1960° Processor Compiler
User’'s Manual

Order Number: 651230-003

Revision Revision History Date
001 Initial Release. 02/96
002 Revised for release 5.1. 01/97

003 Revised for release 6.0. 12/97

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Literature Distribution Center
Intel Corporation

PO Box 5937

Denver, CO 80217-9808

Or you can call the following toll-free number:
1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel sales
office.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Condi-
tions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty,
relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose,
merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intend-
ed for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product
descriptions at any time, without notice. Contact your local sales office to obtain the latest specifications before placing
your order.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclo-
sure is subject to restrictions stated in Intel's Software License Agreement, or in the case of software delivered to the gov-
ernment, in accordance with the software license agreement as defined in FAR 52.227-7013.

CopyrightO 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this per-
mission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this
one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions.

* Other brands and names are the property of their respective owners.

&S

recp;ic'fé%dp‘;’;)e, Copyright © 1996, 1997. Intel Corporation. All rights reserved.

Contents

Chapter 1 The CTOOLS Compilation System

NEW FEALUINESciit it 1-1
Features of the Compilation System.........cccccevvevvvvvvvennnenn. 1-1
Compatibility and Conformance to Standards....................... 1-2
About this Manual............cccviviiiiiiiiiiiie e 1-4
Audience DesCriptioncivcei i 1-6
Licensing and CopyrightS............euuuviviveieeireeiierieereeeeeeeeee, 1-6
UNIX and Windows Conventions...........cccceeeveieeeeveeeennnnnnn. 1-6
CUSLOMETN SEIVICE c.cvvviiviiiiiiieiieeeeee e 1-6
Where Do You GO From Here?.....ccceeeev e, 1-7

Chapter 2 gcc960 Compiler Driver

Controlling the Compilation System with gcc960 2-1
Invoking the Compiler with gcc960cccccevveveerieeiiiiinnnnn. 2-2
gcc960 Sample Command LineS........coooeeeeeieiii, 2-4
gCc960 Linker OPLtioNSuuceeiieeeiieeeiiee e 2-6
gcc960 and Predefined Macros............cccoeeeeeeieiei, 2-7

gcc960 and Environment Variablescccoevvveevivvieiiiiiiiinennnn. 2-9

gcC960 and File USE.......coevvvieviiiiiieeiieeeieeeeeeeeveeveeeee e 2-10
INPUL FIIES ... e 2-10
INCIUAE FlES ..o 2-11
OULIPUL FIlES..uiiiii i 2-11

GId FlES .. 2-13

gCCI60 OPLIONS.....ceieieiiiii e e e ee e e e e e eeens 2-16

Option Arguments and SyNtaX..........cccccvvvvveiiiiiiiiiieeeieeeeee, 2-17

1960 Compiler User's Manual

Chapter 3 i1c960 Compiler Driver

Controlling the Compilation System with ic960...................... 3-1
Invoking the Compiler with ic960ccccceuvvnvirnviinnnnnns 3-2
ic960 Sample Command LiNesS.........ccccevveiveirieviiiiein e, 3-3
iIC960 Linker OPtioNSc.ccvvvviiiiiiiiiiiiceeeeeeeee e, 3-5
ic960 and Predefined Macroseeeeveeeeeevieinnennnnennns 3-6
ic960 and Environment Variables.............ccccccceiiiniiiiinnnn. 3-8

IC960 aNd File USEuuuuueiiiiiiiee e 3-11
INPULFIIES ., 3-11
INClude FileS ... 3-12
TEMPOrary FilESuvuviiiiiiiiiiiiiiieiiiereievee e rre e e e aeaeeeas 3-12
OULIPUL FIlES .. 3-13

o3[C10 @] o) o] 4 1< PP 3-15

Option Arguments and SYNtaX........cccooeeeeeeveviviiiininineeeeeeenenns 3-17

Chapter 4 Program-Wide Analysis and Optimization

INEFOAUCTION ... 4-1
Individual and Program-wide Optimizations...................... 4-1
AbOUL Profiling.......ceeveviveiiiii e, 4-2

Creating Program-wide and Module-local Optimizations....... 4-2
Specifying the Program Database Directory..................... 4-2
Compiling for Program-wide Optimization with the

1{0] oK@ o] 1 0] o W PP 4-3
Global Decision Making and Optimization Using the

o odo 31 ® o] 1 o] o 1S 4-3
Selecting Modules for Optimization with Substitution

Specificationsoovvvviiiii 4-4

Profiling Your Programc.oooovviveiiiiiii e eee e 4-5
Compiling for Profile Instrumentation with -fprof 4-5
Collecting a Profilecoviiiiiiiici e 4-5
Building Self-contained Profiles with gmpf960.................. 4-6

Contents

Using Profiles During Global Decision Making and

Optimization with -gcdm,iprof..........ccccccvvivveviiiiiiieienee, 4-7
Obtaining Program Coverage Analysis with gcov960....... 4-7
Using make To Perform Program-wide Optimizations........... 4-7
Adapting Makefiles for Program-wide Optimization.......... 4-8
Using Makefiles with Program-wide Optimizations for
Common Development Tasksccccooovuvviievieeenniniinnen 4-10
Runtime Support for Profile Collection............cc.coeeeevvieennnns 4-15
Profile Initialization ..o 4-15

Chapter 5 Profile Data Merging and Data Format (gmpf960)

Merging Profile Dataccoovvveviiiiiii e, 5-1
gmpfo60 INVOCALIONccvviiii e 5-2
DISCUSSION .ottt 5-3
EXAMPIE oo 5-3
Profile Format Specificationcuvvvvevieeviieiiieieieeeieeieeee, 5-4
Profile Data StruCtUrescoovvveviieiiieeeeeeeeeeeeeeee 5-4
default.pf File Format.........ccoooeiiiiiiiiiiiiaes 5-4
EXAMPIE oo 5-5
Creating a Runtime Report with gmpf960...............ccccvvvnnnns 5-6

Chapter 6 gcdm Decision Maker Option

gcdm OPLiION SYNTAX....coieeiieeieiee e 6-1
gcdm Option ArgUMENLEScceeiieeieeeeeeneeeerneennees 6-2
Substitution CoNtrolscoooiiiiiii s 6-2
Whole-program Optimization Option (Category 1) 6-3
Module-local Optimization Options (Category 2).............. 6-3
Miscellaneous Substitution Options (Category 3) 6-5
External Reference Controls ... 6-7
Inline Level Control..........cccuvviiiiieiiiiiieee e 6-7

Input Profile Control........ccccooeoiviiiiiiiii e 6-7

1960 Compiler User's Manual

vi

Fast Memory Controls...........ccooeeeeeeieeiinnnnns
Dryrun Controlcoovvviiiiii e,
Report Controls............cccooeei .
Module-set Specification.............cceevevvvvvncennnnn.

Chapter 7 C Language Implementation
Data Representation...............ccccoeeeeeeeee.
Yo =1 = P
AQOregates. ..o viii i
Other Type Keywords..........occevvvvevviniennnennn.
Calling ConventionsS.............veeeeeeeeeeeeeeeeeeeeeeeen,
Definitions ...
Parameter Assignment to Registers
Argument BIOCKS..........ccoevviiiiiiiieececeeeiiennnn,
Return Valuesccooeviieeeiiiiiiiiiiieeee e,
Compiler Implementationccccccceeeeennnen.
Object Module Section Useccccevvvevveenennn.
Pragmasccoovviiiiiiiii e
#pragma align [for gcc960 driver]................

#pragma align [for ic960, or for gcc960 with
Tode 100 o] o] (T0] o] PSS

HPragma CaVeovvveeviiieeieiiieeeeeie e
H#Pragma COMPIESSvvvverreeeeiiiirreereeeaaannnnns
#pragma i960_align [for gcc960 and ic960]
#pragma inlingccoeveiiiie e,
#pragma interrupt.......cccoeeeeeecnnnnnnnninninnnn,
HPragmaliSr ...cccvvueeeieeeeeeeeeiiiiie e e e e e
#pragma optimize.........ccooeeveveieinnnnnnrniinnnnnns
#Pragma Packccoeeeeeiveeiiiiiiiinee e,
HPragma PUIE.......vviviiiiieceei e

#pragma SECiONooevvviiiiiiiiie 7-39

HPragma SYSIEMcovvu i e e 7-39
Language EXtENSIONS........uuuuriviiiiieiiieriieveeeeieeeeeee e e e eeeeeees 7-40
Statements and Declarations Inside of Expressions...... 7-41
Naming an EXpression’s TYPecccccccvvevveeiiiiiieciieeeeee, 7-41
Referring to a Type with typeof......cccccoeiviiiiiiiiiiiiinnnn, 7-42
Generalized LValues..........cccooiiiiiiiiiiiieeee e 7-43
Conditional Expressions with Omitted Middle
(@] 011 = 1T £ 7-45
Arrays of Length Zero..............cccooo oo, 7-45
Non-lvalue Arrays Can Have Subscriptsccccoeeeeeee. 7-46
Arithmetic on Pointers to void and Pointers to
FUNCLIONS.....coiiiiiiiiieie 7-46
Non-constant Initializersccccccvviiiiiiiiie e 7-47
CoNnStructor EXPreSSioNS ..o i eeeeeeveeiiiee e e e e eeeeivnennnn 7-47
Declaring Attributes of Functionscccccceeel. 7-48
Inquiring about Alignment...........cccccceviiiiiiriirccei e, 7-49
Inline Functions Are as Fast as Macrosc..ocu..... 7-49
Controlling Names Used in Assembly Code................... 7-51
Specifying Registers for Local Variables 7-52
Alternate Keywordsccccoeeeeiiiiiiiiiiii e 7-52
Inline Assembly Languageeevveveveveeeeveeeeeiieeeeeeeeeeeeeens 7-53
[e 1o To 18 {ox 1 o] o FA 7-53
RESOUICE USAQE.....ccviiiiieiiiie et 7-53
ASM SAtEMENTS ...eeeiiiiii e 7-54
ASM FUNCHONS ...ooiiiiiiiiiiiiece e 7-72

Chapter 8 C++ Language Implementation

Data Representationeeeeuueeeeueeeeeeieeeieeieneeeeeeeeeeeeeess 8-1
Calling ConVeNtionsccooeiiiei i 8-2
PragmMas ... oo e 8-2

Vii

1960 Compiler User's Manual

Specifying a Tag-Name with align, noalign, or

1960 _aligN ..o 8-2
Specifying a Function Name with a Pragma..................... 8-3
Link Time ConSiderationscccuveeeeiieeiiiiiiiieiie e 8-4
Calling C Functions from C++......ccccooiiiiiiiiiiiiiiii e, 8-4
Calling C++ Functions from C...........ccvviveviveeviivieerieerieeeee, 8-5
asm Statements and asm FUNCtioNS............cccccevvevveeeee.n. 8-6
Unimplemented C++ Language Features............coceeeveeennnnnns 8-6
Exception Handlingcciiiiiii e, 8-6
Run Time Type Information(RTT.......ccccoveiiiiviririiinnnnns 8-7
NAMESPACES ... ceeei e e e e 8-8
C++ Template Implementation.........cccccccvvvvviveiiiiiiiiiiiiiceee, 8-9
Limitations for Function and Class Templates................... 8-9
Limitations for Function Templates...........ccccccceeeeeeeeennnn. 8-12
Limitations for Class Templatescccccceeeevieieeevieviinnnnnn. 8-13
Debugging Information for Templatesccceeeeinnnes 8-13

Chapter 9 gcc960/ic960 Compatibility

char and short Parameterscoevvvevveviieviiiiiiiiiieieeeeee 9-1
enum Variable Byte Countcccccvvvvvviviiiviieiiieiiieeeeeee, 9-1
Lol 0T T Y/ 01 U RPRUPN 9-2
Identifying Architectures.............ccooeeee e, 9-2
#Pragma aligneeoe e 9-2
mic3.0-compat OPLioN..........ooeeeiiie i 9-3
mMic2.0-compat OPLioN........cccceeiiiiieeiieeee e 9-3

Chapter 10 Position Independence and Reentrancy

Position-independent Code and Data.....................ocoeeeen. 10-1
Position-independent Data........cccccceveveeeieirieiiiiiiicineeeenn, 10-1
Position-independent Code.............cccoeee e, 10-2

viii

Contents

Position-independent ROM Code........cccevvvvevveveveveennnnn, 10-3
Guidelines for Writing Relocatable Programs................. 10-5
Reentrant FUNCLIONScooiiiiiiiiiiieeeee e 10-6
Designing Reentrant FUNCLIONScccceeevieiiieeiiiiciiiinn, 10-7

Chapterll Initializing the Execution Environment

Startup Code......ooooeiiiii 11-1
RAM-based Initialization............c.cccccvviviiiii 11-4
ROM-based Initializationccccoovviiieeiieeiiiiiiieeeeeenn 11-4

Linker Configuration Files.........ccccccceieiiiiiiiiiiiiciii e, 11-5
RAM-based Configuration Filecccccccevvvviviiiiieiinnnnnn. 11-6
ROM-based Configuration Fileccoooviviiiiiiiininneenn. 11-6

Chapter 12 Optimization

Optimization Categories and Mechanisms.......................... 12-1
Common Sub-expression Eliminationc....cooeeee. 12-3
Constant Expression Evaluation (Constant Folding) 12-4
Dead-Code Eliminationooo e 12-4
Identity CollapSingcccooveeeeeeiiiii e 12-5
Constant Propagation..........cccceevieeeeieeeeiiiiiniee e e, 12-6

Calls, Jumps, and Branches............ccoooeevieieiiiiniiiniinnnns 12-9
Branch Optimizationscccvvveviiiiiiii e 12-9
Branch Prediction ... 12-10
Identification of Leaf Functions...............cccccccee. 12-11
Inline Function EXpansionccccceeeveveiii, 12-11
Tail-call Elimination............cooooiiiiiiiiieees 12-12

Loop OptimMIizationscccvvvviiviiiiiiiiiieeeeee e, 12-14
Movement of Loop-invariant Code.............ccceevvvvvnnnnnnnn. 12-14
Induction Variable Eliminationccccccceeevviiiiiiinennn. 12-14
Loop UNrollingcccoveviiiiiie e 12-15

1960 Compiler User's Manual

Memory Optimizations..........cooooeei i 12-15
Global Alias ANalySiScoccvveviiiiiiiii e 12-15
Variable Shadowingeeuveviieviieiiiiiieirieerieeeeeeeeee e, 12-15

T[] (] UL 12-16
Local Variable Promotionc.ueeveeieiiiiiiiiiieeneeenis 12-16
Register Management.........cccoveveeevreeiviiiiineeeeeeeeeveinn, 12-16
Register Spillingcooooiiiiiie e 12-17

Instruction Selection and Sequencingcceevvveeeeeennn. 12-17
(07070 [@10] 101 o] (=151 (o] o [P 12-17
Code Scheduling.........coeiiiiiiiiiice e 12-18
Specialized-instruction Selectionccccccevvvvvviveveennnn. 12-19

Program-level Optimization............cccccvvviii i, 12-19
Inter-module Function Inlining..........cccccociiiiiniinininnn. 12-19
Superblock FOrmationccovvviiiiii e, 12-20
Profile-based Branch-prediction Bit Setting 12-21

Optimizing Virtual Function Dispatch............c.cccccoeeeeeiiinnns 12-22

Chapter 13 Caveats

Aliasing ASSUMPLIONS..........uuuuuiuriiiiiiiiiiiiiireerreeeeerrerereee—.. 13-1
Alignment ASSUMPLIONSuuceiiiieeiiceece e 13-3
Volatile ODJECESuuuuiiiiiiiiiiiiiiiiii e 13-4
Known Problems Using the Compiler...........ccovvvviiiiinnneen.n. 13-6
TYPE PromotioNuuvuvuviiiiiiiiiiiiiiieiiiesieserereierresererereneen. 13-6
Prototype SCOPE ...uuiiiiei e 13-6
longjmp and Volatile Datacccoeeeeee, 13-7
Incorrect debug information generated for arrays with
unspecified bounds. ... 13-7
C Version Incompatibilities...........coooviiiiiiieieeiiiiiiiiicee e 13-7
String Constants Read-onlycccciii . 13-7
No Macro Argument Substitution in Strings................... 13-8

External Variables and Functions in Blocks.................... 13-8

Contents

Combining long with typedef Names...........cccccocecnnvnnnns 13-8
Using typedef Names in Function Parameters............... 13-8
Whitespace in Compound Assignment Operators.......... 13-9
Flagging Unterminated Character Constants................. 13-9
Disguised varargs or stdarg Routinescccccceeeee. 13-9
Troubleshootingcccvuiiiii i e 13-10
Undefined References..........ccccccviiiiiiiiiiee e, 13-10
C Interrupt Service Routine Failuresccccoooeeveeeee. 13-11
Preventing Structure Padding..........cccccoovvvvviiieninennnn. 13-11
Breakpoints Inside Interrupt Handlers..........cccccccuuun..... 13-14

Chapter 14 Messages

Glossary
Index

Figures

Messages on the Standard Error Devicec.ccceeeeee. 14-3
Messages in the Listing File..........covviiiiiiiien, 14-4
7-1 Natural AIgNMENt ..o 7-8
7-2 User-constrained Alignmentcccc . 7-9
7-3 Optimal Natural Alignment of std_struct 7-12
7-4 Backward-compatible Natural Alignment of std_struct 7-13
7-5 #pragma noalign Alignment of std_struct 7-13
7-6 #pragma align Alignment of std_struct 7-14
10-1 Memory for Hypothetical Position-independent

APPHCAtION ..cocoeiiiiiiiii 10-4
12-1 Superblock Formation ProCessccccccoovvvvvveeeennnn. 12-20

Xi

1960 Compiler User's Manual

Xii

Tables

Examples

7-5
9-1
12-1
12-2
12-3

2-1

5-2

5-3
7-1

Compiler LIMItS ...ooooviviiiiiiiiiiiie e 1-3
Chapter Descriptionscccccceeeveiiiiiiieeeeeeeee, 1-4
Linker Options Accepted by gcc960...........coeeevvevvvvnnnnnn. 2-7
gcc960 Interface Environment Variables 2-9
Intermediate Inputs and OUtputsccccceeeeeiieeereeeenns 2-12
gcc960 Option SUMMANYocevvveiiieiieeeieeeeeeeeeeeeeeeee, 2-18
Mcore Supported Architecturescccccceeveeevieeeeviennnn, 2-47
Linker Options Accepted by ic960ccccceeeinnnnnnns 3-6
Intermediate Inputs and OUtputsccccceeeeevieeereieenns 3-13
iIC960 Option SUMMANY ...ccovveeeeieeeieieeeeeeeeeeeeeeeeeeeeeee, 3-18
Gcore Supported Architecturesccccceeeeviieeeeveieiinnnn, 3-38
Stop-after Option Phases and Output......................... 3-59
gcdm Option ArgumeNntsoceeeviiiiniieereeeevieen e 6-1
Scalar Data TYPE ..eeveviveeiieiiiieeeeeeieeeeer e aee e 7-2
Example Offset Values.........ccccoeeiveeiiiiriiiiiiiiii e 7-37
Return Value Class Matchingccccceeeevnvnnninnninnnn. 7-76
Argument Category to Parameter Class Matching

AN COEICIONvviiiiiiiiiee ettt 7-77
C Data Types and asm CIasSEeScccceeevveeeeevreeinnnnnnnnn. 7-80
Architecture Macros and Compatibility 9-2
Constants and Expression Evaluationccc.......... 12-2
Effects of Constant Expression Evaluation 12-4
Identity Collapsing EXamplescccccevvviviiiiiiinnie e, 12-5
Sample .gld Fileooovvvviiviiii 2-14
C COAE i 5-6
gmpf -rprofile Sample Outputcccoel. 5-7
gcov960 Sample OQULPULcoooiiiiiiiiii e, 5-8
SFL.C (SIMPIE) v 7-62

Contents

7-2 sfl.c (Complex) oo, 7-63
T-3 EMULC (oo 7-64
T-4 SYNMOVO.C eeurvveiiiiieieeiin e eeiiis e eeiine e s et e e e e eri e aeeaean s 7-66
T7-5 atadd.C .cooeieieiieeee 7-68
T-6 MOAPC.C oot a e e e e e e 7-70

Xii

The CTOOLS
Compilation System

This manual provides operating instructions and other information on the
CTOOLS compilation system. This system consists of a compiler and two
drivers that provide the user interface to the compiler, gcc960 and ic960.
These two interface drivers allow backward compatibility with software
developed using GNU/960 and CTOOLS960 respectively.

New Features

Release 6.0 features support for C++. This means that you can use the

enhancements of the C++ language with CTOOLS’ powerful development

features including:

* Whole program and profile driven optimizations

* Position independent data, position independent code

®* Compression aided virtual execution (CAVE), to reduce the physical
memory requirements of ROM-based applications

®* Symbolic debug of optimized code using the DWARF debug format

Features of the Compilation System

The compiler lets you use the following features to devefgpications:

® Using either the gcc960 or ic960 compiler driver to invoke and control
translation and linking. See Chapter 2 “gcc960 Compiler Driver” or
Chapter 3 “ic960 Compiler Driver”.

® Creating a run-time performance profile of your application.
Optimizations based on this profile include inter-module optimizations
and preferential use of fast memory regions for variables that are
frequently accessed. For an overview of the program-wide optimization
process, including profile-driven optimization, see Chapter 4

1-1

1960 Processor Compiler User’'s Guide

1-2

“Program-Wide Analysis and Optimization”. For descriptions of other
optimizations, refer to Chapter 12 “Initializing the Execution
Environment”.

® Callingfunctions written in i960 processor assembly language, or
including in-line assembly language in your C/C++ program. Chapter 7
“C Language Implementation”.

® Stopping the compilation process to examine intermediate results after
syntax checking, preprocessing, compilation, assembly, or incremental
linking. (See Chapter 2, “gcc960 Compiler Driver” and Chapter 3,
“ic960 Compiler Driver”.)

®* Using a single command to compile, assemble, and link modules into a
complete ROM-able or executable program. (See Chapter 2, “gcc960
Compiler Driver” and Chapter 3, “ic960 Compiler Driver”.)

® Using the CAVE pragma to compress functions, thus reducing code
size. During program execution, these functions are decompressed
when called. For more information on CAVE and the other pragmas,
see Chapter 7 “C Language Implementation”.

® Creating blended code with the newcore0-3 and-Gcore0-3
options. With these options, you can generate code that is compatible
with multiple i960 processor types. For more information, see
Chapters 2, “gcc960 Compiler Driver” and Chapter 3, “ic960
Compiler Driver”.

Compatibility and Conformance to Standards

The compiler runs on a UNIX* or a Windows* 95/NT* host system and
generates object code for any i960 commercial processor. The translation
and code generation phases use the instruction set for the 1960 processor
that you specify.

The compiler's implementation of C conforms to the ANSI standard for the
C language (X3.159-1989). One exception is static pointer initialization in
applications using position-independent code or data (described in
Chapter 9 “GCC960/ic960 Compatibility”). Additionally, the compiler
allows use of in-line assembly language in the C source text.

The CTOOLS Compilation System

Table 1-1

The ANSI standard specifies that a conforming implementation of a C
compiler must meet minimum requirements for certain translation limits. In
all cases, the compiler exceeds ANSI limits. Table 1-1 lists the tested levels
for each translation limit and compares them to ANSI minimum
requirements. Available memory determines actual limits in a host system.

Compiler Limits

ANSI Tested
Limit Minimum Minimum
Control structure nesting levels 15 128
Conditional compilation nesting levels 6 32
Declarator modifiers 12 32
Declaration parenthesis nesting levels 31 64
Parenthesis nesting levels 32 128
Significant characters for internal identifier 31 128
Name length for external identifier 6 33
Identifiers in a single block 127 1024
Macros simultaneously defined 1024 4096
Parameters per function call 31 128
Characters in a logical line 509 4096
Characters in a string 509 4096
Bytes in an object 32767 65535
Include file nesting levels 8 32
Case labels in a switch 257 1024
Members in one structure or union 127 512
Enumeration constants in one enumeration 127 512
Structure nesting levels 15 64
External identifiers per file 511 2048
Parameters per macro 31 128

1-3

1960 Processor Compiler User’'s Guide

1-4

About this Manual

This manual contains the following chapters:

Table 1-2 Chapter Descriptions

Chapter

Number Title Description

1. The CTOOLS Introduces the compiler and provides
Compilation information on using this manual.

System

2. gcc960 Compiler Teaches you how to use the gcc960
Driver command-line interface and provides a

complete list of command line options.

3. ic960 Compiler Teaches you how to use the ic960
Driver command-line interface and provides a

complete list of command line options.

4. Program-wide Tells you how to use some of CTOOLS
Analysis and most powerful optimization features:
Optimization ® program-wide optimizations

® run-time profiling

5. Profile Data Explains how to use gmpf960 to merge the
Merging and execution profile data you collected in
Data Format Chapter 4 “Program-Wide Analysis and
(gmpf960) Optimization”. You also learn how to use

gmpf960 to create a report that shows how
many times each basic block was “hit” or
run during program execution.

6. gcdm Decision Describes the gcdm option, which invokes
Maker Option the gcdm960 global optimization decision

maker during the link process. The decision
maker then invokes the compiler and linker
as necessary to perform program-wide
optimizations.

7. C Language Describes data representation, register use,

Implementation

object file format use, and pragmas for
modifying code generation.

continued [J

The CTOOLS Compilation System

Table 1-2 Chapter Descriptions (continued)

Chapter

Number Title Description

8. C++ Language Describes the differences from the C
Implementation Language Implementation in the areas of

data representation, register use, and
pragmas.

9. gcc960/ic960 Describes the incompatibilities between
Compatibility ic960 and gcc960.

10. Position Provides information on writing i960
Independence processor applications that require
and Reentrancy position-independent or reentrant

programs.

11. Initializing the Describes the initialization process for the
Execution 1960 processor execution environment,
Environment including the startup assembly-language

routine, configuration files, and associated
options.

12. Optimization Describes the different ways in which the
compiler can optimize your program and
explains ways to control optimization.

13. Caveats This chapter provides useful programming
tips on:
® Aliasing assumptions
® Alignment assumptions
® \Volatile object
® Known problems
® Cversion incompatibilities
® Troubleshooting

14. Messages Describes the diagnostic messages that the

compiler produces.

1960 Processor Compiler User’'s Guide

1-6

Audience Description

This manual assumes that you are familiar with the i960 processor
architecture, C/C++ and assembly language programming, and your host
computer's operating system.

Licensing and Copyrights

Refer to thé960 Software Tools License Guifte licensing and copyright
information.

UNIX and Windows Conventions

This manual tells you how to use the compiler in both UNIX and Windows
95/NT systems. This manual uses the following conventions:
* Command-lines appear without a preceding prompt.
¢ Directory paths use the UNIX forward slagl) (ather than the
Windows backslash | for pathnames.
* Environment variables are referenced using the UNIX dollar-sign (e.qg.,
$I960BASE), not the Windowsscharacter (e.g%I960BASE%).

E NOTE. In UNIX, only the dash | is accepted as a prefix for a
command-line option. In Windows, both th€nd the () are accepted
as a prefix for a command-line option.

Customer Service

If you need service or assistance with CTOOLS, see @etting Started
with the 1960 Processor Development Taoksnual.

The CTOOLS Compilation System 1

Where Do You Go From Here?

If you installed the CTOOLS GNU interface, go to Chapter 2, “gcc960
Compiler Driver” for information on using the gcc960 compiler driver. If

you installed the CTOOLS/960 interface, go to Chapter 3, “ic960 Compiler
Driver” for information on using this driver. Once you are familiar with the
compiler driver interface, you are ready to read Chapters 4, “Program-Wide
Analysis and Optimization” through 6, “gcdm Decision Maker Option”,
where you learn how to use some of the more advanced features of the
compilation system, including whole program optimizations, profiling, and
using the gcdm global decision maker program.

gcc960 Compiler Driver

This chapter describes how to use the gcc960 driver program to control the
compilation system. Topics include:

® “Controlling the Compilation System with gcc960”
® “gcc960 and Environment Variables”

® “gcc960 and File Use”

e “gldFiles”

* “gcc960 Options”

* “Option Arguments and Syntax”

Controlling the Compilation System with gcc960

gcc960-style translation and linking requires use of the gcc960 driver,
preprocessor, compiler, assembler, and linker.

The gcc960 compiler driveg¢c960.exe in Windows,gcc960 on UNIX)
controls the preprocessapp.exe in Windows,cpp.960 on UNIX) and

the compiler ¢cl.exe in Windows,cc1.960 on UNIX). With CTOOLS
release 6.0 gcc960 also controls the new C++ compiler (cclplus.exe in
Windows, cclplus.960 on UNIX). It can also invoke the assembler, linker,
and gcdm960 optimization decision maker. The command-line options and
environment variables, described later in this chapter, allow you to control
the compilation.

The drivers invoke the appropriate modules to compile a file based on
filename extensions.

* Files with names ending withc , .cpp , and.cxx are taken as C++
source to be preprocessed and compiled. In UNIX, filenames ending
with .C (uppercase) are treated as C++ source to be preprocessed and
compiled.

2-1

1960 Processor Compiler User's Manual

2-2

* Files with names ending with are taken as preprocessed C++
source to be compiled.

* Files with names ending in are taken as C source to be preprocessed
and compiled.

* Files with names ending in are taken as preprocessor output to be
compiled.

® Compiler output files plus any input files with names ending imre
assembled.

* Input files with names ending i8 (uppercase) are preprocessed and
then assembled. (UNIX only.)

®* The resulting object files, plus any other input files, are passed to the
linker to produce an executable.

®* Program-wide and profile-directed optimizations can be performed
during the link step. For an overview of this capability, see Chapter 4,
“Program-Wide Analysis and Optimization”.

Invoking the Compiler with gcc960

The gcc960 command-line syntax is:
gcc960 [- option ... path] filename ...[@ response-file]
gcc960 is the compiler driver executable filename.

option is a compiler option. Case is significant in options and
their arguments. Multiple single-character options
cannot be groupeddr is different fromd -r . When
two or more options contradict each other, the
right-most option in the command line takes precedence.
For example, the following command line sets the value
of the symboL to 132:

gcc960 -DL=80 -DL=132 proto.c

gcc960 Compiler Driver

NOTE. Note that the gcc960 compiler driver does not check the
command line options for validity. Invalid options are ignored without
producing a warning message.

path

On UNIX, the compiler recognizes a letter preceded by
a hyphen<) as an option. In Windows, the compiler
recognizes a letter preceded by either a hyphgar(a
forward slash/() as an option. For exampl®, specifies
the architecture option for UNIX or Windows. However,
on a Windows system, you can also Use to specify

the architecture option.

identifies the directory containing the file named by
filename . Not specifyingoath for afilename

causes gcc960 to search in the current directory. Each
filename not in the current directory requires a
separatgath specification.

NOTE. Although Windows file pathnames require backslashgghis
manual shows paths using the forward slash required by UNIX (

filename

is the name of a source, preprocessed source,

assembly-language, object module, or other file
(e.g., linker directive file) to be processed by the
compilation system. The gcc960 command line
allows specification of more than one

filename

2-3

1960 Processor Compiler User's Manual

2-4

@esponse-file Open the named response file and read in its
contents as if they had been typed on the
command line. Response files are a convenient
way to store commonly-used command line
options, and a way to get around the
128-character line length limit in Windows.

Response files can contain comments. Lines
whose first non-whitespace charactet iare
treated as comment lines, and ignored.

gcc960 Sample Command Lines

This section provides examples of how the compiler is commonly invoked.
All these examples assume that you have C source files namednd

t2.c or C++ source files namg.cc andt2.cc . All examples assume
that you are generating code for the i960 CA architecture.

Preprocessing a Source File

To preprocess a source file to stdout, use the command:

gcc960 -E tl.c

or

gcc960 -E tl.cc

-E informs the compiler to preprocess the source file.

Generating a Preprocessed Source File

To generate a preprocessed C/C++ source file use the following command.
The command generates a preprocessed source file maimedr for C++
t1.ii

gcc960 -E tl.c -o tl.i

or
gcc960 -E tl.cc -o tl.ii
-E instructs the gcc960 compiler to preprocess the source

file.

gcc960 Compiler Driver

-0 filename instructs the gcc960 compiler to redirect output to
filename

Generating Assembly Code

This example generates assembly code for the 1960 CA architecture. The
command lines below each generate an assembly language file named
tl.s

gcc960 -S -ACA tl.c

or

gcc960 -Felf -S -ACA tl.cc

-Felf specifies ELF object module format, which is required
for C++. The default object module format is b.out.

-S instructs the compiler to generate assembly code.

-ACA specifies the 1960 CA architecture.

Generating an Object Module with Debug Information

To generate a object module with debug information, use the following
command.

gcc960 -c -g -ACA tl.c

or
gcc960 -Felf -c -g -ACA tl.cc

-g instructs the compiler to generate debug information.
-C instructs the compiler to generate an object file.

Generating an Executable

To generate an absolute module (executable file) for a Cyclone board with a
CA processor, use the following command.

gcc960 -ACA -Tmceycex -g -O tl.c t2.c -0 test
or
gcc960 -Felf -ACA -Tmcycx -g -O tl.cc t2.cc -o test

1960 Processor Compiler User's Manual

2-6

The above command compiles the modules t1.c and t2.c and links them
with appropriate libraries to generate an absolute module targeted for a
Cyclone i960 Cx evaluation board.

-Tmcycx use the linker directive file for a Cyclone i960 Cx
evaluation board.

-0 causes the compiler to perform some basic
optimizations on the generated code.

-0 test instructs the compiler to name the generated executable
test.

gcc960 Linker Options

When you do not specify a target with tftarget option, gcc960 does not
attempt to link programs for a specific target board. Unless otherwise
specified source files with recognized extensions (eg., .s) are
compiled and/or assembled, and the following linker command is issued:

gld960 -AKB $G960BASE/lib/crt960.0 file .o...-lgf-Ic -Im

To link for a different target, you can change the crt (startup) file and specify
board and monitor support libraries.

To link for another environment, the optiosts andnostdlib prevent
gcc960 from including the default startup files or libraries in the link,
allowing them to be fully specified by the user. For example:

gcc960 -crt -nostdlib mycrt.o file. o.. -lc -Imylib

You can invoke gcc960 to create object files in either the b.out, COFF or
ELF object module format. The compilation system acceptsdbfé

option to generate COFF and thedf option to generate ELF; these
options override the gcc960 driver's default format option, whi€hadst .

NOTE. ELF is the only object format supported when using C++

gcc960 Compiler Driver

Table 2-1 lists the linker options that gcc960 passes directly to the linker.

Table 2-1 Linker Options Accepted by gcc960

Option Name Description

e Entry point defines an entry point other than the default
for beginning execution of the program.

gcdm Decision invokes gcdm960 decision maker.

Maker

I Archive file specifies an archive file as input.

L Library search adds directories to search for libraries,
configuration files, and startup object files.

r Relocation retains relocation information in the output
object file.

S Strip strips line-number entries and symbol-table
entries from the linker's COFF output file.

u Unresolved introduces an unresolved symbol, causing

Symbol the linker to search symbol tables for

resolution of the reference.

X | x Compress X removes all symbols from the output
symbol table; x removes only local symbols.

y Trace symbol traces a symbol; indicates object files where
it appears and provides other information
about the symbol.

z Time stamp suppresses COFF time stamp in linker

output file.

gcc960 and Predefined Macros

Predefined macros within a program can act as constants during execution
or as values in conditional-compilation statements. Predefined macros
include ANSI C standard macros and macros specific to the i960 processor
architecture. The&l (Undefine) option removes i960 processor-specific
macros but not ANSI C standard macros.

1960 Processor Compiler User's Manual

The following macros are available in accordance with the ANSI C standard
for C, as described in the bodk; A Reference Manual

__DATE__ __FILE__ __LINE__ _TIME__ _ STDC__

The following macros are predefined by the compilation system when
invoked with the gcc960 driver program:

__GCCY60_VER is defined to a decimal number that can be used to check
the version number of the compiler. The number is
expressed in decimal agnmPPPRhereMis the major
version numbennnis the minor version number, and
PPPPIs an internal version number that is used to track
the patch level. So, for example, R6.0 patch level 4032
would have GCC960 VERdefined to be 6004032.

__i960 indicates the i960 processor environment. The compiler
defines__i960 automatically. This macro can be used
to identify the parts of a program specific to the 1960
processor.

960 xx indicates the 1960 processor instruction set in use. The
compiler automatically defines thei960 xx macro.
Thexx isSA SB, KA, KB, CA, CF,JA ,JF,JD,JT,
HA HD, HT, RD, orRP. Definition of xx depends on the
specific i960 processor instruction set specified byathe
(Architecture) option.

__PIC indicates that the generated code is
position-independent. Thepic
(Generate-for-position-independent-code) option
causes the PIC macro to be defined.

__PID indicates that the generated data is position-independent.
Thempid (Generate-for-position-independent-data)
option causes the PID macro to be defined.

__i960_BIG_ENDIAN__
indicates that the generated code is arranged for
big-endian address space. ThéBig-endian) option
causes this macro to be defined.

2-8

gcc960 Compiler Driver

__STRICT_ANSI__

indicates that C constructs not conforming to the ANSI

standard should be flagged. Tdresi (ANSI) option
causes this macro to be defined.

__CHAR_UNSIGNED

indicates that the plaichar type are treated like the
unsigned char type. This is the default.

gcc960 and Environment Variables

Environment variables specify default directories for input files, temporary
files, libraries, the assembler, and the linker. The compilation system uses

the following environment variables to set defaults:

Table 2-2 gcc960 Interface Environment Variables

Name

Purpose

G960AS

G960BASE

G960BIN

G960CC1

G960CC1PLUS

Specifies an alternate pathname for the assembler. Default is
G960BASE/bin/gas960 (G960BASE\bin\gas960.exe in Windows).

Specifies top-level directory containing the bin , include , and lib
subdirectories. G960BASEis necessary for every phase of compilation and
linking. The compiler driver uses G960BASE/lib to invoke the
preprocessor and compiler. The driver uses G960BASE/bin to invoke the
assembler and linker. The preprocessor uses G960BASE/include to find
include files. The linker uses G960BASE/lib to find libraries, startup
modules, and configuration files. G960BASEalso sets defaults for other
environment variables in this list. Use these other environment variables to
override the paths from G960BASE

Specifies an alternate pathname for binary files, such as the assembler and
linker. If set, G960BIN overrides G960BASE/bin .

Specifies an alternate pathname for the C compiler. The default is
G960BASE/lib/cc1.960 . (G960BASEN\lib\ccl.exe in Windows.)

Specifies an alternate name for the C++ compiler when using the gcc960
driver. The default pathname is G960BASE/lib/cclplus.960
(G960BASE\lib\cclplus.exe in Windows).

continued [J

2-9

1960 Processor Compiler User's Manual

2-10

Table 2-2 gcc960 Interface Environment Variables (continued)

Name Purpose

G960CPP Specifies an alternate pathname for the C preprocessor. The default is
G960BASE/lib/cpp.960 . (G960BASE\lib\cpp.exe in Windows.)

G960INC Specifies the include file directory. The default is G960BASE/include

G960LD Specifies an alternate linker pathname. The default is
G960BASE/bin/gld960 (G960BASE\bin\gld960.exe in Windows.)

G960LIB Specify library search path(s). The default is G960BASE/lib.

G960PDB Specifies the program database directory for whole-program and profiling
optimizations.

G960TMPTMR Specifies the directory used for temporary work files. Set it to the name of

or TMPDIR your temporary file directory.

I960ERR Windows variable that enables you to redirect errors to stderr rather than

stdout (the default). To use this capability, set I960ERR to any string, as
in: set I960ERR="Enable stderr".

gcc960 and File Use

The compiler, assembler, and linker all use filenames specified on the

gcc960 command line to find and create input and output files. In addition,

translation and linking require temporary work files.

Input Files

The gcc960 command line allows filename inputs that support specification
of assembly-language files, preprocessed source files, C/C++ source files,
object files, and libraries. The compiler driver determines the type of each

input file by the filename extension, as follows:

filename .c indicates a C source file that can contain macros
and preprocessor directives.

filename .cc, indicates a C++ source file that can contain macros

-Cpp, .CXX and preprocessor directives.

filename .C indicates a C++ source file that can contain macros

and preprocessor directives (UNIX only).

gcc960 Compiler Driver

filename i indicates a preprocessed C source file.

filename i indicates a preprocessed C++ source file.

filename .s indicates an assembly-language source file.
filename .S indicates an assembly-language source file that can

contain preprocessor macros and directives.

The driver passes any other filename to the linker. The linker then
determines whether the file is an object file, library, or configuration file.

Input files not needed for processing are not processed. For example, if you
specify an assembly-languadgéeame .s) file and also specify the
(Assembly) compile into assembly code option, gcc960 takes no action on
the assembly-language file.

Include Files

The gcc960 command line allows insertion of text from include files using
the#include preprocessor directive.

Thel ,1- andl. options affect the directories that are searched for the
file specified in thetinclude directive. These options are described in
detail in theOption Arguments and Syntagction. In the absence of the
option, gcc960 searches the current directory for include files followed by
the G960BASE/include directory.

NOTE. The include filescache.h , dcache.h , andtimer.h used for
on-chip cache and timer control are not supported with-##P option.

Output Files

Specifying the optionsE, -S, or-c causes the compilation system to
produce output of the last phase that completes for each primary input file:
preprocessed source file, assembly-language file, or an unlinked object file

2-11

1960 Processor Compiler User's Manual

2-12

Table 2-3

respectively. If no errors occur during processing, the output files created by
these options are usable as input to a future gcc960 invocation. Table 2-3
lists the compilation phases and their inputs and outputs.

Specifying theelist option generates a listing. gcc960 produces a separate
list file for each primary C/C++ source file. The list file is named by
replacing the C or C++ filename extension with.

Specifying theM option causes the preprocessor to output rules
describing the dependencies of each source file, suitable for use with a
“make” utility. Theclist and-M options are described in detail in
“Option Arguments and Syntax” on page 17.

Intermediate Inputs and Outputs

Last Phase

Completed Option Inputs Outputs

preprocessing M E C/C++ source files display on standard

output

compilation S C/C++ source files assembly-language
preprocessed files file listing files

assembly c C/C++ source files unlinked object files
preprocessed files listing files
assembly files

linking (default) C/C++ source files list files

preprocessed files
assembly files
unlinked object files
relinkable object
files libraries
configuration files

executable file
relinkable object file

gcc960 Compiler Driver

.gld Files

When specifying only one primary input file, th¢Output) option names a
single output file. Specifying multiple primary input files, or not specifying
an output filename, causes gcc960 to use the primary input filenames to
derive corresponding output filenames with the fdtemame . e, where:

filename is the primary input filename without its extension.

e is asingle-letter extension indicating the contents of
a file, as follows:

s indicates an assembly-language file from$he
option.

o indicates an object file from theoption.
L indicates a listing file from thelist option.

Unless otherwise specified, the destination directory for any output file is
the current working directory. Hlename.e already exists in the
destination directory, the compilation system overwrites the existing file.

The filenamea.out is the default for the executable COFF object file from
the linker, in the absence of an Output option. For ELF files, the default is
e.out and for bout files, the default fisout

The following examples illustrate the creation and use of output filename
extensions:

® The commandcc960 -c -clists proto.c protol.i
produces the object filgsoto.o andprotol.o and the listing files
proto.L andprotol.L

® The commandcc960 -c -o proto_vl.o ~clist s proto.c
produces the object filgroto_vl.0 and the listing filgroto.L

® The commandcc960 -ACA -Tmcycx proto.c produces the
executable file.out .

The.gld files provide a convenient mechanism for specifying default
options to the compiler and linker. It also provides a mechanism for
specifying the startup file and the libraries to be linked in. These files are

2-13

1960 Processor Compiler User's Manual

2-14

meant to be used with the gcc960 interface to the tools (GLD is an acronym
for gcc960 linker directive file even though it can be used to pass options to
the compiler as well).

By default, the installation program places sevegtdl files in the
directory$G960BASE/lib. These files have been written for the Cyclone
evaluation boards. To illustrate, the sample file given below is

written for the Cyclone i960 Cx processor-based evaluation board.

Example 2-1 Sample .gld File
gcc:-ACA

crt:%{!crt:%[~]/lib/%{mpid:%{G:crt960_e.0}%{!G:crt960_p.o}}
%{!mpid:%{G:crt960_b.0}%{!G:crt960.0}}}

Id:%{! Ttext:-Ttext 0OXA0008000}%({*: -defsym
_heap_size=0x20000;_heap_base=(_end+0xf)&~0xf;_heap_end=_heap_base+
_heap_size-1;_stackbase=(_heap_end+0x40)&~0x3f -defsym
fpem_CA_AC=0x100}

lib:%{!nostdlib:-Imn -IIl}

Inthe.gld file, you can place any options that the tools accept on the
command line. Thegld file in Example 2-1, includes options for the
gcc960 compiler driver and linker.

The command in thgcc: section defines the architecture setting for the
gcc960 compiler driver. This setting is used throughout the compilation
process. The options followingc: are treated in the same fashion as if
they were specified on the gcc960 invocation line.

The commands in thet: ,1d: , andlib: sections are written
conditionally so that they interact with gcc960 command line switches. For
example, théb: section indicates that the linker should be involved with

gcc960 Compiler Driver

the-Imn and-lll options, unless the gcc9&fbstlib option
appears on the command line. These sections determine the startup code,
linker options and the libraries that are passed to the linker.

Thecrt: section is used to specify the startup code. In the example given
above, if thecrt option has not been specified on the compile line, then
the compiler driver uses the following for the startup code.

[G960BASE]/lib/crt960_e.o if both-mpid and-G options are on
[G960BASE]/lib/crt960_p.o if -mpid option is on-G s off
[G960BASE]/lib/crt960_b.o if -mpid option is off andG is on
[G960BASE]/lib/crt960.0 if both-mpid and-G options are off

Theld: section contains options that are passed to the linker. This
example includes commands to place.tee section at address
0xA0008000 , and defines symbols used to specify the heap and stack
locations

Thelib: section in the above example is used to specify that the compiler
driver should pass the optiodsin and-lll to the linker if the

-nostdlib option is off. This causes the linker to include the monitor and
the low-level libraries in its search path to look up unresolved symbols.

For more information on the linker directives used in this sample file, see
thei960 Processor Software Utilities User's Guide

2-15

1960 Processor Compiler User's Manual

gcc960 Options

This section describes the gcc960 compiler driver options that allow control
of various aspects of compilation:

Input processing and Thec, E, andS are the Stop-after options.

output They stop the translation and linking process
after the preprocessing, syntax checking,
compilation, or assembly phase. A Stop-after
option causes the compilation system to save
the intermediate output of the last phase to
execute. The& (Keep-comments) and(Mix)
options affect the contents of the output file.
Theo (Output) option allows specification of
the output filename.

Specifying included Thei (Preinclude) and (Searchinclude)
source text options prepend and find include files of
C/C++ source text.

Defining macros TheD (Define)anduU (Undefine) options allow
specification of macros for conditional
compilation.

Control contents of TheA (Architecture) Fcoff /Felf /Fbout

generated object code (Object-format)F (Fine-tune)f (Optimize),g
(Debug),G (Generate), and
(Optimization-level) options control the
instruction set, object format, debug
information, and optimization level.

2-16

gcc960 Compiler Driver

Whole-program
optimizations

Provide information
on the compiling
process

Thefdb (Program Databasefprof
(Instrumentation), angcdm (Decision Maker)
options allow for creation and use of
information necessary for advanced
optimizations involving multiple modules
and/or execution profiles. See Chapter 4,
“Program-Wide Analysis and Optimization”
for an overview of whole-program and
profile-driven optimization.

Thea (ANSI) option affects messages the
compiler produces about C/C++ syntax and
semantics. The (Verbose)y (Version), and
v960 (Version-exit) options display
information about preprocessor, compiler,
assembler, and linker options. The Version
option displays the versions of each
compilation component and the host operating
system. Th&v(Warnings) option allows fine
control of the level of warnings emitted.

Option Arguments and Syntax

Some compiler driver options take arguments. Case is significant in options
and arguments. A few options allow whitespace between the option and its
argument; this whitespace is shown in Table 2-4.

The options and arguments have default settings. In most cases, the option is
“off,” that is, not in effect. Default settings of options and arguments are
summarized in Table 2-4 and further discussed in the detailed description of
the option. Some option defaults are affected by environment variables,
which are described in thgetting Startednanual.

2-17

1960 Processor Compiler User's Manual

This chapter uses the following notation:

[item]

Square brackets indicate that the enclosed item is

optional.

Horizontal ellipses indicate that you can use multiple

instances of the preceding item.

Table 2-4 gcc960 Option Summary

Option Name Purpose Default

Aarch Architecture Select the instruction set. AKB

ansi ANSI Detect non-ANSI source. off

Cc Comments Keep comments in preprocessor output. off

c Create Object Stop after creation of object file. off

clist arg ... Create listing Create a listing. off

crt Startup Do not use standard startup file. Use default

D macro Define Define macro. macro

[=value] (default is one) undefined

darg Definitions Control macro processing. off

E Preprocess Preprocess source; terminate. Do not stop

Fbout | Fcoff | Format Generate b.out, COFF or ELF object Fbout

Felf format.
fdb Database Build program database directory (PDB). No database
fprof Instrument Compile with instrumentation; build PDB. No instru-
mentation

f[no-]arg Fine-Tune Enable or disable an option. Varies with
option

G Big-endian Generate big-endian code. off

gllevel] Debug Include debug information in objects. No debug info

gcdm,arg... Decision-maker Invoke gcdm960 decision-maker. off

h[elp] Help Display invocation help; terminate. off

| directory Searchinclude Search directory for include files. off

continued [

gcc960 Compiler Driver

Table 2-4 gcc960 Option Summary (continued)
Option Name Purpose Default
-] 1. I-dash, I-dot Control include-file search order. off
ic960 iC-960 Accept iC-960 source dialect. off
imacros Macros File Specify macros file for preinclusion. off
filename
include Preinclude Prepend text to source files. off
filename
L directory Library Specify directory for library search. off
Directory
M|MD|MM| Make Generate make tool output. off
MMD
mstring Machine Machine-specific options. Varies with
option
nostdinc No Standard Exclude standard include (header) files. off
Include
nostdlib No Standard Excludes standard libraries. off
Libraries
O [level] Optimize Specify optimization level. (0]0]
o filename Output Name output file. Varies with
object format
P Preprocess Preprocessor output control. off
Output
pedantic Pedantic Controls ANSI error and warning off
[-errors] generation.
S Assembly Stop after assembly-language output. off
save-temps Save Save intermediate files. Do not save
Intermediate
Tfile.gld Target Specify configuration file. off
traditional Traditional Allow traditional C. off
trigraphs Trigraphs Support ANSI trigraphs. off
U macro Undefine Undefine macro. off
\% Version Display version information. No display
continued [J

2-19

1960 Processor Compiler User's Manual

Table 2-4 gcc960 Option Summary (continued)

Option Name Purpose Default

v960 Version-exit Display version information and exit. off

Y Verbose Display invocation information. No display

W [no-]arg Warnings Enable/disable a warning. Varies

w No Warnings Inhibits warnings. off

Zdirectory Program Specify location of program database G960PDB
database directory (PDB). specifies PDB

A (Architecture)

Selects instruction set.

