Intel 0 APPLICATION AP-223
NOTE

October 1984

SINTEL CORPORATION, 1984 ORDER NUMBER: 270032-001

AP-223

1.0 INTRODUCTION

This is the third application note that Intel has produced
on CRT terminal controllers. The first Ap Note (ref. 1),
written in 1977, used the 8080 as the CPU and required
41 packages including 11 LSI devices. In 1979, another
application note (ref. 2) using the 8085 as the controller
was produced and the chip count decreased to 20 with 11
LSI devices.

Advancing technology has integrated a complete system
onto a single device that contains a CPU, program mem-
ory, data memory, serial communication, interrupt con-
troller, and I/0. These ‘‘computer-on-a-chip’’ devices are
known as microcontrollers. Intel’'s MCS®-51 microcon-
troller was chosen for this application because of its highly
integrated functions. This CRT terminal design uses 12
packages with only 4 LSI devices.

This application note has been divided into five general
sections:

1) CRT Terminal Basics

2) 8051 Description

3) 8276 Description

4) Design Background

5) System Description

2.0 CRT TERMINAL BASICS

A terminal provides a means for humans to communicate
with a computer. Terminals may be as simple as a LED
display and a couple of push buttons, or it may be an
elaborate graphics system that contains a full function
keyboard with user programmable keys, color CRT and
several processors controlling its functions. This appli-
cation note describes a basic low cost terminal containing
a black and white CRT display, full function keyboard
and a serial interface.

2.1 CRT Description

A raster scan CRT displays its images by generating a
series of lines (raster) across the face of the tube. The
electron beam usually starts at the top left hand comer
moves left to right, back to the left of the screen, moves
down one row and continues on to the right. This is re-
peated until the lower right hand of the screen is reached.
Then the beam returns to the top left hand corner and
refreshes the screen. The beam forms a zigzag pattern as
shown in Figure 2.1.0.

Two independent operating circuits control this movement
across the screen. The horizontal oscillator controls the
left to right motion of the beam while the vertical controls
the top to bottom movement. The vertical oscillator also
tells the beam when to return to the upper left hand corner
or ‘‘home’’ position.

e wems RETRACE LINES
o— DISPLAYED LINES

Figure 2.1.0 Raster Scan

As the electron beam moves across the screen under the
control of the horizontal oscillator, a third circuit controls
the current entering the electron gun. By varying the cur-
rent, the image may be made as bright or as dim as the
user desires. This control is also used to turn the beam
off or ‘‘blank the screen’’.

When the beam reaches the right hand side of the screen,
the beam is blanked so it does not appear on the screen
as it returns to the left side. This ‘‘retrace’’ of the beam
is at a much faster rate than it traveled across the screen
to generate the image.

The time it takes to scan the whole screen and return to
the home position is referred to as a ‘‘frame’’. In the
United States, commercial television broadcast uses a hor-
izonal sweep frequency of 15,750Hz which calculates out
to 63.5 microseconds per line. The frame time is equal
to 16.67 milliseconds or 60Hz vertical sweep frequency.

Although this is the commercial standard, many CRT dis-
plays operate from 18KHz to 30KHz horizonatal fre-
quency. As the horizontal frequency increases, the number
of lines per frame increases. This increase in lines or
resolution is needed for graphic displays and on special
text editors that display many more lines of text than the
standard 24 or 25 character lines.

Since the United States operates on a 60Hz A.C. power
line frequency, most CRT monitors use 60Hz as the ver-
tical frequency. The use of 60Hz as the vertical frequency
allows the magnetic and electrical variations that can mod-
ulate the electron beam to be synchronized with the dis-
play, thus they go unnoticed. If a frequency other than
60Hz is used, special shielding and power supply regu-

intgl.

lating is usually required. Very few CRTs operate on a
vertical frequency other than 60Hz due to the increase in
the overall system cost.

The CRT controller must generate the pulses that define
the horizontal and vertical timings. On most raster scan
CRTs the horizontal frequency may vary as much as
500Hz without any noticeable effect on the quality of the
display. This variation can change the number of hori-
zontal lines from 256 to 270 per frame.

The CRT controller must also shift out the information to
be displayed serially to the circuit that controls the electron
beam’s intensity as it scans across the screen. The circuits
that control the timing associated with the shifting of the
information are known as the dot clock and the character
clock. The character clock frequency is equal to the dot
clock frequency divided by the number of dots it takes to
form a character in the horizontal axis. The dot clock
frequency is calculated by the following equation:

Dot Clcok (Hz) = (N + R)*D*L*F
where

N is the number of displayed characters per row,

R is the number of character times for the retrace,

D is the number of dots per character in the hori-
zontal axis,

L is the number of herizontal lines per frame,

F is the frame rate in Hz.

In this design N=80, R=20, D=7, L=270, and
F=60Hz. Plugging in the numbers results in a dot clock
frequency of 11.34MHz.

The retrace number may vary on each design because it
is used to set the left and right hand margins on the CRT.
The number of dots per character is chosen by the designer
to meet the system needs. In this design, a 5 X 7 dot matrix
and 2 blank dots between each character (see Figure 2.1.1)
makes D equal to S+2=7.

I'Toi?’”*»l-—oozm

[| 1] mimimim] [| |sjmis{ |simm fm
OeCO0e00R000e0Cecoomn

£ Oe0O0OosDOR000etoRcoom0
S OmmaRCOOE000a0CECEOR0
~ OeOR0000e000e00R0RCOE0
OmOCRODORCOOac0ROsoR0
Oed0Om00Ones00cOe0E00

T 00000000000000000003d0
o § 000000000000000000000
18 000OO0O0O000800000000

Figure 2.1.1 5 x 7 Dot Matrix

AP-223

The following equation can be used to figure the number
of lines per frame:

L=H*Z2)+V

where
H is the number of horizontal lines per character,
Z is the number of character lines per frame,
V is the number of horizontal line times during the
vertical retrace

In this design H is equal to the 7 horizontal dots per
character plus 3 blank dots between each row which adds
up to 10. Also 25 lines of characters are displayed, so
Z=25. The vertical retrace time is variable to set the top
and bottom margins on the CRT and in this design is equal
to 20. Plugging in the numbers gives L =270 lines per
frame.

2.2 Keyboard

A keyboard is the common way a human enters commands
and data to a computer. A keyboard consists of a matrix
of switches that are scanned every couple of milliseconds
by a keyboard controller to determine if one of the keys
has been pressed. Since the keyboard is made up of me-
chanical switches that tend to bounce or ‘‘make and
break’’ contact everytime they are pressed, debouncing
of the switches must also be a function of the keyboard
controller. There are dedicated keyboard controllers
available that do everything from scanning the keyboard,
debouncing the keys, decoding the ASCII code for that
key closure to flagging the CPU that a valid key has been
depressed. The keyboard controller may present the in-
formation to the CPU in parallel form or in a serial data
stream.

This Application Note integrates the function of the key-
board controller into the 8051 which is also the terminal
controller. Provisions have been made to interface the
8051 to a keyboard that uses a dedicated keyboard con-
troller. The 8051 can accept data from the keyboard con-
troller in either parallel or serial format.

2.3 Serial Communications

Communication between a host computer and the CRT
terminal can be in either parallel or serial data format.
Parallel data transmission is needed in high end graphic
terminals where great amounts of information must be
transferred.

One can rarely type faster than 120 words per minute,
which corresponds to 12 characters per second or 1 char-
acter per 83 milliseconds. The utilization of a parallel port
cannot justify the cost associated with the drivers and the
amount of wire needed to perform this transmission. Full
duplex serial data transmission requires 3 wires and two

AP-223

oon | scon [Twoo|Teon
™o [mo | mv [t

MCSs®-51
1 30

seurcro|seurax| € |

#30-p37

28 [y P2.7/a15
27 D p2.6/A14
26 [P2.5/A13
25 [p2.4/A12
24 M p23/A11
23 [JP2.2A10
22 [p2.1/A9
21 [T P2.0/a8

Figure 3.0.0 8051 Block Diagram

drivers to implement the communication channel between
the host computer and the terminal. The data rate can be
as high as 19200 BAUD in the asynchronous serial format.
BAUD rate is the number of bits per second received or
transmitted. In the asynchronous serial format, 10 bits of
information is required to transmit one character. One
character per 500 microseconds or 1,920 characters per
second would then be trasmitted using 19.2 KBAUD.

This application note uses the 8051 serial port configured
for full duplex asynchronous serial data transmission. The
software for the 8051 has been written to support variable
BAUD rates from 150 BAUD up to 9.6 KBAUD.

3.0 8051 DESCRIPTION

The 8051 is a single chip high-performance microcon-
troller. A block diagram is shown in figure 3.0.0. The
8051 combines CPU; Boolean processor; 4K X 8 ROM:
128 x 8 RAM; 32 /O lines; two 16-bit timer/ event
counters; a five-source, two-priority-level, nested inter-
rupt structure; serial /O port for either multiprocessor
communications, I/O expansion, or full duplex UART;
and on-chip oscillator and clock circuits.

3.1 CPU

Efficient use of program memory results from an instruc-
tion set consisting of 49 single-byte, 45 two-byte and 17
three-byte instructions. Most arithmetic, logical and
branching operations can be performed using an instruc-
tion that appends either a short address or a long address.
For example, branches may use either an offset that is
relative to the program counter which takes two bytes or
a direct 16-bit address which takes three bytes to perform.
As a result, 64 instructions operate in one machine cycle,
45 in two machine cycles, and the multiply and divide
instruction execute in 4 machine cycles.

The 8051 has five addressing modes for source operands:
Register, Direct, Register-Indirect, Immediate, and
Based-Register-plus Index-Register-Indirect Addressing.

The Boolean Processor can be thought of as a separate
one-bit CPU. It has its own accumulator (the carry bit),
instruction set for data moves, logic, and control transfer,
and its own bit addressable RAM and 1/O. The bit-
manipulating instructions provide optimum code and
speed efficiency for handling on chip peripherals. The

intgl.

Boolean processor also provides a straight forward means
of converting logic equations directly into software. Com-
plex combinational logic functions can be resolved without
extensive data movement, byte masking, and test-and-
branch trees.

3.2 On-Chip Ram

The CPU manipulates operands in four memory spaces.
These are the 64K-byte Program Memory, 64K-byte Ex-
ternal Data Memory, 128-byte Internal Data Memory, and
128-byte Special Function Registers (SFRs). Four Reg-*
ister Banks (each with 8 registers), 128 addressable bits,
and the Stack reside in the internal Data RAM. The Stack
size is limited only by the available Internal Data RAM
and its location is determined by the 8-bit Stack Pointer.
All registers except for the Program Counter and the four
8-Register Banks reside in the SFR address space. These
memory mapped registers include arithmetic registers,
pointers, IO ports, and registers for the interrupt system,
timers, and serial channel.

Registers in the four 8-Register Banks can be addressed
by Register, Direct, or Register-Indirect Addressing
modes. The 128 bytes of internal Data Memory can be
addressed by Direct or Register-Indirect modes while the
SFRs are only addressed directly.

3.3 /O Ports

The 8051 has instructions that can treat the 32 I/O lines
as 32 individually addressable bits or as 4 parallel 8-bit
ports addressable as Ports 0, 1, 2, and 3.

Resetting the 8051 writes a logical 1 to each pin on port 0
which places the output drivers into a high-impedance
mode. Writing a logical 0 to a pin forces the pin to ground
and sinks current. Re-writing the pin high will place the
pin in either an open drain output or high-impedance input
mode.

Ports 1, 2, and 3 are known as quasi-bidirectional I/O
pins. Resetting the device writes a logical one to each pin.
Writing a logical O to the pin will force the pin to ground
and sink current. Re-writing the pin high will place the
pin in an output mode with a weak depletion pullup FET
or in the input mode. The weak pullup FET is easily
overcome by a TTL output.

Ports 0 and 2 can also be used for off-chip peripheral
expansion. Port 0 provides a multiplexed low-order ad-
dress and data bus while Port 2 contains the high-order
address when using external Program Memory or more
than 256 byte external Data Memory.

Port 3 pins can also be used to provide external interrupt
request inputs, event counter inputs, the serial port TXD

AP-223

and RXD pins and to generate control signals used for
writing and reading external peripherals.

3.4 Interrupt System

External events and the real-time-driven on-chip periph-
erals require service by the CPU asynchronous to the ex-
ecution of any particular section of code. A five-source,
two-level, nested interrupt system ties the real time events
to the normal program execution.

The 8051 has two external interrupt sources, one interrupt
from each of the two timer/counters, and an interrupt from
the serial port. Each interrupt vectors the program exe-
cution to its own unique memory location for servicing
the interrupt. In addition, each of the five sources can be
individually enabled or disabled as well as assigned to
one of the two interrupt priority levels available on the
8051.

Up to two additional external interrupts can be created by
configuring a timer/counter to the event counter mode. In
this mode the timer/counter increments on command by
either the TO or T1 pin. An interrupt is generated when
the timer/counter overflows. Thus if the timer/counter is
loaded with the maximum count, the next high-to-low
transition of the event counter input will cause an intertupt
to be generated.

3.5 Serial Port

The 8051’s serial port is useful for linking peripheral de-
vices as well as multiple 8051s through standard asyn-
chronous protocols with full duplex operation. The serial
port also has a synchronous mode for expansion of 1/0
lines using shift registers. This hardware serial port saves
ROM code and permits a much higher transmission rate
than could be achieved through software. The processor
merely needs to read or write the serial buffer in response
to an interrupt. The receiver is double buffered to eliminate
the possibility of overrun if the processor failed to read
the buffer before the beginning of the next frame.

The full duplex asynchronous serial port provides the
means of communication with standard UART devices
such as CRT terminals and printers.

The reader should refer to the microcontroller handbook
for a complete discussion of the 8051 and its various
modes of operation.

4.0 8276 DESCRIPTION

The 8276’s block diagram and pin configuration are shown
in Figure 4.0.0. The following sections describe the gen-
eral capabilities of the 8276.

AP-223

[0

CHARACTER
™ COUNTER

DATA BUFFER BUFFER

<:::> 8US ® \;/:'> INPUT ouTPUT
BUFFER contror| |controL

?

—

LINE

COUNTER

l ROW
COUNTER
> ReAD/
of WRITE . MRTC
CONTROL <:-—-|'> - vn;c
LOGIC RASTER TIMING [— MLGT
—

@ AND [—> Rw
[—> LTeN
VIDEO CONTROL oy

Figure 4.0.0 8276 Block Diagram

4.1 CRT Display Refreshing

The 8276, having been programmed by the system de-
signer for a specific screen format, generates a series of
Buffer Ready signals. A row of characters is then trans-
ferred by the system controller from the display memory
to the 8276’s row buffers. The row buffers are filled by
deselecting the 8276 CS and asserting the BS and WR
signals. The 8276 presents the character codes to an ex-
ternal character generator ROM by using outputs
CCO0-CC6. The parallel data from the outputs of the char-
acter generator is converted to serial information that is
clocked by external dot timing logic into the video input
of the CRT.

The character rows are displayed on the CRT one line at
a time. Line count outputs LCO-LC3 select the current
line information from the character generator ROM. The
display process is illustrated in Figure 4.1.0. This process
is repeated for each display character row. At the begin-
ning of the last display row the 8276 generates an interrupt
request by raising its INT output line. The interrupt request

is used by the 8051 system controller to reinitialize its
load buffer pointers for the next display refresh cycle.

Proper CRT refreshing requires that certain 8276 param-
eters be programmed at system initialization time. The
8276 has two types of internal registers; the write only
Command (CREG) and Parameter (PREG) Registers, and
the read only Status Register (SREG). The 8276 expects
to receive a command followed by 0 to 4 parameter bytes
depending on the command. A summary of the 8276’s
instruction set is shown in Figure 4.1.1. To access the
registers, CS must be asserted along with WR or RD. The
status of the C/P pin determines whether the command or
parameter registers are selected.

The 8276 allows the designer flexibility in the display
format. The display may be from 1 to 80 characters per
row, 1 to 64 rows per screen, and 1 to 16 horizontal lines
per character row. In addition, four curser formats are
available; blinking, non-blinking, underline, and reverse
video. The curser position is programmable to anywhere
on the screen via the Load Curser command.

intgl.

1st 2nd 3rd 4th 5th 6th Tth
Character Character Character Character C Cl Cl

T ——

OO 0OsCODedOaEERRC00000000esec000ONaR0COR0OCCR0

First Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character

COSERfooeO00ORCORREEEOCODOOCOCAERRCODOARRCOOROOOED
OROOOSCOERCORCOROCOO0O0OCOO0OCCOaOO0OROOCeO00acORO0CED

Second Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character c C Ci Ci Ci Character

OOuERCOOROOORCONERERCCOOCCO0CNEERDOOCRRRCOORCOODRO
ORDOOSCORE0OROCCEOCC0O0CO000000000RO0CROORCOCROORCDORO
OROOCORCORCODORCOEOC000000000000RO00RCOARCOOROORCDORO

Third Line of a Character Row

1st 2nd 3rd 4ath 5th 6th 7th
C cl C i C Cl cl

OoEaRfJOoRcCcOs00EseeR00CcO0000NERRDCOORREOOCRCOORO
Oe000w0O0ORecOe0oR0000000CO0000mMO0CRCCROOOEOOROCCRO
OeC00e0O0R000E00R0000000C00000ROOCRCOROOOROORCOORO
deC0ds00atR0E00ORRERCOOI0CO0COORRRRDOORCOOE0CORCECRD
Oe000Oe00a000Oe00RCO0OC000C00CO0OROROCOOROOORCORCECORO
OeC0Oe00e00es00OR000C000000C00ROO0RCOORCOOORCORCECIBO
OOeeeCO0OR000OO00ORNERRCOOC0OCOO0ORCOOROCOORERCOOOE0OR0OO

Seventh Line of a Character Row

Figure 4.1.0 8276 Row Display

4.2 CRT Timing

AP-223

The 8276 provides two timing outputs for controlling the
CRT. The Horizontal Retrace Timing and Control (HRTC)
and Vertical Retrace Timing and Control (VRTC) signals
are used for synchronizing the CRT horizontal and vertical
oscillators. A third output, VSP (Video Suppress), pro-
vides a signal to the dot timing logic to blank the video
signal during the horizontal and vertical retraces. LTEN
(Light Enable) is used to provide the ability to force the

video output high regardless of the state of the VSP signal.
This feature is used to place the cursor on the screen and
to control attribute functions.

RVYV (Reverse Video) output, if enabled, will cause the
system to invert its video output. The fifth timing signal
output, HLGT (highlight) allows the flexibility to increase
the CRT beam intensity to a greater than normal level.

AP-223
NO. OF
PARAMETER

COMMAND BYTES NOTES
RESET 4 Display format

parameters required
START 0 DMA operation
DISPLAY parameters included in

command
STOP 0 —
DISPLAY
RED LIGHT 2 —
PEN
LOAD 2 Cursor X, Y position
CURSOR parameters required
ENABLE 0 -
INTERRUPT
DISABLE 0 -
INTERRUPT
PRESET 0 Clears all internal
COUNTERS counters

Figure 4.1.1 8276 Instruction Set

4.3 Special Functions

4.3.1 Special Codes

The 8276 recognizes four special codes that may be used
to reduce memory, software, or system controller over-
head. These characters are placed within the display mem-
ory by the system controller. The 8276 performs certain
tasks when these codes are received in its row buffer
memory.

1) End of Row Code — Activates VSP. VSP remains
active until the end of the line is reached. While VSP
is active the screen is blanked.

2) End Of Row-Stop Buffer Loading Code — Causes the
Buffer Ready control logic to stop requesting buffer
transfers for the rest of the row. It affects the display
the same as End of Row Code.

3) End Of Screen Code — Activates VSP. VSP remains
active until the end of the frame is reached.

intgl.

4) End Of Screen-Stop Buffer Loading Code — Causes
the Buffer Ready control logic to stop requesting buffer
transfers until the end of the frame is reached. It affects
the display the same way as the End of Screen code.

4.3.4 Programmable Buffer Loading
Control

The 8276 can be programmed to request 1, 2, 4, or 8
characters per Buffer load. The interval between loads is
also programmable. This allows the designer the flexibility
to tailor the buffer transfer overhead to fit the system
needs.

Each scan line requires 63.5 microseconds. A character
line consists of 10 scan lines and takes 635 microseconds
to form. The 8276 row buffer must be filled within the
635 microseconds or an under run condition will occur
within the 8276 causing the screen to be blanked until the
next vertical retrace. This blanking will be seen as a flicker
in the display.

5.0 DESIGN BACKGROUND

A fully functional, microcontroller-based CRT terminal
was designed and constructed using the 8051 and the 8276.
The terminal has many of the functions that are found in
commercially available low cost terminals. Sophisticated
features such as programmable keys can be added easily
with modest amounts of software.

The 8051’s functions in this application note include: up
to 9.6K BAUD full duplex serial transmission; decoding
special messages sent from the host computer; scanning,
debouncing, and decoding a full function keyboard; writ-
ing to the 8276 row buffer from the display RAM without
the need for a DMA controller; and scrolling the display.

The 8276 CRT controller’s functions include: presenting
the data to the character generator; providing the timing
signals needed for horizontal and vertical retrace; and pro-
viding blanking and video information.

5.1 Design Philosophy

Since the device count relates to costs, size, and reliability
of a system, arriving at a minimum device count without
degrading the performance was a driving force for this
application note. LSI devices were used where possible
to maintain a low chip count and to make the design cycle
as short as possible.

PL/M-51 was chosen to generate the majority of the soft-
ware for this application because it models the human
thought process more closely than assembly language.
Consequently it is easier and faster to write programs using
PL/M-51 and the code is more likely to be correct because
less chance exists to introduce errors.

intgl.

