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This tour was derived from a paper presented at the International Solid State Circuits Conference
(ISSCC), Feb. 1995. It is a guided technical tour through key elements and methods in the P6
processor design and describes how we achieved twice the performance of the Pentium®
Processor on the same manufacturing process.

The tour covers the following key sections:

1.Technology and status of the processor.

2.Discussion of implementation techniques with the help of the microarchitecture block diagram,

   the processor pipeline and some of the  circuit techniques that comprise the CPU.

3.Insight into P6 at a system level and why we invested effort, not just in the CPU and the cache,

   but in the rest of the system as well.

4.And finally, a few words on testing and validation.
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The first thing to notice is that there is something different about the first P6 processor: there are
actually two die in the package. The one on the left is the L2 cache. The one on the right is the
CPU. These die are wire bonded into the same package allowing a full speed interface to the L2.

This combination of two die in a package yields an estimated 200 SPECint92 at 133 MHz. We use
the word "estimated," because to be compliant with SpecMarks the public must be able to
purchase the system. This is not a presentation about a product -- P6 is not a product yet. Instead,
we are presenting the technology of the P6 processor.

We are manufacturing this part on a 0.6 micron BiCMOS process, a mature Intel process also used
for the 100 MHz Pentium(R) processor. The CPU has 5.5 million transistors, with a die size of
approximately 691 mils on a side or 306 square millimeters. It runs at 2.9 volts and dissipates a
peak of 20 watts. Typical power dissipation is 14 watts.
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A few other pieces of context will help you in understanding what we are about to cover. The first
is that this is a true 32-bit Intel Architecture processor. It is not some strange 64-bit device from
outer space that had been rumored in the trade press for the last couple of years. This is binary
compatible with all previous Intel architecture processors.

The next bullet you see above has the catch phrase "Dynamic Execution." It is a phrase that we
coined to stand for a number of other words that are hard to remember all by themselves, including
out-of-order, speculative execution, superscalar, superpipelined, all wrapped around a dynamic
dataflow engine at the core. You’ll see a lot more details on the dataflow engine later.

The L1 cache is 8K/8K split, very similar to the Pentium(R) processor, with one crucial
difference: our cache is non-blocking. This is important in an out-of-order engine because
otherwise an access that missed in the cache, which it could have made speculatively, would stall
all the accesses behind it. The potential for performance boost would be lost, so we made P6
processor's L1 cache non-blocking.

The L2, which as you saw was in the package, is 256K bytes. It also is non-blocking.  If you take a
miss on it, the access is "parked" and other cache accesses can be made.  The L2 can support four
concurrent cache misses before store buffers are used.
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• Out-of-order
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• Superscalar
• Superpipelined
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Let’s take a look at the block diagram of the P6 processor to see how it fundamentally works. The
processor is organized in three sections:

                                        In-order front end

                                        Out-of-order core

                                        In-order back end

The two in-order sections have to be there in order to make this machine have the same program
semantics as an Intel 486(TM) processor.  Our job in designing the P6 Processor was to make it
look to software as if there was an extremely fast Intel 486 processor hidden inside the box. The
way to achieve that is to make it look like an Intel 486 processor to the memory subsystem on both
ends. We used many innovative architecture techniques inside to create a high performance
machine, but these are all transparent to application programs.

We’ll walk through those three pieces one by one.
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The in-order front end consists of:

                                        IFU (Instruction Fetch Unit)

                                        BTB (Branch Target Buffer)

                                        ID (Instruction Decoder)

                                        MIS (Micro Instruction Sequencer)

                                        RAT (Register Alias Table)

The IFU, which contains the Icache, is the place where the Intel architecture instructions that
constitute the programlive. What the IFU does is supply a line's worth of information to the
decoder. The Icache knows where to fetch those bytes from because the branch target buffer
guesses and tells it where to  look. The branch target buffer is a non-trivial design using a 512
entry two-level adaptive algorithm. You will see why we thought it was appropriate to do a more
elaborate BTB when we get to pipelining.
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Microarchitecture: Instruction Decode

The instruction decoder’s job is to break the Intel architecture instructions down to micro-ops. Micro-ops are the
atomic unit of work in the P6 processor and are comprised of an opcode, two source and one destination operand.
These micro-ops are fixed length and are more general than the Pentium(R) processor's microcode since they need to
be scheduled. At the bottom of this diagram you can see there are three micro-ops generated per clock. This makes the
P6 a superscalar processor of degree 3.

