2lEQ
0132 ON g ¥l 0g lg 25 t kg 0 00 I 0 Aq — {2IS) ANAQ'es 3N
{1ugo) BleQ ajeIpAwWLY
uon1puo) shy (1 ajopN] DL 2z £ ¥ 9 i 1} E ¥ & L uoneladg puesadg ajuowauLy
dis nans 4] %]
E7) IT)

apoq wo[eiadg

(juoo) 398 uonyoNIIsSU|

B-6

Appendix B

Abbreviated Instruction Set

21y

oIz £ 159 19540 I 0 0 | alAg v ({em)e{p)) alAQ'eM, MI340
eeq

013z ON £ £l 13S0 10 0 0 g v ((Empe{p)) alig'em, MIND
ele(

0197 £ £t 13540 i 0 0 | AAQ — ({em)e(p)) BlAQ'eMm, Mmin3
(|

013z ON £ 4 1Bsp0 L 0 0 0 ajAq — ((em}e{p)) 91AQ'em, MI3N
eleg

#01:08 £ £l 19540 (R} 9 4 QAg — ((emls{p)) WAQEM, M
ElE(]

#0109 ON £ £l 1BSHo i O 00 | —31Aq — ((Emp(p)) s14Q'em, MILD

eleg)

£ 6l 13s)0 i 0 i alAQ A ({em)s(A)) o ((m}e(p) alAQ'EM, MIB0
eleg

£ 6l 19510 t 00 alAq v ((em)s(p)) — ((em}a(p)) alAg'em, MINY
1880

0137 £ vl Pl I 0 0 I (femiefAl v (¥) em Myvd440
195140

0432 ON £ ¥l L0 } 0 0 1 {fempsfp)l vv) em MVYNC
198410

0137 £ 4! bl 3 0 Lot (lemjs(p)) —(¥) em MyD3
18540

o1z ON £ ¥l i 0 I 0 0 1 (lems(p)) —iv) em MYIN
18840

mousog £ pl oL i 0 0 I (lemje(p)} ~ [y} Em MYL3
13540

01104 ON £ 123 L 0 I 0 0 | b~ {emi=(p)) — (v) em My19
18540

£ # 0 | i 0 0 ! {eminipal A (e} — (¥) em MUY
1940

£ ¥l (. i 0 0 (femjeiA) Ay} — (v) Em MVHO

|1uoa] Jarsibay bu)yiopm

uonpuag sapig [§ a30N) E ¥ L D £E ¢ uonedadg pueJadg JIUOWAUW
dixg J1B1S 8 8
28 It}

