intel. AP-425

APPLICATION
NOTE

Small DC Motor Control

JAFAR MODARES
ECO APPLICATIONS

September 1988

Order Number: 270622-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

TSince publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996

SMALL DC MOTOR
CONTROL

CONTENTS PAGE

INTRODUCTION 1
DCMOTORS 1
THES83C51FA 1
SETTINGUPTHEPCA 2
HARDWARE REQUIREMENTS 3
DRIVER CIRCUIT 4
NOISE CONSIDERATIONS 4
OPEN LOOP AND CLOSED LOOP
SYSTEMS 5
FEEDBACK 5
SOFTWARE/CPU OVERHEAD 7
ELECTRICALBRAKING 8
STEPPING ADC MOTOR 9
TIME DELAYS, 9
CONCLUSION 11

APPENDIX A-1

intgl.

INTRODUCTION

This application note shows how an 83C51FA can be
used to efficiently control DC motors with minimum
hardware requirements. It also discusses software im-
plementation and presents helpful techniques as well as
sample code needed to realize precision control of a
motor.

There is also a brief overview of the new features of the
83C51FA. This new feature is called the Programmable
Counter Array (PCA) and is capable of delivering
Pulse Width Modulated signals (PWM) through desig-
nated I/0 pins.

It is assumed that the reader is familiar with the MCS-
51 architecture and its assembly language. For more
information about the 8051 architecture and the PCA
refer to the Embedded Controller Handbook Volume 1
(order no. 210918-006).

This document will not discuss stepper motors or mo-
tor control algorithms.

DC MOTORS

DC motors are widely used in industrial and consumer
applications. In many cases, absolute precision in
movement is not an issue, but precise speed control is.
For example, a DC motor in a cassette player is expect-
ed to run at a constant speed. It does not have to run
for precise increments which are fractions of a turn and
stop exactly at a certain point.

However, some motor applications do require precise
positioning. Examples are high resolution plotters,
printers, disk drives, robotics, etc. Stepper motors are
frequently used in those applications. There are also
applications which require precise speed control along
with some position accuracy. Video recorders, compact
disk drives, high quality cassette recorders are examples
of this category.

By controlling DC motors accurately, they can overlap
many applications of stepper motors. The cost of the
control system depends on the accuracy of the encoder
and the speed of the processor.

The 83C51FA can control a DC motor accurately with
minimum hardware at a very low cost. The microcon-
troller, as the brain of a system, can digitally control
the angular velocity of the motor, by monitoring the
feedback lines and driving the output lines. In addition
it can perform other tasks which may be needed in the
application.

Almost every application that uses a DC motor re-
quires it to reverse its direction of rotation or vary its
speed. Reversing the direction is simply done by chang-

AP-425

ing the polarity of the voltage applied to the motor.
Figure 1 shows a simplified symbolic representation of
a driver circuit which is capable of reversing the polari-
ty of the input to the motor.

N
L~

270622-1

Figure 1. Reversible Motor Driver Circuit

Varying the speed requires changing the voltage level of
the input to the motor, and that means changing the
input level to the motor driver. In a digitally-controlled
system, the analog signal to the driver must come from
some form of D/A converter. But adding a D/A con-
verter to the circuit adds to the chip count, which
means more cost, higher power consumption, and re-
duced reliability of the system.

The other alternative is to vary the pulse width of a
digital signal input to the motor. By varying the pulse
width the average voltage delivered to the motor chang-
es and so does the speed of the motor. A digital circuit
that does this is called a Pulse Width Modulator
(PWM). The 83C51FA can be configured to have up to
5 on-board pulse width modulators.

THE 83C51FA

The 83C51FA is an 8-bit microcontroller based on the
8051 architecture. It is an enhanced version of the
87C51 and incorporates many new features including
the Programmable Counter Array (PCA).

Included in the Programmable Counter Array is a 16-
bit free running timer and 5 separate modules.

