intal.

APPLICATION
NOTE

AP-69

May 1980

ooooooooooooooooooooo

AAAAAAAAAAAA

AP-69

In

VSS VCC RST/VPD

XTALY l j_'
By

pet—
a -
o
[AT
XTAL2 @—a [PORTO
—pn
-
EA/VDD — [
—
PSEN wt—— ——
8051 =
8351 0"’ PORT 1
ALE/PROG <— 8751 e
ft—
RXD ——m] fa—a
TXD —
iNTo— s—on
INT1 —d :
POATI([
0 —— [\oont2
. fa—o
WA f—on
RD

Figure 1a. 8051 Microcomputer Pinout Diagram

1. INTRODUCTION

In 1976 Intel introduced the MCS-48"™ family. consisting
of the 8048, 8748, and 8035 microcomputers. These parts
marked the first time a complete microcomputer system,
including an eight-bit CPU. 1024 8-bit words of ROM
or EPROM program memory. 64 words of data memory,
[O ports and an eight-bit timer:counter could be inte-
grated onto a single silicon chip. Depending only on the
program memory contents, one chip could control a
limitless variety of products, ranging from appliances or
automobile engines to text or data processing equipment.
Follow-on products stretched the MCS-48™ architecture
in several directions: the 8049 and 8039 doubled the
amount of on-chip memory and ran 839 faster; the 8021
reduced costs by executing a subset of the 8048 instruc-
tions with a somewhat slower clock: and the 8022 put a
unique two-channel 8-bit analog-to-digital converter on
the same NMOS chip as the computer, letting the chip
interface directly with analog transducers.

Now three new high-performance single-chip microcom-
puters -the Intel® 8051, 8751, and 8031—extend the
advantages of Integrated Electronics to whole new prod-
uct areas. Thanks to Intel's new HMOS technology . the
MCS-51™ family provides four wives the program
memory and twice the data memory as the 8048 on a
single chip. New 1/O and peripheral capabilities both
increase the range of applicability and reduce total system
cost. Depending on the use. processing throughput
increases by two and one-half to ten times.

This Application Note is intended to introduce the reader
to the MCS-51™ architecture and features. While it does
not assume intimacy with the MCS-48™ product line on
the part of the reader, he she should be familiar with

Figure 1b. 8051 Microcomputer Logic Symbol

some microprocessor (preferably Intel’s, of course) or
have a background in computer programming and digital
logic.

Family Overview

Pinout diagrams for the 8051, 8751, and 8031 are shown
in Figure 1. The devices include the following features:

® Single-supply 5 volt operation using HMOS tech-

nology.

4096 bytes program memory on-chip (not on 8031).

128 bytes data memory on-chip.

Four register banks.

128 User-defined software flags.

64 Kilobytes each program and external RAM

addressability.

® One microsecond instruction cycle with 12 MHz

crystal.

® 32 bidirectional 1/O lines organized as four 8-bit

ports (16 lines on 8031).

Multiple mode. high-speed programmable Serial

Port.

Two multiple mode, 16-bit Timer/ Counters.

Two-level prioritized interrupt structure.

Full depth stack for subroutine return linkage and

data storage.

Augmented MCS-48™ instruction set.

Direct Byte and Bit addressability.

Binary or Decimal arithmetic.

Signed-overflow detection and parity computation.

Hardware Multiple and Divide in 4 usec.

Integrated Boolean Processor for control applica-

tions.

® Upwardly compatible with existing 8048 software.
AFN-01502A-04

intgl.

All three devices come in a standard 40-pin Dual In-
Line Package. with the same pin-out, the same timing,
and the same electrical characteristics. The primary
difference between the three is the on-chip program
memory —different types are offered to satisfy differing
user requirements.

The 8751 provides 4K bytes of ultraviolet-Erasable,
Programmable Read Only Memory (EPROM) for
program development, prototyping, and limited pro-
duction runs. (By convention, 1K means 2''= 1024.
Ik—with a lower case “k”—equals 10*=1000.) This part
may be individually programmed for a specific applica-
tion using Intel’'s Universal PROM Programmer (UPP).
If software bugs are detected or design specifications
change the same part may be “erased” in a matter of
minutes by exposure to ultraviolet light and repro-
grammed with the modified code. This cycle may be
repeated indefinitely during the design and development
phase.

The final version of the software must be programmed
into a large number of production parts. The 8051 has
4K bytes of ROM which are mask-programmed with the
customer’s order when the chip is built. This part is con-
siderably less expensive, but cannot be erased or altered
after fabrication.

The 8031 does not have any program memory on-chip,
but may be used with up to 64K bytes of external standard
or multiplexed ROMs, PROMs, or EPROMs. The 8031
fits well in applications requiring significantly larger or
smaller amounts of memory than the 4K bytes provided
by its two siblings.

(The 8051 and 875! automatically access external pro-
gram memory for all addresses greater than the 4096 bytes
on-chip. The External Access input is an override for
all internal program memory—the 8051 and 8751 will
each emulate an 8031 when pin 31 is low.)

Throughout this Note, “8051™ is used as a generic term.
Unless specifically stated otherwise, the point applies
equally to all three components. Table | summarizes the
quantitative differences between the members of the
MCS-48™ and MCS-51™ families.

™

The remainder of this Note discusses the various MCS-5
features and how they can be used. Software and/or hard-

AP-69

ware application examples illustrate many of the concepts.
Several isolated tasks (rather than one complete system
design example) are presented in the hope that some of
them will apply to the reader’s experiences or needs.

A document this short cannot detail all of a computer
system’s capabilities. By no means will all the 8051 instruc-
tions be demonstrated; the intent is to stress new or
unique MCS-51™ operations and instructions generally
used in conjunction with each other. For additional hard-
ware information refer to the Intel MCS-51™ Family
User’s Manual, publication number 121517. The assembly
language and use of ASMSI, the MCS-51™ assembler,
are further described in the MCS-51™ Macro Assembler
User’s Guide, publication number 9800937.

The next section reviews some of the basic concepts
of microcomputer design and use. Readers familiar
with the 8048 may wish to skim through this section
or skip directly to the next, “ARCHITECTURE AND
ORGANIZATION.”

Microcomputer Background Concepts

Most digital computers use the binary (base 2) number
system internally. All variables, constants, alphanumeric
characters, program statements, etc., are represented by
groups of binary digits (“bits”), each of which has the
value 0 or |. Computers are classified by how many bits
they can move or process at a time.

The MCS-51™ microcomputers contain an eight-bit
central processing unit (CPU). Most operations process
variables eight bits wide. All internal RAM and ROM,
and virtually all other registers are also eight bits wide.
An eight-bit (“byte™) variable (shown in Figure 2) may
assume one of 2% = 256 distinct values, which usually
represent integers between 0 and 255. Other types of
numbers, instructions, and so forth are represented by
one or more bytes using certain conventions.

For example, to represent positive and negative values,
the most significant bit (D7) indicates the sign of the other
seven bits—O0 if positive, | if negative—allowing integer
variables. between -128 and +127. For integers with
extremely large magnitudes, several bytes are manipu-
lated together as “multiple precision™ signed or unsigned
integers— 16, 24, or more bits wide.

Table 1. Features of Intel's Single-Chip Microcomputers

EPROM ROM External | Program Data Instr. Input/

Program | Program | Program | Memory Memory Cycle Output Interrupt Reg.
Memory | Memory | Memory | (Int/Max) | (Bytes) Time Pins Sources Banks

8021 - 1K 1K 64 8.4 uSec 21 0 1

B 8022 — 2K 2K 64 8.4 uSec 28 2 1

8748 8048 8035 IK 4K 64 2.5 uSec 27 2 2

8049 8039 2K 4K 128 1.36 pSec 27 2 2

8751 8051 8031 4K 64K 128 1.0 p«Sec 32 5 4

AFN-01502A-05

AP-69

The letters “MCS” have traditionally indicated
a system or family of compatible Intel® micro-
computer components, including CPUs, mem-
ories, clock generators, 1/0 expanders, and so
forth. The numerical suffix indicates the micro-
processor or microcomputer which serves as
the cornerstone of the family. Microcomputers
in the MCS-48™ family currently include the
8048-series (8035, 8048, & 8748), the 8049-series
(8039 & 8049), and the 8021 and 8022; the
family also includes the 8243, an 1/0 expander
compatible with each of the microcomputers.
Each computer's CPU is derived from the 8048,
with essentially the same architecture, address-
ing modes, and instruction set, and a single
assembler (ASM48) serves each.

The first members of the MCS-51™ family are
the 8051, 8751, and 8031. The architecture of
the 8051-series, while derived from the 8048,
is not strictly compatible; there are more
addressing modes, more instructions, larger
address spaces, and a few other hardware dif-
ferences. In this Application Note the letters
“MCS-51" are used when referring to archi-
tectural features of the 8051-series—features
which would be included on possible future
microcomputers based on the 8051 CPU. Such
products could have different .amounts of
memory (as in the 8048/8049) or different
peripheral functions (as in the 8021 and 8022)
while leaving the CPU and instruction set
intact. ASM51 is the assembler used by all
microcomputers in the 8051 family.

Two digit decimal numbers may be “packed” in an eight-
bit value, using four bits for the binary code of each digit.
This is called Binary-Coded Decimal (BCD) representa-
tion, and is often used internally in programs which
interact heavily with human beings.

Alphanumeric characters (letters, numbers, punctuation
marks, etc.) are often represented using the American
Standard Code for Information Interchange (ASCII)
convention. Each character is associated with a unique
seven-bit binary number. Thus one byte may represent

Lol fofsJolofols]

6 os 4 D3 2 01 [

Figure 2. Representation of Bits Within an Eight-Bit
“Byte” (Value shown = 01010001 Binary =
81 decimal).

intgl.

a single character, and a word or sequence of letters may
be represented by a series (or “string”™) of bytes. Since the
ASCl1I code only uses 128 characters. the most significant
bit of the byte is not needed to distinguish between char-
acters. Often D7 is set to 0 for all characters. In some
coding schemes, D7 is used to indicate the “parity” of the
other seven bits—set or cleared as necessary to ensure
that the total number of “1™ bits in the eight-bit code is
even (“even parity”) or odd (“odd parity™). The 8051
includes hardware to compute parity when it is needed.

A computer program consists of an ordered sequence of
specific, simple steps to be executed by the CPU one-at-
a-time. The method or sequence of steps used collectively
to solve the user's application is called an “algorithm."

The program is stored inside the computer as a sequence
of binary numbers, where each number corresponds to
one of the basic operations (“opcodes”) which the CPU
is capable of executing. In the 8051. each program
memory location is one byte. A complete instruction
consists of a sequence of one or more bytes. where the
first defines the operation to be executed and additional
bytes (if needed) hold additional information, such as
data values or variable addresses. No instruction is longer
than three bytes.

The way in which binary opcodes and modifier bytes are
assigned to the CPU’s operations is called the computer’s
“machine language” Writing a program directly in
machine language is time-consuming and tedious. Human
beings think in words and concepts rather than encoded
numbers, so each CPU operation and resource is given a
name and standard abbreviation (“*mnemonic”). Programs
are more easily discussed using these standard mnemonics,
or “assembly language.” and may be typed into an Intel®
Intellec® 800 or Series 11® microcomputer development
system in this form. The development system can mechan-
ically translate the program from assembly language
“source™ form to machine language “object™ code using a
program called an “assembler.” The MCS-51™ assembler
is called ASM5I.

There are several important differences between a com-
puter’s machine language and the assembly language used
as a tool to represent it. The machine language or instruc-
tion set is the set of operations which the CPU can
perform while a program is executing (“at run-time™), and
is strictly determined by the microcomputer hardware
design.

The assembly language is a standard (though more-or-
less arbitrary) set of symbols including the instruction set
mnemonics, but with additional features which further
simplify the program design process. For example,
ASMSI has controls for creating and formatting a pro-
gram listing. and a number of directives for allocating
variable storage and inserting arbitrary bytes of data into
the object code for creating tables of constants.
AFN-01502A-06

intgl.

In addition, ASMS51 can perform sophisticated mathe-
matical operations, computing addresses or evaluating
arithmetic expressions to relieve the programmer from
this drudgery. However, these calculations can only use
information known at “assembly time.”

For example, the 8051 performs arithmetic calculations
at run-time, eight bits at a time. ASM5I can do similar
operations 16 bits at a time. The 8051 can only do one
simple step per instruction, while ASMS!1 can perform
complex calculations in each line of source code. How-
ever, the operations performed by the assembler may only
use parameter values fixed at assembly-time, not variables
whose values are unknown until program execution
begins.

For example, when the assembly language source line,
ADD A#LOOP_COUNT+1)*3

is assembled, ASMS5I1 will find the value of the pre-
viously-defined constant “LOOP_COUNT" in an internal
symbol table, increment the value, multiply the sum by
three, and (assuming it is between -256 and 255 inclusive)
truncate the product to eight bits. When this instruction
is executed, the 8051 ALU will just add that resulting
constant to the accumulator.

Some similar differences exist to distinguish number
system (“radix™) specifications. The 805! does all com-
putations in binary (though there are provisions for then
converting the result to decimal form). In the course of
writing a program, though, it may be more convenient
to specify constants using some other radix, such as base
10. On other occasions, it is desirable to specify the ASCII
code for some character or string of characters without
refering to tables. ASMS51 allows several representations
for constants, which are converted to binary as each
instruction is assembled.

For example, binary numbers are represented in the

AP-69

assembly language by a series of ones and zeros
(naturally), followed by the letter “B” (for Binary); octal
numbers as a series of octal digits (0-7) followed by the
letter “O™ (for Octal) or “Q™ (which doesn't stand for any-
thing, but /looks sort of like an “O” and is less likely
to be confused with a zero).

Hexadecimal numbers are represented by a series of hexa-
decimal digits (0-9,A-F), followed by (you guessed it) the
letter “H.” A “hex” number must begin with a decimal
digit; otherwise it would look like a user-defined symbol
(to be discussed later). A “dummy” leading zero may be
inserted before the first digit to meet this constraint. The
character string “BACH” could be a legal label for a
Baroque music synthesis routine; the string *0BACH" is
the hexadecimal constant BAC,.. This is a case where
adding 0 makes a big difference.

Decimal numbers are represented by a sequence of decimal
digits, optionally followed by a “D." If a number has no
suffix, it is assumed to be decimal—so it had better not
contain any non-decimal digits. “OBAC™ is not a legal
representation for anything.

When an ASCH code is needed in a program, enclose the
desired character between two apostrophes (as in *#') and
the assembler will convert it to the appropriate code (in
this case 23H). A string of characters between apos-
trophes is translated into a series of constants; 'BACH’
becomes 42H, 41H, 43H, 48H.

