
AP-717

Order Number: 272730-002

Migrating from the
8XC196NP or 8XC196NU
to the 80296SA

January 1997

APPLICATION
NOTE

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel
assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including
liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual
property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

*Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

Copyright © INTEL CORPORATION, 1996, 1997

AP-717
CONTENTS
1.0 Introduction... 1

2.0 Architectural Differences .. 1

2.1 Pipelined Architecture ... 3

2.2 External Peripheral Interface Considerations .. 3

2.3 Memory Differences .. 5

2.4 Windowing Differences ... 5

3.0 Instruction Set Differences ... 6

3.1 New and Modified Instructions .. 6

3.2 Removed Peripheral Transaction Server Instructions ... 7

3.3 Illegal Opcodes ... 7

3.4 Indirect and Indexed PUSH and POP Relative to the Stack Pointer ... 8

4.0 Phase-locked Loop and Clock Multiplier Circuitry .. 8

5.0 Accumulator and Index Registers... 8

5.1 Accumulator .. 8

5.2 Index Registers ... 9

5.3 Index Register Usage and Application Examples ... 10

5.3.1 ICX0, ICX1 Usage Allowed.. 10

5.3.2 ICX0, ICX1 Usage Not Allowed ... 10

5.3.3 Block Move Without BMOV ... 10

5.3.4 Table Multiply-accumulate ... 10

6.0 Interrupts .. 11

6.1 Controlling the Interrupt Structure ... 12

6.2 Controlling the Interrupt Vector Table Location ... 12

6.3 Controlling EXTINTx Requests ... 12

7.0 Chip-Select Unit.. 12

7.1 Address Decoding ... 12

7.2 Chip-select Signal Priority ... 13

7.3 Extending Write Cycles ... 13

7.4 Controlling Wait States .. 13

8.0 Bus Cycle Differences .. 13

9.0 Peripheral Enhancements .. 14

9.1 Serial I/O Port .. 14

9.2 Event Processor Array .. 14

9.3 Pulse Width Modulator .. 14

10.0 Power-saving Features... 14

10.1 Standby Mode ... 15

10.2 Disabling Powerdown and Standby Modes ... 15

10.3 Additional Power-saving Options .. 15

11.0 Special-function Registers.. 16
iii

AP-717
FIGURES
1. Pipelined Architecture... 3

2. Interface Between 80296SA and an External Device... 4

3. Timing of a Write Followed by an Internal Register Read .. 5

TABLES
1. Feature Comparisons .. 2

2. Windowable Locations... 6

3. New and Modified Instructions for the 80296SA.. 7

4. Illegal Opcode Comparisons.. 7

5. Relationships Between Multiplier, Input Frequency, and Operating Frequency 8

6. Interrupt Sources, Vectors, and Priorities .. 11

7. CPU Special-Function Registers ... 16

8. Peripheral SFRs That Are Unique to the 80296SA ... 16
iv

AP-717

on exe-
nd mul-
ease the

has the
idth
s baud

k to
r using

296SA
d to in-

n reg-

ndirect

ctions

de and
ed mode
1.0 INTRODUCTION

The 80296SA controller is the latest addition to the MCS® 96 controller family. The 80296SA was the first core redesign
since the 8x9x controller was moved from an HMOS process to a CMOS process in 1986, creating the 8xC196KB. The core
redesign means that the 80296SA microcontroller started from a blank drawing board, enhancing its performance while
maintaining binary code compatibility with earlier MCS 96 controllers. The 80296SA is pin compatible with the 8xC196NP
and 8xC196NU, so you can place the 80296SA into a socket designed for its predecessors. The 80296SA has a four-stage
pipelined architecture: fetch, decode, read-execute, and execute-write stages.

The 80296SA exhibits improved math performance over the previous architectures, making it more suitable for embedded
digital signal processing. It can perform 12.5 DSP MIPS and 16 general-purpose MIPS. The DSP MIPS value is calculated
using the multiply-accumulate (MAC) execution time on register-to-register operations (two state times). The general-pur-
pose MIPS value is calculated using peak operation for best instruction execution time (one state time). New instructions
were added to increase the controller’s math performance for digital signal processing applications. Also, instructi
cution times are significantly reduced in comparison to the previous MCS 96 controllers. For example, a two-opera
tiplication operation using direct addressing is reduced from sixteen to three state times. This reduction helps incr
performance.

The 80296SA has 512 bytes of register RAM and 2 Kbytes of internal RAM for storing code or data. The 80296SA
same peripherals as the 8xC196NP and 8xC196NU: an event processor array (EPA) with 80-ns resolution, a pulse-w
modulator (PWM) with a maximum 97.6 kHz frequency, and a serial port with a maximum 12.5-Mbaud synchronou
rate and a maximum 3.1-Mbaud asynchronous baud rate. However, its interrupt structure differs from that of the 8xC196NP
and 8xC196NU, and it has no peripheral transaction server (PTS).

Additionally, like the 8xC196NU, the 80296SA includes phase-locked loop circuitry, which allows an external cloc
drive the microcontroller at one-half or one-quarter the maximum internal clock frequency. The system is designed fo
lower-frequency external clocks or oscillators, while maintaining the maximum internal operating frequency. The 80
also has an enhanced chip-select unit, interrupt controller, and timers. Finally, its windowing capability is enhance
clude the windowing of selected external memory locations for direct addressing.