The PCA timer has two 8-bit registers called CL (low
byte) and CH (high byte), and is shared by all modules.
It can be programmed to take input from four different
sources. The inputs provide flexibility in choosing the
count rate of the timer. The maximum count rate is 4
MHz (Y, of the oscillator frequency).

Some of the port 1 pins are used to interface each mod-
ule and the timer to the outside world. When the port
pins are not used by the PCA modules, they may be
used as regular I/0 pins.

The modules of the PCA can be programmed to per-
form in one of the following modes: capture mode,

AP-425

compare mode, high speed output mode, pulse width
modulator (PWM) mode, or watchdog timer mode
(only module 4).

Every module has an 8-bit mode register called
CCAPMn (Figure 2), and a 16-bit compare/capture
register called CCAPnL & CCAPnH, where n can be
any value from O to 4 inclusive. By setting the appropri-
ate bits in the mode register you can program each
module to operate in one of the aforementioned modes.

7 6 5 4 3 2 1 0

| — |ECOMn| CAPPn | OAPan MATn | TOGn | PWMn |ECCOFn|

CCAPMn

ECOMn — Enables the comparator function. Must
be set for functions which require com-
paring of the compare/capture registers
with the 16-bit timer, i.e., software tim-
er, high-speed output, watchdog timer,
and PWM.

CAPPn — Capture on positive edge of signal.

CAPNn — Capture on negative edge of signal.

MATn — Find a match between the capture/
compare and 16-bit timer.

TOGn — Toggle I/0 pin upon a match between
capture/compare registers and 16-bit
timer.

PWMn — Generate PWM on I/O pin upon a
match between the low byte of capture/
compare and the low byte of PCA tim-
er.

ECCFn — Enables compare/capture flag CCFn in
the CCON register to generate an inter-
rupt.

Figure 2. CCAPMn Register

When a module is programmed in capture mode, an
external signal on the corresponding port pin will cause
a capture of the current value of the 16-bit timer. By
setting bits CAPPn or CAPNn or both, the module can
be programmed to capture on the rising edge, falling,
edge, or either edge of the signal. If enabled, an inter-
rupt is generated at the time of capture.

When module is to perform in one of the compare
modes (software timer, high speed output, watch dog
timer, PWM)), the user loads the capture/compare reg-
isters with a calculated value, which is compared to the
contents of the 16-bit timer, and causes an event as
soon as the values match. It can also generate an inter-
rupt.

intgl.

PWM is one of the compare modes and is the only one
which uses only 8 bits of the capture/compare register.
The user writes a value (O to FFH) into the high byte
(CCAPnH) of the selected module. This value is trans-
ferred into the lower byte of the same module and is
compared to the low byte of the PCA timer. While CL
< CCAPnL the output on the corresponding pin is a
logic 0. When CL > CCAPnL, the output is a logic 1.

In this application note we will see how a module can
be programmed to perform as a PWM to control the
speed and direction of a DC motor.

SETTING UP THE PCA

The 83C51FA has several Special Function Registers
(SFRs) that are unknown to ASMS51 versions before
2.4. The names of these SFRs must be defined by
DATA directive or be defined in a separate file and be
included at the time of compilation. Such a file has
already been created and is included in the ASMS51
package version 2.4.

Two special function registers are dedicated to the PCA
timer to allow mode selection and control of the timer.
These registers are CCON and CMOD and are shown
in figure 3. CCON contains the PCA timer ON/OFF
bit (CR), timer rollover flag (CF) and module flags
(CCFn). Module flags are used to determine which
module causes the PCA interrupt.

7 6 5 4 3 2 1 0

| CF | CR | — | CCF4 | CCF3 | CCF2 | CCF1 | CCFO |

Address 0D8H
Bit Addressable

Reset Value = 00X0 0000 B

CCON
7 6 5 4 3 2 1 0
|CIDL |WDTE| — | — | — |CPS1 | CPSOl ECF |
Address 0D9H Reset Value = 00XX X000 B
Not Bit Addressable
CMOD

Figure 3. CCON and CMOD Registers

First the clock source for the PCA timer must be de-
fined. The 16 bit timer may have one of four sources for
its input. These sources are: osc freq/4, osc freq/12,
timer O overflow, and external clock.

