
Intel® Celeron™ Processor
Specification Update

Release Date: November 1999

Order Number: 243748-019

The Intel® Celeron™ processor may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are documented in this
Specification Update.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating
to sale and/or use of Intel products including liability or warranties relating to fitness for particular purpose, merchantability or
infringement or any patent, copyright or other intellectual property right. Intel products are not intended for use in medical,
life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

The Celeron™ processor may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

The Specification Update should be publicly available following the last shipment date for a period of time equal to the
specific product’s warranty period. Hardcopy Specification Updates will be available for one (1) year following End of Life
(EOL). Web access will be available for three (3) years following EOL.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com
Copyright © Intel Corporation 1999.
*Third-party brands and names are the property of their respective owners

i

CONTENTS
REVISION HISTORY.. ii

PREFACE ... iv

Specification Update for the Intel® Celeron™ Processor

GENERAL INFORMATION.. 1

Intel® Celeron™ Processor and Boxed Intel® Celeron™ Processor Markings (S.E.P. Package)................. 1

Intel® Celeron™ Processor and Boxed Intel® Celeron™ Processor Markings (PPGA Package) 2

IDENTIFICATION INFORMATION... 3

SUMMARY of CHANGES.. 6

Summary of Errata ... 7

Summary of Documentation Changes ...10

Summary of Specification Clarifications...10

Summary of Specification Changes...10

ERRATA...11

DOCUMENTATION CHANGES..37

SPECIFICATION CLARIFICATIONS ..39

SPECIFICATION CHANGES..41

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

ii

REVISION HISTORY
Date of Revision Version Description

April 1998 -001 This document is the first Specification Update for the Intel®
Celeron™ processor.

May 1998 -002 Added Errata 24 through 28.

June 1998 -003 Updated S-spec Table. Updated Summary Table of Changes.
Updated Erratum 2 and 26. Added Errata 29 and 30. Added
Documentation Changes 7 through 12. Added Specification
Clarification 6 and 7.

July 1998 -004 Updated S-spec Table. Added Documentation Changes 13 through
16. Added Specification Clarifications 7 through 12. Added
Specification Change 1.

August 1998 -005 Updated Summary Table of Changes. Changed numbering in order
to maintain consistency with other product Specification Updates.
Updated Errata 6 and 38. Added Errata 56 through 59. Updated
Specification Clarification 5.

September 1998 -006 Updated S-spec table. Updated Erratum 56. Added Errata 60
through 62.

October 1998 -007 Implemented new numbering nomenclature. Updated Errata C1 and
C27. Added Errata C37 through C39. Added Specification
Clarification C15. Added Specification Change C2.

November 1998 -008 Updated Erratum C23. Added Erratum C40. Updated Documentation
Change C10. Added Documentation Changes C17 and C18. Added
Specification Change C3.

December 1998 -009 Added the Intel Celeron Processor (PPGA) markings. Added the
mB0 stepping to the Processor Identification Information table and
the Table of Changes. Added Errata C41 and C42.

December 1998 -010 Updated Identification Information table

January 1999 -011 Added Erratum C3AP. Added Documentation Changes C19 and
C20. Updated Processor Identification Information table.

February 1999 -012 Updated Processor Identification Information table.

March 1999 -013 Updated Processor Markings, Summary Table of Changes,
Documentation Changes, Specification Clarifications, and
Specification Changes sections. Added Specification Change C1.

May 1999 -014 Updated the Processor Identification Information table. Added
Erratum C43.

June 1999 -015 Added Erratum C44. Added Documentation Change C1. Added
Specification Clarifications C2 and C3. Added Specification Change
C1.

July 1999 -016 Added Erratum C45.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

iii

REVISION HISTORY
Date of Revision Version Description

August 1999 -017 Added Documentation Change C2. Updated Preface paragraph.
Updated Codes Used in Summary Table. Updated column heading
in Errata, Documentation Changes, Specification Clarifications and
Specification Changes tables.

October 1999 -018 Added ‘Brand Id’ to Identification Information table. Updated
Processor Identification Information Table. Added Errata C46.

November 1999 -019 Added Errata C47 and C48. Added Documentation Change C3.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

iv

PREFACE

This document is an update to the specifications contained in the following documents:

• Pentium® II Processor Developer’s Manual (Order Number 243502)

• P6 Family of Processors Hardware Developer's Manual (Order Number 244001)

• Intel® Celeron™ Processor datasheet (Order Number 243658)

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3 (Order Numbers 243190, 243191,
and 243192, respectively)

It is intended for hardware system manufacturers and software developers of applications, operating systems,
or tools. It contains S-Specs, Errata, Documentation Changes, Specification Clarifications and, Specification
Changes.

Nomenclature
S-Spec Number is a five-digit code used to identify products. Products are differentiated by their unique
characteristics, e.g., core speed, L2 cache size, package type, etc. as described in the processor identification
information table. Care should be taken to read all notes associated with each S-Spec number.

Errata are design defects or errors. Errata may cause the Intel Celeron processor’s behavior to deviate from
published specifications. Hardware and software designed to be used with any given processor must assume
that all errata documented for that processor are present on all devices unless otherwise noted.

Documentation Changes include typos, errors, or omissions from the current published specifications. These
changes will be incorporated in the next release of the specifications.

Specification Clarifications describe a specification in greater detail or further highlight a specification’s
impact to a complex design situation. These clarifications will be incorporated in the next release of the
specifications.

Specification Changes are modifications to the current published specifications for the Intel Celeron
processor. These changes will be incorporated in the next release of the specifications.

Specification Update for the
Intel

®
 Celeron™ Processor

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

1

GENERAL INFORMATION

Intel® Celeron™ Processor and Boxed Intel ® Celeron™ Processor
Markings (S.E.P. Package)

®

i m
 ©

’98

celeron ™

Static White Silkscreen marks

 2
66

/6
6

 C
O

A
F

F
F

F
F

F
F

F
 S

Y
Y

Y
Y

Dynamic laser mark area

 NOTES:

• SYYYY = S-spec Number.

• FFFFFFFF = FPO # (Test Lot Traceability #).
COA = Country of Assembly.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

2

Intel® Celeron™ Processor and Boxed Intel ® Celeron™ Processor
Markings (PPGA Package)

celeronTM

AAAAAAAZZZ
LLL SYYYY

Country of Origin

FFFFFFFF-XXXX
 M C ’98i

Top Bottom

eint l®

NOTES:

� AAAAAAA = Product Code

� ZZZ = Processor Speed (MHz)

� LLL = Integrated Level-Two Cache Size (in Kilobytes)

� SYYYY = S-Spec Number

� FFFFFFFF-XXXX = Assembly Lot Tracking Number

•

2-D Matrix Mark
Intel UCC#
Order Code (Product - speed)
S Number
Lot Number (date, factory)

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

3

IDENTIFICATION INFORMATION

Complete identification information of the Intel Celeron processor can be found in the Intel Processor
Identification and the CPUID Instruction application note (Order Number 241618).

The Intel® Celeron™ processor can be identified by the following values:

Family1 Model2 Brand ID3

0110 0101 00h = Not Supported

0110 0110 00h = Not Supported

NOTES:
1. The Family corresponds to bits [11:8] of the EDX register after RESET, bits [11:8] of the EAX register after the CPUID

instruction is executed with a 1 in the EAX register, and the generation field of the Device ID register accessible
through Boundary Scan.

2. The Model corresponds to bits [7:4] of the EDX register after RESET, bits [7:4] of the EAX register after the CPUID
instruction is executed with a 1 in the EAX register, and the model field of the Device ID register accessible through
Boundary Scan.

3. The Brand ID corresponds to bits [7:0] of the EBX register after the CPUID instruction is executed with a 1 in the EAX
register.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

4

The Intel® Celeron™ processor’s second level (L2) cache size can be determined by the following register
contents:

0-Kbyte Unified L2 Cache1 40h
128-Kbyte Unified L2 Cache1 41h

NOTE:
For the Intel Celeron processor, the unified L2 cache size corresponds to the value in bits [3:0] of the EDX register after the
CPUID instruction is executed with a 2 in the EAX register. Other Intel microprocessor models or families may move this
information to other bit positions or otherwise reformat the result returned by this instruction; generic code should parse the
resulting token stream according to the definition of the CPUID instruction.

Intel® Celeron™ Processor Identification Information

S-Spec
Core

Stepping

L2 Cache
Size

(Kbytes) CPUID
Speed (MHz)

Core/Bus

Package
and

Revision Notes

SL2SY dA0 0 0650h 266/66 SEPP Rev. 1

SL2YN dA0 0 0650h 266/66 SEPP Rev. 1 1

SL2YP dA0 0 0650h 300/66 SEPP Rev. 1

SL2Z7 dA0 0 0650h 300/66 SEPP Rev. 1 1

SL2TR dA1 0 0651h 266/66 SEPP Rev. 1

SL2QG dA1 0 0651h 266/66 SEPP Rev. 1 1

SL2X8 dA1 0 0651h 300/66 SEPP Rev. 1

SL2Y2 dA1 0 0651h 300/66 SEPP Rev. 1 1

SL2Y3 dB0 0 0652h 266/66 SEPP Rev. 1 1

SL2Y4 dB0 0 0652h 300/66 SEPP Rev. 1 1

SL2WM mA0 128 0660h 300A/66 SEPP Rev. 1 3

SL32A mA0 128 0660h 300A/66 SEPP Rev. 1 1

SL2WN mA0 128 0660h 333/66 SEPP Rev. 1 3

SL32B mA0 128 0660h 333/66 SEPP Rev. 1 1

SL376 mA0 128 0660h 366/66 SEPP Rev. 1

SL37Q mA0 128 0660h 366/66 SEPP Rev. 1 1

SL39Z mA0 128 0660h 400/66 SEPP Rev. 1

SL37V mA0 128 0660h 400/66 SEPP Rev. 1 1

SL3BC mA0 128 0660h 433/66 SEPP Rev. 1

SL35Q mB0 128 0665h 300A/66 PPGA 2

SL36A mB0 128 0665h 300A/66 PPGA

SL35R mB0 128 0665h 333/66 PPGA 2

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

5

Intel ® Celeron™ Processor Identification Information

S-Spec
Core

Stepping

L2 Cache
Size

(Kbytes) CPUID
Speed (MHz)

