1960” Processor
Library Supplement

Order Number: 651231-004

Revision Revision History Date
-001 Original Issue. 02/96
-002 Revised for Release 5.1. 01/97
-003 Revised for Release 6.0. 12/97

-004 Revised for Release 6.5. 12/98

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Intel Corporation
PO Box 5937
Denver, CO 80217-9808

Or you can call the following toll-free number:
1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel
sales office.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel
or otherwise, to any intellectual property rightsis granted by this document. Except as provided in Intel’'s Terms and
Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied
warranty, relating to sale and/or use of Intel productsincluding liability or warranties relating to fitness for a particular
purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for usein medical, life saving, or life sustaining applications. Intel may make changes to specifications
and product descriptions at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosureis subject to restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to
the government, in accordance with the software license agreement as defined in FAR 52.227-7013.

Copyright [0 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim
copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute trandations of this manual into another language, under the above
conditions for modified versions.

* Other brands and names are the property of their respective owners.

N
&S
printed on

recycled paper Copyright 0 1996-1999. Intel Corporation. All rights reserved.

Contents

Chapter 1

Chapter 2

Overview
Compatibility With Standards............cccceeeeeeeiiiiiieienieein, 1-1
Deciding Which Libraries to US€coooevviviiiiiiiiiieeeeeeeeas 1-2
USING FUNCLIONScooiiiiiiiiei e 1-2
Retargeting the Libraries...........ccccovvveeiiieeiiicciee e, 1-2
About This Manual..........cccccciiiiii, 1-3
Related Publicationsccccccoiiii 1-3
CUSTOMET SEIVICE ...vvvveveeieeiiiiiees 1-3
COPYIIGNTS v 1-4
Using the Libraries
Linking Libraries and Object Modulesccccccvvvvnenen. 2-1
Library FileS........oovvviiiiiiiiiiiiiieiieiieeeeee 2-2
LiDrary LIStoovviviiiiiiiiiiiiii 2-4
crt Startup Files ..., 2-5
libi C++ 10stream Library..........cccooooiiiiiiiiiiie 2-5
libc ANSI Standard Librarycccccooeiiiiiiiie 2-5
libm ANSI Math Functionscccccciiiiiiiiiiiininnne 2-6
libh Floating-point Librarycccccccoiiiiiiiiiiinninnn. 2-7
libfp Alternate Floating-point Librarycccc...... 2-7
libg/libgf Profiling Libraries...........cccccceeeiiiiiiiiiinns 2-8
libll MON960 Low-level Support Library.................... 2-8
libmon Monitor Support Library.........cccccceeviiiiiiiiinns 2-8
libhs ghist960 Support Libraryccccoooeeiiiiiiiinnns 2-9
librom Flash Support Library..........cccccoeeiiiiiiiiiiiinne 2-9
64-bit Integer Support Libraryccoooeeiiiiiiiiiiinnnns 2-9

1960 Processor Library Supplement

Chapter 3
Chapter 4
Chapter 5

C-Linker Directive FileS..........cccccccoiiiiiiiiiiiiiiiii 2-9
C++ Linker Directive FileS.........cccccccvvviiiiiiiiiiiinnnnn, 2-12
gcc960 Configuration Filesccoovvvvviiiiiiiieennnn. 2-13
LinKiNg SEQUENCE.....ccccieiieeeceee e 2-13
Using the Floating-point Libraries...........cccccceeviieeiiiiiiiiinnnnn. 2-15
Including the Header Filescoovvviiiiiiiiii e, 2-16
Retargeting for Multi-tasking and Reentrancy 2-17
Identifying Run-time Errorsccccoeeeveeiiiiiiiiiiiii e 2-18
Compiling for ANSI Compliance.........cccccoeeveeeiiiiiiiiiieeneeenn, 2-19

Header Files
Library Functions
Customizing the Libraries

Making the Libraries Reentrant...............ccccccivviiiiiiiiinennn. 5-2
Reentrancy Defined............cccooiiiiiiiiiiciie 5-2
TOIMS e 5-2
Types of REENTIaNCY...........uuuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnes 5-3
Persistent Data ..o 5-4
Writing Reentrant FUNCHIONSvvvviiiiiiiiiiiiiiiiiiiiiinns 5-5
General Reentrancy Requirements............ccceevveee... 5-5
Category 1: Reentrant...........ccccvvvveiimiiiinie e 5-6
Category 2: Reentrant Except for Setting erro 5-6
Category 3: Reentrant Except for Setting fpem_CA_AC....5-6
Category 4: Non-reentrantc.evveiiiiiieeeeiieeeeniinenn 5-6
Category 5: Unspecified........ccccovvviiiiiiiii, 5-6
ROM Reentrancy Requirements...........cccccoeevveiinnnee 5-12
Contents of Reentrant FUNCtionsccccccevvveeenn. 5-13
Initializing @ New Context.............ccccuvemmieiiimiiiiiniinnns 5-13
Creating Pointers to Data.............cccccvvvvvviviiiiiiinnnnn, 5-16
Calling Semaphore FUNCtions............cccccuvvviieeeeeeennn. 5-16

Primitive Function DescCriptionscccccceeeiiiiiinnnnnnns 5-18

Contents

Chapter 6

Retargeting the Libraries...........ccccovveieiiiiiiiiiiiie e, 5-37
Function Interdependenciescccovvvvvevviviiiiini e, 5-37
System Call DeSscriptionscccooveeeeiieeiiiiiiiiieee e, 5-38

Accelerated Floating-point Library

Floating-point Library Definitioncccccccvvviiiiiiiiiiinnnnnn. 6-1

CONVENTIONS ...t e et e e e e e e eeaeees 6-2

Using the Subroutines............cccccovvviiiiiiii 6-3
Floating-point Formats Supported............ccccvvvvveeeeeeenn. 6-3
Parameter and Return Value Implementation................ 6-4
Floating-point Arithmetic Control Usage...............c......... 6-4
Fault Handlingooovvviiiiiiiiiiiiiiieeeeeeee 6-5
Code EXamMPIe......ccooiii e 6-6

Subroutine Reference..........ccvvvvviiiiiiiiiiiiiiiiiie 6-8

Unmasked Floating-point Fault Handlingccccceee.. 6-45
Parameters ... 6-46
Return Valuesooouiiiiiiii e 6-49
Fault-handling Subroutines............ccccccvvviiiiiiiiiiiiiinnnn. 6-49

Inexact ReSUIL............oouiviiiiiiieeeece e 6-49
Invalid Operationcevvvviiiiiiiiiiiiiiiiiiieeeee 6-50
OVEITIOW ... e 6-51
Reserved ENCOAINGuuuuuiiimiiiiiiiiiiiiiiiiiiiiiiiiiininnnns 6-52
LU 0o [T 1[0 1 6-53
ZEr0 DIVIAE .ot 6-54

Appendix A Function Interdependencies

Index
Tables

2-1 Library Use Abbreviation Table.............ccccooooeeiiiinns 2-4
5-1 Category 1: Reentrant Functionscccccvvennnnn. 5-7
5-2 Category 2: Reentrant Except for Setting errno 5-9

1960 Processor Library Supplement

Vi

5-3 Sategory 3: Reentrant Except for Setting

fPEM_CA AC .. e 5-10
5-4 Category 4: Non-reentrant...........ccooeevevviiereeiineenennnn. 5-11
5-5 Category 5: Unspecified..........ccccceevviiiiiiniiiiiiiiieeeee, 5-12
5-6 <emory Handling Functions for Reentrancy 5-15
6-1 Global Register Usageoooeeeiiiiiiiiieeeeeeeee, 6-4
6-2 _ add?f3 Global Register Usagecccccccvvveeenennn. 6-9
6-3 __ add?f3 Arithmetic Control Usage..............ccccee.... 6-9
6-4 add?f3 Possible Faults........ccc.oviiiiiiiiiiiin s 6-10
6-5 _ ceil?f2 Global Register Usagecccccceeeeeennnn. 6-11
6-6 __ ceil?f2 Arithmetic Control Usageccccoeeenn. 6-11
6-7 __ ceil?f2 Possible FaultS.......ccccooooeviiiiiiiiiiin s 6-11
6-8 _ floor?f2 Global Register Usageccoeeenee 6-12
6-9 _ floor?f2 Arithmetic Control Usage........................ 6-13
6-10 _ floor?f2 Possible Faults............ccooviiiiiiiiiiinnenns 6-13
6-11 _ cls?fsi Global Register Usagecccccoeveinnee 6-14
6-12 cls?fsi Return Values.........cccooevveiiiiiiiiiiviiiiin e, 6-15
6-13 _ cmp?f2 Global Register Usage............cccccoevvinnee 6-16
6-14 _ cmp?f2 Return Values.........cccccceeeeiiiiiiiiiiiiis 6-16
6-15 _ cmp?f2 Arithmetic Control Usage................ccce.. 6-17
6-16 _ cmp?f2 Possible FaultSoccooeeivvviiiiiiiiinnnn, 6-17
6-17 __ div?f3 Global Register Usage.........cccccccceeeeeeennnnn. 6-18
6-18 _ div?f3 Arithmetic Control Usage...................c... 6-18
6-19 div?f3 Possible Faultscoooviiiiiiiiiins 6-19
6-20 __ extend?f?f2 Global Register Usage.................... 6-20
6-21 _ extend?f?f2 Arithmetic Control Usage.................. 6-20
6-22 extend?f?f2 Possible Faultsccccoovviieenenns 6-21
6-23 __ fix* Global Register Usageccccceeviiiiiiiinnnns 6-22
6-24 __ fix* Arithmetic Control Usage.............ccceevviiinnne 6-23
6-25 __ fixuns?fsi Input and Return Values..................... 6-23
6-26 __ float* Global Register Usageccccevviviiinnns 6-24

Contents

6-27 __ floatsisf and __ floatunssisf Arithmetic

Control Usagecoooeieeeeeeeeeeeeee e 6-25
6-28 _ float* Possible Faults.............cccccveeeiiiiiiiiee e, 6-25
6-29 __ logb?f2 Global Register Usage..............cccvvvveene. 6-26
6-30 __ logb?f2 Arithmetic Control Usage..............ceeeeee.. 6-26
6-31 __ logh?f2 Possible Faultsccccceeeeviiiieiiiiiiieeines 6-27
6-32 _ mul?f3 Global Register Usagecccvvvvvennen. 6-28
6-33 __ mul?f3 Arithmetic Control Usage..............ccvvveeee. 6-28
6-34 mul?f3 Possible Faults..........ccccoceeeeiiiiiiiieeccinnnnn. 6-28
6-35 __ rem?f3 Global Register Usage..............cccvvvvnnnn. 6-29
6-36 _ rem?f3 Integer Return Valuesccceevvvennes 6-30
6-37 __ rem?f3 Arithmetic Control Usagecceeee.... 6-30
6-38 _ rem?f6 Possible Faults...........cccccoeeeiiiiiiieninnnnnn, 6-31
6-39 __ rint?f2 Global Register Usagecccccvvvvnneee. 6-32
6-40 __ rint?f2 Arithmetic Control Usagecceeeeeee. 6-32
6-41 _ rint?f2 Possible Faults...........ccccooeeiiiiien . 6-32
6-42 _ rmd?f3 Global Register Usage..............cccvvvvnnee. 6-33
6-43 __ rmd?f3 Arithmetic Control Usagecccceeveee. 6-34
6-44 rmd?f3 Possible FaultS...........cccoveviiciiiiieeees 6-34
6-45 __ round?f2 Global Register Usage...............ccvvveeee. 6-35
6-46 __ round?f2 Arithmetic Control Usageccc....... 6-35
6-47 __ round?f2 Possible Faults.........c......cooiiieiiiinnnnnn, 6-36
6-48 __ round?fsi Global Register Usage......................... 6-37
6-49 __ round?fsi Arithmetic Control Usage..................... 6-37
6-50 _ round?fsi Possible Faults................ccccceeeviieneennnnn. 6-37
6-51 __ rounduns?fsi Global Register Usage................... 6-39
6-52 __ rounduns?fsi Arithmetic Control Usage................ 6-39
6-53 __ scale?fsi?f Global Register Usage 6-40
6-54 _ scale?fsi?f Arithmetic Control Usage................... 6-41
6-55 scale?fsi?f Possible Faults...............ccoveeieinennnnn. 6-41
6-56 __ sub?f3 Global Register Usagecccuvvvvenee. 6-42

vii

1960 Processor Library Supplement

6-57 _ sub?f3 Arithmetic Control Usage...........cccceeeennn... 6-42
6-58 sub?f3 Possible Faultsccooevviiiiiiiiiiiinnn. 6-43
6-59 trunc?f?f2 Global Register Usagecccceeeennn... 6-44
6-60 trunc?f?f2 Arithmetic Control Usage.................... 6-44
6-61 Faults for _ trunc?f?f2......oiiiii 6-45
6-62 Possible Values for the opcode Parameter 6-47
A-1 Cross-reference of low-level functions A-1

viii

Overview

This chapter introduces the libraries and this manual. It also identifies
sources of detailed or supplemental information.

The 960" processor libraries ease application development by providing:
» interfacesto standard and custom execution environments

¢ C, C++, and assembly-language functions

* macro definitions and type declarations

e avariety of linkablefiles and library sources

o floating-point emulation libraries

Compatibility With Standards

The libraries provide standard and 1960 processor-specific library and
header files. The standard parts of the C libraries are compatible with the
ANSI X3.159-1989 standard for the C language. Note, however, that the
following ANSI C functions are implemented as stubs and do not return
meaningful values.

cl ock setl ocal e
| ocal econv strcoll
nbl en strxfrm
nbst owcs system
nbt owc west onbs
r ename wet omb

The C++ portion of the libraries include the Free Software Foundation’s
implementation of the C++ lostream classes.
The 1960 processor-specific parts of the libraries:

« provide for more efficient use of the Cx, Hx, Jx, Kx, Rx, Sx, and VH
processor implementations

11

1960 Processor Library Supplement

« emulate the KB processor’s floating-point extensions
* include low-level libraries for the MON960-supported evaluation
boards.

To make porting programs from other systems easier, the libraries aso
include selected functions defined in the |EEE Standard 1003.1-1988
Portable Operating System Interface for Computer Environments (POSIX),
UNIX System Laboratories, Inc. System V Interface Definition (SVID),
and other sources added for completeness. However, library functions do
not necessarily fully conform to the POSIX standard.

For details on the POSIX standard, see the |IEEE Standard 1003.1-1988,
|IEEE Standard Portable Operating System Interface for Computer
Environments, by |EEE, Inc. For information on SVID, see the System VV
Interface Definition, by UNIX System Laboratories, Inc. The next section
of this chapter provides ordering information for POSIX and SVID
publications.

Deciding Which Libraries to Use

To select the appropriate libraries, startup code, and object files for your
target environment and the particular 1960 processor you are using, read
Chapter 2.

Using Functions

If you are using functions and macros specific to the i960 architecture read
Chapter 3 to learn about the non-ANSI header files and Chapter 4 to learn
about non-ANSI run-time library functions. The standard ANSI C
run-time library functions are described in C: A Reference Manual.

Retargeting the Libraries

To retarget the libraries for execution in your own hardware environment,
to write additional functions needed for reentrant programs, and to find

Overview 1

reference information on target system calls and other low-level,
non-portable functions, read Chapters 1 and 5.

About This Manual

Thisi960 Processor Library Supplement is a supplement to Part 2 of
C: A Reference Manual. Thei960 Processor Library Supplement
describes the processor-specific and board-specific libraries and header
files. Thismanual does not describe the ANSI standard C libraries and
header files which are described in C: A Reference Manual. For
information on standard C libraries, see C: A Reference Manual, by
Samuel P. Harbison and Guy L. Steele, Jr., published by Prentice Hall,
1991. Thisbook isavailable from Intel under order number 480628.

Portions of this manual use materials reprinted and adapted from |EEE
Standard 1003.1-1988, |EEE Standard Portable Operating System
Interface for Computer Environments, copyright 1988 by The Institute of
Electrical and Electronics Engineers with the permission of the IEEE
Standards Department. Text appearing in this document adapted from
|EEE Standard 1003.1-1988 does not represent the approved |EEE
Standard. In the event of a discrepancy between the version in this manual
and the original standard version, the original version takes precedence.

Throughout this manual, “ANSI” refers to ANSI X3.159-1989 standard for
the C language.

Related Publications

For information on related publications, seetting Sarted with the i960
Processor Software Tools.

Customer Service

For customer service information, geetting Started with the 1960
Processor Software Tools.

1-3

1

1960 Processor Library Supplement

1-4

Copyrights

Refer to the 1960 Software Tools License Guide for licensing and copyright
Statement.

Using the Libraries

This chapter tells you how to use the libraries provided with CTOOLS in

your programs. If your program uses any library functions, you must:

« Include the header filesto use the library function declarations and
type and macro definitions. See the 1960 Processor Compiler User’s
Guide for information on including the headers.

e Compile your source text to produce an object module compatible with
thelibraries.

» Link your application object modules to the appropriate libraries, as
discussed in the following section. The i960 Processor Software
Utilities User’s Guide explains how to use the linker.

Linking Libraries and Object Modules

Thelibraries consist of a set of portable or high-level libraries and a set of
primitive or low-level libraries for each of thei960 KA/SA, KB/SB, Cx,
JX, Hx, Rx, and VH processor variations. Y ou can use functions from the
high-level libraries without modification in many different execution
environments.

However, many functionsin the high-level libraries call functionsin the
low-level libraries. The low-level libraries are specific to the evaluation
boards which support the Intel MON960 debug monitor. The profiling and
the ghist960 support libraries are also provided for the IXWorks* runtime
environment.

For execution in any other environment, you often have to rewrite or
supplement the functionsin the low-level libraries for your particular target
environment.

2-1

1960 Processor Library Supplement

2-2

The following sections discuss the different library files you can link with
your application program.

Library Files
For complete information about library names, seethe Library List section,
below. Thelibrary files are named following this general scheme:

lib[abbr][archl[qualifier].a
* abbr isan abbreviation of alibrary name. For example:

O c contains the standard ANSI C functions.

O m contains the standard ANSI math functions.

O h contains the accel erated floating-point functions for
processors without on-chip floating-point support.

a Il contains a MON960 low-level library.

O i contains the C++ lostream library.

O u contains 64-bit integer support
e archif present, indicates the processor(s) the library can be used for:
ca for Cx, Hx, J, and VH processors.
jx for - and VH-tuned floating-point libraries.
ka for KA and SA processors.
kb for KB and SB processors.
rp for Rx processors.
If ar ch isnot present, the library can be used for all architectures
(eg., libll.a).
e qualifier
if present, means that the library was generated with specific
compiler options. All libraries contain position-independent
code (PIC). Additionally:
O _p or p meansthat the library contains position-independent data
(PID).
O _borb indicates abig-endian library for Cx, Hx, and Jx
applications.
O _eore indicatesaPID and big-endian library for Cx, Hx, and Jx
applications.

I I

Using the Libraries

2

Note that thel i bh library was designed in such away that it can be used
with both PID and non-PID programs, even though it has no p qualifier in
its name.

If your application is a PIC program (linked with the - pc or - pb linker
option), all of your modules must be compiled with the compiler's PIC
option (- npi ¢ for gcc960; - Goe for ic960). Otherwise, the linker
generates awarning.

If your application is not a PIC program, you can link PIC and non-PIC
modules.

If your application isa PID program (linked with the - pd or - pb linker
option), al modules and libraries must be PID. In other words, your
modules must be compiled with gcc960's - npi d or - npi d- saf e options or
ic960's - Gpd or - Gor option and linked with the appropriate _p libraries.
Otherwise, the linker generates a warning.

If your application is not a PID program, link only non-PID modules.

The low-level library for MON960-based targetsisli bl | . a. Thislibrary
contains the low-level libraries for evaluation boards that support the Intel
MON960 debug monitor.

Useli bl | p. a for PIC/PID programs.

Useli bl | . afor non-PID programs.

Useli bl I b. a for big-endian programs.
Useli bl | e. afor PID, big-endian programs.

Note that the libraries are supplied using the ELF object module format.
The linker will automatically convert the libraries to your selected object
module format.

Intel provides versions of the low-level libraries specific to the i960 Rx
processor, i bl I rp.aandlibllrpp.a. Note that the i960 Rx processor
does not support big endian byte order. Because of this, no big endian
libraries are provided for the 1960 Rx processor.

2-3

1960 Processor Library Supplement

Library List

Table 2-1 explains the abbreviations found in the library listings. All
libraries shipped with the compiler are listed below Table 2-1.

Table 2-1 Library Use Abbreviation Table

Abbreviation Meaning

BE Big-endian.

CA Use for 80960Cx, Hx, Jx and VH applications.
FILE-SYSTEM For profiling libraries. This library is for applications

which have file system services such as read, write,
open, and close calls available to them.

JX Jx- and VH-tuned floating-point library.

KA Use for KA and SA applications.

KB Use for KB and SB applications.

NO-FILE-SYS For profiling libraries. This library is for applications

which do not have file system services such as read,
write, open, and close calls available to them.

If these calls are not supported, use libg.
If the calls are supported, use libgf.

If you are using the Intel MON960 debug monitor, use
libgf which has file system support in it.

PID The library contains position-independent data (PID).
RP Use for 80960Rx applications.

Thefilesin the left column below arein | 960BASE/ | i b (ic960 interface),
or in G60BASE/ | i b (gcc960 interface).

The usage of each library is abbreviated in the right-hand column.

Using the Libraries

crt Startup Files

Y our linked program must contain startup code to initialize the execution
environment and the libraries in the first module that executes. The
libraries include the following startup modules:

crt960. o

crt960_p. o PI D
crt960_b. o BE
crt960_e. o PI D, BE
crtrp.o RP
crtrp_p.o RP, PI D

libi C++ IOstream Library

CTOOL S now provides the libraries listed below, which provide Free
Software Foundation’s implementation of C++ lostream classes.

libica.a CA
libica_b.a CA, BE
libica_e.a CA, PI D, BE
l'ibica_p.a CA PID

|'i bi ka. a KA
Iibika_p.a KA, PI D

l'i bikb. a KB
l'ibikb_p.a KB, PI D
libirp.a RP
libirp_p.a RP, PI D

The associated C++ header files are included in a separate sub-directory
named cxxi nc in the CTOOL S distribution.

libc ANSI Standard Library
Thisisthe ANSI C standard library, in ELF format.

l'ibcca.a CA
libcca_b.a CA, BE

1960 Processor Library Supplement

2-6

libcca_e.a CA, PI D, BE
libcca_p.a CA PID

l'i bcka. a KA
libcka_p.a KA, PI D

l'i bckb. a KB
libckb_p.a KB, PI D
libcrp.a RP
libcrp_p.a RP, PI D

libm ANSI Math Functions
Thislibrary contains the ANSI C standard math functions.

Thel i bst . a library provides minimal function definitions to resolve
external references during linking without adding the unnecessary code for
full floating-point functionality. Usethislibrary instead of | i brmxx. a if
your program does not perform any floating-point number operations. The
functionsin| i bst . a do nothing more than resolve external references, so
you can link this library with PID programs, and with any architecture.

l'i bnta. a CA
libnta_b.a CA BE
libnta_e.a CA BE, PI D
libnta_p.a CA PID
l'i brka. a KA

i brka_p.a KA, PI D
l'i bnkb. a KB
librkb_p.a KB, PI D
libnrp.a RP
libnrp_p.a RP, PI D
libst.a

libstb.a BE
libste.a BE, PI D
libstp.a PI D

Using the Libraries

libstrp.a RP
libstrpp.a RP, PI D

libh Floating-point Library

Thisisthe floating-point arithmetic library. Notethat al of thel i bh
libraries can be used in either PIC/PID or non-PIC/PID applications.

Thislibrary contains accelerated floating-point functions for processors
without on-chip floating-point support. These functions implement
floating-point operations without using any floating-point instructions.

l'i bhca. a CA

i bhca_b. a CA, BE

| i bhca_e. a CA BE, PID
| i bhca_p. a CA PID

l'i bhjx.a JX
l'ibhjx_b.a JX, BE
libhjx e.a JX, BE, PI D
libhjx_p.a JX, PID

l'i bhka. a KA

| i bhka_p. a KA, PI D

i bhrp.a RP
libhrp_p.a RP, PI D

For information on these libraries, see Chapter 6.

libfp Alternate Floating-point Library

Thisis an dternate floating-point arithmetic library. Thislibrary cannot be
used in PIC/PID applications. It can be used as a partial replacement for
I'i bh. It issomewhat faster than | i bh athough less accurate.

libfp.a KA/ CA
| i bf pb. a BE

| i bf pe.a BE, PI D
l'i bf pp.a PI D
libfprp.a RP

| i bf prpe. a RP, PI D

2-7

1960 Processor Library Supplement

libg/libqf Profiling Libraries

These are the libraries supplied to support profile-driven optimization. See
the discussion of profiling in your compiler manual for details.

l'ibg.a NO- FI LE- SYSTEM

l'i bgb. a NO- FI LE- SYSTEM BE

l'i bge. a NO- FI LE- SYSTEM PI D, BE
l'i bgp. a Pl D, NO FI LE- SYSTEM

i bgf.a FI LE- SYSTEM

l'ibgfb.a FI LE- SYSTEM BE
libgfe.a FI LE- SYSTEM PI D, BE
libgfp.a PI D, FI LE- SYSTEM
libgrp.a RP, NO- FI LE- SYSTEM

I'i bgrpp. a RP, NO- FI LE- SYSTEM PI D
libgfrp.a RP, FI LE- SYSTEM

i bgfrpp.a RP, FI LE- SYSTEM PI D

I'i bixgrp.a RP, NO- FI LE- SYSTEM | xWor ks*

libll MON960 Low-level Support Library

Thisisthe low-level support library for evaluation boards that support the
Intel MON960 debug monitor.

libll.a

libllb.a BE
liblle.a PI D, BE
libllp.a PI D
libllrp.a RP
libllrpp.a RP, PI D

libmon Monitor Support Library

This provides a calls interface for benchmark timing, flash memory, and
ghist960 programming.

libm. a
i bmb. a BE
i bme. a PI D, BE

i bmp. a PI D

Using the Libraries

i bmrp.a RP
i bmrpp. a RP, PI D

libhs ghist960 Support Library
Thisisthe ghist960 support library.

l'i bhs. a

l'i bhsb. a BE

l'i bhse. a PI D, BE

|'i bhsp. a PI D

l'i bhsrp. a RP

| i bhsrpp. a RP, PI D

| i bi xhsrp.a RP, | xWorks

librom Flash Support Library

Thisisthe flash support library. All libraries support serially re-usable
programs.

librma

librmb. a BE
librme.a PI D, BE
librmp.a PI D
librnrp.a RP
librnrpp.a RP, PI D

64-bit Integer Support Library

CTOOL S now includes support for 64-hit integers using the long long
type. Changes have been made in the compiler to support the long long
type and valid operations on the same. The CTOOL S distribution now
includes a new library which implements the routines that are needed to
support operations on 64-bit integers.

The standard C library- libc includes the following routines to support the
long long type:

atoll Iltoa Iltoh Iltos strtoll strtoull ulltoa

2-9

1960 Processor Library Supplement

2-10

For a description of these routines please take alook at the corresponding
routines for the type long in chapter 4 of this manual.

