
i960® Processor Compiler
User’s Manual
Order Number: 651230-004

Revision Revision History Date

001 Initial Release 02/96

002 Revised for release 5.1 01/97

003 Revised for release 6.0 12/97

004 Revised for release 6.5 12/98

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Literature Distribution Center
Intel Corporation
PO Box 5937
Denver, CO 80217-9808

Or you can call the following toll-free number:

1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel sales
office.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Condi-
tions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty,
relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose,
merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intend-
ed for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product
descriptions at any time, without notice. Contact your local sales office to obtain the latest specifications before placing
your order.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclo-
sure is subject to restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to the gov-
ernment, in accordance with the software license agreement as defined in FAR 52.227-7013.

Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this per-
mission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this
one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions.

*Other brands and names are the property of their respective owners.

Copyright © 1997, 1998. Intel Corporation, All Rights Reserved.

iii

Contents
Chapter 1 The CTOOLS Compilation System

New Features .. 1-1
Features of the Compilation System................................. 1-1

Compatibility and Conformance to Standards 1-2
About this Manual .. 1-4

Audience Description .. 1-6
Licensing and Copyrights.. 1-6
UNIX and Windows Conventions...................................... 1-6

Customer Service .. 1-6
Where Do You Go From Here? ... 1-7

Chapter 2 gcc960 Compiler Driver
Controlling the Compilation System with gcc960 2-1

Invoking the Compiler with gcc960 2-2
gcc960 Sample Command Lines 2-4

Preprocessing a Source File .. 2-4
Generating a Preprocessed Source File 2-4
Generating Assembly Code ... 2-5
Generating an Object Module with Debug

Information ... 2-5
Generating an Executable.. 2-5

gcc960 Linker Options .. 2-6
gcc960 and Predefined Macros .. 2-7

iv

i960® Processor Compiler User’s Manual

gcc960 and Environment Variables 2-9
gcc960 and File Use .. 2-11

Input Files ... 2-11
Include Files.. 2-11
Output Files... 2-12

.gld Files .. 2-14
gcc960 Options.. 2-16
Option Arguments and Syntax... 2-17

Chapter 3 ic960 Compiler Driver
Controlling the Compilation System with ic960...................... 3-1

Invoking the Compiler with ic960 3-2
ic960 Sample Command Lines ... 3-3

Preprocessing a Source File .. 3-3
Generating a Preprocessed C++ Source File 3-3
Generating Assembly Code ... 3-4
Generating an Object Module with Debug

Information ... 3-4
Generating an Executable.. 3-4

ic960 Linker Options ... 3-5
ic960 and Predefined Macros ... 3-6
ic960 and Environment Variables 3-8

ic960 and File Use ... 3-11
Input Files ... 3-11
Include Files.. 3-11
Temporary Files .. 3-12
Output Files... 3-12

ic960 Options... 3-15
Option Arguments and Syntax... 3-16

Chapter 4 Program-Wide Analysis and Optimization
Introduction.. 4-1

Contents

v

Individual and Program-wide Optimizations 4-1
About Profiling .. 4-2

Creating Program-wide and Module-local Optimizations 4-2
Specifying the Program Database Directory 4-2
Compiling for Program-wide Optimization with

the fdb Option... 4-3
Global Decision Making and Optimization Using the gcdm

Option... 4-3
Selecting Modules for Optimization with Substitution

Specifications ... 4-4
Profiling Your Program .. 4-5

Compiling for Profile Instrumentation with -fprof............... 4-5
Collecting a Profile ... 4-5
Building Self-contained Profiles with gmpf960 4-6
Using Profiles During Global Decision Making

and Optimization with -gcdm,iprof.................................. 4-7
Obtaining Program Coverage Analysis with gcov960 4-7

Using make To Perform Program-wide Optimizations 4-7
Adapting Makefiles for Program-wide Optimization.......... 4-8

Specifying the PDB in the Makefile.............................. 4-8
Replacing Optimization Options with fdb and gcdm 4-8
Using Linker Invocations with gcdm for Automatic

Management of Object Files at Link Time 4-9
Using Makefiles with Program-wide Optimizations

for Common Development Tasks 4-10
Building an Optimized Program without Profiling....... 4-10
Building for Debugging without Program-wide

Optimizations... 4-10
Building an Instrumented Program 4-11
Linking Using an +fprof Substitution 4-12
Compiling Using the fprof Option............................... 4-12
Building an Optimized Program with Profiling............ 4-13
Profiling a Program in Pieces 4-13

vi

i960® Processor Compiler User’s Manual

Runtime Support for Profile Collection for the IxWorks*
Environment .. 4-14

Runtime Support for Profile Collection................................. 4-15
Profile Initialization .. 4-15

Chapter 5 Profile Data Merging and Data Format (gmpf960)
Merging Profile Data .. 5-1
gmpf960 Invocation ... 5-2

Discussion... 5-3
Example .. 5-3

Profile Format Specification... 5-3
Profile Data Structures.. 5-4
default.pf File Format .. 5-4
Example .. 5-5

Creating a Runtime Report with gmpf960.............................. 5-5
Using gmpf960 ... 5-6
Using gcov960 ... 5-7

Chapter 6 gcdm Decision Maker Option
gcdm Option Syntax .. 6-1
gcdm Option Arguments .. 6-2

Substitution Controls... 6-2
Substitution Specifications ... 6-3

Whole-program Optimization Option (Category 1)............ 6-3
Module-local Optimization Options (Category 2) 6-3
Miscellaneous Substitution Options (Category 3) 6-5

Substitution Suppression ... 6-6
External Reference Controls... 6-6
Inline Level Control ... 6-7
Input Profile Control .. 6-7
Fast Memory Controls... 6-7
Dryrun Control... 6-8

Contents

vii

Report Controls .. 6-8
dec=file .. 6-8
dryrun... 6-8
rsummary... 6-8
rdecisions... 6-9
rcall-graph.. 6-9
rreverse... 6-11
rclosure ... 6-11
rprofile... 6-11
rvariables .. 6-11

Module-set Specification ... 6-12

Chapter 7 C Language Implementation
Data Representation ... 7-1

Scalars ... 7-1
Aggregates ... 7-5

Structure Alignment ... 7-6
Bit Field Alignment.. 7-11
Examples ... 7-12

Other Type Keywords ... 7-15
Calling Conventions .. 7-15

Definitions... 7-16
Parameter Assignment to Registers............................... 7-18
Argument Blocks .. 7-18
Return Values ... 7-19
Compiler Implementation ... 7-19

Object Module Section Use... 7-20
Pragmas.. 7-21

#pragma align [for gcc960 driver] 7-21
#pragma align [for ic960, or for gcc960 with ic960

option] .. 7-23
Default ... 7-23

viii

i960® Processor Compiler User’s Manual

Discussion.. 7-23
Examples ... 7-24

#pragma cave ... 7-27
Default .. 7-27
Overview .. 7-27
Selecting Functions for Compression......................... 7-28
Linking .. 7-28
Runtime Decompression .. 7-29
Special Code Generation for Secondary

Functions ... 7-30
Debugging CAVE Functions....................................... 7-30

#pragma compress ... 7-31
Default .. 7-31
Discussion.. 7-31

#pragma i960_align [for gcc960 and ic960] 7-32
Discussion.. 7-32

#pragma inline .. 7-32
Default .. 7-33
Discussion.. 7-33

#pragma interrupt.. 7-33
Default .. 7-33
Discussion.. 7-33

#pragma isr ... 7-35
#pragma longcall.. 7-35

Default .. 7-35
Discussion.. 7-35

#pragma optimize ... 7-36
#pragma pack ... 7-37

Using #pragma pack with gcc960’s #pragma
align ... 7-37

#pragma pure.. 7-39
Default .. 7-39

Contents

ix

Discussion ... 7-39
#pragma section... 7-40

Discussion ... 7-40
#pragma system... 7-40

Discussion ... 7-40
Language Extensions.. 7-41

Statements and Declarations Inside of Expressions 7-42
Naming an Expression’s Type .. 7-42
Referring to a Type with typeof....................................... 7-43
Generalized Lvalues... 7-44
Conditional Expressions with Omitted Middle

Operands ... 7-46
Arrays of Length Zero... 7-46
Non-lvalue Arrays Can Have Subscripts 7-47
Arithmetic on Pointers to void and Pointers to

Functions.. 7-47
Non-constant Initializers ... 7-48
Constructor Expressions .. 7-48
Declaring Attributes of Functions 7-49
Inquiring about Alignment... 7-50
Inline Functions Are as Fast as Macros 7-50
Controlling Names Used in Assembly Code................... 7-52
Specifying Registers for Local Variables 7-53
Alternate Keywords .. 7-53

Inline Assembly Language .. 7-54
Introduction... 7-54
Resource Usage... 7-54
asm Statements ... 7-55

Syntax Examples ... 7-55
Example 1: sf1 (Simple)... 7-56
Example 2: sf1 (Complex) ... 7-56
Example 3: emul .. 7-56

x

i960® Processor Compiler User’s Manual

Example 4: synmovq .. 7-56
Example 5: attadd .. 7-56
Example 6: modpc ... 7-56
asm Statement Syntax ... 7-56
asm Syntax Explanations ... 7-57
asm Keyword ... 7-57
volatile .. 7-57
asm-template ... 7-57
substitution-directive .. 7-58
asm-interface ... 7-58
: (colon) .. 7-58
out-list... 7-58
in-list ... 7-59
clobber-list .. 7-59
output-spec .. 7-59
input-spec... 7-59
clobber-spec... 7-60
C language object .. 7-60
C language expression .. 7-60
constraint.. 7-60
Detailed Examples ... 7-63
Example 1: sf1.c (Simple) .. 7-63
Example 2: sf1.c (Complex) 7-64
Example 3: emul.c.. 7-65
Example 4: synmovq.c ... 7-67
Example 5: atadd.c .. 7-69
Example 6: modpc.c... 7-71

asm Functions... 7-72
asm Function Definition Syntax.................................. 7-73
Template Selection ... 7-75
Selection Criteria and Coercion.................................. 7-75
Parameter Classes... 7-78

Contents

xi

Argument Categories... 7-81
Template Expansion .. 7-82
Preserving Register and Memory Values 7-84
Examples and Hints... 7-85

Chapter 8 C++ Language Implementation
Data Representation ... 8-1
Calling Conventions .. 8-2
Pragmas.. 8-2

Specifying a Tag-Name with align, noalign,
or i960_align... 8-2

Specifying a Function Name with a Pragma 8-3
Link Time Considerations.. 8-4

Calling C Functions from C++ .. 8-4
Calling C++ Functions from C .. 8-5
asm Statements and asm Functions 8-6

Unimplemented C++ Language Features 8-6
Exception Handling .. 8-6
Run Time Type Information(RTTI) 8-7
Namespaces .. 8-8
Debugging Information for Templates 8-9

Chapter 9 GCC960/ic960 Compatibility
char and short Parameters ... 9-1
enum Variable Byte Count.. 9-1
char Types .. 9-2
Identifying Architectures ... 9-2
#pragma align... 9-2
mic3.0-compat Option .. 9-3
mic2.0-compat Option .. 9-3

Chapter 10 Position Independence and Reentrancy

xii

i960® Processor Compiler User’s Manual

Position-independent Code and Data.................................. 10-1
Position-independent Data.. 10-1
Position-independent Code... 10-2
Guidelines for Writing Relocatable Programs 10-5

Reentrant Functions .. 10-6
Designing Reentrant Functions....................................... 10-6

Chapter 11 Initializing the Execution Environment
Startup Code.. 11-1

RAM-based Initialization ... 11-3
ROM-based Initialization... 11-4

Linker Configuration Files .. 11-5
RAM-based Configuration File .. 11-5
ROM-based Configuration File 11-6

Chapter 12 Optimization
Optimization Categories and Mechanisms 12-1

Common Sub-expression Elimination............................. 12-3
Constant Expression Evaluation (Constant Folding) 12-4
Dead-Code Elimination ... 12-4
Identity Collapsing... 12-5
Constant Propagation ... 12-6

Calls, Jumps, and Branches .. 12-8
Branch Optimizations.. 12-8
Branch Prediction.. 12-9
Identification of Leaf Functions 12-10
Inline Function Expansion... 12-10
Tail-call Elimination ... 12-11

Loop Optimizations .. 12-13
Movement of Loop-invariant Code................................ 12-13
Induction Variable Elimination....................................... 12-13

Contents

xiii

Loop Unrolling .. 12-14
Memory Optimizations .. 12-14

Global Alias Analysis .. 12-14
Variable Shadowing.. 12-14

Register Use ... 12-15
Local Variable Promotion.. 12-15
Register Management .. 12-15
Register Spilling ... 12-16

Instruction Selection and Sequencing............................... 12-16
Code Compression... 12-16
Code Scheduling .. 12-16
Specialized-instruction Selection.................................. 12-17

Program-level Optimization... 12-18
Inter-module Function Inlining 12-18
Superblock Formation .. 12-18
Profile-based Branch-prediction Bit Setting.................. 12-20

Optimizing Virtual Function Dispatch 12-20

Chapter 13 Caveats
Aliasing Assumptions .. 13-1
Alignment Assumptions... 13-3
Volatile Objects ... 13-4
Known Problems Using the Compiler 13-6

Type Promotion .. 13-6
Prototype Scope... 13-6
longjmp and Volatile Data... 13-7
Incorrect debug information generated for arrays with

unspecified bounds. ... 13-7
C Version Incompatibilities .. 13-7

String Constants Read-only ... 13-7
No Macro Argument Substitution in Strings 13-8
External Variables and Functions in Blocks.................... 13-8

xiv

i960® Processor Compiler User’s Manual

Combining long with typedef Names 13-8
Using typedef Names in Function Parameters 13-8
Whitespace in Compound Assignment Operators 13-9
Flagging Unterminated Character Constants.................. 13-9
Disguised varargs or stdarg Routines............................. 13-9

Troubleshooting ... 13-9
Undefined References .. 13-9
C Interrupt Service Routine Failures............................. 13-10
Preventing Structure Padding 13-11
Breakpoints Inside Interrupt Handlers........................... 13-14

Chapter 14 Messages
Messages on the Standard Error Device............................. 14-3
Messages in the Listing File .. 14-4

Glossary

Index

Figures

Natural Alignment ..7-9
User-constrained Alignment ..7-10
Optimal Natural Alignment of std_struct7-13
Backward-compatible Natural Alignment of std_struct7-14
#pragma noalign Alignment of std_struct7-14
#pragma align Alignment of std_struct7-15
Memory for Hypothetical Position-independent

Application ...10-4
Superblock Formation Process ..12-19

Contents

xv

Tables

Compiler Limits ... 1-3
Chapter Descriptions ... 1-4
Linker Options Accepted by gcc960 2-7
gcc960 Interface Environment Variables 2-10
Intermediate Inputs and Outputs ... 2-13
gcc960 Option Summary ... 2-18
Mcore Supported Architectures ... 2-46
Linker Options Accepted by ic960 ... 3-5
Intermediate Inputs and Outputs ... 3-13
ic960 Option Summary .. 3-17
Gcore Supported Architectures ... 3-37
Stop-after Option Phases and Output 3-57
gcdm Option Arguments ... 6-1
Scalar Data Type ... 7-2
Example Offset Values .. 7-38
Return Value Class Matching .. 7-77
Argument Category to Parameter Class Matching

and Coercion .. 7-77
C Data Types and asm Classes .. 7-80
Architecture Macros and Compatibility 9-2
Constants and Expression Evaluation 12-2
Effects of Constant Expression Evaluation 12-4
Identity Collapsing Examples .. 12-5

Examples

Sample .gld File .. 2-15
C Code .. 5-6
gmpf -rprofile Sample Output .. 5-7
gcov960 Sample Output .. 5-8

xvi

i960® Processor Compiler User’s Manual

sf1.c (Simple) ...7-63
sf1.c (Complex) ..7-64
emul.c ..7-65
synmovq.c ..7-67
atadd.c ...7-69
modpc.c ...7-71
Position-independent ROM Code ..10-3

1-1

The CTOOLS
Compilation System 1

This manual provides operating instructions and other information on the
CTOOLS compilation system. This system consists of a compiler and two
drivers that provide the user interface to the compiler, gcc960 and ic960.
These two interface drivers allow backward compatibility with software
developed using GNU/960 and CTOOLS960, respectively.

New Features
• Release 6.5 features support for 64-bit integers using long long type.

Features of the Compilation System

The compiler lets you use the following features to develop applications:

• Using either the gcc960 or ic960 compiler driver to invoke and control
translation and linking. See Chapter 2 “gcc960 Compiler Driver” or
Chapter 2 “ic960 Compiler Driver”.

• Creating a run-time performance profile of your application.
Optimizations based on this profile include inter-module optimizations
and preferential use of fast memory regions for variables that are
frequently accessed. For an overview of the program-wide
optimization process, including profile-driven optimization, see
Chapter 4 “Program-Wide Analysis and Optimization”. For
descriptions of other optimizations, refer to Chapter 12
“Optimization”.

1-2

1 i960® Processor Compiler User’s Manual

• Calling functions written in i960 processor assembly language, or
including in-line assembly language in your C/C++ program. Chapter 7
“C Language Implementation”

• Stopping the compilation process to examine intermediate results after
syntax checking, preprocessing, compilation, assembly, or incremental
linking. (See Chapters 2, “gcc960 Compiler Driver” and , “ic960
Compiler Driver”.)

• Using a single command to compile, assemble, and link modules into a
complete ROM-able or executable program. (See Chapters 2, “gcc960
Compiler Driver” and , “ic960 Compiler Driver”.)

• Using the CAVE pragma to compress functions, thus reducing code
size. During program execution, these functions are decompressed
when called. For more information on CAVE and the other pragmas,
see Chapter 7 “C Language Implementation”.

• Creating blended code with the new -mcore0-3 and -Gcore0-3
options. With these options, you can generate code that is compatible
with multiple i960 processor types. For more information, see Chapters
2, “gcc960 Compiler Driver” and , “ic960 Compiler Driver”.

Compatibility and Conformance to Standards
The compiler runs on a UNIX* or a Windows* 95/NT* host system and
generates object code for any i960 commercial processor. The translation
and code generation phases use the instruction set for the i960 processor
that you specify.

The compiler's implementation of C conforms to the ANSI standard for the
C language (X3.159-1989). One exception is static pointer initialization in
applications using position-independent code or data (described in
Chapter 9 “GCC960/ic960 Compatibility”). Additionally, the compiler
allows use of in-line assembly language in the C source text.

The ANSI standard specifies that a conforming implementation of a C
compiler must meet minimum requirements for certain translation limits. In
all cases, the compiler exceeds ANSI limits. Table 1-1 lists the tested levels
for each translation limit and compares them to ANSI minimum
requirements. Available memory determines actual limits in a host system.

The CTOOLS Compilation System 1

1-3

Table 1-1 Compiler Limits

Limit
ANSI
Minimum

Tested
Minimum

Control structure nesting levels 15 128

Conditional compilation nesting levels 6 32

Declarator modifiers 12 32

Declaration parenthesis nesting levels 31 64

Parenthesis nesting levels 32 128

Significant characters for internal identifier 31 128

Name length for external identifier 6 33

Identifiers in a single block 127 1024

Macros simultaneously defined 1024 4096

Parameters per function call 31 128

Characters in a logical line 509 4096

Characters in a string 509 4096

Bytes in an object 32767 65535

Include file nesting levels 8 32

Case labels in a switch 257 1024

Members in one structure or union 127 512

Enumeration constants in one enumeration 127 512

Structure nesting levels 15 64

External identifiers per file 511 2048

Parameters per macro 31 128

1-4

1 i960® Processor Compiler User’s Manual

About this Manual
This manual contains the following chapters:

Table 1-2 Chapter Descriptions

Chapter
Number Title Description

1. The CTOOLS
Compilation
System

Introduces the compiler and provides
information on using this manual.

2. gcc960 Compiler
Driver

Teaches you how to use the gcc960
command-line interface and provides a
complete list of command line options.

3. ic960 Compiler
Driver

Teaches you how to use the ic960
command-line interface and provides a
complete list of command line options.

4. Program-wide
Analysis and
Optimization

Tells you how to use some of CTOOLS most
powerful optimization features:

• program-wide optimizations

• run-time profiling

5. Profile Data
Merging and
Data Format
(gmpf960)

Explains how to use gmpf960 to merge the
execution profile data you collected in
Chapter 4 “Program-Wide Analysis and
Optimization”. You also learn how to use
gmpf960 to create a report that shows how
many times each basic block was “hit” or run
during program execution.

6. gcdm Decision
Maker Option

Describes the gcdm option, which invokes
the gcdm960 global optimization decision
maker during the link process. The decision
maker then invokes the compiler and linker
as necessary to perform program-wide
optimizations.

7. Language
Implementation

Describes data representation, register use,
object file format use, and pragmas for
modifying code generation.

The CTOOLS Compilation System 1

1-5

8. C++ Language
Implementation

Describes the differences from the C
Language Implementation in the areas of
data representation, register use, and
pragmas.

9. gcc960 / ic960
Compatibility

Describes the incompatibilities between
ic960 and gcc960.

10. Position
Independence
and Reentrancy

Provides information on writing i960
processor applications that require
position-independent or reentrant programs.

11. Initializing the
Execution
Environment

Describes the initialization process for the
i960 processor execution environment,
including the startup assembly-language
routine, configuration files, and associated
options.

12. Optimization Describes the different ways in which the
compiler can optimize your program and
explains ways to control optimization.

13. Caveats This chapter provides useful programming
tips on:

• Aliasing assumptions

• Alignment assumptions

• Volatile object

• Known problems

• C version incompatibilities

• Troubleshooting

14. Messages Describes the diagnostic messages that the
compiler produces.

Table 1-2 Chapter Descriptions

Chapter
Number Title Description

1-6

1 i960® Processor Compiler User’s Manual

Audience Description

This manual assumes that you are familiar with the i960 processor
architecture, C/C++ and assembly language programming, and your host
computer’s operating system.

Licensing and Copyrights

Refer to the i960 Software Tools License Guide for licensing and copyright
information.

UNIX and Windows Conventions

This manual tells you how to use the compiler in both UNIX and Windows
95/NT systems. This manual uses the following conventions:

• Command-lines appear without a preceding prompt.

• Directory paths use the UNIX forward slash (/) rather than the
Windows backslash (\) for pathnames.

• Environment variables are referenced using the UNIX dollar-sign (e.g.,
$I960BASE), not the Windows % character (e.g,.%I960BASE%)

Customer Service
If you need service or assistance with CTOOLS, see your Getting Started
with the i960 Processor Development Tools manual.

NOTE. In UNIX, only the dash (-) is accepted as a prefix for a
command-line option. In Windows, both the (-) and the (/) are accepted
as a prefix for a command-line option.

The CTOOLS Compilation System 1

1-7

Where Do You Go From Here?
If you installed the CTOOLS GNU interface, go to Chapter 2 “gcc960
Compiler Driver” for information on using the gcc960 compiler driver. If
you installed the CTOOLS/960 interface, go to Chapter “ic960 Compiler
Driver” for information on using this driver. Once you are familiar with the
compiler driver interface, you are ready to read Chapters 4, “Program-Wide
Analysis and Optimization” through 6, “gcdm Decision Maker Option”,
where you learn how to use some of the more advanced features of the
compilation system, including whole program optimizations, profiling, and
using the gcdm global decision maker program.

2-1

gcc960 Compiler Driver 2
This file describes how to use the gcc960 driver program to control the
compilation system. Topics include:

• “Controlling the Compilation System with gcc960”

• “gcc960 and Environment Variables”

• “gcc960 and File Use”

• “.gld Files”

• “gcc960 Options”

• “Option Arguments and Syntax”

Controlling the Compilation System with gcc960
gcc960-style translation and linking requires use of the gcc960 driver,
preprocessor, compiler, assembler, and linker.

The gcc960 compiler driver (gcc960.exe in Windows, gcc960 on UNIX)
controls the preprocessor (cpp.exe in Windows, cpp.960 on UNIX) and
the compiler (cc1.exe in Windows, cc1.960 on UNIX). Starting with
CTOOLS release 6.0 gcc960 also controls the new C++ compiler
(cc1plus.exe in Windows, cc1plus.960 on UNIX). It can also invoke the
assembler, linker, and gcdm960 optimization decision maker. The
command-line options and environment variables, described later in this
file, allow you to control the compilation.

The drivers invoke the appropriate modules to compile a file based on
filename extensions.

2-2

2 i960® Processor Compiler User’s Manual

• Files with names ending with .cc, .cpp, and .cxx are taken as C++
source to be preprocessed and compiled. In UNIX, filenames ending
with .C (uppercase) are treated as C++ source to be preprocessed and
compiled.

• Files with names ending with .ii are taken as preprocessed C++
source to be compiled

• Files with names ending in .c are taken as C source to be preprocessed
and compiled.

• Files with names ending in .i are taken as preprocessor output to be
compiled.

• Compiler output files plus any input files with names ending in .s are
assembled.

• Input files with names ending in .S (uppercase) are preprocessed and
then assembled. (UNIX only.)

• The resulting object files, plus any other input files, are passed to the
linker to produce an executable.

• Program-wide and profile-directed optimizations can be performed
during the link step. For an overview of this capability, see
“Program-Wide Analysis and Optimization”.

Invoking the Compiler with gcc960

The gcc960 command-line syntax is:

gcc960 [-option]... [path/]filename ... [@response-file]

gcc960 is the compiler driver executable filename.

option is a compiler option. Case is significant in options and
their arguments. Multiple single-character options
cannot be grouped: -dr is different from -d -r. When
two or more options contradict each other, the
right-most option in the command line takes precedence.
For example, the following command line sets the value
of the symbol L to 132:

gcc960 -DL=80 -DL=132 proto.c

gcc960 Compiler Driver 2

2-3

On UNIX, the compiler recognizes a letter preceded by
a hyphen (-) as an option. In Windows, the compiler
recognizes a letter preceded by either a hyphen (-) or a
forward slash (/) as an option. For example, -A
specifies the architecture option for UNIX or Windows.
However, on a Windows system, you can also use /A
to specify the architecture option.

path identifies the directory containing the file named by
filename. Not specifying path for a filename
causes gcc960 to search in the current directory. Each
filename not in the current directory requires a
separate path specification.

NOTE. Note that the gcc960 compiler driver does not check the
command line options for validity. Invalid options are ignored without
producing a warning message.

NOTE. Although Windows file pathnames require backslashes (\), this
manual shows paths using the forward slash required by UNIX (/).

filename is the name of a source, preprocessed source,
assembly-language, object module, or other file
(e.g., linker directive file) to be processed by the
compilation system. The gcc960 command line
allows specification of more than one
filename.

2-4

2 i960® Processor Compiler User’s Manual

gcc960 Sample Command Lines

This section provides examples of how the compiler is commonly invoked.
All these examples assume that you have C source files named t1.c and
t2.c or C++ source files name t1.cc and t2.cc. All examples assume
that you are generating code for the i960 CA architecture.

Preprocessing a Source File

To preprocess a source file to stdout, use the command:

gcc960 -E t1.c

or

gcc960 -E t1.cc

-E informs the compiler to preprocess the source file.

Generating a Preprocessed Source File

To generate a preprocessed C/C++ source file use the following command.
The command generates a preprocessed source file named t1.i or for C++
t1.ii.

gcc960 -E t1.c -o t1.i

or

gcc960 -E t1.cc -o t1.ii

-E instructs the gcc960 compiler to preprocess the source
file.

@response-file Open the named response file and read in its
contents as if they had been typed on the
command line. Response files are a convenient
way to store commonly-used command line
options, and a way to get around the
128-character line length limit in Windows

Response files can contain comments. Lines
whose first non-whitespace character is # are
treated as comment lines, and ignored.

gcc960 Compiler Driver 2

2-5

-o filename instructs the gcc960 compiler to redirect output to
filename.

Generating Assembly Code

This example generates assembly code for the i960 CA architecture. The
command lines below each generate an assembly language file named
t1.s.

gcc960 -S -ACA t1.c

or

gcc960 -Felf -S -ACA t1.cc

-Felf specifies ELF object module format, which is required
for C++. The default object module format is b.out.

-S instructs the compiler to generate assembly code.

-ACA specifies the i960 CA architecture.

Generating an Object Module with Debug Information

To generate a object module with debug information, use the following
command.

gcc960 -c -g -ACA t1.c

or

gcc960 -Felf -c -g -ACA t1.cc

-g instructs the compiler to generate debug information.

-c instructs the compiler to generate an object file.

Generating an Executable

To generate an absolute module (executable file) for a Cyclone board with a
CA processor, use the following command.

gcc960 -ACA -Tmcycx -g -O t1.c t2.c -o test

or

gcc960 -Felf -ACA -Tmcycx -g -O t1.cc t2.cc -o test

The above command compiles the modules t1.c and t2.c and links them
with appropriate libraries to generate an absolute module targeted for a
Cyclone i960 Cx evaluation board.

2-6

2 i960® Processor Compiler User’s Manual

-Tmcycx use the linker directive file for a Cyclone i960 Cx
evaluation board.

-O causes the compiler to perform some basic
optimizations on the generated code.

-o test instructs the compiler to name the generated executable
test.

gcc960 Linker Options

When you do not specify a target with the Ttarget option, gcc960 does not
attempt to link programs for a specific target board. Unless otherwise
specified source files with recognized extensions (e.g., .cc, .s) are
compiled and/or assembled, and the following linker command is issued:

gld960 -AKB $G960BASE/lib/crt960.o file.o... -lqf -lc -lm

To link for a different target, you can change the crt (startup) file and
specify board and monitor support libraries.

To link for another environment, the options crt and nostdlib prevent
gcc960 from including the default startup files or libraries in the link,
allowing them to be fully specified by the user. For example:

gcc960 -crt -nostdlib mycrt.o file.o... -lc -lmylib

You can invoke gcc960 to create object files in either the b.out, COFF or
ELF object module format. The compilation system accepts the Fcoff
option to generate COFF and the Felf option to generate ELF; these
options override the gcc960 driver’s default format option, which is Fbout.

.

NOTE. ELF is the only object format supported when using C++

gcc960 Compiler Driver 2

2-7

Table 2-1 lists the linker options that gcc960 passes directly to the linker.

gcc960 and Predefined Macros

Predefined macros within a program can act as constants during execution
or as values in conditional-compilation statements. Predefined macros
include ANSI C standard macros and macros specific to the i960 processor
architecture. The U (Undefine) option removes i960 processor-specific
macros but not ANSI C standard macros.

The following macros are available in accordance with the ANSI C standard
for C, as described in the book, C: A Reference Manual:

__DATE__ __FILE__ __LINE__ __TIME__ __STDC__

Table 2-1 Linker Options Accepted by gcc960

Option Name Description

e Entry point defines an entry point other than the default
for beginning execution of the program.

gcdm Decision
Maker

invokes gcdm960 decision maker.

l Archive file specifies an archive file as input.

L Library search adds directories to search for libraries,
configuration files, and startup object files.

r Relocation retains relocation information in the output
object file.

s Strip strips line-number entries and symbol-table
entries from the linker’s COFF output file.

u Unresolved
Symbol

introduces an unresolved symbol, causing the
linker to search symbol tables for resolution of
the reference.

X | x Compress X removes all symbols from the output symbol
table; x removes only local symbols.

y Trace symbol traces a symbol; indicates object files where it
appears and provides other information about
the symbol.

z Time stamp suppresses COFF time stamp in linker output
file.

2-8

2 i960® Processor Compiler User’s Manual

The following macros are predefined by the compilation system when
invoked with the gcc960 driver program:

__GCC960_VER is defined to a decimal number that can be used to check
the version number of the compiler. The number is
expressed in decimal as MmmPPPP, where M is the major
version number, mm is the minor version number, and
PPPP is an internal version number that is used to track
the patch level. So, for example, R6.0 patch level 4032
would have __GCC960_VER defined to be 6004032.

__i960 indicates the i960 processor environment. The compiler
defines __i960 automatically. This macro can be used
to identify the parts of a program specific to the i960
processor.

__i960xx indicates the i960 processor instruction set in use. The
compiler automatically defines the __i960xx macro.
The xx is SA, SB, KA, KB, CA, CF, JA, JF, JD, JT,
HA, HD, HT, RD, RP, RM, RN, or VH. Definition of xx
depends on the specific i960 processor instruction set
specified by the A (Architecture) option.

__PIC indicates that the generated code is
position-independent. The mpic
(Generate-for-position-independent-code) option causes
the __PIC macro to be defined.

__PID indicates that the generated data is position-independent.
The mpid (Generate-for-position-independent-data)
option causes the __PID macro to be defined.

__i960_ABI__

indicates that the generated code is 80960
ABI-Conformant. The mabi option causes this macro to
be defined.

__i960_BIG_ENDIAN__

indicates that the generated code is arranged for
big-endian address space. The G (Big-endian) option
causes this macro to be defined.

gcc960 Compiler Driver 2

2-9

__STRICT_ANSI__

indicates that C constructs not conforming to the ANSI
standard should be flagged. The ansi (ANSI) option
causes this macro to be defined.

__CHAR_UNSIGNED__

indicates that the plain char type are treated like the
unsigned char type. This is the default.

gcc960 and Environment Variables
Environment variables specify default directories for input files, temporary
files, libraries, the assembler, and the linker. The compilation system uses
the following environment variables to set defaults:

2-10

2 i960® Processor Compiler User’s Manual

Table 2-2 gcc960 Interface Environment Variables

Name Purpose

G960AS Specifies an alternate pathname for the assembler. Default is
G960BASE/bin/gas960 (G960BASE\bin\gas960.exe in Windows).

G960BASE Specifies top-level directory containing the bin, include, and lib
subdirectories. G960BASE is necessary for every phase of compilation and
linking. The compiler driver uses G960BASE/lib to invoke the
preprocessor and compiler. The driver uses G960BASE/bin to invoke the
assembler and linker. The preprocessor uses G960BASE/include to find
include files. The linker uses G960BASE/lib to find libraries, startup
modules, and configuration files. G960BASE also sets defaults for other
environment variables in this list. Use these other environment variables to
override the paths from G960BASE.

G960BIN Specifies an alternate pathname for binary files, such as the assembler and
linker. If set, G960BIN overrides G960BASE/bin.

G960CC1 Specifies an alternate pathname for the C compiler. The default is
G960BASE/lib/cc1.960. (G960BASE\lib\cc1.exe in Windows.)

G960CC1PLUS Specifies an alternate name for the C++ compiler when using the gcc960
driver. The default pathname is G960BASE/lib/cc1plus.960
(G960BASE\lib\cc1plus.exe in Windows).

G960CPP Specifies an alternate pathname for the C preprocessor. The default is
G960BASE/lib/cpp.960. (G960BASE\lib\cpp.exe in Windows.)

G960INC Specifies the include file directory. The default is G960BASE/include.

G960LD Specifies an alternate linker pathname. The default is
G960BASE/bin/gld960 (G960BASE\bin\gld960.exe in Windows.)

G960LIB Specify library search path(s). The default is G960BASE/lib.

G960PDB Specifies the program database directory for whole-program and profiling
optimizations.

G960TMP, TMP,
or TMPDIR

Specifies the directory used for temporary work files. Set it to the name of
your temporary file directory.

I960ERR Windows variable that enables you to redirect errors to stderr rather than
stdout (the default). To use this capability, set I960ERR to any string, as
in: set I960ERR="Enable stderr"

gcc960 Compiler Driver 2

2-11

gcc960 and File Use
The compiler, assembler, and linker all use filenames specified on the
gcc960 command line to find and create input and output files. In addition,
translation and linking require temporary work files.

Input Files

The gcc960 command line allows filename inputs that support specification
of assembly-language files, preprocessed source files, C/C++ source files,
object files, and libraries. The compiler driver determines the type of each
input file by the filename extension, as follows:

The driver passes any other filename to the linker. The linker then
determines whether the file is an object file, library, or configuration file.

Input files not needed for processing are not processed. For example, if you
specify an assembly-language (filename.s) file and also specify the S
(Assembly) compile into assembly code option, gcc960 takes no action on
the assembly-language file.

Include Files

The gcc960 command line allows insertion of text from include files using
the #include preprocessor directive.

filename.c indicates a C source file that can contain macros
and preprocessor directives.

filename.cc,
.cpp, .cxx

indicates a C++ source file that can contain macros
and preprocessor directives.

filename.C indicates a C++ source file that can contain macros
and preprocessor directives (UNIX only).

filename.i indicates a preprocessed C source file.

filename.ii indicates a preprocessed C++ source file.

filename.s indicates an assembly-language source file.

filename.S indicates an assembly-language source file that can
contain preprocessor macros and directives.

2-12

2 i960® Processor Compiler User’s Manual

The I, I- and I. options affect the directories that are searched for the
file specified in the #include directive. These options are described in
detail in the Option Arguments and Syntax section. In the absence of the I
option, gcc960 searches the current directory for include files followed by
the G960BASE/include directory.

Output Files

Specifying the options -E, -S, or -c causes the compilation system to
produce output of the last phase that completes for each primary input file:
preprocessed source file, assembly-language file, or an unlinked object file
respectively. If no errors occur during processing, the output files created by
these options are usable as input to a future gcc960 invocation. Table 2-3
lists the compilation phases and their inputs and outputs.

Specifying the clist option generates a listing. gcc960 produces a separate
list file for each primary C/C++ source file. The list file is named by
replacing the C or C++ filename extension with .L.

Specifying the -M option causes the preprocessor to output rules
describing the dependencies of each source file, suitable for use with a
“make” utility. The clist and -M options are described in detail in
“Option Arguments and Syntax”.

NOTE. The include files icache.h, dcache.h, and timer.h used for
on-chip cache and timer control are not supported with the -ARP option.

gcc960 Compiler Driver 2

2-13

When specifying only one primary input file, the o (Output) option names a
single output file. Specifying multiple primary input files, or not specifying
an output filename, causes gcc960 to use the primary input filenames to
derive corresponding output filenames with the form filename.e, where:

filename is the primary input filename without its extension.

e is a single-letter extension indicating the contents of a
file, as follows:

s indicates an assembly-language file from the S option.

o indicates an object file from the c option.

L indicates a listing file from the clist option.

Unless otherwise specified, the destination directory for any output file is
the current working directory. If filename.e already exists in the
destination directory, the compilation system overwrites the existing file.

Table 2-3 Intermediate Inputs and Outputs

Last Phase
Completed Option Inputs Outputs

preprocessing M, E C/C++ source files display on standard
output

compilation S C/C++ source files
preprocessed files

assembly-language file
listing files

assembly c C/C++ source files
preprocessed files
assembly files

unlinked object files
listing files

linking (default) C/C++ source files
preprocessed files
assembly files
unlinked object files
relinkable object
files
libraries
configuration files

list files
executable file
relinkable object file

2-14

2 i960® Processor Compiler User’s Manual

The filename a.out is the default for the executable COFF object file from
the linker, in the absence of an Output option. For ELF files, the default is
e.out and for bout files, the default is b.out.

The following examples illustrate the creation and use of output filename
extensions:

• The command gcc960 -c -clist s proto.c proto1.i
produces the object files proto.o and proto1.o and the listing files
proto.L and proto1.L.

• The command gcc960 -c -o proto_v1.o -clist s proto.c
produces the object file proto_v1.o and the listing file proto.L.

• The command gcc960 -ACA -Tmcycx proto.c produces the
executable file b.out.

.gld Files
The .gld files provide a convenient mechanism for specifying default
options to the compiler and linker. It also provides a mechanism for
specifying the startup file and the libraries to be linked in. These files are
meant to be used with the gcc960 interface to the tools (GLD is an acronym
for gcc960 linker directive file even though it can be used to pass options to
the compiler as well).

By default, the installation program places several .gld files in the
directory $G960BASE/lib. These files have been written for the Cyclone
evaluation boards. To illustrate, the sample .gld file given below is
written for the Cyclone i960 Cx processor-based evaluation board.

gcc960 Compiler Driver 2

2-15

Example 2-1 Sample .gld File

gcc:-ACA

crt:%{!crt:%[~]/lib/%{mpid:%{G:crt960_e.o}%{!G:crt960_p.o}}
%{!mpid:%{G:crt960_b.o}%{!G:crt960.o}}}

ld:%{!Ttext:-Ttext 0xA0008000}%{*: -defsym
_heap_size=0x20000;_heap_base=(_end+0xf)&~0xf;_heap_end=_heap_base+
_heap_size-1;_stackbase=(_heap_end+0x40)&~0x3f -defsym
fpem_CA_AC=0x100}

lib:%{!nostdlib:-lmn -lll}

In the .gld file, you can place any options that the tools accept on the
command line. The .gld file in Example 2-1, includes options for the
gcc960 compiler driver and linker.

The command in the gcc: section defines the architecture setting for the
gcc960 compiler driver. This setting is used throughout the compilation
process. The options following gcc: are treated in the same fashion as if
they were specified on the gcc960 invocation line.

The commands in the crt:, ld:, and lib: sections are written
conditionally so that they interact with gcc960 command line switches. For
example, the lib: section indicates that the linker should be involved
with the -lmn and -lll options, unless the gcc960 -nostlib option
appears on the command line. These sections determine the startup code,
linker options and the libraries that are passed to the linker.

The crt: section is used to specify the startup code. In the example given
above, if the -crt option has not been specified on the compile line, then
the compiler driver uses the following for the startup code.

[G960BASE]/lib/crt960_e.o if both -mpid and -G options are on

[G960BASE]/lib/crt960_p.o if -mpid option is on -G is off

[G960BASE]/lib/crt960_b.o if -mpid option is off and -G is on

[G960BASE]/lib/crt960.o if both -mpid and -G options are off

2-16

2 i960® Processor Compiler User’s Manual

The ld: section contains options that are passed to the linker. This
example includes commands to place the .text section at address
0xA0008000, and defines symbols used to specify the heap and stack
locations.

The lib: section in the above example is used to specify that the compiler
driver should pass the options -lmn and -lll to the linker if the
-nostdlib option is off. This causes the linker to include the monitor and
the low-level libraries in its search path to look up unresolved symbols.

For more information on the linker directives used in this sample file, see
the i960 Processor Software Utilities User’s Guide.

gcc960 Options
This section describes the gcc960 compiler driver options that allow control
of various aspects of compilation:

Input processing and
output

The c, E, and S are the Stop-after options.
They stop the translation and linking process
after the preprocessing, syntax checking,
compilation, or assembly phase. A Stop-after
option causes the compilation system to save
the intermediate output of the last phase to
execute. The C (Keep-comments) and M (Mix)
options affect the contents of the output file.
The o (Output) option allows specification of
the output filename.

Specifying included
source text

The i (Preinclude) and I (Searchinclude)
options prepend and find include files of
C/C++ source text.

Defining macros The D (Define) and U (Undefine) options allow
specification of macros for conditional
compilation.

gcc960 Compiler Driver 2

2-17

Option Arguments and Syntax
Some compiler driver options take arguments. Case is significant in options
and arguments. A few options allow whitespace between the option and its
argument; this whitespace is shown in Table 2-4.

The options and arguments have default settings. In most cases, the option
is “off,” that is, not in effect. Default settings of options and arguments are
summarized in Table 2-4 and further discussed in the detailed description of
the option. Some option defaults are affected by environment variables,
which are described in the Getting Started manual.

Control contents of
generated object code

The A (Architecture), Fcoff/Felf/Fbout
(Object-format), F (Fine-tune), f (Optimize), g
(Debug), G (Generate), and O
(Optimization-level) options control the
instruction set, object format, debug
information, and optimization level.

Whole-program
optimizations

The fdb (Program Database), fprof

(Instrumentation), and gcdm (Decision Maker)
options allow for creation and use of
information necessary for advanced
optimizations involving multiple modules
and/or execution profiles. See “Program-Wide
Analysis and Optimization” for an overview of
whole-program and profile-driven
optimization.

Provide Information
on the compiling
process

The a (ANSI) option affects messages the
compiler produces about C/C++ syntax and
semantics. The v (Verbose), V (Version), and
v960 (Version-exit) options display
information about preprocessor, compiler,
assembler, and linker options. The Version
option displays the versions of each
compilation component and the host operating
system. The W (Warnings) option allows fine
control of the level of warnings emitted.

2-18

2 i960® Processor Compiler User’s Manual

This file uses the following notation:

[item] Square brackets indicate that the enclosed item is
optional.

. . . Horizontal ellipses indicate that you can use multiple
instances of the preceding item.

Table 2-4 gcc960 Option Summary (Sheet 1 of 3)

Option Name Purpose Default

Aarch Architecture Select the instruction set. AKB

ansi ANSI Detect non-ANSI source. off

C Comments Keep comments in preprocessor output. off

c Create Object Stop after creation of object file. off

clist arg ... Create listing Create a listing. off

crt Startup Do not use standard startup file. Use default

D macro
 [=value]

Define Define macro.

(default is one)

macro
undefined

darg Definitions Control macro processing. off

E Preprocess Preprocess source; terminate. Do not stop

Fbout | Fcoff |
 Felf

Format Generate b.out, COFF or ELF object
format.

Fbout

fdb Database Build program database directory (PDB). No database

fprof Instrument Compile with instrumentation; build PDB. No instru-
 mentation

f[no-]arg Fine-Tune Enable or disable an option. Varies with
option

G Big-endian Generate big-endian code. off

g[level] Debug Include debug information in objects. No debug info

gcdm,arg... Decision-make
r

Invoke gcdm960 decision-maker. off

h[elp] Help Display invocation help; terminate. off

I directory Searchinclude Search directory for include files. off

I- | I. I-dash, I-dot Control include-file search order. off

gcc960 Compiler Driver 2

2-19

ic960 iC-960 Accept iC-960 source dialect. off

imacros
 filename

Macros File Specify macros file for preinclusion. off

include
 filename

Preinclude Prepend text to source files. off

L directory Library
Directory

Specify directory for library search. off

M | MD | MM |
MMD

Make Generate make tool output. off

mstring Machine Machine-specific options. Varies with
option

nostdinc No Standard
Include

Exclude standard include (header) files. off

nostdlib No Standard
Libraries

Excludes standard libraries. off

O [level] Optimize Specify optimization level. O0

o filename Output Name output file. Varies with
object format

P Preprocess
Output

Preprocessor output control. off

pedantic
 [-errors]

Pedantic Controls ANSI error and warning
generation.

off

S Assembly Stop after assembly-language output. off

save-temps Save
Intermediate

Save intermediate files. Do not save

Tfile.gld Target Specify configuration file. off

traditional Traditional Allow traditional C. off

trigraphs Trigraphs Support ANSI trigraphs. off

U macro Undefine Undefine macro. off

V Version Display version information. No display

v960 Version-exit Display version information and exit. off

v Verbose Display invocation information. No display

W [no-]arg Warnings Enable/disable a warning. Varies

Table 2-4 gcc960 Option Summary (Sheet 2 of 3)

Option Name Purpose Default

2-20

2 i960® Processor Compiler User’s Manual

A (Architecture)
Selects instruction set.

Aarchitecture

architecture is one of:

SA, SB, KA, KB, CA, CF, JA, JD, JF, JT, HA, HD, HT, RD, RP, RM, RN, or VH.

Default

By default, the compiler uses the i960 KB architecture.

Discussion

Use the A (Architecture) option to specify the target instruction set. See also
the -mcore0, -mcore1, -mcore2, and -mcore3 options that let you
generate code that is compatible with multiple i960 processor types.

Note that with release 5.1 and later using the -ARP or -ARD options
generates code that is compatible with current and proposed future
variations on the i960 Rx architecture.

You can use predefined macros in your source text to conditionally compile
code for the selected architecture. The compiler defines a preprocessor
macro indicating the selected architecture. The preprocessor macro takes
the form:

_ _i960xx

xx is SA, SB, KA, KB, CA, CF, JA, JD, JF, JT, HA, HD, HT, RD,
RP, RM, RN, or VH. The compiler selects the value of xx
according to the architecture you specify.

w No Warnings Inhibits warnings. off

Zdirectory Program
database

Specify location of program database
directory (PDB).

G960PDB
specifies PDB

Table 2-4 gcc960 Option Summary (Sheet 3 of 3)

Option Name Purpose Default

gcc960 Compiler Driver 2

2-21

The _ _i960 macro is defined for all architecture selections. Use
_ _i960 to identify parts of your program specific to the i960 architecture
but not necessarily specific to a particular processor.

In addition, for compatibility with earlier releases, macros of the forms:
i960, _ _i960_ _, _ _i960xx_ _ and _ _i960_xx_ _ are defined.

When you link object modules compiled with incompatible architectures,
the linker displays the following warning message:

file: architecture i960:XX incompatible with output
i960:YY

file is the first file containing incompatible instructions the
linker encounters.

XX is one of the two-letter architecture abbreviations.

