intel. AP-449

APPLICATION
NOTE

A Comparison of the Event
Processor Array (EPA) and

High Speed Input/Output
(HSIO) Unit

BRIAN HINTZMAN
AUTOMOTIVE APPLICATIONS ENGINEER

March 1991

Order Number: 270968-001



Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

TSince publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995



A Comparison of the Event Processor Array (EPA) and
High Speed Input/Output (HSIO) Unit

CONTENTS PAGE
1.0 INTRODUCTION ....................... 1
1.1 General Overview ................... 1
11AHSI/O .o 1
11.2EPA ... 3
113PTS 3
1.1.4 How to Use This Application
Note ... 3
20TIMERS ..................... .l 4
2.1aHSI/OClocking .................... 4
21bEPACIocking ................ ..., 4
2.2aHSI/OReset ....................... 5
22bEPAReset ...l 5
2.3a HSI/0O Count Direction ............. 6
2.3b EPA Count Direction ............... 6
BO0INPUTS ... 7
3.1aHSI/O InputChannels .............. 7
3.1b EPA InputChannels ................ 7
3.2a HSI/O Input Capture ............... 7
3.2b EPA Input Capture ................. 7
3.3aHSI/OInterrupts ................... 8
3.3bEPAInterrupts ..................... 8
3.4a HSI/0 Reading HSI Current
State ... 9
3.4b EPA Reading EPA Current
State ... 9
400UTPUTS ... 10
4.1a HSI/O Output Channels ........... 10
4.1b EPA Output Channels ............. 10
4.2a HSI/O QOutput Events ............. 11
4.2b EPA OutputEvents ................ 11
4.3a HSI/0O Output Event Buffering
(CAM) . 12
4.3b EPA Output Event Buffering ....... 12
4.4aHSI/OEventLocking .............. 12

4.4b EPA Event Locking ................ 12

CONTENTS PAGE
5.0 PULSE WIDTH MODULATION
OUTPUT (PWM) ...t 13
5.1a HSI/O Output Channels ........... 13
5.1b EPA Output Channels ............. 13
5.2aHSI/O Frequency ................. 13
5.2b EPA Frequency ................... 13
5.3aHSI/ODutyCycle ................. 13
53b EPADutyCycle ................... 13
6.0 EPA PWM EXAMPLES ............... 14
6.1 Example #1 ........................ 14
6.2Example #2 ........... ... 15
6.3Example #3 ... 16
6.4Example #4 ........... ... 17
6.5Example #5 ...... ... ...l 18
7.0 CODED EXAMPLES .................. 20
7.1 Using the HSI/O to Capture Every
Eighth RisingEdge ................... 20
7.2 Using the EPA to Capture Every
NthEdge ...t 21
7.3 Using the HSI/O for an Eight Entry
FIFOUnit ..., 23
7.4 Using the EPA for an Eight Entry
FIFOUnit ...t 24
7.5 Using the EPA to Perform Multiple
Output Events in Succession ......... 26
7.6 Using EPA2 to Clock TIMER2
Internally ........ .. .. ...l 28
APPENDIX A ...l A-1






intgl.

1.0 INTRODUCTION

In modern control applications, high speed communi-
cations with the outside world is an essential feature of
today’s microcontroller. To handle such signals, Intel’s
new generation of 16-bit microcontrollers, starting with
the 8XC196KR, offers the Event Processor Array
(EPA). The EPA’s many abilities make it versatile and
ideal for such high speed signals.

Intel’s 16-bit microcontrollers prior to the 8XC196KR
device provide the High Speed Input/Output unit
(HSI/O) for high speed event control. The HSI/O
serves as a basis for all high speed communications
modules on Intel microcontrollers. The EPA is the re-
sult of an evolutionary process evaluating the needs of
high speed input and output control. Because the EPA
is a new peripheral module of the 16-bit microcontrol-
ler, the immediate question is how this module is com-
parable to its counterpart on previous MCS-96 devices.
Though on the surface the HSI/O and EPA modules
may appear to be vastly different, the reality is that the
two are functionally very similar.

In this application note a general familiarity with the

AP-449
1.1 General Overview
1.1.1 HSI/O
16-BIT
XTAL1/16 TIMER 1
N »
HsI.0 > TRIGGERED 16
HSI. 1 »| CHANGE INPUT(S)
HSl.2 »| DETECTOR
4
HSI.3 =g v v
rF S
20
8 FIFO /
CURRENT 20
STATUS
HOLDING REGISTER |

v

4 4

16
v

IHSI_MODE | IHSI_STATUSI I

HSI_TIME I

.

MCS-96 architecture is assumed. Its purpose is to com- 270968-1
pare the functions of the HSI/O and EPA and assist
the programmer who wishes to use the EPA module
and is already familiar with the HSI/O.
16-BIT 16-BIT
T2CLK ——
XTAL1/16 ——>| TIMER1 TaINT TIMER2
CONTROL
LoGIC ) | ]
A A | l l
L 24 »  Mux
> ' CAM FILE 8
1
. v
«— 38— 16
- T 16 COMPARATOR  |— ?3255
: f
| HOLDING REGISTER I
A A
8 16
|HSO_COMMAND I | HSO_TIME I
o 1 T,
< >
270968-2




AP-449 |n
®
Timer 2 l—— TIMER2_CONTROL
Timer 1 [ ¢——— TIMER1_CONTROL
I Time Bus
EPA_TIMEO -
‘Buffer > =)(| EPA(0D)
Structure
I EPA_TIMEO
equal ‘
HS output
I EPA_CONTROL }—————————————b >§ —
 Reset T |
~ Reset T2
~ Start A/D
N Interrupt Out
EPAINTO <
EPAINT1 <4— EPA Channel EPA(1)
INTERRUPT
SOURCES EPAINT2 <4— EPA Channel EPA(2)
EPAINT3 <4— EPA Channel EPA(3)
EPAINTX ' ] s
] I ]
SOFT VECTOR 1 1 |
GENERATOR ' ' '
OR function |« EPA Channel EPA(7)
B \
' ! < EPA Ch | —. EPA(8
! ! anne (8)
, ' < EPA Channel EPA(9)
, i | NTERRUPT
! ! BLOCK I COMP_CONTROLXx I(——————{ COMP_TIMEx
1 1 equal
! ! Reset T1 I
] 1 :
1 1 Reset T2
1 ' :
Start A/D COMPARE 0
EPA-MASK/ < and COMPARE 1
P| EPA_MASK1 Interrupt Out
] EPA-PEND/
EPA_PEND1 ‘

TIUMP j

Tbus

270968-3




intgl.

The HSI/O is capable of handling timed input and out-
put events on a number of exterior pins. There are two
dedicated input pins, four dedicated outputs, and two
pins that are multiplexed between input and output.
The module has two internal timers for the timing and
scheduling of events. Up to a total of eight incoming
events, rising or falling edges, on all input pins can be
buffered at once in a FIFO storage unit. Up to eight
output events for all output pins can be buffered at once
in the Content Addressable Memory (CAM) unit. The
HSI/O also features either one or three Pulse Width
Modulation channels. The HSI/O appeared on the
original 8X9X device and has changed only slightly as
new parts have been released. Further information on
the specific differences between these devices is given
below. Also see the User’s Guides for the 8096BH,
8XC196KB, and 8XC196KC in the 16-Bit Embedded
Controllers Handbook.

1.1.2 EPA

The EPA had many attributes similar to the HSI/O. In
the case of the 8XC196KR, there are ten EPA chan-
nels, called capture/compare modules, each of which
can be selected as input or output. In addition there are
two compare channels dedicated to the timing of inter-
nal events only. Again the module has two internal tim-
ers for the timing and scheduling of events. Two input
events are buffered separately for each pin configured
as an input and one output event for each pin config-
ured as an output. More detailed information on all
these functions is provided below as well as in the
8XC196KR User’s Guide in the Automotive Products
Handbook.

1.1.3 PTS

An additional module, first introduced on the
8XC196KC and 8XCI196KR, called the Peripheral

AP-449

Transaction Server (PTS) greatly enhances the capabili-
ties of the EPA. The PTS is an interrupt handler that
performs very fast Direct Memory Access interrupts.
These interrupts can be initiated by internal or external
events, hence the close connection between the EPA
and PTS. Though the PTS will not specifically be dis-
cussed here, more information can be obtained from the
8XC196KC and 8XC196KR User’s Guide. Examples
of using the PTS in conjunction with the EPA are given
through this text.

1.1.4 HOW TO USE THIS APPLICATION NOTE

The purpose of this paper is to provide a direct, side by
side comparison of the HSI/O module in the left-hand
column and the EPA module in the right-hand column.
Both accomplish nearly the same functions but their
implementations, and therefore for the necessary soft-
ware, can be quite different. Specific functions of
HSI/0 and EPA are discussed and, where applicable,
actual code showing actions performed in both modules
is provided. In some cases, examples are also given of
functions that have no equivalent in the other module.

Most of the code examples for the EPA make use of the
new windowing capabilities as well as the new port con-
figuration techniques that, like the EPA itself, are new
on the 8XC196KR device. The window and port func-
tions are not described here but are discussed in the
8XC196KR User’s Guide. Note that the new window-
ing allows many addresses outside of the 00 to FF ad-
dress space to be referenced as registers. The equate
statements defining the register names used in this text
are defined in the appendix. Also, whenever actual
times are referred to instead of state times, a 16 MHz
clock frequency is assumed. Finally, where the letters
BH, KB, KC, and KR appear, these refer to the
8X9XBH, 8XC196KB, 8XC196KC, and 8XC196KR
respectively.



AP-449

intgl.

2.0 TIMERS

HSI/0

2.1a Clocking

Both TIMER1 and TIMER?2 are 16-bit timers used for
time stamping of incoming events and for scheduling of
output events. TIMERI is a free running timer whose
only clocking mode is internal clocking once every
eight state times. TIMER?2 is clocked by transitions,
both rising and falling edges, on either T2CLK or
HSI.1 but the maximum clock rate is still once every
eight state times. On the KB and KC, TIMER?2 can be
clocked once every state time in Fast Increment Mode
and on the KC, TIMER2 can also be clocked internal-

ly.

