1960 Processor

Assembler User's Guide

Order Number: 485276-006

Revision

-001
-002
-003
-004
-005
-006

Revision History

Original Issue.
Minor corrections.

Revised for CTOOLS960 R4.5 and GNU/960 Tools R2.4.

Revised for Release 5.0.
Revised for Release 5.1.
Revised for Release 6.0.

Date
12/92
09/93
05/94
02/96
01/97
12/97

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Literature Distribution Center
Intel Corporation

PO Box 5937

Denver, CO 80217-9808

Or you can call the following toll-free number:
1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel
sales office.

Information in this document is provided in connection with Intel products. No license, express or implied, by

estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's
Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express
or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for

a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's Software License Agreement, or in the case of software delivered
to the government, in accordance with the software license agreement as defined in FAR 52.227-7013.

Copyright a 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim
copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above
conditions for modified versions.

* Other brands and names are the property of their respective owners.

Oy,
&

recycled paper Copyright 1992 - 1994, 1996, 1997. Intel Corporation. All rights reserved.

Contents

Chapter 1 Overview

What's New in the Assembler for CTOOLS 6.0 1-1
960U Processor Assembler and Related Tools.................. 1-1
Compatibility and Standards..............cccccceeeiieiieieeeiieeeeeeiis 1-2
About This Manual.............ccoeeiiiiiiiieei e 1-3

Target AUdIENCE..........uvviiiiiie e, 1-3

CONVENLIONS ... e 1-3
CUSIOMET SEIVICE ..uviiiiiiiieeeeeee e 1-5

Chapter 2 Writing Assembly Language Code
for the 1960 Rx Processor

INEFOAUCTION ...coiiiiiiiiiiiiice e 2-1
What is the “RX Strategy?”ccovviiireriicee e, 2-1
How Do | Use the Rx Strategy?coovvvvivvvvceeiiieeeenn, 2-1
How Do | Use the Jx-Specific Strategy?...........ccovvevnnnes 2-2
How Do | Decide Which Strategy to Use?.........ccc......... 2-2
Writing Assembly Code With the Rx Strategy 2-3
Writing Assembly Code Without the Rx Strategy........... 2-4

Details of the RX Strategycovvvvviceiiiiieeiieeeeeeee 2-4
80960 Instruction Set SUPPOIt..........evvveveeiiiiieeeeeiieeniinnns 2-4
Big-Endian SUPPOIt.........ccoeiiiiieicee e 2-7
b.out OMF SUPPOIt.......cceeiiiiieeee e 2-7

80960 Assembly Language Converter (xlate960) 2-8

Improved Assembler Pseudo-instruction Support............... 2-8

(e To 1813 1T] o [P 2-8

1960 Processor Assembler User's Guide

Chapter 3 Invoking the Assembler

Invocation Command............ooovvviiiiiiiiieiee e 3-1
Specifying Option ArgumentScceeeeeveeveeeeviiiiiceeeenn. 3-2
Specifying Single and Multiple Options..........ccccccvvvvvneee. 3-2
Using Uppercase and LOWEICase........cccceeeveeeeeeeeeeeeennn. 3-3
Naming the Object File.............ouviiiiiiiii e, 3-4
Providing Source INpUt.........c.vvviiiiiiiieeiiiie e, 3-5

Environment Variables..........cccuvvviii 3-6
Selecting the Instruction Set and Libraries 3-7
Defining a Base Directory Pathccccceeeieiiiinnnnn, 3-8
Defining an Identification String...........ccccceeeeeeviiiineeeennn. 3-8
Redirecting Error and Warning Message Output........... 3-8
Building a Search Path for Include Files...........ccccccc...... 3-8
Building the Search Path for the Assembler

Executable ..o 3-9
Chapter 4 Option Reference

Az AICNITECIUNE i, 4-3

D: Define symbol...........oooiiii e 4-4

d: Debug SYMDOIScuiiiiiiiiiieee e 4-6

G: Big-endian target..........ooeevviiiiiiiiiii e 4-7

I: Include-file search path.........c...ooooviiiiiiiiiiic e, 4-8

i: INpUt from StdiNcooiiiiee e 4-9

L: Generate a listing..........uvviiieiiieeeiieeeeee e, 4-10

n: No compare-and-branch replacement..............cccccc.oe. 4-16

0: Object filename.........cccoveeiiiiiiiicc e, 4-17

p: Position independence.............couvviiieiiiiieeeeeecceeen 4-18

U TranSIate ..., 4-19

V, VOB0: VEISION vttt 4-20

W2 WaAININGS .. 4-21

Contents

Chapter 5

Chapter 6
Chapter 7

X: Allow mixed architeCturescccoccvvvviieiiniiiiiiiiee s 4-21
Z: TIME SEAMP e e e e e e eaaees 4-23
Directives
SYNTAX it 5-2
Specifying the INPULcccocii e 5-3
Controlling the Location COUNtEr............ccoeeeeiiiiiiiiiiiiiis 5-3
Setting the Location Counter to a Specific Value........... 5-3
Moving the Location Counter to a Section..................... 5-4
INItIAliZING DAtuuumiiiiiiiiiiiiiiiiii e 5-5
Initializing Byte, Ordinal, and Integer Data 5-6
Initializing Floating-point Datacccccvvvviiieiiiieeeeeenn. 5-6
Initializing String Data...........cccvvviiiiiiieiiiieeee 5-6
Initializing Blocks of MEMOIY..........ccooviiiiiiiiiiiiiieeeeeeee 5-7
Defining SYMDOIS.........uuiiiiiiiiiiiiiiiii e 5-7
Providing Debugger Informationccccccvviiiiiiiiiennnnnn. 5-8
OPMIZING. ... 5-9
Marking Position Independence...........ccccvveeeeeeiiiiiiiiiiinns 5-10
Controlling the LiStingcccuvviiiiiiiiiiiiceeeeeeeeeee 5-10
Directives REferenCeccccuvvuveiiiiiiiiiiieiiieieieeeeeeeeeeeeeee 5-10
Messages
Assembly Language
Assembly Language Statement Format................oceeeeeeee 7-1
Character Setcccooiiii 7-2
Tokens and SeparatorsS..........ccooovvvviiiiieieiceceee 7-3
1ENtIfIErS ..o 7-3
CONSTANES ... 7-3
Simple CoNnstants ... 7-3
Representing Floating-Point Numbers.............ccccceveee. 7-4
Character Constantscooooiiiiiiiiiiseeee s 7-5

String CoNStaNtS........oooeeeie 7-6

1960 Processor Assembler User's Guide

LADRIS ..t 7-6
Name (Global) Labelscccooooviiiiiiiiiicie e, 7-7
Numeric (Local) Labelscccoooveeieiiiiiiiiieeee e, 7-7

EXPreSSIONS ...ovveiiiiieee e 7-7
(O] o1=T =1 (0] £ 7-8
EXPression TYPES......ccuuviiiiiiiieeeeeeeeeee e 7-10
Type Propagation in EXpressions...........c..vvvvvveveeeeenennn. 7-13

COMMENTS ..ottt 7-14

Summary of Core INStructions..........ccceeeevviieeeeeiiieeeiiiiinnn. 7-15
Data MOVEMENT........coiiiiiiieiieie e 7-15

LOA .. 7-16
SHOME e 7-16
MOVt 7-17
SEIECE i, 7-17
Ordinal and Integer ArithmetiC..............cceevvvvvveiiivinnnnnn. 7-18
Basic Arithmetic.......cccoco, 7-18
Extended ArithmeticC...........ccooeeiiiiiiiiiie 7-19
Conditional ArithmetiC...........cccoociiiviiiiiiiiieeeee 7-19
Remainder and Modulocccccoeeeiiiie 7-21
Shift and ROtate............uuuvvviviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee 7-21
[T [o | 7-22
Bit, Bit Field, BYte.......c..uviiiiiiieeeeieeeeee e, 7-24
Bit OperationS.........ccovvvviiiiiiiiii e 7-24
Bit Field Operationsccccoovvieeeeeiiieeiiicee e 7-25
Byte OPerationscoovveviviiiiiiii e e e e e 7-25
COMPATISON....ciiiieiieeeeee e e 7-25
Compare and Conditional Compare...........cccceeeeennnn.. 7-26
Compare and Increment or Decrement..................... 7-27

Vi

Contents

BrancCh ... 7-27
Unconditional Branch.............c.oooociiiiiiiiiiiiiiieeeee 7-28
Conditional Branchccccccoiiiiie 7-28
Compare and Branchcccooeeeeiiiiiiieeiiiiiieeeen, 7-29

Calland Return ... 7-30

FauUIt...ooo 7-31

DEDUQG ... 7-32

Processor Management.........oceuveeveeveviiiiieeeeeieceeeeeennnnnn 7-32

Synchronous (K-series only)veeeiiiieieeeeeeveeeiiinns 7-34

ATOIMIC ..ottt 7-35

Summary of On-chip Numerics Instructions....................... 7-35

Data MOVMENT.......coiiiiiiiii e 7-35

SIgN COPYING..evuiiiiieeiiiiieee e e e e e e eeaaaanes 7-37

Data Type CONVErSION............cevvvvuiiiiiiieeeeeeeeeeeeeiiiiin 7-37

Basic Arithmeticuvviiiiiiiiiiiiiiiiiii e 7-38

DECIMAL.....ciiiiiiiiiiiiiiie 7-39

Comparison and Classification............ccccceeeeeeiiiiieeeeennn. 7-40

Trigonometric FUNCLIONS.......cccoooiieieeiiiieeee 7-41

Logarithmic, Exponential, and Scaleccc.... 7-42

Chapter 8 Pseudo-instructions
SYNTAX ettt 8-1
Branch Pseudo-inStruCtionSccoooeeeiiiiiieiiiiiiiiee e 8-2
Migration-enabling Pseudo-instructionscccceeeeenn. 8-2
Conditional Faults Pseudo-instructionsccceeveeeeeeeies 8-4
Load Pseudo-inStructionsccceeeiieeeeeiieiieeeiiiiieeeee e 8-4
Call Pseudo-inStrucCtionsccooviviveeiiiiiiiiieee e 8-4
Compare-and-jump Pseudo-inStructions..............ccccceeeeenn. 8-4
Pseudo-instructions Reference.............ccceeeeiiiiiieeeeiieeeeenns 8-7

vii

1960 Processor Assembler User's Guide

viii

Chapter 9 Example Programs

Glossary
Index
Examples

Figures

Examples Using the Core Instruction Set..............ooeeeeeee. 9-1
Enable and Count Interrupts From 8259A 9-2
Send an IAC t0 the ProCeSSOruvvveviiiiiiiiieeeieaeeeenn, 9-8
Perform a BitBIt Operationcccovvvvviiiiiiiiie e, 9-9
Perform Matrix Multiplicationccccceeeiiiiiiiiiiiieeniinn, 9-11
ComPAare StHNGS ..oovvvviieiie e e 9-13

Examples Using Floating-point Instructions 9-14
Optimize a Numerics Application............cccoevvvvvivvinnnnnnnn. 9-14
Perform Matrix Multiplicationcceeviiiiviceennnn. 9-16

Assembly COdeooooeiiiiiicee e 9-16
C COUL ittt 9-18
Perform Basic Numerics Operationscccccoeeeeeeeennnn. 9-19
Exponentiate With an Arbitrary Exponent...................... 9-19
Convert Between Coordinate Systems...........ccccceeennn. 9-20
Retrieve Fault Record Pointerccccvvvveiiiiiiiiieennnnn, 9-21

7-1 Example of Constants and Literal Values.................. 7-5

7-2 Forward-reference External Symbol in Expressions.. 7-8

7-3 Example of Register Usage.........cccuvvveeeeieeiiiiiiieneeennn. 7-13

9-1 IAC Message SIrUCTUIreovvevveviiieeieeiice e 9-8

9-2 Stack For Fault Handler ..., 9-21

Contents

Tables

2-1
3-1
4-1
4-2
5-1
7-1
7-2
7-3

7-5
7-6
7-7

7-9
7-10
7-11
8-1
8-2
8-3
8-4
8-7

8-9

New Assembler Pseudo-OpsS.........ccceeeeeevviiieveieeiinnns 2-9
Assembler Environment Variablesccccccccveeenn. 3-7
Assembler OptioNS...........uuvveiiiiieiiiiiieee e, 4-1
COREO-3 Architecture Compatibilities 4-4
Functions Performed by Directivesccccceeeeeennn.. 5-1
Assembly Language Character Set..........ccccccvvvvnneee 7-2
Prefixes for Floating-point Constants....................... 7-4
Floating-point Literals................iiviiiiiiiiiiieeeeeeceeee, 7-5
Character ConstantS..........cccuvvviiiiieiiiiiieeeee e 7-6
EXpression Operatorscccevvvvvveeeevivvviviiiieee e eee e 7-9
Operator PrecedencCe..........uuueeeeeeeiiiieeeeeeieeseeeeiiiiiinnns 7-9
Predefined Register Symbols.............cccccovvvvvviiiinnnnnn. 7-12
Unary Operationccoovvuvviiiiiiiiie e 7-23
Binary OperationScoovvvieveviiiiiiiiee e eeeeee e 7-23
Binary Operations Continued...........cccooeveieeeeeiininennns 7-23
Supported Processor Management Instructions 7-33
Branch Real Pseudo-instructions...............cccvvvveeeeen. 8-2
New Assembler Pseudo-Instructionscc...e.... 8-3
Compare-and-jump Pseudo-instructions................... 8-6
Breakpoint Resource Status Word Bits...................... 8-10
Compare and Jump Substitutionsccccceeeeeeeenn, 8-18
Data Cache Status Word BitScccceevvieeinniinnnnnne 8-20
Instruction Cache Status Word Bits.............cccevvveeeen. 8-24

Overview

This chapter of th®©60~ ProcessoiAssemblet)ser's Guidentroduces
you to the 1960 processor assembler and to this manual.

This chapter describes:
* new features in the assembler
* using the assembler with other 1960 processor software tools

* the standards and conventions used by the assembler and in this
manual

» the trademarks and copyrights pertaining to this manual

What's New in the Assembler for CTOOLS 6.0

This release features enhanced support for developing assembly language
code for the Intel i960 Rx processor. This includes:

* Writing assembly language code for the i960 Rx processor.

* xlate960, 80960 assembly language translator

* Improved pseudo-instruction support for gas960/asm960

See Chapter 2 for information on these topics.

19600 Processor Assembler and Related Tools

The 1960 processor assembler is part of a complete set of software and
hardware tools for developing embedded applications for the 1960
processors. Use ic960 or gcc960, the i960 processor assembler, and the
1960 processor software utilities to translate, link, and format source text
into executable or PROM-programmable code. You can write assembly
source text directly in a text editor or compile a C/C++ program to produce
assembly output. To create object files, you can assemble your source text

11

1960 Processor Assembler User's Guide

or the assembly output from the C/C++ compiler. Disassembled text from
the dumper is for debugging only and cannot be reassembled. For more
information on how the software tools work together, see the Getting
Started manual.

Compatibility and Standards

The assembler described in this manual supports the i960 Sx, Kx, Cx, Jx,
Hx, and Rx processors.

The assembler accepts output from Release 3.0 and later of the
CTOOLS960 compiler and from Release 1.2 and later of the GNU/960
compiler.

You can specify the assembler object file output format as either

common object file format (COFF), b.out or ELF format. The output

format depends on the assembler invocation command, as shown:

» For b.out format, invoke the assembler withdghe960 command.

» For COFF format, invoke the assembler withgh€960c or asm960
command.

» For ELF format, invoke the assembler with #ae960e command.

For backwards compatibility with your existing script or batch files, the

directory structures and search paths used by the assembler depend on the

invocation name, as shown:

» For behavior similar to the GNU/960 (Release 1.2 or later) assembler,
invoke the assembler witas960 , gas960c , Or gas960e .

* For behavior similar to the CTOOLS960 (Release 3.5) assembler,
invoke the assembler witism960.

Note that when you invoke the assemblesisa®60 you can generate the
COFF output format only.

Overview

About This Manual

This manual, théd60 Processor Assembler User's Guigepart of the
1960 processor software development tools manual setG&éag
Started with the 1960 Processor Software Development Tardslist of
all manuals in the i960 processor development tools library.

Thei960 Processor Assembler User's Guptevides operating
instructions for the assembler. This manual does not teach development
techniques.

Target Audience

To use the assembler effectively, you must be familiar with the 1960
architecture and the development process.

This manual does not provide detailed information about the target

processor. The processor manuals listgddtting Started with the 1960

Processor Software Development Tamsitain information such as:

» adescription of the i960 architecture

» the processor theory of operation and descriptions of the on-chip
devices

« information about low-level programming for particular processors

For additional information about these topics, order the relevant

publications listed ifGetting Started with the 1960 Processor Software
Development Tools

Conventions

In addition to the standard typographical conventions listed on the front
inside cover, this manual uses the following notation and format
conventions.

Case is significant for directives, functions, options, and option arguments.
On UNIX*, case is also significant for invocation names and filenames.

1960 Processor Assembler User's Guide

1-4

Arguments and operands are in italics. The operand names indicate the
function of the operands (for exampl&sname |, expr).

Directive and pseudo-instruction operands use the following notation:

addr represents an address.

align represents an exponent of 2, used as an alignment
factor.

data represents ordinal, integer, or floating-point data;
the format of the data depends on the instruction
or directive.

int represents a positive integer.

name represents a symbol or label.

size represents an integer, used as a size factor.

string represents a sequence of ASCII characters.

expr indicates an expression.

Special characters, delimiters, and other punctuation used with the
operands, such as quotation marks and commas, are explicitly shown.

Notation for registers is one or more letters indicating the kind of register
and a number betwe®rand15, as follows:

global register a registgo throughg14, andip .
local register a registefp , sp, rip , andr3 throughris .

special function register a register available only on the 1960 Cx and
Hx processorssio-sf2 (Cx) and
sfo-sf4 (HX).

floating-point register a register available only with on-chip floating-
point support:fpo , fp1 , fp2 , andfp3 .

For more information on the registers, see the processor manuals listed in
Getting Started with the i960 Processor Software Development. Tools

Overview

Target expressiongatg) representing a memory address are assembled as
a signed displacement value representing an IP-relative address:

Format Displacement Target (targ)
COBR -210: 2109 -212: 212.4 from IP
CTRL -221: 2211 -228: 2234 from IP

For convenience in cross-referencing material, the notation used in the
reference sections follows that of the processor manuals lis@ettimg
Started with the 1960 Processor Software Development Tools

Customer Service

If you need service or assistance, Getting Started with the i960
Processor Software Development Tools

1-5

Writing Assembly Language Code
for the 1960 Rx Processor

Introduction

This chapter provides information on designing assembly language code
for use with the i960 Rx family of microprocessors, including the RP and
RD processors. It describes the two possible paths to follow in designing
assembly-language solutions for i960 Rx processors. The first of these
paths is the “Rx Strategy”, designed to ease transition to i960 Rx
processors beyond the RP and RD. The other path is the “Jx-Specific
Strategy”, designed specifically for Rx processors that are based on the
1960 Jx core (such as the RP and RD) and providing maximum low-level
processor control.

What is the “Rx Strategy?”

The “Rx Strategy” refers to a set of CTOOLS enhancements implemented
to help you move from existing i960 RP and RD processors to possible
future implementations of the i960 Rx family. CTOOLS added the new
-ARP and-ARD architecture switches, which allow only those
instructions that are most likely to be supported on future 1960 Rx
processor offerings. In addition, CTOOLS provides enhancements that
have no effect on today’s 1960 Rx processors, but that may be used on
future processors.

How Do | Use the Rx Strategy?

Using the Rx strategy is as simple as specifyingARe or-ARD option
when invoking the CTOOLS utilities. (You can also set#ihe0ARCH
or $G960ARCH environment variables ®P orRrD.)

2-1

1960 Processor Assembler User's Guide

2-2

How Do | Use the Jx-Specific Strategy?

If you decide not to follow the Rx strategy, use-thi= architecture

option when creating code for use with i960 RP and RD processors. For
information on specific differences between thke x switches and the

-AJF switch, please sdeetails of the “Rx Strategy” For help deciding if

the Rx strategy is the best choice for your application, please read the next
section.

How Do | Decide Which Strategy to Use?

Use these questions to help you decide which of the two development

paths you should follow:

* How important is backward-compatibility with other i960 core
processors (e.g., KA, CF, JF)™ you have legacy code that you wish
to use with the 1960 Rx processors, you may want to usathe
switch. Doing so gives you the most flexibility in terms of available
instructions and addressing modes.

* How important is forward-compatibility with future i960 processors?

If you wish to minimize the effort involved in moving to future Rx
processors, you should use the Rx strategy.

* Will you be writing my applications from scratctWthen writing new
applications, follow the Rx strategy when possible. Tests have shown
that there is seldom a significant performance or code size penalty, and
you may actually see an improvement in either area.

* How much low-level processor access do you ndégdu need
access to low-level processor resources such as the PC (Process
Control) or TC (Trace Control) registers beyond that provided in the
updated assembler pseudo-instructions lfggeoved Assembler
Pseudo-instruction Support for gas960/asm9§6u cannot use the
Rx strategy.

Based on your answers to the questions above, you should now be able to
decide which path to follow: the Rx strategy or the Jx-specific strategy.
After you make your decision, read the corresponding section below for
specific tips on making the most of your programming environment. |If

Writing Assembly Language Code for the 1960 Rx Processor

you choose to follow the Rx strategy, please Maiding Assembly Code
With the Rx Strategylf you choose to follow the Jx-specific strategy,
please reatiVriting Assembly Code Without the Rx Strategy

Writing Assembly Code With the Rx Strategy

To take advantage of CTOOLS enhancements supporting the Rx strategy,
simply use the Rx architecture switches (eARP , -ARD) for all

applicable CTOOLS applications. You can also set the $I1960ARCH or
$G960ARCH environment variablesr@ orRD. If you are migrating

code written for other i960 core processors (e.g., KA, CF, HA), you can
use xlate960, the 80960 translation utility as a starting point for your
migration. The translator generates Rx-compatible code sequences to
replace instructions and addressing modes that appear in the JF processor
but not the Rx strategy. Sekate960, 80960 Assembly Language
Translatorfor information on using this application.

If you need to use some of the JF-specific features not supported in the Rx
strategy, such as disabling interrupts, cache control, or atomic accesses,
you can use the new assembler pseudo-instructions. The primary benefit
of using these instructions is that they should not require modification
when assembled for future 1960 Rx processors. Information on these new
pseudo-instructions is availablelmproved Assembler Pseudo-instruction
Support for gas960/asm96RMote that if you use any of the new i960
processor pseudo-instructions you are required to re-assemble your source
before running it on i960 Rx processors that are not based on the 1960 JF
core. This is because the instruction sequence generated for the new
pseudo-instructions is not guaranteed to be compatible with future Rx
processors.

Finally, specific information on the architectural implications of-&rp
and-ARD switches are ietails of the Rx Strategy

2-3

1960 Processor Assembler User's Guide

2-4

Writing Assembly Code Without the Rx Strategy

To write code that is designed for i960 JF-based Rx processors only, use
the JF architecture switchagF) for all CTOOLS that require you to

specify an architecture. (You can also se$the@0ARCH oOr $G960ARCH
environment variables tor .) You can still simplify future migration

efforts by staying within the boundaries of th&P switch whenever
possible. SeBetails of the Rx Stratedgr information on the

requirements.

For low-level processor functionality such as disabling interrupts, cache
control, or atomic accesses you may wish to use the new assembler
pseudo-instructions detailedlimproved Pseudo-instruction Support for
gas960/asm960This, too, may ease future migration without excluding
use of JF-specific constructs.

Details of the Rx Strategy

80960 Instruction Set Support

The implementation of th&Rx architecture options have been redefined
in CTOOLS to represent a subset of the i960 Jx processor instruction set
chosen for performance and future compatibility reasons. These
restrictions are enforced by the assembler and other tools wheRxan
switch is used or when an i960 Rx architecture is specified using the
I960ARCH Or G960ARCHenvironment variables.

Writing Assembly Language Code for the 1960 Rx Processor

The following 1960 Jx processor instructions are not supported with the
1960 Rx architectures:

addi halt remo
addi<cc> intctl shli

atadd Idt shrdi
atmod mark spanbit
cmpdeci modac stib
cmpdeco modi stis
cmpinci modify stt
cmpinco modtc subi
concmpi movl subi<cc>
concmpo mov(q sysctl
eshro movt test<cc>
extract notor xnor
fault<cc> remi

In addition, the following addressing mode restrictions exist for MEM

format instructions when specifying an i960 Rx processor-based target:

* Indexed addressing modes are not available.

» |P-relative addressing is not available.

+ Two-word MEM-format is not available for the following instructions:

Idl

stl

Idq

stq

bx

callx

e Thebalx instruction may only use register-indirect addressing (no
offsets or displacements allowed).

N |

2-5

1960 Processor Assembler User's Guide

2-6

Other consequences of using the 80960Rx output architectures are:

Thecalls instruction may use register g13 or a literal as its target
only.

For themodpc instruction, the mask cannot specify the same register as
the src/dst register.

The Process Controls register is undefined in the Rx architecture, so
use of themodpc instruction is not recommended.

Thescanbit instruction is not guaranteed to set the condition code.
The following instruction sequence duplicates the functionality of the
scanbit instruction and is guaranteed to set the condition code:

scanbit srcl,dst

notbit 31,dst,dst
chkbit 31,dst,dst
notbit 31,dst,dst

Thecallix pseudo-instruction requires a second argument, a
temporary register into which the address of the first argument can be
loaded.

The assembler recognizesi4 , calls , andcalll2 instructions.

These instructions are identical to the traditiaraéil instruction

except that the two low-order (reserved) bits of the instruction word
are set as shown:

Instruction Bit 1 Bit 0
call4 0 1
calld 1 0
call12 1 1

The assembler recognizesl4j ,callgj , andcalll2j pseudo-
instructions. They are treated by the assembler identically to the

cali pseudo-op except they set the low-order bits as indicated in the
table above if they are optimized into correspondiiig |, calls , or

calll2 instructions.

Writing Assembly Language Code for the 1960 Rx Processor

In addition, a new assembler pseudo-op has been added:

b_960a label

This pseudo-op is reserved and should not be used by application software.
The assembler generates an instruction, a no-op instruction, whose
execution effectively leaves the state of the existing 80960Rx, 80960Jx,
and 80960Hx processors unchanged. It is uncertain if this pseudo-op will
continue to function in the same manner on future 80960 processors.

The assembler will generate the following no-op instruction fovaoa
label pseudo-op:

addino TARG,fp,fp
whereTARGiIS (abel -IP-4)/4 and & TARG< 15

Big-Endian Support

Big endian byte order is not supported when code is being generated for
the 1960 Rx processors.

b.out OMF Support

gas960, the b.out assembler, does not support an i960 Rx target.

2-7

2

1960 Processor Assembler User's Guide

2-8

80960 Assembly Language Converter (xlate960)

To ease the task of converting legacy assembly language code for use with
the new 1960 Rp/Rd processors, CTOOLS 6.0 includes xlate960. The
xlate960 program converts assembly language code from 80960 core
processors (e.g., 1960 Cx, Jx, and Hx processors) to its COREO (e.g.,
80960RXx) equivalent. xlate960 performs both instruction translations and
addressing-mode translations. Instruction translation occurs when the target
architecture does not support a translatable instruction from the source
architecture (e.gmovt). Addressing mode translation occurs when the
target architecture supports a restricted form of an instruction from the
source architecture (e.gallx). For more information on xlate960, see
thei960 Processor Software Utilities Manual

Improved Assembler Pseudo-instruction Support

Introduction

A number of pseudo-instructions have been added to the CTOOLS
assembler to ease migration between processors. These pseudo-ops
provide an architecture-independent method for performing some of the
more common low-level processing operations. Using these pseudo-ops
should reduce the number of changes required when moving assembly
code from one i960 processor to another. Table 2-1 lists all of the new
pseudo-instructions supported by the CTOOLS assembler. See Chapter 8
for descriptions of the new pseudo-ops and instructions on using them.

