
 Introduction

IBM 6x86 MICROPROCRSSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

The IBM 6x86** microprocessor is a superscalar,
superpipelined CPU that provides sixth-generation
performance for x86 software. Since the IBM 6x86
CPU is fully compatible with the x86 instruction set,
it is capable of executing a wide range of existing
operating systems and applications, including
Windows 95, DOS, Unix, Windows NT, Novell,
OS/2, and Solaris. The IBM 6x86 CPU achieves top
performance levels through the use of two optimized
superpipelined integer units and an on-chip floating
point unit. The superpipelined architecture reduces

timing constraints and allows the IBM 6x86 CPU to
operate at core frequencies starting at 100 MHz. In
addition, the IBM 6x86 CPU’s integer and floating
point units are optimized for maximum instruction
throughput by using advanced architectural
techniques, including register renaming,
out-of-order execution, data forwarding, branch
prediction, and speculative execution. These design
innovations eliminate many data dependencies and
resource conflicts that provide optimum

performance for Windows 95 software.

Sixth-Generation Superscalar
Superpipelined Architecture

- Dual 7-stage integer pipelines
- High performance on-chip FPU with 64-bit interface
- Operating frequencies of 100 MHz and above
- 16-KByte write-back cache

X86 Instruction Set Compatible
- Runs Windows 95, Windows NT, DOS, UNIX,
 Novell, OS/2, Solaris, and others

Optimum Performance for
Windows® 95

- Intelligent instruction dispatch
- Out-of-order completion
- Register renaming
- Data forwarding
- Branch prediction
- Speculative execution

64-Bit Data Bus
- P54C socket compatible for quick time to market

June 1996

Bus
Control

Control

D63-D0

A31-A3

64

1738501

BE7#-BE0#

CLK

Bus Interface

Unit

Cache Unit

Floating Point Unit

Memory Management Unit

Integer Unit 16 KByte Unified Cache
Data

Address

X Pipe Y Pipe

Instruction Address

32128
Instruction Data

X Data

Y Data

32

32

64

3232

32

32

32

64

Sequence
Control
Lines

Floating Point
 Queue

Floating Point
Processor

X Linear
Address

Y Linear
Address

ID2
AC1
AC2
EX
WB

ID2
AC1
AC2
EX
WB

IF

ID1

FPU
 OpCode

256 Byte Instruction
Line Cache

X Physical
 Address

Y Physical
 Address

ii

iii

© International Business Machines Corporation 1996.
Printed in the United States of America
2-96

All Rights Reserved

© Cyrix Corporation 1996.
© IBM and the IBM logo are registered trademarks of the IBM Corporation.
 © Cyrix is a registered trademark of the Cyrix Corporation.
IBM Microelectronics is a trademark of the IBM Corporation.
 6x86 is a trademark of Cyrix Corporation

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks of
service marks of others.

Product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

IBM Corporation
1000 River Street
Essex Junction, Vermont 05452-4299
United States of America

TABLE OF CONTENTS

iv

1. ARCHITECTURE OVERVIEW
1.1 Major Functional Blocks . .1-1
1.2 Integer Unit . .1-2
1.3 Cache Units. .1-12
1.4 Memory Management Unit. .1-14
1.5 Floating Point Unit . .1-15
1.6 Bus Interface Unit .1-16

2. PROGRAMMING INTERFACE
2.1 Processor Initialization . .2-1
2.2 Instruction Set Overview . .2-3
2.3 Register Sets .2-4
2.4 System Register Set .2-11
2.5 Address Space .2-40
2.6 Memory Addressing Methods .2-41
2.7 Memory Caches .2-52
2.8 Interrupts and Exceptions .2-55
2.9 System Management Mode .2-63
2.10 Shutdown and Halt . .2-69
2.11 Protection . .2-71
2.12 Virtual 8086 Mode . .2-74
2.13 Floating Point Unit Operations . .2-75