This application note describes these enhancements and outlines differences to help migrate 8xC196NP or 8xC196NU de-
signs to the 80296SA. Consult the 80296SA Microcontroller User’s Manual (order number 272803), the 80296SA Commer-
cial CHMOS 16-bit Microcontroller datasheet (order number 272748) for specifications, and the 80296SA Specification
Update (order number 272908) for in-depth descriptions and specifications.

2.0 ARCHITECTURAL DIFFERENCES

Table 1 lists the main features of the 8xC196NP, 8xC196NU, and 80296SA for comparison. The major differences of the
80296SA from the 8xC196NU are the following:

• pipelined architecture — a four-stage instruction pipeline with a 10-byte (rather than 8-byte) prefetch queue

• memory — no ROM, 512 bytes of register RAM, and 2 Kbytes of code/data RAM; an additional window-selectio
ister (WSR1), plus the ability to window the code/data RAM or a section of external memory

• instruction set — new and enhanced instructions for digital signal processing; no instructions for PTS control; i
and indexed PUSH and POP operations relative to the stack pointer work differently

• digital signal processing features — 40-bit hardware accumulator, barrel shifter, index registers, and new instru

• bus timings — the ability to add up to 15 wait states to external bus cycles, different timing requirements for co
data fetches, a shorter address hold time in multiplexed mode, and automatic deferred bus cycles in demultiplex
1

AP-717

pt
l trans-

the event
• addressing ability — 6 Mbytes of linear address space, achieved through chip-select enhancements

• interrupt structure — compatible with 8xC196NP and 8xC196NU, or programmable priorities and relocatable interru
vector table; EXTINTx inputs can be programmed as either edge-triggered or level-sensitive inputs; no periphera
action server (PTS)

• peripheral enhancements — the serial port can handle mode 0 receptions at the highest possible baud rate;
processor array’s timers overflow on different boundaries when operating independently (not cascaded)

• power-saving features — the ability to disable the pulse-width modulator (PWM) and serial I/O (SIO) port

Table 1. Feature Comparisons

Feature 8xC196NP 8xC196NU 80296SA

Memory

ROM

Register RAM

Code/data RAM

0 or 4 Kbytes

1 Kbyte

—

0 or 48 Kbytes

1 Kbyte

—

—

512 bytes

2 Kbytes

Address space 1 Mbyte 1 Mbyte 6 Mbytes

Frequency 25 MHz 40 MHz, 50 MHz 40 MHz, 50 MHz

Clock circuitry Standard MCS® 96 clock
circuitry

Phase-locked loop and
clock multiplier circuitry
(1X, 2X, 4X external clock)

Phase-locked loop and
clock multiplier circuitry
(1X, 2X, 4X external clock)

Power-saving features Idle and powerdown
modes

Idle, powerdown, and
standby modes

Idle, powerdown, and
standby modes, plus
ability to disable PWM
and SIO peripherals

Digital signal processing features — 32-bit hardware
accumulator with status
register, modified multiply
instruction to handle
accumulator

40-bit hardware
accumulator with status
register, new instructions,
index registers, hardware
accumulator, and 32-bit
barrel shifter

Interrupt structure Standard MCS 96 interrupt
controller and peripheral
transaction server (PTS)

Standard MCS 96 interrupt
controller and peripheral
transaction server (PTS)

Compatible MCS 96
interrupt structure, or
programmable interrupt
priority and relocatable
interrupt vector table. No
peripheral transaction
server (PTS)

Chip-select pins 6 6 6

External interrupt (EXTINTx) pins 4 4 4

Event processor array (EPA) pins 4 4 4

Pulse-width modulator (PWM) pins 3 3 3

Serial I/O (SIO) port 1 synchronous mode,
3 asynchronous modes

1 synchronous mode,
3 asynchronous modes

1 synchronous mode,
3 asynchronous modes

Packages 100-pin QFP and SQFP 100-pin QFP and SQFP 100-pin QFP
2

AP-717

his de-
strates

entially
s into the
, four in-

nstruc-
s stalls
2.1 Pipelined Architecture

The 80296SA core implements a pipelined architecture, while maintaining binary code compatibility with other members
of Intel’s MCS 96 controller family. The pipeline has four stages: fetch, decode, read-execute, and execute-write. T
sign achieves a faster throughput of instructions than was possible with previous MCS 96 controllers. Figure 1 illu
the four-stage pipeline.

Figure 1. Pipelined Architecture

In a pipelined architecture, a different instruction is in each of the four pipeline stages. Instructions move sequ
through the pipeline stages. As one instruction moves from the fetch to the decode stage, the next instruction move
fetch stage. Similarly, the previous two instructions are in the read-execute and execute-write stages. In summary
structions can be in the pipeline at any given time, one in each of the four stages.

2.2 External Peripheral Interface Considerations

In earlier MCS 96 microcontrollers, the CPU completes execution of the current instruction before fetching the next i
tion. If the write to an external device requires one or more wait states, the CPU of earlier MCS 96 microcontroller
instruction execution until the write cycle completes.

10 9 8 7

A3061-01

Fetch
Decode

Read-Execute

Execute-Write

15 4 3 2

2 1

3 2 1

4 3 2 1

5 4 3 2

6 5 4 3

Instruction

Sequencer

6 5 4 3

7 6 5 4

8 7 6 5

9 8 7 6

Done

1

2, 1. . .n

. . .n

. . .n

. . .n

. . .n

. . .n
3

AP-717

ed upon

 shows
on to the
s then
tant in

e (LDB)
n (LDB)
ruction
ssed the
end
read of
However, because of its four-stage pipelined architecture, the 80296SA CPU does not stall instruction execution. If the write
to an external device requires one or more wait states, the CPU continues executing instructions in the other three stages of
the pipeline. Consider the case where a write to an external device occurs in the fourth pipeline stage (execute-write) and a
subsequent read of an I/O port register occurs in the third pipeline stage (read-execute). The previous write instruction to
an external device may not have completed while the following read instruction executes in the third pipeline stage. This
may affect the system design if an external device returns a status signal to one of the microcontroller’s ports bas
the write.