LDB 10C0, #00H
LDB I0Cl1, #00H
LDB I10C2, #00H

® T2CLK pin is clock source

® Count up clocked by rising and falling edges on
T2CLK pin

e External reset disabled

® Do not reset timer each write

® Disable overflow interrupt

® Disable fast increment mode - KB and KC only

Ex. 1a. Configure TIMER2 to Count Externally

EPA

2.1b Clocking

Both TIMER1 and TIMER?2 are 16-bit timers. TIM-
ER1 and TIMER?2 can be clocked externally through
T1CLK and T2CLK or clocked internally. The maxi-
mum clock rate, internal or external, is the chip clock
rate divided by 4. Internally, prescaling allows clocking
at several selectable fractions of the chip clock frequen-
cy. Externally, prescaling allows clocking at several se-
lectable fractions of the TICLK or T2CLK frequency.
TIMER1 and TIMER?2 can be chained together to pro-
duce a single 32-bit counter by clocking TIMER2 with
the overflow of TIMERI1. A quadrature counting op-
tion allows use of the EPA with an encoder wheel.

The principle difference between the EPA and HSI/O
timers is that TIMERU1 is not free running, it MUST be
configured in order to count whereas it formerly would
automatically begin counting on start up. Also note
that all functions of the timers are held in the two
TIMERn__CONTROL registers rather than mixed in
with the IOCn registers allowing complete configura-
tion2 of a timer in one memory write.

LDB WSR, #7EH

LDB P1I0__2, #0FFH

LDB PISSEL_ 2, #01H

LDB WSR, #7CH

LDB TIMER2__CONTROL__2, #0C8H

® P1.0 selected for input as T2CLK pin

® Count up clocked by rising and falling edges on
T2CLK pin

Ex. 1b. Configure TIMER2 to Count Externally

LDB WSR, #7CH
LDB TIMER1_CONTROL__2, #0C2H
LDB TIMER2__CONTROL__2, #0FOH

e TIMERI counts up with 1 us period

® TIMER2 counts on TIMER1 overflow and in
the same direction as TIMER1

Ex. 1c. Chaining Two Timers Together



intgl.

2.2a Reset

TIMERI can only be reset by a chip reset. TIMER2
can be reset by a chip reset, setting bit 1 in IOCO, set-
ting either T2RST or HSI.O depending on the value of
10CO0.5, or by any of the HSO’s. On the KB and KC,
both timers may be written with any value, which may
also be considered “resetting” the timer.

HSI/0

LDB HSO_COMMAND, #8EH
LD HSO__TIME, #500

® Resets TIMERI every 500 clocks
® Event locked in CAM (KB and KC only)
® No interrupts generated by CAM or TIMER1

Ex. 2a. Reset TIMER2 with HSO

AP-449

EPA

2.2b Reset

Both timers can be reset by any of the EPA channels.
Choosing the appropriate EPA control mode allows ei-
ther timer to reset itself or the opposite timer. Both
timers can be loaded with any time value. Though there
is no auto-reload capability this function can be pro-
duced using the PTS (see Appendix 7.3).

The main difference here is that the new system has no
dedicated T2RST pin for external resetting of TIM-
ER2. However, any of the 10 EPA channels can be
configured to reset either timer or an input event as
shown below.

LDB WSR, #7CH

LD COMP__CONTROLO__2, #0FE49H
LD COMP__TIMEO__2, #500

LDB TIMER1__CONTROL__ 2, #0C2H

e TIMERI counts every 1 us

® Resets TIMERI1 every 500 clocks (500 us)

o COMPO time entry locked

e No interrupts generated by COMPO or TIMER1

Ex. 2b. Reset TIMER2 with Compare Channel 0

LDB WSR, #7EH

LDB P110__2, #0FFH

LDB PISSEL__2, #01H

LDB WSR, #7BH

LDB EPA__CONTROLO__2, #0FE23H
LDB WSR, #7CH

LDB TIMER2__CONTROL_ 2, #0C2H

® Port 1.0 is EPA input
® Captures on rising edge
e TIMER?2 counts every 1 us

® Captures TIMERI, resets TIMER2, (opposite
timer)

® NOTE: MUST capture one timer and reset the
OPPOSITE timer to reset on input event

¢ NOTE: Cannot be done without interrupts on
HSI/O

Ex. 2c. Reset TIMER2 on Input Rising Edge



AP-449

HSI/0

2.3a Count Direction

In the BH part, both timers can only count up. On the
KB and KC, the TIMER2 direction can be chosen by
the value of Port 2.6 The timer direction cannot be
controlled internally.

LDB 10C2, #02H

o TIMER2 counts down if Port 2.6 is high, up if
low

Ex. 3a. Control TIMER2 Direction Externally

intgl.
EPA

2.3b Count Direction

Both timers can determine their count direction from
either their internal timer control register or on the
T1DIR and T2DIR pins. Also, the count direction of
TIMER2 can be set to match that of TIMERT1 so that
TIMER1 and TIMER2 together perform 32-bit
up/down counting.

Additionally, because the T2DIR pin is the same as the
EPA2 pin, T2DIR can be controlled directly using
EPA2. Setting the T2DIR as the direction control for
TIMER?2 and configuring EPA2 as an output allows
the value of EPA2 to control the count direction of
TIMER?2 (see Ex. 3c.)

LDB WSR, #7CH

LDB P1I0__ 2, #OFFH

LDB PISSEL_ 2, #04H

LDB TIMER2__CONTROL__2, #90H

® P1.2 selected as T2DIR

e TIMER2 counts up if T2DIR is high, counts
down if low

Ex. 3b. Control TIMER2 Direction Externally

LDB WSR, #7EH

LDB P1IREG_ 2, #0FBH

LDB P1I0__2, #0FBH

LDB PISSEL__2, #04H

LDB WSR, #7BH

LD EPA__ CONTROL2_ 2, #0FE70H
LDB WSR, #7CH

LDB TIMER1_CONTROL__ 2, #0C2H
LDB TIMER2__CONTROL__2, #0C6H

® P1.2 selected as EPA2 input and T2DIR

e EPA2 toggles pin so it changes TIMERI1 direc-
tion on EPA__TIME2 match

® NOTE: Time entry not locked here so a new
EPA__TIME2 value must be written for each
direction change

Ex. 3c. Control TIMER2 Direction
Internally with EPA2



intgl.

3.0
HSI/0

3.1a

The HSI/O has a total of four input channels. Two are
dedicated lines and two are selectable as input or out-
put. All events recorded on these lines go directly to the
FIFO unit.

Input Channels

3.2a

The HSI records the time (value of TIMER1 only) of
logic transitions along with the pin on which they occur
in the FIFO structure. Up to eight events can be stored
in the FIFO at one time. The HSI is capable of captur-
ing events on rising edges only, falling edges only, rising
and falling edges, or every 8th rising edge. Events on
separate pins that occur within the same clock period
are stored in the same FIFO entry. Additionally, on the
KB and KC, rising edges on the P2.7 pin capture the
value of TIMER2 in the T2CAP register for input
event processing that bypasses the FIFO and creates its
own interrupt.

Input Capture

CLRB INT_PEND

LDB 10C0, #10H

LDB 10Cl1, #00H

LDB HSI_MODE, #10H
LDB INT_MASK, #04H
EI

e HSI.2 input enabled

® Captures each positive edge on HSI.2

® Tags event with TIMERI1 time (no choice)
e HSI interrupts on Holding Register loaded

Ex. 4a. Choosing HSI.2 as Input

AP-449

INPUTS

EPA

3.1b

The EPA has 10 external pins, each of which can indi-
vidually be selected for input capture. Unlike the
HSI/0O, the EPA pins also serve as port pins. This
means the pins MUST first be configured to function
for the EPA and then the EPA__CONTROLn register
must also be configured for capturing the appropriate
input event. See the 8XC196KR User’s Guide for more
information on configuring the ports.

Input Channels

3.2b Input Capture

The EPA can time stamp input events with the time
value of TIMER1 and TIMER2. In the EPA, each
channel stores its input events separately in its EPA__
TIMEn register rather than mixed together as in the
FIFO. Each time register is buffered allowing the stor-
age of two input events at once. Input capture events
include rising edges, falling edges, or rising and falling
edges. Capture on every 8 rising edges as the HSI/O
does can be handled by the EPA using the PTS with
more flexibility (see Section 7.1). The T2CAP register
of the KB and KC parts does not exist in the EPA
because every channel is capable of performing this
function and generating its own interrupt.

CLRB INT_PEND

LDB WSR, #7EH

LDB PIREG__2, #0FFH
LDB P110__2, #0FFH
LDB PISSEL_ 2, #04H
LDB WSR, #7BH

LD EPA__CONTROL2__2, #0FE20H
LDB INT_MASK, #04H
EI

® P1.2 selected as EPA input

® Captures each rising edge

® Tags event with TIMERI time

e EPA2 interrupts on capturing rising edge

Ex. 4b. Choosing EPA.2 as Input



AP-449

HSI/0

3.3a

All incoming events produce interrupts solely through
the FIFO unit and vector through the same address in
the vector table (except for TIMER?2 capture on the
KB and KC). Since the time of an input event from
ANY pin is provided in the HSI__TIME register, this
register MUST be read in the interrupt service routine
to allow further interrupts from any HSI pin to occur.
Also, if multiple HSI channels are used, because of the
common FIFO storage unit, the interrupt service rou-
tine must decode the HSI__STATUS register to deter-
mine which channel created the interrupt.