The decoder takes the instructions from the IFU. They’re getting aligned because the variable nature of the encoding
of an Intel architecture instruction is such that it is difficult to tell where instructions start and end. Then there are
three separate decoders, one for each aligned instruction that we will map into the micro operations. These micro
operations flow out the bottom.

The three decoders on the diagram look identical, but actually they are not. One of the decoders is capable of
translating any Intel architecture instruction into the constituent micro-ops that we will execute in a P6. Any Intel
architecture instruction that can be mapped into four or fewer micro-ops will be directly translated by this decoder.
More complex instructions will be used as indices into the microcode instruction sequencer (MIS) which will issue the
appropriate stream of micro-ops. The other two decoders are simpler. This is an attempt to match the die size and area
complexity to the actual performance characteristics of normal code. If the two less capable decoders see an
instruction that they are not qualified to decode, they will pass that instruction to the more capable one.

So, the thing to remember from this diagram is that three micro-ops per clock cycle come flowing out of the decoder.
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Microarchitecture: Register Renaming

The micro-ops exiting the instruction decoder go to the Register Alias Table (RAT). The Intel
architecture does not include a large register set. This is unfortunate in an out-of-order machine,
because it can lead to unnecessary delays on register reuse.  So, we rename the logical registers
specified by the program source to physical registers that reside in the reorder buffer (ROB),
which we will see in a later diagram.

This is the end of the in-order part of the processor.
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Microarchitecture: Out-of-Order Core

In the previous diagram the micro-ops were flowing out of the decoder and heading for the out-of-order core of the
machine. If you look carefully at the  bottom center of the picture, you'll see the micro-ops actually go to two different
places. One place is the reservation station (RS), and the other is the reorder buffer (ROB).

The micro-ops have to go to the reorder buffer because we must have an in-order back end. In order to reimpose
program order on the micro-ops later we have to know what order they belong in. When the micro-ops flow into the
reorder buffer they effectively take a place in line so that we can remember how to retire them later and keep the right
program semantics.

Micro-ops also go to the reservation station so they can be sent to the actual execution units. There are 20 entries in
the reservation station, and each micro-op will take up one slot in that unit. The reservation station is not a generic
FIFO or simple data structure; it is more generalized. Each entry can handle integer, floating point, flags--anything
that is "renamable" and can be part of the execution of the machine.

It appears from this picture that there is one integer execution unit, one floating unit, one address generation unit
(AGU), etc. That is because the picture was too cluttered to show the actual structure, as you see in the next diagram.

9

Implementation: Microarchitecture

• In-Order Front End

• Out-of-order Core

External Bus

MOB

IEU

MIU

AGU

FEU

ROB RRF

BTB

BIU

IFU

I
D MIS

RAT

R
S

L2

DCU



10

Microarchitecture: Execution Core (RS and EUs)

The reservation station (RS) actually has five ports. You will notice on Port 0 that there are several units attached to it:
integer, floating point adder, integer divide, floating point divide, floating point multiply and a shifter. Why is all that
hanging off one port? The main reason is that the floating point units need a wider data path. The intermediate data
form of a floating point value is 86 bits wide. This requires two operands and one result -- that’s a lot of bits. Rather
than reproducing that on every port, we balanced the processor by putting the floating point units on Port 0, shared
with some integer EU’s, and more integer capabilities on Port 1. Port 1 has an integer execution unit (EU) and the
jump execution unit.

Ports 2, 3, and 4 are dedicated to memory accesses. Port 2 generates the load addresses through the address generation
unit (AGU). Ports 3 and 4 generate the store addresses through their own AGU.

