
80960HA/HD/HT
Specification Update

April 1998
Notice: The 80960HA/HD/HT may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are
documented in this Specification Update..

Order Number: 272830-005

80960HA/HD/HT Specification Update

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The 80960HA/HD/HT may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are documented in this Specification Update.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

Contents

Revision History ... 1

Preface... 2

Summary Table of Changes .. 4

Identification Information.. 7

Errata ... 8

Specification Changes ... 28

Specification Clarifications ... 29

Documentation Changes ... 32
80960HA/HD/HT Specification Update iii

Revision History

Date Version Description

04/10/98 005
Added “B2” Stepping to errata table.

Added errata item 27. Power Supply Sequence Can Damage Internal Diodes

11/3/97 004

Added errata item 26. Deasserting Level-Detect Interrupts During CISC Instructions
Can Produce Spurious INVALID_OPCODE Faults

Added Specification Clarification 3. BSTALL Does Not Always Coincide With BREQ.
Added Documentation Changes 23 and 24 to incorporate this specification
clarification into the 80960Hx documentation.

10/07/97 003
Added errata item 25. DT/R# Timings Do Not Meet Published Specifications.

Removed Specification Change items 1–3; these changes have been incorporated
into the 80960HA/HD/HT 32-Bit High Performance Superscalar Processor datasheet.

01/01/97 002

Added descriptions of the B-0 stepping.

Added errata items:

20. Using atmod or sysctl to Change IMSK or IPND MMRS Can Hang the Processor

21. Storing the Contents of the I_CACHE to External Memory Also Disables the
Cache

22. PCHK# Pin Does Not Indicate Parity Failures On HD and HT Processors

23. Spurious INVALID_OPCODE Faults Can Occur with Level-Detect Interrupts

24. Parity Can Fail on Reliable Data and Can Pass on Corrupted Data

Added Document Change items:

5. Page 6-45

13. Page 11-19

07/01/96 001 This is the new 80960Hx Specification Update document. It contains all identified
errata published prior to this date.

12/08/95 1.01 Add Specification Clarification 2. Instruction Breakpoints Are Superseded by Invalid
Opcode Faults

11/17/95 1.00

The A-1 stepping fixes the following errata from the A-0 (A-0 Errata Sheet numbering
shown):

14. RESET Has Priority Over HOLD,

15. Data Cache Global Disable Bit (CCON.dci, sf2) May Take 1 Extra Clock Cycle To
Complete,

16. Low Temperature Operating Limit Increased to 25°C, and

17. IPND Register Not Cleared Automatically.

Remaining errata have been renumbered for the A-1 stepping. See the Summary of
Known Errata, pg. 3

Add errata:

#20 Halt Mode Does not Conserve Power, and

13. Invalidating the Data Cache Automatically Re-enables It

Modifications since rev 0.11 (10/27/95) of the A-0 errata sheet...

#8 Hold VCC Above 3.15 V and Below 3.45 V

#15 DEN# Remains Asserted During ADS# Cycles

#16 TRST# Input Can Be Tied Low, and

#17 Burst Accesses on 8- and 16-Bit Buses Do Not Behave Like the Cx Processor
80960HA/HD/HT Specification Update 1

Preface
Preface

As of July, 1996, Intel’s Computing Enhancement Group has consolidated available historical
device and documentation errata into this new document type called the Specification Update. We
have endeavored to include all documented errata in the consolidation process, however, we make
no representations or warranties concerning the completeness of the Specification Update.

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system manufacturers and
software developers of applications, operating systems, or tools.

Information types defined in Nomenclature are consolidated into the specification update and are
no longer published in other documents.

This document may also contain information that was not previously published.

Affected Documents/Related Documents

1. Can be downloaded from the Intel worldwide web homepage at:
http://www.intel.com/design/i960/technote/hxlopwr.htm

Title Order

80960HA/HD/HT 32-Bit High Performance Superscalar Processor datasheet 272495

i960® Hx Microprocessor User’s Manual 272484

i960® Hx Microprocessor Instruction Set and Register Quick Reference 272792

AP-506: Designing for 80960Cx and 80960Hx Compatibility 272556

Reduced Power Options for the 80960HA/HD/HT Processor1
2 80960HA/HD/HT Specification Update

Preface

ar
m the

cation
he
n
Nomenclature

Errata are design defects or errors. These may cause the published (component, board, system)
behavior to deviate from published specifications. Hardware and software designed to be used with
any component, board, and system must consider all errata documented.

Specification Changes are modifications to the current published specifications. These changes
will be incorporated in any new release of the specification.

Specification Clarifications describe a specification in greater detail or further highlight a
specification’s impact to a complex design situation. These clarifications will be incorporated in
any new release of the specification.

Documentation Changes include typos, errors, or omissions from the current published
specifications. These will be incorporated in any new release of the specification.

Note: Errata remain in the specification update throughout the product’s lifecycle, or until a particul
stepping is no longer commercially available. Under these circumstances, errata removed fro
specification update are archived and available upon request. Specification changes, specifi
clarifications and documentation changes are removed from the specification update when t
appropriate changes are made to the appropriate product specification or user documentatio
(datasheets, manuals, etc.).
80960HA/HD/HT Specification Update 3

Summary Table of Changes
Summary Table of Changes

The following table indicates the errata, specification changes, specification clarifications, o r documentation changes which apply to the Product Name product. In tel may fix some o f the errata in a futu re stepping o f the component , and accoun t for the other ou tstanding issues th rough documentation or specificat ion changes as no ted. This table u ses the following notations:

Codes Used in Summary Table

Stepping

X: Errata exists in the stepping indicated. Specification Change or
Clarification that applies to this stepping.

(No mark)

or (Blank box): This erratum is fixed in listed stepping or specification change does not
apply to listed stepping.

Page

(Page): Page location of item in this document.

Status

Doc: Document change or update will be implemented.

Fix: This erratum is intended to be fixed in a future step of the component.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

Eval: Plans to fix this erratum are under evaluation.

Row

Change bar to left of table row indicates this erratum is either new or
modified from the previous version of the document.
4 80960HA/HD/HT Specification Update

Summary Table of Changes
Errata

No.
Steppings

Page Status ERRATA
A0 A1 A2 B0 B1 B2

1 X X X 8 Fixed Parity Failure on 8- and 16-bit Unaligned Loads

2 X X X X X X 8 NoFix Read Wrong Location from Non-Burst, 8- and 16-bit
Memory Regions

3 X X X X X X 9 NoFix Breakpoints on Stacks Produce Wrong Fault IP

4 X X X 9 Fixed Parity Faults May Not Report Correct Address and Access
Type

5 X X X 9 Fixed PMCON15 Temporarily Initialized Incorrectly During
RESET

6 X X X 10 Fixed BCON Register is not Cleared Before Software Reset

7 X X X 10 Fixed MODTC Command Can Set TC Register Event Flags

8 X X X X X X 10 NoFix Parity Faults Cannot Be Disabled Separate from the
PCHK# Pin

9 X X X 10 Fixed Timer Terminal Count (TMR.tc) Bit Cannot Bear Polling

10 X X X X X X 11 NoFix Return Instruction Pointer (RIP) Cannot be Stored by
Software

11 X X X 11 Fixed WAIT# Pin Asserts During NXDA Wait States

12 X X X 12 Fixed Software Interrupts Can Access the Wrong Handler
Address

13 X X X 12 Fixed Invalidating the Data Cache Automatically Re-enables It

14 X 13 Fixed RESET Has Priority Over HOLD

15 X 13 Fixed Data Cache Global Disable Bit (CCON.dci, sf2) May Take 1
Extra Clock Cycle To Complete

16 X 14 Fixed Low Temperature Operating Limit Increased to 25°C

17 X 14 Fixed IPND Register Not Cleared Automatically

18 X X X 15 Fixed Cycle Type Bits (CT3:0) Do Not Indicate Some Fault Types

19 X X X X X X 16 NoFix Operation Fault Occurs When Clearing the IMASK (sf1)
Register

20 X X X 17 Fixed Using atmod or sysctl to Change IMSK or IPND MMRS Can
Hang the Processor

21 X X X 18 Fixed Storing the Contents of the I_CACHE to External Memory
Also Disables the Cache

22 X X X 18 Fixed PCHK# Pin Does Not Indicate Parity Failures On HD and
HT Processors

23 X X X X X X 18 NoFix Spurious INVALID_OPCODE Faults Can Occur with
Level-Detect Interrupts

24 X X X X 21 Fixed Parity Can Fail on Reliable Data and Can Pass on
Corrupted Data

25 X X X X X X 22 NoFix DT/R# Timings Do Not Meet Published Specifications

26 X X X X X X 24 NoFix
Deasserting Level-Detect Interrupts During CISC
Instructions Can Produce Spurious INVALID_OPCODE
Faults

27 X X X X X X 27 No Fix Power Supply Sequence Can Damage Internal Diodes
80960HA/HD/HT Specification Update 5

Summary Table of Changes
Specification Changes

No.
Steppings

Page Status SPECIFICATION CHANGES
#

None for this revision of the specification update.