Two bits in the CMOD register are dedicated to select-
ing one of the sources for the PCA timer input. They
are bits 1 and 2 of CMOD which are called CPSO and
CPS1. CMOD is not bit addressable, thus the value

intgl.

must be loaded as a byte. Figure 4 shows all the sources
and the corresponding values of CPSO and CPS1.

CPS1 | CPSO
0 0

TIMER INPUT SOURCE

Internal clock, Fosc/12

0 1 Internal clock, Fosc/4

1 0 Timer 0 overflow

1 1 External clock (input on P1.2)

Figure 4. Timer Input Source

Next the appropriate module must be programmed as a
PWM. As it was noted earlier, the 8-bit mode register
for each module is called CCAPMn (see figure 2). Bit 1
of each register is called PWMn. This bit along with
ECOMn (bit 6 of the same register) must be set to pro-
gram the module in the PWM mode. PWM is one of
the compare functions of the PCA, and ECOMn en-
ables the compare function. Thus, the hex value that
must be loaded into the appropriate CCAPMn register
is 42H.

Now that the module is programmed as a PWM, a
value must be loaded in the high byte of the compare
register to select the duty cycle. The value can be any
number from 0 to 255. In the 83C51FA loading O in the
CCAPnH will yield 100% duty cycle, and 255 (OFFh)
will generate a 0.4% duty cycle. See figure 5.

The next step is to start the PCA timer. The bit that
turns the timer on and off is called CR and is bit 6 of

AP-425

DUTY CYCLE CCAPnH OQUTPUT WAVEFORM

100% 00

90% 25 L| |_|

10% 230 | | n n
0.4% 255 | | |

270622-2

Figure 5. Selected Duty Cycles and Waveforms

CCON register (Figure 3). Since this register is bit ad-
dressable, you can use bit instructions to turn the timer
on and off.

In the following example module 2 has been selected to
provide a PWM signal to a motor driver. An external
clock will be provided for the timer input, so the value
that needs to be loaded into CMOD is 06H.

HARDWARE REQUIREMENT

When using an 83C51FA, very little hardware is re-
quired to control a motor. The controller can interface
to the motor through a driver as shown in figure 6.

MOV CMOD, #08
MOV CCAPM2,#42H
MOV CCAP2H,#0
SETB CR

ve we we we

turn timer on

END

timer input external
put the module in PWM mode.
0 provides 100% duty cycle (5V)

AP-425

P1.0 DIRECTION
P1.4 SPEED MOTOR
DRIVER > ASSEMBLY
83C51FA ON/OFF
P1.6 FEEDBACK

270622-3

Figure 6. Simplified Circuit Diagram of a Closed Loop System

This configuration, a closed loop circuit, takes up only
three I/0 pins. The line controlling direction can be a
regular port pin but the speed control line must be one
of the port 1 pins which corresponds to a PCA module
selected for PWM. Depending on how the feedback is
generated and processed, it could be connected to a
regular I/0, an external interrupt, or a PCA module.
Feedback is discussed in more detail in the feedback
section of this application note.

The diagram in Appendix A is an example of a DC
motor circuit which has been built and bench-tested.

DRIVER CIRCUIT

Although some DC motors operate at 5 volts or less,
the 83C51FA can not supply the necessary current to
drive a motor directly. The minimum current require-
ments of any practical motor is higher than any micro-
controller can supply. Depending on the size and rat-
ings of the motor, a suitable driver must be selected to
take the control signal from the 83C51FA and deliver
the necessary voltage and current to the motor.

A motor draws its maximum current when it is fully
loaded and starts from a stand still condition. This fac-
tor must be taken into account when choosing a driver.
However, if the application requires reversing the mo-
tor, the current demand will even be higher. As the
motor’s speed increases, it’s power consumption de-
creases. Once the speed of a motor reaches a steady
state, the current depends on the load and the voltage
across the motor.