Figure 2 illustrates the 80296SA in a system with an ASIC (the ASIC could be any external peripheral). The figure
the bus interface between the 80296SA and the ASIC. The dotted line shows the dependency of the bus informati
ASIC’s output. For example, if the ASIC receives 0D0h from the controller, it may set port 1.x. This output signal i
fed to the controller’s port 1. Even though the output is fed to port 1 in this example, the specific port is not impor
this type of operation. The output could be fed to any available I/O port.

Figure 2. Interface Between 80296SA and an External Device

The following code sequence illustrates the write to the ASIC followed by a read of port 1:

When the CPU executes the store (ST) instruction, it passes the write to the bus controller. At this point, the load byt
instruction is in the pipeline and executing. The CPU executes all possible pipeline stages of the load byte instructio
independent of the store (ST) instruction’s stall in the fourth stage. Therefore, if a stall occurs, the load byte inst
might read P1_PIN before the store into the ASIC is complete. If this occurs, the ASIC has not received and proce
information from the controller in time to affect P1.x before port 1 is read. Therefore, the ASIC signal on port 1.x may s
erroneous information. Figure 3 illustrates this timing sequence. Notice that the write is still in progress when the
the internal register occurs.

ST REG1, ASIC[0] ; ASIC is the external device address

LDB REG2, P1_PIN ; Port 1.x receives a signal from the ASIC
; reading P1_PIN will give info from ASIC

A5181-01

Port 1.x

Data 0–15

MCS® 96

Microcontroller

ASIC

16
4

AP-717

o-oper-

AM
e exter-

FFh) in
–FFFFh)
 service
tor table.

e upper
ct a 32-,

ap into

er reg-
feature
 or pe-
Figure 3. Timing of a Write Followed by an Internal Register Read

To avoid missing the external device’s status signal when an external write is followed by an internal read, insert n
ation (NOP) instructions between the store and load instructions to cover the wait states required for the write.

2.3 Memory Differences

While the 8xC196NP and 8xC196NU have 1 Kbyte of register RAM (0–3FFh), the 80296SA has 512 bytes of register R
(0–1FFh). The 80296SA will execute external memory fetches for locations 200–3FFh. Therefore, you must provid
nal memory at locations 200–3FFh if your application expects memory in these locations.

The 80296SA has added 2 Kbytes of code/data RAM. This RAM is mapped into a single address region (F800–FF
extended mode (1-Mbyte addressing mode), or it is mapped into two address regions (FFF800–FFFFFFh and F800
in nonextended mode (64-Kbyte addressing mode). This RAM may be used for time-critical code such as interrupt
routines, or time-critical data such as embedded digital signal processing data tables, the stack, or the interrupt vec
System designers must determine appropriate allocation of this RAM for the system’s time-critical use.

2.4 Windowing Differences

As on previous MCS 96 controllers, the 80296SA uses a window-selection register (WSR) to select a region of th
register file or peripheral SFRs that can be addressed in the lower register file with direct addressing. WSR can sele
64-, or 128-byte region to map into registers located at E0–FFh, C0–FFh, or 80–FFh, respectively. Like the 8xC196NU, the
80296SA has a second window-selection register (WSR1). WSR1 can select a 32- or 64-byte memory region to m
registers located at 60–7Fh or 40–7Fh, respectively.

Additionally, in the 80296SA, the code/data RAM and selected external memory locations can be windowed into low
ister RAM locations 40-7Fh. Windowing external memory locations has great implications on the performance. This
allows you to perform a simple context switch of external memory and allow direct addressing of external memory
ripherals. Table 2 shows the windowable locations.

CLKOUT

ADDR

Data

A5175-02

WR#

CPU reads port pin register
5

AP-717

SA dif-

er be the
iate op-

ment in
 repeat
 by the
The PUSHA instruction does not push WSR1 onto the stack. If the interrupt routine or called subroutine modifies the WSR1
register, you must save the status of WSR1 by pushing and popping it from the stack or saving it to a temporary register.

3.0 INSTRUCTION SET DIFFERENCES

The instruction set was modified to improve handling of embedded digital signal processing routines. These instructions
efficiently manipulate the 40-bit accumulator. The basic functions of the new accumulator instructions include the follow-
ing:

• clearing the accumulator before execution (indicated by “Z” suffix)

• relocating the source within a data table (indicated by “R” suffix)

• signed or unsigned math (signed indicated by “S” prefix)

• saturating the accumulator value based on the result

The opcodes for the multiply-accumulate instructions are the same as those of the multiply instructions. The 80296
ferentiates the instructions as follows:

• If the destination operand is less than 10h, the 80296SA executes a multiply-accumulate instruction.

• If the destination operand is greater than or equal to 10h, the 80296SA executes a multiply instruction.

This convention works because addresses below 17h contain special-function registers (SFRs), which should nev
destination of a multiply instruction. The assembler translates the multiply-accumulate mnemonic into the appropr
code and destination operand.

Additionally, the repeat (RPT) instructions make handling repeated multiply-accumulate operations easier to imple
code. Also the return from interrupt (RETI) instruction was added to reduce interrupt latency. The opcode for the
instruction is the same opcode as that of the AND instructions. The microcontroller differentiates the instructions
destination operand.