Each of these ports has its own writeback path back to the reservation station -- high performance needs very high
bandwidth back to the reservation station. It made the picture here too cluttered to show that there is a full cross bar
between all those ports so that any returning result could be bypassed to any other unit for the next clock cycle. This is
crucial for high performance in back-to-back micro-ops.

Once the reservation station has picked a micro-op to send out to an execution unit, it goes out on the appropriate port,
it executes, and the result comes back. The result goes to two different places. One is back to the reservation station.
Why? Because there may be other micro-ops in that reservation station waiting for that very piece of data before they
themselves become data-ready and able to execute.
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The other place is the reorder buffer. It determines which micro-ops at any given moment are
capable of being retired. They are capable of being retired only if they have actually executed,
they have all the results ready, it is their turn in line and there is no other thing pending. We will
return to retirement momentarily, but the important thing is that when the micro-op has actually
executed, the results go back to the reorder buffer so that the ROB knows that it is completed.
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Microarchitecture: In-order Retirement

By retirement we are referring to the act of taking the speculative state in the machine and
permanently and irrevocably committing it to permanent machine state elsewhere in the machine.
What may not have been obvious is that most of this machine is speculative. At any given moment
you can flush it all and not lose program correctness. You do not want to do that very often, of
course, because for performance reasons you want to keep the machine busy. Mispredicted
branches, interrupts, breakpoints, traps and faults can cause some or all of the speculative state to
be flushed.

The in-order retirement process is the act of not changing your mind any more. When a micro-op
has executed and the ROB knows it is from the path of certain retirement and it is that micro-op's
turn, it is retired. Retirement means taking data that was speculatively created and writing it into
the retirement register file (RRF). If you looked inside the RRF, you would actually find entries
like EAX or Floating Stack Entry #3, whereas in the reorder buffer there are 40 slots that are
generalized (no dedicated EAX).
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So now you’ve seen the basic way that the machine flows, and the way micro-ops flow through
the machine.  It may have occurred to you that there seems to be a lot of work going on in here, so
how deeply pipelined must this machine be?

The flow of micro-ops through the P6 processor is controlled by the super-pipeline shown above.
Were you to count from left to right, you would end up with 14, but we don’t consider this
machine a 14-stage pipeline, because some of these stages overlap almost all the time.

You’ll notice one further thing. We do not show it as one long set of boxes because it is not
implemented as one big pipeline. The problem with creating one long pipeline is that the aggregate
pipeline would have to run at the speed of the slowest stage. So we segmented the pipeline into the
three pieces you see here. They correspond to the three pieces you’ve already seen:

    Pipeline of in-order front end

    Pipeline of out-of-order core

    Pipeline of in-order retirement

The diagonal slashes are intended to represent the queuing effect. There is some time that goes by
between the pipe segments as micro-ops flow from one pipe segment into the next.
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Processor Pipeline: In-order Front End

The in-order front end involves eight clock cycles. The first one identifies the next instruction
pointer (IP). As you recall, that is the branch target buffer deciding where is the best place to look
in the Icache for the next cache line.

The next 2-1/2 clock cycles are the Icache access. The next 2-1/2 after that are the decode,
including the three decoders and instruction alignment. The clock cycle after that is the register
rename, which is at the end of the in-order pipeline.

Finally, the reservation station write cycle can usually be overlapped with at least one of the clock
cycles in the next pipeline segment.

14

I1 I2 I3 I4 I5 I6 I7 I8

O1 O2 O3

R1 R2 R3

Implementation: Pipeline

Next
IP

Reg
Ren

RS
Wr

Ex

Icache Decode

RS disp

Retirement

• In-Order Front End



15

Processor Pipeline: Out-of-Order Core

Next we enter the out-of-order core, which as you might remember was the entry into the
reservation station and the writing into the ROB.

For an integer op, say in a register-to-register add, that is a one-cycle execution in this machine.

So it is shown as three cycles here, two cycles for the reservation station to correctly identify
which micro-ops have all the operands and are ready to go, and then one cycle for the actual
execution and the return of the results.

