
Embedded Pentium® Processor Family 1-1

About this Information 1

1.1 Notation Conventions

The following notations are used throughout this information set.

The pound symbol (#) appended to a signal name indicates that the signal
is active low.

Variables Variables are shown in italics. Variables must be replaced with correct
values.

Instructions Instruction mnemonics are shown in upper case. When you are
programming, instructions are not case-sensitive. You may use either
upper or lower case.

Numbers Hexadecimal numbers are represented by a string of hexadecimal digits
followed by the character H. A zero prefix is added to numbers that begin
with A through F. (For example, FF is shown as 0FFH.) Decimal and
binary numbers are represented by their customary notations. (That is,
255 is a decimal number and 1111 1111 is a binary number. In some
cases, the letter B is added for clarity.)

Units of Measure The following abbreviations are used to represent units of measure:

Bit and

A amps, amperes

mA milliamps, milliamperes

µA microamps, microamperes

Mbyte megabytes

Kbyte kilobytes

Gbyte gigabyte

W watts

KW kilowatts

mW milliwatts

µW microwatts

MHz megahertz

ms milliseconds

ns nanoseconds

µs microseconds

µF microfarads

pF picofarads

V volts

1-2 Embedded Pentium® Processor Family

About this Information

Signal Ranges When the text refers to a range of register bits or signals, the range is
represented by the highest and lowest number, separated by a dash
(example: A15–A8). For register bits, the first bit shown is the most-
significant and the second bit shown is the least-significant.

Register Names Register names are shown in upper case. When a register name contains
a lower case, italic character, the name represents more than one register.
For example, CRn represents these registers: CR0, CR1, CR2, etc.

Signal Names Signal names are shown in upper case. A pound symbol (#) appended to
a signal name identifies an active-low signal.

1.1.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. Intel Architecture
processors is a “little endian” machines; this means the bytes of a word are numbered starting from
the least significant byte. Figure 1-1 illustrates these conventions.

1.1.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits
are marked as reserved, it is essential for compatibility with future processors that software treat
these bits as having a future, though unknown, effect. The behavior of reserved bits should be
regarded as not only undefined, but unpredictable. Software should follow these guidelines in
dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

Figure 1-1. Bit and Byte Order

Byte 3

Highest
Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0Address

Lowest

Bit offset
28

24
20
16
12
8
4
0 Address

Byte Offset

Embedded Pentium® Processor Family 1-3

About this Information

Note: Avoid any software dependence upon the state of reserved bits in Intel Architecture registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Depending upon reserved values
risks incompatibility with future processors.

1.1.3 Instruction Operands

When instructions are represented symbolically, a subset of the Intel Architecture assembly
language is used. In this subset, an instruction has the following format:
label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

• The operands argument1, argument2, and argument3 are optional. There may be from zero to
three operands, depending on the opcode. When present, they take the form of either literals or
identifiers for data items. Operand identifiers are either reserved names of registers or are
assumed to be assigned to data items declared in another part of the program (which may not
be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the
destination operand, and SUBTOTAL is the source operand. Some assembly languages put the
source and destination in reverse order.

1.1.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the
character H (for example, F82EH). A hexadecimal digit is a character from the following set: 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confusion
as to the type of number might arise.

1.1.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence
of bytes. Whether one or more bytes are being accessed, a byte address is used to locate the byte or
bytes memory. The range of memory that can be addressed is called an address space.

1-4 Embedded Pentium® Processor Family

About this Information

The processor also supports segmented addressing. This is a form of addressing where a program
may have many independent address spaces, called segments. For example, a program can keep its
code (instructions) and stack in separate segments. Code addresses would always refer to the code
space, and stack addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:
DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.
CS:EIP

1.1.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an
attempt to divide by zero generates an exception. However, some exceptions, such as breakpoints,
occur under other conditions. Some types of exceptions may provide error codes. An error code
reports additional information about the error. An example of the notation used to show an
exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type
of fault is reported. Under some conditions, exceptions which produce error codes may not be able
to report an accurate code. In this case, the error code is zero, as shown below for a general-
protection exception.

#GP(0)

See Chapter 5, Interrupt and Exception Handling, in the Intel Architecture Software Developer’s
Manual, Volume 3, for a list of exception mnemonics and their descriptions.