Aarchitecture
architecture is one of:
SA SB, KA, KB, CA CF, JA, JD, JF, JT, HA HD HT, RD, orRP

Default
By default, the compiler uses the 1960 KB architecture.

Discussion

UsetheA (Architecture) option to specify the target instruction set. See also
the-mcore0 , -mcorel ,-mcore2 , and-mcore3 options that let you
generate code that is compatible with multiple i960 processor types.

Note that with release 5.1 and later using-kRP or-ARD options
generates code that is compatible with current and proposed future
variations on the i960 Rx architecture.

2-20

gcc960 Compiler Driver

You can use predefined macros in your source text to conditionally compile
code for the selected architecture. The compiler defines a preprocessor
macro indicating the selected architecture. The preprocessor macro takes
the form:

_ 1960 xx
XX iSs SA SB, KA KB, CA CF, JA, JD, JF, JT, HA HD HT,RD,
or RP. The compiler selects the valuexaf according
to the architecture you specify.
The_ _i960 macro is defined for all architecture selections. Use
__i960 to identify parts of your program specific to the i960 architecture
but not necessarily specific to a particular processor.
In addition, for compatibility with earlier releases, macros of the forms:
i960 , 960 _ , i960 xx__ and_ _i960_ xx__ are defined.

When you link object modules compiled with incompatible architectures,
the linker displays the following warning message:

file : architecture i960: XXincompatible with output

i960: YY

file is the first file containing incompatible instructions the

linker encounters.

XX is one of the two-letter architecture abbreviations.

Yy is one of the two-letter architecture abbreviations.
ansi (ANSI)
Disable non-ANSI features.(C-specific

option.)

Disables features of gcc960 that are incompatible with ANSI C, such as the
asm, inline andtypeof keywords, and nonstandard macros such as
180960 . ansi also enables the ANSI trigraph feature.

2-21

1960 Processor Compiler User's Manual

2-22

See the table shown under thaitional option for a summary of the
macros defined when ttamsi or traditional options are used.
The alternate keywords_asm_ _, __inline_ _ and_ _typeof _

continue to function even if you specHysi . You would not want to use
them in an ANSI C program, of course, but it can be useful to put them in
header files that might be included in compilations done aviih .

ansi does not cause non-ANSI programs to be rejected with errors. For
that, thepedantic-errors option is required in addition @nsi .

The macro__STRICT_ANSI__ is predefined when thensi option is

used. Some header files may notice this macro and refrain from declaring
certain functions or defining certain macros that the ANSI standard doesn't
call for; this is to avoid interfering with any programs that might use these
names for other things.

C (Comments)

Keep comments.

Directs the compiler not to discard comments, and to pass them through to
the preprocessor output file. Comments in arguments of a macro call are
copied to the output before expansion of the macro call. Used with the
option.

gcc960 Compiler Driver

c (Create Object)

Stop after creation of object file.

Directs the compilation system to stop after creating the object file(s).
Object files are named by replacirg, .cc ,.cpp ,.cxx i ,.i ,.S,or

.s with .o atthe end of the input filenames. If you specify an object file as
input, the compiler does nothing with the file.

clist (Listing)

Creates a listing.

clistarg...

Generates a listing of the types described below. The list file has the name
flename .L where filename is the name of the original C/C++ source file.
Multiple arguments are allowedrg is one of the following letters:

s lists the primary source text, that is, source text from
files named on the command line.

i adds source text from included files to the primary
source text listing.

0 adds the assembly language generated by the compiler
to the listing file.

m adds expanded preprocessor lines to the primary source
text listing.

c adds conditionally noncompiled source text to the

primary source text listing.

2-23

1960 Processor Compiler User's Manual

2-24

crt (Startup)

Omit standard startup file.

Do not use the standard startup file when linking. A replaceonentfile
should come first in the list of object files. For all i960 processor types
except the Rx, the standard startup fileri860.0 . For i960 Rx
processors, the standard startup filerigp.o

D (Define)

Defines a macro.

D macro[=value]

With no =value , definesmacro as 1. (This is exactly the samelas
macro=1.)

D macro=value

Definesmacro asvalue.

d (Definitions)

Control macro processing.

e dD Tells the preprocessor to pass all macro definitions into the output,
in their proper sequence in the rest of the output.

* dM Tells the preprocessor to output only a list of the macro definitions
that are in effect at the end of preprocessing.

gcc960 Compiler Driver 2

® dN Like dD except that the macro arguments and contents are
omitted. Only#define macro is included in the output.

These should be used only with, and they affect preprocessor output.

E (Preprocess)

Run only the C/C++ preprocessor.

Directs compilation system to preprocess all the C/C++ source files
specified and send the results to standard output.

Fbout | Fcoff | Felf (Format)

Specifies the object file format.

Fbout specifies the b.out object format. This is the default. You
can add theg option to specify the style of
symbolic-debug symbols created. Note that you cannot
use this option with theARP or-ARD architecture
setting or with C++ modules.

Fcoff specifies the COFF object format, and causes the
assembler to be invoked as gas960c, rather than gas960.
You can add thg option to specify the style of
symbolic-debug symbols created. The compiler does not
support using the object module format with C++.

Felf specifies the ELF object format, and causes the
assembler to be invoked as gas960e, rather than gas960.
If you add they option, the DWARF style of
symbolic-debug symbols is used.

2-25

1960 Processor Compiler User's Manual

2-26

fdb (Database)

Builds optimization database.

All modules subject to program-wide optimization must be initially
compiled with thédb option. This option causes the insertion of program
database information in the object modules, and it requires a minimum
module-local optimization level @1 (although higher module-local
optimization levels are allowed).

This option does not otherwise change the code or data generated for the
object modules. It simply makes optimization information collected during
the initial compilation available to gcdm.

Before using thédb option, you should read Chapter 4, “Program-Wide
Analysis and Optimization”, and Chapter 6 “gcdm Decision Maker
Option”.

If you intend to use execution profiles when optimizing your application,
you should read Chapter 5, “Profile Data Merging and Data Format
(gmpf960)”.

fprof (Instrument)

Instruments code for profile creation.

This option inserts execution profile instrumentation code into the code
generated during compilation, so that when the linked program is executed,
a profile can be collected.

Before using thérof option, read Chapters 4, “Program-Wide Analysis
and Optimization” through 6, “gcdm Decision Maker Option” for general
strategies on using CTOOLS profiling and other optimization features.

gcc960 Compiler Driver

This option enables thfdb option, which instructs the compiler to insert
program database information into the object modules and create the
program databaséarof also requires a minimum module-local
optimization level of O1 (although higher module-local optimization levels
are allowed).

When you use thiprof option, a special profiling library required for
profile collection [jbgf) is linked automatically. If your target
environment does not support file I/O, you must explicitly link an alternate
profiling library (ibg). The profiling libraries provided are described in
Chapter 2 of thé&60 Processor Library Supplement

Note that compiling with théprof option creates object modules useful
only for collecting a profile. If you compile witiprof and later do not
want a profile, you must then use substitutions to replace every
instrumented module iprog , or you must recompile the modules without
thefprof option. See Chapter 4, “Program-Wide Analysis and
Optimization” for more information on this subject.

f (Fine-Tune)

Enable or disable specific options.

In most cases, you will want to optimize code automatically by using the
variousO optimizations. (See the section on tbeoption.) In some cases,
however, you may want to enable or disable specific features for a given
optimization level. For example, at optimization le@8] you cannot enable
instruction scheduling witfschedule-insns . As with any optimization
process, you should first compile without the option and then recompile
with the desired option enabled/disabled. You can then compare the
generated assembly code and see if adding/removing the option produced
the desired result.

2-27

1960 Processor Compiler User's Manual

Before using any of these options, read chapters 4, “Program-Wide Analysis
and Optimization” through 6, “gcdm Decision Maker Option” for an
overview using the compilation system’s performance features.

f[no-]Jaccess-control Enable/Disable all access checking.
This is normally used to work around
access control bugs.
faccess-control is the default.
This is C++ specific option.

f[no-Jasm Do [not] recognizeasm, inline or
typeof as a keyword. These words can
then be used as identifiers. You can use
asm _, _inline_ _ and
_ _typeof__ instead. This option
provides compatibility with strict ANSI
standards. Do not use this option with
C++ files. See also thansi option.

f[no-]bbr Enable/disable basic block
rearrangment. This option is normally
used in a second-pass recompilation,
but it can also be used in single-pass
compilation.

f[no-]coalesce Coalesces memory references into a
single larger memory reference, thus
taking better advantage of the i960
processor's burst bus. The compiler
only coalesces memory references that
can be proven to be contiguous and
whose base address can be proven to be
aligned properlyfcoalesce enables
fshadow-mem .

f[no-]coerce Enable/disable byte/short optimization.

2-28

gcc960 Compiler Driver

f[no-Jcond-mismatch

f[no-Jcondxform

f[no-Jconserve-space

f[no-]constprop

f[no-]copyprop

Allow/do not allow conditional
expressions with mismatched types in
the second and third arguments of the
?: operator. The value of such an
expression is void.

Performs a special conditional
transformation that allows the use of
the 1960 Jx, Hx, and Rx processors'
sel<cc>, addo<cc>, and subo<cc>
instructions. You cannot use this
optimization unless th&Jx, AHx, or
ARx option is specified.

Allocate uninitialized global variables
into the common segment, as C does.
This saves space in the executable at the
cost of not diagnosing duplicate
definitions.fno-conserve-space is
the default. This is a C++ specific
option.

Performs constant propagation and
folding. This optimization replaces uses
of variables known to have a constant
value with the constant value, allowing
other optimizations to see these
constants and possibly generate more
optimized code.

Performs copy propagation. This
optimization replaces uses of registers
that are destinations of register to
register copies with the source register
(when possible). This allows
unnecessary copies to be deleted later
in the compilation.

2-29

1960 Processor Compiler User's Manual

2-30

f[no-]cse-follow-jumps

f[no-]cse-skip-blocks

f[no]dollars-in-
identifiers

f[no-]expensive-
optimizations

f[no-]fancy-errors

f[no-]float-store

f[no-]force-addr

During common subexpression
elimination (CSE), scan through jump
instructions in only certain cases. This
is not as powerful as completely global
CSE, but allows for faster compilation.

Enable/disable a limited form of global
CSE.

Accept “$” in identifiers. ANSI C
forbids “$” in identifiers.

fno-dollars-in-identifiers is
the default for C and
fdollars-in-identifiers is the

default for C++.

Perform/skip a number of minor
optimizations that are relatively
expensive. This option is enabled with
optimization levelo2.

Display/do not display C/C++ source
line and caret?) with error messages.

Store/do not store floating-point
variables in registers, and do not
perform common sub-expression
elimination on floating point
expressions.

Force/do not force memory address
constants to be copied into registers
before doing arithmetic on them. This
may produce better code.

gcc960 Compiler Driver

f[no-Jfor-scope

f[no-Jinline-functions

fint-alias-ptr

fint-alias-real

fint-alias-short

Limit the scope of variables declared in
afor-init statement to the for loop
itself, as specified by the draft C++
standard. When you specify
-fno-for-scope , the scope of
variables declared in a
for-init-statement extends to the end of
the enclosing scope, as was the case in
old (traditional) implementations of
C++.for-scope s the default. This is
a C++ specific option.

Inline/do not inline all simple functions
into their callers. The compiler
heuristically decides which functions
are simple enough to be worth inlining
in this way. When all calls to a given
function are inlined, and the function is
declared static, then the function is
normally not output as assembler code
in its own right.

indicates to the compiler that pointer
objects may be referenced as 32-bit
integers and vice versa.

indicates to the compiler théidat
double , andlong double objects (or
parts thereof) may be referenced as
32-bit integers and vice versa.

indicates to the compiler that four-byte
integer objects may be referenced as
two-byte objects and vice versa.

The aliasing options listed above tell the compiler not to use certain kinds of
type information when disambiguating memory references, even though
ANSI C section 3.3 “Disambiguation Constraints,” allows this.

2-31

1960 Processor Compiler User's Manual

2-32

The rules enforced by the aliasing options are transitive. For example, when
user code accesses partgaible objects ashort , then
fint-alias-real andfint-alias-short should both be used.

The rules are also applied recursivelgtiocts and unions. That is to
say, wherfint-alias-ptr is in use, then a union that has a member of
pointer type is assumed to be aliased by 32-bit integerssirdays or
unions containing 32-bit integers.

Note that ANSI C 3.3 requires the compiler to assumecttzat references
alias all types, so code usinigar pointers is already correct and using
these options is not necessary.

Using all three aliasing options effectively disallows all use of type
information in memory disambiguation. This is bad both for compiler
performance and the efficiency of generated code.

f[no-lenum-int-equiv Allow implicit conversion of integer
to enumeration types. Normally the
compiler allows conversion of enum
to int, but not vice versa.
fno-enum-int-equiv is the
default. This is a C++ specific option.

f[no-]huge-objects The implementation of virtual
function calls assumes that the size of
an object can be represented with a
short integer. Use this flag to support
virtual function calls for objects that
cannot be represented by a short
integer. Use this flag only if the
compiler requests you to do so. Note
that the C++ library sources need to
be recompiled with
fhuge-objects if you plan to link
with the C++ libraries.
fno-huge-objects is the default.
This is a C++-specific option.

gcc960 Compiler Driver

f[no-]keep-inline-
functions

fl[no-Jmarry_mem

f[no-Jmemoize-lookups
f[no-]save-memoized

fmix-asm

f[no-Jrerun-cse-
after-loop

f[no-]sblock

fsigned-char |
fno-signed-char

Even when all calls to a given
function are inlined, a separate
run-time callable version of the
function is still output.

Rejoin multi-word moves split apart
by fsplit_mem (where possible).

Use heuristics to compile faster.
These heuristics are not enabled by
default, since they are only effective
for certain input files. Other input
files compile more slowly. You may
use either option to compile using
heuristics. These are C++ specific
options.

Intermix C/C++ code as comments
within the assembly code.

Re-run common subexpression
elimination after loop optimizations
have been performed.

Enable/disable superblock formation.
This option is normally used in a
second-pass recompilation, but it can
also be used in a single-pass

compilation.
Make the typehar be signed, like
signed char (fsigned-char) , or

make the typehar be unsigned, like
unsigned char

(fno-signed-char).

fsigned-char is equivalent to
fno-unsigned-char

By default,char variables are treated
asunsigned .

2-33

1960 Processor Compiler User's Manual

f[no-]schedule-insns Attempt to reorder instructions to
eliminate execution stalls due to
required data being unavailable. This
allows other instructions to be issued
until the result of a previously issued
instruction is required.

This option makes debugging more
difficult, since the code for multiple
C/C++ statements may become
intermixed, causing execution to
make numerous jumps while
single-stepping.
f[no-]schedule-insns2 Similar tofschedule-insns , but it
requests an additional pass of
instruction scheduling after register
allocation has been done.

f[no-]shadow-globals Shadow memory locations with
global register variables where
possible. Memory locations that are
known not to change are temporarily
allocated to registers. This option
makes debugging more difficult,
since objects allocated in memory
may not always be up-to-date.

2-34

gcc960 Compiler Driver

f[no-]shadow-mem

f[no-]space-opt

f[no-]split_mem

f[no-]strict-prototype

f[no-]this-is-variable

Shadow memory locations with
register variables where possible.
Memory references whose addresses
are known to be the same are
temporarily allocated to registers.
This option makes debugging more
difficult, since objects allocated in
memory may not always be
up-to-datefshadow-mem is similar
to fshadow-globals , but its
analysis is considerably more
sophisticated. In most cases,
fshadow-mem allows more
optimization than

fshadow-globals , but compile
time is slower.

Optimize to reduce the size of the
generated code.

Split all multi-word moves into
sequences of single word moves to
improve copy propagation.

Treat a function declaration with no
arguments, such at foo ();

to mean that the functidno takes

no argumentgstrict-prototype

is the default. This is a C++ specific
option.

Permit assignment to “this”.
fno-this-is-variable is the
default. This is a C++ specific option.

2-35

1960 Processor Compiler User's Manual

funsigned-char | Make the typehar be unsigned, like
unsigned char (funsigned-char) , or make the
typechar be signed, likaigned
char (fno-unsigned-char)
funsigned-char is equivalent to
fnosigned-char

By default,char variables are treated
asunsigned .

f[no-]strength-reduce Perform loop strength reduction and
eliminate induction variables. See the
Glossary for more information.

fsyntax-only Check the syntax of C/C++ source
file(s), without generating an object
file.

f[no-Jthread-jumps Test whether a jump branches to a

location where another comparison
subsumed by the first is found. If so,
the first branch is redirected to either
the destination of the second branch
or to a point immediately following it,
depending on whether the condition
is known to be true or false.

f[no-Junroll-all-loops Perform the optimization of loop
unrolling on all loops. This is not
recommended as it increases code
size and usually degrades runtime
performancetunroll-all-loops
enables botlstrength-reduce
andfrerun-cse-after-loop

2-36

gcc960 Compiler Driver

f[no-Junroll-loops

fvirtual-opt

f[no-]volatile

Break up a loop into several iterations
of the loop body. This typically
improves performance, since the
loop's exit condition is not checked
for each iteration. In a few cases,
however, the increased code size may
decrease performance.

This option uses several decision
criteria determine how far to unroll a
loop. For example, when the loop
body is small and there are relatively
few iterations, it may choose to
completely unroll the loop. For loops
with larger bodies and more
iterations, it may partially unroll the
loop and change the increment
counter accordingly.

funroll-loops enables both
fstrength-reduce and
frerun-cse-after-loop

Optimizes the dispatch of virtual
functions. This optimization can be
used only in a 2-pass scheme. By
default, this optimization is not
enabled. This optimization can be
used only when certain conditions are
met. See “Optimizing Virtual
Function Dispatch” in Chapter 12 for
more details. This is a C++-specific
option.

Consider/do not consider all memory
references through pointers to be
volatile.

2-37

1960 Processor Compiler User's Manual

f[no-]volatile-global Consider/do not consider all
references to global variables to be
volatile.

f[no-]writable-strings Store/do not store string constants in

the writable data segment and make
them unique. This is for
compatibility with old programs that
assume they can write into string
constants.

G (Big-endian)

Generate big-endian code.

Compile for a target that uses big-endian memory. This option requires that
Fcoff orFelf be in effect. This option is also passedas960c/gas960e
andgld960. WherGis specified, the preprocessor symbol
__i960_BIG_ENDIAN__ s defined.

g (Debug)

Specifies debug information.

gl level]

wherelevel specifies the amount of debug information. Note that the
meaning of level varies depending on the object format in use, as described
below.

2-38

gcc960 Compiler Driver

Usinggo disables debug information. (This is the same as not using the
option.)

For b.out and COFF, debug level settingg,afl, g2, andg3 all have the
same effect: they specify “normal” debug information.

When the default object-file format (b.out) is selected, DBX-style symbolic
debug directives suitable for use only with gdb960 are output.

For ELF/DWARF, debug level settings @fgl, andg2 all have the same
effect: they specify all DIWARF debug information except preprocessor
macros.

For ELF/DWARF, a debug level setting g specifies all DWARF debug
information, including preprocessor macros in the debug information. If
your debugger (like gdb960) does not make use of preprocessor macro
information, you can save space in your object files by dropping to
ELF/DWARF debug level 2.

Theg (Debug) option does not inhibit optimization. When you specify the
g option but do not specify the(Optimize) option, the optimization level
defaults toO0.

Specifying an optimization level higher th@a can inhibit the effectiveness

of the symbolic debug information. For example, if you set a breakpoint on
a source line that has been removed during optimization, the breakpoint is
never hit. Or if you try to print the value of a variable that has been
optimized away, an erroneous value is displayed. In general, as the
optimization level increases, the reliability of the symbolic debug
information decreases.

When you are using the ELF object module forrratf(), g causes the
compiler to produce DWARF debug information. This debug information
format is richer than that of other supported OMFs, and allows more reliable
debugging under optimization. However, even with DWARF, there are
situations where debugging behavior does not agree with the debugging
behavior of unoptimized code.

2-39

1960 Processor Compiler User's Manual

2-40

gcdm, argl,arg]... (Decision Maker)

Invoke gcdm960 optimization decision

gcdm, arg [, arg]...

The gcdm option provides a high level of automation for whole-program or
profile-driven optimization processes. The compiler driver and the linker
both use the gcdm option and its arguments.

The gcdm option is flexible and powerful, and therefore requires a certain
level of understanding in order to use it effectively. For these reasons, it is
documented in a separate chapter (Chapter 6 “gcdm Decision Maker
Option”) in this manual. Before using the gcdm option, you should read
Chapter 4, “Program-Wide Analysis and Optimization”, and become
familiar with the information in Chapter 5 “Profile Data Merging and Data
Format (gmpf960)”.

| (Searchinclude)

Specifies include file directory.

| directory

Addsdirectory to the end of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system
header file directories. When you use more thanl omgtion, the

directories are scanned in left-to-right order; the standard system directories
come after.

gcc960 Compiler Driver

I- | I. (Include-dash, Include-dot)

Controls search order and paths.

-] 1.
Any directories specified with options before the option are searched
only for#include "file ";they are not searched f¢include <file >.

When additional directories are specified witbptions after thé , these
directories are searched for #ilhclude directives. (Ordinarily ali
directories are searched this way.)

Thel- option inhibits the use of the current directory as the first search
directory for#include " file " . The current directory is searched for
#include "file " only when it is requested explicitly with (1 "dot™). It

is not searched automatically with. Specifying both- andl. allows

you to control which directories are searched before the current one and
which are searched after.

iIc960 (iIC-960 Compatibility)

Accept iC-960 source dialect.

Accept the same C dialect as ic960 R3.0 or later. Note that this does not
make the generated code compatible. To make the generated code
compatible, thenic3.0-compat option is necessary. This is a C-specific
option.

2-41

1960 Processor Compiler User's Manual

2-42

imacros (Macros File)

Specifies macros file.

imacros file

Procesdile as input, discarding the resulting output, before processing
the regular input file. Because the output generated filem is discarded,
the only effect ofmacros file is to make the macros definedfile
available for use in the main input. AByandU options on the command
line are always processed befanacros file , regardless of the order in
that they are written. All thiaclude andimacros options are processed
in the order in that they are written. Atlacros options are processed
before allinclude options.

include (Preinclude File)

Specifies file for preinclusion.

include file

Procesdile as input before processing the regular input file. In effect, the
contents ofile are compiled first. Any andU options on the command
line are always processed beforeude file , regardless of the order in
that they are written. All thiaclude andimacros options are processed

in the order in that they are written. Aflacros options are processed
before allinclude options.

gcc960 Compiler Driver

j (Errata)

Specifies processor errata.

j hum
Use thg (Errata) option to cause the compilation system to generate code

with workarounds for specified processor errataufargument of 1
generates code to work around the Cx processors' DMA errata.

L (Library Directory)

Specifies directory for library search.

L directory

Addsdirectory to the list of directories to be searched for libraries. See
thei960 Processor Software Utilities User's Guide a complete
explanation of the directory search order.

| (Library)

Specifies library for linking.

| library

Search a standard list of directories for a library file named
lib flibrary .a . The linker uses this file as if it had been specified
precisely by name.

Several standard directories are searched, plus any that you specify with

2-43

1960 Processor Compiler User's Manual

2-44

Normally the files found this way are library files — archive files whose
members are object files. The linker handles an archive file by scanning
through it for members that define symbols that so far have been referenced
but not defined. However, when the file found is an ordinary object file, it is
linked in the usual fashion. The only difference between usihgagtion

and specifying a filename is thasearches several directories. Under

normal operation, gcc960 supplies the optighs, Ic , andim to the linker.

For architectures without floating-point support, the oplions also

passed to the linker.

M | MD | MM | MMD (Make)

Generate make tool output.

M Tells the preprocessor to output a rule suitable for a
make tool describing the dependencies of each source
file. For each source file, the preprocessor outputs one
make rule whose target is the object filename for that
source file and whose dependencies are all the files
#include dinit. This rule can be a single line or can be
continued withnewline if it is long. Using this option
stops compilation after preprocessing.

MM Like M but the output mentions only the user-header
files included with#include " file " . System header
files included with#include <file > are omitted.

E NOTE. Previous versions of this manual describedftimand MMD

options. In fact, these options function identically withtaand MM
options respectively. To maintain compatibility with make files from
previous versions of gcc960, these options are still accepted on the
command line.

gcc960 Compiler Driver

m (Machine-specific Options)

Various options.

mstring

mabi

masm-compat

Specifies a machine-specific option.

Generate 80960 ABI-conformant code. This
causes thehar type to be signed, enums to be
four bytes in size and signed, and changes
default alignment rules for structs and unions.
See Chapter 7, “C Language Implementation”
for more information.

Generate special Intel pseudo-operations for
long compare-and-branch operations. gas960,
gas960c, or gas960e do not require these
pseudo-ops in order to generate correct code,
but the ASM960 R3.5 or earlier assembler
generates out-of-range errors for these
instructions when this option is not used. This
should not be used with gas960, gas960c, or
gas960e, because the split compare-and-branch
instructions are slower and larger than the
combined ones.

2-45

1960 Processor Compiler User's Manual

mcave

mcmpbr |
mno-cmpbr

mcode-align |
mno-nocode-align

2-46

Generate all functions as CAVE secondary.
When you seleahcave, the compiler generates
special CAVE entries for all functions in the
compilation unit. This prepares the functions
for link-time compression. The cave entries
resemble the following:

.section .text

_foo:
Ida L1l,reg
call __ dispatcher

ret
.section cave
.word L2-L1,0
L1:
function body
L2:
At runtime, the dispatcher decompresses the

function bodies and transfers control to them.
This mechanism saves runtime memory.

See the discussion #pragma cave in
Chapter 7 “C Language Implementation” for
information on this option.

Generate/do not generate code that uses
compare-and-branch instructions whenever
possible.

Generate/do not generate alignment directives
prior to labels that are not entered from above.
mcode-align is the default when the Cx or Hx

architecture is specified.

gcc960 Compiler Driver

mcore0 | mcorel | generate code that is compatible with multiple

mcore2 | mcore3 | 1960 processor types. Additionally, when you
use anmcore option, you can include another
-A switch to generate code that is optimized for
a particular architecture, but still compatible
with a group of architectures. The table below
lists the architectures that are supported by each
-mcore option and theA options that you
can use with them.

Table 2-5 Mcore Supported Architectures

Option Name Compatible Architectures Can Be Used With

mcore0 Jx, Hx, Rx -AJA | -AJD, -AJF, -AJT,
-AHA,-AHD, -AHT,-ARD,
or -ARP

mcorel KX, Sx, Cx, Jx, Hx Any architecture option
except -ARP or -ARD

mcore2 Jx, Hx -AJA , -AJD, -AJF, -AJT,
-AHA, -AHD, or -AHT

mcore3 Cx, Jx, Hx -ACA, -ACF, -AJA , -AJD,
-AJF, -AJT, -AHA , -AHD,
or -AHT

mdouble4 Generate code so that the size and alignmeduudfie

is the same a®oat

mlong-double4 Generate code so that the size and alignmeohof
double is the same dat

2-47

1960 Processor Compiler User's Manual

E NOTE. Themdouble4 andmlong-double4 options force floating-point

arguments to be passed in single-precision format. When your source
program explicitly calls functions (such sis andprintf) that require
double-precision or extended-precision arguments, the arguments passed
to these functions are incorrect.

mi960_align= n Aligns struct data on the byte boundary
that is a multiple oh. (Legal values are 1,
2,4,8,16.)

mic-compat Use ic960 R2.0's rules for size and

mic2.0-compat alignment of types. This option also causes

the compiler to use the ic960 compiler's
rules for promotion othar , unsigned
char , short , andunsigned short

types at function call and return.

mic3.0-compat Use ic960 R3.0's rules for size and
alignment of types and other conventions.
These are largely the same as gcc960's, but
ic960 R3.0 selects the sizeafums based
on their value. Additionally, ic960 R3.0
assumes that type chasigned by default,
whereas gcc960 assumes itisigned
Themic3.0-compat option emulates
ic960's behavior.

2-48

gcc960 Compiler Driver

mleaf-procedures
mno-leaf-procedures

mlong-calls

mpic

mpid

mpid-safe

Generate/do not generate output that
contains leaf procedures: these are
procedures that may be entered with the
bal instruction rather thacall . The

linker automatically promotesall
instructions intdal instructions when
appropriate. This option makes debugging
more difficult. mleaf-procedures is the
default atd2 or higher.

Generate all call instructions ealjx

instead otallj . This is used where the
distance between the call site and the
called function may exceedllj 'srange.
Using this option degrades code execution
speed and increases code size.

Generate position-independent references
to any objects in the text section. Such
objects are functionspnst file-scope
variables, switch tables, and strings.
Position independent code references are
made relative to the current instruction
pointer (IP).

Generate position-independent references
to objects in the bss, common, and data
sections. Such objects are namst
file-scope variables, and strings when the
fwritable-strings option is used.
Position independent data references are
made relative to registgt2. Registeg12

is not used for any other purpose.

Reserve register g12 as the position
independent data bias register, but do not
generate code for position independent
data.

2-49

1960 Processor Compiler User's Manual

2-50

msoft-float

mstrict-align
mno-strict-align

mstrict-ref-def

mtail-call |
mno-tail-call

Generates output containing library calls
for architectures without on-chip floating
point support (all except KB, SB). This is
set automatically, based on the architecture
option.

This option determines whether or not the
compiler risks generating memory
references that are not provably aligned.
Whenmstrict-align is disabled, the
compiler occasionally generates
potentially unaligned references when it
seems advantageous to do so. When
mstrict-align is enabled, sequences of
smaller memory references are used
instead of larger ones that might not be
correctly aligned. The default is on for
i960 Cx and Jx processors.

Generate code so that an uninitialized
file-scope variable definition causes space
to be allocated in théss section instead
of as acomm symbol. This enforces a
single unique definition of a variable.

Generate output that converts (does not
convert)call instructions immediately
followed byret instructions to branches
to the call target. While generating faster
code, this option makes debugging more
difficult. mtail-call is the default ab2
or higher.

gcc960 Compiler Driver 2

mwait= n Specifies the expected number of
wait-states for the memory being used in
the target. This can make a difference in
which optimizations are cost-effective and
in the instruction scheduling optimization.
n must be in the range 0.32.

nostdinc (No Standard Header Files)

Do not use standard header files.

Do not search the standard system directories for header files. Only the
directories specified with options (and the current directory, when
appropriate) are searched. Usingtdinc andl- , you can eliminate all
directories from the search path except those you specify.

nostdlib (No Standard Libraries)

Do not use standard libraries.

Excludes standard libraries.

2-51

1960 Processor Compiler User's Manual

2-52

O (Optimize)

Specifies optimization level.

Ol level]

Thed level] option specifies the level of optimization as described

below.
00

OoroO1

02

Turns optimization off, and additionally disables default
optimizations that may interfere with debugging. This is
the default.

These options enable basic optimizations, including:
advanced register allocation, common subexpression
elimination, loop invariant code motion, expression
simplification and instruction combination, jump
optimization, dead-code elimination, and i960
processor-specific peephole optimizatiadl is
equivalent tad0. This is the default setting when you use
thefdo (Program Database) fgrof (Instrument)
option.

This level includes the or O1 optimizations described
above, and the following additional optimizations:

fcopyprop , fcondxform , fcse-follow-jumps ,
fcse-skip-blocks)

fexpensive-optimizations ,
frerun-cse-after-loop , fschedule-insns ,
fschedule-insns2 , fshadow-globals ,
fstrength-reduce

TheO2level enables strength-reduction, combination of
more than one variable value into a single register, copy
propagation, tail-call elimination, leaf-procedure

gcc960 Compiler Driver

03

04

05

optimization, and instruction reordering (scheduling) to
make use of the particular i960 processor's pipeline and
superscalar capabilities.

This level includes th®2 optimizations described
above, and the following additional optimizations:

fcoerce , fconstprop , finline-functions ,
fshadow-mem , funroll-loops

This level includes the®3 optimizations described
above, and the following additional optimizations:

fcoalesce , fmarry_mem , fsplit_mem

This setting specifies program-wide optimization.
Before using th®5 option, you should read Chapter 4,
“Program-Wide Analysis and Optimization”, and
Chapter 6 “gcdm Decision Maker Option”.

Note that thed5 level is not accepted directly by the
gcc960 driver. It is accepted only in théost argument
of thegcdm option.

0 (Output)

Specifies output filename.

o filename

Specifies output filename.

2-53

1960 Processor Compiler User's Manual

2-54

P (Preprocessor Output)

Preprocessor output control.

Inhibits generation of-lines with line-number information in the output
from the preprocessor. This is useful when running the preprocessor on
non-C/C++ code that is intended for a program that might be confused by
the#-lines.

pedantic[-errors] (Pedantic)

Controls ANSI messages.

pedantic causes the compilation system to issue all the warnings specified
by ANSI C (such as when text other than a comment folkaleg or
#endif) and to reject programs that use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without
this option (though a rare few requimesi). However, without this option,
certain GNU extensions and traditional C features are supported as well.
With this option, they are rejected.

pedantic does not cause warning messages for use of the alternate
keywords whose names begin and end with(double underscore).

pedantic-errors is the same gsedantic , except that it causes the
compilation system to issue errors instead of warnings.

gcc960 Compiler Driver

S (Assembly)

Create assembly output.

Compile into assembly code but do not assemble. The assembly output
filename is made by replacing ,.cc ,.cpp ,.cxx ,.i ,or.ii ,

with.S, or.s at the end of the input filename. Do nothing for assembly
source files or object files specified as input.

save-temps (Save Intermediates)

Save intermediate files.

Store the usual “temporary” intermediate files permanently; place them in
the current directory and name them based on the source file. Thus,
compilingfoo.c with -c -save-temps ~ would produce filesoo.i and
foo.s , as well agoo.o0 .

stdlibcpp

Link Standard C++ libraries.

Instructs the compiler to link in the standard C++ libraries when creating an
absolute module. The standard C++ libraries are included in the search path
ahead of the standard C libraries. The distribution includes only an
implementation of the C++ iostream classes. Future releases will add more
modules. Note that this option has no effecbitdlib is specified.

2-55

1960 Processor Compiler User's Manual

2-56

T (Target)
Specifiesgld file.

Tstring wherestring identifies a target-specific configuration
file, string. gld .

Causes gcc960 to configure itself for a specific target board.

traditional (Traditional)

Allow traditional C.

Attempt to support some aspects of traditional C compilers, specifically:

* All extern declarations take effect globally even when they are
written inside of a function definition. This includes implicit
declarations of functions.

® The keywordsypeof ,inline ,signed , const , andvolatile are
not recognized.

® Integer typesinsigned short andunsigned char promote to
unsigned int .

* All automatic variables not declareghister ~ are preserved by
longjmp . Ordinarily, GNU C follows ANSI C: automatic variables not
declaredvolatile may be clobbered.

* Inthe preprocessor, comments convert to nothing at all, rather than to a
space. This allows traditional token concatenation.

* Inthe preprocessor, macro arguments are recognized within string
constants in a macro definition (and their values are stringified, though
without additional quote marks, when they appear in such a context).
The preprocessor always considers a string constant to end at a
newline.

gcc960 Compiler Driver

® The predefined macro_STDC_ _is not defined when you use
traditional , but_ _GNUC_ _is (since the GNU extensions that
_ _GNUC_ _indicates are not affected bwditional). When you
need to write header files that work differently depending on whether
traditional is in use, by testing both of these predefined macros you
can distinguish four situations: GNU C, traditional GNU C, other
ANSI C compilers, and other C compilers.

® For C++ programgraditional has the same effect as
-fthis-is-variable as well as all the effects described above.

The following table summarizes the macros defined when the
traditional oransi option is used.

__STRICT_ANSI_ _ __STDC_ _ __GNUC_ _
traditional X
ansi X X X
none X X

trigraphs (Trigraphs)

Support ANSI C trigraphs.

Process ANSI standard trigraph sequences. These are three-character
sequences, all starting wit?, that are defined by ANSI C to stand for
single characters. For exampPe/ stands fok, so’??/n’ is a character
constant for a newline.

Theansi option also enables trigraphs.

2-57

2 1960 Processor Compiler User's Manual

U (Undefine)

Undefines a preprocessor macro.

Umacro
Undefines the named preprocessor macro.

V (Version)

Display tool version numbers.

v (Verbose)

Display tool version numbers and
subprocess commands.

v960 (Version, exit)

Display tool version numbers and exit.

2-58

gcc960 Compiler Driver

W (Warnings)

Enables / disables specific warnings.

W(string]
w

With no arguments, this option prints extra
warning messages for certain events,
including:

longjmp() warnings

Warn when a nonvolatile automatic variable
might be changed by a call itlmgjmp()

These warnings are possible only in an
optimizing compilation.

The compiler sees only the calls to

setimp() . It cannot know where

longjmp() is called; in fact a signal handler
could call it at any point in the code. As a
result, you may get a warning even when
there is in fact no problem because
longjimp() cannot actually be called at the
place that would cause a problem.

return andreturn(value)

Warn when a function can return either with
or without a value. (Falling off the end of the
function body is considered returning with a
value.)

2-59

1960 Processor Compiler User's Manual

2-60

W (continued)

Wall

Waggregate-return

Wcast-align

null effect

Warn when an expression-statement contains
no side effects.

no-op comparison

Warn when an unsigned value is compared
against zero witk or <=,

between-ness comparison

Warn when a comparison likg=y<=zi s
used; this is equivalent {(x<=y ? 1 :

0) <=z} , which is a different interpretation
from that of ordinary mathematical notation.

obsolete storage class specification

Warn when storage-class specifiers like
static are not first in a declaration.
According to the ANSI C standard, this
usage is obsolescent.

partially bracketed initializer

Warn when an aggregate has a partially
bracketed initializer.

Enable the following warning optiong/

Wchar-subscripts , Wcomment Wformat ,
Wreturn-type , Wswitch , Wtrigraphs
Wuninitialized , Wunused. There is no

Wno-all option.

Warn when any functions that return
structures or unions are defined or called.

Warn whenever a pointer is cast such that the
required alignment of the target is

increased. For example, warn whethar

* is castto amt * on machines where
integers can be accessed only at two- or
four-byte boundaries.

gcc960 Compiler Driver

Wcast-qual

Wchar-subscripts

Wcomment

Wconversion

Werror

Wformat

Wid-clash- len

Wimplicit

Warn whenever a pointer is cast so as to
remove a type qualifier from the target type.
For example, warn whencanst char * is
cast to an ordinarghar *.

Warn when an array subscript has tgpar .
This is a common cause of error, as
programmers often forget that this type is
signed on some machines.

Warn whenever a comment-start sequéhce
appears in a comment.

Warn when a prototype causes a type
conversion different from what would

happen to the same argument in the absence
of a prototype. This includes conversions of
fixed point to floating and vice versa, and
conversions changing the width or
signedness of a fixed point argument, except
when these are the same as the default
promotion.

Make all warnings into errors.

Check calls trintf andscanf , etc., to
make sure that the arguments supplied have
types appropriate to the specified format
string.

Warn whenever two distinct identifiers match
in the firstlen characters. This may help
you prepare a program that compiles with
certain obsolete compilers. There is no

[no-] form of this option.

Warn when a function is used without being
explicitly declared.

2-61

1960 Processor Compiler User's Manual

Wmissing-braces

Wmissing-prototypes

Whnested-externs

Woverloaded-virtual

Whparentheses

Whpointer-arith

2-62

Warn when an initializer is not completely
enclosed within braces.

Warn when a global function is defined
without a previous prototype declaration.
This warning is issued even when the
definition itself provides a prototype. The
aim is to detect global functions that are not
declared in header files.

Warn when amxtern declaration is
encountered within a function.

Warn when a derived class function
declaration may be an error in defining a
virtual function. In a derived class, the
definitions of virtual functions must match
the type signature of a virtual function
declared in the base class. With this option,
the compiler warns when you define a
function with the same name as a virtual
function, but with a type signature that does
not match any declarations from the base
class.Wno-overloaded-virtual is the
default. This is a C++-specific option.

Warn when parentheses are suggested around
an expression.

Warn about anything that depends on the size
of a function type or ofoid . gcc960 assigns
these types a size of 1, for convenience in
calculations withvoid* pointers and

pointers to functions.

gcc960 Compiler Driver

Wredundant-decls

Wreorder

Wreturn-type

Wswitch

Wshadow

Wstrict-prototypes

Warn when anything is declared more than
once in the same scope, even in cases where
multiple declaration is valid and changes
nothing.

Warn when the order of member initializers
given in the code does not match the order in
which they must be executeno-reorder

is the default. This is a C++-specific option.

Warn whenever a function is defined whose
return-type defaults tot . Also warn about
anyreturn statement with no return-value
in a function whose return-type is natid .

Warn whenever awitch statement has an
enumeral type index and lacksase for
one or more of the named codes of that
enumeration.

Warn whenever a local variable shadows
another local variable.

Warn when a function is declared or defined
without specifying the argument types. An
old-style function definition is permitted
without a warning when it is preceded by a
declaration specifying the argument types.

2-63

Wtraditional

Witrigraphs

Wouninitialized

® Warn about certain constructs that
behave differently in traditional and
ANSI C:
Macro arguments occurring within string
constants in the macro body. These
would substitute the argument in
traditional C, but are part of the constant
in ANSI C.

® A function declared external in one
block and then used after the end of the
block.

* A switch statement has an operand of
type long.

Warn when any trigraphs are encountered

(assuming they are enabled).

An automatic variable is used without first
being initialized. These warnings are
possible only in an optimizing compilation,
because they require data flow information
that is computed only when optimizing.
When noO option is given, these warnings
are not generated.

These warnings occur only for variables that
are candidates for register allocation.
Therefore, they do not occur for a variable
that is declaredolatile , or whose address

is taken, or whose size is otherthan 1, 2, 4, or
8 bytes. Also, they do not occur for
structures, unions, or arrays, even when they
are in registers.

There may be no warning about a variable
that is used only to compute a value that
itself is never used, because such
computations can be deleted by data flow
analysis before the warnings are printed.

gcc960 Compiler Driver

Wauninitialized
(continued)

Wunused

These warnings are optional because gcc960
cannot foresee all the reasons why the code
might be correct despite appearing to have an
error. Here is one example of how this can
happen:

{ .
int x;
switch (y)
{

case 1: x=1;
break;
case 2: X =4;
break;
case 3. x = 5;

}

foo (x);
}
When the value of is always 1, 2 or 3, then
x is always initialized, but gcc960 doesn't
know this. Here is another common case:
{ .
int save_y;

if (change_y) save_ y=y,y=
new_y;

if (change_y) y = save_y;
}
This has no bug becaussre_y is used only
when it is set.

Some spurious warnings can be avoided if
you declare as volatile all the functions you
use that never return.

Warn whenever a local variable is unused
aside from its declaration, and whenever a
function is declaredtatic ~ but never
defined.

2-65

1960 Processor Compiler User's Manual

2-66

Wwrite-strings Give string constants the typenst
char[length] so that copying the address
of one into a norconst char* pointer
generates a warning.

w (Inhibit Warnings)

Inhibits all warnings.

Z (Specify PDB)

Specifies PDB directory.

Zdirectory
Specifies the name of the program database (PDB) directory.

Before using this option, you should read Chapter 4, “Program-Wide
Analysis and Optimization”, Chapter 5 “Profile Data Merging and Data
Format (gmpf960)”, and Chapter 6, “gcdm Decision Maker Option”.

1Ic960 Compiler Driver

This chapter describes how to use the ic960 driver program to control the
compilation system. Topics include:

® “Controlling the Compilation System with ic960”
® “ic960 and File Use”

® “ic960 Options”

®* “Option Arguments and Syntax”

Controlling the Compilation System with ic960

The ic960 compiler drivelid960.exe in Windows,ic960 on UNIX)

controls the preprocessapp.exe in Windows,cpp.960 on UNIX) and

the compiler ¢cl.exe in Windows,cc1.960 on UNIX). With CTOOLS
release 6.0 ic960 also controls the new C++ compiler (cclplus.exe in
Windows, cclplus.960 on UNIX). It can also invoke the assembler, linker,
and gcdm960 optimization decision maker. The command-line options and
environment variables, described later in this chapter, allow you to control
the compilation.

The drivers invoke the appropriate modules to compile a file based on
filename extensions.

* Files with names ending withc , .cpp , and.cxx are taken as C++
source to be preprocessed and compiled. In UNIX, filenames ending
with .C (uppercase) are treated as C++ source to be preprocessed and
compiled.

* Files with names ending with are taken as preprocessed C++
source to be compiled.

* Files with names ending in are taken as C source to be preprocessed
and compiled.

3-1

1960

Processor Compiler User's Manual

3-2

Files with names ending in are taken as preprocessor output to be
compiled.

Compiler output files plus any input files with names ending iare
assembled.

Input files with names ending i8 (uppercase) are preprocessed and
then assembled. (UNIX only.)

The resulting object files, plus any other input files, are passed to the
linker to produce an executable.

Program-wide and profile-directed optimizations can be performed
during the link step. For an overview of this capability, see Chapter 4,
“Program-Wide Analysis and Optimization”.

Invoking the Compiler with ic960

The ic960 command-line syntax is:

ic960 [-option ... [path] filename

ic960 is the compiler driver executable filename.

option is a compiler option. Case is significant in options and

path

their arguments.

On UNIX, the compiler driver recognizes a letter
preceded by a hyphen)(as an option. In Windows, the
driver recognizes a letter preceded by either a hyphen
(-) or a forward slash' | as an option.

For a complete description of the ic960 options, see the
ic960 Option Reference section. You can also use linker
invocation options in an ic960 command; see Table 3-1

for a summary of these options.

identifies the directory containing the file named by
filename . Not specifyingpath for afilename

causes ic960 to search in the current directory. Each
filename not in the current directory requires a
separate specification phth .

ic960 Compiler Driver

NOTE. Although Windows pathnames require backslashggHhis
manual shows paths using the forward slash required by UNIX (

filename is the name of a source, assembly-language, or object
file to be processed by the compilation system. The
command line allows specification of more than one
[path /] filename

Table 3-1 lists the linker options that ic960 passes directly to the linker. To
pass other options to the linker, useWearg pass-through option.

ic960 Sample Command Lines

This section provides exampleshofv the compiler is commonly invoked.
All these examples assume that you have C source files namedind
t2.c or C++ source files namg.cc andt2.cc . All examples assume
that you are generating code for the i960 CA architecture.

Preprocessing a Source File

To preprocess a source file to stdout, use the command:

ic960 -E tl.c

or

ic960 -E tl.cc

-E informs the compiler to preprocess the source file.

Generating a Preprocessed C++ Source File

To generate a preprocessed C/C++ source file use the following command.
The command generates a preprocessed source file namedfor C) or

tL.ii (for C++).

ic960 -P tl.c

or

ic960 -P tl.cc

1960 Processor Compiler User's Manual

-P instructs the ic960 compiler to preprocess the file and
store the output irbasename>.i for C or
<basename>.ii for C++.

Generating Assembly Code

This example generates assembly code for the i960 CA architecture. The
command lines below each generate an assembly language file named
tl.s

ic960 -S -ACA tl.c

or

ic960 -Felf -S -ACA tl.cc

-Felf specifies ELF object module format, which is required
for C++. The default object module format is b.out.

-S instructs the compiler to generate assembly code.

-ACA specifies the i960 CA architecture.

Generating an Object Module with Debug Information

To generate a object module with debug information, use the following
command.

ic960 -c -g -ACA tl.c

or
ic960 -Felf -c -g -ACA tl.cc

-g instructs the compiler to generate debug information.
-c instructs the compiler to generate an object file.

Generating an Executable

To generate an absolute module (executable file) for a Cyclone board with a
CA processor, use the following command.

ic960 -ACA -Tcycx -g -O1 tl.c t2.c -o test
or
ic960 -Felf -ACA -Tcycx -g -0O1 tl.cc t2.cc -o test

ic960 Compiler Driver

The above command compiles the source files and links them with
appropriate libraries to generate an absolute module targeted for a Cyclone
1960 Cx board.

-Tecyex use the linker directive file for a Cyclone i960 Cx
evaluation board.

-01 causes the compiler to perform some basic
optimizations on the generated code.

-0 test instructs the compiler to name the generated executable
test .

ic960 Linker Options

When you do not specify a target with thearget option, ic960 does not
attempt to link programs for a specific target board. Unless otherwise
specified, source files with recognized extensions (ew., , .s) are
compiled and/or assembled, and the following linker command is issued:
Ink960 -AKB file.o ... -Iqf

ic960 links in the profiling library-lgf) by default. To avoid linking in the
profiling library, invoke Ink960 directly to perform your final link. You can
also link in your own libraries (lib1, lib2...) if needed.

Ink960 -AKB file.o ... -llibl -llib2

You can invoke ic960 to create object files in either the COFF or ELF object
module format. The compilation system acceptsthdf option to
generate COFF and tirelf option to generate ELF. ELF is the only
supported format for C++.