Core/Bus

Package
and

Revision Notes

SL36B mB0 128 0665h 333/66 PPGA

SL36C mB0 128 0665h 366/66 PPGA

SL35S mB0 128 0665h 366/66 PPGA 2

SL3A2 mB0 128 0665h 400/66 PPGA

SL37X mB0 128 0665h 400/66 PPGA 2

SL3BA mB0 128 0665h 433/66 PPGA

SL3BS mB0 128 0665h 433/66 PPGA 2

SL3EH mB0 128 0665h 466/66 PPGA

SL3FL mB0 128 0665h 466/66 PPGA 2

SL3FY MB0 128 0665h 500/66 PPGA

SL3LQ MB0 128 0665h 500/66 PPGA 2

SL3FZ MB0 128 0665h 533/66 PPGA

SL3PZ MB0 128 0665h 533/66 PPGA 2

NOTES:

1. This is a boxed Intel Celeron processor with an attached fan heatsink.

2. This is a boxed Intel Celeron processor with an unattached fan heatsink.

3. This part also ships as a boxed Intel Celeron processor with an attached fan heatsink.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

6

SUMMARY OF CHANGES

The following table indicates the Errata, Documentation Changes, Specification Clarifications, or Specification
Changes that apply to Intel Celeron processors. Intel intends to fix some of the errata in a future stepping of
the component, and to account for the other outstanding issues through documentation or specification
changes as noted. This table uses the following notations:

CODES USED IN SUMMARY TABLE

X: Erratum, Documentation Change, Specification Clarification, or Specification
Change applies to the given processor stepping.

(No mark) or (blank box): This item is fixed in or does not apply to the given stepping.

Fix: This erratum is intended to be fixed in a future stepping of the component.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

Doc: Intel intends to update the appropriate documentation in a future revision.

PKG: This column refers to errata on the Pentium® II processor substrate.

AP: APIC related erratum.

Shaded: This item is either new or modified from the previous version of the document.

Each Specification Update item is prefixed with a capital letter to distinguish the product. The key below
details the letters that are used in Intel’s microprocessor Specification Updates:

A = Pentium® II processor

B = Mobile Pentium® II processor

C = Intel® Celeron™ processor

D = Pentium® II Xeon™ processor

E = Pentium® III processor

G = Pentium® III Xeon™ processor

H = Intel® Mobile Celeron™ processor

The Specification Updates for the Pentium® processor, Pentium® Pro processor, and other Intel products do
not use this convention.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

7

Summary of Errata

NO. dA0 dA1 dB0 mA0 mB0 PKG Plans ERRATA

C1 X X X X X NoFix FP Data Operand Pointer may be
incorrectly calculated after FP
access which wraps 64-Kbyte
boundary in 16-bit code

C2 X X X X X NoFix Differences exist in debug exception
reporting

C3 X X X X X NoFix Code fetch matching disabled debug
register may cause debug exception

C4 X X X X X NoFix FP inexact-result exception flag may
not be set

C5 X X X X X NoFix BTM for SMI will contain incorrect
FROM EIP

C6 X X X X X NoFix I/O restart in SMM may fail after
simultaneous MCE

C7 X X X X X NoFix Branch traps do not function if BTMs
are also enabled

C8 X X X X X NoFix Machine check exception handler
may not always execute successfully

C9 X X X X X NoFix LBER may be corrupted after some
events

C10 X X X X X NoFix BTMs may be corrupted during
simultaneous L1 cache line
replacement

C11 X X X X Fix Potential early deassertion of
LOCK# during split-lock cycles

C12 X X X X X NoFix A20M# may be inverted after
returning from SMM and Reset

C13 X X Fix Reporting of floating-point exception
may be delayed

C14 X X X X X NoFix Near CALL to ESP creates
unexpected EIP address

C15 X X Fix Built-in self test always gives
nonzero result

C16 X X X X Fix THERMTRIP# may not be asserted
as specified

C17 X Fixed Cache state corruption in the
presence of page A/D-bit setting and
snoop traffic

C18 X Fixed Snoop cycle generates spurious
machine check exception

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

8

Summary of Errata

NO. dA0 dA1 dB0 mA0 mB0 PKG Plans ERRATA

C19 X X Fixed MOVD/MOVQ instruction writes to
memory prematurely

C20 X X X X X NoFix Memory type undefined for
nonmemory operations

C21 X X Fixed Bus protocol conflict with optimized
chipsets

C22 X X X X X NoFix FP Data Operand Pointer may not
be zero after power on or Reset

C23 X X X X X NoFix MOVD following zeroing instruction
can cause incorrect result

C24 X X X X X NoFix Premature execution of a load
operation prior to exception handler
invocation

C25 X X X X X NoFix Read portion of RMW instruction
may execute twice

C26 X X X X X Fix Test pin must be high during power
up

C27 X X X X X Fix Intervening writeback may occur
during locked transaction

C28 X X X X X NoFix MC2_STATUS MSR has model-
specific error code and machine
check architecture error code
reversed

C29 X X X X X NoFix MOV with debug register causes
debug exception

C30 X X X X X NoFix Upper four PAT entries not usable
with Mode B or Mode C paging

C31 X X X Fixed Incorrect memory type may be used
when MTRRs are disabled

C32 X X X X Fixed Misprediction in program flow may
cause unexpected instruction
execution

C33 X X X X X NoFix Data Breakpoint Exception in a
Displacement Relative Near Call
May Corrupt EIP

C34 X X X X X NoFix System bus ECC not functional with
2:1 ratio

C35 X X X X Fixed Fault on REP CMPS/SCAS
operation may cause incorrect EIP

C36 X X X X X NoFix RDMSR and WRMSR to invalid
MSR address may not cause GP
fault

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

9

Summary of Errata

NO. dA0 dA1 dB0 mA0 mB0 PKG Plans ERRATA

C37 X X X X X NoFix SYSENTER/SYSEXIT instructions
can implicitly load “null segment
selector” to SS and CS registers

C38 X X X X X NoFix PRELOAD followed by EXTEST
does not load boundary scan data

C39 X X X X X NoFix Far jump to new TSS with D-bit
cleared may cause system hang

C40 X X X Fixed Incorrect chunk ordering may
prevent execution of the machine
check exception handler after
BINIT#

C41 X X X X Fixed UC write may be reordered around a
cacheable write

C42 X X X X X NoFix Resume Flag may not be cleared
after debug exception

C43 X X NoFix Internal cache protocol violation may
cause system hang

C44 X X X X X NoFix GP# fault on WRMSR to
ROB_CR_BKUPTMPDR6

C45 X X X X NoFix Machine Check Exception may
occur due to improper line eviction in
the IFU

C46 X X X X NoFix Lower bits of SMRAM SMBASE
register cannot be written with an
ITP

C47 X X X X NoFix Task switch caused by page fault
may cause wrong PTE and PDE
access bit to be set

C48 X X X X NoFix Cross-modifying code operations on
a jump instruction may cause a
general protection fault

C1AP X X X X X NoFix APIC access to cacheable memory
causes SHUTDOWN

C2AP X X X X X NoFix Write to mask LVT (programmed as
EXTINT) will not deassert
outstanding interrupt

C3AP X X X X X NoFix Misaligned locked access to APIC
space results in hang

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

10

Summary of Documentation Changes

NO. dA0 dA1 dB0 mA0 mB0 PKG Plans DOCUMENTATION CHANGES

C1 X X X X X Doc STPCLK# pin definition

C2 X X X X X Doc Invalidating caches and TLBs

C3 X X X X Doc Handling of self-modifying and
cross-modifying code

Summary of Specification Clarifications

NO. dA0 dA1 dB0 mA0 mB0 PKG Plans SPECIFICATION CLARIFICATIONS

C1 X X X X X Doc PWRGOOD inactive pulse width

C2 X X X X X Doc Floating point opcode clarification

C3 X X X X X Doc MTRR initialization clarification

Summary of Specification Changes

NO. dA0 dA1 dB0 mA0 mB0 PKG Plans SPECIFICATION CHANGES

C1 X X X X X Doc RESET# pin definition

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

11

ERRATA

C1. FP Data Operand Pointer May Be Incorrectly Calculated After
FP Access Which Wraps 64-Kbyte Boundary in 16-Bit Code

Problem: The FP Data Operand Pointer is the effective address of the operand associated with the last
noncontrol floating-point instruction executed by the machine. If an 80-bit floating-point access (load or store)
occurs in a 16-bit mode other than protected mode (in which case the access will produce a segment limit
violation), the memory access wraps a 64-Kbyte boundary, and the floating-point environment is subsequently
saved, the value contained in the FP Data Operand Pointer may be incorrect.

Implication: A 32-bit operating system running 16-bit floating-point code may encounter this erratum, under
the following conditions:

• The operating system is using a segment greater than 64 Kbytes in size.

• An application is running in a 16-bit mode other than protected mode.

• An 80-bit floating-point load or store which wraps the 64-Kbyte boundary is executed.

• The operating system performs a floating-point environment store (FSAVE/FNSAVE/FSTENV/FNSTENV)
after the above memory access.

• The operating system uses the value contained in the FP Data Operand Pointer.

Wrapping an 80-bit floating-point load around a segment boundary in this way is not a normal programming
practice. Intel has not currently identified any software which exhibits this behavior.