3. BUS INTERFACE
3.1 Signal Description Table . .3-2
3.2 Signal Descriptions. .3-7
3.3 Functional Timing .3-25

4. ELECTRICAL SPECIFICATIONS
4.1 Electrical Connections .4-1
4.2 Absolute Maximum Ratings .4-2
4.3 Recommended Operating Conditions .4-3
4.4 DC Characteristics .4-4
4.5 AC Characteristics .4-5

5. MECHANICAL SPECIFICATIONS
5.1 296-Pin SPGA Package .5-1
5.2 Thermal Characteristics .5-6

6. INSTRUCTION SET
6.1 Instruction Set Summary . .6-1
6.2 General Instruction Fields .6-2
6.3 CPUID Instruction .6-11
6.4 Instruction Set Tables .6-12
6.5 FPU Clock Counts .6-29
Index

v

Figure 1-1 Integer Unit . 1-2

Figure 1-2 Cache Unit Operations . 1-13

Figure 1-3 Paging Mechanism within the Memory Management Unit . 1-14

Figure 2-1 Application Register Set . 2-5

Figure 2-2 General Purpose Registers . 2-6

Figure 2-3 Segment Selector in Protected Mode . 2-7

Figure 2-4 EFLAGS Register . 2-9

Figure 2-5 System Register Set. 2-12

Figure 2-6 Control Registers . 2-13

Figure 2-7 Descriptor Table Registers . 2-15

Figure 2-8 Application and System Segment Descriptors . 2-16

Figure 2-9 Gate Descriptor . 2-19

Figure 2-10 Task Register . 2-20

Figure 2-11 32-Bit Task State Segment (TSS) Table . 2-21

Figure 2-12 16-Bit Task State Segment (TSS) Table . 2-22

Figure 2-13 IBM 6x86 Configuration Control Register 0 (CCR0) . 2-25

Figure 2-14 IBM 6x86 Configuration Control Register 1 (CCR1) . 2-26

Figure 2-15 IBM 6x86 Configuration Control Register 2 (CCR2) . 2-27

Figure 2-16 IBM 6x86 Configuration Control Register 3 (CCR3) . 2-28

Figure 2-17 IBM 6x86 Configuration Control Register 4 (CCR4) . 2-29

Figure 2-18 IBM 6x86 Configuration Control Register 5 (CCR5) . 2-30

Figure 2-19 Address Region Registers (ARRO-ARR7) . 2-31

Figure 2-20 Region Control Register (RCRO-RCR7) . 2-34

Figure 2-21 Device Identification Register 0 (DIR1) 2-36

Figure 2-22 Device Identification Register 1 (DIR1) . 2-36

Figure 2-23 Debug Registers . 2-37

Figure 2-24 Memory and I/O Address Spaces. 2-40

Figure 2-25 Offset Address Calculation . 2-42

Figure 2-26 Real Mode Address Calculation . 2-43

Figure 2-27 Protected Mode Address Calculation. 2-44

Figure 2-28 Selector Mechanism . 2-44

Figure 2-29 Paging Mechanism . 2-45

LIST OF FIGURES

Table Name Page Number

List of Tables and Figures

vi

Figure 2-30 Traditional Paging Mechanism . 2-46

Figure 2-31 Directory and page Table Entry (DTE and PTE)Format . 2-46

Figure 2-32 TLB Test Registers . 2-48

Figure 2-33 Variable-Size Paging Mechanism . 2-51

Figure 2-34 Unified Cache . 2-53

Figure 2-35 Cache Test Registers . 2-54

Figure 2-36 Error Code Format . 2-62

Figure 2-37 System Management Memory Address Space. 2-63

Figure 2-38 SMI Execution Flow Diagram . 2-64