Interrupts

Because of the storage space of the FIFO, several input
events can be stored at once before an interrupt is re-
quired. On the BH part an interrupt can be created
with one or six entries in the FIFO. With the KB and
KC parts an interrupt can also be created on the fourth
entry, or when the FIFO is half full.

intgl.
EPA

3.3b

Unlike the HSI/O where all input interrupts are vec-
tored to the same interrupt service routine, several of
the EPA channels generate their own interrupts direct-
ly with no decoding. EPA channels O through 3 each
have their own bits in the INT__PEND register and
their own vectors allowing easy interrupt handling for
these channels. EPA channels 4 through 9 and Com-
pare channels O and 1 all generate interrupts to the
EPAINTX bit in the INT__PEND register. However,
for these interrupts, the TIJMP command has been
added to the 8XC196KR instruction set to be used with
the EPAIPYV register allowing the use of individual in-
terrupt routines for EVERY interrupt with very little
decode overhead in determining the source of the inter-
rupt (see Section 7.5). Similar to the HSI/O, however,
the EPA__TIMEn register must be read during each
interrupt service routine to allow further interrupts on
that channel.

Interrupts

The addition of the PTS module makes the interrupt
capability of the EPA even more flexible. For every
interrupt produced by the EPA, it is possible to pro-
duce a PTS interrupt instead. This is done by setting
the corresponding bit in the PTS__SELECT register.
As long as this bit is set, all interrupts associated with
this bit will be PTS interrupts. Again, see the
8XC196KR User’s Guide for information on using the
PTS.

CLRB INT_PEND

LDB WSR, #7EH

LDB PIREG__2, #0FFH
LDB P1IO__2, #0FFH
LDB PISSEL__ 2, #04H
LDB WSR, #7BH

LD EPA__CONTROL2__2, #0FE20H
LD PTS_SELECT, #0004H

LDB INT_MASK, #04H

EPTS

EI

® Same as previous example except uses PTS inter-
rupt

Ex. 4c. Choosing EPA2 as Input,
Using PTS to Service Interrupt



intgl.

3.4a Reading HSI Current State

The current state of any of the HSI pins can be read
directly from the HSI__STATUS register. However,
there are two difficulties in handling HSI interrupts.

HSI/0

The first is that reading the HSI__TIME register causes
the next entry to be read out of the FIFO and written to
the HSI__STATUS register. If two or more HSI events
occurred in the same clock cycle then handling the first
event will cause the HSI__STATUS register to be writ-
ten over and the second event is lost. This is because all
of the individual HSI interrupt bits are stored in the
HSI__STATUS register. This means an extra copy of
HSI__STATUS must be held in software to be sure no
events are lost.

The second difficulty is that the IOS1 register is cleared
every time it is read. The IOSI1 register is used to indi-
cate when the HSI Holding Register is full, when the
FIFO is full, and when any of the software timers have
expired. This means that an extra copy of this register
also must be kept in software if one wishes to check the
status of all conditions. Great care must be taken when
writing software for both situations.

AP-449

EPA

3.4b Reading EPA Current State

Determining the current state of any of the EPA pins
can be accomplished easily by reading either the PIPIN
register (EPA O through 7) or the P6PIN register (EPA
8 and 9). Reading bits to decode which input channel
caused an interrupt is not necessary as in the HSI/O
because the decoding is performed by hardware. As
stated in the previous section, EPAO through 3 have
their own interrupt bits and vectors. All other EPA
channels are vectored through the EPAINTX vector.
Nowhere is it necessary to keep extra copies of registers
to avoid losing interrupt data.



AP-449

intgl.

4.0 OUTPUTS

HSI/0

4.1a Output Channels

Four dedicated output lines are available to the HSI/O
as well as the two multiplexed lines that are selectable
as input or output. Output events to all six output lines
are controlled solely by the CAM unit. While input
events can only be time stamped by TIMERI, output
events can be based on TIMER1 or TIMER2.

LDB HSO__COMMAND, #20H
ADD  HSO__TIME, TIMERI, #200

® HSO.0 sets pin in 200 clocks of TIMER1
e TIMERI counts every 8 state times (no choice)

Ex. 5a. Set HSO.0 Pin Based on TIMER1

10

EPA

4.1b Output Channels

All ten of the external EPA pins can individually be
configured for output events. Each channel has its own
EPA__CONTROLn and EPA__TIMEn register for
the scheduling of events. EPA channels 0 and 1 and
channels 2 and 3 can be “mapped” together such that
all of their external events appear on EPA pins 1 and 3
respectively. Compare channels O and 1, though they
do not seem to have external pins, can be configured to
set or reset pins. Output events of Compare channel 0
appear on EPAS8 and those of Compare channel 1 ap-
pear on EPA9 (EPA8/Compare0 and EPA9/Com-
parel can be thought of as permanently mapped togeth-
er). The remapping of channels allows two events to be
scheduled to occur on one pin in quick succession, fast-
er than could be done with interrupts. Note: the map-
ping of two channels together on one pin is for output
events only. This does not work for input.

LDB WSR, #7EH

LDB P1REG__2, #0FEH

LDB P1I0__2, #0FEH

LDB PISSEL_ 2, #01H

LDB WSR, #7BH

LD EPA__ CONTROLO_ 2, #0FE60H
LD EPA__TIMEO__2, #200

LDB WSR, #7CH

LDB TIMER1_CONTROL__2, #0C2H

® P1.0 selected as EPA, output, initially low
® EPAO sets pin in 200 clocks of TIMER1
e TIMERI counts every 1 us

Ex. 5b. Set EPAO Pin Based on TIMER1



intgl.

4.2a Output Events

HSI/0

Output events are initiated immediately when the time
tag of an output event matches the value on the selected
timer. The HSI/O can produce a number of different
“output” events, not all affecting the external pins. The
unit can raise or lower the logic levels of one or a group
of the pins, reset TIMER?2, or initiate an A/D conver-
sion, while each action can also optionally cause an
interrupt. Using the 4 software timers the unit can
cause an interrupt without taking any other action.
When several software timers are used, however, the
source of interrupt must be decoded because all timers
use the same interrupt vector.

CLRB INT_PEND

LDB HSO_COMMAND, #58H
ADD HSO__TIME, TIMER2, #1000
LDB INT_MASK, #04H

® Software timer O set to interrupt in 1000 clocks
of TIMER2

*NOTE: Decoding of interrupt source by reading
I0S1

Ex. 6a. Use Software TIMERO to Create Interrupt

AP-449

EPA

4.2b Output Events

EPA output events can be initiated from a time tag
match with either timer. The various events controlled
are similar to those of the HSI/O including setting or
resetting a pin or toggling the pin, resetting either tim-
er, and starting an A/D conversion, where each event
can be accompanied by an interrupt. The four software
timers of the HSI/O are replaced in the EPA by simply
allowing an interrupt to occur without performing an-
other action.

CLRB INT_PEND

LDB WSR, #7CH

LD COMP__CONTROLO__2,
#0FES8OH

ADD COMP__TIMEO__2, TIMER?2,
#1000

LDB INT_MASK, #01H

EI

® COMPO set to interrupt in 1000 clocks of TIM-
ER2

e NOTE: TIIMP along with EPAIPV must be
used to get to interrupt service routine

Ex. 6b. Use COMPO to Create Interrupt

LDB WSR, #7EH

LDB P1IREG__2, #0FDH

LDB P1I0__2, #0FDH

LDB PISSEL_ 2, #02H

LDB WSR, #7BH

LD EPA__ CONTROLO__ 2, #0FE60H
LD EPA__TIMEO__2, #500

LD EPA__CONTROLI1__2, #0FF50H
LD EPA__TIME1_ 2, #501

LDB WSR, #7CH

LDB TIMER1__CONTROL__ 2, #0C0

e EPAO and 1 remapped together
® P1.1 selected as EPA output

e EPAO sets pin in 500 clocks of TIMER1, EPA1
reset pin 1 clock later

o TIMERI counts every 250 ns

Ex. 6c. Using Remap Function to
Produce Two Events on One Pin

11



AP-449

HSI/0

4.3a Output Event Buffering (CAM)

The CAM unit allows up to eight output events to be
written, or buffered, at once. Each event occurs when
its time tag matches the corresponding timer value, re-
gardless of the order events are written to the CAM.

The CAM is loaded by writing the event to the HSO__
COMMAND register followed by writing the time to
the HSO__TIME register. When the HSO__TIME reg-
ister is written it may take up to eight state times to
actually load the CAM. When writing multiple events
to the CAM one must be careful to observe the eight
state time limit in writing the HSO__TIME register.

Once an event is written to the CAM it cannot be re-
moved if, for instance, it needs to be rescheduled. For
commands that affect the external pins, writing the op-
posite action for the same time and pin will prevent any
action from being taken while taking up two of the
eight CAM entries. For other actions, such as resetting
TIMER2, there is no appropriate “opposite” action.
However, the entire CAM can be cleared to remove the
event by setting IOC2.7 (not always a viable option).

4.4a Event Locking

On the KB and KC parts, events written to the CAM
can be “locked”. These events remain in the CAM in-
stead of disappearing after executing once as normally
occurs. They occur EVERY time the clock counts back
around to match the time tag of the event. Care must
be taken when using this option as these events can
only be cleared from the CAM by clearing the entire
CAM (setting bit IOC2.7) or resetting the chip.

LDB HSO_COMMAND, #0AOH
ADD  HSO__TIME, TIMERI, #200

® Same as Ex. 5a but event is now locked in CAM

Ex. 7a. Lock Event in CAM

12

intgl.

4.3b Output Event Buffering

One of the main differences between the HSI/O and
EPA structures is that the EPA has no CAM unit. In-
stead, each pin holds one timed output event in the
EPA__ TIMEn register.

EPA

An EPA output event is set up by first writing to the
EPA__CONTROLn register for the desired channel
and then writing the EPA__TIMEn register. As soon
as the event occurs, normal software or and interrupt
routine can set up the next timed event.

Since all of the EPA channels have their own separate
EPA__CONTROLn registers, events on different chan-
nels can be written as fast as desired. The eight state
time wait period does not have to be observed as in the
HSI/0. If a pending event must be changed or resched-
uled, the appropriate register, either control or time,
simply needs to be written over before the event takes
place. Clearing all pending events is never necessary as
is sometimes the case in the HSI/O.

The one advantage lost in the EPA is the scheduling of
up to eight events at once as in the CAM. However, the
fast interrupts of the PTS can be used to schedule many
new events as soon as the previous event occurs. Also
many more then eight events can be scheduled using
this technique. Please see Appendix for an example.