3.1 New and Modified Instructions

Table 3 lists the new and modified instructions on the 80296SA. See the 80296SA Microcontroller User’s Manual for de-
tails on these instructions.

Table 2. Windowable Locations

WSR Window
Windowable Locations

Description 8xC196NP 8xC196NU 80296SA

WSR, 80–FFh (32, 64, or 128 bytes) Upper register file
Peripheral SFRs

0100–03FFh
1F00–1FDFh

0100–03FFh
1F00–1FFFh

0100–01FFh
1F00–1FFFh

WSR1, 60–7Fh (32 bytes or 64 bytes) Upper register file
Peripheral SFRs

—
—

0100–03FFh
1F00–1FFFh

0100–01FFh
1F00–1FFFh

WSR1, 40–7Fh (64 bytes) Code/data RAM
External memory

—
—

—
—

F000–F7FFh
F800–FFFFh
6

AP-717
3.2 Removed Peripheral Transaction Server Instructions

The 80296SA has no peripheral transaction server (PTS) interrupt structure; therefore, the DPTS and EPTS instructions
were deleted from the instruction set.

3.3 Illegal Opcodes

In earlier MCS 96 microcontrollers, opcode EEh is reserved, but it does not execute an illegal opcode interrupt. Also, op-
codes ECh and EDh are used to disable and enable the PTS, respectively. For the 80296SA, executing one of these three
opcodes (ECh, EDh, or EEh) will execute an illegal opcode interrupt. As in previous controllers, executing opcode 10h will
also generate an illegal opcode interrupt. Opcode E5h is an illegal opcode in earlier microcontrollers, but is the re-
turn-from-interrupt (RETI) opcode for the 80296SA. Table 4 summarizes the differences between these opcodes for the
80296SA and earlier MCS 96 controllers.

Table 3. New and Modified Instructions for the 80296SA

Instruction Description

ADDC Saturated addition to accumulator

SUBC Saturated subtraction from accumulator

MAC Unsigned multiply-accumulate

MACR Unsigned multiply-accumulate with automatic data-move

MACRZ Unsigned, zero accumulator, multiply-accumulate with automatic data-move

MACZ Unsigned, zero accumulator, multiply-accumulate

SMAC Signed multiply-accumulate

SMACR Signed multiply-accumulate with automatic data-move

SMACRZ Signed, zero accumulator, multiply-accumulate with auto-data-move

SMACZ Signed, zero accumulator, multiply-accumulate

MSAC Move saturated and shifted long word through barrel shifter

MVAC Move shifted long word from accumulator

RPT Repeat next instruction n times (n = repeat count)

RPTxxx Repeat next instruction conditionally n times
(n = repeat count; xxx = condition from conditional jump instruction)

RPTI Interruptable repeat next instruction n times, n = repeat count operand

RPTIxxx Interruptable repeat next instruction conditionally n times
(n = repeat count; xxx = condition from conditional jump instruction)

RETI Return from interrupt

Table 4. Illegal Opcode Comparisons

Opcode Previous MCS® 96 Controllers 80296SA Controller

10h generates illegal opcode interrupt generates illegal opcode interrupt

E5h generates illegal opcode interrupt executes return-from-interrupt (RETI) instruction

ECh executes disable-PTS (DPTS) instruction generates illegal opcode interrupt

EDh executes enable-PTS (EPTS) instruction generates illegal opcode interrupt

EEh reserved; no illegal opcode interrupt generates illegal opcode interrupt
7

AP-717

 are pos-
3.4 Indirect and Indexed PUSH and POP Relative to the Stack Pointer

Indirect and indexed PUSH and POP operations relative to the stack pointer work differently on the 80296SA than on the
8xC196NP and 8xC196NU. The 8xC196NP and 8xC196NU microcontrollers calculate the address based on the value of
the stack pointer after it is updated, but the 80296SA calculates the address based on the value of the stack pointer before
it is updated.

4.0 PHASE-LOCKED LOOP AND CLOCK MULTIPLIER CIRCUITRY

The clock circuitry of the 80296SA and 8xC196NU includes a phase-locked loop and clock multiplier that enables the mi-
crocontroller to attain the maximum operating frequency of 50 MHz with an external clock source of either 50 MHz, 25
MHz, or 12.5 MHz (or an external crystal oscillator of 12.5 MHz or 25 MHz). The PLLEN1 and PLLEN2 pins control the
clock multiplier, as shown in Table 5.

5.0 ACCUMULATOR AND INDEX REGISTERS

Several enhancements implemented with the 80296SA architecture are used in embedded digital signal processing. The
enhancements increase the overall math performance over previous MCS 96 controllers. The following sections describe
the accumulator and index registers. The sections also include application examples using the accumulator, index registers,
and new instructions including the rotate feature for data movement.

5.1 Accumulator

The 40-bit accumulator is 32 bits with an overflow into another 8 bits. A control and status register (ACC_STAT) controls
fractional and saturation modes and indicates the status of the accumulator’s contents. The 8xC196NU has the same register
for its 32-bit accumulator.