Figure 2-39 SMM Memory Space Header . 2-65

Figure 2-40 SMM and Suspend Mode State Diagram . 2-70

Figure 2-41 FPU Tag Word Register . 2-76

Figure 2-42 FPU Status Register . 2-76

Figure 2-43 FPU Mode Control Register . 2-77

Figure 3-1 IBM 6x86 Functional Signal Groupings. 3-1

Figure 3-2 RESET Timing. 3-25

Figure 3-3 IBM 6x86 CPU Bus State Diagram . 3-27

Figure 3-4 Non-Pipelined Single Transfer Read Cycles . 3-30

Figure 3-5 Non-Pipelined Single Transfer Write Cycles . 3-31

Figure 3-6 Non-Pipelined Burst Read Cycles . 3-33

Figure 3-7 Burst Cycle with Wait States . 3-34

Figure 3-8 “1+4” Burst Read Cycle . 3-35

Figure 3-9 Non-Pipelined Burst Write Cycles. 3-37

Figure 3-10 Pipelined Single Transfer Read Cycles . 3-38

Figure 3-11 Pipelined Burst Rea Cycles . 3-39

Figure 3-12 Read Cycle Followed by Pipelined Write Cycle . 3-40

Figure 3-13 Interrupt Acknowledge Cycles. 3-41

Figure 3-14 SMIACT # Timing. 3-42

Figure 3-15 SMM I/O Trap Timing. 3-43

Figure 3-16 Cache Invalidation Using FLUSH# . 3-44

Figure 3-17 External Write Buffer Empty (EWBE#) Timing . 3-45

Figure 3-18 Requesting Hold from and Idle Bus . 3-46

LIST OF FIGURES (Continued)

Table Name Page Number

List of Tables and Figures

vii

Figure 3-19 Requesting Hold During a Non-pipelined Bus Cycle . 3-47

Figure 3-20 Requesting Hold During a Pipelined Bus Cycle . 3-48

Figure 3-21 Back-Off Timing . 3-49

Figure 3-22 HOLD Inquiry Cycle that Hits on a Modified Line . 3-51

Figure 3-23 BOFF# Inquiry Cycle that Hits on a Modified Line . 3-52

Figure 3-24 AHOLD Inquiry Cycle that Hits on a Modified Line . 3-53

Figure 3-25 AHOLD Inquiry Cycle During a Line Fill . 3-54

Figure 3-26 APCHK# Timing . 3-55

Figure 3-27 BHOLD and DHOLD Timing . 3-56

Figure 3-28 CPU Upper Byte Read from 32-Bit Bus Using Scatter/Gather 3-57

Figure 3-29 CPU Upper Byte Write to 32-Bit Bus Using Scatter/Gather . 3-58

Figure 3-30 Bus Master Read from 64-Bit Memory to 32-Bit Bus . 3-59

Figure 3-31 Bus Master Write to 64- Bit Memory from 32-Bit Bus . 3-60

Figure 3-32 SUSP# Initiated Suspend Mode . 3-61

Figure 3-33 Halt-Initiated Suspend Mode . 3-62

Figure 3-34 Stopping CLK During Suspend Mode . 3-63

Figure 4-1 Drive Level and Measurement Points for Switching Characteristics 4-6

Figure 4-2 CLK Timing and Measurement Points . 4-7

Figure 4-3 Output Valid Delay Timing. 4-8

Figure 4-4 Output Float Delay Timing . 4-9

Figure 4-5 Input Setup and Hold Timing. 4-11

Figure 4-6 TCK Timing and Measurement Points . 4-12

Figure 4-7 JTAG Test Timings. 4-13

Figure 4-8 Test Reset Timing . 4-13

Figure 5-1 296-Pin SPGA Package Pin Assignments . 5-1

Figure 5-2 296-Pin SPGA Package. 5-4

Figure 6-1 Instruction Set Format . 6-1

LIST OF FIGURES (Continued)