Fcoff is the default. For more detailed information, see the following
discussions of compiler invocation and options.

3-5

1960 Processor Compiler User's Manual

Table 3-1 Linker Options Accepted by ic960

Option Name Description

I Archive file specifies an archive file as input.

X Compress removes local symbols from the output
symbol table.

L Library search adds directories to search for libraries,
configuration files, and startup object files.

m Map creates a linker memory map file.

r Relocation retains relocation information in the output
object file.

S Strip strips line-number entries and symbol-table
entries from the linker's COFF output file.

T Target specifies the file describing the target
environment.

u Undefine introduces an unresolved symbol, causing the
linker to search symbol tables for resolution of
the reference.

gcdm Decision invokes gcdm960 decision maker.

Maker

For more information on the linker, see tB60 Processor Software

Utilities User’s Guide

ic960 and Predefined Macros

Predefined macros within a program can act as constants during execution
or as values in conditional-compilation statements. Predefined macros
include ANSI C macros and macros specific to the i960 processor
architecture. The (Undefine) option can remove i960 processor-specific
macros but not ANSI C macros.

The following macros are available in accordance with the ANSI standard
for C, as described in the bodk; A Reference Manual

__DATE__ __FILE__ __LINE__ _TIME__ _ STDC__

ic960 Compiler Driver

The following macros are predefined by the compilation system when
invoked with the ic960 driver program:

__1C960 indicates the CTOOLS960 compilation
system. The compiler definesIC960
automatically, when invoked with the ic960
driver.

__1C960_VER is defined to a decimal number that can be used
to check the version number of the compiler.
The number is expressed in decimal as
MmmPPPRihereMis the major version number,
mmis the minor version number, arR&PPis an
internal version number that is used to track the
patch level. So, for example, R6.5 patch level
4008 has_1C960_VER defined to be 6054008.

__i960 indicates the i960 processor environment. The
compiler defines_i960 automatically. This
macro can be used to identify the parts of a
program specific to the 1960 processor.

__i960xx indicates the i960 processor instruction set in
use. The compiler automatically defines the
__i960 xx macro. Thew is SA SB, KA, KB,
CA CF JA, JD, JF, JT, HA HD HT, RD, orRP.
Definition of xx depends on the specific 1960
processor instruction set specified by the
(Architecture) option or thi960ARCH
environment variable.

__PIC indicates that the generated code is
position-independent. Thpc
(Generate-for-position- independent-code)
option causes the PIC macro to be defined.

1960 Processor Compiler User's Manual

__PID

__i960_BIG_ENDIAN

__STRICT_ANSI__
__STRICT_ANSI

__SIGNED_CHARS__

__CHAR_UNSIGNED__

indicates that the generated data is
position-independent. Thepd
(Generate-for-position- independent-data)
option causes the PID macro to be defined.

indicates that the generated code is arranged for
big-endian address space. T@ebe
(Generate-big endian) option causes this macro
to be defined.

indicates that C constructs not conforming to
the ANSI standard should be flagged. &he
(ANSI) option causes these macros to be
defined.

indicates that the plaichar type are treated
like thesigned char type. This is the default.

indicates that the plaichar type are treated
like theunsigned char type. TheG cu
(Generate-char-unsigned) option causes this
macro to be defined instead of
__SIGNED_CHARS_..

ic960 and Environment Variables

Environment variables specify default directories for input files, temporary
files, libraries, the assembler, and the linker. In addition9BGARCH
environment variable specifies the default architecture. The compilation
system uses the following environment variables to set defaults:

[960ARCH specifies an architecture other than the 1960 KB
processor for code generation. The possible definitions
for I960ARCH areCA CF, HA HD, HT, KA, KB, RD, RR, SA,

SB, JA, JD, JF, orJT. TheA (Architecture) option
overrides the architecture specifiedd60ARCH. In the
absence 0f960ARCH and the Architecture option, the
compiler selects the 1960 KB processor architecture.

ic960 Compiler Driver

[960BASE

[960AS

1960CC1PLUS

1960CPP

1960CC1

1960DM

contains the pathname of the top-level directory
containing the files and directories needed by the
compiler. This environment variable is necessary for
every phase of compilation. The driver USSBOBASE

to find the preprocessor, compiler, assembiler, linker, and
include files.

To invoke the preprocessor and compiler, the ic960
driver looks in thdib directory underi960BASE .

To invoke the assembler and linker, the driver looks in
thebin directory under the directory specified by
I960BASE .

To find include files, the driver looks in theclude
directory under the directory specified ISgOBASE .

The linker looks for libraries, startup modules, and
configuration files in théib directory under the
directory specified by960BASE .

specifies a non-default pathname for the assembler. The
pathname must include the name of the executable. In
the absence 0960AS , ic960 looks for the assembler in
bin under the directory specified 360BASE .

Specifies an alternate name for the C++ compiler when
using the ic960 driver. The default pathname is
1960BASE/lib/cc1plus.960

(1960BASE\lib\cc1plus.exe in Windows).

specifies an alternate name for the preprocessor. The
default pathname i960BASE/lib/cpp.960
(1960BASE\lib\cpp.exe in Windows).

specifies an alternate name for the compiler. The default
pathname i$960BASE/lib/cc1.960
(I1960BASE\lib\ccl.exe in Windows).

specifies an alternate name for the gcdm960
optimization decision maker.

1960 Processor Compiler User's Manual

[960ERR

1960INC

1960LIB

1960LD

1960PDB

3-10

The assembler, linker, and other tools can redirect errors
to the standard error streastderr). To use this
capability, set the Windows environment variable
I960ERR to any string, as in:

SET I1960ERR="Enable stderr"

LeavingI960ERR unset directs error output to the
standard output strearstdout).

specifies a non-default pathname for the directory
containing include files. In the absencea®DINC , the
driver looks for include files in thiaclude directory in
the directory specified und&¥60BASE .

, 1960LLIB

contain additional pathnames of libraries. Definition of
I1960LIB causes the linker to search for libraries in the
directory specified by960LIB . In the absence of
1960LIB , the linker searches tlib directory in the
directory specified by960BASE . Definition of

I960LLIB causes the linker to search the directory
specified byi960LLIB before searching thid

directory in the directory specified l§60BASE . For a
complete description of the search algorithm used by the
linker, see thé@60 Processor Software Utilities User's
Guide

contains an alternate pathname of the linker. The path
must include the name of the executable. In the absence
of 1960LD , ic960 looks for the linker in than

directory under the directory specified IB0BASE .

defines the location of the program database for use with
profile-driven optimizations. Thed (Program

Database) option overrides this environment variable
and allows specification of an alternate database
directory.

ic960 Compiler Driver

TEMP, TMP, TMPDIR, G960TMP
contain the pathname of the directory used for compiler
temporary work files. In the absencetbise variables,
the compiler attempts to write temporary work files to
the current working directory in Windows, anditrap
or/usritmp on UNIX.

ic960 and File Use

The compiler, assembler, and linker all use filenames specified on the ic960
command line to find and create input and output files. In addition,
translation and linking require temporary work files. Environment variables
allow specification of default directories for work files.

Input Files

The ic960 command line allows filename inputs that support specification
of assembly-language files, preprocessed source files, C/C++ source files,
object files, and libraries. The compiler driver determines the type of each
input file by the filename extension, as follows:

filename. c indicates a C source file that can contain macros and
preprocessor directives.

filename .cc, .cpp, .CXX
indicates a C++ source file that can contaix
macros and preprocessor directives.

filename .C indicates a C++ source file that can contain macros and
preprocessor directives (UNIX only).

filename i indicates a preprocessed C source file.

filename i indicates a preprocessed C++ source file.

filename .s indicates an assembly-language source file.

3-11

1960 Processor Compiler User's Manual

3-12

The driver passes any other filename to the linker. The linker then
determines whether the file is an object file, library, or configuration file.

Input files not needed for processing are not processed. For example, if you
specify an assembly-languagi#eame .s) file and also specify the

(Save assembly) stop-after option, ic960 takes no action on the
assembly-language file because processing stops after compilation and
before assembly.

Include Files

The ic960 command line allows insertion of text from include files. Both
thei (Preinclude) option and th#énclude preprocessor directive cause
text insertion.

The#include preprocessor directive causes a search of the directory or
directories indicated by the(Searchinclude) option. In the absence of the
| option, ic960 searches the current directory, the directory defined by the
I960INC environment variable, or th860BASE/include directory.

NOTE. The include filegcache.h ,dcache.h , andtimer.h used for
on-chip cache and timer control are not supported with AP option.

Temporary Files

The compiler, assembler, and linker automatically create and delete
temporary work files. You need not remove temporary work files unless
your host system loses power or some other abnormal termination prevents
the compilation system from cleaning up its work files.

The compiler selects a directory for temporary work files as follows:

G960TMPTEMPTMPDIR TMP .\ (Windows),/tmp (UNIX), /usr/tmp
(UNIX).

ic960 Compiler Driver

Table 3-2

Output Files

Specifying a Stop-after optiom(, -Q, -E, -P, -S, or-c) causes the

compilation system to produce a separate output file representing the output
of the last phase that completes for each primary input file. An output file
can be a preprocessed source file, an assembly-language file, a listing file, a
map file, or an unlinked object file. If no errors occur during processing, the
output files created by the stop-after option are usable as input to a future
ic960 invocation. Table 3-2 lists the compilation phases and their inputs and
outputs.

Specifying thez (Listname) option allows specification of a list file
filename; ic960 places all listings in the single file specified. If you do not
usez, ic960 produces a separate list file for each primary C/C++ source file.
Each filename has the forfie .L , wherefile is the same name as the
C/C++ source file.

Intermediate Inputs and Outputs

Last Phase Stop-after
Completed Option Inputs Outputs
preprocessing B E, or C/C++ source files preprocessed files
Q or display on
standard output
syntax n C/C++ source files syntax error list
checking preprocessed files listing files
compilation S C/C++ source files assembly-language
preprocessed files file listing files
assembly c C/C++ source files unlinked object files

preprocessed files listing files
assembly files

continued U

3-13

1960 Processor Compiler User's Manual

Table 3-2 Intermediate Inputs and Outputs (continued)
Last Phase Stop-after
Completed Option Inputs Outputs
linking (default) C/C++ source files list files
preprocessed files executable file
assembly files map file

unlinked object files relinkable object file
relinkable object

files libraries

configuration files

When specifying only one primary input file, théOutput) option names a
single output file besides the listing file. Specifying multiple primary input
files, or not specifying an output filename, causes ic960 to use the primary
input filenames to derive corresponding default output filenames with the
form filename .e , where:

filename is the primary input filename without its extension.

e is a single-letter extension indicating the contents of a
file, as follows:

i indicates a preprocessed C source file from the
P (Preprocess-files) stop-after option.

i indicates a preprocessed C++ source file from the
P (Preprocess-files) stop-after option.

s indicates an assembly-language file
from theS (Save assembly) stop-after
option.

o indicates an object file from the
(Create-object) stop-after option.

L indicates a listing file from the
z (List) option.

Unless otherwise specified, the destination directory for any output file is
the current working directory. Hlename .e already exists in the
destination directory, the compilation system overwrites the existing file.

3-14

ic960 Compiler Driver

The filenamea.out is the default for the executable COFF object file from
the linker, produced in the absence of the stop-after options and the Output
option. For ELF files, the default ésout .

Creating a linker configuration file containing information for preparing an
absolutely relocated module, a module for incremental linking, or code
ready for programming into read-only memory (ROM) allows for additional
file types. For more information on linker configuration, se€968
Processor Software Utilities User's Guide

The following examples illustrate the creation and use of output filename
extensions:

® The command960 -c -zs proto.c protol.i produces the
object filesproto.o andprotol.o and the listing filegproto.L and
protol.L

® The commandt960 -c -o proto_vi.o -Zs proto.c
produces the object filgroto.o and the listing filgroto.L

® The commandt960 -ACA -Tcycx proto.c produces the
executable file.out .

Ic960 Options

This section describes the ic960 compiler driver options that allow control
of various aspects of compilation:

Input processing Thec, E, n, P, Q ands are the Stop-after options.

and output They stop the translation and linking process after

the preprocessing, syntax checking, compilation,
or assembly phase. A Stop-after option causes the
compilation system to save the intermediate
output of the last phase to execute.

The C (Keep-comments) and(Mix) options
affect the contents of the output file. The

(Output) option allows specification of the output
filename.

3-15

1960 Processor Compiler User's Manual

3-16

Specifying
included source
text

Defining macros

Control contents
of generated
object code

Assembler and
linker support

Whole-program
optimizations

Thei (Preinclude) andl (Searchinclude) options
prepend and find include files of C/C++ source
text.

TheD (Define) andJ (Undefine) options allow
specification of macros for conditional
compilation.

The A (Architecture) Fcoff/Felf

Object-format) F (Fine-tune)f (Optimize),g
(Debug),G (Generate), and (Optimization-level)
options control the instruction set, object format,
debug information, and optimization level.

Thew(Pass) option relays options to the
preprocessor, compiler, assembler, and linker. In
addition, ic960 recognizes some options as linker
options rather than compiler options. Table 3-1
lists the options that are relayed to the linker
without the Pass option. For more detailed
information on linker options, see tf860
Processor Software Utilities User's Guide

Thefdb (Program Databasefhrof
(Instrumentation), andcdm (Decision Maker)
options allow for creation and use of information
necessary for advanced optimizations involving
multiple modules and optional execution

profiles. See Chapter 4, “Program-Wide Analysis
and Optimization” for an overview of
whole-program and profile-driven optimization.

ic960 Compiler Driver

Provide Thew (Diagnostic) anc (ANSI) options affect
Information on messages the compiler produces about C syntax
the compiling and semantics. The(List) andz (Listname)
process options specify the contents and name of the

listing file. Thev (Verbose)yV (Version), and

v960 (Version-exit) options display information
about preprocessor, compiler, assembler, and
linker options. The Version option displays the
versions of each compilation component and the
host operating system. TiWarnings) option
allows fine control of the level of warnings
emitted.

Option Arguments and Syntax

Some compiler driver options take arguments. Whitespace is optional
between an option and its argument. Case is significant in options and
arguments.

The options and arguments have default settings. In most cases, the option
is “off,” that is, not in effect. Default settings of options and arguments are
summarized in Table 3-3 and further discussed in the detailed description of
the option. Some option defaults are affected by environment variables, as
noted in the option descriptions.

This chapter uses the following notation:

[item] Square brackets indicate that the enclosed item is
optional.

Horizontal ellipses indicate that you can use multiple
instances of the preceding item.

If two or more options contradict each other, the right-most option in the
command line takes precedence. For example, the following command line
sets the value of the symhboto 132:

ic960 -DL=80 -DL=132 proto.c

3-17

1960 Processor Compiler User's Manual

3-18

Table 3-3 ic960 Option Summary
Option Name Purpose Default
A arch Architecture Select the instruction set. AKB
a ANSI Warn about non-ANSI source. Do not warn
b size Limit- Limit optimization of functions with b 2500
optimizations more than size asm instructions.
Cc Keep-comments Keep comments in preprocessor Strip
output. comments
c Create-object Stop after creation of object file. Do not stop
D symbol Define Define symbol. symbol=1
[=value]
E Preprocess - Write preprocessed source to stdout; Do not stop
stdout terminate.
Fcoff | Felf Object-format Generate COFF or ELF object format. Fcoff
fdb Database Build program database (PDB). No database
fprof Instrument Compile with instrumentation; build No instrument-
PDB. ation
F [nolarg Fine-tune Adjust optimizations.
f [nolarg Additional Enable or disable an optimization.
fine-tune
G arg [,arg]... Generate Control code generation options. G cs,dc
g [level] Debug Include debug information in objects. No debug info
gcdm Decision-maker Invoke gcdm960 decision-maker. Do not invoke
gcdm960
h Help Display invocation help; terminate. No help text
| dir Searchinclude Search dir for include files.
i filename Preinclude Prepend text to source files.
J arg[,arq]... Miscellaneous Selects miscellaneous controls. J nogd
j num Errata Specify processor errata.
M Mix Mix C/C++ text with assembly output. No C text
continued []

ic960 Compiler Driver

Table 3-3 ic960 Option Summary (continued)
Option Name Purpose Default
n Syntax only Check syntax; list errors; terminate. Do not stop
O level Optimize Specify optimization level (0, 1, 2, or o1
5).
o filename Output Name output file. filename=a.out
P Preprocess - file ~ Write preprocessed source text to files; Do not stop
terminate.
Q Dependencies Print include-file dependencies; No print
terminate.
S Save-assembly Save assembly-language output. Do not save
U symbol Undefine Undefine symbol.
\% Version Display version information. No display
v960 Version-exit Display version information and exit.
v Verbose Display invocation information. No display
W phase Pass Pass arguments to preprocessor,
arg [,arg... compiler, assembler, or linker.
W [no-]arg Warnings Enable/disable a warning.
w level Diagnostic- Control diagnostic messages. level=1
level
Y d,dirname Program Specify location of program database. 1960PDB
database specifies
location
Z filename Listname Name listing file. Compiler
generates
name
z arg List Produce listing file. No listing

3-19

1960 Processor Compiler User's Manual

A (Architecture)

Selects the instruction set.

Aarchitecture
architecture is one of:
CA CFE KA, KB, RD RP SA, SB, HA HD, HT, JA, JD, JF, orJT

Default

By default, the compiler uses the 1960 KB architecture. I3¢@®\RCH
environment variable can override the default architecture.

Discussion

UsetheA (Architecture) option to specify the target instruction set. This
option overrides the environment variald80ARCH. See also the

-Gcore0 , -Gceorel , -Gceore2 , and-Gecore3 options that let you generate
code that is compatible with multiple i960 processor types.

E NOTE. With release 6.0, using th&RP or-ARD option generates
code that is compatible with current and proposed future variations on
the 1960 Rx architecture.

You can use predefined macros in your source text to conditionally compile
code for the selected architecture. The compiler defines a preprocessor
macro indicating the selected architecture. The preprocessor macro takes
the form:

__ 1960 xx

XX is CA CF, KA KB, RD, RR SA, SB, HA HD HT, JA, JD, JF,
orJT. The compiler selects the valuexaf according
to the architecture you specify.

3-20

ic960 Compiler Driver

In addition to__i960 xx, the__i960 macro is defined for all architecture
selections. Use i960 to identify parts of your program specific to the
1960 architecture but not necessarily specific to a particular processor.

In addition, for compatibility with earlier releases, macros of the forms:
i960 , 960 _ , i960 xx__and_ _i960_ xx__ are defined.

If you link object modules compiled with incompatible architectures, the
linker displays the following warning message:

file : architecture i960: XXincompatible with output

i960: YY

file is the first file containing incompatible instructions the
linker encounters.

XX is one of the two-letter architecture abbreviations.

YY is one of the two-letter architecture abbreviations.

Example

The following example selects the i960 KA instruction set:
ic960 -AKA proto.c

a (ANSI)

Flags non-standard constructs.

a

Default

The compiler accepts constructs that are legal under Kernighan and
Ritchie's definition of the C language but that do not comply with the ANSI
standard.

3-21

1960 Processor Compiler User's Manual

Discussion

Use the ANSI option to flag old-style C constructs that are legal according
to Kernighan and Ritchie's definition TheC ProgrammingLanguage but

are not legal according to the ANSI standard. When the ANSI option is in
effect, the compiler prints warning messages for each occurrence. This is a
C-specific option.

E NOTE. When this option is in effect, if your program contains in-line
assembly-languagedm) statements, the compiler treats the statement as

a regular function call and produces code for the call. For example, if
your program contains the following line:
asm("flushreg");
The compiler produces the following code:

callj _asm
LFCO.$:

asciz "flushreg"

The linker may then generate an error for an undefined extern for the
_asm call.

To useasm statements and functions with theption, use the asm
keyword.

Specifying thea (ANSI) option can override the (Diagnostic-level)
option, as follows:

-a -w2 has the same effect as -w1; that is, errors and major
warnings appear.

-a -wl errors and major warnings appear.

-a -wo0 errors and all warnings appear.

3-22

ic960 Compiler Driver

Example

The following example causes the compiler to issue an error message when
it encounters a non-standard C construct. Because of(tbeeate-object)
option, the compiler stops after creating an object file:

ic960 -c -a proto.c

Related Topic
W(Warnings) w (Diagnostic-level)

b (Limit-optimizations)

Limits optimizations.

bsize

size is a positive decimal integer.

Default

Having more than 2500 intermediate language statements in a function
causes the compiler to disable some global optimizations.

Discussion

As function size increases, the compiler slows. H fl@mit-optimizations)
option allows you to alter the threshold at which optimizations are scaled
back when functions are too large to compile quickly.

Example

In the following example, thie (Limit-optimizations) option forces
suppression of global optimization for functionginto.c larger than
2000 intermediate language statements.

ic960 -b2000 -S proto.c

3-23

1960 Processor Compiler User's Manual

3-24

Related Topic
O (Optimize)

C (Keep-comments)

Keeps comments in preprocessor output.

‘E-C
P-C

Default
All comments are stripped away.

Discussion

Use theC (Keep-comments) option to preserve comments normally stripped
by the preprocessor. This option modifies ErendP Stop-after options.

Using theC (Keep-comments) option alone neither generates a preprocessor
listing nor stops the processing after the preprocessor phase.

Example

The following example uses titg Keep-comments) option to modify tRe
(Preprocess - file) option. The output is a newly created file named

proto.i , containing the comments as they appear in the original C source
text.

ic960 -P -C proto.c

Related Topics
E (Preprocess - stdout) P (Preprocess - file)

ic960 Compiler Driver

c (Create-object)

Create object file; terminate.

c

Default
Create an executable file after the link phase of the compilation process.

Discussion

If you specifyc (Create-object) the compilation process terminates after the
assembler generates an object file. If you do not specify (Daitput)

option, the compiler writes the object filefiename .o, where

filename is the source filename.

Examples

1. The following example produces the objectfileto.o but no
executable file:
ic960 -c proto.c

2. The following example produces the object fjesto.o ,tl.0 , and
protol.o inthe current directory but creates no executable file:
ic960 -c proto.c tl.s protol.i

Related Topics
o (Output) Stop-after options

D (Define)

Define a symbol.

D symbol[= value]

3-25

1960 Processor Compiler User's Manual

3-26

symbol is a symbolic name.
value is a value. The value can be any string.
Default

If you definesymbol without specifyingvalue , the preprocessor assigns
the value 1 taymbol .

Discussion

Use theD (Define) option to create a symbol with a giverlue . You can
use theD (Define) option more than once in an invocation.

You can use the (Define) option with conditional compilation to create
macros to select source text during preprocessing. A macro defined in the
invocation command remains in effect for each module compiled, unless
you remove the macro with tlendef preprocessor directive or the
(Undefine) option. The compilation system processes all (undefine)
options in a command-line only after processing alQi{Pefine) options.

Example

The following example invokes the preprocessor WIKONGPATHSsO that
PATHLENGTHSb defined with the value 128 in the source file. Since the
macroLONGPATHs defined without a value, it defaults to 1:

ic960 -c -D LONGPATH proto.c
The source text is:

#ifdef LONGPATH

#define PATHLENGTH 128
#else

#define PATHLENGTH 45
#endif

Related Topics

#define
#undef

U (Undefine)

ic960 Compiler Driver

E (Preprocess - stdout)

Preprocess; write output to screen;

terminate.

E

Default

After the link phase of the compilation process is complete, an executable
file is produced.

Discussion

If you specifyE, the compilation process terminates after preprocessing and
the compiler writes preprocessor output with line number directives to
standard output.

Example

The following example runs only the preprocessor phase, sending the
preprocessed source text to the screen:

ic960 -E proto.c

Related Topics
Stop-after options

3-27

1960 Processor Compiler User's Manual

Fcoff | Felf (Format)

Specifies object format.

Fcoff specifies the COFF object format, and causes the
assembler to be invoked as asm960. You can adg the
option to specify the style of symbolic-debug symbols
created.

Felf specifies the ELF object format, and causes the
assembler to be invoked as gas960e, rather than asm960.
If you add they option, the DWARF style of
symbolic-debug symbols is used. ELF is the only
supported format for C++.

E NOTE. Unlike gcc960, ic960 does not support the b.out object module
format.

F (Fine-tune)

Adjust optimizations.

Fargl[, arg]...
arg isany of:

F[no]ai enables/disables procedure in-lining using
heuristics at optimization level 2.

3-28

ic960 Compiler Driver

F[no]ca

F[no]cb

F[no]lp

F[no]pf

F[no]sa

sb | nosb

tce | notce

Default

enables/disables code alignment; generate (do
not generate) alignment directives prior to
labels that are not entered from above.

enables/disables use of compare and branch
instructions.

enables/disable code generation of functions
using thebal calling sequence at optimization
level 1 or 2nolp is the default at optimization
level 1, andp is the default at optimization
level 2.

This option is obsolete. It is recognized but has
no effect.

determines whether or not the compiler risks
generating memory references that are not
provably aligned. Ifnosa is selected, the
compiler occasionally generates potentially
unaligned references when it seems
advantageous to do so. Whesa is enabled,
sequences of smaller memory references are
used instead of larger ones that might not be
correctly aligned.

enables/disables superblock formation.
Suppressing this optimization may reduce your
application's code size.

enables/disables conversion of tail calls into
branch instructions at optimization level 1 or 2.
notce is the default at optimization level 1, and
tce is the default at optimization level 2.

The set of optimizations performed is determined by the argument Of the

(Optimize) option.

3-29

1960 Processor Compiler User's Manual

3-30

Discussion

Use theF (Fine-tune) option to fine-tune how your code is optimized. For
general purposes, the optimization level specified wittotf@ptimize)

option is sufficient. The optimizations performed at each level balance
considerations of code quality, ease of debugging, and compilation time.
However, circumstances can call for use of, or disabling of, some specific
optimizations.

Example

To disable heuristic function in-lining and leaf procedure generation when
compiling at optimization level 2, enter the following:

ic960 -F noai,nolp -O2 proto.c

fdb (Database)

Builds optimization database.

All modules subject to program-wide optimization must be initially
compiled with thedb option. This option causes the insertion of program
database information in the object modules, and it implies a minimum
module-local optimization level @1 (although higher module-local
optimization levels are allowed).

This option does not otherwise change the code or data generated for the
object modules in any way. It simply makes information collected during
initial module compilation available to the global decision maker (gcdm).
Before using thédb option, you should read Chapter 4, “Program-Wide
Analysis and Optimization”, and Chapter 6, “gcdm Decision Maker
Option”.

If you intend to use execution profiles when optimizing your application,
you should read Chapter 5, “Profile Data Merging and Data Format
(gmpf960)”.

ic960 Compiler Driver

fprof (Instrument)

Instruments code for profile creation.

This compiler driver option inserts execution profile instrumentation code
into the generated code during compilation, so that when the linked
program is executed, a profile can be collected.

This option implies théb option (described previously) that causes the
insertion of program database information in the object modules and the
creation of the program database. Sipeef impliesfdb , forof also
implies a minimum module-local optimization level of O1 (although high
module-local optimization levels are allowed).

When you compile with théprof — option, a special profiling library
required for profile collectionibgf) is linked automatically. If your
target environment does not support file 1/0, you must explicitly link an
alternate profiling librarylibg). The profiling libraries provided are
identified in Chapter 2 of th®60 Processor Library Supplement

Note that when théprof option is used in this manner, the generated
object module contains code is unsuitable for linking into programs that are
not supposed to collect profile information. To solve this problem, and
avoid having inappropriate instrumentation in widely-used library modules
for example, usefprof with thegcdm,subst option instead.

Before using théprof option, you should read Chapter 4, “Program-Wide
Analysis and Optimization”, Chapter 5, “Profile Data Merging and Data
Format (gmpf960)”, and Chapter 6, “gcdm Decision Maker Option”.

3-31

1960 Processor Compiler User's Manual

3-32

f (Additional Fine-tune)

Additional optimization adjustments.

f [no-] arg
arg is any one of the optimizations listed below. This option takes only
one argument; use a separateption to enable/disable an optimization.

Thef [no-] arg option is supported to allow access to optimization
controls that are supported by the gcc960 compiler driver.

Note that most of these options are controlled automatically by the various
optimization levels. Therefore, some of them may be ignored for certain
compilations. For example, at optimization |e@@] you cannot enable
instruction scheduling witfschedule-insns . To check whether one of
these options has the desired effect, compare the generated assembly code
with and without the option.

[no-]access- Enable all access checking. This is normally

control used to work around access control bugs.
Faccess-control is the default. This is
C++ specific option.

bbr Enable basic block rearrangement.

coalesce Coalesce adjacent memory references into a

single reference of a larger size, to take
advantage of the processor’s burst bus. Only
memory references that can be proven to be
contiguous and whose base address can be
proven to be aligned properly are

coalesced. This option implies

fshadow-mem .

coerce Enable byte/short optimization.
cond-mismatch Allow type mismatch in operands of the
operator.

ic960 Compiler Driver

condxform

[no-]conserve-
space

constprop
copyprop
cse-follow-jumps
cse-skip-blocks

[no]dollars-in-
identifiers

[no-]lenum-int-
equiv

expensive-
optimizations

float-store

Enable 80960 conditional instructions.

Allocate uninitialized global variables into

the common segment, as C does. This saves
space in the executable at the cost of not
diagnosing duplicate definitions.
Fno-conserve-space is the default. This

is a C++ specific option.

Enable constant propagation and folding.
Enable copy propagation.

Enable a limited form of global CSE.
Enable a limited form of global CSE.

Accept “$” in identifiers. ANSI C and C++
forbid “$” in identifiers.
Fno-dollars-in-identifiers is the
default wheransi is specified.

Allow implicit conversion of integer to
enumeration types. Normally the compiler
allows conversion of enum to int, but not
vice versaFno-enum-int-equiv is the
default. This is a C++ specific option.

Enable some minor optimizations.

Do not store floating-point variables in
registers, and do not perform common
sub-expression elimination on floating-point
expressions.

3-33

1960 Processor Compiler User's Manual

[no-]for-scope

force-addr

[no-]huge-
objects

fint-alias-ptr

fint-alias-real

3-34

Limit the scope of variables declared in a
for-init statement to the for loop itself, as
specified by the draft C++ standard. When
you specify-fno-for-scope , the scope of
variables declared in a for-init-statement
extends to the end of the enclosing scope, as
was the case in old versions of gcc960, and
other (traditional) implementations of C++.
ffor-scope is the default. Thisis a C++
specific option

Place address constants in registers before
use.

The implementation of virtual function calls
assumes that the size of an object can be
represented with a short integer. Use this flag
to support virtual function calls for objects
that exceed the size that can be represented
by a short integer. Use this flag only if the
compiler requests you to do so. Note that the
C++ library sources need to be recompiled
with Fhuge-objects if you plan to link

with the C++ librarieskEno-huge-objects

is the default.

Indicates to the compiler that pointer objects
may be referenced as 32-bit integers and vice
versa.

Indicates to the compiler thbat

double , andlongdouble objects (or parts
thereof) may be referenced as 32-bit integers
and vice versa.

ic960 Compiler Driver

fint-alias-short

keep-inline-
functions

Indicates to the compiler that four-byte
integer objects may be referenced as
two-byte integer objects and vice versa.

The aliasing options listed above tell the
compiler not to use certain kinds of type
information when disambiguating memory
references, even though it could do so
according to ANSI C section 3.3
(disambiguation constraints).

The rules enforced by the aliasing options
are transitive. For example, if user code
accesses parts dbuble objects ashort |,
thenfint-alias-real and

fint-alias-short should both be used.

The rules are also applied recursively to
structs and unions. That is to say, if
fint-alias-ptr is in use, then a union

that has a member of pointer type is assumed
to be aliased by 32-bit integers or by
structures or unions containing

Note that ANSI C 3.3 requires the compiler
to assume thathar references alias all
types, so code usirgpar pointers for this
sort of thing is already correct and using
these options is not necessary.

Using all three aliasing options effectively
disallows all use of type information in
memory disambiguation. This is bad both
for compiler performance and the efficiency
of generated code.

Emit out-of-line code for inlined functions

3-35

1960 Processor Compiler User's Manual

3-36

marry_mem

F[no-Jmemoize-
lookups

F[no-]save-
memoized

rerun-cse-after-
loop

sblock

schedule-insns
schedule-insns2
shadow-globals
shadow-mem
space-opt

split_mem

strength-reduce

F[no-]strict-
prototype

[no-]this-is-varia
ble

thread-jumps

unroll-all-loops

Rejoin multi-word moves split by
fsplit_mem

Use heuristics to compile faster. These
heuristics are not enabled by default, since
they are only effective for certain input files.
Other input files compile more slowly. You
may use either option to compile using
heuristics. These are C++ specific options.

Reiterate CSE after loop optimization.

Enable/disable superblock formation. This
option is normally used in a second-pass
recompilation, but it can also be used in a
single-pass compilation.

Perform pre-register-allocation scheduling.
Perform post-register-allocation scheduling.
Shadow memory locations in registers.

Like shadow-globals , but more thorough.
Optimize for code size.

Split multi-word moves for copy
propagation.

Enable loop strength reduction.
Treat a function declaration with no
arguments, such at foo (); " to
mean that the functiofioo takes no

argumentsFstrict-prototype is the
default. This is a C++ specific option.

Permit assignment to “this”.
Fno-this-is-variable is the default.
This is a C++ specific option.

Enable an advanced branch optimization.
Unroll all loops.

ic960 Compiler Driver

unroll-loops

virtual-opt

volatile
volatile-global

writable-strings

Default

Unroll loops where deemed beneficial.

Optimizes the dispatch of virtual functions.
This optimization can be used only in a
2-pass scheme. By default, this optimization
is not enabled. This optimization can be used
only when certain conditions are met. See
“Optimizing Virtual Function Dispatch” in
Chapter 12 for more details. This is a
C++-specific option.

Treat indirect memory references as volatile.
Treat all memory references as volatile.

Place string literals imdata section.

The set of optimizations performed is determined by the argument of the

O(Optimize) option.

G (Generate)

Select code generation options.

Garg|, arg]...

arg is one of the following:

abi

Generate 80960 ABI-conformant code. This
causes thehar type to be signed, enums to be
four bytes in size and signed, and changes
default alignment rules for structs and unions.
See Chapter 7, “C Language Implementation
for more information.

3-37

1960 Processor Compiler User's Manual

ac=n

bc

be

cave

core0 |corel |
core2 |core3 |

Alignsstruct data types on the byte boundary
specified byn. ncanbe 1, 2, 4, 8, or 16.

Generates code that is backwardly-compatible
with releases of ic960 before Release 3.0.

Generates objects that execute in a big-endian
memory environment.

Generate all functions as CAVE secondary
functions.

generate code that is compatible with multiple
1960 processor types. Additionally, when you
use aGcore option, you can include another
-A switch to generate code that is optimized for
a particular architecture, but still compatible
with a group of architectures. The table below
lists the architectures that are supported by a
-Gcore option and theA options that you

can use with them.

Table 3-4 Gcore Supported Architectures

Option Name

Compatible Architectures Can Be Used With

Gcore0

JIx, HX, Rx -AJA , -AJD, -AJF,

-AJT, -AHA, -AHD
-AHT, -ARD,
or -ARP

Gcorel

Kx, Sx, Cx, Jx, Hx Any architecture

option except -ARP
or -ARD

Gcore2

Jx, Hx -AJA , -AJD, -AJF,

-AJT, -AHA | -AHD,
or -AHT

3-38

continued U

ic960 Compiler Driver

Table 3-4

Gcore Supported Architectures (continued)

Option Name Compatible Architectures Can Be Used With
Gcore3 Cx, Jx, Hx -ACA, -ACF, -AJA |
-AJD, -AJF, -JT,
-AHA, -AHD,
or -AHT
cs orcu Treatschar data types asigned orunsigned ,
respectively.cs is the default.
dc Specifies the relaxed ref-def external linkage model.
This is the default.
ds Specifies the strict ref-def external linkage model.
pc Generates position-independent code.
pd Generates position-independent data.
pr Reserves registgrl2 containing the

position-independent data (PID) bias value.

wait=n Specifies wait-state for memory accessess in the
range O through 32, inclusive.

XC Specifies that all external calls in the module use the
extended-call mechanism.

Discussion

You can select multiple arguments either by specifying all of them,
separated by commas, as the argument of a si(@enerate) option, or by
specifying each as the argument of a sep&@&&enerate) option. If you
specify conflicting arguments, the last one takes precedence.

Alignment Argument (ac): If you selectac=n, the compiler aligns

struct data types on-byte boundaries. This is equivalent to an initial
#pragma align(n) and does not override any subsequrigma

align(n) directives. Alignment values can only be2, 4, 8, or16.

Chapter 7, “Position Indenpendence and Reentrancy” describes alignment
in more detail.

3-39

1960 Processor Compiler User's Manual

Backward-compatible Argument (bc): If you selecbc, the compiler
generates object modules that can be linked with object modules translated
by ic960 Release 2.0. This option resolves the following compatibility
issues:

3-40

The default alignment of individuatruct data types for ic960

Release 2.0 can differ from the default structure alignment for Release
3.0 and later releases. The Release 3.0 ic960 derives the default
alignment of astruct data type from its size, by rounding up from the
size to the next power of 2 (to a maximum of 16). In code translated by
ic960 releases before 3.0, the alignment okthet defaults to the
alignment of the largest member of theict . You must compile all
modules of a program with the same alignment.

For enum data types, the compiler selects a basic integral
representation type, choosing the narrowest type capable of
representing all of the enumeration values. The compiler can represent
theenum type assigned char , unsigned char , short , unsigned

short , orint , depending upon the range of enumeration values.
Before Release 3.0, the compiler used only signed types to represent
enum data types. For example, a maximum enumeration value between
128 and 255 inclusive, now represented asmaigned char , was
represented asshort in Release 2.0.

The values of upper, unused bits of prototyped parameters and return
values smaller than 32 bits for ic960 Release 2.0 can differ from the
corresponding bit values for Releases 3.0 and later. The calling
convention for Release 3.0 does not extend the unused bits. The called
function must extend into the unused bits of prototyped parameters and
the function using a return value must extend into unused bits of the
return value. In code translated by ic960 releases that preceded 3.0, the
calling conventions extend into unused bits when passing prototyped
parameters and returning values smaller than 32 bits.

With this release of the compiler, the recipient of a narrow integral
value must assume that the high-order bits of the register containing the
value do not contain the appropriate zero- or sign-extension of the
value passed. It is the recipient function's responsibility to clean the
upper bits of a parameter or return value if necessary. Using the

ic960 Compiler Driver

Backward Compatiblebt) argument causes the compiler to use the
rules of prior releases. Before this release of the compiler, narrow
integral values were always sign- or zero-extended by the originator.

® The Release 2.0 compiler, when used to compile for an i960 KB or SB
processor, returrisng double (80-bit) floating-point numbers in the
fp0 floating-point register.

®* The Release 3.0 compiler, when used to compile for any i960
processor, returrisng double floating-point numbers in thgo, g1,
andg2 global registers. When Release 3.0 is used to compile for a
processor without a floating-point unit (e.g., the KA, SA, CA, or CF
processor), the compiler generates calls to the accelerated
floating-point library (“libh”). (Release 2.0 generated calls to the
FPAL floating-point-arithmetic library, but FPAL is no longer
supported.) You must recompile any KA, SA, CA, or CF module that
was compiled with ic960 R2.0 floating-point operations.

Big-endian Argument (be): If you selecbe, you inform the compiler
that the memory system of the entire program is in big-endian format. Only
the i960 Cx, Hx, and Jx processors support big- and little-endian format.
Do not use this argument with other i960 architectures.

The compiler automatically passes th@enerate big-endian) option to the
assembiler or linker if they are to be run.

Compression Assisted Virtual Execution (CAVE): If you select

cave , the compiler generates special CAVE entries for all functions in the
compilation unit. This prepares the functions for link-time compression.
The CAVE entries resemble the following:

.section .text

_foo:
[da L1,reg
call __ dispatcher

ret

.section cave
.word L2-L1,0

L1:
function body
L2:

3-41

1960 Processor Compiler User's Manual

3-42

At runtime, the dispatcher decompresses the function bodies and transfers
control to them. This mechanism saves runtime memory. (See the
discussion oftpragma cave in Chapter 7, “C Language Implementation”
for more information.)

Signed and Unsigned Character Arguments (cs and cu): If you
selectcs, declarations ofhar are treated asigned char . (This is the
default.)

If you selectcu, declarations ofhar are treated amsigned char .

Relaxed and Strict Linkage Definition Arguments (dc and ds): In

the default relaxed ref-def external linkage model (i.e.dthargument),

any variable declared with tleetern keyword is a reference to a variable
and does not define storage. Somewhere in all the modules, a definition at
file-scope must exist. You can have multiple definitions. All definitions are
combined into a single storage location by the linker. Storage is allocated
for initialized variables in thelata section with the appropriate initializer.
Uninitialized definitions are allocated to the common sections using the
.comm assembly language directive. At link time one of the following
happens:

¢ Ifavariable is defined with an initializer in one module, and without an
initializer in all other modules, the linker allocates space for the object
in the.data section.

* |f no definitions of a variable are initialized, all common references are
combined and allocated to thess section. With the relaxed ref-def
model, you cannot relocate uninitialized variables to named sections at
specific memory locations using the linker configuration language.

In the strict ref-def model (i.e., using te argument), only one definition

is allowed and all others must be declared with the keywsaetdn . You
cannot have more than one definition of an object with external linkage.
Storage is allocated to uninitialized file-scope variables irbse section.
Initialized variables are allocated in thiata section with the appropriate
initializer. Using the strict ref-def model, you can relocate uninitialized
variables to named sections at specific memory locations using the linker
configuration language. For more detailed information about using the
linker, see théd60 Processor Software Utilities User's Guide

ic960 Compiler Driver

Position Independence Arguments (pc, pd, and pr): If you select
pc, the compiler generates position-independent code and predefines the
__PIC macro.

NOTE. Applications built using thpc option cannot be linked with
assembly sources that conta#ilx or balx instructions, since these
instructions are not position-independent.

If you selectpd, the compiler generates position-independent data and
predefines the PID macro. Registegl2 contains the bias value for the
data sections; its contents cannot be modified, even during the saving or
restoring process.

If you selectpr , the compiler reserves registai2. Use this option for
position-dependent modules to be combined with position-independent data
modules. See Chapter 10, “Position Indenpendence and Reentrancy” for
more information on this subject.

Extended Call Argument (xc): Use the Extended Call argument when
your code calls external functions outside the range afahe or bal

opcodes. When you use this argument, the compiler emitaltire
pseudo-opcode, which the linker translates to either of the MEM format
opcodegallx orbalx . The linker decides which translation to perform
based on the symbol table entry for the defined function. The extended call
opcodes can address the entife &ddress range. The extended call
instructions occupy two words of code space. The single word CTRL
formatcall instructions occupy one word.

The compiler emits the CTRL formedllj pseudo-opcode when calling
any function defined outside the current compilation module.

3-43

1960 Processor Compiler User's Manual

3-44

Examples

1. The following example aligns structures on 8-byte boundaries:
ic960 -Gac=8 proto.c

2. The following example generates a module that can be linked with
code resulting from an ic960 Release 2.0 translation:
ic960 -Gbc proto.c

3. The following example generates code in which variables declared as
char are treated amsigned char :

ic960 -Gcu proto.c
4. The following example generates position-independent code and data:
ic960 -Gpc,pd proto.c

Related Topics

A (Architecture) __PIC #pragma align
I960ARCH __PID #pragma i960_align
__ 1960 xx

g (Debug)

Include debug information in object

gl level]

wherelevel specifies the amount of debug information. Note that the
meaning of level varies depending on the object format in use, as described
below.

Usinggo disables debug information. (This is the same as not using the
g option.)

For COFF, debug level settingsgafgl, g2, andg3 all have the same effect:
they specify “normal” debug information.

ic960 Compiler Driver

For ELF/DWARF, debug level settings @fgl, andg2 all have the same
effect: they specify all DIWARF debug information except preprocessor
macros. A debug level settinggsd specifies all DWARF debug
information, including preprocessor macros in the debug information. If
your debugger (like gdb960) does not make use of preprocessor macro
information, you can save space in your object files by dropping to
ELF/DWARF debug level 2.

Theg (Debug) option does not inhibit optimization. If you specifyghe
option but do not specify th@(Optimize) option, the optimization level
defaults toO0.

Specifying an optimization level higher th@a can inhibit the effectiveness

of the symbolic debug information. For example, if you set a breakpoint on
a source line for which the code has been optimized away, the breakpoint is
never hit. Or if you try to print the value of a variable that has been
optimized away, an erroneous value is displayed. In general, as the
optimization level increases, the reliability of the symbolic debug
information decreases.

If you are using the ELF object module formigl{), theng causes the
compiler to produce DWARF debug information. This debug information
format is richer than that of other supported OMFs, and allows more reliable
debugging under optimization. However, even with DWARF, there are
situations where debugging behavior does not agree with the debugging
behavior of unoptimized code.

gcdm (Decision Maker)

Invoke gcdm960 decision-maker.

gcdm, arg [, arg]...

Thegcdm option provides a high level of automation for the whole-program
or profile-driven optimization process. The compiler driver and the linker
both use thgcdm option and its arguments.

3-45

1960 Processor Compiler User's Manual

Thegcdm option is flexible and powerful, and therefore requires a certain
level of understanding in order to use it effectively. For these reasons, it is
documented in a separate chapter (Chapter 6, “gcdm Decision Maker
Option”).

Before using thgcdm option, you should read Chapter 4, “Program-Wide
Analysis and Optimization”, and become familiar with the information in
Chapter 5, “Profile Data Merging and Data Format (gmpf960)”.

h (Help)

Display invocation help; terminate.

h

Discussion

This option causes the compiler to display brief descriptions of each option
on the standard output device and then terminate.

3-46

ic960 Compiler Driver

| (Searchinclude)

Search alternate #include directory.

| dir
dir is a directory containing files to be included.

Default

If you usetfinclude " filename " to specify a filename that is not an
absolute pathname, the compiler searches directories in the following order:

1. the directory containing the primary C/C++ source file (the primary
directory).
2. if1960INC is defined, the directory specified ®B0INC.

3. if1960INC is not defined, thenclude directory located under the
directory specified by960BASE.

For afilename included with#include <filename >, the compiler
searches directories in the following order:

1. if1960INC is defined, the directory specified [BB0INC .

2. if1960INC is not defined, thenclude directory located under the
directory specified by960BASE .

Discussion

Usel (Searchinclude) to specify additional directories for the preprocessor
to search to find files specified wittinclude . The preprocessor searches
Searchinclude directories before the directory specified@NC or
I960BASE . If you use quotation marksificlude " filename "), the
preprocessor searches the primary directory first. If you use angle brackets
(#include <filename >), the preprocessor does not search the primary
directory.

3-47

1960 Processor Compiler User's Manual

Examples

1. Inthe following example, the preprocessor searches:
— Jusr/home/src (the directory containingroto.c)
— Jusr/home/include (the Searchinclude directory)
— Jusr/homeltestinclude (the directory specified b@60INC)
The environment variable definitions are:
— 1960BASE is set tdust/local/i960
— 1960INC s set tdusr/home/testinclude
The command-line is:
— ic960 -1 /usr/home/include /usr/home/src/proto.c
The source text contains:
— #include "proto.h"
2. Inthe following example, the preprocessor searches:
— Jusr/home/include (the Searchinclude directory)
— Jusr/local/i960 (the directory specified b@60BASE)
Thel960BASE environment variable is set Agsr/local/i960
The command-line is:
— ic960 -1 /usr/home/include /usr/home/src/proto.c
The source text contains:
— #include <proto.h>
If the preprocessor does not fipato.h , for either of these examples, the
compiler displays the following error message:

ic960 ERROR: "/usr/home/src/proto.c”, line 1 --
proto.h: No such file or directory

3-48

ic960 Compiler Driver

Related Topics

#include 1960INC Stop-after options
I960BASE i (Preinclude)

| (Preinclude)

Prepend text file to primary source files.

i filename
filename is the name of a C/C++ source text file.

Discussion

Use the (Preinclude) option to prepend the text of a C/C++ source file or
include file to each C/C++ source file specified on the command line. This
option has the same effect as placingtianlude directive at line zero of
each C/C++ source file.

The compiler searches ffiltname in the same way as for a file specified
with #include using quotation marks. For a description of include file
searching rules, see th€Searchinclude) option description. The compiler
issues an error if the file is not found.

Example

The following example prepends the fjiebals.h to the fileproto.c
ic960 -i globals.h proto.c

Related Topics

#include [1960INC Stop-after options
I960BASE | (Searchinclude)

3-49

1960 Processor Compiler User's Manual

J (Miscellaneous)

Selects miscellaneous controls.

J arg|, arg]...

Discussion

Use thel (Miscellaneous) option to specify miscellaneous controls. Two
such controls argd (issue gcc960-style diagnostics) angd (issue
ic960-style diagnostics). gcc960-style diagnostics are more compact, and
do not include column position indicators.

Default
nogd (issue ic960-style diagnostics).

j (Errata)

Specifies processor errata.

j num Discussion

Use thg (Errata) option to cause the compilation system to generate code
with workarounds for specified processor erratanufeargument of 1
generates code to work around the Cx processors' DMA errata.

3-50

ic960 Compiler Driver

M (Mix)

Mixes C/C++ source text with assembly
language output.

-S-M

Default

Assembly language output does not contain interleaved C/C++ source as
comments.

Discussion

Use theM (Mix) option to modify thes (Save-assembly) option to put

C/C++ source text as comments into the assembly language output file.
Using theM (Mix) option without thes (Save-assembly) option has no

effect.

Note that if you use th@ (Optimize) option with thé1(Mix) option, the

C/C++ source text comments can be mismatched to the assembly language
text, since optimization can reorder and eliminate assembly language
instructions.

Example

The following example produces the assembly languageréite.s
containing C source text as comments:

ic960 -S -M proto.c

Related Topics
O (Optimize) S (Save-assembly)

3-51

1960 Processor Compiler User's Manual

n (Check-syntax)

Check syntax; terminate.

n

Default

After the link phase of the compilation process is complete, an executable
file is produced.