Ipag uapesadg

(juos) 195 uoijanaisuj

B-7

uPD7810/11, 7810H/11H,
78C10/C11/C14

2 g 0t 0 ¢+ 0 L 0 0 00 6 4 0 0 1 0 D — (A2} 719
Z g S I L O - 9 0 0 L 0 0 1 0 b — (AD) 318
l ¥ b0 06 0 0 ¢ 4 0 101 THIRIY 1SD[pY JEUNTaQ vv(Q
$19410
}] b 0 0 L 0)L 8 3 L-y3 —{v3) W3
! Ji 1 1 0 0 9% 4 0 0) () X34
#0408 2 gl 19540 0 90 0 1 L 80 - {{em)e{A)} — ({Em)e{a}) em, MH3a
M0110g8 i ¥ %9 o 0 1+ 0 1+ B l—{e - @ ¥3Q
b i 0 0 0.t 0 1 0 b+{v3) - (vl w3
{ 3 0+ 0 0 % o 0 () {ds) b XN
Aues 4 gl 198110 0 6 0 0 6) 6 O L+ ({em)e(pl} — (lem)e(p)) em, MUN}-
Aue) } b Wy 0o D0 6t O 7)) B YNt
jUAWARIA [Ul
Z 65 WML oL Lo 0 000 0t 0 0 + D puewol — RN) ~ (vA) = (VA) @ MG
F] o L S S S I c 0 0 + D 0 0 2Ny —~vyy o il
apIMp/ ANy
i3z Z ! % Y 4 L L 0Lt 0 0 L 0 4 b4 0 {gdi) v (y3) ¢l 4406
0182 ON 2 i O 4 1 L 0 0 001 0L L L0 {ed1) v {y3) ¢di'v3 NOC
0197 2 1 S W o1 1L b L L 0 ¢ 4 0 1L L 1D {gd)) - (yva) ¢d)'v3 030
0J3Z ON z m 6 W4 1 1+ 0 4 4 | 00 ¢+ 0 1 3 40 {ed)) - (v3) gdiv3 ING
maiiog z 1 LR S S T T ¢ 0+ 0 1 L) 0 {ed)) — {va) gdi'v3 10
#0110G ON 2 i 6g 9 L 0 1 0 | 6 0L 0L VL0 1 —{gd} —{y3) edi'y3 190
2 3! O¢ W L 0 L 0 0 0 0 F 0 1L 1 10 {edii A {yd) — (v} £dr'va HXQ
2 11 64 M t 1 4 8 0 | 0 0t 0 1 4 L0 {eti} A {vd) — (v3) £dI'y3 4oa
2 i 04 b ¢t L 0 0 0 | 000 L 0 L L L O {ediy v {¥3) — (v3) edry3 NV
M0L0q DN 2 1 % 9 1 0 L b 0 00 L 0t L L 0 {£ds — (v} — {v3) £dry3d gNBNS0
2 i 34 %1 0t L b ¢ 000+ 0 4 F b0 (h0} — {ed)) — {y3) — (v3} edi'v3 #8840
] I G 9 1 0 0 1 4 4 06 1 0 1 k40 (eds) - (v3) — (v3) £di'y3 ansa
2 31 O ' 0 0 0 4 L 0 6 0 0 0 4 L L 0 2} — (y3) — (v3) 2r'vi 8ns3
ALieo oN z 1t g W 1 0 0 3 0 | 00 kL 0 4 L 10 {ed)) + (v3) — (v3} ediv3 INOGYVE
Z I O 4 t 0 1 0 1 | 0 0 L 0 L L L 0 (A0) + {pda} + (v3) — (va} gds'y3 I6VE
2 i b 4 0 0 0 1 0 0+ 0t t 10 {£d)) + (¥3) — (vI) ¢£dr'y3 0ave
2 i 0y b0 0 0 0 L O 600 8 v t L 0 {2+ (v3) — (v 23 aav3
Yy 119-al
uGHIPLDY sathg {1 s10K} 0 t 2 £ ¥ 5 8 (L g t 2 £ ¥ 5 8 uoyeladg puziadg DILOWRUW
diys nes e £8
28)

apoy wapesddp

(3u09) 319G uoioniisu|

B-8

Appenaix o

Abbreviated Instruction Set

¢ — [dS) — (45)
.a_v — {124} '(8) — (Fog)
"HZ+{0dh) — {2 — (dS)

Z P 1 000 L 0L 80 0 0 0 1 0 ¢ 1O H{z + (0d)) — {1 — (45 80
2 —1{dg} — {d8} 'paom . {0g)
PPE UOIH Ris (a) (2~ (a8

g g ippe mo7 0 0 0 0 0 0 L 0 ‘Hig + (0d)) ~ (L — (dS}) pJom, 10

j[L¢]

¢ g g 0 0 L 0 L 0 O 0 0 0 t 0 O Lt O v3) — (0d) var

A 1]} dsipl e N N T I dsipl + 2 + (3d) — {Dd) piom, Jur

3 ot . 1dsipf Lo Lasipl + 1 4 (Og) — (Dd) piom ur

t ¥ i D 0 0 0D L O O (9} — {194) (8} — (Hng) gr

ippe yBiK

£ cl ippe Mo e 0L 0t 0 10 piom —, (0d) piom, dWr

dwny
{Og3) — (AD)

2 8 9 00 0 0 L 0 8 6 6 4+ 0 0 + 0 0 — Sy Py — (Y3 vl H150
{53} — (A

2 8 0 0 F 0 B ¢ 0 1 0 86 0 1 00 I 0 "0 — Oy Py — (P E v3 TI50
(Oy3) — (A2)