Standard motor drivers are available in many current
and voltage ratings. One example is the 1293 series
which can output up to 1 ampere per channel with a
supply voltage of 36 V. It has separate logic supply and
takes logical input (0 or 1) to enable or disable each
channel. There are four channels per device. The
L293D also includes clamping diodes needed for pro-
tecting the driver against the back EMF generated dur-
ing the reversing of motor.

NOISE CONSIDERATIONS

Motors generate enough electrical noise to upset the
performance of the controller. The source of the noise
could be from the switching of the driver circuits or the
motor itself. Whatever the cause of the noise may be, it
must be isolated or bypassed.

Isolating the microcontroller from the driver circuit is
helpful in keeping the noise limited.

Bypass capacitors help a great deal in suppressing the
noise. They must be added to the power and ground
(Figure 7 diagram a), on the driver circuit (diagram b),
on the motor terminals (diagram c), and on the
83C51FA (diagram d). The capacitors must be as close
to the component as possible. In fact the best location is
under the chip or on top of it if packaging allows. The
diagrams in figure 7 show the location and some typical
values for the bypass capacitors.

L}
lntel AP-425
®
DRIVER VOLTAGE LoGIC
.|_ Vee {Vcc
l _L l 0-0054F] |priver
c1 c2 c3 __3
50 uF T 6.8 uF 0.1 uF
1_ 1— 1_ Tou uF-I_ =
i
J_— (o) = ®
_E~3#F T Vec
[0.33 uF I 0
—— 1 —l
‘L 6.8 uF 0.1 uF == | 83C51FA
o L
20
—t
= @
270622-4
Figure 7. Typical Locations and Values for Bypass Capacitors
OPEN LOOP & CLOSED LOOP Depending on the type of feedback signal, the

SYSTEMS

There are two types of motor control systems: open
loop and closed loop.

In the open loop system the controller outputs a signal
to turn the motor on/off or to change the direction of
the rotation based on an input that does not come from
the motor. For example, the position of a manual or
timer switch becomes the input to the controller, which
varies the input to the motor. In another case, the con-
troller may take input from data tables in the program
to run, vary the speed, reverse direction, or stop the
motor.

Closed loop systems can use one or more of the above
mentioned examples for the open loop system, plus at
least one feedback signal from the motor. The feedback
signal provides such information as speed, position,
and/or direction of motion.

Many applications require that a motor run at a con-
stant speed. The controller has to continuously make
adjustments to keep the speed within the limits. In
some cases the speed of the motor is synchronized to
another motor or moving part of the system.

83C51FA may have to use other modules of the PCA
along with other on-chip peripherals such as Timer/
Counters, Serial Port, and the interrupt system to pre-
cisely control a DC motor.

The example in the following section uses one PCA
module to generate PWM, and another module (in cap-
ture mode) to receive feedback from a DC motor.

FEEDBACK

The feedback comes from a sensing device which can
detect motion. The sensing device may be an optical
encoder, infrared detector, Hall effect sensor, etc. De-
pending on the application, one or more of the above
mentioned sensing devices may be suitable.

The optical sensors should be encapsulated for better
reliability. If they are not enclosed, factors such as am-
bient light, dust, and dirt can lessen their sensitivity.

Hall effect sensors are insensitive to any type of light.
They change logic levels going into and coming out of a
magnetic field. The sensing device is normally mounted

AP-425

on some stationary part of the system and the magnet is
installed on the rotating part. The potential problem
with the Hall effect sensors are that if the gap between
the magnet and the sensing device is too big, the sens-
ing device may not be affected by the magnetic field.
Also the number of magnets is limited which means
fewer feedback pulses will be provided.

Whatever the means of sensing, the result is a signal
which is fed to the controller. The 83C51FA can use
the feedback signal to determine the speed and position
of the motor. Then it can make adjustments to increase
or decrease the speed, reverse the direction, or stop the
motor.