YY is one of the two-letter architecture abbreviations.

ansi (ANSI)
Disable non-ANSI features.(C-specific
option)

Disables features of gcc960 that are incompatible with ANSI C, such as the
asm, inline and typeof keywords, and nonstandard macros such as
I80960. ansi also enables the ANSI trigraph feature.

See the table shown under the traditional option for a summary of the
macros defined when the ansi or traditional options are used.

The alternate keywords _ _asm_ _, _ _inline_ _ and _ _typeof_ _
continue to function even if you specify ansi. You would not want to use
them in an ANSI C program, of course, but it can be useful to put them in
header files that might be included in compilations done with ansi.

ansi does not cause non-ANSI programs to be rejected with errors. For
that, the pedantic-errors option is required in addition to ansi.

2-22

2 i960® Processor Compiler User’s Manual

The macro _ _STRICT_ANSI_ _ is predefined when the ansi option is
used. Some header files may notice this macro and refrain from declaring
certain functions or defining certain macros that the ANSI standard doesn’t
call for; this is to avoid interfering with any programs that might use these
names for other things.

C (Comments)
Keep comments.

Directs the compiler not to discard comments, and to pass them through to
the preprocessor output file. Comments in arguments of a macro call are
copied to the output before expansion of the macro call. Used with the E
option.

c (Create Object)
Stop after creation of object file.

Directs the compilation system to stop after creating the object file(s).
Object files are named by replacing .c, .cc, .cpp, .cxx,.i, .ii, .S, or
.s with .o at the end of the input filenames. If you specify an object file as
input, the compiler does nothing with the file.

clist (Listing)
Creates a listing.

clist arg...

gcc960 Compiler Driver 2

2-23

Generates a listing of the types described below. The list file has the name
filename.L where filename is the name of the original C/C++ source file.
Multiple arguments are allowed. arg is one of the following letters:

s lists the primary source text, that is, source text from
files named on the command line.

i adds source text from included files to the primary
source text listing.

o adds the assembly language generated by the compiler
to the listing file.

m adds expanded preprocessor lines to the primary source
text listing.

c adds conditionally noncompiled source text to the
primary source text listing.

crt (Startup)
Omit standard startup file.

Do not use the standard startup file when linking. A replacement crt file
should come first in the list of object files. For all i960 processor types
except the Rx, the standard startup file is crt960.o. For i960 Rx
processors, the standard startup file is crtrp.o.

D (Define)
Defines a macro.

D macro[=value]

With no =value, defines macro as 1. (This is exactly the same as D
macro=1.)

2-24

2 i960® Processor Compiler User’s Manual

D macro=value

Defines macro as value.

d (Definitions)
Control macro processing.

• dD Tells the preprocessor to pass all macro definitions into the output,
in their proper sequence in the rest of the output.

• dM Tells the preprocessor to output only a list of the macro definitions
that are in effect at the end of preprocessing.

• dN Like dD except that the macro arguments and contents are
omitted. Only #define macro is included in the output.

These should be used only with -E, and they affect preprocessor output.

E (Preprocess)
Run only the C/C++ preprocessor.

Directs compilation system to preprocess all the C/C++ source files
specified and send the results to standard output.

gcc960 Compiler Driver 2

2-25

Fbout | Fcoff | Felf (Format)
Specifies the object file format.

Fbout specifies the b.out object format. This is the default. You
can add the g option to specify the style of
symbolic-debug symbols created. Note that you cannot
use this option with the -ARP or -ARD architecture
setting or with C++ modules.

Fcoff specifies the COFF object format, and causes the
assembler to be invoked as gas960c, rather than gas960.
You can add the g option to specify the style of
symbolic-debug symbols created. The compiler does not
support using the object module format with C++.

Felf specifies the ELF object format, and causes the
assembler to be invoked as gas960e, rather than gas960.
If you add the g option, the DWARF style of
symbolic-debug symbols is used.

fdb (Database)
Builds optimization database.

All modules subject to program-wide optimization must be initially
compiled with the fdb option. This option causes the insertion of program
database information in the object modules, and it requires a minimum
module-local optimization level of O1 (although higher module-local
optimization levels are allowed).

This option does not otherwise change the code or data generated for the
object modules. It simply makes optimization information collected during
the initial compilation available to gcdm.

2-26

2 i960® Processor Compiler User’s Manual

Before using the fdb option, you should read “Program-Wide Analysis and
Optimization”, and “gcdm Decision Maker Option”.

If you intend to use execution profiles when optimizing your application,
you should read “Profile Data Merging and Data Format (gmpf960)”.

fprof (Instrument)
Instruments code for profile creation.

This option inserts execution profile instrumentation code into the code
generated during compilation, so that when the linked program is executed,
a profile can be collected.

Before using the fprof option, read “Program-Wide Analysis and
Optimization” through “gcdm Decision Maker Option” for general
strategies on using CTOOLS profiling and other optimization features.

This option enables the fdb option, which instructs the compiler to insert
program database information into the object modules and create the
program database. fprof also requires a minimum module-local
optimization level of O1 (although higher module-local optimization levels
are allowed).

When you use the fprof option, a special profiling library required for
profile collection (libqf) is linked automatically. If your target
environment does not support file I/O, you must explicitly link an alternate
profiling library (libq). The profiling libraries provided are described in
Chapter 2 of the i960 Processor Library Supplement.

Note that compiling with the fprof option creates object modules useful
only for collecting a profile. If you compile with fprof and later do not
want a profile, you must then use substitutions to replace every
instrumented module in prog, or you must recompile the modules without
the fprof option. See “Program-Wide Analysis and Optimization” for
more information on this subject.

gcc960 Compiler Driver 2

2-27

f (Fine-Tune)
Enable or disable specific options.

In most cases, you will want to optimize code automatically by using the
various O optimizations. (See the section on the -O option.) In some cases,
however, you may want to enable or disable specific features for a given
optimization level. For example, at optimization level O0, you cannot
enable instruction scheduling with fschedule-insns. As with any
optimization process, you should first compile without the option and then
recompile with the desired option enabled/disabled. You can then compare
the generated assembly code and see if adding/removing the option
produced the desired result.

Before using any of these options, read “Program-Wide Analysis and
Optimization” through “gcdm Decision Maker Option” for an overview
using the compilation system’s performance features.

f[no-]access-control Enable/Disable all access checking.
This is normally used to work around
access control bugs.
faccess-control is the default.
This is C++ specific option.

f[no-]asm Do [not] recognize asm, inline or
typeof as a keyword. These words can
then be used as identifiers. You can use
_ _asm_ _, _ _inline_ _ and
_ _typeof_ _ instead. This option
provides compatibility with strict ANSI
standards. Do not use this option with
C++ files. See also the -ansi option.

2-28

2 i960® Processor Compiler User’s Manual

f[no-]bbr Enable/disable basic block
rearrangment. This option is normally
used in a second-pass recompilation,
but it can also be used in single-pass
compilation.

f[no-]coalesce Coalesces memory references into a
single larger memory reference, thus
taking better advantage of the i960
processor’s burst bus. The compiler
only coalesces memory references that
can be proven to be contiguous and
whose base address can be proven to be
aligned properly. fcoalesce enables
fshadow-mem.

f[no-]coerce Enable/disable byte/short optimization.

f[no-]cond-mismatch Allow/do not allow conditional
expressions with mismatched types in
the second and third arguments of the
?: operator. The value of such an
expression is void.

f[no-]condxform Performs a special conditional
transformation that allows the use of
the i960 Jx, Hx, and Rx processors’
sel<cc>, addo<cc>, and subo<cc>
instructions. You cannot use this
optimization unless the AJx, AHx, or
ARx option is specified.

f[no-]conserve-space Allocate uninitialized global variables
into the common segment, as C does.
This saves space in the executable at
the cost of not diagnosing duplicate
definitions. fno-conserve-space is
the default. This is a C++ specific
option.

gcc960 Compiler Driver 2

2-29

f[no-]constprop Performs constant propagation and
folding. This optimization replaces uses
of variables known to have a constant
value with the constant value, allowing
other optimizations to see these
constants and possibly generate more
optimized code.

f[no-]copyprop Performs copy propagation. This
optimization replaces uses of registers
that are destinations of register to
register copies with the source register
(when possible). This allows
unnecessary copies to be deleted later
in the compilation.

f[no-]cse-follow-jumps During common subexpression
elimination (CSE), scan through jump
instructions in only certain cases. This
is not as powerful as completely global
CSE, but allows for faster compilation.

f[no-]cse-skip-blocks Enable/disable a limited form of global
CSE.

f[no]dollars-in-

identifiers

Accept “$” in identifiers. ANSI C
forbids “$” in identifiers.
fno-dollars-in-identifiers is
the default for C and
fdollars-in-identifiers is the
default for C++.

f[no-]expensive-

optimizations

Perform/skip a number of minor
optimizations that are relatively
expensive. This option is enabled with
optimization level O2.

f[no-]fancy-errors Display/do not display C/C++ source
line and caret (̂) with error messages.

2-30

2 i960® Processor Compiler User’s Manual

f[no-]float-store Store/do not store floating-point
variables in registers, and do not
perform common sub-expression
elimination on floating point
expressions.

f[no-]force-addr Force/do not force memory address
constants to be copied into registers
before doing arithmetic on them. This
may produce better code.

f[no-]for-scope Limit the scope of variables declared in
a for-init statement to the for loop
itself, as specified by the draft C++
standard. When you specify
-fno-for-scope, the scope of
variables declared in a
for-init-statement extends to the end of
the enclosing scope, as was the case in
old (traditional) implementations of
C++. for-scope is the default. This is
a C++ specific option

f[no-]inline-functions Inline/do not inline all simple functions
into their callers. The compiler
heuristically decides which functions
are simple enough to be worth inlining
in this way. When all calls to a given
function are inlined, and the function is
declared static, then the function is
normally not output as assembler code
in its own right.

fint-alias-ptr indicates to the compiler that pointer
objects may be referenced as 32-bit
integers and vice versa.

gcc960 Compiler Driver 2

2-31

The aliasing options listed above tell the compiler not to use certain kinds of
type information when disambiguating memory references, even though
ANSI C section 3.3 “Disambiguation Constraints,” allows this.

The rules enforced by the aliasing options are transitive. For example,
when user code accesses parts of double objects as short, then
fint-alias-real and fint-alias-short should both be used.

The rules are also applied recursively to structs and unions. That is to
say, when fint-alias-ptr is in use, then a union that has a member of
pointer type is assumed to be aliased by 32-bit integers or by structs or
unions containing 32-bit integers.

Note that ANSI C 3.3 requires the compiler to assume that char references
alias all types, so code using char pointers is already correct and using
these options is not necessary.

Using all three aliasing options effectively disallows all use of type
information in memory disambiguation. This is bad both for compiler
performance and the efficiency of generated code.

fint-alias-real indicates to the compiler that float,
double, and long double objects (or
parts thereof) may be referenced as
32-bit integers and vice versa.

fint-alias-short indicates to the compiler that four-byte
integer objects may be referenced as
two-byte objects and vice versa.

f[no-]enum-int-equiv Allow implicit conversion of integer
to enumeration types. Normally the
compiler allows conversion of enum
to int, but not vice versa.
fno-enum-int-equiv is the
default. This is a C++ specific option.

2-32

2 i960® Processor Compiler User’s Manual

f[no-]huge-objects The implementation of virtual
function calls assumes that the size of
an object can be represented with a
short integer. Use this flag to support
virtual function calls for objects that
cannot be represented by a short
integer. Use this flag only if the
compiler requests you to do so. Note
that the C++ library sources need to
be recompiled with fhuge-objects
if you plan to link with the C++
libraries. fno-huge-objects is the
default. This is a C++-specific option.

f[no-]keep-inline-

functions

Even when all calls to a given
function are inlined, a separate
run-time callable version of the
function is still output.

f[no-]marry_mem Rejoin multi-word moves split apart
by fsplit_mem (where possible).

f[no-]memoize-lookups
f[no-]save-memoized

Use heuristics to compile faster.
These heuristics are not enabled by
default, since they are only effective
for certain input files. Other input
files compile more slowly. You may
use either option to compile using
heuristics. These are C++ specific
options.

fmix-asm Intermix C/C++ code as comments
within the assembly code.

f[no-]rerun-cse-
after-loop

Re-run common subexpression
elimination after loop optimizations
have been performed.

gcc960 Compiler Driver 2

2-33

f[no-]sblock Enable/disable superblock formation.
This option is normally used in a
second-pass recompilation, but it can
also be used in a single-pass
compilation.

fsigned-char |
fno-signed-char

Make the type char be signed, like
signed char (fsigned-char), or
make the type char be unsigned, like
unsigned char
(fno-signed-char).
fsigned-char is equivalent to
fno-unsigned-char.

By default, char variables are treated
as unsigned.

f[no-]schedule-insns Attempt to reorder instructions to
eliminate execution stalls due to
required data being unavailable. This
allows other instructions to be issued
until the result of a previously issued
instruction is required.

This option makes debugging more
difficult, since the code for multiple
C/C++ statements may become
intermixed, causing execution to
make numerous jumps while
single-stepping.

f[no-]schedule-insns2 Similar to fschedule-insns, but it
requests an additional pass of
instruction scheduling after register
allocation has been done.

2-34

2 i960® Processor Compiler User’s Manual

f[no-]shadow-globals Shadow memory locations with
global register variables where
possible. Memory locations that are
known not to change are temporarily
allocated to registers. This option
makes debugging more difficult,
since objects allocated in memory
may not always be up-to-date.

f[no-]shadow-mem Shadow memory locations with
register variables where possible.
Memory references whose addresses
are known to be the same are
temporarily allocated to registers.
This option makes debugging more
difficult, since objects allocated in
memory may not always be
up-to-date. fshadow-mem is similar
to fshadow-globals, but its
analysis is considerably more
sophisticated. In most cases,
fshadow-mem allows more
optimization than
fshadow-globals, but compile
time is slower.

f[no-]space-opt Optimize to reduce the size of the
generated code.

f[no-]split_mem Split all multi-word moves into
sequences of single word moves to
improve copy propagation.

f[no-]strict-prototype Treat a function declaration with no
arguments, such as “int foo ();”,
to mean that the function foo takes
no arguments. fstrict-prototype
is the default. This is a C++ specific
option.

gcc960 Compiler Driver 2

2-35

f[no-]this-is-variable Permit assignment to “this”.
fno-this-is-variable is the
default. This is a C++ specific option.

funsigned-char |
unsigned char

Make the type char be unsigned, like
(funsigned-char), or make the
type char be signed, like signed
char (fno-unsigned-char).
funsigned-char is equivalent to
fnosigned-char.

By default, char variables are treated
as unsigned.

f[no-]strength-reduce Perform loop strength reduction and
eliminate induction variables. See the
Glossary for more information.

fsyntax-only Check the syntax of C/C++ source
file(s), without generating an object
file.

f[no-]thread-jumps Test whether a jump branches to a
location where another comparison
subsumed by the first is found. If so,
the first branch is redirected to either
the destination of the second branch
or to a point immediately following
it, depending on whether the
condition is known to be true or false.

f[no-]unroll-all-loops Perform the optimization of loop
unrolling on all loops. This is not
recommended as it increases code
size and usually degrades runtime
performance. funroll-all-loops
enables both fstrength-reduce
and frerun-cse-after-loop.

2-36

2 i960® Processor Compiler User’s Manual

f[no-]unroll-loops Break up a loop into several iterations
of the loop body. This typically
improves performance, since the
loop’s exit condition is not checked
for each iteration. In a few cases,
however, the increased code size may
decrease performance.

This option uses several decision
criteria determine how far to unroll a
loop. For example, when the loop
body is small and there are relatively
few iterations, it may choose to
completely unroll the loop. For loops
with larger bodies and more
iterations, it may partially unroll the
loop and change the increment
counter accordingly.
funroll-loops enables both
fstrength-reduce and
frerun-cse-after-loop.

fvirtual-opt Optimizes the dispatch of virtual
functions. This optimization can be
used only in a 2-pass scheme. By
default, this optimization is not
enabled. This optimization can be
used only when certain conditions are
met. See “Optimizing Virtual
Function Dispatch” in Chapter 12 for
more details. This is a C++-specific
option.

f[no-]volatile Consider/do not consider all memory
references through pointers to be
volatile.

f[no-]volatile-global Consider/do not consider all
references to global variables to be
volatile.

gcc960 Compiler Driver 2

2-37

G (Big-endian)
Generate big-endian code.

Compile for a target that uses big-endian memory. This option requires that
Fcoff or Felf be in effect. This option is also passed to gas960c/gas960e
and gld960. When G is specified, the preprocessor symbol
__i960_BIG_ENDIAN__ is defined.

g (Debug)
Specifies debug information.

g [level]

where level specifies the amount of debug information. Note that the
meaning of level varies depending on the object format in use, as described
below.

Using g0 disables debug information. (This is the same as not using the g
option.)

For b.out and COFF, debug level settings of g, g1, g2, and g3 all have the
same effect: they specify “normal” debug information.

f[no-]writable-strings Store/do not store string constants in
the writable data segment and make
them unique. This is for
compatibility with old programs that
assume they can write into string
constants.

2-38

2 i960® Processor Compiler User’s Manual

When the default object-file format (b.out) is selected, DBX-style symbolic
debug directives suitable for use only with gdb960 are output.

For ELF/DWARF, debug level settings of g, g1, and g2 all have the same
effect: they specify all DWARF debug information except preprocessor
macros.

For ELF/DWARF, a debug level setting of g3 specifies all DWARF debug
information, including preprocessor macros in the debug information. If
your debugger (like gdb960) does not make use of preprocessor macro
information, you can save space in your object files by dropping to
ELF/DWARF debug level 2.

The g (Debug) option does not inhibit optimization. When you specify the
g option but do not specify the O (Optimize) option, the optimization level
defaults to O0.

Specifying an optimization level higher than O0 can inhibit the effectiveness
of the symbolic debug information. For example, if you set a breakpoint on
a source line that has been removed during optimization, the breakpoint is
never hit. Or if you try to print the value of a variable that has been
optimized away, an erroneous value is displayed. In general, as the
optimization level increases, the reliability of the symbolic debug
information decreases.

When you are using the ELF object module format (Felf), g causes the
compiler to produce DWARF debug information. This debug information
format is richer than that of other supported OMFs, and allows more
reliable debugging under optimization. However, even with DWARF, there
are situations where debugging behavior does not agree with the debugging
behavior of unoptimized code.

gcdm,arg[,arg]... (Decision Maker)
Invoke gcdm960 optimization decision
maker.

gcdm,arg[,arg]...

gcc960 Compiler Driver 2

2-39

The gcdm option provides a high level of automation for whole-program or
profile-driven optimization processes. The compiler driver and the linker
both use the gcdm option and its arguments.

The gcdm option is flexible and powerful, and therefore requires a certain
level of understanding in order to use it effectively. For these reasons, it is
documented in a separate file (“gcdm Decision Maker Option”) in this
manual. Before using the gcdm option, you should read “Program-Wide
Analysis and Optimization”, and become familiar with the information in
“Profile Data Merging and Data Format (gmpf960)”.

I (Searchinclude)
Specifies include file directory.

Idirectory

Adds directory to the end of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system
header file directories. When you use more than one I option, the
directories are scanned in left-to-right order; the standard system directories
come after.

I- | I. (Include-dash, Include-dot)
Controls search order and paths.

I- | I.

Any directories specified with I options before the I- option are searched
only for #include "file"; they are not searched for #include <file>.

2-40

2 i960® Processor Compiler User’s Manual

When additional directories are specified with I options after the I-, these
directories are searched for all #include directives. (Ordinarily all I
directories are searched this way.)

The I- option inhibits the use of the current directory as the first search
directory for #include "file". The current directory is searched for
#include "file" only when it is requested explicitly with I. (I"dot"). It
is not searched automatically with I-. Specifying both I- and I. allows
you to control which directories are searched before the current one and
which are searched after.

ic960 (iC-960 Compatibility)
Accept iC-960 source dialect.

Accept the same C dialect as ic960 R3.0 or later. Note that this does not
make the generated code compatible. To make the generated code
compatible, the mic3.0-compat option is necessary. This is a C-specific
option.

imacros (Macros File)
Specifies macros file.

imacros file

Process file as input, discarding the resulting output, before processing
the regular input file. Because the output generated from file is discarded,
the only effect of imacros file is to make the macros defined in file
available for use in the main input. Any D and U options on the command
line are always processed before imacros file, regardless of the order in

gcc960 Compiler Driver 2

2-41

that they are written. All the include and imacros options are processed
in the order in that they are written. All imacros options are processed
before all include options.

include (Preinclude File)
Specifies file for preinclusion.

include file

Process file as input before processing the regular input file. In effect, the
contents of file are compiled first. Any D and U options on the command
line are always processed before include file, regardless of the order in
that they are written. All the include and imacros options are processed
in the order in that they are written. All imacros options are processed
before all include options.

j (Errata)
Specifies processor errata.

j num

Use the j (Errata) option to cause the compilation system to generate code
with workarounds for specified processor errata. A num argument of 1
generates code to work around the Cx processors’ DMA errata.

2-42

2 i960® Processor Compiler User’s Manual

L (Library Directory)
Specifies directory for library search.

L directory

Adds directory to the list of directories to be searched for libraries. See
the i960 Processor Software Utilities User’s Guide for a complete
explanation of the directory search order.

l (Library)
Specifies library for linking.

llibrary

Search a standard list of directories for a library file named
liblibrary.a. The linker uses this file as if it had been specified
precisely by name.

Several standard directories are searched, plus any that you specify with L.

Normally the files found this way are library files — archive files whose
members are object files. The linker handles an archive file by scanning
through it for members that define symbols that so far have been referenced
but not defined. However, when the file found is an ordinary object file, it is
linked in the usual fashion. The only difference between using an l option
and specifying a filename is that l searches several directories. Under
normal operation, gcc960 supplies the options lqf, lc, and lm to the linker.
For architectures without floating-point support, the option lh is also
passed to the linker.

gcc960 Compiler Driver 2

2-43

M | MD | MM | MMD (Make)
Generate make tool output.

M Tells the preprocessor to output a rule suitable for a
make tool describing the dependencies of each source
file. For each source file, the preprocessor outputs one
make rule whose target is the object filename for that
source file and whose dependencies are all the files
#included in it. This rule can be a single line or can be
continued with \newline if it is long. Using this option
stops compilation after preprocessing.

MM Like M, but the output mentions only the user-header
files included with #include "file". System header
files included with #include <file> are omitted.

The M and MM options output the dependecy information to stdout.

The MD and MMD options behave in a fashion similar to the M and MM options
respectively. However, the MD and MMD options write the dependency
information to the file filename.d instead of to stdout where filename is the
name of the C/C++ source file without the filename extension. These
options cause a separate dependency file to be generated for each of the
C/C++ source files.

These options stop compilation after preprocessing. The M and MM options
also suppress the preprocessor output.

2-44

2 i960® Processor Compiler User’s Manual

m (Machine-specific Options)
Various options.

mstring Specifies a machine-specific option.

mabi Generate 80960 ABI-conformant code. This
causes the char type to be signed, enums to be
four bytes in size and signed, and changes
default alignment rules for structs and unions.
See “C Language Implementation” for more
information.

masm-compat Generate special Intel pseudo-operations for
long compare-and-branch operations. gas960,
gas960c, or gas960e do not require these
pseudo-ops in order to generate correct code,
but the ASM960 R3.5 or earlier assembler
generates out-of-range errors for these
instructions when this option is not used. This
should not be used with gas960, gas960c, or
gas960e, because the split compare-and-branch
instructions are slower and larger than the
combined ones.

gcc960 Compiler Driver 2

2-45

mcave Generate all functions as CAVE secondary.
When you select mcave, the compiler generates
special CAVE entries for all functions in the
compilation unit. This prepares the functions
for link-time compression. The cave entries
resemble the following:

.section .text

_foo:

 lda L1,reg

 call __dispatcher

 ret

.section cave

 .word L2-L1,0

L1:

 function body

L2:

At runtime, the dispatcher decompresses the
function bodies and transfers control to them.
This mechanism saves runtime memory.

See the discussion of #pragma cave in “C
Language Implementation” for information on
this option.

mcmpbr |

mno-cmpbr

Generate/do not generate code that uses
compare-and-branch instructions whenever
possible.

mcode-align |
mno-nocode-align

Generate/do not generate alignment directives
prior to labels that are not entered from above.
mcode-align is the default when the Cx or Hx
architecture is specified.

2-46

2 i960® Processor Compiler User’s Manual

* Note that the big-endian mode is not supported for VH.

mdouble4 Generate code so that the size and alignment of
double is the same as float.

mlong-double4 Generate code so that the size and alignment of
long double is the same as float.

mcore0 | mcore1 |
mcore2 | mcore3 |

generate code that is compatible with multiple
i960 processor types. Additionally, when you
use an -mcore option, you can include another
-A switch to generate code that is optimized for
a particular architecture, but still compatible
with a group of architectures. The table below
lists the architectures that are supported by each
-mcore option and the -A options that you
can use with them.

Table 2-5 Mcore Supported Architectures

Option Name Compatible Architectures Can Be Used With

mcore0 Jx, Hx, Rx -AJA, -AJD, -AJF, -AJT,
-AHA, -AHD, -AHT,
-ARD, -ARP, -ARM, -ARN,
or -AVH*.

mcore1 Kx, Sx, Cx, Jx, Hx Any architecture option
except -ARP, -ARD, -ARM,
or-ARN.

mcore2 Jx, Hx -AJA, -AJD, -AJF, -AJT,
 -AHA, -AHD, -AHT or
-AVH*.

mcore3 Cx, Jx, Hx -ACA, -ACF, -AJA, -AJD,
-AJF, -AJT, -AHA, -AHD,
-AHT or -AVH*.

gcc960 Compiler Driver 2

2-47

NOTE. The mdouble4 and mlong-double4 options force floating-point
arguments to be passed in single-precision format. When your source
program explicitly calls functions (such as sin and printf) that require
double-precision or extended-precision arguments, the arguments passed
to these functions are incorrect.

mi960_align=n Aligns struct data on the byte boundary
that is a multiple of n. (Legal values are 1,
2, 4, 8, 16.)

mic-compat
mic2.0-compat

Use ic960 R2.0’s rules for size and
alignment of types. This option also causes
the compiler to use the ic960 compiler’s
rules for promotion of char, unsigned
char, short, and unsigned short
types at function call and return.

mic3.0-compat Use ic960 R3.0’s rules for size and
alignment of types and other conventions.
These are largely the same as gcc960’s, but
ic960 R3.0 selects the size of enums based
on their value. Additionally, ic960 R3.0
assumes that type char is signed by default,
whereas gcc960 assumes it is unsigned.
The mic3.0-compat option emulates
ic960’s behavior.

2-48

2 i960® Processor Compiler User’s Manual

mleaf-procedures |
mno-leaf-procedures

Generate/do not generate output that
contains leaf procedures: these are
procedures that may be entered with the
bal instruction rather than call. The
linker automatically promotes call
instructions into bal instructions when
appropriate. This option makes debugging
more difficult. mleaf-procedures is the
default at O2 or higher.

mlong-calls Generate all call instructions as calljx
instead of callj. This is used where the
distance between the call site and the
called function may exceed callj’s range.
Using this option degrades code execution
speed and increases code size.

mpic Generate position-independent references
to any objects in the text section. Such
objects are functions, const file-scope
variables, switch tables, and strings.
Position independent code references are
made relative to the current instruction
pointer (IP).

mpid Generate position-independent references
to objects in the bss, common, and data
sections. Such objects are non-const
file-scope variables, and strings when the
fwritable-strings option is used.
Position independent data references are
made relative to register g12. Register g12
is not used for any other purpose.

mpid-safe Reserve register g12 as the position
independent data bias register, but do not
generate code for position independent
data.

gcc960 Compiler Driver 2

2-49

msoft-float Generates output containing library calls
for architectures without on-chip floating
point support (all except KB, SB). This is
set automatically, based on the architecture
option.

mstrict-align |
mno-strict-align

This option determines whether or not the
compiler risks generating memory
references that are not provably aligned.
When mstrict-align is disabled, the
compiler occasionally generates
potentially unaligned references when it
seems advantageous to do so. When
mstrict-align is enabled, sequences of
smaller memory references are used
instead of larger ones that might not be
correctly aligned. The default is on for
i960 Cx and Jx processors.

mstrict-ref-def Generate code so that an uninitialized
file-scope variable definition causes space
to be allocated in the .bss section instead
of as a .comm symbol. This enforces a
single unique definition of a variable.

mtail-call |
mno-tail-call

Generate output that converts (does not
convert) call instructions immediately
followed by ret instructions to branches
to the call target. While generating faster
code, this option makes debugging more
difficult. mtail-call is the default at O2
or higher.

mwait=n Specifies the expected number of
wait-states for the memory being used in
the target. This can make a difference in
which optimizations are cost-effective and
in the instruction scheduling optimization.
n must be in the range 0.32.

2-50

2 i960® Processor Compiler User’s Manual

nostdinc (No Standard Header Files)
Do not use standard header files.

Do not search the standard system directories for header files. Only the
directories specified with I options (and the current directory, when
appropriate) are searched. Using nostdinc and I-, you can eliminate all
directories from the search path except those you specify.

nostdlib (No Standard Libraries)
Do not use standard libraries.

Excludes standard libraries.

O (Optimize)
Specifies optimization level.

O[level]

The O[level] option specifies the level of optimization as described be-
low.

O0 Turns optimization off, and additionally disables default
optimizations that may interfere with debugging. This is
the default.

O or O1 These options enable basic optimizations, including:
advanced register allocation, common subexpression
elimination, loop invariant code motion, expression
simplification and instruction combination, jump

gcc960 Compiler Driver 2

2-51

optimization, dead-code elimination, and i960
processor-specific peephole optimization. O1 is
equivalent to O. This is the default setting when you use
the fdb (Program Database) or fprof (Instrument)
option.

O2 This level includes the O or O1 optimizations described
above, and the following additional optimizations:

fcopyprop, fcondxform, fcse-follow-jumps,
fcse-skip-blocks, fexpensive-optimizations,
frerun-cse-after-loop, fschedule-insns,
fschedule-insns2, fshadow-globals,
fstrength-reduce.

The O2 level enables strength-reduction, combination of
more than one variable value into a single register, copy
propagation, tail-call elimination, leaf-procedure
optimization, and instruction reordering (scheduling) to
make use of the particular i960 processor’s pipeline and
superscalar capabilities.

O3 This level includes the O2 optimizations described
above, and the following additional optimizations:

fcoerce, fconstprop, finline-functions,
fshadow-mem, funroll-loops.

O4 This level includes the O3 optimizations described
above, and the following additional optimizations:

fcoalesce, fmarry_mem, fsplit_mem.

O5 This setting specifies program-wide optimization.
Before using the O5 option, you should read
“Program-Wide Analysis and Optimization”, and “gcdm
Decision Maker Option”.

Note that the O5 level is not accepted directly by the
gcc960 driver. It is accepted only in the subst argument
of the gcdm option.

2-52

2 i960® Processor Compiler User’s Manual

o (Output)
Specifies output filename.

o filename

Specifies output filename.

P (Preprocessor Output)
Preprocessor output control.

Inhibits generation of #-lines with line-number information in the output
from the preprocessor. This is useful when running the preprocessor on
non-C/C++ code that is intended for a program that might be confused by
the #-lines.

pedantic[-errors] (Pedantic)
Controls ANSI messages

pedantic causes the compilation system to issue all the warnings specified
by ANSI C (such as when text other than a comment follows #else or
#endif) and to reject programs that use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without
this option (though a rare few require ansi). However, without this option,
certain GNU extensions and traditional C features are supported as well.
With this option, they are rejected.

pedantic does not cause warning messages for use of the alternate
keywords whose names begin and end with _ _ (double underscore).

gcc960 Compiler Driver 2

2-53

pedantic-errors is the same as pedantic, except that it causes the
compilation system to issue errors instead of warnings.

S (Assembly)
Create assembly output.

Compile into assembly code but do not assemble. The assembly output
filename is made by replacing .c, .cc, .cpp, .cxx,.i, or .ii,
with.S, or .s at the end of the input filename. Do nothing for assembly
source files or object files specified as input.

save-temps (Save Intermediates)
Save intermediate files.

Store the usual “temporary” intermediate files permanently; place them in
the current directory and name them based on the source file. Thus,
compiling foo.c with -c -save-temps would produce files foo.i and
foo.s, as well as foo.o.

2-54

2 i960® Processor Compiler User’s Manual

stdlibcpp
Link Standard C++ libraries

Instructs the compiler to link in the standard C++ libraries when creating an
absolute module. The standard C++ libraries are included in the search path
ahead of the standard C libraries. The distribution includes only an
implementation of the C++ iostream classes. Future releases will add more
modules. Note that this option has no effect if nostdlib is specified.

T (Target)
Specifies .gld file.

Tstring where string identifies a target-specific configuration
file, string.gld.

Causes gcc960 to configure itself for a specific target board.

traditional (Traditional)
Allow traditional C.

Attempt to support some aspects of traditional C compilers, specifically:

• All extern declarations take effect globally even when they are
written inside of a function definition. This includes implicit
declarations of functions.

• The keywords typeof, inline, signed, const, and volatile are
not recognized.

gcc960 Compiler Driver 2

2-55

• Integer types unsigned short and unsigned char promote to
unsigned int.

• All automatic variables not declared register are preserved by
longjmp. Ordinarily, GNU C follows ANSI C: automatic variables not
declared volatile may be clobbered.

• In the preprocessor, comments convert to nothing at all, rather than to a
space. This allows traditional token concatenation.

• In the preprocessor, macro arguments are recognized within string
constants in a macro definition (and their values are stringified, though
without additional quote marks, when they appear in such a context).
The preprocessor always considers a string constant to end at a
newline.

• The predefined macro _ _STDC_ _ is not defined when you use
traditional, but _ _GNUC_ _ is (since the GNU extensions that
_ _GNUC_ _ indicates are not affected by traditional). When you
need to write header files that work differently depending on whether
traditional is in use, by testing both of these predefined macros
you can distinguish four situations: GNU C, traditional GNU C, other
ANSI C compilers, and other C compilers.

• For C++ programs, traditional has the same effect as
-fthis-is-variable as well as all the effects described above.

The following table summarizes the macros defined when the
traditional or ansi option is used.

_ _STRICT_ANSI_ _ _ _STDC_ _ _ _GNUC_ _

traditional X

ansi X X X

none X X

2-56

2 i960® Processor Compiler User’s Manual

trigraphs (Trigraphs)
Support ANSI C trigraphs.

Process ANSI standard trigraph sequences. These are three-character
sequences, all starting with ??, that are defined by ANSI C to stand for
single characters. For example, ??/ stands for \, so ’??/n’ is a character
constant for a newline.

The ansi option also enables trigraphs.

U (Undefine)
Undefines a preprocessor macro.

Umacro

Undefines the named preprocessor macro.

gcc960 Compiler Driver 2

2-57

V (Version)
Display tool version numbers.

v (Verbose)
Display tool version numbers and
subprocess commands.

v960 (Version, exit)
Display tool version numbers and exit.

2-58

2 i960® Processor Compiler User’s Manual

W (Warnings)
Enables / disables specific warnings.

W[string]

W With no arguments, this option prints extra
warning messages for certain events,
including:
longjmp() warnings

Warn when a nonvolatile automatic variable
might be changed by a call to longjmp().
These warnings are possible only in an
optimizing compilation.

The compiler sees only the calls to
setjmp(). It cannot know where
longjmp() is called; in fact a signal handler
could call it at any point in the code. As a
result, you may get a warning even when
there is in fact no problem because
longjmp() cannot actually be called at the
place that would cause a problem.

return and return(value)

Warn when a function can return either with
or without a value. (Falling off the end of the
function body is considered returning with a
value.)

gcc960 Compiler Driver 2

2-59

W (continued) null effect

Warn when an expression-statement contains
no side effects.

no-op comparison

Warn when an unsigned value is compared
against zero with < or <=.

between-ness comparison

Warn when a comparison like x<=y<=z is
used; this is equivalent to {(x<=y ? 1 :
0) <=z}, which is a different interpretation
from that of ordinary mathematical notation.

obsolete storage class specification

Warn when storage-class specifiers like
static are not first in a declaration.
According to the ANSI C standard, this
usage is obsolescent.

partially bracketed initializer

Warn when an aggregate has a partially
bracketed initializer.

Wall Enable the following warning options: W,
Wchar-subscripts, Wcomment, Wformat,
Wreturn-type, Wswitch, Wtrigraphs,
Wuninitialized, Wunused. There is no
Wno-all option.

Waggregate-return Warn when any functions that return
structures or unions are defined or called.

Wcast-align Warn whenever a pointer is cast such that the
required alignment of the target is increased.
For example, warn when a char * is cast to
an int * on machines where integers can be
accessed only at two- or four-byte
boundaries.

2-60

2 i960® Processor Compiler User’s Manual

Wcast-qual Warn whenever a pointer is cast so as to
remove a type qualifier from the target type.
For example, warn when a const char * is
cast to an ordinary char *.

Wchar-subscripts Warn when an array subscript has type char.
This is a common cause of error, as
programmers often forget that this type is
signed on some machines.

Wcomment Warn whenever a comment-start sequence
/* appears in a comment.

Wconversion Warn when a prototype causes a type
conversion different from what would
happen to the same argument in the absence
of a prototype. This includes conversions of
fixed point to floating and vice versa, and
conversions changing the width or
signedness of a fixed point argument, except
when these are the same as the default
promotion.

Werror Make all warnings into errors.

Wformat Check calls to printf and scanf, etc., to
make sure that the arguments supplied have
types appropriate to the specified format
string.

Wid-clash-len Warn whenever two distinct identifiers
match in the first len characters. This may
help you prepare a program that compiles
with certain obsolete compilers. There is no
[no-] form of this option.

Wimplicit Warn when a function is used without being
explicitly declared.

Wmissing-braces Warn when an initializer is not completely
enclosed within braces.

gcc960 Compiler Driver 2

2-61

Wmissing-prototypes Warn when a global function is defined
without a previous prototype declaration.
This warning is issued even when the
definition itself provides a prototype. The
aim is to detect global functions that are not
declared in header files.

Wnested-externs Warn when an extern declaration is
encountered within a function.

Woverloaded-virtual Warn when a derived class function
declaration may be an error in defining a
virtual function. In a derived class, the
definitions of virtual functions must match
the type signature of a virtual function
declared in the base class. With this option,
the compiler warns when you define a
function with the same name as a virtual
function, but with a type signature that does
not match any declarations from the base
class. Wno-overloaded-virtual is the
default. This is a C++-specific option.

Wparentheses Warn when parentheses are suggested around
an expression.

Wpointer-arith Warn about anything that depends on the size
of a function type or of void. gcc960 assigns
these types a size of 1, for convenience in
calculations with void* pointers and
pointers to functions.

Wredundant-decls Warn when anything is declared more than
once in the same scope, even in cases where
multiple declaration is valid and changes
nothing.

Wreorder Warn when the order of member initializers
given in the code does not match the order in
which they must be executed. Wno-reorder
is the default. This is a C++-specific option.

2-62

2 i960® Processor Compiler User’s Manual

Wreturn-type Warn whenever a function is defined whose
return-type defaults to int. Also warn about
any return statement with no return-value
in a function whose return-type is not void.

Wswitch Warn whenever a switch statement has an
enumeral type index and lacks a case for
one or more of the named codes of that
enumeration.

Wshadow Warn whenever a local variable shadows
another local variable.

Wstrict-prototypes Warn when a function is declared or defined
without specifying the argument types. An
old-style function definition is permitted
without a warning when it is preceded by a
declaration specifying the argument types.

Wtraditional • Warn about certain constructs that
behave differently in traditional and
ANSI C:
Macro arguments occurring within string
constants in the macro body. These
would substitute the argument in
traditional C, but are part of the constant
in ANSI C.

• A function declared external in one
block and then used after the end of the
block.

• A switch statement has an operand of
type long.

Wtrigraphs Warn when any trigraphs are encountered
(assuming they are enabled).

gcc960 Compiler Driver 2

2-63

Wuninitialized An automatic variable is used without first
being initialized. These warnings are
possible only in an optimizing compilation,
because they require data flow information
that is computed only when optimizing.
When no O option is given, these warnings
are not generated.

These warnings occur only for variables that
are candidates for register allocation.
Therefore, they do not occur for a variable
that is declared volatile, or whose address
is taken, or whose size is other than 1, 2, 4, or
8 bytes. Also, they do not occur for
structures, unions, or arrays, even when they
are in registers.

There may be no warning about a variable
that is used only to compute a value that
itself is never used, because such
computations can be deleted by data flow
analysis before the warnings are printed.

2-64

2 i960® Processor Compiler User’s Manual

Wuninitialized
(continued)

These warnings are optional because gcc960
cannot foresee all the reasons why the code
might be correct despite appearing to have an
error. Here is one example of how this can
happen:

{

 int x;

 switch (y)

 {

 case 1: x = 1;

 break;

 case 2: x = 4;

 break;

 case 3: x = 5;

 }

 foo (x);

}

When the value of y is always 1, 2 or 3, then
x is always initialized, but gcc960 doesn’t
know this. Here is another common case:

{

 int save_y;

 if (change_y) save_y = y, y =

new_y;

 ...

 if (change_y) y = save_y;

}

This has no bug because save_y is used
only when it is set.

Some spurious warnings can be avoided if
you declare as volatile all the functions you
use that never return.

gcc960 Compiler Driver 2

2-65

w (Inhibit Warnings)
Inhibits all warnings.

Z (Specify PDB)
Specifies PDB directory.

Zdirectory

Specifies the name of the program database (PDB) directory.

Before using this option, you should read “Program-Wide Analysis and
Optimization”, “Profile Data Merging and Data Format (gmpf960)”, and ,
“gcdm Decision Maker Option”.

Wunused Warn whenever a local variable is unused
aside from its declaration, and whenever a
function is declared static but never
defined.

Wwrite-strings

Give string constants the type const
char[length] so that copying the address
of one into a non-const char* pointer
generates a warning.

3-1

ic960 Compiler Driver 3
This chapter describes how to use the ic960 driver program to control the
compilation system. Topics include:

• “Controlling the Compilation System with ic960”

• “ic960 and File Use”

• “ic960 Options”

• “Option Arguments and Syntax”

Controlling the Compilation System with ic960
The ic960 compiler driver (ic960.exe in Windows, ic960 on UNIX)
controls the preprocessor (cpp.exe in Windows, cpp.960 on UNIX) and
the compiler (cc1.exe in Windows, cc1.960 on UNIX). Starting with
CTOOLS release 6.0 ic960 also controls the new C++ compiler
(cc1plus.exe in Windows, cc1plus.960 on UNIX). It can also invoke the
assembler, linker, and gcdm960 optimization decision maker. The
command-line options and environment variables, described later in this
chapter, allow you to control the compilation.

The drivers invoke the appropriate modules to compile a file based on
filename extensions.

• Files with names ending with .cc, .cpp, and .cxx are taken as C++
source to be preprocessed and compiled. In UNIX, filenames ending
with .C (uppercase) are treated as C++ source to be preprocessed and
compiled.

• Files with names ending with .ii are taken as preprocessed C++
source to be compiled

3-2

3 i960® Processor Compiler User’s Manual

• Files with names ending in .c are taken as C source to be preprocessed
and compiled.

• Files with names ending in .i are taken as preprocessor output to be
compiled.

• Compiler output files plus any input files with names ending in .s are
assembled.

• Input files with names ending in .S (uppercase) are preprocessed and
then assembled. (UNIX only.)

• The resulting object files, plus any other input files, are passed to the
linker to produce an executable.

• Program-wide and profile-directed optimizations can be performed
during the link step. For an overview of this capability, see Chapter 4,
“Program-Wide Analysis and Optimization”.

Invoking the Compiler with ic960

The ic960 command-line syntax is:

ic960 [-option]... [path]filename ...

ic960 is the compiler driver executable filename.

option is a compiler option. Case is significant in options and
their arguments.

On UNIX, the compiler driver recognizes a letter
preceded by a hyphen (-) as an option. In Windows, the
driver recognizes a letter preceded by either a hyphen
(-) or a forward slash (/) as an option.

For a complete description of the ic960 options, see the
ic960 Option Reference section. You can also use linker
invocation options in an ic960 command; see Table 3-1
for a summary of these options.

path identifies the directory containing the file named by
filename. Not specifying path for a filename
causes ic960 to search in the current directory. Each
filename not in the current directory requires a
separate specification of path.

ic960 Compiler Driver 3

3-3

filename is the name of a source, assembly-language, or object
file to be processed by the compilation system. The
command line allows specification of more than one
[path/]filename.

Table 3-1 lists the linker options that ic960 passes directly to the linker. To
pass other options to the linker, use the Wl,arg pass-through option.

ic960 Sample Command Lines

This section provides examples of how the compiler is commonly invoked.
All these examples assume that you have C source files named t1.c and
t2.c or C++ source files name t1.cc and t2.cc. All examples assume
that you are generating code for the i960 CA architecture.

Preprocessing a Source File

To preprocess a source file to stdout, use the command:

ic960 -E t1.c

or

ic960 -E t1.cc

-E informs the compiler to preprocess the source file.

Generating a Preprocessed C++ Source File

To generate a preprocessed C/C++ source file use the following command.
The command generates a preprocessed source file named t1.i (for C) or
t1.ii (for C++).

ic960 -P t1.c

or

ic960 -P t1.cc

NOTE. Although Windows pathnames require backslashes (\), this
manual shows paths using the forward slash required by UNIX (/).

3-4

3 i960® Processor Compiler User’s Manual

-P instructs the ic960 compiler to preprocess the file and
store the output in <basename>.i for C or
<basename>.ii for C++.

Generating Assembly Code

This example generates assembly code for the i960 CA architecture. The
command lines below each generate an assembly language file named
t1.s.

ic960 -S -ACA t1.c

or

ic960 -Felf -S -ACA t1.cc

-Felf specifies ELF object module format, which is required
for C++. The default object module format is b.out.

-S instructs the compiler to generate assembly code.

-ACA specifies the i960 CA architecture.

Generating an Object Module with Debug Information

To generate a object module with debug information, use the following
command.

ic960 -c -g -ACA t1.c

or

ic960 -Felf -c -g -ACA t1.cc

-g instructs the compiler to generate debug information.

-c instructs the compiler to generate an object file.

Generating an Executable

To generate an absolute module (executable file) for a Cyclone board with a
CA processor, use the following command.

ic960 -ACA -Tcycx -g -O1 t1.c t2.c -o test

or

ic960 -Felf -ACA -Tcycx -g -O1 t1.cc t2.cc -o test

ic960 Compiler Driver 3

3-5

The above command compiles the source files and links them with
appropriate libraries to generate an absolute module targeted for a Cyclone
i960 Cx board.

-Tcycx use the linker directive file for a Cyclone i960 Cx
evaluation board.

-O1 causes the compiler to perform some basic
optimizations on the generated code.

-o test instructs the compiler to name the generated executable
test.

ic960 Linker Options

When you do not specify a target with the Ttarget option, ic960 does not
attempt to link programs for a specific target board. Unless otherwise
specified, source files with recognized extensions (e.g., .cc, .s) are
compiled and/or assembled, and the following linker command is issued:

lnk960 -AKB file.o... -lqf

ic960 links in the profiling library (-lqf) by default. To avoid linking in the
profiling library, invoke lnk960 directly to perform your final link. You can
also link in your own libraries (lib1, lib2...) if needed.

lnk960 -AKB file.o... -llib1 -llib2

You can invoke ic960 to create object files in either the COFF or ELF object
module format. The compilation system accepts the Fcoff option to
generate COFF and the Felf option to generate ELF. ELF is the only
supported format for C++.

Fcoff is the default. For more detailed information, see the following
discussions of compiler invocation and options.

Table 3-1 Linker Options Accepted by ic960 (Sheet 1 of 2)

Option Name Description

l Archive file specifies an archive file as input.

x Compress removes local symbols from the output
symbol table.

3-6

3 i960® Processor Compiler User’s Manual

For more information on the linker, see the i960 Processor Software
Utilities User’s Guide.

ic960 and Predefined Macros

Predefined macros within a program can act as constants during execution
or as values in conditional-compilation statements. Predefined macros
include ANSI C macros and macros specific to the i960 processor
architecture. The U (Undefine) option can remove i960 processor-specific
macros but not ANSI C macros.

The following macros are available in accordance with the ANSI standard
for C, as described in the book, C: A Reference Manual:

__DATE__ __FILE__ __LINE__ __TIME__ __STDC__

The following macros are predefined by the compilation system when
invoked with the ic960 driver program:

L Library search adds directories to search for libraries,
configuration files, and startup object files.

m Map creates a linker memory map file.

r Relocation retains relocation information in the output
object file.

s Strip strips line-number entries and symbol-table
entries from the linker’s COFF output file.