These same conventions are used throughout the asso-
ciated Intel documentation. Table 2 illustrates some of the
different number formats.

2. ARCHITECTURE AND ORGANIZATION

Figure 3 blocks out the MCS-51™ internal organization.
Each microcomputer combines a Central Processing
Unit, two kinds of memory (data RAM plus program
ROM or EPROM), Input/Output ports, and the mode,

Table 2. Notations Used to Represent Numbers

Hexa- Signed

Bit Pattern Binary Octal Decimal Decimal Decimal
00000000 0B 0Q 00H 0 0
00000001 1B 1Q 0lH 1 +1
00000111 1HiB 7Q 07H 7 T4
00001000 1000B 10Q 08H 8 +8
00001001 1001B 11Q 09H 9 +9
00001010 1010B 12Q 0AH 10 +10
00001111 1B 17Q OFH 15 +15
00010000 10000B 20Q 10H 16 +16
SEERERE 11111B 177Q 7FH 127 +127
10000000 10000000B 200Q 80H 128 -128
10000001 10000001B 201Q 81H 129 -127
e 1111110B 376Q OFEH 254 2
rrririn IT111111B 377Q OFFH 255 -1

AFN-01502A-07

AP-69

3

r_
- |

P2 LATCH
PORT 2

‘ 128X 8 K X8 PCH|DPH T
RAM ROM pcL|oPL

| ram sueren | [sense amps | PoraTon

W il

PORT 1
P1LATCH

R
PLA
CONTROL
INTERNAL BUS
PO LATCH SCON TCON IE P3 LATCH
PORT 0 SBUF (REC) TMOD P [PorT3s]
SBUF (XMIT) TLO INTERRUPT
SERIAL THO CONTROL
PORT ETE)
TH1
TIMER
CONTROL

Figure 3. Block Diagram of 8051 Internal Structure

status. and data registers and random logic needed for
a variety of peripheral functions. These elements com-
municate through an eight-bit data "bus which runs
throughout the chip, somewhat akin to indoor plumbing.
This bus is buffered to the outside world through an IO
port when memory or I/O expansion is desired.

Let’s summarize what each block does; later chapters dig
into the CPU’s instruction set and the peripheral registers
in much greater detail.

Central Processing Unit

The CPU is the “brains” of the microcomputer, reading
the user's program and executing the instructions stored
therein. Its primary elements are an eight-bit Arithmetic/
Logic Unit with associated registers A, B, PSW, and SP,

and the sixteen-bit Program Counter and “Data Pointer”

registers.

fscon]
ShUF (RECT
SO0F T

AFN-01502A-08

intgl.

Arithmetic Logic Unit

The ALU can perform (as the name implies) arithmetic
and logic functions on eight-bit variables. The former
include basic addition, subtraction, multiplication, and
division; the latter include the logical operations AND,
OR, and Exclusive-OR, as well as rotate, clear, comple-
ment, and so forth. The ALU also makes conditional
branching decisions, and provides data paths and tem-
porary registers used for data transfers within the system.
Other instructions are built up from these primitive func-
tions: the addition capability can increment registers or
automatically compute program_ destination addresses;
subtraction is also used in decrementing or comparing the
magnitude of two variables.

These primitive operations are automatically cascaded
and combined with dedicated logic to build complex
instructions such as incrementing a sixteen-bit register
pair. To execute one form of the compare instruction, for
example, the 8051 increments the program counter three
times, reads three bytes of program memory, computes a
register address with logical operations, reads internal
data memory twice, makes an arithmetic comparison of
two variables, computes a sixteen-bit destination address,
and decides whether or not to make a branch—all in two
microseconds!

An important and unique feature of the MCS-51 archi-
tecture is that the ALU can also manipulate one-bit as
well as eight-bit data types. Individual bits may be set,
cleared. or complemented, moved, tested. and used in
logic computations. While support for a more primitive
data type may initially seem a step backwards in an era
of increasing word length, it makes the 8051 especially
well suited for controller-type applications. Such algo-
rithms inherently involve Boolean (true/false) input
and output variables, which were heretofore difficult to
implement with standard microprocessors. These features
are collectively referred to as the MCS-51™ “Boolean
Processor,” and are described in the so-named chapter
to come.’

Thanks to this powerful ALU, the 8051 instruction set
fares well at both real-time control and data intensive
algorithms. A total of 51 separate operations move and
manipulate three data types: Boolean (1-bit). byte (8-bit),
and address (16-bit). All told, there are eleven addressing
modes-—seven for data, four for program sequence con-
trol (though only eight are used by more than just a few
specialized instructions). Most operations allow several
addressing modes, bringing the total number of instruc-
tions (operation/addressing mode combinations) to 11,
encompassing 255 of the 256 possible eight-bit instruc-
tion opcodes.

Instruction Set Overview

Table 4 lists these 111 instructions classified into five
groups:

AP-69

Arithmetic Operations

Logical Operations for Byte Variables
Data Transfer Instructions

Boolean Variable Manipulation

Program Branching and Machine Control

e & o o o

MCS-48™ programmers perusing Table 4 will notice the
absence of special categories for Input/Output, Timer/
Counter, or Control instructions. These functions are all
still provided (and indeed many new functions are added),
but as special cases of more generalized operations in
other categories. To explicitly list all the useful instruc-
tions involving 1/0 and peripheral registers would require
a table approximately four times as long.

Observant readers will also notice that all of the 8048's
page-oriented instructions (conditional jumps, JMPP,
MOVP, MOVP3) have been replaced with corresponding
but non-paged instructions. The 8051 instruction set is
entirely non-page-oriented. The MCS-48™ “MOVP”
instruction replacement and all conditional jump instruc-
tions operate relative to the program counter, with the
actual jump address computed by the CPU during instruc-
tion execution. The “MOVP3" and “JMPP” replacements
are now made relative to another sixteen-bit register.
which allows the effective destination to be anywhere in
the program memory space, regardless of where the
instruction itself is located. There are even three-byte
jump and call instructions allowing the destination to be
anywhere in the 64K program address space.

The instruction set is designed to make programs efficient
both in terms of code size and execution speed. No
instruction requires more than three bytes of program
memory, with the majority requiring only one or two
bytes. Virtually all instructions execute in either one or
two instruction cycles—one or two microseconds with
a 12-MHz crystal—with the sole exceptions (multiply
and divide) completing in four cycles.

Many instructions such as arithmetic and logical func-
tions or program control, provide both a short and a long
form for the same operation. allowing the programmer
to optimize the code produced for a specific application.
The 8051 usually fetches two instruction bytes per instruc-
tion cycle. so using a shorter form can lead to faster
execution as well.

For example, any byte of RAM may be loaded with a
constant with a three-byte, two-cycle instruction, but the
commonly used “working registers™ in RAM may be
initialized in one cycle with a two-byte form. Any bit
anywhere on the chip may be set, cleared. or comple-
mented by a single three-byte logical instruction using
two cycles. But critical control bits, 1/O pins, and soft-
ware flags may be controlled by two-byte, single cycle
instructions. While three-byte jumps and calls can “go
anywhere” in program memory, nearby sections of code
may be reached by shorter relative or absolute versions.

AFN-01502A-09

AP-69 |n
®

] e Symbol Position Name and Significance

I d ! Ac l Fo | Rst I RS0 l ov l _ I P I ov PSW.2 Overflow flag.

. o Set/cleared by hardware during arith-

Symbol Position Name and Significance metic instructions to indicate overflow

CY PSW.7 Carry flag. conditions.

Set/cleared by hardware or software
during certain arithmetic and logical — PSW.1 (reserved)
instructions.

P PSW.0 Parity flag.

AC PSW.6 Auxiliary Carry flag. Set/cleared by hardware each instruc-
Set/cleared by hardware during addition tion cycle to indicate an odd/even
or subtraction instructions to indicate number of “one” bits in the accumu-
carry or borrow out of bit 3. lator, i.e., even parity.

FO PSW.5 Flag 0 Note— the contents of (RS1. RS0) enable the
Set/cleared/tested by software as a working register banks as follows:
user-defined status flag.

(0.0) --Bank 0 (00H-07H)

RSI PSW4 Register bank Select control bits | & 0. (0,1) -Bank | (08H-0FH})
Set/cleared by software to determine (1.0)—Bank 2 (10H-17H)

RS PSW.3 working register bank (see Note). (t.1) -Bank 3 (I8H-1FH)

Figure 4. PSW—Program Status Word Organization

A significant side benefit of an instruction set more
powerful than those of previous single-chip microcom-
puters is that it is easier to generate applications-oriented
software. Generalized addressing modes for byte and bit
instructions reduce the number of source code lines
written and debugged for a given application. This leads
in turn to proportionately lower software costs, greater
reliability, and faster design cycles.

Accumulator and PSW

The 8051, like its 8048 predecessor, is primarily an
accumulator-based architecture: an eight-bit register
called the accumulator (“A”) holds a source operand and
receives the result of the arithmetic instructions (addition,
subtraction, multiplication, and division). The accumula-
tor can be the source or destination for logical operations
and a number of special data movement instructions,
including table look-ups and external RAM expansion.
Several functions apply exclusively to the accumulator:
rotates, parity computation, testing for zero, and so on.

Many instructions implicitly or explicitly affect (or are
affected by) several status flags, which are grouped
together to form the Program Status Word shown in
Figure 4.

(The period within entries under the Position column is
called the “dot operator,” and indicates a particular bit
position within an eight-bit byte. “PSW.5" specifies bit 5
of the PSW. Both the documentation and ASMS51 use
this notation.)

The most “active” status bit is called the carry flag (abbre-
viated “C"). This bit makes possible multiple precision
arithmetic operations including addition, subtraction,

and rotates. The carry also serves as a “Boolean accumu-
lator” for one-bit logical operations and bit manipulation.
instructions. The overflow flag (OV) detects when arith-
metic overflow occurs on signed integer operands, making
two's complement arithmetic possible. The parity flag
(P) is updated after every instruction cycle with the even-
parity of the accumulator contents.

The CPU does not control the two register-bank select
bits, RS1 and RS0. Rather, they are manipulated by
software to enable one of the four register banks. The
usage of the PSW flags is demonstrated in the Instruc-
tion Set chapter of this Note.

Even though the architecture is accumulator-based, pro-
visions have been made to bypass the accumulator in
common instruction situations. Data may be moved from
any location on-chip to any register, address, or indirect
address (and vice versa), any register may be loaded with
a constant, etc., all without affecting the accumulator.
Logical operations may be performed against registers or
variables to alter fields of bits—without using or affecting
the accumulator. Variables may be incremented, decre-
mented, or tested without using the accumulator. Flags
and control bits may be manipulated and tested without
affecting anything else.

Other CPU Registers

A special eight-bit register (“B™) serves in the execution of
the multiply and divide instructions. This register is used
in conjunction with the accumulator as the second input
operand and to return eight-bits of the result.

The MCS-51 family processors include a hardware stack
within internal RAM, useful for subroutine linkage,
AFN-01502A-10

intgl.

passing parameters between routines, temporary variable
storage, or saving status during interrupt service routines.
The Stack Pointer (SP) is an eight-bit pointer register
which indicates the address of the last byte pushed onto
the stack. The stack pointer is automatically incremented
or decremented on all push or pop instructions and all
subroutine calls and returns. In theory, the stack in the
8051 may be up to a full 128 bytes deep. (In practice, even
simple programs would use a handful of RAM locations
for pointers, variables, and so forth—reducing the stack
depth by that number.) The stack pointer defaults to 7 on
reset, so that the stack will start growing up from location
8. just like in the 8048. By altering the pointer contents the
stack may be relocated anywhere within internal RAM.

Finally, a 16-bit register called the data pointer (DPTR)
serves as a base register in indirect jumps, table look-up
instructions, and external data transfers. The high- and
low-order halves of the data pointer may be manipulated
as separate registers (DPH and DPL, respectively) or
together using special instructions to load or increment
all sixteen bits. Unlike the 8048, look-up tables can there-
fore start anywhere in program memory and be of
arbitrary length.

&8 Ex

[Eor) |

SeRAL
PoRT

Memory Spaces

Program memory is separate and distinct from data
memory. Each memory type has a different addressing
mechanism, different control signals, and a different
function.

The program memory array (ROM or EPROM), like an
elephant, is extremely large and never forgets informa-
tion, even when power is removed. Program memory is
used for information needed each time power is applied:
initialization values, calibration constants, keyboard
layout tables, etc., as well as the program itself. The pro-
gram memory has a sixteen-bit address bus; its elements

AP-69

are addressed using the Program Counter or instructions
which generate a sixteen-bit address.

To stretch our analogy just a bit, data memory is like a
mouse: it is smaller and therefore quicker than program
memory, and it goes into a random state when electrical
power is applied. On-chip data RAM is used for variables
which are determined or may change while the program
is running.

A computer spends most of its time manipulating vari-
ables, not constants, and a relatively small number of
variables at that. Since eight-bits is more than sufficient
to uniquely address 128 RAM locations, the on-chip
RAM address register is only one byte wide. In contrast
to the program memory, data memory accesses need a
single eight-bit value—a constant or another variable—
to specify a unique location. Since this is the basic width
of the ALU and the different memory "types, those
resources can be used by the addressing mechanisms,
contributing greatly to the computer’s operating efficiency.

The partitioning of program and data memory is extended
to off-chip memory expansion. Each may be added
independently, and each uses the same address and data
busses, but with different control signals. External pro-
gram memory is gated onto the external data bus by the
PSEN (Program Store Enable) control output, pin 29.
External data memory is read onto the bus by the RD
output, pin 17, and written with data supplied from the
microcomputer by the WR output, pin 16. (There is no
control pin to write external program ROM, which is by
definition Read Only.) While both types may be expanded
to up to 64K bytes, the external data memory may
optionally be expanded in 256 byte “pages” to preserve
the use of P2 as an /O port. This is useful with a relatively
small expansion RAM (such as the Intel® 8155) or for
addressing external peripherals.

Single-chip controller programs are finalized during the
project design cycle, and are not modified after produc-
tion. Intel's single-chip microcomputers are not “von
Neumann” architectures common among main-frame
and mini-computer systems: the MCS-51™ processor
data memory—on-chip and external—may not be used
for program code. Just as there is no write-control signal
for program memory, there is no way for the CPU to
execute instructions out of RAM. In return, this con-
cession allows an architecture optimized for efficient
controller applications: a large, fixed program located in
ROM, a hundred or so variables in RAM, and different
methods for efficiently addressing each.

(Von Neumann machines are helpful for software develop-
ment and debug. An 8051 system could be modified to
have a single off-chip memory space by gating together
the two memory-read controls (PSEN and RD) with a
two-input AND gate (Figure 5). The CPU could then
write data into the common memory array using WR and

AFN-01502A-11

AP-69

VEWWR | 1o
MEMORY

l——
8051
AD :D_’ WERED | ARRAY
PSER

Figure 5. Combining External Program and Data
Memory Arrays

external data transfer instructions, and read instructions
or data with the AND gate output and data transfer or
program memory look-up instructions.)