CTOOLS now provides the libraries listed below, which provide Free
Software Foundation’s implementation of several library routines required
for long long support.

l'i buca. a CA
libuca_b.a CA, BE
libuca_e.a CA, PI D, BE
| i buca_p.a CA PID

l'i buka. a KA

li buka_p. a KA, PI D

l'i bukb. a KB

li bukb_p.a KB, PI D
liburp.a RP
liburp_p.a RP, PI D

C Linker Directive Files

See the 1960 Processor Software Utilities Guide for more information on
the linker (Ink960, gld960) and linker directive files.

cycx. ld Cycl one Cx

cycxb. Id Cycl one Cx, BE
cycxbfls.ld Cycl one Cx, BE, fl ash
cycxfls.ld Cycl one Cx, fl ash
cycxp.ld Cycl one Cx, PID
cycxpfls.ld Cycl one Cx, PID, fl ash
cyhx.ld Cycl one Hx
cyhxfls.ld Cycl one Hx, fl ash
cyjx.ld Cycl one Jx

cyjxb.1d Cycl one Jx, BE
cyjxbfls.ld Cycl one Jx, BE, fl ash
cyjxfls.ld Cycl one Jx, fl ash
cyjxp.ld Cycl one Jx, PID
cyjxpfls.ld Cycl one Jx, PID, fl ash
cykx.ld Cycl one Kx

cykxp.|ld Cycl one Kx, PID

Using the Libraries

cysx.ld
cysxp.ld

cyrx.ld
cyrxp.ld
cyrxfls.ld
cyrxpfls.ld

cytx.ld
cytxp.ld
cytxfls.ld
cytxpfls.ld

cyvx.ld
cyvxp.ld
cyvxfls.ld
cyvxpfls.ld

Cycl one
Cycl one

Cycl one
Cycl one
Cycl one
Cycl one

Cycl one
Cycl one
Cycl one
Cycl one

Cycl one
Cycl one
Cycl one
Cycl one

SX
Sx, PI D

RP

RP, PI D
RP, f| ash

RP, fl ash, PI D

RN RM

RN RM PI D

RN RM f | ash

RN RM f | ash, PI D

VH

VH, PI D
VH, fl ash

VH, f |l ash, PI D

2-11

1960 Processor Library Supplement

C++ Linker Directive Files

The compiler distribution includes the following new linker directive files.
These linker directive files are meant to be used when linking in C++
modules using the ic960 driver to form an absolutefile.

cycc.ld Cycl one Cx

cycch.1d Cycl one Cx, BE
cyccbfls.ld Cycl one Cx, BE, fl ash
cyccfls.ld Cycl one Cx, flash
cyccp. ld Cycl one Cx, PID
cyccpfls.ld Cycl one Cx, PID, fl ash
cyhc.Id Cycl one Hx
cyhcfls.ld Cycl one Hx, fl ash
cyjc.ld Cycl one Jx

cyjcb.1d Cycl one Jx, BE
cyjcbfls.ld Cycl one Jx, BE, fl ash
cyjcfls.ld Cycl one Jx, flash
cyjcp.ld Cycl one Jx, PID
cyjepfls.ld Cycl one Jx, PID, fl ash
cyke.Id Cycl one Kx

cykep. I d Cycl one Kx, PID
cysc.ld Cycl one Sx

cyscp. ld Cycl one Sx, PID
cyrc.ld Cycl one RP

cyrcp.ld Cycl one RP,PID
cyrcfls.ld Cycl one RP, fl ash
cyrcpfls.ld Cycl one RP, fl ash, PI D
cytc.ld Cycl one RN RM
cytcp.ld Cycl one RNRM PI D
cytcfls.ld Cyclone RNV RM fl ash
cytcpfls.ld Cycl one RNRM fl ash, PID
cyvce.ld Cycl one VH

cyvep. |l d Cycl one VH, PID
cyvcefls.ld Cycl one VH, fl ash
cyvepfls.ld Cycl one VH, fl ash, PI D

These new linker directive files allocate the sections “ctors” and “dtors” to
proper locations and request the linker to include the C++ standard

2-12

Using the Libraries

libraries in the search path for unresolved externals. The standard C++
libraries are searched ahead of the standard C libraries. The “ctors” and
“dtors” sections are used to initialize/destroy static objects.

When generating an absolute module targeted for a Cyclone Cx board with
an i960 CA processor, you would use a command such as:

i c960 -Tcycx -ACAtl.c t2.c
To include C++ modules in the absolute file, use a command such as:
i c960 -Tcycc -ACAtl.cc t2.c

The argument Tcycc instructs the compiler to generate code for a
Cyclone Cx board and to link in the C++ lostream class library. Note that
the gcc960 invocation options are not affected and remain the same.
Therefore, you can continue using a command such as:

gcc960 -Fcoff -Tntycx -ACA tl.cc t2.c

gcc960 Configuration Files

ncycx. gl d Cycl one Cx
ncycxfls.gld Cycl one Cx, flash
ncyhx. gl d Cycl one Hx
ncyhxfls. gl d Cycl one Hx, fl ash
ncyj x. gl d Cycl one Jx

ncyj xfls.gld Cycl one Jx, fl ash
ncykx. gl d Cycl one Kx
ncyrx. gl d Cycl one RP
ncyrxfls.gld Cycl one RP, fl ash
ncysx. gl d Cycl one Sx

ncyt x. gl d Cycl one RM RN
ncyt xfls.gld Cyclone RM RN, fl ash
ncyvx. gl d Cycl one VH
ncyvxfls.gld Cycl one VH, fl ash

Linking Sequence

The linking order of libraries and object modules in your program depends
on the file sequence you specify on the linker command line or in the

2-13

2 1960 Processor Library Supplement

linker configuration file. See the linker chapter of the 1960 Processor
Utilities User’s Guide for information on the linking sequence.

To correctly link and execute your program, you must use the following
order when you specify startup modules, libraries, and your program
modules for linking:

startup code

program modules

user-defined libraries, if any

profiling library, statistical profiler library, flash support library
C++ lostream (if specified)

standard C library

64-Bit integer support library

standard math library

low-level, board-specific library

accelerated floating-point library, for thei960 KA, SA, Cx, Hx, and Jx
processors only.

©ooNoTOA~WDdDPE

'—\
©

2-14

Using the Libraries 2

Using the Floating-point Libraries

Thei960 KB and SB microprocessors implement in hardware the full i960
floating-point instruction set. The 1960 processor computational model is
fully compatible with | EEE standard P754 and allows the compiler to
generate efficient floating-point instruction sequences, reducing the amount
of object code generated. Programs ported from environments that do not
conform to the |EEE standard can behave unpredictably, especially when
floating-point exceptions occur.

Note that to usel i bf p. a, youmust link both | i bf p. a and I i bhxx. a into
your application. Furthermore, | i bf p. a must be specified to the linker
beforel i bhxx. a is specified.

Thelibmxx.aandl i bmxx_p. a standard math libraries can use either
floating-point instructions or simulated floating-point operations.
Functionsin! i bnkb. a and! i bnkb_p. a, for processors with on-chip
floating-point support, use floating-point instructions implemented in the
processor instruction set. Functionsinl i brrka. a, | i bnta. a, | i brrka_p. a
and | i bnta_p. a, for processors without on-chip floating-point support,
call low-level functionsin| i bhka. a andli bhca. a. Thelibhxx. a
functions simulate floating-point instructions and can be used with both
PIC/PID and non-PIC/PID programs.

Floating-point functionsin 1 i bhxx support all levels of precision

supported by the i960 architecture, asfollows:

» Single-precision functions use the float data type.

* Double-precision functions use the double data type. Hyperbolic
functions are available in double precision only.

» Extended-precision functions use the long double data type.

Since the floating-point functions round computations to the nearest
representabl e least-significant digit, results using different rounding modes
can differ. You can use macros and functions from thef psi . h header file
to set the rounding mode.

2-15

1960 Processor Library Supplement

2-16

R

The floating-point functions comply with the IEEE P754 standard
specification on operations with Not-a-Number elements (NaNs). If the
arguments to afunction are invalid for the operation or involve a Signaling
NaN (SNaN), aQuiet NaN (QNaN) is returned and the FPX_I NVOP
exception isflagged. Functions process and return QNaNs without
flagging any exceptions.

See Chapter 6 for more information on the floating-point emulation
libraries.

Since the 1960 Cx/Hx/Jx processors do not implement the floating-point
bits in the arithmetic controls (AC) register, your Cx/Hx/Jx program must
reserve aword in memory to contain the AC floating-point bits. This
memory location must be named f pem CA_AC. For fastest memory access,
locate f pem CA_AC in the i960 Cx/Hx/Jx processor'sinternal data RAM.

NOTE. You cannot locatef pem CA AC into the data section of a PID
program. You can allocate memory for f pem CA_AC in the linker
configuration file. To modify f pem CA_AC, use the functions declared in
thef psl . h header file. Thelibnta.aandlibhca. alibrariesuse

f pem_CA_AC as an extension of the AC register; however, thel i bnstb. a
library does not use f pem CA_AC.

Including the Header Files

To use afunction defined in alibrary, you must include an external
declaration of that function in your program. The header files contain
declarations for the library functions and for variables and values that you
can use with the library functions. Including header files can make
developing a correct and efficient program easier, as follows:

« Some functions, such as those that accept f | oat datatypesas
arguments, require prototyped declarations. Since all function
declarationsin the header files are correctly prototyped, including the
appropriate header files ensures that your use of afunction matches the
library definition of that function. Y ou can write your own external

Using the Libraries 2

declaration for any library function or variable, but doing so does not
guarantee an exact match. The header files also define data types that
exactly match the data types of function parameters and macros that
provide convenient names for correct argument values.

* Some functions are also defined as macros or asinline
assembly-language functions in the header files. Code resulting from a
macro or inline assembly-language function expansion can execute
more quickly and occupy less space than the code generated for a
function call. Also, if you use a macro or assembly-language function,
you need not link the library module containing the function.

To use the library function rather than the macro defined in an included
header file, use #undef to remove the macro definition after defining the
macro and before invoking the function. C: A Reference Manual describes
how to define, use, and remove macros. As an aternative to removing the
macro definition, you can disable macro expansion for the function
identifier by putting parentheses around the function identifier in the
function invocation. For example:

mai n()
{ (macro_nane) (a);
}

Y ou can include a header file in the same way as including any other
source text file. Thei960 Processor Compiler User’s Guide explains how
to use compiler optionsto include files.

Retargeting for Multi-tasking and Reentrancy

Low-level functions depend directly on the specific operation of the
execution environment. The low-level libraries define functions for
input/output (1/0), initialization, and cleanup specific to the MON960
debug monitor execution environments. Y ou must rewrite these functions
for execution in any other environment.

2-17

1960 Processor Library Supplement

2-18

Additional low-level functions, such as thread and semaphore functions
used in multi-tasking applications, are provided as stubs. An application
involving multiple threads of execution can require that you implement the
thread and semaphore functions. Chapter 5 explains how to rewrite the
supplied low-level functions and how to implement new functions for
multi-tasking and reentrant operation.

Since high-level functions are independent of the execution environment,
you do not need to rewrite them. However, some high-level functions call
low-level functionsto perform 1/0, initialization, and cleanup operations.
If the high-level functions used in your program call low-level functions,
you must rewrite the called low-level functions for your program to
execute on any system other than those using the MON960 debug monitor.
Chapter 5 explains the dependencies between specific high-level and low-
level functionsin the libraries. See Appendix A for a cross-reference list
of low-level functions.

Identifying Run-time Errors

In addition to returning an error-indicator value, most library functions can
set the value of the er r no macro to provide more specific information
about the cause of an error. The er r no macro, defined intheerrno. h
header file, is specified by the ANSI standard to provide information about
an error that has occurred.

The value of er r no isuseful when information about the most recent error
isrelevant. Onceerr no has been set because of an error, its value does
not change until another error occurs. You can use er r no effectively in
the following ways:

» |f afunction can both set errno and return an error value, the return
value of the function indicates whether an error occurred and the value
of errno identifies the most recent error that has occurred.

e If afunction can set errno but cannot return an error value, your
program can identify an error occurring in the function as follows:

O Seterrno to0immediately before calling the function, so that
er r no does not contain arecord of any previous error.

2

Using the Libraries

O Testerrnoimmediately after the function returns. If err no isnot
0, an error has occurred in the function. Thevaue of err no
identifies the most recent error that has occurred.

Theerrno. h header file defines error macros that expand to the values
used for errno. Includetheerrno. h header file viathe#i ncl ude
directive.

Compiling for ANSI Compliance

Y ou can use thea ic960 or ansi gcc960 compiler driver option to
conditionally compile out all non-ANSI declarations and definitions from
the ANSI-standard header files and to disable inline assembly-language
functions and statements.

2-19

Header Files

Thelibrary header files contain source text declarations of library
functions, variables, macros, and inline assembly functions. This chapter
describes the non-ANSI header files and five of the ANSI header files
which also contain compiler-specific information.

Chapter 4 of this supplement and Part |1 of C: A Reference Manual give
more information on the operation and use of the individual ANS
functions and data types.

These ANSI library header files are described in C: A Reference Manual:

assert.h Assertion evaluation.

ctype. h Character testing and mapping.

errno. h Error condition variables and macros.

float.h Characteristics of floating-point types.

limts.h Implementation limits.

| ocal e. h Localization. Althoughthel ocal e. h header file

declares functions and defines macros for
localization, the libraries do not support

localization.

mat h. h Floating point math. Also described in this
chapter.

setjnp.h Non-local jumps.

signal . h Signal and interrupt handling. Also described in
this chapter.

stdarg. h Variable arguments.

31

1960 Processor Library Supplement

st ddef . h Standard language additions.

stdio.h Stream input/output. Also described in this
chapter.

stdlib.h Utilities. Also described in this chapter.

string.h String handling.

tine.h Date and time. Also described in this chapter.

These are the non-ANSI library header files described in this chapter:

afpfaul t.h Accelerated floating-point library fault handling
support. See Chapter 6 for information on fault
handling support for the “libh” libraries.

alloca. h Defines thal | oca function.

fentl.h File access flag definitions.

fpsl.h Floating-point operation control.

__macros. h Defines macros for include files.

reent. h Primitive functions for reentrant programming.
search. h Linear search functions.

stat.h File types and access permissions.

std. h Standard system functions.

types. h System V data-type definitions.

unal i gn. h Defines special macros.

varargs. h Defines macros for variable argument lists.

The following pages describe the non-ANSI header files and five ANSI
header filesrfat h. h, si gnal . h, stdi o. h,stdlib. h, andti ne. h) which
also contain compiler-specific information. These files are listed in
alphabetical order by the names of the header files.

Header Files 3

afpfault.h

Accelerated floating-
point library

fault handler.
non-ANS

Discussion

This header file defines the interface to be used with the stub routines for
fault handling provided in the AFP library (I i bhxx. a). The stub routines
can be replaced in the library by user-defined routines as long as the
interface defined in af pf aul t . h isused.

See Chapter 6 for a detailed discussion of floating-point library fault
handling facilities.

alloca.h

Definestheal | oca
function.
non-ANS

Discussion

Theal | oca. h header file declarestheal | oca function.

3-3

3

1960 Processor Library Supplement

34

File accessflag

Discussion

Thef cnt | . h header file defines macros for the flag values passed to the
open function when opening afile. See Chapter 5 for a description of the
open function.

The following macros set the access mode when you open afile:

O _RDONLY Open afilein read-only mode.
O _RDWR Open afilein read-write (update) mode.
O WRONLY Open afilein write-only mode.

The following macros set the file status for identifying and opening afile:

O_APPEND Set the file pointer to the end of the file before
each write operation.

O _CREAT Create anew file.

O _EXCL Use exclusive mode when opening thefile.

O _TRUNC Truncate the existing file's length to zero.

The following macros set the file type for the format of information to be
read or written:

O_BI NARY Open abinary file.
O TEXT Open an ASCII file.

Header Files

fpsl.h

Floating-point
operation control.
non-ANS

Discussion

Thef psl . h header file declares functions for controlling the 1960
processor- floating-point operations and defines macros to be used as
arguments to those functions. This header file also declares some non-
ANSI math functions.

Use the following floating-point control functions, as described in
Chapter 4, to read and modify parts of the arithmetic control (AC) register:

fp_getround read and modify the current rounding mode.

fp_setround

f p_get masks read and modify the current exception masks.

f p_set masks

fp_getflags read and modify the current exception flags.

fp_setfl ags

fp_clrflags clears all the flags and returns the former flag
values.

fp clriflag clearsthe interrupt overflow flag.

f p_get env read and modify the current floating-point

fp_setenv environment.

_getac read and modify the entire AC register.

_setac

1960 Processor Library Supplement

The following macros are valid arguments for the floating-point control
functions. Use the following macros to read and write the floating-point

exception flags:
FPX_I NVOP

FPX_ZDI V
FPX_OVFL
FPX_UNFL
FPX_| NEX
FPX_CLEX

FPX_ALL

isolates the invalid-operation exception flag.
isolates the divide-by-zero exception flag.
isolates the overflow exception flag.
isolates the underflow exception flag.
isolates the inexact-result exception flag.
clears all the exception flags.

sets all the exception flags.

Use the following macros to specify the rounding mode:

FP_RN

FP_RM

FP_RP

FP_RZ

sets the rounding mode to round to nearest.
sets the rounding mode to round toward minus
infinity.

sets the rounding mode to round toward plus
infinity.

sets the rounding mode to round toward zero
(truncate).

Header Files

The members of the _ac structure, defined inf psl . h, isolate the fields of
the AC register, asfollows:

struct _ac {

unsi gned int cc : 3; /* condition code */
unsi gned int as : 4; /* arithnetic status */
unsi gned int S

unsigned int iovfl flg : 1; /* integer overflow flag */
unsi gned int D3

unsigned int iovfl _nmsk : 1; /* integer overflow mask */
unsi gned int D2

unsi gned int nif : 1; /* no-inprecise-faults flag */
unsigned int fpflags : 5; /* fltg-pt-exception flags */
unsi gned int 13

unsigned int fpmasks : 5; /* fltg-pt-exception nmasks */
unsigned int nornnode : 1; /* normalizing node */
unsi gned int rndnode : 2; /* rounding node */

b

Theft psl . h header file also declares non-ANSI functions. Function
names ending with 1, such asf p_I ogbf , take and return single-precision
values. Function names ending with |, such asf p_I ogbl , take and return
extended-precision values. The rest of the function names (e.g., f p_I ogb)
take and return double-precision values.

The non-ANSI functions are;

f p_I ogbf return the base-2 logarithm.
fp_l ogb

fp_l ogbl

fp_renf return the remainder.
fp_rem

fp_rem

f p_r ndf return the remainder (IEEE).
fp_rnd

fp_rndl

37

1960 Processor Library Supplement

3-8

f p_r oundf round to an integral value.
fp_round

f p_roundl

f p_scal ef perform a scaling operation.
fp_scale

fp_scal el

__macros.h

Defines macros for
include files.
non-ANS

Discussion

The __macr os. h header file defines macros used by the other include files.
These macros are defined for portability of the system include files, and are
subject to change with each compiler release.

math.h

Floating-point math.
ANS

Discussion

The mat h. h header file declares both ANSI-standard and i960-specific
floating-point arithmetic functions. The ANSI-standard part of mat h. h is
described in C: A Reference Manual.

Header Files

The ANSI-standard mathematics functions are declared as
double-precision floating-point functions for all 1960 processors. The
following mathematics functions are also available as single-precision
floating-point functions on al 1960 processors:

at anf expf powf

at an2f fl oorf si nf

ceilf f absf sqrtf

cosf | ogf | EEE sqrtf
t anf

NOTE. Therearetwo implementationsof sqrt for each precision. The
_IEEE sqrt and _I EEE_sqrtf functions are fully IEEE-754 confor mant
in that they perform fault checking as specified in the IEEE-754
specification. The ANS versions, sqrt and sqrt f, unconditionally set
er r no to EDOMwhen given inappropriate values.

The following single-precision versions of ANSI-standard floating-point
functions are available for 1960 processors with on-chip floating-point
support:

acosf | ogl0f

asi nf

If 3|/ou do not specify the - a (ic960) or - ansi (gcc960) option when
compiling, mat h. h declares the following non-ANSI functionsin addition
to the standard functions:

squar e returns the square of a number.

hypot returns the hypotenuse.

39

1960 Processor Library Supplement

3-10

If you do not specify the- a or - ansi (ANSI) option (- a for ic960, - ansi
for gcc960) when compiling and the 1960 processor is without on-chip
floating-point support, mat h. h declares the following non-ANSI functions
in addition to the standard functions:

_| EEE sqgrt double precision
_|EEE sqrtf single precision

If you do not specify the- a or - ansi (ANSI) option (- a for ic960, - ansi
for gcc960) when compiling, the mat h. h header file also defines the
following structure data type for handling complex numbers:

struct conplex { double x, y };

See Chapter 4 for adescription of the_| EEE_sqgrt f, hypot , and squar e
functions.

reent.h

Primitive functions for
reentrant programming.
non-ANS

Discussion

Ther eent . h header file declares the low-level input/output (1/0) and
thread functions used for reentrant programming. Many portable functions
in the libraries call these low-level functions.

Since low-level functions interact directly with the execution environment,
you must rewrite them to conform to your execution environment, as
described in Chapter 5.

Header Files

search.h

Linear search functions.

non-ANS
Discussion
The sear ch. h header file declares the linear search functions| fi nd and
| search. Usel findand| sear ch to find itemsin an unsorted list, as
described in Chapter 4.

sighal.h

Sgnal and interrupt

handling.

ANS

Discussion
Both the ANSI and POSIX standards describe signals as conditions that

can be reported asynchronously during program execution. Thesi gnal . h

header file provides declarations and definitions for handling ANSI and
POSIX signals. The ANSI signal-handling functions and macros are
described in C: A Reference Manual. The non-ANSI signal macros
defined insi gnal . h are:

SI GREAD indicates that a physical read operation has
returned an end-of-file value.

S| GARI TE indicates that a write operation has failed.

Sl GALLCC indicates that memory allocation has failed.

311

1960 Processor Library Supplement

312

SI GFREE indicates that an invalid pointer argument has
been passed to a deallocation function.
SI GUSRL is user-defined.
SI GUSR2 is user-defined.
SI GSI ZE indicates the number of defined signals.
stat.h
File types and access
permissions.
POS X
Discussion

Thest at . h header file defines macros used as masks to check and set the
type and access permissions of files on the host system supporting the
execution vehicle. Thest at . h header file also declaresthef st at and

st at functions, described in Chapter 5, and the structure st at , used as an
argumenttofstat andst at .

Additional status and file-type macros defined in st at . h are available for
UNIX compatibility and are not supported on Windows.

Header Files 3

std.h
System functions.
non-ANS
Discussion
The st d. h header file declares operating system functions.
stdio.h
Sream input/output.
ANS

Discussion

The st di 0. h header file declares functions for stream input and output
(1/0). The ANSI part of st di 0. h isdescribed in C: A Reference Manual.
In addition, if you do not specify the-a or - ansi (ANSI) option (- a for
ic960, - ansi for gcc960) when compiling, st di o. h defines the following
non-ANSI functions:

fcloseal | closes all open files.

f dopen opens afile.

f get char reads a character.

fileno gets the file descriptor for a stream.
flushal | empties al input and output buffers.
f put char writes a character.

getw reads aword.

313

1960 Processor Library Supplement

314

put w writes aword.
rnt np removes atemporary file.

See Chapter 4 for a detailed description of the use of each function.

stdlib.h
Utilities.
ANS

Discussion

Thestdl i b. h header file declares general utility functions. The ANSI
contents of st dl i b. h are described in C: A Reference Manual. In
addition, if you do not specify the - a or - ansi (ANSI) option (- a for
ic960, - ansi for gcc960), st dl i b. h defines the following non-ANSI
functions:

ecvt, fcvt, convert a floating-point number to a string.

gcvt

get opt returns the next letter in the argument that
matches a letter in the string argument.

itoa converts an integer to a string.

i toh converts an integer to hexadecimal.

ltoa,ltos convert along integer to a string.

It oh converts along integer to hexadecimal.

ul t oa converts an unsigned long integer to a string.

ut oa converts an unsigned integer to a string.

See Chapter 4 for a detailed description of each function.

Header Files

string.h

Character array
manipulation.
ANS

Discussion

Thestring. h header file declares functions for manipulating character
arrays. The ANSI contents of st ri ng. h are described in C: A Reference
Manual. In addition, if you do not specify the- a or - ansi (ANSI) option
(-aforic9e0, - ansi for gcc960), st ri ng. h defines the following
non-ANSI functions:

memi cnp compares two strings in memory, ignoring case.
strdup duplicates a string.

stricnp compare two strings, ignoring distinctions
strnicnp between uppercase and lowercase.

striw convert a string to lowercase or to uppercase,
strupr respectively.

strnset assign vauesto charactersin a string.

strset

strrev reverses the order of charactersin astring.

See Chapter 4 for a detailed description of each function.

315

3 1960 Processor Library Supplement

time.h

Date and time.
ANS

Discussion

Theti me. h header file provides functions and macros for determining the
current time, elapsed time, and timezone. The non-ANSI time functions
are described in Chapter 4. The ANSI-standard part of ti ne. h is
described in C: A Reference Manual. If you do not specify the - a or
-ansi (ANSI) option (- a for ic960, - ansi for gcc960), ti me. h also
defines the following:

dayl i ght macro indicates whether daylight savingstimeisin
effect.

ti mezone macro provides the difference in seconds between
Coordinated Universal Time and local time.

t znanme macro provides apair of strings that identify the name
of the time zone and the name of the daylight
savingstime.

t zset function setsthe values of dayl i ght , ti mezone, and
t znane.

Seethet zset entry in Chapter 4 for a description of these facilities.

3-16

Header Files

types.h

System V data-type
definitions.
non-ANS

Discussion

Thet ypes. h header file defines the following data types used for
compatibility with UNIX System V:

uchar arethe same asunsi gned char .

u_char

ushort arethe same asunsi gned short .

u_short

ui nt arethesameasunsi gned i nt .

u_int

ul ong arethe same asunsi gned | ong.

u_l ong

dev_t isthesameasshort. Thest at structure uses
this datatype to identify adevice.

of f_t isthesame as| ong. Thest at structure usesthis
datatypeto contain afile size in bytes.

node_t isthe same asunsi gned | ong.

size_t isthe same asunsi gned.

317

1960 Processor Library Supplement

3-18

unalign.h

Defines special macros.

Discussion

Thisinclude file defines special macros for accessing 16-bit short and
32-hit word-length quantities on unaligned addresses. Unaligned accesses
are faster with the 1960 CA processor using the compiler-scheduled
instructions than allowing the microcode and/or bus controller to handle
them.

The macros defined are:

GET_UNALI GNED_WORD

SET_UNALI GNED_WORD

For word accesses which are unaligned more than 10% of the time, and the
alignment is not always 2-byte.

GET_UNALI GNED2_\WORD
SET_UNALI GNED2_\WORD

For word accesses which are unaligned more than 10% of the time and the
alignment is always 2-byte.

GET_UNAL| GNED_SHORT
SET_UNAL| GNED_SHORT

For signed short accesses which are unaligned more than 10% of the time.

GET_UNALI| GNED_UNSI GNED_SHORT
SET_UNAL| GNED_UNSI GNED_SHORT

For unsigned short accesses which are unaligned more than 10% of the
time.

Header Files 3

Use standard C syntax for naturally aligned data references (structure fields
not under #pr agma pack or #pr agma al i gn and pointer dereferences
without a cast). The macrosin thisfile provide a method of abstracting
non-natural data references so that the application does not have to concern
itself with how unaligned accesses are performed.

By default, the macros are generated for unaligned accesses in little-endian
memory regions. |If the preprocessor symbol __i 960_BI G_ENDI AN__is
defined, the macros are generated for big-endian memory accesses. The
compiler option - Gdefines__i 960_BI G_ENDI AN__.

If you are a big-endian memory user using an i960 CA processor D-step
(or later) part, the chip supports unaligned accesses in big-endian memory
regions. Earlier (pre-D-step) partswill fault on any unaligned accessesin
big-endian memory regions.

Therefore, if you have a pre-D-step part and there is a possibility that a
memory access will be unaligned, you must use one of the UNALI GNED or
UNALI GNED2 macros above or you will get afault.

319

1960 Processor Library Supplement

varargs.h

Defines macros for
variable argument lists.
non-ANS

Discussion

Thevar ar gs. h header file defines macros that provide a means of writing
procedures that accept variable argument lists and which are portable to
pre-ANSI C environments.