PL/M-51 programs are easier to read and follow than
assembly language programs, and thus are easier to mod-
ify and customize to the end user’s application. PL/M-51
also offers lower development and maintenance costs than
assembly language programming.

PL/M-51 does have a few drawbacks. It is not as efficient
in code generation relative to assembly language and thus
may also run slower.

This application note uses the 8051’s interrupts to control
the servicing of the various peripherals. The speed of the
main program is less critical if interrupts are used. In the
last two application notes on terminal controllers, a cri-
terion of the system was the time required for receiving
an incoming serial byte, decoding it, performing the func-
tion requested, scanning the keyboard, debouncing the
keys, and transmitting the decoded ASCII code must be
less than the vertical refresh time. Using the 8051 and its
interrupts makes this time constraint irrelevant.

5.2 System Target Specifications

The design specifications for the CRT terminal design is
as follows:

Display Format

® 80 characters/display row
® 25 display lines

Character Format

® 5 X 7 character contained within a 7 X 10 frame
® First and seventh columns blanked

@ Ninth line curser position

® Programmable delay blinking underline curser

Control Characters Recognized

® Backspace

® Linefeed

® Carriage Return
® Form Feed

Escape Sequences Recognized

ESC A, Curser up

ESC B, Curser down

ESC C, Curser right

ESC D, Curser left

ESC E, Clear screen

ESC F, Move addressable curser

ESC H, Home curser

ESC J, Erase from curser to the end the screen
ESC K, Erase the current line

Characters Displayed
® 96 ASCII Alphanumeric Characters

AP-223

Characters Transmitted

® 96 ASCII Alphanumeric Characters
® ASCII Control Character Set

® ASCII Escape Sequence Set

® Auto Repeat

Display Memory
® 2K X 8 static RAM

Data Rate
® Variable rate from 150 to 9600 BAUD

CRT Monitor
® Ball Bros TV-12, 12MHZ Black and White

Keyboard

@ Any standard undecoded keyboard (2 key lock-out)
® Any standard decoded keyboard with output enable pin
@ Any standard decoded serial keyboard up to 150 BAUD

Scrolling Capability

Compatible With Wordstar

6.0 SYSTEM DESCRIPTION

A block diagram of the CRT terminal is shown in figure
6.0.0. The diagram shows only the essential system fea-
tures. A detailed schematic of the CRT terminal is con-
tained in the Appendix 7.1.

The *‘brains’’ of the CRT terminal is the 8051 microcon-
troller. The 8276 is the CRT controller in the system, and
a 2716 EPROM is used as the character generator. To
handle the high speed portion of the CRT, the 8276 is
surrounded by a handful of TTL devices. A 2K X 8 static
RAM was used as the display memory.

Following the system reset, the 8276 is initialized for
curser type, number of characters per line, number of
lines, and character size. The display RAM is initialized
to all *spaces’ (ASCII 20H). The 8051 then writes the
*‘start display’’ command to the 8276. The local/line input
is sampled to determine the terminal mode. If the terminal
is on-line, the BAUD rate switches are read and the serial
port is set up for full duplex UART mode. The processor
then is put into a loop waiting to service the serial port
fifo or the 8276.

The serial port is programmed to have the highest priority
interrupt. If the serial port generates an interrupt, the pro-
cessor reads the buffer, puts the character in a generated
fifo that resides in the 8051°s internal RAM, increments
the fifo pointer, sets the serial interrupt flag and returns.

AP-223

SERIAL
COMMUNICATIONS
CHANNEL
l T VIDEO SIGNAL
poT [

8051 TRANSFER 8276
MICROCONTROLLER LOGIC CRT CONTROLLER

CHARACTER
ROM

TIMING HORIZONTAL SYNC

I

AND VERTICAL SYNC
INTERFACE [—

LOGIC [—»

) SYSTEM BUS

{

I
L

KEYBOARD
DECODER —I:">| KEYBOARD

RAM

l DISPLAY

Figure 6.0.0 CRT Terminal Controller Block Diagram

The main program determines if it is a displayable char-
acter, a Control word or an ESC sequence and either puts
the character in the display buffer or executes the appro-
priate command sent from the host computer.

If the 8276 needs servicing, the 8051 fills the row buffer
for the CRT display’s next line. If the 8276 generates a
vertical retrace interrupt, the buffer pointers are reloaded
with the display memory location that corresponds to the
first character of the first display line on the CRT. The
vertical retrace also signals the processor to read the key-
board for a key closure.

6.1 Hardware Description

The following section describes the unique characteristics
of this design.

6.1.1 Peripheral Address Map

The display RAM, 8276 registers, and the 8276 row buff-

ers are memory mapped into the external data RAM ad-
dress area. The addresses are as follows:

Read and Write External
Display RAM —

Write to 8276 row buffers
from Display RAM —
Write to 8276 Command
Register (CREG) —
Write to 8276 Parameter
Register (PREG) —

Read from 8276 Status
Register (SREG) —

Address 1000H to 17CFH
Address 1800H to 1FCFH
Address 0001H
Address 0000H

Address 0001H

10

Three general cases can be explored; reading and writing
the display RAM, writing to the 8276 row buffers, and
reading and writing the 8276°s control registers.

As mentioned previously the 8051 fills the 8276 row buffer
without the need of a DMA controller. This is accom-
plished by using a Quad 2-input multiplexor (Figure 6.1.0)
as the transfer logic shown in the block diagram. The
address line, P2.3, is used to select either of the two
inputs. When the address line is low the RD and WR lines
perform their normal functions, that is read and write the

8051 P2.3 ﬁ

1A SEL

8051 WR Y1 |— 8276 WR
8051 RD 18

Y5V 24 Y2 [— 8276 BS
28
3A v3 |— 8276 RD

3B

— 8276 CS

P24 A«Doi DISPLAY RAM CS

Figure 6.1.0
Simplified Version Of The Transfer Logic

intgl.

8276 or the external display RAM depending on the states
of their respective chip selects. If the address line is high,
the 8051 RD line is transformed into BS and WR signals
for the 8276. While holding the address line high, the
8051 executes an external data move (MOVX) from the
display RAM to the accumulator which causes the display
RAM to output the addressed byte onto the data bus. Since
the multiplexor turns the same 8051 RD pulses into BS
and WR pulses to the 8276, the data bus is thus read into
the 8276 as a Buffer transfer. This scheme allows 80
characters to be transferred from the display RAM into
the 8276 within the required character line time of 635
microseconds. The 8051 easily meets this requirement by
accomplishing the task within 350 microseconds.

6.1.2 Scanning The Keyboard

Throughout this project, provision have been made to
make the overall system flexible. The software has been
written for various keyboards and the user simply needs
to link different program modules together to suit their
needs.

AP-223

6.1.2.1 Undecoded Keyboard

Incorporating an undecoded keyboard controller into the
other functions of the 8051 shows the flexibility and over
all CPU power that is available. The keyboard in this case
is a full function, non-buffered 8 X 8 matrix of switches
for a total of 64 possible keys. The 8 send lines are con-
nected to a 3-to-8 open-collector decoder as shown in
Figure 6.1.1. Three high order address lines from the 8051
are the decoder inputs. The enabling of the decoder is
accomplished through the use of the PSEN signal from
the 8051 which makes the architecture of the separate
address space for the program memory and the external
data RAM work for us to eliminate the need to decode
addresses externally. The move code (MOVC) instruction
allows each scan line of the keyboard to be read with one
instruction.

The keyboard is read by bringing one of the eight scan
lines low sequentially while reading the return lines which
are pulled high by an external resistor. If a switch is

sV
NN
wes 3 2 2 3 S % 2
D I IR R R
PO.7
8051
DATA
BUS
P0.0
1N4305
Y
YYYYYYYY
74156
-
P2.0 A 2vo AN S . G . G . S A G
P21 B 2v1 NI N N K KKIK
P2.2 1€ a2 I G A G S . G . G ¢
NI X IX X X X X
FROM) Ezc 2v3
8051 _E‘G 1v0 NI XX IX X XX
PSEN 2G v A G . O A L . G
RO I L O A O O A S
13 NN K XXX
.
SWITCH MATRIX
Figure 6.1.1 Keyboard

11

AP-223

closed, the data bus line is connected through the switch
to the low output of the decoder and one of the data bus
lines will be read as a 0. By knowing which scan line
detected a key closure and which data bus line was low,
the ASCII code for that key can easily be looked up in a
matrix of constants. PL/M-51 has the ability to handle
arrays and structured arrays, which makes the decoding
of the keyboard a trivial task.

Since the Shift, Cap Lock, and Control keys may change
the ASCII code for a particular key closure, it is essential
to know the status of these pins while decoding the key-
board. The Shift, Cap Lock, and Control keys are there-
fore not scanned but are connected to the 8051 port pins
where they can be tested for closure directly.

The 8 receive lines are connected to the data bus through
germanium diodes which chosen for their low forward
voltage drop. The diodes keep the keyboard from inter-
fering with the data bus during the times the keyboard is
not being read. The circuit consisting of the 3-to-8 decoder
and the diodes also offers some protection to the 8051
from possible Electrostatic Discharge (ESD) damage that
could be transmitted through the keyboard.

6.1.2.2 Decoded Keyboard

A decoded keyboard can easily be connected to the system
as shown in Figure 6.1.2. Reading the keyboard can be
evoked either by interrupts or by software polling.

The software to periodically read a decoded keyboard was
not written for this application note but can be accom-
plished with one or two PL/M-51 statements in the
READER routine.

A much more interesting approach would be to have the
servicing of the keyboard be interrupt driven. An addi-
tional external interrupt is created by configuring timer/
counter 0 into an event counter. The event counter is

intgl.

initialized with the maximum count. The keyboard con-
troller would inform the 8051 that a valid key has been
depressed by pulling the input pin TO low. This would
overflow the event counter, thus causing an interrupt. The
interrupt routine would simply use a MOVC (PSEN is
connected to the output enable pin of the keyboard con-
troller) to read the contents of the keyboard controller onto
the data bus, reinitialize the counter to the maximum count
and return from the interrupt.

6.1.2.3 Serial Decoded Keyboard

The use of detachable keyboards has become popular
among the manufacturers of keyboards and personal com-
puters. This terminal has provisions to use such a key-
board.

The keyboard controller would scan the keyboard, de-
bounce the key and send back the ASCII code for that
key closure. The message would be in an asynchronous
serial format.

The flowchart for a software serial port is shown in Figure
6.1.3. An additional external interrupt is created as dis-
cussed for the decoded keyboard but the use in this case
would be to detect a start bit. Once the beginning of the
start bit has been detected, the timer/counter 0 is config-
ured to become a timer. The timer is initialized to cause
an interrupt one-half bit time after the beginning of the
start bit. This is to validate the start bit. Once the start bit
is validated, the timer is initialized with a value to cause
an interrupt one bit time later to read the first data bit.
This process of interrupting to read a data bit is repeated
until all eight data bits have been received. After all 8
data bits are read, the software serial port is read once
more to detect if a stop bit is present. If the stop bit is
not present, an error flag is set, all pointers and flags are
reset to their initial values. and the timer/counter is re-
configured to an event counter to detect the next start bit.
If the stop bit is present. a valid flag is set and the flags
and counter are reset as previously discussed.

SCAN
KEYBOARD

i

RECEIVE

KEYBOARD 8051
CONTROLLER

BUS <::> PORT 0

DATA
READY »{ T0
cs |- PSEN

Figure 6.1.2

12

Using A Decoded Keyboard

AP-223

START BIT

SET RECEPTION
IN PROGRESS
FLAG

TIMERG = 1.2 BIT
TIME DELAY

SET
VALID FLAG

RETURN

TIMERG = 1 B8IT
TIME DELAY

RETURN

SET

ERROR FLAG

RECEIVED?,

INITIALIZE
TIMERO =
1 BIT TIME

ALL
8 BITS
RECEIVED?

NEXT INPUT

STOP
BIT PRESENT?

SET
BYTE READY
FLAG

RETURN

SET
BYTE FINISHED

TIMERO = COUNTER

INITIALIZE TO FFFN
RESET FLAGS

!

RETURN

FLAG

RETURN

Figure 6.1.3 Flowchart for the Software Serial Port

6.1.4 System Timings

The requirements for the BALL BROTHERS. TV-i2
monitor’s operation is shown in table 6.1.0. From the
monitor’s parameters, the 8276 specifications and the sys-
tem target specifications the system timing is easily cal-
culated.

The 8276 allows the vertical rctrace to be only an integer
multiple of the horizontal character lines. Twenty-five dis-
play lines and a character frame of 7 x 10 are required
from the target specification which will require 250 hor-
izontal lines. If the horizontal frequency is to be within

500 Hz of 15,750 Hz, we must choose either one or two
character line times for horizontal retrace. To allow for a
little more margin at the top and bottom of the screen,
two character line times was chosen for the vertical re-
trace. This choice yields 250 + 20 = 270 total character
lines per frame. Assuming 60 Hz vertical retrace fre-
quency:

60 Hz * 270 = 16,200 Hz horizontal frequency
and
1/16,200 Hz * 20 horizontal sync times = 1.2345 mil-
liseconds

13

AP-223

Table 6.1.0 CRT Monitor’s Operational Requirements

Vertical Drive Pulsewidth

Horizontal Blanking Time
(HRTC)

Horizontal Drive Pulsewidth

Horizontal Repetition Rate

PARAMETER RANGE
Vertical Blanking Time 800 usec nominal
(VRTC)

300 pusec = PW < 1.4 ms

11 usec nominal

25 usec < PW = 30 usec

15,750 + 500 pps

The 1.2345 milliseconds of retrace time meets the nominal
VRTC and vertical drive pulse width time of .3mSec to
1.4mSec for the Ball monitor.

The next parameter to find is the horizontal retrace time
which is wholly dependent on the monitor used. Usually
it lies between 15 and 30 percent of the total horizontal
line time.

Since most designs display a fixed number of characters
per line it is useful to express the horizontal retrace time
as a given number of character times. In this design, 80
characters are displayed, and it was experimentally found
that 20 character times for the horizontal retrace gave the
best results. It should be noted if too much time was given
for retrace, there would be less time to display the char-
acters and the display would not fill out the screen. Con-
versely, if not enough time is given for retrace, the char-
acters would seem to run off the screen.

One hundred character times per complete horizontal line
means that each character needs:

(1/16,200 Hz) /100 character times = 617.3 nanoseconds

If we multiply the 20 character times needed to retrace
by 617.3 nanoseconds needed for each character, we find
12.345 microseconds are allocated for retrace. This value
falls short of the 25 to 30 microseconds required by the
horizontal drive of the Ball monitor. To correct for this,
a 74L.S123 one-shot was used to extend the horizontal
drive pulse width.

The dot clock frequency is easy to calculate now that we
know the horizontal frequency. Since each character is
formed by seven dots in the horizontal axis, the dot clock
period would be the character clock (617.3 nanoseconds)
divided by the 7 which is equal to 11.34 MHz. The basic
dot timing and CRT timing are shown in the Appendix.

14

6.2 Software Description

6.2.1 Software Overview

The software for this application was written in a ‘‘fore-
ground-background’” format. The background programs
are all interrupt driven and are written in assembly lan-
guage due to time constraints. The foreground programs
are for the most part written in PL/M-51 to ease the pro-
gramming effort. A number of subroutines are written in
assembly language due to time constraints during exe-
cution. Subroutines such as clearing display lines, clearing
the screen, and scanning the keyboard require a great deal
of 16 bit adds and compares and would execute much
slower and would require more code space if written in
PL/M-51. The background and foreground programs talk
to each other through a set of flags. For example, the
PL/M-51 foreground program tests ‘*‘SERIALSINT”’ to
determine if a serial port interrupt had occurred and a
character is waiting to be processed.

6.2.2 The Background Program

Two interrupt driven routines, VERT and BUFFER, (see
Fig. 6.2.0) request service every 16.67 milliseconds and
617 microseconds respectively. VERT’s request comes
during the last character row of the display screen. This
routine resets the buffer pointers to the first CRT display
line in the display memory. VERT is also used as a time
base for the foreground program. VERT sets the flag,
SCAN, to tell the foreground program (PL/M-51) that it
is time to scan the Keyboard. VERT also increments a
counter used for the delay between transmitting characters
in the AUTO$REPEAT routine.

The BUFFER routine is executed once per character row.
BUFFER uses the multiplexor discussed earlier to fill the
8276’s row buffer by executing 80 external data moves
and incrementing the Data Pointer between each move.

START
BUFFER
GET BUFFER
POINTER

EXECUTE 80
MOVX @ DPTR
INC DPTR

STORE BUFFER
POINTER

RETURN

RE-INITIALIZE
8276
ROW BUFFER
POINTER TO THE
TOP OF THE
DISPLAY

CLA 8276
INT FLAG
INC DELAY
COUNTER
SET SCAN
FLAG

RETURN

Figure 6.2.0 Flowcharts For
VERT and BUFFER Routine

The MOVX reads the display RAM and writes the char-
acter into the row buffer during the same instruction.

SERBUF is an interrupt driven routine that is executed
each time a character is received or transmitted through
the on-chip serial port. The routine first checks if the
interrupt was caused by the transmit side of the serial port,
signaling that the transmitter is ready to accept another
character. If the transmitter caused the interrupt, the flag
““TRANSMITS$INT" is set which is checked by the fore-
ground program before putting a character in the buffer
for transmission.

If the receiver caused the interrupt, the input buffer on
the serial port is read and fed into the fifo that has been
manufactured in the internal RAM and increments the fifo
pointer ‘‘FIFO."" The flag ‘*SERIALSINT" is then set,
telling the foreground program that there is a character in
the fifo to be processed. If the read character is an ESC
character, the flag **‘ESCSEQ’’ is set to tell the foreground
program that an escape sequence is in the process of being
received.

6.2.3 The Foreground Program

The foreground program is documented in the Appendix.
The foreground program starts off by initializing the 8276

AP-223

as discussed earlier. After all variables and flags are ini-
tialized, the processor is put into a loop waiting for either
VERT to set SCAN so the program can scan the keyboard,
or for the serial port to set SERIALSINT so the program
can process the incoming character.

The vertical retrace is used to time the delay between
keyboard scans. When VERT gets set, the assembly lan-
guage routine READER is called. READER scans the
keyboard, writing each scan into RAM to be processed
later. READER controls two flags, KEY0 and SAME.
KEYO is set when all 8 scans determine that no key is
pressed. SAME is set when the same key that was pressed
last time the keyboard was read is still pressed.

After READER returns execution to the main program,
the flags are tested. If the KEYO flag is set the main
program goes back to the loop waiting for the vertical
retrace or a serial port interrupt to occur. If the SAME
flag is set the main program knows that the closed key
has been debounced and decoded so it sends the already
known ASCII code to the AUTO$SREPEAT routine which
determines if that character should be transmitted or not.

If KEYO and SAME are not set, signifying that a key is
pressed but it is not the same key as before, the foreground
program determines if the results from the scan are valid.
First all eight scans are checked to see if only one key
was closed. If only one key is closed, the ASCII code is
determined, modified if necessary by the Shift, Cap Lock,
or Control keys. The NEWSKEY and VALID flags are
then set. The next time READER is called, if the same
key is still pressed, the SAME flag will be set, causing
the AUTO$REPEAT subroutine to be called as just dis-
cussed. Since the keyboard is read during the vertical
retrace, 16.67 milliseconds has elapsed between the de-
tection of the pressed key and reverifying that the key is
still pressed before transmitting it, thus effectively de-
bouncing the key.

The AUTOSREPEAT routine is written to transmit any
key that the NEWSKEY flag is set for. The counter that
is incremented each time the vertical refresh interrupt is
serviced causes a programmable delay between the first
transmission and subsequent auto repeat transmission.
Once the NEWSKEY character is sent, the counter is
initialized. Each time the AUTOSREPEAT routine is
called, the counter is checked. Only when the counter
overflows will the next character be transmitted. After the
initial delay, a character will be transmitted every other
time the routine is called as long as the key remains
pressed.
6.2.3.1 Handling Incoming Serial Data

One of the criteria for this. application note was to make
the software less time dependent. By creating a fifo to
store incoming characters until the 8051 has time to pro-

15

AP-223

cess them, software timing becomes less critical. This
application note uses up to 8 levels of the fifo at
9.2KBAUD, and 1 level at 4. 8KBAUD and lower. As
discussed earlier, the interrupt service routine for the serial
port uses the fifo to store incoming data, increments the
fifo pointer, *‘FIFO"’, and sets SERIALSINT to tell the
main program that the fifo needs servicing. Once the main
program detects that SERIALS$INT is set the routine
DECIPHER is executed.

DECIPHER has three separate blocks; a block for decod-
ing displayable characters, a block for processing Escape
sequences, and a block for processing Control codes. Each
block works on the fifo independently. Before exiting a
block, the contents of the fifo are shifted up by the amount
of characters that were processed in that particular block.
The shifting of the characters insures that the beginning
of the fifo contains the next character to be processed.
FIFO is then decremented by the number of characters
processed.

Let’s look at this process more closely. Figure 6.2.1-A
shows a representation of a fifo containing S characters.
The first three characters in the fifo contain displayable
characters, A, B, and C respectively with the last two
characters being an ESC sequence for moving the curser
up one line (ESC A) and FIFO points to the next available
location to be filled by the serial port interrupt routine, in
this case, 5.

TOP —(414 (A) 41H (A)
42H (B) 42H (B)
43H (C) 43H (C)
1BH (ESC) TOP — | 18H (ESC)
41H (A) 41H (A)
FIFO —» FIFO —3»
(A) (B)
TOP — | 181 (ESC)
41H (A)
FIFO —3»
(©)

FIGURE 6.2.1 FIFO

16

intgl.