In addition to the memory arrays, there is (yet) another
(albeit sparsely populated) physical address space. Con-
nected to the internal data bus are a score of special-
purpose eight-bit registers scattered throughout the chip.
Some of these—B, SP, PSW, DPH, and DPL--have
been discussed above. Others—I/O ports and peripheral
function registers—will be introduced in the following
sections. Collectively, these registers are designated as the
“special-function register” address space. Even the accu-
mulator is assigned a spot in the special-function register
address space for additional flexibility and uniformity.

Thus, the MCS-51™ architecture supports several distinct
“physical” address spaces, functionally separated at the
hardware level by different addressing mechanisms, read
and write control signals, or both:

® On-chip program memory;

e On-chip data memory;

e Off-chip program memory;

e Off-chip data memory;

e On-chip special-function registers.

What the programmer sees, though, are “logical” address
spaces. For example, as far as the programmer is
concerned, there is only one type of program memory,
64K bytes in length. The fact that it is formed by com-
bining on- and off-chip arrays (split 4K/60K on the 8051
and 8751) is “invisible™ to the programmer; the CPU
automatically fetches each byte from the appropriate
array, based on its address.

(Presumably, future microcomputers based on the
MCS-51™ architecture may have a different physical split,
with more or less of the 64K total implemented on-chip.
Using the MCS-48™ family as a precedent, the 8048’s 4K
potential program address space was split 1K/ 3K between
on- and off-chip arrays; the 8049's was split 2K/2K.)

Why go into such tedious details about address spaces?
The logical addressing modes are described in the Instruc-
tion Set chapter in terms of physical address spaces.
Understanding their differences now will pay off in under-
standing and using the chips later.

10

Input/Output Ports

The MCS-51™ 1/O port structure is extremely versatile.
The 8051 and 8751 each have 32 1/O pins configured as
four eight-bit parallel ports (PO, P1, P2, and P3). Each pin
will input or output data (or both) under software con-
trol, and each may be referenced by a wide repertoire of
byte and bit operations.

In various operating or expansion modes, some of these
1/0 pins are also used for special input or output func-
tions. Instructions which access external memory use
Port 0 as a multiplexed address/data bus: at the beginning
of an external memory cycle eight bits of the address are
output on PO; later data is transferred on the same eight
pins. External data transfer instructions which supply
a sixteen-bit address, and any instruction accessing
external program memory, output the high-order eight
bits on P2 during the access cycle. (The 8031 a/ways uses
the pins of PO and P2 for external addressing, but Pl and
P3 are available for standard 1/0.)

The eight pins of Port 3 (P3) each have a special function.
Two external interrupts, two counter inputs, two serial
data lines, and two timing control strobes use pins of P3
as described in Figure 6. Port 3 pins corresponding to
functions not used are available for conventional 1/0.

Even within a single port, 1/O functions may be combined
in many ways: input and output may be performed using
different pins at the same time, or the same pins at different
times; in parallel in some cases, and in serial in others; as
test pins, or (in the case of Port 3) as additional special
functions.

AFN-01502A-12

In ®

AP-69

(MSB) (LSB)
[T) [WR I hal] T0 I INT1 l INTOI TXDI RXD]
Symbol Position Name and Significance

RD P3.7

Read data control output. Active low
pulse generated by hardware when
external data memory is read.

WR P3.6 Write data control output. Active low
pulse generated by hardware when
external data memory is written.

T1 P3.5 Timer/counter ! external input or test
pin.

TO P34 Timer;counter 0 external input or test
pin.

Symbol Position Name and Significance

INTI P3.3 Interrupt 1 input pin. Low-level or
falling-edge triggered.

INTO P32 Interrupt 0 input pin. Low-level or
falling-edge triggered.

TXD P3.1 Transmit Data pin for serial port in
UART mode. Clock output in shift
register mode.

RXD P3.0 Receive Data pin for serial port in

UART mode. Data 1:O pin in shift
register mode.

Figure 6. P3—Alternate Special Functions of Port 3

Special Peripheral Functions

There are a few special needs common among control-
oriented computer systems:

® keeping track of elapsed real-time;

® maintaining a count of signal transitions;

e measuring the precise width of input pulses;

e communicating with other systems or people;

e closely monitoring asynchronous external events.
Until now, microprocessor systems needed peripheral
chips such as timer/counters, USARTS, or interrupt con-
trollers to meet these needs. The 8051 integrates all of
these capabilities on-chip!

Timer/Counters

There are two sixteen-bit multiple-mode Timer/Counters
on the 8051, each consisting of a “High™ byte (correspond-
ing to the 8048 “T™ register) and a low byte (similar to the
8048 prescaler, with the additional flexibility of being

software-accessible). These registers are called, naturally
enough, THO, TLO. THI. and TLI. Each pair may be
independently software programmed to any of a dozen
modes with a mode register designated TMOD (Figure
7). and controlled with register TCON (Figure 8).

The timer modes can be used to measure time intervals,
determine pulse widths, or initiate events, with one-micro-
second resolution, up to a maximum interval of 65,536
instruction cycles (over 65 milliseconds). Longer delays
may easily be accumulated through software. Configured
as a counter, the same hardware will accumulate external
events at frequencies from D.C. to 500 KHz, with up to
sixteen bits of precision.

Serial Port Interface

Each microcomputer contains a high-speed, full-duplex,
serial port which is software programmable to function
in four basic modes: shift-register 1/O expander, 8-bit
UART, 9-bit UART, or interprocessor communications
link. The UART modes will interface with standard 1/O
devices (e.g. CRTs, teletypewriters, or modems) at data
rates from 122 baud to 31 kilobaud. Replacing the
standard 12 MHz crystal with a 10.7 MHz crystal allows
110 baud. Even or odd parity (if desired) can be included
with simple bit-handling software routines. Inter-processor
communications in distributed systems takes place at 187
kilobaud with hardware for automatic address/data
message recognition. Simple TTL or CMOS shift registers
provide low-cost 1/O expansion at a super-fast | Mega-
baud. The serial port operating modes are controlled by
the contents of register SCON (Figure 9).

Interrupt Capability and Control

(Interrupt capability is generally considered a CPU
function. It is being introduced here since, from an appli-
cations point of view, interrupts relate more closely to
peripheral and system interfacing.)

AFN-01502A-13

11

AP-69 I n
®
(Mse) (Lse) M1 MO Operating Mode
I G""‘l cr I M l Mo lG‘TEl C’TT"“ r"" J 0 0 MCS-48 Timer. “TLX" serves as five-
- / bit prescaler.
TIMER 1 TIMER 0
0 | 16-bit timer:counter. “THx™ and “TLx"
are cascaded: there is no prescaler.
I 0 8-bit auto-reload timer counter. “THx"
holds a value which is to be reloaded
GATE Gating control. When set, Timer/counter into “TLx" each time it overflows.
“x" is enabled only while “INTX™ pin is . . . o
high and “TRx" control bit is set. When 1 ! (Timer 0) TLO is an eight-bit timer
cleared, timer/counter is enabled counter controlled by the
whenever “TRx" control bit is set. ;‘f‘"d“’d Timer 0 control
its.

c/T Timer or Counter Selector. Cleared for THO is an eight-bit timer
Timer operation (input from internal only controlled by Timer !
system clock). Set for Counter opera- control bits.
tion (input from “Tx” input pin). . .

1 1 (Timer 1) Timer-counter | stopped.
Figure 7. TMOD—Timer/Counter Mode Register
(MSB) {LSB)

12

I TF1 l YR11 TFO [YROTIEI W l IEO | 1o I

Symbol Position Name and Significance

TF1 TCON.7 Timer ! overflow Flag. Set by hardware
on timer/counter overflow. Cleared
when interrupt processed.

TR! TCON.6 Timer 1 Run control bit. Set/cleared
by software to turn timer/counter
on/off.

TFO TCON.S Timer 0 overflow Flag. Set by hardware
on timer/counter overflow. Cleared
when interrupt processed.

TRO TCON.4 Timer 0 Run control bit. Set/cleared by
software to turn timer/counter on/off.

Symbol Position

IEI

IT1

ITO

TCON.3

TCON.2

TCON.I

TCON.0

Name and Significance

Interrupt 1 Edge flag. Set by hardware
when external interrupt edge detected.
Cleared when interrupt processed.

Interrupt 1 Type control bit. Set cleared
by software to specify falling edge low
level triggered external interrupts.

Interrupt 0 Edge flag. Set by hardware
when external interrupt edge detected.
Cleared when interrupt processed.

Interrupt 0 Type control bit. Set cleared
by software to specify falling edge low
level iriggered external interrupts.

Figure 8. TCON—Timer/Counter Control/Status Register

AFN-01502A-14

intgl.

AP-69

(MsB) (LSB)
ISMOISMIISMZ[REN[TBQ'RBSl m l Rl I

Symbol Position Name and Significance

SMo0 SCON.7 Serial port Mode control bit 0.
Set/cleared by software (see note).

SMI SCON.6 Serial port Mode control bit |.
Set/cleared by software (see note).

SM2 SCON.5 Serial port Mode control bit 2. Set by
software to disable reception of frames
for which bit 8 is zero.

REN SCON.4 Receiver Enable control bit. Set/cleared

by software to enable/disable serial

data reception.

TB8 SCON.3 Transmit Bit 8. Set/cleared by hard-
ware to determine state of ninth data
bit transmitted in 9-bit UART mode.

Symbol Position Name and Significance

RB8 SCON.2 Receive Bit 8. Set/cleared by hardware
to indicate state of ninth data bit
received.

Tl SCON.1 Transmit Interrupt flag. Set by hard-

ware when byte transmitted. Cleared

by software after servicing.

R1 SCON.0 Received Interrupt flag. Set by hard-
ware when byte received. Cleared by
software after servicing.

Note— the state of (SM0.SMI) selects:
(0.0)—Shift register 1:O expansion.
(0.1)—8 bit UART, variable data rate.
(1,.0)—9 bit UART, fixed data rate.
(1.1)-—9 bit UART, variable data rate.

Figure 9. SCON—Serial Port Control/Status Register

These peripheral functions allow special hardware to
monitor real-time signal interfacing without bothering
the CPU. For example, imagine serial data is arriving from
one CRT while being transmitted to another, and one
timer/counter is tallying high-speed input transitions
while the other measures input pulse widths. During all
of this the CPU is thinking about something else.

But how does the CPU know when a reception, transmis-
sion, count, or pulse is finished? The 8051 programmer
can choose from three approaches.

TCON and SCON contain status bits set by the hardware
when a timer overflows or a serial port operation is com-
pleted. The first technique reads the control register into
the accumulator, tests the appropriate bit, and does a
conditional branch based on the result. This “polling”
scheme (typically a three-instruction sequence though
additional instructions to save and restore the accu-
mulator may sometimes be needed) will surely be
familiar to programmers used to multi-chip microcom-
puter systems and peripheral controller chips. This
process is rather cumbersome, especially when monitoring
multiple peripherals.

As a second approach, the 8051 can perform a conditional
branch based on the state of any control or status bit or
input pin in a single instruction; a four instruction
sequence could poll the four simultaneous happenings
mentioned above in just eight microseconds.

Unfortunately, the CPU must still drop what it’s doing
to test these bits. A manager cannot do his own work
well if he is continuously monitoring his subordinates;
they should interrupt him (or her) only when they need
attention or guidance. So it is with machines: ideally, the
CPU would not have to worry about the peripherals until
they require servicing. At that time, it would postpone the

background task long enough to handle the appropriate
device, then return to the point where it left off.

This is the basis of the third and generally optimal solu-
tion, hardware interrupts. The 8051 has five interrupt
sources: one from the serial port when a transmission or
reception is complete, two from the timers when over-
flows occur, and two from input pins INTO and INTI.
Each source may be independently enabled or disabled
to allow polling on some sources or at some times, and
each may be classified as high or low priority. A high
priority source can interrupt a low priority service
routine; the manager’s boss can interrupt conferences
with subordinates. These options are selected by the inter-
rupt enable and priority control registers, IE and IP
(Figures 10 and 11).

Each source has a particular program memory address
associated with it (Table 3), starting at 0003H (as in the
8048) and continuing at <ight-byte intervals. When an
event enabled for interrupts occurs the CPU automatically
executes an internal subroutine call to the corresponding
address. -A user subroutine starting at this location (or
jumped to from this location) then performs the instruc-
tions to service that particular source. After completing
the interrupt service routine, execution returns to the
background program.

Table 3. 8051 Interrupt Sources and Service Vectors

Interrupt Service Routine

Source Starting Address
(Reset) 0000H
External 0 0003H
Timer/ Counter 0 000BH
External | 0013H
Timer/ Counter | 001BH
Serial Port 0023H

AFN-01502A-15

13

AP-69 |n .

(MSB) (LSB)
I EAI —T - l ES IET1[EXJEYO[EXO
Symbol Position Name and Significance Symbol Position Name and Significance
EA IE.7 Enable All control bit. Cleared by EX1 IE.2 Enable External interrupt | control bit.
software to disable all interrupts, Set cleared by software to enable
independent of the state of 1E.4-1E.0. disable interrupts from INTL.
— IE.6 (reserved) ETO IE.1 Enable Timer 0 control bit. Set cleared
— IE.S (reserved) by software to enable disable interrupts
from timer counter 0
ES IE.4 Enable Serial port control bit.
Set/cleared by software to enable EX0 1E.0 Enable External interrupt 0 control bit.
disable interrupts from TI or Rl flags. Set cleared by software to enable
disable interrupts from INTO.
ETI IE.3 Enable Timer | control bit. Set/cleared

by software to enable/disable interrupts
from timer/counter 1.

Figure 10. IE—Interrupt Enable Register

(MSB) (L5B)

I-1-1 —]Ps]rn]rnlproLPxo]

Symbol Position Name and Significance Symbol Position Name and Significance

— 1P.7 (reserved) PXl1 IP.2 External interrupt 1 Priority control

— IP.6 (reserved) bit. Set cleared by software to specify

— IP.5 (reserved) high low priority interrupts for INTI.

PS IP.4 Serial port Priority control bit. PTO IP.1 Timer 0 Priority control bit.
Set/cleared by software to specify Set cleared by software to specify
high/low priority interrupts for Serial high low priority interrupts for
port. timer counter 0.

PTI 1P.3 Timer | Priority control bit. PX0 1P.0 External interrupt 0 Priority control
Set/cleared by software to specify bit. Set cleared by software to specify
high/low priority interrupts for high low priority interrupts for INTO.

timer/counter .