Table Name Page Number

List of Tables and Figures

viii

Table 1-1 Register Renaming with WAR Dependency . 1-5

Table 1-2 Register Renaming with WAW Dependency. 1-6

Table 1-3 Example of Operand Forwarding. 1-8

Table 1-4 Result Forwarding Example . 1-9

Table 1-5 Example of Data Bypassing . 1-10

Table 2-1 Initialized Register Controls . 2-2

Table 2-2 Segment Register Selection Rules . 2-8

Table 2-3 EFLAGS Bit Definitions . 2-10

Table 2-4 CR0 Bit Definitions. 2-14

Table 2-5 Effects of Variooous Combinations of EM,TS and MP Bits . 2-14

Table 2-6 Segment Descriptor Bit Definitions . 2-17

Table 2-7 TYPE Field with DT=0 . 2-17

Table 2-8 TYPE Field with DT=1 . 2-18

Table 2-9 Gate Descriptor Bit Definitions. 2-19

Table 2-10 IBM 6x86 Configuration Registers . 2-24

Table 2-11 CCR0 Bit Definitions . 2-25

Table 2-12 CCR1 Bit Definitions . 2-26

Table 2-13 CCR2 Bit Definitions . 2-27

Table 2-14 CCR3 Bit Definitions . 2-28

Table 2-15 CCR4 Bit Definitions . 2-29

Table 2-16 CCR5 Bit Definitions . 2-30

Table 2-17 ARR0-ARR7 Registers Index Assignments . 2-32

Table 2-18 Bit Definitions for SIZE Field . 2-32

Table 2-19 RCR0-RCR7 Bit Definitions . 2-34

Table 2-20 DIR0 Bit Definitions . 2-36

Table 2-21 DIR1 Bit Definitions . 2-36

Table 2-22 DR6 and DR7 Debug Register Field Definitions. 2-38

Table 2-23 Memory Addressing Modes . 2-42

Table 2-24 Directory and Page Table Entry (DTE and PTE) Bit Definitions 2-47

Table 2-25 TLB Test Register Bit Definitions . 2-49

Table 2-26 TR6 Attribute Bit Pairs . 2-50

Table 2-27 TR6 Command Bits. 2-50

LIST OF TABLES

Table Name Page Number

List of Tables and Figures

ix

Table 2-28 Cache Test Register Bit Definitions . 2-54

Table 2-29 Interrupt Vector Assignments . 2-58

Table 2-30 Interrupt and Exception Priorities . 2-60

Table 2-31 Exception Changes in Real Mode . 2-61

Table 2-32 Error Code Bit Definitions . 2-62

Table 2-33 Requirements for Recognizing SM1# and SMINT. 2-64

Table 2-34 SMM Memory Space Header. 2-66

Table 2-35 SMM Instruction Set . 2-67

Table 2-36 Descriptor Types Used for Control Transfer . 2-73

Table 2-37 FPU Status Register Bit Definitions . 2-76

Table 2-38 FPU Mode Control Register Bit Definitions . 2-77

Table 3-1 IBM 6x86 CPU Signals Sorted by Signal Name . 3-2

Table 3-2 Pins Sampled During RESET . 3-7

Table 3-3 Signal States During RESET . 3-8

Table 3-4 Byte Enable Signal to Data Bus Byte Correlation . 3-9

Table 3-5 Parity Bit to Data Byte Correlation . 3-10

Table 3-6 Bus Cycle Types . 3-12

Table 3-7 Effects of WB/WT# on Cache Line State . 3-16

Table 3-8 Signal States During Bus Hold . 3-17

Table 3-9 Scatter/Gather Cycles. 3-20

Table 3-10 Byte Enable Map for Scatter/.Gather Cycles . 3-21

Table 3-11 Signal States During Suspend Mode . 3-23

Table 3-12 IBM 6x86 CPU Bus States . 3-26

Table 3-13 Bus State Transitions . 3-28

Table 3-14 “1+4” Burst Address Sequences . 3-35

Table 3-15 Linear Burst Address Sequences . 3-36

Table 4-1 Pins Connected to Internal Pull-Up and Pull-Down Resistors 4-1

Table 4-2 Absolute Maximum Ratings . 4-2

Table 4-3 Recommended Operating Conditions . 4-3

Table 4-4 DC Characteristics (at Recommended Operating Conditions) 4-4

Table 4-5 Drive Level and Measurement Points for Switching Characterisitics 4-6

Table 4-6 Clock Speicifications . 4-7

LIST OF TABLES (Continued)

