

intel.

8XC196NT
Microcontroller
User’'s Manual

June 1995

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions
of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.
Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, 1996

intel.
CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL

1.1 MANUAL CONTENT S ..ttt ettt e te s e e e e e s st s bee e aeeaeaesasesean e et st sansennnnes 1-1
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGYcovtiiiieieiiiiiiiieieeeisieieieveveiens 1-3
1.3 RELATED DOCUMENTS ... ettt e e e e aeaes s s s st b e ae e eeeeeesasaeaes e ens sn sannnnnnnes
1.4 ELECTRONIC SUPPORT SYSTEMS
1.4.1 FaxBack Servicecccccevveennn.
1.4.2 Bulletin Board System (BBS)
1.4.2.1 How to Find MCS® 96 Microcontroller Files on the BBScocevveeeoreeeeerreenns 1-9
1.4.2.2 How to Find ApBUILDER Software and Hypertext Documents on the BBS 1-10
1.4.3 COMPUSEIVE FOTUMIS ..eiitiitiieis ettt s e s e e s eee ettt s e r e e s eeeee e aee et sn e e eneeeeeeesenee
1.4.4 WO WidE WED .ot sttt re e e e aeaesan e
15 TECHNICAL SUPPORTcccvvvveenn.
1.6 PRODUCT LITERATURE
1.7 TRAINING CLASSES ...ttt sttt e e e e bbb ae e e aeaenen e s

CHAPTER 2
ARCHITECTURAL OVERVIEW
2.1 TYPICAL APPLICATIONS ...ttt ettt ettt ettt et e nbbe e e et sae e e eees
2.2 DEVICE FEATURESottt sttt et ettt ettt ettt ee st sa et e en e enees
2.3 BLOCK DIAGRAM ..ottt ettt ettt bttt sttt st en e e et nee e en e
231 CPU Control
2.3.2 Register File

2.3.3 Register Arithmetic-logic Unit (RALU)
2.3.3.1 Code EXECULiONccccevveereriieeeieniienee

2.3.3.2 INSLruCtion FOIMALcooiiiiiiiiiiii i e
234 Y [T g aTo] A o] o1 (o] | [= SO PP PPRPRTRPN
2.3.5 INEEITUPL SEIVICE ..uviiiiiiieieiee ettt e e e e s e s e s e st s st e be e e bee e e e aeaesaneneanan

2.4 INTERNAL TIMING. ...ttt s s s

2.5 INTERNAL PERIPHERALS ... ettt e e e e
251 1@ o] ¢ £ PP PR PRSP
25.2 Serial /O (SIO) POIT ..ot et ee e e aeeeaes e s e s s eteeeeee
253 Synchronous Serial I/O (SSIO) POITvuiiiiiiiiie e e
254 SIAVE POIT ...t ettt
255 Event Processor Array (EPA) and Timer/COUNETSccovvveiiireinieieeiie e siie e 2-9
2.5.6 Analog-to-digital CONVEIETccuuiieiiiiiie ettt e e e e ee e e 2-10
2SI AT 1 (o g To [o o N 4 1 =Y SRR 2-10

2.6 SPECIAL OPERATING MODESottt en e 2-10
26.1 Reducing Power CONSUMPLIONcoiiiiiiiiii ettt e e 2-10
2.6.2 Testing the Printed Circuit BOArdccceviiiiiriiieinieie et 2-11

8XC196NT USER’'S MANUAL Inu®

2.6.3 Programming the Nonvolatile MEMOIYcocoiiiiiiiiiiie e e 2-11
CHAPTER 3
PROGRAMMING CONSIDERATIONS
3.1 OVERVIEW OF THE INSTRUCTION SETcciiiiitiiiiieitiiee ettt e
3.1.1 (2T I IO o1 T = g (o F PR PRPRPUPSPSR
3.1.2 BYTE OPEIANUS ..uveviiiiiiieiee e ees e ee e e et st ettt e ee e e s e e e e e e et st sttt te e e tee e aaeaeaesaneneanas
3.1.3 SHORT-INTEGER OPEIaNdSccueuiieiiiieieiesaieie et ee st et e enie e e e
3.1 4 WORD OPEIANGAS ..oeeiiiiieiei i ittt e e e ee e te s e s e e e et st e a s be e bee e aeeaeaeaesasean s ane s e eee
3.15 INTEGER OPEIANUS ...iciiiiiiiiiii ettt e e e te e s as e e e sttt sas s e e bee e eeeeeaeaen e ens e e nnens
3.1.6 DOUBLE-WORD OPEIaNdScccoieieiiiiiiiiieieiit s ee e tesasas e s e st stasssnsne e eeaeeesaaanean s
3.1.7 LONG-INTEGER OPEIraNdSccoieiiiiiiiiis ittt e ee e e s aeaeaes e es s siss e e e e eeeaeaeaen s
3.1.8 QUAD-WORD OPEIANAS ...uvuieiiieiitiiiie e et esesees e ast st ee e e ee e eeeaeaesasesess s sansbe e e e es
3.1.9 (Ofe] 17T a T gTo [@] o1=T = 0 [o LSS PSPUPPPRRP
1o 700 901 0 R o 1o To [1 T g F= 1IN LU 1] o 1< PSR PRUR Tt
3.1.11 Floating POINt OPEratiOnNSccccoiieveiiiieiir e e iee e ieses e s s sttt re e e eeee e e s aseesesens e e nanns
3.1.12 ExXtended INSIUCHIONSccvueiieiiiieeie et sttt sttt s ee e e
3.2 ADDRESSING MODES..................
3.21 Direct ADdressingccccceeeeenn..
3.2.2 Immediate Addressing
3.2.3 Indirect Addressingccccccvvveeivieiininiinenenennne
3.2.3.1 Extended INAIreCt AAAreSSINGccoveviiiiiiiiiii i e

3.2.3.2 Indirect Addressing with Autoincrement
3.2.3.3 Extended Indirect Addressing with Autoincrement
3.2.3.4 Indirect Addressing with the Stack Pointer
3.2.4 Indexed AdAreSSiNgcoooveiiiiieiiiiiiiieee e
3.2.4.1 Short-indexed ADAressingcccccceeerereeeiienneee e
3.2.4.2 Long-indexed Addressingcc.cceee...
3.2.4.3 Extended INdeXed AArESSINGcoccoveritiireiiiir et ee et e e e s
3.2.4.4 Zero-indexed AdAreSSINGcccuueeeiiiiiiiee e eiieiee e erteiee e s be e s st ae e ae st be e eeeanees
3.2.45 Extended Zero-indexed AdAreSSINGccceiivieirieiiiie it
3.3 ASSEMBLY LANGUAGE ADDRESSING MODE SELECTIONS.........coooeviviviiiiiiienen, 3211
3.3.1 (D)1 ¢=To QAo [0 [(=17 oo OSSPSR
3.3.2 TaTo =3 Yo N (o ({11 1 o USRS
3.3.3 EXtended AdAreSSINGceee ittt ettt et
3.4 DESIGN CONSIDERATIONS FOR 1-MBYTE DEVICES
3.5 SOFTWARE STANDARDS AND CONVENTIONS
3.5.1 USING REGISTEIS ...uviiiiiiiiiiee et s e e
3.5.2 Addressing 32-bit Operands
3.5.3 Addressing 64-bit Operands
354 LiNKING SUDIOULINESoiiiiiie ittt et nn e
3.6 SOFTWARE PROTECTION FEATURES AND GUIDELINESccovviiiiiiiiiiiiniiiiee 3-14

InU® CONTENTS

CHAPTER 4
MEMORY PARTITIONS
4.1 MEMORY MAP OVERVIEW.ouiiiiiiii ettt et e 4-1
4.2 MEMORY PARTITIONS ...ttt ettt et ettt e bt ee e eeeeas 4-3
421 =11 g T LY, =T 4 T Y P PPRPRPPPPPRRN 4-5
4.2.2 Program and Special-purpoSe MEMOIYvuiuiiiiiieieiiierie e ee e e e aeaeee s 4-5
4.2.2.1 Program Memory in Page FFH ... e 4-5
4.2.2.2 SPECIAl-PUIPOSE MEIMOIY ..iviiiiiiiiiieieiii e e i et e e e e e ee e e s e s e e s s et e e re e e aee s 4-6
4.2.2.3 Reserved Memory LOCALIONSucuviiiiiiiiisisiiissiiieeieee e eeaeaesases e s s sasaneeaeaee e 4-7
4.2.2.4 Interrupt and PTS Vectors
4.2.2.5 SECUNLY KBY ittt ettt e e e et st ettt e te e e e e e eeses e st sass srt e te e tee e eeaee s
4.2.2.6 Chip Configuration Bytes
4.2.3 Special-function RegiSters (SFRS) ...ccoovviiiiii ittt e ae s 4-8
4.2.3.1 Memory-mapped SFRs
4.2.3.2 Peripheral SFRScccccvunee
4.2.4 Internal RAM (Code RAM)
425 Register File ..o
4.25.1 General-purpose Register RAM
4.2.5.2 Stack POINLEN (SP) ..eoiiiiiiii et et e 4-13
4.2.5.3 CPU Special-function RegiSters (SFRS)cccoiiiiiiiiiiie e 4-14
4.3 WINDOWING ...ttt ettt ettt ettt e ettt e et e te e e n e ee e s 4-15
431 SeleCting @ WINAOWc.oiiieii ittt 4-16
4.3.2 Addressing a Location Through a WINAOWcueierioiiiiiicriiiiiies e e 4-17
4.3.2.1 32-byte Windowing EXamPlec.oovviiiiiiiiiiiiee e e
4.3.2.2 64-byte WIindowing EXAmMPIEooiiiie e
4.3.2.3 128-byte Windowing Example .. .
4.3.2.4 Unsupported Locations Wmdowmg Example ... 4-20
4.3.2.5 Using the Linker Locator to Set Up @ WINAOWcc.cuieerioiinieenieiie e 4-20
4.3.3 Windowing and Addressing MOUEScc.uvuiieiiiiiiiieer e e e srae e seaeae e e 4-22
4.4 REMAPPING INTERNAL OTPROM (87C196NT ONLY) ..ooviiiiiiiiiie e eriiiires e sieie e 4-23
4.5 FETCHING CODE AND DATA IN THE 1-MBYTE AND 64-KBYTE MODES.............. 4-24
45.1 FetChing INSITUCLIONSuiiiiiiieie ettt be e e e aeaen
4.5.2 ACCESSING DALA ..oeooviiiieie ettt e et e e e e e et nraeae e an
45.2.1 Using Extended Instructions
4.5.3 Code Fetches in the 1-Mbyte Modeccocevieieininnnnns
4.5.4 Code Fetches in the 64-Kbyte MOUEccoeeiiiiiiiieiie e
455 Data Fetches in the 1-Mbyte and 64-Kbyte Modes
4.6 MEMORY CONFIGURATION EXAMPLES ..o
46.1 Example 1: A 64-Kbyte Mode 87C196NT System
4.6.2 Example 2: A 64-Kbyte 87C196NT System with Additional Data Storage 4-30
4.6.3 Example 3: A 1-Mbyte 87C196NT System with a 16-bit BUSccccceveiierenneenn . 4-32
46.4 Example 4: A 1-Mbyte 8XC196NT System with an 8-bit BUScceccvevrieeeininnne 4-34

8XC196NT USER’'S MANUAL Inu®

CHAPTER 5
STANDARD AND PTS INTERRUPTS
5.1 OVERVIEW OF INTERRUPTS ...ttt ettt
5.2 INTERRUPT SIGNALS AND REGISTERSot
5.3 INTERRUPT SOURCES AND PRIORITIES.......ooiiiiiiitie e e
5.3.1 Special Interruptsccccevnnene
5.3.1.1 Unimplemented Opcode
LR T I S To) 1 1LV T =T I = S STSTRR
B.301.3 NI e e e e ettt en e ee s
5.3.2 EXternal INErrUPt PINSciiiii e e ee e e e e ee e s
5.3.3 Multiplexed INTEITUPL SOUICEScooiii ittt et s e e e ee e eeseaea e s
5.3.4 ENd-0f-PTS INTEITUPLS .oveiiiiiiie ettt e e et e e e e aeaeaen s
5.4 INTERRUPT LATENCY ..ottt ettt ettt e e e
54.1 Situations that Increase Interrupt Latency
5.4.2 (OF=1 (o1 =1 1] o -1 =] Ty YO PPPPPPPPPP
5.4.2.1 Standard INterrupt LAtENCYccoeeiiiieiiiiiit i ettt ee e e e e e e s e
5.4.2.2 PTS INEITUPL LAENCY .eeuviiti ittt ettt ettt e e e s e e e
5.5 PROGRAMMING THE INTERRUPTSottt
55.1 Programming the Multiplexed INterruptsccoovieieiieirioie e
5.5.2 Modifying INtEIrUPL PTIOTLIES ..o.oviieiieieiee ettt
5.5.3 Determining the Source of an INLErruPtcuvvii i
5.5.3.1 Determining the Source of Multiplexed INterruptsccccoeeerevmiireeniiiiieeen e 5-16
5.6 INITIALIZING THE PTS CONTROL BLOCKS
5.6.1 SpeCifyiNng the PTS COUNL ...icoiiiiiie ettt ie ettt e ae e e ae e e e e
5.6.2 Selecting the PTS MOAEcooiiiiiiie ettt ettt et ae e r e ae e e s
5.6.3 SiNGIE Transfer MOUEvviiiiic e e e e e e st ae e e seees
5.6.4 BIOCK TranSfer MOGEuouiiiiiiieie ettt ettt et e e e e e e e e e e aen
5.6.5 A/D Scan Modeccceeerirnnnne
5.6.5.1 A/D Scan Mode Cyclesccccovveriierenns
5.6.5.2 A/D Scan Mode EXamPIE 1cuooiiiiiiiiie it e et e et e s e s ene e e
5.6.5.3 A/D Scan Mode EXamPIE 2oooiiiiiiiiieiee et e et e e sttt e e
5.6.6 PWM MOESevieieeiiie et
5.6.6.1 PWM Toggle Mode Example
5.6.6.2 PWM Remap Mode EXamMPIEcooiiiiiiiiniiie ettt

CHAPTER 6
/O PORTS
6.1 /O PORTS OVERVIEW ..ottt et et st ettt e st e e s e eens
6.2 INPUT-ONLY PORT O
6.2.1 Standard Input-only Port Operation
6.2.2 Standard Input-only Port Considerations
6.3 BIDIRECTIONAL PORTS 1, 2, 5, AND 6 .cceoiiiiiiei ittt e e et i
6.3.1 Bidirectional Port OPErationccoeeeiiiiiieien et
6.3.2 Bidirectional Port Pin Configurationscuoeiioiiiiiiin et

vi

InU® CONTENTS

6.3.3 Bidirectional Port Pin Configuration EXamplec.ccccccviviiiii i 6-10
6.3.4 Bidirectional Port CONSIAEratioNScooiiiiiiieiriiieie et 6-11
6.3.5 Design Considerations for External Interrupt INPULScooveviiiiiii i e 6-14
6.4 BIDIRECTIONAL PORTS 3 AND 4 (ADDRESS/DATA BUS)......ccoiiiireiiiniieeenne e 6-14
6.4.1 Bidirectional Ports 3 and 4 (Address/Data Bus) Operationccccccvvvvvverereeeeeeenn, 6-15
6.4.2 USING POrtS 3 and 4 @S /O .uouuiiiieiee oottt e e e s s et

6.4.3 Design Considerations for Ports 3 and 4
6.5 O PP TR

6.5.1 EPORT Operation ..
6.5.1.1 Resetcccvuvee

6.5.1.2 Output Enableccccoevevieiiiiiiiniiiniiiiinns
6.5.1.3 Complementary OUIPUL MOGE ..ot e eeeee e
6.5.1.4 Open-drain Output Mode
6.5.1.5 Input Modecccccvviriiiininnnnn.
6.5.2 Configuring EPORT PINS ...uiuiiiiiiiie ettt e s e s es e st s s et e e e e e eas
6.5.2.1 Configuring EPORT Pins for Extended-address Functions . 0224
6.5.2.2 Configuring EPORT PiNS fOr /O ...cciiiiii ittt 6-24
6.5.3 EPORT CONSIAEIALIONSeieiitiiieie et ittt ettt ettt et et sre e e e ens 6-25
6.5.3.1 EPORT Status During Reset, CCB Fetch, Idle, Powerdown, and Hold 6-25
6.5.3.2 EP_REG Settings for Pins Configured as Extended-address Signals6-25
6.5.3.3 EPORT Status During INStruction EXECULIONcuuvivieiiiiniininesissseiiieieee e e 6-26
6.5.3.4 Design CONSIAEIAtIONScccuuiieiiiitiiie ettt e e e e 6-26
CHAPTER 7

SERIAL 1/O (SIO) PORT
7.1 SERIAL 1/O (SIO) PORT FUNCTIONAL OVERVIEWcccoooiiiiiiiiieieiiiieeiieieienenene 1-1
7.2 SERIAL 1/O PORT SIGNALS AND REGISTERScooiiiiieie e e 7-2
7.3 SERIAL PORT MODESo oottt e e e e s e e e e e e e
7.3.1 SyNchronous MOde (MOUE 0) .eueueueiiiiiiiriiiei it e e et ae e s
7.3.2 Asynchronous Modes (Modes 1, 2, and 3)
7.321 Model .ot
T.3.2.2 MOOE 2 .ottt et e e ettt et et
T.3.2.3 MOOE 3 oottt e e n ettt ettt et
7.3.2.4 Mode 2 and 3 Timings
7.3.2.5 Multiprocessor Communicationsccccccecvveverrennnnnnn
7.4 PROGRAMMING THE SERIAL PORT ...coiiiiiiiei ettt et et
7.4.1 Configuring the Serial POrt PiNScccouiiiii oot e e
7.4.2 Programming the Control REQISTENcuiiiiiiiie e e
7.4.3 Programming the Baud Rate and CIOCK SOUICEccceevieiiiiiiiieiiiieiee e e 7-8
7.4.4 Enabling the Serial Port INTErTUPLSceeoiiiiiiie e 7-11
7.4.5 Determining Serial POrt STAtUScoocvueiirii it e e ee s 7-12
7.5 PROGRAMMING EXAMPLE USING AN INTERRUPT-DRIVEN ROUTINE............... 7-13

Vii

8XC196NT USER’'S MANUAL Int9I®

CHAPTER 8
SYNCHRONOUS SERIAL I/O (SSIO) PORT
8.1 SYNCHRONOUS SERIAL I/O (SSIO) PORT FUNCTIONAL OVERVIEW.........c.......... 8-1
8.2 SSIO PORT SIGNALS AND REGISTERScoiiiiiiiit ettt 8-2
8.3 SSIO OPERATION ...ttt ettt ettt ettt ettt e st n st e et st et e e et en e 8-3
8.4 SSIO HANDSHAKING ..ottt ettt ettt ettt et e sttt e st en e 8-6
8.4.1 SSIO Handshaking Configurationcooooiiiiiiiiiiiie e e e e e e 8-6
8.4.2 SSIO Handshaking OPErationeeieieioriiiii i e ee e s e e e e et e e n e e e e s 8-7
8.5 PROGRAMMING THE SSIO PORT ...ttt ettt st e s e e 8-9
8.5.1 Configuring the SSIO POIt PINS ...uuuieiiiiiii ettt e e e s e s e s s seeeeeee 8-9

8.5.2 Programming the Baud Rate and Enabling the Baud-rate Generator8-9
8.5.3 Controlling the Communications Mode and Handshakingc.cccccceeviiiiiiinnnn 8-11
8.5.4 Enabling the SSIO INLEITUPLS ..ooviieiii e e
8.5.5 Determining SSIO POrt STAtUScoooviiieiiie it ee e e e e
8.6 PROGRAMMING CONSIDERATIONS
8.7 PROGRAMMING EXAMPLEoiiiiiiitiie ettt ettt e se e e

CHAPTER 9
SLAVE PORT
9.1 SLAVE PORT FUNCTIONAL OVERVIEW ...c.outiiiiiii e e
9.2 SLAVE PORT SIGNALS AND REGISTERS
9.3 HARDWARE CONNECTIONS ...ttt ettt s et s
9.4 SLAVE PORT MODES ...t ettt e ettt e e ae e
9.4.1 Standard Slave Mode Example
9.4.1.1 Master Device Programccccceuenen.
9.4.1.2 Slave DeVICE PrOgramccccceieeiiiie e ctieiee et ee e sie e e st ae e aeestnsaeaeentnaeaee s
9.4.1.3 Demultiplexed BUS TiMINGS ...cccovuiriireiririin et sieee sttt e e e e e
9.4.2 Shared Memory Mode EXAmPIEcoccoveiieiiiiie et e
9.4.2.1 Master DEVICE PrOgramccuuieeiiiitiieeeeeeititieeeeestitieeee e seeae e s e sreae e aenstne e aensneees
9.4.2.2 Slave Device Program
9.4.2.3 Multiplexed BUS TiMINGScccouiiiiiiieie ettt e e ae e st ae e e e e
9.5 CONFIGURING THE SLAVE PORT ..ottt e ettt et et e ninieiee
951 Programming the Slave Port Control Register (SLP_CON)
9.5.2 Enabling the Slave Port INTEITUPLSouiiiiiiiie oot
9.6 DETERMINING SLAVE PORT STATUS ..ottt
9.7 USING STATUS BITS TO SYNCHRONIZE MASTER AND SLAVE...........coooeiiviiinne

CHAPTER 10
EVENT PROCESSOR ARRAY (EPA)

10.1 EPA FUNCTIONAL OVERVIEW ..ottt
10.2 EPA AND TIMER/COUNTER SIGNALS AND REGISTERSc.ooviiiiiierieeeee e
10.3 TIMER/COUNTER FUNCTIONAL OVERVIEW.................

10.3.1 Cascade Mode (TIMEr 2 ONIY) .oeioiiiiiieie ettt et ee e e ea e e eee e e ean

viii

Int9I® CONTENTS

10.3.2 Quadrature CIOCKING MOAEc.ooiiiiiiieii et e
10.4 EPA CHANNEL FUNCTIONAL OVERVIEWocoiiiiiiiiiiniie e e
10.4.1 Operating in Capture MOUEc.cuviiiiiiii ittt e e e e es e e aee e e
10.4.1.1 Handling EPA OVEITUNS ...ccoiiiiii ettt et ae e s e e e e e et st sns et e e aee e aenaeaen e ens
10.4.2 Operating in CompPare MOUEcoooiiiiiiiiii it e e e e e re e e
10.4.2.1 Generating a Low-speed PWM Outputc..ceeevenene
10.4.2.2 Generating a Medium-speed PWM Output
10.4.2.3 Generating a High-speed PWM Outputcccees
10.4.2.4 Generating the Highest-speed PWM OULPULcoooiiiiiiiiiiiiiiin e
10.5 PROGRAMMING THE EPA AND TIMER/COUNTERS........cccccsiiiiineeeeie e
10.5.1 Configuring the EPA and Timer/Counter Port Pins
10.5.2 Programming the TIMEersccccccceeeieriniiiei e
10.5.3 Programming the Capture/Compare Channels
10.5.4 Programming the Compare-only Channelsccccocveieiiiniiiin e
10.6 ENABLING THE EPA INTERRUPTS ...ttt e e
10.7 DETERMINING EVENT STATUS ...ttt ettt e n e s e
10.8 SERVICING THE MULTIPLEXED EPA INTERRUPT WITH SOFTWARE................ 10-29
10.8.1 Using the TIIJMP Instruction to Reduce Interrupt Service Overhead10-31
10.9 PROGRAMMING EXAMPLES FOR EPA CHANNELScocoiiiiii e 10-33
10.9.1 EPA Compare EVENt Programooueuieiiiiii it et s e en e 10-33
10.9.2 EPA Capture EVENE Programco.ouuiuiiiior ettt et e e e e s aeeeeeeeen 10-34
10.9.3 EPA PWM OULPUL Programcocooieiiiieiiei et e e ee e 10-35

CHAPTER 11
ANALOG-TO-DIGITAL CONVERTER

11.1 A/D CONVERTER FUNCTIONAL OVERVIEW.cccvveen.
11.2 A/D CONVERTER SIGNALS AND REGISTERS

11.3 A/D CONVERTER OPERATIONuttiiiiiiitiie ittt e sttt e e st ae e e neeae e e nne e
11.4 PROGRAMMING THE A/D CONVERTER
11.4.1 Programming the A/D TeSt REGISIErccciiiiiiiiiiiiiiie et e s

11.4.2 Programming the A/D Result Register (for Threshold Detection Only)11-6
11.4.3 Programming the A/D Time REQGISIEIceviiiiiiiiiiisiiin et
11.4.4 Programming the A/D Command Register
11.4.5 Enabling the A/D INTEITUPE ...oocveeieiie ettt sttt e e e e enene e ean
11.5 DETERMINING A/D STATUS AND CONVERSION RESULTSccccceeiviiiiiie e 11-9
11.6 DESIGN CONSIDERATIONS.... ottt it ae ettt et ee e e e e e s e s e s e s s seeeeeeee 11-10
11.6.1 Designing External Interface CirCUItIYcccccoeiiiiiieeinei e e e 11-11
11.6.1.1 Minimizing the Effect of High Input Source ResiStanceccccccovvevreiveinnnen. 11-12
11.6.1.2 Suggested A/D INPUL CiFCUILcoeeiuruieir et et e e e e see e e e seeeeaeeseneees
11.6.1.3 Analog Ground and Reference Voltages
11.6.1.4 Using Mixed Analog and Digital INPULScccoiveereiiiiniieie e
11.6.2 Understanding A/D CONVEISION EITOIScoiiiiiiiiiiriie s itiee et

8XC196NT USER’'S MANUAL Inu®

CHAPTER 12
MINIMUM HARDWARE CONSIDERATIONS
12.1 MINIMUM CONNECTIONS ...ttt ettt ettt et eee e s e sn e enee e e 12-1
12.1.1 UNUSEA INPULS eoitiiiieiiiiiie e ieies s s e ettt et ee e s ae e e e e et st e et be e bae e aaeaeaenenenean 12-2
12.1.2 1/O POrt Pin CONNECLIONS ...ttt ettt ettt e 12-2
12.2 APPLYING AND REMOVING POWERccouiiiiiiiiiiiieneies sttt ettt 12-4
12.3 NOISE PROTECTION TIPS ..ottt ettt ettt sttt sttt enae et ee e 12-4
12.4 PROVIDING THE CLOCK .. .ttt ettt ettt ettt ettt e e e ste e e 12-5
12.4.1 Using the ON-Chip OSCIlIAtOrccoiiiiiiiie e e 12-5
12.4.2 Using a Ceramic Resonator Instead of a Crystal Oscillatorcccccvvvviviieieienennnnn. 12-7
12.4.3 Providing an External ClOCK SOUICEcccciiiiiiiiiiiie e 12-7
125 RESETTING THE DEVICE ..ottt ettt et st 12-8
12.5.1 Generating an EXternal RESELcooo i 12-10
12.5.2 Issuing the Reset (RST) INSLIUCLIONccoviiiiiieiiiic e e e 12-12
12.5.3 Issuing an lllegal IDLPD Key OPErandccccceveeiiiiininereni s sieiieieieineieieeaeaenanens 12-12
12.5.4 Enabling the Watchdog TImMercooiiiiiiii e e 12-12
12.5.5 Detecting Oscillator Failure 12-12
CHAPTER 13
SPECIAL OPERATING MODES
13.1 SPECIAL OPERATING MODE SIGNALS AND REGISTERS.......cccoooviiiiiiiiiiiieeeeen, 13-1
13.2 REDUCING POWER CONSUMPTION ...ttt sttt et e e aee e e
13.3 IDLE MODE ...ttt e et e e ettt et et e et e e ettt ee e et e e n e ae it e e e a
13.4 POWERDOWN MODE ..o e ettt et e e e e e ae e e e ren e e e s
13.4.1 Enabling and Disabling POWerdown MOGEcccoiiieeiiiiniie e
13.4.2 Entering POWErdown MOEccooiiiiiiiiiir ettt e e e
13.4.3 EXiting POWErdown MOAEc..cuviiieiiiiiiii i ie e sttt e e e s e e ennae e aan
13.4.3.1 Driving the Vipp PINLOW i
13.4.3.2 Generating a Hardware RESELuuiuiiiiiiiiioniiies et e
13.4.3.3 Asserting the External Interrupt Signal
13.4.3.4 Selecting Ry @N0 €1 ..ooieiiiiiiiiceie i
13.5 ONCE MODBE......ioiiii ittt ie ittt et ee ettt e ekt en sttt es e e st e e e e e ennee e sbeeeenn
13.5.1 Entering and EXiting ONCE MOUEcccciiiiiiiiiiiiiiiiir e e ie s st ee e e
13.6 RESERVED TEST MODES ..ottt ittt sttt st e e
CHAPTER 14
INTERFACING WITH EXTERNAL MEMORY
14.1 INTERNAL AND EXTERNAL ADDRESSESccoiiitiiiiiinniies st 14-1
14.2 EXTERNAL MEMORY INTERFACE SIGNALS. ..ottt et 14-2
14.3 CHIP CONFIGURATION REGISTERS AND CHIP CONFIGURATION BYTES......... 14-5
14.4 BUS WIDTH AND MULTIPLEXINGcttteiieiniiie ettt st sttt n 14-10
14.4.1 Timing Requirements for BUSWIDTHccociiiiiiiiiiieiie e ee e 14-12
14.4.2 16-Dit BUS TIMINGS .eeviiiiiiiieieiosir sttt e e ee e s ee e e e es st s sttt e e ee e aeeaeaeneaens 14-13

InU® CONTENTS

14.4.3 8-Dit BUS TIMINGS evuvitiiiiiiieieiie e ie s es e et ee e ee e e e aeaeaeses e s ss sabare e saeaeaeeeeees 14-15
145 WAIT STATES (READY CONTROL).....ctetiititie et crtieies sttt st 14-17
146 BUS-HOLD PROTOGCOL ..c.uttiiiie ittt et ettt e e st st st et et sne e s 14-19

14.6.1 Enabling the Bus-hold ProtoColc.ccciiiiiiiiiie e 14-21

14.6.2 Disabling the Bus-hold Protocol 14-22

14.6.3 Hold Latencycccccccvvvveennnnnn.
14.6.4 Regaining Bus Control
147 BUS-CONTROL MODES

14.7.1 Standard BUS-CONLIOl MOUEoooiiiiiiieiiiie ettt 14-23
14.7.2 WIrite Strobe MOAEooiiiiiii et 14-27
14.7.3 Address Valid Strobe MOUEcoiiiiiiiiiiiiie e 14-29
14.7.4 Address Valid with Write Strobe Mode ... 14-33
14.8 BUS TIMING MODES........ccoii ittt ettt ettt ettt e sttt nne e 14-34
14.8.1 Mode 3, Standard MOUEcoooiiiiiiiiiiiiiiiie et 14-36
14.8.2 Mode 0, Standard Timing with One Automatic Wait Statecccceevvvnivieinennnns 14-36
14.8.3 Mode 1, Long Read/Write€ MOUEccvuiiiiiiiiiiiiie et es et ee e an e
14.8.4 Mode 2, Long Read/Write with Early Address
14.8.5 DesSign CONSIAEIALIONScciiitiriiiir ittt ettt ettt e
149 SYSTEM BUS AC TIMING SPECIFICATIONSooiiii et
CHAPTER 15
PROGRAMMING THE NONVOLATILE MEMORY
151 PROGRAMMING METHODS 15-1
15.2 OTPROM MEMORY MAP ..ottt ettt ettt et s e s sttt ee e es 15-2
15.3 SECURITY FEATURES.......ittt ittt ettt ettt sttt e ae e e ae e s 15-3
15.3.1 Controlling Access to Internal MEMOIYcccceiiieiiiiiin e e 15-3
15.3.1.1 Controlling Access to the OTPROM During Normal Operation 15-4
15.3.1.2 Controlling Access to the OTPROM During Programming Modes 15-4
15.3.2 Controlling Fetches from External MEMOIYceeviiiiriiiiin e 15-6
15.3.3 Enabling the Oscillator Failure Detection CirCUItrycccccevviereiieiriiee e 15-7
15.4 PROGRAMMING PULSE WIDTH ..ccoiioiii ittt et
15.5 MODIFIED QUICK-PULSE ALGORITHM......cciiiiiiiiiiieie e
15.6 PROGRAMMING MODE PINS......ooiiiiiiii et e e
15.7 ENTERING PROGRAMMING MODEScccoo ittt ettt e
15.7.1 Selecting the Programming MOAEcceoiuiiiiiiiiiie et e e
15.7.2 Power-up and Power-down Sequences
15.7.2.1 Power-up SEQUENCEccuvrveerrcrereeennens

15.7.2.2 Power-down Sequence
15.8 SLAVE PROGRAMMING MODE
15.8.1 Reading the Signature Word and Programming Voltagesc..ccccecverrineennn. 15-15

15.8.2 Slave Programming Circuit and Memory Mapccoccoeeriiireinieinieee e 15-16
15.8.3 Operating ENVIFONMENTcoiiiiiiie ittt e e 15-17
15.8.4 Slave Programming ROULINEScccoiiuiiiriiiiiiiie ettt ee e e e e e seae e e e 15-19

Xi

8XC196NT USER’'S MANUAL Inu®

15.8.5 TiMIiNG MNEMONICS ...uvuviuiiiiitiieieieies s eie e et re e ee e eeeaeaeaesesess s sabbbe e naeaeaeeeeees 15-24
159 AUTO PROGRAMMING MODEcoiiiiieaiie ittt st es 15-25
15.9.1 Auto Programming Circuit and Memory Mapcccccvveeieiiieeieieninein e snsesinininenenes 15-25
15.9.2 Operating ENVIFONMENTiuiiiiieie et ie e e e e te e e s e s e s s saa e ae e aeeee e 15-27
15.9.3 Auto Programming ROULINEc.cuuiiiiiririiiiiisiiieie e et tetes e s e e e s svns e e ane e 15-27
15.9.4 Auto Programming ProCeAUIEcccoiiiiiiiimimiiieiieieiie e ieienesess s s snsssneseee e e 15-29
15.9.5 ROM-AUMP MOGE ..ooiviiiiiiiiieiie et e e e s e e e e e e et st be e e aeeeeeas 15-30
15.10 SERIAL PORT PROGRAMMING MODEccoiiiiiiiiiiniiiee e 15-31
15.10.1 Serial Port Programming Circuit and Memory Mapcccoeeeeveveiiiiiiiiineniiieieee e 15-31
15.10.2 Changing Serial Port Programming Defaultsc.cccoveiiiiiiiiiiiiiiiiicce e,
15.10.3 Executing Programs from Internal RAM ... e e
15.10.4 Reduced Instruction Set Monitor (RISM)ccooiiiiiiiiiiiie e e
15.10.5 RISM Command DeSCrIPLIONSccoeiiiiiiiriiiiie e s s s e sttt e bee e e a e
15.10.6 RISM Command EXamMPIEScocviiiiiiiiiiiiieie et e st
15.10.6.1 Example 1 — Programming the PPWc.ccccoeennne
15.10.6.2 Example 2 — Reading OTPROM Contents
15.10.6.3 Example 3 — Loading a Program into Internal Code RAMcccccceveveinininnnnnn. 15-39
15.10.6.4 Example 4 — Setting the PC and Executing the Programc.ccccccvivinnenn. 15-41
15.10.6.5 Writing to OTPROM with Examples 3 and 4ccccooeiiiiniiininie e 15-42
15.11 RUN-TIME PROGRAMMING ..ottt ettt e ee e ae e e eeean e e 15-43
APPENDIX A

INSTRUCTION SET REFERENCE

APPENDIX B
SIGNAL DESCRIPTIONS

B.1 FUNCTIONAL GROUPINGS OF SIGNALS
B.2 SIGNAL DESCRIPTIONSttt e e e
B.3 DEFAULT CONDITIONS ..ottt e

APPENDIX C
REGISTERS

GLOSSARY

INDEX

Xil

InU® CONTENTS

FIGURES

Figure

2-1 1) O K L6 N I =1 [Tod [1 T= o = o o PRSP
2-2 BIOCK Diagram Of the COrEuuiuiiiiiiieierie ettt e e e e sre e e ne e e aee s
2-3 Clock CirCUItry v.vveveveevieieieieieiiiinns

2-4 Internal Clock Phases

4-1 16-Mbyte Address Space.............
4-2 Pages FFH and OOH..........uuuiiiiii oo et ee e ae s e e e e e et st s st e e e ee e e aee s

4-3 Internal RAM Control (IRAM_CON) Register
4-4 Register File Memory Map
4-5 Windowing........cccoevvvvvivineieieeeeeenn,

4-6 Window Selection Register (WSR)..................

4-7 The 24-Dit Program COUNTET....... ...t ie e iee e ees s s s sttt e s e eeaeaeaesesea s anenenenee

4-8 Formation of Extended and Nonextended AddreSSes........ccccveviviiieieiniiieies e 4-25
4-9 A 64-Kbyte System with an 8-bit Bus 4-29
4-10 A 64-Kbyte System with Additional Data StOrageccccveveeeeeeenireeien e envseene e 4-31
4-11 A 1-Mbyte System wWith @ 16-Dit BUS..........ccooiiiiiiie e 4-33
4-12 A 1-Mbyte System with an 8-Dit BUS..........cccciiiiiiiiiieee e e 4-35
5-1 Flow Diagram for PTS and Standard INterruptsScueveeeiieiinirionininn i e e 5-2
5-2 Standard Interrupt Response TiMecuvvevevieieniniiniiiiiicninns

5-3 PTS Interrupt RESPONSE TIME . .civiiiiiiiiiie ettt ee et s s st ee e e eas

5-4 PTS Select (PTSSEL) REGISIENccoiiiiiiie ettt ettt s in e e e

5-5 Interrupt Mask (INT_MASK) Register..............

5-6 Interrupt Mask 1 (INT_MASK1) Register.........

5-7 Interrupt Pending (INT_PEND) Register

5-8 Interrupt Pending 1 (INT_PENDZL) REQISLErccccoeiiiiiiiieieieiirn et

5-9 PTS CONIOl BIOCKS ..ottt
5-10 PTS Service (PTSSRV) Register

5-11 PTS Mode Selection Bits (PTSCON BitS 7:5)uvuviiiiiiiiie e ecieis et e 5-21
5-12 PTS Control Block — Single Transfer Mode...........cccuviviiiiiiiene e 5-22
5-13 PTS Control Block — Block Transfer MOde...........ccociiiiiiiiiiiee e 5-25
5-14 PTS Control BIoCk — A/D SCaN MOUEccco ittt
5-15 A Generic PWM Waveformccccoevieninnne

5-16 PTS Control Block — PWM Toggle Mode
5-17 EPA and PTS Operations for the PWM Toggle Mode Example

5-18 PTS Control Block — PWM RemMap MOGE........ccuiiiiiieiiiiinieeies e e
5-19 EPA and PTS Operations for the PWM Remap Mode Example

6-1 Standard INPUt-0NlY POt STTUCTUIEceoivieie ettt e et e s e eeee e
6-2 BidireCtional POIt STIUCTUIE.........uvviiie et et et et te e et ae e et e e e ese e e s
6-3 Address/Data Bus (Ports 3 and 4) Structure

6-4 EPORT Block Diagram.........cccoeeeveeieirneeecnnnee

6-5 EPORT Structureccccveerenne

7-1 SIO BloCk Diagramcccoeceveirieeeenieenenen e

7-2 Typical Shift Register Circuit for Mode Oooeoiiriiieeiie e
7-3 /T o [0 I T3 211 o T PSSRSO
7-4 Serial Port Frames fOr MOOE 1cvuiiiiiiiiiie ettt ettt e ae e

Xiii

8XC196NT USER’'S MANUAL Inu®

FIGURES
Figure
7-5 Serial Port Frames in Mode 2 and 3.t
7-6 Serial Port Control (SP_CON) REQISIEI......cccuiiiiiieiice ittt
7-7 Serial Port Baud Rate (SP_BAUD) Registercocevuiee
7-8 Serial Port Status (SP_STATUS) Register
8-1 SSIO Block Diagramccccccevvvviiiiieieeeneenennn
8-2 SSIO OPerating MOUES ...ttt e e e e e e eeaeaeses e e e ettt rne
8-3 SSIO TransMit/RECEIVE TIMINGS ..uvuviriiiiiriie e e ieseeees e er s srtr e e e e eeeeeeeaesesea s ee e eeee
8-4 SSIO Handshaking Flow Diagram.........ccccceveveeeieieneneiiiennns

8-5 Synchronous Serial Port Baud (SSIO_BAUD) Register
8-6 Synchronous Serial Control x (SSIOx_CON) Registers

8-7 Variable-width MSB in SSIO TranSmMiSSIONSccccciuurieriiiiriie e

9-1 DPRAM VS SIave-port SOIULION........cciiiiiieie et s e e e e ae e e e
9-2 Slave Port Block Diagram... .

9-3 Master/Slave Hardware Connectlons ...
9-4 Standard Slave Mode Timings (Demultiplexed BUS)cccccccviiiieieiee e

9-5 Standard or Shared Memory Mode Timings (Multiplexed BUS).........c.ccccceveviiiiiiiiiininns 9-13
9-6 Slave Port Control (SLP_CON) Register

9-7 Slave Port Status (SLP_STAT) Register.........

10-1 [y AN = (0Tt Q] = o | > o USSP
10-2 EPA TIMEI/COUNLEIS ...ttt ettt ettt e ettt et e en e e e e e ean

10-3 Quadrature Mode Interface .. e
10-4 Quadrature Mode Timing and Count

10-5 A Single EPA Capture/Compare Channel
10-6 EPA Simplified INput-Capture StrUCtUreccc oot e
10-7 Valid EPA INPUE EVENTS ...cuiiii ettt s sttt eeeee e
10-8 Timer 1 Control (TLCONTROL) Registerccccccvvveveverenann.

10-9 Timer 2 Control (T2CONTROL) Registerccccvvvveieierenenn.

10-10 EPA Control (EPAX_CON) Registers.........cccevvvvnvrrvrreernnnnnn.
10-11 EPA Compare Control (COMPX_CON) REQISLEIS......uiuiuirieirieeieieseeeie s s sieninieine e 10-25
10-12 EPA Interrupt Mask (EPA_MASK) REQISIENcco oot et ee e e v

10-13 EPA Interrupt Mask 1 (EPA_MASK1) Registerc.........
10-14 EPA Interrupt Pending (EPA_PEND) Register
10-15 EPA Interrupt Pending 1 (EPA_PENDL) REQISIEruviuiuiiiiiiiiiieieeieiee e vvnveaens 10-28
10-16 EPA Interrupt Priority Vector (EPAIPV) ReQISter........vuiuiiiiiiiieiiiesceeie i sesiieieine e 10-30
11-1 A/D Converter Block Diagram
11-2 A/D Test (AD_TEST) Register
11-3 A/D Result (AD_RESULT) Register — Write Format

11-4 A/D Time (AD_TIME) REQISIENccieiii ittt ettt et es s s e e sttt n e e vaeaeaesaaaaean
11-5 A/D Command (AD_COMMAND) Register........cccccveerernnnn.

11-6 A/D Result (AD_RESULT) Register — Read Format

11-7 Idealized A/D Sampling CirCUItryccccoevevieiiiiiesssiiiiiens

11-8 Suggested A/D INPULE CIFCUIL ... et e e e ees e es st e e e eeaeaeaes e s e s s aeenen
11-9 Ideal A/D Conversion CharacteriStiC...........coeieivivieieiieie e e e e e
11-10 Actual and Ideal A/D Conversion CharacteriStiCS.........ccvvuiriieierienieiin i

Xiv

InU® CONTENTS

Figure
11-11
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
13-1
13-2
13-3
13-4
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
14-25
15-1
15-2
15-3
15-4

FIGURES

Terminal-based A/D Conversion CharacteristiCccuvviiireiieieier e 11-19
Minimum Hardware CONNECLIONSc.ueuireriieie ettt e e
Power and Return Connectionscce.....

On-chip Oscillator CirCuit..........ccocvvvveinrienenenn.

External Crystal Connections
External Clock CONNECLIONSuiiiiiiiieiie ettt
External Clock Drive WavefOormMS.........co.ueuiriiiiieie ettt
Reset TiIMiNg SEQUENCEcuuviiiiiieieiieieiee e

Internal Reset CirCUItIYoooviviiieiic e

Minimum Reset CirCUItc.ooviiiiieir e

Example System ReSEt CIlCUIL........ccuvieiiriii it e
Clock Control During Power-saving Modes
Power-up and Powerdown Sequence When Using an External Interrupt.................. 13-6
EXEErNal RC CIFCUIL....ceii ittt ettt ettt e ee e 13-7
Typical Voltage on the V, Pin While Exiting Powerdown..............ccccccoiiiiiniinnnnn, 13-8
Chip Configuration 0 (CCRO0) Register
Chip Configuration 1 (CCR1) Register
Chip Configuration 2 (CCR2) Register
Multiplexing and Bus Width OptionS.........ccciiie i e e
BUSWIDTH Timing DIAQIramcuiuieieiesiseie i sitsie e ee e ee e aeaesasae e ennsn s snsnsne e eeeees
Timings for 16-bit BUSES..........ccoeviv i

Timings for 8-bit BUSES........ccvvviiivii i

READY Timing Diagramccccvuvviiiiiieieieneeeeeis s esesssinneees
HOLD#, HLDAH# TIMING ...ttt ettt et enie e e enne e
Standard BUS CONTIOLcieiiii ittt et e ee e e
Decoding WRL# and WRH#
8-bit System with Flash and RAMccccccviiiiiiiiiiiiiiiiens

16-bit System with Dynamic Bus Width................ccccoveinniene

W SErODE MO ... e ettt s
16-bit System with Single-byte Wrtes t0 RAMiviiiiiiiiiiiieen e
Address Valid Strobe Mode
Comparison of ALE and ADV# BUS CYCIEScceuiiiiiiiiiiiiiiiieieiin e e aes s s
8-bit System With FIash ..o
16-bit System with Flashccccccveeiieiicee

Timings of Address Valid with Write Strobe Mode
16-bit System With RAM ...

Modes 0, 1, 2, aNd 3 TIMINGS ..uuiiiiiiieie i ee e s e s e s s e aeeeee e
Mode 1 SyStem BUS TiMING......uiuiuiuieieieniseis e eee e e e eeeesasaes e essss s sssssre e eeee e
Mode 2 System BUS TiMiNg.......c..cueueiiiiieieieninineininesissiiineene

System BUS TiMING ...ooovveroriiiiiiiiiieiie e

Unerasable PROM (USFR) RegiSter.......c.cccceovvevieericnienneene

Programming Pulse Width (PPW or SP_PPW) Register
Modified Quick-pulse AlGOrtRM ...
Pin Functions in Programming MOGES..........ccoouuiiieiniiiiiie et e

XV

8XC196NT USER’'S MANUAL Inu®

Figure

15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-13
15-14
15-15
B-1

XVi

FIGURES

Slave Programming CilrCUIL.uuuueirieeieiee e eeees s ee st e e e e eeeeeeeeesesesese e sennaneseaes
Chip Configuration RegiSters (CCRS).....uuuuiiiiiiiiieieeieier e eiis s srrireeee e e aeeaeaes s e s e
Address/Command Decoding Routineccccoevvvvneiennn.

Program Word Routine.................

Program Word Waveform
DUMP WOId ROULINE ...ttt ettt ettt e e e ee e e s e e e e e enasnsn e e nre e eeee e
DUMP WOrd WaVvefOrM e sttt e e e ae s e s e s s s e tre e ee e e
Auto Programming CirCUIteuvuvueeeeeeririirireneinvininine e

Auto Programming Routine...........
Serial Port Programming Mode CirCuit.........cccccvvveeeeeenennnn.
Run-time Programming Code EXampPle.........cooiiiiiiiiiiiiie e s e e
8XC196NT 68-lead PLCC PACKAGE .. cuvivieieieieieieeee ettt ee e e e e e eeaen e s e sennnnnnes

InU® CONTENTS

TABLES
Table
1-1 Handbooks and Product INfOrmationcooeueeiriiiiieiin e
1-2 Application Notes, Application Briefs, and Article Reprintscccoeveviviviiiieieieeieee e,
1-3 MCS® 96 Microcontroller Datasheets (Commercial/Express)
1-4 MCS® 96 Microcontroller Datasheets (Automotive)
1-5 MCS® 96 Microcontroller Quick References........ccccceeee
2-1 Features of the 8XCLIBNTociiiiiii ittt e e et n
2-2 State Times at Various FreQUENCIESuvuuiiiiriie et e e e e e e ae e e s e e enens
3-1 Operand TYPE DefiNItIONS.t e e s s s e eeees
3-2 Equivalent Operand Types for Assembly and C Programming Languages 3-2
3-3 Definition of TeMPOrary REQISIEISuuiiiiiii it
4-1 BXCLI6NT MEMOTY MBP .. i ittt et e s ettt e s e tee e e e e e e e s

4-2 Program Memory Access for the 87C196NT
4-3 Special-purpose Memory Access for the 87C196NT
4-4 8XC196NT Special-purpose Memory Addresses

4-5 8XCIL196NT Memory-mMappPed SFRS... ..t e s s e e ee e e e e e e
4-6 BXCLI96NT Peripheral SFRS ...t ettt ee e e e e e e es e s s nnaee

4-7 Register File Memory AQArESSESccuiiiiiiier ettt et e s s e s e et e

4-8 BXCLI96NT CPU SFRS ...coiiiiiiiie it

4-9 Selecting a Window of 8XC196NT Peripheral SFRS.......ccccccvviiiiiieiinee e 4-16
4-10 Selecting a Window of the Upper Register File..........cccoiiiiiiiiiiiiin e 4-17
4-11 WINAOWS ... e ettt

4-12 Windowed Base Addresses

4-13 Memory Access for the 87C196NT

4-14 Memory Map for the System in Figure 4-9 ...
4-15 Memory Map for the System in Figure 4-10cccooiiiieiiiiiiiien e e

4-16 Memory Map for the System in Figure 4-11
4-17 Memory Map for the System in Figure 4-12....

5-1 INtErrupt SIgNaIS ...t
5-2 Interrupt and PTS Control and Status RegISLErsSiuivieiiiiieiiiiinie e e e 5-3
5-3 Interrupt Sources, Vectors, and Priorities

5-4 Execution Times for PTS Cycles..........cccceeeee

5-5 Single Transfer MoAe PTSCB ettt e e e e e s s s s e e e

5-6 Block Transfer MOde PTSCBociuiiiiiiiiiii ettt e e e st

5-7 A/D Scan Mode Command/Data Table...........

5-8 Command/Data Table (Example 1).................

5-9 A/D Scan Mode PTSCB (Example 1)..............

5-10 Command/Data Table (EXample 2) ... e 5-30
5-11 A/D Scan Mode PTSCB (EXaMPIE 2)ooviiiiiieie ettt 5-31
5-12 Comparison of PWM Modes

5-13 PWM Toggle Mode PTSCB..........

5-14 PWM Remap Mode PTSCB

6-1 DEVICE 1/O POIS ..t ie ettt ettt ettt e e et st e e et st beae e enntaeae e e et e aaeeeetnnte e s
6-2 Standard INPUL-ONlY POt PiNS ...ttt e e st ae s e se e 6-2
6-3 INPUE-ONIY POMt REGISTEISeei ittt ettt ettt e ene s 6-2

XVii

8XC196NT USER’S MANUAL Inu®

Table

6-4
6-5
6-6

6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
7-1
7-2
7-3
8-1
8-2

9-1
9-2

10-1
10-2
10-3
10-4
10-5
10-6
111
11-2
12-1
12-2
13-1
13-2
14-1
14-2
14-3
14-4
14-5
14-6
14-7

Xviii

TABLES

Page
BidireCtional POIt PINSuiiiiiiiieie e e et 6-4
Bidirectional Port Control and Status REQIStErSuuviiiiiiiiieieiinie e 6-5
Logic Table for Bidirectional Ports in I/O MOUEccuviiiiiiiiieieinieee e 6-8
Logic Table for Bidirectional Ports in Special-function Modecccoeeviviviniieicnnnn. 6-8
Control Register Values for Each Configuration..............cccoviviiiiiiein s 6-10
Port Configuration EXAMPIEueuiuiiiiiie st a e e e e 6-10
Port Pin States After Reset and After Example Code Execution...............cccoevevcvivnine 6-11

POIS 3 AN 4 PINS ...ttt et et et e e e
Ports 3 and 4 Control and Status Registers.....
Logic Table for Ports 3and 4 as l/O................
EP ORT PiNS .ttt ettt et et ettt e et e e et et e ettt ea e e en e et e eaaes
EPORT Control and Status REQISIEISccoi e e it e e
Logic Table for EPORT in I/O Mode................

Logic Table for EPORT in Address Mode
Configuration Register Settings for EPORT PiNS.......ccooiiiiiiiiiiiiireen e 6-24
EPORT Pin Status During Reset, CCB Fetch, Idle, Powerdown, and Hold6-25
Serial Port Signals..........ccoovviviiiiiiiieieen e

Serial Port Control and Status Registers
SP_BAUD Values When Using XTAL1 at 20 MHz
SSIO POt SIGNAIS .ooiiiie ittt e e ee e e eeaeaesas e e s et eree
SSIO Port Control and Status REQISLEISvvviiii it
Common SSIO_BAUD Values When Using XTALL at 20 MHZc.cooeveviiiiciiinnne 8-10
SIAVE PO SIQNAIS ..o i e te e s e e e e e e e e
Slave Port Control and Status Registers
Master and Slave INterCONNECHIONScueiiiii it
EPA and Timer/Counter Signals
EPA Control and Status REJISLEIScoiivii ittt e
Quadrature Mode Truth Table.........uuiii i e e
Action Taken when a Valid EAdge OCCUIScouiiiiiiiie et 10-12
Example Control Register Settings and EPA Operations............cccoecvevveerionereeenennns 10-20
EPAIPV Interrupt Priority Values
A/D CONVEITEE PINS . .iiiiiiieieies et sttt et te s e e e e e e st st et be e tebee e taeaeaesenenens
A/D Control and Status REGISTEIS.cuviuiieiiitiie e e rtiie e ettt ee e st ae e s e ste e e s e sreeeaeaan
Minimum Required Signals.........c.cccccovvveeennnee.

I/O Port Configuration Guide.........
Operating Mode Control Signals
Operating Mode Control and Status REQISIEIS.........ccccviiieir e e e
Example of Internal and External ADAreSSEScocovvuvieiiiiiieie e e eiieee e eaiee s
External Memory Interface Signals..................
READY Signal Timing Definitions....................
HOLD#, HLDA# Timing Definitions
Maximum HOIA LAENCYueiiiieie ittt ettt et
BUS-CONITOI IMOTE ...ttt et e et e e s st aeeeeen seaeeeaennenes
Modes 0, 1, 2, and 3 Timing COMPATISONS........cutueiaiiieieiereiaie e eeestee e eeestieieeeeeseneees

InU® CONTENTS

Table
14-8
14-9
15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-13
15-14

A-1
A-2
A-3
A-4

A-6
A-7

A-9
B-1
B-2
B-3

B-5
B-6
C-1
C-2

C-4
C-5
C-6
c-7

C-9

C-10
C-11
C-12

TABLES

AC Timing Symbol DefinitioNScooo oo ae e
AC TimiNG DEfiNItIONSvviiiii i e e ee e
87C196NT OTPROM Memory Mapcuvevveiieirenneeineiennens

Memory Protection for Normal Operating Mode..................

Memory Protection Options for Programming Modes
UPROM Programming Values and Locations for Slave Mode...............ccoeevvvvvvennnene, 15-8
L g I B T=E Yol] o] 1 o] PR
PMODE ValUESuviiiiiiieiie ettt e e
Device Signature Word and Programming Voltages..........
Slave Programming Mode Memory Map......cccccceveeeeeenenenn. w“
TIMING MNEIMONICS ettt it ee e e e e e e e et et bee e e e e eeees e ees e es
Auto Programming MemOry Map.......cceeiiiioroior i it ie e e eeeeaeseses s s sneeee e ne e e
87C196NT Serial Port Programming Mode Memory Map
87C196NT Serial Port Programming Default Values and Locations........................ 15-33
User Program Register Values and Test ROM Locations...............cceeeeevevieiennene... 15-34
RISM Command Descriptions
Opcode Map (Left Half)

Opcode Map (Right Half)........ccccoovvviiiinnininnnn.

Processor Status Word (PSW) Flags

Effect of PSW Flags or Specified Bits on Conditional Jump Instructions............c.c...... A-5
PSW Flag Setting Symbols

Operand Variables

Instruction Set

Instruction Opcodes

Instruction Lengths and Hexadecimal OpCOdES.........vuiuiiiiiiiininiiniiiii i e A-52
Instruction Execution Times (in State Times) A-59
Signal Name ChaNgESc.euiiiiiiiie ettt e e B-1
8XC196NT Signals Arranged by Functional Categoriescccccvvveeieieieeieienen i B-2
Description of Columns of Table B-4.........ccooo i
SIgNAl DESCIIPLIONS ... ittt e et e et bee e teeaeaeseses e s s st tbe e e eaes
Definition of Status Symbols

BXCLIBNT PN SEALUS ..ei ettt ittt ettt st eeeeeeeseses e e e et e nenenbee
Modules and Related REGISTENScciiiiuiiieieei ettt et ae e e e e seneeas
Register Name, Address, and RESet StatUsS..........c.covcvviieeeriiiiieien s e e e e
COMPx_CON Addresses and ReSet ValUES...........cccciiiuiiiiieieiie e e e sniniens
COMPx_TIME Addresses and Reset Values..

EPAX_CON Addresses and Reset ValUEScccccvueeiiieiieieieiee e e
EPAX_TIME Addresses and ResSet ValUES..........cccovuivieiiiiiieiie e ee e essevne e

EPA Interrupt Priority VECIOrS......c.ovveeevevieiiiiiie i

Px_DIR Addresses and Reset Values..............ccceeeevevvnnnnens

Px_MODE Addresses and Reset Values
Special-function Signals for Ports 1, 2, 5, B......coooeiii i e inniees
Px_PIN Addresses and ReSet ValUES.........cccoociiiiiiieieiie e et s
Px_REG Addresses and ReSet ValueScocviiiiiiiiieiie e e ae e

Xix

8XC196NT USER’S MANUAL Int9I®

TABLES

Table
C-13 Common SSIO_BAUD Values When Using XTALL at 20 MHZcccooooiiiiiiiininnnne
C-14 SSIOXx_BUF Addresses and ReSet ValUES...........cooevoiiiiiiiiieieiie e ee e sinnines
C-15 SSIOx_CON Addresses and Reset Values

C-16 TIMERX Addresses and Reset Valuescccccoeoveviieriiieiee e
C-17 WSR Settings and Direct Addresses for Windowable SFRS............cccocevcvviviiviee e

XX

intgl.
1

Guide to This Manual

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8X@6NT embedded microcontroller. It is intended for use by both
software and hardware designers familiar with the principles of microcontrollers. This chapter
describes what you'll find in this manual, lists other documents that may be useful, and explains
how to access the support services we provide to help you completadegigm.

1.1 MANUAL CONTENTS

This manual contains several chapters and appendixes, a glossary, and an index. This chaptel
Chapter 1, provides an overview of the manual. This section summarizes the contents of the re-
maining chapters and appendixes. The remainder of this chapter describes nat@tiosations

and terminabgy used throughout the manual, pa®s references to related documentation, de-
scribes customegupport sevices, and explains how to access information and assistance.

Chapter 2 — Architectural Overview — provides an overview of the device hardware. It de-
scribes the core, internal timing, internal peripherals, and special operating modes.

Chapter 3 — Programming Considerations —provides an overview of the instruction set, de-
scribes general standards and conventions, and defines the operand types and addressing mod
supported byhe MC® 96 microcontroller family. (For additional information about the instruc-

tion set, see Appendix A.)

Chapter 4 — Memory Partitions — describes the addressable memory space of the device. It
describes the memory partitions, explains how to use windows to inthezseount of memory

that can be accessed with register-di(8ebit) instructions, and progtes examples of meory
configurations.

Chapter 5 — Standard and PTS Interrupts —describes the interrupt control circuitry, priority
scheme, and timing for standard and peripheral transaction server (PTS) interrupts. It also ex-
plains interrupt programming and control.

Chapter 6 — 1/0O Ports — describes the input/output ports and explains how to configure the
ports for input, output, or special functions.

Chapter 7 — Serial /0 (S10) Port —describes the asynchronous/synchrorsaral I/O(SIO)
port and explains how to program it.

1-1

8XC196NT USER’S MANUAL Int9I®

Chapter 8 — Synchronous Serial I/O (SSIO) Port —describes the synabmous serial I/O
(SSI0O) port and explains how to program it.

Chapter 9 — Slave Port —describes the slave port and explains how to program it. Chapter 6,
“I/0O Ports,” explains how to configure port 3 to serve as the slave port. This chapter discusses
additional configurations specific to the slave port function and desdridyego use the slave

port for interprocessor communication.

Chapter 10 — Event Processor Array (EPA) —describes the event processor array, a tim-
er/counter-based, high-speed input/output unit. It describes the timer/counters and explains how
to program the EPA and how to use the EPA to produce pulse-width modulated (PWM) outputs.

Chapter 11 — Analog-to-digital Converter — provides an overview of the analog-to-digital
(A/D) converter and describes how to program the converter, read the conversion results, and in-
terface with external circuitry.

Chapter 12 — Minimum Hardware Considerations —describes options f@roviding the ba-
sic requirements for device operation within a system, discusses other hardware considerations,
and describes device reset options.

Chapter 13 — Special Operating Modes —provides an overview of the idle, powerdown, and
on-circuit emulation (ONCE) modes and describes how to enter and exit each mode.

Chapter 14 — Interfacing with External Memory — lists the external memory signals and de-
scribes the registers that control the external memory interface. It discusses the bus width and
memory configurations, the bus-hold protocol, write-control modesird@ahal wait states and

ready control. Finally, it provides timing information for the system bus.

Chapter 15— Programming the Nonvolatile Memory —provides recommended circuits, the
corresponding memory maps, and flow diagrams. It also provides procedures for auto program-
ming, and describes the commands used for serial port programming.

Appendix A — Instruction Set Reference —provides reference information for the instruction

set. It describes each instruction; defines the processor status word (PSW) flags; shows the rela-
tionships between instructions and PSW flags; and lists hexadecimal opcodes, instruction

lengths, and execution times. (For additional information about the instruction set, see Chapter 3,

“Programming Considerations.”)

Appendix B — Signal Descriptions —provides reference information for the device pins, in-
cluding descriptions of the pin functions, reset status of the I/O and control pins, and package pin
assignments.

Int€|® GUIDE TO THIS MANUAL

Appendix C — Registers —provides a compilation of all device registers arranged alphabeti-
cally by register mnemonic. It also includes tables that list the windowed direct addresses for all
SFRs in each possible window.

Glossary —defines terms with special meaning used tigfmut this maual.

Index — lists key topics with page number references.

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are useitghout this manual. The Glossary defines
other terms with special meanings.

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used in an instruction, the symbol prefixes
an immediate value in immediate addressing mode.

Addresses In this manual, both internal and external addresses use the number

of hexadecimal digits that correspond with the number of available
address lines. For example, the highest possible internal address is
shown as FFFFFFH, while the highest gibke external address is
shown as FFHARH. When writing code, use thappropriate address
conventions for the software tool you are using. @ssembly code,
a zero must precede an alphabetic character and an “H” must follow
a hexadecimal value, so FFFFFFH must be written as OFFFFFFH.
For ‘C’ code, a zero plus an “xX” must precede a hexadecimal value,
so FFFFFFH must be written as OXFFFFFF.)

Assert and Deassert The termsassertand deassertrefer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (low or high) is defined by the signal name. Active-low
signals are designated by aumd symbol (#) suffix; active-high
signals have no suffix. To assert RD# is to drive it low; to assert ALE
is to drive it high; to deassert RD# is to drive it high; to deassert ALE
is to drive it low.

Clear and Set The termsclear andsetrefer to the value of a bit or the act of giving
it a value. If a bit is cleaits value is “0”; clearing a bit gives it a “0”
value. If a bit is set, its value is “1"; setting a bit gives it a “1” value.

Instructions Instruction mnemonics are shown in upper case to avoid confusion.
You may use either upper case or lower case.

8XC196NT USER’S MANUAL IntGI@a

italics

Numbers

Register Bits

Register Names

Reserved Bits

Signal Names

Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x andy, wherex represents the first variable agdrepresents the
second variable. For example, in regist&r RMODEYy, x represents

the variable that identifies the specific port, andepresents the
register bit variable (7:0 or 15:0). Variables must be replaced with the
correct values when configuring or programming registers or
identifying signals.

Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the charactét. Decimal and binary numbers are
represented by their customary notations. (That is, 255 is a decimal
number and 1111111 is a biary number. In some cases, the leBter

is appended to binary numbers for clarity.)

Bit locations are indexed by 7:0 (or 15:0), where bit 0 is the least-
significant bit and bit 7 (or 15) is the most-significant bit. An

individual bit is represented by the register name, followed by a
period and the bit number. For example, WSR.7 is bit 7 of the
window selection register. In some discussions, bit names are used.

Register mnemonics are shown in upper case. For example, TIMER2
is the timer 2 register; timer 2 is the timer. A register name containing
a lowercase italic character represents more than one register. For
example, thec in Px_REG indicates that the register name refers to
any of the port data registers.

Certain bits are described esservedbits. In illustrations, reserved
bits are indicated with a dash (—). These bits are not used in this
device, but they may be used in future implementations. To help
ensure that a current software design is compatible with future imple-
mentations, reserved bits should be cleared (given a value of “0”) or
left in their default states, unless otherwise noted.

Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. For example, the EPA signals are named
EPAO, EPA1, EPA2, etd®ort pins are represented by the port abbre-
viation, a period, and the pin number (e.g., P1.0, P1.1)oung
symbol (#) appended to a signal name identifies an active-low signal.

Int€|® GUIDE TO THIS MANUAL

Units of Measure The following abbreviations are used to represent units of measure:

A amps, amperes

DCV direct current volts
Kbytes kilobytes

kHz kilohertz

kQ kilo-ohms

mA milliamps, milliamperes
Mbytes megabytes

MHz megahertz

ms milliseconds

mwW milliwatts

ns nanoseconds

pF picofarads

W waltts

\% volts

HA microamps, microamperes
pF microfarads

ps microseconds

pW microwatts

X Uppercase X (no italics) represents an nown value or an
immaterial (“don’t care”) state or condition. The value may be either
binary or hexadecimal, depending on the context. For example,
2XAFH (hex) indicates that bits 11:8 are unknown; 10XXB(binary)
indicates that the two LSBs arakmown.

1.3 RELATED DOCUMENTS

The tables in this section list additional documentsytbatmay find useful in designing systems
incorporating MCS 96 microcontrollers. These are not comprehensive lists, but are a representa-
tive sample of relevant documents. For a complete list of available printed documents, please or-
der the literature catalog (ordeumber 210621). To order documents, please tballintel
literature center for your area (telephone numbers are listed on page 1-11).

Intel's ApPBUILDER software, hypertext manuals and datasheets, and electronic versions of ap-
plication notes and code examples are also available from the BBS (see “Bulletin Board System
(BBS)” on page 1-9). New information is available first from FaxBack and the BBS. Refer to
“Electronic SupporBystems” on page 1-8 for details.

8XC196NT USER’S MANUAL

Table 1-1. Handbooks and Product Information

intel.

Title and Description

Order Number

Intel Embedded Quick Reference Guide

272439

Solutions for Embedded Applications Guide

240691

Data on Demand fact sheet

240952

Data on Demand annual subscription (6 issues; Windows* version)
Complete set of Intel handbooks on CD-ROM.

240897

Handbook Set — handbooks and product overview
Complete set of Intel's product line handbooks. Contains datasheets, application
notes, article reprints and other design information on microprocessors, periph-
erals, embedded controllers, memory components, single-board computers,
microcommunications, software development tools, and operating systems.

231003

Automotive Products t
Application notes and article reprints on topics including the MCS 51 and MCS 96
microcontrollers. Documents in this handbook discuss hardware and software
implementations and present helpful design techniques.

231792

Embedded Applications handbook (2 volume set) T
Data sheets, architecture descriptions, and application ntoes on topics including
flash memory devices, networking chips, and MCS 51 and MCS 96 microcon-
trollers. Documents in this handbook discuss hardware and software implementa-
tions and present helpful design techniques.

270648

Embedded Microcontrollers
Data sheets and architecture descriptions for Intel’s three industry-standard
microcontrollers, the MCS® 48, MCS 51, and MCS 96 microcontrollers.

270646

Peripheral Components T
Comprehensive information on Intel's peripheral components, including
datasheets, application notes, and technical briefs.

296467

Flash Memory (2 volume set) T
A collection of data sheets and application notes devoted to techniques and
information to help design semiconductor memory into an application or system.

210830

Packaging t
Detailed information on the manufacturing, applications, and attributes of a variety
of semiconductor packages.

240800

Development Tools Handbook
Information on third-party hardware and software tools that support Intel’s
embedded microcontrollers.

272326

T Included in handbook set (order number 231003)

Table 1-2. Application Notes, Application Briefs, and Article Reprints

Title Order Number
AB-71, Using the SIO on the 8XC196MH (application brief) 272594
AP-125, Design Microcontroller Systems for Electrically Noisy Environments T11 210313
AP-155, Oscillators for Microcontrollers 111 230659
AR-375, Motor Controllers Take the Single-Chip Route (article reprint) 270056
AP-406, MCS® 96 Analog Acquisition Primer TT1 270365
AP-445, 8XC196KR Peripherals: A User’s Point of View T 270873

T Included in Automotive Products handbook (order number 231792)
Tt Included in Embedded Applications handbook (order number 270648)
TttIncluded in Automotive Products and Embedded Applications handbooks

1-6

Inu® GUIDE TO THIS MANUAL

Table 1-2. Application Notes, Application Briefs, and Ar ticle Reprints (Continued)

Title Order Number
AP-449, A Comparison of the Event Processor Array (EPA) and High Speed 270968
Input/Output (HSIO) Unitt
AP-475, Using the 8XC196NT T1 272315
AP-477, Low Voltage Embedded Design Tt 272324
AP-483, Application Examples Using the 8XC196MC/MD Microcontroller 272282
AP-700, Intel Fuzzy Logic Tool Simplifies ABS Design * 272595
AP-711, EMI Design Techniques for Microcontrollers in Automotive Applications 272324
AP-715, Interfacing an I2C Serial EEPROM to an MCS® 96 Microcontroller 272680

T Included in Automotive Products handbook (order number 231792)
Tt Included in Embedded Applications handbook (order number 270648)
TttIncluded in Automotive Products and Embedded Applications handbooks

Table 1-3. MCS® 96 Microcontroller Datasheets (Commercial/Express)

Title Order Number
8XC196KR/KQ/IR/JIQ Commercial/lExpress CHMOS Microcontroller t 270912
8XC196KT Commercial CHMOS Microcontroller t 272266
87C196KT/87C196KS 20 MHz Advanced 16-Bit CHMOS Microcontroller t 272513
8XC196MC Industrial Motor Control Microcontroller t 272323
87C196MD Industrial Motor Control CHMOS Microcontroller t 270946
8XC196NP Commercial CHMOS 16-Bit Microcontroller T 272459
8XC196NT CHMOS Microcontroller with 1-Mbyte Linear Address Space t 272267

T Included in Embedded Microcontrollers handbook (order number 270646)

Table 1-4. MCS® 96 Microcontroller Datasheets (Automotive)

Title and Description Order Number
87C196CA/87C196CB 20 MHz Advanced 16-Bit CHMOS Microcontroller with 272405
Integrated CAN 2.0 T
87C196JT 20 MHz Advanced 16-Bit CHMOS Microcontroller T 272529
87C196JV 20 MHz Advanced 16-Bit CHMOS Microcontroller ¥ 272580
87C196KR/KQ, 87C196JV/JT, 87C196JR/JQ Advanced 16-Bit CHMOS 270827
Microcontroller
87C196KT/87C196KS Advanced 16-Bit CHMOS Microcontroller T 270999
87C196KT/KS 20 MHz Advanced 16-Bit CHMOS Microcontroller 272513

T Included in Automotive Products handbook (order number 231792)

Table 1-5. MCS® 96 Microcontroller Quick References

Title and Description Order Number
8XC196KR Quick Reference (includes the JQ, JR, KQ, KR) 272113
8XC196KT Quick Reference 272269
8XC196MC Quick Reference 272114
8XC196NP Quick Reference 272466
8XC196NT Quick Reference 272270

1-7

8XC196NT USER’S MANUAL Int9I®

1.4 ELECTRONIC SUPPORT SYSTEMS

Intel's FaxBack* service and application BBS provide up-to-date technical information. We also
maintain several forums on CompuServe and offer a variety of information on the World Wide
Web. These systems are available 24 hours a day, 7 days a week, providing technical information
whenever you need it.

1.4.1 FaxBack Service

FaxBack is an on-demand publishing system that sends documgats fax machine. You can

get product announcements, change notificatiprsduct literature, device charadstics, de-

sign recommendations, and quality and reliability information from FaxBack 24 hours a day, 7
days a week.

1-800-628-2283 U.S. and Canada
916-356-3105 U.S., Canada, Japan, APac
44(0)1793-496646 Europe

Think of the FaxBack service as a library of technical documents that you can accessuwith
phone. Just dial the telephone number and respond to the system prompts. After you select a doc
ument, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catalogs are updated twice monthly, so call for thenflaiestion. The
following catalogs and informaticare available at the time of publication:

1. Solutions OEMsubscription form

Microcontroller and flash catalog

Development tools catalog

Systems catalog

Multimedia catalog

Multibus and iRMX® software catalog and BBS file listings
Microprocessor, PCI, and peripheral catalog

Quality and reliability and change notification catalog

© © N o gk~ w DN

iAL (Intel Architecture Labs) technology catalog

1-8

Int€|® GUIDE TO THIS MANUAL

1.4.2 Bulletin Board System (BBS)

The bulletin board system (BBS) lets you download files to your computer. The application BBS
has the latesApBUILDER software, hypertext manuals and datasheets, software drivers, firm-
ware upgrades, application notes and utilities, and quality and reliability data.

916-356-3600 U.S., Canada, Japan, APac (up to 19.2 Kbaud)
916-356-7209 U.S., Canada, Japan, APac (2400 baud only)
44(0)1793-496340 Europe

The toll-free BBS (available in the U.S. and Canada) offers lists of documents available from
FaxBack, a master list of files available from the application BBS, and a BBS user’s guide. The
BBS file listing is also available from FaxBack (catalog number 6; see page 1-8 for phone num-
bers and a description of the FaxBack service).

1-800-897-2536 U.S. and Canada only

Any customer with a modem and computer can access the BBS. The system provides automatic
configuration support fat200- through 19200-baud modems. Typical modem settings are 14400
baud, no parity, 8 data bits, and 1 stop bit (14400, N, 8, 1).

To access the BBS, just dial the telephone number andrmegp the system prompts. During

your first session, the system asks you to register with the system operator by entering your name
and location. The system operator will set up your access account withgugst At that time,

you can access the files on the BBS.

NOTE

If you encounter any difficulty accessing the high-speed modem, try the
dedicated 2400-baud modem. Use these modem settings: 2400, N, 8, 1.

1421 How to Find MCS ® 96 Microcontroller Files on the BBS
Application notes, utilities, and product literature are available from the BBS. To access the files,
complete these steps:

1. EnterF from the BBS Main menu. The BBS displays the Intel Apps Files menu.

2. TypelL and press <Enter>. The BBS displays the list of areas and prompts for the area
number.

3. Typel2and press <Enter> to select MCS 96 Family. The BBS displays a list of subject
areas including general and product-specific subjects.

4. Type the number that corresponds to the subject of interest and press <4&fitdrthe
latest files.

1-9

8XC196NT USER’S MANUAL Int9I®

5. Type the file numbers to select the files you wish to download (for exaim@fer files 1
and 6 or3-7 for files 3, 4, 5, 6, and 7) and press <Enter>. The BBS displays the approx-
imate time required to download the files you have selected and gives you the option to
download them.

1.4.2.2 How to Find ApBUILDER Software and Hypertext Documents on the BBS

The latestApBUILDER files and hypertext manuals and data sheets are available first from the
BBS. To access the files, complete these steps:

1. TypeF from the BBS Main menu. The BBS displays the Intel Apps Files menu.

2. TypelL and press <Enter>. The BBS displays the list of areas and prompts for the area
number.

3. Type25 and press <Enter> to selegpBUILDER/Hypertext. The BBS displays several
options: one forApBUILDER software and the others for hypertext documents for
specific product families.

4. Typel and press <Enterto list the latesApBUILDER files or type2 and press <Enter>
to list the hypertext manuals and datasheets for MCS 96 microcontrollers.

5. Type the file numbers to select the files you wish to download (for exaim@fer files 1
and 6 or3-7 for files 3, 4, 5, 6, and 7) and press <Enter>. The BBS displays the approx-
imate time required to download the selected files and gives you the option to download
them.

1.4.3 CompuServe Forums

The CompuServe forums provide a means for you to gather information, share discoveries, and
debate issues. Type “go intel” for access. For information about CompuServe access and service
fees, call CompuServe at 1-800-848-81995)or 614529-1340 (outsle the U.S.).

1.4.4 World Wide Web

We offer a variety of information through the World Wide Web (URL:http://www.intel.com/). Se-
lect “Embedded Design Products” from tinéel home page.

1-10

Int€|® GUIDE TO THIS MANUAL

1.5 TECHNICAL SUPPORT

In the U.S. and Canada, technical support representatives are available to answer your question:
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include your voice
telephone number and indicate whether you prefer a response by phone or by fax). Outside the
U.S. and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada
916-356-7599 U.S. and Canada
916-3566100 (fax) U.S. and Canada

1.6 PRODUCT LITERATURE

You can order product literature from the following Intel literature centers.
1-800-468-818, ext. 283 U.S. and Canada

708-296-9333 U.S. (from overseas)
44(0)1793-431155 Europe (U.K.)
44(0)1793-421333 Germany
44(0)1793-421777 France
81(0)120-47-88-32 Japan (fax only)

1.7 TRAINING CLASSES

In the U.S. and Canadggu can register for trainingasses tlaugh the Intel customer training
center. Classes are held in the U.S.

1-800-234-8806 U.S. and Canada

1-11

intgl.

Architectural
Overview

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 16-bit 8XC196NT CHMOS microcontroller is designed to handle high-speed calculations
and fast input/output (I/O) operations. It shares a common architecture and instruction set with
other members of the ME36 microcontroller family. This device extends the addressability of
the MCS 96 family to 1 Mbyte. This chapter provides a high-level overview of the architecture.

2.1 TYPICAL APPLICATIONS

MCS 96 microcontrollers are typically used for high-speed event control systems. Commercial
applications include modems, motor-control systems, printers, photocopiers, air conditioner con-
trol systems, disk drives, and medical instruments. Automotive customers use MCS 96 microcon-

trollers in engine-control systems, airbags, suspension systems, and antilock braking systems
(ABS).

2.2 DEVICE FEATURES

Table 2-1 lists the features of the 8XC196NT.

Table 2-1. Features of the 8XC196NT

Register SI10/ External
Device Pins OTPROM RAM Code/Data I(O E.PA SSIO AID Interrupt
(Note 1) RAM Pins | Pins Channels .
(Note 2) Ports Pins
8XC196NT | 68 32K 1024 512 56 10 2 4 1

NOTES:

1. Nonvolatile memory is optional. The second character of the device name indicates the presence
and type of nonvolatile memory. 80C196NT = none; 87C196NT = OTPROM.

2. Register RAM amount includes the 24 bytes allocated to core SFRs and the stack pointer.

2.3 BLOCK DIAGRAM

Figure 2-1 shows the major blocks within the device. The core of the device (Figure 2-2) consists
of the central processing unit (CPU) and memory controller. The CPU contains the register file
and the register arithmetic-logic unit (RALU). The CPU connects to both the memory controller
and an interrupt controller via a 16-bit internal bus. An extension of this bus connects the CPU to
the internal peripheral modules. In addition, an 8-bit internal bus transfers instruction bytes from
the memory controller to the instruction register in the RALU.

8XC196NT USER’S MANUAL

Although the device has a 24-bit internal address bus, only 20 address lines are implemented.
Therefore, this device can physically address only 1 Mbyte of memory. (See Chapter 4, “Memory

Partitions,” and Chapter 6, “I/O Ports,” for additiorafidrmaion.)

N

tel.

Optional Interrupt
Core p
ROM Controller
Clock and Code/Data PTS
Power Mgmt. RAM
1o sio||ssio||epa|] ap || wor SF[%‘r’f

A2800-01

Figure 2-1. 8XC196NT Block Diagram

CcPU |

Register File RALU :
Microcode |

Engine |

|

Register ALU !
RAM :

'

|

PSW |

CPU SFRs !
|

|

Registers

Memory Controller
Prefetch Queue
Slave PC

Address Register

Data Register

Bus Controller

A2797-01

2-2

Figure 2-2. Block Diagram of the Core

Int€|® ARCHITECTURAL OVERVIEW

2.3.1 CPU Control

The CPU is controlled by the microcode engine, which instructs the RALU to perform operations
using bytes, words, or double words from either2b@-byte loweregister file or through win-
dowthat directly accesses the upper register file. (See Chapter mdiMéartitions,” for more
information about the register file and windowing.) CPU instructions move frollyee queue

in the memory controller into the RALUiBstruction register. The microcodegine decodes the
instructions and then generates the sequence of events that cause desired functions to occur.

2.3.2 Register File

The register file is divided into an upper and a lower file. In the lower register file, the lowest 24
bytes are allocated to the CPU’s special-function registers (SFRs) and the stack pointer, while the
remainder is available as general-purpose register RAM. The upper register file contains only
general-purpose register RAM. Thegigter RAM can be accessed as bytes, words, or double-
words.

The RALU accesses the upper and lower register files differently. The lower register file is always
directly accessible with direct addressing (see “Addressing Modes” on page 3-6). The upper reg-
ister file is accessible with direct addressing only wlvémowingis enabled. Windowing is a
technique that maps blocks of the upper register file imimeowin the lower register file. See
Chapter 4, “Memory Partitionsfor more information about the register file and windowing.

2.3.3 Register Arithmetic-logic Unit (RALU)

The RALU contains the microcode engine, the 16-bit arithmetic logic unit (ALU), the master pro-
gram counter (PC), the processor status word (PSW), and seygstdne The registers in the
RALU are the instruction register, a constants register, a bit-select register, a loop counter, and
three temporary registers (the upper-word, lower-word, and second-operand registers).

The PSW contains one bit (PSW.1) that globally enables or disables servicing of all maskable in-
terrupts, one bit (PSW.2) that enables or disables the peripheral transaction server (PTS), and six
Boolean flags that reflect the state of your program. Appendix Afrticison Set Reference,”
provides a detailed description of the PSW.

The device has a 24-bit program counter (PC), which provides a lnmesegmented 16-Mbyte
memory space. Only 20 of the address lines are implemented with external pins, so you can phys-
ically address only 1 Mbyte. (For compatibility with earlier devices, the PC can be configured as
16 bits wide.) The PC contains the address of the next instruction and has a built-in incrementer
that automatically loads the next sequential address. However, if a jump, interrupt, call, or return
changes the address sequence, the ALU loads the appropriate address into the PC.

8XC196NT USER’S MANUAL Int9I®

All registers, except the 3-bit bit-select register and the 6-bit loop counter, are either 16 or 17 bits
(16 bits plus a sign extension). Some of these registers can reduce the ALU’s workload by per-
forming simple operations.

The RALU uses the upper- and lower-word registers together for the 32-bit instructions and as
temporary registers for many instructions. These registers have their own shift logic and are used
for operations that require logical shifts, iding normalize, multiply, and divide operations.

The six-bit loopcounter counts repetitive shifts. The second-operand register stores the second
operand for two-operand instructions, including the multiplier during multiply operations and the
divisor during divide operations. During subtraction operations, the output of this register is com-
plemented before it is moved into the ALU.

The RALU speeds up calculations by storing constants (e.g., 0, 1, and 2) in the constants register
so that they are readily available when complementing, incrementing, or decrementing bytes or
words. In addition, the constants register generates single-bit masks, based on the bit-select reg
ister, for bit-test instructions.

2.3.3.1 Code Execution

The RALU performs most calculations for the device, but it does not wssamulator Instead

it operates directly on the lower register file, which essentmalywides 256 accumuars. Be-

cause data does not flow through a single accumulator, the device’s code executes faster and mor
efficiently.

2.3.3.2 Instruction Format

MCS 96 microcontrollers combine a large set of general-purpose registers with a three-operand
instruction format. This format allows a single instruction to specify two source registers and a
separate destination register. For example, the following instruction multiplies two 16-bit vari-
ables and stores the 32-bit result in a thirdalald.

MUL RESULT, FACTOR_1, FACTOR_2 ;multiply FACTOR_1 and FACTOR_2
;and store answer in RESULT
;(RESULT) ~(FACTOR_1 x FACTOR_2)

An 80C186 device requires four tngctions to accomplish the same operation. The following ex-
ample shows the equivalent code for an 80C186 device.

MOV AX, FACTOR_1 ;move FACTOR_1 into accumulator (AX)
i(AX) ~FACTOR1

MUL FACTOR_2 ;multiply FACTOR_2 and AX
i(DX:AX) ~(AX)x(FACTOR_2)

MOV RESULT, AX ;move lower byte into RESULT
J(RESULT) —(AX)

MOV RESULT+2, DX ;move upper byte into RESULT+2

{(RESULT+2) < (DX)

Int€|® ARCHITECTURAL OVERVIEW

2.3.4 Memory Controller

The RALU communicates with all memory, except the register file and peripheral SkRghthr

the memory controller. (It communicates with the upper register file through the memory control-
ler except whemwindowingis used; see Chapter 4, “Memory Partitions,”) The memory controller
contains the prefetch queue, the slpr@gramcounter (slave PC), address and data registers, and
the bus controller.

The bus controller drives the memory bus, which consists of an internal memory bus and the ex-
ternal address/data bus. The bus controller receives memory-access requests from either the
RALU or the prefetch queue; queue requests always have priority. This queue is transparent to
the RALU and your software.

NOTE
When using a logic analyzer to debug code, remember that instructions are

preloaded into the prefetch queue and are not necessarily executed
immediately after they are fetched.

When the bus controller receives a request from the queue, it fetches the code from the addres:
contained in the slave PC. The slave PC increases execution speed because the next instructio
byte is available immediately and the processor need not wait for the master PC to send the ad-
dress to the memory controller. If a jump, interrupt, call, or return changes the address sequence,
the master PC loads the new address into the slave PC, then the CPU flushes the queue and coil
tinues processing.

The extended program counter (EPC) is an extension of the slave PC. The EPC generates the ug
per eight address bits for extended code fetches and outputs them on the extended addressing po
(EPORT). Because only four EPORT pins are implemented, only the lower four address bits are
available. (See Chapter 4, “Memory Partitions,” for additionfdrimaion.)

2.3.5 Interrupt Service

The device’s flexible interrupt-handling system has two main components: the programmable in-
terrupt controller and the peripheral transaction server (PTS). The programmatieotrten-

troller has a hardware priority scheme that can be modified by your software. Interrupts that go
throughthe interrupt controller are serviced by interrupt service routineg/thaprovide. The
peripheral transaction server (PTS), a microcoded hardware interrupt processor, provides high-
speed, low-overhead interrupt handling. You can configure most interrupts (except NMI, trap,
and unimplemented opcode) to be serviced by the PTS instead ofetraphtontroller.

8XC196NT USER’S MANUAL Inu®

The PTS can transfer bytes or words, either individually or in blocks, between any memory loca-
tions, manage multiple analog-to-digital (A/D) conversions, and generate pulse-width modulated
(PWM) signals. PTS interrupts have a higher priority than standard interrupts and may temporari-
ly suspend interrupt service routines. See Chapter 5, “Standard and PTS Interrupts,” for more in-
formation.

2.4 INTERNAL TIMING

The clock circuitry (Figure 2-3) receives an input clock signal on XTpidvided by an external

crystal or oscillator and divides the frequency by two. The clock generators accept the divided
input frequency from the divide-by-two circuit aptbduce two nonoverlapping internal timing
signals, PH1 and PH2. These signals are active when high. The rising edges of PH1 and PH2 gen
erate CLKOUT, the output of the internal clock generator (Figure 2-4). The clock circuitry routes
separate internal clock signals to the CPU and the periphematsvide flexibility in power man-
agement. (“Reducing Power Consumption” on page 13-3 describes the power management
modes.) It also outputs the CLKOUT signal on the CLKOUT pin. Because of the complex logic

in the clock circuitry, the signal on the CLKOUT pin is a delayed version of the internal CLKOUT
signal. This delay varies with temperature and voltage.

Disable Clock Input
(Powerdown)
Fosc ivi
_ - Divide-by-two
XTALL D Circuit
Disable Clocks
(Powerdown)
XTAL2 J_
———> Peripheral Clocks (PH1, PH2)
Clock
Disable Generators — D CLKoOUT
Oscillator CPU Clocks (PH1, PH2)
(Powerdown)
Disable Clocks
(Idle, Powerdown)
A3064-02

Figure 2-3. Clock Circuitry

Inu® ARCHITECTURAL OVERVIEW

XTAL1 _| | | | | | | | I_

~#—— 1 State Time ——mr<a—— 1 State Time —

s] — ~

CLKOUT | l | _I |—

Phase1 Phase2 ! Phasel Phase 2

A0114-02

Figure 2-4. Internal Clock Phases

The combined period of phase 1 and phase 2 of the internal CLKOUT signal defines the basic
time unit known as atate timeor state Table 2-2 lists state time durations at various frequencies.
The following formulas calculate the frequency of PH1 and PH2 and the duration of a state time
(Foscis the input frequency to the divide-by-two circuit).

FOSC

2
PH1 (in MHz) = = PH2 (in MHz) State Time (in seconds) = l—:———
osc

Because the device can operate at many frequencies, this manual defines time requirements ir
terms of state times rather than specific times. Consult the latest datasheet for AC timing specifi-
cations.

Table 2-2. State Times at Various Fre quencies

Fosc .
(Frequency Input to the State Time
Divide-by-two Circuit)
8 MHz 250 ns
12 MHz 167 ns
16 MHz 125 ns
20 MHz 100 ns

2.5 INTERNAL PERIPHERALS

The internal peripheral modules provide special functions for a variety of applications. This sec-
tion provides a brief description of each peripheral and other chapters describe each one in detail.

8XC196NT USER’S MANUAL IntGI@a

25.1 1/O Ports

The 8XC196NT has eight I/O ports, ports 0-6 and the EPORT. Individual port pins are multi-
plexed to serve as standard I/O or to carry special-function signals associated with an on-chip pe-
ripheral or an off-chip component. If garticular speciafunction signal is not used in an
application, the associated pin can be individually configured to serve as a standard I/O pin. Ports
3 and 4 are exceptions. Their pins must be configured either as all /0O or as all address/data.

Port 0 is a four-bit, input-only port that is also the analog input for thecafiverter. Ports 1, 2,

and 6 are eight-bit, bidirectional, standard 1/O ports. Port 1 provides I/O pins for the event pro-
cessor array (EPA). Port 2 is used for asynchronous serial I/O (S10) and bus hold functions. Port
6 is used for synchronous serial I/0 (SSIO) and provides additional I/0 pitief&PA. Port 5

is an eight-bit, bidirectional, memory-mapped I/O port. Port 5 pins carry bus-control signals. Data
references to port 5 are always directed internally; therefore, port 5 cannot be reconstructed.

Ports 3 and 4 are eight-bit, bidirectional, memory-mapped I/O ports. These ports can be addressec
only via 16-bit or 24-bit indexed or indirect addresses; they cannot be windowed. Ports 3 and 4
serve as the 16-bit external address/data bus. Port 3 can also serve as the slave port, to provide ¢
interface between two 8XC196NT family devices or between the 8B8T and arexternal de-

vice. The EPORT provides address lines A19:1€utmport extended addsesg. See Chapter 6,

“I/0 Ports,” for more information.

2.5.2 Serial /O (SIO) Port

The serial I/0 (SIO) port is an asynchroneysichronous pothat includes a universal asynchro-

nous receiver and transmitter (UART). The UART has one synchronous mode (mode 0) and three
asynchronous modes (modes 1, 2, and 3) for both transmission and reception. The asynchronou:
modes are full duplex, meaning that they can transmit and receive data simultaneously. The re-
ceiver is buffered, so the reception of a second byte may begin before the first byte is read. The
transmitter is also buffered, allowing continuous transmissions. See Chapter 7, “Serial /O (SI10)
Port,” for details.

2.5.3 Synchronous Serial I/0 (SSIO) Port

The synchronous serial I/O (SSIO) port provides for simultaneous, bidirectional communications
between two 8XC196 family devices or between an 8XC196 device and another synchronous se-
rial 1/0O device. The SSIO port consists of two identical transceiver channels with a dedicated
baud-rate generator. The channels can be programmed to operate in several modes. See Chapt
8, “Synchronous Serial I/0O (SSIO) Port,” for more information.

Int€|® ARCHITECTURAL OVERVIEW

2.5.4 Slave Port

The slave port offers an alternative for communication between two CPU devices. Traditionally,
system designers have had three alternatives for achieving this communication — a serial link, a
parallel bus without a dual-port RAM (DPRAM), or a parallel bus with a DPRAM to hold shared
data.

A serial link, the most common method, has several advantages: it uses only two pins from each
device, it needs no hardware protocol, and it allows for error detection before data is stored. How-
ever, it is relatively slow and involves software overhead to differentiate data, addresses, and
commands. A parallel bus increases communication speed, but requires more pins and a rathel
involved hardware and software protocol. Using a DPRAM offers software flexibility between
master and slave devices, but the hardware interconnect uses a demultiplexed bus, which require:
even more pins than a simple parallel connection does. The DPRAM is also costly, and error de-
tection can be difficult. The SSIO offers a simple means for implementing a serial link. The mul-
tiplexed address/data bus can be used to implement a parallel link, with or without a DPRAM.
The slave port offers a fourth alternative.

The slave port offers the advantages of the traditional methods, without their drawbacks. It brings
the DPRAM on-chip. With this configuration, an external (master) processor can simply read
from and write to the on-chip memory of the 8XC196 (slave) device. The slave port requires more
pins than a serial link does, but fewer than the number used for a parallel bus. It requires no hard-
ware protocol, and it can interface with either a multiplexed or a demultiplexed bus. The master
simply reads or writes as if there were a DPRAM device on the bus. Data error detection can be
handled through the software. See Chapter 9, “Slave Port,” for details.

2.5.5 Event Processor Array (EPA) and Timer/Counters

The event processor array (EPA) performs high-speed input and output functions associated with
its timer/counters. In the input mode, the EPA monitors an input for signal transitions. When an
event occurs, the EPA records the timer value associated with it. Thisyduseevent. In the

output mode, the EPA monitors a timer until its value matches that of a stored time value. When
a match occurs, the EPA triggers an output event, which can set, clear, or toggle an output pin.
This is acompareevent. Both capture and compare events can initiate interrupts, which can be
serviced by either the imeipt contoller or the PTS.

Timer 1 and timer 2 are both 16-bit up/down timer/counters that can be clocked internally or ex-
ternally. Each timer/counter is calletimer if it is clocked internally and eounterif it is clocked
externally. See Chapter 10, “Event Processor Array (EPA),” for additional information on the
EPA and timer/counters.

8XC196NT USER’S MANUAL Int9I®

2.5.6 Analog-to-digital Converter

The analog-to-digital (A/D) converter converts an analog input voltage to a digital equivalent.
Resolution is either 8 or 10 bits; sample and convert times are programmable. Conversions can
be performed on the analggound and ref@nce voltage, and the results can be used to calculate
gain and zero-ddet errors. The internal zepffset compensation circuibhables automatic zero-

offset adjustment. The A/D also has a threshold-detection mode, which can be used to generate
an interrupt when a programmable threshold voltage is crossed in either direction. The A/D scan
mode of the PTS facilitates automated A/D conversions and result storage.

The main omponets of the A/D converter are a samyaled-hold circuit and an 8-bit or 10-bit
successive approximatianalog-to-digital converter. See Chapter 11, “Analog-to-digital Con-
verter,” for more information.

2.5.7 Watchdog Timer

The watchdog timer is B6-bit internal timer that resets the device if the software fails to operate
properly. See Chapter 12, “Minimum Hardware Considerations,” for more information.

2.6 SPECIAL OPERATING MODES

In addition to the normal execution mode, the device operates in several special-purpose modes.
Idle and powerdown modes conserve power when the device is inactive. On-circuit emulation
(ONCE) mode electrically isolates the microcontroller from the system, and several other modes
provide programming options for nonvolatile memory. See Chapter 13, “Special Operating
Modes,” for more information about idle, powerdown, and ONCE modes and Chapter 15, “Pro-
gramming the Nonvolatile Memory,” for detaddout programming options.

2.6.1 Reducing Power Consumption

Inidle mode, the CPU stops executing instructions, but the peripheral clocks remain active. Pow-
er consumption drops to about 40% of normal execution mode consumption. Either a hardware
reset or any enabled interrupt source will bring the device out of idle mode.

In powerdown mode, all internal clocks are frozen at logic state zero and the oscillator is shut off.

The register file, internal code and data RAM, and most peripherals retain their dagaisf V
maintained. Power consumption drops into the pW range.

2-10

Int€|® ARCHITECTURAL OVERVIEW

2.6.2 Testing the Printed Circuit Board

The on-circuit emulation (ONCE) mode electrically isolates the 8XC196 device from the system.
By invoking ONCE mode, you can test the printed circuit board while the device is soldered onto
the board.

2.6.3 Programming the Nonvolatile Memory

MCS 96 microcontrollers that have internal OTPROM or EPR®Mideseveraprogramming
options:

¢ Slave programimg allows a master EPROM programmer to program and verify one or
more slave MCS 96 microcontrollers. Programming vendors and Intel distributors typically
use this mode tprogram a large number of microcontrollers witbustomer’s code and
data.

¢ Auto programming allows an MCS 96 microcontroller to program itself with code and data
located in an external memory device. Customers typically use this low-cost method to
program a small number of microcontrollers after development and testing are complete.

¢ Serial portprogramming allows you tdownload code and data (usually from a personal
computer or workstation) to an MCS 96 microcontroller asynchronasbygh theserial
I/0 port's RXD and TXD pins. Customers typically use this modaldwnload large
sections of code to the microcontroller during software development and testing.

* Run-time programming allows you fmrogram indvidual nonvolatile memory locations
during normal code execution, under complete software control. Customers typically use
this mode to download a small amountrdbrmaion to the microcontroller after the rest of
the array has been programmed. For example, you might use run-time programming to
download a unique identification number to a security device.

* ROM dump mode allows you to dump the contents of the device’s nonvolatile memory to a
tester or to a memory device (such as flash memory or RAM).

Chapter 15, “Programming the Nonvolatile Memory,” provides recommendgdtsj the corre-
sponding memory aps, and flow diagrams. It also provides procedures for@ogramming
and describes the commands used for serial port programming.

2-11

intgl.

Programming
Considerations

CHAPTER 3
PROGRAMMING CONSIDERATIONS

This section provides an overview of the instruction set of the®M@Bmicrocontrollers and of-
fers guidelines for program development. For detailed information about specific instructions,
see Appendix A.

3.1 OVERVIEW OF THE INSTRUCTION SET

The instruction setupports a variety of operand types likely to befulsin control applications
(see Table 3-1).

NOTE

The operand-type variables are shown in all capitals to avoid confusion. For
example, 8YTEis an unsigned 8-bit variable in an instruction, whilg/geis
any 8-bit unit of data (either signed or unsigned).

Table 3-1. Operand Type Definitions

No. of . . Addressing
Operand Type Bits Signed Possible Values Restrictions
BIT 1 No True or False As components of bytes
BYTE 8 No 0 through 28-1 (0 through 255) None
SHORT-INTEGER 8 Yes | —27 through +27-1 None
(=128 through +127)
WORD 16 No 0 through 216-1 Even byte address
(0 through 65,535)
INTEGER 16 Yes | =215 through +215-1 Even byte address
(-32,768 through +32,767)
DOUBLE-WORD 32 No 0 through 232-1 An address in the lower
(Note 1) (0 through 4,294,967,295) register file that is evenly
divisible by four (Note 2)
LONG-INTEGER 32 Yes | —231through +231-1 An address in the lower
(Note 1) (-2,147,483,648 through register file that is evenly
+2,147,483,647) divisible by four (Note 2)
QUAD-WORD 64 No 0 through 264-1 An address in the lower
(Note 3) register file that is evenly
divisible by eight
NOTES:

1. The 32-bit variables are supported only as the operand in shift operations, as the dividend in 32-by-
16 divide operations, and as the product of 16-by-16 multiply operations.
2. For consistency with third-party software, you should adopt the C programming conventions for

addressing 32-bit operands. For more information, refer to page 3-11.

3. QUAD-WORD variables are supported only as the operand for the EBMOVI instruction.

3-1

8XC196NT USER’S MANUAL Int9I®

Table 3-2 lists the equivalent operand-type names for bgilo@ramning and assembly lan-
guage.

Table 3-2. Equivalent Operand T ypes for Assembly and C Progr amming Lan guages

Operand Types Assembly Language Equivalent C Programming Language Equivalent
BYTE BYTE unsigned char
SHORT-INTEGER | BYTE char
WORD WORD unsigned int
INTEGER WORD int
DOUBLE-WORD | LONG unsigned long
LONG-INTEGER LONG long
QUAD WORD — —

3.1.1 BIT Operands

A BIT is a single-bit variable that can have the Boolean values, “true” and “false.” The architec-
ture requires that BITs be addressed as components of BYTEs or WORDSs. It does not support the
direct addressing of BITs.

3.1.2 BYTE Operands

A BYTE is an unsigned, 8-bit variable that can take on values from 0 through883. (&rith-

metic and relational operators can be applied to BYTE operands, but the result must be interpret-
ed in modulo 256 arithmetic. Logical operations on BYTEs are applied bitwise. Bits within
BYTEs are labeled from 0 to 7; bit O is the least-significant bit. There are no alignment restric-
tions for BYTES, so they may be placetyahere in theaddress space.