Writing Assembly Language Code for the 1960 Rx Processor

Table 2-1 New Assembler Pseudo-Ops

Instruction
atomic_add
atomic_maodify
bkpt_request
cc_read
cc_scanbit
dc_disable

dc_enable
dc_invalidate
em_read

ic_disable

ic_enable
ic_invalidate
ic_load_lock
insn_trace_mode_read
insn_trace_mode_set
interrupt_state
ip_read

pri_read

sw_reinit

trace_enable_set

Action

Atomic add

Atomic modify

Request breakpoint resources

Read condition code

Scan for bit, modifying condition code
Disable data cache

Enable data cache
Invalidate data cache

Read execution mode
Disable instruction cache
Enable instruction cache
Invalidate instruction cache
Load and lock instruction cache
Read instruction trace mode
Set instruction trace mode
Read interrupt state

Read instruction pointer
Read execution priority
Reinitialize processor

Set trace enable bit

2-9

Invoking the Assembler

This chapter discusses the assembler invocation syntax, options, input, and
output and explains how to automate assembly. You can invoke the
assembler from the operating system prompt or from a script or batch file.

Invocation Command

Invoke the assembler as follows:
asm960 | gas960 [c|e][- option ... [source ... [...]

asm960 Or gas960c invokes the assembler to generate COFF output.
The dual syntax provides backwards
compatibility with previous versions of the
iC-960 and gcc960 C compilers.

gas960 invokes the assembler to generate b.out format
output.

gas960e invokes the assembler to generate ELF format
output.

option is an invocation option (described in Chapter 4)

affecting assembler input, operation, and output.
Arguments can follow some options. Case is
significant.

Precede the options with a hyphei (In
Windows, you can use a slagl) {nstead of the
hyphen.

source is an assembly source filename. You can provide
a complete path name for each source file. The
default search path is the current directory.

3-1

1960 Processor Assembler User's Guide

3-2

You can interleave options and source filenames.

NOTES. On UNIX, case is significant for all parts of the assembler
invocation syntax. In Windows, case is significant only for the options and
option arguments.

Examples throughout this manual use a UNIX host system and the
gas960e invocation command and directory structures, unless otherwise
noted.

The b.out assembler does not support the i960 RD/RP Processors.

Specifying Option Arguments

Some options require arguments. The assembler interprets any string
following such an option as the option argument. Omitting an option
argument at the end of the command line causes an error. For example:

gas960e myprog.as -0
gas960: Expected a filename after -o.

You can put a space between an option and its argument. The following
are both correct:

gas960e myprog.as -omyprog.o
gas960e myprog.as -0 myprog.o

An incorrect argument causes an error message appropriate to the option.
See Chapter 4, Option Reference, for information on the valid arguments
for each option.

Specifying Single and Multiple Options

Precede options with a hypher):(
gas960e myprog.as -0 myprog.obj -W -V

Invoking the Assembler

On Windows* 95/Windows NT*-based machines, you can use a slash (/)
instead of the hyphen.

Any string that does not begin with a hyphen and is not positioned as an
option argument is interpreted as a source filename. The following
example shows the message caused whewnabéon is specified without

a hyphen and no file name&ds in the search path:

gas960e -W V myprog.as

Can't open V for reading.
No such file or directory.

Some options consist of a single character with no arguments. You can
specify two or more such options as an option group with a single hyphen:

gas960e myprog.as -0 myprog.obj -WV

Using Uppercase and Lowercase

Depending on your host system, case can be significant in the assembler
invocation name. For example, on Windows, entesi®ig960is the same

as enteringsm960. On UNIX, you can invoke the assembler waim960

but not withasmasa

Regardless of your host system, case is significant in the options and
arguments. For example, an upperaaisevalid, but a lowercasecauses
the following message:

Unrecognized option: w

3-3

1960 Processor Assembler User's Guide

Naming the Object File

After a successful assembly, the assembler produces an object file in
common object file format (COFF), b.out or ELF format. To generate a
COFF object file, invoke the assembler witim960 or gas960c . To
generate a b.out format object file, invoke the assemblergagtso . To
generate an ELF file, ugas960e . For a description of the COFF file
format, see your utilities user's guide. For a description of ELF, see the
Intel 80960 EABI specification (Intel Literature order number 631999)
listed inGetting Started

When you specify a source file with the or.as extension, the assembler
creates an object file with the extension When you specify a file with

any other extension (or none) the assembler creates an object file with full
source filename (including its original extension) withappended.

When you provide the first block of input interactively, the object filename
isa.out for COFF outputh.out for b.out format output, argout for

ELF output. For example, the following produces a single object file
namedexl.o :

gas960e exl.sex2.sex3.s

To specify the object filename, use theption. For example, the
following creates or replaces an object file narseido :

gas960e example.src -0 ex1.0

The assembler can overwrite an existing file unless the filename ends in
s ,.as , Or.asm. To ensure your source files are not accidentally
overwritten, use the protected filename extensions. For examgte,sif
exists, the following stops assembly with an error:

gas960e example.s -0 ex1.s
FATAL: Output file will overwrite existing protected file.

Additional software utilities are available to read and reformat the object
file, as described in th®60 Processor Software Utilities User's Guide

Invoking the Assembler

Providing Source Input

You must provide source text from at least one of:
» afile named in the assembler invocation command

» stdin , such as the keyboard or the redirected output of another
command

For information orstdin , see your host operating system documentation.

An assembly source file is an ASCII file of assembly language instructions
and assembler directives. You can write the assembly source using a text
editor or generate an assembly file with the C compiler.

For interactive input, specify theoption and provide lines of assembly
source fronstdin -~ (for example, lines entered from the keyboard or piped
from another application). The following example pipes the output of a
script namednybuild (invoked with the UNIX C shell primitiveource
command) into the assembler:

source mybuild | gas960e -i
For information on piping, see your host operating system documentation.

To end keyboard input, type tloal-d key combination on a new line.
The following keyboard-entry example assembles five lines, naming the
output object files.out :

gas960e -i
roundr go, fp0
subr fp0, g0, g0
expr go, g0

addr 1.0, g0, g0
scaler g1, g0, g0
~d

In the invocation command, list sources in the order in which you want
them assembled. The assembler concatenates all source files and
interactive input, then assembles instructions and data into sections by
order of appearance in the source text.

3-5

1960 Processor Assembler User's Guide

3-6

The following example assembles source fexmns , then from
interactive input (thé option), then fromex2.s . Program elements from
any one block of the input (for exampég]l.s) are available to any other
block of the input (for examplex2.s) as if all the input were in a single,
sequential file.

gas960e exl.s-iex2.s
You can use other assembler options and source files with interactive

input. The following example displays the assembler version and begins
interactive input from the keyboard:

asm960 -V -i
To ensure your source files are not accidentally overwritten, use the

.as , or.asm protected filename extensions, as described in Naming the
Object File on page 3-4.

Environment Variables

Environment variables set default operating parameters, such as search
paths and the target architecture. For a list of environment variables and
their uses, see yo@etting Startednanual. Define the environment
variables before invoking the assembler.

The assembler supports Bi60 andG960 environment variables,

preferring those that match the invocation style. For example, when you
invoke the assembler asm960, the assembler looks first fa60

environment variables, and for those settings not found, lookzofor
environment variables. The environment variables used by the assembler
are listed in Table 3-1.

Invoking the Assembler

Table 3-1 Assembler Environment Variables

gnu Tools Name CTOOLS Name Purpose

G960ARCH I960ARCH Specifies target architecture.
G960IDENT I960IDENT Allows use of the COFF .ident directive.
G960INC 1960INC Specifies include directory path.
G960BASE I960BASE Specifies base environment directory.
G960XLT 1960XLT Specifies translator (xlate960) location.

For more information on environment variables, see your host operating
system documentation.

Selecting the Instruction Set and Libraries

The assembler reports an error for any instruction in your source text that is
not valid for your target processor instruction set. To assemble for a
specific 1960 processor, you can define If8®ARCH or G960ARCH

architecture environment variable. Then, you need usedpé&on

(described in Chapter 4) only to override the environment variable.

Leaving the environment variable undefined and omittingatbption
assembles for the i960 KB architecture.

To specify the default instruction set, define the architecture environment
variable asA, SB, KA KB, CA CF, JA, JD, JF, JT, RD, RP, HA HDOr HT. For
example, the following specify SA instructions unless a different processor
is specified with thex option:

csh setenv 1I960ARCH SA
sh orksh I960ARCH=SA;export I960ARCH

Other i960 processor software tools also use the architecture environment
variable, as described (etting Started.

3-7

1960 Processor Assembler User's Guide

Defining a Base Directory Path

You can set an environment variable to the assembler and utilities base
directory. Such a value can be useful for setting other search-path
environment variables. The following defines a base-directory
environment variable namexb60BASE

csh setenv G960BASE /usr/local/intel960
sh orksh G960BASE=/ustr/local/intel960;export G960BASE

Defining an ldentification String

To put assembler identification and information from.tient directive
into a COFF object file, define th&é0IDENT or G960IDENT environment
variable to any non-null value, as shown in the following example:

csh setenv 1960IDENT 1

sh orksh I960IDENT=1;export I960IDENT

Redirecting Error and Warning Message Output

Thel960ERR variable lets you specify whether messages are directed to
stdout Orstderr . WhenI960ERR is not set, messages gostdout .
WhenI960ERR is set to a non-null string, the output goestéerr . This
variable functions under Windows only.

Building a Search Path for Include Files

You can extend the search path as follows for files included with

.nclude

» The assembler always searches the current directory first.

* You can specify additional directories with the | option, described in
Chapter 4, Option Reference.

* You can specify a default list of directories, separated with colons (:),
with 1960INC or G960INC. When you do not use the | option, the
assembler searches the directories specified by 1960INC or G960INC.

Invoking the Assembler

Note that when you use both theption and thé960INC or G960INC
variables, the environment variable setting takes precedence.

The following commands se960INC to
/usr/local/intel960/include :

csh setenv G960INC /usr/local/intel960/include

sh Orksh G960INC=/usr/local/intel960/include;export G960INC

Building the Search Path for the Assembler
Executable

To invoke the assembler from any directory, add the assembler directory to
your PATHenvironment variable. Once the directory is in y@ATH you
need not use the directory path name to invoke the assembler.

For example, witho60BASE set to your assembler base directory, you can
augment youpATHas follows:

csh setenv PATH $1960BASE/bin:$PATH
sh orksh PATH=$I960BASE/bin:$PATH;export PATH

3-9

Option Reference

This chapter describes the assembler options alphabetically. Table 4-1
summarizes the option names, arguments, effects, and defaults.

The following notation is used in this chapter:

{item|item} Select one of the items listed between braces. A
vertical bar [) separates the items.

[items] Items enclosed in brackets are optional.

Table 4-1 Assembler Options

Default Action of the

Option Effect of the Option Assembler

A{ SA|sB| selects the instruction set. uses the instruction set

KA | KB | specified by the I960ARCH or
CA|CF|JA| G960ARCH environment

JD | JF | JT| variable, if defined; otherwise,
RD | RP | uses KB.

HA | HD | HT |

COREQO |

COREL1 |

CORE?2 |

CORE3 | ANY }

D sym[=value] defines an absolute symbol. symbols must be defined in the
Symbols defined in this way source text.
can be used in .if and .ifdef
expressions.

d retains debug information discards symbolic information
for local symbols beginning for local symbols beginning
with L or a dot (.). with L or a dot (.).

G generates big-endian COFF generates little-endian code.
or ELF code.

continued [

4-1

1960 Processor Assembler User's Guide

4-2

Table 4-1

Assembler Options (continued)

Option
h

| directory path

i
L list_options

o obffile

p{c|d]b}

v960

Effect of the Option

Help: prints a brief
description of each option.
adds directories to the
search path for include files.

reads source from stdin
generates a listing. Listing
sub-options modify the
listing behavior.

do not replace compare-
and-branch instructions.
specifies an object filename.

generates
position-independent
instructions and/or data.
displays a version message

and continues the assembly.

displays a version message
and stops the assembly.
suppresses the warning
messages.

generates warnings about
architecture mismatches.

suppresses the object file
header time-and-date stamp
for COFF assembler.

Default Action of the
Assembler

no help text is printed.

searches in the current
directory and uses the 1960INC
or G960INC environment
variable.

reads source from files.

no listing is generated.

replaces compare-and-branch
instructions.

uses a.out, b.out, e.out, or a
filename derived from the first
source filename.

generates position-dependent
code and data.

displays no version message.

displays no version message;
the assembly proceeds.
displays the warning
messages.

generates error message when
it encounters architecture
mismatch.

writes the assembly time and
date in the object file header.

Option Reference

A: Architecture

Select the architecture
(instruction set)

A arch

arch is SA SB, KA, KB, CA CF, JA, JD, JF, JT, RD, RP,
HA HD, HT, COREQ CORE]1 CORE2 CORE3 Or ANY.

Discussion

To select your i960 processor instruction set, specifathgtion. The
assembler displays an error message for each instruction in the source text
that is invalid for the selected architecture, or a warning when you use the
x option.

Without thea option, the assembler uses the instruction set specified by the
[960ARCH or G960ARCHenvironment variable. If the architecture
environment variable is undefined, the assembler uses the KB instruction
set.

New CORE Architecture Options

With CTOOLS release 5.1 and later, the assembler supports architecture
settings to allow the generation of code that is compatible with multiple
1960 processor types. These settings are referrecctor@architectures.
Table 4-2 shows the types of i960 processors that are supported by each
core architecture.

1960 Processor Assembler User's Guide

4-4

Table 4-2

COREO-3 Architecture Compatibilities

-A Switch Used Compatible Architectures

COREO Jx, Hx, Rx
CORE1 Kx, Sx, Cx, Jx, Hx
CORE2 Jx, Hx

CORE3 Cx, Jx, Hx

D: Define symbol

Define an absolute
symbol from the
command line

D symbol [= value |

symbol is the name of the symbol you want to create.
value is any valid non-relocatable expression.
Discussion

This option is intended to be used with fihe and.iidef directives for
conditional assembly. It resembles the similar compiler preprocessor
option. If=value is left blank, then the value efimeis setto 1. If you
want to include spaces anywhere wifimbol =value , then the entire
symbol =value must be quoted.

Option Reference

Examples
The following creates a symbol called and sets its value to 1:
gas960 -D foo file.s

Within file.s , both of the following would evaluate to true:

.if foo

.ifdef foo

gas960 -D "foo = bar * 12" file.s

Within file.s , the symbobar must be defined and be non-relocatable.
gas960 -D foo=0 file.s

Within file.s , the expression
.ifdef foo

is true, but the expression

.if foo

is false. (See the discussioniof and.iidef in Chapter 5.)

4-5

1960 Processor Assembler User's Guide

d: Debug symbols

Keep debugging
information about
assembler temporary
symbols

d

Discussion

The assembly output from the compiler contains local symbols beginning
with anL, as generated bygac960 invocation of the compiler, or a dot

(.), as generated by &®60 invocation of the compiler. To retain such
symbols in the object-file symbol table, specify dhaption. Without,

the assembler removes all such local symbols.

Examples

The following shows the original C source text and the corresponding
assembly output with the local symbols generateddayg$60 invocation
of the compiler:
if (a==b)

hi=b;
else

hi=c;

The compiler assembly output (in the filaset.s) is:

cmpi g0,91
be L1
b L2
L1l:st gi,hi
b Al
L2: st r6,hi
Al:

The following puts L1 and L2 in the object-file symbol table:

gas960c -d cmset.s

Option Reference

G: Big-endian target

Produce a COFF or
ELF file for a big-

endian target

G

Discussion

You can configure COFF or ELF program text-type and data-type sections

in either big-endian or little-endian byte order. For big-endian instructions

and data, specify theoption when:

» assembling for the C-series, J-series, or H-series architecture

* invoking the assembler with asm960 or gas960c (COFF only) or
gas960e (ELF only)

Note that the i960 RD/RP processors do not support big-endian byte order,
even though their core processor is an 80960Jx.

For byte-order information, s€& A Reference Manual

Example

The following produces a COFF file for a big-endian target. The .text- and
.data-style sections of the COFF file is in the host byte order, regardless of
theG option.

gas960c -G -ACA big.a

4-7

1960 Processor Assembler User's Guide

I: Include-file search path

Augment the search path
for include files

| path

path is a directory pathname.

Discussion
The assembler always searches the current directongdode

filenames. You can augment the search path by:

» defining the I960INC or G960INC environment variable (described in
Chapter 3) before invoking the assembler
» using the | option once or more when invoking the assembler

The search path sequence is:

1. the current working directory

2. any directories specified I§60INC or G960INC, in the order defined
3. any directories specified with in the order on the command line

Example

The following line in thenathr.s source file includes thenylib/fp.s
source file:

.anclude "fp.s"

when invoked as:
asm960 mathr.s -I/mylib

Option Reference

I; Input from stdin

Include keyboard or
redirected input

Discussion

You must provide source text from at least one of:
» afilename specified on the command line

» the keyboard, the redirected output of another command, or any other
device designated as stdin

Forstdin input, use thé option once in the assembler invocation. To
assemble keyboard input, after entering the command line, enter lines of
source text from the keyboard. To end the keyboard input, enter the
ctrl-d key sequence on a new line. To assemble redirected output from
another application, pipe the application output into the assembler
invocation. You need not enterr-d to end the redirected input.

You can use both theoption and zero or more source filenames. The
assembler processes thdin input in sequence with any source files.

Whenstdin is the first or only source specified on the command line, the
default object filename isout for a COFF object filey.out for a b.out-
format object file, and.out for an ELF format objet file. Use the

option to specify a different object filename.

For information on piping and aidin , see your host system manual.

1960 Processor Assembler User's Guide

Examples

1. The following assembles several lines of code from the keyboard after
the source text from theedef.s file:
gas960e predef.s -i
roundr go, fp0
subr fp0, g0, g0
expr g0, g0
addr 1.0, g0, g0
scaler g1, g0, g0
~d
2. The following assembles the output from gbgatch script
(invoked with the csh primitiveource command) betweesicl.s
andsrc2.s

source getpatch | gas960e srcl.s -i src2.s

L: Generate a listing

Print an assembly listing
on the screen or into a
file

L[option [option-arg]

option is one of the following:
a list all lines, ignoring .nolist directives.
e list text and data in target-endian byte order.
f print the listing into a file. option-arg is the
name of the file.
n do not list files included with .include.
t use option-arg as the listing title. If the

title contains spaces, then it must be quoted.
This option overrides .title directives in the
source.

z do not print the listing header.

4-10

Option Reference

Discussion

With no options, the listing is printed on the standard output and all listing
defaults are in effect. Options that do not take arguments can be catenated
together (with no spaces) after a singleption. Space is optional between

an option that takes an argument and the argument.

The byte order of the listing is always target-endian when listing data
sections. For text sections, instructions are printed big-endian ("left-to-
right") unless you specifiye, and then they are printed in target-endian
byte order.

Examples

Several example listings follow. Where appropriate, the contents of the
assembly language file is also shown. The first example shows the
simplest listing invocation.

The filelistex1.s contains:

title "Listing Example 1"
text

mov g0,g91
.data

.short 0x1234

The assembler invocation command is:
$ gas960e -L listex1.s

4-11

1960 Processor Assembler User's Guide

4-12

Listing Example 1

ASSEMBLER VERSION: Intel 80960 ELF Assembler, 6.0.6011, Thu Sep 26

23:25:43 MST 1997

TIME OF ASSEMBLY: Mon Oct 21 23:48:16 1997 COMMAND LINE: gas960e -L

listex1.s

Number of errors: 0
Number of warnings: 0

Source File: listex1.s

1 000000 title "Listing Example 1"
2 000000 text

3 000000 5c881610 mov g0,01

4 000004 .data

5 000004 3412 .short 0x1234

The next example showtsz , (don't print the listing header), and |,

(print listing in a file).

$ gas960 -Lz -Lf listex1.L listex1.s

The filelistex1.L. ~ contains:
Source File: listex1.s

1 000000 title "Listing Example 1"
2 000000 text

3 000000 5c881610 mov g0,g1

4 000004 .data

5 000004 3412 .short 0x1234

The next example shows the effect of Huist
The filelistex2.s contains:

title "Listing Example 2"
text
mov g0,g1
.data
.short 0x1234
.nolist
.asciz "Skip strings in the listing"
.asciz "Skip this one too"
Jdist
.word 0x12345678

directive on the listing.

Option Reference

The assembler command is:

$ gas960e -L listex2.s
Listing Example 2
ASSEMBLER VERSION: Intel 80960 ELF Assembler, 6.0.6011, Thu Sep 26
23:25:43 MST 1997
TIME OF ASSEMBLY: Mon Oct 21 23:51:23 1997 COMMAND LINE: gas960e -L
listex2.s
Number of errors: 0
Number of warnings: 0

Source File: listex2.s

1 000000 title "Listing Example 2"
2 000000 text

3 000000 5c881610 mov g0,91

4 000004 .data

5 000004 3412 .short 0x1234

6 000006 .nolist

7 000006 Jdist

8 000006 7856 3412 word 0x12345678

The.nolist directive can be defeated from the command line with

$ gas960c -Lza listex2.s
Source File: listex2.s

1 000000 title "Listing Example 2"

2 000000 text

3 000000 5c881610 mov g0,g1

4 000004 .data

5 000004 3412 .short 0x1234

6 000006 .nolist

7 000006 536b 69702073 .asciz "Skip strings in the
listing"

7 00000c 7472696e 67732069

7 000014 6e207468 65206c69

7 00001c 7374696e 6700

8 000022 536b .asciz "Skip this one too"
8 000024 69702074 68697320

8 00002c 6f6e6520 746f6f00

9 000034 Jdist

10 000034 78563412 .word 0x12345678

4-13

1960 Processor Assembler User's Guide

4-14

Normally, text sections are listed in big-endian byte order. This matches
left-to-right ordering of instructions in manuals. You can override this
behavior on the command line wilte . Note in the next example that the
listing show the exact ordering of bytes in the object file:

$ gas960c -Lze listex2.s

Source File: listex2.s

1

2
3
4
5
6
9
10

000000 title "Listing Example 2"
000000 text

000000 1016885c mov g0,g91

000004 .data

000004 3412 .short 0x1234
000006 .nolist

000034 Jdist

000034 78563412 .word 0x12345678

Here is another example that shows big-endian byte order in both the text
and data sections:

$ gas960c -ACA -G -Lze listex2.s

Source File: listex2.s

1

2
3
4
5
6
9
10

000000 title "Listing Example 2"
000000 text

000000 5c881610 mov g0,g91

000004 .data

000004 1234 .short 0x1234
000006 .nolist

000034 Jdist

000034 12345678 .word 0x12345678

The next example shows the effect of thelude directive on the
listing. The filelistex3.s contains:

title "Listing Example 3"
text
mov g0,g1
.ifdef INCLUDE4
.include "listex4.s"
.endif
.data
.short 0x1234

Option Reference

The filelistex4.s contains:

foo:
Idconst -1, g6

The assembler command is:
$ gas960 -Lz -D INCLUDEA listex3.s

Source File: listex3.s

1 000000 title "Listing Example 3"

2 000000 text

3 000000 5c881610 mov g0,g91

4 000004 .ifdef INCLUDE4

5 000004 .include "listex4.s"
Source File: ./listex4.s

1 000004 foo:

2 000004 59b01901 Idconst -1, g6
Source File: listex3.s

6 000008 .endif

7 000008 .data

8 000008 3412 .short 0x1234

You can tell the assembler to not list include files wiith:

$ gas960 -Lzn -D INCLUDE4 listex3.s

Source File: listex3.s

1 000000 title "Listing Example 3"
2 000000 text

3 000000 5c881610 mov g0,g1

4 000004 .ifdef INCLUDE4

5 000004 .include "listex4.s"

6 000008 .endif

7 000008 .data

8 000008 3412 .short 0x1234

The last example shows how to override tiie
command line withLt :

$ gas960e -Lt "LISTING EXAMPLE 247" listex3.s

directive from the

4-15

1960 Processor Assembler User's Guide

4-16

LISTING EXAMPLE 247

ASSEMBLER VERSION: Intel 80960 ELF Assembler, 6.0.6002, Thu Sep 26
23:25:43 MST 1997

TIME OF ASSEMBLY: Mon Oct 21 23:54:54 1997

COMMAND LINE: gas960e -Lt LISTING EXAMPLE 247 listex3.s

Number of errors: 0
Number of warnings: 0

Source File: listex3.s

1 000000 title "Listing Example 3"
2 000000 .text

3 000000 5c881610 mov g0,01

4 000004 .ifdef INCLUDE4

5 000004 .include "listex4.s"

6 000004 .endif

7 000004 .data

8 000004 3412 .short 0x1234

n: No compare-and-branch replacement

Do not replace
compare-and-branch
instructions

Discussion

For short conditional branches and jumps, you can save execution time and
space by using a single compare-and-branch (COBR) instruction. The
branch address can be any expression that evaluates to a 13-bit value.

To stop the assembler with an error when the branch address is out of
range, specify the option. Without, the assembler replaces the short-
range compare-and-branch instruction with two instructions.

Option Reference

Examples

1.

In the followingn prevents the assembler from expandingctigibe
instruction for the undefined external. The assembler displays an
error message.

$ gas960e -i -n
cmpibe g0,g1,ml
D

can't use COBR format with external label
Withoutn, and with thes option, the following replacesnpibe :

0: 5a046090 cmpi g0,g1
4: 12fffffc be ml

0: Object filename
Name the object file

o obffile

objfile is a valid filename.

Discussion

To specify the object filename, use theption with a filename or a
complete pathname. The default object filename is in the current directory:

a filename based on the first source filename on the command line,
replacing any .s or .as source-filename extension with .0 or appending
.0 to any other source filename after the extension.

a.out, when you invoke the assembler with asm960 or gas960c (for
COFF output) with interactive input as the first or only source.

b.out, when you invoke the assembler with gas960 (for b.out-format
output) with interactive input as the first or only source.

e.out, when you invoke the assembler with gas960e (for ELF output)
with interactive input as the first or only source.

4-17

1960 Processor Assembler User's Guide

To avoid accidentally overwriting your source files, use a protected
.as , or.asm source-filename extension (the assembler does not overwrite
existing files with one of these extensions).

Example

The following names the output fibeogl.o :

asm960 myprog.asm -0 progl.o

p: Position independence

Mark the COFF or ELF
object file as containing
position-independent
code or data

p type
type is one of the following:
c indicates position-independent code.
d indicates position-independent data.
b indicates both position-independent code and
data.
Discussion

To indicate position-independent code or data in the COFF or ELF file, use
thep option. You can also use thpiz , .pid , and.link_pix directives,
described in Chapter 5.

Example

The following marks the object file as position-independent:

asm960 -pb mypi23.s

4-18

Option Reference

t: Translate

Process all source files
with the xlate960
translation utility before
assembly

Discussion

To first process the input source file withte960 , uset . xlate960
attempts to translate the source file to its COREO (e.g., 80960RXx)
equivalent. If any errors occur during the translation process, the
assembler does not attempt to processite60 output file. This
includes instances where the translator output file requires manual
adjustments.

Example

The following shows an example invocation of xlate960 from the
assembler command-line:

$ cat myprog.s

addino r5,r6,r7

$ gas960e myprog.s -t -ARP
$ gdmp960 myprog.o

Section ‘.text’:

0: 78398005 addono r5,r6,r7

Section ‘.data’:

In this example, the translator converted the 80960 CORE instruction
addino with the 80960 COREO-compatible instructiaftono .

4-19

1960 Processor Assembler User's Guide

4-20

NOTE. Thet (translate with xlate960) option is incompatible with the
(process input from stdin) command-line option.

V, v960: Version

Display the assembler
version number and
creation date

30g
Oooo

960

Discussion

To display a version messagesnout during assembly, use After
displaying the message, the assembler continues. For information on
stdout , see your host system manual.

To display the message without assemblingyvese. After displaying
the message, the assembler stops.

The message includes the assembler version number and the assembler
creation date and time.