Because the accumulator is part of the core and not a special function register, only a limited number of operations
sible. The following instructions are valid for the lower 32 bits of the accumulator (ACC_00 and ACC_02):

• all eight MAC-related instructions

• LD or ST instructions on words starting at ACC_00 and ACC_02

• ADD or SUB instructions on the word starting at ACC_00

• ADDC or SUBC instructions on the word starting at ACC_02

• MVAC and MSAC instructions

Table 5. Relationships Between Multiplier, Input Frequency, and Operating Frequency

Multiplier PLLEN2:1
†

Maximum External
Clock Frequency

Maximum External
Oscillator Frequency

Internal Operating
Frequency

1 00 50 MHz 25 MHz 50 MHz or 25 MHz

2 01 25 MHz 25 MHz 50 MHz

4 11 12.5 MHz 12.5 MHz 50 MHz

† PLLEN2:1 = 10 is a reserved combination that will cause the microcontroller to enter an unsupported test mode.
8

AP-717

e. Use
ddress lo-
pointer

inted to:

ote
truction.
• CMPL, SHLL, SHRAL, and NORML instructions

The following instructions are valid for the upper 8 bits of the accumulator (ACC_04):

• LDB or STB instructions on byte starting at ACC04 to a word-aligned boundary

• MAC, MACR, MACRZ, and MACZ instructions in conjunction with the lower 32 bites of the accumulator

5.2 Index Registers

The 80296SA has three pairs of index registers:

• index pointer registers, IDX0 and IDX1

• index reference registers, ICX0 and ICX1

• index control byte registers, ICB0 and ICB1

Use the index pointer registers, IDX0 and IDX1, as 24-bit pointers to any location within the 16-Mbyte address rang
the index reference registers, ICX0 and ICX1, as destination and sources addresses to access the index pointer a
cations. Use the index control byte registers, ICB0 and ICB1, to automatically increment or decrement the index
regsiters (by any value from 0 to 15) at the end of an instructions.

The following restriction apply to the index pointer registers, IDX0 and IDX1:

• IDX0 and IDX1 must be accessed with windowed direct addressing

• IDX0 must point to either a source 1 (SRC1) or a destination (DEST) address

• IDX1 must point to a source 2 (SRC2) address

To use these pointers, first load the index registers with the appropriate 24-bit starting address of the object being po

; load IDX0 to point to 654321h
LDB WSR, #7EH ; select window 7Eh
LD IDX0_7E, #4321h ; load lower word of IDX0 with 4321h
LDB IDX0_7E+2, #65h ; load upper byte of IDX0 with 65h

; load IDX1 to point to FEDCBAh
LD IDX1_7E, #0DCBAh ; load lower word of IDX1 with DBCAh
LDB IDX1_7E+2, #0FEh ; load upper byte of IDX1 with FEh

To enable the automatic incrementing or decrementing, program the control bytes:

LDB WSR, #7EH ; select window 7Eh
LD ICB0, #3 ; auto-increment IDX0 by 3 bytes
LD ICB1,#1Eh ; auto-decrement IDX1 by 14 bytes

Finally, access the pointers via “dummy” locations, ICX0 and ICX1 (similar to *IDX0, *IDX1 from the C language). N
that the pointer registers are incremented or decremented only once per instruction, at the effective end of the ins

LD ICX0, #20h ; load #20 into location 654321h and increment IDX0 by 3
LD R20, ICX1 ; load value in FEDCBAH into R20 and decrement ICX0 by 14
LD ICX0, ICX1 ; load value of FEDCACh into location 654324H,

; increment IDX0 by 3, and decrement IDX1 by 14
ADD ICX0,ICX0,ICX1 ; add value in location 654327h to value in FEDC9Eh

; and store result in location 654327h.
; Increments IDX0 by 3 (even though it is used twice),
; and decrements IDX1 by 14
9

AP-717
5.3 Index Register Usage and Application Examples

The following examples illustrate allowable and prohibited usage of the index reference registers (ICX0 and ICX1). The
examples assume that the index pointer registers (IDX0 and IDX1) are initialized and the index control bytes (ICB0 and
ICB1) are properly configured.

5.3.1 ICX0, ICX1 Usage Allowed

LD ICX0, ICX1 ; ICX0 on D1, ICX1 on S2
ST R20, ICX0 ; using ICX0 only
ADD ICX0, ICX1 ; ICX0 on D1/S1, ICX1 on S2
ADD ICX0, ICX0, ICX1 ; equivalent to ADD ICX0,ICX1

LD ICX0, [R20]+ ; using ICX0 only
LD R20, ICX1 ; using ICX1 only
ADD ICX0, R20, ICX1 ; ICX0 on DEST, ICX1 on SRC2
ADD R20, ICX0, ICX1 ; ICX0 on SRC1, ICX1 on SRC2

5.3.2 ICX0, ICX1 Usage Not Allowed

LD ICX1, ICX0 ; ICX0 and ICX1 on wrong address bus

ST ICX1, ICX0 ; ICX0 could be on either S1 or S2

ADD ICX0, ICX1, R20 ; ICX1 is on SRC1--wrong internal address bus
ADD ICX0, ICX1, #0FFh ; ICX1 is on SRC1--wrong internal address bus
ADD ICX0, ICX1, [R20]+ ; ICX1 is on SRD1--wrong internal address bus

LD ICX0, [ICX1] ; wrong addressing mode--only register direct is allowed
LD R20,[ICX1]+ ; wrong addressing mode--only register direct is allowed

5.3.3 Block Move Without BMOV
; Code segment to move 20 bytes of data from 333444h to 0FF1234h

LD IDX0, #1234h ; load destination pointer
LD IDX0+2, #0FFh
LD IDX1, #3444h ; load source pointer
LD IDX1+2, #33h

LD ICB0, #1 ; increment destination table by 1 (for byte)
LD ICB1, #1 ; increment source table by 1 (for byte)