3.1.3 SHORT-INTEGER Operands

A SHORT-INTEGER is an 8-bit, signed variable that can take on values from —138h(re2igh

+127 (+2-1). Arithmetic operations that generate results outside the range of a SHORT-
INTEGER set the overflow flags in the processor status word (PSW). The nunseiticisehe

same as the result of the equivalent operation on BYTE variables. There are no alignment restric-
tions on SHORT-INTEGERS, so they may be placed anywhere in the address space.

3-2

Int€|® PROGRAMMING CONSIDERATIONS

3.1.4 WORD Operands

A WORD is an unsigned, 16-bit vable that can take on values from 0 through 65,535-(9.
Arithmetic and relational operators can be applied to WORD operands, but the result must be in-
terpreted in modulo 65536 arithmetic. Logicglerations on WORDs are applied bitwise. Bits
within WORDs are labeled from 0 to 15; bit O is the least-significant bit.

WORDs must be aligned at even byte boundaries in the address space. The least-significant byte
of the WORD is in the even byte address, and the most-significant byte is in the nextdddher (
address. The address of a WORD is that of its least-significant byte (the even byte address).
WORD operations to odd addresses are not guaranteed to operate in a consistent manner.

3.1.5 INTEGER Operands

An INTEGER is a 16-bit, signed variable that can take on values from —32,768 {x®ugh
+32,767 (+25-1). Arithmetic operations that generate results outside the range of an INTEGER
set the overflow flags in the processor status word (PSW). The numeric result is the same as the
result of the equivalent operation on WORD variables.

INTEGERSs must be aligned at even bgteindaries in thaddress space. The least-significant

byte of the INTEGER is in the even byte address, and the most-significant byte is in the next high-
er (odd) addres. The address of an INTEGER is that of its least-significant byte (the even byte
address). INTEGER operations to odd addresses are not guaranteed to operate in a consister
manner.

3.1.6 DOUBLE-WORD Operands

A DOUBLE-WORD is an unsigned, 32-bit variable that can take on values fromoQOgthr
4,294,967,295 32-1). The architecture directijupports DOUBLE-WORD operands only as

the operand in shift operations, as the dividend in 32-by-16 divide operations, and as the product
of 16-by-16 multiply operatins. For these operations, a DOUBLE-WORD variable must reside

in the lower register file and must be aligned at an address that is evenly divisible by four. The
address of a DOUBLE-WORD is that of its least-significant byte (the even byte address). The
least-significant word of the DOUBLE-WORD is always in the lower askjreven when the

data is in the stack. This means that the most-significant word must be pushed into the stack first.

DOUBLE-WORD operations that are not direcilypported can be easily implemented with two
WORD operations. For example, the following sequences of 16-bit operatidosipa 32-bit
addition and a 32-bit subtraction, respectively.

ADD REG1,REG3 ; (2-operand addition)
ADDC REG2,REG4

SUB REG1,REG3 ; (2-operand subtraction)
SUBC REG2,REG4

3-3

8XC196NT USER’S MANUAL Int9I®

3.1.7 LONG-INTEGER Operands

A LONG-INTEGER is a 32-bit, signed variable that can take on values from —2,147,483,648
(= 230 through +2,147,483,647 (32-1). The architecture directly supports LONG-INTEGER
operands only as the operand in shift operations, as the divid82ebiy+16 divideoperations,

and as the product of 16-by-B8ultiply operations. For these operations, a LONG-INTEGER
variable must reside in the lower register file and must be aligned at an address that is evenly di-
visible by four. The address of a LONG-INTEGER is that of itstieamificant byte (the even

byte address).

LONG-INTEGER operations that are not direlypported can be easiipplemented with two
INTEGER operations. See the example in “DOUBLE-WORD Operands” on page 3-3.

3.1.8 QUAD-WORD Operands

A QUAD-WORD is a 64-bit, unsigned variable that can take on values fronoOginr®4-1.

The architecture directly supports the QUAD-WORD operand only as the operand of the EB-
MOVI instruction. For this operation, the QUAD-WORD variable must reside in the lower reg-
ister file and must be aligned at an address that is evenly divisible by eight.

3.1.9 Converting Operands

The instruction set supports conversions between the operand types. The LDBZE (load byte, zero
extended) instruction converts a BYTE to a WORD. CLR (clear) converts a WORD to a
DOUBLE-WORD by clearing (writing zeros to) the upper WORD of the DOUBLE-WORD.
LDBSE (load byte, sign extended) converts a SHORT-INTEGER into an INTEGER. EXT (sign
extend) converts an INTEGER to a LONG-INTEGER.

3.1.10 Conditional Jumps

The instructions for addition, subtraction, and comparison do not distinguish between unsigned
(BYTE, WORD) and signed (SHORT-INTEGER, INTEGER) operands. However, the condition-

al jump instructions allow you to treat the results of these operations as signed or unsigned quan-
tities. For example, the CMP (compare) instruction is used to compare both signed and unsigned
16-bit quantities. Following a compare operation, you can use the JH (jump if higher) instruction
for unsigned operands or the JGT (jump if greater than) instruction for signed operands.

Int€|® PROGRAMMING CONSIDERATIONS

3.1.11 Floating Point Operations

The hardware does not direcflypport operadns on REAL (floating point) variables. Those op-
erations are supported by floating point libraries from third-party tool vendors. (Seevblep-

ment ToolsHandbook) The performance of these operations is significantly improved by the
NORML instruction and by the sticky bit (ST) flag in the processor status word (PSW). The
NORML instruction normalizes a 32-bit variable; the sticky bit (ST) flag can be used in conjunc-
tion with the carry (C) flag to achieve finer resolution in rounding.

3.1.12 Extended Instructions

This section briefly describes the instructions that have been added to enable code execution anc
data access anywhere in the 1-Mbyte address space.

NOTE
In 1-Mbyte mode, ECALL, LCALL, and SCALL always push two words onto
the stack; therefore, a RET must always pop two words from the stack.
Because of the extra push and pop operations, interrupt routines and
subroutines take slightly longer to execute in 1-Mbytale than in 64-Kbyte
mode.

EBMOVI Extended interruptable block move Moves a block of word data from one
memory location to another. This instruction alloyesi to move blocks of up to
64K words between any two locations in the address space. It uses two 24-bit
autoincrementing pointers and a 16-bit counter.

EBR Extended branch This instruction is an unconditional indirect jump to
anywhere in the address space. It functions only in extended addressing modes.

ECALL Extended call This instruction is an unconditional relative call toahere in
the address space. It functions only in extended addressing modes.

EJMP Extended jump. This instruction is an unconditional, relative jump to anywhere
in the address space. It functions only in extended addressing modes.

ELD Extended load word Loads the value of the source word operand into the
destination operand. This instruction allows you to move data from anywhere in
the address space into the lower register file. It operates in extended indirect and
extended indexed modes.

ELDB Extended load byte Loads the value of the source byte operand into the
destination operand. This instruction allows you to move data from anywhere in
the address space into the lower register file. It operates in extended indirect and
extended indexed modes.

3-5

8XC196NT USER’S MANUAL Int9I®

EST Extended store word Stores the value of the sour@eftmost) word operand
into the destinatiorfrightmost) operand. This instruction allows you to move
data from the lower register file tmawhere in the addrespace. It operates in
extended indirect and extended indexed modes.

ESTB Extended store byte Stores the value of the souieftmost) byte operand into
the destinatior{rightmost) operand. This instruction allowsu to move data
from the lower register file torggwhere in the addresspace. It operates in
extended indirect and extended indexed modes.

3.2 ADDRESSING MODES

The instruction set uses four basic addressing modes:
e direct
* immediate
¢ indirect (with or without autoincrement)

* indexed (short-, long-, or zero-indexed)

The stack pointer can be used with indirect addressing to access the top of the stack, and it car
also be used with short-indexed addressing to access data within the stack. The zero register cal
be used with long-indexed addressing to access any memory location.

Extended variations of the indirect and indexed modes support the extended load and store in-
structions. An extended load instruction moves a word (ELD) or a byte (ELDB) from any location
in the address space into the lower register file. An extended store instruction meees a
(EST) or a byte (ESTB) from the lower register file into any location in the address space. An
instruction can contain only one immediate, indirect, or indexed reference; any remaining oper-
ands must be direct references.

This section describes the addressing modes as they are handled by the hardware. An understanc
ing of these details will help programmers to take full advantage of the architecture. The assembly
language hides some of the details of how these addressing modes work. “Assembly Language
Addressing Mode Selections” on page 3-11 describes how the assembly language handles direc
and indexed addressing modes.

The examples in this section assume that temporary registers are defihedasn this segment
of assembly code and described in Table 3-3.

Oseg at 1ch
AX DSW 1
BX DSW 1
CX DSW 1
DX DSW 1
EX DSL 1

Int€|® PROGRAMMING CONSIDERATIONS

Table 3-3. Definition of Temporary Registers

Temporary Register Description
AX word-aligned 16-bit register; AH is the high byte of AX and AL is the low byte
BX word-aligned 16-bit register; BH is the high byte of BX and BL is the low byte
CX word-aligned 16-bit register; CH is the high byte of CX and CL is the low byte
DX word-aligned 16-bit register; DH is the high byte of DX and DL is the low byte
EX double-word-aligned 24-bit register

3.2.1 Direct Addressing

Direct addressing directly accesses a location in the 256-byte lower register file, withwwt i

ing the memory controller. Windowing allowsu to remap other sections of memory into the
lower register file for direct access (see Chapter 4 My Partitions,” for details). Yospecify

the registers as operands within the instruction. The register addresses must conform to the align-
ment rules for the operand type. Depending on the instruction, up to three registers can take part
in a calculation. The following instructions use direct addressing:

ADD AX,BX,CX ;AX <« BX+CX
ADDB AL,BL,CL ;AL - BL+CL
MUL AX,BX AX <« AX xBX
INCB CL ; CL ~CL+1

3.2.2 Immediate Addressing

Immediate addressing mode accepts one immediate value as an operand in the instruction. You
specify an immediate value by preceding it with a number symbol (#). An instruction can contain
only one immediate value; the remaining operands must be direct references. The following in-
structions use immediate addressing:

ADD AX,#340 ;AX < AX +340
PUSH #1234H ;SP - SP-2

; MEM_WORD(SP) ~ 1234H
DIVB AX#10 AL~ AX/10

yAH — AXMOD 10

3.2.3 Indirect Addressing

The indirect addressing mode accesses an operand by obtaining its address from a WORD regis
ter in the lower register file. You specify the register containing the indirect address by enclosing
it in square brackets ([]). The indirect address can refer to any location within the address space,
including the register file. The register that contains the indirect address must be word-aligned,
and the indirect address must conform to the rules for the operand type. An instruction can contain
only one indirect reference; any remaining operands must be direct references. The following in-
structions use indirect addressing:

3-7

8XC196NT USER’S MANUAL Int9I®

LD AX,|[BX] T AX — MEM_WORD(BX)

ADDB AL,BL,[CX] ‘AL < BL+ MEM_BYTE(CX)

POP [AX] : MEM_WORD(AX) — MEM_WORD(SP)
'SP _SP+2

3.23.1 Extended Indirect Addressing

Extended load and store instructions can use indirect addressing. The only difference is that the
register containing the indirect address must be a word-aligned 24-hit register to allow access to
the entire 1-Mbyte address space. The following instructions use extended indirect addressing:

ELD AX, [EX] iAX < MEM_WORD (EX)
ELDB AL, [EX] ; AL — MEM_BYTE (EX)
EST AX, [EX] i MEM_WORD (EX) < AX
ESTB AL, [EX] : MEM_BYTE (EX) ~ AL

3.2.3.2 Indirect Addressing with Autoincrement

You can choose to automatically increment the indirect address after the current access. You spec:
ify autoincrementing by adding a plus sign (+) to the end of the indirect reference. In this case,
the instruction automatically increments the indirect address (by one if the destination is an 8-bit
register or by two if it is a 16-bit register). When your code is assembled, the assembler automat-
ically sets the least-significant bit of the indirect address register. The following instructions use
indirect addressing with autoincrement:

LD AX,[BX]+ :AX < MEM_WORD(BX)
{BX < BX+2
ADDB ALBL[CX]+ ;AL < BL+MEM_BYTE(CX)
: - CX+1
PUSH [AX]+ 'SP _SP-2
: MEM_WORD(SP) — MEM_WORD(AX)
TAX < AX+2

3.2.3.3 Extended Indirect Addressing with Autoincr ement

The extended load and store instructions can also use indirect addressing with autoincrement. The
only difference is that the register containing the indirect address must be a word-aligned 24-bit

register to allow access to the entire 1-Mbyte address space. The following instructions use ex-
tended indirect addressing with autoincrement:

ELD AX, [EX]+ {AX — MEM_WORD (EX)
TEX < EX+2
ELDB AL, [EX]+ ‘AL < MEM_BYTE (EX)
TEX < EX+2
EST AX, [EX]+ :MEM_WORD (EX) < AX
 MEM_WORD (EX) ~ MEM_WORD (EX + 2)
ESTB AL, [EX]+ ‘MEM_BYTE (EX) < AL

:MEM_BYTE (EX) -~ MEM_BYTE (EX + 2)

3-8 [|

Int€|® PROGRAMMING CONSIDERATIONS

3.23.4 Indirect Addressing with the Stack Pointer

You can also use indirect addressing to access the top of the stack by using the stack pointer a:
the WORD register in an indirect reference. The following instruction uses indirect addressing
with the stack pointer:

PUSH [SP] ; duplicate top of stack
;SP ~ SP+2

3.2.4 Indexed Addressing

Indexed addressing calculates an address by adding an offset to a base address. There are thr
variations of indexed addressirgfiort-indexed, long-indexed, and zero-ixele. Both short- and
long-indexed addressing are used to access a specific element within a st8latarindexed
addressing can access URR&b byte locations, long-indexed addressing can access up to 65,535
byte locations, and zero-indexed addressing can access a single location. An instruction can con-
tain only one indexed reference; any remaining operands must be direct references.

3.24.1 Short-indexed Addressing

In a short-indexed instruction, you specify the offset as an 8-bit constant and the base address a:
an indirect address register (a WORD). The following instructions use short-indexed addressing.

LD AX,12[BX] {AX < MEM_WORD(BX+12)
MULB AX,BL,3[CX] :AX < BL XMEM_BYTE(CX+3)

The instruction LD AX,12[BX] loads AX with the contents of the memory location that resides

at address BX+12. That is, the instruction adds the constant 12 (the offset) to the contents of BX
(the base address), then loads AX with the contents of the resulting address. For example, if BX
contains 1000H, then AX is loaded with the contents of location 1012H. Short-indexed address-
ing is typically used to access elements in a structure, where BX contains the base address of the
structure and the constant (12 in this example) is the offset of a specific element in a structure.

You can also use the stack pointer in a short-indexed instruction to access a particular location
within the stack, as shvn in the following instruction.

LD AX,2[SP]

3.24.2 Long-indexed Addressing

In a long-indexed instruction, you specify the base address as a 16-bit variable afgkthesof
an indirect address register (a WORD). The following instructions use long-indexed addressing.

LD AX,TABLE[BX] :AX — MEM_WORD(TABLE+BX)
AND AX,BX,TABLE[CX] iAX — BX AND MEM_WORD(TABLE+CX)

8XC196NT USER’S MANUAL Int9I®

ST AX,TABLE[BX] : MEM_WORD(TABLE+BX) < AX
ADDB AL,BL,LOOKUP[CX] ‘AL < BL + MEM_BYTE(LOOKUP+CX)

The instruction LD AX, TABLE[BX] loads AX with the contents of the memory location that re-
sides at address TABLE+BX. That is, the instruction adds the contents of BX (the offset) to the
constant TABLE (the base address), then loads AX with the contents of the resulting address. For
example, if TABLE equals 4000H and BX contains 12H, then AX is loaded with the contents of
location 4012H. Long-indexed addressing is typically used to access elements in a table, where
TABLE is a constant that is the base address of the structure and BX is the scaled sftdet (
ement size, in bytes) into the structure.

3.24.3 Extended Indexed Addressing

The extended load and store instructions can use extended indexed addressing. The only differ-
ence from long-indexed addressing is that both the base address and the offset must be 24 bits t
support access to the entire 1-Mbyte address space. Thwifa instructions use extended in-
dexed addressing. (In these instructions, OFFSET is a 24-bit variable containing the offset, and
EX is a double-word aligned 24-bit register containing the base address.)

ELD AX,OFFSET [EX] ; AX ~ MEM_WORD (EX+OFFSET)
ELDB AL,OFFSET [EX] ; AL ~ MEM_BYTE (EX+OFFSET)
EST AX,OFFSET [EX] ; MEM_WORD (EX+OFFSET) ~ AX
ESTB AL,OFFSET [EX] ; MEM_BYTE (EX+OFFSET) ~ AL

3.24.4 Zero-indexed Addressing

In a zero-indexed instruction, you specify the address as a 16-bit variable; the offset is zero, and
you can express it in one of three ways: [0], [ZERO_REG], or nothing. Each of the following load
instructions loads AX with the contents of the variatld SVAR.

LD AX,THISVAR[(]

LD AX,THISVAR[ZERO_REG]
LD AX,THISVAR

The following instructions also use zero-indexed addressing:

ADD AX,1234[ZERO_REG] {AX < AX + MEM_WORD(1234)
POP 5678[ZERO_REG] : MEM_WORD(5678) — MEM_WORD(SP)
'SP _SP+2

3.2.4.5 Extended Zero-indexed Addressing

The extended instructions can also use zero-indexed addressing. The only difference is that you
specify the address a24-bit constant ovariable. The following extended instruction uses zero-
indexed addressing. ZERO_REG acts as a 32-bit fixed source of the constant zero for an extendec
indexed reference.

ELD AX,23456H[ZERO_REG] ;AX < MEM_WORD(23456H)

3-10 [|

Int€|® PROGRAMMING CONSIDERATIONS

3.3 ASSEMBLY LANGUAGE ADDRESSING MODE SELECTIONS

The assembly language simplifies the choice of addressing modes. Use these features whereve
possible.

3.3.1 Direct Addressing

The assembly language chooses between direct and zero-indexed addressing depending on th
memory location of the operand. Simply refer to the operand by its symbolic name. If the operand

is in the lower register file, the assembly language chooses a direct reference. If the operand is
elsewhere in memory, it chooses a zero-indexed reference.

3.3.2 Indexed Addressing

The assembly language chooses between short-indexed and long-indexed addressing dependin
on the value of the index expression. If the value can be expressed in eight bits, the assembly lan-
guage chooses a short-indexed reference. If the value is greater than eight bits, it chooses a long
indexed reference.

3.3.3 Extended Addressing

If the operand is outside page O0H, then you must use the extended load and store instructions
ELD, ELDB, EST, and ESTB.

3.4 DESIGN CONSIDERATIONS FOR 1-MBYTE DEVICES

In general, you should avoid creating tables or arrays that cross page boundaries. For example, i
you are building a large array, start it at a base address that will accommodate the entire array
within the same page. If you cannot avoid crossing a page boundary, keep in mind that you must
use extended instructions to access data outside the original page.

3.5 SOFTWARE STANDARDS AND CONVENTIONS

For a software project of any size, it is a good idea to develop the program in modules and to es-
tablish standards that control communication between the modules. These standards vary with the
needs of the final application. However, all standards must include some mechanism for passing
parameters to procedures and returning results from procedures. We recommend that you use the
conventions adopted by the C programming language for procedure linkage. These standards are
usable for both the assembly language and C programming environments, and they offer compat-
ibility between these environments.

3-11

8XC196NT USER’S MANUAL Int9I®

3.5.1 Using Registers

The 256-byte lower register file contains the CPU special-function registers and the stack pointer.
The remainder of the lower register file and all of the upper register file is available for your use.
Peripheral special-function registers (SFRs) and memory-mapped SFRs reside in higher memory.
The peripheral SFRs can kéndowedinto the lower register file for direct access. Memory-
mapped SFRs cannot be windowed; you must use indirect or indexed addressing to access them
All SFRs can be operated on as BYTEs or WORDs, unless otherwise specified. See “Special-
function Registers (SFRs)” on page 4-8 and “Register File” on page 4-12 for more information.

To use these registers effectivelgu must have some overatrategy for allocating them. The

C programming language adopts a simple, effective strategy. It allocates the sigtaeor bytes
beginning at address 1CH as temporary storage and treats the remaining area in the register file
as a segment of memory that is allocated as required.

NOTE
Using any SFR as a base or index register for indirect or indexed operations
can cause unpredictablestdts. External events can change the contents of
SFRs, and some SFRs are cleared when read. For this reason, consider the
implications of using an SFR as an operand in a read-modify-write instruction
(e.g., XORB).

3.5.2 Addressing 32-bit Operands

The 32-bit operands (DOUBLE-WORDs and LONG-INTEGERS) are formed by two adjacent
16-bit words in memonyfhe least-significanvord of a DOUBLE-WORD is always ithe lower
address, even when the data is in the stack (which means that the most-significant word must be
pushed into the stack first). The address of a 32-bit operand is that of its least-significant byte.

The hardwaresupports the 32-bit data types as operandsiit operations, as dividends of 32-

by-16 divide operations, and as products ®b¥-16 multiply operations. For these operations,

the 32-hit operand must reside in the lower register file and must be aligned at an address that is
evenly divisible by four.

3.5.3 Addressing 64-bit Operands
The hardware supports the QUAD-WORD only as the operand of the EBMOVI instruction. For

this operation, the QUAD-WORD variable must reside in the lower register file and must be
aligned at an address that is evenly divisible by eight.

3-12

Int€|® PROGRAMMING CONSIDERATIONS

3.5.4 Linking Subroutines

Parameters are passed to subroutines via the stack. Parameters are pushed into the stack from tl
rightmost parameter to the left. The 8-bit parameters are pushed into the stack high-twler

byte undefined. Th82-bit paramedrs are pushed onto the stack as two 16-bit values; the most-
significant half of the parameter is pushed into the stack first. As an example, consider the fol-
lowing procedure:

void example_procedure (char param1, long param2, int param3);

When this procedure is entereda-time, the stack wikkontain the parameters in the following
order:

param3

low word of param2

high word of param2

undefined;paraml

return address ~ Stack Pointer

If a procedure returns a value to the calling code (as opposed to modifying more global variables)
the result is returned in the temporary storage space (TMPREGOQO, in this example) starting at 1CH.
TMPREGO is viewed as either an 8-, 16-, 32-, or 64-bit variable, depending on the type of the

procedure.

The standard calling convention adopted by the C programming language has several key fea-
tures:

* Procedures can always assume that the eight or sixteen bytes of registerniiteyme
starting at 1CH can be used as temporary storage within the body of the procedure.

* Code that calls a procedure must assume that the procedure modifies the eight or sixteen
bytes of register file memory starting at 1CH.

* Code that calls a procedure must assume that the procedure modifies the processor statu:
word (PSW) condition flags because procedures do not save and restore the PSW.

¢ Function results from procedures are always returned in the variable TMPREGO.

The Cprogramning language allows the definition of interrupt procedures, which are executed
when a predefined interrupt request occurs. Interrupt procedures do not conform to the rules of
normal procedures. Parameters cannot be passed to these procedures and they cannot return r
sults. Since interrupt procedures can execute essentially at any time, they must save and restor:
both the PSW and TMPREGO.

[| 3-13

8XC196NT USER’S MANUAL Int9I®

3.6 SOFTWARE PROTECTION FEATURES AND GUIDELINES

The device has several features to assist in recovering from hardware and software errors. The
unimplemented opcode interrupt prdes protection from executing unimplemented opcodes.
The hardware reset instruction (RST) can cause a reset if the program counter goesindof

The RST instruction opcode is FFH, so the processor will reset itself if it tries to fetch an instruc-
tion from unprogrammed locations in nonvolatile memory or from bus lines that have been pulled
high. The watchdog timer (WDT) can also reset the device in the event of a hardware or software
error.

We recommend that you fill unused areas of code with NOPs and periodic jumps to an error rou-
tine or RST instruction. This is particularly important in the cauteounding lookup tables, since
accidentally executing from ékup tables will cause undesired results. Wherever space allows,
surround each table with seven NOPs (because the longestidstiigetion has seven bytes) and

a RST or a jump to an error routine. Since RST is a one-byte instruction, the NOPs are unneces-
sary if RSTs are used instead of jumps to an error routine. This will help to ensure a speedy re-
covery from a software error.

When using the watchdog timer (WDT) for software protection, we recommend that you reset the
WDT from only one place in code, reducing the chance of an undesired WDT reset. The section
of code that resets the WDT should monitor the other code sections for proper operation. This can
be done by checking variables to make sure they are within reasonable values. Simply using a
software timer to reset the WDT every 10 milliseconds will provide protection only for cata-
strophic failures.

3-14 [|

intgl.

A

Memory Partitions

CHAPTER 4
MEMORY PARTITIONS

This chapter describes the organization of the address space, its major partitions, and the 1-Mbyte
and 64-Kbyte operating modeks-Mbyterefers to the address space defined by the 20 external
address lines. In 1-Mbyte mode, code can execute from almost anywhere in the 1-Mbyte space.
In 64-Kbyte mode, code can execute only from@hieKbyte area FFO000—-FFFFFFH. The 64-
Kbyte mode provides compatibility with software written for previous 16-bit @8 micro-
controllers. In either mode, nearly all of the 1-Mbyte address space is available for data storage.

Other topics covered in this chapter include the following:

¢ the relationship between the 1-Mbyte address space defined by the 20 external address lines
and the 16-Mbyte address space defined by the 24 internal address lines

¢ extended and nonextended data accesses

¢ awindowingtechnique for accessing the upper register file and peripheral SFRs with direct
addressing

¢ examples of external memory configurations for the 1-Mbyte and 64-Kbyte modes
* a method for remapping the 32-Kbyte internal OTPROM (87C196NT only)

41 MEMORY MAP OVERVIEW

The instructions can address 16 Mbytes of mentéawever, only 20 of the 24 address lines are
implemented by external pins: A19:16 and AD15:0. The lower 16 address/data lines, AD15:0,
are the same as those in all other MCS 96 microcontrollers. The fomdedtaddress lines,
A19:16, are provided by the EPORT. If, for example, an internal 24-bit address is FF2018H, the
20 external-address pins output F2018H. Further, the address seen by an external device depenc
on how many of the extended address lines are connected to the device. (See “Internal and Exter:
nal Addresses” on page 14-1.)

The 20 external-address pins can address 1 Mbyte of extermalmné-or purposes of discussion

only, it is convenient to view this 1-Mbyte addregmce as sixteen 64-Kbyte pages, numbered
OO0H-0FH (see Figure 4-1 on page 4-2). The lower 16 address lines enable the device to addres:
page O0H. Théour extended address linesable the device to address the remaining external
address space, pages 01H—0FH.

4-1

8XC196NT USER’S MANUAL Inu®

Because théour MSBs of the irgrnal address can take any values without changing the external
address, these four bits effectivelpguce 16 copies of the 1-Mbyte address space, for a total of
16 Mbytes in 256 pages, 00H-FFH (Figure 4-1). For example, page 01H has 15 duplicates: 11H,
21H, ..., F1H. This duplication is termedaparound implying that the sixteen 1-Mbyte areas of

the memory space are overlaid. The shaded areas in Figure 4-1 represent the overlaid areas.

16 Mbyte 3 Mbyte 2 Mbyte 1 Mbyte
FFH 2FH 1FH OFH
F1H 21H 11H 01H
FOH 20H 10H 00H
Externally
Addressable
A2541-02

Figure 4-1. 16-Mbyte Address Space

The memory pages of interest &@H-0FHand FFH. Page31H—OEH are external memory with
unspecified contents; they can store either code or data. Pages 00H and FFH, shown in Figure
4-2, have special significance. Page 00H contains the register file and the special-function regis-
ters (SFRs), while page FFH contains special-purpose memory (chip configuration bytes and in-
terrupt vectors) angrogram memory. The device fetches itsstfiinstruction from location
FF2080H. Addresses in page FFH exist only in the internal 24-bit address space.

The implementation of page FFH in the 87C196NT differs from that in the @8Il For the
87C196NT, locations FF2000-FF9FFFRire implemented by 3Rbytes of internal OTPROM

and the remainder of page FFH (FFAOOO-FFFFFFH) is implemented by external memory in page
OFH. For the 80C96NT, which has no internal OTPROM, all of page FFH is implemented by
external memory in page OFH.

NOTE

Because the device has 24 bits of address internally, all programs must be
written as though the device uses all 24 bits. The device resets from page FFH,
so all code must originate from this page. (Use the assembler directive, “cseg
at OFBxxx#H.”) This is true even if the code is actually stored in external
memory.

4-2

Inu® MEMORY PARTITIONS

Page FFH Page 00H
FFFFFFH 00FFFFH
External Memory External Memory
FFAOOOH | | ... 00AQ00OH
FFOFFFH) 009FFFH
External Memory
Program if CCB2.2=0
Memory
A Copy of OTPROM
q — ifCCB2.2=1
FF2080H
FF207FH Special-purpose
FF2000H Memory J. ... 002000H
FFLFFFH 001FFFH
Memory-mapped SFRs
001FEOH
001FDFH
External Memory Peripheral SFRs
001FO0OH
001EFFH
External Memory
FFO600H 000600H
FFO5FFH 0005FFH
Internal RAM Internal RAM
FF0400H 000400H
FFO3FFH 0003FFH
External Memory Upper Register File
FFO100H 000100H
FFOOFFH 0000FFH
Reserved Lower Register File
FFOO0OH 000000H
A3055-02

Figure 4-2. Pages FFH and OOH

4.2 MEMORY PARTITIONS

Table 4-1 is a memory map of the 8XC196NT. The remainder of this section describes the parti-
tions.

4-3

8XC196NT USER’S MANUAL Inu®

Table 4-1. 8XC196NT Memory Map

Hex i .
Address Description Addressing Modes
FFFFFF) . .
FEA00O External device (memory or 1/0) connected to address/data bus Indirect, indexed, extended
FFOFFF | Program memory (Note 1)
FF2080 | After a device reset, the first instruction fetch is from FF2080H Indirect, indexed, extended

(or F2080H in external memory).

FF207F . ; ;
FF2000 Special-purpose memory (Note 1) Indirect, indexed, extended
FF1FFF) ’ .
FF0600 External device (memory or 1/0) connected to address/data bus Indirect, indexed, extended

FFO5FF | Internal code and data RAM

FF0400 | (mapped identically into pages FFH and 00H) Indirect, indexed, extended

Eligigg External device (memory or 1/0) connected to address/data bus Indirect, indexed, extended
FFOOFF

FF0000 Reserved (Note 2) —

FEFFFF) . .

0F0000 Overlaid memory (Note 2) Indirect, indexed, extended
OEFFFF . ; i

010000 External device (memory or 1/0) connected to address/data bus Indirect, indexed, extended
O0OFFFF : ; i

00A000 External device (memory or 1/0) connected to address/data bus Indirect, indexed, extended

009FFF | External device (memory or I/0O) connected to address/data bus

002000 | (Note 3) Indirect, indexed, extended

001FFF . .

00LEEQ Memory-mapped SFRs Indirect, indexed, extended
001FDF . Indirect, indexed, extended,
001FO00 Peripheral SFRs windowed direct

O001EFF | External device (memory or 1/0) connected to address/data bus;

000600 | future SFR expansion (Note 4) Indirect, indexed, extended

0005FF | Internal code and data RAM

000400 | (mapped identically into page 00H and FF) Indirect, indexed, extended

0003FF : " : Indirect, indexed,
000100 Upper register file (register RAM) windowed direct
0000FF)) . . . Lo .
000000 Lower register file (register RAM, stack pointer, CPU SFRs) Direct, indirect, indexed
NOTES:

1. For the 80C196NT, the program and special-purpose memory locations (FF2000—FF9FFFH) reside in
external memory. For the 87C196NT, these locations can reside either in external memory or in internal
OTPROM.

2. Locations xFOO00—xFOOFFH are reserved for in-circuit emulators. Do not use these locations except to
initialize them. Except as otherwise noted, initialize unused program memory locations and reserved
memory locations to FFH.

3. For the 80C196NT, locations 002000-009FFFH reside in external memory. For the 87C196NT, these
locations can be external memory (CCB2.2=0) or a copy of the OTPROM (CCB2.2=1).

4. WARNING: The contents or functions of these locations may change with future device revisions, in
which case a program that relies on one or more of these locations might not function properly.

Int€|® MEMORY PARTITIONS

4.2.1 External Memory

Several partitions in pages 0O0H and FFH and all of paQgés-0EH are assigned to extal
memory (see Table 4-1 on page 4-4). Data can be stored in any part ofrifosymastructions

can be stored in any part of this memory in 1-Mbyte mode, but can be stored only in page FFH
in 64-Kbyte mode. “Memorgonfiguration Examples” on page 4-28 contains examples of mem-
ory configurations in the two modes. Chapter 14, “Interfacing with External Memory,” describes
the external memory interface and shows additional examples of external memory configura-
tions.

4.2.2 Program and Special-purpose Memory

Program memory and special-purpose memory occupy a 32-Kbyte meartition in the ad-

dress range FF2000—-FF9FFFH. For the 80C196NT, this parttsices in external memory (ex-
ternal addresses F2000—-F9FFFH). For8BR€196NT, this partition can reside either in external
memory (external addresses F2000—-F9FFFH) or in teeniat OTPROM. If the partition resides

in OTPROM, it can be mapped into both pages 00H and FFH or into page FFH only (see “Remap-
ping Internal OTPROM (87C196NT Only)” on page 4-23).

4221 Program Memory in Page FFH

Fourpartitions in page FFH can be used for program memory:
* FF0100-FFO3FFH in egtnal memory (external addres$&xl00—-FO03FFH)
* FF0400-FFO5FFH in iernal RAM (internal addresses FF0400—FFO5FFH)
* FFO0600-FF1FFFH in external memory @xtal addresses FO600—-F1FFFH)

* FF2080-FF9FFFH
— 80C196NT: This partition is in external memory (external address@86-2-9FFFH).

— 87C196NT: The REMAP bit (CCB2.2), the EA# input, and the type of instruction
(extended or nonextended) control access to this partition, as shown in Table 4-2.

4-5

8XC196NT USER’S MANUAL Inu®

Table 4-2. Program Memory Access for the 87C196NT

REMAP . .
(CCB2.2) EA# Instruction Type Memory Location Accessed
extended or
X asserted nonextended external memory, F2080-F9FFFH
extended or .
0 deasserted nonextended internal OTPROM, FF2080-FF9FFFH
extended internal OTPROM, FF2080-FF9FFFH
1 deasserted
nonextended internal OTPROM, 002080-009FFFH

NOTE

We recommend that you write FFH (the opcode for the RST instruction) to
unused program memory locations. This causes a device reset if a program
unintentionally begins to execute in unused memory.

4222 Special-purpose Memory

Special-purpose memory resides in locations FF2000—FF2074&k(%-4 on page 4-7). It con-
tains several reserved mery locations, the chip configuration bytes (CCBs), and vectors for
both peripheral transaction server (PTS) and standard interrupts.

— 80C196NT: This partition is in external memory (external address@9G-2-207FH).

— 87C196NT: The REMAP bit (CCB2.2), the EA# input, and the type of instruction
(extended or nonextended) control access to this partition, as shown in Table 4-3.

Table 4-3. Special-purpose Memory Access for the 8 7C196NT

REMAP Instruction

(CCB2.2) EA# Type Memory Location Accessed

X asserted extended or external memory, F2000-F207FH

nonextended
0 deasserted extended or |40 ol OTPROM, FF2000-FF207FH
nonextended
extended internal OTPROM, FF2000-FF207FH
1 deasserted

nonextended internal OTPROM, 002000-00207FH

Inu® MEMORY PARTITIONS

Table 4-4. 8XC196NT Special-purpose Memory Addresses

Address Description
(Hex) P
FF207F ;
FE205E Reserved (each byte must contain FFH)
FF205D
FE2040 PTS vectors
FF203F .
FE2030 Upper interrupt vectors
FF202F .
FE2020 Security key
FF201F Reserved (must contain 20H for compatibility with future devices)
FF201E Reserved (must contain FFH)
FF201D Reserved (must contain 20H)
FF201C CCB2
FF201B Reserved (must contain 20H)
FF201A CCB1
FF2019 Reserved (must contain 20H)
FF2018 CCBO
FF2017 .
FE2014 Reserved (each byte must contain FFH)
FF2013 Lower interrupt vectors
FF2000 P
4.2.2.3 Reserved Memory Locations

Several memory locations are reserved for testing or for use in future products. Do not read or
write these locations except to initialize them to the vashesvn in Table 4-3. The function or
contents of these locations may change in future revisions; software that uses reserved locations
may not function properly.

4.2.2.4 Interrupt and PTS Vectors
The upper and lower interrupt vectors contain the addresses of the interrupt service routines. The

peripheral transaction server (PTS) vectors contain the addresses of the PTS control blocks. See
Chapter 5, “Standard and PTS Interrupts,” for more information on interrupt and PTS vectors.

4225 Security Key

The security key prevents unauthorized programming access to the OTPROM. See Chapter 15,
“Programming the Nonvolatile Memory,” for details.

4-7

8XC196NT USER’S MANUAL Int9I®

4.2.2.6 Chip Configuration Bytes

The chip configuration byte€CBO0, CCB1, and ofnally CCB2) specify the operating envi-
ronment. They specify the bus width, bus-control mode, bus-timing mode, and wait states. They
also control powerdown mode, the watchdog timer, and the operating mode (1-Mbyte or 64-
Kbyte). For the 87C196NT, the CCBs also control OTPROM security and OTPROM remapping.
For the 80C196NT, the CCRBse stored in external memory (location®E2—-F201CH). For the
87C196NT, the CCBs can be stored either in external memory (locatioa8-H2201CH) or in

the internal OTPROM (locations FF2018-FF201CH).

The chip configuration bytes are the first bytes fetched from memory when the device leaves the
reset state. The post-reset sequence load3CBs into the chip configuration regiss (CCRS).

Once they are loaded, the CCRs cannot be changed until the next device reset. Typically, the
CCBs are ppgrammed once when the user program is compiteldare not redefined during nor-

mal operation. “Chip Configuration Registers and Chip Configuration Bytes” on page 14-5 de-
scribes the CCBs and CCRs.

4.2.3 Special-function Registers (SFRs)

The 8XC196NT has both peripheral SFRs andnowy-mapped SFRS.he peripheral SFRs are
physically located in the on-chip peripherals. They can be addressed as bytes or as words, anc
they can be windowed (see “Windowing” on page 4-15). The memory-mapped SFRs must be ac-
cessed using indirect or indexed addressing modesambt be windowed.

Do not use reserved SFRs; write zeros to them or leave them in their default state. When read,
reserved bits and reserved SFRs return undefined values.

NOTE
Using any SFR as a base or index register for indirect or indexed operations
can cause unpredictablestdts. External events can change the contents of
SFRs, and some SFRs are cleared when read. For this reason, consider the

implications of using an SFR as an operand in a read-modify-write instruction
(e.g., XORB).

4231 Memory-mapped SFRs

Locations 1FEO-1FFFH contain memory-mapped SFRBI€T4-5). The memory-mapped SFRs

must be accessed from page 00H with indirect or indexed addressing modes, and they cannot be
windowed. If you read a location in this range through a window, the &ipRarsto contain

FFH (all ones). If you write a location in this range tigb a window, thevrite operation haso

effecton the SFR.

intel.

MEMORY PARTITIONS

Table 4-5. 8XC196NT Memory-mapped SFRs

Ports 3, 4, 5, Slave Port, UPROM SFRs EPORT and Internal RAM SFRs
Adgreexss High (Odd) Byte |Low (Even) Byte Adtj'reexss High (Odd) Byte |Low (Even) Byte
1FFE P4 _PIN P3_PIN 1FEE Reserved Reserved
1FFC P4 _REG P3_REG 1FEC Reserved Reserved
1FFA SLP_CON SLP_CMD 1FEA Reserved Reserved
1FF8 Reserved SLP_STAT 1FES8 Reserved Reserved
1FF6 P5_PIN USFR 1FE6 EP_PIN Reserved
1FF4 P5_REG P34_DRV 1FE4 EP_REG Reserved
1FF2 P5_DIR Reserved 1FE2 EP_DIR Reserved
1FFO P5_MODE Reserved 1FEO EP_MODE IRAM_CON
4.2.3.2 Peripheral SFRs

Locations1FOO-1FDFH provide access to the peripheral SFRs (see Table ga§en-10). Lo-

cations in this range that are omitted from the table are reserved. The peripheral SFRs are 1/O con-
trol registers; they are physically located in the on-chip peripherals. These peripheral SFRs can
be windowed and they can be addressed either as words or bytes, except as noted in the table.

4-9

8XC196NT USER’S MANUAL

Table 4-6. 8XC196NT Peripheral SFRs

intel.

T Must be addressed as a word.

4-10

Ports 0, 1, 2, and 6 SFRs Timer 1, Timer 2, and EPA SFRs

Address High (Odd) Byte Low (Even) Byte ddress High (Odd) Byte Low (Even) Byte
1FDEH | Reserved Reserved T1F9EH | TIMER2 (H) TIMER2 (L)
1FDCH | Reserved Reserved 1F9CH | Reserved T2CONTROL
1FDAH | Reserved PO_PIN T1F9AH | TIMERL (H) TIMER1 (L)
1FD8H | Reserved Reserved 1F98H | Reserved T1CONTROL
1FD6H | P6_PIN P1 PIN 1F96H | Reserved Reserved
1FD4H | P6_REG P1 REG 1F94H | Reserved Reserved
1FD2H | P6_DIR P1 DIR 1F92H | Reserved Reserved
1FDOH | P6_MODE P1_MODE 1F90H | Reserved Reserved
1FCEH | P2_PIN Reserved EPA SFRs
1FCCH | P2_REG Reserved Address High (Odd) Byte Low (Even) Byte
1FCAH | P2_DIR Reserved T1F8EH | COMP1_TIME (H) | COMP1_TIME (L)
1FC8H | P2_MODE Reserved 1F8CH | Reserved COMP1_CON
1FC6H | Reserved Reserved T1F8AH | COMPO_TIME (H) | COMPO_TIME (L)
1FC4H | Reserved Reserved 1F88H | Reserved COMPO_CON
1FC2H | Reserved Reserved T1F86H | EPA9_TIME (H) EPA9_TIME (L)
1FCOH | Reserved Reserved 1F84H | Reserved EPA9_CON

SIO and SSIO SFRs T1F82H | EPA8_TIME (H) EPA8_TIME (L)
Address | High (Odd) Byte Low (Even) Byte 1F80H | Reserved EPA8_CON
1FBEH | Reserved Reserved T1F7EH | EPA7_TIME (H) EPA7_TIME (L)
1FBCH | SP_BAUD (H) SP_BAUD (L) 1F7CH | Reserved EPA7_CON
1FBAH | SP_CON SBUF_TX T1F7AH | EPA6_TIME (H) EPA6_TIME (L)
1FB8H | SP_STATUS SBUF_RX 1F78H | Reserved EPA6_CON
1FB6H | Reserved Reserved T1F76H | EPA5_TIME (H) EPA5_TIME (L)
1FB4H | Reserved SSIO_BAUD 1F74H | Reserved EPA5_CON
1FB2H | SSIO1_CON SSIO1_BUF T1F72H | EPA4_TIME (H) EPA4_TIME (L)
1FBOH | SSIO0_CON SSIO0_BUF 1F70H | Reserved EPA4_CON

A/D SFRs T1IF6EH | EPA3_TIME (H) EPA3_TIME (L)

Address | High (Odd) Byte |Low (Even) Byte T1F6CH | EPA3_CON (H) EPA3_CON (L)
1FAEH | AD_TIME AD_TEST T1IF6AH | EPA2_TIME (H) EPA2_TIME (L)
1FACH | Reserved AD_COMMAND 1F68H | Reserved EPA2_CON
1FAAH | AD_RESULT (H) | AD_RESULT (L) T1F66H | EPAL_TIME (H) EPA1_TIME (L)

EPA Interrupt SFRs T1F64H | EPA1_CON (H) EPA1_CON (L)
Address | High (Odd) Byte |Low (Even) Byte T1F62H | EPAO_TIME (H) EPAO_TIME (L)
1FA8H | Reserved EPAIPV 1F60H | Reserved EPAO_CON
1FA6H | Reserved EPA_PEND1
1FA4H | Reserved EPA_MASK1
T1FA2H | EPA_PEND (H) | EPA_PEND (L)
T1FAOH | EPA_MASK (H) | EPA_MASK (L)

Int€|® MEMORY PARTITIONS

4.2.4 Internal RAM (Code RAM)

The 8XC196NT has 512 bytes of internal code RAM in locat®#B30—-05FFH. This memory

can be accessed from either page 00H or page FFH. Although it isaalle @ AMo distinguish

it from register RAM this internal RAM can store either code or data. The code RAM is accessed
through the memory controller, so code executes as it would from external memory with zero wait
states. Data stored in this area must be accessed with indirect or indexed addressing, so data ac
cesses to this area take longer than data accesses to the register RAM. The code RAM cannot b
windowed.

During application development, you may need to use external memory to store code and data
that will later reside in the internal code RAM. The IRAM_CON register (Figure 4-3) provides a
simple method for handling this situation.

IRAM_CON Address: 1FEOH
Reset State: O0H

The internal RAM control (IRAM_CON) register has two functions related to memory accesses. The
IRAM bit allows you to control access to locations 0400-05FFH. The EA_STAT bit allows you to
determine the status of the EA# pin, which controls access to locations FF2000-FFOFFFH.

7 0
EA_STAT | IRAM _ _ H _ _ _ _

Bit Bit Function
Number Mnemonic
7 EA_STAT EA# Status:

This read-only bit contains the complement of the EA# pin, which
controls whether accesses to locations FF2000-FF9FFFH are directed
to the internal OTPROM or to external memory.

1 = the EA# pin is active (accesses are directed to external memory)
0 = the EA# pin in inactive (accesses are directed to the OTPROM)

(“Remapping Internal OTPROM (87C196NT Only)” on page 4-23
describes additional options for OTPROM access.)
6 IRAM Internal RAM Control:

This bit controls whether accesses to locations 0400-05FFH are
directed to internal code RAM or to external memory.

1 = use external memory
0 = use the internal code RAM

5:0 — Reserved; always write as zeros.

Figure 4-3. Internal RAM Control I RAM_CON) Register

[| 4-11

8XC196NT USER’S MANUAL Inu®

4.2.5 Register File

The register file is divided into an upper register file and a lower register file (Figure 4-4). The
upper register file consists of genleparrpose register RAMT he lower register file contains ad-
ditional general-purpose register RAM along with the stack pointer (SP) and the CPU special-
function registers (SFRs).

Page O0H Address
, 03FFH
1
1
1
1
1
1
1
1
1
1
' General-purpose
N Register RAM
'l
1
1
1
1
1
1
1
1

Address N 0100H
------ . 00FFH

03FFH Upper L General-purpose

i i -7 Register RAM
0100H Register File P g 001AH
------ . 0019H
00FFH Lower Stack Pointer 0018H
. . 0017H
0000H Register File | CPU SFRs 0000H
A0301-02

Figure 4-4. Register File Memory Map

Table 4-7 on page 4-13 lists the register file memory addresses. The RALU accesses the lower
register file directly, without the use of the memory controller. It also accesgas@avedoca-

tion directly (see “Windowing” on page 4-15). Only the upper register file and the peripheral
SFRs can be windowed. Registers in the lower register file and registers being windowed can be
accessed with direct addressing.

NOTE

The register file must not contain code. An attempt to execute an instruction
from a location in the register file causes themoey controller to fetch the
instruction from external memory.

4-12 [|

Int€|® MEMORY PARTITIONS

Table 4-7. Register File Memory Addresses

Address

Range Description Addressing Modes

03FFH | General-purpose register RAM | Indirect or indexed addressing; direct addressing if windowed
0100H | (upper register file)

O0FFH | General-purpose register RAM | Direct, indirect, or indexed addressing
001AH | (lower register file)

0019H | Stack pointer (SP) Direct,indirect, or indexed addressing
0018H | (lower register file)
0017H | CPU SFRs Direct,indirect, or indexed addressing

0000H | (lower register file)

4251 General-pur pose Register RAM

The lower register file contains genemlrposeregister RAM. The stack pointer locations can
also be used as general-purpose register RAM when stack operations are not being performed
The RALU can access this memory directly, using direct addressing.

The upper register file also coirta general-purpose register RAM. The RALU normally uses
indirect or indexed addressing to access the RAM in the upper register file. Windowing enables
the RALU to use direct addressing to access thimong (See Chapter 3, “Programming Con-
siderations,” for a discussion of addressing modes.) Windowing provides fast context switching
of interrupt tasks and faster program execution. (See “Windowing” on page 4-15.) PTS control
blocks and the stack are most efficient when located in the upper register file.

4.25.2 Stack Pointer (SP)

Memory locations 0018H and 0019H contain the stack pointer (SP). The SP contains the address
of the stack. The SP must point to a word (even) address that is two bytes (for 64-Kbyte mode)
or fourbytes (for 1-Mbyte mode) greater than the desired starting address. Before the CPU exe-
cutes a subroutine call or interrupt service irjtit decrements the SP (by two in 64-Kbyte
mode; by four in 1-Mbyte mode). Next, it copies (PUSHes) the address of the next instruction
from the program counter onto thectalt then loads the address of the subroutine or interrupt
service routine into the program counter. When it executes the return-from-subroutine (RET) in-
struction at the end of the subroutine or interrupt servicénmuhe CPU loads (POPs) the con-

tents of the top of the stack (that is, the return address) into the program counter. Finally, it
increments the SP (by two in 64-Kbyte mode; by four in 1-Mbyte mode).

4-13

8XC196NT USER’S MANUAL

Subroutines may be nestetihat is, eaclsubroutine may call other subroutines. The CPU
PUSHes the contents of the program counter onto the stack each time it executastaschll.

The stack grows downward as entries are added. The only limit to the nesting depth is the amount
of available memory. As the CPU returns from each nested subroutine, it POPs the address off
the top of the stack, and the next return address moves to the top of the stack.

Your programmust load a word-aligned (even) address into the stack pointer. Select an address
that is two bytes (for 64-Kbyte mode) or four bytes (for byté mode) greater than the desired
starting address because the CPU automatically decrements the stack pointer before it pushes th
first byte of the return address onto the stack. Remember that the stack grows downward, so allow
sufficient room for the maximum number of stack entries. The stack must be located in page 00H,
in either the internal register file or external RAM. The stack can be used most efficiently when

it is located in the upper register file.

The following example initializes the top of the upper register file as the stack.

LD SP, #400H

4253

Locations 0000—-0017H in the lower register file are the CPU SFRs (see Table 4-8). Appendix C

describes the CPU SFRs.

;Load stack pointer

CPU Special-function Registers (SFRs)

Table 4-8. 8XC196NT CPU SFRs

Address | High (Odd) Byte Low (Even) Byte
0016H Reserved Reserved
0014H Reserved WSR
0012H | INT_MASK1 INT_PEND1
0010H Reserved Reserved
000EH Reserved Reserved
000CH | Reserved Reserved
000AH | Reserved WATCHDOG
0008H | INT_PEND INT_MASK
0006H | PTSSRV (H) PTSSRV (L)
0004H | PTSSEL (H) PTSSEL (L)
0002H | ONES_REG (H) | ONES_REG (L)
0000H | ZERO_REG (H) ZERO_REG (L)

4-14

Inu® MEMORY PARTITIONS

NOTE
Using any SFR as a base or index register for indirect or indexed operations
can cause unpredictablestdts. External events can change the contents of
SFRs, and some SFRs are cleared when read. For this reason, consider the
implications of using an SFR as an operand in a read-modify-write instruction
(e.g., XORB).

4.3 WINDOWING

Windowingexpands the amount of memory that is accessible with direct addressing. Direct ad-
dressing can access the lower register file with short, fast-executing instructionsvii'ditiov-
ing, direct addressing can also access the upper register file and peripheral SFRs.

NOTE
Memory-mapped SFRuiust be accessed using indirect or indexed addressing
modes; they cannot be windowed. Reading a memory-mapped SFR through a
window returns FFH (all ones). Writing to a memory-mapped SFR through a
window has no effect.

Windowing maps a segment of highermmay (the upper register file or peripheral SFRs) into
the lower register file. The window selection register (WSR) selects a 32-, 64-, or 128-byte seg-
ment of higher memory to be windowed into the top of the lower register file space (Figure 4-5).

128-byte Window 03FFH
(WSR = 17H) 0380H
Window in 00FFH
Lower Register File 0080H

A3060-01

Figure 4-5. Windowing

4-15

8XC196NT USER’S MANUAL Inu®

4.3.1 Selecting a Window

The window selection ggster (Figure 4-6) has two functions. The HLDEN bit (WSR.7) enables
and disables the bus-hold proto¢stée Chapter 14, “Interfacing with External iery”); it is
unrelated to windowing. The remaining bits select a window to be mapped into the top of the low-
er register file. Table 4-9 provides a quick reference of WSR values for windowing the peripheral
SFRs. Table 4-10 on page 4-17 lists the WSR values for windowing the upper register file.

WSR Address: 14H
Reset State: O0H

The window selection register (WSR) has two functions. One bit enables and disables the bus-hold
protocol. The remaining bits select windows. Windows map sections of RAM into the upper section of
the lower register file, in 32-, 64-, or 128-byte increments. PUSHA saves this register on the stack and
POPA restores it.

7 0
HLDEN W6 w5 W4 ‘ ‘ w3 w2 w1 WO
Bit Bit Function
Number Mnemonic
7 HLDEN HOLD#/HLDA# Protocol Enable

This bit enables and disables the bus-hold protocol (see Chapter 14,
“Interfacing with External Memory”). It has no effect on windowing.

1 =enable

0 = disable

6:0 W6:0 Window Selection

These bits specify the window size and window number:
6 5 210

X x 32-byte window; W5:0 = window number
X X 64-byte window; W4:0 = window number
X x 128-byte window; W3:0 = window number

x
X X X W

1 x
0 1 x
00

X
X
1 X

Figure 4-6. Window Selection Register (WSR)

Table 4-9. Selecting a Window of 8XC196NT Peripheral SFRs

WSR Value WSR Value WSR Value
Peripheral for 32-byte Window for 64-byte Window for 128-byte Window
(OOEO—-OOFFH) (O0CO—-00FFH) (0080—-00FFH)

Ports0,1, 2,6 7EH 3FH
A/D converter

: 7DH
EPA interrupts 1FH
EPA compare 0-1 3EH
EPA capture/compare 8-9 7CH
Timer 0-1
EPA capture/compare 0-7 7BH 3DH 1EH

4-16

Inu® MEMORY PARTITIONS

Table 4-10. Selecting a Window of the Upper Register File

Register RAM WSR Value WSR Value WSR Value
Locations for 32-byte Window for 64-byte Window for 128-byte Window
(Hex) (OOEO-O0FFH) (00CO-00FFH) (0080—-00FFH)

03E0-03FF 5FH

03C0-03DF 5EH 2FH

03A0-03BF 5DH

0380-039F 5CH 2EH 17H
0360-037F 5BH

0340-035F 5AH 2DH

0320-033F 59H

0300-031F 58H 2CH 16H
02E0-02FF 57H

02C0-02DF 56H 2BH

02A0-02BF 55H

0280-029F 54H 2AH 15H
0260-027F 53H

0240-025F 52H 29H

0220-023F 51H

0200-021F 50H 28H 14H
01E0-01FF 4FH

01C0-01DF 4EH 27H

01A0-01BF 4DH

0180-019F 4CH 26H 13H
0160-017F 4BH

0140-015F 4AH 25H

0120-013F 49H

0100-011F 48H 24H 12H

4.3.2 Addressing a Location Through a Window

After you have selected the desired window, you need to know the direct address ahtiry me
location (the address in the lower register file). For SFRs, refer to the WSR tables in Appendix
C. For register file locations, calculate the direct address as follows:

1. Subtract the base address of the area to be reméppedrable 4-11 on page 4-18) from
the address of the desired location. This gives you the offset of that particular location.

2. Add the offset to the base address of the window (frableT412 on page 4-19). The
result is the direct address.

[| 4-17

8XC196NT USER’S MANUAL Inu®

Table 4-11. Windows

Base WSR Value WSR Value W51R25\3/at1)lute for
Address for 32-byte Window for 64-byte Window Win_d()J/V\?
(Hex) (O0EO-00FFH) (00CO-00FFH) commndon_
Peripheral SFRs
T1FEO t7EH
1FCO 7EH 3EH
1FAO 7DH
1F80 7CH 3EH H1EH
1F60 7BH
1F40 7AH 3DH
1F20 79H
1F00 78H 3CH 1EH
Upper Register File
03EOH 5FH
03COH 5EH 2FH
03A0H 5DH
0380H 5CH 2EH 17H
0360H 5BH
0340H 5AH 2DH
0320H 59H
0300H 58H 2CH 16H
02EOH 57H
02COH 56H 2BH
02A0H 55H
0280H 54H 2AH 15H
0260H 53H
0240H 52H 29H
0220H 51H
0200H 50H 28H 14H
01EOH AFH
01COH 4EH 27H
01A0H ADH
0180H 4CH 26H 13H
0160H 4BH
0140H 4AH 25H
0120H 49H
0100H 48H 24H 12H

T Locations 1IFEO-1FFFH contain memory-mapped SFRs that cannot be windowed. Reading these
locations through a window returns FFH; writing these locations through a window has no effect.

4-18

Int€|® MEMORY PARTITIONS

Table 4-12. Windowed Base Addresses

Window Size WSR Windqwed Base Address_
(Base Address in Lower Register File)
32-byte O0EOH
64-byte 00COH
128-byte 0080H

Appendix C includes a table of the windowable SFRs with the window selection register values

and direct addresses for each window size. The following examples explain how to determine the
WSR value and direct address for any windowable location. An additional example shows how

to set up a window by using the linker locator.

4321 32-byte Windowing Example

Assume that you i8h to access location 014BH (a location in the upper register file used for gen-
eral-purpose register RAM) with direct addressing throug®-hyte window. @ble 4-11 on page

4-18 shows that you need to write 4AH to the window selection register. It also shows that the
base address of the 32-byte memory area is 0140H. To detehaiofset, subtract that base ad-
dress from the address to be accessed (014BH — 0140H = 000BH). Adid¢heoathe base ad-
dress of the window in the lower register file (from Table 4-12). The direct address is 00EBH
(O00BH + OOEQOH).

4.3.2.2 64-byte Windowing Example

Assume that you wish to access the SFR at location 1F8CH with direct addressing through a 64-
byte window. Table 4-11 on page 4-18 shows yieatneed to write 3EH to the window selection
register. It also shows that the base address of the 64-byte memoryldf8aHs To determine

the offset, subtract that base address from the address to be accessed (1F8CH — 1F80H = 000CH
Add the offset to the base address of thedeiv in the lower register file (from Table 4-12 on

page 4-19). The direct address is 00CCH (000CH + 00COH).

4.3.2.3 128-byte Windowing Example

Assume that you wish to access the SFR at location 1F82H with direct addressiig 4 128-

byte window. Table 4-12 on page 4-19 shows that you need to write 1FH to the window selection
register. It also shows that the base address of the 128-byte memory area is 1F80H. To determine
the offset, subtract that base address from the address to be a¢tE82¢t— 1F80H = 0002H).

Add the offset to the base address of thedeiv in the lower register file (from Table 4-12 on

page 4-19). The direct address is 0082H (0002H + 0080H).

4-19

8XC196NT USER’S MANUAL Int9I®

4324 Unsupported Locations Windowing Example

Assume that you wish to agss location 1IFE7H (the EP_PIN register, a memory-mapped SFR)
with direct addressing through a 128-byte window. This location is in the range of addresses
(1FEO-1FFFH) that cannot be windowed. Although you could stteuwindow by writing 1FH

to the WSR, reading this location through the window would return FFH (all ones) and writing
to it would not change the contents. However, you could directly address the remaining SFRs in
the range of 1F80-1FDFH.

4.3.2.5 Using the Linker Locator to Set Up a Window

In this example, the linker locator is used to set up a window. The linker locator locates the win-
dow in the upper register file and determines the value to load in the WSR for access to that win-
dow. (Please consult the manual provided with the linker locator for details.)

FhkAKAIAK] FERRERRRERR Rk

modl module main ;Main module for linker
public functionl
extrn ?WSR :Must declare ?WSR as external

wsr equ 14h:byte
sp equ 18h:word

oseg
varl: dsw 1 ;Allocate variables in an overlayable segment
var2: dsw 1
var3: dsw 1

cseg
functionl:
push wsr ;Prolog code for wsr
ldb wsr, #?WSR ;Prolog code for wsr

add varl, var2, var3 ;Use the variables as registers

Idb wsr, [sp] ;Epilog code for wsr
add sp, #2 ;Epilog code for wsr
ret

end

i S 0T0 Vo Attt ittt

4-20

Int€|® MEMORY PARTITIONS

public function2
extrn ?WSR

wsr equ 14h:byte
sp equ 18h:word

oseg
varl: dsw 1
var2: dsw 1
var3: dsw 1

cseg
function2:
push wsr ;Prolog code for wsr
ldb wsr, #?WSR ;Prolog code for wsr

add varl, var2, var3

Idb wsr, [sp] ;Epilog code for wsr
add sp, #2 ;Epilog code for wsr
ret

end

The following is an example of a linker invocation to link and locatertbdules and to deter-
mine the proper windowing.

RL196 MOD1.0BJ, MOD2.0BJ registers(100h-03ffh) windowsize(32)

The above linker controls tell the linker to use registers 0100-036#RMindowing and to use
a window size of 32 bytes. (These two controls enable windowing.)

The following is the map listing for the resultant output module (MOD1 by default):
SEGMENT MAP FOR mod1(MOD1):

TYPE BASE LENGTH ALIGNMENT MODULE NAME
RESERVED 0000H 001AH

STACK 001AH 0006H WORD
*E GAP *** 0020H OOEOH

OVRLY 0100H 0006H WORD MOD2

OVRLY 0106H 0006H WORD MOD1
*E GAP *** 010CH 1F74H

CODE 2080H 0011H BYTE MOD2

CODE 2091H 0011H BYTE MOD1
*E GAP *** 20A2H DF5EH

[| 4-21

8XC196NT USER’S MANUAL Int9I®

This listing shows the disassembled code:

2080H ;C814 | PUSH WSR

2082H ;B14814 | LDB WSR,#48H
2085H JA44E4E2EQ | ADD EOH,E2H,E4H
2089H ;B21814 | LDB WSR,[SP]
208CH ;65020018 | ADD SP,#02H
2090H ;FO | RET

2091H ;C814 | PUSH WSR

2093H ;B14814 | LDB WSR,#48H
2096H JA4EAESBEG | ADD E6H,E8H,EAH
209AH ;B21814 | LDB WSR,[SP]
209DH ;65020018 | ADD SP,#02H
20A1H ;FO | RET

The C compiler can also take advantage of this feature if the “windows” switch is enabled. For
details, see the MCS 96 microcontroller architecture software productsDetietopment Tools
Handbook

4.3.3 Windowing and Addressing Modes

Once windowing is enabled, the windowed locations can be accessed both through the window
using direct addressing and through its actual address using indirect or indexed addressing. The
lower register file locations that are covered by the window are always accessible by indirect or
indexed operations. To re-enable direct access to the entire lower register file, clear the WSR. To
enable direct access to a particular location in the lower registeydilemay select a smaller
window that does not cover that location.

When windowing is enabled:

¢ a direct instruction that uses an address within the lower register file actually accesses the
window in the upper register file;

¢ an indirect or indexed instruction that uses an address within either the lower register file or
the upper register file accesses the actual location in memory.

The following sample code illustrates the difference between direct and indexed addressing when
using windowing.

PUSHA ; pushes the contents of WSR onto the stack
LDB WSR, #12H ; select window 12H, a 128-byte block

; The next instruction uses direct addr
ADD 40H, 80H ; mem_word(40H) —mem_word(40H) + mem_word(380H)

; The next two instructions use indirect addr
ADD 40H, 80HI0] ; mem_word(40H) ~mem_word(40H) + mem_word(80H +0)
ADD 40H, 380H[0] ; mem_word(40H) ~mem_word(40H) + mem_word(380H +0)
POPA ; reloads the previous contents into WSR

4-22 [|

Int€|® MEMORY PARTITIONS

4.4 REMAPPING INTERNAL OTPROM (87C196NT ONLY)

The 87CQ96NT's 32 Kbytes of OTPROM are located in FF2000-FF9FFFH. By using the
REMAP bit (CCB2.2) and the EA# input, you can alsceasdhese locations in internal mmery

page O0H or in external memory page OFH (Table 4-13). The REMAP bit is loaded from the CCB
and the value of EA# is latchegbon leaing reset; neither can be changed until the next reset.
You can read IRAM_CON.7 to determine the state of the EA# pin (bit 7 contaicartipde ment

of EA#) and read CCR2.2 to determine the state of the REMAP bit.

NOTE

The EA# input is effective only for accesses to the internal OTPROM
(FF2000-FF9FFFH). For accesses to any other location, the value of EA# is
irrelevant. The REMAP bit is effective only when EA# is inactive. When EA#
is active, execution is external and the REMAP bit is ignored.

Without remapping @CB2.2 = 0), an access to FF2000-FF2FFFH is directed éonait
OTPROM (FF2000-FF9FFFH) when EA# is high and to external memory (F2000-F9FFFH)
when EA# is low. In either case, data in this area must be accessed with extended instructions.

With remapping enabled (CCB2.2 = 1) and EA# inactive, you can access the conten@06H-F2
FF9FFFH in two ways:
¢ ininternal OTPROM (FF2000—-FF9FFFH) using an extended instruction
¢ in internal OTPROMO002000-009FFFH) using a nonextended instouctlhis makes the
far data in FF2000—FF9FFFH acsitde as near data.

With EA# active, the REMAP bit is ignored. You can access the contents of FF2000-FFOFFFH
in external menory (F2000—-F9FFFH) using axtended instruction.

Table 4-13. Memory Access for the 87C196NT

REMAP . .
(CCB2.2) EA# Instruction Type Memory Location Accessed
X asserted extended external memory, F2000-F9FFFH
0 deasserted extended internal OTPROM, FF2000-FF9FFFH
extended internal OTPROM, FF2000-FF9FFFH
1 deasserted
nonextended internal OTPROM, 002000—-002FFFH

An advantage of remapping OTPROM is that it makes the data in OTPROM accessible as near
data in internal memory page O0H. The data can then be accessed more quickly with nonextendec
instructions. An advantage of not remapping OTPROM is that thespmmding area in memory

page O0H is available for storing additional near data.

4-23

8XC196NT USER’S MANUAL Inu®

4.5 FETCHING CODE AND DATA IN THE 1-MBYTE AND 64-KBYTE MODES

This section describdsw the device fetches instructions and accesses data in the 1-Mbyte and
64-Kbyte modes. When the device leaves reset, the MODEG64 bit (CCB2.1) selects the 1-Mbyte
or 64-Kbyte mode. The mode cannot be changed until the next reset.

45.1 Fetching Instructions

The 24-bit program counter (Figure 4-7) consists of the 8-bit extended program counter (EPC)
concatenated with the 16-bit maspeogram counter (PC). It holds the address of the next in-
struction to be fetched. The page number of the instruction is in the EPC. In 1-Mbyte mode, the
EPC can have any 8-bit value. However, onlyfthe LSBs of the EPC are implemented exter-
nally, as EPORT pins A19:16. This means that in the 1-Mbyte mode, the device can fetch code
from any page in the 1-Mbyte address space: 00H—O0FH and FFH (FFH overlays OFH). In 64-
Kbyte mode, the EPC is fixed at FFH, which limits program memory to page FFH (and OFH).

EPC PC

23 16 15 0

A2513-03

Figure 4-7. The 24-bit Program Counter

45.2 Accessing Data

Internally, data addresses have 24 bits (Figure 4-8 on page 4-25). The lower 16 bits are supplied
by the 16-bit data address register. The upper 8 bits (the page humber) come from siftecent

es for nonextended and extended instructions. (‘EPORT Operation” on page 6-19 describes how
the page number is output to the EPORT pins.)

For nonextended instructions, the EP_REG register provides the page number. Data and constant
in this page are callatkar dataandnear constants

NOTE

For compatibility with current and future programming tools, EP_REG must
contain O0H.

Data outside the page specified by EP_REG is cédledata To access far data, you must use
extended instructions. For extended instructions, the CPU provides the page number.

4-24 -

Inu® MEMORY PARTITIONS

From EP_REG 16-bit Data Address Register
Nonextended Address
23 16 15 0
From CPU 16-bit Data Address Register
Extended Address
23 16 15 0
A2514-01

Figure 4-8. Formation of Extended and Nonextended Addresses

4521 Using Extended Instructions

The code example below illustrates the use of extended instructions to access data in page 01H.

EP_REG EQU 1FESH
RSEG AT 1CH
TEMP: DSW 1

RESULT: DSW 1
CSEG AT OFF2080H

;SOME CODE
SUBB: PUSHA ;save flags, disable interrupts
LD TEMP,#1234H ;
EST TEMP,010600H ;store temp value in 010600H
ADD RESULT, TEMP,#4000H ;do something with registers
EST RESULT,010602H ;store result in 010602H
. ;more eld/est instructions
POPA ;restore flags and interrupts
RET ;
;more code
DONE: BR DONE
END

[| 4-25

8XC196NT USER’S MANUAL Int9I®

45.3 Code Fetches in the 1-Mbyte Mode

Clearing the MODE®64 bit (CCB2.1) selects the 1-Mbyte mode. In this mode, code can execute
from any page in the 1-Mbyte address space. An extended jump, branch, or call instruction across
pages changes the EPC value to the destination page. For example, assume that code is executir
from page FFH. The following code segment branches to an external memory location in page
00H and continues execution.

OFF2090H: LD TEMP,#12H ; code executing in page FFH

ST TEMP,PORT1 ; code executing in page FFH

EBR 003000H ; jump to location 3000H in page O0OH
003000H: ADD TEMP,#50H ; code executing in page 00H

Code fetches are from external memory or internahorg, depending on the instruction address,
the value of the EA# input, and the device.

80C196NT:

For devices without internal nonvolatile memory, EA# must be tied low, and code executes from
any page in external memory.

87C196NT:
Code in all locations except FF2000—-FF9FFFH executes from external memory.

Instruction fetches from FERO-FFIFFFH are controlled by tBé&# input:
¢ |f EA# is low, code executes from external memory.
* |f EA# is high, code executes from internal OTPROM.

Note that the EA# input functions only for the address range FF2000-FF9FFFH.

45.4 Code Fetches in the 64-Kbyte Mode

Setting the MODEG64 bit (CCB2.1) selects the 64-Kbyte mode. In this mode, the EPC (Figure 4-7
on page 4-24) is fixed at FFH, which allows instructions to execute from page FFH only. Extend-
ed jump, branch, and call instructionsrdat function in the 64-Kbyte mode.

80C196NT:

For devices without internalonvolatile memory, EA# must be tied low, and code executes only
from page OFH in external memory.

87C196NT:

Code in all locations except-2000-FF9FFFH executes from external memory.

4-26

Int€|® MEMORY PARTITIONS

Instruction fetches from FF2000-FF9FFFH are controlled by the EA# input:
* |f EA# is low, code executes from external memory (page OFH).
* |f EA# is high, code executes from internal OTPROM (page FFH).

45,5 Data Fetches in the 1-Mbyte and 64-Kbyte Modes

Data fetches are the same in the 1-Mbyte and 64-Kbyte modes. The device can access data in an
page. Data accesses to page O0H are nonextended. Data accesses to any other page are extend

NOTE
This informaton on data fetches applies only for EP_REG = 00H.

Nonextended instructions can access the register file and peripheral SFRs from any page. Extend:
ed load and store instructions can access these locations froraQdagaly; an extended load

or store instruction executing from any other page accesses external meanagxample, if

code is executing from page 05H, the following instructions write to differemtamelocations:

stb temp, 30H ;writes to address 30H in the register file
estb temp, 30H ;writes to address 050030H in external memory

Memory-mapped SFRs can be accessed from page 00H only.
80C196NT

Data accesses to the register file (O@EF-H) and the SFRs (1FO0-1FFFH) directed to the
internal registers. All other data accesses are directed to external memory.

87C196NT

Data accesses to the register file (0000-03FFH) and the (3FB8-1FFFH) are directed to the
internal registers. Accesses to other locations are directed to external memory, except as notec
below:
Data accesses to FF2000—-FF9FFFH depend on the EA# input:

* |f EA# is low, accesses are to external memory (page OFH).

¢ |f EAis high, accesses are to the internal OTPROM (page FFH).

4-27

8XC196NT USER’S MANUAL Int9I®

Data accesses to 002000-009FFFH depend on the REMAP bit and the EA# input:
¢ |f remapping is disabled (CCB2.2 = 0), accesses are external.

* |f remapping is enabledCCB2.2 =1), accesses depend on EA#:
— If EA# is low, accesses are external (REMAP is ignored).
— If EA# is high, accesses are to the internal OTPROM.

4.6 MEMORY CONFIGURATION EXAMPLES

This section provides examples ofrmery configurations for boté4-Kbyte and 1-Mbyte mode.

Each example consists of a circuit diagram and a memory map that describes how the address
space is implemented. Chapter 14, “Interfacing with Externah®g,” discuses the interface

in detail and provides additional exales.

4.6.1 Example 1: A 64-Kbyte Mode 87C196NT System

Figure 4-9 illustrates a system designed to operate in the 64-Kbyte mode (CCB2.1=1). Code ex-
ecutes only from page FFH. EA# is held inactive, so acces§e20-FFIFFFH are internal.

The OTPROM is mapped into both pages 00H and FFH (CCB2.2 = 1), leaving 32 Kbytes of page
OOH available for data. With the OTPROM mapped into page O0H, the far constant®00FF2
FFOFFFH can be accessed as near constants. The 32Kx8 RAM stores near data at addresse
00600-01EFFHand 0AOOO-OFFFH. The 64Kx8 RAM stores far data at addresse30Q9
1FFFFH. The bus-timing mode must be either mode 0 or mode 3 because only one address latct
is used. (See “Bus Timing Modes” on page 14-34.) Taidld dn page 4-30 lists the memory ad-
dresses for this example.

4-28

Inu® MEMORY PARTITIONS

CE#
Yec Page O0H
EPORT.O
32K x 8 RAM
EA (near data)
00600-01EFFH,
OA000-OFFFFH
N
AD15:8 | A14:8
| 4
) A7:0
87C196NT | |
| | > D7:0
Page O0H
000000-0005FFH, OE# WE#
001F00-009FFFH |
Page FFH
FF0400—FFO5FFH,
FF2000-FF9FFFH L] L I > o
N
AD70 <: :> Als:s CE#
: A7:0
BUSWIDTH 74LS373 A7:0 Page 01H
ALE 64K x 8 RAM
(far data)
) RD# WR#
10000-1FFFFH
N
) D7:0
|4
OE# WE#
l

A3058-02

Figure 4-9. A 64-Kbyte System with an 8-bit Bus

4-29

8XC196NT USER’S MANUAL

Table 4-14. Memory Map for the System in Figure 4-9

Address Description

';iiggg Unimplemented

I;';g'(:)gg Internal OTPROM (code and far constants)

IFZ'I::](-)'(:SE(I; Unimplemented

E';gigg Internal code and data RAM (mapped from page 00H)
';Egigg Unimplemented

I;II::(())(())SS Reserved

%;zggg Unimplemented

%i';ggg External far data (implemented by 64-Kbyte external RAM)
?)8;'(:)55 External near data (implemented by 32-Kbyte external RAM)
O09FFF Internal OTPROM (near constants; mapped from page FFH)
002000

881:;?; Memory-mapped SFRs

%(())%LIFZBOF Peripheral SFRs

%(()):(L)IEESEOF External near data (implemented by 32-Kbyte external RAM)
?)(())?)igg Internal code and RAM

?)(())?):]g_gg Upper register file (general-purpose register RAM)

?)8?)855 Lower register file (general-purpose register RAM, stack pointer, and CPU SFRs)

4.6.2 Example 2: A 64-Kbyte 87C196NT System with Additional Data Storage

Figure 4-10 on page 4-31 shows another system designed to operate in the 64-Kbyte mode
(CCB2.1=1). This system is the same as the one in Figure 4-9 on page 4-29, but with additional
RAM. Code executes only from page FFH. EA# is held inactive, so accesses @O0FF2
FFI9FFFH are internal. The internal OTPROM is mapped only into page FFH (CCB2.2=0), leav-

ing most of page 00H available for data.

4-30

Inu® MEMORY PARTITIONS

The top 64Kx8 RAM stores near data at addres3e8®-01EFFHnd02000—-0FFFFH. The bot-

tom 64Kx8 RAM stores far data at addresses 10000—1FFFFH. The bus-timing mode must be ei-
ther mode 0 or mode 3 because only one address latch is used. (See “Bus Timing Modes” on page
14-34.) Table 4-14 lists the memory addresses for this example.

CE#

e EPORT.0 Page 00H
| ' 64K x 8 RAM
EA# (near data)

00600-01EFFH,
02000—-0FFFFH

N
AD15:8 > Al15:8
14
M A7:0
87C196NT | |
[|) D7:0
Page 00OH
000000—-0005FFH, OE# WE#
001F00-001FFFH |
Page FFH
FF0400-FFO5FFH,
FF2000-FF9FFFH Hun D
N

_ A58 CEF
ADT0 <: :> A7Q Page OLH
0

BUSWIDTH 74LS373 AT:
| ALE 64K x 8 RAM

(far data)

RD# WR#

10000-1FFFFH

D7:0

A4

OE# WE#
)|

A3059-02

Figure 4-10. A 64-Kbyte System with Additional Data Storage

4-31

8XC196NT USER’S MANUAL

Table 4-15. Memory Map for the System in Figure 4-10

Address Description

FFFFFF .

FEA000 Unimplemented

FFOFFF

FE2000 Internal OTPROM (code and far constants)

FF1FFF .

FE0600 Unimplemented

FFO5FF

FF0400 Internal code and data RAM (mapped from page 00H)

FFO3FF .

FE0100 Unimplemented

FFOOFF

FE0000 Reserved

OFFFFF .

020000 Unimplemented

01FFFF)

010000 External far data (implemented by bottom 64-Kbyte external RAM)
%?)ZSEOF External near data (implemented by top 64-Kbyte external RAM)
001FFF

001FEQ | Memory-mapped SFRs

001FDF)

001F00 Peripheral SFRs

(())(())](-)IE_:SEOF External near data (implemented by top 64-Kbyte external RAM)
0005FF

000400 Internal code and data RAM

0003FF .) _

000100 Upper register file (general-purpose register RAM)

0000FF) i _)
000000 Lower register file (general-purpose register RAM, stack pointer, and CPU SFRs)

4.6.3 Example 3: A 1-Mbyte 87C196NT System with a 16-bit Bus

Figure 4-11 on page 4-33 illustrates a systengaesi to operate in 1-Mbyte mode (CCB2.1=0).
Code can execute from any page in the 1-Mbyte address space. EA# is held inactive, so accesse
to FF2000-FF9FFFHre internal. The internal OTPROM is mapped into page 00H (CCB2.2=1),
leaving 32 Kbytes of page OO&vVailable for storing near data. With the OTPROM mapped into

page 00H, the far constants in FF2000-FF9FFFH can be accessed as near constants.

4-32

intel.

The 32Kx16 RAM stores far data at addred€¥3¥)0-1FFFFH; code could also execute from this

MEMORY PARTITIONS

RAM. The 64Kx16 flash nmory stores code and addital far data at addressesORO—

3FFFFH. Because addresses 20000-3FFFFiderés a single memory component, only one
EPORT line (EPORT.1, which provides address Ai€) is necessary. EPORT.1 at a logic zero
selects the 32Kx16 RAM, while EPORT.1 at a logic one selects the 64Kx16 flash. Anyoafrthe
bus-timing modes can be selected because two address latches are used. (See “Bus Timing

Modes” on page 14-34.) Table 4-14 lists the memory addresses for this example.

Vee

IS

EPORT.1
EA#
BUSWIDTH
AD15:8
87C196NT

Page 00H
000000—0005FFH,
001F00-009FFFH

Page FFH
FF0400-FFO5FFH,
FF2000-FF9FFFH

AD7:0

ALE

RD# WRL# WRH#

Al7

74LS373

74LS373

1]

CE#
Page 01H

32K x 16 RAM
(code or far data)
10000-1FFFFH

D15:8

‘VV‘VV

A6:0 CE#

A15:7

Pages 02H and O3H

64K x 16 Flash
(code or far data)
20000-3FFFFH

D7:0

D15:8
OE# WE#

i

A3057-03

Figure 4-11. A 1-Mbyte System with a 16-bit Bus

4-33

8XC196NT USER’S MANUAL

Table 4-16. Memory Map for the System in Figure 4-11

Address Description

';Eiggg Unimplemented

';';gggg Internal OTPROM (code and far constants)

IFZ'I::](-)'(:SES Unimplemented

';Egigg Internal code and data RAM (mapped from page 00H)
IEII::(())?LSS Unimplemented

EII::(())(())SS Reserved

%'Z';ggg Unimplemented

%%I(:Jggo': External code (implemented by 64Kx16 external flash)
%i';ggol: External far data (implemented by 32Kx16 external RAM)
ggi’;gg Unimplemented

%%gggg Internal OTPROM (near constants; mapped from page FFH)
ggiEEE Memory-mapped SFRs

%(())%LIFZBOF Peripheral SFRs

%(()):(L)IEESEOF Unimplemented

gg?)igg Internal code and data RAM

gggigg Upper register file (general-purpose register RAM)

(0)8(0)855 Lower register file (general-purpose register RAM, stack pointer, and CPU SFRs)

4.6.4 Example 4: A 1-Mbyte 8XC196NT System with an 8-bit Bus

Figure 4-12 on page 4-35 illustrates a system designed to operate in 1-Mbyte mode (CCB2.1=0).
Code can execute from any page in the 1-Mbyte address space. EA# is held low, so accesses t
FF2000-FF9FFFH are exthal and the REMAP bit is ignored. This system could use either an

87C196NT or an 80C196NT.

4-34

MEMORY PARTITIONS

EPORT.1
EPORT.O
EA#
BUSWIDTH
AD15:8
8XC196NT
Page OOH

000000-0005FFH,
001F00-001FFFH

AD7:0

ALE

WR# RD#

Al7

Al6

Address Decoding/
Chip-select Logic

CE2:0

CEO#

Page O0OH

64K x 8 Flash
(near data)

00600-01EFFH,
02000-0OFFFFH

) A15:8

A7:0

74LS373

AT:0
D7:0

OE# WE#

| I —

.n—l

CE1#
Page 01H

64K x 8 RAM
(code or far data)

10000-1FFFFH

A15:8

\/V

A7:0
D7:0

OE# WE#

CE2#
Page OFH
64K x 8 Flash
(code, special-

purpose memory
and far data)

FOO00-FFFFFH

A15:8
A7:0
N
3 b7:0
v
OFE# WE#
)| [
hd e

A3056-02

Figure 4-12. A 1-Mbyte System with an 8-bit Bus

4-35

8XC196NT USER’S MANUAL Inu®

The 64Kx8 RAM stores far data at addresses 10000—1FFFFH; code could also execute from this
RAM. The top 64Kx8 flash memory stores near data at addres668-@XLEFFH and @®0—

OFFFH. The bottom 64Kx8 flash memory stores code, special-purpose memory, and far data at
addresses FOOOO-FFFH. Code execution begins from page FFH; the address decoding logic
selects the bottom 64Kx8 flash memory (which could be considered page OFH, 07H, or O03H).
The bus-timing mode must be either mode 0 or mode 3 because only one address latch is used
(See “Bus Timing Modes” on page 14-34.) Table 4-14 lists the memory addresses for this exam-
ple. This memory map assumes that the IRAM bit IRAM_CON.6) is set, so accesse4@6+F0
FFO5FFH are directed to the external flash memory.

Table 4-17. Memory Map for the System in Figure 4-12

Address Description

FFFFFF | External code, special-purpose memory, and far data
FF0100 | (implemented by bottom 64Kx8 external flash)

FFOOFF

FF0000 Reserved

OFFFFF .

020000 Unimplemented

01FFFF]

010000 External code and far data (implemented by 64Kx8 external RAM)
00FFFF)

002000 Near data (implemented by top 64Kx8 external flash)
001FFF

001FEQ | Memory-mapped SFRs

001FDF .

001F00 Peripheral SFRs

001EFF)

000600 Near data (implemented by top 64Kx8 external flash)
0005FF

000400 Internal code and data RAM

0003FF .)]

000100 Upper register file (general-purpose register RAM)

0000FF . .] .
000000 Lower register file (general-purpose register RAM, stack pointer, and CPU SFRs)

4-36 [|

intgl.

Standard and PTS
Interrupts

CHAPTER 5
STANDARD AND PTS INTERRUPTS

This chapter describes the interrupt control circuitry, priority scheme, and timing for standard and
peripheral transaction server (PTS) interrupts. It discusses the three special interrupts and the five
PTS modes, two of which are used with the EPA to produce pulse-width modulated (PWM) out-
puts. It also explains interrupt programming and control.

5.1 OVERVIEW OF INTERRUPTS

The interrupt control circuitry within a microcontroller permits real-time events to control pro-
gram flow. When an event generates an interrupt, the device suspends the execution of current
instructions while iperforms some service in response to the interrupt. When the interrupt is ser-
viced, program execution resumes at the point where the interrupt occurred. An internal periph-
eral, an external signal, or an instruction can generate anupteequest. In the simplest case,

the device receives the request, performs the service, and returns to the task thatrwpiethte

This microcontroller’s flexible interrugtandling system has two main components: the pro-
grammable interrupt controller and the peripheral transaction server (PTS). The programmable
interrupt controller has a hardware priority scheme that can be modified by your software. Inter-
rupts that gahrough the interrupt controller are serviced by interrupt service routines that you
provide. The upper and lower interrupt vectors in special-purpose memory (see Chapter 4,
“Memory Partitions”) contain the lower 16 bits of the interrupt service routines’ addresses. The
CPU automatically adds FFOOOOH to the 16-bit vector in special-purpose memory to calculate the
address of the interrupt service routine, and then executes the routine. The peripheral transactior
server (PTS), a microcoded hardware interrupt processor, provides high-gpeoverhead in-

terrupt handling; it does not modify the stack or the PSW. You can configure most interrupts (ex-
cept NMI, trap, and unimplemented opcode) to be serviced by the PTS instead of the interrupt
controller.

The PTS supports five special microcoded routines that enable it to complete specific tasks in
much less time than an equivalent interrupt service routine can. It can transfer bytes or words,
either individually or in blocks, between any memory locations in page OOH; manage multiple
analog-to-digital (A/D) conversions; and generate pulse-width modulated (PWM) signals. PTS
interrupts have a higher priority than standard interrupts and may temporarily suspend interrupt
service routines.

A block of data called the PTS control block (PTSCB) contains the specific details for each PTS
routine (see “Initializing the PTS Control Blocks” on page 5-18). When a PTS interrupt occurs,
the priority encoder selects the appropriate vector and fetches the PTS control block (PTSCB).

8XC196NT USER’S MANUAL

Interrupt Pending or PTSSRV Bit Set

Return

PTS
Enabled?

No

Return

Priority
Encoder
Highest Priority Interrupt

Priority
Encoder

Highest Priority PTS Interrupt

Reset INT_PEND.x
Bit

| Reset PTSSRV.x | | Reset INT_PEND.x
Execute 1 PTS Cycle Bit Bit
Microcoded | |
PTSCOUNT on Stack
LIMP to
ISR

Return

Execute Interrupt
Service Routine

Clear PTSSEL.xBit
POP PC
* from Stack
Set PTSSRV.x Bit Return

'

Return

A0320-02

Figure 5-1. Flow Diagram for PTS and Standard Interrupts

5-2

intel.

Figure 5-1 illustrates the interrupt processing flow. In this flow diagram, “INT_MASK” repre-
sents both the INT_MASK and INT_MASK1 registers, and “INT_PEND” represents both the
INT_PEND and INT_PEND1 registers.

STANDARD AND PTS INTERRUPTS

5.2 INTERRUPT SIGNALS AND REGISTERS

Table 5-1 describes the external interrupt signals and Table 5-2 describes the control and status
registers for both the interrupt controller and PTS.

Table 5-1. Interrupt Signals

PWM Signal

Port Pin

Type

Description

EXTINT

P2.2

External Interrupt

In normal operating mode, a rising edge on EXTINT sets the
EXTINT interrupt pending bit. EXTINT is sampled during
phase 2 (CLKOUT high). The minimum high time is one state
time.

If the chip is in idle mode and if EXTINT is enabled, a rising
edge on EXTINT brings the chip back to normal operation,
where the first action is to execute the EXTINT service
routine. After completion of the service routine, execution
resumes at the the IDLPD instruction following the one that
put the device into idle mode.

In powerdown mode, asserting EXTINT causes the device to
return to normal operating mode. If EXTINT is enabled, the
EXTINT service routine is executed. Otherwise, execution
continues at the instruction following the IDLPD instruction
that put the device into powerdown mode.

NMI

Nonmaskable Interrupt

In normal operating mode, a rising edge on NMI causes a
vector through the NMI interrupt at location FF203EH. NMI
must be asserted for greater than one state time to guarantee
that it is recognized.

In idle mode, a rising edge on the NMI pin causes the device
to return to normal operation, where the first action is to
execute the NMI service routine. After completion of the
service routine, execution resumes at the instruction following
the IDLPD instruction that put the device into idle mode.

In powerdown mode, a rising edge on the NMI pin does not
cause the device to exit powerdown.

Table 5-2. Interrupt and PTS Control and Status Registers

Mnemonic

Address

Description

EPA_MASK
EPA_MASK1

1FAOH, 1FA1H
1FA4H

EPA Interrupt Mask Registers
These registers enable/disable the 20 multiplexed EPA interrupts.

5-3

8XC196NT USER’S MANUAL Inu®

Table 5-2. Interrupt and PTS Control and Status Registers (Continued)

Mnemonic Address Description
EPA_PEND 1FA2H, 1FA3H EPA Interrupt Pending Registers
EPA_PEND1 1FAGH The bits in these registers are set by hardware to indicate that a
multiplexed EPA interrupt is pending.
EPAIPV 1FA8H EPA Interrupt Priority Vector

This register contains a number from 00H to 14H corresponding to
the highest-priority pending EPAX interrupt source. This value
allows software to branch via the TIIMP instruction to the correct
interrupt service routine when the EPAX interrupt is activated.
Reading this register clears the pending bit of the associated
interrupt source. The EPAx pending bit INT_PEND.7) is cleared
when all the pending bits for its sources (in EPA_PEND and
EPA_PEND1) have been cleared.

INT_MASK 0008H Interrupt Mask Registers

INT_MASK1 0013H These registers enable/disable each maskable interrupt (that is,
each interrupt except unimplemented opcode, software trap, and
NMI).

INT_PEND 0009H Interrupt Pending Registers

INT_PEND1 0012H The bits in this register are set by hardware to indicate that an

interrupt is pending.

PSW No direct access | Processor Status Word

This register contains one bit that globally enables or disables
servicing of all maskable interrupts and another that enables or
disables the PTS. These bits are set or cleared by executing the
enable interrupts (El), disable interrupts (DI), enable PTS (EPTS),
and disable PTS (DPTS) instructions.

PTSSEL 0004H, 0005H PTS Select Register

This register selects either a PTS routine or a standard interrupt
service routine for each of the maskable interrupt requests.

PTSSRV 0006H, 0007H PTS Service Register

The bits in this register are set by hardware to request an end-of-
PTS interrupt.

5.3 INTERRUPT SOURCES AND PRIORITIES

Table 5-3 lists the interrupts sources, their default priorities (30 is highest and 0s$),/@me

their vector addresses. The unimplemented opcode and software trap interrupts are not priori-
tized; they go directly to the interrupt controller for servicing. The priority encoder determines
the priority of all other pending interrupt requests. NMI has the highest priority of all prioritized
interrupts, PTS interrupts have the next highest priority, and standard interrupts have the lowest.
The priority encoder selects the highest priority pending request and trrepht®ntroller se-

5-4

intel.

STANDARD AND PTS INTERRUPTS

lects the corresponding vector location in spepiaibose memory. Thigector contains the start-

ing (base) address of the corresponding PTS control block (PTSCB) or interrupt service routine.

PTSCBs must be located on a dusord boundary, in the iatnal register file. Interrupt service

routines must begin execution in page FFH, but can jump anywhere after the initial vector is tak-

en.

Table 5-3. Interrupt Sources, Vectors, and Priorities

Interrug;g(i)életroller PTS Service
Interrupt Source Mnemonic o . - o . -

= s | 5| 5 § |

=z > E =z > E
Nonmaskable Interrupt NMI INT15 FF203EH | 30 — — —
EXTINT Pin EXTINT INT14 FF203CH | 14 PTS14 | FF205CH | 29
Reserved — INT13 FF203AH | 13 | PTS13 | FF205AH | 28
SIO Receive RI INT12 FF2038H 12 PTS12 FF2058H | 27
SI0 Transmit Tl INT11 FF2036H 11 PTS11 FF2056H | 26
SSIO Channel 1 Transfer SSI01 INT10 FF2034H 10 | PTS10 | FF2054H | 25
SSIO Channel 0 Transfer SSI00 INTO9 FF2032H | 09 PTS09 | FF2052H | 24
Slave Port Command Buff Full | CBF INTO8 FF2030H | 08 PTS08 | FF2050H | 23
Unimplemented Opcode — — FF2012H — — — —
Software TRAP Instruction — — FF2010H — — — —
Slave Port Input Buff Full IBF INTO7 FF200EH | 07 PTS07 | FF204EH | 22
Slave Port Output Buff Empty | OBE INTO6 FF200CH | 06 PTS06 | FF204CH | 21
A/D Conversion Complete AD_DONE INTO5 FF200AH | 05 | PTSO5 | FF204AH | 20
EPA Capture/Compare 0 EPAO INTO4 FF2008H | 04 PTS04 FF2048H | 19
EPA Capture/Compare 1 EPAL INTO3 FF2006H | 03 PTS03 FF2046H | 18
EPA Capture/Compare 2 EPA2 INTO2 FF2004H | 02 PTS02 FF2044H | 17
EPA Capture/Compare 3 EPA3 INTO1 FF2002H | 01 PTSO01 FF2042H | 16
EPA Capture/Compare 4-9, EPAX T INTOO FF2000H | 00 | PTSOOT | FF2040H | 15
EPA 0-9 Overrun,
EPA Compare 0-1,
Timer 1 Overflow,
Timer 2 Overflow

NOTES:

TThe PTS cannot determine the source of multiplexed interrupts, so do not use it to service these interrupts

when more than one multiplexed interrupt is unmasked.

Tt These interrupts are individually prioritized in the EPAIPV register (see Table 10-16 on page 10-30).
Read the EPA pending registers (EPA_PEND and EPA_PENDZ1) to determine which source caused the

interrupt.

5-5

8XC196NT USER’S MANUAL Int9I®

5.3.1 Special Interrupts

This microcontroller has three special interrupt sources that are always enabled: ueimgiem
opcode, software trap, and NMI. These interrupts are not affected by the El (enable interrupts)
and DI (disable interrupts) instructions, and they cannot be masked. All of these interrupts are
serviced by the interrupt controller; they cannot be assigned to the PTS. Of these three, only NMI
goes through the tnasition detector and priority encoder. The other two special interrupts go di-
rectly to the interrupt controller for servicing. Be aware that these interrupts are often assigned to
special functions in development tools.

5.3.1.1 Unimplemented Opcode

If the CPU attempts to execute an unimplemented opcode, an indirect theotaghlocation
FF2012H occurs. This prevents random software execution during hardware and software fail-
ures. The interrupt vector should contain the starting address of an erioe that will not fur-

ther corrupt anleeadyerroneous silation. The unimplemented opcode interrupt prevents other
interrupt requests from being acknowledged until after the next instruction is executed.

5.3.1.2 Software Trap

The TRAP instruction (opcode F7H) causes an interrupt call that is vectooeghhocation
FF2010H. The TRAP instruction provides a single-instruction interrupt that is useful when de-
bugging software or generating software interrupts. The TRAP instruction prevents other inter-
rupt requests from being acknowledged until after the next instruction is executed.

5.3.1.3 NMI

The external NMI pin generates a nonmaskable interrupt for implementation of critical interrupt
routines. NMI has the highest priority of all the prioritized interrupts. It is passed directly from
the transition detector to the priority encoder, and it vectors indirdctygh location FF203EH.

The NMI pin is sampled during phase 2 (CLKOUT high) and is latched internally. Because inter-
rupts are edge-triggered, only one interrupt is generated, even if the pin is held high. If your sys-
tem does not use the NMI interrupt, connect the NMI pin ot prevent spurious interrupts.

5.3.2 External Interrupt Pins

The interrupt detection logic can generate an interrupt if a momentary negative glitch occurs
while the input pin is held high. For this reason, interrupt inpbtaild normally be held low
when they are inactive.

Int€|® STANDARD AND PTS INTERRUPTS

5.3.3 Multiplexed Interrupt Sources

The EPA interrupt is generated by a group of multiplexed interrupt sources. The EPA4-9 and
COMPO-1 event interrupts, the EPA0-9 overmterrupts, and the timer 1 and timer 2 over-
flow/underflow interrupts are multiplexed into ERAGenerally, PTS interrupt service is not use-

ful for multiplexed interrupts because the PTS cannot readily detetthre interrupt source. Your
interrupt service routine should read the EPA_PEND or EPA_PENDL1 register to ideténm
source of the interrupt and to ensure thaadditional interrupts are pending before executing the
return instruction. Chapter 10, “Event Processor Array (EPA),” discusses the EPA interrupts in
detail.

5.3.4 End-of-PTS Interrupts

When the PTSCOUNT register decrements to zero at the end of a single transfer, block transfer,
or A/D scan routine, hardware clears the corresponding bit in the PTSSEL register, which disables
PTS service for that interrupt. It also sets the corresponding PTSSRYV bit, requestingodn end
PTS interrupt. An end-of-PTS interrupt has the samaiprias a corresponding standard inter-
rupt. The interrupt controller processes it with an interrupt service routine that is stored in the
memory location pointed to by the standard interrupt vector. For example, the PTS services the
SIO transmit interrupt if PTSSEL.11 is set. The interrupt vectomitfh FF2056Hbut the cor-
responding end-of-PTS interrupt vecttinsough FF2036H, the standard SIO transmit interrupt
vector. When the end-of-PTS interrupt vectors to the interrupt service routine ahaidears the
PTSSRYV bit. The end-of-PTS interrupt service routine shoinitiedize the PTSCB, if rquired,

and set the appropriate PTSSEL bit to re-enable PTS interrupt service.

5.4 INTERRUPT LATENCY

Interrupt latency is the total delay between the time that the interrupt request is generated (not
acknowledged) and the time that the device begins executing either the standard interrupt service
routine or the PTS interrupt service routine. A delay occurs between the time that the interrupt
request is detected and the time that it is acknowledged. An interrupt request is acknowledged
when the current instruction finishes executing. If the interrupt request occurs during one of the
last four state times of the instruction, it may not be acknowledged until after the next instruction
finishes. This additional delay occurs because instructions are prefetched and prepared a few stat
times before they are executed. Thus, the maximum delay between interrupt request and ac-
knowledgment is four state times plus the execution time of the next instruction.

When a standard interrupt request is acknowledged, the hardware clears the interrupt pending bit
and forces a call to the address contained in the corresponding interrupt vector. When a PTS in-
terrupt request is acknowledged, the hardware immediately vectors to the PTSCB and begins ex-
ecuting the PTS routine.

8XC196NT USER’S MANUAL Int9I®

5.4.1 Situations that Increase Interrupt Latency

If an interrupt request occurs while any of the following instructions are executing, the interrupt
will not be acknowledged until after tiext instruction is executed:

¢ the signed prefix opcode (FE) for the two-byte, signed multiply and divide instructions

¢ any of these eighprotectedinstructions DI, El, DPTS, EPTS, POPA, POPF, PUSHA,
PUSHF (see Appendix A for descriptions of these instructions)

¢ any of the read-modify-write instructions: AND, ANDB, OR, ORB, XOR, XORB

Both the unimplemented opcode interrupt and the software trap interrupt prevent other interrupt
requests from being acknowledged until after the next instruction is executed.

Each PTS cycle within a PTS routine cannot be interrupted. A PTS cycle is the entire PTS re-
sponse to aingle interrupt request. In block transfer mode, a PTS cycle consists of the transfer
of an entire block of bytes or words. This means a worst-case latency of 500 states if you assume
a block transfer of 32 words from one external memory location to another. See Table 5-4 on page
5-10 for PTS cycle execution times.

5.4.2 Calculating Latency

The maximum latency occurs when the interrupt request occurs too late for acknowledgment fol-
lowing the current instruction. The following worst-case calculation assumes that the current in-
struction is not a protected instruction. To calculate latency, add the following terms:

¢ Time for the current instruction to finish execution (4 state times).

— If this is a protected instruction, the instruction that follows it must also execute before
the interrupt can be acknowledged. Add theceien time of the instruction that
follows a protected instruction.

* Time for the next instruction to execute. (The longest instruction, NORML, takes 39 state
times. However, the BMOV instruction could actually take longer if it is transferring a large
block of data. If your code contains routines that transfer large blocks of data, you may get a
more accurate worst-case value if you use the BMOV instruction in your calculation instead
of NORML. See Appendix A for instruction execution times.)

* For standard inteupts only, the response time to get the vector and force the call

— in 64-Kbyte mode, 11 state times for an internal stack or 13 for an external stack
(assuming a zero-wait-state bus)

— in 1-Mbyte mode, 15 state times for an internal stack or 18 for an external stack
(assuming a zero-wait-state bus)

Inu® STANDARD AND PTS INTERRUPTS

5.4.2.1 Standard Interrupt Latency

In 64-Kbyte mode, the worst-case delay for a standard interrupt is 56 state times (4 + 39 + 11 +
2) if the stack is in external memory. In 1-Mbyte mode, the worst-case delay increases to 61 state
times (4 + 39 + 15 + 3). This delay time does not include the time needed to execute the first in-
struction in the interrupt service routine or to execute the instruction following a protected in-
struction. Figure 5-2 illustrates the worst-case scenario forGbtbyte and 1-Mbyte modes.