When DECIPHER is executed, the first block begins look-
ing at the first character of the fifo for a displayable char-
acter. If the character is displayable, it is placed into the
display RAM and the software pointer **'TOP" that points
to the character that is being processed is incremented to
the next character. The character is then looked at to see
if it too is displayable and if it is, it’s placed in the display
RAM. The process of checking for displayable characters
is continued until either the fifo is empty or a non-dis-
playable character is detected. In our example, three char-
acters are placed into the display RAM before a non-
displayable character is detected. At this point the fifo
looks like figure 6.2.1-B.

Before entering the next block, the remaining contents of
the fifo between TOP, that is now pointing to 1BH and
(FIFO-1) are moved up in the fifo by the amount of char-
acters processed, in this example three. TOP is reset to 0
and FIFO is decremented by 3. The serial port interrupt
is inhibited during the time the contents of the fifo and
the pointers are being manipulated. The fifo now looks
like figure 6.2.1-C.

The execution is now passed to the next block that pro-
cesses ESC sequences. The first location of the fifo is
examined to see if it is an ESC character (1BH). If not,
the execution is passed to the next block of DECIPHER
that processes Control codes. In this case the fifo does
contain an ESC code. The flag ESC$SEQ is checked to
see if the 805! is in the process of receiving an ESC
sequence thus signifying that the next byte of the sequence
has not been received yet. If the ESC$SEQ is not set, the
next character in the fifo is checked for a valid escape
code and the proper subroutine is then called. The fifo
contents are then shifted as discussed for the previous
block. Due to the length of time that is needed to execute
an ESC code sequence or a Control code, only one ESC
code and/or Control code can be processed each time
DECIPHER is executed.

If at the end of the DECIPHER routine, FIFO contains a
0, the flag SERS$INT is reset. If SERSINT remains set,
DECIPHER will be executed immediately after returning
to the main program if SCAN had not been set during the
execution of the DECIPHER routine, otherwise DECI-
PHER will be called after the keyboard is read.

6.2.4 Memory Pointers and Scrolling

The curser always points to the next location in display
memory to be filled. Each time a character is placed in
the display memory, the curser position needs to be tested
to determine if the curser should be incremented to the
beginning of the next line of the display or simply moved
to the next position on the current display line. The curser
position pointers are then updated in both the 8276 and
the internal registers in the 8051.

intgl.

When the 2000th character is entered into the display
memory, a full display page has been reached signaling
the need for the display to scroll. The memory pointer
that points to the display memory that contains the first
character of the first display line, LINEO. prior to scrolling
contains 1800H which is the starting address of the display
memory. Each scrolling operation adds 80 (S0H) to LINEO
which will now point to the following row in memory as
shown in figure 6.2.2-B. LINEQ is used during the vertical

AP-223

refresh routine to re-initialize the pointers associated with
filling the 8276 row buffers.

The display memory locations that were the first line of
the CRT display now becomes the last line of the CRT
display. Incoming characters are now entered into the
display memory starting with 1800H, which is now the
first character of the last line of the display screen.

MEMORY
MEMORY LOCATION LOCATION
1800H 184FH

]
LiNeo—»{ | 1

L] row (80 CHAR)
DURING FIRST
PAGE 1ST PAGE
MEMORY MEMORY
LOCATION —»f | j«— LOCATION
1F80M 1FCFH
A) BEFORE SCROLLING
NEW TEXT
INSERTED HERE
LiNEo —»{ |
memoRY —
LOCATION
18A0H

C) AFTER 2ND SCROLLING OPERATION

LINEO
MEMORY NEW TEXT
LOCATION INSERTED HERE
1F80H |

E) AFTER 24TH SCROLLING OPERATION

MEMORY LOCATION

MEMORY LOCATION

1800H
NEW TEXT
INSERTED H
LINEO —{] S ERE
MEMORY k)
LOCATION
1850H

B) AFTER 1ST SCROLLING OPERATION

NEW TEXT
INSERTED HERE
LINEC —3
MEMORY —f
LOCATION
18FOH

D) AFTER 3RD SCROLLING OPERATION

1800H 1

|

LINEO

NEW TEXT
INSERTED HERE

le—

F) AFTER 25TH SCROLLING OPERATION

Figure 6.2.2 Pointer Manipulation During Scrolling

17

AP-223

6.2.5 Software Timing

The use of interrupts to tie the operation of the foreground
program to the real-time events of the background program
has made the software timing non-critical for this system.

6.3 System Operation

Following the system reset, the 8051 initializes all on-
chip peripherals along with the 8276 and display ram.
After initialization, the processor waits until the fifo has
a character to process or is flagged that it is time to scan
the keyboard. This foreground program is interrupted once
every 617 microseconds to service the 8276 row buffers.
The 8051 is also interrupted each 16.67 milliseconds to
re-initialize LINEO and to flag the foreground program to
read the keyboard.

18

intgl.

As discussed earlier, a special technique of rapidly moving
the contents of the display RAM to the 8276 row buffers
without the need of a DMA device was employed. The
characters are then synchronously transferred to the char-
acter generator via CC0-CC6 and LCO-LC2 which are
used to display one line at a time. Following the transfer
of the first line to the dot timing logic, the line count is
incremented and the second line is selected. This process
continues until the last line of the character is transferred.

The dot timing logic latches the ouput of the character
ROM in a parallel in, serial out synchronous shift register.
The shift register's output constitutes the video informa-
tion to the CRT.

intgl.

Appendix 7.1

CRT Schematics

20m1 | 20pt
b
1t
087 DpBO sv A0 ON 8276 sv
»—ﬂ]}—« 11.059 MHz
18 19 20 10 24 12
x1 X2 p0.0 |2 3lvec enp]? 4 8l veC GND
38 4 5 7
Vi
+5v I ce a7 7 ; 6 6
36) . 9 5
AST 3 13 N 12 4
34 14 s 15 3
33 17 3 16 2
7
32 18 19 1
GND 0.7 3 A7
31 30 e —
v —] EA ALE oc 2K x8
—5] T ¢1 s;::c
—10 INTY 9
SemiaL v ——f AxD 8051 00
SERIAL OUT —] TXD :o
T0 74156 1
13
BAUD ”
BAuD ——] P11 = "
BAUD ——] P12 m Ato -
cAP LOCK ——] P13 - A o
CLEAR TO SEND ——] P14 o7 As
READY P15 CE OF WE
SHFT —— P16
- |17
CONTROL —] py7 7 | 18 20 [t
0 wa —
LOCAL T p2o P24 26 cs o276
LL SDCS
04
sv
Trs
2| vee sec
L 1a
3 ‘4 —
8 12— WR 6276
5
+5V
R 74187 7 _
2 12— B8S 8276
1
A
10 9 —
£ 13 |—>» RD 8276
“n
40 STB GND
15 8

AP-223

19

AP-223

v
- "
oBo P T vCC
— . of
— ano I
1 |t am ac__ oo
; {0y —
oe7 {\ JV\ 13
10K 120pF 120pF v
T
6[15]14{13[12 24 "
sv o7 00 Veo GNO _
T » 2 ce
vee e Y n OF
) 27 i
. : : p————— a1
"0 2
ry YYYyYYYYY 2 : 7
10 "R 8 eco 2 S 1
I IR ‘ 5
16 2] — 2 6
JOVSRT] pumraews R R R A N N R R4 cs ¢ °E 7 0
> — I [) 16
P21—{g —as w 3
P22 ! 1c m 0 IX X As h¢ < X AS 20 "
E” J L1 R R N R S O P Y?m e aw s
7 2
- I XN I I o
4 - i
PSEN —E G g 1Yo ? X X < <IN X < Ad BM‘:V Ll ar 82 ™
2G S
Y I O O N N R S O) - %‘D VERTICAL DRIVE
PN I O O S S N L “
2
Wl X INC I I e I I
INT2 INTO VIDEO
GNO DRIVE
v
o5 uF
T
i
10k v
lI A M
': cexr1 ™ ORIVE
Heexra
GO Al
v 2
a1

20

intgl.

Appendix 7.2 Dot Timing

CHARACTER @ .. _

COUNTER
STATE

ft—{ 89.

.9ns

-—617ns — - -

—

e pipipipigipipipipiaiainipinipinlpipiyl
cLock

44.9ns

QA

745163
COUNTER
outputs | @€

AP-223

ac .
CHARACTER
cLock .
| L L *
ap i
1, i : |
CHARACTER 15ns MAX i
cLock 10 T l “‘—“I ‘ i J_
8276 ! i
[i
i tee i
A A |
150n: |
8276 i ‘ ; !
CHARACTER |
FIRST CHARACTER SECOND CHARACTER THIRD CHARACTER
OUTPUT
(cco-cce) T - - -
" I
SHIFT | .) ‘
H,
OUTPUT X FIRST CHARACTER VIDEO OUT x SECOND CHARACTER VIDEO OUT
(74186) 7 1 dl :
Hi "
11.34 MHz 10pF
! I
+ it
7
XTAL 11.34 MHz
DOT CLOCK
7404 7404
-001 BCDEFGH
i} CK 74166 Oy
oor SHIFT'LOAD
crock SHIFT REGISTER vsp
(8275)
330 330
Lco-Lc2
LTEN
: cco-cee (8275) > vy CRT
MONITOR
e le], 2 LTEN DELAYED 1K $ HORIZONTAL
A 2 7 DRIVE
7 1 HRTC
8 s 6 ®215 > ° +v
Y CHARACTER oK
s GENERATOR 7 COUNTER S VERTICAL
I _ VRTC > VATC DELAYED ORIVE
(8275) >
— CHARACTER cK a
l— A cLock B2
sv Bt Q1 Inn 2 at—
? R1 5v_avwl_ R2
L CEXT] CEXT
12 74123 1274123

21

AP-223

Appendix 7.3 CRT System Timing

617 ns

S e U RO U o I . I .
“H S UL UYL

LATCH LATCH LATCH LATCH LATCH ' LATCH
CHAR 1 CHAR2 | CHARJ CHAR 4 CHAR 80 CHAR 1
|
i i))
HATC :
(8276)

CHAR CODE
(8276)

LINE COUNT ;
0276 T 1{f
|
SHIFT
REGISTER LOAD | LOAD | LOAD | LOAD LOAD 4
LOADING CHAR X CHAR 1 CHAR 2 CHAR 3 CHAR 80
A i i
A ! |
ViDEO | | le | . i i |
OuTPUT I ') | w i
; VIDEO | VIDEO VIDEO VIDEO | ‘
| For1ST | FOR2ND | FOR 3RD i | FOR 80TH o
CHAR CHAR CHAR CHAR

22

intgl.

Appendix 7.4 Escape/Control/Display Character Summary

CONTROL DISPLAYABLE ESCAPE
CHARACTERS CHARACTER SEQUENCE
BIT 000 001 010 011 100 101 110 m o010 011 100 101 110 m
@
0000 NUL DLE SP ° @ P P
-]
0001 SOH DC1 ! A Q A Q A
B
0010 STX DC2 2 B R B R B
[—
0011 ETX DC3 = 3 c S [s [
D .
0100 EOT DC4 s 4 D T D T D
E
0101 ENQ NAK % 5 E U E u CLR E
F
o110 ACK SYN & 6 F v F v
3
o111 BEL ETB ! 7 G w G w
H
1000 85 CAN (8 H X H X HOME H
I
1001 HT EM) 9 I Y I Y
J
1010 LF sue . J z J 4 EOS t
K
1011 | vT ESC + ; K i K EL J
L
1100 FF FS . L L
o
110t TH Gs - = M 1 M
N
1110 SO RS . N A N
c
1mn st us / ? [¢] - o
NOTE: Shaded blocks — functions terminat will react to. Others can be generated but are ignored upon receipt.

AP-223

23

AP-223

Appendix 7.5 Character Generator

As previously mentioned, the character generator used in
this terminal is a 2716 EPROM. A 1K by 8 device would
have been sufficient since a 128 character S by 7 dot matrix
only requires 8K of memory. A custom character set could
have been stored in the second 1K bytes of the 2716. Any
of the free /0 pins on the 8051 could have been used to
switch between the character sets.

The three low-order line count outputs (LCO-LC2) from
the 8276 are connected to the three low-order address lines
of the character generator. The CCO-CC6 output lines are
connected to the A3-A9 lines of the character generator.

intgl.

The output of the character generator is loaded into the
shift register. The serial output of the shift register is the
video output to the CRT.

Let’s assume that the letter “‘E’’ is to be displayed. The
ASCII code for “‘E’ (45H) is presented to the address
lines A2-A9 of the character generator. The scan lines
(LCO-LC2) will now count from 0 to seven to form the
character as shown in Figure 7.5.0. The same procedure
is used to form all 128 possible characters. For reference
Appendix 7.6 contains the HEX dump of the character
generator used in this terminal.

Character generator output

Rom Address
228H
229H
22AH
22BH
22CH
22DH
22EH
22FH

45H = 01000101
Address to Prom = 01000101

= 228H - 22FH
Depending on state of Scan
lines.

Rom Hex Output

Bits 0, 6 and 7 are not used.
“note bit output is backward from convention.

Bit Output*

3E 012 34567
02

02

Figure 7.5.0 Character Generator

24

intgl.

Appendix 7.6 Hex Dump of the Character Generator

21822304321 33032090230332423302830383333AEF
:123310322038203003382993 3303 34303133223 4E 2
:lﬂﬂlZUbﬂﬂZﬁDZZZﬂﬂﬁZZ3@339922%%300”3303333&
: 1083304313283300302000A00029:3338 302333330
1102340220922232203333303333332433033433 357
2 1035330:4302323332 3242830323333 3330 333340
2 192253323223323309023:9333333233332333A239349)
:10223733223322330332 023333202300 383833033 3
11023822233402322323023330334303033333003374
$1022332303027%2333400938241C331C240A343337930
$1093A02242049232302383330033A0 3333333223353
£ 10928293234320 30333 23333393333233 43332394 0
1102323294333 328372303:44333200330333303%0333 30
:1023D33032309403373333333230303330433 33933924
: 17223E423423230 3223033499333 30433333032303]1 4
AIANIANNIAINAADA9D 3IAAI DI A3 3A33 AR
A10A2222033323029273333378 §3384374087138F
A1102731414140033093063914143£143E£141420C3
212022233CA81C281E33493425134834 32303350
11392224 3A0A 91241 22CA11838333333 33333323
21402333334023202 343334081 032022201 73339341
215222282A1CA31C2AM339233848 3£7338.1393939)
4169433233333323083834 002334933CA133309 3F
A7332338333950322183393291 33834 32097729
2184231C22322A25221CAAA8C(33833331CA32)
2197311 22201C0O2623EMM3E 20111 R23221C328F
21A%22101814123214103232021£2023221C31207
21399038344921E22221CA33E 20107834 3434993
A1CA221C22221C22221CHR1C222232241 49E31379
g)DﬂﬂH”ﬂﬂﬂﬂ?M3011@32313339286303181?34?3
4

)

)

.
.

.

£77331233402:3198130343333EA335411293359
1920340319291 14844 331C222A1 333381933 2]
J233321C222A341A023CA348) 42 222352222941 2
J210221£24241C24241E931C22320202221C3774
4220091£2424242424150233242A2320202 3EAIC

39293E420205020202323C0202 38272230 4E
12402222222232222222331CA33183838131CA244
A253397320202328221C33221 20845341 22243E S
A287332022202 2202 A23EAA22352A2A222222033)
A2734922242A32222222401C2222222222123192
A2843A1£22221 EA20202041C2222222A1 2200F £
2299291822221 EAA1222093C02721C 23241 E 33ES
42ABAN3E#318.18481333141922222222222210A98
A2089%022222222221 4430.322222222243722095E
A2C894222214013142222373222222144833)813E4
2209733122001 A283410232031CA1 1343434 341CA%] 8
A2EAD3212040312220043332023232 2243349257
A2E320281C2A%313818 9833349 3994A098923 71 2
J372023390110430253924036B33223322232094F
J3103222121A2622221 5343324384 34111 384333
4320979242022322222 3CH3233039243C343R 31753
43304%3824040E%104940230343C22223C283CA3
9340929212142522222240389733335R 13313043
2350372204202 5200A8241 8202221 23814223423
3653048319898 338339 AANA NI 3652424222 204 7F
A370A022%31A252222220333331824242 4183938
A38:92323031E£22221EA200202921C22223322207D
43942203341A202232 223333993834 1820 1CA 17
43A637233481CN31839943373397222222324CA95
A3800324382222221 403133444 22222A3E1403¢3
13C413232922141314220433032222223324383F
(A3D0920309343£194894 32321 833897398891 932 2¢
233£4241381338 4378 4338 39391 219391303351
#4383933932323C 233431 3234303333330 43103395,

1
1
2
2
2
2

.
.
.
.
.

.

e en e

S EEISAININITIIDIIIRDTITVL.DS

TR

s

.

.
.
H
.
.
:
.
.
.
.
.
.
.
H
o dy
.

.

WS ECTRSESS

o

Ry

(

.

SVNSTSITIIISS

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

6 00 99 50 40 9% S0 40 00 9% 00 00 o0

AP-223

25

AP-223

Appendix 7.7 Composite Video

In this design it was assumed that the CRT monitor re-
quired a separate horizontal drive, vertical drive, and
video input. Many monitors require a composite video
signal. The schematic shown in Figure 7.7.0 illustrate how
to generate a composite video from the output of the 8276.

In

The dual one-shots are used to provide a small delay and
the proper horizontal and vertical pulse to the composite
video monitor. The delay introduced in the horizontal and
vertical timing is used to center the display. The 7486 is
used to mix the vertical and horizontal retrace. Q1 mix
the video and retrace signals along with providing the
proper D.C. levels.

&J p:
50K $ PR

1 7418221

S 4 L‘» 50K
$ 10K S

-
7418221

HRTC

2 2Q 2Q 2
8, B, { VRTC
[_—1 a 2 sv sv—> A —_|1
(i 1 ! — (L
22k$ = = $ 2.2¢
<
470pF 001 F ApF .
l/p 14 6 IL ¥ ’I‘I 6 4 |25
1€ cx cx 1€ 1€ cx CXf—¢
15 7 7 15
- RXCX ~ ' l —RXCX

10 16
Q, B, 7486 Q B,
7486 +5
2n3904
1KQ
+5§ ——————A—1¢
490
VIDEO >—1§2_. COMPOSITE
VIDEO
1500 out

Figure 7.7.0 Composite Video

26

intgl. ap-223

Appendix 7.8 Software Documentation

/*i*ﬁﬁ*t*ﬁtttiiit**ﬁkt*ii*tktﬁ*ﬁkitlttixttitﬁttittﬁ*it*ittt*ﬁitttttitﬁﬁtikt*itt
KARKARRKR KRN KRR KRR AR KRR IR AR RRARRRR LR RR AR AR KRR RRRRRR ARk kA kAR AR AN R AN AR

ARk hkkk KhkhRkk
FEAAARR SOFTWARE DOCUMENTATION FOR THE 8051 bl
*EkREAR TERMINAL CONTROLLER APPLICATION NOTE bbb
khkkkkkk hkkkhkk

KRR ARRRNRRAR AR AR KA AR RN R KR KRR R AR AR R R AR IR R AR RRRR AR AR AR AR RRRARRR AR AR AR RS
AAKRRKRE AR RIK AN KRR KRR RRK AR AR IR AR KRR AR AR AR AR R RRRARARRARRRRR AR AR AR NN

MEMORY MAP ASSOCIATED WITH PERIPHERAL DEVICES (USING MOVX):

8051 WR AND READ DISPLAY RAM- ADDRESS 1000H TO 17CFH
8051 WR DISPIAY RAM TO THE 8276~ ADDRESS 1800H TO 1FCFH

8276 COMMAND ADDRESS- ADDRESS 0001H
8276 PARAMETER ADDRESS- ADDRESS 000CH
8276 STATUS REGISTER- ADDRESS 0001H

MEMORY MAP FOR READING THE KEYBOARD (USING MOWC):
KEYBOARD ADDRESS- ADDRESS 10FFH TO 17FFH

JREKKKRKKRKKKKRKARR*® START MAIN PIOGRAM **AK®dAAXXRAAKRKKANKKRKARAK

/* BEGIN BY PUTTING THE ASCII CODE FOR BLANK IN THE DISPLAY RAM*/

INIT:
{ "TLL 2000 LOCATIONS IN THE DISPLAY RAM WITH SPACES (ASCII 20H)}

/* INITIALIZE POINTERS, RAM BITS, EIC. */

INITIALIZE POINTERS AND FLAGS}

INITIALIZE TOP OF THE CRT DISPLAY "LINEO"=1800H}
INITIALIZE 8276 BUFFER POINTER "RASTER" =1800H}
INITIALIZE DISPLAY$RAMSPOINTER=0000H}

/* INITIALIZE THE 8276 */

RESET THE 8276}

INITIALIZE 8276 TO 80 CHARACTER/ROW }

INITIALIZE 8276 TO 25 ROWS PER FRAME

INITIALIZE 8276 TO 10 LINES PER ROW}

INITIALIZE 8276 TO NON-BLINKING UNDERLINE CURSER}

INITIALIZE CURSER TO HCME POSITION (0C,00) (UPPER LEFT HAND OORNER)}
START DISPLAY}

ENABLE 8276 INTERRUFT}

/* SET UP 8051 INTERRUPTS AND PRIORITIES */

SERIAL PORT HAS HIGHEST INTERRUPT PRIORITY}
EXTERNAL INTERRUPTS ARE EDGE SENSITIVE}
ENABLF. EXTERNAL INTERRUPTS}

27

AP-223 |n .