T Target specifies the file describing the target
environment.

u Undefine introduces an unresolved symbol, causing the
linker to search symbol tables for resolution of
the reference.

gcdm Decision
Maker

invokes gcdm960 decision maker.

__IC960 indicates the CTOOLS960 compilation system.
The compiler defines __IC960 automatically,
when invoked with the ic960 driver.

Table 3-1 Linker Options Accepted by ic960 (Sheet 2 of 2)

Option Name Description

ic960 Compiler Driver 3

3-7

__IC960_VER is defined to a decimal number that can be used
to check the version number of the compiler.
The number is expressed in decimal as
MmmPPPP, where M is the major version number,
mm is the minor version number, and PPPP is an
internal version number that is used to track the
patch level. So, for example, R6.5 patch level
4008 has __IC960_VER defined to be 6054008.

__i960 indicates the i960 processor environment. The
compiler defines __i960 automatically. This
macro can be used to identify the parts of a
program specific to the i960 processor.

__i960xx indicates the i960 processor instruction set in
use. The compiler automatically defines the
__i960xx macro. The xx is SA, SB, KA, KB,
CA, CF, JA, JD, JF, JT, HA, HD, HT, RD, RP, RM,
RN, or VH. Definition of xx depends on the
specific i960 processor instruction set specified
by the A (Architecture) option or the I960ARCH
environment variable.

__PIC indicates that the generated code is
position-independent. The G pc
(Generate-for-position- independent-code)
option causes the __PIC macro to be defined.

__PID indicates that the generated data is
position-independent. The G pd
(Generate-for-position- independent-data)
option causes the __PID macro to be defined.

__i960_ABI__ indicates that the generated code is 80960
ABI-Conformant. The Gabi option causes this
macro to be defined.

__i960_BIG_ENDIAN indicates that the generated code is arranged for
big-endian address space. The G be
(Generate-big endian) option causes this macro
to be defined.

3-8

3 i960® Processor Compiler User’s Manual

ic960 and Environment Variables

Environment variables specify default directories for input files, temporary
files, libraries, the assembler, and the linker. In addition, the I960ARCH
environment variable specifies the default architecture. The compilation
system uses the following environment variables to set defaults:

I960ARCH specifies an architecture other than the i960 KB
processor for code generation. The possible
definitions for I960ARCH are CA, CF, HA, HD, HT, KA,
KB, RD, RP, SA, SB, JA, JD, JF, JT, RM, RN, or VH.
The A (Architecture) option overrides the
architecture specified in I960ARCH. In the absence
of I960ARCH and the Architecture option, the
compiler selects the i960 KB processor architecture.

I960BASE contains the pathname of the top-level directory
containing the files and directories needed by the
compiler. This environment variable is necessary
for every phase of compilation. The driver uses
I960BASE to find the preprocessor, compiler,
assembler, linker, and include files.

To invoke the preprocessor and compiler, the ic960
driver looks in the lib directory under I960BASE.

__STRICT_ANSI__
__STRICT_ANSI

indicates that C constructs not conforming to
the ANSI standard should be flagged. The a
(ANSI) option causes these macros to be
defined.

__SIGNED_CHARS__ indicates that the plain char type are treated
like the signed char type. This is the default.

__CHAR_UNSIGNED__ indicates that the plain char type are treated
like the unsigned char type. The G cu
(Generate-char-unsigned) option causes this
macro to be defined instead of
__SIGNED_CHARS__.

ic960 Compiler Driver 3

3-9

To invoke the assembler and linker, the driver looks
in the bin directory under the directory specified by
I960BASE.

To find include files, the driver looks in the
include directory under the directory specified by
I960BASE.

The linker looks for libraries, startup modules, and
configuration files in the lib directory under the
directory specified by I960BASE.

I960AS specifies a non-default pathname for the assembler.
The pathname must include the name of the
executable. In the absence of I960AS, ic960 looks
for the assembler in bin under the directory
specified by I960BASE.

I960CC1PLUS Specifies an alternate name for the C++ compiler
when using the ic960 driver. The default pathname
is I960BASE/lib/cc1plus.960
(I960BASE\lib\cc1plus.exe in Windows).

I960CPP specifies an alternate name for the preprocessor.
The default pathname is I960BASE/lib/cpp.960
(I960BASE\lib\cpp.exe in Windows).

I960CC1 specifies an alternate name for the compiler. The
default pathname is I960BASE/lib/cc1.960
(I960BASE\lib\cc1.exe in Windows).

I960DM specifies an alternate name for the gcdm960
optimization decision maker.

I960ERR The assembler, linker, and other tools can redirect
errors to the standard error stream (stderr). To use
this capability, set the Windows environment
variable I960ERR to any string, as in:

SET I960ERR="Enable stderr"

Leaving I960ERR unset directs error output to the
standard output stream (stdout).

3-10

3 i960® Processor Compiler User’s Manual

I960INC specifies a non-default pathname for the directory
containing include files. In the absence of
I960INC, the driver looks for include files in the
include directory in the directory specified under
I960BASE.

I960LIB, I960LLIB contain additional pathnames of libraries.
Definition of I960LIB causes the linker to search
for libraries in the directory specified by I960LIB.
In the absence of I960LIB, the linker searches the
lib directory in the directory specified by
I960BASE. Definition of I960LLIB causes the
linker to search the directory specified by
I960LLIB before searching the lib directory in the
directory specified by I960BASE. For a complete
description of the search algorithm used by the
linker, see the i960 Processor Software Utilities
User’s Guide.

I960LD contains an alternate pathname of the linker. The
path must include the name of the executable. In the
absence of I960LD, ic960 looks for the linker in the
bin directory under the directory specified by
I960BASE.

I960PDB defines the location of the program database for use
with profile-driven optimizations. The Yd (Program
Database) option overrides this environment
variable and allows specification of an alternate
database directory.

TEMP, TMP, TMPDIR,contain the pathname of the directory used for

G960TMP compiler temporary work files. In the absence of
these variables, the compiler attempts to write
temporary work files to the current working
directory in Windows, and to /tmp or /usr/tmp on
UNIX.

ic960 Compiler Driver 3

3-11

ic960 and File Use
The compiler, assembler, and linker all use filenames specified on the ic960
command line to find and create input and output files. In addition,
translation and linking require temporary work files. Environment
variables allow specification of default directories for work files.

Input Files

The ic960 command line allows filename inputs that support specification
of assembly-language files, preprocessed source files, C/C++ source files,
object files, and libraries. The compiler driver determines the type of each
input file by the filename extension, as follows:

filename.c indicates a C source file that can contain macros and
preprocessor directives.

filename.cc, .cpp,indicates a C++ source file that can contain

.cxx macros and preprocessor directives.

filename.C indicates a C++ source file that can contain macros and
preprocessor directives (UNIX only).

filename.i indicates a preprocessed C source file.

filename.ii indicates a preprocessed C++ source file.

filename.s indicates an assembly-language source file.

The driver passes any other filename to the linker. The linker then
determines whether the file is an object file, library, or configuration file.

Input files not needed for processing are not processed. For example, if you
specify an assembly-language (filename.s) file and also specify the S
(Save assembly) stop-after option, ic960 takes no action on the
assembly-language file because processing stops after compilation and
before assembly.

Include Files

The ic960 command line allows insertion of text from include files. Both
the i (Preinclude) option and the #include preprocessor directive cause
text insertion.

3-12

3 i960® Processor Compiler User’s Manual

The #include preprocessor directive causes a search of the directory or
directories indicated by the I (Searchinclude) option. In the absence of the
I option, ic960 searches the current directory, the directory defined by the
I960INC environment variable, or the I960BASE/include directory.

Temporary Files

The compiler, assembler, and linker automatically create and delete
temporary work files. You need not remove temporary work files unless
your host system loses power or some other abnormal termination prevents
the compilation system from cleaning up its work files.

The compiler selects a directory for temporary work files as follows:

G960TMP, TEMP, TMPDIR, TMP, .\ (Windows), /tmp (UNIX), /usr/tmp
(UNIX).

Output Files

Specifying a Stop-after option (-n, -Q, -E, -P, -S, or -c) causes the
compilation system to produce a separate output file representing the output
of the last phase that completes for each primary input file. An output file
can be a preprocessed source file, an assembly-language file, a listing file, a
map file, or an unlinked object file. If no errors occur during processing,
the output files created by the stop-after option are usable as input to a
future ic960 invocation. Table 3-2 lists the compilation phases and their
inputs and outputs.

Specifying the Z (Listname) option allows specification of a list file
filename; ic960 places all listings in the single file specified. If you do not
use Z, ic960 produces a separate list file for each primary C/C++ source file.
Each filename has the form file.L, where file is the same name as the
C/C++ source file.

NOTE. The include files icache.h, dcache.h, and timer.h used for
on-chip cache and timer control are not supported with the -ARP option.

ic960 Compiler Driver 3

3-13

When specifying only one primary input file, the o (Output) option names a
single output file besides the listing file. Specifying multiple primary input
files, or not specifying an output filename, causes ic960 to use the primary
input filenames to derive corresponding default output filenames with the
form filename.e, where:

filename is the primary input filename without its extension.

e is a single-letter extension indicating the contents of a
file, as follows:

i indicates a preprocessed C source file from the
P (Preprocess-files) stop-after option.

ii indicates a preprocessed C++ source file from the
P (Preprocess-files) stop-after option.

s indicates an assembly-language file

Table 3-2 Intermediate Inputs and Outputs

Last Phase
Completed

Stop-after
Option Inputs Outputs

preprocessing P, E, or
Q

C/C++ source files preprocessed files
or display on
standard output

syntax
checking

n C/C++ source files
preprocessed files

syntax error list
listing files

compilation S C/C++ source files
preprocessed files

assembly-language
file
listing files

assembly c C/C++ source files
preprocessed files
assembly files

unlinked object files
listing files

linking (default) C/C++ source files
preprocessed files
assembly files
unlinked object files
relinkable object
files
libraries
configuration files

list files
executable file
map file
relinkable object file

3-14

3 i960® Processor Compiler User’s Manual

from the S (Save assembly) stop-after
option.

o indicates an object file from the c
(Create-object) stop-after option.

L indicates a listing file from the
z (List) option.

Unless otherwise specified, the destination directory for any output file is
the current working directory. If filename.e already exists in the
destination directory, the compilation system overwrites the existing file.

The filename a.out is the default for the executable COFF object file from
the linker, produced in the absence of the stop-after options and the Output
option. For ELF files, the default is e.out.

Creating a linker configuration file containing information for preparing an
absolutely relocated module, a module for incremental linking, or code
ready for programming into read-only memory (ROM) allows for additional
file types. For more information on linker configuration, see the i960
Processor Software Utilities User’s Guide.

The following examples illustrate the creation and use of output filename
extensions:

• The command ic960 -c -zs proto.c proto1.i produces the
object files proto.o and proto1.o and the listing files proto.L and
proto1.L.

• The command ic960 -c -o proto_v1.o -zs proto.c
produces the object file proto.o and the listing file proto.L.

• The command ic960 -ACA -Tcycx proto.c produces the
executable file a.out.

ic960 Compiler Driver 3

3-15

ic960 Options
This section describes the ic960 compiler driver options that allow control
of various aspects of compilation:

Input processing
and output

The c, E, n, P, Q, and S are the Stop-after options.

They stop the translation and linking process after
the preprocessing, syntax checking, compilation,
or assembly phase. A Stop-after option causes the
compilation system to save the intermediate
output of the last phase to execute.

The C (Keep-comments) and M (Mix) options
affect the contents of the output file. The o
(Output) option allows specification of the output
filename.

Specifying
included source
text

The i (Preinclude) and I (Searchinclude) options
prepend and find include files of C/C++ source
text.

Defining macros The D (Define) and U (Undefine) options allow
specification of macros for conditional
compilation.

Control contents
of generated
object code

The A (Architecture), Fcoff/Felf
Object-format), F (Fine-tune), f (Optimize), g
(Debug), G (Generate), and O (Optimization-level)
options control the instruction set, object format,
debug information, and optimization level.

Assembler and
linker support

The W (Pass) option relays options to the
preprocessor, compiler, assembler, and linker. In
addition, ic960 recognizes some options as linker
options rather than compiler options. Table 3-1
lists the options that are relayed to the linker
without the Pass option. For more detailed
information on linker options, see the i960
Processor Software Utilities User’s Guide.

3-16

3 i960® Processor Compiler User’s Manual

Option Arguments and Syntax
Some compiler driver options take arguments. Whitespace is optional
between an option and its argument. Case is significant in options and
arguments.

The options and arguments have default settings. In most cases, the option
is “off,” that is, not in effect. Default settings of options and arguments are
summarized in Table 3-3 and further discussed in the detailed description of
the option. Some option defaults are affected by environment variables, as
noted in the option descriptions.

This chapter uses the following notation:

[item] Square brackets indicate that the enclosed item is
optional.

Whole-program
optimizations

The fdb (Program Database), fprof

(Instrumentation), and gcdm (Decision Maker)
options allow for creation and use of information
necessary for advanced optimizations involving
multiple modules and optional execution profiles.
See Chapter 4, “Program-Wide Analysis and
Optimization” for an overview of whole-program
and profile-driven optimization.

Provide
Information on
the compiling
process

The w (Diagnostic) and a (ANSI) options affect
messages the compiler produces about C syntax
and semantics. The z (List) and Z (Listname)
options specify the contents and name of the
listing file. The v (Verbose), V (Version), and
v960 (Version-exit) options display information
about preprocessor, compiler, assembler, and
linker options. The Version option displays the
versions of each compilation component and the
host operating system. The W (Warnings) option
allows fine control of the level of warnings
emitted.

ic960 Compiler Driver 3

3-17

. . . Horizontal ellipses indicate that you can use multiple
instances of the preceding item.

If two or more options contradict each other, the right-most option in the
command line takes precedence. For example, the following command line
sets the value of the symbol L to 132:

ic960 -DL=80 -DL=132 proto.c

Table 3-3 ic960 Option Summary (Sheet 1 of 2)

Option Name Purpose Default

A arch Architecture Select the instruction set. AKB

a ANSI Warn about non-ANSI source. Do not warn

b size Limit-optimizati
ons

Limit optimization of functions with
more than size asm instructions.

b 2500

C Keep-commen
ts

Keep comments in preprocessor output. Strip
comments

c Create-object Stop after creation of object file. Do not stop

D symbol
 [=value]

Define Define symbol. symbol=1

E Preprocess -
stdout

Write preprocessed source to stdout;
terminate.

Do not stop

Fcoff | Felf Object-format Generate COFF or ELF object format. Fcoff

fdb Database Build program database (PDB). No database

fprof Instrument Compile with instrumentation; build
PDB.

No instrument-
ation

F [no]arg Fine-tune Adjust optimizations.

f [no]arg Additional
fine-tune

Enable or disable an optimization.

G arg [,arg]... Generate Control code generation options. G cs,dc

g [level] Debug Include debug information in objects. No debug info

gcdm Decision-make
r

Invoke gcdm960 decision-maker. Do not invoke
gcdm960

h Help Display invocation help; terminate. No help text

I dir Searchinclude Search dir for include files.

i filename Preinclude Prepend text to source files.

3-18

3 i960® Processor Compiler User’s Manual

J arg [,arg]... Miscellaneous Selects miscellaneous controls. J nogd

j num Errata Specify processor errata.

M Mix Mix C/C++ text with assembly output. No C text

n Syntax only Check syntax; list errors; terminate. Do not stop

O level Optimize Specify optimization level (0, 1, 2, or 5). O1

o filename Output Name output file. filename=a.out

P Preprocess -
file

Write preprocessed source text to files;
terminate.

Do not stop

Q Dependencies Print include-file dependencies;
terminate.

No print

S Save-assembl
y

Save assembly-language output. Do not save

U symbol Undefine Undefine symbol.

V Version Display version information. No display

v960 Version-exit Display version information and exit.

v Verbose Display invocation information. No display

W phase
 arg [,arg]...

Pass Pass arguments to preprocessor,
compiler, assembler, or linker.

W [no-]arg Warnings Enable/disable a warning.

w level Diagnostic-
level

Control diagnostic messages. level=1

Y d,dirname Program
database

Specify location of program database. I960PDB
specifies
location

Z filename Listname Name listing file. Compiler
generates
name

z arg List Produce listing file. No listing

Table 3-3 ic960 Option Summary (Sheet 2 of 2)

Option Name Purpose Default

ic960 Compiler Driver 3

3-19

A (Architecture)
Selects the instruction set.

Aarchitecture

architecture is one of:

CA, CF, KA, KB, RD, RP, SA, SB, HA, HD, HT, JA, JD, JF, JT, RM, RN, or VH.

Default

By default, the compiler uses the i960 KB architecture. The I960ARCH
environment variable can override the default architecture.

Discussion

Use the A (Architecture) option to specify the target instruction set. This

option overrides the environment variable I960ARCH. See also the
-Gcore0, -Gcore1, -Gcore2, and -Gcore3 options that let you generate
code that is compatible with multiple i960 processor types.

You can use predefined macros in your source text to conditionally compile
code for the selected architecture. The compiler defines a preprocessor
macro indicating the selected architecture. The preprocessor macro takes
the form:

__i960xx

xx is CA, CF, KA, KB, RD, RP, SA, SB, HA, HD, HT, JA, JD, JF,
JT, RM, RN, or VH. The compiler selects the value of xx
according to the architecture you specify.

NOTE. Starting with release 6.0, using the -ARP or-ARD option
generates code that is compatible with current and proposed future
variations on the i960 Rx architecture.

3-20

3 i960® Processor Compiler User’s Manual

In addition to __i960xx, the __i960 macro is defined for all architecture
selections. Use __i960 to identify parts of your program specific to the
i960 architecture but not necessarily specific to a particular processor.

In addition, for compatibility with earlier releases, macros of the forms:
i960, _ _i960_ _, _ _i960xx_ _ and _ _i960_xx_ _ are defined.

If you link object modules compiled with incompatible architectures, the
linker displays the following warning message:

file: architecture i960:XX incompatible with output
i960:YY

file is the first file containing incompatible instructions the
linker encounters.

XX is one of the two-letter architecture abbreviations.

YY is one of the two-letter architecture abbreviations.

Example

The following example selects the i960 KA instruction set:

ic960 -AKA proto.c

a (ANSI)
Flags non-standard constructs.

a

Default

The compiler accepts constructs that are legal under Kernighan and
Ritchie’s definition of the C language but that do not comply with the ANSI
standard.

ic960 Compiler Driver 3

3-21

Discussion

Use the ANSI option to flag old-style C constructs that are legal according
to Kernighan and Ritchie’s definition in The C Programming Language, but
are not legal according to the ANSI standard. When the ANSI option is in
effect, the compiler prints warning messages for each occurrence. This is a
C-specific option.

Specifying the a (ANSI) option can override the w (Diagnostic-level)
option, as follows:

-a -w2 has the same effect as -a -w1; that is, errors and major
warnings appear.

-a -w1 errors and major warnings appear.

-a -w0 errors and all warnings appear.

Example

The following example causes the compiler to issue an error message when
it encounters a non-standard C construct. Because of the c (Create-object)
option, the compiler stops after creating an object file:

NOTE. When this option is in effect, if your program contains in-line
assembly-language (asm) statements, the compiler treats the statement as
a regular function call and produces code for the call. For example, if
your program contains the following line:
asm("flushreg");

The compiler produces the following code:
 callj _asm

LFC0.$:

 asciz "flushreg"

...

The linker may then generate an error for an undefined extern for the
_asm call.
To use asm statements and functions with the a option, use the __asm
keyword.

3-22

3 i960® Processor Compiler User’s Manual

ic960 -c -a proto.c

Related Topic

W (Warnings) w (Diagnostic-level)

b (Limit-optimizations)
Limits optimizations.

bsize

size is a positive decimal integer.

Default

Having more than 2500 intermediate language statements in a function
causes the compiler to disable some global optimizations.

Discussion

As function size increases, the compiler slows. The b (Limit-optimizations)
option allows you to alter the threshold at which optimizations are scaled
back when functions are too large to compile quickly.

Example

In the following example, the b (Limit-optimizations) option forces
suppression of global optimization for functions in proto.c larger than
2000 intermediate language statements.

ic960 -b2000 -S proto.c

Related Topic

O (Optimize)

ic960 Compiler Driver 3

3-23

C (Keep-comments)
Keeps comments in preprocessor
output.

-E -C

-P -C

Default

All comments are stripped away.

Discussion

Use the C (Keep-comments) option to preserve comments normally stripped
by the preprocessor. This option modifies the E and P Stop-after options.
Using the C (Keep-comments) option alone neither generates a preprocessor
listing nor stops the processing after the preprocessor phase.

Example

The following example uses the C (Keep-comments) option to modify the P
(Preprocess - file) option. The output is a newly created file named
proto.i, containing the comments as they appear in the original C source
text.

ic960 -P -C proto.c

Related Topics

E (Preprocess - stdout)P (Preprocess - file)

c (Create-object)
Create object file; terminate.

c

3-24

3 i960® Processor Compiler User’s Manual

Default

Create an executable file after the link phase of the compilation process.

Discussion

If you specify c (Create-object) the compilation process terminates after the
assembler generates an object file. If you do not specify the o (Output)
option, the compiler writes the object file to filename.o, where
filename is the source filename.

Examples
1. The following example produces the object file proto.o but no

executable file:
ic960 -c proto.c

2. The following example produces the object files proto.o, t1.o, and
proto1.o in the current directory but creates no executable file:
ic960 -c proto.c t1.s proto1.i

Related Topics

D (Define)
Define a symbol.

D symbol[=value]

symbol is a symbolic name.

value is a value. The value can be any string.

Default

If you define symbol without specifying value, the preprocessor assigns
the value 1 to symbol.

o (Output) Stop-after options

ic960 Compiler Driver 3

3-25

Discussion

Use the D (Define) option to create a symbol with a given value. You can
use the D (Define) option more than once in an invocation.

You can use the D (Define) option with conditional compilation to create
macros to select source text during preprocessing. A macro defined in the
invocation command remains in effect for each module compiled, unless
you remove the macro with the #undef preprocessor directive or the U
(Undefine) option. The compilation system processes all the U (Undefine)
options in a command-line only after processing all the D (Define) options.

Example

The following example invokes the preprocessor with D LONGPATH, so that
PATHLENGTH is defined with the value 128 in the source file. Since the
macro LONGPATH is defined without a value, it defaults to 1:

ic960 -c -D LONGPATH proto.c

The source text is:

#ifdef LONGPATH
#define PATHLENGTH 128
#else
#define PATHLENGTH 45
#endif

Related Topics
#define
#undef

U (Undefine)

E (Preprocess - stdout)
Preprocess; write output to screen;
terminate.

E

3-26

3 i960® Processor Compiler User’s Manual

Default

After the link phase of the compilation process is complete, an executable
file is produced.

Discussion

If you specify E, the compilation process terminates after preprocessing and
the compiler writes preprocessor output with line number directives to
standard output.

Example

The following example runs only the preprocessor phase, sending the
preprocessed source text to the screen:

ic960 -E proto.c

Related Topic

Fcoff | Felf (Format)
Specifies object format.

Fcoff specifies the COFF object format, and causes the
assembler to be invoked as asm960. You can add the g
option to specify the style of symbolic-debug symbols
created.

Felf specifies the ELF object format, and causes the
assembler to be invoked as gas960e, rather than asm960.
If you add the g option, the DWARF style of
symbolic-debug symbols is used. ELF is the only
supported format for C++.

Stop-after options

ic960 Compiler Driver 3

3-27

NOTE. Unlike gcc960, ic960 does not support the b.out object module
format.

3-28

3 i960® Processor Compiler User’s Manual

F (Fine-tune)
Adjust optimizations.

F arg[,arg]...

arg is any of:

F[no]ai enables/disables procedure in-lining using
heuristics at optimization level 2.

F[no]ca enables/disables code alignment; generate (do
not generate) alignment directives prior to
labels that are not entered from above.

F[no]cb enables/disables use of compare and branch
instructions.

F[no]lp enables/disable code generation of functions
using the bal calling sequence at optimization
level 1 or 2. nolp is the default at optimization
level 1, and lp is the default at optimization
level 2.

F[no]pf This option is obsolete. It is recognized but has
no effect.

F[no]sa determines whether or not the compiler risks
generating memory references that are not
provably aligned. If Fnosa is selected, the
compiler occasionally generates potentially
unaligned references when it seems
advantageous to do so. When Fsa is enabled,
sequences of smaller memory references are
used instead of larger ones that might not be
correctly aligned.

sb | nosb enables/disables superblock formation.
Suppressing this optimization may reduce your
application’s code size.

ic960 Compiler Driver 3

3-29

Default

The set of optimizations performed is determined by the argument of the O
(Optimize) option.

Discussion

Use the F (Fine-tune) option to fine-tune how your code is optimized. For
general purposes, the optimization level specified with the O (Optimize)
option is sufficient. The optimizations performed at each level balance
considerations of code quality, ease of debugging, and compilation time.
However, circumstances can call for use of, or disabling of, some specific
optimizations.

Example

To disable heuristic function in-lining and leaf procedure generation when
compiling at optimization level 2, enter the following:

ic960 -F noai,nolp -O2 proto.c

fdb (Database)
Builds optimization database.

All modules subject to program-wide optimization must be initially
compiled with the fdb option. This option causes the insertion of program
database information in the object modules, and it implies a minimum
module-local optimization level of O1 (although higher module-local
optimization levels are allowed).

tce | notce enables/disables conversion of tail calls into
branch instructions at optimization level 1 or 2.
notce is the default at optimization level 1, and
tce is the default at optimization level 2.

3-30

3 i960® Processor Compiler User’s Manual

This option does not otherwise change the code or data generated for the
object modules in any way. It simply makes information collected during
initial module compilation available to the global decision maker (gcdm).
Before using the fdb option, you should read Chapter 4, “Program-Wide
Analysis and Optimization”, and Chapter 6, “gcdm Decision Maker
Option”.

If you intend to use execution profiles when optimizing your application,
you should read Chapter 5, “Profile Data Merging and Data Format
(gmpf960)”.

fprof (Instrument)
Instruments code for profile creation.

This compiler driver option inserts execution profile instrumentation code
into the generated code during compilation, so that when the linked
program is executed, a profile can be collected.

This option implies the fdb option (described previously) that causes the
insertion of program database information in the object modules and the
creation of the program database. Since fprof implies fdb, fprof also
implies a minimum module-local optimization level of O1 (although high
module-local optimization levels are allowed).

When you compile with the fprof option, a special profiling library
required for profile collection (libqf) is linked automatically. If your
target environment does not support file I/O, you must explicitly link an
alternate profiling library (libq). The profiling libraries provided are
identified in Chapter 2 of the i960 Processor Library Supplement.

Note that when the fprof option is used in this manner, the generated
object module contains code is unsuitable for linking into programs that are
not supposed to collect profile information. To solve this problem, and
avoid having inappropriate instrumentation in widely-used library modules
for example, use +fprof with the gcdm,subst option instead.

ic960 Compiler Driver 3

3-31

Before using the fprof option, you should read Chapter 4, “Program-Wide
Analysis and Optimization”, Chapter 5, “Profile Data Merging and Data
Format (gmpf960)”, and Chapter 6, “gcdm Decision Maker Option”.

f (Additional Fine-tune)
Additional optimization adjustments.

f [no-]arg

arg is any one of the optimizations listed below. This option takes only
one argument; use a separate f option to enable/disable an optimization.

The f [no-]arg option is supported to allow access to optimization
controls that are supported by the gcc960 compiler driver.

Note that most of these options are controlled automatically by the various
O optimization levels. Therefore, some of them may be ignored for certain
compilations. For example, at optimization level O0, you cannot enable
instruction scheduling with fschedule-insns. To check whether one of
these options has the desired effect, compare the generated assembly code
with and without the option.

[no-]access-
control

Enable all access checking. This is normally
used to work around access control bugs.
Faccess-control is the default. This is
C++ specific option.

bbr Enable basic block rearrangement.

coalesce Coalesce adjacent memory references into a
single reference of a larger size, to take
advantage of the processor’s burst bus. Only
memory references that can be proven to be
contiguous and whose base address can be
proven to be aligned properly are coalesced.
This option implies fshadow-mem.

coerce Enable byte/short optimization.

3-32

3 i960® Processor Compiler User’s Manual

cond-mismatch Allow type mismatch in operands of the ?:
operator.

condxform Enable 80960 conditional instructions.

[no-]conserve-
space

Allocate uninitialized global variables into
the common segment, as C does. This saves
space in the executable at the cost of not
diagnosing duplicate definitions.
Fno-conserve-space is the default. This
is a C++ specific option.

constprop Enable constant propagation and folding.

copyprop Enable copy propagation.

cse-follow-jumps Enable a limited form of global CSE.

cse-skip-blocks Enable a limited form of global CSE.

[no]dollars-in-
identifiers

Accept “$” in identifiers. ANSI C and C++
forbid “$” in identifiers.
Fno-dollars-in-identifiers is the
default when ansi is specified.

[no-]enum-int-
equiv

Allow implicit conversion of integer to
enumeration types. Normally the compiler
allows conversion of enum to int, but not
vice versa. Fno-enum-int-equiv is the
default. This is a C++ specific option.

expensive-
optimizations

Enable some minor optimizations.

float-store Do not store floating-point variables in
registers, and do not perform common
sub-expression elimination on floating-point
expressions.

ic960 Compiler Driver 3

3-33

[no-]for-scope Limit the scope of variables declared in a
for-init statement to the for loop itself, as
specified by the draft C++ standard. When
you specify -fno-for-scope, the scope of
variables declared in a for-init-statement
extends to the end of the enclosing scope, as
was the case in old versions of gcc960, and
other (traditional) implementations of C++.
ffor-scope is the default. This is a C++
specific option

force-addr Place address constants in registers before
use.

[no-]huge-
objects

The implementation of virtual function calls
assumes that the size of an object can be
represented with a short integer. Use this flag
to support virtual function calls for objects
that exceed the size that can be represented
by a short integer. Use this flag only if the
compiler requests you to do so. Note that the
C++ library sources need to be recompiled
with Fhuge-objects if you plan to link
with the C++ libraries. Fno-huge-objects
is the default.

fint-alias-ptr Indicates to the compiler that pointer objects
may be referenced as 32-bit integers and
vice versa.

fint-alias-real Indicates to the compiler that float,
double, and long double objects (or parts
thereof) may be referenced as 32-bit integers
and vice versa.

3-34

3 i960® Processor Compiler User’s Manual

fint-alias-short Indicates to the compiler that four-byte
integer objects may be referenced as
two-byte integer objects and vice versa.

The aliasing options listed above tell the
compiler not to use certain kinds of type
information when disambiguating memory
references, even though it could do so
according to ANSI C section 3.3
(disambiguation constraints).

The rules enforced by the aliasing options
are transitive. For example, if user code
accesses parts of double objects as short,
then fint-alias-real and
fint-alias-short should both be used.

The rules are also applied recursively to
structs and unions. That is to say, if
fint-alias-ptr is in use, then a union
that has a member of pointer type is assumed
to be aliased by 32-bit integers or by
structures or unions containing

Note that ANSI C 3.3 requires the compiler
to assume that char references alias all
types, so code using char pointers for this
sort of thing is already correct and using
these options is not necessary.

Using all three aliasing options effectively
disallows all use of type information in
memory disambiguation. This is bad both
for compiler performance and the efficiency
of generated code.

keep-inline-
functions

Emit out-of-line code for inlined functions.

marry_mem Rejoin multi-word moves split by
fsplit_mem.

ic960 Compiler Driver 3

3-35

F[no-]memoize-
lookups

F[no-]save-
memoized

Use heuristics to compile faster. These
heuristics are not enabled by default, since
they are only effective for certain input files.
Other input files compile more slowly. You
may use either option to compile using
heuristics. These are C++ specific options.

rerun-cse-after-
loop

Reiterate CSE after loop optimization.

sblock Enable/disable superblock formation. This
option is normally used in a second-pass
recompilation, but it can also be used in a
single-pass compilation.

schedule-insns Perform pre-register-allocation scheduling.

schedule-insns2 Perform post-register-allocation scheduling.

shadow-globals Shadow memory locations in registers.

shadow-mem Like shadow-globals, but more thorough.

space-opt Optimize for code size.

split_mem Split multi-word moves for copy
propagation.

strength-reduce Enable loop strength reduction.

F[no-]strict-
prototype

Treat a function declaration with no
arguments, such as “int foo ();”, to
mean that the function foo takes no
arguments. Fstrict-prototype is the
default. This is a C++ specific option.

[no-]this-is-varia
ble

Permit assignment to “this”.
Fno-this-is-variable is the default.
This is a C++ specific option.

thread-jumps Enable an advanced branch optimization.

unroll-all-loops Unroll all loops.

unroll-loops Unroll loops where deemed beneficial.

3-36

3 i960® Processor Compiler User’s Manual

Default

The set of optimizations performed is determined by the argument of the
O (Optimize) option.

G (Generate)
Select code generation options.

G arg[,arg]...

arg is one of the following:

virtual-opt Optimizes the dispatch of virtual functions.
This optimization can be used only in a
2-pass scheme. By default, this optimization
is not enabled. This optimization can be used
only when certain conditions are met. See
“Optimizing Virtual Function Dispatch” in
Chapter 12 for more details. This is a
C++-specific option.

volatile Treat indirect memory references as volatile.

volatile-global Treat all memory references as volatile.

writable-strings Place string literals in .data section.

abi Generate 80960 ABI-conformant code. This
causes the char type to be signed, enums to be
four bytes in size and signed, and changes
default alignment rules for structs and unions.
See Chapter 7, “C Language
Implementation”for more information.

ac=n Aligns struct data types on the byte boundary
specified by n. n can be 1, 2, 4, 8, or 16.

ic960 Compiler Driver 3

3-37

*Note that the big-endian mode is not supported for VH.

bc Generates code that is backwardly-compatible
with releases of ic960 before Release 3.0.

be Generates objects that execute in a big-endian
memory environment.

cave Generate all functions as CAVE secondary
functions.

core0 | core1 | generate code that is compatible with multiple

core2 | core3 | i960 processor types. Additionally, when you
use a -Gcore option, you can include another
-A switch to generate code that is optimized for
a particular architecture, but still compatible
with a group of architectures. The table below
lists the architectures that are supported by a
-Gcore option and the -A options that you
can use with them.

Table 3-4 Gcore Supported Architectures

Option Name Compatible
Architectures

Can Be Used With

Gcore0 Jx, Hx, Rx -AJA, -AJD, -AJF,
-AJT, -AHA, -AHD,
-AHT, -ARD, -ARP, -ARM, -ARN, or
-AVH*.

Gcore1 Kx, Sx, Cx, Jx, Hx Any architecture option except -ARP
-ARD, -ARM, or-ARN.

Gcore2 Jx, Hx -AJA, -AJD, -AJF,

-AJT, -AHA, -AHD, -AHT, or
-AVH*.

Gcore3 Cx, Jx, Hx -ACA, -ACF, -AJA,
-AJD, -AJF, -JT,
-AHA, -AHD, -AHT, or -AVH*.

3-38

3 i960® Processor Compiler User’s Manual

cs or cu Treats char data types as signed or unsigned,
respectively. cs is the default.

dc Specifies the relaxed ref-def external linkage model.
This is the default.

ds Specifies the strict ref-def external linkage model.

pc Generates position-independent code.

pd Generates position-independent data.

pr Reserves register g12 containing the
position-independent data (PID) bias value.

wait=n Specifies wait-state for memory accesses. n is in the
range 0 through 32, inclusive.

xc Specifies that all external calls in the module use the
extended-call mechanism.

Discussion

You can select multiple arguments either by specifying all of them,
separated by commas, as the argument of a single G (Generate) option, or by
specifying each as the argument of a separate G (Generate) option. If you
specify conflicting arguments, the last one takes precedence.

Alignment Argument (ac): If you select ac=n, the compiler aligns
struct data types on n-byte boundaries. This is equivalent to an initial
#pragma align(n) and does not override any subsequent #pragma
align(n) directives. Alignment values can only be 1, 2, 4, 8, or 16.
Chapter 7, “Position Independence and Reentrancy” describes alignment in
more detail.

Backward-compatible Argument (bc): If you select bc, the compiler
generates object modules that can be linked with object modules translated
by ic960 Release 2.0. This option resolves the following compatibility
issues:

• The default alignment of individual struct data types for ic960
Release 2.0 can differ from the default structure alignment for Release
3.0 and later releases. The Release 3.0 ic960 derives the default
alignment of a struct data type from its size, by rounding up from the
size to the next power of 2 (to a maximum of 16). In code translated by

ic960 Compiler Driver 3

3-39

ic960 releases before 3.0, the alignment of the struct defaults to the
alignment of the largest member of the struct. You must compile all
modules of a program with the same alignment.

• For enum data types, the compiler selects a basic integral
representation type, choosing the narrowest type capable of
representing all of the enumeration values. The compiler can represent
the enum type as signed char, unsigned char, short, unsigned
short, or int, depending upon the range of enumeration values.
Before Release 3.0, the compiler used only signed types to represent
enum data types. For example, a maximum enumeration value
between 128 and 255 inclusive, now represented as an unsigned
char, was represented as a short in Release 2.0.

• The values of upper, unused bits of prototyped parameters and return
values smaller than 32 bits for ic960 Release 2.0 can differ from the
corresponding bit values for Releases 3.0 and later. The calling
convention for Release 3.0 does not extend the unused bits. The called
function must extend into the unused bits of prototyped parameters and
the function using a return value must extend into unused bits of the
return value. In code translated by ic960 releases that preceded 3.0, the
calling conventions extend into unused bits when passing prototyped
parameters and returning values smaller than 32 bits.

• With this release of the compiler, the recipient of a narrow integral
value must assume that the high-order bits of the register containing the
value do not contain the appropriate zero- or sign-extension of the
value passed. It is the recipient function’s responsibility to clean the
upper bits of a parameter or return value if necessary. Using the
Backward Compatible (bc) argument causes the compiler to use the
rules of prior releases. Before this release of the compiler, narrow
integral values were always sign- or zero-extended by the originator.

• The Release 2.0 compiler, when used to compile for an i960 KB or SB
processor, returns long double (80-bit) floating-point numbers in the
fp0 floating-point register.

• The Release 3.0 compiler, when used to compile for any i960
processor, returns long double floating-point numbers in the g0, g1,
and g2 global registers. When Release 3.0 is used to compile for a
processor without a floating-point unit (e.g., the KA, SA, CA, or CF
processor), the compiler generates calls to the accelerated
floating-point library (“libh”). (Release 2.0 generated calls to the

3-40

3 i960® Processor Compiler User’s Manual

FPAL floating-point-arithmetic library, but FPAL is no longer
supported.) You must recompile any KA, SA, CA, or CF module that
was compiled with ic960 R2.0 floating-point operations.

Big-endian Argument (be): If you select be, you inform the compiler
that the memory system of the entire program is in big-endian format. Only
the i960 Cx, Hx, and Jx processors support big- and little-endian format.
Do not use this argument with other i960 architectures.

The compiler automatically passes the G (Generate big-endian) option to the
assembler or linker if they are to be run.

Compression Assisted Virtual Execution (CAVE): If you select
cave, the compiler generates special CAVE entries for all functions in the
compilation unit. This prepares the functions for link-time compression.
The CAVE entries resemble the following:

.section .text
_foo:
 lda L1,reg
 call __dispatcher
 ret

.section cave
 .word L2-L1,0

L1:
 function body
L2:

At runtime, the dispatcher decompresses the function bodies and transfers
control to them. This mechanism saves runtime memory. (See the
discussion of #pragma cave in Chapter 7, “C Language Implementation”
for more information.)

Signed and Unsigned Character Arguments (cs and cu): If you
select cs, declarations of char are treated as signed char. (This is the
default.)

If you select cu, declarations of char are treated as unsigned char.

Relaxed and Strict Linkage Definition Arguments (dc and ds): In
the default relaxed ref-def external linkage model (i.e., the dc argument),
any variable declared with the extern keyword is a reference to a variable
and does not define storage. Somewhere in all the modules, a definition at
file-scope must exist. You can have multiple definitions. All definitions are

ic960 Compiler Driver 3

3-41

combined into a single storage location by the linker. Storage is allocated
for initialized variables in the .data section with the appropriate initializer.
Uninitialized definitions are allocated to the common sections using the
.comm assembly language directive. At link time one of the following
happens:

• If a variable is defined with an initializer in one module, and without an
initializer in all other modules, the linker allocates space for the object
in the .data section.

• If no definitions of a variable are initialized, all common references are
combined and allocated to the .bss section. With the relaxed ref-def
model, you cannot relocate uninitialized variables to named sections at
specific memory locations using the linker configuration language.

In the strict ref-def model (i.e., using the ds argument), only one definition
is allowed and all others must be declared with the keyword extern. You
cannot have more than one definition of an object with external linkage.
Storage is allocated to uninitialized file-scope variables in the .bss section.
Initialized variables are allocated in the .data section with the appropriate
initializer. Using the strict ref-def model, you can relocate uninitialized
variables to named sections at specific memory locations using the linker
configuration language. For more detailed information about using the
linker, see the i960 Processor Software Utilities User’s Guide.

Position Independence Arguments (pc, pd, and pr): If you select
pc, the compiler generates position-independent code and predefines the
__PIC macro.

If you select pd, the compiler generates position-independent data and
predefines the __PID macro. Register g12 contains the bias value for the
data sections; its contents cannot be modified, even during the saving or
restoring process.

NOTE. Applications built using the pc option cannot be linked with
assembly sources that contain callx or balx instructions, since these
instructions are not position-independent.

3-42

3 i960® Processor Compiler User’s Manual

If you select pr, the compiler reserves register g12. Use this option for
position-dependent modules to be combined with position-independent data
modules. See Chapter 10, “Position Independence and Reentrancy” for
more information on this subject.

Extended Call Argument (xc): Use the Extended Call argument when
your code calls external functions outside the range of the call or bal
opcodes. When you use this argument, the compiler emits the calljx
pseudo-opcode, which the linker translates to either of the MEM format
opcodes callx or balx. The linker decides which translation to perform
based on the symbol table entry for the defined function. The extended call
opcodes can address the entire 232 address range. The extended call
instructions occupy two words of code space. The single word CTRL
format call instructions occupy one word.

The compiler emits the CTRL format callj pseudo-opcode when calling
any function defined outside the current compilation module.

Examples
1. The following example aligns structures on 8-byte boundaries:

ic960 -Gac=8 proto.c

2. The following example generates a module that can be linked with
code resulting from an ic960 Release 2.0 translation:
ic960 -Gbc proto.c

3. The following example generates code in which variables declared as
char are treated as unsigned char:
ic960 -Gcu proto.c

4. The following example generates position-independent code and data:
ic960 -Gpc,pd proto.c

ic960 Compiler Driver 3

3-43

Related Topics

g (Debug)
Include debug information in object
module.

g [level]

where level specifies the amount of debug information. Note that the
meaning of level varies depending on the object format in use, as described
below.

Using g0 disables debug information. (This is the same as not using the
g option.)

For COFF, debug level settings of g, g1, g2, and g3 all have the same
effect: they specify “normal” debug information.

For ELF/DWARF, debug level settings of g, g1, and g2 all have the same
effect: they specify all DWARF debug information except preprocessor
macros. A debug level setting of g3 specifies all DWARF debug
information, including preprocessor macros in the debug information. If
your debugger (like gdb960) does not make use of preprocessor macro
information, you can save space in your object files by dropping to
ELF/DWARF debug level 2.

The g (Debug) option does not inhibit optimization. If you specify the g
option but do not specify the O (Optimize) option, the optimization level
defaults to O0.

Specifying an optimization level higher than O0 can inhibit the effectiveness
of the symbolic debug information. For example, if you set a breakpoint on
a source line for which the code has been optimized away, the breakpoint is
never hit. Or if you try to print the value of a variable that has been

A (Architecture)

I960ARCH

__i960xx

__PIC

__PID

#pragma align

#pragma i960_align

3-44

3 i960® Processor Compiler User’s Manual

optimized away, an erroneous value is displayed. In general, as the
optimization level increases, the reliability of the symbolic debug
information decreases.

If you are using the ELF object module format (Felf), then g causes the
compiler to produce DWARF debug information. This debug information
format is richer than that of other supported OMFs, and allows more
reliable debugging under optimization. However, even with DWARF, there
are situations where debugging behavior does not agree with the debugging
behavior of unoptimized code.

gcdm (Decision Maker)
Invoke gcdm960 decision-maker.

gcdm,arg[,arg]...

The gcdm option provides a high level of automation for the whole-program
or profile-driven optimization process. The compiler driver and the linker
both use the gcdm option and its arguments.

The gcdm option is flexible and powerful, and therefore requires a certain
level of understanding in order to use it effectively. For these reasons, it is
documented in a separate chapter (Chapter 6, “gcdm Decision Maker
Option”).

Before using the gcdm option, you should read Chapter 4, “Program-Wide
Analysis and Optimization”, and become familiar with the information in
Chapter 5, “Profile Data Merging and Data Format (gmpf960)”.

h (Help)
Display invocation help; terminate.

h

ic960 Compiler Driver 3

3-45

Discussion

This option causes the compiler to display brief descriptions of each option
on the standard output device and then terminate.

I (Searchinclude)
Search alternate #include directory.

I dir

dir is a directory containing files to be included.

Default

If you use #include "filename" to specify a filename that is not an
absolute pathname, the compiler searches directories in the following order:

1. the directory containing the primary C/C++ source file (the primary
directory).

2. if I960INC is defined, the directory specified by I960INC.

3. if I960INC is not defined, the include directory located under the
directory specified by I960BASE.

For a filename included with #include <filename>, the compiler
searches directories in the following order:

1. if I960INC is defined, the directory specified by I960INC.

2. if I960INC is not defined, the include directory located under the
directory specified by I960BASE.

Discussion

Use I (Searchinclude) to specify additional directories for the preprocessor
to search to find files specified with #include. The preprocessor searches
Searchinclude directories before the directory specified by I960INC or
I960BASE. If you use quotation marks (#include "filename"), the
preprocessor searches the primary directory first. If you use angle brackets
(#include <filename>), the preprocessor does not search the primary
directory.

3-46

3 i960® Processor Compiler User’s Manual

Examples

1. In the following example, the preprocessor searches:

— /usr/home/src (the directory containing proto.c)

— /usr/home/include (the Searchinclude directory)

— /usr/home/testinclude (the directory specified by I960INC)

The environment variable definitions are:

— I960BASE is set to /usr/local/i960

— I960INC is set to /usr/home/testinclude

The command-line is:

— ic960 -I /usr/home/include /usr/home/src/proto.c

The source text contains:

— #include "proto.h"

2. In the following example, the preprocessor searches:

— /usr/home/include (the Searchinclude directory)

— /usr/local/i960 (the directory specified by I960BASE)

The I960BASE environment variable is set to /usr/local/i960

The command-line is:

— ic960 -I /usr/home/include /usr/home/src/proto.c

The source text contains:

— #include <proto.h>

If the preprocessor does not find proto.h, for either of these examples, the
compiler displays the following error message:

ic960 ERROR: "/usr/home/src/proto.c", line 1 --
proto.h: No such file or directory

ic960 Compiler Driver 3

3-47

Related Topics

i (Preinclude)
Prepend text file to primary source files.

i filename

filename is the name of a C/C++ source text file.

Discussion

Use the i (Preinclude) option to prepend the text of a C/C++ source file or
include file to each C/C++ source file specified on the command line. This
option has the same effect as placing an #include directive at line zero of
each C/C++ source file.

The compiler searches for filename in the same way as for a file specified
with #include using quotation marks. For a description of include file
searching rules, see the I (Searchinclude) option description. The compiler
issues an error if the file is not found.

Example

The following example prepends the file globals.h to the file proto.c:

ic960 -i globals.h proto.c

#include

I960BASE

I960INC

i (Preinclude)
Stop-after options

3-48

3 i960® Processor Compiler User’s Manual

Related Topics

J (Miscellaneous)
Selects miscellaneous controls.

J arg[,arg]...

Discussion

Use the J (Miscellaneous) option to specify miscellaneous controls. Two
such controls are gd (issue gcc960-style diagnostics) and nogd (issue
ic960-style diagnostics). gcc960-style diagnostics are more compact, and
do not include column position indicators.

Default

nogd (issue ic960-style diagnostics).

j (Errata)
Specifies processor errata.

j num Discussion

Use the j (Errata) option to cause the compilation system to generate code
with workarounds for specified processor errata. A num argument of 1
generates code to work around the Cx processors’ DMA errata.