In the following example module 3 of PCA is set up to
perform in the capture mode. In this mode module 3
will receive feedback signals from a Hall effect transis-
tor fixed behind a wheel which is mounted on the shaft
of a DC motor. Two magnets are embedded on this
wheel in equal distances from each other (180 degrees
apart). Every time that the Hall effect transistor passes
through the magnetic field, it generates a pulse.

The signal is input to P1.6 which is the external inter-
face for module 3 of the PCA. In this example, module
3 is programmed to capture on the rising edge of the

intgl.

input signal. The time between the two captures corre-
sponds to Y% of a revolution. Thus, two consecutive
captures can provide enough information to calculate
the speed of the motor as explained in the next para-
graph. By storing the value of the capture registers each
time, and comparing it to its previous value, the con-
troller can constantly measure and adjust the speed of
the motor. Using this method one can run a motor at a
precise speed, or synchronize it to another event.

In the PCA interrupt service routine, each capture val-
ue is stored in temporary locations to be used in a sub-
tract operation. Subtracting the first capture from the
second one will yield a 16-bit result. The resultant val-
ue, which will be referred to as “Result” in the rest of
this document, is in PCA timer counts. An actual RPM
can be calculated from Result. Although the 83C51FA
can do the calculation, it would be much faster to pro-
vide a lookup table within the code. The table will con-
tain values which have been calculated for a possible
range of Results.

The following code is an example of how to measure
the period of a signal input to module 3 of the
83C51FA. The diagram in figure 8 shows how the peri-
od corresponds to the rotation of the wheel. In the dia-
gram “T” is the period and “t” is the time that the
magnet is passing in front of the Hall effect transistor.

HALL EFFECT
TRANSISTOR

j
T
1t

S QO
T
|

T

270622-5

Figure 8. The Output Waveform of the Hall Effect Transistor as it goes Through the Magnetic Field

intgl.

AP-425

RET_PCA:
CLR
RETI
END

HI_BYTE_TMP,CCAP3H; SAVE FOR NEXT CALCULATION.

CCF3

FLAG 0 H
HI_BYTE_TMP DATA 45H
LO_BYTE_TMP DATA 46H
HI_BYTE_RESULT DATA 47H
LO_BYTE_RESULT DATA 48H
ORG OOH
JMP BEGIN
ORG 33H
JMP PCA_ISR
BEGIN:
MoV CMOD, #0 H
MOV CCAPM3,#21H H
MOV CCAP3H,#9AH H
SETB IP.6 H
MOV IE,#0COH H
CLR FLAG
SETB CR H
PCA_ISR:
JB FLAG,CAP_2 H
SETB FLAG H
MOV
MOV LO_BYTE_TMP,CCAP3L
CLR CCF3 H
RETI
CAP_2:
CLR C H
MoV A,CCAP3L H
SUBB A,LO_BYTE_TMP
MOV LO_BYTE_RESULT,A ;
MoV A,CCAP3H
SUBB A,HI_BYTE_TMP H
MOV HI_BYTE_RESULT,A ;
CLR IE.8 H

In this example only one measurement is taken. That is why
the PCA interrupt is disabled in the above line of instruction.

.
’

test flag

SET PCA TIMER InPUT f0SC/12.
MODULE 3 IN POSITIVE CAPTURE MODE.
PWM AT 60 PERCENT DUTY CYCLE.

SET PCA INT. AT HIGH PRIORITY.
ENABLE PCA INTERRUPT.

TURN PCA TIMER ON.

FLAG BIT IS SET TO SIGNIFY 1st
CAPTURE COMPLETE.

RESET PCA INT. FLAG MODULE 3

FOR SUBTRACT OPERATION.

SUBTRACT OLD CAPTURE FROM NEW CAPTURE.
SUBTRACTION RESULT OF LOW BYTE.

HIGH BYTE SUBTRACTION.

SUBTRACTION RESULT OF HIGH BYTE.
DISABLE PCA INTERRUPT.