/*PROCEDURE SCANNER: THIS PROCEDURE SCANS THE KEYBOARD AND DETERMINES IF A
SINGLE VALID KEY HAS BEEN PUSHED. IF TRUE THEN THE ASCII BEQUIVALENT
WILL BE TRANSMITTED TO THE HOST COMPUTER.*/

SCANNER

{ENABLE 8051 GLOBAL INTERRUPT BIT}

/* PROGRAMMABLE DELAY FOR THE CURSER BLINK */

IF {30 VERTICAL RETRACE INTERRUPTS HAVE OCCURRED (CURSERSCOUNT=1FH)} THEN
DO;
OOMPLEMENT CURSERSON}
CLEAR CURSERS$COUNT}
IF [CURSER IS TO BE OFF (CURSERSON=0)} THEN {MOVE CURSER OFF THE SCREEN}
CALL SCURSER;

i

g

IF {THE LOCALSLINE SWITCH HAS CHANGED STATE} THEN

Do;
1F {IN LOCAL MODE} THEN {DISABLE SERIAL PORT INTERRUPT}
ELSE CALL CHBCKSBAUDSRATE;

END;

DO WHILE {INEETWEEN VERTICAL REFRESHES}
IF {THE FIFO HAS A CHARACTER TO PROCESS (SERIALSINT=1)} THEN CALL DECIPHER;
END;

CALL READER;

IF {1HE PRESENT PRESSED KEY IS BQUAL TO THE LAST KEY PRESSED AND VALID=1} THEN
CALL AUTOS$REPEAT;
ELSE

m.
Ir {A KEY IS PRESSED BUT NOT THE SAME ONE AS THE LAST KEYBOARD SCAN} THEN

;
IF (Y ONE KEY IS PRESSED} THEN
GET THE ASCII CODE FOR IT}
SET NEWSKEY END VALID FLAGS}
ELSE {RESET VALID AND NEWSKEY FLAGS}
END;
ELSE {THE KEYBOARD MUST NOT HAVE A KEY PRESSED SO RESET VALIDSKEY AND NBWSKEY FLAGS}
END;

GCTC SCANNER;
END;
/* PROCEDURE AUTOSREPEAT: THIS PROCEDURE WILL PERFORM AN AUTO REPEAT FUNCTION

BY TRANSMITTING A CHARACTER EVERY OTHER TIME THIS ROUTINE IS CALLED.
THE AUTO REPEAT FUNCTION IS ACTIVATED AFTER A FIXED DELAY PERIOD AFTER THE
FIRST CHARACTER IS SENT*/

AUTOSREPEAT :
IF {THE KEY PRESSED IS NEW (NEWSKEY=1] THEN
DO;
CLEAR THE DIVIDE BY TWO COUNTER "TRANSMITSTOGGLE"}
INITIALIZE THE DELAY COUNTER "TRANSMITSCOUNT™ TO 0DOH)
CALL TRANSMIT; /* FIRST CHARACTER */

{CLEAR NEWSKEY }
END;

28

in‘tel . AP-223

ELSE
DO;
IF {TRANSMITSOOUNT IS NOT EQUAL TO 0} THEN
DO;
{ INCREMENT TRANSMIT$OOUNT}
IF TRANSMITS$COUNT=0FFH THEN /*DELAY BETWEEN FIRST CHARACTER AND THE SECOND */
DO;
?ALL TRANSMIT; /*SECOND CHARACTER */
CLEAR ‘TRANSMITS$OOUNT}

;
{TURN THE CURSER ON DURING THE AUTO REPEAT FUNCTION}
IF TRANSMITSTOGGLE = 1 THEN /* 2 VERT FRAMES BEIVEEN 3RD TO NTH CHARACTER */
CALL TRANSMIT; /* 3RD THROUGH NTH CHARACTER */
{COMPLEMENT TRANSMITSTOGGLE}
END;
END;

END AUTOSREPEAT;

/* PROCEDURE TRANSMIT- ONCE THE HOST OOMPUTER SIGNALS THE 8051H BY BRINGING
THE CLEAR-TO-SEND LINE LOW, THE ASCII CHARACTER IS PUT INTO THE SERIAL PORT.*/

TRANSMIT :
PROCEDURE;
IF {THE TERMINAL IS ON-LINE} THEN
DO;
WAIT UNTIL THE CLEARSTOSSEND LINE IS LOW AND UNTIL THE 8051 SERTAL PORT TX IS NOT BUSY (TRANSMIT$INT=1)}
TRANSMIT THE ASCII CODE
CLEAR THE FLAG "TRANSMITSINT". THE SERIAL PORT SERVICE ROUTINE WILL SET THE FLAG
WHEN THE SERIAL PORT IS FINISHED TRANSMITTING}
END;
ELSE {THE TERMINAL IS IN THE LOCAL MODE}
DO;
PUT THE ASCII CODE IN THE FIFO}
INCREMENT THE FIFO POINTER}
SET SERIALSINT}
END;
END TRANSMIT;

29

AP-223

/* PROCEDURE DBECIPHER: THIS PROCEDURE DECODES THE HOST COMPUTER'S MESSAGES AND DETERMINES

WHETHER IT IS A DISPLAYABLE CHARACTER, CONTROL SEQUENCE, OR AN ESCAPE SEQUENCE
THE PROCEDURE THEN ACTS ACCORDINGLY */

DECIPHER:
STARTSDECI PHER:

VALIDS$RECEPTION=0;

DO WHILE {THE FIFO IS NOT EMPTY AND THE CHARACTER IS DISPLAYABLE}
RECEIVE={ASCII CODE}
CALL DISPLAY;
{NEXT CHARACTER}

END;

IF {CHARACTERS WERE DISPLAYED} THEN
DISABIE SERIAL PORT INTERRUPT}
MOVE THE REMAINING CONTENTS OF THE FIFO UP TO THE BEGINNING OF THE FIFO}
ENABLE SERTAL PORT INTERRUPT
SET THE VALIDSRECEPTION FLAG

IF {THE FIFO IS EMPTY} THEN {CLEAR THE “SERIAL$INT FLAG AND RETURN]}

IF {THE NEXT CHARACTER IS AN "ESC" CODE } THEN

DO:

{LOOK AT THE CHARACTER IN THE FIFO AFTER THE ESC CODE AND CALL THE CORRECT SUBROUTINE}

CALL UPSCURSER; /* ESC A */
CALL DOWNSCURSER; /* ESC B */
CALL RIGHTS$CURSER; /* ESC C */
CALL LEFT$CURSER; /* ESC D */
CALL CLEARS$SCREEN; /* ESCE */
CALL MOVSCURSER; /* ESC F */
i
CALL HOME; /* ESC H */
CALL ERASES$FROMSCURSERSTOSENDSCF$SCREEN; /* ESC J */
CALL BLINE; /* ESCK */

DISABLE THE SERIAL PORT INTERRUPT}

MOVE THE REMAINING CONTENTS OF THE FIFO UP TO THE BEGINNING OF THE FIFO}
ENABLE THE SERIAL PORT INTERRUPT}

SET THE "VALIDS$RECEPTION" FLAG}

IF {THE FIFO IS EMPTY} THEN {CLEAR THE SERIALS$INT FLAG AND RETURN}
END;

30

In

I n o AP-223

IF {THE NEXT CHARACTER IS A CONTROL CODE} THEN

{CALL THE RIGHT SUBROUTINE}

CALL LEFT$CURSER; /* CTL H */
CALL LINESFEED; /* CIL J */
CALL CLEAR$SCREEN; /* CIL L */
CALL CARRIAGESRETURN; /* CTL M */

DISABLE THE SERIAL PORT INTERRUPT}
MOVE THE REMAINING CONTENTS OF THE FIFO UP TO THE BEGINNING OF THE FIFO}
ENABLE THE SERIAL PORT INTERRUPT}
SET THE "VALIDSRECEPTION" FLAG)}
END;
IF {NO VALID CODE WAS RECEIVED (“VALID$RECEPTION" IS 0)} THEN

THROW THE CHARACTER OUT AND MOVE THE REMAINING CONTENTS OF THE FIFC}
UP TO THE BEGINNING}

IF {THE FIFO IS EMPTY} THEN {CLEAR THE SERTALSINT FLAG AND RETURN}

END DECIPHER;

/* PROCEDURE DISPLAY : THIS PROCEDURE WILL TAKE THE BYTE IN RAM LABELED
RECEIVE AND PUT IT INTO THE DISPLAY RAM. */

DISPLAY :

{PUT INTO THE DISPLAY RAM LOCATION POINTED TO BY "DISPLAYSRAMSPOINTER
THE CONTENTS OF RECEIVE}

IF {THE END OF THE DISPFLAY MEMORY HAS BEEN REACHED} THEN
RESET "DISPLAY $RAMSPOINTER® TO THE BEGINNING OF THE RAM}

{ INCREMENT "DISPLAYSRAMSPOINTER"}

IF {THE CURSER IS IN THE LAST COLUMN OF THE CRT DISPLAY} THEN
DO;
{MOVE THE CURSER BACK TO THE BEGINNING OF THE LINE}
IF {'ME NEW DISPLAY RAM LOCATION HAS A END-OF-LINE CHARACTER IN IT} THEN
CALL FILL;

IF {THE CURSER IS ON THE LAST LINE OF THE CRT DISPLAY} THEN
CALL SCROLL;
ELSE
{MOVE THE CURSER TO THE NEXT LINE}
END;

{ INCREMENT THE CURSER TO THE NEXT LOCATION}

31

AP-223 |n .

/* PROCEDURE LINESFEED */

LINESFEED:

IF {THE CURSER IS IN THE LAST LINE OF THE CRT DISPLAY} THEN
CALL SCROLL;

ELSE

DO;
MOVE THE CURSER TO THE NEXT LINE}

TURN THE CURSER ON}

CALL LOADSCURSER;

H

g

¥ lm DISPLAY $RAMSPOINTER IS ON THE LAST LINE IN THE DISPLAY RAM} THEN
MOVE THE DISPLAYS$RAMSPOINTER TO THE FIRST LINE IN THE DISPLAY RAM}
ELSE
{MOVE THE DISPLAY$RAMSPOINTER TO THE NEXT LINE IN THE DISPLAY RAM}

IF {THEFIRSTCHARACIERNT?ENDILINEQ)NEMNSANB!D—OF—LINEG!ARACIER}W
CALL FILL;

END LINE$FEED;

/* PROCEDURE SCROLL */
SCROLL:

CALL BLANK;

{DISABLE VERTICAL RETRACE INI'ERK]'PI‘}

IF I}{EFIRSPLINBOFTHECRI(INTAINS'H']ELASTLINEOFTHEDISP[AYTBDI&]m
MOVE THE POINTER "LINEO" TO THE BEGINNING OF THE DISPLAY MEMORY

ELSE
{MOVE "LINEO” TO THE NEXT LINE IN THE DISPLAY MEMORY}

{ENABLE VERTICAL RETRACE INTERRUPT}

END SCROLL;

/* PROCEDURE CLEAR SCREEN */

CLEARSSCREEN :

CALL HOME;
CALL ERASE$FROMS$SCURSERSTOSENDSOF$SCREEN;

END CLEAR$SCREEN;

32

intgl.

/* PROCEDURE HOME: THIS PROCEDURE MOVES THE CURSER TO THE 0,0 POSITION */

HOME :

MOVE THE CURSER POSITION TO THE UPPER LEFT HAND CORNER OF THE CRT}

TURN THE CURSER ON}

CALL LOAD$CURSER;

{MOVE THE DISPLAY$RAMSPOINTER TO THE CORRECT LOCATION IN THE DISPLAY RAM}

END HOME;

/* PROCEDURE ERASE FROM CURSER TO END OF SCREEN: */
ERASE$FROM$SCURSERSTOSEND$OF $SCREEN :
CALL BLINE; /* ERASE CURRENT LINE */

IF {THE CURSER IS NOT ON THE LAST LINE OF THE CRT DISPLAY} THEN

STARTING WITH THE MEXT LINE,PUT AN END-OF-LINE CHARACTER (OF1H)

IN THE DISPLAY RAM LOCATIONS THAT CORRESEOND TO THE BEGINNING OF

THE CRT DISPLAY LINES UNTIL THE BOTTOM OF THE CRT SCREEN HAS BEEN REACHED}
END;

END ERASE$FROMSCURSERSTOSENDSOF $SCREEN;

/*PROCEDURE MOVSCURSER: THIS PROCEDURE IS USED IN CONJUNCTION WITH WORDSTAR
IF A ESC F IS RECEIVED FROM THE HOST OOMPUTER, THE TERMINAL CONTROLLER WILL
READ THE NEXT TWO BYTE TO DETERMINE WHERE TO MOVE THE CURSER. THE FIRST BYTE
IS THE ROW INFORMATION FOLLOWED BY THE COLUMN INFORMATION */

MOV$CURSER:

WAIT UNTIL THE FIFO HAS RECEIVED THE NEXT TWO CHARACTERS]}
MOVE THE CURSER TO THE LOCATION SPECIFIED IN THE ESCAPE SEQUENCE}
MOVE THE DISPLAY$RAMSPOINTER TO THE CORRECT LOCATION}

IFTHEFIRSPGIARPCPERINT}EWUNEHASANDJD—OF-LINECHARACI’ER} THEN
CALL FILL;
END;

DISABLE THE SERIAL PORT INTERRUPT}

MOVE THE REMAIN CONTENTS OF THE FIFO UP TWO LOCATIONS IN MEMORY}
DECREMENT THE FIFO BY TWO}

ENABLE THE SERIAL PORT INTERRUPT}

END MOV$SCURSER;

/* PROCEDURE LEFT CURSER: THIS PROCEDURE MOVES THE CURSER LEFT ONE COLUMN

BY SUBTRACTING 1 OF THE CURSER COLUMN RAM LOCATION THEN CALL LOAD CURSER */

LEFT$CURSER:

IF {’IHECURSERISNOrIN'IHEF'IRSrHX:ATIQlOFALINE} THEN
DO;

MOVE THE CURSER LEFT BY ONE LOCATION}

TURN THE CURSER ON

CALL LOADSCURSER;

{DECREMENT THE DISPLAY$RAMSPOINTER BY e}
END;

END LEFT$CURSER;

AP-223

33

AP-223

/* PROCEDURE RIGHT CURSER: THIS PROCEDURE MOVES THE CURSER RIGHT ONE COLUMN
BY ADDING 1 TO THE CURSER COLUMN RAM LOCATION THEN CALL LOAD CURSER */

RIGHT$CURSER:

IF {THE CURSER IS NOT IN THE LAST POSITION OF THE CRT LINE] THEN
DOo;
MOVE THE CURSER RIGHT BY ONE LOCATION}
TURN THE CURSER ON}
CALL LOADSCURSER;
{ INCREMENT THE DISPLAYSRAMSPOINTER BY ONE}
END;

END RIGHT$CURSER;

/* PROCEDURE UP CURSER: THIS PROCEDURE MOVES THE CURSER UP (NE ROW
BY SUBTRACTING 1 TO THE CURSER ROW RAM LOCATION THEN CALL LOAD CURSER */

UP$CURSER 3

IF {THE CURSER IS NOT ON THE FIRST LINE OF THE CRT DISPLAY} THEN
DO;

MOVE THE CURSER UP_ ONE LINE}

TURN ON THE CURSER}

CALL LOADSCURSER;

IF {THE DISPLAYSRAMSPOINTER IS IN THE FIRST LINE OF DISPLAY MEMORY} THEN
MOVE THE DISPLAYSRAMSPOINTER TO THE LAST LINE OF DISPLAY MEMORY}

{MJVE THE DISPLAYSRAMSPOINTER UP ONE LINE IN DISPLAY MEMORY}

IF {THE FIRST LOCATION OF THE NEW LINE OONTAINS AN END-OF-LINE CHARACTER} THEN
CALL FILL;

END;
END UP$CURSER;

/* PROCEDURE DOWN CURSER: THIS PROCEDURE MOVES THE CURSER DOWN ONE ROW
BY ADDING 1 TO THE CURSER ROW RAM LOCATION THEN CALL LOAD CURSER */

DOWNSCURSER:

IF {THE CURSER IS NOT ON THE LAST LINE OF THE CRT DISPLAY} THEN
DO;

TURN THE CURSER ON}

MOVE THE CURSER TO THE NEXT LINE}

CALL LOADSCURSER;

IF {THE DISPLAY$RAMSPOINTER IS NOT ON THE LAST LINE OF THE DISPLAY MEMORY} THEN
MOVE THE DISPLAY $RAMSPOINTER TO THE NEXT LINE IN THE DISPLAY MBDRY}

ELSE
{MOVE THE DISPLAY$RAMSPOINTER TO THE FIRST LINE IN THE DISPLAY MEMORY }

IF {’I‘HB FIRST CHARACTER IN THE NEW LINE IS AN END-OF-LINE GiARACl'ER} THEN
CALL FILL;
END;

END DOWN$CURSER;

34

| n . AP-223

/* PROCEDURE CARRIAGE$RETURN */
CARRIAGES$RETURN:

MOVE THE CURSER TO THE BEGINNING OF THE CURRENT LINE OF THE CRT DISPLAY
TURN THE CURSER ON}
CALL LOADSCURSER;

[mva THE DISPLAY$RAMSPOINTER TO THE BEGINNING OF THE CURRENT LINE IN mf DISPLAY MEMORY}

END CARRIAGESRETURN;

/* PROCEDURE LOAD CURSER: LOAD CURSER TAKES THE VALUE HELD IN RAM AND
LOADS IT INTO THE 8276 CURSER REGISTER. */

LOADSCURSER:
PROCETURE;
IF {'ms CURSER 1S ON} THEN

MOVE THE CURSER BACK ONTO THE CRT DISPLAY}
DISABLE BUFFER INTERRUFT}
WRITE TO THE 8276 CURSER REGISTERS THE X,Y LOCATIONS}
ENABLE BUFFER INTERRUPT}

END LOADSCURSER;

/* PROCEDURE CHECK BAUD RATE: THIS PROCEDURE READS THE THREE PORT PINS ON Pl AND SETS UP
THE SERIAL PORT FOR THE SPECIFIED BAUD RATE */

CHECK $BAUDSRATE :

SET TIMER 1 TO MODE 1 AND AUTO RELOAD}

TURN TIMER ON

ENABLE SERIAL PORT INTERRUPT}

READ BAUD RATE SWITCHES AND SET UP RELOAD VALUE}

; /* 00 IS NOT ALLOWED */
TH1=040H; /* 150 BAUD */

TH1=0AOH; /* 300 BAUD */
TH1=0D0H; /* 600 BAUD */
TH1=0E8H; /* 1200 BAUD */
TH1=0F4H; /* 2400 BAUD */
TH1=0FAH; /* 4800 BAUD */
TH1=0FDH; /* 9600 BAUD */

END CHECK SBAUDSRATE ;

35

AP-223 In .

/* PROCEDURE READER: THIS PROCEDURE IS WRITTEN IS ASSEMBLY LANGUAGE. THE
EXTERNAL PROCEDURE SCANS THE 8 LINES OF THE KEYBOARD AND READS THE RETURN
LINES. THE STATUS OF THE 8 RETURN LINES ARE THEN STORED IN INTERNAL
MEMORY ARRAY CALLED CURRENTSKEY */

READER:

{INITIALIZE FLAGS "KEY0"=0, "SAME"=1, 0 COUNTER=0}

IF {THE KEY PRESSED WAS NOT THE SAME KEY THAT WAS PRESSED THE LAST TIME
THE KEYBOARD WAS READ} THEN
(CLEAR "SAME™ AND WRITE NEW SCAN RESULT TO CURRENTSKEY RAM ARRAY)
END;

F }ALL 8 SCANS DIDN'T HAVE A KEY PRESSED (0 COUNTER=8)} THEN
SET KEYO, AND CLEAR SAME}

END READER;

/* PROCEDURE BLANK: THIS EXTERNAL PROCEDURE FILLS LINEQ WITH SPACES (20H ASCII)
DURING THE SCROLL ROUTINES.*/

BLANK :

DO I= {BEGINNING OF THE CRT DISPLAY (LINEO)} TO {LINEO + S50H}
{DISPLAY RAM POINTED TO BY "I" = SPACE (ASCII 20H)}

NEXT I
END;
END BLANK;
/* PROCEDURE BLINE: THIS EXTERNAL PROCEDURE BLANKS FROM THE CURSER TO THE END OF
THE DISPLAY LINE */
BLINE:

DO I= {CURRENT CURSER POSITION ON CRT DISPLAY} TO {END OF ROW}
{DISPLAY RAM POINTED TO BY "I" = SPACE (ASCII 20H)
NEXT I

END;

END BLINE;

/* PROCEDURE FILL: THIS EXTERNAL PROCEDURE FILLS A DISPLAY LINE WITH SPACES*/
FILL:

DO I= {BEGINNING OF THE LINE THAT THE CURSER IS ON} TO {END OF THE ROW}
DISPLAY RAM POINTED TO BY "I" = SPACE (ASCII 20H)}

36

intel ® AP-223

Appendix 7.9 Software Listings

PL/M-51 COMPILER

ISIS-IT PL/M-51 V1.1
COMPILER INVOKED BY: PIMS1 :F1:CRTPIM.SRC

SOPTIMIZE (1)
$NOINTVECTOR
$ROM (LARGE)

KRR RRE A IR R KRR R AR RN R KA KRR AR KR AR AR R KRR RAN AR AR R AR AR KRR AR AR R AR R A kXX
AR R AR AR R AR AR RN R AR AR AR RN R AR R RRARAR RN AR KA NKAR AR AR AR R AR AR ANk hkhkk

Ahkhkkhkkk hkkkkkhkk
ikl PLMS1 SOFTWARE FOR THE 8051 TERMINAL blddddidd
khkkhkkkk mmm APPLI(M‘I(}] NOTE khkhkkhkk
*kkkkhkh hkRkkkkkk

AR RRRE R AR AR AR AR AR AR KR AR AR R R R AR AR AR AR KRR AR R AR AR AR R AR AR R AR AR AR R ARk R AR AR AR AL
KA KARR AR AR AR RA AR KRR AR AR R AR AR AR R AR AR AR AARR R ARRRRR AR R AN AR ARk ARk k

MEMORY MAP ASSOCIATED WITH PERIPHERAL DEVICES (USING MOVX):

8051 WR AND READ DISPLAY RAM- ADDRESS 1000H TO 17CFH
8051 WR DISPLAY RAM TO THE 8276- ADDRESS 1800H TO 1FCFH

8276 OOMMAND ADDRESS- ADDRESS 0001H
8276 PARAMETER ADDRESS- ADDRESS 0000H
8276 STATUS REGISTER- ADDRESS 00014

MEMORY MAP FOR READING THE KEYBOARD (USING MOVC):
KEYBOARD ADDRESS~ ADDRESS 10FFH TO 17FFH

THE FOLLOWING SOFTWARE SWITCHES MUST BE SET AOCORDING TO THE TYPE OF
KEYBOARD THAT IS GOING TO BE USED.