4.4b Event Locking

The EPA also has locked events that occur every time
the time tag matches the appropriate timer. Unlike the
HSI/0 they are easily removed when they are no long-
er desired. Simply writing the EPA__ CONTROLX
register with a new value will enable a new event that
may or may not be locked, depending on the value of
the RE bit.

LD EPA__ CONTROLO_ 2, #0FE68H
LD EPA__TIMEO__2, #200

® Same as Ex. 5b but event is now locked in
EPA__TIMEO register

Ex. 7b. Lock Event in EPA_TIMEn



intgl.

AP-449

5.0 PULSE WIDTH MODULATION OUTPUT (PWM)

HSI/0

5.1a Output Channels

Another feature of Intel 16-bit microcontrollers prior
to the KR device, yet functionally separate from the
HSI/O structure, is the Pulse Width Modulation Out-
put or PWM. Intended for slow response analog devic-
es such as meters and motors, the PWM acts as a D/A
converter producing a constant frequency, variable
duty cycle square pulse train. The unit has its own
eight-bit counter. An eight-bit PWM__CONTROL
register determines on which of the 256 counts the out-
put goes low. The BH part has one such dedicated
channel while the KB and KC parts have 3 PWM pins.

5.2a Frequency

On the BH part, the PWM frequency is set where one
period is equal ot 256 state times. On the KB and KC
parts the period can equal 256 or 512 state times. The
actual frequency is then completely determined by the
chip clock frequency.

5.3a Duty Cycle

The PWM duty cycle is only selectable with eight bits
of precision, it must be one of 256 discrete values. Even
when the period is equal to 512 state times there is no
gain in duty cycle resolution, only a change in PWM
frequency. The duty cycle can be of either polarity as
long as care is taken to note that time in the PWM__
CONTROL register is the time the signal goes LOW.
Also note that a 0% duty cycle (always low) is achiev-
able while 99.6% duty cycle (high) is the maximum.

LDB I0Cl1, #01H
LDB PWM__CONTROL, #80H

® PWM with 50% duty cycle

Ex. 8. Typical Use of PWM Unit

EPA

5.1b Output Channels

The KR device has no PWM output unit. The EPA by
itself or using the PTS performs the functions of a dedi-
cated PWM unit. Using the PTS PWM Mode or PTS
PWM Toggle Mode the user is able to produce any
signal the PWM unit produces with much more control
over the actual shape of the wave. A variety of PWM
outputs can be used on any of the 10 EPA channels. A
number of those possible are shown in complete pro-
gram examples in Section 6.

5.2b Frequency

Where the HSI/O’s PWM unit gives the user at most
two frequencies to choose from, the EPA and PTS
combination provides a very wide range of possible out-
put frequencies. Depending on the process used a peri-
od range of as little as two state times up to 65536 state
times (or longer) is possible. (Again, see Section 6 for
examples.)

5.3b Duty Cycle

Any duty cycle of either polarity is achievable using the
appropriate example found in Section 6. The resolution
in selecting the duty cycle is always 1 state time. The
number of different duty cycles is only limited by the
number of state times in the period of the PWM signal
produced.

13



AP-449

6.0 EPA PWM EXAMPLES

6.1 Example #1

intgl.

The first example stores and locks a time in an EPA__TIMEn register while the EPA__CONTROLn register
instructs the EPA channel to toggle the pin. Every time the clock counts around to the time value in the EPA__
TIMEn register the pin toggles. This makes a low frequency, 50% duty cycle square wave. The frequency is variable
by changing the TIMERI1 prescaling. No CPU overhead required.

~e Se owe we

EXAMPLE MODULE MAIN, STACKSIZE (20)
$NOLIST
$INCLUDE (KR.INC)
$LIST
STK EQU 200H
CSEG AT 2080H
LD SP, #STK
CLRB INT_PEND
CLRB INT PEND1
LDB WSR, #7EH
1DB P1REG_2, #0FFH
LDB P1IO_2, #0FEH
LDB P1SSEL_2,#01H
1LDB WSR, #7BH
1D EPA_CONTROLO_2, #0FE78H
LD EPA_TIMEO_2,#100
LDB WSR, #7CH
LD TIMER1_CONTROL_2, #0C2H
SELF:
SJMP SELF
END

Initialize Stack Pointer
Clear out interrupts

32 byte window on 1FCOH
Turn off pull down

P1.0 is output

P1.0 is EPAO

32 byte window on 1F60H
TIMER1, toggle output, lock time entry
Time tag to toggle output

32 byte window on 1F80H
Enable timer, count up,

lus period
Let EPA take over

270968-4

14




AP-449

intgl.

6.2 Example #2

Here the PTS is used to produce a square wave of 50% duty cycle where the selection of frequency is much greater
than in the previous example. Using the PTS PWM Mode, the interrupt adds the value of CONST1 to the value in
the EPA__TIMEO register. On each interrupt the external pin is toggled. The PWM frequency is then selectable
with 16 bits of resolution. This example produces a 50% duty cycle 1 KHz square wave. Very high frequency waves

cannot be made, however, because two interrupt latencies will occur during each period.

DCwW

EXAMPLE MODULE MAIN, STACKSIZE(20)
$NOLIST

$INCLUDE (KR.INC)

SLIST

STK EQU 200H

CSEG AT 2048H

PTS_UNUSEDO

CSEG AT 2008H

DCW EPAC_TISR
RSEG AT 70H
PTS_UNUSEDO: DSB 1
PTS_CONTROLO : DSB 1
PTS_SRCO: DswW 1
CONST1: DswW 1
CSEG AT 2080H
DI
DPTS
D SP, #STK ; Initialize Stack Pointer
CLRB INT_PEND ; Clear out interrupts
CLRB INT_PEND1
LDB PTS_CONTROLO,#40H ; PTS PWM Mode
LD PTS_SRCO, #EPA_TIMEO ; Source is EPA_TIMEO
LD CONST1, #500 ; Constant for half period
LDB WSR, #7EH ; 32 byte window on 1FCOH
LDB P1REG_2, #0FFH ; Turn off pull down
LDB P1IO_2, #0FEH ; P1L.0 is output
LDB P1SSEL 2, #01H ; P1.0 is EPAO
LDB WSR, #7BH ; 32 byte window on 1F60H
LD EPA_CONTROLO_2, #0FE70H ; TIMER1l, toggle output
LD EPA TIMEC_2,#100 ; Initial toggle time
LDB WSR, #7CH ; 32 byte window on 1F80H
LD TIMER]1_ CONTROL 2, #0C2H ; Enable timer, lus period
LD PTS_SELECT, #0010H ; Enable PTS interrupt for EPAO
LDB INT_MASK, #10H ; Enable EPAO interrupts
EPTS
EI
SELF:
SJMP SELF ; Let EPA take over
EPAO_ISR:
ORB INT_PEND, #10H ; Select PTS interrupt
RET
END

270968-5

15



AP-449

6.3 Example #3

The PTS Toggle Mode is used to produce a square wave with other than 50% duty cycle using only one EPA
channel. On each interrupt either CONST1 or CONST?2 is added to the EPA__TIMEDO register. On the following
interrupt the other constant is added. Each time the external pin is toggled. This allows specifying the high time of
the signal in one constant and the low time in the other. The period of the signal is the sum of CONST1 and

In

CONST?2, the high time and the low time. This sum must be greater than the maximum interrupt latency.

EXAMPLE
$NOLIST
$INCLUDE (KR . INC)
$LIST

STK EQU 200H

CSEG AT 2048H
DCW PTS_UNUSEDO

CSEG AT 2008H

DCW EPAO_ISR
RSEG AT 70H
PTS_UNUSEDO : DSB1
PTS_CONTROLO: DSB1
PTS SRCO: DSW 1
PTS_CONSTO: DSW 1
PTS_CONST1: DSW1
CSEG AT 2080H
DI
DPTS
LD SP, #STK

CLRB INT PEND
CLRB INT_PEND1

LDB PTS_CONTROLO, #42H
LD PTS_SRCO, #EPA_TIMEO
LD PTS_CONSTO, #500
LD PTS_ CONSTL, #800
LDB WSR, #7EH
LDB P1REG_2, #0FFH
LDB P1I0_2, §OFEH
LDB P1SSEL 2, #01H
LDB WSR, #7BH
LD EPA_CONTROLO_2, $0FE70H
LD EPA_TIMEO_2, %100
LDB WSR, #7CH
LD TIMER1_CONTROL_2, #0C2H
LD PTS_SELECT, #0010H
LDB INT MASK, #10H
EPTS
EI

SELF:
SIMP SELF

EPAO_ISR:
ORB INT_PEND, #10H
RET

END

MODULE MAIN, STACKSIZE (20)

Initialize stack
Clear out interrupts

PTS Toggle Mode

Source is EPA_TIMEO

Constant for positive half cycle
Constant for negative half cycle

32 byte window on 1FCOH
Turn off pull down
P1.0 is output

; P1.0 is EPAO

32 byte window on 1F60H

; TIMER1, toggle output

Initial toggle time

; 32 byte window on 1F80H
; Enable timer, lus period

; Enable PTS interrupt for EPAQO
; Enable EPAO interrupts

; Let EPA take over

Select PTS interrupt

270968-6




in‘tel . AP-449

6.4 Example #4

This example does not use the PTS, it simply uses the capabilities of the EPA. EPAO and 1 are remapped together on
EPAL1. EPAO sets the pin and resets TIMER1 while EPA1 takes care of resetting the pin. No interrupts are required,
however TIMERI1 is dedicated to this process alone as it resets in phase with the frequency of the signal produced.
This is the fastest PWM frequency possible.