RESET PCA INT. FLAG MODULE 3

SOFTWARE/CPU OVERHEAD

can be done in less than 30 instructions. Thus, in an
open loop system, the controller spends an insignificant
amount of time on controlling the motor. However, in a

It takes the 83C51FA no more than 250 bytes of code
to control a DC motor. That is to run the motor at
various speeds, monitor the feedback, use electrical
braking, and even run it in steps. However, the CPU
time spent on the above tasks can add up to 70 to 75%
of the total time available (clock frequency 12 MHz).

The section of software which turns the motor on and
off, or sets the speed is very short. In fact, all of that

closed loop system the controller has to continuously
monitor the speed and adjust it according to the pro-
gram and the feedback.

The rest of this section talks about electrical braking,
stepping a DC motor, and offers examples of code to
implement these techniques.

AP-425

ELECTRICAL BRAKING

Once a DC motor is running, it picks up momentum.
Turning off the voltage to the motor does not make it
stop immediately because the momentum will keep it
turning. After the voltage is shut off, the momentum
will gradually wear off due to friction. If the application
does not require an abrupt stop, then by removing the
driving voltage, the motor can be brought to a gradual
stop.

An abrupt stop may be essential to an application
where the motor must run a few turns and stop very
quickly at a predetermined point. This could be
achieved by electrical braking.

Electrical braking is done by reversing the direction of
the motor. In order to run in reverse direction, the mo-
tor has to stop first, at which time the driving voltage is
eliminated so that the motor does not start in the new
direction. Therefore the length of time that the revers-
ing voltage is applied must be precisely calculated to
ensure a quick stop while not starting it in the reverse
direction.

intgl.

There is no simple formula to calculate when to start,
and how long to maintain braking. It varies from motor
to motor and application to application. But it can be
perfected through trial and error.

In a closed loop system, the feedback can be used to
determine where or when to start braking and when to
discontinue.

During the electrical braking, or any time that the mo-
tor is being reversed, it draws its maximum current. To
a motor which is turning at any speed, reversing is a
heavy load. The current demand of a motor, when it
has been reversed,is much higher than when it has just
been powered on.

The following shows a code sample for electrical brak-
ing on a DC motor. The code is designed for the hard-
ware shown in Appendix A. The subroutine DELAY
provides the period that the reverse voltage is applied to
the motor. The code for this subroutine is available in
the TIME DELAYS section of this document.

.

BEGIN:
MOV CMOD, #0 ; SET PCA TIMER INPUT fOSC/12.
MOV CCAPM1,#42H ; SETTING THE MODULE TO PWM MODE.
SETB CR ; PCA TIMER RUN.
; DRIVE MOTOR CLOCKWISE
CLR P1.0 ; PL.O AND THE PWM OF MODULE 1-
MOV CCAP1H,#00 ; CONTROL THE SPEED AND DIRECTION.
; 00 IN THIS REGISTER PUTS OUT MAX PWM (LOGICAL 1)
CALL STOP_MOTOR
STOP_MOTOR:
SETB P1l.0 ; REVERSING THE MOTOR.
MOV CCAP1H,#0FFH H
CALL DELAY ; WAITING FOR 0.5 SECOND.
CLR P1l.0 ; REDUCING VOLTAGE TO 0.
RET ; RETURN FROM SUBROUTINE.

intgl.

STEPPING A DC MOTOR

Using the 83C51FA, it is possible to run a simple DC
motor in small steps. The resolution of the steps will be
as high as the resolution of the encoder. If this resolu-
tion is sufficient, here is a technique to run a DC motor
in steps.

Using a gear box to gear down the motor will increase
the resolution of steps. However, putting too much load
through the gears will cause sluggish starts and stops.

Electrical braking is used in order to stop the motor at
each step. Therefore, the routine that runs the motor in
steps will consist of turning it on with full force, waiting
for certain period, and stopping it as fast as possible.
The wait period depends on the number of steps per
revolution.

As the steps and the intervals between them become
smaller, the average current demand of the motor in-
creases. This is because the motor is operated at its
maximum torque condition every time it starts to rotate
and every time it is reversed for electrical braking.