Example

The following shows a sample version message:
$ gas960e myprog.asm -v960

Intel 80960 ELF Assembler, 6.0.6002, Thu Sep 26 23:25:43
MST 1997

Option Reference

W: Warnings

Suppress the warning
messages

w

Discussion

To suppress the warning messageswisEhe error messages continue to
appear ontderr . For information about the message formats, see
Chapter 6. For information atiderr , see your host system manual.

x: Allow mixed architectures

Allow architecture
mismatches

Discussion

Using thex option causes the assembler to generate warnings (not errors)
when it encounters mixed architectures (e.g., opcode not in target
architecture).

4-21

1960 Processor Assembler User's Guide

4-22

Example
The following shows how using the x command-line switch affects the
assembler’s treatment of architecture-specific instruction mismatches:
$ cat myprog.s
xnor r5,r6,r8
stl r8,r10(g10)[g4*4]
$ gas960e myprog.s -ARP
myprog.s:1: Opcode is not in target architecture: “xnor”.
myprog.s:2: indexed addressing mode not available
$ Is myprog.o
Is: myprog.o: No such file or directory
$ gas960e myprog.s -ARP -x
myprog.s:1: Warning: Opcode is not in target architecture: “xnor”.
myprog.s:2: Warning: indexed addressing mode not available
$ Is myprog.o
myprog.o

$

Option Reference

z: Time stamp

Suppress the time stamp
in the COFF output file

Discussion

The assembler puts the current time and date in the file header of the COFF
output file. On most UNIX systems, to put Time Zero in place of the

current time stamp, specify Time Zero is 4:00, 31 December, 1969.

Thez option has no effect on b.out or ELF format output.

Example

The following command specifies Time Zero for the time stamp:

gas960e -z filel.s

4-23

Directives

This chapter describes how to use the assembler directives in your source
text. The Directives Reference section, which begins on page 5-10,
provides an encyclopedia of the directives.

Table 5-1

Functions Performed by Directives

Category
input-specification

location-counter
control

data and memory
initialization

symbol and debugger-

support

optimization

Function

specify how the assembler
finds and reads input and
controls conditional
assembly.

change the location
counter and specify
program sectioning.

assemble data in integer,
ordinal, and real formats

and initialize strings and

memory blocks.

define symbols and
provide source and
symbolic information for
debugging.

optimize memory
addressing and procedure
calls.

Directives

if, .else, .endif, .ifdef,
.ifndef, .ifnotdef, .include

.align, .bss, .data, .org,
.section, .text

.ascii, .asciz, .byte,
.double, .extended, fill,
float, .single, .int, .long,
.word, .short, .hword,
.space

.comm, .def, .endef,
.desc, .elf_size,
.elf_type, .equ, .global,
.globl, .set, .Isym, file,
.Ilcomm, .line, .In, .stabd,
.stabn, .stabs, .scl, .size,

.tag, .type, .val
Jeafproc, .lomem,
.sysproc

continued [

5-1

1960 Processor Assembler User's Guide

5-2

Table 5-1

Functions Performed by Directives (continued)

Syntax

Category Function Directives
identification identifies the assembly. .ident

abort stops the assembly. .ABORT
position-independence mark object files as .pic, .pid, .link_pix

position-independent.
listing control listing behavior. Jist, .nolist, .title, .eject

NOTE. To assemble directives relevant for COFF development, invoke
the assembler a&sm960 or gas960c . For directives relevant for b.out-
format development, ugas960 . For directives relevant to ELF
development, usgs960e .

For the directives in your source text, use the following syntax:

. hame arg_string

name is the directive keyword. The leading do} s
required.
arg_string is zero or more arguments, according to the

requirements of the directive.

Directives

Specifying the Input

When invoking the assembler, you must specify a source file on the
command line, as described in Chapter 3. For additional source text, you
can include the contents of other files with thelude directive. The
assembler inserts the included source text in place dhthele line.

You can specify blocks of source text to be assembled or ignored based on
conditions determined during assembly. To delimit text for conditional
assembly based on expression evaluations, usié theslse , and

.endif directives. To delimit text for conditional assembly based on
symbol definitions, use thédef , .ifndef , and.ifnotdef directives.

These directives are especially useful when used in combination with the
option (described in Chapter 4).

Controlling the Location Counter

The assembler uses the locatamunter to determine the address of each
instruction or data item. The location counter begins at zero and increases
by one for each byte assembled. A dtsymbolically represents the

location counter.

Setting the Location Counter to a Specific Value

To manipulate the location counter directly:

.align increments the location counter to the next
address boundary fitting the alignment factor.
Also stores the largest alignment found per
section into the output file for later use by the

linker.

.org sets the location counter to the address you
specify.

. (dot) is the location-counter symbol for expressions

and assignments.

1960 Processor Assembler User's Guide

5-4

To align data and instructions, ustign . The assembler starts the next
instruction or data item on an address that fits the specified alignment,
padding the intervening bytes with zeros or with a value you provide.

To set the location counter to a specific addressptugseor an assignment
statement. The assembler gives the location counter the value you provide.
You can express the new address in terms of the current location counter,
represented by the dot)(For example, the following advances the

location counter by four bytes:

.org.+4

The following example uses the location count¢ré an operand
behaving just like a local label:
Ida ., g5

Ida.-4, g5
Ida . + 6, g7

alab: b blab
blab: cmpojne 0, 0, alab

Ida . - alab, g6
.set symname, . - alab

.data
.word .
word . +4
.word . - 16

Moving the Location Counter to a Section

In COFF and ELF programs, you can define multiple sections of
executable code (text-type sections), initialized data (data-type sections), or
uninitialized data (bss-type sections). In b.out-format programs, you can
define onebss section, onetext text-type section, and omgata data-

type section. For more information on section types and object-file
formats, see the utilities user's guide.

Directives

Initializing

You can start a new section or continue a previous section at any point in
your source text with the section directives:

text puts executable code into a section namesd .
.data puts initialized data into a section nameaa .
bss puts uninitialized data into a section nantad .
.section for COFF and ELF programs only, puts

executable code, initialized data, or uninitialized
data into a section that you name.

COFF and ELF programs contain three or more sections; b.out-format
programs contain exactly three sections. All object files contain at least the
standardtext ,.data , and.bss sections.

The order of sections in any program and the names and number of
sections in a COFF or ELF program depend on the section definitions in
your source text. Omitting thext , .data , or.bss section directives
creates the standard sections with zero size.

The first section directive creates the section and points the location
counter to the beginning of the section. Later in the program, you can
append text or data to existing sections with additiamal , .data , or

bss section directives or (for COFF and ELF programs) with additional
.section directives specifying the same section names.

Data

To define data in memory, use the data-initialization directives according
to the size of the memory block to be initialized and the data format:

« asingle memory location with byte, ordinal or integer data

« asingle memory location with real data types

« amemory block with string data

« amemory block with specified values or zeros

5-5

1960 Processor Assembler User's Guide

5-6

Initializing Byte, Ordinal, and Integer Data

To initialize data in byte, ordinal, and integer formats, use:

.byte for byte-aligned data (8 bits or shorter).
.short , .hword for half-word-aligned data (16 bits or shorter).
int ,.long ,.word for word-aligned data (32 bits or shorter).

You can specify a bit field of up to 32 bits with arguments to the byte-
initialization, half-word initialization, and word-initialization directives.
For more information, see the Directives Reference on page 5-10.
Initializing Floating-point Data

To initialize data in real or floating-point formats, use:

float , .single for 32-bit real data.
.double for 64-bit real data.
.extended for 80-bit real data (stored in 12 bytes).

How the processor treats real data depends on whether floating-point
instructions are supported. The KB and SB include on-chip floating-point
support and can use the accelerated floating-point (AFP-960) library. The
other i960 processors emulate floating-point arithmetic in software.

For more information on floating-point support, see the AFP-960 library
supplement and the processor handbooks.

Initializing String Data

To define character strings, use:

.ascii for a string.

.asciz for a null-terminated string.

For information on characters and escape sequences allowed in character
strings, see Chapter 7.

Directives

To terminate the string with a null character (ASCII 0), for C language
compatibility, use theasciz directive. Usingascii does not append a
null character.

You can usebyte with a set of character constants in placeagadi
For example, the following assemble the same data:

.ascii "cat" # assemble an ascii string
.byte 'c', 'a', 't' # assemble 3 ascii bytes
Initializing Blocks of Memory

To put a repeated value into a block of memory, use:
ill fills the block with a value you specify.

.space fills the block with zeros.

Defining Symbols

To define symbols, use:

.globl , .global for global symbols in the object-file symbol table.

.comm for common symbols in the object-file symbol
table.

Jcomm for local common symbols.

.set ,.equ , .Isym for non-relocatable symbols.

You can make a symbol external implicitly. Using a symbol without
defining it adds it to the symbol table as an undefined external symbol.
The symbol type and other symbolic information are derived from the
context in which you use the symbol.

The assembler uses an internal symbol table that is not retained in the
object file. To define and initialize non-relocatable symbols for the
internal symbol table, use thet , .equ , or.Ilsym directives.

1960 Processor Assembler User's Guide

5-8

With the optimization and debugging directives, you need use no
additional symbol-definition directives. For more information on
debugging and optimizing, see the Providing Debugger Information
(page 5-8) section and the Optimizing section (page 5-9).

Providing Debugger Information

For COFF debugging, the compiler puts the following directives in the

assembly output:
.def

.dim

.endef

Jine

An

.scl
.Size
tag

type

val

begins a symbol definition.
specifies the array dimensions.
ends a symbol definition.

sets a line number.

specifies a line number and the associated
address.

declares a storage class.
specifies the symbol size.
specifies an associated tag.
declares a symbol type.

declares the symbol value.

For b.out-format debugging, the compiler puts the following directives in

the assembly output:
.desc

sym

.stabd

sets the symbol descriptor.

creates and initializes a debugging symbol with
no additional symbolic information.

creates a debugging symbol for the location
counter.

Directives

R

.stabn creates and initializes a debugging symbol named
the empty string"().

.stabs creates and initializes a debugging symbol with
all possible symbolic information.

For ELF-format symbol table embellishment, the compiler puts the
following directives in the assembly output:

elf_size sets the size of the symbol to the given quantity.

elf_type sets the ELF type of the symbol to the given type.

Optimizing

NOTE. For ELF-format object files, the compiler provides debugging
information in DWARF format in separate sections. See the 80960
Embedded ABI (Intel order #631999) for more information on DWARF
format.

For more information on the symbol table, seei®6€ Software Utilities
User’'s Guide

To optimize leaf and system procedures, use:

Jleafproc identifies a procedure for branch-and-link
optimization.

.Sysproc identifies a procedure for system-call
optimization.

5-9

5 1960 Processor Assembler User's Guide

Marking Position Independence

To mark object files as position-independent, use:

.pic indicates position-independent code.
.pid indicates position-independent data.
link_pix indicates a position-dependent file intended for

linking with position-independent code or data.

Controlling the Listing

When you request a listing, with theeommand-line option, you can use
these directives in the source text:

.nolist turn off listing until the nextist directive.
Jlist turn listing on again after.aolist

title specify the listing title.

.eject add a form feed to the listing.

Directives Reference

This section describes the assembly directives alphabetically.

ABORT

Abort the assembly

ABORT

Discussion

Use.ABORT to stop assembly immediately, suppressing the object file.

5-10

Directives

Example

If MAX_ERRSs defined, assembly stops at thBORT line:

.ifdef MAX_ERRS

ABORT
.endif
.align
Align the location
counter

.align align_expr

align_expr

data_expr

Discussion

[

data_expr]

specifies the location-counter alignment. This
expression is non-relocatable, non-negative, and
evaluates to 31 or less.

optionally specifies a byte value for filling bytes
between the old and new location-counter
addresses.

To align the location counter on byte, word, double-word, or quad-word

boundaries, usalign

The assembler does the following:

* Increments the location counter to the next value evenly divisible by

2align_expr

« Puts data_expr in any unused bytes between the previous and newly
aligned location-counter values. Omitting data_expr fills the
intervening bytes with zeros.

« The align directive also updates the output section’s alignment field in
the section header to be the largest alignment per section. This field is
used by the linker to enforce alignments of input sections.

5-11

1960 Processor Assembler User's Guide

* When not specified, the default alignments for the following OMFs are

as follows:
b.out COFF ELF
text 2 0(1) 2
.data 0 0(1) 2
.bss 0 41)2) 4
.section text NA 0(1) 2
.section data NA 0 2
.section bss NA 4(1)(2) 4

(1) The COFF assembler emits sections that are multiples of at least 32-bit words. Therefore the
smallest default alignment is 2.

(2) The smallest alignment for bss sections in COFF is 4. Anything less is ignored.

Example

The following sets the location counter to 14 hexadecimal and increments
it to 18 hexadecimal, the next address evenly divisible by)8 e bytes
betweerox14 andox18 are filled with zeros.

.org 0x14
.align 3

.ascii, .asciz

Assemble ASCII string
data

.ascii " string "
.asciz" string "

string is the character string to assemble. The quotation
marks are required.

5-12

Directives

Discussion

To define a character string, usscii or.asciz . The first character
occupies the address indicated by the location counter. Successive
characters occupy sequential byte locations.

The.asciz directive ends the string with a null charactetji does not.

Use a backslash (\) for special characters, as described in Chapter 7.

Examples

1. The following example assembles a string without a null end (13 bytes
of information are assembled).

.ascii "Name\tAddress\n"

2. The following example assembles the same string with a null end
(14 bytes of information are assembled).

.asciz "Name\tAddress\n"

.bss

Identify a symbol for
uninitialized data
storage

.bss name, size_expr
name
size_expr

align_expr

, align_expr
is the symbol name.
specifies a non-negative symbol size, in bytes.

aligns the symbol. This expression is non-
relocatable, non-negative, and evaluates to 31 or
less. The assembler assumes a zero alignment if
you specify a negative alignment.

5-13

1960 Processor Assembler User's Guide

Discussion

To create uninitialized symbols, uses . Thename appears in the

symbol table. The assembler extends.ike section by reserving
size_expr bytes, aligned on the next address evenly divisible by
2align_expr You can create any number of sections of uninitialized data
in a COFF or ELF program. (Ussection namebss to create another
one). You can use any numberiafs directives to extend thess

section.

For programs with no uninitialized data, the assembler inserts a
section of zero size.

Example

The following example, with the location counter startingxat , defines
an uninitialized-data symbol namedgfer atox18, which is the next
boundary evenly divisible by 82 The assembler reserves 256 words
(4 bytes each) in thess section.

.org 0x14
.bss buffer, 256 * 4, 3

Related Topic

.section

.byte

Assemble byte data

.byte[int_expr] data_expr [, ...]

int_expr is the number of bits (up to 8) to reserve for the
data.
data_expr is the byte value to assemble.

5-14

Directives

Discussion

To define byte or bit-field data, usgte . The first byte or bit field is
byte-aligned on the address indicated by the location counter. Successive
bytes and bit fields occupy sequential locations and do not cross byte
boundaries.

Eachdata_expr must evaluate to an eight-bit (one-byte) or shorter value.
For a bit field shorter than eight bits, specifiyexpr . The assembler
truncatesiata_expr toint expr number of bits. When the bit field
cannot fit into the current byte, the assembler pads the current byte with
zeros and aligns the bit field on the next eight-bit boundary.

Examples

1. The following allocates three bit fields from the least-significant to the
most-significant bit within the byte. No bit field is allocated to the bits
marked z, which contain zeros. The first byte is allocated at the
address contained in the program counter (pc); the second byte is at the
subsequent address (pc + 1).

.byte 3:1,2:1,5:1

bit number: 7 6 5 4 3 2 1 0
pc z z z 0 1 0
pc+1 z z z 0 0 0 0 1

Assembling for a big-endian target with theption (see Chapter 4)
allocates the bit fields from the most-significant to the least-significant
bit within the byte:

bit number: 7 6 5 4 3 2 1 0
pc 0 0 1 0 1 z z z
pc+1 0 0 0 0 1 z z z

2. The following assembles three characters:
.byte 'a','b','c'

5-15

1960 Processor Assembler User's Guide

5-16

.comm

Declare a common

symbol

.comm name, data_expr [, elf_comm_alignment]

name is the symbol name.

data_expr specifies a non-negative symbol size, in bytes.
elf_comm_alignment In ELF, you can optionally specify the alignment

of common symbols.

Discussion

To use a common symbol in more than one module, add the symbol to the
object-file symbol table wittcomm. Specify the size of the symbol in

bytes with thedata_expr argument. The assembler creates the symbol as
an undefined external type. The linker resolves any references to the
symbol from other modules.

The default alignment of a common symbol is determined by the log
(base 2) of the size of the symbol:

Size Default Alignment
0,1 0
2 1
3.4 2
5,6,7,8 3
>=9 4

When you include a alignment expression, you override the default
behavior. The alignment expression is useable only in the ELF assembler.

Directives

Examples

The following directives define three common symbols:occupies four
bytes,_b occupies two bytes, and occupies one byte.

.comm _a,4

.comm _b,2

.comm _c,1

Another example: you have a table of 100 characters, and 100 shorts, and
100 words. You are using the ELF assembler and RAM space is critical so

you align them manually:

.comm chars,100,0
.comm shorts,200,1
.comm words,400,2

.data

Create or extend a data-
type section

.data

Discussion

To initialize variables, uselata . When adata section already exists,
this directive sets the location counter to the end of that section.

Omitting .data inserts adata section of zero size.

Example
The following lines resume or begin the data section of a program:

.data
.word 0
.double 0d2.5e10

5-17

1960 Processor Assembler User's Guide

5-18

Related Topics

.bss
.section
text

.def, .endef

Provide symbolic
information for COFF
debugging

.def name

name is the symbol to be described.

Discussion

When you compile a high-level language program for COFF symbolic
debugging, the compiler puts symbol descriptions in the assembly output.
Such descriptions start witlef and end withendef .

Example

The following is C language source text:

main() {

int a;
}
The compiler produces the following symbol description for the debugger.
The_a automatic variable appears on the staek bytes from the integer
frame pointer.

.def _a; .val 0x40; .scl 1; .type 0x4; .endef

Directives

Related Topics

.dim .Size val
Jine .tag
.scl type

.desc

Set the symbol
descriptor for b.out-
format debugging

.desc name, abs_expr

name is the symbol name.
abs_expr evaluates to a non-relocatable value.
Discussion

Compiling a high-level program for b.out-format symbolic debugging adds
.desc symbol descriptors as the low-order 16 bitamf expr .

.dim
Declare the dimensions

of an array for COFF
debugging

dim size_expr [, size_expr [, size_expr [, size_expr]]]

size_expr evaluates to a positive integer for an array
dimension.

5-19

1960 Processor Assembler User's Guide

Discussion

Compiling for COFF symbolic debugging puts symbol descriptiaies (
.endef pairs) for any arrays in the assembly output. @ine directives
specify up to four dimensions for each array.

Related Topics

.def , .endef .Size val
Jline .tag
.scl type

.double
Assemble double-
precision (64-bit)
floating-point values

.double double const [, double_const]

double_const is a non-relocatable 64-bit floating-point
constant, or one of the following:

nan Orf gnan generates a quiet nan value

snan generates a signalling nan value

+inf generates positive infinity

-inf generates negative infinity

Discussion

To define double-precision floating-point data, wesable . The first

value occupies the address indicated by the location counter. Successive
values appear in sequential locations. To align the data on particular
address boundaries, use thign directive.

5-20

Directives

To ensure correct double-precision floating-point evaluation, precede each
literal value in the expression witi.

Example

The following line assembles the 64-bit vabumst159 :
.double 0d3.14159

Related Topic

float .extended

.eject

Put a page break into
the listing

.eject

Discussion

Use this directive in the source text to insert a page break (formfeed
character) in the listing.

Related Topics

list .nolist
title

5-21

1960 Processor Assembler User's Guide

.elf_size

Adds the given size to
the named ELF symbol
table entry

.elf_size name, size_expr

Discussion

The.elf size directive applies only to the ELF assembler. This
directive adds the given size to the ELF symbol table. You can view the
ELF symbol table with the dumper/ disassembler [gigep960 -t).

This information is not used in DWARF.

Example

text

foo:

Ida 0,g0

ret

Lendfoo:

.elf_size foo,Lendfoo - foo

Related Topic
.elf_type

5-22

Directives

.elf_type

Adds the given type to

the named ELF symbol

table entry
.elf_type name{ function | object }
Discussion
The.elf type directive applies only to the ELF assembler. This
directive adds the given type to the ELF symbol table entry. You can
view the ELF symbol table with the dumper/ disassembler (use
[g]dmp960 -t). This information is not used in DWARF.
Example
text
foo:
Ida 0,g0
ret
Lendfoo:
.elf_size foo,Lendfoo - foo
.elf_type foo,function
Related Topic
.elf_size

.else

See .if

5-23

1960 Processor Assembler User's Guide

.endef
See .def

.endif
See .if

.equ, .Isym, .set

Set the value of a symbol

Eequ

Olsym [] name, data expr

Oset 0

name is the symbol name.

data_expr evaluates to a constant during assembly and is
assigned to the symbol. The expression must be
non-relocatable.

Discussion

To assign a new value to a symbol, ug@ , .Isym , or.set . The value
you specify defines or redefines the symbol type.

You may use the sanmamein more than oneet set per assembly.

A symbol defined withequ , .Isym , or.set does not appear in the
symbol table unless the assembler findgadal for the symbol name.

5-24

Directives

Examples

1.

The following defines an integer symbol narossful with an initial
value of3:

.equ useful, 3

The following defines a global symbol namedhen specifieg as an
integer with an initial value af:

.global x
setx, 1

The following sets the temporary symRkisdse to 10 and then t@4:

Isym xbase, 10
Isymy, xbase
Isym xbase, (2*y)+4

.extended

Assemble extended-

precision (80-bit)

floating-point data

.extended float expr [, float_expr]...

float_expr is the 80-bit floating-point value to assemble, or
one of the following:

nan Orf gnan generates a quiet nan value

snan generates a signalling nan value

+inf generates positive infinity

-inf generates negative infinity

5-25

1960 Processor Assembler User's Guide

5-26

Discussion

To define extended-precision floating-point data, .esended . The first
value occupies the address indicated by the location counter. Successive
values appear in sequential locations. To align the data on particular
address boundaries, use thign directive.

To simplify addressing, the 80-bit floating-point data items defined with
.extended occupy 12 bytes (96 bits) instead of 10 bytes. The additional
two bytes are padded with zeros.

Example

The following line assembles the 80-bit vabu159 :
.extended 3.14159

Related Topics

.double
float

Identify the source file

file " string

string is a source filename, without a pathname. The
guotation marks are required.

Discussion

When you compile a high-level language program, the compiler puts a
file directive in the assembly source output to identify the primary
high-level language source filename. Source debuggers use the
information to identify the original C source file in b.out and COFF.

Directives

Source debuggers using ELF/DWARF obtain source file information
from DWARF. However, in ELF, théile directive modifies the ELF
symbol table. You can view the ELF symbol table with the
[g]dmp960 -t command.

Example

The following line identifies the source filenameeasmple.c :

file "example.c"

fill
Initialize a memory
block
Aill int_exp , size_expr , data_expr
int_expr is a non-relocatable expression specifying how
many times to repeat the fill data.
size_expr is a non-relocatable expression specifying the
size, in bytes, of the fill data (up to eight bytes).
data_expr is a non-relocatable expression specifying the fill
data. This expression must evaluate to a byte
value.
Discussion

To initialize a memory block with a repeated value, .fise . The
assembler putgata_expr into memoryint_expr times, beginning at the
current location counter. The memory block occupigsekpr *
size_expr) bytes.

To align the memory block on a particular address boundary, use the
align directive.

5-27

1960 Processor Assembler User's Guide

5-28

Specify the size ofata_expr with size_expr , up to eight bytes. When
size_expr is larger than needed lyita expr , the excess high-order
bytes contain zeros.

Examples

1. The following example initializes a memory block of 16 words, filling
each word wittoxof (decimal 15).

fill 16, 4, 2*8-1
2. Thefill and.space directives are similar. The following lines
have identical effects, initializing 4 bytes with the value 1 in each byte:
fill4, 1,1
.Space 4, 1

Related Topic

.space

float, .single

single-precision (32-bit)
floating-point data

ﬂf)at H float_const [, float_ const 1]...
Osingle O
float_const is a 32-bit floating-point value to be assembled,
or one of the following:
nan Or gnan generates a quiet nan value

Directives

snan generates a signalling nan value
+inf generates positive infinity

-inf generates negative infinity
Discussion

To define single-precision floating-point data, ue@at or .single

The first value occupies the address indicated by the location counter.
Successive values appear in sequential locations. To align the data on
particular address boundaries, use.slign directive.

Examples

1. The following line assembles the 32-bit vaduet159 :
float 3.14159

2. Thefloat and.single directives have identical effects. The
following lines assemble the 32-bit valgi@4159 twice:

float 3.14159
.single 3.14159

Related Topics

.double
.extended

.global, .globl

Declare a global symbol

.global name
.globl name

name is the name of the external symbol.

5-29

1960 Processor Assembler User's Guide

Discussion

To make the defined symbadme an external symbol, usgiobl or
.global . The linker resolves any references to the symbol from other

modules.

Example
The following example makes the labekit a global symbol:

.globl _exit

.hword
See .short

.1dent

Include identification,
date, and time in the

object file
ident ident str [, time_value]
ident_str identifies the compiler.
time_value is the time value returned by the function.

5-30

Directives

Discussion

To put compiler information in the symbol table, use.ident directive
and thel960IDENT environment variable. Add an identification string
with ident_str . Put a specific time and date in the symbol table with
time_value . Omittingtime_value puts the assembly time and date in
the symbol table.

Assembly language output from the compiler includegeat line.

Example

The following identifies the compiler at 10:20, 13 November, 1991:
.ident "iC960 V4.0X, 0x29216cde"

If, .ifdef, .ifndef, .ifnotdef, .else, .endif

Identify blocks of source
text for conditional

assembly
if cond_expr D
ifdef B _
[%ifndef Csymbol D stmt_block [.else stmt_block] .endif

[Qifnotdef O []

cond_expr evaluates to a non-relocatable constant during
assembly. The condition is false when
cond_expr is zero and true otherwise.

symbol is a symbol name.

stmt_block is a block of one or more assembly statements.

5-31

1960 Processor Assembler User's Guide

Discussion

To conditionally assemble a block of source text, begin the blockifwvith
ifdef , .ifndef , or.ifnotdef and end the block witlendif . The
assembler selects the block to assemble as follows:

with .if whencond _expr is non-zero

with .ifdef whensymbol is defined

with .ifndef whensymbol is not defined

or .ifnotdef

with .else when the preceding , .ifdef , .ifndef , or

.ifnotdef block is not selected

The.else directive ends anf , .ifdef , .ifndef , Or.ifnotdef block
and theendif directive ends any conditional-assembly block. You can
nest conditional-assembly blocks.

These directives are best used in combination witib thtion (described
in Chapter 4).

Example

The following code assembles a double-precision floating-point value
whenuUseDouble is nonzero and a single-precision floating-point value
otherwise:

.if UseDouble
.double 3.14159
.else

float 3.14159
.endif

5-32

Directives

.include

Insert source text from a

file

.include " filename

filename is the include filename. The quotation marks are
required.

Discussion

To insert source text from a file, use timelude directive. The contents
of the included file are assembled in place ofiduude statement.

To include a file from elsewhere than the current directory, you can:

« provide the complete pathname for the file

» use tha option (described in Chapter 4)

» define thel960INC or G960INC environment variable (described in
Chapter 3).

Example

The following includes the source filgsn_d.asm andgen_e.asm in the
stdin input:

asm960 -i

.equ UseDouble, 1
.include "gen_d.asm"
.ifdef D_ERR
ABORT

.endif

.include "gen_e.asm"
~d

5-33

1960 Processor Assembler User's Guide

.int

See .word

Jdcomm

Declare a local common
symbol

dcomm symbol , size_expr

symbol names the symbol.
size_expr evaluates to the length, in bytes, of the symbol.
Discussion

To declare a local common symbol, use.ldwenm directive. The
assembler allocates space in 4% (uninitialized-data) section for the
symbol. The symbol appears in the symbol table as static.

Example

The following declares a 4-byte (1-word) local common symbol named
mycomi

dcomm mycom, 4

5-34

Directives

Jleafproc

Declare a leaf
procedure

Jeafproc namg, bal_entr]

name is the leaf procedure name, as used in the high-
level-language procedure reference.

bal_entry is the branch-and-link entry-point label.