 Workaround: If the FP Data Operand Pointer is used in an OS which may run 16-bit floating-point code,
care must be taken to ensure that no 80-bit floating-point accesses are wrapped around a 64-Kbyte boundary.

Status: For the steppings affected see the Summary Table of Changes at the beginning of this section.

C2. Differences Exist in Debug Exception Reporting

Problem: There exist some differences in the reporting of code and data breakpoint matches between that
specified by previous Intel processors’ specifications and the behavior of the Intel Celeron processor, as
described below:

Case 1: The first case is for a breakpoint set on a MOVSS or POPSS instruction, when the instruction
following it causes a debug register protection fault (DR7.gd is already set, enabling the fault). The processor
reports delayed data breakpoint matches from the MOVSS or POPSS instructions by setting the matching
DR6.bi bits, along with the debug register protection fault (DR6.bd). If additional breakpoint faults are matched
during the call of the debug fault handler, the processor sets the breakpoint match bits (DR6.bi) to reflect the
breakpoints matched by both the MOVSS or POPSS breakpoint and the debug fault handler call. The Intel
Celeron processor only sets DR6.bd in either situation, and does not set any of the DR6.bi bits.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

12

Case 2: In the second breakpoint reporting failure case, if a MOVSS or POPSS instruction with a data
breakpoint is followed by a store to memory which crosses a 4-Kbyte page boundary, the breakpoint
information for the MOVSS or POPSS will be lost. Previous processors retain this information across such a
page split.

Case 3: If they occur after a MOVSS or POPSS instruction, the INT n, INTO, and INT3 instructions zero the
DR6.Bi bits (bits B0 through B3), clearing pending breakpoint information, unlike previous processors.

Case 4: If a data breakpoint and an SMI (System Management Interrupt) occur simultaneously, the SMI will
be serviced via a call to the SMM handler, and the pending breakpoint will be lost.

Case 5: When an instruction which accesses a debug register is executed, and a breakpoint is encountered
on the instruction, the breakpoint is reported twice.

Implication: When debugging or when developing debuggers for an Intel Celeron processor-based system,
this behavior should be noted. Normal usage of the MOVSS or POPSS instructions (i.e., following them with a
MOV ESP) will not exhibit the behavior of cases 1-3. Debugging in conjunction with SMM will be limited by
case 4.

Workaround: Following MOVSS and POPSS instructions with a MOV ESP instruction when using
breakpoints will avoid the first three cases of this erratum. No workaround has been identified for cases 4 or 5.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C3. Code Fetch Matching Disabled Debug Register May Cause
Debug Exception

Problem: The bits L0-3 and G0-3 enable breakpoints local to a task and global to all tasks, respectively. If
one of these bits is set, a breakpoint is enabled, corresponding to the addresses in the debug registers DR0-
DR3. If at least one of these breakpoints is enabled, any of these registers are disabled (i.e., Ln and Gn are
0), and RWn for the disabled register is 00 (indicating a breakpoint on instruction execution), normally an
instruction fetch will not cause an instruction-breakpoint fault based on a match with the address in the
disabled register(s). However, if the address in a disabled register matches the address of a code fetch which
also results in a page fault, an instruction-breakpoint fault will occur.

Implication: While debugging software, extraneous instruction-breakpoint faults may be encountered if
breakpoint registers are not cleared when they are disabled. Debug software which does not implement a
code breakpoint handler will fail, if this occurs. If a handler is present, the fault will be serviced. Mixing data
and code may exacerbate this problem by allowing disabled data breakpoint registers to break on an
instruction fetch.

 Workaround: The debug handler should clear breakpoint registers before they become disabled.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

13

C4. FP Inexact-Result Exception Flag May Not Be Set

 Problem: When the result of a floating-point operation is not exactly representable in the destination format
(1/3 in binary form, for example), an inexact-result (precision) exception occurs. When this occurs, the PE bit
(bit 5 of the FPU status word) is normally set by the processor. Under certain rare conditions, this bit may not
be set when this rounding occurs. However, other actions taken by the processor (invoking the software
exception handler if the exception is unmasked) are not affected. This erratum can only occur if the floating-
point operation which causes the precision exception is immediately followed by one of the following
instructions:

• FST m32real

• FST m64real

• FSTP m32real

• FSTP m64real

• FSTP m80real

• FIST m16int

• FIST m32int

• FISTP m16int

• FISTP m32int

• FISTP m64int

Note that even if this combination of instructions is encountered, there is also a dependency on the internal
pipelining and execution state of both instructions in the processor.

Implication: Inexact-result exceptions are commonly masked or ignored by applications, as it happens
frequently, and produces a rounded result acceptable to most applications. The PE bit of the FPU status word
may not always be set upon receiving an inexact-result exception. Thus, if these exceptions are unmasked, a
floating-point error exception handler may not recognize that a precision exception occurred. Note that this is
a “sticky” bit, i.e., once set by an inexact-result condition, it remains set until cleared by software.

 Workaround: This condition can be avoided by inserting two NOP instructions between the two floating-
point instructions.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C5. BTM for SMI Will Contain Incorrect FROM EIP

Problem: A system management interrupt (SMI) will produce a Branch Trace Message (BTM), if BTMs are
enabled. However, the FROM EIP field of the BTM (used to determine the address of the instruction which
was being executed when the SMI was serviced) will not have been updated for the SMI, so the field will
report the same FROM EIP as the previous BTM.

Implication: A BTM which is issued for an SMI will not contain the correct FROM EIP, limiting the
usefulness of BTMs for debugging software in conjunction with System Management Mode (SMM).

 Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

14

C6. I/O Restart in SMM May Fail After Simultaneous MCE

Problem: If an I/O instruction (IN, INS, REP INS, OUT, OUTS, or REP OUTS) is being executed, and if the
data for this instruction becomes corrupted, the Intel Celeron processor will signal a machine check exception
(MCE). If the instruction is directed at a device which is powered down, the processor may also receive an
assertion of SMI#. Since MCEs have higher priority, the processor will call the MCE handler, and the SMI#
assertion will remain pending. However, upon attempting to execute the first instruction of the MCE handler,
the SMI# will be recognized and the processor will attempt to execute the SMM handler. If the SMM handler is
completed successfully, it will attempt to restart the I/O instruction, but will not have the correct machine state,
due to the call to the MCE handler.

Implication: A simultaneous MCE and SMI# assertion may occur for one of the I/O instructions above. The
SMM handler may attempt to restart such an I/O instruction, but will have corrupted state due to the MCE
handler call, leading to failure of the restart and shutdown of the processor.

 Workaround: If a system implementation must support both SMM and MCEs, the first thing the SMM
handler code (when an I/O restart is to be performed) should do is check for a pending MCE. If there is an
MCE pending, the SMM handler should immediately exit via an RSM instruction and allow the machine check
exception handler to execute. If there is not, the SMM handler may proceed with its normal operation.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C7. Branch Traps Do Not Function If BTMs Are Also Enabled

Problem: If branch traps or branch trace messages (BTMs) are enabled alone, both function as expected.
However, if both are enabled, only the BTMs will function, and the branch traps will be ignored.

Implication: The branch traps and branch trace message debugging features cannot be used together.

 Workaround: If branch trap functionality is desired, BTMs must be disabled.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C8. Machine Check Exception Handler May Not Always Execute
Successfully

Problem: An asynchronous machine check exception (MCE), such as a BINIT# event, which occurs during
an access that splits a 4-Kbyte page boundary may leave some internal registers in an indeterminate state.
Thus, MCE handler code may not always run successfully if an asynchronous MCE has occurred previously.

Implication: An MCE may not always result in the successful execution of the MCE handler. However,
asynchronous MCEs usually occur upon detection of a catastrophic system condition that would also hang the
processor. Leaving MCEs disabled will result in the condition which caused the asynchronous MCE instead
causing the processor to enter shutdown. Therefore, leaving MCEs disabled may not improve overall system
behavior.

 Workaround: No workaround which would guarantee successful MCE handler execution under this
condition has been identified.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

15

C9. LBER May Be Corrupted After Some Events

Problem: The last branch record (LBR) and the last branch before exception record (LBER) can be used to
determine the source and destination information for previous branches or exceptions. The LBR contains the
source and destination addresses for the last branch or exception, and the LBER contains similar information
for the last branch taken before the last exception. This information is typically used to determine the location
of a branch which leads to execution of code which causes an exception. However, after a catastrophic bus
condition which results in an assertion of BINIT# and the re-initialization of the buses, the value in the LBER
may be corrupted. Also, after either a CALL which results in a fault or a software interrupt, the LBER and LBR
will be updated to the same value, when the LBER should not have been updated.

Implication: The LBER and LBR registers are used only for debugging purposes. When this erratum
occurs, the LBER will not contain reliable address information. The value of LBER should be used with caution
when debugging branching code; if the values in the LBR and LBER are the same, then the LBER value is
incorrect. Also, the value in the LBER should not be relied upon after a BINIT# event.

 Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C10. BTMs May Be Corrupted During Simultaneous L1 Cache Line
Replacement

Problem: When Branch Trace Messages (BTMs) are enabled and such a message is generated, the BTM
may be corrupted when issued to the bus by the L1 cache if a new line of data is brought into the L1 data
cache simultaneously. Though the new line being stored in the L1 cache is stored correctly, and no corruption
occurs in the data, the information in the BTM may be incorrect due to the internal collision of the data line and
the BTM.

Implication: Although BTMs may not be entirely reliable due to this erratum, the conditions necessary for
this boundary condition to occur have only been exhibited during focused simulation testing. Intel has currently
not observed this erratum in a system level validation environment.

 Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

16

C11. Potential Early Deassertion of LOCK# During Split-Lock
Cycles

Problem: During a split-lock cycle there are four bus transactions: 1st ADS# (a partial read), 2nd ADS# (a
partial read), 3rd ADS# (a partial write), and the 4th ADS# (a partial write). Due to this erratum, LOCK# may
deassert one clock after the 4th ADS# of the split-lock cycle instead of after the 4th RS# assertion
corresponding to the 4th ADS# has been sampled. The following sequence of events are required for this
erratum to occur:

1. A lock cycle occurs (split or nonsplit).

2. Five more bus transactions (assertion of ADS#) occur.

3. A split-lock cycle occurs and BNR# toggles after the 3rd ADS# (partial write) of the split-lock cycle. This in
turn delays the assertion of the 4th ADS# of the split-lock cycle. BNR# toggling at this time could most
likely happen when the bus is set for an IOQ depth of 2.

When all of these events occur, LOCK# will be deasserted in the next clock after the 4th ADS# of the split-lock
cycle.

Implication: This may affect chipset logic which monitors the behavior of LOCK# deassertion.

 Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C12. A20M# May Be Inverted After Returning From SMM and
Reset

Problem: This erratum is seen when software causes the following events to occur:

1. The assertion of A20M# in real address mode.

2. After entering the 1-Mbyte address wrap-around mode caused by the assertion of A20M#, there is
an assertion of SMI# intended to cause a Reset or remove power to the processor. Once in the
SMM handler, software saves the SMM state save map to an area of nonvolatile memory from
which it can be restored at some point in the future. Then software asserts RESET# or removes
power to the processor.

3. After exiting Reset or completion of power-on, software asserts SMI# again. Once in the SMM
handler, it then retrieves the old SMM state save map which was saved in event 2 above and copies
it into the current SMM state save map. Software then asserts A20M# and executes the RSM
instruction. After exiting the SMM handler, the polarity of A20M# is inverted.

Implication: If this erratum occurs, A20M# will behave with a polarity opposite from what is expected (i.e.,
the 1-Mbyte address wrap-around mode is enabled when A20M# is deasserted, and does not occur when
A20M# is asserted).

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

17

 Workaround: Software should save the A20M# signal state in nonvolatile memory before an assertion of
RESET# or a power down condition. After coming out of Reset or at power on, SMI# should be asserted
again. During the restoration of the old SMM state save map described in event 3 above, the entire map
should be restored, except for bit 5 of the byte at offset 7F18h. This bit should retain the value assigned to it
when the SMM state save map was created in event 3. The SMM handler should then restore the original
value of the A20M# signal.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C13. Reporting of Floating-Point Exception May Be Delayed

Problem: The Intel Celeron processor normally reports a floating-point exception for an instruction when the
next floating-point or MMX™ technology instruction is executed. The assertion of FERR# and/or the INT 16
interrupt corresponding to the exception may be delayed until the floating-point or MMX technology instruction
after the one which is expected to trigger the exception, if the following conditions are met:

1. A floating-point instruction causes an exception.

2. Before another floating-point or MMX technology instruction, any one of the following occurs:

• A subsequent data access occurs to a page which has not been marked as accessed

• Data is referenced which crosses a page boundary

• A possible page-fault condition is detected which, when resolved, completes without faulting

3. The instruction causing event 2 above is followed by a MOVQ or MOVD store instruction.

Implication: This erratum only affects software which operates with floating-point exceptions unmasked.
Software which requires floating-point exceptions to be visible on the next floating-point or MMX technology
instruction, and which uses floating-point calculations on data which is then used for MMX technology
instructions, may see a delay in the reporting of a floating-point instruction exception in some cases. Note that
mixing floating-point and MMX technology instructions in this way is not recommended.

 Workaround: Inserting a WAIT or FWAIT instruction (or reading the floating-point status register) between
the floating-point instruction and the MOVQ or MOVD instruction will give the expected results. This is already
the recommended practice for software.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

18

C14. Near CALL to ESP Creates Unexpected EIP Address

Problem: As documented, the CALL instruction saves procedure linking information in the procedure stack
and jumps to the called procedure specified with the destination (target) operand. The target operand
specifies the address of the first instruction in the called procedure. This operand can be an immediate value,
a general purpose register, or a memory location. When accessing an absolute address indirectly using the
stack pointer (ESP) as a base register, the base value used is the value in the ESP register before the
instruction executes. However, when accessing an absolute address directly using ESP as the base register,
the base value used is the value of ESP after the return value is pushed on the stack, not the value in the ESP
register before the instruction executed.

Implication: Due to this erratum, the processor may transfer control to an unintended address. Results are
unpredictable, depending on the particular application, and can range from no effect to the unexpected
termination of the application due to an exception. Intel has observed this erratum only in a focused testing
environment. Intel has not observed any commercially available operating system, application, or compiler
that makes use of or generates this instruction.

 Workaround: If the other seven general purpose registers are unavailable for use, and it is necessary to do
a CALL via the ESP register, first push ESP onto the stack, then perform an indirect call using ESP (e.g.,
CALL [ESP]). The saved version of ESP should be popped off the stack after the call returns.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C15. Built-in Self Test Always Gives Nonzero Result

Problem: The Built-in Self Test (BIST) of the Intel Celeron processor does not give a zero result to indicate a
passing test. Regardless of pass or fail status, bit 6 of the BIST result in the EAX register after running BIST is
set.

Implication: Software which relies on a zero result to indicate a passing BIST will indicate BIST failure.

 Workaround: Mask bit 6 of the BIST result register when analyzing BIST results.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C16. THERMTRIP# May Not Be Asserted as Specified

Problem: THERMTRIP# is a signal on the Intel Celeron processor which is asserted when the core reaches
a critical temperature during operation as detailed in the processor specification. The Intel Celeron processor
may not assert THERMTRIP# until a much higher temperature than the one specified is reached.

Implication: The THERMTRIP# feature is not functional on the Intel Celeron processor. Note that this
erratum can only occur when the processor is running with a TPLATE temperature over the maximum
specification of 75° C.

 Workaround: Avoid operation of the Intel Celeron processor outside of the thermal specifications defined by
the processor specifications.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

19

C17. Cache State Corruption in the Presence of Page A/D-bit
Setting and Snoop Traffic

Problem: If an operating system uses the Page Access and/or Dirty bit feature implemented in the Intel
architecture and there is a significant amount of snoop traffic on the bus, while the processor is setting the
Access and/or Dirty bit the processor may inappropriately change a single L1 cache line to the modified state.

Implication: The occurrence of this erratum may result in cache incoherency, which may cause parity
errors, data corruption (with no parity error), unexpected application or operating system termination, or
system hangs.

 Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C18. Snoop Cycle Generates Spurious Machine Check Exception

Problem: The processor may incorrectly generate a Machine Check Exception (MCE) when it processes a
snoop access that does not hit the L1 data cache. Due to an internal logic error, this type of snoop cycle may
still check data parity on undriven data lines. The processor generates a spurious machine check exception as
a result of this unnecessary parity check.

Implication: A spurious machine check exception may result in an unexpected system halt if Machine
Check Exception reporting is enabled in the operating system.

 Workaround: It is possible for BIOS code to contain a workaround for this erratum. This workaround would
fix the erratum, however, the reporting of the data parity error will continue.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

20

C19. MOVD/MOVQ Instruction Writes to Memory Prematurely

Problem: When an instruction encounters a fault, the faulting instruction should not modify any CPU or
system state. However, when the MMX technology store instructions MOVD and MOVQ encounter any of the
following events, it is possible for the store to be committed to memory even though it should be canceled:

1. If CR0.EM = 1 (Emulation bit), then the store could happen prior to the triggered invalid opcode
exception.

2. If the floating-point Top-of-Stack (FP TOS) is not zero, then the store could happen prior to executing the
processor assist routine that sets the FP TOS to zero.

3. If there is an unmasked floating-point exception pending, then the store could happen prior to the
triggered unmasked floating-point exception.

4. If CR0.TS = 1 (Task Switched bit), then the store could happen prior to the triggered Device Not
Available (DNA) exception.

If the MOVD/MOVQ instruction is restarted after handling any of the above events, then the store will be
performed again, overwriting with the expected data. The instruction will not be restarted after event 1. The
instruction will definitely be restarted after events 2 and 4. The instruction may or may not be restarted after
event 3, depending on the specific exception handler.

Implication: This erratum causes unpredictable behavior in an application if MOVD/MOVQ instructions are
used to manipulate semaphores for multiprocessor synchronization, or if these MMX instructions are used to
write to uncacheable memory or memory mapped I/O that has side effects, e.g., graphics devices. This
erratum is completely transparent to all applications that do not have these characteristics. When each of the
above conditions are analyzed:

1. Setting the CR0.EM bit forces all floating-point/MMX instructions to be handled by software emulation.
The MOVD/MOVQ instruction, which is an MMX instruction, would be considered an invalid instruction.
Operating systems typically terminates the application after getting the expected invalid opcode fault.

2. The FP TOS not equal to 0 case only occurs when the MOVD/MOVQ store is the first MMX instruction in
an MMX technology routine and the previous floating-point routine did not clean up the floating-point
states properly when it exited. Floating-point routines commonly leave TOS to 0 prior to exiting. For a
store to be executed as the first MMX instruction in an MMX technology routine following a floating-point
routine, the software would be implementing instruction level intermixing of floating-point and MMX
instructions. Intel does not recommend this practice.

3. The unmasked floating-point exception case only occurs if the store is the first MMX technology instruction
in an MMX technology routine and the previous floating-point routine exited with an unmasked floating-
point exception pending. Again, for a store to be executed as the first MMX instruction in an MMX
technology routine following a floating-point routine, the software would be implementing instruction level
intermixing of floating-point and MMX instructions. Intel does not recommend this practice.