The following code sample shows a continuous loop
which runs the motor in steps. The number of steps per
revolution depends on the duration of the delay gener-
ated by DELAY subroutine. Subroutine WAIT pro-
vides the time between the steps.

AP-425

Subroutine DELAY is the period of time that the mo-
tor is kept in reverse. This period must be determined
through trial and error for each type of motor and sys-
tem.

TIME DELAYS

While the 83C51FA is controlling a motor it must fre-
quently wait for the motor to move to certain position
before it can proceed with the next task. For example,
in the case of electrical braking when the controller
reverses the polarity of voltage across the motor, de-
pending on the type, size, and the speed of the motor, it
may have up to a second of CPU time before it will
turn the motor off.

The wait may be implemented in different ways. Any of
the Timer/Counters or unused PCA modules could be
utilized to provide accurate timing. The advantage in
using the timers is that while the timer is counting, the
processor can be taking care of some other tasks. When
the timer times out and generates an interrupt the proc-
essor will go back and continue servicing the motor.

If there are no timers or PCA modules available for this
purpose, a software timer maybe set up by decrement-
ing some of the internal registers. In this method the
processor will be tied up counting up or down and will
not be able to do anything else. An example of such a
timer is:

.
.

LOOP:

motor as shown below.

SETB Pl.0

MoV CCAP1H,#0FFH 1
CALL DELAY

CLR P1.0

CALL WAIT

JMP LOOP

.

CLR Pl.0 ; SET DIRECTION CLOCKWISE
MOV CCAP1H,#0 ; MAX PWM

The above instruction sets the motor running clockwise. The controller can
be doing other tasks if need be, or just stay in a wait loop, then stop the
; REVERSING THE MOTOR.
; WAIT FOR IT TO STOP.

; REDUCE VOLTAGE TO O.
; TIME BEFORE NEXT STEP.

AP-425

DELAY:

DELAY_LOOP:

DJNZ R5,DELAY_LOOP
DJINZ R4,DELAY_LOOP
RET

MOV R4,#25 ; (decimal)
MOV R5,#255 ; (decimal)

Subroutine DELAY provides approximately 6.4 ms
with a 12 MHz clock or 4.8 milliseconds with a 16
MHz clock. The length of this delay can be controlled
by loading smaller or larger values to R4 to vary from
260 microseconds up to 65 milliseconds at 12 MHz or
48 milliseconds at 16 MHz oscillator frequency. Larger
delays may be obtained by cascading another register
and creating an outer loop to this one.

Let us assume that it will take a motor 500 milliseconds
to stop from its CW rotation and we are going to use
Timer/Counter 0 to provide the wait period. Subrou-
tine DELAY1 will keep track of this timing. Module 1
of PCA is selected to provide the PWM.

BUSY_LOOP:
CALL MONITOR_DISPLAY
CALL SCAN_KEY_BOARD
CALL SCAN_INPUT_LINES

ORG OBH

JMP TIMER_INTERRUPT_ROUTINE

CLR Pl.0 ; SET DIRECTION CW
MOV CCAP1H,#0 ; MAX PWM

Now the motor is running and the controller can do other tasks.
Some typical tasks are called in the following segment.

JNB STOP_FLAG,BUSY_LOOP
STOP_FLAG gets set by a feedback signal and denotes that the motor must
stop.

SETB P1l.0 ; REVERSING THE MOTOR

MOV CCAP1H,#0FFH H

CALL DELAY ;s WAIT TILL MOTOR STOPS

CLR P1.0 ; REDUCE VOLTAGE TO O
DELAY1:

SETB EA

SETB ETO ; enable timer 0 interrupt

MOV TLO,#0D8H

MOV THO ,#5EH

10

intgl.