Discussion

If you specifyn (Check Syntax Only) the compilation process terminates
after performing syntax and semantic checking. The compiler generates
diagnostic messages but produces no output.

Example

The following example runs a syntax check only on thepfido.c
generating no output file:

ic960 -n proto.c

O (Optimize)
Optimize.
Ollevel]
The(level] option specifies the level of optimization as described
below.
00 Disables optimizations, including those that may

interfere with debugging. This is the optimization level
if you use they (Debug) option.

3-52

ic960 Compiler Driver

o1

02

05

Enables basic optimizations, including: advanced
register allocation, common subexpression elimination,
loop invariant code motion, expression simplification
and instruction combination, jump optimization,
dead-code elimination, and i960 processor-specific
peephole optimization. This is the default setting if you
do not use thg (Debug) option or when you use the

fdb (Program Database) fprof (Instrument) options.

This level includes the1 optimizations described
above, tail-call elimination, leaf-procedure optimization,
and the following optimizations:

fcoalesce |, fcoerce ,fcondxform |, fconstprop
fcopyprop , fcse-follow-jumps ,
fcse-skip-blocks ,

fexpensive-optimizations ,

finline-functions , fmarry_mem ,
frerun-cse-after-loop , fschedule-insns ,
fschedule-insns2 , fshadow-globals ,
fshadow-mem , fsplit_mem , fstrength-reduce ,
funroll-loops

This setting specifies program-wide optimization.
Before using th®5 option, you should read Chapter 4,

“Program-Wide Analysis and Optimization”, and
Chapter 6, “gcdm Decision Maker Option”.

Note that thed5 level is not accepted directly by the
ic960 driver. It is accepted only in thebst argument
of thegcdm option.

3-53

1960 Processor Compiler User's Manual

3-54

0 (Output)

Name output file.

o filename

filename is the name of the file to receive the final output of the
compilation.

Default

If the linker is to be invoked, the default name of the linker's output is

a.out for COFF anck.out for ELF. Otherwise, each output filename is
determined by replacing the filename extension of each input file. Output
filenames' extensions depend on the Stop-after option in effect, as follows:
®* P (Preprocess-file):filename .i (C) filename i (C++)

® S (Save-assembly)filename .s

® ¢ (Create-object): filename .o

Discussion

Use theo (Output) option to direct the final output of a compiler invocation

to a specific file. The final output can be any of the following:

ForE, Q andn, the output goes tetdout

* If you specify theP (Preprocess - file) option, the final output is the
result of preprocessing.

* If you specify thes (Save-assembly) option, the final output is the
assembly language text generated by the compiler.

¢ [f you specify thee (Create-object) option, the final output is the object
module generated by the assembler.

® Otherwise, the final output is the result of linking.

The compiler issues an error message if you use (@aitput) option and

do not invoke the linker when processing more than one input file.

ic960 Compiler Driver

Related Topic
Stop-after options

P (Preprocess-file)

Preprocess; write output to file;
terminate.

P

Default

After the link phase of the compilation process is complete, the compilation
system produces an executable file.

Discussion

If you specify theP, (Preprocess-file) option, the compilation process
terminates after preprocessing and the compiler writes preprocessor output
without line number directives to a file. If you do not specify a filename
with theo (Output) option, the file iSlename .i (for C) or

filename i (for C++), wherdilename is the source filename without

its extension.

Example

The following example puts the preprocessed sourgadar.c in the file
proto.i and the preprocessed sourcedi@tol.c in the fileprotol.i

ic960 -P proto.c protol.c

Related Topics
o (Output) Stop-after options

3-55

1960 Processor Compiler User's Manual

3-56

Q (Dependencies)

Print include-file dependencies;

Q

Discussion

If you specifyQ (Dependencies), the compilation process terminates after
preprocessing and the compiler writes a list of dependency lines to standard
output. The dependency lines take the fotgect : subfile where

object is an object filename derived from the name of a primary C/C++
source file andubfile is the name of a file needed to create the object

file. The preprocessor generates one line for eabfile on which the

object file depends, including the primary C/C++ source file. Preprocessor
directives for conditional compilation affect the output of the dependency
lines.

Example
The following example generates a file dependency listtést.c . File
dtest.c includes filesddinc.h , d2.h , andd3.h , as follows:

#include "dinc.h"
#include "d2.h"
#include "d3.h"

File dinc.h includes filedad.h , as follows:

#include "dad.h"

The filesd2.h andd3.h do notinclude any files. The following command
compilesdtest.c with Q resulting in file dependency lines:

ic960 -Q dtest.c
dtest.o: dtest.c
dtest.o: dinc.h

ic960 Compiler Driver

dtest.o: dad.h
dtest.o: d2.h
dtest.o: d3.h
Related Topics

#include o (Output) Stop-after options

S (Save-assembly)

Compile; save assembly language
output; terminate.

S

Default

After the link phase of the compilation process is complete, the compiler
produces an executable COFF file. (Assembly language output is not
saved.)

Discussion

If you specifyS (Save-assembly), the compilation process terminates after
the compiler generates assembly code and writes the output to a file. If you
do not specify a filename with tlog(Output) option, the compiler writes the
assembly language outputfiename .s , wherefilename s the source
filename without its extension.

Use theM (Mix) option to create a mixture of assembly language source
code and corresponding C/C++ source code.

3-57

1960 Processor Compiler User's Manual

3-58

Examples

1. The following example creates the assembly language output from
proto.c intoproto.s
ic960 -S proto.c

2. The following example creatpsoto.s , the assembly language file
for proto.c , andtl.s , the assembly language file fdarc , in the
current directory:
ic960 -S proto.c -tl.c

Related Topics
M(Mix)o (Output)

Stop-after Options (N |Q|P|E| S| c)

Stop after the specified compilation

phase.

n|QIPIE[S]c

Default

After the link phase of the compilation process is complete, the compilation
system produces an executable file.

You can use the (Output) option to specify a name for the executable file.
The default output filename &sout (COFF) ore.out (ELF).

Discussion

Use one of the Stop-after options to halt the compilation process before
linking and to write the intermediate output to a file or standard output. You
can also use the (Output) option to specify a filename for the output file.

Table 3-3 summarizes the processing and output other than listing the files
that result from each Stop-after option.

ic960 Compiler Driver

If you specifyn (Syntax-checking), the compilation process terminates after
syntax and semantic checking are performed. The compiler generates
diagnostic messages but produces no output.

If you specifyQ (Dependencies), the compilation process terminates after
preprocessing and the compiler writes a list of dependency lines to standard
output. The dependency lines take the fomject : subfile where

object is an object filename derived from the name of a primary C/C++
source file andubfile is the name of a file needed to create the object

file. The preprocessor generates one line for eabfile on which the

object file depends, including the primary C/C++ source file. Preprocessor
directives for conditional compilation affect the output of the dependency
lines.

Table 3-5 Stop-after Option Phases and Output

Name Option Processing Phases Output
Syntax-check n preprocessing, a list of diagnostic messages,
syntax-checking written to standard error
Dependencies Q preprocessing a list of file-dependence lines,
written to standard output
Preprocess - E preprocessing preprocessed source text with line
stdout number directives, written to
standard output
Preprocess - file P preprocessing preprocessed source text without
line number directives, written to
files
Save-assembly S preprocessing, assembly language, written to files
compilation
Create-object c preprocessing, object modules, written to files
compilation, and
assembly

If you specifyE (Preprocess - stdout), the compilation process terminates
after preprocessing and the compiler writes preprocessor output with line
number directives to standard output. BH®utput) option does not affect
output frome.

3-59

1960 Processor Compiler User's Manual

3-60

If you specifyP (Preprocess - file) the compilation process terminates after
preprocessing and the compiler writes preprocessor output without line
number directives to a file. If you do not specify a filename wittothe
(Output) option, the compiler writes preprocessor outptiteteame i

(for C) or filename .ii (for C++), wherdilename is the source

filename without its extension.

If you specifyS (Save-assembly), the compilation process terminates after
the compiler generates assembly code and writes the output to a file. If you
do not specify a filename with tleg(Output) option, the compiler writes the
assembly language outputfiename .s , wherefilename is the source
filename without its extension. If you also specify th@ix) option, the
assembly language output file also contains interleaved C/C++ source lines.

If you specifyc (Create-object), the compilation process terminates after
the assembler generates an obiject file. If you do not specify the Output
option, the compiler writes the object filefilsname .o, where

filename is the source filename without its extension.

Examples

1. The following example puts the preprocessed sourqedtar.c in
the fileproto.i and the preprocessed sourcegi@tol.c in the file
protol.i
ic960 -P proto.c protol.c

2. The following example runs only the preprocessor phase, sending the
preprocessed source text to the screen:
ic960 -E proto.c

3. The following example runs a syntax check only on thefidw.c
generating no output file:
ic960 -n proto.c

4. The following example puts the assembly language output from
proto.c intoproto.s
ic960 -S proto.c

5. The following example puisoto.s , the assembly language file for
proto.c , andtl.s ,the assembly language file farc , in the
current directory:
ic960 -S proto.c -tl.c

ic960 Compiler Driver

6. The following example produces the objectfiileto.o but no
executable file:
ic960 -c proto.c

7. The following example produces the object fjesto.o ,tl.0 , and
protol.o in the current directory but creates no executable file:
ic960 -c proto.c tl.s protol.i

8. The following example lists file dependenciesd@st.c
Thedtest.c file includes thalinc.h , d2.h , andd3.h files, as
follows:
#include "dinc.h"

#include "d2.h"

#include "d3.h"

Thedinc.h file includes thelad.h file, as#include "dad.h"
Thed2.h andd3.h files do not include any files. The following
command compiledgtest.c with -Q, resulting in the following lines:
ic960 -Q dtest.c

dtest.o: dtest.c

dtest.o: dinc.h

dtest.o: dad.h

dtest.o: d2.h

dtest.o: d3.h

Related Topics

C (Keep-comments) o (Output) z (List)
M(Mix) V (Verbose)

U (Undefine)

Undefine symbol.

U symbol
symbol is a symbolic name.

3-61

1960 Processor Compiler User's Manual

3-62

Default
No symbols are undefined.

Discussion

Use theu (Undefine) option to remove preprocessor macro symbols.

Examples of symbols you can undefine include:

* the 1C960, 960 and_i960 xx macros, wherex is CA CF, KA,
KB, SA, SB, JA, JD, orJF

* the_ PIC and__PID macros

* symbols you have defined on the command line

* the symbol for big-endian code generatiori960_BIG_ENDIAN

The compiler processes all ti€Undefine) options in a command line only
after processing all the (Define) options.

You cannot undefine or redefine the following predefined ANSI C macros:

_ DATE__ is the calendar date of the translation.

__FILE__ is the name of the current source file.

__LINE__ is the line number of the current source program line.
__TIME__ is the calendar time of the translation.

__STDC__ indicates that the compiler conforms to ANSI C.
Example

The following examples both undefine the symbab60KA :

ic960 -AKA -U__i960KA proto.c
ic960 -AKA -U__i960KA -D__i960KA=2 proto.c

ic960 Compiler Driver

Related Topics

A (Architecture) __ 1960 xx __PIC

D (Define) __i960 __PID

#define #undef
V (Version)

Display version information.

\Y

Default
The compiler does not display version information.

Discussion

Use thev (Version) option to display to standard error the name and version,
as shown below.

ic960 Version x.y. nnnn
X.y identifies the major release of the compiler
nnnn identifies the product's patch level

Version information differs for each host system and for each release.

Related Topic
v (Verbose)

3-63

1960 Processor Compiler User's Manual

3-64

v (Verbose)

Display invocation information.

Vv

Default

The compilation system does not display individual phase invocation
information.

Discussion

Use they (Verbose) option to display the standard errors from invocations
of the driver program, preprocessor, compiler, assembler, and linker. These
invocations are command lines generated by the driver program from the
files andw(Pass) options you specify in tte60 command.

For example, if you specify the(Verbose) option, the driver program
passes it to the linker, even if you do not specifically usetPass) option.
The linker displays on standard output the files linked according to the
following categories:

® input object files

* startup file

® high-level libraries

* low-level libraries

Example
The following command-line requests verbose invocation information:
ic960 -v -T cycx -ACA -o hello.out hello.c

ic960 Compiler Driver

Related Topics

I960AS 1960LD W(Pass)
I960BASE Stop-after options Vv (Version)

v960 (Version, terminate)

Display version information and
terminate.

v960

Default
The compilation system does not display version information.

Discussion

Use thev960 (Version, terminate) option to display version information.
This is the only thing the driver program does before terminating.

W (Pass)

Pass arguments to phases.

W phase , arg [, arg]...

phase is a letter identifying the phase to receive the arguments,
as follows:

a indicates the assembler.

¢ indicates the compiler.

| indicates the linker.

p indicates the preprocessor.

3-65

1960 Processor Compiler User's Manual

3-66

arg is a string to be passed to and interpreted by the phase.
Eacharg is passed as a separate argument. #an
string contains whitespace, you must enclose the string
in quotation marks.

Discussion

Use thew(Pass) option to specify options for the preprocessor, compiler,
assembler, or linker. The driver program does not interpret the argument
strings; only the receiving phase interprets them.

Related Topic
Stop-after options

W (Warnings)

Enable or disable a warning.

W [no-] arg

TheW [no-larg option allows more fine-grained control over diagnostics
thanw flevel

arg is any of:

aggregate-return warn if any functions return structures or
unions.

all enable several useful warnings. Has no
Wno-all form.

cast-align warn if a pointer cast may not have the required
alignment.

cast-qual warn if a pointer cast removes a type qualifier.

char-subscripts warn if an array variable has typlar .

comment warn whenevef occurs in a comment.

ic960 Compiler Driver

conversion

error

format

id-clash-n

implicit

missing-braces

missing-prototypes

nested-externs

overloaded-virtual

parentheses

pointer-arith

warn if a prototyped parameter causes a
different conversion from the conversion that
would take place if the parameter were not
prototyped.

treat all warnings as errors.

check arguments @fintf -family arguments
at compile time.

warn if two identifiers match in the firat
characters.

warn if a function is used before it is declared.

warn if an aggregate initializer is not fully
enclosed in braces.

warn if a function is defined before it is
prototyped.

warn if anextern declaration is detected
inside a function.

Warn when a derived class function declaration
may be an error in defining a virtual function.

In a derived class, the definitions of virtual
functions must match the type signature of a
virtual function declared in the base class. With
this option, the compiler warns when you define
a function with the same name as a virtual
function, but with a type signature that does not
match any declarations from the base class.

Wno-overloaded-virtual is the default.
This is a C++-specific option.

warn if parentheses are suggested around an
expression.

warn if the size a function type or typeid is
used.

3-67

1960 Processor Compiler User's Manual

redundant-decls warn if an object is declared twice in the same
scope.
reorder Warn when the order of member initializers

given in the code does not match the order in
which they must be executetino-reorder is
the default. This is a C++-specific option.

return-type warn if any function implicitly returnist , and
if any non-void function does not return a value.

shadow warn if a local variable shadows another local
variable.

strict-prototypes warn if a function is declared without a
prototype.

switch warn if a switch statement on an enumeration
type does not have a case for each enumerator.

traditional warn about contructs that behave differently in
traditional C and ANSI C.

trigraphs warn if any trigraphs are detected.

uninitialized warn if use of an uninitialized local variable is
detected.

unused warn about objects that are never used.

write-strings warn if string constants are used in a writable
context.

3-68

ic960 Compiler Driver

w (Diagnostic-level)

Controls listing or display of diagnostic

messages.

w level

level is the level of diagnostic messages to be listed or
displayed; can be, 1, or2.

Default

The compiler displays error and major warning messages; thates,
is1.

Discussion

Use thew (Diagnostic-level) option to suppress the warning messages that
highlight legal but questionable uses of C. Unlike errors, uses of C that
result in warning messages do not prevent the compiler from completing the
translation and linking process.

To choose the level of diagnostic messages, use one of the following for the
level argument:

0 to enable all warning and error messages

1 to enable major warning and error messages,
suppressing only minor warning messages

2 to enable only error messages, suppressing warning
messages

Thea (ANSI) option always overrides the2 option, forcing the compiler
to list or display warning messages.

Thew(Warnings) option can be used to enable/disable specific warnings
that would otherwise fall under the control of théDiagnostic-level)
option. This is a C++-specific option.

3-69

1960 Processor Compiler User's Manual

3-70

Example
The following example displays warning and error diagnostic messages:
ic960 -c -w1l proto.c

Related Topics
a (ANSI) Stop-after options W(Warnings)

Yd (Program database)

Specifies location of program database.

Yd, PDB_directory

PDB_directory specifies the directory containing the program database
(PDB).

Default

The environment variabl®@60PDB specifies the location of the program
database.

Discussion

When linking an instrumented program to generate profile information,
during the Decision-making step, and during Profile-driven Recompilation,
the location of the program database (PDB) must be specified. You can use
theYd (Program database) option to overri@&PDB or to indicate where

the PDB is located i©60PDB is not defined.

The PDB is a directory that the compilation system uses to store various
files that it generates to contain information about the profile-driven
compilation of a program. It must be specified either via the

Yd, PDB_directory option, or with the960PDB environment variable.

ic960 Compiler Driver

Z (Listname)

Names listing file.

Z filename
filename is the name of the listing file to be created.

Default

The compiler generates listing filenames from the primary source
filenames.

Discussion

Use thez (Listhame) option to name the listing file. If you specify more
than one source file on the command line, the compiler concatenates the
listings for all the source text files into the sindilename listing file.

Using thez (Listname) option without the (List) option generates a listing
file containing only primary source text.

Example

The following example produces the listing fike.t containing a source
text listing for the fileproto.c

ic960 -c -Z list.t proto.c

Related Topics
Stop-after options (List)

3-71

1960 Processor Compiler User's Manual

z (List)

Produce listing file.

z arg ...
arg is one of the following:
s lists the primary source text, that is, source
text from files named on the command line.
[adds included source text to the primary
source text listing.
o) adds the assembly language generated by
the compiler to the listing file.
m adds expanded preprocessor lines to the
primary source text listing.
c adds conditionally noncompiled source text
to the primary source text listing.
Default

The compiler does not produce any listing files.

Discussion

Use thez (List) option to generate a listing file for each primary source file
and to specify the listing file contents. Tdrg applies to all listing files
produced. A listing file contains, at a minimum, the source text from the
primary source file and diagnostic messages according to the diagnostic
level. You can add other listing information by specifying one or ragre
arguments instead of or in additionsto Using the , o, m orc argument
implies thes argument.

3-72

ic960 Compiler Driver

Unless you specifically name the listing filename withZhgistname)
option, the compiler derives a listing filename from each primary source
filename, as follows:

base .L

base is a primary source filename, without its extension.

Example

The following example produces the listing fil@mplex.L. and object file
complex.o in the current working directory for the source file
complex.c . The listing file contains primary source listing, included
source text, assembly language, source text that is conditionally compiled
out, and expanded macros.

ic960 -c -z cosmi /complex.c

Include Line
Level Number Source Lines

Command line (ic960): ic960 -c -z cosmi complex.c

Command line (ccl): /ffs/pl/dev/src/gcc960/time.sund/ccl
.960 -ic960 -ffancy-errors -sinfo /usr/tmp/ica29412.sin -fno-builtin
-quiet -Fcoff -mkb -mic3.0-compat -fsigned-char -w1 -O1
-fno-inline-functions
-clist siomc -dcmd "ic960 -c -z cosmi complex.c" -dumpbase complex
-outz complex.L -tmpz /usr/tmp/ica29412.Itm /usr/tmp/ica29412.i -0
Jusr/itmpl/ica29412.s

file "complex.c"

gcc2_compiled.:

____gnu_compiled_c:

0* 1 #include "complex.h"

1 1

1 2 [* Define a struct for complex numbers
1 3 with some macros */

1 4

1 5 #if Idefined(complex_h)

1 6

1 7 struct complex {

1 8 double x;

1 9 double i;

3-73

1960 Processor Compiler User's Manual

3-74

OO0OO0CO0OORRRRRREPRERERER

0
0
0

10 %

11

12 #define INIT_COMPLEX(num, real, imag) \
13 num.x =real; num.i =imag;

14

15 #define ADD_COMPLEX(res, opl, op2) \
16 res.x =opl.x+op2.x; \

17 res.i=opl.i+op2.i;

18
19 #endif /*!defined(complex_h) */
2
3 extern void write_complex(struct complex num);
4
5 main()
6 {
text
.align 4
.def_main;.val_main; .scl2;.type 0x40;.endef
.globl _main

Function 'main’
Registers used: g0 g1 g2 g3 g4 g5 g6 g7 fp r4*
r5* r6* r7*
__main:
Ida 48(sp),sp
#Prologue stats:
Total Frame Size: 48 bytes
Local Variable Size: 48 bytes
Register Save Size: 0 regs, 0 bytes
#End Prologue#

7 register struct complex x,y,z;

8

9 INIT_COMPLEX (x, 10.31, 4.25);
+++++ Xx.x= 10.31; x.i= 4.25;;

1da1.03100000000000004974e1,r4
IdaOx51eb851f,r4

Ida0x40249€eb8,r5

movlr4,ré

stIr6,64(fp)

1da4.25000000000000000000€0,r4

ic960 Compiler Driver

mov0,r4
Ida0x40110000,r5
movlr4,ré
stIr6,72(fp)
0 10 INIT_COMPLEX (y, 7.14, 5.23);
+++++ y . x= 7.14; y.i= 523;;
#1da7.13999999999999968026€0,r4
Ida0x28f5¢c28f,r4
Ida0x401c8f5¢,r5
movir4,r6
stIr6,80(fp)
1da5.23000000000000042633€e0,r4
ldaOx1eb851ec,r4
Ida0x4014eb85,r5
movlir4d,ré
stIr6,88(fp)

0 11 ADD_COMPLEX (z, X, y);
+HHH+ Z X = X X+F Y X Z.A= X+ Y
0 12
#1dal.74499999999999992895¢1,r4
|Ida0x33333333,r4
Ida0x40317333,r5
movlir4,r6
stIr6,96(fp)
1da9.48000000000000042633€0,r4
Ida0x8f5¢c28f6,r4
Ida0x4022f5¢2,r5
movlir4,r6
stIr6,104(fp)
0 13 write_complex (2);
1dg96(fp),g0
callj_write_complex
0 14 }
#EPILOGUE:
ret
.def _main; .val .; .scl -1; .endef

The listing file includes information about the compilation. The heading
line at the beginning of the listing contains the name and version of the
compiler, the printing date of the listing, and the name of the primary source

3-75

1960 Processor Compiler User's Manual

3-76

file. The next two lines of text describe the format of the listing. The
remainder of the file contains the listing. The compiler does not paginate
the listing and does not wrap long lines.

The format of the source text listing is as follows:
include-nesting-level line-number source-line

include-nesting- determines the depth of the file in the include

level file nesting hierarchy. Since lines from the
primary source file are always at level 0, if you
do not list included source text, all source lines
in the listing are at level 0. An asterigh (
following the include nesting level indicates the
first line of a file.

line-number is the location of a line relative to the beginning
of the file containing that line.

source-line is a line of source text.

A line with an expanded macro appears after the corresponding source line
in the following format:
source-line
+++++ macro-expanded-line
macro-expanded-line is the source line containing the
expansion of the macro.

The assembly language in the listing is similar to but not necessarily
identical to the intermediate assembly language form of the program
resulting from ars (Save-assembly) option. The compiler can add
symbolic names that improve readability of the listing but are not accepted
by the assembler.

Related Topics
Stop-after options w(Diagnostic-level) z (Listhame)

Program-wide Analysis and
Optimization

Introduction

This chapter teaches you how to use some of CTOOLS most powerful
optimization features. This chapter discusses these topics:

® “Creating Program-wide and Module-local Optimizations”

* “Profiling Your Program”

® “Using make To Perform Program-wide Optimizations”

®* “Runtime Support for Profile Collection”

To use the first two features you are going to:

1. Create a program database.

2. Specify which modules you want optimized.

3. Recompile your program using tiiéo option.

After these basic optimizations, you use profiling to gather information
about the runtime characteristic of your program and then optimize
performance based on that information.

The sections that follow describe the types of optimizations used in program
optimization.

Individual and Program-wide Optimizations

The compiler can perform sophisticated inter-module optimizations, such as
replacing function calls with expanded function bodies when the function
call sites and function bodies are in different object modules. These are
called program-wide optimizations because the compiler collects
information from multiple source modules before it makes final

optimization decisions. Throughout this chapter, standard (i.e
non-program-wide) optimizations are referred to as module-local
optimizations.

4-1

1960 Processor Compiler User's Manual

About Profiling

The compiler can also collect information about the runtime behavior of a
program by instrumenting the program. The instrumented program can be
executed with typical input data, and the resultant program execution profile
can be used by the global decision making and optimization phase to
improve the performance of the final optimized program. The profile can
also provide input to the global coverage analyzer tool (gcov960), which
gives users information about the runtime behavior of the program at the
source-code level.

Creating Program-wide and Module-local
Optimizations
Program-wide optimizations are enabled by options that tell the compiler to:

1. Build a program database during the compilation phase.

2. Invoke a global decision making and optimization step during the
linking phase.

3. Automatically substitute the resulting optimized modules into the final
program during the linking phase.

Specifying the Program Database Directory

The program database directory (PD&)he repository for all

program-wide optimization information about a particular program. When
using program-wide optimizations, you must specify the correct PDB to all
compilation tools involved in building the program. You initially create the
PDB, but the files within this directory are automatically managed by the
various pieces of the program-wide optimization system. Once this is done,
you do not change the files in the PDB.

The PDB can be specified by setting the environment varGdserps
(gcc960 driver) oreoPDB (ic960 driver)to the correct location. You can
also specify the PDB at compiler invocation time withzhie (gcc960) or
Yd, dir (ic960) option, as shown in the examples below.

gcc960 -Zmypdb foo.o

ic960 -Yd,mypdb foo.o

Program-wide Analysis and Optimization I

Compiling for Program-wide Optimization with the fdb
Option

All modules subject to program-wide optimization must be initially
compiled with thedb option (described in Chapter 2, “gcc960 Compiler
Driver” and Chapter 3, “ic960 Compiler Driver”). Using this option causes
the insertion of program database information in the object modules, and it
implies a minimum module-local optimization levelaf (although higher
module-local optimization levels are allowed).

Compiling with thefdb option does not change the code or data generated
for the object modules in any way; this option simply makes information
collected during the initial compilation of the modules available to the
global decision making and optimization step.

Global Decision Making and Optimization Using the
gcdm Option

The tool that performs the global decision making and optimization step is
called gcdm960. gcdm960 is invoked from within the linker whegdhe
option is used. You can also use giedm option in the compiler driver
(gcc960 or ic960) to pass this option to the linker. Using¢den option
causes gcdm960 to:

* automatically build and manage optimized object modules in the PDB
® arrange with the linker for optimized object modules from the PDB to

be automatically substituted for some or all of the original object
modules in the final program.

You can use multiplgcdm options in a linker or compiler invocation
command, and eagftdm option can have multiple comma-separated
arguments. (Thgcdm option and its arguments are fully described in
Chapter 4, “Program-wide Analysis and Optimization”.)

1960 Processor Compiler User's Manual

4-4

Selecting Modules for Optimization with Substitution
Specifications

You tell gcdm960 which object modules to optimize and how to optimize
them with substitution specifications. Substitutions are specified by
arguments to thgedm option in the linker or compiler invocation.

The term “substitution” reflects the fact that the linker replaces your
files with optimized versions maintained in the PDB. Such afile from
the PDB is called a “substitution module.”

The example below illustrates the basic idea of substitution: It depicts an
ic960 invocation command that uses gladm option and therd andfdb
options to accomplish program-wide optimization (without profiling) for a
simple program.
ic960 -o prog -Ttarg -Yd,./pdb -gcdm,subst=+05 -fdb fee.c
foo.c
(-Ttarg specifies the linker directive file for the target execution
environment.)
The command accomplishes the following steps:
1. fee.c andfoo.c are compiled witlidb , which inserts program
database information infee.o andfoo.o .
2. The program is then linked to fomrog , at which time gcdm960 is
invoked with-Yd,./pdb -gcdm,subst=+05
3. fee.o andfoo.o are replaced iprog with versions from/pdb

built at levelO5 optimization (that is, built with program-wide
optimizations).

NOTE. The optimized replacements feg.o andfoo.o are presentin
the linked program but never appear in the current working directory.

Program-wide Analysis and Optimization

Profiling Your Program

Compiling for Profile Instrumentation with -fprof

As mentioned above, information on the runtime behavior of the program
can be used by the compilation system during the global decision making
and optimization step. To instrument a program, usétbe option in
addition tofdb when compiling:

ic960 -Yd,mypdb -fdb -fprof -c foo.c

See Chapter 2, “gcc960 Compiler Driver” and Chapter 3, “ic960 Compiler
Driver” for more on théprof option. This command causes profile
instrumentation to be inserted irftm.o so that when the linked program

is executed, a profile can be collected. Using runtime profiles to influence
the final optimization of your program requires you to build the program
twice: once to insert the instrumentation, as described here, and then again
so that the compilation system can substitute modules that are recompiled
with optimizations appropriate to their runtime behavior.

Collecting a Profile

If a program that contains one or more modules compiledfpvith is

linked with the standard libraries and then executed, a file named

default.pf containing the profile for those modules is automatically
produced when the program exits. This is a “raw” profile containing
program counters that log how many times various statements in the source
program have been executed.

If you are not using the standard libraries, you must insert a call to a routine
that creates thprofile in an appropriate point in the program source code.
For instructions on this step, see the section titled Runtime Support for
Profile Collection (page 4-14).

4-5

1960 Processor Compiler User's Manual

4-6

Building Self-contained Profiles with gmpf960

A “raw” profile contains program counters, which count how many times
various statements in the source program have been executed. Information
in the PDB is needed to correlate these program counters with the source
program.

A raw profile (that is, a profile simply collected as described previously) has
a very short useful life. When changes are made in your source code, any
raw profiles previously obtained for that program are no longer accepted by
the global decision making and optimization step.

A “self-contained” profile captures the program structure from the PDB and
associates it with the program counters from the raw profile. When changes
are subsequently made to the source program, the global decision making
step interpolates or “stretches” the counters in the self-contained profile to
fit the changed program.

A self-contained profile can be continually used to optimize the program it
was collected for, even after days, weeks, or perhaps months worth of
changes to the program. This frees you from having to collect a new profile
every time the program changes, while still allowing profile-directed
optimizations. Depending upon the nature and quantity of changes to the
program, the accuracy of the profile gradually degrades over time as more
interpolation is done.

A self-contained profile must be generated from a raw profile before the
program that generated the raw profile is relinked. You should always
create a self-contained profile immediately after the raw profile is collected.

To create a self-contained profile, use the gmpf960 profile merger tool.
gmpf960 is invoked with the raw profile as an input file, as shown in this
example:

gmpf960 -Z mypdb -spf pfile2.spf pfilel.pf

This command creates a self-contained profile2.spf from the raw

profile pfilel.pf . The raw profilefilel.pf was created by executing
the instrumented program that was linked usitygdb as the program

Program-wide Analysis and Optimization I

database directory. Thef and.spf filename extensions for the profile
files in this example are arbitrary; the different types of profiles are
recognized by their contents, not by their filename extensions.

After a self-contained profile isreated, you can specify it for the global
decision making and optimization step usingdbdm,iprof=file
syntax as described in the next section

Using Profiles During Global Decision Making and
Optimization with -gcdm,iprof

To supply aprofile file pfile to the global decision making and
optimization step, simply add the following option and argument to the
compiler or linker invocation command:

gcdm,iprof=pfile
This is in addition to thgcdm,subst option. Theprof argument can
specify either raw profiles or self-contained profiles.

Obtaining Program Coverage Analysis with gcov960

You can use both profile types input to the gcov96atbverage analyzer
tool, as follows:

gcov960 -cm -Z ./pdb -iprof pfile.pf fee.c foo.c

This command produces a coverage report in theféitesov and
foo.cov , using the profilgfile.pf

Using make To Perform Program-wide Optimizations

Since the program-building tool “make” is so widely used, the
program-wide optimization features are designed to work well with it.
However, you need not use the make tool to effectively use program-wide
optimizations. If you do not use the make tool, you can skip this section.

1960 Processor Compiler User's Manual

Below is an example of a makefile (whesigy is set appropriately):

SUBST=
PROF=
MODULES=*:*
OPT=-fdb
"-gcdm,subst=$(MODULES)+$(SUBST),iprof=$(PROF)"
FLAGS=-Ttarg $(OPT)
OBJECTS=fee.o foo.0 main.o
prog: $(OBJECTS) force
ic960 -0 prog $(FLAGS) $(OBJECTS)
.C.0:
ic960 -c $(FLAGS) $<
$(OBJECTS): makefile
force:

While primitive, this makefile can be used to exercise several significant
capabilities of the program-wide optimization system. Refer to this

example as you read the following sections; the example and discussion can
help you determine the changes that must be made to your own makefiles
any) to perform program-wide optimizations.

Adapting Makefiles for Program-wide Optimization

This section discusses the example makefile and how the program-wide
optimization interface is expected to mesh with your current usage of
optimization and debug options.

Specifying the PDB in the Makefile

In an ic960 or gcc960 development environment, you typically specify the
PDB by setting the960PDB or G960PDBenvironment variable outside of
any makefile, rather than changing makefiles to specify the PDB to every
tool invocation. The example makefile assumes thaPbig is specified
outside of the makefile in this manner.

Program-wide Analysis and Optimization

The appropriate location for the PDB directory is probably in the directory
where the makefile compiles and links the object modules. For example,
the UNIX and Windows statements below are suitable for many users.

setenv 1960PDB ./pdb (UNIX)
set 1960PDB ./pdb (Windows)

Replacing Optimization Options with ~ fdb and gcdm

Except for the definition of thePTmacro, the example is typical of simple
makefiles that use ordinary optimizations. From the point of view of the
makefile and/or the build system, thié option combined with one or
moregcdm options is often a direct replacement for ordinary optimization
options such a®, because the compilation tools that accept ordinary
optimization options also accept program-wide optimization options.

Programs linked by direct invocation of the linker are exceptions to this
general rule. In such a case, tfedm option must be added to the linker
invocation.

Using Linker Invocations with gcdm for Automatic
Management of Object Files at Link Time

The example makefile always produces a program load module with the
same name. Since the options provided when the make tool is invoked
affect the linked program when there have been no apparent changes to the
source or object files, the makefile uses an artificiee dependence to
guarantee that the program is linked at every invocation of make. Thisis a
common practice, and keeps the makefile simple.

You could instead write the makefile so that different options to the link step
produce program load modules with different names. The artifazicd
dependency could then be removed, perhaps saving an occasional
unnecessary linker invocation. However, in the program-wide optimization
system there is no more reason to try to eliminate extra linker invocations

4-9

1960 Processor Compiler User's Manual

4-10

than there would be in an ordinary system. In fact, the development
environment can often be simplified by forcing linker invocations (as in the
example makefile) for the following reasons:

The global decision-making and optimization step manages the results
of previous work in the PDBo that all previously generated modules
are reused whenever possible. The system keeps multiple sets
(currently, two) of the most recently used substitution modultdse

PDB, indexed by the substitutions that generated them. The makefile is
not aware of this management task, and is simpler as a result.

Even though program-wide optimizations can potentially trigger large
guantities of compilation and optimization work at link time, the
majority of this work usually occurs only the first time the program is
linked with a particular set of substitutions, or on the first link after
major changes are made to the program.

The automatic management of substitution modules (defined in the
Selecting Modules for Optimization with Substitution Specifications
section) greatly simplifies some development tasks that are difficult for
users in an ordinary environment, such as maintaining both debug and
optimized versions of the object modules for a program. Given
modules already compiled with thdb option, users can have

alternate program load module versions built efficiently by simply
invoking the linker with appropriatgcdm,subst options.

See the next section for examples of using the sample makefile to automate
program-wide optimizations.

Using Makefiles with Program-wide Optimizations for
Common Development Tasks

Building an Optimized Program without Profiling

Using the example makefile, if you want to obtain a program built with
program-wide optimizations, pass the options you want throughB8T
macro when invoking the make tool. For example, if you want @vel
optimization, use:

make SUBST=05

Program-wide Analysis and Optimization

This causes the object modules in the program to be compiled and then
linked with the options in thELAGSmacro. The make tool then issues the
following commands:
ic960 -c -Ttarg -fdb -gcdm,subst=*:*+05,iprof= fee.c
ic960 -c -Ttarg -fdb -gcdm,subst=*:*+05,iprof= foo.c
ic960 -0 prog -Ttarg -fdb -gcdm,subst=*:*+05,iprof=

fee.o foo.o
The link command causes substitutiondulesat optimization leveD5 to
be built in the PDB to replace the original moddéeso andfoo.o inthe
program load modulprog . Theiprof= option without a filename
indicates that you are not using a profildich is the default behavior.

Building for Debugging without Program-wide Optimizations

If logic problems exist in the program, you can build a debug version of
prog by invoking the make tool with:

make SUBST=g+00

This causes the make tool to issue only the following link command
(assuming the sources haven't changed):
ic960 -0 prog -Ttarg -fdb -gcdm,subst=*:*+g+0O0,iprof=

fee.o foo.o
The link command causes substitutronduleswith no optimization and
full debug information to be built in the PDB to replace the original
modulesfee.o andfoo.o in the program load modufeog .

After debugging the problem and then fixing it by changing one of the
source files, you can reissue theke SUBST=05command to get another
program-wide optimized version pfog . Invoking the make tool
recompiles the changed source file and then links the program witibthe
substitutionspecification, as before. This causes the global decision
making and optimization step to recompile the previddisubstitution
modules as needed in the PDB, and those modules are then used in the
program load modulprog .

4-11

1960 Processor Compiler User's Manual

4-12

Building an Instrumented Program

You can create a profile-instrumented program either of two ways: compile
source modules with thérof option, or link object modules using a
-gcdm,subst=+fprof substitution.

* When compiling withfprof , the object files generated in your
working directory contain profile-instrumented code.

* When compiling withgcdm,subst=+fprof , the
profile-instrumented object files reside in the PDB, not in your work
space.

These approaches both yield the same instrumented versiayaf
However, compiling with thérof option creates object modules useful
only for collecting a profile. If you compile with tiigrof option and do
not want a profile, you must then use substitutions to replace every
instrumented module iprog , or you must recompile the modules without
thefprof option.

Linking Using an +fprof Substitution
The example makefile requires no changes to accommodate this method;
just use:
make SUBST=fprof
No files are recompiled unless source files have changed; only the following
link command is issued:
ic960 -0 prog -Ttarg -fdb -gcdm,subst=*:*+fprof,iprof=
fee.o foo.o

This command causes substitution modules with profile instrumentation to
be compiled in the PDB to replace the original modfdes andfoo.o
in the linked progranprog .

NOTE. Profiles collected withfprof substitutions must be made into
self-contained profiles before linking.

Program-wide Analysis and Optimization

Compiling Using the fprof Option
To use thdprof compiler option to create an instrumented load module:

1. Edit the makefile to addprof toFLAGS
2. Invoke the make tool without any substitutions, as follows:
make SUBST=
Since the object files depend on the makefile, and the makefile is
edited, the make tool recompiles the modules before linking them:
ic960 -c -Ttarg -fdb -fprof -gcdm,subst=*:*+,iprof=
fee.c
ic960 -c -Ttarg -fdb -fprof -gcdm,subst=*:*+,iprof=
foo.c
ic960 -0 prog -Ttarg -fdb -fprof -gcdm,subst=*:*+,iprof=
fee.o foo.o
Since the substitution option list is empty, there are no substitutions, and the
instrumented modules from the current working directory are linked.

Note that when you use th@of option in this manner, the generated
object module contains code that is unsuitable for linking into programs that
are not intended to collect profile information. To solve this problem, you
can use-fprof with gcdm,subst instead of usingprof when

compiling.

Building an Optimized Program with Profiling

Assuming you have collected a profile nanpest.pf by executing the
instrumented version @irog , you can then use it for program-wide
optimizations by invoking the make tool as follows:

make SUBST=05 PROF=prog.pf

prog.pf can be either a raw profile or a self-contained profilgrdg.pf

is a self-contained profile, you can continue to use it as shown above, even if
changes are made to the program.

4-13

1960 Processor Compiler User's Manual

4-14

Profiling a Program in Pieces

Suppose that the target execution environment is memory limited so that
fee.o andfoo.o cannot both be instrumented for profiling at the same
time. You can use substitutions to make partially instrumented versions of
prog , and then create self-containaafiles for each piece, as follows:

make SUBST=fprof MODULES=":fe*"
Executeprog to obtain raw profilelefault.pf

gmpf960 -spf fel.spf default.pf
make SUBST=fprof MODULES=":fo*"

Executeprog to obtain a new raw profilgefault.pf
gmpf960 -spf fol.spf default.pf

Note that neither of the invocations of the make tool causes compilations;
the make tool simply issues a link command in each case. Each link
command constructs a versionppdg that has a limited set of
instrumented modules:
ic960 -o prog -Ttarg -fdb -fprof

-gcdm,subst=:fe*+, iprof= fee.o foo.o
ic960 -0 prog -Ttarg -fdb -fprof -gcdm,subst=:fo*+,

iprof= fee.o foo.o
Note also that although the example contains only two modules, the strings
that select the modules for partial prograstrumentation use a general
regular expression mechanism. Such strings can select any possible subset
of the modules in a program for any substitution. This mechanism is
discussed in detail with thgedm,subst option in Chapter 6 “gcdm
Decision Maker Option”.

After creating the self-contained profilied.spf andfol.spf , use
gmpf960 to create a single merged self-contained profile:

gmpf960 -spf prog.spf fel.spf fol.spf

The finalprog.spf is identical to a profile obtained by instrumenting the
entire program at once. Now issue itieke command to get program-wide
optimizations guided bgrog.spf

make SUBST=05 PROF=prog.spf

Program-wide Analysis and Optimization

Again, the make tool performs no compilations. The following link
command is issued:
ic960 -0 prog -Ttarg -fdb -gcdm,subst=*:*+05,

iprof=prog.spf fee.o foo.o
This causes substitutionodules at optimization levelsto be built (guided
by the profile inprog.spf) to replace the original modulés.o and
foo.o in the program load moduteog .

Runtime Support for Profile Collection

When you link your instrumented program with the standard libraries and
startup code, when your program exits, a raw profile natekedlt.pf is
automatically produced in the current directory. The format of this file is
described in Chapter 5, “Profile Data Merging and Data Format
(gmpf960)”.

When you are not using the standard libraries, you must provide code to
initialize the profile counters and to dump the counters in the required
format, as described below.

Profile Initialization

Your startup code must call a profile initialization routine before calling
main. The address of the default initialization routine is held in the

predefined variable_profile_init_ptr . Here is an example of a call to
the default initialization routine:

.comm __ profile_init_ptr

Id __profile_init_ptr, r6

cmpobe 0, r6, Of

Ida 0(ip), g0

Ida .0l

subo g1, g0, g0

addo g0, r6, r6# adjust for PIC
callx (r6)

0:

4-15

Profile Data Merging and Data
Format (gmpf960)

This chapter explains how to use gmpf960 to merge the execution profile
data you learned how to collect in Chapter 4, “Profile Data Merging and
Data Format (gmpf960)”. You also learn how to use gmpf960 to create a
report that shows how many times each basic block was “hit” or run during
program execution.

Merging Profile Data

The gmpf960 utility combines the execution profiles created while
executing an instrumented program. Once the profiles are merged, the
gcdm960 utility uses the merged profile information to analyze the
program's run-time characteristics and make decisions about possible
program-level optimizations. For more information about gcdm960, see
Chapter 6, “gcdm Decision Maker Option”.

You can merge any mixture of the raw or self-contained profiles. See
Chapter 4, “Profile Data Merging and Data Format (gmpf960)”. The
merged profile is normally a self-contained profile, although you can merge
raw profiles into a single raw profile.

If the execution environment supports a file system, and the application uses
the supplied libraries, then the process of gathering and formatting the data
is automatic. When your instrumented program terminates, the profile data
file default.pf is automatically written.

5-1

1960 Processor Compiler User's Manual

gmpf960 Invocation

The profile-merge utility recognizes a letter preceded by a hyplienon
Windows hosts only, a slagh as an option. For example, specifies the
Outfile option on all hostgo is also accepted on Windows hosts. gmpf960
uses the syntax:

gmpfo960 [-option 1]...{-spf|o outfile } infile

[infile ...

An option is one of:

h displays a list of invocation options.

rprofile indicates how many times the counters for each basic

block were incremented, for those blocks that were hit.
This information is written tatdout

t specifies that all input files are in text format.
v960 displays version information and exits.
Z pdb_dir specifies the program database directory. If the merged

output or any of the inputs is a self-contained profile,
you must specify the PDB with tlzeoption or via the
G960PDBoOr 1960PDB environment variable.

spf outfile causes a self-contained profile to be produced as output.
This is the preferred usage of gmpf960.

o outfile specifies the output file. If a file with that name already
exists, it is overwritten. You can even use the name of
one of the input files. White space is optional between
the option and argument. Note that this option is
supported only for merging raw profiles into another raw
profile.

infile specifies an input file. You can specify multiple input
filenames; gmpf960 processes them sequentially. Input
files can be the results of a program execution or a
previous merging of profiles.

Profile Data Merging and Data Format (gmpf960)

Discussion

The gmpf960 utility merges the execution profiles inrdlle files and
stores the resulting profile wutfile . Input files can be either the output
from a previous invocation of gmpf960, or thefault.pf profiles

created automatically when you run your instrumented program.

NOTE. The tools that accept profiles generally accept multiple profiles
and merge them in the same manner as gmpf960. However, gmpfo60 is
the only tool that actually produces profiles, and in particular, is the only
tool that can produce a self-contained profile by conversion from a raw
profile. The other tools always perform the merge internally and discard
the merged profile after processing.

Thet option is useful if your execution environment does not support
automatic creation of thaefault.pf profile file. Uset if your input files
are in the text format described below.

If thet option is not specified, the input files are assumed to be in their
default binary format. Input files can be either the output from a previous
invocation of gmpf960, or thaefault.pf profiles created automatically
when you run your instrumented application.

Example

The following command reads and procesaes.pf , run2.pf
run3.pf and merges the results into the self-contained prafiten.spf .

gmpf960 -spf summ.spf runl.pf run2.pf run3.pf

5-3

1960 Processor Compiler User's Manual

5-4

Profile Format Specification

Normally, the raw profile filaelefault.pf is created automatically when
your application callexit . Alternatively, the gdb960 debugger supports a
profile put command that you can use to extract the profile data from
target memory and write it wefault.pf in the appropriate format.

If your execution environment does not support automatic generation of
default.pf , you must manually extract the profile data from your
system's memory and write it to a file in a format recognized by gmpf960.

The remainder of this section describes where the profile data resides in tar-
get memory, and the file formats recognized by gmpf960.

Profile Data Structures

When you build an instrumented application, a supporting C data structure
is automatically linked with your application. This data structure is used to
record your application's runtime behavior, or “profile.”

The profile data is maintained in an arrayun$igned long integers,

called__profile_data_start . The size of the array, in bytes, is given
by the symbol _profile_data_length . __profile_data_length is
always a multiple of 4, and the number of elements in
__profile_data_start is given by (_profile_data_length / 4).

default.pf File Format

The file default.pf is a binary file containing the value of
__profile_data_length , followed by elements of

__profile_data_start . Each value is stored in the file as a 4-byte two's
complement unsigned integer. Furthermore, each value is stored in
little-endian byte order, regardless of the endianness of your target memory
and of your host system.

Profile Data Merging and Data Format (gmpf960)

For example, assume thatprofile_data_length has the value 12 (12
bytes is three 4-byte words), and thaprofile_data_start contains

the values 0x000090A4, 0x000000C7, and 0x00008FDD. Then the binary
format of filedefault.pf (printed as hexadecimal words) would be:
0000000C

000090A4

000000C7
00008FDD

Depending on the tools available, you may find it difficult to create the
binary format required idefault.pf . To circumvent this step, you can
write the profile data to a file in text format, and then use gmpf960 to
translate the file into binary format.

The text file format consists of the value oprofile_data_length ,
followed by the values in_profile_data_start . The numbers must
appear in the file as decimal, and must be separated by white space.

For example, assume thatprofile_data_length has the value 20 (20
bytes is five 4-byte words), and thatprofile_data_start contains the
values 20, 15, 100, 2, and 63. If you use a text editor to create the text
format ofdefault.pf , it would be:

20

20 15 100

263

Note that there is no requirement as to the number of entries per line. The
format definition of the text file simply requires that the numbers are
separated by white space.

Example
Assume that you have a text-format profile in figault.txt and a
binary-format profile in filedefault.pf . The following invocations of

gmpf960 merge these two profiles, writing the results in the binary-format
file default.sum

gmpf960 default.txt -o default.tmp
gmpfo60 default.pf default.tmp -spf default.sum

Any mixing of text, raw profile or self-contained profiles is allowed.

5-5

1960 Processor Compiler User's Manual

5-6

Creating a Runtime Report with gmpf960

Example 5-1

You can also use gmpf960 to create a report that shows how many times the
counters for each basic block were incremented. The examples given below
assume that you compile and execute the following source file with the
-fprof option to gather a runtime profile.

C Code

/* Source File - t.c */
inti, j;
main()
{
for (i=0;i<10;i++)

j+=i

return j;

To compile the above source file you can use the following command:
gcc960 -Fcoff -fprof -Tmceycx t.c -Z pdb

The generated executable fileut can be downloaded to a Cyclone i960
Cx processor-based evaluation board and executed using the following
command

mondb -ser a.out
This execution generates tiefault.pf file which contains the runtime

profile for the above execution. You can use eitheifile option in
gmpfa60 or the gcov960 coverage analyzer to get the coverage results after
running the program.