Discussion

You can optimize some procedure calls by substituting branch-and-link
(bal orbalx) instructions for calldall orcallx) instructions. Identify
such procedures witkeafproc . Specify the call entry point wittame
and the branch-and-link entry point wiki_entry

A leaf procedure must meet the following requirements:

« The procedure must use registers minimally. Available registers are
g0 through g7 for the first eight words of an argument list, g8 through
g11 for an additional four words, and g13.

« The procedure can call no other procedures.

» The procedure can have no stack requirements, because no stack frame
is allocated for leaf procedures.

» The procedure can have no argument block because register g14
contains the calling-procedure return address.

» The procedure cannot accept a variable argument list.

A leaf procedure has two entry points. The entry point for call instructions
must provide a return sequence (prolog and epilog). The entry point for
branch-and-link instructions must skip the return sequence.

5-35

1960 Processor Assembler User's Guide

5-36

When you compile a high-level language program for leaf-procedure
optimization, the compiler identifies the leaf procedures, inserts the
leafproc directives, and generates the calling-convention blocks. For
the call entry point, the compiler adds a single underscdte (he

beginning of the procedure name. For the branch-and-link entry point, the
compiler appends the suffik

If you don't specify a branch-and-link entry point, the assembler assumes
that the branch-and-link entry point and the name entry point are the same.

Example

Compiling the following C source code produces ti# entry point:

int add(a, b)
int a,b;
{

return(a+b);

}
The resulting assembly code is:

.align 4
.def _add; .val _add; .scl 108; .type 0x44; .endef
.globl _add
leafproc _add, add.If
_add:
lda LR2, g14
add.If:
mov g14, g7
addi g0, g1, g0
mov 0, g14
bx (97)
LR2 ret
n 3
.def _add; .val .; .scl -1; .endef

The.scl 108 storage-class indicates an external leaf procedure, afie
is the call entry point. Thadid.lf is the branch-and-link entry point.

Since this example is compiled for source debugging, the compiler adds
the.def directives.

Directives 5

dine

Identify the line number
of a COFF debugging

symbol
Jine int_expr
int_expr evaluates to a positive integer to be used as a line

number.

Discussion
Compiling for COFF source debugging puitge directives in the
symbol definitions.fef , .endef pairs). Thent expr is the line
number for the line defining the symbol declared in.dke block.
Related Topics
.def An
.endef

Jink_pix

See .pic

5-37

1960 Processor Assembler User's Guide

dist
Re-enable listing after a
.nolist
Jdist
Discussion
Listing resumes on the instruction or directive immediately following this
directive. This option is useful in combination witblist ~ when you
want to list only part of the source text.
Related Topics
.nolist title
.eject
An
Specify a line number
within a function
An int_expr [, addr_expr |

int_expr

addr_expr

5-38

evaluates to a positive integer to be used as a line
number.

is the address of a line.

Directives

Discussion

Compiling for source debugging putis directives in the source text to
reset the source line numbers relative to the beginning of functions.

The assembler numbers the line containinglthedirective asnt_expr
and the subsequent line &g expr + 1). Omittingaddr_expr uses the
location counter. ().

The.In directive appears outside of any debugging symbol definition
(.def , .endef pair).
Example

The following specifies line numbeo for the current position of the
location counter:

.In 10, .

Related Topic

line

Jomem

Generate short memory-
access instructions

Jomem name

name identifies a symbol.

5-39

1960 Processor Assembler User's Guide

5-40

Discussion

This directive identifies a symbol’s address as falling within the range

0 - Oxfff. This is the range of addresses that can be reached with the
absolute offset of a MEMA format instruction. The assembler uses
MEMA format for all MEM format instructions that reference the symbol.
This yields a space savings of 4 bytes per instruction over MEMB format.

The symbol'siomem declaration must appear before the first use of the
symbol in a MEM format instruction. Otherwise the assembler defaults to
MEMB format.

To declare an entire section’s symbols “lomem” useoifhem attribute to
the section directive.

Example

The following example declares the symiaol to be “lomem” and then
loads its contents into a register. Teinstruction that follows is 4 bytes
long.

foo:
.lomem foo
Id foo, r4

Related Topic

.section

Jong

See .word

Directives

sym

See .equ

.nolist
Turn listing off

.nolist

Discussion

Listing stops immediately, and does not resume again unsil a

directive is seen. This option is useful in combination with when

you want to list only part of the source text. The assembler ignores this
directive when you use the option on the command line.

Related Topics

Jdist title
.eject

.0rg

Set the location counter

.org addr_expr [, abs_expr]

addr_expr is an integer expression.

abs_expr is a non-relocatable byte value to be used as a fill
value.

5-41

1960 Processor Assembler User's Guide

Discussion

To point the location counter to a specific address, relative to the start of
the current segment, useg . Specify the new address wihdr_expr .

The assembler puts zeros in the bytes between the old and new addresses.
You can specify a value other than zero with expr .

The assembler does not issue a warning for latge expr values. Note
that such use can fill up a hard disk quickly.

Example

The following example advances the location counteby four bytes:
.org.+4

Related Topics

.align .section
.bss text
.data

pic, .pid, .link_pix

Mark the object file as
compatible with
position-independent
modules

Elink_pix
Clpic
Opid

1 O

5-42

Directives

Discussion

For position-independent programs, you must ensure consistent position
independence of the object code and data across the object files. The
linker examines each object file header and issues warning messages for
mismatches. To suppress the warning messages, put one of the following
directives at the beginning of your source text:

.pic indicates a file containing position-independent
code.

.pid indicates a file containing position-independent
data.

Jink_pix indicates compatibility with position-independent

code, data, or both.

For more information on position independence, see your compiler manual.

.scl

Declare the storage
class for COFF
symbolic debugging

.scl int_expr

int_expr evaluates to a positive integer indicating the
storage class.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptiaies (
.endef pairs) in the assembly output. The directives specify the
storage class for each symbol so described.

5-43

1960 Processor Assembler User's Guide

5-44

Example

The following example specifies the3 storage class, indicating a static
leaf procedure, for thadd procedure:

.def _add; .val _add; .scl 113; .type 0x44; .endef;

Related Topics

.def Jine type
.dim .Size val
.endef .tag

.section

Creates or extends a
COFF or ELF program

section

.section name, [, attribute_list]

name identifies the section.

attribute_list identifies the attribute(s) associated with this
section.

Discussion

To create or extend a program section that you namesedsen

When the named section already existstion sets the location counter
to the end of the named section. You can create multiple sections of
instructions (text-type) or initialized data (data-type) or uninitialized data
(bss-type) in a COFF or ELF program but not in a b.out-format program.

Directives

You can have any number of attributes for any given section. Attributes
can be duplicated. An empty attribute list is allowed and means the section
does not have any of the attributes. The attributes apply to both COFF and
ELF unless otherwise indicated. If a COFF-only attribute is given to the
ELF assembiler, it is silently ignored and vice versa.

The attributes and their effects are:

alloc
bss

data
exec

info
lomem

msb

pi

read
super_read

super_write
super_exec

text

write

The section should cause the linker to allocate
memory (e.g., DWARF sections are not allocated).

The named section takes on the same attributes as the
.bss section.

The named section takes on the same attributes as the
.data section.

The named section contains executable code.
The section contains information only. (COFF only)

The named section is intended to be located in low
memory. References to labels in this section will be
via MEMA format instructions. (Se®mem for

more information about MEMA format instructions.)
The section is generated in big-endian byte order.
(ELF only)

The named section is position independent. (ELF

only)
The section contains readable memory. (ELF only)

The memory space where the section resides
corresponds to memory that is readable, writeable, or
executable when the processor is in supervisor mode
only. (ELF only)

The named section takes on the same attributes as the
.text section.

The section contains writeable memory. (ELF only)

5-45

1960 Processor Assembler User's Guide

Note that for theuper_read |, super_write , andsuper_exec attributes,

the assembler ORs the following bits into the corresponding section header
flag word: SHF_960_SUPER_READSHF_960_SUPER_WRITE
SHF_960_SUPER_EXECINSTR See the 80960 ABI specification (Intel

order #631999) for more information. The linker passes these bits on from
input files to the output file, ORing all of the flagwords together. The
runtime does not ensure that these semantics are enforced. These bits are
here for convenience, and to let you specify code bound for supervisor
mode.

Example

The following lines begin a data section narse¢h that is bound for low
memory, create another data section namethta that is position-
independent, and then contingtem :

.section sram, data, lomem
.globl _a
_a: .space 4

.section mydata, data, pi
.globl _b
_b: .word 444

.section sram, data
.globl _d
_d:.word 44

Related Topics

.bss text
.data Jomem

.set
See .equ

5-46

Directives

.Short, .hword
Assembles 16-bit data

Oshort O . d

E,hword E[int_expr | data_expr |, ..]

int_expr is the bit-field length, up to 16 bits.
data_expr is a 16-bit value to be assembled.
Discussion

To define half-word or short-integer data, use.¢hert or.hword

directive. The first value occupies the address specified by the location
counter. Successive values occupy sequential two-byte locations. To align
the data on particular address boundaries, uselithe directive.

For a bit field, specify the number of bits with exor . The assembler
truncates th@ata_expr value toint_ exor number of bits. When the bit
field cannot fit into the current half-word, the assembler fills the remaining
bits of the current half-word with zeros and begins the bit field on the next
16-bit boundary.

Examples

1. Theshort and.hword directives have identical effects. The
following assembles two half-words of data:
.hword OXFEFE
.short OXEFEF

2. The following allocates three bit fields from the least-significant to the
most-significant bit within the half-word. No bit field is allocated to
the bits marked z, which contain zeros. The first half-word is
allocated at the address contained in the program counter (pc); the
second word is at the subsequent address (pc + 2).

.hword 3:3, 6:62, 9:21

5-47

1960 Processor Assembler User's Guide

bit number: 7 6 5 4 3 2 1 0
pc 1 1 1 1 0 0 1 1
pc+1 z z z z z z z 1
pc + 2 0 0 0 1 0 1 0 1
pc +3 z z z z z z z 0

Assembling for a big-endian target (with theption) allocates the bit
fields from the most-significant to the least-significant bit within the

byte:
bit number: 7 6 5 4 3 2 1 0
pc 0 1 1 1 1 1 1 1
pc+1 0 z z z z z z z
pc + 2 0 0 0 0 1 0 1 0
pc +3 1 z z z z z z z

Related Topics

.ascii .extended .octa

.asciiz float .quad

.byte .int .single

.double Jong .word

.single
See .float

5-48

Directives

.size

Declare the size of a
symbol for COFF

debugging

.Size size_expr

size_expr is the size of a symbol, up to 64 kilobytes535
in decimal olOxFFFF in hexadecimal). The
expression must evaluate to a positive integer.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptigies (
.endef pairs) in the assembly output. Thiee directive defines the size
of a symbol so described. For structures and arsaxs, specifies the
total extent of the symbol.

Due to COFF limitations, specifying too large a symbol size generates
invalid debug information.

Related Topics

.def Jdine type
.dim .scl val
.endef .tag

5-49

1960 Processor Assembler User's Guide

.space

Initialize a memory
block with byte values

.space size_expr [, data_expr]

size_expr is the number of bytes to be initialized. The
expression must evaluate to a positive integer.

data_expr is a byte value to be put repeatedly into the
memory block.

Discussion

To increment the location counter and initialize the intervening bytes, use
.space . This directive advances the location countesiby expr bytes
and fills the bytes between the old and new locations withataeexpr

value. Omittingdata_expr fills the intervening bytes with zeros.

Examples
1. The following example initializes 64 bytes with zeros:
.Space 16*4
2. The:dill and.space directives are similar. Usingpace has the

same effect as usingjl with a data size of 1 byte. The following
lines have identical effects, initializing 4 bytes with the valire each
byte:

fill4,1,1
.Space 4, 1

For more examples, see Chapter 9.

Related Topic
Aill

5-50

Directives

.Stabd, .stabn, .stabs

Create b.out-format
debugging symbols

.Stabd type, other, desc

.Stabn type, other, desc, value
.stabs name, type, other, desc, value

name

value

type

other

desc

Discussion

is the new symbol name, with any characters
exceptooo .

is a non-relocatable expression initializing the
symbol.

is a non-relocatable expression for the symbol
type.
is a non-relocatable expression.

is a non-relocatable expression for the symbol
descriptor.

For symbolic debugging, you can create symbols that cannot be referenced
by name during assembly. Such symbols can have the following attributes:

value

type

name

To record the location counter during assembly,
define a symbol withstabd . For any other
initial value, usestabn , or .stabs

Provide the symbol type as the low-order eight
bits of a non-relocatable expression.

Since the symbol name can contain almost any
character, a debugger can use this field for
additional information.

5-51

1960 Processor Assembler User's Guide

other The debugger can use this attribute for any
purpose. Fowtabd , .stabn , and.stabs |,
provide the initialother value as the low-order
eight bits of a non-relocatable expression.

desc Provide the symbol descriptor as the low-order
16 bits of a non-relocatable expression.

.Sysproc

Declare a system
procedure

.sysproc name, int_expr
name is the procedure name.

int_expr is the system-procedure table index. The
expression must evaluate to an integer between
zero and 259, inclusive.

Discussion

To use the 1960 processor system-call feature, identify functions as system
procedures with theysproc directive. You need specify any function as
a system procedure only once in your program.

Assign each system procedurei@nexpr index number in the system

procedure table, as follows:

* For b.out-format programs, the index must be between 1 and 253,
inclusive.

e For COFF and ELF programs, the index must be between zero and
259, inclusive.

If you don't provide an index number, the assembler assigns the special
index number -1. This number tells the linker to look for the real index
number in another module. You must supply the real index number in at
least one assembly source file or your application will not link.

5-52

Directives

For more information on system calls and the system procedure table, see
your processor manual.

Example

The following example specifieadd as a system procedure with an index
of 29:

.align 4

.globl _add

.sysproc _add, 29
add:

addi g0, g1, g0

ret

n 3

Related Topic

Jeafproc
.tag
Declare a tag for a
COFF debugging
symbol
tag string
string is the symbol name.
Discussion

Compiling for COFF symbolic debugging puts symbol descriptigies (
.endef pairs) in the assembly output. References from within a symbol-
description block to a previous block use thg directive. Thestring

is the name of the symbol defined in the previous block.

5-53

1960 Processor Assembler User's Guide

5-54

In a structure or union symbol-description block, thg identifies a
structure or union defined in a previous block.

Related Topics

.def Jdine type
.dim .scl val
.endef .Size

Create or extend a text-
type section

text

Discussion

To create a program section for instructions, usedkie directive. If a
text section already exists, this directive sets the location counter to the
end of that section. Omittingxt inserts atext section of zero size.

Example

The following lines resume or begin thext section of a program:

text
mov r3, r4
Idconst Oxff, g5

Related Topics

.bss .section
.data

Directives 5

title
Specify the listing title

title ™ string

string is the title you want to appear in the listing. The
guotation marks are required.

Discussion

Use this directive anywhere in the source text to specify the listing title.
Only the first such directive has meaning. This directive is ignored when
you also give thet command-line option.

Related Topics

list .nolist
.eject

type
Declare the COFF
debugging-symbol type

type int_expr

int_expr evaluates to a positive integer specifying a COFF
type.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptiaies (
.endef pairs) in the assembly output. Thee directive adds type
information to the symbol description.

5-55

1960 Processor Assembler User's Guide

5-56

Related Topics

.def Jine .tag
.dim .scl .val
.endef .size

Declare a debugger-
symbol value

val data_expr

data_expr is the value of the symbol.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptiaies (
.endef pairs) in the assembly output. Th&l directive initializes the
symbol.

Example

The following example showsal and other debugging directives in a
symbol-description block describing thgfcn function:

myfcn:
.def myfcn; .val myfcn; .scl 2; .type 0x44; .endef

Related Topics

.def Jine .tag
.dim .scl type
.endef .Size

Directives

.word, .int, .long

Assemble word data

int

Olong [J[int_ expr :] data_expr [, ..]

Oword

int_expr is the length of the data field, up to 32 bits.
data_expr is the 32-bit integer value to be assembled.
Discussion

To define word-aligned integer, word, or bit-field data, .use , .long

or.word . The first value occupies the address specified by the location
counter. Successive values occupy sequential locations. To align the first
value on a particular address boundary, useatige directive.

For a bit field, specify the number of bits with expr . The assembler
truncates thelata_expr value toint_expr number of bits. When the bit
field cannot fit into the current word, the assembler fills the remaining bits
of the current word with zeros and begins the bit field on the next 32-bit

boundary.

Examples

1. The.int ,.long , and.word directives have identical effects:
int5
Jong 5
.word 5

2. The following allocates three bit fields from the least-significant to the
most-significant bit within the word. No bit field is allocated to the
bits marked z, which contain zeros. The first word is allocated at the
address contained in the program counter (pc); the second word is at
the subsequent address (pc + 4).

.int 16:1,10:1,8:1

5-57

1960 Processor Assembler User's Guide

bit number: 7 6 5 4 3 2 1 0
pc 0 0 0 0 0 0 0 1
pc+1 0 0 0 0 0 0 0 0
pc + 2 0 0 0 0 0 0 0 1
pc +3 z z z z z z 0 0
pc + 4 0 0 0 0 0 0 0 1
pc+5 z z z z z z z z
pc + 6 z z z z z z z z
pc+7 z z z z z z z z

Assembling for a big-endian target (with theption) allocates the bit
fields from the most-significant to the least-significant bit within the

byte:
bit number: 7 6 5 4 3 2 1 0
pc 0 0 0 0 0 0 0 0
pc+1 0 0 0 0 0 0 0 1
pc + 2 0 0 0 0 0 0 0 0
pc +3 0 1 z z z z z z
pc+4 0 0 0 0 0 0 0 1
pc+5 z z z z z z z z
pc +6 z z z z z z z z
pc+7 z z z z z z z z

Related Topics

.ascii .double .hword

.asciiz .extended .short

.byte float .single

5-58

Messages

Assembler error and warning messages appestien as:

source [n]: message
source is the source filename.

n is the line number of the error, appearing only for
source-assembly errors. File, I/O, and command-
line errors do not have source line numbers.

message is the text of the message.

Error messages report file-specification or syntax errors during assembly.

In addition to producing a message, the assembler acts on the severity of

the error as follows:

» For fatal errors, assembly stops. No object file is produced.

» For non-fatal errors, assembly continues to the end of the input, but no
object file is produced.

« For warnings, assembly continues and an object file is produced.

6-1

Assembly Language

This chapter provides:

* an overview of assembly language directive and instruction syntax
» adescription of the assembly language elements

« adescription of the assembly language statement syntax

Assembly Language Statement Format

Assembly language source is a sequence of statements separated with
newline characters or semicolons. A valid assembly language statement
follows this syntax:

[label 1[keyword][operands]

A keyword can be any of the following:

Directives affect the assembly, as explained in
Chapter 5.

Instructions specify processor operations.

Pseudo-instructions (also called pseudo operations) are

replaced with machine instructions by
the assembler or linker.

You can write null statements, including empty lines and lines with only a
semicolon. For null statements, the assembler generates no machine code,
allocates no storage, and does not change the location counter.

A statement can contain one or more labels. Place labels before instruction
keywords, as described in the Labels section of this chapter. One or more
operands can follow the keyword, as needed.

7-1

1960 Processor Assembler User's Guide

Lexical elements are the building blocks of assembly language statements,
used to construct labels, keywords, and operands. The lexical elements
supported by the assembler are:

» the character set

» tokens and separators

» identifiers

e constants

« labels

e oOperators

e expressions

e comments

Character Set

The characteset used in assembly language programming is a subset of
the ASCII character set. Table 7-1 shows the valid character set.

Table 7-1 Assembly Language Character Set

Characters Comment
ABCDEFGHIJKLMNOPQRSTUVWXYZ alphabetic, UPPERCASE
abcdefghijklmnopgrstuvwxyz alphabetic, lowercase
0123456789 numbers

characters
+-*1(O)[]<>;"." _?7@%&# special characters
\|%!~~
space tab newlinel delimiters

1 In Windows, a newline is a carriage return-linefeed combination while on UNIX it is a linefeed only.

The assembler is case-sensitive. You can write labels and comments in
uppercase or lowercase, but references to a label must match the case in the
label definition. For example, the lated is different from the labedz .

instruction mnemonics and most directives use only lowercase characters.

Assembly Language

Tokens and Separators

Ildentifiers

Constants

The assembler processes statements constructed of tokens and separators.
Assembly language tokens include identifiers (symbols or names),
constants, operators, and keywords.

The keywords are directives, instruction mnemonics, and pseudo-
instructions. Statement syntax depends on the keyword. Directives are
described in Chapter 5. Machine instructions are described in this chapter
briefly, and in greater detail in the processor user’s manuals. Pseudo-
instructions are described in Chapter 8.

Separate identifiers or constants with at least one blank space or tab
character. You can also use a blank or tab to separate other tokens such as
operators or keywords. Put no blanks or tabs within tokens.

An identifier is a sequence of alphanumeric characters, including the
underscore (), dollar sign §), and period.(). The first character in an
identifier must not be numeric. Identifiers can have up to 255 significant
characters.

There are three kinds of constants: simple, character, and string.

Simple Constants

Simple constants are either numeric or single-character. The digits in
numeric constants are:
0123456789

abcdef
ABCDEF

1960 Processor Assembler User's Guide

Table 7-2

Digits 0 through9 represent corresponding numeric values, depending on
the current number base (octal, decimal, or hexadecimal). Theaigjts
c,d, e, andf are identical ta, B, C, D, E, andF, representing hexadecimal
values corresponding to the decimal values 10 through 15. Integer and
ordinal constants are 32-bit-wide, two's-complement numbers.

The following types of constants are formed:

octal An octal constant is a sequence of the digits
through7 with a leading. For exampleg12
represents decimal 10.

decimal A decimal constant is a sequence of the digits
through9 without a leading. For examplelo
represents decimal 10.

hexadecimal A hexadecimal constant is a sequence of the
digitso through9, a, b, ¢, d, e, f, OrA, B, C, D, E,
F with a prefix ofox orox. For examplegxla
represents the decimal value 26.

floating-point A floating-point constant consists of one or more
characters that the C library functiatof
recognizes as a floating-point number, preceded
by an optional prefix listed in Table 7-2.

Representing Floating-Point Numbers

All floating-point constants are represented according ttBB&
Standard for Binary Floating-point Arithmetic

Prefixes for Floating-point Constants

Prefix Used for

Of or OF Single-precision value, 32 hits
0d or OD Double-precision value, 64 bits
Oe or OE Extended-precision value, 80 bits

Assembly Language

The characters, E, d or D designate the exponent field. You can use only
.0 ando.o as floating-point literals with numerics instructions, as shown
in Table 7-3.

Table 7-3 Floating-point Literals
Representation Value Assembled
0.0 0f+0.0
1.0 0f+1.0
Example 7-1 uses numeric constants and literal values in assembly
language instructions.
Example 7-1 Example of Constants and Literal Values

/* example of numeric constants */

mov 31,95 /* decimal */
mov 037,95 /* same in octal */
mov 0x1f,g5 [* same in hex */
movr 0.0,g5 [* float literal */
movrl 0f1.0,g4 [* float literal */
addr 0.0,1.0,90 [* together */

Character Constants

A single-character constant is an ASCII character enclosed within
apostrophes |. (The apostrophe is ASCII decimal character 39.)

The value of an ASCII character constant is either the ASCII code for the
character or the C language interpretation of an escape sequence,
beginning with a backslash, as shown in Table 7-4.

7-5

1960 Processor Assembler User's Guide

7-6

Table 7-4 Character Constants
Escape Sequence Interpretation
\b backspace
\f form feed
\n new-line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\' apostrophe
\" guotation mark
\octal constant ASCII value of constant
String Constants
A string constant has the same syntax and semantics used in the C
language. Each string begins and ends with a quotation marRlI{ C
language conventions for the backslash are observed. See Table 7-4 for a
summary.
Strings are identified by value and length. However, the assembler does
not implicitly end strings with a null byte, unlike the C compiler. For
information on adding ASCII string data to your assembly files, see the
.asci and.asciz directive entries in Chapter 5.
Labels

A label is a symbol with a location counter value and type. The assembler
recognizes the following kinds of labels:

global is an alphanumeric identifier, also called a name.

local is a single decimal digit {0 9), also called a
numeric label.

Assembly Language

Global labels are uniquely defined and remain in the output symbol table
unless the label name begins with a perigd¢ anL. Labels beginning

with a period () or anL can be included in the symbol table by using the
assemblerd option. See Chapter 4 for more information.

Name (Global) Labels

A globallabel consists of an identifier followed by a coloi. (In effect, a
name label assigns the current value and section (e.g., .text or .data) of the
location counter to the name. A global label is referenced by its name.
Global labels beginning with a dot)(or anL are discarded from the

output symbol table, unless you use-theoption.

The assembler generates an error if a symbol is multiply defined.

Numeric (Local) Labels

A numericlabel consists of a digit to 9 followed by a colon:(). Numeric
labels define temporary symbols of the farmandnf , wheren is the
numeric digit of the label. References to symbols of the farmefer to
the first numeric labet: backward from the referencef; symbols refer to
the first numeric labet: forward from the reference.

As with global labels, a numeric label assigns the current value and section
(e.g., .text or .data) of the location counter to a symbol. Unlike global
symbols, which you can define only once within an assembly, numeric
labels are local symbols. Therefore, programs can define several identical
numeric labels (the same digit) within an assembly.

Expressions

An expression is a sequence of symbols representing a calculated value.
An expression can consist of identifiers, constants, operators, and other
expressions. Each expression has a type. Expressions can be grouped by
enclosing them within parentheses.

7-7

1960 Processor Assembler User's Guide

7-8

Integer quantities appearing in arithmetic expressions are represented
internally as two's-complement numbers with 32-bit precision. You can
add only one forward-referenced external symbol to an expression.
Further, you can subtract only one forward-referenced external symbol
from an expression. The exception to these rules is that the difference
expression of backwards-reference external symbols in the same section is
treated as a constant value (see Example 7-2).

Example 7-2 Forward-reference External Symbol in Expressions

/* LEGAL: Forward (+) Reference to a symbol */

.word _label
/* LEGAL: A single (+) and single (-) forward reference */

_label4:
_label5:
.word _label7 - _label6

_label6:
_label7:

/* LEGAL: The difference expression of two labels in the

* same section is treated as a constant, allowing for

* other (+) or (-) references, up to 1 each maximum.

*/

.word (_label5 - _label4) + (_label7 - _label6) - _label8 + _label9

Operators

The assembler recognizes certain operators that you can use to form valid
expressions. These operators and the operations they represent appear in

Table 7-5.

Assembly Language

Table 7-5 Expression Operators
Symbol Operation
+ addition
- subtraction
* multiplication
/ division
% modulo
& bitwise and
| bitwise or
~ one's complement
A bitwise exclusive or
>> logical right shift
<< logical left shift
<<=>>= less than, less than or equal to, greater than,
greater than or equal to
=== equals, not equals
&& logical and, does not short circuit
Il logical or, does not short circuit
! la ==if (a) then 0 else 1; (logical negation)
In Table 7-6, operators are listed in order of precedence from highest to
lowest.
Table 7-6 Operator Precedence

Type Operators
unary -+ L~
binary * [, %
binary +, -
binary <<, >>

continued [

7-9

1960 Processor Assembler User's Guide

7-10

Table 7-6

Operator Precedence (continued)

Type

binary
binary
binary
binary
binary

binary

binary

Operators
<, <=, >, >=
==, I=

&

N

I
&&

All binary operators with the same precedence are evaluated from left to
right in the expression, except for any evaluation order enforced by

parentheses.

Expression Types

The assembler deals with several types of symbols and expressions. The
assembler recognizes the following expression types:

absolute

bss

data

An absolutgymbol is defined ultimately from a
constant. Applying the linker to the output file
does not affect the value of absolute symbols or
expressions.

The value of &#ss symbol is measured as the
number of bytes from the beginning of thes
section of a program. Likext and.data
symbols, the value of.ass symbol can change
on different linker runs.