SW1- SET WHEN USING AN UNDECODED KEYBOARD IS TO BE USED
SW2- SET WHEN USING A DECODED OR A SERIAL TYPE OF KEYBOARD

PROGRAMS TO LINK TOGETHER FOR WORKING SYSTEMS:

UNDECODED KEYBOARD- CRI'PLM.OBJ,CRTASM.OBJ ,KEYBD.OBJ,PLM51.LIB
DECODED KEYBOARD-CRTPIM.OBJ ,CRIASM.ORJ,DEOODE.ORY,PLM51.LIB
DETACHED KEYBOARD-CRTPIM.OBJ,CRTASM.OBJ,DETACH.OBJ,PLM51.LIB

*/

$SET (SWl)

$RESET (SW2)

37

AP-223

PL/M-51 OOMPILER

38

13

e e e e e

SEJECT

CRT$OONTROLLER:
DO;

/itﬂttﬁtit*ﬁi*iiti DECLARE LITERALS *i*i*iii**tﬁ**ik'ttiitii/

DECLARE LLC LITERALLY ‘LOCALSLINE$CHANGE';
DECLARE REG LITERALLY ‘REGISTER’;
DECLARE CURRENTSKEY LITERALLY °'CURKEY';
DECLARE SERIAL$SERVICE LITERALLY 'SERBUF’;
DECLARE DISPLAY$RAMSPOINTER LITERALIY ‘POINT';
DECLARE SERIALSINT LITERALLY °‘SERINT';
DECLARE TRANSMITS$INT LITERALLY ‘TRNINT';
DECLARE CURSER$SCOLUMN LITERALLY ‘CURSER';
DBECLARE LAST$KEY LITERALLY ‘LSTKEY';
DECLARE CURSER$SCOUNT LITERALLY °‘COUNT';
DECLARE SCANSINT LITERALLY °SCAN';

/***kxxxkx REGISTER DBCLARATIONS FOR THE BOSL A*kkAAkkkkhhkkhkk /

/*kxkxRX** BYTE REGISTERS *****as/

DECLARE
PO BYTE AT(80H) REG,
P1 BYTE AT(90H) REG,
P2 BYTE AT(OAOH) REG,
P3 BYTE AT(0BOH) REG,
PSW BYTE AT (ODOH) REG,
AOC BYTE AT (OEOH) REG,
B BYTE AT(OFOH) REG,
SP HYTE AT(81H) REG,
DFL, BYTE AT(82H) REG,
DPH BYTE AT(83H) RBG,
POON BYTE AT(87H) REG,
TOON BYTE AT(88H) REG,
T™OD BYTE AT(89H) REG,
TLO BYTE AT(8AH) REG,
TL1 BYTE AT(8BH) REG,
THO BYTE AT(8CH) REG,
TH1 BYTE AT(8DH) REG,
IE BYTE AT(OA8H) REG,
IP BYTE AT(0B8H) REG,
SOON BYTE AT(98H) REG,
SBUF BYTE AT (99H) H

intgl.

PL/M-51 COMPILER

14

$EJECT

/**kxkkxkx BIT REGISTERS ***kkkkk /

CRTCONTROLLER

JRFKRRRRKK DG BITS *ArkkAkk/

DECLARE

.4
AC
FO
RS1
RSO
ov

P

JRERRKKRRR

TFl
TR1
TFO
TRO
IELl
ITl
IEO
IT0

/*i*i*tt*t

EA
ES
ET1
EX1
ETO
EX0

/*li*ﬁ*iﬁﬁ

Ps

PTl
PX1
Pro
PX0

/ii*ittiii

RD
WR
Tl
TO
INT1
INTO
TXD
RXD

/ititﬁ*i*i

M0
Ml
M2
REN
TB8
RBS
TI

RI

BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

AT (OD7H) REG,
AT (OD6H) REG,
AT (ODSH) REG,
AT (OD4H) REG,
AT (OD3H) REG,
AT(0D2H) REG,
AT (ODOH) REG,

TCON BITS ***ititt/
AT(8FH) REG,
AT (8EH) REG,
AT (8DH) REG,
AT(8CH) REG,
AT (8BH) REG,
AT (8AH) REG,
AT (89H) REG,
AT(88H) REG,

IE BITS **k#kkkx/
AT (OAFH) REG,
AT (OACH) REG,
AT (ORBH) REG,
AT (QAAH) REG,
AT (0A9H) REG,
AT (OASH) REG,

IP BITS *kk#ktk/
AT (OBCH) REG,
AT (OBBH) REG,
AT (OBAH) REG,
AT (0B9H) REG,
AT (OB8H) REG,

P3 BITS *kkxxisx/
AT (0OB7H) REG,
AT (OB6H) REG,
AT (0BSH) REG,
AT (0B4H) REG,
AT (0B3H) REG,
AT (0B2H) REG,
AT (OB1H) REG,
AT(0BOH) REG,

SCON BITS *rakais/
AT (9FH) REG,
AT (9EH) REG,
AT (9DH) RBG,
AT (9CH) REG,
AT (9BH) REG,
AT (9AH) REG,
AT(99H) REG,
AT (98H) REG;

AP-223

39

AP-223 In ®

PL/M-51 COMPILER CRTCONTROLLER

SEJECT
SIF SWl
/ittit*k*ﬂtt**t*ﬂ DEEIARE mNs'rMst*t**t*ﬁ*!t***k*ﬁ*ﬂ****/

15 1 DECLARE LOWSSCAN (16) STRUCTURE
(KEY (8) BYTE) CONSTANT

(*890-',5CH, SEH, 08H,00H,
/* SCAN 0, SHIFT KEY =0; 8,9,0,-,\,”, BACK SPACE */

‘uiop',SBH, '@ ,0AH, 7FH,
/* SCAN 1, SHIFT =0; u,i,o,p,[,@, LINE FEED, DELETE */

'jkl;:*,00H,0DH,'7",
/* SCAN 2, SHIFT =0; j,k,l,;,:, RETURN, 7 */

‘m*,2CH,*.',00H,"/" ,00H,00H, 00H,
/* SCAN 3, SHIFT =0; m,COMMA,.,/ */

00H, 'azxcvbn',
/* SCAN 4, SHIFT =0; a,z,x,c,v,b,n */

'y',00H,00H,"' dfgh',
/* SCAN S5, SHIFT =0; y, SPACE, 4,f,g,h */

09H, ‘qwsert' ,00H,
/* SCAN 6, SHIFT =0; TAB,q,w,S,e,r,t */

1BH, '123456' ,00H,
/* SCAN 7, SHIFT =0;ESC,1,2,3,4,5,6 */

28H,29H,00H, *=' , 7CH , TEH , 08H, 0CH,
/% SCAN' 0, SHIFT =1 (,),=,],~, BACK SPACE */

‘'UIOP',00H,00H,0AH, 7FH,
/* SCAN 1, SHIFT =1; U,I,O0,P, LINE FEED, DELETE */

'JKL+** ,00H, 0DH, 27H,
/* SCAN 2, SHIFT =1; J,K,L,+,*, RETURN, ' */

M<> ,00H, 3FH, 00H, 00H, 00H,
/* SCAN 3, SHIFT =1; M,<,>,? */

O0H, 'AZXCVEN' ,
/* SCAN 4, SHIFT =1; A,Z,X,,C,V,B,N */

'Y',00H,00H,* DFGH',
/* SCAN 5, SHIFT =1; Y, SPACE, D,F,G,H */

09H, *OWSERT* , 00H,
/* SCAN 6, SHIFT =1; TAB, Q,W,S,E,R,T */

1BH, "' {"#3%&',00H);

/* SCAN 7, SHIFT =1;ESC,!,",#,$,%,& */
SENDIF

40

intgl.

PL/M-51 OOMPILER CRTOONTROLLER

SEJECT
JERRKARAR KK AR S AN **DECIARE VARIABLESH***** kA Xk kk hkk kkhkkk /

16 1 DECLARE
SIF SW2

INPUT BIT AT(OB4H) REG,

SENDIF

SIF SWi
CAPSLOCK BIT AT(095H) RBG,
SHIFTSKEY BIT AT(096H) REG,
CONTROLSKEY BIT AT(097H) REG,

SENDIF
LOCALSLINE BIT AT(0BSH) REG,
CLEARSTOS$SEND BIT AT(093H) REG,
DATASTERMINALSREADY BIT AT (094H) ;

17 1 DECLARE (

$IF SWl

NEWSKEY ,
TRANSMIT$TOGGLE,,
CURSERSON,

SERIALSINT,

SCANSINT,

TRANSMITSINT,

ESCSEQ,
VALIDSRECEPTION,

Lc,

ENSP) BIT PUBLIC;

AP-223

41

AP-223

PL/M~-51 COMPILER CRITCONTROLLER

SEJECT

18 1 DECLARE (

RECEIVE) BYTE PUBLIC;
$IF SWl
19 1 DECLARE LASTSKEY (8) BYTE PUBLIC;
SENDIF
SIF Sw2
DECLARE LASTSKEY (2) BYTE PUBLIC;
SENDIF

20 1 DECLARE SERIAL(16) BYTE PUBLIC;

21 1 DBECLARE DISPLAYS$RAM(7CFH) BYTE AT (1000H) AUXILIARY;

22 1 DECLARE

PARAMETERSADDRESS BYTE AT(0000H) AUXILIARY,
COMMANDSADDRESS BTE AT(0001H) AUXILIARY;

23 1 DECLARE (
DISPLAY SRAMSPOINTER,
RASTER,
LINEO,
L) WORD PUBLIC;

42

in‘tel . AP-223

PL/M-51 COMPILER CRICONTROLLER

24
25

26
27

28
29

30

31

Ll S

SEJECT

/* PROCEDURE READER: THIS PROCEDURE IS WRITTEN IS ASSEMBLY LANGUAGE. THE
EXTERNAL PROCEDURE SCANS THE 8 LINES OF THE KEYBOARD AND READS THE RETURN
LINES. THE STATUS OF THE 8 RETURN LINES ARE THEN STORED IN INTERNAL
MEMORY ARRAY CALLED CURRENTSKEY. THE PROCEEDURE CONTROLS 2 STATUS FLAGS;

KEYO AND SAME. KEYO IS SET IF ALL 8 SCANS READ NO KEY WAS PRESSED.
IF ALL 8 SCANS ARE THE SAME AS THE LAST READING OF THE KEYBOARD, THEN
SAME IS SET. */

READER: PROCEDURE EXTERNAL;
END READER;

/* PROCEDURE BLANK: THIS EXTERNAL PROCEDURE FILLS LINEO SCAN WITH SPACES (20H ASCII)
DURING THE SCROLL ROUTINES.*/

BLANK : PROCEDURE EXTERNAL;
END BLANK;

/* PROCEDURE BLINE: THIS EXTERNAL PROCEDURE BLANKS FROM THE CURSER TO THE END OF
THE DISPLAY LINE */

BLINE: PROCEDURE EXTERNAL;
END BLINE;
/* PROCEDURE FILL: THIS EXTERNAL PROCEDURE FILLS THE CURSER LINE

WITH SPACES*/

FILL:
PROCEDURE EXTERNAL;
END FILL;

43

AP-223 |n .

PL/M-51 COMPILER CRICONTROLLER

SEJECT

/* PROCEDURE CHECK BAUD RATE: THIS PROCEDURE READS THE THREE PORT PINS ON Pl AND SETS UP
THE SERIAL PORT FOR THE SPECIFIED BAUD RATE */

32 1 CHECK $BAUDSRATE :
PROCEDURE;
33 2 SOON=70H; /* MODE 1
ENABLE RECEPTION*/
4 2 TMOD=TMOD OR 20H; /* TIMER 1 AUTO RELOAD */
35 2 TR1=1; /* TIMER 1 ON */
36 2 ES=1; /* ENABLE SERIAL INTERRUPT*/
37 2 ENSP=1; /* SERIAL INTERRUPT MASK FLAG */
8 3 DO CASE (Pl AND O7H);
39 3 ; /* 00 IS NOT ALLOWED */
0 3 TH1=040H; /* 150 BAUD */
4 3 TH1=0A0H; /* 300 BAUD */
42 3 TH1=0DOH; /* 600 BAUD */
43 3 TH1=QESH; /* 1200 BAUD */
4 3 TH1=0F4H; /* 2400 BAUD */
45 3 TH1=0FAH; /* 4800 BAUD */
46 3 TH1=0FDH; /* 9600 BAUD */
47 3 END;
1

END CHECKSBAUDSRATE;

/* PROCEDURE LOAD CURSER: LOAD CURSER TAKES THE VALUE HELD IN RAM AND
LOADS IT INTO THE 8276 CURSER REGISTERS. */

49 1 LOADSCURSER:
PROCEDURE;
50 2 IF CURSER$ON=1 THEN
51 2 CURSER$OOL=CURSER$OCOLUMN;
52 2 EX1=0; /* DISABLE BUFFER INTERRUPT */
53 2 COMMANDSADDRESS=80H; /* INITIALIZE CURSER COMMAND */
54 2 PARPMETERSADDRESS=CURSERSOOL;
55 2 PARAMETERSADDRESS=CURSERSROW;
56 2 EX1=1; /* ENABLE BUFFER INTERRUFT */
57 1 END LOADSCURSER;
/* PROCEDURE CARRIAGESRETURN */
58 1 CARRTAGE$RETURN:
PROCEDURE;
59 2 DISPLAY SRAMSPOINTER=DI SPLAY RAM POINTER-CURSERSCOLUMN;
60 2 CURSERSCOLUMN=0;
61 2 CURSER$ON=1;
62 2 CALL LOADSCURSER;
63 1 END CARRIAGES$RETURN;

44

intgl.

PL/M-51 COMPILER CRTCONTROLLER

-

WWWWwwWwwWwwN = HFwabbbdWW WWWLWWwWwWwN

W s e W W

SEJECT

/* PROCEDURE DOWN CURSER: THIS PROCEDURE MOVES THE CURSER DOWN ONE ROW
BY ADDING 1 TO THE CURSER ROW RAM LOCATION THEN CALL LOAD CURSER */

DOWNSCURSER:
PROCEDURE;
IF CURSERSROW < 18H THEN
Do;
CURSERSON=1;
CURSERSROW=CURSERSROW + 1;
CALL LOADSCURSER;
IF DISPLAY SRAMSPOINTER < 780H THEN
DISPLAY $RAMSPOINTER=DI SPLAY $SRAMSPOINTER +50H;
ELSE
DISPLAY $RAMSPOINTER= (DI SPLAY $RAMSPOINTER-780H) ;
L=DISPLAY $RAMSPOINTER-CURSERSCOLUMN ;

IF DISPLAY$RAM(L)=0F1H THEN /* LOOK FOR END OF*/

DO; /* LINE CHARACTER */
CALL FILL; /*IF TRUE FILL LINE*/
DISPLAY $RAM (L) =20H; /*WITH SPACES */

END;

END;
END DOWNSCURSER;

/* PROCEDURE UP CURSER: THIS PROCEDURE MOVES THE CURSER UP ONE ROW
BY SUBTRACTING 1 TO THE CURSER ROW RAM LOCATION THEN CALL LOAD CURSER */

UP$SCURSER:

PROCEDURE;

IF CURSERSROW >0 THEN
Do;

CALL LOADS$CURSER;
IF DISPLAY RAMPOINTER<SOH THEN

DISPLAY $SRAMSPOINTER=DI SPLAY SRAMSPOINTER+ 780H;
ELSE

DISPLAY RAMPOINTER=DI SPLAY SRAMSPOINTER ~ 50H;
L=DISPLAY RAMPOINTER-CURSERSCOLUMN;

IF DISPLAY$RAM(L)=0F1H THEN /* LOOK FOR END OF LINE*/
DO; /* CHARACTER */
CALL FILL; /* IF TRUE FILL WITH */
DISPLAY $RAM (L) =20H; /* SPACES */
END;
END;

END UP$CURSER;

AP-223

45

AP-223

PL/M-51 COMPILER CRTOONTROLLER

98

99
100
101
102
103
104
105
106

107

108
109
110
111
112
113
114
115

46

[

HFWwwWwWwiwwwN

-

FwwwwwwNn

SEJECT

/* PROCEDURE RIGHT CURSER: THIS PROCEDURE MOVES THE CURSER RIGHT ONE COLUMN
BY ADDING 1 TO THE CURSER COLUMN RAM LOCATION THEN CALL LOAD CURSER */

IF CURSERSCOLUMN < 4FH THEN
DO;
CURSERSCOLUMN=CURSERSCOLUMN + 1;
CURSER$ON=1;
CALL LOADSCURSER;
DISPLAY $RAMSPOINTER=DI SPLAY $RAMSPOINTER +1;
END;
END RIGHT$CURSER;

/* PROCEDURE LEFT CURSER: THIS PROCEDURE MOVES THE CURSER LEFT ONE COLUMN
BY SUBTRACTING 1 TO THE CURSER COLIMN RAM LOCATION THEN CALL LOAD CURSER */

LEFT$CURSER:
PROCEDURE;
IF CURSERSCOLUMN >0 THEN
DO;
CURSERSCOLUMN=CURSERSCOLIMN - 1;
CURSERSON=1;
CALL LOAD$CURSER;
DISPLAY $RAMSPOINTER=DI SPLAY $RAMSPOINTER ~1;
END;
END LEFT$CURSER;

intgl.

PL/M-51 COMPILER CRTOONTROLLER

117
118
119
120
121
122
123
124
125
126

127
128

129
130
131
132
133
134

135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153

5%
1tg

WWWWWNRNRNDWW -

N W

W

NN WS

SRR WWWNWWW WD

SEJECT

/* PROCEDURE MOVSCURSER: THIS PROCEDURE IS USED IN CONJUNCTION WITH WORDSTAR

IF A ESC F IS RECEIVED FROM THE HOST COMPUTER, THE TERMINAL CONTROLLER WILL
READ THE NEXT TWO BYTE TO DETERMINE WHERE TO MOVE THE CURSER. THE FIRST BYTE

IS THE ROW INFORMATION FOLLOWED BY THE COLUMN INFORMATION */

MOVSCURSER:

PROCEDURE;

DO WHILE FIFO<4; /* WAIT UNTILL THE MOVSCURSER PARAMETERS*/
END; /* ARE RECEIVED INTO THE FIFO */
TEMP=CURSERSROW;

CURSERSROW=SERIAL (2) ;
IF CURSERSROW>TEMP THEN
DO;
L=DISPLAY $RAMSPOINTER+ ((QCURSERSROW-TEMP) * 50H) ;
IF L>7CFH THEN
DISPLAY $RAMSPOINTER=L-7D0H;

/* IF OUT OF RAM RANGE */
/* RAP AROUND TO BEGINNING */

ELSE /* OF RAM */

DISPLAY $RAMSPOINTER=L;
END;
ELSE
DO;
IF CURSERSROW<TEMP THEN
DO;
L= (TEMP-CURSERSROW) * 50H;
IF DISPLAY $SRAM$POINTER<L THEN

ELSE
DISPLAY $RAMS$POINTER=DI SPLAY $RAMSPOINTER-L;

/* IF OUT OF RAM RANGE*/
DISPLAY $RAMSPOINTER= (7D0iH-~ (L-DISPLAY SRAMSPOINTER)) ; /* RAP AROUND TO END OF RAM*/

DISPLAY $RAMSPOINTER=DISPLAY RAMPOINTER+ (CURSERSCOLUMN-TEMP) ;

ELSE

DISPLAY RAMPOINTER=DI SPLAY $RAMSPOINTER- (TEMP-CURSERSCOLUMN) ;

i

CALL LOADSCURSER;
L=DISPLAY RAMPOINTER-CURSERSCOLUMN;
IF DISPLAYS$RAM (L)=0F1H THEN
DO;
CALL FILL; /*
DISPLAY $RAM (L) =20H;
END;
ES=0;
DO I=2 TO FIFO-2;
SERIAL (I)=SERIAL (I+2);
END;
FIFO=FIFO-2;
ES=ENSP;
END MOV$CURSER;

/* LOGK FOR END FO LINE CHARACTER*/

IF TRUE FILL WITH SPACES */

AP-223

47

AP-223

PL/M-51 OOMPILER CRTOONTROLLER

157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173

174
175
176
177
178
179

48

—

HFWwabooabwbbbdboawwNN

-

RN

SEJECT

/* PROCEDURE ERASE FROM CURSER TO END OF SCREEN: */

ERASESFROMSCURSERSTOSENDS$OF $SCREEN :

PROCEDURE;
CALL BLINE; /* ERASE CURRENT LINE */
IF CURSERSROW < 18H THEN
DO;
L=DISPLAY $ RAM$POINTER-CURSERSCOLUMN+ 50H; /* GET NEXT LINE */
DO WHILE (L < 7DOH) AND (L <> (LINEO AND 7FFH));
DISPLAY SRAM (L) =0F 1H; /* ERASE UNTIL LINEO OR */
L=L+50H; /* END OF DISPLAY RAM*/
END;
L=0;
DO WHILE L <> (LINEOQ AND 7FFH); /* ERASE UNTIL LINEQ */
DISPLAY $RAM (L) =0F 1H;
L=L+50H;
END;
END

END ERASESFROMSCURSERSTOSENDSOFSSCREEN;

/* PROCEDURE HOME: THIS PROCEDURE MOVES THE CURSER TO THE 0,0 POSITION */

HOME :

PROCEDURE;

CURSERSROW=00;

QURSERSCOLUMN=00;

CURSERSON=1;

CALL LOAD$CURSER;

DISPLAY $RAMSPOINTER= (LINEO AND 7FFH);
END HOME;

intgl.