#include

I960BASE

I960INC

I (Searchinclude)
Stop-after options

ic960 Compiler Driver 3

3-49

M (Mix)
Mixes C/C++ source text with assembly
language output.

-S -M

Default

Assembly language output does not contain interleaved C/C++ source as
comments.

Discussion

Use the M (Mix) option to modify the S (Save-assembly) option to put
C/C++ source text as comments into the assembly language output file.
Using the M (Mix) option without the S (Save-assembly) option has no
effect.

Note that if you use the O (Optimize) option with the M (Mix) option, the
C/C++ source text comments can be mismatched to the assembly language
text, since optimization can reorder and eliminate assembly language
instructions.

Example

The following example produces the assembly language file proto.s
containing C source text as comments:

ic960 -S -M proto.c

Related Topics

O (Optimize) S (Save-assembly)

3-50

3 i960® Processor Compiler User’s Manual

n (Check-syntax)
Check syntax; terminate.

n

Default

After the link phase of the compilation process is complete, an executable
file is produced.

Discussion

If you specify n (Check Syntax Only) the compilation process terminates
after performing syntax and semantic checking. The compiler generates
diagnostic messages but produces no output.

Example

The following example runs a syntax check only on the file proto.c,
generating no output file:

ic960 -n proto.c

O (Optimize)
Optimize.

O[level]

The O[level] option specifies the level of optimization as described
below.

O0 Disables optimizations, including those that may
interfere with debugging. This is the optimization level
if you use the g (Debug) option.

ic960 Compiler Driver 3

3-51

O1 Enables basic optimizations, including: advanced
register allocation, common subexpression elimination,
loop invariant code motion, expression simplification
and instruction combination, jump optimization,
dead-code elimination, and i960 processor-specific
peephole optimization. This is the default setting if you
do not use the g (Debug) option or when you use the
fdb (Program Database) or fprof (Instrument) options.

O2 This level includes the O1 optimizations described
above, tail-call elimination, leaf-procedure optimization,
and the following optimizations:

fcoalesce, fcoerce, fcondxform, fconstprop,
fcopyprop, fcse-follow-jumps,
fcse-skip-blocks, fexpensive-optimizations,
finline-functions, fmarry_mem,
frerun-cse-after-loop, fschedule-insns,
fschedule-insns2, fshadow-globals,
fshadow-mem, fsplit_mem, fstrength-reduce,
funroll-loops.

O5 This setting specifies program-wide optimization.
Before using the O5 option, you should read Chapter 4,
“Program-Wide Analysis and Optimization”, and
Chapter 6, “gcdm Decision Maker Option”.

Note that the O5 level is not accepted directly by the
ic960 driver. It is accepted only in the subst argument
of the gcdm option.

o (Output)
Name output file.

o filename

3-52

3 i960® Processor Compiler User’s Manual

filename is the name of the file to receive the final output of the
compilation.

Default

If the linker is to be invoked, the default name of the linker’s output is
a.out for COFF and e.out for ELF. Otherwise, each output filename is
determined by replacing the filename extension of each input file. Output
filenames’ extensions depend on the Stop-after option in effect, as follows:

• P (Preprocess-file): filename.i (C) filename.ii (C++)

• S (Save-assembly): filename.s

• c (Create-object): filename.o

Discussion

Use the o (Output) option to direct the final output of a compiler invocation
to a specific file. The final output can be any of the following:

For E, Q, and n, the output goes to stdout.

• If you specify the P (Preprocess - file) option, the final output is the
result of preprocessing.

• If you specify the S (Save-assembly) option, the final output is the
assembly language text generated by the compiler.

• If you specify the c (Create-object) option, the final output is the object
module generated by the assembler.

• Otherwise, the final output is the result of linking.

The compiler issues an error message if you use the o (Output) option and
do not invoke the linker when processing more than one input file.

Related Topic

Stop-after options

ic960 Compiler Driver 3

3-53

P (Preprocess-file)
Preprocess; write output to file;
terminate.

P

Default

After the link phase of the compilation process is complete, the compilation
system produces an executable file.

Discussion

If you specify the P, (Preprocess-file) option, the compilation process
terminates after preprocessing and the compiler writes preprocessor output
without line number directives to a file. If you do not specify a filename
with the o (Output) option, the file is filename.i (for C) or
filename.ii (for C++), where filename is the source filename without
its extension.

Example

The following example puts the preprocessed source for proto.c in the
file proto.i and the preprocessed source for proto1.c in the file
proto1.i:

ic960 -P proto.c proto1.c

3-54

3 i960® Processor Compiler User’s Manual

Related Topics

Q (Dependencies)
Print include-file dependencies;
terminate.

Q

Discussion

If you specify Q (Dependencies), the compilation process terminates after
preprocessing and the compiler writes a list of dependency lines to standard
output. The dependency lines take the form object: subfile where
object is an object filename derived from the name of a primary C/C++
source file and subfile is the name of a file needed to create the object
file. The preprocessor generates one line for each subfile on which the
object file depends, including the primary C/C++ source file. Preprocessor
directives for conditional compilation affect the output of the dependency
lines.

Example

The following example generates a file dependency list for dtest.c. File
dtest.c includes files dinc.h, d2.h, and d3.h, as follows:

#include "dinc.h"
#include "d2.h"
#include "d3.h"

File dinc.h includes file dad.h, as follows:

#include "dad.h"

The files d2.h and d3.h do not include any files. The following command
compiles dtest.c with Q, resulting in file dependency lines:

o (Output) Stop-after options

ic960 Compiler Driver 3

3-55

ic960 -Q dtest.c
dtest.o: dtest.c
dtest.o: dinc.h
dtest.o: dad.h
dtest.o: d2.h
dtest.o: d3.h

Related Topics

#include o (Output) Stop-after options

S (Save-assembly)
Compile; save assembly language
output; terminate.

S

Default

After the link phase of the compilation process is complete, the compiler
produces an executable COFF file. (Assembly language output is not
saved.)

Discussion

If you specify S (Save-assembly), the compilation process terminates after
the compiler generates assembly code and writes the output to a file. If you
do not specify a filename with the o (Output) option, the compiler writes the
assembly language output to filename.s, where filename is the source
filename without its extension.

Use the M (Mix) option to create a mixture of assembly language source
code and corresponding C/C++ source code.

Examples

3-56

3 i960® Processor Compiler User’s Manual

1. The following example creates the assembly language output from
proto.c into proto.s:
ic960 -S proto.c

2. The following example creates proto.s, the assembly language file
for proto.c, and t1.s, the assembly language file for t1.c, in the
current directory:
ic960 -S proto.c -t1.c

Related Topics

M (Mix)o (Output)

Stop-after Options (n | Q | P | E | S | c)
Stop after the specified compilation
phase.

n | Q | P | E | S | c

Default

After the link phase of the compilation process is complete, the compilation
system produces an executable file.

You can use the o (Output) option to specify a name for the executable file.
The default output filename is a.out (COFF) or e.out (ELF).

Discussion

Use one of the Stop-after options to halt the compilation process before
linking and to write the intermediate output to a file or standard output. You
can also use the o (Output) option to specify a filename for the output file.

Table 3-3 summarizes the processing and output other than listing the files
that result from each Stop-after option.

If you specify n (Syntax-checking), the compilation process terminates after
syntax and semantic checking are performed. The compiler generates
diagnostic messages but produces no output.

ic960 Compiler Driver 3

3-57

If you specify Q (Dependencies), the compilation process terminates after
preprocessing and the compiler writes a list of dependency lines to standard
output. The dependency lines take the form object: subfile where
object is an object filename derived from the name of a primary C/C++
source file and subfile is the name of a file needed to create the object
file. The preprocessor generates one line for each subfile on which the
object file depends, including the primary C/C++ source file. Preprocessor
directives for conditional compilation affect the output of the dependency
lines.

If you specify E (Preprocess - stdout), the compilation process terminates
after preprocessing and the compiler writes preprocessor output with line
number directives to standard output. The o (Output) option does not affect
output from E.

If you specify P (Preprocess - file) the compilation process terminates after
preprocessing and the compiler writes preprocessor output without line
number directives to a file. If you do not specify a filename with the o

Table 3-5 Stop-after Option Phases and Output

Name Option Processing Phases Output

Syntax-check n preprocessing,
syntax-checking

a list of diagnostic messages,
written to standard error

Dependencies Q preprocessing a list of file-dependence lines,
written to standard output

Preprocess -
stdout

E preprocessing preprocessed source text with line
number directives, written to
standard output

Preprocess - file P preprocessing preprocessed source text without
line number directives, written to
files

Save-assembly S preprocessing,
compilation

assembly language, written to files

Create-object c preprocessing,
compilation, and
assembly

object modules, written to files

3-58

3 i960® Processor Compiler User’s Manual

(Output) option, the compiler writes preprocessor output to filename.i
(for C) or filename.ii (for C++), where filename is the source
filename without its extension.

If you specify S (Save-assembly), the compilation process terminates after
the compiler generates assembly code and writes the output to a file. If you
do not specify a filename with the o (Output) option, the compiler writes the
assembly language output to filename.s, where filename is the source
filename without its extension. If you also specify the M (Mix) option, the
assembly language output file also contains interleaved C/C++ source lines.

If you specify c (Create-object), the compilation process terminates after
the assembler generates an object file. If you do not specify the Output
option, the compiler writes the object file to filename.o, where
filename is the source filename without its extension.

Examples
1. The following example puts the preprocessed source for proto.c in

the file proto.i and the preprocessed source for proto1.c in the file
proto1.i:
ic960 -P proto.c proto1.c

2. The following example runs only the preprocessor phase, sending the
preprocessed source text to the screen:
ic960 -E proto.c

3. The following example runs a syntax check only on the file proto.c,
generating no output file:
ic960 -n proto.c

4. The following example puts the assembly language output from
proto.c into proto.s:
ic960 -S proto.c

5. The following example puts proto.s, the assembly language file for
proto.c, and t1.s, the assembly language file for t1.c, in the
current directory:
ic960 -S proto.c -t1.c

6. The following example produces the object file proto.o but no
executable file:
ic960 -c proto.c

ic960 Compiler Driver 3

3-59

7. The following example produces the object files proto.o, t1.o, and
proto1.o in the current directory but creates no executable file:
ic960 -c proto.c t1.s proto1.i

8. The following example lists file dependencies for dtest.c:

The dtest.c file includes the dinc.h, d2.h, and d3.h files, as
follows:
#include "dinc.h"
#include "d2.h"
#include "d3.h"

The dinc.h file includes the dad.h file, as #include "dad.h".

The d2.h and d3.h files do not include any files. The following
command compiles dtest.c with -Q, resulting in the following lines:
ic960 -Q dtest.c
dtest.o: dtest.c
dtest.o: dinc.h
dtest.o: dad.h
dtest.o: d2.h
dtest.o: d3.h

Related Topics

U (Undefine)
Undefine symbol.

U symbol

symbol is a symbolic name.

Default

No symbols are undefined.

C (Keep-comments)
M (Mix)

o (Output)
V (Verbose)

z (List)

3-60

3 i960® Processor Compiler User’s Manual

Discussion

Use the U (Undefine) option to remove preprocessor macro symbols.
Examples of symbols you can undefine include:

• the __IC960, __i960 and __i960xx macros, where xx is CA, CF, KA,
KB, SA, SB, JA, JD, JF, RM, RN, or VH.

• the __PIC and __PID macros

• symbols you have defined on the command line

• the symbol for big-endian code generation, __i960_BIG_ENDIAN

The compiler processes all the U (Undefine) options in a command line only
after processing all the D (Define) options.

You cannot undefine or redefine the following predefined ANSI C macros:

__DATE__ is the calendar date of the translation.

__FILE__ is the name of the current source file.

__LINE__ is the line number of the current source program line.

__TIME__ is the calendar time of the translation.

__STDC__ indicates that the compiler conforms to ANSI C.

Example

The following examples both undefine the symbol __i960KA:

ic960 -AKA -U__i960KA proto.c
ic960 -AKA -U__i960KA -D__i960KA=2 proto.c

ic960 Compiler Driver 3

3-61

Related Topics

V (Version)
Display version information.

V

Default

The compiler does not display version information.

Discussion

Use the V (Version) option to display to standard error the name and
version, as shown below.

ic960 Version x.y.nnnn

x.y identifies the major release of the compiler

nnnn identifies the product’s patch level

Version information differs for each host system and for each release.

Related Topic

v (Verbose)

v (Verbose)
Display invocation information.

v

A (Architecture)

D (Define)

#define

__i960xx

__i960

__PIC

__PID

#undef

3-62

3 i960® Processor Compiler User’s Manual

Default

The compilation system does not display individual phase invocation
information.

Discussion

Use the v (Verbose) option to display the standard errors from invocations
of the driver program, preprocessor, compiler, assembler, and linker. These
invocations are command lines generated by the driver program from the
files and W (Pass) options you specify in the ic960 command.

For example, if you specify the v (Verbose) option, the driver program
passes it to the linker, even if you do not specifically use the W (Pass) option.
The linker displays on standard output the files linked according to the
following categories:

• input object files

• startup file

• high-level libraries

• low-level libraries

Example

The following command-line requests verbose invocation information:

ic960 -v -T cycx -ACA -o hello.out hello.c

Related Topics

v960 (Version, terminate)
Display version information and
terminate.

v960

I960AS

I960BASE

I960LD

Stop-after options
W (Pass)
V (Version)

ic960 Compiler Driver 3

3-63

Default

The compilation system does not display version information.

Discussion

Use the v960 (Version, terminate) option to display version information.
This is the only thing the driver program does before terminating.

W (Pass)
Pass arguments to phases.

W phase,arg[,arg]. . .

phase is a letter identifying the phase to receive the arguments,
as follows:

a indicates the assembler.

c indicates the compiler.

l indicates the linker.

p indicates the preprocessor.

arg is a string to be passed to and interpreted by the phase.
Each arg is passed as a separate argument. If an arg
string contains whitespace, you must enclose the string
in quotation marks.

Discussion

Use the W (Pass) option to specify options for the preprocessor, compiler,
assembler, or linker. The driver program does not interpret the argument
strings; only the receiving phase interprets them.

Related Topic

Stop-after options

3-64

3 i960® Processor Compiler User’s Manual

W (Warnings)
Enable or disable a warning.

W [no-]arg

The W [no-]arg option allows more fine-grained control over diagnostics
than w level.

arg is any of:

aggregate-return warn if any functions return structures or
unions.

all enable several useful warnings. Has no
Wno-all form.

cast-align warn if a pointer cast may not have the required
alignment.

cast-qual warn if a pointer cast removes a type qualifier.

char-subscripts warn if an array variable has type char.

comment warn whenever /* occurs in a comment.

conversion warn if a prototyped parameter causes a
different conversion from the conversion that
would take place if the parameter were not
prototyped.

error treat all warnings as errors.

format check arguments of printf-family arguments
at compile time.

id-clash-n warn if two identifiers match in the first n
characters.

implicit warn if a function is used before it is declared.

missing-braces warn if an aggregate initializer is not fully
enclosed in braces.

ic960 Compiler Driver 3

3-65

missing-prototypes warn if a function is defined before it is
prototyped.

nested-externs warn if an extern declaration is detected
inside a function.

overloaded-virtual Warn when a derived class function declaration
may be an error in defining a virtual function.
In a derived class, the definitions of virtual
functions must match the type signature of a
virtual function declared in the base class. With
this option, the compiler warns when you define
a function with the same name as a virtual
function, but with a type signature that does not
match any declarations from the base class.

Wno-overloaded-virtual is the default.
This is a C++-specific option.

parentheses warn if parentheses are suggested around an
expression.

pointer-arith warn if the size a function type or type void is
used.

redundant-decls warn if an object is declared twice in the same
scope.

reorder Warn when the order of member initializers
given in the code does not match the order in
which they must be executed. Wno-reorder is
the default. This is a C++-specific option.

return-type warn if any function implicitly returns int, and
if any non-void function does not return a value.

shadow warn if a local variable shadows another local
variable.

strict-prototypes warn if a function is declared without a
prototype.

switch warn if a switch statement on an enumeration
type does not have a case for each enumerator.

3-66

3 i960® Processor Compiler User’s Manual

w (Diagnostic-level)
Controls listing or display of diagnostic
messages.

w level

level is the level of diagnostic messages to be listed or
displayed; can be 0, 1, or 2.

Default

The compiler displays error and major warning messages; that is, level
is 1.

Discussion

Use the w (Diagnostic-level) option to suppress the warning messages that
highlight legal but questionable uses of C. Unlike errors, uses of C that
result in warning messages do not prevent the compiler from completing the
translation and linking process.

To choose the level of diagnostic messages, use one of the following for the
level argument:

0 to enable all warning and error messages

1 to enable major warning and error messages,
suppressing only minor warning messages

traditional warn about contructs that behave differently in
traditional C and ANSI C.

trigraphs warn if any trigraphs are detected.

uninitialized warn if use of an uninitialized local variable is
detected.

unused warn about objects that are never used.

write-strings warn if string constants are used in a writable
context.

ic960 Compiler Driver 3

3-67

2 to enable only error messages, suppressing warning
messages

The a (ANSI) option always overrides the w2 option, forcing the compiler
to list or display warning messages.

The W (Warnings) option can be used to enable/disable specific warnings
that would otherwise fall under the control of the w (Diagnostic-level)
option. This is a C++-specific option.

Example

The following example displays warning and error diagnostic messages:

ic960 -c -w1 proto.c

Related Topics

a (ANSI) Stop-after options W (Warnings)

Yd (Program database)
Specifies location of program database.

Yd,PDB_directory

PDB_directory specifies the directory containing the program database
(PDB).

Default

The environment variable I960PDB specifies the location of the program
database.

Discussion

When linking an instrumented program to generate profile information,
during the Decision-making step, and during Profile-driven Recompilation,
the location of the program database (PDB) must be specified. You can use
the Yd (Program database) option to override I960PDB or to indicate where
the PDB is located if I960PDB is not defined.

3-68

3 i960® Processor Compiler User’s Manual

The PDB is a directory that the compilation system uses to store various
files that it generates to contain information about the profile-driven
compilation of a program. It must be specified either via the
Yd,PDB_directory option, or with the I960PDB environment variable.

Z (Listname)
Names listing file.

Z filename

filename is the name of the listing file to be created.

Default

The compiler generates listing filenames from the primary source
filenames.

Discussion

Use the Z (Listname) option to name the listing file. If you specify more
than one source file on the command line, the compiler concatenates the
listings for all the source text files into the single filename listing file.
Using the Z (Listname) option without the z (List) option generates a listing
file containing only primary source text.

Example

The following example produces the listing file list.t containing a source
text listing for the file proto.c:

ic960 -c -Z list.t proto.c

Related Topics

Stop-after optionsz (List)

ic960 Compiler Driver 3

3-69

z (List)
Produce listing file.

z arg...

arg is one of the following:

s lists the primary source text, that is, source
text from files named on the command line.

i adds included source text to the primary
source text listing.

o adds the assembly language generated by
the compiler to the listing file.

m adds expanded preprocessor lines to the
primary source text listing.

c adds conditionally noncompiled source text
to the primary source text listing.

Default

The compiler does not produce any listing files.

Discussion

Use the z (List) option to generate a listing file for each primary source file
and to specify the listing file contents. The arg applies to all listing files
produced. A listing file contains, at a minimum, the source text from the
primary source file and diagnostic messages according to the diagnostic
level. You can add other listing information by specifying one or more arg
arguments instead of or in addition to s. Using the i, o, m, or c argument
implies the s argument.

Unless you specifically name the listing filename with the Z (Listname)
option, the compiler derives a listing filename from each primary source
filename, as follows:

base.L

3-70

3 i960® Processor Compiler User’s Manual

base is a primary source filename, without its extension.

Example

The following example produces the listing file complex.L and object file
complex.o in the current working directory for the source file
complex.c. The listing file contains primary source listing, included
source text, assembly language, source text that is conditionally compiled
out, and expanded macros.

ic960 -c -z cosmi /complex.c

Include Line

 Level Number Source Lines

======= ====== ============

 # Command line (ic960): ic960 -c -z cosmi complex.c
 # Command line (cc1): /ffs/p1/dev/src/gcc960/timc.sun4/cc1
.960 -ic960 -ffancy-errors -sinfo /usr/tmp/ica29412.sin -fno-builtin
-quiet -Fcoff -mkb -mic3.0-compat -fsigned-char -w1 -O1
-fno-inline-functions
-clist siomc -dcmd "ic960 -c -z cosmi complex.c" -dumpbase complex
-outz complex.L -tmpz /usr/tmp/ica29412.ltm /usr/tmp/ica29412.i -o
/usr/tmp/ica29412.s
 .file "complex.c"
 gcc2_compiled.:
 ___gnu_compiled_c:

 0* 1 #include "complex.h"
 1* 1
 1 2 /* Define a struct for complex numbers
 1 3 with some macros */
 1 4
 1 5 #if !defined(complex_h)
 1 6
 1 7 struct complex {
 1 8 double x;
 1 9 double i;
 1 10 };
 1 11
 1 12 #define INIT_COMPLEX(num, real, imag) \
 1 13 num.x =real; num.i =imag;
 1 14
 1 15 #define ADD_COMPLEX(res, op1, op2) \
 1 16 res.x =op1.x+op2.x; \

ic960 Compiler Driver 3

3-71

 1 17 res.i =op1.i+op2.i;
 1 18
 1 19 #endif /* !defined(complex_h) */
 0 2
 0 3 extern void write_complex(struct complex num);
 0 4
 0 5 main()
 0 6 {

 .text
 .align 4
 .def _main; .val _main; .scl 2; .type 0x40;
.endef
 .globl _main
 # Function ’main’
 # Registers used: g0 g1 g2 g3 g4 g5 g6 g7 fp r4*
 # r5* r6* r7*
 _main:
 lda 48(sp),sp
 #Prologue stats:
 # Total Frame Size: 48 bytes
 # Local Variable Size: 48 bytes
 # Register Save Size: 0 regs, 0 bytes
 #End Prologue#
 0 7 register struct complex x,y,z;
 0 8
 0 9 INIT_COMPLEX (x, 10.31, 4.25);
 +++++ x .x = 10.31 ; x .i = 4.25 ; ;
 # lda1.03100000000000004974e1,r4
 lda0x51eb851f,r4
 lda0x40249eb8,r5
 movlr4,r6
 stlr6,64(fp)
 # lda4.25000000000000000000e0,r4
 mov0,r4
 lda0x40110000,r5
 movlr4,r6
 stlr6,72(fp)
 0 10 INIT_COMPLEX (y, 7.14, 5.23);
 +++++ y .x = 7.14 ; y .i = 5.23 ; ;
 # lda7.13999999999999968026e0,r4
 lda0x28f5c28f,r4

3-72

3 i960® Processor Compiler User’s Manual

 lda0x401c8f5c,r5
 movlr4,r6
 stlr6,80(fp)
 # lda5.23000000000000042633e0,r4
 lda0x1eb851ec,r4
 lda0x4014eb85,r5
 movlr4,r6
 stlr6,88(fp)

 0 11 ADD_COMPLEX (z, x, y);
 +++++ z .x = x .x+ y .x; z .i = x .i+ y .i; ;
 0 12
 # lda1.74499999999999992895e1,r4
 lda0x33333333,r4
 lda0x40317333,r5
 movlr4,r6
 stlr6,96(fp)
 # lda9.48000000000000042633e0,r4
 lda0x8f5c28f6,r4
 lda0x4022f5c2,r5
 movlr4,r6
 stlr6,104(fp)
 0 13 write_complex (z);
 ldq96(fp),g0
 callj_write_complex
 0 14 }
 #EPILOGUE:
 ret
 .def _main; .val .; .scl -1; .endef

The listing file includes information about the compilation. The heading
line at the beginning of the listing contains the name and version of the
compiler, the printing date of the listing, and the name of the primary source
file. The next two lines of text describe the format of the listing. The
remainder of the file contains the listing. The compiler does not paginate
the listing and does not wrap long lines.

The format of the source text listing is as follows:

ic960 Compiler Driver 3

3-73

include-nesting-level line-number source-line

A line with an expanded macro appears after the corresponding source line
in the following format:

 source-line
+++++ macro-expanded-line

macro-expanded-line is the source line containing the expansion
of the macro.

The assembly language in the listing is similar to but not necessarily
identical to the intermediate assembly language form of the program
resulting from an S (Save-assembly) option. The compiler can add
symbolic names that improve readability of the listing but are not accepted
by the assembler.

Related Topics

Stop-after options w (Diagnostic-level) Z (Listname)

include-nesting-
level

determines the depth of the file in the include
file nesting hierarchy. Since lines from the
primary source file are always at level 0, if you
do not list included source text, all source lines
in the listing are at level 0. An asterisk (*)
following the include nesting level indicates the
first line of a file.

line-number is the location of a line relative to the beginning
of the file containing that line.

source-line is a line of source text.

4-1

Program-Wide Analysis and
Optimization 4
Introduction

This chapter teaches you how to use some of CTOOLS most powerful
optimization features. This chapter discusses these topics:

• “Creating Program-wide and Module-local Optimizations”

• “Profiling Your Program”

• “Using make To Perform Program-wide Optimizations”

• “Runtime Support for Profile Collection”

To use the first two features you are going to:

1. Create a program database.

2. Specify which modules you want optimized.

3. Recompile your program using the -fdb option.

After these basic optimizations, you use profiling to gather information
about the runtime characteristic of your program and then optimize
performance based on that information.

The sections that follow describe the types of optimizations used in program
optimization.

Individual and Program-wide Optimizations

The compiler can perform sophisticated inter-module optimizations, such as
replacing function calls with expanded function bodies when the function
call sites and function bodies are in different object modules. These are
called program-wide optimizations because the compiler collects
information from multiple source modules before it makes final

4-2

4 i960® Processor Compiler User’s Manual

optimization decisions. Throughout this chapter, standard (i.e.,
non-program-wide) optimizations are referred to as module-local
optimizations.

About Profiling

The compiler can also collect information about the runtime behavior of a
program by instrumenting the program. The instrumented program can be
executed with typical input data, and the resultant program execution
profile can be used by the global decision making and optimization phase to
improve the performance of the final optimized program. The profile can
also provide input to the global coverage analyzer tool (gcov960), which
gives users information about the runtime behavior of the program at the
source-code level.

Creating Program-wide and Module-local
Optimizations

Program-wide optimizations are enabled by options that tell the compiler to:

1. Build a program database during the compilation phase.

2. Invoke a global decision making and optimization step during the
linking phase.

3. Automatically substitute the resulting optimized modules into the final
program during the linking phase.

Specifying the Program Database Directory

The program database directory (PDB) is the repository for all
program-wide optimization information about a particular program. When
using program-wide optimizations, you must specify the correct PDB to all
compilation tools involved in building the program. You initially create the
PDB, but the files within this directory are automatically managed by the
various pieces of the program-wide optimization system. Once this is done,
you do not change the files in the PDB.

Program-Wide Analysis and Optimization 4

4-3

The PDB can be specified by setting the environment variable G960PDB
(gcc960 driver) or I960PDB (ic960 driver) to the correct location. You can
also specify the PDB at compiler invocation time with the Zdir (gcc960) or
Yd,dir (ic960) option, as shown in the examples below.

gcc960 -Zmypdb foo.o

ic960 -Yd,mypdb foo.o

Compiling for Program-wide Optimization with the fdb Option

All modules subject to program-wide optimization must be initially
compiled with the fdb option (described in Chapter 2, “gcc960 Compiler
Driver” and Chapter 3, “ic960 Compiler Driver”). Using this option causes
the insertion of program database information in the object modules, and it
implies a minimum module-local optimization level of O1 (although higher
module-local optimization levels are allowed).

Compiling with the fdb option does not change the code or data generated
for the object modules in any way; this option simply makes information
collected during the initial compilation of the modules available to the
global decision making and optimization step.

Global Decision Making and Optimization Using the gcdm Option

The tool that performs the global decision making and optimization step is
called gcdm960. gcdm960 is invoked from within the linker when the gcdm
option is used. You can also use the gcdm option in the compiler driver
(gcc960 or ic960) to pass this option to the linker. Using the gcdm option
causes gcdm960 to:

• automatically build and manage optimized object modules in the PDB

• arrange with the linker for optimized object modules from the PDB to
be automatically substituted for some or all of the original object
modules in the final program.

You can use multiple gcdm options in a linker or compiler invocation
command, and each gcdm option can have multiple comma-separated
arguments. (The gcdm option and its arguments are fully described in
Chapter 4, “Program-Wide Analysis and Optimization”.)

4-4

4 i960® Processor Compiler User’s Manual

Selecting Modules for Optimization with Substitution Specifications

You tell gcdm960 which object modules to optimize and how to optimize
them with substitution specifications. Substitutions are specified by
arguments to the gcdm option in the linker or compiler invocation.

The term “substitution” reflects the fact that the linker replaces your .o

files with optimized versions maintained in the PDB. Such a .o file from
the PDB is called a “substitution module.”

The example below illustrates the basic idea of substitution: It depicts an
ic960 invocation command that uses the gcdm option and the Yd and fdb
options to accomplish program-wide optimization (without profiling) for a
simple program.

ic960 -o prog -Ttarg -Yd,./pdb -gcdm,subst=+O5 -fdb fee.c
 foo.c

(-Ttarg specifies the linker directive file for the target execution
environment.)

The command accomplishes the following steps:

1. fee.c and foo.c are compiled with fdb, which inserts program
database information into fee.o and foo.o.

2. The program is then linked to form prog, at which time gcdm960 is
invoked with -Yd,./pdb -gcdm,subst=+O5.

3. fee.o and foo.o are replaced in prog with versions from ./pdb
built at level O5 optimization (that is, built with program-wide
optimizations).

NOTE. The optimized replacements for fee.o and foo.o are present in
the linked program but never appear in the current working directory.

Program-Wide Analysis and Optimization 4

4-5

Profiling Your Program

Compiling for Profile Instrumentation with -fprof

As mentioned above, information on the runtime behavior of the program
can be used by the compilation system during the global decision making
and optimization step. To instrument a program, use the fprof option in
addition to fdb when compiling:

ic960 -Yd,mypdb -fdb -fprof -c foo.c

See Chapter 2, “gcc960 Compiler Driver” and Chapter 3, “ic960 Compiler
Driver” for more on the fprof option. This command causes profile
instrumentation to be inserted into foo.o so that when the linked program
is executed, a profile can be collected. Using runtime profiles to influence
the final optimization of your program requires you to build the program
twice: once to insert the instrumentation, as described here, and then again
so that the compilation system can substitute modules that are recompiled
with optimizations appropriate to their runtime behavior.

Collecting a Profile

If a program that contains one or more modules compiled with fprof is
linked with the standard libraries and then executed, a file named
default.pf containing the profile for those modules is automatically
produced when the program exits. This is a “raw” profile containing
program counters that log how many times various statements in the source
program have been executed.

If you are not using the standard libraries, you must insert a call to a routine
that creates the profile in an appropriate point in the program source code.
For instructions on this step, see the section titled Runtime Support for
Profile Collection (page 4-15). If you are using IxWorks*, functions are
provided for collecting profiles (see page 4-14).

4-6

4 i960® Processor Compiler User’s Manual

Building Self-contained Profiles with gmpf960

A “raw” profile contains program counters, which count how many times
various statements in the source program have been executed. Information
in the PDB is needed to correlate these program counters with the source
program.

A raw profile (that is, a profile simply collected as described previously)
has a very short useful life. When changes are made in your source code,
any raw profiles previously obtained for that program are no longer
accepted by the global decision making and optimization step.

A “self-contained” profile captures the program structure from the PDB and
associates it with the program counters from the raw profile. When changes
are subsequently made to the source program, the global decision making
step interpolates or “stretches” the counters in the self-contained profile to
fit the changed program.

A self-contained profile can be continually used to optimize the program it
was collected for, even after days, weeks, or perhaps months worth of
changes to the program. This frees you from having to collect a new profile
every time the program changes, while still allowing profile-directed
optimizations. Depending upon the nature and quantity of changes to the
program, the accuracy of the profile gradually degrades over time as more
interpolation is done.

A self-contained profile must be generated from a raw profile before the
program that generated the raw profile is relinked. You should always
create a self-contained profile immediately after the raw profile is collected.

To create a self-contained profile, use the gmpf960 profile merger tool.
gmpf960 is invoked with the raw profile as an input file, as shown in this
example:

gmpf960 -Z mypdb -spf pfile2.spf pfile1.pf

This command creates a self-contained profile pfile2.spf from the raw
profile pfile1.pf. The raw profile pfile1.pf was created by executing
the instrumented program that was linked using mypdb as the program
database directory. The .pf and .spf filename extensions for the profile
files in this example are arbitrary; the different types of profiles are
recognized by their contents, not by their filename extensions.

Program-Wide Analysis and Optimization 4

4-7

After a self-contained profile is created, you can specify it for the global
decision making and optimization step using the gcdm,iprof=file
syntax as described in the next section.

Using Profiles During Global Decision Making and Optimization
with -gcdm,iprof

To supply a profile file pfile to the global decision making and
optimization step, simply add the following option and argument to the
compiler or linker invocation command:

gcdm,iprof=pfile

This is in addition to the gcdm,subst option. The iprof argument can
specify either raw profiles or self-contained profiles.

Obtaining Program Coverage Analysis with gcov960

You can use both profile types as input to the gcov960 coverage analyzer
tool, as follows:

gcov960 -cm -Z ./pdb -iprof pfile.pf fee.c foo.c

This command produces a coverage report in the files fee.cov and
foo.cov, using the profile pfile.pf.

Using make To Perform Program-wide Optimizations
Since the program-building tool “make” is so widely used, the
program-wide optimization features are designed to work well with it.
However, you need not use the make tool to effectively use program-wide
optimizations. If you do not use the make tool, you can skip this section.

Below is an example of a makefile (where targ is set appropriately):

SUBST=
PROF=
MODULES=*:*

OPT=-fdb
"-gcdm,subst=$(MODULES)+$(SUBST),iprof=$(PROF)"
FLAGS=-Ttarg $(OPT)

OBJECTS=fee.o foo.o main.o

4-8

4 i960® Processor Compiler User’s Manual

prog: $(OBJECTS) force
 ic960 -o prog $(FLAGS) $(OBJECTS)

.c.o:
 ic960 -c $(FLAGS) $<

$(OBJECTS): makefile

force:

While primitive, this makefile can be used to exercise several significant
capabilities of the program-wide optimization system. Refer to this
example as you read the following sections; the example and discussion can
help you determine the changes that must be made to your own makefiles (if
any) to perform program-wide optimizations.

Adapting Makefiles for Program-wide Optimization

This section discusses the example makefile and how the program-wide
optimization interface is expected to mesh with your current usage of
optimization and debug options.

Specifying the PDB in the Makefile

In an ic960 or gcc960 development environment, you typically specify the
PDB by setting the I960PDB or G960PDB environment variable outside of
any makefile, rather than changing makefiles to specify the PDB to every
tool invocation. The example makefile assumes that the PDB is specified
outside of the makefile in this manner.

The appropriate location for the PDB directory is probably in the directory
where the makefile compiles and links the object modules. For example,
the UNIX and Windows statements below are suitable for many users.

setenv I960PDB ./pdb (UNIX)
set I960PDB ./pdb (Windows)

Replacing Optimization Options with fdb and gcdm

Except for the definition of the OPT macro, the example is typical of simple
makefiles that use ordinary optimizations. From the point of view of the
makefile and/or the build system, the fdb option combined with one or

Program-Wide Analysis and Optimization 4

4-9

more gcdm options is often a direct replacement for ordinary optimization
options such as O, because the compilation tools that accept ordinary
optimization options also accept program-wide optimization options.

Programs linked by direct invocation of the linker are exceptions to this
general rule. In such a case, the gcdm option must be added to the linker
invocation.

Using Linker Invocations with gcdm for Automatic
Management of Object Files at Link Time

The example makefile always produces a program load module with the
same name. Since the options provided when the make tool is invoked
affect the linked program when there have been no apparent changes to the
source or object files, the makefile uses an artificial force dependence to
guarantee that the program is linked at every invocation of make. This is a
common practice, and keeps the makefile simple.

You could instead write the makefile so that different options to the link step
produce program load modules with different names. The artificial force
dependency could then be removed, perhaps saving an occasional
unnecessary linker invocation. However, in the program-wide optimization
system there is no more reason to try to eliminate extra linker invocations
than there would be in an ordinary system. In fact, the development
environment can often be simplified by forcing linker invocations (as in the
example makefile) for the following reasons:

• The global decision-making and optimization step manages the results
of previous work in the PDB so that all previously generated modules
are reused whenever possible. The system keeps multiple sets
(currently, two) of the most recently used substitution modules in the
PDB, indexed by the substitutions that generated them. The makefile
is not aware of this management task, and is simpler as a result.

• Even though program-wide optimizations can potentially trigger large
quantities of compilation and optimization work at link time, the
majority of this work usually occurs only the first time the program is
linked with a particular set of substitutions, or on the first link after
major changes are made to the program.

4-10

4 i960® Processor Compiler User’s Manual

• The automatic management of substitution modules (defined in the
Selecting Modules for Optimization with Substitution Specifications
section) greatly simplifies some development tasks that are difficult for
users in an ordinary environment, such as maintaining both debug and
optimized versions of the object modules for a program. Given
modules already compiled with the fdb option, users can have
alternate program load module versions built efficiently by simply
invoking the linker with appropriate gcdm,subst options.

See the next section for examples of using the sample makefile to automate
program-wide optimizations.

Using Makefiles with Program-wide Optimizations for Common
Development Tasks

Building an Optimized Program without Profiling

Using the example makefile, if you want to obtain a program built with
program-wide optimizations, pass the options you want through the SUBST
macro when invoking the make tool. For example, if you want level O5
optimization, use:

make SUBST=O5

This causes the object modules in the program to be compiled and then
linked with the options in the FLAGS macro. The make tool then issues the
following commands:

ic960 -c -Ttarg -fdb -gcdm,subst=*:*+O5,iprof= fee.c
ic960 -c -Ttarg -fdb -gcdm,subst=*:*+O5,iprof= foo.c
ic960 -o prog -Ttarg -fdb -gcdm,subst=*:*+O5,iprof=
 fee.o foo.o

The link command causes substitution modules at optimization level O5 to
be built in the PDB to replace the original modules fee.o and foo.o in the
program load module prog. The iprof= option without a filename
indicates that you are not using a profile, which is the default behavior.

Building for Debugging without Program-wide Optimizations

If logic problems exist in the program, you can build a debug version of
prog by invoking the make tool with:

Program-Wide Analysis and Optimization 4

4-11

make SUBST=g+O0

This causes the make tool to issue only the following link command
(assuming the sources haven’t changed):

ic960 -o prog -Ttarg -fdb -gcdm,subst=*:*+g+O0,iprof=
 fee.o foo.o

The link command causes substitution modules with no optimization and
full debug information to be built in the PDB to replace the original
modules fee.o and foo.o in the program load module prog.

After debugging the problem and then fixing it by changing one of the
source files, you can reissue the make SUBST=O5 command to get another
program-wide optimized version of prog. Invoking the make tool
recompiles the changed source file and then links the program with the O5
substitution specification, as before. This causes the global decision
making and optimization step to recompile the previous O5 substitution
modules as needed in the PDB, and those modules are then used in the
program load module prog.

Building an Instrumented Program

You can create a profile-instrumented program either of two ways: compile
source modules with the -fprof option, or link object modules using a
-gcdm,subst=+fprof substitution.

• When compiling with -fprof, the object files generated in your
working directory contain profile-instrumented code.

• When compiling with -gcdm,subst=+fprof, the
profile-instrumented object files reside in the PDB, not in your work
space.

These approaches both yield the same instrumented version of prog.
However, compiling with the fprof option creates object modules useful
only for collecting a profile. If you compile with the fprof option and do
not want a profile, you must then use substitutions to replace every
instrumented module in prog, or you must recompile the modules without
the fprof option.

4-12

4 i960® Processor Compiler User’s Manual

Linking Using an +fprof Substitution

The example makefile requires no changes to accommodate this method;
just use:

make SUBST=fprof

No files are recompiled unless source files have changed; only the
following link command is issued:

ic960 -o prog -Ttarg -fdb -gcdm,subst=*:*+fprof,iprof=
 fee.o foo.o

This command causes substitution modules with profile instrumentation to
be compiled in the PDB to replace the original modules fee.o and foo.o
in the linked program prog.

Compiling Using the fprof Option

To use the fprof compiler option to create an instrumented load module:

1. Edit the makefile to add -fprof to FLAGS.

2. Invoke the make tool without any substitutions, as follows:
make SUBST=
Since the object files depend on the makefile, and the makefile is
edited, the make tool recompiles the modules before linking them:

ic960 -c -Ttarg -fdb -fprof -gcdm,subst=*:*+,iprof=
 fee.c
ic960 -c -Ttarg -fdb -fprof -gcdm,subst=*:*+,iprof=
 foo.c
ic960 -o prog -Ttarg -fdb -fprof -gcdm,subst=*:*+,iprof=
 fee.o foo.o

Since the substitution option list is empty, there are no substitutions, and the
instrumented modules from the current working directory are linked.

NOTE. Profiles collected with +fprof substitutions must be made into
self-contained profiles before linking.

Program-Wide Analysis and Optimization 4

4-13

Note that when you use the fprof option in this manner, the generated
object module contains code that is unsuitable for linking into programs that
are not intended to collect profile information. To solve this problem, you
can use +fprof with gcdm,subst instead of using fprof when
compiling.

Building an Optimized Program with Profiling

Assuming you have collected a profile named prog.pf by executing the
instrumented version of prog, you can then use it for program-wide
optimizations by invoking the make tool as follows:

make SUBST=O5 PROF=prog.pf

prog.pf can be either a raw profile or a self-contained profile. If prog.pf
is a self-contained profile, you can continue to use it as shown above, even
if changes are made to the program.

Profiling a Program in Pieces

Suppose that the target execution environment is memory limited so that
fee.o and foo.o cannot both be instrumented for profiling at the same
time. You can use substitutions to make partially instrumented versions of
prog, and then create self-contained profiles for each piece, as follows:

make SUBST=fprof MODULES=":fe*"

Execute prog to obtain raw profile default.pf.

gmpf960 -spf fe1.spf default.pf

make SUBST=fprof MODULES=":fo*"

Execute prog to obtain a new raw profile default.pf.

gmpf960 -spf fo1.spf default.pf

Note that neither of the invocations of the make tool causes compilations;
the make tool simply issues a link command in each case. Each link
command constructs a version of prog that has a limited set of
instrumented modules:

ic960 -o prog -Ttarg -fdb -fprof
 -gcdm,subst=:fe*+, iprof= fee.o foo.o

ic960 -o prog -Ttarg -fdb -fprof -gcdm,subst=:fo*+,
 iprof= fee.o foo.o

4-14

4 i960® Processor Compiler User’s Manual

Note also that although the example contains only two modules, the strings
that select the modules for partial program instrumentation use a general
regular expression mechanism. Such strings can select any possible subset
of the modules in a program for any substitution. This mechanism is
discussed in detail with the gcdm,subst option in Chapter 6 “gcdm
Decision Maker Option”.

After creating the self-contained profiles fe1.spf and fo1.spf, use
gmpf960 to create a single merged self-contained profile:

gmpf960 -spf prog.spf fe1.spf fo1.spf

The final prog.spf is identical to a profile obtained by instrumenting the
entire program at once. Now issue the make command to get program-wide
optimizations guided by prog.spf:

make SUBST=O5 PROF=prog.spf

Again, the make tool performs no compilations. The following link
command is issued:

ic960 -o prog -Ttarg -fdb -gcdm,subst=*:*,+O5,
 iprof=prog.spf fee.o foo.o

This causes substitution modules at optimization level O5 to be built
(guided by the profile in prog.spf) to replace the original modules fee.o
and foo.o in the program load module prog.

Runtime Support for Profile Collection for the
IxWorks* Environment

Starting with CTOOLS release 6.5, the CTOOLS distribution includes a
new profiling library that can be used in the Windriver Systems IxWorks*
runtime environment with an i960® Rx processor. The library is named
libixqrp.a and includes the following two routines that can be used to
initialize and collect profile data. The above routines can be invoked from
the Tornado* shell.

__ddmProfileClear():

This routine zeros all the profile counters and should be called at the
beginning of the profile collection run.

__ddmProfileOutput():

Program-Wide Analysis and Optimization 4

4-15

This routine outputs all the profile information on to stdout and should be
called at the end of the profile collection run. The file default.pf is not
created when using IxWorks.

To link in this library, use the lixq linker switch.

NOTE. If you are generating a relocatable module using the r linker switch, make sure
that you use the P linker switch to include the profiling information used by the compiler in
the generated relocatable module.

Runtime Support for Profile Collection
When you link your instrumented program with the standard libraries
supplied with CTOOLS and startup code, when your program exits, a raw
profile named default.pf is automatically produced in the current
directory. The format of this file is described in Chapter 5, “Profile Data
Merging and Data Format (gmpf960)”.

When you are not using the standard libraries or not using IxWorks, you
must provide code to initialize the profile counters and to dump the counters
in the required format, as described below.

Profile Initialization

Your startup code must call a profile initialization routine before calling
main. The address of the default initialization routine is held in the
predefined variable __profile_init_ptr. Here is an example of a call
to the default initialization routine:

.comm __profile_init_ptr
ld __profile_init_ptr, r6
cmpobe 0, r6, 0f
lda 0(ip), g0
lda ., g1
subo g1, g0, g0
addo g0, r6, r6# adjust for PIC
callx (r6)
0:

5-1

Profile Data Merging and
Data Format (gmpf960) 5

This chapter explains how to use gmpf960 to merge the execution profile
data you learned how to collect in Chapter 4, “Profile Data Merging and
Data Format (gmpf960)”. You also learn how to use gmpf960 to create a
report that shows how many times each basic block was “hit” or run during
program execution.

Merging Profile Data
The gmpf960 utility combines the execution profiles created while
executing an instrumented program. Once the profiles are merged, the
gcdm960 utility uses the merged profile information to analyze the
program's run-time characteristics and make decisions about possible
program-level optimizations. For more information about gcdm960, see
Chapter 6, “gcdm Decision Maker Option”.

You can merge any mixture of the raw or self-contained profiles. See
Chapter 4, “Profile Data Merging and Data Format (gmpf960)”. The
merged profile is normally a self-contained profile, although you can merge
raw profiles into a single raw profile.

If the execution environment supports a file system, and the application
uses the supplied libraries, then the process of gathering and formatting the
data is automatic. When your instrumented program terminates, the profile
data file default.pf is automatically written.

5-2

5 i960® Processor Compiler User’s Manual

gmpf960 Invocation
The profile-merge utility recognizes a letter preceded by a hyphen - (or on
Windows hosts only, a slash /) as an option. For example, -o specifies the
Outfile option on all hosts; /o is also accepted on Windows hosts. gmpf960
uses the syntax:

gmpf960 [-option]... {-spf | o outfile} infile
[infile]...

An option is one of:

h displays a list of invocation options.

rprofile indicates how many times the counters for each basic
block were incremented, for those blocks that were hit.
This information is written to stdout.

t specifies that all input files are in text format.

v960 displays version information and exits.

Z pdb_dir specifies the program database directory. If the merged
output or any of the inputs is a self-contained profile,
you must specify the PDB with the Z option or via the
G960PDB or I960PDB environment variable.

spf outfile causes a self-contained profile to be produced as output.
This is the preferred usage of gmpf960.RWLRobert W.
Lee

o outfile specifies the output file. If a file with that name already
exists, it is overwritten. You can even use the name of
one of the input files. White space is optional between
the option and argument. Note that this option is
supported only for merging raw profiles into another
raw profile.

infile specifies an input file. You can specify multiple input
filenames; gmpf960 processes them sequentially. Input
files can be the results of a program execution or a
previous merging of profiles.

Profile Data Merging and Data Format (gmpf960) 5

5-3

Discussion

The gmpf960 utility merges the execution profiles in all infile files and
stores the resulting profile in outfile. Input files can be either the output
from a previous invocation of gmpf960, or the default.pf profiles
created automatically when you run your instrumented program.

The t option is useful if your execution environment does not support
automatic creation of the default.pf profile file. Use t if your input files
are in the text format described below.

If the t option is not specified, the input files are assumed to be in their
default binary format. Input files can be either the output from a previous
invocation of gmpf960, or the default.pf profiles created automatically
when you run your instrumented application.

Example

The following command reads and processes run1.pf, run2.pf,
run3.pf and merges the results into the self-contained profile summ.spf.

gmpf960 -spf summ.spf run1.pf run2.pf run3.pf

Profile Format Specification
Normally, the raw profile file default.pf is created automatically when
your application calls exit. Alternatively, the gdb960 debugger supports a
profile put command that you can use to extract the profile data from
target memory and write it to default.pf in the appropriate format.