The macros defined are:

va_al i st is used in afunction header to declare avariable
argument list.

va_arg returns the next argument in the list pointed to by
its parameters.

va_dcl isadeclaration for va_al i st .

va_end isused to finish up.

va_start is called to initialize parameters to the beginning
of thelist.

See C: A Reference Manual for adiscussion of these facilities

3-20

Header Files

Header File Changes to Support the Long Long Type

The following header files have been changed to support the long long type:
limts.h stdlib.h

The header filel i ni t s. h includes definitions for the following pre-processor constants:
LLONG MAX Maxi mum val ue for an object of type long |long int
LLONG MN M ninmum val ue for an object of type long |long int

ULLONG_MAX Maxi mum val ue for an object of type unsigned long |ong int

The header file st dl i b. h includes prototypes for the following functions:

at ol | strtoll strtoull I'ltoa I'ltoh
Iltos ul I toa

The 80960 ABI currently does not define support for the long long type. To prevent
compile time warnings when compiling with the abi (ic960 option Gabi or gcc960 option
mabi) compiler switch or the ANSI (ic960 option a or gcc960 option ansi) compiler
switch, the above definitions are included conditionally only when the macros
__STRICT_ANSI __, __ STRICT_ANSI,and __i 960_ABI __ are not defined. If you would
like to include the above definitions even when using the abi or the ANSI compiler
switches, please define the pre-processor macro __USE_LONG LONG__ by using the
compiler option-D__USE_LONG LONG__.

Please note that the prototypes for the following functions are not included when
compiling with the ANSI switch even when the macro __USE_LONG_LONG__ is defined:

I'ltoa I'ltoh Iltos ulltoa

321

Library Functions

This chapter describes the library functions that are not fully described in
C: A Reference Manual.

These functions are portable and you need not rewrite them to retarget your
application program. However, some of these functions can call primitive
functions that must be rewritten for any execution environment not
supported by the Intel MON960 debug monitor. Retargeting is described
in Chapter 5. See Appendix A for a cross-reference list of the primitive
functions.

ecvt, fcvt, gevt

Convert floating-point
number to string.

char *ecvt (double value, int count, int *dec, int *sign);
char *fcvt (double value, int count, int *dec, int *sign);

char *gcvt (double value, int count, char *buffer);

val ue is the floating-point number to be converted.

count isthe desired number of digitsin the converted
string, excluding the terminating null character.

dec isapointer to a variable containing the implied
position of the decimal point in the converted
string.

4-1

1960 Processor Library Supplement

4-2

sign isapointer to a variable containing the sign of
the floating-point value.

buf fer isapointer to abuffer for the converted string.

Header File stdlib.h

Discussion

Useecvt, fcvt, Or gcvt to convert val ue to anull-terminated character
string. The converted string contains only digits and the terminating null
character. Thegcvt function stores the string at the location pointed to by
buffer.

The count argument specifies how many digits are stored after the implied
decimal point. If the conversion produces more than count digits, the
low-order digit isrounded. If count islarger than the number of digits, the
string is padded with zerosto fill the specified length. For gevt , the buffer
must be large enough to hold the converted string and terminating null
character.

If possible, gcvt formats the string in the decimal (%) format used by the
printf function; otherwise, gcvt formatsthe string in the exponential
(v&) format. You useaso ecvt toformat the string in the exponential
format used by printf orfcvt toformat the string in decimal format.

The converted string contains only digits. To find the position of the
implied decimal point and sign, use dec and si gn after the function call.
The dec argument points to an integer that indicates the decimal position
relative to the beginning of the string. A negative or zero value indicates a
position preceding the first digit in the string. The si gn argument points to
an integer that indicates the sign of the floating-point string. The integer is
zero for apositive value and non-zero for a negative value.

NOTE. Theecvt,fcvt, andgcvt functionsare not reentrant. Use the
sprintf function, described in C: A Reference Manual, instead for
portability.

Library Functions

Returns

Theecvt, fcvt, and gcvt functions return a pointer to the converted
string. These functions do not return any special value to indicate an error.
Related Topic

sprintf (C: A Reference Manual)

fcloseall

Close all open streams.

int fcloseall (void);

Header File stdio.h

Discussion

Use thisfunction to close all currently open files. Thef cl oseal |
function, however, does not close st di n, st dout , or st derr .
Returns

Thef cl oseal I function returns the number of files closed, which can be
zero or greater. This function does not return any special value to indicate
an error.

Related Topics

f open (C: A Reference Manual)
stderr (C: A Reference Manual)
stdin (C: A Reference Manual)
st dout (C: A Reference Manual)

4-3

A

1960 Processor Library Supplement

4-4

fdopen

Open a streamwith a

file descriptor.
POSX8.2.2

FI LE *fdopen (int fildes, char *npde);
fildes isthefile descriptor.

node isone of the file opening modes used by the
f open function described in the C: A Reference
Manual, except that the w and w+ modes do not
cause truncation of thefile.

Header File stdio.h

Discussion

Use this function to open a stream and associate it with the file descriptor
fildes. Thefileto be associated with 7 i I des must already be open.

Y ou cannot open a stream in a mode incompatible with the mode of the
file. For example, if thefileisopen for writing, you cannot open the
stream for reading or for updating.

Returns

On successful completion, f dopen returns a pointer to the stream;
otherwisef dopen returns aNULL pointer, which indicates an invalid file
node.

Related Topics

fcntl.h (Chapter 3)
f open (C: A Reference Manual)
open (C: A Reference Manual)

Library Functions

fgetchar

Read character from

standard input

stream.

int fgetchar (void);

Header File stdio.h

Discussion

Use this function to read a character from the standard input stream,
st di n. For example, the following program usesf get char to echo the
input to the screen, one character at atime:

#i ncl ude <stdio. h>
mai n()
{
int ch;
fputs("Enter Data Term nated by EOF >", stdout):
while ((ch = fgetchar()) != EOF)
fputc (ch, stdout);

Returns

On successful completion, f get char returns the next character from

st di n; otherwise, f get char returnsECF. Since EOF isalegal i nt value,
usethef eof orferror function, described in C: A Reference Manual, to
check for an actua error.

Related Topics

f eof (C: A Reference Manual)
ferror (C: A Reference Manual)
stdin (C: A Reference Manual)

4-5

A

1960 Processor Library Supplement

4-6

fileno

Get file descriptor

for stream.
POSX8.2.1

int fileno (FILE *stream;

stream isapointer to an open stream.
Header File stdio.h
Discussion

Use this function to get the file descriptor associated with the given
stream Thisfunction lets you use the file-descriptor 1/0 calls (for
example, read, wri t e, and | seek) on streams.

To mix the two /O systems, such asopen vs. f open, you must flush al
1/0 buffers when going from the buffered system to the unbuffered system.
If you omit this step, you can lose data.

Returns

On successful completion, fi | eno returns the file descriptor. This
function does not return any specia value to indicate an error.

Related Topics

f dopen open (Chapter 5)
fopen (C: A Reference Manual) read (Chapter 5)
| seek (Chapter 5) wite (Chapter5)

Library Functions

flushall
Flush all streams.

int flushall (void);

Header File stdio.h

Discussion

Use this function to write output stream buffers to the associated files and
clear open input streams of their contents. Thef I ushal I function does
not close the streams.

Returns

Thef | ushal I function returns the number of streams successfully
flushed. Thisfunction does not return any special value to indicate an
error.

fputchar

Write a character to
standard output stream.

int fputchar (int ¢);

c is the character to be written.

Header File stdio.h

4-7

1960 Processor Library Supplement

4-8

Discussion

Use this function to write acharacter to st dout . Thef put char function
isthesame asf put c(c, st dout) . For example, the following program
uses the f put char function to echo console input to the screen one
character at atime:

#i ncl ude <stdi o. h>
mai n()
{
int ch;
fputs("Enter Data Terminated by EOF ", stdout);
whi | e((ch=fgetchar()) != EOF)
f put char (ch);

Returns

On successful completion, f put char returns the character written;
otherwisg, f put char returnsECF. Since ECF isalegal i nt value, usethe
ferror function, described in C: A Reference Manual, to check for an
actual error.

Related Topics

ferror (C: A Reference Manual)
fgetchar
fputc (C: A Reference Manual)

Library Functions

fp_getenv, fp_setenv

Read and modify
arithmetic controls (1960
pprocessor-specific).

unsi gned fp_getenv (void);

unsi gned fp_setenv (unsigned val);

val isthe bit pattern for setting the arithmetic
controls.

Header File fpsl.h

Discussion

Usef p_get env to read the floating-point bits of the arithmetic controls
(AC) register. Usef p_set env to set the floating-point bits of the AC
register. For example, the following statement sets the rounding mode for
round-to-nearest, sets normalizing mode on, masks all exceptions other
than the invalid-operation exception, and clears all exception flags:

(void) fp_setenv(0x3b000000);

For more information on the AC register, see your assembler user’s guide.

Returns

On successful completion, f p_get env returns the current AC register
contentsand f p_set env returns the previous AC register contents. These
functions do not return any specia value to indicate an error.

4-9

A

1960 Processor Library Supplement

4-10

fp_getflags, fp_setflags, fp_clrflags, fp_clriflag

Read and modify
floating-point
exception flags
(1960 processor-
specific).

int fp_getflags (void);
int fp_setflags (int val);
int fp_clrflags (int val);
int fp_clriflag (void);

val isthe bit pattern for setting the exception flags.
Header File fpsl.h
Discussion

Usef p_get f| ags to read the current exception flags from the floating-
point AC register. Usef p_set fl ags to set any of the exception flagsto 1
and fp_clrfl ags toclear any of the exception flags to zero. Use
fp_clriflagtoclear theinterrupt overflow flag. Thefp_setfl ags and
f p_cl rfl ags functions also return the previous values of all the exception
flags. For example, the following statement fetches the exception flags
into thef pex_fl ags variable:

fpex_flags = fp_getflags();

Thefp_setflags andfp_clrflags functionsuse only the 5 low-order

bitsof val. To operate on any particular flag, set the corresponding bit in

val to 1 asfollows:

e Setva bit 0 to change the overflow flag (bit 16 of the AC register).

e Setval bit 1 to change the underflow flag (bit 17 of the AC register).

e Setva bit 2 to change the invalid-operation flag (bit 18 of the AC
register).

Library Functions I

e Setva bit 3 to change the zero-divide flag (bit 19 of the AC register).
» Setval bit 4 to change the inexact flag (bit 20 of the AC register).

Returns

On successful completion, f p_get f | ags returns the current exception
flagsvalues. Thefp_setflags,fp_clrflags,andfp_clriflag
functions return the previous flag values. These functions do not return
any special valueto indicate an error.

Related Topics

fpgetenv, fp_setenv

fp_getmasks, fp_setmasks

Read and modify
floating-point
exception masks
(1960 processor-
specific).

int fp_getmasks (void);

int fp_setmasks (int val);

val isthe bit pattern for setting the exception masks.

Header File fpsl.h

4-11

1960 Processor Library Supplement

4-12

Discussion

Usef p_get masks to read the current exception mask bits from the
floating-point AC register. Usef p_set masks to set any of the exception
mask bitsto a specified value. For example, the following statement
masks the invalid-operation exception:

(void) fp_setnasks(0x04);

Thef p_set masks function uses only the 5 low-order bitsof val/. To

operate on any particular mask bit, set the corresponding hit in val as

follows:

e Setva bit 0 to change the overflow mask (bit 24 of the AC register).

» Setval bit 1 to change the underflow mask (bit 25 of the AC register).

e Setval bit 2 to change the invalid-operation mask (bit 26 of the AC
register).

* Setva bit 3 to change the zero-divide mask (bit 27 of the AC register).

e Setva bit 4 to change the inexact mask (bit 28 of the AC register).

Returns

On successful completion, f p_get masks returns the current mask values
and f p_set masks returns the previous values. These functions do not
return any special value to indicate an error.

Related Topics

fpgetenv, f p_set env

Library Functions I

fp_getround, fp_setround
Read and modify

floating-point

rounding mode
(1960 processor-

specific).

int fp_getround (void);

int fp_setround (int val);

val isthe bit pattern for setting the rounding mode.
Header File fpsl.h
Discussion

Usef p_get r ound to read the current rounding mode from the floating-
point AC register. Usef p_set r ound to set the rounding modeto a
specified value. Thef p_set r ound function also returns the previous
value of the rounding mode. For example, the following statement sets the
rounding mode to truncate and saves the previous rounding mode in the
save_r mvariable

save_rm = fp_setround(3);

These functions use only the two low-order bits of val , forcing the
rounding mode value to bein therange 0 to 3. To specify arounding
mode, you can use the following values for val :

e Use0 to specify round-to-nearest.

e Use 1 to specify rounding down (toward minus infinity).

* Use 2 to specify rounding up (toward plus infinity).

e Use 3 to specify truncation (toward 0).

4-13

1960 Processor Library Supplement

4-14

Returns

On successful completion, f p_get r ound returns the current rounding
mode and f p_set r ound returns the previous rounding mode. These
functions do not return any specia value to indicate an error.

Related Topics

fpgetenv, fp_setenv

_getac, _setac

Read and modify
arithmetic controls (1960
processor-specific).

unsi gned _getac (void);

unsi gned _setac (unsigned val);

val isthe bit pattern for setting the arithmetic
controls.

Header File fpsl.h

Discussion

Use _get ac to read the current value of the arithmetic controls (AC)
register. Use_set ac to set the AC register. The _set ac function also
returns the previous value of the AC register. For example, the following
statement sets the arithmetic controls correctly for the C run-time library
functions, including the integer overflow fault, floating-point overflow
fault, floating-point underflow fault, floating-point zero-divide fault,
floating-point inexact fault, denormalized numbers, and round-to-nearest
rounding mode:

old ac = _setac(0x3b001000)

Library Functions

You can use_get ac and _set ac on any i960 processor even though the
1960 CA processor usesthef pem CA_AC external variable. Thel i bmxx
floating-point library for each processor contains an appropriate
implementation of these functions.

The operation of _get ac and _set ac on each processor is as follows:

e Onthei960 CA and CF processors, _getac returns the value of the AC
register ORed with fpem_CA_AC. The _setac function sets both the
AC register and fpem CA_AC.

¢ On other 1960 processors, _getac and _setac return and set the AC
register value, respectively.

Returns

On completion, _get ac returns the value of the AC register or the

f pem CA_ACvariable. The _set ac function returns the previous value of
the AC register or thef pem CA_AC variable. These functions do not return
any specia valueto indicate an error.

Related Topics

fp_getenv, fp_setenv

getw

Read integer
from stream.

SVID

int getw (FILE *stream;

stream identifies the input stream.

Header File stdio.h

4-15

1960 Processor Library Supplement

4-16

Discussion

Use this function to read the next two bytes from the stream opened by

f open or creat . The apparent behavior of thisfunction can vary dueto
word length and byte ordering in the environment in which the stream is
written using put w. For example, the following program copies the binary
filefil enane.intothefilefil enane. out:

#i ncl ude <stdio. h>

mai n()
{
FILE *instream *outstream
i nt word;
if (!(instream= fopen("filenanme.in", "rb")))
return;
if (!(outstream = fopen("filenane.out", "wh")))
{ fclose(instream;
return;
}

while ((word = getw(instream)) != EOF)
put wword, outstream;

fcl ose(outstream;
fcl ose(instrean;

Returns

On successful completion, get w returns the input word; otherwise, get w
returns EOF as an error or end-of-file indicator.

Since the error and end-of-file indicators are both EOF, which can also be a
valid dataword, usef eof andf error to distinguish between end-of-file,
an error, or avalid return of ECF.

Library Functions

Related Topics

creat (Chapter 5) fopen (C: A Reference Manual)
f eof (C: A Reference Manual) put w
ferror (C: A Reference Manual)

getopt

Get option letter from
argument vector.

int (getopt)(int argc, char **argv, char *optstring);

arge the number of pointersin ar gv.

argv points to the index of the next command line argument
to be processed.

optstring points to the string containing the option letters.

Header File stdlib.h

Discussion

Function get opt returnsthe next option letter in ar gv that matches a letter
inopt string. optstring mustcontain the option letters recognized by
the command line command using get opt () . If aletter isfollowed by a
colon, the option is expected to have an argument or group of arguments
which must be separated from it by white space.

opt ar g is set to point to the start of the option argument on return from
get opt .

get opt placesthe argv index of the next argument to be processed in
optind. Theexternal function opti nd() isinitialized to 1 before the first
call toget opt .

4-17

1960 Processor Library Supplement

4-18

When all options have been processed (up to the first non-option argument)
get opt returns-1. The special option "- - " can be used to delimit the end
of the options; when it is encountered, -1 isreturned and "- - " is skipped.

Returns

This function returns the next option letter in ar gv that matches aletter in
optstring.

Find the Euclidean

doubl e hypot (double x, double y);

xandy are double-precision floating-point values.
Header File mat h. h
Discussion

Use this function to find and return the hypotenuse for sides of lengths x
and y, that is, the square root of the sum of the squares of x and y.

Returns

J(x2+y2)

Library Functions

_|IEEE_sqrt, IEEE_sqrtf

Determine the IEEE
conformant square root

of avalue.

doubl e _I| EEE_sqrt (double x);
float _IEEE sqrtf(float x);

X isauser provided value.
Header File mat h. h
Discussion

The | EEE sqrt and _I| EEE sqrtf functions produce the square root of
thevalue provided inx. The _I EEE_sqgrt functions conform fully to
IEEE-754. _| EEE sqrtf providessingle precision accurracy.

_I EEE sqrt provides double precision accurracy.

Return Value

Upon successful completion, _| EEE sqrtf returnsthe single precision
sguare root of the value in x. The function performs fault checking in
conformance with the | EEE-754 specification.

Upon successful completion, _| EEE sqrt returns the double precision
sguare root of the value in x. The function performs fault checking in
conformance with the | EEE-754 specification.

4-19

1960 Processor Library Supplement

4-20

itoa

Convert integer to

string.

char *itoa (int value, char *string, int radix);

val ue isthe integer to be converted.

string isapointer to the string.

radi x istheradix of val ue, in the range 2 through 36.
Header File stdlib.h

Discussion

Use this function to convert the input integer val ue to the equivalent
null-terminated character string and store theresult in st ri ng. Specify the
sign of val ue and the base of the conversion with the r adi x argument.
The absolute value of r adi x must be in the range 2 through 36. If radi x
isnegative, val ue isinterpreted as signed. If radi x is positive, val ue is
interpreted as unsigned. For example, the following program converts the
number in val ue to adecimal ASCII string inthe st ri ng variable and
printsthe value of st ri ng:

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

mai n()

{
i nt val ue;
char string[34];
char * num

val ue = 12;
num = itoa(val ue, string, 10);
printf("%\n", string);

Library Functions

The st ri ng buffer must be large enough to hold the ASCII representation
of the largest integer possible in your execution environment.

Returns

Thei t oa function returns a pointer to the string. This function does not
return any specia value to indicate an error.

Related Topic

sprintf (C: A Reference Manual)

itoh
Convert integer to
hexadecimal.

char *itoh (int n, char *buffer);

n isthe integer to be converted.
buf fer isapointer to the string.
Header File stdlib.h

Discussion

Use this function to convert the input integer n into the equivalent
null-terminated hexadecimal string in the buffer pointed to by buf fer.
The buffer must be large enough to hold the hexadecimal representation of
the largest integer possible in your execution environment. This function
converts al hexadecimal charactersto lowercase. For example, the
following program converts the number in the variable n to a hexadecimal
ASCII string in hexst r and printsthe hexst r :

#i ncl ude <stdlib.h
#i ncl ude <stdio.h

4-21

1960 Processor Library Supplement

4-22

mai n()
{

unsigned int n;
char hexstr[9];
char * nunber;

n = Ox3ff;

nunber = itoh(n, hexstr);

printf("%\n", hexstr);
}

For portability, usespri nt f with the % conversion specifier.

Returns

Thei t oh function returns a pointer to the string. This function does not
return any special valueto indicate an error.

Related Topic

sprintf (C: A Reference Manual)

Ifind, Isearch

Ifind - Linear search
|search - Linear search
and update.

SvVID

char *Ifind (const char *key, const char *base,
unsi gned *nel p, unsi gned w dt h,
int (*conpar)(const void *, const void *));

char *lIsearch (const char *key, char *base,
unsi gned *nel p, unsi gned w dt h,
int (*conpar)(const void *, const void *));

key is a pointer to the value to be searched for.

Library Functions

base isapointer to thefirst element in the array.

nel p is apointer to the number of elementsin the
array.

wi dt h isthe size, in bytes, of each element in the array.

conpar points to the function to compare each element in
the array with the key.

Header File search. h

Discussion

Usel find orl sear ch to perform alinear search of an array of elements
beginning at base and searching to the first occurrence of key. Thevalue
of nel p pointsto the number of elementsin the array. wi dt h indicates the
size of each element in bytes. The array need not be sorted.

If | sear ch does not find amatch, it adds key to the end of the array, and
returns a pointer to the new position of key. Sincel sear ch does not
allocate space for anew element, you must ensure that space is available
for the element.

Y ou must supply the comparison function that conpar pointsto. The
comparison function must take two arguments pointing to the elementsto
be compared, return 0 if the elements are identical, and return non-zero
otherwise.

Returns

Both functions return a pointer to the first match. If I fi nd does not find a
match, it returnsaNULL pointer. If | sear ch appends key to the array, the
return value is a pointer to the new key element in the array. These
functions do not return any special value to indicate an error.

Related Topic
bsear ch (C: A Reference Manual)

4-23

1960 Processor Library Supplement

ltoa, Itos
Convert long integer to
string.

char *Itoa (long num char *string, int radix);

char *Itos (long num char *string, int radix);

num isthe integer to be converted.

string isthe pointer to the string.

radi x istheradix of num in the range 2 through 36
decimal.

Header File stdlib.h

Discussion

Usel t oa to convert the supplied | ong i nt value in numto the equivalent

ASCII string in the st ri ng buffer using base r adi x, which must be in the
range 2 through 36 decimal. For example, the following program uses

| t oa to convert anumber in the variable nunber to an ASCII string in the
variable | ongst r and printsthe | ongst r string:

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

mai n()

{
| ong nunber;
char longstr[12];
char * buf;

nunber = 10223444L;

buf = l|toa(nunber, longstr, 10);
/* longstr contains "10223444" */
printf("%\n", longstr);

4-24

Library Functions

For I t os, radi x can be an integer valuefrom 2 to 36 or - 2 to - 36
decimal. The absolute value of r adi x isthe number base of the input
argument. A negative r adi x indicates that the input valueis asi gned
I ong. A positive radix indicates an unsi gned | ong input.

The buffer must be large enough to hold the largest number possiblein
your execution environment. The string is null-terminated.

Returns

Thel t oa and | t os functions return a pointer to the string. This function
does not return any specia value to indicate an error.

Related Topics

| toh
ul t oa, ut oa

ltoh

Convert long integer to
hexadecimal

char *Itoh (unsigned | ong num char *string);

num isthe integer to be converted.
string isthe pointer to the string.
Header File stdlib.h

4-25

1960 Processor Library Supplement

4-26

Discussion

Use this function to convert thel ong i nt eger value in numinto the
equivalent hexadecimal string in the st ri ng buffer. The buffer must be
large enough to hold the hexadecimal representation of the largest possible
integer. For example, the following program uses| t oh to convert the
number in the variable nunber to an ASCII valuein the variable hexst r
and printsthe hexst r string:

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

mai n()
{

unsi gned | ong nunber;
char hexstr[9];
char * buf;

nunber = 10223444L;

buf = |toh(nunber, hexstr);

/* hexstr contains "9BFF54" */
printf("%\n", hexstr);

}
For portability, usespri nt f with the % x conversion specifier.

Returns

Thel t oh function returns a pointer to the string. This function does not
return any special value to indicate an error.

Related Topics

Itoa, ltos
sprintf (C: A Reference Manual)

ultoa, utoa

Library Functions

memicmp

Compare charactersin
memory, ignore case.

int memcnp (const void *ptr1, const void *ptr2,
unsi gned /en);

ptrl points to the source string.

ptr2 points to the destination string.

len is the number of charactersto compare.
Header File string. h

Discussion

Use this function to compare two strings lexicographically, ignoring
differences between lowercase and uppercase. The neni cnp functionisa
case-insensitive version of the ANSI function mencnp. Assuch, meni cnp
compares | en characters, starting at pt r 1, with / en characters at pt r 2.
The result indicates whether the first string is less than, equal to, or greater
than the second string, ignoring the case of each string. The digitsin the
strings are compared lexicographicaly; that is, as characters and not as
values. For example, 2 is greater than 13, but 02 islessthan 13.

Returns

If the first string is lexicographically less than the second (ignoring case),
mem cnp returns a negative integer. If the first string is greater (ignoring
case), mem cnp returns a positive integer. |If the strings are equal, neni cnp
returns 0. This function does not return any specia value to indicate an
error.

4-27

1960 Processor Library Supplement

4-28

Related Topics

menmcnp (C: A Reference Manual)
stricnp
strni cnp

Write integer to stream.

int putw (int w FILE *strean);

w contains the two bytes to be written.
stream I dentifies the output stream.
Header File stdio.h

Discussion

Use this function to write wto the specified stream. This function writes
the least-significant byte of the word first.
Returns

On successful completion, put w returns the word written, which can be
ECF. Youcanusefeof andferror to distinguish between an error and a
valid return of EOF.

Related Topics

f eof (C: A Reference Manual)
ferror (C: A Reference Manual)
getw

Library Functions I

rmtm P
Remove temporary files.

int rmtnp (void);

Header File stdio.h

Discussion

Use this function to close and delete any files opened by the function
tmpfi | e, described in C: A Reference Manual.

Returns

Ther nt np function returns the number of files deleted. This function does
not return any special value to indicate an error.

Related Topic
trmpfile (C: A Reference Manual)

square
Sguare a number.

doubl e square (double val);

val is the number to be squared.

Header File mat h. h

4-29

1960 Processor Library Supplement

4-30

Discussion

Use this function to calculate the square of the number val (that is, val *
val).

Returns

The squar e function returns the value of val * val. Thisfunction does
not return any special value to indicate an error.

Duplicate string.

char *strdup (const char *s);

s pointsto a character string to be copied.
Header File string. h
Discussion

Use this function to copy the character string pointed to by s. Themal | oc
function is called to obtain the memory space needed for the copy. Use
f r ee to return the memory space when the program no longer needsiit.

Returns

The st r dup function returns a pointer to the duplicate string placed in
memory. Thisfunction returns NULL if mal | oc cannot allocate the
required memory.

Related Topics

free (C: A Reference Manual)
mal | oc (C: A Reference Manual)

Library Functions

stricmp

Compare strings, ignore

case.

int stricmp (const char *s1, const char *s2);

s1,s2 point to the strings to be compared.
Header File string. h
Discussion

Use this function to compare two strings lexicographically, ignoring
distinctions between lowercase and uppercase. Thestri cnp functionisa
case-insensitive version of the ANSI st r cnp function. Assuch, stricnp
compares the first null-terminated string to the second and returns avalue
based on whether the first string is lexicographically less than, greater than,
or the same as the second string, ignoring case. For example, the following
program compares two strings and prints the results if the strings are equal:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

mai n()

int result;
char *str3=

"conpUter";

char *str4="CoMut eR";

if (stricmp(str3,str4)==0)
printf("Strings % and % are equal (case-insensitive)\n",
str3,str4);

Returns

Thest ri cnp function returns an integer greater than, equal to, or less than
0, depending on whether the string pointed to by s1 islexicographically
greater than, equal to, or less than the string pointed to by s2, ignoring case

4-31

1960 Processor Library Supplement

4-32

in both strings. This function does not return any special value to indicate
an error.

Related Topics
memi cnp

strecnp (C: A Reference Manual)
strni cnp

striwr, strupr

Convert string to lower
or upper case.

char *strlw (char *s);

char *strupr (char *s);

s points to the string to be converted.
Header File string.h
Discussion

Usethestrl w function to convert any uppercase alphabetic charactersin
the string, pointed to by s, to lowercase.