PL/M-51 COMPILER CRTOONTROLLER

180

181
182
183

184

185
186
187
188
189

190
191

192

193
194
195

196
197
198
199
200
201
202

203
204
205
206
207
208
209

LN

[N N NN

Ll

NN

DN WWWW

HWwwwWwwihon

SEJECT

/* PROCEDURE CLEAR SCREEN */

CLEARSSCREEN:

PROCEDURE;

CALL HQOME;

CALL ERASES$FRCMSCURSERSTOSENDSOF $SCREEN;
END CLEAR$SCREEN;

/* PROCEDURE SCROLL */

SCROLL:
PROCEDURE;
CALL BLANK;

EX0=0; /* DISABLE VERTICAL REFRESH INTERRUPT */

IF LINEO= 1F80H THEN
LINEO= 180CH;
ELSE
LINEO= LINEO+50H;

EX0=1; /* ENABLE VERTICAL REFRESH INTERRUPT */

END SCROLL;

/* PROCEDURE LINESFEED */

LINESFEED:

PROCEDURE;

1IF CURSERSROW=18H THEN
CALL SCROLL;

IF DISPLAY$RAMSPOINTER >77FH THEN
DISPLAY $RAMSPOINTER=DI SPLAY $RAMSPOINTER-780H;
ELSE
DISPLAY $RAMSPOINTER=DI SPLAY $RAMSPOINTER+ 50H;
L=DISPLAY $RAMS POINTER-CURSERSCOLUMN;
IF DISPLAY$RAM(L)=0F1H THEN
DO;
CALL FILL;
DISPLAY$RAM (L)=20H;
END;
END LINESFEED;

/* LOCK FOR END OF LINE CHARACTER*/

/* IF TRUE FILL WITH SPACES */

AP-223

49

AP-223 |n .

PL/M-51 OOMPILER CRTOONTROLLER

$EJECT

/* PROCEDURE DISPLAY: THIS PROCEDURE WILL TAKE THE BYTE IN RAM LABELED
RECEIVE AND FUT IT INTO THE DISPLAY RAM. */

210 1 DISPLAY :
PROCEDURE;
211 2 DISPLAY $RAM (DISPLAY $RAMSPOINTER) =RECEIVE ;
212 2 IF DISPLAY SRAMSPOINTER=7CFH THEN /* IF END OF RAM */
213 2 DISPLAY RAMPOINTER=000H; /* RAP AROUND TO BEGINNING */
214 2 ELSE
DISPLAY RAM POINTER=DI SPLAY SRAMSPOINTER+ 1 ;
215 2 IF CURSERSCOLUMN=4FH THEN
216 3 DO;
217 3 =00H;
218 3 L=DISPLAY $RAMSPOINTER;
219 3 IF DISPLAYS$RAM(L)=0F1H THEN
220 4 DO;
221 4 CALL FILL;
222 4 DISPLAY $RAM (L) =20H;
223 4 END;
224 3 IF CURSER$ROW=18H THEN
225 3 CALL SCROLL;
226 3 ELSE
CQURSER$ ROW=CURSERSROW+1;
227 3 END;
228 2 ELSE
229 WE&R?IM@WWH
2 =1; ‘
230 2 CALL LOADCURSER;
231 1 END DISPLAY;

50

intgl.

PL/M-51 COMPILER CRTOONTROLLER

232
233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

[N}

WEBUUMUOUUOVUURNOUBWWWWWOWNRWWWNWWWWEEBRBRWWWNWLWWWWWN

$EJBECT

/* PROCEDURE DECIPHER: THIS PROCEDURE DECODES THE HOST COMPUTER'S MESSAGES AND DETERMINES
WHETHER IT IS A DISPLAYABLE CHARACTER, QONTROL SBEQUENCE, OR AN ESCAPE SEQUENCE

THE PROCEDURE THEN ACTS AOCORDINGLY */

DECIPHER:
PROCEIURE;
STARTSDECIPHER:
VALID$RECEPTION=0;
1=0;

DO WHILE (I<FIFO) AND (SERIAL(I)>1FH) AND (SERIAL(I)<7FH);

RECEIVE=SERIAL(I);
CALL DISPLAY;
I=I+1;

END;

IF I>0 THEN

Do;

ES=0; /* DISABLE SERIAL INTERRUPT WHILE MOVING FIFO */

K=FIFO-I;

DO J=0 TO K;
SERIAL (J)=SERIAL (1) ;
I=I+1;

END;

FIFOX;

/* MOVE FIFO */

ES=ENSP; /* ENABLE SERIAL INTERRUPT */

VALIDSRECEPTION=1;
END;
IF FIFO=0 THEN
Do;
SERIALSINT=0;
GOTO END$SDECIPHER;
END;
IF (SERIAL(0)=1BH) THEN
Do;
IF (ESC$SEQ=1) AND (FIFO<2) THEN
GOTO END$DBCIPHER;
K=(SERIAL (1) AND S5FH)-40H;
IF (K >00H) AND (K<OCH) THEN
DO;
DO CASE K;

i
CALL UP$CURSER;
CALL DOWNSCURSER;
CALL RIGHT$CURSER;
CALL LEFT$CURSER;
CALL CLEAR$SCREEN;
CALL MOVSCURSER;

('ZALL HOME;
CALL ERASESFROM$CURSERSTOSENDSOFSSCREEN;

CALL BLINE;
END;

/i
/ﬂ

ESC H

ESC J
ESC K

*/
*/
*/
*/
*/
*/

*/

*/
*/

/* DISABLE SERIAL INTERRUPTS WHILE MOVING FIFO */

AP-223

51

AP-223 In o

PL/M-51 COMPILER CRTOONTROLLER

280 4 DO I=0 TO (FIFO-2);

281 4 SERIAL (I)=SERIAL (I+2); /* MOVE FIFO */

282 4 END;

283 3 FIFO=FIFO-2;

284 3 ES=ENSP; /* ENABLE SERIAL INTERRUPTS */
285 3 VALID$RECEPTION=1;

286 3 IF FIFO=0 THEN

287 4 DO;

288 4 SERIALSINT=0;

289 4 GOTO ENDSDECIPHER;

290 4 END;

291 3 END;

%9% 2 IF (SERIAL(0)> 07H) AND (SERIAL{(0)<OEH) THEN

9 3 ;

294 4 DO CASE (SERIAL(0) -08H);

295 4 CALL LEFT$CURSER; /* CTL H */

296 4 i

297 4 CALL LINESFEED; /* CIL J */

298 4 i

299 4 CALI, CLEARSSCREEN; /* CIL L */

300 4 CALL CARRIAGESRETURN; /* CTL M */

301 4 END;

302 3 ES=0; /* DISABLE SERIAL INTERRUPTS WHILE MOVING FIFO */
303 4 DO I=0 TO (FIFO-1);

304 4 SERIAL (I)=SERIAL (I+1); /* MOVE FIFO */
305 4 END;

306 3 FIFO=FIFO-1;

307 3 ES=ENSP; /* ENABLE SERIAL INTERRUPTS */
308 3 VALIDS$RECEPTION=1;

309 3 END;

310 2 IF VALID$SRECEPTION=0 THEN

311 3 DO;

312 3 ES=0;

313 4 DO I=0 TO (FIFO-1); /* IF CHARACTER IS UNRBOOGNIZED THEN */
314 4 SERIAL (I)=SERIAL (1+1); /* TRASH IT */

315 4 END;

316 3 FIFO=FIFO-1;

317 3 ES=ENSP;

318 3 END;

31 2 IF FIFO=0 THEN

320 2 SERIALSINT=0;

321 2 ENDSDECI PHER!

END DECIPHER;

52

intgl.

PL/M-51 COMPILER CRTCONTROLLER

322

323
324
325
326
327
328
329
330

331
332
333
334
335

336

337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
352
353
354

355
356
357
358
359
360
361
362

—

NWwwds s wN

W www

—

NWWWWwwW Wl

wWe nuuune & Ww

oW b b b B

SEJECT

/* PROCEDURE TRANSMIT- THIS PROCEDURE LOOKS AT THE CLEAR TO SEND PIN FOR AN ACTIVE
LOW SIGNAL. ONCE THE MAIN COMPUTER SIGNALS THE 8051 THE ASCII CHARACTER IS PUT

INTO THE SERIAL PORT.*/

TRANSMIT :
PROCEDURE;
IF LOCALSLINE =1 THEN
DO;
DO WHILE (CLEAR$TOSSEND=1) OR (TRANSMITSINT=0);
SBUF=ASCIISKEY;
TRANSMITSINT=0;
END;
ELSE
DO;
SERIAL (FIFO) =ASCIISKEY ;
FIFO=FIFO+1;
SERIALSINT=1;
END;
END TRANSMIT;

/* PROCEDURE AUTOSREPFAT: THIS PROCEDURE WILL PERFORM AN AUTO REPEAT FUNCTION

AFTER A FIXED DELAY PERIOD */

AUTOSREPEAT :

PROCEDURE;

IF NEWSKEY=1 THEN

DO;
TRANSMITSTOGGLE=0;
TRANSMITSCOUNT=0D0H;

CALL TRANSMIT; /* FIRST CHARACTER */
NEWSKEY=0;
END;
ELSE
DO;
IF TRANSMIT$OOUNT <> OOH THEN
DO;
TRANSMIT$OOUNT=TRANSMITSCOUNT+1;
IF TRANSMIT$SCOUNT=0FFH THEN /*DELAY BETWEEN FIRST CHARACTER AND THE SECOND */
DO;
CALL TRANSMIT; /*SBOOND CHARACTER */
TRANSMITS$SCOUNT=00;
END;
END;
ELSE
DO;
CURSERS(N=1;
mmnsirrﬂoécm=1m /* 2 VERT FRAMES BETWEEN 3RD TO NTH CHARACTER */
CALL TRANSMIT; /* 3RD THROUGH NTH CHARACTER */
TRANSMIT$TOGGLE= NOT TRANSMITSTOGGLE;
i
END;

AP-223

53

AP-223

PL/M-51 COMPILER CRTOONTROLLER

363

364
365

366
367
368
369
370
371
372
373
374
375
376
377

378
379
380

381
382

383
384

385
386
387
388

389

54

o e e

[SESEN]

e

$EJECT

JREXAKKRIRKARRRAKNRAR START MAIN PROGRAM ¥** A XAXARKAKXKKKARAKRKAKR |/
/* BEGIN BY PUTTING ASCII CODE FOR BLANK IN THE DISPLAY RAM;*/

INIT:

DC L=0 TO 7CFH;
DISPLAY $RAM (L) =20H;

END;

/* INITIALIZE POINTERS, RAM BITS, EIC. */

ESC$SEQ=0;
SCANSINT=0;
SERIALS$INT=0;
FIFO=0;

TCON=05H;

LINEO=1800H;

RASTER=1800H;

DISPLAY SRAMSPOINTER=0000H;
TRANSMITSINT=1;

$IF SWl

Do I=0 TO 7;
LASTSKEY (I)=00H;
END;

VALIDSKEY=0;
LAST$SHIFTSKEY =1;
LASTSCONTROLSKEY =1;
LAST$CAPSLOCK=1;
SENDIF

$IF SW2
RCVFLG=0;
SYNC=0;
BYFIN=0;
KBDINT=0;
ERROR=0;
$ENDIF

/* INITIALIZE THE 8276 */

COMMANDSADDRESS=00H; /* RESET THE 8276 */
PARAMETERSADDRESS=4FH; /* NORMAL ROWS, 80 CHARACTER/ROW */
PARAMETERSADDRESS=58H; /* 2 FOW COUNTS PER VERTICAL RETRACE
25 ROWS PER FRAME */
PARPMETERSADDRESS=89H; /* LINE 9 IS THE UNDERLINE POSITION
10 LINES PER ROW */
PARBMETERSADDRESS=0F9H; /* OFFSET LINE COUNTER, NON-TRANSPARENT FIELD ATTRIBUTE

intgl.

PL/M-51 COMPILER CRICONTROLLER

NON-BLINKING UNDERLINE CURSER, 20 CHARACTER COUNTS PER
HORIZONTAL RETRACE */

/* PRESET 8276 COUNTERS */

/* START DISPLAY */
/* ENABLE INTERRUPTS */

/* SET UP INTERRUPTS AND PRIORITIES */

/* SERIAL PORT HAS HIGHEST PRIORITY */
/* ENABLE 8051 EXTERNAL INTERRUPTS */

/* SERIAL PORT HAS HIGHEST PRIORITY */
/* ENABLE TIMERO INTERRUPT*/
/* TIMER 0 =EVENT COUNTER */

/* INITIALIZE OOUNTER TO FFFFH*/

/* PROCEDURE SCANNER: THIS PROCEDURE SCANS THE KEYBOARD AND DETERMINES IF A
SINGLE VALID KEY HAS BEEN PUSHED. IF TRUE THEN THE ASCII BEQUIVALENT
WILL BE TRANSMITTED TO THE HOST COMPUTER.*/

390 1 TEMP=COMMANDSADDRESS ;
391 1 CURSERSOOLUMN=00H;
392 1 CURSERSROW=00H;
393 1 CURSERSCOL=00H;
394 1 CALL LOADSCURSER;
395 1 TEMP=COMMANDS$ADDRESS ;
396 1 CQOMMANDSADDRESS=0ECH;
397 1 TEMP=COMMANDSADDRESS ;
398 1 OOMMANDSADDRESS=23H;
399 1 COCMMANDSADDRESS=0A0H;
400 1 ‘TEMP=COMMANDSADDRESS;

S$IF SWl
401 1 IP=10H;
402 1 IE=85H;

SENDIF

SIF SW2

IP=10H;

IE=87H;

TMOD=05H;

TLO=0FFH;

‘THO=0FFH;

TRO=1;

SENDIF
403 1 SCANNER:

EA=];
404 1 DATASTERMINALSREADY =0;
405 1 IF CURSERSOOUNT=1FH THEN
406 2 DO;
407 2 CURSERSON=NOT CURSERSON|
408 2 CURSERSOOUNT=00;
409 2 IF QURSERSON=0 THEN
410 2 =TFH;
411 2 CALL LOADSCURSER;
412 2 ;
413 1 IF LIC<>LOCAL$LINE THEN
414 2 DO;
415 2 IF LOCALSLINE=0 THEN
416 3 DO;
417 3 ENSP=0;
418 3 ES=0;
419 3 END;
420 2 ELSE

CALL CHECK $BAUDSRATE;

421 2 LIC=LOCALSLINE;
422 2 END;

$IF SWl
423 2 DO WHILE SCANSINT=0;
424 2 IF SERIALSINT=1 THEN
425 2 CALL DECIPHER;
426 2 END;

/* PROGRAMMABLE CURSER BLINK */

/* IF LOCAL/LINE HAS CHANGED STATUS */

/* WAIT UNITL VERTICAL RETRACE BEFORE */
/* SCANNING THE KEYBOARD*/

AP-223

55

AP-223

PL/M-51 QOMPILER CRTOONTROLLER

427
428

429
430

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

455
456
457

458
459
460

461
462
463
464
465
466
467
468

469
470
471
472
473
474
475
476
477
478
479

480
481
482
483
484

56

-

BN ONENORUINEBWE BBWEEBBEWWWN -

[R, NG

PO III [-)

(W RO NG N NE N RC R SN

NWS e

$EJECT

CALL READER;

IF VALIDSKEY =1 AND SAME=1 AND (LASTSSHIFTSKEY=SHIFTSKEY) AND
(LAST$CAPSLOCK=CAPSLOCK) AND (LAST$OCONTROLSKEY =CONTROLSKEY) THEN
CALL AUTOSREPEAT;

ELSE

DO;

IF KEY0=0 AND SAME=0 THEN
Do;
TEMP =0;
K=0;
DO WHILE LASTSKEY (K)=0;
K=K+1;
END;
TEMP=LASTSKEY (K) ;
DO I={K+1) TO 7;
TEMP=TEMP+LAST$KEY (I);
END;
IF TEMP=LASTS$KEY (K) THEN
Do;
J=0;
DO WHILE (TEMP AND OlH)=0;
TEMP=SHR (TEMP,1);
J=J+1;

IF CONTROLSKEY=0 THEN
ASCII$KEY = (LOWSSCAN (K) .KEY (J)) AND 1FH;
ELSE
DO;
IF SHIFTSKEY=0 THEN
ASCIISKEY =LOWSSCAN (K+08H) .KEY (J) ;
ELSE
DO;
ASCIISKEY =LOWSSCAN (K) .KEY (J);
IF (CAPSLOCK=0) AND (ASCIISKEY>60H) AND (ASCIISKEY<7BH) THEN
ASCIISKEY=ASCIIS$KEY-20H;
IF LIC=0 THEN
DO;
IF ASCIISKEY=1BH THEN
ESC$SEQ=1;
ELSE
ESC$SEQ=0;
END;
END;
END;
LAST$SHIFTSKEY =SHIFTSKEY ;
LASTS$CAPSLOCK =CAPSLOCK ;
LAST$CONTROLSKEY =OONTROLSKEY ;
VALIDSKEY=1;
NEWSKEY =1;
END;
END;
ELSE
DO;
VALIDSKEY =0;
NEWSKEY =0;

intgl.

PL/M-51 OOMPILER CRTOONTROLLER

SEJECT

SIF SW2

IF SERIAL$INT=1 THEN
CALL DECIPHER;

IF KBDINT =1 THEN

DO;
IF ERROR =0 THEN
DO;
ASCITSKEY =LSTSKEY (1) ;
NEWSKEY =1;
CALL AUTO$REPEAT;
KBDINT=0;
END;
ERROR=0;
KBDINT=0;
END;
SENDIF
485 1 GOTO SCANNER;
486 1 END;
MODULE INFORMATION: (STATIC+OVERLAYABLE)
QODE SIZE 08E6H 2278D
CONSTANT SIZE 0080H 128D

DIRECT VARIABLE SIZE
INDIRECT VARIABLE SIZE
BIT SIZE
BIT-ADDRESSABLE SIZE
AUXILIARY VARIABLE SIZE
MAXIMUM STACK SIZE
REGISTER-BANK (S) USED:
1056 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-51 COMPILATION

= 2DH+00H 45D+

= QOH+00H 0D+

= 10H+00H 16D+

= 00H+00H 0D+

= 0000H oD

= 000CH 120
0

8888

AP-223

57

AP-223 In .

MCS=S1 MALRL ASSEwBLER CrnTASH

151911 MLUS=S1 MALRL ASSEWBLER v2.1
QuJeCl MOUULE PLACEU N 3F1iCHTASM,UBY
ASSEMBLER IwVUKED Byt ASwS1 3FLILRIASM.SAC

LuC uBy LifNe SOQuRLE

PUSLIC BLAWK

PUslLIC BLINE

PUBLIC FlLe

EXTRi UATA (LINEU,NASTER,PUINT,SER1AL,FIFC,CURSER,LOUNT,L)
EXTRw o17 (SERINT,ESUSEQ,TRNINT,SCAN)

cowe

CSEG AT (u3R)

[T Sy
CO~NTULUELRECLCE~ND U E R

0003 6020 JIMP VEKRT JRESET RASTER TO LINcO AND SCAN KEYBUARD
H EXTRiv CCUE (UETALH)
3 C8EG AT(vBr)
3 LIMP VEIACH JNEEVEV IF DeCuDeD KEYBOARL 18 USEV
20
.moe 21 CSEG AT(013hm)
0U13 v0eaA 2e 3JIMP SUFFER JFILL 8276 Ruw BUFFER
23
sees 24 CSE6 AT(v2in)
0v2s 80¢D 25 SJMP SERBUF $STICK SERIAL INFORMATION INTO THE FIFU
26
swoe 2/ CSEG
28
002S LOuo 29 VEKT: PUSH PSn $PUSH REL USED By PLMS]
ov27 Coco 3v PUSK ACL
0y29 COVO 3 PUSH 00K
0v2g 850000 F 32 MoV RASTER,LINEO JREINITIALLIZE KRASTER TU LINEOG
Ovat &S00u0 F 33 MOV RASTER+1,LINEO*Y
0031 1891 34 MOV RO, H01H ;CLR 8¢76 INTERRUPT FLAG
0uls e 35 MOV X A,aRy
0Vu34 uSVO F 36 INC COUMT JINCK CUNSER CUUNT REGISTEKR
0036 Lavo F 37 SETH SCAN 3FOR DEBUGUNCE ROUTINE
0038 wovo 33 rOP uon ;POP REGISTENS
003a v0ED 39 POP ACL
0v3C vouo 40 POP -1
0vlc s2 4} RETF!
42
63
003+ COVO 44 BUrFERS FUSH 1) ;PUSH ALL KEu uSeD BY PLMSI COUE
O0v4l CO0c0 45 PUSH ACL
oy4s coge2 4o PUSK UFL
0vdy Clo3 47 PUSkE vPn
0vd47 11FA [T} ACALL UNA 3FILL 8276 RUW BUFPENR
0vd9 v 03 4y roe uen ;PUP REGISIERS
Q00dp wow2 Sv POP vPL
Oudy uv0c0 S1 Pov ACL
0yudF vOuo Se (4] 4 PSe
09sS1 32 E) RETT
S4q

S5 +1 WEJELT

58

intgl.