1.2 Special Terminology

The general terms “processor,” “embedded Pentium processor,” and “embedded Pentium processor
family” are used throughout this information set to refer to the embedded Pentium processor, the
embedded Pentium processor with Voltage Reduction Technology, the embedded Pentium
processor with MMX technology, and the low-power embedded Pentium processor with MMX
technology together. Some of the features or functions described using these terms, however, may
not be available on each processor type. Refer to the datasheet for each product to determine
whether a specific feature is offered.

In some instances, the names “embedded Pentium processor,” “embedded Pentium processor with
Voltage Reduction Technology,” “embedded Pentium processor with MMX technology,” and
“low-power embedded Pentium processor with MMX technology” are used in this information set
to distinguish between processors when specific differences exist.

Embedded Pentium® Processor Family 1-5

About this Information

See “Related Documents” on page 1-8 for a list of datasheets and other documents that describe the
operation of Pentium processors.

The following terms have special meanings in this information set.

Assert and Deassert The terms assert and deassert refer to the acts of making a signal active
and inactive, respectively. The active polarity (high/low) is defined by
the signal name. Active-low signals are designated by the pound symbol
(#) suffix; active-high signals have no suffix. To assert FLUSH# is to
drive it low; to assert HOLD is to drive it high; to deassert FLUSH# is to
drive it high; to deassert HOLD is to drive it low.

DOS I/O Address Peripherals that are compatible with PC/AT system architecture can be
mapped into DOS (or PC/AT) addresses 0H–03FFH. In this information
set, the terms DOS address and PC/AT address are synonymous.

Expanded I/O Address All peripheral registers reside at I/O addresses 0F000H–0FFFFH.
PC/AT-compatible integrated peripherals can also be mapped into DOS
(or PC/AT) address space (0H–03FFH).

PC/AT Address Integrated peripherals that are compatible with PC/AT system
architecture can be mapped into PC/AT (or DOS) addresses 0H–03FFH.
In this information set, the terms DOS address and PC/AT address are
synonymous.

Set and Clear The terms set and clear refer to the value of a bit or the act of giving it a
value. If a bit is set, its value is “1”; setting a bit gives it a “1” value. If a
bit is clear, its value is “0”; clearing a bit gives it a “0” value.

1.3 Technical Support

1.3.0.1 Online Documents

Product documentation is provided online in a variety of web-friendly formats at:

http://developer.intel.com/design/litcentr/index.htm

1.3.0.2 Intel Product Forums

Intel provides technical expertise through electronic messaging. With publicly accessible forums,
you have all of the benefits of email technical support, with the added benefit of the option of
viewing previous messages written by other participants, and providing suggestions and tips that
can help others.

Each of Intel’s technical support forums is based on a single product or product family. Questions
and replies are limited to the topic of the particular forum. Intel also provides several non-technical
support related forums.

Complete information on Intel forums is available at:

http://support.intel.com/newsgroups/index.htm.

1.3.1 Telephone Technical Support

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include your voice
telephone number and indicate whether you prefer a response by phone or by fax). Outside the U.S.
and Canada, please contact your local distributor.

1.4 Product Literature

You can order product literature from the following Intel literature centers.

1-800-628-8686 U.S. and Canada

916-356-7599 U.S. and Canada

916-356-6100 (fax) U.S. and Canada

1-800-548-4725 U.S. and Canada

708-296-9333 U.S. (from overseas)

44(0)1793-431155 Europe (U.K.)

44(0)1793-421333 Germany

44(0)1793-421777 France

81(0)120-47-88-32 Japan (fax only)

	About this Information 1
	1.1 Notation Conventions
	1.1.1 Bit and Byte Order
	Figure 1�1. Bit and Byte Order

	1.1.2 Reserved Bits and Software Compatibility
	1.1.3 Instruction Operands
	1.1.4 Hexadecimal and Binary Numbers
	1.1.5 Segmented Addressing
	1.1.6 Exceptions

	1.2 Special Terminology
	1.3 Technical Support
	1.3.0.1 Online Documents
	1.3.0.2 Intel Product Forums
	1.3.1 Telephone Technical Support

	1.4 Product Literature