Usest rupr to convert any lowercase a phabetic charactersin the string,
pointed to by s, to uppercase.

Library Functions

These functions modify strings without moving them, so their input and
return values are the same. These functions resemble the ANSI t ol ower
and t oupper functions, but apply to an entire string rather than asingle
character.

Returns

The strlw andstrupr functions return a pointer to the modified string.
This function does not return any special value to indicate an error.

Related Topics

t ol ower (C: A Reference Manual)
t oupper (C: A Reference Manual)
strnicmp

Compare strings, ignore

case.

int strnicnp (const char *sl1, const char *s2, size t n);
s1,s2 point to the strings to be compared.

n is the maximum number of charactersin the
strings to be compared.

Header File string.h

Discussion

Use this function to compare two strings lexicographically, ignoring
distinctions between lowercase and uppercase. The st r ni cnp functionis
acase-insensitive version of the ANSI st r ncnp function. As such, this
function compares up to n characters of the first null-terminated string to

4-33

1960 Processor Library Supplement

4-34

the second and returns a value based on whether the first string is
lexicographically less than, greater than, or the same as the second string
(ignoring case).

For example, the following program compares two strings and prints the
resultsif the strings are equal:

#i ncl ude <string. h>
#i ncl ude <stdio. h>

mai n()

{

char
char
char
char

*strl1l="hello world"
*str2="HELLO'
*str3="conmpUting"
*str4="CoMut eR"

if (strnicnp(strl,str2,5)==0)

{ printf("The first 5 characters of the strings %",strl);
printf(" and % are equal (case-
insensitive).\n",str2);

if (strnicnp(str3,str4, 6)==0)

{ printf("The first 6 characters of the strings %", str3);
printf(" and % are equal (case-
insensitive).\n",str4);

Returns

The st r ni crp function returns an integer less than, greater than or equal to
zero depending on whether the first n characters of the string pointed to by
s1 arelessthan, greater than or equal to thefirst n characters of the string
pointed to by s2. Thisfunction does not return any special valueto
indicate an error.

Library Functions

Related Topics

memni cnp
stricnp
strncnp (C: A Reference Manual)

strnset
Set charactersin string.

char *strnset (char *s, int ¢, size_t n);

s points to the string to be set.

c is the character-coded integer value to be
assigned to characters in the string.

n is the number of charactersto be set.

Header File string. h

Discussion

Use this function to set n number of characters of the string s to the

value c.

Returns

The st rnset function returns a pointer to the string. This function does
not return any special value to indicate an error.

Related Topic

strset

4-35

1960 Processor Library Supplement

strrev
Reverse charactersin
string.
char *strrev (char *s);
s points to the string to be reversed.
Header File string. h
Discussion
Use this function to reverse the order of charactersin the string pointed to
by s, leaving the terminating null character at the end.
Returns
The st rr ev function returns the pointer to the modified string. This
function does not return any specia value to indicate an error.
strset

Set charactersin string.

char *strset (char *s, int ¢);
s points to the string to be set.

c is the character-coded integer value to be
assigned to the charactersin the string.

Header File string.h

4-36

Library Functions I

Discussion

Use thisfunction to set all the charactersin the string pointed to by s,
except the required terminating null character, to the value c.

Returns

Thestrset function returns a pointer to the string. This function does not

return any special valueto indicate an error.

Related Topic

strnset
{zset
et time zone variables.
SvVID

void tzset (void);

Header File tinme.h

Discussion

Use this function to set the values of the following macros:

dayl i ght provides the daylight savingstime flag. The flag
valueiso if daylight savingstimeisin effect and
nonzero otherwise. The default valueis1. The
dayl i ght value hasthetypei nt.

4-37

1960 Processor Library Supplement

4-38

ti mezone provides the difference, in seconds, between
Greenwich Mean Time (GMT) and local time.
For example, thet i mezone value for Eastern
Standard Time (EST) is18000. Theti nezone
value hasthe typel ong.

t zname provides a pair of strings identifying the time
zone. The datatype of eacht zname valueis
declared asfollows:

extern char *tzname[2]

The default value of t znane[0] iSPST,
indicating Pacific Standard Time, and of

t znane[1] iSDST, indicating daylight savings
time.

Thet zset function usesthe Tz environment variable, specifying the
relevant system time zone, to set the values of thedayl i ght , ti nezone,
and t znane globa variables. The vaue of Tz must bein the form:

aaan[bbb]
aaa and bbb are sequences of three arbitrary characters.

n isthe signed difference in hours from Greenwich
Mean Time. A negative valueindicates a
location east of Greenwich, England.

The bbb string is optiona. Including bbb indicates that daylight savings
timeiscurrently in effect. The default value for Tz isPSTS.

For example, when dayl i ght is1, TZ isESTSEDT for New Y ork, CST6CDT
for lllinois, MsT7MDT for Colorado, and PST8PDT for Oregon.
Related Topics

tine (Chapter 5)
tinme. h (Chapter 3)

Library Functions

ultoa, utoa

Convert unsigned long
to string.

Convert unsigned
integer to string.

char *ultoa (unsigned |long value, char *string, int radix);

char *utoa (unsigned int value, char *string, int radix);

val ue isthe value to be converted.

string isapointer to the string.

radi x istheradix of val ue, in the range 2 through 36
decimal.

Header File stdlib.h

Discussion

Useul t oa to convert the unsi gned | ong value val ue to the equivalent
null-terminated character string and storetheresult in st ri ng. Use ut oa
to convert the unsi gned i nt value val ue to the equivalent
null-terminated character string and store theresult in st ri ng. Specify the
radix of conversion with the r adi x argument, which must be in the range 2
through 36 decimal.

For example, the following program converts a value to a string and prints
it:

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
mai n()
{
unsi gned int val;
char *buffer;
char * buf;

4-39

1960 Processor Library Supplement

4-40

buf f er=mal | oc(10);

val =0x5689;

buf =ut oa(val , buffer, 4); /* buffer is "11122021" */
fput s(buffer, stdout);

free(buffer);

}

The st ri ng buffer must be large enough to hold the ASCII representation
of the largest integer possible in your execution environment.

For portability, usespri nt f withthe o, % d, or % x conversion
specifiers, if radi x is8, 10, or 16, respectively, instead of calling ul t oa.
Usesprintf with the %o, %, or % conversion specifiers, if radi x is 8,
10, or 16, respectively, instead of calling ut oa.

Returns
Theul t oa and ut oa functions return pointers to the converted strings.
These functions do not return any special value to indicate an error.

Related Topics

|toa,ltos

I toh
sprintf (C: A Reference Manual)

Customizing the Libraries

The libraries support reentrancy under environments using single-thread
applications for supported monitors and evaluation boards. Environments
other than the evaluation boards directly supported by the MON960
retargetable monitor require retargeting of the low-level,
environment-dependent libraries. Additionally, use of monitors not
supported by the supplied board-specific libraries forces retargeting of the
low-level, board-dependent libraries.

This chapter describes several types of reentrancy and explains how to
rewrite low-level library functions and system calls for applications that
use an unsupported board, monitor, or type of reentrancy.

Creating custom monitor libraries requires attention to the C run-time
library reentrancy material presented in the Making the Libraries Reentrant
section, which includes the following:

» how concurrent tasks and functions can share data without conflict

¢ how rewritten low-level functions must operate

Retargeting an application to run on other than a M ON960-supported
evaluation board requires attention to the retargeting information in
Retargeting the Libraries section, which includes the following:

» how thelibrary functions use system calls

* how rewritten system calls must operate

51

1960 Processor Library Supplement

Making the Libraries Reentrant

This section

« defines reentrancy and associated terms

e describes the problems of persistent data

» describes the actions a newly written reentrant function must perform
* listsstubsto act as guides for the writing of new low-level routines.

This section assumes familiarity with the environment in which a new
application will run and some familiarity with the issues of reentrancy.

Reentrancy Defined

This section contains alist of terms and definitions used in the discussion
of reentrancy, ageneral definition of reentrancy, and a description of
persistent data. The information in this section supports the writing of
reentrant functions.

Terms
The remainder of this chapter uses the following terms:

context data data that multiple threads can share that
are directly referenced by functions.

multi-tasking allow more than one task or process

execution environments (referred to as athread) to be active
concurrently.

paralld reentrancy two or more processes can execute a

function simultaneously.

persistent data consists of data structures and other
variables that the libraries maintain
outside of any function, to preserve data
between function calls or to
communicate data between functions.
Persistent data can change during
execution. The program alocates and

Customizing the Libraries

recursive reentrancy

thread

thread data

time-dlice reentrancy

Types of Reentrancy

initializes all persistent data structures as
needed during startup and does not
depend on aloader to storeinitial values.

a process can suspend one instance of
the function, start and execute another
instance to completion, and reactivate
the suspended instance.

an independent execution of code that
has its own instruction pointer and stack.
For example, in a simple embedded
control application, an interrupt handler
constitutes a separate thread of
execution.

datauniqueto thethread. The data
cannot be shared.

execution can alternate or rotate between
two or more processes executing the
function. One processis active and the
others are suspended at any given time.

A reentrant function can be active in two or more instantiations at once. In
all cases of reentrancy, any given instance of the function must be able to
operate on memory locations and processor registers without destroying
the memory and register values used by any suspended or concurrent

instantiation.

For example, in amulti-tasking environment, a reentrant function can be
called from two or more concurrent threads without causing conflicting
updates to the data structures used by the function.

1960 Processor Library Supplement

The three types of multiple instantiation follow:

Parallel

Time-diced

Recursive

Persistent Data

Two or more processes can execute a function
simultaneously. Multi-tasking execution
environments allow more than one task or
process (referred to as athread) to be active
concurrently.

Execution can aternate or rotate between two or
more processes executing the function. One
process is active and the others are suspended at
any given time.

A process can suspend one instance of the
function, start and execute another instance to
completion, and reactivate the suspended
instance.

Of the types of datathe libraries use, only persistent data presents a
problem for reentrancy. Because persistent data exists outside the
function, separate instantiations of afunction must not destroy data needed
by other instantiations. Persistent data occurs in the following two forms:

Thread data

Context data

must be unique to the thread and cannot be
shared. This category includes, for example, the
er r no variable, the random number seed, and
buffers containing structure and string return
values of specific C functions. Thread data can
be modified as a side effect rather than as the
primary intent of afunction call.

isthe only data directly referenced by functions
that multiple threads can share. Y ou can directly
reference other shared data through pointers
passed to functions, but data referenced in that
way is not protected.

Customizing the Libraries

The context of athread is the data space that can

be shared between concurrent threads, and

context data is shared between two or more

threadsin a context. The two classes of

shareable data are:

e Theexit handler and open /O stream lists.

e Currently open streams, including the
standard streams st di n, st dout , st derr.

The libraries process open streams independently
of the clean-up liststhat exi t processes. All
threads in a single context can share streams or
each thread can have its own streams.

Writing Reentrant Functions

This section contains criteria and procedures necessary for writing

reentrant functions and low-level reentrancy support functions. This

section contains:

« genera requirements for reentrant functions

« prerequisites for ROM based reentrant functions

» alist of actions each new function must perform

e adetailed discussion of each action

» tablesof low-level memory handling functions and existing library
functions which do not support reentrancy.

General Reentrancy Requirements

Reentrancy is possible when references to persistent data are made under

the following conditions:

« Dataisnot shared between processes.

» References are controlled by preventing other processes from updating
the datain conflicting ways.

The portable functions in the libraries are reentrant and support reentrant
use of their dataif the execution environment provides reentrant supporting
access functions. Since the access functionsin the libraries do

1960 Processor Library Supplement

not support reentrant operation, you must replace these functions with
access functions appropriate to your execution environment.

There are four categories of reentrancy:

Category 1. Reentrant

» Thesefunctions call no other functions that are not known to be
reentrant.

e All variables are local, stored on the stack or in aregister.

« Functions can read statically allocated constant data.

¢ Functions can read and write data pointed to by parameters that were
passed to the function. In such casesit isthe caller’s place to assure
that the datais correctly accessed/protected if the function is reentered.

Category 2: Reentrant Except for Setting errno
» Theseroutines are reentrant except for their setting of theer r no
variable.

Category 3: Reentrant Except for Setting fpem_CA_AC

e Theseroutines are reentrant if at interrupt, or thread context change,
the current state of thef pem CA_ACis saved and restored. Note that
for K- and S-series processors, thereisno f pem CA_AC, and therefore
these routines are all reentrant for these processors.

Category 4: Non-reentrant
e Usesdtatically alocated variables that are not accessed via thread data
structure.

Category 5: Unspecified

e Usesdtatically alocated variables that are accessed viathread data
structure.

* Any routine that does | O is unspecified.

Using these categories, the entry points of the standrd C and math libraries
and the accelerated and alternate floating-point libraries are categorized in
the following tables. Note that some functions are in two categories (e.g.,
sscanf isin both Category 1 and Category 2).

Customizing the Libraries

Table 5-1 Category 1: Reentrant Functions

libc C Library
_getch ediv itoa gsort strrchr
_Ldoprnt feof itoh setlocale strrev
_Lmodeparse ferror labs strcat strrpos
_putch isalnum [toa strchr strrpos
_thread_init isalpha [toh strcmp strset
_tolower isascii ltos strcoll strspn
_toupper iscntrl mblen strcpy strstr
abs isdigit mbstowcs strftime strupr
atoi isdigit mbtowc stricmp strxfrm
bcmp isgraph memchr strlen system
bcopy islower memcmp striwr tolower
bcopy isodigit memcpy strnicmp toupper
bsearch isprint memicmp strnset ultoa
bzero ispunct memmove strpos utoa
clock isspace memset strpos wcstombs
div isupper mktime strrchr wctomb

libm Math Library
__clsdfsi _Lclog2xf _Lmatherr _Lylog2xI fabsl
__Clssfsi _Lclog2xI _Lratan2 atan fmod
__Clstfsi _Lclogep2x _Lratan2f atanf fp_clriflag
_AFP_dp2a _Lclogep2xf _Lratan2| atanl frexp
_AFP_mZERO_S _Lclogep2xl _Ls_do_mul copysign modf
_AFP_tp2a _Ld_do_mul _Lsatan2 copysignf sinl
_Lclass _Lexp2ml _Lsatan2f copysignl square
_Lclassf _Lexp2mi1f _Lsatan2| cosl tanl
_Lclassl _Lexp2mll _Lylog2x fabs
_Lclog2x _Lhypot_util _Lylog2xf fabsf

continued [J

5-7

1960 Processor Library Supplement

5-8

Table 5-1 Category 1: Reentrant Functions (continued)

libh Accelerated Floating-point Library

__fixdfsi AFP_Fault_Invalid_Operation_S
__fixsfsi AFP_Fault_Invalid_Operation_T
_fixtfsi AFP_Fault_Overflow_D
__fixunsdfsi AFP_Fault_Overflow_S
__fixunssfsi AFP_Fault_Overflow_T
__fixunstfsi AFP_Fault_Reserved_Encoding D
__floatsidf AFP_Fault_Reserved_Encoding_S
__floatsitf AFP_Fault_Reserved_Encoding T
__floatunssidf AFP_Fault_Underflow_D
__floatunssitf AFP_Fault_Underflow_S
AFP_Fault_Inexact_D AFP_Fault_Underflow_T
AFP_Fault_Inexact_S AFP_Fault_Zero_Divide_D
AFP_Fault_Inexact_T AFP_Fault_Zero_Divide_S
AFP_Fault_Invalid_Operation_D AFP_Fault_Zero_Divide T

libfp Alternate Floating-point Library
__absdf2 __fixsfsi __subsf3 dplog fpatn
__abssf2 __fixunsdfsi __truncdfsf2 dpsin fpcos
__adddf3 __fixunssfsi __truncdfsf2_g960 dpsqrt fpexp
__addsf3 __floatsidf ceilf dptan fpin
___cmpdf2 __floatsisf daschin dpxtoi fplog
__cmpsf2 __muldf3 dbinasc eptodp fpsin
__divdf3 __mulsf3 dpatn faint fpsqrt
__divsf3 __negdf2 dpcos fascbin fptan
__extendsfdf2 __negsf2 dpexp fbinasc fpxtoi
__fixdfsi __subdf3 dpln floorf

Customizing the Libraries

Table 5-2 Category 2: Reentrant Except for Setting errno

libc C Library
atol sprintf strerror strtoul
Idiv sscanf strtol vsprintf

libm Math Library
_AFP_INF_D _Lqgerrorf atan2| log sinh
_AFP_INF_S _Lgexpml atof log10 sqrt
_AFP_int_pow _Lstrtoe cos log10f sqrtf
_AFP_int_powf _Lstrtof cosf log10l sqrtl
_AFP_NaN_D acos cosh logf strtod
_AFP_NaN_S acosf exp logl tan
_AFP_QNaN_D asin expf pow tanf
_AFP_QNaN_S asinf expml powf tanh
_Lfltscan atan2 hypot sin
_Lqgerror atan2f Idexp sinf

5-9

1960 Processor Library Supplement

Table 5-3 Category 3: Reentrant Except for Setting fpem_CA_AC

libc C Library
sprintf sscanf vsprintf

libm Math Library
__Lnanl _Lisnan difftime fp_remf log10
__Lnanif _Lisnanf exp fp_reml log10f
__Lnanil _Lisnanl expf fp_rmd log10l
_getac _Lqgerror expml fp_rmdf loglp
_IEEE_sqrt _Lgexpml expm1lf fp_rmdl log1pf
_|IEEE_sqrtf _Lquickexit floor fp_round loglpl
_Lfaultexit _Lquickexitf floorf fp_roundf logf
_ Lfaultexitf _Lquickexitl floorl fp_roundl logl
_Lfaultexitl _setac fp_clrflags fp_scale pow
_Lflt_interface acos fp_getenv fp_scalef powf
_Lfltprnt acosf fp_getflags fp_scalel sinh
_Lfltscan asin fp_getmasks fp_setenv sqrt
_Lfpd_exit asinf fp_getround fp_setflags sqrtf
_Lfpe_exit ceil fp_logb fp_setmasks tanh
_Lfpi_exit ceilf fp_logbf fp_setround
_Lfpi_quickexit ceill fp_logbl hypot
_Lfps_exit cosh fp_rem log

continued [J

5-10

Customizing the Libraries

Table 5-3 Category 3: Reentrant Except for Setting fpem_CA_AC (continued)

libh Floating-point Library
____extenddftf2 __floatunssisf __rmddf3 __subsf3 ceill
____extendsfdf2 __floordf2 __rmdsf3 __subtf3 floor
___extendsftf2 __floorsf2 __rmdtf3 __truncdfsf2 floorf
__adddf3 __ floortf2 __rounddf2 __truncdfsf2_g960 floorl
__addsf3 __logbdf2 __rounddfsi ___trunctfdf2 fp_clrflags
___addtf3 __logbsf2 __roundsf2 __trunctfsf2 fp_clriflag
__ceildf2 __logbtf2 __roundsfsi AFP_NaN_D fp_getenv
__ceilsf2 __muldf3 __roundtf2 AFP_NaN_S fp_getflags
__ceiltf2 __mulsf3 __rounditfsi AFP_NaN_T fp_getmasks
__cmpdf2 __multf3 __roundunsdfsi AFP_RRC_D fp_getround
__cmpsf2 __remdf3 __roundunssfsi AFP_RRC D 2 fp_setenv
__cmptf2 __remsf3 __roundunstfsi AFP_RRC_S fp_setflags
__divdf3 __remtf3 __scaledfsidf AFP_RRC_S 2 fp_setmasks
_divsf3 __rintdf2 __scalesfsisf AFP_RRC_T fp_setround
__divtf3 __rintsf2 __scaleftfsitf ceil
__floatsisf __rinttf2 __subdf3 ceilf
Table 5-4 Category 4: Non-reentrant

libc C Library
free localeconv raise tmpfile
getenv localtim realloc tmpnam
getopt malloc signal tzset
libm Math Library

ecvt fevt gevt

5-11

1960 Processor Library Supplement

Table 5-5 Category 5: Unspecified

libc C Library
_assert exit fprintf getchar putw
_exit_init fclose fputc gets rand
_filbuf fcloseall fputchar getw remove
_flsbuf fdopen fputs gmtime rewind
_HL_init fflush fread init_c rmtmp
_Ldoscan fgetc freopen Ifind scanf
_stdio_init fgetchar fscanf Isearch setbuf
abort fgetpos fseek perror setvbuf
asctime fgets fsetpos printf strtok
atexit fileno ftell putc ungetc
clearerr flushall fwrite putchar viprintf
ctime fopen getc puts vprintf

5-12

Note that all routines under the C++ lostream library are also considered
unspecified.

ROM Reentrancy Requirements

If your application executes in read-only memory (ROM), any libraries you

use must be written and compiled so that they meet the following

congtraints:

* You can place only constants in the code segment in ROM.

¢ You must place data that can change during execution in the data
segment in random-access memory (RAM).

* You must place the instructions that initialize RAM datain the code
segment in ROM.

« Eachlibrary you use meets all of the constraints for programming into
ROM.

Customizing the Libraries

Contents of Reentrant Functions

To avoid data conflicts, the following three criteria must be true for newly

written functions:

e Startup routines must initialize a context.

e Thenew function must create and maintain its own data pointers.

¢ Thenew function must call semaphores to protect itself from the
influence of other instantiations.

Initializing a New Context

Startup code must initialize both thread data and context data for reentrant
and ROM applications. To start a new context, your startup code must call
the thread-initialization functions in the following order:

1. _thread_init initiadizesnon-shared data

2. _exit_init initidizes memory for the exit handler.

3. _stdio_init initiaizesthe standard I/O streams.

Both the startup code for the context and the initialization code for each
thread must call _t hread_i ni t . A new thread starting within an existing
context initializes only the data that it does not share. A new thread can
call _exit_init,_stdio_init,orboth, depending on the datathat it
shares, asfollows:

» Ifasinglecal toexit istoterminate al threads within a context, then:
0 The startup code for the context must call _exi t _i ni t exactly

once.
O Subsequent threads in the context must not call exit _init.

e Ifexit istoterminate only the thread that callsit, then each thread in
the context must call _exit _init.

* When two or more threads of a context share standard /O streams
(st di n, st dout , and st der r), the startup code for the context must
call _stdio_init exactly onceto initialize the context for those
threads. Any thread that hasits own standard streams must call

stdio_init.

5-13

1960 Processor Library Supplement

5-14

Each of these initialization functions calls a corresponding function to
allocate memory for the data. Since these functions, declared in the header
filer eent . h, depend on the execution environment, you must implement
versions appropriate to your execution environment. Thefile_create. c
contains sample source code for these functions in a single-thread (not
reentrant) implementation. The memory allocation functions are:

_exit_create allocates memory for the exit handler, either local
to the thread or global within the context.

_stdio_create alocates |/O buffers for the standard /O streams,
either local to the thread or global within the
context.

_thread_create allocates data space for the thread. This block of
memory is associated only with the calling
thread.

Each of these initialization functions operates as a specia-purpose mal | oc
function: the function takes an argument that specifies the amount of
memory requested and returns a pointer to ablock of memory at least that
big. The calling thread then owns that block of memory.

To finish initializing the standard streams, _st di o_i ni t also callsthe
function _st di o_st dopen. When called with an argument of 0, 1, or 2,
_stdi o_st dopen returns the file number associated with st di n, st dout ,
or st der r, respectively.

NOTE. Make sure replacement startup code calls the initialization
functions listed in Table 5-2. Thetable lists the functions, the librariesin
which each is located, and the action of the function. These low-level
functions make no additional calls which require attention. For alist of
additional functions and the calls each function makes, refer to
Appendix A.

Customizing the Libraries

Table 5-6

Memory Handling Functions for Reentrancy

Usage Name

initialization (These _exit_init

functions are in the

high-level libraries.) stdio init
_thread_init

memory allocation _exit_create

(These functions are in
the MON960 debug
monitor library.)

_stdio_create

_thread_create

memory access (These _exit_ptr
functions are in the

_stdio_ptr
MON960 debug
monitor library.) _thread_ptr
_tzset_ptr

synchronization (These _semaphore_delete

functions are in the
MON960 debug

. . semaphore_init
monitor library.) - P -

_semaphore_signal

_semaphore_wait

Operation
Initializes the exit handler for a
new thread in a context.

Initializes the standard I/O
streams for a new thread in a
context.

Initializes non-shared data for
a new thread in a context.

Allocates memory for the exit
handler.

Allocates standard stream
buffers associated with a given
thread.

Allocate for a given thread.
Returns a pointer to exit lists.

Returns pointers to the
standard streams.

Returns a pointer to the thread
data space.

Returns a pointer to the _tzset
structure containing time zone
information.

Frees resources associated
with a semaphore.

Initializes a semaphore for a
multi-tasking context.

Releases a memory location.

Queues requests for access to
a memory location.

5-15

1960 Processor Library Supplement

5-16

Creating Pointers to Data

All library functions that access thread or context data use one of the
following access functions to obtain a pointer to the data:

_errno_ptr returns a pointer to theer r no flag.

_exit_ptr returns a pointer to the exit lists.

_stdio_ptr returns a pointer to the standard streams.
_thread_ptr returns a pointer to the block of memory unique

to the calling thread.

To return the same pointersas_exi t _create, _stdi o_creat e, and
_thread_cr eat e for the current thread, the access functions you write
must use the information used by the execution environment to manage the
threads of execution. Thefile _cr eat e. ¢ contains sample source code for
these functions in a single-thread (not reentrant) implementation.

Theer r no macro contains a value indicating the cause of the most recent
error that has occurred in execution. The address of er r no isthe value
returned fromthe _errno_ptr and _t hr ead_cr eat e functions. Any
function that can set er r no must be able to write to that address.

Calling Semaphore Functions

To prevent different threads from performing conflicting updates, functions
that access context data must call the following semaphore functions:

_semaphore_del ete frees resources associated with a
semaphore.

_semaphore_init initializes a semaphore for a context.

_semaphore_wai t gueues requests for access to amemory
location.

_semaphor e_si gnal releases amemory location.

Customizing the Libraries

The _senaphor e_i ni t function initializes a semaphore. Library functions
later call _semaphor e_wai t before updating the associated data. All but
thefirst call to _semaphor e_wai t with agiven address must be queued for
access to that address until the function using the data releases the address
by calling _senmaphor e_si gnal . Depending on the environment, the
implementation of _semaphor e_i ni t need not be as comprehensive as the
complete interface between threads of a context. For example, if threads
can share 1/O streams but exi t terminates only the thread that callsit, then
_semaphor e_wai t needs to be used only to synchronize accessto a
stream, not to coordinate the exit lists.

If threads of a context share exit handlers and share open-stream lists but
do not share streams, you can implement the semaphore-queueing
functions as follows:

e If the address passed to _semaphor e_wai t iswithin the region
alocated by _exi t _cr eat e, then either the exit-handler list or the
open-filelist is currently being manipulated.

e If the address passed to _semaphor e_wai t isnot within the region
alocated by _exit _creat e, then astreamis currently being accessed.

Alternatively, you can implement _semaphor e_wai t sSimply so that it
disablesinterrupts and _semaphor e_si gnal so that it re-enables them.
However, this ssmpler implementation cannot work in an environment
where I/O isinterrupt-driven.

NOTE. The macro implementations of get c, get char, put ¢ and
put char do not invoke semaphore operations.

Thelibrary allocates voi d pointers associated with each 1/0O stream, with
the list of open streams, and with the list of exit handlers. Although the
library functions never use these pointers, the addresses of these pointers
are used as arguments to semaphore functions. Y ou can specify what a

5-17

1960 Processor Library Supplement

5-18

semaphore function storesin any pointer. For example, as an additional
context to support semaphores, your _senmaphore_i nit can alocatea
block of memory and reference the memory through a pointer.

Thefile _semaph. ¢ contains sample source code for these functionsin a
single-thread (not reentrant) implementation.

To provide reentrancy, you must replace the stub semaphore functionsin
the libraries with functions appropriate to your execution environment.