Device Not Available (DNA) exceptions occur naturally when a task switch is made between two tasks that
use either floating-point instructions and/or MMX instructions. For this erratum, in the event of the DNA
exception, data from the prior task may be temporarily stored to the present task’s program state.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

21

 Workaround: Do not use MMX instructions to manipulate semaphores for multiprocessor synchronization.
Do not use MOVD/MOVQ instructions to write directly to I/O devices if doing so triggers user visible side
effects. An OS can prevent old data from being stored to a new task’s program state by cleansing the FPU
explicitly after every task switch. Follow Intel’s recommended programming paradigms in the Intel Architecture
Developer’s Optimization Manual for writing MMX technology programs. Specifically, do not mix floating-point
and MMX instructions. When transitioning to new a MMX technology routine, begin with an instruction that
does not depend on the prior state of either the MMX technology registers or the floating-point registers, such
as a load or PXOR mm0, mm0. Be sure that the FP TOS is clear before using MMX instructions.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C20. Memory Type Undefined for Nonmemory Operations

Problem: The Memory Type field for nonmemory transactions such as I/O and Special Cycles are
undefined. Although the Memory Type attribute for nonmemory operations logically should (and usually does)
manifest itself as UC, this feature is not designed into the implementation and is therefore inconsistent.

Implication: Bus agents may decode a non-UC memory type for nonmemory bus transactions.

 Workaround: Bus agents must consider transaction type to determine the validity of the Memory Type field
for a transaction.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C21. Bus Protocol Conflict With Optimized Chipsets

Problem: A “dead” turnaround cycle with no agent driving the address, address parity, request command, or
request parity signals must occur between the processor driving these signals and the chipset driving them
after asserting BPRI#. The Intel Celeron processor does not follow this protocol. Thus, if a system uses a
chipset or third party agent which optimizes its arbitration latency (reducing it to 2 clocks when it observes an
active (low) ADS# signal and an inactive (high) LOCK# signal on the same clock that BPRI# is asserted
(driven low)), the Intel Celeron processor may cause bus contention during an unlocked bus exchange.

Implication: This violation of the bus exchange protocol when using a reduced arbitration latency may
cause a system-level setup timing violation on the address, address parity, request command, or request
parity signals on the system bus. This may result in a system hang or assertion of the AERR# signal, causing
an attempted corrective action or shutdown of the system, as the system hardware and software dictate. The
possibility of failure due to the contention caused by this erratum may be increased due to the processor’s
internal active pull-up of these signals on the clock after the signals are no longer being driven by the
processor.

 Workaround: If the chipset and third party agents used with the Intel Celeron processor do not optimize
their arbitration latency as described above, no action is required. For the 66 MHz Intel Celeron processor, no
action is required.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

22

C22. FP Data Operand Pointer May Not Be Zero After Power On or
Reset

Problem: The FP Data Operand Pointer, as specified, should be reset to zero upon power on or Reset by
the processor. Due to this erratum, the FP Data Operand Pointer may be nonzero after power on or Reset.

Implication: Software which uses the FP Data Operand Pointer and count on its value being zero after
power on or Reset without first executing an FINIT/FNINIT instruction will use an incorrect value, resulting in
incorrect behavior of the software.

 Workaround: Software should follow the recommendation in Section 8.2 of the Intel Architecture Software
Developer’s Manual, Volume 3: System Programming Guide (Order Number 243192). This recommendation
states that if the FPU will be used, software-initialization code should execute an FINIT/FNINIT instruction
following a hardware reset. This will correctly clear the FP Data Operand Pointer to zero.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

23

C23. MOVD Following Zeroing Instruction Can Cause Incorrect
Result

Problem: An incorrect result may be calculated after the following circumstances occur:

1. A register has been zeroed with either a SUB reg, reg instruction or an XOR reg, reg instruction,

2. A value is moved with sign extension into the same register’s lower 16 bits; or a signed integer multiply is
performed to the same register’s lower 16 bits,

3. This register is then copied to an MMX technology register using the MOVD instruction prior to any other
operations on the sign-extended value.

Specifically, the sign may be incorrectly extended into bits 16-31 of the MMX technology register. Only the
MMX technology register is affected by this erratum.

The erratum only occurs when the 3 following steps occur in the order shown. The erratum may occur with up
to 40 intervening instructions that do not modify the sign-extended value between steps 2 and 3.

1. XOR EAX, EAX
or SUB EAX, EAX

2. MOVSX AX, BL
or MOVSX AX, byte ptr <memory address> or MOVSX AX, BX
or MOVSX AX, word ptr <memory address> or IMUL BL (AX implicit, opcode F6 /5)
or IMUL byte ptr <memory address> (AX implicit, opcode F6 /5) or IMUL AX, BX (opcode 0F AF /r)
or IMUL AX, word ptr <memory address> (opcode 0F AF /r) or IMUL AX, BX, 16 (opcode 6B /r ib)
or IMUL AX, word ptr <memory address>, 16 (opcode 6B /r ib) or IMUL AX, 8 (opcode 6B /r ib)
or IMUL AX, BX, 1024 (opcode 69 /r iw)
or IMUL AX, word ptr <memory address>, 1024 (opcode 69 /r iw) or IMUL AX, 1024 (opcode 69 /r iw)
or CBW

3. MOVD MM0, EAX

Note that the values for immediate byte/words are merely representative (i.e., 8, 16, 1024) and that any value
in the range for the size may be affected. Also, note that this erratum may occur with “EAX” replaced with any
32-bit general purpose register, and “AX” with the corresponding 16-bit version of that replacement. “BL” or
“BX” can be replaced with any 8-bit or 16-bit general purpose register. The CBW and IMUL (opcode F6 /5)
instructions are specific to the EAX register only.

In the example, EAX is forced to contain 0 by the XOR or SUB instructions. Since the four types of the
MOVSX or IMUL instructions and the CBW instruction modify only bits 15:8 of EAX by sign extending the
lower 8 bits of EAX, bits 31:16 of EAX should always contain 0. This implies that when MOVD copies EAX to
MM0, bits 31:16 of MM0 should also be 0. Under certain scenarios, bits 31:16 of MM0 are not 0, but are
replicas of bit 15 (the 16th bit) of AX. This is noticeable when the value in AX after the MOVSX, IMUL or CBW
instruction is negative, i.e., bit 15 of AX is a 1.

When AX is positive (bit 15 of AX is a 0), MOVD will always produce the correct answer. If AX is negative (bit
15 of AX is a 1), MOVD may produce the right answer or the wrong answer depending on the point in time
when the MOVD instruction is executed in relation to the MOVSX, IMUL or CBW instruction.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

24

Implication: The effect of incorrect execution will vary from unnoticeable, due to the code sequence
discarding the incorrect bits, to an application failure. If the MMX technology-enabled application in which
MOVD is used to manipulate pixels, it is possible for one or more pixels to exhibit the wrong color or position
momentarily. It is also possible for a computational application that uses the MOVD instruction in the manner
described above to produce incorrect data. Note that this data may cause an unexpected page fault or general
protection fault.

Workaround: There are two possible workarounds for this erratum:

1. Rather than using the MOVSX-MOVD or CBW-MOVD pairing to handle one variable at a time, use the
sign extension capabilities (PSRAW, etc.) within MMX technology for operating on multiple variables. This
would result in higher performance as well.

2. Insert another operation that modifies or copies the sign-extended value between the MOVSX/IMUL/CBW
instruction and the MOVD instruction as in the example below:

XOR EAX, EAX (or SUB EAX, EAX)
MOVSX AX, BL (or other MOVSX, other IMUL or CBW instruction)
*MOV EAX, EAX
MOVD MM0, EAX

 *Note: MOV EAX, EAX is used here as it is fairly generic. Again, EAX can be any 32-bit register.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C24. Premature Execution of a Load Operation Prior to Exception
Handler Invocation

Problem: This erratum can occur with any of the following situations:

1. If an instruction that performs a memory load causes a code segment limit violation

2. If a waiting floating-point instruction or MMX™ instruction that performs a memory load has a floating-
point exception pending

3. If an MMX instruction that performs a memory load and has either CR0.EM =1 (Emulation bit set), or a
floating-point Top-of-Stack (FP TOS) not equal to 0, or a DNA exception pending

If any of the above circumstances occur, it is possible that the load portion of the instruction will have
executed before the exception handler is entered.

Implication: In normal code execution where the target of the load operation is to write back memory there
is no impact from the load being prematurely executed, nor from the restart and subsequent re-execution of
that instruction by the exception handler. If the target of the load is to uncached memory that has a system
side effect, restarting the instruction may cause unexpected system behavior due to the repetition of the side
effect.

 Workaround: Code which performs loads from memory that has side-effects can effectively workaround this
behavior by using simple integer-based load instructions when accessing side-effect memory and by ensuring
that all code is written such that a code segment limit violation cannot occur as a part of reading from side-
effect memory.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

25

C25. Read Portion of RMW Instruction May Execute Twice

Problem: When the Intel Celeron processor executes a read-modify-write (RMW) arithmetic instruction, with
memory as the destination, it is possible for a page fault to occur during the execution of the store on the
memory operand after the read operation has completed but before the write operation completes.

If the memory targeted for the instruction is UC (uncached), memory will observe the occurrence of the initial
load before the page fault handler and again if the instruction is restarted.

Implication: This erratum has no effect if the memory targeted for the RMW instruction has no side-effects.
If, however, the load targets a memory region that has side-effects, multiple occurrences of the initial load may
lead to unpredictable system behavior.

 Workaround: Hardware and software developers who write device drivers for custom hardware that may
have a side-effect style of design should use simple loads and simple stores to transfer data to and from the
device. Then the memory location will simply be read twice with no additional implications.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C26. Test Pin Must Be High During Power Up

Problem: The Intel Celeron processor uses the PWRGOOD signal to ensure that no voltage sequencing
issues arise; no pin assertions should cause the processor to change its behavior until this signal is asserted,
when all power supplies and clocks to the processor are valid and stable. However, if the TESTHI signal is at
a low voltage level when the core power supply comes up, it will cause the processor to enter an invalid test
state.