Table Name Page Number

List of Tables and Figures

x

Table 4-7 Output Valid Delays, CL = 50 pF, Tcase = 0°C to 70°C . 4-8

Table 4-8 Output Float Delays, CL = 50 pF, Tcase = 0°C to 70°C. 4-9

Table 4-9 Input Setup Times Tcase = 0°C to 70°C. 4-10

Table 4-10 Input Hold Times Tcase = 0°C to 70°C. 4-10

Table 4-11 JTAG AC Specifications . 4-12

Table 5-1 296-Pin SPGA Package Signal Names Sorted by Pin Number 5-2

Table 5-2 296-Pin SPGA Package Pin Numbers Sorted by Signal Name 5-3

Table 5-3 296-Pin SPGA Package Dimensions . 5-7

Table 5-4 Thermal Resistance for SPGA Package With and Without Heatsinks 6-2

Table 6-1 Instruction Fields . 6-3

Table 6-2 Instruction Prefix Summary . 6-4

Table 6-3 w Field Encoding . 6-4

Table 6-4 d Field Encoding . 6-5

Table 6-5 s Field Encoding . 6-5

Table 6-6 eee Field Encoding . 6-6

Table 6-7 mod r/m Field Encoding . 6-6

Table 6-8 mod r/m Field Encoding Dependent on w Field . 6-7

Table 6-9 reg Field. 6-7

Table 6-10 sreg3 Field Encoding . 6-8

Table 6-11 sreg2 Field Encoding . 6-8

Table 6-12 ss Field Encoding . 6-9

Table 6-13 index Field Encoding . 6-9

Table 6-14 mod base Field Encoding . 6-10

Table 6-15 CPUID Data Returned When EAX=0 . 6-11

Table 6-16 CPUID Data Returned When EAX=1 . 6-11

Table 6-17 CPU Clock Count Abbreviations . 6-13

Table 6-18 Flag Abbreviations . 6-13

Table 6-19 Action of Instruction on Flag . 6-13

Table 6-20 IBM 6x86 CPU Instruction Set Clock Count Summary . 6-14

Table 6-21 FPU Clock Count Table Abbreviations . 6-29

Table 6-22 IBM 6x86 FPU Instruction Set Summary . 6-30

LIST OF TABLES (Continued)

Table Name Page Number

List of Tables and Figures

1-1

Introduction

IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

1-

The on-chip FPU allows floating point instruc-
tions to execute in parallel with integer instruc-
tions and features a 64-bit data interface. The
FPU incorporates a four-deep instruction
queue and a four-deep store queue to facilitate
parallel execution.

Additionally the IBM 6x86 CPU incorporates
a low power suspend mode, stop clock capa-
bility, and system management mode (SMM)
for power sensitive applications.

1.1 Major Functional
Blocks

The IBM 6x86 processor consists of five major
functional blocks, as shown in the overall
block diagram on the first page of this manual:

• Integer Unit
• Cache Unit
• Memory Management Unit
• Floating Point Unit
• Bus Interface Unit

Instructions are executed in the X and Y pipe-
lines within the Integer Unit and also in the
Floating Point Unit (FPU). The Cache Unit
stores the most recently used data and instruc-
tions to allow fast access to the information by
the Integer Unit and FPU.

Product Overview

1. ARCHITECTURE
OVERVIEW

The IBM 6x86 CPU is a leader in the sixth
generation of high performance, x86-compat-
ible microprocessors. Increased performance is
accomplished by the use of superscalar and
superpipelined design techniques.

The IBM 6x86 CPU is superscalar in that it
contains two separate pipelines that allow
multiple instructions to be processed at the
same time. The use of advanced processing
technology and the increased number of pipe-
line stages (superpipelining) allows the IBM
6x86 CPU to achieve clocks rates of 100 MHz
and above.

Through the use of unique architectural
features, the IBM 6x86 processor eliminates
many data dependencies and resource
conflicts, resulting in optimal performance for
both 16-bit and 32-bit x86 software.

The IBM 6x86 CPU contains two caches: a
16-KByte dual-ported unified cache and a
256-byte instruction line cache. Since the
unified cache can store instructions and data in
any ratio, the unified cache offers a higher hit
rate than separate data and instruction caches
of equal size. An increase in overall
cache-to-integer unit bandwidth is achieved by
supplementing the unified cache with a small,
high-speed, fully associative instruction line
cache. The inclusion of the instruction line
cache avoids excessive conflicts between code
and data accesses in the unified cache.