Specification Clarifications

No.
Steppings

Page Status SPECIFICATION CLARIFICATIONS
#

1 29 Burst Accesses on 8- and 16-Bit Buses Do Not Behave Like the Cx
Processor

2 30 Instruction Breakpoints Are Superseded by Invalid Opcode Faults

3 30 BSTALL Does Not Always Coincide With BREQ

Documentation Changes
No. Document Revision Page Status DOCUMENTATION CHANGES

1 272484 32 Page 3-11, Table 3-4

2 272484 32 Page 3-11, Table 3-4

3 272484 32 Page 3-26

4 272484 32 Page 4-6, Section 4.4.3

5 272484 32 Page 6-45

6 272484 32 Page 6-60, Table 6-8

7 272484 33 Page 6-61, Figure 6-4

8 272484 33 Page 6-62, Table 6-9

9 272484 33 Page 6-63, Figure 6-5

10 272484 33 Page 6-64, Figure 6-6

11 272484 33 Page 6-116

12 272484 33 Page 8-6, Figure 6-6

13 272484 34 Page 11-19

14 272484 34 Page 12-15

15 272484 34 Page 13-4, Figure 13-2

16 272484 34 Page 13-9, Section 13.2.2.5

17 272484 34 Page 13-11, Section 13.2.2.5

18 272484 35 Page 13-23, Table 13-7

19 272484 35 Page 13-37, Figure 13-9

20 272484 35 Page 13-37, Figure 13-10

21 272484 35 Page 15-15

22 272484 35 Pages E-41, E-44, E-45, Examples E-1, E-3, E-4

23 272556 35 AP-506, Page 17, “BSTALL” Section, 4th Paragraph

24 272495 36 Datasheet, Page 8, Table 6
6 80960HA/HD/HT Specification Update

Identification Information
Identification Information

Stepping Register

80960HA/HD/HT processors may be identified electrically according to device type and stepping.
The g0 register contains this information after reset initialization. The following table lists the
devices to which this errata sheet applies:

Refer to the data sheet for instructions on how to obtain the identifier number from the g0 register.

JTAG Registers

See the datasheet, release -006, dated July 1997, Section 5.1 80960Hx Boundary Scan Chain, pages
74-77 for the boundary scan chain definition.

See the data sheet, release -006, dated July 1997, Section 5.2 Boundary Scan Description Language
Example (BSDL) for the simulator file describing the boundary scan configuration in the PGA and
PQ2 packages. Contact your Intel sales office for an ASCII version of these files. Optionally, these
BSDL files can be downloaded from the Intel worldwide web homepage at:
http://www.intel.com/design/i960/swsup/ .

See the user’s manual, release -001, dated November 1995, Section 16.2 Boundary Scan (JTAG)
for a full description of the implemented boundary scan registers and instructions.

Table 1. Device Identifier Codes Found in the g0 Register After Reset

Device

Stepping 80960HA 80960HD 80960HT

A-0 0x08840013 0x08841013 0x08842013

A-1 and A-2 0x18840013 0x18841013 0x18842013

B-0, B-1, and B-2 0x28840013 0x28841013 0x28842013
80960HA/HD/HT Specification Update 7

Errata

e

 using

, set
Errata

1. Parity Failure on 8- and 16-bit Unaligned Loads
Problem: The parity detection logic can falsely indicate a parity failure under specific conditions.

Implication: False parity failures may result during unaligned short reads on an 8- or 16-bit bus.

Parity must be enabled on that 8- or 16-bit memory region for the failure to occur. Also, the error
does not appear if the 8- or 16-bit memory region is designated as cacheable.

This error does not affect 32-bit memory regions.

Workaround: One or more of the following conditions will prevent this error:

• Disable parity for 8- or 16-bit memory regions containing unaligned data.

• Make the 8- or 16-bit memory region cacheable. (Since cacheable loads are always promoted
to word loads, the errata conditions never occur.)

• Do not use short loads (ldis or ldos) on unaligned data in 8- or 16-bit regions. If necessary,
break short loads into two discrete byte loads.

These workarounds do not necessarily have to be removed after this errata is corrected in silicon.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).

2. Read Wrong Location from Non-Burst, 8- and 16-bit Memory Regions
Problem: Under certain conditions, the processor reads a wrong memory location when reading unaligned

data from either an 8- or 16-bit memory region.

The failure mode occurs when all the following conditions are present:

• Bursting disabled

• Pipelining enabled

• 8- or 16-bit memory region

• NRAD = 0 and NRDD ≠ 0

• Unaligned memory read access that crosses a 16-byte (quad word) boundary

If any of the above conditions are not present, the processor behaves correctly.

When the above conditions are present, the processor may fail to access the correct location in the
next 16-byte memory segment. Instead, it may “wrap around” and access a wrong location at th
beginning of the current 16-byte segment.

Implication: There is little impact to the user since it is impractical to design a pipelined memory systems
NRAD = 0 with NRDD ≠ 0.

Workaround: In every 8- or 16-bit memory region where bursting is disabled and pipelining is enabled
NRAD ≠ 0 or NRDD = 0. Else, avoid at least one of the other conditions listed above.

Status: NoFix. Refer to Summary Table of Changes to determine the affected stepping(s).
8 80960HA/HD/HT Specification Update

Errata

r

itial-
itrary
states
l that

erator.
 loads

licon.
3. Breakpoints on Stacks Produce Wrong Fault IP
Problem: When a data breakpoint is set on a stack location and a call, callx, or calls instruction causes a flush

to that stack location, the resulting trace fault record may report the instruction pointer (IP) of the
called procedure instead of the calling instruction.

This error occurs only when the procedure call causes a frame flush from the on-chip register cache
to the procedure stack.

Implication: The IP returned for breakpoints set on stack locations is unreliable.

Workaround: Avoid setting data breakpoints on the stack. Else, ensure that the register cache is large enough to
prevent frame spills during debugging.

Otherwise, ignore the fault IP if you only need to know that data was flushed to the stack.

Status: NoFix. Refer to Summary Table of Changes to determine the affected stepping(s).

4. Parity Faults May Not Report Correct Address and Access Type
Problem: When a parity fault occurs, the fault record may report the wrong faulting address and bus access

type. Specifically, if another load or fetch access immediately follows the faulting access, the fault
record address and bus access type describes the second access instead of the faulting access.

Implication: The faulting address and bus access type in a parity fault record are not reliable.

Workaround: Ignore the address of faulting instruction and the access type word of the parity fault record.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).

5. PMCON15 Temporarily Initialized Incorrectly During RESET
Problem: The PMCON15 bytes loaded from the Initialization Boot Record (IBR) after RESET is deasserted

become corrupted inside the processor. The resulting wait state profile can cause initialization read
accesses to have more address-to-data (NRAD) and data-to-data (NRDD) wait states than intended.

This problem corrects itself later during initialization when the processor overwrites PMCON15
with the correct wait state profile from the Control Table image in user memory.

Specifically, the low nibble of IBR PMCON Byte 1 is logically OR’d with the high nibble of
PMCON Byte 0.

The write wait states in Byte 1 are not at issue here because no writes occur during processo
initialization after PMCON15 is overwritten from the Control Table.

Implication: If the workaround is ignored, some systems may “hang” indefinitely during processor in
ization. Memory systems that use READY# during processor initialization cannot afford arb
extra wait states because the processor ignores the READY# signal until after the wait
expire. In that case, the processor can “hang” during initialization, awaiting a READY# signa
has already occurred.

Workaround: Program IBR address 0xFEFFFF34 with 0x00.

No workaround is strictly necessary for memory systems that use the internal wait state gen
Processor initialization proceeds correctly, but possibly at a slower speed until the processor
the Control Table from external memory.

This workaround does not necessarily have to be removed once this errata is corrected in si

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).
80960HA/HD/HT Specification Update 9

Errata

 -001
 parity
able

annot

d in

ations

hen

ilicon.
6. BCON Register is not Cleared Before Software Reset
Problem: Processor microcode does not clear the BCON.sirp bit before performing a sysctl software reset.

Implication: A TYPE MISMATCH fault is generated if the BCON.sirp bit is set when a software reset is
executed.

Workaround: Clear BCON.sirp before executing a sysctl reset sequence.

This workaround does not necessarily have to be removed after this errata is corrected in silicon.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).

7. MODTC Command Can Set TC Register Event Flags
Problem: The modtc instruction can be used to set event flags in the Trace Control (TC) Register. Normally,

event flags are set by hardware trace events and cleared by user software with modtc. There is no
utility in the user setting those flags.

Implication: User code could accidentally set the TC Register event flags with unpredictable results.

Workaround: Only use modtc to clear event flags.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).

8. Parity Faults Cannot Be Disabled Separate from the PCHK# Pin
Problem: Contrary to section 16.3.5 “Parity Generation and Checking” in the user’s manual revision

(dated November 1995), parity faults cannot be disabled independently from the hardware
checking pin, PCHK#. There is no bit in the PRCB Fault Configuration Word to enable/dis
faults on parity errors.

Implication: When parity is enabled, parity faults and the PCHK# pin responds to parity failures. Users c
independently disable one or the other response.

Workaround: Under evaluation.

Status: NoFix. Refer to Summary Table of Changes to determine the affected stepping(s).

9. Timer Terminal Count (TMR.tc) Bit Cannot Bear Polling
Problem: The TMRx.tc bit randomly fails to go true (high) if polled by software when the timer is use

one-shot mode. Timer0 and Timer1 are both affected.

Specifically, if the user software reads TMRx.tc at or about the same time the bit is set by the
processor, the bit never gets set. The timer expires and halts as normal.

Implication: This errata affects applications that use the timer(s) to produce finite, one-shot delays. Applic
that require cyclic, periodic delays can usually use the timer interrupts instead of polling.

Workaround: Use either of the following techniques:

1. Poll the Timer Count Register (TCRx) until it decrements to zero. In one-shot mode, TCRx
remains cleared when it reaches 0x0000000.