The value of aata symbol is measured as the
number of bytes from the origin of thuata
section. Liketext symbols, the value odiata
symbols can change on different linker runs.
After the first.data statement, the value of the
location counter O of thelata section.

Assembly Language

external absolute
text, data, or bss

register

text

undefined

undefined external

Symbols can be declared@s but defined
within an assembly as absahite , .data , or
Jbss symbols. These symbols are used exactly as
if they were not declared as globals. However,
their value and type are available to the linker so
that the program can be combined with others
that reference these symbols.

The assembler recognizes the predefined register
symbols shown in Table 7-6.

The value of aext symbol is measured as a
number of bytes from the beginning of ttext
section of the program. When assembler output
is linked, .text symbols can change in value.
Most.text symbols are labels in the assembly
that define data or instruction locations. At the
start of an assembly, the value of the location
counter O of theext section.

When the assembler identifies a new symbol
during assembly, the symbol is considered
undefined. It becomes defined when it is
assigned a value or location. A symbol can
subsequently become undefined again if assigned
an undefined expression. Undefined operands
are not permitted with certain operators. A
symbol that remains undefined after assembly is
considered an undefined external.

A symbol declargtbl but not defined in the
current assembly is an undefinexternal. If you
declare such a symbol, use the linker to combine
the assembler's output with another routine that
defines the undefined reference.

7-11

1960 Processor Assembler User's Guide

Table 7-7 Predefined Register Symbols

Registers Symbol Alias Purpose

local ro* pfp previous frame pointer
ri* sp stack pointer
r2* rip return instruction pointer
r3 through r15 general-purpose

global g0 through g13 general-purpose
gla linkage for bal instruction
gl5* fp frame pointer

floating-point fp0 through fp3 general-purpose

special function

sf0 through sf4

registers for architecture-
specific functions such as
DMA or cache control. See
your processor user's
manual.

processor state ip instruction pointer
ac arithmetic controls
pc process controls

tc

trace controls

* You must use the aliases, not the symbols, for registers r0, r1, r2, and g15.

Example 7-2 uses local, global, floating-point registers, and the instruction
pointer and is valid only for processors with the numerics architecture
(1960 SB or KB processors). Users targeting the KA, SA, CA, CF, JA, JF,
JD, JN, HA, HD, HT, RD, or RP processor can use the AFP-960 library
for emulated floating-point operation, which is described 966

Processor Library Supplemenin the assembly source, the register names
must not be capitalized.

7-12

Assembly Language

Example 7-3 Example of Register Usage

/* example of fp register usage */
movr 1.0, fp0 # set fp0 = 0f+1.0
movr fpl, r6 # convert real formats
Id 0(g14), rO # load based on g14
addrl 1.0, fp1, g8 # g8:99 =fpl + 0f+1.0
st g5, 4(ip) # store based on ip
Ida (ip), g14 # g14 = value of ip

As shown in the example, the instructjgminter register can be used only
to indicate indirection in instructions that allow an IP indirect addressing
mode. You cannot uge as an operand specifier by itself; it is not a
general-purpose register. See the Memory-addressing Modes section in
this chapter for additional information on memory addressing modes.

The special function registes® throughsf2 are defined in the i960
processor architecture but implemented only on the CA and CF processors.
The 1960 Hx processor supports special function regisieershroughsfs .

For more information about these registers, see your processor manual.

Type Propagation in Expressions

When operands are combined using operators, the resulting expression is
assigned a type that depends on the types of the operands and on the
operator. For purposes of expression evaluation, the assembler recognizes
these types:

e undefined

+ absolute
e text

e data

e bss

e undefined external

7-13

1960 Processor Assembler User's Guide

7-14

When the assembler evaluates an expression with operands of different

types, the type of the resulting expression is determined by the following

rules:

* When one of the operands is undefined, the result is undefined.

* When both operands are absolute, the result is absolute.

* When an absolute is combined with a type that is not absolute
(relocatable), the result is the same type as the non-absolute operand.

These rules apply to the following binary operators. At least one operand
must be absolute; any other combination is illegal:

+ When one operand is a relocatablet , .data , or.bss symbol or
an undefined external symbol, the result has the postulated type: the
other operand must be absolute.

— When the first operand is a relocatable, the result is relocatable.

When both operands are absolute, the result is absolute.

Comments

The assembler recognizes the following as comments:
« Standard comments introduced by the # character.
« C-style comments placed between /* and */ characters.

The# character introduces a comment that extends through the end of the
line on which it appears.

The assembler also recognizes C-style comments, introduced vatid
ending with*/ . C-style comments cannot be nested. The*firsbken
terminates the comment, regardless of the number tifkens preceding
it. C-style comments can extend across multiple lines.

Assembly Language

Summary of Core Instructions

The core instruction set implements ordinal and integer arithmetic
operations along with program and processor control functions that support
the architecture. In this manual, the core instruction set is divided into
these categories:

Data manipulation These instructions move data, convert between
and processing different data types, and perform basic arithmetic
and boolean operations.

Program control These instructions alter the normal execution
sequence based upon specified conditions. These
instructions include ordinal and integer
comparisons, branching, and procedure call and
return.

Processor support These instructions explicitly or implicitly make
use of features of the i960 processor: including
fault, trace, and process controls words, IAC
messages, and multiprocessor design support.

Data Movement

The data movement instructions transfer integer and ordinal data between
memory and the global and local registers (load and store instructions) and
between registers (move instructions). The mnemonic opcodes indicate the
size and type of data.

Besides moving data, the data movement instructions implicitly convert
between different data types. For example, the load integer short
instruction [dis) copies a half-word (16 bits) from memory into a
register. Thedis instruction implicitly converts the half word to a full
word in the register, and the processor automatically sign-extends the
high-order 16 bits.

7-15

1960 Processor Assembler User's Guide

7-16

Load

These instructions copy data from memory to selected registers or register
groups:

d load

Idob load byte ordinal

Idos load short ordinal
Idib load byte integer

Idis load short integer
lall load long

Idt load triple

Idg load quad

lda load address

All the load instructions use the MEM instruction format. Except for load
address, which stores the memory location address itself in the designated
register, the load instructions copy data from the addressed location to a
specified register or successive registers.

Byte and short ordinal operands are zero-extended when loaded; byte and
short integers are automatically sign-extended. Multi-register operations
require appropriate register alignment. Besides moving data, these
instructions are used for implicit data type conversions.

Store

These instructions copy data from selected registers or register groups to
memory:

st store

stob store byte ordinal

stos store short ordinal
stib store byte integer

stis store short integer

Assembly Language

stl store long
stt store triple
stq store quad

All the store instructions use the MEM instruction format. The store
instructions copy data from the specified register or successive registers to
the addressed location. The processor reformats short and byte ordinal and
integer operands for the smaller memory location. Multi-register

operations require appropriate register alignment.

Move

The move instructions copy data from a selected register or register group
to another register or register group:

mov move word
movl move long
movt move triple
movq move quad

To move data in real format between the global or local registers and the
floating-point registers, the numerics architecture of the KB and SB
processors provides a set of move real instructions. Multi-register
operations require appropriate register alignment.

Select

These data movement instructions are available on the i960 Jx, Hx, and Rx
processors. They select one of two source registers to copy into a
destination register, based on the status of the condition code. All are REG
format instructions.

selno select based on unordered

selg select based on greater

sele select based on equal

selge select based on greater or equal

7-17

1960 Processor Assembler User's Guide

7-18

sell select based on less

selne select based on not equal
selle select based on less or equal
selo select based on ordered

Ordinal and Integer Arithmetic

Core instructions that perform ordinal, integer, and decimal arithmetic
belong to the following categories:

» basic arithmetic

» extended arithmetic

» conditional arithmetic

« remainder and modulo

« shift and rotate

All the instructions in this category use the REG instruction format.

Basic Arithmetic

These instructions perform the basic arithmetic operations: add, subtract,
multiply, and divide:

addo add ordinal

addi add integer
subo subtract ordinal
subi subtract integer
mulo multiply ordinal
muli multiply integer
divo divide ordinal
divi divide integer

The basic arithmetic operations are carried out on ordinal and integer word
operands contained in global or local registers. Use the load and store
instructions to move data between memory and the registers.

Assembly Language

Extended Arithmetic

The extended arithmetic instructions support operations on single- or
dual-word operands:

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply

ediv extended divide

In the add and subtract with carry instructions, the daitriy the condition
code (CC) of the arithmetic controls word (AC) participates in the
operation. The integer overflow flag in the AC (used with the integer
overflow mask) is set to indicate whether or not an overflow condition
resulted from the operation. These two instructions facilitate
multiple-precision addition and subtraction in assembly language
programs.

The extended multiplyegnul) instruction multiplies two ordinals in
registers and copies the result into an aligned dual-register group. The
extended divideegiv) instruction performs the inverse operation, dividing
a long ordinal (double-word) by an ordinal (word) resulting in a quotient
and remainder (both ordinals) in a dual-register group.

Conditional Arithmetic

The conditional arithmetic instructions are available on the i960 Jx and Hx
processors. They combine addition or subtraction with checking the
condition code. They add or subtract the two source registers and copy the
result into the destination, but only if the status of the condition code is
correct for the given instruction. All are REG format instructions.

addono add ordinal if ordered

addog add ordinal if greater

addoe add ordinal if equal

addoge add ordinal if greater or equal
addol add ordinal if less

7-19

1960 Processor Assembler User's Guide

7-20

addone add ordinal if not equal

addole add ordinal if less or equal
addoo add ordinal if ordered

addino add integer if ordered

addig add integer if greater

addie add integer if equal

addige add integer if greater or equal
addil add integer if less

addine add integer if not equal

addile add integer if less or equal
addio add integer if ordered

subono subtract ordinal if ordered
subog subtract ordinal if greater
suboe subtract ordinal if equal

suboge subtract ordinal if greater or equal
subol subtract ordinal if less

subone subtract ordinal if not equal
subole subtract ordinal if less or equal
suboo subtract ordinal if ordered
subino subtract integer if ordered
subig subtract integer if greater

subie subtract integer if equal

subige subtract integer if greater or equal
subil subtract integer if less

Assembly Language

subine subtract integer if not equal
subile subtract integer if less or equal
subio subtract integer if ordered

Remainder and Modulo

These arithmetic instructions divide the operands and retain the remainder
of the operation, discarding the quotient:

remi remainder integer
remo remainder ordinal
modi modulo integer

In the remainder instructions, the result has the same sign as the dividend.
The result of the modulo instruction has the same sign as the divisor.

Shift and Rotate

The shift and rotate instructions implicitly perform arithmetic functions by
shifting the bits in a register operand:

eshro extended shift right ordinal (1960 Cx, Jx, and Hx
processors only)

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer

rotate rotate bits

The shift instructions discard bits shifted out of the high-order or low-order
bits of the register. Thetate instruction replaces bits shifted out of the
high-order bits of the operand in the vacated low-order bit positions.

7-21

1960 Processor Assembler User's Guide

7-22

The shift right integer instruction does not correctly divide negative
operands by powers of two arithmetic, although it does perform a
conventional shift operation. To divide negative integer operands
correctly, use the shift right dividing integehidi) instruction instead of
the shift right integersfri) instruction.

The extended shift right ordinal instructiasstfro) is the equivalent of an
extended divide by a power of 2, which produces no remainder.

Logical

These instructions perform the bitwise boolean (logical) functions on word
operands in the specified registers. The only unary operation is carried out
by thenot instruction, which negates the bits in e operand,

represented by A in the list below.

In describing the remaining logical instructions, the letter A represents a bit
in thesrc2 operand and B represents the corresponding bit isrdhe
operand.

NOTE. The binary logic functions process the source operands in reverse
order.

not not A

and A and B
notand (not A) and B
andnot A and (not B)
nand not (A and B)
or AorB

notor (not A) or B
ornot A or (not B)

Assembly Language

nor not (A or B)
xor not (A = B)
xnor A=B

Tables 7-8 through 7-10 show the operands and results of the binary
logical operations. The unangt instruction simply complements bits
(clears bits that are set and sets bits cleared to 0) in a bitwise fashion for
each of the 32 bits of thec operand.

Table 7-8 Unary Operation

A not

0 1

1 0
Table 7-9 Binary Operations
A B and notand andnot nand or
0 0 0 0 0 1 0
0 1 0 1 0 1 1
1 0 0 0 1 1 1
1 1 1 0 0 0 1
Table 7-10 Binary Operations Continued
A B notor ornot nor xor xnor
0 0 1 1 1 0 1
0 1 1 0 0 1 0
1 0 0 1 0 1 0
1 1 1 1 0 0 1

7-23

1960 Processor Assembler User's Guide

7-24

Bit, Bit Field, Byte

The bit and bit field instructions perform operations on a contiguous series
of bits within an ordinal word. As with the arithmetic instructions, the bit
and bit field instructions operate only on data placed in global or local
registers. Use the data movement instructions to transfer data between
memory and the registers. The processor also provides two byte
operationsscanbyte andbswap.

Bit Operations

These instructions operate on a single specified bit in a global or local
register.

setbit set bit

clrbit clear bit
notbit not bit

chkbit check bit
alterbit alter bit
scanbit scan for bit
spanbit span over bit

Thesetbit ,clrbit , andnotbit instructions set, clear, or complement
the specified bit in an ordinal word. Thiekbit instruction sets the
condition code (CC) in the arithmetic controls word (AC) according to the
state of the specified bit. Thgerbit instruction changes the state of

the bit based on the condition code setting.

Thescanbit andspanbit instructions return the bit number of the
most-significant set and clear bit in the source operand, respectively.

Assembly Language

Bit Field Operations

Two instructions operate on a bit field, specified by the bit position of the
least-significant bit in the field and the length of the field:

extract extract bit field
modify modify under mask

Theextract instruction shifts the specified bit field to the right and fills
the vacated high-order positions with zeros. mhheify instruction copies
the specified bit field in one register to another, under control of a mask.
This instruction preserves bits corresponding to masked bit positions.

Byte Operations

Thescanbyte instruction compares two ordinals on a byte-by-byte basis,
testing whether or not any two corresponding bytes in the ordinals are
equal. Thescanbyte instruction then sets the condition code (CC)
according the outcome: successful (TRUE) or unsuccessful (FALSE).

Thebswap instruction, available only on i960 Jx, Hx, and Rx processors,
reverses the byte order within a 4-byte word. Bytes 0 and 3 are swapped,
and bytes 1 and 2 are swapped. This is a REG format instruction.

Comparison

Several types of instructions facilitate the comparison of instruction
operands. These instructions often are used for program decision-making
and can result in a subsequent call or branch. Compare and conditional-
compare instructions, as well as compare-and-increment or compare-and-
decrement instructions, are included in the core architecture.

The comparison instructions use REG format and operate on the following
types of data:

e ordinal
e integer
 real

7-25

1960 Processor Assembler User's Guide

This chapter discusses comparison of ordinal and integer data types; the
real data types and related operations are discussed in your processor
manual.

Compare and Conditional Compare

The following instructions compare the specified operands, in global or
local registers, and set the condition cod@ (n the arithmetic controls
word (AQ) according to the results of the test:

cmpi compare integer

cmpo compare ordinal

concmpi conditional-compare integer
concmpo conditional-compare ordinal
cmpob compare ordinal byte

cmpib compare integer byte

cmpos compare ordinal short

cmpis compare integer short

The byte and short versions of this instruction are available only on the
1960 Jx and Hx processors.

Thecmpi andcmpo instructions simply test the operands and set the
condition code. Theoncmpi andconcmpo instructions first examine the
statushit (bit 2) of the condition code and compare the operands only if the
status bit is not set. If the status bit is set, no further action occurs.

These instructions optimize two-sided range comparisons, to test whether a
given value lies between two others. A compare instructiopi (or

compo) checks one side of the range and a conditional-compare instruction
(concmpi or concmpo) checks the other, based upon the result of the first
comparison.

7-26

Assembly Language

Compare and Increment or Decrement

The following compare-and-increment or compare-and-decrement
instructions compare two specified source operands and set the condition
code based on the result:

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer
cmpdeco compare and decrement ordinal

These instructions either increment or decrement the destination register by
1. The compare-and-increment or compare-and-decrement instructions
provide a convenient way to control iterative program loops.

Branch

The branch instructions direct the processor to continue executing a
program's instructions at another memory address, sometimes
conditionally. To accomplish this end, these instructions modify the
current instruction pointer (IP). The new value of the IP can be specified
as a displacement applied to the instruction pointer (COBR and CTRL
instruction formats), or defined using several memory addressing modes
(MEM instruction formats).

The branch instructions provide the following program control functions:
» unconditional branch

» conditional branch

e compare and branch

In addition to these machine instructions, Chapter 8 describes several sets
of pseudo-instructions to simplify coding branch instructions.

7-27

1960 Processor Assembler User's Guide

7-28

Unconditional Branch

The following instructions direct the processor to continue executing
instructions from a supplied address under any condition:

b branch

bx branch extended

bal branch and link

balx branch and link extended

The branchi) instruction uses the CTRL format, with a limited addressing
range, while the branch extendéed)instruction uses MEM format with a
full addressing range and corresponding memory address modes.

Like the branch instructions, tlhal andbalx instructions use CTRL and
MEM formats, respectively. These instructions save the address of the
next sequential instruction and branch unconditionally to the specified
address.

Typically, the branch-and-link instructions are used to pass control to local
program procedures. (Local procedures are procedures that do not require
the processor's call-and-return mechanism.)

Conditional Branch

The following instructions direct the processor to continue executing
instructions from a supplied address depending on the status of the
condition code (CC) bits in the arithmetic controls (AC) word:

be branch if equal

bne branch if not equal

bl branch if less

ble branch if less or equal
bg branch if greater

Assembly Language

bge branch if greater or equal
bo branch if ordered
bno branch if unordered

These instructions also use the CTRL format and specify the target
memory address as a displacement from the current instruction pointer
(IP). Use the branch if ordereisb] and branch if unorderedrp) to
compare real number operands.

A set of branch real pseudo-instructions supplemeridtadbno

instructions to include comparisons of real numbers. In addition, the
branch if trueft) and branch if falseo{) directives provide convenient
mnemonics for branching on specific conditions. See Chapter 8 for more
information on the branch pseudo-instructions.

Compare and Branch

The ordinal and integer compare-and-branch instructions compare the two
source operands, set the condition code (CC), and branch to the specified
address depending on the result. These instructions are:

cmpobe compare ordinal and branch if equal
cmpobne compare ordinal and branch if not equal
cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal
cmpobg compare ordinal and branch if greater
cmpobge compare ordinal and branch if greater or equal
cmpibo compare integer and branch if ordered
cmpibe compare integer and branch if equal
cmpibne compare integer and branch if not equal
cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal

7-29

1960 Processor Assembler User's Guide

7-30

cmpibg compare integer and branch if greater
cmpibge compare integer and branch if greater or equal
cmpibno compare integer and branch if not ordered

Two other compare and branch instructions operate on a single-bit operand
in an ordinal word in a global or local register:

bbc branch on bit clear
bbs branch on bit set

All compare-and-branch instructions use the COBR instruction format,
implying a limited address range. See also the compare-and-jump
pseudo-instructions, described in Chapter 8.

Call and Return

For programming convenience, i960 processors provide various
mechanisms for making procedure calls. The following instructions
support the processor's call-and-return mechanism:

call call to local procedure using 24-bit addressing
callx call to procedure using full 32-bit addressing
calls call to a system procedure

ret return

Like the branch instructions, tleell instruction uses the CTRL format,
with a limited addressing range, while ##ix instruction uses MEM
format with a full addressing range and corresponding memory address
modes.

Thecalls instruction provides a supervisor call capability, deriving the
procedure address from the system procedure table, using a specified index
number to determine the correct table entry to reference. The table entry
determines whether procedures in the table can execute in supervisor
mode. Upon return from the called procedure, the processor resumes its
previous execution mode.

Assembly Language

The assembler provides two pseudo-instructions which are optimized by
the linker:

callj stands for @all , bal , orcalls instruction

calljx stands for a@allx , balx , Orcalls instruction

With thecalj andcallix pseudo-instructions, you can make symbolic
references to a variety of function types without using an explicit call or
branch-and-link instruction. The linker chooses the appropriate instruction
or instruction sequence for the symbol type and performs call optimization,
if possible. For additional information on call optimization, seea6@
Processor Software Utilities User's Guide

Fault

Normally, the processor implicitly generates faults when exceptions occur
and handles them automatically through the programmer-defined fault
table. The address of the fault table is supplied to the processor at
initialization time. You can inhibit certain faults by using the fault
controls, or masks.

The following fault-if instructions allow a running program to raise a fault
condition explicitly:

faulte fault if equal

faultne fault if not equal

faultl fault if less

faultle fault if less or equal
faultg fault if greater

faultge fault if greater or equal
faulto fault if ordered

faultno fault if unordered

The processor services a fault generated by one of these instructions as if it
were generated implicitly, as a result of an exception. See your processor-
manual for information on enabling and masking faults.

7-31

1960 Processor Assembler User's Guide

Chapter 8 explains the fault if truaitt) and fault if falsefbultf)
assembler pseudo-instructions that provide a mnemonic method for
generating faults based on logic conditions.

Debug

Several processor instructions support the processor's on-chip debugging
facilities. These facilities include a trace controls word and associated
masks, allowing the program to enable or disable specific types of trace
functions. The debug instructions are:

modtc modify trace controls
mark mark a breakpoint
fmark force mark a breakpoint

Themodtc instruction allows a running program to change the bits in the
processor's trace controls word. Tk andfmark instructions

generate a breakpoint trace event: nthek instruction generates the event
if the breakpoint trace mode is enabled by the trace controls word, while
thefmark instruction generates an unconditional breakpoint event.

See your processor manual for information on the trace mechanism and
associated controls.
Processor Management

The following instructions read or modify bits in the arithmetic and
processor controls words:

modac modify arithmetic controls
modpc modify process controls
sysctl perform system control function on the i960 Cx,

Jx or Hx processors

7-32

Assembly Language

Note that with there are special rules for usimgpapc instruction with the
1960 Rx architectures . The syntax for usingrtiepc instruction with any
i960 architecture other than Rx is:

modpc src, mask, src/dst

With the 1960 Rx architecture, the first and third arguments must be the
same. If these arguments are not the same, the assembler generates a
warning.

Another instruction that is useful for processor management is the
flushreg instructionflushreg saves all but the current local register set
ensuring that the local register save areas contain the same data as the
processor's local register sets.

The following processor management instructions are specific to the 960
Jx, Rx, and Hx processors:

Table 7-11 Supported Processor Management Instructions

Instruction Description 80960Jx 80960RX 80960HXx

intdis global interrupt disable Yes Yes Yes

inten global interrupt enable Yes Yes Yes

intctl global enable and disable of Yes No Yes
interrupts

icctl icache control Yes Yes Yes

dcctl dcache control Yes Yes Yes

halt halt CPU Yes No No

dcinva data cache invalidate by No No Yes
address

The following test-if instructions allow programs to examine the bits of the
condition code, which can then be used to redirect program flow:

teste test if equal
testne test if not equal
testl test if less

7-33

1960 Processor Assembler User's Guide

7-34

testle test if less or equal
testg test if greater

testge test if greater or equal
testo test if ordered

testno test if unordered

Synchronous (K-series only)

On K-series processors, the synchronous instructions move data from a
register to memory or from one memory location to another.

synld synchronous load
synmov synchronous move
synmovl synchronous move long
synmovq synchronous move quad

Thesynid instruction copies a word from a register into memory. The
synchronous move instructions transfer data from one location in memory
to another.

Normally the processor executes store instruction asynchronously with
respect to the memory controller. That is, after placing information on the
data bus for storage in memory, the processor assumes that bus control
logic carries out the operation and continues with the next instruction. In
contrast, the synchronous instructions perform store and move operations
synchronously with memory.

When executing any of the synchronous instructions, the processor must
wait until that instruction and any other pending memory access
instructions are completed before executing the next instruction.

The processor indicates that a synchronous instruction is complete by
setting the condition code bit (CC) in the arithmetic controls word (AC).
Use these instructions when you must be sure that memory operations are
completed before further processing takes place, as in multiprocessor
designs. See also the section on atomic instructions below.

Assembly Language

Also, the synchronous instructions can be used as a mechanism to avoid
interrupts when sending interagent communication (IAC) messages.

Atomic

An atomic access is a processor read-modify-write operation on a 32-bit
word of memory. In multiple-processor designs, while one processor
performs an atomic access, other processors in the system cannot access
the same memory block until the original operation is complete. The
atomic instructions are:

atadd atomic add
atmod atomic modify

Theatadd andatmod instructions add or modify the data in a specified
memory location and guarantee the integrity of the operation.

Summary of On-chip Numerics Instructions

Floating-point instructions have at least one operand that is a real data type.
They include the following functional categories of instructions:

» data movement instructions

e sign copying instructions

» data type conversion instructions

« comparison and classification instructions

» basic arithmetic instructions

» trigonometric functions

» logarithmic, exponential, and scale instructions

« decimal data manipulation instructions

The following sections summarize the instructions in each group.

Data Movment

Several ordinal and integer load and store instructidrs (, ldi/stl
ldt/stt ,Idg/stqg) move 4, 8, 12, or 16 bytes of data between memory
and local or global registers without regard to data type. The core
architecture move instructionsigv, movl , movt, movq) can then transfer

7-35

1960 Processor Assembler User's Guide

the contents of 1 to 4 local or global registers to another non-overlapping
group of 1 - 4 local or global registers without changing formats: real
values remain real, integer values remain integer, and so on.

Three move real instructions are provided in the numerics architecture:

movr move real
movrl move long-real
movre move extended-real

Themovr andmovrl instructions are most often used to transfer real-
valued data between global and local registers and floating-point registers
when a format change is desired. This technique implicitly converts 32-bit,
64-bit, or 96-bit real data to 80-bit extended-real format and vice versa.

The following procedure converts 32-bit real data to a 64-bit real
representation:

1. Move a 32-bit real data word into a floating-point register using the
movr instruction. This step implicitly converts the real value into an
extended-real value.

2. Move the extended-real value from the floating-point register to two
global or local registers using thevrl instruction. The processor
explicitly converts the extended-real number into a 64-bit long-real
value in two global or local registers.

To convert implicitly from real and long-real to extended-real data format,
use the floating-point registers as operands in arithmetic, trigonometric,
logarithmic, and exponential operations.

Themovre instruction copies extended-real values between a 80-bit
floating-point register and a triple global or local register group (96 bits).
The instruction does not alter the data type. However, when moving data
from a floating-point register to a register group,tfegre instruction

inserts 16 zeros in the high-order bit positions to pad the third data word.
When moving the contents of the register group to a floating-point register,
this instruction deletes the most significant 16 bits of the word in the third
register.

7-36

Assembly Language

Sign Copying

The numerics architecture provides two sign-copying instructions:
cpysre copy sign extended-real

cpyrsre copy reverse sign extended-real

These instructions enable you to copy the sign of one extended-real value,
or its reverse, to another. Both operate exclusively on extended-real data
types, and at least one of the values must be in a floating-point register. To
copy the signs of real or long-real values, usettkigt andalterbit

instructions.

Data Type Conversion

To convert between floating-point formats, for example between real and
extended-real formats, use the move real instructions described in the Data
Movement section. To convert between integer and real number formats,
the numerics architecture provides these explicit instructions:

cvtir convert integer to real

cvtilr convert long integer to real

cvtri convert real to integer

cvtril convert real to long integer

cvtzri convert truncated real to integer
cvtzril convert truncated real to long integer

Thecvtir andcvtilr instructions can change their 32-bit and 64-bit data
types to 80-bit extended-real values or 32-bit real values, respectively. The
move real instructions can then convert the result to 64-bit long-real format
if desired.

Thecvtri andcvtrii instructions change 32-bit real or 80-bit extended-
real numbers to integers. Hence, to convert a 64-bit long-real value to an
integer, first convert it to an extended-real format using the appropriate
move real instruction. Then use one of the convert real instructions to
transform the extended-real value to the desired integer format.

7-37

1960 Processor Assembler User's Guide

7-38

Thecvtzri andcvtrii instructions allow efficient implementation of
FORTRAN or C-style truncation semantics. They ignore the rounding
mode bits in the arithmetic controls word, and round toward zero always.