EXAMPLE MODULE MAIN, STACKSIZE (20)
$NOLIST
SINCLUDE (KR. INC)
SLIST
STK EQU 200H
CSEG AT 2080H
DI
DPTS
LD SP, #STK ; Initialize stack
CLRB INT PEND ; Clear out interrupts
CLRB INT PEND1 ;
LDB WSR, #7EH ; 32 byte window on 1FCOH
LDB P1REG_2, #0FFH ; Turn off pull down
LDB P1IO_ 2, #0FDH ; P1.1 is output
LDB P1SSEL 2, #02H ; P1.1 is EPAl
LDB WSR, #7BH ; 32 byte window on 1F60H
LD EPA_CONTROLO_2, #0FE69H ; TIMERI, set pin,reset timer,lock time
LD EPA_TIMEO_ 2, #500 ; Time tag for setting pin
LD EPA_CONTROL1_2, #0FF58H ; TIMERL, reset pin,lock time entry
LD EPA_TIMEl_2,#150 ; Time to reset pin
LDB WSR, #7CH ; 32 byte window on 1F80H
LD TIMER1 CONTROL_2,#0C2H ; Enable timer, count up, lus period
SELF':
SJMP SELF ; Let EPA take over
END

270968-7

17



AP-449

intgl.

6.5 Example #5

Finally, the PTS PWM Toggle Mode is used with two channels mapped together to produce a square wave of
arbitrary frequency and arbitrary duty cycle. EPAO is set up to set the pin while EPA1 is set up to reset the pin. Each
time each channel performs its function it also performs a PTS interrupt that adds the constant value from its PTS
Control Block to the value in its EPA___TIMEn register. The advantage of the example over the previous one is that
the timer can be free running and used for other functions as well rather than resetting for every period of the square
wave. Note that the constant values of the two PTS channels must be the same to preserve the duty cycle. The duty
cycle is chosen by the initial value of the two EPA__TIMEn registers.

EXAMPLE MODULE MAIN, STACKSIZE (20)
$NOLIST
SINCLUDE (KR.INC)
SLIST
STK EQU 200H
CSEG AT 2048H
DCW PTS_UNUSEDO
CSEG AT 2046H
DCW PTS_UNUSED1
CSEG AT 2008H
DCW EPAO_ISR
CSEG AT 2006H
DCW EPAl_ISR
RSEG AT 70H
PTS_UNUSEDO: DSB 1
PTS_CONTROLO: DSB 1
PTS_SRCO: DSW 1
CONSTO: DSW 1
RSEG AT 80H
PTS_UNUSED1: DSB 1
PTS_CONTROLL: DSB 1
PTS_SRCLl: DSW 1
CONST1: DSW 1
CSEG AT 2080H
DI
DPTS
LD SP, #STK ; Initialize stack
CLRB INT_PEND ; Clear out interrupts
CLRB INT_PEND1 ;
LDB PTS_CONTROLO,#4OH
LD PTS_SRCO, #EPA_TIMEO
LD CONSTO, #500
LDB PTS_CONTROLl,#4OH
LD PTS_SRCl,#EPA_TIMEl
LD CONST1, #500
270968-8

18



intgl.

6.5 Example #5 (Continued)

AP-449

LDB
LDB
LDB
LDB

LDB
LD
LD
LD
LD

LDB
LD

LD
LDB

EPTS
EI

SELF:
SJIMP

EPAQ_ISR:
ORB
RET

EPAl_ISR:
ORB
RET

END

WSR, #7EH

PLREG 2, #0FFH

P1IO_2, #0FDH

P1SSEL_2, #02H

WSR, #7BH
EPA_CONTROLO_2, #0FE60H
EPA_TIMEO 2,#¥500
EPA_CONTROL1 2, #0FF50H
EPA_TIMEl 2,%800

WSR, #7CH
TIMER1_ CONTROL_2, #0C2H

PTS_SELECT, #0018H
INT_MASK, #18H

SELF

INT_PEND, #10H

INT PEND, #08H

32 byte window on 1FCOH
Turn off pull down

P1.1 is output

P1.1 is EPAl

32 byte window on 1F60H
TIMER1, set pin

500us high time

TIMER1, reset pin

800us low time

32 byte window on 1F80H
Enable timer, count up,

Let EPA take over

lus period

270968-9

19




AP-449 in‘tel .

7.0 CODED EXAMPLES

7.1 Using the HSIO to Capture Every Eighth Rising Edge

This program sets up HSI.2 for capturing on every eighth edge. On interrupt, HSI__TIME is read to allow further
interrupts to occur.

EXAMPLE MODULE MAIN, STACKSIZE (20)

$NOLIST
$INCLUDE (KC.INC)
$LIST
STK EQU 200H

CSEG AT 2004H
DCW HSI2_ISR

CSEG AT 2080H

DI

LD SP, #STK
CLRB INT PEND
CLRB INT_PEND1

LDB I0CO, #10H
LDB I0CL, #00H
LDB I0C2, #80H
LDB HSI_MODE, #00H
LDB INT MASK, #04H
EI
SELF:
SJMP SELF
HSI2 ISR:
PUSHF
LD RO, #HSI_TIME
POPF
RET
END

270968-10

20



inte| . AP-a49

7.2 Using the EPA to Capture Every Nth Edge

This program demonstrates the use of the EPA and PTS to perform the eighth rising edge capture capability of the
HSIO. In fact any arbitrary number of rising edges, falling edges, or both can be chosen by adjusting the EPA
capture mode and the number of PTS cycles executed before action is taken. This program works by capturing all
rising edges on EPA2. 7 rising edges are captured, each creating a PTS interrupt that simply copies EPA__TIME2 to
the Zero Register to allow further interrupts. The eighth edge creates a normal interrupt that also reads EPA__
TIME2 and resets further interrupts to be PTS interrupts. This algorithm is very flexible because the EPA capture
mode can be changed to falling edges or rising and falling edges. Also by adjusting the number of PTS__COUNT2
up to every 255th edge can be captured for interrupt processing.

EXAMPLE MODULE MAIN, STACKSIZE (20)
$NOLIST
SINCLUDE (KR.INC)
SLIST
STK EQU 200H
PTS_CYCLES EQU 8
CSEG AT 2044H
DCW PTS_COUNT2
CSEG AT 2004H
DCW EPA2_ISR
RSEG AT 70H
PTS_COUNT2: DSB 1
PTS_CONTROLZ2: DSB 1
PTS_SRC2: DSW 1
PTS_DEST2: DSW 1
RSEG AT 76H
INCR: DSW 1
CSEG AT 2080H
DI
DPTS
LD SP, #STK
CLRB INT_ PEND
CLRB INT_PENDI1
1LDB PTS_COUNT2, #PTS_CYCLES ; 8 PTS cycles then normal interrupt
LDB PTS_CONTROLZ2, #90H ; PTS Single Transfer Mode
LD PTS_SRCZ,#EPA_TIMEZ ; Source is EPA_ TIMEZ2
LD PTS_DEST2, #RO ; Destination is RO
LDB WSR, #7EH ; 32 byte window on 1FCOH
LDB P1REG_2, #0FFH ; Turn off pull down
LDB P1IO 2, #0FFH ; EPA2 is input
1LDB P1SSEL 2, #04H ; EPA2 is special function
LDB WSR, #7BH ; 32 byte window on 1F60H
LD EPA_CONTROL2_2, #0FE20H ; TIMER1, capture positive edges

270968-11

21



AP-449

7.2 Using the EPA to Capture Every Nth Edge (Continued)

LDB
LD

LD
LDB

EPTS
ET

SELF:
SJMP

EPA2_ISR:
PUSHA
JBS
LD
LDB
OR
POPA
RET

ERROR:
ORB
POPA
RET

END

WSR, #7CH
TIMER1 CONTROL 2, #0C2H

PTS_SELECT, #0004H
INT_MASK, #04H

SELF

PTS_SELECT, 1, ERROR
RO, #EPA_TIME2
PTS_COUNT2, #PTS_CYCLES
PTS_SELECT, #0004H

INT PEND, #04H

P

32 byte window on 1F80H
Enable TIMER1, 1lus period

Select PTS interrupt for EPA2
Enable EPA2 interrupts

Let EPA take over

Check for bug

Read EPA _TIME3 to allow new interrupts
Reset PTS for next 8 rising edges
Return to PTS cycles

270968-12

22



in‘tel . AP-449

7.3 Using the HSIO for an Eight Entry FIFO Unit

The HSIO is set up to perform the functionality of a FIFO in hardware as part of its normal operation. One use of
this structure is to capture up to eight events on one pin at a time for interrupt processing, as in this example.

EXAMPLE MODULE MAIN, STACKSIZE (20)

$NOLIST
$INCLUDE (KC.INC)
SLIST
STK EQU 200H

CSEG AT 2004H
DCW HSI2_ISR

CSEG AT 2080H

DI
LD SP, #STK ; Initialize Stack Pointer
CLRB INT_PEND ; Clear all interrupts
CLRB INT PEND1 ;
LDB IOCO, #40H ; Enable HSI.3
LDB I0C1, #80H ; HSI interrupt on FIFO full
LDB I0C2, #80H ; Clear entire CAM
LDB HSI MODE, #40H ; HSI.3 captures rising edges
LDB INT MASK, #04H ; Enable HSI Data available interrupt
EI
SELF:
SJMP SELF
HSI2_ ISR:
PUSHF
ORB IOS1_SAVE, IOS1 ; Clear FIFO by reading out all
JBC IOS1_SAVE,7,FIFO_EMPTY ; entries
ANDB IOS1_SAVE, #7FH
1D RO, #HSI_TIME
SJMP HSI2_ISR
FIFO_EMPTY:
ANDB IOS1_SAVE, #7FH
POPF
RET
END

270968-13

23



AP-449 in‘tel .

7.4 Using the EPA for an Eight Entry FIFO Unit

This program demonstrates the use of the EPA and PTS to perform the eight entry FIFO function of the HSIO. In
fact any arbitrary number of buffered events can be captured up to 256, the maximum number of PTS cycles without
interrupt. The events occurring on one channel are stored separately from the events on another channel thus
removing the need for decode to discover where the event originated. The software FIFO is created by the PTS
cycles where the EPA__TIMES3 value is copied to memory and then the destination address is incremented. After
the desired number of events have been captured, eight here, a normal interrupt occurs allowing processing of the
information just obtained. This example only utilizes one channel, EPA3, and therefore only creates one software
FIFO.