Figure 11. IP—Interrupt Priority Control Register

AFN-01502A-16

14

In ®

AP-69

Table 4. MCS-51™ Instruction Set Description

ARITHMETIC OPERATIONS

LOGICAL OPERATIONS

DATA TRANSFER

Mnemonic Description Byte Cyc
ADD A.Rn Add register 1o Accumulator 1 1
ADD Adirect Add direct byte to Accumulator 21
ADD A.@Ri Add indirect RAM to Accumulator t !
ADD Azdata Add immediate data to Accumulator 2 1
ADDC ARn Add register to Accumulator with Carry 1 1
ADDC A direct Add direct byte to A with Carry flag 21
ADDC A @Ri Add indirect RAM to A with Carry flag | t
ADDC A #data Add immediate data 1o A with Carry flag 2 |
SUBB ARn Subtract register from A with Borrow | |
SUBB Addirect Subtract direct byte from A with Borrow 2 |
SUBB A@Ri Subtract indirect RAM from A w Borrow | |
SUBB A.rdata Subtract immed. data from A w Borrow 2 !
INC Increment Accumulator | i
INC Rn Increment register 1 1
INC direct Increment direct byte 2 |
INC @Ri Increment indirect RAM 1 i
DEC A Decrement Accumulator | |
DEC Rn Decrement register | 1
DEC direct Decrement direct byte 2 !
DEC @R Decrement indirect RAM ! 1
INC DPTR Increment Data Pointer 1 2
MUL AB Multiply A & B 14
DIV AB Divide A by B 14
DA A Decimal Adjust Accumulator ! i

Munemonic Destination Byte Cyc
ANIL ARn AND register to Accumulator 1 1
ANL A.direct AND direct byte to Accumulator 2 1
ANI A.@Ri AND indirect RAM 10 Accumulator 1 |
ANI A #data AND immediate data to Accumulator 2 !
ANL direct. A AND Accumulator to direct byvte 2 1
ANI direct. #data AND immediate data to direct byte 3 2
OR1 ARn OR register to Accumulator 1 |
ORL. Adirect OR direct byte to Accumulator 2 1
ORIl A.@Ri OR indirect RAM to Accumulator | 1
ORI A #data OR immediate data to Accumulator 2 1
ORI direct. A OR Accumulator to direct byte 2 |
ORI direct #data OR immediate data to direct byte) 2
XR| A.Rn Exclusive-OR register to Accumulator | |
XRI1. A.direct Exclusive-OR direct byte to Accumulator 2 |
XRIL A.@Ri Exclusive-OR indirect RAM 10 A | i
XRI. A #data Exclusive-OR immediate data 1o A 2 |
XRI1 direct. A Exclusive-OR Accumulator to direct byte 2 1
XR1. direct.#data Exclusive-OR immediate data to direct 32
CIR A Clear Accumulator | i
CPL A Complement Accumulator I I
RIL A Rotate Accumulator [eft I i
RIC A Rotate A [eft through the Carry flag | 1
RR A Rotate Accumulator Right | |
RRC A Rotate A Right through Carry flag | I
SWAP A Swap nibbles within the Accumulator I 1

Mnemonic Description Byte Cyc
MOV ARn Monve register to Accumalator (|
MOV Adirect Monve direct byte to Accumulator 2 |
MOV A@Ri Move indirect RAM to Accumulator 1 |
MOV Asdata Move immediate data to Accumulator 2 I
MOV RnA Move Accumulator to register ! |
MOV Radirect Move direct byte to register 2 2
MOV Rn.#tdata Move immediate data to register 2 I
MOV direct. A Move Accumulator to direct byte 2 I
MOV direct.Ra Move register to direct byte 2 2
MOV directdirect Monve direct byte 1o direct 3 2
MOV direct.@Ri Move indirect RAM to direct byte 2 2
MOV direct #data Move immediate data to direct byte 3 2
MOV . @Ri.A Move Accumulator to indirect RAM 1 i
MOV @Ridirect Move direct byte to indirect RAM 2 2
MOV @R #data Move immediate data 1o indirect RAM 2 1
MOV DPTR.#datalé 1.oad Data Pointer with a 16-bit constant 3 2

DATA TRANSFER (cont.)

Mnemonic Description Byte Cyc
MOVC A @A+DPTR Move Code byte relative to DPTR to A 1 2
MOVC A.@A+PC Move Code byte relative to PC 1o A | 2
MOVX A.@Ri Move External RAM (8-bit addr) to A | 2
MOVX A.@DPTR Move External RAM (16-bit addr) to A | 2
MOVX @Ri.A Move A to External RAM (8-bit addr) ! 2
MOVX @DPTR.A Move A to External RAM (16-bit addr) | 2
PUSH direct Push direct byte onto stack 2 2
POP direct Pop direct byte from stack 2 2
XCH ARn Exchange register with Accumulator I i
XCH Adirect Exchange direct byte with Accumulator 2 t
XCH A.@Ri Exchange indirect RAM with A 1 !
XCHD A.@Ri Exchange low-order Digit ind. RAM w A | 1
BOOLEAN VARIABLE MANIPULATION

Mnemonic Description Byte Cyc
CLR C Clear Carry flag ! |
CLR bit Clear direct bit 2
SETB Set Carry flag ro
SETB bit Set direct Bit 2 |
CPI C Complement Carry flag | |
CPI bit Complement direct bit 2 I
ANL C.hit AND direct bit to Carry flag 2 2
AN1 C. bi AND complement of direct bit to Carry 2 2
ORI C.bit OR direct bit to Carry flag 2 2
ORI C. bit OR complement of direct bit to Carry 2 2
MOV C.bit Move direct bit to Carry flag 2 1
MOV bit.C Move Carry flag to direct bit 2 2
PROGRAM AND MACHINE CONTROL

Mnemonic Description Byte Cyc
ACALL addrl! Absolute Subroutine Call 2 2
1L.CALL addrl6 Long Subroutine Call 3 2
RET Return from subroutine | 2
RETI Return from interrupt i 2
AIMP addrll Absolute Jump 2 2
LIMP addrlé Long Jum 3 2
SIMP rel Short Jump (relative addr) 2 2
IMP @A+DPIR Jump indirect relative to the DPTR i 2
1z rel Jump if Accumulator is Zero 2 2
INZ rel Jump if Accumulator is Not Zero 2 2
JC rel Jump if Carry flag is set 2 2
INC rel Jump if No Carry flag 2 2
JB bit.rel Jump if direct Bit set 3 2
INB bit.rel Jump if direct Bit Not set 3 2
JBC bit.rel Jump if direct Bit is set & Clear hit 3 2
CINE Adirect.rel Compare direct to A & Jump if Not Equal 3 2
CINE A #data.rel Comp. immed. to A & Jump if Not Equal 3} 2
CINE Rns#data.rel Comp. immed. to reg. & Jump il Not Equal 3} 2
CIJNE @Ri#datarel Comp. immed. to ind. & Jump if Not Equal 3 2
DINZ Rnurel Decrement register & Jump if Not Zero 2 2
DINZ irect.rel Decrement direct & Jump if Not Zero 3 2
NOP No operation | I

Notes on data addressing modes:

Rn Waorking register RO-R7

direct 128 internal RAM locations, any 1 O port. control or status register
@Ri Indirect internal RAM location addressed by register RO or R
sdata K-bit constant included in instruction

#datale 16-bit constant included as bytes 2 & 3 of instruction

bit 128 software flags. any 1 O pin. control or status bit

Notes on program addressing modes:

addr16 Destination address for LCALL & LIMP may be anywhere within
the 64-Kilobyte program memory address space.
addr1l Destination address for ACALL & AIJMP will be within the same

2-Kilobyte page of program memory as the first byte of the following
instruction

rel SIMP and all conditional jumps include an 8-bit offset byte. Range is
+127 -128 bytes relative 1o first byte of the lollowing instruction.

All mnemonics copyrighted © Intel Corporation 1979

3. INSTRUCTION SET AND ADDRESSING MODES

The 805! instruction set is extremely regular, in the sense
that most instructions can operate with variables from
several different physical or logical address spaces. Before
getting deeply enmeshed in the instruction set proper, it
is important to understand the details of the most
common data addressing modes. Whereas Table 4 sum-
marizes the instructions set broken down by functional

group, this chapter starts with the addressing mode
classes and builds to include the related instructions.

Data Addressing Modes

MCS-51 assembly language instructions consist of an
operation mnemonic and zero to three operands separated
by commas. In two operand instructions the destination
is specified first. then the source. Many byte-wide data

AFN-01502A-17

15

AP-69

operations (such as ADD or MOV) inherently use the
accumulator as a source operand and/or to receive the
result. For the sake of clarity the letter “A™ is specified in
the source or destination field in all such instructions.
For example, the instruction,

ADD A<source>

will add the variable<source>to the accumulator, leaving
the sum in the accumulator.

The operand designated “<source>" above may use any
of four common logical addressing modes:

e Register—one of the working registers in the cur-
rently enabled bank.

e Direct—an internal RAM location, /O port, or
special-function register.

e Register-indirect—an internal RAM location,
pointed to by a working register.

* Immediate data—an eight-bit constant incorporated
into the instruction.

The first three modes provide access to the internal RAM
and Hardware Register address spaces, and may therefore
be used as source or destination operands; the last mode
accesses program memory and may be a source operand
only.

(It is hard to show a “typical application™ of any instruc-
tion without involving instructions not yet described. The
following descriptions use only the self-explanatory ADD
and MOV instructions to demonstrate how the four
addressing modes are specified and used. Subsequent
examples will become increasingly complex.)

Register Addressing

The 8051 programmer has access to eight “working regis-
ters,” numbered RO-R7. The least-significant three-bits of
the instruction opcode indicate one register within this
logical address space. Thus, a function code and operand
address can be combined to form a short (one byte)
instruction (Figure 12.a).

The 8051 assembly language indicates register addressing
with the symbol Rn (where n is from 0 to 7) or with a
symbolic name previously defined as a register by the
EQUate or SET directives. (For more information on
assembler directives see the Macro Assembler Reference
Manual.)

Example | — Adding Two Registers Together

i REGADR ADD CONTENTS OF REGISTER 1
B TO CONTENTS OF REGISTER O

REGADR MOV A, RO

ADD A R1
MoV RO, A

There are four such banks of working registers, only one
of which is active at a time. Physically, they occupy the
first 32 bytes of on-chip data RAM (addresses 0-1FH).
PSW bits 4 and 3 determine which bank is active. A

16

intgl.

hardware reset enables register bank 0; to select a
different bank the programmer modifies PSW bits 4 and
3 accordingly.

Example 2—Selecting Alternate Memory Banks

mav PSW. #00010000B ; SELECT BANK 2

Register addressing in the 8051 is the same as in the 8048
family, with two enhancements: there are four banks
rather than one or two, and 16 instructions (rather than
12) can access them.

Direct Byte Addressing

Direct addressing can access any on-chip variable or
hardware register. An additional byte appended to the
opcode specifies the location to be used (Figure 12.b).

Depending on the highest order bit of the direct address
byte, one of two physical memory spaces is selected.
When the direct address is between 0 and 127 (0OH-7FH)
one of the 128 low-order on-chip RAM locations is used.
(Future microcomputers based on the MCS-51™ archi-
tecture may incorporate more than 128 bytes of on-chip
RAM. Even if this is the case. only the low-order 128
bytes will be directly addressable. The remainder would
be accessed indirectly or via the stack pointer.)

Example 3 — Adding RAM Location Contents
. DIRADR ADD CONTENTS OF RAM LOCATION 41H
. TO CONTENTS OF RAM LOCATION 40H
vDINADN MoV A. 40H
ADD A 41H
MOV 40H. A
All 1/0 ports and special function, control, or status
registers are assigned addresses between 128 and 255
(80H-OFFH). When the direct address byte is between
these limits the corresponding hardware register is
accessed. For example, Ports 0 and | are assigned direct
addresses 80H and 90H, respectively. A complete list is
presented in Table 5. Don’t waste your time trying to
memorize the addresses in Table 5. Since programs using
absolute addresses for function registers would be difficult
to write or understand, ASMS51 allows and understands
the abbreviations listed instead.

Example 4—Adding Input Port Data to Output Port
Data

i PRTADR ADD DATA INPUT ON PORT 1
. TO DATA PREVIOUSLY DUTPUT

ON PORT O
PRTADR MOV A.PO

ADD A PL

mav PO, A

Direct addressing allows all special-function registers in
the 8051 to be read, written, or used as instruction
operands. In general, this is the on/y method used for
accessing 1/0 ports and special-function registers. If direct
addressing is used with special-function register addresses
other than those listed, the result of the instruction is

undefined.
AFN-01502A-18

intgl.

The 8048 does not have or need any generalized direct
addressing mode, since there are only five special registers
(BUS, PI. P2, PSW, & T) rather than twenty. Instead, 16
special 8048 opcodes control output bits or read or write
each register to the accumulator. These functions are all
subsumed by four of the 27 direct addressing instructions
of the 8051.

Table 5. 8051 Hardware Register Direct Addresses

Register | Address Function
PO 8OH* Port 0
SP 81H Stack Pointer
DPL 82H Data Pointer (Low)
DPH 83H Data Pointer (High)
TCON 88H* Timer register
TMOD 89H Timer Mode register
TLO 8AH Timer 0 Low byte
I'et 8BH Timer | Low byte
THO 8CH Timer 0 High byte
THI 8DH Timer | High byte
Pi 90H* Port |
SCON 98H* Serial Port Control register
SBUF 99H Serial Port data Buffer
P2 0AOH* Port 2
IE 0A8H* Interrupt Enable register
P3 OBOH* Port 3
P 0B8H* Interrupt Priority register
PSW 0DOH* Program Status Word
ACC OEOH* Accumulator (direct address)
B OFOH* B register

"= hit addressable register.

Register-indirect Addressing

How can you handle variables whose locations in RAM
are determined, computed, or modified while the program
is running? This situation arises when manipulating
sequential memory locations. indexed entries within tables
in RAM. and multiple precision or string operations.
Register or Direct addressing cannot be used. since their
operand addresses are fixed at assembly time.

The 8051 solution is “register-indirect RAM addressing.”
RO and RI of each register bank may operate as index
or pointer registers, their contents indicating an address
into RAM. The internal RAM location so addressed is
the actual operand used. The least significant bit of the
instruction opcode determines which register is used as
the “pointer” (Figure 12.c).

In the 8051 assembly language, register-indirecc addressing
is represented by a commercial “at™ sign (*@") preceding
RO. R1. or a symbol defined by the user to be equal to
RO or RI.