Implication: If this erratum occurs, the system may boot normally however, L2 cache may not be initialized.

 Workaround: Ensure that the 2.5 V (VCC2.5) power supply ramps at or before the 2.0 V (VCCCORE) power
plane. If 2.5 V ramps after core, pull up TESTHI to 2.5 V (VCC2.5) with a 100K Ohm resistor. The internal pull-
up will keep the signal from being asserted during power up. For new motherboard designs, it is
recommended that TESTHI be pulled up to 2.0 V (VCCCORE) using a 1K-10K Ohm resistor.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C27. Intervening Writeback May Occur During Locked Transaction

Problem: During a transaction which has the LOCK# signal asserted (i.e., a locked transaction), there is a
potential for an explicit writeback caused by a previous transaction to complete while the bus is locked. The
explicit writeback will only be issued by the processor which has locked the bus, and the lock signal will not be
deasserted until the locked transaction completes, but the atomicity of a lock may be compromised by this
erratum. Note that the explicit writeback is an expected cycle, and no memory ordering violations will occur.
This erratum is, however, a violation of the bus lock protocol.

Implication: A chipset or third-party agent (TPA) which tracks bus transactions in such a way that locked
transactions may only consist of a read-write or read-read-write-write locked sequence, with no transactions
intervening, may lose synchronization of state due to the intervening explicit writeback. Systems using
chipsets or TPAs which can accept the intervening transaction will not be affected.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

26

 Workaround: The bus tracking logic of all devices on the system bus should allow for the occurrence of an
intervening transaction during a locked transaction.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C28. MC2_STATUS MSR Has Model-Specific Error Code and
Machine Check Architecture Error Code Reversed

Problem: The Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
documents that for the MCi_STATUS MSR, bits 15:0 contain the MCA (machine-check architecture) error
code fields and bits 31:16 contain the model-specific error code field. However, for the MC2_STATUS MSR,
these bits have been reversed. For the MC2_STATUS MSR, bits 15:0 contain the model-specific error code
field and bits 31:16 contain the MCA error code field.

Implication: A machine check error may be decoded incorrectly if this erratum on the MC2_STATUS MSR
is not taken into account.

 Workaround: When decoding the MC2_STATUS MSR, reverse the two error fields.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C29. MOV With Debug Register Causes Debug Exception

Problem: When in V86 mode, if a MOV instruction is executed on debug registers, a general-protection
exception (#GP) should be generated, as documented in the Intel Architecture Software Developer's Manual,
Volume 3: System Programming Guide, Section 15.2. However, in the case when the general detect enable
flag (GD) bit is set, the observed behavior is that a debug exception (#DB) is generated instead.

Implication: With debug-register protection enabled (i.e., the GD bit set), when attempting to execute a
MOV on debug registers in V86 mode, a debug exception will be generated instead of the expected general-
protection fault.

 Workaround: In general, operating systems do not set the GD bit when they are in V86 mode. The GD bit is
generally set and used by debuggers. The debug exception handler should check that the exception did not
occur in V86 mode before continuing. If the exception did occur in V86 mode, the exception may be directed
to the general-protection exception handler.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

27

C30. Upper Four PAT Entries Not Usable With Mode B or Mode C
Paging

Problem: The Page Attribute Table (PAT) contains eight entries, which must all be initialized and considered
when setting up memory types for the Intel Celeron processor. However, in Mode B or Mode C paging, the
upper four entries do not function correctly for 4-Kbyte pages. Specifically, bit seven of page table entries that
translate addresses to 4-Kbyte pages should be used as the upper bit of a three-bit index to determine the
PAT entry that specifies the memory type for the page. When Mode B (CR4.PSE = 1) and/or Mode C
(CR4.PAE) are enabled, the processor forces this bit to zero when determining the memory type regardless of
the value in the page table entry. The upper four entries of the PAT function correctly for 2-Mbyte and 4-Mbyte
large pages (specified by bit 12 of the page directory entry for those translations).

Implication: Only the lower four PAT entries are useful for 4-Kbyte translations when Mode B or C paging is
used. In Mode A paging (4-Kbyte pages only), all eight entries may be used. All eight entries may be used for
large pages in Mode B or C paging.

 Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C31. Incorrect Memory Type May Be Used When MTRRs Are
Disabled

Problem: If the Memory Type Range Registers (MTRRs) are disabled without setting the CR0.CD bit to
disable caching, and the Page Attribute Table (PAT) entries are left in their default setting, which includes
UC- memory type (PCD = 1, PWT = 0; see the Intel Architecture Software Developer’s Manual, Volume 3:
System Programming Guide, for details), data for entries set to UC- will be cached as if the memory type were
writeback (WB). Also, if the page tables are set to a memory type other than UC-, then the effective memory
type used will be that specified by the page tables and PAT. Any regions of memory normally forced to UC by
the MTRRs (such as the VGA video region) may now be incorrectly cached and speculatively accessed.

Even if the CR0.CD bit is correctly set when the MTRRs are disabled and the PAT is left in its default state,
then retries and out of order retirement of UC accesses may occur, contrary to the strong ordering expected
for these transactions.

Implication: The occurrence of this erratum may result in the use of incorrect data and unpredictable
processor behavior when running with the MTRRs disabled. Interaction between the mouse, cursor, and VGA
video display leading to video corruption may occur as a symptom of this erratum as well.

 Workaround: Ensure that when the MTRRs are disabled, the CR0.CD bit is set to disable caching. This
recommendation is described in Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide. If it is necessary to disable the MTRRs, first clear the PAT register before setting the
CR0.CD bit, flushing the caches, and disabling the MTRRs to ensure that UC memory type is always returned
and strong ordering is maintained.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

28

C32. Misprediction in Program Flow May Cause Unexpected
Instruction Execution

Problem: To optimize performance through dynamic execution technology, the P6 architecture has the
ability to predict program flow. In the event of a misprediction, the processor will normally clear the incorrect
prediction, adjust the EIP to the correct location, and flush out any instructions it may have fetched from the
misprediction. In circumstances where a branch misprediction occurs, the correct target of the branch has
already been opportunistically fetched into the streaming buffers, and the L2 cycle caused by the evicted
cache line is retried by the L2 cache, the processor may fail to flush out the retirement unit before the
speculative program flow is committed to a permanent state.

Implication: The results of this erratum may range from no effect to unpredictable application or OS failure.
Manifestations of this failure may result in:

• Unexpected values in EIP

• Faults or traps (e.g., page faults) on instructions that do not normally cause faults

• Faults in the middle of instructions

• Unexplained values in registers/memory at the correct EIP

 Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C33. Data Breakpoint Exception in a Displacement Relative Near
Call May Corrupt EIP

Problem: If a data breakpoint is programmed at the memory location where the stack push of a near call is
performed, the processor will update the stack and ESP appropriately, but may skip the code at the
destination of the call. Hence, program execution will continue with the next instruction immediately following
the call, instead of the target of the call.

Implication: The failure mechanism for this erratum is that the call would not be taken; therefore,
instructions in the called subroutine would not be executed. As a result, any code relying on the execution of
the subroutine will behave unpredictably.

 Workaround: Do not program a data breakpoint exception on the stack where the push for the near call is
performed.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C34. System Bus ECC Not Functional With 2:1 Ratio

Problem: If a processor is underclocked at a core frequency to system bus frequency ratio of 2:1 and
system bus ECC is enabled, the system bus ECC detection and correction will negatively affect internal timing
dependencies.

Implication: If system bus ECC is enabled, and the processor is underclocked at a 2:1 ratio, the system
may behave unpredictably due to these timing dependencies.

 Workaround: All bus agents that support system bus ECC must disable it when a 2:1 ratio is used.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

29

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C35. Fault on REP CMPS/SCAS Operation May Cause Incorrect
EIP

Problem: If either a General Protection Fault, Alignment Check Fault or Machine Check Exception occur
during the first iteration of a REP CMPS or a REP SCAS instruction, an incorrect EIP may be pushed onto the
stack of the event handler if all the following conditions are true:

• The event occurs on the initial load performed by the instruction(s)

• The condition of the zero flag before the repeat instruction happens to be opposite of the repeat condition
(i.e., REP/REPE/REPZ CMPS/SCAS with ZF = 0 or RENE/REPNZ CMPS/SCAS with ZF = 1)

• The faulting micro-op and a particular micro-op of the REP instruction are retired in the retirement unit in
a specific sequence

 The EIP will point to the instruction following the REP CMPS/SCAS instead of pointing to the faulting
instruction.

Implication: The result of the incorrect EIP may range from no effect to unexpected application/OS
behavior.

 Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C36. RDMSR or WRMSR To Invalid MSR Address May Not Cause
GP Fault

 Problem: The RDMSR and WRMSR instructions allow reading or writing of MSRs (Model Specific
Registers) based on the index number placed in ECX. The processor should reject access to any reserved or
unimplemented MSRs by generating #GP(0). However, there are some invalid MSR addresses for which the
processor will not generate #GP(0).

Implication: For RDMSR, undefined values will be read into EDX:EAX. For WRMSR, undefined processor
behavior may result.

 Workaround: Do not use invalid MSR addresses with RDMSR or WRMSR.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

30

C37. SYSENTER/SYSEXIT Instructions Can Implicitly Load “Null
Segment Selector” to SS and CS Registers

 Problem: According to the processor specification, attempting to load a null segment selector into the CS
and SS segment registers should generate a General Protection Fault (#GP). Although loading a null segment
selector to the other segment registers is allowed, the processor will generate an exception when the segment
register holding a null selector is used to access memory.