EXAMPLE MODULE MAIN, STACKSIZE (20)
$NOLIST

$INCLUDE (KR. INC)

$LIST

STK EQU 200H

PTS_CYCLES EQU 8

CSEG AT 2042H
DCW PTS_COUNT3

CSEG AT 2002H

DCW EPA3_ISR
RSEG AT 70H
PTS_COUNT3: DSB 1
PTS_CONTROL3: DSB 1
PTS_SRC3: DSW 1
PTS_DEST3: DSW 1
RSEG AT 76H
CLRREG: DSW 1
RSEG AT 80H
FIFO: DSW 8
CSEG AT 2080H
DI
DPTS
LD SP, #STK ; Initialize Stack Pointer
CLRB INT_PEND ; Clear all pending interrupts
CLRB INT_PEND1 ;
LD CLRREG, #FIFO
CLEAR:
ST RO, [CLRREG] + ; Routine to clear register area for FIFO
CMP CLRREG, #00A0H
BNE CLEAR

270968-14

24



intgl.

7.4 Using the EPA for an Eight Entry FIFO Unit (Continued)

AP-449

SELF:

END

LDB
LDB
LD
LD

LDB
LDB
LDB
LDB

DB
LD

LDB
LD

LD
ORB

EPTS
EI

SJMP

EPA3 ISR:

PUSHA
JBS
LDB
LDB
OR
POPA
RET

ERROR:

ORB
POPA
RET

PTS_COUNT3, #PTS_CYCLES
PTS_CONTROL3, #85H
PTS_SRC3, #EPA TIME3
PTS_DEST3, #FIFO

WSR, #7EH

P1REG 2, #0FFH
P1IO 2, #0FFH
P1SSEL 2, #08H

WSR, #7BH
EPA_CONTROL3_2, #0FE20H

WSR, #7CH
TIMERL CONTROL_2, #0C6H

PTS_SELECT, #0002H
INT_MASK, #02H

SELF

PTS_SELECT, 1, ERROR
PTS_COUNT3, #PTS_CYCLES
PTS_DEST3, #FIFO
PTS_SELECT, #0002H

INT_ PEND, #02H

e we Ne N

S Ne Ne N

8 PTS cycles then normal interrupt
Single xsfer, incr and update dest
Source is EPA_TIME3

Destination is FIFO area

32 byte window on 1FCOH
Turn off pull down

P1.3 is input

P1.3 is EPA3

32 byte
TIMER1,

window on 1F60H
capture positive edges

32 byte window on 1F80H
Enable TIMER1l, l6us period

Select PTS interrupt for EPA3
Enable EPA3 interrupts

Let EPA take over

Check for bug

Reset PTS for next 8 rising edges
Put dest back at beginning of FIFO
Return to PTS cycles

270968-15

25




AP-449 in‘tel .

7.5 Using the EPA to Perform Multiple Output Events in Succession

This program demonstrates the use of the EPA and PTS to perform the eight entry CAM of the HSIO for the
scheduling of multiple events on one output channel. In fact any arbitrary number of buffered events can be set up to
occur limited only by the speed of the PTS to set up the next pending event and the maximum number of PTS cycles
without software intervention (256).

EXAMPLE MODULE MODE, STACKSIZE (20)
$NOLIST
$INCLUDE (KR.INC)
SLIST
PTS_CYCLES EQU 8
CSEG AT 2042H
DCW PTS_COUNT3
CSEG AT 2002H
DCW EPA3_ISR
RSEG AT 070H
PTS_COUNT3: DSB 1
PTS_CONTROL3: DSB 1
PTS_SRC3: DSW 1
PTS DEST3: DSW 1
RSEG AT 076H
TEMPREG: DSW 1
RSEG AT 080H
CAMO: DSW 1
CAM1: DSW 1
CAM2: DSW 1
CAM3: DSWw 1
CAM4: DSW 1
CAMS5: DSwWw 1
CAM6: DSW 1
CSEG AT 2080H
DI
DPTS
LD TEMPREG, #CAMO
CLEAR: ; Clearing register area for CAM
ST RO, [TEMPREG] +
CMP TEMPREG, #00A0H
BNE CLEAR
LD TEMPREG, #CAMO
270968-16

26



intgl.

AP-449

7.5 Using the EPA to Perform Multiple Output Events in Succession (Continued)

LOAD:
LD
D
LD
1D
LD
LD
LD

LDB
LDB
LD
LD

LDB
LDB
LDB
LDB

LDB

LD
ORB

EPTS
EI

SELF:
SJMP

EPA3_ISR:
PUSHA
JBS
LDB
LDB
LDB
LD
OR
POPA
RET

ERROR:
ORB
POPA
RET

END

CAMO, #007DH
CaM1, #00C8H
CcaM2, #00D1H
CAM3, #0113H
CAM4, #0145H
CAMS5, #0168H
CAM6, #0172H

PTS_COUNT3, #PTS_CYCLES
PTS_CONTROL3, #8AH
PTS_SRC3, $#CAMO
PTS_DEST3, #EPA_TIME3

WSR, #7EH

P1REG_2, #0F7H
P1IO_2, #0F7H
P1SSEL 2, #08H

WSR, #7BH
EPA_CONTROL3_2, #0FE70H
EPA TIME3_2,#0032H

WSR, #7CH
COMP_CONTROLO_2, #0FE49H
COMP_TIMEO_2, #0172H

TIMER1_2, #0FFCOH
TIMER1 CONTROL_ 2, #0C6H

PTS_SELECT, #0002H
INT_MASK, #02H

SELF

PTS_SELECT, 1, ERROR
PTS_COUNT3, #PTS_CYCLES
PTS_SRC3, #CAMO

WSR, #7BH

EPA_TIME3 2,#0032H
PTS_SELECT, #0002H

INT_PEND, $02H

i
;

;

~

P N

P

Ne e e e S N

Loading "CAM" for many timed events

8 PTS cycles then normal interrupt
Single transfer mode,incr and update src
Source is CAM

Destination is FIFO area

32 byte window on 1FCOH
P1.3 begins low

P1.3 is output

P1.3 is EPA3

32 byte window on 1F60H
TIMER1l, toggle output
Load EPA_TIME3

32 byte window on 1F80H
TIMER1l, lock time entry, reset timer
Reset timer after 370 counts

Set TIMER1 to count up to 0000H
Enable TIMER1l, l6us period

Select PTS interrupt for EPA3
Enable EPA3 interrupts

Let EPA take over

Check for bug

Reset PTS for next 8 rising edges
Put dest back at beginning of FIFO
32 byte window on 1F60H

Reset first event time

Return to PTS cycles

Send to PTS cycle

270968-17

27



AP-449

intgl.

7.6 Using EPA2 to Clock TIMER2 Internally

The KR device has some interesting characteristics due to the fact that the T2CLK and T2DIR pins are shared with
EPA pins. Because of the way the output drivers are set up it is possible to configure an EPA channel as an output
and drive one of these two clock pins with no additional hardware. This example uses EPAO to drive T2CLK and
hence clock TIMER?2 “externally”. Note that one can then base an EPA output event on TIMER?2. Interestingly, if
TIMERI counts at its slowest rate, 16 us period, the TIMER?2 is clocked at its slowest rate, once every 64 edges, it is

possible to schedule an event to occur approximately 50 days in the future.

CSEG AT 2080H

1D Sp, #STK

CLRB INT_PEND

CLRB INT_PEND1

1DB WSR, #1FH

LDB P1REG_0, #0FEH

1DB P1IO_0O, #0FEH

LDB P1SSEL 0, #01H

1DB WSR, #1EH

LD EPA_CONTROL3_0, #OFE78H

LD EPA_TIME3_0,#500

LDB WSR, #3EH

LDB TIMER1_CONTROL_1,#0C6H

LDB TIMER2_CONTROL_1, #0CEH
SELF:

SJMP SELF
END

Se e Se ne

EXAMPLE MODULE MAIN, STACKSIZE(20)
SNOLIST

SINCLUDE (KR.INC)

SLIST

STK EQU 200H

128 byte window on 1F80H
Turn off pull down on P1.0
P1.0 is output

P1.0 is T2CLK

128 byte window on 1FO00H
TIMER1, toggle output, lock time
Time tag for toggle

Enable timer,
Enable timer,

count up, 1l6us period
external clock

Let EPA take over

270968-18

28




|n . AP-449
APPENDIX A

;*7(***************************************************************************

; SFRS.KR - DEFINITION OF SYMBOLIC NAMES FOR THE I/0 REGISTERS
; OF THE 8XC1l96KR
(C) INTEL CORPORATION 1989

’
FRK KA KRR KKK A KA KKRR R KA I KK KRR KK A AKX A A KRR R KA KA ARK I A KRR RK I I AR ARAKA AR A AR AR Rk h kA hh Kk

RO EQU O0OH:WORD ; R ZERO REGISTER
ZERO EQU 0OH:WORD ; R ZERO REGISTER
PTS_SELECT EQU  04H:WORD ; R/W

PTS_SRV EQU 06H:WORD ; R/W

INT_MASK EQU O8H:BYTE ; R/W

INT_PEND EQU OSH:BYTE ; R/W

WATCHDOG EQU OAH:BYTE ; W WATCHDOG TIMER
INT_PEND1 EQU 12H:BYTE ; R/W

INT_MASK1 EQU 13H:BYTE ; R/W

WSR EQU 14H:BYTE ; R/W

SP EQU 18H:WORD ; R/W

;***********************‘k*****************************************************

; SFR DEFINITIONS FOR REGISTERS OUTSIDE 00 TO FFH ALONG WITH ALL
; WINDOW DEFINITIONS FOR THE SAME REGISTER.