MC8=51 MALRUL ASOErALER CRTASH
LuC uBy Lihe ©SOQURLE

Se
0uSe 3099v4 S7 SERBUF: JNo
055 L299 Se CLr
0uS7 vauo F SY SETE
0uS9 2098acs 6V UVER: Ja
00SC L0v1 61 PUIH
0uSt A999 éc MOV
guebv (€298 63 CLn
Ouhe LOVO 64 PUSH
0064 CO0cO 69 PUSH
N06e COVO 6o PUSH
0060 L2200 F 67 CLK
NU6A 7490 F 63 MOV
0v6C ¢S00 F 69 ADU
QUbE F8 70 MOV
0U6F &9 71 MOV
0070 cacg? 12 CLK
0072 Fé 73 MOV
0073 byiBue 74 CJNE
0076 D200 F 795 SETH
0u7d uSeo F 76 UVERI: INC
0UTA 20O F 7 SETB
007C LoV 78 POP
007 uL0&O 79 POP
008v LOVO 8y POP
0082 vovt 8l POP
ov8y4 32 82 GOGBALK: RETI

83
0u8s Couo 84 U©DLANKS: PUSH
0087 COc0 Ay PUSH
0u8y coge 8o PUSH
008p CO83 87 PUSH
008y €000 ey PUSH
0UBF b&50082 F 89 MOV
009¢ &5v0e3 F 99 MOV
nu9s 7850 91 MOV
0097 /4¢0 9¢ WOTYETS MOV
0U99 FO 93 MOVX
0udA A3 94 INC
0090 ULBFA 95 vINZ

90
0v9u wouo 97 POP
0v9F DOb3 948 POP
0VAl vlo2 99 POP
0vA3 VOED 100 POP
OvAs LOUO 101 POP
0UAT e@ 102 KET

103 +1 SEJECT

AP-223

0G4k, CVEr 3IF TRANSMIT BLT AUT SET THEn CHECKR KECEILVE

vSSk
TRNINT

SCLR TRANSMISSION INIERRUPT FLAG
;SETE TRAANS INT FOR PLMS) STATUS CHECK

98n,uCoALK ;IF RI NOT StT GUBACK

V1

r1, 8oLt
['AX-1
PSh

ACC

oon
£8CSEG
A RSERIAL
AsPIFEC
KO, A
Apnt
VETR
aRU,A
A,#10H,0vER]
[3.1 734
FIFC
SERINT
(L]

ACL

(£ 1)

oin

PSn

ACC

OPL

UPH

Uoh
UPL,LINEU*]
VER,LINEQ
RO, #90H
A, H20H
oCPTR,A
VPIR
RO,NUTYET

von
bFPh
OPL
ACC
PSn

iREAU SBUF
1CLEAR R] wolT
jPUSh REGISTERY uUSED BY PLMSI

JCLR ESC StQUENCE FLAG

JGET SERIAL FIFO RAM START LUCATION
JAND FINU HOn FAK INTO THE FIFU WE ARE
JPUT IT INTO RO

JCLR BIT 7 OF ACL

j1PUT DATA IN FIFU

$IF DATA IS nNOT A £SC KEY THEN GO UVER
38T ESC SEQUENCE FLAG

$MOV FIF(L TO NexT LOCATICN

JSET SERIAL INT ©IT FOR PLMSI STATUS CHECK
3PUP REGISTERS

JPUSH KEG USED BY PLMSI

PGET LINEO InFU

$AND PUT IT INTO DPTR

JNUMBER CF CHARACTERS IN A LINE
JASCII SPACE CHARACTER

FMOV TU CISPLAY RAM

PINCR TO MeXT UISPLAY KAM LOCATION
3IF ALL S0KH LOCATIUNS ARE NOT FILLED
36U VO MORE

3POP REGISTERS

59

AP-223

M(CS8=51 MAURyY ASSErBLER

Luc

Ovhs
QuAa
OvAC
OuAt
0uBRy
008e
0085
OuBy
O0vBo

ovBy
0UBF
0uCy
ouCi
ouCe

0uCs
0uC7
ovCy
0uCu
ovCu
0yCF

0000
0vDe
0004
0vle
0ubs
0vDA
0ubb
000E
OvEL
OVE4
0VE6
OVE7
00E9
OVEA
OvEs

OvEv
OVEF
0uFi1
OuF3
0uFS
0VF7

60

vBJ

Covo
L0
v0a2
Loy
Covo
659083 F
oS908e F
438310
A8u0 F

1ago
FOo

A3

8
v830F8

vovo
Vv0u3
voge
Loco
vouo
-+

coveo
Lo0e0
C0g2
cos83
covo

c3
6Su0v3 F
850082 F
438310
184F

A3

T4e0

Fo

A3

uBrA

v0Qo
vo0a3
vose
voeo
vouo
ce

CrTASK

LihMe SOURLE

104

105 olLINE: PUSHK
100 PUSH
o7 PLUSH
106 PUSH
109 PUSK
11v MOV

1 MOV

11¢ URL

113 MOV

114

115 LONTL: MOy

i1e MOV X
7 INC

ite INC

119 CJINE
iev

121 POP

122 POP

123 POP

124 POP

129 POP

12¢ RET

127

128 FILL: PUSH
129 PUSKH
130 PUSH
131 PUSH
132 PUSH
133 CLR

134 MOV

135 MOV

136 ORL

137 MOV

138 INC

139 CONTe:r MOV

140 MOVX
141 INC

lde DJINZ
143

144 POoP

145 POP

146 PoP

147 POP

14 PoP

149 KRET

150

151

15¢ +1 SEJECT

rén

ACL

LPL

vFh

veh
uPr,rCiN|
uPL,PCINT+}
UFr, BLOH
«0,CURSEN

A,82VH
e0PTR,A

UPIR

RO

RO, 850R,L0nT)

von
WUPh
UFL
ACC
PSh

PSH

ACC

UPL

UFH

00R

C

UPh,L
UPL, L+l
UPhH,810H
RO, H4FH
UPTR

A, H2UhH
aDFP TR, A
UPTR
n0,CUNT2

Voh
UPR
wPL
ACL
PSh

;PuSn KEGISTERY USED BY PLMSI

JGET CURKENT DISPLAY RAM LUCATION

;SET BT 15 rOn nAM ADURESS VECOUVING
3GET CURSER COLUMN INFO 10 TeELL HOw
sFAR INTC THe NOw VOU ARE

$ASCLI SPALE CRARACTER

MOV TU UISPLAY KAM

JINCR TO AeXT UISPLAY KAM LOCATIUN

$1IF NOT AT THE EnD OF iHE LINE
3 CONTINLE
$PUP REGISIENRS

$PUSH REGISTELRY USeD BY PLMSH

$GET BEGINNING OF LINE RAM LUCATION
JCALLULATEL bY PLMS)

3SET BIT 15 FOR UISPLAY RAM ADURESS VECOVE
$SET UP COUNTER FOR SOH LOCATIUNS

160 PAST THE OFin

FASCII SPACE CHAWACTER

$MUVE 70 DISPLAY RAM

$INCR TO NEXT UISPLAY KAM LOCATIGN

JIF ALL 79 LUCATIONS HAVE NOT BEEN FILLEV
3THEN CONTINUE

jPUP REGISTERS

in‘tel . AP-223

M S~5] MALRL ASOErBLEK CrTASH
LuC vy Lifhe SCOURLE
153

154 JEEEEALHTIPITLL PRI PR L PP LT LT ITITEL IR TR PR E PR F TR PO P4ttt et Pr e
1S5 $THIS nOUTINe MCVES UISPLAY KAM UATA Ty KOw BUFFER OrF 8276
1560 ;00000'909000#’0900#?070'0#0'QVQ?Q#'OOO’QOOQVQQO"OQ”Q*QQOOQ'QQ'QO'

157
OvFo ¢luB 150 uDUNE: AJMP UNACKE

159
OuFA 850083 F 16V ULMA: MOV UPR,nASTER ;LUAU XxFER PUINTER HIGH BYTE
OuFL oSubs2 F 16, MOV UPL,NASTER Y jLUAD XFER PUINTER Luw BYTE
0100 c0 1te MOVX AyalrTh
0101 A3 163 INC LFIR
0102 ¢0o3F3 164 J8 VB3k,CLUONE JIr IN11 HIGH, THEN UMA IS OVEK
0105 &0 165 MOV X AyaCrTh
0106 A3 166 INC WP IR
0107 ¢c0 167 MOVX AyalPin
0106 A3 160 INC UP IR
0109 ¢t0 169 MOVX A,aCPTR
010A A3 itv INC UP IR
0106 c0 171 MOVX A;aCPTh
010C a3 17¢ INC UPIR
010v kO 173 MOVX A,aDPTK
010k A3 174 INC VPIR
010+ EO 175 MovX A,aCHTN
0liv A3 176 INC UPIR
0111 0 V717 MOVX AralPTh
0lle a3 170 INC VP IR
0115 &0 179 MOVX A,aCPTR
0114 a3 180 INC BPIR
0115 &0 181 TEN? MOVX AraCPTn
Olle A3 182 INC VPIR
0117 &0 183 MOVX A,eDPTH
0118 A3 184 INC UPTR
0119 &0 185 MOVX A,eQPTKR
011A A3 180 INC VPIR
011b &0 187 MOV X A,aOPTi
011C a3 1848 INC VPIR
0110 EO 189 MOVX AraOPTK
011t &3 190 INC LEIR
011F &0 191 MOVX A,aQPTR
012y A3 i9¢e INC UPIR
0121 e0 193 MOVX A,aDPTR
0122 A3 194 INC LP1R
01235 €0 195 MOVX AyalPTR
0124 A3 190 INC uF Tk
012 &0 197 MOVX AyalFPin
0126 a3 198 INC LPIR
0127 0 199 MOVX A,oaCPTi
0128 A3 ely INC [VLER
0129 t0 ¢01 TWENTYS MOVX AyalrTn
012A A3 cle INC UPIR
0128 €0 €03 MovX A,aCPTR
0120 AZ el INC UPTR
012w ¢t0 €05 MOV X A,alCrPin
012k A3 ¢0o INC UPIR
0l2r tO eav MOVX AralCkTn

61

AP-223

ML8=51 MALRU ASSEMBLEN

LoC

013y
0131
0132
0133
0134
0135
0136
013/
0130
0139
N13A
¢13c
013C
0i3v
013c
013F
016y
014}
0ldc
01448
0144
0149
0146
014y
0148
0149
0144
014y
014C
014v
014t
014k
01S0u
0151
015¢
01583
0154
0155
01Se
0157
0158
0159
0154
0150
015¢C
0150
015kt
015F
0164
0161
0162
0163
0l6u
0165
0160

62

Lihe

c0b
ch9
el
cll
cle
€ld
¢ty
[3%]
cle
et/
cl8
c19
eev
cel
ele
€23
cld
¢25
226
e2/
31
29
23v
€34
¢3¢
233
¢34
¢35
¢3b
237
23y
239
eay
el
ede
eus
244
cds
cldy
cd?
cds
éus
<5
e51
cSe
253
[-L]
¢S5
e56
¢Sy
«Sk
e¢S9
cby
¢6l
cbd

CrTASH

SO0uRLE

THIR1Y:

FORTYS

FIFTYS

MOVX
INC
MOovXx
INC
MOVX
INC
MOVX
INC
MOVX
INC
MOVX
INC
MCVX
INC
MOV X
INC
MoV X
INC
MovX
INC

UF IR
AyaCrin
wFIR
AyalPTH
VP IR
A,alrin
UPIR

AgalPTr

VP IR
A,aCPTn
VFIR
AyalPin
wPiR
AralFTr
uPTR
AyaDPTH
UPTR
AsaCPTr
UFTR
A,alPTn
UFTR
A,aCPTK
VPIR
AyaDPTK
UPIR
AyaCPTK
UPIR
A,aCPTR
UPTR
AyaCPTH
VRIR
A,aOPTH
UPIR
Ayalrin
VPR
AsalPTn
UPIR
AyaOPIR
UPIR
AyalCrTr
LPIR
A,alFTn
UP TR
AsaDPTR
UPIR
Aralrin
UPIR
A,alPTr
UF IR
AyaDPTn
UPIR
Ayalrik
VPTR
AralPrTr
LF IR

intgl.

MLS§=51 MALRU ASSENPLER

LeC

016/
016y
916y
0iba
0160
0160
016V
016t
(.14
0170
0174
017¢
017s
0174
0175
0170
0171
0178
0179
0L7A
0170
017¢C
0i7v
017¢
017F
018y
0181
018¢
0183
0184
018%
0186
0187
0188
0189
0184
018p
018¢L
0180
018t
018F
019¢
0191
019¢
019
01584
0195
N19¢
0197
019¢
0199
0194
019b
019¢C
0190

Lihc

c€s
cb4
céd
céb
ee6l
cbb
c69
ety
cti
cle
els
cTs
€79
clo
el
2T
c?9
c84y
c8l
cée
283
¢84
Lk}
e8o
a7
288
c89
417
A0}
eS¢
d93
égd
€95
e9¢6
29/
€98
299
300
301
302
3048
304
309
306
30/
300
509
319
31
31e
313
314
315
316
RN

CHTASM

SOURLE

SIxTYs

SEVNTYS

MOV X
INC
MCVX
INC
MOvX
ING
MOVX
INC
MOV X
INC
MOV X
INC
MOVX
iNC
MOVX
INC
MOV X
INC
MOVX
INC
MOVX
INC
MOVX
INC
MOVX
INC
MovVX
INC
MOVX
INC
MOVX
INC
MOVX
INC
MOVX
INC
MOVX
INC
MOVX
INC
Movx
INC
MCVX
INC
MOV X
INC
MOVX
INC
MOVX
INC
mMovX
INC
MoV X
INe
MOVX

Asalrin
VFIR
A,alrin
UPIR
Apalrin
VFIR
AyalrTr
VPR
AyaCPTn
vPIR
ApaCPTIn
UP1R
AyaCrin
UPIR
AralrTn
UPIR
AsalrTr
UPIR
AralPTr
VPR
AyaCPrTn
VPIR
AyaDPTk
UFP TR
A,alPTH
UPTR
A,alPTi
UPIR
A;aCPTR
OF IR
A,aDPTH
OPIR
AyaCPTR
LPIR
AyaCPTH
UPIR
A,aDPTR
OFTR
AsaCPTR
UPIR
AyalPTn
VETR
A,aCrin
UPTR
A,alrin
UPIR
A,alrTi
UPI1R
AralPin
uP IR
A,alriK
PR
AsalrTh
VPR
AyalPTn

AP-223

63

AP-223

MLS=51 MALRU ASOErHLER

LucC

019¢c
019F
01Ay
018}
O14e

0143
0LAS
012b6
01AA
N1Av
018y
0183

0184
0187
0184

018p
018¢C
018t
01Cvy
01Ce
01Cq
01Co

64

uBy

A3
e0
A3
el
A3

£S583
vdlFuC
tSee
cduou?
150018
750000
2

0S0300
sS82v0
ee

3

eSee
QUuF
FSse
SOUF
vsSe3
s0LB

.

"™

Labhe

ER)
319
Jev
21
see
3235
324
525
Jee
deil
i2u
329
33
331
$3¢
333
334
335
33e
337
338
339
Say
341
Sue
dus
duy
545

CHTASK

SOURLE

tIuHTY

LHECKS

uOnEs

UMADNE ¢

Ny

INU
movX
INL
MOVX
INe

MOV
CJINE
MOV
LJIWE
MOV
rOv
RET

MOV
MOV
KET

CLR
MOV
ADL
MOV
JhC
INC
SJmMP

VIR
Ayalrin
wF iR
hyalrir
wP1R

AyLFn
aohirbk,Duhe
ArLPL

Ay #0u0n,uCivE
KASTER,# 16N
KASTeR+1,Ry0N

KASTER,DPH
rASTER®L,DrL

C
AJUFL
A, RT790
UFL, A
LRECK
wPH
CrECx

1ADD 79 TU BUFFER PUINTER
$70 GET Tu NEXT DIBPLAY LINE
3N THE DISFLAY MEMURY

intgl.

MLSeS)

SYMBOL

N AV E

ACC. .
BLARNK,
BLINE,
BUFFE
CHECLK .
CUNTY,
Cuhie.
CulnTt,
CURSEK
DUONE .,
DMA,
OmMADNE
DOME o
OFH, o
DPL.
EIGHTY
ESCSEu
FIFL
FiIFTY,
FILL .
FURTY,
GUBACHA
Le o o
LINEO,
NUTYET
OvEk .
OVER1,.
PUINT,
PSH, o
RASIENR
SbUF .
SCAN
SERoUF
SERJAL
SERINT
SEVNTY
SIXiY,
TeN, o
THIKTY
TRNINI
TRENTY
VERY .

MALRL ASSENMBLEN CRTASwH
lagLt LISTING

TYPE vV ALUE
« o O AUCK QuEuH A
. . C Auln cvaskH A
« o C AUDK QuAgh A
« s C AuDm A
« o [C AUCK A
« o« C AUlK A
s o C AulR A
e« o 0 AUCK
e« o D AUDK
« o C AUDK QuF&H A
e« o C ALDK OuFAH A
« o C AUCK 04BoH A
o« o C AUDK 0184M A
e o D AuCk Oye 3K A
e o D AUDK Ov8eh A
e o C AUDK 01A1K A
o o B AUCK evoe
e o D AUDK oree
« o C AUDK 01éoH A
o« s C AUCK 00CUH A
« « C AUDCK 0151H A
e o C AUCK oveur A
e o 0 AUDK wmem
« o 0 AUDK .cen
« o C AUCK 0uU97H A
« « C AUCK O0VE9H A
« ¢ C AULCR 0y78H A
e o« D AUCK coee
« o 0 AULOK 0UDUH A
e« o D AULCH enee
e« o 0O AUCK 0VG9H A
e o B AUDK ~eew
« o« C AUDK 0uSeH A
« o D AUCK .cew
« o B AUDR scon
e o C AUDK 018UH A
« v C AUlK 0179H A
« « C AUCK 0l15H A
e o C AUlK 013LH A
« o B AuDK o
« ¢ C AUCK 01e9H A
e« o C AUDK QuasH A

REGLISTEr pbANK(S) uSEC: v

PuB
PUB

ExT
EXT

ExT
ExT

PUB

EXT
ExT

ExT
EXT
EXT

ExXT
ExT

ASSEMBLY COMPLETE, NC ERRURS FOUNVD

ATTRIBLTES

AP-223

65

AP-223 |n .

ML8*S1 mALRU ASOHENMPLER KeYbn

ISIS=]1 MLS=S1 PALRL ASOENMBLER ve.tl
CoJeCl mOuULE PLALEL LM 3r1iktYoC,0ol
A3ScMuleR IANVUKEDR Byt ASMFS1 F1SKEYBULU.SKL

LuC uwBJy Lihe SOURLE

i

&

S

4 IR R A ARNNEA RN R AN AR R AN AN R AR AR AR A AR R AN F AR AR KRR AN N ARNNA R A AR AR AR AR AARAANAARAS
9 FRRARRAARBRR AR RAN RS RAA RN R AN R AR R AR RARA RN A KRR AT A AN R AR R AR A AR AN ANN S RRA R AN RRARRR
) JRANR [E 23]
1 IR L LA 3Cr TnARE FUR READING AN UNLECCUEV RRR
[} IELLL] Kt YSOARY LALL]
S JRRAR LR
1v FRRARRARAANAR AR A AR AN RN R AN R R R AN AR AR A NN AN R AAN KA AR R AR A AN AN AN R AR R AARRANRANN R AR
11 ;il.lltﬁﬂ'ln!tﬂtat!tltl!l'!ll!ll!'!ll.l'll'.'.ﬂ"l.ttl'tl.'.'lll'.'ll'll'
1¢ H

13 3

14 H

15 i

16 } THIS CUNTALANYD THE SOFTwAKE NEEUEU TO SCAN AN UNDECUDED KEYBOARUL
1/ H THIS PRCGRANM MUS| ©E LINKEV TO THE MAIN PRUGKRAMS TU FUNCTION

16 3

19 H

29y H MEMURY MAF FOR READING EY SOARD (USING MQVQ)

21 i

2e H ADURESS PCr NEY BOARL 10FFH TO 17FFH

23 ’

24 3

23 }

26 H

21 PUBLIC REALER

2 EXTRN WATA (LSTKEY)

e9 EXTRN OIT (KeYy,SAME)

3y H

31 FARR R AR A RA AR R AR RARARRAR AN KRR AN AR R RARAN AN A ARRARA RN AN AARN AR RANAARNA RN R AN NANR
3¢ i *
LX] 1A YREADEN“ROUTINE" *
34 HA

3y FRAR AR RANN KRR R AR AN RARRRAN AR RRA AN ANR AR RRAARANN AR RN AR ANARRRRRAARANRANAR AN RN

3e +1 SEJECT

66

intgl.