NOTE. The tools that accept profiles generally accept multiple profiles
and merge them in the same manner as gmpf960. However, gmpf960 is
the only tool that actually produces profiles, and in particular, is the only
tool that can produce a self-contained profile by conversion from a raw
profile. The other tools always perform the merge internally and discard
the merged profile after processing.

5-4

5 i960® Processor Compiler User’s Manual

If your execution environment does not support automatic generation of
default.pf, you must manually extract the profile data from your
system’s memory and write it to a file in a format recognized by gmpf960.

The remainder of this section describes where the profile data resides in tar-
get memory, and the file formats recognized by gmpf960.

Profile Data Structures

When you build an instrumented application, a supporting C data structure
is automatically linked with your application. This data structure is used to
record your application's runtime behavior, or “profile.”

The profile data is maintained in an array of unsigned long integers,
called __profile_data_start. The size of the array, in bytes, is given
by the symbol __profile_data_length. __profile_data_length is
always a multiple of 4, and the number of elements in
__profile_data_start is given by (__profile_data_length / 4).

default.pf File Format

The file default.pf is a binary file containing the value of
__profile_data_length, followed by elements of
__profile_data_start. Each value is stored in the file as a 4-byte two's
complement unsigned integer. Furthermore, each value is stored in
little-endian byte order, regardless of the endianness of your target memory
and of your host system.

For example, assume that __profile_data_length has the value 12 (12
bytes is three 4-byte words), and that __profile_data_start contains
the values 0x000090A4, 0x000000C7, and 0x00008FDD. Then the binary
format of file default.pf (printed as hexadecimal words) would be:

0000000C
000090A4
000000C7
00008FDD

Depending on the tools available, you may find it difficult to create the
binary format required in default.pf. To circumvent this step, you can
write the profile data to a file in text format, and then use gmpf960 to
translate the file into binary format.

Profile Data Merging and Data Format (gmpf960) 5

5-5

The text file format consists of the value of __profile_data_length,
followed by the values in __profile_data_start. The numbers must
appear in the file as decimal, and must be separated by white space.

For example, assume that __profile_data_length has the value 20 (20
bytes is five 4-byte words), and that __profile_data_start contains the
values 20, 15, 100, 2, and 63. If you use a text editor to create the text
format of default.pf, it would be:

20
20 15 100
2 63

Note that there is no requirement as to the number of entries per line. The
format definition of the text file simply requires that the numbers are
separated by white space.

Example

Assume that you have a text-format profile in file default.txt and a
binary-format profile in file default.pf. The following invocations of
gmpf960 merge these two profiles, writing the results in the binary-format
file default.sum.

gmpf960 default.txt -o default.tmp

gmpf960 default.pf default.tmp -spf default.sum

Any mixing of text, raw profile or self-contained profiles is allowed.

Creating a Runtime Report with gmpf960
You can also use gmpf960 to create a report that shows how many times the
counters for each basic block were incremented. The examples given below
assume that you compile and execute the following source file with the
-fprof option to gather a runtime profile.

5-6

5 i960® Processor Compiler User’s Manual

Example 5-1 C Code

/* Source File - t.c */

int i, j;

main()

{

 for (i = 0; i < 10; i++)

 j += i;

 return j;

}

To compile the above source file you can use the following command:

gcc960 -Fcoff -fprof -Tmcycx t.c -Z pdb

The generated executable file a.out can be downloaded to a Cyclone
i960 Cx processor-based evaluation board and executed using the following
command

mondb -ser a.out

This execution generates the default.pf file which contains the runtime

profile for the above execution. You can use either rprofile option in
gmpf960 or the gcov960 coverage analyzer to get the coverage results after
running the program.

Using gmpf960

The command:

gmpf960 -spf foo.spf -rprofile -Z pdb default.pf

generates the following output:

Profile Data Merging and Data Format (gmpf960) 5

5-7

Example 5-2 gmpf -rprofile Sample Output

Profile counts for module t.c=main$

Function name Line# Block# Times hit From

========================|========|======|=========|======

main | 4 | 0 | 1 | 1 raw inputs

main | 5 | 0 | 1 | 1 raw inputs

main | 5 | 3 | 11 | 1 raw inputs

main | 5 | 2 | 10 | 1 raw inputs

main | 6 | 1 | 10 | 1 raw inputs

main | 8 | 4 | 1 | 1 raw inputs

Notice that the in the example above, the expressions in the for loop and
the expression j += i are the only ones with multiple hits. The gcov960
sample output below provides you with the same information, however, the
number of hits for each statement is recorded to the left of the line.

Using gcov960

The command:

gcov960 -rl -Z pdb

generates the following output:

5-8

5 i960® Processor Compiler User’s Manual

Example 5-3 gcov960 Sample Output

int i, j;

 main()

 1 -> {

 1 11 10 -> for (i = 0; i < 10; i++)

 10 -> j += i;

 1 -> return j;

 }

Number of Blocks: 5

Number of Blocks Executed: 5

Number of Blocks Never Executed: 0

Percentage of Blocks in Source File that were executed: 100.00%

Program database:

Program profile: default.pf

See the i960 Processor Software Utilities User’s Guide for more
information on gcov960.

6-1

gcdm Decision Maker
Option 6

This chapter describes the gcdm option, which invokes the gcdm960 global
optimization decision maker during the link process. The decision maker
then invokes the compiler and linker as necessary to perform program-wide
optimizations. For an overview of how to use this option, see Chapter 4,
“Program-Wide Analysis and Optimization”.

gcdm Option Syntax
The gcdm option has the following syntax:

{ - | / } gcdm,argument[,argument]...

As with other options, you can use the / delimiter only in Windows. The
gcdm option arguments and the sections that describe them are listed in
Table 6-1.

Table 6-1 gcdm Option Arguments (Sheet 1 of 2)

gcdm Option Arguments Description
Section
Titles

• subst={module-set}{option-
 list}

• nosubst=module-set

Controls which modules
are substituted.

Substitution
Controls

• [no]ref=module-set Specifies whether
functions or data defined
in objects reside outside
the current module set
presented to the linker.

External
Reference
Controls

6-2

6 i960® Processor Compiler User’s Manual

gcdm Option Arguments

Substitution Controls

The substitution controls allow you to substitute optimized modules into
your application (using gcdm,subst), and to suppress unintended
substitutions (using gcdm,nosubst). When a given object module is
named in multiple subst or nosubst options, the last subst or nosubst
that names the module applies. The substitution controls also allow fine
control of how affected modules are optimized. The following subsections

• inline=n Sets the level of inlining
used by the compiler.

Inlining
Level
Control

• iprof=file Causes profile
information to be used in
program-wide
optimizations.

Input Profile
Control

• sram=start, end[,start,
 end]...
m=start, len[,start, len]...

Specifies fast memory
regions (e.g., SRAM) to
use for heavily
referenced variables.

Fast
Memory
Controls

• dryrun Writes a list of the current
subst commands to a
text file.

Dryrun
Control

• dec=file
• rsummary

• rdecisions

• rcall-graph

• rreverse

• rprofile

• rvariables

Options for creating
gcdm reports.

Report
Controls

Table 6-1 gcdm Option Arguments (Sheet 2 of 2)

gcdm Option Arguments Description
Section
Titles

gcdm Decision Maker Option 6

6-3

describe substitution and substitution suppression. Detailed information on
controlling optimizations is presented in the discussion of option-list in
the next subsection.

Substitution Specifications

subst={module-set}{option-list}

In the linked program, gcdm,subst={module-set}{option-list}
causes substitution of modules optimized according to the option-list
for all of the modules in module-set. Note that no space is allowed
between module-set and option-list.

A module-set specification is a string supplied by the user that names the
modules to be affected by the gcdm option. For a description of how to
specify a module-set, see “Module-set Specification” at the end of this
chapter.

An option-list can consist of one or more of the substitution options
discussed in three categories below. Note that the first two categories are
mutually exclusive; you can use substitution options from the third category
with those from either of the first two categories. (For example, the +O5
control is incompatible in a substitution with the +fprof control.) An
option list can also consists of a single +, specifying no substitution.

Whole-program Optimization Option (Category 1)
+O5

This option selects program-wide optimizations, including global function
inlining, superblock formation, and global alias analysis. This option is not
allowed in an option-list with module-local (Category 2) options.

Module-local Optimization Options (Category 2)
+fprof +O0 +O1 +O2 +O3 +O4

These module-local substitution options correspond to the gcc960 and ic960
drivers' -fprof (Instrument) and -On (Optimize) options described in
Chapter 2, “gcc960 Compiler Driver” and Chapter 3, “ic960 Compiler
Driver”. (The compilation system interprets the -On arguments correctly,

6-4

6 i960® Processor Compiler User’s Manual

based on which compiler driver you are using.) The module-local
substitution options are not allowed in an option-list with
whole-program optimization (Category 1) options.

+fprof causes generation of profile instrumentation, as
described for the -fprof compiler option (in Chapter 2,
“gcc960 Compiler Driver” and Chapter 3, “ic960
Compiler Driver”). When the +fprof substitution
option is used (instead of the -fprof compiler driver
option), only the substitution modules in the PDB
contain the actual instrumented code. This is useful in
some cases. For example, a library compiled with -fdb
but without -fprof is suitable both for users who do
not want to use program-wide optimizations, and for
those who do, as follows:

• All program database information required to
support program-wide optimizations is present in
the library, since it is compiled with -fdb.

• To collect a full program profile (including the
library) for use with program-wide optimizations, a
substitution such as
-gcdm,subst=*:*+fprof generates a program
that is appropriately instrumented.

• If you do not use program-wide optimizations (that
is, you do not use gcdm,subst options), there is no
extra runtime overhead, and the program can be
optimized to any module-local optimization level
higher than -O0.

+O0 +O1 +O2 +O3 +O4
allow substitutions of modules with various levels of
module-local optimization. (The compilation system
interprets the -On arguments correctly, based on which
compiler driver you are using.) These are typically used
for the following purposes:

• to substitute a few non-optimized modules into a
program built with program-wide optimizations in
order to help debug it.

gcdm Decision Maker Option 6

6-5

• to specify a module-local optimization level other
than O1 with a +fprof substitution.

Miscellaneous Substitution Options (Category 3)
+g +asm_pp+prog +clist+arg +fstring

These can be used with either the whole-program or module-local
substitution options in Categories 2 and 3, above.

+g enables debug information generation for substitution
modules.

+asm_pp+prog causes prog to be invoked after the assembly code for a
substitution module is generated, with the name of the
file containing the substitution assembly code as its third
argument. (The first two arguments are ignored.) This
allows the post-processing of substitution assembly
code by user-supplied tools.

+clist+arg generates a listing containing assembly code and/or
preprocessed source code of each module selected by
the substitution into a file named name.L in the current
working directory, where name is the base filename of
the object module being substituted. arg is a string
consisting of s, o or both. The s character causes
inclusion of the substitution module’s pre-processed
source code in the listing. The o character causes
inclusion of the substitution module’s assembly code
in the listing. In order for preprocessed source code
to be displayed in listings generated by clist
substitutions, the modules must either have been
originally compiled with the ic960 driver or compiled
with the gcc960 driver using the ffancy-errors
(ic960) or fmix-asm (gcc960) option.

+fstring The +fstring substitution options listed below apply
the corresponding individual -fstring optimization
options discussed in Chapter 2, “gcc960 Compiler

6-6

6 i960® Processor Compiler User’s Manual

Driver” and Chapter 3, “ic960 Compiler Driver”. The
no form of these options (e.g., +fno-unroll-loops)
is also accepted.

+fbbr, +fcoalesce

+fcondxform, +fconstprop

+fcopyprop, +fcse-follow-jumps

+fcse-skip-blocks, +fdead-elim

+fexpensive-optimizations, +ffunction-cse

+fmarry_mem, +fpeephole

+frerun-cse-after-loop, +fsblock

+fsched-sblock, +fschedule-insns

+fschedule-insns2, +fshadow-globals

+fshadow-mem, +fspace-opt

+fsplit_mem, +fstrength-reduce

+fthread-jumps, +funroll-all-loops

+funroll-loops

These options automatically default appropriately based
on the selected optimization level.

Substitution Suppression

nosubst=module-set

The nosubst=module-set argument suppresses substitution for the
named modules. This is equivalent to subst=module-set+ (the
option-list consists only of a + character). nosubst is typically used to
exclude a subset of modules from a previous subst.

For example, the gcdm option and argument:

-gcdm,subst=*:*+O5,nosubst=:intr_handler

would substitute all modules except intr_handler.

External Reference Controls
ref=module-set

noref=module-set

gcdm Decision Maker Option 6

6-7

These reference controls cause gcdm960 to assume/not assume that
functions or data defined in the objects named by module-set are
referenced outside the set of object files presented to the linker. You would
normally use ref to keep the global decision making and optimization step
from discarding modules that appear to be unused. The last ref or noref
to name a given module applies. noref is typically used to exclude a
subset of modules from a previous ref. The default is noref.

Inline Level Control
inline=n

This gcdm option argument controls how aggressively global inlining
decisions are made. n defaults to 3, and n must be less than or equal to 4.
The higher the argument, the more aggressive the inlining, and the larger
your program may become. Note that inlining must be enabled (i.e., +O5
control is used) for this control to have any effect.

Input Profile Control
iprof=file

This control causes the profile information in file to be incorporated into
program-wide optimization decisions. file is a raw profile or a
self-contained profile.

See Chapter 4, “Program-Wide Analysis and Optimization” for a discussion
of profiles.

Fast Memory Controls
sram=hexstart,hexend[,hexstart,hexend]...

m=hexstart,hexlen[,hexstart,hexlen]...

The compilation system optimizes software to exploit on-chip cache and
data RAM areas when you specify the architecture with the -A option.
This optimization attempts to place the most heavily accessed data and
variables in fast RAM. fast memory controls (gcdm option). The gcdm
option lets you identify other SRAM areas that are available in a system.

6-8

6 i960® Processor Compiler User’s Manual

Memory regions have an implicit order ranking with respect to the
optimization tools; the left-most region specified is assumed to be the most
desirable. Thus, the tools attempt to place the most heavily referenced
variables into the first memory region specified. When that region is full,
the tools begin placing variables into the second region specified.

For example, the control m=Ox210,Ox3F0 places the most heavily
referenced variables in an SRAM address beginning at Ox210. Ox3F0
specifies the length of the memory range to be used for this purpose.

Using the sram=Ox100,Ox3ff control indicates to the system that the
memory range Ox100-Ox3ff is available for data placement.

See your processor manual for information on memory region allocations.

Dryrun Control
dryrun

The dryrun argument echoes the commands that would be executed to
implement all specified subst options into the report file, without actually
doing the optimization work.

Report Controls

The gcdm option arguments listed here allow for creation of various
optimization reports and creating and naming a report file.

dec=file

Causes the optimization decisions report to be sent to file, instead of to
stdout (which is where reports appear by default).

dryrun

Echoes the commands that would be executed to implement all specified
subst options into the report file, without actually doing the optimization
work.

rsummary

Prints a summary of program-wide optimization decisions to the report file.

gcdm Decision Maker Option 6

6-9

This is a typical rsummary report:

Initial linked text size was 20720 bytes.
About 21760 bytes are assumed available for the final

text section.
0 variables were allocated to fast memory.
2 function call sites were inlined.

The first line shows the size of the application’s text section before
program-wide optimization.

The second line shows the decision maker’s goal for the final size of the
application’s text section after program-wide optimization.

The third line shows that no variables were allocated into high-speed
memory.

The fourth line shows that two call sites were inlined.

When the -fvirtual-opt option is supplied to the compiler, the
summary also includes the total number of virtual function calls and the
number of virtual function calls that have been resolved.

rdecisions

Creates a report that includes the initial and goal text sizes as described
above, as well as a list of variables allocated to fast memory, a list of the
estimated sizes of all functions before and after program-wide optimization,
and a list of inlined call sites.

The Inlined arcs section of the report lists call sites selected for inlining:

• The Caller field is the function containing the call site that is inlined.

• The Callee field is the function being called at the inline site.

• The Site field is a numbering of the call site in the calling function.
The first call in the calling function is site 1, the next call is site 2, and
so on. This field is useful for distinguishing between call sites when
the a function makes multiple calls to the same function.

• The Percent field is the percent of all dynamic calls for which this
call site is responsible.

• The Height field is the height in the call tree of the called function.

rcall-graph
Creates a call graph report showing the dynamic behavior of the program.

6-10

6 i960® Processor Compiler User’s Manual

• The Function Callee field lists the arcs in the call-graph. The
format is:

Func
 Callee1
 Callee2
 Callee3
 ...

In this listing Func is the calling function. Callee1, Callee2, and
Callee3 are the functions that are called from function Func. A ? in the
callee field indicates that this call site is a call through a pointer. In this case
the compiler does not know what function is called from this call site.

• The Site field is the call site number of the call to this function. Each
call site in a function is assigned a number starting with 1.

• The Count field has two meanings. When applied to a calling function
the count is the number of times this function was called during all
profiled executions. When applied to a called function the count is the
number of times this particular function was called from this specific
call site during all profiled executions.

• The Percent field is the percentage of the total number of profiled
dynamic calls that this Count accounts for.

• The Size field is relevant only for called functions; the value shown is
the number of intermediate language statements in the function before
program-wide optimization.

• For callees, the Reg field indicates how many registers were needed to
generate code for the function. For callers, the Reg field indicates how
many registers were used across the particular call site.

• The Inline field is relevant only for called functions; a value of 0
indicates that a called function was never inlined, and a value of 1
indicates it was inlined one or more times.

NOTE. Functions that were not instrumented appear in the call graph
only if they are referenced by some function that was instrumented.

gcdm Decision Maker Option 6

6-11

rreverse

Prints a reversed call graph to the report file. This control changes the
format of reports generated by the rcall-graph control. When you use
rreverse, the call graph report lists all the sites where a function is called
from, rather than listing the call sites of each function. In other words,
rather than listing each caller followed by its callees, the report lists each
callee followed by its callers.

rclosure

This control reports the transitive closure of all possible callee functions.

rprofile

Prints the profile counts for the basic blocks that were hit to the report file.

• The Line# field is the line number within the file.

• The Block# field is the basic block that corresponds to this line
number.

• The Times hit field is the number of times that this line of code was
executed.

• The From field indicates how the value in the Times hit field was
obtained.

For values that were completely estimated by the decision maker, the field
contains “guess.”

For values obtained from profiles that were not subject to interpolation, this
field contains n Raw inputs, where n is the number of profile files used to
obtain the value.

For values obtained from interpolated profiles, this field contains n

Stretched inputs, where n is the number of profile files used to obtain
the value.

rvariables

Lists the variables allocated to fast memory with -m or -sram to the report
file.

• The Variable field is the name of the variable to be allocated to fast
memory.

6-12

6 i960® Processor Compiler User’s Manual

• The Size field is the size of the variable in bytes.

• The Usage Count field is the number of times this variable was
accessed during execution of the program.

• The Address field is the variable’s address in fast memory.

Module-set Specification
A module-set specification (used in substitution controls and external
reference controls, described earlier in this chapter) selects a subset of zero
or more modules from the set consisting of all eligible modules in the
program. A module-set specification has the format:

[archive] : module

The following rules govern module-set selection.

1. The set of eligible modules are those linked into the program that were
compiled with the -fdb compiler driver option (described in
Chapter 2, “gcc960 Compiler Driver” and Chapter 3, “ic960 Compiler
Driver”).

2. When either of the characters : or + appears twice in succession, that
character is quoted and the meaning is a single : or + character.

When a module-set contains an unquoted : character, it is interpreted
as a pair of regular expression strings in the style of the UNIX Bourne
shell, with the string to the left of the : matching object file archives
and the string to the right of the : matching individual object files. For
example:

— matches all eligible modules

— matches only eligible modules not linked in from libraries

— a:b.o matches b.o from library a, provided the module is
eligible

3. When a module-set contains no unquoted : characters, it is assumed to
be the name of a function or variable in the program. In this case, the
module-set refers to the object file that contains the definition of the
variable or the body of the function, provided the module containing
the variable definition or function body is eligible.

4. When a module-set is empty (that is, no characters occur between the
option and the = character) the module-set defaults to :*, which refers
to all eligible modules in the program not linked in from libraries.

7-1

C Language
Implementation 7

This chapter discusses the following topics:

• “Data Representation”

• “Calling Conventions”

• “Object Module Section Use”

• “Pragmas”

• “Language Extensions”

• “Inline Assembly Language”

Data Representation
This section describes the scalar and aggregate data types recognized by the
compiler, the format and alignment of each type in memory, and the range
of values each type can take. For information on ANSI C data types, see C:
A Reference Manual.

The i960 processors use a little-endian byte ordering, such that the address
of a 4-byte (32-bit) variable is the address of the low-order byte of the
variable. The i960 Cx, Hx, and Jx processors also support big-endian
addressable memory, such that the address of a 4-byte (32-bit) variable is
the address of the high-order byte of the variable.

Scalars

A scalar data type holds a single value, such as the integer value 42 or the
bit string 10011. Table 7-1 lists scalar data types for the i960 processor.

7-2

7 i960® Processor Compiler User’s Manual

Table 7-1 Scalar Data Type (Sheet 1 of 3)

Data Type
Size
(bytes) Format Range

unsigned char 1 ordinal 0 to 255

[signed] char 1 2’s-complem
ent integer

-128 to 127

unsigned short 2 ordinal 0 to 65535

[signed] short 2 2’s-
complement
integer

-32768 to 32767

unsigned int 4 ordinal 0 to 4,294,967,295

[signed] int 4 2’s-complem
ent integer

-2,147,483,648 to
2,147,483,647

unsigned long 4 ordinal 0 to 4,294,967,295

[signed] long 4 2’s-
complement
integer

-2,147,483,648 to
2,147,483,647

unsigned long long 8 ordinal 0 to
18,446,744,073,709,551,615

[signed] long long 8 2’s-
complement
integer

-9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

float 4 single-
precision
floating-point

1.17549435*10-38 to
3.40282347*1038

(approximate absolute value)

double 8 double-
precision
floating-point

2.2250738585072* 10-308 to
1.7976931348623* 10308

(approximate absolute value)

long double 16 extended-
precision
floating-point

3.362103143112094*10-4932
to 1.189731495357231*104932

(approximate absolute value)

1. Bit fields occupy as many bits as you assign them, up to a word (4 bytes), and their length need not
be a multiple of 8 bits (1 byte).

2. The enum data type is identical in size and range to char, short, or int data type, depending on the
range of constants in the enum declaration.

C Language Implementation 7

7-3

bit field (unsigned
value)1

1 to 32
bits

ordinal 0 to 2size-1 (Size is the number
of bits in the bit field.)

bit field1

(signed value)
1 to 32
bits

2’s
complement
integer

-2size-1 to 2(size-1)-1 (Size is the
number of bits in the bit field.)

Table 7-1 Scalar Data Type (Sheet 2 of 3)

Data Type
Size
(bytes) Format Range

1. Bit fields occupy as many bits as you assign them, up to a word (4 bytes), and their length need not
be a multiple of 8 bits (1 byte).

2. The enum data type is identical in size and range to char, short, or int data type, depending on the
range of constants in the enum declaration.

7-4

7 i960® Processor Compiler User’s Manual

Compiler options (e.g., gcc960’s f[no-]signed-char or
f[no-]unsigned-char; ic960’s Gcs or Gcu) set the char declaration
default to signed char or unsigned char. Wide characters (character
constants prefixed with an L) are syntactically supported but semantically
identical to other character constants. Note that with gcc960 char defaults
to unsigned, whereas ic960 defaults to unsigned.

The approximate ranges of float, double, and long double data types
appear in Table 7-1.

pointer 4 address -

enum2 1, 2, or
4

2’s
complement
integer or
ordinal

varies

NOTE. On architectures with an internal floating-point unit
(80960KB/SB), the compiler uses 32-bit and 64-bit general registers for
intermediate results when performing calculations with float and
double data types. Therefore, the accuracy of these data types is limited
to 32 bits and 64 bits, respectively. The compiler does use the internal
floating-point registers (fp0-fp3) when performing calculations with
long double data types, yielding IEEE-754 accuracies at the expense of
execution speed and code size.

Table 7-1 Scalar Data Type (Sheet 3 of 3)

Data Type
Size
(bytes) Format Range

1. Bit fields occupy as many bits as you assign them, up to a word (4 bytes), and their length need not
be a multiple of 8 bits (1 byte).

2. The enum data type is identical in size and range to char, short, or int data type, depending on the
range of constants in the enum declaration.

C Language Implementation 7

7-5

The alignment of a scalar data type is equal to its size. Although the
extended-precision floating-point representation of long double requires
only 10 bytes (80 bits), the natural architectural alignment of long double
is 16 bytes. Therefore, to accommodate the semantic requirements of the C
sizeof operator, the size of a long double is 16 bytes.

The following scalar alignments apply to individual scalars and to scalars
that are elements of an array or members of a structure or union:

char is aligned on a 1-byte boundary.

short is aligned on a 2-byte boundary.

int is aligned on a 4-byte boundary.

long long is aligned on a 8-byte boundary.

pointer is aligned on a 4-byte boundary.

float is aligned on a 4-byte boundary.

double is aligned on an 8-byte boundary.

long double is aligned on a 16-byte boundary.

Aggregates

An aggregate data type consists of one or more scalar data type objects. You
can declare the following aggregate data types:

array consists of one or more elements of a single
data type placed in contiguous locations from
first to last.

struct is a structure containing one or more scalar or
aggregate data types. The members are
allocated in the order they appear in the
definition but do not always occupy contiguous
locations.

union is a single location that can contain any of a
specified set of scalar or aggregate data types.

7-6

7 i960® Processor Compiler User’s Manual

Structure Alignment

The alignment of a structure affects how much space the structure occupies
and how efficiently the processor can address the structure members. A
compiler option (for gcc960, mi960_align; for ic960, Gac) allows
selection of any of the following alignment options for structures:

Optimal natural is the default alignment. For structures smaller

alignment than 16 bytes, this alignment is the size of the
structure rounded up to the nearest power of 2.
The compiler aligns structures of 16 bytes or
larger on 16-byte boundaries. Optimal natural
alignment produces the most efficient code for
assigning values to structures and for passing
structures as arguments.

Backward-compatible
natural alignment

aligns a structure according to the greatest
alignment requirement of any member of the
structure. This alignment provides higher data
density than optimal natural alignment and
produces code and data compatible with that
generated by ic960 releases before Release 3.0.

ABI-compatible
alignment

aligns a structure or union to the maximum of
the following:

the greatest alignment requirement of any
members of the structure; or

2 if the structure’s size is 2 and 4 if the
structure’s size is 3 or larger.

User-constrained
alignment

aligns a structure according to any legal value
you specify. A compiler option (for gcc960,
mi960_align; for ic960, Gac) or #pragma
i960_align allows specification of
alignments of 1, 2, 4, 8, and 16. Alignments can
also be specified using #pragma align,
described in this chapter.

C Language Implementation 7

7-7

Structure alignment can result in unused space, called padding, between
members of the structure and between the last member and the end of the
space occupied by the structure. The padding at the end of the structure is
called tail padding. Because of differences in padding under different
alignments, changing the alignment can change both the size of the
structure and the offsets of members relative to the beginning of the
structure.

The offset of a structure member from the beginning of the structure is as
follows:

• Under both forms of natural alignment, the offset of a structure
member is a multiple of the member’s natural alignment. For example,
since a short aligns on a 2-byte boundary, the offset of a short
member from the beginning of a structure is a multiple of 2 bytes.

• Under user-constrained alignment, the offset of a structure member is a
multiple of the lesser of the member’s alignment or the alignment
constraint you specify.

• For example, in a 1-byte alignment (noalign), the offset of a short
member is not necessarily even.

The rules for structure member natural alignment are:

Scalar types align according to their natural architectural
alignment. For example, a short data type
aligns on a 2-byte boundary.

Array types align according to the alignment of the array
elements. For example, an array of short data
type aligns on a 2-byte boundary.

7-8

7 i960® Processor Compiler User’s Manual

Specifying optimal or backward-compatible natural alignment changes the
size of a structure. Natural alignments differ only in tail padding. Member
offsets, and therefore the padding between members, are the same under
optimal natural alignment as under backward-compatible natural alignment.
For example, the following structure occupies memory as shown in Figure
7-1 under either optimal or backward-compatible natural alignment:

struct strc1
{
 char a; /* occupies byte 0 */
 short b; /* occupies bytes 2 and 3 */
 char c; /* occupies byte 4 */
 int d; /* occupies bytes 8 through 11 */
};

Under optimal natural alignment, the size and alignment of the struct type
are both 16. Under backward-compatible natural alignment, the size is 12
and the alignment is 4.

Union types align according to the greatest alignment
requirement of any member of the union. In the
example below, un1 aligns on a 4-byte
boundary since the alignment of c, the largest
element, is 4:

union un1 {
 short a;/* 2 bytes */
 char b;/* 1 byte */
 int c;/* 4 bytes */
};

Structure types align according to the alignment of the member
types either natural or user-constrained.

C Language Implementation 7

7-9

Figure 7-1 Natural Alignment

Specifying a user-constrained alignment changes both the tail padding and
the padding between structure members, which can also affect the structure
size. A user-constrained alignment smaller than the natural alignment of a
structure can result in a more tightly packed structure, saving space but
slowing execution.

The example in Figure 7-2 compares the layouts in memory of the
following structure under two different user-constrained alignments:

struct strc1 /* Alignment is 2: Alignment is 1: */
 { /* --------------- --------------- */
 char a; /* byte 0 byte 0 */
 short b; /* bytes 2 and 3 bytes 1 and 2 */
 char c; /* byte 4 byte 5 */
 int d; /* bytes 6 through 9 bytes 4 through 7 */
 };

Byte 0

8

4

00 7 0 77 0 7

OSD829

b a

XXXXXXXX c

d

XXXX

7-10

7 i960® Processor Compiler User’s Manual

Figure 7-2 User-constrained Alignment

A user-constrained alignment larger than the natural alignment aligns the
structure on the natural-alignment boundaries. User-constrained alignment
can increase the amount of tail padding relative to natural alignment but
does not increase the padding between members of a structure. For
example, specifying an alignment of 16 for strc1 aligns the structure as in
Figure 7-1.

When a struct has a member that is also a struct, the alignments of the
member type and of the container need not be the same. For example:

struct NATURAL
{
 char c1;
 short s;
 char c2;
}

struct CONSTRAINED_1
{
 char c;
 struct NATURAL n;
}

Byte 0

8

4

00 7 0 77 0 7

b a

c

d

OSD830

Byte 0

4

00 7 0 77 0 7

a

d

XXXX

XXXXd

bc

Alignment is 2; Size is 10

Alignment is 1; Size is 8

C Language Implementation 7

7-11

If struct NATURAL has natural alignment, one byte of padding appears
between the members c1 and s. Under optimal natural alignment, the size is
8 and the alignment is 8. Under backward compatible natural alignment, the
size is 6 and the alignment is 2. If struct CONSTRAINED_1 has a
user-constrained alignment of one, no padding appears between members c
and n, nor does any padding follow the member n. However, all of the
padding mentioned previously as part of struct NATURAL still appears in
member n of struct CONSTRAINED_1.

Bit Field Alignment

Every bit field lies entirely within some bit-field container that has the same
size and alignment as an int; that is, the container alignment is the smaller
of 4 or a user specified alignment. A bit field can cross byte boundaries but
cannot cross a container boundary.

Alignment of an individual bit field is necessary when the bit field,
unaligned, overruns the end of the container in which it starts. A bit-field
size of zero also forces bit-field alignment. The alignment of a bit field and
the position of the bit field within a structure are determined as follows:

• The byte position of a bit field within a container is the current byte
offset in the structure modulo the container alignment. This value is the
byte offset relative to the most recent container alignment boundary.
For example, if the container alignment is 1, the byte position is always
zero. If the container alignment is 4, the byte position can be 0, 1, 2,
or 3.

• The bit position of the bit field is the number of bits already allocated
in the current byte, plus eight times the container byte position. This
value is the bit offset, in the range 0 to 31, relative to the most recent
container alignment boundary.

7-12

7 i960® Processor Compiler User’s Manual

• If the value of the container bit position plus the size in bits of the new
bit field is greater than 32 or if the size of the new bit field is zero, the
compiler inserts padding to align the bit field on the next container
alignment boundary. Bit-field alignment can result in padding of up to
31 bits. If the bit-field size is non-zero and the bit field fits entirely
within the current container, the compiler does not insert padding to
align the bit field.

• For big-endian, the bit position within the container is 31 minus the
above-calculated bit position.

Examples

These examples show how different alignment pragmas alter the alignment
of the components of a structure. The structure is declared as follows:

struct std_struct
{
unsigned char m1a;
unsigned char m1b;
int m4a;
unsigned short m2a;
unsigned mbit5:5;
unsigned mbit7:7;
unsigned mbit6:6;
double m8a;
};

C Language Implementation 7

7-13

Figure 7-3 shows the optimal natural alignment of the structure, without any
alignment pragma.

Figure 7-3 Optimal Natural Alignment of std_struct

Figure 7-4 shows the backward-compatible natural alignment of the
structure, without any alignment pragma but with the appropriate compiler
option for backward compatibility specified (for gcc960, mic-compat; for
ic960, Gbc).

m4a

m1a

m2a

m8a

Byte 0

20

16

12

8

4

7

m1b

0 7 0 7 0 7 0

XXXX

XXXXXXXX XXXXXXXX

OSD401

mbit7 mbit5

mbit6XXXXXXXX XX

m8a (continued)

XXXXXXXXXXXXXXXX

XXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXX

XXXXXXXX XXXXXXXX
24

28

7-14

7 i960® Processor Compiler User’s Manual

Figure 7-4 Backward-compatible Natural Alignment of std_struct

Figure 7-5 shows std_struct aligned on 1-byte boundaries, with the
following alignment pragma:

#pragma noalign (std_struct)

Figure 7-5 #pragma noalign Alignment of std_struct

m4a

m1a

m2a

m8a

Byte 0

20

16

12

8

4

7

m1b

0 7 0 7 0 7 0

XXXX

XXXXXXXX XXXXXXXX

mbit7 mbit5

mbit6XXXXXXXX XX

m8a (continued)

XXXXXXXX XXXXXXXX

OSD831

m1a Byte 0

16

12

8

4

7

m4a (continued)m2a

m4a

00 7 0 7 0 7

OSD402

XXXXXX

m1b

m8a

m8a (continued)

m8a (continued)

mbit6 mbit7 mbit5

C Language Implementation 7

7-15

Figure 7-6 shows std_struct, aligned on 2-byte boundaries, as follows:

#pragma i960_align (std_struct = 2)

Figure 7-6 #pragma align Alignment of std_struct

Other Type Keywords

The void data type is neither a scalar nor an aggregate. Use void as the
return type of a function, to indicate that the function does not return a
value. Use void * as a pointer to an unspecified data type.

The const and volatile type qualifiers do not define data types. Rather,
they associate attributes with other types. Use const to specify that an
object is a constant and is not to be changed. Use volatile to specify that
an object may change in ways unknown to the compiler. Optimization is
inhibited on volatile objects. Inhibition of optimization is necessary for
objects such as memory mapped I/O registers or data accessed by interrupt
functions.

Calling Conventions
This section describes the standard i960 processor function calling
convention and describes how the compiler generates code to conform to
this calling convention.

m1a Byte 0

16

12

8

4m4a (continued)m2a

m4a

m8a

00 7 0 7 0 7

m1b

OSD1887

m8a (continued)

XXXXXXXXXXXXXX mbit6 mbit7 mbit5

7

7-16

7 i960® Processor Compiler User’s Manual

The standard i960 processor calling convention places an absolute
minimum overhead on simple, commonly called functions with few
parameters. This is done by passing information between the calling
function and the called function in the i960 architecture’s global registers as
much as possible.

Definitions

The following list summarizes usage of the global registers g0 through g15
and the floating-point registers fp0-fp3.

call-preserved register The register must have the same value upon
exit from a function as it did upon entry to
the function.

call-scratch register The register may have a different value upon
exit from a function than it did upon entry to
the function.

g0...g7 These eight registers pass parameters into the called
function from the calling function. If the return value
of the function is four words or less in size, then the
return value is passed back to the calling function in
registers g0 through g3. If the function returns a long
double and generates code for the KB or SB
processor and compatibility with ic960 R2.0 is
requested, then registers g0 through g7 are
call-scratch registers.

g8...g11 These four registers may be used for parameter
passing in addition to g0 through g7. If a parameter
or a piece of a parameter is passed in one of these
registers, that register is considered a call-scratch
register. That register is considered a call-preserved
register otherwise. If the called function can not be
sure that a register has had a parameter passed in it,
then the register must be considered a call-preserved
register.

C Language Implementation 7

7-17

g12 g12 is used as the PID bias register if generating
code for position independent data (PID). g12 is a
call-preserved register.

g13

g13 If the called function returns a struct or union larger
than four words, then the calling function passes a
pointer to the space allocated for the return value in
g13. g13 is a call-scratch register.

g14 If the function requires an argument block, this
register contains a pointer to the argument block;
otherwise it contains zero. If g14 contains zero upon
entry, then it must contain zero upon exit. If g14
contains a pointer to an argument block upon
function entry, then g14 is considered a call-scratch
register.

g14 may also be used to hold the return address when
a function is called using a BAL instruction. In this
case, g14 must contain zero upon return from the
function. This dual usage of g14 means that a
function that requires an argument block cannot be
entered using a BAL instruction.

g15 g15 is defined by the i960 architecture as the frame
pointer (FP).

fp0, fp1, If the function returns a long double and

fp2, fp3 generates code for the KB or SB processor and
compatibility with ic960 R2.0 is requested, then fp0
contains the return value of the function. fp0-fp3
are considered call-scratch registers.

AC The arithmetic control (AC) register is a call-scratch
register. The condition codes are not preserved across
a function call.

7-18

7 i960® Processor Compiler User’s Manual

The 16 local registers (r0 through r15) are 32-bit registers that provide a
separate set of registers for each active function. Each time a function is
called, the processor automatically sets up a new set of local registers for
that function and saves the local registers for the calling function.

The particular use of each local register is:

Parameter Assignment to Registers

Parameters are passed in ascending-numbered registers, starting with g0, in
the order the parameters appear (left-to-right) in the actual call. Both scalar
and small aggregate (4 words or less) parameters are passed in registers.

The size of a parameter’s data type determines the number of registers the
parameter occupies. A parameter with a type size of one word or less
occupies one register. A parameter with a type size of two words or less
occupies two registers, and so on up to four words and four registers.

A parameter’s type also determines in which register it must start. If the
type’s alignment is 4 bytes or less then the parameter may be passed starting
in any register. If the type’s alignment is 8 bytes then the parameter must be
passed starting in an even numbered register. If the type’s alignment is 16
bytes then the parameter must be passed starting in g0, g4, or g8. Any gaps
left in the parameter registers due to alignment are not filled by following
parameters.

Argument Blocks

An argument block is used to pass parameters when the parameters cannot
be passed in registers. This can occur either because there are not enough
registers left to pass the parameter, or when the parameter is too large
(greater than 4 words) to pass in registers. As soon as a parameter is passed
in an argument block, all further parameters get passed in the argument

r0 contains the previous frame pointer (pfp)

r1 contains the stack pointer (sp)

r2 contains the return instruction pointer (rip)

r3...r15 are general-purpose registers

C Language Implementation 7

7-19

block. The calling function is responsible for the creation of an argument
block if one is needed. When an argument block is created it must contain
enough space at the beginning to store all the possible parameter registers
g0-g11. Thus the first 48 bytes of an argument block are reserved for
storing these registers. The first parameter passed in the argument block
starts at an address 48 bytes above the base of the argument block.

Return Values

All return values four or fewer words in length are returned in registers
g0-g3. For return values larger than four words the calling function must
pass a pointer to a memory area to store the return value. This value is
passed in register g13. The called function returns such a value by copying
the value into the memory area pointed to by g13.

ic960 R4.5 implements a special return mechanism for functions returning
long double, when generating code for ic960 R2.0 compatibility, and for a
processor with on-chip floating-point support. In such a case the return
value is returned in the fp0 register.

Compiler Implementation

For compatibility with past implementations, the compiler allows some
leniency in the implementation of the standard calling convention.

The compiler is more relaxed about the call-preserved status of g8-g11
across a function call. At a function call, the compiler assumes that the
called function may change g8-g11 if any parameters are passed in an
argument block, or if any parameters were passed in any of the registers
g8-g11. However, the compiler properly implements the calling convention
on the called function side, preserving g8-g11 as necessary to satisfy the
calling convention.

7-20

7 i960® Processor Compiler User’s Manual

Object Module Section Use
The compiler generates assembly language that uses the following object
file format sections to allocate storage for code and data:

.text The compiler places all assembly language
instructions and constant data in the.text section.
Constant data includes initialized variables with the
const type qualifier, as well as string and
floating-point literals.

.data The compiler places any initialized data in the.data
section. Initialized data includes any statically
allocated variables that you declare with an
initialization list.

.bss The compiler locates uninitialized data in the.bss
section as follows:

Uninitialized static variables go directly into.bss.

Uninitialized external variables are defined with
the.comm directive. If the command line specifies
the relaxed ref-def linkage (gcc960’s
mno-strict-ref-def option or ic960’s Gdc
option), the linker places these variables in.data if
an initializing definition exists in another module.
Otherwise, the linker places these variables in.bss.
If the command line specifies strict ref-def linkage
(gcc960’s mstrict-ref-def option or ic960’s Gds
option), all uninitialized static variables are placed
directly in the.bss section.

C Language Implementation 7

7-21

For more discussion of object module formats, refer to the i960 Processor
Software Utilities User’s Guide.

Pragmas
Pragmas can supply implementation-defined information to the compiler.
This section describes the supported pragmas in alphabetical order. For
information about pragma syntax and pragmas in general, see C: A
Reference Manual.

#pragma align [for gcc960 driver]
#pragma align n

n specifies the alignment value in bytes. Any of the
following values are valid: 0, 1, 2, 4, 8, 16.

The #pragma align n feature sets the maximum formal alignment
requirement for structs/unions to n bytes. n must be 0, 1, 2, 4, 8, or 16; other
values are ignored. 0 instructs the compiler to revert to the maximum
alignment in use before the last #pragma align. n=16 is the default when
mic-compat is not enabled; n=1 is the default under mic-compat.

NOTE. The compiler does not allocate storage in any section for
variables declared as extern. Storage is allocated in the module
defining the variable.

NOTE. This pragma functions differently with the gcc960 and ic960
drivers.

7-22

7 i960® Processor Compiler User’s Manual

To get the alignment a for a struct or union u, given #pragma align n:

• let m be the largest alignment of all members of u.

• let s be u’s unpadded size rounded up to the next power of 2.

• then align(u) = max (m, min (n, s)).

Thus, a structure can never be given an alignment requirement that is less
than the largest alignment required for any of its members; #pragma align
can be used only to limit the amount of extra padding added to improve the
alignment of the entire structure. Note that restricting structure alignment
padding can affect the size and performance of the generated code.

The following examples show how #pragma align can affect the
allocation of structs.

#pragma align does not restrict the alignment of individual static,
extern, or auto variable allocations that happen to be structures. The
compiler aligns each separate memory variable allocation based strictly on
the size of the allocation, without regard to the formal alignment
requirement of the variable’s type.

struct s0{ struct s1{ struct s2{

char x[9]; char x[8]; char y;

}; struct s0 z; short z;

}; short zz;

};

#pragma: size of s0: size of s1: size of s2:

align 1
align 2
align 4
align 8

align 16

9
10
12
16
16

17
18
20
24
32

6
6
8
8
8

C Language Implementation 7

7-23

#pragma align [for ic960, or for gcc960 with ic960 option]

#pragma align [[(]size[)]]
#pragma align [(]identifier[=size][,...][)]
#pragma noalign [[(]identifier[,...][)]]

size specifies the alignment value in bytes. Any of the
following values are valid: 1, 2, 4, 8, or 16.

identifier specifies the structure tag used in struct type
specifiers, as described in C: A Reference Manual.

Specifies alignment values for structures and unions.

Default

The default is optimal natural alignment.

Discussion

Use #pragma align to align structure members using the natural
alignment value or a specified alignment size. Use #pragma noalign to
specify byte alignment only. #pragma noalign is equivalent to #pragma
align with a size of 1. The align and noalign pragmas specify
alignment values for struct types.

The alignment pragma applies to the whole structure; you cannot specify
differing alignments for individual structure members. If you do not specify
size, the compiler uses natural alignment.

Since the scope of an alignment pragma is all subsequent source text,
nesting declarative scopes does not affect an existing alignment. However,
you can place an alignment pragma within a structure declaration, so that
the pragma affects any subsequent nested or top-level structure declaration.

NOTE. This pragma functions differently with the gcc960 and ic960
drivers.

7-24

7 i960® Processor Compiler User’s Manual

The compiler aligns a struct type at the opening brace that brackets the
struct declaration list, according to the following rules:

Rule 1 If the struct type has a tag and the tag identifier has
appeared in an alignment pragma, the alignment is
specified by the most recent alignment pragma for the
tag identifier.

Rule 2 If the struct type has no tag and the struct
declaration list is nested within another struct
declaration list, the alignment is the same as that of the
immediately enclosing struct type.

Rule 3 For any other situation, the alignment is specified by the
most recent alignment pragma with no tag identifier.

The compiler generates warnings for the following condition:

• When an alignment pragma redefines the alignment for a specific
structure tag name:
#pragma align xyz=4
#pragma noalign xyz

Examples

The following examples show different ways nested structures can be
aligned:

#pragma noalign (outer1) /* Both outer1 and inner1 are
*/
#pragma noalign (inner1) /* packed (aligned on */
struct outer1 { /* 1-byte boundaries). */
 struct inner1 {
 short s1;
 char c1;
 } si1;
 int i2;
};

#pragma noalign (outer2) /* outer2 is packed. */
struct outer2 {
 struct inner2 {/* Since the inner structure has a tag
*/
 short s2; /* (inner2) but no alignment specified,*/

C Language Implementation 7

7-25

 char c2; /* alignment of inner2 uses the default*/
 } si1; /* alignment. The short s2 aligns on */

 /* 2-byte boundaries and is the largest*/
 /* member of inner2; thus the default */
 /* alignment of inner2 is 2. */
 int i2;
};

#pragma noalign (outer3) /* outer3 is packed. */
struct outer3 {
 struct { /* Since the inner structure has no tag, it*/
 short s; /* is aligned the same as the immediately */
 char c ; /* enclosing structure, outer3. Thus both */
 } si1; /* structures are packed. */
 int i2;
};

The following example shows nested unnamed structure definitions and
alignment pragmas:

#pragma align my_structure = 16
struct my_structure /* 16-byte alignment */
 {
 char f1;
 struct /* 16-byte alignment */
 {
 int ff2;
 } f2;
 };
#pragma align my_structure2 = 16
struct my_structure2 /* 16-byte alignment */
 {
 char f1;
#pragma align 4
 struct /* 16-byte alignment */
 {
 int ff2;
 } f2;
 };
/* If no more alignment pragmas appear, any subsequent
 * structs have 4-byte alignment.
 */

7-26

7 i960® Processor Compiler User’s Manual

The following example shows alignment of a structure using the structure
tag identifier:

#pragma align my_structure
struct my_structure /* natural alignment */
 {
 char f1;
 };
#pragma noalign my_structure2
struct my_structure2 /* no alignment; i.e. */
 { /* 1-byte alignment */
 char f1;
 };
#pragma align my_structure3 = 16
struct my_structure3 /* 16-byte alignment */
 {
 char f1;
 };

The following example shows alignment of structures without
identifier specification:

#pragma align
struct my_structure /* natural alignment */
 {
 char f1;
 };
#pragma noalign
struct my_structure2 /* no alignment */
 {
 char f1;
 };
#pragma align 16
struct my_structure3 /* 16-byte alignment */
 {
 char f1;
 };

C Language Implementation 7

7-27

#pragma cave

Prepares code for link-time compression and runtime decompression.

Default

The compiler does not prepare code for compression.

Overview

Compression assisted virtual execution (CAVE) reduces the physical
memory requirements of ROM-based applications through link-time
compression and on-demand runtime decompression of user-specified

functions. The compiler, linker, runtime dispatcher, and compression and
decompression routines cooperate to provide this feature. Code is typically
compressed by a ratio between 1.5 and 1.7. Runtime decompression speed
is about 30 clock cycles per byte of compressed code.

When the CAVE mechanism is used, either through pragma cave or the
corresponding compiler driver options, selected functions in the application
are designated to be secondary functions. All other functions are termed
primary functions. The primary set should contain performance-critical
functions, which are not to be affected by the CAVE mechanisms; the
secondary set is subject to compression. Secondary functions are
compressed by the linker and reside in memory in compressed form. At
runtime, calls to secondary functions are intercepted by the CAVE
dispatcher and the functions are decompressed if necessary.