Example 5 —Indirect Addressing

. INDADR ADD CONTENTS OF MEMORY LOCATION
. ADDRESSED BY REGISTER 1
TO CONTENTS OF RAM LOCATION
ADDRESSED BY REGISTER O

INDADR MOV A, @RO

ADD A, @R1
mMov @RO, A

AP-69

Indirect addressing on the 8051 is the same as in the
8048 family. except that all eight bits of the pointer register
contents are significant; if the contents point to a non-
existent memory location (i.e.. an address greater than
7FH on the 8051) the result of the instruction is undefined.
(Future microcomputers based on the MCS-51™ archi-
tecture could implement additional memory in the
on-chip RAM logical address space at locations above
7FH.) The 8051 uses register-indirect addressing for five
new instructions plus the 13 on the 8048.

Immediate Addressing

When a source operand is a constant rather than a vari-
able (i.e.—the instruction uses a value known at assembly
time), then the constant can be incorporated into the
instruction. An additional instruction byte specifies the
value used (Figure 12.d).

The value used is fixed at the time of ROM manufacture
or EPROM programming and may not be altered during
program execution. In the assembly language immediate
operands are preceded by a number sign (“#"). The
operand may be either a numeric string, a symbolic
variable, or an arithmetic expression using constants.

Example 6—Adding Constants Using Immediate
Addressing
» IMMADR ADD THE CONSTANT 12 (DECIMAL)
. TO THE CONSTANY 34 (DECIMAL)
LEAVE SUM IN ACCUMULATOR

IMMADR MOV A w12
ADD A, #34

The preceding example was included for consistency: it
has little practical value. Instead, ASM5! could compute
the sum of two constants at assembly time.

Example 7 —Adding Constants Using ASM5I
Capabilities
; ASMSUM LOAD ACC WITH THE SUM OF
v THE CONSTANT 12 (DECIMAL) AND
THE CONSTANT 34 (DECIMAL)

ASMSUM MOV A #(12+38)

a) Register Addressing:

1 T 1
l opcode] n] nn |
1 1 1 1
ADD AR n
b.) Direct Addressing:
T T T T T 1 T T T T T T T |l
opcode I direct address I
| 1 | 1 1 L 1 1 Il 1 1 1 1 1
ADD A, direct

c.) Register-indirect Addressing:

T T 1 1 T T
opcode P
IS T R W T |

ADD AGR i

d.) Immediale Addressing:

T 1 T 1 T 1 1 T T T 1 T T
opcode data
F IS W N W N N | OO T TSR S N S |
Al

ADD data

Figure 12. Data Addressing Machine Code Formats
AFN-01502A-19

17

AP-69

Addressing Mode Combinations

The above examples all demonstrated the use of the four
data-addressing modes in two-operand instructions
(MOV. ADD) which use the accumulator as one
operand. The operations ADDC, SUBB. ANL. ORL.
and XRL (all to be discussed later) could be substituted
for ADD in each example. The first three modes may be
also be used for the XCH operation or. in combination
with the Immediate Addressing mode (and an additional
byte). loaded with a constant. The one-operand
instructions INC and DEC, DJINZ. and CJNE may all
operate on the accumulator, or may specify the Register.
Direct. and Register-indirect addressing modes.
Exception: as in the 8048, DJNZ cannot use the
accumulator or indirect addressing. (The PUSH and
POP operations cannot inherently address the
accumulator as a special register either. However, all
three can direct/v address the accumulator as one of the
twenty special-function registers by putting the symbol
“ACC” in the operand field.)

Advantages of Symbolic Addressing

l.ike most assembly or higher-level programming
languages. ASM51 allows instructions or variables to be
given appropriate, user-defined symbolic names. This is
done for instruction lines by putting a label followed by a
colon (*:") before the instruction proper. as in the above
examples. Such symbols must start with an alphabetic
character (remember what distinguished BACH from
0OBACH?). and may include any combination of letters.
numbers, question marks (*7") and underscores (*_"). For
very long names only the first 31 characters are relevant.
Assembly language programs may intermix upper- and
lower-case letters arbitrarily, but ASMS5] converts both
to upper-case. For example. ASMS5! will internally
process an “1” for an “i"” and. of course.“A_TOOTH" for
“a_tooth.”

The underscore character makes symbols easier to read
and can climinate potential ambiguity (as in the label for
a subroutine to switch two entires on a stack,
“S_EXCHANGE™). The underscore is significant. and
would distinguish between otherwise-identical character
strings.
ASMSI allows all variables (registers, ports, internal or
external RAM addresses. constants, etc.) to be assigned
labels according to these rules with the EQUate or SET
directives.
Example 8---Symbolic Addressing of Variables
Defined as RAM Locations

VAR_O SET 201
vaR_1 SET 21H

. SYMB_! ADD CONTENTS OF VAR 1
. TO CONTENTS OF VAR O

SYMB_1 MOV A, VAR_O

ADD A VAR_1
MOV VAR_0, A

18

intgl.

Notice from Table 4 that the MCS-51™instruction set has
relatively few instruction mnemonics (abbreviations) for
the programmer to memorize. Different data types or
addressing modes are determined by the operands
specified. rather than variations on the mnemonic. For
example, the mnemonic “MOV™ is used by 18 different
instructions to operate on three data types (bit, byte. and
address). The fifteen versions which move byte variables
between the logical address spaces are diagrammed in
Figure 13. Each arrow shows the direction of transfer
from source to destination.

Notice also that for most instructions allowing register
addressing there is a corresponding direct addressing
instruction and vice versa. This lets the programmer
begin writing 8051 programs as if (s)he has access to 128
different registers. When the program has evolved to the
point where the programmer has a fairly accurate idea
how often each variable is used. he she may allocate the
working registers in each bank to the most “popular”
variables. (The assembly cross-reference option will show
exactly how often and where each symbol is referenced.)
If symbolic addressing is used in writing the source
program only the lines containing the symbol definition
will need to be changed: the assembler will produce the
appropriate instructions even though the rest of the
program is left untouched. Editing only the first two lines
of Example 8 will shrink the six-byte code segment
produced in half.

How are instruction sets “counted”? There is
no standard practice; different people assess-
ing the same CPU using different conventions
may arrive at different totals.

Each operation is then broken down according
to the different addressing modes (or com-
binations of addressing modes) it can accom-
modate. The “"CLR"” mnemonic is used by two
instructions with respect to bit variables (“CLR
C” and “CLR bit”) and once (“CLR A”) with
regards to bytes. This expansion yields the 111
separate instructions of Table 4.

The method used for the MCS-51# instruction
set first breaks it down into “operations”: a
basic function applied to asingle datatype. For
example, the four versions of the ADD instruc-
tion are grouped to form one operation —
addition of eight-bit variables. The six forms of
the ANL instruction for byte variables make up
a different operation; the two forms of ANL
which operate on bits are considered still
another. The MOV mnemonic is used by three
different operation classes, depending on
whether bit, byte, or 16-bit values are affected.
Using this terminology the 8051 can perform
51 different operations.

AFN-01502A-20

ACCUMULATOR

IMMEDlATE
(*CONST)

Figure 13. Road map for moving data bytes

Example 9—Redeclaring Example 8 Symbols as

Registers
VAR_O SET RO
VAR_1 SET R1

L SYMB_2 ADD CONTENTS OF VAR_t
B TO CONTENTS OF VAR _O

SYMB_2 MOV A, VAR_O

ADD A VAR_1
MOV VAR_0. A

Arithmetic Instruction Usage — ADD, ADDC, SUBB
and DA

The ADD instruction adds a byte variable with the
accumulator, leaving the result in the accumulator. The
carry flag is set if there is an overflow from bit 7 and
cleared otherwise. The AC flag is set to the carry-out
from bit 3 for use by the DA instruction described later.
ADDC adds the previous contents of the carry flag with
the two byte variables, but otherwise is the same as ADD.

The SUBB (subtract with borrow) instruction subtracts
the byte variable indicated and the contents of the carry
flag together from the accumulator. and puts the result
back in the accumulator. The carry flag serves as a
“Borrow Required” flag during subtraction operations;
when a greater value is subtracted from a lesser value (as
in subtracting 5 from 1) requiring a borrow into the
highest order bit. the carry flag is set: otherwise it is
cleared.

When performing signed binary arithmetic, certain
combinations of input variables can produce results
which seem to violate the Laws of Mathematics. For
example. adding 7FH (127) to itself produces a sum of
OFEH. which is the two’s complement representation of
-2 (refer back to Table 2)! In “normal™ arithmetic, two
positive values can't have a negative sum. Similarly. it js
normally impossible to subtract a positive value from a
negative value and leave a positive result - but in two’s
complement there are instances where this too may
happen. Fundamentally, such anomolies occur when the
magnitude of the resulting value is too great to “fit” into
the seven bits allowed for it: there is no one-byte two's
complement representation for 254, the true sum of 127
and 127.

AP-69

The MCS-51™ processors detect whether these situations
occur and indicate such errors with the OV flag. (OV may
be tested with the conditional jump instructions JB and
JNB, described under the Boolean Processor chapter.)

At a hardware level, OV isset if there is a carry out of bit 6
but not out of bit 7. or a carry out of bit 7 but not out of
bit 6. When adding signed integers this indicates a
negative number produced as the sum of two positive
operands, or a positive sum from two negative operands;
on SUBB this indicates a negative result after subtracting
a negative number from a positive number, or a positive
result when a positive number is subtracted from a
negative number.

The ADDC and SUBB instructions incorporate the
previous state of the carry (borrow) flag to allow multiple
precision calculations by repeating the operation with
successively higher-order operand bytes. In either case.
the carry must be cleared before the first iteration.

If the input data for a multiple precision operation is an
unsigned string of integers, upon completion the carry
flag will be set if an overflow (for ADDC) or underflow
(for SUBB) occurs. With two’s complement signed data
(i.e., if the most significant bit of the original input data
indicates the sign of the string). the overflow flag will be
set if overflow or underflow occurred.

Example 10— String Subtraction with Signed Overflow
Detection
; SUBSTR SUBTRACT STRING INDICATED BY R1
; FROM STRING INDICATED BY RO TO
PRECISION INDICATED BY R2.
CHECK FOR SIGNED UNDERFLOW WHEN DONE

SUBSTR CLR

[+ + BORROW= O
SUBS1 MOV A, @RO
suBB A, @R1 ;SUBTRACT NEXT PLACE
MoV @RO. A
INC RO . BUMP POINTERS
INC R1

DUNZ R2, SUBS1 »LODOP AS NEEDED
WHEN DONE, TEST IF OVERFLOW OCCURED
ON LAST ITERATION OF LOOP
JINB av. ovV_0K
, (QVERFLOW RECOVERY ROUTINE)
OvV_OK RET . RETURN

Decimal addition is possible by using the DA instruction
in conjunction with ADD and/or ADDC. The eight-bit
binary value in the accumulator resuiting from an earlier
addition of two variables (each a packed BCD digit-pair)
is adjusted to form two BCD digits of four bits each. If the
contents of accumulator bits 3-0 are greater than nine
(xxxx1010-xxxx 1111), or if the AC flag had been set, six
is added to the accumulator producing the proper BCD
digit in the low-order nibble. (This addition might itself
set - but would not clear - the carry flag.) If the carry
flag is set, or if the four high-order bits now exceed nine
(1010xxxx-1111xxxx), these bits are incremented by six.
The carry flag is left set if originally set or if either
addition of six produces a carry out of the highest-order
bit. indicating the sum of the original two BCD variables
is greater than or equal to decimal 100.

AFN-01502A-21

19

AP-69

Example || —Two Byte Decimal Add with Registers

and Constants

,BCDADD ADD THE CONSTANT 1,234 (DECIMAL) YO THE
CONTENTS OF REGISTER PAIR <R3X4R20:
(ALREADY A 4 BCD-DIGIT VARIABLE)

BCDADD MOV A R2

ADD A, #38H
0A A

MOV R2. A
Hov A, R3
appc A, #12H
DA A

MOV R3.4
RET

Multiplication and Division

The instruction “MUL AB” multiplies the unsigned
eight-bit integer values held in the accumulator and B-
registers. The low-order byte of the sixteen-bit product is
left in the accumulator. the higher-order byte in B. If the
high-order eight-bits of the product are all zero the
overflow flag is cleared; otherwise it is set. The
programmer can poll OV to determine when the B
register is non-zero and must be processed.

“DIV AB™” divides the unsigned eight-bit integer in the
accumulator by the unsigned eight-bit integer in the B-
register. The integer part of the quotient is returned in the
accumulator; the remainder in the B-register. If the B-
register originally contained 00H then the overflow flag
will be set to indicate a division error, and the values
returned will be undefined. Otherwise OV is cleared.

The divide instruction is also useful for purposes such as
radix conversion or separating bit fields of the
accumulator. A short subroutine can convert an eight-bit
unsigned binary integer in the accumulator (between 0 &
255) to a three-digit (two byte) BCD representation. The
hundred’s digit is returned in one register (HUND) and
the ten's and one’s digits returned as packed BCD in
another (TENONE).

Example 12— Use of DIV Instruction for Radix
Conversion

i BINBCD CONVERT 8-BIT BINARY VARIABLE IN ACC
TO 3-DIGIT PACKED BCD FORMAT
HUNDREDS’ PLACE LEFT IN VARIABLE ‘HUND’.
TENS’ AND ONES’ PLACES IN ’rENONE’

HUND EQU 21H

TENONE EQU 22K

BINBCD MOV B.#100 . DIVIDE BY 100 TQ
DIV AB . DETERMINE NUMBER OF HUNDREDS
MOV HUND., &
MoV A.#10 DIVIDE REMAINDER BY 10 TO
XCH A. B . DETERMINE # OF TENS LEFT
DIV AB . TENS DIGIT IN ACC. REMAINDER IS ONES

iDIGIT

SWAP A
ADD A B . PACK BCD DIGITS 1IN ACC
MoV TENONE, A
RET

The divide instruction can also separate eight bits of data
in the accumulator into sub-fields. For example, packed
BCD data may be separated into two nibbles by dividing
the data by 16, leaving the high-nibble in the accumulator
and the low-order nibble (remainder) in B. The two digits
may then be operated on individually or in conjunction
with each other. This example receives two packed BCD

20

intgl.

digits in the accumulator and returns the product of the
two individual digits in packed BCD format in the
accumulator.

Example 13 —Implementing a BCD Multiply Using
MPY and DIV

i MULBCD UNPACK TWO BCD DIGITS RECEIVED IN ACC.
FIND THEIR PRODUCT. AND RETURN PRODUCT
IN PACKED BCD FORMAT IN ACC

MULBCD. MOV B. #10H . DIVIDE INPUT BY 16
DIV AB LA & B HOLD SEPARATED DIGITS
. (EACH RIGHT JUSTIFIED IN REGISTER)

MuL AB i A HOLDS PRODUCT IN BINARY FORMAT (0 -
:99(DECIMAL) = O - 63H)

MOV B. 910 » DIVIDE PRODUCT BY 10

DIV AB ;A HOLDS % OF TENS, B HOLDS REMAINDER

SWAP A

ORL. A.B . PACK DICITS

RET

Logical Byte Operations — ANL, ORL, XRL

The instructions ANL. ORL, and XRL perform the
logical functions AND, OR,and /or Exclusive-OR onthe
two byte variables indicated. leaving the results in the
first. No flags are affected. (A word to the wise — do not
vocalize the first two mnemonics in mixed company.)