MLS*S1 MALRU ASSEMBLER

Luc

0vou
Quoe
2004
ovoo
0vlo
Qu0A
0voC
0voe
0010

0013
0015
0017
ou1e
ovle
(VR Y1]
0ultF
ovae
0021
ov2e
0024

ovar
0029
0v2e
ovae
0ver
0u3l
0033
0036
0038
003aA
0v3C
003
0vdo
oude
004y
OQude
0yuy
0vda

0vdb

oudL
OQudc

URy

covo
L0c0
cos2
L083
couo
covt
cove
cous
9010FF

1940
1890
/By8
Laoo
vevo
bbl2
(]
93
Fa
6005
BS5vecdd

800S
0501
850210
08
[3-1-31
UREA
bIvBLY
vavo
€200
vou3s
uoo2
woul
vovo
vou3
vog2
Loeo
vouo
c2

ré

Lauo
80UVE

-nm

F
F

Like

3/
3o
3y
4y
4]
be
¥}
'
as
do
i/
4o
(3]
S0
Si
Se
53
S4
595
Se
S7
Sy
9
60
61
6¢
63
64
65
66

SCURLE

UNUELOUEU_ REYBUARL SEGMEWNT

KeYo0

nSEG UiDeCuDeD_KeYoCARy

READER?Y

MORE $

LEROQS

EOUALS

BACKS

NTSAME

eNu

PUSH
PUSH
PUSH
PUSK
PUSKH
PUSH
PUSH
PUSH
MOV

MOV
MOV
MOV
CLR
SETB
MOV
cLn
MOVC
CPL
JZ
CJNE

SJIMP
ING
CJNE
INC
INC
LINT
CJNE
SET8
CLK
POP
POP
POP
POP
POP
#OP
POP
pOP
KET

MOV

CLKk
SJIMP

rsn
ACL
UFL
UPH
von
uin
ven
V3n
UPTR,#10FFH

N1,800nR
nO,ALSIKEY
K3, 4080
KEYO

SAME
0en,aRQ

A

A,aA+DPTR

A
2ERC
A, U2H, NTSAME

EQuAL

O1H

A, 02H,NTSAME
L1}

VPN

R3,VURE
k1,408H,0ACK
REYO

SAME

u3H

uah

(3]

0on

WPhH

CPL

ACC

PEN

aRU,A

JAME
ECuAL

AP-223

cude

PUSH nEuw USED BY PLMS)

JINITIALIZE UPTR Tu KEYBUARD
JADDKESS

$CLR ZERG COUNTER

JGET KEYBOARU KAM FOINTER
JINITIALIZE LOUP CUUNTER
JINITIALIZe PLMSL STATUS BITS

JMUV LAST KEYBUARD SCAN (0 0¢H

3SCAN KEYBUAKD

$INVERT

3IF SCAN WAS 2ERU GO INCREMENT 2ERU COUNTER
$COMPARE WITH LAST SCAN IF NOT THE SAME
JTHEN CLR SAME BT AND WRITVE NEW INFURMATIGA
1T0 Rap

3 IF EQUAL JMP UVER INCR OF Z&RU COUNTER

3 INCK ZERGC CUUNTER

$STEP TO NeXT SCAN RAM LUCATION
INEXT KEYBOAKD AUDRESS

1IF LOOP COUNTER NUYT 0, SCAN AGAIN
3JCHECK TC SEE LF ALL 8 SCANS WHERE 0
1IF YES SET KEYO BIT

JPUP REGISTENS

JIF SCAN WAS NUT THE SAME THEN PUT NEW
PSCAN INFC INTU KAM

sCLR SaAMe vlT

3GU VD MURe

67

AP-223

MUS*51 MALRU ASOEREBLER

SYMpOL TAule LISTING

N A ME

-

.
.
.
KeYU o &
.
.
.
.

e s s 6 s e s 0 0 0 0 e
« 6 e o 0 o 0 o s o o
e s s 8 0 s s e e e
o e s e s s 0 e s e

SAME o . « o
UnDeCuOED_KeYsOAR
ZeRU o o ¢ o o

OOMOO0NOO0DMOTO0 O

.
.
.
.
.
.
.
.
v

REGISTER oAnK(S8) uSel:

ASSEMOLY COMPLETE, NC

68

v

ALCH
Aulk
AUCK
AuCK
ALCK
ALCK
AuCN
AUCK
AUCK
AUl
AuCk
AuCk
§tG

AulK

v

XeYoeD

E

vV aLUE

OVEUH
0u3AH
0uBSH
ovéer
0V2EH

OuluH
004oH
000UH
0VOuUH
00SuH
0V29H

ERRURS FOUNUL

0> >»T >

0> DD

ExT
ExT

PUB
EXT

A4 T TRIBUTES

$c6=LnDECUDED_KEYBOARL

SE63LnDeCuUDED_KEYUOARL

SE6=LNDECUDED_KEYOOARY
8tG63LADECUDLD . KEYROARL
SEG=LNOECUDED_KEYBOARY

KRELSUNT
SEGsUNDECUDED.KEYDOARY

in‘tel . AP-223

MCS=51 MALRU ASSErELER DeCult

I0Ib=i1 MUS=51 MALKL wSOENMBLER ve.l
ObJECT mCUULE PLALEL 1M tF1:i0ECULDE.UBY
ASSEMBLER INVUKED BY: ASMS) SFLiUECOUE.SKC

LUC UBJ Lihk SOURLE
1
¢
3
L] ;ttttﬁtu!tt'.t.t"ﬁllllli'i!l!il.!nlt!i.'lﬁ!l'tﬂ'l!‘t!tl!ll".l
S)tt.lll.tlﬁ'tltt!!'tﬂ'lki!ttnR'ttﬁ.t"tt'k'ﬂIﬁ'ttltﬂtﬁiﬂﬂﬂlﬂlﬁ'
6 IR Y
{ PeRrR SCFTRARE FUR DeCUDED KEYBOARUL e
] IELEE] ARER
9 jitlltl!.l.lﬁ..ttliiiltﬂiﬂtll!.'lﬂt.ll!!lﬂ‘l‘ﬂt'.!tlnt"!!lt"l
10 ;ttll!'!.tQ!itilQ'iI'I!‘!‘Ql.!ﬂlﬁt'!.ﬂl..ﬁﬂ.!l".!.lll.k‘l'lltl
11 H
1e 3
13 }
14 H
15 PUBLLC DETACH
16 EXTRN VATA (L8IKEY)
17 EXTRN oIT (RBDINT)
14
19
20 }
el FANRRRNRRR R AN RRNRA R R R AR ARARANR AR AR AN AAARANARNR AR AR ARARARRRANRRA AN AN
2e A »
2s pe MOECUBE" INTERKUPT RUUTINE FUR DECODED KEYBOARUS "
24 3 "
29 JRREARARRNNRRARR R AR R KNARNAN R AR AR NRA AR R AR AR RRANANNARARARRARNARRAR AR

26 +1 SEJECT

69

AP-223
MLS~51 MACRU ASOSENMBLER beCule
LvC uBy LiNE SOURLE

21

2b VELOUEU_KEYBUAKRC SeGMENT CubL
enee 9 KSEG DECUDEC_KeYuCARy

3v
0u00 Covo 31 UETALHS PUSH PSn
0v0e Coa2 e PUSH vPL
0v04 (083 35 PUSH LFn
0ule COcoO 34 PUSK ACU
0008 Y0OOFF 39 MCV UFTR, #80FFR
0vlp tt 30 (4] A
0voC 93 37 MOVC Reah+DPTH
0voV FSv0 38 MOV LSIKEY+1,A
0UO0F vevo 319 SET8 KRBUINT
0U1l 7S6CFF 40 MOV THU,#0rFR
0uly JSuhrF 41 MOV TLU,ROFFH
0017 u0co0 de POP ACC
0019 vlod 43 POP PR
Ovle vog2 44 POP UPL
0010 oOwo a5 ropP PSK
0V1F 32 de RETI

47

by

49

Su

S1 &NV

70

3PUSH RELISTERS
JUSED oY PLMY)

3JAUDRESS FUR KEYoOARW

1FETCH ASCII BYTE

JMUV TU PEMORY TU oE REAV ©Y PLMIY
JLET PLMS1 KwOw THERE IS A BYTE
$SET COUNTER TU FFFFH 50 INTERRUPT
JON THE WNEXT FALLING EUGE OF T0

3PUP REGISIENS

intel . AP-223

LS=S1 MALRU ASOHEMELER DeCubt

YMEOL TAoLe LISTING

mesee crves wsseess

ANV E T Y FE VALUE ATTRIBUTES
CCe ¢ o« o ¢ o o D ALCK OVEUH A
'eCuDeD_KeYbOARY C St6 QuauH Retstnll
'eTACh & & o o o C ALDK OvOuH R PuB 8e630eCubEl_KeYpCARY
WHe « o o o o« s 0 ALDK 0y83H A
Phe o« o o o o o 0 ALDR Ou8eH A
'00INT . ¢ o o 4 P ALDK coee EXT
OTKEY & o o o o D ALDK oo ExT
OFe 4 o o o o o D ALCK 0VDUK A
"HO0e o o o « o o D ALDKN 008LH A
L0y o ¢ ¢« o« o s 0 ALDK 0UBAH A

TEGLISIEn BANK(S) uSED: ¢

AOSEMoLY COMPLEIE, NC ERRURS FOUNu

71

AP-223

MLS=51 ALRU ASOEMBLER OcTACH

I519=11 M(8=51 ~MALKL ASOEMBLEK va.i
ObJeCl mOUULE PLACEL 4N SF1IDETACH,uRY
A5StMuLcR INVuKED BY: ASrS) $FL3UEIACH.SKC

LUC UBJ LiNc

72

LOC~0OCULLA

SOURLE

’.t-t.ttllﬁtﬂ‘l.tl.tlﬁi"."lll'..ﬂ..'..l.".‘.".l'l"ﬁttﬂ..tl.'!ﬁ’.
;l.llttl"lﬂﬂﬂ.tﬁiltlll..!lﬂi'llﬂ.l'iﬁ'&.lR'lt.ﬁlﬂiitﬁ‘tﬂiitl'ﬂﬂﬁﬁﬁtl

janun T
jennn SCFThAKE FUR A SERJAL OR DETACHABLE LLLL]
b KEYBUARD “nan
jamas T1Y

,t'...'l.t'*.!....Qt'ilﬁ.".n‘ll.'t'.'!ﬁ.ﬁlt..‘il.i'k.iﬂ'tl.l.lll.!..
GRS RRRARARRRNRANAR AR R RN AR AR RANARARNARNR AN N RA N AR RNANAANRNNRARARE AN S

(HIS CUNIAINS 1He SOFTWARE NEEUEUD TO PtRFGRM A SUFTWARE SERIAL
PORT FUR StRIAL NEVBUARDS ANU UETACHABLE KEYBOARU, THIS PRUGKAM MUST
BE LINREV TC THE MAIN PROGKArS FUR USE.

@~ we wo o wo ve e

EJELT

intgl.

MLUS=S5]1 mMALRU ASSEMRLER

LuC By

(V-]

0000
QvF4
0voy
OVEY

Lide

v
21
2¢
23
24
25
2e
el
2o
29

DeTaCh

SOURLE

~

~ v we

i
i
$
H
}
4
3
H
}
4
H
3
SEJECT

BAUD
110
15¢

LNPU) BGU Ty

PUBLLIC OETACH

EXIRiv UAIA (LSIKEY)

EXTRiv 011 (RCVFLL,SYNC,BYFIN)
EXTRN BIT (KuDIN|,eRKOK)

TIMER v LCAD VALUES FOr LIFFERENT BAUD RATES
USED WITh UEIACHABLE KEYBOARDS

STARY BLY DETECT

VEFACH
OF 40Uk

STARTO
START1
MESSAGEO
MESSAGE!L

&Qu
31V}
eQu
EQu

VOuH
OF 4N
VOUH
VE&H

MESSAGE DETECT
ODF45H
QEBOUN

JLUN BYTE FOR 150 sAuD
$HIGH BYTE FUR 150 BAUD
1LOW BYTE FOR 150 BAUD
1HIGH BYTE FUR 150 BAUD

AP-223

73

AP-223

113M
vgd 40d
20 404 tINI4
T4ANL8Y O 3000 TYNTS AOW! VITADNLET AOW
L 118 ¥10¢ 4L3an 13
NIdAR a13s
3INOG L1ON N3IHML ANNYI ON 4If IvId ONP
viAINIET AOW
v LEL]
t1 WNY4 118 LX3N 139¢ [GER) &) AOW
NILETIIY ONINNNY LI9! AMNLEI'Y AOW
03AT3II3N N3IE 3AVH €118 8 11V JT 338 0L %IIHD! d018'NLdAR ar
INTL 119 T ¥04 NINTL 138! N3I9VEEIAL ‘011 AOW
139v68I4#0H) AOW ,hau_xu
WYNOOMd NIVW 0L XOVR 09 aNnv! INId dure
INTL 119 T ¥Nd ¥INTL L3S 039YSSIAVI0L AOW
139VSEINY0uL AOW
A3NLET LINT HORXAINLET AOW
ONAS 138 €34 4If JVAS 813
118 LMVLIE GTIVA 47 %J3HD LON 41 [ELEAREL) ar
N3ITE N33R SVH I LHVLS OITVA 41 ¥33IHD! 1IALYN'INAS ar 1nIIvA
'
WwyN9Odd NL NIVA 091 INDd dWre
v'anAl AOW
300W MIWIL NL ¥ILNNND ¥INTL L3S H?30 LAk
ANAL’Y AOW
OLNYIGHDTL AOW
L18 LMVLS 40 970014 3HL NT L1dN¥NIINT N1 HIATL 1384 TINYI8#404L AOW
119 1¥YLS ¥V 1J NIHL 0 SI 0L 4I¢ ERPLEL] glae
119 ANVIE V AON NIHL U Vv SI 0L 41¢ LeMf 1 ndNT ar
118 IX3IN 139 138 9v14 IATI0NIN 41! QTIVAY914A0N ar
1} HeNA
1SWI4 A8 Q3ISN QUILSININ HENd! vgd HSNd tHIVI3N

¥yABLINTITAYHIVLIIA 9ISN
3007 INIADIC N¥YIRAINTITEVHIVLIIN

O T T L L L T T T I T R AR I
hd !
» SONYNBAIAY TAYHIVLIIO ¥Nd4 INILNAY LANMYIINMT 4 H4IVLITu w!
» a!
NN RN NENE YR NN NSNS N N U NN NN NN N NI NN F RV N NN SRR AN SN RN RN

H

ERI LI

WY 13Q

26 4
L6 onpn
% 0301
G6 El ongd
(-] L322
£6 4 onz2n
6 9n0¢c
16 4 onsd
ne £t
68 negv
e 4 0063
18 4 n1000?
LT} onves!
se 832395/
ne
se 810R°
28 onvesl
te CER LY
ne] 0R0NSL
6L 4 onen
L2 nENA0?
e 4 0tono?
oL
6L aroe
LY} 6964
£ 27327
2L 68673
" 0nvas!
¥} n4IR8¢
59 4 onen
a9 YhnRo?
L9 3 £10002
Q9 0302
<9 0non
n9
£9
29
13
n9
6S
RS
18
Qs
s
L2
[
?s
ENAR ran

bhN0
Lobg
Snno
£n00
oo
4£00
agno
asno
vEno
f500
9§00
TENO
ngoo
n2no

9200
LELL
§200
2200
0200
nioeo
ving

100
9100
p100
2100
4000
9000
vono
Lone
»0N0
2000
0000

am

3194396 Y N¥IYW 1S=80A

74

AP-223

N1 40 3903 9MITTIva LX3M NOY
LdN¥YILNT 08 H9444 NL ¥ILUAND 136¢

300W NFINNOY NL 0 H3INTL 138!

§9v74 yv3I)!¢

WYNOOMd NTVW ML ¥OvA N9 ONv!
AQY3IN SI 31AA ¥ A1d 131!
11A d0iS OTIVA v LAN N3HL T tOM 4I¢

INI4
H440¢°07)
H4408704)

viaTAL

4230

0nALYY
eIy}
3MAg
974A9M
NINNT

LeM
turnay
LI ERRER))

awre
AOW
AQW
AQW
a]3¢e
AOW
e le]
N1)
470
813¢

4Wr
aL3e
anf

aN3

sy
tHy3
!

374npe

HIVY13d

Pt
Lt
9t
st
LARS
Fit
1
Tt
nt
60T
aot
101
901t
S0t
"0t
sot
207
1071
0ot
66

ayry

M3IIRVIAZY Ny

woww gy

W uw

aeoR 9900
44YP5/L €900
44005/ 0§00

6954 3IGnQ

2321 2500

6953 ¥§5N0

0ne) agng

0023 9500

0n22 hsno

0nan 2gn0
000020 4nn0
0na2n anno
Shpags vnno
rgn M
15890

75

REGISTER WANK(S8) USED:

AP-223

M(S=8§] MALRY ASSEMBLER NeTACH
SYFsOL TAdLe LISTiNG

N aAVE 1Y Pe vV ALUY
ACC 4 ¢ o o ¢ o o o L ACLR ooeon
BYFIN o o ¢« ¢« o« o o B ACUR coecw
DETACH: o o o o o o« C ADUR 0ovon
DETACHADLE_KEYBUARE L bEG v0o8H
ENR o ¢ o ¢ o o o o L ACULR vosen
ENRUR o ¢ o ¢ o o o« © AOUR come
FINIe o o o o o« ¢ o L ACuR 0045H
IWPUT o o ¢ o ¢ o o b ACUR v0BoH,. 4
KUDINT. o o o o o o E ACOR bkl
LSTREY. o « o o o o U ACUR roce
MESSAGEV, o o o o o nLvB ¢ovon
VeSSAGEL,. o 6 o o o wLNvB VOoE8H
NATUITe o o o o o o C ACUR 0020H
PSW o ¢ o ¢« o o ¢ o U ADUR uouon
RUVFLGs o ¢ o o o o« U ACUR eeee
RST 4 o o o o o o o L ACULR 0054an
STAKTO. o o o o o o nNLMB V000H
STARTLI. o o o o o o nLve 0O0FaH
8TOPs ¢ o o o o o ¢ L ADUR 004AH
S'NC. * o o o ¢ o o 8 ADUR hdadadd
TUs o o ¢ o o« o o o« © ADOR 00B0H. 4
THO o o o ¢ o« o o o U ACUR 008CH
TLO o o s o o o o o U ADUR 008AN
TMOUe o o o ¢ o o o U ADUR 0089H
VALID o o o o o ¢ o L ACOR VOLAH

ASSEMBLY COMPLETE, NO ExRORS FOUND

76

A

L

L

>X>»

D> >> T@»P»

eXi
PUBD

eX|

(341
exy

exy

ALl xw]louTes

SELSUVEVACHABLE_KEYBOARD
RELSUNLT
SELIVETACHABLE_KEYSO0ARD

SEGIVEVACHABLE_KEYBOARY

SEUIVDETACHABLE_KEYBOARD

SELSUETACHABLE_KEYBOARD

SEGBUETACHABLE_KEYBOARD

SEGBUETACHABLE_KEYBOARD

u
intgl.
APPENDIX B

REFERENCES

1. John Murray and George Alexy, CRT Terminal Design
Using The Intel 8275 and 8279, Intel Application Note
AP-32, Nov., 1977.

2. John Katausky, A Low Cost CRT Terminal Using The
8275, Intel Application Note AP-62, Nov., 1979.

AP-223

77

	1.0 Introduction
	2.0 CRT Terminal Basics
	2.1 CRT Description
	2.2 Keyboard
	2.3 Serial Communications

	3.0 8051 Description
	3.1 CPU
	3.2 On-Chip RAM
	3.3 I/O Ports
	3.4 Interrupt System
	3.5 Serial Port

	4.0 8276 Description
	4.1 CRT Display Refreshing
	4.2 CRT Timing
	4.3 Special Functions
	4.3.1 Special Codes
	4.3.4 Programmable Buffer Loading Control

	5.0 Design Background
	5.1 Design Philosophy
	5.2 System Target Specifications

	6.0 System Description
	6.1 Hardware Description
	6.1.1 Peripheral Address Map
	6.1.2 Scanning the Keyboard
	6.1.2.1 Undecoded Keyboard
	6.1.2.2 Decoded Keyboard
	6.1.2.3 Serial Decoded Keyboard

	6.1.4 System Timings

	6.2 Software Description
	6.2.1 Software Overview
	6.2.2 The Background Program
	6.2.3 The Foreground Program
	6.2.3.1 Handling Incoming Serial Data

	6.2.4 Memory Pointers and Scrolling
	6.2.5 Software Timing

	6.3 System Operation

	Appendix 7.1 CRT Schematics
	Appendix 7.2 Dot Timing
	Appendix 7.3 CRT System Timing
	Appendix 7.4 Escape/Control/Display Character Summary
	Appendix 7.5 Character Generator
	Appendix 7.6 Hex Dump of the Character Generator
	Appendix 7.7 Composite Video
	Appendix 7.8 Software Documentation
	Appendix 7.9 Software Listings
	Appendix B References
	FIGURES
	Figure 2.1.0 Raster Scan
	Figure 2.1.1 5 x 7 Dot Matrix
	Figure 3.0.0 8051 Block Diagram
	Figure 4.0.0 8276 Block Diagram
	Figure 4.1.0 8276 Row Display
	Figure 4.1.1 8276 Instruction Set
	Figure 6.0.0 CRT Terminal Controller Block Diagram
	Figure 6.1.0 Simplified Version of the Transfer Logic
	Figure 6.1.1 Keyboard
	Figure 6.1.2 Using a Decoded Keyboard
	Figure 6.1.3 Flowchart for the Software Serial Port
	Figure 6.2.0 Flowcharts for VERT and BUFFER Routine
	Figure 6.2.1 FIFO
	Figure 6.2.2 Pointer Manipulation During Scrolling
	Figure 7.5.0 Character Generator
	Figure 7.7.0 Composite Video

	TABLES
	Table 6.1.0 CRT Monitor's Operational Requirements