AP-425

; timer 0 must roll over
; continue performing other tasks

MONITOR_LOOP:

CALL MONITOR_DISPLAY
CALL SCAN_KEY_BOARD
CALL SCAN_INPUT_LINES
JB TRO,MONITOR_LOOP
RET

TIMER_INTERRUPT_ROUTINE:

DJNZ R7,FULL_COUNT

CLR TRO
FULL_COUNT

RETI

SETB TRO ; timer 0 on
MOV R7,#8 ; keep track of how many times

To implement a 500 milliseconds delay, timer O is used
here. In mode 1 timer O is a 16-bit timer which takes
65.535 milliseconds at 12 MHz to roll over. Dividing
500 milliseconds to 65.535 shows that timer has to
overflow more than 7 times but less than 8 times. How
much more than 7 times? The following calculation
yields the initial load value of the timer.

500 + 65.535 = 7.2695 taking it backward
65.535 X 7 = 458.745 milliseconds

500 — 458.745 = 41.255 milliseconds or 41255
microseconds.

In hexadecimal it is A127H. The initial load value is
the complement of this value which is SED8H.

CONCLUSION

The 83C51FA with all its on-chip peripherals is a sys-
tem on one chip. It can simplify the design of a control
board and reduce the chip count. Up to 5 DC motors
can be controlled while doing other tasks such as moni-
toring feedback lines, human interfacing (scanning a
keyboard, displaying information), and communicating
with other processors. The MCS-51 powerful instruc-
tion set provides maximum flexibility with minimum
hardware.

With its onboard program memory capability, the need
for the external EPROM and address latch is eliminat-
ed. The 83C51FA can have up to 8K bytes of code and
the 83C51FB can have up to 16K bytes of code on-
board.

This microcontroller can be used in industrial, com-
mercial, and automotive applications.

11

intgl.

AP-425

APPENDIX A

Figure A-1 shows a symbolic view of the L293B driver.
This driver has 4 channels but only two are shown here.
Note the inputs A and B and how they are related to
each other. You can input the PWM to either one of
the inputs and by toggling the other input start or stop
the motor. While running, the PWM input controls the

speed. Pin P1.4 corresponds to module 1 of the PCA,
and pin P1.0 is used as a regular 1/0 pin.

Figure A-2 shows the schematic of the motor driver,
motor, feedback path, and the supporting components.

L293B

i 1y

PWM (P1.4)

Port Pin (P1.0)

iD_
B_D_

s I I

When A =B, motor stops

B v ’
off

Clockwise

When AZ B, motor runs

off

Counter Clockwise

270622-6

Figure A-1. The L293B Motor Driver

AP-425

Vee

10 uf
T

18

30pF-E |

=
|30PFI-|: | 19

- L

CONTROLLER

T Vee Vee Vee
40
31 1 16
8 3 . L
5 (P1.4) 2 [
15 -~
1 (P1.0) 7 i 6.8 uF
o 2es 4 0.33 uF
__ 41 12 -
5 L)
)
9 —1 ' Vee
10 3 H -|-
7 (P1.6 11 14
() Vee pLal ¥ 4+ 1 A
NC 6.8 uF
10K DRIVER 30137

3 2

All diodes are the same and could be any of the 1N4000 series.

HALL EFFECT |

DIGITAL SWITCH ==

270622-7

A-2

Figure A-2. Full Schematic of a Motor-Control System

	Introduction
	DC Motors
	The 83C51FA
	Setting up the PCA
	Hardware Requirement
	Driver Circuit
	Noise Considerations
	Open Loop & Closed Loop Systems
	Feedback
	Software/CPU Overhead
	Electrical Braking
	Stepping a DC Motor
	Time Delays
	Conclusion
	Appendix A
	FIGURES
	Figure 1. Reversible Motor Driver Circuit
	Figure 2. CCAPMn Register
	Figure 3. CCON and CMOD Registers
	Figure 4. Timer Input Source
	Figure 5. Selected Duty Cycles and Waveforms
	Figure 6. Simplified Circuit Diagram of a Closed Loop System
	Figure 7. Typical Locations and Values for Bypass Capacitors
	Figure 8. The Output Waveform of the Hall Effect Transistor as it goes Through the Magnetic Field
	Figure A-1. The L293B Motor Driver
	Figure A-2. Full Schematic of a Motor-Control System