 However, the SYSENTER instruction can implicitly load a null value to the SS segment selector. This can
occur if the value in SYSENTER_CS_MSR is between FFF8h and FFFBh when the SYSENTER instruction is
executed. This behavior is part of the SYSENTER/SYSEXIT instruction definition; the content of the
SYSTEM_CS_MSR is always incremented by 8 before it is loaded into the SS. This operation will set the null
bit in the segment selector if a null result is generated, but it does not generate a #GP on the SYSENTER
instruction itself. An exception will be generated as expected when the SS register is used to access memory,
however.

 The SYSEXIT instruction will also exhibit this behavior for both CS and SS when executed with the value in
SYSENTER_CS_MSR between FFF0h and FFF3h, or between FFE8h and FFEBh.

Implication: These instructions are intended for operating system use. If this erratum occurs (and the OS
does not ensure that the processor never has a null segment selector in the SS or CS segment registers), the
processor’s behavior may become unpredictable, possibly resulting in system failure.

 Workaround: Do not initialize the SYSTEM_CS_MSR with the values between FFF8h and FFFBh, FFF0h
and FFF3h, or FFE8h and FFEBh before executing SYSENTER or SYSEXIT.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C38. PRELOAD Followed by EXTEST Does Not Load Boundary
Scan Data

 Problem: According to the IEEE 1149.1 Standard, the EXTEST instruction would use data “typically loaded
onto the latched parallel outputs of boundary-scan shift-register stages using the SAMPLE/PRELOAD
instruction prior to the selection of the EXTEST instruction.” As a result of this erratum, this method cannot be
used to load the data onto the outputs.

Implication: Using the PRELOAD instruction prior to the EXTEST instruction will not produce expected data
after the completion of EXTEST.

 Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

31

C39. Far Jump to New TSS With D-bit Cleared May Cause System
Hang

 Problem: A task switch may be performed by executing a far jump through a task gate or to a new Task
State Segment (TSS) directly. Normally, when such a jump to a new TSS occurs, the D-bit (which indicates
that the page referenced by a Page Table Entry (PTE) has been modified) for the PTE which maps the
location of the previous TSS will already be set and the processor will operate as expected. However, if the D-
bit is clear at the time of the jump to the new TSS, the processor will hang.

Implication: If an OS is used which can clear the D-bit for system pages, and which jumps to a new TSS on
a task switch, then a condition may occur which results in a system hang. Intel has not identified any
commercial software which may encounter this condition; this erratum was discovered in a focused testing
environment.

 Workaround: Ensure that OS code does not clear the D-bit for system pages (including any pages that
contain a task gate or TSS). Use task gates rather than jumping to a new TSS when performing a task switch.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C40. Incorrect Chunk Ordering May Prevent Execution of the
Machine Check Exception Handler After BINIT#

 Problem: If a catastrophic bus error is detected which results in a BINIT# assertion, and the BINIT#
assertion is propagated to the processor’s L2 cache at the same time that data is being sent to the processor,
then the data may become corrupted in the processor’s L1 cache.

Implication: Since BINIT# assertion is due to a catastrophic event on the bus, the corrupted data will not be
used. However, it may prevent the processor from executing the Machine Check Exception (MCE) handler,
causing the system to hang.

 Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

32

C41. UC Write May Be Reordered Around a Cacheable Write

 Problem: After a write occurs to a UC (uncacheable) region of memory, there exists a small window of
opportunity where a subsequent write transaction targeted for a UC memory region may be reordered in front
of a write targeted to a region of cacheable memory. This erratum can only occur during the following
sequence of bus transactions:

1. A write to memory mapped as UC occurs

2. A write to memory mapped as cacheable (WB or WT) which is present in Shared or Invalid state in the
L2 cache occurs

3. During the bus snoop of the cacheable line, another store to UC memory occurs

Implication: If this erratum occurs, the second UC write will be observed on the bus prior to the Bus
Invalidate Line (BIL) or Bus Read Invalidate Line (BRIL) transaction for the cacheable write. This presents a
small window of opportunity for a fast bus-mastering I/O device which triggers an action based on the second
UC write to arbitrate and gain ownership of the bus prior to the completion of the cacheable write, possibly
retrieving stale data.

 Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C42. Resume Flag May Not Be Cleared After Debug Exception

 Problem: The Resume Flag (RF) is normally cleared by the processor after executing an instruction which
causes a debug exception (#DB). In the process of determining whether the RF needs to be cleared after
executing the instruction, the processor uses an internal register containing stale data. The stale data may
unpredictably prevent the processor from clearing the RF.

Implication: If this erratum occurs, further debug exceptions will be disabled.

 Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

33

C43. Internal Cache Protocol Violation May Cause System Hang

Problem: An Intel Celeron processor based system may hang due to an internal cache protocol violation.
During multiple transactions targeted at the same cacheline, there exists a small window of time such that the
processor’s internal timings align to create a livelock situation. The scenario, which results in the erratum, is
summarized below:
Scenario:

1. A snoopable transaction is issued to address A. This snoopable transaction can be issued by the
processor or the chipset.

2. The snoopable transaction hits a modified line in the processor’s L1 data cache.

3. The processor issues two code fetches from the L2 cache before the snoopable transaction reaches the
top of the In-Order Queue and before the snoopable transaction's modified L1 cache line containing
address A is brought out on the system bus.

 At the same time, a locked access to the L1 cache occurs.

Implication: An Intel Celeron processor may cause a system to hang if the above listed sequence of events
occur. The probability of encountering this erratum increases with I/O queue depth greater than four.

 Workaround: It is possible for the BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C44. GP# Fault on WRMSR to ROB_CR_BKUPTMPDR6

 Problem: Writing a ‘1’ to unimplemented bit(s) in the ROB_CR_BKUPTMPDR6 MSR (offset 1E0h) will result
in a general protection fault (GP#).

Implication: The normal process used to write an MSR is to read the MSR using RDMSR, modify the bit(s)
of interest, and then to write the MSR using WRMSR. Because of this erratum, this process may result in a
GP# fault when used to modify the ROB_CR_BKUPTMPDR6 MSR.

 Workaround: When writing to ROB_CR_BKUPTMPDR6 all unimplemented bits must be ‘0.’ Implemented
bits may be set as ‘0’ or ‘1’ as desired.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

34

C45. Machine Check Exception May Occur Due to Improper Line
Eviction in the IFU

 Problem: The Intel Celeron processor is designed to signal an unrecoverable Machine Check Exception
(MCE) as a consistency checking mechanism. Under a complex set of circumstances involving multiple
speculative branches and memory accesses there exists a one cycle long window in which the processor may
signal a MCE in the Instruction Fetch Unit (IFU) because instructions previously decoded have been evicted
from the IFU. The one cycle long window is opened when an opportunistic fetch receives a partial hit on a
previously executed but not as yet completed store resident in the store buffer. The resulting partial hit
erroneously causes the eviction of a line from the IFU at a time when the processor is expecting the line to still
be present. If the MCE for this particular IFU event is disabled, execution will continue normally.

Implication: Since the probability of this erratum occurring increases with the number of processors, the risk
is lower on Intel Celeron processor-based systems as they do not have multi-processor support. If this
erratum does occur, a machine check exception will result. Note systems that implement an operating system
that does not enable the Machine Check Architecture will be completely unaffected by this erratum (e.g.,
Windows* 95 and Windows 98).

 Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C46. Lower Bits of SMRAM SMBASE Register Cannot Be Written
With an ITP

 Problem: The System Management Base (SMBASE) register (7EF8H) stores the starting address of the
System Management RAM (SMRAM). This register is used by the processor when it is in System
Management Mode (SMM), and its contents serve as the memory base for code execution and data storage.
The 32-bit SMBASE register can normally be programmed to any value. When programmed with an In-Target
Probe (ITP), however, any attempt to set the lower 11 bits of SMBASE to anything other than zeros via the
WRMSR instruction will cause the attempted write to fail.

Implication: When set via an ITP, any attempt to relocate SMRAM space must be made with 2 Kbyte
alignment.

 Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

35

C47. Task Switch Caused by Page Fault May Cause Wrong PTE
and PDE Access Bit to be Set

Problem: If an operating system services a page fault through a Task Gate, the access bit may be set for an
incorrect page table/directory entry.

Implication: An operating system that uses a Task Gate for its page fault handler may encounter this
erratum. The effect of the erratum depends on the alignment of the Task State Segment (TSS), and ranges
from no anomalous behavior to unexpected errors. Intel is not aware of any commercial operating systems
which use a Task Gate to handle page faults. Task gates used for other purposes (NMI, Machine Check, or
Double Fault) do not cause this erratum.

Workaround: The operating system may alternately use an Interrupt Gate or a Call Gate rather than a Task
Gate.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C48. Cross Modifying Code Operations on a Jump Instruction
May Cause a General Protection Fault

Problem: The act of one processor writing data into the currently executing code segment of a second
processor with the intent of having the second processor execute that data as code is called Cross-Modifying
Code (XMC). Software using XMC to modify the offset of an execution transfer instruction (i.e., Jump, Call
etc.), without a synchronizing instruction may cause a General Protection Fault (GPF) when the offset splits a
cache line boundary.

Implication: Any application creating a (GPF) would be terminated by the operating system.

Workaround: Programmers should use the cross modifying code synchronization algorithm as detailed in
Volume 3 of the Intel Architecture Software Developer’s Manual, section 7.1.3, in order to avoid this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C1AP APIC Access to Cacheable Memory Causes SHUTDOWN

 Problem: APIC operations which access memory with any type other than uncacheable (UC) are illegal. If
an APIC operation to a memory type other than UC occurs and Machine Check Exceptions (MCEs) are
disabled, the processor will enter SHUTDOWN after such an access. If MCEs are enabled, an MCE will occur.
However, in this circumstance, a second MCE will be signaled. The second MCE signal will cause the Intel
Celeron processor to enter SHUTDOWN.