Profile Data Merging and Data Format (gmpf960)

Using gmpf960
The command:
gmpf960 -spf foo.spf -rprofile -Z pdb default.pf

generates the following output:

Example 5-2 gmpf -rprofile Sample Output

Profile counts for module t.c=main$
Function name

Line# Block#

Times hit From

main
main
main
main
main
main

4]
51
51
5]
6]
8]

0]
0]
3]
2|
1]
4]

I
1|1 raw inputs
1|1 raw inputs
11| 1 raw inputs
10 | 1 raw inputs
10 | 1 raw inputs
1|1 raw inputs

Notice that the in the example above, the expressions tartheloop and

the expression+=i

are the only ones with multiple hits. The gcov960

sample output below provides you with the same information, however, the
number of hits for each statement is recorded to the left of the line.

1960 Processor Compiler User's Manual

Using gcov960

The command:

gcov960 -rl -Z pdb

generates the following output:

Example 5-3 gcov960 Sample Output

inti,

main()
1->{
11110-> for(i=0;i<10;i++)
10 -> j+=1i

1-> returnj;

}

Number of Blocks: 5

Number of Blocks Executed: 5

Number of Blocks Never Executed: 0
Percentage of Blocks in Source File that were executed: 100.00%

Program database:
Program profile: default.pf

See th@960 Processor Software Utilities User’'s Guifie more
information on gcov960.

gcdm Decision Maker Option

This chapter describes thedm option, which invokes the gcdm960 global
optimization decision maker during the link process. The decision maker
then invokes the compiler and linker as necessary to perform program-wide
optimizations. For an overview of how to use this option, see Chapter 4,
“Program-Wide Analysis and Optimization”.

gcdm Option Syntax

Thegcdm option has the following syntax:

Table 6-1

{.

|/} gedm,

argument [, argument]...

As with other options, you can use théelimiter only in Windows. The
gcdm optionarguments and the sections that describe them are listed in
Table 6-1.

gcdm Option Arguments

g

cdm Option Arguments

Description

Section
Titles

subst={module-set}{option-

list}
nosubst=module-set

. [noJref=module-set

Controls which modules
are substituted.

Specifies whether
functions or data defined
in objects reside outside
the current module set
presented to the linker.

Substitution
Controls

External
Reference
Controls

continued U

6-1

1960 Processor Compiler User's Manual

Table 6-1 gcdm Option Arguments

(continued)

Section
gcdm Option Arguments Description Titles
® inline=n Sets the level of inlining Inlining
used by the compiler. Level
Control
® iprof=file Causes profile Input Profile
information to be used in ~ Control
program-wide
optimizations.
® sram=start, end[,start, Specifies fast memory Fast
end)... regions (e.g., SRAM) to Memory
m=start, len[,start, len... use for heavily Controls
referenced variables.
® dryrun Writes a list of the Dryrun
current subst commands Control
to a text file.
® dec=file Options for creating Report
® rsummary gcdm reports. Controls

® rdecisions
® rcall-graph
® rreverse

® rprofile

® rvariables

gcdm Option Arguments

Substitution Controls

The substitution controls allow you to substitute optimized modules into
your application (usingcdm,subst), and to suppress unintended
substitutions (usingcdm,nosubst). When a given object module is
named in multiplesubst ornosubst options, the lastubst or nosubst

that names the module applies. The substitution controls also allow fine
control of how affected modules are optimized. The following subsections

gcdm Decision Maker Option

describe substitution and substitution suppression. Detailed information on
controlling optimizations is presented in the discussiasptbn-list in
the next subsection.

Substitution Specifications

subst={ module-set ¥ option-list }

In the linked progranmgcdm,subst={ module-set }{ option-list }
causes substitution of modules optimized according togdhien-iist

for all of the modules imodule-set . Note that no space is allowed
betweenmodule-set andoption-list

A module-set specification is a string supplied by the user that names the
modules to be affected by thedm option. For a description of how to
specify amodule-set , see “Module-set Specification” at the end of this
chapter.

An option-list can consist of one or more of the substitution options
discussed in three categories below. Note that the first two categories are
mutually exclusive; you can use substitution options from the third category
with those from either of the first two categories. (For example;@ide

control is incompatible in a substitution with thiprof control.) An

option list can also consists of a singlespecifying no substitution.

Whole-program Optimization Option (Category 1)
+05

This option selects program-widgtimizations, including global function
inlining, superblock formation, and global alias analysis. This option is not
allowed in anoption-list with module-local (Category 2) options.

Module-local Optimization Options (Category 2)
+fprof +O0 +O1 +0O2 +03 +04

These module-local substitution options correspond to the gcc960 and ic960
drivers'-fprof (Instrument) andO n (Optimize) options described in

Chapter 2, “gcc960 Compiler Driver” and Chapter 3, “ic960 Compiler
Driver”. (The compilation system interprets t@en arguments correctly,

1960 Processor Compiler User's Manual

based on which compiler driver you are using.) The module-local
substitution options are not allowed in @ption-list with
whole-program optimization (Category 1) options.

+fprof causes generation of profile instrumentation, as
described for thefprof compiler option (in Chapter 2,
“gcc960 Compiler Driver” and Chapter 3, “ic960
Compiler Driver”). When thefprof substitution
option is used (instead of thigrof compiler driver
option), only the substitution modules in the PDB
contain the actual instrumented code. This is useful in
some cases. For example, a library compiled dth
but without-fprof is suitable both for users who do
not want to use program-wide optimizations, and for
those who do, as follows:

* All program database information required to
support program-wide optimizations is present in
the library, since it is compiled witifdb .

® To collect a full program profile (including the
library) for use with program-wide optimizations, a
substitution such as
-gcdm,subst=*:*+fprof generates a program
that is appropriately instrumented.

* |f you do not use program-wide optimizations (that
is, you do not use gcdm,subst options), there is no
extra runtime overhead, and the program can be
optimized to any module-local optimization level
higher than -O0.

gcdm Decision Maker Option

+00 +01 +02 +03 +04

allow substitutions of modules with various levels of

module-local optimization. (The compilation system

interprets theOn arguments correctly, based on which

compiler driver you are using.) These are typically used

for the following purposes:

® to substitute a few non-optimized modules into a
program built with program-wide optimizations in
order to help debug it.

* to specify a module-local optimization level other
than O1 with a +fprof substitution.

Miscellaneous Substitution Options (Category 3)

+g +asm_pp+ prog +clist+ arg +f string

These can be used with either the whole-program or module-local
substitution options in Categories 2 and 3, above.

*9

+asm_pp+prog

+clist+ arg

enables debug information generation for substitution
modules.

causegprog to be invokedafter the assembly code for a
substitution module is generated, with the name of the
file containing the substitution assembly code as its third
argument. (The first two arguments are ignored.) This
allows the post-processing of substitution assembly code
by user-supplied tools.

generates a listing containing assembly code and/or
preprocessed source code of each module selected by
the substitution into a file name@melL in the current
working directory, wher@ameis the base filename of
the object module being substituteatg is a string
consisting ofs, o or both Thes character causes
inclusion of the substitution module’s pre-processed
source code in the listing. Thecharacter causes
inclusion of the substitution module’s assembly code
in the listing. In order for preprocessed source code

1960 Processor Compiler User's Manual

to be displayed in listings generateddist
substitutions, the modules must either have been
originally compiled with the ic960 driver or compiled
with the gcc960 driver using tliancy-errors

(ic960) orfmix-asm (gcc960) option.

+f string The+f string substitution options listed below apply
the corresponding individuall string optimization
options discussed in Chapter 2, “gcc960 Compiler
Driver” and Chapter 3, “ic960 Compiler Driver”. The
no form of these options (e.gfno-unroll-loops)
is also accepted.
+fbbr, +fcoalesce
+fcondxform, +fconstprop
+fcopyprop, +fcse-follow-jumps
+fcse-skip-blocks, +fdead-elim
+fexpensive-optimizations, +ffunction-cse
+fmarry_mem, +fpeephole
+frerun-cse-after-loop, +fsblock
+fsched-sblock, +fschedule-insns
+fschedule-insns2, +fshadow-globals
+fshadow-mem, +fspace-opt
+fsplit_mem, +fstrength-reduce
+fthread-jumps, +funroll-all-loops
+funroll-loops

These options automatically default appropriately based
on the selected optimization level.

Substitution Suppression

nosubst= module-set

Thenosubst= module-set argument suppresses substitution for the
named modules. This is equivalenstbst= module-set + (the

option-list consists only of & character).nosubst is typically used to
exclude a subset of modules from a preveust .

gcdm Decision Maker Option

For example, thgcdm option and argument:
-gcdm,subst=*:*+05,nosubst=:intr_handler

would substitute all modules exceptr_handler

External Reference Controls

ref= module-set
noref= module-set

These reference controls cause gcdni®@&Gsume/not assume that
functions or data defined in the objects namedhbyule-set are

referenced outside the set of object files presented to the linker. You would
normally useef to keep the global decision making and optimization step
from discarding modules that appear to be unused. Thefasir noref

to name a given module appliesoref is typically used to exclude a

subset of modules from a previae$. The default isoref .

Inline Level Control

inline= n

This gcdm option argument controls how aggressively global inlining
decisions are made.defaults taB, andn must be less than or equakto

The higher the argument, the more aggressive the inlining, and the larger
your program may become. Note that inlining must be enabled-(@&.,
control is used) for this control to have any effect.

Input Profile Control
iprof= file
This control causes the profile informationfita to be incorporated into

program-wide optimization decisionéle is a raw profile or a
self-contained profile.

See Chapter 4, “Program-Wide Analysis and Optimization” for a discussion
of profiles.

1960 Processor Compiler User's Manual

Fast Memory Controls

sram= hexstart,hexend[,hexstart,hexend]...
m=hexstart,hexlen[,hexstart,hexlen]...

The compilation system optimizes software to exploit on-chip cache and
data RAM areas when you specify the architecture withaheoption.

This optimization attempts to place the most heavily accessed data and
variables in fast RAM. fast memory controls (gcdm option). gduen

option lets you identify other SRAM areas that are available in a system.

Memory regions have an implicit order ranking with respect to the
optimization tools; the left-most region specified is assumed to be the most
desirable. Thus, the tools attempt to place the most heavily referenced
variables into the first memory region specified. When that region is full,
the tools begin placing variables into the second region specified.

For example, the contrai=0x210,0x3F0 places the most heavily
referenced variables in an SRAM address beginnilmx2t0. Ox3F0
specifies the length of the memory range to be used for this purpose.

Using thesram=0x100,0x3ff control indicates to the system that the
memory rang®x100-Ox3ff is available for data placement.

See your processor manual for information on memory region allocations.

Dryrun Control
dryrun

Thedryrun argument echoes the commands that would be executed to
implement all specifiedubst options into the report file, without actually
doing the optimization work.

gcdm Decision Maker Option

Report Controls

Thegcdm option arguments listed here allow for creation of various
optimization reports and creating and naming a report file.

dec=file

Causeghe optimization decisions report to be senfil¢o , instead of to
stdout (which is where reports appear by default).

dryrun

Echoes the commands that would be executed to implement all specified
subst options into the report file, without actually doing the optimization
work.

rsummary
Prints a summary of program-wide optimization decisions to the report file.

This is a typicatsummary report:

Initial linked text size was 20720 bytes.
About 21760 bytes are assumed available for the final
text section.
0 variables were allocated to fast memory.
2 function call sites were inlined.
The first line shows the size of the application’s text section before
program-wide optimization.

The second line shows the decision maker’s goal for the final size of the
application’s text section after program-wide optimization.

The third line shows that no variables were allocated into high-speed
memory.

The fourth line shows that two call sites were inlined.

When the-fvirtual-opt option is supplied to the compiler, the
summary also includes the total number of virtual function calls and the
number of virtual function calls that have been resolved.

1960 Processor Compiler User's Manual

6-10

rdecisions

Creates a report that includes the initial and goal text sizes as described
above, as well as a list of variables allocated to fast memory, a list of the
estimated sizes of all functions before and after program-wide optimization,
and a list of inlined call sites.

Thelnlined arcs section of the report lists call sites selected for inlining:

®* Thecaller field is the function containing the call site that is inlined.

®* ThecCallee field is the function being called at the inline site.

®* Thesite field is a numbering of the call site in the calling function.
The first call in the calling function is site 1, the next call is site 2, and
so on. This field is useful for distinguishing between call sites when
the a function makes multiple calls to the same function.

® ThePercent field is the percent of all dynamic calls for which this
call site is responsible.

®* TheHeight field is the height in the call tree of the called function.

rcall-graph
Creates a call graph report showing the dynamic behavior of the program.

® TheFunction Callee field lists the arcs in the call-graph. The
format is:
Func
Calleel
Callee2
Callee3

In this listing Func is the calling function.Calleel , Callee2 , and

Callee3 are the functions that are called from functfamc. A ?in the

callee field indicates that this call site is a call through a pointer. In this case
the compiler does not know what function is called from this call site.

* TheSite field is the call site number of the call to this function. Each
call site in a function is assigned a number starting with 1.

gcdm Decision Maker Option

® TheCount field has two meanings. When applied to a calling function
the count is the number of times this function was called during all
profiled executions. When applied to a called function the count is the
number of times this particular function was called from this specific
call site during all profiled executions.

®* ThePercent field is the percentage of the total number of profiled
dynamic calls that thiSount accounts for.

®* ThesSize field is relevant only for called functions; the value shown is
the number of intermediate language statements in the function before
program-wide optimization.

® For callees, thkeg field indicates how many registers were needed to
generate code for the function. For callersRbeg field indicates how
many registers were used across the particular call site.

®* Thelnline field is relevant only for called functions; a value of 0

indicates that a called function was never inlined, and a value of 1
indicates it was inlined one or more times.

NOTE. Functions that were not instrumented appear in the call graph
only if they are referenced by some function that was instrumented.

rreverse

Prints a reversed call graph to the report file. This control changes the
format of reports generated by tteall-graph control. When you use
rreverse , the call graph report lists all the sites where a function is called
from, rather than listing the call sites of each function. In other words,
rather than listing each caller followed by its callees, the report lists each
callee followed by its callers.

rclosure
This control reports the transitive closure of all possible callee functions.

6-11

1960 Processor Compiler User's Manual

6-12

rprofile
Prints the profile counts for the basic blocks that were hit to the report file.

® ThelLine# field is the line number within the file.
®* TheBlock# field is the basic block that corresponds to this line

number.

* TheTimes hit field is the number of times that this line of code was
executed.

®* TheFrom field indicates how the value in ti@nes hit field was
obtained.

For values that were completely estimated by the decision maker, the field
contains “guess.”
For values obtained from profiles that were not subject to interpolation, this

field containsh Raw inputs , wheren is the number of profile files used to
obtain the value.

For values obtained from interpolated profiles, this field contains
Stretched inputs , Wheren is the number of profile files used to obtain
the value.

rvariables

Lists the variables allocated to fast memory withor -sram to the report

file.

®* TheVvariable field is the name of the variable to be allocated to fast
memory.

®* TheSize field is the size of the variable in bytes.

®* TheUsage Count field is the number of times this variable was
accessed during execution of the program.

®* TheAddress field is the variable's address in fast memory.

gcdm Decision Maker Option

Module-set Specification

A module-set specification (used in substitution controls and external
reference controls, described earlier in this chapter) selects a subset of zero
or more modules from the set consisting of all eligible modules in the
program. A module-set specification has the format:

[archive]| : module

The following rules govern module-set selection.

1.

The set of eligible modules are those linked into the program that were
compiled with thefdo compiler driver option (described in
Chapter 2, “gcc960 Compiler Driver” and Chapter 3, “ic960 Compiler
Driver”).
When either of the charactersr + appears twice in succession, that
character is quoted and the meaning is a single+ character.
When a module-set contains an unquotetharacter, it is interpreted
as a pair of regular expression strings in the style of the UNIX Bourne
shell, with the string to the left of thematching object file archives
and the string to the right of thematching individual object files. For
example:
— matches all eligible modules
— matches only eligible modules not linked in from libraries
— ab.o matched.o from librarya, provided the module is

eligible
When a module-set contains no unquotetiaracters, it is assumed to
be the name of a function or variable in the program. In this case, the
module-set refers to the object file that contains the definition of the
variable or the body of the function, provided the module containing
the variable definition or function body is eligible.
When a module-set is empty (that is, no characters occur between the
option and the= character) the module-set defaults*tg which refers
to all eligible modules in the program not linked in from libraries.

6-13

C Language Implementation

This chapter discusses the following topics:
e “Data Representation”

¢ “Calling Conventions”

* “Object Module Section Use”

* “Pragmas”

* “Language Extensions”

®* “Inline Assembly Language”

Data Representation

This section describes the scalar and aggregate data types recognized by the
compiler, the format and alignment of each type in memory, and the range

of values each type can take. For information on ANSI C data types, see

C: A Reference Manual

The 1960 processors use a little-endian byte ordering, such that the address
of a 4-byte (32-bit) variable is the address of the low-order byte of the
variable. The i960 Cx, Hx, and Jx processors also support big-endian
addressable memory, such that the address of a 4-byte (32-bit) variable is
the address of the high-order byte of the variable.

7-1

1960 Processor Compiler User's Manual

Scalars

A scalar data type holds a single value, such as the integer value 42 or the
bit string10011 . Table 7-1 lists scalar data types for the i960 processor.

7-2

Table 7-1 Scalar Data Type
Size

Data Type (bytes) Format Range

unsigned char 1 ordinal 0to 255

[signed] char 1 2's-complemen -128 to 127
tinteger

unsigned short 2 ordinal 0 to 65535

[signed] short 2 2's- -32768 to 32767
complement
integer

unsigned int 4 ordinal 0 to 4,294,967,295

[signed] int 4 2's-complement -2,147,483,648 to
integer 2,147,483,647

unsigned long 4 ordinal 010 4,294,967,295

[signed] long 4 2's- -2,147,483,648 to
complement 2,147,483,647
integer

float 4 single- 1.17549435*1038 to
precision 3.40282347*1038
floating-point (approximate absolute value)

double 8 double- 2.2250738585072* 10398 to
precision 1.7976931348623* 10308

floating-point

(approximate absolute value)

1. Bitfields occupy as many bits as you assign them, up to a word (4 bytes), and their length need
not be a multiple of 8 bits (1 byte).
2. The enum data type is identical in size and range to char, short, or int data type, depending on
the range of constants in the enum declaration.

continued [

C Language Implementation

Table 7-1 Scalar Data Type (continued)

Size

Data Type (bytes) Format Range
long double 16 extended- 3.362103143112094*104932

precision to

floating-point 1.189731495357231*104932

(approximate absolute value)

bit field 1t0 32 ordinal 0 to 257e.1 (Size is the
(unsigned bits number of bits in the bit field.)
value)?
bit field® 1t032 2's -2size-1 tg p(size-1).1 (Size is
(signed value) bits complement the number of bits in the bit

integer field.)

1. Bit fields occupy as many bits as you assign them, up to a word (4 bytes), and their length need
not be a multiple of 8 bits (1 byte).

2. The enum data type is identical in size and range to char, short, or int data type, depending on
the range of constants in the enum declaration.

Compiler options€.g, gcc960's[no-]signed-char or

f[no-Junsigned-char ; iIc960’sGces or Geu) set thechar declaration
default tosigned char orunsigned char . Wide characters (character
constants prefixed with dr) are syntactically supported but semantically
identical to other character constants. Note that with gcc®60 defaults
to unsigned , whereas ic960 defaults tasigned

The approximate ranges fidat , double , andlong double data types
appear in Table 7-1.

7-3

1960 Processor Compiler User's Manual

NOTE. The compiler does not support the 64-bit long-ordinal and
long-integer data types available for the assembler and the 1960
architecture.

On architectures with an internal floating-point unit (80960KB/SB), the
compiler uses 32-bit and 64-bit general registers for intermediate results
when performing calculations witlvat anddouble data types.
Therefore, the accuracy of these data types is limited to 32 bits and 64
bits, respectively. The compiler does use the internal floating-point
registers {p0 -fp3) when performing calculations wittng double

data types, yielding IEEE-754 accuracies at the expense of execution
speed and code size.

The alignment of a scalar data type is equal to its size. Although the
extended-precision floating-point representatiofond double requires

only 10 bytes (80 bits), the natural architectural alignmeluongf double

is 16 bytes. Therefore, to accommodate the semantic requirements of the C
sizeof operator, the size oflang double is 16 bytes.

The following scalar alignments apply to individual scalars and to scalars
that are elements of an array or members of a structure or union:

char is aligned on a 1-byte boundary.
short is aligned on a 2-byte boundary.
int is aligned on a 4-byte boundary.
pointer is aligned on a 4-byte boundary.
float is aligned on a 4-byte boundary.
double is aligned on an 8-byte boundary.

long double is aligned on a 16-byte boundary.

C Language Implementation

Aggregates

An aggregate data type consists of one or more scalar data type objects. You
can declare the following aggregate data types:

array consists of one or more elements of a single
data type placed in contiguous locations from
first to last.

struct is a structure containing one or more scalar or

aggregate data types. The members are
allocated in the order they appear in the
definition but do not always occupy contiguous
locations.

union is a single location that can contain any of a
specified set of scalar or aggregate data types.

Structure Alignment

The alignment of a structure affects how much space the structure occupies
and how efficiently the processor can address the structure members. A
compiler option (for gcc960ni960_align ; for ic960,Gac) allows

selection of any of the following alignment options for structures:

Optimal natural is the default alignment. For structures smaller

alignment than 16 bytes, this alignment is the size of the
structure rounded up to the nearest power of 2.
The compiler aligns structures of 16 bytes or
larger on 16-byte boundaries. Optimal natural
alignment produces the most efficient code for
assigning values to structures and for passing
structures as arguments.

1960 Processor Compiler User's Manual

7-6

Backward-compatible aligns a structure according to the greatest

natural alignment alignment requirement of any member of the
structure. This alignment provides higher data
density than optimal natural alignment and
produces code and data compatible with that
generated by ic960 releases before Release 3.0.

ABI-compatible aligns a structure or union to the maximum of
alignment the following:

the greatest alignment requirement of any
members of the structure; or

2 if the structure’s size is 2 and 4 if the
structure’s size is 3 or larger.

User-constrained aligns a structure according to any legal value
alignment you specify. A compiler option (for gcc960,
mi960_align ; for ic960,Gac) or
#pragma i960_align allows specification

of alignments of 1, 2, 4, 8, and 16. Alignments
can also be specified usiigragma align
described in this chapter.

Structure alignment can result in unused space, called padding, between
members of the structure and between the last member and the end of the
space occupied by the structure. The padding at the end of the structure is
called tail padding. Because of differences in padding under different
alignments, changing the alignment can change both the size of the
structure and the offsets of members relative to the beginning of the
structure.

The offset of a structure member from the beginning of the structure is as
follows:

® Under both forms of natural alignment, the offset of a structure
member is a multiple of the member's natural alignment. For example,
since ashort aligns on a 2-byte boundary, the offset ghart
member from the beginning of a structure is a multiple of 2 bytes.

C Language Implementation

* Under user-constrai

ned alignment, the offset of a structure member is a

multiple of the lesser of the member's alignment or the alignment

constraint you speci

fy.

®* For example, in a 1-byte alignmenbélign), the offset of &hort

member is not nece

ssarily even.

The rules for structure member natural alignment are:

Scalar types

Array types

Union types

Structure types

align according to their natural architectural
alignment. For example,short data type
aligns on a 2-byte boundary.

align according to the alignment of the array
elements. For example, an arraysbért data
type aligns on a 2-byte boundary.

align according to the greatest alignment
requirement of any member of the union. In the
example belowynl aligns on a 4-byte
boundary since the alignmentafthe largest
element, is 4:

union unl {

short a;/* 2 bytes */

char b;/* 1 byte */

int c;/* 4 bytes */

h
align according to the alignment of the member

types either natural or user-constrained.

1960 Processor Compiler User's Manual

Specifying optimal or backward-compatible natural alignment changes the
size of a structure. Natural alignments differ only in tail padding. Member
offsets, and therefore the padding between members, are the same under
optimal natural alignment as under backward-compatible natural alignment.
For example, the following structure occupies memory as shown in Figure
7-1 under either optimal or backward-compatible natural alignment:

struct strcl

{
char a; /* occupies byte 0 */
short b; /* occupies bytes2and3 */
char c; /* occupies byte 4 */

int d; /* occupies bytes 8 through 11 */
2

Under optimal natural alignment, the size and alignment cftthet type
are both 16. Under backward-compatible natural alignment, the size is 12
and the alignment is 4.

Figure 7-1 Natural Alignment
7 07 07 07 0
T] e O I
b XXXX a Byte O
XXXXXXXX c 4
d 8

0sD829

Specifying a user-constrained alignment changes both the tail padding and
the padding between structure members, which can also affect the structure
size. A user-constrained alignment smaller than the natural alignment of a
structure can result in a more tightly packed structure, saving space but
slowing execution.

C Language Implementation

The example in Figure 7-2 compares the layouts in memory of the
following structure under two different user-constrained alignments:

struct strcl /* Alignmentis 2: Alignmentis 1: */

{ * */
char a; /* byte O byte 0 */
shortb; /* bytes2and3 bytesland2 *
char c; /* byte 4 byte 5 */

int d; /* bytes 6 through 9 bytes 4 through 7 */
2

Figure 7-2 User-constrained Alignment

Alignment is 2; Size is 10

7 07 07 07 0
T T T T T T T 1T 1T T T T T T 1T T T T T T T [T T T 1T 11
b XXXX a Byte O
d XXXX c 4
d 8

Alignment is 1; Size is 8
7 0 7 0 7 07 0

c b a Byte O

0OSD830

A user-constrained alignment larger than the natural alignment aligns the
structure on the natural-alignment boundaries. User-constrained alignment
can increase the amount of tail padding relative to natural alignment but
does not increase the padding between members of a structure. For

example, specifying an alignmenti#f for strcl aligns the structure as in
Figure 7-1.

7-9

1960 Processor Compiler User's Manual

7-10

When astruct has a member that is alsetauct , the alignments of the
member type and of the container need not be the same. For example:

struct NATURAL
{

char ci;
short s;
char c2;

}
struct CONSTRAINED_1

{

char c;
struct NATURAL n;

}
If struct NATURAL has natural alignment, one byte of padding appears
between the membees ands. Under optimal natural alignment, the size is
8 and the alignment is 8. Under backward compatible natural alignment, the
size is 6 and the alignment is 2stfuct CONSTRAINED_lhas a
user-constrained alignment of one, no padding appears between members
andn, nor does any padding follow the membeHowever, all of the
padding mentioned previously as parsofictc NATURALstill appears in
membem of struct CONSTRAINED_1

Bit Field Alignment

Every bit field lies entirely within some bit-field container that has the same
size and alignment as an ; that is, the container alignment is the smaller
of 4 or a user specified alignment. A bit field can cross byte boundaries but
cannot cross a container boundary.

Alignment of an individual bit field is necessary when the bit field,
unaligned, overruns the end of the container in which it starts. A bit-field
size of zero also forces bit-field alignment. The alignment of a bit field and
the position of the bit field within a structure are determined as follows:

®* The byte position of a bit field within a container is the current byte
offset in the structure modulo the container alignment. This value is the
byte offset relative to the most recent container alignment boundary.

C Language Implementation

For example, if the container alignment is 1, the byte position is always
zero. If the container alignment is 4, the byte position can be 0, 1, 2,
or 3.

® The bit position of the bit field is the number of bits already allocated in
the current byte, plus eight times the container byte position. This value
is the bit offset, in the range 0 to 31, relative to the most recent
container alignment boundary.

¢ If the value of the container bit position plus the size in bits of the new
bit field is greater than 32 or if the size of the new bit field is zero, the
compiler inserts padding to align the bit field on the next container
alignment boundary. Bit-field alignment can result in padding of up to
31 bits. If the bit-field size is non-zero and the bit field fits entirely
within the current container, the compiler does not insert padding to
align the bit field.

® For big-endian, the bit position within the container is 31 minus the
above-calculated bit position.

Examples

These examples show how different alignment pragmas alter the alignment
of the components of a structure. The structure is declared as follows:

struct std_struct
{
unsigned char mla;
unsigned char mlb;
int m4a;
unsigned short m2a;
unsigned mbit5:5;
unsigned mbit7:7;
unsigned mbit6:6;
double m8a;

h

7-11

1960 Processor Compiler User's Manual

7-12

Figure 7-3 shows the optimal natural alignment of the structure, without any
alignment pragma.

Figure 7-3 Optimal Natural Alignment of std_struct
7 07 07 07 0
T 1 T T T 1T T 1T T T T T T [T T T T T T T T T T T 1
XXXXXXXX XXXXXXXX mib mila Byte 0
méda 4
XXXX mbit7 mbit5 m2a 8
XXXXXXXX MXXXXXXXX XXXXXXXX XX mbité 12
m8a 16
m8a (continued) 20
24
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
28

0OsD401

Figure 7-4 shows the backward-compatible natural alignment of the
structure, without any alignment pragma but with the appropriate compiler
option for backward compatibility specified (for gcc96{k-compat ; for
ic960, Ghc).

C Language Implementation

Figure 7-4 Backward-compatible Natural Alignment of std_struct
7 07 07 07
T T T T T T [T T T T 1T T T 1T T T T T 11
XXXXXXXX XXXXXXXX mib mla Byte 0
mda 4
XXXX mbit7 mbit5 m2a 8
XXXXXXXX XXXXXXXX XXXXXXXX XX mbit6 12
m8a 16
m8a (continued) 20
0OSD831
Figure 7-5 showstd_struct ~ aligned on 1-byte boundaries, with the
following alignment pragma:
#pragma noalign (std_struct)
Figure 7-5 #pragma noalign Alignment of std_struct
7 07 07 07
T 1 T T T T T 11 T T [T 1 \ 1 1 T]
méa mlb mla Byte O
m2a m4a (continued) 4
m8a XXXXXX mbit6 mbit7 mbit5 8
m8a (continued) 12
16

m8a (continued)

0SD402

7-13

1960 Processor Compiler User's Manual

7-14

Figure 7-6 showstd_struct , aligned on 2-byte boundaries, as follows:
#pragma i960_align (std_struct = 2)

Figure 7-6 #pragma align Alignment of std_struct

7 0 7 07 07 0
T T T T T T T T T T T T T T
mia mlb mla Byte 0
m2a m4a (continued) 4
XXXXXXXXXXXXXX mbit6 mbit7 mbit5 8
m8a 12
m8a (continued) 16

0sD1887

Other Type Keywords

Thevoid data type is neither a scalar nor an aggregatevdibeas the
return type of a function, to indicate that the function does not return a
value. Useroid * as a pointer to an unspecified data type.

Theconst andvolatile type qualifiers do not define data types. Rather,
they associate attributes with other types. tdsat to specify that an

object is a constant and is not to be changedvtlatle to specify that

an object may change in ways unknown to the compiler. Optimization is
inhibited onvolatile ~ objects. Inhibition of optimization is necessary for
objects such as memory mapped I/O registers or data accessed by interrupt
functions.

Calling Conventions

This section describes the standard i960 processor function calling
convention and describes how the compiler generates code to conform to
this calling convention.

C Language Implementation

The standard i960 processor calling convention places an absolute
minimum overhead on simple, commonly called functions with few
parameters. This is done by passing information between the calling
function and the called function in the i960 architecture's global registers as
much as possible.

Definitions

call-preserved register The register must have the same value upon
exit from a function as it did upon entry to
the function.

call-scratch register The register may have a different value upon
exit from a function than it did upon entry to
the function.

The following list summarizes usage of the global regigt@rthroughg15
and the floating-point registefig0 -fp3 .

go...g7 These eight registers pass parameters into the called
function from the calling function. If the return value
of the function is four words or less in size, then the
return value is passed back to the calling function in
registergO throughg3. If the function returns a long
double and generates code for the KB or SB
processor and compatibility with ic960 R2.0 is
requested, then registey® throughg7 are
call-scratch registers.

7-15

1960 Processor Compiler User's Manual

08...911

gl2

g13

gl4

g15

7-16

These four registers may be used for parameter
passing in addition tg0 throughg7. If a parameter

or a piece of a parameter is passed in one of these
registers, that register is considered a call-scratch
register. That register is considered a call-preserved
register otherwise. If the called function can not be
sure that a register has had a parameter passed in it,
then the register must be considered a call-preserved
register.

g12 is used as the PID bias register if generating
code for position independent data (PI@)2 is a
call-preserved register.

If the called function returns a struct or union larger
than four words, then the calling function passes a
pointer to the space allocated for the return value in
g13. g13 is a call-scratch register.

If the function requires an argument block, this
register contains a pointer to the argument block;
otherwise it contains zero.dfi4 contains zero upon
entry, then it must contain zero upon exitgi#
contains a pointer to an argument block upon
function entry, thery14 is considered a call-scratch
register.

g14 may also be used to hold the return address when
a function is called using a BAL instruction. In this
casegl4 must contain zero upon return from the
function. This dual usage gfi4 means that a

function that requires an argument block cannot be
entered using a BAL instruction.

g15 is defined by the 1960 architecture as the frame
pointer (FP).

C Language Implementation

fpo, fpd, If the function returns a long double and generates

fp2, fp3 code for the KB or SB processor and compatibility
with ic960 R2.0 is requested, thipd contains the
return value of the functiofp0-fp3 are considered
call-scratch registers.

AC The arithmetic controlAC) register is a call-scratch
register. The condition codes are not preserved across
a function call.

The 16 local registers(throughrl5) are 32-bit registers that provide a
separate set of registers for each active function. Each time a function is
called, the processor automatically sets up a new set of local registers for
that function and saves the local registers for the calling function.

The particular use of each local register is:

r0 contains the previous frame pointpfp()
ri contains the stack pointesp()

r2 contains the return instruction pointép()
r3...r15 are general-purpose registers

Parameter Assignment to Registers

Parameters are passed in ascending-numbered registers, startig@, Wwith
the order the parameters appear (left-to-right) in the actual call. Both scalar
and small aggregate (4 words or less) parameters are passed in registers.

The size of a parameter's data type determines the number of registers the
parameter occupies. A parameter with a type size of one word or less
occupies one register. A parameter with a type size of two words or less
occupies two registers, and so on up to four words and four registers.

A parameter's type also determines in which register it must start. If the
type's alignment is 4 bytes or less then the parameter may be passed starting
in any register. If the type's alignment is 8 bytes then the parameter must be
passed starting in an even numbered register. If the type's alignment is 16

7-17

1960 Processor Compiler User's Manual

bytes then the parameter must be passed startgdy ¢4, org8. Any gaps
left in the parameter registers due to alignment are not filled by following
parameters.

Argument Blocks

An argument block is used to pass parameters when the parameters cannot
be passed in registers. This can occur either because there are not enough
registers left to pass the parameter, or when the parameter is too large
(greater than 4 words) to pass in registers. As soon as a parameter is passed
in an argument block, all further parameters get passed in the argument
block. The calling function is responsible for the creation of an argument
block if one is needed. When an argument block is created it must contain
enough space at the beginning to store all the possible parameter registers
g0-g11. Thus the first 48 bytes of an argument block are reserved for
storing these registers. The first parameter passed in the argument block
starts at an address 48 bytes above the base of the argument block.

Return Values

All return values four or fewer words in length are returned in registers
g0-g3. For return values larger than four words the calling function must
pass a pointer to a memory area to store the return value. This value is
passed in registgrl3. The called function returns such a value by copying
the value into the memory area pointed t@b§.

ic960 R4.5 implements a special return mechanism for functions returning
long double, when generating code for ic960 R2.0 compatibility, and for a
processor with on-chip floating-point support. In such a case the return
value is returned in thip0 register.

Compiler Implementation

For compatibility with past implementations, the compiler allows some
leniency in the implementation of the standard calling convention.

7-18

C Language Implementation

The compiler is more relaxed about the call-preserved stayssgifl

across a function call. At a function call, the compiler assumes that the
called function may changg8-g11 if any parameters are passed in an
argument block, or if any parameters were passed in any of the registers
g8-g11. However, the compiler properly implements the calling convention
on the called function side, preservigrgll as necessary to satisfy the
calling convention.

Object Module Section Use

The compiler generates assembly language that uses the following object
file format sections to allocate storage for code and data:

text The compiler places all assembly language
instructions and constant data in.tke section.
Constant data includes initialized variables with the
const type qualifier, as well as string and
floating-point literals.

.data The compiler places any initialized data in.tlaa
section. Initialized data includes any statically
allocated variables that you declare with an
initialization list.

7-19

1960 Processor Compiler User's Manual

7-20

.bss The compiler locates uninitialized data in.tss
section as follows:

Uninitialized static variables go directly inbes .

Uninitialized external variables are defined with
thecomm directive. If the command line specifies the
relaxed ref-def linkage (gcc960’s

mno-strict-ref-def option or ic960’sGdc
option), the linker places these variabledar if
an initializing definition exists in another module.
Otherwise, the linker places these variablessin .

If the command line specifies strict ref-def linkage
(gcc960’'smstrict-ref-def option or ic960'SGds
option), all uninitialized static variables are placed
directly in thebss section.

For more discussion of object module formats, refer ta9B@ Processor
Software Utilities User's Guide

E NOTE. The compiler does not allocate storage in any section for
variables declared asxtern . Storage is allocated in the module
defining the variable.

Pragmas

Pragmas can supply implementation-defined information to the compiler.
This section describes the supported pragmas in alphabetical order. For
information about pragma syntax and pragmas in generdl:ske
Reference Manual

C Language Implementation

#pragma align [for gcc960 driver]
#pragma align n

n specifies the alignment value in bytes. Any of the
following values are valid, 1, 2, 4, 8, 16.

NOTE. This pragma functions differently with the gcc960 and ic960
drivers.

The#pragma align n feature sets the maximum formal alignment
requirement for structs/unions adytes.n must be 0, 1, 2, 4, 8, or 16; other
values are ignored. 0 instructs the compiler to revert to the maximum
alignment in use before the lagtragma align . n=16 is the default when
mic-compat is not enabled)=1 is the default undenic-compat

To get the alignmerd for a struct or uniow, given#pragma align n:

® let mbe the largest alignment of all members:of

* lets beu's unpadded size rounded up to the next power of 2.

® thenalign(u) = max (m, min (n, s))

Thus, a structure can never be given an alignment requirement that is less
than the largest alignment required for any of its memBpragma align

can be used only to limit the amount of extra padding added to improve the

alignment of the entire structure. Note that restricting structure alignment
padding can affect the size and performance of the generated code.

The following examples show hatpragma align can affect the
allocation of structs.

struct sO{struct s1{struct s2{
char x[9]; char x[8]; chary;

h struct sO z; short z;
h short zz;
h

7-21

1960 Processor Compiler User's Manual

7-22

#pragma: size: size: size:
align 1 9 17 6
align 2 10 18 6
align 4 12 20 8
align 8 16 24 8
align 16 16 32 8

#pragma align does not restrict the alignment of individsgdtic

extern , orauto variable allocations that happen to be structures. The
compiler aligns each separate memory variable allocation based strictly on
the size of the allocation, without regard to the formal alignment
requirement of the variable's type.

#pragma align [for ic960, or for gcc960 with ic960 option]

#pragma align [[(] size DI

#pragma align [(] identifier [= size][....1D]

#pragma noalign [[(] identifier [---ID1]

size specifies the alignment value in bytes. Any of the
following values are validt, 2, 4, 8, or 16.

identifier specifies the structure tag usedstiuct type
specifiers, as described @1 A Reference Manual

NOTE. This pragma functions differently with the gcc960 and ic960
drivers.

Specifies alignment values for structures and unions.

Default
The default is optimal natural alignment.

C Language Implementation

Discussion

Use#pragma align to align structure members using the natural
alignment value or a specified alignment size. #fsagma noalign to
specify byte alignment onlgpragma noalign is equivalent tépragma
align with a size ofL.. Thealign andnoalign pragmas specify
alignment values fostruct types.

The alignment pragma applies to the whole structure; you cannot specify
differing alignments for individual structure members. If you do not specify
size , the compiler uses natural alignment.

Since the scope of an alignment pragma is all subsequent source text,
nesting declarative scopes does not affect an existing alignment. However,
you can place an alignment pragma within a structure declaration, so that
the pragma affects any subsequent nested or top-level structure declaration.

The compiler aligns struct type at the opening brace that brackets the
struct declaration list, according to the following rules:

Rule 1 If thestruct type has a tag and the tag identifier has
appeared in an alignment pragma, the alignment is
specified by the most recent alignment pragma for the
tag identifier.

Rule 2 If thestruct type has no tag and theuct
declaration list is nested within anotlsguct
declaration list, the alignment is the same as that of the
immediately enclosingtruct type.

Rule 3 For any other situation, the alignment is specified by the
most recent alignment pragma with no tag identifier.
The compiler generates warnings for the following condition:

®* When an alignment pragma redefines the alignment for a specific
structure tag name:
#pragma align xyz=4
#pragma noalign xyz

7-23

1960 Processor Compiler User's Manual

Examples

The following examples show different ways nested structures can be
aligned:

#pragma noalign (outerl) /* Both outerl and innerl are
*/
#pragma noalign (innerl) /* packed (aligned on */
struct outerl { /* 1-byte boundaries). *
struct innerl {
short s1;
char c1,;
} sil;
inti2;
2
#pragma noalign (outer2) [* outer2 is packed. */

struct outer2 {
struct inner2 {/* Since the inner structure has a tag

*/
short s2; /* (inner2) but no alignment specified,*/
char c2; /* alignment of inner2 uses the default*/
} sil; /* alignment. The short s2 aligns on */
/* 2-byte boundaries and is the largest*/
/* member of inner2; thus the default */
/* alignment of inner2 is 2. *
inti2;
I3
#pragma noalign (outer3) [* outer3 is packed. */

struct outer3 {

struct { /* Since the inner structure has no tag, it*/
short s; /*is aligned the same as the immediately */
char c; /* enclosing structure, outer3. Thus both */
}sil; /* structures are packed. */

inti2;
2

7-24

C Language Implementation

The following example shows nested unnamed structure definitions and
alignment pragmas:

#pragma align my_structure = 16

struct my_structure [* 16-byte alignment */
{
char f1;
struct /* 16-byte alignment */
{
int ff2;
}H2;
b
#pragma align my_structure2 = 16
struct my_structure?2 [* 16-byte alignment */
{
char f1;
#pragma align 4
struct /* 16-byte alignment */
{
int ff2;
H2;
b

/* If no more alignment pragmas appear, any subsequent
* structs have 4-byte alignment.
*/

7-25

1960 Processor Compiler User's Manual

The following example shows alignment of a structure using the structure
tag identifier
#pragma align my_structure
struct my_structure /* natural alignment */
{
char f1;
2
#pragma noalign my_structure2
struct my_structure?2 /* no alignment; i.e. */
{ [* 1-byte alignment */
char f1;
h
#pragma align my_structure3 = 16
struct my_structure3 [* 16-byte alignment */
{
char f1;
h
The following example shows alignment of structures witldruitifier
specification:
#pragma align
struct my_structure [* natural alignment */
{
char f1;
2
#pragma noalign
struct my_structure?2 /* no alignment */
{
char f1;
2
#pragma align 16
struct my_structure3 [* 16-byte alignment */

{
char f1;
h

7-26

C Language Implementation

#pragma cave

#pragma cave [[(] function [..]1D]]

function specifies function(s) for the compiler to prepare
for compression. If no function is specified, the
pragma applies to all functions defined
following the pragma.

Prepares code for link-time compression and runtime decompression.

Default
The compiler does not prepare code for compression.

Overview

Compression assisted virtual execution (CAVE) reduces the physical
memory requirements of ROM-based applications through link-time
compression and on-demand runtime decompression of user-specified

functions. The compiler, linker, runtime dispatcher, and compression and
decompression routines cooperate to provide this feature. Code is typically
compressed by a ratio between 1.5 and 1.7. Runtime decompression speed
is about 30 clock cycles per byte of compressed code.

When the CAVE mechanism is used, either thropigbma cave or the
corresponding compiler driver options, selected functions in the application
are designated to be secondary functions. All other functions are termed
primary functions. The primary set should contain performance-critical
functions, which are not to be affected by the CAVE mechanisms; the
secondary set is subject to compression. Secondary functions are
compressed by the linker and reside in memory in compressed form. At
runtime, calls to secondary functions are intercepted by the CAVE
dispatcher and the functions are decompressed if necessary.

7-27

1960 Processor Compiler User's Manual

Selecting Functions for Compression

The gcc960ncave option, the ic96@cave option, or#pragma cave are

used to designate the specified functions as secondary. You can use runtime
profile information generated by gcov960 to aid in selecting the set of
secondary functions.

Linking

The compiler places secondary function bodies within special CAVE
sections (namechve) in each generated object file. The linker combines all
input CAVE sections into one output CAVE section. Due to
interdependencies between data or function addresses within compressed
secondary functions and their compressed representations, address
assignment must be done prior to compressing the secondary functions. As
a result, a gap is formed between the compressed CAVE section and the
section that follows, as shown below.

Before Linking After Linking

.text section .text section
compressed cave

uncompressed section

cave section gap in memory

.data section .data section

heap heap

stack stack

To utilize the compression savings the developer must use linker options or
directives to position the CAVE section last in read-only memory.

7-28

C Language Implementation

Runtime Decompression

During program execution secondary functions reside in memory in
compressed form. Every call to a secondary function is intercepted at
runtime by a special dispatcher routine. The dispatch routine is contained in
thelibc library supplied with the tools. To ensure interception of all
secondary functions, including invocations through indirect calls or
interrupts, the compiler generates interceptor enitniésetext section,
preceding the function bodies in tteve section as follows:

.section .text

_foo:
lda L1l,reg
call __ dispatcher

ret

.section cave
.word L2-L1,0
L1:

function body
L2:

Here the location1 of the secondary function body is passed to the
dispatcher. The word preceding the function body is set by the assembler to
indicate the uncompressed size.

The dispatcher performs the following steps:

Allocates a decompression buffer on the current runtime stack.

Saves the caller’s context.

Performs decompression.

Restores the caller’s context.

Invalidates the instruction cache.

Calls the decompressed secondary function.

o0k wbdPE

The dispatcher prevents the runtime stack from being overrun by a long
chain of recursive invocations by reusing the functions that are already
active on the stack. The interceptor’s invocation of the dispatcher pushes a
unique return address on the runtime stack. The return address is then used
by the dispatcher to search the stack for the existing recursive activation. If
found, the function is called immediately.

7-29

1960 Processor Compiler User's Manual

7-30

The dispatcher decompresses and executes secondary functions on the
current runtime stack. Allocation and freeing of decompression memory is
performed automatically through the call and return mechanism.

You must allocate more stack when using CAVE. The maximum additional
runtime stack requirement is the total size of all secondary functions that
may be active simultaneously.

Special Code Generation for Secondary Functions

When a decompressed secondary function is loaded on the runtime stack, its
runtime location is different from the link-time one. Absolute intra-function
and IP-relative inter-function references are invalid. These types of
reference are not used during code generation for CAVE functions.

Since taking the address of a label is illegal in C, intra-function absolute
references can be generated only in a jump-table implementation of the
switch statement. Restricting thaitch statement implementation in
secondary functions to compare-and-branch instructions eliminates absolute
intra-function references.

The IP-relative inter-function references are avoided in secondary functions
by generating the 809&allx instruction instead of theall instruction.
Thecallx instruction transfers control to absolute rather than IP-relative
locations.

Debugging CAVE Functions

CAVE functions are decompressed and executed on the runtime stack. The

source-level debug information cannot be properly maintained in the current

implementation. Consequently, secondary functions can be debugged only

at the machine level. To debug:

1. Set a breakpoint on a CAVE function. Execution breaks on the first
interceptor instructionida L1, reg).

2. Step into the dispatcher.

Display the disassembled instructions of the dispatcher.

4. The last two instructions in the dispatcher are:

callx 80(r10)
ret

w

C Language Implementation

5. callx is a callto a decompressed secondary function. Set a breakpoint
oncallx and step into the function.

6. Continue debugging the function on the machine level.

#pragma compress

#pragma compress [[(] function [,...]1D]1]
#pragma nocompress [[(] function [,...]1D]1]
function specifies the function for the compiler to compress or

not compress.
Controls the replacement of RISC instructions with CISC instructions.

Default

The compiler does not usually generate compressed (microcoded CISC)
instructions, but the code produced may still use complex addressing modes
for memory accesses. The compiler may generate single-line instructions
(e.g.,cmpoble) for two-line compare-and-branch instructions (egpo

andble) but does not always do so.

Discussion

Thecompress andnocompress pragmas control the replacement of RISC
instructions with CISC instructions.

If code size is of primary importance, usenpress to replace RISC
instructions with CISC instructions, thereby compressing the code size.
Generated instructions use complex addressing modes. dbineress is

in effect, the compiler also generates single-line instructions for
compare-and-branch instructions when possible.

Usenocompress to use RISC instructions, increasing the number of
instructions but producing code that may run faster when instructions are
found in the instruction cache. Generated instructions do not use complex
addressing modes. Single-line instructions for compare-and-branch
instructions are not generated.

In addition,#pragma compress disables some optimizations that increase
code size greatly: automatic function inlining and loop unrolling.

7-31

1960 Processor Compiler User's Manual

7-32

If you do not specifyfunction , the code compression pragma applies to
all functions following the pragma. The compiler takes no action and issues
no warning when the function name is specified but not found.

#pragma i960_align [for gcc960 and ic960]

#pragma i960_align [[(] size DI

#pragma i960_align [(] identifier [= size [,---1D]

#pragma noi960_align [[(] identifier [---1D11]

size specifies the alignment value in bytes. Any of the

following values are validt, 2, 4, 8, or 16.

identifier specifies the structure tag usedstiuct type
specifiers, as described @1 A Reference Manual

Discussion

See the discussion pfagma align (for ic960, or for gcc960 with the
ic960 option).

#pragma inline

#pragma inline [[(] function [..]1D]]
#pragma noinline [[(] function [..]1D]1]
function specifies the function for the compiler to expand or not

to expand inline. If no function is specified, the pragma
applies to all functions defined following the pragma.

Controls replacement of a function call with the function body.

C Language Implementation

Default

The compiler does not replace the function call with the function's body.
The#pragma inline has effect at optimization level 1 and higher.
Chapter 11, “C Language Implementation” describes optimization levels
in more detail.