2 g 00 9 0t v Ot g 0 8 1 0 0 1t D AD) — (Sy3) 'yl — Y% w3 Y
@él%é

2 g 0 0+ 0 L L o6 1 0 0 0 t 0 0 L O o) — O3 My - E+dy3) vl Tka

AL F) g Wiwo 0000 0 00 0 t 0 0 + 0 O{Ap={n{Yzy - & o418

Airen 4 8 Wl 6006 0 00 0 L 0 0 I 0 o004y 2 aTis

2 g %W o 001t 0O 00 06 L 0 0 } 0 etz {"% g H1S

Z g % W 4 0 0 1 6 0 0 0 0 1 0 0 1 0 oM {tt¥) 118
agl_ws_

2 g O 'y 0 B 1L L B8 0 6 0 0 FE 0 &6 1§ A} — (e ~ by o WY
(L2 — (A2

Z 8 TR I N T N S I ¢ 0 ¢ 3+ 0 0 1 0 A — Oz (e L S+ o T
A i {0y} — L) TN —

b o¢ ¢t 4 L 0 0 g0 0 1+ 0 0 L 0 ¥H{OMTHOHNOEyhubipybuneoy OHy
(Fey) — FE{OH)) (M) —

2 il 0 06t 1t 0D 0 0 0 1 6 0 1 0 YO TUOHN — {0By) ubip ya) aiEloy liail]

g pue sieiny

2 g 0 F 0t L} 00 6 0 0 L 9 0 i 0 £+ (Y} e 1Y) ¥OIN

luoa) s1agip

uaBIpuGY sajhg [1 2308) 0 I 2 £ ¥ § 89 ¢ g t T E ¥ & 8 wojietadp puBiadQ 2OWaHN

LTS aes il 8
F4] ia

apny uopeaady

{(juo2) J25 UOLIONIISU|

8-9

¢l

apow 4015 195

2l

apout 1yH 18§

Jdnuaul 3qesg

\énugiu g|geu3

—|—|— e

oo oo
Q|| 10|
SiIoiolo|e
S|r—]— ||~
ool |aolo
o (alo
SIS |a|—i—
Q| i~ |=|S

uoyesado oy

0=

g

dIys LUop pue | = 41 11 jesey
0= M §l 6N

L =4l

9

o9

H11asal syl 'L = {1 §1 s

0=

0

by %

0=)pdng

L=}

0y

b4y

[=NE=NE =N
L=N =N E ol Ko
cIo|o|o
o e B e e]
=N =R =]
— | — | —
oo o | o
(=R =]

b=4pdng

1sal g

R A B R A"

(=N -Ri--Ni--R0E -]

EQOOO
— |||
@ lo|lolajla

b= 1g ({Em)e(a))) diig

£l

£+ {dS) — (dS) (2 + (WS — {MSd)
{1 + (98} — (Haa) "({dsh — (9d)

dis
[BUDIIpUC2UN

0!

—

U+ {3d) — (3d) '2 + (45} — (48)
{1 + (dS) — (Hgd) ((dS)) — {10}

01

—

Z+(dS) — {45}
(1 + (dS) — (Bod) " {(dS)) — (10}

91

£~ (dS) — (dS) "HO90 — (ng)
U+ (0d)) — (€ ~ (49N H{L + {D4))
— (2 — (dS)) '(mSd) — (1 — {a3))

ot

—

. 2 — (dS) — (d8)
(&2 + 621) — (Hod) ‘(®1z + 821) — {10d)
G+ (3d)) — (2 — (dSH
H{L + (9d)) — () — (dSH

£l

2 — (dS) — (dS) 'e} — (F0lag)
10000 —w {5104}

g+ (0d)) — (2 — (dsh

"HZ + {Dd)} — (1 — (48))

uoppuay
dixg

[i s10N}
nug

2p0) uopeaadp

uopesadp

uPD7810/11, 7810H/11H,
78C10/C11/C14

(3u03} Jag uononisuj

pukiadp 3juowauy

B-10

NEC

Appendix
Package Drawings

G

Figure C-1.