Basic Arithmetic

The following instructions perform the basic arithmetic operations
specified in the IEEE standard:

addr add real

addrl add long-real

subr subtract real

subrl subtract long-real
mulr multiply real

mulrl multiply long-real
divr divide real

divrl divide long-real
remr remainder real

remrl remainder long-real
roundr round real

roundr round long-real
sqrtr square root real
sqrtrl square root long-real

These instructions correspond to many of the core architecture instructions
in the same functional category. However, in the numerics architecture all

arithmetic operations require real or long-real data types as operands and

result in real numbers.

The results and operands of instructions suchid@s, subr , mulr , etc.,
can be 32-bit real, or 80-bit extended-real values. Similarly, results and
operands of the arithmetic long-real instructions, suchi@s , subrl |,
andmulrl , can be 64-bit long-real, or 80-bit extended-real values.

Assembly Language

The add, subtract, multiply, divide, and square root instructions represent
relatively standard, straight-forward mathematical functions performing the
operations their names imply.

Theremr andremrl instructions divide the contents of a register or dual-
register group by the value in another register (or pair) and produce the
remainder of the quotient; the quotient itself is ignored. For example, if
the real number 987.34 is divided by 185.769, the quotient is 5.31488...
and the remainder is the fractional portion of the quotient, .31488... These
instructions differ from the IEEE standard by the way in which the integer
portion of the quotient is determined.

Theroundr androundrl instructions convert a real or long-real operand

to an integer value based on the current rounding mode. The integer result
remains in floating-point format. The current rounding mode is determined
by the setting of the roundingodebits in the arithmetic controls word

(AC).

For example, the real-valued result 137.85 is rounded to 137.0 if the
rounding controls are set to round toward zero. The same number is
rounded to 138.0 if the rounding controls are set to round to infinity.

Decimal

The decimal instructions operate on 32-bit operands that contain an
ASCII-coded decimal digit in the least-significant 8 bits of the data word.

dmovt decimal move and test
daddc decimal add with carry
dsubc decimal subtract with carry

Thedmovt instruction moves a 32-bit word from one register to another
and tests the least-significant byte of the operand to determine if it is a
valid ASCII-coded decimal digit (0011009through 00111005}
corresponding to the decimal digits 0 through 9). For valid digits, the
condition code (CC) is set to 0OQ@therwise the condition code is set to

010,.

7-39

1960 Processor Assembler User's Guide

7-40

Thedaddc anddsubc instructions operate on two decimal digits. Bit 1 of
the condition code indicates a decimal carry-in or carry-out condition. For
example, you can use the decimal instructions iteratively to validate ASCII
digit strings and to add or subtract ASCII-coded decimal values.

Note that as of CTOOLS release 5.1 and later, the assembler no longer
accepts decimal instructions when assembling for a KA or an SA target,
since decimal instructions are not supported by those processors.

Comparison and Classification

To compare and classify floating-point values, use the numerics
instructions:

cmpr compare real

cmprl compare long-real

cmpor compare ordered real
cmporl compare ordered long-real
classr classify real

classrl classify long-real

Thecmpr andemprl instructions compare the contents of two registers and
set the condition code bits (CC) in the arithmetic controls word (AC) to
indicate the results of the comparison. For floating-point operands, when
at least one comparand is a NaNs, the condition code indicates unordered.

Thecmpor andcmporl instructions set the invalid-operation flag for an
unordered condition.

Use the core-architecture branch-ordeted and branch-unorderednp)
instructions to test the floating-point comparison results, with conditional
branching if an ordered or unordered condition is detected.

Theclassr andclassrl instructions determine the class of a real or long-
real operand as zero, denormalized finite, normalized finite, infinite,
SNaN, or QNaN. The AC arithmetitatusbits indicate the result.

Assembly Language

Trigonometric Functions

For the common trigonometric functions, use the numerics instructions:

sinr sine real

sinrl sine long-real

cosr cosine real

cosrl cosine long-real
tanr tangent real

tanrl tangent long-real
atanr arctangent real
atanrl arctangent long-real

All the trigonometric functions require real or long-real operands and yield
floating-point results. The values of angles must be given in radians.

The results and operands of instructions suanas, cosr , andtanr can
be 32-bit real or 80-bit extended-real values. Similarly, results and
operands of the trigopnometric long-real instructions, sueinas , cosrl
andtanrl , can be in 64-bit long-real or 80-bit extended-real format.

Theatanr andatanrl instructions return a result in radians. As well as
supplying the inverse tangent of the argument, these instructions facilitate
conversion from rectangular to polar coordinates.

If the operands of trigonometric functions are computed using pi, then the
full 66-bit representation for pi given in your processor-specific manual
must be used. Truncated values are permissible when accuracy is not
crucial.

7-41

1960 Processor Assembler User's Guide

7-42

Logarithmic, Exponential, and Scale

For logarithmic, exponential, and scale functions, use the numerics
instructions:

logbnr log binary real
logbnrl log binary long-real
logr log real

logrl log long-real

logepr log epsilon real
logepr! log epsilon long-real
expr exponent real

exprl exponent long-real
scaler scale real

scalerl scale long-real

All these functions require real or long-real operands and yield floating-
point results.

The results and operands of instructions sudbgas, expr , andscaler

can be 32-bit real or 80-bit extended-real format. Similarly, results and
operands of the trigopnometric long-real instructions, sudbyas , exprl
andscalerl can be in 64-bit long-real or 80-bit extended-real format.

Thelogbnr andlogbnrl instructions compute the logarithm to the base 2
of the source operand and retain only the integer component. The result is
an integer that is the binary log of the given number. For instange, log
3249 = 11.65532..., but the binary log function returns the value 11
(decimal) in floating-point format. Thegbnr andlogbnrl instructions
determine the order of magnitude of a specified number.

Assembly Language

Thelogr andlogrl instructions compute the logarithm to the base 2 of
one source operandr¢1) and scale the result by a second operand
(src2), to obtain the resuluét):

dst = srcl *log o src2
By carefully specifying therc2 operand, logarithms to any base can be
computed using these instructions. For instance, by specifying a scale

factor ofsrc1 =.30102... , the logarithm base 10 (common log) is
obtained.

Thelogepr andlogeprl instructions compute the logarithm to the base 2
of 1.0 plus thesrc1 operand and scaler§2 operand) the result to obtain
the result gst):

dst = src2 *log o (1.0+ srcl)

Thesrc1 operand is restricted to values near zero which yields maximum
accuracy fon.0 + src1 near unity (i.e., therc1 operand is close to zero).
This condition, for instance, is commonly encountered when computing
compound interest. By carefully choosing the? operand, logarithms to
any base can be computed.

Theexpr andexprl instructions compute the value:

dst =2 SIC -1

Thesrc must be in the ranges to+.5. Thescale andscaler!

instructions multiply therc2 operand by 2 to an integer power, denoted
by thesrc1 operand, for the resuliit):

dst = src2 *2 Srcl

The exponent and scale instructions can be used together to create an
algorithm for computing the value of 2 to any power by noting that:

Y=o (X+ I)=2/*[(2 X_1)+1]

The vis an arbitrary exponent:andx represent the integer and fractional
portions of the exponent, respectively.

7-43

Pseudo-instructions

Syntax

This chapter describes the pseudo-instructions (pseudo-ops) recognized by
the assembler.

Pseudo-instructions appear in the assembly file like valid machine
instructions. In actuality, the assembler substitutes one or more
machine-level instructions for them. For example, when you enter the
optimized load constant afconst , the assembler selects the fastest
instruction available to place the specified value in the designated register.
This instruction can be a move, add, subtract, shift, or load-address,
depending on the given value.

For convenience, the assembler provides pseudo-instructions that are
synonyms for certain branch, fault, load, and compare-and-branch
instructions, as described in the following sections. These pseudo-
instructions are functions of the assembler and not of any particular
processor implementation. In general, you can use them in any assembly
language source file. Any implementation-dependent differences are
noted.

Pseudo-instructions use the same syntax for operands as machine
instructions.

The operand names describe the function of the operands
(e.g.,src , dst , targ).

8-1

1960 Processor Assembler User's Guide

Branch Pseudo-instructions

Table 8-1

The assembler recognizes the pseudo-instructiorfbranch if true) and
bf (branch if false) as synonyms for the instructiomgbranch if ordered)
andbno (branch if not ordered), respectively.

For convenience in checking the results of real number (floating-point)
comparisons, several branch pseudo-instruction are available. Table 8-1
lists these pseudo-instructions with the equivalent instructions.

Branch Real Pseudo-instructions

Directive

bre
brg
brge
brl
brle
brlg
bro
bru
brue
brug
bruge
brul
brule
brulg

Operation

branch real if equal

branch real if greater

branch real if greater or equal

branch real if less

branch real if less or equal

branch real if less or greater

branch real if ordered

branch real if unordered

branch real if unordered equal

branch real if unordered greater
branch real if unordered greater or equal
branch real if unordered less

branch real if unordered less or equal
branch real if unordered less or greater

Instruction
be
bg
bge
bl
ble
bne
bo
bno
be,bno
bg,bno
bge,bno
bl,bno
ble,bno
bne,bno

Migration-enabling Pseudo-instructions

8-2

Release 6.0 provides a number of pseudo-instructions to ease migration
between processors. These pseudo-ops provide an architecture-
independent method for performing some of the more common low-level

Pseudo-instructions

Table 8-2

processing operations. Using these pseudo-ops should reduce the number
of changes required when moving assembly code from one i960 processor
to another. Table 8-2 lists all of the new pseudo-instructions supported by

the CTOOLS assembler.

New Assembler Pseudo-Instructions

Instruction
atomic_add
atomic_maodify
bkpt_request
cc_read

cc_scanbit
dc_disable
dc_enable
dc_invalidate
em_read

ic_disable

ic_enable
ic_invalidate
ic_load_lock
insn_trace_mode_read
insn_trace_mode_set
interrupt_state
ip_read

pri_read

sw_reinit

trace_enable_set

Action
Atomic add
Atomic modify
Request breakpoint resources
Read condition code
Scan for bit, modifying condition code
Disable data cache
Enable data cache
Invalidate data cache
Read execution mode
Disable instruction cache
Enable instruction cache
Invalidate instruction cache
Load and lock instruction cache
Read instruction trace mode
Set instruction trace mode
Read interrupt state
Read instruction pointer
Read execution priority
Reinitialize processor
Set trace enable bit

8-3

1960 Processor Assembler User's Guide

Conditional Faults Pseudo-instructions

The assembler also has equivalent pseudo-instructions that help with
conditional faults. The assembler recogniaest (fault true) and
faultt (fault false) as synonyms for the instructiémsto and

faultno . These pseudo-instructions have the same syntax as the machine
instructions

Load Pseudo-instructions

Theldconst pseudo-instruction automatically optimizes loading of

integer and ordinal immediate constant values. Immediate values that
cannot be expressed as literals must be explicitly loaded into a register
before they can be used as operands for machine instructions. For integer
and ordinal operands, loading can be done usingidbwst directive.
Theldconst directive generates different instructions for several different
immediate values, based on architecture performance concern. For a list of
Idconst substitutions, see the Example section of the alphabetical
reference entry fadconst later in this chapter.

Call Pseudo-instructions

Thecalj andcalljix pseudo instructions let you assemble a call
instruction, allowing the linker to perform call optimization, when possible.
The linker transforms call pseudo-instructions into the appropriate
instruction at link time, depending on the type (default, leaf, or system) of
the called procedure. See page 8-12 for more information.

Compare-and-jump Pseudo-instructions
For compare-and-branch instructions, the assembler provides a convenient,

symbolic way to specify the operation by using a set of compare-and-jump
pseudo-instructions.

Pseudo-instructions

In the compare (ordinal or integer) and branch-on-condition instructions
(such as thempobe instruction), the branch target must be fewer tHan 2
bytes from the instruction pointer (IP). As an alternative, you can use the
compare-and-jump pseudo-instructions provided by the assembler. These
pseudo-instructions generate a compare-and-branchc(epghe)

instruction if the target is fewer tha#Zbytes away, or separate compare
and branch instructions otherwise.

Form the compare-and-jump pseudo-instructions by substitufirfgrathe
b in the corresponding instruction's mnemonic. For example, the
instructionbe becomes pseudo-instructi@n; cmpobe becomesmpoje .
As another example, when you used the pseudo-instruction:

cmpije r5, r6, target

the assembler generates:
compibe r5, r6, target

if the label is within 22 bytes, or:

compi rs, r6
be target

otherwise.

NOTE. These pseudo-instructions never generate a branch-extended
instruction. If you cannot guarantee that the branch address is fewer than
223 pytes away from the instruction pointer, you must use the equivalent
extended instruction sequence.

8-5

1960 Processor Assembler User's Guide

8-6

Table 8-3

The compare-and-jump pseudo-instructions appear in Table 8-3. Each
pseudo-instruction is paired with the operation it performs.

Compare-and-jump Pseudo-instructions

Pseudo-instruction Full Function Name

cmpije compare integer and jump if equal

cmpijg compare integer and jump if greater

cmpijge compare integer and jump if greater or equal
cmpijl compare integer and jump if less

cmpijle compare integer and jump if less or equal
cmpijne compare integer and jump if not equal
cmpoje compare ordinal and jump if equal

cmpojg compare ordinal and jump if greater
cmpojge compare ordinal and jump if greater or equal
cmpojl compare ordinal and jump if less

cmpojle compare ordinal and jump if less or equal
cmpojne compare ordinal and jump if less not equal

Two pseudo-instructions never branch:
cmpijno compare integer and jump if not ordered.

cmpojno compare ordinal jump if not ordered. The
equivalent instruction ismpibno .

Two pseudo-instructions always branch:
cmpijo compare integer and jump if ordered.

cmpojo compare ordinal and jump if ordered. The
equivalent instruction ismpibo .

Ordered relationships apply only to real numbers on i960 processors with
on-chip floating-point capability. The branch instructions for ordered and
unordered numbers are consistent ways to provide null operations
(no-ops).

Pseudo-instructions

Pseudo-instructions Reference

This section describes the pseudo-instructions in alphabetical order.

The syntax descriptions use the placeholaigr for any operand that is an
expression representing a memory address. The assembler taegts a
operand as a signed displacement value representing an IP-relative address,
as follows:

Format Displacement in Words

COBR -210through 20-1

CTRL -221 through 2%-1
atomic_add
Atomic Add

Syntax

atomic_add addr, sre, dst

reg reg/lit reg
Discussion

Addssrc value (full word) to value in the memory location specified with
addroperand. Initial value from memory is storedlst Memory read

and write are done atomically (i.e., other bus masters must be prevented
from accessing the word of memory containing the word specified by
src/dstoperand until operation completes). Memory locatioaddr is the
word’s first byte (LSB) address. Address is automatically aligned to a
word boundary.

Expansion: Processor Output
Cx, Jx, Hx atadd addr,src,dst

8-7

1960 Processor Assembler User's Guide

atomic_modify

Atomic Modify
Syntax
atomic_modify addr , mask, src/dst
reg reg/lit reg
Discussion

Copies the selected bits sric/dstvalue into memory location specified in
addr. Bits set ifmaskoperand select bits to be modified in memory.

Initial value from memory is stored grc/dst Memory read and write are
done atomically (i.e., other bus masters must be prevented from accessing
the word of memory containing the word specified withdteédstoperand

until operation completes). Memory locatioraiddr is the modified

word’s first byte (LSB) address. Address is automatically aligned to a
word boundry.

Expansion: Processor Output
Cx, Jx, Hx atmod addr,mask,src/dst

Pseudo-instructions

bkpt_request

Request Breakpoint
Resources

Syntax

bkpt_request dst
reg

Discussion

Acquires breakpoint resource informatiaistis set to indicate the
available resources. The format of the breakpoint resources status word is
listed in Table 8-4.

As a side effect, this pseudo-instruction may modify the condition code on
SOMe MICroprocessors.

Expansion: Processor Output
Jx, Hx Idconst 0x600, dst
sysctl dst ,0, dst

8-9

1960 Processor Assembler User's Guide

8-10

Table 8-4. Breakpoint Resource Status Word Bits

Bits Use

318 reserved

7.4 # of available data breakpoints

3:0 # of available instruction breakpoints
bt, bf

Branch if false or

branch if true

bt branch if true
bf branch if false
Syntax
b* targ

disp
Discussion

Both thebt (branch if true) andf (branch if false) directives check the
condition code and branch to the location specifiecifgy based upon the
result of the test.

The assembler recognizes the following correspondence:

Directive Instruction
bt (branch if true) bo (branch if ordered)
bf (branch if false) bno (branch if unordered)

The syntax for the two directives is the same as the syntax for the
corresponding machine instructions.

Pseudo-instructions

Expansion: Condition Output
True bt targ
False bf targ
Example
The assembler changes the pseudo-instruction below to the instigction
process
bt process

br<cc>

Branch on the result of a
floating-point

comparison
bre branch real if equal
brg branch real if greater
brge branch real if greater or equal
brl branch real if less
brle branch real if less or equal
brig branch real if less or greater
bro branch real if ordered
bru branch real if unordered
brue branch real if unordered equal
brug branch real if unordered greater
bruge branch real if unordered greater or equal
brul branch real if unordered less
brule branch real if unordered less or equal
brulg branch real if unordered less or greater

8-11

1960 Processor Assembler User's Guide

Syntax

br* targ
disp

Discussion

The branch real directives check the results of floating-point comparisons
and branch to the location specifiedtbyy based upon the result of the

test. These instructions generate the appropriate compare instructions for
unordered cases.

Table 8-1 shows the correspondences between pseudo-instructions and
machine instructions.

Use the same syntax for pseudo-instructions you do for the corresponding
machine instructions.

Example

The assembler changes the pseudo-instruction below to the instiaretion
process

bru process

callj, calljx

Optimizable linker calls

Syntax
callj targ
disp
calljx targ
mem

8-12

Pseudo-instructions

Discussion

Thecal] andcallix pseudo-instructions assemblea#t or callx

instruction, respectively, and a relocation entry instructing the linker to
perform call optimization, when possible. The linker can also be instructed
to ignore call optimization. See the utilities user's guide for more
information about linker controls.

When the referenced procedure, representadrdpy, is a.leafproc , the
linker replaces the pseudo-instruction with a branch-and-ak ¢r balx)
instruction. When the target issgsproc , the linker replaces the pseudo-
instruction with ecalls instruction.

For example, insertingalljx instruction while using the\dD setting
might produce the following linker output depending upon whether the
target is a default call, leaf procedure, or system call:
Expansion: Call Type Output

Default Call callx _target

Leaf Procedure balx _target,g14

System Call Ida _sysprocindex,g13

calls (g13)

Sincecalj andcallix are optimized at link time, examination of the
object module generated by the assembler with the disassembler (dumper)
displays the assembled instruction aala instruction.

The assembler optimizesllj orcallix tobal oOrbalx , respectively,
when the referenced procedure is a C language static function.

calj can be optimized during assembly when the target aftlie is in
the same object module and section as the call site.

Example

This sample optimizes a call for procedusebx .

callj _subx

8-13

1960 Processor Assembler User's Guide

8-14

Changes to the calljx Pseudo-instruction with the
1960 Rx Architecture

When used with theARD or -ARP option,callix uses the syntax:
calljx _target, tmpreg

wheretmpreg is a local or global register. This change results in the
following sequences in the linker:

Expansion: Call Type Output
Default Call Ida _target,tmpreg
callx (tmpreg)
Leaf Procedure Ida _target,tmpreg
balx (tmpreg),g14
System Call Ida _sysprocindex,g13
calls (g13)

Notice that with the 80960Realljx format all three call types result in a
three-word instruction sequence, whereas the previtixs format
requires only two words.

Related Topics

bal Jeafproc
balx .sysproc

Pseudo-instructions

cc_read
Read Condition Code

Syntax
cc_read dst
reg

Discussion
Copies the current value of the condition code d#f?:0] and zeroes into
ds{31:3].
Expansion: Processor Output

Cx modac 0,0, dst

and dst ,0x7, dst
Jx, Hx selg 0,1, dst

addoe 2, dst, dst
addol 4, dst , dst

8-15

1960 Processor Assembler User's Guide

8-16

cc_scanbit

Scan For Bit, Modifying
Condition Code

Syntax

cc_scanbit srcl, dst
reg/lit reg

Discussion

Searchesrclfor a set bit (1 bit). If a set bit is found, the bit number of the
most significant set bit is stored in tistand the condition code is set to
010,. If srclvalue is zero, all 1's are storeddstand condition code is

set to 000.
Expansion: Processor Output
Cx, Jx, Hx scanbit srcl,dst
cmp*<cc>
Branch to specified
target
cmpije compare integer and jump if equal
cmpijg compare integer and jump if greater
cmpijge compare integer and jump if greater or equal
cmpijl compare integer and jump if less
cmpijle compare integer and jump if less or equal
cmpijne compare integer and jump if not equal

Pseudo-instructions

cmpijno
cmpijo
cmpoje
cmpojg
cmpojge
cmpojl
cmpojle

cmpojne

Syntax
cmpij* srcl

reg/lit

cmpoj* srcl

reg/lit

Discussion

compare integer and jump if not ordered
compare integer and jump if ordered
compare ordinal and jump if equal

compare ordinal and jump if greater
compare ordinal and jump if greater or equal
compare ordinal and jump if less

compare ordinal and jump if less or equal

compare ordinal and jump if less not equal

src2 targ

reg disp

src2 targ

reg disp

Both the integer and ordinal compare-and-jump directives check the results
of a comparison of the contents of 8@murce operands and branch to the
location specified byarg based upon the resulting condition code (CC).
Shown below are the instructions assembled as a result of each of these
directives. The assembler recognizes the following correspondences:

8-17

1960 Processor Assembler User's Guide

8-18

Table 8-7

Compare and Jump Substitutions

When Targetis 2 2 Bytes

12

Directive When Targetis <2 “ Bytes Away
cmpije cmpibe cmpi + be
cmpijg cmpibg cmpi + bg
cmpijge cmpibge cmpi + bge
cmpijl cmpibl cmpi + bl
cmpijle cmpible cmpi + ble
cmpoje cmpobe cmpo + be
cmpojg cmpobg cmpo + bg
cmpojge cmpobge cmpo + bge
cmpojl cmpobl cmpo + bl
cmpojle cmpoble cmpo + ble

As Table 8-7 shows, the assembler only generates a compare integer or
compare ordinal followed by a branch instruction when the destination is
2" bytes or more away.

Two pseudo-instructions never branch:
cmpijno compare integer and jump if not ordered.

cmpojno compare ordinal and jump if not ordered. The
equivalent instruction ismpibno .

Two pseudo-instructions always branch:
cmpijo compare integer and jump if ordered.

cmpojo compare ordinal and jump if ordered. The
equivalent instruction ismpibo .

Ordered relationships apply only to real numbers on i960 processors with
on-chip floating-point capability. The branch instructions for ordered and
unordered numbers are consistent ways to provide null operations
(no-ops), when not used with floating-point values.

Pseudo-instructions

The syntax for these directives is the same as the syntax for the
corresponding machine instructions in the core architecture.

Example

This sample pseudo-instruction uses compare and branch
cmpije r4, g4, process
During assembly, the pseudo-instruction becomes the following:

cmpi rd, g4
be process

dc_disable
Disable Data Cache

Syntax

dc_disable dst
reg

Discussion

Disables use of the data cache. The data cache status is returnain the
field. The format of the data cache status word is listed in Table 8-8. For
Cx processorg]stis neither read nor set (i.e., no data cache status is
returned). Since the CA processor has no data cache, this operation has no
effect on that processor.

Expansion: Processor Output
Cx setbit 30,sf2,sf2
mov g0,g0
mov g0,g0
Jx, Hx dcctl 0,0,fp

dcctl 4,0, dst

8-19

1960 Processor Assembler User's Guide

8-20

Table 8-8 Data Cache Status Word Bits

Bits Use

31:28 reserved

27:16 # of ways-1

15:12 log,(# of sets)

11:8 log,(atoms/line)

74 log,(bytes/atom)

3:1 reserved

0 1 = data cache enabled

0 = data cache disabled

dc_enable
Enable Data Cache

Syntax

dc_enable dst
reg

Discussion

Enables use of the data cache. The data cache status is returnatsin the
field. The format of the data cache status word is listed in Table 8-8. For
Cx processorgjstis neither read nor set (i.e., ho data cache status is
returned). Since the CA processor has no data cache, this operation has no
effect on that processor.

Expansion: Processor Output
Cx clrbit 30,sf2,sf2
Jx, HX dcctl 1,0,fp

dcctl 4,0, dst

Pseudo-instructions

dc_invalidate

Invalidate Data Cache

Syntax

dc_invalidate dst
reg

Discussion

Invalidates the data cache. The data cache status is returnedsh the

field. The format of the data cache status word is listed in Table 8-8. For
Cx processorgjstis neither read nor set (i.e., ho data cache status is
returned). Since the CA processor has no data cache, this operation has no
effect on that processor.

Expansion: Processor Output
Cx setbit 31,sf2,sf2
mov g0,g0
mov g0,g0
Jx, Hx dcctl 2,0,fp

dcctl 4,0, dst

8-21

1960 Processor Assembler User's Guide

8-22

em_read

Read Execution Mode

Syntax

em_read dst
reg

Discussion

If the processor is currently in user mode, dist$o 0. If the processor is
currently in supervisor mode, saistto 1.
Expansion: Processor Output
Cx, Jx, Hx modpc dst ,0, dst
shro 1, dst, dst
and Ox1, dst , dst

Pseudo-instructions

faultf, faultt

Fault if false or fault if
true

Syntax

fault*

Discussion

Thefaultt (fault if true) andaultt (fault if false) directives raise a fault
condition based upon a test of the condition code.

The assembler recognizes the following correspondence:

Expansion: Condition Output
True faulto
False faultno

The syntax for the two directives is the same as the syntax for the
corresponding machine instructions in the core architecture.

Example

The following pseudo-instruction becomniedgtnof during assembly:
faultf

8-23

1960 Processor Assembler User's Guide

8-24

ic_disable

Disable Instruction
Cache

Syntax

ic_disable

Discussion

dst
reg

Disables use of the instruction cache. The instruction cache status is
returned in thelstfield. The format of the instruction cache status word is
listed in Table 8-9.

Expansion: Processor Output
Cx Idconst 0x0201, dst
sysctl dst ,0,0
Idconst 0x11230, dst
Jx, Hx icctl 0,0,fp
icctl 4,0, dst
Table 8-9 Instruction Cache Status Word Bits
Bits Use
31:28 reserved
27:16 # of ways-1
15:12 log,(# of sets)
11:8 log,(atoms/line)
7:4 log,(bytes/atom)
3:1 reserved
0 1 = instruction cache enabled

0 = instruction cache disabled

Pseudo-instructions

ic_enable
Enable Instruction
Cache
Syntax
ic_enable dst
reg
Discussion

Enables use of the instruction cache. The instruction cache status is
returned in thelstfield. The format of the instruction cache status word is
listed in Table 8-9.
Expansion: Processor Output
Cx Idconst 0x0200, dst
sysctl dst ,0,0
Idconst 0x11231, dst
Jx, Hx icctl 1,0,fp
icctl 4,0, dst

8-25

1960 Processor Assembler User's Guide

ic_invalidate
Invalidate Instruction
Cache
Syntax
ic_invalidate dst
reg
Discussion

Invalidates the instruction cache. The instruction cache status is returned
in thedstfield. Bit zero ofdstis always set to 1 for Cx processors, even if
the instruction cache is disabled. The format of the instruction cache status
word is listed in Table 8-9.

Expansion: Processor Output
Cx Idconst 0x0100, dst
sysctl dst ,0,0
Idconst 0x11231, dst
Jx, Hx icctl 2,0,fp
icctl 4,0, dst

8-26

Pseudo-instructions

ic_load lock

Load and Lock
Instruction Cache

Syntax

ic_load_lock addr, src/dst
reg reg

Discussion

Loadssrc/dstblocks into the instruction cache fraaddr. Locks the
affected region of the instruction cache.