1-Mbyte Mode 4 3 2 1 |[€&——39— >« 15>« 3 > << 12>« 6
64-KbyteMode 4 3 2 1 [€——39 —— << 1ll—><«— 2 > < 12-><6

: Ending “NORML" End Callis If Stack |« " If Stack
Execution / Instruction "NORML" | Forced External PUSHA External

Interrupt Routine
Interrupt _ |
Interrupt
Pending Set Cleared
Responi'zs;:et _,l 1-Mbyte Mode 61 State Times -
Time " 64-Kbyte Mode 56 State Times i

A0261-02

Figure 5-2. Standard Interr upt Response Time

5.4.2.2 PTS Interrupt Latency

In both 64-Kbyte and 1-Mbyte modes, the maximum delay for a PTS interrupt is 43 state times
(4 + 39) (Figure 5-3). This delay time does not include the added delay if a protected instruction
is being executed or if a PTS request is already in progress. See Table 5-4 for execution times for
PTS cycles.

5-9

8XC196NT USER’S MANUAL

64-Kbyte or 1-Mbyte Mode

Execution Endlng
Instruction

Interrupt __|

Interrupt
Pending Bit

Response Time |-

4 3 2 1|l€&——39——>|

"NORML" End
"NORML"

Vector to PTS
Control Block

ers [[ors | f

Set

Latency Time

Y

43 State Times
64-Kbyte or 1-Mbyte Mode

PTS Interrupt Routine

Cleared

A0262-02

Figure 5-3. PTS Interrupt Res ponse Time

Table 5-4. Execution Times for PTS Cycles

PTS Mode

Execution Time (in State Times)

Single transfer mode
register/registert
memory/registert
memory/memoryt

18 per byte or word transfer + 1
21 per byte or word transfer + 1
24 per byte or word transfer + 1

Block transfer mode

register/registert
memory/registert

13 + 7 per byte or word transfer (1 minimum)
16 + 7 per byte or word transfer (1 minimum)

memory/memoryt 19 + 7 per byte or word transfer (1 minimum)
A/D scan mode

register/registert 21

register/memory™ 25
PWM remap mode 15
PWM toggle mode 15

T Register indicates an access to the register file or peripheral SFR. Memory indicates
an access to a memory-mapped register, /0, or memory. See Table 4-1 on page 4-4 for

address information.

5.5 PROGRAMMING THE INTERRUPTS

The PTS select register (PTSSEL) selects either PTS service or a standard software interrupt ser
vice routine for each of the maskable interrupt requests (see Figure 5-4). The interrupt mask reg-
isters, INT_MASK and INT_MASK1, enable or disable (mask) individuatimigs (see Figures

5-5 and 5-6). With the exception of the nonmaskable interrupt (NMI) bit (INT_MASK1.7), set-

ting a bit enables the corresponding intigt source and céing a bit disables theource.

5-10

Int€|® STANDARD AND PTS INTERRUPTS

To disable any interrupt, clear its mask bit. To enable amrugefor standard itrrupt service,
set its mask bit and clear its PTS select bit. To enable an interrupt for PTS service, set both the
mask bit and the PTS select bit.

When you assign an interrupt to the PTS, you must set up a PTS control block (PTSCB) for each
interrupt source (see “Initializing the PTS Control Blocks” on page 5-18) and use the EPTS in-
struction to globally enable the PTS. Wheu assign an interrupt to a standard software service
routine, use the El (enable interrupts) instruction to globally enable interrupt servicing.

NOTE

PTS routines will execute after a DI (disable interrupts) instruction, if the
appropriate INT_MASK and PTSSEL bits are set. However, the end-of-PTS
interrupt request will not be serviced. If aneirrupt request occurs while
interrupts are disabled, the caponding pending bit is setihe INT_PEND

or INT_PENDL1 register.

5.5.1 Programming the Multiplexed Interrupts

The EPA4-9 and COMPO-Yent interrupts, the EPA0-9 overrun interrupts, and the timer 1 and
timer 2 overflow/underflow interrupts are multiplexed into KP#rite to the EPA_MASK (Fig-

ure 10-12 on page 10-27) or EPA_MASK1 (Figure 10-13 on page 10-27) registers to enable or
disable the multiplexed EPA interrupt sources and INT_MASK.0 to enable or disable the EPA
interrupt.

The PTS cannot determine the source of multiplexed interrupts, so do not use it to service these
interrupts if more than one multiplexed interrupt is unmasked.

5-11

8XC196NT USER’S MANUAL Inu®

PTSSEL Address: 0004H
Reset State: 0000H

The PTS select (PTSSEL) register selects either a PTS microcode routine or a standard interrupt
service routine for each interrupt request. Setting a bit selects a PTS microcode routine; clearing a bit
selects a standard interrupt service routine. When PTSCOUNT reaches zero, hardware clears the
corresponding PTSSEL bit. The PTSSEL bit must be set manually to re-enable the PTS channel.

15 8
| — [®eant | — | wr || m [ssior | ssioo | cBF |
7 0
| BF | oBe | ap | EPao || EPAL | EPA2 | EPA3 | EPAXx |

Bit)
Number Function
15,13 Reserved; for compatibility with future devices, write zero to this bit.
14,12:0 Setting a bit causes the corresponding interrupt to be handled by a PTS microcode

routine.

The PTS interrupt vector locations are as follows:
Bit Mnemonic Interrupt PTS Vector
EXTINT EXTINT pin FF205CH
RI SIO Receive FF2058H
TI SIO Transmit FF2056H
SSIo1 SSIO 1 Transfer FF2054H
SSIO0 SSIO 0 Transfer FF2052H
CBF Slave Port Command Buffer Full FF2050H
IBF Slave Port Input Buffer Full FF204EH
OBE Slave Port Output Buffer Empty FF204CH
AD A/D Conversion Complete FF204AH
EPAO EPA Capture/Compare Channel 0 FF2048H
EPA1 EPA Capture/Compare Channel 1 FF2046H
EPA2 EPA Capture/Compare Channel 2 FF2044H
EPA3 EPA Capture/Compare Channel 3 FF2042H
EPAXT Multiplexed EPA FF2040H

T PTS service is not recommended because the PTS cannot determine the source of

shared interrupts.

Figure 5-4. PTS Select (PTSSEL) Register

5-12

Inu® STANDARD AND PTS INTERRUPTS

INT_MASK Address: 0008H
Reset State: O0H

The interrupt mask (INT_MASK) register enables or disables (masks) individual interrupt requests.
(The El and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK is the
low byte of the processor status word (PSW); therefore, PUSHF or PUSHA saves this register on the
stack and POPF or POPA restores it.

7 0
IBF OBE AD EPAO ‘ ‘ EPAL EPA2 EPA3 EPAX
Bit .

Number Function
7:0 Setting a bit enables the corresponding interrupt.
The standard interrupt vector locations are as follows:
Bit Mnemonic Interrupt Standard Vector
IBF Slave Port Input Buffer Full FF200EH
OBE Slave Port Output Buffer Empty FF200CH
AD A/D Conversion Complete FF200AH
EPAO EPA Capture/Compare Channel O FF2008H
EPA1 EPA Capture/Compare Channel 1 FF2006H
EPA2 EPA Capture/Compare Channel 2 FF2004H
EPA3 EPA Capture/Compare Channel 3 FF2002H
EPAXT Multiplexed EPA FF2000H
T EPA 4-9 capture/compare channel events, EPA 0—1 compare channel events, EPA 0-9
capture/compare overruns, and timer overflows can generate this multiplexed interrupt.
The EPA mask and pending registers decode the EPAXx interrupt. Write the EPA mask
registers (EPA_MASK and EPA_MASK1) to enable the interrupt sources; read the EPA
pending registers (EPA_PEND and EPA_PEND1) to determine which source caused the
interrupt.

Figure 5-5. Interrupt Mask (INT_M ASK) Register

[| 5-13

8XC196NT USER’S MANUAL Inu®

INT_MASK1 Address: 0013H
Reset State: O00H
The interrupt mask 1 (INT_MASK1) register enables or disables (masks) individual interrupt requests.
(The El and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK1 can
be read from or written to as a byte register. PUSHA saves this register on the stack and POPA
restores it.
7 0
NMI EXTINT — RI ‘ ‘ Tl SSIo1 SSI00 CBF
Bit .
Number Function

7:6 Setting a bit enables the corresponding interrupt.
40 The standard interrupt vector locations are as follows:

Bit Mnemonic Interrupt Standard Vector

NMI Nonmaskable Interrupt FF203EH

EXTINT EXTINT Pin FF203CH

RI SIO Receive FF2038H

TI SIO Transmit FF2036H

SSIo1 SSIO 1 Transfer FF2034H

SSIOo0 SSIO 0 Transfer FF2032H

CBF Slave Port Command Buffer Full FF2030H
5 Reserved; for compatibility with future devices, write zero to this bit.

Figure 5-6. Interrupt Mask 1 (INT_MASK1) Regi ster

5.5.2 Maodifying Interrupt Priorities

Your software can modify the default priorities of maskable interrupts by controlling the interrupt
mask registers (INT_MASK and INT_MASK1). For example, you can specify which interrupts,
if any, can interrupt an interrupt service routine. The following code shows one way to prevent
all interrupts, except EXTINT (priority 14), from interrupting an SIO receive interrupt service
routine (priority12).

5-14

intel.

SERIAL_RI_ISR:
PUSHA

LDB INT_MASK1, #01000000B
El

POPA

RET
CSEG AT OFF2038H
DCW LSW SERIAL_RI_ISR

STANDARD AND PTS INTERRUPTS

; Save PSW, INT_MASK, INT_MASK1, & WSR
; (this disables all interrupts)

; Enable EXTINT only

; Enable interrupt servicing
; Service the Rl interrupt

; Restore PSW, INT_MASK, INT_MASK1, &
; WSR registers

; fill in interrupt table

; LSW is a compiler directive that means

; least-significant word of vector address

END

Note that location FF2038H in the interrupt vector table must be loaded with the value of the label
SERIAL_RI_ISR before the interrupt request occurs and that the receive interrupt must be en-
abled for this routine to execute.

This routine, like all interrupt service routines, is handled in the following manner:

After the hardware detects and prioritizes an interrupt request, it generates and executes ar
interrupt call. This pushes the program counter ah¢ostack and then loads it with the
contents of the vector corresponding to the highest priority, pending, unmasked interrupt.
The hardware will not allow another interrupt call until after the first instruction of the

The PUSHA instruction, which is now guaranteed to execute, saves the contents of the
PSW, INT_MASK, INT_MASK1, and window selection register (WSR) onto the stack
and then clears the PSW, INT_MASK, and INT_MASKZ1 registers. In addition to the
arithmetic flags, the PSW contains the global interrupt enable bit (I) and the PTS enable
bit (PSE). By clearing the PSW and the interrupt mask registers, PUSHA effectively
masks all maskable interrupts, disables standard interrupt servicing, and disables the PTS.
Because PUSHA is a protected instruction, it also inhibits interrupt calls until after the

The LDB INT_MASK1 instruction enables those interrupts that you choose to allow to
interrupt the service routine. In this example, only EXTINT can interrupt the receive
interrupt service routine. By enabling or disabling interrupts, the software establishes its

The El instruction re-enables interrupt processing and inhibits interrupt calls until after the

1.
interrupt service routine is executed.
2.
next instruction executes.
3.
own interrupt servicing priorities.
4,
next instruction executes.
5.

The actual interrupt service routine executes within the priority structure established by
the software.

5-15

8XC196NT USER’S MANUAL Int9I®

6. Atthe end of the service routine, the POPA instruction restores the original contents of the
PSW, INT_MASK, INT_MASK1, and WSR registers; any changes made to these
registers during the interrupt service routine are overwritten. Because interrupt calls
cannot occur immediately following a POPA instruction, the last instruction (RET) will
execute before another interrupt call can occur.

Notice that the “preamble” and exit code for this routine does not save or restore register RAM.
The interrupt service roime is assumed to allocate @@n private set of igisters from the lower
register file. The general-purpose register RAM in the lower register file makes this quite practi-
cal. In addition, the RAM in the upper register file is availableniredowing(see “Windowing”

on page 4-15).

5.5.3 Determining the Source of an Interrupt

When the transition detector detects an interrupt, it sets the corresponding bit in the INT_PEND
or INT_PENDLI register (Figures 5-7 and 5-8). This bit is set even if the individual interrupt is
disabled (masked). The pending bit is cleared when the program vectors to the interrupt service
routine. INT_PEND and INT_PEND1 can be read, to determine which interrupts are pending.
They can also be modified (written), either to clear pending interrupts or to generate interrupts
under software control. However, we recommend the use of the read-modify-write instructions,
such as AND and OR, to modify these registers.

ANDB INT_PEND, #11111110B ; Clears the EPA X interrupt
ORB INT_PEND, #00000001B ; Sets the EPA X interrupt

Other methods could result in a partial interrupt cycle. For example, an interrupt could occur dur-
ing an instruction sequence that loads the contents of the interrupt pending register into a tempo-
rary register, modifies the contents of the temporary register, and then writes the contents of the
temporary register back into the interrupt pending register. If the interrupt occurs during one of
the last four states of the second instruction, it will not be acknowledged unttheftemmpletion

of the third instruction. The third instruction overwrites the contents of teeruipt pending reg-

ister, so the jump to the interrupt vector will not occur.

5.5.3.1 Determining the Source of Multiplexed Interrupts

The EPA4-9 and COMPO-Yent interrupts, the EPA0-9 overrun interrupts, and the timer 1 and
timer 2 overflow/underflow interrupts are multiplexed into EPAhe interrupt service routine
associated with EPA must read the EPA interrupt pendinggisters (ER_PEND and
EPA_PENDL1) to determine the sourcetlod interupt request (see Figure 10-14 on page 10-28
and Figure 10-15 on page 10-28).

5-16

intel.

STANDARD AND PTS INTERRUPTS

INT_PEND

Address:
Reset State:

0009H
O00H

When hardware detects a pending interrupt, it sets the corresponding bit in the interrupt pending
(INT_PEND or INT_PENDZ1) registers. When the vector is taken, the hardware clears the pending bit.
Software can generate an interrupt by setting the corresponding interrupt pending bit.

cleared when processing transfers to the corresponding interrupt vector.
The standard interrupt vector locations are as follows:

Bit Mnemonic
IBF

OBE

AD

EPAO

EPA1

EPA2

EPA3

EPAXt

T EPA 4-9 capture/compare channel events, EPA 0—1 compare channel events, EPA 0-9
capture/compare overruns, and timer overflows can generate this multiplexed interrupt.

Interrupt Standard Vector
Slave Port Input Buffer Full FF200EH
Slave Port Output Buffer Empty FF200CH
A/D Conversion Complete FF200AH
EPA Capture/Compare Channel O FF2008H
EPA Capture/Compare Channel 1 FF2006H
EPA Capture/Compare Channel 2 FF2004H
EPA Capture/Compare Channel 3 FF2002H
Multiplexed EPA FF2000H

7 0
IBF OBE AD EPAO ‘ ‘ EPAL EPA2 EPA3 EPAX
Bit .
Number Function
7:0 Any set bit indicates that the corresponding interrupt is pending. The interrupt bit is

The EPA mask and pending registers decode the EPAXx interrupt. Write the EPA mask
registers to enable the interrupt sources; read the EPA pending registers to determine
which source caused the interrupt.

Figure 5-7. Interrupt Pending (INT_PEND) Register

5-17

8XC196NT USER’S MANUAL Int9I®

INT_PEND1 Address: 0012H
Reset State: O00H
When hardware detects a pending interrupt, it sets the corresponding bit in the interrupt pending
(INT_PEND or INT_PENDZ1) registers. When the vector is taken, the hardware clears the pending bit.
Software can generate an interrupt by setting the corresponding interrupt pending bit.
7 0
NMI EXTINT — RI ‘ ‘ Tl SSIo1 SSI00 CBF
Bit .
Number Function
7:6 Any set bit indicates that the corresponding interrupt is pending. The interrupt bit is
4.0 cleared when processing transfers to the corresponding interrupt vector.
The standard interrupt vector locations are as follows:

Bit Mnemonic Interrupt Standard Vector

NMI Nonmaskable Interrupt FF203EH

EXTINT EXTINT pin FF203CH

RI SIO Receive FF2038H

TI SIO Transmit FF2036H

SSIo1 SSIO 1 Transfer FF2034H

SSIOo0 SSIO 0 Transfer FF2032H

CBF Slave Port Command Buffer Full FF2030H
5 Reserved. This bit is undefined.

Figure 5-8. Interrupt Pending 1 (INT_PEND1) Register

5.6 INITIALIZING THE PTS CONTROL BLOCKS

Each PTS interrupt requires a block of data, in register RAM, called the PTS control block
(PTSCB). The PTSCB identifies which PTS microcode routine will be invoked and sets up the
specific parameters for the routine. You must set up the PTSCB for each interruptsforee
enabling the corregmding PTS interrupts.

The address of the first (lowest) PTSCB byte is stored in the PTS vector table in-ppguisle
memory (see “Special-purpose Memory” on page 4-6). Figure 5-9 shows the PTSCB for each
PTS mode. Unused PTSCB bhytes can be used as extra RAM.

NOTE

The PTSCB must be located in the internal register file. The location of the
first byte of the PTSCB must be aligned on a quad-word boundary (an address
evenly divisible by 8). Because the PTS uses 16-bit addressing, it cannot
operate across page boundaries. For example, PTSSRC cannot point to a
location on page 05 while PTSDST points to page 00. Both PTSSRC and
PTSDST will operate from the page defined by EP_REG. Write O0H to
EP_REG to select page O0H (see “Accessing Data” on page 4-24).

5-18

STANDARD AND PTS INTERRUPTS

Single Block A/D Scan PWM Toggle PWM Remap
Transfer Transfer Mode Mode Mode
Unused Unused Unused PTSCONST2 (H) Unused
Unused PTSBLOCK Unused PTSCONST2 (L) Unused
PTSDST(H) PTSDST (H) PTSPTR2 (H) PTSCONST1 (H) PTSCONST1 (H)
PTSDST (L) PTSDST (L) PTSPTR2 (L) PTSCONST1 (L) PTSCONST1 (L)
PTSSRC (H) PTSSRC (H) PTSPTRL (H) PTSPTRL (H) PTSPTR1 (H)
PTSSRC (L) PTSSRC (L) PTSPTR1 (L) PTSPTRL (L) PTSPTR1 (L)
PTSCON PTSCON PTSCON PTSCON PTSCON
PTSVECT PTSCOUNT PTSCOUNT PTSCOUNT Unused Unused

Figure 5-9. PTS Control Blocks

5.6.1 Specifying the PTS Count

For single transfer, block transfer, and A/D scan transfer routines, the first location of the PTSCB
contains an 8-bit value called PTSCOUNT. This value defines the number of interrupts that will
be serviced by the PTS routine. The PTS decrements PTSCOUNT after each PTS cycle. When
PTSCOUNT reaches zero, hardware clears the sporeding PESEL bit and sets the PTSSRV

bit (Figure 5-10), which requests an end-of-PTS interrupt. The end-of-PTS interrupt service rou-
tine should reinitialize the PTSCB, if required, and set the appropriate PTSSEL bit to re-enable
PTS interrupt service.

5-19

8XC196NT USER’S MANUAL Inu®

PTSSRV Address: 0006H
Reset State: 0000H

The PTS service (PTSSRV) register is used by the hardware to indicate that the final PTS interrupt
has been serviced by the PTS routine. When PTSCOUNT reaches zero, hardware clears the corre-
sponding PTSSEL bit and sets the PTSSRYV bit, which requests the end-of-PTS interrupt. When the
end-of-PTS interrupt is called, hardware clears the PTSSRYV bit. The PTSSEL bit must be set
manually to re-enable the PTS channel.

15 8
‘ — ‘ EXTINT ‘ — ‘ RI ‘ ‘ TI ‘ ssIo1 ‘ SSI00 ‘ CBF ‘
7 0
‘ IBF ‘ OBE ‘ AD ‘ EPAO ‘ ‘ EPAL ‘ EPA2 ‘ EPA3 ‘ EPAX ‘
Nuii:)er Function

15, 13 Reserved. This bit is undefined.

14,12:0 A bit is set by hardware to request an end-of-PTS interrupt for the corresponding interrupt
through its standard interrupt vector.

The standard interrupt vector locations are as follows.

Bit Mnemonic Interrupt Standard Vector
EXTINT External FF203CH
RI SIO Receive FF2038H
TI SIO Transmit FF2036H
SSIo1 SSI01 Transfer FF2034H
SSIO0 SSIOO0 Transfer FF2032H
CBF Slave Port Command Buffer Full FF2030H
IBF Slave Port Input Buffer Full FF200EH
OBE Slave Port Output Buffer Empty FF200CH
AD A/D Conversion Complete FF200AH
EPAO EPA Capture/Compare Channel 0 FF2008H
EPA1 EPA Capture/Compare Channel 1 ~ FF2006H
EPA2 EPA Capture/Compare Channel 2 FF2004H
EPA3 EPA Capture/Compare Channel 3 ~ FF2002H
EPAXT Multiplexed EPA FF2000H

T This interrupt is cleared when all EPA interrupt pending bits (EPA_PEND and
EPA_PENDL1) are cleared.

Figure 5-10. PTS Service (PTSSRV) Register

5.6.2 Selecting the PTS Mode

The second byte of each PTSCB is always an 8-bit value called PTSCON. Bits 57 select the PTS
mode (Figure 5-11). The function of bits 0—4 differ for each PTS mode. Refer to the sections that
describe each routine in detail to see the function of these bits. Table 5-4 on page 5-10 lists the
cycle execution times for each PTS mode.

5-20

Inu® STANDARD AND PTS INTERRUPTS

PTSCON Address: PTSPCB + 1

The PTS control (PTSCON) register selects the PTS mode and sets up control functions for that
mode.

7 0
M2 M1 MO t ‘ ‘ t t T ‘ t
Bit Bit Function
Number Mnemonic
7:5 M2:0 PTS Mode

These bits select the PTS mode:

M2 M1 MO
0 block transfer
reserved

PWM toggle or remap
reserved

single transfer
reserved

A/D scan

reserved

RPRRROOOO
PR OORRO
RPORORORO

T The function of this bit depends upon which mode is selected. See the PTS control block description
in each PTS mode section.

Figure 5-11. PTS Mode Selection Bits (PTSCON Bits 7:5)

5.6.3 Single Transfer Mode

In single transfer mode, an interrupt causes the PTS to transfer a single byte or word (selected by
the BW bit in PTSCON) from one memory location to another. This mode is typically used with
serial 1/0,synchronousserial 1/0, or slave port interrupts. It can also be used with the EPA to
move captured time values from the event-time register to internal RAM for further processing.
See AP-4453XC196KR Peripherals: A User’s Point of Vidar application examples with code.
Figure 5-12 shows the PTS control block for single transfer mode.

5-21

8XC196NT USER’S MANUAL Inu®

PTS Single Transfer Mode Control Block

In single transfer mode, the PTS control block contains a source and destination address (PTSSRC
and PTSDST), a control register (PTSCON), and a transfer count (PTSCOUNT).

7 0
Unused | o [o| o | o [o | o | o [o |
7 0
Unused | o [o] o | o [[o [o | o | o |
15 8
PTSDST (HI) ‘ PTS Destination Address (high byte) ‘
7 0
PTSDST (LO) ‘ PTS Destination Address (low byte) ‘
15 8
PTSSRC (HI) | PTS Source Address (high byte) |
7 0
PTSSRC (LO) ‘ PTS Source Address (low byte) ‘
7 0
PTSCON | M [wm | mo | Bw |[su | bu | s [oI |
7 0
PTSCOUNT ‘ Consecutive Byte or Word Transfers ‘
Register Location Function
PTSDST PTSCB + 4 | PTS Destination Address

Write the destination memory location to this register. A valid address is
any unreserved memory location within page 00H; however, it must
point to an even address if word transfers are selected.

PTSSRC PTSCB + 2 | PTS Source Address

Write the source memory location to this register. A valid address is any
unreserved memory location within page 00H; however, it must point to
an even address if word transfers are selected.

Figure 5-12. PTS Control Block — Single Transfer Mode

5-22

Inu® STANDARD AND PTS INTERRUPTS

PTS Single Transfer Mode Control Block (Continued)

Register Location Function

PTSCON PTSCB +1 | PTS Control Bits

M2:0 | PTS Mode

M2 M1 MO
1 0 0 single transfer mode

BW Byte/Word Transfer

0 = word transfer
1 = byte transfer

sut Update PTSSRC

0 = reload original PTS source address after each byte or word
transfer

1 = retain current PTS source address after each byte or word
transfer

DUf Update PTSDST

0 = reload original PTS destination address after each byte or
word transfer

1 = retain current PTS destination address after each byte or
word transfer

SIf PTSSRC Autoincrement

0 = do not increment the contents of PTSSRC after each byte
or word transfer

1 = increment the contents of PTSSRC after each byte or word
transfer

DIt PTSDST Autoincrement

0 = do not increment the contents of PTSDST after each byte
or word transfer

1 = increment the contents of PTSDST after each byte or word
transfer

PTSCOUNT | PTSCB + 0 | Consecutive Word or Byte Transfers

Defines the number of words or bytes that will be transferred during the
single transfer routine. Each word or byte transfer is one PTS cycle.
Maximum value is 255.

T In single transfer mode, the DU and SU bits and DI and Sl bits are paired. Each pair must be set or
cleared together. However, the two pairs, DU/SU and DI/SI, need not be equal.

Figure 5-12. PTS Control Block — Single Transfer ~ Mode (Continued)

The PTSCB in Table 5-5 defines nine PTS cycles. Each cycle moves a single wolataton

20H to an external memory location. The PTS transfers the first word to location 6000H. Then it
increments and updates the destion address and decrements the PTSCOUNT register; it does
not increment the source address. When the second cycle begins, the PTS moveswosdcond
from location 20H to location 6002H. When PTSCOUNT equals zero, the PTS will have filled
locations ®00—-600FH, and an end-of-PTS interrupt inegrated.

[| 5-23

8XC196NT USER’S MANUAL Inu®

Table 5-5. Single Transfer Mode PTSCB

Unused
Unused

PTSDST (HI) = 60H

PTSDST (LO) = 00H

PTSSRC (HI) = 00H

PTSSRC (LO) = 20H

PTSCON = 85H (Mode = 100, DI & DU = 1, BW = 0)
PTSCOUNT = 09H

5.6.4 Block Transfer Mode

In block transfer mode, an interrupt causes the PTS to move a block of bytes or words from one
memory location to another. See AP-488C196KR Peripherals: A User’s Point of Vidar ap-
plication examples with code. Figure 5-13 shows the PTS control block for block transfer modes.

In this mode, each PTS cycle consists of the transfer of an entire block of bytes or words. Because
a PTS cycle cannot be interrupted, the block transfer mode can create long interrupt latency. The
worst-case latency could be as high as 500 states, if you assume a block transfer of 32 words from
one external memory location to another, using an 8-bit bus with no wait states. See Table 5-4 on
page 5-10 for execution times of PTS cycles.

The PTSCB in Table 5-6 sets up three PTS cycles that will transfer five bytes from memory loca-
tions 20—24H to 6000-6004¢dycle 1),6005-6009Hcycle 2), and 600A—-600EH (cycle 3). The
source and destiriah are incremented after each byte transfer, but the original source address is
reloaded into PTSSRC at the end of each block-transfer cycle. In this routine, the PTS always gets
the first byte from location 20H.

Table 5-6. Block Transfer Mode PTSCB
Unused

PTSBLOCK = 05H

PTSDST (HI) = 60H

PTSDST (LO) = 00H

PTSSRC (HI) = 00H

PTSSRC (LO) = 20H

PTSCON = 17H (Mode = 000; DI, SI, DU, BW = 1; SU = 0)

PTSCOUNT =03H

5-24

Inu® STANDARD AND PTS INTERRUPTS

PTS Block Transfer Mode Control Block

In block transfer mode, the PTS control block contains a block size (PTSBLOCK), a source and
destination address (PTSSRC and PTSDST), a control register (PTSCON), and a transfer count
(PTSCOUNT).

7 0
Unused | o [o] o | o [[o [o | o | o |
7 0
PTSBLOCK | PTS Block Size |
15 8
PTSDST (HI) ‘ PTS Destination Address (high byte) ‘
7 0
PTSDST (LO) ‘ PTS Destination Address (low byte) ‘
15 8
PTSSRC (HI) \ PTS Source Address (high byte) \
7 0
PTSSRC (LO) ‘ PTS Source Address (low byte) ‘
7 0
PTSCON | M2 | m1i | m | Bw [[su [bu | s | D |
7 0
PTSCOUNT ‘ Consecutive Block Transfers ‘
Register Location Function

PTSBLOCK | PTSCB +6 | PTS Block Size

Specifies the number of bytes or words in each block. Valid values are
1-32, inclusive.

PTSDST PTSCB + 4 | PTS Destination Address

Write the destination memory location to this register. A valid address is
any unreserved memory location within page 00H; however, it must
point to an even address if word transfers are selected.

PTSSRC PTSCB + 2 | PTS Source Address

Write the source memory location to this register. A valid address is any
unreserved memory location within page 00H; however, it must point to
an even address if word transfers are selected.

Figure 5-13. PTS Cont rol Block — Block Transfer Mode

5-25

8XC196NT USER’S MANUAL

PTS Block Transfer Mode Control Block (Continued)

Register Location Function
PTSCON PTSCB +1 | PTS Control Bits
M2:0 | PTS Mode
These bits select the PTS mode:
M2 M1 MO
0 0 0 block transfer mode
BW Byte/Word Transfer
0 = word transfer
1 = byte transfer
SuU Update PTSSRC
0 = reload original PTS source address after each block
transfer is complete
1 = retain current PTS source address after each block transfer
is complete
DU Update PTSDST
0 = reload original PTS destination address after each block
transfer is complete
1 = retain current PTS destination address after each block
transfer is complete
Sl PTSSRC Autoincrement
0 = do not increment the contents of PTSSRC after each byte
or word transfer
1 = increment the contents of PTSSRC after each byte or word
transfer
DI PTSDST Autoincrement
0 = do not increment the contents of PTSDST after each byte
or word transfer
1 = increment the contents of PTSDST after each byte or word
transfer
PTSCOUNT | PTSCB + 0 | Consecutive Block Transfers
Defines the number of blocks that will be transferred during the block
transfer routine. Each block transfer is one PTS cycle. Maximum number
is 255.

Figure 5-13. PTS Control Block — Block Transfer Mode (Continued)

5.6.5 A/D Scan Mode

In the A/D scan mode, the PTS causes the A/D converter to perform multiple conversions on one
or more channels and then stores the results in a table in memory. Figure 5-14 shows the PTS con

trol block for A/D scan mode.

5-26

intel.

STANDARD AND PTS INTERRUPTS

PTS A/D Scan Mode Control Block

In A/D scan mode, the PTS causes the A/D converter to perform multiple conversions on one or more
channels and then stores the results. The control block contains pointers to both the AD_RESULT
register (PTSPTR1) and a table of A/D conversion commands and results (PTSPTR2), a control
register (PTSCON), and a A/D conversion count (PTSCOUNT).

7 0
Unused | o [o] o | o[o o] o |
7 0
Unused | o | o | o [o [o o] o |
15 8
PTSPTR2 (H) \ Pointer 2 Value (high byte) \
7 0
PTSPTR2 (L) \ Pointer 2 Value (low byte) \
15 8
PTSPTRL (H) \ Pointer 1 Value (high byte) |
7 0
PTSPTRI (L) \ Pointer 1 Value (low byte) \
7 0
PTSCON | M [m | mo | o [fupoT| o | 1 |
7 0
PTSCOUNT ‘ Consecutive A/D Conversions ‘
Register Location Function
PTSPTR2 PTSCB + 4 | Pointer 2 Value
This register contains the address of the A/D result register
(AD_RESULT).
PTSPTR1 PTSCB + 2 | Pointer 1 Value
This register contains the address of the table of A/D conversion
commands and results.
PTSCON PTSCB + 1 | PTS Control Bits
M2:0 | PTS Mode
These bits specify the PTS mode:
M2 M1 MO
1 1 0 A/D Scan Mode
UPDT | Update
0 = reload original PTSPTR1 value after each A/D scan
1 = retain current PTSPTRL1 value after each A/D scan
Figure 5-14. PTS Control Block — A/D Scan Mode

5-27

8XC196NT USER’S MANUAL Int9I®

PTS A/D Scan Mode Control Block (Continued)

PTSCOUNT | PTSCB + 0 | Consecutive A/D Conversions

Defines the number of A/D conversions that will be completed during the
A/D scan routine. Each cycle consists of the PTS transferring the A/D
conversion results into the command/data table, and then loading a new
command into the AD_COMMAND register. Maximum number is 255.

Figure 5-14. PTS Control Block — A/D Scan Mode (Continued)

To use the A/D scan mode, you must first set up a command/data table in memory (Table 5-7).
The command/data table contains A/D commands that are interleaved with blank memory loca-
tions. The PTS stores the conversion results in these blank locations. Only the amount of available
memory limits the table size; it can reside in internal or external RAM.

Table 5-7. A/D Scan Mode Command/Data Table

Address Contents
XXXX + AH A/D Result 2
XXXX + 8H Unused | A/D Command 3
XXXX + 6H A/D Result 1
XXXX + 4H Unused | A/D Command 2
XXXX + 2H A/D Result 0Tt
XXXX Unused ‘ A/D Command 1

T Write 0000H to prevent a new conversion at the end of the
routine.

Tt Result of the A/D conversion that initiated the PTS routine.

To initiate A/D scan mode, enable the A/D conversion complete interrupt and assign it to the PTS.
Software must initiate the first conversion. When the A/D finishes the first conversion and gen-
erates an A/D conversion complete interrupt, the interrupt vectors to the PTSCB and initiates the
A/D scan routine. The PTS stores the conversion results, loads a new command into
AD_COMMAND, and then decrements the number in PTSCOUNT. As each additional conver-
sion complete interrupt occurs, the PTS repeats the A/D scan cycle; it stores the conversion re-
sults, loads the next conversion command into the AD_COMMAND register, and decrements
PTSCOUNT. The routine continues until PTSCOUNT decrements to zero. When this occurs,
hardware clears the enable bit in the PTSSEL register, which disables PTS service, and sets the
PTSSRYV bit, which requests an end-of-PTS interrupt. The interrupt service routine could process
the conversion results and then re-enable PTS service for the A/D conversion complete interrupt.
Because the lower six bits of t®_RESULT register contain status information, the-efid

PTS interrupt service routine could shift the results data to the right six times to leave only the
conversion results in the memory locations. See AP-8XG196KR Peripherals: A User's Point

of View for application examples with code.

5-28

Int€|® STANDARD AND PTS INTERRUPTS

5.6.5.1 A/D Scan Mode Cycles

Software must start the first A/D conversion. After the A/D conversion completelpt ini-
tiates the PTS routine, the following actions occur.

1. The PTS reads the first command (from address XXXX), stores it in a temporary location,
and increments the PTSPTR1 register twice. PTSPTR1 now points torghéléink
location in the command/data table (address XXXX + 2).

2. The PTS reads the AD_RESULT register, stores the results of the first conversion into
location XXXX + 2 in the command/data table, and increments the PTSPTRL1 register
twice. PTSPTR1 now points to XXXX + 4.

3. The PTS loads the command from the temporary location intdAEheCOMMAND
register. This completes the first A/D scan cycle and initiates the next A/D conversion.

4. 1f UPDT (PTSCON.3) is clear, the original address is reloaded into the PTSPTR1 register.
The next cycle uses the same command and overwrites previous data. If UPDT is set, the
updated address remains in PTSPTR1 and the next cycle uses a new command and store
the conversion results at the new address.

5. PTSCOUNT is decremented and the CPU returns to reguagrgon execution. When the
next A/D conversion complete interrupt occurs, the cycle repeats. When PTSCOUNT
reaches zero, hardware clears the corresponding PTSSEL bit and sets the PTSSRV hit,
which requests the end-of-PTS interrupt.

5.6.5.2 A/D Scan Mode Example 1

The command/data table shown in Table 5-8 sets up a series of A/D conversions, beginning with
channel 7 and ending with channel 4. Each table entry is a word (two bytes). Table 5-9 shows the
corresponding PTSCB.

Software starts a conversion on channel 7. Upon completion of the conversion, the A/D conver-

sion complete interrupt initiates the A/D scan mode routine. Step 1 stores the channel 6 command
in a temporary location and increments PTSPTRID@R2H. Step 2 stes the result of the channel

7 conversion in location 3002H and increments PTSPTR1 to 3004H. Step 3 loads the channel 6
command from the temporary location into the AD_COMMAND register to start the next con-

5-29

8XC196NT USER’S MANUAL Inu®

version. Step 4 updates PTSPTR1 (PTSPTR1 now points to 3004H) and step 5 decrements
PTSCOUNT to 3. The next cycle begins by storing the channel 5 command in the temporary lo-
cation. During the last cycle (PTSCOUNT = 1), the dummy command is loaded into the
AD_COMMAND register and no conversion is performed. PTSCOUNT is decremented to zero
and the end-of-PT®iterrupt is requested.

Table 5-8. Command/Data Table (Example 1)

Address Contents
300EH AD_RESULT for ACH4
300CH Unused ‘ 0000H (Dummy command)
300AH AD_RESULT for ACH5
3008H Unused ‘ AD_COMMAND for ACH4
3006H AD_RESULT for ACH6
3004H Unused ‘ AD_COMMAND for ACH5
3002H AD_RESULT for ACH7
3000H Unused ‘ AD_COMMAND for ACH6

Table 5-9. A/D Scan Mode PTSCB (Example 1)
Unused

Unused
PTSPTR2 (HI) = 1FH
PTSPTR2 (LO) = AAH
PTSPTR1 (HI) = 30H
PTSPTR1 (LO) = 00H
PTSCON = CBH (Mode = 110, UPDT =1)
PTSCOUNT = 04H

5.6.5.3 A/D Scan Mode Example 2

Table 5-11 sets up a series of ten PTS cycles, each of which reads a single A/D channel and store
the result in a single location (3002H). The UPDT bit (PTSCON.3) is cleared so that original con-
tents of PTSPTR1 are restored after the cycle. The command/data table is shown in Table 5-10.

Table 5-10. Command/Data Table (Example 2)

Address Contents
3002H AD_RESULT for ACHx
3000H Unused ‘ AD_COMMAND for ACHx

5-30 [|

Int€|® STANDARD AND PTS INTERRUPTS

Table 5-11. A/D Scan Mode PTSCB (Example 2)
Unused

Unused
PTSPTR2 (HI) = 1FH
PTSPTR2 (LO) = AAH
PTSPTR1 (HI) = 30H
PTSPTR1 (LO) = 00H
PTSCON = C3H (Mode = 110, UPDT = 0)
PTSCOUNT = OAH

Software starts a conversion on chanon&hen the conversion is finished and the A/D conver-

sion complete interrupt is genegdt the A/D scan mode routine begins. The PTS reads the com-
mand in location 3000H and stores it in a temporary location. Then it increments PTSPTR1 twice
and stores the value of the AD_RESULT register in location 3002H. The final step is to copy the
conversion command from the temporary location to the AD_COMMAND register. The CPU
could process or move the conversion results data from the table before the next conversion com-
pletes and a new PTS cycle begins. When the next cycle begins, PTSPTR1 again o0asito

and the repeats the events of the first cycle. The value of the AD_RESULT register is written to
location 3002H and the command at location 3000H is re-executed.

5.6.6 PWM Modes

The PWM toggle and PWM remap modes are designed for use with the event processor array
(EPA) to generate pulse-width modulated (PWM) output signals. These modes can also be used
with an interrupt signal from any other source. The PWM toggle mode uses a single EPA channel
to generate a PWM signal. The PWM remap mode uses two EPA channels, but it can generate
signals with duty cycles closer to 0% or 100% than are possible with the PWM toggle mode. Ta-
ble 5-12 compares the two PWM modes. For code examples, see ARXEAIRN6KR Peripher-

als: A User’s Point of Viewand “EPA PWM Output Program” on page 10-35.

5-31

8XC196NT USER’S MANUAL

Table 5-12. Comparison of PWM Modes

PWM Toggle Mode

PWM Remap Mode

Uses a single EPA channel.

Uses two EPA channels.

Reads the location specified by PTSPTR1
(usually EPAX_TIME).

Reads the location specified by PTSPTR1
(usually EPAX_TIME).

Adds one of two values to the location specified by
PTSPTRL. If TBIT is clear, it adds the value in
PTSCONSTL. If TBIT is set, it adds the value in
PTSCONST2.

Adds the value in PTSCONSTL1 to the location
specified by PTSPTR1.

Stores the sum back into the location specified by
PTSPTR1.

Stores the sum back into the location specified by
PTSPTR1.

Toggles TBIT.

Toggles the unused TBIT.

Figure 5-15 illustrates a generic PWM waveform. The time the output is “on” is T1; the time the
output is “off” is T2 — T1. The formulas for frequency and duty cyclesamvn below. In most
applications, the frequency is held constant and the duty cycle is varied to change the average val-

ue of the waveform.

1
Frequency, in Hertz = —
d Y T2

T1
Duty Cycle = — x100%
T2

Output Value
1 on off on off
0
0 1;1 'I;2 T2+T1 Time, t
On-time =T1 Off—timeY: T2-T1

A0263-02

Figure 5-15. A Generic PWM Waveform

The PWM modes do not use a PTSCOUNT register to specify the number of consecutive PTS
cycles. To stop produny the PWM output, clear the PTSSKkbit to disable PTS service for the

interrupt and reconfigure the EPA channel in the interrupt service routine.

5-32

Int€|® STANDARD AND PTS INTERRUPTS

5.6.6.1 PWM Toggle Mode Example

Figure 5-16 shows the PTS control block for PWM toggle mode. To generate a PWM waveform
using PWM toggle mode and EPAO, complete the following procedure. This example uses the
values stored in CSTOREL and CSTORE2 to control the frequency and duty cycle of a PWM.

1. Disable the interrupts and the PTS. The DI instruction disables all standard interrupts; the
DPTS instruction disables the PTS.

2. Store the on-time (T1) in CSTOREL.
3. Store the off-time (T2 - T1) in CSTORE2.

4. Set up the PTSCB as shown in Table 5-13:
— Load PTSCON with 43H (selects PWM toggle mode, initial TBIT value = 1)
— Set up PTSPTR1 to point to EPAO_TIME (the EPAO event-time register)
— Load PTSCONST1 with the on-time (T1) from CSTORE1.
— Load PTSCONST2 with the off-time (T2 — T1) from CSTORE2.

Table 5-13. PWM Toggle Mode PTSCB
PTSCONST2 (HI) = T2 — T1 (HI)
PTSCONST2 (LO) = T2 — T1 (LO)
PTSCONST1 (HI) = T1 (HI)
PTSCONST1 (LO) = T1 (LO)

PTSPTR1 (HI) = 1FH
PTSPTR1 (LO) = 62H
PTSCON = 43H (Mode = 010, TMOD =1, TBIT = 1)

Unused

5. Configure P1.0 to serve as the EPAO output:
— Clear P1_DIR.0 (selects output)
— Set P1_MODE.O (selects the EPAO special-function signal)
— Set P1_REG.O0 (initializes the output to “1")

6. Setup EPAO:
— Load EPAO_CON with 0078H (timer 1, compare, toggle output pin, re-enable)
— Load EPAO_TIME with the value in PTSCONST1 (selects T1 as first event time)

— Load T1ICONTROL with C2H (enables timer 1, selects up counting,a¥f4 and
enables the divide-by-four prescaler)

[| 5-33

8XC196NT USER’S MANUAL Inu®

7. Enable the EPAO interrupt and select PTS service for it:
— Set INT_MASK.4
— Set PTSSEL.4

8. Enable the interrupts and the PTS. Their&truction enables interrupts; the EPTS
instruction enables the PTS.

PTS PWM Toggle Mode Control Block
In PWM toggle mode, the PTS uses a single EPA channel to generate a pulse-width modulated (PWM)
output signal. The control block contains registers that contain the PWM on-time (PTSCONST1), the
PWM off-time (PTSCONST2), the address pointer (PTSPTR1), and a control register (PTSCON).
7 0
PTSCONST2 (H) \ PWM Off-time (high byte) |
7 0
PTSCONST2 (L) \ PWM Off-time (low byte) \
15 8
PTSCONST1 (H) ‘ PWM On-time (high byte) ‘
7 0
PTSCONSTL (L) \ PWM On-time (low byte) |
15 8
PTSPTRL (H) \ Pointer 1 Value (high byte) \
7 0
PTSPTRL (L) ‘ Pointer 1 Value (low byte) ‘
7 0
PTSCON | m2 | v [m | — || — [— |[mvop] TBIT |
7 0
Unused | o | o [o o[oo o] o]
Register Location Function
PTSCONST2 | PTSCB + 6 | PWM Off-time
Write the desired PWM off-time to these bits.
PTSCONST1 | PTSCB + 4 | PWM On-time
Write the desired PWM on-time to these bits.
PTSPTR1 PTSCB + 2 | Pointer 1 Value
These bits point to a memory location, usually EPAx_TIME. PTSPTR1
can point to any unreserved memory location within page 00H.

Figure 5-16. PTS Control Block — PWM Toggle Mode

5-34

Inu® STANDARD AND PTS INTERRUPTS

PTS PWM Toggle Mode Control Block (Continued)

Register Location Function

PTSCON PTSCB + 1 | PTS Control Bits

M2:0 PTS Mode

These bits specify the PTS mode:
M2 M1 MO

0 1 0 PWM

TMOD | Toggle Mode Select

1= PWM toggle mode

TBIT Toggle Bit Initial Value
Determines the initial value of TBIT.

0 = selects initial value as zero

1 = selects initial value as one

The TBIT value determines whether PTSCONST1 or
PTSCONST2 is added to the PTSPTR1 value:

0 = PTSCONST1 is added to PTSPTR1

1 =PTSCONST2 is added to PTSPTR1

Reading this bit returns the current value of TBIT, which is
toggled by hardware at the end of each PWM toggle cycle.

Figure 5-16. PTS Control Block — PWM Toggle Mode (Continued)

Figure 5-17 is a flow diagram of the EPA and PTS operations for this example. Operation begins
when the timer is enabled (at t = 0 in Figure 5-15 on page 5-3@®)ehbyrite to TLCONTROL.
The first timer match occurs at t = T1. The EPA toggles the output pin to zero and generates an
interrupt to initiate the first PTS cycle.
PWM Toggle Cycle 1.Because TBIT is initialized to one, the PTS adds the off-time (T2 —
T1) to EPAO_TIME and toggles TBIT to zero.

The second timer match occurs at t = T2 (the end of one complete PWM pulse). The EPA toggles
the output to one and generates an interrupt to initiate the second PTS cycle.
PWM Toggle Cycle 2.Because TBIT is zero, the PTS adds the on-time (T1) to
EPAOQO_TIME and toggles the TBIT to one.

The next timer match occurs att = T2 + T1. The EPA toggles the output to zero and initiates the

third PTS cycle. The PTS actions are the same as in cycle 1, and generation of the PWM output
continues with PTS cycle 1 and cycle 2 alternating.

[| 5-35

8XC196NT USER’S MANUAL Inu®

EPA

Y

Toggle Output

PTS Cycle
\ i
EPAQO_TIME = EPAO_TIME + T1 EPAO_TIME = EPAO_TIME + (T2 - T1)

\i

Toggle TBIT

A2552-02

Figure 5-17. EPA and PTS Operations for the PWM Toggle Mode Example

Software can change the duty cycle during the PWM operation. When a duty cycle change is re-
quired, theprogram writes new values of T1 and T2 - T1to CSTORE1 and CSTOREZ2 and selects
normal interrupt service for the next EPAOQ interrupt. When the next timer match occurs, the out-
put is toggled, and the device executes a normal interrupt service routine, wiiocshmpehese
operations:

1. The routine writes the new value of T1 (in CSTORE1) to PTSCONST1 and the new value
of T1 — T2 (in CSTOREZ2) to PTSCONST2.

2. It selects PTS service for the EPAO interrupt.

5-36

Int€|® STANDARD AND PTS INTERRUPTS

When the next timer match occurs, the PTS cycle (Figure 5-17) increments EPAO_TIME by T1
(if TBIT is zero (output = 0)) or T2 — T1 (if TBIT is one (output = 1)). (Note that although the
values of the EPAO output and TBIT are the same in this example, these two values are unrelated.
To establish the initial value of the output, set or clear P1_REG.

The PWM toggle mode has the advantage of using only one EPA channel. However, if the wave-
form edges are close together, the PTS may take too long and miss setting up the next edge. Th
PWM remap mode uses two EPA channels to eliminate this problem.

5.6.6.2 PWM Remap Mode Example

Figure 5-18 shows the PTS control block for PWM remap mode. The following example uses two
EPA channels and a single timer to generate a PWM waveform in PWM remap mode. EPAO as-
serts the output, and EPAL deasserts it. For each channel, an interrupt is generated every T2 pe
riod, but the comparison times for the channels are offset by the on-time, T1 (see Figure 5-15 on
page 5-32). Although TBIT is toggled at the end of every PWM remap mode cycle (see Table
5-12 on page 5-32), it plays no role in this mode. To generate a PWM waveform, follow this pro-
cedure.

1. Disable the interrupts and the PTS. The DI instruction disables all interrupts; the DPTS
instruction disables the PTS.

2. Set up one PTSCB for EPAO and one for EPA1 as shown in Table 5-14hkiotke two
blocks are identical, except that PTSPTR1 points to EPAO_TIME for EPAO and to
EPA1_TIME for EPAL.

3. Configure P1.1 to serve as the EPAL output. (Because EPAO is not used as an output, port
pin P1.0 can be used for standard 1/0O.)
— Clear P1_DIR.1 (selects output)
— Set P1_MODE.1 (selects the EPAO special-function signal)
— Set P1_REG.1 (initializes the output to “1")

5-37

8XC196NT USER’S MANUAL

Table 5-14. PWM Remap Mode PTSCB

PTSCBO for EPAO

PTSCB1 for EPA1

Unused

Unused

Unused

Unused

PTSCONST1 (HI) = T2 (HI)

PTSCONST1 (HI) = T2 (HI)

PTSCONST1 (LO) = T2 (LO)

PTSCONST1 (LO) = T2 (LO)

PTSPTR1 (HI) = 1FH (EPAO_TIME, HI)

PTSPTR1 (HI) = 1FH (EPA1_TIME, HI)

PTSPTR1 (LO) = 62H (EPAO_TIME, LO)

PTSPTR1 (LO) = 66H (EPAL_TIME, LO)

PTSCON = 40H (Mode = 010, TMOD = 0)

PTSCON = 40H (Mode = 010, TMOD = 0)

Unused

Unused

4. Setup EPAO and EPAL:
— Load EPAO_CON with 68H (timer 1, compare modegédssutput pin, re-enable).

— Load EPA1_CON with 158H (timer 1, compare mode, deassert output pin, re-enable,
remap enabled).

— Load EPAO_TIME with O000H (selects time 0 as first event time for EPAO).
— Load EPA1_TIME with the value of T1 (selects time T1 as first event time for EPAL).
— Load timer 1 with FFFFH to ensure that the EPAO event time (t = 0) is matched first.
—Load TICONTROL with C2H (enables timer 1, selects up-counting,at4 and
enables the divide-by-four prescaler).

5. Enable the EPAO and EPAL interrupts and select PTS service for them:
— Set INT_MASK.4 and INT_MASK.3.
— Set PTSSEL.4 and PTSSEL.3

6. Enable the interrupts and the PTS. Their&truction enables interrupts; the EPTS
instruction enables the PTS.

5-38 [|

intel.

STANDARD AND PTS INTERRUPTS

PTS PWM Remap Mode C

ontrol Block

In PWM remap mode, the PTS uses two EPA channels to generate a pulse-width modulated (PWM)
output signal. The control block contains registers that contain the PWM on-time (PTSCONST1), the

address pointer (PTSPTR1

), and a control register (PTSCON).

7 0
Unused | o | o | o [o Jlo]| o] o] o |
7 0
Unused ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘
15 8
PTSCONSTL (HI) ‘ PWM Const 1 Value (high byte) ‘
7 0
PTSCONSTL (LO) \ PWM Const 1 Value (low byte) |
15 8
PTSPTRL (HI) \ Pointer 1 Value (high byte) \
7 0
PTSPTRL (LO) ‘ Pointer 1 Value (low byte) ‘
7 0
PTSCON | M | v | mo | — || — | — |[Tvop | TBIT |
7 0
Unused ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘
Register Location Function

PTSCONST1 | PTSCB + 4

PWM Const 1 Value
Write the desired PWM on-time to these bits.

PTSPTR1 PTSCB + 2

Pointer 1 Value

These bits point to a memory location, usually EPAx_TIME. PTSPTR1
can point to any unreserved memory location within page 00H.

Figure 5-18. PTS Control Block - PWM Remap Mode

5-39

8XC196NT USER’S MANUAL

PTS PWM Remap Mode Control Block (Continued)

Register Location Function
PTSCON PTSCB + 1 | PTS Control Bits

M2:0 PTS Mode
These bits specify the PTS mode:
M2 M1 MO
0 1 0 PWM

TMOD | Remap Mode Select
0 = PWM remap mode

TBIT Toggle Bit Initial Value

Determines the initial value of TBIT.

1 = selects initial value as one
0 = selects initial value as zero

NOTE: In PWM remap mode, the TBIT value is not used;
PTSCONSTL is always added to the PTSPTR1 value.
However, the unused TBIT still toggles at the end of
each PWM remap cycle. Reading this bit returns the
current value of TBIT.

Figure 5-18. PTS Control Block — PWM Remap Mode (Continued)

Figure 5-19 shows the EPA and PTS operations for this example. The first timer match occurs at

t = 0 for EPAO, which asserts the output and generates an interrupt.
PWM Remap Cycle 1.The PTS adds T2 to EPAO_TIME and toggles the TBIT.

The output remains asserted until the second timer match occurs at T1 for EPAL, which deasserts

the output and generates an interrupt.
PWM Remap Cycle 2.The PTS adds T2 to EPA1_TIME and toggles the TBIT.

Alternating EPAO and EPAL interrupts cimte, with EPAO asserting the output and EPAL deas-

serting it.

5-40

Inu® STANDARD AND PTS INTERRUPTS

EPA
If EPAO, set the output
If EPA1L, clear the output
Y PTS Cycle

If EPAO: EPAO_TIME = EPAO_TIME + T2
If EPAL1: EPAL_TIME = EPA1_TIME + T2

Y

Toggle TBIT
(TBIT is not used)

A2553-01

Figure 5-19. EPA and PTS Operations for the PWM Remap Mode Example

You can change the duty cycle by changing the time that the output is high and keeping the period
constant. After a timer match occurs for EPA1 (when the output falls), schedule the next EPA1
match for T2 + DT, where DT is the time to be added to the on-time. Thereafter, setheddst

EPA1 match for T2. You can do this by replacing one EPA1 PTS interrupt with a normal interrupt
(clear PTSSEL.3). Have the interrupt service routine add T2 + DT to EPA1_TIME and set
PTSSEL.3 to re-enable PTS service for EPAL. This adjustment changes the duty cycle without
affecting the period.

By using two EPA channels in the PWM remap mode, you can generate duty cycles closer to 0%

and 100% than is possible with PWM toggle mode. For further information about generating
PWM waveforms with the EPA, see “Operating in Compare Mode” on page 10-13.

5-41

intgl.

/O Ports

CHAPTER 6
/O PORTS

I/0 ports provide a mechanism to transfer information between the device and the surrounding
system circuitry. They can read system status, monitor system operation, output device status,
configure system options, generate control sigraisyide serialcommunication, and so on.

Their usefulness in an application is limited only by the number of 1/O pins available and the
imagination of the engineer.

6.1 1/O0 PORTS OVERVIEW

Standard I/O port registers are located in the SFR address space and they can be windowed. Mem
ory-mapped I/O port registers are located in memory-mapped address space. Memory-mapped
registers must be accessed with indirect or indexed addressing; they cannot be windowed. All
ports can provide low-speed input/output pins or serve alternate functions. Table 6-1 provides an
overview of the device I/O ports. The remainder of this chapter describes the ports in more detail
and explains how to configutke pins. The chapters that cover the associated peripherals discuss
using the pins for their special functions.

Table 6-1. Device I/O Ports

Port Bits Type Direction Associated Peripheral(s)
Port 0 4 Standard Input-only A/D converter
Port 1 8 Standard Bidirectional | EPA and timers
Port 2 8 Standard Bidirectional | SIO, interrupts, bus control, clock gen.
Port 3 8 Memory-mapped Bidirectional | Address/data bus
Port 4 8 Memory-mapped Bidirectional | Address/data bus
Port 5 8 Memory-mapped Bidirectional | Bus control, slave port
Port 6 8 Standard Bidirectional | EPA, SSIO
EPORT 4 Memory-mapped Bidirectional | Extended address lines

6.2 INPUT-ONLY PORT O

Port 0 is a four-bit, high-impedance, input-only port. Its pins can be read as digital inputs; they
are also inputs to the A/D converter. Port O differs from the other ports in that its pins can be used
only as inputs to the digital or analog circuitry.

Because port 0 is permanently configured as an input-only port, it has no configuration registers.
Its single registe?0_PIN,can be read to determine the current state of the pin. The register is
byte-addressable and can be windowed. (See “Windowing” on page 4-15)

8XC196NT USER’S MANUAL

intel.

Table 6-2 lists the standard input-only port pins and Table 6-3 describes the PO_PIN status regis-

ter.

Table 6-2. Standard Input-only Port Pins

Port Pin Special-function Special-function Associated
Signal(s) Signal Type Peripheral
P0.7:0 ACH7:0 Input A/D converter
Table 6-3. Input-only Port Registers
Mnemonic Address Description
PO_PIN 1FDAH Port 0 Input
Each bit of PO_PIN reflects the current state of the corresponding
port O pin.
6.2.1 Standard Input-only Port Operation

Figure 6-1 is a schematic of an input-only port pin. Transistors Q1 and Q2 serve as electrostatic
discharge (ESD) protection devices; they are referencedgoavid ANGND. Tansistor Q3 is

an additional ESD protection device; it is referenced ¢g(¥igital ground). Resistor R1 limits
current flow through Q3 to acceptable levels. At this point, the input signal is sent to the analog
multiplexer and to the digital level-translation buffer. The level-translation buffer converts the in-
put signals to work with the AL and Vg digital voltage levels used by the CPU core. This buffer

is Schmitt-triggered for improved noise immunity. The signals are latched in the PO_PIN register
and are output onto the internal bus when PO_PIN is read.

Internal Bus Vee

VREF VREF

To Analog MUX
[«

PORT 0 Level
Data Register Translation
Buffer PO_PIN Buffer 150 to 200 Ohms Input Pin
LE
Q2
Read Port PH1 Clock

[]

ANGND ANGND

R1
Q3
Vss

A0236-01

Figure 6-1. Standard Input-only Port Structure

6-2

I nt6| ® I/0 PORTS

6.2.2 Standard Input-only Port Considerations

Port 0 pins are unique in that they may individually be used as digital inputs and analog inputs at
the same time. However, reading the port induces noise into the A/D converter, decreasing the
accuracy of any conversion in progress. We strongly recommend thabtmad the port while

an A/D conversion is in progress. To reduce noisePthePIN register is clocked only when the

port is read.

These port pins are powered by the analog reference voltagé$ €d analoground (ANGND)

pins. If the port pins are to function as either analog or digital inputs,gh@iwd ANGND pins

must provide power. If the voltage applied to the analog input excegdsMANGND by more

than 0.5 volts, current will be driven through Q1 or Q2 into the reference circuitry, decreasing the
accuracy of all analog conversions.

The port pin is sampled one state time before the read buffer is enabled. Sampling occurs during
phase 1 (while CLKOUT is low) and resolves the value of the pin before it is presented to the
internal bus. Tomsure that the value is recognized, itshbe valid 45 ns before the rising edge

of CLKOUT and must remain valid until CLKOUT falls. If the pin value changes during the sam-
ple time, the new value may or may not be recorded.

As a digital input, a pin acts as a high-impedance input. However, as an analog input, a pin must
provide current for a short time to charge the internal sample capacitor when a conversion begins.
This means that if a conversion is taking place on a port pin, its input characteristics change mo-
mentarily.

6.3 BIDIRECTIONAL PORTS 1, 2,5, AND 6

Although the bidirectional ports are very similar in both circuitry and configuration, port 5 differs
from the others in some ways. Port 5, a memory-mapped port, uses a standard CMOS input buffer
because of the high speeds required for system control functions. The remaining bidirectional
ports use Schmitt-triggered input buffers fiopiroved noise immunity.

NOTE

Ports 3 and 4 are significantly different from the other bidirectional ports. See
“Bidirectional Ports 3 and 4 (Address/Data Bus)” on page 6-14 for details on
the structure and operation of these ports.

Table 6-4 lists the bidirectional port pins with their special-function signals and associated periph-
erals.

6-3

8XC196NT USER’S MANUAL Inu®

Table 6-4. Bidirectional Port Pins

Port Pin Speci_all—function Spe_cial—function Assc_)ciated
Signal(s) Signal Type Peripheral
P10 EPAO 110 E.PA
T2CLK [Timer 2
P1.1 EPA1 110 EPA
P12 EPA2 110 E.PA
T2DIR [Timer 2
P1.3 EPA3 110 EPA
P1.4 EPA4 110 EPA
P1.5 EPAS5 110 EPA
P1.6 EPAG6 110 EPA
P1.7 EPA7 110 EPA
P2.0 TXD O SIO
pP2.1 RXD 110 SIO
pP2.2 EXTINT | Interrupts
pP2.3 BREQ# O Bus controller
pP2.4 INTOUT# (0] Interrupts
P2.5 HOLD# | Bus controller
P2.6 HLDA# O Bus controller
pP2.7 CLKOUT (0] Clock generator
ALE/ADV# O Bus controller
PS8.0 SLPALE I Slave port
P51 INST O Bus controller
SLPCS# | Slave port
WR#/WRL# (0] Bus controller
Ps.2 SLPWR# I Slave port
P53 RD# (0] Bus controller
SLPRD# | Slave port
P5.4 SLPINT (0] Slave port
P5.5 BHE#/WRH# (0] Bus controller
P5.6 READY | Bus controller
P5.7 BUSWIDTH | Bus controller
P6.0 EPA8 110 EPA
P6.1 EPA9 110 EPA
P6.2 T1CLK | Timer 1
P6.3 T1DIR | Timer 1
P6.4 SCO 110 SSIO0
P6.5 SDO 110 SSIO0
P6.6 SC1 110 SSIo1
P6.7 SD1 110 SSIo1

Table 6-5 lists the registers associated with the bidirectional ports. Each port has three control reg-
isters (K_MODE, B _DIR, and R_REG); they can be both read and written. ThePN regis-

6-4

I nt6| ® I/0 PORTS

ter is a status register that returns the logic level present on the pins; it can only be read. The
registers for the standard ports are byte-addressable and vamdogved. The port 5 registers
must be accessed using 16-bit addressingcandot be windowed. “Bidirectional Port Consid-
erations” on page 6-11 discusses special considerations for reading P2_REG.7 and P6_REG.7:4

Table 6-5. Bidirectional Port Control and Status Registers

Mnemonic Address Description
P1 DIR 1FD2H Port x Direction
P2_DIR 1FCBH Each bit of Px_DIR controls the direction of the corresponding pin.
P5_DIR 1FF3H _
P6_DIR 1FD3H 0 = complementary output (output only)

1 = input or open-drain output (input, output, or bidirectional)
Open-drain outputs require external pull-ups.

P1_MODE 1FDOH Port x Mode
P2_MODE 1FCOH Each bit of Px_MODE controls whether the corresponding pin
P5_MODE 1FF1H functions as a standard I/O port pin or as a special-function signal.
P6_MODE 1FD1H .

- 0 = standard 1/O port pin

1 = special-function signal

P1_PIN 1FD6H Port x Input
P2_PIN 1FCFH Each bit of Px_PIN reflects the current state of the corresponding
P5_PIN 1FF7H pin, regardless of the pin configuration.
P6_PIN 1FD7H
P1_REG 1FD4H Port x Data Output
P2_REG 1FCDH For an input, set the corresponding Px_REG bit.
P5_REG 1FF5H . . .
P6_REG 1FD5H For an output, write the data to be driven out by each pin to the

corresponding bit of Px_REG. When a pin is configured as standard
1/0 (Px_MODE.x=0), the result of a CPU write to Px_REG is
immediately visible on the pin. When a pin is configured as a
special-function signal (Px_MODE.x=1), the associated on-chip
peripheral or off-chip component controls the pin. The CPU can still
write to Px_REG, but the pin is unaffected until it is switched back to
its standard I/O function.

This feature allows software to configure a pin as standard I/O (clear
Px_MODE.x), initialize or overwrite the pin value, then configure the
pin as a special-function signal (set Px_MODE.x). In this way, initial-
ization, fault recovery, exception handling, etc., can be done without
changing the operation of the associated peripheral.

6.3.1 Bidirectional Port Operation

Figure 6-2 shows the logic for drivirte output transistors, Q1 and Q2. €h source at least
-3 mAat V.- 0.7 volts. Q2 can sink at least 3 mA at 0.45 volts. (Consult the datasheet for spec-
ifications.)

In I/O mode (selected by clearing MODE), Px_REG and R_DIR are input to the multiplex-
ers. These signals combine to drive the gates of Q1 and Q2 so that the output is high, low, or high
impedance. Table 6-6 is a logic table for I/O operation of these ports.

6-5

8XC196NT USER’S MANUAL Int9I®

In special-function mode (selected by settingfl®ODE y), SFDIR and SFDATAare input to the
multiplexers. These signals combine to drive the gates of Q1 and Q2 so that the output is high,
low, or high impedance. Special-function output signals clear SFDIR; special-function input sig-
nals set SFDIR. Table 6-7 is a logic table for special-function operation of theseepertsf a

pin is to be used in specifincton mode, you must still initialize the pin as an input or output

by writing to _DIR.

Resistor R1 provides ESD protection for the pin. Input sigaaduffered. The standapdrts

use Schmitt-triggered buffers fanproved noise immunity. Portuses a standard input buffer
because of the high speeds required for system control functions. The signals are latched into the
Px_PIN sample latch and output onto the internal bus whenxhelR register is read.

The falling edge of RESET# turns on transistor Q3, which remains on for about 300 ns, causing
the pin to change rapidly to its reset state. The active-low level of RESET# turns on transistor Q4,
which weakly holds the pin high. (Q4 can source approximatelytAt@onsult the datasheet

for exact specifications.) Q4 remains on, weakly holding the pin high, until your software writes
to the X_MODE register.

NOTE

P2.7 is an exception. After reset, P2.7 carries the CLKOUT signal (half the
crystal input frequency) rather than being held high. When CLKOUT is
selected, it is always a complementary output.

6-6

N

tel.

1/0 PORTS
Internal Bus
Vee
|I PX_REG II o\l
SFDATA 1J _D)—Ci[Q1
A
1/0 Pin
o DIR | A
Px_DIR 0
e o
Q2
SFDIR |
1
/
[] Vss
Px_MODE
| Mk |
Sample
Latch 150Q to 200Q R1
Px_PIN
| 0 D <}
l\l LE
Read Port |
PH1 Clock Vee
Medium
Pullup

300ns Delay . |:
M O 0 Q3
RESET# > o

RESET# ‘

Any Write to Px_MODE

Vee
Weak
R Pullup
—[o
S

A0238-04

Figure 6-2. Bidirectional Port Structure

6-7

8XC196NT USER’S MANUAL Inu®

Table 6-6. Logic Table for Bidirectional Ports in I/O Mode

Configuration Complementary Output O%S{g&?in Input

Px_MODE 0 0 0 0

Px_DIR 0 0 1 1

SFDIR X X X X

SFDATA X X X X

Px REG 0 1 0, 1 (Note 2) 1

Q1 off on off off

Q2 on off on, off (Note 2) off
Px_PIN 0 1 X (Note 3) high-impedance (Note 4)

NOTES:

1. X=Don'tcare.

2. If Px_REG is cleared, Q2 is on;if Px_REG is set, Q2 is off.
3. Px_PIN contains the current value on the pin.

4. During reset and until the first write to Px_MODE, Q3 is on.

Table 6-7. Logic Table for Bidirectional Ports in Special-function Mode

Configuration Complementary Output Opoelr;t—gl;?in Input

Px_MODE 1 1 1 1

Px_DIR 0 0 1 1

SFDIR 0 0 1 1

SFDATA 0 1 0, 1 (Note 2) 1

Px_REG X X X 1

Q1 off on off off

Q2 on off on, off (Note 2) off
Px_PIN 0 1 X (Note 3) high-impedance (Note 4)

NOTES:

1. X=Don'tcare.

2. If Px_REG s cleared, Q2 is on; if Px_REG is set, Q2 is off.
3. Px_PIN contains the current value on the pin.

4 During reset and until the first write to Px_MODE, Q3 is on.

6-8

I nt6| ® I/0 PORTS

6.3.2 Bidirectional Port Pin Configurations

Each bidirectional port pin can be individually configured to operate either as an I/O pin or as a
pin for a special-function signal. In the special-function configuration, the signal is controlled by
an on-chip peripheral or an off-chipmponent. In either configuiah, two modes are possible:

¢ complementary output (output only)

* high-impedance input or open-drain output (input, output, or bidirectional)

To prevent the CMOS inputs from floating, the bidirectional port pins are weakly pulled high dur-
ing and after reset, until your software writes o MMODE. The default values of the control reg-
isters after reset configure the pins as high-impedance inputs with weak pull-ups. To ensure that
the ports are initialized correctly and that the weak pull-ups are turned off, follow this suggested
initialization sequence:

1. Write to _DIR to establish the individual pins as either inputs or outputs. (Outputs will
drive the data that you specify in step 3.)

— For a complementary output, clear its PIR bit.

— For a high-impedance input or an open-drain output, sekitBIR bit. (Open-drain
outputs require external pull-ups.)

2. Write to k_MODE to select either I/O or special-function mode. Writing xoNPFODE
(regardless of the value written) turns off the weak pull-ups. Even if the entire port is to be
used as I/O (its default configuration after resgily must write to Px_MODE to ensure
that the weak pull-ups are turned off

— For a standard I/O pin, clear itsx MODE bit. In this mode, the pin is driven as
defined in steps 1 and 3.

— For a special-function signal, set itx MODE bit. In this mode, the associated
peripheral controls the pin.

3. Write to X_REG.

— For output pins defined in step 1, write the data that is to be driven by the pins to the
corresponding ® REG bits. For special-function outputs, the value is immaterial
because the peripheral controls the pin. However, you must still write RHES to
initialize the pin.

— For input pins defined in step 1, set the correspondin@REG bits.

Table 6-8 lists the control register values for eachiplessonfiguration.For special-function
outputs, the R_REG value is immaterial (don't care) because the assogatggheral controls

the pin in special-function mode. However, you must still writexdREG to initialize the pin.

For a bidirectional pin to function as an input (either special function or port pin), you must set
Px_REG.

8XC196NT USER’S MANUAL Inu®

Table 6-8. Control Register Values for Each Configuration

Desired Pin Configuration Configuration Register Settings
Standard I/O Signal P x DIR | Px MODE T | Px REG
Complementary output, driving O 0 0 0
Complementary output, driving 1 0 0 1
Open-drain output, strongly driving 0 1 0 0
Open-drain output, high-impedance 1 0 1
Input 1 0 1
Special-function signal P x DIR | Px MODE T | Px REG
Complementary output, output value controlled by peripheral 0 1 X
Open-drain output, output value controlled by peripheral 1 1 X
Input 1 1 1

T During reset and until the first write to Px_MODE, the pins are weakly held high.

6.3.3 Bidirectional Port Pin Configuration Example

Assume that you wish to configure the pins of a bidirectional port as shown in Table 6-9.

Table 6-9. Port Configuration E xample

Port Pin(s) Configuration Data
Px.0, Px.1 high-impedance input high-impedance
Px.2, Px.3 open-drain output 0
Px.4 open-drain output 1 (assuming external pull-up)
Px.5, Px.6 complementary output 0
Px.7 complementary output 1

To do so, you could use the following example code segment. Table 6-10 shows the state of each
pin after reset and after execution of each line of the example code.
LDB Px_DIR,#00011111B

LDB Px_MODE,#00000000B
LDB Px_REG,#10010011B

6-10

I nt6| ® 1/0 PORTS

Table 6-10. Port Pin States After Reset and After Example Code Execution

Resulting Pin States T

Action or Code

Px.7 | Px6 | Px5 | Px4 | Px3 |Px.2 |Pxl |Px.0
Reset wkl wkl wkl wkl wkl wkl wkl wkl
LDB Px_DIR, #00011111B 1 1 1 wkl wkl wkl wkl wkl
LDB Px_MODE, #00000000B 1 1 1 HZ1 HZ1 HZ1 HZ1 HZ1
LDB Px_REG, #10010011B 1 0 0 HZ1 0 0 HZ1 HZ1

T wk1 = weakly pulled high, HZ1 = high impedance (actually a “1” with an external pull-up).

6.3.4 Bidirectional Port Considerations

This section outlines special considerations for using the pins of these ports.

Port 1 After reset, your software must configure the device to match the
external system. This is accomplished by writing appropriate config-
uration data into P1_MODE. Writing to P1_MODE not only
configures the pins but also turns off the transistor that weakly holds
the pins high (Q4 in Figure 6-2 on page 6-7). For this reason, even if
port 1 is to be used as it is configured at reset, you should still write
data into P1_MODE.

Port 2 After reset, your software must configure the device to match the
external system. This is accomplished by writing appropriate config-
uration data into P2_MODE. Writing to P2_MODE not only
configures the pins but also turns off the transistor that weakly holds
the pins high (Q4 in Figure 6-2 on page 6-7). For this reason, even if
port 2 is to be used as it is configured at reset, you should still write
data into P2_MODE.

P2.2/EXTINT Writing to P2_MODE.2 sets the EXTINT interrupt pending bit. After
configuring the port pins, clear the interrupt pending register before
enabling interrupts. See “Design Considerations for External
Interrupt Inputs” on page 6-14.

P2.5/HOLD# If P2.5 is configured as a standard 1/O port thi@,device does not
recognize signals on this pin as HOLD#. Instead, the bus controller
receives an internal HOLD signal. This enables the device to access
the external bus while it is performing I/O at P2.5.

6-11

8XC196NT USER’S MANUAL Int9I®

P2.6/HLDA#

P2.7/CLKOUT

pP2.7

Port 5

P5.0/ALE

P5.1/INST

P5.2/WR#/WRL#

P5.3/RD#

6-12

The HLDA# pin is used in systems with more than one processor
using the system bus. This device asserts HLDA# to indicate that it
has freed the bus in response to HOLD# and another processor can
take control. (This signal is active low to avoid misinterpretation by
external hardware immediately after reset.)

P2.6/HLDA# is the enable pin for ONCE mode (see Chapter 13,
“Special Operating Modes”) and one of the enable pins for Intel-
reserved test modes. Because a low input during reset could cause the
device to enter ONCE mode or a reserved test merercise
caution if you use this pin for input. Be certain that your system
meets the Y, specification (listed in the datasheet) during reset to
prevent inadvertent entry into ONCE mode or a test mode.

Following reset, P2.7 carries the strongly driven CLKOUT signal. It
is not held high. When P2.7 is configured as CLKOUT, it is always a
complementary output.

A value written to P2_REG.7 is held in a buffer until P2_MODE.7 is
cleared, at which time the value is loaded into P2_REG.7. A value
read from P2_REG.7 is the value currently in the register, not the
value in the buffer. Therefore, any change to P2_REG.7 can be read
only after P2_MODE.7 is cleared.

After reset, the device configures port 5 to match the external system.
The following paragraphs describe the states of the port 5 pins after
reset and until your software writes to the P5_MODE register.
Writing to P5_MODE not only configures the pins but also turns off
the transistor that weakly holds the pins hi@# in Figure 6-2 on
page 6-7). For this reason, even if port 5 is to be used as it is
configured at reset, you should still write data into P5_MODE.

If EA# is high on reset (internal access), the pin is weaklyHighd
until your software writes to P5_MODE. If EA# is low on reset
(external access), either ALE or ADV# is activated as a system
control pin, depending on the ALE bit GfCRO. In either case, the
pin becomes a true complementary output.

This pin remains weakly held high until your software writes config-
uration data into P5_MODE.

This pin remains weakly held high until your software writes config-
uration data into P5_MODE.

If EA# is high on reset (internal access), the pin is weaklyhimgd

until your software writes to P5_MODE. If EA# is low on reset
(external access), RD# is activated as a system control pin and the
pin becomes a true complementary output.

intel.

P5.4/SLPINT

P5.5/BHE#/WRH#

P5.6/READY

P5.7/BUSWIDTH

Port 6

P6.7:4

1/0 PORTS

This pin is weakly held high until your software writes to
P5 MODE. P5.4/SLPINT is one of the enable pins for Intel-reserved
test modes. Because a low input during reset could cause the device
to enter a reserved test modgercise cautionif you use this pin for
input. Be certain that your system meets thespecification (listed
in the datasheet) during reset to prevent inadvertent entry into ONCE
mode or a test mode.

This pin is weakly held high until t8&€B fetch is completed. At

that time, the state of this pin depends on the value of the BWO bit of
the CCRs. If BWO is clear, the pin remains weakly held high until
your software writes to P5_MODE. If BWO is set, BHE# is activated
as a system control pin and the pin becomes a true complementary
output.

This pin remains weakly held high until the CCB fetch is completed.
At that time, the state of this pin depends on the value of the IRCO-
IRC2 bits of the CCRs. If IRCO-IRC2 are all set (111B), READY is
activated as a system control pin. This prevents the insertion of
infinite wait states upon the first access to external memory. For any
other values of IRCO-IRC2, the pin is configured as I/O upon reset.

NOTE: If IRCO-IRC2 of theCCB are all set (antating READY as
a system control pin) and P5_MODE.6 is cleared (config-
uring the pin as 1/0), an external memory access may cause
the processor to lock up.

This pin remains weakly held high until your saftevwrites config-
uration data into P5_MODE.

After reset, your software must configure the device to match the
external system. This is accomplished by writing appropriate config-
uration data into P6_MODE. Writing to P6_MODE not only
configures the pins but also turns off the transistor that weakly holds
the pins high (Q4 in Figure 6-2 on page 6-7). For this reason, even if
port 6 is to be used as it is configured at reset, you should still write
data into P6_MODE.

A value written to any of the upgeur bits of P6_REG (bits 7:4) is
held in a buffer until the corresponding P6_MODE bhit is cleared, at
which time the value is loaded into the P6_REG bit. A value read
from a P6_REG bit is the value currently in the register, not the value
in the buffer. Therefore, any change to a P6_REG bit can be read
only after the corresponding P6_MODE bit is cleared.

6-13

8XC196NT USER’S MANUAL Int9I®

6.3.5 Design Considerations for External Interrupt Inputs

To configure a port pin that serves as an external interrupt input, you must set the corresponding
bits in the configuration registersYMIR, Px MODE, and R_REG). To configure P2.2/EX-

TINT as an external interrupt input, we recommend the following sequence to prevent a false in-
terrupt request:

1. Disable interrupts by executing the DI instruction.
Set P2_DIR.2.

Set P2_MODE.2.

Set P2_REG.2.

Clear INT_PENDL1.6.

2L S o

Enable interrupts (optional) by executing the El instruction.

6.4 BIDIRECTIONAL PORTS 3 AND 4 (ADDRESS/DATA BUS)

Ports 3 and 4 are eight-bit, bidirectional,m@y-mapped I/O ports. They can be addressed only
with indirect or indexed addressing and cannot be windowed. Ports 3 and 4 provide the multi-
plexed address/data bus. In programming modes, ports 3 and 4 serve as the programming bu:
(PBUS). Port 3 can also serve as the slave port. Port 5 supplies the bus-control signals.

During external memory bus cycles, the processor takes control of ports 3 and 4 and automatical-
ly configures them as complementary output ports for driving address/data or as inputs for read-
ing data. For this reason, these ports have no mode registers.

Systems with EA# tied inactive have idle time between external bus cycles. When the address/da-
ta bus is idle, you can use the ports for 1/O. Like port 5, these ports use standard CMOS input
buffers. However, ports 3 and 4 must be configured entirely as complementary or open-drain
ports; their pins cannot be configured individually. Systems with EA# tied active canpatrtsse

3 and 4 as standard I/O; when EA# is active, these ports will function only as the address/data bus.

Table 6-11 lists the port 3 and 4 pins with their speftiattion sgnals and associated peripher-
als. Table 6-12 lists the registers that affect the function and indicate the status of ports 3 and 4.

6-14

I nu ® 1/0 PORTS

Table 6-11. Ports 3 and 4 Pins

Port Pins Spegiiagl;]lergsc)t ion Spg%ﬁ;{”pyc;gm Associated Peripheral
AD7:0 I{e] Address/data bus, low byte
P3.7:0 PBUS7:0 I{e] Programming bus, low byte
SLP7:0 I{e] Slave port
. AD15:8 I{e] Address/data bus, high byte
Pa7:0 PBUS15:8 I{e] Programming bus, high byte
Table 6-12. Ports 3 and 4 Control and Status Registers
Mnemonic Address Description
P3_PIN 1FFEH Port x Input
P4_PIN 1FFFH Each bit of Px_PIN reflects the current state of the corresponding pin,
regardless of the pin configuration.
P3_REG 1FFCH Port x Data Output
P4_REG 1FFDH E_ach bit of Px_REG contains data to be driven out by the corresponding

pin.
When the device requires access to external memory, it takes control of
the port and drives the address/data bit onto the pin. The address/data
bit replaces your output during this time. When the external access is
completed, the device restores your data onto the pin.

P34_DRV 1FF4H Ports 3/4 Driver Enable Register

Bits 7 and 6 of the P34_DRYV register control whether ports 3 and 4,
respectively, are configured as complementary or open-drain. Setting a
bit configures a port as complementary; clearing a bit configures a port
as open-drain. These bits affect port operation only in 1/0O mode.

6.4.1 Bidirectional Ports 3 and 4 (Address/Data Bus) Operation

Figure 6-3 shows the ports 3 and 4 logic. During reset, the active-low level of RESET# turns off
Q1 and Q2 and turns on transistor Q4, which weakly holds the pin high. (Q4 can source approx-
imately —1QuA at V.. — 1.0 volts; consult the datasheet for exact specifications.) Resistor R1 pro-
vides ESD protection for the pin.

During normal operation, the device controls the goagh BUS CONTROL SELECT, an in-
ternal control signal. When the device needs to access extermairyet clears BUS CON-
TROL SELECT, selecting ADDRESS/DATA as the input to the multiplexer. ADDRESS/DATA
then drives Q1 and Q2 as complementary outputs. (Q1 can source at least -3 A-@rV
volts; Q2 can sink at least 3 mA at 0.45 volts. Consult the datasheet for exact specifications.)

[| 6-15

8XC196NT USER’S MANUAL

Internal Bus

Px REG }

Px_REG
1

ADDRESS/DATA

BUS CONTROL SELECT
0=Address/Data
1=I/0

—\

Read Port

RESET#—4

Q1

1/0 Pin

Q2

RESET# L
Vss
Sample
Latch 1500Q to 200Q R1
Px_PIN Buffer
Q 0D <ll
LE
PH1 Clock
Vce
Medium
Pullup
300ns Delay . [
o O Q3
Vee
Weak
Pullup
q4[o

(]

A0240-03

When external memory accessic required, the device sets BUS CONTROL SELECT, select-
ing Px_REG as the input to the multiplexek IREG then drives Q1 and Q2. If P34_DRYV is set,
Q1 and Q2 are driven as complementary outpu34 DRV is cleeed, Q1 is disabled and Q2

Figure 6-3. Address/Data Bus (Ports 3 and 4) Structure

is driven as an open-drain output requiring an external pull-up resistor.

6-16

I nt6| ® 1/0 PORTS

With the open-drain configuration (BUS CONTROL SELECT set BB4_ DRV clared) and
Px_REG set, the pin can be used as an input. The signal on the pin is latchedxirPine rég-

ister. The pins can be read, making it easy to see which pins are driven low by the device and
which are driven high by external drivers while in open-drain mode. Table 6-13 is a logic table
for ports 3 and 4 as 1/0.

Table 6-13. Logic Table for Ports 3 and 4 as I/0

Configuration Complementary Open-drain
P34 _DRV 1 1 0 0
Px_REG 0 1
Q1 off on off off
Q2 on off on off
Px_PIN 0 1 0 high-impedance

6.4.2 Using Ports 3 and 4 as I/O

Ports 3 and 4 must be configured entirely as complementary or open-drain ports; their pins cannot
be configured individually. To configure a port, first select complementary or open-drain mode
by writing to P34_DRV. Set a bit to configure the port as complementary; clear a hit to configure
the port as open-drain.

To use a port pin as an output, write the output data to thesporrding R_REG bit. In comple-
mentary mode, a pin is driven high when the correspondin® PG bit is set. In open-drain

mode, you need to connect an extemal-up resistor. When the device requires access to exter-

nal memory, it takes control of the port and drives the address/data bit onto the pin. The ad-
dress/data bit replaces your output during this time. When the external access is completed, the
device restores your data onto the pin.

To use a port pin as an input, first clear the @poading P34 _DRV bit to configure the port as
open-drain. Next, set the corresponding REG bit to drive the pin to a high-impedance state.
You may then read the pin’s input value in the PIN register. When the device requires access

to external memory, it takes control of the port. You must configure the input source to avoid con-
tention on the bus.

[| 6-17

8XC196NT USER’S MANUAL Int9I®

6.4.3 Design Considerations for Ports 3 and 4

When EA# is active, ports 3 and 4 will functionly as the address/data bus. In these circum-
stances, an instruction that operates on P3_REG or P4_REG causes a bus cycle that reads fror
or writes to the external memory location corresponding to the SFR’s address. (For example, writ-
ing to P4_REG causes a bus cycle that writes to external memory location 1FFDH.) Because
P3_REG and P4_REG have no effect when EA# is active, the bus will float during long periods
of inactivity (such as during a BMOV or TIJMP instruction).

When EA# is inactive, ports 3 and 4 output the contents of the P3_REG and P4_REG registers.
Because these registers reset to FFH and the P34_DRYV register resets to 00H (open-drain mode)
ports 3 and 4 will float unless you either connect external resistors to the pins, write zeros to the

P3_REG and P4_REG registers, or write ones to the P34_DRYV register.

6.5 EPORT

The EPORT is a four-bit, firectional, memory-mapped I/O port. This port provides the address
signals necessary to support extended addressing. It must be accessed using indirect or indexe
addressing, and it cannot be windowed. If one or more extended address pins are unnecessary il
an application, the unused port pins can be used for I/O. Figure 6-4 shows a block diagram of the
EPORT.

Table 6-14 lists the EPORT pins with their extended-address signals. Table 6-15 lists the registers
that affect the function and indicate the status of EPORT pins.

Table 6-14. EPORT Pins

Port Pin Extendse}g;]a;ldress Signal Type
EPORT.O Al16 110
EPORT.1 Al7 110
EPORT.2 A18 110
EPORT.3 Al19 110

Table 6-15. EPORT Control and Status Registers

Mnemonic Address Description

EP_DIR 1FE3H EPORT Direction

In I/O mode, each bit of EP_DIR controls the direction of the corre-
sponding pin. Clearing a bit configures a pin as a complementary
output; setting a bit configures a pin as either an input or an open-
drain output. (Open-drain outputs require external pull-ups).

Any pin that is configured for its extended-address function is forced
to the complementary output mode except during reset, hold, idle,
and powerdown.

6-18

I nu ® 1/0 PORTS

Table 6-15. EPORT Control and Status Registers (Continued)

Mnemonic Address Description

EP_MODE 1FE1H EPORT Mode

Each bit of EP_MODE controls whether the corresponding pin
functions as a standard I/O port pin or as an extended-address
signal. Setting a bit configures a pin as an extended-address signal;
clearing a bit configures a pin as a standard I/O port pin.

EP_PIN 1FE7H EPORT Pin State

Each bit of EP_PIN reflects the current state of the corresponding
pin, regardless of the pin configuration.

EP_REG 1FES5H EPORT Data Output

Each bit of EP_REG contains data to be driven out by the corre-
sponding pin. When a pin is configured as standard 1/0
(EP_MODE.x=0), the result of a CPU write to EP_REG is
immediately visible on the pin.

During nonextended data accesses, EP_REG contains the value of
the memory page that is to be accessed. For compatibility with
software tools, clear the EP_REG bit for any EPORT pin that is
configured as an extended-address signal (EP_MODE.x set).

6.5.1 EPORT Operation
As Figure 6-4 shows, each EPORT pin serves either as I/O or as an address line, as selected b

the 1/0O multiplexer. This multiplexer is controlled by the EP_MODE register. If EP_MODE is
clear (I/0 mode), the pin serves as I/O until EP_MODE is changed.

[| 6-19

8XC196NT USER’S MANUAL Inu®

Internal Bus 1/10 MUX

o nre |
EP_REG
| I | Address MUX

Vee

L -

Data

Extended Code Address
(from CPU)

Extended Data Address 1/0 Pin

(from CPU)

Combinational
Logic

Data/Address Control
(from Bus Controller)
MODEG64 Control
(from CPU)
e vonel

_ Mode
IEP_MODEI
e onl o L
EP_DIR Direction =

— V.

Sample Ss

Latch

EP_PIN Buffer

VAN

pd! o o
I\, LE

Read Port

PH1 Clock

A0242-03

Figure 6-4. EPORT Block Diagram

If EP_MODE is set (address mode), the address multiplexer determines the address source. Fo
an instruction fetch, the address multiplexer is set to the CODE input, which selects the extended
program counter (EPC) #éise address source. For a data fetch, or when there is no external bus
activity, the address multiplexer is set to the DATA input, which selects the extended data address
register (EDAR) as the address source.

The EDAR is loaded from two different sources, depending on whether the data access is extend-
ed or nonextended. For extended data accesses, the data multiplexer is set to the 1-Mbyte mod
input and EDAR is loaded with the extended address. For nonextended data accesses, the dat
multiplexer is set to the 64-Kbyte mode input and EDAR is loaded from EP_RieGast value

loaded remains in EDAR until the next data access. (Refer to “Fetching Code and Data in the 1-
Mbyte and 64-Kbyte Modes” on page 4-24 for more information.)

You can read EP_PIN at any time to determine the value of a pin. When EP_PIN is read, the con-
tents of the sample latch are output onto the internal bus.

6-20 [|

I nt6| ® 1/0 PORTS

Figure 6-5 shows a circuit schematic for a single bit of the EPORT. Q1 and Q2 are the strong com-
plementary drivers for the pin. @&an source at least -3 mA ag M- 0.7 volts. Q2 can sink at

least 3 mA at 0.45 volts. (Consult the datasheet for specifications.) Resistor R1 provides ESD pro-
tection for the pin.

6.5.1.1 Reset

During reset, the falling edge of RESET# generates a short pulse that turns on the medium pull-
up transistor Q3, which remains on for about 300 ns, causing the pin to change rapidly to its reset
state. The active-low level of RESET# turns on transistor Q4, which weakly holds the pin high.
(Q4 can source approximately 418; consult the datasheet for exact specifications.) When RE-
SET# is inactive, both Q3 and Q4 are off; Q1 and Q2 determine output drive.

6.5.1.2 Output Enable

If RESET#, HOLD#, IDLE, or POWERDOWN is asserted, the gates that control Q1 and Q2 are
disabled and Q1 and Q2 remain off. Otherwise, the gates are enabled and complementary or open
drain operation is possible.

6.5.1.3 Complementary Output Mode

For complementary output mode, the gates that control Q1 and Q2 must be enabled. The Q2 gate
is always enabled (except when RESET#, HOLD#, IDLE, or POWERDOWN is asserted). Either
clearing EP_DIR (selecting complementary mode) or setting EP_MODE (selecting address
mode) enables the logic gate preceding Q1. The value of DATA determines which transistor is
turned on. If DATA is equal to one, Q1 is turned on and the pin is pulled high. If DATA is equal

to zero, Q2 is turned on and the pin is pulled low.

6.5.1.4 Open-drain Output Mode

For open-drain output mode, the gate that controls Q1 must be disabled. Setting EP_DIR (select-
ing open-drain modegnd clearing EP_MODE (selecting 1/0O mode) disables the logic gate pre-
ceding Q1. The value of DATA determines whether Q2 is turned on. If DATA is equal to one, both
Q1 and Q2 remain off and the pin is left in high-impedance state (floating). If DATA is equal to
zero, Q2 is turned on and the pin is pulled low.

6-21

8XC196NT USER’S MANUAL

Internal Bus

RESET# Vee

|| EP_REG II

Address Bit from
Address MUX

)
DATA 1

N\~

1/0 Pin

<—>|EP7MODEI
| «—[EP DIR > 0

POWERDOWN# L
IDLE# -
HOLD# Vss

T

Read Port

RESET#—4

Sample
Latch 1500 to 200Q
EP_PIN Buffer
Q o <ll
LE
PH1 Clock Vee
Medium
Pullup
300ns Delay .
o O
> h
Vce
Weak
Pullup
q4[o

o

R1

A0241-02

6-22

Figure 6-5. EPORT Structure

1/0 PORTS

intel.

6.5.1.5 Input Mode

Input mode is obtained by configuring the pin as an open-drain output (EP_DIR set and
EP_MODE clear) and writing a one to EP_REGn this configuration, Q1 and Q2 are both off,
allowing an external device to drive the pin. To determine the value of the I/O pin, read E€_PIN.

Table 6-16 is a logic table for I/O operation and Table 6-17 is a logic table for address mode op-
eration of EPORT.

Table 6-16. Logic Table for EPORT in I/O Mode

Configuration Complementary Output o%ﬂ{g&?in Input

EP_MODE 0 0 0 0

EP_DIR 0 0 0, 1 (Note 2) 1

EP_REG 0 1 0 1

Address Bit X X X X

Q1 off on off off

Q2 on off on off
EP_PIN 0 1 0 high-impedance

NOTES:

1. X =Don't care.

2. IfEP_REG isclear, Q2 is on; if EP_REG is set, Q2 is off.

Table 6-17. Logic Table for EPORT in Address Mode

Configuration Complementary Output (Note 1)
EP_MODE 1 1
EP_DIR X X
EP_REG X (Note 2) X (Note 2)
Address Bit 0 1
Q1 off on
Q2 on off
EP_PIN 0 1

NOTES:
1. X =Don't care.

2. EP_REG is output on EPORT during any nonextended external memory access.

8XC196NT USER’S MANUAL Int9I®

6.5.2 Configuring EPORT Pins
Each EPORT pin can be individually configured to operate either as an extended-address signal
or as an I/O pin in one of these modes:

¢ complementary output (output only)

* high-impedance input or open-drain output (input, output, or bidirectional)

6.5.2.1 Configuring EPORT Pins for Extended-address Functions

The EPORT pins default to their extended-address functions upon reset (see Table 6-19 on page
6-25 and Table B-6 on page B-14). During program execution, the pins can be reconfigured at
any time from address to I/O and back to address. However, this is not recommended unless you
understand the implications of changing memory addressing “on the fly.” To change a pin from
I/O to address, clear the EP_REK®it and set the EP_MOD¥bit. (Clearing EP_REG.is re-

quired for compatibility with software development tools.)

6.5.2.2 Configuring EPORT Pins for /0

To configure a pin for 1/O, write the appropriate values to the control registers, in this order:
1. EP_DIR
2. EP_MODE
3. EP_REG

Table 6-18 lists the register settings for the EPORT pins.

Table 6-18. Configuration Register Settings for EPORT Pins

Configuration Register Settings EP PIN
Desired Pin Configuration Value
EP_DIR EP_MODE EP_REG
Address xt 1 off address
Complementary output 0 0 data value data value
Open-drain output 1 0 data value data value
Input 1 0 1 1/O pin value

T X =Don't care.
Tt Must be zero for compatibility with software tools.

6-24 [|

I nt6| ® 1/0 PORTS

6.5.3 EPORT Considerations

This section outlines considerations for using the EPORT pins.

6.5.3.1 EPORT Status During Reset, CCB Fetch, Idle, Powerdown, and Hold

During reset, the EPORT pins are forced to their extended-address functions and are weakly
pulled high. During the CCB fetch, FFH igangly driven onto the pins. This value remains
strongly driven until either the pin is configured for I/O or a different extended address is access-
ed. If the pins remain configured as extended-address functions, they are placed in a high-imped-
ance state during idle, powerdown, and hold. If they are configured as I/O, they retain their I/O
function during those modes. Table 6-19 shows the status of EPORT pins during reset, CCB fetch,
idle, powerdown, and hold.

Table 6-19. EPORT Pin Status During Reset, CCB Fetch, Idle, Powerdown, and Hold

Pin Name During Reset DurllznegtcCrZ]CB During Idle, Powerdown, and Hold
A16-A19 (extended address) weak pull-ups | FFH (Note 1) high impedance
EPORT.0—EPORT.3 (I/0) (Note 2) complementary or open-drain 1/0O
retains value (no change)

NOTES:

1. Strongly driven. After the CCB fetch is complete, the value remains until either the pin is configured
for I/O or a different extended address is accessed.

2. The I/O function is unavailable until after the CCB fetch is completed, at which time the EPORT pins
may individually be configured for either 1/O or extended-address function.

6.5.3.2 EP_REG Settings for Pins Configured as Extended-address Signals

Nonextended data accesses go to the address contained in EP_REG. Therefore, if you configure
EP_REG to point to the desired address, gani use nonextended addressing modes to access
the extended address space. However, we recommend that you clear the EP_REG bits for any
EPORT pins configured as extended-address signals in order to maintain compatibility with soft-
ware development tools.

NOTE

If any pins are configured as extended-address signals and their corresponding
EP_REG bits are set, nonextended operations will still access the register file
and standard SFRs. However, all other nonextended accesses, including those
to internal RAM, memory-mapped SFRs, and internal nonvolatile memory,

will be directed off-chip to the “page” address in EP_REG.

6-25

8XC196NT USER’S MANUAL Int9I®

6.5.3.3 EPORT Status During Instruction Execution

When using the EPORT to address memory outside page 00H, keep these points in mind:

1. During extended accesses, the ugpar bits of the address (lower four bits of the EPC)
are sent to the EPORT. EPORT pins configured for the extended-address function
(EP_MODEX set) output this address.

2. During nonextended accesses, EPORT pins configured for the extended-address function
(EP_MODEX set) output the value contained in EP_REG.

3. Any nonextended or direct instruction that accesses the register file or the windowable
SFRs is always directed internally to these areas, regardless of the page from which code
is executing. This effectively maps the register file anddeivable SFRs into every page.
Extended instructions can access the “mapped over” areas of each page, as shown in the
following code example.

EST 1CH, 01001CH[0] ;reg 1CH stored at memory location 01001CH

6.5.3.4 Design Considerations

At the end of EPORT bus activity and during periods of internal bus activity, EPORT pins con-
tinue to drive the last data address that was output. If these lines are being used to enable externe
memory, that memory will remaienabled until a different page is accessed.

During the CCB fetch, all EPORT lines are strongly driven high. Designers should ensure that
this does not conflict with external systems that are outputting signals to the EPORT.

When EPORT pins are floated during idle, powerdown, or hold, the external system must provide
circuitry to prevent CMOS inputs oexternal devices from floating. Duringowerdown, the
EPORT input buffers on pins configured for their extended-address function are disconnected
from the pins, so a floating pin will not cause increased power consumption.

Open-drain outputs require an external pull-up resistor. Inputs must be driven or pulled high or
low; they musmot be allowed to float.

6-26

intgl.
7

Serial I1/O (SI10) Port

CHAPTER 7
SERIAL I/O (SIO) PORT

A serial input/output (SIO) port provides a means for the system to communicate with external
devices. This device has a serial I/0 (SIO) port that shares pins with port 2. This chapter describes
the SIO port and explains how to configure it. Chapter 6, “I/O Ports,” explains how to configure
the port pins for their special functions. Refer to Appendix B for details about the signals dis-
cussed in this chapter.

7.1 SERIAL I/O (SIO) PORT FUNCTIONAL OVERVIEW

The serial I/O port (Figure 7-1) is an asynchronous/syomadus port that includes a unigel
asynchronous receiver and transmitter (UART). The UART has one synchronous mode (mode 0)
and three asynchronous modes (modes 1, 2, and 3) for both transmission and reception.

Internal
Data
Bus

«+— SBUF_RX [=—] Receive Shift Register , |[*—f JRXD
L

—=| SBUF_TX |—={ Transmit Shift Register I—-»DTXD
- L
T| ~—]
Interrupts Control Logic Baud Rate
R| ~t— Generator
| sP_sTATUS || SP_CON
SP_BAUD
MSB

A2363-02

Figure 7-1. SIO Block Diagram

The serial port receives data into the receive buffer; it transmits data from the port through the

transmit buffer. The transmit and receive buffers are separate registers, permitting simultaneous
reads and writes to both. The transmitter and receiver are buffered to support continuous trans-
missions and to allow reception of a second byte before the first byte has been read.

An independent, 15-bit baud-rate generator controls the baud rate of the serial port. Either XTAL1

or TICLK can provide the clock signal. The baud-ratgister (SP_BAUD) selects the clock
source and the baud rate.

7-1

8XC196NT USER’S MANUAL Inu®

7.2 SERIAL I/O PORT SIGNALS AND REGISTERS

Table 7-1 describes the SIO signals and Table 7-2 describes the control and status registers.

Table 7-1. Serial Port Signals

Serial
Port Serial Port Port Description
Pin Signal Signal P
Type
P2.0 | TXD O Transmit Serial Data

In modes 1, 2, and 3, TXD transmits serial port output data. In mode 0,
it is the serial clock output.

P2.1 | RXD 110 Receive Serial Data

In modes 1, 2, and 3, RXD receives serial port input data. In mode 0, it
functions as an input or an open-drain output for data.

P6.2 | TICLK | Timer 1 Clock
External clock source for the baud-rate generator input.

Table 7-2. Serial Port Control and Status Registers

Mnemonic Address Description

INT_MASK1 | 0013H Interrupt Mask 1

Setting the TI bit enables the transmit interrupt; clearing the bit
disables (masks) the interrupt.

Setting the RI bit enables the receive interrupt; clearing the bit
disables (masks) the interrupt.

INT_PEND1 | 0012H Interrupt Pending 1

When set, the Tl bit indicates a pending transmit interrupt.
When set, the RI bit indicates a pending receive interrupt.