Implication: Recovery from a PIC access to cacheable memory will not be successful. Software that
accesses only UC type memory during APIC operations will not encounter this erratum.

 Workaround: Ensure that the memory space to which PIC accesses can be made is marked as type UC
(uncacheable) in the memory type range registers (MTRRs) to avoid this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

36

C2AP Write to Mask LVT (Programmed as EXTINT) Will Not
Deassert Outstanding Interrupt

 Problem: If the APIC subsystem is configured in Virtual Wire Mode implemented through the local APIC
(i.e., the 8259 INTR signal is connected to LINT0 and LVT1’s interrupt delivery mode field is programmed as
EXTINT), a write to LVT1 intended to mask interrupts will not deassert the internal interrupt source if the
external LINT0 signal is already asserted. The interrupt will be erroneously posted to the Intel Celeron
processor despite the attempt to mask it via the LVT.

Implication: Because of the masking attempt, interrupts may be generated when the system software
expects no interrupts to be posted.

 Workaround: Software can issue a write to the 8259A interrupt mask register to deassert the LINT0
interrupt level, followed by a read to the controller to ensure that the LINT0 signal has been deasserted. Once
this is ensured, software may then issue the write to mask LVT entry 1.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

C3AP Misaligned Locked Access to APIC Space Results in Hang

 Problem: When the processor’s APIC space is accessed with a misaligned locked access a machine check
exception is expected. However, the processor’s machine check architecture is unable to handle the
misaligned locked access.

Implication: If this erratum occurs the processor will hang. Typical usage models for the APIC address
space do not use locked accesses. Systems using such a model will not be affected by this erratum.

 Workaround: Ensure that all accesses to APIC space are aligned and/or not locked.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

37

DOCUMENTATION CHANGES

The Documentation Changes listed in this section apply to the following documents:

• Pentium® II Processor Developer’s Manual (Order Number 243502)

• P6 Family of Processors Hardware Developer's Manual (Order Number 244001)

• Intel® Celeron™ Processor datasheet (Order Number 243658)

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3 (Order Numbers 243190, 243191,
and 243192, respectively)

All Documentation Changes will be incorporated into a future version of the appropriate Intel Celeron
processor documentation.

C1. STPCLK# Pin Definition

 The P6 Family of Processors Hardware Developer’s Manual, the Pentium® II Processor Developer’s Manual
and the Intel® Celeron™ Processor datasheet have incorrect definitions of the STPCLK# pin in their
alphabetical signal listings. These documents incorrectly state:

 The processor continues to snoop bus transactions and service interrupts while in Stop Grant state.
When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes
execution.

 They should state:

The processor continues to snoop bus transactions and may latch interrupts while in Stop Grant state.
When STPCLK# is deasserted, the processor restarts its internal clock to all units, resumes execution,
and services any pending interrupts.

C2. Invalidating Caches and TLBs

 Section 2.6.4 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
incorrectly states:

 The INVD (invalidate cache with no writeback) instruction invalidates all data and instruction entries in
the internal caches and TLBs and sends a signal to the external caches indicating that they should be
invalidated also.

 It should state:

The INVD (invalidate cache with no writeback) instruction invalidates all data and instruction entries in
the internal caches and sends a signal to the external caches indicating that they should be invalidated
also.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

38

C3. Handling of Self-Modifying and Cross-Modifying Code

Section 7.1.3 paragraph 1. of the Intel Architecture Software Developer’s Manual Vol 3: System Programming
incorrectly states:

The act of a processor writing data into a currently executing code segment with the
intent of executing that data as code is called self-modifying code. Intel Architecture
processors exhibit model-specific behavior when executing self-modified code,
depending upon how far ahead of the current execution pointer the code has been
modified. As processor architectures become more complex and start to speculatively
execute code ahead of the retirement point (as in the P6 family processors), the rules
regarding which code should execute, pre- or post-modification, become blurred. To write
self-modifying code and ensure that it is compliant with current and future Intel
Architectures one of the following two coding options should be chosen.

It should state:

The act of a processor writing data into a currently executing code segment with the
intent of executing that data as code is called self-modifying code. Intel Architecture
processors exhibit model-specific behavior when executing self-modified code,
depending upon how far ahead of the current execution pointer the code has been
modified. As processor architectures become more complex and start to speculatively
execute code ahead of the retirement point (as in the P6 family processors), the rules
regarding which code should execute, pre- or post-modification, become blurred. To write
self-modifying code and ensure that it is compliant with current and future Intel
Architectures one of the following two coding options must be chosen.

Section 7.1.3 paragraph 6. of the Intel Architecture Software Developer’s Manual Vol 3: System Programming
incorrectly states:

The act of one processor writing data into the currently executing code segment of a
second processor with the intent of having the second processor execute that data as
code is called cross-modifying code. As with self-modifying code, Intel Architecture
processors exhibit model-specific behavior when executing cross-modifying code,
depending upon how far ahead of the executing processors current execution pointer the
code has been modified. To write cross-modifying code and insure that it is compliant
with current and future Intel Architectures, the following processor synchronization
algorithm should be implemented.

It should state:

The act of one processor writing data into the currently executing code segment of a
second processor with the intent of having the second processor execute that data as
code is called cross-modifying code. As with self-modifying code, Intel Architecture
processors exhibit model-specific behavior when executing cross-modifying code,
depending upon how far ahead of the executing processors current execution pointer the
code has been modified. To write cross-modifying code and insure that it is compliant
with current and future Intel Architectures, the following processor synchronization
algorithm must be implemented.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

39

SPECIFICATION CLARIFICATIONS
The Specification Clarifications listed in this section apply to the following documents:

• Pentium® II Processor Developer’s Manual (Order Number 243502)

• P6 Family of Processors Hardware Developer's Manual (Order Number 244001)

• Intel® Celeron™ Processor datasheet (Order Number 243658)

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3 (Order Numbers 243190, 243191,
and 243192, respectively)

All Specification Clarifications will be incorporated into a future version of the appropriate Intel Celeron
processor documentation.

C1. PWRGOOD Inactive Pulse Width

In Table 16 of the Intel® Celeron™ Processor datasheet, footnote 9 should read as follows:

9. When driven inactive or after VCCCORE, VCCL2, and BCLK become stable. PWRGOOD must remain
below VIL,max from Table 8 until all the voltage planes meet the voltage tolerance specifications in
Table 6 and BCLK has met the BCLK AC specifications in Table 11 for at least 10 clock cycles.
PWRGOOD must rise glitch-free and monotonically to 2.5 V.

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

40

C2. Floating Point Opcode Clarification

 Section 3.2 of the Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference,
provides detailed descriptions of each Intel Architecture instruction. For some instructions, the clarification
phrase below needs to either be added to their existing “Comments” section or a “Comments” section needs
to be created with the clarification phrase. The phrase is as follows:

The (Instruction shown in the center column of the table below) instruction is actually a
combination of two instructions - the FWAIT instruction followed by (Instruction shown in the
table). If the (Instruction shown in the table) instruction should fault in some way (e.g., page
fault), the value of EIP that is passed to the fault handler will be equal to the EIP of the first
instruction plus one (i.e., the EIP of the second of the pair of instructions). The FWAIT portion
of the combined instruction will have completed execution and will typically not be, nor need to
be, re-executed after the fault handler is completed.

The following table lists the affected instructions and the location of the clarification phrase:

Instruction Set Reference
Section Opcode Instruction Addition

Addition
to Page

FCLEX/FNCLEX-Clear
Exceptions

9B DB E2 FCLEX Add “Comments”
section with
clarification phrase

3-177

FINIT/FNINIT-Initialize
Floating-Point Unit

9B DB E3 FINIT Add clarification
phrase to existing
“Comments”
section

3-204

FSAVE/FNSAVE-Store FPU
State

9B DD /6 FSAVE
m94/108byte

Add clarification
phrase to existing
“Comments”
section

3-237

FSTCW/FNSTCW-Store
Control Word

9B D9 /7 FSTCW
m2byte

Add “Comments”
section with
clarification phrase

3-250

FSTENV/FNSTENV-Store
FPU Environment

9B D9 /6 FSTENV
m14/28byte

Add “Comments”
section with
clarification phrase

3-253

9B DD /7 FSTSW
m2byte

FSTSW/FNSTSW-Store
Status Word

9B DF E0 FSTSW AX

Add “Comments”
section with
clarification phrase

3-256

C3. MTRR Initialization Clarification

The following sentence should be added to the end of the first paragraph of Section 9.12.5 of the Intel
Architecture Software Developer’s Manual, Volume 3: System Programming Guide: “The MTRRs must be
disabled prior to initialization or modification.”

INTEL® CELERON™ PROCESSOR SPECIFICATION UPDATE

41

SPECIFICATION CHANGES

The Specification Changes listed in this section apply to the following documents:

• Pentium® II Processor Developer’s Manual (Order Number 243502)

• P6 Family of Processors Hardware Developer's Manual (Order Number 244001)

• Intel® Celeron™ Processor datasheet (Order Number 243658)

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3 (Order Numbers 243190, 243191,
and 243192, respectively)

All Specification Changes will be incorporated into a future version of the appropriate Intel Celeron processor
documentation.

C1. RESET# Pin Definition

 The P6 Family of Processors Hardware Developer’s Manual, the Pentium® II Processor Developer’s Manual,
and the Intel® Celeron™ Processor datasheet have incorrect definitions of the RESET# pin in their
alphabetical signal listings. These documents incorrectly state:

 RESET# must remain active for one microsecond for a ‘warm’ Reset; for a Power-on Reset, RESET#
must stay active for at least one millisecond after VCCCORE and CLK have reached their proper
specifications.

 They should state:

For a Power-on or “warm” reset, RESET# must stay active for at least one millisecond after VCCCORE

and CLK have reached their proper specifications.