Discussion

Use#pragma inline to replace a function call with the function body
expanded at the place of the function call. Expanding a function inline
increases the code size but decreases the execution time.

Note that a function that accepts a variable number of arguments cannot be
expanded inline.

#pragma interrupt

#pragma interrupt [[(] function [,..]1D]1]
#pragma nointerrupt [[(] function [,...]1D]1]
function specifies the interrupt handler.

Specifies an interrupt handler.

Default
A function is not an interrupt handler.

Discussion

Use#tpragma interrupt to declare a function as an interrupt handler. The
interrupt pragma must precede the function definition. If no function is
specified, the pragma applies to all functions defined following the pragma.

For interrupt handlers, the compiler tries to use global and floating-point
registers only for a call. If the function uses any global or floating-point
registers, the compiler preserves the registers. For any call, the compiler
saves all registers exceyst throughgl1. A register in the ranggs through
gl1 is saved only if it may be changed in the called function.

7-33

1960 Processor Compiler User's Manual

7-34

The compiler stores saved registers in contiguous locations, starting at offset
0x40 from the frame pointer, as follows:
® g0 at0x40(fp)
® g4 at0x50(fp)
® g8 at0x60(fp)
® fp atOx7c(fp)
In processors with on-chip floating-point support, the compiler saves
floating-point registergp0 throughfp3 starting abx80(fp)
An interrupt handler must not have parameters or return a value.
volatile int ready=0

int poll()

{

while (Iready)

} return ready;

#pragma interrupt(foo)
void foo(void)

{
ready=1;

NOTE. If an interrupt function accesses variables that are also
accessed by the program, those variables should be dectasat

If ready is not declared volatile, the optimizer may think tieatly is
always zero in functiopoll and may create an infinite loop by removing
the test for ifeady).

Note thatoragma interrupt andpragma isr (described below) differ
only in where the registers are saved.gragma interrupt , the registers
are saved at known offsets. Fmagma isr , the compiler makes a
context-specific choice of where to save the registers.

C Language Implementation

#pragma isr

Specifies routines to be compiled as interrupt service routisressjy. The
syntax is:
#pragma isr [(] function_name [[,] function_name

1..D]

When a routine specified as an interrupt service routine is compiled, the
compiler generates code so that regisgergl5 have the same values on

exit that they had when entering the function. In addition, the code
generated for the routine makes no assumptions about registevalue

on entry. By guaranteeing these registers' values and not asgimittgbe
zero,#pragma isr ensures that the routine's address can be placed directly
in the interrupt vector table, and the state of the processor is the same at
routine exit as it was at routine entry.

#pragma optimize

#pragma optimize [(] [identifier =]" string "]

[identifier =" string ... D]
Enables or disables optimizations. If specified, the identifier denotes a
function with which thetpragma optimize string is to be associated. The
string is a comma-separated list of optimizations to enable or disable.
Currently recognized optimizations are:

tce enable tail-call-elimination optimization
notce disable tail-call-elimination optimization
Ip enable leaf-procedures optimization
nolp disable leaf-procedures optimization

If no function is specified then this pragma applies to the rest of the file.
Any optimizations other than those recognized above are ignored.

7-35

1960 Processor Compiler User's Manual

7-36

#pragma pack

#pragma pack n

When used without an alignment pragma or option, this pragma has the
same effect for both the gcc960 driver and the ic960 drivegsiticts the
maximum alignment value that is honored for structure memberbytes.

A value of 0 tells the compiler to revert to the maximum field alignment in
use before the lagpragma pack . Before the firs#pragma pack is
encountered;=16.

NOTE. The ic960 driver'sragma align and the gcc960 and ic960
drivers’ pragmai960_align overridepragmapack . The interaction of
pragma pack and the gcc960 driversragma align is described
below.

Using #pragma pack with gcc960’s #pragma align

When a member alignment requirement would exeeeds used instead
— both for assigning the member's offset within its structure, and for
determining the member's contribution to the structure's formal alignment
requirement. It does not, however, restrict the overall formal alignment
calculation for structures described for gcc98@sgma align . To limit
a structure's formal alignment requirement (presumably to limit extra
padding at the end) you must use gcc98piagma align in addition to
#pragma pack .

For example:

#pragma pack 2

struct s{

char a;

int b;

2

C Language Implementation

Table 7-2

s.b would be placed at offset 2 from the bass;dfizeof(struct s)

would be 6 under gcc960’sic-compat

default alignment#pragma align
of struct

s would be 2 undemic-compat

(#pragma align
16). The formal alignment requirement
and 8 under default alignment.

1) and 8 under

The examples in the tables below all use the following sample structure:

typedef struct {
char mi;
short m2;
double m3;
char m4;
int mb5;
}s0;

Example Offset Values

Normal i960 gcc960 Driver's gcc960 Driver's
Rules #pragma pack 4 #pragma pack 2
offset_of(s0, m1) 0x0 0x0 0x0
offset_of(s0, m2) 0x2 0x2 0x2
offset_of(s0, m3) 0x8 0x4 0x4
offset_of(s0, m4) 0x10 Oxc 0oxc
offset_of(s0, m5) 0x14 0x10 Oxe
sizeof(s0) 0x20 0x20 0x20
#pragma pack 4 #pragma pack 2

#pragma pack 1

#pragma align 4

#pragma align 2

offset_of(s0, m1)
offset_of(s0, m2)
offset_of(s0, m3)
offset_of(s0, m4)
offset_of(s0, m5)
sizeof(s0)

0x0
0x1
0x3
Oxb
Oxc
0x10

0x0
0x2
0x4
Oxc
0x10
0x14

0x0
0x2
0x4
Oxc
Oxe
0x12

7-37

1960 Processor Compiler User's Manual

#pragma pure

Specifies that a function has no effects other than returning a computed
value and that it does so based solely on its input parameters.

#pragma [no]pure [(function [,...1)1]

function identifies the specific function to which the pragma
applies. Iffunction is missing, the effect of the
pragma is applied to all functions called in the
compilation module following the pragma. If a function
name is specified, the pragma must be placed before the
function definition.

Default

The compiler assumes functions are not pure and does not perform
optimizations possible with pure functions.

Discussion

pragma pure informs the compiler that a named function has no effects

other than returning a computed value and that it does so based solely on its

input parameters. Specifically, the compiler assumes the following about the

function:

®* No /O is performed.

®* No global variables or memory locations are read or modified.

* No modifications of registers occur, except those explicitly defined by
the calling sequence.

This knowledge enables the compiler to perform optimizations around

function calls, optimizations it could not perform without this knowledge. If

a function is “pure”, then the compiler can perform (around that function

call) constant propagation, common subexpression elimination,

global-variable migration, and dead-code elimination.

7-38

C Language Implementation

#pragma section

Allows COFF or ELF section haming.

#pragma section [string]
string is alphanumeric characters a-z, A-Z, 0-9.
Discussion

This pragma causes all text, data and bss sections the compiler emits to be
suffixed withstring . For COFF the string must be three characters or less
in length. For ELF, the string can be any length.

Using#pragma section ~ withoutstring sets the suffix back to null (the
default).

This pragma is not supported for the b.out object format.

#pragma system

Specifies a system function.

#pragma system [[(] function [= index 1[,...] D]11]
#pragma nosystem [[(] function [= index][,...]1D11]

function specifies the system function.
index specifies the index into the system procedure table.

Discussion

If no function is specified, the pragma applies to all functions defined or
called following the pragma. Ugeagma system to specify a function to
be called from the system procedure table. The compiler generates a
callix instruction for the system function call, which the linker replaces
with the following:

lda index , gl3
calls g13

7-39

1960 Processor Compiler User's Manual

index is the index of the system function in the system
procedure table and is available to the linker
through the symbol table entry for the function.
This value must be in the rangeo 259.

For information on theallix andcalls instructions and the system
function table, refer to th®60 Processor Assembler User's Guide

You must associate a single system procedure table index with each system
function before the final link of your program. The linker generates an error
message for any system function that has no index or multiple conflicting
indexes.

You can make this association in either or both of the following ways, if the
defined index is consistent across all definitions:

® Specifypragma system at both the definition and the calling of the
function. The compiler then generates the appropriate symbol table
information, including the index.

®* Use thesysproc assembler directive to associate a system function
name with an index.

Since registeg13 is used for the system function index, a system function
cannot return a value larger than four words. Refer tiB& Processor
Software Utilities User's Guid®r more information.

Language Extensions

GNU C provides several language features not found in ANSI standard C.
(Thepedantic option directs gcc960 to print a warning message if any of
these features is used.) To test for the availability of these features in
conditional compilation, check for a predefined macr@GNUC__, which is
automatically defined under gcc960 (but not under ic960).

7-40

C Language Implementation

Statements and Declarations Inside of Expressions

A compound statement in parentheses can appear inside an expression. This
allows you to declare variables within an expression. For example:
({inty =foo (); int z;

if(y>0)z=y;

elsez=-y;

z;})
is a valid (though slightly more complex than necessary) expression for the
absolute value dbo()

This feature is especially useful in making macro definitions “safe” (so that
they evaluate each operand exactly once). For example, the “maximum”
function is commonly defined as a macro in standard C as follows:
#define max(a,b) ((a) > (b) ? (a) : (b))
But this definition computes eitharor b twice, with bad results if the
operand has side effects. If you know the type of the operands (you can
assument), you can define the macro safely as follows:
#define maxint(a,b) \

({int_a=(@), _b=(b); _a>_b?_a:_b;}
Embedded statements are not allowed in constant expressions, such as the
value of an enumeration constant, the width of a bit field, or the initial value
of a static variable.

Naming an Expression’s Type

You can give a hame to the type of an expression udipgdef
declaration with an initializer. Here is how to defimene as a type name
for the type ofexp :

typedef name= exp;

7-41

1960 Processor Compiler User's Manual

7-42

This is useful in conjunction with the statements-within-expressions feature.
Here is how the two together can be used to define a safe “maximum”
macro that operates on any arithmetic type:
#define max(a,b) \
({typedef _ta = (a), _tb = (b); \

_ta_a=(@);_tb_b=(b); \

_a>_b? _a: b}
The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituteddandb.

Referring to a Type with typeof

Another way to refer to the type of an expression is tyjibof . The
syntax of using of this keyword looks likezeof , but the construct acts
semantically like a type name defined withedef

There are two ways of writing the argumentyigeof : with an expression
or with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes thatis an array of functions; the type described is that of the
values of the functions.

Here is an example with a typename as the argument:
typeof (int *)
Here the type described is that of pointerato.

If you are writing a header file that must work when included in ANSI C
programs, write_typeof _ instead otypeof

C Language Implementation

A typeof construct can be used anywhere a typedef name could be used.
For example, you can use it in a declaration, in a cast, or ins#ieeof
or typeof
® This declarey with the type of what points to.:
typeof (*x) y;
® This declarey as an array of such values:
typeof (*x) y[4];
®* This declarey as an array of pointers to characters:
typeof (typeof (char *)[4]) y;
It is equivalent to the following traditional C declaration:
char *y[4];
To see the meaning of the declaration usjpgof , and why it might be a
useful way to write, try rewriting it with these macros:
#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])
Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus,array (pointer (char), 4) is the type of arrays of 4 pointers to
char .

Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as
Ivalues provided their operands are Ivalues. This means that you can take
their addresses or store values into them.

For example, a compound expression can be assigned, provided the last
expression in the sequence is an lvalue. These two expressions are
equivalent:

(a, b)+=5

a, (b +=5)

7-43

1960 Processor Compiler User's Manual

7-44

Similarly, the address of the compound expression can be taken. These two
expressions are equivalent:

&(a, b)

a, &b

A conditional expression is a valid Ivalue if its type is not void and the true
and false branches are both valid Ivalues. For example, these two
expressions are equivalent:

@?b:c)=5

@?b=5:(c=5H)

A cast is a valid Ivalue if its operand is valid. Taking the address of the cast
is the same as taking the address without a cast, except for the type of the
result. For example, these two expressions are equivalent (but the second
may be valid when the type afdoes not permit a castita *):

&(int *)a

(int **)&a

A simple assignment whose left-hand side is a cast works by converting the
right-hand side first to the specified type, then to the type of the inner
left-hand side expression. After this is stored, the value is converted back to
the specified type to become the value of the assignment. Taugsftype

char *, the following two expressions are equivalent:

(intfa=5

(int)(a = (char *)5)

An assignment-with-arithmetic operation such-asapplied to a cast

performs the arithmetic using the type resulting from the cast, and then
continues as in the previous case. Therefore, these two expressions are
equivalent:

(intfa+=5

(int)(a = (char *) ((int)a + 5))

C Language Implementation

Conditional Expressions with Omitted Middle Operands

The middle operand in a conditional expression may be omitted. Then if the
first operand is nonzero, its value is the value of the conditional expression.

Therefore, the expression:
X?:y
has the value of if that is nonzero; otherwise, the valueyof

This example is perfectly equivalent to:

X?X:y

In this simple case, the ability to omit the middle operand is not especially
useful. When it becomes useful is when the first operand does, or may (if it
is a macro argument), contain a side effect. Then repeating the operand in
the middle would perform the side effect twice. Omitting the middle

operand uses the value already computed without the undesirable effects of
recomputing it.

Arrays of Length Zero

Zero-length arrays are allowed. They are very useful as the last element of a
structure that is really a header for a variable-length object:

struct line {

int length;

char contents[0];

3
{

struct line *thisline
= (struct line *) malloc \
(sizeof (struct line) + this_length);
thisline->length = this_length;
}
In standard C, you would have to gientents a length of 1, which
means either you waste space or complicate the argummeati¢o .

7-45

1960 Processor Compiler User's Manual

Non-lvalue Arrays Can Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though the unary
& operator is not. For example, this is valid though not valid in some other C
dialects:

struct foo {int a[4];};

struct foo f();

bar (int index)

{

return f().a[index];

}

Arithmetic on Pointers to void and Pointers to Functions

Addition and subtraction operations are supported on pointecidtoand
on pointers to functions. This is done by treating the sizevoitla or of a
function as 1.

A consequence of this is theiteof is also allowed omoid and on
function types, and returns 1.

TheWpointer-arith option requests a warning if these extensions are
used.

7-46

C Language Implementation

Non-constant Initializers

The elements of an aggregate initializer for an automatic variable are not
required to be constant expressions. Here is an example of an initializer with
run-time varying elements:

foo (float f, float g)

float beat_freqs[2] = { f-g, f+g };

Constructor Expressions

Constructor expressions are supported. A constructor looks like a cast
containing an initializer. Its value is an object of the type specified in the
cast, containing the elements specified in the initializer. The type must be a
structure, union or array type.

Assume thastruct foo andstructure are declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructingtauct foo with a constructor:

structure = ((struct foo) {x +y, 'a’, 0});

This is equivalent to writing the following:

{struct footemp ={x +vy, 'a’, 0};

structure = temp;
}
You can also construct an array. If all the elements of the constructor are
(made up of) simple constant expressions, suitable for use in initializers,
then the constructor is a Ivalue and can be coerced to a pointer to its first
element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

7-47

1960 Processor Compiler User's Manual

Array constructors whose elements are not simple constants are not very
useful because the constructor is not an Ivalue. There are only two valid
ways to use it: to subscript it, or initialize an array variable with it. The
former is probably slower thansavitch statement, while the latter does
the same thing an ordinary C initializer would do.

output = ((int[]) { 2, x, 28 }) [input];

Declaring Attributes of Functions

You can declare certain things about functions called in your program that
help the compiler optimize function calls.

A few functions, such asbort andexit , cannot return. These functions
should be declareeblatie . For example:

extern volatile void abort ();

tells the compiler that it can assume tliladrt does not return. This makes

slightly better code, but more importantly it helps avoid spurious warnings
of uninitialized variables.

Many functions do not examine any values except their arguments, and have
no effects except the return value. Such a function can be subject to
common subexpression elimination and loop optimization just as an
arithmetic operator would be. These functions should be dedaned .

For example:

extern const void square ();

says that the hypothetical functiequare is safe to call fewer times than
the program says. A function should not be declaocedt unless:

®* no l/O is performed.

®* no non-local variables are read or modified either directly or via
pointers passed into the function.

7-48

C Language Implementation

Inquiring about Alignment

The keyword _alignof _ allows you to inquire about how an object is
aligned, or the minimum alignment usually required by a type. Its syntax is
just like sizeof

For example, the target machine requiresuble value to be aligned on
an 8-byte boundary, thenalignof _ (double) is 8. This is true on the
i960 processor.

When the operand of alignof __ is a Ivalue rather than a type, the value
is the largest alignment that the Ivalue is known to have. It may have this
alignment as a result of its data type, or because it is part of a structure and
inherits alignment from that structure. For example, after this declaration:

struct foo { int x; char y; } fooZl,

the value of alignof _ (fool.y) is 4, the same as alignof
(int), even though the data typefobl.y does not itself demand any
alignment.

Inline Functions Are as Fast as Macros

By declaring a functioiline , you can direct the compiler to integrate

that function's code into the code for its callers. This makes execution faster
by eliminating the function-call overhead; in addition, if any of the actual
argument values are constant, their known values may permit
simplifications at compile time so that not all of the inline function’s code
needs to be included.

To declare a function inline, use tinine keyword in its declaration. For
gcc960, use eithatline or__inline . For ic960, use inline . For
example:

inline int
inc (int *a)
{
(*a)++;
}
(If you are writing a header file to be included in ANSI C programs, write
__inline__ instead ofnline . See the Alternate Keywords section.)

7-49

1960 Processor Compiler User's Manual

7-50

You can also make all “simple enough” functions inline with the option
finline-functions . Note that certain usages in a function definition can
make it unsuitable for inline substitution.

When a function igline , if all calls to the function are integrated into the
callers, and the function’s address is never used, then the function’s own
assembler code is never referenced. In this case, the compiler does not
actually output assembler code for the function, unless you specify the
optionfkeep-inline-functions . If there is a nonintegrated call, then

the function is compiled to assembler code as usual. The function must also
be compiled as usual if the program refers to its address, because that
reference can not be inlined.

Except when doing two-pass compilation, if an inline function is not

static , then the compiler must assume that there may be calls from other
source files; since a global symbol can be defined only once in any program,
the function must not be defined in the other source files, so the calls therein
cannot be integrated. Therefore, a static inline function is always
compiled on its own in the usual fashion.

If you specify bothnline andextern in the function definition, then the
definition is used only for inlining. In no case is the function compiled on its
own, not even if you refer to its address explicitly. Such an address becomes
an external reference, as if you had only declared the function, and had not
defined it.

This combination oinline andextern has almost the effect of a macro.
The way to use it is to put a function definition in a header file with these
keywords, and put another copy of the definition (lackitige and

extern) in a library file. The definition in the header file causes most calls
to the function to be inlined. If any uses of the function remain, they refer to
the single copy in the library.

NOTE. Function inlining occurs only at optimization lew#l or higher.
Inline functions are not inlined a&io. Inlining can be enabled with
finline-functions ato1, and it occurs automatically &2

C Language Implementation

Controlling Names Used in Assembly Code

You can specify the name to be used in the assembler code for a C function
or variable by writing thasm (or__asm__) keyword after the declarator as
follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variablén the assembler
code should benyfoo rather than the usuafoo .

On systems where an underscore is normally prepended to the name of a C
function or variable, this feature allows you to define names for the linker
that do not start with an underscore.

You cannot usasm in this way in a function definition; but you can get the
same effect by writing a declaration for the function before its definition and
puttingasm there, like this:

extern func () asm ("FUNC");

func (X, y)
intx,y;

It is up to you to make sure that the assembler names you choose do not
conflict with any other assembler symbols. Also, you must not use a register
name; that would produce completely invalid assembler code.

7-51

1960 Processor Compiler User's Manual

7-52

Specifying Registers for Local Variables
You can define a local register variable with a specified register like this:

register int *foo asm ("r5");
r5 is the name of the register that should be used.

Defining such a register variable does not reserve the register; it remains
available for other uses in places where flow control determines the
variable's value is not live. However, excessive use of this feature may leave
the compiler too few available registers to compile certain functions.

Alternate Keywords

The optiontraditional disables certain keyworda)si disables certain
others. This causes trouble when you want to use GNU C extensions, or
ANSI C features, in a general-purpose header file that should be usable by
all programs, including ANSI C programs and traditional ones. The
keywordsasm, typeof andinline cannot be used since they won't work

in a program compiled withnsi , while the keywordsonst , volatile

signed , typeof andinline won't work in a program compiled with
traditiona

The way to solve these problems is to puiat the beginning and end of
each problematical keyword. For example, usessm__ instead ofsm,
__const__instead otonst , and__inline__ instead ofnline

Other C compilers won't accept these alternative keywords; if you want to
compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords. It looks like this:
#ifndef __ GNUC___

#define __asm__ asm
#endif

C Language Implementation

Inline Assembly Language

Introduction

Two distinct styles of inline assembly language are supported by the
compilation system: asm statements and asm functions. The recommended
way to use inline assembly language is asm statements; asm functions are
supported for compatibility with previous CTOOLS960 releases.

Resource Usage

The compiler makes assumptions about the machine resources: registers
and memory. It manages access to these resources based on the C program,
and its knowledge of the code it is generating, and inline assembly language
can violate these assumptions.

Both styles of inline assembly language provide the programmer with ways
to communicate the usage/modification of machine resources. Inline
assembly code that uses/modifies such machine resources without
informing the compiler may cause incorrect code to be generated by the
compiler.

Before and after each call to a C function, the compiler generates
instructions to preserve resources for the calling function while the called
function executes. For example, any general purpose registers that might be
updated by the called function must be saved on the stack before and after
each function call. The term for this resource management is “the calling
convention.”

The calling convention for a call to asm function differs from that of a

call to a C function. In particular, the compiler assumes by default that the
only resources used by asm function are its parameters, local

temporaries, and the return value. The compiler must be explicitly
informed about other resources that can be used kasthé@nction. The
compiler does not manipulate assembly language watitinfunctions. It

relies on the assembler to check the assembly language. The result is that
the compiler treats the body of asm function as text. The compiler parses

7-53

1960 Processor Compiler User's Manual

7-54

the text for symbolic names (parameters, local temporaries, and labels).
However, the compiler does not recognize function calls, memory
references, or explicit register usage withindke function text.

asm Statements

You can use aasm statement to pass an assembler instruction through the
compiler, and you can specify the instruction's operands using C
expressions. Typicallasm is used to gain access to machine instructions
that have no corresponding C paradigm.

asm statements are somewhat similar to function calls; both use parameter
mechanisms to help describe the statements' inpuismstatements,

however, an extensive mechanism is also provided for describing the asm's
effects; the compiler can then assume that an asm has no effects or inputs
that are not explicitly stated. In contrast, a function call is assumed to read
or write all program variables unless proven otherwise. No such assumption
is made for asm statements.

NOTE. The compiler assumes that the inserted assembly instructions
can only be executed immediately after the statement that precedes them,
and that after the inserted assembly instructions have been executed,
program execution resumes at the statement immediately following them.

Syntax Examples

The following brief syntax examples are provided here for reference when
studying the detailed grammar below. The effects and components of each
specific example are discussed in detail in the Examples section below.

C Language Implementation

Example 1: sfl (Simple)
asm volatile ("mov 0,sf1");

Example 2: sf1 (Complex)

asm volatile ("mov sf1,%0; mov %1,sf1"™
"=&d" (old_mask) : "dI" (new_mask));

Example 3: emul
asm("emul %1,%2,%0" : "=t" (temp) : "dI" (in1), "dI"
(in2));

Example 4: synmovq

__asm___volatile ("synmovq %2,%3" : "=m"(*|AC_dst)
D"m"(*IAC_p),"d"(IAC_dst),"d"(IAC_p)); }

Example 5: attadd

__asm__ _ volatile_ ("atadd %4,%2,%1" :
"=m"(*p)."=d"(wtmp)
:"di(val),"m" (*p),"d"(p));

Example 6: modpc

__asm__ _ volatile_ ("modpc %1,%1,%0" : "=d"(new_pc)
: "dI"(mask),"0"(new_pc)));

asm Statement Syntax
asm statements have the following syntax:
asm [volatile] (asm-template [asm-interface 1) ;

asm-template A C language ASCII string containing zero or
moresubstitution-directives

substitution-directive%d where no white space follows tkgandd
is a decimal digit.

asm-interface
:[out-list][:[in-list][:clobber-list
1l

out-list output-spec [,out-list]...

7-55

1960 Processor Compiler User's Manual

7-56

in-list input-spec [Lin-list]...

clobber-list clobber-spec [,clobber-list]...
output-spec "=constraint" (C language object)
input-spec "constraint” (C language expression)
clobber-spec "regname”

NOTE. The keywords asm and__volatle ~ can be used in place of
asm andvolatile

asm Syntax Explanations

asm Keyword

asm statements begin with the keywaseh. Alternatively, the keyword
__asm can be used to ensure ANSI C compliance.

volatile

If the optional keywordolatile is given, the asm is volatile. Two volatile

asm statements are never moved past each other by optimizations, and a
reference to a volatile variable is not moved relative to a volatile asm. The
alternate keyword _volatile can be used to ensure ANSI C compliance.

asm-template

asm-template A C language ASCII string containing zero or more
substitution-directives

Theasm-template is a C language ASCII string that specifies how to
output the assembly code for an instruction. Most of the template is a fixed
string; everything but theubstitution-directives (if there are any)

is passed through to the assembler. Substitution directive syntax is
explained below.

C Language Implementation

Generally, this fixed string is the body of the desired assembler instruction.
This can be any instruction valid for the current i960 architecture.

NOTE. The validity of the assembly code is not checked by the compiler.

substitution-directive

substitution-directive %dwhere no white space follows tkgandd
is a decimal digit.

The characte¥occurring in theasm-template specifies where to
substitute operands into the assembly instruction %dfiedowed by a digit

n says to insert operandat that point in the string. Operands are specified
in the asm'sutput-specs andinput-specs . Operands are numbered 0
through 9. No more than 10 operands can be specified.

asm-interface
asm-interface [out-list [:[in-list][: clobber-list 1l

The asm interface consists of three parts: an optmndist , an
optionalin-list ~ , and an optionatlobber-list . These are separated by
colon characters §. See the preceding discussion of Resource Usage for
background information on thesm-interface specification.

: (colon)

The colon (:) character is used to separatetidst andin-list
Another colon is used to separate tfwber-list if one is used. If the
out-list is missing, but aim-list is given, the input list must be
preceded by two colons () to take the place of the missingt-list

out-list

out-list output-spec [,out-list]

7-57

1960 Processor Compiler User's Manual

7-58

An out-list consists of one or momitput-specs separated by

commas. For the purposes of substitution inadie-template , each
output-spec is numbered. The first operand in ing-list is

numbered 0, the second is 1, and so on. Numbering is continuous through
theout-list , and into then-list . The total number of operands is

limited to 10 (i.e., 0-9). Sesubstitution-directives above.
in-list
in-list input-spec [,in-list]...

Similar to anout-list , anin-list consists of one or more

input-specs separated by commas. For the purposes of substitution in the
asm-template , eachinput-spec is numbered, with the numbers
continuing from those in theut-list

clobber-list
clobber-list clobber-spec [,clobber-list]...

A clobber-list tells the compiler that the asm uses or changes a real
machine register that is either coded directly into the asm or is changed
implicitly by the assembly instruction. Tl®bber-list isa
comma-separated list olobber-specs

output-spec
output-spec "=constraint (C language objedt

Theoutput-specs tell the compiler about objects whose values can be
written by the inserted assembly instruction. In order to more fully describe
the output effects of the asm, you can digfput-specs that are not

actually referenced in thesm-template . See theynmovq andattadd
examples below for specific examples of this.

input-spec
input-spec "constraint (C language expressidn

C Language Implementation

Theinput-specs tell the compiler about expressions whose values may
be needed by the inserted assembly instruction. In order to more fully
describe the input requirements of the asm, you caimgigt-specs that
are not actually referenced in then-template . See thesynmovq and
attadd examples below for examples of this.

clobber-spec
clobber-spec "regname"

Eachclobber-spec specifies the name of a single machine register that is
“clobbered.”

Resources that cannot be clobbered are:

fp (the frame pointer)
sp (the stack pointer)
r0,rl,r2 (reserved)

gl4

C language object

This can be any assignable C language Ivalue. Typically this is just a
variable name. AC language object must be of a type that matches its
correspondingonstraint . A C language object used in an

output-spec must be of a type such that it can be assigned into. Object
types must be the same size that theirstraints ~ would match. For
example, the C typiet is 32 bits; so is a global register. This would cause
no mismatch. An integer type would not match a quad-word, however. If the
object type andonstraint ~ do not match, the compiler attempts to add
code to fix the mismatch, but in general it is better practice to avoid
mismatches in the first place.

C language expression

This can be any legal C language expression. A<faaguage object
above, &C language expression must match its corresponding
constraint . Unlike aC language object used inoutput-specs ,acC
language expression used ininput-specs does not need to be
assignable.

7-59

1960 Processor Compiler User's Manual

7-60

constraint

EachcC language object or C language expression can have an
associatedonstraint . Theconstraint is a string that tells the
compiler what its associated operand must look like in order for the
asm-template to generate a legal assembly instruction.

A constraint ~ consists of one or more of the characters listed below. The
compiler generates code if necessary to make€ theguage object or
expression match one of theonstraint characters. The associated
operand is an integer literal or a machine register or an assembly label that
is put in place of a substitution directive.

In general, it is better to write the asm such that the compiler does not need
to generate extra code to makeoastraint ~ match. An operand can

contain an emptyonstraint string if it is not used in the

asm-template

The validconstraint characters are as follows:

= Specifies that the operand is assigned into. All

output-spec constraints must start with this
character.
& Unless an output operand uses&wepnstraint |, the

compiler may allocate it in the same register as an unrelated
input operand, on the assumption that the inputs are
consumed before the outputs are produced. If the assembler
code consists of more than one instruction, this assumption
may be false. In this case, you should us&ttw@nstraint

for each output operand that may not overlap an input.

d Allows any local or global word register.
r Allows any local or global word register.
[Allows any local register (r3-r15).

b Allows any global register (g0-g15).

t Allows any two-word register.

q Allows any quad-word register.

C Language Implementation

f Allows any floating-point register fp0 through fp3. This
constraint is only valid for the i960 KB and i960 SB
processors and only then if the gcc&ft-float ~ option
is not used.

m Allows any memory operand.

I Allows a constant in the range 0 through 31. This is the
allowable range for a literal value in most instructions for the
i960 processor.

n Allows a known 32-bit constant.

Allows a 32-bit constant including a constant address.

G Allows a floating-point constant of 0.0.

H Allows a floating-point constant of 1.0.

F Allows a floating point constant with any value.

0-9 This is a matchingonstraint . An operand that matches

operanch (0-9) is allowed. If used, this must be the only
character in theonstraint . The specified operand must

be anoutput-spec , and theconstraint in which the
matchingconstraint ~ appears must be amput-spec
Theasm-template should not refer to this operand, only to
the operana specified. This constraint is often used to
ensure that an input operand and an output operand are in the
same register. Generally, this is unnecessary on the 1960
architecture.

7-61

1960 Processor Compiler User's Manual

7-62

Detailed Examples

Example 1: sfl.c (Simple)

The following example refers to the short C program shown in Example 7-1
below. The asm instruction is shown in bold.

Example 7-1 sfl.c (Simple)

F Clears interrupt mask in sfl for i960 CA processor */
void clear_interrupt_mask()

{
}

asm volatile ("mov 0,sf1");

Consider the line containing the asm:

asm volatile ("mov 0,sf1");

® "mov 0,sfl" istheasm-template . It contains no
substitution-directives , and the asm has noit-list or
in-list . It simply writes a zero into registsfl . If sf1 contains all
zeros, all interrupts excepini are disabled.

Note that this asm can be coded without the input or output operands
because it neither uses nor affects any object or resources that the compiler
knows about.

C Language Implementation

Example 7-2

Example 2: sfl.c (Complex)

The following example refers to the short C program shown in Example
7-2. The asm containing tB&. instruction is shown in bold.

sfl.c (Complex)

/*
* Changes interrupt mask, and returns old interrupt mask
* for i960 CA microprocessor. lllustrates & constraint.
*/
int change_interrupt_mask(int new_mask)
{
int old_mask;
asm volatile("mov sf1,%0; mov %1,sf1";
"=&d" (old_mask) : "dI" (new_mask));
return old_mask;

Consider the line containing the asm:

asm volatile("mov sf1,%0; mov %1,sf1":

"=&d" (old_mask) : "dI" (new_mask));

®* "mov sf1,%0; mov %1,sf1" is theasm-template . The
asm-template actually contains twomov instructions. The first writes
the contents of registefl onto operand (d_mask) and the second
writes operand Inew_mask) into registersfl .

e "=&d" (old_mask) is the onlyoutput-spec . It is the first operand
(operand 0). The=&d" is theconstraint . The= says that this
operand must be assignable. Bhiells gcc960 not to allocate this
output in the same register as an input operand. This is necessary
because the firshov creates output before the secomal has used its
input. Thed indicates that this operand must go in a word register. If
old_mask is not a word register, the compiler will generates code
following the asm to copy the word register it chose for this output
operand intwld_mask .

7-63

1960 Processor Compiler User's Manual

7-64

Example 7-3

e "dI" (new_mask) is the onlyinput-spec . Itis operand 1. Thedl"
constraint indicates that operand 1 must be in a word register, or be
a constant from O to 31. The compiler generates extra code as necessary
to make sur@ew_mask matches one of thevnstraints before the
asm is generated.

Example 3: emul.c

The example refers to Example 7-3 below. The asm containiregriiie
instruction is shown in bold.

emul.c

typedef struct

{
unsigned int 1032;
int hi32;

} int64;

typedef int int32;

static inline
int64 asm_emul(int32 in1, int32 in2)
{
int64 temp;
asm("emul %1,%2,%0": "=t" (temp)
:"dl" (in1), "dI" (in2));
return temp;

}
int32 mul32_check_overflow(int32 a, int32 b)

{
int64 t;
t =asm_emul(a, b);
if ((t.l1o32 & 0x80000000) != 0)

if (t.hi32 == -1) /*upper32 matches lower32 sign bit*/
return t.032;

C Language Implementation

Example 7-3 emul.c (continued)

else

{
return t.lo32;

}

else

{
if (t.hi32 == 0) /*upper32 matches lower32 sign bit */
return t.l032;

overflow_error("32 bit multiply overflowed");
return t.1032;

Consider the line containing the asm:
asm("emul %1,%2,%0" : "=t" (temp) : "dI" (in1), "dI"
(in2));

"emul %1,%2,%0" is theasm-template . Theemul instruction takes
three argumentsrcl , src2 , anddst . These values are provided by
the out-list andin-list

"=t" (temp) is the onlyoutput-spec . It is the first operand, i.e.,
operand 0. Th&=t" constraint indicates that this operand must go
in a double word register in order for then-template to generate a
legal instruction.

"dl" (inl) is the firstinput-spec . Itis operand 1. Thell"

constraint indicates that operand 1 must be in a word register, or be
a constant from 0 to 31 for tle@m-template to generate a legal
instruction. The compiler generates the extra code as necessary to make
sure the value ol will matches one of theonstraints ~ before the

asm is generated.

"dl" (in2) is the seconéput-spec . Itis operand 2. Again the

"dI" constraint indicates that operand 1 must be in a word register,
or be a constant from 0 to 31. As before, the compiler makes sure that
the operand matches one of ttvastraints before generating the

asm. In this exampleéemp is declared as a local variable, and its type
(int64) has the necessary size (8 bytes) and alignment (8 bytes) to go

7-65

1960 Processor Compiler User's Manual

into a two-word register. Similarlinl andin2 must match at least
one of theirconstraints because their size and alignment is the
same as that required for a value in a word register.

Compile this example using:
gcc960 -S -02 emul.c

E NOTE. That no extra code is generated to set up operands feanthie
asm.

Example 4: synmovq.c

The following example refers to the short C program shown in Example 7-4
below. The asm containing tegnmovq instruction is shown in bold.

Example 7-4 synmovg.c

struct IAC_record {
unsigned short field2;
unsigned char fieldl,;
unsigned char message_type;
unsigned long field3;
unsigned long field4;
unsigned long field5;
h
struct IAC_record Cent_IAC_Space = { 0,0x60,0x40,0,0,0 };
static __inline___ void
post_interrupt(struct IAC_record *IAC_p)
{
struct IAC_record *IAC_dst = (struct IAC_record *)0xFF000010;
__asm___volatile ("synmovqg %2,%3" : "=m"(*IAC_dst)
:"'m"(*IAC_p),"d"(IAC_dst),"d"(IAC_p)); }

7-66

C Language Implementation

Consider the lines containing the asm:

asm__ volatile ("synmovq %2,%3" : "=m"(*IAC_dst)
:"'m"(*IAC_p),"d"(IAC_dst),"d"(IAC_p));}

"synmovq %2,%3" is theasm-template . synmovq writes four words
into reserved memory on the 1960 KB processor, and then sends a
message to the i960 processor telling it to do a software interrupt.
synmovq takes two argumentsrc anddst , wheresrc is the location
to copy from, andist is the location to copy to. These values are
provided by theout-list andin-list

"=m" (*IAC_dst) is the onlyoutput-spec . It is the first operand,
i.e., operand 0. Theem" constraint indicates that any memory
operand can be used.

"m" (*IAC_p) is the firstinput-spec . It is the second operand, i.e.,
operand 1. Again, any memory operand can be used.

"d" (IAC_dst) is the secondhput-spec . Itis the third operand,

i.e., operand 2. Thel" constraint indicates that any global or local
word register or a constant from 0 to 31 may be used. This register is
only read, not written, so it acts as its own input.

"d" (IAC_p) is the thirdinput-spec . Itis the fourth operand, i.e.,
operand 3. Again, any global or word register may be used.

NOTE. In this example, four operands were specified, although the
asm-template required only two. The additional operands (in this
instance, operands 0 and 1) tell the compiler about objects whose values
may be changed by the asm statement or whose value the asm statement
may need. In this case, the asm modifies memory, which may affect
optimizations the compiler performs at runtime. The only actual output
from the asm is the memory written.

7-67

1960 Processor Compiler User's Manual

Example 5: atadd.c

The following example refers to the short C program shown in Example 7-5
below. The asm containing théadd instruction is shown in bold.

Example 7-5 atadd.c

static inline
int atadd(p, val)
volatile int *p;

int val;
{
int wtmp;
__asm__ _ volatile__ ("atadd %4,%2,%1" : "=m"(*p),"=d"(wtmp)
:dir(val),"m" (+p),"d"(p));
return wtmp;
}

volatile int critical_var;
int other_var;

int add_crit()

{
atadd(&critical_var, 1);
if (atadd(&critical_var, 2) 1= 1)
atadd(&other_var, 1);
}

Consider the lines containing the asm:

__asm__ _ volatile_ ("atadd %4,%2,%1" :
"=m"(*p),"=d"(wtmp)
:di"(val),"m" (+p)."d"(p));
® "atadd %4,%2,%1" is theasm-template .atadd adds to memory
and locks the bus until it is finished. This feature is used by
multi-processor systematadd takes three arguments. These values
are provided by theut-list andin-list

* "=m" (*p) Iis the firstoutput-spec . Itis the first operand, i.e.,
operand 0. The=m" constraint indicates that any memory operand
can be used.

7-68

C Language Implementation

e "=d" (wtmp) is the secondutput-spec . Itis the second operand,
i.e., operand 1. THel" constraint indicates that any global or word
register can be used.

e dI" (val) is the firstinput-spec . Itis the third operand, i.e.,
operand 2. Th&dl" constraint indicates that any global or word
register containing a constant in the range 0 through 31 can be used.

® "m" (*p) Iisthe secondhput-spec . Itis the fourth operand, i.e.,
operand 3. Again, any memory operand may be used.

e "d" (p) isthe thirdinput-spec . Itis the fifth operand, i.e.,
operand 4. Again, any global or word register may be used.

NOTE. Again, this example specifies five operands, though the
asm-template requires only three. The additional operands tell the
compiler about objects whose values may be changed by the asm
statement or whose value the asm statement may need.

7-69

1960 Processor Compiler User's Manual

7-70

Example 6: modpc.c

The following example refers to the short C program shown in Example 7-6
below. The asm containing thedpc instruction is shown in bold.

Example 7-6 modpc.c

extern inline unsigned
modpc (unsigned new_pc, unsigned mask)

int wtmp;

asm__ _ volatile_ ("modpc %1,%1,%0" : "=d"(new_pc), :
"dI"(mask),"0" (new_pc));

return new_pc;

}
int
raise_priority int(n)
{
unsigned cur_pc;
cur_pc = modpc(0, 0); /*just read the pc */
if ((cur_pc & 0x2) 1= 0)
{
/* we're in supervisor mode, so we can change it */
unsigned priority = ((cur_pc >> 16) & Ox1f) + n;
unsigned priority_mask = Ox1f << 16;
if (priority > 31)
priority = 31;
cur_pc &= ~priority_mask;
cur_pc |= priority << 16;
modpc(cur_pc, priority_mask);
return 1;

}

return O;

C Language Implementation

Consider the lines containing the asm:

__asm__ __ volatile__("modpc %1,%1,%0" : "=d"(new_pc),

: "dI"(mask),"0" (new_pc));

® "modpc %1,%1,%0" is theasm-template . Themodpc instruction
reads and modifies the i960 architecture's process control register. The
instruction takes three arguments.

e "=d'(new_pc) is the onlyoutput-spec . It is the first operand, i.e.,
operand 0. Th&=d" constraint indicates that this is an output
operand, and that any global or local word register can be used.

® di"(mask) is the firstinput-spec . Itis operand 1. Thél"
constraint indicates that the operand must be a word register, or be a
constant in the range 0 through 31. Note that operand 1 is referenced
twice in theasm-template because theodpc instruction requires
the same input operand in two places.

® "0" (new_pc) is the secondhput-spec . Itis operand 2. Th&®"
constraint indicates that this operand and operand 0 must be allocated
to the same register. This is required because iasthetemplate
this register is both a source and a destination. Note that operand 2 is
not referenced in thesm-template , but that the reference to operand
0 is also the use of operand 2 as specified byotheconstraint.

Note that this example shows how the 0-9 constraint is used to match an
input to an output operand when a src/dst operand is needed in an
asm-template . This example also shows that input-only operands (such as
mask) can be freely referenced multiple times inaam-template

without needing to be specified multiple times inithést

If you are writing a header file that should be includable in ANSI C
programs, use asm__ instead ohsm and__volatile instead of
volatile . See the Alternate Keywords section for more information.

7-71

1960 Processor Compiler User's Manual

asm Functions

An asm function definition is a special form of a prototyped function
definition. The keyworchism preceding the return-type specifier identifies
anasm function definition. Anasm function definition can occur anywhere
a C function definition can occur. However, the definition oasin

function must precede any call to it.

E NOTE. Anasm statement oasm function should not issue an assembler

directive that changes the object module section to something other than
text . The compiler assumes them statement leaves the assembler in
the.asm section.

When processing aasm function call, the compiler generates additional
instructions for loading registers, for other operations needed to pass
parameters, and for acceptance of a return value. A callasnafunction
is not a true function call, however, because the compiler expands the
assembly-language body of the function inline.

An asm function definition can contain one or more templates. The

compiler selects a template for expansion based on the values and data types
of arguments you specify and based on use of any return value in the
function call. Use of any C expression as an argumentderafunction is

legal.

Also, any of the following are legal within asm function:

® trigraphs

* gpliced lines (backslash-newline pairs)

® C-stylecommentg® . .*/)

®* macros and preprocessor directives

772

C Language Implementation

asm Function Definition Syntax

The declaration syntax fasm functions and parameters is the same as
standard C function syntax. The following is an informal definitioasod
function syntax:

asm return-type name (parameter-declarations)

{

% control-line
template

[-]

}
return-type is the data type returned by them function.
name is the identifier used to invoke tlem function.
parameter - defines the data types and names obtime
declarations parameters.
control-line introduces eackemplate , defines the

parameter and return value classes, and
specifies any calling-convention or nasm
processing.

template is zero or more lines of text for processing by
the assembiler.

The following restrictions apply tasm parameter lists:

®* Anasm function cannot be stdarg function; that is, amasm
parameter list cannot contain an ellipsis (.).

®* Each declaration in aasm parameter list must include an identifier.

* The data type of amgsm parameter cannot be larger than 16 bytes.

®* The data type of asmsm function return value cannot be larger than
16 bytes.

7-73

1960 Processor Compiler User's Manual

7-74

An asm function can contain zero or more expansion cases, each of which
starts on a new line and consists of a control line (starting2viibllowed

by a template. A control line can contain zero or more controls and can be
continued to the next line with a backslash immediately before the newline
character. A control can be any of the following:

® aparameter-declaration list to specify return valuesorparameter

classes.

® thecall orerror keyword to cause an action other tlham
in-lining.

® alabel declaration to declare a label local to #isen function.

* theuse orspillall keyword to preserve registers and variables.

¢ thepure keyword to indicate that thesm function has no side effects.

An asm parameter declaration in a control line specifies the classes for any
parameters or return value. The keywmrn is a special parameter
identifier, denoting the return value and specifying its class. A control line
can also contain declarations for local temporary variables.

Thetemplate can be any text. The compiler performs some preprocessing
on the template text, but the assembly-language syntax checking is done by
the assembiler.

Template Selection

When the compiler encounters a call toaam function, the compiler

selects a template for expansion by comparing the call context with each

control line in the function definition. The call context includes:

* the category (value, data type, and location) of each argument in the
call.

* aboolean that shows whether the function uses the returned value.

Selection Criteria and Coercion

If a control line contains agrror orcall control and no parameter
declarations, the control line unconditionally matches any call.

If a control line contains any parameter declarations or does not contain an
error orcall control, the control line matches a call only when the
argument categories match the parameter declarations in the control line.

C Language Implementation

If anerror orcall control line contains parameter declarations, the
compiler generates the message or function call only if the parameter
classes match the call context.

The compiler processesm functions by doing the following:

® Checking theasm function for correct syntax and semantics. If any of
the following control lines are present, the compiler reports an error:

— error orcall with any other controlspillall ,use, or
label)

— anerror control line with more than one line of template text
— acall control line with any template text

®* Reporting an error, if aerror orcall control line without parameter
declarations is not the last control line in #sen function definition.

® Ensuring that all control lines contain either parameter declarations or
an unconditionally matching control by adding default parameter
declarations for all parameters declared in the function prototype to any
control line that does not already conteiror , call , or parameter
declarations. This action includes adding parameter declarations to a
control line containingpillall , use, orlabel controls but no
parameter declarations. Default parameter declarationspssy
class fometurn andreglit class for parameters.

* Ensuring that the last control line unconditionally matches any call
context. Unless the final control line in them function definition
contains nothing but agrror orcall control, the compiler adds a
final control line containing aall control, as follows:

%call function ;

® The defaultfunction for acall control is an external function of the
same name as tlaem function. The last control line is the only one
that unconditionally matches any call context.

®* Comparing the call context to each control line, in sequence from
beginning to end of thasm function definition. The compiler expands
the template of the first control line that exactly matches the call
context. Tables 7-3 and 7-4 show how the call context and parameter
classes can match.

7-75

1960 Processor Compiler User's Manual

7-76

* If no control line exactly matches the call context, attempting to coerce
the call context into one of the control lines, starting at the end of the
asm function and working back to the beginning.

— Aldconst instruction coerces a constant argument into a register.

— A movr instruction coerces a floating-point literal argument into a
register.

— Ad instruction coerces a memory argument into a register.

— A mov instruction coerces a general-register argument into a
temporary variable.

— A movr, movrl , ormovre instruction coerces an argument that is
not a floating-point register or literal into a floating-point register
and coerces an argument that is a floating-point register or literal
into a general register.

* Expanding the last control line if no control line exactly matches the
call context and the call context cannot be coerced into the last
conditional control line.

Table 7-3 Return Value Class Matching *

Return Value Use Return Class void ftmpreg tmpreg
not used . . .
used - . .

1. A bullet (®) indicates a match. A hyphen (-) indicates no match.

C Language Implementation

Table 7-4 Argument Category to Parameter Class Matching and Coercion 1
Argument Parameter Class
Category const ftmpreg freglit tmpreg reglit
Integer . Idconst, Idconst, Idconst .
Constant (0-31) movr movr
Other Integer . Idconst, Idconst, Idconst Idcon
Constant movr movr st
Floating . movr . movr movr
Constant (0.0 or
1.0)
Other Floating - Idconst, Idconst, Idconst Idcon
Constant movr movr st
General-register - movr movr mov .
Variable
Memory - Id, movr Id, movr Id Id
General-register - movr movr . .
Temporary
Floating - . . movr movr
Register
Temporary

1. Abullet (*) indicates a match with no coercion needed. A hyphen (-) indicates no match and no
coercion possible. A movr instruction for coercion indicates that movr, movrl, or movre can be used.

777

1960 Processor Compiler User's Manual

7-78

Parameter Classes

An asm parameter or return class can be any of the following:

tmpreg

ftmpreg

places the parameter in a general-purpose register, of
the compiler's choice, that them function can

modify. For aampreg parameter longer than one word,
specify the number of registers needed in parentheses
aftertmpreg .

For exampletmpreg(3) allocates three consecutive
registers. Iltmpreg is specified without a number of
registers, the default ispreg(1)

A tmpreg return value also occupies the specified
number of registers. If no class is specifiedréourn
the default ismpreg(n) , wheren is the size from to
4 needed to contain the return value.

The maximum number of parameters that can be placed
in registers is 10.

places the parameter in a floating-point register, of the
compiler's choice, that thesm function can modify.

You can usdtmpreg only on processors with on-chip
floating-point support. When used to declex@irn
ftmpreg places the return value in a floating-point
register.

C Language Implementation

reglit

freglit

const

void

places the parameter in a general-purpose register, of
the compiler's choice. Tham function must not
modify the register.

If the parameter is a literal, it can be used as is. Thus,
the asm body should use the parameter only in an
assembly language context that allows a literal.