’-***‘k‘k************************************************************************

; LABEL: FOR USE WITH WSR VALUE:
el L
POPIN EQU  OLFDAH:BYTE ; R/W -
POPIN 0 EQU ODAH:BYTE ; R/W 1FH
POPIN_1 EQU ODAH:BYTE ; R/W 3FH
POPIN 2 EQU OFAH:BYTE ; R/W 7EH
P1PIN EQU  OlFD6H:BYTE ; R -—-
P1PIN_0 EQU OD6H:BYTE ; R 1FH
P1PIN 1 EQU OD6H:BYTE ; R 3FH
P1PIN 2 EQU OF6H:BYTE ; R 7EH
P1REG EQU  OlFD4H:BYTE ; R/W  —---
P1REG_0 EQU OD4H:BYTE ; R/W 1FH
P1REG 1 EQU OD4H:BYTE ; R/W 3FH
P1REG 2 EQU OF4H:BYTE ; R/W 7EH
P1IO EQU  O1FD2H:BYTE ; R/W -
P1IO_0 EQU OD2H:BYTE ; R/W 1FH
P1I0_1 EQU OD2H:BYTE ; R/W 3FH
P1IO 2 EQU OF2H:BYTE ; R/W 7EH
P1SSEL EQU  O1FDOH:BYTE ; R/W -—-
P1SSEL_0 EQU ODOH:BYTE ; R/W 1FH
P1SSEL_1 EQU ODQH:BYTE ; R/W 3FH
P1SSEL_2 EQU OFOH:BYTE ; R/W 7EH
P2PIN EQU  O01FCFH:BYTE ; R -
P2PIN_0 EQU OCFH:BYTE ; R 1FH
P2PIN_1 EQU OCFH:BYTE ; R 3FH
P2PIN 2 EQU OEFH:BYTE ; R 7EH
P2REG EQU  O01FCDH:BYTE ; R/W -—-
P2REG_0 EQU OCDH:BYTE ; R/W 1FH
P2REG_1 EQU OCDH:BYTE ; R/W 3FH
P2REG_2 EQU OEDH:BYTE ; R/W 7EH
P2I0 EQU  OlFCBH:BYTE ; R/W -

270968-19

A-1



AP-449 |n‘te|
®
PZIO_O EQU OCBH:BYTE ; R/W 1FH
PZIO_l EQU OCBH:BYTE ; R/W 3FH
P21072 EQU OEBH:BYTE ; R/W 7EH
P2SSEL EQU 01FCOH:BYTE ; R/W -
stSELio EQU OC9H:BYTE ; R/W 1FH
PZSSEL_l EQU OCOH:BYTE ; R/W 3FH
P2SSEL_2 EQU OE9H:BYTE ; R/W TEH
P3PIN EQU O01lFFEH:BYTE ; R -
P3PIN_O EQU OFEH:BYTE ; R 1FH
P3PIN_1 EQU OFEH:BYTE ; R 3FH
P3PIN_2 EQU OFEH:BYTE ; R TFH
P3REG EQU 01FFCH:BYTE ; R/W —_—
P3REG_0 EQU OFCH:BYTE ; R/W 1FH
P3REG_1 EQU OFCH:BYTE ; R/W 3FH
P3REG_2 EQU OFCH:BYTE ; R/W 7FH
P4PIN EQU 01FFFH:BYTE ; R -
P4PIN_O EQU OFFH:BYTE ; R 1FH
P4PIN_1 EQU OFFH:BYTE ; R 3FH
P4PIN_2 EQU OFFH:BYTE ; R 7FH
P4REG EQU O1FFDH:BYTE ; R/W —_——
P4REG_O EQU OFDH:BYTE ; R/W 1FH
P4REG_1 EQU OFDH:BYTE ; R/W 3FH
P4REG_2 EQU OFDH:BYTE ; R/W 7FH
P5PIN EQU QlFF7H:BYTE ; R -
P5PIN 0 EQU OF7H:BYTE ; R 1FH
P5PIN_1 EQU OF7H:BYTE ; R 3FH
P5PIN_2 EQU OF7H:BYTE ; R 7FH
P5REG EQU O1FF5H:BYTE ; R/W -
P5REG_0 EQU OFS5H:BYTE ; R/W 1FH
PSREG_l EQU OFS5H:BYTE ; R/W 3FH
PSREGAZ EQU OF5H:BYTE ; R/W TFH
P5I0 EQU 0O1FF3H:BYTE ; R/W —
P5IO_0 EQU OF3H:BYTE ; R/W 1FH
P5I0 1 EQU OF3H:BYTE ; R/W 3FH
PSIO_2 EQU OF3H:BYTE ; R/W 7FH
P5SSEL EQU 01FF1H:BYTE ; R/W -——
P5SSEL_0O EQU OF1H:BYTE ; R/W 1FH
P5SSEL_1 EQU OF1H:BYTE ; R/W 3FH
P5SSEL_2 EQU OF1H:BYTE ; R/W TFH
PGPIN EQU 01FD7H:BYTE ; R -
PGPIN_O EQU OD7H:BYTE ; R 1FH
P6PIN_1 EQU OD7H:BYTE ; R 3FH
P6PIN_2 EQU OF7H:BYTE ; R 7EH
P6REG EQU 01FD5H:BYTE ; R/W ——
PGREG_O EQU OD5H:BYTE ; R/W 1FH
P6REG_1 EQU OD5H:BYTE ; R/W 3FH
P6REG_2 EQU OF5H:BYTE ; R/W 7EH
P6IO EQU 01FD3H:BYTE ; R/W -——-
PGIO_O EQU OD3H:BYTE ; R/W 1FH
PGIO_l EQU OD3H:BYTE ; R/W 3FH
P610_2 EQU OF3H:BYTE ; R/W 7EH
P6SSEL EQU 01FD1H:BYTE ; R/W -
PGSSEL_O EQU OD1H:BYTE ; R/W 1FH
PGSSEL_l EQU OD1H:BYTE ; R/W 3FH
270968-20

A-2



intgl. AP-449

P6SSEL_2 EQU OF1H:BYTE ; R/W 7EH
TIMER1 EQU 01F9AH:WORD ; R/W -—-
TIMER1_O EQU 09AH:WORD ; R/W 1FH
TIMER1 1 EQU ODAH:WORD ; R/W 3EH
TIMER1 2 EQU OFAH:WORD ; R/W 7CH
TIMER1_CONTROL EQU 01F98H:BYTE ; R/W -—-
TIMER1_CONTROL_O0 EQU 098H:BYTE ; R/W 1FH
TIMER1 _CONTROL_1 EQU OD8H:BYTE ; R/W 3EH
TIMERl:CONTROL_2 EQU OF8H:BYTE ; R/W 7CH
TIMER2 EQU 01F9EH:WORD ; R/W ———
TIMER2 0O EQU 09EH:WORD ; R/W 1FH
TIMER2 1 EQU ODEH:WORD ; R/W 3EH
TIMER2 2 EQU OFEH:WORD ; R/W 7CH
TIMER2 CONTROL EQU 01F9CH:BYTE ; R/W -——=
TIMER2_CONTROL 0 EQU 09CH:BYTE ; R/W 1FH
TIMER2_CONTROL 1 EQU ODCH:BYTE ; R/W 3EH
TIMER2 CONTROL_2 EQU OFCH:BYTE ; R/W 7CH
SP_BAUD EQU 01FBCH:WORD ; N -
SP_BAUD_0 EQU OBCH:WORD ; W 1FH
SP_BAUD_1 EQU OFCH:WORD ; W 3EH
SP_BAUD_2 EQU OFCH:WORD ; W 7DH
SP_CONTROL EQU 01FBBH:BYTE ; R/W -
SP_CONTROL_0 EQU OBBH:BYTE ; R/W 1FH
SP_CONTROL_1 EQU OFBH:BYTE ; R/W 3EH
SP_CONTROL_2 EQU OFBH:BYTE ; R/W 7DH
SP_STATUS EQU 01FBO9H:BYTE ; R/W —=
SP_STATUS_0 EQU OB9H:BYTE ; R/W 1FH
SP_STATUS_1 EQU OF9H:BYTE ; R/W 3EH
SP_STATUS_2 EQU OF9H:BYTE ; R/W 7DH
SBUF_TX EQU 01FBAH:BYTE ; R/W —
SBUF_TX_0 EQU OBAH:BYTE ; R/W 1FH
SBUF_TX 1 EQU OFAH:BYTE ; R/W 3EH
SBUF_TX 2 EQU OFAH:BYTE ; R/W 7DH
SBUF_RX EQU 01FB8H:BYTE ; R/W -
SBUF_RX 0 EQU 0B8H:BYTE ; R/W 1FH
SBUF_RX 1 EQU 0F8H:BYTE ; R/W 3EH
SBUF_RX_2 EQU 0F8H:BYTE ; R/W 7DH
EPAIPV EQU 01lFA8H:BYTE ; R ———
EPAIPV_0 EQU OA8H:BYTE ; R 1FH
EPAIPV_1 EQU OE8H:BYTE ; R 3EH
EPAIPV_2 EQU OE8H:BYTE ; R 7DH
EPA_PEND EQU 01FA2H:WORD ; R/W —-—
EPA PEND 0 EQU QA2H:WORD ; R/W 1FH
EPA_PEND 1 EQU OE2H:WORD ; R/W 3EH
EPA_PEND_2 EQU OE2H:WORD ; R/W 7DH
EPA_PEND1 EQU 01FA6H:BYTE ; R/W -—=
EPA_PEND1_0 EQU OA6H:BYTE ; R/W 1FH
EPA PEND1 1 EQU OE6H:BYTE ; R/W 3EH
EPA PEND1 2 EQU OEGH:BYTE ; R/W 7DH
EPA MASK EQU 01FAQOH:WORD ; R/W -—
EPA MASK 0 EQU OAQH:WORD ; R/W 1FH
EPA_MASK 1 EQU OEQOH:WORD ; R/W 3EH
EPA_MASK 2 EQU OEOH:WORD ; R/W 7DH
EPA_MASK1 EQU 01FA4H:WORD ; R/W --- BUG...must write as word
EPA_MASK1 0 EQU OA4H:WORD ; R/W 1FH