These operations may use all the same addressing modes
as the arithmetics (ADD, etc.) but unlike the arithmetics,
they are not restricted to operating on the accumulator.
Directly addressed bytes may be used as the destination
with either the accumulator or a constant as the source.
These instructions are useful for clearing (ANL), setting
(ORL), or complementing (XRL) one or more bits in a
RAM. output ports, or control registers. The pattern of
bits to be affected is indicated by a suitable mask byte.
Use immediate addressing when the pattern to be affected
is known at assembly time (Figure 14); use the
accumulator versions when the pattern is computed at
run-time.

1/0 ports are often used for parallel data in formats other
than simple eight-bit bytes. For example, the low-order
five bits of port | may output an alphabetic character
code (hopefully) without disturbing bits 7-5. This can be a
simple two-step process. First, clear the low-order five
pins with an ANL instruction; then set those pins corres-
ponding to ones in the accumulator. (This example
assumes the three high-order bits of the accumulator are
originally zero.)

Example 14 —Reconfiguring Port Size with Logical
Byte Instructions

OUT_PX- ANL P1,#111000008 ;CLEAR BITS P1 4 - Pi
ORL P1.A SET P1 PINS CORRESONDXNG TO SET ACC
1718

RET

[opcode ” direct address “ mask l

ANL P1. =data

Figure 14. Instruction Pattern for Logical Operation
Special Addressing Modes

AFN-01502A-22

intgl.

In this example, low-order bits remaining high may
“glitch low for one machine cycle. If this is undesirable,
use a slightly different approach. First, set all pins
corresponding to accumulator one bits, then clear the
pins corresponding to zeroes in low-order accumulator
bits. Not all bits will change from original to final state at
the same instant, but no bit makes an intermediate
transition.

Example 15— Reconfiguring 1/0O Port Size without
Glitching

ALT_PX- ORL .
ORL A, 9111000008
ANL Pl A

RET

Program Control — Jumps, Calls, Returns

Whereas the 8048 only has a single form of the simple
jump instruction. the 8051 has three. Each causes the
program to unconditionally jump to some other address.
They differ in how the machine code represents the
destination address.

LJMP (Long Jump) encodes a sixteen-bit address in the
second and third instruction bytes (Figure 15.a); the
destination may be anywhere in the 64 Kilobyte program
memory address space.

The two-byte AJMP (Absolute Jump) instruction
encodes its destination using the same format as the 8048:
addiess bits 10 through 8 form a three bit field in the
opcode and address bits 7 through 0form the second byte
(Figure 15.b). Address bits 15-12 are unchanged from the
(incremented) contents of the P.C.. so AJMPcanonly be
used when the destination is known to be within the same
2K memory block. (Otherwise ASMS51 will point out the
error.)

A different two-byte jump instruction is legal with any
nearby destination. regardless of memory block
boundaries or “pages.” SJMP (Short Jump) encodes the
destination with a program counter-relative address in
the second byte (Figure 15.c). The CPU calculates the

) Long Jump (LIMP addr16):

| opcode] I addr15 — addr8 I | addr? — addr0 |

b.) Absolute Jump (AJMP addr1t):

| T

addr10-addr8|
1 1

c.) Short Jump (SIMP rel):

L T T T T
opcode
F U N W I N B X

Figure 15. Jump Instruction Machine Code
Formats

T 1 T
opcode | | addr7 — addr0 J
-

relative offset

AP-

destination at run-time by adding the signed eight-bit
displacement value to the incremented P.C. Negative
offset values will cause jumps up to 128 bytes backwards:
positive values up to 127 bytes forwards. (SJMP with
00H in the machine code offset byte will proceed with the
following instruction).

In keeping with the 8051 assembly language goal of
minimizing the number of instruction mnemonics, there
is a “generic” form of the three jump instructions.
ASMS| recognizes the mnemonic JMP as a “pseudo-
instruction.” translating it into the machine instructions
LIMP. AJMP. or SIMP. depending on the destination
address.

Like SIMP. all conditional jump instructions use relative
addressing. JZ (Jump if Zero) and JNZ (Jump if Not
Zero) monitor the state of the accumulator as implied by
their names, while JC (Jump on Carry) and JNC (Jump
on No Carry) test whether or not the carry flag is set. All
four are two-byte instructions. with the same format as
Figure 15.c. JB(Jump on Bit). JNB (Jump on No Bit) and
JBC (Jump on Bit then Clear Bit) can test any status bit
or input pin with a three byte instruction: the second byte
specifies which bit to test and the third gives the relative
offset value.

There are two subroutine-call instructions, LCALL
(Long Call) and ACALL (Absolute Call). Each
increments the P.C. to the first byte of the following
instruction, then pushes it onto the stack (low byte first).
Saving both bytes increments the stack pointer by two.
The subroutine’s starting address is encoded in the same
ways as LJMP and AJMP. The generic form of the call
operation is the mnemonic CALL, which ASM51 will
translate into LCALL or ACALL as appropriate.

The return instruction RET pops the high- and low-order
bytes of the program counter successively from the stack.
decrementing the stack pointer by two. Program
execution continues at the address previously pushed: the
first byte of the instruction immediately following the
call.

When an interrupt request is recognized by the 8051
hardware, two things happen. Program control is
automatically “vectored”™ to one of the interrupt service
routine starting addresses by. in effect, forcing the CPU
to process an LCALL instead of the next instruction.
This automatically stores the return address on the stack.
(Unlike the 8048, no status information is automatically
saved.)

Secondly, the interrupt logic is disabled from accepting
any other interrupts from the same or lower priority.
After completing the interrupt service routine. executing
an RETI (Return from Interrupt) instruction will return
execution to the point where the background program
was interrupted — just like RET — while restoring the
interrupt logic to its previous state.

AFN-01502A-23

69

21

AP-69

Operate-and-branch instructions — CJNE, DJNZ

Two groups of instructions combine a byte operation
with a conditional jump based on the results.

CJNE (Compare and Jump if Not Equal) compares two
byte operands and executes a jump if they disagree. The
carry flag is set following the rules for subtraction: if the
unsigned integer value of the first operand is less than
that of the second it is set; otherwise, it is cleared.
However. neither operand is modified.

The CJNE instruction provides. in effect, a one-
instruction “case” statement. This instruction may be
executed repeatedly, comparing the code variable to a list
of “special case” value: the code segment following the
instruction (up to the destination label) will be executed
only if the operands match. Comparing the accumulator
or a register to a series of constants is a convenient way to
check for special handling or error conditions; if none of
the cases match the program will continue with “normal”
processing.

A typical example might be a word processing device
which receives ASCII characters through the serial port
and drives a thermal hard-copy printer. A standard
routine translates “printing” characters to bit patterns,
but control characters (KDEL> <CR>: <LF> <BEL>
<ESC> or <SP>) must invoke corresponding special
routines. Any other character with an ASCII code less
than 20H should be translated into the<NUL>value,
00H. and processed with the printing characters.

Example 16 —Case Statements Using CJINE
CHAR EQU R7 + CHARACTER CODE VARIABLE

INTERP: CUNE CHAR, #7FH, INTP 1
. (SPECIAL ROUTINE FOR RUBQUT CODE)

RET

INTP_L CUNE CHAR. #07H, INTP_2

: (SPECIAL ROUTINE FOR BELL CODE}
RET
CUNE CHAR, #OAH, INTP_3

INTP_2 .

. (SPECIAL ROUTINE FOR LFEED CODE)

RET

INTP_3. CUNE CHAR, #ODH, INTP_4

i (SPECIAL ROUTINE FOR RETURN CODE)
RET

INTP_& CUNE CHAR, #1BH, INTP_S

. (SPECIAL ROUTINE FOR ESCAPE CODE)
RET

INTP_5 CJNE CHAR, #20H, INTP _6

. (SPECIAL ROUTINE FOR SPACE CODE)

RET
INTP_6 JC PRINTC . JUMP IF CODE > 20H
MoV CHAR, #0 , REPLACE CONTROL CHARACTERS WITH
» NULL CODE
PRINTC + PROCESS STANDARD PRINTING
; . CHARACTER

RET

DJNZ (Decrement and Jump if Not Zero) decrements
the register or direct address indicated and jumps if the
result is not zero, without affecting any flags. This
provides a simple means for executing a program loop a
given number of times. or for adding a moderate time
delay (from 2 to 512 machine cycles) with a single
instruction. For example, a 99-usec. software delay loop
can be added to code forcing an 1/0 pin low with only
two instructions.

Example 17 —Inserting a Software Delay with DJNZ

CLR WR

mov R2. #49
DUNZ R2, %
SETB WR

22

intgl.

The dollar sign in this example is a special character
meaning “the address of this instruction.” It is useful in
eliminating instruction labels on the same or adjacent
source lines. CJNE and DJNZ (like all .conditional
jumps) use program-counter relative addressing for the
destination address.

Stack Operations — PUSH, POP

The PUSH instruction increments the stack pointer by
one. then transfers the contents of the single byte variable
indicated (direct addressing only) into the internal RAM
location addressed by the stack pointer. Conversely.,
POP copies the contents of the internal RAM location
addressed by the stack pointer to the byte variable
indicated. then decrements the stack pointer by one.

(Stack Addressing follows the same rules, and addresses
the same locations as Register-indirect. Future micro-
computers based on the MCS-51™ CPU could have up to
256 bytes of RAM for the stack.)

Interrupt service routines must not change any variable
or hardware registers modified by the main program. or
else the program may not resume correctly. (Such a
change might look like a spontancous random error.)
Resources used or altered by the service routine
(Accumulator, PSW._ etc.) must be saved and restored to
their previous value before returning from the service
routine. PUSH and POP provide an efficient and
convenient way to save register states on the stack.

Example 18 — Use of the Stack for Status Saving on
Interrupts

LOC_TMP EQU s . REMEMBER LOCATION COUNTER
ORG 0003H . STARTING ADDRESS FOR INTERRUPT ROUTINE
LumMP SERVER . JUMP TO ACTUAL SERVICE ROUTINE LOCATED
. ELSEWHERE
ORG LOC_TMP . RESTORE LOCATION COUNTER
SERVER PUSH PSW
PUSH AcC . SAVE ACCUMULATOR (NOTE DIRECT ADDRESSING
. NOTATION)
PUSH 8 . SAVE B REGISTER

PUSH DPL
PUSH DPH .
mov PSW. #000010008 . SELECT REGISTER BANK 1

.+ SAVE DATA POINTER

POP DPH . RESTORE REGISTERS IN REVERSE ORDER
POP DPL

POP B

POP ACC

POP PSW . RESTORE PSW AND RE-SELECT ORIGINAL

. REGISTER BANK
RETI LRETURN TO MAIN PROGRAM AND RECSTORE
. INTERRUPT LOGIC

If the SP register held IFH when the interrupt was
detected. then while the service routine was in progress
the stack would hold the registers shownin Figure 16: SP
would contain 26H.

The example shows the most general situation: if the
service routine doesn't alter the B-register and data
pointer, for example, the instructions saving and
restoring those registers would not be necessary.

The stack may also pass parameters to and from
subroutines. The subroutine can indirectly address the
parameters derived from the contents of the stack
pointer.

AFN-01502A-24

RAM
ADDR

7FH

26H OPH ~-— (SP)
25H DPL
24H -]

23H ACC
22H PSW
21H PC (HIGH)
20H PC (LOW)
1FH

00H

Figure 16. Stack contents during interrupt

One advantage here is simplicity. Variables need not be
allocated for specific parameters. a potentially large
number of parameters may be passed. and different
calling programs may use different techniques for
determining or handling the variables.

For example, the following subroutine reads out a
parameter stored on the stack by the calling program,
uses the low order bits to access a local look-up table
holding bit patterns for driving the coils of a four phase
stepper motor, and stores the appropriate bit pattern
back in the same position on the stack before returning.
The accumulator contents are left unchanged.

Example 19 — Passing Variable Parameters to Sub-
routines Using the Stack

NXTPOS MOV RO. SP
DEC RO i ACCESS LOCATION PARAMETER PUSHED INTOD
DEC RO
XCH A,@RO . READ INPUT PARAMETER AND SAVE
i .ACCUMULATOR
ANL A.#03H . MASK ALL BUT LOW-ORDER TWO BITS
ADD A w2 /ALLOW FOR OFFSET FROM MOVC TG TADLE
MOvC A, @A+PC ; READ LOOK-UP TABLE ENTRY
XCH A @RO i PASS BACK TRANSLATED VALUE AND RESTORE
. ACC
RET SRETURN TO BACKGROUND PROGRAM
STPTBL DB 011011118 iPOSITION O
DB 010111118 JPOSITION 1
DB 100111118 ,POSITION 2

DB 101011118 .POSITION 3

The background program may reach this subroutine with
several different calling sequences. all of which PUSH a
value before calling the routine and POP the result after.
A motor on Port | may be initialized by placing the
desired position (zero) on the stack before calling the
subroutine and outputing the results directly to a port
afterwards.

Example 20 —Sending and Receiving Data Parameters
Via the Stack

CLR A
PUSH ACC
caLL NXTPOS
POP P1

AP-69

If the position of the motor is determined by the contents
of variable POSM1 (a byte in internal RAM) and the
position of a second motor on Port 2is determined by the
data input to the low-order nibble of Port 2. a six-
instruction sequence could update them both.

Example 21 —Loading and Unloading Stack Direct
from 1/0O Ports
POSML EQU S1

PUSH POSM1
CALL NXTPOS

POP P1
PUSH P2
cALL NXTPOS
POP P2

Data Pointer and Table Look-up instructions —
MOV, INC, MOVC, JMP

The data pointer can be loaded with a 16-bit value using
the instruction MOV DPTR. #datal6. The data used is
stored in the second and third instruction bytes. high-
order byte first. The data pointer is incremented by INC
DPTR. A 16-bit increment is performed: an overflow
from the low byte will carry into the high-order byte.
Neither instruction affects any flags.