For areglit parameter longer than one word, specify
the number of registers needed in parentheses after
reglit . For examplereglit(3) allocates three
consecutive registers. iéglit is specified without a
number of registers, the defaultréglit(1)

A reglit return value also occupies the specified
number of registers. The declaratieglit return
is equivalent tampreg return

places the parameter in a floating-point register of the
compiler's choice. Thasm function must not modify
the register. You can useglit only on processors
with on-chip floating-point support. When used to
declarereturn , freglit places the return value in a
floating-point register. The declaratiémglit

return is equivalent tétmpreg return

indicates a constant expression. Thest keyword
can be followed by:

(signed-integer), specifying the indicated integer
value.

(signed-integer-low:

signed-integer-high), specifying an integer value
in the indicated range.

(0.0 : 1.0) , specifying a floating-point value 0f0

or1.0 . Only useconst to declare parameters, not
return

indicates that the return value is not used. wék to
declare onlyeturn , not a parameter.

7-79

1960 Processor Compiler User's Manual

7-80

Table 7-5

Declarations must be consistent betweerathefunction prototype and the
control line. If theasm class of a parameter or return register does not match
the declared C parameter or return type, the compiler issues a warning
message. Table 7-5 lists the matching data types and classes.

C Data Types and asm Classes

Class Designations Data Types

reglit, tmpreg, reglit(1), any integer type; any pointer type; float; struct, or
tmpreg(1) union types of 1 to 4 bytes

reglit(2), tmpreg(2) double; struct, or union types of 5 to 8 bytes
reglit(3), tmpreg(3) long double; struct, or union types of 7 to 12 bytes
reglit(4), tmpreg(4) struct or union types of 13 to 16 bytes

freglit, ftmpreg float, double, or long double

NOTE. Avoid writing a parameter declaration that can never match any
call context. Such a declaration creates a pocket of unreachable code.
For example, unreachable code results from declaring a parameter in an
asmfunction prototype as an integer C type and declaring the
corresponding parameter in the control linefaspreg or freglit

class. The control line parameter declaration then matches only a
floating-point data type argument, but the parameter can accept only an
integer argument. Similarly, when specifying an integer return type in a
function prototype, anyeturn declaration specified in the control line
must also be integer. The compiler recognizes when the parameters in the
function prototype and the control line are mismatched and issues a
message.

C Language Implementation

Argument Categories
An argument category can be any of the following:

General-register is a register-resident value (e.gregister

variable variable). Depending on the level of
optimization, this category can include a more
complex expression. During compilation, the
expression must evaluate to a register-resident
variable that is one of the operands in the
expression. For example, the expressiciis
andx*yly both evaluate ta.

Memory is a memory-resident value.

General-register-temp indicates an expression that the compiler cannot

orary evaluate to a single variable or constant. This
category includes most expressions containing
an operator. A common exception is an
expression in which the top-level operator
implies indirection (that is;, [], or->). Such
an expression falls into the memory category.
Depending on the optimization level, the
general-register-temporary category can include
an expression in which the top-level operator is
an assignment to a register-resident variable.
Floating-point values can also fall into this

category.
Floating-point-register indicates a floating-point expression that can be
-temporary classified more efficiently into a floating-point

register than into a general register. This
category is available only on processors with
on-chip floating-point support.

7-81

1960 Processor Compiler User's Manual

7-82

Integer constant is a constant integer value. Depending on the

level of optimization, this category can include
an expression containing variable operands, if
the compiler can evaluate the expression to a
constant. For example, the expressiofsx ,

x-7 , andx can evaluate to constants during
compilation if the value of is a known value at

compile time.
Floating-point is a constant floating-point value. The rules for
constant classifying arguments as floating-point

constants exactly parallel the rules for
classifying arguments as integer constants.

Template Expansion

Once the compiler selects an expansion case, one of the following
sequences occurs:

If the control line contains therror control, the compiler reports an
error, using the first line following therror control line as the text of
the error message. For example, invoking the followemgfunction as
traps(l) prints the messageeached trapl :

asm int traps (int i)

{

% const(1) i; error;

Reached trapl

% const(2) i; error;

Reached trap2

% error;

Reached traps without 1 or 2

}

More than one line of template text following@ror control line
results in a compiler syntax error.

C Language Implementation

* If the control line contains theall control, the compiler generates a
call to an external function using tbal assembly-language
instruction. You can specify the name of the external function, as in the
following example:

%call my_alt_afn;

® If you do not specify a name in thall control, the compiler uses the
name of theasm function. For example, calling the following as
select(3) results in a call to an external function narseldct
asm int select (int i)

{
% const(-2:2) i;

% call select;

}
* Any lines of template text following@ll control line result in a
compiler error.

® Ifthe control line does not contadall orerror , the compiler inserts
the selected template in the assembly-language output in place of the
asm function call.

Declarations

The control line can declare the following:

® parameters, including return

® |ocal temporary variables

* labels

Parameter declarations and local temporary declarations are syntactically
identical. If the declared name is the same as a parameter declared in the
function prototype, a parameter is declared. Otherwise, the declaration is of
a local temporary variable.

7-83

1960 Processor Compiler User's Manual

7-84

In the template text, the compiler replaces the name of any declared
parameter with the corresponding register or literal argumenteiine
keyword becomes the name of the register in which the return value of the
asm function is expected. The compiler replaces the name of any local
variable with the name of an available register.

You can use &glit ortmpreg class parameter or local variable as an
integer aggregate containing up to four general-purpose registers, as
declared on the control line. To select a register, specify an integer in
parentheses after the identifier. For examiplgy(0) selects the first
register ofitmp . If itmp is declared on the control line iaap(4) ,
specifyitmp(3) to select the fourth register allocatediforp .

NOTE. If atemplate uses a label, multiple expansions of that template
can result in more than one label with the same name, causing
ambiguous branch or jump destinations. To avoid this ambiguity, use the
label control to declare the label in the control line. The compiler then
generates a unique name for each declared label every time the
expansion case is selected.

C Language Implementation

Preserving Register and Memory Values

The following asm controls enable the compiler to preserve function
resource requirements:

use

spillall

pure

declares that certain registers can be read and/or
modified by the template. You can specify any of
registergy0 throughg13, r3 throughrl5 , andfp0
throughfp3 , when present, as arguments toube
control. For example, the following control line
preserves registegd throughgs, r3 , andril :

% use g5, g6, g7, g8, r3, r11;

If any of the registergfp , sp, rip , gl4, orfp are
specified in ause control, the compiler issues an
error message.

declares that some memory locations used outside
of theasm function can be modified or used by the
template. The compiler forces synchronization of
load and store operations at the function call; that is,
no load or store operation moves past the call of an
asm function containing thepillall control.

declares that the namedm function has no effect
other than returning a computed value. Specifically,
no I/O is performed, no global variables or memory
locations are read or modified, and no
modifications of registers occur, except those
explicitly defined by the calling sequence. When
pure is used, the compiler can perform
optimizations before and after each function call,
because@ure guarantees thesm function has no
effect other than returning the computed value. If a
function ispure , the compiler can perform
additional optimizations across the function call.

7-85

1960 Processor Compiler User's Manual

7-86

NOTE. If none of the above controls appear in text to direct

preservation of resources, the compiler makes the following

assumptions:

 The only registers used by asm function are those implicitly assigned
by the compiler for parameters, local temporaries, and the return
value.

« Theasm function does not reference any non-volatile memory
locations.

« Theasm function can have other side effects, such as performing 1/0.

Examples and Hints
You can define control lines in a sequence that selects the expansion case
based on the strictest comparison first, relaxing the matching criteria as
earlier expansion cases are rejected, as follows:
1. const andvoid return parameters.
2. ftmpreg andfreglit parameters; for example, to matehg
double arguments.
3. tmpreg andreglit parameters; for example, to matoteger
float , anddouble arguments.

C Language Implementation

Sequential Template Expansion. The following is a C language program
that uses aasm function with two expansion templates:
#define status_reg OXFEOOFF00
asm int poll(void)
{
% void return; tmpreg t; spillall;
Id status_reg, t; #first template
% reglit return; spillall;/* return the current status
*/
Id status_reg, return; #second template
% error;

}
#define DEVICE_READY 0x00000001

main()

{

extern void service_device();
poll(); /*clear status bits*/
while (1) {
if (poll() & DEVICE_READY)
service_device();

}
}
The first call ofpoll does not use the return value and therefore matches
thevoid return control line, expanding the first template. The second call
uses the return value and therefore matchesreg return control,
expanding the second template.

In this example, loading the status register also clears the statuspsib the
function can be used just to clear the status if the function return value is
ignored. However, when the return value is ignored, the program must still
allocate a register into which it can load the temporary value.

7-87

1960 Processor Compiler User's Manual

Compiling this program produces assembly language similar to the
following:
_main:;
Id OXFEOOFFOO , g4; #first template
L5:
Id OXFEOOFFOO0 , g4; #second template
bbc 0,g4,L5
callj _service_device
b L5

IAC Breakpoint. The following example shows asm block that sends an
inter-agent communication (IAC) breakpoint to the processor. For
information on the IAC structure, see the 1960 KB processor manual.

struct message {
unsigned short field2;
unsigned char field1;
unsigned char message_type;
unsigned int field3;
unsigned int field4;
unsigned int field5;
}iac_struct;
/*
* This routine issues an IAC message to the local
* processor where the program resides. It accepts
* a pointer to a preformed IAC message as input and
* uses the synmovq instruction to send the IAC to the
* processor.
*/
asm void send_iac(struct message *base_msg)

{

%void return; reglit base_msg; tmpreg myreg; spillall;
Ida 0xff000010, myreg /* load local IAC address */
synmovq myreg, base_msg /* issue IAC message */
%error;
Incorrect C call to send_iac
}
/*

7-88

C Language Implementation

* Send a breakpoint IAC to the processor. The

* address is supplied by the routine that calls

* set_bp. Do not forget to enable breakpoints in the
* trace control. Fields 1, 2, and 5 are not used.

*/

void set_bp(unsigned int addrl, unsigned int addr2)
{

iac_struct.message_type = Ox8f;

iac_struct.field3 = addril;

iac_struct.field4 = addr2;

send_iac(&iac_struct);

}

In this example, the first linegm void send_iac(struct message
*base_msg)) declares that the function does not return a value and the
base_msg argument is a pointer to a structure of tygssage .

The second and eighth lines contain braces. These lines begin and end the
function definition, which contains two expansion definitions.

The third line is a control line containing three parameter declarations, as
follows:

%void return; reglit base_msg; tmpreg myreg; spillall;

Thevoid return; declares that no value is returned by #sis function.
Thereglit base_msg; declares that thease_msg parameter matches
either a literal or a register argument. Tinereg myreg; declares that the
myreg local variable is a temporary register. Hpélall control

informs the optimizer that this template references memory.

The fourth and fifth lines load the IAC address into a temporary register and
issue an IAC message.

The sixth line is a control line containing treor control and the seventh
line is the text of therror message.

If the compiler cannot coerce the call arguments into the previous expansion
definition (the declarations in the third line), the compiler displays the
following error message and aborts the compilation:

Incorrect C call to send_iac

7-89

C++ Language Implementation

The C++ implementation is consistent with the C language implementation
described in Chapter 7. This chapter highlights the differences from the C
language implementation. It also provides a description of the
unimplemented C++ features and description of the template
implementation limitations.

Data Representation

The C++ compiler follows the same rules as described in Chapter 7, “C
Language Implementation” for the format and alignment of various scalar
and aggregate data types. The C++ compiler, however, recognizes the
following scalar data types as well.

® bool: Thebool type hasthe same size and alignment astarand
can be assigned a value of either true or false.

* reference: References are implemented internally as pointers.
However, these implementation details are transparent to the end user
and reference types in general should be treated the same as the type to
which they refer.

8-1

1960 Processor Compiler User's Manual

8-2

Calling Conventions

Pragmas

The C++ compiler follows the same calling conventions as described in
Chapter 7, “C Language Implementation”. However, be aware that the
compiler uses hidden parameters. Consider the following example:

class Base {

public:

intset_a(inti){a=1i;}

private:

int a;

h
The implementation of member functiset_a uses a hidden parameter,
the address of the Base instance for which this member function was
invoked (thethis argument). As a result, the user should expect argument
i to be passed in registgt. Return values and register usage are handled
the same way as described in Chapter 7, “C Language Implementation”.

Pragmas can supply implementation-specific information to the compiler.
The CTOOLS C++ compiler supports the same set of pragmas as the
CTOOLS C compiler. However, certain pragmas behave differently in C++.
The following sections highlight these differences.

Specifying a Tag-Name with align, noalign, or i960_align

When you specify a tag-name with align, noalign, i960_align, the pragma
applies to all occurrences of that tag. For example:
pragma align str=2

struct str {

char c;

struct str {
char c;

}sl;

h

C++ Language Implementation

struct strl {

char c;

struct str {

char c;

}sl;

h
In the above example, the align pragma affects the alignment of types str,
str::str, and strl::str.

The compiler currently does not implement referring to a specific type-tag
(e.g., through the use of scope resolution operator) in a pragma:

pragma align strl::str=2 // will not work

Specifying a Function Name with a Pragma

When you specify a function name with a pragma (e.g., pragma compress,
cave, inline, interrupt, isr), the pragma applies to all occurrences of that
name.

pragma inline max

int max(int a, int b);
float max(float a, float b);

struct S {

int a, b;

int max(int a, int b);

%
In the above example, the inline pragma affews(int, int) ,
max(float, float) , andS::max(int, int)

The compiler does not allow specifying a single instance of a function name
in a pragma. For example, the statement:

pragma inline S::max(int, int)
is not supported.

1960 Processor Compiler User's Manual

Link Time Considerations

The compiler creates two newext sections namectors and
dtors .

* Thectors section is used to initialize(construct) static objects.

®* Thedtors section is used to destroy static objects.

CTOOLS 6.0 includes a new set of linker directive filé&s (files) for use
with the ic960 driver. These new Id files placedles anddtors
sections immediately after thext ~ section. The C++ lostream library is

linked immediately before the C high-level libraries, as specified with the
linker directivePRE_HLL.

With the gcc960 driver, use thstdlibcpp option to link in the C++
lostream library ahead of the C libraries and placetifve anddtors
sections immediately after thext section.

Calling C Functions from C++

Use theextern "C" directive provided by the C++ language.

/I Example assumes that filel.cc and file2.c are linked together
/I Begin filel.cc

extern "C" {
int baz(int a, int b); // Compiler does not do nhame
void foo(void); /l mangling

h

int baz(float); /I Compiler treats this as a

/I C++ routine and does name mangling

int baz(float f1)

{
return int(f1);

}

C++ Language Implementation

int main()

{

foo(); /I invokes the definition in file2.c
return baz(10, 20) + // invokes the definition in file2.c
baz(float(10.6));

}
/I End filel.cc

/* Begin file2.c */

int baz(int a, int b)

{

return a + b;

}

void foo(void) {
baz(10, 20);
return;

}
/* End file2.c */

Calling C++ Functions from C

Use theextern "C" directive provided by the C++ language.
/I Example assumes that file3.cc and file4.c are linked together
/I begin file3.cc
extern "C" int baz(void);

extern "C" {

int foo(int a, int b)
{

return a + b;

}

}

1960 Processor Compiler User's Manual

int main()

{

return baz(); /I invokes the function defined in file4.c

}
/I end file3.cc

/* begin file4d.c */
int baz()
{

return foo(10, 20); /* invokes function defined in file3.cc */

}
/* end filed.c */

asm Statements and asm Functions

The C++ compiler implements asm statements in a manner that is consistent
with the C compiler. However, asm functions are not implemented in the
C++ compiler.

Unimplemented C++ Language Features

The current release does not implement the following C++ language
features:

Exception Handling

C++ provides constructs that allow exceptions to be raised and caught. The
current release does not implement C++ exception handling. The following
example illustrates the use of exception handling:

#include <iostream.h>

int main()
{
inti;
try {
cout << "Enter an integer >0 ";

C++ Language Implementation

cin >>i;

if I<=0)
throw inv_data;

}

catch (Invalid_Data) {

cout << "Invalid data input\n®;
exit(10);

}

Run Time Type Information(RTTI)

C++ provides constructs that allow you to determine the type of an object
during execution. This makes it possible to write specialized code based on
the run-time type of the object. The current release does not implement
RTTI. The following example illustrates the use of RTTI:
#include <typeinfo>
class B {
public:

virtual int foo();

h

class D {
public:
virtual int foo();

h

D d1;
B *bp = &d;

int baz(B *bp)
{

1960 Processor Compiler User's Manual

if (typeid(*bp) == typeid(D))
do_something ...

else

do_other_stuff ...

Namespaces

Namespaces allow a programmer to declare variable names without the fear
of a collision with names declared by other users. Namespaces allow two
independent library developers to use the same names for their library
routines and allows the user to choose between the two. The following
example illustrates the use of namespaces.
namespace A {
int max(int a, int b)
{
int tmp;
if (a > b)
tmp = a;
else
tmp = b;
return tmp;
}
}

namespace B {
int max(int a, int b)
{
returna>b?a:b;
}

}

C++ Language Implementation

int tmp;

using namespace A;
int main()

{

tmp += max(10, 20); // Calls namespace A's max(int, int)

}

C++ Template Implementation

C++ templates are an unsupported feature in CTOOLS release 6.0. The
following sections describe the current limitations of the template
implementation in the C++ compiler.

Limitations for Function and Class Templates
These limitations apply to any use of templates (function templates or class
templates) with the C++ compiler.

® The C++ compiler does not automatically instantiate templates defined
in other files. Because of this, code written for cfront often produces
undefined symbol errors when compiled with the CTOOLS C++

8-9

1960 Processor Compiler User's Manual

compiler. To resolve this problem, specify each template instance by
instantiating it explicitly in the file where it is defined. For instance,
given the files:

“templates.h';

template <class T>

class A {

public:

void f ();

Tt;

2

template <class T> void g (T a);
“templates.cc”:
#include "templates.h"

template <class T>
void A<T>:f () {}

template <class T>
void g (T a) {}

main.cc:
#include "templates.h"

main ()

{

A<int> a;
a.f();
g (a);

}

8-10

C++ Language Implementation

compiling using the command:
gcc960 -Felf -Ttarg main.cc templates.cc

results in undefined symbol errors fokint>::f () and'g
(A<int>)' . To fix these errors, add the lines

template class A<int>;

template void g (A<int>);

to the bottom ofemplates.cc and recompile.

Templates are instantiated using the parser. This results in two

problems:

1. Class templates are instantiated when a pointer to the class is
declared. The presence of such a pointer alone should not cause
instantiation.

template <class T> class A{},

A<int> *aip = 0; // should not instantiate A<int>

(but does)

2. The first reference to a function template causes that function
template to be instantiated. If the function template is declared
inline, it will only be inlined for all references after the first.

For example:
template <class T> inline Tmin (T a, Tb){returna<b?a:b;}
void f () {
inti=min (1, 0); /I not inlined

}

void g () {

intj =min (1, 0); /l'inlined

}

This problem can be avoided by including a line such as:

extern template int min (int, int);

before the first reference to min(), forcing instantiation before the

first instance of inlining.
Template definitions must be visible. When you compile code with
templates, the template definitions must come first (before the compiler
needs to expand them), and template definitions you use must be
visible in the current scope.

8-11

1960 Processor Compiler User's Manual

* Templates for static data in template classes do not work. See the
example below.

template <class T> struct A {

static T t;
2
template <class T> T A<T>::t = 0; // gets bogus error
int A<int>::it = 0; /I OK (workaround)

Limitations for Function Templates

The compiler correctly determines template parameter values, and delays
instantiation of a function that uses templates until the requisite type
information is available. However, the following limitations remain:

* Narrowed specification: function declarations should not prevent
template expansion. When you declare a function, the C++ compiler
interprets the declaration as an indication that you will provide a
definition for that function. Therefore, the compiler does not use a
template expansion if there is also an applicable declaration. The
compiler only expands the template when there is no such declaration.
For example, this code fragment must be treated differently:

template <class X> X min (X& x1, X& x2) { ... }
int min (int, int);

int i; short s;
min (i, s); // should call min(int,int)
/I derived from template

®* The compiler does not yet recognize function signatures where types
are nested within template parameters. For example, a function like the
following produces a syntax error on the closing °)' of the definition of
the function f:

template <class T> class A { public: T x; class Y {}; };

template <class X> int f (A<X>:Yy) {...}

¢ All the method templates (templates for member functions) for a class

must be visible to the compiler when the class template is instantiated.

8-12

C++ Language Implementation

Limitations for Class Templates

* Template member names are not available when defining member
function templates.
template <class T> struct A {
typedef T foo;
void f (foo);
void g (foo arg) { ... }; // this works
2

template <class T> void A<T>::f (foo) { } // gets bogus error
* Member functions in template classes may not have results of nested
type; the C++ compiler signals a syntax error on the attempt. The
following example illustrates this problem with an enum type alph:

template <class T> class list {

enum alph {a,b,c};
alph bar();

h

template <class T>
list<int>::alph list<int>::bar() // Syntax error
here

{

®* Parsing errors are reported when templates are first instantiated---not
on the template definition itself. In particular, if you do not instantiate a
template definition at all, the compiler never reports any parsing errors
that may be in the template definition.

Debugging Information for Templates
Debugging information for templates is currently not supported.

8-13

gcc960/ic960 Compatibility

This chapter describes the incompatibilities between ic960 and gcc960, and
between the current release of gcc960 and other releases of ic960.

char and short Parameters

The ic960 R3.0 compiler expeatisar andshort parameters and return
values to be clean upon entry to and exit from procedures. Since these types
are passed and returned in registers, this means that, in the sgsedf

types, the sign bit must be extended, and in the cassighed types, the
high-order bits of the register must be zero. By default, gcc960 (and ic960
R4.5 and later) does not expect these values to be clean, and generates
appropriate operations to sign- or zero-extend these values on entry to or
exit from a procedure. This applies only to ANSI-compliant programs that
specify the type of parameters at declaration time in the function prototype.

gcc960 emulates ic960 R3.0's behavior ifrtfi€3.0-compat or
mic2.0-compat options (see below) are selected.

enum Variable Byte Count

The ic960 R3.0 compiler createisum variables with only enough bytes of
precision to hold the requested enumeration. gcc960 always generates
4-byteenum variables. gcc960 emulates ic960's behavior if the
mic3.0-compat option is selected. Aenum variable compatible with
ic960 releases prior to R3.0 can be achieved usingitt?0-compat

option.

9-1

1960 Processor Compiler User’'s Guide

9-2

Table 9-1

char Types

The ic960 compiler (all releases) treats defeidt types asigned ,
whereas gcc960 treats themuasigned . gcc960 emulates ic960's
behavior if themic3.0-compat ormic2.0-compat options (see below)
are selected, or if thisigned-char option is selected. The preprocessor
symbol__CHAR_UNSIGNED __is set appropriately to allow programs to
determine which model is in use.

Identifying Architectures

The traditions for architecture-identifying preprocessor macro definitions

are somewhat different between ic960 and gcc960. Both interfaces define
the macros _i960 , 960 xx, and i960 , wherexx is the architecture

(e.g., CA for the 1960 CA processor, as selected bya@reoption). These

are the recommended macros for testing for the i960 processor architecture.

For compatibility reasons, the compilation system also defines additional
variations on these macros, as shown in Table 8-1.

Architecture Macros and Compatibility

gcc960 ic960
_ 1960 _ X -
_i1960xx - X
__1960_xx_ _ X -
__1960xx_ _ X -

#pragma align

ic960 and gcc960 both implementi@agma align directive. They

interpret the pragma differently, and the results (changes in the alignment of
members of structures) are not compatible. In the absence of this pragma,
ic960 and gcc960 structures should be compatibly alignegma

i960_align is provided for compatibility with ic960gagma align

and behaves the same for both compiler interfaces.

GCC960/ic960 Compatibility

mic3.0-compat Option

The gcc960mic3.0-compat option selects the appropriate behavior for
enum variables, selects defaslyned char variables, and selects clean
linkage (described above) fohar andshort parameters and return
values.

mic2.0-compat Option

The gcc960mic2.0-compat option selects the same behaviors as
mic3.0-compat , except that the behavior for theum variable is subtly
different and the alignment rules for structure elements are changed to be
compatible with this (now obsolete) release of ic960. rleecompat

option supported in gcc960 R1.2 and R1.2.1 is now synonymous with
mic2.0-compat

9-3

Position Independence and
Reentrancy

This chapter describes reentrancy and position-independence. Use it for
writing 1960 processor applications that require position-independent or
reentrant programs. Position independence enables relocation of both the
text and.data sections.

Position-independent Code and Data

Position independence refers to an application that can be relocated when
loaded. The application can be loaded at various addresses, but the code and
data do not move during execution. This feature enables creation of
programs for specific EPROMSs used in a system.

The ic960 driver'ss option with its argumenisc, pd andpr , or the gcc960
driver’s mpic , mpid andmpid-safe options, control generation of
position-independent code and data. For more information about
command-line options, see Chapter 2, “gcc960 Compiler Driver”, and
Chapter 3, “ic960 Compiler Driver”.

Position-independent Data

When the position-independent data option is specified, references to
variables in the program are made relativgitd. Initialization code for a
program must supply a data address bias in the position-independent data
bias registerd12). For all accesses to statically allocated variables, the
value ing12 is used to calculate the effective address. Regjsgemust be
read-only for the entire program.

10-1

1960 Processor Compiler User’'s Guide

For example, suppose objest is in the.data or the.bss section.
Normally, the compiler generates an address of the object with an absolute
addressing mode:

lda _x, g0

When you compile your program with position-independent data, the
compiler generates this instruction to take the address:of

lda _x(g12), go

E NOTE. If PID is specified, the value g2 must be correctly computed
and stored by user-provided startup code.

Position-independent Code

When the position-independent code option is specified, the compiler
computes effective addresses by biasing them based upon the instruction
pointer {p).

Suppose objectx is in the.text section. The compiler generates a code
bias address into a register at the beginning of any function that needs a
direct address in théext section. It does this via a code sequence similar

to this:
Ida O(ip), r3
lda. ,r4d

subo r4, r3, r3

which leaves the bias i3 . Then the compiler use3 to bias the reference
to_x as:

lda _x (r3), r4

The first three instructions compute the difference between the link time
address and load time address of.ttva section.

10-2

Position Independence and Reentrancy 1 O

For example, if the code section links to begin at address zero, the
subtraction result is the address at which the code section was actually
loaded. Even if the code section links to begin at some other address, the
subtraction result is still the correct value for biasing pointers into the code
section.

Position-independent ROM Code

Imagine designing two circuit boards for use in a new laser printer. ROM
chips on these boards contain type fonts and graphic elements. To provide
alternative printing capabilities, either board inserts into an optional slot in
the printer chassis. Memory allocated for each board is:

board 1 20000 - 3ffff
board 2 40000 - 5ffff

Although ROM and RAM for each board have different load addresses, the
controlling software for the printer must work correctly with either board in
use. In the printer, kernel ROM and RAM are at fixed addresses in low
memory. A large memory space is set aside for the kernel's ROM and RAM.

Compiling the ROM code with the PID option and placing the correct bias
values ing12 makes the optional ROMs relocatable.

Figure 10-1 shows memory allocation for board 1. When the code executes,
the ROM code for either board loads at the correct address.

10-3

1960 Processor Compiler User’'s Guide

Figure 10-1 Memory for Hypothetical Position-independent Application

Top of Memory
Slot for Card 2
64 MB
Slot for Card 1
48 MB
Top of RAM
Frame Buffer
Slot RAM
gl2
Kernel RAM (data)
16 MB
Kernel ROM (code)
0

0OSD1678

10-4

Position Independence and Reentrancy

Guidelines for Writing Relocatable Programs

A program can contain position-independent code (PIC),
position-independent data (PID), or both. Be aware of the following
restrictions:

®* Use position-independence only where necessary, because a program
containing position-independent code may execute more slowly than
one without.

* Position-independent programs cannot be relocated during execution.

For all i960 processors, the address space is flat (unsegmented) and

byte-addressable. Addresses run contiguously from €4b. Programs can

allocate space for data, instructions, and stack anywhere within the flat

address space. However, the following restrictions apply:

® Instructions must be aligned on word boundaries.

®* Addresse&F000000H throughFFFFFFFFHIN the upper 16 megabytes
of the address space are reserved for specific functions. Check with
your system hardware designer to determine the effects of use of the
addresses in this range.

® 0Oni960 Cx and Jx processors, the lower 1 kilobyte of address space
(addresse8000H throughO3FFH) is reserved for accessing internal
memory (RAM). On i960 Hx processors, the lower 2 KB is internal
memory. Instruction fetch operations from this address range are not
allowed.

® The.data and.bss sections must be relocated as a unit.

Because biasing occurs during code execution, the compiler does not

support static initialization of pointers with the address of a

position-independent object. The compiler generates a warning in these

cases.

10-5

1960 Processor Compiler User’'s Guide

For example, the following program has two pointprandg, whose initial
values might not be correct when position-independence is used.
static int i;

static int *p = &i;

static int *q = 0;

static int *r = (int *) Ox7fff0000;

int f();

int (*g) () = f;

In the compiler's outpup contains the unbiased addres$ o&ndg
contains the unbiased addres$ oTo use the initialized org, a program
must perform the correct biasing of values before the point where the
program uses the pointers.

Reentrant Functions

Reentrant functions can suspend execution, and later resume execution from
the same state at which the suspension took place. Current state data must
be preserved while a reentrant function is suspended.

A reentrant function can be active in several different places, in any of the
following ways:

* a multi-tasking situation with two or more threads executing in the
same memory space; for example, an interrupt handler

* atime-sliced environment in which two or more processes are
executing, with one process active and all others suspended at any
given time

® arecursive function, with any one instance of a function active while all
duplicate instances of the function are suspended

For a function to be reentrant, it must not:

* modify memory or registers in use by a concurrent or suspended
function

* reference shared variable data
* call a non-reentrant function

10-6

Position Independence and Reentrancy

Designing Reentrant Functions

Since the compiler cannot determine data use across modules, the compiler
does not issue any warnings for potentially non-reentrant code sequences.
For more information about library reentrancy, refer toi®%€ Processor

Library Supplement

10-7

Initializing the Execution
Environment

This chapter describes the initialization process for the i960 processor
execution environment, including startup assembly-language routine,
configuration files, and associated options.

Startup Code

The startup routine is a module that initializes the processor and library,
then invokes the user's program. In addition to processor initialization, the
startup routine performs some initialization specific to random-access
memory (RAM-based) or read-only memory (ROM-based) target
environments. Since RAM-based applications typically operate under a
system monitor and load to the correct addresses after powering up the
board, the startup routine must initialize system monitor requirements but
need not boot-load the program. For a ROM-based application, the startup
routine must:

® Put the initialization boot record for the i960 processor in place.
* Configure system data structures correctly.
* Make initialized data available in the RAM address space.

For any program, the startup routine must initialize the i960 processor
registers as follows:

* Provide a global entry point callathrt . This symbol is the entry
point for debug monitors.
* Initialize the frame pointer and stack pointer to the correct value.

* |nitialize g14 to zero, as required by the i960 processor calling
convention.

* Fill the uninitialized.bss data sections with zeros.

11-1

1960 Processor Compiler User’'s Guide

11-2

® Set the arithmetic controls (AC) registerot8B001000 . For library
functions to execute correctly, the rounding mode bits of the AC must
be set to round-to-nearest, the floating-point normalizing bit must be
set, and the following faults must be masked:
— integer overflow
— floating-point overflow
— floating-point underflow
— floating-point inexact

® Since the 1960 C-series and J-series processors' AC register does not
allow setting of floating-point bits, usaetac in the setup. The
_setac and_getac routines are independent of architecture and work
correctly for all i960 architectures. Startup routines for KA, KB, SA,
and SB processors can also usenthdac instruction as an alternative.

When writing code to initialize the C runtime environment, you must
address the following issues:

®* The startup code provides the bias value for position-independent data

sections. If the program contains position-independent data (PID),
startup code must initialize registgr2 to the data-address bias. The
g12 register is the data address bias register. The compiler generates
references to statically allocated variables relatigd 2o The contents
of g12 must be divisible by 16 (i.e., the address must be on a
guad-word boundary). After initializatiog12 must be considered
read-only; user code should not modify it.

* [fthe gcc960 command line specifi@pid or the ic960 command line
contains the Generate option with the PID argum&np(l), the
compiler does not usgl2 as a general purpose register. However, it
does us@12 to offset static variables, as explained above.

If the target environment includes the MON960 monitor, startup must
provide a global entry point calletart , used by debug monitors as the
entry point to the new program. Startup code must call init to
perform all initialization specific to the processor and to the board.

Initialization differs for each processor and board. For example, some
board-specific startup routines initializem_endin the linker
configuration file instead of in_LL_init . Each board-specific low-level
library included with the assembler contains an appropriate_init

Initializing the Execution Environment

See the startup filet960.s under thesrc/lib/libll/common
directory for an example.

If a program uses the C runtime library, startup code must call
__HL_init to ensure correct operation of all library functions,
including any 1/O routines such psntf

The_HL_init function calls the exit_init , _stdio_init , and
_thread_init routines to allocate memory for library data structures
and to open standard devices. These routines require definition of
sbrk andopen in the board-specific low-level library. The

__HL_ init function is in the architecture-specific high-leliet.a

library. For more information about high-level libraries, refer to the
i960 Processor Library Supplement

If performing profile-driven optimizations, the startup routine must call
a profile initialization routine before calling any instrumented
functions.

If you are linking in any C++ modules, startup code must call
_do_global_ctors before you invokenain . Seecrt960.S for an
example.

The startup routine also calls an executing programaiis function,
passing parameters tain if necessary. The startup routine also
performs cleanup aftenain returns, usually by callingxit . If the
target environment supports program command-line arguments such as
argc andargv , call__arg_init to initialize such variables
immediately before calling the progranain function. The

__arg_init function is found in the MON960 low-level library. This
function is described in thebrary Supplement

The linker combines the startup routine with other object modules.
Normally, a configuration file provides the name of the startup file. To
override the startup file named in the configuration, use the lker
(Startup) option. For more information on passing options to the linker
from the compiler invocation command line, see Chapter 2, “gcc960
Compiler Driver” or Chapter 3, “ic960 Compiler Driver”.

11-3

1960 Processor Compiler User’'s Guide

11-4

RAM-based Initialization

Thelib/cycx.Ild configuration file links thert960.0 startup file to run
a program under the MON960 monitor.

ROM-based Initialization

ROM-based startup routines must ensure that all the variable data is in

RAM. The routines must do the following:

* Physically move any system data structures that the program modifies;
move the structures to the RAM address space.

®* Move the initialized variable data from ROM to thdata section.

* Restart the processor, using the IAC (inter-agent communication) for
KA, KB, SA, andSB architectures, or using tlsgsctl instruction for
the Cx, Hx andJx architectures.

A startup routine performs the following operations to create a ROM-based

application:

® Create an initialization boot record as a separately translated module.

* Create architecture-specific data structures.

® Initialize any necessary board-specific memory subsystems in either
themain or the startup routine of your program.

Use the linker to locate the initialization boot record, system data structures,
and program code in the appropriate memory location for the architecture
and board configuration, as follows:

®* Put.text code sectionsinthe ROM address range

® Put.data and.bss datain the RAM address range

Use the linker to define variables used symbolically in the startup routine.

The linker automatically generates symbols namegkection for the
beginning and for the end of each section of your program.

The linker can generate the following symbols for the startup routine:

__Bdata is the starting address of RAM data
__Edata is the end of thedata section
__ Btext is the starting address of thext section

Initializing the Execution Environment

__Etext is the end of theext section

__Ebss is the end of thebss section

_ Bbss is the starting address of thas section

_ Bctors is the starting address of the Cxtors section
__Ectors is the end of the C+xtors section

_ Bdtors is the starting address of the C#tors section
__Edtors is the end of the C+#tors section

It is also possible to explicitly define variables in the configuration file.
Supplied configuration files contain definitions of the following:

user_stack is the starting address of the user stack
supervisor_stack is the starting address of the supervisor stack
interrupt_stack is the starting address of the interrupt stack

After linking, you can use themove command of the rom960 utility to

modify object module section headers and to place named data sections at
specified addresses or locations. This command should be used to
temporarily move the data sections into the ROM address space, usually
immediately after thegext section, and does not change the relocation
information contained in the section to be moved. The startup routine then
must copy the data to the RAM area specified by the linker.

Linker Configuration Files

A linker configuration file is a linker script that provides information to the
linker about the intended execution environment. Several linker
configuration files are provided, and each contains linker options to create a
complete and unique execution environment. Us@ {fTarget) linker

option to specify the configuration file. For more detail onTt{€arget)

option, see th®60 Processor Software Utilities User's Guide

11-5

1960 Processor Compiler User’'s Guide

11-6

RAM-based Configuration File

The commands passed to the linker define the memory layout and location
of the linked program. Configuration information used by the linker
includes:

memory layout

linker controls
startup routine
high-level libraries
low-level libraries
floating-point support

ROM-based Configuration File

The optional ROM-builder section of a configuration file contains
commands to be passed to the rom960 utility. rom960 commands must
begin with the#* characters in columns 1 and 2. T®@0 Processor
Software Utilities User's Guidgrovides explanations and examples of
rom960 commands in a configuration file.

Optimization

Readable and maintainable source text is not always organized for efficient
execution. The compiler can optimize the arrangement of instructions and
data use for faster execution and smaller memory requirements. This
chapter describes the different ways in which the compiler can optimize
your program and explains ways to control optimization.

Optimization Categories and Mechanisms

Compiler optimizations affect these aspects of your program:

constants and expression evaluation
calls, jumps, and branches

loop optimizations

memory optimizations

register use

instruction selection and sequencing

Some optimizations are independent of the 1960 architecture and others take
specific advantage of the 1960 processor instruction set and registers.
Program-level optimizations are also available when profile data exists for
the program.

12-1

1960 Processor Compiler User’'s Guide

12-2

Table 12-1

Constants and Expression Evaluation

Optimization

ic960

gcc960

Register management
Branch prediction

Code compression
Constant-expression evaluation
Identity collapsing

Branch optimization
Char/short cleaning reduction
Dead-code elimination
Leaf-function identification
Local CSE elimination
Local-variable promotion
Loop-invariant code motion
Specialized-instruction selection
Tail-call elimination
Conditional transformation
Global alias analysis
Induction variable elimination
Instruction scheduling
Constant propagation

Loop unrolling

Memory access coalescing
Variable shadowing

Allocation of variables to fast memory
Inter-module, inline function expansion
Profile-based branch prediction bits setting

Basic block rearrangement
Superblock optimizations

any level

W W W W W NDNMNDNDNMDNMNDMNMDMNMMNMDMNMPEPEFPRPRPPEPRPNP PR P OOOO

any level

g o1 o1 o1 00 W W W wWw NN OO NN DN PEFE P PP DNPFPE P PO O O o

Optimization

The compiler can simplify some arithmetic and boolean calculations
involving repeating expressions, constants, or operational identities.
Optimizations involving such simplifications are:

® common sub-expression elimination

® constant expression evaluation

® constant propagation

® identity collapsing

Each is explained in one of the following sections.

NOTE. The following source examples are for illustration only. The
compiler performs its transformations on an internal representation, not
at the source level.

Common Sub-expression Elimination

Common sub-expression elimination detects and combines redundant
computations within an expression. For example, this line of source text
contains the sub-expressigia] * y[b][c] three times:

i = (x[a] * y[b][c]) + (x[a] * y[b][c]) + (x[a] * y[b][c]);

Instead of calculating[a] * y[b][c] three different times, the compiler
rewrites the expression to perform the calculation once and store the result
for reuse:

temp = x[a] * y[b][c];

i = (temp) + (temp) + (temp);

The compiler eliminates common sub-expressions on the results of
floating-point operations and on integer operations. In some cases the
compiler can perform this optimization for common sub-expressions
separated by branch instructions.

This optimization is performed by tiayOptimize) compiler option at level
1 (01) and higher.

12-3

1960 Processor Compiler User’'s Guide

Constant Expression Evaluation (Constant Folding)

A constant expression contains only constant operands and simple
arithmetic operators. Instead of storing the numbers and operators for
computation when the program executes, the compiler evaluates the
constant expression and uses the result. Constant folding is another name
for this optimization.

The examples in Table 12-2 show the effects of constant expression
evaluation. The variablesande are affected by bit-shift operations but are
still subject to constant expression evaluation.

Table 12-2 Effects of Constant Expression Evaluation

Original Source Text Replacement
a=1+2; a=3;
b=3-4; b=-1;
c=5*6; c = 30;
d=(2<<1)+1; d=5;
e=(12>>2)+2; e=5;
f=1.2+3.8; f=5.0;

g =10.0*0.5; g=>5.0;
h=i+2+5; h=i+7;

Any of the following data types can be operands subject to constant
expression evaluation:

®* integers
¢ floating-point numbers
® pointers

Dead-Code Elimination
The compiler eliminates two kinds of dead code:

unused when code generates a value that is not used
subsequently in the program or in its output.

12-4

Optimization

Table 12-3

unreachable when the control flow of the program can never execute
the instructions.
Unused code operations can arise from several sources, including:
* Naive code generation can produce operations that are useless in some
contexts as part of a generic translation.
® Other optimizations, such as common sub-expression elimination, can
make some operations useless.

® Conditional compilation or other code improvements can eliminate the
uses of the results of an operation.

By analyzing a program, the compiler can detect and remove useless
operations from generated code.

Commonly, instructions become unreachable when function inlining
substitutes constants for variables or when the preprocessor substitutes
constants for preprocessor symbols. By analyzing the control flow in a
program, the compiler can detect many (though not all) instances of
unreachable instructions and remove them from the generated code.

Identity Collapsing

The compiler recognizes instances of arithmetic operations in which an
identity constant is one of the operands. For an identity constant, the result
of the operation is the same as one of the operands. The examples in Table
12-3 demonstrate identity collapsing.

Identity Collapsing Examples

Original Replacement
a+0 a
a*l a
a*o 0
Xx<<0 X
0>>y 0

12-5

1960 Processor Compiler User’'s Guide

12-6

Operations subject to identity collapsing include:
® addition or subtraction

multiplication or division

bitwise left or right shift

® bitwiseand, xor , oror

Constant Propagation

Programs often contain computations that produce the same value each time
the program is executed. Constant propagation involves tracking constant
values through the computations in a program. In arithmetic or conditional
operations, the compiler can sometimes eliminate less efficient memory or
register instructions, replacing them with an instruction sequence that uses
constant values. The compiler performs the following types of instruction
replacement:

®* An integer arithmetic instruction that always produces the same
constant value result is replaced by a single instruction (comraanly
or mov) that copies the constant value into the destination register of the
original instruction. For example, this program fragment usesidm
to put the sum af and4 into g4:
mov 2, g2
mov 4, g3
addo g2, g3, g4
* After constant propagation, the code contains these optimized
instructions:
mov 2, g2
mov 4, g3
mov 6, g4
* Dead code elimination deletes the first two now-unused
instructions.

Optimization

* A conditional branch instruction for which the condition is known is
deleted. For example, this program fragmentsetgual toy+z if 2
and4 are equal, which is never true:

a=2; b=4,

if (a==h)
X=y+Z;
else
X=y-z;
® After constant propagation, the code contains these optimized
instructions:

a=2; b=4;

if (0)
X=y+z;
else
X=Yy-Z;
* Dead-code elimination further reduces the instruction sequence by
removing the test and unreachable “then” part, leaving:
a=2; b=4,
X=y-Z,
® A conditional branch instruction for which the condition is found to
always be true is changed to an unconditional branch. For example, this
program fragment branchestip if 2 is less than or equal # which
is always true:

Before After

mov 2, g2

mov 4, g3

cmpi g2, g3

ble L1

addi g4, g5, g6

b L2
L1:

subi 04, g5, g6 subi g4, g5, g6
L2: L2:

12-7

1960 Processor Compiler User’'s Guide

12-8

A load operation from a memory location found to contain a constant
value is replaced by a copy of the constant value into the destination
register of the original instruction. For example, the following program
fragment loads the constant vakuérom the memory locationi into

g3:

lda 5, g2
st g2, _
d _i, g3
st 03, _]j

After constant propagation, the code contains these optimized
instructions:

lda 5, g2

st g2, _

lda 5, g3

st 03, _j

Complex memory-addressing modes are sometimes reduced to less
complex addressing modes when registers that are components of a
memory reference contain constant integer values. For example, this
code fragment contains a complex memory-addressing mode in the
third instruction:

mov 2, g2

lda _i, g3

[d 10(g3)[g2*4],g4

After constant propagation, the code contains these optimized
instructions:

mov 2, g2
lda _i, g3
ld 18(g3),04

Optimization 1 2

Calls, Jumps, and Branches

For some branches or function calls, the compiler can replace the original
instructions with more efficient instructions to lower execution time or with
fewer instructions to reduce program size. Optimizations that perform such
restructuring include:

® branch optimization

® branch prediction for i960 Cx and Hx processors

® |eaf-function identification

® inline function expansion

® tail-call elimination

Branch Optimizations

Branch optimizations streamline the flow of program control by performing
the following actions:

® collapsing branch chains

® eliminating branch-to-next-line sequences

* eliminating branch-around-branch sequences

The following program fragments show branch optimizations.

® This program fragment contains a branch directly to another branch
instruction. It doesn't matter whether the branch is conditional or
unconditional. After branch optimization, the branch chain is collapsed
to a single branch.

Before After
cmpi g1, 92 cmpi gl,g2
bl L1 bl L2
.L1: .L1:

b L2 b L2

12-9

1960 Processor Compiler User’'s Guide

12-10

The final branch might be eliminated by the dead code optimization.

® This program fragment contains an unconditional branch to the label
directly following the branch. After branch optimization, the
branch-to-next-line sequence is eliminated:

Before After

b .L1 .L1:
.L1:

* In the next program fragment, an unconditional branch follows a
conditional branch. The compiler optimizes this branch sequence by
removing the unconditional branch and reversing the test on the
conditional branch.

Before After
cmpi g1, 92 cmpi g1, g2
be L1 bne L2
b.L2 .L1:

L1

Branch Prediction

The 1960 Cx and Hx processors provide a branch-prediction bit in
conditional branch instructions. If the prediction is correct, the branch takes
no cycles to execute; otherwise, the branch takes one or more cycles. For
further information on execution speed during branch prediction, refer to
thei960 Cx Microprocessor User's Manual

If not profiling, the compiler uses these heuristics to set the

branch-prediction bit:

* For backward branches (likely a loop), the compiler predicts that the
branch is taken so that the loop is executed more than once.

* For forward branches (conditional operations such athen
statements), the compiler predicts that the branch is not taken.

During profile-driven compilation, each branch's observed behavior is used
to set the prediction bit.

Optimization 1 2

Identification of Leaf Functions

The compiler identifies functions that can be called with branch-and-link
instruction sequences. The compiler then generates the correct function
prologue, epilogue, and symbol table information for the assembler. When
this function is called, the compiler generatesctie pseudo-instruction.

The linker optimizes the call to use branch-and-link instruction sequences.
A function called with branch-and-link instruction sequences does not
allocate a new stack frame, does not create a new register frame, and thus
executes faster than a function invoked wittala instruction.

Neither the compiler nor the linker can absolutely identify a function called
indirectly through a function pointer as a leaf function. Therefore, the
compiler does not optimize such indirectly called functions to
branch-and-link instruction sequences.

For an explanation of the two entry points generated for leaf procedures, see
thei960 Processor Assembler User's Guatal the960 Processor
Software Utilities User's Guide

Inline Function Expansion

Using calls to a function within a program usually takes less space but
requires longer execution time than repeating the function body each time it
is needed. Inline function expansion replaces a function call with the called
function body expanded in place. The inlining optimization increases speed
by eliminating call overhead and creates opportunities for further
optimization.

The compiler provides user-controllable inlining using pragriee,

and with the__inline storage class. Additionally, at ic960 optimization
level 2, or gcc960 optimization level 3, the compiler performs more
automatic procedure inlining, based on heuristics.

12-11

1960 Processor Compiler User’'s Guide

12-12

In the following example, thewvap function switches two numbers. The
source text contains a function call:
void swap(x,y) /* function body */

int *x, *y;

{

int temp;

temp = *X; *x = *y; *y = temp;

}

main()

{

if (a > b) swap(&a, &b); /* function call */
printf("The smaller number is %d\n",a);

After inline function expansion, the function body replaces the call:
main()

{

if (a > b)
{
int temp;
temp = a; a=b; b =temp;

printf("The smaller number is %d\n",a);

}...

Tail-call Elimination

When a call directly precedes a return from a function, optimization can
sometimes replace the call with an unconditional branch to the called
function. This replacement saves execution time since a branch executes
faster than a call.

Optimization 1 2

For example, the following algorithm for Ackermann's function uses tail
calls:

/* Ackermann's function with tail recursion */
int ack(int m,int n)
{
if (m==0)
return n+1;
else
if (n ==0)
return ack(m-1,1);
else
return ack(m-1,ack(m,n-1));
}

Tail-call recursion elimination produces the following:
/* Ackermann's function with tail recursion eliminated

*/
int ack(int m,int n)
{
label:
if (m == 0)
return n+1;
else
if (n==0)
{
n=1,;
m--;
goto label;
}
else
n = ack(m,n-1);
m--;
goto label;
}
}

Here is C code to illustrate a simple tail recursion.
print_bool (int v)

{
if (v==0)

12-13

1960 Processor Compiler User’'s Guide

12-14

printf ("FALSE");
else
printf ("TRUE");
return;
}

Here is the generated assembly code.
cmpibne0,g0,L4

Ida LCO0,g0

b _printf
L4:

Ida LC1,g0

b _printf

Loop Optimizations

Movement of Loop-invariant Code

Loops are the bodies dé, while , andfor statements. The loop-invariant
code optimization identifies computations that do not change within a loop
(loop-invariant code) and moves them to a point before the entry to the loop.

Induction Variable Elimination

Loops that traverse arrays occur in many programs. To compute the address
for references in these arrays the compiler must multiply the array subscript
by the size of an array element.

Multiplication is a time-consuming operation. To generate faster code, the
compiler can sometimes replace the multiply operation with an add
operation.

These methods improve the performance of the code whenever a value
computed in a loop is a linear function of a loop iteration variable. Indexing
arrays is the most common case.