270968-21

A-3



AP-449

EPA_MASK1 1
EPA_MASK1 2

USFR
USFR_0
USFR_1
USFR_2

SLPCMD
SLPCMD_0
SLPCMD_1
SLPCMD 2
SLPSTAT
SLPSTAT 0
SLPSTAT 1
SLPSTAT 2
SLPFUNREG
SLPFUNREG_0
SLPFUNREG_1
SLPFUNREG_2

AD TIME
AD_TIME 0

AD TIME 1

AD TIME 2
AD_TEST
AD_TEST 0

AD TEST 1
AD_TEST 2
AD_COMMAND
AD_COMMAND_0
AD_COMMAND 1
AD_COMMAND_2
AD_RESULT
AD_RESULT_0
AD _RESULT 1
AD RESULT 2

SSIO_BAUD
SSIO_BAUD_O
SSIO_BAUD_1
SSIO_BAUD 2
SSIO_STCRI
SSIO_STCRL 0
SSIO_STCRL 1
SSIO_STCRL 2
SSIO_STB1
SSIO_STBL 0
SSIO_STB1 1
$SIO STB1 2
SSIO_STCRO
SSIO_STCRO 0
SSIO_STCRO 1
SSIO_STCRO 2
SSIO_STBO
SSIO_STBO 0
$SI0_STBO 1
SSIO_STBO 2

EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

OE4H:WORD
OE4H :WORD

0lFF6H:BYTE
OF6H:BYTE
OF6H:BYTE
OF6H:BYTE

O1FFAH:BYTE
OFAH:BYTE
OFAH:BYTE
OFAH:BYTE

01FF8H:BYTE
OF8H:BYTE
OF8H:BYTE
OF8H:BYTE

01FFBH:BYTE
OFBH:BYTE
OFBH:BYTE
OFBH:BYTE

O1FAFH:BYTE
OAFH:BYTE
OEFH:BYTE
OEFH:BYTE

01FAEH:BYTE
OAEH:BYTE
OEEH:BYTE
OEEH:BYTE

01FACH:BYTE
OACH:BYTE
OECH:BYTE
OECH:BYTE
01FAAH:WORD
OAAH:WORD
0EAH:WORD
OEAH: WORD

01FB4H:BYTE
0B4H:BYTE
OF4H:BYTE
0F4H:BYTE
01FB3H:BYTE
0B3H:BYTE
OF3H:BYTE
OF3H:BYTE
01FB2H:BYTE
0B2H:BYTE
0F2H:BYTE
OF2H:BYTE
01FB1H:BYTE
OB1lH:BYTE
0F1H:BYTE
OF1H:BYTE
01FBOH:BYTE
0BOH:BYTE
OFQH:BYTE
OFQH:BYTE

~

S we Ne N

Ne Ne Ne Se Ne Ne Se S Se Ne o Ne e Se N

Ne Ne Ne s

~

R/W

===

R/W
R/W

R/W
R/W
R/W
R/W

3EH
7DH

1FH
3FH
7FH

1FH
3FH
7FH

1FH
3FH
7FH

1FH
3FH
TFH

1FH
3EH
7DH

1FH
3EH
7DH

1FH
3EH
7DH
1FH
3EH
7DH

1FH
3EH
7DH

1FH
3EH
7DH

1FH
3EH
7DH

1FH
3EH
7DH
1FH
3EH
7DH

270968-22

A-4



intgl.

AP-449

COMP_TIME1
COMP_TIME1l_0
COMP_TIMEL 1
COMP_TIMEL_2
COMP_CONTROL1
COMP_CONTROLL_0
COMP_CONTROL1 1
COMP_CONTROL1_2
COMP_TIMEO
COMP_TIMEO 0
COMP_TIMEO_1
COMP_TIMEQ_2
COMP_CONTROLO
COMP_CONTROLO_0
COMP_CONTROLO_1
COMP_CONTROLO_2

EPA_TIME9
EPA_TIME9_O
EPA_TIME9_1
EPA_TIME9_2
EPA_CONTROL9
EPA_CONTROL9_0
EPA_CONTROL9_1
EPA_CONTROL9_2
EPA_TIMES
EPA_TIMES_0
EPA_TIMES_1
EPA_TIMES_2
EPA_CONTROLS
EPA_CONTROLS_0
EPA_CONTROLS_1
EPA_CONTROLS_2
EPA_TIME?
EPA_TIME7 0
EPA_TIME7 1
EPA_TIME7_2
EPA_CONTROL?
EPA_CONTROL7_0
EPA_CONTROL7_1
EPA_CONTROL7_2
EPA_TIMEG
EPA_TIME6_0
EPA_TIME6_1
EPA_TIME6 2
EPA_CONTROL6
EPA_CONTROL6_0
EPA_CONTROL6_1
EPA_CONTROL6_2
EPA_TIMES
EPA_TIME5_0
EPA_TIMES_1
EPA_TIMES5_2
EPA_CONTROL5
EPA_CONTROLS5_0
EPA_CONTROLS5_1
EPA_CONTROL5_2

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

01F8EH:WORD
08EH:WORD
OCEH : WORD
OEEH : WORD
01F8CH:WORD
08CH: WORD
OCCH:WORD
OECH : WORD
01F8AH:WORD
08AH:WORD
OCAH:WORD
OEAH : WORD
01F88H:WORD
088H:WORD
0C8H:WORD
OE8H:WORD

01F86H:WORD
086H:WORD
0C6H:WORD
OE6H:WORD
01F84H:WORD
084H:WORD
0C4H:WORD
0E4H:WORD
01F82H:WORD
082H:WORD
OC2H:WORD
0OE2H:WORD
01F80H:WORD
080H:WORD
0COH:WORD
OEQH:WORD
01F7EH:WORD
OFEH:WORD
OFEH:WORD
OFEH: WORD
01F7CH:WORD
OFCH:WORD
OFCH:WORD
OFCH:WORD
01F7AH:WORD
OFAH:WORD
OFAH: WORD
OFAH:WORD
01F78H:WORD
OF8H:WORD
OF8H:WORD
O0F8H:WORD
01F76H:WORD
OF6H:WORD
OF6H:WORD
OF6H:WORD
01F74H:WORD
OF4H:WORD
OF4H:WORD
OF4H:WORD

Ne e Mo Ne e Ne Ne Ne Ne o Ne e Se o Ne e N N

Ne Mo e Sa Mo Ne o NioNe e Ne Ne o Ne Ne o Ne Ne o Ne Ne Ne N Ne Ne o wa Ne Se Ne Ne Ne o Ne S N N Se o Se S,

Ne Mo Ne e e e

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

1FH
3EH
7CH

1FH
3EH
7CH

1FH
3EH
7CH
1FH
3EH
7CH

1FH
3EH
7CH

1FH
3EH
7CH

1FH
3EH
7CH

1FH
3EH
7CH

1EH
3DH
7BH

1EH
3DH
7BH

1EH
3DH
7BH

1EH
3DH
7BH

1EH
3DH
7BH
1EH
3DH
7BH

270968-23

A-5



AP-449 |n‘te|
®
EPA_TIME4 EQU 01F72H:WORD ; R/W ———
EPA_TIME4_O EQU OF2H:WORD ; R/W 1EH
EPA_TIME4_1 EQU OF2H:WORD ; R/W 3DH
EPA_TIME4_2 EQU OF2H:WORD ; R/W 7BH
EPA_CONTROL4 EQU 01F70H:WORD ; R/W -
EPA_CONTROL4_O EQU OFQ0H:WORD ; R/W 1EH
EPA_CONTROL4_1 EQU OFOH:WORD ; R/W 3DH
EPA_CONTROL4_2 EQU OFOH:WORD ; R/W 7BH
EPA_TIME3 EQU 01F6EH:WORD ; R/W ———
EPA_TIME3_0 EQU OEEH:WORD ; R/W 1EH
EPA_IIMEB_l EQU OEEH:WORD ; R/W 3DH
EPA_TIME3~2 EQU OEEH:WORD ; R/W 7BH
EPA_CONTROL3 EQU 01F6CH:WORD ; R/W ——
EPA_CONTROL3_O EQU OECH:WORD ; R/W 1EH
EPA_CONTROL3_1 EQU OECH:WORD ; R/W 3DH
EPA_CONTROL3_2 EQU OECH:WORD ; R/W 7BH
EPA_TIMEZ EQU 01F6AH:WORD ; R/W —_—
EPA_TIMEZ_O EQU OEAH:WORD ; R/W 1EH
EPA _TIMEZ 1 EQU OEAH:WORD ; R/W 3DH
EPA_TIMEZ_Z EQU OEAH:WORD ; R/W 7BH
EPA_CONTROL2 EQU 01F68H:WORD ; R/W —_——
EPA_CONTROL2_O EQU OE8H:WORD ; R/W 1EH
EPA_CONTROL2_1 EQU OE8H:WORD ; R/W 3DH
EPA_CONTROL2_ 2 EQU OE8H:WORD ; R/W 7BH
EPA_TIMBl EQU 01F66H:WORD ; R/W -——
EPA TIMEl1l O EQU OE6H:WORD ; R/W 1EH
EPA_TIMEl 1 EQU OEG6H:WORD ; R/W 3DH
EPA_TIMEl 2 EQU OE6H:WORD ; R/W 7BH
EPA_CONTROL1 EQU 01F64H:WORD ; R/W -
EPA_CONTROLl_O EQU OE4H:WORD ; R/W 1EH
EPA_CONTROL1_1 EQU OE4H:WORD ; R/W 3DH
EPA_CONTROLl_Z EQU OE4H:WORD ; R/W 7BH
EPA_IIMEO EQU 01lF62H:WORD ; R/W -
EPA_TIMEO_O EQU OE2H:WORD ; R/W 1EH
EPA_TIMEO_l EQU OE2H:WORD ; R/W 3DH
EPA_TIMEO_2 EQU OE2H:WORD ; R/W 7BH
EPA_CONTROLO EQU O1lF60H:WORD ; R/W -
EPA_CONTROLO_0 EQU OEOH:WORD ; R/W 1EH
EPA_CONTROLO_l EQU OEQOH:WORD ; R/W 3DH
EPA_CONTROLO_Z EQU OEQH:WORD ; R/W 7BH

270968-24

A-6