The stub semaphore functions are:

_semaphore_del ete
_semaphore_init
_semaphor e_si gnal
_senmaphore_wait

Primitive Function Descriptions

The low-level functionsin the libraries do not depend on a particular
operating system and are designed for single-thread (not reentrant)
execution. If your execution environment supports memory sharing
between concurrent processes, then you must replace the library of
single-thread functions with alibrary that supports reentrant execution.
Source file templates for some of the low-level functions are supplied with
thelibraries. The low-level templates are in these filesin
src/lib/libll/common:

_arg_ini.c isatty.c
c_init.c _map_len.c
_Create.c _senaph. c
c_termc _stdopen. c
_def_sig.c _tzset.c
getend.c

Customizing the Libraries 5

L)

This section lists function descriptions to help you implement replacements
for library functions. The header files listed with the function descriptions
provide the macros, function prototypes, and other symbols used by the
functions. Appendix A shows which high-level libraries call these
primitive functions.

NOTE. Afew low-level functions only call additional low-level functions.
Because they only call other functions, they need not be rewritten. A note
appearsin the discussion section of the functions which do not need to be
rewritten.

_arg_init

Sets up the argv and
argc arguments for the

main function.

struct { int argc; char ** argv} _arg init(void);

Header File None required

Discussion

Thisfunction sets up the ar gv and ar gc arguments for the mai n function.

Returns

The _arg_i ni t function returns the appropriate value for the first
parameter to mai n(ar gc) in go, and the appropriate value for the second
parameter to mai n(ar gv) ingl.

5-19

1960 Processor Library Supplement

Related Topic
_HL_init

_errno_ptr

Get a pointer to the
errno variable.

struct _stdio *_errno_ptr (void);

Header File reent.h

Discussion

This function provides a pointer to er r no variable for the current thread.

Returns

The address of the er r no variable for the current thread.

Related Topics

None.

_exit_create

Allocate space for exit
list.

struct _exit *_exit_create (unsigned nbyte);

nbyt e isthe amount of memory in bytes requested.

Header File reent.h

5-20

Customizing the Libraries

Discussion

Thisfunction alocates nbyt e bytes of memory, associates the allocated
space with the thread of execution from which it was called, and returns a
pointer to the allocated space. Any subsequent call to the function

_exi t_ptr from the same thread must return the same pointer.

If exi t terminates al threadsin a context, the startup code must call
_exi t_creat e exactly onceand _exi t _cr eat e need not associate the
memory it allocates with a particular thread. If exi t terminates only the
calling thread, _exi t _cr eat e must be called for each thread asitis
established.

NOTE. Thelibrary functionsrequirethe _exi t structure asdeclaredin
the header filer eent . h.

Returns

The _exi t _creat e function returns a pointer to an area of memory at least
nbyt e byteslong.

Related Topics
exit, _exit
_exit_init
_exit_ptr

_exit_init
Initialize exit handler.

int _exit_init (void):

Header File reent.h

521

1960 Processor Library Supplement

5-22

Discussion

Thisfunction calls _exi t _cr eat e to allocate space for the _exi t structure
and initializes _exi t asfollows:

e setsthe open-filelist pointer to nul |
» setsthe exit-handler count to 0

Y ou need not rewrite this high-level function.

NOTE. Thelibrary functionsrequirethe _exit structure asdeclaredin
the header filer eent . h.

Returns

The _exit _init function returns no value.

Related Topics

exit, _exit
_exit_create
_exit_ptr

_exit_ptr
Get a pointer to the exit

handler list.

struct _exit *_exit_ptr (void);

Header File reent.h

Customizing the Libraries

Discussion

This function returns the same pointer as_exi t _cr eat e if called from the
same thread. This pointer points to the memory space alocated by
_exit_create. Ifexit terminatesal threadsin acontext, exit ptr
need not return a unique pointer for each thread.

NOTE. Thelibrary functionsrequirethe _exit structure asdeclaredin
the header filer eent . h.

Returns

The _exi t _ptr function must return the same pointer as did
_exi t_creat e when called by thisthread.

Related Topics

exit, exit
_exit_create
_exit_init

_HL_init

Perform high-level
library initializations.

void _HL_init (void);

Header File None required

5-23

1960 Processor Library Supplement

Discussion

Thisfunction, included in the architecture-specific | i bcxx. a high-level
libraries, performs al necessary high-level library initializations. These
initializations ensure correct operation of al library functions, including
any /O functionssuch asprintf. The_HL_i ni t function calsthe
_exit_init,stdio_init,and _thread_init functions.

Y ou need not rewrite this high-level function.

Returns

The HL_i nit function returns no value.

Related Topics

_arg_init
_exit_init
_LL_init
_stdio_init
_thread_init

_LL_init

Perform low-level
library initializations.

void _LL_init (void);

Header File None required

5-24

Customizing the Libraries

Discussion

Thisfunction, included in the board-specific low-level libraries, performs
all necessary chip and board initialization functions. For example, in
addition to initializing the 1960 data structures, the startup function must set
mem _end to point to the end of available memory used by sbr k.

Returns

The LL_init function returns no value.

Related Topics

brk, sbrk
_HL_init

_semaphore_delete
Delete semaphores.

void _semaphore_delete (void **);

Header File reent.h

Discussion

This function frees any resources attached to the semaphore associated
with the pointer argument.

Returns

The _semaphor e_del et e function returns no value.

5-25

1960 Processor Library Supplement

Related Topics

_semaphore_init
_semaphor e_si gnal
_senmaphore_wait

_semaphore_init
Initialize semaphore.

void _semaphore_init (void **);

Header File reent.h

Discussion

This function creates and initializes a unigue semaphore associated with
the pointer argument. The high-level library calls _semaphore_init
before using any other semaphore operation. Use semaphore operationsto
control updates to context data.

Returns

The _semaphore_i nit function returns no value.

Related Topics

_HL_init
_semaphore_del ete
_semaphor e_si gnal
_semaphore_wait

_semaphore_signal
Release a semaphore.

5-26

Customizing the Libraries

void _semaphore_signal (void **);

Header File reent.h

Discussion

This function rel eases the semaphore associated with the pointer argument
as flow of execution leaves a critical section of the code or as an operation
finishes using a critical memory location. Releasing the semaphore allows
awaiting thread to enter the critical section of the code or access the
critical memory location.

NOTE. The macro implementations of get ¢, get char , put ¢, and
put char do not use semaphore functions.

Returns

The _semaphor e_si gnal function returns no value.

Related Topics

_semaphore_del ete
_semaphore_init
_semaphore_wait

5-27

1960 Processor Library Supplement

5-28

_semaphore_wait
Enter a critical region.

void _semaphore_wait (void **);

Header File reent.h

Discussion

This function acquires the semaphore associated with the pointer argument
if the semaphore isfree. Otherwise, _semaphor e_wai t suspends the
calling thread until _semaphor e_si gnal releasesthe semaphore. If more
than one thread can call _semaphor e_wai t with the same pointer before
that semaphore becomes free, you must implement some form of
thread-queueing mechanism.

NOTE. The macro implementations of get ¢, get char , put ¢, and
put char do not use semaphore functions.

Returns

The _semaphore_wait function returns no value.

Related Topics

_semaphore_del ete
_semaphore_init
_semaphor e_si gnal

Customizing the Libraries

_stdio_create
Allocate space for

stream data.

struct _stdio *_stdio_create (unsigned nbyte);

nbyt e is the amount of memory in bytesto be allocated.
Header File reent.h
Discussion

Thisfunction alocates nbyt e bytes of memory, associates the all ocated
space with the calling thread of execution, and returns a pointer to the
space. A subsequent call to the function _st di o_pt r from the same
thread must return the same pointer. If standard streams are shared
between threads, the startup code must call _st di o_cr eat e exactly once
and _st di o_cr eat e need not associate the memory it allocates with a
particular thread.

NOTE. Thelibrary functions require the _st di o structure asdeclared in
the header filer eent . h.

Thisfunctioniscaled by _st di o_i nit. Notealso that this function can
also perform other thread or context initialization required by the target
environment.

Returns

The _st di o_cr eat e function returns a pointer to an area of memory at
least nbyt e bytes long.

5-29

1960 Processor Library Supplement

5-30

Related Topics

_stdio_init
_stdio_ptr
_stdi o_stdopen

_stdio_init
Initializes standard

int _stdio_init (void)

Header File reent.h

Discussion

This function initializes the open-stream list with the following standard
streams:

stdin isthe standard input stream.
st dout isthe standard output stream.
stderr isthe standard error stream.

Y ou need not rewrite this high-level function.

Returns

The _stdi o_i nit function returns no value.

Related Topics

_HL_init
_stdio_create
_stdio_ptr
_stdio_stdopen

Customizing the Libraries

_stdio_ptr

Get a set of pointersto
the standard streams.

struct _stdio *_stdio_ptr (void);

Header File reent.h

Discussion

This function provides a pointer to the data structure representing the
standard streams for the calling thread. |f two or more threads share
standard streams, _st di o_pt r need not return a unique pointer for each
thread.

NOTE. Thelibrary functions require the _st di o structure asdeclared in
the header filer eent . h.

Returns

The _st di o_pt r function must return the same pointer as_st di o_create
when called by this thread.

Related Topics
_stdio_create

_stdio_init
_stdio_stdopen

5-31

1960 Processor Library Supplement

_stdio_stdopen
Open a standard stream.

int _stdio_stdopen (int str);

str indicates which stream to open.
Header File reent.h
Discussion

This function opens the standard stream and returns the associated file
number. The argument st r selects the stream to be opened, as follows:

0 selectsst di n.

1 selects st dout .

2 selectsst derr.
Returns

The _st di o_st dopen returns the file number for the selected standard
stream.

Related Topics
_stdio_create

_stdio_init
_stdio_ptr

5-32

Customizing the Libraries

_thread_create
Allocate data space for

athread.

struct _thread *_thread_create (unsigned nbyte);

Header File reent.h

Discussion

Thisfunction alocates nbyt e bytes of memory, uniquely associates the
allocated space with the current thread of execution, and returns a pointer
to the allocated space. A subsequent call to the function _t hread_ptr
from the same thread must return the same pointer.

Thisfunctioniscaledby thread_init.

NOTE. Thelibrary functionsrequirethe _t hr ead structure as declared
in the header files.

Returns
The _t hread_cr eat e function returns a pointer to an area of memory
uniquely associated with the calling thread of at least nbyt e byteslong.

Related Topics

_thread_init
_thread_ptr

5-33

1960 Processor Library Supplement

_thread _init
Initialize thread data

space.

int _thread_init (void);

Header File reent.h

Discussion

Thisfunction calls _t hr ead_cr eat e to allocate space for the _t hr ead
structure and initializes _t hr ead asfollows:

e setserrnoto0

e satsthe random number seed to 1

NOTE. Thelibrary functionsrequirethe _t hr ead structure as declared
in the header filer eent . h.

Y ou need not rewrite this high-level function.

Returns

The _thread_i ni t function returns no value.

Related Topics

_HL_init
_thread _create
_thread_ptr

Customizing the Libraries

_thread_ptr

Get a pointer to thread

data space.

struct _thread *_thread_ptr (void);

Header File reent.h

Discussion

This function returns a pointer to the data structure for the calling thread.

NOTE. Thelibrary functionsrequirethe _t hr ead structure as declared
in the header filer eent . h.

Returns
The _t hread_pt r function must return the same pointer as
_thread_creat e when called by thisthread.

Related Topics

_thread _create
_thread_init

5-35

1960 Processor Library Supplement

5-36

_t ZS et_p tr
Get time zone data.

struct _tzset *_tzset_ptr (void);

Header File reent.h,tine.h

Discussion

The structure _t zset isdeclared as follows:

struct _tzset

{
char *_tznane[2];
long _timezone;
int _daylight;

}

Theti mezone, dayl i ght, and t zname macros and thel ocal ti ne,
strftime,ctime,andnktinme functionscall tzset ptr toobtain
information about the effectivetime zone. The _t zset _pt r function uses
the structure _t zset that contains members corresponding tot i mezone,
dayl i ght , and t znane.

If the effectivet i nezone isnot available in your execution environment,
you can implement _t zset _pt r with afunction that returns a NULL
pointer.

Returns

The _tzset _ptr function returns a pointer to the _t zset structure
containing time zone information. If the time zone information is not
available in the execution environment, _t zset _pt r returnsthe NULL
pointer value.

Customizing the Libraries

Related Topics

tinme

time. h (Chapter 3)

Retargeting the Libraries

To rewrite the library functions for a new execution environment, follow
these steps:

1

3.
4.
5.

Determine what environment-dependent library functions your
application uses, both directly by callsin your source text and
indirectly by calls from other library functions. Some of the
environment-independent library functions depend on startup code to
initialize data structures. The startup code in turn depends on
operating system services and some environment-dependent functions.
In restricted environments, some library functions are not useful or are
not easy to implement. Y ou need not implement functions that your
application does not use.

Use the function descriptions in this manual and in C: A Reference
Manual, to implement the new library functions.

Compile or assemble the new functions.

Create one or more new libraries with the new functions.

Link the new libraries to your application.

Function Interdependencies

See Table A-1 in the appendix for alist of functions that are directly or
indirectly environment-dependent.

5-37

1960 Processor Library Supplement

5-38

System Call Descriptions

This section describes the system calls for guidance in retargeting the
libraries. These functions are not contained in the libraries of portable
functions. The libraries provide the necessary functions for the Intel
MON960 debug monitor-supported target environments. To use the
libraries in a custom execution environment, you must provide system call
functions appropriate for that environment.

close

Close afile.
POSX6.3.1

int close (int filedes);

filedes is an open file descriptor.
Header File std. h
Discussion

Use this function to close the file associated with the file descriptor
fil edes. Thefiledescriptor isthen available for reuse.
Returns

On successful completion, cl ose returns 0; otherwise, cl ose returns - 1.

Related Topics

creat
fileno (Chapter 4)
open

Customizing the Libraries

creat

Create a new file or
rewrite an existing one.

int creat (char *path, int npde);

pat h isavalid pathname for afilein the execution
environment.
node is the permission setting which applies only to a

newly created file.

Header File std. h

Discussion

Use this function to create anew file, or to open and truncate an existing
file, for writing. If pat h does not exist, cr eat creates anew file with the
given mode settings then opens the file for writing; otherwise, cr eat
truncates the file length to zero before opening the file for writing.

The permission setting, indicated by nmode, only applies to a newly created
file. creat setsthe settings after closing the new file for the first time.

Y ou must specify one of the following access modes, as defined in the
fcntl . h header file:

O_RDONLY Open for reading only.

O _WRONLY Open for writing only.
O_RDVWR Open for reading and writing.
Returns

Upon successful completion, cr eat sets the file pointer to the beginning of
the file, and returns the new file number. Otherwise, creat returns-1 and
setser rno to EACCES, EMFI LE, Or ENCENT.

5-39

1960 Processor Library Supplement

Related Topics

cl ose
fileno (Chapter 4)
open

_exit

Terminate a process.

POSX3.2.2

void _exit (int status);

status isthe value to be returned to the execution
environment when the process terminates.

Header File std. h

Discussion

Use this function to terminate the calling process and to close dl files that
areopeninthe calling process. Thefunctionexit calls_exit to
terminate execution of a program without returning through al the
currently active calling functions.

Theexi t function performs cleanup actions before the process exits. The
_exi t function circumvents any further cleanup.

The st at us value must be recognizable to the operating system or
execution environment. By convention, a non-zero value indicates normal
program termination.

Returns

The _exi t function never returns to the program.

Customizing the Libraries

Related Topics
_exit_create
_exit_init
_exit_ptr

loctl

Determines whether the
/O streamis a terminal
device.

ioctl (int filnum int com int arg);

filnum is afile number obtained from acr eat or open
system call.

com isthefunctioni oct | isto perform.

arg isan argument specific to comif needed.

Header File ioctl.h

Discussion

Use this function to determine whether or not an I/O stream isaterminal.
Thelibrary only uses the first parameter, fi / num 1If you are rewriting
your own low-level library, you can ignore the comand ar g parameters.
These two parameters exist for historical reasons and compatibility with
UNIX.

Returns

Upon successful completion, i oct | returns avalue greater than or equal to
0 if the I/O stream came from aterminal device. If not, i oct| returnsa
value lessthan 0.

5-41

1960 Processor Library Supplement

5-42

Related Topic

i satty
isatty
I dentify a terminal
device.
POSX4.7.2

int isatty (int filnum;

filnum is afile number obtained from acr eat or open
system call.

Header File isatty.h

Discussion

Thei sat t y function identifies whether the file associated with fi 1 numis
aterminal device.

Returns

Upon successful completion, i satty returnsai if fi / numis associated
with aterminal device, and 0 otherwise. If fi/ numisaninvalidfile
number, i sat ty returns0 and setSer r no to EBADF.

Related Topics

creat
open
i octl

Customizing the Libraries

Iseek

Move the read/write

file pointer.
POS X 6.5.3

long | seek (int filnum long int offset, int whence);

filnum is afile number obtained from acr eat or open
system call.

of fset is the number of bytesto increment thefile
pointer from the starting position.

whence isthe starting position of the file pointer.

Header File std. h

Discussion

Use this function to change the file pointer associated with fi | numusing
the following procedure:
1. Setthefile pointer to the beginning of thefile, to the end of thefile, or
leave the file pointer unchanged, according to whence, asfollows:
0 set the file pointer to the beginning of the file
1 leave the file pointer at the current location

2 set the file pointer to the end of the file

2. Addthevaueof of fset tothefile pointer. Thevaue of of fset can
be any positive, zero, or negative integer.

Returns

On successful completion, | seek returns the resulting offset in bytes from
the beginning of the file; otherwise, | seek returns- 1 and setserr no to
EBADF. Anl seek operation on anon-disk filereturns- 1.

1960 Processor Library Supplement

_map_length

Smulate file-to-stream

mapping.

int _map_length (int filnum const void *buf,
size_t nbyte);

fil num isthe file number.
buf isthe input buffer for the stream.
nbyt e isthe position of a character in the input buffer

relative to the beginning of the buffer.

Header File std. h

Discussion

Use this function to compensate for the mapping between charactersin
streamsand files. Theftel | function calls_map_I engt h to compute one
character’s position in the stream buffer relative to its position in the file
format supported by the execution environment. These positions can be
different if, for instance, a carriage-return/newline pair istrandated to a
newline character (and vice-versa) on reading and writing ASCI|
characters. Theftel | function obtains the approximate file position from
| seek. Your implementation of _nmap_l engt h must adjust thisfile
position to agree with the number of bytes actually in the buffer, based on
how input and output strings are processed in your application.

Since mapping is normally one-to-one for streams opened in binary mode,
your implementation of _map_I engt h can use i I numto obtain
information about the file mode.

Returns

The _map_l engt h function returns the number of characters needed to
represent the nbyt es of datain the buffer buf.

Customizing the Libraries 5

open

Open afileand

set mode.
POSX5.3.1

int open (const char *path, int oflag [, node_t npde]);
pat h points to the pathname of the file to be opened.

of I ag indicates how the file is to be opened for reading
and/or writing.

node is the access mode to be set for anew file. This
argument is legal, and required, only when of I ag
includes O_CREAT, described below.

Header File std. h,fcentl. h,types. h

Discussion

Use open to get afile descriptor which is associated with the file identified
by pat h. The access modes and status flags of the open file descriptor are
set according to of I ag.

For of I ag, you must specify one of the following access modes, defined in
fentl . h:

O_RDONLY Open for reading only.
O _WRONLY Open for writing only.
O_RDVR Open for reading and writing.

See the discussion of thef cnt | . h header filein Chapter 2 for definition of
the POSIX file access mode macros.

5-45

1960 Processor Library Supplement

In addition to the required access mode, you can a so use one or more of
the following file status flagsin of I ag:

O_APPEND Perform all writes at the end of thefile.

O_CREAT Creates anew file, unless you specify O EXCL
and the file already exists.

O_EXCL Used only with O_CREAT, returns an error value
instead of opening any existing file.

O _TRUNC Truncates any existing file named pat hto 0
bytes.

To use more than one status flag, you must add (+) or bitwise inclusive-OR
(1) them together in the call to open.

Specify the third argument (mode_t node) only if of I ag includes

O _CREAT. Thisargument isrequired with O CREAT, but has no affect if the
fileidentified by pat h aready exists (see the discussion of O_EXCL). The
node argument sets the file permission bits for thefile.

In addition to the POSI X file status flags, the following status flags are
supported:

O_BI NARY Open in binary mode.
O TEXT Open in text mode.

These modes are mutually exclusive; do not OR them.

Returns

On successful completion, open returns the lowest numbered unused file
descriptor. Thefile descriptor is used to reference the filein calls to the
ioctl,isatty,close, | seek,read,andw it e functions. If an error
occurs, open returns- 1 and setser r no to EACCES, EEXI ST, EMFI LE, or
ENCENT.

Customizing the Libraries

Related Topics

cl ose | seek
creat r ead
fcntl.h (Chapter 3) stat.h (Chapter 3)
f st at wite
i satty
read
Read from afile.
POSX6.4.1

int read (int filnum char *buf, unsigned int nbyte);

filnum is afile number obtained from acr eat or open
system call.

buf istheinput buffer.

nbyt e isthe number of bytesto be read.

Header File std. h

Discussion

User ead to read nbyt e bytes from the file associated with 7 i | numinto
the buffer pointed to by buf.

Reading proceeds from the file position indicated by the file offset
associated with i 1 num Ther ead function increments the file offset by
the number of byteswritten. If the file position, indicated before the read
operation begins, is after the end of file, no bytes are read.

For example, if the text file representation of the operating environment
does not exactly match the C stream representation (e.g., for newlines or
tabs), ther ead function maps from the file representation to the stream
representation for files opened in text mode.

5-47

1960 Processor Library Supplement

Returns

Upon successful completion, r ead returns the number of bytes actually
read and placed in the buffer. This number can be lessthan nbyt e if the
fileis associated with a communication line or if the number of bytes left
inthefileislessthan nbyt e bytes. Ther ead function returns zero on
reaching end-of-file.

If the read operation does not compl ete successfully, r ead returns- 1 and
setserrno to EBADF.

sbrk

Change data segment
space allocation.

voi d *sbrk (unsigned incr);

incr istheincrementa change in number of bytesto
the size of the data segment.

Header File std. h

Discussion

Use sbr k to dynamically change the amount of space allocated for the data
segment of the calling process. This function resets the break value of the
process and allocates the requested space. The break value is the address
of thefirst location beyond the end of the data segment. The size of the
data segment increases as the break value increases.

Thesbr k function adds i ncr bytes to the break value and changes the
allocated space accordingly. Any newly allocated space is not initialized.

Themal | oc function calls shbr k when not enough memory is availablein
the heap to satisfy an alocation request. Memory allocated with sbr k
cannot be freed or reallocated withfree or real | oc.

Customizing the Libraries

If the specified i ncr increases the size of the data segment above the
system-imposed maximum, sbr k fails without changing the allocated
space.

Returns

The sbrk function must return a quadword-aligned pointer. Upon
successful completion, sbr k returns the address of the acquired memory
areg, that is, the old break pointer value. If the allocation request cannot be
satisfied, either function returns- 1.

Related Topic
mal | oc (C: A Reference Manual)

sig*

Provide signal handling.

void _sig abrt_dfl(void); /* abort */
void _sig alloc _dfl(void); /* allocation error */

void _sig fpe_dfl(void); /* floating-point exception */
void _sig free dfl(void); /* bad free pointer */

void _sig ill_dfl(void); /* illegal instruction */

void _sig int_dfl(void); /* interrupt */

void _sig read_dfl(void); /* read error */

void _sig segv_dfl(void); /* segment violation */

void _sig termdfl(void); /* software termination */
void sig wite dfl(void); /* wite error */

void _sig null(void); /* an unmasked signal occurred */
Header File signal . h

5-49

1960 Processor Library Supplement

Discussion

Ther ai se function uses each function, described above, as the default
signal handler for the corresponding signal. Each signal handler takes the
signal number of the raised signal asits argument.

Raising an ignored signal (i.e., one which isset to SI G_I| GN) resultsin a
cal to_si g_nul | which takes no action.

Related Topics

rai se
_HL_init
signal . h

Stat

Obtain file status.
POSX5.6.2

int stat (char path, struct stat *buf);

pat h isapathnameto afile. All directoriesin pat h
must be searchable.

buf isapointer to astructure of typest at , into
which information about the file is placed.

Header File stat.h

5-50

Customizing the Libraries

Discussion

Usest at to get the status of the file identified by pat h and to store the
information in the st at structure pointed to by buf . For example, the
following program tests the status of afile:

#i ncl ude <stdio. h>

#i nclude <tine. h>
#i ncl ude <stat. h>

char filenane[40];
mai n()
{

char *date;
int ret;
struct stat buf;

strcpy(filenane, "testfile");

if(ret=stat(filenane, &uf)){
fprintf(stderr,"stat failure error %d\n", ret);
abort();

}

dat e=ascti me(l ocal ti me(&buf.st_ctine));
printf("\n %", date);

printf("\n %l node", buf.st_node);
printf("\n %l size", buf.st_size);

}

The st at function stores the status information in the st at structure to
which buf points. Useful members of the st at structure are:

st _nmode isabit mask in which:

* Thes_ | FCHR bit indicates that thefile
escriptor is associated with a character
device.

e Thes_|I FREGhit indicatesthat it is associated
with anormal file.

e Thefile permission bits indicate the modein
which thefileis currently open.

5-51

1960 Processor Library Supplement

5-52

st _si ze indicates the size of afile. If the file descriptor
refersto a character device, such as a printer or a
console screen, thisvalueis 1.

st_ntime contains the time and date of the last modification
of thefile. Usethetime functionsto interpret
thisvalue.

st_atime contains the time and date of the last time thefile

was accessed. Use the time functions, declared
intheti me. h header file, to interpret thisvalue.

st_ctime contains the time and date of when the file was
created. Usethetime functionsto interpret this
value.

Chapter 3 lists status macros defined in the st at . h header file for use with
the st at function.
Returns

On successful completion, st at returns 0; otherwise, st at returns- 1 and
setser r no to EBADF.

time
Get the system time.

time_t time (tine_t *tl/oc);
tloc points to a variable containing the system time.

Header File tinme.h

Customizing the Libraries 5

Discussion

Thet i ne function returns the current time, measured in seconds since
00:00:00 Greenwich Mean Time (GMT), January 1, 1970.

If the value of t I oc is non-zero, the return value is stored in the location to
which t I oc paints.

Returns

Upon successful completion, t i me returns the current system time.

Related Topics

tine.h (Chapter 3)
tzset (Chapter 4)
_tzset_ptr

unlink

Delete a filename.

POSX55.1

int unlink(char * filenane);

filename is the pathname of the file to be deleted.
Header File std. h
Discussion

Use this function to delete the file specified by filename. This function
performs the same task as ther enove function, described in C: A
Reference Manual.

5-53

1960 Processor Library Supplement

Returns

On successful completion, unl i nk returns zero; otherwise, unl i nk returns
anon-zero value.

write

Writeto afile.
POS X 6.4.2

int wite (int filedes, const void *buf, unsigned nbyte);

filedes is an open file descriptor.

buf points to the buffer containing the bytes to be
written to thefile.

nbyt e isthe number of bytesto be written to the file.

Header File std. h

Discussion

Usewr it e towrite nbyt es bytes from the buffer pointed to by buf to the
fileidentified by the open file descriptor 7/ / edes.

Writing proceeds from the file position indicated by the file offset
associated with i I edes. Thewr i t e function increments the file offset by
the number of byteswritten. If the result is greater than the length of the
file, thefileis extended.

The O_APPEND flag used with cr eat or open causes the offset to be set to
the end of the file before writing begins.

If the text file representation of the operating environment does not exactly
match the C stream representation, (e.g., for newlines or tabs), thewr i t e
function maps from the stream representation to the file representation for
files opened in the text mode.