Expansion: Processor Output
Jx, Hx icctl 3, addr , src/dst

insn_trace_mode_read

Read Instruction Trace
Mode

Syntax

insn_trace_mode_read dst
reg

Discussion

Setsdstto 1 if instruction trace mode is enabled, and O if instruction trace
mode is disabled.

8-27

1960 Processor Assembler User's Guide

Expansion: Processor Output
Cx, Jx, Hx modtc 0,0, dst
shro 1, dst, dst
and Ox1, dst , dst

insn_trace_mode_set

Set Instruction Trace
Mode

Syntax

insn_trace_mode_set src/dst
reg

Discussion

If src/dsf0] is 1, enables instruction trace mode. Otherwise, disables
instruction trace modesrc/dstis set to 1 if instruction trace mode was
initially enabled and O if it was initially disabled.
Expansion: Processor Output
Cx, Jx, Hx shlo 1, src/dst,src/dst

modtc 0x2, src/dst src/dst

shro 1, src/dst src/dst

and Ox1, src/dst,src/dst

mov ¢g0,g0

mov ¢g0,g0

8-28

Pseudo-instructions

interrupt_state
Read Interrupt State

Syntax
interrupt_state dst
reg
Discussion
Setsdstto 1 if interrupts are enabled and to O if they are disabled.
Expansion: Processor Output
Jx, Hx intctl 2, dst

ip_read

Read Instruction Pointer

Syntax

ip_read dst
reg

Discussion

Setsdstto the run-time address of the next instruction.

Expansion: Processor Output
Cx, Jx, Hx Ida (ip), dst

8-29

1960 Processor Assembler User's Guide

8-30

ldconst

Load constant

Syntax

Idconst src , dst
lit32 reg

Discussion

Immediate values that cannot be expressed as literals must be explicitly
loaded into a register before they can be used as operands for machine
instructions. For integer and ordinal operands, this loading can be done
with theldconst directive.

The assembler selects the most efficient instruction available to place the
value in the register. This instruction can be a move, add, subtract, shift, or
load address, depending on the valusrof.

Expansion: Value of src Output
-1 through -31 subo src,0, dst
0-31 mov src , dst
32-62 addo 31, src -31, dst
abt shlo b, a, dst
default lda src, dst

T0<=a<=31,0<=b<=31,a"<2%

NOTE. The listing file generated by the assembler does not indicate what
instruction (in the object module) substitutes forithenst directive
specified in the source file. To determine what is assembled, display the
instruction in the object module with the disassembler (dumper).

Pseudo-instructions

Example

In the following lines, you can see some of the various ways to load
constants with this pseudo-instruction:

ldconst and assembled instruction
Idconst 0, g5 /* mov 0,95 */
Idconst 31, g5 /* mov 31,95 */
Idconst 32, g5 /* addo 1,31,95 */

addr:

Idconst 62, g5 /* addo 31,31,g5 */
Idconst 3<<8, g5 /* shlo 8,3,095 */
Idconst 0x1234, g5 /* Ida 0x1234,g5 */
Idconst -1, g5 /* subo 1,0,g5 */
Idconst -31, g5 /* subo 31,0,g5 */
Idconst addr, g5 /* |da addr,g5 */

pri_read

Read Execution Priority

Syntax
pri_read dst
reg
Discussion
Copies the current execution priority irde{4:0] and zeroes into
ds{31:5].
Expansion: Processor Output

Cx, Jx, Hx modpc dst ,0, dst
shro 16, dst, dst
and Ox1f, dst , dst

8-31

1960 Processor Assembler User's Guide

8-32

SW_reinit

Reinitialize Processor

Expansion:

Syntax

sw_reinit new_ip , new_PRCB
reg reg

Discussion

Re-initialize the processor, usingw_PRCBas the new process control
block. Continues execution after re-initialization beginning at the address
found innew_ip

Processor Output
Cx, Jx, Hx Idconst 0x0300,SCRATCH
sysctl SCRATCH, new_ip , new_PRCB
SCRATCH is any register except new_ip

#or new_PRCB

Pseudo-instructions

trace_enable set
Set Trace Enable Bit

Syntax

trace_enable_set src/dst
reg

Discussion

Sets trace enable bit based on valusrofdsf0]. Setssrc/dstto 1 if
tracing was previously enabled or O if it was disabled.

Expansion: Processor Output
Cx, Jx, Hx modpc src/dst ,0x1, src/dst
and src/dst ,0x1, src/dst

8-33

Example Programs

This chapter contains sample code, in two sections. The examples in the
first section use the core instructions, and those in the second section use
floating-point instructions. See the processor user’'s manuals for complete
lists of the instructions supported by each i960 architecture.

Note that the code shown in this chapter has not been tested on the current
version of the assembler toolset. Therefore it is shown for general learning
purposes only, and is not provided on the distribution media.

Examples Using the Core Instruction Set

The examples in this section use the core instructions described in

Chapter 8. The example programs show:

» Code to enable interrupts to the i960 processor from an 8259A
Programmable Interrupt Controller.

« Sending a breakpoint IAC message to the processor using an assembly
language block in a C routine.

« Performing a bitblt code routine.

« Matrix multiplication with core instructions only.

e C-style string comparisons speed-optimized for a K-series 1960
processor.

9-1

1960 Processor Assembler User's Guide

9-2

Enable and Count Interrupts From 8259A

The following source code shows how to initialize an 8259A
Programmable Interrupt Controller to interrupt the i960 processor. The
routine counts the number of interrupts generated.

[rrxx Enable Interrupts Fkxk|
.globl _enable_ints
_enable_ints:
Ida crO_address, r3 [* cntrl stat reg addr */
Idos (r3), r4 /* crO is a 16 bit reg */
Ida Oxff7f, r5 /* mask for enints# bit */
and r5, r4, r4 /* set enints# bit low */
stos r4, (r3)
ret

/* NOTE:the EXV complements and rotates the data bus */
/* left 3 bits. This is compensated for in 8259 read */
/* and write routines. The bits below are those that */

/* 8259 must see. */
1* */
/* Initialize the 8259 */

1* */
.globl _init_8259

_init_8259:

/* Write ICW1: ICW4 req., 1 8259 level triggered */
Ida ICW1_ADR, g0
Ida ICW1_DATA, g1
call _write_8259

/* Write ICW2: Vector base of 08 */
Ida ICW2_ADR, g0
Ida ICW2_DATA, g1
call _write_8259

/* Write ICW4: 86/88 mode, normal EOI, non-buffered
not special fully nested */

Ida ICW4-ADR, g0

Ida ICW4-DATA, gl

call _write_8259

Example Programs

/* Write OCWL1, this is the interrupt mask register, a 0 in
a bit in this register means that the interrupt is
enabled. */

lda OCW1_ADR, g0

lda OCW1_DATA, gl

call _write_8259

ret
I* */
/* WRITE 8259 ROUTINE */
I* */

[* Write_8259 routine. Pass 8259 port address in g0 and
the data as it should appear to the 8259 in the lower byte
of g1. This routine will invert and rotate the data,

write it to the 8259 and pause so that any subsequent
accesses to the 8259 will not violate the recovery time.

*/

_write_8259:
Ida 0x000000ff, r3 /* mask to clear bytes 1,2,3 */
and r3, g1, gl
shlo 03, g1, g1 /* shift data left 3 bits. */
Ida 0x00000700, r3 /* mask all bits but 8,9,10 */
and r3, g1, r3 /*bits 8,9,10 become hits 0,1,2 */
shro 08, r3,r3 /* shift bits down to byte 0 */

or r3,91, 91 [* combine upper 5 bits in g1 */
not g1, gl [* invert data */
stob g1, (g0) /* write byte to the 8259 */

bal waiting_loop /* wait so 8259 recovery time
guaranteed */
ret

.globl _write_count
_write_count:
Ida cra_address, r3
Ida Ox2a, r4
stob r4, (r3)
bal waiting_loop

Ida cra_address, r3
Ida 0x3a, r4

stob r4, (r3)

bal waiting_loop

9-3

1960 Processor Assembler User's Guide

9-4

Ida cra_address, r3
Ida Ox1a, r4

stob r4, (r3)

bal waiting_loop
Ida mra_address, r3
Ida 0x02, r4

stob r4, (r3)

bal waiting_loop

Ida mrb_address, r3
Ida 0x07, r4

stob r4, (r3)

bal waiting_loop

Ida crb_address, r3
Ida Ox2a, r4

stob r4, (r3)

bal waiting_loop

Ida crb_address, r3
Ida 0x3a, r4

stob r4, (r3)

bal waiting_loop

Ida crb_address, r3
Ida Oxla,r4

stob r4, (r3)

bal waiting_loop

Ida mra_address, r3
Ida 0x02, r4

stob r4, (r3)

bal waiting_loop

Ida mrb_address, r3
Ida 0x07, r4

stob r4, (r3)

bal waiting_loop

Ida sra_address, r3
Ida Oxbb, r4

stob r4, (r3)

bal waiting_loop

Example Programs

Ida srb_address, r3
Ida Oxbb, r4

stob r4, (r3)

bal waiting_loop

Ida input_port_address, r3
Ida 0xf4, r4

stob r4, (r3)

bal waiting_loop

Ida acr_address, r3

Ida 0xf0, r4

stob r4, (r3)

bal waiting_loop

Ida imr_address, r3
Ida O0x44, r4

stob r4, (r3)

bal waiting_loop

Ida ctur_address, r3
Ida ctur_data, r4
stob r4, (r3)

bal waiting_loop

Ida ctlr_address, r3
Ida ctlr_data, r4
stob r4, (r3)

bal waiting_loop

Ida cra_address, r3
Ida 0x05, r4

stob r4, (r3)

bal waiting_loop

Ida CLOCK_ADR, r3 /* zero out clock count */
Ida 0, r4

st r4, (r3)

ret

/*
Wait loop required after each access to DUART registers.
*/

9-5

1960 Processor Assembler User's Guide

waiting_loop:
Ida srO_address, r8 /* BST access;
DUART recovery time */

waiting_loopl:
Idob (r8), r8
bx (gl4) /* bal return */
#include "fractal.h”
#include "ints.h"
#include "mp_system.h"

text
.globl _clock_int
_clock_int:
mov gl4,rl4 /* save bal register */
Ida crO_address, r3
Idos (r3), r4
Ida 0x20, r5
or r4,r5,r4
stos r4, (r3)

/* update clock */

Ilda CLOCK_ADR, r6
atadd r6, 1, r7
bal waiting_loop

not r5, r5
and r5, r4, r4
stos r4, (r3)

/*
check clock, if time is 1 second, then signal somebody
*/

Ilda SECONDS_DIVIDE, r10
modi ri10, r7, r7
cmpibne 0, r7, cont_here

Ida Oxffffffff,r7

Ida 8(r6), r10

Ida 24(r6), r8

stl r10, 24(r6) /* store to previous answer */
subc r8, r10, r8

subc r9, rl1, r9

Example Programs

Idl 16(r6), r10
Idl 32(r6), r4

stl r10, 32(r6) /* store to previous answer */

subc r4,r10, r4

subc r5,r11, r5

addc r4,r8, r4

addc r5, r9, r5

/* do the fp shuffle --- */

movrl fp3, r8
cvtilr r4, fp3
movrl fp3, rd

Ida 40,r11
addo ri11, r6, r11
atmod rl11, r7, r4 /* cumulate idle time */

movrl 18, fp3
lda 44,rl11

addo ri11, r6, r11

atmod r11, r7, r5 /* cumulate idle time */
lda CLOCK_PORT,r10

signal r10

/* acknowledge to 8259 that all is well */

cont_here:
Ida ADJUSTED_EOI, r4
lda OCW2_ADR, r5
stob r4, r5)
mov rl4, gl4
ret

waiting_loop:
Ida srO_address, r8

waiting_loop1:
Idob (r8), r8
bx (g14)

.globl _no_int
_ho_int:
Ida BASE_ADR, r5
Ida ADJUSTED_EOI, r4
stob r4, (r5)
ret

9-7

1960 Processor Assembler User's Guide

9-8

Figure 9-1

Send an IAC to the Processor

Although written in the C language, this source listing includes an ASM
block that actually sends a breakpoint IAC to the processor. The code
assumes that breakpoint trace mode is set in the trace controls word and
that the trace enable flag of the process controls word is also set.

Figure 9-1 shows the format of the data structure used in the program.

IAC Message Structure

Message Format

31 02423 165 00000000
Message Type Field 1 Field 2
-~ Fieds
" Field4
" Field5

0SD1137

/* iac structure */
struct x iac_msg {
unsigned short field2;
unsigned char fieldl;
unsigned char message_type;
unsigned int field3;
unsigned int field4;
unsigned int field5;
}iac_struct;

/* This routine issues an IAC message to the local
processor on which the program resides. It accepts a
pointer to a preformed IAC message as input, and uses the
synmovq instruction to send the IAC to the processor. */

asm send_iac (struct iac_msg * base_msg)

{

%reglit base_msg; tmpreg myreg;

Example Programs

Ida Oxff000010, myreg /* load local IAC address */
synmovq myreg, base_msg
/* issue IAC message */

%error;

}

/ kool /
/* Send a breakpoint IAC to the processor */
/* */
/* (don't forget to turn on breakpoints in the */
[* trace control register) */
/ kool /
set_breakpt(addrl, addr2)
unsigned int addrl;
unsigned int addr2;
{
iac_struct.message_type = 0x8f;
iac_struct.field3 = addrl;
iac_struct.field4 = addr2;
send_iac(&iac_struct);

}

Perform a BitBIt Operation

The following example showskétblt code routine. The typical size of a

character stored in memory is 32 x 40 bits. Optimization techniques

include:

» use of the Idconst pseudo-instruction

« use of Idg and stq to move data blocks

» register bypassing for the or instructions within the loop

» instructions are placed between compare-and-branch; the branch
instruction therefore uses 0 clocks

» register loading is done before the data is actually used; other
instructions are executed while waiting for the load

9-9

1960 Processor Assembler User's Guide

text
.globl _main

_main:
Ida 0x30000, r4 /* source address in r4 */
Ida 0x40000, r5 /* destination address in r5 */
Idconst 7,r6 /* word count in r6 */
divi 4,r6,r7 /*quad countinr7 */
modi 4,r6,r6 /* remainder word count in r6 */
Idconst 4,r8 /* offsetin r8 */
Idg (r4), g0
addi 0x10, r4, r4 /[* increment source addr 4 words */
Idconst 32, r9
subo r8,r9,r9 /*32 - offset */
Idconst 0,g4 /* clear g4 for carry in */

cmpibge 0, r7, single
/* no quad words jump to single */

loop:
shro r9, g4, g5 /* shift carry rt. by 32-offset */
shlo r8, g0, g6 /* shift srcl left by offset */
or g5,96,98 /*combine */
shro r9, g0, g12 /* shift srcl right by 32-offset */
shlo r8, g1, g13 /* shift src2 left by offset */
or g12,913,99 /* combine */
shro r9, g1, g13 /* shift src2 right by 32-offset */
shlo 8, g2, r14 /* shift src3 left by offset */
or g13,r14,g10 /* combine */
shro r9, g2, g7 /* shift src3 right 32-offset */
shlo r8, g3, g1l /* shift src4 left by offset */
mov g3, g4 [* save src 4 for carry in */
Idg (r4), g0 [* start next load */
or g7,911,gll /* combine */
addi 0x10, r4, r4 [* increment src addr by 4 words */
subi 1,r7,r7 [* decrement quad count */
cmpi 0, r7 /* test if done */
stq g8, (r5) [* store 4 words in dest */
addi 0x10, r5, r5 /* increment dest addr 4 words */
bl loop /* if not done loop back */

cmpibge O, r6, end /* if no remainder jump to end */
single:
subi 0xc, r4, r4 /* getrid of extra loads */

9-10

Example Programs

cont:
shro 19, g4, g5 /* shift carry right by 32-offset */
mov g0, g4 [* save src for carry in */
shlo r8, g0, g6 /* shift src left by offset */
Id (r4), g0 [* start next load */
addi 0x4, r4, r4 [* increment src addr */
or g5, g6, rl4 /* combine */
subi 1, r6,r6 [* decrement remainder */
cmpi 0, r6é [* test if done */
st rl4, (r5) /* store word in dest */
addi 0x4, r5, r5 /* increment dest addr */
bl cont [* if not done loop back */

end: ret
fmark
.word 0x00000000
.word 0x00000000

Perform Matrix Multiplication

The following example shows an optimized version of a 1 x 3 matrix
multiply, using only ordinal and integer arithmetic.

/*
g7 inputimage vector pt
g3 output sum
rl2 output line vector pt
g0-2 all,al2,al3 (kernel)
g4-6 a2l,a22,a23
g8-10 a31,a32,a33
r8-10 i1,i2,i3 (input image vector)
*/
text
.globl _fast3x3
_fast3x3:

mov g0, r8 /* 3x3 vector */

mov g1, 97 /*image pointer */
subo 1, g2, r3 /*image size */

mov g3,rl2 /* output vector point */

9-11

1960 Processor Assembler User's Guide

Idt (r8), g0 /* input 3x3 kernel */
Idt 16(r8), g4
ldt 32(r8), g8

Joop1:

Idob (g7), r8 /*load in image and convolve */
xor g3, g3, g3

muli r8, g0, g3

Idob 1(g7), r9

muli r9, g1, r4

addi r4, g3, g3

Idob 2(g7), r10

muli r10, g2, r4

addi r4, g3, g3

Idob 640(g7), r8
muli r8, g4, r4
addi r4, g3, g3
Idob 641(g7), r9
muli r9, g5, r4
addi r4, g3, g3
Idob 642(g7), r10
muli r10, g6, r4
addi r4, g3, g3

Idob 1280(g7), r8
muli r8, g8, r4
addi r4, g3, g3
Idob 1281(g7), r9
muli r9, g9, r4
addi r4, g3, g3
Idob 1282(g7), r10
muli r10, g10, r4
addi r4, g3, g3

addo 1, g7,g7 [*increment image pointer */
addo 1,r12,rl12 /*increment output line pointer */
cmpi 0, g3 /*if sum <0, sum=0%*
ble cont
Ida 0, g3
cont:
stob g3, (r12)
cmpdeco O, r3, r3
bl .loopl
ret

9-12

Example Programs

Compare Strings

The following subroutine compares two C-style null-terminated strings and
returns an indication of the outcome of the comparison. The application
uses thecanbyte instruction to search for the null string terminator.

.globl _strcmp
leafproc _strcmp, __strcmp
.align 2

rett:
ret
_strcmp:
Ida .rett,gl4
__strcmp:
Id (g0), g5 # fetch first word of source_1
mov g14,97 # preserve return address
Idconst 0,14 # conform to register conventions
Idconst 0xff,g4 # byte extraction mask
.wloop:
addo 4,90,g0 # post-increment source_1 byte ptr
Id (g1), g3 # fetch word of source_2
scanbyte 0,05 # does word have a null byte?
mov g5,02 # save a copy of the source_1 word
be .cloop # branch if null byte encountered
cmpo g2,03 # are the source words the same?
addo 4,91,g1 # post-increment source_2 byte ptr
Id (g0), g5 # fetch ahead next word of source_1
be .wloop # fall thru if words are unequal

.cloop:

and g4,02,g5 # extract and compare individual bytes
and g4,03,96

cmpobne @5,g6,.diff # if they diff, go return 1 or -1
cmpo 0,06 # they are the same. Are they null?
shlo 8,04,g4 # position mask for next extraction

bne .cloop # loop if null not encountered

9-13

1960 Processor Assembler User's Guide

9-14

mov 0,90 # return equality
bx (g7)

diff:

bl .neg

mov 1,90

bx (g7)

.neg:

subi 1,0,90

.exit:

bx (g7)

Examples Using Floating-point Instructions

The examples in this section use the on-chip numerics instructions
described in Chapter 8. The examples show:

» code optimization by reordering

* matrix multiplication with real arithmetic

« basic numerics operations using load, move, and store

e exponentiate with arbitrary exponent using rounding and scaling
* rectangular to polar conversions using trigopnometric functions

» acall to the fault handler

Optimize a Numerics Application

This example shows two programs. The secoredifast |, is a
speed-optimized version of the first routin@stslow

text

.align 4

.globl _testslow
_testslow:

Idconst 999999, g3

mov g0, g13 # load address pointer
mov g1, rl2 # load address pointer
Idconst 0, r3 # store loop counter

Idl (g13),r14

Idl three_point_four,r10

Example Programs

loop_begin:

Idl (g13), r14
mulrl r14,r10, r8
stl 18, (r12)

Idl 8(g13),r6
mulrl r6, r10, r4
stl r4, 8(r12)
addo 1,r3,r3
cmpi r3,g3

ble loop_begin
ret

.data
.align 4
three_point_four:
#
below value is 3.4 in 64 bit real format
#
.word 858993459
.word 1074475827
text
.align 4
.globl _testfast
_testfast:
Idconst 999999, g3
mov g0, g13 # load address pointer
mov g1, r14 # load address pointer
Idconst 0, r3 # store loop counter
Idl (g13),r12
Idl three_point_four,r10

loop_begin:

Idl 8(g13), r4
mulrl r10, r12, r8
stl 18, (r14)
mulrl r4, r10, r6
stl r6, 8(r14)

Idl (g13), r12
addo 1,r3,r3
cmpi r3, g3

ble loop_begin
ret

9-15

1960 Processor Assembler User's Guide

9-16

.data
.align 4
three_point_four:
#
below value is 3.4 in 64 bit real format
#
.word 858993459
.word 1074475827

Perform Matrix Multiplication

The following source code shows an optimized version of a 1 x 4 matrix
multiply routine using real-valued arithmetic. The C program in the
example sets up a sample matrix and uses the C version of the matrix
multiply. Compare the C and assembly language versions.

Assembly Code

/*

r3 no. of vectors

g7 input vector pt

g3 output vector pt

g0-2 all,al?,al3,al4d

g4-6 a2l,a22,a23,a24

08-10 a3l,a32,a33,a34

r4-7 adl,a42,a43,a44 |/ translation vectors /
r8-11 i1,i2,i3,i4 /input vector/
r12-15 01,02,03,04 /output vector/

fastlx4 does translation and rotation of the
image supplied
*/

text

.globl _fastix4
_fastix4:
mov g0,r8 /* 4x4 vector */
subo 1,92,r3 /* image size */
movrl g4,fp0 /* translate x */
movr fp0,r4
movrl g6,fp0 /* translate y */

Example Programs

movr fp0,r5

movrl g8,fp0 /* translate z */
movr fp0,r6

mov g1,97 /*image pointer */
Idt (r8), g0

Idt 16(r8), g4

ldt 32(r8), g8

mov r4,r4

Joop:
Idt (g7),r8

mulr r8, g0, fp0
mulr r9, g4, fpl
addr fp1, fp0, fp0
mulr r10, g8, fpl
addr fp1, fp0, fp0
addr r4, fp0, r12

mulr r8, g1, fp2
mulr r9, g5, fp3
addr fp3, fp2, fp2
mulr r10, g9, fp3
addr fp3, fp2, fp2
addr r5, fp2, r13

mulr r8, g2, fp0
mulr r9, g6, fpl
addr fpl, fp0, fp0
mulr rl10, g10, fpl
addr fp1, fp0, fp0
addr r6, fp0, r14

stt r12, (g3)
addo 12, g3, g3
addo 12, g7, g7
cmpdeco O, r3, r3
bl .loop

ret

9-17

1960 Processor Assembler User's Guide

9-18

C Code

#include <stdio.h>

main ()

{

static float a[4][4] = {
{0.0, 0.1, 0.2, 0.3},
{1.0,1.1,1.2,1.3},
{2.0,2.1, 2.2, 2.3},
{3.0,3.1, 3.2, 3.3}};

static float b[4] = {0.0, 0.1, 0.2, 0.3};
float c[4];

fastlx4(a, b, c);

}

/ /

/* FAST1X4 */

/* outer loop is the index for each column */
/* of the kernel */

* */

/* inner loop is the index for each row of */
/* the kernel, and the index for the source */

/* matrix */

[* */

/* results are stored in a 1x4 matrix */
1* */

[* input: kernel - 4x4 matrix */

1* source - 1x4 matrix */

1* */

/* output: dest - 1x4 matrix */

/ /

fastix4 (kernel, source, dest)
float kernel [4][4];

float source[];

float dest([];

.

int ij;

float temp;

Example Programs

for (i=0; i<=3; i++) {
temp = 0.0;
for (j=0; j<=3; j++) {

temp += sourcel[j] * kernellj][i];

}
dest[i] = temp;

}

}

Perform Basic Numerics Operations

This example represents a source code fragment that does many of the
basic numerics operations.

Assume: srcl = 32-bit real value in memory
src2 = 96-bit extended real
dst uninitialized in .bss section
(all should be appropriately aligned)
Id srcl, g0 # load 32-bit real
Idt src2, g4 # load 96-bit extended real
movr g0, fp0 # convert 32 to 80-bit
cpysre fp2, g4, fp3 # copy sign
movrl fp3, g0 # convert 80 to 64-bit real
stl g0, dst # store dual register long

Exponentiate With an Arbitrary Exponent

This example shows an assembly language code fragment to handle
exponentiation with an arbitrary exponent.

Assume register g0 = real exponent
roundr g0, fp0 # fp0 = integer part
subr fp0, g0, g0 # g0 = fractional part
expr go, g0 #90=2"g0-1
addr 1.0, g0, g0 # compensate for -1
cvtri fp0, g1 g0 # exponentiate integer

and scale result

9-19

1960 Processor Assembler User's Guide

9-20

Convert Between Coordinate Systems

This source code fragment converts from a rectangular to a polar
coordinate system and vice-versa. These routines use several of the real
arithmetic and trigonometric functions.

Rectangular to polar conversion
Assume X, y are 64-bit reals in memory
r, theta are quad-aligned 96-bit locations

rect_to_polar:
Idl x, g0 # load x coordinate
Idl y, g2 # load y coordinate
atanrl g0, g2, fp0 # fp0 = arctan y/x
mulrl g0, g0, g0 # square X
mulrl g2, 92,92 #squarey
addrl g0, 92,094 #g4=x"2+y"2
sqrtrl g4, fpl #fpl =sqrt g4
movre fp0, g8 # convert theta to 96-bit
movre fpl, gl2 # convertr to 96-bit
stt g8, theta # store extended angle

stt gl2,r # store extended radius
ret

#

Polar to rectangular conversion

Assume:

r, theta quad-aligned 64-bit real values
X, y are 96-bit locations in memory

polar_to_rect:
Idl r, g0 # load radius
Idl theta, g2 # load angle
cosrl go, fp0 # fp0 = cos theta
sinrl go, fpl # fpl = sin theta
mulrl fp0, go0, fp0 # fp0 = r cos theta
mulrl fpl, go, fpl # fpl =r sin theta
movre fp0, g8 # convert x to 96-bit
movre fpl, gl2 # converty to 96-bit

stt g8, x # store extended x
stt gl2,y # store extended y
ret

Example Programs

Figure 9-2

Retrieve Fault Record Pointer

The following routine demonstrates how to retrieve the fault record from
the stack after a floating-point fault has occurred. The fault handler calls
this routine immediately after the fault is signaled. The routine continues
execution at the point of interruption afterwards.

The proceduresturn_fault_ptr returns the information caused by a

fault to the programmer, as follows:

» The procedure returns a pointer to the fault record.

» The procedure copies all global/local registers at the time of the fault
into a global structure. This structure is an array of 32 unsigned
integers, which contain g0 through g15 and r0 through r15. Use a
global structure to avoid passing parameters and corrupting the
registers. The programmer assumes that this routine is called directly
by the fault handler so it uses that knowledge to unwind the stack.

» The stack provides the linkage that you use to find the fault data, as
shown in Figure 9-2.