P2 _DIR 1FCBH Port 2 Direction

This register selects the direction of each port 2 pin. Clear P2_DIR.1
to configure RXD (P2.1) as a high-impedance input/open-drain
output, and set P2_DIR.0 to configure TXD (P2.0) as a comple-
mentary output.

P2_MODE 1FC9H Port 2 Mode

This register selects either the general-purpose input/output function
or the peripheral function for each pin of port 2. Set P2_MODE.1:0
to configure TXD (P2.0) and RXD (P2.1) for the SIO port.

P2_PIN 1FCFH Port 2 Pin State

Two bits of this register contain the values of the TXD (P2.0) and
RXD (P2.1) pins. Read P2_PIN to determine the current value of the
pins.

7-2

intel.

SERIAL I/O (SIO) PORT

Table 7-2. Serial Port Control and Status Registers (Continued)

Mnemonic Address Description

P2_REG 1FCDH Port 2 Output Data
This register holds data to be driven out on the pins of port 2. Set
P2_REG.1 for the RXD (P2.1) pin. Write the desired output data for
the TXD (P2.0) pin to P2_REG.0.

P6_DIR 1FD2H Port 6 Direction
This register selects the direction of each port 6 pin. To use T1CLK
as the input clock to the baud-rate generator, clear P6_DIR.2.

P6_MODE 1FD1H Port 6 Mode
This register selects either the general-purpose input/output function
or the peripheral function for each pin of port 6. Set P6_MODE.2 to
configure T1CLK for the SIO port.

P6_PIN 1FD7H Port 6 Pin State
If you are using T1CLK (P6.2) as the clock source for the baud-rate
generator, you can read P6_PIN.2 to determine the current value of
T1CLK.

P6_REG 1FD5H Port 6 Output Data
This register holds data to be driven out on the pins of port 6. To use
T1CLK as the clock source for the baud-rate generator, set
P6_REG.2.

SBUF_RX 1FB8H Serial Port Receive Buffer
This register contains data received from the serial port.

SBUF_TX 1FBAH Serial Port Transmit Buffer
This register contains data that is ready for transmission. In modes
1, 2, and 3, writing to SBUF_TX starts a transmission. In mode 0,
writing to SBUF_TX starts a transmission only if the receiver is
disabled (SP_CON.3=0)

SP_BAUD 1FBCH,1FBDH Serial Port Baud Rate
This register selects the serial port baud rate and clock source. The
most-significant bit selects the clock source. The lower 15 bits
represent the BAUD_VALUE, an unsigned integer that determines
the baud rate.

SP_CON 1FBBH Serial Port Control
This register selects the communications mode and enables or
disables the receiver, parity checking, and ninth-bit data transmis-
sions. The TB8 bit is cleared after each transmission.

SP_STATUS | 1FB9H Serial Port Status

This register contains the serial port status bits. It has status bits for
receive overrun errors (OE), transmit buffer empty (TXE), framing
errors (FE), transmit interrupt (TI), receive interrupt (RI), and
received parity error (RPE) or received bit 8 (RB8). Reading
SP_STATUS clears all bits except TXE; writing a byte to SBUF_TX
clears the TXE bit.

7-3

8XC196NT USER’S MANUAL Inu®

7.3 SERIAL PORT MODES

The serial port has both synchronous and asynchronous operating modes for transmission and re
ception. This section describes the operation of each mode.

7.3.1 Synchronous Mode (Mode 0)

The most common use of mode 0, the syanbus mode, is to expand the I/@pability of the

device with shift registers (see Figure 7-2). In this mode, the TXD pin outputs a set of eight clock
pulses, while the RXD pin either transmits or receives data. Data is transferred eight bits at a time
with the least-significant bit first. Figure 7-3 shows a diagram of the relative timing of these sig-
nals. Note that only mode 0 uses RXD as an open-drain output.

Clock Inhibit Shift / LOAD# o
Serial In Vee
1 _l 74HCO05
= 15KQ Data
RXD
Shift Register Q# Clock
74HC165 D
Inputs 8XC196
Device
!Cﬁ Outputs
seial | | | | [| || .
InB Serial In A
Shift Register
Clear 74HC164 Clock (O—
Enable#
(O—————— Px.x
A0264-02

Figure 7-2. Typical Shift Register Circuit for Mode 0

In mode 0, RXD must be enabled for receptions and disabled for transmissions. (See “Program-
ming the Control Register” on page 7-8.) When RXD is enabled, either a rising edge on the RXD
input or clearing the receive interrupt (RI) flag in SP_STATUS starts a reception. When RXD is
disabled, writing to SBUF_TX starts a transmission.

Disabling RXD stops a receptionpmogressand inhibits further receptions. To avoid a partial or
undesired complete reception, disable RXD before clearing the RI flag in SP_STATUS. This can
be handled in an interrupt environment by using software flags or in straight-line code by using
the interrupt pending register to signal the completion of a reception.

7-4

|nte|® SERIAL 1/O (SIO) PORT

During a reception, the Rl flag in SP_STATUS is set after the stop bit is sampled. ThlRpbpe

bit in the interrupt pending register is set immediately before the Rl flag is set. During a transmis-
sion, the Tl flag is set immediately after the end of the last (eighth) data bit is transmitted. The Tl
pending bit in the interrupt pending register is generated when the Tl flag in SP_STATUS is set.

LR T W A Y A VY A W o WV A WY A WY A W A

RXD (OUT) pt X b2 X b3 X b4 X o5 X b6 X D7 }—

RXD (IN) {oo—pi}——pz——ps}——psh——os}——osb——pr}—
Expanded:
TXD -/ / XS \ / 5T \ /—
RXD (OUT) —{ ™) ':': o1 Y ; 2
RXD (IN) {oo} o {o1} s 1

A0109-02

Figure 7-3. Mode 0 Timing

7.3.2 Asynchronous Modes (Modes 1, 2, and 3)

Modes 1, 2, and 3 are full-duplex serial transmit/receive modes, meaning that they can transmit
and receive data simultaneously. Mode 1 is the standard 8-bit, asynchronous mode used for nor-
mal serial communications. Modes 2 and 3 are 9-bit asynchronous modes typically used for in-
terprocessor communications (see “Multiprocessor Communications” on page 7-7). In mode 2,
the serial port sets an interrupt pending bit only if the ninth data bit is set. In mode 3, the serial
port always sets an interrupt pending bit upon completion of a data transmission or reception.

When the serial port is configuréat mode 1, 2, or 3, writing to SBUF_TX causes tbegas port

to start transmitting data. New data placed in SBUF_TX is transmitted only after the stop bit of
the previous data has been sent. A falling edge on the RXD input causes the serial port to begin
receiving data if RXD is enabled. Disabling RXD stops a receptignagress and inhibits fur-

ther receptions. (Sed’togramning the Control Register” on page 7-8.)

7321 Mode 1

Mode 1 is the standard asynchronous communications mode. The data frame used in this mode
(Figure 7-4) consists of ten bits: a start bit (0), eight data bits (LSB first), and a stop bit (1). If
parity is enabled, a parity bit is sent instead of the eighth data bit, and parity is checked on recep-
tion.

8XC196NT USER’S MANUAL Inu®

8 Bits of Data or 7 Bits of Data
with Parity Bit

Top\ stat / Do X b1 X D2 X b3 X b4 X Ds X D6 X b7 / Stop
= —=

H{ 10-Bit Frame }i

A0245-02

Figure 7-4. Serial Port Fr ames for Mode 1

The transmit and receive functions are controlled by separate shift clocks. The transmit shift
clock starts when the baud rate generator is initialized. The receive shift clock is reset when a start
bit (high-to-low transition) is received. Therefotbe transmit clock may not tsynchronized

with the receive clock, although both will be at the same frequency.

The transmit interrupt (T1) and receive interrupt (RI) flags in SP_STATUS are set to indicate com-

pleted operations. During a reception, both the RI flag and the Rl interrupt pending bit are set just
before the end of the stop bit. During a transmission, both the Tl flag and the Tl interrupt pending
bit are set at the beginning of the stop bit. The next byte cannot be sent until the stop bit is sent.

Use caution when connecting more than two devices with the serial port in half-duplex (i.e., with
one wire for transmit and receive). The receiving processor must wait for one bit time after the
RI flag is set before starting to transmit. Otherwise, the transmission could corrupt the stop bit,
causing a problem for other devices listening on the link.

7.3.2.2 Mode 2

Mode 2 is the synchronous, ninth-bit recognition mode. This mode is commonly used with mode

3 for multiprocessor communications. Figure 7-5 shows the data frame used in this mode. It con-
sists of a start bit (0), nine data bits (LSB first), and a stop bit (1). During transmissions, setting
the TB8 bit in the SP_CON register before writing to SBUF_TX sets the ninth transmission bit.
The hardware clears the TB8 bit after every transmission, so it must be set (if desired) before each
write to SBUF_TX. During receptions, the Rl flag and Rl interrupt pending bit are set only if the
TB8 hit is set. This provides an easy way to have selective reception on a data link. (See “Multi-
processor Communications” on page 7-7). Parity cannot be enabled in this mode.

|nte|® SERIAL 1/O (SIO) PORT

Stop \ Start/DOXDlXDZXD3XD4XD5XD6§ D7 X D8 / Stop
le

[€ 8 Bits of Data T
Programmable 9th Bit

l¢ 11-Bit Frame }i

A0111-01

Figure 7-5. Serial Port Frames in Mode 2 and 3

7.3.2.3 Mode 3

Mode 3 is the asynchronous, ninth-bit mode. The data frame for this mode is identical to that of
mode 2. Mode 3 differs from mode 2 during transmissions in that parity can be enabled, in which
case the ninth bit becomes the parity bit. When parity is disabled, data bits 0—7 are written to the
serial port transmit buffer, and the ninth data bit is written to bit 4 (TB8) bit in the SP_CON reg-
ister. In mode 3, a reception always sets the Rl interrupt pending bit, regardless of the state of the
ninth bit. If parity is disabled, the SP_STATUS register bit 7 (RB8) contains the ninth data bit. If
parity is enabled, then bit 7 (RB8) is the received parity error (RPE) flag.

7.3.2.4 Mode 2 and 3 Timings

Operation in modes 2 and 3 is similar to mode 1 operation. The only difference is that the data
consists of 9 bits, so 11-bit packages are transmitted and received. During a reception, the Rl flag
and the RI interrupt pending bit are set just after the end of the stop bit. During a transmission,
the Tl flag and the Tl interrupt pending bit are set at the beginning of the stop bit. The ninth bit
can be used for parity or multiprocessor communications.

7.3.2.5 Multiprocessor Communications

Modes 2 and 3 angrovided for multiprocessor communications. In mode 2, the serial port sets
the Rl interrupt pending bit only when the ninth data bit is set. In mode 3, the serial port sets the
RI interrupt pending bit regardless of the value of the ninth bit. The ninth bit is always set in ad-
dress frames and always cleared in data frames.

One way to use these modes for multiprocessor communication is to set the master processor tc
mode 3 and the slave processors to mode 2. When the master processor wants to transmit a bloc
of data to one of several slaves, it sends out an address frame that identifies the target slave. Be
cause the ninth bit is set, an address frame interrupts all slaves. Each slave examines the addres
byte to check whether it is being addressed. The addressed slave switches to mode 3 to receive
the data frames, while the slaves that are not addressed remain in mode 2 and are not interruptec

8XC196NT USER’S MANUAL Int9I®

7.4 PROGRAMMING THE SERIAL PORT

To use the SIO port, you must configure the port pins to serve as sfpaciabn signals and set
up the SIO channel.

7.4.1 Configuring the Serial Port Pins

Before you can use the serial port, you must configure the associated port pins to serve as special
function signals. Table 7-1 on page 7-2 lists the pins associated with the serial port. Table 7-2 lists
the port configuration registers, and Chapter 6, “I/O Ports,” explains how to configure the pins.

7.4.2 Programming the Control Register

The SP_CON register (Figure 7-6) selects the communication mode and enables or disables the
receiver, parity checking, and nine-bit data transmissions. Selecting a new mode resets the serial
I/0 port and aborts any transmission or reception in progress on the channel.

7.4.3 Programming the Baud Rate and Clock Source

The SP_BAUD register (Figure 7-7 on page 7-10) selects the clock input for the baud-rate gen-
erator and defines the baud rate for all serial I/O modes. This register acts as a control register
during write operations and as a down-counter monitor during read operations.

WARNING

Writing to the SP_BAUD register during a reception or transmission can
corrupt the received or transmitted data. Before writing to SP_BAUD, check
the SP_STATUS register to ensure that the reception or transmission is
complete.

intel.

SERIAL I/O (SIO) PORT

SP_CON

Address: 1FBBH
Reset State: COH

The serial port control (SP_CON) register selects the communications mode and enables or disables
the receiver, parity checking, and nine-bit data transmission.

7 0
— — PAR TB8 || REN PEN M1 MO
Bit Bit Function

Number Mnemonic

7:6 — Reserved; always write as zeros.

5 PAR Parity Selection Bit
Selects even or odd parity.
1 = odd parity
0 = even parity

4 TB8 Transmit Ninth Data Bit
This is the ninth data bit that will be transmitted in mode 2 or 3. This bit is
cleared after each transmission, so it must be set before SBUF_TX is
written. When SP_CON.2 is set, this bit takes on the even parity value.

3 REN Receive Enable
Setting this bit enables the receiver function of the RXD pin. When this
bit is set, a high-to-low transition on the pin starts a reception in mode 1,
2, or 3. In mode 0, this bit must be clear for transmission to begin and
must be set for reception to begin. Clearing this bit stops a reception in
progress and inhibits further receptions.

2 PEN Parity Enable
In modes 1 and 3, setting this bit enables the parity function. This bit
must be cleared if mode 2 is used. When this bit is set, TB8 takes the
parity value on transmissions. With parity enabled, SP_STATUS.7
becomes the receive parity error bit.

1:0 M1:0 Mode Selection
These bits select the communications mode.
M1 MO
0 0 mode 0
0 1 mode 1
1 0 mode 2
1 1 mode 3

Figure 7-6. Serial Port Control (SP_CON) Register

7-9

8XC196NT USER’S MANUAL Inu®

SP_BAUD Address: 1FBCH
Reset State: 0000H

The serial port baud rate (SP_BAUD) register selects the serial port baud rate and clock source. The
most-significant bit selects the clock source. The lower 15 bits represent BAUD_VALUE, an unsigned
integer that determines the baud rate.

The maximum BAUD_VALUE is 32,767 (7FFFH). In asynchronous modes 1, 2, and 3, the minimum

BAUD_VALUE is 0000H when using XTAL1 and 0001H when using T1CLK. In synchronous mode O,
the minimum BAUD_VALUE is 0001H for transmissions and 0002H for receptions.

15 8

‘ CLKSRC ‘ BV14 ‘ BV13 ‘ BV12 ‘ ‘ BV1l ‘ BV10 ‘ BV ‘ BVS ‘
7 0

‘ BV7 ‘ BV6 ‘ BV5 ‘ BV4 ‘ ‘ BV3 ‘ BV2 ‘ BV1 ‘ BVO ‘
Nuii:)er MnelrgTi\tonic Function

15 CLKSRC Serial Port Clock Source

This bit determines whether the serial port is clocked from an internal or
an external source.

1 = XTAL1 (internal source)
0 = T1CLK (external source)

14:0 BV14:0 Baud Rate
These bits constitute the BAUD_VALUE.

Use the following equations to determine the BAUD_VALUE for a given
baud rate.

Synchronous mode 0:f

Fosc _TICLK

BAUD_VALUE = ————— - or
Baud Rate x 2 Baud Rate

Asynchronous modes 1, 2, and 3:

Fosc T1CLK
BAUD VALUE = ——— — or S E—
- Baud Rate x 16 Baud Rate x 8

T For mode 0 receptions, the BAUD_VALUE must be 0002H or greater.
Otherwise, the resulting data in the receive shift register will be incorrect.

Figure 7-7. Serial Port Baud Rate (SP_BAUD) Register
CAUTION

For mode 0 receptions, the BAUD_VALURust beD002H or greater.
Otherwise, the resulting data in the receive shift register will be incorrect.

7-10

|nte|® SERIAL 1/O (SIO) PORT

The reason for this restriction is that the receive shift register is clocked from
an internal signal rather than the signal on TXD. Although these two signals
are normally synchronized, the internal signal generates one clock before the
first pulse transmitted by TXD and this first clock signal is not synchronized
with TXD. This clock signal causes the receive shift register to shift in
whatever data is present on the RXD pin. This data is treated as the least-
significant bit (LSB) of the reception. The reception then continues in the
normal synchronous manner, but the data received is shifted left by one bit
because of the false LSB. The seventh data bit transmitted is received as the
most-significant bit (MSB), and the transmitted MSB is never shifted into the
receive shift register.

Using XTAL1 at 20 MHz, the maximum baud rates are 3.33 Mbaud for mode 0 and Ha2iBlM

for modes 1, 2, and 3. Table 7-3 shows the SP_BAUD values for common baud rates when using
a 20 MHz XTAL1 clock input. Because obunding, the BAUD_VALUE formula is not exact

and the resulting baud rate is slightly different than desired. Table 7-3 shows the percentage of
error when using the sample SP_BAUD values. In most cases, a serial link will work with up to
5.0% difference in the receiving and transmitting baud rates.

Table 7-3. SP_BAUD Values When Using XTAL1 at 20 MHz

SP_BAUD Register Value (Note 1) % Error
Baud Rate
Mode 0 Mode 1, 2, 3 Mode 0 Mode 1, 2, 3
9600 8411H 8081H 0.03 0.16
4800 8822H 810BH 0.02 0.16
2400 9046H 8208H 0.01 0.06
1200 AO08CH 8411H 0 0.03
NOTE:

1. Bit15is always set when XTAL1 is selected as the clock source for the baud-rate generator.

7.4.4 Enabling the Serial Port Interrupts

The serial port has both a transmit interrupt (TI) and a receiveuptgRI). To @able an inter-

rupt, set the correspondingask bit in the interrupt mask register (see Table 7-2 on page 7-2) and
execute the El instruction to globally enable servicing of interrupts. See Chapter 5, “Standard and
PTS Interrupts,” for more information about interrupts.

7-11

8XC196NT USER’S MANUAL Inu®

7.4.5 Determining Serial Port Status

You can read the SP_STATUS register (Figure 7-8) to determine the status of the serial port.
Reading SP_STATUSlears all bitsexcept TXE. For this reason, we recommend thatcpgmy

the contents of the SP_STATUS register into a shadow register and then execute bit-test instruc-
tions such as JBC and JBS on the shadow register. Otherwise, executing a bit-test instruction
clears the flags, so any subsequent bit-test instructions will return false values. You can also read
the interrupt pending register (see Table 7-2 on page 7-2) to determine the status of the serial port
interrupts.

SP_STATUS Address: 1FB9H
Reset State: OBH

The serial port status (SP_STATUS) register contains bits that indicate the status of the serial port.

7 0
RPE/RB8 RI TI FE ‘ ‘ TXE OE — —
Bit Bit Function
Number Mnemonic
7 RPE/RB8 Received Parity Error/Received Bit 8

RPE is set if parity is disabled (SP_CON.2=0) and the ninth data bit
received is high.

RB8 is set if parity is enabled (SP_CON.2=1) and a parity error occurred.
Reading SP_STATUS clears this bit.

6 RI Receive Interrupt

This bit is set when the last data bit is sampled. Reading SP_STATUS
clears this bit.

This bit need not be clear for the serial port to receive data.

5 TI Transmit Interrupt

This bit is set at the beginning of the stop bit transmission. Reading
SP_STATUS clears this bit.

4 FE Framing Error

This bit is set if a stop bit is not found within the appropriate period of
time. Reading SP_STATUS clears this bit.

3 TXE SBUF_TX Empty

This bit is set if the transmit buffer is empty and ready to accept up to two
bytes. It is cleared when a byte is written to SBUF_TX.

2 OE Overrun Error

This bit is set if data in the receive shift register is loaded into SBUF_RX
before the previous bit is read. Reading SP_STATUS clears this bit.

1.0 — Reserved. These bits are undefined.

Figure 7-8. Serial Port Status (SP_STATUS) Register

7-12

|nte|® SERIAL 1/O (SIO) PORT

The receiver checks for a valid stop bit. Unless a stop lmtiisdf within the appropriate time, the
framing error (FE) bit in the SP_STATUS register is set. When the stop bit is detected, the data
in the receive shift register is loaded into SBUF_RX and the receiveuipt€RlI) flag is set. If

this happens before the previous byte in SBUF_RX is read, the overrun error (OE) bit is set.
SBUF_RX always contains the latest byte received,; it is never a combination of the last two bytes.

The receive interrupt (RI) flag indicates whether an incoming data byte has been received. The
transmit interrupt (T1) flag indicates whether a data byte has finished transmitting. These flags
also set the corresponding bitstive interrupt pending register. A reception or transmission sets
the Rl or Tl flag in SP_STATUS and the capending interrupt pending bit. However, a soft-
ware write to the Rl or Tl flag in SP_STATUS has no effect on the interrupt pending bits and does
not cause an interrupt. Similarly, reading SP_STATUS clears the Rl and Tl flags, but does not
clear the corresponding interrupt pending bits. The Rl andagkfln the SP_STATUS and the
corresponding interrupt pending bits can be set even if the Rl and Tl intaareptasked.

The transmitter empty (TXE) bit is set if SBUF_TX and its buffer are empty and ready to accept
up to two bytes. TXE is cleared smon as a byte gritten to SBUF_TX. One byte may be written

if Tl alone is set. By definition, if TXE has just been set, a trassion has completed and Tl is

set.

The received parity error (RPE) flag or the received bit 8 (RB8) flag applies for parity enabled or
disabled, respectively. If parity is enabled, RPE is set if a parity error is detected. If parity is dis-
abled, RB8 is the ninth data bit received in modes 2 and 3.

7.5 PROGRAMMING EXAMPLE USING AN INTERRUPT-DRIVEN ROUTINE
This programming example is an interrupt-driven “putchar” and “getchar” routine that allows you
to set the size of the transmit and receive buffers, the baud rate, and the operating frequency.

#pragma model(kr)
#pragma interrupt(receive=28,transmit=27)

#ifdef EVAL_BOARD
I* Reserve the 9 bytes required by eval board */

char reserve[9];
#pragma locate(reserve=0x30)

#else

/* Initialize the chip configuration bytes */
const unsigned int ccr[2] = {0x20FF,0x20DE};
#pragma locate (ccr = 0x2018)

#endif

7-13

8XC196NT USER’S MANUAL In

#define TRANSMIT_BUF_SIZE 20
#define RECEIVE_BUF_SIZE 20
#define WINDOW_SELECT Ox1F

#define FREQUENCY (long)16000000 /* 16 MHz */
#define BAUD_RATE_VALUE 9600
#define BAUD_REG ((unsigned int)(FREQUENCY/((long)BAUD_RATE_VALUE*16)-1)+0x8000)

#define RI_BIT 0x40
#define TI_BIT 0x20

unsigned char status_temp;

/* image of SP_STATUS to preserve the Rl and Tl bits on a read. */
[* receive and transmit buffers and their indexes */

unsigned char trans_buff[TRANSMIT_BUF_SIZE];
unsigned char receive_bufffRECEIVE_BUF_SIZE];

char begin_trans_buff,end_trans_buff;
char end_rec_buff,begin_rec_buff;

/* declares and locates the special function registers */

volatile register unsigned char port2_reg, port2_dir, port2_mode;
volatile register unsigned char wsr;

volatile unsigned char sbuf_tx, sbuf_rx, SP_STATUS, sp_con;
volatile unsigned char int_mask1, int_pend1;
volatile unsigned int sp_baud,;

#pragma locate(sbuf_tx=0xba,sbuf_rx=0xb8,SP_STATUS=0xb9h)
#pragma locate(sp_con=0xbb,sp_baud=0xbc)

#pragma locate(int_mask1=0x13,int_pend1=0x12)

#pragma locate(wsr=0x14)

#pragma locate(port2_reg = Oxcd)

#pragma locate(port2_dir = 0xch)

#pragma locate(port2_mode = 0xc9)

void transmit(void) [* serial interrupt routine */

{
wsr = WINDOW_SELECT;
status_temp |= SP_STATUS; /* image SP_STATUS into status_temp */

[* transmit a character if there is a character in the buffer */
if(begin_trans_buffl=end_trans_buff)

sbuf_tx=trans_buff[begin_trans_buff]; /* transmit character */

I* The next statement makes the buffer circular by starting over when the
index reaches the end of the buffer. */

if(++begin_trans_buff>STRANSMIT_BUF_SIZE - 1)begin_trans_buff=0;
status_temp &= (~TI_BIT); /* clear Tl bit in status_temp. */

7-14

|nte|® SERIAL 1/O (SIO) PORT

void receive(void) [* serial interrupt routine */

wsr = WINDOW_SELECT;
status_temp |= SP_STATUS; /* image SP_STATUS into status_temp */

[* If the input buffer is full, the last character will be ignored,
and the BEL character is output to the terminal. */

if(end_rec_buff+1==begin_rec_buff || (end_rec_buff==RECEIVE_BUF_SIZE-1 &&
Ibegin_rec_buff))

; I* input overrun code */
else

/* The next statement makes the buffer circular by starting over when the
index reaches the end of the buffer. */

if(++end_rec_buff > RECEIVE_BUF_SIZE - 1) end_rec_buff=0;
receive_bufflend_rec_buffl=sbuf_rx; /* place character in buffer */

status_temp &= (~RI_BIT); /* clear RI bit in status_temp. */
int putchar(int c)

/* remain in loop while the buffer is full. This is done by checking
the end of buffer index to make sure it does not overrun the
beginning of buffer index. The while instruction checks the case
when the end index is one less than the beginning index and at the
end of the buffer when the beginning index may be equal to 0 and
the end buffer index may be at the buffer end. */

while((end_trans_buff+1==begin_trans_buff)||
(end_trans_buff==TRANSMIT_BUF_SIZE -1 && !begin_trans_buff));

trans_bufflend_trans_buff]=c; /* put character in buffer */
if(++end_trans_buff>TRANSMIT_BUF_SIZE - 1) /* make buffer appear circular */
end_trans_buff=0;
if(status_temp & TI_BIT) int_pendl |= 0x08; /* If transmit buffer was empty,
then cause an interrupt to
start transmitting. */

}

unsigned char getchar()

while(begin_rec_buff==end_rec_buff); /* remain in loop while there is
not a character available. */
if(++begin_rec_buff>RECEIVE_BUF_SIZE - 1) /* make buffer appear circular */
begin_rec_buff=0;
return(receive_buff[begin_rec_buff]); /* return the character in buffer */

main()

char c;

wsr=WINDOW_SELECT,;

sp_baud = BAUD_REG; /* setbaud rate as described in Figure 7-7 on page 7-10*/
sp_con = 0x09; /* mode 1, no parity, receive enabled, no 9th bit */
status_temp=SP_STATUS;

7-15

8XC196NT USER’S MANUAL Inu®

port2_reg |= OXFF; /* Init port2 reg */
port2_dir &= OxFE; /* TXD output */
port2_mode |= 0x03; /* p2.4-6 Isio */

wsr=0;

end_rec_buff=0; [* initialize buffer pointers */
begin_rec_buff=0;

end_trans_buff=0;

begin_trans_buff=0;

status_temp = TI_BIT; /* allow for initial transmission */
int_mask1=0x18; [* enable the serial port interrupt */

enable(); [* global enable of interrupts */

while((c=getchar()) != Ox1b) /* stay in loop until escape key pressed */
printf("key pressed = %02X\n\r",c);

7-16 [|

intgl.
8

Synchronous Serial
/0O (SSIO) Port

CHAPTER 8
SYNCHRONOUS SERIAL 1/O (SSIO) PORT

This device has a synchronoserial 1/0 (SSIO) port that shares pins with port 6. This chapter
describes the SSIO port and explains how to program it. Chapter 6, “I/O Ports,” explains how to
configure the port pins for their special functions. Refer to Appendix B for details about the sig-
nals discussed in this chapter.

8.1 SYNCHRONOUS SERIAL I/O (SS10) PORT FUNCTIONAL OVERVIEW

The synchronous serial I/0 (SSIO) port provides for simultaneous, bidirectional communications
between this device and another synchronous serial /0 device. The SSIO port consists of two
identical transceiver channels. A single dedicated baud-rate generator controls the baud rate of
the SSIO port (19.531 kHz to 2.5 MHz at 20 MHz). Figure 8-1 is a block diagram of the SSIO
port showing a master and slave configuration.

SDx SDx
[ssioxBUoF] —{O—{3 [ssioxBUF]
SCx SCx
[ssiox BauD] 0 [ssiox BAUD]
Control Logic SSIOx Interrupt Control Logic SSIOx Interrupt
to Interrupt Controller to Interrupt Controller
or PTS or PTS
| SSI0Ox_CON I | SSI0x_CON I
Master 8XC196 SSIO Slave 8XC196 SSIO
A2840-02

Figure 8-1. SSIO Block Diagram

8-1

8XC196NT USER’S MANUAL Inu®

8.2 SSIO PORT SIGNALS AND REGISTERS

Table 8-1 describes the SSIO signals and Table 8-2 describes the control and status registers.

Table 8-1. SSIO Port Signals

port | SSIO SSIO Port -

Pin I_Dort Signal Type Description
Signal

P6.4 SCo 110 SSIO0 Clock Pin

This pin transmits a clock signal when SSIOO is configured as a
master and receives a clock signal when it is configured as a
slave.

SCO carries a clock signal only during receptions and transmis-
sions. The SCO pin clocks once for each bit transmitted or
received (eight clocks per transmission or reception). When the
SSIO port is idle, the pin remains either high (with handshaking)
or low (without handshaking).

Handshaking mode requires an external pull-up resistor.

P6.5 SDO 110 SSIO0 Data Pin

SDO transmits data when SSIOO is configured as a transmitter
and receives data when it is configured as a receiver.

P6.6 SC1 I} SSIO1 Clock Pin

This pin transmits a clock signal when SSIO1 is configured as a
master and receives a clock signal when it is configured as a
slave.

SC1 carries a clock signal only during receptions and transmis-
sions. This pin carries a clock signal only during receptions and
transmissions. The SC1 pin clocks once for each bit transmitted
or received (eight clocks per transmission or reception). When
the SSIO port is idle, the pin remains either high (with
handshaking) or low (without handshaking).

P6.7 SD1 I} SSIO1 Data Pin

SD1 transmits data when SSIOL1 is configured as a transmitter
and receives data when it is configured as a receiver.

Table 8-2. SSIO Port Control and Status Registers

Mnemonic Address Description

INT_MASK1 0013H Interrupt Mask 1

Setting the SSIOO bit of this register enables the SSIO channel 0
transfer interrupt; clearing the bit disables (masks) the interrupt.
Setting the SSIO1 bit of this register enables the SSIO channel 1
transfer interrupt; clearing the bit disables (masks) the interrupt.

NOTE: Always write zeros to the reserved bits in these registers.

8-2

InU® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

Table 8-2. SSIO Port Control and Status Registers (Continued)

Mnemonic Address Description

INT_PEND1 0012H Interrupt Pending 1
When set, SSIO0 indicates a pending channel O transfer interrupt.
When set, SSIO1 indicates a pending channel 1 transfer interrupt.

P6_DIR 1FD2H Port 6 Direction

This register selects the direction of each port 6 pin. Clear P6_DIR.7:4
to configure SD1 (P6.7), SC1 (P6.6), SDO (P6.5), and SCO (P6.4) as
high-impedance inputs/open-drain outputs.

P6_MODE 1FD1H Port 6 Mode

This register selects either the general-purpose input/output function or
the peripheral function for each pin of port 6. Set P6_MODE.7:4 to
configure SD1 (P6.7), SC1 (P6.6), SDO (P6.5), and SCO (P6.4) for the
SSIO.

P6_PIN 1FD7H Port 6 Pin State

Read P6_PIN to determine the current values of SD1 (P6.7), SC1
(P6.6), SDO (P6.5), and SCO (P6.4).

P6_REG 1FD5H Port 6 Output Data

This register holds data to be driven out on the pins of port 6. For pins
serving as inputs, set the corresponding P6_REG bits; for pins serving
as outputs, write the data to be driven out on the pins to the corre-
sponding P6_REG bits.

SSIO_BAUD 1FB4H SSIO Baud Rate

This register enables and disables the baud-rate generator and selects
the SSIO baud rate.

SSIO0_BUF 1FBOH SSIO Receive and Transmit Buffers

SSI01_BUF 1FB2H These registers contain either received data or data for transmission,
depending on the communications mode. Data is shifted into this
register from the SDx pin or from this register to the SDx pin, with the
most-significant bit first.

SSIO0_CON 1FB1H These registers control the communications mode and handshaking

SSIO1_CON 1FB3H and reflect the status of the SSIO channels.

NOTE: Always write zeros to the reserved bits in these registers.

8.3 SSIO OPERATION

Each SSIO channel can be configured as either master or slave and as either transmitter or receiv
er, allowing the channels to communicate in several bidirectional, single-byte transfer modes
(Figure 8-2). A master devideansmits a clock signal; a slave deviceceivesa clock signal.

8XC196NT USER’S MANUAL Int9I®

N2N
™
|

SDO |-

SDO

Master Slave

SCO

SCO

g~
~

Single-channel Half-duplex Master/Slave Configuration

SDO $$ 1 SDO

Master Slave
SCO S 1 SC0
SD1 [$§ SD1

Slave Slave
SC1 |- »1SC1

Double-channel Full-duplex Lockstep
Common Clock Configuration

SDO | SDO
Master Slave
SCo | SCO

(N 2N
~

N 2N
~“

SD1 |-—— $—————15D1

Slave Master

sCl |-e———§ $————sC1

Double-channel Full-duplex Master/Slave
Separate Clock Configuration

A0233-03

Figure 8-2. SSIO Operating Modes

* One channel can act as master transceiver to communicate with compatible protocols in
half-duplex mode. This mode requires one data input/output pin and one clock output pin.

* One channel can act as slave transceiver to communicate with compatible protocols in half-
duplex mode. This mode requires one data input/output pin and one clock input pin.

8-4

Int€|® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

* The two channels can operate together, from the same clock, as master transceivers to
communicate in lockstep (mutually synchronous), full-duplex mode. This mode requires
one data input pin, one data output pin, and two clock pins (the clock output pin from one
channel connected to the clock input pin of the other).

* The two channels can operate together, from the same clock, as slave transceivers to
communicate in lockstep (mutually synchronous), full-duplex mode. This mode requires
one data input pin, one data output pin, and two clock input pins.

* The two channels can operate independently, with different clocks, to communicate in non-
lockstep, full-duplex mode. In this mode, one channel acts as slave (receives a clock) and
the other acts as master (transmits a clock). This mode requires a data input pin, a data
output pin, a clock input pin, and a clock output pin.

The SSIO channels can also operate in handshaking modes for unidirectional, multi-byte trans-

fers. These modes enable a master device to perform SSIO transfers using the PTS. Handshakin
prevents a data underflow or overflow from occurring at the slave. It takes place in hardware, us-

ing the clock pins, with no CPU overhead.

* The two channels can operate with handshaking enabled, in full-duplex mode. One channel
acts as slave and the other acts as master. This mode requires four pins.

* The two channels can operate with handshaking enabled, in half-duplex mode. One channel
acts as slave and the other acts as master. This mode requires two pins.

Each channel contains an 8-bit buffer register, SSBWF, and logic to clock the data into and
out of the transceiver. In receive mode, data is shifted (MSB first) from thep8Dinto
SSIOx_BUF. In transmit mode, data is shifted from SSIBUF onto the SR pin. The receiver
latches data from the transmitter on the rising edge afe®@ the transmitter changes (or floats)
output data on the falling edge of €C

In the handshaking modes, the clock polarities are reversed, so the corresponding clock edges ar
also reversed. The clock pin, §@nust be configured as an open-drain output in both master and
slave modes. (This configuration requires an external pull-up.) The master leaves the[®/E€

high at the end of each byte transfer. The slave pulls its clock input low when it is busy. (In receive
mode, the slave is busy when the buffer is full; in transmit mode, the slave is busy when the buffer
is empty.) The slave releases)X3fhen it is ready to receive or transmit. The master waits for
SCx to return high before attempting the next transfer. Figure 8-3 illustrates transmit and receive
timings with and without handshaking.

8XC196NT USER’S MANUAL Inu®

e LU L e
se [_
ooy —{ oo Y m Y w Y o Y o Y = Y o Y o
sort e YOO OO0
— i1 0 0 S 3 7

Slave Receiver Pulls SCx low

A0266-01

Figure 8-3. SSIO Transmit/Receive Timings

8.4 SSIO HANDSHAKING

Handshaking (Figure 8-4) prevents a data underflow or overflow from occurring at the slave,
which enables a master device to perform SSIO data transfers using the PTS. Without handshak-
ing, data overflows and underflows would make it nearly impossible to use the PTS for transfer-
ring blocks of data. Handshaking takes place in hardware, using the clock pins, with no CPU
overhead. When the master is the transmitter and the slave is the receiver, the slave pulls the cloc}
line low until it is ready to receive a byte. This prevents a data overflow at the slave. In the oppo-
site configuration, the slave pulls the clock line low until its buffer is loaded with data. This pre-
vents a data underflow at the slave.

8.4.1 SSIO Handshaking Configuration
To use the PTS with the SSIO in handshaking mode, the SSIO channels must be configured as
follows:

¢ Channels must be auto-enabled (both the ATR and STE bits ikSSTIN must be set).

¢ Handshaking mode must be selected (the THS bit in $&ON must be set).

* The clock pin, S& must be configured as a special-function, open-drain output in both
master and slave. (This requires an external pull-up resistor.)

8-6

Inu® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

l l

Load SSIOx_BUF Receive Byte

Pull SC Pin Low

SCx Pin High
?

SSIOx_BUF
Read
2

Transmit Byte

|

Set SSIOx Interrupt]
Pending Bit Float SCx Pin
SSIO Transmit Handshaking SSIO Receive Handshaking

A0232-03

Figure 8-4. SSIO Handshaking Flow Diagram

8.4.2 SSIO Handshaking Operation

When handshaking is enabled, the slave pulls its clock inpw) (6@ whenever it is busy. (In
receive mode, the slave is busy when the buffer is full; in transmit mode, the slave is busy when
the buffer is empty.) This happens automatically one to two state diiteeshe rising clock edge
corresponding to the last data bit of the transmitted 8-bit packet. The slave releasediite SC
only after the CPU reads from or writes to SSIBUF, which clears the transmit buffer status
(TBS) bit in SSIG_CON and indicates that SS{CBUF is available for another packet to be re-
ceived or transmitted.

When handshaking is enabled, the master leaves its clock outpQtHigt at the end of each

byte transfer. This allows the slave to pull the clock line low if its SSBOF register is unavail-

able for the next transfer. The master waits for the clock line to return high before it attempts the
next transfer. (If handshaking is not enabled for the master, the master drives the clock line low
between transfers.)

8XC196NT USER’S MANUAL Int9I®

The following example describes how the master can transmit 16 bytes of data to the slave
through the PTS, using this optional handshaking capability.

1. These four steps can occur in any order:
— You initialize the master as a transmitter and the slave as a receiver.
— The master prepares 16 bytes for traission and places them in RAM.
— The master initializes a PTS channel to move data from RAM to)>SSBIQF.
— The slave initializes a PTS channel to move data from $BOF to RAM.

2. You set the master's SSthterrupt pending bit in the INT_PENDZ1 register.
The PTS transfers a byte to SSIBUF.

4. The slave pulls the clock line low until it is ready to receive a byte, then allows the clock
line to float (allowing the external resistor to pull it up).

5. The master detects the high clock line and transmits the byte.

6. When the master finishes transmitting the byte, it sets its XS8t&rupt pending bit in
INT_PEND1 and allows the clock line to float.

7. When the slave finishes receiving the byte, it sets its $8i@rrupt pending bit in
INT_PEND1.

8. Steps 3 through 7 are repeated until the PTS byte count reaches 0.

9. The next interrupt requests PTS service.

8-8

Int€|® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

8.5 PROGRAMMING THE SSIO PORT

To use the SSIO port, you must configure the port pins to serve as special-function signals, then
set up the SSIO channels.

8.5.1 Configuring the SSIO Port Pins

Before you can use the SSIO port, you must configure the necessary port 6 pins to serve as their
special-function signals. Handshaking mode requires that both the master and sipies3@
configured as open-drain outputs. (This configuration requires external pull-up resistors.) Table
8-1 on page 8-2 lists the pins associated with the SSIO port, and Table 8-2 lists the port configu-
ration registers. See Chapter 6 for configuration details.

8.5.2 Programming the Baud Rate and Enabling the Baud-rate Generator

The SSIO_BAUD register (Figure 8-5 on page 8-10) defines the baud rate and enables the baud-
rate generator. This register acts as a control register during write operations adovas a
counter monitor during read operations. The baud-rate generator provides an internal clock to the
transceiver channels. The frequency ranges frgg/&to /1024, With a 20-MHz oscillator
frequency, this corresponds to a range from 2.5 MHz to 19.531 kHz. Table 8-3 lists SSIO_BAUD
values for common baud rates.

8-9

8XC196NT USER’S MANUAL

intel.

SSIO_BAUD

generator is enabled.

Address:
Reset State:

The synchronous serial port baud (SSIO_BAUD) register enables and disables the baud-rate
generator and selects the SSIO baud rate. During read operations, SSIO_BAUD serves as the down-
counter monitor. The down-counter is decremented once every four state times when the baud-rate

1FB4H
XXH

7 0
BE BV6 BV5 Bv4 || BvV3 BV2 BV1 BVO
Bit Bit Function

Number Mnemonic
7 BE Baud-rate Generator Enable
This bit enables and disables the baud-rate generator.
For write operations:
0 = disable the baud-rate generator and clear BV6:0
1 = enable the baud-rate generator and start the down-counter
For read operations:
0 = baud-rate generator is disabled
1 = baud-rate generator is enabled and down-counter is running
6:0 BV6:0 Baud Value
For write operations:
These bits represent BAUD_VALUE, an unsigned integer that
determines the baud rate. The maximum value of BAUD_VALUE is 7FH,;
the minimum value is 0. Use the following equation to determine
BAUD_VALUE for a given baud rate.
Fosc
BAUD_VALUE = ——— -1
Baud Rate x 8
For read operations:
These bits contain the current value of the down-counter.

Figure 8-5. Synchronous Serial Port Baud (SSIO_BAUD) Register

Table 8-3. Common SSIO_BAUD Values When Using XTAL1 at 20 MHz

Baud Rate SSIO_BAUD Value f
(Maximum) 2.5 MHz 80H

100.0 kHz 98H

50.0 kHz B1H

25.0 kHz E3H
(Minimum) 19.531 kHz FFH

T Bit 7 must be set to enable the baud-rate generator.

8-10

InU® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

8.5.3 Controlling the Communications Mode and Handshaking

The SSIG_CON register (Figure 8-6) controls the communications mode and handshaking. The
two least-significant bits indicate whether an underflow or overflow has occurred and whether
the channel is ready to transmit or receive.

SSIOx_CON Address: 1FB1H, 1FB3H
x=0-1 Reset State: O00H

The synchronous serial control x (SSIOx_CON) registers control the communications mode and
handshaking. The two least-significant bits indicate whether an overflow or underflow has occurred
and whether the channel is ready to transmit or receive.

7 0
M/S# TIR# TRT THS ‘ ‘ STE ATR OUF TBS
Bit Bit Function
Number Mnemonic
7t M/S# Master/Slave Select

Configures the channel as either master or slave.

0 = slave; SCx is an external clock input to SSIOx_BUF
1 = master; SCx is an output driven by the SSIO baud-rate generator

67 T/IR# Transmit/Receive Select
Configures the channel as either transmitter or receiver.

0 = receiver; SDx is an input to SSIOx_BUF
1 = transmitter; SDx is an output driven by the output of SSIOx_BUF

5 TRT Transmitter/Receiver Toggle

Controls whether receiver and transmitter switch roles at the end of each
transfer.

0 = do not switch
1 = switch; toggle T/R# and clear TRT at the end of the current transfer

Setting TRT allows the channel configuration to change immediately on
transfer completions, thus avoiding possible contention on the data line.

4 THS Transceiver Handshake Select

Enables and disables handshaking. The THS, STE, and ATR bits must
be set for handshaking modes.

0 = disables handshaking
1 = enables handshaking

T The M/S# and T/R# bits specify four possible configurations: master transmitter, master receiver,
slave transmitter, or slave receiver.

Figure 8-6. Synchronous Serial Control x (SSIOx_CON) Registers

[| 8-11

8XC196NT USER’S MANUAL Inu®

SSIOx_CON (Continued)

x=0-1

Address: 1FB1H, 1FB3H
Reset State: O0H

The synchronous serial control x (SSIOx_CON) registers control the communications mode and
handshaking. The two least-significant bits indicate whether an overflow or underflow has occurred
and whether the channel is ready to transmit or receive.

7

M/S#

T/R#

TRT THS H STE ATR OUF TBS

Bit
Number

Bit
Mnemonic

Function

3

STE

Single Transfer Enable

Enables and disables transfer of a single byte. Unless ATR is set, STE is
automatically cleared at the end of a transfer. The THS, STE, and ATR
bits must be set for handshaking modes.

0 = disable transfers
1 = allow transmission or reception of a single byte

ATR

Automatic Transfer Re-enable

Enables and disables subsequent transfers. The THS, STE, and ATR bits
must be set for handshaking modes.

0 = allow automatic clearing of STE; disable subsequent transfers
1 = prevent automatic clearing of STE; allow transfer of next byte

OUF

Overflow/Underflow Flag

Indicates whether an overflow or underflow has occurred. An attempt to
access SSIOx_BUF during a byte transfer sets this bit.

For the master (M/S# = 1)

0 = no overflow or underflow has occurred

1 = the core attempted to access SSIOx_BUF during the current transfer
For the slave (M/S# = 0)

0 = no overflow or underflow has occurred

1 = the core attempted to access SSIOx_BUF during the current transfer
or the master attempted to clock data into or out of the slave’s
SSIOx_BUF before the buffer was available

TBS

Transceiver Buffer Status
Indicates the status of the channel’s SSIOx_BUF.
For the transmitter (T/R# =1)

0 = SSIOx_BUF is full; waiting to transmit
1= SSIOx_BUF is empty; buffer available

For the receiver (T/R# = 0)

0 = SSIOx_BUF is empty; waiting to receive
1= SSIOx_BUF is full; data available

T The M/S# and T/R# bits specify four possible configurations: master transmitter, master receiver,
slave transmitter, or slave receiver.

Figure 8-6. Synchronous Serial Control x (SSIOx_CON) Registers (Continued)

8-12

Int€|® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

8.5.4 Enabling the SSIO Interrupts

Each SSIO channel can generate arrint request if you enable the individual interrupt as well

as globally enabling servicing of all maskable interrupts. The INT_MASK1 register enables and
disables individual inteupts. To e@able an SSIO inteupt, set the corresponding bit in
INT_MASKZ1 (see Table 8-2 on page 8-2) and execute the El instruction to globally enable inter-
rupt servicing. See Chapter 5, “Standard and PTS Interrupts,” for more information about inter-
rupts.

8.5.5 Determining SSIO Port Status

The SSIO_BAUD register (Figure 8-5 on page 8-10) indicates the current status and value of the
down-counter. The SSKDCON register (Figure 8-6) indicates whether an underflow or over-
flow has occurred and whether the channel is ready to transmit or receive. Read the INT_PEND1
register (see Table 8-2 on page 8-2) to determine the status of SSIO interrupts. See Chapter 5
“Standard and PTS Interrupts,” for details about interrupts.

8.6 PROGRAMMING CONSIDERATIONS

For transmissions, the time that you write to SGIBUF determines the data setup time (the
length of time between data being placed on the data pin and the first clock edge on the clock pin).
The reason for this anomaly is that the baud-rate down-counter startsyahewrite to
SSIO_BAUD, but the transmissiadoesn't start until you write to SSKOBUF. The write to
SSIOXx_BUF can occur at any point during the count. Since the most-significant bit (MSB)
doesn’t change until the falling edge of x§@hich is triggered by a counter overflow), the width

of the MSB appears to vary (Figure 8-7). If you write to SSEBMF early in the count, the MSB
seems relatively long. If you write to SS{BUF late in the count, the MSB seems relatively
short.

For example, assume that you write 93H to SSIO_BAUD (the MSB enables the baud-rate gener-
ator, and the lower seven bits define the initial count value). As soon as this register is written,
the down-counter starts decrementing from 13H. If the counter is at 11H when you write to
SSIOx_BUF, the MSB will remain on the data pin for approximately 8.5 ps. If the counter is at
03H when you write to SSKOBUF, the MSB will remain on the data pin for only approximately

1.5 ps.

8-13

8XC196NT USER’S MANUAL Inu®

Clock (SCx pin) 1 2 3 4

. MSB B6 B5 B4 B3
Data (SDx pin)

A2066-01

Figure 8-7. Variable-width MSB in SSIO Transmissions

NOTE

This condition exists only for the MSB. Once the MSB is clocked out, the
remaining bits are clocked out consistently at the programmed frequency.

One way to achieve a consistent MSB bit length is to start the down-count at a fixed time, using
these steps:

1. Clear SSIO_BAUD bit 7. This disables the baud-rate generator and clears the remaining
bits (BV6:0).

2. Write the byte to be transmitted to SSIBUF.

3. Set the STE bit in SSMOCON. This enables transfers and drives the MSB onto the data
pin.

4. Disable interrupts.

5. Set the MSB of SSIO_BAUD and writke desired BUD_VAL to the remaining bits.
This enables the baud-rate generator and starts the down count.

6. Rewrite the byte to be transmitted to SSIBUF. This starts the transmission.
7. Enable interrupts.
Using this procedure starts the clock at a known point before each saismestablishing a

predictable MSB bit time. Interrupts are disabled in step 4 and reenabled in step 7; otherwise, an
interrupt could cause a similar problem between steps 5 and 6.

8-14 [|

intel.

8.7 PROGRAMMING EXAMPLE

SYNCHRONOUS SERIAL 1/O (SSIO) PORT

This code example configures SSIOO0 as a master transmitter to send one byte of data to SSIO1
the slave receiver. First it sets up a window to allow direct access to the necessary registers. Next,
it configures the clock and data pins. Since SSIOQ is sending data, SCO (P6.4) and SDO (P6.5) are
configured as special-function complementary outputs. Since SSIO1 is receiving data, SC1
(P6.6) and SD1 (P6.7) are configured as special-function inputs. The example also sets up a reg-
ister (result) to store the received data byte.

wsr equ 014h:byte
p6_dir equ 0d3h:byte
p6_mode equ 0dlh:byte
p6_reg equ 0d5h:byte
ssio_baud equ Ob4h:byte
ssio0_con equ Oblh:byte
ssiol_con equ 0b3h:byte
ssio0_buf equ ObOh:byte
ssiol_buf equ Ob2h:byte
result equ 122h:byte

;window to 1fd3h
;window to 1fd1lh

;window to 1fd5h

;window to 1fb4dh

;window to 1fblh

;window to 1fb3h
;window to 1fbOh
;window to 1fb2h
;register to store the received data byte

cseg at 0ff2080h

ldb wsr#1fh ;select window 1fh
ldb p6_dir,#0c0Oh ;set up SD1/SC1 as inputs and
;set up SDO/SCO as complementary outputs
ldb p6_mode,#0fOh ;set up SD1/SC1, SDO/SCO as special-function
ldb p6_reg,#0cOh ;set up SD1/SC1 inputs (1), SDO/SCO outputs (0)
ldb ssio_baud,#80h ;enable baud-rate generator at 2 MHz
ldb ssio0_con,#0c9h ;set up channel 0 as master transmitter
ldb ssiol_con,#08h ;set up channel 1 as slave receiver
Idb ssio0_buf,#55h ;stransmit data 55h
d_wait:
jbc ssiol_con,0,d_wait ;wait for data to be received
stb ssiol_buf,result ;store received data in “result”
sjimp $

end

8-15

intgl.

Slave Port

CHAPTER 9
SLAVE PORT

The slave port offers an alternative for communication between two microcontrollers. Tradition-
ally, design engineers have had three options for achieving this communicatigeral #ink, a
parallel bus without a dual-port RAM (DPRAM), or a parallel bus with a DPRAM to hold shared
data.

A serial link, the most common method, has several advantages: it uses only two pins from each
device, it needs no hardware protocol, and it allows for error detection before data is stored. How-
ever, it is relatively slow and involves software overhead to differentiate data, addresses, and
commands. A parallel bus increases communication speed, but requires more pins and a rathel
involved hardware and software protocol. Using a DPRAM offers software flexibility between
master and slave devices, but the hardware interconnect uses a demultiplexed bus, which require:
even more pins than a simple parallel connection does. The DPRAM is also costly, and error de-
tection can be difficult. The SSIO offers a simple means for implementing a serial link. The mul-
tiplexed address/data bus can be used to implement a parallel link, with or without a DPRAM.
The slave port offers a fourth alternative.

The slave port offers the advantages of the traditional methods, without their drawbacks. It brings
the DPRAM on-chip, inside the microcontroller (Figure 9-1). With this configuration, the exter-
nal processor (master) can simply read from and write to the on-chip memory of the 8XC196NT
(slave) processor. The slave port requires more pins than a serial link does, but fewer than the
number used for a parallel bus. It requires no hardware protocol, and it can interface with either
a multiplexed or a demultiplexed bus. The master CPU simply writes to or reads from the device
as it would write or read any parallel interface device (such as a memory or an I/O port). Data
error detection can be handled through the software.

8XC196NT USER’S MANUAL Inu®

Processor A Dual-port Processor B
(Master) RAM (Slave)

<<—>| (DPRAM) |[=—>
Processor A Slave
Master) | [77"
(Master) <. | On-chip

— 7| RAM

8XC196 Device
A3065-01

Figure 9-1. DPRAM vs Slave-port Solution

9.1 SLAVE PORT FUNCTIONAL OVERVIEW

Figure 9-2 is a block diagram of the slave port. The slave port is a simple bus configuration that
can interface to an external processor through an 8-bit address/data bus (SLP7:0). The slave
8XC196NT processor communicates with the master (the external déwizedh the slave port
registers. From the slave viewpoint, the status register and data output register are output-only
registers that are latched onto the slave port address/data bus when SLPCS# and SLPRD# ar
both low. The command register and data input register are input-only registers that are written
when SLPCS# and SLPWR# are both low.

9.2 SLAVE PORT SIGNALS AND REGISTERS

Table 9-1 lists the signals used for slave port operation. The bus-control output signals provided
by P5.3:0 in normal operation become inputs for slave port operation, and P5.4 functions as
SLPINT, the slave port interrupt signal. The P3.7:0 pins function as SLP7:0 to transfer byte-wide
information between the slave device and the master CPU. If external memory is to be used while
the slave port is enabled, external bus arbitration logic is required. Table 9-2 lists the registers that
affect the function and indicate the status of the slave port.

intel.

SLAVE PORT
—— SLP_STAT.0
SLPINT/
P5.4 ©®,
—— SLP_STAT.1
[%2) [%2)
- -
I-U I-U
o |0
o |o
pd 4
3 il
SLPALE 0
/P5.0 .
|V SLP_CON.2 SLP_CON
V SLP_ADDR
stpupsl [3 I/I L D Q
SLPRD# Ii
P5.3 C |
SLPWR#
/P5.2 OE#
« SLP_STAT <::>
SLPCS#
P5.1 @) >' OE# p3_REG <::>
(Data Out)
) > W P3PING Ly
:> (Data In)
SLP7:0/ WE#
P3.7:0 D |:> SLP_CMD <:>
< Internal
Bus
8XC196 Device
A0267-03

Figure 9-2. Slave Port Block Diagram

8XC196NT USER’S MANUAL Inu®

Table 9-1. Slave Port Signals

Slave Slave Port

Port Pin Port Sianal Type Description
Signal 9 yp

P3.7:0 SLP7:0 110 Slave Port Address/Data bus

Slave port address/data bus in multiplexed mode and slave port
data bus in demultiplexed mode. In multiplexed mode, SLP1 is
the source of the internal control signal, SLP_ADDR.

P5.0 SLPALE | Slave Port Address Latch Enable
Functions as either a latch enable input to latch the value on
SLP1 (with a multiplexed address/data bus) or as the source of

the internal control signal, SLP_ADDR (with a demultiplexed
address/data bus).

P5.1 SLPCS# | Slave Port Chip Select
SLPCS# must be held low to enable slave port operation.
P5.2 SLPWR# | Slave Port Write Control Input

This active-low signal is an input to the slave. The rising edge of
SLPWR{# latches data on port 3 into the P3_PIN or SLP_CMD
register.

SLPWRf# is multiplexed with P5.2, WR#, and WRL#.

P5.3 SLPRD# | Slave Port Read Control Input

This active-low signal is an input to the slave. Data from the
P3_REG or SLP_STAT register is valid after the falling edge of
SLPRD#.

P5.4 SLPINT (0] Slave Port Interrupt

This active-high slave port output signal can be used to interrupt
the master processor.

NOTE: SLPINT is multiplexed with P5.4 and a special test-
mode-entry pin . Because driving this pin low on the ris-
ing edge of RESET# could cause the device to enter a
reserved test mode, this pin should not be used as an
input.

Table 9-2. Slave Port Control and Status Registers

Mnemonic Address Description

INT_MASK 0008H Interrupt Mask

Setting bit 6 enables the output buffer empty (OBE) interrupt; clearing
the bit disables it.

Setting bit 7 enables the input buffer full (IBF) interrupt; clearing the bit
disables it.

INT_MASK1 0013H Interrupt Mask 1

Setting bit 0 enables the command buffer full (CBF) interrupt; clearing
the bit disables it.

INT_PEND 0009H Interrupt Pending

Bit 6, when set, indicates a pending output buffer empty (OBE) interrupt.
This bit is set after the master writes to the data input register, P3_PIN.

Bit 7, when set, indicates a pending input buffer full (IBF). This bit is set
after the master reads from the data output register, P3_REG.

9-4

InU® SLAVE PORT

Table 9-2. Slave Port Control and Status Registers (Continued)

Mnemonic Address Description

INT_PEND1 0012H Interrupt Pending 1

Bit 0, when set, indicates a pending command buffer full (CBF) interrupt.
This bit is set after the master writes to the command register,
SLP_CMD.

P3_PIN 1FFEH Slave Port Data Input Register
This register is also used for standard port 3 operation.

In slave port operation, this register accepts data written by the master
to be read by the slave. The slave can only read from this register and
the master can only write to it. If the master attempts to read from
P3_PIN, it will actually read P3_REG.

To write to this register in standard slave mode, the master must first
write “0” to the pin selected by SLP_CON.2. To write to this register in
shared memory mode, the master must first write “0” to the SLP1 pin.

P3_REG 1FFCH Slave Port Data Output Register
This register is also used for standard port 3 operation.

In slave port operation, this register accepts data written by the slave to
be read by the master. The slave can write to and read from this register.
The master can only read it. If the master attempts to write to this
register, it will actually write to P3_PIN.

To read from this register in standard slave mode, the master must first
write “0” to the pin selected by SLP_CON.2. To read from this register in
shared memory mode, the master must first write “0” to the SLP1 pin.

SLP_CMD 1FFAH Slave Port Command Register

This register accepts commands from the master to the slave. The
commands are defined by the device software. The slave can read from
and write to this register. The master can only write to it.

To write to this register in standard slave mode, the master must first
write “1” to the pin selected by SLP_CON.2. To write to this register in
shared memory mode, the master must first write “1” to the SLP1 pin.

SLP_CON 1FFBH Slave Port Control Register

This register is used to configure the slave port. It selects the operating
mode, enables and disables slave port operation, controls whether the
master accesses the data registers or the control and status registers,
and controls whether the SLPINT signal is asserted when the input
buffer empty (IBE) and output buffer full (OBF) flags are set in the
SLP_STAT register. Only the slave can access this register.

SLP_STAT 1FF8H Slave Port Status Register

The master can read this register to determine the status of the slave.
The slave can read all bits. If the master attempts to write to SLP_STAT,
it actually writes to SLP_CMD. To read from this register in standard
slave mode, the master must first write “1” to the pin selected by

SLP_CON.2. To read from this register in shared memory mode, the
master must first write “1” to the SLP1 pin.

8XC196NT USER’S MANUAL Int9I®

9.3 HARDWARE CONNECTIONS

Figure 9-3 shows the basic hardware connections for both multiplexed and demultiplexed bus
modes. Table 9-3 lists the interconnections. Note that the shared memorguppdets only a
multiplexed bus, while the standard slave mode supports either a multiplexed or a demultiplexed
bus.

Table 9-3. Master and Slave Interconnections

Multiplexed Bus Demultiplexed Bus
Master Slave Master Slave
AD7:0 SLP7:0 D7:0 SLP7:0
ALE SLPALE Al SLPALE
RD# SLPRD# RD# SLPRD#
WR# SLPWR# WR# SLPWR#
Latched addr. or port pin SLPCS# Latched addr. pin SLPCS#
Interrupt input or port pin SLPINT Interrupt input or port pin SLPINT

When using a multiplexed bus, connect the masédd’s pin to the slave’s SLP1 pin and the mas-
ter’'s ALE pin to the slave’s P5.0 pin. When using a demultiplexed bus, connect the master’s ad-
dress output (Al) to the slave’s SLPALE (P5.0) pin. The master's AD1 (with a multiplexed bus)
or Al (with a demultiplexed bus) signal must be held high to either write to the slave’'s command
register (SLP_CMD) or read the slave’s status register (SLP_STAT). It must be held low to either
write to the slave’s P3_PIN register or read the slave’s P3_REG register.

The configurations shown in Figure 9-3 alltkie master to select the slave device by forcing
SLPCS# low. The master can then request that the slave perform a read or a write operation by
forcing SLPRD# or SLPWR# low, respectively. Data is latched on the rising edge of either
SLPRD# or SLPWR#. When the slave completes a read or a write, it notifies the master via the
SLPINT signal.

When the master writes to the P3_PIN register, the input buffer empty (IBE) flag is cleared and
SLPINT is pulled low. When the slave reads P3_PIN, the IBE flag is set and SLPINT is forced
high. This notifies the master that the write operation is completed and another write can be per-
formed.

When the slave writes to P3_REG, the output buffer full (OBF) flag is set and SLPINT is forced
high. This notifies the master that P3_REG contains valid data from the previous read cycle. Note
that this is a pipelined read. The address specified in the previous read cycle is fetched and placec
into the P3_REG register to be read by the master ingkeread cycle. When the master reads

from P3_REG, the OBF flag is cleared and SLPINT is pulled low.

Inte|® SLAVE PORT
SLPINT Slave Interrupt Output >
SLPRD# |<€ Data Read (RD#)
Data Write (WR#)
SLPWR# |-
Address Latch Enable (ALE)
SLPALE [«
Latched
LE Address
Chip Select (CS#) Decoder
SLPCS# |-
Master
Processor
SLP7:0 < Address/Data Bus > or System Bus

8XC196
Slave Processor

Slave Port Connections for Multiplexed Bus Interface

SLPINT
SLPRD#
SLPWR#
SLPALE

Slave Interrupt Output

\

Data Read (RD#)

Data Write (WR#)

System Address Line Al

Address

Chip Select (CS#)

SLPCS# =

SLP7:0

8XC196
Slave Processor

Decoder

Address Bus

Data Bus

)

Master
Processor
or System Bus

Slave Port Connections for Demultiplexed Bus Interface
A0309-02

Figure 9-3. Master/Slave Hardware Connections

9-7

8XC196NT USER’S MANUAL Int9I®

9.4 SLAVE PORT MODES

The slave port can operate in either standard slave mode or shared memory mode. In both modes
the master and slave share a 256-byte block of memory located anywhere within the slave’s mem-
ory space. Data written is stored in the slave’s P3_PIN register; data to be read is stored in the
slave’s P3_REG register. The standard slave mode supports either a demultiplexed or a multi-
plexed bus and uses the command buffer full (CBF) interrupt. The shared memory npmtessup

only a multiplexed bus and uses the input buffer empty (IBE) and output buffer full (OBF) inter-
rupts. In both modes, the interrupts must be processed by a software interrupt service routine.

9.4.1 Standard Slave Mode Example

In standard slave mode, the master and slave siz&@ byte block of memory. The hidpyte of

the address (the base address) selects the location within the slave’s memory space. The maste
writes the low byte of the address to the slave’s command register (SLP_CMD). This mode can
be used with either a multiplexed or a demultiplexed bus.

In this example, the master and slave sh&®&6abyte block of memory from 0400-C3H. The
master device has arbitrary external memory locations that are dedicated to slave port accesses.

94.1.1 Master Device Program

The following code segment illustrates the simple method for writing to the slave.

EXT_P3_PIN EQU OFFFDH ; (A1=0)
EXT_SLP_CMD EQU OFFFEH ; (A1=1)
STB DATA, EXT_P3_PIN ; write the data into the slave’s P3_PIN

STB ADDR, EXT_SLP_CMD ; write address LSB into slave’s SLP_CMD
; wait for SLPINT to go high

The master first writes data to the P3_PIN register, which clears the IBE flag in the slave’s
SLP_STAT register and pulls SLPINT low. This notifies the slave to perform a data write at the
address BASE + SLP_CMD.

The following code segment illustrates the equally simple method for reading from the slave.

EXT_P3_REG EQU OFFFCH ; (A1=0)
EXT_SLP_CMD EQU OFFFEH ; (A1=1)
LDB TEMP, EXT_P3_REG ; clear slave’s P3_REG

STB ADDR, EXT_SLP_CMD ; write address LSB into slave’s SLP_CMD
; ... wait for SLPINT to go high
LDB DATA, EXT_P3_REG ; read the data from P3_REG

Int6I® SLAVE PORT

The master first reads the P3_REG register. This ensures that the slave’s P3_REG is indeed emp
ty, clears the OBF flag, and pulls SLPINT low. Next, it loads the address it wants to read into the
SLP_CMD register. This causes a CBF interrupt in the slave processor. The slave reads that lo-
cation and stores the data in P3_REG, which sets the OBF flag and forces SLPINT high. This
notifies the master to read the P3_REG register.

9.4.1.2 Slave Device Program

Once the slave port and ports 3 and 5 are initialized, the slave gevgram is strictly interrupt

driven. When the slave device receives a byte in the SLP_CMD register, the command buffer full
(CBF) interrupt is generated. The CBF interrupt service routine reads the OBF and IBE flags in
the SLP_STAT register to determine whether the master device is sending data or requesting a
data read. For a data-read request, the master device clears P3_REG, which clears the OBF flag
before it loads SLP_CMD. For a data write, the master writes P3_PIN, which clears the IBE flag,
before it loads SLP_CMD. Therefore, only one of the two flags is clear when the CBF interrupt
service routine is entered.

If the IBE flag is clear (the input buffer, P3_PIN, is full), the slave moves the data from the
P3_PIN register tthe specified address. If the OBF flag is clear (the output buffer, P3_REG, is
empty), the slave moves the data from the specified address to the P3_REG register so that the
master can read it.

The following code segment shows the CBF interrupt serviceneouthe CBF intaupt must be
enabled and interrupts must be globally enabled for this routine to function.

CBF_ISR:
PUSHA
LDBZE MAILBOX, SLP_CMDI0] ; read SLP_CMD value (mailbox=address)
ADDB MAILBOX+1, BASE ; window address is 400-4FFH
LDB TEMPW, SLP_STATI[O] ; get SLP_STAT register
BBC TEMPW, 1, WRITE_DATA ; if IBE=0, master wants to write
BBC TEMPW, 0, READ_DATA ; if OBF=0, master wants to read
; if neither IBE=0 nor OBF=0, RETURN
; if both are set, an error has occurred
; no read or write can be performed
; (BBC is an assembler command that is
; translated to either a JBC, SIMP, or LIMP,
; depending upon the distance to the
; referenced address.)
DONE_ISR:
POPA
RET
WRITE_DATA:
LDB TEMPW, P3_PIN[O] ; get data to write
STB TEMPW, [MAILBOX] ; write P3_PIN at SLP_CMD+400H
POPA
RET

8XC196NT USER’S MANUAL Inu®

READ_DATA:
LDB TEMPW, [MAILBOX] ; get data to write to P3_REG
STB TEMPW, P3_REG|0] ; write SLP_CMD+400H data to P3_REG
POPA
RET
END

9.4.1.3 Demultiplexed Bus Timings

The master processor performs two bus cycles for each byte written and three bus cycles for eact
byte read. For the slave device, only five bytes are used (two bytes for the pointer to the open
memory window, two bytes for the temporary storage register, and one byte for the base address).
A read requires 91 state times (9.1 ys at 20 MHz) and a write requires 86 state times (8.6 s at 2(
MHZz). These times doot include interrupt latency (see “Interrupt Latency” on page 5-7). Figure
9-4 shows relative timing relationships. Consult the datasheet for actual timing specifications.

SLPCS# \ /
SLPALE >< X

(Note 1)

SLPRD# \ /
SLP7:0/ < Data >—
P3.7:0
SLPWR# \ /
SLPINT \ /
v

Notes: (Note 2)
1. Connect to master's Al signal.
2. Rising edge associated with either

— Read ready (write to P3_REG)

— Write complete (read of P3_PIN)

A0307-02

Figure 9-4. Standard Slave Mode Timings (Dem ulti plexed Bus)

9-10

Int6I® SLAVE PORT

9.4.2 Shared Memory Mode Example

In shared memory mode, the master and slave st256-ayte block of memory. The high byte

of the address (the base address) controls the location within the slave device memory space. The
low byte of the address is always in the SLP_CMD register. The P3_REG register contains data

to be read; the P3_PIN register contains the data written. This mode requires a multiplexed bus.

The primary difference between this mode and the standard slave mode is in the way that the ad-
dress is loaded into the SLP_CMD register. The low byte of the address is automatically loaded
into SLP_CMD on the falling edge of SLPALE. The data is latched on the rising edge of SLPRD#
or SLPWR#. For this reason, a write or read operation requires only one master bus cycle rather
than two and three bus cycles, respectively, in standard slave mode.

The time between the falling edge of SLPALE and the rising edge of SLPRD#ssatdo allow

the slave processor to perform the read. Therefore, reads are pipelined in this mode, as they are
in standard slave mode. When the master requests a read operation, the data present during th
current bus cycle is either “dummy” data or the data from the previous read operationghlth

read operations are pipelined, write operations are not. Therefore, write operations can be per-
formed between reads without corrupting data that is waiting to be read. This allows the master
to assign higher priority to write cycles. The master must wait for SLPINT to go high between
reads or writes.

In this example, the master and slave share a 256-byte block of memory from 0400—-04FFH.

9.4.2.1 Master Device Program

In this mode, the master simply requests a read and receives data one bus cycle following the pre-
vious read. The following code segment illustrates how this is done.
OFFSET EQU OFFOOH

ADD ADDR#OFFSET ; point to the external address
LDB DATA,[ADDR] ; read the slave device data

The data that is read is actually the data from the previous read cycle. The address driven cause
the slave to perform an interrupt service routine to fetch the data at that address. The data at the
address is valid on the rising edge of SLPINT. Writing to the slave is equally simple, as the fol-
lowing code segment illustrates.

OFFSET EQU OFFOOH

ADD ADDR#OFFSET ; point to the slave address
STB DATA,[ADDR] ; store data at the address

9-11

8XC196NT USER’S MANUAL Int9I®

9.4.2.2 Slave Device Program

This example shows how the slave device reacts to reads and writes requested by the master. Re
gardless of the operation to be performed, the address is latched into the SLP_CMD register. The
interrupt determines whether a read or write operation is to be performed.

An IBF interrupt requires a write operation. The slave branches to the IBF interrupt service rou-
tine, reads the data in the P3_PIN register, and writes that data to the address specified by addin
a base address to the value in SLP_CMD. When the slave reads P3_PIN, it forces SLPINT high,
which notifies the master that another operation can be performed.

An OBE interrupt requires a read operation. The slave branches to the OBE interrupt service rou-
tine, reads the data at the address specified by adding a base address to the value in SLP_CMLC
and writes that data into tlR8_REG register. When the slave writes the P3_REG register, it forc-

es SLPINT high, which notifies the master that another operation can be performed. (Remember
that read operations are pipelined.)

The following code segment shows the IBF and OBE interrupt service routines. The interrupt ser-

vice routines are very much alike. One reads from the SFR space to the memory block; the other
reads from the memory block to the SFR space. The slave need only know which routine to exe-
cute. The IBF and OBE interrupts must be enabled and interrupts must be globally enabled for
these routines to function.

IBF_ISR:
PUSHA ; save flags
LDBZE ADDR, SLP_CMD[0] ; load SLP_CMD value into Addr register
ADDB ADDR+1, BASE ; add a base to address (16-bit address)
LDB TEMP, P3_PIN[O] ; read P3_PIN (read forces SLPINT high)
STB TEMP, [ADDR] ; write data to address
POPA
RET

OBE_ISR:
PUSHA ; save flags
LDBZE ADDR, SLP_CMD[0] ; load SLP_CMD value into Addr register
ADDB ADDR+1, BASE ; add a base to address (16-bit address)
LDB TEMP, [ADDR] ; load data from address to temp register
STB TEMP, P3_REG|0] ; write data to P3_REG

; (write forces SLPINT high)

POPA
RET

9-12 [|

InU® SLAVE PORT

9.4.2.3 Multiplexed Bus Timings

The memory space required for the sample code is four bytes (two bytes for the address register,
one for the temp register, and one for the base address). Reads and writes each require 58 sta
times (5.8 us at 20 MHz). These timesrd include interrupt latency (see “Interrupt Latency”

on page 5-7). They also awt include the master device bus cycle time. Each read or write op-
eration requires only one master bus cycle. Figure 9-5 shows relative timing relationships. Con-
sult the datasheet for actual timing specifications.

SLPCS# \ /
SLPALE , \

(Note 1)

SLPRD# \ ,
SLP7:0/ —< Address >—< Data)7

P3.7.0

SLPWR# \ /
SLPINT \

(<
(Note 2) 27

=

(Note 3)

Notes:

1. Connect to master's ALE signal.

2. The falling edge of SLPINT is the same for both standard and PTS interrupts. It follows the falling
edge of SLPALE when SLPCS# is low. However, the rising edge of SLPINT occurs earlier for PTS
interrupts than for standard.

. Rising edge associated with either
— Read ready (write to P3_REG)

— Write complete (read of P3_PIN)

w

A0306-03

Figure 9-5. Sta ndard or Shared Memory Mode Timings (Multiplexed Bus)

[| 9-13

8XC196NT USER’S MANUAL Int9I®

9.5 CONFIGURING THE SLAVE PORT
Before youcan use the slave port, you must configure the associated port 3 and port 5 pins to
serve as special-function signals. (See Chapter 6, “I/O Ports,” for configuration details.)

¢ Configure P5.3:0 as special-function inputs.

* Configure P5.4 as a special-function open-drain or complementary output.

¢ Configure P3.7:0 as special-function open-drain input/outputs.

The following code example shows the port 5 configuration code.

LDB TEMP, #EFH

STB TEMP, P5_DIR[0] ; make P5.4/SLPINT a complementary output
; set up all other port 5 pins as inputs

LDB TEMP, #1FH

STB TEMP, P5_MODE[0] ; select special function for P5.4:0
LDB TEMP, #FFH
STB TEMP, P5_REG|0] ; write all ones to P5_REG

The following code example shows the port 3 configuration code.

LDB TEMP, P34_DRV[0] ; read the current state of P34_DRV
ANDB TEMP, #7FH ; clear the MSB of P34_DRV
STB TEMP, P34_DRVI[0] ; make Port 3 open-drain

Once you have configured the pins, you must initialize the registhis example shows the ini-
tialization code. The remaining sections of this chapter describe the registers and explain the con-
figuration options.

LDB TEMP, #slave_mode ; OFH for standard, 1BH for shared mem mode
STB TEMP, SLP_CONJO0] ; initialize the slave port

STB ONES_REG, P3_REGJ[0] ; write all ones to port 3 (write sets OBF)
STB ZERO_REG, SLP_CMD[0] ; clear the command register

STB ZERO_REG, P3_PIN[O] ; clear the data input register

LDB TEMP, SLP_STAT[O] ; read the status reg (CBE, IBE, OBF=111)

9.5.1 Programming the Slave Port Control Register (SLP_CON)

The SLP_CON register (Figure 9-6) selects the operating mode, enables and disables slave por
operation, controls whether the master accesses the data registers or the control and status regi:
ters, and controls whether the SLPINT signal is asserted when the input buffer empty (IBE) and
output buffer full (OBF) flags are set in the SLP_STAT register. Only the slave can access this
register.

9-14

intel.

The slave port control (SLP_CON) register is used to configure the slave port. Only the slave can
access the register.

SLAVE PORT
SLP_CON Address: 1FFBH
Reset State: XOH

7 0
— — — SME || sLp SLPL | IBEMSK | OBFMSK
Bit Bit Function
Number Mnemonic
75 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
4 SME Shared Memory Enable
Enables slave port shared memory mode.
0 = standard slave mode
1 = shared memory mode
3 SLP Slave Port Enable
This bit enables or disables the slave port.
0 = disables the slave port and clears the command buffer empty (CBE),
input buffer empty (IBE), and output buffer full (OBF) flags in the
SLP_STAT register.
1 = enables the slave port
2 SLPL Slave Port Latch
In standard slave mode only, this bit determines the source of the
internal control signal, SLP_ADDR. When SLP_ADDR is held high, the
master can write to the SLP_CMD register and read from the SLP_STAT
register. When SLP_ADDR is held low, the master can write to the
P3_PIN register and read from the P3_REG register.
0 = SLPALE (P5.0) via master’s Al signal. Use with demultiplexed bus.
1= SLP1 (P3.1) via master's AD1 signal. Use with multiplexed bus.
In shared memory mode, this bit has no function.
1 IBEMSK Input Buffer Empty Mask
Controls whether the IBE flag (in SLP_STAT) asserts the SLPINT signal.
In shared memory mode, this bit has no effect on the SLPINT signal.
0 OBFMSK Output Buffer Full Mask
Controls whether the OBF flag (in SLP_STAT) asserts the SLPINT
signal.
In shared memory mode, this bit has no effect on the SLPINT signal.

Figure 9-6. Slave Port Control (SLP_CON) Register

9-15

8XC196NT USER’S MANUAL Int9I®

9.5.2 Enabling the Slave Port Interrupts

The master can generate three interrupt requests: command buffer full (CBF), output buffer emp-
ty (OBE), and input buffer full (IBF). The CBF interrupt is used in standard slave mode; the OBE
and IBF interrupts are used in shared memory mode. To enableranphtset the corresponding

bit in the interrupt mask register (Table 9-2 on page 9-4).

9.6 DETERMINING SLAVE PORT STATUS

The master can determine the status of the slave port by reading the SLP_STAT register (Figure
9-7). It can also read the interrupt pendiegisters (Table 9-2 on page 9-4) to determine the status
of the interrupts.

9.7 USING STATUS BITS TO SYNCHRONIZE MASTER AND SLAVE

The status bits in the SLP_STAT register can be used to synchronize the master with the slave.
Because synchronization of the status bits is not monitored by the status flags, it is more difficult
for the master to monitor. Software musitsare data integrity throughout the operation. Two
technigues are recommended — a double read or a software flag.

If the master processor is fastoeigh to read SLP_STAT twice before the contents change, the
master can compare the readings from before and after the data fetch. If the readings are identical
the data is guaranteed correct.

In standard slave mode, the slave can use hit 7 of SLP_STAT to indicate valid data. To update the
status, the slave performs the following sequence:

¢ Clear the flag bit (bit 7) without changing the other four status bits.

¢ Update the status bits (SLP_STAT.6:3).

¢ Set the flag bit (bit 7) without changing the other four status bits.

9-16 [|

InU® SLAVE PORT

SLP_STAT Address: 1FF8H
Reset State: XXH

The master can read the slave port status (SLP_STAT) register to determine the status of the slave.
The slave can read all bits and can write bits 7:3 for general-purpose status information. (The bits are
user-defined flags.) If the master attempts to write to SLP_STAT, it actually writes to SLP_CMD. To
read from this register (rather than P3_REG), the master must first write “1” to the pin selected by
SLP_CON.2.

7 0
SMO/SF4 SF3 SF2 SF1 ‘ ‘ SFO CBE IBE OBF
Bit Bit .
Number Mnemonic Function
7 SMO/SF4 Shared Memory Operation/Status Field Bit 4

In shared memory mode, bit 7 (SMO) indicates whether the bus interface
logic received a read (1) or a write (0). SMO can be read but not written.

In standard slave mode, bit 7 (SF4) is the high bit of the status field.

6:3 SF3:0 Status Field

The slave can write to these bits for general-purpose status information.
(The bits are user-defined flags).

2 CBE Command Buffer Empty

This flag is set after the slave reads SLP_CMD. The flag is cleared and
the command buffer full (CBF) interrupt pending bit (INT_PEND1.0) is
set after the master writes to SLP_CMD.

1 IBE Input Buffer Empty

This flag is set after the slave reads P3_PIN. The flag is cleared and the
IBF interrupt pending bit (INT_PEND.7) is set after the master writes to
P3_PIN.

0 OBF Output Buffer Full

This flag is set after the slave writes to P3_REG. The flag is cleared and
the OBE interrupt pending bit (INT_PEND.6) is set after the master
reads P3_REG.

Figure 9-7. Slave Port Status (SLP_STAT) Register

[| 9-17

intgl. 1 O

Event Processor
Array (EPA)

CHAPTER 10
EVENT PROCESSOR ARRAY (EPA)

Control applications often require high-speed event control. For example, the controller may need
to periodically generate pulse-width modulated outputs, an analog-to-digital conversion, or an in-
terrupt. In another application, the controller may monitor an input signal to determine the status
of an external device. The event processor array (EPA) was designed to reduce the CPU overheac
associated with these types of event control. This chapter describes the EPA and its timers and
explains how to configure and program them.

10.1 EPA FUNCTIONAL OVERVIEW

The EPA performs input and output functions associated with two timer/counters, timer 1 and
timer 2 (Figure 10-1). In the input mode, the EPA monitors an input pin for an event: a rising edge,
a falling edge, or an edge in either direction. When the event occurs, the EPA records the value
of the timer/counter, so that the event is tagged with a time. This is caliggudicapture Input
captures are buffered to allow two captures befovarrun occurs. In the output mode, the EPA
monitors a timer/counter and compares its value with a value stored in a register. When the tim-
er/counter value matches the stored value, the EPA can trigger an event: a timer reset, an A/D
conversion, or an output event (set a pin, clear a pin, toggle a pin, or take no action). This is called
anoutput compareThe EPA sets an interrupt pending bit in response to an input capture or an
output compare. This bit can optionally cause an interrupt. The EPA has ten capture/compare
channels (EPA0-9) and two compare-only channels (COMPO and COMP1). The two compare-
only channels share output pins with two of the capture/compare channels (EPA8 and EPA9).

10-1

8XC196NT USER’S MANUAL Inu®

Timer-Counter Unit

TIMER1

TIMER2

Capture/Compare .
EPA 3:0 D Channel 0-3 [EPA3:0 Interrupts
Capture/Compare ~—
epA7:4 [} Channel 4-7 >
Capture/Compare -
erAs / compo [} Channel 8 >
EPAX
Indirect Interrupt
Compare-only -~ Interrupt
Channel 0 - Processor
Logic
Capture/Compare -
erA9 / comp1 [} Channel 9 -

Compare-only
Channel 1

Y

A0308-03

Figure 10-1. EPA Block Diagram

10.2 EPA AND TIMER/COUNTER SIGNALS AND REGISTERS
Table 10-1 describes the EPA and timer/counter input and output signals. Each signal is multi-

plexed with a port pin as shown in the first column. Table 10-2 briefly describes the registers for
the EPA capture/compare channels, EPA compare-only channels, and timer/counters.

10-2

intel.

EVENT PROCESSOR ARRAY (EPA)

Table 10-1. EPA and Timer/Counter Signals

. . EPA .
Port Pin EPA Signal(s) Signal Type Description
P1.0 EPAO 110 High-speed input/output for capture/compare
channel 0.
T2CLK | External clock source for timer 2. If you use
T2CLK, you cannot use capture/compare channel
0.
P11 EPA1 /10 High-speed input/output for capture/compare
channel 1.
P12 EPA2 110 High-speed input/output for capture/compare
channel 2.
T2DIR | External direction control for timer 2. If you use
T2DIR, you cannot use capture/compare channel
2.
P1.7:3 EPA7:3 /10 High-speed input/output for capture/compare
channels 3-7.
P6.0 EPA8 /10 High-speed input/output for capture/compare
channel 8.
COMPO (0] Output of the compare-only channel 0.
P6.1 EPA9 /10 High-speed input/output for capture/compare
channel 9.
COMP1 (0] Output of the compare-only channel 1.
P6.2 T1CLK [External clock source for timer 1.
P6.3 T1DIR | External direction control for timer 1.
Table 10-2. EPA Control and Status Registers
Mnemonic Address Description
COMPO_CON 1F88H EPAXx Compare Control
COMP1_CON 1F8CH These registers control the functions of the compare-only
channels.
COMPO_TIME | 1F8AH EPAXx Compare Time
COMP1_TIME | 1F8EH These registers contain the time at which an event is to occur on
the compare-only channels.
EPA_MASK 1FAOH EPA Interrupt Mask
The bits in this 16-bit register enable and disable (mask) 16 of the
interrupts associated with the EPAx interrupt, EPA4-9 and
OVRO-9.
EPA_MASK1 1FA4H EPA Interrupt Mask 1
The bits in this 8-bit register enable and disable (mask) four
interrupts associated with the EPAx interrupt, OVRTM1,
OVRTM2, COMPO, and COMP1
EPA_PEND 1FA2H EPA Interrupt Pending
Any set bit in this register indicates a pending interrupt.
EPA_PEND1 1FAG6H EPA Interrupt Pending 1

Any set bit in this register indicates a pending interrupt.

10-3

8XC196NT USER’S MANUAL Inu®

Table 10-2. EPA Control and Status Registers (Continued)

Mnemonic Address Description
EPAO_CON 1F60H EPAX Capture/Compare Control
EPA1_CON 1F64H

These registers control the functions of the capture/compare
EPA2_CON 1F68H channels. EPA1_CON and EPA3_CON require an extra byte

EPA3_CON 1F6CH because they contain an additional bit for PWM remap mode.
EPA4_CON 1F70H These two registers must be addressed as words; the others can
EPAS_CON 1F74H be addressed as bytes.

EPA6_CON 1F78H

EPA7_CON 1F7CH

EPA8_CON 1F80H

EPA9_CON 1F84H

EPAO_TIME 1F62H EPAX Capture/Compare Time

EPAL_TIME 1F66H In capture mode, these registers contain the captured timer value.
EPA2_TIME 1F6AH In compare mode, these registers contain the time at which an
EPA3_TIME 1FGEH event is to occur. In capture mode, these registers are buffered to
EPA4_TIME 1F72H allow two captures before an overrun occurs. However, they are
EPAS_TIME 1F76H not buffered in compare mode.

EPA6_TIME 1F7AH

EPA7_TIME 1F7EH

EPA8_TIME 1F82H

EPA9_TIME 1F86H

EPAIPV 1FA8H EPA Interrupt Priority Vector Register

The lower four bits of this register contain a number from 01H to
14H corresponding to the highest priority active EPAX interrupt
source. This value, when used with the TIIMP instruction,
enables software to branch to the correct interrupt service routine
for the active interrupt.

INT_MASK 0008H Interrupt Mask

Five bits in this register enable and disable (mask) the individual
EPAO, EPAL, EPA2, and EPA3 interrupts and the multiplexed
EPAX interrupt. The EPA_MASK and EPA_MASK]1 register bits
enable and disable the individual sources of the EPAX interrupt.
INT_PEND 0009H Interrupt Pending

Five bits in this register are set to indicate pending individual
interrupts EPAO, EPA1, EPA2, and EPA3, and the multiplexed
EPAX interrupt. The EPA_PEND and EPA_PENDL1 register bits
indicate which source(s) of the EPAXx interrupt are pending.
P1_DIR 1FD2H Port x Direction

P6_DIR 1FD3H Each bit of Px_DIR controls the direction of the corresponding pin.
Clearing a bit configures a pin as a complementary output; setting
a bit configures a pin as an input or open-drain output. (Open-
drain outputs require external pull-ups.)

P1_MODE 1FDOH Port x Mode

P6_MODE 1FD1H Each bit of Px_MODE controls whether the corresponding pin
functions as a standard I/O port pin or as a special-function
signal. Setting a bit configures a pin as a special-function signal;
clearing a bit configures a pin as a standard I/O port pin.

P1_PIN 1FD6H Port x Input

P6_PIN 1FD7H Each bit of Px_PIN reflects the current state of the corresponding
pin, regardless of the pin configuration.

10-4 [|

Inbl® EVENT PROCESSOR ARRAY (EPA)

Table 10-2. EPA Control and Status Registers (Continued)

Mnemonic Address Description
P1_REG 1FD4H Port x Data Output
P6_REG 1FDSH For an input, set the corresponding Px_REG bit.

For an output, write the data to be driven out by each pin to the
corresponding bit of Px_REG. When a pin is configured as
standard 1/0 (Px_MODE.x=0), the result of a CPU write to
Px_REG is immediately visible on the pin. When a pin is
configured as a special-function signal (Px_MODE.x=1), the
associated on-chip peripheral or off-chip component controls the
pin. The CPU can still write to Px_REG, but the pin is unaffected
until it is switched back to its standard 1/O function.

This feature allows software to configure a pin as standard 1/0
(clear Px_MODE.x), initialize or overwrite the pin value, then
configure the pin as a special-function signal (set Px_MODE.X). In
this way, initialization, fault recovery, exception handling, etc., can
be done without changing the operation of the associated
peripheral.

T1CONTROL 1F98H Timer 1 Control

This register enables/disables timer 1, controls whether it counts
up or down, selects the clock source and direction, and
determines the clock prescaler setting.

T2CONTROL 1F9CH Timer 2 Control

This register enables/disables timer 2, controls whether it counts
up or down, selects the clock source and direction, and
determines the clock prescaler setting.

TIMER1 1F9AH Timer 1 Value
This register contains the current value of timer 1.
TIMER2 1F9EH Timer 2 Value

This register contains the current value of timer 2.

[| 10-5

8XC196NT USER’S MANUAL

10.3 TIMER/COUNTER FUNCTIONAL OVERVIEW

The EPA has two 16-bit up/down timer/counters, timer 1 and timer 2, which can be clocked in-

intel.

ternally or externally. Each is calledimerif it is clocked internally and eounterif it is clocked
externally. Figure 10-2 illustrates the timer/counter structure.

T2CONTROL.2:0

\ts

T2CLK D Timer 2
Foscl4 Prescaler Clock
ocl
Quadrature Count Module
- I
Timer 1 Overflow Overflow
OVR2
Interrupt
T2DR [}—
T2CONTROL.6 _)
N Direction
Quadrature Direction
T1CONTROL.2:0
3 .
N Timer 1
T1CLK ! I—
Prescaler Clock
Foscl4 Module
Quadrature Count
|~ Overflow f——@——m
OVR1
Interrupt
N
T1DIR [}—
T1CONTROL.6 Direction
Quadrature Direction
|~
A0350-02

10-6

Figure 10-2. EPA Timer/Counters

Int€|® EVENT PROCESSOR ARRAY (EPA)

The timer/counters can be used as time bases for input captures, output compares, and pro
grammed interrupts (software timers). When a counter increments from FFFEH to FFFFH or dec-
rements from 0001H to O000H, the counter-overfioterrupt pending bit is set. This bit can
optionally cause an interrupt. The clock source, direction-control source, count direction, and res-
olution of the input capture or output compare arpragjrammablésee Programminghe Tim-

ers” on page 10-17). The maximum count rate is one-half the internal clock ratg,/dr(fvhere

Foscis the XTAL1 frequency, in Hz). This provides a 200 ns resolution (at 20 MHz) for an input
capture or output compare.

10.3.1 Cascade Mode (Timer 2 Only)

Timer 2 can be used in cascade mode. In this mode, the timer 1 overflow output is used as the
timer 2 clock input. Either the direction control bit of the timer 2 control register or the direction
control assigned to timer 1 controls the count direction. This method, cakedding can pro-

vide a slow clock for idle mode timeout control or for slow pulse-width modulation (PWM) ap-
plications (see “Generating a Low-speed PWM Output” on page 10-14).

10.3.2 Quadrature Clocking Mode

Both timer 1 and timer 2 can be used in quadrature clocking mode. This mode usdslike T

and TXDIR pins as quadrature inputs, as shown in Figure 10-3. External quadrature-encoded sig-
nals (two signals at the same frequency that differ in phase°pya@0input, and the timer incre-
ments or decrements by one count on each rising edge and each falling edge. Beca@iethe T

and ™XDIR inputs are sampled by the internal phase clocks, transitions must be separated by at
least two state times for proper opérat The count is clocked by PH2, which is PH1 delayed by
one-half period. The sequence of the signal edges and levels controls the count direction. Refer
to Figure 10-4 and Table 10-3 for sequencimfgimation.

A typical source of quadrature-encoded signals is a shaft-angle decoder, shown in Figure 10-3.
Its output signals X and Y are input tQLK and TxDIR, which in turn output signals
X_internal and Y_internal. These signals are used in Figure 10-4 and Table 10-3 to describe the
direction of the shatft.

10-7

8XC196NT USER’S MANUAL

8XC196 Device

Optical

Reader \

l Decrement 7
I
|
|
|
I
|
I '_: TXCLK
I = DQ D Q DQ
I
I
l [[| —
I
| TxDIR
II> = DQ D Q D Q
|
I

PH2
PH1

X_internal

Y_internal

A0268-02

Figure 10-3. Quadrature Mode Interface

Table 10-3. Quadrature Mode Truth Table

State of X_internal
(TXCLK)

State of Y_internal
(TxDIR)

Count Direction

0

Increment

Increment

Increment

Increment

Decrement

Decrement

Decrement

Rlo|- |- |k lo]- |-

1
l
1
0
1
1
1

Decrement

10-8

Inu® EVENT PROCESSOR ARRAY (EPA)

ennnnnnnnnnnn

A0269-02

Figure 10-4. Quadrature Mode Timing and Count

10.4 EPA CHANNEL FUNCTIONAL OVERVIEW

The EPA has temprogrammable capture/cqrare channels that can perform the following tasks.
¢ capture the current timer value when a specified transition occurs on the EPA pin

e start an A/D conversion when an event is captured or the timer value matches the
programmed value in the event-time register

¢ clear, set, or toggle the EPA pin when the timer value matches the programmed value in the
event-time register

* generate an interrupt when a capture or compare event occurs
* generate an interrupt when a capture overrun occurs

* reset its own base timer in compare mode

* reset theopposite timer in both compare and capture mode

In addition to the capture/compare channels, the EPA also has two compare-only channels. They
support all the comparfenctions of the capture/compare channels.

10-9

8XC196NT USER’S MANUAL Inu®

Each EPA channel has a control register, £RPON (capture/compare channels) or
COMPx_CON (compare-only channels); an event-time registerXePMME (capture/compare
channels) or COMP_TIME (compare-only channels); and a timer input (Figure 10-5). The con-

trol register selects the timer, the mode, and either the event to be captured or the event that is tc
occur. The event-time register holds the captured timer value in capture mode and the event time
in compare mode. See “Prograimg the Capture/Compare Channels” on page 10-20 and “Pro-

gramming the Compare-only Channels” on page 10-25 for configuration information.

The two compare-only channels share output pins with capture/compare channels 8 and 9. This
means that both capture/compare channel 8 and compare-only channel 0 can set, clear, or toggl
the EPA8/COMPO pin. They can operate at the same time, and neither has priority in its access to
the output pin. Capture/compare channel 9 and compare-only channel 1 share the EPA9/COMP1

pin in this same way.

Timer/Counter Unit

«— External clocking (TxCLK) with up to 6-bit prescaler

TIMER1 X
— Quadrature clocking through TxCLK and TxDIR
Clock on |« Internal clocking with up to 6-bit prescaler
TIMER1 overflow ~ TIMER2
aY
EPA Capture/Compare
L Capture Overrun Channel x
OVRx — ! !
Interrupt . * * * .
B Y . 1 Capture . ! EPA Pin
-« EPAx_TIME > Buffer A | X ' 0
Y ! 1A
A Compare ! [' |
1 - 1
” L 'l—/_lxl TGL| A !
] Y | ! ' |
o 1 ! * ! 1
1 X ! 1
-« ! \ ! 1
=< : ' : 1
EPA <Z: [: o
Interrupt , ' Reset Timer | I
. | — . |
EPAX CON | ___Overwrite _ 1 ' Start AID ! !
T T ' - . I
! IR Mode Control_, | Mode Selection 1 |
! TRemap !
I~ b REmep o _____ | .
T EPA1 and 3 only. If enabled for EPA1, EPAO shares the EPA1 pin. If enabled for EPA3, EPA2
shares the EPA3 pin.
A0270-02

Figure 10-5. A Single EPA Capture/Compare Channel

10-10

Inbl® EVENT PROCESSOR ARRAY (EPA)

10.4.1 Operating in Capture Mode

In capture mode, when a valid event occurs on the pin, the value of the selected timer is captured
into a buffer. The timer value is then transferred from the buffer to thex HPWE register,

which sets the EPA interrupt pending bit as shown in Figure 10-6. If enabled, an interrupt is gen-
erated. If a second event occurs before the CPU reads the first timer valuexinT BNPB, the

current timer value is loaded into the buffer and held there. After the CPU reads theTBWA

register, the contents of the capture buffer are automatically transferred intoTHME and the

EPA intarupt pending bit is set.

TIMERX
Event Occurs
<€ - at EPA Pin
Capture Buffer
EPA
Interrupt g = = == acaa--
Pending Bit
Set
EPAX_TIME

Read-out Time Value

A2458-02

Figure 10-6. EPA Simplified Input-capture Structure

If a third event occurs before the CPU reads the event-time register, the overwrite bit
(EPAX_CON.0) determines how the EPA will handle the everthdbit is clear, the EPA ignores

the third event. If the bit is set, the third event time overwrites tanskevent time in the capture
buffer. Both situations set the aven interrupt pending bit, and if the interrupt is enabled, they
generate an overrun interrupt. Table 10-4 summarizes tlsébfmactions when a valid event oc-
curs.

NOTE

In order for an event to be captured, the signal must be stable for at least two
state times both before and after the transition occurs (Figure 10-7).

[| 10-11

8XC196NT USER’S MANUAL

Event 1 1(

Event 2

2 State
Times

_ 1

| 2 State 2 State |
Times Times

2 State
Times

A3130-01

Figure 10-7. Valid EPA Input Events

Table 10-4. Action Taken when a Valid Edge Occurs

Overwrite Bit Status of
(EPAX_CON.0) Capture Buffer Action taken when a valid edge occurs
- : & EPAX_TIME
0 empty Edge is captured and event time is loaded into the capture buffer and
EPAX_TIME register.
0 full New data is ignored — no capture, EPA interrupt, or transfer occurs;
OVRXx interrupt pending bit is set.
1 empty Edge is captured and event time is loaded into the capture buffer and
EPAX_TIME register.
1 full Old data is overwritten in the capture buffer; OVRx interrupt pending
bit is set.

An input capture event does not set the interrupt pending bit until the capturedltimactaally

moves from the capture buffer into the BPAIME register. If the buffer contains data and the
PTS is used to service the interrupts, then two PTS interrupts occur almost back-to-back (that is,
with one instruction executed between the interrupts).

10.4.1.1 Handling EPA Overruns

Overruns occur when an EPA input transitions at a rate that cannot be hantiedBA inter-

rupt service routine. If no overrun handling strategy is in place, and if the following three condi-
tions exist, a situation may occur where both the capture buffer and the BN register
contain data, and no EPA interrupt is generated.

¢ an input signal with a frequency high enough to cause overruns is present on an enabled
EPA pin, and

¢ the overwrite bit is set (EBACON.O0 = 1; old data is overwritten on overrun), and

¢ the EPAX_TIME register is read at the exact instant that the EPA recognizes the captured
edge as valid.

10-12 [|

Int€|® EVENT PROCESSOR ARRAY (EPA)

The input frequency at which this occurs depends on the length of the interrupt service routine as
well as other factors. Unless the interrupt service routine includes a check for overruns, this situ-
ation will remain the same until the device is reset or thexEPIME register is read. The act of
reading EPX_TIME allows the buffered time value to be moved into EPAME. This clears

the buffer and allows another event to be captured. Remember that the act of the transferring the
buffer contents to the ERATIME register is what actually sets the BRAterrupt pending bit

and generates the interrupt.

Any one of the following methods can be used to prevent or recover from this situation.

* Clear EPA_CON.O

When the overwrite bit (EPA CON.O) is zero, the EPA does not consider the captured
edge until the EPA TIME register is read and the data in the capture buffer is transferred to
EPAX_TIME. This prevents the situation by ignoring new input capture events when both
the capture buffer and ERATIME contain valid capture times. The O¥IRending bit in
EPA_PEND is set to indicate that an overrun occurred.

* Enable the OVRinterrupt and read the ERATIME register within the ISR

If this situation occurs, the overrun (OXHnterrupt will be generated. The OXkhterrupt
will then be acknowledged and its interrupt service routine will read thet HPME regis-

ter. After the CPU reads the ERATIME register, the buffered data moves from the buffer
to the EPAX_TIME register. This sets the EPA interrupt pending bit.

* Check for pending EPAinterrupts before exiting an ERASR

Another method for avoiding this situation is to check for pending EPA interrupts before
exiting the EPA interrupt service routine. This is an easy way to detect overruns and addi-
tional interrupts. It can also save loop time by eliminating the latency necessary to service
the pending interrupt. However, this method cannot be used with the peripheral transaction
server (PTS). If your system uses the PTS, you should choose one of the other methods.

10.4.2 Operating in Compare Mode

When the selected timer value matches the event-time value, the action specified in the control
register occurs (i.e., the pin is set, cleared, or toggled, or an A/D conversion is initiated). If the re-
enable bit (EPA_ CON.3 or COMR_CON.3) is set, the action reoccurs on every timer match. If
the re-enable bit is cleared, the action does not reoccur until a new value is written to the event-
time register. See “Programming the Capture/Compare Channels” on page 10-20 and “Program-
ming the Compare-only Channels” on page 10-25 for configuration information.