Customizing the Libraries

Returns

On successful completion, wri t e returns the number of bytes written to the
file associated with fi / edes. Thisnumber is aways less than or equal to
nbyte. If wite returnsanumber lessthan nbyt e, an error occurred but
some bytes were written. If wri t e isunable to process any charactersit
returns- 1, and setser r no to EBADF or ENOSPC.

Related Topics

creat
open

stat. h (Chapter 3)

5-55

Accelerated Floating-point Library

This chapter describes the accelerated floating-point library called “the
AFP library” or "libh.” (See Chapter 2 for a list of the actual library
archive file names.)

Floating-point Library Definition

The accelerated floating-point library is a set of high speed assembly
language subroutines that enable the 1960 KA, SA, Cx, Jx, HX, Rx or VH
processors to perform floating-point operations. These processors do not
support on-chip floating-point operations.

This library is used with the gcc960 and ic960 compilation system. When
compiling for the processors without on-chip floating-point support, the
compiler translates C language floating-point statements into assembly
language instructions containing calls to libh subroutines.

The floating-point library is packaged as a collection of common object file
format (ELF) subroutines. Several versions of the library are provided, as
described in Chapter 2 of this manual.

To use a floating-point library, link your application with it. It should be
the last library specified in the link sequence. Also, include the

af pf aul t . h header file, which defines the interface to the stub routines
provided for fault-handling. For more information on linking, sed 6@
Processor Software Utilities User’s Guide.

Assembly language programmers can place direct calls to the libh
subroutines in their source text. The libh subroutines can also be called
from C language source, but little is gained because the compiler optimizes
C language floating-point code very efficiently. All examples in this

6-1

1960 Processor Library Supplement

6-2

manual show the subroutine names beginning with three underscore
characters, as they appear in assembly language source. Use only two
underscore characters if you call libh subroutines directly from C language
source. The following examples highlight this difference:

__addsf3 for use in assembly language source.
__addsf3 for use in C language source.

To effectively use the floating-point library, you must understand the
floating-point features of the KB processor, many of which are emulated in
floating-point library subroutines.

Conventions

In this chapter, the following notation is used:

dst the destination operand or return value of a
subroutine.

srcl the first source operand or parameter of a
subroutine.

src2 the second source operand or parameter of a
subroutine.

The following definitions are a so used throughout this manual:
integer atwo's complement 32-bit integer value.

unsigned integer an unsigned 32-bit integer value.

Accelerated Floating-point Library

Using the Subroutines

This section explains the use of the floating-point subroutinesin the
accelerated floating-point library, and describes the supported

floating-point formats, parameter passing, return values, and fault handling.

It includes a sample C program and the assembly language text generated
by the compiler.

The libh subroutines must be invoked with thecal I or cal | x instructions.
They cannot be invoked with the branch-and-link (bal) or
branch-and-link-extended (bal x) instructions.

Floating-point Formats Supported

The floating-point library supports the |EEE 754 single-precision and
double-precision floating-point formats. The floating-point library aso
meets | EEE 754 extended-precision criteria for double-extended formats.
The implemented operations fully meet the requirements of the |IEEE 754
Floating-point Standard for accuracy of results and handling of special
representations. In accordance with the IEEE 754 standard, al the results
of libh operations are equivalent to an infinitely precise value correctly
rounded to the result format. The floating-point library handles special
representations such as NaNs, signed zeros and signed infinitiesin
accordance with the |EEE 754 standard.

The floating-point library treats cases that are undefined or implementation
specific in the IEEE 754 standard in the same fashion as the 1960 KB
processor, with one exception. While the KB processor can return a NaN
value with the sign bit either cleared or set, libh always returns a NaN
value with the sign bit set. Therefore, if your code must be portable across
all thei960 processors, do not perform cal culations that depend on the sign
bit of NaN values. This practice is recommended by the |EEE 754
standard.

For detailed information on these floating-point formats and standards,
see the IEEE Standard for Binary Floating-point Arithmetic and the
1960 KA/KB Microprocessor Programmer’s Reference Manual.

6-3

1960 Processor Library Supplement

6-4

Table 6-1

Parameter and Return Value Implementation

Parameter passing and operand configuration follow the compiler calling
sequence. See your compiler user's guide for details.

The libh subroutines use source operands for parameters and destination
operands for return values. The subroutines use only the global registers
g0 through g6 for operands. They do not use literals or floating-point
temporary registers. Table 6-1 indicates how libh uses specific global
registersfor srci1, src2 and dst depending on the numeric type of the
value.

Global Register Usage

Numeric Type srcl src2 dst
extended g0-g2 g4-g6 g0-g2
double g0-g1 g2-g3 g0-g1
other g0 gl g0

For example, the ___addt f 3 subroutine uses the register triplet go- g2 for
srcl, g4- g6 for src2 and go- g2 for dst .

The subroutine ___t runcdf sf usesthe register pair go- g1 for src1 and
register go for dst .

Floating-point Arithmetic Control Usage

The floating-point library uses the arithmetic control floating-point bitsin
the same fashion as the KB processor. See thei960 Processor Assembler
User’s Guide for information on the arithmetic control register.

The floating-point library uses the floating-point bits of the on-chip
arithmetic control register for the KA processor. The CA processor does
not have floating-point bits, so libh emulates them. If you are using libh

Accelerated Floating-point Library

with the CA processor, you must allocate aword of static memory for the
emulation of the floating-point bits. To do this, include the following
statement in your linker configuration file:

SFP_AC:

{
fpem CA_AC =.;
} > isram

The compiler library subroutine f p_set env writesto the floating-point
arithmetic control bits. The compiler library subroutinef p_get env reads
the floating-point arithmetic control bits. These subroutines write to and
read from the on-chip arithmetic control floating-point bits for the KA
processor. They write to and read from the emulated arithmetic control
floating-point bits for the CA processor. Use these subroutines instead of
the modac instruction to access the arithmetic control floating-point bits if
you want your code to be portable across all 1960 processors.

Fault Handling

The floating-point library triggers the same faults, under the same
circumstances, as the KB processor. Aswith the KB processor, al faults
can be masked except for the reserved-encoding fault. With single- and
double-precision floating-point values, setting the normalizing-mode bit of
the floating-point arithmetic controls allows denormalized values to be
used as operands for arithmetic operations, thus preventing the occurrence
of reserved-encoding faullts.

The floating-point library handles masked and unmasked integer-overflow
faults and masked floating-point faultsin the same fashion as the KB
processor. Depending on the processor, libh uses either the real or
emulated floating-point-fault bits of the arithmetic controls. However, libh
handles unmasked floating-point faults differently as explained later in this
chapter.

6-5

1960 Processor Library Supplement

Example 6-1

Code Example

Example 6-2 shows the assembly language text generated by the compiler
from the C source in Example 6-1. The assembly language contains calls
tothe divdf3and ___ fixdfsi subroutines.

Sample C Program

#i ncl ude <stdio. h>

mai n()
{
int i;
doubl e di, d2,d3;
d2 = 12.0;
d3 = 5.0;
dl = d2/d3;
i = di;

printf("i=%, di=%\n",i,dl);

Line 4 of Example 6-2 on the next page shows the compiler invocation
command for the program. Line 16 containsthe call tothe ___di vdf 3
subroutine. Line 18 containsthecall tothe fi xdf si subroutine.

Accelerated Floating-point Library

Example 6-2 Assembly Language Generated From Sample C Program

1. # FE version 1 1.22

2. # BE version : X5.0.317

3. # Time of conpilation : Thu May 1 15:30:27 1995
4. # Command |ine :1c960 -S -0L - AKA afp_ex.c

5. .ident "ic960 X5.0.317 host", 0x2acbh250d

6. .file "af p_ex.c"

7. .text

8. .align 4

9. .globl _main

10. _main:

11. .def _main; .val _main; .scl 2; .type 0x44; .endef

12. |1dl C1,r12

13. Idl C2,94

14. novl r12,90
15. novl g4,92

16. callj __divdf3
17. nmovl g0,r12
18. callj __fixdfs
19. nmov g0,r4

20. lda .3,9g0

21. nov r4,01

22. nmovl rl12,92
23. b _printf

24. #Function Statistics
25. # Bl ocks 1

26. # Instructions 12

27. # Instructions/Block 12

28. # Loads 2

29. # Stores 0

23. # Calls 0

30. # Registers used r4 r12 r13 g0 g1 g2 g3 g4 g5
31. #

32. . def main; .val .; .scl -1; .endef

continued [

6-7

1960 Processor Library Supplement

Example 6-2 Assembly Language Generated From Sample C Program
(continued)

33. align 4

34. .C3:

35. .asciz "i=%, di1=%\n"
36. alig 3

37. . C2:

38. .word 0x00000000, 0x40140000
39. .align 3

40. .C1

41. .word 0x00000000, 0x40280000

Subroutine Reference

This section contains an entry for each function type. The entries are
ordered aphabetically with the wildcard characters ? or * replacing the
variable portion of the function name. Each entry contains a discussion
that describes how each subroutine uses operands, arithmetic controls and
faults. Where necessary, the discussion describes the relationships
between the source and destination operands.

add?f3
Addition
____addsf3
___adddf 3
___addtf3

Accelerated Floating-point Library

Discussion

These subroutines operate as follows:

___addsf3 adds two single-precision floating-point values.

___adddf3 adds two double-precision floating-point values.

___addtf3 adds two extended-precision floating-point
values.

The ___add?f 3 subroutines perform addition as:

srcl + src2 -> dst

Table 6-2 shows how the___add?f 3 subroutines use global registers.

Table 6-2 ____add?f3 Global Register Usage
Subroutine srcl src2 dst
___addsf3 g0(single) gl(single) g0(single)
____adddf3 g0-g1(double) g2-g3(double) g0-g1(double)
____addtf3 g0-g2(extended) g4-g6(extended) g0-g2(extended)
Table 6-3 shows how the __add?f 3 subroutines use the Arithmetic
Control register.

Table 6-3 ____add?f3 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-4 shows possible faultsfor the___add?f 3 subroutines.

6-9

1960 Processor Library Supplement

Table 6-4 ____add?f3 Possible Faults

Fault

Floating reserved encoding

Floating underflow

Floating overflow
Floating invalid operation

Floating inexact

Cause

One or both operands denormalized and the
normalizing mode bit in the arithmetic controls is
not set. One or both operands are unnormals.

Normalized result is too small for destination
format.

Result is too large for destination format.
Operands are infinities with different signs. One
or more operands is an SNaN value.

Result cannot be represented exactly in
destination format. Floating overflow occurred
and the overflow exception was masked.

ceil?f2
Round up to integral
value
___ceilsf2
___ceildf2
__ceiltf2
Discussion

These subroutines operate as follows:

__ceilsf2
__ceildf2
__ceiltf2

Single-precision round up to integral value.
Double-precision round up to integral value.

Extended-precision round up to integral value.

The ___cei | ?f 2 subroutines convert an operand to the smallest integral
floating-point value not lessthan sr ¢ as:

6-10

Accelerated Floating-point Library

src -> dst

Table 6-5 shows how the ___cei | ?f 2 subroutines use global registers.

Table 6-5 ___ceil?f2 Global Register Usage
Subroutine src dst
___ceilsf2 gO(single) gO(single)
___ceildf2 g0-g1(double) g0-g1(double)
___ceiltf2 g0-g2(extended) g0-g2(extended)

Table 6-6 showshow the __cei | ?f 2 subroutines use the Arithmetic
Control register.

Table 6-6 ceil?f2 Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks

Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-7 shows possible faultsfor the___cei | ?f 2 subroutines.

Table 6-7 ___ceil?f2 Possible Faults

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating invalid operation Operand is an SNaN value.
Floating inexact Operand is not an integral value.

6-11

1960 Processor Library Supplement

floor?f2

Round down to integral

value
_ floorsf2
_ floordf2
_ floortf2
Discussion
These subroutines operate as follows:
__floorsf2 Single-precision round down to integral value.
__floordf2 Double-precision round down to integral value.
_ floortf2 Extended-precision round down to integral value.
The ___ 1 oor ?f 2 subroutines convert an operand to the largest integral
floating-point value not greater than sr ¢ as:
src -> dst
Table 6-8 shows how the___f 1 oor ?f 2 subroutines use global registers.

Table 6-8 ___floor?f2 Global Register Usage

6-12

Subroutine src dst

__ floorsf2 g0(single) g0(single)
___floordf2 g0-g1(double) g0-g1(double)
___floortf2 g0-g2(extended) g0-g2(extended)

Table 6-9 shows how the __ f1 oor ?f 2 subroutines use the Arithmetic
Control register.

Accelerated Floating-point Library

Table 6-9 floor?f2 Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks

Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-10 shows possible faultsfor the ___ f1 oor ?f 2 subroutines.

Table 6-10 __ floor?f2 Possible Faults

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating invalid operation Operand is an SNaN value.
Floating inexact Operand is not an integral value.
cls?fsi
Classify floating-point
number
___clssfsi
___clsdfsi
___clstfsi

6-13

1960 Processor Library Supplement

Discussion

These subroutines operate as follows:

___clssfsi classifies a single-precision floating-point values.

___clsdfsi classifies a double-precision floating-point
values.

__clstfsi classifies an extended-precision floating-point
values.

The___cl s?fsi subroutines classify floating-point values as.
src -> dst

Table 6-11 shows how the ___cl s?fsi subroutines use global registers.

Table 6-11 __ cls?fsi Global Register Usage
Subroutine src dst
___ Clssfsi g0(single) go0 (integer)
___ clsdfsi g0-g1(double) go (integer)
__ Clstfsi g0-g2(extended) go0 (integer)

The classify operator returns an integer value indicating the result of the
classification. The possible classifications and their return values are given
in Table 6-12.

6-14

Accelerated Floating-point Library

Table 6-12 cls?fsi Return Values
Classification Return Value
Zero s000
Denormalized number s001
Normal finite number s010
Infinity s011
Quiet NaN s100
Signaling NaN s101
Reserved encoding s110
Return Vaue isshown in binary bits, and
S isthe sign bit of the value passed.

These return values are consistent with the bit patterns stored in the
arithmetic-status bits of the arithmetic controls register by the 960 KB
processor'scl assr andcl assr | floating-point instructions.

The classify operator does not read the arithmetic control register and does
not generate any faults.

cmp?f2
Comparison
___cnpsf2
___cnpdf 2
__cnptf2

6-15

1960 Processor Library Supplement

Discussion

These subroutines operate as follows:

___cnpsf2 compares two single-precision floating-point
values.

___cnpdf2 compares two double-precision floating-point
values.

__cnptf2 compares two extended-precision floating-point
values.

The ___cnp?f 2 subroutines compare floating-point values as:

srcl ? src2 -> dst

Table 6-13 shows how the ___cnp?f 2 subroutines use global registers.

Table 6-13 ~_ cmp?f2 Global Register Usage
Subroutine srcl src2 dst
____cmpsf2 gO(single) gl(single) g0,AC(integer)
____cmpdf2 g0-g1(double) g2-g3(double) g0,AC(integer)
____cmptf2 g0-g2(extended) g4-g6(extended) g0,AC(integer)

The comparison operator returns an integer value indicating the result of
the comparison. Table 6-14 gives the possible return values and their

meanings.
Table 6-14 cmp?f2 Return Values
Return Value Meaning
-1 srcl < src2
srcl = src2
1 srcl > src2

srcl, src2, or both are NaN

6-16

Accelerated Floating-point Library

The ___cnp?f 2 subroutines also set the condition-code flags of the
Arithmetic Control register to indicate the result of the comparison.
Therefore, after a comparison, your program can branch conditionally
without examining the return value.

Table 6-15 shows how the ___cnp?f 2 subroutines use the Arithmetic
Control register.

Table 6-15 __ cmp?f2 Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks

Normalizing mode

Bits set Exception flags
Condition code

Table 6-16 shows possible faults for the ___cnp?f 2 subroutines.

Table 6-16 _ cmp?f2 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized and the
normalizing mode bit in the arithmetic controls
is not set. One or both operands are
unnormals.

Floating invalid operation One or more operands is an SNaN value.

_ div?f3

Division

_ divsf3
~ divdf3
_ divtf3

6-17

1960 Processor Library Supplement

Discussion

These subroutines operate as follows:

__ divsf3 divides two single-precision floating-point
values.

__divdf3 divides two double-precision floating-point
values.

_divtf3 divides two extended-precision floating-point
values.

The ___di v?f 3 subroutines perform division as:

srcl | src2 -> dst.

Table 6-17 shows how the ___di v2f 3 subroutines use global registers.

Table 6-17 __ div?f3 Global Register Usage
Subroutine srcl src2 dst
_ divsf3 g0(single) gl(single) g0(single)
___divdf3 g0-g1(double) g2-g3(double) g0-g1(double)
___divtf3 g0-g2(extended) g4-g6(extended) g0-g2(extended)

Table 6-18 shows how the ___di v?f 3 subroutines use the Arithmetic
Control register.

Table 6-18 div?f3 Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks

Rounding mode
Normalizing mode
Bits set Exception flags

Table 6-19 shows possible faults for the ___di v?f 3 subroutines.

6-18

Accelerated Floating-point Library

Table 6-19 div?f3 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized and the
normalizing mode bit in the arithmetic controls
is not set. One or both operands are
unnormals.

Floating underflow Result is too small for destination format.

Floating overflow Result is too large for destination format.

Floating zero divide The src1 operand is 0 and the src2 operand
is numeric and finite.

Floating invalid operation Both operands are infinities or both operands
are zero. One or more operands is an SNaN
value.

Floating inexact Result cannot be represented exactly in
destination format. Floating overflow occurred
and the overflow exception was masked.

extend?f?f2
Sngleto double
conversion

___extenddftf2
____extendsfdf2
___extendsftf2

Discussion

These subroutines operate as follows:

___extenddftf2

converts a double-precision
floating-point value to an extended-
precision floating-point value.

6-19

1960 Processor Library Supplement

___extendsfdf2 converts a single-precision floating-point
value to adouble-precision
floating-point value.

___extendsftf2 converts a single-precision floating-point
value to an extended-precision
floating-point value.

The ___ext end?f ?f 2 subroutines perform floating-point conversion as:

src -> dst

Table 6-20 shows how the ___ext end?f ?f 2 subroutines use global

registers.

Table 6-20 _ extend?f?f2 Global Register Usage
Subroutine src dst
____extenddftf2 g0-g1(double) g0-g2(extended)
____extendsfdf2 g0(single) g0-g1(double)
____extendsftf2 gO(single) g0-g2(extended)

Table 6-21 shows how the ___ext end?f ?f 2 subroutines use the
Arithmetic Control register.

Table 6-21 __ extend?f?f2 Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks

Normalizing mode
Bits set Exception flags

Table 6-22 shows possible faults for the ___ext end?f ?f 2 subroutines.

6-20

Accelerated Floating-point Library

Table 6-22 ____extend?f?f2 Possible Faults

Fault

Cause

Floating reserved encoding Operand denormalized and the normalizing

Floating invalid operation

mode bit in the arithmetic controls is not set.
Operand is unnormal.

Source operand is an SNaN value.

fix*
Floating-point to integer
conversion with
truncation

__ fixsfsi
_ fixdfsi
_ fixtfsi
___ fixunssfsi
___fixunsdfsi
___fixunstfsi

Discussion

These subroutines operate as follows:

_ fixsfsi

__ fixdfsi

_ fixtfsi

converts a single-precision floating-point value to
atwo’'s-complement 32-bit integer with
truncation.

converts a double-precision floating-point value
to atwo’s-complement 32-bit integer with
truncation.

converts an extended-precision floating-point
value to atwo's-complement 32-bit integer with
truncation.

6-21

1960 Processor Library Supplement

6-22

Table 6-23

___fixunssfsi converts a single-precision floating-point value to
an unsigned 32-bit integer with truncation.

___fixunsdfsi converts a double-precision floating-point value
to an unsigned 32-bit integer with truncation.

__fixunstfsi converts an extended-precision floating-point
valueto an unsigned 32-bit integer with
truncation.

The ___ fi x* subroutines convert a floating-point value to an unsigned

32-bit integer as:

src -> dst

Table 6-23 shows how the ___ fi x* subroutines use global registers.

___fix* Global Register Usage

Subroutine
__ fixsfsi
_fixdfsi
__fixtfsi

__ fixunssfsi
___fixunsdfsi
__fixunstfsi

src
gO(single)
g0-g1(double)
g0-g2(extended)
g0(single)
g0-g1(double)
g0-g2(extended)

dst
gO(integer)
gO(integer)
gO(integer)
g0(unsigned)
g0(unsigned)
g0(unsigned)

Table 6-24 shows how the ___ fi x* subroutines use the Arithmetic Control

register.

Accelerated Floating-point Library

Table 6-24

__fix* Arithmetic Control Usage

Table 6-25

AC Register Bits

Bits set Exception flags

The following are the possible faultsfor the ___f i x* subroutines.

Integer overflow Floating-point val ue exceeds the signed integer
range(___ fi x?fsi only).

Table 6-25 shows the input values and the returned value for the
___fixuns?fsi subroutines. Integer overflow isnot signaled, however.

fixuns?fsi Input and Return Values

Input Value Range Returned Value
greater than or equal to 232 OxFFFFFFFF

from 232 - 1 through -232 - 1 Two'’s complement of the integer
representing that value.

less than or equal to -232 0

Integer overflow is not signaled.

float*
Integer to floating-point

conversion

__ floatsisf
__ floatsidf
_ floatsitf
___floatunssi sf
___floatunssidf
_ floatunssitf

6-23

1960 Processor Library Supplement

Discussion

These subroutines operate as follows:

___floatsisf converts a two's-complement 32-hit integer to a
single-precision floating-point value.

___floatsidf converts a two's-complement 32-bit integer to a
double-precision floating-point value.

_ floatsitf converts atwo's-complement 32-bit integer to an
extended-precision floating-point value.

___floatunssi sf converts an unsigned 32-bit integer to asingle-
precision floating-point value.

___floatunssidf converts an unsigned 32-bit integer to a double-
precision floating-point value.

__ floatunssitf converts an unsigned 32-bit integer to an
extended-precision floating-point value.

The__ fl oat* subroutines convert an unsigned 32-bit integer to a
floating-point value as.

src -> dst

Table 6-26 showshow the ___ 1 oat * subroutines use global registers.

Table 6-26 ___ float* Global Register Usage
Subroutine src dst
__floatsisf gO(integer) g0(single)
___floatsidf gO(integer) g0-g1(double)
__floatsitf g0(integer) g0-g2(extended)
___ floatunssisf g0(unsigned) gO(single)
___floatunssidf g0(unsigned) g0-g1(double)
___ floatunssitf g0(unsigned) g0-g2(extended)

6-24

Accelerated Floating-point Library

Arithmetic controlsareused by the___fl oat si sf and___f 1 oat unssi sf
subroutines only. Table 6-27 showshow the __ 1 oat si sf and
___floatunssisf subroutines use the Arithmetic Control register.

Table 6-27 ___ floatsisf and floatunssisf Arithmetic Control Usage
AC Register Bits
Bits read Rounding mode
Bits set Exception flags
Table 6-28 shows possible faultsfor the ___ f | oat * subroutines.
Table 6-28 __ float* Possible Faults
Fault Cause
Floating inexact Result cannot be represented exactly in
destination format.
logh?f2
Extract unbiased
exponent

___logbsf2
___logbdf2
__logbtf2

6-25

1960 Processor Library Supplement

6-26

Discussion

These subroutines operate as follows:

___logbsf2 extracts an unbiased single-precision exponent.

___loghdf2 extracts an unbiased double-precision exponent.

___loghtf2 extracts an unbiased extended-precision
exponent.

The ___| ogb?f 2 subroutines extract an unbiased exponent as.

src -> dst

Table 6-29 shows how the ___| ogh?f 2 subroutines use global registers.

Table 6-29 __ logh?f2 Global Register Usage
Subroutine src dst
____logbsf2 g0(single) g0(single)
____logbdf2 g0-g1(double) g0-g1(double)
___logbtf2 g0-g2(extended) g0-g2(extended)
Table 6-30 shows how the | ogh?f 2 subroutines use the Arithmetic
Control register.

Table 6-30 __ logb?f2 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks
Normalizing mode

Bits set Exception flags

Table 6-31 shows possible faults for the ___| ogbh?f 2 subroutines.

Accelerated Floating-point Library

Table 6-31 __ logh?f2 Possible Faults

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating invalid operation Operands are infinities with different signs. One
or more operands is an SNaN value.

Floating zero divide Operand is 0.

___mul?f3

Multiplication

___mulsf3
___nuldf3
__mltf3
Discussion

These subroutines operate as follows:

___mulsf3 multiplies two single-precision floating-point
values.

___nmuldf3 multiplies two double-precision floating-point
values.

_ multf3 multiplies two extended-precision floating-point
values.

The ___ nul ?f 3 subroutines perform multiplication as:
srcl x src2 -> dst

Table 6-32 shows how the ___mul 2f 3 subroutines use global registers.

6-27

1960 Processor Library Supplement

6-28

Table 6-32 _ mul?f3 Global Register Usage
Subroutine srcl src2 dst
____mulsf3 gO(single) gl(single) gO(single)
____muldf3 g0-g1(double) g2-g3(double) g0-g1(double)
____multf3 g0-g2(extended) g4-g6(extended) g0-g2(extended)
Table 6-33 shows how the ___nul ?f 3 subroutines use the Arithmetic
Control register.
Table 6-33 __ mul?f3 Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks
Rounding mode
Normalizing mode
Bits set Exception flags
Table 6-34 shows possible faults for the___mul ?f 3 subroutines.
Table 6-34 __ mul?f3 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized and the
normalizing mode bit in the arithmetic controls
is not set. One or both operands are

unnormals.

Floating underflow Normalized result is too small for destination
format.

Floating overflow Result is too large for destination format.

Floating invalid operation One operand is 0 and the other operand is
infinity. One or more operands is an SNaN
value.

Floating inexact Result cannot be represented exactly in

destination format. Floating overflow occurred
and the overflow exception was masked.

Accelerated Floating-point Library

___rem?f3

Remaindering

___remsf3
___remdf3
__rentf3

Discussion

These subroutines implement the KB r ent instruction. They operate as
follows:

__rensf3 returns a single-precision KB remainder.
___remdf3 returns a double-precision KB remainder.
__remtf3 returns an extended-precision KB remainder.

The ___renPf 3 subroutines perform remaindering as:

srcl <ren®» src2 -> dst

Table 6-35 shows how the ___r enPf 3 subroutines use global registers.

Table 6-35 _ rem?f3 Global Register Usage
Subroutine srcl src2 dst dst2
___remsf3 g0(single) gl(single) g0(single) gl(integer)
____remdf3 g0-g1 g2-g3 g0-g1 g2(integer)
(double) (double) (double)
____remtf3 g0-g2 g4-g6 g0-g2 g4(integer)

(extended) (extended) (extended)

6-29

1960 Processor Library Supplement

The ___renPf 3 subroutines offer assembly language access to an integer
return value as shown under dst 2 in Table 6-35. The upper 28 bits of this
integer value are set to zero, while the four low order bits match the
arithmetic status field bits of the KB r enr instruction. Table 6-36 shows
the possible integer return values and their meanings.

Table 6-36 rem?f3 Integer Return Values
Return Value Meaning
0 QsS, set if the remainder after the QR reduction would be

non-zero (the "sticky" bit of the quotient)

1 QR, the value the next quotient bit would have if one more
reduction were performed (the "round" bit of the quotient)

QO, the last quotient bit
Q1, the next-to-last quotient bit

Table 6-37 shows how the ___r en®f 3 subroutines use the Arithmetic
Control register.

Table 6-37 rem?f3 Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks

Normalizing mode
Bits set Exception flags

Table 6-38 shows possible faults for the ___r en?f 3 subroutines.

6-30

Accelerated Floating-point Library

Table 6-38 _ rem?f6 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized and the
normalizing mode bit in the arithmetic controls is
not set. One or both operands are unnormals.

Floating invalid operation srclisinfinite and/or src2is 0. One or more
operands is an SNaN value.