2. Poll the Timer Enable bit (TMRx.en) until it clears. In one-shot mode, TMRx.en clears w
TCRx reaches 0x00000000.

These workarounds do not necessarily have to be removed after this errata is corrected in s

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).
10 80960HA/HD/HT Specification Update

Errata

995)

icon.

xtra

etween

ore
10. Return Instruction Pointer (RIP) Cannot be Stored by Software
Problem: A fault occurs when writing the RIP (located in register r2) directly to an external address using the

following code sequence.

lda <address>, r6 # the register used is not significant

st RIP, (r6)

The following code sequence does not produce a fault.

mov RIP, r7 # mov and lda execute in parallel

(1 clock cycle)

lda <address>, r6

st r7, (r6)

Implication: Storing the RIP to external memory is a common debug method, but rarely used in actual applica-
tions. Of course, user software should never modify (write) the RIP directly. Section 7.2
“Modifying the PFP Register” in the user’s manual, revision -001 (dated November 1
describes the recommended way to change the processor’s context.

Workaround: Use an intermediate register to write the RIP from r2 to an external address.

This workaround does not necessarily have to be removed after this errata is corrected in sil

Status: NoFix. Refer to Summary Table of Changes to determine the affected stepping(s).

11. WAIT# Pin Asserts During NXDA Wait States
Problem: The WAIT# pin toggles true (low) during internally generated NXDA wait states. These e

WAIT# signals occur only when a bus request requires multiple bus accesses.

Implication: Applications that use WAIT# to derive a write data strobe can generate sporadic strobes b
valid memory accesses.

Workaround: If your application uses WAIT# to qualify write strobes, modify your write strobe logic to ign
any WAIT# signals after BLAST# and before ADS#. A 1-bit state machine is sufficient. Add the
equivalent of the following ABEL logic equations to your strobe logic:

write_en := ads # (write_en & !blast);

write0_out = write0 & write_en;

write1_out = write1 & write_en;

write2_out = write2 & write_en;

write3_out = write3 & write_en;

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).
80960HA/HD/HT Specification Update 11

Errata

g is

r

ector

ctors

again.
 uses

icon.
12. Software Interrupts Can Access the Wrong Handler Address
Problem: Posting a sysctl software interrupt to a vector ending in 0xa while vector caching is enabled causes

the processor to begin executing at an undefined address, which usually results in an OPERATION
fault. The processor fetches an interrupt handler address from the internal vector cache, where it
should not.

This behavior occurs every time vector caching is enabled and the vector least significant nibble is
0xa, i.e., the set of “bad” vectors is:

0x0a, 0x1a, 0x2a, 0x3a, 0x4a, 0x5a, 0x6a, 0x7a,

0x8a, 0x9a, 0xaa, 0xba, 0xca, 0xda, 0xea, 0xfa

This failure does not occur when either of the above conditions is false -- when vector cachin
disabled or another vector besides 0xa is used.

Interrupt vectors ending in 0xa are not cacheable, so the processor should read the external
interrupt vector table even though vector caching is enabled. When the failure occurs, the processo
doesn’t read the handler address from the external interrupt vector table.

Expanded or mixed hardware interrupts can use these vectors with impunity. For example, vector
0xaa has been shown to work correctly as an expanded hardware interrupt vector.

Implication: Sixteen (16) software interrupt vectors (all vectors ending in 0xa) are unavailable while v
caching is enabled. The remaining 224 software interrupt vectors are unaffected.

Workaround: Disable interrupt vector caching (ICON.vce = 0) when posting software interrupts to ve
ending in 0xa. Otherwise, avoid using vectors ending in 0xa.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).

13. Invalidating the Data Cache Automatically Re-enables It
Problem: Invalidating the data cache (“D_cache”) enables the D_cache.

Applications that disable the D_cache then invalidate it result in the D_cache being enabled
This behavior occurs regardless of whether the software directly writes to the CCON (sf2) or
the dcctl instruction to manipulate the D_cache.

Implication: The D_cache can be enabled when users do not expect it.

Workaround: Follow one of the sequences below to invalidate and disable the D_cache:

1. Set CCON.dci = 1 to invalidate the D_cache.

2. Loop on the CCON.dci bit until it clears.

3. Set CCON.dcgd = 1 to disable the D_cache.

or

1. Issue the dcctl instruction, mode 2 to invalidate the D_cache first.

2. Issue the dcctl instruction, mode 0 to disable the D_cache.

This workaround does not necessarily have to be removed after this errata is corrected in sil

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).
12 80960HA/HD/HT Specification Update

Errata

anual,
time of

round
14. RESET Has Priority Over HOLD
Problem: If the RESET and HOLD pins are both true, the processor output and I/O pins assume the RESET

state. The output and I/O pins are supposed to remain in the HOLD state regardless of the RESET pin.

Implication: Single bus master systems are not affected.

Multiple bus master systems that require the 80960Hx processor to remain in HOLD mode during
RESET must use the workaround.

Workaround: Prevent the RESET and HOLD pins from being active at the same time.

If a multiple bus master system uses HOLD independent of the system RESET signal, add external
logic to qualify the system RESET signal with the HOLD signal.

RESET#sys + HOLD = RESET#proc

where:

RESET#sys (active low) -- system RESET signal from the host or other controlling bus master,

HOLD (active high) -- HOLD signal applied to the processor,

RESET#proc (active low) -- processor RESET pin.

If the latter option is used, ensure that RESET#proc remains asserted for at least 16 bus clock
cycles after HOLD goes away to provide enough time to properly reset the processor.

This workaround does not necessarily have to be removed after this errata is corrected in silicon.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).

15. Data Cache Global Disable Bit (CCON.dci, sf2) May Take 1 Extra Clock Cycle
To Complete

Problem: Sometimes the CCON.dci bit stays high one extra clock cycle. The processor randomly appears to
take an extra clock cycle to invalidate the data cache. Functionally, the bit still works as specified;
it may simply take longer.

A hardware race condition in the processor causes the bit to discharge in 2 clock cycles. Setting this
bit is not affected.

Implication: Probably no impact. In normal use, user software sets CCON.dci and polls it until it is cleared by
the processor, signaling that the invalidation has completed (see Section 4.5.1 in the user’s m
revision -001, dated November 1995). Since most software does not measure the elapse
those operations, you may not see this condition.

Workaround: Do not count the number of cycles required to invalidate the data cache. Otherwise, no worka
is required.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).
80960HA/HD/HT Specification Update 13

Errata

 lock
s, the

pings
.)

r when
ilure
rther

 may

mary
16. Low Temperature Operating Limit Increased to 25°C
Problem: At low temperatures (about -5°C), the on-chip PLL clock circuitry has been observed to lose

and oscillate unpredictably on a portion of units tested. When this failure condition occur
processor behavior becomes unpredictable.

Implication: Unpredictable processor behavior.

Workaround: Avoid operating the processor below 25°C case temperatures.

Status: Fixed. This limitation was screened during production testing at the factory and fixed on all step
after the A-0 step. (Refer to Summary Table of Changes to determine the affected stepping(s)

17. IPND Register Not Cleared Automatically
Problem: Sometimes the processor does not automatically clear the Interrupt Pending (IPND) registe

servicing a dedicated interrupt. The interrupt itself is still handled correctly. When the fa
condition occurs, the interrupt service routine (ISR) keeps executing repeatedly without fu
interrupt requests until the Interrupt Mask (IMSK) or IPND are cleared.

This failure condition does not appear on every device, and is more pronounced at high VCC
voltages. This behavior has been observed at VCC as low as 3.33 V.

Implication: Unless corrected, ISRs can be invoked indefinitely by one dedicated interrupt event.

Workaround: Manually clear the IPND register during the dedicated interrupt ISR. Intel recommends all applica-
tions that use dedicated interrupts implement this workaround since the failure condition
appear on some but not all devices.

Status: Fixed. This failure condition has been fixed on the A-1 and all subsequent steps. Refer to Sum
Table of Changes to determine the affected stepping(s).
14 80960HA/HD/HT Specification Update

Errata
18. Cycle Type Bits (CT3:0) Do Not Indicate Some Fault Types
Problem: Bit CT2 does not go high for certain types of faults.

The table below summarizes the fault conditions when the CT2 bit does and does not work. All
cases of each fault subtype are implied to either work correctly or not unless otherwise noted.

The table below summarizes fault conditions when the CT2 bit does and does not work.

CT2 does behave correctly on interrupts.

Implication: The CT3:0 bits do not reliably indicate fault code execution. This condition should not affect most
applications since the CT3:0 bits are typically only used during development and diagnosis on
most applications and by emulator systems.

Workaround: None available. Do not rely on the CT3:0 bits to indicate faults.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).

AULT TYPE CT2 BIT WORKS FOR...
0H Parallel PARALLEL

1H Trace

INSTRUCTION

BRANCH

CALL

RETURN

SUPERVISOR

MARK/BREAKPOINT

breakpoint always works correctly, mark when
Mark Trace Mode is not set in the TC register.

PRERETURN

MARK/BREAKPOINT

mark when Mark Trace Mode is set in the TC
register, fmark.

2H Operation

INVALID_OPCODE

UNIMPLEMENTED

UNALIGNED

INVALID_OPERAND

non-existent sfr, unaligned long-, triple-, or
quad-register, undefined register, writing to RIP.

UNIMPLEMENTED

sysctl message type 04H

INVALID_OPERAND

undefined sysctl, icctl, dcctl, or intctl operand.