In compare mode, you can use the EPA to produce a pulse-width modulated (PWM) output. The
following sections describe four possible methods.

[| 10-13

8XC196NT USER’S MANUAL Int9I®

10.4.2.1 Generating a Low-speed PWM Output

You can generate a low-speed, pulse-width modulated output with a single EPA channel and a
standard interrupt service routine. Configure the EPA channel as follows: compare mode, toggle
output, and the compare function re-enabled. Select standard interrupt service, enable the EPA
interrupt, and globally enable interrupts with the El instruction. When the assigned timer/counter
value matches the value in the event-time register, the EPA toggles the output pin and generates
an interrupt. The interrupt service routine loads a new value intx HPWE.

The maximum output frequency depends upon the total interrupt latency and the interrupt-service
execution times used by your system. As additional EPA channels and the other functions of the
microcontroller are used, the maximum PWM frequency decreases because the total interrupt la-
tency and interrupt-service execution time increases. To determine the maximum, low-speed
PWM frequency in your system, calculate your system's worst-case interrupt latency and worst-
case interrupt-service execution time, and then add them together. The worst-case interrupt la-
tency is the total latency of all the interrupts (both normal and PTS) us@diisystem. The
worst-case interrupt-service exaion time is the total execution time of all interrupt service rou-
tines and PTS routines.

The following example shows the calculations for a systerhuses a single EPA channel, a sin-
gle enabled interrupt, and the following interrupt service routine.

;If EPAO-3 interrupt is generated
EPA0-3_ISR:
PUSHA
LD EPAX_CON, #toggle_command
ADD EPAx_TIME, TIMER x, [next_duty_ptr]; Load next event time
POPA
RET

;If EPA X interrupt is generated from EPA4-9 interrupts
EPAX_ISR:
PUSHA
LD jtbase_ptr, #LSW jtbasel
LD epaipv_ptr, EPAIPV ; Load contents of EPAIPV reg into ptr
TIIMP jthase_ptr,[epaipv_ptr],7FH ; Jump to appropriate EPA ISR

;EPA4-9 service routines
EPA4-9_ISR:
PUSHA
LD EPAX_CON, #toggle_command
ADD EPAx_TIME,TIMER x,[next_duty_ptr]
LIMP EPAX_DONE

EPAx_DONE:

POPA
RET

10-14

Int€|® EVENT PROCESSOR ARRAY (EPA)

The worst-case interrupt latency for a single-interrupt system is 56 state times for external stack

usage and 54 state times for internal stack usage (see “Standard Interrupt Latency” on page 5-9)
To determine the execution time for an interrupt service routine, add up the execution time of the

instructions in the ISR (Table A-9).

The total execution time for the ISR that servicesrimfgs EPA3:0 is 79 state tim&s external

stack usage or 71 state times for internal stack usage. Therefore, a single capture/compare channe
0-3 can be updated every 125 state times assuming internal shgek(Gd4 + 71). Each PWM

period requires two updates (one setting and one clearing), so the execution time for a PWM pe-
riod equals 250 state times. At 20 MHz, the PWM period is 25 ps and the maximum PWM fre-
guency is 40 kHz.

The total execution time fahe ISR that services the ER£capture/compare channels 4-9) in-
terrupt is 175 state times for external stack usage or 159 for internal stgek Tkerefore, a sin-

gle capture/compare channel 4-9 can be updated every 213 state times assuming internal stac
usage (54 + 159). Each PWM period requires two updates (one setting and one clearing), so the
execution time for a PWM period equals 426 state times. At 20 MHz, the PWM pefid® igs

and the maximum PWM frequency28.47 kHz.

10.4.2.2 Generating a Medium-speed PWM Output

You can generate a medium-speed, pulse-width modulated output with a single EPA channel and
the PTS set up in PWM toggle mode. “PWM Toggle Mode Example” on page 5-33 describes how

to configure the EPA and PTS. Once started, this method requires no CPU intervention unless you
need to change the output frequency. The method uses a single timer/counteneficedinter

is not interrupted during this process, so other EPA channels can also use it if they do not reset it.

The maximum output frequency depends upon the total interrupt latency and interrupt-service ex-
ecution time. As additional EPA channels and the other functions of the microcontroller are used,
the maximum PWM frequency decreases because the total interrupt latency and interrupt-service
execution time increases. To determine the maximum, medium-speed PWM frequgaay in
system, calculate your system's worst-casarinpt latency and worst-case interrupt-service ex-
ecution time, and then add them together. The worst-case interrupt latency is the total latency of
all the intarupts (both normal and PTS) used in ysystem. The worst-case interrupt-service
execution time is the total execution time of all interrupt service routines and PTS cycles.

The following example shows the calculations for a systerhuses a single EPA channel, a sin-

gle enabled interrupt, and PTS service. This example assumes that the PTS has been initialized
the duty cycle and frequency are fixed, and that the interrupt from the capture/compare channel
is not multiplexed (i.e., EPA3:0).

10-15

8XC196NT USER’S MANUAL Int9I®

The worst-case interrupt latency for a single-interrupt system with PTS service is 43 state times
(see “PTS Interrupt Latency” on page 5-9). The PTS cycle execution time in PWM toggle mode
is 15 state times (Table 5-4 on page 5-10). Therefore, a single capture/compare channel 0-3 car
be updated every 58 state times (43 + 15). Each PWM period requires two updates (one setting
and one clearing), so the execution time for a PWM period equals 116 state times. At 20 MHz,
the PWM period is 11.6 ps and the maximum PWM frequency is 86.2 kHz.

10.4.2.3 Generating a High-speed PWM Output

You can generate a high-speed, pulse-width modulated output with a pair of EPA channels and
the PTS setup in PWM remap mode. “PWM Remap Mode Example” on page 5-37 describes how
to configure the EPA and PTS. The remap bit (bit 8) must be set in EPA1_CON (to pair EPAO and
EPA1) or EPA3_CON (to pair EPA2 and EPA3). One channel must be configured to set the out-
put; the other, to clear it. At the set (or clear) time, the PTS reads the old time value from
EPAX_TIME, adds to it the PWM period constant, and returns the new value to ERAE. Set

and clear times can be programmed to differ by as little as one timer count, resulting in very nar-
row pulses. Once started, this method requires no CPU intervention yolessed to change

the output frequency. The method uses a single timer/counter. The timer/counter is not interrupted
during this process, so other EPA channels can also use it if they do not reset it.

To determine the maximum, high-speed PWM frequency in your system, calculate your system's
worst-case interrupt latency and thdouble it. Theworst-case interrupt latency is the total la-
tency of all the interrupts (both normal and PTS) used in your system. The following example
shows the calculations for a system that uses a pair of remapped EPA channels (i.e., EPAO and
or EPA3 and 4), two enabled interrupts, and PTS service. This example assumes that the PTS ha
been initialized and that the duty cycle and frequency are fixed.

The worst-case interrupt latency for a single-interrupt system with PTS service is 43 state times
(see “PTS Interrupt Latency” on page 5-9). In this mode, the maximum period equals twice the
PTS latency. Therefore, the execution time for a PWM period equals 86 state times. At 20 MHz,
the PWM period is 8.5 ps and the maximum PWM frequency is 116.3 kHz.

10.4.2.4 Generating the Highest-speed PWM Output

You can generate a highest-speed, pulse-width modulated output with a pair of EPA channels and
a dedicated timer/counter. The first channel toggles the output when the timer value matches
EPAX_TIME, and at some later time, the second channel toggles the outputadaasets the
timer/counter. This restarts the cycle. No interrupts are required, resulting in the highest possible
speed. Software must calculate and load the appropriate ERAE values and load them at the
correct time in the cycle in order to change the frequency or duty cycle.

10-16

Int€|® EVENT PROCESSOR ARRAY (EPA)

With this method, the resolution of the EPA (selected by #@ONTROL registers; see Figure

10-8 on page 10-18 and Figure 10-9 on page 10-19) determines the maximum PWM output fre-
guency. (Resolution is the minimum time required between a capture or compare.) At 20 MHz,
a 200 ns resolution results in a maximum PWM of 5 MHz.

10.5 PROGRAMMING THE EPA AND TIMER/COUNTERS

This section discusses configuring the port pins for the EPA and the timer/counters; describes
how to program the timers, the capture/companoels, and the compare-only channels; and
explains how to enable the EPA interrupts.

10.5.1 Configuring the EPA and Timer/Counter Port Pins

Before you can use the EPA, you must configure the pins of port 1 and port 6 to serve as the spe-
cial-function signals for the EPA and, optionally, for the timer/counter clock source and direction
control signals. See “Bidirectional Ports 1, 2, 5, and 6” on page 6-3 for information about config-
uring the port pins.

NOTE

If you use T2CLK as the timer 2 input clock, you cannot use EPA
capture/compare channel 0. If you use T2DIR as the timer 2 direction-control
source, you cannot use EPA capture/compare channel 1.

Table 10-1 on page 10-3 lists the pins associated with the EPA and the timer/counters. Pins that
are not being used for an EPA channel or timer/counter can be configured as standard 1/0O.

10.5.2 Programming the Timers

The control registers for the timers are TICONTROL (Figure 10-8) and T2CONTROL (Figure
10-9). Write to these registers to configure the timers. Write to the TIMER1 and TIMER2 regis-
ters (see Table 10-2 on page 10-3 for addresses) to load a specific timer value.

10-17

8XC196NT USER’S MANUAL Inu®

T1CONTROL

Address: 1F98H
Reset State: O0H

The timer 1 control (TLCONTROL) register determines the clock source, counting direction, and count
rate for timer 1.

7 0
CE uD M2 M. || Mo P2 P1 PO
Bit Bit Function
Number Mnemonic

7 CE Counter Enable
This bit enables or disables the timer. From reset, the timers are
disabled and not free running.
0 = disables timer
1 = enables timer

6 ub Up/Down
This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0)
0 = count down
1 = count up

5:3 M2:0 EPA Clock Direction Mode Bits
These bits determine the timer clocking source and direction control
source.
M2 M1 MO Clock Source Direction Source
0 0 0 Foscl4 UD bit (TLCONTROL.6)
X 0 1 TICLK Pint UD bit (TLCONTROL.6)
0 1 0 Foscl4 T1DIR Pin
0 1 1 TICLK Pint T1DIR Pin
1 1 1 quadrature clocking using T1CLK and T1DIR pins
TIf an external clock is selected, the timer counts on both the rising and
falling edges of the clock.

2:0 P2:0 EPA Clock Prescaler Bits
These bits determine the clock prescaler value.

P2 P1 PO Prescaler Resolution T

0 0 0 divide by 1 (disabled) 200 ns
0 0 1 divide by 2 400 ns
0 1 0 divide by 4 800
0 1 1 divide by 8 1.6 ys
1 0 0 divide by 16 3.2 us
1 0 1 divide by 32 6.4 us
1 1 0 divide by 64 12.8 us
1 1 1 reserved —
T At 20 MHz.

10-18

Figure 10-8. Timer 1 Control (TLCONTROL) Register

Inbl® EVENT PROCESSOR ARRAY (EPA)

T2CONTROL Address: 1F9CH
Reset State: O0H

The timer 2 control (T2CONTROL) register determines the clock source, counting direction, and count
rate for timer 2.

7 0
CE uD M2 M1 ‘ ‘ MO P2 P1 PO
Bit Bit Function
Number Mnemonic
7 CE Counter Enable

This bit enables or disables the timer. From reset, the timers are
disabled and not free running.

0 = disables timer
1 = enables timer
6 ub Up/Down

This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0).

0 = count down
1 = count up

5:3 M2:0 EPA Clock Direction Mode Bits.
These bits determine the timer clocking source and direction source
M2 M1 MO Clock Source Direction Source

0 0 0 Foscl4 UD bit (T2CONTROL.6)

X 0 1 T2CLK Pint UD bit (T2CONTROL.6)

0 1 0 Foscl4 T2DIR Pin

0 1 1 T2CLK Pint T2DIR Pin

1 0 0 timer 1 overflow UD bit (T2CONTROL.6)

1 0 timer 1 same as timer 1

1 1 1 quadrature clocking using T2CLK and T2DIR pins

T If an external clock is selected, the timer counts on both the rising and
falling edges of the clock.

2:0 P2:0 EPA Clock Prescaler Bits

These bits determine the clock prescaler value.
P2 P1 PO Prescaler Resolution T

0 0 0 divide by 1 (disabled) 200 ns
0 0 1 divide by 2 400 ns
0 1 0 divide by 4 800
0 1 1 divide by 8 1.6 ys
1 0 0 divide by 16 3.2 us
1 0 1 divide by 32 6.4 us
1 1 0 divide by 64 12.8 pus
1 1 1 reserved —
T At 20 MHz.

Figure 10-9. Timer 2 Control (T2CONTROL) Register

[| 10-19

8XC196NT USER’S MANUAL Inu®

10.5.3 Programming the Capture/Compare Channels

The EPA_CON register controls the function of its assigned capture/compare channel. The reg-
isters for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3 have an ad-
ditional bit, the remap bit (RM), which is used to enable and disable remapping for high-speed
PWM generation (see “Generating a High-speed PWM Output” on page 10-16). This added bit
(bit 8) requires an additional byte, so EPA1_CON and EPA3_@1st be addressed asords,

while the others can be addressed as bytes.

To program a compare event, write to EPEON (Figure 10-10) to configure the EPA cap-
ture/compare channel and then load the event time inta ERME. To program a capture event,
you need only write to EBACON. Table 10-5 shows the effects of various combinations of
EPAX_CON bhit settings.

Table 10-5. Example Control Register Settings and EPA Operations

Capture Mode
TB | CE | MODE | RE | AD | ROT | ON/RT .
Operation
7 6 5| 4 3 2 1 0
X 0 0 0 — - — 0 None
X 0 0 1 — X X X Capture on falling edges
X 0 1|0 — X X X Capture on rising edges
X 0 1 1 — X X X Capture on both edges
X 0 X |1 — X 1 X Capture on falling edge and reset opposite timer
X 0 1| X | — X 1 X Capture on rising edge and reset opposite timer
X 0 0 1 — 1 X X Start A/D conversion on falling edge
X 0 1|10 — 1 X X Start A/D conversion on rising edge
Compare Mode
TB | CE | MODE | RE | AD | ROT | ON/RT .
Operation
7 6 5| 4 3 2 1 0
X 1 0 0 X — — 0 None
X 1 0 1 X X X X Clear output pin
X 1 1|0 X X X X Set output pin
X 1 1 1 X X X X Toggle output pin
X 1 X | X X X 0 1 Reset reference timer
X 1 X | X X X 1 1 Reset opposite timer
X 1 X | X X 1 X X Start A/D conversion
NOTES: — = bitis not used

X = bit may be used, but has no effect on the described operation. These bits cause other oper-
ations to occur.

10-20

intel.

EVENT PROCESSOR ARRAY (EPA)

x=0-9

EPAX_CON

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3
have an additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON
and EPA3_CON must be addressed as words, while the others can be addressed as bytes.

Address: See Table 10-2 on
page 10-3

Reset State: F700H (x=1 & 3)
00H(x =0, 2, 4-9)

15 8
=13 | = | =] =] = =] =1]=1]Frw|
7 0
| ™ | ce | o | mo |[[RE | AD | ROT [ONRT |
7 0
x=0,249 | 78 | cE | mu | mo || RE | AD | ROT | ONRT |
Bit Bit)
Number Mnemonic Function
15:9" — Reserved; always write as zeros.
af RM Remap Feature
The remap feature applies to the compare mode of the EPA1 and EPA3
only.
When the remap feature of EPAL is enabled, EPA capture/compare
channel 0 shares output pin EPA1 with EPA capture/compare channel 1.
When the remap feature of EPA3 is enabled, EPA capture/compare
channel 2 shares output pin EPA3 with EPA capture/compare channel 3.
0 = remap feature disabled
1 =remap feature enabled
7 B Time Base Select

Specifies the reference timer.

0 =timer 1 is the reference timer and timer 2 is the opposite timer
1 =timer 2 is the reference timer and timer 1 is the opposite timer

A compare event (start of an A/D conversion; clearing, setting, or toggling
an output pin; and/or resetting either timer) occurs when the reference
timer matches the time programmed in the event-time register.

When a capture event (falling edge, rising edge, or an edge change on
the EPAX pin) occurs, the reference timer value is saved in the EPA event-
time register (EPAx_TIME).

T These bits apply to the EPA1_CON and EPA3_CON registers only.

Figure 10-10. EPA Control (EPA x_CON) Registers

10-21

8XC196NT USER’S MANUAL Inu®

EPAX_CON (Continued) Address: See Table 10-2 on
Xx=0-9 page 10-3
Reset State: F700H (x=1 & 3)

00H(x =0, 2, 4-9)

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3
have an additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON
and EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
x=1.3 I N T
7 0
‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘
7 0
x=0249 | 18 | ceE | Mt | mo || RE | Aap | ROT [ONRT |
Nuii:)er Mne?Ti\tonic Function
6 CE Compare Enable
Determines whether the EPA channel operates in capture or compare
mode.

0 = capture mode
1 = compare mode

5:4 M1:0 EPA Mode Select

In capture mode, specifies the type of event that triggers an input capture.
In compare mode, specifies the action that the EPA executes when the
reference timer matches the event time.

M1 MO Capture Mode Event

no capture

capture on falling edge
capture on rising edge
capture on either edge

M1 MO Compare Mode Action

0
0
1
1

R ORFrOo

0 0 no output

0 1 clear output pin

1 0 set output pin

1 1 toggle output pin
3 RE Re-enable

Re-enable applies to the compare mode only. It allows a compare event
to continue to execute each time the event-time register (EPAX_TIME)
matches the reference timer rather than only upon the first time match.

0 = compare function is disabled after a single event
1 = compare function always enabled

T These bits apply to the EPA1_CON and EPA3_CON registers only.

Figure 10-10. EPA Control (EPA x_CON) Registers (Continued)

10-22

intel.

EVENT PROCESSOR ARRAY (EPA)

EPAXx_CON (Continued)

x=0-9

Address: See Table 10-2 on
page 10-3

Reset State: F700H (x=1 & 3)
00H(x =0, 2, 4-9)

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3
have an additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON
and EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
=13 [= | =] -] -l =]—=-1]—-]Frw|
7 0
| 8 | ce | i | mo |[[RE | AD [ROT [ONRT |
7 0
x=0249 | 18 | ceE | Mt | mo || RE | Aap | ROT [ONRT |
Bit Bit)
Number Mnemonic Function
2 AD A/D Conversion
Allows the EPA to start an A/D conversion that has been previously set up
in the A/D control registers. To use this feature, you must select the EPA
as the conversion source in the AD_CONTROL register.
0 = causes no A/D action
1 = EPA capture or compare event triggers an A/D conversion
1 ROT Reset Opposite Timer

Controls different functions for capture and compare modes.
In Capture Mode:

0 = causes no action
1 = resets the opposite timer

In Compare Mode:
Selects the timer that is to be reset if the RT bit is set.

0 = selects the reference timer for possible reset
1 = selects the opposite timer for possible reset

The TB bit (bit 7) selects which is the reference timer and which is the
opposite timer.

T These bits apply to the EPA1_CON and EPA3_CON registers only.

Figure 10-10. EPA Control (EPA x_CON) Registers (Continued)

10-23

8XC196NT USER’S MANUAL Inu®

EPAXx_CON (Continued)

x=0-9

Address: See Table 10-2 on
page 10-3

Reset State: F700H (x=1 & 3)
00H(x =0, 2, 4-9)

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3
have an additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON
and EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8

x=1,3 - -1 -1 -l -1 -1 =1 rw|
7 0
‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘
7 0

X=0,2 4-9 ‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘

Nuii:)er Mne?Ti\tonic Function

0 ON/RT Overwrite New/Reset Timer

The ON/RT bit functions as overwrite new in capture mode and reset
timer in compare mode.

In Capture Mode (ON):
An overrun error is generated when an input capture occurs while the
event-time register (EPAx_TIME) and its buffer are both full. When an

overrun occurs, the ON bit determines whether old data is overwritten or
new data is ignored:

0 =ignores new data
1 = overwrites old data in the buffer

In Compare Mode (RT):

0 =disables the reset function
1 =resets the ROT-selected timer

T These bits apply to the EPA1_CON and EPA3_CON registers only.

10-24

Figure 10-10. EPA Control (EPA x_CON) Registers (Continued)

intel.

EVENT PROCESSOR ARRAY (EPA)

10.5.4 Programming the Compare-only Channels

To program a compare event, youist first write to the COMP_CON (Figure 10-11) register to
configure the compare-only channel and then load the event time into COMFE.
COMPx_CON has the same bits and settings asEEON. COMR_TIME is functionally iden-

tical to EPA_TIME.

x=0-1

channels.
7

COMPx_CON

Address: 1F88H (x = 0)
1F8CH (x=1)
Reset State: OOH

The EPA compare control (COMPx_CON) registers determine the function of the EPA compare

B

CE

M1 MO H RE AD ROT RT

Bit
Number

Bit
Mnemonic

Function

7

B

Time Base Select

Specifies the reference timer.

0 =timer 1 is the reference timer and timer 2 is the opposite timer
1 =timer 2 is the reference timer and timer 1 is the opposite timer

A compare event (start of an A/D conversion; clearing, setting, or
toggling an output pin; and/or resetting either timer) occurs when the
reference timer matches the time programmed in the event-time register.

CE

Compare Enable

This bit enables the compare function.
0 = compare function disabled

1 = compare function enabled

5:4

M1:0

EPA Mode Select
Specifies the type of compare event.
M1 MO

0
0
1
1

no output

clear output pin
set output pin
toggle output pin

R ORFrOo

RE

Re-enable

Allows a compare event to continue to execute each time the event-time
register (COMPx_TIME) matches the reference timer rather than only
upon the first time match.

0 = compare function will drive the output only once
1 = compare function always enabled

Figure 10-11. EPA Compare Control (COMP x_CON) Registers

10-25

8XC196NT USER’S MANUAL Inu®

COMPx_CON Address: 1F88H (x = 0)
(Continued) 1F8CH (x=1)
x=0-1 Reset State: OOH

The EPA compare control (COMPx_CON) registers determine the function of the EPA compare
channels.

7 0
B CE M1 MO ‘ ‘ RE AD ROT RT
Bit Bit Function
Number Mnemonic
2 AD A/D Conversion

Allows the EPA to start an A/D conversion that has been previously set
up in the A/D control registers. To use this feature, you must select the
EPA as the conversion source in the AD_CONTROL register.

1 = EPA compare event triggers an A/D conversion

0 = causes no A/D action

1 ROT Reset Opposite Timer

Selects the timer that is to be reset if the RT bit is set.

0 = selects the reference timer for possible reset
1 = selects the opposite timer for possible reset

The state of the TB bit determines which timer is the reference timer and
which timer is the opposite timer.

0 RT Reset Timer

This bit controls whether the timer selected by the ROT bit will be reset

1 = resets the timer selected by the ROT bit
0 = disables the reset function

Figure 10-11. EPA Compare Cont rol (COMP x_CON) Registers (Continued)

10.6 ENABLING THE EPA INTERRUPTS

The EPA generates four individual event interrupts, EPAO-EPA3, and the multiplexed event in-
terrupt, EPA. To enable the inteupts, set the corresponding bits in the INT_MABHKister
(Figure 5-5 on page 5-13). To enable the individual sources of the multiplexediriE¥upt,

set the corresponding bits in the EPA_MASK (Figure 10-12) and EPA_MASK1 (Figure 10-13)
registers. (Chapter 5, “Standard and PTS Interrupts,” discusses the interrupts in greater detail.)

10-26

Inbl® EVENT PROCESSOR ARRAY (EPA)

EPA_MASK Address: 1FAOH
Reset State: 0000H

The EPA interrupt mask (EPA_MASK) register enables or disables (masks) interrupts associated with
the multiplexed EPAX interrupt

15 8
| Epaa | EPas | EPa6 | EPA7 || EPA8 | EPA9 | OVRO | OVRL |
7 0
| OvR2 | OWR3 | OVR4 | OWR5 || OVRe | OWR7 | OVR8 | OVRo |
Bit .
Number Function
15:10 Setting this bit enables the corresponding interrupt as a multiplexed EPAXx interrupt
source.The multiplexed EPAXx interrupt is enabled by setting its interrupt enable bit in the
interrupt mask register (INT_MASK.0 = 1).

Figure 10-12. EPA Interrupt Mask (EPA_MASK) Register

EPA_MASK1 Address: 1FA4H
Reset State: O0H

The EPA interrupt mask 1 (EPA_MASKZ1) register enables or disables (masks) interrupts associated
with the multiplexed EPAX interrupt.

7 0
_ _ _ _ H COMPO | COMPL | OVRTML | OVRTM2

Bit .
Number Function
7:4 Reserved; for compatibility with future devices, write zeros to these bits.
3.0 Setting a bit enables the corresponding interrupt as a multiplexed EPAXx interrupt source.
The multiplexed EPAX interrupt is enabled by setting its interrupt enable bit in the
interrupt mask register (INT_MASK.0 = 1).

Figure 10-13. EPA Interrupt Mask 1 (EPA_MASK1) Register

10.7 DETERMINING EVENT STATUS

In compare mode, an interrupt pending bit is set each time a match occurs on an enabled even
(even if the interrupt is specifically masked in the mask register). In capture mode, an interrupt
pending bit is set each time a programmed event is captured and the event time moves from the
capture buffer to the EBATIME register. If the capture buffer is full when an event occurs, an
overrun interrupt pending bit is set.

[| 10-27

8XC196NT USER’S MANUAL Inu®

The EPAO-EPA3 pending bits are located in INT_PEND (Figure 5-7 on page 5-17). The pending
bits for the multiplexed interrupts (those that share xgR&ke located in EPA_PEND (Figure
10-14) and EPA_PENDL1 (Figure 10-15). If an interrupt is masked, software can still poll the in-

terrupt pending registers to determine whether an event has occurred.

EPA_PEND Address: 1FA2H
Reset State: 0000H

When hardware detects a pending EPAx interrupt, it sets the corresponding bit in the EPA interrupt
pending (EPA_PEND or EPA_PEND1) registers. The EPAIPV register contains a number that
identifies the highest priority, active, multiplexed interrupt source. When EPAIPV is read, the EPA
interrupt pending bit associated with the EPAIPV priority value is cleared.

15 8
| Epaa | EPas | EPa6 | EPA7 || EPA8 | EPA9 | OVRO | OVRL |
7 0
| OvR2 | OWR3 | OVR4 | OWR5 || OVRe | OWR7 | OVR8 | OVRo |
Nuii:)er Function
15:10 Any set bit indicates that the corresponding EPAX interrupt source is pending. The bit is
cleared when the EPA interrupt priority vector register (EPAIPV) is read.

Figure 10-14. EPA Interrupt Pending (EPA_PEND) Register

EPA_PEND1 Address: 1FAGH
Reset State: O0H

When hardware detects a pending EPAx interrupt, it sets the corresponding bit in EPA interrupt
pending (EPA_PEND or EPA_PEND1) registers. The EPAIPV register contains a number that
identifies the highest priority, active, multiplexed interrupt source. When EPAIPV is read, the EPA
interrupt pending bit associated with the EPAIPV priority value is cleared.

7 0

— — — — H COMPO | comP1 | ovRTML | OVRTM2

Bit .
Number Function
7:4 Reserved; always write as zeros.
3.0 Any set bit indicates that the corresponding EPAX interrupt source is pending. The bit is
cleared when the EPA interrupt priority vector register (EPAIPV) is read.

Figure 10-15. EPA Interrupt Pending 1 (EPA_PEND1) Register

10-28

Int€|® EVENT PROCESSOR ARRAY (EPA)

10.8 SERVICING THE MULTIPLEXED EPA INTERRUPT WITH SOFTWARE

The multiplexed interrupts (those represented byx¥rBAould be serviced with a standard inter-

rupt service routine rather than the PTS (Chapter 5, “Standard and PTS Interrupts”). The PTS can
take only a limited number of actions, while interrupt service routines can be tailored to the needs
of each interrupt.

The EPA_PEND (Figure 10-14) and EPA_PEND1 (Figure 10-15) registers contain the bits that
identify the interrupt source(s). Traditionally, software would sort these bits to determine which
interrupt service routine to execute. This sorting increases the overall integpphse time by

a significant number of states. However, the EPA interrupt priority vector register (EPAIPV, Fig-
ure 10-16) contains a number that corresponds to the highest-priority active interrupt source (Ta-
ble 10-6).

For example, assume that an overrun occurs on capture/compare channel 9 and no other multi-
plexed interrupt is pending and unmasked. This sets the OVR9 pending bit in the EPA_PEND
register. If the corgponding mask bit is set in the EPA_MASK register, thexaR#errupt pend-

ing bit is set. If enabled, the ERMterrupt is generated. The encoder placesitmber for the

OVR9 interrupt (05H) into EPAIPV. Reading EPAIPV identifies capture/compare channel 9 as
the source, clears the OVR9 pending bit, and clears EPAIPV. When the device vectors toxthe EPA
interrupt service routine, the ERfending bit is cleared. If other multiplexed interrupts have oc-
curred, the encoder loads the number that spoeds to théighest-priority, active, multiplexed
interrupt into EPAIPV. When the EPAIPYV register contains Oidre are no more pending in-
terrupts associated with the EPilaterrupt.Thus, it is recommended that the EPAIPV register be
read until it equals O0H to ensure that all pending, enabled interrupts are serviced.

10-29

8XC196NT USER’S MANUAL Inu®

EPAIPV Address: 1FA8H
Reset State: O00H

When an EPAXx interrupt occurs, the EPA interrupt priority vector (EPAIPV) register contains a number
that identifies the highest priority, active, multiplexed interrupt source (see Table 10-6).

EPAIPV allows software to branch via the TIIMP instruction to the correct interrupt service routine
when EPAX is activated. Reading EPAIPV clears the EPA pending bit for the interrupt associated with
the value in EPAIPV. When all the EPA pending bits are cleared, the EPAX pending bit is also cleared.

7 0
— — — Pv4a || Pv3 PV2 PV1 PVO
Bit Bit . Function
Number Mnemonic
5:7 — Reserved; always write as zeros.
4.0 PV4:0 Priority Vector

These bits contain a number from 01H to 14H corresponding to the
highest-priority active interrupt source. This value, when used with the
TIIMP instruction, allows software to branch to the correct interrupt
service routine.

Figure 10-16. EPA Interrupt Priority Vector (EPAIPV) Register

Table 10-6. EPAIPV Interrupt Priority Values

Value Interrupt Value Interrupt alue Interrupt
highest 14H EPA4 ODH OVR1 06H OVR8
13H EPAS5 OCH OVR2 O5H OVR9
12H EPAG6 OBH OVR3 04H COMPO
11H EPA7 OAH OVR4 03H COMP1
10H EPA8 09H OVR5 02H OVRTM1
OFH EPA9 08H OVR6 01H OVRTM2 lowest
OEH OVRO 07H OVR7 OOH None Pending

10-30

Int€|® EVENT PROCESSOR ARRAY (EPA)

10.8.1 Using the TIJMP Instruction to Reduce Interrupt Service Overhead

The EPAIPV register and the TIJMP instruction can be used together to reduce the interrupt ser-
vice overhead. The primary purpose of the TIJidRruction is to reduce the interrupt response
time associated with servicing multiplexed interrupts. With TIJMP, the additional time required
to service interrupts is only the instruction time, 15 states. (See Appendix A for additional infor-
mation about TIJMP.)

The format for the TIIMP instruction is:

TIIMP tbase,[index],#index_mask

where:

tbase is a word register containing the 16-bit starting address of the jump
table, which must be located in page FFH.

[index] is a word register containing a 16-bildress that points to a register
that contains a 7-bit value used to calculate the offset into the jump
table.

#index_mask is 7-bit immediate data to mask the index. This value is ANDed with

the 7-bit value pointed to bjndex] and the instruction multiplies
the result by two to determine the offset into the jump table.

TIIMP calculates the destination address as follows:

([index] AND #index_mask) x 2 + thase

To use the TIIMP instruction in this applicatigou would create a jump table with 21 destina-
tion addresses; one for each of the 20 EPA interrupt sources and one for the return. The table mus
be located in page FFH. The addresses in the table must be the lower 16 bits of the destination
address. The TIIMP instruction will automatically add FFOOOOH to the destination address.

The following code is a simplified example of an interrupt service routine that usesAH&VEP
register with the TIJMP instruction to service an ER#&errupt. This routine services all active
interrupts in the EPA in order of their priority. The TIJMP instruction calculates an offset to fetch
a word from a jump table (JTBASE in this example) which contains the start addresses of the in-
terrupt service routines.

[| 10-31

8XC196NT USER’S MANUAL Int9I®

INIT_INTERRUPTS:

LD JTBASE_PTR,#LSW JTBASE ;store jump table base address
EPAX_ISR:

LD EPAIPV_PTR#EPAIPV ;read EPAIPV offset

PUSHA ;save INT_MASK/INT_MASK1/WSR/PSW

TIIMP JTBASE_PTR,[EPAIPV_PTR],#1FH ;initiate jump to correct ISR

OVR_EPAO_ISR: ;EPAO overrun routine

TIIMP JTBASE_PTR,[EPAIPV_PTR],#1FH
;check for pending
;interrupts, exit

EPAx_DONE:
POPA
RET ;exit, all EPAX
;interrupts serviced
JTBASE:
DCW LSW EPAx_done ;0 (no interrupt pending)
DCW LSW OVR_TMZ2_ISR ;1 (Timer2 overflow)
DCW LSW OVR_TM1_ISR ;2 (Timerl overflow)
DCW .
DCW
DCW .
DCW LSW OVR_EPAO_ISR ;0EH (EPAO overflow)

This example assumes that EA& enabled, OVRO is enabled, interrupts are globally enabled,
and the capture/compare channel 0 has generated an OVRO interrupt. Thiptioturs when

an edge is detected on the EPA channel and both the input buffer and EPAO_TIME are full. This
causes software to enter the EPFSR interrupt service routine.

Note thatindex_maslks set to 1FH. This sets the pointer to the end of the jump table to prevent
software from jumping to an invalid address. Changugx_maskan dictate software control,
thus superseding interrupt priorities.

Note that instead of a RET instruction at the end of OVR_EPAO_ISR, another TIJMP instruction
is used. This is done to check for any other pending multiplexed interrupts. If EPAIPV contains
a zero value (no pending interrupts) a vector toXEPYONE occurs and a RET is executed. This

is to ensure that EPAIPV is cleared before the routine returns from the EEFA

10-32 [|

Int€|® EVENT PROCESSOR ARRAY (EPA)

10.9 PROGRAMMING EXAMPLES FOR EPA CHANNELS

The three programming examples provided in this section demonstrate the use of the EPA channel
for a compare event, for a capture event, and for generation of a PWM signal. The programs dem-
onstrate the detection of events by a polling scheme, by interrupts, and by the PTS. All three ex-
amples were created usidgBUILDER, an interactive application prograavailable though

Intel Literature Fulfillment or the Intel Applications Bulletin Board system (BBS). See Chapter

1, “Guide to This Manual,” for information about ordering information from Intel Literature and
downloading files from the BBS. These sammlegramwere written in the @rogramning lan-

guage. ASM versions are also available frapBUILDER.

NOTE

The initialization file (80c196kr.h) used in these examples is available from
the Intel Applications BBS.

10.9.1 EPA Compare Event Program

This example C program demonstrates an EPA compare event. It sets up EPA channel 0 to toggle
its output pin whenever timer 1 is zero. Thisgram uses no interruptspalling scheme detects
the EPA event. The prograimitializes EPA channel 0 for a compare event.

#pragma model(EX)
#include <80c196kr.h>

#define COMPARE 0x40
#define RE_ENABLE 0x08
#define TOGGLE_PIN 0x30
#define USE_TIMER1 0x00
#define EPAO_INT_BIT 47

void init_epa0()

epa0_con = COMPARE |
TOGGLE_PIN|
RE_ENABLE |
USE_TIMERY,
epa0_time = 0;
setbit(pl_reg, 0); /* intreg */
clrbit(p1_dir, 0); /* make output pin */
setbit(p1_mode, 0);/* select EPA mode */
}

void init_timer1()
tlcontrol = COUNT_ENABLE |
COUNT_UP |

CLOCK_INTERNAL |
DIVIDE_BY_1;

10-33

8XC196NT USER’S MANUAL Inu®

void poll_epa0()
if(checkbit(int_pend, EPAO_INT_BIT))

[* User code for event channel 0 would go here. */
[* Since this event is absolute and re-enabled, no polling is neccessary.*/
clrbit(int_pend, EPAO_INT_BIT);

}
void main(void)

[* Initialize the timers before using the epa */

init_timer1();

init_epa0();

/* EPA events can be serviced by polling int_pend
or epa_pend. */

while(1)

{
poll_epa0();
}

10.9.2 EPA Capture Event Program

This example C program demonstrates an EPA capture event. It sets up EPA channel 0 to capture
edges (rising and falling) on the EPAOQ pin. The program also shows how to set up the EPA inter-
rupts. You can add your own code for the interrupt servicénmut

#pragma model()
#include <80c196kr.h>

#define COUNT_ENABLE 0x80
#define COUNT_UP 0x40
#define CLOCK_INTERNAL 0x00
#define DIVIDE_BY_1 0x00
#define CAPTURE 0x00

#define BOTH_EDGE 0x30
#define USE_TIMER1 0x00
#define EPAO_INT_BIT 4

void init_epa0()

epa0_con = CAPTURE |

BOTH_EDGE |
USE_TIMERY,
setbit(pl_reg, 0); /* intreg */
setbit(p1_dir, 0); /* make input pin */
setbit(p1_mode, 0); /* select EPA mode */
setbit(int_mask, EPAO_INT_BIT); /* unmask EPA interrupts */

}

#pragma interrupt(epaO_interrupt=EPAO_INT_BIT)
void epaO_interrupt()

{

unsigned int time_value;

10-34

Inbl® EVENT PROCESSOR ARRAY (EPA)

time_value = epa0_time; /* must read to prevent overrun */

}

/* To generate have code for the epax interrupt,select the ICU design screen.*/
void init_timer1()
tlcontrol = COUNT_ENABLE |

COUNT_UP |

CLOCK_INTERNAL |
DIVIDE_BY_1;

}
void main(void)
unsigned int time_value;

/* Initialize the timers and interrupts before using the EPA */

init_timer1();

init_epa0();

enable(); /* Globally enable interrupts */

while(1); /* loop forever, wait for interrupts to occur */
}

10.9.3 EPA PWM Output Program

This example Gprogram demonstrates the generation of a PWjas using the EPA's PWM

toggle mode (see “PWM Modes” on page 5-31) and shows how to service the interrupts with the

PTS. The PWM signal in this example has a 50% duty cycle.

#pragma model(EX)
#include <80c196kr.h>
#define PTS_BLOCK_BASE 0x98

[* Create typedef template for the PWM_TOGGLE mode control block.*/
typedef struct PWM_toggle_ptschb_t {

unsigned char unused,;

unsigned char ptscon;

void *pts_ptr;

unsigned int constantl;

unsigned int constant2;

} PWM_toggle_ptsch;

/* This locates the PTS block mode control block in register ram. This */
[* control block may be located at any quad-word boundary. */

register PWM_toggle_ptscb PWM_toggle_CB_3;
#pragma locate(PWM_toggle_CB_3=PTS_BLOCK_BASE)

/* The PTS vector must contain the address of the PTS control block.*/
#pragma pts(PWM_toggle_CB_3=0x3)

[| 10-35

8XC196NT USER’S MANUAL

/* Sample PTS control block initialization sequence.*/
void Init_PWM_toggle_PTS3(void)

disable(); [* disable all interrupts */
disable_pts(); /* disable the PTS interrupts */

PWM_toggle_CB_3.constant2 = 127,
PWM_toggle_CB_3.constantl = 127,
PWM_toggle_CB_3.pts_ptr = (void *)&EPAO_TIME;
PWM_toggle_CB_3.ptscon = 0x42;

[* Sample code that could be used to generate a PWM with an EPA channel.*/

setbit(pl_reg, Ox1); /* init output */
clrbit(p1_dir, Ox1); /* setto output */
setbit(p1_mode, Ox1); /* set special function*/
setbit(ptssel, 0x3);
setbit(int_mask, 0x3)

}

void main(void)

Init_PWM_toggle_PTS3();

epal_con = 0x78; /* toggle, timerl, compare, re-enable */
epal_timer = 127;

tlcontrol = OxC2; /* enable timer, up 1 micrsecond @ 16 MHz */
enable_pts();

while(1);

}

10-36

intgl.

11

Analog-to-digital
Converter

CHAPTER 11
ANALOG-TO-DIGITAL CONVERTER

The analog-to-digital (A/D) converter can convert an analog input voltage to a digital value and
set the A/D interrupt pending bit when it stothe result. It can also monitor a pin and set the
A/D interrupt pending bit when the input voltage crosses over or under a programmed threshold
voltage. This chapter describes the A/D converter and explains how to program it.

11.1 A/D CONVERTER FUNCTIONAL OVERVIEW

The A/D converter (Figure 11-1) can convert an analog input voltage to an 8- or 10-bit digital
result and set the A/D interrupt pending bit when it stores the result. It can also monitor an input
and set the A/D interrupt pending bit when the input voltage crosses over or under the pro-
grammed threshold voltage.

Analog Inputs *

R EPA or PTS
Command

VRer ANGND
Analog Mux ¢ ¢
* Control
Succession Logic
Sample Approximation A A A
and Hold AID
A Converter
Status
Y
AD_RESULT | AD_COMMAND | | AD_TIME | | AD_TEST |

* Multiplexed with port inputs

A2652-01

Figure 11-1. A/D Converter Block Diagram

11-1

8XC196NT USER’S MANUAL Inu®

11.2 A/D CONVERTER SIGNALS AND REGISTERS

Table 11-1 lists the A/D signals and Table 11-2 describes the control and status registers. Al-
though the analog inputs are multiplexed with I/O port pins, no configuration is necessary.

Table 11-1. A/D Converter Pins

Port Pin A/D Signal AID Signal Description
Type
PO0.7:4 ACH7:4 | Analog inputs. See the “Voltage on Analog Input Pin”
specification in the datasheet.
— ANGND GND Reference Ground
Must be connected for A/D converter and port operation.
— Vier PWR Reference Voltage
Must be connected for A/D converter and port operation.

Table 11-2. A/D Control and Status Registers

Mnemonic Address Description

AD_COMMAND | 1FACH A/D Command

This register selects the A/D channel, controls whether the A/D
conversion starts immediately or is triggered by the EPA, and
selects the operating mode.

AD_RESULT 1FAAH, 1FABH | A/D Result

For an A/D conversion, the high byte contains the eight MSBs from
the conversion, while the low byte contains the two LSBs from a 10-
bit conversion (undefined for an 8-bit conversion), indicates which
A/D channel was used, and indicates whether the channel is idle.

For a threshold-detection, calculate the value for the successive
approximation register and write that value to the high byte of
AD_RESULT. Clear the low byte or leave it in its default state.

AD_TEST 1FAEH A/D Conversion Test

This register enables conversions on ANGND and Vg and
specifies adjustments for zero-offset errors.

AD_TIME 1FAFH A/D Conversion Time

This register defines the sample window time and the conversion
time for each bit.

INT_MASK 0008H Interrupt Mask

The AD bit in this register enables or disables the A/D interrupt. Set
the AD bit to enable the interrupt request.

INT_PEND 0009H Interrupt Pending

The AD bit in this register, when set, indicates that an A/D interrupt
request is pending.

11-2 [|

Int6|® ANALOG-TO-DIGITAL CONVERTER

Table 11-2. A/D Control and Status Registers (Cont inued)

Mnemonic Address Description

PO_PIN 1FDAH Port 0 Pin State

Read PO_PIN to determine the current values of the port 0 pins.
Reading the port induces noise into the A/D converter, decreasing
the accuracy of any conversion in progress. We strongly
recommend that you not read the port while an A/D conversion is in
progress. To reduce noise, the PO_PIN register is clocked only
when the port is read.

11.3 A/D CONVERTER OPERATION

An A/D conversion converts an analog input voltage to a digital value, stores the result in the
AD_RESULT register, and sets the A/D interrupt pending bit. An 8-bit conversion provides
20 mV resolution, while a 10-bit conversiprovides 5 mV reolution. An 8-bit conversion takes

less time than a 10-bit conversion because it has two fewer bits to resolve and the comparator re-
guires less settling time for 20 mV resolution than for 5 mV resolution.

You can convert either the voltage on an analog input channel or a test voltage. Converting the
test inputs allows you to calculate the zero-offset error, and the zero-offset adjustovenyal

to compensate for it. This feature can reduce or eliminate off-chip compensation hardware. Typ-
ically, you would convert the test voltages and adjust for the zero-offset error before performing
conversions on an input channel. The AD_TEST register allows you to select a test voltage and
program a zero-offset adjustment.

A threshold-detection compares an input voltagegmgrammedeference voltage and sets the
A/D interrupt pending bit when the input voltage crosses over or under the reference voltage.

A conversion can be started by a write to the AD_COMMAND register or it camtiated by

the EPA, which can provide equally spaced samples or synchronization with external events.
(See“Programming the EPA and Timer/Counters” on page 10-17.) The A/D scan mode of the pe-
ripheral transaction server (PTS) allows you to perform multiple conversions and store their re-
sults. (See “A/D Scan Mode” on page 5-26.)

Once the A/D converter receives the command to start a conversion, a delay time elapses before
sampling begins. (EPA-initiated conversions begin after the capture/compare event. Immediate
conversions, those initiated directly by a write to AD_COMMAND, begin within three state
times after the instruction is completed.) During sasple delaythe hardware clears the suc-
cessive approximation register and selects the designated multiplexer channel. After the sample
delay, the device connects the multiplexer output to the sample capacite $pecified sample

time. After thissample windoveloses, it disconnects the multiplexer output from the sample ca-
pacitor so that changes on the input pin will not alter the stored charge while the conversion is in
progress. The device then zeros the comparator and begins the conversion.

[| 11-3

8XC196NT USER’S MANUAL Int9I®

The A/D converter uses a successive approximation algorithm to petHferamalog-to-digital
conversion. The converter hardware consists of a 256-residtter]aa comparator, coupling ca-
pacitors, and a 10-bit successive approximation register (SAR) with logic that guides the process.
The resistive ladder provides 20 mV stepg\+= 5.12 volts), while capacitive coupling creates

5 mV steps within the 20 mV ladder voltages. Therefv@24 inernal reference voltage levels

are available for comparison against the analog input to generate a 10-bit conversion result. In 8-
bit conversion mode, only the resistive ladder is used, providing 256 internal reference voltage
levels.

The successive approximation conversion compares a sequence of reference voltages to the anc
log input, performing a binary search for the reference voltage that most closely matches the in-

put. The ¥z full scale reference voltage is the first tested. Thisspmmds to a 10-bresult where

the most-significant bit is zero and all other bits are onekl(1.111B). Ithe analog input was

less than the test voltage, bit 10 of the SAR is left at zero, and a new test voltage of ¥ full scale

(0011111111B) is tried. If the analog input vgaeater than the test voltage, bit 9 of SAR is set.

Bit 8 is then cleared for the next test (0101111B). Thisinary search continues until 10 (or 8)

tests have occurred, at which time the valid conversion result resides in the AD_RESULT register

where it can be read by software. The result is equal to the ratio of the input voltage divided by

the analog supply voltage. If the ratio is 1.00, the result will be all ones.

11.4 PROGRAMMING THE A/D CONVERTER

The following A/D converter parameters are programmable:
* conversion input — input channel or test voltage (ANGND g1V
¢ zero-offset adjustment — no adjustment, plus 2.5 mV, minus 2.5 mV, or minus 5.0 mV
* conversion times — sample window time and conversion time for each bit
¢ operating mode — 8- or 10-bit conversion or 8-bit high or low threshold detection

* conversion trigger — immediate or EPA starts

This section describes the A/D converters’s registers and explains how to program them.

11-4

Intet@ ANALOG-TO-DIGITAL CONVERTER

11.4.1 Programming the A/D Test Register

The AD_TEST register (Figure 11-2) selects either an analog input or a test ARG D or

Vrep for conversion and specifies an offset voltage to be applied to the resistor ladder. To use the
zero-offset adjustment, first perform two conversions, one on ANGND and ongomith the

results of these conversions, use a software routine to calculatedhaffget error. Specify the
zero-offset adjustment by writing the appropriate value to AD_TEST. This offset voltage is added
to the resistor ladder and applies to all input channels. “Understanding A/D Conversion Errors”
on page 11-14 describes zerdsef and other errors inherent in A/D conversions.

AD_TEST Address: 1FAEH
Reset State: COH

The A/D test (AD_TEST) register enables conversions on ANGND and Vge and specifies
adjustments for DC offset errors. Its functions allow you to perform two conversions, one on ANGND
and one on Vgee. With these results, a software routine can calculate the offset and gain errors.

7 0
— — — — || oFm OFF0 v TE
Bit Bit Function
Number Mnemonic
7:4 — Reserved; for compatibility with future devices, write zeros to these bits.
3:2 OFF1:0 Offset
These bits allows you to set the zero-offset point.
OFF1 OFFO
0 0 no adjustment
0 1 add 2.5 mV
1 0 subtract 2.5 mV
1 1 subtract 5.0 mV
1 TV Test Voltage

This bit selects the test voltage for a test mode conversion. (The TE bit
must be set to enable test mode.)

1= Viee

0 = ANGND

0 TE Test Enable

This bit determines whether normal or test mode conversions will be
performed. A normal conversion converts the analog signal input on one
of the analog input channels. A test conversion allows you to perform a
conversion on ANGND or Vgeg, selected by the TV bit.

1 =test
0 = normal

Figure 11-2. A/D Test (AD_TEST) Register

[| 11-5

8XC196NT USER’S MANUAL Int9I®

11.4.2 Programming the A/D Result Register (for Threshold Detection Only)

To use the threshold-detection modes, you must first write a value to the high byte of
AD_RESULT to set the desired reference (threshold) voltage.

AD_RESULT (Write) . A?ctjsrf:?s: 1;;/;3:
eset State:

The high byte of the A/D result (AD_RESULT) register can be written to set the reference voltage for
the A/D threshold-detection modes.

15 8
‘ REFV7 ‘ REFV6 ‘ REFV5 ‘ REFV4 ‘ ‘ REFV3 ‘ REFV2 ‘ REFV1 ‘ REFVO ‘
7 0
. r 1 ®& [- [— [— |
Nuii:)er Mnelrgrimtonic Function
15:8 REFV7:0 Reference Voltage

These bits specify the threshold value. This selects a reference voltage
that is compared with an analog input pin. When the voltage on the
analog input pin crosses over (detect high) or under (detect low) the
threshold value, the A/D conversion complete interrupt pending bit is set.
Use the following formula to determine the value to write this register for
a given threshold voltage.

desired threshold voltage x 256
Vioer—ANGND

reference voltage =
REF

7:0 — Reserved; for compatibility with future devices, write zeros to these bits.

Figure 11-3. A/D Result (AD_RESULT) Register — Write Format

11.4.3 Programming the A/D Time Register

Two parameters, sample time and conversion time, control the time required for an A/D conver-
sion. The sample time is the length of time that the analog input voltage is actually connected to
the sample capacitor. If this time is too short, the sample capacitor will not charge completely. If
the sample time is too long, the input voltage may change and @auarsion errors. The con-
version time is the length of time required to convert the analog input voltage stored on the sample
capacitor to a digital value. The conversion time must be long enough for the comparator and cir-
cuitry to settle and resolve the voltage. Excessively long conversion times allow the sample ca-
pacitor to discharge, degrading accuracy.

11-6

Intet@ ANALOG-TO-DIGITAL CONVERTER

The AD_TIME ragister (Figure 11-4) specifies the A/D sample and conversion times. To avoid
erroneous conversion results, use thg, ind T, Specifications on the datasheet to determine
appropriate values.

AD_TIME Address: 1FAFH
Reset State: FFH

The A/D time (AD_TIME) register programs the sample window time and the conversion time for each
bit.

7 0
SAM2 SAM1 SAMO CONV4 ‘ ‘ CONV3 CONV2 CONV1 CONVO
Bit Bit Function
Number Mnemonic
75 SAM2:0 A/D Sample Time

These bits specify the sample time. Use the following formula to
compute the sample time.

T xF -2
SAM = —SAM” Tosc
where:
SAM = 1to7
Tsaw = the sample time, in psec, from the data sheet

Fosc the XTAL1 frequency, in MHz

4.0 CONV4:0 A/D Convert Time

These bits specify the conversion time for each bit. Use the following
formula to compute the conversion time.

T xF -3
CONV = [conv *Fosc } ~
2xB
where:
CONV= 2to31
Teonv the conversion time, in psec, from the data sheet

the XTAL1 frequency, in MHz
the number of bits to be converted (8 or 10)

osC

NOTES:

1. This register programs the speed at which the A/D can run — not the speed at which it can con-
vert correctly. Consult the data sheet for recommended values.

2. Initialize the AD_TIME register before initializing the AD_COMMAND register.

3. Do not write to this register while a conversion is in progress; the results are unpredictable.

Figure 11-4. A/D Time (AD_TIME) Register

11-7

8XC196NT USER’S MANUAL Inu®

11.4.4 Programming the A/D Command Register

The A/D command register controls the operating mode, the analog input channel, and the con-
version trigger.

AD_COMMAND Address: 1FACH
Reset State: COH

The A/D command (AD_COMMAND) register selects the A/D channel number to be converted,
controls whether the A/D converter starts immediately or with an EPA command, and selects the
conversion mode.

7 0
— — M1 Mo || @O ACH2 ACH1 ACHO
Bit Bit Function
Number Mnemonic
7:6 — Reserved; for compatibility with future devices, write zeros to these bits.
5:4 M1:0 A/D Mode (Note 1)

These bits determine the A/D mode.
M1 MO Mode

0 0 10-bit conversion

0 1 8-bit conversion

1 0 threshold detect high
1 1 threshold detect low

3 GO A/D Conversion Trigger (Note 2)

Writing this bit arms the A/D converter. The value that you write to it
determines at what point a conversion is to start.

1 = start immediately
0 = EPA initiates conversion
2:0 ACH2:0 A/D Channel Selection

Write the A/D conversion channel number to these bits. The 8XC196NT
has four A/D channel inputs, numbered 4-7.

NOTES:

1. While a threshold-detection mode is selected for an analog input pin, no other conversion can be
started. If another value is loaded into AD_COMMAND, the threshold-detection mode is disabled
and the new command is executed.

2. ltis the act of writing to the GO bit, rather than its value, that starts a conversion. Even if the GO
bit has the desired value, you must set it again to start a conversion immediately or clear it again
to arm it for an EPA-initiated conversion.

Figure 11-5. A/D Command (AD_COMMAND) Register

11-8

Int6|® ANALOG-TO-DIGITAL CONVERTER

11.4.5 Enabling the A/D Interrupt

The A/D converter can set the A/Déntupt pending bit when it completes a conversion or when

the input voltage crosses the threshold value in the selected direction. To enable the interrupt, set
the corresponding mask bit in the interrupt mask register (see Table 11-2 on page 11-2) and exe-
cute the El instruction to globally enable servicing of interrupts. The A/D interrupt can cause the
PTS to begin a new conversion. See Chapter 5, “Standard and PTS Interrupts,” for details about
interrupts and a description of using the PTS in A/D scan mode.

11.5 DETERMINING A/D STATUS AND CONVERSION RESULTS

You can read the AD_RESULT register (Figure 11-6) to determine the status of thenAuidteo

er. The AD_RESULT register is cleared when a new conversion is started; therefore, to prevent
losing data, you must read both bytes before a new conversion starts. If you read AD_RESULT
before the conversion is complete, the result is not guaranteed to be accurate.

The conversion result is the ratio of the input voltage to the reference voltage:

V,y—ANGND V,y—ANGND
RESULT (8-bit) = 255 x —————— RESULT (10-bit) = 1023 x ————————
Vrer ~ANGND Vrer ~ANGND

You can also read the interrupt pending register (see Table 11-2 on page 11-2) to determine the
status of the A/D interrupt.

11-9

8XC196NT USER’S MANUAL Inu®

AD_RESULT (Read) Address: 1FAAH
Reset State: 7F80H

The A/D result (AD_RESULT) register consists of two bytes. The high byte contains the eight most-
significant bits from the A/D converter. The low byte contains the two least-significant bits from a ten-
bit A/D conversion, indicates the A/D channel number that was used for the conversion, and indicates
whether a conversion is currently in progress.

15 8
| ADRLT9 ‘ ADRLT8 ‘ ADRLT7 ‘ ADRLT6 | | ADRLTS ‘ ADRLT4 ‘ ADRLT3 ‘ ADRLT2 |
7 0
| ADRLTL | ADRLTO | — | — || sTATUS | ACH2 | AcH1 | AcHo |
Bit Bit . Function
Number Mnemonic
15:6 ADRLT9:0 | A/D Result
These bits contain the A/D conversion result.
5:4 — Reserved. These bits are undefined.
3 STATUS AID Status

Indicates the status of the A/D converter. Up to 8 state times are required
to set this bit following a start command. When testing this bit, wait at
least the 8 state times.

1 = A/D conversion is in progress
0=A/Disidle
2:0 ACH2:0 A/D Channel Number

These bits indicate the A/D channel number that was used for the
conversion. The 8XC196NT has four A/D channel inputs, numbered 4-7

Figure 11-6. A/D Result (AD_ RESULT) Register — Read Format

11.6 DESIGN CONSIDERATIONS

This section describes considerations for the external interface circuitry and describes the errors
that can occur in any A/D converter. The datasheet listalibelute errorspecification, which
includes all deviations between the actual conversion process and an ideal converter. However,
because the various components of error are important in many applications, the datasheet alsc
lists the specific error components. This section describes those components. For additional in-
formation and design techniques, consult AP-406S® 96 Analog Acquisition Primejorder
number270365).Application note AP-406 is also included in tBenbedded Microcontrollers
handbook.

11-10

Intet@ ANALOG-TO-DIGITAL CONVERTER

11.6.1 Designing External Interface Circuitry

The external interface circuitry to an analog input is highly dependent upon the application and
can affect the converter characteristics. Factors such as input pin leakage, sample capacitor size
and multiplexer series resistance from the input pin to the sample capacitor must be considered
in the external circuit’s design. These factors are idealized in Figure 11-7.

! 1
! 1
External 1 Internal : Re

1

' : _’W_/ *>—
! 1

1

1

Rsource

I
Leakage

A0243-02

Figure 11-7. ldealized A/D Sampling Circuitry

During the sample window, the external input circuit must be able to charge the sample capacitor
(Cy) throughthe series combination of the input source resistangg (R, the input series re-
sistance (R, and the comparator feedback resistangg. (Rhe total effective series resistance

(Ry) is calculated using the following formula, whergif the gain of the comparator circuit.

RF
+
A, +1

Rr = Rsource * R

Typically, the (R/ A, + 1) term is the major contributor to the total resistance and the factor that
determines the minimum sample time specified in the datasheet.

[| 11-11

8XC196NT USER’S MANUAL Int9I®

11.6.1.1 Minimizing the Effect of High Input Source Resistance

Under some conditions, the input source resistangg (R can be great enough to affect the
measurement. You can minimize this effect by increasing the sample time or by connecting an
external capacitor (&) from the input pin to ANGND. The external signal will chargg,Go

the source voltage level. When the channel is samplgg,acts as a low-impedance source to
charge the sample capacitorgJCA small portion of the charge in .(is transferred to £ re-

sulting in adrop of the sapled voltage. The voltagirop is calculated using the following for-
mula.

C
s
Sampled Voltage Drop, % = ——— _ x 100%
ext +Cs

If Ccy7is 0.005 pF or greater, the error will be ldsst—0.4 LSB in 10-bit conversion mode. The
use of G, in conjunction with B, zce forms a low-pass filter that reduces noise input to the
A/D converter.

High Ry, rceresistance can also cause errors due to the input leakagk lis typically much
lower than its specified maximum (consult the datasheet for specifications). The combined effect
of I ,, leakage and high R rceresistance is calculated using the following formula.

error (LSBs) = Rsource * ILip X 1024
VRer
where:
Rsource is the input source resistance, in ohms
I is the input leakage, in amperes
Vier is the reference voltage, in volts

External circuits with B, rceresistance of 1 R or lower and Y equal to 5.0 volts will have
a resultant error due to source impedance of 0.6 LSB or less.

11-12

Intet@ ANALOG-TO-DIGITAL CONVERTER

11.6.1.2 Suggested A/D Input Circuit

The suggested A/D input circuit shown in Figure 11-8 provides limited prioteagainst over-
voltageconditions on the analog input. Should the input voltage be driven sartlficoelow
ANGND or above {, diode D2 or D1 will forward bias at about 0.8 volts. The device’s input
protection begins to turn on at approximately 0.5 volts beyond ANGNDygr Vhe 27@ re-
sistor limits the current input to the analog input pin to a safe value, less than 1 mA.

NOTE

Driving any analog input more than 0.5 volts beyond ANGND gi-¥egins

to activate the input protection devices. This drives current into the internal
reference circuitry and substantially degrades the accuracy of A/D conversions
on all channels.

VRer
| r
i J VRer
D1
100Q 270Q
A AAN ° @, ACHx
(Optional) _L
D2 0.005pF T
@, ANGND
l 8XC196
= Device
ANGND

A0082-03

Figure 11-8. Suggested A/D Input Circuit

11.6.1.3 Analog Ground and Reference Voltages

Reference supply levelsrengly influence the absolute accuracy of the conversion. For this rea-
son, we recommend that you tie the ANGND pin to thgpih as close to the device as possible,
using a minimum trace length. In a noisy environment, we highly recommend the use of a sepa-
rate analog ground plane that connects §ga¥ a single point as close to the device as possible.
Irer May vary between 2 mA and 5 mA during a conversion. To minimize the effect of this fluc-
tuation, mount a 1.0 pF ceramic or tantalum bypass capacitor betwgeand ANGND, as

close to the device as possible.

[| 11-13

8XC196NT USER’S MANUAL Int9I®

ANGND should be within about 50 mV of Vgo Vg Should be well regulated and used only

for the A/D converter. The) supply can be between 4.5 and 5.5 volts and must be able to
source approximately 5 mA (see the datasheet for actual specificatigas3hduld be approx-
imately the same voltage agV Vg and V. should power up at the same time, to avoid poten-
tial latch-up conditions on .. Large negative current spikes on the ANGND pin relativegto V
may cause the analog circuitry to latch up. This is an additional reason to follow careful ground-
ing practice.

The analog reference voltagezf)) is the positive supply to which all A/D conversions are com-
pared. It is also the supply to port O if the A/D converter is not being used. If high accuracy is not
required, e can be tied to V. If accuracy is important,) must be very stable. One way to
accomplish this is through the use of a precision power supply or a separate voltage regulator
(usually an IC). These devices must be referenced to ANGNDIo Vgg to ensure that Me

tracks ANGND and not ¥,

11.6.1.4 Using Mixed Analog and Digital Inputs

Port 0 may be used for both analog and digital input signals at the same time. Howeiry, rea

the port may inject some noise into the analog circuitry. For this reason, make certain that an an-
alog conversion isot in progress when the port is read. Refer to Chapter 6, “I/O Ports,” for in-
formation about using the port as digital inputs.

11.6.2 Understanding A/D Conversion Errors
The conversion result is the ratio of the input voltage to the reference voltage.

V,y~ANGND V,y~ANGND
RESULT (8-bit) = 255 x —————— RESULT (10-bit) = 1023 x ——————
—ANGND

Vrer ~ANGND Veer

This ratio produces a stair-stepgeghsfer functionwhen the output code is plotted versus input
voltage. The resulting digital codes can be taken as simple ratiometric information, or they pro-
vide information about absolute voltages or relative voltage changes on the inputs.

The more demanding the application, the more important it is to fully understand the converter’s
operation. For simple applications, knowing til@solute errorof the converter is sufficient.
However, closing a servo-loop with analog inputs requires a detailed understanding of an A/D
converter’s operation and errors.

11-14

Int6|® ANALOG-TO-DIGITAL CONVERTER

In many applications, it is less critical to record the absolute accuracy of an input than it is to de-
tect that a change has occurred. This approach is acceptable as long as the comarodmis

and hasno missing codesThat is, increasing input voltagesoduce adjacent, unique output
codes that are also increasing. Decreasing input volfagesiceadjacent, unique output codes

that are also decreasing. In other words, there exists a unique input voltage range for each 10-hit
output code that produces that code only, with a repeatability of typic@l®5 LSBs (1.5 mV).

The inherent errors in an analog-to-digital conversion process are quantizingezo-afset er-

ror, full-scale error, differential noimlearity, and nonlinearity. All of these amnsfer function
errors related to the A/D converter. In addition, temperature coefficiegtgejéction, sample-

hold feedthrough, multiplexer off-isolation, channel-to-channel matching, and random noise
should be consided. Fortunately, onabsolute errorspecification (listed in datasheets) de-
scribes the total of all deviations between the actuav@sion process and an ideal converter.
However, the various components of error are important in many applications.

An unavoidable error results from the conversion of a nootiis voltage to an irger digital rep-
resentation. This error, callegiantizing errorjs alwayst 0.5 LSB. Quantizing error is the only

error seen in a perfect A/D converter, and it is obviously present in actual converters. Figure 11-9
shows the transfer function for an ideal 3-bit A/D converter.

11-15

8XC196NT USER’S MANUAL Inu®

FINAL CODE TRANSITION OCCURS
WHEN THE APPLIED VOLTAGE IS
EQUAL TO (Vref — 1.5 (LSB)).

\4

ACTUAL CHARACTERISTIC OF
AN IDEAL A/D CONVERTER

THE VOLTAGE CHANGE
BETWEEN THE ADJACENT CODE
TRANSITIONS (THE “CODE
WIDTH") IS =1 LSB.

0 ‘3002 1Nd1NO @

FIRST CODE TRANSITION OCCURS
< WHEN THE APPLIED VOLTAGE IS
EQUAL TO 1/2 LSB.

T T T T T T T T 1
12 1 2 3 4 5 6 61/2 7 8

INPUT VOLTAGE (LSBs)

A0083-01

Figure 11-9. Ideal A/D Conversion Characteristic

Note that the ideal characteristic possesses unique qualities:
¢ its first code transition occurs when the input voltage is 0.5 LSB;

¢ its full-scale code transition occurs when the input voltage equals the full-scale reference
voltage minus 1.5 LSB (}-— 1.5LSB); and

¢ jts code widths are all exactly one LSB.

These qualities result in a digitization withoetra-offset, full-scale, or linearity errors; in other
words, a perfect conversion.

11-16

Intet@ ANALOG-TO-DIGITAL CONVERTER

7
FULL SCALE ERROR <«
6 -
IDEAL
CHARACTERISTIC [———n
5 ABSOLUTE ERROR — ACTUAL
CHARACTERISTIC
™,

s 47
o
C
5
)
C
3
o
S 3
m
o

2 —

1 -

—> ZERO OFFSET
0 T T T T T T T T]
12 1 2 3 4 5 6 61/2 7 8

INPUT VOLTAGE (LSBs)

A0084-01

Figure 11-10. Actual and Ideal A/D Conversion Char acteristics

The actual characteristic of a hypothetical 3-bit converter is not perfect. When the ideal charac-
teristic is overlaid with the actual characteristic, the actual converter is seen to exhibit errors in
the locations of the first and final code transitions and in code widtlssoam in Figure 11-10.

The deviation of the first code transition from ideal is cafle-offseerror, and the deviation

of the final code transition from idealfigl-scaleerror. The deviation of a code width from ideal
causes two types of errors: differential nonlinearity and nonlineiiffgrential nonlinearityis

a measure of local code-width error, whenmeaslinearityis a measure of overall code-transition
error.

11-17

8XC196NT USER’S MANUAL IntGI@a

Differential nonlinearity is the degree to which actoadle widthgliffer from the ideal one-LSB

width. It provides a measure of how much the input voltage may have changed in order to produce
a one-count change in the conversion result. In the 10-bit converter, the code widths are ideally
5mV (Vgee/ 1024). If such a converter is specified to have a maximum differential nonlinearity
of 2 LSBs (10 mV), the maximum code width will be no greater than 10 mV larger than ideal, or
15 mV.

Because the A/D converter hag missing codeshe minimum code width will always be greater

than —1 (negative one). The differential nonlinearity error on a particular code width is compen-
sated for by other code widths in the transfer function, such that 1024 unique steps occur. The
actual code widths in this converter typically vary from 2.5 mV to 7.5 mV.

Nonlinearity is the worst-case deviationaafde transitiongrom the corresponding code transi-
tions of the ideal characteristic. Nonlinearity describes the extent to which differential nonlinear-
ities can add up to produce an overall maximum departure from a linear characteristic. If the
differential nonlinearity errors are too large, it is possible for an A/D converter to miss codes or
to exhibit non-monotonic behavior. Neither behaviatdsirable in a closed-loop system. A con-
verter hasho missing codei$ there exists for each output code a unigue input voltage range that
produces that code only. A convertenmienotonidf every subsequent code change represents an
input voltage change in the same direction.

Differential nonlinearity and nonlinearity are quantified by measuring the terminal-based linear-
ity errors. A terminal-based characteristic results when an actual characteristic is translated and
scaled to eliminateero-offset and full-scale error, as shown in Figure 11-11. The terminal-based
characteristic is similar to the actual characteristic that would resultafafeset andull-scale

error were externally trimmed away. In practice, this is done by using input circuits that include
gain and offset trimming. In additiong¥- could also be closely regulated and trimmed within

the specified range to affect full-scale error.

Other factors that affect a real A/D converter system include temperature drift, failure to com-
pletely reject unwanted signals, multiplexer channel dissimilarities, and random noise. Fortunate-
ly, these effects are smalemperature drifis the rate at which typical specifications change with

a change in temperature. These changes are reflectedtemtherature coefficientéJnwanted

signals come from three main sources: noise gn Mput signal changes on the channel being
converted (after the sample window has closed), and signals applied to channels not selected by
the multiplexer. The effects of these unwanted signals are specifitet asjectionoff-isolation
andfeedthroughrespectively. Finally, multiplexer on-channel resistances differ slightly from one
channel to the next, which causdgsgmnnel-to-channel matchirgrrors andepeatabilityerrors.
Differences in DC leakage current from one channel to another and random noise in general con-
tribute to repeatability errors.

11-18

ANALOG-TO-DIGITAL CONVERTER

0 ‘3000 1NdLNO @

IDEAL FULL-SCALE CODE
TRANSITION

\4

IDEAL STRAIGHT LINE

TRANSFER FUNCTION ACTUAL
FULL-SCALE CODE
TRANSITION
DIFFERENTIAL
NON-LINEARITY <« TERMINAL BASED
(POSITIVE) ————— | CHARACTERISTIC
| (corrected for zero-offset
IDEAL < d and full-scale error)
CODE WIDTH
< > ACTUAL
CHARACTERISTIC
— NON-LINEARITY
]
. R DIFFERENTIAL
< > NON-LINEARITY (NEGATIVE)

IDEAL CODE WIDTH

4—' ACTUAL FIRST TRANSITION |

\I IDEAL FIRST TRANSITION |

T T T T T T T T 1
12 1 2 3 4 5 6 61/2 7 8

INPUT VOLTAGE (LSBs)

A0085-01

Figure 11-11. Terminal-based A/D Conversion Characteristic

11-19

intgl.

12

Minimum Hardware
Considerations

The 8XC196NT has several basic requirements for operation within a system. This chapter de-
scribes options for providing the basic requirements and discusses other hardware considerations.

CHAPTER 12

MINIMUM HARDWARE CONSIDERATIONS

12.1 MINIMUM CONNECTIONS

Table 12-1 lists the signals that are required for the device to function and Figure 12-1 shows the

connections for a minimum configuration.

Table 12-1. Minimum Required Signals

Signal -
Name Type Description

ANGND GND Analog Ground
ANGND must be connected for A/D converter and port O operation. ANGND and
Vgg should be nominally at the same potential.

RESET# 110 Reset
A level-sensitive reset input to and open-drain system reset output from the micro-
controller. Either a falling edge on RESET# or an internal reset turns on a pull-down
transistor connected to the RESET# pin for 16 state times. In the powerdown and
idle modes, asserting RESET# causes the chip to reset and return to normal
operating mode. The microcontroller resets to FF2080H in internal OTPROM or
F2080H in external memory.

Ve PWR Digital Supply Voltage
Connect each V¢ pin to the digital supply voltage.

Vep PWR Programming Voltage
During programming, the V, pin is typically at +12.5 V (V;, voltage). Exceeding the
maximum Vp, voltage specification can damage the device.
Vpp also causes the device to exit powerdown mode when it is driven low for at least
50 ns. Use this method to exit powerdown only when using an external clock source
because it enables the internal phase clocks, but not the internal oscillator.
On devices with no internal nonvolatile memory, connect Vg, to V.

Vier PWR Reference Voltage for the A/D Converter
This pin also supplies operating voltage to both the analog portion of the A/D
converter and the logic used to read port 0.

Vgg GND Digital Circuit Ground

Connect each Vgg pin to ground through the lowest possible impedance path.

12-1

8XC196NT USER’S MANUAL Inu®

Table 12-1. Minimum Required Signals(Continued)

Signal -
Name Type Description
XTAL1 | Input Crystal/Resonator or External Clock Input
Input to the on-chip oscillator and the internal clock generators. The internal clock
generators provide the peripheral clocks, CPU clock, and CLKOUT signal. When
using an external clock source instead of the on-chip oscillator, connect the clock
input to XTAL1. The external clock signal must meet the V,, specification for XTAL1
(see datasheet).
XTAL2 O Inverted Output for the Crystal/Resonator
Output of the on-chip oscillator inverter. Leave XTAL2 floating when the design uses
a external clock source instead of the on-chip oscillator.

12.1.1 Unused Inputs

For predictable performance, it is important to tie unused inputg i@, Otherwise, they

can float to a mid-voltage level and draw excessive culdgntsed interrupt inputs may generate

spurious interrupts if left unconnected.

12.1.2 1/O Port Pin Connections

Tie unused input-only port inputs tqyas shown in Figure 12-1. Chapter 6, “I/O Ports,” contains
information about initializing and configuring the ports. Table 12-2 lists the sections, with page

numbers, that contain the information for each port.

Table 12-2. 1/0 Port Configuration Guide

Port

Where to Find Configuration Information

Port 0 “Standard Input-only Port Considerations” on page 6-3

Ports 1 and 2 | “Bidirectional Port Pin Configurations” on page 6-9 and “Bidirectional Port Considerations”
on page 6-11

Ports 3 and 4 | “Bidirectional Ports 3 and 4 (Address/Data Bus) Operation” on page 6-15

Ports 5 and 6 | “Bidirectional Port Pin Configurations” on page 6-9 and “Bidirectional Port Considerations”
on page 6-11

EPORT “Configuring EPORT Pins” on page 6-24

12-2

MINIMUM HARDWARE CONSIDERATIONS

4.7 uF

.||_| —e

(Note 1)
20 pF ~—| I] |_‘ 20 pF
Vee XTAL2 XTAL1
I— Vee RESET#
0.01 uF (Note 2) Vee
JN W Y T
Vee L EA#
NMI
im BUSWIDTH
(Note 3) Vep
Vee
Vee I
s READY
1pF VRer
+
]_ 1pF
* ANGND BHE#
—T—T RD# }—
WR# |—
Input-only
[) _—
— Port Pins INST
(Note 5) ALE |
8XC196 Device
Notes:

1. See the datasheet for the oscillator frequency range (Fosc) and the crystal manufacturer's

datasheet for recommended load capacitors.

2. The number of V¢ and Vgg pins varies with package type (see datasheet). Be sure to connect

each V¢ pin to the supply voltage and each Vgg pin to ground.

3. Connect the RC network to Vpp only if powerdown mode will be used. Otherwise, connect Vpp
to Vec.

4. No connection is required.
5. Tie all input-only port pins to Vg

Port 5/ Bus Control

(Note 4)

A2643-02

Figure 12-1. Minimum Hardware Connections

12-3

8XC196NT USER’S MANUAL Inu®

12.2 APPLYING AND REMOVING POWER

When power is first applied to the device, RESET# must remain continuously low for at least one
state time after the power supply is within tolerance and the oscillator/clock has stabilized; oth-
erwise, operation might be unpredictable. Similarly, when powering down a system, RESET#
should be brought low before.¥is removed; otherwise, an inadvertent write to an external lo-
cation might occur. Carefully evaluate the possible effepbefer-up and power-dowsequenc-

es on a system.

12.3 NOISE PROTECTION TIPS

The fast rise and fall times of high-speed CMOS logic giterduce noise spikes on the power
supply linesand outputs. To minimize noise, it is important to follow good design and board lay-
out techniques. We recommend liberal use of decoupling capacitors and transient absorbers. Add
0.01 pF bypass capacitors betwegg &nd each Y5 pin and a 1.0 pF capacitor betwegpMand

ANGND to reduce noise (Figure 12-2). Place the capacitorsoas tb the device as possible.

Use the shortest possible path to connegtiiies to ground and each other.

VREF +
+
—4 VREF
8XC196 Device T
1.0 yF -
O 0 0 ANGND
O n
> > > >

s

Analog

. ~ Ground
Digital
Plane

| t ~ Ground
Plane

-

1Ll

+5V 5V
Return

Power Source

T Use 0.01 pF bypass capacitors for maximum decoupling.

A0272-02

Figure 12-2. Power and Return Connections

12-4

Int€|® MINIMUM HARDWARE CONSIDERATIONS

If the A/D converter will be used, connectf/to a separate reference supply to minimize noise
during A/D conversions. Even if the A/D converter will not be usegd.¥nd ANGND must be
connected to provide power to port 0. Refer to “Andagund and Reference Voltages” on page
11-13 for a detailed discussion of A/D power and ground recommendations.

Multilayer printed circuit boards with separatg Mandground planesiso help to minimize
noise. For more information on noise protection, refer to AP&Signing Microcontroller Sys-
tems for Noisy Envanmentsand AP-711EMI Design Techniques for Microcontrollers in Auto-
motive Applications

12.4 PROVIDING THE CLOCK

The device can either use the on-chip oscillator to generate the clocks or use an external clock
input signal. The following paragraphs describe the considerations for both methods.

12.4.1 Using the On-chip Oscillator

The on-chip oscillator circuit (Figure 12-3) consists of a crystal-controlled, positive reactance os-
cillator. In this application, the crystal operates in a parallel resonance mode. The feedback resis-
tor, Rf, consists of paralleledchannel ang@-channel FETs controlled by the internal powerdown
signal. In powerdown mode, Rf acts as an open and the output driversahtediigvhich disables

the oscillator. Both the XTAL1 and XTALZ2 pins have built-in electrostatic discharge (ESD) pro-
tection.

[| 12-5

8XC196NT USER’S MANUAL Inu®

To internal
circuitry

\ T
——— 9

Rf
XTALL XTAL2
(Input) D_ ’ D (Output)
Vss

Oscillator Enable#
(from powerdown circuitry)

A0076-03

Figure 12-3. On-chip Oscillator Circuit

Figure 12-4 shows the connections between the external crystal and the device. When designing
an external oscillator circuit, consider the effects of parasitic board capacitance, extended oper-
ating temperatures, and crystal specifications. Consult the manufacturer’s datasheet for perfor-
mance specifications and required capacitor values. With high-quality components, 20 pF load

capacitors (¢ are usually adequate for frequencies above 1 MHz.

Noise spikes on the XTAL1 or XTAL2 pin can cause a miscount in the internal clock-generating
circuitry. Capacitive coupling between the crystal oscillator and traces carrying fast-rising digital
signals can introduce noise spikes. To reduce this couptiagntthe crystal oscillator and ca-
pacitors near the device and use short, direct traces to connect to XTAL1, XTAL2gaifo V
further reduce the effects of noise, use grounded guard rings around the oscillator circuitry and
ground the metallic crystal case.

12-6

Inte|® MINIMUM HARDWARE CONSIDERATIONS

XTAL1

é 8XC196
Device
Iy

11 XTAL2
Cc2

Quartz Crystal

H

Note:

Mount oscillator components close to the device and use
short, direct traces to XTAL1, XTAL2, and Vgg. When
using crystals, C1=C2=20 pF. When using ceramic
resonators, consult the manufacturer for recommended
oscillator circuitry.

A0273-02

Figure 12-4. External Crystal Connections

12.4.2 Using a Ceramic Resonator Instead of a Crystal Oscillator

In cost-sensitive applications, you may choose to use a ceramic resonator instead of a crystal os:
cillator. Ceramic resonators may require slightly different load capacitor values and circuit con-
figurations. Consult the manufacturer’s datasheet for the requirements.

12.4.3 Providing an External Clock Source

To use an external clock source, apply a clock signal to XTAL1 and let XTAL2 float (Figure
12-5). To ensure proper operation, the external clock source must meet the minimum high and
low times (T,xx and T, «x) and the maximum rise and fall transition timeg, (§ and Ty,)

(Figure 12-6). The longer the rise and fall times, the highgsribigabilitythat external noise will

affect the clock generator circuitry and cause unreliable operation. See the datasheet for required
XTALL1 voltage drive levels and actual specifications.

[| 12-7

8XC196NT USER’S MANUAL Inu®

Vce

4.7 kQt
External
Clock Input XTAL1

Clock Driver 8XC196 Device

No Connection XTAL2

T Required if TTL driver is used. Not needed if CMOS driver is used.

A0274-02

Figure 12-5. External Clock Connections

Torixx Tyixn == |— —_— a— TxHxL
0.7 Ve +05V T 0.7V +05V
~—— XLXX =i
0.3Vgc =05V 0.3Vge—05V
R ————————
Tax

A2119-02

Figure 12-6. External Clock Drive Waveforms

At power-on, the interaction between the internal amplifier and its feedback capacitance (i.e., the
Miller effect) may cause a load of up100 pF at the XTALJin if the signal at XTAL1 is weak

(such as might be the case during start-up of the external oscillator). This situation will go away
when the XTAL1 input signal meets the \and \{, specifications (listed in the datasheet). If
these specifications are met, the XTAL1 pin capacitance will not exceed 20 pF.

12.5 RESETTING THE DEVICE

Reset forces the device into a known state. As soon as RESET# is asise i€ pins, the con-

trol pins, and the registers are driven to their reset states. (Table B-6 on page B-14 lists the reset
states of the pins. See Table C-2 on page C-2 for the reset values of the SFRs.) The device re
mains in its reset state until RESET# is deasserted. When RESET# is deasserted, the bus control
ler fetches the chip configuration bytes (CCBSs), loads them into the chip configuration registers
(CCRs), and then fetches the first instruction.

12-8 [|

Inu® MINIMUM HARDWARE CONSIDERATIONS

Figure 12-7 shows the reset-sequence timing. Depengliog when RESET# is brought high,
the CLKOUT signal may become out of phase with the PH1 internal clock. When this occurs, the
clock generator immediately resynchronizes CLKOUT as shown in Case 2.

Internal
Reset

RESET# 77
Pin

CLKOUT

g g Ep Ny Ny Ny W Ha WU p WMy NNy N gy W Wy NNy Hp R Wy N Wylpipplpiyliply
CLKOUT :
<€ Phases Resynchronized ~ «-eee = ADV# Selected

ALE 9 Tosc 7 Tosc 9Tosc : 10Toec | 9Tosc : 8Toec Il

RD# 7 Tosc 9 Tosc 7 Tosc 13 Tose 7 Tosc 1 Tose L.....
AD7:0 ———<18H)—~_CCBO)——1AH)—~(CCB1)——CH)—~CCB2)——B0H) "+~
AD15:8 —(20H T Strong)—— 20H TStrong ------
A19:16 — OFH Strongly Driven X

Bus parameters defined by CCBO (ready —)—
control, bus width, and bus-timing
modes) take effect here.

T Defaults to an 8-bit bus until the CCBs are loaded. AD15:8 strongly drive address during the CCB fetches.
For 16-bit systems, write 20H to the high byte of CCBO, CCB1, and CCB2 (FF2019H, FF201BH, and FF201DH)
in order to prevent bus contention.

A0254-02

Figure 12-7. Reset Timing Sequence

The following events will reset the device (see Figure 12-8):
¢ an external device pulls the RESET# pin low
¢ the CPU issues the reset (RST) instruction
* the CPU issues an idle/powerdown (IDLPD) instruction with an illegal key operand
¢ the watchdog timer (WDT) overflows

¢ the oscillator fail detect (OFD) circuitry is enabled and an oscillator failure occurs

The following paragraphs describe each of these reset methods in more detail.

12-9

8XC196NT USER’S MANUAL Inu®

Internal External

Vce
Reset State -~--—— Clock

Internal Machine

Resel 4— @ RRSTT
Signal Trigger <

Count Complete

l WA/ {JReSET#

CLR ~200 Q
e

SET

RST Instruction
WDT Overflow
IDLPD Invalid Key

[CseRol—

OFD
(FOSC <100 kHZ)

T See the datasheet for minimum and maximum Rggy values.

A0034-02

Figure 12-8. Internal Reset Circuitry

12.5.1 Generating an External Reset

To reset the device, hold the RESET# pin low for at least one state time after the power supply is
within tolerance and the oscillator has stabilized. When RESET# is first asserted, theutdtesice t

on a pull-down transistor (Q1) for 16 state times. This enables the RESET# signal to function as
the system reset.

The simplest way to reset the device is to insert a capacitor between the RESET# pig asd V
shown in Figure 12-9. The device has aminal pull-upresistor (Rg;) shown in Figure 12-8.
RESET# should remain asserted for at least one state time gftan¥ XTAL1 have stabilized

and met the operating conditions specified in the datasheet. A capacitor of 4.7 uF or greater
should provide sufficienteset time, as long as.Vrises quickly.

12-10 [|

Inu® MINIMUM HARDWARE CONSIDERATIONS

RESET#
+
4.7 yF

I 8XC196 Device

A0276-01

Figure 12-9. Minimum Reset Circuit

Other devices in the system may not be reset because the capacitor will keep the voltage above
V. . Since RESET# is asserted for only 16 state times, it may be necessary to lengthen and buffer
the system-reset pulse. Figure 12-10 shows an example of a system-reset circuit. In this example,
D2 creates a wired-OR gate connection to the reset pin. An internal reset, system power-up, or
SW1 closing will generate the system-reset signal.

Vce
Vce
1) X
D1 R D2 @
1 47kQ
oK

SW1) J— c
i I Schmitt Triggers

RESET#

8XC196
Device

System reset signal
to external circuitry
Notes:
1. D1 provides a faster cycle time for repetitive power-on resets.
2. Optional pull-up for faster recovery.

A0277-02

Figure 12-10. Example System Reset Circuit

12-11

8XC196NT USER’S MANUAL Int9I®

12.5.2 Issuing the Reset (RST) Instruction

The RST instruction (opcode FFH) resets the device by pulling RESET# low for 16 state times.
It also clears the processor status word (PSW), sets the master program counter (PC) to FF2080H
and resets the special function registers (SFRs). See Table C-2 on page C-2 for the reset value
of the SFRs.

Putting pull-ups on the address/data bus causes unimplemented areas of memory to be read a
FFH. If unused internal OTPROM memory is set to FFH, then execution from any unused mem-
ory locations will reset the device.

12.5.3 Issuing an lllegal IDLPD Key Operand

The device resets itself if an illegal key operand is used with the idle/powerdown (IDLPD) com-
mand. The legal keys are “1” for idle mode and “2” fowerdown mode. If any other value is

used, the device executes a reset sequence. (See Appendix A for a description of the IDLPD com-
mand.)

12.5.4 Enabling the Watchdog Timer

The watchdog timer (WDT) is a 16-bit counter tregtets the device when the counter overflows
(every 64K state times). The WDE bit (bit 3) of CCR1 controls whether the watchdog is enabled
immediately or is disabled until the first time it is cleared. Clearing WDE activates tbledegt
Setting WDE makes the watdog timer inactive, but you can activate it by clearing the watchdog
register. Once the watchdog isiaated, only a reset can disable it.

You must write two consecutive bytes to the ehakog rgister (location 0AH) to clear it. The

first byte must be 1EH and the second must be E1H. We recommend that you disable interrupts
before writing to the watchdog register. If an interrupt occurs between the two writes, the watch-
dog register will not be cleared.

If enabled, the watchdog continues to run in idle mode. The device must be awakened within 64K
state times to clear the watchdog; otherwise, the watchdog willthesdevice, which causes it
to exit idle mode.

12.5.5 Detecting Oscillator Failure

The ability to sense an oscillator failure is important in safety-sensitive applications. This device
provides a feature that can detect a failed oscillator and reset itself. Low-frequency oscillation,
typically 100 kHz or below, is sensed as a failure. If enabled, the oscillator failure detection
(OFD) circuitry resets the device in the event of an oscillator failure. This feature is enabled by
programming the OFD bit (bit 0) in the USFR. (See “Enabling the Oscillator Failure Detection

Circuitry” on page 15-7 for details.)

12-12

intgl. 1 3

Special Operating
Modes

CHAPTER 13
SPECIAL OPERATING MODES

The 8XC196NT has two power saving modes: idle and powerdowsolpeovides an on-circuit
emulation (ONCE) mode that electrically isolates the device from the other system components.
This chapter describes each mode and explainsto enter and exit each. (Refer to Appendix A

for descriptions of the instructions discussed in this chaptéppendix B for descriptions of
signal status during each mode, and to Appendix C for details about the registers.)

13.1 SPECIAL OPERATING MODE SIGNALS AND REGISTERS

Table 13-1 lists the signals and Table 13-2 lists the registers that are mentioned in this chapter.

Table 13-1. Operating Mode Control Signals

Signal

Port Pin Name

Type Description

pP2.7 CLKOUT O Clock Output

Output of the internal clock generator. The CLKOUT frequency is %2
the oscillator input frequency (XTAL1). CLKOUT has a 50% duty cycle.

pP2.2 EXTINT | External Interrupt

In normal operating mode, a rising edge on EXTINT sets the EXTINT
interrupt pending bit. EXTINT is sampled during phase 2 (CLKOUT
high). The minimum high time is one state time.

If the chip is in idle mode and if EXTINT is enabled, a rising edge on
EXTINT brings the chip back to normal operation, where the first
action is to execute the EXTINT service routine. After completion of
the service routine, execution resumes at the the IDLPD instruction
following the one that put the device into idle mode.

In powerdown mode, asserting EXTINT causes the chip to return to
normal operating mode. If EXTINT is enabled, the EXTINT service
routine is executed. Otherwise, execution continues at the instruction
following the IDLPD instruction that put the device into powerdown
mode.

P2.6 ONCE# | On-circuit Emulation

Holding ONCE# low during the rising edge of RESET# places the
device into on-circuit emulation (ONCE) mode. This mode puts all pins
into a high-impedance state, thereby isolating the device from other
components in the system. The value of ONCE# is latched when the
RESET# pin goes inactive. While the device is in ONCE mode, you
can debug the system using a clip-on emulator. To exit ONCE mode,
reset the device by pulling the RESET# signal low. To prevent
inadvertent entry into ONCE mode, either configure this pin as an
output or hold it high during reset and ensure that your system meets
the V,, specification (see datasheet).

13-1

8XC196NT USER’S MANUAL Inu®

Table 13-1. Operating Mode Control Signals (Continued)

Port Pin

Signal

Name Type Description

P5.4

Test- /1O Test-mode entry

mode If this pin is held low during reset, the device will enter a reserved test
entry mode, so exercise caution if you use this pin for input. If you choose
to configure this pin as an input, always hold it high during reset and
ensure that your system meets the V,, specification (see datasheet) to
prevent inadvertent entry into a test mode.

RESET# 110 Reset

A level-sensitive reset input to and open-drain system reset output
from the microcontroller. Either a falling edge on RESET# or an
internal reset turns on a pull-down transistor connected to the RESET
pin for 16 state times. In the powerdown and idle modes, asserting
RESET# causes the chip to reset and return to normal operating
mode. The microcontroller resets to FF2080H in internal OTPROM or
F2080H in external memory.

Vpp PWR | Programming Voltage

During programming, the V, pin is typically at +12.5 V (V;, voltage).
Exceeding the maximum V, voltage specification can damage the
device.

Vpp also causes the device to exit powerdown mode when it is driven
low for at least 50 ns. Use this method to exit powerdown only when
using an external clock source because it enables the internal phase
clocks, but not the internal oscillator.

On devices with no internal nonvolatile memory, connect Vg, to V.

Table 13-2. Operating Mode Control and Status Registers

Mnemonic

Address Description

CCRO

2018H Chip Configuration O Register
Bit O of this register enables and disables powerdown mode.

INT_MASK1

0013H Interrupt Mask 1

Bit 6 of this 8-bit register enables and disables (masks) the
external interrupt (EXTINT).

INT_PEND1

0012H Interrupt Pending 1

When set, bit 6 of this register indicates a pending external
interrupt.

P2 DIR
P5_DIR

1FCBH Port x Direction

1FF3H Each bit of Px_DIR controls the direction of the corresponding pin.
Clearing a bit configures a pin as a complementary output; setting
a bit configures a pin as an input or open-drain output. (Open-
drain outputs require external pull-ups.)

P2_MODE
P5_MODE

1FC9H Port x Mode

1FF1H Each bit of Px_MODE controls whether the corresponding pin
functions as a standard I/O port pin or as a special-function
signal. Setting a bit configures a pin as a special-function signal;
clearing a bit configures a pin as a standard I/O port pin.

13-2

Inu® SPECIAL OPERATING MODES

13.2 REDUCING POWER CONSUMPTION

Both power-saving modes conserve power by disabling portions of the internal clock circuitry
(Figure 13-1). The following paragraphs describe both modes in detail.

Disable Clock Input

(Powerdown)
|
IEN @, . Divide-by-two
Disable Clocks
(Powerdown)
e J-_) Peripheral Clocks (PH1, PH2)
Disable Geﬁ-la(:gt(ors - D CLKOUT

Oscillator CPU Clocks (PH1, PH2)
(Powerdown)

Disable Clocks
(Idle, Powerdown)

A3064-02

Figure 13-1. Clock Control During Power-saving Modes

13.3 IDLE MODE

In idle mode, the device’'s power consumption decreasapgmximately 40% of normal con-
sumption. Internal logic holds the CPU clocks at logic zero, causing the CPU to stop executing
instructions. Neither the peripheral clociex CLKOUT are affe@d, so the special-function reg-
isters (SFRs) and register RAM retain their data and the peripherals emdphsystem remain
active. Table B-6 on page B-14 lists the values of the pins during idle mode.

[| 13-3

8XC196NT USER’S MANUAL Int9I®

The device enters idle mode after executing the IDLPD #1 instruction. Either emiphter a
hardware reset will cause the device to exit idle mode. Any enabled interrupt source, either inter-
nal or external, can cause the device to exit idle mode. When an interrupt occurs, the CPU clocks
restart and the CPU executes the corresponding interrupt service or PTS routine. When the routine
is complete, the CPU fetches and then executes the instruction that follows the IDLPD #1 instruc-
tion.

NOTE
If enabled, the watchdog timer continues to run in idle mode. The device must

be awakened within every 64K state times to clear the WATCHDOG register;
otherwise, the timer will reset the device.

To prevent an accidental return to full power, hold the external interrupt pin
(EXTINT) low while the device is in idle mode.

13.4 POWERDOWN MODE

Powerdown mode places the device into a very low power state by disabling the internal oscilla-
tor and clock generators. Internal logic holds the CPU and peripheral clocks at logic zero, which
causes the CPU to stop executing instructions, the system bus-control signals to become inactive,
the CLKOUT signal to become high, and the peripherals to turn off. Power consuhaipsn

into the microwatt range (refer to the datasheet for exact specificatignis)réduced to device
leakage. Table B-6 on page B-14 lists the values of the pins during powerdown mogeisif V
maintained above the minimum specification, the special-function registers (SFRs) and register
RAM retain their data.

13.4.1 Enabling and Disabling Powerdown Mode
Setting the PD bit in the chip-configuration register 0 (CCRO0.0) enables powerdown mode. Clear-

ing it disablegpowerdown. CCRO is loaded frothe chip configuration byte (CCBO0) when the
device is reset.

13-4

Int€|® SPECIAL OPERATING MODES

13.4.2 Entering Powerdown Mode

Before entering powerdown, complete the following tasks:

e Complete all serial port transmissions or receptions. Otherwise, when the device exits
powerdown, the serial port activity will continue where it left off and incorrect data may be
transmitted or received.

¢ Complete all analog conversions. If powamh occurs during the conversion, thesuk
will be incorrect.

¢ |f the watchdog timer (WDT) is enabled, clear the WAIBOG register just before issuing
the powerdowninstruction. This ensures that the device can priverdown cleanly.
Otherwise, the WDT could reset the device before the oscillator stabilizes. (The WDT
cannot reset the device during powerdown because the clock is stopped.)

¢ Put all other peripherals into an inactive state.

* To allow other devices to control the bus while the microcontroller is in powerdosert as
HLDA#. Do this only if the routines for entering and exiting powerdown do not require
access to external memory.

After completing these tasks, execute the IDLPD #2 instruction to enter powerdown mode.

NOTE

To prevent an accidental return to full power, hold the external interrupt pin
(EXTINT) low while the device is in powerdown mode.

13.4.3 Exiting Powerdown Mode

The device will exit powerdown mode when one of the following events occurs:
* an external device drives thg)pin low for at least 50 ns,
* a hardware reset is generated, or

* atransition occurs on the external interrupt pin.
13.4.3.1 Driving the V 5 Pin Low
If the design uses an external clock input signal rather than the on-chip oscillator, the fastest way
to exit powerdown mode is to drive thg\pin low for at least 50 ns. Use this metloody when

using an external clock input because the internal CPU and peripheral clocks will be enabled, but
the internal oscillator will not.

[| 13-5

8XC196NT USER’S MANUAL Inu®

13.4.3.2 Generating a Hardware Reset

The device will exit powerdown if RESET# is ag®d. If the design uses an external clock input
signal rather than the on-chip oscillator, RESET# must remain low for at least 16 state times. If
the design uses the on-chip oscillator, then RESET# must be held low until the oscillator has sta-
bilized.

13.4.3.3 Asserting the External Interrupt Signal

The final way to exit powerdown mode is to assert the external interrupt signal (EXTINT) for at
least 50 ns. Although EXTINT is normally a sampled input, the powerdown circuitry uses it as a
level-sensitive input. The interrupt need not be enabled to bring the device out of powerdown, but
the pin must be configured as a special-function input (see “Bidirectional Port Pin Configura-
tions” on page 6-9). Figure 13-2 shows the power-up and powerdown sequence when using an
external interrupt to exit powerdown.

When an external interrupt brings the device out of powerdown mode, the corresponding pending
bit is set in the interrupt pending register. If the interrupt is enabled, the device executes the in-
terrupt service routine, then fetches and executes the instruction following the IDLPD #2 instruc-
tion. If the interrupt is disabled (masked), the device fetches and executes the instruction
following the IDLPD #2 instruction and the pending bit remains set until the-uiptes serviced

or software clears the pending bit.

CLKOUT i

AL
N

L
PHli i_i

Internal Powerdown ,
Signal !

L
I

EXTINT

Vep

Timeout | I |
(Internal) - . . . —

A0078-01

Figure 13-2. Power-up and Powerdown Sequence When Using an External Interrupt

13-6

Inu® SPECIAL OPERATING MODES

When using an external interrupt signal to exit powerdown mode, we recommend that you con-
nect the external RC circuit shown in Figure 13-3 to thepih. The discharging of the capacitor
causes a delay that allows the oscillator to stabilize before the internal CPU and peripheral clocks
are enabled.

8XC196 Vce
Device

R1 1 MQ Typical

Vpp
I Cq 1uF Typical

Figure 13-3. External RC Circuit

A0279-01

During normal operation (before entering powerdown mode), an internal pull-up holds the
Ve pin at V.. When an external interrupt signal is asserted, the internal oscillator circuitry is
enabled and turns on a weak internal pull-down. This weak pull-down causes the external capac-
itor (C,) to begin discharging at a typical rate of 200. When the \{, pin voltage drops below

the threshold voltage (about 2.5 V), the internal phase clocks are enabled and the device resume:
code execution.

At this time, the internal pull-up transistor turns on and quickly pulls the pin back up to about
3.5 V. The pull-up becomes ineffective and the external resistbtalkes over and pulls the volt-

age up to ¥, (see recovery time in Figure 13-4). The time constant follovexpanential charg-

ing curve. If G = 1uF and R = 1 MQ, the recovery time will be one second.

13.4.3.4 SelectingR ;and C;

The values of Rand G are not critical. Select components that produce a sftidischarge

time to permit the internal oscillator circuitry to stabilize. Because many factors can influence the
discharge time requirement, you should always fully characterize your design under worst-case
conditions to verify proper operation.

[| 13-7

8XC196NT USER’S MANUAL Inu®

1

4 4L
EXTINT /
S+ i /
200 pA Cq Discharge
Vpp, Volts Rq x C1 Recovery
f Time Constant
2 ——

Pullup On
Code Execution Resumes

2 4 6 8 10 12 14 16 18 20 22
Time, ms

A0151-01

Figure 13-4. Typical Voltage on the V , Pin While Exiting Powerdown

Select a resistor that will not interfere with the discharge current. In most cases, values between
200 kQ and 1 M2 should perform satisfactorily. When selecting the capacitor, determine the
worst-case discharge time needed for the oscillatoatilite, then use this formula to calculate

an appropriate value for,C

Toig X!
C, =
Vi
where:
C, is the capacitor value, in farads
Tois is the worst-case discharge time, in seconds
| is the discharge current, in amperes
Vi is the threshold voltage

NOTE

If powerdown is re-entered and exited beforecarges to Y, it will take
less time for the voltage to ramp down to the threshold. Therefore, the device
will take less time to exit powerdown.

13-8

Int€|® SPECIAL OPERATING MODES

For example, assume that the oscillator needs at least 12.5 ms to dischargel @5 ms), Y
is 2.5V, and the discharge current is 2000 The minimum G capacitor size is fiF.

_0.0125 x0.0002 _

C
! 2.5

1uF

When using an external oscillator, the value p€&n be very small, allowing rapid recovery from
powerdown. For example, a 100 pF capacitor discharges inu%.25

CixVy 10x10x25
LA S “22 - 105 s
| 0.0002

Tois =

13.5 ONCE MODE

On-circuit emulation (ONCE) mode isolates the device from other components in the system to
allow printed-circuit-board testing or debugging with a clip-on emulator. During ONCE mode,
all pins except XTALL1, XTAL2, \; and V.. are weakly pulled high or low. During ONCE
mode, RESET# must be held high or the device will exit ONCE mode and enter the reset state.