#pragma cave [[(] function [...] [)]]

function specifies function(s) for the compiler to prepare
for compression. If no function is specified, the
pragma applies to all functions defined
following the pragma.

7-28

7 i960® Processor Compiler User’s Manual

Selecting Functions for Compression

The gcc960 mcave option, the ic960 Gcave option, or #pragma cave are
used to designate the specified functions as secondary. You can use runtime
profile information generated by gcov960 to aid in selecting the set of
secondary functions.

Linking

The compiler places secondary function bodies within special CAVE
sections (named cave) in each generated object file. The linker combines
all input CAVE sections into one output CAVE section. Due to
interdependencies between data or function addresses within compressed
secondary functions and their compressed representations, address
assignment must be done prior to compressing the secondary functions. As
a result, a gap is formed between the compressed CAVE section and the
section that follows, as shown below.

To utilize the compression savings the developer must use linker options or
directives to position the CAVE section last in read-only memory.

Before Linking After Linking

.text section .text section

uncompressed

compressed cave
section

cave section gap in memory

.data section .data section

heap heap

stack stack

C Language Implementation 7

7-29

Runtime Decompression

During program execution secondary functions reside in memory in
compressed form. Every call to a secondary function is intercepted at
runtime by a special dispatcher routine. The dispatch routine is contained in
the libc library supplied with the tools. To ensure interception of all
secondary functions, including invocations through indirect calls or
interrupts, the compiler generates interceptor entries in the.text section,
preceding the function bodies in the cave section as follows:

.section .text
_foo:
 lda L1,reg
 call __dispatcher
 ret

.section cave
 .word L2-L1,0
L1:
 function body
L2:

Here the location L1 of the secondary function body is passed to the
dispatcher. The word preceding the function body is set by the assembler to
indicate the uncompressed size.

The dispatcher performs the following steps:

1. Allocates a decompression buffer on the current runtime stack.

2. Saves the caller’s context.

3. Performs decompression.

4. Restores the caller’s context.

5. Invalidates the instruction cache.

6. Calls the decompressed secondary function.

The dispatcher prevents the runtime stack from being overrun by a long
chain of recursive invocations by reusing the functions that are already
active on the stack. The interceptor’s invocation of the dispatcher pushes a
unique return address on the runtime stack. The return address is then used
by the dispatcher to search the stack for the existing recursive activation. If
found, the function is called immediately.

7-30

7 i960® Processor Compiler User’s Manual

The dispatcher decompresses and executes secondary functions on the
current runtime stack. Allocation and freeing of decompression memory is
performed automatically through the call and return mechanism.

You must allocate more stack when using CAVE. The maximum additional
runtime stack requirement is the total size of all secondary functions that
may be active simultaneously.

Special Code Generation for Secondary Functions

When a decompressed secondary function is loaded on the runtime stack, its
runtime location is different from the link-time one. Absolute intra-function
and IP-relative inter-function references are invalid. These types of
reference are not used during code generation for CAVE functions.

Since taking the address of a label is illegal in C, intra-function absolute
references can be generated only in a jump-table implementation of the
switch statement. Restricting the switch statement implementation in
secondary functions to compare-and-branch instructions eliminates absolute
intra-function references.

The IP-relative inter-function references are avoided in secondary functions
by generating the 80960 callx instruction instead of the call instruction.
The callx instruction transfers control to absolute rather than IP-relative
locations.

Debugging CAVE Functions

CAVE functions are decompressed and executed on the runtime stack. The
source-level debug information cannot be properly maintained in the
current implementation. Consequently, secondary functions can be
debugged only at the machine level. To debug:

1. Set a breakpoint on a CAVE function. Execution breaks on the first
interceptor instruction (lda L1, reg).

2. Step into the dispatcher.

3. Display the disassembled instructions of the dispatcher.

4. The last two instructions in the dispatcher are:
callx 80(r10)
ret

C Language Implementation 7

7-31

5. callx is a call to a decompressed secondary function. Set a breakpoint
on callx and step into the function.

6. Continue debugging the function on the machine level.

#pragma compress
#pragma compress [[(] function [,...] [)]]
#pragma nocompress [[(] function [,...] [)]]

function specifies the function for the compiler to compress or
not compress.

Controls the replacement of RISC instructions with CISC instructions.

Default

The compiler does not usually generate compressed (microcoded CISC)
instructions, but the code produced may still use complex addressing modes
for memory accesses. The compiler may generate single-line instructions
(e.g., cmpoble) for two-line compare-and-branch instructions (e.g., cmpo
and ble) but does not always do so.

Discussion

The compress and nocompress pragmas control the replacement of RISC
instructions with CISC instructions.

If code size is of primary importance, use compress to replace RISC
instructions with CISC instructions, thereby compressing the code size.
Generated instructions use complex addressing modes. When compress is
in effect, the compiler also generates single-line instructions for
compare-and-branch instructions when possible.

Use nocompress to use RISC instructions, increasing the number of
instructions but producing code that may run faster when instructions are
found in the instruction cache. Generated instructions do not use complex
addressing modes. Single-line instructions for compare-and-branch
instructions are not generated.

In addition, #pragma compress disables some optimizations that increase
code size greatly: automatic function inlining and loop unrolling.

7-32

7 i960® Processor Compiler User’s Manual

If you do not specify function, the code compression pragma applies to
all functions following the pragma. The compiler takes no action and issues
no warning when the function name is specified but not found.

#pragma i960_align [for gcc960 and ic960]
#pragma i960_align [[(]size[)]]
#pragma i960_align [(]identifier[=size][,...][)]
#pragma noi960_align [[(]identifier[,...][)]]

size specifies the alignment value in bytes. Any of the
following values are valid: 1, 2, 4, 8, or 16.

identifier specifies the structure tag used in struct type
specifiers, as described in C: A Reference Manual.

Discussion

See the discussion of pragma align (for ic960, or for gcc960 with the
ic960 option).

#pragma inline
#pragma inline [[(] function [...] [)]]
#pragma noinline [[(] function [...] [)]]

function specifies the function for the compiler to expand or not
to expand inline. If no function is specified, the pragma
applies to all functions defined following the pragma.

Controls replacement of a function call with the function body.

C Language Implementation 7

7-33

Default

The compiler does not replace the function call with the function’s body.
The #pragma inline has effect at optimization level 1 and higher. Chapter
11, “C Language Implementation” describes optimization levels in more
detail.

Discussion

Use #pragma inline to replace a function call with the function body
expanded at the place of the function call. Expanding a function inline
increases the code size but decreases the execution time.

Note that a function that accepts a variable number of arguments cannot be
expanded inline.

#pragma interrupt
#pragma interrupt [[(] function [,...] [)]]
#pragma nointerrupt [[(] function [,...] [)]]

function specifies the interrupt handler.

Specifies an interrupt handler.

Default

A function is not an interrupt handler.

Discussion

Use #pragma interrupt to declare a function as an interrupt handler. The
interrupt pragma must precede the function definition. If no function is
specified, the pragma applies to all functions defined following the pragma.

For interrupt handlers, the compiler tries to use global and floating-point
registers only for a call. If the function uses any global or floating-point
registers, the compiler preserves the registers. For any call, the compiler
saves all registers except g8 through g11. A register in the range g8 through
g11 is saved only if it may be changed in the called function.

7-34

7 i960® Processor Compiler User’s Manual

The compiler stores saved registers in contiguous locations, starting at
offset 0x40 from the frame pointer, as follows:

• g0 at 0x40(fp)

• g4 at 0x50(fp)

• g8 at 0x60(fp)

• fp at 0x7c(fp)

In processors with on-chip floating-point support, the compiler saves
floating-point registers fp0 through fp3 starting at 0x80(fp).

An interrupt handler must not have parameters or return a value.

volatile int ready=0

int poll()

{

while (!ready)

;

} return ready;

#pragma interrupt(foo)

void foo(void)

{

ready=1;

}

Note that pragma interrupt and pragma isr (described below) differ
only in where the registers are saved. For pragma interrupt, the registers
are saved at known offsets. For pragma isr, the compiler makes a
context-specific choice of where to save the registers.

NOTE. If an interrupt function accesses variables that are also
accessed by the program, those variables should be declared volatile.
If ready is not declared volatile, the optimizer may think that ready is
always zero in function poll and may create an infinite loop by
removing the test for (!ready).

C Language Implementation 7

7-35

#pragma isr

Specifies routines to be compiled as interrupt service routines (isr’s). The
syntax is:

#pragma isr [(] function_name [[,] function_name
]...[)]

When a routine specified as an interrupt service routine is compiled, the
compiler generates code so that registers g0-g15 have the same values on
exit that they had when entering the function. In addition, the code
generated for the routine makes no assumptions about register g14’s value
on entry. By guaranteeing these registers’ values and not assuming g14 to be
zero, #pragma isr ensures that the routine’s address can be placed directly
in the interrupt vector table, and the state of the processor is the same at
routine exit as it was at routine entry.

#pragma longcall

Specifies that a function should be called using the callx instruction

#pragma [no]longcall [(function [,.])]

function identifies the function(s) to which the pragma applies. If the
function is missing, then the pragama applies to all functions called in the
compilation unit following the pragma.

Default

The compiler will use callx to invoke functions if the mlong-calls (or
Gxc for ic960) compilation switch is used, otherwise the call instruction is
used.

Discussion

The call instruction executes faster than the callx instruction. However,
the target of a call instruction is limited to the range -221 to 221 - 1 bytes
in a call instruction. In other words you cannot use a call instruction to
invoke a function that is located beyond this range. Using the longcall
pragma for that function at the call site forces the compiler to use a callx
instruction instead of the call.

7-36

7 i960® Processor Compiler User’s Manual

The pragma longcall should be used at the call site; using the pragma
longcall at the definition of a function will not cause a callx to be used at all
sites where the function is invoked.

Pragma longcall overrides the -mlong-calls compiler switch.

With this pragma we can restrict the use of a callx instructions only to those
call sites that need them.

#pragma optimize
#pragma optimize [(] [identifier =]"string"[,]

[identifier = "string"]... [)]

Enables or disables optimizations. If specified, the identifier denotes a
function with which the #pragma optimize string is to be associated. The
string is a comma-separated list of optimizations to enable or disable.
Currently recognized optimizations are:

tce enable tail-call-elimination optimization

notce disable tail-call-elimination optimization

lp enable leaf-procedures optimization

nolp disable leaf-procedures optimization

If no function is specified then this pragma applies to the rest of the file.

Any optimizations other than those recognized above are ignored.

C Language Implementation 7

7-37

#pragma pack
#pragma pack n

When used without an alignment pragma or option, this pragma has the
same effect for both the gcc960 driver and the ic960 driver: it restricts the
maximum alignment value that is honored for structure members to n bytes.
A value of 0 tells the compiler to revert to the maximum field alignment in
use before the last #pragma pack. Before the first #pragma pack is
encountered, n=16.

Using #pragma pack with gcc960’s #pragma align

When a member alignment requirement would exceed n, n is used instead
— both for assigning the member's offset within its structure, and for
determining the member's contribution to the structure's formal alignment
requirement. It does not, however, restrict the overall formal alignment
calculation for structures described for gcc960’s #pragma align. To limit
a structure's formal alignment requirement (presumably to limit extra
padding at the end) you must use gcc960’s #pragma align in addition to
#pragma pack.

For example:

#pragma pack 2
struct s{
char a;
int b;
};

NOTE. The ic960 driver’s pragma align and the gcc960 and ic960
drivers’ pragma i960_align override pragma pack. The interaction of
pragma pack and the gcc960 driver’s pragma align is described
below.

7-38

7 i960® Processor Compiler User’s Manual

s.b would be placed at offset 2 from the base of s; sizeof(struct s)
would be 6 under gcc960’s mic-compat (#pragma align 1) and 8 under
default alignment (#pragma align 16). The formal alignment requirement
of struct s would be 2 under mic-compat and 8 under default alignment.

The examples in the tables below all use the following sample structure:

typedef struct {
 char m1;
 short m2;
 double m3;
 char m4;
 int m5;
} s0;

Table 7-2 Example Offset Values

Normal i960
Rules

gcc960 Driver’s
#pragma pack 4

gcc960 Driver’s
#pragma pack 2

offset_of(s0, m1) 0x0 0x0 0x0

offset_of(s0, m2) 0x2 0x2 0x2

offset_of(s0, m3) 0x8 0x4 0x4

offset_of(s0, m4) 0x10 0xc 0xc

offset_of(s0, m5) 0x14 0x10 0xe

sizeof(s0) 0x20 0x20 0x20

#pragma pack 1
#pragma pack 4
#pragma align 4

#pragma pack 2
#pragma align 2

offset_of(s0, m1) 0x0 0x0 0x0

offset_of(s0, m2) 0x1 0x2 0x2

offset_of(s0, m3) 0x3 0x4 0x4

offset_of(s0, m4) 0xb 0xc 0xc

offset_of(s0, m5) 0xc 0x10 0xe

sizeof(s0) 0x10 0x14 0x12

C Language Implementation 7

7-39

#pragma pure

Specifies that a function has no effects other than returning a computed
value and that it does so based solely on its input parameters.

#pragma [no]pure [(function [,...])]

function identifies the specific function to which the pragma
applies. If function is missing, the effect of the
pragma is applied to all functions called in the
compilation module following the pragma. If a function
name is specified, the pragma must be placed before the
function definition.

Default

The compiler assumes functions are not pure and does not perform
optimizations possible with pure functions.

Discussion

pragma pure informs the compiler that a named function has no effects
other than returning a computed value and that it does so based solely on its
input parameters. Specifically, the compiler assumes the following about
the function:

• No I/O is performed.

• No global variables or memory locations are read or modified.

• No modifications of registers occur, except those explicitly defined by
the calling sequence.

This knowledge enables the compiler to perform optimizations around
function calls, optimizations it could not perform without this knowledge. If
a function is “pure”, then the compiler can perform (around that function
call) constant propagation, common subexpression elimination,
global-variable migration, and dead-code elimination.

7-40

7 i960® Processor Compiler User’s Manual

#pragma section

Allows COFF or ELF section naming.

#pragma section [string]

string is alphanumeric characters a-z, A-Z, 0-9.

Discussion

This pragma causes all text, data and bss sections the compiler emits to be
suffixed with string. For COFF the string must be three characters or less
in length. For ELF, the string can be any length.

Using #pragma section without string sets the suffix back to null (the
default).

This pragma is not supported for the b.out object format.

#pragma system

Specifies a system function.

#pragma system [[(] function [=index] [,...] [)]]
#pragma nosystem [[(] function [=index] [,...] [)]]

Discussion

If no function is specified, the pragma applies to all functions defined or
called following the pragma. Use pragma system to specify a function to
be called from the system procedure table. The compiler generates a
calljx instruction for the system function call, which the linker replaces
with the following:

lda index, g13
calls g13

function specifies the system function.

index specifies the index into the system procedure table.

C Language Implementation 7

7-41

For information on the calljx and calls instructions and the system
function table, refer to the i960 Processor Assembler User’s Guide.

You must associate a single system procedure table index with each system
function before the final link of your program. The linker generates an error
message for any system function that has no index or multiple conflicting
indexes.

You can make this association in either or both of the following ways, if the
defined index is consistent across all definitions:

• Specify pragma system at both the definition and the calling of the
function. The compiler then generates the appropriate symbol table
information, including the index.

• Use the.sysproc assembler directive to associate a system function
name with an index.

Since register g13 is used for the system function index, a system function
cannot return a value larger than four words. Refer to the i960 Processor
Software Utilities User’s Guide for more information.

Language Extensions
GNU C provides several language features not found in ANSI standard C.
(The pedantic option directs gcc960 to print a warning message if any of
these features is used.) To test for the availability of these features in
conditional compilation, check for a predefined macro __GNUC__, which is
automatically defined under gcc960 (but not under ic960).

index is the index of the system function in the system
procedure table and is available to the linker
through the symbol table entry for the function.
This value must be in the range 0 to 259.

7-42

7 i960® Processor Compiler User’s Manual

Statements and Declarations Inside of Expressions

A compound statement in parentheses can appear inside an expression. This
allows you to declare variables within an expression. For example:

({ int y = foo (); int z;
 if (y > 0) z = y;
 else z = - y;
 z; })

is a valid (though slightly more complex than necessary) expression for the
absolute value of foo().

This feature is especially useful in making macro definitions “safe” (so that
they evaluate each operand exactly once). For example, the “maximum”
function is commonly defined as a macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the
operand has side effects. If you know the type of the operands (you can
assume int), you can define the macro safely as follows:

#define maxint(a,b) \
 ({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as the
value of an enumeration constant, the width of a bit field, or the initial value
of a static variable.

Naming an Expression’s Type

You can give a name to the type of an expression using a typedef
declaration with an initializer. Here is how to define name as a type name
for the type of exp:

typedef name = exp;

C Language Implementation 7

7-43

This is useful in conjunction with the statements-within-expressions
feature. Here is how the two together can be used to define a safe
“maximum” macro that operates on any arithmetic type:

#define max(a,b) \
 ({typedef _ta = (a), _tb = (b); \
 _ta _a = (a); _tb _b = (b); \
 _a > _b ? _a : _b; })

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for a and b.

Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The
syntax of using of this keyword looks like sizeof, but the construct acts
semantically like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an expression
or with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that of the
values of the functions.

Here is an example with a typename as the argument:

typeof (int *)

Here the type described is that of pointers to int.

If you are writing a header file that must work when included in ANSI C
programs, write __typeof__ instead of typeof.

7-44

7 i960® Processor Compiler User’s Manual

A typeof construct can be used anywhere a typedef name could be used.
For example, you can use it in a declaration, in a cast, or inside of sizeof
or typeof.

• This declares y with the type of what x points to.:
typeof (*x) y;

• This declares y as an array of such values:
typeof (*x) y[4];

• This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:

char *y[4];

To see the meaning of the declaration using typeof, and why it might be a
useful way to write, try rewriting it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to
char.

Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as
lvalues provided their operands are lvalues. This means that you can take
their addresses or store values into them.

For example, a compound expression can be assigned, provided the last
expression in the sequence is an lvalue. These two expressions are
equivalent:

(a, b) += 5
a, (b += 5)

C Language Implementation 7

7-45

Similarly, the address of the compound expression can be taken. These two
expressions are equivalent:

&(a, b)
a, &b

A conditional expression is a valid lvalue if its type is not void and the true
and false branches are both valid lvalues. For example, these two
expressions are equivalent:

(a ? b : c) = 5
(a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is valid. Taking the address of the cast
is the same as taking the address without a cast, except for the type of the
result. For example, these two expressions are equivalent (but the second
may be valid when the type of a does not permit a cast to int *):

&(int *)a
(int **)&a

A simple assignment whose left-hand side is a cast works by converting the
right-hand side first to the specified type, then to the type of the inner
left-hand side expression. After this is stored, the value is converted back to
the specified type to become the value of the assignment. Thus, if a has type
char *, the following two expressions are equivalent:

(int)a = 5
(int)(a = (char *)5)

An assignment-with-arithmetic operation such as += applied to a cast
performs the arithmetic using the type resulting from the cast, and then
continues as in the previous case. Therefore, these two expressions are
equivalent:

(int)a += 5
(int)(a = (char *) ((int)a + 5))

7-46

7 i960® Processor Compiler User’s Manual

Conditional Expressions with Omitted Middle Operands

The middle operand in a conditional expression may be omitted. Then if the
first operand is nonzero, its value is the value of the conditional expression.

Therefore, the expression:

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to:

x ? x : y

In this simple case, the ability to omit the middle operand is not especially
useful. When it becomes useful is when the first operand does, or may (if it
is a macro argument), contain a side effect. Then repeating the operand in
the middle would perform the side effect twice. Omitting the middle
operand uses the value already computed without the undesirable effects of
recomputing it.

Arrays of Length Zero

Zero-length arrays are allowed. They are very useful as the last element of a
structure that is really a header for a variable-length object:

struct line {
 int length;
 char contents[0];
};

{
 struct line *thisline
 = (struct line *) malloc \
 (sizeof (struct line) + this_length);
 thisline->length = this_length;
}

In standard C, you would have to give contents a length of 1, which
means either you waste space or complicate the argument to malloc.

C Language Implementation 7

7-47

Non-lvalue Arrays Can Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though the unary
& operator is not. For example, this is valid though not valid in some other C
dialects:

struct foo {int a[4];};

struct foo f();

bar (int index)
{
 return f().a[index];
}

Arithmetic on Pointers to void and Pointers to Functions

Addition and subtraction operations are supported on pointers to void and
on pointers to functions. This is done by treating the size of a void or of a
function as 1.

A consequence of this is that sizeof is also allowed on void and on
function types, and returns 1.

The Wpointer-arith option requests a warning if these extensions are
used.

7-48

7 i960® Processor Compiler User’s Manual

Non-constant Initializers

The elements of an aggregate initializer for an automatic variable are not
required to be constant expressions. Here is an example of an initializer
with run-time varying elements:

foo (float f, float g)
{
 float beat_freqs[2] = { f-g, f+g };
 ...
}

Constructor Expressions

Constructor expressions are supported. A constructor looks like a cast
containing an initializer. Its value is an object of the type specified in the
cast, containing the elements specified in the initializer. The type must be a
structure, union or array type.

Assume that struct foo and structure are declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:

structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:

{
 struct foo temp = {x + y, ’a’, 0};
 structure = temp;
}

You can also construct an array. If all the elements of the constructor are
(made up of) simple constant expressions, suitable for use in initializers,
then the constructor is a lvalue and can be coerced to a pointer to its first
element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

C Language Implementation 7

7-49

Array constructors whose elements are not simple constants are not very
useful because the constructor is not an lvalue. There are only two valid
ways to use it: to subscript it, or initialize an array variable with it. The
former is probably slower than a switch statement, while the latter does
the same thing an ordinary C initializer would do.

output = ((int[]) { 2, x, 28 }) [input];

Declaring Attributes of Functions

You can declare certain things about functions called in your program that
help the compiler optimize function calls.

A few functions, such as abort and exit, cannot return. These functions
should be declared volatile. For example:

extern volatile void abort ();

tells the compiler that it can assume that abort does not return. This makes
slightly better code, but more importantly it helps avoid spurious warnings
of uninitialized variables.

Many functions do not examine any values except their arguments, and
have no effects except the return value. Such a function can be subject to
common subexpression elimination and loop optimization just as an
arithmetic operator would be. These functions should be declared const.
For example:

extern const void square ();

says that the hypothetical function square is safe to call fewer times than
the program says. A function should not be declared const unless:

• no I/O is performed.

• no non-local variables are read or modified either directly or via
pointers passed into the function.

7-50

7 i960® Processor Compiler User’s Manual

Inquiring about Alignment

The keyword __alignof__ allows you to inquire about how an object is
aligned, or the minimum alignment usually required by a type. Its syntax is
just like sizeof.

For example, the target machine requires a double value to be aligned on
an 8-byte boundary, then __alignof__ (double) is 8. This is true on the
i960 processor.

When the operand of __alignof__ is a lvalue rather than a type, the value
is the largest alignment that the lvalue is known to have. It may have this
alignment as a result of its data type, or because it is part of a structure and
inherits alignment from that structure. For example, after this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is 4, the same as __alignof__
(int), even though the data type of foo1.y does not itself demand any
alignment.

Inline Functions Are as Fast as Macros

By declaring a function inline, you can direct the compiler to integrate
that function’s code into the code for its callers. This makes execution faster
by eliminating the function-call overhead; in addition, if any of the actual
argument values are constant, their known values may permit
simplifications at compile time so that not all of the inline function’s code
needs to be included.

To declare a function inline, use the inline keyword in its declaration. For
gcc960, use either inline or __inline. For ic960, use __inline. For
example:

inline int
inc (int *a)
{
 (*a)++;
}

(If you are writing a header file to be included in ANSI C programs, write
__inline__ instead of inline. See the Alternate Keywords section.)

C Language Implementation 7

7-51

You can also make all “simple enough” functions inline with the option
finline-functions. Note that certain usages in a function definition can
make it unsuitable for inline substitution.

When a function is inline, if all calls to the function are integrated into the
callers, and the function’s address is never used, then the function’s own
assembler code is never referenced. In this case, the compiler does not
actually output assembler code for the function, unless you specify the
option fkeep-inline-functions. If there is a nonintegrated call, then
the function is compiled to assembler code as usual. The function must also
be compiled as usual if the program refers to its address, because that
reference can not be inlined.

Except when doing two-pass compilation, if an inline function is not
static, then the compiler must assume that there may be calls from other
source files; since a global symbol can be defined only once in any
program, the function must not be defined in the other source files, so the
calls therein cannot be integrated. Therefore, a non-static inline function
is always compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the
definition is used only for inlining. In no case is the function compiled on its
own, not even if you refer to its address explicitly. Such an address becomes
an external reference, as if you had only declared the function, and had not
defined it.

This combination of inline and extern has almost the effect of a macro.
The way to use it is to put a function definition in a header file with these
keywords, and put another copy of the definition (lacking inline and
extern) in a library file. The definition in the header file causes most calls
to the function to be inlined. If any uses of the function remain, they refer to
the single copy in the library.

NOTE. Function inlining occurs only at optimization level O1 or higher.
Inline functions are not inlined at O0. Inlining can be enabled with
finline-functions at O1, and it occurs automatically at O2.

7-52

7 i960® Processor Compiler User’s Manual

Controlling Names Used in Assembly Code

You can specify the name to be used in the assembler code for a C function
or variable by writing the asm (or __asm__) keyword after the declarator as
follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the assembler
code should be myfoo rather than the usual _foo.

On systems where an underscore is normally prepended to the name of a C
function or variable, this feature allows you to define names for the linker
that do not start with an underscore.

You cannot use asm in this way in a function definition; but you can get the
same effect by writing a declaration for the function before its definition
and putting asm there, like this:

extern func () asm ("FUNC");

func (x, y)
 int x, y;
...

It is up to you to make sure that the assembler names you choose do not
conflict with any other assembler symbols. Also, you must not use a register
name; that would produce completely invalid assembler code.

C Language Implementation 7

7-53

Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:

register int *foo asm ("r5");

r5 is the name of the register that should be used.

Defining such a register variable does not reserve the register; it remains
available for other uses in places where flow control determines the
variable’s value is not live. However, excessive use of this feature may leave
the compiler too few available registers to compile certain functions.

Alternate Keywords

The option traditional disables certain keywords; ansi disables certain
others. This causes trouble when you want to use GNU C extensions, or
ANSI C features, in a general-purpose header file that should be usable by
all programs, including ANSI C programs and traditional ones. The
keywords asm, typeof and inline cannot be used since they won’t work
in a program compiled with ansi, while the keywords const, volatile,
signed, typeof and inline won’t work in a program compiled with
traditional.

The way to solve these problems is to put __ at the beginning and end of
each problematical keyword. For example, use __asm__ instead of asm,
__const__ instead of const, and __inline__ instead of inline.

Other C compilers won’t accept these alternative keywords; if you want to
compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords. It looks like this:

#ifndef __GNUC__
#define __asm__ asm
#endif

7-54

7 i960® Processor Compiler User’s Manual

Inline Assembly Language

Introduction

Two distinct styles of inline assembly language are supported by the
compilation system: asm statements and asm functions. The recommended
way to use inline assembly language is asm statements; asm functions are
supported for compatibility with previous CTOOLS960 releases.

Resource Usage

The compiler makes assumptions about the machine resources: registers
and memory. It manages access to these resources based on the C program,
and its knowledge of the code it is generating, and inline assembly language
can violate these assumptions.

Both styles of inline assembly language provide the programmer with ways
to communicate the usage/modification of machine resources. Inline
assembly code that uses/modifies such machine resources without
informing the compiler may cause incorrect code to be generated by the
compiler.

Before and after each call to a C function, the compiler generates
instructions to preserve resources for the calling function while the called
function executes. For example, any general purpose registers that might be
updated by the called function must be saved on the stack before and after
each function call. The term for this resource management is “the calling
convention.”

The calling convention for a call to an asm function differs from that of a
call to a C function. In particular, the compiler assumes by default that the
only resources used by an asm function are its parameters, local
temporaries, and the return value. The compiler must be explicitly
informed about other resources that can be used by the asm function. The
compiler does not manipulate assembly language within asm functions. It
relies on the assembler to check the assembly language. The result is that
the compiler treats the body of an asm function as text. The compiler parses

C Language Implementation 7

7-55

the text for symbolic names (parameters, local temporaries, and labels).
However, the compiler does not recognize function calls, memory
references, or explicit register usage within the asm function text.

asm Statements

You can use an asm statement to pass an assembler instruction through the
compiler, and you can specify the instruction’s operands using C
expressions. Typically, asm is used to gain access to machine instructions
that have no corresponding C paradigm.

asm statements are somewhat similar to function calls; both use parameter
mechanisms to help describe the statements’ inputs. In asm statements,
however, an extensive mechanism is also provided for describing the asm’s
effects; the compiler can then assume that an asm has no effects or inputs
that are not explicitly stated. In contrast, a function call is assumed to read
or write all program variables unless proven otherwise. No such assumption
is made for asm statements.

Syntax Examples

The following brief syntax examples are provided here for reference when
studying the detailed grammar below. The effects and components of each
specific example are discussed in detail in the Examples section below.

NOTE. The compiler assumes that the inserted assembly instructions
can only be executed immediately after the statement that precedes them,
and that after the inserted assembly instructions have been executed,
program execution resumes at the statement immediately following them.

7-56

7 i960® Processor Compiler User’s Manual

Example 1: sf1 (Simple)
asm volatile ("mov 0,sf1");

Example 2: sf1 (Complex)
asm volatile ("mov sf1,%0; mov %1,sf1":

"=&d" (old_mask) : "dI" (new_mask));

Example 3: emul
asm("emul %1,%2,%0" : "=t" (temp) : "dI" (in1), "dI"
(in2));

Example 4: synmovq
__asm__ volatile ("synmovq %2,%3" : "=m"(*IAC_dst)

: "m"(*IAC_p),"d"(IAC_dst),"d"(IAC_p)); }

Example 5: attadd
__asm__ __volatile__("atadd %4,%2,%1" :
"=m"(*p),"=d"(wtmp)

: "dI"(val),"m" (*p),"d"(p));

Example 6: modpc
__asm__ __volatile__("modpc %1,%1,%0" : "=d"(new_pc)

: "dI"(mask),"0"(new_pc)));

asm Statement Syntax

asm statements have the following syntax:

asm [volatile] (asm-template [asm-interface]) ;

asm-template A C language ASCII string containing zero or
more substitution-directives.

substitution-directive%d where no white space follows the %, and d
is a decimal digit.

asm-interface

:[out-list][:[in-list][:clobber-list

]]

out-list output-spec [,out-list]...

in-list input-spec [,in-list]...

C Language Implementation 7

7-57

clobber-list clobber-spec [,clobber-list]...

output-spec "=constraint" (C language object)

input-spec "constraint" (C language expression)

clobber-spec "regname"

asm Syntax Explanations

asm Keyword

asm statements begin with the keyword asm. Alternatively, the keyword
__asm can be used to ensure ANSI C compliance.

volatile

If the optional keyword volatile is given, the asm is volatile. Two
volatile asm statements are never moved past each other by optimizations,
and a reference to a volatile variable is not moved relative to a volatile asm.
The alternate keyword __volatile can be used to ensure ANSI C
compliance.

asm-template

asm-template A C language ASCII string containing zero or more
substitution-directives.

The asm-template is a C language ASCII string that specifies how to
output the assembly code for an instruction. Most of the template is a fixed
string; everything but the substitution-directives (if there are any)
is passed through to the assembler. Substitution directive syntax is
explained below.

NOTE. The keywords __asm and __volatile can be used in place of
asm and volatile.

7-58

7 i960® Processor Compiler User’s Manual

Generally, this fixed string is the body of the desired assembler instruction.
This can be any instruction valid for the current i960 architecture.

substitution-directive

substitution-directive%d where no white space follows the %, and d
is a decimal digit.

The character % occurring in the asm-template specifies where to
substitute operands into the assembly instruction. The % followed by a digit
n says to insert operand n at that point in the string. Operands are specified
in the asm’s output-specs and input-specs. Operands are numbered 0
through 9. No more than 10 operands can be specified.

asm-interface

asm-interface :[out-list][:[in-list][:clobber-list]]

The asm interface consists of three parts: an optional out-list, an
optional in-list, and an optional clobber-list. These are separated by
colon characters (:). See the preceding discussion of Resource Usage for
background information on the asm-interface specification.

: (colon)

The colon (:) character is used to separate the out-list and in-list.
Another colon is used to separate the clobber-list if one is used. If the
out-list is missing, but an in-list is given, the input list must be
preceded by two colons (::) to take the place of the missing out-list.

out-list

out-list output-spec [,out-list]...

An out-list consists of one or more output-specs separated by
commas. For the purposes of substitution in the asm-template, each
output-spec is numbered. The first operand in the out-list is

NOTE. The validity of the assembly code is not checked by the compiler.

C Language Implementation 7

7-59

numbered 0, the second is 1, and so on. Numbering is continuous through
the out-list, and into the in-list. The total number of operands is
limited to 10 (i.e., 0-9). See substitution-directives above.

in-list

in-list input-spec [,in-list]...

Similar to an out-list, an in-list consists of one or more
input-specs separated by commas. For the purposes of substitution in the
asm-template, each input-spec is numbered, with the numbers
continuing from those in the out-list.

clobber-list

clobber-list clobber-spec [,clobber-list]...

A clobber-list tells the compiler that the asm uses or changes a real
machine register that is either coded directly into the asm or is changed
implicitly by the assembly instruction. The clobber-list is a
comma-separated list of clobber-specs.

output-spec

output-spec "=constraint" (C language object)

The output-specs tell the compiler about objects whose values can be
written by the inserted assembly instruction. In order to more fully describe
the output effects of the asm, you can list output-specs that are not
actually referenced in the asm-template. See the synmovq and attadd
examples below for specific examples of this.

input-spec

input-spec "constraint" (C language expression)

The input-specs tell the compiler about expressions whose values may
be needed by the inserted assembly instruction. In order to more fully
describe the input requirements of the asm, you can list input-specs that
are not actually referenced in the asm-template. See the synmovq and
attadd examples below for examples of this.

7-60

7 i960® Processor Compiler User’s Manual

clobber-spec

clobber-spec "regname"

Each clobber-spec specifies the name of a single machine register that is
“clobbered.”

Resources that cannot be clobbered are:

fp(the frame pointer)
sp(the stack pointer)
r0, r1, r2(reserved)
g14

C language object

This can be any assignable C language lvalue. Typically this is just a
variable name. A C language object must be of a type that matches its
corresponding constraint. A C language object used in an
output-spec must be of a type such that it can be assigned into. Object
types must be the same size that their constraints would match. For
example, the C type int is 32 bits; so is a global register. This would cause
no mismatch. An integer type would not match a quad-word, however. If
the object type and constraint do not match, the compiler attempts to
add code to fix the mismatch, but in general it is better practice to avoid
mismatches in the first place.

C language expression

This can be any legal C language expression. As in a C language object
above, a C language expression must match its corresponding
constraint. Unlike a C language object used in output-specs, a C
language expression used in input-specs does not need to be
assignable.

constraint

Each C language object or C language expression can have an
associated constraint. The constraint is a string that tells the
compiler what its associated operand must look like in order for the
asm-template to generate a legal assembly instruction.

C Language Implementation 7

7-61

A constraint consists of one or more of the characters listed below. The
compiler generates code if necessary to make the C language object or
expression match one of the constraint characters. The associated
operand is an integer literal or a machine register or an assembly label that
is put in place of a substitution directive.

In general, it is better to write the asm such that the compiler does not need
to generate extra code to make a constraint match. An operand can
contain an empty constraint string if it is not used in the
asm-template.

The valid constraint characters are as follows:

= Specifies that the operand is assigned into. All
output-spec constraints must start with this
character.

& Unless an output operand uses the & constraint, the
compiler may allocate it in the same register as an unrelated
input operand, on the assumption that the inputs are
consumed before the outputs are produced. If the assembler
code consists of more than one instruction, this assumption
may be false. In this case, you should use the &
constraint for each output operand that may not overlap
an input.

d Allows any local or global word register.

r Allows any local or global word register.

l Allows any local register (r3-r15).

b Allows any global register (g0-g15).

t Allows any two-word register.

q Allows any quad-word register.

f Allows any floating-point register fp0 through fp3. This
constraint is only valid for the i960 KB and i960 SB
processors and only then if the gcc960 msoft-float option
is not used.

m Allows any memory operand.

7-62

7 i960® Processor Compiler User’s Manual

I Allows a constant in the range 0 through 31. This is the
allowable range for a literal value in most instructions for
the i960 processor.

n Allows a known 32-bit constant.

i Allows a 32-bit constant including a constant address.

G Allows a floating-point constant of 0.0.

H Allows a floating-point constant of 1.0.

F Allows a floating point constant with any value.

0-9 This is a matching constraint. An operand that matches
operand n (0-9) is allowed. If used, this must be the only
character in the constraint. The specified operand must
be an output-spec, and the constraint in which the
matching constraint appears must be an input-spec.
The asm-template should not refer to this operand, only to
the operand n specified. This constraint is often used to
ensure that an input operand and an output operand are in the
same register. Generally, this is unnecessary on the i960
architecture.

C Language Implementation 7

7-63

Detailed Examples

Example 1: sf1.c (Simple)

The following example refers to the short C program shown in Example 7-1
below. The asm instruction is shown in bold.

Example 7-1 sf1.c (Simple)

/* Clears interrupt mask in sf1 for i960 CA processor */
void clear_interrupt_mask()
{

asm volatile ("mov 0,sf1");
}

Consider the line containing the asm:

asm volatile ("mov 0,sf1");

• "mov 0,sf1" is the asm-template. It contains no
substitution-directives, and the asm has no out-list or
in-list. It simply writes a zero into register sf1. If sf1 contains all
zeros, all interrupts except nmi are disabled.

Note that this asm can be coded without the input or output operands
because it neither uses nor affects any object or resources that the compiler
knows about.

7-64

7 i960® Processor Compiler User’s Manual

Example 2: sf1.c (Complex)

The following example refers to the short C program shown in Example
7-2. The asm containing the sf1 instruction is shown in bold.

Example 7-2 sf1.c (Complex)

/*
 * Changes interrupt mask, and returns old interrupt mask
 * for i960 CA microprocessor. Illustrates & constraint.
 */
int change_interrupt_mask(int new_mask)
{

int old_mask;
asm volatile("mov sf1,%0; mov %1,sf1":

"=&d" (old_mask) : "dI" (new_mask));
return old_mask;

}

Consider the line containing the asm:

asm volatile("mov sf1,%0; mov %1,sf1":
"=&d" (old_mask) : "dI" (new_mask));

• "mov sf1,%0; mov %1,sf1" is the asm-template. The
asm-template actually contains two mov instructions. The first
writes the contents of register sf1 onto operand 0 (old_mask) and the
second writes operand 1 (new_mask) into register sf1.

• "=&d" (old_mask) is the only output-spec. It is the first operand
(operand 0). The "=&d" is the constraint. The = says that this
operand must be assignable. The & tells gcc960 not to allocate this
output in the same register as an input operand. This is necessary
because the first mov creates output before the second mov has used its
input. The d indicates that this operand must go in a word register. If
old_mask is not a word register, the compiler will generates code
following the asm to copy the word register it chose for this output
operand into old_mask.

C Language Implementation 7

7-65

• "dI" (new_mask) is the only input-spec. It is operand 1. The "dI"
constraint indicates that operand 1 must be in a word register, or be
a constant from 0 to 31. The compiler generates extra code as necessary
to make sure new_mask matches one of the constraints before the
asm is generated.

Example 3: emul.c

The example refers to Example 7-3 below. The asm containing the emul
instruction is shown in bold.

Example 7-3 emul.c

typedef struct
{

unsigned int lo32;
int hi32;

} int64;

typedef int int32;

static inline
int64 asm_emul(int32 in1, int32 in2)
{

int64 temp;
asm("emul %1,%2,%0": "=t" (temp)

: "dI" (in1), "dI" (in2));
return temp;

}
int32 mul32_check_overflow(int32 a, int32 b)

{
int64 t;
t = asm_emul(a, b);
if ((t.lo32 & 0x80000000) != 0)
{
if (t.hi32 == -1) /*upper32 matches lower32 sign bit*/

 return t.lo32;
}
else
{

 return t.lo32;
}
else

7-66

7 i960® Processor Compiler User’s Manual

{
if (t.hi32 == 0) /*upper32 matches lower32 sign bit */
 return t.lo32;

}
overflow_error("32 bit multiply overflowed");
return t.lo32;

}

Consider the line containing the asm:

asm("emul %1,%2,%0" : "=t" (temp) : "dI" (in1), "dI"
(in2));

• "emul %1,%2,%0" is the asm-template. The emul instruction takes
three arguments: src1, src2, and dst. These values are provided by
the out-list and in-list.

• "=t" (temp) is the only output-spec. It is the first operand, i.e.,
operand 0. The "=t" constraint indicates that this operand must go
in a double word register in order for the asm-template to generate a
legal instruction.

• "dI" (in1) is the first input-spec. It is operand 1. The "dI"
constraint indicates that operand 1 must be in a word register, or be
a constant from 0 to 31 for the asm-template to generate a legal
instruction. The compiler generates the extra code as necessary to make
sure the value of in1 will matches one of the constraints before the
asm is generated.

• "dI" (in2) is the second input-spec. It is operand 2. Again the
"dI" constraint indicates that operand 1 must be in a word register,
or be a constant from 0 to 31. As before, the compiler makes sure that
the operand matches one of the constraints before generating the
asm. In this example, temp is declared as a local variable, and its type
(int64) has the necessary size (8 bytes) and alignment (8 bytes) to go
into a two-word register. Similarly, in1 and in2 must match at least
one of their constraints because their size and alignment is the
same as that required for a value in a word register.

C Language Implementation 7

7-67

Compile this example using:

gcc960 -S -O2 emul.c

Example 4: synmovq.c

The following example refers to the short C program shown in Example 7-4
below. The asm containing the synmovq instruction is shown in bold.

Example 7-4 synmovq.c

struct IAC_record {
unsigned short field2;
unsigned char field1;
unsigned char message_type;
unsigned long field3;
unsigned long field4;
unsigned long field5;

};

struct IAC_record Cent_IAC_Space = { 0,0x60,0x40,0,0,0 };

static __inline__ void
post_interrupt(struct IAC_record *IAC_p)
{

struct IAC_record *IAC_dst = (struct IAC_record *)0xFF000010;
__asm__ volatile ("synmovq %2,%3" : "=m"(*IAC_dst)

: "m"(*IAC_p),"d"(IAC_dst),"d"(IAC_p)); }

NOTE. That no extra code is generated to set up operands for the emul
asm.

7-68

7 i960® Processor Compiler User’s Manual

Consider the lines containing the asm:

__asm__ volatile ("synmovq %2,%3" : "=m"(*IAC_dst)
: "m"(*IAC_p),"d"(IAC_dst),"d"(IAC_p));}

• "synmovq %2,%3" is the asm-template. synmovq writes four words
into reserved memory on the i960 KB processor, and then sends a
message to the i960 processor telling it to do a software interrupt.
synmovq takes two arguments, src and dst, where src is the location
to copy from, and dst is the location to copy to. These values are
provided by the out-list and in-list.

• "=m" (*IAC_dst) is the only output-spec. It is the first operand,
i.e., operand 0. The "=m" constraint indicates that any memory
operand can be used.

• "m" (*IAC_p) is the first input-spec. It is the second operand, i.e.,
operand 1. Again, any memory operand can be used.

• "d" (IAC_dst) is the second input-spec. It is the third operand,
i.e., operand 2. The "d" constraint indicates that any global or local
word register or a constant from 0 to 31 may be used. This register is
only read, not written, so it acts as its own input.

• "d" (IAC_p) is the third input-spec. It is the fourth operand, i.e.,
operand 3. Again, any global or word register may be used.

NOTE. In this example, four operands were specified, although the
asm-template required only two. The additional operands (in this
instance, operands 0 and 1) tell the compiler about objects whose values
may be changed by the asm statement or whose value the asm statement
may need. In this case, the asm modifies memory, which may affect
optimizations the compiler performs at runtime. The only actual output
from the asm is the memory written.

C Language Implementation 7

7-69

Example 5: atadd.c

The following example refers to the short C program shown in Example 7-5
below. The asm containing the atadd instruction is shown in bold.

Example 7-5 atadd.c

static inline
int atadd(p, val)
volatile int *p;
int val;
{

int wtmp;
__asm__ __volatile__("atadd %4,%2,%1" : "=m"(*p),"=d"(wtmp)

: "dI"(val),"m" (*p),"d"(p));
return wtmp;

}
volatile int critical_var;
int other_var;

int add_crit()
{

atadd(&critical_var, 1);

if (atadd(&critical_var, 2) != 1)
atadd(&other_var, 1);

}

Consider the lines containing the asm:

__asm__ __volatile__("atadd %4,%2,%1" :
"=m"(*p),"=d"(wtmp)

: "dI"(val),"m" (*p),"d"(p));

• "atadd %4,%2,%1" is the asm-template. atadd adds to memory
and locks the bus until it is finished. This feature is used by
multi-processor systems. atadd takes three arguments. These values
are provided by the out-list and in-list.

• "=m" (*p) is the first output-spec. It is the first operand, i.e.,
operand 0. The "=m" constraint indicates that any memory operand
can be used.

7-70

7 i960® Processor Compiler User’s Manual

• "=d" (wtmp) is the second output-spec. It is the second operand,
i.e., operand 1. The "d" constraint indicates that any global or word
register can be used.

• "dI" (val) is the first input-spec. It is the third operand, i.e.,
operand 2. The "dI" constraint indicates that any global or word
register containing a constant in the range 0 through 31 can be used.

• "m" (*p) is the second input-spec. It is the fourth operand, i.e.,
operand 3. Again, any memory operand may be used.

• "d" (p) is the third input-spec. It is the fifth operand, i.e.,
operand 4. Again, any global or word register may be used.

NOTE. Again, this example specifies five operands, though the
asm-template requires only three. The additional operands tell the
compiler about objects whose values may be changed by the asm
statement or whose value the asm statement may need.

C Language Implementation 7

7-71

Example 6: modpc.c

The following example refers to the short C program shown in Example 7-6
below. The asm containing the modpc instruction is shown in bold.

Example 7-6 modpc.c

extern inline unsigned
modpc (unsigned new_pc, unsigned mask)
{

int wtmp;
__asm__ __volatile__("modpc %1,%1,%0" : "=d"(new_pc), :

 "dI"(mask),"0" (new_pc));
return new_pc;

}

int
raise_priority int(n)
{

unsigned cur_pc;

cur_pc = modpc(0, 0); /* just read the pc */
if ((cur_pc & 0x2) != 0)
{
 /* we’re in supervisor mode, so we can change it */
 unsigned priority = ((cur_pc >> 16) & 0x1f) + n;
 unsigned priority_mask = 0x1f << 16;
 if (priority > 31)

priority = 31;

 cur_pc &= ~priority_mask;
 cur_pc |= priority << 16;

 modpc(cur_pc, priority_mask);
 return 1;
}

return 0;
}

7-72

7 i960® Processor Compiler User’s Manual

Consider the lines containing the asm:

__asm__ __volatile__("modpc %1,%1,%0" : "=d"(new_pc),
: "dI"(mask),"0" (new_pc));

• "modpc %1,%1,%0" is the asm-template. The modpc instruction
reads and modifies the i960 architecture’s process control register. The
instruction takes three arguments.

• "=d"(new_pc) is the only output-spec. It is the first operand, i.e.,
operand 0. The "=d" constraint indicates that this is an output
operand, and that any global or local word register can be used.

• "dI"(mask) is the first input-spec. It is operand 1. The "dI"
constraint indicates that the operand must be a word register, or be a
constant in the range 0 through 31. Note that operand 1 is referenced
twice in the asm-template because the modpc instruction requires
the same input operand in two places.

• "0" (new_pc) is the second input-spec. It is operand 2. The "0"
constraint indicates that this operand and operand 0 must be allocated
to the same register. This is required because in the asm-template
this register is both a source and a destination. Note that operand 2 is
not referenced in the asm-template, but that the reference to operand
0 is also the use of operand 2 as specified by the "0" constraint.

Note that this example shows how the 0-9 constraint is used to match an
input to an output operand when a src/dst operand is needed in an
asm-template. This example also shows that input-only operands (such
as mask) can be freely referenced multiple times in an asm-template
without needing to be specified multiple times in the in-list.