3H Arithmetic

INTEGER_OVERFLOW

ZERO_DIVIDE

INTEGER_OVERFLOW

integer divide overflow (divi)

5H Constraint
RANGE

all other cases.

RANGE

only if a fault<cc> test evaluates true.

7H Protection

BAD_ACCESS

GMU detection

BAD_ACCESS

GMU protection

LENGTH

8H Machine PARITY_ERROR

AH Type

MISMATCH

execute a privileged instruction while in user
mode (intdis, inten),

write to Supervisor MMR while in User mode,

access an sfr while in User mode,

write to internal RAM with BCON.irp set and
in User mode,

User write to timer register when timer is
protected against User writes,

write to the first 64 bytes of internal RAM with
BCON.sirp set (User and Supervisor modes).

MISMATCH

execute a privileged instruction while in User
mode (modpc, sysctl, icctl, dcctl, intctl).

10H Override OVERRIDE
80960HA/HD/HT Specification Update 15

Errata

code

es

re

n the
 by

w

n code.

 masked
es.
19. Operation Fault Occurs When Clearing the IMASK (sf1) Register
Problem: An INVALID_OPCODE operation fault occurs on the microcoded instruction when an interrupt

occurs within 6-7 bus clock cycles before any of the following sequences:

1. Clear_IMASK_sfr_register microcoded instruction

2. Clear_IPND_sfr_register microcoded instruction

3. Clear_IMSK_sfr_Bit_for_Posted_Interrupt microcoded instruction

4. Clear_IPND_sfr_Bit_for_Posted_Interrupt microcoded instruction

In cases “C” and “D”, clearing bits for inactive interrupts does not cause the failure mode. Setting
IMSK or IPND bits does not exhibit the failure mode, either.

A “microcoded instruction” is any assembly language instruction that executes a CISC micro
sequence. Examples include call, ret, sysctl, dcctl, atmod, atadd, most branches, and flushreg. The
key to preventing this failure mode is to insert at least 3 RISC instructions, such as nops (mov g0,
g0), after clearing all or part of the IMSK or IPND special function registers.

When the anomalous fault occurs, an interrupt request input occurs within 6-7 bus clock cycl
before the bit-clearing instruction sequence. The interrupt can be either external or internal.

The instruction cache, data cache, interrupt vector, interrupt service routine (ISR) caching,
Supervisor/User mode, process priority and interrupted/executing state are insignificant to this failu
mode.

When the failure condition occurs, the fault handler does execute properly. Then the ISR also
executes properly after the fault handler. All subsequent interrupts execute correctly, too.

Other special function registers that also appear as memory mapped registers (MMRs) -- sf2
(CCON), sf3 (ICON), and sf4 (GCON) -- are not affected by this failure condition.

Implication: The fault adds an unexpected time delay in the program execution, and depending o
INVALID_OPCODE fault handler, can unnecessarily redirect the program execution
attempting to recover from an invalid error.

Workaround: Use the three new instructions (intctl, intdis, and inten) to globally enable and disable the
interrupts before manipulating the IMSK or IPND register. These instructions ensure that the ne
processor state is in full effect before the instruction completes.

intdis
Clear_IMASK_or_IPND_sfr_bits
inten

This sequence takes 13 core clock cycles -- no more, no less -- and occupies 3 words of executio
It guarantees the processor will not service any masked interrupts after the intdis instruction is issued.

An alternative is to insert at least three nop (mov g0, g0) instructions as shown below.

Clear_IMASK_or_IPND_sfr_bits
nop
nop
nop
resume normal instruction sequence

This sequence uses no less than 4 core clock cycles and occupies 4 words of execution code. The
maximum execution time is indeterminate because the processor may service an interrupt request
in the first instruction during any point in the sequence until the normal instruction sequence resum

Status: NoFix. Refer to Summary Table of Changes to determine the affected stepping(s).
16 80960HA/HD/HT Specification Update

Errata

lues,

errupt

.

.

can

 and

s
20. Using atmod or sysctl to Change IMSK or IPND MMRS Can Hang the
Processor

Problem: When an interrupt signal occurs in the vicinity of an atmod or sysctl instruction acting on the IMSK
or IPND memory mapped registers (MMR), the processor can hang.

“Hang” means no further ADS# strobes occur, A31:2 and BE#3:0 maintain their last valid va
and D31:0 float. The only way to recover is through hardware reset or cycle VCC off-on according
to the data sheet specifications.

This errata affects the HA, HD, and HT processors.

If an interrupt arrives up to about 15 clocks before the atmod or sysctl executes, the failure can
occur. The failure does not occur every time in the test environment, though. A minimum of 1
interrupt is required to produce the failure.

When the failure occurs, the interrupt request is never serviced. It’s unknown whether the int
request is posted correctly in the IPND register when the failure occurs.

Using the bit manipulation instructions (setbit, clrbit, etc.) on the special function register
manifestations of IPND (sf0) and IMSK (sf1) does not produce the failure. As defined, sysctl and
atmod are not compatible with special function registers.

Other sysctl operations don’t produce the failure.

Any interrupt pulse of 3 bus clock cycles long or longer can cause this problem.

This failure has been observed only while the data cache and instruction cache are disabled
Interrupts are enabled, vector cache disabled, and inputs are debounced.

When using dedicated mode, manipulating the IMSK or IPND MMRs can produce the failure
However, when using expanded mode, only the IMSK MMR can produce the problem since
expanded interrupts do not affect IPND.

Implication: Using the atmod or sysctl instructions to modify the MMR implementations of IMSK or IPND
hang the processor indefinitely.

Workaround: Manipulate the IPND and IMSK registers using the special function registers (sf0 = IPND and sf1 =
IMSK). See errata #19 “Operation Fault Occurs When Clearing the IMSK (sf1) Register” for
related workarounds.

User applications are not well served by atmod or sysctl on MMRs that are also special function
registers because those operations take several clock cycles to complete. Changes to IMSK
IPND as sfrs complete in 1 clock cycle.

C compilers typically do not generate code to modify IMSK or IPND directly; those instruction
must typically be coded as in-line assembly by the user.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).
80960HA/HD/HT Specification Update 17

Errata

 The
nly
21. Storing the Contents of the I_CACHE to External Memory Also Disables the
Cache

Problem: Case #6 of the icctl instruction flushes the Instruction Cache (I_cache) contents to external
memory. After flushing, though, the icctl instruction disables the I_cache.

No other cases of icctl exhibit this problem. The dcctl instruction does not either.

Implication: Since icctl case #6 is predominantly used for I_cache analysis and system debugging, no impact on
production systems is expected.

During system development, users could see abnormally slow system performance after storing the
I_cache contents because the I_cache is disabled.

Workaround: Re-enable the I_cache after flushing the I_cache contents with the icctl case #6 instruction. While
there are several ways to implement this workaround, the following instruction sequence will do
the trick quickly.

icctl 6, src2, src/dst # flush the I_cache contents to src2
setbit 30, sf2, sf2 # re-enable the I_cache through CCON
resume normal instruction sequence

The setbit instruction executes in 1 clock cycle.

This workaround does not necessarily have to be removed after this errata is fixed in silicon.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).

22. PCHK# Pin Does Not Indicate Parity Failures On HD and HT Processors
Problem: When enabled, a parity failure produces a PARITY_ERROR fault, but does not always assert the

PCHK# pin. This problem affects the HD and HT processors.

Implication: The PCHK# pin does not work reliably on the HD and HT processors.

Workaround: None available. Do not rely on the PCHK# pin on the HD or HT processors.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).

23. Spurious INVALID_OPCODE Faults Can Occur with Level-Detect Interrupts
Problem: Spurious INVALID_OPCODE faults can occur on systems using level-detect hardware interrupts.

The fault record points to a user instruction that in fact is a valid opcode. The spurious fault occurs
when the level-detect interrupt signal on the XINT pins deasserts within a few clock cycles of an
interrupt service routine (ISR) ret instruction.

To review the terminology, the processor recognizes level-detect interrupts as long as the XINT
pins are held low. This mode contrasts to the falling edge detect mode which recognizes interrupts
only when they transition from high-to-low. Level-detect mode requires the interrupt source to
remain asserted until the user explicitly dismisses it in the ISR software.

The hardware interrupt contributing to this problem can be either dedicated level-detect or
expanded mode. (All expanded mode interrupts are level-detect by definition.)

This problem affects the HA, HD and HT processors. Enabling or disabling the I_cache, D_cache
or register cache may modulate the problem. The clock speed is not a direct factor.

This failure resembles errata #19.“Operation Fault Occurs When Clearing the IMASK (sf1)
Register”. Both problems appear when the processor recognizes an interrupt request that
subsequently disappears during the same microcoded instruction. The processor enters a
metastable state and tries to execute a value from an internal lookup table as an instruction.
value is not a valid opcode, so, an INVALID OPCODE fault results. The fault record mistake
points to a valid user instruction opcode as the cause of the fault.
18 80960HA/HD/HT Specification Update

Errata

letes

red.

ad of
re
sor
the bus
ide

upt

s it to

 not

en
 the
Implication: Unless prevented by the workarounds, level-detect interrupts can produce spurious INVALID
OPCODE faults on valid user instructions.

Workaround: In general terms, prevent interrupts from being recognized and disappearing during the same
microcoded (CISC) instruction.

In practical terms, make sure the level-detect interrupt request is gone before the ISR ret
instruction. Any or all of the following workarounds can accomplish this objective –

1. dead reckoning - calculate the worst case latencies.