RPT #20 ; move 20 bytes
LDB ICX0, ICX1 ; move byte pointed to by ICX1 to wherever ICX0

; points, and increment pointers each time

5.3.4 Table Multiply-accumulate
; Code segment to multiply-accumulate two 256-entry tables
; consisting of words (MAC mode assumed to be set up).
;
; Table 1 is at 112233h; table 2 is at 445566h and is to be rotated
; upward during the operation.
10

AP-717

emory
 inter-

source,
LD IDX0, #2233h+#200 ; load SRC1 table pointer to top of table 1
LD IDX0+2, #11h
LD IDX1, #5566h+#200 ; load SRC2 table pointer to top of table 2
LD IDX1+2, #44h
LD ICB0, #12h ; decrement by 2 for word on S1
LD ICB1, #12h ; decrement by 2 for word on S2

SMAC ICX0, ICX1 ; MAC first entry at top of table
RPT #99 ; MAC with rotate rest of entries
SMACR ICX0, ICX1 ; will rotate word at ICX1 to ICX1+2

; for each MAC operation

6.0 INTERRUPTS

You can either program the interrupt controller on the 80296SA to perform like the previous MCS 96 controllers or program
it with prioritized interrupts. After a system reset, the 80296SA defaults to the interrupt controller structure of previous MCS
96 microcontrollers — fixed priorities and vector table location (the vector table begins at FF2000h in the 1-Mbyte m
model or at 2000h in the 64-Kbyte memory model). The 80296SA allows you to program the priorities of maskable
rupts and to control the location of the interrupt vector table. Table 6 shows the default priority for each interrupt
the allowable programmable priorities for each maskable interrupt source, and the default vector locations.

Table 6. Interrupt Sources, Vectors, and Priorities

Interrupt Source Mnemonic Name Default
Priority†

Programmable
Priorities

Default
Vector

Location

Unimplemented Opcode — — 17†† 17†† FF2012H

Software TRAP
Instruction

— — 16†† 16†† FF2010H

Nonmaskable Interrupt NMI INT15 15†† 15†† FF203EH

EXTINT3 Pin EXTINT3 INT14 14 0–14 FF203CH

EXTINT2 Pin EXTINT2 INT13 13 0–14 FF203AH

EPA2 & 3 Overruns OVR2_3 INT12 12 0–14 FF2038H

EPA0 & 1 Overruns OVR0_1 INT11 11 0–14 FF2036H

EPA Capture/Compare 3 EPA3 INT10 10 0–14 FF2034H

EPA Capture/Compare 2 EPA2 INT09 9 0–14 FF2032H

EPA Capture/Compare 1 EPA1 INT08 8 0–14 FF2030H

EPA Capture/Compare 0 EPA0 INT07 7 0–14 FF200EH

SIO Receive RI INT06 6 0–14 FF200CH

SIO Transmit TI INT05 5 0–14 FF200AH

EXTINT1 Pin EXTINT1 INT04 4 0–14 FF2008H

EXTINT0 Pin EXTINT0 INT03 3 0–14 FF2006H

Reserved Reserved INT02 2 0–14 FF2004H

Timer 2 Overflow OVRTM2 INT01 1 0–14 FF2002H

Timer 1 Overflow OVRTM1 INT00 0 0–14 FF2000H

† Upon reset, the 80296SA defaults to the 8xC196NU-compatible priority scheme. (The
higher the number, the higher the priority.)

†† Fixed priority
11

AP-717

nterrupt
lete vector
nsists of

evel)
me

tion.

ate time.

ifferent

f address

it. How-
 available.
6.1 Controlling the Interrupt Structure

The most-significant bit of the NMI_PEND register enables and disables the programmable-priority mode. Clear
NMI_PEND.7 to use the default, fixed priorities; set NMI_PEND.7 to enable programmable priorities. Once NMI_PEND
is initialized, program the INT_CONx registers to define the priority of each maskable interrupt. Each register maps specific
interrupt sources to specific priorities and their corresponding vector addresses. With programmable priorities enabled, in-
terrupt service routines must end with the RETI (return-from-interrupt) instruction rather than RET instruction.

6.2 Controlling the Interrupt Vector Table Location

You can locate the interrupt vector table anywhere in the address space on a 256-byte boundary. For faster execution of in-
terrupt service routines, store the interrupt vector table in internal code RAM. To reassign the location, write the upper 16
bits of the interrupt vector table’s base address to the VECT_ADDR register. When the CPU acknowledges an i
request, the interrupt controller generates an 8-bit jump address and adds it to the base address to generate a comp
address. The 8-bit jump address represents the default vector location. The complete 24-bit vector address co
VECT_ADDR (upper word) plus default vector location (lower byte).

6.3 Controlling EXTINTx Requests

The EXTINT_CON register allows you to individually select the action (rising edge, falling edge, high level, or low l
that causes an interrupt request on each EXTINTx input. The minimum level time is two states, and the minimum edge ti
is one state. (See “Power-saving Features” on page 14 for information on the treatment of EXTINTx inputs in power-saving
modes.)

7.0 CHIP-SELECT UNIT

The chip select unit is similar to that of the 8xC196NP and the 8xC196NU, but it has the following additional features:

• It decodes all 24 bits of the internal address, allowing access to 6 Mbytes of address space.

• Its signals are prioritized (CS5# has the highest priority and CS0# has the lowest) to avoid potential bus conten

• It can cause the bus controller to add from 0 to 15 wait states to external bus cycles.