Optimization

Loop Unrolling

When the number of times a loop executes can be determined either at
compile time, or prior to executing the loop at run time, then this
optimization may be performed. Loop unrolling involves duplicating the
body of a loop 1 or more times, and changing the loop conditions so that the
same number of executions of the loop body occur. This optimization is
chosen based on many factors. Two such factors are the size of the loop
body and the complexity of the loop termination condition.

Memory Optimizations

Global Alias Analysis

The compiler gathers information about the interaction between loads and
stores in the program. With this information, the compiler can remove some
of the redundant load-store operations. Assignments into an array are one
applicable case.

Two names are aliases when they both reference the same memory location.
Without tracing the relationships of values and names, the compiler must
treat any value stored through a pointer, called an indirect store, as if it
affected any memory location.

Variable Shadowing

The compiler may place a memory object in a register throughout a
single-entry, single-exit region (such as a loop) when it can determine that
the following are all true:

®* There are no references to memory within the region that could overlap
the candidate memory object.

®* The address of the candidate is a compile-time constant, or it is
constant throughout the single-entry, single-exit region and a reference
to the object's address is guaranteed to happen at least once whenever
the code for the region is executed.

® There are no calls within the region.

12-15

1960 Processor Compiler User’'s Guide

12-16

In the following example, global migration cauge® be loaded once at the
beginning of the loop and stored once at the exit point.
static int*p;
while (*p =107
p++;

Without this optimization, the program loads and stpreace for each
iteration of the loop.

Register Use

The compiler can use registers to speed up data access. Register
optimizations are as follows:

® |ocal variable promotion
® register management
® register spilling

Local Variable Promotion

The compiler promotes a local variable to a register location when the
variable's address is not taken and its storage claswisor register

Local variables stay in their register location through the life of the function.
Optimization leveD suppresses local variable promotion and assigns all
variables withauto storage class to stack locations.

Register Management

The register allocator phase of the compiler assigns all register operands to
the physical registers. For the KB/SB processors, the physical registers
available for assignment include the four floating-point registers. For all
1960 processors, the physical general-purpose registers available for
assignment includes throughrl5 , g0 throughg11, andg13. You must

specify the compiler option for position-independent data (gccoGts

or mpid-safe option or ic960’SGpd or Gpr option) to makey12

unavailable for assignment. Due to the standard calling convendibhss

not available for register-operand assignment.

Optimization

Register Spilling

Portions of the compiler that run before register allocation can produce code
that needs more physical registers than are available in the processor. The
register allocator must fit each function's arbitrarily large burden of register
demands into the physical registers implemented in the hardware. To
allocate available registers, the compiler must reuse each physical register
many times.

When the physical registers cannot meet the demands of a particular
function, the register allocator must insert a sequence of instructions, known
as spill code, to transfer long-lived values from some of the registers in
order to free the registers for more immediate demands.

Instruction Selection and Sequencing

In addition to other optimizations, the compiler can reduce or eliminate
instructions that have become redundant or useless. The compiler can also
eliminate less efficient instructions or replace them with instruction
sequences and addressing modes that take advantage of i960 processor
features. These instruction optimizations include:

® code compression
® code scheduling
® gpecialized instruction selection

Code Compression

The 1960 architecture provides complex addressing-mode instructions that
enable denser code generation. By default, the compiler tries to pick
addressing modes to maximize run-time performance, generally using a mix
of complex and simple addressing modes. You can control this optimization
with #pragma compress , as described in Chapter 7, “C Language
Implementation”.

12-17

1960 Processor Compiler User’'s Guide

12-18

Code Scheduling

In code scheduling, the compiler modifies the sequence of instructions to
increase parallel execution. Although the effect of the code does not change,
code scheduling can often improve code performance.

Since different members of the i960 family of processors provide varying
levels of hardware parallelism, the compiler orders the instructions
differently according to the specific processor for which code is being
generated.

For example, on the i960 KA, KB, SA, and SB processors, the execution of
a memory operation can overlap the execution of an arithmetic instruction,
provided the memory operation occurs in the instruction stream first. The
following code computes the expresglon3) + ¢ with these instructions:

Id _b,r4

muli r4, 13, r4

ld _c,r5

addi r5, r4, r4

To optimize this computation, the compiler moves the instruction that
fetches the value af ahead of the multiply instruction:

Id b, r4

ld _c,r5

muli r4, 13, r4

addi r5, r4, r4

When this rearranged code executes, part of the instrudtien r5

executes in parallel with the multiplication. The instructibrb, r4 also
executes partly in parallel with the instructidn c, r5

The same sort of rearrangement can improve performance on the CA and
CF processors, but more parallelism is possible because the CA and CF can
issue multiple instructions at one time and can execute more instruction
categories in parallel than the KA or KB.

For example, on the CA and CF processors, the compiler can also substitute
one instruction for another that has the same effect but executes in a
different internal unit of the processor. The most common examples of such
substitution are conversionsmbv instructions tdda instructions, and

vice versa.

Optimization 1 2

Specialized-instruction Selection

A number of i960 processor instructions can help optimize code in special
situations. The special code sequences recognized by the compiler, and the
replacements used are as follows:

®* A bitwiseor instruction for which one of the operands is a constant
with value2”, for somen, can becomeetbit

* A bitwiseand instruction for which one of the operands is a constant
with value~(2 ™), for somen, can becomelrbit

The 1960 processor has a complete set of bitwise-boolean instructions. The
compiler takes advantage of this in translating expressions involving
bitwise-boolean operations in which the operands or the results are negated.
For example, the operations in the expressian& b) become a single

nand instruction. Similarly(a | ~b) can use anrnot instruction.

Multiplication of an integer or unsigned integer by a constant power of 2
becomes a left-shift operation. Similarly, division of an integer or unsigned
integer by a constant that is a power of 2 becomes a right-shift operation.

Program-level Optimization

After program development is complete, it is possible to use the compiler's
profile-driven optimizations to achieve the highest level of program
optimization, based on the program's execution-time profile.

Inter-module Function Inlining

Given program profile data describing the typical behavior of the program,
the compiler knows what functions the program calls, from which call sites,
and how many times calls are made. Intelligent decisions can be made about
which functions to inline at which specific call sites. If a function is called
from multiple sites, it is better to inline the function at frequently executed
call sites. The inlining decisions are made by the gcdm960 program during
the profiling decision-making step. After the decisions have been made, the
compiler performs the inlining during profile-driven recompilation.

12-19

1960 Processor Compiler User’'s Guide

Superblock Formation

A superblock is a group of basic blocks that tend to execute in sequence (a
path) and can be entered only from their initial block. A superblock loop is a
superblock whose first block is the header of a loop, and for which
execution flow out of the last block usually goes to the first block. In other
words, a superblock loop is a heavily iterated loop where a single path
through the loop is taken quite frequently.

These concepts are illustrated in Figure 12-1.:

Figure 12-1 Superblock Formation Process

104

Trace ABD Superblock ABD Superblock Loop ABD

0SD1635

The left diagram shows that patfidBOD is heavily traveled and would

thus be detected as a superblock candidate. To form a superblock from this
candidate, it is necessary to remove the @at@®CThis is done as shown in

the middle diagram. Block D is duplicated, and block C is altered to flow to
D'. The dashed arc from block B to block D indicates that it is likely that
these two blocks will be merged into a single block. This merging increases

12-20

Optimization 1 2

the scope of the local optimizer and of the scheduler, optimizations that
work on a single block at a time. The superblock loop containing only
blocks A, B, and D is formed in the diagram on the right. An empty header
block, H, has been created, and the original single loop in the middle
diagram now becomes two loops, a nested superblock loop headed by A,
and an outer loop headed by H.

The fundamental advantage that superblock formation yields is the removal
of data dependencies. In the diagram on the left, any data modifications in
block C must be considered when optimizing the loop. These modifications
often have a negative effect, inhibiting the classic loop optimizations. For
example, if block C contains a procedure call, it appears to modify all
memory variables. Optimizations involving memory references are
inhibited in this case. In the diagram on the right, data modifications in
block C do not effect loop optimizations in the superblock loop ABD.

Profile-based Branch-prediction Bit Setting

Without program profile data, the compiler uses a fixed rule for setting the
branch-prediction bits for the processor.

With program profile data, the branch-prediction bits are set based on that
profile data. This setting is better for a given program.

12-21

12

1960 Processor Compiler User’'s Guide

12-22

Optimizing Virtual Function Dispatch

class A

{
public:

Generally, invoking a virtual function is more expensive than invoking a
non-virtual function in C++. Also, other function related optimizations

such as inlining cannot be performed on virtual functions. In many
situations, the call to the virtual function can be replaced by a direct call to
a member function, and if possible it can be inlined at the call site. This
improves the runtime performance of the code. Consider the following
program segment:

virtual void f(int i)
{ printf("Function A::f called with %d\n,i");}

}*a;

class B : public A

{
public:

virtual void f(int i)
{ printf("Function B::f called with %d\n",i);}

} B;

main()

a = &B;
a->f(10);

The virtual function calb->f() always resolves at run time to the
function B::f . The virtual function optimization phase of the compiler not
only resolves this at compile time, it also inlilee$s into the function

main . This improves the runtime performance.

This optimization is not enabled by default. It is performed only if invoked
with the appropriate switches. The two-pass framework is needed for this
optimization.

Optimization

This optimization will not work correctly if

The C++ code is not type safe. Suppose that you have a class D that
is derived from class B, then the code is not type safe if a pointer to an
object of type B is used as a pointer to an object of type D.

If a C++ object that has a virtual function associated with it is used, or
created in either C or assembly code.

A C++ file that is a part of the application is not included in the
two-pass optimization scheme, or if the two-pass optimization is
performed incrementally.

12-23

Caveats

This chapter provides useful programming tips on:
e “Aliasing Assumptions”

e “Alignment Assumptions”

* “Volatile Objects”

* “Known Problems Using the Compiler”

® “C Version Incompatibilities”

®* “Troubleshooting”

Aliasing Assumptions

Some compiler optimizations (for exampf€hadow-mem) use type
information as the basis for several assumptions. These assumptions
exclude some pairs of memory references as possible alias candidates.

If your program violates these assumptions, the compiler may generate code
that does not function as you intended.

Here are the rules the compiler uses:

character (i.eghar , unsigned char , signed char) Ivalues
can access all objects, regardless of type.

ordinal (e.g.int , short ,long , enum) Ivalues can access only
ordinal objects of the same size (regardless of sign) or
character objects.

real (e.g.float ,double ,long double) Ivalues can
access only real objects of the same size, or character
objects.

pointer Ivalues can access only objects of pointer type

(regardless of the types pointed to) or character objects.

13-1

1960 Processor Compiler User’'s Guide

13-2

structure Ivalues can access only the objects that can be accessed
by the members of the structuresouct objects of
the same size, or character objects.

union Ivalues can access only the objects that can be accessed
by the members of the union, or union objects of the
same size, or character objects.

These rules are not as strict as those allowed by the relevant portion of the
ANSI standard (section 3.3), but they are still aggressive enough to cause
some problems with code developed for some compilers.

Thefint-alias-ptr , fint-alias-real , andfint-alias-short
compiler options relax these restrictions. See Chapter 2, “gcc960 Compiler
Driver” and Chapter 3, “ic960 Compiler Driver” for more information.

To make use of the higher optimization levels, you should examine your
code carefully and ensure that these rules are not violated.
Consider this code fragment:

double *pg, *pr, *ps;

int* pi, *pj;

*pqg = *pr;

*pi = *pj;

*ps = *pr,;
The compiler might conclude that the valuemf is unaffected by the
assignment topi , because double objects cannot legally be referenced by
int Ivalues.

It might then use this conclusion to rewrite the above code as follows:
register double t = *pr;
PA=t
“pi = *pj;
*ps =t

Caveats

This is fine as long api really doesn'’t overlappr , but if your program
does something like:
double d;
pi = (int *) &d;
pr = &d,;
before it executes the second fragment, the wrong value would get stored in
*ps .

Alignment Assumptions

The compiler sometimes uses pointer type information when deciding
whether or not memory references are properly aligned for some
optimizations.

Thus, the compiler assumes that all pointer expressions are aligned as their
pointed-to types would indicate. For examg{éouble *) e) is treated
as an assertion that the low 3 bitedre0.

The compiler also infers more stringent alignment for individual variables
than would be indicated by their types alone, since it assumes that the
allocation is aligned according to the compiler's rules.

So, if your program defines global variables in assembly code that are
referenced by C routines, or if it has its own memory managgy (

malloc), the allocations must be aligned according to the compiler's rules
or unaligned references may result.

13-3

1960 Processor Compiler User’'s Guide

Here is an example of how these assumptions are used:
#include <string.h>
struct {
int s1;
int s2;
int s3;
}*s; ¥ (1) *sis assumed to be 16 byte aligned */
extern char mybuf[23];
/* (2) mybuf is assumed to be 16 byte aligned */
memcpy (mybuf, s, sizeof (*s));

The compiler would generate:
Idt (s), r
stt r, mybuf

in lieu of the call tanemcpy, the memory references would be unaligned
should the assumptions mentioned above prove false.

Volatile Objects

The compiler aggressively attempts to remove redundant memory
references (both loads and stores), and it attempts function inlining across
multiple .c files. If your program expects actual memory references to be
made at certain points in the program, you must make those references
volatile. Volatile objects are guaranteed to be updated at certain sequence
points in the program (e.g., between semicol&s&s|| , ?: , and before

calls).

13-4

Caveats 1 3

Volatile objects are also presumed to have been changed in unknowable
ways between such points.

Here is an example of a program that fails because of a memory reference
that needs to be made volatile:

fiddle.c:
#define MY_PORT *((int *) 0x10000)

int read_my_port ()
{ return MY_PORT;

}
faddle.c:

while (read_my_port() == 0)
/* do nothing */;
ok_go_do_something ();
This program is incorrect, but it functions as intended when compiled with
compilers that do not attempt inlining acrossfiles.
When these two files are compiled with global inlining, the compiler
translates the program to:
(1) while (MY_PORT == 0)
/* do nothing */;
ok_go_do_something ();
And, sinceMY_PORTappears to be loop invariant (because it isn't volatile),
we then get:
(2) t=MY_PORT;
while (t == 0)

which loops forever if the first value read fraox1000 isO.

All that is needed here is to makey PORWolatile, as follows:
#define MY_PORT *((volatile int *) 0x10000)

This suppresses (2), B&_PORTmust be considered to have changed
between iterations of the loop.

13-5

1 3 1960 Processor Compiler User’'s Guide

Known Problems Using the Compiler

Here are some of the things that have caused trouble for people using the
compiler.

Type Promotion

Users often think it is a bug when the compiler reports an error for code like
this:
int foo (short);
int foo (x)

short x;
{-}
The error message is correct: this code really is erroneous, because the
old-style non-prototype definition passes subword integers in their
promoted types. In other words, the argument is realiytannot ashort .
The correct prototype is this:

int foo (int);

Prototype Scope

Users often think it is a bug when the compiler reports an error for code like
this:

int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)

{...}

This code really is erroneous, because the scope sfrtite mumble
prototype is limited to the argument list containing it. It does not refer to the
struct mumble defined with file scope immediately below — they are two
unrelated types with similar names in different scopes.

But in the definition ofoo , the file-scope type is used because that is
available to be inherited. Thus, the definition and the prototype do not
match, and you get an error.

13-6

Caveats

longjmp and Volatile Data

If you uselongjmp , beware of automatic variables. ANSI C says that
automatic variables that are not declareidtile have undefined values
after alongjmp . And this is all the compiler promises to do, because it is
very difficult to restore register variables correctly, and one of the compiler's
features is that it can put variables in registers without being asked.

Incorrect debug information generated for arrays with
unspecified bounds.

Consider the following example

int arrf];
The compiler generates debug information for the above declaration as if
arr were an array of 1 integer. As a result, when you plgge arr in

gdb960 the type ddrr is displayed at [1]

C Version Incompatibilities

There are several noteworthy incompatibilities between Intel C for the
80960 architecture and some (non-ANSI) versions of C.

String Constants Read-only

The compiler normally makes string constants read-only. If several
identical-looking string constants are used, the compiler stores only one
copy of the string.

If this is a problem for your application, the best solution is to change the
program to usehar -array variables with initialization strings for these
purposes instead of string constants. But if this is not possible, you can use
thefwritable-strings flag, which directs the compiler to handle string
constants the same way most C compilerstdualitional also has this
effect, among others.

13-7

1960 Processor Compiler User’'s Guide

13-8

No Macro Argument Substitution in Strings

The compiler does not substitute macro arguments when they appear inside
of string constants. For example, the following macro:

#define foo(a) "a"

produces output” regardless of what the argumenis.

Theftraditional option directs the compiler to handle such cases
(among others) in the old-fashioned (non-ANSI) fashion.

External Variables and Functions in Blocks

Declarations of external variables and functions within a block apply only
to the block containing the declaration. In other words, they have the same
scope as any other declaration in the same place.

In some other C compilers, artern declaration affects all the rest of the
file even if it happens within a block.

Theftraditional option directs the compiler to treat eXtern
declarations as global, like traditional compilers.

Combining long with typedef Names

In traditional C, you can combiteng , etc., with a typedef name, as shown
here:

typedef int foo;

typedef long foo bar;

In ANSI C, this is not allowedong and other type modifiers require an
explicitint . Because this criterion is expressed by grammar rules rather
than C codeftraditional cannot alter it.

Using typedef Names in Function Parameters

Some C compilers allow typedef names to be used as function parameters.
Because this criterion is expressed by grammar rules rather than C code,
ftraditional cannot alter it.

Caveats 1 3

Whitespace in Compound Assignment Operators

Some C compilers allow whitespace in the middle of compound assignment
operators such as=. The CTOOLS960 and GNU/960 compiler, following

the ANSI standard, does not allow this. Because this criterion is expressed
by grammar rules rather than C coftieditional cannot alter it.

Flagging Unterminated Character Constants

The compiler flags unterminated character constants inside of preprocessor
conditionals that fail. Some programs have English comments enclosed in
conditionals that are guaranteed to fail; if these comments contain
apostrophes, the compiler will probably report an error. For example, this
code produces an error:

#if O

You can’t expect this to work.

#endif

The best solution to such a problem is to put the text into an actual C
comment delimited by...*/ . However ftraditional suppresses

these error messages.

Disguised varargs or stdarg Routines

Disguisedvarargs routines (those that do not usegargs.h or
stdarg.h but that increment through a pointer assigned from the address
of an argument) do not work.

13-9

13

1960 Processor Compiler User’'s Guide

Troubleshooting

13-10

Undefined References

When trying to compile a prograra user may get error messages similar to
the following:

crt960.0: undefined reference to ‘heap_size’
crt960.0: undefined reference to *_setac’

crt960.0: undefined reference to *__LL_init’
_filbuf.c:47: (_filbuf): undefined reference to ‘_read’
exit.c:31: (_exit_init): undefined reference to
‘__exit_create’

exit.c:39: (exit): undefined reference to *__exit_ptr’
fflush.c:38: (fflush): undefined reference to *_write’
_flsbuf.c:105: (_flsbuf): undefined reference to ‘_write’
fclose.c:43: (fclose): undefined reference to ‘_close’
malloc.c:82: (malloc): undefined reference to *_sbrk’
malloc.c:60: (malloc): undefined reference to *_brk’

Problem:

When invoked withgcc960 -ACA -o filename filename .c , the
compilation system tries to construct a b.out format executable file, fully
linked. A fully linked file implies a C-runtime startup file and several
runtime libraries. If the proper library list (in the proper order) is not added
to the invocation command, the error messages listed above may result.

Solution:

The preferred method of creating fully linked executables is to use the target
configuration files, e.ggcc960 -o filename filename .c -Targ.The

-T arg option instructs the compiler to parse the file

$G960BASE/lib/ arg .gld , which contains definitions for the i960
architecture flag, C-runtime filename, library lists, and section load
addresses. Target configuration files are supplied for all the 1960 processor
evaluation boards, and adding your own description file is as easy as
renaming and modifying an existing description file. Do not confuse
gcc960'sT option with ic960’s and gld960:F option.

Caveats 1 3

C Interrupt Service Routine Failures

An application that uses interrupts extensively may have hand-built
assembler wrappers for each interrupt type, with each wrapper calling
specific C interrupt service routines. Some of the C interrupt service
routines may fail in mysterious ways, often in an operation fault.

Problem:

The C function calling convention requires that the i960 processor register
gl4 contain the value zero for all functions that take fewer than 14 words of
parameters and are non-leaf procedures. Because of this, for most functions,
the compiler assumed 4 to contain zero, and uses that register as a zero
constant. If your application happens to be interrupted gtithcontaining

a non-zero value, then your C interrupt service routine is calledgadth
containing a non-zero, but used as a zero constant.

Solution:

When calling any C function from assembly source, alwaysgzergrior

to the function call. Also, be sure to save all global registers prior to calling
your C function, and restore those registers prior to returning from the
interrupted state.

Preventing Structure Padding

You may be using an i960 processor to communicate with another
processor. The communication involves passing structures between the two
processors. The Intel compiler pads the structures, but the compiler for your
other processor does not, causing passed structure members to contain
incorrect values. It is necessary to prevent the Intel compiler from padding
your structures and unions.

13-11

1960 Processor Compiler User’'s Guide

13-12

Problem:

The Intel compiler uses fairly strict data-type alignment rules, which take
advantage of the i960 processor features supporting memory references.
This increases the performance of programs running on the i960 processor,
but makes it more difficult to interface through structs/unions to other
processor types or to read binary data from a file.

Solution:

gcc960's#pragma-align lets you control the compiler's alignment rules
for aggregate data types on a per-definition basis, and therefore control the
padding added to the end of structures and unions.

In this case#pragma-align 1 could be added to your code before the
structure definition to remove trailing structure pads and properly match
structure membergpragma-align 0 could then be added after the
structure definition to return to normal alignment rules, thereby reducing its
impact on the performance of the entire program.

However#pragma-align has limitations. Although it can be used to
restrict the padding of aggregate data types (and arrays of those types) it
does not change the alignment rules for individual structure members. For
information on alignment rules for structure members, see the discussion of
pragma pack in Chapter 7, “C Language Implementation”.

Consider the following example:
struct test {

char first;
int second;
short third;

2

If you compiled the above structure without modification, the structure size
would be 16 bytes. If you defingdagma align 1 before the structure
definition, the structure size would be 12 bytes - four pad bytes removed. In
both cases, however, the position of the elements would not have changed,
with element “first” at address offset zero, element “second” at address
offset 4, and element “third” at address offset 8. This element placement
effectively creates three pad bytes between the first and second structure
elements.

Caveats 1 3

To work around the limitations of intra-structure padding, consider the case
where the above structure must be read in from a binary file written by a
processor/tool pair that inserted zero (intra-struct) pad bytes.

The following code demonstrates one way to perform that function:

#include <unalign.h>

/* The following structure is what gcc960 compiles.

* The buffer, when filled, contains the same

* structure in packed format - all pad bytes removed. */

struct test {
char first;
int second;
short third;
} 960_struct;
unsigned char packed[7];
/* sum of 960_struct element sizes */

/* Read binary data from a file and copy into a
* structure that has different alignment rules. */
main()
{

int fdesc;

unsigned char *ptr;

/* Assume file opened and ready for reading...
* Then read one struct’s worth of bytes. */
if (read(fdesc, packed, 7) '=7) {

/* Handle read error. */

}
/* Fill up structure. Done. */
ptr = packed;

960_struct.first = *(char *)ptr;

ptr += sizeof(960_struct.first);

960_struct.second = GET_UNALIGNED(ptr,int);
[* *(int *)ptr; */

ptr += sizeof(960_struct.second);

960_struct.third = GET_UNALIGNED(ptr,short);
[* *(short *)ptr; */

13-13

1960 Processor Compiler User’'s Guide

13-14

Although the code shown above is expensive in terms of performance, using
#pragma align also has a significant performance penalty. To get the best
performance, use the default alignment rules and use pragmas only where
absolutely necessary. See the discussions of gcgd@@isa align and
pragma pack in Chapter 7, “C Language Implementation” for a detailed
discussion of alignment.

Breakpoints Inside Interrupt Handlers

If your application uses interrupts extensively, when debugging interrupt
handlers with gdb960, breakpoints set inside the handlers may not work and
may result in operation faults.

Problem:

When the i960 processor invokes an interrupt handler, it first disables
tracing by saving, then clearing, the state of the trace-enable bit and the
trace-fault-pending flag. On return from the interrupt handler, the processor
restores the process-controls register to its state prior to the interrupt. This
restores the state of the trace-enable bit and the trace-fault-pending flag;
therefore, standard interrupt handlers cannot contain breakpoints.

Solution:

To set breakpoints inside an interrupt handler, you can modify that handler,
probably in the assembler wrapper, adding code to change the state of the
trace-enable bit.

Messages

This chapter describes the diagnostic messages that the compiler produces
when invoked with the ic960 driver, or with the gcc960 driver and the
ffancy-errors option. (Invoking the compiler withc960 -Jgd

produces the corresponding gcc960-style message format and output.)

On UNIX systems, the compiler displays error messages, along with the
erroneous source line, on the standard error device. In Windows systems,
messages appear on the standard output device. HOwWeS&IERR is

defined, messages appear on the standard error device. To display or
suppress warning messages, usent{igiagnostic-level) compiler option.
Additionally, theh (Help),v (Verbose), ant (Version) options display

more information about the compiler, assembler, and linker invocations and
about the host system.

Diagnostic messages provide syntactic and semantic information about
source text. Syntactic information can include, for example, syntax errors
and use of non-ANSI C. Semantic information includes, for example,
unreachable code. If a source listing is requested, the compiler puts
diagnostic messages in the program listing, as well as displaying them to the
standard error device.

14-1

1960 Processor Compiler User’'s Guide

Several levels of diagnostic messages can occur:

Command-line
diagnostics

Warning messages

Error messages

Catastrophic error
messages

Internal error
messages

14-2

report improper command-line options or
arguments.

report legal but questionable use of C. The
compiler displays some warnings by default. To
suppress all warning messages, set the
diagnostic level t@. To enable all warning
messages, set the diagnostic levél.to
Warnings do not stop translation and linking,
nor do they interfere with any output files.

report syntactic or semantic misuse of C. The
compiler always displays error messages.
Errors do not stop translation but do suppress
object code for the module containing the error.
Errors also prevent linking.

report occurrences of therror macro,
unrecognized command-line options, and file
input/output errors. Catastrophic error
conditions stop translation and linking. If a
catastrophic error ends compilation, the
compiler displays a termination message on the
standard error device.

If a compilation produces any internal errors,
contact Customer Support.

Messages 1 I

Messages on the Standard Error Device

Command-line messages appear on the standard error device in this form:

ic960 [ERROR | WARNING] message
Other diagnostic messages appear on the standard error device in this form:
source-line

diagnostic-pointer
diagnostic-message

source-line is the line containing the error being reported.
diagnostic- is a caretX) located below the beginning of the
pointer token that the diagnostic refers to.

diagnostic- has this form:

message

ic960 level filename , line Inn , -- message

level is the type of diagnostic messag¢ARNING,

ERROR, CATASTROPHIC ERROR, or
INTERNAL ERROR

filename names the source file currently being processed.
Inn is the line number, if available, where the
compilation system detects the condition.
message explains the diagnostic.
The source-line anddiagnostic-pointer may be absent for those

messages that are not associated with any particular source code line.

The diagnostic-pointer may be absent when theurce-line is
present if the precise column for the error is not available.

14-3

1 I 1960 Processor Compiler User’'s Guide

Messages in the Listing File

In a source listing, diagnostic lines follow the erroneous source lines. The
diagnostic lines in a source listing have this form:
>>>>> source-line

>>>>> djagnostic-pointer
>>>>> djagnostic-message

source-line is the line containing the error being
reported.

diagnostic-pointer is a caretX) located below the beginning
of the token that the diagnostic refers to.

diagnostic-message has this form:

ic960 level filename , line Inn |, -- message

level is the type of diagnostic message:

WARNING, ERROR, CATASTROPHIC
ERRORoOr INTERNAL ERROR

filename names the source file currently being
processed.
Inn is the line number, if available, where the
compilation system detects the condition.
message explains the diagnostic.
The source-line anddiagnostic-pointer may be absent for those

messages that are not associated with any particular source code line.

The diagnostic-pointer may be absent when theurce-line is
present if the precise column for the error is not available.

14-4

Messages 1 I

If source-line is shown, and the error being reported starts and ends on
that line, the filename and line number does not appear in the diagnostic
message. This is an example of a listing file containing diagnostic
messages:

ic960 5.0, Tue Nov 9 08:45:17 PST 1995 "ex_err.c"

Include Line
Level Number Source-lines

0*

O OO oOo

1 #include "ex_err.h"
>>>>> struct foo bar {

>>>>>
>>>>> jc960 ERROR: "ex_err.h", line 2 -- syntax error before '{’

main ()
{

struct foo bar;

2
3
4
5
6 bar.x=3;

>>>>> bar.x=3;
>>>>> N A
>>>>> jc960 ERROR: invalid use of undefined type 'struct foo'

7}

14-5

Glossary

arithmetic control (AC) For processors with on-chip floating-point support, the

register register that contains the floating-point exception flags,
floating-point exception masks, and rounding-mode bits.
For processors without on-chip floating-point support,
the AC register is implemented as a predefined variable
(fpem_CA_ACQ).

basic block An assembly language sequence of code that has one
entry point and one exit point.

calling convention The rules that specify the use of registers and the stack
for parameter passing and return values in function calls.

command-option file DOS command-line file, containing command-line
options, input filenames, and comments, to be specified
on the command line.

common subexpression Avoid recomputing an expression if the compiler can

elimination (CSE) reuse a previously computed value of the same
expression.

conditional compilation Compiling only part of the source code, depending on the
preprocessor's evaluation of conditions you specify.

constant folding Deducing at compile time that the value of an expression
is a constant and using the constant in place of the
expression.

constant propagation Replacing use of variables known to have a constant

value with the constant value.

Glossary-1

1960 Compiler User’s Guide

dead function

execution environment

floating-point registers

gcdm960

global registers

gmpf960

inline assembly
language

inline function
expansion

instruction set

instrument

instrumented program

interrupt handler

leaf function

A function which cannot be referenced during the profile
recompilation step. If a function has been in-lined at all
known call sites, or if the function is never referenced,
then the function is dead.

The hardware and software of the system on which your
program executes.

Registefig0 throughfp3 , available on processors with
on-chip floating-point support.

The decision-making tool that analyzes profile data to
make optimization decisions.

Registegd throughgl5.

The utility that merges execution profiles for use by
gcdm960.

Assembly-language statements or functions in the C
source text.

Replacing a function call with the instructions that
comprise the function, rather than calling the function.

The set of all possible executable instructions.

Insert new code into an existing program so that
execution data is recorded at runtime.

A program that has had record keeping code inserted to
allow creation of a run-time profile of the program's
execution.

A function to be called when an interrupt occurs.

A function that is called with a branch-and-link
instruction sequence.

Glossary

macro

object module

padding

preprocessor file

primary source file

primary source text

profile-based

profile data

static profile data

An identifier that the preprocessor replaces with C source
text that you specify.

The formatted object code resulting from compilation
and assembly.

Interleaving unused bytes between struct/union members
and at the tail of structs/unions to ensure that struct/union
members are properly aligned.

A text file generated by the compiler, containing the
intermediate source code after macro expansion, file
inclusion, and conditional compilation.

A file that contains C source text, has éilename
extension, and is specified as an input file on the
command line.

The contents of the primary source file, without any text
from include files.

Optimizations that depend on profile information
gathered by execution of an instrumented program. The
term is interchangeable with profile-driven.

Both static and dynamic program level data.

Information that the compiler derives at compile time
about the program (e.g., which functions are defined in a
module, which functions are called from within a specific
function, which variables are defined in a module, which
variables have had their addresses used).

Glossary-3

1960 Compiler User’s Guide

strength reduction

tail call

unreachable code

Glossary-4

An optimization that substitutes expensive operations
such as multiplications with low-cost operations such as
addition or subtraction. Strength reduction also
eliminates unnecessary induction variables. For example,
consider the following C code fragment:

int v, a[10], j, t4, t5;
do {

i=i-1

t4=4*];

t5 = a[t4];

} while (t5>v);

Note that the values pfandt4 remain in lock-step;
every time the value gf decreases by 1, that @f

A call that immediately precedes the return to the calling
function.

Code that can never execute because the flow-of-control
bypasses it.

Index

A

aliasing rules, 13-1

alignment
assumptions, 13-3
long double, 7-4
padding, 7-6
scalars, 7-4
structures, 7-5, 7-8

architecture macros, and compatibility, 9-2
asm function, argument category, 7-81

B

backslash (character), 1-6
branch prediction, 12-21

C

¢ (Create-object) ic960 option, 3-58
char parameters, 9-1

char types, 9-2

character constants, unterminated, 13-9
clist (Listing) gcc960 option, 2-23
compatibility, 1-2

compilation phases, 3-13

conventions, Windows and UNIX, 1-6
Create-object (c) ic960 option, 3-58
customer service, 1-6

D

data types, aggregates, listed, 7-5
Debug (g) ic960 option, 3-44
Dependencies (Q) ic960 option, 3-58
Diagnostic-level (w) ic960 option, 3-69
dryrun control (gcdm option), 6-8

E

E (Preprocess - stdout) ic960 option, 3-58
enum variable byte size, 9-1

environment variables, 3-8
for gcc960 interface, table of, 2-9

Errata (j) ic960 option, 3-50
external reference controls (gcdm option), 6-7
external variables and functions in blocks, 13-8

F

f[no-Jaccess-control gcc960 option, 2-28
f[no-Jasm gcc960 option, 2-28

f[no-]bbr gcc960 option, 2-28

f[no-]bbr ic960 option, 3-32
f[no-]Jcoalesce gcc960 option, 2-28
f[no-Jcoalesce ic960 option, 3-32
f[no-]Jcoerce gcc960 option, 2-28
f[no-Jcoerce ic960 option, 3-32
f[no-Jcond-mismatch gcc960 option, 2-29
f[no-Jcond-mismatch ic960 option, 3-32

Index-1

1960 Compiler User's Manual

Index-2

f[no-Jcondxform gcc960 option, 2-29
f[no-Jcondxform ic960 option, 3-33
f[no-]Jconserve-space gcc960 option, 2-29
F[no-]Jconserve-space ic960 option, 3-33
f[no-Jconstprop gcc960 option, 2-29
f[no-Jconstprop ic960 option, 3-33
f[no-]Jcopyprop gcc960 option, 2-29
f[no-]Jcopyprop ic960 option, 3-33
f[no-]cse-follow-jumps gcc960 option, 2-30
f[no-]cse-follow-jumps ic960 option, 3-33
f[no-]cse-skip-blocks gcc960 option, 2-30
f[no-]cse-skip-blocks ic960 option, 3-33
f[no-]dollars-in-identifiers gcc960 option, 2-30
F[no-]dollars-in-identifiers ic960 option, 3-33
f[no-Jenum-int-equiz gcc960 option, 2-32
F[no-Jenum-int-equiz ic960 option, 3-33

F[no-]save-memoized ic960 option, 3-36
f[no-]sblock gcc960 option, 2-33
f[no-]sblock ic960 option, 3-36
f[no-]schedule-insns gcc960 option, 2-34
f[no-]schedule-insns ic960 option, 3-36
f[no-]schedule-insns2 gcc960 option, 2-34
f[no-]schedule-insns2 ic960 option, 3-36
f[no-]shadow-globals gcc960 option, 2-34
f[no-]shadow-globals ic960 option, 3-36
f[no-Jshadow-mem gcc960 option, 2-35
f[no-Jshadow-mem ic960 option, 3-36
f[no-]signed-char gcc960 option, 2-33
f[no-]space-opt gcc960 option, 2-35
f[no-]space-opt ic960 option, 3-36
f[no-]split_mem gcc960 option, 2-35
f[no-]split_mem ic960 option, 3-36

f[no-]Jexpensive-optimizations gcc960 option, 2-30 f[no-]strength-reduce gcc960 option, 2-36

f[no-]Jexpensive-optimizations ic960 option, 3-33
f[no-]fancy-errors gcc960 option, 2-30
f[no-]float-store gcc960 option, 2-30
f[no-]float-store ic960 option, 3-33
f[no-Jforce-addr gcc960 option, 2-30
f[no-]force-addr ic960 option, 3-34
f[no-]huge-objects gcc960 option, 2-32
F[no-]huge-objects ic960 option, 3-34
f[no-]inline-functions gcc960 option, 2-31
f[no-]keep-inline-functions gcc960 option, 2-33
f[no-]keep-inline-functions ic960 option, 3-35
f[no-Jmarry_mem gcc960 option, 2-33
f[no-Jmarry_mem ic960 option, 3-36
fl[no-Jmemoize-lookups gcc960 option, 2-33
F[no-Jmemoize-lookups ic960 option, 3-36
f[no-]Jmix-asm gcc960 option, 2-33
f[no-Jrerun-cse-after-loop gcc960 option, 2-33
f[no-Jrerun-cse-after-loop ic960 option, 3-36
f[no-]save-memoized gcc960 option, 2-33

f[no-]strength-reduce ic960 option, 3-36
f[no-]strict-prototype gcc960 option, 2-35
F[no-]strict-prototype ic960 option, 3-36
f[no-]this-is-variable gcc960 option, 2-35
f[no-Jthread-jumps gcc960 option, 2-36
f[no-Jthread-jumps ic960 option, 3-36
f[no-Junroll-all-loops gcc960 option, 2-36
f[no-Junroll-all-loops ic960 option, 3-36
f[no-Junroll-loops gcc960 option, 2-37
f[no-Junroll-loops ic960 option, 3-37
f[no-Junsigned-char gcc960 option, 2-36
f[no-Jvolatile gcc960 option, 2-37
f[no-]volatile ic960 option, 3-37
f[no-]volatile-global gcc960 option, 2-38
f[no-]volatile-global ic960 option, 3-37
f[no-]writable-strings gcc960 option, 2-38
f[no-]writable-strings ic960 option, 3-37
fast memory controls (gcdm option), 6-8
fint-alias-ptr gcc960 option, 2-31

Index

fint-alias-ptr ic960 option, 3-34
fint-alias-real gcc960 option, 2-31
fint-alias-real ic960 option, 3-34
fint-alias-short gcc960 option, 2-31
fint-alias-short ic960 option, 3-35
fsyntax-only gcc960 option, 2-36

G

g (Debug) ic960 option, 3-44

G (Generate) ic960 option, 3-37

gcdm (Decision Maker) gcc960/ic960 option, 6-1

Generate (G) ic960 option, 3-37

gld files, described, 2-13

gmpf960 profile merger, 5-1

gmpf960 profile merger invocation command and
options, 5-2

__GNUC__ macro, 2-57

H-J

hyphen (-) character, 1-6

inline level control (gcdm option), 6-7
input profile control (gcdm option), 6-7
j (Errata) ic960 option, 3-50

J (Miscellaneous) ic960 option, 3-50

L

linker, options, 3-5

linker directive files, sample, 2-14
Listing (clist) gcc960 option, 2-23
longjmp and volatile data, 13-7

M

M (Mix) ic960 option, 3-51

m[no-]Jcmpbr gcc960 option, 2-46
m[no-]code-align gcc960 option, 2-46
m[no]leaf-procedures gcc960 option, 2-49
m[no-]strict-align gcc960 option, 2-50
mabi gcc960 option, 2-45

macro argument substitution in strings, 13-8
macros, predefined, 2-7, 3-6
masm-compat gcc960 option, 2-45
mcave gcc960 option, 2-46

mcore0-3 gcc960 option, 2-47

mdouble4 gcc960 option, 2-47

merging profile data using gmpf960, 5-1
messages, controlling, 3-69

mi960_align gcc960 option, 2-48
mic2.0-compat gcc960 option, 2-48, 9-3
mic3.0-compat gcc960 option, 2-48, 9-3
mic-compat gcc960 option, 2-48
Miscellaneous (J) ic960 option, 3-50

Mix (M) ic960 option, 3-51

mlong-calls gcc960 option, 2-49
mlong-double4 gcc960 option, 2-47
module-set specification (gcdm option), 6-13
mpic gcc960 option, 2-49

mpid gcc960 option, 2-49

mpid-safe gcc960 option, 2-49

msoft-float gcc960 option, 2-50
mstrict-ref-def gcc960 option, 2-50

mwait gcc960 option, 2-51

N

n (Syntax-check) ic960 option, 3-58

Index-3

1960 Compiler User's Manual

Index-4

O

optimization, overview, 4-1
options, linker, 3-5
output files, 2-11, 3-13

P

P (Preprocess - file) ic960 option, 3-58
pragma align, 9-2

pragma i960_align, 9-2

predefined macros, 2-7, 3-6

Preprocess - file (P) ic960 option, 3-58
Preprocess - stdout (E) ic960 option, 3-58
profile format specification, 5-4

profile merger utility, 5-1

profiling, 4-1

program-wide optimization, 4-1

QR

Q (Dependencies) ic960 option, 3-58
report controls (gcdm option), 6-9

S

S (Save-assembly) ic960 option, 3-58
Save-assembly (S) ic960 option, 3-58

scalars, data types, 7-2

short parameters, 9-1

slash (/) character, 1-6

__STDC__ macro, 2-57

Stop-after (n, Q, P, E, S, ¢) ic960 options, 3-58
__STRICT_ANSI__ macro, 2-57

string constants, read-only, 13-7
Syntax-check (n) ic960 option, 3-58

T-V

two-pass optimization, 4-1

unaligned references, preventing, 13-3
UNIX conventions, 1-6

varargs routines, disguised, 13-9
volatile objects, 13-4

w

w (Diagnostic-level) ic960 option, 3-69
WI[no-]overloaded-virtual ic960 option, 3-67
WI[no-]Jreorder ic960 option, 3-68
Waggregate-return gcc960 option, 2-60
Wcast-align gcc960 option, 2-60
Wecast-qual gcc960 option, 2-61
Wchar-subscripts gcc960 option, 2-61
Wcomment gcc960 option, 2-61
Wconversion gcc960 option, 2-61
Werror gcc960 option, 2-61
Wformat gcc960 option, 2-61
whitespace in compound assignment operators,
13-9
Wid-clash-len gcc960 option, 2-61
Wimplicit gcc960 option, 2-61
Windows conventions, 1-6
Wmissing-braces gcc960 option, 2-62
Wmissing-prototypes gcc960 option, 2-62
Whnested-externs gcc960 option, 2-62
work files, 3-12
Woverloaded-virtual gcc960 option, 2-62
Whparentheses gcc960 option, 2-62
Whpointer-arith gcc960 option, 2-62
Wredundant-decls gcc960 option, 2-63
Wreorder gcc960 option, 2-63
Wreturn-type gcc960 option, 2-63

Index

Wshadow gcc960 option, 2-63
Wstrict-prototypes gcc960 option, 2-63
Wswitch gcc960 option, 2-63
Witraditional gcc960 option, 2-64

Witrigraphs gcc960 option, 2-64
Wauninitialized gcc960 option, 2-64, 2-65
Wunused gcc960 option, 2-65
Wwrite-strings gcc960 option, 2-66

Index-5

	i960® Processor Compiler User's Manual
	Disclaimer
	Contents
	1 The CTOOLS Compilation System
	New Features
	Features of the Compilation System

	Compatibility and Conformance to Standards
	About this Manual
	Audience Description
	Licensing and Copyrights
	UNIX and Windows Conventions

	Customer Service
	Where Do You Go From Here?

	2 gcc960 Compiler Driver
	Controlling the Compilation System with gcc960
	Invoking the Compiler with gcc960
	gcc960 Sample Command Lines
	gcc960 Linker Options
	gcc960 and Predefined Macros

	gcc960 and Environment Variables
	gcc960 and File Use
	Input Files
	Include Files
	Output Files

	gld Files
	gcc960 Options
	Option Arguments and Syntax

	3 ic960 Compiler Driver
	Controlling the Compilation System with ic960
	Invoking the Compiler with ic960
	ic960 Sample Command Lines
	ic960 Linker Options
	ic960 and Predefined Macros
	ic960 and Environment Variables

	ic960 and File Use
	Input Files
	Include Files
	Temporary Files
	Output Files

	ic960 Options
	Option Arguments and Syntax

	4 Program-wide Analysis and Optimization
	Introduction
	Individual and Program-wide Optimizations
	About Profiling

	Creating Program-wide and Module-local Optimizations
	Specifying the Program Database Directory
	Compiling for Program-wide Optimization with the fdb Option
	Global Decision Making and Optimization Using the gcdm Option
	Selecting Modules for Optimization with Substitution Specifications

	Profiling Your Program
	Compiling for Profile Instrumentation with -fprof
	Collecting a Profile
	Building Self-contained Profiles with gmpf960
	Using Profiles During Global Decision Making and Optimization with -gcdm,iprof
	Obtaining Program Coverage Analysis with gcov960

	Using make To Perform Program-wide Optimizations
	Adapting Makefiles for Program-wide Optimization
	Using Makefiles with Program-wide Optimizations for Common Development Tasks

	Runtime Support for Profile Collection
	Profile Initialization

	5 Profile Data Merging and Data Format (gmpf960)
	Merging Profile Data
	gmpf960 Invocation
	Discussion
	Example

	Profile Format Specification
	Profile Data Structures
	default.pf File Format
	Example

	Creating a Runtime Report with gmpf960

	6 gcdm Decision Maker Option
	gcdm Option Syntax
	gcdm Option Arguments
	Substitution Controls
	Whole-program Optimization Option (Category 1)
	Module-local Optimization Options (Category 2)
	Miscellaneous Substitution Options (Category 3)
	External Reference Controls
	Inline Level Control
	Input Profile Control
	Fast Memory Controls
	Dryrun Control
	Report Controls

	Module-set Specification

	7 C Language Implementation
	Data Representation
	Scalars
	Aggregates
	Other Type Keywords

	Calling Conventions
	Definitions
	Parameter Assignment to Registers
	Argument Blocks
	Return Values
	Compiler Implementation

	Object Module Section Use
	Pragmas
	#pragma align [for gcc960 driver]
	#pragma align [for ic960, or for gcc960 with ic960 option]
	#pragma cave
	#pragma compress
	#pragma i960_align [for gcc960 and ic960]
	#pragma inline
	#pragma interrupt
	#pragma isr
	#pragma optimize
	#pragma pack
	#pragma pure
	#pragma section
	#pragma system

	Language Extensions
	Statements and Declarations Inside of Expressions
	Naming an Expression•s Type
	Referring to a Type with typeof
	Generalized Lvalues
	Conditional Expressions with Omitted Middle Operands
	Arrays of Length Zero
	Non-lvalue Arrays Can Have Subscripts
	Arithmetic on Pointers to void and Pointers to Functions
	Non-constant Initializers
	Constructor Expressions
	Declaring Attributes of Functions
	Inquiring about Alignment
	Inline Functions Are as Fast as Macros
	Controlling Names Used in Assembly Code
	Specifying Registers for Local Variables
	Alternate Keywords

	Inline Assembly Language
	Introduction
	Resource Usage
	asm Statements
	asm Functions

	8 C++ Language Implementation
	Data Representation
	Calling Conventions
	Pragmas
	Specifying a Tag-Name with align, noalign, or i960_align
	Specifying a Function Name with a Pragma

	Link Time Considerations
	Calling C Functions from C++
	Calling C++ Functions from C
	asm Statements and asm Functions

	Unimplemented C++ Language Features
	Exception Handling
	Run Time Type Information(RTTI)
	Namespaces

	C++ Template Implementation
	Limitations for Function and Class Templates
	Limitations for Function Templates
	Limitations for Class Templates
	Debugging Information for Templates

	9 gcc960/ic960 Compatibility
	char and short Parameters
	enum Variable Byte Count
	char Types
	Identifying Architectures
	#pragma align
	mic3.0-compat Option
	mic2.0-compat Option

	10 Position Independence and Reentrancy
	Position-independent Code and Data
	Position-independent Data
	Position-independent Code
	Position-independent ROM Code
	Guidelines for Writing Relocatable Programs

	Reentrant Functions
	Designing Reentrant Functions

	11 Initializing the Execution Environment
	Startup Code
	RAM-based Initialization
	ROM-based Initialization

	Linker Configuration Files
	RAM-based Configuration File
	ROM-based Configuration File

	12 Optimization
	Optimization Categories and Mechanisms
	Common Sub-expression Elimination
	Constant Expression Evaluation (Constant Folding)
	Dead-Code Elimination
	Identity Collapsing
	Constant Propagation

	Calls, Jumps, and Branches
	Branch Optimizations
	Branch Prediction
	Identification of Leaf Functions
	Inline Function Expansion
	Tail-call Elimination

	Loop Optimizations
	Movement of Loop-invariant Code
	Induction Variable Elimination
	Loop Unrolling

	Memory Optimizations
	Global Alias Analysis
	Variable Shadowing

	Register Use
	Local Variable Promotion
	Register Management
	Register Spilling

	Instruction Selection and Sequencing
	Code Compression
	Code Scheduling
	Specialized-instruction Selection

	Program-level Optimization
	Inter-module Function Inlining
	Superblock Formation
	Profile-based Branch-prediction Bit Setting

	Optimizing Virtual Function Dispatch

	13 Caveats
	Aliasing Assumptions
	Alignment Assumptions
	Volatile Objects
	Known Problems Using the Compiler
	Type Promotion
	Prototype Scope
	longjmp and Volatile Data
	Incorrect debug information generated for arrays with unspecified bounds

	C Version Incompatibilities
	String Constants Read-only
	No Macro Argument Substitution in Strings
	External Variables and Functions in Blocks
	Combining long with typedef Names
	Using typedef Names in Function Parameters
	Whitespace in Compound Assignment Operators
	Flagging Unterminated Character Constants
	Disguised varargs or stdarg Routines

	Troubleshooting
	Undefined References
	C Interrupt Service Routine Failures
	Preventing Structure Padding
	Breakpoints Inside Interrupt Handlers

	14 Messages
	Messages on the Standard Error Device
	Messages in the Listing File

	Glossary
	Index

