
P6 and
Native Signal Processing

Algorithms

Native Signal Processing, or NSP, is a major industry movement to
enhance the base capabilities of the PC platform by running signal
processing tasks on a powerful host processor using basic system
resources (memory, chip sets) rather than dedicated hardware.

This brief example demonstrates how the P6’s Dynamic Execution
architecture is particularly good at NSP-type algorithms.

Copyright ©1995, Intel Corporation. All rights reserved.

Dynamic Execution Speeds NSP Algorithms

● At their core, many NSP algorithms have a tight loop

 i = 0

 tightloop: load data(i)

 process data(i)

 store data(i)

 i = i + 1

 if i<imax goto tightloop

Let’s see how the P6 with Dynamic Execution executes this loop

Dynamic Execution Speeds NSP Algorithms

● FIRST pass into the loop

 i = 0

 tightloop: load data(i)

 process data(i)

 store data(i)

 i = i + 1

 if i<imax goto tightloop

– P6 starts first load which is a cache miss
– Speculatively executes increment and loop check
– Predicts branch back to tightloop

i = 1 2 3 4 5

 L1 L2 L3 L4 L5

 - - - P1 P2

 - - - - S1

 x x x x x

 x x x x x

Dynamic Execution Speeds NSP Algorithms

● SECOND pass into the loop

 i = 0

 tightloop: load data(i)

 process data(i)

 store data(i)

 i = i + 1

 if i<imax goto tightloop

– P6 starts second load which is a cache miss
– Speculatively executes increment and loop check
– Predicts branch back to tightloop

i = 1 2 3 4 5

 L1 L2 L3 L4 L5

 - - - P1 P2

 - - - - S1

 x x x x x

 x x x x x

Dynamic Execution Speeds NSP Algorithms

● THIRD pass into the loop

 i = 0

 tightloop: load data(i)

 process data(i)

 store data(i)

 i = i + 1

 if i<imax goto tightloop

– P6 starts third load which is a cache miss
– Speculatively executes increment and loop check
– Predicts branch back to tightloop

i = 1 2 3 4 5

 L1 L2 L3 L4 L5

 - - - P1 P2

 - - - - S1

 x x x x x

 x x x x x

Dynamic Execution Speeds NSP Algorithms

● FOURTH pass into the loop

 i = 0

 tightloop: load data(i)

 process data(i)

 store data(i)

 i = i + 1

 if i<imax goto tightloop

– P6 starts fourth load which is a cache miss
– First data element returns, process it
– Speculatively increment, loop check and branch

i = 1 2 3 4 5

 L1 L2 L3 L4 L5

 - - - P1 P2

 - - - - S1

 x x x x x

 x x x x x

Dynamic Execution Speeds NSP Algorithms

● FIFTH pass into the loop

 i = 0

 tightloop: load data(i)

 process data(i)

 store data(i)

 i = i + 1

 if i<imax goto tightloop

– P6 starts fifth load which is a cache miss
– Second data element returns, process it
– Store the processed first data element
– Speculatively increment, loop check and branch

i = 1 2 3 4 5

 L1 L2 L3 L4 L5

 - - - P1 P2

 - - - - S1

 x x x x x

 x x x x x

Dynamic Execution Speeds NSP Algorithms

● P6, using DE, is automatically UNROLLING LOOPS

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

i = 12

i = 13

i = 14

i = 15

i = 16

i = 17

i = 18

i = 19

i = 20

etc.

– Elements i=1,2,3,4,5 are processed in parallel
– P6 does useful work while waiting for cache miss
– In this example, got a 5x execution speed up

time

Parallelism
extracted
by P6 CPU