1-2

Integer Unit

Physical addresses are calculated by the
Memory Management Unit and passed to
the Cache Unit and the Bus Interface Unit
(BIU). The BIU provides the interface
between the external system board and the
processor’s internal execution units.

1.2 Integer Unit

The Integer Unit (Figure 1-1) provides parallel
instruction execution using two seven-stage
integer pipelines. Each of the two pipelines,
X and Y, can process several instructions
simultaneously.

Figure 1-1. Integer Unit

Inst. Decode 2

Address Calc. 1

Address Calc. 2

Execution

Write-Back

Inst. Decode 2

Address Calc. 1

Address Calc. 2

Execution

Write-Back

Instruction Decode 1

Instruction Fetch

1727300
X Pipeline Y Pipeline

In-Order
Processing

Out-of-Order
Completion

1-3

Integer Unit 1
The Integer Unit consists of the following
pipeline stages:

• Instruction Fetch (IF)
• Instruction Decode 1 (ID1)
• Instruction Decode 2 (ID2)
• Address Calculation 1 (AC1)
• Address Calculation 2 (AC2)
• Execute (EX)
• Write-Back (WB)

The instruction decode and address calculation
functions are both divided into superpipelined
stages.

1.2.1 Pipeline Stages

The Instruction Fetch (IF) stage, shared by
both the X and Y pipelines, fetches 16 bytes of
code from the cache unit in a single clock
cycle. Within this section, the code stream is
checked for any branch instructions that could
affect normal program sequencing.

If an unconditional or conditional branch is
detected, branch prediction logic within the IF
stage generates a predicted target address for
the instruction. The IF stage then begins
fetching instructions at the predicted address.

The superpipelined Instruction Decode func-
tion contains the ID1 and ID2 stages. ID1,
shared by both pipelines, evaluates the code
stream provided by the IF stage and deter-
mines the number of bytes in each instruction.
Up to two instructions per clock are delivered
to the ID2 stages, one in each pipeline.

The ID2 stages decode instructions and send
the decoded instructions to either the X or Y
pipeline for execution. The particular pipeline
is chosen, based on which instructions are
already in each pipeline and how fast they are

expected to flow through the remaining pipe-
line stages.

The Address Calculation function contains two
stages, AC1 and AC2. If the instruction refers
to a memory operand, the AC1 calculates a
linear memory address for the instruction.

The AC2 stage performs any required memory
management functions, cache accesses, and
register file accesses. If a floating point
instruction is detected by AC2, the instruction
is sent to the FPU for processing.

The Execute (EX) stage executes instructions
using the operands provided by the address
calculation stage.

The Write-Back (WB) stage is the last IU
stage. The WB stage stores execution results
either to a register file within the IU or to a
write buffer in the cache control unit.

1.2.2 Out-of-Order
Processing

If an instruction executes faster than the
previous instruction in the other pipeline, the
instructions may complete out of order. All
instructions are processed in order, up to the
EX stage. While in the EX and WB stages,
instructions may be completed out of order.

If there is a data dependency between two
instructions, the necessary hardware interlocks
are enforced to ensure correct program
execution. Even though instructions may
complete out of order, exceptions and writes
resulting from the instructions are always
issued in program order.

1-4

Integer Unit

1.2.3 Pipeline Selection

In most cases, instructions are processed in
either pipeline and without pairing constraints
on the instructions. However, certain instruc-
tions are processed only in the X pipeline:

• Branch instructions
• Floating point instructions
• Exclusive instructions

Branch and floating point instructions may be
paired with a second instruction in the Y pipe-
line.