• It can cause the bus controller to lengthen write operations, extending the data and address hold times by 1 st

• Its adjacent signals can be AND’ed together, so two chip-select signals can control the same memory chip with d
bus configurations.

7.1 Address Decoding

The chip-select unit can decode the entire 24-bit internal address bus. The address compare (ADDRCOMx) and address
mask (ADDRMSKx) registers of the 80296SA contain bits 23–8, while the registers of the 8xC196NP and 8xC196NU con-
tain only bits 19–8. Therefore, the maximum addressable space using the chip select signals is 6 Mbytes: 1 Mbyte o
space for each of the six chip select signals. To illustrate this point, consider addresses FE2000h and EE2000h. These ad-
dresses are different internally, since all 24 address bits are available internally and decoded by the chip select un
ever, these addresses cannot be distinguished from each other externally, since only 20 external address pins are
By decoding all 24 bits of the internal address, the chip-select unit can distinguish between these addresses.
12

AP-717

e for
WR#). To
g edge of
e

al bus
m the
gnal.
on byte

 slow

be-

 must be
7.2 Chip-select Signal Priority

The chip-select signals have been prioritized so that if two chip-select signals are active for the same address region, only
one will be true. Chip select 0 has the lowest priority, and chip select 5 has the highest priority. Prioritizing the chip-select
signals avoids contention for two chip selects trying to control the bus to different states. This feature is not available on the
8xC196NP and 8xC196NU devices.

7.3 Extending Write Cycles

The 80296SA has an additional bit (WH0) in the BUSCONx registers to enable you to extend a write cycle’s hold tim
address and data. Some memory devices require that the address be held after the rising edge of the write signal (
accommodate this requirement, the bus controller can hold the address and data an additional state after the risin
WR#. This feature can match the TWHAX (A19:0, CSx# hold after WR# rising edge) timing of the microcontroller with th
tWR (address hold after write rising edge) timing of the memory device.

7.4 Controlling Wait States

The 8xC196NP and 8xC196NU chip-select units can cause the bus controller to add from 0 to 3 wait states to extern
cycles. The 80296SA can interface with slower memory devices because it can add from 0 to 15 wait states. Progra
wait-state bits (WS3:0) in the BUSCONx register to select the desired number of wait states for each chip-select si
Program chip configuration byte 0 (CCB0) to add 0, 5, 10, or 15 wait states to the bus cycle for the chip configurati
1 (CCB1) fetch.

After a reset, the following sequence ensures that the appropriate number of wait states are used:

1. The microcontroller fetches CCB0 with 15 wait states. This configuration allows the controller to interface with
memory devices upon power-up or reset.

2. The 80296SA fetches CCB1 with the wait-state configuration you have previously programmed in CCB0.

3. At the beginning of your boot code, set up BUSCON5 (the default bus configuration).

4. Configure the rest of the system and program the remaining BUSCONx registers for the chip-select signals.

8.0 BUS CYCLE DIFFERENCES

The bus timings of the 80296SA allow the high-speed bus to interface with relatively slow code memory. (See the 80296SA
Commercial CHMOS 16-bit Microcontroller datasheet for specific timing information.) There are two main differences
tween the bus timings of the 80296SA and those of previous MCS 96 microcontrollers:

• a shorter address hold time after the falling edge of ALE (TLLAX) for multiplexed bus cycles

• the microcontroller automatically invokes the deferred bus cycle mode for demultiplexed bus cycles

For a multiplexed bus cycle, the microcontroller exhibits a shorter address hold time (TLLAX). This requires a fast latch. Be-
cause the address will not be valid as long as on previous MCS 96 microcontrollers, the delay on the address latch
shorter.
13

AP-717

 0000–
96NU

tion in-
For a demultiplexed bus cycle, the microcontroller automatically delays the WR# signal (and the next bus cycle) by one
state (2t) in the first bus cycle following a chip-select change and in the first write cycle following a read cycle. This delay,
called a deferred bus cycle, is designed to reduce bus contention when using slow memory devices. For the 8xC196NU, you
can enable or disable deferred bus cycles by programming chip configuration byte 1 (CCB1).

9.0 PERIPHERAL ENHANCEMENTS

The serial I/O port, event processor array, and pulse-width modulator have been enhanced.

9.1 Serial I/O Port

Like the serial port of the 8xC196NU, the serial port of the 80296SA has a divide-by-two prescaler that is controlled by
SP_CON.6. (SP_CON.6 was a reserved bit on the 8xC196NP and earlier MCS 96 microcontrollers.)

Unlike its predecessors, the serial port can handle mode 0 receptions at the highest possible baud rate. You can program the
baud-rate register with 8001h (or 0001h) and receive the correct information from a mode 0 reception. (On previous MCS
96 microcontrollers, the minimum value for the baud-rate register is X002h, where X = 8 or 0.)

For additional power savings, the baud-rate counter is disabled after a power-up or reset. When writing configuration infor-
mation to the serial port control register, clear SP_CON.7 to enable the baud-rate counter.

9.2 Event Processor Array

When the timers are cascaded, the timer1 overflow output is used as the timer 2 input. In this mode, the timers of the
80296SA overflow on the same boundaries as those of the 8xC196NU, 0001–0000h and FFFE–FFFFh. These boundaries
compensate for internal delays to allow the cascading logic to operate.

When the timers of the 80296SA are operating independently (rather than cascaded), they overflow only on the
FFFFh (or FFFF–0000h) boundary. If you implemented a workaround to check the overflow boundaries on an 80C1
design, you will need to verify it for the 80296SA.