2. delay the ISR until the interrupt is dismissed - wait until the dismissing bus access comp
before proceeding with the ISR execution.

3. poll until the interrupt is gone - poll an interrupt flag until it indicates the interrupt has reti

DEAD RECKONING -

This option allows you to guarantee the workaround conditions by deductive reasoning inste
by direct control. Therefore, the dead reckoning option requires that the bus access delays a
entirely predictable so a worst case timing condition can be calculated. The 80960Hx proces
must be the only bus master in the system (the HOLD and BOFF# signals are not used) and
wait states must be deterministic (the READY# signal is not controlled by unpredictable outs
events). If bus access delays are not entirely predictable, use another workaround.

In essence, you ensure the interrupt is gone before the ret instruction by calculating and comparing
the time each process takes. In mathematical terms:

TRET > TDIS

where TRET = the minimum time elapse from issuing the dismiss interrupt
instruction to the ret instruction, and

TDIS = the maximum time elapse between issuing the dismiss interr
instruction and when the interrupt actually goes away.

The “dismiss interrupt” instruction can be a load or store to an external logic device that cause
withdraw the interrupt signal from the XINT pins.

Calculate TRET by summing the external bus clock cycles for the shortest path to the ret. Assume
the I_cache and D_cache are enabled if the application uses them. Take the internal clock
multiplier (HA=1x, HD=2x, HT=3x) into account.

Measuring TRET with a logic analyzer is a little tricky because it is difficult to see when the
instructions are actually issued. The user’s manual explains that issued bus instructions may
execute right away depending on the condition of the on-chip bus controller.

Calculate TDIS by summing the external bus clock cycles for the longest possible delay betwe
issuing the dismiss interrupt instruction and the interrupt actually retiring. Include as many of
following in the calculation as applicable:

• maximum memory wait state profiles for the regions being accessed

• predictable memory access delays (such as DRAM refresh cycles)

• possible delays from bus requests already pending in the bus queue

• response latency of the external interrupt device

Of course, dismiss the interrupt as early in the ISR as practical.
80960HA/HD/HT Specification Update 19

Errata

ation,
R
s.

r’s

a
e
me
DELAY THE ISR UNTIL THE INTERRUPT IS DISMISSED -

This workaround eliminates ambiguous delays caused by external bus masters.

Some applications involve multiple bus masters such as DMA controllers that can deny the
80960Hx processor access to the bus for indefinite periods of time. These delays can arbitrarily
extend the time the interrupt request remains on the XINT pins while the ISR executes at normal
speed from the I_cache. In some cases the interrupt request exceeds the ret instruction and causes a
spurious INVALID OPCODE fault.

This workaround delays ISR execution until the 80960Hx processor regains control of the bus and
dismisses the interrupt source. The syncf instruction delays execution indefinitely until the bus and
instruction fetch queues empty. Then execution proceeds again as normal. Add the following code
as early in your ISR as practical.

#Dismiss external interrupt source dismiss_interrupt_instruction

#Wait until the dismiss_interrupt_instruction executes syncf

#Resume ISR execution

You still have the responsibility to ensure the interrupt signal will have enough time to retire before
the ret instruction. (See “DEAD RECKONING”, above.)

POLL UNTIL THE INTERRUPT IS GONE -

This workaround relies on an interrupt request flag bit that can be polled by the user. In oper
you dismiss the external interrupt source as early in the ISR as practical, proceed with the IS
execution, then, just before the ret instruction, poll on that flag bit until the interrupt request retire

The 80960Hx processor provides a built-in flag bit for dedicated mode interrupts, but the use
system has to provide one for expanded mode interrupts.

DEDICATED MODE: The user’s manual, section 11.7.2 “Interrupt Detection Options” offers
polling method (Example 11-5) for dedicated mode level-sensitive interrupts which delays thret
instruction until the dedicated interrupt request deasserts. The polling code example (with so
minor clean-up modifications) appears below. The example assumes that the ld from address
“INTR_SRC” deactivates the XINT7 interrupt input. The loop tries to clear the IPND bit for
XINT7 but the bit remains set until the XINT7 interrupt retires.

Clear level-detect interrupts before return from handler
ld INTR_SRC, g0 # Dismiss the extern. interrupt
lda IPND_MMR, g1 # g1 = IPND MMR address
lda 0x80, g2 # g2 = mask to clear XINT7 IPND bit

Loop until IPND bit 7 clears
wait:

mov 0,g3
Try to clear the XINT7 IPND bit
atmodg1, g2, g3
bbs 0x7, g3, wait # Branch until IPND bit 7 clears

Optionally restore IMSK
mov r3, IMSK

ret # Return from handler
20 80960HA/HD/HT Specification Update

Errata

ller.
e

s the

sely,
pin

it this

us. For
the

15:8.
n

 the
parity
rranted.

er all
EXPANDED MODE: Expanded mode interrupts do not post bits in IPND, so an internal polling
loop isn’t available. The user’s system must provide a flag bit on the external interrupt contro
One suggestion is a read/write register on the interrupt controller that indicates the state of th
signals being applied to the 80960Hx XINT pins. Poll on that external register until it indicate
interrupt has been retired.

Status: NoFix. Refer to Summary Table of Changes to determine the affected stepping(s).

24. Parity Can Fail on Reliable Data and Can Pass on Corrupted Data
Problem: Under certain conditions, reliable data (data with correct parity) can fail for parity. Conver

corrupted data (data with wrong parity) can pass for parity. A parity failure asserts the PCHK
and produces a PARITY_ERROR fault.

Memory read accesses that involve multiple data bus widths (32-, 16-, and/or 8-bit) can exhib
problem.

When transitioning from wider to narrower data bus width (e.g. 32- to 16-bit, or 16- to 8-bit)
memory reads, the processor can test the parity of the undefined bits on the narrower data b
example, a 32-bit read followed by a 16-bit read can cause the processor to mistakenly test
parity of the undefined bits (bits D31:16) of the data bus. Another example is a 16-bit read
followed by an 8-bit read. In that case, the processor can mistakenly test the undefined bits D
Since those undefined bits may randomly include wrong parity, the processor can produce a
invalid parity failure.

When transitioning from narrower to wider (e.g., 16- to 32-bit, or 8- to 16-bit) memory reads,
processor sometimes disregards the parity of the upper half of the data bus bits. Any wrong
in those upper bits goes unnoticed so the processor indicates no failure even when one is wa

Implication: The parity check logic cannot be trusted to indicate reliable and corrupted data parity und
operating conditions.

Workaround: Avoid mixing data bus width reads. Otherwise, do not rely on the parity check feature.

Status: Fixed. Refer to Summary Table of Changes to determine the affected stepping(s).
80960HA/HD/HT Specification Update 21

Errata

hile
mory
25. DT/R# Timings Do Not Meet Published Specifications
Problem: The DT/R# TOV2 maximum and TTVEL minimum timings exceed the published specs.

This errata affects only the clock-multiplied HD and HT versions; the HA is unaffected. The
timings are based on the clock multiple, as shown in Tables 1 and 2.

Implication: Data bus contentions can occur if the application meets ALL of the following criteria:

1. using HD or HT processor, AND

2. using external bi-directional data bus transceivers, AND

3. controlling the direction of the data bus transceivers with DT/R#, AND

4. the data bus transceivers are too slow to switch direction within the actual TTVEL time shown
in Tables 1 and 2.

Condition 4. can be expressed as follows:

TIS(DIR) > TTVEL

where:

TIS(DIR) is the transceiver minimum DIRECTION input setup requirement with respect to the
transceiver OUTPUT ENABLE input, and

TTVEL is the actual 80960Hx processor minimum “DT/R# Valid to DEN# Falling” output
setup time.

Transceiver manufacturers such as Integrated Device Technology (IDT) and Texas
Instruments (TI) rarely specify TIS(DIR), so the evaluation may require your engineering
judgment or more information from the transceiver manufacturer.

The contentions can happen when the tardy DT/R# signal causes the bi-directional data
transceivers to briefly drive in the wrong direction before switching to the correct direction. W
driving the wrong direction, the transceivers can contend with either the processor or the me
and I/O data bus.

Table 1. 80960HD DT/R# Delays

Specified Actual

Symbol Parameter Min Max Min Max Units

TOV2,
TOH2

Output Valid Delay and Output
Hold for DT/R# T/2 + 1.5 T/2 + 9.5 T3/4 + 1.5 T3/4 + 9.5 ns

TTVEL DT/R# Valid to DEN# Falling T/2 – 4 T/4 – 4 ns

Table 2. 80960HT DT/R# Delays

Specified Actual

Symbol Parameter Min Max Min Max Units

TOV2,
TOH2

Output Valid Delay and Output
Hold for DT/R# T/2 + 1.5 T/2 + 9.5 T5/6 + 1.5 T5/6 + 9.5 ns

TTVEL DT/R# Valid to DEN# Falling T/2 – 4 T/6 – 4 ns
22 80960HA/HD/HT Specification Update

Errata

limits.

.

ings

D
ing the

e.

/R#
The contentions can occur only on the first data transferred during a write/read transition (a
read-following-a-write or a write-following-a-read) access. Thus, only the first access in a burst is
affected.

In general, data bus contentions can produce data corruption and system crashes, and may
compromise device reliability. The functionality and reliability issues are explained below.

1. Functional failures (data corruption and system crashes)

Only zero wait state (NRAD=0 and NWAD=0) memory systems that use data bus transceivers
can experience data corruption and system crash failures due to this errata.