__rint?f2

Round to nearest
integral value

__rintsf2
__rintdf2
__rinttf2

Discussion

These subroutines operate as follows:

__rintsf2 Single-precision round to nearest integral value.

__rintdf2 Double-precision round to nearest integral value.

__rinttf2 Extended-precision round to nearest integral
value.

The___ri nt ?f 2 subroutines perform rounding as:

src -> dst

Table 6-39 shows how the ___ri nt ?f 2 subroutines use global registers.

6-31

1960 Processor Library Supplement

Table 6-39 __ rint?f2 Global Register Usage
Subroutine src dst
____rintsf2 g0(single) g0(single)
____rintdf2 g0-g1(double) g0-g1(double)
__rinttf2 g0-g2(extended) g0-g2(extended)

Table 6-40 shows how the ___ri nt ?f 2 subroutines use the Arithmetic
Control register.

Table 6-40 rint?f2 Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks

Normalizing mode
Bits set Exception flags

Table 6-41 shows possible faultsfor the ___ri nt ?f 2 subroutines.

Table 6-41 __ rint?f2 Possible Faults

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating invalid operation Operand is an SNaN value.
Floating inexact Operand is not an integral value.

6-32

Accelerated Floating-point Library

__ rmd?f3

|EEE Remaindering

Table 6-42

___rndsf3
___rnddf 3
__rndtf3

Discussion

These subroutines perform |EEE 754 remaindering as follows:

__rmisf3 returns a single-precision |EEE remainder.
___rmddf 3 returns a double-precision IEEE remainder.
__ rmdtf3 returns an extended-precision |EEE remainder.

The ___rmd?f 3 subroutines perform |EEE 754 remaindering as:

srcl <rnmd> src2 -> dst

Table 6-42 shows how the ___r nd?f 3 subroutines use global registers.

__rmd?f3 Global Register Usage

Subroutine srcl src2 dst dst2

__rmdsf3 g0(single) gl(single) g0(single) g1(unsigned)

____rmddf3 g0-g1 g2-g3 g0-g1 g2(unsigned)
(double) (double) (double)

__rmdtf3 g0-g2 g4-g6 g0-g2 g4(unsigned)

(extended) (extended) (extended)

The ___rmd?f 3 subroutines offer assembly language access to an unsigned
integer return value as shown under dst 2 in Table 6-42. Thisinteger
return value is comprised of the least significant 32 bits of the magnitude
of theintegral quotient, rounded per the |EEE remaindering operation.

6-33

1960 Processor Library Supplement

6-34

Table 6-43 shows how the ___r md?f 3 subroutines use the Arithmetic
Control register.

Table 6-43 ~__ rmd?f3 Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks

Normalizing mode
Bits set Exception flags

Table 6-44 shows possible faults for the __r nd?f 3 subroutines.

Table 6-44 _ rmd?f3 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized and the
normalizing mode bit in the arithmetic controls is
not set. One or both operands are unnormals.

Floating invalid operation srclisinfinite and/or src2 is zero. One or
more operands is an SNaN value.

____round?f2

Round to integral value

___roundsf2
___rounddf2
___roundtf2

Accelerated Floating-point Library

Discussion

These subroutines operate as follows:

___roundsf2 Single-precision round to integral value.
___rounddf2 Double-precision round to integral value.
___roundtf2 Extended-precision round to integral value.

The___round?f 2 subroutines convert an operand to an integral
floating-point value as.

src -> dst

Table 6-45 shows how the ___r ound?f 2 subroutines use global registers.

Table 6-45 __ round?f2 Global Register Usage
Subroutine src dst
___roundsf2 g0(single) g0(single)
____rounddf2 g0-g1(double) g0-g1(double)
___roundtf2 g0-g2(extended) g0-g2(extended)
Table 6-46 shows how the __ r ound?f 2 subroutines use the Arithmetic
Control register.
Table 6-46 ___round?f2 Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks
Rounding mode
Normalizing mode
Bits set Exception flags
Table 6-47 shows possible faultsfor the ___r ound?f 2 subroutines.
Table 6-47 __ round?f2 Possible Faults

6-35

1960 Processor Library Supplement

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating invalid operation Operand is an SNaN value.
Floating inexact Operand is not an integral value.
round?fsi
Floating-point to integer
conversion with
rounding
____roundsfsi
____rounddf si
___roundtfsi
Discussion

These subroutines operate as follows:

___roundsfsi converts a single-precision floating-point value to
atwo's-complement 32-hit integer.

___rounddf si converts a double-precision floating-point value
to atwo’'s-complement 32-bit integer.

___roundtfsi converts an extended-precision floating-point
value to atwo’'s-complement 32-bit integer.

The__ round?fsi subroutines round the results according to the integer
type of the destination operand and the setting of the rounding-mode flags
of the floating-point arithmetic controls. They perform conversions as.

src -> dst

Table 6-48 shows how the ___r ound?f si subroutines use global registers.

6-36

Accelerated Floating-point Library

Table 6-48 __ round?fsi Global Register Usage
Subroutine src dst
____roundsfsi gO(single) gO(integer)
___rounddfsi g0-g1(double) gO(integer)
____roundtfsi g0-g2(extended) gO(integer)
Table 6-49 shows how the ___round?f si subroutines use the Arithmetic
Control register.
Table 6-49 ____round?fsi Arithmetic Control Usage
AC Register Bits
Bits read Rounding mode
Bits set Integer overflow flag
Table 6-50 shows possible faultsfor the ___round?f si subroutines.
Table 6-50 __ round?fsi Possible Faults

Fault Cause
Integer overflow Floating-point value exceeds the signed integer
range.

6-37

1960 Processor Library Supplement

rounduns?fsi

Floating-point to
unsigned integer

conversion with

rounding
___roundunssf si
___roundunsdf si
___roundunstf si
Discussion

These subroutines operate as follows:

___roundunssf si converts a single-precision floating-point value to
an unsigned 32-bit integer.

___roundunsdf si converts a double-precision floating-point value
to an unsigned 32-hit integer.

___roundunstf si converts an extended-precision floating-point
value to an unsigned 32-hit integer.

The___rounduns?fsi subroutines round the results according to the
integer type of the destination operand and the setting of the
rounding-mode flags of the floating-point arithmetic controls. They
perform conversions as.

src -> dst

Table 6-51 shows how the ___r ounduns?f si subroutines use global
registers.

6-38

Accelerated Floating-point Library

Table 6-51 __ rounduns?fsi Global Register Usage
Subroutine src dst
____roundunssfsi g0(single) g0(unsigned)
____roundunsdfsi g0-g1(double) g0(unsigned)
___roundunstfsi g0-g2(extended) g0(unsigned)
Table 6-52 shows how the ___rounduns?f si subroutines use the
Arithmetic Control register.

Table 6-52 __ rounduns?fsi Arithmetic Control Usage
AC Register Bits
Bits read Rounding mode
The __ rounduns?fsi subroutines return the hexadecimal value
OxXFFFFFFFF when the result is too large to be represented as an unsigned
32-hit integer. Integer overflow is not signaled, however.

scale?fsi?f

Scal e floating-point
value by signed integer

value

___scal esfsi sf
___scal edf si df
___scaletfsitf

6-39

1960 Processor Library Supplement

Table 6-53

Discussion

These subroutines operate as follows:

___scal esfsi sf scales a single-precision floating-point value.
___scal edf si df scales a double-precision floating-point value.
___scaletfsitf scales an extended-precision floating-point value.

The___scal e?fsi ?f subroutines scale the source floating-point value by
the signed 32-bit integer operand as.

srcl * 257¢2 _> (st

Since they have operands of different types, the___scal e?f si ?f
subroutines may require special handling in user-supplied fault handlers, as
described later in this chapter. The first operand is always a floating-point
value, and the second is always a signed integer.

Table 6-53 shows how the ___scal e?f si ?f subroutines use global
registers.

____scale?fsi?f Global Register Usage

Subroutine srcl src2 dst

___ scalesfsisf gO(single) gl(integer) gO(single)
____scaledfsidf g0-g1(double) g2(integer) g0-g1(double)
____scaleffsitf g0-g2(extended) g4(integer) g0-g2(extended)

Table 6-54 shows how the ___scal e?f si ?f subroutines use the
Arithmetic Control register.

Accelerated Floating-point Library

Table 6-54 scale?fsi?f Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks

Normalizing mode
Bits set Exception flags

Table 6-55 shows possible faultsfor the ___scal e?f si ?f subroutines.

Table 6-55 _ scale?fsi?f Possible Faults

Fault Cause

Floating reserved encoding Operand is denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating underflow Normalized result is too small for destination
format.
Floating overflow Result is too large for destination format.

Floating invalid operation Operand is an SNaN value.

Floating inexact Floating overflow occurred and the overflow
exception was masked.

____sub?f3

Subtraction

____subsf3
___subdf3
___subtf3

6-41

1960 Processor Library Supplement

Discussion

These subroutines operate as follows:

___subsf3 subtracts two single-precision floating-point
values.

___subdf3 subtracts two double-precision floating-point
values.

___subtf3 subtracts two extended-precision floating-point
values.

The ___sub?f 3 subroutines perform subtraction as:

srcl - src2 -> dst

Table 6-56 shows how the ___sub?f 3 subroutines use global registers.

Table 6-56 __ sub?f3 Global Register Usage
Subroutine srcl src2 dst
__ subsf3 g0(single) gl(single) g0(single)
____subdf3 g0-g1(double) g2-g3(double) g0-g1(double)
____Subtf3 g0-g2(extended) g4-g6(extended) g0-g2(extended)

Table 6-57 shows how the ___sub?f 3 subroutines use the Arithmetic
Control register.

Table 6-57 sub?f3 Arithmetic Control Usage
AC Register Bits
Bits read Floating-point exception masks

Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-58 shows possible faults for the ___sub?f 3 subroutines.

6-42

Accelerated Floating-point Library

Table 6-58 sub?f3 Possible Faults

Fault Cause

Floating reserved encoding One or both operands denormalized
and the normalizing mode bit in the
arithmetic controls is not set. One or
both operands are unnormals.

Floating underflow Normalized result is too small for
destination format.

Floating overflow Result is too large for destination
format.

Floating invalid operation Operands are infinities of like signs.
One or more operands is an SNaN
value.

Floating inexact Result cannot be represented exactly
in destination format. Floating
overflow occurred and the overflow
exception was masked.

trunc?f?f2
Doubleto single
conversion

___truncdfsf2
__trunctfdf2
__trunctfsf2

6-43

1960 Processor Library Supplement

6-44

Discussion

These subroutines operate as follows:

___truncdfsf2 converts a double-precision floating-point value
to asingle-precision floating-point value.

___trunctfdf2 converts an extended-precision floating-point
value to a double-precision floating-point value.

___trunctfsf2 converts an extended-precision floating-point
value to a single-precision floating-point value.

The ___trunc?f ?f 2 subroutines round the results according to the setting
of the rounding-mode flags of the floating-point arithmetic controls. They
perform floating-point format conversions as.

src -> dst

Table 6-59 shows how the ___t r unc?f ?f 2 subroutines use global
registers.

Table 6-59 _ trunc?f?f2 Global Register Usage
Subroutine src dst
___truncdfsf2 g0-g1(double) g0(single)
____trunctfdf2 g0-g2(extended) g0-g1(double)
___trunctfsf2 g0-g2(extended) g0(single)
Table 6-60 shows how the ___t r unc?f ?f 2 subroutines use the Arithmetic
Control register.

Table 6-60 ____trunc?f?f2 Arithmetic Control Usage

AC Register Bits

Bits read Floating-point exception masks Rounding mode
Normalizing mode

Bits set Exception flags

Table 6-61 shows possible faults for the ___t r unc?f ?f 2 subroutines.

Accelerated Floating-point Library

Table 6-61

Faults for __trunc?f?f2

Fault Cause

Floating reserved encoding Operand denormalized and the normalizing
mode bit in the arithmetic controls is not set.
Operand is unnormal.

Floating underflow Result is too small for destination format.
Floating overflow Result is too large for destination format.
Floating invalid operation Source operand is an SNaN value.
Floating inexact Result cannot be represented exactly in

destination format. Floating overflow occurred
and the overflow exception was masked.

Unmasked Floating-point Fault Handling

This section describes the way that the floating-point library handles
unmasked floating-point faults and tells you how to create custom
unmasked fault-handling subroutines.

The libh libraries contain eighteen unmasked fault-handling subroutines.
Three subroutines are available for each of the six floating-point faults.
The floating-point faults are: inexact result, invalid operation, overflow,
reserved encoding, underflow, and zero divide. For each of these faults,
the libh library provides a subroutine for single-precision operations, a
subroutine for double-precision operations and a subroutine for extended-
precision operations.

When afloating-point fault occurs during the execution of alibh
subroutine, and the specific fault is unmasked in the arithmetic controls,
control istransferred to the appropriate fault-handling subroutine.
Parameter passing and operand configuration follow the compiler calling
sequence. See your compiler user's guide for details.

The default libh fault-handling subroutines return values and take no
action. These subroutines are not intended for use by any application,
serving only as placeholders for user-supplied fault-handling subroutines.

6-45

1960 Processor Library Supplement

6-46

Y ou can create custom fault-handling subroutines by writing C subroutines
based on the prototype declarations of the fault-handling subroutines
contained in the floating-point libraries. When the program is linked, the
linker uses your version of the subroutinesin place of the subroutinesin
thelibh libraries.

Therest of this section describes the prototype declarations for the
fault-handling subroutines and describes the actions of the fault-handling
subroutines contained in the libh libraries. The sr ¢ subdirectory under the
| 960BASE or G60BASE directory contains example source code for
fault-handling subroutinesif you have installed source.

See the 1960 KA/KB Microprocessor Programmer’s Reference Manual for
more information on fault handling and floating-point faults.

Parameters

The fault-handling subroutines take either two or three parameters,
depending on whether the fault is detected before or after the operation of
the faulting subroutine.

The floating-point subroutines alow handling from underflow, overflow
and inexact-result faults after the operation of the faulting subroutine. The
fault-handling subroutines for these faults take two parameters. Thefirst
parameter, named r esul t, isthe properly rounded dst operand from the
faulting subroutine. In the case of underflow or overflow faults, the

resul t parameter is scaled to make it representable in the floating-point
format of the subroutine.

Additional libh subroutines handl e reserved-encoding, invalid-operation
and zero-divide faults before the operation of the faulting subroutine. The
single- and double-precision fault-handling subroutines for these faults take
three parameters. The extended-precision subroutines take two parameters,
as described at the end of this section. The first two parameters in both
casesarenamed src1 and src2. They arethe src1 and src2 operands
from the faulting subroutine.

Accelerated Floating-point Library

Table 6-62

The last parameter for all the fault-handling subroutines is named opcode.
This parameter is an integer value that indicates the operation of the
faulting subroutine. Using thisindicator, your fault-handling subroutine
can branch conditionally on the operation of the calling floating-point
subroutine. Table 6-62 shows the possible values for the opcode
parameter, in decimal, and their operations.

Possible Values for the opcode Parameter

Opcode Value Operation

1 ____add?f3or __ sub?f3
2 __ div?f3

3 ___mul?f3

4 __floatsisf

5 ___ floatunssisf
6 __trunctfdf2

7 ____extenddftf2
8 __ trunctfsf2

9 ____extendsftf2
10 __truncdfsf2
11 ____extendsfdf2
12 ___cmp?f2

13 ____scale?fsi?f
14 __ logb?f2

15 ___rem?f3

16 __rint?f2

17 __rmd?f3

18 ___round?f2
19 ___ceil?f2

20 __ floor?f2

6-47

1960 Processor Library Supplement

6-48

Example 6-3

Thus, the single-precision subroutine prototype for the inexact-result fault
isasfollows:

float AFP_Fault _Inexact S(float result, int opcode);

resul t isthe properly rounded dst operand from the
faulting subroutine.

opcode is an integer value indicating the operation of the
faulting subroutine.

The double-precision subroutine prototype for the invalid-operation fault is
asfollows:

doubl e AFP_Fault _Invalid_QOperation_D(double srci, double
src2, int opcode);

srci isthe src1 operand from the faulting subroutine.
src2 isthe src2 operand from the faulting subroutine.
opcode is an integer value indicating the operation of the

faulting subroutine.

The extended-precision subroutines for faults that occur before the
operation take two parameters rather than three. These subroutines pack
both the sr c2 operand from the faulting subroutine and the opcode value
into asingle union construct named src2. This packing optimizes global
register usage. Example 6-3 shows how the union construct is defined.

Union Definition

union fild {
struct {
int wi, w2, w3, op;
} 1,
| ong double f2;

The 7 2 field contains the sr c2 operand from the faulting subroutine. The
f 1. op field contains the opcode value.

Accelerated Floating-point Library

Therefore, the extended-precision subroutine prototype for the
invalid-operation fault is as follows:

| ong doubl e AFP_Fault _Invalid _Operation_D(long double
srcl, union fild src2);

srci isthe src1 operand from the faulting subroutine.
src2.f2 isthe sr c2 operand from the faulting subroutine.
src2.f1.op isthe opcode value.

Return Values

The faulting subroutine returns the return value from the fault-handling
subroutines.

The fault-handling subroutines provided with the floating-point libraries
return the value zero for faults detected prior to the floating-point operation
and return the resul t parameter for faults detected after the operation.

Fault-handling Subroutines

The following sections describe each of the available subroutines.

Inexact Result

The prototype declarations for the inexact-result fault-handling subroutines

are

float AFP_Fault_lnexact _S(float result, int opcode);

doubl e AFP_Fault _I nexact _D(doubl e result, int opcode);

| ong doubl e AFP_Faul t _I nexact _T(long double result, int

opcode) ;

resul t isthe properly rounded dst operand from the
faulting subroutine.

opcode is an integer value indicating the operation of the
faulting subroutine. See the Parameters section
for the possible values for the opcode parameter
and their meanings.

6-49

1960 Processor Library Supplement

The default subroutines supplied with libh return the r esu/ t parameter.

Invalid Operation

The prototype declarations for the invalid-operation fault-handling
subroutines are:

float AFP_Fault _Invalid Operation_S(float srci, float

src2, int opcode);

doubl e AFP_Fault _Invalid_QOperation_D(double srci, double
src2, int opcode);

| ong doubl e AFP_Fault _Invalid _Operation_T(long double

srcl, union fild src2);

srci isthe src1 operand from the faulting subroutine.

src2 isthe src2 operand from the faulting subroutine.
For the AFP_Faul t _I nval i d_Operation_T
subroutine, thisvalueisin src2. f 2.

opcode is an integer value indicating the operation of the
faulting subroutine. For the
AFP_Faul t _I nval i d_Operati on_T subroutine,
thisvalueisinsrc2. f1. op. Seethe Parameters
section for the possible values for the opcode
parameter and their meanings.

See the Parameters section for an explanation of thefi | d union.

When any of the subroutines listed below result in an invalid-operation
fault, the sr c1 operand must be an SNaN. Do not reference the src2
operand when dealing with an invalid-operation fault resulting from these
subroutines:

__ceil?f2
___floor?f2
____extend?f?f2
___logb?f2
__rint?f2
___round?f2
___scal e?fsi ?f
___trunc?f?f2

6-50

Accelerated Floating-point Library

The default subroutines supplied with libh return the value zero.

Overflow

The prototype declarations for the overflow fault-handling subroutines are:
float AFP_Fault_Overflow S(float result, int opcode);

doubl e AFP_Fault_Overfl ow _D(doubl e result, int opcode);

| ong doubl e AFP_Fault_Overfl ow T(long double result, int
opcode) ;

result isthe properly rounded dst operand from the
faulting subroutine scaled by 2-192 for single-
precision operations, 21536 for double-precision
operations and 2-24576 for extended-precision
operations. If massive overflow occurs, the
resul t parameter isthe properly signed infinity.

opcode is an integer value indicating the operation of the
faulting subroutine. See the Parameters section
for the possible values for the opcode parameter
and their meanings.

The___scal e?fsi ?f andtrunc?f ?f 2 subroutines may produce results
massively exceeding the representable range of the resul t parameter’s
floating-point format. If the exponent adjustment described above does not
bring the value within representable range, an infinity of the proper sign is
used.

This subroutine receives a single value which is the properly rounded result
after scaling of the faulting operation. When the overflow exceptionis
masked, either a properly signed infinity or a maximum magnitude finite
number (depending on the current rounding mode) is returned and the
overflow flag bit in the Arithmetic Controls register is set. The default
subroutine supplied with libh returnsthe r esul t parameter.

6-51

1960 Processor Library Supplement

Reserved Encoding

The prototype declarations for the reserved-encoding fault-handling
subroutines are;

fl oat AFP_Faul t _Reserved_Encodi ng_S(fl oat srci, float
src2, int opcode);

doubl e AFP_Fault _Reserved_Encodi ng_D(doubl e srcl1, double
src2, int opcode);

| ong doubl e AFP_Fault _Reserved_Encodi ng_T(I| ong doubl e
srcl, union fild src2);

srcl isthe src1 operand from the faulting subroutine.

src2 isthe sr c2 operand from the faulting subroutine.
For the AFP_Faul t _Reserved_Encodi ng_T
subroutine, thisvalueisinsrc2. f 2.

opcode is an integer value indicating the operation of the
faulting subroutine. For the
AFP_Faul t _Reserved_Encodi ng_T subroutine,
thisvalueisinsrc2. f 1. op. Seethe Parameters
section for the possible values for the opcode
parameter and their meanings.

See the Parameters section for an explanation of thefi | d union.

When any of the operations listed below result in a reserved-encoding
fault, the src1 operand must be the denormal or unnormal value which
caused the fault. Do not reference the sr c2 operand when dealing with a
reserved-encoding fault resulting from these operations:

___extend?f?f2
___logb?f2
__rint?f2
___round?f2
___scal e?fsi ?f
___trunc?f?f2

The default subroutines supplied with libh return the value zero.

6-52

Accelerated Floating-point Library

NOTE. Reserved-encoding faults cannot be masked. However, setting the
normalizing-mode bit of the floating-point arithmetic controls prevents
reserved-encoding faults with single- and double-precision values. This
action permits denormalized values to be used as operands for arithmetic
operations.

Underflow

The prototype declarations for the underflow fault-handling subroutines
are

float AFP_Fault_Underflow S(float result, int opcode);
doubl e AFP_Fault _Underfl ow _D(doubl e result, int opcode);

| ong doubl e AFP_Fault _Underfl ow _T(l ong double result, int
opcode) ;

result isthe properly rounded dst operand from the
faulting subroutine scaled by 2192 for
single-precision operations, 21536 for
double-precision operations and 224576 for
extended-precision operations. |f massive
underflow occurs, the resul t parameter isthe
properly signed zero.

opcode is an integer value indicating the operation of the
faulting subroutine. See the Parameters section
for the possible values for the opcode parameter
and their meanings.

This subroutine receives a single value which is the properly rounded result
after scaling of the faulting subroutine. When the underflow exception is
masked, either a properly signed zero or a denormalized number
(depending on the magnitude of the result) is returned and the underflow
flag bit in the Arithmetic Controls register is set. The default subroutine
supplied with libh returns the scaled value.

6-53

1960 Processor Library Supplement

6-54

Zero Divide

The prototype declarations for the zero-divide fault-handling subroutines
are:

float AFP_Fault_Zero_Divide_S(float srci, float src2, int
opcode) ;

doubl e AFP_Fault_Zero_Di vi de_D(doubl e src1, double src2,
i nt opcode);

| ong doubl e AFP_Fault_Zero_Divide_T(l ong double srci,
union fild src2);

srcl isthe src1 operand from the faulting subroutine.
src1 must be afinite non-zero value.

src2 isthe sr c2 operand from the faulting subroutine.
src2 must be asigned zero value. For the
AFP_Faul t _Zero_Di vi de_T subroutine, this
valueisinsrc2. f2.

opcode is an integer value indicating the operation of the
faulting subroutine. opcode must be the value 2
for division. For the
AFP_Faul t _Zero_Di vi de_T subroutine, this
valueisinsrc2. f1. op. Seethe Parameters
section for the possible values for the opcode
parameter and their meanings.

See the Parameters section for an explanation of thefi | d union.

The__ scal e?fsi ?f and ___| ogb?f 2 subroutines signal a zero-divide
when the src1 operand is zero. Do not reference the sr c2 operand when
dealing with a zero-divide fault resulting froma___scal e?fsi ?f or
___| ogb?f 2 operation.

Function
| nter dependencies

Table A-1

High-level functions often refer to low-level functions. Table A-1 shows
which low-level functions are required by each high-level function. If you
are retargeting your application to run in other than a directly supported
environment, you must rewrite the functions shown in the right column.
These functions are described in Chapter 5 or in C: A Reference Manual.