If you are writing a header file that should be includable in ANSI C
programs, use __asm__ instead of asm and __volatile instead of
volatile. See the Alternate Keywords section for more information.

asm Functions

An asm function definition is a special form of a prototyped function
definition. The keyword asm preceding the return-type specifier identifies
an asm function definition. An asm function definition can occur anywhere
a C function definition can occur. However, the definition of an asm
function must precede any call to it.

C Language Implementation 7

7-73

When processing an asm function call, the compiler generates additional
instructions for loading registers, for other operations needed to pass
parameters, and for acceptance of a return value. A call to an asm function
is not a true function call, however, because the compiler expands the
assembly-language body of the function inline.

An asm function definition can contain one or more templates. The
compiler selects a template for expansion based on the values and data types
of arguments you specify and based on use of any return value in the
function call. Use of any C expression as an argument to an asm function is
legal.

Also, any of the following are legal within an asm function:

• trigraphs

• spliced lines (backslash-newline pairs)

• C-style comments (/*. . .*/)

• macros and preprocessor directives

asm Function Definition Syntax

The declaration syntax for asm functions and parameters is the same as
standard C function syntax. The following is an informal definition of asm
function syntax:

asm return-type name (parameter-declarations)
{
% control-line
 template
[. . .]
}

NOTE. An asm statement or asm function should not issue an
assembler directive that changes the object module section to something
other than .text. The compiler assumes the asm statement leaves the
assembler in the .asm section.

7-74

7 i960® Processor Compiler User’s Manual

The following restrictions apply to asm parameter lists:

• An asm function cannot be a stdarg function; that is, an asm
parameter list cannot contain an ellipsis (. . .).

• Each declaration in an asm parameter list must include an identifier.

• The data type of any asm parameter cannot be larger than 16 bytes.

• The data type of an asm function return value cannot be larger than 16
bytes.

An asm function can contain zero or more expansion cases, each of which
starts on a new line and consists of a control line (starting with %) followed
by a template. A control line can contain zero or more controls and can be
continued to the next line with a backslash immediately before the newline
character. A control can be any of the following:

• a parameter-declaration list to specify return values or asm parameter
classes.

• the call or error keyword to cause an action other than asm
in-lining.

• a label declaration to declare a label local to the asm function.

• the use or spillall keyword to preserve registers and variables.

• the pure keyword to indicate that the asm function has no side effects.

An asm parameter declaration in a control line specifies the classes for any
parameters or return value. The keyword return is a special parameter
identifier, denoting the return value and specifying its class. A control line
can also contain declarations for local temporary variables.

return-type is the data type returned by the asm function.

name is the identifier used to invoke the asm function.

parameter-
declarations

defines the data types and names of the asm
parameters.

control-line introduces each template, defines the
parameter and return value classes, and
specifies any calling-convention or non-asm
processing.

template is zero or more lines of text for processing by
the assembler.

C Language Implementation 7

7-75

The template can be any text. The compiler performs some preprocessing
on the template text, but the assembly-language syntax checking is done by
the assembler.

Template Selection

When the compiler encounters a call to an asm function, the compiler
selects a template for expansion by comparing the call context with each
control line in the function definition. The call context includes:

• the category (value, data type, and location) of each argument in the
call.

• a boolean that shows whether the function uses the returned value.

Selection Criteria and Coercion

If a control line contains an error or call control and no parameter
declarations, the control line unconditionally matches any call.

If a control line contains any parameter declarations or does not contain an
error or call control, the control line matches a call only when the
argument categories match the parameter declarations in the control line.

If an error or call control line contains parameter declarations, the
compiler generates the message or function call only if the parameter
classes match the call context.

The compiler processes asm functions by doing the following:

• Checking the asm function for correct syntax and semantics. If any of
the following control lines are present, the compiler reports an error:

— error or call with any other control (spillall, use, or
label)

— an error control line with more than one line of template text

— a call control line with any template text

• Reporting an error, if an error or call control line without parameter
declarations is not the last control line in the asm function definition.

7-76

7 i960® Processor Compiler User’s Manual

• Ensuring that all control lines contain either parameter declarations or
an unconditionally matching control by adding default parameter
declarations for all parameters declared in the function prototype to any
control line that does not already contain error, call, or parameter
declarations. This action includes adding parameter declarations to a
control line containing spillall, use, or label controls but no
parameter declarations. Default parameter declarations use tmpreg
class for return and reglit class for parameters.

• Ensuring that the last control line unconditionally matches any call
context. Unless the final control line in the asm function definition
contains nothing but an error or call control, the compiler adds a
final control line containing a call control, as follows:
%call function;

• The default function for a call control is an external function of the
same name as the asm function. The last control line is the only one
that unconditionally matches any call context.

• Comparing the call context to each control line, in sequence from
beginning to end of the asm function definition. The compiler expands
the template of the first control line that exactly matches the call
context. Tables 7-3 and 7-4 show how the call context and parameter
classes can match.

• If no control line exactly matches the call context, attempting to coerce
the call context into one of the control lines, starting at the end of the
asm function and working back to the beginning.

— A ldconst instruction coerces a constant argument into a register.

— A movr instruction coerces a floating-point literal argument into a
register.

— A ld instruction coerces a memory argument into a register.

— A mov instruction coerces a general-register argument into a
temporary variable.

— A movr, movrl, or movre instruction coerces an argument that is
not a floating-point register or literal into a floating-point register
and coerces an argument that is a floating-point register or literal
into a general register.

• Expanding the last control line if no control line exactly matches the
call context and the call context cannot be coerced into the last
conditional control line.

C Language Implementation 7

7-77

Table 7-3 Return Value Class Matching1

1. A bullet (•) indicates a match. A hyphen (-) indicates no match.

Return Value Use Return Class void ftmpreg tmpreg

not used • • •

used - • •

Table 7-4 Argument Category to Parameter Class Matching and Coercion1

1. A bullet (•) indicates a match with no coercion needed. A hyphen (-) indicates no match and no
coercion possible. A movr instruction for coercion indicates that movr, movrl, or movre can be used.

Argument
Category

Parameter
const

Class
ftmpreg freglit tmpreg reglit

Integer Constant
(0-31)

• ldconst,
 movr

ldconst,
 movr

ldconst •

Other Integer
Constant

• ldconst,
 movr

ldconst,
 movr

ldconst ldcon
st

Floating
Constant (0.0 or
1.0)

• movr • movr movr

Other Floating
Constant

- ldconst,
 movr

ldconst,
 movr

ldconst ldcon
st

General-register
Variable

- movr movr mov •

Memory - ld, movr ld, movr ld ld

General-register
Temporary

- movr movr • •

Floating
Register
Temporary

- • • movr movr

7-78

7 i960® Processor Compiler User’s Manual

Parameter Classes

An asm parameter or return class can be any of the following:

tmpreg places the parameter in a general-purpose register, of
the compiler’s choice, that the asm function can
modify. For a tmpreg parameter longer than one word,
specify the number of registers needed in parentheses
after tmpreg.

For example, tmpreg(3) allocates three consecutive
registers. If tmpreg is specified without a number of
registers, the default is tmpreg(1).

A tmpreg return value also occupies the specified
number of registers. If no class is specified for return,
the default is tmpreg(n), where n is the size from 1 to
4 needed to contain the return value.

The maximum number of parameters that can be placed
in registers is 10.

ftmpreg places the parameter in a floating-point register, of the
compiler’s choice, that the asm function can modify.
You can use ftmpreg only on processors with on-chip
floating-point support. When used to declare return,
ftmpreg places the return value in a floating-point
register.

C Language Implementation 7

7-79

reglit places the parameter in a general-purpose register, of
the compiler’s choice. The asm function must not
modify the register.

If the parameter is a literal, it can be used as is. Thus,
the asm body should use the parameter only in an
assembly language context that allows a literal.

For a reglit parameter longer than one word, specify
the number of registers needed in parentheses after
reglit. For example, reglit(3) allocates three
consecutive registers. If reglit is specified without a
number of registers, the default is reglit(1).

A reglit return value also occupies the specified
number of registers. The declaration reglit return
is equivalent to tmpreg return.

freglit places the parameter in a floating-point register of the
compiler’s choice. The asm function must not modify
the register. You can use freglit only on processors
with on-chip floating-point support. When used to
declare return, freglit places the return value in a
floating-point register. The declaration freglit
return is equivalent to ftmpreg return.

const indicates a constant expression. The const keyword
can be followed by:

(signed-integer), specifying the indicated integer
value.

(signed-integer-low:

signed-integer-high), specifying an integer value
in the indicated range.

(0.0 : 1.0), specifying a floating-point value of 0.0
or 1.0. Only use const to declare parameters, not
return.

void indicates that the return value is not used. Use void to
declare only return, not a parameter.

7-80

7 i960® Processor Compiler User’s Manual

Declarations must be consistent between the asm function prototype and the
control line. If the asm class of a parameter or return register does not match
the declared C parameter or return type, the compiler issues a warning
message. Table 7-5 lists the matching data types and classes.

Table 7-5 C Data Types and asm Classes

Class Designations Data Types

reglit, tmpreg, reglit(1),
tmpreg(1)

any integer type; any pointer type; float; struct, or
union types of 1 to 4 bytes

reglit(2), tmpreg(2) double; struct, or union types of 5 to 8 bytes

reglit(3), tmpreg(3) long double; struct, or union types of 7 to 12 bytes

reglit(4), tmpreg(4) struct or union types of 13 to 16 bytes

freglit, ftmpreg float, double, or long double

NOTE. Avoid writing a parameter declaration that can never match any
call context. Such a declaration creates a pocket of unreachable code.
For example, unreachable code results from declaring a parameter in an
asm function prototype as an integer C type and declaring the
corresponding parameter in the control line as ftmpreg or freglit
class. The control line parameter declaration then matches only a
floating-point data type argument, but the parameter can accept only an
integer argument. Similarly, when specifying an integer return type in a
function prototype, any return declaration specified in the control line
must also be integer. The compiler recognizes when the parameters in the
function prototype and the control line are mismatched and issues a
message.

C Language Implementation 7

7-81

Argument Categories

An argument category can be any of the following:

General-register
variable

is a register-resident value (e.g., a register
variable). Depending on the level of
optimization, this category can include a more
complex expression. During compilation, the
expression must evaluate to a register-resident
variable that is one of the operands in the
expression. For example, the expressions x+0
and x*y/y both evaluate to x.

Memory is a memory-resident value.

General-register-temp
orary

indicates an expression that the compiler cannot
evaluate to a single variable or constant. This
category includes most expressions containing
an operator. A common exception is an
expression in which the top-level operator
implies indirection (that is, *, [], or ->). Such
an expression falls into the memory category.
Depending on the optimization level, the
general-register-temporary category can include
an expression in which the top-level operator is
an assignment to a register-resident variable.
Floating-point values can also fall into this
category.

Floating-point-register
-temporary

indicates a floating-point expression that can be
classified more efficiently into a floating-point
register than into a general register. This
category is available only on processors with
on-chip floating-point support.

7-82

7 i960® Processor Compiler User’s Manual

Template Expansion

Once the compiler selects an expansion case, one of the following
sequences occurs:

• If the control line contains the error control, the compiler reports an
error, using the first line following the error control line as the text of
the error message. For example, invoking the following asm function
as traps(1) prints the message Reached trap1:
asm int traps (int i)
{
% const(1) i; error;
Reached trap1
% const(2) i; error;

Reached trap2
% error;
Reached traps without 1 or 2
}

• More than one line of template text following an error control line
results in a compiler syntax error.

• If the control line contains the call control, the compiler generates a
call to an external function using the call assembly-language
instruction. You can specify the name of the external function, as in the
following example:
%call my_alt_afn;

Integer constant is a constant integer value. Depending on the
level of optimization, this category can include
an expression containing variable operands, if
the compiler can evaluate the expression to a
constant. For example, the expressions x+5-x,
x-7, and x can evaluate to constants during
compilation if the value of x is a known value at
compile time.

Floating-point
constant

is a constant floating-point value. The rules for
classifying arguments as floating-point
constants exactly parallel the rules for
classifying arguments as integer constants.

C Language Implementation 7

7-83

• If you do not specify a name in the call control, the compiler uses the
name of the asm function. For example, calling the following as
select(3) results in a call to an external function named select:
asm int select (int i)
{
% const(-2:2) i;
. . .
% call select;
}

• Any lines of template text following a call control line result in a
compiler error.

• If the control line does not contain call or error, the compiler inserts
the selected template in the assembly-language output in place of the
asm function call.

Declarations

The control line can declare the following:

• parameters, including return

• local temporary variables

• labels

Parameter declarations and local temporary declarations are syntactically
identical. If the declared name is the same as a parameter declared in the
function prototype, a parameter is declared. Otherwise, the declaration is of
a local temporary variable.

In the template text, the compiler replaces the name of any declared
parameter with the corresponding register or literal argument. The return
keyword becomes the name of the register in which the return value of the
asm function is expected. The compiler replaces the name of any local
variable with the name of an available register.

You can use a reglit or tmpreg class parameter or local variable as an
integer aggregate containing up to four general-purpose registers, as
declared on the control line. To select a register, specify an integer in
parentheses after the identifier. For example, itmp(0) selects the first
register of itmp. If itmp is declared on the control line as itmp(4),
specify itmp(3) to select the fourth register allocated for itmp.

7-84

7 i960® Processor Compiler User’s Manual

Preserving Register and Memory Values

The following asm controls enable the compiler to preserve function
resource requirements:

NOTE. If a template uses a label, multiple expansions of that template
can result in more than one label with the same name, causing
ambiguous branch or jump destinations. To avoid this ambiguity, use the
label control to declare the label in the control line. The compiler then
generates a unique name for each declared label every time the
expansion case is selected.

use declares that certain registers can be read and/or
modified by the template. You can specify any of
registers g0 through g13, r3 through r15, and fp0
through fp3, when present, as arguments to the use
control. For example, the following control line
preserves registers g5 through g8, r3, and r11:

% use g5, g6, g7, g8, r3, r11;

If any of the registers pfp, sp, rip, g14, or fp are
specified in a use control, the compiler issues an
error message.

spillall declares that some memory locations used outside
of the asm function can be modified or used by the
template. The compiler forces synchronization of
load and store operations at the function call; that is,
no load or store operation moves past the call of an
asm function containing the spillall control.

C Language Implementation 7

7-85

Examples and Hints

You can define control lines in a sequence that selects the expansion case
based on the strictest comparison first, relaxing the matching criteria as
earlier expansion cases are rejected, as follows:

1. const and void return parameters.

2. ftmpreg and freglit parameters; for example, to match long
double arguments.

3. tmpreg and reglit parameters; for example, to match integer,
float, and double arguments.

pure declares that the named asm function has no effect
other than returning a computed value. Specifically,
no I/O is performed, no global variables or memory
locations are read or modified, and no
modifications of registers occur, except those
explicitly defined by the calling sequence. When
pure is used, the compiler can perform
optimizations before and after each function call,
because pure guarantees the asm function has no
effect other than returning the computed value. If a
function is pure, the compiler can perform
additional optimizations across the function call.

NOTE. If none of the above controls appear in text to direct
preservation of resources, the compiler makes the following
assumptions:
• The only registers used by an asm function are those implicitly assigned
by the compiler for parameters, local temporaries, and the return value.
• The asm function does not reference any non-volatile memory
locations.
• The asm function can have other side effects, such as performing I/O.

7-86

7 i960® Processor Compiler User’s Manual

Sequential Template Expansion. The following is a C language program
that uses an asm function with two expansion templates:

#define status_reg 0xFE00FF00
asm int poll(void)
{
% void return; tmpreg t; spillall;
 ld status_reg, t; #first template
% reglit return; spillall;/* return the current status
*/
 ld status_reg, return; #second template
% error;
}
#define DEVICE_READY 0x00000001
main()
{
extern void service_device();
 poll(); /*clear status bits*/
 while (1) {
 if (poll() & DEVICE_READY)
 service_device();
 }
}

The first call of poll does not use the return value and therefore matches
the void return control line, expanding the first template. The second call
uses the return value and therefore matches the tmpreg return control,
expanding the second template.

In this example, loading the status register also clears the status, so the poll
function can be used just to clear the status if the function return value is
ignored. However, when the return value is ignored, the program must still
allocate a register into which it can load the temporary value.

C Language Implementation 7

7-87

Compiling this program produces assembly language similar to the
following:

_main:

 ld 0xFE00FF00 , g4; #first template

L5:

 ld 0xFE00FF00 , g4; #second template

 bbc 0,g4,L5

 callj _service_device

 b L5

IAC Breakpoint. The following example shows an asm block that sends an
inter-agent communication (IAC) breakpoint to the processor. For
information on the IAC structure, see the i960 KB processor manual.

struct message {
 unsigned short field2;
 unsigned char field1;
 unsigned char message_type;
 unsigned int field3;
 unsigned int field4;
 unsigned int field5;
} iac_struct;
/*
 * This routine issues an IAC message to the local
 * processor where the program resides. It accepts
 * a pointer to a preformed IAC message as input and
 * uses the synmovq instruction to send the IAC to the
 * processor.
 */
asm void send_iac(struct message *base_msg)
{

%void return; reglit base_msg; tmpreg myreg; spillall;
 lda 0xff000010, myreg /* load local IAC address */
 synmovq myreg, base_msg /* issue IAC message */
%error;
Incorrect C call to send_iac
}

/*

7-88

7 i960® Processor Compiler User’s Manual

 * Send a breakpoint IAC to the processor. The
 * address is supplied by the routine that calls
 * set_bp. Do not forget to enable breakpoints in the
 * trace control. Fields 1, 2, and 5 are not used.
 */
void set_bp(unsigned int addr1, unsigned int addr2)
{
iac_struct.message_type = 0x8f;
iac_struct.field3 = addr1;
iac_struct.field4 = addr2;
send_iac(&iac_struct);
}

In this example, the first line (asm void send_iac(struct message
*base_msg)) declares that the function does not return a value and the
base_msg argument is a pointer to a structure of type message.

The second and eighth lines contain braces. These lines begin and end the
function definition, which contains two expansion definitions.

The third line is a control line containing three parameter declarations, as
follows:

%void return; reglit base_msg; tmpreg myreg; spillall;

The void return; declares that no value is returned by this asm function.
The reglit base_msg; declares that the base_msg parameter matches
either a literal or a register argument. The tmpreg myreg; declares that the
myreg local variable is a temporary register. The spillall control
informs the optimizer that this template references memory.

The fourth and fifth lines load the IAC address into a temporary register and
issue an IAC message.

The sixth line is a control line containing the error control and the seventh
line is the text of the error message.

If the compiler cannot coerce the call arguments into the previous expansion
definition (the declarations in the third line), the compiler displays the
following error message and aborts the compilation:

Incorrect C call to send_iac

8-1

C++ Language
Implementation 8

The C++ implementation is consistent with the C language implementation
described in Chapter 7. This chapter highlights the differences from the C
language implementation. It also provides a description of the
unimplemented C++ features and description of the template
implementation limitations.

Data Representation
The C++ compiler follows the same rules as described in Chapter 7, “C
Language Implementation” for the format and alignment of various scalar
and aggregate data types. The C++ compiler, however, recognizes the
following scalar data types as well.

• bool: The bool type has the same size and alignment as an int and
can be assigned a value of either true or false.

• reference: References are implemented internally as pointers.
However, these implementation details are transparent to the end user
and reference types in general should be treated the same as the type to
which they refer.

8-2

8 i960® Processor Compiler User’s Manual

Calling Conventions
The C++ compiler follows the same calling conventions as described in
Chapter 7, “C Language Implementation”. However, be aware that the
compiler uses hidden parameters. Consider the following example:

 class Base {

 public:

 int set_a(int i) { a = i; }

 private:

 int a;

 };

The implementation of member function set_a uses a hidden parameter,
the address of the Base instance for which this member function was
invoked (the this argument). As a result, the user should expect argument
i to be passed in register g1. Return values and register usage are handled
the same way as described in Chapter 7, “C Language Implementation”.

Pragmas
Pragmas can supply implementation-specific information to the compiler.
The CTOOLS C++ compiler supports the same set of pragmas as the
CTOOLS C compiler. However, certain pragmas behave differently in C++.
The following sections highlight these differences.

Specifying a Tag-Name with align, noalign, or i960_align

When you specify a tag-name with align, noalign, i960_align, the pragma
applies to all occurrences of that tag. For example:

 # pragma align str=2

 struct str {

 char c;

 struct str {

 char c;

 } s1;

 };

C++ Language Implementation 8

8-3

 struct str1 {

 char c;

 struct str {

 char c;

 } s1;

 };

In the above example, the align pragma affects the alignment of types str,
str::str, and str1::str.

The compiler currently does not implement referring to a specific type-tag
(e.g., through the use of scope resolution operator) in a pragma:

 # pragma align str1::str=2 // will not work

Specifying a Function Name with a Pragma

When you specify a function name with a pragma (e.g., pragma compress,
cave, inline, interrupt, isr), the pragma applies to all occurrences of that
name.

 # pragma inline max

 int max(int a, int b);

 float max(float a, float b);

 struct S {

 int a, b;

 int max(int a, int b);

 };

In the above example, the inline pragma affects max(int, int),
max(float, float), and S::max(int, int)

The compiler does not allow specifying a single instance of a function name
in a pragma. For example, the statement:

 # pragma inline S::max(int, int)

is not supported.

8-4

8 i960® Processor Compiler User’s Manual

Link Time Considerations
The compiler creates two new .text sections named ctors and
dtors.

• The ctors section is used to initialize(construct) static objects.

• The dtors section is used to destroy static objects

Starting with CTOOLS 6.0 a new set of linker directive files are included
(.ld files) for use with the ic960 driver. These new ld files place the
ctors and dtors sections immediately after the .text section. The
C++ Iostream library is linked immediately before the C high-level
libraries, as specified with the linker directive PRE_HLL.

With the gcc960 driver, use the -stdlibcpp option to link in the C++
Iostream library ahead of the C libraries and place the ctors and dtors
sections immediately after the .text section.

Calling C Functions from C++

Use the extern "C" directive provided by the C++ language

 // Example assumes that file1.cc and file2.c are linked together

 // Begin file1.cc

 extern "C" {

 int baz(int a, int b); // Compiler does not do name

 void foo(void); // mangling

 };

 int baz(float); // Compiler treats this as a

 // C++ routine and does name mangling

 int baz(float f1)

 {

 return int(f1);

 }

C++ Language Implementation 8

8-5

 int main()

 {

 foo(); // invokes the definition in file2.c

 return baz(10, 20) + // invokes the definition in file2.c

 baz(float(10.6));

 }

 // End file1.cc

 /* Begin file2.c */

 int baz(int a, int b)

 {

 return a + b;

 }

 void foo(void) {

 baz(10, 20);

 return;

 }

 /* End file2.c */

Calling C++ Functions from C

Use the extern "C" directive provided by the C++ language.

 // Example assumes that file3.cc and file4.c are linked together

 // begin file3.cc

 extern "C" int baz(void);

 extern "C" {

 int foo(int a, int b)

 {

 return a + b;

 }

 }

8-6

8 i960® Processor Compiler User’s Manual

 int main()

 {

 return baz(); // invokes the function defined in file4.c

 }

 // end file3.cc

 /* begin file4.c */

 int baz()

 {

 return foo(10, 20); /* invokes function defined in file3.cc */

 }

 /* end file4.c */

asm Statements and asm Functions

The C++ compiler implements asm statements in a manner that is consistent
with the C compiler. However, asm functions are not implemented in the
C++ compiler.

Unimplemented C++ Language Features
The current release does not implement the following C++ language
features:

Exception Handling

C++ provides constructs that allow exceptions to be raised and caught. The
current release does not implement C++ exception handling. The following
example illustrates the use of exception handling:

#include <iostream.h>

int main()

{

 int i;

 try {

 cout << "Enter an integer > 0 ";

C++ Language Implementation 8

8-7

 cin >> i;

 if (i <= 0)

 throw inv_data;

 ...

 ...

 }

 catch (Invalid_Data) {

 cout << "Invalid data input\n";

 exit(10);

 }

}

Run Time Type Information(RTTI)

C++ provides constructs that allow you to determine the type of an object
during execution. This makes it possible to write specialized code based on
the run-time type of the object. The current release does not implement
RTTI. The following example illustrates the use of RTTI:

#include <typeinfo>

class B {

public:

 virtual int foo();

};

class D {

public:

 virtual int foo();

};

D d1;

B *bp = &d;

int baz(B *bp)

{

 if (typeid(*bp) == typeid(D))

8-8

8 i960® Processor Compiler User’s Manual

 do_something ...

 else

 do_other_stuff ...

}

Namespaces

Namespaces allow a programmer to declare variable names without the fear
of a collision with names declared by other users. Namespaces allow two
independent library developers to use the same names for their library
routines and allows the user to choose between the two. The following
example illustrates the use of namespaces.

namespace A {

 int max(int a, int b)

 {

 int tmp;

 if (a > b)

 tmp = a;

 else

 tmp = b;

 return tmp;

 }

}

namespace B {

 int max(int a, int b)

 {

 return a > b ? a : b;

 }

}

int tmp;

using namespace A;

int main()

{

C++ Language Implementation 8

8-9

 tmp += max(10, 20); // Calls namespace A’s max(int, int)

}

Debugging Information for Templates

Debugging information for templates is currently not supported.

9-1

GCC960/ic960
Compatibility 9

This chapter describes the incompatibilities between ic960 and gcc960, and
between the current release of gcc960 and other releases of ic960.

char and short Parameters

The ic960 R3.0 compiler expects char and short parameters and return
values to be clean upon entry to and exit from procedures. Since these types
are passed and returned in registers, this means that, in the case of signed
types, the sign bit must be extended, and in the case of unsigned types, the
high-order bits of the register must be zero. By default, gcc960 (and ic960
R4.5 and later) does not expect these values to be clean, and generates
appropriate operations to sign- or zero-extend these values on entry to or
exit from a procedure. This applies only to ANSI-compliant programs that
specify the type of parameters at declaration time in the function prototype.

gcc960 emulates ic960 R3.0’s behavior if the mic3.0-compat or
mic2.0-compat options (see below) are selected.

enum Variable Byte Count

The ic960 R3.0 compiler creates enum variables with only enough bytes of
precision to hold the requested enumeration. gcc960 always generates
4-byte enum variables. gcc960 emulates ic960’s behavior if the
mic3.0-compat option is selected. An enum variable compatible with
ic960 releases prior to R3.0 can be achieved using the mic2.0-compat
option.

9-2

9 i960® Processor Compiler User’s Guide

char Types

The ic960 compiler (all releases) treats default char types as signed,
whereas gcc960 treats them as unsigned. gcc960 emulates ic960’s
behavior if the mic3.0-compat or mic2.0-compat options (see below)
are selected, or if the fsigned-char option is selected. The preprocessor
symbol __CHAR_UNSIGNED__ is set appropriately to allow programs to
determine which model is in use.

Identifying Architectures

The traditions for architecture-identifying preprocessor macro definitions
are somewhat different between ic960 and gcc960. Both interfaces define
the macros __i960, __i960xx, and _i960, where xx is the architecture
(e.g., CA for the i960 CA processor, as selected by the ACA option). These
are the recommended macros for testing for the i960 processor architecture.

For compatibility reasons, the compilation system also defines additional
variations on these macros, as shown in Table 8-1.

#pragma align

ic960 and gcc960 both implement a #pragma align directive. They
interpret the pragma differently, and the results (changes in the alignment of
members of structures) are not compatible. In the absence of this pragma,
ic960 and gcc960 structures should be compatibly aligned. pragma
i960_align is provided for compatibility with ic960’s pragma align,
and behaves the same for both compiler interfaces.

Table 9-1 Architecture Macros and Compatibility

gcc960 ic960

_ _i960_ _ X -

_i960xx - X

_ _i960_xx_ _ X -

_ _i960xx_ _ X -

GCC960/ic960 Compatibility 9

9-3

mic3.0-compat Option

The gcc960 mic3.0-compat option selects the appropriate behavior for
enum variables, selects default signed char variables, and selects clean
linkage (described above) for char and short parameters and return
values.

mic2.0-compat Option

The gcc960 mic2.0-compat option selects the same behaviors as
mic3.0-compat, except that the behavior for the enum variable is subtly
different and the alignment rules for structure elements are changed to be
compatible with this (now obsolete) release of ic960. The mic-compat
option supported in gcc960 R1.2 and R1.2.1 is now synonymous with
mic2.0-compat.

10-1

Position Independence and
Reentrancy 10

This chapter describes reentrancy and position-independence. Use it for
writing i960 processor applications that require position-independent or
reentrant programs. Position independence enables relocation of both the
.text and .data sections.

Position-independent Code and Data
Position independence refers to an application that can be relocated when
loaded. The application can be loaded at various addresses, but the code and
data do not move during execution. This feature enables creation of
programs for specific EPROMs used in a system.

The ic960 driver’s G option with its arguments pc, pd and pr, or the gcc960
driver’s mpic, mpid and mpid-safe options, control generation of
position-independent code and data. For more information about
command-line options, see Chapter 2, “gcc960 Compiler Driver”, and
Chapter 3, “ic960 Compiler Driver”.

Position-independent Data

When the position-independent data option is specified, references to
variables in the program are made relative to g12. Initialization code for a
program must supply a data address bias in the position-independent data
bias register (g12). For all accesses to statically allocated variables, the
value in g12 is used to calculate the effective address. Register g12 must be
read-only for the entire program.

10-2

10 i960® Processor Compiler User’s Guide

For example, suppose object _x is in the .data or the .bss section.
Normally, the compiler generates an address of the object with an absolute
addressing mode:

lda _x, g0

When you compile your program with position-independent data, the
compiler generates this instruction to take the address of _x:

lda _x(g12), g0

Position-independent Code

When the position-independent code option is specified, the compiler
computes effective addresses by biasing them based upon the instruction
pointer (ip).

Suppose object _x is in the .text section. The compiler generates a code
bias address into a register at the beginning of any function that needs a
direct address in the .text section. It does this via a code sequence similar
to this:

lda 0(ip), r3
lda . , r4
subo r4, r3, r3

which leaves the bias in r3. Then the compiler uses r3 to bias the reference
to _x as:

lda _x (r3), r4

The first three instructions compute the difference between the link time
address and load time address of the .text section.

For example, if the code section links to begin at address zero, the
subtraction result is the address at which the code section was actually
loaded. Even if the code section links to begin at some other address, the
subtraction result is still the correct value for biasing pointers into the code
section.

NOTE. If PID is specified, the value in g12 must be correctly computed
and stored by user-provided startup code.

Position Independence and Reentrancy 10

10-3

Example 10-1 Position-independent ROM Code

Imagine designing two circuit boards for use in a new laser printer. ROM
chips on these boards contain type fonts and graphic elements. To provide
alternative printing capabilities, either board inserts into an optional slot in
the printer chassis. Memory allocated for each board is:

board 1 20000 - 3ffff

board 2 40000 - 5ffff

Although ROM and RAM for each board have different load addresses, the
controlling software for the printer must work correctly with either board in
use. In the printer, kernel ROM and RAM are at fixed addresses in low
memory. A large memory space is set aside for the kernel’s ROM and RAM.

Compiling the ROM code with the PID option and placing the correct bias
values in g12 makes the optional ROMs relocatable.

Figure 10-1 shows memory allocation for board 1. When the code executes,
the ROM code for either board loads at the correct address.

10-4

10 i960® Processor Compiler User’s Guide

Figure 10-1 Memory for Hypothetical Position-independent Application

Slot for Card 2

64 MB

Slot for Card 1

48 MB

Top of RAM

Frame Buffer

Slot RAM

g12

Kernel ROM (code)

0

16 MB

Kernel RAM (data)

Top of Memory

OSD1678

Position Independence and Reentrancy 10

10-5

Guidelines for Writing Relocatable Programs

A program can contain position-independent code (PIC),
position-independent data (PID), or both. Be aware of the following
restrictions:

• Use position-independence only where necessary, because a program
containing position-independent code may execute more slowly than
one without.

• Position-independent programs cannot be relocated during execution.

For all i960 processors, the address space is flat (unsegmented) and
byte-addressable. Addresses run contiguously from 0 to 232-1. Programs can
allocate space for data, instructions, and stack anywhere within the flat
address space. However, the following restrictions apply:

• Instructions must be aligned on word boundaries.

• Addresses FF000000H through FFFFFFFFH in the upper 16 megabytes
of the address space are reserved for specific functions. Check with
your system hardware designer to determine the effects of use of the
addresses in this range.

• On i960 Cx and Jx processors, the lower 1 kilobyte of address space
(addresses 0000H through 03FFH) is reserved for accessing internal
memory (RAM). On i960 Hx processors, the lower 2 KB is internal
memory. Instruction fetch operations from this address range are not
allowed.

• The .data and .bss sections must be relocated as a unit.

Because biasing occurs during code execution, the compiler does not
support static initialization of pointers with the address of a
position-independent object. The compiler generates a warning in these
cases.

For example, the following program has two pointers, p and g, whose initial
values might not be correct when position-independence is used.

static int i;
static int *p = &i;
static int *q = 0;
static int *r = (int *) 0x7fff0000;
int f();
int (*g) () = f;

10-6

10 i960® Processor Compiler User’s Guide

In the compiler’s output, p contains the unbiased address of i, and g
contains the unbiased address of f. To use the initialized p or g, a program
must perform the correct biasing of values before the point where the
program uses the pointers.

Reentrant Functions
Reentrant functions can suspend execution, and later resume execution
from the same state at which the suspension took place. Current state data
must be preserved while a reentrant function is suspended.

A reentrant function can be active in several different places, in any of the
following ways:

• a multi-tasking situation with two or more threads executing in the
same memory space; for example, an interrupt handler

• a time-sliced environment in which two or more processes are
executing, with one process active and all others suspended at any
given time

• a recursive function, with any one instance of a function active while
all duplicate instances of the function are suspended

For a function to be reentrant, it must not:

• modify memory or registers in use by a concurrent or suspended
function

• reference shared variable data

• call a non-reentrant function

Designing Reentrant Functions

Since the compiler cannot determine data use across modules, the compiler
does not issue any warnings for potentially non-reentrant code sequences.
For more information about library reentrancy, refer to the i960 Processor
Library Supplement.

11-1

Initializing the Execution
Environment 11

This chapter describes the initialization process for the i960 processor
execution environment, including startup assembly-language routine,
configuration files, and associated options.

Startup Code
The startup routine is a module that initializes the processor and library,
then invokes the user’s program. In addition to processor initialization, the
startup routine performs some initialization specific to random-access
memory (RAM-based) or read-only memory (ROM-based) target
environments. Since RAM-based applications typically operate under a
system monitor and load to the correct addresses after powering up the
board, the startup routine must initialize system monitor requirements but
need not boot-load the program. For a ROM-based application, the startup
routine must:

• Put the initialization boot record for the i960 processor in place.

• Configure system data structures correctly.

• Make initialized data available in the RAM address space.

For any program, the startup routine must initialize the i960 processor
registers as follows:

• Provide a global entry point called start. This symbol is the entry
point for debug monitors.

• Initialize the frame pointer and stack pointer to the correct value.

• Initialize g14 to zero, as required by the i960 processor calling
convention.

11-2

11 i960® Processor Compiler User’s Guide

• Fill the uninitialized .bss data sections with zeros.

• Set the arithmetic controls (AC) register to 0x3B001000. For library
functions to execute correctly, the rounding mode bits of the AC must
be set to round-to-nearest, the floating-point normalizing bit must be
set, and the following faults must be masked:

— integer overflow

— floating-point overflow

— floating-point underflow

— floating-point inexact

• Since the i960 C-series and J-series processors’ AC register does not
allow setting of floating-point bits, use _setac in the setup. The
_setac and _getac routines are independent of architecture and work
correctly for all i960 architectures. Startup routines for KA, KB, SA,
and SB processors can also use the modac instruction as an alternative.

When writing code to initialize the C runtime environment, you must
address the following issues:

• The startup code provides the bias value for position-independent data
sections. If the program contains position-independent data (PID),
startup code must initialize register g12 to the data-address bias. The
g12 register is the data address bias register. The compiler generates
references to statically allocated variables relative to g12. The
contents of g12 must be divisible by 16 (i.e., the address must be on a
quad-word boundary). After initialization, g12 must be considered
read-only; user code should not modify it.

• If the gcc960 command line specifies mpid or the ic960 command line
contains the Generate option with the PID argument (-G pd), the
compiler does not use g12 as a general purpose register. However, it
does use g12 to offset static variables, as explained above.

If the target environment includes the MON960 monitor, startup must
provide a global entry point called start, used by debug monitors as the
entry point to the new program. Startup code must call __LL_init to
perform all initialization specific to the processor and to the board.

Initialization differs for each processor and board. For example, some
board-specific startup routines initialize mem_end in the linker
configuration file instead of in __LL_init. Each board-specific low-level
library included with the assembler contains an appropriate __LL_init.

Initializing the Execution Environment 11

11-3

See the startup file crt960.s under the src/lib/libll/common
directory for an example.

• If a program uses the C runtime library, startup code must call
__HL_init to ensure correct operation of all library functions,
including any I/O routines such as printf.

• The __HL_init function calls the _exit_init, _stdio_init, and
_thread_init routines to allocate memory for library data structures
and to open standard devices. These routines require definition of
sbrk and open in the board-specific low-level library. The
__HL_init function is in the architecture-specific high-level libc.a
library. For more information about high-level libraries, refer to the
i960 Processor Library Supplement.

• If performing profile-driven optimizations, the startup routine must call
a profile initialization routine before calling any instrumented
functions.

• If you are linking in any C++ modules, startup code must call
_do_global_ctors before you invoke main. See crt960.S for an
example.

• The startup routine also calls an executing program’s main function,
passing parameters to main if necessary. The startup routine also
performs cleanup after main returns, usually by calling exit. If the
target environment supports program command-line arguments such as
argc and argv, call __arg_init to initialize such variables
immediately before calling the program main function. The
__arg_init function is found in the MON960 low-level library. This
function is described in the Library Supplement.

• The linker combines the startup routine with other object modules.
Normally, a configuration file provides the name of the startup file. To
override the startup file named in the configuration, use the linker C
(Startup) option. For more information on passing options to the linker
from the compiler invocation command line, see Chapter 2, “gcc960
Compiler Driver” or Chapter 3, “ic960 Compiler Driver”.

RAM-based Initialization

The lib/cycx.ld configuration file links the crt960.o startup file to run
a program under the MON960 monitor.

11-4

11 i960® Processor Compiler User’s Guide

ROM-based Initialization

ROM-based startup routines must ensure that all the variable data is in
RAM. The routines must do the following:

• Physically move any system data structures that the program modifies;
move the structures to the RAM address space.

• Move the initialized variable data from ROM to the .data section.

• Restart the processor, using the IAC (inter-agent communication) for
KA, KB, SA, and SB architectures, or using the sysctl instruction for
the Cx, Hx and Jx architectures.

A startup routine performs the following operations to create a ROM-based
application:

• Create an initialization boot record as a separately translated module.

• Create architecture-specific data structures.

• Initialize any necessary board-specific memory subsystems in either
the main or the startup routine of your program

Use the linker to locate the initialization boot record, system data structures,
and program code in the appropriate memory location for the architecture
and board configuration, as follows:

• Put .text code sections in the ROM address range

• Put .data and .bss data in the RAM address range

Use the linker to define variables used symbolically in the startup routine.
The linker automatically generates symbols named __Bsection for the
beginning and for the end of each section of your program.

The linker can generate the following symbols for the startup routine:

__Bdata is the starting address of RAM data

__Edata is the end of the .data section

__Btext is the starting address of the .text section

__Etext is the end of the .text section

__Ebss is the end of the .bss section

__Bbss is the starting address of the .bss section

__Bctors is the starting address of the C++ .ctors section

__Ectors is the end of the C++ .ctors section

Initializing the Execution Environment 11

11-5

__Bdtors is the starting address of the C++ .dtors section

__Edtors is the end of the C++ .dtors section

It is also possible to explicitly define variables in the configuration file.
Supplied configuration files contain definitions of the following:

user_stack is the starting address of the user stack

supervisor_stackis the starting address of the supervisor stack

interrupt_stackis the starting address of the interrupt stack

After linking, you can use the move command of the rom960 utility to
modify object module section headers and to place named data sections at
specified addresses or locations. This command should be used to
temporarily move the data sections into the ROM address space, usually
immediately after the .text section, and does not change the relocation
information contained in the section to be moved. The startup routine then
must copy the data to the RAM area specified by the linker.

Linker Configuration Files
A linker configuration file is a linker script that provides information to the
linker about the intended execution environment. Several linker
configuration files are provided, and each contains linker options to create a
complete and unique execution environment. Use the T (Target) linker
option to specify the configuration file. For more detail on the T (Target)
option, see the i960 Processor Software Utilities User’s Guide.

RAM-based Configuration File

The commands passed to the linker define the memory layout and location
of the linked program. Configuration information used by the linker
includes:

• memory layout

• linker controls

• startup routine

• high-level libraries

• low-level libraries

• floating-point support

11-6

11 i960® Processor Compiler User’s Guide

ROM-based Configuration File

The optional ROM-builder section of a configuration file contains
commands to be passed to the rom960 utility. rom960 commands must
begin with the #* characters in columns 1 and 2. The i960 Processor
Software Utilities User’s Guide provides explanations and examples of
rom960 commands in a configuration file.

12-1

Optimization 12
Readable and maintainable source text is not always organized for efficient
execution. The compiler can optimize the arrangement of instructions and
data use for faster execution and smaller memory requirements. This
chapter describes the different ways in which the compiler can optimize
your program and explains ways to control optimization.

Optimization Categories and Mechanisms
Compiler optimizations affect these aspects of your program:

• constants and expression evaluation

• calls, jumps, and branches

• loop optimizations

• memory optimizations

• register use

• instruction selection and sequencing

Some optimizations are independent of the i960 architecture and others take
specific advantage of the i960 processor instruction set and registers.
Program-level optimizations are also available when profile data exists for
the program.

12-2

12 i960® Processor Compiler User’s Guide

Table 12-1 Constants and Expression Evaluation

Optimization ic960 gcc960

Register management any level any level

Branch prediction 0 0

Code compression 0 0

Constant-expression evaluation 0 0

Identity collapsing 0 0

Branch optimization 1 1

Char/short cleaning reduction 1 1

Dead-code elimination 1 1

Leaf-function identification 2 2

Local CSE elimination 1 1

Local-variable promotion 1 1

Loop-invariant code motion 1 1

Specialized-instruction selection 1 1

Tail-call elimination 2 2

Conditional transformation 2 2

Global alias analysis 2 5

Induction variable elimination 2 2

Instruction scheduling 2 2

Constant propagation 2 3

Loop unrolling 2 3

Memory access coalescing 2 3

Variable shadowing 2 3

Allocation of variables to fast memory 3 5

Inter-module, inline function expansion 3 5

Profile-based branch prediction bits setting 3 5

Basic block rearrangement 3 5

Superblock optimizations 3 5

Optimization 12

12-3

The compiler can simplify some arithmetic and boolean calculations
involving repeating expressions, constants, or operational identities.
Optimizations involving such simplifications are:

• common sub-expression elimination

• constant expression evaluation

• constant propagation

• identity collapsing

Each is explained in one of the following sections.

Common Sub-expression Elimination

Common sub-expression elimination detects and combines redundant
computations within an expression. For example, this line of source text
contains the sub-expression x[a] * y[b][c] three times:

i = (x[a] * y[b][c]) + (x[a] * y[b][c]) + (x[a] * y[b][c]);

Instead of calculating x[a] * y[b][c] three different times, the compiler
rewrites the expression to perform the calculation once and store the result
for reuse:

temp = x[a] * y[b][c];
i = (temp) + (temp) + (temp);

The compiler eliminates common sub-expressions on the results of
floating-point operations and on integer operations. In some cases the
compiler can perform this optimization for common sub-expressions
separated by branch instructions.

This optimization is performed by the O (Optimize) compiler option at level
1 (O1) and higher.

NOTE. The following source examples are for illustration only. The
compiler performs its transformations on an internal representation, not
at the source level.

12-4

12 i960® Processor Compiler User’s Guide

Constant Expression Evaluation (Constant Folding)

A constant expression contains only constant operands and simple
arithmetic operators. Instead of storing the numbers and operators for
computation when the program executes, the compiler evaluates the
constant expression and uses the result. Constant folding is another name
for this optimization.

The examples in Table 12-2 show the effects of constant expression
evaluation. The variables d and e are affected by bit-shift operations but are
still subject to constant expression evaluation.

Any of the following data types can be operands subject to constant
expression evaluation:

• integers

• floating-point numbers

• pointers

Dead-Code Elimination

The compiler eliminates two kinds of dead code:

unused when code generates a value that is not used
subsequently in the program or in its output.

unreachable when the control flow of the program can never execute
the instructions.

Table 12-2 Effects of Constant Expression Evaluation

Original Source Text Replacement

a = 1 + 2; a = 3;

b = 3 - 4; b = -1;

c = 5 * 6; c = 30;

d = (2 << 1) + 1; d = 5;

e = (12 >> 2) + 2; e = 5;

f = 1.2 + 3.8; f = 5.0;

g = 10.0 * 0.5; g = 5.0;

h = i + 2 + 5; h = i + 7;

Optimization 12

12-5

Unused code operations can arise from several sources, including:

• Naive code generation can produce operations that are useless in some
contexts as part of a generic translation.

• Other optimizations, such as common sub-expression elimination, can
make some operations useless.

• Conditional compilation or other code improvements can eliminate the
uses of the results of an operation.

By analyzing a program, the compiler can detect and remove useless
operations from generated code.

Commonly, instructions become unreachable when function inlining
substitutes constants for variables or when the preprocessor substitutes
constants for preprocessor symbols. By analyzing the control flow in a
program, the compiler can detect many (though not all) instances of
unreachable instructions and remove them from the generated code.

Identity Collapsing

The compiler recognizes instances of arithmetic operations in which an
identity constant is one of the operands. For an identity constant, the result
of the operation is the same as one of the operands. The examples in Table
12-3 demonstrate identity collapsing.

Operations subject to identity collapsing include:

• addition or subtraction

• multiplication or division

• bitwise left or right shift

• bitwise and, xor, or or

Table 12-3 Identity Collapsing Examples

Original Replacement

a + 0 a

a * 1 a

a * 0 0

x << 0 x

0 >> y 0

12-6

12 i960® Processor Compiler User’s Guide

Constant Propagation

Programs often contain computations that produce the same value each time
the program is executed. Constant propagation involves tracking constant
values through the computations in a program. In arithmetic or conditional
operations, the compiler can sometimes eliminate less efficient memory or
register instructions, replacing them with an instruction sequence that uses
constant values. The compiler performs the following types of instruction
replacement:

• An integer arithmetic instruction that always produces the same
constant value result is replaced by a single instruction (commonly lda
or mov) that copies the constant value into the destination register of
the original instruction. For example, this program fragment uses an
addo to put the sum of 2 and 4 into g4:
 mov 2, g2
 mov 4, g3
 addo g2, g3, g4

• After constant propagation, the code contains these optimized
instructions:
 mov 2, g2
 mov 4, g3
 mov 6, g4

• Dead code elimination deletes the first two now-unused mov
instructions.

• A conditional branch instruction for which the condition is known is
deleted. For example, this program fragment sets x equal to y+z if 2
and 4 are equal, which is never true:
 a=2; b=4;
 ...
 if (a==b)

x=y+z;
 else
 x=y-z;

• After constant propagation, the code contains these optimized
instructions:
 a=2; b=4;
 ...
 if (0)

Optimization 12

12-7

x=y+z;
 else
 x=y-z;

• Dead-code elimination further reduces the instruction sequence by
removing the test and unreachable “then” part, leaving:
 a=2; b=4;

 x=y-z;

• A conditional branch instruction for which the condition is found to
always be true is changed to an unconditional branch. For example, this
program fragment branches to L1 if 2 is less than or equal to 4, which
is always true:

 Before After
 mov 2, g2
 mov 4, g3
 cmpi g2, g3
 ble L1
 addi g4, g5, g6
 b L2
L1:
 subi g4, g5, g6 subi g4, g5, g6
L2: L2:

• A load operation from a memory location found to contain a constant
value is replaced by a copy of the constant value into the destination
register of the original instruction. For example, the following program
fragment loads the constant value 5 from the memory location _i into
g3:
lda 5, g2
st g2, _i
ld _i, g3
st g3, _j

• After constant propagation, the code contains these optimized
instructions:
lda 5, g2
st g2, _i
lda 5, g3
st g3, _j

12-8

12 i960® Processor Compiler User’s Guide

• Complex memory-addressing modes are sometimes reduced to less
complex addressing modes when registers that are components of a
memory reference contain constant integer values. For example, this
code fragment contains a complex memory-addressing mode in the
third instruction:
mov 2, g2
lda _i, g3
ld 10(g3)[g2*4],g4

• After constant propagation, the code contains these optimized
instructions:
mov 2, g2
lda _i, g3
ld 18(g3),g4

Calls, Jumps, and Branches
For some branches or function calls, the compiler can replace the original
instructions with more efficient instructions to lower execution time or with
fewer instructions to reduce program size. Optimizations that perform such
restructuring include:

• branch optimization

• branch prediction for i960 Cx and Hx processors

• leaf-function identification

• inline function expansion

• tail-call elimination

Branch Optimizations

Branch optimizations streamline the flow of program control by performing
the following actions:

• collapsing branch chains

• eliminating branch-to-next-line sequences

• eliminating branch-around-branch sequences

The following program fragments show branch optimizations.