Exclusive Instructions cannot be paired with
instructions in the Y pipeline. These instruc-
tions typically require multiple memory
accesses. Although exclusive instructions may
not be paired, hardware from both pipelines is
used to accelerate instruction completion.
Listed below are the IBM 6x86 CPU exclusive
instruction types:

• Protected mode segment loads
• Special register accesses

 (Control, Debug, and Test Registers)
• String instructions
• Multiply and divide
• I/O port accesses
• Push all (PUSHA) and pop all (POPA)
• Intersegment jumps, calls, and returns

1.2.4 Data Dependency
Solutions

When two instructions that are executing in
parallel require access to the same data or
register, one of the following types of data
dependencies may occur:

• Read-After-Write (RAW)
• Write-After-Read (WAR)
• Write-After-Write (WAW)

Data dependencies typically force serialized
execution of instructions. However, the IBM
6x86 CPU implements three mechanisms that
allow parallel execution of instructions
containing data dependencies:

• Register Renaming
• Data Forwarding
• Data Bypassing

The following sections provide detailed exam-
ples of these mechanisms.

1.2.4.1 Register Renaming

The IBM 6x86 CPU contains 32 physical
general purpose registers. Each of the 32
registers in the register file can be temporarily
assigned as one of the general purpose
registers defined by the x86 architecture
(EAX, EBX, ECX, EDX, ESI, EDI, EBP, and
ESP). For each register write operation a new
physical register is selected to allow previous
data to be retained temporarily. Register
renaming effectively removes all WAW and
WAR dependencies. The programmer does not
have to consider register renaming; it is
completely transparent to both the operating
system and application software.

1-5

Integer Unit 1

Example #1 - Register Renaming Eliminates Write-After-Read (WAR) Dependency

A WAR dependency exists when the first in a pair of instructions reads a logical register, and the
second instruction writes to the same logical register. This type of dependency is illustrated by the
pair of instructions shown below:

X PIPE Y PIPE

(1) MOV BX, AX (2) ADD AX, CX
BX ←AX AX ←AX + CX

Note: In this and the following examples the original instruction order is shown in parentheses.

In the absence of register renaming, the ADD instruction in the Y pipe would have to be stalled to
allow the MOV instruction in the X pipe to read the AX register.

The IBM 6x86 CPU, however, avoids the Y pipe stall (Table 1-1). As each instruction executes,
the results are placed in new physical registers to avoid the possibility of overwriting a logical
register value and to allow the two instructions to complete in parallel (or out of order) rather than
in sequence.

Table 1-1. Register Renaming with WAR Dependency

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Reg4 Pipe

(Initial) AX BX CX

MOV BX, AX AX CX BX X Reg3 ← Reg0

ADD AX, CX CX BX AX Y Reg4 ← Reg0 + Reg2

Note: The representation of the MOV and ADD instructions in the final column of Table 1-1
are completely independent.

1-6

Integer Unit

Example #2 - Register Renaming Eliminates Write-After-Write (WAW) Dependency

A WAW dependency occurs when two consecutive instructions perform writes to the same
logical register. This type of dependency is illustrated by the pair of instructions shown below:

X PIPE Y PIPE

(1) ADD AX, BX (2) MOV AX, [mem]
AX ←AX + BX AX ← [mem]

Without register renaming, the MOV instruction in the Y pipe would have to be stalled to guar-
antee that the ADD instruction in the X pipe would write its results to the AX register first.

The IBM 6x86 CPU uses register renaming and avoids the Y pipe stall. The contents of the AX
and BX registers are placed in physical registers (Table 1-2). As each instruction executes, the
results are placed in new physical registers to avoid the possibility of overwriting a logical
register value and to allow the two instructions to complete in parallel (or out of order) rather than
in sequence.

Table 1-2. Register Renaming with WAW Dependency

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ← Reg0 + Reg1

MOV AX, [mem] BX AX Y Reg3 ← [mem]

Note: All subsequent reads of the logical register AX will refer to Reg 3, the result of the MOV
 instruction.

1-7

Integer Unit 1
1.2.4.2 Data Forwarding

Register renaming alone cannot remove RAW
dependencies. The IBM 6x86 CPU uses two
types of data forwarding in conjunction with
register renaming to eliminate RAW depen-
dencies:

• Operand Forwarding
• Result Forwarding

Operand forwarding takes place when the
first in a pair of instructions performs a move
from register or memory, and the data that is
read by the first instruction is required by the
second instruction. The IBM 6x86 CPU
performs the read operation and makes the
data read available to both instructions simul-
taneously.