Cross-reference of low-level functions

This high-level function: Depends on these low-level functions:

_exit_init _errno_ptr, _semaphore_init
_exit_create,

_HL _init _arg_init, _sig_int_dfl,
_err_no_ptr, _sig_null,
_exit_create, _sig_read_dfl,
_exit_ptr, _sig_segv_dfl,
_LL init, _sig_term_dfl,
_semaphore_init, _sig_write_dfl,
_semaphore_signal, _stdio_create,
_semaphore_wait, _stdio_ptr,
_sig_abrt_dfl, _stdio_stdopen,
_sig_alloc_dfl, _thread_create,
_sig_fpe_dfl, isatty,
_sig_ill_dfl, sbrk
_sig_free_dfl,

continued [J

A-1

1960 Processor Library Supplement

Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

_stdio_init _err_no_ptr, _sig_null,
_exit_ptr, _sig_read_dfl,
_semaphore_init, _sig_segv_dfl,
_semaphore_signal, _sig_term_dfl,
_semaphore_wait, _sig_write_dfl,
_sig_abrt_dfl, _stdio_create,
_sig_alloc_dfl, _stdio_ptr,
_sig_fpe_dfl, _stdio_stdopen,
_sig_free_dfl, isatty,
_sig_ill_dfl, sbrk
_Sig_int_dfl,

abort _err_no_ptr, _sig_int_dfl,
_exit, _sig_null,
_sig_abrt_dfl, _sig_read_dfl,
_sig_alloc_dfl, _sig_segv_dfl,
_sig_fpe_dfl, _sig_term_dfl,
_sig_free_dfl, _sig_write_dfl,
_sig_ill_dfl,

acos _err_no_ptr

asctime _err_no_ptr

asin _err_no_ptr

assert _err_no_ptr, _sig_null,
_exit, _sig_read_dfl,
_exit_ptr, _sig_segv_dfl,
_map_length,

continued [J

A-2

Function Interdependencies

Table A-1

Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

assert (continued) _semaphore_signal, _sig_int_dfl,
_semaphore_wait, _sig_term_dfl,
_sig_abrt_dfl, _sig_write_dfl,
_sig_alloc_dfl, _stdio_ptr,
_sig_fpe_dfl, Iseek,
_sig_free_dfl, write
_sig_ill_dfl,

atan _err_no_ptr

atan2 _err_no_ptr

atan2f _err_no_ptr

atan2| _thread_ptr

atanf _err_no_ptr

atanl _thread_ptr

atexit _exit_ptr, _semaphore_wait

_semaphore_signal,

atof _err_no_ptr

atol _err_no_ptr

calloc _err_no_ptr, _sig_null,
_sig_abrt_dfl, _sig_read_dfl,
_sig_alloc_dfl, _sig_segv_dfl,
_sig_fpe_dfl, _sig_term_dfl,
_sig_free_dfl, _sig_write_dfl,
_sig_ill_dfl, sbrk
_sig_int_dfl,

continued [

A-3

1960 Processor Library Supplement

Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

clearerr _semaphore_signal,

cosh _err_no_ptr,

ctime _err_no_ptr,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_sig_int_dfl,

div _err_no_ptr,

exit _err_no_ptr,
_exit,
_exit_ptr,
_map_length,
_semaphore_delete,
_semaphore_signal,
_semaphore_wait,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_sig_int_dfl,

exp _err_no_ptr

A-4

_semaphore_wait

_sig_null,
_sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
_tzset_ptr,
sbrk

_sig_null,
_sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
_stdio_ptr,
_thread_ptr,
c_term,

close,

Iseek,

sbrk,

unlink,

write

continued [

Function Interdependencies

Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

expf _err_no_ptr

fclose _err_no_ptr, _sig_int_dfl,
_exit_ptr, _sig_null,
_map_length, _sig_read_dfl,
_semaphore_delete, _sig_segv_dfl,
_semaphore_signal, _sig_term_dfl,
_semaphore_wait, _sig_write_dfl,
_sig_abrt_dfl, _stdio_ptr,
_sig_alloc_dfl, close,
_sig_fpe_dfl, Iseek,
_sig_free_dfl, unlink,
_sig_ill_dfl, write
_err_no_ptr, _sig_int_dfl,
_exit_ptr, _sig_null,
_map_length, _sig_read_dfl,
_semaphore_delete, _sig_segv_dfl,
_semaphore_signal, _sig_term_dfl,
_semaphore_wait, _sig_write_dfl,
_sig_abrt_dfl, _stdio_ptr,
_sig_alloc_dfl, close,
_sig_fpe_dfl, Iseek,
_sig_free_dfl, unlink,
_sig_ill_dfl, write

continued [J

A-5

1960 Processor Library Supplement

Table A-1

Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

fdopen _efrr_no_ptr,
_exit_ptr,
_semaphore_init,
_semaphore_signal,
_semaphore_wait,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
fflush _err_no_ptr,
_exit_ptr,
_map_length,
_semaphore_signal,
fgetc _err_no_ptr,
_exit_ptr,
_map_length,
_semaphore_signal,
_semaphore_wait,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,

A-6

_sig_ill_dfl,
_sig_int_dfl,
_sig_null,
_sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
isatty,

sbrk
_semaphore_wait,
Iseek,

write

_sig_int_dfl,
_sig_null,
_sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
Iseek,

read,

sbrk,

write

continued [J

Function Interdependencies

Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

fgetchar _err_no_ptr, _sig_null,
_exit_ptr, _sig_read_dfl,
_map_length, _sig_segv_dfl,
_semaphore_signal, _sig_term_dfl,
_semaphore_wait, _sig_write_dfl,
_sig_abrt_dfl, _stdio_ptr,
_sig_alloc_dfl, Iseek,
_sig_fpe_dfl, read,
_sig_free_dfl, sbrk,
_sig_ill_dfl, write
_sig_int_dfl,
_err_no_ptr, _semaphore_wait,
_exit_ptr, Iseek,
_map_length, write
_semaphore_signal,
_err_no_ptr, _sig_int_dfl,
_exit_ptr, _sig_null,
_map_length, _sig_read_dfl,
_semaphore_signal, _sig_segv_dfl,
_semaphore_wait, _sig_term_dfl,
_sig_abrt_dfl, _sig_write_dfl,
_sig_alloc_dfl, Iseek,
_sig_fpe_dfl, read,
_sig_free_dfl, sbrk,
_sig_ill_dfl, write

continued [J

A-7

1960 Processor Library Supplement

A-8

Table A-1

Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

fileno _err_no_ptr,
_exit_ptr,
_map_length,

_semaphore_signal,

flushall _err_no_ptr,
_exit_ptr,
_map_length,

_semaphore_signal,

fopen _efrr_no_ptr,
_exit_ptr,
_semaphore_init,

_semaphore_signal,

_semaphore_wait,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,

fprintf _err_no_ptr,
_exit_ptr,
_map_length,

_semaphore_signal,

_semaphore_wait,
Iseek,
write

_semaphore_wait,
Iseek,
write

_sig_int_dfl,
_sig_null,
_Sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
close,

isatty,

open,

sbrk
_semaphore_wait,
Iseek,

write

continued [

Function Interdependencies

Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

fputc _err_no_ptr, _sig_int_dfl,
_semaphore_signal, _sig_null,
_semaphore_wait, _Sig_read_dfl,
_sig_abrt_dfl, _sig_segv_dfl,
_sig_alloc_dfl, _sig_term_dfl,
_sig_fpe_dfl, _sig_write_dfl,
_sig_free_dfl, sbrk,
_sig_ill_dfl, write

fputchar _err_no_ptr, _sig_null,
_semaphore_signal, _sig_read_dfl,
_semaphore_wait, _sig_segv_dfl,
_sig_abrt_dfl, _sig_term_dfl,
_sig_alloc_dfl, _sig_write_dfl,
_sig_fpe_dfl, _stdio_ptr,
_sig_free_dfl, sbrk,
_sig_ill_dfl, write
_Sig_int_dfl,

fputs _err_no_ptr, _sig_fpe_dfl,
_semaphore_signal, _sig_null,
_semaphore_wait, _sig_read_dfl,
_sig_abrt_dfl, _sig_segv_dfl,
_sig_alloc_dfl, _sig_term_dfl,
_sig_free_dfl, _sig_write_dfl,
_sig_ill_dfl, sbrk,
_sig_int_dfl, write

continued [J

A-9

1960 Processor Library Supplement

Table A-1 Cross-reference of low-level functions (continued)

This high-level function:

fread

free

freopen

fscanf

A-10

Depends on these low-level functions:

_err_no_ptr,
_exit_ptr,
_map_length,

_semaphore_signal,
_semaphore_wait,

_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_err_no_ptr,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_err_no_ptr,
_exit_ptr,
_map_length,

_semaphore_init,
_semaphore_signal,
_semaphore_wait,

_err_no_ptr,

_semaphore_signal,

_sig_int_dfl,
_sig_null,
_Sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
Iseek,

read,

sbrk,

write
_sig_int_dfl,
_sig_null,
_Sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
close,

isatty,

Iseek,

open,

unlink,

write

_semaphore_wait

continued [

Function Interdependencies

Table A-1

Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

fseek _efrr_no_ptr,
_exit_ptr,
_map_length,
_semaphore_signal,
fsetpos _efrr_no_ptr,
_exit_ptr,
_map_length,
_semaphore_signal,
ftell _err_no_ptr,
_exit_ptr,
_map_length,
_semaphore_signal,
fwrite _err_no_ptr,
_semaphore_signal,
_semaphore_wait,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
getc _err_no_ptr,
_exit_ptr,
_map_length,
_semaphore_signal,
_semaphore_wait,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,

_semaphore_wait,
Iseek,
write

_semaphore_wait,
Iseek,
write

_semaphore_walit,
Iseek,
write

_sig_ill_dfl,
_sig_int_dfl,
_sig_null,
_sig_read_dfl,
_sig_segv_dfl
_sig_term_dfl,
_sig_write_dfl
_sig_int_dfl,
_sig_null,
_sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
Iseek,

read,

continued [J

A-11

1960 Processor Library Supplement

Table A-1

Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

getc (continued) _sig_free_dfl,
_sig_ill_dfl,
getchar _efrr_no_ptr,
_exit_ptr,

_map_length,

_semaphore_signal,

_semaphore_wait,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_sig_int_dfl,
getopt _err_no_ptr,
gets _err_no_ptr,
_exit_ptr,
_map_length,

_semaphore_signal,

_semaphore_wait,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_sig_int_dfl,

A-12

sbrk,

write
_sig_null,
_sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
_stdio_ptr,
Iseek,

read,

sbrk,

write

write
_sig_null,
_sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
_stdio_ptr,
Iseek,

read,

sbrk,

write

continued [J

Function Interdependencies

Table A-1

Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

getw _err_no_ptr, _sig_int_dfl,
_exit_ptr, _sig_null,
_map_length, _sig_read_dfl,
_semaphore_signal, _sig_segv_dfl,
_semaphore_wait, _Sig_term_dfl,
_sig_abrt_dfl, _sig_write_dfl,
_sig_alloc_dfl, Iseek,
_sig_fpe_dfl, read,
_sig_free_dfl, sbrk,
_sig_ill_dfl, write

gmtime _thread_ptr

hypot _err_no_ptr

Idexp _err_no_ptr,

Idiv _err_no_ptr,

localtime _err_no_ptr, _Sig_read_dfl,
_sig_abrt_dfl, _sig_segv_dfl,
_sig_alloc_dfl, _sig_term_dfl,
_sig_fpe_dfl, _sig_write_dfl,
_sig_free_dfl, _thread_ptr,
_sig_ill_dfl, _tzset_ptr,
_sig_int_dfl, sbrk
_sig_null,

log _err_no_ptr,

log10 _err_no_ptr,

logf _err_no_ptr,

continued [J

A-13

1960 Processor Library Supplement

Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

malloc _err_no_ptr, _sig_null,
_sig_abrt_dfl, _sig_read_dfl,
_sig_alloc_dfl, _sig_segv_dfl,
_sig_fpe_dfl, _sig_term_dfl,
_sig_free_dfl, _sig_write_dfl,
_sig_ill_dfl, sbrk
_sig_int_dfl,

mktime _err_no_ptr, _sig_read_dfl,
_sig_abrt_dfl, _sig_segv_dfl,
_sig_alloc_dfl, _sig_term_dfl,
_sig_fpe_dfl, _sig_write_dfl,
_sig_free_dfl, _thread_ptr,
_sig_ill_dfl, _tzset_ptr,
_sig_int_dfl, sbrk
_sig_null,

perror _err_no_ptr, _semaphore_wait,
_exit_ptr, _stdio_ptr,
_map_length, Iseek,
_semaphore_signal, write

pow _err_no_ptr

powf _err_no_ptr,

printf _err_no_ptr, _semaphore_wait,
_exit_ptr, _stdio_ptr,
_map_length, Iseek,
_semaphore_signal, write

continued [J

A-14

Function Interdependencies

Table A-1

Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

putc _err_no_ptr, _sig_int_dfl,
_semaphore_signal, _sig_null,
_semaphore_wait, _Sig_read_dfl,
_sig_abrt_dfl, _sig_segv_dfl,
_sig_alloc_dfl, _sig_term_dfl,
_sig_fpe_dfl, _sig_write_dfl,
_sig_free_dfl, sbrk,
_sig_ill_dfl, write

putchar _err_no_ptr, _sig_null,
_semaphore_signal, _sig_read_dfl,
_semaphore_wait, _sig_segv_dfl,
_sig_abrt_dfl, _sig_term_dfl,
_sig_alloc_dfl, _sig_write_dfl,
_sig_fpe_dfl, _stdio_ptr,
_sig_free_dfl, sbrk,
_sig_ill_dfl, write
_Sig_int_dfl,

puts _err_no_ptr, _sig_null,
_semaphore_signal, _sig_read_dfl,
_semaphore_wait, _sig_segv_dfl,
_sig_abrt_dfl, _sig_term_dfl,
_sig_alloc_dfl, _sig_write_dfl,
_sig_fpe_dfl, _stdio_ptr,
_sig_free_dfl, sbrk,
_sig_ill_dfl, write
_sig_int_dfl,

continued [J

A-15

1960 Processor Library Supplement

Table A-1 Cross-reference of low-level functions (continued)

This high-level function:

putw

raise

rand

realloc

remove

rewind

A-16

Depends on these low-level functions:

_efr_no_ptr,
_semaphore_signal,
_semaphore_wait,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_efr_no_ptr,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_thread_ptr
_err_no_ptr,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_sig_int_dfl,
_err_no_ptr,
_err_no_ptr,
_exit_ptr,
_map_length,
_semaphore_signal,

_sig_int_dfl,
_sig_null,
_Sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
sbrk,

write
_sig_int_dfl,
_sig_null,
_Sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,

_sig_null,
_Sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
sbrk

unlink
_semaphore_wait,
Iseek,

write

continued [J

Function Interdependencies

Table A-1

Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

rmtmp _err_no_ptr, _sig_int_dfl,
_exit_ptr, _sig_null,
_map_length, _sig_read_dfl,
_semaphore_delete, _sig_segv_dfl,
_semaphore_signal, _sig_term_dfl,
_semaphore_wait, _sig_write_dfl,
_sig_abrt_dfl, _stdio_ptr,
_sig_alloc_dfl, close,
_sig_fpe_dfl, Iseek,
_sig_free_dfl, unlink,
_sig_ill_dfl, write

scanf _err_no_ptr, _semaphore_wait,
_semaphore_signal, _stdio_ptr

setbuf _err_no_ptr, _semaphore_wait

_semaphore_signal,
setvbuf _err_no_ptr, _semaphore_wait
_semaphore_signal,

signal _err_no_ptr, _sig_int_dfl,
_sig_abrt_dfl, _sig_null,
_sig_alloc_dfl, _sig_read_dfl,
_sig_fpe_dfl, _sig_segv_dfl,
_sig_free_dfl, _sig_term_dfl,
_sig_ill_dfl, _sig_write_dfl

sin _errno_ptr

sinf _errno_ptr

sinh _errno_ptr

continued [J

A-17

1960 Processor Library Supplement

A-18

Table A-1

Cross-reference of low-level functions (continued)

This high-level function:

sqrt
sqrtf

sscanf

strdup

strerror

strftime

strtod
strtok
strtol
strtoul
svand
tan
tanf
tanh

Depends on these low-level functions:

_errno_ptr
_errno_ptr

_err_no_ptr,

_semaphore_signed

_err_no_ptr,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_errno_ptr
_err_no_ptr,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_sig_int_dfl,
_errno_ptr
_errno_ptr
_errno_ptr
_errno_ptr
_errno_ptr
_errno_ptr
_errno_ptr

_errno_ptr

_semaphore_wait

_sig_int_dfl,
_sig_null,
_Sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl

_sig_null,
_Sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
_tzset_ptr,
sbrk

continued [

Function Interdependencies

Table A-1

Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

tmpfile _err_no_ptr,
_exit_ptr,
_semaphore_init,
_semaphore_signal,
_semaphore_wait,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_sig_int_dfl,
tmpnam _err_no_ptr,
tzset _err_no_ptr,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,
_sig_int_dfl,
ungetc _err_no_ptr,
_semaphore_signal,
_semaphore_wait,
_sig_abrt_dfl,
_sig_alloc_dfl,
_sig_fpe_dfl,
_sig_free_dfl,
_sig_ill_dfl,

_sig_null,
_sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
close,

isatty,

open,

sbrk,

stat

stat

_sig_null,
_sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
_tzset_ptr,
sbrk
_sig_int_dfl,
_sig_null,
_sig_read_dfl,
_sig_segv_dfl,
_sig_term_dfl,
_sig_write_dfl,
sbrk

continued [J

A-19

1960 Processor Library Supplement

Table A-1 Cross-reference of low-level functions (continued)

This high-level function: Depends on these low-level functions:

viprintf _err_no_ptr, _semaphore_wait,
_exit_ptr, Iseek,
_map_length, write
_semaphore_signal,

vprintf _err_no_ptr, _semaphore_wait,
_exit_ptr, _stdio_ptr,
_map_length, Iseek,
_semaphore_signal, write

A-20

| ndex

A

_ac structure, 3-7

acosf function, 3-9

addition subroutines, 6-9

AFPlibrary, 6-1

afpfault.h fault-handling header file, 3-3
afpfault.h header file, 6-1

alloca.h header file, 3-3

ANSI math library, 2-6

ANSI standard library, 2-6

architectures supported by libh library, 6-1
architectures supported by the libraries, 2-1
_arg_init function, 5-19

arithmetic control register, 6-4

asinf function, 3-9

atan2f function, 3-9

atanf function, 3-9

B-C

bal and balx instructions, 6-3

call and callx instructions, 6-3

cellf function, 3-9

classify floating-point number subroutines, 6-14
close function, 5-38

comparison subroutines, 6-16
compatibility

of libraries, 2-1

with ANSI C standard, 2-19

with standards, 1-1
complex structure, 3-10
context data, defined, 5-2
conventions, notational, 6-2
copyrights, 1-3
cosf function, 3-9
_create.cfile, 5-13, 5-14, 5-16
creat function, 5-39
cross-reference of high-level libraries, A-1
crt startup files, list of, 5
customer service, 1-3
customizing the libraries, 5-1

D

data formats supported, 6-3

daylight macro, 3-16, 4-37

dev_t datatype, 3-17

division subroutines, 6-18

documents, related, 1-2, 1-3, 3-1

double to single conversion subroutines, 6-44

Index-1

1960 Processor Library Supplement

E

ecvt function, 3-14, 4-1

errno macro, address, 5-16
_errno_ptr function, 5-20

errors, identifying at run-time, 2-18

example of generated assembly language, 6-6,

6-7
exit function, 5-14, 5-17
_exit function, 5-40
exit handler, list, 5-17

_exit_create function, 5-14, 5-15, 5-17, 5-20

_exit_init function, 5-13, 5-15, 5-21
_exit_ptr function, 5-15, 5-16, 5-23
expf function, 3-9

extract unbiased exponent subroutines, 6-26

=

fabsf function, 3-9
fault handling, 6-5
subroutines
inexact result, 6-49
invalid operation, 6-50
opcode parameter, 6-47
overflow, 6-51
parameters, 6-46
prototype declarations, 6-46
reserved encoding, 6-52
return values, 6-49
underflow, 6-53
zero divide, 6-54
union construct, 6-48

Index-2

fcloseall function, 3-13
fentl.h file access flags header file, 3-4
fevt function, 3-14, 4-1
fdopen function, 3-13, 4-4
fgetchar function, 3-13, 4-5
fileno function, 3-13, 4-6
flash support library, 2-9
floating-point arithmetic

control, 6-4

formats, 6-3
floating-point libraries, using, 2-15
floating-point library, 2-6, 2-7

floating-point to integer conversion subroutines,
6-21, 6-36, 6-38

floorf function, 3-9

floseall function, 4-3

flushdl function, 3-13, 4-7
fp_clrflags function, 3-5, 4-10
fp_clriflag function, 3-5, 4-10
fp_getenv and fp_setenv functions, 6-5
fp_getenv function, 3-5, 4-9
fp_getflags function, 3-5, 4-10
fp_getmasks function, 3-5, 4-11
fp_getround function, 3-5, 4-13
fp_logb function, 3-7

fp_logbf function, 3-7

fp_logbl function, 3-7

fp_rem function, 3-7

fp_remf function, 3-7

fp_reml function, 3-7

FP_RM macro, 3-6

fp_rmd function, 3-7

fp_rmdf function, 3-7

Index

fp_rmdl function, 3-7

FP_RN macro, 3-6

fp_round function, 3-8
fp_roundf function, 3-8
fp_roundl function, 3-8

FP_RP macro, 3-6

FP_RZ macro, 3-6

fp_scale function, 3-8
fp_scalef function, 3-8
fp_scalel function, 3-8
fp_setenv function, 3-5, 4-9
fp_setflags function, 3-5, 4-10
fp_setmasks function, 3-5, 4-11
fp_setround function, 3-5, 4-13
fpem_CA_AC externa variable, 4-15

fpdl.h floating-point operation control header
file, 3-5

fputchar function, 3-13, 4-7
FPX_ALL macro, 3-6
FPX_CLEX macro, 3-6
FPX_INEX macro, 3-6
FPX_INVOP macro, 3-6
FPX_OVFL macro, 3-6
FPX_UNFL macro, 3-6
FPX_ZDIV macro, 3-6

fstat function, 3-12

function interdependencies, A-1

G

gcec960 configuration files, 2-10

gevt function, 3-14, 4-1

_getac function, 3-5, 4-14
GET_UNALIGNED_SHORT macro, 3-18

GET_UNALIGNED_UNSIGNED_SHORT
macro, 3-18

GET_UNALIGNED_WORD macro, 3-18
GET_UNALIGNED2 WORD macro, 3-18
getc function, 5-17

getchar function, 5-17

getopt function, 3-14, 4-17

getw function, 3-13, 4-15

ghist960 support library, 2-9

H

header files

for fault handling, 6-1

including, 2-16

list of, 3-1
high-level libraries, A-1
_HL_init function, 5-23
hypot function, 3-9, 4-18

|EEE 754 standard, 6-3

_|EEE_sgrt function, 3-10, 4-19
_IEEE_ggrtf function, 3-9, 3-10, 4-19
inexact result fault, 6-49
infinities, signed, 6-3
initialization
data, 5-13
functions, 5-15
memory alocation, 5-13, 5-14
startup code, 5-13
stream 1/O, 5-13, 5-14
instructions for calling subroutines, 6-3

Index-3

1960 Processor Library Supplement

Index-4

integer, defined, 6-2

integer to floating-point conversion subroutines,
6-24

interrupt handling, 5-17
interrupt-driven 1/O, 5-17
invalid operation fault, 6-50
ioctl function, 5-41

isatty function, 5-42
itoafunction, 3-14, 4-20
itoh function, 3-14, 4-21

L

Ifind function, 4-22

libc ANSI standard library, 2-5
libfp alternate floating-point library, 2-7
libh floating-point library, 2-7
libh library, 6-1
libhis ghist960 support library, 2-9
libll MON960 low-level support library, 2-8
libm ANSI math library, 2-6
libmon monitor low-level support library, 2-8
libg/libgf profiling libraries, 2-8
libraries
list of, 2-4
retargeting, 5-1
library files, names of, 2-2
librom flash support library, 2-9
licensing, 1-3
linker configuration file, 6-4
linker directivefiles, 2-9
linking library files, sequence, 2-13
linking sequence, 2-13
linking the floating-point library, 6-1

_LL_init function, 5-24
1og10f function, 3-9
logf function, 3-9
low-level libraries, A-1
Isearch function, 4-22
Iseek function, 5-43
Itoafunction, 3-14, 4-24
Itoh function, 3-14, 4-25
Itos function, 3-14, 4-24

M

__macros.h include macros header file, 3-8

malloc function, 5-13, 5-14
manuds, related, 1-2, 1-3, 3-1
_map_length function, 5-44
math.h header file, 3-8
memicmp function, 3-15, 4-27
memory &llocation, 5-15
initidization, 5-13, 5-14
startup code, 5-13, 5-14
modac instruction, 6-5
mode_t datatype, 3-17
MON960 low-level support library, 2-8
monitor support library, 2-8
multiplication subroutines, 6-27
multi-tasking, see also reentrancy
data, 5-4
function calls, 5-4

multi-tasking execution environments, defined,
5-2

Index

N-O

NaN as return value, 6-3
notational conventions, 6-2
O_APPEND macro, 3-4, 5-46
O_BINARY macro, 3-4, 5-46
O_CREAT macro, 3-4, 5-46
O_EXCL macro, 3-4, 5-46
off_t datatype, 3-17

open function, 5-45
O_RDONLY macro, 3-4, 5-45
O_RDWR macro, 3-4, 5-45
O_TEXT macro, 3-4, 5-46
O_TRUNC macro, 3-4, 5-46
overflow fault, 6-51
O_WRONLY macro, 3-4, 5-45

P

parallel reentrancy, defined, 5-2
parameter passing, 6-4
persistent data, defined, 5-2
powf function, 3-9

precision of results, 6-3

primitive functions, descriptions, 5-18
processors, and floating-point support, 6-1

profiling libraries, 2-8

publications, related, 1-2, 1-3, 3-1

putc function, 5-17
putchar function, 5-17
putw function, 3-14, 4-28

R

read function, 5-47

recursive reentrancy, defined, 5-2
reent.h header file, 5-13, 5-14
reent.h reentrancy header file, 3-10

reentrancy

data access, 5-16

data usage, 5-5

exit handler, 5-13
functions, 5-16
initialization, 5-13
memory access, 5-13, 5-17
memory handling functions, 5-15
multi-tasking, 5-4

of functions, 5-6-5-12
recursive, 5-4
semaphores, 5-16, 5-17
stream 1/O, 5-17
streams, 5-13
synchronization, 5-13
time-sliced, 5-4

register usage, 6-4

remaindering subroutines, 6-29, 6-33

reserved encoding fault, 6-52

retargeting, process preview, 5-37

retargeting the libraries, 2-17, 5-1
return value implementation, 6-4
rmtmp function, 3-14, 4-29

round to integer subroutines, 6-10, 6-12, 6-31,
6-35

Index-5

1960 Processor Library Supplement

Index-6

S

sbrk function, 5-48

scale floating-point by integer subroutines, 6-40
search.h linear search header file, 3-11
_semaph.cfile, 5-18

_semaphore_delete function, 5-15, 5-16, 5-25

_semaphore_init function, 5-15, 5-16, 5-18,
5-26

semaphore 1/0, 5-17
semaphores

functions, 5-15

interrupt-driver 1/0, 5-17

memory access, 5-17

stream 1/0O, 5-17
_semaphore_signal function, 5-15, 5-16, 5-27
_semaphore_wait function, 5-15, 5-16, 5-28
_setac function, 3-5, 4-14
SET_UNALIGNED_SHORT macro, 3-18

SET_UNALIGNED_UNSIGNED_SHORT
macro, 3-18

SET_UNALIGNED_WORD macro, 3-18
SET_UNALIGNED2_WORD macro, 3-18
SIGALLOC macro, 3-11

SIGFREE macro, 3-12

sign bit, 6-3

signal handlers, list of, 5-49

signa.h header file, 3-11

SIGREAD macro, 3-11

SIGSIZE macro, 3-12

SIGUSR1 macro, 3-12

SIGUSR2 macro, 3-12

SIGWRITE macro, 3-11

sinf function, 3-9

single to double conversion subroutines, 6-19
size t datatype, 3-17
sprintf function, 4-3
sgrtf function, 3-9
sguare function, 3-9, 4-29
standard streams, initiaization, 5-13, 5-14
standards, compatibility with, 1-1
startup code
datainitialization, 5-13
memory alocation, 5-13, 5-14
stream initialization, 5-13
startup files, list of, 5
stat function, 3-12, 5-50
stat structure, 3-17
stat.h file type and permission header file, 3-12
std.h system function header file, 3-13
stderr stream, 5-5, 5-13, 5-14
stdin stream, 5-5, 5-13, 5-14
_stdio_create function, 5-14, 5-15, 5-29
stdio.h header file, 3-13
_stdio_init function, 5-13 thru 5-15, 5-30
_stdio_ptr function, 5-15, 5-16, 5-31
_stdio_stdopen function, 5-32
stdlib.h header file, 3-14
stdout stream, 5-5, 5-13, 5-14
strdup function, 3-15, 4-30
stream input/output
initialization, 5-13, 5-14
lists, 5-5
stricmp function, 3-15, 4-31
string.h header file, 3-15
striwr function, 3-15, 4-32
strnicmp function, 3-15, 4-33

Index

strnset function, 3-15, 4-35
strrev function, 3-15, 4-36
strset function, 3-15, 4-36
strupr function, 3-15, 4-32
subroutine descriptions, 6-8

subroutine names for calling from assembly and
C,6-2

subroutines, how to cal, 6-3
subtraction subroutines, 6-42
sunction interdependencies, 5-37
synchronization, functions, 5-15
system call descriptions, 5-38

T

tanf function, 3-9

_thread_create function, 5-14, 5-15, 5-33
thread data, defined, 5-2

thread, defined, 5-2

_thread_init function, 5-13, 5-15, 5-34
_thread ptr function, 5-15, 5-16, 5-35

time function, 5-53

time.h header file, 3-16

time-diced reentrancy, defined, 5-2
timezone macro, 3-16, 4-37

types.h System V types header file, 3-17
TZ environment variable, 4-37

tzname macro, 3-16, 4-37

tzset function, 3-16, 4-37

_tzset_ptr function, 5-15, 5-36

U
u_char datatype, 3-17

u_int datatype, 3-17

u_long datatype, 3-17

u_short datatype, 3-17

uchar datatype, 3-17

uint data type, 3-17

ulong datatype, 3-17

ultoafunction, 3-14, 4-39

unalign.h special macros header file, 3-18
underflow fault, 6-53

underscore characters, in subroutine names, 6-2
union construct, 6-48

unlink function, 5-53

unsigned integer, defined, 6-2

ushort data type, 3-17

utoa function, 3-14, 4-39

\Y,

va_arg macro, 3-20

va dcl declaration, 3-20

va_end macro, 3-20

va list macro, 3-20

va_start macro, 3-20

varargs.h variable argument list header file, 3-20

W-zZ

write function, 5-54

zero divide fault, 6-54
zeros, signed, 6-3

Index-7