9.3 Pulse Width Modulator

For additional power savings, the duty-cycle counter is disabled after a power-up or reset. When writing configura
formation to the PWM control register, clear CON_REG0.7 to enable the duty-cycle counter.

10.0 POWER-SAVING FEATURES

In addition to the idle and powerdown modes used for earlier MCS 96 microcontrollers, the 8xC196NU and the 80296SA
have a standby mode.
14

AP-717
10.1 Standby Mode

The standby current (ISTDBY) is less than 10% of the normal operating current (ICC). Executing the IDLPD #3 instruction
causes the microcontroller to enter standby mode. In standby mode, the CPU halts execution and internal logic freezes the
internal CPU and peripheral clocks at logic state 0. The on-chip oscillator and phase-locked loop continue to operate. You
must put the peripherals into a known state before entering standby mode, since the peripherals will stop functioning im-
mediately after the standby mode command is executed. Allow the serial port to complete any transmission or reception that
is in progress, then disable receptions before executing the IDLPD #3 instruction. While an exit from powerdown mode
requires a delay to allow the phase-locked loop and the on-chip oscillator to stabilize, an exit from standby mode does not.

10.2 Disabling Powerdown and Standby Modes

CCB0.0 enables or disables entry into powerdown and standby modes. The microcontroller will not enter powerdown or
standby mode if CCB0.0 is clear. This effectively avoids inadvertent entry into either powerdown or standby mode.

10.3 Additional Power-saving Options

For additional power conservation, the baud-rate and duty-cycle counters are disabled after a power-up or reset. If your de-
sign uses the serial port or the PWM, your initialization code must enable the counters by clearing the associated bits.
SP_CON.7 controls the baud-rate counter, and CON_REG0.7 controls the duty-cycle counter.
15

AP-717
11.0 SPECIAL-FUNCTION REGISTERS

The special-function registers of the 80296SA are essentially the same as those of the 8xC196NU, with some exceptions.
Table 7 lists all CPU special-function registers of the80296SA; bold type indicates differences from the 8xC196NU. Table
8 lists only those peripheral SFRs that are unique to the 80296SA.

Table 7. CPU Special-Function Registers

Address High (Odd) Byte Low (Even) Byte

0016h ICX1 (H) ICX1 (L)

0014h WSR1 WSR

0012h INT_MASK1 INT_PEND1

0010h† ICX0 (H) IXC0 (L)

000Eh† ACC_02 (H) ACC_02 (L)

000Ch† ACC_00 (H) ACC_00 (L)

000Ah ACC_STAT Reserved

0008h INT_PEND INT_MASK

0006h Reserved ACC_04

0004h† RPT_CNT (H) RPT_CNT (L)

0002h ONES_REG (H) ONES_REG (L)

0000h ZERO_REG (H) ZERO_REG (L)
† Must be addressed as a word.

Table 8. Peripheral SFRs That Are Unique to the 80296SA

Address High (Odd) Byte Low (Even) Byte

1FF0h† VECT_ADDR (H) VECT_ADDR (L)

1FEEh† INT_CON3 (H) INT_CON3 (L)

1FECh† INT_CON2 (H) INT_CON2 (L)

1FEAh† INT_CON1 (H) INT_CON1 (L)

1FE8h† INT_CON0 (H) INT_CON0 (L)

… … …

1FCCh Reserved EXTINT_CON

1FCAh† IN_PROG1 (H) IN_PROG1 (L)

1FC8h NMI_PEND INT_PROG0

1FC6h ICB1 IDX1 (H)††

1FC4h IDX1 (M)†† IDX1 (L)††

1FC2h ICB0 IDX0 (H)††

1FC0h IDX0 (M)†† IDX0 (L)††

† Must be addressed as a word.

†† These 24-bit registers must be accessed with windowed direct addressing. Use a word
instruction to access the lower word and a byte instruction to access the upper byte.
16

	1.0 Introduction
	2.0 Architectural Differences
	2.1 Pipelined Architecture
	2.2 External Peripheral Interface Considerations
	2.3 Memory Differences
	2.4 Windowing Differences

	3.0 Instruction Set Differences
	3.1 New and Modified Instructions
	3.2 Removed Peripheral Transaction Server Instruct...
	3.3 Illegal Opcodes
	3.4 Indirect and Indexed PUSH and POP Relative to ...

	4.0 Phase-locked Loop and Clock Multiplier Circuit...
	5.0 Accumulator and Index Registers
	5.1 Accumulator
	5.2 Index Registers
	5.3 Index Register Usage and Application Examples
	5.3.1 ICX0, ICX1 Usage Allowed
	5.3.2 ICX0, ICX1 Usage Not Allowed
	5.3.3 Block Move Without BMOV
	5.3.4 Table Multiply-accumulate

	6.0 Interrupts
	6.1 Controlling the Interrupt Structure
	6.2 Controlling the Interrupt Vector Table Locatio...
	6.3 Controlling EXTINTx Requests

	7.0 Chip-Select Unit
	7.1 Address Decoding
	7.2 Chip-select Signal Priority
	7.3 Extending Write Cycles
	7.4 Controlling Wait States

	8.0 Bus Cycle Differences
	9.0 Peripheral Enhancements
	9.1 Serial I/O Port
	9.2 Event Processor Array
	9.3 Pulse Width Modulator

	10.0 Power-saving Features
	10.1 Standby Mode
	10.2 Disabling Powerdown and Standby Modes
	10.3 Additional Power-saving Options

	11.0 Special-function Registers