The output valid time (TOV1) of the processor and of the memory system can extend by the
length of the contention. For example, an application that uses the 80960HT-75 processor and
IDT 74FCT245 transceivers could experience about 1 ns of contention. In this case, the HT
TOV1 time could extend by 1 ns. Functional failures can occur if that extension violates
memory setup times.

As always, bus contentions can increase noise in the contending devices. The current
transients can also introduce VCC noise that can affect the noise margin in other parts of the
application. The magnitudes and effects of these perturbations must be understood for each
application.

2. Reliability risks

The worst-case conditions evaluated by Intel using the i960® HT-75 processor and the IDT
74FCT245 transceivers indicate the i960 Hx processor reliability is not compromised by this
errata.

In general, sufficiently large bus contentions can compromise the reliability of the contending
components. Excessive average currents in the output drivers can wear them out prematurely.
The effect on reliability is a function of average current and the output driver circuit design,
layout, and silicon fabrication process.

The i960 Hx component is designed for at least 100x higher average currents than our studies
indicate this errata produces. Using the above example, an application that combines the i960
HT-75 processor and IDT 74FCT245 transceivers could experience a 1 ns contention of 20 - 30
mA every 4 µs. The average current is 5 - 10 µA, well within the i960 Hx processor design

The reliability of the transceivers and memory and I/O chips may be similarly unaffected
Contact the manufacturers of those chips for further information.

Depending on your application reliability testing, you may already have quantified the
reliability impact in your application.

Workaround: Analyze the timings associated with your application to determine whether the DT/R# tim
introduce bus contentions. If no contentions occur, no further workaround is necessary.

If you find contentions, your application can function properly if at least one NRAD and NWA
wait state is inserted to allow the contentions to subside and the bus to stabilize before latch
first data of a read or write sequence. Additional VCC decoupling may be required to suppress
power supply transients caused by the contentions according to common engineering practic
Satisfy yourself that the reliability is not compromised.

Alternately, you can synthesize a surrogate DT/R# signal in off-chip logic that closely
approximates the original timing specs. The logic produces a DT/R# signal that mimics the W
output delayed by T/2. The pseudo code appears below.

clk = !Hx_clkin ;synch to falling edge of CLKIN

new_DTR =: Hx_WR ;new_DTR mimics W/R#, delayed by T/2

Status: NoFix. Refer to Summary Table of Changes to determine the affected stepping(s).
80960HA/HD/HT Specification Update 23

Errata

rting
cessor
 the
lays).
26. Deasserting Level-Detect Interrupts During CISC Instructions Can Produce
Spurious INVALID_OPCODE Faults

Note: This errata is identical to errata #23, but covers the general case conditions that can produce the
failure.

Problem: Spurious INVALID_OPCODE faults can occur on systems that use level-detect hardware
interrupts. The fault record points to a user instruction that in fact is a valid opcode. The spurious
fault occurs when a pending level-detect interrupt signal on the XINT pins deasserts within a few
clock cycles of a microcoded (CISC) instruction that enables that interrupt.

In the case of errata #23, the ret instruction is the enabling CISC instruction. While concluding an
interrupt service routine (ISR), the ret instruction enables the interrupt that prompted the ISR. If
that interrupt remains pending, then deasserts during the ret execution, the failure occurs.

Any microcoded CISC instruction that can enable pending level-sensitive interrupts is subject to
this failure. Examples include the following:

• modpc (when used to lower the process priority, and thereby enable pending interrupts)

• inten

To review the terminology, the processor recognizes level-detect interrupts as long as the XINT
pins are held low. Falling edge-detect mode recognizes interrupts only as they transition from high
to low. Level-detect mode requires the interrupt source to remain asserted until the user explicitly
dismisses it in the ISR software.

The hardware interrupt contributing to this failure can be either dedicated level-detect or expanded
mode. (All expanded mode interrupts are level-detect by definition.) This problem affects the HA,
HD, and HT processors. Enabling or disabling the I_cache, D_cache or register cache may
modulate the problem. The clock speed is not a direct factor.

Implication: Unless prevented by the workarounds, level-detect interrupts can produce spurious
INVALID_OPCODE faults on valid user instructions.

Workaround: In general terms, prevent pending level-sensitive interrupts from disappearing during the
microcoded instructions that enable the interrupts.

In practical terms, make sure the level-detect interrupt signal either remains firmly asserted
throughout, or else is completely withdrawn at least 5 CLKIN cycles before, an enabling CISC
instruction. Asserting the interrupt signal throughout the CISC instruction invokes an ISR
execution.

Either or both of the following workarounds can accomplish this objective:

• dead reckoning – calculate the worst case latencies

• runtime pause – deterministically delay the enabling CISC instruction until the pending
interrupt withdraws

DEAD RECKONING

This option prevents the failing conditions by applying deductive reasoning instead of by asse
direct runtime control. The bus access delays must be entirely predictable. The 80960Hx pro
must be the only bus master in the system (the HOLD and BOFF# signals are not used), and
bus wait states must be deterministic (the READY# signal is not affected by unpredictable de
If bus access delays are not entirely predictable, use another workaround.
24 80960HA/HD/HT Specification Update

Errata

ling
. Take

ions
 right

een
 the
Ensure the interrupt is gone at least 5 CLKIN cycles before issuing the enabling CISC instruction
by comparing the time each process takes. In mathematical terms,

TCISC - (5 CLKIN cycles) > TDIS

where:

TCISC = the minimum time elapse from issuing the dismiss interrupt instruction to the
enabling CISC instruction, and

TDIS = the maximum time elapse from issuing the dismiss interrupt instruction to the interrupt
signal actually going away.

The “dismiss interrupt” instruction can be any instruction to external logic (typically a load or
store) that causes the interrupt signal to withdraw from the XINT pins.

Calculate TCISC by summing the external bus clock cycles for the shortest path to the enab
CISC instruction. Assume the I_cache and D_cache are enabled if the application uses them
the internal clock multiplier (HA=1x, HD=2x, HT=3x) into account.

Measuring TCISC with a logic analyzer is tricky because it is difficult to see when the instruct
are actually issued. The user’s manual explains that issued bus instructions may not execute
away depending on the condition of the on-chip bus controller.

Calculate TDIS by summing the external bus clock cycles for the longest possible delay betw
issuing the dismiss interrupt instruction and the interrupt actually retiring. Include as many of
following in the calculation as applicable:

• maximum memory wait state profiles for the regions being accessed

• predictable memory access delays (such as DRAM refresh cycles)

• possible delays from bus requests already pending in the bus queue

• response latency of the external interrupt device

RUNTIME PAUSE

This workaround accounts for indefinite bus access delays by forestalling the enabling CISC
instruction until the interrupt signal withdraws.

Some applications involve multiple bus masters, such as DMA controllers, that can deny the
80960Hx processor access to the bus for indefinite periods of time. These delays can arbitrarily
extend the time the interrupt request remains on the XINT pins while the ISR executes at normal
speed from the I_cache. In some cases, the interrupt request can overlap the enabling CISC
instruction, causing the spurious INVALID_OPCODE fault.

This workaround delays execution until the 80960Hx processor regains control of the bus and
dismisses the interrupt source. Three methods can suspend execution pending a bus access: syncf,
scoreboarding, and polling. syncf postpones execution indefinitely until the bus and instruction
fetch queues run empty. Scoreboarding accomplishes the same result by forcing the processor to
wait for external data. Polling waits until a data value indicates that the interrupt has withdrawn.

The following pseudo-code demonstrates the syncf option.

#Dismiss external interrupt source
dismiss_interrupt_instruction
#Wait until the dismiss_interrupt_instruction executes
syncf
#Resume execution
80960HA/HD/HT Specification Update 25

Errata

e

r’s

a

me
”
it

ng
ller.

e
 that
The scoreboarding option operates almost the same way.

#Dismiss external interrupt source
ld <int_cntlr_addr>,r7
#Wait until the bus access occurs
cmpobne 0x0,r7,<next_addr>
#Resume execution

You still must ensure that the interrupt signal has enough time to retire before the enabling CISC
instruction issues. (See “Dead Reckoning,” above.)

Polling relies on an interrupt request flag bit that can be polled by the processor. Dismiss th
external interrupt source, proceed with normal execution, then, just before the enabling CISC
instruction, poll on that flag bit until the interrupt request retires.

The 80960Hx processor provides a built-in flag bit for dedicated mode interrupts, but the use
system must provide one for expanded mode interrupts.

DEDICATED MODE: The user’s manual, section 11.7.2 “Interrupt Detection Options” offers
polling method (Example 11-5) for dedicated mode level-sensitive interrupts which delays a ret
instruction until the dedicated interrupt request deasserts. The polling code example (with so
minor clean-up) appears below. The example assumes that the ld from address “INTR_SRC
deactivates the XINT7 interrupt input. The loop tries to clear the IPND bit for XINT7 but the b
remains set until the XINT7 interrupt retires.

Clear level-detect interrupts before return from handler
ld INTR_SRC, g0 # Dismiss the extern. interrupt
lda IPND_MMR, g1 # g1 = IPND MMR address
lda 0x80, g2 # g2 = mask to clear XINT7 IPND bit

Loop until IPND bit 7 clears
wait:

mov 0,g3
Try to clear the XINT7 IPND bit
atmodg1, g2, g3
bbs 0x7, g3, wait
Optionally restore IMSK
mov r3, IMSK
ret # Return from handler

For illustration, this example uses the ret instruction as the enabling CISC instruction; any other
enabling instruction can replace ret.