There are other pipeline segments not shown, for example the memory subsystem or floating
point, which have deeper latency. For floating point the execution state would have stretched out
several additional cycles. The memory subsystem is an entirely different system and the pipeline is
much more difficult than this one, so we did not use it as an example.

Once an execution unit has created its result, the result flows back to the reservation station to
enable future micro-ops and also flows down into the reorder buffer to enable retirement.
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Processor Pipeline: In-order Retirement

The retirement process actually takes three clock cycles. Part of that is trying to make sure that we
only retire things as a group. For example, any given Intel architecture instruction may in fact map
into one micro-op or it could map into several.

The retirement process has to make sure that if you retire any micro-ops of an instruction you
retire all of them automatically. Otherwise the machine would have inconsistent state if it
happened to take an interrupt at the wrong moment. So, the retirement process has a fair number
of edge conditions to make sure it gets it right. That is why it takes extra clock cycles.

Now you’ve seen how the pipeline basically works and how many clock cycles are in it. This is
why one of the technical phrases included in Dynamic Execution is "Superpipelined." This
superpipelining allows us to push the clock rate as high as possible.

We mentioned earlier that the BTB was a much more complicated, capable design than in previous
processors. The reason is the deep superpipelining - with this many clock stages, it pays to fill the
pipe with the right work to do.
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Circuits: BiCMOS

Now for some of the circuit implementation techniques.

There is a nominal relative line of 1.0 about 3/4 of the way up this graph. It shows what CMOS alone would have
achieved in terms of speed path delay vs. fanout.

 But we did not use only CMOS in this machine; we used BiCMOS, and the question this graph is addressing is "how
much did the bipolar aspect of this affect us in this design?"

What you see is that with fanout across the x axis, anything above 2 or 3 loads bipolar suddenly wins big in our
methodology, especially when you get up to fanout of 5 or 6 where CMOS would have to go to two stages to do the
buffering. We are at about a 0.7 speed path delay of normal CMOS. In other words, it is 30% faster! This continues
for even higher fan outs.

One of the standard concerns people raise to using BiCMOS is if the Vcc goes too low, the efficiency of the process
goes down and you lose the effect. The second gray line above the first one is our response to that. That is 2.05 volts
on Vcc and it is still 30% faster than the CMOS was. In other words, this was a win for us.

Across the board, we estimate that using bipolar was responsible for about 15% of our overall clock speed.
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Circuits: Delayed Precharge Domino

This diagram looks like standard domino logic, except for the additions to the right. For example,
there are two delays in between the two stages. The thing to notice is on the left it looks more or
less like standard domino logic, where you have a clock in series with everything at the bottom of
the picture, a Vcc keeper precharge section at the top and logic down at the bottom.

There are two basic hazards with standard domino logic. One is the logic hazard: you have to
carefully manage the precharge time vs. the gating time. If you get them on at the same time you
are in danger of corrupting the data and losing the hold time to the next stage. The other hazard is
that precharge and the logic can in fact look like they are in series and a timing error could create a
flow through path for power.

To avoid the hazards we included timing delays in between the two stages. We tuned these delays
to make sure that these two hazards were both addressed at the same time. By carefully staging
when the precharge occurred on the next stage, we carefully kept it away from the place that the
logic was being done. This solved both the problems.
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You’ve now seen some implementation details, the micro architecture block diagram, the
pipelining, and some of the circuit techniques.

Let’s take our attention to a higher level now.  Where does this design fit in a systes environment?
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P6 System Bus

Let’s take our attention to a higher level now. Where does this design fit in a systems
environment? This diagram looks essentially like a standard block diagram of a computer system
except for the L2, which is in the same package as the CPU.

The first thing to note is that when we got to this point in designing the P6, we saw how to design
a fast CPU, but if we left the rest of the machine alone we would have taken a relatively balanced
system and unbalanced a piece of it.  The problem with an unbalanced system is you can’t predict
the performance. And generally it has unpleasant surprises in other ways. So we set out to explore
what other things needed attention.