13.5.1 Entering and Exiting ONCE Mode

Holding the ONCE# signal low during the rising edge of RESET# causes the device to enter
ONCE mode. To prevent accidental entry into ONCE mode, we highly recommend configuring
this pin as an output. If you choose to configure this pin as an input, always hold it high during
reset and ensure that your system meets thepécification (see datasheet) to prevent inadvert-
ent entry into ONCE mode.

Exit ONCE mode by asserting the RESET# signal and allowing the ONCE# pin to float or be
pulled high. Normal operations resume when RESET# goes high.

13.6 RESERVED TEST MODES

A special test-mode-entry pin (P5.4) is provided for Intel's in-house testing only. These test
modes can be entered accidentally if you configure the test-mode-entry pin as an input and hold
it low during the rising edge of RESET#. To prevent accidental entry into an unsupported test
mode, we highly recommend configuring the test-mode-entry pin as an output. If you choose to
configure this pin as an input, always hold it high during reset asute that your system meets
theVj, specification (see datasheet) to prevent inadvertent entry into an unsupported test mode.

13-9

intgl.

14

Interfacing with
External Memory

CHAPTER 14
INTERFACING WITH EXTERNAL MEMORY

The device can interface with a variety of external memory devicespitorts either a fixed 8-

bit bus width, a fixedL6-bit bus width, or a dynamic 8-bit/16-bit bwidth; internal control of

wait states for slow external memory devices; a bus-hold protocol that enables external devices
to take over the bus; and several bus-control modes. These features provide a great deal of flexi-
bility when interfacing with external memory devices.

In addition to describing the signals and registers related to extermadnyehis chapter discuss-
es the process of fetching the chip configuration bytes and configuring the external bus. It also
provides examples of external memory configurations.

14.1 INTERNAL AND EXTERNAL ADDRESSES

The address that external devices see is different from the address that the device generates inte
nally. Internally, the device has 24 address lines, but only the lower 20 address lines (A19:16 and
AD15:0) are implemented with external pins. The absence of the upper four address bits at the
external pins causes different internal addresses to have the same external address. For exampl:
the internal addresses FF2080H, 7F2080H, and F2080H all appear at therdalgins as
F2080H. The upper hble of the internal address has no effect on the external address.

The address seen by an external device also depends on the number of address lines that the e
ternal system uses. If the address on the external pins (A19:16 and AD15:0) is F2080H, and only
A17:16 and AD15:0 are connected to the external device, the external devic@G&@d.3rhe

upper four address lines A19:16 are implemented by the EPORT. Table 14-1hslvowse ex-

ternal address depends on the number of EPORT lines used to address the external device.

Table 14-1. Example of Internal and External ~ Addresses

EPORT Lines
Connected to the Internal Address Addre_ss on the Address Seen_ by
. Device Pins External Device
External Device
Al6 XxF2080H F2080H 12080H
Al7:16 XxF2080H F2080H 32080H
A18:16 XxF2080H F2080H 72080H
A19:16 XxF2080H F2080H F2080H

14-1

8XC196NT USER’S MANUAL

14.2 EXTERNAL MEMORY INTERFACE SIGNALS

Table 14-2 describes the external memory interface signals. For some signals, the pin has an al-
ternate function (shown in thdultiplexed Withcolumn). In some cases the alternate function is

a port signal (e.g., P2.7). Chapter 6, “I/O Ports,” describes how to configure a pin for its I/O port
function and for its special function. In other cagshs, signal description includes instructions

for selecting the alternate function.

Table 14-2. External Memory Interface Signals

intel.

Function
Name

Type

Description

Multiplexed
With

A19:16

110

Address Lines 16-19

These address lines provide address bits 16-19 during the entire
external memory cycle, supporting extended addressing of the
1 Mbyte address space.

NOTE: Internally, there are 24 address bits; however, only 20
address lines (A19:16 and AD15:0) are bonded out. The
internal address space is 16 Mbyte (000000-FFFFFFH)
and the external address space is 1 Mbyte (00000—
FFFFFH). The device resets to FF2080H in internal ROM
or xF2080H in external memory.

A19:16 are multiplexed with EPORT.3:0.

EPORT.3:0

AD15:0

110

Address/Data Lines

These pins provide a multiplexed address and data bus. During the
address phase of the bus cycle, address bits 0-15 are presented on
the bus and can be latched using ALE or ADV#. During the data
phase, 8- or 16-bit data is transferred. When a bus access is not
occurring, these pins revert to their I/O port function.

P4.7:0
P3.7:0

ADV#

Address Valid

This active-low output signal is asserted only during external
memory accesses. ADV# indicates that valid address information is
available on the system address/data bus. The signal remains low
while a valid bus cycle is in progress and is returned high as soon as
the bus cycle completes.

An external latch can use this signal to demultiplex the address from
the address/data bus. A decoder can also use this signal to generate
chip selects for external memory.

P5.0/ALE

ALE

Address Latch Enable

This active-high output signal is asserted only during external
memory cycles. ALE signals the start of an external bus cycle and
indicates that valid address information is available on the system
address/data bus. ALE differs from ADV# in that it does not remain
active during the entire bus cycle.

An external latch can use this signal to demultiplex the address from
the address/data bus.

P5.0/ADV#

14-2

intel.

INTERFACING WITH EXTERNAL MEMORY

Table 14-2. External Memory Interface Signals (Continued)

Function - Multiplexed
Name Type Description With
BHE# O Byte High Enable P5.5/WRH#
The chip configuration register 0 (CCRO) determines whether this pin
functions as BHE# or WRH#. CCR0.2=1 selects BHE#; CCR0.2=0
selects WRH#.
During 16-bit bus cycles, this active-low output signal is asserted for
word reads and writes and high-byte reads and writes to external
memory. BHE# indicates that valid data is being transferred over the
upper half of the system data bus. BHE#, in conjunction with ADO,
indicates the memory byte that is being transferred over the system
bus:
BHE# ADO Byte(s) Accessed
0 0 both bytes
0 1 high byte only
1 0 low byte only
BREQ# (6] Bus Request P2.3
This active-low output signal is asserted during a hold cycle when
the bus controller has a pending external memory cycle.
The device can assert BREQ# at the same time as or after it asserts
HLDA#. Once it is asserted, BREQ# remains asserted until HOLD#
is removed.
You must enable the bus-hold protocol before using this signal (see
“Enabling the Bus-hold Protocol” on page 14-21).
BUSWIDTH | Bus Width P5.7
The chip configuration register bits, CCR0.1 and CCR1.2, along with
the BUSWIDTH pin, control the data bus width. When both CCR bits
are set, the BUSWIDTH signal selects the external data bus width.
When only one CCR bit is set, the bus width is fixed at either 16 or 8
bits, and the BUSWIDTH signal has no effect.
CCR0.1 CCR1l.2 BUSWIDTH
0 1 N/A fixed 8-bit data bus
1 0 N/A fixed 16-bit data bus
1 1 high 16-bit data bus
1 1 low 8-bit data bus
CLKOUT O Clock Output pP2.7

Output of the internal clock generator. The CLKOUT frequency is ¥2
the oscillator frequency input (XTAL1). CLKOUT has a 50% duty
cycle.

14-3

8XC196NT USER’S MANUAL Inu®

Table 14-2. External Memory Interface Signals (Continued)

Function
Name

Multiplexed

Type Description With

EA# | External Access —

EA# is sampled and latched only on the rising edge of RESET#.
Changing the level of EA# after reset has no effect. Accesses to
special-purpose and program memory partitions (FF2000H—
FFIOFFFH) are directed to internal memory if EA# is held high and to
external memory if EA# is held low.

EA# also controls program mode entry. If EA# is at V,,, voltage
(typically +12.5 V) on the rising edge of RESET#, the device enters
programming mode.

NOTE: When EA# is active, ports 3 and 4 will function only as the
address/data bus. They cannot be used for standard 1/O.

On devices with no internal nonvolatile memory, always connect EA#
to Vgs.

HLDA# (0] Bus Hold Acknowledge P2.6

This active-low output indicates that the CPU has released the bus
as the result of an external device asserting HOLD#.

HOLD# | Bus Hold Request P2.5

An external device uses this active-low input signal to request control
of the bus. This pin functions as HOLD# only if the pin is configured
for its special function (see “Bidirectional Port Pin Configurations” on
page 6-9) and the bus-hold protocol is enabled. Setting bit 7 of the
window selection register enables the bus-hold protocol.

INTOUT# O Interrupt Output P2.4/AINC#

This active-low output indicates that a pending interrupt requires use
of the external bus. How quickly the 8XC196NT asserts INTOUT#
depends upon the status of HOLD# and HLDA# and whether the
device is executing from internal or external program memory. If the
8XC196NT receives an interrupt request while it is in hold and it is
executing code from internal memory, it asserts INTOUT# immedi-
ately. However, if the 8XC196NT is executing code from external
memory, it asserts BREQ# and waits until the external device
deasserts HOLD# to assert INTOUT#. If the 8XC196NT is executing
code from external memory and it receives an interrupt request as it
is going into hold (between the time that an external device asserts
HOLD# and the time that the 8XC196NT responds with HLDA#), the
8XC196NT asserts both HLDA# and INTOUT# and keeps them
asserted until the external device deasserts HOLD#.

INST O Instruction Fetch P5.1/

This active-high output signal is valid only during external memory SLPCS#
bus cycles. When high, INST indicates that an instruction is being
fetched from external memory. The signal remains high during the
entire bus cycle of an external instruction fetch. INST is low for data
accesses, including interrupt vector fetches and chip configuration
byte reads. INST is low during internal memory fetches.

RD# (0] Read P5.3/

Read-signal output to external memory. RD# is asserted only during SLPRD#
external memory reads.

14-4

Inte|® INTERFACING WITH EXTERNAL MEMORY

Table 14-2. External Memory Interface Signals (Continued)

Function - Multiplexed
Name Type Description With
READY | Ready Input P5.6

This active-high input signal is used to lengthen external memory
cycles for slow memory by generating wait states in addition to the
wait states that are generated internally.

When READY is high, CPU operation continues in a normal manner
with wait states inserted as programmed in the chip configuration
registers. READY is ignored for all internal memory accesses.

WR# (0] Write P5.2/WRL#/

The chip configuration register 0 (CCRO) determines whether this pin SLPWR#
functions as WR# or WRL#. CCR0.2=1 selects WR#; CCR0.2=0
selects WRL#.

This active-low output indicates that an external write is occurring.
This signal is asserted only during external memory writes.

WRH# (0] Write High P5.5/BHE#

The chip configuration register 0 (CCRO) determines whether this pin
functions as BHE# or WRH#. CCR0.2=1 selects BHE; CCR0.2=0
selects WRH#.

During 16-bit bus cycles, this active-low output signal is asserted for
high-byte writes and word writes to external memory. During 8-bit
bus cycles, WRH# is asserted for all write operations.

WRL# (0] Write Low P5.2/IWR#/S

The chip configuration register 0 (CCRO) determines whether this pin LPWR#
functions as WR# or WRL#. CCR0.2=1 selects WR#; CCR0.2=0
selects WRL#.

During 16-bit bus cycles, this active-low output signal is asserted for
low-byte writes and word writes. During 8-bit bus cycles, WRL# is
asserted for all write operations.

14.3 CHIP CONFIGURATION REGISTERS AND CHIP CONFIGURATION BYTES

Three chip configuration registeiSGCRs) have bits that set parameters fop operation and ex-

ternal bus cycles. The CCRs cannot be accessed by code. They are loaded from the chip config-
uration bytes (CCBs), which have internal addresse®EF#2 (CCB0), FF201AH (CCB1), and
FF201C (CCB2). Ithe CCBs are stored in external memory, their external addre gsesdden

the number of EPORT lines used in the external system (see “Internal and External Addresses”
on page 14-1).

When the device returns from reset, the bus controller fetches the CCBs and loads them into the

CCRs. From this point, these CCR bit values define the chip configuration until the device is reset
again. The CCR bits are described in Figures Irdugh 14-3.

[| 14-5

8XC196NT USER’S MANUAL

intel.

CCRO

Address:
Reset State:

FF2018H
XXH

The chip configuration 0 (CCRO) register controls powerdown mode, bus-control signals, and internal
memory protection. Three of its bits combine with two bits of CCR1 to control wait states and bus

width.
7 0
LOC1 LOCO IRC1 IRCO ‘ ‘ ALE WR BWO PD
Bit Bit .
Number Mnemonic Function
7:6 LOC1:0 Lock Bits
Determine the programming protection scheme for internal memory.
LOC1 LOCO
0 0 read and write protect
0 1 read protect only
1 0 write protect only
1 1 no protection
5:4 IRC1:0 Internal Ready Control
These two bits, along with IRC2 (CCR1.1), limit the number of wait states
that can be inserted while the READY pin is held low. Wait states are
inserted into the bus cycle either until the READY pin is pulled high or
until this internal number is reached.
IRC2 IRC1 IRCO
0 0 0 zero wait states
0 X 1 illegal
0 1 X illegal
1 0 0 one wait state
1 0 1 two wait states
1 1 0 three wait states
1 1 1 infinite
3 ALE Address Valid Strobe and Write Strobe
WR These bits define which bus-control signals will be generated during
external read and write cycles.
ALE WR
0 0 address valid with write strobe mode
(ADV#, RD#, WRL#, WRH#)
0 1 address valid strobe mode
(ADV#, RD#, WR#, BHE#)
1 0 write strobe mode
(ALE, RD#, WRL#, WRH#)
1 1 standard bus-control mode
(ALE, RD#, WR#, BHE#)

14-6

Figure 14-1. Chip Configuration 0 (CCRO0) Register

intel.

INTERFACING WITH EXTERNAL MEMORY

CCRO (Continued)

The chip configuration 0 (CCRO) register controls powerdown mode, bus-control signals, and internal

Address: FF2018H
Reset State: XXH

memory protection. Three of its bits combine with two bits of CCR1 to control wait states and bus

width.
7 0
LOC1 LOCO IRC1 IRCO ‘ ‘ ALE WR BWO PD
Bit Bit Function
Number Mnemonic
1 BWO Buswidth Control
This bit, along with the BW1 bit (CCR1.2), selects the bus width.
BW1 BWO
0 0 illegal
0 1 16-bit only
1 0 8-bit only
1 1 BUSWIDTH pin controlled
0 PD Powerdown Enable
Controls whether the IDLPD #2 instruction causes the device to enter
powerdown mode. Clearing this bit at reset can prevent accidental entry
into powerdown mode.
1 = enable powerdown mode
0 = disable powerdown mode

Figure 14-1. Chip Configuration 0 (CCRO0) Register (Continued)

14-7

8XC196NT USER’S MANUAL Inu®

CCR1 Address: FF201AH
Reset State: XXH

The chip configuration 1 (CCR1) register enables the watchdog timer and selects the bus timing
mode. Two of its bits combine with three bits of CCRO to control wait states and bus width. Another bit
controls whether CCR2 is loaded.

7 0
MSEL1 MSELO 0 1 ‘ ‘ WDE BW1 IRC2 LDCCB2
Bit Bit .
Number Mnemonic Function
7:6 MSEL1:0 External Access Timing Mode Select

These bits control the bus-timing modes.
MSEL1 MSELO

0 0 standard mode plus one wait state
0 1 long read/write
1 0 long read/write with early address
1 1 standard mode
0 To guarantee device operation, write zero to this bit.
1 To guarantee device operation, write one to this bit.
3 WDE Watchdog Timer Enable

Selects whether the watchdog timer is always enabled or enabled the
first time it is cleared.

1 = enabled first time it is cleared

0 = always enabled

2 BW1 Buswidth Control

This bit, along with the BWO bit (CCRO0.1), selects the bus width.
BW1 BWO

0 0 illegal

0 1 16-bit only

1 0 8-bit only

1 1 BUSWIDTH pin controlled

Figure 14-2. Chip Configuration 1 (CCR1) Register

14-8 [|

intel.

INTERFACING WITH EXTERNAL MEMORY

7

CCR1 (Continued)

Address: FF201AH
XXH

Reset State:

The chip configuration 1 (CCR1) register enables the watchdog timer and selects the bus timing
mode. Two of its bits combine with three bits of CCRO to control wait states and bus width. Another bit
controls whether CCR2 is loaded.

0

MSEL1

MSELO

‘ ‘ WDE BW1 IRC2 LDCCB2

Bit
Number

Bit
Mnemonic

Function

IRC2

Ready Control

This bit, along with IRCO (CCRO0.4) and IRC1 (CCRO0.5), limits the

number of wait states that can be inserted while the READY pin is held
low. Wait states are inserted into the bus cycle either until the READY

pin is pulled high or until this internal number is reached.

IRC2 IRC1 IRCO
0

PR RRPRROO
PR OORXO
RPORrOXE

zero wait states
illegal

illegal

one wait state
two wait states
three wait states
infinite

LDCCB2

Load CCB2

Setting this bit causes CCB2 to be read.

Figure 14-2. Chip Configuration 1 (CCR1) Register (Continued)

14-9

8XC196NT USER’S MANUAL Inu®

CCR2 Address: FF201CH
Reset State: XXH

The chip configuration register 2 (CCR2) supports extended addressing. It selects either 64-Kbyte or
1-Mbyte addressing mode and controls whether the internal OTPROM is mapped into both page
OFFH and page 00H or into page FFH only. This register is loaded from CCB2 if the LDCCB2 bit (bit 0)
of CCR1 is set; otherwise, it is loaded with FFH

7 0
_ _ _ — H — REMAP | MODE64 =

Bit Bit

. Function
Number Mnemonic

7:3 — Reserved; always write as ones.

2 REMAP OTPROM Mapping

Controls the internal OTPROM mapping.
0 = maps to page FFH only

1 = maps to page 00H and FFH

1 MODEG64 Addressing Mode:

Selects 64-Kbyte or 1-Mbyte addressing.

0 = selects 1-Mbyte addressing
1 = selects 64-Kbyte addressing

0 — Reserved; always write as zero.

Figure 14-3. Chip Configuration 2 (CCR2) Register

14.4 BUS WIDTH AND MULTIPLEXING

The external bus can operate as either a 16-bit multiplexed address/data bus or as a multiplexec
16-bit address/8-bit data bus (Figure 14-4).

14-10

Inte|® INTERFACING WITH EXTERNAL MEMORY

Bus Control Bus Control
)
. 4-bit Extended Address
_ 4-bit Extended Address A19:16 >
AL9:16 | ———— (EPORT) ”
(EPORT)
8-bit Address High
16-bit Multiplexed AD15:8 N
Address/Data (Port 4) v>
AD15:0 8-bit Multiplexed
(Ports 4 and 3) Address/Data
oy K——>
(Port 3)
8XC196 8XC196
Device Device
16-bit Bus 8-bit Bus
A3067-01

Figure 14-4. Multiplexing and Bus Width Options

After reset, but before theCB fetch, thedevice is configured for 8-bit bus mode, regardless of
the BUSWIDTH input. The upper address lines (AD15:8) are strongly drivenghout the
CCBO0 and CCB1 bus cycles. To prevent bus contention, neither pull-ups nor pull-stovuhd

be used on AD15:8. Also, the upper bytestef CCB words(locations2019H, 201BH, and
201DH) should be loaded with 20H. If the external memory outputs 20H on its high byte, there
will be no bus contention.

After theCCBs aredaded into th€CRs, the values of BWO0 and BW1 define the data bus width
as either a fixed 8-bit, a fixed 16-bit, or a dynamic 16-bit/8-bit bus width controlled by the
BUSWIDTH signal. (The BWO0 and BW1 bits are defined in Figures 14-1 and 14-2.)

If BWO is clear and BWL1 is set, the bus controller is locked into an 8-bit bus mode. In comparing
an 8-bit bus system to a 16-bit bus system, expect some performance degradafiérbitrbas
system, a word fetch is done with a single word fetch. However, in an 8-bit bus systend, a
fetch takes an additional bus cycle because it must be done with two byte fetches.

If BWO is set and BW1 is clear, the bus controller is locked into a 16-bit bus mode. If both BWO
and BW1 are set, thelUBBWIDTH signal controls the bus width. The bus is 16 bits wide when
BUSWIDTH is high and 8 bits wide when BUSWIDTH is low. The BUSWIDTH signal is sam-
pled after the address is on the bus, asvehin Figure 14-5.

14-11

8XC196NT USER’S MANUAL Inu®

wor ___/ N/ __/ \

ALE / /_\—
Tiev <——| — |<— TeLex (MIN)
)

BUSWIDTH X Valid

Tavey

Bus Address)—(Data

~—

A0164-02

Figure 14-5. BUSWI DTH Timing Diagram

The BUSWIDTH signal can be used in numerous applications. For example, a system could store
code in a 16-bit memory device and data in an 8-bit memory device. The BUSWIDTH signal
could be tied to the chip-select input of the 8-bit memory device (shown in Figure 14-13 on page
14-26). When BUSWIDTH is low, it enables 8-bit bus mode and selects the 8-bit memory device.
When BUSWIDTH is high, it enables 16-bit bus mode and deselects the 8-bit memory device.

14.4.1 Timing Requirements for BUSWIDTH

When using BUSWIDTH to dynamically change between 8-bit and 16-bit bus widths, setup and
hold timings must be met for proper operation (see Figure 14-5). Because a decoded, valid ad-
dress is used to generate the BUSWIDTH signal, the setup time is specified relative to the address
being valid. This specification,], indicates how much time one has to decode the valid ad-
dress and generate a valid BUSWIDTH signal.

BUSWIDTH must be held valid until the minimum hold specificatiof ¢}, has been met. Typ-
ically this hold time is 0 ns minimum after CLKOUT goes low. In all cases, refer to the data sheet
for current specifications for,Js, and & gx-

NOTE

Earlier HMOS devices used a BUSWIDTH setup timing that was referenced to
the falling edge of ALE (. g,). This specification is not meaningful for

CMOS devices, which use an internal two-phase clock; it is included for
comparison only.

14-12 [|

Int€|® INTERFACING WITH EXTERNAL MEMORY

14.4.2 16-bit Bus Timings

When the device is configured to operate in the 16-bit bus-width mode, lines AD15:0 form a 16-
bit multiplexed address/data bus. Figure 14-6 shows an idealized timing diagram for the external
read and write cycles. (Comprehensive timing specifications are shown in Figure 14-25).

The rising edge of the address latch enable (ALE) indicates that the device is driving an address
onto the bus (A19:16 and AD15:0). The device presents a valid address before ALE falls. The
ALE signal is used to strobe a transparent latch (such as a 74AC373), which captures the addres:
from AD15:0 and holds it while the bus controller puts data onto AD15:0.

For 16-bit read cycles, the bus controller floats the bus and then drives RD# low so that it can

receive data. The external memory must put data (Data In) onto the bus before thelgsiof e

RD#. The data sheet specifies the maximum time the memory device has to output valid data after
RD# is asserted. When INST is asserted, it indicates that the read operation is an instruction fetch.

For 16-bit write cycles, the bus controller drives WR# low, then puts data onto the bus. The rising
edge of WR# signifies that data is valid. At this time, the external system must latch the data.

14-13

8XC196NT USER’S MANUAL

CLKOUT __/__/__
ALE / \

Valid ~u
BUSWIDTH _/ \
A19:16 —(Extended Address Out >—

Bus

AD15:0 —< Address Out >—< Data In >7
(Read)
RD# \ /

A19:16 —< Extended Address Out >—
Bus
AD15:0 —< Address Out >—< Data Out >_

(Write)

WR# \ /

A0281-02

Figure 14-6. Timings for 16-bit Buses

14-14

Int€|® INTERFACING WITH EXTERNAL MEMORY

14.4.3 8-bit Bus Timings

When the device is configured to operate in the 8-bit bus mode, lines AD7:0 form a multiplexed
lower address and data bus. Likd315:8 are not multiplexed; the upper address iskdcand
remains valid throughout the bus cycle. Figure 1sh@ws an idealized timing diagram for the
external read and write cycles. One cycle is required for an 8-bit read or write. A 16-bit access
requires two cycles. The first cycle accesses the lower byte, and the second cycle accesses thi
upper byte. Excedbr requiring an extra cycle to write the bytes separately, the timings are the
same as on the 16-bit bus.

The ALE signal is used to demultiplex the lower address by strobing a transparent latch (such as
a 74AC373).

For 8-bit bus read cycles, after ALE falls, the bus controller floats the bus and drives the RD#
signal low. The external memory then must put its data on the bus. That data must be valid at the
rising edge of the RD# signal. To read a data word, the bus contraflempetwo consecutive

reads, reading the low byte first, followed by the high byte.

For 8-bit bus write cycles, after ALE falls, the bus controller outputs data on AD7:0 and then
drives WR# low. The external memory must latch the data by the time WR# goes high. That data
will be valid on the bus until slightly after WR# goes high. To write a data word, the bus controller
performs two consecutive writegriting the low byte first, followed by the high byte.

14-15

8XC196NT USER’S MANUAL Inu®

XTAL1

CLKOUT

ALE

BUSWIDTH

A19:16

Bus
AD15:8

Bus
AD7:0
(Read)

RD#

INST

Al19:16

Bus
AD7:0
(Write)

WR#

N/ /

Extended Address Out X Extended Address Out

—< Address Out X >—
—< Adg[ﬁss >—<Low datain>_< Aerldgjts >—<High data in>7

Address Out

Extended Address Out X Extended Address Out >—

— Adg[ﬁss >-< Low data out X A,,_dldgjts >'< High data out

A0282-01

14-16

Figure 14-7. Timings for 8-bit Buses

Int€|® INTERFACING WITH EXTERNAL MEMORY

14.5 WAIT STATES (READY CONTROL)

An external device can use the READY input to request wait states in addition to the wait states
that are generated internally by the 8XC196NT device. When an address is placed on the bus for
an external bus cycle, the external device can pull the READY signal low to indicate it is not
ready. In response, the bus controller inserts wait states to lengthen the bus cycle until the external
device raises the READY signal. Each wait state adds one CLKOUT period (i.e., one state time
or 2T,¢0 to the bus cycle.

After reset and untiCCBL is readthe bus controller always inserts three wait states into bus cy-
cles. Then, until P5.6 has been configured to operate as the READY signal, the internal ready
control bits (IRC2:0) control the wait states. If IRC2:0 are all set during CCBO0 and CCBL fetch,
READY (P5.6) is configured as a special-function inpiuport 5 is initialized after reset, you

must ensure that P5.6 remains configured as the READY inputf P5.6 is configured as a port

pin, the READY input to the device is equal to zero. This will cause an infinite number of wait
states to be inserted into bus cycles and the chip to lock up.

After the CCBL1 fetch, the internal reaaypntrol circuitry allows slow external memory devices

to increase the length of the read and write bus cycles. If the external naewime is not ready

for access, it pulls the READY signal low and holds it low until it is ready to complete the oper-
ation, at which time it releases READY. While READY is low, the bus controllerttseit
states into the bus cycle.

The internal ready control bits (IRC2:0) define the maximum number of wait states that will be
inserted. (The IRC2:0 bits are defined in Figures 14-1 and 14-2.) When all three bits are set, the
bus controller inserts wait states until the external memory device releases the READY signal.
Otherwise, the bus controller inserts wait states until either the external memory device releases
the READY signal or the number of wait states equals the number (0, 1, 2, or 3) specified by the
CCB bhit settings.

When selecting infinite wait states, be sure to add external hardware to count wait states and re-
lease READY within a specified period of time. Otherwise, a defective external device could tie
up the address/data bus indefinitely.

NOTE

Ready control is valid only for external memory; you cannot add wait states
when accessing internal ROM.

14-17

8XC196NT USER’S MANUAL Int9I®

Setup and hold timings must be met when using the READY signal to insert wait states into a bus
cycle (see Table 14-3 and Figure 14-8). Because a decoded, valid address is used to generate tr
READY signal, the setup time is specified relative to the address being valid. This specification,
Tavyy indicates how much time one has to decode the address andRESSDY after the ad-

dress is valid. The READY signal must be held valid until the,Ttiming specification is met.
Typically, this is a minimum of 0 ns from the time CLKOUT goes low. Do not exceed the maxi-
mum T, Specification or additional (unwanted) wait states might be added. In all cases, refer
to the data sheets for the current specifications fg, Tand -

Table 14-3. READY Signal Timing Defi nitions

Symbol Definition

READY Hold after CLKOUT Low

Minimum hold time is typically 0 ns. If maximum specification is exceeded, additional wait
states will occur.

Address Valid to READY Setup

Maximum time the memory system has to assert READY after the device outputs the address
to guarantee that at least one wait state will occur.

TC LYX

TAVYV

14-18

Inu® INTERFACING WITH EXTERNAL MEMORY

CLKOUT \ / / \ / \ /
T
ALE / \ = Gy / \
TCLYX
| |- (MAX
READY / / /

TAVYV

RD# \ /

A19:16 Extended Address Out X

AD15:0 Address Out) Em—
WR# \ /

AD15:0 —(Address Out)X(Data Out X Address

A0283-02

Figure 14-8. READY Timing Diagram

14.6 BUS-HOLD PROTOCOL

The device supports a bus-hold protocol that allewternal devices to gain control of the ad-
dress/data bus. The protocol uses three signals, all of which are port 2 special functions:
HOLD#/P2.5 (hold request), HLDA#/P2.6 (hold acknowledge), and BREQ#/P2.3 (bus request).
When an external device wants to use the device bus, it asserts the HOLD# signal. HOLD# is
sampled while CLKOUT is low. The device responds by releasing the bussantiragiLDA#.

During this hold time, the address/data bus floats, and signals ALE, RD#, WR#/WRL#,
BHE#/WRH#, and INST are weakly held in their inactive states. Figure 14-9 shows the timing
for bus-hold protocol, and Table 14-4 on page 14-20 lists the timing parameters and their defini-
tions. Refer to the data sheet for timing parameter values.

14-19

8XC196NT USER’S MANUAL Inu®

CLKOUT__/_\ r’ — /_s s_\ }’_ /_\ /_

THVCH =] |<— THVCH =] ‘A—
Hold
Latenc
HOLD# \; Vo /
T
CLHfL = TCLHAH ===
45—
HLDA# e
27
TCLBRL =] [w— TCLBRH =w||=—
55
BREQ# .)
27
ThHALAZ
i |<— THAHAX ==
27
Bus — X e } '3
27
-I;}—‘|ALBZ] f— TharBy _|
BHE#, INST " .
' \ o] Weakly Driven Inactive|
RD#, WR# A 4 ¢ T
WRL#, WRH#

TCLLH =] |a—

—/—\ Weakly Driven Inactive \
ALE 5% 3%
ADV# —/ \ r‘ ’/‘_

ADV# weakly driven Start of strongly driven ADV# and ALE

A

A0165-02

Figure 14-9. HOLD#, HLDA# Timing

Table 14-4. HOLD#, HLDA# Timing Def initions

Symbol Parameter
Thven HOLD# Setup Time
Ternal CLKOUT Low to HLDA# Low
TeLhan CLKOUT Low to HLDA# High
Tesre CLKOUT Low to BREQ# Low
Teigru CLKOUT Low to BREQ# High
ThaLaz HLDA# Low to Address Float

14-20 [|

Int€|® INTERFACING WITH EXTERNAL MEMORY

Table 14-4. HOLD#, HLDA# Timing Definitions (Continued)

Symbol Parameter

Thanax HLDA# High to Address No Longer Float

HLDA# Low to BHE#, INST, RD#, WR#, WRL#, WRH#
Weakly Driven

Toarsy HLDA# High to BHE#, INST, RD#, WR¥#, WRL#, WRH# valid

THALBZ

Clock Falling to ALE Rising; Use to derive other timings.

TCLLH

When the external device is finished with the bus, it relinquishes control by driving HOLD# high.
In response, the 8XC196NT drives HLDA# high and assumes control of the bus.

If the BXC196NT has a pending external bus cycle while itis in hold, it asserts BREQ# to request
control of the bus. After the external device responds by driving HOLD# high, the 8XC196NT
exits hold and then deasserts BREQ# and HLDA#.

NOTE
If the 8XC196NT receives an interrupt request while it is in hold, the
8XC196NT asserts INTOUT# only if it is executing from internal memory. If
the 8XC196NT needs to access externainmey, it aserts BREQ# and waits
until the external device deasserts HOLD# to assert INTOUT#. If the
8XC196NT receives an interrupt request as it is going into hold (between the
time that an external device asserts HOLD# and the time that the 8XC196NT
responds with HLDA#), the 8XC196NT assdrisDA# and INTOUT# and
waits until the external device deasserts HOLD# to deassert HLDA# and
INTOUT#.

14.6.1 Enabling the Bus-hold Protocol

To use the bus-hold protocol, you must configure P2.3/BREQ#, P2.5/HOLD#, and P2.6/HLDA#
to operate as special-function signals. BREQ# anDA#t are active-low outputs; HOLD# is an
active-low input.

You must also set the hold enable bit (HLDEN) in the window selection register (WSR.7) to en-
able thebus-hold protoal. Once the bus-hold protocol has been selected, the port functions of
P2.3, P2.5, and P2.6 cannot be selected without resetting the device. (During the time that the pins
are configured to operate as special-functigmals, their specidunction valuescan be read

from the P2_PIN bits.) However, the hold function can be dynamically enabled and disabled as
described in “Disabling the Bus-hold Protocol.”

[| 14-21

8XC196NT USER’S MANUAL Int9I®

14.6.2 Disabling the Bus-hold Protocol

To disable hold requests, clear WSR.7. The device does not take control of the bus immediately
after HLDEN is cleared. Instead, it waits for the current HOLD# request to finish and then dis-
ables the bus-hold feature and ignores any new requests until the bit is set again.

Sometimes it is important to prevent another defrimm taking control of the bus while a block

of code is executing. One way to protect a code segment is to clear WSR.7 and then execute &
JBC instruction to check the status of thelM# signal. The JB@hstruction prevents the RALU

from executing the protected block until current HOLD# requests are serviced and the hold fea-
ture is disabled. This is illustrated in the following code:

DI ;Disable interrupts to prevent
;code interruption

PUSH WSR ;Disable hold requests and

LDB WSR,#1FH ;window Port 2

WAIT: JBC P2_PIN,6, WAIT ;Check the HLDA# signal. If set,

;add protected instruction here

POP WSR ;Enable hold requests

El ;Enable interrupts

14.6.3 Hold Latency

When an external device asserts HOLD#, the device finishes the current bus cycle and then as-
serts HLDA#. The time it takes the device to asserDH# after the external device asserts
HOLD# is calledhold latency(see Figure 14-9). Table 14-5 lists the maximum hold latency for
each type of bus cycle.

Table 14-5. Maximum Hold Latency

Maximum Hold Latency

Bus Cycle Type (state times)

Internal execution or idle mode | 1.5

16-bit external execution 2.5 + 1 per wait state

8-bit external execution 2.5 + 2 per wait state

14.6.4 Regaining Bus Control

While HOLD# is asserted, the device continues executing code until it needs to access the exter-
nal bus. If executing from internal m®ry, it continues until it neds to perform an external
memory cycle. If executing from external memory, it continues executing until the queue is emp-
ty or until it needs to perform an external data cycle. As soon as it needs to access the external
bus, the device asserts BREQ# and waits for the external device to deassert HOLD#. After assert-
ing BREQ#, the device cannot respond to any interrupt requests, including NMI, until the exter-
nal device deasserts HOLD#. One state time after HOgBés high, the device deasserts
HLDA# and, with no delay, resumes control of the bus.

14-22

Int€|® INTERFACING WITH EXTERNAL MEMORY

If the device is reset while in hold, bus contention can occur. For example, a CPU-only device
(80C196NT) would try to fetch the chip configuration byte from external memory after RESET#
wasbrought high. Bugontention would occur because both the external device and the micro
controller would attempt to access memory. One solution is tthadRESET# signal as the sys-

tem reset; then all bus masters (including the device) are reset at once. Chapter 12, “Minimum
Hardware Considerations,” shows system reset circuit examples.

14.7 BUS-CONTROL MODES
The ALE and WR bits (CCR0.3 and CCRO0.2) define which bus-control signals will be generated

during external read and write cycles. Table 14-6 lists the four bus-control modes and shows the
CCRO0.3 and CCRO0.2 settings for each.

Table 14-6. Bus-control Mode

Bus-control Mode Bus-control Signals (:(2'52)3 C((\:/\I/?é))z
Standard Bus-control Mode ALE, RD#, WR#, BHE# 1 1
Write Strobe Mode ALE, RD#, WRL#, WRH# 1 0
Address Valid Strobe Mode ADV#, RD#, WR#, BHE# 0 1
Address Valid with Write Strobe Mode ADV#, RD#, WRL#, WRH# 0 0

14.7.1 Standard Bus-control Mode

In the standard bus-control mode, the device generates the standard bus-control signals: ALE,
RD#, WR#, and BHE# (see Figure 14-10). ALE is asserted while the address is driven, and it can
be used to latch the address externally. RD# is asserted for every external memory read, and WR#
is asserted for every external memory write. When asserted, BHE# selects the bamoof me

that is addressed by the high byte of the data bus.

14-23

8XC196NT USER’S MANUAL Inu®

we [M we [M
WR# or RD# |_| WR# or RD# |_|

BHE# T ------ vaid]_ AD7:0 -| Addr Low | Data Out |—

AD15:0 -| Addr | Data Out |— AD15:8 -I Address High |—

A19:16 -I Extended Address I— A19:16 -I Extended Address I—

16-bit Bus Cycle 8-bit Bus Cycle

A0284-02

Figure 14-10. Standard Bus Control

When the device is configured to use a 16-bit bus, separate low- and high-byte write signals must
be generated for single-byte writes. Figure 14-11 shows a sample circuit that combines BHE# and
ADO to produce these signals (WRL# and WRH#). A similar pair of signals for read is unneces-

sary. For a single-byte read with the 16-bit bus, both bytes are placed on the data bus and the pro

cessor discards the unwanted byte.

BHE# ——— O
:>O—> WRH#

—

—<—J
wes) s

I—O

ADO

A3109-01

Figure 14-11. Decoding WRL# and WRH#

14-24 [|

intel.

Figure 14-12 shows an 8-bit system with both flash and RAM. The flash is the lower half of mem-
ory, and the RAM is the upper half. This system configuration uses the most-significant address
bit (A19) as the chip-select signal and ALE as the address-latch signal. The lower address lines,
AD7:0, are latched because these lines are carry both address and data information. The uppe
address linesAD15:8, are lathed only when operating in bus timing modes 1 and 2 because in
these modes, the address lines are not drivenghout the entire bus cycle. (See “Design Con-
siderations” on page 14-39).

INTERFACING WITH EXTERNAL MEMORY

A19 CS# CS#
Al7:16 A17:16 — Al6
e I
| |
la15:8
AD15:8 fm 74AC A15:8 —1 AL5:8
| 373 |
|
|
| 256Kx8 128Kx8
LE
8xC196 L Flash RAM
ALE * (28F020)
l D7:0 D7:0
LE
74AC | AT:0 . .
AD7:0 379 AT:0 AT:0
OE# OE# WE#
RD# l
WR#
i1 Applies to bus timing modes 1 and 2 only.
A0285-02

Figure 14-12. 8-bit System with Flash and RAM

14-25

8XC196NT USER’S MANUAL

Figure 14-13 shows a system that uses the dynamic bus-width feature. (The CCR bits, BWO0 and
BW1, are set.) Code is executed from the two flash memories and data is stored in the byte-wide
RAM. The RAM is in low memory. It is selected by driving A19 low, which also selects the 8-

bit bus-width mode by driving the BUSWIDTH signal low.

intel.

A]I_9 Al9 —I >()—T—| A19
1
BUSWIDTH CS# CS# CS#
A17:16 A16:15 A16:15 A16
AD15:8 pmp=| 74AC A1Z8) n147 A14:7 A15:8
373
LE
D15:8
ALE ——e
D7:0 D7:0
128Kx8 128Kx8 128Kx8
8XC196 Flash Flash RAM
LE (High) (Low)
(28F010) (28F010)
ao7:0 HH 74AC LATY 600 AlY 60 AZ0 A7:0
373
OE# OE# OE# WE#
RD# : .
WR#

A0286-02

Figure 14-13. 16-bit System with Dynamic Bus Width

14-26

intel.

14.7.2 Write Strobe Mode

The write strobe mode eliminates the need to externally decode high- and low-byte writes to an
external 16-bit RAM or Flash device in 16-bit bus mode. When the write strobe mode is selected,
the device generates WRL# and WRH# instead of WR# and BHE#. WRL# is asserted for all low
byte writes (even addresses) and all word writes. WRH# is asserted for all high byte writes (odd

INTERFACING WITH EXTERNAL MEMORY

addresses) and all word writes.the 8-bit bus mode, WRH# and WRL# areeaxtedfor both
even and odd addresses. Figure 14-14 shows write strobe mode timing.

ALE | |

AD15:0 -I Address | Data Out I— AD15:8 -I

A19:16

Extended Address

16-bit Bus Cycle

WRL# | Valid | WRL# and WRH#

ALE | |

A19:16

L

L

Address Low Data Out

Address High

Extended Address

8-bit Bus Cycle

A0287-02

Figure 14-14. Write Strobe Mode

14-27

8XC196NT USER’S MANUAL

Figure 14-15 shows a 16-bit system with two Flash memories and two RAMSs. It is configured to
use the write strobe mode. ALE latches the address; A19 is the chip-select signal fontrg me
devices. WRL# is asserted during low byte writes and word writes. WRH# is assertechadafring
byte writes and word writes. Note that the RAM devices do not use ADO. WRL# and WRH# de-

termine whether the low byte (AD0=0) or high byte (AD0=1) is selected.

N

Vee

BUSWIDTH
A19

A18:16

AD15:8

ALE

8XC196

AD7:0

RD#

WRH#
WRL#

T-[>o

74AC
373

LE

A15:8
——

LE

74AC
373

A7:1

CS#

Al16:15

Al4:7

D15:8

128Kx8
RAM

(High)

A6:0

OE# WE#

CS#

A16:15

Al4:7

128Kx8
RAM
(Low)

D7:0

A6:0

OE# WE#

CS#

Al17:15

Al4:7

D15:8

256K x8
Flash

(High)
(28F020)

A6:0

OE#

CS#

Al17:15

Al4:7

256Kx8
Flash
(Low)
(28F020)

D7:0

A6:0

OE#

l

l

A0288-02

Figure 14-15. 16-bit System with Single-byte Writes to RAM

14-28

Inbl® INTERFACING WITH EXTERNAL MEMORY

14.7.3 Address Valid Strobe Mode

When the address valid strobe mode is selected, the device generates the address valid signe
(ADV#) instead of the address latch enable signal (ALE). ADV#s$eded after an external ad-

dress is valid (see Figure 14-16). This signal can be used to latch the valid address and simulta-
neously enable an external memory device.

WR# or RD# | | WR# or RD# | |
""""""" Addr
BHE# I Valid | AD7:0 —| Low | Data Out

AD15:0 —l Address | Data Out I— AD15:0 —l Address High

T T 1T [

A19:16 —l Extended Address I— A19:16 —l Extended Address

16-bit Bus Cycle 8-bit Bus Cycle

A0289-02

Figure 14-16. Address Valid Strobe Mode

The difference between ALE and ADV# is that ADV# is assertethfoentire bus cycle, not just

to latch the address. Figure 14-17 shows the difference between ALE and ADV# for a single read
or write cycle. Note that for back-to-back bus asceheADV# function will look identical to

the ALE function. The difference becomes apparent only when the bus is idle. Because ADV# is
high during these periods, external memory will be disabled, thus saving power.

14-29

8XC196NT USER’S MANUAL Inu®

Al9:16 —< Extended Address

AD15:0 —< Addrless >—<Data>>> :\

> -

ADV#

ALE I |

RD#/WR#

| I , Bus Idle 1 Next Bus Cycle

A0290-02

Figure 14-17. Comparison of ALE and ADV# Bus Cycles

14-30

intel.

Figure 14-18 and Figure 14-19 show sample circhi$ use address valid strobe mode. Figure
14-18 shows a simple 8-bit system with a single flash. It is configured for the address valid strobe
mode. This system configuration uses the ADV# signal asthetfiash chip-select signal and

the address-latch signal. The lower address lines, AD7:0, are latched because these lines are carr
both address and data information. The upper address lines, AD15:8, are latched only when op-
erating in bus timing modes 1 and 2 because in these modes, the address lines are not drivel

INTERFACING WITH EXTERNAL MEMORY

throughout the entire bus cycle. (See “Design Considerations” on page 14-39).

RD#

Al7:16

AD15:8

8XC196

ADV#

AD7:0

T7T4AC
373

__iE__J

| A15:8

LE

74AC
373

AT7:0

i1 Applies to bus timing modes 1 and 2 only.

OE#

Al7:16

A15:8

256Kx8
Flash
cs# (28F020)

D7:0

A7:0

A0291-02

Figure 14-18. 8-bit System with Flash

14-31

8XC196NT USER’S MANUAL

ADVH# signal as both the flash chip-select signal and the address-latch signal.

intel.

Figure 14-19 shows a 16-bit system with two flash memories. This system configuration uses the

Vee
BUSWIDTH
Al7:16
Al15:8
74AC
AD15:8 373
LE
ADV# ¢
8XC196
LE
A7:1
. 74AC
AD7:0 373
RD#

CS#
A16:15

Al14:7

D15:8

128Kx8
Flash

(High)
(28F010)

A6:0

OE#

Al15:8

A7:1

Cs#
A16:15

Al14:7

D70 1o8kxs

Flash
(Low)
(28F010)

A6:0

OE#

A0292-02

14-32

Figure 14-19. 16-bit System with Flash

Inu® INTERFACING WITH EXTERNAL MEMORY

14.7.4 Address Valid with Write Strobe Mode

When the address valid with write strobe mode is selected, the device generates the ADV#,
WRL#, and WRH# bus-control signals. This mode is used for a simple system using external 16-
bit RAM. Figure 14-20 shows the timing. The RD# signal (not shown) is similar to WRL#,
WRH#, and WR#. The example system of Figure 14-21 uses address valid with write strobe.

ADV# ADV#
WRL# Valid WRL#
""" Addr

WRH# Valid AD7:0 ~ | Low DataOut |——
AD15:0 — Address Data Out —— AD15:0 — Address High
A19:16 — Extended Address ~ —— A19:16 —] Extended Address ~ f——

16-bit Bus Cycle 8-bit Bus Cycle

A0293-02

Figure 14-20. Timings of Address Valid with Write Strobe Mode

[| 14-33

8XC196NT USER’S MANUAL

CS#

A16:15

Al4:7

D15:8

128Kx8
RAM
(High)

A6:0

WE#

A16:15

Al4:7

D7:0

A6:0

CS#

128Kx8
RAM
(Low)

WE#

Vcc
BUSWIDTH
A17:16
) 74AC | A15:8
AD15:8 373
LE
ADV# ®
8XC196 LE
_ 74AC | AT:1
AD7:0 3
WRH#
WRL#

A0294-02

Figure 14-21. 16-bit System with RAM

14.8 BUS TIMING MODES

The device has selectable bus timing modes controlled by the MSELO and MSEL1 bits (bits 6
and 7) of CCRL1. Figure 14-2 on page 14-8 defines these bit settings. The remainder of this section
describes each mode. Figure 14-22 illustrates the modes together and Table 14-7 summarizes th

differences in their timings.

14-34

InU® INTERFACING WITH EXTERNAL MEMORY

Tosc

ckour | L) L L1 LI |

ALE [[[
rRo# | L L]

«<—>|TrLDV = 1 Tosc |[¢—>|TRHDZ = 1 Tosc
BUS —< DATA

|
ADDR X DATA ADDR X DATA ADDR >
|

|<—:—:—>|TAVDV =3Tosc

o | — | L

TrLDV =3 Tosc
«———————>—»|«—>|TrHpz = 1 Tosc

BUS DATA ADDR X DATA ADDR X DATA

.

Tavpv =5 Tosc

MODE 1

s .]

TrLDV =2 Tosc
«———>|«—>|TrHDz = 1 Tosc

BUS < DATA >—< ADDR X DATA ><ADDR X DATA >< ADDR ><
' ¢ |
€ d
|

Tavpv =3 Tosc

—
<« 112 Tosc

: i TriDbv =2Tosc MODE 2
1

. I(—)I(—blTRHDz =1/2 Tosc
BUS < DATA >< ADDR X DATA >< ADDR X DATA >< ADDR X
l¢ N|

1€

dl

Tavbv = 3.5 Tosc

A0311-02

Figure 14-22. Modes 0, 1, 2, and 3 Timings

14-35

8XC196NT USER’S MANUAL Int9I®

Table 14-7. Modes 0, 1, 2, and 3 Timing Comparisons

Timing Specifications (in T o5c) Note 1
Mode
TCLLH TCHLH TAVLL TAVDV TRLRH TRHDZ TRLDV

Mode 3 0 N/A 1 3 1 1 1
Mode 0 0 N/A 1 5 3 1 3
Mode 1 N/A 0.5 0.5 3 2 1 2
Mode 2 N/A 0.5 1 3.5 2 0.5 2
NOTES:

1. These are ideal timing values for purposes of comparison only. They do not
include internal device delays. Consult the data sheet for current device
specifications.

2. N/A = This timing specification is not applicable in this mode.

14.8.1 Mode 3, Standard Mode

Mode 3 is the standard timing mode. Use this mode for systems that need to emulate the
8XC196KR.

14.8.2 Mode 0, Standard Timing with One Automatic Wait State

Mode 0 is the standard timing mode with a minimum of one wait state added to each bus cycle.
The READY signal can be used to insert additional wait states, if necessary, fhaid Tpy

timings are each 2L longer in mode 0 than in mode 3. Thg,J; timing in mode O is the same

as in mode 3.

14.8.3 Mode 1, Long Read/Write Mode

Mode 1 is the long read/write mode (Figure 14-23). In this mode, RD#, WR#, and ALE begin %2
Tosc €arlier in thebus cycle and the width of RD# and WR# aregl.Tonger than in mode 3.

The Tz py timing is 1 Bsclonger in mode 1 than in mode 3, allowing the memory more time to
get its data on the bus without the wait-state penalty of mode 0., Jhg dnd T,pz timing in

mode 1 is the same as in mode 3.

14-36

Inu® INTERFACING WITH EXTERNAL MEMORY

Tosc
| ———
XTAL 1 \ N \ y \ / \ __/
T
~—TcHcL Telel XHCH
CLKOUT _/ \—/—\ A \
TCHLH TeuL
TLHLH
ALE/ADV# / \ /
| —T| 1| | —]
LHLL TLRL TRHLH
TRLRH
RD# f -«—TRLDV —>|.
= RLAZ
Tavie | TLiax
I<—><—>| <_TRHDZ
Bus Read
AD15:0 »(Address >—« Data In D15:0
8- and16-bit | T |
Bus Mode ¥ AVDV |
Tiiwe
TwLwH
WR¥# N /
] I TouwH iLTWHQX
Bus Write
AD15:0 _>—(Address out X Data Out >—C
8- and 16-bit t Twnex: TRHBX
Bus Mode I._.I
BHE# X BHE Valid ><
—’I I‘— TwHax: TRHAX
1
AD15:8 _>—(AD15:8 Valid 8-bit Bus Mode)—C
1
I<—>| Twhix: TRHIX
INST X INST Valid X
A3098-01

Figure 14-23. Mode 1 System Bus Timing

14.8.4 Mode 2, Long Read/Write with Early Address

Mode 2 (Figure 14-24) is similar to mode 1 in that RD#, WR#, and ALE begigiearlier in
the bus cycle and the widths of RD# and WR# arggl. [bnger than in mode 3. It differs from
mode 1 in that the address is also placed onto the bygedrlier in the bus cycle. The,E,
timing is 1 Togclonger, the T, timing is ¥2 fgclonger, and F,p, is ¥2 Tosc Shorter in mode 2
than in mode 3. This mode trades a longgk,J for a shorter ;.

[| 14-37

8XC196NT USER’S MANUAL

Tosc

XTAL 1 __/r_\—j_\

/N S

et |t— T
~—TccL—t————— T | ————— XHCH
CLKOUT _/ N /N / \
TeHLH = ToL ;
LHLH
ALE/ADV# /| \ /
TLHLL
TLLRL TRHLH
TRLRH
L
e —
RD# P \~—"riov—-1 y
- TrLAZ T
Tavie | Tiiax RHDZ
Bus Read
AD15:0 »(Address Data In D15:0
8- and 16-bit | T |
Bus Mode F AVDV |
| Triwe
[TwiwH
WR# N /
i TovwH i_TWHQX
Bus Write
AD15:0 X Address Out X Data Out ><
8- and 16-bit T T
Bus Mode I‘_>| WHBX: TRHBX
BHE# X BHE Valid X
—>| I“TWHAXv TRHAX
1
AD15:0 X AD15:8 Valid 8-bit Bus Mode >—<:
1
I<—>| TwHix: TRHIX
INST X INST Valid X

A3099-01

14-38

Figure 14-24. Mode 2 System Bus Timing

Inu® INTERFACING WITH EXTERNAL MEMORY

14.8.5 Design Considerations

In all bus timing modes, for 16-bit bus-width operation, latch the upper and lower address/data
lines. In modes 1 and 2, for 8-bit bus-width operation, also latch the upper and lower address/data
lines; the upper address lines are not drivenuiinoutthe entire bus cycle (see Figures 14-23

and 14-24). In modes 0 and 3, for 8-bit bus-width operation, latch only the lower address/data
lines. In these modes, it is not necessary to latch the upper address lines because these lines al
driven throughout the entire bagcle.

14.9 SYSTEM BUS AC TIMING SPECIFICATIONS

Refer to the latest data sheet for the AC timings to make sure your system meets specifications.
The major external bus timing specifications are shown in Figure 14-25.

oscC >

ns N\ — N anan N

TeLeL—> < TxHcH >[€— TcHoL—>
CLKOUT

—>| [« Tcwn | < Tuen

TLHLH >

ALE/ADV# /‘ \

€ TLHLL T >
<« T |RL —>|«—TRRH —>| RHLH

RD#
T
— Tavil —> RLAZ —>| [«— "TRHDZ"|

<« T —>
LLAX < TRuov \
BUS Address Out y Data In >>>>>/
(Read Cycle) «—Tavoy | >
—— TLLWL —>[¢— T\ i —>|¢TWHLH >
WR#
«—TovwH —>¢— —>| TwHox
BUS
(Write Cycle) Address Out Data Out Address Out
—>| <«— TwHBx: TRHBX
BHE#, INST —(Valid
—>| <«— Twhax: TRHAX
AD15:8
. Address Out
(8-bit Mode)
A19:16 —< Extended Address Out X

A0295-02

Figure 14-25. System Bus Timing

[| 14-39

8XC196NT USER’S MANUAL Inu®

Each symbol consists of two pairs of letters prefixed by (fof time). The characters in a pair
indicate a signal and its condition, respectively. Symbols represent the time between the two sig-
nal/condition points. For example,, is the time between signal L (ALEDV#) condition L

(Low) and signal R (RD#) condition L (Low). Table 14-8 defines the signal and condition codes.

Table 14-8. AC Timing Symbol Definitions

Signals Conditions
Address G BUSWIDTH R RD# H High
B BHE# H HOLD# W WR#, WRH#, WRL# L Low
BR BREQ# HA HLDA# X XTALL \% Valid
C CLKOUT L ALE/ADV# Y READY X No Longer Valid
D DATA Q Data Out z Floating

Table 14-9 defines the AC timing specifications that the memory system must meet and those that
the device will provide.

Table 14-9. AC Timing Definit ions
Symbol Definition

The External Memory System Must Meet These Specifications

Tavov Address Valid to Input Data Valid
Maximum time the memory device has to output valid data after the 8XC196NT outputs a valid
address.

Trupz RD# High to Input Data Float

Time after RD# is inactive until the memory system must float the bus. If this timing is not met,
bus contention will occur.

Triov RD# Low to Input Data Valid
Maximum time the memory system has to output valid data after the 8XC196NT asserts RD#.
The 8XC196NT Meets These Specifications

TOSC 1/F>(TAL
All AC timings are referenced to Togc.
TaviL Address Setup to ALE/ADV# Low

Length of time address is valid before ALE/ADV# falls. Use this specification when designing
the external latch.

Tenel CLKOUT High Period

Needed in systems that use CLKOUT as clock for external devices.
Tenin CLKOUT High to ALE/ADV# High (modes 1 and 2 only)

Time between CLKOUT going high and ALE/ADV# going high. Use to derive other timings.
Telal CLKOUT Cycle Time

Normally 2 Togc.

14-40

INTERFACING WITH EXTERNAL MEMORY

Table 14-9. AC Timing Definitions (Continued)

Symbol Definition
The 8XC196NT Meets These Specifications (Continued)
Teun CLKOUT Falling to ALE/ADV# Rising
Use to derive other timings.
Tol CLKOUT Low to ALE/ADV# Low (modes 1 and 2 only)
Time between CLKOUT going low and ALE/ADV# going low. Use to derive other timings.
T ALE Cycle Time
Minimum time between ALE pulses.
Ton ALE/ADV# High Period
Use this specification when designing the external latch.
Tiiax Address Hold after ALE/ADV# Low
Length of time address is valid after ALE/ADV# falls. Use this specification when designing the
external latch.
Ticn ALE/ADV# Falling to CLKOUT Rising
Use to derive other timings.
Ture ALE/ADV# Low to RD# Low
Length of time after ALE/ADV# falls before RD# is asserted. Could be needed to ensure that
proper memory decoding takes place before a device is enabled.
Tow ALE/ADV# Low to WR# Low
Length of time after ALE/ADV# falls before WR# is asserted. Could be needed to ensure that
proper memory decoding takes place before a device is enabled.
Tovw Data Valid to WR# High
Time between data being valid on the bus and WR# going inactive.
Truax AD15:8 Hold after RD# High
Minimum time the high byte of the address in 8-bit mode will be valid after RD# inactive.
Trusx BHE#, INST Hold after RD# High
Minimum time these signals will be valid after RD# inactive.
Trutn RD# High to ALE/ADV# Asserted
Time between RD# going inactive and the next ALE/ADV#. Useful in calculating time between
inactive and next address valid.
Triaz RD# Low to Address Float
Used to calculate when the 8XC196NT stops driving address on the bus.
Trirn RD# Low to RD# High
RD# pulse width.
Twhax AD15:8 Hold after WR# High
Minimum time the high byte of the address in 8-bit mode will be valid after WR# inactive.
Twhex BHE#, INST Hold after WR# High
Minimum time these signals will be valid after WR# inactive.

14-41

8XC196NT USER’S MANUAL Inu®

Table 14-9. AC Timing Definitions (Continued)
Symbol Definition

The 8XC196NT Meets These Specifications (Continued)
Twhin WR# High to ALE/ADV# High

Time between WR# going inactive and next ALE/ADV#. Also used to calculate WR# inactive
and next address valid.

Twhox Data Hold after WR# High

Length of time after WR# rises that the data stays valid on the bus.
Twiwn WR# Low to WR# High

WR# pulse width.

Tynch XTAL1 High to CLKOUT High or Low

14-42 [|

intgl. 1 5

Programming the
Nonvolatile Memory

intel.

CHAPTER 15
PROGRAMMING THE NONVOLATILE MEMORY

The 87C196NT contains 32 Kbytes of one-time-programmable read-only memory (OTPROM).
OTPROM is similar to EPROM, but it comes in an unwindowed package and cannot be erased.
You can either program the OTPROMurself or have the factory program it as a quick-turn
ROM product (this option mayot be available for all devices). This chagtevides procedures

and guidelines to help you program the device. The information is organized as follows.

¢ overview of programming methods (page 15-2)
¢ OTPROM memory map (page 15-2)

* security features (page 15-3)

* programming pulse width (page 15-8)

* modified quick-pulse algorithm (page 15-9)

* programming mode pins (page 15-11)

* entering programming modes (page 15-13)

¢ slave programming (page 15-15)

* auto programming (page 15-25)

¢ serial port programming (page 15-31)

* run-time programming (page 15-43)

15.1 PROGRAMMING METHODS

You can program the OTPROM by configuring a circuit that allows the device to enter a program-
ming mode. In programming modes, the device executes an algorithm that resides in the internal
test ROM.

¢ Slave programming mode allows you to use an EPROM programmer as a master to
program 8XC196 devices (the slaves). The code and data pyogeammed into the
nonvolatile memory typically resides on a diskette. The EPR®®ddrammer transfers the
code and data from the diskette to its memory, then manipulates the slave’s pins to define
the addresses to be programmed and the contents to be written to those addresses. Using thi

15-1

8XC196NT USER’S MANUAL Int9I®

mode, you can program anerify single or multiple words in the OTPROM. This is the
only mode that allows you to read the signatumed andprogrammingvoltages and to
program the PCCBs and unerasable PROM (UPROM) bits. Programming vendors and Intel
distributors typically use this mode to program a large number of microcontrollers with a
customer’s code and data.

¢ Auto programming mode enables the 8XC196 device to act as a master to program itself
with code and data that reside in an external memory device. Using this mode, you can
program the entire OTPROM array ept the UPROM bits and PCCBs. After
programming, you can use the ROM-dump mode to write the entire OTPROM array to an
external memory device to verify its contents. Customers typically use this low-dbsidme
to program a small number of microcontrollers after development and testing are complete.

¢ Serial portprogramming modenables you to download code and data (usually from a
personal computer or workstation) to an 8XC196 device (the dlarm)gh the serial 1/0
port. You can write data to the OTPROM asynchronously via the TXD (P2.0) pin and read
the data via the RXD (P2.1) pin. Customers typically use this mode to download large
sections of code to the microcontroller during software development and testing.

You can also program individual OTPROM locations without entering a programming mode.
With this method, called run-tinfrogramming, your software cants the number and duration
of programming pulses. Customers typically use this mode to download small sections of code to

the microcontroller during software development and testing.

15.2 OTPROM MEMORY MAP

The OTPROM contains customer-specified special-purpose and program memory (Table 15-1).
The 128-byte special-purpose mery partition is used for interrupt vectors, the chip configura-
tion bytes (CCBs)and the security key. Several locations are resefivmetisting or for use in

future products. Write the value (20H or FFH) indicated in Table 15-1 to each reserved location.
The remainder of the OTPROM is available for code storage.

Table 15-1. 87C196NT OTPROM Memory Map

Address
Range Description

(Hex)

FFOFFF
FF2080
FF207F
FF205E
FF205D
FF2040
T Intel manufacturing uses this location to determine whether to program the OFD bit.
Customers with QROM or MROM codes who desire oscillator failure detection should
equate this location to the value OCDEH.

Program memory

Reserved (each location must contain FFH)

PTS vectors

15-2

InU® PROGRAMMING THE NONVOLATILE MEMORY

Table 15-1. 87C196NT OTPROM Memory Map (Continued)

Address
Range Description
(Hex)

FF203F
FF2030

FF202F
FF2020

FF201F Reserved (must contain 20H)
FF201E Reserved (must contain FFH)
FF201D Reserved (must contain 20H)
FF201C | CCB2
FF201B Reserved (must contain 20H)
FF201A | CCB1
FF2019 Reserved (must contain 20H)
FF2018 CCBO

Upper interrupt vectors

Security key

FF2017 .
FF2016 OFD flag for QROM or MROM codes
FF2015] '
FF2014 Reserved (each location must contain FFH)
FF2013 .

FE2000 Lower interrupt vectors

T Intel manufacturing uses this location to determine whether to program the OFD bit.
Customers with QROM or MROM codes who desire oscillator failure detection should
equate this location to the value OCDEH.

15.3 SECURITY FEATURES

Several security features enable you to control access to both internal and external memory. Reac
and write protection bits in the chip configuration regiSB2R0),combined with a security key,

allow various levels of internal memory protection. Two UPROM bits disable fetches of instruc-
tions and data from external mery. An additional bienables circuitry that can detect an oscil-

lator failure and cause a device reset. (See Figure 15-1 on page 15-7 for more information.)

15.3.1 Controlling Access to Internal Memory

The lock bits in the chip configuration register (CCRO) control access to the OTPROM. The reset
sequence loads the CCRs from the CCBs for normal operation and from the PCCBs when enter-
ing programming modes. You can program®@&Bs usingany of the programming methods, but

only slave programming mode allows you to progtamPCCBs.

NOTE

The developers have made a substantial effort to provide an adequate program
protection scheme. However, Intel cannot and does not guarantee that these
protection methods will always prevent unauthorized access.

[| 15-3

8XC196NT USER’S MANUAL Int9I®

15.3.1.1 Controlling Access to the OTPROM Dur ing Normal Operation
During normal operation, the lock bits in CCBO control read and write accesses to the OTPROM.

Table 15-2 describes the options. You gaogram the CCBs using any of the programming
methods.

Table 15-2. Memory Protection for Normal Operating Mode

Read Protect Write Protect

LOC1 (CCRO0.7) | LOCO (CCRO.6) Protection Status

No protection. Run-time programming is permitted, and the entire
OTPROM array can be read.

Write protection only. Run-time programming is disabled, but the
entire OTPROM array can be read.

1 1

Read protection. Run-time programming is disabled. If program
0 1 execution is external, only the interrupt vectors and CCBs can be
read. The security key is write protected.

Read and write protection. Run-time programming is disabled. If
0 0 program execution is external, only the interrupt vectors and CCBs
can be read.

Clearing CCBO0.6 enables write protection. With write protection enabled, a write attempt causes
the bus controller to cycliirough the write sequence, but it does not enaple@iMwrite data to

the OTPROM. This protects the entire OTPROM array from inadvertent or unauthorized pro-
gramming.

Clearing CCBO0.7 enables read protection and aiste protects the security key to protect it

from being overwritten. With read protection enabled, the bus controller will not read from pro-
tected areas of OTPROM. An attempt to load the gbawgramcounter with an external address
causes the device to reset itself. Because the slave program counter can be as much as four byte
ahead of the CPU program counter, the bus controller might prevent code execution from the last
four bytes of internal memory. The interrupt vectors and CCBs@treead protected because
interrupts can occur even when executing from externaiong

15.3.1.2 Controlling Access to the OTPROM Dur ing Programming Modes

For programming modes, three levels of protectiorasaéiable:
¢ prohibit all programming
¢ prohibit all programming, but permit authorized ROM dumps

¢ prohibit serial port programming, but permit authorized ROM dumps, auto programming,
and slave programming

15-4

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

These protection levels are provided by the PCCBO lock bits, the CCBO lock bits, and the internal
security key (Table 15-3). When entering programming modes, the reset sequence loads the
PCCBs into the chip configuration registers. It also [d@2@80 into intenal RAM to provide an
additional level of security.

You can progranthe CCBs using any of theqggramming methods, but only slave programming

mode permits access to the PCCBs, and only slave and auto programming allow you to program
the internal security key.

Table 15-3. Memory Protection Options for Programming Modes

(CL(?RCO17) (CL(?RCOO6) Security Key
)) Programmed Protection Status
?
PCCB | CCB | PCCB |CCB ’
1 1 1 1 No No protection. All programming modes allowed.
1 X 0 X Yes All programming disabled. ROM-dump permitted with
matching security key.
X X X X Yes Serial programming disabled.
Serial programming disabled. Auto and slave
1 0 1 0 Yes ! g . . :
programming permitted with matching security key.
0 X 0 X X All programming unconditionally disabled.

If you want to prohibit albrogramning, clear both PCCBO lock bits. If these bits are cleared,
they prevent the device from entering any programming mode.

If you want to prevent programming, but allow ROM dumps, leave the PCCBO read-protection
bit (PCCBO0.7) unprogrammed and clear the PC@&Bte-protection lock bit (PCCBO0.6). To pro-

tect against unauthorized reagspgram an internal security key. The ROM-dump mode com-
pares the internal security key location with an externally supplied security key regardless of the
CCBO lock hits. If the security keys match, the routine continues; otherwise, the device enters an
endless internal loop.

If you want to allow slave and auto programming as well as ROM dumps, leave both PCCBO lock
bits unprogramrad. To protect against unauthorized programming, clear the CCBO lock bits and
program an internal security key. After the device enters either slave or auto programming mode,
the corresponding test ROM routine reads the CCBO lock bits. If either CCBO lock bit is enabled,
the routine compares the internal security key location with an exteswgiptied seurity key.

If the security keys match, the routine continues; otherwise, the device enters an endless internal
loop.

[| 15-5

8XC196NT USER’S MANUAL Int9I®

You can program the iatnal security key in either auto or slgu®gramning mode. Once the
security key igprogramned, you must provide a matching key to gain access tpragyamming

mode. For auto programming and ROM-dump modes, a matching security key must reside in ex-
ternal memory. For slave programming mode, you must “program” a matching security key into
the appropriate OTPROM locations with the program word command. The locations are not ac-
tually programmed, but the data is compared to the interoafisekey.

The serial programming mode checks the internal security key regardless of the CCBO lock bits.
This mode has no provision for security key verification. If the security key is blank (FFFFH),
serialprogramming continues. If any word coiniga value other than FFFFH, the device enters

an endless internal loop.

WARNING

If you leave the internal security key locations unprogrammed (filled with
FFFFH), an unauthorized person could gain access to the OTPROM by using
an external EPROM with an unprogrammed external securityokayion or

by using slave or serial port programming mode.

15.3.2 Controlling Fetches from External Memory

Two UPROM bits disable external instruction fetches and external data fetches. If you program
the UPROM bits, an attempt to fetch data or instructions from extermabrgeauses a device

reset. Another bit enables circuitry that can detect an oscillator failure and cause a device reset.
You can program the UPROM bits using slave programming mode.

Programming the DEI bit preverttse bus controller from executing external instruction fetches.

An attempt to load the slave program counter with an external address causes the device to rese
itself. Because the slaveggram counter can be as much as four bytes ahead of the CPU program
counter, the bus controller might prevent code execution from the last four bytes of internal mem-
ory. The automatic reset also gives extra protection against runaway code.

Programming the DED bit prevents the bus oahdr from executing external data reads and
writes. An attempt to access data through the bus controller causes the device tolfeSetitse
ting this bit disables ROM-dump mode.

To program these bits, write the correct value to the location shown in Table 15-4 on page

15-8 using slave programming mode. During normal operation, you can determine the values of
these bits by reading the UPROM special-function register (Figure 15-1).

15-6

InU® PROGRAMMING THE NONVOLATILE MEMORY

USFR Address: 1FF6H
Reset State: XXH

The unerasable PROM (USFR) register contains two bits that disable external fetches of data and
instructions and another that detects a failed oscillator. These bits can be programmed, but cannot be
erased.

WARNING: These bits can be programmed, but can never be erased. Programming these bits makes
dynamic failure analysis impossible. For this reason, devices with programmed UPROM bits cannot
be returned to Intel for failure analysis.

7 0
— — — — || o= DED — OFD
Bit Bit . Function
Number Mnemonic
7:4 — Reserved; always write as zeros.
3 DEI Disable External Instruction Fetch

Setting this bit prevents the bus controller from executing external
instruction fetches. Any attempt to load an external address initiates a
reset.

2 DED Disable External Data Fetch

Setting this bit prevents the bus controller from executing external data
reads and writes. Any attempt to access data through the bus controller
initiates a reset.

— Reserved; always write as zero.

0 OFD Oscillator Fail Detect

Setting this bit enables the device to detect a failed oscillator and reset
itself. (In EPROM packages, this bit can be erased.)

Figure 15-1. Unerasable PROM (USFR) Register

You can verify a UPROM bit to make sure it programmed, but you cannot eraseliisfFeason,

Intel cannot test the bits before shipment. However, Intel does test the features that the UPROM
bits enable, so the only undetectable defects are (unlikely) defects within the UPROM cells them-
selves.

15.3.3 Enabling the Oscillator Failure Detection Circuitry

Programming th©FD bit enables circuitry that resets the device when it detects a failed oscilla-

tor. (See “Detecting Oscillator Failure” on page 12-12 for details.) To program this bit, you must

write the correct value to the location shown in Table 15-4, using gtageamming mode. Dur-

ing normal operation, you can determine the value of this bit by reading the USFR (Figure 15-1
on page 15-7). In EPROM packages, the OFD bit can be erased.

15-7

8XC196NT USER’S MANUAL

Table 15-4. UPROM Programming Values and Locations for Slave Mode

To set this bit

Write this value

To this location

DEI 08H 0718H
DED 04H 0758H
OFD* 01H 0778H

T Intel manufacturing uses location FF2016H to determine whether to program the OFD bit. Customers with
QROM or MROM codes who desire the OFD feature should equate location FF2016H to the value OCDEH.

15.4 PROGRAMMING PULSE WIDTH

The programning pulse width is controlled in different ways depending onpitegramming

mode. In all cases, the pulse width must be at least 100 ps for successful programming. In slave
programming mode, the pulse width is controlled by the PALE# signal. Inpraggamming

mode, it is loaded from the external EPROM into the PPW register. In serigirpgramming

mode, it is loaded from the test ROM into the SP_PPW register. In ruptigeamming mode,

your software controls the pulse width.

The PPW and SP_PPW registers (Figure 15-2) are identical except for their locations and default

values. Both are word registers and both require that the most-significant bit always be set; the

remaining bits constitute the PPW_VALUE. To determine the corieéf PVALUE for the fre-

guency of the device, use the following formula and round the result to the next higher integer.
Fosc X Time

PPW _VALUE = —=>¢—— 1
144

where:
PPW_VALUE is a 15-bit word
Fosc is the input frequency on XTALL, in MHz
Time is the duration of the programming pulse, in us

The following two examples calculate the PPW_VALUE for a 100-us pulse width with an 8-MHz
and a 16-MHz crystal, respectively.

PPW_VALUE = 8_3‘__];99_1 = @—1 = 4.5552=5 = 05H
144
PPW_VALUE = w—l = @—1 =10.11=11 = OBH

144 144

15-8

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

You can use the following simplified equation to calculate the PPW_VALUE for a 100-us pulse
width at various frequencies:

PPW_VALUE = (0.6944 x F -1

OSC)

PPW (or SP_PPW) no direct access

The PPW register is loaded from the external EPROM (locations 14H and 15H) in auto programming
mode. The SP_PPW register is loaded from the internal test ROM in serial port programming mode.
The default pulse width for serial port programming is longer than required, so you should change the
value before beginning to program the device. (See “Changing Serial Port Programming Defaults” on
page 15-33.) The PPW_VALUE determines the programming pulse width, which must be at least
100 ps for successful programming.

15 .
| 1 | ppwaa [pPwis | PPwi2 || PPwi1 | PPW10 | PPW9 | PPWB |
! 0
| ppw7 | pPPwe | PPws | PPw4 || PPw3 | PPw2 | PPW1 | PPWO |
Nuii:)er Mne?ri\tonic Function

15 1 Set this bit for proper device operation.

14:0 PPW14:.0 | PPW_VALUE.

This value establishes the programming pulse width for auto programming
or serial port programming. For a 100-ps pulse width, use the following
formula and round the result to the next higher integer. For auto
programming, write this value to the external EPROM (see “Auto
Programming Procedure” on page 15-29). For serial port programming,
write this value to the internal memory (see “Changing Serial Port
Programming Defaults” on page 15-33).

PPW_VALUE = (0.6944 x Fo) —1

Figure 15-2. Programming Pulse Width (PPW or SP_PPW) Register

15.5 MODIFIED QUICK-PULSE ALGORITHM

Both the slave and aumrogramming routinease the modified quick-pulse algorithm (Figure
15-3). The modified quick-pulse algorithm sends programming pulses to each OTPROM word
location. After the required number of programming pulses, a verification routine compares the
contents of the programmed location to the input data. A verification error deasserts the PVER
signal, but does not stop the programming routine. This process repeats until each OTPROM
word has been programmed and verified. Intel guarantees lifetime data retention for a device pro-
grammed with the modified quick-pulse algorithm.

[| 15-9

8XC196NT USER’S MANUAL Inu®

From Auto or Slave
Programming

-
>

Y

| Start PPW Timer |

Y

Write Data to
OTPROM

Y

| Enable Interrupts |

Y

| Enter Idle Mode |

Y

| Wait for PPW Timer Interrupt |

Required
Writes Done
?

Compare Programmed
Locations and Set Flags

Y

(Return)

Figure 15-3. Modified Quick-pulse Algorithm

A0190-03

Auto programming repeats the pulse five times, using the pulse yadtipecify in the external
EPROM. Slave mode repeats the pulse until PROG# is deasserted. In slave programming mode,

the PALE# signal controls the pulse width. In all cases, the pulse width must be at least 100 us
for successful programming.

15-10 [|

Inbl® PROGRAMMING THE NONVOLATILE MEMORY

15.6 PROGRAMMING MODE PINS

Figure 15-4 illustrates the signals used in programming and Table Ide#thas them. The EA#,

Ve and PMODE pins combine to control entry ipimgramming modes. You must configure

the PMODE (P0.7:4) pins to select the desired programming mode (see Table 15-6 on page
15-13). Each programming routine configutlke port 2 pins to operate as tg@propriate spe-
cial-function signals. Ports 3 and 4 automatically serve as the PBUS during programming.

Programming ——»1 Vpp P4.7:0 t
Voltage ——3- EA# P3.7:0 PBUS

PMODE.3:0 4;) P0.7:4 P2.7 p————>» PACT#
P2.6 |——> CPVER
P2.4 [&—— AINC#
P2.2 [&———— PROG#
P2.1 [«&———— PALE#/RXD
P2.0 |——> PVER/TXD

8XC196 Device

t For auto programming, P1.2:1 replace P4.7:6 as the high address bits.

A0314-03

Figure 15-4. Pin Functions in Programming Modes

Table 15-5. Pin Descriptions

Special Program-
Port Pin Function Type ming Description
Signal Mode
P0.7:4 PMODE.3: | All Programming Mode Select
PMODE.O Determines the programming mode. PMODE is sampled
after a device reset and must be static while the part is
operating. (Table 15-6 on page 15-13 lists the PMODE
values and programming modes.)
P2.0 PVER (0] Slave Programming Verification
Auto

During slave or auto programming, PVER is updated
after each programming pulse. A high output signal
indicates successful programming of a location, while a
low signal indicates a detected error.

TXD O Serial Transmit Serial Data

During serial port programming, TXD transmits data from
the OTPROM to an external device.

15-11

8XC196NT USER’S MANUAL

Table 15-5. Pin Descriptions (Continued)

Port Pin

Special
Function
Signal

Type

Program-
ming
Mode

Description

P2.1

PALE#

Slave

Programming ALE Input

During slave programming, a falling edge causes the
device to read a command and address from the PBUS.

RXD

Serial

Receive Serial Data

During serial port programming, RXD receives data from
an external device.

P2.2

PROG#

Slave

Programming

During programming, a falling edge latches data on the
PBUS and begins programming, while a rising edge ends
programming. The current location is programmed with
the same data as long as PROG# remains asserted, so
the data on the PBUS must remain stable while PROG#
is active.

During a word dump, a falling edge causes the contents
of an OTPROM location to be output on the PBUS, while
a rising edge ends the data transfer.

P2.4

AINC#

Slave

Auto-increment

During slave programming, this active-low input enables
the auto-increment feature. (Auto increment allows
reading or writing of sequential OTPROM locations,
without requiring address transactions across the PBUS
for each read or write.) AINC# is sampled after each
location is programmed or dumped. If AINC# is asserted,
the address is incremented and the next data word is
programmed or dumped.

P2.6

CPVER

Slave

Cumulative Program Verification

During slave programming, a high signal indicates that all
locations programmed correctly, while a low signal
indicates that an error occurred during one of the
programming operations.

P2.7

PACT#

Auto
ROM-
dump

Programming Active

During auto programming or ROM-dump, a low signal
indicates that programming or dumping is in progress,
while a high signal indicates that the operation is
complete.

P4.7:0,
P3.7:0

PBUS

110

Slave

Address/Command/Data Bus

During slave programming, ports 3 and 4 serve as a
bidirectional port with open-drain outputs to pass
commands, addresses, and data to or from the device.
Slave programming requires external pull-up resistors.

15-12

InU® PROGRAMMING THE NONVOLATILE MEMORY

Table 15-5. Pin Descriptions (Continued)

Special Program-
Port Pin Function Type ming Description
Signal Mode
P1.2:1, PBUS 110 Auto Address/Command/Data Bus
P4'755' ROM- During auto programming and ROM-dump, ports 3 and 4
P3.7:0 dump | serve as a regular system bus to access external

memory.

P4.6 and P4.7 are left unconnected; P1.2 and P1.1 serve
as the upper address lines.

— EA# | All External Access

Controls program mode entry. If EA# is at Vpp voltage on
the rising edge of RESET#, the device enters
programming mode.

EA# is sampled and latched only on the rising edge of
RESET#. Changing the level of EA# after reset has no
effect.

— Vep | All Programming Voltage

During programming, the V, pin is typically at +12.5V
(Vpp voltage). Exceeding the maximum Vp, voltage speci-
fication can damage the device.

15.7 ENTERING PROGRAMMING MODES

To execute programs properly, the device must have these minimum hardware connections:
XTAL1 driven, unused input pins strapped, and power and grounds applied. Follow the operating
conditions specified in the datasheet. Place the device into programming mode by apglying V
voltage (+12.5 V) to EA# during the rising edge of RESET#.

15.7.1 Selecting the Programming Mode
The PMODE (P0.7:4) value controls the programming mode. PMODE is sampled on the rising

edge of RESET#. You must reset the device to switcgramming modes. Table 15-6 lists the
PMODE value for each programming mode. All other PMODE values are reserved.

Table 15-6. PMODE Values

PMODE Value .
(Hex) Programming Mode
0 Serial port programming

5 Slave programming
6 ROM-dump
C

Auto programming

15-13

8XC196NT USER’S MANUAL Int9I®

15.7.2 Power-up and Power-down Sequences

When youare ready to begin programming, follow thesever-up and power-down procedures.

WARNING
Failure to observe these warnings will cause permanent device damage.

Voltage musnot be applied to W, while V. is low.

The V,p voltage must be within 1 volt of)£ while V. is less than 4.5 volts. ¥ must not
go above 4.5 volts until M is at least 4.5 volts.

The V,p maximum voltage mustot be exceeded.
EA# must reach programming voltage befogg does so.
The PMODE pins (P0.7:4) must be in their desired states before RESET# rises.

All voltages must be within the ranges specified in the datasheet and the oscillator must be
stable before RESET# rises.

The power supplies to the y, Vo, EA# and RESET# pins must be well regulated and free
of glitches and spikes.

All V 45 pins must be well grounded.

15.7.2.1 Power-up Seq uence

1.

o o M w

Hold RESET# low while ¥ stabilizes. Allow \,, and EA# to float during this time.

After V. and the oscillator stabilize, continue to hold RESET# low and applyoltage
to EA#.

After EA# stabilizes, apply M voltage (+12.5V) to the M, pin.
Set the PMODE value to select a programming algorithm.
Bring the RESET# pin high.

Complete the selected programming algorithm.

15.7.2.2 Power-down Seq uence

1.

2
3.
4

Assert the RESET# signal and hold it lbwoughout the powerdown sequence.
Remove the ¥ voltage from the Y, pin and allow the pin to float.
Remove the V; voltage from the EA# pin and allow the pin to float.

Turn off the .. supply and allow time for it to reach 0 volts.

15-14 [|

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

15.8 SLAVE PROGRAMMING MODE

Slave programimg mode allows you to program and verify the entire OTPROM array, including
the PCCBs and UPROM bits, by using an EPROM programmer.

In this mode, ports 3 and 4 serve as the PBUS, transferring commands, addresses, and data. Th
least-significant bit of the PBUS (P3.0) controls the command (1 = program word; 0 = dump
word) and the remaining 15 bits contain the address of the word to be programmed or dumped.
Some port 2 pinprovide handshakinggnals. The AINC# signal controls whether the address

is automatically incremented, enabling programming or dumping sequential OTPROM locations.
This speeds up tirogramming procss, since it eliminates the need to generate and decode each
sequential address.

NOTE
If a glitch or reset occurs during programming of the security keynknown
security key might accidentally be written, rendering the device inaccessible
for further programming. To prevent this possibility during slave
programming, program thest of the OTPROM array befoyeu program the
CCB security-lock bits (CCB0.6 and CCBO0.7).

15.8.1 Reading the Signature Word and Programming Voltages

The signature word identifies the device; the programming voltages specifyghrdA/, volt-

ages required for programming. This informatiesides in the test ROM at locations 2070H,
2072H, and 2073H; however, these locations are remappedxid 003U can use the dump word
command in slave programming mode to read the signature word and programmiggsvatta

the locations shown in Table 15-7. The external programmer can use this information to deter-
mine the device type and operating conditions. You shoeler write to these locations. The
voltages are calculated by using the following equation (after converting the test ROM value to
decimal).

_ 20 x test ROM value

Voltage
256

20 x 64 20 x 160
Vec (A0H) = 756 = 5 volts Vpp (OAOH) = 256 = 12.5 volts

[| 15-15

8XC196NT USER’S MANUAL

intel.

Table 15-7. Device Signature Word and Programming Voltages

Signature Word Programming V. .. | ProgrammingV o,
Device
Location | Value |Location alue Location Value
8XC196NT 0070H 87AFH 0072H 40H 0073H OAOH

15.8.2 Slave Programming Circuit and Memory Map

Figure 15-5 shows the circuit diagram and Table 15-8 shows the memory map for slave program-
ming mode. The external clock signal can be supplied by either a clock or a crystal. Refer to the

device datasheet for acceptable clock frequencies.

h CLOCK

Vee

0.1 pF I

EA# ————1
Vepp ———>

Vee

.||_

XTAL1
Vee RESET#
NMI
Vss
P4.7:0
P3.7:0
EA# P2.6
Vep P2.4
P2.2
P2.1
P2.0
VREF

P0.7/PMODE.3
P0.6/PMODE.2
P0.5/PMODE.1
P0.4/PMODE.O

ANGND

87C19

6 Device

€——— RESET#
— L

—> CPVER
—— AINC#
<€——— PROGH#
[€——— PALE#
—> PVER

Vee

10kQ

Pullups Required
P4.7 - P3.0

A0256-03

Figure 15-5. Slave Programming Circuit

15-16

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

Table 15-8. Slave Programming Mode Memory Map

Description Address Comments
OTPROM 2000-9FFFH | OTPROM Cells
OFD 0778H | OTPROM Cell
DED? 0758H | UPROM Cell
DEIt 0718H | UPROM Cell
PCCB 0218H | Test EPROM
Programming voltages (see Table 15-7 on page 15-16) 0072H, 0073H | Read Only
Signature word 0070H | Read Only

TThese bits program the UPROM cells. Once these bits are programmed, they cannot be erased and
dynamic failure analysis of the device is impossible.

15.8.3 Operating Environment

The chip configuration registers (CCRs) define the system environment. Simmeghemming
environment is not necessarily the same as the application environment, the device provides a
means for specifying different configurations. Specify your application environment in the chip
configuration bytes (CCBs) located in the OTPROM. Speafyryrogrammingnvironment in

the programming chip configuration bytes (PCCBSs) located in the test ROM.

Figure 15-6 shows an abbreviated description of the CCRs with the default PCCB environment
settings. The reset sequence loads the CCRs from the CCBarifioal operation and from the
PCCBs when entering programming modes. You can proglian€CBs using any of the pro-
gramming methods, but only slave mode allows you to program the PCCBs. Chapter 14, “Inter-
facing with External Memory,” describes the system configuration options, and “Controlling
Access to Internal Memory” on page 15-3 describes thmangprotection options.

15-17

intel.

8XC196NT USER’S MANUAL

Address:
Reset State:
Reset State:

FF201CH, FF201AH, FF2018H
from CCBs XXH, XXH, XXH
see bit descriptions

CCR2, CCR1, CCRO

The chip configuration registers (CCRs) control OTPROM mapping, addressing mode, bus configu-
ration, wait states, powerdown mode, and internal memory protection. These registers are loaded from
the PCCBs during programming modes and from the CCBs for normal operation.

7 0
- | = | — | — || — | remAp |moDE16 | — |
7 0
| MSEL1 | MSELO | — | — || woe | Bw1 | Rcz | ipcce? |
7 0
| Loct | Loco | IRC1 IRco || AalE [wr | Bwo | PD |
Bit Mnemonic Function
REMAP OTPROM remapping. No effect in programming modes.
MODE16 Addressing mode. PCCB default is 16-bit addressing.
MSEL1:0 External Access Timing Mode Select
PCCB default is standard mode.
WDE Watchdog Timer Enable
PCCB default is initially disabled (enabled the first time WDT is cleared).
BW1 Buswidth Control
PCCB default selects BUSWIDTH pin control.
IRC2 Internal Ready Control.
PCCB default selects READY pin control.
LDCCB2 Load CCB2. PCCB default loads CCB2.
LOC1:0 Security Bits
PCCB default selects no protection.
IRC1:0 Internal Ready Control
PCCB default selects READY pin control.
ALE Select Address Valid Strobe Mode.
PCCB default selects ALE.
WR Select Write Strobe Mode.
PCCB default selects WR# and BHE#.
BWO Buswidth Control
PCCB default selects BUSWIDTH pin control.
PD Powerdown Enable.
PCCB default enables powerdown.

15-18

Figure 15-6. Chip Configuration Registers (CCRs)

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

15.8.4 Slave Programming Routines

The slave programming mode algorithm consists of three routines: the address/command decod-
ing routine, the program word routine, and the duwmopd routine.

The address/command decoding noeit(Figure 15-7) reads the PBUS and transfers control to

the program word or dump word routine based on the value of P3.0. A one on P3.0 selects the
program word command and the remaining bits specify the address. For example, a PBUS value
of 3501H programs a word of data at location 3500H. A zero on P3.0 shkdtsnp word com-

mand and the remaining bits specify the address. For example, a PBUS value of 3500H places
the word at location 3500H on the PBUS.

The program word routine (Figure 15-8) checks the CCB security-lock bits. If either security lock
bit (CCBO0.6 or CCBO0.7) has beprogramned, you must provide a matching security key to gain
access to the device. Using fhregram word commanelrite eight consecutiverords to the de-

vice, starting at locatioR020H and continuing to 202FH. The routine stores these eight words in
an internal register and compares their value with the internal key. If the keys match, the routine
allows you to program individual or sequential OTPROM locations; otherwise, the device enters
an endless loop.

The dump word roine (Figure 15-10) also checks the CCB security-lock bits, but it has no pro-
vision for security key verification. If the lock bits are unprogrammed, the routine fetolursl a

of data from the OTPROM and writes that data to the PBUS. If either lock bit is programmed, the
routine performs a write cycle without first getting data from the OTPROM.

15-19

8XC196NT USER’S MANUAL

Other

Modes PMODE = 05H

Read Data
From PBUS

Deassert CPVER
Assert PVER

(P2.1)=0
2

No

| Check Address

Dump Word
Routine

Yes

Program Word
Routine

A0193-02

Figure 15-7. Addre ss/Command Decoding Routine

15-20

PROGRAMMING THE NONVOLATILE MEMORY

From Address/
Command Decoder

.
.
>

No

To Address/
Command Decoder

Verify
Security Key

Deassert
PVER (P2.0 = 0)

PROG#
(P2.2)=0
?
Yes
Read Data Lock Bits Yes
from PBUS Enabled
?
No
i
Execute Modified
Quick-Pulse Algorithm
then Return
Programming
Verifies
Read Data 2
from PBUS ves [€
Assert PVER
(P2.0=1)

Increment
Address by 2

Loop
Forever

Deassert CPVER
Assert PVER

A0194-03

Figure 15-8. Program Word Routine

15-21

8XC196NT USER’S MANUAL

intel.

Figure 15-9 shows the timings of thegram word command with a repeated programming pulse
and auto increment. Asserting PALE# latches the command and address on the PBUS. Asserting
PROG# latches the data on the PBUS and starts the programming sequence. The PROG# signe
controls the programming pulse width. (Slave programming mode does not use the PPW regis-
ter.) After the rising edge of PROG#, the routine verifies the contents of the location that was just
programmed and asserts PVER to indicate successful programming. AINC# is optional and can
automatically increment the address for the next location. If you do not use AINC#, you must
send a new program word command toesscthe next word location.

/] L
7 7
RESET# T
TAVLL [~ 'DVPL™
[— ADDR1 , ADDR2
PBUS ADDR/COMMAND DATAL o —— DATA2)——
(Ports 3/4) A a
<—TSHLL—--—<— I TPLDX *k I
Tiax | ;4
PALE# \ r
=T\ |1 H TLHPL
]
|~-Tp | p == Tppp| = |- TiLpL —]
PROGH# —_
Pulse 1
oL, = TILVH =m-|
PVER IAA "4
TeHvL /
LT,
AINC# 7 |£ [~ L q_
a=TPHIL—]
* Additional program pulses and verifications.
** Measure from falling edge of last PROG# pulse in sequence.
A0121-01

Figure 15-9. Program Word Waveform

15-22

PROGRAMMING THE NONVOLATILE MEMORY

From Address/
Command Decoder

Y

Lock Bits
Enabled
?

Get Data
from OPTROM

Write Data
to PBUS

Write OFFFFH
to PBUS

To Address/
Command Decoder

Increment
Address by 2

A0189-03

Figure 15-10. Dump Word Routine

15-23

8XC196NT USER’S MANUAL

Figure 15-11 shows the timings of the dump word command. PROG# governs when the device
drives the bus. The timings before the dump word command are the same as those shown in Fig-
ure 15-9. In the dump word mode, the AINC# pin can remain active and toggling. The PROG#

pin automatically increments the address.

N

RESET# :
TSHLL™

PBUS ADDR/COMMAND,
(Ports 3/4)

Word Dump

ADDR2

Word Dump

PALE# /

PROG#

TiLpL

- |

AINC# I\

ra— TpppL —

A0122-02

Figure 15

15.8.5 Timing Mnemonics

Table 15-9 defines the timing mnemonics used in the program word and dump word waveforms.

-11. Dump Word Waveform

The datasheets include timing specifications for these signals.

Table 15-9. Timing Mnemonics

Mnemonic Description
Tsh Reset High to First PALE# Low.
T PALE# Pulse Width.
TaviL Address Setup Time.
Tiiax Address Hold Time.
Telov PROG# Low to Word Dump Valid.
Tonox Word Dump Data Hold.
ToveL Data Setup Time.
Teiox Data Hold Time.
Teien PROG# Pulse Width.
Ten PROG# High to Next PALE# Low.
L PALE# High to PROG# Low.

15-24

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

Table 15-9. Timing Mnemonics (Continued)

Mnemonic Description
TenpL PROG# High to Next PROG# Low.
TomL PROG# High to AINC# Low.
Tium AINC# Pulse Width.
Tk PVER Hold After AINC# Low.
ToeL AINC# Low to PROG# Low.
L PROG# High to PVER Valid.

15.9 AUTO PROGRAMMING MODE

The auto programming mode is a low-cpsbgramming altenative. Using thigprogramming
mode, the device programs itself with data from an external EPROM (external locdiiid
and above; see Table 15-1 on page 15-2). A bank switching meclamgtied by P1.2 and P1.1
supports auto programming of devices with more than 16 Kbytes of internal memory.

15.9.1 Auto Programming Circuit and Memory Map

Figure 15-12 shows the recommended circuit and Table 15-10 shows the memory map for auto
programming mode. Auto programming is specified for a crystal frequency of 6 to 8 MHz. At 8
MHz, use a 27(C)512 EPROM with tACC = 250 ns and tOE = 100 ns or faster specifications.

Tie the BUSWIDTH pin low to configure an 8-bit data bus. Connect P1.1 and P1.2 as shown to
generate the high-order bits of the external EPROM address. Connect PO. ¢ Aatm W, to

select auto programming (1100B = 0CH). PACT# and P\ERstatus outputs, buffered by the
74HC14s. They drive LEDs that indicatmgramming active (PACT#) and programming verifi-
cation (PVER). Connect all unused inputsgtound (Vg and leave unused outputs floating.
READY and NMI are active; connect them as indicated.

NOTE

All external EPROM addresses specified in this section are given for the
circuit in Figure 15-12. If you choose a different circuit, you must adjust the
addresses accordingly.

15-25

8XC196NT USER’S MANUAL

+12.50V

VCC

ON = Error

20 pF

L

1.0pF

e

VCC

=

—HlH—
T T

74HC14

ON = Programming

74HC14

- XTAL1 XTAL2
RESET# Reset
V,
ce 1kQ
74HC14
READY/P5.6 |1 10pF
:E Vss NMI |
- BUSWIDTH/P5.7 1 = =
EA#
Vep .
Vrer RD#/P5.3
PO.7/ | | =
PMODE.3
bo.6/ OE# CE#
PMODE.2 P12 AlLS
P1.1 Al4
PO.5/
PMODE.1
AD13:8 A13:8
PO.4/
PMODE.O
ANGND
ALE/P5.0 LE OE#]
- 27(C)512
P2.7/IPACT# ADT:0 745373) AT:0 R
2
o)
P2.5
p2.4
P2.3
P2.2
P2.1
P2.0/PVER
87C196 Device

A0296-03

15-26

Figure 15-12. Auto Programming Circuit

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

Table 15-10. Auto Programming Memory Map

Address Address
Output from Internal Using Circuit
8XC196 OTPROM in Figure Description
Device Address 15-12
(A15:0) (P1.2:1, A13:0)
4014H N/A 14H | Programming pulse width (PPW) LSB.
4015H N/A 15H | Programming pulse width (PPW) MSB.
4020-402FH FF2020-FF202FH 0020-002FH | Security key for verification.
4000-7FFFH FF2000-FF9FFFH 4000-BFFFH | Code, data, and reserved locations.

15.9.2 Operating Environment

In the auto programimg mode, the PCCBs are loaded into the chip configuration registers. Since
the device gets programming data through therezi bus, the memory device in the program-
ming system must correspond to the default configuration (Figure 15-6 on page 15-18). Auto pro-
gramming requires an 8-bit bus configuration, so the circuit must tie the BUSWIDTH pin low.
The PCCB defaults allow you to use any standard EPROM thsfiesathe AC specifications

listed in the device datasheet.

The auto programming mode also loads CCBO into an internal RAM location and theeldak

bits. If either lock bit is programmed, the auto programming routine compares the internal secu-
rity key to the external security key location. If the verification fails, the device enters an endless
internal loop. If the security keys match, tlmeiine continues. The auf@rogramning routine

uses the modified gck-pulse algorithm and the pulse width value progreed into the external
EPROM (locations 14H and 15H).

15.9.3 Auto Programming Routine

Figure 15-13 illustrates the auto programming routine. This routine checks the security lock bits
in CCBO; if either bit is programmed, it compathks internal security key to the external security

key locations. If the security keys match, the routine continues; otherwise, the device enters an
endless loop.

[| 15-27

8XC196NT USER’S MANUAL

Other
Modes

PMODE = 0CH

Lock Bits
Enabled
2

Yes

Verify
Security Key

* Yes

No Loop
Forever

| Load PPW

|—=»| Assert PACT# |

>

>y

Get External Data

Data = OFFFFH

Execute Modified
Quick-Pulse Algorithm
then Return

Error

. No
Programming
?

Yes

Clear PVER

Y

| Increment Address Pointer |

Deassert PACT#
Loop Forever
(Done)

A0191-03

15-28

Figure 15-13. Auto Programming Routine

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

If the security key verification is successful, the routine loads the programming pulse width
(PPW) value from the external EPROM into the internal PPW register. It then asserts PACT#, in-
dicating that programming has begun. (PACT# is also active during reset, although no program-
ming is in progress.) PVER isitially asserted and remains asserted unlessran isrdetected,

in which case it is deasserted.

The routine then reads the contents of the external EPROM, beginm0@GHi. Itskips any

word that contains FFFFH (unprogrammed state). Whemdsra word that contains any value
other than FFFFH, the routine calls the modified quick-pulse algorithm, which writes that value
to the OTPROM, using the appropriate number of pulses for the device, then verifies the result.
The routine repeats this activity until the entire OTPROBrgyramned, then deasserts PACT#

and enters an endlelsop.

15.9.4 Auto Programming Procedure

If a glitch or reset occurs while programming the security key and lock bits, an unkrmwityse
key might accidentally be written, rendering the device inaccessible for further programming. To
minimize this possibility, follow this recommended programming procedure.

NOTE

All addresses are given for the circuit shown in Figurd2%n page 15-26. If
you choose a different circuit, you must adjust the addresses accordingly.

1. Using a blank EPROM device, follow these steps to skip programmi@C8f0 and
program the rest of the OTPROM array, includihg security key.

— Place the programming pulse width (PPW) in external EPROM locations 14H-15H.
— Leave the external CCBO location (8MH) unprogrammed (OFFFFH).

— Place the appropriate CCBllua at external location04AH.

— Place the appropriate CCB2lua at external location 401CH.

— Place the security key to be programmed in external EPROMdasat020H-402FH.

— Place the value 20H in external EPROM locations 4019H, 401BH, 401DH, and 401FH
(for the reserved OTPROM locations that require this value).

— Place the desired code in the remaining external EPROM locatifx@H4and above
(see Table 15-10 on page 15-27).

— Execute the power-up sequence (page 15-14) to initiate auto programming.

— When programming is complete, execute the powerdown sequence (page 15-14) before
continuing to step 2.

15-29

8XC196NT USER’S MANUAL Int9I®

2. Using another blank EPROM device, follow these steps to program only CCBO.
— Place the programming pulse width (PPW) in external lonatl4H-15H.
— Place the appropriate CCBOlwva in external location 4@H.

— Place the security key to be verified in external EPROM locations 0020H—-002FH. This
value must match the security kesogrammed in step 1.

— Leave the remaining EPROM locations unprogrammed (OFFFFH).
— Execute the power-up sequence (page 15-14) to initiate auto programming.
— When programming is complete, follalve poverdown sequece (page 15-14).

At this point, you can modify the circuit, then use ROM-dump mode to write the entire OTPROM
array to an external memory device and verify its contents. (See “ROM-dump Mode” for details.)

15.9.5 ROM-dump Mode

The ROM-dump mode provides an easy way to verify the contents of the OTPROM array after
auto programming. Use the same circuit as for auto programming, but change the connections of
the PMODE (P0.7:4) pins. To select ROM-dump mode (PMODE=6H), connect P0.6 and P0.5 to
V¢ and connect P0.7 and P0.4 to ground. The same bank switching mechanism is used and the
memory map is the same as that for gutogramning. The example circuit (Figure 15-12 on

page 15-26) does not show the necessary WR# apdohnections to allow writing to the
EPROM. And althoughhe example uses an EPROM, you could also use a RAM device. Alter-
natively, you could dump the OTPROM contents to aBnbit parallel port.