EXPANDED MODE: Expanded mode interrupts do not post bits in IPND, so an internal polli
loop isn’t available. The user’s system must provide a flag bit on the external interrupt contro
One suggestion is a readable register on the interrupt controller that indicates the state of th
signals being applied to the 80960Hx XINT pins. Poll on that external register until it indicates
the interrupt has been retired.

Status: NoFix. Refer to Summary Table of Changes to determine the affected stepping(s).
26 80960HA/HD/HT Specification Update

Errata
27. Power Supply Sequence Can Damage Internal Diodes
Problem: If the voltage on the VCCPLL power supply pin exceeds the VCC pin voltage by 0.5 V at any time,

including the power up and power down sequences, excessive currents can permanently damage
on-chip electrostatic discharge (ESD) protection diodes. The damage can accumulate over
multiple episodes.

Pragmatically, this problem only occurs when the VCCPLL and VCC pins are driven by separate
power supplies or voltage regulators. Applications that use one power supply for VCCPLL and
VCC are not typically at risk. Verify that your application does not allow the VCCPLL voltage to
exceed VCC by 0.5 V.

ESD diodes connect the VCCPLL circuitry to VCC. Normally, those diodes are unbiased or
reverse biased, so no current flows. In the event of a positive electrostatic pulse on VCCPLL, the
diodes protect the phase-locked loop circuitry by shunting the excess charge to VCC. However,
when power supplies forward bias these diodes for any length of time the current flow can damage
or destroy the diodes.

The VCCPLL low-pass filter recommended in the data sheet does not promote this problem.

The VCC5 power supply pin is also susceptible to excessive current damage, but is adequately
protected by the 100 ohm series resistor recommended in the data sheet. See the 80960HA/
HD/HT data sheet for more details.

Implication: Diode damage can manifest itself as...

• resistive short circuits between the VCCPLL and VCC pins,

• compromised ESD protection on the VCCPLL pin, and

• unspecified functional or parametric failures resulting from damage to the circuitry near the
diodes.

Workaround: Use one common power supply or regulator for the VCCPLL and VCC pins. Otherwise, ensure
that the VCC pins power up before VCCPLL and power down after VCCPLL. Else limit the
VCCPLL diode current flow by providing at least 100 ohm of resistance in series with the
VCCPLL pin.

Status: No Fix. Refer to Summary Table of Changes to determine the affected stepping(s).
80960HA/HD/HT Specification Update 27

Specification Changes
Specification Changes

None for this revision of this specification update.
28 80960HA/HD/HT Specification Update

Specification Clarifications

“Hx”)

ss

:0 =

t a

byte

even

ss bits
ite

nt data
Specification Clarifications

1. Burst Accesses on 8- and 16-Bit Buses Do Not Behave Like the Cx
Processor

Issue: The burst behavior on 8-bit and 16-bit buses is more sophisticated on the 80960HA/HD/HT (
processors than the 80960CA/CF (“Cx”) processors.

The basic definition of a burst access, is 2-4 consecutive data cycles following a single addre
cycle. A 1 data cycle burst is impossible.

8-bit bus differences: Whereas the Cx can only burst beginning at a byte-aligned boundary (A1
0x0), the 80960Hx can begin a burst at any of three places (A1:0 = 0x0, 0x1 or 0x2). Of course, a
byte access beginning at A1:0 = 0x3 is a single byte access, not a burst. The table below illustrates
this point.

16-bit bus differences: Whereas the Cx maintains the same data type (byte or short) throughou
burst, the 80960Hx can dynamically change data types within a burst. Specifically, a multiple short
word burst beginning on an odd byte boundary (A2:1 = 0x1 or 0x3) will produce a burst of a
followed by a short, or visa versa. The table below illustrates this point.

Implication: This behavior difference is a problem only when off-chip memory control logic assumes
boundary bursting or consistent data types within a burst.

Memory systems that assume even boundary bursting generate the 2 least significant addre
themselves. One such system has been observed to “wrap around” the address, and overwr
unintended memory addresses.

Memory systems that assume consistent data types within a burst fail to recognize subseque
type changes and fail to access all intended bytes.

8-Bit Bus Behavior for a Word Access

Word 0 Word 1 80960Hx Accesses

Access beginning on... 0 1 2 3 4 5 6 7

... Byte 0 (aligned) Burst 4 bytes

... Byte 1 Burst 3 bytes, 1 byte

... Byte 2 Burst 2 bytes, burst 2 more bytes

... Byte 3 1 byte, burst 3 bytes

16-Bit Bus Behavior for a Word Access

Word 0 Word 1 80960Hx Accesses

Access beginning on... 0 1 2 3 4 5 6 7

... Byte 0 (aligned) Burst 2 shorts

... Byte 1 Burst byte & short, byte

... Byte 2 Short, short (no burst)

... Byte 3 Byte, burst short & byte
80960HA/HD/HT Specification Update 29

Specification Clarifications

ult.

nt and

lly, do
ound

t an

taining
he

 (Bus
TALL

ed).
ted by

 to

est
bus

g a
LL

,

Workaround: Do not generate the 2 least significant address bits in your external 8-bit bus memory controller.
Rather, pass the processor address bits through to the memory for proper sequencing. Otherwise,
disable bursting in memory controllers from incrementing the 2 least significant bits.

Also, pass BE3#, BE1#, and BE0# to your external 16-bit bus memory systems instead of latching
these signals on the first burst access.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

FROM/TO REFERENCE: Section 15.3.2 Burst Accesses, page 15-14. Insert the
description and impact text above (sans the “Description” and “Impact” titles) to the
bottom of the page, before Figure 15-5 on the following page.

2. Instruction Breakpoints Are Superseded by Invalid Opcode Faults
Issue: An instruction breakpoint on an address containing an invalid opcode does not produce a trace

fault; the breakpoint never “breaks”. Instead, the opcode produces an INVALID_OPCODE fa

Implication: This behavior appears only when breakpoints are used, usually limited to system developme
diagnostic sessions.

Workaround: Do not set instruction breakpoints on addresses that contain invalid opcodes. More practica
not set instruction breakpoints on uninitialized or unimplemented memory. This workar
applies to software debug tools as well as user-generated code.

For user-generated code, the GMU (Guarded Memory Unit) offers a better method to protec
uninitialized or unimplemented memory region from accidental accesses.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

FROM/TO REFERENCE: Section 9.5.2.4 Tracing on Return from Implicit Call: Fault
Case, page 9-15. Insert the following text after the first paragraph.

“There is a special case of this behavior. If an instruction breakpoint is set on an address con
an invalid opcode, the processor services the INVALID_OPCODE fault and never services t
trace fault.”

3. BSTALL Does Not Always Coincide With BREQ
Issue: Neither the datasheet nor the user’s manual describe the functional behavior of the BSTALL

Stall) and the BREQ (Bus Request) output signals. Some product literature implies that BS
coincides with BREQ, but such is not always the case.

The processor can stall (BSTALL asserted) even with an empty bus queue (BREQ deassert
Depending on the instruction stream and memory wait states, the two signals can be separa
several CLKIN cycles.

Implication: Bus arbitration logic that logically “ANDs” BSTALL and BREQ will not correctly grant the bus
the processor in all stall cases, potentially degrading processor performance.

Workaround: Do not logically “AND” BSTALL and BREQ together in arbitration logic. Instead, the simpl
bus arbitration should logically “OR” BSTALL and BREQ to determine the processor’s
ownership requirements.

More sophisticated arbitration should recognize the priority nature of these two signals. Usin
traffic light analogy, BREQ is a “yellow light” warning of a possible processor stall and BSTA
is a “red light” indicating a stall in progress.

Affected Docs: The 80960HA/HD/HT 32-Bit High-Performance Superscalar Processor datasheet, August 1997
release 006 and all earlier releases.
30 80960HA/HD/HT Specification Update

Specification Clarifications
FROM/TO REFERENCE: Add Figure 59, as shown:

Figure 59. BREQ and BSTALL Operation

CLKIN

ADS

BLAST

BREQ

BSTALL
80960HA/HD/HT Specification Update 31

Documentation Changes
Documentation Changes

1. Page 3-11, Table 3-4
Issue: The original text states that the allowed access types for the IPND and IMSK registers include R/W

and AtMod.

The corrected text states that the user must use the atmod instruction to modify these registers.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

2. Page 3-11, Table 3-4
Issue: The Access Type listed for the BPCON and XBPCON registers originally read:

“R/W, WwG”

The corrected entries read:

“WwG”

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

3. Page 3-26
Issue: The second paragraph originally read: When the processor is reinitialized with a sysctl reinitialize

message, the PC register is not changed.

The corrected text reads: When the processor is reinitialized with a sysctl reinitialize message, the
PC register returns to its reset value.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

4. Page 4-6, Section 4.4.3
Issue: Sentence added to the end of the first paragraph reads:

“Any code can be locked, not just interrupt routines.”