Stack For Fault Handler

Fault Data

Fault Handler PFP

The Procedure

0OsSD1136

9-21

1960 Processor Assembler User's Guide

.globl _return_fault_ptr
_return_fault_ptr:
Ida 0x001f0000, r8 # load pc mask
Ida 0x001f0001, r9 # load pc mask

modpc r8, 19, r8 # set priority to MAX
to avoid interrupts
flushreg # make stack current

Ida _register_set, r5

stq g0, (r5) # store global registers
stq g4, 16(r5)

stq g8, 32(r5)

stq gl12, 48(r5)

lda OxffffffcO, r13 # PFP mask

Id (pfp), r6 # chain back past previous call
and r6, r13, r6 # mask off return bits
Idg (r6), r8 # load local registers

stq r8, 64(r5) # store local registers
Idg 16(r6), r8 # load local registers
stq r8, 80(r5) # store local registers
Idg 32(r6), r8 # load local registers
stq r8, 96(r5) # store local registers
Idg 48(r6), r8 # load local registers
stq r8, 112(r5) # store local registers

Idconst 48, r3 # length of fault record
subo r3, pfp, g0 # store start of fault to g0
Idg 32(g0), r8 # get pc, ac, ip

stl r8, 128(r5) # store pc, ac

st rll, 136(r5) # store ip

Idconst Oxffffffff, r13 # load mask

Idconst 0, r14 # turn off tracing in monitor
modtc rl3,rl4,rl4 # getold trace controls
st rl4, 140(r5) # and store to memory

ret # and return it to handler

.globl _begin
_begin:

Idconst _register_set, 15

Idconst Oxffffffff, r6 # load mask

Id 140(r5), r14 # load program trace
modtc r6, rl4,rl4 # set trace controls

9-22

Example Programs

Idconst 1,r7 #load bit
modpc 17, r7,r7 # and restore

callx (g0) # vector off to routine
ret # should never return,
but just in case

.globl _continue_execution
_continue_execution:

call restore_state

ret # return to procedure

restore_state:

flushreg # make stack current
AND.. Invalidate cache

Ida _register_set, r5

Id 60(r5), r15 # get frame ptr

Ida Oxffffffff, r6 # load mask

Id 132(r5), r7 # bring in stored ac
modac r6, r7, r7 # and restore

st g0, 8(rl5) # store ip in return ptr
Idg (r5), g0 # load 1st 4 globals
Idg 16(r5), g4 # load next 4 globals
Idg 32(r5), g8 # load next 4 globals
Idg 48(r5), g12 # and restore

ret

.data
.globl _register_set

_register_set:
.space 160 # reserve storage for registers

9-23

Glossary

absolute expression

absolute value

address space

addressing modes

alignment (memory)

alignment (register)

ASCII-coded decimal

assembler directive

A valid assembly language symbol or expression that, when
evaluated, produces a value that does not change with
relocation at link time.

A fixed number directly calculated by the assembler and
used in the assembly. Absolute values can be used in
assembly language expressions.

The range of addresses available to a process.

Methods available for instructions to specify a memory
address as an operand. The range of addressing modes for
each instruction depends on the instruction type.

The allocation of data in memory relative to appropriate
boundaries for efficient processing. For example, data words
(4 bytes) must be located at memory addresses divisible by 4.

When a single instruction accesses a dual-register group, the
register specified in the instruction must be even numbered
(e.g.go, r2, g6). If an instruction accesses a triple- or
quad-register group, the number of the register specified
must be a multiple of four (e.qgo, g4, r8).

A data word containing a decimal digit (0 - 9) encoded in the
four low-order bits.

A source code statement that indicates assembly information
other than machine instructions to the assembler (e.g., debug
information and data entries).

Glossary-1

1960 Processor Assembler User's Guide

big-endian architecture

bit field
burst access

calling convention

COFF (Common Object
File Format)

comparand

condition code

core architecture

directive

double-word

Glossary-2

The bytes follow a left-to-right order from the most
significant bit to least significant bit (example: HP 9000
Series 300 workstations).

A contiguous series of up to 31 bits in a data word, specified
by the starting bit position and field length.

A technique that allows the processor to execute multiple
data cycles after a single address cycle.

The set of instructions inserted in the object code by a
language processor to handle parameter passing, stack and
register use, and return values in a function call.

A format for storing file and section headers, relocation
information, symbol tables, and other components of an
object file. When you invoke the assembleg@&®60c , the
assembler generates output in this format.

Instruction operand used in a comparison that sets the
condition code.

Three bits that can be set by the processor as a result of
comparisons and other operations. The condition code bits
can be tested by running programs.

A set of processor features available across all i960
processors for supporting ordinal and integer arithmetic,
faults, interrupts, etc.

Seassembler directive

64 bits of data. Double-word data is also called long data,
and must be aligned to 8 byte boundaries for efficient use by
load and store instructions.

Glossary

ELF (Executable and

! The Intel 80960 ABI-compliant object module format.
Linkable Format)

When invoked with thgas960e command, the assembler
emits this format.

exception An unusual condition that detected by the processor as the
result of instruction execution. See alaalt.

extended-real IEEE standard 80-bit real number that can be processed in an
80-bit floating-point register. A 96-bit extended-real value is
the same as the 80-bit extended-real value with the
most-significant 16 bits ignored. A 96-bit extended-real
value can be loaded into an aligned global or local
triple-register group.

external reference A symbol in an object module that refers to a location in
another object module. The linker resolves external
references when creating an executable module.

fatal error An error encountered during assembly that terminates the
assembly process without producing object code.

fault An event that the processor generates to indicate that, while
executing a program, a condition arose that could cause the
processor to go down a wrong and possible disastrous path.
One example of a fault condition is a divisor operand of zero
in a divide operation: another example is an instruction with
an invalid opcode.

floating-point format IEEE standard formats for floating-point, or real, numbers.
See also real number formats.

floating-point literals The values +0.0 and +1.0.

floating-point register 80-bit registef® throughfp3 , available on the 1960 KB

processor only.

global register 32-bit registegs throughg15s.

Glossary-3

1960 Processor Assembler User's Guide

half-word

identifier

Immediate value

in-circuit emulator

include file
instruction pointer
instruction set

integer

interactive mode

interrupt

J bit

Glossary-4

16-bit integer or ordinal value. Half-word data is also called
short data. Half-word data must be aligned on even
boundaries for efficient use by the load and store
instructions.

A symbol or name used in the source code for any purpose.

A value that is contained in the machine instruction itself
(e.g., the value 10 in the instructimov 10, r5) The value
must be known at assembly time (i.e., cannot be unresolved).

A software/hardware product used to debug embedded
applications or hardware systems by emulating a particular
processor.

A source text file inserted by the assembler into the primary
source text file.

An internal processor register that contains the address of the
instruction currently being executed.

The set of executable instructions in a given i960
architecture.

A positive or negative whole number or zero. The range of
values that an integer can represent depends on its width (for
example, short, word, or double-word).

An assembler mode of operation that allows direct input
from the standard input device.

A signal to the processor that an external condition requires
immediate attention. An interrupt initiates a predefined
handler, defined in the interrupt table, to service the
condition.

In IEEE real number formats, a bit which is set (1) for zero
and denormalized finite numbers and clear (0) otherwise.
This bit can be used to detect invalid real numbers.

Glossary

leaf procedure

linker

list file

literal value

little-endian architecture

local register

location counter

long data

long-real

numerics architecture

object code

A local procedure that can be executed by a branch and link
instruction because it doesn’t require that local registers be
saved (rather than a call instruction).

A utility used in preparing object code for execution by
combining object files and resolving external references.

A text file generated by the assembler, containing source
code listing, symbol information, and other information.

A value in a source operand that can be used as immediate
data in the instruction.

The bytes follow a right-to-left order from the most
significant bit to least significant bit, as they do on Intel
processors.

32-bit registers throughr1s .

The current address of an instruction. The location counter
starts at zero and is incremented by the length of each
instruction or data value in the program.

64-bit integer or ordinal value. Long data is also called
double-word data.

IEEE standard 64-bit floating number that can be loaded into
an aligned global or local register pair.

Processor architecture supporting hardware floating-point
arithmetic and trigonometric operations available on the i960
SB/KB processors.

Instructions and associated data for a program, in binary
format. This is the output generated by the assembler and
consumed by the linker.

Glossary-5

1960 Processor Assembler User's Guide

object file The file containing the object module generated by the
assembler when assembly is successful. The output can be
in different formats based on how you invoke the assembler
(COFF forgas960c , ELF forgas960e , and b.out for

gas960).
object module The formatted object code resulting from assembly.
opcode The portion of each machine language instruction that

determines the action caused by the instruction.

operand The argument of an assembly language directive or
instruction that represents data used in the operation.

ordinal An unsigned whole number or zero. The range of values that
an ordinal can represent depends on its width (for example,
short, word, or double-word).

physical address The address of a specific hardware memory location, as sent
over the bus.

pipelining A technique that allows the processor to output the address
of the next bus request during the current data cycle,
maximizing bus efficiency.

position-independent code The code (ext section) or datadata or.bss section) is
and data loaded at a run-time address that is computed as an offset
from a specific location in memory.

precision A measure of the accuracy with which a real number can be
represented.
preprocessor A program that processes an assembly language source file

before the actual assembly process (for example, the macro
processor mpp960).

process An executable module that represents a complete task to the
system.

Glossary-6

Glossary

program sections

protected extension

quad-word

real

real number formats

register

register group

search path

short data

source directory

source file

special function register

Parts of a program containing code (text section), initialized
data (data section), and uninitialized data (bss section). Each
section is handled separately by the linker.

Filename extensions that protect the file from being
overwritten by the assembler. The assembler-protected
extensions are:s , .as , and.asm.

128 bits of data. Quad-word data must be aligned on 16-byte
boundaries for efficient use by load and store instructions.

IEEE standard 32-bit real value that can be loaded into a
single global or local register.

IEEE standard formats for floating-point, or real, numbers:
32-bit (real), 64-bit (long-real), 80- and 96-bit
(extended-real).

Any global registeg@ - g15), local register

(ro -r15), floating-point registerf§0 - fp3), or special
function registergfo - sf4).

A set of 2, 3, or 4 registers that participate in an instruction.
See als@lignment (register)

A list of directories used as possible pathnames to a file.

16-bit integer or ordinal value. Short data is also called
half-word data. Short data must be aligned on even byte
boundaries for efficient use by the load and store
instructions.

The directory containing your primary source file.
The assembly language input to the assembler.

A 32-bit register (sfO - sf4) used to control specific sections
of the processor. These registers can be manipulated like any
other register, but the contents affect the processor’s
behavior directly.

Glossary-7

1960 Processor Assembler User's Guide

stack
stack frame
symbol table

system procedure

triple-word

warning

word

Glossary-8

A portion of memory used by the processor to store call and
return information.

A portion of the stack allocated by a procedure for storing
temporary values until the procedure returns.

A table in the object file containing information about the
symbols used in a program.

A procedure executed by a call systdim () instruction.
The entry point for each system procedure appears in the
system procedure table.

128 bits of data. Triple-word data must be aligned on
16-byte boundaries for efficient use by load and store
instructions.

An indication of an unusual condition encountered during
assembly. In these situations, the assembler issues a message
but continues processing the source file.

32 bits of data. Word data must be aligned on 4-byte
boundaries for efficient use by the load and store
instructions.

Index

- (hyphen), 3-1, 3-2
. (dot), location counter symbol, 5-3

/ (slash), 3-1, 3-2

A

A (Architecture) option, 4-3

.ABORT directive, 5-2, 5-10

a.out object filename, 3-4

absolute expression, defined, Glossary-1
absolute value, defined, Glossary-1
address space, defined, Glossary-1
addressing modes, defined, Glossary-1
.align directive, 5-1, 5-3, 5-11

alignment (memory), defined, Glossary-1
alignment (register), defined, Glossary-1
Allow mixed architectures (x) option, 4-21
Architecture (A) option, 4-3

architectures supported by the assembler, 1-2
arguments in assembler invocation command,

3-2
arithmetic instructions, 7-18, 7-38
ASCIlI-coded decimal, defined, Glossary-1
.ascii directive, 5-1, 5-6, 5-12
.asciz directive, 5-1, 5-6, 5-12

asm960 assembler invocation command, 3-1

assembler

directive, defined, Glossary-1

invocation command, 3-1

search path, default, 3-1
assembling, 3-1 thru 3-9

for the 1960 Rx processor, 2-1

invoking the assembler, 3-1

specifying input files, 3-1

using assembler options, 3-1
assembly language

character set, 7-2

comments, 7-14

constants, 7-3

expressions, 7-7

identifiers, 7-3

labels, 7-6

statement format, 7-1

tokens and separators, 7-3
atomic instructions, 7-35

B

b.out object filename, 3-4
b.out OMF Support, 80960Rx, 2-7

b.out output format

and assembler invocation command, 3-1

default filename, 3-4
Big-endian (G) option, 4-7

Index-1

1960 Processor Assembler User's Guide

big-endian architecture, defined, Glossary-2
Big-Endian Support, 80960Rx, 2-7
bit and bit field instructions, 7-24
bit field, defined, Glossary-2
branch instructions, 7-27

branch pseudo-instructions, 8-2
.bss directive, 5-1, 5-4, 5-13
bswap instructions, 7-25

burst access, Glossary-2

.byte directive, 5-1, 5-6, 5-7, 5-14
byte instructions, 7-24

C

call and return instructions, 7-30

calling convention, defined, Glossary-2
case significance
in assembler invocation command, 3-3
in options, 3-1
in UNIX and DOS, 3-2
significance, 1-3
character constants, 7-5

COFF (Common Object File Format), defined,
Glossary-2

COFF output format
and assembler invocation command, 3-1
default filename, 3-4
.comm directive, 5-1, 5-7, 5-16
comparand, defined, Glossary-2
compare and branch instructions, 7-29
related option, 4-16
compare-and-jump pseudo-instructions, 8-4
comparison and classification instructions, 7-40
comparison instructions, 7-25

Index-2

compatibility

of assembler invocation syntax, 3-1

of releases, 1-2

with compilers, 1-2
compiler

debugging output, 5-8
compiling

for debugging, 5-8
condition code, defined, Glossary-2
conditional arithmetic instructions, 7-19
conditional branch instructions, 7-28
conditional faults pseudo-instructions, 8-4
core architecture, defined, Glossary-2
core instructions, summary, 7-15-7-35
Ctrl+d key combination, 3-5
customer service, 1-5

D

d (Debug symbols) option, 4-6

D (Define symbol) option, 4-4
.data directive, 5-4, 5-17
data movement instructions, 7-15, 7-35
data type conversion instructions, 7-37
debug instructions, 7-32
Debug symbols (d) option, 4-6
debugging, directives for, 5-8
decimal constants, 7-4
decimal instructions, 7-39
.def directive, 5-1, 5-8, 5-18
default
assembler options, 4-1, 4-2
instruction set, 4-3

Index

default (continued)
output filenames, 3-4
search path, 3-1
Define symbol (D) option, 4-4
delimiters, 1-4
.desc directive, 5-1, 5-8, 5-19
.dim directive, 5-8, 5-19
directives
defined, Glossary-2
for controlling the location counter, 5-3
for defining symbols, 5-7
for initializing data, 5-5
for initializing memory, 5-7
for listing control, 5-10
for optimizing, 5-9
for position independence, 5-10
for providing debugger information, 5-8
for specifying the input, 5-3
syntax, 5-2, 5-10
table of, 5-1, 5-2
documents, related, 1-3
dot (.), location counter symbol, 5-3
.double directive, 5-1, 5-6, 5-20
double-word, defined, Glossary-2

E

e.out object filename, 3-4

.eject directive, 5-2, 5-10, 5-21

ELF output format
and assembler invocation command, 3-1
default filename, 3-4

.elf_size directive, 5-1, 5-22

.elf_type directive, 5-1, 5-23

.else directive, 5-1, 5-3, 5-23, 5-31
.endef directive, 5-1, 5-8, 5-18, 5-24
.endif directive, 5-1, 5-3, 5-24, 5-31
environment variables

G960ARCH, 4-3

1960ARCH, 3-7, 4-3

I960BASE, 3-8, 3-9

I960IDENT, 3-8

1960INC, 3-8

1960INC, 4-8

PATH, 3-9

using, 3-6
.equ directive, 5-1, 5-7, 5-24
error messages, 4-21, 6-1
example code, 9-1-9-23
exception, defined, Glossary-3
exponential instructions, 7-42
expressions, types of, 7-10
extended arithmetic instructions, 7-19
.extended directive, 5-1, 5-6, 5-25
extended-real, defined, Glossary-3
extensions

for assembly source filenames, 3-4

for file protection, 3-4

for object filenames, 3-4
external reference, defined, Glossary-3

F

fatal error, defined, Glossary-3

fault instructions, 7-31
fault, defined, Glossary-3
file directive, 5-1, 5-26

1960 Processor Assembler User's Guide

files

object files, 3-4

output, specifying filename, 3-4

source files, 3-5, 3-8
fill directive, 5-1, 5-7, 5-27
.float directive, 5-1, 5-6, 5-28
floating-point

constants, 7-4

format, Glossary-3

literals, 7-5

defined, Glossary-3
register, defined, Glossary-3

G

G (Big-endian) option, 4-7

gas960 assembler invocation command, 3-1
gas960c assembler invocation command, 3-1
gas960e assembler invocation command, 3-1
Generate listing (L) option, 4-10

.global directive, 5-1, 5-7, 5-29

global register, defined, Glossary-3

.globl directive, 5-1, 5-7, 5-29

H

half-word, defined, Glossary-4

Help option (h), 4-2

hexadecimal constants, 7-4

.hword directive, 5-1, 5-6, 5-30, 5-47
hyphen (-), 3-1, 3-2

Index-4

I (Include-file search path) option, 4-8

i (Interactive input) option, 4-9
1960 Rx Processor, 2-1
.ident directive, 5-2, 5-30
identifier, defined, Glossary-4
.if directive, 5-1, 5-3, 5-31
.ifdef directive, 5-1, 5-3, 5-31
.ifndef directive, 5-1, 5-3, 5-31
.ifnotdef directive, 5-1, 5-3, 5-31
immediate value, Glossary-4
in-circuit emulator, defined, Glossary-4
.include directive, 5-1, 5-3, 5-33
include file, defined, Glossary-4
Include-file search path () option, 4-8
input

interactive, 3-5

source files, 3-5
instruction pointer, defined, Glossary-4
instruction set, defined, Glossary-4
instructions, core, 7-15-7-35
instructions, numeric, 7-35-7-43
.int directive, 5-1, 5-6, 5-34, 5-57
integer

constants, 7-4

defined, Glossary-4
interactive input, 3-6
Interactive input (i) option, 4-9
interactive Mode, defined, Glossary-4
interrupt, defined, Glossary-4

Index

J-L

J bit, defined, Glossary-4
Jx Strategy, 2-1
L (Generate listing) option, 4-10
.Ilcomm directive, 5-1, 5-7, 5-34
Jeafproc directive, 5-1, 5-9, 5-35
leaf procedure, defined, Glossary-5
Jine directive, 5-1, 5-8, 5-37
Jink_pix directive, 5-2, 5-10, 5-37, 5-42
linker, defined, Glossary-5
list file, defined, Glossary-5
listing control, directives for, 5-10
ist directive, 5-2, 5-10, 5-38
literal value, defined, Glossary-5
little-endian architecture, defined, Glossary-5
In directive, 5-1, 5-8, 5-38
load instructions, 7-16
load pseudo-instructions, 8-4
local register, Glossary-5
location counter
defined, Glossary-5
symbol (.), 5-3
logarithmic instructions, 7-42
logical instructions, 7-22
.lomem directive, 5-1, 5-39
long data, defined, Glossary-5
Jong directive, 5-1, 5-6, 5-41, 5-57
long-real, defined, Glossary-5
sym directive, 5-1, 5-7, 5-8, 5-24, 5-41

M

manuals, related, 1-3

memory address, notation, 1-5

messages, 4-21, 6-1

migration-enabling pseudo-instructions, 8-2
modulo instructions, 7-21

move instructions, 7-17

N

n (No compare-and-branch replacement)

option, 4-16
name labels, 7-7
new features, 1-1
.nolist directive, 5-2, 5-10, 5-41
numeric labels, 7-7
numerics architecture, defined, Glossary-5
numerics instructions, summary, 7-35-7-43

O

o (Object filename) option, 4-17

object code, defined, Glossary-5
object file, defined, Glossary-6
Object filename (o) option, 4-17
object module, defined, Glossary-6
octal constants, 7-4
opcode, defined, Glossary-6
operand, defined, Glossary-6
operator precedence, 7-9, 7-10
operators, 7-8
optimizing

directives for, 5-9

Index-5

1960 Processor Assembler User's Guide

options
Allow mixed architectures (x), 4-21
and arguments, 3-3
Architecture (A), 4-3
Big-endian (G), 4-7
Debug symbols (d), 4-6
Define symbol (D), 4-4
Generate listing (L), 4-10
Help (h), 4-2
in assembler invocation command, 3-1
Include-file search path (1), 4-8
Interactive input (i), 4-9
multiple, 3-3

No compare-and-branch replacement (n),
4-16

Obiject filename (0), 4-17
Position independence (p), 4-18
table of, 4-1, 4-2
Time stamp (z), 4-23
Translate (t), 4-19
Version (V, v960), 4-20
Warnings (W), 4-21

ordinal constants, 7-4

ordinal, defined, Glossary-6

.org directive, 5-1, 5-3, 5-41

P

p (Position independence) option, 4-18

physical address, defined, Glossary-6
.pic directive, 5-2, 5-10, 5-42

.pid directive, 5-2, 5-10, 5-42
pipelining, defined, Glossary-6

Index-6

position independence
directives for, 5-10
Position independence (p) option, 4-18

position-independent code and data, defined,

Glossary-6
precision, defined, Glossary-6
preprocessor, defined, Glossary-6
process, defined, Glossary-6
processor, instruction set selection, 3-7
processor management instructions, 7-32
program sections, defined, Glossary-7
protected extension, defined, Glossary-7
pseudo-instructions, 8-1 thru 8-31

reference, 8-7 thru 8-33

publications, related, 1-3
punctuation, 1-4

Q-R

quad-word, defined, Glossary-7

real number formats, defined, Glossary-7
real, defined, Glossary-7

register group, defined, Glossary-7
register, defined, Glossary-7

registers, notation, 1-4

remainder instructions, 7-21

rotate instructions, 7-21

Rx Strategy, 2-1

S

scale instructions, 7-42

scanbyte instruction, 7-25
.scl directive, 5-1, 5-8, 5-43

Index

search path

default, 3-1

for assembler, 3-9

include files, 3-8
search path, defined, Glossary-7
.section directive, 5-1, 5-4, 5-44
select instructions, 7-17
.set directive, 5-1, 5-7, 5-24, 5-46
shift instructions, 7-21
short data, defined, Glossary-7
.short directive, 5-1, 5-6, 5-47
sign copying instructions, 7-37
.single directive, 5-1, 5-6, 5-28, 5-48
.size directive, 5-1, 5-8, 5-49
slash (/), 3-1, 3-2
source directory, defined, Glossary-7
source file, defined, Glossary-7
source files

description, 3-5

interactive input, 3-5

protection, 3-6
space between options and arguments, 3-2
.space directive, 5-1, 5-7, 5-50
special characters, 1-4
special function register, Glossary-7
.stabd directive, 5-1, 5-8, 5-51
.stabn directive, 5-1, 5-9, 5-51
.stabs directive, 5-1, 5-9, 5-51
stack frame, defined, Glossary-8
stack, defined, Glossary-8
standards, 1-2
store instructions, 7-16

string constants, 7-6

symbol table, defined, Glossary-8
synchronous instructions, 7-34
.sysproc directive, 5-1, 5-9, 5-52
system procedure, defined, Glossary-8

T

.tag directive, 5-1, 5-8, 5-53

target expression, notation, 1-5
.text directive, 5-1, 5-4, 5-54
Time stamp (z) option, 4-23

[title directive, 5-2, 5-10, 5-55
Translate (t) option, 4-19
trigonometric instructions, 7-41
triple-word, defined, Glossary-8
type conversion instructions, 7-37
.type directive, 5-1, 5-8, 5-55
type propagation in expressions, 7-13
typographical conventions, 1-3

u-v

unconditional branch instructions, 7-28

V (Version) option, 4-20

v960 (Version) option, 4-20
.val directive, 5-1, 5-8, 5-56
version (V, v960) options, 4-20

w

W (Warnings) option, 4-21

warning, defined, Glossary-8
Warnings (W) option, 4-21

Index-7

1960 Processor Assembler User's Guide

word, defined, Glossary-8
.word directive, 5-1, 5-6, 5-57

X-Z

x (Allow mixed architectures) option, 4-21

xlate960 Assembly Language Converter, 2-8
z (Time stamp) option, 4-23

Index-8

	i960® Processor Assembler User's Guide
	Disclaimer
	Contents
	1 Overview
	What’s New in the Assembler for CTOOLS 6.0
	i960 Processor Assembler and Related Tools
	Compatibility and Standards
	About This Manual
	Target Audience
	Conventions

	Customer Service

	2 Writing Assembly Language Code for the i960 Rx Processor
	Introduction
	What is the “Rx Strategy?”
	How Do I Use the Rx Strategy?
	How Do I Use the Jx-Specific Strategy?
	How Do I Decide Which Strategy to Use?
	Writing Assembly Code With the Rx Strategy
	Writing Assembly Code Without the Rx Strategy

	Details of the Rx Strategy
	80960 Instruction Set Support
	Big-Endian Support
	b.out OMF Support

	80960 Assembly Language Converter (xlate960)
	Improved Assembler Pseudo-instruction Support
	Introduction

	3 Invoking the Assembler
	Invocation Command
	Specifying Option Arguments
	Specifying Single and Multiple Options
	Using Uppercase and Lowercase
	Naming the Object File
	Providing Source Input

	Environment Variables
	Selecting the Instruction Set and Libraries
	Defining a Base Directory Path
	Defining an Identification String
	Redirecting Error and Warning Message Output
	Building a Search Path for Include Files
	Building the Search Path for the Assembler Executable

	4 Option Reference
	A: Architecture
	D: Define symbol
	d: Debug symbols
	G: Big-endian target
	I: Include-file search path
	i: Input from stdin
	L: Generate a listing
	n: No compare-and-branch replacement
	o: Object filename
	p: Position independence
	t: Translate
	V, v960: Version
	W: Warnings
	x: Allow mixed architectures
	z: Time stamp

	5 Directives
	Syntax
	Specifying the Input
	Controlling the Location Counter
	Setting the Location Counter to a Specific Value
	Moving the Location Counter to a Section

	Initializing Data
	Initializing Byte, Ordinal, and Integer Data
	Initializing Floating-point Data
	Initializing String Data

	Initializing Blocks of Memory
	Defining Symbols
	Providing Debugger Information
	Optimizing
	Marking Position Independence
	Controlling the Listing
	Directives Reference

	6 Messages
	7 Assembly Language
	Assembly Language Statement Format
	Character Set
	Tokens and Separators
	Identifiers
	Constants
	Simple Constants
	Representing Floating-Point Numbers
	Character Constants
	String Constants

	Labels
	Name (Global) Labels
	Numeric (Local) Labels

	Expressions
	Operators
	Expression Types
	Type Propagation in Expressions

	Comments
	Summary of Core Instructions
	Data Movement
	Ordinal and Integer Arithmetic
	Logical
	Bit, Bit Field, Byte
	Byte Operations
	Comparison
	Branch
	Call and Return
	Fault
	Debug
	Processor Management
	Synchronous (K-series only)
	Atomic

	Summary of On-chip Numerics Instructions
	Data Movment
	Sign Copying
	Data Type Conversion
	Basic Arithmetic
	Decimal
	Comparison and Classification
	Trigonometric Functions
	Logarithmic, Exponential, and Scale

	8 Pseudo-instructions
	Syntax
	Branch Pseudo-instructions
	Migration-enabling Pseudo-instructions
	Conditional Faults Pseudo-instructions
	Load Pseudo-instructions
	Call Pseudo-instructions
	Compare-and-jump Pseudo-instructions
	Pseudo-instructions Reference

	9 Example Programs
	Examples Using the Core Instruction Set
	Enable and Count Interrupts From 8259A
	Send an IAC to the Processor
	Perform a BitBlt Operation
	Perform Matrix Multiplication
	Compare Strings

	Examples Using Floating-point Instructions
	Optimize a Numerics Application
	Perform Matrix Multiplication
	Perform Basic Numerics Operations
	Exponentiate With an Arbitrary Exponent
	Convert Between Coordinate Systems
	Retrieve Fault Record Pointer

	Glossary
	Index