Optimization 12

12-9

• This program fragment contains a branch directly to another branch
instruction. It doesn’t matter whether the branch is conditional or
unconditional. After branch optimization, the branch chain is collapsed
to a single branch.

Before After
 cmpi g1, g2 cmpi g1, g2
 bl .L1 bl .L2

 .L1: .L1:
 b .L2 b .L2

The final branch might be eliminated by the dead code optimization.

• This program fragment contains an unconditional branch to the label
directly following the branch. After branch optimization, the
branch-to-next-line sequence is eliminated:

Before After

 b .L1 .L1:
 .L1:

• In the next program fragment, an unconditional branch follows a
conditional branch. The compiler optimizes this branch sequence by
removing the unconditional branch and reversing the test on the
conditional branch.

Before After

 cmpi g1, g2 cmpi g1, g2
 be .L1 bne L2
 b .L2 .L1:
 .L1:

Branch Prediction

The i960 Cx and Hx processors provide a branch-prediction bit in
conditional branch instructions. If the prediction is correct, the branch takes
no cycles to execute; otherwise, the branch takes one or more cycles. For
further information on execution speed during branch prediction, refer to
the i960 Cx Microprocessor User’s Manual.

If not profiling, the compiler uses these heuristics to set the
branch-prediction bit:

12-10

12 i960® Processor Compiler User’s Guide

• For backward branches (likely a loop), the compiler predicts that the
branch is taken so that the loop is executed more than once.

• For forward branches (conditional operations such as if-then
statements), the compiler predicts that the branch is not taken.

During profile-driven compilation, each branch’s observed behavior is used
to set the prediction bit.

Identification of Leaf Functions

The compiler identifies functions that can be called with branch-and-link
instruction sequences. The compiler then generates the correct function
prologue, epilogue, and symbol table information for the assembler. When
this function is called, the compiler generates the callj pseudo-instruction.
The linker optimizes the call to use branch-and-link instruction sequences.
A function called with branch-and-link instruction sequences does not
allocate a new stack frame, does not create a new register frame, and thus
executes faster than a function invoked with a call instruction.

Neither the compiler nor the linker can absolutely identify a function called
indirectly through a function pointer as a leaf function. Therefore, the
compiler does not optimize such indirectly called functions to
branch-and-link instruction sequences.

For an explanation of the two entry points generated for leaf procedures, see
the i960 Processor Assembler User’s Guide and the i960 Processor
Software Utilities User’s Guide.

Inline Function Expansion

Using calls to a function within a program usually takes less space but
requires longer execution time than repeating the function body each time it
is needed. Inline function expansion replaces a function call with the called
function body expanded in place. The inlining optimization increases speed
by eliminating call overhead and creates opportunities for further
optimization.

Optimization 12

12-11

The compiler provides user-controllable inlining using pragma inline,
and with the __inline storage class. Additionally, at ic960 optimization
level 2, or gcc960 optimization level 3, the compiler performs more
automatic procedure inlining, based on heuristics.

In the following example, the swap function switches two numbers. The
source text contains a function call:

void swap(x,y) /* function body */
 int *x, *y;
 {
 int temp;
 temp = *x; *x = *y; *y = temp;
 }
main()
 {
 ...
 if (a > b) swap(&a, &b); /* function call */
 printf("The smaller number is %d\n",a);
 ...
 }

After inline function expansion, the function body replaces the call:

main()
 {
 ...
 if (a > b)
 {
 int temp;
 temp = a; a = b; b = temp;
 }
 printf("The smaller number is %d\n",a);
 ...
 }

Tail-call Elimination

When a call directly precedes a return from a function, optimization can
sometimes replace the call with an unconditional branch to the called
function. This replacement saves execution time since a branch executes
faster than a call.

12-12

12 i960® Processor Compiler User’s Guide

For example, the following algorithm for Ackermann’s function uses tail
calls:

/* Ackermann’s function with tail recursion */
int ack(int m,int n)
{
if (m == 0)
 return n+1;
else
 if (n == 0)
 return ack(m-1,1);
 else
 return ack(m-1,ack(m,n-1));
}

Tail-call recursion elimination produces the following:

/* Ackermann’s function with tail recursion eliminated
*/
int ack(int m,int n)
{
label:
if (m == 0)
 return n+1;
else
 if (n == 0)
 {
 n=1;
 m--;
 goto label;
 }
 else
 {
 n = ack(m,n-1);
 m--;
 goto label;
 }
}

Here is C code to illustrate a simple tail recursion.

print_bool (int v)
{

if (v== 0)
printf ("FALSE");

Optimization 12

12-13

else
printf ("TRUE");

return;
}

Here is the generated assembly code.

cmpibne0,g0,L4
lda LC0,g0
b _printf

L4:
lda LC1,g0
b _printf

Loop Optimizations

Movement of Loop-invariant Code

Loops are the bodies of do, while, and for statements. The loop-invariant
code optimization identifies computations that do not change within a loop
(loop-invariant code) and moves them to a point before the entry to the
loop.

Induction Variable Elimination

Loops that traverse arrays occur in many programs. To compute the address
for references in these arrays the compiler must multiply the array subscript
by the size of an array element.

Multiplication is a time-consuming operation. To generate faster code, the
compiler can sometimes replace the multiply operation with an add
operation.

These methods improve the performance of the code whenever a value
computed in a loop is a linear function of a loop iteration variable. Indexing
arrays is the most common case.

12-14

12 i960® Processor Compiler User’s Guide

Loop Unrolling

When the number of times a loop executes can be determined either at
compile time, or prior to executing the loop at run time, then this
optimization may be performed. Loop unrolling involves duplicating the
body of a loop 1 or more times, and changing the loop conditions so that the
same number of executions of the loop body occur. This optimization is
chosen based on many factors. Two such factors are the size of the loop
body and the complexity of the loop termination condition.

Memory Optimizations

Global Alias Analysis

The compiler gathers information about the interaction between loads and
stores in the program. With this information, the compiler can remove some
of the redundant load-store operations. Assignments into an array are one
applicable case.

Two names are aliases when they both reference the same memory location.
Without tracing the relationships of values and names, the compiler must
treat any value stored through a pointer, called an indirect store, as if it
affected any memory location.

Variable Shadowing

The compiler may place a memory object in a register throughout a
single-entry, single-exit region (such as a loop) when it can determine that
the following are all true:

• There are no references to memory within the region that could overlap
the candidate memory object.

• The address of the candidate is a compile-time constant, or it is
constant throughout the single-entry, single-exit region and a reference
to the object’s address is guaranteed to happen at least once whenever
the code for the region is executed.

• There are no calls within the region.

Optimization 12

12-15

In the following example, global migration causes p to be loaded once at the
beginning of the loop and stored once at the exit point.

static int*p;

while (*p != ’\0’)
 p++;

Without this optimization, the program loads and stores p once for each
iteration of the loop.

Register Use
The compiler can use registers to speed up data access. Register
optimizations are as follows:

• local variable promotion

• register management

• register spilling

Local Variable Promotion

The compiler promotes a local variable to a register location when the
variable’s address is not taken and its storage class is auto or register.

Local variables stay in their register location through the life of the
function. Optimization level 0 suppresses local variable promotion and
assigns all variables with auto storage class to stack locations.

Register Management

The register allocator phase of the compiler assigns all register operands to
the physical registers. For the KB/SB processors, the physical registers
available for assignment include the four floating-point registers. For all
i960 processors, the physical general-purpose registers available for
assignment include r3 through r15, g0 through g11, and g13. You must
specify the compiler option for position-independent data (gcc960’s mpid
or mpid-safe option or ic960’s Gpd or Gpr option) to make g12
unavailable for assignment. Due to the standard calling conventions, g14 is
not available for register-operand assignment.

12-16

12 i960® Processor Compiler User’s Guide

Register Spilling

Portions of the compiler that run before register allocation can produce code
that needs more physical registers than are available in the processor. The
register allocator must fit each function’s arbitrarily large burden of register
demands into the physical registers implemented in the hardware. To
allocate available registers, the compiler must reuse each physical register
many times.

When the physical registers cannot meet the demands of a particular
function, the register allocator must insert a sequence of instructions, known
as spill code, to transfer long-lived values from some of the registers in
order to free the registers for more immediate demands.

Instruction Selection and Sequencing
In addition to other optimizations, the compiler can reduce or eliminate
instructions that have become redundant or useless. The compiler can also
eliminate less efficient instructions or replace them with instruction
sequences and addressing modes that take advantage of i960 processor
features. These instruction optimizations include:

• code compression

• code scheduling

• specialized instruction selection

Code Compression

The i960 architecture provides complex addressing-mode instructions that
enable denser code generation. By default, the compiler tries to pick
addressing modes to maximize run-time performance, generally using a mix
of complex and simple addressing modes. You can control this optimization
with #pragma compress, as described in Chapter 7, “Optimization”.

Code Scheduling

In code scheduling, the compiler modifies the sequence of instructions to
increase parallel execution. Although the effect of the code does not change,
code scheduling can often improve code performance.

Optimization 12

12-17

Since different members of the i960 family of processors provide varying
levels of hardware parallelism, the compiler orders the instructions
differently according to the specific processor for which code is being
generated.

For example, on the i960 KA, KB, SA, and SB processors, the execution of
a memory operation can overlap the execution of an arithmetic instruction,
provided the memory operation occurs in the instruction stream first. The
following code computes the expression(b*13) + c with these instructions:

ld _b, r4
muli r4, 13, r4
ld _c, r5
addi r5, r4, r4

To optimize this computation, the compiler moves the instruction that
fetches the value of c ahead of the multiply instruction:

ld _b, r4
ld _c, r5
muli r4, 13, r4
addi r5, r4, r4

When this rearranged code executes, part of the instruction ld _c, r5
executes in parallel with the multiplication. The instruction ld _b, r4
also executes partly in parallel with the instruction ld _c, r5.

The same sort of rearrangement can improve performance on the CA and
CF processors, but more parallelism is possible because the CA and CF can
issue multiple instructions at one time and can execute more instruction
categories in parallel than the KA or KB.

For example, on the CA and CF processors, the compiler can also substitute
one instruction for another that has the same effect but executes in a
different internal unit of the processor. The most common examples of such
substitution are conversions of mov instructions to lda instructions, and
vice versa.

Specialized-instruction Selection

A number of i960 processor instructions can help optimize code in special
situations. The special code sequences recognized by the compiler, and the
replacements used are as follows:

12-18

12 i960® Processor Compiler User’s Guide

• A bitwise or instruction for which one of the operands is a constant
with value 2n, for some n, can become setbit.

• A bitwise and instruction for which one of the operands is a constant
with value ~(2n), for some n, can become clrbit.

The i960 processor has a complete set of bitwise-boolean instructions. The
compiler takes advantage of this in translating expressions involving
bitwise-boolean operations in which the operands or the results are negated.
For example, the operations in the expression ~(a & b) become a single
nand instruction. Similarly, (a | ~b) can use an ornot instruction.

Multiplication of an integer or unsigned integer by a constant power of 2
becomes a left-shift operation. Similarly, division of an integer or unsigned
integer by a constant that is a power of 2 becomes a right-shift operation.

Program-level Optimization
After program development is complete, it is possible to use the compiler’s
profile-driven optimizations to achieve the highest level of program
optimization, based on the program’s execution-time profile.

Inter-module Function Inlining

Given program profile data describing the typical behavior of the program,
the compiler knows what functions the program calls, from which call sites,
and how many times calls are made. Intelligent decisions can be made about
which functions to inline at which specific call sites. If a function is called
from multiple sites, it is better to inline the function at frequently executed
call sites. The inlining decisions are made by the gcdm960 program during
the profiling decision-making step. After the decisions have been made, the
compiler performs the inlining during profile-driven recompilation.

Superblock Formation

A superblock is a group of basic blocks that tend to execute in sequence (a
path) and can be entered only from their initial block. A superblock loop is a
superblock whose first block is the header of a loop, and for which

Optimization 12

12-19

execution flow out of the last block usually goes to the first block. In other
words, a superblock loop is a heavily iterated loop where a single path
through the loop is taken quite frequently.

These concepts are illustrated in Figure 12-1:

Figure 12-1 Superblock Formation Process

The left diagram shows that path A➠B➠D is heavily traveled and would
thus be detected as a superblock candidate. To form a superblock from this
candidate, it is necessary to remove the arc C➠D. This is done as shown in
the middle diagram. Block D is duplicated, and block C is altered to flow to
D’. The dashed arc from block B to block D indicates that it is likely that
these two blocks will be merged into a single block. This merging increases
the scope of the local optimizer and of the scheduler, optimizations that
work on a single block at a time. The superblock loop containing only
blocks A, B, and D is formed in the diagram on the right. An empty header

A

B C

D

B C

D D'

A

B C

D D'

A

H

1

100

104

100

1

5

5

Trace ABD Superblock Loop ABDSuperblock ABD

OSD1635

12-20

12 i960® Processor Compiler User’s Guide

block, H, has been created, and the original single loop in the middle
diagram now becomes two loops, a nested superblock loop headed by A,
and an outer loop headed by H.

The fundamental advantage that superblock formation yields is the removal
of data dependencies. In the diagram on the left, any data modifications in
block C must be considered when optimizing the loop. These modifications
often have a negative effect, inhibiting the classic loop optimizations. For
example, if block C contains a procedure call, it appears to modify all
memory variables. Optimizations involving memory references are
inhibited in this case. In the diagram on the right, data modifications in
block C do not effect loop optimizations in the superblock loop ABD.

Profile-based Branch-prediction Bit Setting

Without program profile data, the compiler uses a fixed rule for setting the
branch-prediction bits for the processor.

With program profile data, the branch-prediction bits are set based on that
profile data. This setting is better for a given program.

Optimizing Virtual Function Dispatch
Generally, invoking a virtual function is more expensive than invoking a
non-virtual function in C++. Also, other function related optimizations
such as inlining cannot be performed on virtual functions. In many
situations, the call to the virtual function can be replaced by a direct call to
a member function, and if possible it can be inlined at the call site. This
improves the runtime performance of the code. Consider the following
program segment:

class A

 {

public:

 virtual void f(int i)

 { printf("Function A::f called with %d\n,i");}

 } *a;

class B : public A

Optimization 12

12-21

 {

public:

 virtual void f(int i)

 { printf("Function B::f called with %d\n",i);}

} B;

main()

{

 a = &B;

 a->f(10);

}

The virtual function call a->f() always resolves at run time to the
function B::f. The virtual function optimization phase of the compiler not
only resolves this at compile time, it also inlines B::f into the function
main. This improves the runtime performance.

This optimization is not enabled by default. It is performed only if invoked
with the appropriate switches. The two-pass framework is needed for this
optimization.

This optimization will not work correctly if

• The C++ code is not type safe. Suppose that you have a class D that
is derived from class B, then the code is not type safe if a pointer to an
object of type B is used as a pointer to an object of type D.

• If a C++ object that has a virtual function associated with it is used, or
created in either C or assembly code.

• A C++ file that is a part of the application is not included in the
two-pass optimization scheme, or if the two-pass optimization is
performed incrementally.

13-1

Caveats 13
This chapter provides useful programming tips on:

• “Aliasing Assumptions”

• “Alignment Assumptions”

• “Volatile Objects”C

• “Known Problems Using the Compiler”

• “C Version Incompatibilities”

• “Troubleshooting”

Aliasing Assumptions
Some compiler optimizations (for example, fshadow-mem) use type
information as the basis for several assumptions. These assumptions
exclude some pairs of memory references as possible alias candidates.

If your program violates these assumptions, the compiler may generate code
that does not function as you intended.

Here are the rules the compiler uses:

character (i.e., char, unsigned char, signed char) lvalues
can access all objects, regardless of type.

ordinal (e.g., int, short, long, enum) lvalues can access only
ordinal objects of the same size (regardless of sign) or
character objects.

real (e.g., float, double, long double) lvalues can
access only real objects of the same size, or character
objects.

13-2

13 i960® Processor Compiler User’s Guide

pointer lvalues can access only objects of pointer type
(regardless of the types pointed to) or character objects.

structure lvalues can access only the objects that can be accessed
by the members of the structure, or struct objects of
the same size, or character objects.

union lvalues can access only the objects that can be accessed
by the members of the union, or union objects of the
same size, or character objects.

These rules are not as strict as those allowed by the relevant portion of the
ANSI standard (section 3.3), but they are still aggressive enough to cause
some problems with code developed for some compilers.

The fint-alias-ptr, fint-alias-real, and fint-alias-short
compiler options relax these restrictions. See Chapter 2, “gcc960 Compiler
Driver” and Chapter 3, “ic960 Compiler Driver” for more information.

To make use of the higher optimization levels, you should examine your
code carefully and ensure that these rules are not violated.

Consider this code fragment:

 double *pq, *pr, *ps;
 int* pi, *pj;
 *pq = *pr;
 *pi = *pj;
 *ps = *pr;

Caveats 13

13-3

The compiler might conclude that the value of *pr is unaffected by the
assignment to *pi, because double objects cannot legally be referenced by
int lvalues.

It might then use this conclusion to rewrite the above code as follows:

 register double t = *pr;
 *pq = t;
 *pi = *pj;
 *ps = t;

This is fine as long as *pi really doesn’t overlap *pr, but if your program
does something like:

 double d;
 pi = (int *) &d;
 pr = &d;

before it executes the second fragment, the wrong value would get stored in
*ps.

Alignment Assumptions
The compiler sometimes uses pointer type information when deciding
whether or not memory references are properly aligned for some
optimizations.

Thus, the compiler assumes that all pointer expressions are aligned as their
pointed-to types would indicate. For example, ((double *) e) is treated
as an assertion that the low 3 bits of e are 0.

The compiler also infers more stringent alignment for individual variables
than would be indicated by their types alone, since it assumes that the
allocation is aligned according to the compiler's rules.

So, if your program defines global variables in assembly code that are
referenced by C routines, or if it has its own memory manager (e.g.,
malloc), the allocations must be aligned according to the compiler's rules
or unaligned references may result.

13-4

13 i960® Processor Compiler User’s Guide

Here is an example of how these assumptions are used:

 #include <string.h>
 ...

 struct {
 int s1;
 int s2;
 int s3;
 } *s; /* (1) *s is assumed to be 16 byte aligned */

 extern char mybuf[23];
 /* (2) mybuf is assumed to be 16 byte aligned */

 memcpy (mybuf, s, sizeof (*s));

The compiler would generate:

 ldt (s), r
 stt r, mybuf

in lieu of the call to memcpy; the memory references would be unaligned
should the assumptions mentioned above prove false.

Volatile Objects
The compiler aggressively attempts to remove redundant memory
references (both loads and stores), and it attempts function inlining across
multiple .c files. If your program expects actual memory references to be
made at certain points in the program, you must make those references
volatile. Volatile objects are guaranteed to be updated at certain sequence
points in the program (e.g., between semicolons, &&, ||, ?:, and before
calls).

Caveats 13

13-5

Volatile objects are also presumed to have been changed in unknowable
ways between such points.

Here is an example of a program that fails because of a memory reference
that needs to be made volatile:

fiddle.c:
 #define MY_PORT *((int *) 0x10000)
 ...

 int read_my_port ()
 { return MY_PORT;
 }
faddle.c:
 ...

while (read_my_port() == 0)
 /* do nothing */;

ok_go_do_something ();

This program is incorrect, but it functions as intended when compiled with
compilers that do not attempt inlining across .c files.

When these two files are compiled with global inlining, the compiler
translates the program to:

(1) while (MY_PORT == 0)
 /* do nothing */;

 ok_go_do_something ();

And, since MY_PORT appears to be loop invariant (because it isn’t volatile),
we then get:

(2) t = MY_PORT;
 while (t == 0)
 ;

which loops forever if the first value read from *0x1000 is 0.

All that is needed here is to make MY_PORT volatile, as follows:

#define MY_PORT *((volatile int *) 0x10000)

This suppresses (2), as MY_PORT must be considered to have changed
between iterations of the loop.

13-6

13 i960® Processor Compiler User’s Guide

Known Problems Using the Compiler
Here are some of the things that have caused trouble for people using the
compiler.

Type Promotion

Users often think it is a bug when the compiler reports an error for code like
this:

int foo (short);

int foo (x)
 short x;
{...}

The error message is correct: this code really is erroneous, because the
old-style non-prototype definition passes subword integers in their
promoted types. In other words, the argument is really an int, not a short.
The correct prototype is this:

int foo (int);

Prototype Scope

Users often think it is a bug when the compiler reports an error for code like
this:

int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)
{ ... }

This code really is erroneous, because the scope of the struct mumble
prototype is limited to the argument list containing it. It does not refer to the
struct mumble defined with file scope immediately below — they are two
unrelated types with similar names in different scopes.

But in the definition of foo, the file-scope type is used because that is
available to be inherited. Thus, the definition and the prototype do not
match, and you get an error.

Caveats 13

13-7

longjmp and Volatile Data

If you use longjmp, beware of automatic variables. ANSI C says that
automatic variables that are not declared volatile have undefined values
after a longjmp. And this is all the compiler promises to do, because it is
very difficult to restore register variables correctly, and one of the
compiler’s features is that it can put variables in registers without being
asked.

Incorrect debug information generated for arrays with unspecified
bounds.

Consider the following example

int arr[];

The compiler generates debug information for the above declaration as if
arr were an array of 1 integer. As a result, when you do a ptype arr in
gdb960 the type of arr is displayed as int [1].

C Version Incompatibilities
There are several noteworthy incompatibilities between Intel C for the
80960 architecture and some (non-ANSI) versions of C.

String Constants Read-only

The compiler normally makes string constants read-only. If several
identical-looking string constants are used, the compiler stores only one
copy of the string.

If this is a problem for your application, the best solution is to change the
program to use char-array variables with initialization strings for these
purposes instead of string constants. But if this is not possible, you can use
the fwritable-strings flag, which directs the compiler to handle string
constants the same way most C compilers do. ftraditional also has this
effect, among others.

13-8

13 i960® Processor Compiler User’s Guide

No Macro Argument Substitution in Strings

The compiler does not substitute macro arguments when they appear inside
of string constants. For example, the following macro:

#define foo(a) "a"

produces output “a” regardless of what the argument a is.

The ftraditional option directs the compiler to handle such cases
(among others) in the old-fashioned (non-ANSI) fashion.

External Variables and Functions in Blocks

Declarations of external variables and functions within a block apply only
to the block containing the declaration. In other words, they have the same
scope as any other declaration in the same place.

In some other C compilers, an extern declaration affects all the rest of the
file even if it happens within a block.

The ftraditional option directs the compiler to treat all extern
declarations as global, like traditional compilers.

Combining long with typedef Names

In traditional C, you can combine long , etc., with a typedef name, as shown
here:

typedef int foo;
typedef long foo bar;

In ANSI C, this is not allowed: long and other type modifiers require an
explicit int . Because this criterion is expressed by grammar rules rather
than C code, ftraditional cannot alter it.

Using typedef Names in Function Parameters

Some C compilers allow typedef names to be used as function parameters.
Because this criterion is expressed by grammar rules rather than C code,
ftraditional cannot alter it.

Caveats 13

13-9

Whitespace in Compound Assignment Operators

Some C compilers allow whitespace in the middle of compound assignment
operators such as +=. The CTOOLS960 and GNU/960 compiler, following
the ANSI standard, does not allow this. Because this criterion is expressed
by grammar rules rather than C code, ftraditional cannot alter it.

Flagging Unterminated Character Constants

The compiler flags unterminated character constants inside of preprocessor
conditionals that fail. Some programs have English comments enclosed in
conditionals that are guaranteed to fail; if these comments contain
apostrophes, the compiler will probably report an error. For example, this
code produces an error:

#if 0
You can’t expect this to work.
#endif

The best solution to such a problem is to put the text into an actual C
comment delimited by /*...*/ . However, ftraditional suppresses
these error messages.

Disguised varargs or stdarg Routines

Disguised varargs routines (those that do not use varargs.h or
stdarg.h but that increment through a pointer assigned from the address
of an argument) do not work.

Troubleshooting

Undefined References

When trying to compile a program, a user may get error messages similar to
the following:

crt960.o: undefined reference to ‘heap_size’
crt960.o: undefined reference to ‘__setac’
crt960.o: undefined reference to ‘__LL_init’
_filbuf.c:47: (_filbuf): undefined reference to ‘_read’
exit.c:31: (_exit_init): undefined reference to

13-10

13 i960® Processor Compiler User’s Guide

‘__exit_create’
exit.c:39: (exit): undefined reference to ‘__exit_ptr’
fflush.c:38: (fflush): undefined reference to ‘_write’
_flsbuf.c:105: (_flsbuf): undefined reference to ‘_write’
fclose.c:43: (fclose): undefined reference to ‘_close’
malloc.c:82: (malloc): undefined reference to ‘_sbrk’
malloc.c:60: (malloc): undefined reference to ‘_brk’

Problem:

When invoked with gcc960 -ACA -o filename filename.c , the
compilation system tries to construct a b.out format executable file, fully
linked. A fully linked file implies a C-runtime startup file and several
runtime libraries. If the proper library list (in the proper order) is not added
to the invocation command, the error messages listed above may result.

Solution:

The preferred method of creating fully linked executables is to use the target
configuration files, e.g., gcc960 -o filename filename.c -Targ. The
-T arg option instructs the compiler to parse the file
$G960BASE/lib/ arg.gld , which contains definitions for the i960
architecture flag, C-runtime filename, library lists, and section load
addresses. Target configuration files are supplied for all the i960 processor
evaluation boards, and adding your own description file is as easy as
renaming and modifying an existing description file. Do not confuse
gcc960’s -T option with ic960’s and gld960's -T option.

C Interrupt Service Routine Failures

An application that uses interrupts extensively may have hand-built
assembler wrappers for each interrupt type, with each wrapper calling
specific C interrupt service routines. Some of the C interrupt service
routines may fail in mysterious ways, often in an operation fault.

Problem:

The C function calling convention requires that the i960 processor register
g14 contain the value zero for all functions that take fewer than 14 words of
parameters and are non-leaf procedures. Because of this, for most functions,

Caveats 13

13-11

the compiler assumes g14 to contain zero, and uses that register as a zero
constant. If your application happens to be interrupted with g14 containing
a non-zero value, then your C interrupt service routine is called with g14
containing a non-zero, but used as a zero constant.

Solution:

When calling any C function from assembly source, always zero g14 prior
to the function call. Also, be sure to save all global registers prior to calling
your C function, and restore those registers prior to returning from the
interrupted state.

Preventing Structure Padding

You may be using an i960 processor to communicate with another
processor. The communication involves passing structures between the two
processors. The Intel compiler pads the structures, but the compiler for your
other processor does not, causing passed structure members to contain
incorrect values. It is necessary to prevent the Intel compiler from padding
your structures and unions.

Problem:

The Intel compiler uses fairly strict data-type alignment rules, which take
advantage of the i960 processor features supporting memory references.
This increases the performance of programs running on the i960 processor,
but makes it more difficult to interface through structs/unions to other
processor types or to read binary data from a file.

Solution:

gcc960’s #pragma-align lets you control the compiler's alignment rules
for aggregate data types on a per-definition basis, and therefore control the
padding added to the end of structures and unions.

In this case, #pragma-align 1 could be added to your code before the
structure definition to remove trailing structure pads and properly match
structure members. #pragma-align 0 could then be added after the
structure definition to return to normal alignment rules, thereby reducing its
impact on the performance of the entire program.

13-12

13 i960® Processor Compiler User’s Guide

However, #pragma-align has limitations. Although it can be used to
restrict the padding of aggregate data types (and arrays of those types) it
does not change the alignment rules for individual structure members. For
information on alignment rules for structure members, see the discussion of
pragma pack in Chapter 7, “C Language Implementation”.

Consider the following example:

struct test {
 char first;
 int second;
 short third;
};

If you compiled the above structure without modification, the structure size
would be 16 bytes. If you defined pragma align 1 before the structure
definition, the structure size would be 12 bytes - four pad bytes removed. In
both cases, however, the position of the elements would not have changed,
with element “first” at address offset zero, element “second” at address
offset 4, and element “third” at address offset 8. This element placement
effectively creates three pad bytes between the first and second structure
elements.

To work around the limitations of intra-structure padding, consider the case
where the above structure must be read in from a binary file written by a
processor/tool pair that inserted zero (intra-struct) pad bytes.

Caveats 13

13-13

The following code demonstrates one way to perform that function:

#include <unalign.h>
/* The following structure is what gcc960 compiles.
 * The buffer, when filled, contains the same
 * structure in packed format - all pad bytes removed. */

struct test {
 char first;
 int second;
 short third;
} 960_struct;

unsigned char packed[7];
/* sum of 960_struct element sizes */

/* Read binary data from a file and copy into a
 * structure that has different alignment rules. */
main()
{
 int fdesc;
 unsigned char *ptr;

 /* Assume file opened and ready for reading...
 * Then read one struct’s worth of bytes. */

 if (read(fdesc, packed, 7) != 7) {
 /* Handle read error. */
 }

 /* Fill up structure. Done. */

 ptr = packed;
 960_struct.first = *(char *)ptr;
 ptr += sizeof(960_struct.first);
 960_struct.second = GET_UNALIGNED(ptr,int);
 /* *(int *)ptr; */
 ptr += sizeof(960_struct.second);
 960_struct.third = GET_UNALIGNED(ptr,short);
 /* *(short *)ptr; */
}

Although the code shown above is expensive in terms of performance,
using #pragma align also has a significant performance penalty. To get
the best performance, use the default alignment rules and use pragmas only
where absolutely necessary. See the discussions of gcc960’s pragma

align and pragma pack in Chapter 7, “C Language Implementation” for
a detailed discussion of alignment.

13-14

13 i960® Processor Compiler User’s Guide

Breakpoints Inside Interrupt Handlers

If your application uses interrupts extensively, when debugging interrupt
handlers with gdb960, breakpoints set inside the handlers may not work and
may result in operation faults.

Problem:

When the i960 processor invokes an interrupt handler, it first disables
tracing by saving, then clearing, the state of the trace-enable bit and the
trace-fault-pending flag. On return from the interrupt handler, the processor
restores the process-controls register to its state prior to the interrupt. This
restores the state of the trace-enable bit and the trace-fault-pending flag;
therefore, standard interrupt handlers cannot contain breakpoints.

Solution:

To set breakpoints inside an interrupt handler, you can modify that handler,
probably in the assembler wrapper, adding code to change the state of the
trace-enable bit.

14-1

Messages 14
This chapter describes the diagnostic messages that the compiler produces
when invoked with the ic960 driver, or with the gcc960 driver and the
ffancy-errors option. (Invoking the compiler with ic960 -Jgd
produces the corresponding gcc960-style message format and output.)

On UNIX systems, the compiler displays error messages, along with the
erroneous source line, on the standard error device. In Windows systems,
messages appear on the standard output device. However, if I960ERR is
defined, messages appear on the standard error device. To display or
suppress warning messages, use the w (Diagnostic-level) compiler option.
Additionally, the h (Help), v (Verbose), and V (Version) options display
more information about the compiler, assembler, and linker invocations and
about the host system.

Diagnostic messages provide syntactic and semantic information about
source text. Syntactic information can include, for example, syntax errors
and use of non-ANSI C. Semantic information includes, for example,
unreachable code. If a source listing is requested, the compiler puts
diagnostic messages in the program listing, as well as displaying them to the
standard error device.

14-2

14 i960® Processor Compiler User’s Guide

Several levels of diagnostic messages can occur:

Command-line
diagnostics

report improper command-line options or
arguments.

Warning messages report legal but questionable use of C. The
compiler displays some warnings by default. To
suppress all warning messages, set the
diagnostic level to 2. To enable all warning
messages, set the diagnostic level to 0.
Warnings do not stop translation and linking,
nor do they interfere with any output files.

Error messages report syntactic or semantic misuse of C. The
compiler always displays error messages.
Errors do not stop translation but do suppress
object code for the module containing the error.
Errors also prevent linking.

Catastrophic error
messages

report occurrences of the #error macro,
unrecognized command-line options, and file
input/output errors. Catastrophic error
conditions stop translation and linking. If a
catastrophic error ends compilation, the
compiler displays a termination message on the
standard error device.

Internal error
messages

If a compilation produces any internal errors,
contact Customer Support.

Messages 14

14-3

Messages on the Standard Error Device
Command-line messages appear on the standard error device in this form:

ic960 [ERROR | WARNING]: message

Other diagnostic messages appear on the standard error device in this form:

source-line
diagnostic-pointer
diagnostic-message

The source-line and diagnostic-pointer may be absent for those
messages that are not associated with any particular source code line.

The diagnostic-pointer may be absent when the source-line is
present if the precise column for the error is not available.

source-line is the line containing the error being reported.

diagnostic-
pointer

is a caret (^) located below the beginning of the
token that the diagnostic refers to.

diagnostic-
message

has this form:

ic960 level filename, line lnn, -- message

level is the type of diagnostic message: WARNING,
ERROR, CATASTROPHIC ERROR, or

INTERNAL ERROR.

filename names the source file currently being processed.

lnn is the line number, if available, where the
compilation system detects the condition.

message explains the diagnostic.

14-4

14 i960® Processor Compiler User’s Guide

Messages in the Listing File
In a source listing, diagnostic lines follow the erroneous source lines. The
diagnostic lines in a source listing have this form:

>>>>> source-line
>>>>> diagnostic-pointer
>>>>> diagnostic-message

The source-line and diagnostic-pointer may be absent for those
messages that are not associated with any particular source code line.

The diagnostic-pointer may be absent when the source-line is
present if the precise column for the error is not available.

source-line is the line containing the error being
reported.

diagnostic-pointer is a caret (^) located below the beginning
of the token that the diagnostic refers to.

diagnostic-message has this form:

ic960 level filename, line lnn, -- message

level is the type of diagnostic message:
WARNING, ERROR, CATASTROPHIC

ERROR, or INTERNAL ERROR.

filename names the source file currently being
processed.

lnn is the line number, if available, where the
compilation system detects the condition.

message explains the diagnostic.

Messages 14

14-5

If source-line is shown, and the error being reported starts and ends on
that line, the filename and line number does not appear in the diagnostic
message. This is an example of a listing file containing diagnostic
messages:

ic960 5.0, Tue Nov 9 08:45:17 PST 1995 "ex_err.c"

Include Line
 Level Number Source-lines
======= ====== ============
 0* 1 #include "ex_err.h"

 >>>>> struct foo bar {
 >>>>>
 >>>>> ic960 ERROR: "ex_err.h", line 2 -- syntax error before ’{’

 0 2
 0 3 main ()
 0 4 {
 0 5 struct foo bar;
 0 6 bar.x=3;

 >>>>> bar.x=3;
 >>>>> ^ ^
 >>>>> ic960 ERROR: invalid use of undefined type ’struct foo’

 0 7 }

Glossary-1

Glossary

arithmetic control (AC)
register

For processors with on-chip floating-point support, the
register that contains the floating-point exception flags,
floating-point exception masks, and rounding-mode bits.
For processors without on-chip floating-point support,
the AC register is implemented as a predefined variable
(fpem_CA_AC).

basic block An assembly language sequence of code that has one
entry point and one exit point.

calling convention The rules that specify the use of registers and the stack
for parameter passing and return values in function calls.

command-option file DOS command-line file, containing command-line
options, input filenames, and comments, to be specified
on the command line.

common subexpression
elimination (CSE)

Avoid recomputing an expression if the compiler can
reuse a previously computed value of the same
expression.

conditional compilation Compiling only part of the source code, depending on the
preprocessor’s evaluation of conditions you specify.

Glossary-2

i960® Processor Compiler User’s Guide

constant folding Deducing at compile time that the value of an expression
is a constant and using the constant in place of the
expression.

constant propagation Replacing use of variables known to have a constant
value with the constant value.

dead function A function which cannot be referenced during the profile
recompilation step. If a function has been in-lined at all
known call sites, or if the function is never referenced,
then the function is dead.

execution environment The hardware and software of the system on which your
program executes.

floating-point registers Registers fp0 through fp3, available on processors with
on-chip floating-point support.

gcdm960 The decision-making tool that analyzes profile data to
make optimization decisions.

global registers Registers g0 through g15.

gmpf960 The utility that merges execution profiles for use by
gcdm960.

inline assembly
language

Assembly-language statements or functions in the C
source text.

inline function
expansion

Replacing a function call with the instructions that
comprise the function, rather than calling the function.

instruction set The set of all possible executable instructions.

instrument Insert new code into an existing program so that
execution data is recorded at runtime.

instrumented program A program that has had record keeping code inserted to
allow creation of a run-time profile of the program’s
execution.

interrupt handler A function to be called when an interrupt occurs.

Glossary

Glossary-3

leaf function A function that is called with a branch-and-link
instruction sequence.

macro An identifier that the preprocessor replaces with C source
text that you specify.

object module The formatted object code resulting from compilation
and assembly.

padding Interleaving unused bytes between struct/union members
and at the tail of structs/unions to ensure that struct/union
members are properly aligned.

preprocessor file A text file generated by the compiler, containing the
intermediate source code after macro expansion, file
inclusion, and conditional compilation.

primary source file A file that contains C source text, has a .c filename
extension, and is specified as an input file on the
command line.

primary source text The contents of the primary source file, without any text
from include files.

profile-based Optimizations that depend on profile information
gathered by execution of an instrumented program. The
term is interchangeable with profile-driven.

profile data Both static and dynamic program level data.

static profile data Information that the compiler derives at compile time
about the program (e.g., which functions are defined in a
module, which functions are called from within a specific
function, which variables are defined in a module, which
variables have had their addresses used).

Glossary-4

i960® Processor Compiler User’s Guide

strength reduction An optimization that substitutes expensive operations
such as multiplications with low-cost operations such as
addition or subtraction. Strength reduction also
eliminates unnecessary induction variables. For example,
consider the following C code fragment:

int v, a[10], j, t4, t5;

. . .

do {

j = j - 1;

t4 = 4 * j;

t5 = a[t4];

} while (t5 > v);

Note that the values of j and t4 remain in lock-step;
every time the value of j decreases by 1, that of t4

tail call A call that immediately precedes the return to the calling
function.

unreachable code Code that can never execute because the flow-of-control
bypasses it.

Index-1

Index
Symbols

__GNUC__ macro, 2-55

__STDC__ macro, 2-55

__STRICT_ANSI__ macro, 2-55

A

access-control gcc960 option, 2-27

aliasing rules, 13-1

alignment
assumptions, 13-3
long double, 7-5
padding, 7-7
scalars, 7-5
structures, 7-6, 7-8

architecture macros, and compatibility, 9-2

asm function
argument category, 7-81

asm gcc960 option, 2-27

B

backslash (character), 1-6

bbr gcc960 option, 2-28

bbr ic960 option, 3-31

branch prediction, 12-20

C

c (Create-object) ic960 option, 3-56

char parameters, 9-1

char types, 9-2

character constants, unterminated, 13-9

clist (Listing) gcc960 option, 2-22

cmpbr gcc960 option, 2-45

coalesce gcc960 option, 2-28

coalesce ic960 option, 3-31

code-align gcc960 option, 2-45

coerce gcc960 option, 2-28

coerce ic960 option, 3-31

compatibility, 1-2

compilation phases, 3-13

cond-mismatch gcc960 option, 2-28

cond-mismatch ic960 option, 3-32

condxform gcc960 option, 2-28

condxform ic960 option, 3-32

conserve-space gcc960 option, 2-28

conserve-space ic960 option, 3-32

constprop gcc960 option, 2-29

constprop ic960 option, 3-32

conventions
Windows and UNIX, 1-6

copyprop gcc960 option, 2-29

copyprop ic960 option, 3-32

i960® Processor Compiler User’s Manual

Index-2

Create-object (c) ic960 option, 3-56

cse-follow-jumps gcc960 option, 2-29

cse-follow-jumps ic960 option, 3-32

cse-skip-blocks gcc960 option, 2-29

cse-skip-blocks ic960 option, 3-32

customer service, 1-6

D

data types
aggregates, listed, 7-5

Debug (g) ic960 option, 3-43

Dependencies (Q) ic960 option, 3-56

Diagnostic-level (w) ic960 option, 3-66

dollars-in-identifiers gcc960 option, 2-29

dollars-in-identifiers ic960 option, 3-32

dryrun control (gcdm option), 6-8

E

E (Preprocess - stdout) ic960 option, 3-56

enum variable byte size, 9-1

enum-int-equiz gcc960 option, 2-31

enum-int-equiz ic960 option, 3-32

environment variables, 3-8
for gcc960 interface, table of, 2-9

Errata (j) ic960 option, 3-48

expensive-optimizations gcc960 option, 2-29

expensive-optimizations ic960 option, 3-32

external reference controls (gcdm option), 6-7

external variables and functions in blocks, 13-8

F

fancy-errors gcc960 option, 2-29

fast memory controls (gcdm option), 6-7

fint-alias-ptr gcc960 option, 2-30

fint-alias-ptr ic960 option, 3-33

fint-alias-real gcc960 option, 2-31

fint-alias-real ic960 option, 3-33

fint-alias-short gcc960 option, 2-31

fint-alias-short ic960 option, 3-34

float-store gcc960 option, 2-30

float-store ic960 option, 3-32

force-addr gcc960 option, 2-30

force-addr ic960 option, 3-33

fsyntax-only gcc960 option, 2-35

G

g (Debug) ic960 option, 3-43

G (Generate) ic960 option, 3-36

gcdm (Decision Maker) gcc960/ic960 option,
6-1

Generate (G) ic960 option, 3-36

gld files
described, 2-14

gmpf960 profile merger, 5-1

gmpf960 profile merger invocation command
and options, 5-2

H

huge-objects gcc960 option, 2-32

huge-objects ic960 option, 3-33

hyphen (-) character, 1-6

I

inline level control (gcdm option), 6-7

inline-functions gcc960 option, 2-30

input profile control (gcdm option), 6-7

J

j (Errata) ic960 option, 3-48

Index

Index-3

J (Miscellaneous) ic960 option, 3-48

K

keep-inline-functions gcc960 option, 2-32

keep-inline-functions ic960 option, 3-34

L

leaf-procedures gcc960 option, 2-48

linker
options, 3-5

linker directive files
sample, 2-15

Listing (clist) gcc960 option, 2-22

longjmp and volatile data, 13-7

M

M (Mix) ic960 option, 3-49

mabi gcc960 option, 2-44

macro argument substitution in strings, 13-8

macros
predefined, 2-7, 3-6

marry_mem gcc960 option, 2-32

marry_mem ic960 option, 3-34

masm-compat gcc960 option, 2-44

mcave gcc960 option, 2-45

mcore0-3 gcc960 option, 2-46

memoize-lookups gcc960 option, 2-32

memoize-lookups ic960 option, 3-35

merging profile data using gmpf960, 5-1

messages, controlling, 3-66

mi960_align gcc960 option, 2-47

mic2.0-compat gcc960 option, 2-47, 9-3

mic3.0-compat gcc960 option, 2-47, 9-3

mic-compat gcc960 option, 2-47

Miscellaneous (J) ic960 option, 3-48

Mix (M) ic960 option, 3-49

mix-asm gcc960 option, 2-32

mlong-calls gcc960 option, 2-48

mlong-double4 gcc960 option, 2-46

module-set specification (gcdm option), 6-12

mpic gcc960 option, 2-48

mpid gcc960 option, 2-48

mpid-safe gcc960 option, 2-48

msoft-float gcc960 option, 2-49

mstrict-ref-def gcc960 option, 2-49

mwait gcc960 option, 2-49

N

n (Syntax-check) ic960 option, 3-56

F, 3-32, 3-33, 3-35

f, 2-27, 2-28, 2-29, 2-30, 2-31, 2-32, 2-33, 2-34,
2-35, 2-36, 2-37, 3-31, 3-32, 3-33, 3-34, 3-35,
3-36

m, 2-45, 2-48, 2-49

W, 3-65

O

optimization, overview, 4-1

options
linker, 3-5

options, gcc960 compiler driver
summary list, 2-18

output files, 2-12, 3-12

overloaded-virtual ic960 option, 3-65

P

P (Preprocess - file) ic960 option, 3-56

pragma align, 9-2

pragma i960_align, 9-2

predefined macros, 2-7, 3-6

i960® Processor Compiler User’s Manual

Index-4

Preprocess - file (P) ic960 option, 3-56

Preprocess - stdout (E) ic960 option, 3-56

profile format specification, 5-3

profile merger utility, 5-1

profiling, 4-1

program-wide optimization, 4-1

Q

Q (Dependencies) ic960 option, 3-56

R

reorder ic960 option, 3-65

report controls (gcdm option), 6-8

rerun-cse-after-loop gcc960 option, 2-32

rerun-cse-after-loop ic960 option, 3-35

S

S (Save-assembly) ic960 option, 3-56

Save-assembly (S) ic960 option, 3-56

save-memoized gcc960 option, 2-32

save-memoized ic960 option, 3-35

sblock gcc960 option, 2-33

sblock ic960 option, 3-35

scalars
data types, 7-1

schedule-insns gcc960 option, 2-33

schedule-insns ic960 option, 3-35

schedule-insns2 gcc960 option, 2-33

schedule-insns2 ic960 option, 3-35

shadow-globals gcc960 option, 2-34

shadow-globals ic960 option, 3-35

shadow-mem gcc960 option, 2-34

shadow-mem ic960 option, 3-35

short parameters, 9-1

signed-char gcc960 option, 2-33

slash (/) character, 1-6

space-opt gcc960 option, 2-34

space-opt ic960 option, 3-35

split_mem gcc960 option, 2-34

split_mem ic960 option, 3-35

Stop-after (n, Q, P, E, S, c) ic960 options, 3-56

strength-reduce gcc960 option, 2-35

strength-reduce ic960 option, 3-35

strict-align gcc960 option, 2-49

strict-prototype gcc960 option, 2-34

strict-prototype ic960 option, 3-35

string constants, read-only, 13-7

Syntax-check (n) ic960 option, 3-56

T

this-is-variable gcc960 option, 2-35

thread-jumps gcc960 option, 2-35

thread-jumps ic960 option, 3-35

two-pass optimization, 4-1

U

unaligned references, preventing, 13-3

UNIX conventions, 1-6

unroll-all-loops gcc960 option, 2-35

unroll-all-loops ic960 option, 3-35

unroll-loops gcc960 option, 2-36

unroll-loops ic960 option, 3-35

unsigned-char gcc960 option, 2-35

V

varargs routines, disguised, 13-9

volatile gcc960 option, 2-36

volatile ic960 option, 3-36

Index

Index-5

volatile objects, 13-4

volatile-global gcc960 option, 2-36

volatile-global ic960 option, 3-36

W

w (Diagnostic-level) ic960 option, 3-66

Waggregate-return gcc960 option, 2-59

Wcast-align gcc960 option, 2-59

Wcast-qual gcc960 option, 2-60

Wchar-subscripts gcc960 option, 2-60

Wcomment gcc960 option, 2-60

Wconversion gcc960 option, 2-60

Werror gcc960 option, 2-60

Wformat gcc960 option, 2-60

whitespace in compound assignment operators,
13-9

Wid-clash-len gcc960 option, 2-60

Wimplicit gcc960 option, 2-60

Windows conventions, 1-6

Wmissing-braces gcc960 option, 2-60

Wmissing-prototypes gcc960 option, 2-61

Wnested-externs gcc960 option, 2-61

work files, 3-12

Woverloaded-virtual gcc960 option, 2-61

Wparentheses gcc960 option, 2-61

Wpointer-arith gcc960 option, 2-61

Wredundant-decls gcc960 option, 2-61

Wreorder gcc960 option, 2-61

Wreturn-type gcc960 option, 2-62

writable-strings gcc960 option, 2-37

writable-strings ic960 option, 3-36

Wshadow gcc960 option, 2-62

Wstrict-prototypes gcc960 option, 2-62

Wswitch gcc960 option, 2-62

Wtraditional gcc960 option, 2-62

Wtrigraphs gcc960 option, 2-62

Wuninitialized gcc960 option, 2-63, 2-64

Wunused gcc960 option, 2-65

Wwrite-strings gcc960 option, 2-65