NOTE

If you have programmed the DED bit (USFR.2), ROM-dump mode is
disabled. (See “Controlling Fetches from External Memory” on page 15-6).

To enter ROM-dump mode, follow the power-up sequence on page 15-14. The ROM-dump mode
checks the security key regardless of @@R seurity-lock bits. If you have programmed a se-
curity key, a matching key must reside in the external memory; otherwise, the device enters an
endless loop. If the security key verifies, ROM-dump mode fetches the PPW, then writes the en-
tire OTPROM array to external memory. PACT# remains low while the dump is in progress, then
goes high to indicate that the dump is complete.

15-30

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

15.10 SERIAL PORT PROGRAMMING MODE

The serial port programming mode enables the serial /0 (SIO) port to write data to the OTPROM
through the TXD (P2.0) pin and read it through the RXD (P2.1) pin. Inrtbde, the device ex-
ecutes a program from its internal test ROM. This program is a modifiedverfsthe reduced
instruction set monitor (RISM) that exists on@{9X evaluation boards. The simple hardware
setup of this mode makes it useful for in-module testing, programming, and in-line diagnostics.
Special software, called IBSP196, simplifies communication between the device and a smart ter-
minal. This software is available free of chatigeough the Intel BBS. (See “Bulletin Board Sys-

tem (BBS)” on page 1-9.)

NOTE

Serial port programming mode has no provision feuséy-key verification.
If a security key has been programmed, an attempt to enter serial port
programning mode causes the device to enter an entegs

Entering serial porprogramming mode with M, at +12.5 volts allows you to modify code in
OTPROM or to program small segments of OTPROM to customize code for a particular module.
(Programming more than 2 Kbytes of OTPRONhd$ recommended in this mode because of its
relatively long programming time.)

Entering serial port programming mode witp ¥t +5.0 volts enables you to perform these func-
tions:

¢ download a module-testing program into internal RAM and execute it without altering
nonvolatile memory or using dedicated OTPROM software space

* run a segment of code in OTPROM and monitor its performance during execution
¢ examine the code programmed into the OTPROM
* examine the contents of any register

* manipulate RAM, SFRs, or pin states

15.10.1 Serial Port Programming Circuit and Memory Map

Figure 15-14 shows the recommended circuit for serial port programming. In this mode, data is
transmitted and received through the TXD (P2.0) and RXD (P2.1) pins. Connect these pins to any
smart terminal capable of communicating with the RISM. Any host that requireS-28ZC in-

terface (such as a PC) must be connectezlithir an RS-232C driver/receiver suchttaes one

shown witin the dashed line in Figure 15-14. XTAL1 and XTALZ2 can be connected to a crystal
with a frequency between 3.5 MHz and 16 MHz. The frequency must correspond to the value in
the SP_BAUD register (see “Changing Serial Port Programming Defaults” on page 15-33).

[| 15-31

8XC196NT USER’S MANUAL Inu®

i

30 pF f f 30 pF
XTALL XTAL2
V,
—C|£_ RESET# f———
10 puF
VREF NMI {
P0.7/PMODE.3 =
P0.6/PMODE.2
P0.5/PMODE. 1
P0.4/PMODE.0
ANGND
— Vee
READY/P5.6
Vep BUSWIDTH/5.7
Vee EA# P2.1/RXD
C
N TB £ " P2.0/TXD
0.01 pF f
87C196 Device
Rxp, ~ -~~~ -~~~ TTTTTT T TS T T
: Vee . :
| | ' AAA 2N2222A o1 ° ol
: 1.8kQ 1N914 =0 !
o) |
118k S RXD [5 |
I 2N2907 — | 7 |
- TXD IT_O
TXD! 5T° o !
|
| 1.8kQ Lo)
I —AN—— —AWN———— |
| 1.8kQ 1Kot 1.8kQ |— |
| 10|JF = |

A0298-04

Figure 15-14. Serial Port Programming Mode Circuit

15-32

InU® PROGRAMMING THE NONVOLATILE MEMORY

Because the RISM begins at location 2000H in serial port programming mode, the OTPROM lo-
cations are automatically remapped as shown in Table 15-11. For example, to access OTPROM
location FF2000H in serial port programming mode, you must address it as AOOOH.

Table 15-11. 87C196NT Serial Port Programming Mode Memory Map

Address Range (Hex)
Description Normal Operation Serial Port Programming Mode
Internal OTPROM FF2000-FF9FFF A000—FFFF, 8000-9FFFT
External memory — 4000-9FFF
Do not address — 2400-3FFF
Test ROM and RISM — 2000-23FF

T The lower 24 Kbytes of internal OTPROM (FF2000-FF7FFFH) are remapped to AOOO—FFFFH.
The upper 8 Kbytes (FF8000—FF9FFF) must be addressed as 8000—9FFFH.

15.10.2 Changing Serial Port Programming Defaults

Several locations in test ROM are used to control operating parameters. The test ROM routine
establishes the default values shown in Table 15-12. To change the default values, write the de-
sired values to the test ROM addresses shown in the table. (Refer to the SP_BAUD and SP_CON
register descriptions in Appendix C and the SP_PPW description on page 15-9.) After you write
the new values to the test ROM locations, the RISM writes the programmed values into the asso-
ciated registers.

The defaultprogramning pulse width is longer than required. To avoid unnecessarily long pro-
gramming times, change the default value before beginning to program the device. For a 100-us
pulse width, use the following formula to determine the required PPW_VALUE and write that
value to the test ROM location listed in Table 15-12.

PPW_VALUE = (0.6944 x Fo) —1

Table 15-12. 87C196NT Serial Port Programming Default Values and Locations

Parameter RISM Default Test ROM Address SFR
Mode 09H; mode 1, receiver enabled 2215H SP_CON
Baud rate 8067H; 9600 baud at 16 MHz 2216H SP_BAUD
Pulse width 80FFH; 2.30ms per pulse at 16 MHz 221C-221DH SP_PPW

15-33

8XC196NT USER’S MANUAL Int9I®

15.10.3 Executing Programs from Internal RAM

For those wanting to execute user programs fridernal RAM while in serial pogprogramming

mode, the RISM allowgou to initialize the user program counter (PC), window selection register
(WSR), and processor status word (PSW). Table 15-13 lists the registers, the default assumed by
the RISM, and the test ROM address to which you may write new values.

Before attempting to execute a program from internal RAM or OTPROM, write theregi
address of the program to the PC at the test ROM address shown in Table 15-13. You need not
change the WSR and PSW unless other flags need to fir fe¢ program you are executing.

After writing the PC value, issue the GO command, which automatically initializes the PC and
begins code execution. When the RISM interrupts or halts the program, it writes the user PC,
WSR (which includes INT_MASK1), and PSW (which includes INT_MASK) to the test ROM
locations.

Internal RAM locations 4EH83H are used as registers for serial port programming mode. Pro-
grams executing from internal RAM should not alter these locations.

Table 15-13. User Program Register Values and Test ROM Locations

User Program Register RISM Default Test ROM Address
PC 2080H 5EH
WSR 1000H 60H
PSW 0200H 62H

15.10.4 Reduced Instruction Set Monitor (RISM)

When you enteregial port programming mode, the device begins executing its Ri®kram.

The RISM is executed in 16-bit mode, so addresses are limited to 64 Kbytes and the PC is limited
to 16 hits. You communicate with the device by sending RISM commands from any smart termi-
nal across the TXD and RXD pins at a fixed baud rate.

Upon entering serial porprogramming modethe device enters a waiting loop, called
Monitor_Pause, in which it waits for RISM commands to arrive across the serial port. The com-
mands are each one byte in length and have values between 00H and 1FH. A value between 00F
and 1FH is considered a command unless it follows a data latch enable (SET_DLE_FLAG) com-
mand. The SET_DLE_FLAG command sets the DLE flag in the MODE register (57H). The DLE
flag alerts the RISM to store the next byte in the DATA register, a 32-bit first-in-last-out (FILO)
register located at 58H.

15-34 [|

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

When a receive interrupt occutbe RISM checks the data value and the DLE flag. If the data
value is greater than 1FH or if the DLE flag is set, the received byte is considered data and is
stored in the DATA register (58H). Each time new data is received, the DATA register is shifted
left by eight bits. If the value is between 00H and 1FH and the DLE flag is clear, the received byte
is considered a command. Commands are stored in the CHAR register (56H). After it executes
each command, the RISM resumes Monitor_Pause, except where otherwise noted.

To access a particular address, you must first send the address across the serial port as data. Se
it one byte at a time, with the high byte first (the address is always assumed to be 16 bits). The
RISM stores the address data in the DATA register. Now you must trainsfaddress from the

DATA register to the ADDR register (5CH) by sending the DATA_TO_ADDR command (0AH).

15.10.5 RISM Command Descriptions

Table 15-14 lists and describes the RISM commands. The following sections provide examples.

Table 15-14. RISM Command Descriptions

Value Command Description

00H SET_DLE_FLAG | Sets the DLE flag in bit O of the MODE register (57H) to tell the RISM that the next
byte on the serial port is data that should be loaded into the DATA register (58H).
The flag is cleared as soon as the byte is read.

02H TRANSMIT Transmits the low byte of the DATA register to the serial port through the CHAR
register, shifts the DATA register right (long) by eight bits, and increments ADDR
by one.
ADDR DATA SBUF_TX
Before command ‘ 22 ‘ 14 ‘ ‘ 7A ‘ 2F ‘ 80 ‘ 67 ‘ ‘ ‘
After command ‘ 22 ‘ 15 ‘ ‘ 00 ‘ 7A ‘ 2F ‘ 80 ‘ ‘ 67 ‘
04H READ_BYTE Puts the contents of the (byte) memory address pointed to by the ADDR register
into the low byte of the DATA register.
Memory Addr.
ADDR DATA 2215 2214
Before command ‘ 22 ‘ 14 ‘ ‘ ‘ ‘ ‘ ‘ m
After command ‘ 22 ‘ 14 ‘ ‘ ‘ ‘ ‘ 67 ‘ m

[| 15-35

8XC196NT USER’S MANUAL Inu®

Table 15-14. RISM Com mand Descriptions (Continued)

Value Command Description
05H READ_WORD Puts the contents of the (word) memory address pointed to by the ADDR register
into the low word of the DATA register.
Memory Addr.
ADDR DATA 2215 2214
Before command ‘ 22 ‘ 14 ‘ ‘ ‘ ‘ ‘ ‘ | 80 | 67 |
Aftercommand | 22 [14| | | |so|e7| |[80 [67 |
07H WRITE_BYTE Puts the low byte of the DATA register into the memory address pointed to by the
ADDR register and increments ADDR by one.
Memory Addr.
ADDR DATA 2217 2216
Before command | 22 | 16 | | 2E [11 | 80 | 09 |
After command | 22 [17 | | 2e | 11 | 80 |09 | |[CFF | 09 |
NOTE: To write to an OTPROM location, Vp, must be at +12.5 volts. To write to
an internal RAM location, V,, can be at either +5.0 volts or +12.5 volts.
08H WRITE_WORD Puts the low word of the DATA register into the memory address pointed to by the
ADDR register and increments ADDR by two.
Memory Addr.
ADDR DATA 2217 2216
Before command | 22 | 16 | | 2€ | 11 | 80 | 09 |
After command | 22 [18 | | 2E | 11 | 80 [09 |
NOTE
To write to an OTPROM location, Vi, must be at +12.5 volts. To write to an
internal RAM location, V,, can be at either +5.0 volts or +12.5 volts.
OAH | DATA_TO_ADDR | Puts the low word of the DATA register into the ADDR register.

ADDR DATA
Before command ‘ ‘ ‘ ‘ F1 ‘ 05 ‘ 22 ‘ 16 ‘
After command ‘ 22 ‘ 16 ‘ ‘ F1 ‘ 05 ‘ 22 ‘ 16 ‘

15-36

InU® PROGRAMMING THE NONVOLATILE MEMORY

Table 15-14. RISM Com mand Descriptions (Continued)

Value Command Description
OBH | INDIRECT Puts the word from the memory address pointed to by the ADDR register into the
ADDR register.
Memory Addr.
ADDR 2217 2216

Before command
After command

12H GO PUSHes the user PC, PSW, and WSR onto the stack and starts your program
from the location contained in the user PC. The RISM PC, PSW, and WSR will
also be in the stack, so allow enough room on the stack for all six words. Your
program must not directly alter memory locations 56H-5CH; the RISM uses these
locations if your program reads from or writes to any memory.

You can interrogate memory locations while your program is running. The RISM
interrupts your program to process the command, then returns execution to your
program.

13H HALT Stops executing your program, POPs the user PC, PSW, and WSR from the
stack, and PUSHes the RISM PC, PSW, and WSR back onto the stack. The RISM
PC contains the location of the Monitor_Pause routine, so the RISM returns to
Monitor_Pause.

14H REPORT Loads a value into the DATA register. This value indicates the status of your
program:
Value Status
00 halted
01 running
02 trapped

15.10.6 RISM Command Examples

This section provides examples of ways in which you might use the RISM commands.

15.10.6.1 Example 1 — Programming the PPW

You should specify the programming pulse width before you do any programming or write to any
memory locations. This example loads the SP_PPW register (221CH/221DH) with 8010H, the
minimum value for 16-MHz operation. (See “Programming Pulse Width” on page 15-8 to deter-
mine the correct PPW for other frequencies.)

Before this programming step takes place, the SP_PPW register contains its default value,
80FFH. The PPW is equal to 2.30 ms, so this program step will take 11.52 ms per word to com-
plete (5 pulses of 2.30 ms each). After the PPW value is changed, subseqgearnming op-
erations will take only 500 ps per word (5 pulses of 100 us each).

[| 15-37

8XC196NT USER’S MANUAL Inu®

Because an OTPROM location is being alteregl, iust be at +12.5 volts. RISM commands

must be sent across the serial port one byte at a time, and a SET_DLE_FLAG command must
precede any data byte that is less than 1FH. The address being modified must first be loaded into
the DATA register, then transferred to the ADDR register.

Send Comments (Example 1) DATA ADDR
22 Data. High byte of address to DATA register. L e]]
00 SET_DLE_FLAG. The next data byte is < 1FH. ‘ ‘ ‘ ‘ 22 ‘ ‘ ‘ ‘
1C Data. Low byte of address to DATA register. | Jee] | | |
0A DATA_TO_ADDR. Move address to ADDR. ‘ ‘ ‘ 22 ‘ 1C ‘ ‘ 22 ‘ 1c ‘
80 Data. High byte of data to DATA register. | |22 [1c |80 | |22 |ic |
00 SET_DLE_FLAG. The next data byte is < 1FH. ‘ ‘ 22 ‘ 1c ‘ 80 ‘ ‘ 22 ‘ 1c ‘
10 Data. Low byte of data to DATA register. ‘ 22 ‘ 1c ‘ 80 ‘ 10 ‘ ‘ 22 ‘ 1c ‘

08 WRITE_WORD. Low word of DATA to memory
location 221C (contents of ADDR). Increment
ADDR by two.

‘22‘1C‘80‘10‘ ‘22‘1(:‘

Memory Addresses
221D 221C

Any write operation can be done in this manner.

15.10.6.2 Example 2 — Reading OTPROM Contents

This example reads the contents of OTPROM address AO80H. Because the OTPROM is
remapped from 2000H to AOOOH, the location read is actually 2080H of the program in
OTPROM. This example assumes that the word at location 2080H is 8067H, the assembled hex
value of the code. No OTPROM locations are changed,.seah be either +12.5 volts or +5

volts.

15-38 [|

Send
AOQ

80

0A

05

02

02

Any address can be read in this manner, including register RAM, internal code RAM, and SFRs.

15.10.6.3

This example loads program into internal code RAM. No OTPROM locations are changed, so

PROGRAMMING THE NONVOLATILE MEMORY

Comments (Example 2) DATA ADDR

Data. High byte of address to DATA register. [Jme]]
Data. Low byte of address to DATA register. | | [rofso | | | |
DATA_TO_ADDR. Move address to DATA register. ‘ ‘ ‘ AO ‘ 80 ‘ ‘ AO ‘ 80 ‘
READ_WORD. Put word at AO8OH into DATA. ‘ AO ‘ 80 ‘ 80 ‘ 67 ‘ ‘ AO ‘ 80 ‘

TRANSMIT. Transmit low byte of DATA across the
serial port, increment ADDR by one, and shift
DATA right long by eight bits.

|00 | A0 |80 [80 | [ao0]sl|
TRANSMIT. Transmit low byte of DATA across the
serial port, increment ADDR by one, and shift
DATA right long by eight bits.

|00 oo [A0|s8 | [A0]s2|

Example 3 — Loading a Program into Internal Code RAM

Ve can be either +12.5 volts or +5 volts. The following program is to be loaded:

400 A1221180 LD 80H, #1122H ;Puts 1122H into register RAM location 80H

404 27FE

SIMP 0404H ;Jumps to itself to keep program running
;indefinitely

The hex file must be loaded one byte at a time using the RISM commands.

15-39

8XC196NT USER’S MANUAL

Send
00

04

00

00

0A

Al

22

08

00

1

00

80

08

15-40

Comments (Example 3)

SET_DLE_FLAG. Next data byte is < 1FH.

Data. High byte of address 0400H.

SET_DLE_FLAG. Next data byte is < 1FH.

Data. Low byte of address 0400H.

DATA_TO_ADDR. Move address to ADDR.

Data. High byte of hex file for location 0401H.

Data. Low byte of hex file for location 0400H.

WRITE_WORD. Low word of DATA to memory
location 0400 (contents of ADDR). Increment
ADDR by two.

SET_DLE_FLAG. Next data byte is < 1FH.

Data. High byte of hex file for location 0403H.

SET_DLE_FLAG. Next data byte is < 1FH.

Data. Low byte of hex file for location 0402H.

WRITE_WORD. Low word of DATA to memory
location 0402 (contents of ADDR). Increment
ADDR by two.

DATA ADDR
[O
[I R A N
[I R A N
T Tefw] [T]
[o fw] (o]
o [[m] [ox o]
(o4 Joo [wi [z2] [0+ [0]
(e lwmlz] [w]w]
Memory Addresses
0401 0400
Ca T 2=] [on]e
oo Joo [m 2] [oe [0z
[oo [mt [z [] [oe [0z
[oo [mt [z [][00 [0z
(A [z [o0][00 [z |
(ailz[ul®] [w]e]
Memory Addresses
0403 0402
[T w] [

InU® PROGRAMMING THE NONVOLATILE MEMORY

Send Comments (Example 3) DATA ADDR
27 Data. High byte of hex file for location 0405H. \22 \11 ‘80 \27 \ \04 \04 \
FE Data. Low byte of hex file for location 0404H. \11 ‘80 \27 ‘FE \ \04 \04 \

08 WRITE_WORD. Low word of DATA to memory
location 0404 (contents of ADDR). Increment
ADDR by two.

‘H‘SO‘ZY‘FE‘ ‘04‘04‘

Memory Addresses
0405 0404

“ 27 | FE |‘ m

15.10.6.4 Example 4 — Setting the PC and Executing the Program

This example sets the PC and begins executingritgram loaded in example 3. The PC (at lo-
cation 5EH) must be set at 400H to tell the RISM where to begin execution of the program. The
WSR and PSW are automatically set to their default values (1000H and 200H, respectively), but
can be changed in this same manner. No OTPROM locations are changggcan ke either

+12.5 volts or +5 volts.

Send Comments (Example 4) DATA ADDR

00 SET_DLE_FLAG. Next data byte is < 1FH. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

00 Data. High byte of PC address 005EH. [Joo | | | |
5E Data. Low byte of PC address 005EH. || Joo s | | | |
0A DATA_TO_ADDR. Move address to ADDR. ‘ ‘ ‘oo ‘SE ‘ ‘oo ‘SE ‘
00 SET_DLE_FLAG. Next data byte is < 1FH. ‘ ‘ ‘ 00 ‘ 5E ‘ ‘ 00 ‘ 5E ‘
04 Data. High byte of program address 0400H. | [oo [sE Joa | |00 |sE |
00 SET_DLE_FLAG. Next data byte is < 1FH. ‘ ‘oo ‘SE ‘04 ‘ ‘oo ‘SE ‘
00 Data. Low byte of program address 0400H. |oo [5E [04 Joo | |00 |SE |

15-41

8XC196NT USER’S MANUAL Int9I®

Send Comments (Example 4) DATA ADDR

08 WRITE_WORD. Low word of DATA to PC location
005EH (contents of ADDR). Increment ADDR by
two.

‘OO‘SE‘O4‘OO‘ ‘OO‘SE‘

Memory Addresses
005F 005E

12 GO. PUSHes the user PC onto the stack and
begins program execution at 0400H. (Had they
been changed, GO would also PUSH the PSW
and WSR.)

‘00‘5E‘04‘00‘ ‘00‘60‘

You can now interrogate memory locations using RISM commands. Reading location 80H using
the method shown in example 2 will return 1122H (the value that the executing program loaded
into that location). A REPORT command (14H) will place “01” itite DATA register, indicating

that a program is running. A HALT command (13H) will stop execution of the program. The PC
will be reset to the Monitor_Pause location. At this point, a REPORT command (14H) will place
“00” into the DATA register, indicating that the program is halted.

15.10.6.5 Writing to OTPROM with Examples 3 and 4

If a program writes to OTPROM or if it is to be loaded into an OTPROM location, +12.5 volts
must be applied to . There are other considerations, as well.

Assume that the program in examples 3 and 4 attempted to write OTPROM location A500H with
the value 1122H. Changing the contents of location A500H alters any code programmed at
2500H because that location has been remapped to AS00H. Any bits at 2500H that are zero can-
not be changed to one.

Assume that the program is loaded into OTPROM locath®d30—A004H. Changing the con-
tents of those locations alters any code programmeD@t-2004H beasse those locations have
been remapped t8000-A004H. Any bits irthose locations that are zero cannot be changed to
one, SO you may get unexpected results. (Internal RAM can always be altered to any value.)

15-42

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

15.11 RUN-TIME PROGRAMMING

You can program an OTPROM location during normal code execution. To make the OTPROM
array accessible, apply-¥voltage to EA# while you reset the deviggply V, voltage to the

Ve pin during the entire programming process. Then simply write to the location to be pro-
grammed.

NOTE

Programming either security-lock bit in CCBO disables run-time
programning. (For details, see “Controlling Access to the OTPROM During
Normal Operation” on page 15-4.)

Immediately after writing to the OTPROM, the device must either enter idle mode or execute code
from external memory. An access to OTPROM would abort the current programming cycle. Each
programming cycle begins when a word is written to the OTPROM and ends when the next
OTPROM access occurs. Each word requires a total opfimgramming cycles, each of which
must be approximately 1Q@s in duration.

Figure 15-15 is a run-time programming example. It performs five programming cycles for each
word. After each programming cycle, the code catlsesdevice to enter idle mode. EPAO causes
the device to exit idle mode at the appropriate time. To ensure that the device does not exit idle
mode prematurely, all other interrupts are disabled.
The routine assumes that the following conditions are true:

¢ the EPA is dedicated to run-time programming

¢ timer 1 is configured to use an internal clock

* EPAO_ISR is assigned as the EPAO interrupt vector.

It also assumes that the following constants and registers ageesi

CLEAR_EPAO constant (OEFH) that clears the EPAO interrupt pending bit
ENABLE_EPAO constant (10H) that enables only the EPAO interrupt

EPAO_TIMER constant (40H) that sets up EPAO as a software timer using timer 1
PGM_PULSE constant that determines programming pulse width

ADDR_TEMP register that contains the address to be programmed

COUNT count register

DATA_TEMP register that contains the data to be programmed

TEMPO temporary register

[| 15-43

8XC196NT USER’S MANUAL Inu®

The calling routine must pass two parameters to this routine — the datgptogreammed (in
DATA_TEMP) and the address (in ADDR_TEMP).

PROGRAM:
PUSHA ;clear PSW, WSR, INT_MASK, INT_MASK1
LD WSR#7BH ;select 32-byte window with EPAO_CON
LD COUNT,#5 ;set up for 5 programming cycles
ANDB INT_PEND,#CLEAR_EPAO ;clear EPAO pending bit
LDB INT_MASK#ENABLE_EPAO ;enable EPAO interrupt
LDB EPAO_CON,#EPAO_TIMER ;set up EPAO as software timer
LOOP:
LD TEMPO,TIMER1 ;load TIMER1 value into TEMPO

ADD EPAO_TIME,TEMPO,#PGM_PULSE
;load EPAO_TIME with TIMER1 + PGM_PULSE

El ;enable unmasked interrupt(EPAO)
ST DATA_TEMP,[ADDR_TEMP] ;store passed data at passed address
IDLPD #1 ;enter idle mode
DJNZ COUNT,LOOP ;decrement COUNT and loop if not O
;to complete 5 programming cycles

POPA ;restore PSW, WSR, and INT_MASKSs
RET

EPAOQ_ISR:
RET

Figure 15-15. Run-time Programming Code Example

15-44

intgl.

Instruction Set
Reference

APPENDIX A
INSTRUCTION SET REFERENCE

This appendix provides referenegdrmaton for the instruction set of the family of MED6
microcontrollers. It defines the processor status word (PSW) flags, describes each instruction,
shows the relationships between instructions and PSW flags, and shows hexadecimal opcodes
instruction lengths, and execution times. It includes the following tables.

* Table A-1 on page A-2 is a map of the opcodes.
* Table A-2 on page A-4 defines the processor status word (PSW) flags.

* Table A-3 on page A-5 shows the effect of the PSW flags or a specified register bit on
conditional jump instructions.

* Table A-4 on page A-5 defines the symbols used in Table A-6.

* Table A-5 on page A-6 defines the variables used in Table A-6 to represent instruction
operands.

¢ Table A-6 beginning on page A-7 lists the instructions alphabetically, describes each of
them, and shows the effect of each instruction on the PSW flags.

* Table A-7 beginning on page A-46 lists the instruction opcodes, in hexademidea)
along with the corresponding tngction mnemonics.

* Table A-8 on page A-52 lists instruction lengths and opcodes for each applicable addressing
mode.

* Table A-9 on page A-59 lists instruction execution times, expressed in state times.

NOTE

The # symbol prefixes an immediate value in immediate addressing mode.
Chapter 3, “Programming Considerations,” describes the operand types and
addressing modes.

A-1

8XC196NT USER’S MANUAL

Table A-1. Opcode Map (Left Half)

Opcode X0 x1 X2 X3 X4 X5 X6 X7
Ox SKIP CLR NOT NEG XCH DEC EXT INC
di
1x CLRB NOTB NEGB XCHB DECB EXTB INCB
di
SIMP
2x
JBC
3x
bit 0 | bit 1 | bit 2 | bit 3 bit 4 | bit 5 | bit 6 | bit 7
AND 3op ADD 3op
4x
di | im | in | ix di | im | in | ix
ANDB 3op ADDB 3op
5x
di | im | in | ix di | im | in | ix
AND 20p ADD 20p
6x
di | im | in | ix di | im | in | ix
ANDB 20p ADDB 20p
X
di | im | in | ix di | im | in | ix
OR XOR
8x
di | im | in | ix di | im | in | ix
ORB XORB
9x
di | im | in | ix di | im | in | ix
LD ADDC
Ax
di | im | in | ix di | im | in | ix
LDB ADDCB
Bx
di im in | ix di im in | ix
Cx ST BMOV ST STB CMPL STB
di in ix di in ix
Dx INST JNH JGT JNC INVT INV JGE INE
Ex DJINZ DJINZW TIIMP BR/EBR | EBMOVI EJMP LIMP
in
Fx RET ECALL PUSHF POPF PUSHA POPA IDLPD TRAP
NOTE: The first digit of the opcode is listed vertically, and the second digit is listed horizontally. The

A-2

related instruction mnemonic is shown at the intersection of the two digits. Shading indicates
reserved opcodes. If the CPU attempts to execute an unimplemented opcode, an interrupt
occurs. For more information, see “Unimplemented Opcode” on page 5-6.

INSTRUCTION SET REFERENCE

Table A-1. Opcode Map (Right Half)

Opcode X8 X9 XA XxB xC xD XE XF
Ox SHR SHL SHRA XCH SHRL SHLL SHRAL NORML
iX
1x SHRB SHLB SHRAB XCHB EST EST ESTB ESTB
iX in ix in iX
ox SCALL
3x) . . . IBS
bit 0 bit 1 | bit 2 bit 3 bit 4 | bit 5 bit 6 bit 7
ax SUB 3op MULU 3op (Note 2)
di im | i ix di | im in ix
5x SUBB 3op MULUB 3op (Note 2)
di im in ix di im in ix
6x SUB 20p MULU 2o0p (Note 2)
di im | i ix di | im in ix
7% SUBB 20p MULUB 20p (Note 2)
di im | i ix di | im in ix
8x CMP DIVU (Note 2)
di im | i ix di | im in ix
ox CMPB DIVUB (Note 2)
di im | i ix di | im in ix
SUBC LDBZE
Ax ' . . .
di im | in ix di | im in ix
SUBCB LDBSE
Bx . ' ' . ' ' . .
di im | in ix di im in ix
Cx PUSH POP BMOVI POP
di im in ix di in ix
Dx JST JH JLE JC JVT Y JLT JE
Ex ELD ELD ELDB ELDB DPTS EPTS (Note 1) LCALL
in ix in iX
CLRC SETC DI El CLRVT NOP signed RST
Fx MUL/DIV
(Note 2)
NOTES:

1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.
2. Signed multiplication and division are two-byte instructions. The first byte is “FE” and the second is the
opcode of the corresponding unsigned instruction.

A-3

8XC196NT USER’S MANUAL Inu®

Table A-2. Processor Status Word (PSW) Flags

Mnemonic Description

C The carry flag is set to indicate an arithmetic carry from the MSB of the ALU or the state of
the last bit shifted out of an operand. If a subtraction operation generates a borrow, the carry
flag is cleared.

C Value of Bits Shifted Off
0 <% LSB
1 > LSB

Normally, the result is rounded up if the carry flag is set. The sticky bit flag allows a finer
resolution in the rounding decision.

C ST Value of Bits Shifted Off

00 =0
01 >0and <% LSB
10 =% LSB
11 > LSBand <1LSB
N The negative flag is set to indicate that the result of an operation is negative. The flag is

correct even if an overflow occurs. For all shift operations and the NORML instruction, the
flag is set to equal the most-significant bit of the result, even if the shift count is zero.

ST The sticky bit flag is set to indicate that, during a right shift, a “1” has been shifted into the
carry flag and then shifted out. This bit is undefined after a multiply operation. The sticky bit
flag can be used with the carry flag to allow finer resolution in rounding decisions. See the
description of the carry (C) flag for details.

\% The overflow flag is set to indicate that the result of an operation is too large to be
represented correctly in the available space.

For shift operations, the flag is set if the most-significant bit of the operand changes during
the shift. For divide operations, the quotient is stored in the low-order half of the destination
operand and the remainder is stored in the high-order half. The overflow flag is set if the
quotient is outside the range for the low-order half of the destination operand. (Chapter 3,
“Programming Considerations,” defines the operands and possible values for each.)

Instruction Quotient Stored in: V Flag Set if Quotient is:

DIVB Short-Integer <-128 or > +127 (< 81H or > 7FH)
DIV Integer <-32768 or > +32767 (< 8001H or > 7FFFH)
DIVUB Byte > 255 (FFH)
DIVU Word > 65535 (FFFFH)
VT The overflow-trap flag is set when the overflow flag is set, but it is cleared only by the CLRVT,

JVT, and JNVT instructions. This allows testing for a possible overflow at the end of a
sequence of related arithmetic operations, which is generally more efficient than testing the
overflow flag after each operation.

4 The zero flag is set to indicate that the result of an operation was zero. For multiple-precision
calculations, the zero flag cannot be set by the instructions that use the carry bit from the
previous calculation (e.g., ADDC, SUBC). However, these instructions can clear the zero
flag. This ensures that the zero flag will reflect the result of the entire operation, not just the
last calculation. For example, if the result of adding together the lower words of two double
words is zero, the zero flag would be set. When the upper words are added together using
the ADDC instruction, the flag remains set if the result is zero and is cleared if the result is not
zero.

A-4

intel.

Table A-3 shows the effect of the PSW flags or a specified register bit on conditional jump in-
structions. Table A-4 defines the symbols used in Table A-6 to show the effect of each instruction

INSTRUCTION SET REFERENCE

on the PSW flags.

Table A-3. Effect of PSW Flags or Specified Bits on Conditional Jump Instructions

Instruction Jumps to Destination if Continues if
DJNZ decremented byte # 0 decremented byte =0
DINZW decremented word # 0 decremented word = 0
JBC specified register bit = 0 specified register bit = 1
JBS specified register bit = 1 specified register bit = 0
JNC C=0 C=1
JNH C=00RZ=1 C=1ANDZ=0
JC C=1 C=0
JH C=1ANDZ=0 C=00RZ=1
JGE N=0 N=1
JGT N=0ANDZ=0 N=10RZ=1
JLT N=1 N=0
JLE N=10RZ=1 N=0ANDZ =0
JNST ST=0 ST=1
JST ST=1 ST=0
JINV V=0 V=1
JV V=1 V=0
INVT VT =0 VT =1 (clears VT)
JVT VT =1 (clears VT) VT =0
JNE Z=0 Z=1
JE Z=1 Z=0

Table A-4. PSW Flag Setting Symbols
Symbol Description

0 The instruction sets or clears the flag, as appropriate.

— The instruction does not modify the flag.

1 The instruction may clear the flag, if it is appropriate, but cannot set it.

1 The instruction may set the flag, if it is appropriate, but cannot clear it.

1 The instruction sets the flag.

0 The instruction clears the flag.

? The instruction leaves the flag in an indeterminate state.

8XC196NT USER’S MANUAL Inu®

Table A-5 defines the variables that are used in Table A-6 to represent the instruction operands.

Table A-5. Operand Variables

Variable Description

aa A 2-bit field within an opcode that selects the basic addressing mode used. This field is present
only in those opcodes that allow addressing mode options. The field is encoded as follows:

00 register-direct 01 immediate 10 indirect 11 indexed

baop A byte operand that is addressed by any addressing mode.

bbb A 3-bit field within an opcode that selects a specific bit within a register.

bitno A 3-bit field within an opcode that selects one of the eight bits in a byte.

breg A byte register in the internal register file. When it could be unclear whether this variable refers

to a source or a destination register, it is prefixed with an Sor a D. The value must be in the
range of 00—FFH.

cadd An address in the program code.

Dbregt A byte register in the lower register file that serves as the destination of the instruction
operation.

disp Displacement. The distance between the end of an instruction and the target label.

Diregt A 32-bit register in the lower register file that serves as the destination of the instruction

operation. Must be aligned on an address that is evenly divisible by 4. The value must be in the
range of 00—FCH.

Dwregt A word register in the lower register file that serves as the destination of the instruction
operation. Must be aligned on an address that is evenly divisible by 2. The value must be in the
range of 00—FEH.

Ireg A 32-bit register in the lower register file. Must be aligned on an address that is evenly divisible
by 4. The value must be in the range of 00—FCH.

ptr2_reg | A double-pointer register, used with the EBMOVI instruction. Must be aligned on an address
that is evenly divisible by 8. The value must be in the range of 00—F8H.

preg A pointer register. Must be aligned on an address that is evenly divisible by 4. The value must
be in the range of 00—FCH.

Sbreg’ A byte register in the lower register file that serves as the source of the instruction operation.

Slreg’ A 32-bit register in the lower register file that serves as the source of the instruction operation.
Must be aligned on an address that is evenly divisible by 4. The value must be in the range of
00—FCH.

Swregt A word register in the lower register file that serves as the source of the instruction operation.
Must be aligned on an address that is evenly divisible by 2. The value must be in the range of

00—FEH.

treg A 24-bit register in the lower register file. Must be aligned on an address that is evenly divisible
by 4. The value must be in the range of 00—FCH.

waop A word operand that is addressed by any addressing mode.

w2_reg A double-word register in the lower register file. Must be aligned on an address that is evenly
divisible by 4. The value must be in the range of 00—FCH. Although w2_reg is similar to Ireg,
there is a distinction: w2_reg consists of two halves, each containing a 16-bit address; Ireg is
indivisible and contains a 32-bit number.

wreg A word register in the lower register file. When it could be unclear whether this variable refers
to a source or a destination register, it is prefixed with an Sor a D. Must be aligned on an
address that is evenly divisible by 2. The value must be in the range of 00—FEH.

XXX The three high-order bits of displacement.

TThe D or S prefix is used only when it could be unclear whether a variable refers to a destination or a
source register.

A-6

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set
Mnemonic Operation Instruction Format
ADD ADD WORDS. Adds the source and DEST, SRC
(2 operands) | destination word operands and stores the ADD wreg, waop

sum into the destination operand.
(DEST) « (DEST) + (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
o0 | 0|0 T =

(011001aa) (waop) (wreg)

ADD
(3 operands)

ADD WORDS. Adds the two source word
operands and stores the sum into the
destination operand.

(DEST) « (SRC1) + (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0| 0|0 1| =

DEST, SRC1, SRC2
ADD Dwreg, Swreg, waop
(010001aa) (waop) (Swreg) (Dwreg)

ADDB
(2 operands)

ADD BYTES. Adds the source and
destination byte operands and stores the sum
into the destination operand.

(DEST) « (DEST) + (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0|0|0 T —

DEST, SRC
ADDB breg, baop
(011101aa) (baop) (breg)

ADDB
(3 operands)

ADD BYTES. Adds the two source byte
operands and stores the sum into the
destination operand.

(DEST) « (SRC1) + (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0|0|0 T —

DEST, SRC1, SRC2
ADDB Dbreg, Sbreg, baop
(010101aa) (baop) (Sbreg) (Dbreg)

ADDC

ADD WORDS WITH CARRY. Adds the
source and destination word operands and
the carry flag (0 or 1) and stores the sum into
the destination operand.

(DEST) « (DEST) + (SRC) +C

PSW Flag Settings
Z | N|C |V |VT|ST
! Oo|0|0 T —

DEST, SRC
ADDC wreg, waop
(101001aa) (waop) (wreg)

A-7

8XC196NT USER’S MANUAL In

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format

ADDCB ADD BYTES WITH CARRY. Adds the source DEST, SRC
and destination byte operands and the carry | AppcB breg, baop

flag (O or 1) and stores the sum into the
destination operand. (101101aa) (baop) (breg)

(DEST) « (DEST) + (SRC) +C

PSW Flag Settings
Z | N|C |V |VT|ST
! Oo|0|0 T —

AND LOGICAL AND WORDS. ANDs the source DEST, SRC
(2 operands) | and destiqation word qper_ands and stores AND wreg, waop
the result into the destination operand. The
result has ones in only the bit positions in (011000aa) (waop) (wreg)

which both operands had a “1” and zeros in
all other bit positions.

(DEST) « (DEST) AND (SRC)

PSW Flag Settings
Z | N | C |V |VT|ST
O| 0 0 0| — | —

AND LOGICAL AND WORDS. ANDs the two DEST, SRC1, SRC2
(3 operands) source Word_opt_erands and stores the result | AND Dwreg, Swreg, waop

into the destination operand. The result has
ones in only the hit positions in which both (010000aa) (waop) (Swreg) (Dwreg)
operands had a “1” and zeros in all other bit
positions.

(DEST) « (SRC1) AND (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST
O| 0 0 0| — | —

ANDB LOGICAL AND BYTES. ANDs the source DEST, SRC

(2 operands) | and d(-;stination byFe operands and storesthe | ANDB breg, baop
result into the destination operand. The result

has ones in only the bit positions in which (011100aa) (baop) (breg)

both operands had a “1” and zeros in all other

bit positions.

(DEST) « (DEST) AND (SRC)

PSW Flag Settings
Z | N| C |V |VT|ST
O| 0 0 0| — | —

A-8

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

ANDB
(3 operands)

LOGICAL AND BYTES. ANDs the two source
byte operands and stores the result into the
destination operand. The result has ones in
only the bit positions in which both operands
had a “1” and zeros in all other bit positions.

(DEST) « (SRC1) AND (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST
O |0 0 0| — | —

DEST, SRC1, SRC2
ANDB Dbreg, Sbreg, baop
(010100aa) (baop) (Sbreg) (Dbreg)

BMOV

BLOCK MOVE. Moves a block of word data
from one location in memory to another. The
source and destination addresses are
calculated using the indirect with autoin-
crement addressing mode. A long register
(PTRS) addresses the source and destination
pointers, which are stored in adjacent word
registers. The source pointer (SRCPTR) is
the low word and the destination pointer
(DSTPTR) is the high word of PTRS. A word
register (CNTREG) specifies the number of
transfers. The blocks of data can be located
anywhere in page O0H of register RAM, but
should not overlap. Because the source
(SRCPTR) and destination (DSTPTR)
pointers are 16 bits wide, this instruction uses
nonextended data moves. It cannot operate
across page boundaries. For example,
SRCPTR cannot point to a location on page
05 while DSTPTR points to page 00.
SRCPTR and DSTPTR will operate from the
page defined by EP_REG. EP_REG should
be set to O0H to select page O0H (see
“Accessing Data” on page 4-24).

COUNT < (CNTREG)

LOOP: SRCPTR « (PTRS)

DSTPTR « (PTRS +2)

(DSTPTR) « (SRCPTR)

(PTRS) « SRCPTR +2

(PTRS +2) « DSTPTR + 2

COUNT « COUNT -1

if COUNT # 0 then

goto LOOP

PSW Flag Settings
Z | N|C |V |VT

ST

PTRS, CNTREG
BMOV Ireg, wreg
(11000001) (wreg) (Ireg)

NOTE: The pointers are autoincre-
mented during this instruction.
However, CNTREG is not decre-
mented. Therefore, it is easy to
unintentionally create a long,
uninterruptible operation with the
BMOV instruction. Use the
BMOVI instruction for an interrupt-
ible operation.

A-9

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

register.
PC — (DEST)

PSW Flag Settings
Z | N|C |V |VT|ST

Mnemonic Operation Instruction Format
BMOVI INTERRUPTIBLE BLOCK MOVE. Moves a PTRS, CNTREG
block of word data from one location in BMOVI lIreg, wreg
memory to another. The instruction is
identical to BMOV, except that BMOVI is (11001101) (wreg) (Ireg)
interruptible. The source and destination
addresses are calculated using the indirect NOTE: The pointers are autoincre-
with autoincrement addressing mode. A long mented during this instruction.
register (PTRS) addresses the source and However, CNTREG is decre-
destination pointers, which are stored in mented only when the instruction
adjacent word registers. The source pointer is interrupted. When BMOVI is
(SRCPTR) is the low word and the interrupted, CNTREG is updated
destination pointer (DSTPTR) is the high to store the interim word count at
word of PTRS. A word register (CNTREG) the time of the interrupt. For this
specifies the number of transfers. The blocks reason, you should always reload
of data can be located anywhere in page 00H CNTREG before starting a
of register RAM, but should not overlap. BMOVI.
Because the source (SRCPTR) and
destination (DSTPTR) pointers are 16 bits
wide, this instruction uses nonexteneded
data moves. It cannot operate across page
boundaries. (If you need to cross page
boundaries, use the EBMOVI instruction.)
PTSSRC and PTSDST will operate from the
page defined by EP_REG. EP_REG should
be set to 00H to select page O0H (see
“Accessing Data” on page 4-24).
COUNT < (CNTREG)
LOOP: SRCPTR « (PTRS)
DSTPTR « (PTRS +2)
(DSTPTR) « (SRCPTR)
(PTRS) « SRCPTR +2
(PTRS +2) « DSTPTR + 2
COUNT « COUNT -1
if COUNT # 0 then
goto LOOP
PSW Flag Settings
z N | C |V |VT|ST
BR BRANCH INDIRECT. Continues execution at DEST
the address specified in the operand word BR [wreg]

(11200011) (wreg)

NOTE: In 1-Mbyte mode, the BR instruc-
tion always branches to page
FFH. Use the EBR instruction to

branch to an address on any other
page.

A-10

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
CLR CLEAR WORD. Clears the value of the DEST
operand. CLR wreg
(DEST) < 0 (00000001) (wreg)
PSW Flag Settings
N | C |V |VT|ST
1 0 0 0| — | —
CLRB CLEAR BYTE. Clears the value of the DEST
operand. CLRB breg
(DEST) < 0 (00010001) (breg)
PSW Flag Settings
N | C |V |VT|ST
1 0 0 0| — | —
CLRC CLEAR CARRY FLAG. Clears the carry flag.
C<0 CLRC
(11111000)
PSW Flag Settings
Z | N|C |V |VT|ST
J— J— 0 J— J— J—
CLRVT CLEAR OVERFLOW-TRAP FLAG. Clears
the overflow-trap flag. CLRVT
VT <0 (11111100)
PSW Flag Settings
Z | N|C |V |VT|ST
J— J— J— J— 0 J—
CMP COMPARE WORDS. Subtracts the source DEST, SRC
word operand from the destination word CMP wreg, waop

operand. The flags are altered, but the
operands remain unaffected. If a borrow
occurs, the carry flag is cleared; otherwise, it
is set.

(DEST) - (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|0| 0|0 e

(100010aa) (waop) (wreg)

A-11

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

(DEST) « (DEST) -1

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0|0|0 T —

Mnemonic Operation Instruction Format

CMPB COMPARE BYTES. Subtracts the source DEST, SRC
byte operand from the destination byte CMPB breg, baop
operand. The flags are altered, but the '
operands remain unaffected. If a borrow (100110aa) (baop) (breg)
occurs, the carry flag is cleared; otherwise, it
is set.

(DEST) - (SRC)
PSW Flag Settings
z N | C |V |VT|ST
0o |0 Ol 0 T —

CMPL COMPARE LONG. Compares the DEST, SRC
magnitudes of two double-word (long) CMPL Direg, Slreg
operands. The operands are specified using '
the direct addressing mode. The flags are (11000101) (Slreg) (Dlreg)
altered, but the operands remain unaffected.

If a borrow occurs, the carry flag is cleared;
otherwise, it is set.
(DEST) - (SRC)
PSW Flag Settings
z N|C |V |VT|ST
0O| 0 0O| 0 0o | —

DEC DECREMENT WORD. Decrements the value DEST
of the operand by one. DEC wreg
(DEST) « (DEST) -1 (00000101) (wreg)

PSW Flag Settings
Z N | C |V |VT|ST
Oo| 0 Ol 0O T —

DECB DECREMENT BYTE. Decrements the value DEST

of the operand by one. DECB breg

(00010101) (breg)

A-12

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

DI

DISABLE INTERRUPTS. Disables
interrupts. Interrupt-calls cannot occur after
this instruction.

Interrupt Enable (PSW.1) « 0

PSW Flag Settings
Z | N|C |V |VT|ST

DI
(11111010)

DIV

DIVIDE INTEGERS. Divides the contents of
the destination long-integer operand by the
contents of the source integer word operand,
using signed arithmetic. It stores the quotient
into the low-order word of the destination
(i.e., the word with the lower address) and the
remainder into the high-order word. The
following two statements are performed
concurrently.

(low word DEST) « (DEST) / (SRC)
(high word DEST) — (DEST) MOD (SRC)

PSW Flag Settings
z N | C |V |VT]|ST
J— J— J— O 1 J—

DEST, SRC
DIV Ireg, waop
(11111110) (100011aa) (waop) (Ireg)

DIVB

DIVIDE SHORT-INTEGERS. Divides the
contents of the destination integer operand
by the contents of the source short-integer
operand, using signed arithmetic. It stores the
quotient into the low-order byte of the
destination (i.e., the word with the lower
address) and the remainder into the high-
order byte. The following two statements are
performed concurrently.

(low byte DEST) « (DEST)/ (SRC)
(high byte DEST) « (DEST) MOD (SRC)

PSW Flag Settings
z N | C | V |VT]|ST
J— J— J— O 1 J—

DEST, SRC
DIVB wreg, baop
(11111110) (100111aa) (baop) (wreg)

A-13

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

DIVU

DIVIDE WORDS, UNSIGNED. Divides the
contents of the destination double-word
operand by the contents of the source word
operand, using unsigned arithmetic. It stores
the quotient into the low-order word (i.e., the
word with the lower address) of the
destination operand and the remainder into
the high-order word. The following two
statements are performed concurrently.

(low word DEST) « (DEST) /(SRC)
(high word DEST) — (DEST) MOD (SRC)

PSW Flag Settings
z N | C | V |VT|ST
J— J— J— O i J—

DEST, SRC
DIVU Ireg, waop
(100011aa) (waop) (Ireg)

DIVUB

DIVIDE BYTES, UNSIGNED. This instruction
divides the contents of the destination word
operand by the contents of the source byte
operand, using unsigned arithmetic. It stores
the quotient into the low-order byte (i.e., the
byte with the lower address) of the
destination operand and the remainder into
the high-order byte. The following two
statements are performed concurrently.

(low byte DEST) « (DEST)/ (SRC)
(high byte DEST) « (DEST) MOD (SRC)

PSW Flag Settings
z N | C |V |VT]|ST
J— J— J— O 1 J—

DEST, SRC
DIVUB wreg, baop
(100111aa) (baop) (wreg)

DJNZ

DECREMENT AND JUMP IF NOT ZERO.
Decrements the value of the byte operand by
1. If the result is 0, control passes to the next
sequential instruction. If the result is not 0,
the instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.
(COUNT) « (COUNT) -1
if (COUNT) # 0 then

PC — PC + 8-bitdisp
end_if

PSW Flag Settings
Z | N|C |V |VT|ST

DJNZ breg,cadd
(11200000) (breg) (disp)

NOTE: The displacement (disp) is sign-

extended to 24 bits.

A-14

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

DINZW

DECREMENT AND JUMP IF NOT ZERO
WORD. Decrements the value of the word
operand by 1. If the result is 0, control passes
to the next sequential instruction. If the result
is not O, the instruction adds to the program
counter the offset between the end of this
instruction and the target label, effecting the
jump. The offset must be in the range of —-128
to +127
(COUNT) « (COUNT) -1
if (COUNT) # 0 then

PC — PC + 8-bitdisp
end_if

PSW Flag Settings
Z | N| C |V |VT|ST

DIJNZW wreg,cadd
(11100001) (wreg) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

DPTS

DISABLE PERIPHERAL TRANSACTION
SERVER (PTS). Disables the peripheral
transaction server (PTS).

PTS Disable (PSW.2) « 0

PSW Flag Settings
Z | N|C |V |VT|ST

DPTS
(11101100)

A-15

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

EBR shares its opcode (E3) with the BR
instruction. To differentiate between the two,
the compiler sets the least-significant bit of
the EBR instruction. For example: EBR [50]
becomes E351 when compiled.

PC « (DEST)

PSW Flag Settings
Z | N|C |V |VT|ST

Mnemonic Operation Instruction Format

EBMOVI EXTENDED INTERRUPTABLE BLOCK PTRS, CNTREG
MOVE. Moves a block of word data from one | egpmovi pri2_reg, wreg
memory location to another. This instruction -
allows you to move blocks of up to 64K words | (11100100) (wreg) (p2_reg)
between any two locations in the 16-Mbyte
address space. This instruction is inter- NOTES: The pointers are autoincre-
ruptable. mented during this instruction.
The source and destination addresses are However, CNTREG is decre-
calculated using the extended indirect with mented only when the instruc-
autoincrement addressing mode. A quad- tion is interrupted. When
word register (PTRS) addresses the 24-bit EBMOVI is interrupted,
source and destination pointers, which are CNTREG is updated to store
stored in adjacent double-word registers. The the interim word count at the
source pointer (SRCPTR) is the low double- time of the interrupt. For this
word and the destination pointer is the high reason, you should always
double-word of PTRS. A word register reload CNTREG before starting
(CNTREG) specifies the number of transfers. an EBMOVI.
The blocks of data can reside anywhere in
memory, but should not overlap. For 20-bit addresses, the offset
COUNT < (CNTREG) must be in the range of
LOOP: SRCPTR « (PTRS) +524287 10 ~524288.
DSTPTR « (PTRS +2)
(DSTPTR) « (SRCPTR)
(PTRS) « SRCPTR +2
(PTRS +2) « DSTPTR + 2
COUNT « COUNT 1
if COUNT # 0 then
goto LOOP

PSW Flag Settings
Z | N|C |V |VT|ST

EBR EXTENDED BRANCH INDIRECT. Continues DEST
execution at the address specified in the EBR cadd
operand word register. This instruction is an
unconditional indirect jump to anywhere in or
the 16-Mbyte address space. EBR [treq]

(11100011) (treg)

NOTE:

For 20-bit addresses, the offset
must be in the range of +524287
to —524288.

A-16

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

ECALL

EXTENDED CALL. Pushes the contents of
the program counter (the return address)
onto the stack, then adds to the program
counter the offset between the end of this
instruction and the target label, effecting the
call. The operand may be any address in the
address space.

This instruction is an unconditional relative
call to anywhere in the 16-Mbyte address
space). It functions only in extended
addressing mode.

SP ~ SP-4
(SP) « PC
PC — PC + 24-bit disp

PSW Flag Settings
Z | N|C |V |[VT|ST

ECALL cadd
(1111 0001) (disp-low) (disp-high) (disp-ext)

NOTE: For 20-bit addresses, the offset
must be in the range of +524287

to —524288.

El

ENABLE INTERRUPTS. Enables interrupts

following the execution of the next statement.

Interrupt calls cannot occur immediately
following this instruction.

Interrupt Enable (PSW.1) « 1

PSW Flag Settings
Z | N|C |V |VT|ST

El
(11111011)

EJMP

EXTENDED JUMP. Adds to the program
counter the offset between the end of this
instruction and the target label, effecting the
jump. The operand may be any address in
the entire address space. The offset must be
in the range of +8,388,607 to —8,388,608.
This instruction is an unconditional, relative
jump to anywhere in the 16-Mbyte address
space. It functions only in extended
addressing mode.

PC — PC + 24-bit disp

PSW Flag Settings
Z | N|C |V |VT|ST

— — — — — ?

EJMP cadd
(11100110) (disp-low) (disp-high) (disp-ext)

NOTE: For 20-bit addresses, the offset
must be in the range of +524287

to —524288.

A-17

8XC196NT USER’S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
ELD EXTENDED LOAD WORD. Loads the value DEST, SRC
of the source word operand into the ELD wreg, [treg]
destination operand. -
. . ext. indirect: (11101000) (treg) (wreg)
This instruction allows you to move data from .)
anywhere in the 16-Mbyte address space into | Xt indexed: (11101001) (treg) (disp-low)
the lower register file. (disp-high) (disp-ext) (wreg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) — (SRC) + 24-bit disp NOTE: For 20—b|_t addresses, the offset
must be in the range of +524287
PSW Flag Settings to0 ~524288.
Z | N|C |V |VT|ST
ELDB EXTENDED LOAD BYTE. Loads the value of DEST, SRC
}Jheefaor?(gce byte operand into the destination | g| pg breg, [treg]
p. o ext. indirect: (11101010) (treg) (breg)
This instruction allows you to move data from .)
anywhere in the 16-Mbyte address space into | €t indexed: (11101011) (treg) (disp-low)
the lower register file. (disp-high) (disp-ext) (breg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) — (SRC) + 24-bit disp NOTE: For 20-bit addresses, the offset
must be in the range of +524287
PSW Flag Settings to0 ~524288.
Z | N|C |V |VT|ST
EPTS ENABLE PERIPHERAL TRANSACTION
SERVER (PTS). Enables the peripheral EPTS
transaction server (PTS).
(11101101)
PTS Enable (PSW.2) « 1
PSW Flag Settings
Z | N|C |V |VT|ST

A-18

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
EST EXTENDED STORE WORD. Stores the SRC, DEST
yalue of the source (Igftmost) word operand | g7 wreg, [treg]
into the destination (rightmost) operand. -
. . ext. indirect: (00011100) (treg) (wreg)
This instruction allows you to move data from .))
the lower register file to anywhere in the 16- | €xt- indexed: (00011101) (treg) (disp-low)
Mbyte address space. (disp-high) (disp-ext) (wreg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) — (SRC) + 24-bit disp NOTE: For 20—b|_t addresses, the offset
must be in the range of +524287
PSW Flag Settings to0 ~524288.
z N|C |V |VT|ST
ESTB EXTENDED STORE BYTE. Stores the value SRC, DEST
of the source (Ief_tmost) byte operand into ESTB breg, [treg]
the destination (rightmost) operand. .
. . ext. indirect: (00011110) (treg) (breg)
This instruction allows you to move data from .) .
the lower register file to anywhere in the 16- | Xt indexed: (00011111) (treg) (disp-low)
Mbyte address space. (disp-high) (disp-ext) (breg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) — (SRC) + 24-bit disp NOTE: For 20—b|_t addresses, the offset
must be in the range of +524287
PSW Flag Settings to0 ~524288.
z N|C |V |VT|ST
EXT SIGN-EXTEND INTEGER INTO LONG-
INTEGER. Sign-extends the low-order word | gy Ireg

of the operand throughout the high-order
word of the operand.

if DEST.15 = 1 then

(high word DEST) « OFFFFH
else

(high word DEST) « 0O
end_if

PSW Flag Settings
Z | N|C |V |VT|ST
O| 0 0 0| — | —

(00000110) (Ireg)

A-19

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

of the word operand by 1.
(DEST) « (DEST) +1

PSW Flag Settings
Z | N | C |V |VT|ST
Oo|o0| 0|0 1 0

INC

Mnemonic Operation Instruction Format
EXTB SIGN-EXTEND SHORT-INTEGER INTO
INTEGER. Sign-extends the Iow—order byte EXTB wreg
of the operand throughout the high-order byte
of the operand. (00010110) (wreg)
if DEST.7 =1then
(high byte DEST) « OFFH
else
(high byte DEST) « 0
end_if
PSW Flag Settings
Z N | C |V |VT|ST
Oo| 0 0 0| — | —
IDLPD IDLE/POWERDOWN. Depending on the 8-bit
value of the KEY operand, this instruction IDLPD #key
causes the device
(11110110) (key)
¢ to enter idle mode, KEY=1,
to enter powerdown mode, KEY=2,
* to execute a reset sequence,
KEY = any value other than 1 or 2.
The bus controller completes any prefetch
cycle in progress before the CPU stops or
resets.
if KEY =1 then
enter idle
else if KEY = 2 then
enter powerdown
else
execute reset
PSW Flag Settings
z|[N|c|v][vr]sT
KEY =1o0r2
KEY = any value other than
lor2
oloJofJolo]o
INC INCREMENT WORD. Increments the value

wreg

(00000111) (wreg)

A-20

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
INCB INCREMENT BYTE. Increments the value of
the byte operand by 1. INCB breg
PSW Flag Settings
z N | C |V |VT|ST
O| 0 0|0 T —
JBC JUMP IF BIT IS CLEAR. Tests the specified
bit. If the bit is set, control passes to the next | jgc breg,bitno,cadd
sequential instruction. If the bit is clear, this ')
instruction adds to the program counter the | (00110bbb) (breg) (disp)
offset between the end of this instruction and
the target label, effecting the jump. The offset | NOTE: The displacement (disp) is sign-
must be in the range of —-128 to +127. extended to 24 bits.
if (specified bit) = 0 then
PC — PC + 8-bitdisp
PSW Flag Settings
z N|C |V |VT|ST
JBS JUMP IF BIT IS SET. Tests the specified bit. If

the bit is clear, control passes to the next
sequential instruction. If the bit is set, this
instruction adds to the program counter the
offset between the end of this instruction and
the target label, effecting the jump. The offset
must be in the range of —-128 to +127.
if (specified bit) = 1 then

PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JBS breg,bitno,cadd
(00111bbb) (breg) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-21

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
JC JUMP IF CARRY FLAG IS SET. Tests the
carry flag. If the carry flag is clear, control ic cadd
passes to the next sequential instruction. If)
the carry flag is set, this instruction adds to (11011011) (disp)
the program counter the offset between the
end of this instruction and the target label, NOTE: The displacement (disp) is sign-
effecting the jump. The offset must be in the extended to 24 bits.
range of —128 to +127.
if C=1then
PC — PC + 8-bitdisp
PSW Flag Settings
Z | N|C |V |VT|ST
JE JUMP IF EQUAL. Tests the zero flag. If the
flag is clear, control passes to the next JE cadd
sequential instruction. If the zero flag is set,)
this instruction adds to the program counter | (11011111) (disp)
the offset between the end of this instruction
and the target label, effecting the jump. The NOTE: The displacement (disp) is sign-
offset must be in the range of —128 to +127. extended to 24 bits.
if Z=1 then
PC — PC + 8-bitdisp
PSW Flag Settings
Z | N|C |V |VT|ST
JGE JUMP IF SIGNED GREATER THAN OR
EQUAL. Tests the negative flag. If the JGE cadd
negative flag is set, control passes to the next)
sequential instruction. If the negative flag is | (11010110) (disp)
clear, this instruction adds to the program
counter the offset between the end of this NOTE: The displacement (disp) is sign-
instruction and the target label, effecting the extended to 24 bits.
jump. The offset must be in the range of —-128
to +127.
if N =0 then
PC — PC + 8-bitdisp
PSW Flag Settings
Z | N|C |V |VT|ST

A-22

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JGT

JUMP IF SIGNED GREATER THAN. Tests
both the zero flag and the negative flag. If
either flag is set, control passes to the next
sequential instruction. If both flags are clear,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.

if N=0AND Z = 0 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JGT cadd
(11010010) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JH

JUMP IF HIGHER (UNSIGNED). Tests both
the zero flag and the carry flag. If either the
carry flag is clear or the zero flag is set,
control passes to the next sequential
instruction. If the carry flag is set and the zero
flag is clear, this instruction adds to the
program counter the offset between the end
of this instruction and the target label,
effecting the jump. The offset must be in
range of —-128 to +127.

if C=1AND Z = 0 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JH cadd
(11011001) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JLE

JUMP IF SIGNED LESS THAN OR EQUAL.
Tests both the negative flag and the zero flag.
If both flags are clear, control passes to the
next sequential instruction. If either flag is set,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.

if N=10RZ=1then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N| C |V |VT|ST

JLE cadd
(11011010) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-23

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JLT

JUMP IF SIGNED LESS THAN. Tests the
negative flag. If the flag is clear, control
passes to the next sequential instruction. If
the negative flag is set, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in the
range of —-128 to +127.

if N=1then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JLT cadd
(11011110) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JNC

JUMP IF CARRY FLAG IS CLEAR. Tests the
carry flag. If the flag is set, control passes to
the next sequential instruction. If the carry
flag is clear, this instruction adds to the
program counter the offset between the end
of this instruction and the target label,
effecting the jump. The offset must be in the
range of =128 to +127.

if C=0then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JNC cadd
(11010011) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JNE

JUMP IF NOT EQUAL. Tests the zero flag. If
the flag is set, control passes to the next
sequential instruction. If the zero flag is clear,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.

if Z=0then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N| C |V |VT|ST

INE cadd
(11010111) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-24

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JNH

JUMP IF NOT HIGHER (UNSIGNED). Tests
both the zero flag and the carry flag. If the
carry flag is set and the zero flag is clear,
control passes to the next sequential
instruction. If either the carry flag is clear or
the zero flag is set, this instruction adds to the
program counter the offset between the end
of this instruction and the target label,
effecting the jump. The offset must be in
range of —-128 to +127.

if C=00R Z =1 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JNH cadd
(11010001) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JINST

JUMP IF STICKY BIT FLAG IS CLEAR. Tests
the sticky bit flag. If the flag is set, control
passes to the next sequential instruction. If
the sticky bit flag is clear, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in
range of =128 to +127.

if ST = 0 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

INST cadd
(11010000) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

INV

JUMP IF OVERFLOW FLAG IS CLEAR.
Tests the overflow flag. If the flag is set,
control passes to the next sequential
instruction. If the overflow flag is clear, this
instruction adds to the program counter the
offset between the end of this instruction and
the target label, effecting the jump. The offset
must be in range of —-128 to +127.

if V=0 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N| C |V |VT|ST

INV cadd
(11010101) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-25

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JINVT

JUMP IF OVERFLOW-TRAP FLAG IS
CLEAR. Tests the overflow-trap flag. If the
flag is set, this instruction clears the flag and
passes control to the next sequential
instruction. If the overflow-trap flag is clear,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in range of —-128 to +127.

if VT = 0 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST
— | — | = | — 0 —

INVT cadd
(11010100) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JST

JUMP IF STICKY BIT FLAG IS SET. Tests
the sticky bit flag. If the flag is clear, control
passes to the next sequential instruction. If
the sticky bit flag is set, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in
range of —-128 to +127.

if ST = 1 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N| C |V |VT|ST

JST cadd
(11011000) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

vV

JUMP IF OVERFLOW FLAG IS SET. Tests
the overflow flag. If the flag is clear, control
passes to the next sequential instruction. If
the overflow flag is set, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in
range of =128 to +127.

if V=1 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

Vv cadd
(11011101) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-26

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
VT JUMP IF OVERFLOW-TRAP FLAG IS SET.
Tests the overflow-trap flag. If the flag is clear, | jyT cadd
control passes to the next sequential)
instruction. If the overflow-trap flag is set, this | (11011100) (disp)
instruction clears the flag and adds to the
program counter the offset between the end | NOTE: The displacement (disp) is sign-
of this instruction and the target label, extended to 24 bits.
effecting the jump. The offset must be in
range of —-128 to +127.
if VT = 1 then
PC — PC + 8-bitdisp
PSW Flag Settings
Z N | C |V |VT|ST
— | — | = | — 0 —
LCALL LONG CALL. Pushes the contents of the
program counter (the return address) onto LCALL cadd
the stack, then adds to the program counter)))
the offset between the end of this instruction | (11101111) (disp-low) (disp-high)
and the target label, effecting the call. The
offset must be in the range of —32,768 to NOTE: The displacement (disp) is sign-
+32,767. extended to 24 bits in the 1-Mbyte
64-Kbyte mode: addressing mode. This displace-
SP « SP-2 ment may cause the program
(SP) « PC counter to cross a page boundary.
PC — PC + 16-bit disp
1-Mbyte mode:
SP —~ SP-4
(SP) —~ PC
PC — PC + 24-bit disp
PSW Flag Settings
Z N | C |V |VT|ST
LD LOAD WORD. Loads the value of the source DEST, SRC
word operand into the destination operand. LD wreg, waop

(DEST) « (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST

(101000aa) (waop) (wreg)

A-27

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —-32,768 to
+32,767.

64-Kbyte mode:
PC — PC + 16-bit disp

1-Mbyte mode:
PC — PC + 24-bit disp

PSW Flag Settings
Z | N|C |V |VT|ST

— — — — — ?

Mnemonic Operation Instruction Format
LDB LOAD BYTE. Loads the value of the source DEST, SRC
byte operand into the destination operand. LDB breg, baop
(DEST) ~ (SRC) (101100aa) (baop) (breg)
PSW Flag Settings
z N | C |V |VT|ST
LDBSE LOAD BYTE SIGN-EXTENDED. Sign- DEST, SRC
extends the value of the source short- LDBSE wreg, baop
integer operand and loads it into the '
destination integer operand. (101111aa) (baop) (wreg)
(low byte DEST) « (SRC)
if DEST.15 = 1 then
(high word DEST) « OFFH
else
(high word DEST) « 0O
end_if
PSW Flag Settings
z N | C |V |VT|ST
LDBZE LOAD BYTE ZERO-EXTENDED. Zero- DEST, SRC
extends the value of the source byte operand | | pgzE wreg, baop
and loads it into the destination word '
operand. (101011aa) (baop) (wreg)
(low byte DEST) « (SRC)
(high byte DEST) « 0
PSW Flag Settings
z N | C |V |VT|ST
LIMP LONG JUMP. Adds to the program counter

LIMP cadd
(11100111) (disp-low) (disp-high)

NOTE: The displacement (disp) is sign-
extended to 24 bits in the 1-Mbyte
addressing mode. This displace-
ment may cause the program

counter to cross a page boundary.

A-28

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

signed arithmetic, and stores the 32-bit result
into the destination long-integer operand.
The sticky bit flag is undefined after the
instruction is executed.

(DEST) « (DEST) x (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST

— — — — — ?

(11111110) (011011aa) (waop) (Ireg)

Mnemonic Operation Instruction Format
MUL MULTIPLY INTEGERS. Multiplies the source DEST, SRC
(2 operands) | and destination integer operands, using MUL Ireg, waop

MUL
(3 operands)

MULTIPLY INTEGERS. Multiplies the two
source integer operands, using signed
arithmetic, and stores the 32-bit result into
the destination long-integer operand. The
sticky bit flag is undefined after the instruction
is executed.

(DEST) « (SRC1) x (SRC2)

PSW Flag Settings
Z | N | C |V |VT|ST

— | =] =]=|=10>

MUL

(11111110) (010011aa) (waop) (wreg) (Ireg)

DEST, SRC1, SRC2
Ireg, wreg, waop

MULB
(2 operands)

MULTIPLY SHORT-INTEGERS. Multiplies
the source and destination short-integer
operands, using signed arithmetic, and stores
the 16-bit result into the destination integer
operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) « (DEST) x (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST

— | =] =]=|=10>

MULB

(11111110) (011111aa) (baop) (wreg)

DEST, SRC
wreg, baop

MULB
(3 operands)

MULTIPLY SHORT-INTEGERS. Multiplies
the two source short-integer operands,
using signed arithmetic, and stores the 16-bit
result into the destination integer operand.
The sticky bit flag is undefined after the
instruction is executed.

(DEST) « (SRC1) x (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST

— | =] =]=|=10>

MULB

(11111110) (010111aa) (baop) (breg) (wreg)

DEST, SRC1, SRC2
wreg, breg, baop

A-29

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

MULU
(2 operands)

MULTIPLY WORDS, UNSIGNED. Multiplies
the source and destination word operands,
using unsigned arithmetic, and stores the 32-
bit result into the destination double-word
operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) « (DEST) x (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST

— — — — — ?

DEST, SRC
MULU Ireg, waop
(011011aa) (waop) (Ireg)

MULU
(3 operands)

MULTIPLY WORDS, UNSIGNED. Multiplies
the two source word operands, using
unsigned arithmetic, and stores the 32-bit
result into the destination double-word
operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) « (SRC1) x (SRC2)

PSW Flag Settings
Z | N | C |V |VT|ST

— | =] =]=|=10>

DEST, SRC1, SRC2
MULU Ireg, wreg, waop
(010011aa) (waop) (wreg) (Ireg)

MULUB
(2 operands)

MULTIPLY BYTES, UNSIGNED. Multiplies
the source and destination operands, using
unsigned arithmetic, and stores the word
result into the destination operand. The sticky
bit flag is undefined after the instruction is
executed.

(DEST) « (DEST) x (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST

— | =] =]=|=10>

DEST, SRC
MULUB wreg, baop
(011111aa) (baop) (wreg)

MULUB
(3 operands)

MULTIPLY BYTES, UNSIGNED. Multiplies
the two source byte operands, using
unsigned arithmetic, and stores the word
result into the destination operand. The sticky
bit flag is undefined after the instruction is
executed.

(DEST) « (SRC1) x (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST

— | =] =]=|=10>

DEST, SRC1, SRC2
MULUB wreg, breg, baop
(010111aa) (baop) (breg) (wreg)

A-30

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
NEG NEGATE INTEGER. Negates the value of the
integer operand. NEG wreg
(DEST) ~ - (DEST) (00000011) (wreg)
PSW Flag Settings
z N | C |V |VT|ST
O| 0 0|0 T —
NEGB NEGATE SHORT-INTEGER. Negates the
value of the short-integer operand. NEGB breg
(DEST) « —(DEST) (00010011) (breg)
PSW Flag Settings
z N | C |V |VT|ST
O |0 0|0 T —
NOP NO OPERATION. Does nothing. Control
passes to the next sequential instruction. NOP
PSW Flag Settings (11111101)
z N | C |V |VT|ST
NORML NORMALIZE LONG-INTEGER. Normalizes SRC, DEST
the source (leftmost) long-integer operand. | NORML Ireg, breg

(That is, it shifts the operand to the left until
its most significant bit is “1” or until it has
performed 31 shifts). If the most significant
bit is still “0” after 31 shifts, the instruction
stops the process and sets the zero flag. The
instruction stores the actual number of shifts
performed in the destination (rightmost)
operand.

(COUNT) «~ 0
do while
(MSB (DEST) = 0) AND (COUNT) < 31)
(DEST) ~ (DEST) x 2
(COUNT) « (COUNT) +1
end_while

PSW Flag Settings
Z | N|C |V |VT|ST
0 ? 0| —|—|—

(00001111) (breg) (Ireg)

A-31

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

and replaces the original destination operand
with the result. The result has a “1” in each bit
position in which either the source or
destination operand had a “1”.

(DEST) « (DEST) OR (SRC)

PSW Flag Settings
Z | N | C |V |VT|ST
O| 0 0 0| — | —

Mnemonic Operation Instruction Format

NOT COMPLEMENT WORD. Complements the
vglue of the word operanq (replaces each “1” | NoT wreg
with a “0” and each “0” with a “1”).

(00000010) (wreg)
(DEST) « NOT (DEST)
PSW Flag Settings
z N | C |V |VT|ST
O| 0 0 0| — | —

NOTB COMPLEMENT BYTE. Complements the
vglue of the byte operanq (replaces each “1” | NOTB breg
with a “0” and each “0” with a “1”).

(00010010) (breg)
(DEST) « NOT (DEST)
PSW Flag Settings
z N | C |V |VT|ST
O| 0 0 0| — | —

OR LOGICAL OR WORDS. ORs the source word DEST, SRC
operand with the de;s'tination worq operand OR wreg, waop
and replaces the original destination operand
with the result. The result has a “1” in each bit | (100000aa) (waop) (wreg)
position in which either the source or
destination operand had a “1”.

(DEST) « (DEST) OR (SRC)
PSW Flag Settings
z N | C |V |VT|ST
O| 0 0 0| — | —

ORB LOGICAL OR BYTES. ORs the source byte DEST, SRC

operand with the destination byte operand ORB breg, baop

(100100aa) (baop) (breg)

A-32

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

POP

POP WORD. Pops the word on top of the
stack and places it at the destination
operand.

(DEST) ~ (SP)

SP «~ SP+2

PSW Flag Settings
Z | N|C |V |VT|ST

POP waop
(110011aa) (waop)

POPA

POP ALL. This instruction is used instead of
POPF, to support the eight additional
interrupts. It pops two words off the stack and
places the first word into the
INT_MASK1/WSR register pair and the
second word into the PSW/INT_MASK
register-pair. This instruction increments the
SP by 4. Interrupt-calls cannot occur
immediately following this instruction.

INT_MASK1L/WSR < (SP)
SP — SP+2
PSW/INT_MASK « (SP)
SP — SP+2

PSW Flag Settings
Z | N | C |V |VT|ST
Oo|0|0|0|0]|DO

POPA
(11110101)

POPF

POP FLAGS. Pops the word on top of the
stack and places it into the PSW. Interrupt-
calls cannot occur immediately following this
instruction.

(PSW) — (SP)

SP — SP+2

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0o (00|00

POPF
(11110011)

PUSH

PUSH WORD. Pushes the word operand
onto the stack.

SP «~ SP-2

(SP) — (DEST)

PSW Flag Settings
Z | N|C |V |VT|ST

PUSH waop
(110010aa) (waop)

A-33

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

PSW Flag Settings
Z | N|C |V |VT|ST

Mnemonic Operation Instruction Format
PUSHA PUSH ALL. This instruction is used instead of
PUSHEF, to support the eight additional PUSHA
interrupts. It pushes two words —
PSW/INT_MASK and INT_MASK1/WSR — | (11110100)
onto the stack.
This instruction clears the PSW, INT_MASK,
and INT_MASK1 registers and decrements
the SP by 4. Interrupt-calls cannot occur
immediately following this instruction.
SP «~ SP-2
(SP) « PSW/INT_MASK
PSW/INT_MASK « 0
SP «~ SP-2
(SP) « INT_MASK1/WSR
INT_MASK1 « 0
PSW Flag Settings
N | C |V |VT|ST
0 0 0 0 0 0
PUSHF PUSH FLAGS. Pushes the PSW onto the top
of the stack, then clears it. Clearing the PSW | pygyE
disables interrupt servicing. Interrupt-calls
cannot occur immediately following this (11110010)
instruction.
SP «~ SP-2
(SP) « PSW/INT_MASK
PSW/INT_MASK « 0
PSW Flag Settings
z N | C |V |VT|ST
0 0 0 0 0 0
RET RETURN FROM SUBROUTINE. Pops the
PC off the top of the stack. RET
64-Kbyte mode: 1-Mbyte mode: (11110000)
PC — (SP) PC — (SP)
SP « SP+2 SP ~ SP+4

A-34

Inu® INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
RST RESET SYSTEM. Initializes the PSW to zero,
the PC to 2080H (FF2080H in 1-Mbyte RST

mode), and the pins and SFRs to their reset

values. Executing this instruction causes the (11111111)
RESET# pin to be pulled low for 16 state
times.
64-Kbyte mode:
SFR « Reset Status
Pin « Reset Status
PSW — 0
PC — 2080H
1-Mbyte mode:
SFR « Reset Status
Pin « Reset Status
PSW — 0
PC — FF2080H
PSW Flag Settings
z N | C | V |VT|ST
0 0 0 0 0 0
SCALL SHORT CALL. Pushes the contents of the

program counter (the return address) onto SCALL cadd

the stack, then adds to the program counter
the offset between the end of this instruction
and the target label, effecting the call. The

(00101xxx) (disp-low)

offset must be in the range of —1024 to NOTE: The displacement (disp) is sign-
+1023. extended to 16-bits in the 64-
64-Kbyte mode: Kbyte addressing mode and to 24
SP « SP-2 bits in the 1-Mbyte addressing
(SP) « PC mode. This displacement may
PC « PC+11-bit disp cause the program counter to
1-Mbyte mode: cross a page boundary in 1-Mbyte
SP < SP-4 mode.

(SP) —~ PC

PC — PC+11-bit disp

PSW Flag Settings
Z | N|C |V |VT|ST

SETC SET CARRY FLAG. Sets the carry flag.
C<1 SETC
(11111001)

PSW Flag Settings
Z | N|C |V |VT|ST
— | — 1 — | — | =

[| A-35

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SHL

SHIFT WORD LEFT. Shifts the destination
word operand to the left as many times as
specified by the count operand. The count
may be specified either as an immediate
value in the range of 0 to 15 (OFH), inclusive,
or as the content of any register (10H —
OFFH) with a value in the range of O to 31
(1FH), inclusive. The right bits of the result
are filled with zeroes. The last bit shifted out
is saved in the carry flag.

Temp «— (COUNT)

do while Temp # 0
C « High order bit of (DEST)
(DEST) ~ (DEST) x 2
Temp « Temp -1

end_while

PSW Flag Settings
Z | N|C |V |VT|ST
o0 | 0|0 I

SHL wreg,#count
(00001001) (count) (wreg)
or

SHL wreg,breg
(00001001) (breg) (wreg)

SHLB

SHIFT BYTE LEFT. Shifts the destination
byte operand to the left as many times as
specified by the count operand. The count
may be specified either as an immediate
value in the range of 0 to 15 (OFH), inclusive,
or as the content of any register (10H —
OFFH) with a value in the range of O to 31
(1FH), inclusive. The right bits of the result
are filled with zeroes. The last bit shifted out
is saved in the carry flag.

Temp «— (COUNT)

do while Temp # 0
C « High order bit of (DEST)
(DEST) ~ (DEST) x 2
Temp « Temp -1

end_while

PSW Flag Settings
Z | N|C |V |VT|ST
o0 | 0|0 e

SHLB breg,#count
(00011001) (count) (breg)
or

SHLB breg,breg
(00011001) (breg) (breg)

A-36

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SHLL

SHIFT DOUBLE-WORD LEFT. Shifts the
destination double-word operand to the left
as many times as specified by the count
operand. The count may be specified either
as an immediate value in the range of 0 to 15
(OFH), inclusive, or as the content of any
register (10H — OFFH) with a value in the
range of 0 to 31 (1FH), inclusive. The right
bits of the result are filled with zeroes. The
last bit shifted out is saved in the carry flag.

Temp «— (COUNT)

do while Temp # 0
C « High order bit of (DEST)
(DEST) ~ (DEST) x 2
Temp « Temp -1

end_while

PSW Flag Settings
Z | N|C |V |VT|ST
o0 | 0|0 I

SHLL Ireg,#count
(00001101) (count) (breg)
or

SHLL Ireg,breg
(00001101) (breg) (Ireg)

SHR

LOGICAL RIGHT SHIFT WORD. Shifts the
destination word operand to the right as
many times as specified by the count
operand. The count may be specified either
as an immediate value in the range of 0 to 15
(OFH), inclusive, or as the content of any
register (10H — OFFH) with a value in the
range of 0 to 31 (1FH), inclusive. The left bits
of the result are filled with zeroes. The last bit
shifted out is saved in the carry flag.

Temp «— (COUNT)
do while Temp # 0
C « Low order bit of (DEST)
(DEST) ~ (DEST)/2
Temp « Temp -1
end_while

PSW Flag Settings
Z | N|C |V |VT|ST
O o |o0j|o0|—|0O

SHR wreg,#count
(00001000) (count) (wreg)
or

SHR wreg,breg

(00001000) (breg) (wreg)

NOTES: This instruction clears the
sticky bit flag at the beginning
of the instruction. If at any time
during the shift a “1” is shifted
into the carry flag and another
shift cycle occurs, the instruc-
tion sets the sticky bit flag.

In this operation, DEST/2 rep-
resents unsigned division.

A-37

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

destination byte operand to the right as many
times as specified by the count operand. The
count may be specified either as an
immediate value in the range of O to 15
(OFH), inclusive, or as the content of any
register (10H — OFFH) with a value in the
range of 0 to 31 (1FH), inclusive. If the
original high order bit value was “0,” zeroes
are shifted in. If the value was “1,” ones are
shifted in. The last bit shifted out is saved in
the carry flag.

Temp «— (COUNT)
do while Temp # 0
C = Low order bit of (DEST)
(DEST) ~ (DEST)/2
Temp « Temp -1
end_while

PSW Flag Settings
Z | N|C |V |VT|ST
o|lo|lO0jo0|—|0O

Mnemonic Operation Instruction Format
SHRA ARITHMETIC RIGHT SHIFT WORD. Shifts
the destination word operand to the right as SHRA wreg,#count
many times as specified by the count '
operand. The count may be specified either | (00001010) (count) (wreg)
as an immediate value in the range of 0 to 15 | or
(OFH), inclusive, or as the content of any SHRA wreg,breg
register (10H — OFFH) with a value in the '
range of 0 to 31 (LFH), inclusive. If the (00001010) (breg) (wreg)
original high order bit value was “0,” zeroes
are shifted in. If the value was “1,” ones are NOTES: This instruction clears the
shifted in. The last bit shifted out is saved in sticky bit flag at the beginning
the carry flag. of the instruction. If at any time
Temp « (COUNT) during the shift a “1” is shifted
do while Temp # 0 into the carry flag and another
C « Low order bit of (DEST) shift cycle occurs, the instruc-
(DEST) — (DEST)/2 tion sets the sticky bit flag.
Temp « Temp -1
end_while In this operation, DEST/2 rep-
resents signed division.
PSW Flag Settings
Z | N|C |V |VT|ST
o|lo|lO0jo0|—|0O
SHRAB ARITHMETIC RIGHT SHIFT BYTE. Shifts the

SHRAB breg,#count
(00011010) (count) (breg)
or

SHRAB breg,breg
(00011010) (breg) (breg)

NOTES: This instruction clears the
sticky bit flag at the beginning
of the instruction. If at any time
during the shift a “1” is shifted
into the carry flag and another
shift cycle occurs, the instruc-
tion sets the sticky bit flag.

In this operation, DEST/2 rep-
resents signed division.

A-38

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
SHRAL ARITHMETIC RIGHT SHIFT DOUBLE-
WORD. Shifts the destination double-word SHRAL Ireg,#count
operand to the right as many times as
specified by the count operand. The count (00001110) (count) (Ireg)
may be specified either as an immediate or
value in the range of 0 to 15 (OFH), inclusive, | gyRrAL Ireg,breg
or as the content of any register (10H —
OFFH) with a value in the range of 0 to 31 (00001110) (breg) (Ireg)
(1FH), inclusive. If the original high order bit
value was “0,” zeroes are shifted in. If the NOTES: This instruction clears the
value was “1,” ones are shifted in. sticky bit flag at the beginning
Temp « (COUNT) of the instruction. If at any time
do while Temp # 0 during the shift a “1” is shifted
C « Low order bit of (DEST) into the carry flag and another
(DEST) — (DEST)/2 shift cycle occurs, the instruc-
Temp « Temp -1 tion sets the sticky bit flag.
end_while
In this operation, DEST/2 rep-
PSW Flag Settings resents signed division.
Z | N|C |V |VT|ST
o|lo|lojo|—|0O
SHRB LOGICAL RIGHT SHIFT BYTE. Shifts the
destination byte operand to the right as many | grp breg,#count
times as specified by the count operand. The
count may be specified either as an (00011000) (count) (breg)
immediate value in the range of O to 15 or
(OFH), inclusive, or as the content of any SHRB breg,breg

register (10H — OFFH) with a value in the
range of 0 to 31 (1FH), inclusive. The left bits
of the result are filled with zeroes. The last bit
shifted out is saved in the carry flag.

Temp «— (COUNT)

do while Temp # 0
C « Low order bit of (DEST)
(DEST) ~ (DEST)/2
Temp « Temp-1

end_while

PSW Flag Settings
Z | N|C |V |VT|ST
O o |o0j|o0|—|0O

(00011000) (breg) (breg)

NOTES: This instruction clears the
sticky bit flag at the beginning
of the instruction. If at any time
during the shift a “1” is shifted
into the carry flag and another
shift cycle occurs, the instruc-

tion sets the sticky bit flag.

In this operation, DEST/2 rep-
resents unsigned division.

A-39

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

instruction. This is actually a two-byte NOP in
which the second byte can be any value and
is simply ignored.

PSW Flag Settings
Z | N| C |V |VT|ST

Mnemonic Operation Instruction Format
SHRL LOGICAL RIGHT SHIFT DOUBLE-WORD.
Shiﬁs the destinati(_)n double—wo_rq operandto | gyRL Ireg #count
the right as many times as specified by the
count operand. The count may be specified | (00001100) (count) (Ireg)
either as an immediate value in the range of 0 | or
to 15 (O_FH), inclusive, or as t'he content_ of SHRL Ireg,breg
any register (LOH — OFFH) with a value in the
range of 0 to 31 (1FH), inclusive. The left bits | (00001100) (breg) (Ireg)
of the result are filled with zeroes. The last bit
shifted out is saved in the carry flag. NOTES: This instruction clears the
Temp « (COUNT) sticky bit flag at the beginning
do while Temp # 0 of the instruction. If at any time
C « Low order bit of (DEST) during the shift a “1” is shifted
(DEST) — (DEST)/2) into the carry flag and another
Temp « Temp -1 shift cycle occurs, the instruc-
end_while tion sets the sticky bit flag.
PSW Flag Settings In this opera}tionaDd!E_STIZ rep-
7 Nlclv]lvrlsT resents unsigned division.
0 0 0 0| — | O
SJMP SHORT JUMP. Adds to the program counter
the offset between the enq of this 'instruction SIMP cadd
and the target label, effecting the jump. The)
offset must be in the range of 1024 to (00100xxx) (disp-low)
+1023, inclusive.
PC « PC + 11-bit disp NOTE: The displacement (disp) is sign-
extended to 16 bits in the 64-
PSW Flag Settings E’tt)yt'e ?ﬁdflswst')’;% m%cée and to 24
its in the 1- e addressing
Z N ClV |VT|ST mode. This displacement may
— =l === 1= cause the program counter to
cross a page boundary in 1-Mbyte
mode.
SKIP TWO BYTE NO-OPERATION. Does nothing.
Control passes to the next sequential SKIP breg

(00000000) (breg)

A-40

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
ST STORE WORD. Stores the value of the SRC, DEST
source (leftmost) word operand into the ST wreg, waop
destination (rightmost) operand. '
(110000aa) (waop) (wreg)
(DEST) « (SRC)
PSW Flag Settings
z N | C |V |VT|ST
STB STORE BYTE. Stores the value of the source SRC, DEST
(leftmost) byte operand into the destination | g1g breg, baop
(rightmost) operand. '
(110001aa) (baop) (breg)
(DEST) « (SRC)
PSW Flag Settings
z N | C |V |VT|ST
SuUB SUBTRACT WORDS. Subtracts the source DEST, SRC
(2 operands) | word operand from the destination word SUB wreg, waop

operand, stores the result in the destination
operand, and sets the carry flag as the
complement of borrow.

(DEST) « (DEST) - (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
o000 T —

(011010aa) (waop) (wreg)

SUB
(3 operands)

SUBTRACT WORDS. Subtracts the first
source word operand from the second, stores
the result in the destination operand, and sets
the carry flag as the complement of borrow.

(DEST) « (SRC1) - (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0|0|0 T —

DEST, SRC1, SRC2
SUB Dwreg, Swreg, waop
(010010aa) (waop) (Swreg) (Dwreg)

A-41

8XC196NT USER’S MANUAL In

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
SUBB SUBTRACT BYTES. Subtracts the source DEST, SRC
(2 operands) | byte operand from the destination byte SUBB breg, baop
operand, stores the result in the destination '
operand, and sets the carry flag as the (011110aa) (baop) (breg)

complement of borrow.
(DEST) « (DEST) - (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|0| 0|0 1| =

SUBB SUBTRACT BYTES. Subtracts the first DEST, SRC1, SRC2

(3 operands) | source by_te operanq fro_m the second, stores | gygp Dbreg, Sbreg, baop
the result in the destination operand, and sets

the carry flag as the complement of borrow, | (010110aa) (baop) (Sbreg) (Dbreg)

(DEST) « (SRC1) - (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0| 0|0 T =

SUBC SUBTRACT WORDS WITH BORROW. DEST, SRC
Subtracts the source word operand fromthe | gygc
destination word operand. If the carry flag
was clear, SUBC subtracts 1 from the result.
It stores the result in the destination operand
and sets the carry flag as the complement of
borrow.

(DEST) « (DEST) - (SRC) — (1-C)

wreg, waop
(101010aa) (waop) (wreg)

PSW Flag Settings
Z | N|C |V |VT|ST
! Oo|0 |0 1| =

SUBCB SUBTRACT BYTES WITH BORROW. DEST, SRC
Subt_ract's the source byte operand from the SUBCB breg, baop
destination byte operand. If the carry flag was
clear, SUBCB subtracts 1 from the result. It | (101110aa) (baop) (breg)
stores the result in the destination operand
and sets the carry flag as the complement of
borrow.

(DEST) « (DEST) - (SRC) — (1-C)

PSW Flag Settings
Z | N|C |V |VT|ST
! Oo|0 |0 e

A-42

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

TIIMP

TABLE INDIRECT JUMP. Causes execution
to continue at an address selected from a
table of addresses.

The TIIMP instruction reduces the interrupt
response time associated with servicing
multiple interrupt sources that are multiplexed
into a single interrupt request line (a single
vector). It is typically used in conjunction with
the EPAIPV register to determine the source
of multiplexed EPA interrupts. (“Servicing the
Multiplexed EPA Interrupt with Software” on
page 10-29 discusses the use of TIIMP with
the EPA.)

The first word register, TBASE, contains the
16-bit address of the beginning of the jump
table. TBASE can be located in RAM up to
FEH without windowing or above FFH with
windowing. The jump table itself can be
placed at any nonreserved memory location
on a word boundary in page FFH.

The second word register, INDEX, contains
the 16-bit address that points to a register
containing a 7-bit value. This value is used to
calculate the offset into the jump table. Like
TBASE, INDEX can be located in RAM up to
FEH without windowing or above FFH with
windowing. Note that the 16-bit address
contained in INDEX is absolute; it disregards
any windowing that may be in effect when the
TIIMP instruction is executed.

The byte operand, #MASK, is 7-bitimmediate
data to mask INDEX. #MASK is ANDed with
INDEX to determine the offset (OFFSET).
OFFSET is multiplied by two, then added to
the base address (TBASE) to determine the
destination address (DEST X) in page FFH.

[INDEX] AND #MASK = OFFSET
(2 x OFFSET) + TBASE = DEST X
PC — (DEST X)

PSW Flag Settings
Z | N|C |V |VT|ST

TIIMP TBASE, [INDEX], #MASK
(11100010) [INDEX] (#MASK) (TBASE)

NOTE: TIJMP multiplies OFFSET by two
to provide for word alignment of
the jump table. This must be con-
sidered when decoding the
EPAIPV register and when set-

ting up the jump table.

A-43

8XC196NT USER’S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
TRAP SOFTWARE TRAP. This instruction causes
an interrupt-call that is vectored through TRAP
location FF2010H. The operation of this
instruction is not affected by the state of the (11110111)
interrupt enable flag (1) in the PSW. Interrupt-
calls cannot occur immediately following this | NOTE: This instruction is not supported
instruction. by assemblers. The TRAP
64-Kbyte mode: instruction is intended for use by
SP « SP-2 development tools. These tools
(SP) « PC may not support user-application
PC « (2010H) of this instruction.
1-Mbyte mode:
SP — SP-4
(SP) —~ PC
PC « (OFF2010H)
PSW Flag Settings
z N | C |V |VT|ST
XCH EXCHANGE WORD. Exchanges the value of DEST, SRC
the source word operand with that of the XCH wreg, waop
destination word operand. ')
(00000100) (waop) (wreg) direct
(DEST) « (SRC) (00001011) (waop) (wreg) indexed
PSW Flag Settings
z N | C |V |VT|ST
XCHB EXCHANGE BYTE. Exchanges the value of DEST, SRC
the source byte operand with that of the XCHB breg, baop
destination byte operand. ')
(00010100) (baop) (breg) direct
(DEST) « (SRC) (00011011) (baop) (breg) indexed
PSW Flag Settings
Z N | C |V |VT|ST

A-44

Inu® INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format

XOR LOGICAL EXCLUSIVE-OR WORDS. XORs DEST, SRC
the source word operand with the destination | yoRr
word operand and stores the result in the
destination operand. The result has ones in | (100001aa) (waop) (wreg)
the bit positions in which either operand (but
not both) had a “1” and zeros in all other bit
positions.

(DEST) « (DEST) XOR (SRC)

wreg, waop

PSW Flag Settings
Z | N|C |V |VT|ST
O| 0 0 0| — | —

XORB LOGICAL EXCLUSIVE-OR BYTES. XORs DEST, SRC
the source byte operand with the d(_astination XORB breg, baop
byte operand and stores the result in the
destination operand. The result has ones in | (100101aa) (baop) (breg)
the bit positions in which either operand (but
not both) had a “1” and zeros in all other bit
positions.

(DEST) « (DEST) XOR (SRC)

PSW Flag Settings
Z | N | C |V |VT|ST
O| 0 0 0| — | —

Table A-7 lists the instruction opcodes, in hexadecimal order, along with the corresponding in-
struction mnemonics.

A-45

8XC196NT USER’S MANUAL

Table A-7. Instruction Opcodes

Hex Code Instruction Mnemonic
00 SKIP
01 CLR
02 NOT
03 NEG
04 XCH Direct
05 DEC
06 EXT
07 INC
08 SHR
09 SHL
0A SHRA
0B XCH Indexed
0C SHRL
0D SHLL
OE SHRAL
OF NORML
10 Reserved
11 CLRB
12 NOTB
13 NEGB
14 XCHB Direct
15 DECB
16 EXTB
17 INCB
18 SHRB
19 SHLB
1A SHRAB
1B XCHB Indexed
1C EST Indirect
1D EST Indexed
1E ESTB Indirect
1F ESTB Indexed
20-27 SIMP
28-2F SCALL
30-37 JBC
38-3F JBS
40 AND Direct (3 ops)
41 AND Immediate (3 ops)
42 AND Indirect (3 ops)
43 AND Indexed (3 ops)

A-46

N

tel.

INSTRUCTION SET REFERENCE

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
44 ADD Direct (3 ops)
45 ADD Immediate (3 ops)
46 ADD Indirect (3 ops)
47 ADD Indexed (3 ops)
48 SUB Direct (3 ops)
49 SUB Immediate (3 ops)
4A SUB Indirect (3 ops)
4B SUB Indexed (3 ops)
4C MULU Direct (3 ops)
4D MULU Immediate (3 ops)
4E MULU Indirect (3 ops)
4F MULU Indexed (3 ops)
50 ANDB Direct (3 ops)
51 ANDB Immediate (3 ops)
52 ANDB Indirect (3 ops)
53 ANDB Indexed (3 ops)
54 ADDB Direct (3 ops)
55 ADDB Immediate (3 ops)
56 ADDB Indirect (3 ops)
57 ADDB Indexed (3 ops)
58 SUBB Direct (3 ops)
59 SUBB Immediate (3 ops)
5A SUBB Indirect (3 ops)
5B SUBB Indexed (3 ops)
5C MULUB Direct (3 ops)
5D MULUB Immediate (3 ops)
5E MULUB Indirect (3 ops)
5F MULUB Indexed (3 ops)
60 AND Direct (2 ops)
61 AND Immediate (2 ops)
62 AND Indirect (2 ops)
63 AND Indexed (2 ops)
64 ADD Direct (2 ops)
65 ADD Immediate (2 ops)
66 ADD Indirect (2 ops)
67 ADD Indexed (2 ops)
68 SUB Direct (2 ops)
69 SUB Immediate (2 ops)
6A SUB Indirect (2 ops)
6B SUB Indexed (2 ops)
6C MULU Direct (2 ops)

A-47

8XC196NT USER’S MANUAL

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
6D MULU Immediate (2 ops)
6E MULU Indirect (2 ops)
6F MULU Indexed (2 ops)
70 ANDB Direct (2 ops)

71 ANDB Immediate (2 ops)
72 ANDB Indirect (2 ops)
73 ANDB Indexed (2 ops)
74 ADDB Direct (2 ops)

75 ADDB Immediate (2 ops)
76 ADDB Indirect (2 ops)
77 ADDB Indexed (2 ops)
78 SUBB Direct (2 ops)

79 SUBB Immediate (2 ops)
7A SUBB Indirect (2 ops)
7B SUBB Indexed (2 ops)
7C MULUB Direct (2 ops)
7D MULUB Immediate (2 ops)
7E MULUB Indirect (2 ops)
7F MULUB Indexed (2 ops)
80 OR Direct

81 OR Immediate

82 OR Indirect

83 OR Indexed

84 XOR Direct

85 XOR Immediate

86 XOR Indirect

87 XOR Indexed

88 CMP Direct

89 CMP Immediate

8A CMP Indirect

8B CMP Indexed

8C DIVU Direct

8E DIVU Indirect

8F DIVU Indexed

90 ORB Direct

91 ORB Immediate

92 ORB Indirect

93 ORB Indexed

94 XORB Direct

95 XORB Immediate

96 XORB Indirect

A-48

N

tel.

INSTRUCTION SET REFERENCE

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
97 XORB Indexed
98 CMPB Direct
99 CMPB Immediate
9A CMPB Indirect
9B CMPB Indexed
9C DIVUB Direct
9D DIVUB Immediate
9E DIVUB Indirect
9F DIVUB Indexed
A0 LD Direct
Al LD Immediate
A2 LD Indirect
A3 LD Indexed
Ad ADDC Direct
A5 ADDC Immediate
A6 ADDC Indirect
A7 ADDC Indexed
A8 SUBC Direct
A9 SUBC Immediate
AA SUBC Indirect
AB SUBC Indexed
AC LDBZE Direct
AD LDBZE Immediate
AE LDBZE Indirect
AF LDBZE Indexed
BO LDB Direct
B1 LDB Immediate
B2 LDB Indirect
B3 LDB Indexed
B4 ADDCB Direct
B5 ADDCB Immediate
B6 ADDCB Indirect
B7 ADDCB Indexed
B8 SUBCB Direct
B9 SUBCB Immediate
BA SUBCB Indirect
BB SUBCB Indexed
BC LDBSE Direct
BD LDBSE Immediate
BE LDBSE Indirect
BF LDBSE Indexed

A-49

8XC196NT USER’S MANUAL

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
COo ST Direct
C1l BMOV
Cc2 ST Indirect
C3 ST Indexed
C4 STB Direct
C5 CMPL
C6 STB Indirect
C7 STB Indexed
C8 PUSH Direct
C9 PUSH Immediate
CA PUSH Indirect
CB PUSH Indexed
CcC POP Direct
CD BMOVI
CE POP Indirect
CF POP Indexed
DO JNST
D1 JNH
D2 JGT
D3 JNC
D4 JNVT
D5 JNV
D4 JNVT
D5 JNV
D6 JGE
D7 JNE
D8 JST
D9 JH
DA JLE
DB JC
DC JVT
DD JV
DE JLT
DF JE
EO DJINZ
E1l DINZW
E2 TIIMP
E3 BR Indirect, 64-Kbyte mode
EBR Indirect, 1-Mbyte mode
E4 EBMOVI
E5 Reserved

A-50

Inu® INSTRUCTION SET REFERENCE

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic

E6 EJMP
E7 LIMP
E8 ELD Indirect
E9 ELD Indexed
EA ELDB Indirect
EB ELDB Indexed
EC DPTS
ED EPTS
EE Reserved (Note 1)
EF LCALL
FO RET
F1 ECALL
F2 PUSHF
F3 POPF
F4 PUSHA
F5 POPA
F6 IDLPD
F7 TRAP
F8 CLRC
F9 SETC
FA DI
FB El
FC CLRVT
FD NOP
FE DIV/DIVB/MUL/MULB (Note 2)
FF RST

NOTES:

1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.

2. Signed multiplication and division are two-byte instructions. For each signed instruction, the
first byte is “FE” and the second is the opcode of the corresponding unsigned instruction. For
example, the opcode for MULU (3 operands) direct is “4C,” so the opcode for MUL (3 oper-
ands) direct is “FE 4C.”

Table A-8 lists instructions along witheir lengths and opcodés each applicable addressing
mode. A dash (—) in any column indicates “not applicable.”

[| A-51

8XC196NT USER’S MANUAL

Table A-8. Instruction Lengths and Hexadecimal Opcodes

intel.