64-Pin Pilastic QUIP

aloflofaloloJolaflolo oo ol ool

1. Ench lead cenlerina i3 localed within 17
mm [0307 inch] of fts Irue porition [TP] al
maximum maleria| condition,

Z. ltem “K" lo center ol leads when formed
paralial,

= TFTITTTTTTTT

; ;::Tn'un ::l::mln . _ . '

H 32min 526 min ‘_ L J

[S | S—

N2 T o105 r L | U |
el - et l

Flgure C-2. &4-Pin Piastic Shrink DIP (750 mil)

n s ames AARAARAAARRAARRRRARNAAAARRARAAAT

c 1j‘m (TP :o'r':w] o

D s+ o7 1O } -

- (

E 5512 a7 .

e aies e TTERV VI vEVVU vV PERVVyVOTaveLy

[T :

J 5.08 max 2 max K

K 19.08 [TR) Tho s L

L e

I 3Oy

Notes: - | G T

AI-0G14548

LPD7810/11, 7810H/11H
78C10/C11/C14 ’ N E C

Figure C-3. 64-Pin Plastic Minifiat

ltem Millimeiers Inches A
+.myr 8
A 247 1A R 1 B
+.00%
T HARRRRARS
e wuzx2 5851 +'m ALl
by PV 5 33
D WTia .736 £.016 Lr)52 32 -
. o w | e
[3 120 _an o b Sageots
3 10 039 o ot CI.T
|- T
] .0 039 prm—
+.004 - - e € |G |@
H A0 10 &
0% 018
YT 029 [P} LI i
Kote 1 fiae o oo | —
o o O ! ey
J 2352 o Rt | i & e ===
- {84 , 1920 1.
+.004 F G
K 1242 ot e .f_
+.10 +.004
18 os 008 _ 603 1
® 15 006 ——] . ”l
Note 2
+2 o0 @ H !
2.08 7 L Do J
0o o1ta 0.004 +,004
Nols:
[1] Emch tusd canterline is locaied within 3
.20 mm |.008 Inch] of s frue
position [TP] at maximum maierial
conditlen. o
[2] Flat within .15 mm |06 inch] fotat.
A3-D00A338

c-2

NEC

Appendix C
Package Drawings

Figure C-4. 68-Pin Plastic Leaded Chip Carrier (PLCC)

llam Milllmalurs Inches
A i5.2x.2 592 +.008
B i4.20 853
c FLE- 851
+] 2532 r2 .42 +.008
+.007
E 134115 Lot
L] Rirl)
+.008
G A4z AT e
o 2812 Ao
1 7 min {128 min
4 14 142
127 [TH] .50 [TP)]
Nole 1
T 28
+.004
] 4] +.10 J16 —0as
+.009
N 2312220 10 — D8
[+] A5 008
Nole 2
P 14 040
-] R.8 R.am
+.10 +.004
R a7 06 0ol _ ooz
HNote:
[1] Each lead centerline is located wlihin
12 mm [.005 Inch] af iis true
posltian [TP] at mazimum materlal
condition.
[2] Flat within .15 mm }.006 inch] 1otal.

L A
I B |
imFalal-FulleWalyl '-l
o | “ —
g
g
[»
[
[»
g
68
16415 + c|o
[1l
g i
i "
0 1]
e 1
g p
q H
2] ah
\J1¢ 28
SR i aegoy gugepagagagagegn -
F E

4

“JL:!L*F

E

#3-0037928

c-3

4PD7810/11, 7810H/11H,

78C10/C11/C14

NE

NEC Electronics Inc.

CORPORATE HEADOUARTERS

401 Ellis Street

PO. Bex 7241

Mountain View CA 94039
TEL 415-960-6000

TWX 810-379-6985

©1387 NEC Electronics Inc./Printad in U.S.A.

For Literature Call Toll Free: 1-800-632-3531
1-800-632-3532 {In California}

No part of this document may be copied or reproduced in any lorm or by any means without the priar written consent of NEC
Electronics Ing. Theinformation in this document is subject to change without notice. Devices soid by NEC Etectranics Ihe,
are coverad by the warranty and patentindemnification grovisions appearing in NEC Elactronics Ing, Terms and Conditions
of Sale only. NEC Electronics Inc. makes no warrenty, express, statutory, implied, or by dascriplign, regarding the
information set farth herain or regarding the freedom of the described devices from patent infringemant. NEC Electronics
Inc. makes no warranty of merchantability or fitness far any purpose. NEC Electranics Lng. assumes no responsibility farany
arrors thal may appear In this documant. NEC Elactronics Inc. makes no commitmant to update or to keep current the
infarmation contained in this document.

NECEL-000108
STOCK NG, 500375