The MOVC (Move Constant) instructions (MOVC
A.@A+DPTR and MOVC A.@A+PC) read into the
accumulator bytes of data from the program memory
logical address space. Both use a form of indexed
addressing: the former adds the unsigned eight-bit
accumulator contents with the sixteen-bit data pointer
register. and uses the resulting sum as the address from
which the byte is fetched. A sixteen-bit addition is
performed: a carry-out from the low-order eight bits may
propagate through higher-order bits. but the contents of
the DPTR are not altered. The latter form uses the incre-
mented program counter as the “base™ value instead of
the DPTR (figure 17). Again. neither version affects the
flags.

a) MOVCA @A+PC
{(LOCAL TABLE
LOOK—UP)

T
T

ACC

EFFECTIVE
Cooe Apoess

ACC
CODE ADDRESS

b

MOVC A.@ A+ DPTR
(GLOBAL TABLE
LOOK—UP)

c) JMP @ A+ DPTR
{GLOBAL INDIRECT
JUMP)

Figure 17. Operation of MOVC instructions

AFN-01502A-25

23

AP-69

Each can be part of a three step sequence to access look-
up tables in ROM. To use the DPTR-relative version.
load the Data Pointer with the starting address of a look-
up table; load the accumulator with (or compute) the
index of the entry desired; and execute MOVC
A.@A+DPTR. Unlike the similar MOVP3 instructions
in the 8048, the table may be located anywhere in
program memory. The data pointer may be loaded with a
constant for short tables. Or to allow more complicated
data structures, or tables with more than 256 entries. the
values for DPH and DPL may be computed or modified
with the standard arithmetic instruction set.

The PC-relative version has the advantage of not
affecting the data pointer. Again, a look-up sequence
takes three steps: load the accumulator with the index:
compensate for the offset from the look-up instruction to
the start of the table by adding the number of bytes
separating them to the accumulator: then execute the
MOVC A.@A+PC instruction.

Let's look at a non-trivial situation where this instruction
would be used. Some applications store large multi-
dimensional look-up tables of dot matrix patterns. non-
linear calibration parameters, and so on in a linear (one-
dimensional) vector in program memory. To retrieve
data from the tables, variables representing matrix
indices must be converted to the desired entry’s memory
address. For a matrix of dimensions (MDIMEN x
NDIMEN) starting at address BASE and respective
indices INDEXI and INDEXJ. the address of element
(INDEXI, INDEXJ) is determined by the formula,
Entry Address = BASE + (NDIMEN x INDEXI) +
INDEXJ
The code shown below can access any array with less than
255 entries (i.e.. an 1 1x2! array with 23! elements). The
table entries are defined using the Data Byte (“DB™)
directive. and will be contained in the assembly object
code as part of the accessing subroutine itself.

Example 22 —Use of MPY and Data Pointer Instruc-
tions to Access Entries from a Multi-
dimensional Look-Up Table in ROM

/MATRX1 LOAD CONSTANT READ FROM TWO DIMENSIONAL LOOK-UP
. TABLE IN PROGRAM MEMORY INTO ACCUMULATOR
USING LDCAL TABLE LODK-UP INSTRUCTION, ‘MOVC AL @A+PC
THE TOTAL NUMBER OF TABLE ENTRIES IS ASSUMED TO
BE SMALL, I E LESS THAN ABOUT 250 ENTRIES)
TABLE USED IN THIS EXAMPLE IS (ti X 21)
DESIRED ENTRY ADDRESS 1S GIVEN BY THE FORMULA.
[(BASE ADDRESS) + (21 X INDEXI) + (INDEXJ) 1]

INDEX1 EGU R6

. FIRST CODRDINATE OF ENTRY (0-10)

INDEXJ EQU 23m . SECOND COORDINATE OF ENTRY (0-20)
MATRX1 MOV A, INDEXI

MOV B. %21

MuL AB

ADD A, INDEXJ

ALLOW FOR INSTRUCTION BYTE DETWEEN "MOVC" AND

ENTRY (0.0) °

INC a

Mave A, @A+PC

RET
BASE! DB 1 . Centry 0,0)

0B 2 . tentry 0. 1)

oB 21 . tentry 0.20)

DB 22 i (entry 1.0)

b8 a2 . tentry 1,200

o8 231 i (entry 10.20)

24

intgl.

There are several different means for branching to
sections of code determined or selected at run time. (The
single destination addresses incorporated into
conditional and unconditional jumps are. of course,
determined at assembly time). Each has advantages for
different applications.

The most common is an N-way conditional jump based
on some variable. with all of the potential destinations
known at assembly time. One of a number of small
routines is selected according to the value of an index
variable determined while the program is running. The
most efficient way to solve this problem is with the
MOVC and an indirect jump instruction. using a short
table of one byte offset values in ROM to indicate the
relative starting addresses of the several routines.

JMP @A+DPTR is an instruction which performs an
indirect jump to an address determined during program
execution. The instruction adds the eight-bit unsigned
accumulator contents with the contents of the sixteen-bit
data pointer, just like MOVC A.@A+DPTR. The
resulting sum is loaded into the program counter and is
used as the address for subsequent instruction fetches.
Again. a sixteen-bit addition is performed: a carry out
from the low-order eight bits may propagate through the
higher-order bits. In this case. neither the accumulator
contents nor the data pointer is altered.

The example subroutine below reads a byte of RAM into
the accumulator from one of four alternate address
spaces. as selected by the contents of the variable
MEMSEL. The address of the byte to be read is
determined by the contents of R0 (and optionally R1). It
might find use in a printing terminal application. where
four different model printers all use the same ROM caode
but use different tvpes and sizes of buffer memory for
different speeds and options.

Example 23 -~ N-Way Branch and Computed Jump
Instructions via JMP @ ADPTR

MEMSEL EQU R3
JUMP_a MOV A, MEMSEL
MoV DPTR, #JMPTBL
Move A, @A+DPTR
JHP @A+DPTR
JMPTBL DB MEMSPO-JUMPTBL
DB MEMSP 1 -UMPTBL
DB MEMSP2-UMPTBL
DB MEMSP3-JMPTBL
MEMSPO MOV A, @RO ; READ FROM INTERNAL RAM
RET
MEMSP1 MOVX A.@RO . READ FROM 256 BYTES OF EXTERNAL RAM
RET
MEMSP2. MOV DPL. RO
MOV DPH, R1
MOVX A, @DPTR ; READ FROM 44K BYTES OF EXTERNAL RAM
RET
MEMSP3 MOV A RL
ANL A, #OTH
ANL P1,#111110008
ORL Pi,
MovX A @RO . READ FROM 4K BYTES OF EXTERNAL RAM

RET

Note that this approach is suitable whenever the size of
jump table plus the length of the alternate routines is less
than 256 bytes. The jump table and routines may be
located anywhere in program memory. independent of
256-byte program memory pages.

AFN-01502A-26

intgl.

For applications where up to 128 destinations must be
selected. all of which reside in the same 2K page of
program memory which may be reached by the two-byte
absolute jump instructions, the following technique may
be used. In the above mentioned printing terminal
example, this sequence could “parse™ 128 different codes
for ASCII characters arriving via the 8051 serial port.

Example 24 —N-Way Branch with 128 Optional
Destinations
OPTION EQU R3
:)HP];’@ MOV
RL +MULTIPLY BY 2 FOR 2 BYTE JUMP TAWLE

MOV DPTR, #INSTBL . FIRST ENTRY IN JUMP TAlI E
IMP @A+DPTR »JUMP INTD JUMP TABLE

A, OPTION
A

INSTBL AJMP PROCOO . 128 CONSECUTIVE
aump PROCO1 . AUMP INSTRUCTIONS
AJMP PROCOZ

AUMP PROCVE
AJMP PROC7F

The destinations in the jump table (PROCO00-
PROCT7F) are not all necessarily unique routines. A large
number of special control codes could each be processed
with their own unique routine, with the remaining
printing characters all causing a branch to a common
routine for entering the character into the output queue.

In those rare situations where even 128 options are
insufficient, or where the destination routines may cross a
2K page boundary, the above approach may be modified
slightly as shown below.

Example 25 —256-Way Branch Using Address Look-

Up Tables

RYEMP EQU R7

JMP256 MOV DPTR, #ADRTBL s FIRST ENTRY IN TABLE OF ADDRESSES
mov A.DPTION
CLR c
RLC A SMULTIPLY BY 2 FOR 2 BYTE JUMP TABLE
JNC LOwW128
INC DPH

LOW128B MOV RTEMP. A » SAVE ACC FOR HIGH BYTE READ
MOVC A, @A+DPTR .READ LOW BYTE FROM JUMP TABLE
XCH. A, RTEMP
INC A
MOVC A, @A+DPTR + GET LOW-ORDER BYTE FROM TABLE
PUSH ACC
MoV A, RTEMP
MOVC A, @A+DPTR i GET HIGH-ORDER BYTE FROM TABLE
PUSH ACC

THE TWO ACC PUSHES HAVE PRODUCED

A "RETURN ADDRESS" ON THE STACK WHICH CORRESPONDS
. TO THE DESIRED STARTING ADDRESS
. IT MAY BE REACHED BY POPPING THE STACK

INTD THE PC

RET

ADRTBL DW PROCOO . UP TO 256 CONSECUTIVE DATA
DW PROCO1 . WORDS INDICATING STARYING ADDRESSES

oW PROCFF
DUMMY CODE ADDRESS DEF INITIONS NEEDED BY ABOVE
TWO EXAMPLES

PROCOO NOP

PROCO1 NOP

PROCO2 NOP

PROC7E NOP

PROC7F NOP
PROCFF NOP

4. BOOLEAN PROCESSING INSTRUCTIONS

The commonly accepted terms for tasks at either end of
the computational vs. control application spectrum are,
respectively. “number-crunching” and “bit-banging”.

AP-69

Prior to the introduction of the MCS-51™ family, nice
number-crunchers made bad bit-bangers and vice versa.
The 80S! is the industry’s first single-chip micro-
computer designed to crunch and bang. (In some circles,
the latter technique is also referred to as “bit-twiddling™.
Either is correct.)

Direct Bit Addressing

A number of instructions operate on Boolean (one-bit)
variables, using a direct bit addressing mode comparable
to direct byte addressing. An additional byte appended to
the opcode specifies the Boolean variable, 1'O pin, or
control bit used. The state of any of these bits may be
tested for “true” or “false™ with the conditional branch
instructions JB (Jump on Bit) and JNB (Jump on Not
Bit). The JBC (Jump on Bit and Clear) instruction
combines a test-for-true with an unconditional clear.

As in direct byte addressing. bit 7 of the address byte
switches between two physical address spaces. Values
between 0 and 127 (00H-7FH) define bits in internal
RAM locations 20H to 2FH (Figure 18a); address bytes
between 128 and 255 (80H-OFFH) define bits in the 2 x
“special-function” register address space (Figure 18b). If
no 2 x “special=function™ register corresponds to the
direct bit address used the result of the instruction is
undefined.

Bits so addressed have many wondrous properties. Thev
may be set. cleared. or complemented with the two byte
instructions SETB. CLR, or CPL. Bits may be moved to
and from the carry flag with MOV. The logical ANL and
ORL functions may be performed between the carry and
either the addressed bit or its complement.

Bit Manipulation Instructions — MOV

The “MOV™ mnemonic can be used to load an
addressable bit into the carry flag (*“MOV C, bit”) or to
copy the state of the carry to such a bit (“MOV bit, C™).
These instructions are often used for implementing serial
I/0 algorithms via software or to adapt the standard 1 O
port structure.

It is sometimes desirable to “re-arrange” the orderof [O
pins because of considerations in laying out printed
circuit boards. When interfacing the 805! to an
immediately adjacent device with “weighted™ input pins.
such as keyboard column decoder, the corresponding
pins are likely to be not aligned (Figure 19).

There is a trade-off in “scrambling” the interconnections
with either interwoven circuit board traces or through
software. This is extremely cumbersome (if not
impossible) to do with byte-oriented computer
architectures. The 8051's unique set of Boolean
instructions makes it simple to move individual bits
between arbitrary locations.

AFN-01502A-27

25

AP-69

In ®

a) RAM Bit Addresses.

RAM
BYTE (MS8) (Lse)

7*H f
2FH 7F 7E 70 7c ™ TA 79 78
26H 7 7% 7% 74 73 72 n 70
20H 6F 6E (-] 6C 68 6A 69 68
2CH 67 66 65 64 63 62 61 60
2BH 5F SE 50 sC S8 SA 59 58
2AH 57 56 55 54 53 52 51 50
29H aF 4E 40 ac 48 A 49 a8
28H a7 % as 4“4 a3 42 4 40
2H 3F 3E 3D 3c 3B 3A 39 38
26H a 3 35 34 3 32 31 30
25H 2F 2E 20 2C 28 2A 29 28
24H 27 26 25 24 23 22 2 20
234 F 1E 10 1c 1B 1A 19 18
21 17 16 15 14 LK 2 " 10
21H OF 0€ oD oc o8 0A 09 08
20H o7 06 05 04 03 02 o1 00
1FH

Bank 3
18H
17H

Bank 2
10H
OFH

Bank 1
08H
o7H

Bank 0
0oH

b.) Hardware Register Bit Addresses.

Direct Hardware
Bit Addresses

Byte Register

Address (Ms8) (Ls8) Symbol

OFFH

OFOH F7lF6|F5]FIIF3lFZIF1IFD B8

OEOH E7lE6|E§IE4|ES[52|EilED ACC

0D0H D7|DG[DSID‘]D3|D2IDilDD PSW

wn [[[w]m]m][w]n]=
o [w[w]m] m]m]w]u]n
[e[o m [0 [w] scon
w [T w]w]m]w]alo]n]n
v [[o [[sc [[[w| rcon
w [FIe]wlulwlalo]n]n

Figure 18. Bit Address Maps

ae []
psen |]
wh O
P26 j_(_".s_s’__.': A0
8351 pas [——{"]

8751

DECODER

P2.3 '———{ A3
A4
P22 [e

P2.0 [:

Figure 19. “Mismatch” Between 1/0 port and
Decoder

26

Example 26 — Re-ordering 1/0 Port Configuration

OUT_PZ RRC A . MOVE ORIGINAL ACC O INTO CY
MoV P2 6, C . STORE CARRY TO PIN P26
RRC A ,MOVE ORIGINAL ACC 1 INTQ CY
MoV P2 5.C . STORE CARRY TO PIN P25
RRC A . MOVE ORIGINAL ACC 2 INTD CY
MoV P2 4.C ,STORE CARRY TO PIN P24
RRC A . MOVE ORIGINAL ACC 3 INTO CY
MoV P2 3.C .STORE CARRY TO PIN P23 '
RRC A iMOVE ORIGINAL ACC 4 INTO CY
MoV P2 2.C ,STORE CARRY TO PIN P22
RET

Solving Combinatorial Logic Equations — ANL, ORL

Virtually all hardware designers are familiar with the
problem of solving complex functions using
combinatorial logic. The technologies involved may vary
greatly, from multiple contact relay logic. vacuum tubes,
TTL. or CMOS to more esoteric approaches like fluidics.
but in each case the goal is the same: a Boolean
(true false) function is computed on a number of

Boolean variables.
AFN-01502A-28

AP-69

a) TTL

c

< x %<

D .