Arithmetic (Group 1)

Direct Immediate Indirect Indexed
(Note 1) (Notes 1, 2)
Mnemonic
Length |Opcode |Length pcode LUength Qpcode LeSn/thh Opcode

ADD (2 ops) 3 64 4 65 3 66 4/5 67
ADD (3 ops) 4 44 5 45 4 46 5/6 47
ADDB (2 ops) 3 74 3 75 3 76 4/5 77
ADDB (3 ops) 4 54 4 55 4 56 5/6 57
ADDC 3 A4 4 A5 3 AB 4/5 A7
ADDCB 3 B4 3 B5 3 B6 4/5 B7
CLR 2 01 — — — — — —
CLRB 2 11 — — — — — —
CMP 3 88 4 89 3 8A 4/5 8B
CMPB 3 98 3 99 3 9A 4/5 9B
CMPL 3 C5 — — — — — —
DEC 2 05 — — — — — —
DECB 2 15 — — — — — —
EXT 2 06 — — — — — —
EXTB 2 16 — — — — — —
INC 2 07 — — — — — —
INCB 2 17 — — — — — —
SUB (2 ops) 3 68 4 69 3 6A 4/5 6B
SUB (3 ops) 4 48 5 49 4 4A 5/6 4B
SUBB (2 ops) 3 78 3 79 3 7A 4/5 7B
SUBB (3 ops) 4 58 4 59 4 5A 5/6 5B
SUBC 3 A8 4 A9 3 AA 4/5 AB
SUBCB 3 B8 3 B9 3 BA 4/5 BB
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do short- and long-indexed
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2's complement offset.

A-52

intel.

Table A-8. Instruction Lengths and Hexadecimal

INSTRUCTION SET REFERENCE

Opcodes (Continued)

Arithmetic (Group II)

Direct Immediate Indirect Indexed
(Note 1) (Notes 1, 2)
Mnemonic
Length |Opcode |Length pcode LUength Qpcode Lesn/thh Opcode
DIV 4 FE 8C 5 FE 8D 4 FE 8E 5/6 FE 8F
DIVB 4 FE 9C 4 FE 9D 4 FE 9E 5/6 FE 9F
DIVU 3 8C 4 8D 3 8E 4/5 8F
DIVUB 3 9C 3 9D 3 9E 4/5 9F
MUL (2 ops) 4 FE 6C 5 FE 6D 4 FE 6E 5/6 FE 6F
MUL (3 ops) 5 FE 4C 6 FE 4D 5 FE 4E 6/7 FE 4F
MULB (2 ops) 4 FE 7C 4 FE 7D 4 FE 7E 5/6 FE 7F
MULB (3 ops) 5 FE 5C 5 FE 5D 5 FE 5E 6/7 FE 5F
MULU (2 ops) 3 6C 4 6D 3 6E 4/5 6F
MULU (3 ops) 4 4C 5 4D 4 4E 5/6 aF
MULUB (2 ops) 3 7C 3 7D 3 7E 4/5 7F
MULUB (3 ops) 4 5C 4 5D 4 5E 5/6 5F
Logical
Direct Immediate Er,\ll((j;trgcf) (,\:Q?eixisz)
Mnemonic
Length |Opcode [Length pcode Length Qpcode LeSn/thh Opcode
AND (2 ops) 3 60 4 61 3 62 4/5 63
AND (3 ops) 4 40 5 41 4 42 5/6 43
ANDB (2 ops) 3 70 3 71 3 72 4/5 73
ANDB (3 ops) 4 50 4 51 4 52 5/6 53
NEG 2 03 — — — — — —
NEGB 2 13 — — — — — —
NOT 2 02 — — — — — —
NOTB 2 12 — — — — — —
OR 3 80 4 81 3 82 4/5 83
ORB 3 90 3 91 3 92 4/5 93
XOR 3 84 4 85 3 86 4/5 87
XORB 3 94 3 95 3 96 4/5 97
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do short- and long-indexed
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2's complement offset.

A-53

8XC196NT USER’S MANUAL

Table A-8. Instruction Lengths and Hexadecimal

intel.

Opcodes (Continued)

Stack
. . Indirect Indexed
Direct Immediate (Note 1) (Notes 1, 2)
Mnemonic
Length
Length |Opcode |Length pcode LUength Qpcode S/L Opcode

POP 2 CcC — — 2 CE 3/4 CF
POPA 1 F5 — — — — — —
POPF 1 F3 — — — — — —
PUSH 2 C8 3 C9 2 CA 3/4 CB
PUSHA 1 F4 — — — — — —
PUSHF 1 F2 — — — — — —
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do short- and long-indexed
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2's complement offset.

A-54

Inu® INSTRUCTION SET REFERENCE

Table A-8. Instruction Lengths and Hexadecimal Opcodes (Continued)

Data
) . - Extended-
Miemonic Direct Immediate Extended-indirect indexed
Length |Opcode |Length Opcode Uength Qpcode Le¢ngth Opcode
EBMOVI — — — — 3 E4 — —
ELD — — — — 3 E8 6 E9
ELDB — — — — 3 EA 6 EB
EST — — — — 3 1C 6 1D
ESTB — — — — 3 1E 6 1F
Direct Immediate ér,\]l((j)'{sclt) (,\:Q?eixisz)
Mnemonic
Length |Opcode |Length pcode LUength Qpcode LeSn/thh Opcode

BMOV — — — — 3 C1l — —
BMOVI — — — — 3 CD — —
LD 3 A0 4 Al 3 A2 4/5 A3
LDB 3 BO 3 B1 3 B2 4/5 B3
LDBSE 3 BC 3 BD 3 BE 4/5 BF
LDBZE 3 AC 3 AD 3 AE 4/5 AF
ST 3 Co — — 3 C2 4/5 C3
STB 3 C4 — — 3 C6 4/5 C7
XCH 3 04 — — — — 4/5 0B
XCHB 3 14 — — — — 4/5 1B
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do short- and long-indexed
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and
long-indexed modes make the second byte odd (LSB = 1).

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.

3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated
with the eight bits to form an 11-bit, 2's complement offset.

A-55

8XC196NT USER’S MANUAL

Table A-8. Instruction Lengths and Hexadecimal

intel.

Opcodes (Continued)

Jump
Direct Immediate Extended-indirect E_xtended—
Mnemonic indexed
Length |Opcode |Length Opcode Uength Qpcode Le¢ngth Opcode
EBR — — — — 2 E3 — —
EJMP — — — — — — 4 E6
Direct Immediate ér,\ll((j;tr:clt) (,\:Q?eixidz)
Mnemonic
Length |Opcode |Length pcode LUength Qpcode LeSn/thh Opcode
BR — — — — 2 E3 — —
LIMP — — — — — — —i/3 E7
SJIMP (Note 3) — — — — — — 2/— 20-27
TIIMP 4 E2 4 E2 — — —/4 E2
Call
Direct Immediate Extended-indirect E_xtended-
Mnemonic indexed
Length |Opcode |[Length Opcode LUength Qpcode Length Opcode
ECALL — — — — — — 4 F1
. . Indirect Indexed
Mnemonic Direct Immediate (Note 1) (Note 1)
Length |Opcode |Length Opcode Uength Qpcode Le¢ngth Opcode
LCALL — — — — — — 3 EF
RET — — — — 1 FO — —
SCALL (Note 3) — — — — — — 2 28-2F
TRAP 1 F7 — — — — — —

NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do short- and long-indexed
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2's complement offset.

A-56

Inu® INSTRUCTION SET REFERENCE

Table A-8. Instruction Lengths and Hexadecimal Opcodes (Continued)

Conditional Jump

Direct Immediate Indirect (l\llggeixidZ)
Mnemonic

Length |Opcode |Length pcode LUength Qpcode LeSn/thh Opcode
DJINZ — — — — — — 3/— EO
DINZW — — — — — — 3/— E1l
JBC — — — — — — 3/— 30-37
JBS — — — — — — 3/— 38-3F
JC — — — — — — 2/— DB
JE — — — — — — 2/— DF
JGE — — — — — — 2/— D6
JGT — — — — — — 2/— D2
JH — — — — — — 2/— D9
JLE — — — — — — 2/— DA
JLT — — — — — — 2/— DE
JNC — — — — — — 2/— D3
JNE — — — — — — 2/— D7
JNH — — — — — — 2/— D1
JNST — — — — — — 2/— DO
JINV — — — — — — 2/— D5
JINVT — — — — — — 2/— D4
JST — — — — — — 2/— D8
JV — — — — — — 2/— DD
JVT — — — — — — 2/— DC
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do short- and long-indexed
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and
long-indexed modes make the second byte odd (LSB = 1).

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.

3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated
with the eight bits to form an 11-bit, 2's complement offset.

A-57

8XC196NT USER’S MANUAL

Table A-8. Instruction Lengths and Hexadecimal

Opcodes (Continued)

intel.

Shift
Direct Immediate Indirect Indexed
Mnemonic
Length |Opcode |Length Opcode Uength Qpcode Le¢ngth Opcode
NORML 3 OF — — — — — —
SHL 3 09 — — — — — —
SHLB 3 19 — — — — — —
SHLL 3 0D — — — — — —
SHR 3 08 — — — — — —
SHRA 3 0A — — — — — —
SHRAB 3 1A — — — — — —
SHRAL 3 OE — — — — — —
SHRB 3 18 — — — — — —
SHRL 3 0C — — — — — —
Special
Direct Immediate Indirect Indexed
Mnemonic
Length |Opcode |Length DOpcode Uength Qpcode Le¢ngth Opcode
CLRC 1 F8 — — — — — —
CLRVT 1 FC — — — — — —
DI 1 FA — — — — — —
El 1 FB — — — — — —
IDLPD — — 1 F6 — — — —
NOP 1 FD — — — — — —
RST 1 FF — — — — — —
SETC 1 F9 — — — — — —
SKIP 2 00 — — — — — —
PTS
Direct Immediate Indirect Indexed
Mnemonic
Length |Opcode |[Length pcode LUength Qpcode Length Opcode
DPTS 1 EC — — — — — —
EPTS 1 ED — — — — — —
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

short- and long-indexed

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2’'s complement offset.

A-58

Inu® INSTRUCTION SET REFERENCE

Table A-9 lists instructions alphabetically within groups, along with their execution times, ex-
pressed in state times.

Table A-9. Instruction Execution Times (in State Times)

Arithmetic (Group 1)
Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. |Reg. [Mem. [Reg. (Mem.
ADD (2 ops) 4 5 6 8 7 9 6 8 7 9
ADD (3 ops) 5 6 7 10 8 11 7 10 8 11
ADDB (2 ops) 4 4 6 8 7 9 6 8 7 9
ADDB (3 ops) 5 5 7 10 8 11 7 10 8 11
ADDC 4 5 6 8 7 9 6 8 7 9
ADDCB 4 4 6 8 7 9 6 8 7 9
CLR 3 — — — — — — — — —
CLRB 3 — — — — — — — — —
CMP 4 5 6 8 7 9 6 8 7 9
CMPB 4 4 6 8 7 9 6 8 7 9
CMPL 7 — — — — — — — — —
DEC 3 — — — — — — — — —
DECB 3 — — — — — — — — —
EXT 4 — — — — — — — — —
EXTB 4 — — — — — — — — —
INC 3 — — — — — — — — —
INCB 3 — — — — — — — — —
SUB (2 ops) 4 5 6 8 7 9 6 8 7 9
SUB (3 ops) 5 6 7 10 8 11 7 10 8 11
SUBB (2 ops) 4 4 6 8 7 9 6 8 7 9
SUBB (3 ops) 5 5 7 10 8 11 7 10 8 11
SUBC 4 5 6 8 7 9 6 8 7 9
SUBCB 4 4 6 8 7 9 6 8 7 9

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 4-1 on page 4-2 for address information.

A-59

8XC196NT USER’S MANUAL

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

N

tel.

Arithmetic (Group II)

Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. [Mem. |Reg. |Mem. |Reg. |Mem.
DIV 26 27 28 31 29 32 29 32 30 33
DIVB 18 18 20 23 21 24 21 24 22 25
DIVU 24 25 26 29 27 30 27 30 28 31
DIVUB 16 16 18 21 19 22 19 22 20 23
MUL (2 ops) 16 17 18 21 19 22 19 22 20 23
MUL (3 ops) 16 17 18 21 19 22 19 22 20 23
MULB (2 ops) 12 12 14 17 15 18 15 18 16 19
MULB (3 ops) 12 12 14 17 15 18 15 18 16 19
MULU (2 ops) 14 15 16 19 17 19 17 20 18 21
MULU (3 ops) 14 15 16 19 17 19 17 20 18 21
MULUB (2 ops) 10 10 12 15 13 15 12 16 14 17
MULUB (3 ops) 10 10 12 15 13 15 12 16 14 17

Logical
Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. [Reg. [Mem. [Reg. [Mem.
AND (2 ops) 4 5 6 8 7 9 6 8 7 9
AND (3 ops) 5 6 7 10 8 11 7 10 8 11
ANDB (2 ops) 4 4 6 8 7 9 6 8 7 9
ANDB (3 ops) 5 5 7 10 8 11 7 10 8 11
NEG 3 — — — — — — — — —
NEGB 3 — — — — — — — — —
NOT 3 — — — — — — — — —
NOTB 3 — — — — — — — — —
OR 4 5 6 8 7 9 6 8 7 9
ORB 4 4 6 8 7 9 6 8 7 9
XOR 4 5 6 8 7 9 6 8 7 9
XORB 4 4 6 8 7 9 6 8 7 9

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 4-1 on page 4-2 for address information.

A-60

intel.

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

INSTRUCTION SET REFERENCE

Stack (Register)
Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. [Reg. [Mem. [Reg. (Mem.
POP 8 — 10 12 11 13 11 13 12 14
POPA 12 — — — — — — — — —
POPF 7 — — — — — — — — —
PUSH 6 7 9 12 10 13 10 13 11 14
PUSHA 12 — — — — — — — — —
PUSHF 6 — — — — — — — — —

Stack (Memory)
Indirect Indexed
Mnemonic Direct (Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. [Reg. [Mem. [Reg. (Mem.
POP 11 — 13 15 14 16 14 16 15 17
POPA 18 — — — — — — — — —
POPF 10 — — — — — — — — —
PUSH 8 9 11 14 12 15 12 15 13 16
PUSHA 18 — — — — — — — — —
PUSHF 8 — — — — — — — — —

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 4-1 on page 4-2 for address information.

A-61

8XC196NT USER’S MANUAL

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

Data
Mnemonic Extended-indirect (Normal)
EBMOVI register/register 8 + 14 per word + 16 per interrupt
memory/register 8 + 17 per word + 16 per interrupt
memory/memory 8 + 20 per word + 16 per interrupt
Mnemonic Indirect
BMOV register/register 6 + 8 per word
memory/register 6 + 11 per word
memory/memory 6 + 14 per word
BMOVI register/register 7 + 8 per word + 14 per interrupt
memory/register 7 + 11 per word + 14 per interrupt
memory/memory 7 + 14 per word + 14 per interrupt
Extended-indirect
Mnemonic Direct (Immed. Extended-indexed
Normal Autoinc.
ELD — — 6 9 8 11 8 11
ELDB — — 6 9 8 11 8 11
EST — — 6 9 8 11 8 11
ESTB — — 6 9 8 11 8 11
Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long
Reg. | Mem. | Reg. |Mem. |Reg. [Mem. [Reg. (Mem.
LD 4 5 5 8 6 8 6 9 7 10
LDB 4 4 5 8 6 8 6 9 7 10
LDBSE 4 4 5 8 6 8 6 9 7 10
LDBZE 4 4 5 8 6 8 6 9 7 10
ST 4 — 5 8 6 9 6 9 7 10
STB 4 — 5 8 6 8 6 9 7 10
XCH 5 — — — — — 8 13 9 14
XCHB 5 — — — — — 8 13 9 14

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 4-1 on page 4-2 for address information.

A-62

intel.

INSTRUCTION SET REFERENCE

Table A-9. Instruct ion Execution Times (in State Times) (Continued)
Jump
Mnemonic Direct (Immed. Extended-indirect
Extended-indexed
Normal Autoinc.
EBR — — 9 — —
EJMP — — — — 8
Indirect Indexed
Mnemonic Direct |[Immed
Normal Autoinc. Short Long
BR — — 7 7 — —
LIMP — — — — — 7
SIMP — — — — 7 —
TIIMP
register/register . o 15 . . -
memory/register 18
memory/memory 21
Call (Register)
Extended-indirect
Mnemonic Direct |Immed. Extended-indexed
Normal Autoinc.
ECALL
1-Mbyte mode — — — — 16
Indirect Indexed
Mnemonic Direct |Immed.
Normal Autoinc. Short Long
LCALL 15
1-Mbyte mode — — — — — 11
64-Kbyte mode
RET
1-Mbyte mode — — 16 — — —
64-Kbyte mode 11
SCALL 15
1-Mbyte mode — — — — — 11
64-Kbyte mode
TRAP
1-Mbyte mode 19 — — — — —
64-Kbyte mode 16

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 4-1 on page 4-2 for address information.

A-63

8XC196NT USER’S MANUAL Inu®

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

Call (Memory)

Extended-indirect
Mnemonic Direct |Immed. Extended-indexed
Normal Autoinc.

ECALL
1-Mbyte mode — — — — 22

Indirect Indexed

Mnemonic Direct |Immed.

Normal Autoinc. Short
Long

LCALL
1-Mbyte mode — — — — — 18
64-Kbyte mode 13

RET
1-Mbyte mode — — — —
64-Kbyte mode

SCALL
1-Mbyte mode — — — — —
64-Kbyte mode

18
13

TRAP
1-Mbyte mode 25 — — — — —
64-Kbyte mode 18

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 4-1 on page 4-2 for address information.

A-64 [|

intel.

INSTRUCTION SET REFERENCE

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

Conditional Jump

Mnemonic Short-Indexed
DJNZ 5 (jump not taken), 9 (jump taken)
DINZW 6 (jump not taken), 10 (jump taken)
JBC 5 (jump not taken), 9 (jump taken)
JBS 5 (jump not taken), 9 (jump taken)
JC 4 (jump not taken), 8 (jump taken)
JE 4 (jump not taken), 8 (jump taken)
JGE 4 (jump not taken), 8 (jump taken)
JGT 4 (jump not taken), 8 (jump taken)
JH 4 (jump not taken), 8 (jump taken)
JLE 4 (jump not taken), 8 (jump taken)
JLT 4 (jump not taken), 8 (jump taken)
JNC 4 (jump not taken), 8 (jump taken)
JINE 4 (jump not taken), 8 (jump taken)
JNH 4 (jump not taken), 8 (jump taken)
JINST 4 (jump not taken), 8 (jump taken)
INV 4 (jump not taken), 8 (jump taken)
INVT 4 (jump not taken), 8 (jump taken)
JST 4 (jump not taken), 8 (jump taken)
Vv 4 (jump not taken), 8 (jump taken)
JVT 4 (jump not taken), 8 (jump taken)

Shift

Mnemonic Direct

NORML 8 + 1 per shift (9 for O shift)
SHL 6 + 1 per shift (7 for O shift)
SHLB 6 + 1 per shift (7 for O shift)
SHLL 7 + 1 per shift (8 for 0 shift)
SHR 6 + 1 per shift (7 for O shift)
SHRA 6 + 1 per shift (7 for O shift)
SHRAB 6 + 1 per shift (7 for O shift)
SHRAL 7 + 1 per shift (8 for 0 shift)
SHRB 6 + 1 per shift (7 for O shift)

SHRL 7 + 1 per shift (8 for O shift)

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 4-1 on page 4-2 for address information.

A-65

8XC196NT USER’S MANUAL Inu®

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

Special
Indirect Indexed
Mnemonic Direct |Immed.

Normal Autoinc. Short Long
CLRC 2 — — — — —
CLRVT 2 — — — — —
DI 2 — — — — —
El 2 — — — — —
IDLPD

Valid key — 12 — — — —
Invalid key — 28 — — — —
NOP 2 — — — — —
RST 4 — — — — —
SETC 2 — — — — —
SKIP 3 — — — — —
PTS
Indirect Indexed
Mnemonic Direct |Immed.

Normal Autoinc. Short Long
DPTS 2 — — — — —
EPTS 2 — — — — —

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 4-1 on page 4-2 for address information.

A-66

intgl.

B

Signal Descriptions

APPENDIX B
SIGNAL DESCRIPTIONS

This appendix provides reference information for the pin functions of the 8XC196NT.

The names of some 8XC196NT signals have been changed for consistency with otBe®61CS

microcontrollers. Table B-1 lists the old and new names.

Table B-1. Signal Name Ch anges

Name in 8XC196NT User’s Manual

New Name

SLPADDR/SLPALE

SLPALE

B.1 FUNCTIONAL GROUPINGS OF SIGNALS

Table B-2 lists the signals for the 8XC196NT, grouped by function. A diagram of each package

that is currently available shows the pin location of each signal.

NOTE
As new packages aszippored, they will be added to the datasheets first. If

your package type is not shown in this appendix, refer to the latest datasheet to

find the pin locations.

B-1

8XC196NT USER’S MANUAL

intel.

Table B-2. 8XC196NT Signals Arranged by Functional Categories

Programming

T Slave port signal

B-2

Input/Output Input/Output (Cont'd) Control Bus Control & Status
EPORT.3:0 P6.6/SC1 AINC# ALE/ADV#
P0.7:4/ACHT7:4 P6.7/SD1 CPVER BHE#/WRH#
P1.0/EPAO/T2CLK PACT# BREQ#
P1.1/EPA1 Processor Control PALE# BUSWIDTH
P1.2/EPA2/T2DIR EA# PBUS.15:0 CLKOUT
P1.7:3/EPA7:3 EXTINT PMODE.3:0 HOLD#
P2.0/TXD NMI PROG# HLDA#
P2.1/RXD ONCE# PVER INST
pP2.7:2 RESET# INTOUT#
P3.7:0 SLPINTT Power & Ground READY
P4.7:0 XTAL1 ANGND RD#

P5.7:0 XTAL2 Vee SLPALET
P6.0/EPA8B/COMPO Vip SLPCS#t
P6.1/EPA9/COMP1 Address & Data Vier SLPWR#T
P6.2/T1CLK A19:16 Vs SLPRD#f
P6.3/T1DIR AD15:0 WR#/WRL#
P6.4/SCO SLP7:.0f

P6.5/SDO0

SIGNAL DESCRIPTIONS

P5.7 / BUSWIDTH 3
A19/EPORT.3
Al18/EPORT.2 O
Al7 / EPORT.1
Al16 / EPORT.0 O

AD15/P4.7 / PBUS.15 5
AD14/P4.6/ PBUS.14 O
AD13/P4.5/PBUS.13 5
AD12/P4.4/PBUS.12 5
AD11/P4.3/PBUS.11 O
AD10/P4.2/PBUS.10 5
AD9/P4.1/PBUS.9
AD8/P4.0/PBUS.8
AD7/P3.7 / PBUS.7 / SLP7 5
AD6/P3.6 / PBUS.6 / SLP6
AD5/P3.5/PBUS.5/SLP5 5
AD4/P3.4/PBUS.4/SLP4 T

&
g 3
3 -
;u% o
Ico ®Q
2o >9
2Za <D(‘n>-|—
sz oc2E z
o o
€4 4oul 208081
Sox IZeh L DODDF
NB® g p0deY pZTEZNQUS®
WO O N N © WO
aoo>>0o000>XXooo0ooo
OO~ OLSTMONATAON OO S MNA
o © O WWOWWWOWO
10 60 A P6.2/ TICLK
11 59 [P6.1/ EPA9 / COMP1
12 58 [P6.0 / EPA8 / COMPO
13 57 [P1.0/EPAO/ T2CLK
14 56 [P1.1/EPAL
15 55 1 P1.2/ EPA2 / T2DIR
16 N8XC196NT 54 1 P1.3/ EPA3
17 53 [P1.4/EPA4
18 52 [P1.5/ EPAS
19 View of component as 51 FAP1.6/EPA6
20 50 |3 P1.7 / EPA7
moun n P r
o1 ounted on PC board 29 B Veer
22 48 1 ANGND
23 47 1 P0.7 / ACH7 / PMODE.3
24 46 1 P0.6 / ACH6 / PMODE.2
25 45 1 P0.5 / ACH5 / PMODE.1
26 44 1 P0.4 | ACH4 / PMODE.O
NOODOAdANMTNONODNIOANM
ANANNOOMHMOHOOMOHOMNMMOHOOS T T
guugguggougoooogoy
PR RESE RN SS88EE
444JLLIZUJ>>§J882_|U>JQ
nnnnon aflgaxz0ag
—_~—~—==u \D'D_DJ\IOD-
MmN O a=x252292<
NDDDG XOponfwsb
222D FXZaDalW2
mmoD \n:’:n_oﬂ.()o
gead SSkTETE2
aN a0 gg 2 90
EERR Nos &~
—_——— N aq
=) O o o
[ayajala) I
LI ~
©
N
o

A2105-03

Figure B-1. 8XC196NT 68-lead PLCC Package

8XC196NT USER’S MANUAL Inu®

B.2 SIGNAL DESCRIPTIONS

Table B-3 defines the columns used in Table B-4, which describes the signals.

Table B-3. Description of Columns of Table B-4

Column Heading Description

Name Lists the signals, arranged alphabetically. Many pins have two functions, so
there are more entries in this column than there are pins. Every signal is
listed in this column.

Type Identifies the pin function listed in the Name column as an input (l), output
(O), bidirectional (I/O), power (PWR), or ground (GND).

Note that all inputs except RESET# are sampled inputs. RESET# is a level-
sensitive input. During powerdown mode, the powerdown circuitry uses
EXTINT as a level-sensitive input.

Description Briefly describes the function of the pin for the specific signal listed in the
Name column. Also lists the alternate fuction that are multiplexed with the
signal (if applicable).

Table B-4. Signal Descriptions

Name Type Description

A19:16 110 Address Lines 16-19

These address lines provide address bits 16—19 during the entire external
memory cycle, supporting extended addressing of the 1 Mbyte address space.

NOTE: Internally, there are 24 address bits; however, only 20 address lines
(A19:16 and AD15:0) are bonded out. The internal address space is
16 Mbytes (000000—FFFFFFH) and the external address space is 1
Mbyte (00000-FFFFFH). The device resets to FF2080H in internal
ROM or F2080H in external memory.

A19:16 are multiplexed with EPORT.3:0.

ACHT7:4 | Analog Channels 4-7
These pins are analog inputs to the A/D converter.

These pins may individually be used as analog inputs (ACHXx) or digital inputs
(P0.x). While it is possible for the pins to function simultaneously as analog and
digital inputs, this is not recommended because reading Port O while a
conversion is in process can produce unreliable conversion results.

The ANGND and Vg, pins must be connected for the A/D converter and port O
to function.

ACH7:4 are multiplexed with P0.7:4 and PMODE.3:0.

AD15:0 110 Address/Data Lines

These pins provide a multiplexed address and data bus. During the address
phase of the bus cycle, address bits 0-15 are presented on the bus and can be
latched using ALE or ADV#. During the data phase, 8- or 16-bit data is trans-
ferred.

AD7:0 are multiplexed with SLP7:0, P3.7:0, and PBUS.7:0. AD15:8 are
multiplexed with P4.7:0 and PBUS.15:8.

B-4

SIGNAL DESCRIPTIONS

Table B-4. Signal Descriptions (Continued)

Name Type Description

ADV# O Address Valid
This active-low output signal is asserted only during external memory
accesses. ADV# indicates that valid address information is available on the
system address/data bus. The signal remains low while a valid bus cycle is in
progress and is returned high as soon as the bus cycle completes.
An external latch can use this signal to demultiplex the address from the
address/data bus. A decoder can also use this signal to generate chip selects
for external memory.
ADVH# is multiplexed with P5.0, SLPALE, and ALE.

AINC# | Auto Increment
During slave programming, this active-low input enables the auto-increment
feature. (Auto increment allows reading or writing of sequential OTPROM
locations, without requiring address transactions across the PBUS for each
read or write.) AINC# is sampled after each location is programmed or dumped.
If AINC# is asserted, the address is incremented and the next data word is
programmed or dumped.
AINCH# is multiplexed with P2.4 and INTOUT#.

ALE O Address Latch Enable
This active-high output signal is asserted only during external memory cycles.
ALE signals the start of an external bus cycle and indicates that valid address
information is available on the system address/data bus. ALE differs from ADV#
in that it does not remain active during the entire bus cycle.
An external latch can use this signal to demultiplex the address from the
address/data bus.
ALE is multiplexed with P5.0, SLPALE, and ADV#.

ANGND GND | Analog Ground
ANGND must be connected for A/D converter and port 0 operation. ANGND
and Vgg should be nominally at the same potential.

BHE# O Byte High Enable

The chip configuration register 0 (CCRO) determines whether this pin functions
as BHE# or WRH#. CCRO0.2=1 selects BHE#; CCR0.2=0 selects WRH#.

During 16-bit bus cycles, this active-low output signal is asserted for word reads
and writes and high-byte reads and writes to external memory. BHE# indicates
that valid data is being transferred over the upper half of the system data bus.
Use BHE#, in conjunction with ADO, to determine which memory byte is being
transferred over the system bus:

BHE# ADO Byte(s) Accessed

0 0 both bytes
0 1 high byte only
1 0 low byte only

BHE# is multiplexed with P5.5 and WRH#.

B-5

8XC196NT USER’S MANUAL Inu®

Table B-4. Signal Descriptions (Continued)

Name Type Description

BREQ# O Bus Request
This active-low output signal is asserted during a hold cycle when the bus
controller has a pending external memory cycle.
The device can assert BREQ# at the same time as or after it asserts HLDA#.
Once it is asserted, BREQ# remains asserted until HOLD# is removed.
You must enable the bus-hold protocol before using this signal (see “Enabling
the Bus-hold Protocol” on page 14-21).
BREQ# is multiplexed with P2.3.

BUSWIDTH | Bus Width
The chip configuration register bits, CCR0.1 and CCR1.2, along with the
BUSWIDTH pin, control the data bus width. When both CCR bits are set, the
BUSWIDTH signal selects the external data bus width. When only one CCR bit
is set, the bus width is fixed at either 16 or 8 bits, and the BUSWIDTH signal
has no effect.
CCR0O.1 CCR1.2 BUSWIDTH
0 1 N/A fixed 8-bit data bus
1 0 N/A fixed 16-bit data bus
1 1 high 16-bit data bus
1 1 low 8-bit data bus
BUSWIDTH is multiplexed with P5.7.

CLKOUT O Clock Output
Output of the internal clock generator. The CLKOUT frequency is % the
oscillator input frequency (XTAL1). CLKOUT has a 50% duty cycle.
CLKOUT is multiplexed with P2.7 and PACT#.

COMP1:0 (0] Event Processor Array (EPA) Compare Pins
These signals are the output of the EPA compare-only channels. These pins
are multiplexed with other signals and may be configured as standard 1/O.
COMP1:0 are multiplexed as follows: COMPO/P6.0/EPA8 and
COMP1/P6.1/EPA9.

CPVER O Cumulative Program Verification

During slave programming, a high signal indicates that all locations
programmed correctly, while a low signal indicates that an error occurred during
one of the programming operations.

CPVER is multiplexed with P2.6 and HLDA#.

EA#

External Access

EA# is sampled and latched only on the rising edge of RESET#. Changing the
level of EA# after reset has no effect. Accesses to special-purpose and program
memory partitions (FF2000H-FF9FFFH) are directed to internal memory if EA#
is held high and to external memory if EA# is held low.

EA# also controls program mode entry. If EA# is at V,, voltage (typically
+12.5 V) on the rising edge of RESET#, the device enters programming mode.

NOTE: Systems with EA# tied inactive have idle time between external bus
cycles. When the address/data bus is idle, you can use ports 3 and 4
for 1/0. Systems with EA# tied active cannot use ports 3 and 4 as
standard I/O; when EA# is active, these ports will function only as the
address/data bus.

On devices with no internal nonvolatile memory, always connect EA# to V.

B-6

SIGNAL DESCRIPTIONS

Table B-4. Signal Descriptions (Continued)

Name Type Description

EPA9:0 I{e] Event Processor Array (EPA) Input/Output pins
These are the high-speed input/output pins for the EPA capture/compare
channels. For high-speed PWM applications, the outputs of two EPA channels
(either EPAO and EPA1 or EPA2 and EPA3) can be remapped to produce a
PWM waveform on a shared output pin (see “Generating a High-speed PWM
Output” on page 10-16).
EPA9:0 are multiplexed as follows: EPAO/P1.0/T2CLK, EPA1/P1.1,
EPA2/P1.2/T2DIR, EPA3/P1.3, EPA4/P1.4, EPA5/P1.5, EPA6/P1.6, EPA7/P1.7,
EPA8/P6.0/COMPO, and EPA9/P6.1/COMPL1.

EPORT.3:0 /10 Extended Addressing Port
This is a 4-bit, bidirectional, memory-mapped 1/O port.
EPORT.3:0 are multiplexed with A19:16.

EXTINT | External Interrupt
In normal operating mode, a rising edge on EXTINT sets the EXTINT interrupt
pending flag. EXTINT is sampled during phase 2 (CLKOUT high). The minimum
high time is one state time.
If the chip is in idle mode and if EXTINT is enabled, a rising edge on EXTINT
brings the chip back to normal operation, where the first action is to execute the
EXTINT service routine. After completion of the service routine, execution
resumes at the the IDLPD instruction following the one that put the device into
idle mode.
In powerdown mode, asserting EXTINT causes the chip to return to normal
operating mode. If EXTINT is enabled, the EXTINT service routine is executed.
Otherwise, execution continues at the instruction following the IDLPD
instruction that put the device into powerdown mode.
EXTINT is multiplexed with P2.2 and PROG#.

HLDA# O Bus Hold Acknowledge
This active-low output indicates that the CPU has released the bus as the result
of an external device asserting HOLD#.
HLDA# is multiplexed with P2.6 and CPVER.

HOLD# | Bus Hold Request
An external device uses this active-low input signal to request control of the
bus. This pin functions as HOLD# only if the pin is configured for its special
function (see “Bidirectional Port Pin Configurations” on page 6-9) and the bus-
hold protocol is enabled. Setting bit 7 of the window selection register enables
the bus-hold protocol.
HOLD# is multiplexed with P2.5.

INST (0] Instruction Fetch

This active-high output signal is valid only during external memory bus cycles.
When high, INST indicates that an instruction is being fetched from external
memory. The signal remains high during the entire bus cycle of an external
instruction fetch. INST is low for data accesses, including interrupt vector
fetches and chip configuration byte reads. INST is low during internal memory
fetches.

INST is multiplexed with P5.1 and SLPCS#.

B-7

8XC196NT USER’S MANUAL Inu®

Table B-4. Signal Descriptions (Continued)

Name

Type

Description

INTOUT#

Interrupt Output

This active-low output indicates that a pending interrupt requires use of the
external bus. How quickly the 8XC196NT asserts INTOUT# depends upon the
status of HOLD# and HLDA# and whether the device is executing from internal
or external program memory. If the 8XC196NT receives an interrupt request
while it is in hold and it is executing code from internal memory, it asserts
INTOUT# immediately. However, if the 8XC196NT is executing code from
external memory, it asserts BREQ# and waits until the external device
deasserts HOLD# to assert INTOUT#. If the 8XC196NT is executing code from
external memory and it receives an interrupt request as it is going into hold
(between the time that an external device asserts HOLD# and the time that the
8XC196NT responds with HLDA#), the 8XC196NT asserts both HLDA# and
INTOUT# and keeps them asserted until the external device deasserts HOLD#.

INTOUT is multiplexed with P2.4 and AINC#.

NMI

Nonmaskable Interrupt

In normal operating mode, a rising edge on NMI causes a vector through the
NMI interrupt at location FF203EH. NMI must be asserted for greater than one
state time to guarantee that it is recognized.

In idle mode, a rising edge on the NMI pin causes the device to return to normal
operation, where the first action is to execute the NMI service routine. After
completion of the service routine, execution resumes at the instruction following
the IDLPD instruction that put the device into idle mode.

In powerdown mode, a rising edge on the NMI pin does not cause the device to
exit powerdown.

ONCE#

On-circuit Emulation

Holding ONCE# low during the rising edge of RESET# places the device into
on-circuit emulation (ONCE) mode. This mode puts all pins into a high-
impedance state, thereby isolating the device from other components in the
system. The value of ONCE# is latched when the RESET# pin goes inactive.
While the device is in ONCE mode, you can debug the system using a clip-on
emulator. To exit ONCE mode, reset the device by pulling the RESET# signal
low. To prevent inadvertent entry into ONCE mode, either configure this pin as
an output or hold it high during reset and ensure that your system meets the V,,
specification (see datasheet).

ONCE# is multiplexed with P2.6.

PO0.7:4

Port 0
This is a high-impedance, input-only port. Port 0 pins should not be left floating.

These pins may individually be used as analog inputs (ACHXx) or digital inputs
(P0.x). While it is possible for the pins to function simultaneously as analog and
digital inputs, this is not recommended because reading port 0 while a
conversion is in process can produce unreliable conversion results.

ANGND and Vg must be connected for port 0 to function.

P0.7:4 are multiplexed with ACH7:4 and PMODE.3:0.

P1.7:0

110

Port 1

This is a standard, bidirectional port that is multiplexed with individually
selectable special-function signals.

Port 1 is multiplexed as follows: P1.0/EPAO, P1.1/EPAL, P1.2/EPA2,
P1.3/EPA3, P1.4/T1CLK, P15/T1DIR, P1.6/T2CLK, and P1.7/T2DIR.

B-8

SIGNAL DESCRIPTIONS

Table B-4. Signal Descriptions (Continued)

Name

Type

Description

P2.7:0

110

Port 2

This is a standard bidirectional port that is multiplexed with individually
selectable special-function signals.

P2.6 is multiplexed with the ONCE# function. If this pin is held low during reset,
the device will enter ONCE mode, so exercise caution if you use this pin for
input. If you choose to configure this pin as an input, always hold it high during
reset and ensure that your system meets the V,, specification (see datasheet)
to prevent inadvertent entry into a test mode.

Port 2 is multiplexed as follows: P2.0/TXD/PVER, P2.1/RXD/PALE#,

P2.2/[EXTINT/PROG#, P2.3/BREQ#, P2.4/INTOUT# AINC#, P2.5/HOLD#,
P2.6/HLDA#/ONCE#/CPVER, P2.7/CLKOUT/PACT#.

P3.7:0

110

Port 3

This is an 8-bit, bidirectional, memory-mapped I/O port with open-drain outputs.
The pins are shared with the multiplexed address/data bus, which has comple-
mentary drivers.

P3.7:0 are multiplexed with AD7:0, SLP7:0, and PBUS.7:0.

P4.7:0

110

Port 4

This is an 8-bit, bidirectional, memory-mapped I/O port with open-drain outputs.
The pins are shared with the multiplexed address/data bus, which has comple-
mentary drivers.

P4.7:0 are multiplexed with AD15:8 and PBUS15:8.

P5.7:0

110

Port 5
This is an 8-bit, bidirectional, memory-mapped 1/O port.

P5.4 is multiplexed with a special test-mode-entry function. If this pin is held low
during reset, the device will enter a reserved test mode, so exercise caution if
you use this pin for input. If you choose to configure this pin as an input, always
hold it high during reset and ensure that your system meets the V,,, specification
(see datasheet) to prevent inadvertent entry into a test mode.

Port 5 is multiplexed as follows: P5.0/ALE/ADV#/SLPALE, P5.1/INST/SLPCS#,

P5.2/WR#/WRL#/SLPWR#, P5.3/RD#/SLPRD#, /SLPINT, P5.5/BHE#/WRH#,
P5.6/READY, and P5.7/BUSWIDTH.

P6.7:0

110

Port 6
This is a standard 8-bit bidirectional port.

Port 6 is multiplexed as follows: P6.0/EPA8/COMPO, P6.1/EPA9/COMP1,
P6.2/T1CLK, P6.3/T1DIR, P6.4/SCO, P6.5/SD0, P6.6/SC1, and P6.7/SD1.

PACT#

Programming Active

During auto programming or ROM-dump, a low signal indicates that
programming or dumping is in progress, while a high signal indicates that the
operation is complete.

PACT# is multiplexed with P2.7 and CLKOUT.

PALE#

Programming ALE

During slave programming, a falling edge causes the device to read a
command and address from the PBUS.

PALE# is multiplexed with P2.1 and RXD.

B-9

8XC196NT USER’S MANUAL Inu®

Table B-4. Signal Descriptions (Continued)

Name Type Description

PBUS.15:0 110 Address/Command/Data Bus
During slave programming, ports 3 and 4 serve as a bidirectional port with
open-drain outputs to pass commands, addresses, and data to or from the
device. Slave programming requires external pull-up resistors.
During auto programming and ROM-dump, ports 3 and 4 serve as a regular
system bus to access external memory. P4.6 and P4.7 are left unconnected;
P1.1 and P1.2 serve as the upper address lines.
Slave programming:
PBUS.7:0 are multiplexed with AD7:0, SLP7:0, and P3.7:0.
PBUS.15:8 are multiplexed with AD15:8 and P4.7:0.
Auto programming:
PBUS.7:0 are multiplexed with AD7:0, SLP7:0, and P3.7:0.
PBUS.13:8 are multiplexed with AD13:8 and P4.5:0; PBUS15:14 are
multiplexed with P1.2:1.

PMODE.3:0 | Programming Mode Select
Determines the programming mode. PMODE is sampled after a device reset
and must be static while the part is operating. (Table 15-6 on page 15-13 lists
the PMODE values and programming modes.)
PMODE.3:0 are multiplexed with P0.7:4 and ACH7:4.

PROG# | Programming Start
During programming, a falling edge latches data on the PBUS and begins
programming, while a rising edge ends programming. The current location is
programmed with the same data as long as PROG# remains asserted, so the
data on the PBUS must remain stable while PROG# is active.
During a word dump, a falling edge causes the contents of an OTPROM
location to be output on the PBUS, while a rising edge ends the data transfer.
PROG# is multiplexed with P2.2 and EXTINT.

PVER) Program Verification
During slave or auto programming, PVER is updated after each programming
pulse. A high output signal indicates successful programming of a location,
while a low signal indicates a detected error.
PVER is multiplexed with P2.0 and TXD.

RD# O Read
Read-signal output to external memory. RD# is asserted only during external
memory reads.
RD# is multiplexed with P5.3 and SLPRD#.

READY | Ready Input

This active-high input signal is used to lengthen external memory cycles for
slow memory by generating wait states in addition to the wait states that are
generated internally.

When READY is high, CPU operation continues in a normal manner with wait
states inserted as programmed in the chip configuration registers. READY is
ignored for all internal memory accesses.

READY is multiplexed with P5.6.

B-10

intel.

SIGNAL DESCRIPTIONS

Table B-4. Signal Descriptions (Continued)

Name Type Description

RESET# lfe} Reset
A level-sensitive reset input to and open-drain system reset output from the
microcontroller. Either a falling edge on RESET# or an internal reset turns on a
pull-down transistor connected to the RESET# pin for 16 state times. In the
powerdown and idle modes, asserting RESET# causes the chip to reset and
return to normal operating mode. The microcontroller resets to FF2080H in
internal ROM or F2080H in external memory.

RXD 110 Receive Serial Data
In modes 1, 2, and 3, RXD receives serial port input data. In mode O, it
functions as either an input or an open-drain output for data.
RXD is multiplexed with P2.1 and PALE#.

SC1:.0 110 Clock Pins for SSIO0 and 1
For handshaking mode, configure SC1:0 as open-drain outputs.
This pin carries a signal only during receptions and transmissions. When the
SSIO port is idle, the pin remains either high (with handshaking) or low (without
handshaking).
SCO is multiplexed with P6.4, and SC1 is multiplexed with P6.6.

SD1:.0 110 Data Pins for SSIO0 and 1
SDO is multiplexed with P6.5, and SD1 is multiplexed with P6.7.

SLP7:0 110 Slave Port Address/Data bus
Slave port address/data bus in multiplexed mode and slave port data bus in
demultiplexed mode. In multiplexed mode, SLP1 is the source of the internal
control signal, SLP_ADDR.
SLP7:0 are multiplexed with AD7:0, P3.7:0, and PBUS.7:0.

SLPALE | Slave Port Address Latch Enable
Functions as either a latch enable input to latch the value on SLP1 (with a
multiplexed address/data bus) or as the source of the internal control signal,
SLP_ADDR (with a demultiplexed address/data bus).
SLPALE is multiplexed with P5.0, ADV#, and ALE.

SLPCS# | Slave Port Chip Select
SLPCS# must be held low to enable slave port operation.
SLPCS# is multiplexed with P5.1 and INST.

SLPINT (0] Slave Port Interrupt
This active-high slave port output signal can be used to interrupt the master
processor.
SLPINT is multiplexed with P5.4 and a special test-mode-entry pin . See P5.7:0
for special considerations.

SLPRD# | Slave Port Read Control Input
This active-low signal is an input to the slave. Data from the P3_REG or
SLP_STAT register is valid after the falling edge of SLPRD#.
SLPRD# is multiplexed with P5.3 and RD#.

SLPWR# | Slave Port Write Control Input

This active-low signal is an input to the slave. The rising edge of SLPWR#
latches data on port 3 into the P3_PIN or SLP_CMD register.

SLPWRf# is multiplexed with P5.2, WR#, and WRL#.

B-11

8XC196NT USER’S MANUAL Inu®

Table B-4. Signal Descriptions (Continued)

Name Type Description

T1CLK | Timer 1 External Clock
External clock for timer 1. Timer 1 increments (or decrements) on both rising
and falling edges of T1CLK. Also used in conjunction with T1DIR for quadrature
counting mode.
and
External clock for the serial I/O baud-rate generator input (program selectable).
T1CLK is multiplexed with P6.2.

T2CLK | Timer 2 External Clock
External clock for timer 2. Timer 2 increments (or decrements) on both rising
and falling edges of T2CLK. Also used in conjunction with T2DIR for quadrature
counting mode.
T2CLK is multiplexed with P1.0 and EPAO.

T1DIR | Timer 1 External Direction
External direction (up/down) for timer 1. Timer 1 increments when T1DIR is high
and decrements when it is low. Also used in conjunction with T1CLK for
quadrature counting mode.
T1DIR is multiplexed with P6.3.

T2DIR | Timer 2 External Direction
External direction (up/down) for timer 2. Timer 2 increments when T2DIR is high
and decrements when it is low. Also used in conjunction with T2CLK for
quadrature counting mode.
T2DIR is multiplexed with P1.2 and EPA2.

TXD O Transmit Serial Data
In serial I/O modes 1, 2, and 3, TXD transmits serial port output data. In mode
0, it is the serial clock output.
TXD is multiplexed with P2.0 and PVER.

Ve PWR | Digital Supply Voltage
Connect each V. pin to the digital supply voltage.

Vep PWR | Programming Voltage
During programming, the V, pin is typically at +12.5 V (Vp, voltage).
Exceeding the maximum V,, voltage specification can damage the device.
Vpp also causes the device to exit powerdown mode when it is driven low for at
least 50 ns. Use this method to exit powerdown only when using an external
clock source because it enables the internal phase clocks, but not the internal
oscillator. See “Driving the Vpp Pin Low” on page 13-5.
On devices with no internal nonvolatile memory, connect Vg, to V.

Vger PWR | Reference Voltage for the A/D Converter
This pin also supplies operating voltage to both the analog portion of the A/D
converter and the logic used to read port 0.

Vgs GND | Digital Circuit Ground

Connect each Vgg pin to ground through the lowest possible impedance path.

B-12

SIGNAL DESCRIPTIONS

Table B-4. Signal Descriptions (Continued)

Name Type Description

WR# O Write
The chip configuration register 0 (CCRO) determines whether this pin functions
as WR# or WRL#. CCR0.2=1 selects WR#; CCRO0.2=0 selects WRL#.
This active-low output indicates that an external write is occurring. This signal is
asserted only during external memory writes.
WR# is multiplexed with P5.2, SLPWR#, and WRL#.

WRH# (0] Write High
The chip configuration register 0 (CCRO) determines whether this pin functions
as BHE# or WRH#. CCRO0.2=1 selects BHE#; CCR0.2=0 selects WRH#.
During 16-bit bus cycles, this active-low output signal is asserted for high-byte
writes and word writes to external memory. During 8-bit bus cycles, WRH# is
asserted for all write operations.
WRH# is multiplexed with P5.5 and BHE#.

WRL# O Write Low
The chip configuration register 0 (CCRO) determines whether this pin functions
as WR# or WRL#. CCRO0.2=1 selects WR#; CCRO0.2=0 selects WRL#.
During 16-bit bus cycles, this active-low output signal is asserted for low-byte
writes and word writes. During 8-bit bus cycles, WRL# is asserted for all write
operations.
WRL# is multiplexed with P5.2, SLPWR#, and WR#.

XTAL1 | Input Crystal/Resonator or External Clock Input
Input to the on-chip oscillator and the internal clock generators. The internal
clock generators provide the peripheral clocks, CPU clock, and CLKOUT
signal. When using an external clock source instead of the on-chip oscillator,
connect the clock input to XTALL. The external clock signal must meet the V,,
specification for XTAL1 (see datasheet).

XTAL2 (0] Inverted Output for the Crystal/Resonator

Output of the on-chip oscillator inverter. Leave XTAL2 floating when the design
uses a external clock source instead of the on-chip oscillator.

B-13

8XC196NT USER’S MANUAL

B.3 DEFAULT CONDITIONS

Table B-6 lists the default functions of the 1/0 and control pins of the 8XC196NT with their val-
ues during various operating conditions. Table B-5 defines the symbols used to represent the pin
status. Refer to the DC Characteristics table in the datasheet for actual specificatigns\vipr V

N

Vo, and .
Table B-5. Definition of Status Symbols
Symbol Definition Symbol Definition
0 Voltage less than or equal to Vg, V, MDO Medium pull-down
1 Voltage greater than or equal to Vo, Vi, MD1 Medium pull-up
Hiz High impedance WKO Weak pull-down
Loz0 Low impedance; strongly driven low WK1 Weak pull-up
Lozl Low impedance; strongly driven high ODIO Open-drain I/O
Table B-6. 8XC196NT Pin Status
Port Pins Multip_lexed Status During Status During Status During
With Reset Idle Powerdown
P0.7:4 ACH7:4 HiZ Hiz HiZ
P1.7:0 EPA7:0 WK1 (Note 3) (Note 3)
P2.0 TXD WK1 (Note 3) (Note 3)
P2.1 RXD WK1 (Note 3) (Note 3)
P2.2 EXTINT WK1 (Note 3) (Note 3)
P2.3 BREQ# WK1 (Note 3) (Note 3)
P2.4 INTOUT# WK1 (Note 3) (Note 3)
P2.5 HOLD# WK1 (Note 3) (Note 3)
P2.6 HLDA# WK1 (Note 3) (Note 3)
P2.7 CLKOUT CLK(E(‘)JZTOflCt'Ve' (Note 3) (Note 4)
P3.7:0 AD7:0 WK1 (Note 6) (Note 6)
P4.7:0 AD15:8 WK1 (Note 6) (Note 6)
EPORT.3:0 |AD19:17 WK1 (Note 7) (Note 7)
P5.0 ALE WK1 (Note 1) (Note 1)
P5.1 INST WKO (Note 1) (Note 1)
P5.2 WR#/WRL# WK1 (Note 3) (Note 3)
P5.3 RD# WK1 (Note 3) (Note 3)
P5.4 SLPINT WK1 (Note 3) (Note 3)
P5.5 BHE#/WRH# WK1 (Note 1) (Note 1)
P5.6 READY WK1 (Note 2) (Note 2)
P5.7 BUSWIDTH WK1 (Note 2) (Note 2)
P6.1:0 EPA9:8 WK1 (Note 3) (Note 3)
P6.2 T1CLK WK1 (Note 3) (Note 3)

B-14

intel.

SIGNAL DESCRIPTIONS

Table B-6. 8XC196NT Pin Status (Continued)

Port Pins Multip_lexed Status During Status During Status During
With Reset Idle Powerdown

P6.3 T1DIR WK1 (Note 3) (Note 3)
P6.4 SCO WK1 (Note 3) (Note 3)
P6.5 SDO WK1 (Note 3) (Note 3)
P6.6 SC1 WK1 (Note 3) (Note 3)
P6.7 SD1 WK1 (Note 3) (Note 3)
EA# — HiZ HiZ HiZ
NMI — HiZ HiZ HiZ
RESET# — WK1 WK1 WK1
Vop — HiZ LoZ1 LoZ1
XTAL1 — Osc input, HiZ Osc input, HiZ Osc input, HiZ
XTAL2 — Osc output, LoZ0/1 Osc output, LoZ0/1 (Note 5)
NOTES:

1. If P5_MODE.x =0, portis as programmed.
If P5_MODE.x =1 and HLDA# =1, P5.0 and P5.1 are LoZ0; P5.5is LoZ1.
If P5_MODE.x =1 and HLDA# = 0, port is HiZ.

whn

No ok

If P5_MODE.x =0, port is as programmed. If P5_MODE.x = 1, port is HiZ.
If Px_MODE.x =0, port is as programmed.
If Px_MODE.x = 1, pin is as specified by Px_DIR and the associated peripheral.
If P2_MODE.7 =0, pin is as programmed. If P2_MODE.7 = 1, pin is LoZO0.
If XTAL1 = 0, pin is LoZ1. If XTAL1 =1, pin is LoZ0.

If EA# = 0, port is HiZ. If EA# = 1, port is open-drain 1/0O (ODIO).

Pins configured as address are high-impedance; pins configured as I/O remain unchanged.

B-15

intgl.

Registers

APPENDIX C
REGISTERS

This appendiprovides réerence information about the device registers. Table C-1 lists the mod-
ules and major components of the device with their related configuration and status registers. Ta-
ble C-2 lists the registers, arranged alphabetically by mnemonic, along with their names,
addresses, and reset values. Following the tables, individual descriptions of the registers are ar-
ranged alphabetically by mnemonic.

Table C-1. Modules and Related Registers

A/D Converter Chip Configuration CPU EPA
AD_COMMAND CCRO ONES_REG COMPx_CON (x=0-1)
AD_RESULT CCR1 PSW COMPx_TIME (x = 0-1)
AD_TEST CCR2 SP EPA_MASK
AD_TIME PPW (or SP_PPW) ZERO_REG EPA_MASK1

USFR EPA_PEND
EPA_PEND1
EPAIPV

EPAX_CON (x = 0-9)
EPAX_TIME (x = 0-9)

Extended Port 1/0 Ports Interrupts and PTS Memory Control
EP_DIR Px DIR (x=1,2,5,6) INT_MASK IRAM_CON
EP_MODE Px_MODE (x=1, 2,5, 6) INT_MASK1 WSR
EP_PIN Px_PIN (x = 0-6) INT_PEND
EP_REG Px_REG (x=1-6) INT_PEND1

P34_DRV PTSSEL

PTSSRV
Serial Port Slave Port Sync?).(ieori_all)Port (IiTiisz)

SBUF_RX SLP_CMD SSIO_BAUD TIMERX
SBUF_TX SLP_CON SSIOx_BUF TxCONTROL
SP_BAUD SLP_STAT SSIOx_CON WATCHDOG
SP_CON
SP_STATUS

C-1

8XC196NT USER’S MANUAL

intel.

Table C-2. Register Name, Address, and Reset Status

Binary Reset Value

AD_COMMAND A/D Command 1FACH 1100 0000
AD_RESULT A/D Result 1FAAH 0111 1111 1100 0000
AD_TEST A/D Test 1FAEH 1100 0000
AD_TIME A/D Time 1FAFH 1111 1111
CCRO Chip Configuration 0 FF2018H XXXX XXXX
CCR1 Chip Configuration 1 FF201AH XXXX XXXX
CCR2 Chip Configuration 2 FF201CH XXXX XXXX
COMPO_CON EPA Compare 0 Control 1F88H 0000 0000
COMPO_TIME EPA Compare 0 Time 1F8AH 0000 0000 0000 0000
COMP1_CON EPA Compare 1 Control 1F8CH 0000 0000
COMP1_TIME EPA Compare 1 Time 1F8EH 0000 0000 0000 0000
EP_DIR Extended Port I/O Direction 1FE3H 1111 1111
EP_MODE Extended Port Mode 1FE1H 1111 1111
EP_PIN Extended Port Pin Input 1FE7H XXXX XXXX
EP_REG Extended Port Data Output 1FES5H 0000 0000
EPA_MASK EPA Mask 1FAOH 0000 0000 0000 0000
EPA_MASK1 EPA Mask 1 1FA4H 0000 0000
EPA_PEND EPA Pending 1FA2H 0000 0000 0000 0000
EPA_PEND1 EPA Pending 1 1FAG6H 0000 0000
EPAO_CON EPA Capture/Comp 0 Control 1F60H 0000 0000
EPAO_TIME EPA Capture/Comp O Time 1F62H 0000 0000 0000 0000
EPA1_CON EPA Capture/Comp 1 Control 1F64H 1111 1110 0000 0000
EPA1_TIME EPA Capture/Comp 1 Time 1F66H 0000 0000 0000 0000
EPA2_CON EPA Capture/Comp 2 Control 1F68H 0000 0000
EPA2_TIME EPA Capture/Comp 2 Time 1F6AH 0000 0000 0000 0000
EPA3_CON EPA Capture/Comp 3 Control 1F6CH 1111 1110 0000 0000
EPA3_TIME EPA Capture/Comp 3 Time 1F6EH 0000 0000 0000 0000
EPA4_CON EPA Capture/Comp 4 Control 1F70H 0000 0000
EPA4_TIME EPA Capture/Comp 4 Time 1F72H 0000 0000 0000 0000
EPA5_CON EPA Capture/Comp 5 Control 1F74H 0000 0000
EPAS5_TIME EPA Capture/Comp 5 Time 1F76H 0000 0000 0000 0000
EPA6_CON EPA Capture/Comp 6 Control 1F78H 0000 0000
EPA6_TIME EPA Capture/Comp 6 Time 1F7AH 0000 0000 0000 0000

C-2

intel.

REGISTERS

Table C-2. Register Name, Address, and Reset Status (Continued)

Binary Reset Value

Register Register Name Hex
Mnemonic Address High Low
EPA7_CON EPA Capture/Comp 7 Control 1F7CH 0000 0000
EPA7_TIME EPA Capture/Comp 7 Time 1F7EH 0000 0000 0000 0000
EPA8_CON EPA Capture/Comp 8 Control 1F80H 0000 0000
EPA8_TIME EPA Capture/Comp 8 Time 1F82H 0000 0000 0000 0000
EPA9_CON EPA Capture/Comp 9 Control 1F84H 0000 0000
EPA9_TIME EPA Capture/Comp 9 Time 1F86H 0000 0000 0000 0000
EPAIPV EPA Interrupt Priority Vector 1FA8H 0000 0000
INT_MASK Interrupt Mask 0008H 0000 0000
INT_MASK1 Interrupt Mask 1 0013H 0000 0000
INT_PEND Interrupt Pending 0009H 0000 0000
INT_PEND1 Interrupt Pending 1 0012H 0000 0000
IRAM_CON Internal RAM Control 1FEOH 0000 0000
ONES_REG Ones Register 0002H 1111 1111 1111 1111
PO_PIN Port 0 Pin Input 1FDAH XXXX XXXX
P1 DIR Port 1 1/0 Direction 1FD2H 1111 1111
P1_MODE Port 1 Mode 1FDOH 0000 0000
P1_PIN Port 1 Pin Input 1FD6H XXXX XXXX
P1_REG Port 1 Data Output 1FD4H 1111 1111
P2_DIR Port 2 1/0 Direction 1FCBH 0111 1111
P2_MODE Port 2 Mode 1FC9H 1000 0000
P2_PIN Port 2 Pin Input 1FCFH IXXX XXXX
P2_REG Port 2 Data Output 1FCDH 0111 1111
P3_PIN Port 3 Pin Input 1FFEH XXXX XXXX
P3_REG Port 3 Data Output 1FFCH 1111 1111
P34_DRV Port 3/4 Push-pull Enable 1FF4H 0000 0000
P4_PIN Port 4 Pin Input 1FFFH XXXX XXXX
P4_REG Port 4 Data Output 1FFDH 1111 1111
P5_DIR Port 5 1/0 Direction 1FF3H 1111 1111
P5_MODE Port 5 Mode 1FF1H 1000 0000
P5_PIN Port 5 Pin Input 1FF7H IXXX XXXX
P5_REG Port 5 Data Output 1FF5H 1111 1111
P6_DIR Port 6 1/0 Direction 1FD3H 1111 1111
P6_MODE Port 6 Mode 1FD1H 0000 0000

C-3

8XC196NT USER’S MANUAL

N

Table C-2. Register Name, Address, and Reset Status (Continued)

tel.

Binary Reset Value

Register Register Name Hex

Mnemonic Address High Low
P6_PIN Port 6 Pin Input 1FD7H XXXX XXXX
P6_REG Port 6 Data Output 1FD5H 1111 1111
PPW (or SP_PPW) | Programming Pulse Width
PSW Program Status Word
PTSSEL PTS Select 0004H 0000 0000 0000 0000
PTSSRV PTS Service 0006H 0000 0000 0000 0000
SBUF_RX Serial Port Receive Buffer 1FB8H 0000 0000
SBUF_TX Serial Port Transmit Buffer 1FBAH 0000 0000
SLP_CMD Slave Port Command 1FFAH XXXX XXXX
SLP_CON Slave Port Control 1FFBH XXXX 0000
SLP_STAT Slave Port Status 1FF8H XXXX X110
SP Stack Pointer 0018H XXXX XXXX XXXX XXXX
SP_BAUD Serial Port Baud Rate 1FBCH 0000 0000 0000 0000
SP_CON Serial Port Control 1FBBH 1100 0000
SP_STATUS Serial Port Status 1FB9H 0000 1000
SSIO_BAUD Syn Serial Port Baud Rate 1FB4H OXXX XXXX
SSIO0_BUF Syn Serial Port 0 Buffer 1FBOH 0000 0000
SSIO0_CON Syn Serial Port 0 Control 1FB1H 0000 0000
SSIO1_BUF Syn Serial Port 1 Buffer 1FB2H 0000 0000
SSIO1_CON Syn Serial Port 1 Control 1FB3H 0000 0000
T1CONTROL Timer 1 Control 1F98H 0000 0000
T2CONTROL Timer 2 Control 1F9CH 0000 0000
TIMER1 Timer 1 Value 1F9AH 0000 0000 0000 0000
TIMER2 Timer 2 Value 1F9EH 0000 0000 0000 0000
USFR UPROM Special Function Reg 1FF6H XXXX XXXX
WATCHDOG Watchdog Timer 000AH XXXX XXXX
WSR Window Selection 0014H 0000 0000
ZERO_REG Zero Register 0000H 0000 0000 0000 0000

C-4

intel.

REGISTERS

AD_COMMAND

7

AD_COMMAND

Address: 1FACH
Reset State: COH

The A/D command (AD_COMMAND) register selects the A/D channel number to be converted,
controls whether the A/D converter starts immediately or with an EPA command, and selects the
conversion mode.

M1 MO H GO ACH2 ACH1 ACHO

Bit
Number

Bit
Mnemonic

Function

7:6

Reserved; for compatibility with future devices, write zeros to these bits.

5:4

M1:0

A/D Mode (Note 1)
These bits determine the A/D mode.
M1 MO Mode

0 0 10-bit conversion

0 1 8-bit conversion

1 0 threshold detect high
1 1 threshold detect low

GO

A/D Conversion Trigger (Note 2)

Writing this bit arms the A/D converter. The value that you write to it
determines at what point a conversion is to start.

1 = start immediately
0 = EPA initiates conversion

2:0

ACH2:0

A/D Channel Selection

Write the A/D conversion channel number to these bits. The 8XC196NT
has four A/D channel inputs, numbered 4-7.

NOTES:

1. While a threshold-detection mode is selected for an analog input pin, no other conversion can be
started. If another value is loaded into AD_COMMAND, the threshold-detection mode is disabled
and the new command is executed.

2. ltisthe act of writing to the GO bit, rather than its value, that starts a conversion. Even if the GO
bit has the desired value, you must set it again to start a conversion immediately or clear it again
to arm it for an EPA-initiated conversion.

C-5

8XC196NT USER’S MANUAL Inu®

AD_RESULT (Read)

AD_RESULT (Read) Address: 1FAAH
Reset State: 7F80H

The A/D result (AD_RESULT) register consists of two bytes. The high byte contains the eight most-
significant bits from the A/D converter. The low byte contains the two least-significant bits from a ten-
bit A/D conversion, indicates the A/D channel number that was used for the conversion, and indicates
whether a conversion is currently in progress.

15 8
‘ ADRLT9 ‘ ADRLTS ‘ ADRLT7 ‘ ADRLT6 H ADRLTS ‘ ADRLT4 ‘ ADRLT3 ‘ ADRLT2 ‘
7 0
| ADRLT1 ‘ ADRLTO ‘ — ‘ — || status ‘ ACH2 ‘ ACH1 ‘ ACHO |
Bit Bit . Function
Number Mnemonic
15:6 ADRLT9:0 | A/D Result
These bits contain the A/D conversion result.

5:4 — Reserved. These bits are undefined.

STATUS AID Status

Indicates the status of the A/D converter. Up to 8 state times are required
to set this bit following a start command. When testing this bit, wait at
least the 8 state times.

1 = A/D conversion is in progress

0=A/Disidle

2:0 ACH2:0 A/D Channel Number

These bits indicate the A/D channel number that was used for the
conversion. The 8XC196NT has four A/D channel inputs, numbered 4-7

C-6

intel.

REGISTERS

e)

AD_RESULT (Write)

AD_RESULT (Writ
Address: 1FAAH
Reset State: 7F80H

The high byte of the A/D result (AD_RESULT) register can be written to set the reference voltage for
the A/D threshold-detection modes.

15 8
| REFV7 | REFV6 | REFV5 | REFV4 || REFV3 | REFV2 | REFV1 | REFVO |
7 0

Bit Bit Function

Number Mnemonic

15:8 REFV7:0 Reference Voltage
These bits specify the threshold value. This selects a reference voltage
which is compared with an analog input pin. When the voltage on the
analog input pin crosses over (detect high) or under (detect low) the
threshold value, the A/D conversion complete interrupt pending bit is set.
Use the following formula to determine the value to write this register for
a given threshold voltage.

desired threshold voltage x 256
reference voltage =
Vgeee—ANGND
7:0 — Reserved; for compatibility with future devices, write zeros to these bits.

C-7

8XC196NT USER’S MANUAL Inu®

AD_TEST

AD_TEST

Address: 1FAEH
Reset State: COH

The A/D test (AD_TEST) register enables conversions on ANGND and Vg and specifies
adjustments for DC offset errors. Its functions allow you to perform two conversions, one on ANGND
and one on V.. With these results, a software routine can calculate the offset and gain errors.

7 0
— — — — || oFm OFFO0 TV TE
Bit Bit Function
Number Mnemonic
7:4 — Reserved; for compatibility with future devices, write zeros to these bits.
3:2 OFF1:0 Offset
These bits allows you to set the zero offset point.
OFF1 OFFO
0 0 no adjustment
0 1 add 2.5 mV
1 0 subtract 2.5 mV
1 1 subtract 5.0 mV
1 TV Test Voltage
This bit selects the test voltage for a test mode conversion.(The TE bit
must be set to enable test mode.)
1= Viee
0 = ANGND
0 TE Test Enable
This bit determines whether normal or test mode conversions will be
performed. A normal conversion converts the analog signal input on one
of the analog input channels. A test conversion allows you to perform a
conversion on ANGND or Vg, selected by the TV bit.
1=test
0 = normal

C-8

Inbl® REGISTERS

AD_TIME
AD TIME Address: 1FAFH
- Reset State: FFH

The A/D time (AD_TIME) register programs the sample window time and the conversion time for each
bit.

7 0
SAM2 SAM1 SAMO CONV4 ‘ ‘ CONV3 CONV2 CONV1 CONVO
Bit Bit Function
Number Mnemonic
75 SAM2:0 A/D Sample Time

These bits specify the sample time. Use the following formula to
compute the sample time.

F 2

_ Tsam*Fosc~

SAM = 1to7
Toam = the sample time, in psec, from the data sheet
Fosc = the XTAL1 frequency, in MHz

4:0 CONV4:0 A/D Convert Time

These bits specify the conversion time. Use the following formula to
compute the conversion time.

CONV = I:TCONV x Fosc_S})
2xB
where:
CONV= 2to 31
Teony = the conversion time, in psec, from the data sheet
Fosc = the XTAL1 frequency, in MHz
B = the number of bits to be converted (8 or 10)

NOTES:

1. The register programs the speed at which the A/D can run — not the speed at which it can con-
vert correctly. Consult the data sheet for recommended values.

2. Initialize the AD_TIME register before initializing the AD_COMMAND register.

3. Do not write to this register while a conversion is in progress; the results are unpredictable.

C-9

8XC196NT USER’S MANUAL Inu®

CCRO

CCRO Address: FF2018H
Reset State: XXH

The chip configuration 0 (CCRO) register controls powerdown mode, bus-control signals, and internal
memory protection. Three of its bits combine with two bits of CCR1 to control wait states and bus
width.

7 0
LOC1 LOCO IRC1 IRCO ‘ ‘ ALE WR BWO PD
Bit Bit Function
Number Mnemonic

7:6 LOC1:0 Lock Bits
Determine the programming protection scheme for internal memory.
LOC1 LOCO
0 0 read and write protect
0 1 read protect only
1 0 write protect only
1 1 no protection

5:4 IRC1:0 Internal Ready Control

These two bits, along with IRC2 (CCR1.1), limit the number of wait states
that can be inserted while the READY pin is held low. Wait states are
inserted into the bus cycle either until the READY pin is pulled high or
until this internal number is reached.

IRC2 IRC1 IRCO

0 0 0 zero wait states

0 X 1 illegal

0 1 X illegal

1 0 0 one wait state

1 0 1 two wait states

1 1 0 three wait states

1 1 1 infinite

3 ALE Address Valid Strobe and Write Strobe
WR These bits define which bus-control signals will be generated during

external read and write cycles.

ALE WR

0 0 address valid with write strobe mode
(ADV#, RD#, WRL#, WRH#)

0 1 address valid strobe mode
(ADV#, RD#, WR#, BHE#)

1 0 write strobe mode
(ALE, RD#, WRL#, WRH#)

1 1 standard bus-control mode

(ALE, RD#, WR#, BHE#)

C-10

intel.

REGISTERS
CCRO
CCRO (Continued) o A?(jsrte?s: FFZO;.)?E
eset State:

The chip configuration 0 (CCRO) register controls powerdown mode, bus-control signals, and internal
memory protection. Three of its bits combine with two bits of CCR1 to control wait states and bus

width.
7 0
LOC1 LOCO IRC1 IRCO ‘ ‘ ALE WR BWO PD
Bit Bit Function
Number Mnemonic
1 BWO Buswidth Control
This bit, along with the BW1 bit (CCR1.2), selects the bus width.
BW1 BWO
0 0 illegal
0 1 16-bit only
1 0 8-bit only
1 1 BUSWIDTH pin controlled
0 PD Powerdown Enable
Controls whether the IDLPD #2 instruction causes the device to enter
powerdown mode. Clearing this bit at reset can prevent accidental entry
into powerdown mode.
1 = enable powerdown mode
0 = disable powerdown mode

C-11

8XC196NT USER’S MANUAL

CCR1

intel.

CCR1

Address:
Reset State:

FF201AH
XXH

The chip configuration 1 (CCR1) register enables the watchdog timer and selects the bus timing
mode. Two of its bits combine with three bits of CCRO to control wait states and bus width. Another bit

controls whether CCR2 is loaded.
7

0

MSEL1

MSELO

0 1 ‘ ‘ WDE BW1 IRC2 LDCCB2

Bit
Number

Bit
Mnemonic

Function

7:6

MSEL1:0

External Access Timing Mode Select
These bits control the bus-timing modes.

MSEL1 MSELO

0 0 standard mode plus one wait state
0 1 long read/write

1 0 long read/write with early address
1 1 standard mode

To guarantee device operation, write zero to this bit.

To guarantee device operation, write one to this bit.

WDE

Watchdog Timer Enable

Selects whether the watchdog timer is always enabled or enabled the
first time it is cleared.

1 = enabled first time it is cleared
0 = always enabled

BW1

Buswidth Control
This bit, along with the BWO bit (CCRO0.1), selects the bus width.

BW1 BWO

0 0 illegal

0 1 16-bit only

1 0 8-bit only

1 1 BUSWIDTH pin controlled

IRC2

Ready Control

This bit, along with IRCO (CCRO0.4) and IRC1 (CCRO.5), limits the
number of wait states that can be inserted while the READY pin is held
low. Wait states are inserted into the bus cycle either until the READY
pin is pulled high or until this internal number is reached.

IRC2 IRC1 IRCO

0 zero wait states
illegal

illegal

one wait state
two wait states
three wait states
infinite

PR RrPROOO
PR OORXO
RPOoORrOXE

LDCCB2

Load CCB2
Setting this bit causes CCB2 to be read.

C-12

|nte|® REGISTERS
CCR2
CCR2 Address: FF201CH
Reset State: XXH

The chip configuration register 2 (CCR2) supports extended addressing. It selects either 64-Kbyte or
1-Mbyte addressing mode and controls whether the internal OTPROM is mapped into both page
OFFH and page O0H or into page FFH only. This register is loaded from CCB2 (or PCCB2) if the
LDCCB2 bit (bit 0) of CCR1 is set; otherwise, it is loaded with FFH

7 0
— — — - || - REMAP | MODE64 —
Bit Bit . Function
Number Mnemonic
7:3 — Reserved; always write as ones.
2 REMAP OTPROM Mapping
Controls the internal OTPROM mapping.
0 = maps to page FFH only
1 = maps to page 00H and FFH
1 MODEG64 Addressing Mode:
Selects 64-Kbyte or 1-Mbyte addressing.
0 = selects 1-Mbyte addressing
1 = selects 64-Kbyte addressing
0 — Reserved; always write as zero.

C-13

8XC196NT USER’S MANUAL Inu®

COMPx_CON

COMPx_CON

x=0-1

Address: Table C-3
Reset State:

The EPA compare control (COMPx_CON) registers determine the function of the EPA compare

channels.
7

B

CE

M1 MO H RE AD ROT RT

Bit
Number

Bit
Mnemonic

Function

7

B

Time Base Select

Specifies the reference timer.

0 =timer 1 is the reference timer and timer 2 is the opposite timer
1 =timer 2 is the reference timer and timer 1 is the opposite timer

A compare event (start of an A/D conversion; clearing, setting, or
toggling an output pin; and/or resetting either timer) occurs when the
reference timer matches the time programmed in the event-time register.

CE

Compare Enable

This bit enables the compare function.
0 = compare function disabled

1 = compare function enabled

5:4

M1:0

EPA Mode Select
Specifies the type of compare event.
M1 MO

0
0
1
1

no output

clear output pin
set output pin
toggle output pin

RORFRO

RE

Re-enable

Allows a compare event to continue to execute each time the event-time
register (COMPx_TIME) matches the reference timer rather than only
upon the first time match.

0 = compare function will drive the output only once
1 = compare function always enabled

AD

A/D Conversion

Allows the EPA to start an A/D conversion that has been previously set
up in the A/D control registers. To use this feature, you must select the
EPA as the conversion source in the AD_CONTROL register.

1 = EPA compare event triggers an A/D conversion
0 = causes no A/D action

C-14

L]
Inbl® REGISTERS
COMPx_CON

COMPx_CON Address: Table C-3

(Continued) Reset State:

The EPA compare control (COMPx_CON) registers determine the function of the EPA compare

channels.

7 0

B CE M1 mo || REe AD ROT RT
Bit Bit Function
Number Mnemonic

1 ROT Reset Opposite Timer
Selects the timer that is to be reset if the RT bit is set.
0 = selects the reference timer for possible reset
1 = selects the opposite timer for possible reset
The state of the TB bit determines which timer is the reference timer and
which timer is the opposite timer.

0 RT Reset Timer
This bit controls whether the timer selected by the ROT bit will be reset
1 = resets the timer selected by the ROT bit
0 = disables the reset function

Table C-3. COMP x_CON Addresses and Reset Values

Register Address Reset Value
COMPO_CON 1F88H 00H
COMP1_CON 1F8CH 00H

C-15

8XC196NT USER’S MANUAL

N

tel.

COMPx_TIME
COMPx_TIME Address: Table C-4
Xx=0-1 Reset State:

The EPA compare x time (COMPx_TIME) registers are the event-time registers for the EPA compare
channels; they are functionally identically to the EPAx_TIME registers. The EPA triggers a compare
event when the reference timer matches the value in COMPx_TIME.

15 8
‘ EPA Event Time Value (high byte) ‘
7 0
‘ EPA Event Time Value (low byte) ‘
Nuiiger Function
15:0 EPA Event Time Value
Write the desired compare event time to this register.

C-16

Table C-4. COMP x_TIME Addresses and Reset Values

Register Address Reset Value
COMPO_TIME 1F8AH 0000H
COMP1_TIME 1F8EH 0000H

Intet@ REGISTERS
EP_DIR

EP DIR Address: 1FE3H

- Reset State: FFH

The extended port I/O direction (EP_DIR) register determines the 1/O mode for each EPORT pin. The
register settings for an open-drain output or a high-impedance input are identical. To use an open-
drain output configuration, an external pull-up is required. To use a high-impedance input configu-
ration, the corresponding bit in EP_REG must be set.

This bit configures EPORT.x as a complementary output or an
input/open-drain output.

1 = input/open-drain output

0 = complementary output

7 0
— — — — || Pns PIN2 PIN1 PINO
Bit Bit . Function

Number Mnemonic
7:4 — Reserved; always write as ones.
3:0 PIN3:0 Extended Address Port Pin x Direction

C-17

8XC196NT USER’S MANUAL Inu®

EP_MODE

Address: 1FE1H

EP_MODE
Reset State: FFH

Each bit in the extended port mode (EP_MODE) register determines whether the corresponding pin
functions as a standard 1/O port pin or is used as an extended address port (EPORT) pin.

7 0
— — — — ‘ ‘ PIN3 PIN2 PINL PINO
Bit Bit Function

Number Mnemonic
7:4 — Reserved; always write as zeros.
3.0 PIN3:0 Extended Address Port Pin x Mode
This bit determines the mode of EPORT.x:
0 = standard 1/O port pin
1 = extended address port pin

C-18

Inbl® REGISTERS

EP_PIN

Address: 1FE7H

EP_PIN
Reset State: XXH

The extended port input (EP_PIN) register contains the current state of each port pin, regardless of
the pin mode setting.

7 0
— — — — ‘ ‘ PIN3 PIN2 PINL PINO
Bit Bit Function

Number Mnemonic
7:4 — Reserved; always write as zeros.
3.0 PIN3:0 Extended Address Port Pin x Input
This bit contains the current state of EPORT.x.

[| C-19

8XC196NT USER’S MANUAL Inu®

EP_REG

EP_

REG

Address: 1FE5H
Reset State: O0H

For pins configured as I/O pins, write the data to be driven out by output pins into the corresponding
EP_REG.x bits. Set the EP_REG.x bits for input pins. For pins configured as extended-address lines,
write the value of the memory page (page 00H—0FH) that is to be accessed by non-extended instruc-

tions into the EP_REG.x bits.

7 0
— — — — || Pns PIN2 PIN1 PINO
Bit Bit . Function

Number Mnemonic
7:4 — Reserved; always write as zeros.
3.0 PIN3:0 Extended Address Port Pin x Output

If EPORT.x is to be used as an output, write the data that it is to drive
out.
If EPORT.x is to be used as an input, set this bit.

If EPORT.x is to be used as an address line, write the correct value for
the memory page to be accessed by non-extended instructions.

C-20

Inbl® REGISTERS

EPA_MASK
EPA_MASK Address: 1FAOH
- Reset State: 0000H

The EPA interrupt mask (EPA_MASK) register enables or disables (masks) interrupts associated with
the multiplexed EPAX interrupt

15 8
| EPa4 | EPAs | EPA6 | EPA7 || EPA8 | EPA9 | OVRO | OVRL |
7 0
| ovRz2 | o3 | ovra | OwRs || OVR6 | OWR7 | OVRs | OVR9 |
Bit .
Number Function
15:10 Setting this bit enables the corresponding interrupt as a multiplexed EPAXx interrupt
source.The multiplexed EPAXx interrupt is enabled by setting its interrupt enable bit in the
interrupt mask register (INT_MASK.0 = 1).

C-21

8XC196NT USER’S MANUAL Inu®

EPA_MASK1

EPA_MASK1

Address: 1FA4H
Reset State: O0H

The EPA interrupt mask 1 (EPA_MASKZ1) register enables or disables (masks) interrupts associated
with the multiplexed EPAX interrupt.

7 0
— — — — || compo | compi | OVRTMI | OVRTM2
Bit .
Number Function
7:4 Reserved; for compatibility with future devices, write zeros to these bits.
3.0 Setting a bit enables the corresponding interrupt as a multiplexed EPAXx interrupt source.
The multiplexed EPAX interrupt is enabled by setting its interrupt enable bit in the
interrupt mask register (INT_MASK.0 = 1).

C-22

Inbl® REGISTERS

EPA_PEND
EPA_PEND Address: 1FA2H
- Reset State: 0000H

When hardware detects a pending EPAx interrupt, it sets the corresponding bit in the EPA interrupt
pending (EPA_PEND or EPA_PEND1) registers. The EPAIPV register contains a number that
identifies the highest priority, active, multiplexed interrupt source. When EPAIPV is read, the EPA
interrupt pending bit associated with the EPAIPV priority value is cleared.

15 8
| EPa4 | EPAs | EPA6 | EPA7 || EPA8 | EPA9 | OVRO | OVRL |
7 0
| ovRz2 | o3 | ovra | OwRs || OVR6 | OWR7 | OVRs | OVR9 |
Nuii:)er Function
15:10 Any set bit indicates that the corresponding EPAX interrupt source is pending. The bit is
cleared when the EPA interrupt priority vector register (EPAIPV) is read.

[| C-23

8XC196NT USER’S MANUAL

EPA_PEND1

intel.

EPA_PEND1

Address:
Reset State:

1FAGH
O00OH

When hardware detects a pending EPAx interrupt, it sets the corresponding bit in EPA interrupt
pending (EPA_PEND or EPA_PEND1) registers. The EPAIPV register contains a number that
identifies the highest priority, active, multiplexed interrupt source. When EPAIPV is read, the EPA
interrupt pending bit associated with the EPAIPV priority value is cleared.

7 0
— — — — || compo | compi | OVRTMI | OVRTM2
Bit .
Number Function
7:4 Reserved; always write as zeros.
3.0 Any set bit indicates that the corresponding EPAX interrupt source is pending. The bit is
cleared when the EPA interrupt priority vector register (EPAIPV) is read.

C-24

Inbl® REGISTERS

EPAX_CON

EPAXx_CON Address: Table C-5
Xx=0-9 Reset State:

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3
have an additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON
and EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
cts [[= [=] == =1 =[]
7 0
| ™ | ce | o | mo |[[RE | AD | ROT [ONRT |
7 0
x=0,249 | 78 | cE | mu | mo || RE | AD | ROT | ONRT |
Nuii:)er Mne?Ti\tonic Function
15:91 — Reserved; always write as zeros.
8t RM Remap Feature
The remap feature applies to the compare mode of the EPA1 and EPA3
only.

When the remap feature of EPAL is enabled, EPA capture/compare
channel 0 shares output pin EPA1 with EPA capture/compare channel 1.
When the remap feature of EPA3 is enabled, EPA capture/compare
channel 2 shares output pin EPA3 with EPA capture/compare channel 3.

0 = remap feature disabled
1 =remap feature enabled

7 B Time Base Select
Specifies the reference timer.

0 =timer 1 is the reference timer and timer 2 is the opposite timer
1 =timer 2 is the reference timer and timer 1 is the opposite timer

A compare event (start of an A/D conversion; clearing, setting, or toggling
an output pin; and/or resetting either timer) occurs when the reference
timer matches the time programmed in the event-time register.

When a capture event (falling edge, rising edge, or an edge change on
the EPAX pin) occurs, the reference timer value is saved in the EPA event-
time register (EPAx_TIME).

6 CE Compare Enable

Determines whether the EPA channel operates in capture or compare
mode.

0 = capture mode
1 = compare mode

T These bits apply to the EPA1_CON and EPA3_CON registers only.

[| C-25

8XC196NT USER’S MANUAL Inu®

EPAX_CON
EPAX_CON (Continued) Address: Table C-5
Xx=0-9 Reset State:

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3
have an additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON
and EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8

x=1.3 - -1 -1 -—JL =1 -1 =1 rw|

7 0

‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘

7 0

Xx=0,2, 4-9 ‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘
Bit Bit

. Function
Number Mnemonic

54 M1:0 EPA Mode Select

In capture mode, specifies the type of event that triggers an input capture.
In compare mode, specifies the action that the EPA executes when the
reference timer matches the event time.

M1 MO Capture Mode Event

no capture

capture on falling edge
capture on rising edge
capture on either edge

M1 MO Compare Mode Action

0
0
1
1

RORFRO

0 0 no output

0 1 clear output pin

1 0 set output pin

1 1 toggle output pin
3 RE Re-enable

Re-enable applies to the compare mode only. It allows a compare event
to continue to execute each time the event-time register (EPAX_TIME)
matches the reference timer rather than only upon the first time match.

0 = compare function is disabled after a single event
1 = compare function always enabled
2 AD A/D Conversion

Allows the EPA to start an A/D conversion that has been previously set up
in the A/D control registers. To use this feature, you must select the EPA
as the conversion source in the AD_CONTROL register.

0 = causes no A/D action
1 = EPA capture or compare event triggers an A/D conversion

T These bits apply to the EPA1_CON and EPA3_CON registers only.

C-26

Inbl® REGISTERS

EPAX_CON

EPAX_CON (Continued) Address: Table C-5
Xx=0-9 Reset State:

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3
have an additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON
and EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8

x=1.3 - -1 -1 -—JL =1 -1 =1 rw|

7 0

‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘

7 0

Xx=0,2, 4-9 ‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘
Bit Bit

. Function
Number Mnemonic

1 ROT Reset Opposite Timer
Controls different functions for capture and compare modes.
In Capture Mode:

0 = causes no action
1 = resets the opposite timer

In Compare Mode:
Selects the timer that is to be reset if the RT bit is set.

0 = selects the reference timer for possible reset
1 = selects the opposite timer for possible reset

The TB bit (bit 7) selects which is the reference timer and which is the
opposite timer.
0 ON/RT Overwrite New/Reset Timer

The ON/RT bit functions as overwrite new in capture mode and reset
timer in compare mode.
In Capture Mode (ON):

An overrun error is generated when an input capture occurs while the
event-time register (EPAx_TIME) and its buffer are both full. When an
overrun occurs, the ON bit determines whether old data is overwritten or
new data is ignored:

0 =ignores new data

1 = overwrites old data in the buffer

In Compare Mode (RT):

0 =disables the reset function
1 =resets the ROT-selected timer

T These bits apply to the EPA1_CON and EPA3_CON registers only.

C-27

8XC196NT USER’S MANUAL

intel.

EPAX_CON
Table C-5. EPA x_CON Addresses and Reset Values

Register Address Reset Value Register Address Reset Value
EPAO_CON 1F60H OOH EPA5_CON 1F74H 00H
EPA1_CON 1F64H FEOOH EPAG6_CON 1F78H 00H
EPA2_CON 1F68H OOH EPA7_CON 1F7CH 00H
EPA3_CON 1F6CH FEOOH EPA8_CON 1F80H 00H
EPA4_CON 1F70H OOH EPA9_CON 1F84H 00H

C-28

intel.

REGISTERS

EPAXx_TIME
EPAXx_TIME Address: Table C-6
X= O—_9 Reset State:

The EPA time (EPAX_TIME) registers are the event-time registers for the EPA channels. In capture
mode, the value of the reference timer is captured in EPAX_TIME when an input transition occurs.
Each event-time register is buffered, allowing the storage of two capture events at once. In compare
mode, the EPA triggers a compare event when the reference timer matches the value in EPAX_TIME.
EPAX_TIME is not buffered for compare mode.

15 8
‘ EPA Timer Value (high byte) ‘
7 0
‘ EPA Timer Value (low byte) ‘
Nuii:)er Function
15:0 EPA Time Value
When an EPA channel is configured for capture mode, this register contains the value of
the reference timer when the specified event occurred.
When an EPA channel is configured for compare mode, write the compare event time to
this register.
Table C-6. EPA x_TIME Addresses and Reset Values
Register Address Reset Value Register Address Reset Value
EPAO_TIME 1F62H 0000H EPAS5_TIME 1F76H 0000H
EPA1_TIME 1F66H 0000H EPAG6_TIME 1F7AH 0000H
EPA2_TIME 1F6AH 0000H EPA7_TIME 1F7EH 0000H
EPA3_TIME 1F6EH 0000H EPA8_TIME 1F82H 0000H
EPA4_TIME 1F72H 0000H EPA9_TIME 1F86H 0000H

C-29

8XC196NT USER’S MANUAL Inu®

EPAIPV

EPAIPV Address: 1FA8H
Reset State: 00H

When an EPAXx interrupt occurs, the EPA interrupt priority vector (EPAIPV) register contains a number
that identifies the highest priority, active, multiplexed interrupt source (see Table 10-6).

EPAIPV allows software to branch via the TIIMP instruction to the correct interrupt service routine
when EPAX is activated. Reading EPAIPV clears the EPA pending bit for the interrupt associated with
the value in EPAIPV. When all the EPA pending bits are cleared, the EPAX pending bit is also cleared.

7 0
— — — Pva || Pvs PV2 PV1 PVO
Bit Bit . Function
Number Mnemonic
5:7 — Reserved; always write as zeros.
4.0 PV4:0 Priority Vector

These bits contain a number from 01H to 14H corresponding to the
highest-priority active interrupt source. This value, when used with the
TIIMP instruction, allows software to branch to the correct interrupt
service routine.

Table C-7. EPA Interrupt Priority Vectors

Value | Interrupt Value | Interrupt alue nterrupt
14H EPA4 ODH OVR1 06H OVR8
13H EPAS5 OCH OVR2 O5H OVR9
12H EPAG6 OBH OVR3 04H COMPO
11H EPA7 OAH OVR4 03H COMP1
10H EPA8 09H OVR5 02H OVRTM1
OFH EPA9 08H OVR6 01H OVRTM2
OEH OVRO 07H OVR7 00H None

C-30

Inbl® REGISTERS

INT_MASK
INT_MASK Address: 0008H
- Reset State: 00H

The interrupt mask (INT_MASK) register enables or disables (masks) individual interrupt requests.
(The El and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK is the
low byte of the processor status word (PSW); therefore, PUSHF or PUSHA saves this register on the
stack and POPF or POPA restores it.

7 0
IBF OBE AD EPAO ‘ ‘ EPAL EPA2 EPA3 EPAX
Bit .

Number Function
7:0 Setting a bit enables the corresponding interrupt.
The standard interrupt vector locations are as follows:
Bit Mnemonic Interrupt Standard Vector
IBF Slave Port Input Buffer Full FF200EH
OBE Slave Port Output Buffer Empty FF200CH
AD A/D Conversion Complete FF200AH
EPAO EPA Capture/Compare Channel O FF2008H
EPA1 EPA Capture/Compare Channel 1 FF2006H
EPA2 EPA Capture/Compare Channel 2 FF2004H
EPA3 EPA Capture/Compare Channel 3 FF2002H
EPAXT Multiplexed EPA FF2000H
T EPA 4-9 capture/compare channel events, EPA 0—1 compare channel events, EPA 0-9
capture/compare overruns, and timer overflows can generate this multiplexed interrupt.
The EPA mask and pending registers decode the EPAXx interrupt. Write the EPA mask
registers (EPA_MASK and EPA_MASK1) to enable the interrupt sources; read the EPA
pending registers (EPA_PEND and EPA_PEND1) to determine which source caused the
interrupt.

[| C-31

8XC196NT USER’S MANUAL

INT_MASK1

intel.

INT_MASK1

Address:
Reset State:

0013H
O00OH

The interrupt mask 1 (INT_MASK1) register enables or disables (masks) individual interrupt requests.
(The El and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK1 can
be read from or written to as a byte register. PUSHA saves this register on the stack and POPA

restores it.
7 0
NMI EXTINT — RI ‘ ‘ TI SSIO1 SSI00 CBF
Bit .
Number Function
7:6 Setting a bit enables the corresponding interrupt.
4:0 The standard interrupt vector locations are as follows:
Bit Mnemonic Interrupt Standard Vector
NMI Nonmaskable Interrupt FF203EH
EXTINT EXTINT Pin FF203CH
RI SIO Receive FF2038H
TI SIO Transmit FF2036H
SSIo1 SSIO 1 Transfer FF2034H
SSIO0 SSIO 0 Transfer FF2032H
CBF Slave Port Command Buffer Full FF2030H
5 Reserved; for compatibility with future devices, write zero to this bit.

C-32

Intel® REGISTERS
INT_PEND

INT_PEND Address: 0009H

- Reset State: 00H

When hardware detects a pending interrupt, it sets the corresponding bit in the interrupt pending
(INT_PEND or INT_PENDZ1) registers. When the vector is taken, the hardware clears the pending bit.
Software can generate an interrupt by setting the corresponding interrupt pending bit.

cleared when processing transfers to the corresponding interrupt vector.

The standard interrupt vector locations are as follows:
Bit Mnemonic Interrupt

IBF Slave Port Input Buffer Full

OBE Slave Port Output Buffer Empty
AD A/D Conversion Complete

EPAO EPA Capture/Compare Channel O
EPA1 EPA Capture/Compare Channel 1
EPA2 EPA Capture/Compare Channel 2
EPA3 EPA Capture/Compare Channel 3
EPAXt Multiplexed EPA

T EPA 4-9 capture/compare channel events, EPA 0—1 compare channel events, EPA 0-9
capture/compare overruns, and timer overflows can generate this multiplexed interrupt.

Standard Vector
FF200EH
FF200CH
FF200AH
FF2008H
FF2006H
FF2004H
FF2002H
FF2000H

7 0
IBF OBE AD EPAO ‘ ‘ EPAL EPA2 EPA3 EPAX
Bit .
Number Function
7:0 Any set bit indicates that the corresponding interrupt is pending. The interrupt bit is

The EPA mask and pending registers decode the EPAXx interrupt. Write the EPA mask
registers to enable the interrupt sources; read the EPA pending registers to determine

which source caused the interrupt.

C-33

8XC196NT USER’S MANUAL

INT_PEND1

intel.

INT_PEND1

Address:
Reset State:

0012H
O00OH

When hardware detects a pending interrupt, it sets the corresponding bit in the interrupt pending
(INT_PEND or INT_PENDZ1) registers. When the vector is taken, the hardware clears the pending bit.
Software can generate an interrupt by setting the corresponding interrupt pending bit.

7 0
NMI EXTINT — RI ‘ ‘ TI SSIO1 SSI00 CBF
Bit .
Number Function
7:6 Any set bit indicates that the corresponding interrupt is pending. The interrupt bit is
4:0 cleared when processing transfers to the corresponding interrupt vector.
The standard interrupt vector locations are as follows:
Bit Mnemonic Interrupt Standard Vector
NMI Nonmaskable Interrupt FF203EH
EXTINT EXTINT pin FF203CH
RI SIO Receive FF2038H
TI SIO Transmit FF2036H
SSIOo1 SSIO 1 Transfer FF2034H
SSIO0 SSIO 0 Transfer FF2032H
CBF Slave Port Command Buffer Full FF2030H
5 Reserved. This bit is undefined.

C-34

intel.

7

The internal RAM control (IRAM_CON) register has two functions related to memory accesses. The
IRAM bit allows you to control access to locations 0400-05FFH. The EA_STAT bit allows you to
determine the status of the EA# pin, which controls access to locations FF2000-FFOFFFH.

REGISTERS

IRAM_CON
IRAM_CON Address: 1FEOH
- Reset State: 00H

EA_STAT

IRAM

Bit
Number

Bit
Mnemonic

Function

7

EA_STAT

EA# Status:

This read-only bit contains the complement of the EA# pin, which
controls whether accesses to locations FF2000-FF9FFFH are directed
to the internal OTPROM or to external memory.

1 = the EA# pin is active (accesses are directed to external memory)
0 = the EA# pin in inactive (accesses are directed to the OTPROM)

(“Remapping Internal OTPROM (87C196NT Only)” on page 4-24
describes additional options for OTPROM access.)

IRAM

Internal RAM Control:

This bit controls whether accesses to locations 0400-05FFH are
directed to internal code RAM or to external memory.

1 = use external memory
0 = use the internal code RAM

5.0

Reserved; always write as zeros.

C-35

8XC196NT USER’S MANUAL

ONES_REG

intel.

ONES_REG

The two-byte ones register (ONES_REG) is always equal to FFFFH. Itis useful as a fixed source of all
ones for comparison operations.

Address: 02H
Reset State: FFFFH

15 8
‘ One (high byte) ‘
! 0
‘ One (low byte) ‘
Nuii:)er Function
15:0 One
These bits are always equal to FFFFH.

C-36

Inbl® REGISTERS

Px_DIR

Px_DIR Address: Table C-8
x=1,2,5,6 Reset State:

Each pin of port x can operate in any of the standard 1/0 modes of operation: complementary output,
open-drain output, or high-impedance input. The port x I/0 direction (Px_DIR) register determines the
1/0 mode for each port x pin. The register settings for an open-drain output or a high-impedance input
are identical. An open-drain output configuration requires an external pull-up. A high-impedance input
configuration requires that the corresponding bit in Px_REG be set.

7 0
x=1,2,5,6 ‘ PIN7 ‘ PING ‘ PINS ‘ PIN4 H PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘
Bit Bit .
Number Mnemonic Function
7:0 PIN7:0 Port x Pin y Direction

This bit selects the Px.y direction:

1 = input/open-drain output (input, output, or bidirectional)
0 = complementary output (output only)

Table C-8. Px_DIR Addresses and Reset Values

Register Address Reset Value
P1_DIR 1FD2H FFH
P2_DIR 1FCBH 7FH
P5_DIR 1FF3H FFH
P6_DIR 1FD3H FFH

C-37

8XC196NT USER’S MANUAL

intel.

Px_MODE
Px_MODE Address: Table C-9
x=1,2,5,6 Reset State:

Each bit in the port x mode (Px_MODE) register determines whether the corresponding pin functions
as a standard 1/O port pin or is used for a special-function signal.

7 0

x=1,2,5,6 ‘ PIN7 ‘ PING ‘ PINS ‘ PIN4 H PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘
Nulr?’ni:)er Mnelrgri\tonic Function

7:0 PIN7:0 Port x Pin y Mode

This bit determines the mode of the corresponding port pin:

0 = standard I/O port pin
1 = special-function signal

Table C-10 lists the special-function signals for each pin.

C-38

Table C-9. Px_MODE Addresses and Reset Values

Register Address Reset Value
P1_MODE 1FDOH 00H
P2_MODE 1FCOH 80H
P5_MODE 1FF1H 80H
P6_MODE 1FD1H 00H

REGISTERS

Px_MODE

Table C-10. Special-function Signals for Ports 1, 2, 5, 6

Port 1 Port 2
Pin Special-function Signal Pin Special-function Signal
P1.0 EPAO/T2CLK P2.0 TXD/IPVER
P1.1 EPA1 P2.1 RXD/PALE#
P1.2 EPA2/T2DIR pP2.2 EXTINT/PROG#
P1.3 EPA3 P2.3 BREQ#
P1.4 EPA4 P2.4 INTOUT#/AINC#
P1.5 EPAS P2.5 HOLD#
P1.6 EPAG6 P2.6 HLDA#/ONCE#/CPVER
P1.7 EPA7 pP2.7 CLKOUT/PACT#
Port 5 Port 6
Pin Special-function Signal Pin Special-function Signal
P5.0 ALE/ADV#/SLPALE P6.0 EPA8/COMPO
P5.1 INST/SLPCS# P6.1 EPA9/COMP1
P5.2 WRH#/WRL#/SLPWR# P6.2 T1CLK
P5.3 RD#/SLPRD# P6.3 T1DIR
P5.4 SLPINT P6.4 SCO
P5.5 BHE#/WRH# P6.5 SDO
P5.6 READY P6.6 SC1
P5.7 BUSWIDTH P6.7 SD1

C-39

8XC196NT USER’S MANUAL

intel.

Px_PIN
Px_PIN Address: Table C-11
X =0-6 Reset State:

The port x pin input (Px_PIN) register contains the current state of each port pin, regardless of the pin

mode setting.

7 0
x=0-6 | PIN7 ‘ PING ‘ PIN5S ‘ PIN4 || PIN3 ‘ PIN2 ‘ PINL ‘ PINO |
. Bit)
Bit Number . Function
Mnemonic
7:0 PIN7:0 Port x Pin y Input Value
This bit contains the current state of Px.y.

C-40

Table C-11. P x_PIN Addresses and Reset Values

Register Address Reset Value
PO_PIN 1FDAH XXH
P1_PIN 1FD6H XXH
P2_PIN 1FCFH XXH
P3_PIN 1FFEH XXH
P4_PIN 1FFFH XXH
P5_PIN 1FF7H XXH
P6_PIN 1FD7H XXH

intel.

REGISTERS
Px_REG
Px REG Table C-12
x=1-6 Reset State:

Px_REG contains data to be driven out by the respective pins. When a port pin is configured as an

input, the corresponding bit in Px_REG must be set.

The effect of a write to Px_REG is seen on the pins only when the associated pins are configured as
standard 1/O port pins (Px_MODE.y = 0).

7 0
X=1-6 ‘ PIN7 ‘ PING ‘ PIN5 ‘ PIN4 H PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘
Bit Number Mne?riltonic Function

7:0 PIN7:0 Port x Pin y Output

To use Px.y for output, write the desired output data to this bit. To use
Px.y for input, set this bit.

Table C-12. Px_REG Addresses and Reset Values

Register Address Reset Value
P1_REG 1FD4H FFH
P2_REG 1FCDH 7FH
P3_REG 1FFCH FFH
P4_REG 1FFDH FFH
P5_REG 1FF5H FFH
P6_REG 1FD5H FFH

C-41

8XC196NT USER’S MANUAL Inu®

P34_DRV

P34 DRV Address: 1FF4H
-