That resulted in the following bus: The P6 bus is a 64-bit data bus. It has 36 bits of physical
addressing. It’s transaction based which means that any access that’s looking for data gets on the
bus with the request and gets off the bus until the data is coming back.  In the meantime, other
agents on the bus can use that bandwidth. It runs at 1/2, 1/3, or 1/4 of the CPU clock speed and it
has snooping support built in for multiprocessing.
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Glueless Multi-Processor Environment

Once we had solved the bus problem, we were just a short step away from glueless MP. All that
was lacking was some initialization protocol and a few details about handling interrupts. In a P6
system, all it takes to do MP is to take the wires from one CPU, stretch them sideways and put
another socket down. The P6 does all the rest of the work. The question of how far you can stretch
this expansion is answered on the next diagram.
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Complete P6 MP System

The P6 processor's glueless multiprocessing model allows expansion up to four processors. If you
do use four P6 processors, however, the net aggregate requirement for bandwidth is such that the
system should include more memory and more IOs. We made provisions for those as well.

The diagram shows a fully expanded P6 system. The thing that is interesting about it is that it is
extremely high power and high performance, but resides in a very small box. It is unprecedented
in its capability.
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Test and Validation

Now a few words about testing and validation. How did we ensure the best possible functionality in a processor as
complicated as the P6?

We allocated a lot of our resources and people to this issue, including several teams working on the validation of the
CPU, the L2 and all the members of the chipset plus the bus, running billions of simulation cycles. We paid a lot of
attention to a concept we called "correct by design." Correct by design does not mean we can prove there are no
errata. Any machine more complicated than a hammer has errata in it. However, we paid tremendous attention to
making sure that we got the design right up front--it is far better to avoid an errata than to have to find it later. Correct
by design in our case meant, for example, the usage of code assertions, which is a technique that operating system
vendors, compiler writers and people who designed large complex systems have found useful in the past. It means the
designers can capture the specific knowledge they had about some boundary conditions inside the unit when they were
writing the Register Transfer Level (RTL) code. This allows them to say, "When you get to this part of the code, X
had never better equal Y. That would cause my circuit to malfunction." They don't have to say why--they just have to
capture that in one line. From then on, all the validators who don't know about that corner case can use this
knowledge. If that corner case ever becomes not true, a flag pops up and it alerts the validators that there is an error.
They do not know what it is, but they know there is an error. This is extremely useful for the same reasons that it is
useful in compilers and operating systems.

<more on next slide>
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New coverage tools: We wrote, used and deployed extensively a set of coverage tools in the validation of our part.
These coverage tools told us which sections of the overall design were being very well tested and which ones needed
extra help. This allowed us to steer our efforts toward the places that needed the help--a much more efficient way to
use the people and the resources.

Another thing we did was to use coding conventions. It allowed us to look at statements in the RTL and notice that
different clock stages are being combined logically. It also drew our attention to places where there might be an error.

Many of the simulations that we did included not just the CPU but 2-3-4 CPU's plus the chipset, including the bus.
This was extremely useful. In fact, the efficiency of the approach was proven when we got first silicon back on all of
the chipset, plus the L2, plus the CPU and it all worked together.

The CPU also included extensive testability and debug hooks. Testability hooks basically mean that any feature could
be disabled while maintaining correct functionality--allowing reconfiguration for testing. If nothing else this gave us a
strong clue as to what the problem might be if there was indeed a problem. In the best case it allowed us to work
around other problems in ways we had not conceived of during the design phase.

The P6 processor has approximately two times as many transistors as the Pentium(R) processor. We ran 15 times as
many pre-silicon simulation cycles to ensure that errata were minimized as much as possible.
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So in summary, you’ve seen the current status and that there’s a complete implementation
involved.  You also saw the block diagram, the pipelining and some of the circuit techniques.  We
discussed the need for a balanced system and the requirement for the same, and you saw how met
those requirements by improving not just the CPU but the L2, the chipset, and the bus. And finally
we discussed how we’ve given the P6 the most thorough testing and validation to ensure it
delivers the best possible functionality.
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