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

5. Page 6-45
Issue: Case 8 was inadvertently omitted from previous revision of the reference document.

The added text reads:

case 8: # invalidate the lines that came from LMTs that had DCIIR set
at the time the line was allocated.
NOTE : for compatibility with future products that have
several independent regions, the value of src2 should be one.

invalidate_DCIIR_lines_in_DCache;
break;

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

6. Page 6-60, Table 6-8
Issue: The word “blocks” is replaced with “ways”.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.
32 80960HA/HD/HT Specification Update

Documentation Changes

 been

ntry
r

tion

ding

ntry

ns.

calls
7. Page 6-61, Figure 6-4
Issue: Under “Src/Dst Format for I_cache Locking Status”, constant fixed values for bits 0 - 23 have

added.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

8. Page 6-62, Table 6-9
Issue: The original value for number of ways was listed as 256. The corrected value is 128.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

9. Page 6-63, Figure 6-5
Issue: Each way should have 8 words, as opposed to the 4 originally shown.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

10. Page 6-64, Figure 6-6
Issue: The figure for Valid Bits Values incorrectly shows bit positions 0-8 as the location of the valid bits.

The corrected figure shows the valid bits in positions 0-4.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

11. Page 6-116
Issue: A row has been added to Table 6-10 describing the sysctl 0x4 type field.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

12. Page 8-6, Figure 6-6
Issue: These first few sentences in the description for system-call entry (type 102) originally read:

“Provides a procedure number in the system procedure table. This entry must have an e
type of 102 and a value in the second word of 0000 027FH. Using this entry, the processo
invokes the specified fault handling procedure by means of an implicit call-system opera
similar to that performed for the calls instruction. A fault handling procedure in the system
procedure table can be called with a system-local call or a system-supervisor call, depen
on the entry type in the system-procedure table.”

The corrected text reads:

“Provides a procedure number in the system procedure table. This entry must have an e
type of 102 and a value in the second word of 0000 027FH. The processor computes the
system procedure number by shifting right the first word of the fault entry by two bit positio
Using this system procedure number, the processor invokes the specified fault handling
procedure by means of an implicit call-system operation similar to that performed for the
instruction.”

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

Message Type Field 1 Field 2 Field 3 Field 4

Load Control Register 0x4 Register Group Number N/U N/U N/U
80960HA/HD/HT Specification Update 33

Documentation Changes

the
13. Page 11-19
Issue: Code was inadvertently omitted from previous revision of the reference document.

The added code reads as follows with original:

Clear level-detect interrupts before return from handler
ld INTR_SRC, g0 # Dismiss the extern. interrupt
lda IPND_MMR, g1 # g1 = IPND MMR address
lda 0x80, g2 # g2 = mask to clear XINT7 IPND bit

Loop until IPND bit 7 clears
wait:

mov 0,g3
Try to clear the XINT7 IPND bit
atmodg1, g2, g3
bbs 0x7, g3, wait # Branch until IPND bit 7 clears

Optionally restore IMSK
mov r3, IMSK

ret # Return from handler

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

14. Page 12-15
Issue: The last sentence of the first paragraph originally read: For application debugging with the GMU,

conditional branches to regions protected by the GMU should always be predicted taken. The
corrected text reads: For application debugging with the GMU, conditional branches to regions
protected by the GMU should always be predicted as not taken.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

15. Page 13-4, Figure 13-2
Issue: The text that appeared near the top center of the diagram:

“V CC and CLKIN Stable to Outputs Valid, maximum 32 CLKIN Periods”

has been deleted.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

16. Page 13-9, Section 13.2.2.5
Issue: The following sentence has been added to the beginning of the first paragraph:

“When the processor fails the self test, the FAIL# pin asserts and the processor signals
cause of the failure.”

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

17. Page 13-11, Section 13.2.2.5
Issue: The address given in the paragraph after the bulleted list has been changed from:

“FEFF FF60H” to

“FF00 0000H”

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.
34 80960HA/HD/HT Specification Update

Documentation Changes

ntry

se

o
18. Page 13-23, Table 13-7
Issue: The entry for address 64H was originally listed as “Breakpoint Control (BPCON)” -- The e

should be listed as “Reserved (Initialize to Zero).”

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

19. Page 13-37, Figure 13-9
Issue: The text near the top of the figure read: 100 Ohms.

The corrected text reads: 100 Ohms (±5%, 1/8 W)

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

20. Page 13-37, Figure 13-10
Issue: The text near the top of the figure read: 3.3 V VCC.

The corrected text reads: 5 V VCC.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

21. Page 15-15
Issue: The second sentence originally read: Two short word burst accesses always begin on an even short

word boundary (A1=0). The corrected text reads: Two short word burst accesses always begin on a
four word boundary (A2=0, A1=0).

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

22. Pages E-41, E-44, E-45, Examples E-1, E-3, E-4
Issue: The cmpinco instructions originally read: cmpinco g0, g3, g0

The corrected text reads: cmpinco g0, g3, g3.

Affected Docs: The i960® Hx Microprocessor User’s Manual, November 1995, release 001.

23. AP-506, Page 17, “BSTALL” Section, 4 th Paragraph
Issue: The BSTALL signal does not always coincide with the BREQ signal. Logically “AND”-ing the

two signals can cause an external bus arbiter to ignore a processor stall condition.

Replace the first sentence in the paragraph with the following:

“If BSTALL is used for bus arbitration in an 80960Hx-ready system, the recommendation is t
logically “OR” BSTALL and BREQ to indicate when the microprocessor requires the bus.”

Affected Docs: AP-506: Designing for 80960Cx and 80960Hx Compatibility, order number 272556.
80960HA/HD/HT Specification Update 35

Documentation Changes
24. Datasheet, Page 8, Table 6
Issue: BREQ does not indicate whether or not the processor is stalled.

Replace the BREQ pin description with the following.

Affected Docs: The 80960HA/HD/HT 32-Bit High-Performance Superscalar Processor datasheet, August 1997,
release 006 and all earlier releases.

BREQ

O
H(Q)
B(Q)
R(0)

BUS REQUEST indicates that a bus request is pending
in the bus controller. BREQ does not indicate whether or
not the processor is stalled. See BSTALL for processor
stall status. BREQ can be used with BSTALL to indicate
to an external bus arbiter the processor’s bus ownership
requirements.
36 80960HA/HD/HT Specification Update

	80960HA/HD/HT Specification Update
	Copyright Page
	Contents
	Revision History
	Preface
	Affected Documents/Related Documents
	Nomenclature

	Summary Table of Changes
	Codes Used in Summary Table
	Stepping
	Page
	Status
	Row

	Errata�
	Specification Changes�
	Specification Clarifications�
	Documentation Changes

	Identification Information
	Stepping Register
	JTAG Registers

	Errata
	1. Parity Failure on 8- and 16-bit Unaligned Loads...
	2. Read Wrong Location from Non-Burst, 8- and 16-b...
	3. Breakpoints on Stacks Produce Wrong Fault IP
	4. Parity Faults May Not Report Correct Address an...
	5. PMCON15 Temporarily Initialized Incorrectly Dur...
	6. BCON Register is not Cleared Before Software Re...
	7. MODTC Command Can Set TC Register Event Flags
	8. Parity Faults Cannot Be Disabled Separate from ...
	9. Timer Terminal Count (TMR.tc) Bit Cannot Bear P...
	10. Return Instruction Pointer (RIP) Cannot be Sto...
	11. WAIT# Pin Asserts During NXDA Wait States
	12. Software Interrupts Can Access the Wrong Handl...
	13. Invalidating the Data Cache Automatically Re-e...
	14. RESET Has Priority Over HOLD
	15. Data Cache Global Disable Bit (CCON.dci, sf2) ...
	16. Low Temperature Operating Limit Increased to 2...
	17. IPND Register Not Cleared Automatically
	18. Cycle Type Bits (CT3:0) Do Not Indicate Some F...
	19. Operation Fault Occurs When Clearing the IMASK...
	20. Using atmod or sysctl to Change IMSK or IPND M...
	21. Storing the Contents of the I_CACHE to Externa...
	22. PCHK# Pin Does Not Indicate Parity Failures On...
	23. Spurious INVALID_OPCODE Faults Can Occur with ...
	DEAD RECKONING -
	DELAY THE ISR UNTIL THE INTERRUPT IS DISMISSED -
	POLL UNTIL THE INTERRUPT IS GONE -
	24. Parity Can Fail on Reliable Data and Can Pass ...
	25. DT/R# Timings Do Not Meet Published Specificat...
	26. Deasserting Level-Detect Interrupts During CIS...

	DEAD RECKONING
	RUNTIME PAUSE
	27. Power Supply Sequence Can Damage Internal Diod...

	Specification Changes
	Specification Clarifications
	1. Burst Accesses on 8- and 16-Bit Buses Do Not Be...
	2. Instruction Breakpoints Are Superseded by Inval...
	3. BSTALL Does Not Always Coincide With BREQ

	Documentation Changes
	1. Page 3-11, Table 3-4
	2. Page 3-11, Table 3-4
	3. Page 3-26
	4. Page 4-6, Section 4.4.3
	5. Page 6-45
	6. Page 6-60, Table 6-8
	7. Page 6-61, Figure 6-4
	8. Page 6-62, Table 6-9
	9. Page 6-63, Figure 6-5
	10. Page 6-64, Figure 6-6
	11. Page 6-116
	12. Page 8-6, Figure 6-6
	13. Page 11-19
	14. Page 12-15
	15. Page 13-4, Figure 13-2
	16. Page 13-9, Section 13.2.2.5
	17. Page 13-11, Section 13.2.2.5
	18. Page 13-23, Table 13-7
	19. Page 13-37, Figure 13-9
	20. Page 13-37, Figure 13-10
	21. Page 15-15
	22. Pages E-41, E-44, E-45, Examples E-1, E-3, E-4...
	23. AP-506, Page 17, “BSTALL” Section, 4th Paragra...
	24. Datasheet, Page 8, Table 6