Q= (Ue(VeW)+(XoV)+Z

b.) Relay logic.
miinace
__—lxl—/'p CR2>

CR1

—i

—H—G)—

Figure 20. Implementations of Boolean functions

Figure 20 shows the logic diagram for an arbitrary
function of six variables named U through Z using
standard logic and relay logic symbols. Eachis asolution
of the equation,

Q=(U(V+W)+(X.V+Z

(While this equation could be reduced using Karnaugh
Maps or algebraic techniques. that is not the purpose of
this example. Even a minor change to the function
cquation would require re-reducing from scratch.)

Most digital computers can solve equations of this type
with standard word-wide logical instructions and
conditional jumps. Still, such software solutions seem
somewhat sloppy because of the many paths through the
program the computation can take.

Assume U and V are input pins being read by different
input ports. W and X are status bits for two peripheral
controllers (read as I O ports). and Y and Z are software
flags set or cleared earlier in the program. The end result
must be written to an output pin on some third port.

For the sake of comparison we will implement this
function with software drawn from three proper subsets
of the MCS-51™ instruction set. The first two
implementations follow the flow chart shown in Figure
21. Program flow would embark on a route down a test-
and-branch tree and leaves either the “True™ or “Not
I'Tue™ exit ASAP. These exits then write the output port
with the data previously written to the same port with the
result bit respectively one or zero.

In the first case. we assume there are no instructions for
addressing individual bits other than special flags like the
carry. This is typical of many older microprocessors and
mainframe computers designed for number-crunching.
MCS-51™ mnemonics are used here. though for most
other machines the issue would be even further clouded
by their use of operation-specific mnemonics like

INPUT. OUTPUT. LOAD. STORE. etc.. instead of the
universal MOV.

FUNCTION
IS FALSE 1S TRUE

FUNCTION

| ceara | | sera |

(CONTINUE)

Figure 21. Flow chart for tree-branching logic

implementation
AFN-01502A-29

27

AP-69

Example 27 —Software Solution to Logic Function of
Figure 20, Using only Byte-Wide Logical
Instructions

iBFUNC1 SOLVE A RANDOM LOGIC FUNCTION OF &
. VARIABLES BY LDADING AND MASKING THE APPROPRIATE
BITS IN THE ACCUMULATOR. THEN EXECUTING CONDITIONAL
. JUMPS BASED ON ZERO CONDITION
. (APPROACH USED BY BYTE-ORIENTED ARCHITECTURES)
B BYTE AND MASK VALUES CORRESPOND TO RESPECTIVE
BYTE ADDRESS AND BIT POSITION

QUTBUF EGQU 22H

i OUTPUT PIN STATE MAP
TESTV MmOV aP2
ANL A, 'ooooowos
JINZ
MOV A, T
ANL A, OOO]OOOOOII
N4 TESTX
TESTU MOV AP
ANL A, #000000108
INZ SETG
TESTX: MOV A TCON
ANL A, #000010008
VI TESTZ
MoV A, 20H
ANL A. #00000001B
vz SETG
TESTZ: MOV A21H
A. #00000010B
Jz SETG
CLRG oV A. OUTBUF
ANL A.#11110111B
JHP outa
SETQ MOV A, OUTBUF
ORL. A, #000010008
oute MOV OUTBUF, A
MoV f3.A

Cumbersome, to say the least, and error prone. It would
be hard to prove the above example worked in all cases
without an exhaustive test.

Each move/mask/conditional jump instruction
sequence may be replaced by a single bit-test instruction
thanks to direct bit addressing. But the algorithm would
be equally convoluted.

Example 28 — Software Solution to Logic Function of
Figure 20, Using only Bit-Test
Instructions

i BFUNC2 SOLVE A RANDOM LOGIC FUNCTION OF &
VARIABLES BY DIRECTLY POLLING EACH BIT

5 (APPROACH USING MCS-51 UNIGUE BIT-TEST

i INSTRUCTION CAPABILITY)
SYMBOLS USED IN LOGIC DIAGRAM ASSIGNED TO
CORRESPONDING 8051 BIT ADDRESSES

Y BIT P11
v BIT P2 2
W BIT TFO
X BIT 1€1
¥ BIY 20H O
z BIT 21H 1
Q BIT P3 3
TEST_V JB Vv, TEST_U
JNB W, TEST_X
TEST U J8 U. SET_ @
TEST_X. JUNB X, TEST_Z
JNB Y. SET_@
TEST_ 2 JNB 2,SET G
CLR_Q CLR a
JMP NXTTST
SET_G SETB a
NXTTST + (CONTINUATION OF PROGRAM)

A more elegant and efficient 8051 implementation uses
the Boolean ANL and ORL functions to generate the
output function using straight-line code. These
instructions perform the corresponding logical
operations between the carry flag (“Boolean
Accumulator™) and the addressed bit, leaving the result in
the carry. Alternate forms of each instruction (specified
in the assembly language by placing a slash before the bit
name) use the complement of the bit’s state as the input
operand.

28

intgl.

These instructions may be “strung together™ to simulate a
multiple input logic gate. When finished, the carry flag
contains the result, which may be moved directly to the
destination or output pin. No flow chart is needed — itis
simple to code directly from the logic diagrams in Figure
20.

Example 29 —Software Solution to Logic Function of
Figure 20, Using the MCS-51 (TM)
Unique Logical Instructions on Boolean
Variables
i BFUNC3 SOLVE A RANDOM LOGIC FUNCTION OF &

VARIABLES USING STRAIGHT-LINE LOGICAL INSTRUCTIONS
ON MCS-51 BODLEAN VARIABLES

MoV v

ORL () +DUTPUT OF OR GATE

ANL c.u . OUTPUT OF TOP AND GATE

MoV Fo.C + SAVE INTERMEDIATE STATE
mov c.x

ANL C. /Y i OUTPUT OF BOTTOM AND GATE
ORL. c.FoO i INCLUDE VALUE SAVED ABOVE
ORL c. /2 i INCLUDE LAST INPUT VARIABLE
MoV a@.c i OUTPUT COMPUTED RESULT

Simplicity itself. Fast, flexible, reliable, easy to design.
and easy to debug.

The Boolean features are useful and unique enough to
warrant a complete Application Note of their own.
Additional uses and ideas are presented in Application
Note AP-70, Using the Intele MCS-51= Boolean
Processing Capabilities, publication number 121519,

5. ON-CHIP PERIPHERAL FUNCTION
OPERATION AND INTERFACING

1/0 Ports

The 1/0 port versatility results from the “quasi-
bidirectional” output structure depicted in Figure 22.
(This is effectively the structure of ports 1. 2. and 3 for
normal /O operations. On port 0 resistor R2 is disabled
except during multiplexed bus operations, providing

READ/MODIFY/
WRITE

+5V +5V
Q2
INTERNAL @
BUS —e—D
o R2S R1
FLIP "o
FLOP PIN
a1 PORT 1.2
AND 3
a i
WRITE o
putse || L
BUS
CYCLE
TIMING
INPUT
BUFFER
READ

Figure 22. Pseudo-bidirectional 1/0 port circuitry

AFN-01502A-30

intgl.

essentially open-collector outputs. For full electrical
characteristics see the User's Manual.)

An output latch bit associated with each pin is updated by
direct addressing instructions when that port is the
destination. The latch state is buffered to the outside
world by Rl and QI. which may drive a standard TTL
input. (In TTL terms, QI and R resemble an open-
collector output with a pull-up resistor to Vec.)

R2 and Q2 represent an “active pull-up™ device enabled
momentarily when a 0 previously output changestoa I.
This “jerks™ the output pinto a | level more quickly than
the passive pull-up, improving rise-time significantly if
the pin is driving a capacitive load. Note that the active
pull-up is only activated on 0-to-1 transitions at the
output latch (unlike the 8048, in which Q2 is activated
whenever a | is written out).

Operations using an input port or pin as the source
operand use the logic level of the pin itself. rather than the
output latch contents. This level is affected by both the
microcomputer itself and whatever device the pin is
connected to externally. The value read is essentially the
“QOR-tied” function of Q1 and the external device. If the
external device is high-impedence, such as a logic gate
input or a three state output in the third state, then
reading a pin will reflect the logic level previously output.
To use a pin for input. the corresponding output latch
must be set. The external device may then drive the pin
with either a high or low logic signal. Thus the same port
may be used as both input and output by writing ones to
all pins used as inputs on output operations. and ignoring
all pins used as output on an input operation.

In one operand instructions (INC, DEC. DJNZ and the
Boolean CPL) the output latch rather than the input pin
level is used as the source data. Similarly. two operand
instructions using the port as both one source and the
destination (ANL. ORL. XRL) use the output latches.
This ensures that latch bits corresponding to pins used as
inputs will not be cleared in the process of executing these
instructions.

The Boolean operation JBC tests the output latch bit,
rather than the input pin, in deciding whether or not to
jump. Like the byte-wise logical operations, Boolean
operations which modify individual pins of a port leave
the other bits of the output latch unchanged.

A good example of how these modes may play together
may be taken from the host-processor interface expected
by an 82431 O expander. Even though the 8051 does not
include 8048-type instructions for interfacing with an
8243, the parts can be interconnected (Figure 23) and the
protocol may be emulated with simple software.

AP-69

Example 30 — Mixing Paralle! Output, Input, and
Control Strobes on Port 2

1NB2ad 13 FXFANDER

INB243 A #110100030

LQUTPUT INSTRUITIOR CODE
FALLING EDGE NF PRNG
000011118 . SET FOF INPLT

> CREAD INFUT DATA

RETURN FROG I

DE -SELECT CHIP

Serial Port and Timer applications

Configuring the 8051°s Serial Port for a given data rate
and protocol requires essentially three short sections of
software. On power-up or hardware reset the serial port
and timer control words must be initialized to the
appropriate values. Additional software is also needed in
the transmit routine to load the serial port data register
and in the receive routine to unload the data as it arrives.

This is best illustrated through an arbitrary example.
Assume the 805! will communicate with a CRT
operating at 2400 baud (bits per second). Each character
is transmitted as seven data bits, odd parity. and one stop
bit. This results in a character rate of 2400 10=240
characters per second.

For the sake of clarity. the transmit and receive
subroutines are driven by simple-minded software status
polling code rather than interrupts. (It might help to refer
back to Figures 7-9 showing the control word formats.)
The serial port must be initialized to 8-bit UART mode
(M0. M1=01), enabled to receive all messages (M2=0.
REN=1). The flag indicating that the transmit register is
free for more data will be artificially set in order to let the
output software know the output register is available.
This can all be set up with one instruction.

Example 31 —Serial Port Mode and Control Bits

L SPINIT INITIALIZE SERIAL PORT
. FOR 8-BIT UART MODF
& SET TRANSMIT READY FLAG

SPINIT- MOV SCON. #010100108

8351
8751
8243 4
ra K Z >
P27 }mpurs
P2.6 fat— 4
P25 cs PS5 <'1>
P2.4 PROG
a
P2.3 P23 (3 <z>
P2.2 P22
P21 P21 4
P20 P20 7 @

Figure 23. Connecting an 8051 with an 8243
1/0 Expander

AFN-01502A-31

29

AP-69

30

Timer | will be used in auto-reload mode as a data rate
generator. To achieve a data rate of 2400 baud, the timer
must divide the | MHz internal clock by 32 x (desired
data rate):

1 x 10¢
(32) (2400)

which equals 13.02 rounded down to 13 instruction
cycles. The timer must reload the value -13, or OF3H.
(ASMS51 will accept both the signed decimal or hexa-
decimal representations.)

Example 32— Initializing Timer Mode and Control Bit:
STLINIT INITIALIZE TIMER 1 FOR
B AUTO-RELOAD AT 322400 HZ
(TO USED AS GATED 16-BIT COUNTER)
vT.\XNIT L TCON. #11010010B

mov TH1. #-13
SETB TR1

A simple subroutine to transmit the character passed to it
in the accumulator must first compute the parity bit,
insert it into the data byte, wait until the transmitter is
available, output the character, and return. This is nearly
as easy said as done.

Example 33 —Code for UART Output, Adding Parity,

Transmitter Loading

i SP_OUT ADD ODD PARITY TO ACC AND
i TRANSMIT WHEN SERIAL PORT READY

SP_OUT MOV c.p
cPL c
MoV acc 7.¢
JNB TI. s
CLR 11
MOV SBUF, A

RET

A simple minded routine to wait until a character is
received, set the carry flag if there is an odd-parity error,
and return the masked seven-bit code in the accumulator
is equally short.

Example 34 —Code for UART Reception and Parity
Verification

iSP_IN INPUT NEXT CHARACTER FROM SERIAL PORT
; SET CARRY IFF ODD-PARITY ERROR
SP_IN. UNB RI.$

CLR RI

oV A, SBUF

MOV c.P

cPL c

ANL A, #7FH

RET

n
intgl.
6. SUMMARY

This Application Note has described the architecture,
instruction set, and on-chip peripheral features of the
first three members of the MCS-51™ microcomputer
family. The examples used throughout were admittedly
(and necessarily) very simple. Additional examples and
techniques may be found in the MCS-51™ User’s Manual
and other application notes written for the MCS-48™and
MCS-51™ families.

Since its introduction in 1977, the MCS-48™ family has
become the industry standard single-chip
microcomputer. The MCS-51™architecture expands the
addressing capabilities and instruction set of its
predecessor while ensuring flexibility for the future. and
maintaining basic software compatability with the past.

Designers already familiar with the 8048 or 8049 will be
able to take with them the education and experience
gained from past designs as ever-increasing system
performance demands force them to move on to state-of-
the-art products. Newcomers will find the power and
regularity of the 805! instruction set an advantage in
streamlining both the learning and design processes.

Microcomputer system designers will appreciate the 8051
as basically a single-chip solution to many problems
which previously required board-level computers.
Designers of real-time control systems will find the high
execution speed. on-chip peripherals, and interrupt
capabilities vital in meeting the timing constraints of
products previously requiring discrete logic designs. And
designers of industrial controllers will be able to convert
ladder diagrams directly from tested-and-true TTL or
relav-logic designs to microcomputer software, thanks to
the unique Boolean processing capabilities.

It has not been the intent of this note to gloss over the
difficulty of designing microcomputer-based systems. To
be sure. the hardware and software design aspects of any
new computer system are nontrivial tasks. However, the
system speed and level of integration of the MCS-51™
microcomputers. the power and flexibility of the
instruction set. and the sophisticated assembler and other
support products combine to give both the hardware and
software designer as much of a head start on the problem
as possible.

AFN-01502A-32