Result forwarding takes place when the first
in a pair of instructions performs an operation
(such as an ADD) and the result is required by
the second instruction to perform a move to a
register or memory. The IBM 6x86 CPU
performs the required operation and stores the
results of the operation to the destination of
both instructions simultaneously.

1-8

Integer Unit

Example #3 - Operand Forwarding Eliminates Read-After-Write (RAW) Dependency

A RAW dependency occurs when the first in a pair of instructions performs a write, and the
second instruction reads the same register. This type of dependency is illustrated by the pair of
instructions shown below in the X and Y pipelines:

X PIPE Y PIPE

(1) MOV AX, [mem] (2) ADD BX, AX
AX ← [mem] BX ← AX + BX

The IBM 6x86 CPU uses operand forwarding and avoids a Y pipe stall (Table 1-3). Operand
forwarding allows simultaneous execution of both instructions by first reading memory and then
making the results available to both pipelines in parallel.

Operand forwarding can only occur if the first instruction does not modify its source data. In
other words, the instruction is a move type instruction (for example, MOV, POP, LEA). Operand
forwarding occurs for both register and memory operands. The size of the first instruction desti-
nation and the second instruction source must match.

Table 1-3. Example of Operand Forwarding

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe

(Initial) AX BX

MOV AX, [mem] BX AX X Reg2 ← [mem]

ADD BX, AX AX BX Y Reg3 ← [mem] + Reg1

1-9

Integer Unit 1
Example #4 - Result Forwarding Eliminates Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a
write, and the second instruction reads the same register. This dependency is illustrated by the
pair of instructions in the X and Y pipelines, as shown below:

X PIPE Y PIPE

(1) ADD AX, BX (2) MOV [mem], AX
AX ←AX + BX [mem] ← AX

The IBM 6x86 CPU uses result forwarding and avoids a Y pipe stall (Table 1-4). Instead of trans-
ferring the contents of the AX register to memory, the result of the previous ADD instruction
(Reg0 + Reg1) is written directly to memory, thereby saving a clock cycle.

The second instruction must be a move instruction and the destination of the second instruction
may be either a register or memory.

Table 1-4. Result Forwarding Example

Instruction

Physical Register
Contents

Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ←Reg0 + Reg1

MOV [mem], AX BX AX Y [mem] ← Reg0 +Reg1

1-10

Integer Unit

1.2.4.3 Data Bypassing

In addition to register renaming and data forwarding, the IBM 6x86 CPU implements a third data
dependency-resolution technique called data bypassing. Data bypassing reduces the performance
penalty of those memory data RAW dependencies that cannot be eliminated by data forwarding.

Data bypassing is implemented when the first in a pair of instructions writes to memory and the
second instruction reads the same data from memory. The IBM 6x86 CPU retains the data from
the first instruction and passes it to the second instruction, thereby eliminating a memory read
cycle. Data bypassing only occurs for cacheable memory locations.

Example #1- Data Bypassing with Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a
write to memory and the second instruction reads the same memory location. This dependency is
illustrated by the pair of instructions in the X and Y pipelines as shown below:

X PIPE Y PIPE

(1) ADD [mem], AX (2) SUB BX, [mem]
[mem] ←[mem] + AX BX ← BX - [mem]

The IBM 6x86 CPU uses data bypassing and stalls the Y pipe for only one clock by eliminating
the Y pipe’s memory read cycle (Table 1-5). Instead of reading memory in the Y pipe, the result
of the previous instruction ([mem] + Reg0) is used to subtract from Reg1, thereby saving a
memory access cycle.

Table 1-5. Example of Data Bypassing

Instruction

Physical Register
Contents

Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD [mem], AX AX BX X [mem] ← [mem] + Reg0

SUB BX, [mem] AX BX Y Reg2 ← Reg1 - {[mem] + Reg0}

1-11

Integer Unit 1

1.2.5 Branch Control

Branch instructions occur on average every
four to six instructions in x86-compatible pro-
grams. When the normal sequential flow of a
program changes due to a branch instruction,
the pipeline stages may stall while waiting for
the CPU to calculate, retrieve, and decode the
new instruction stream. The IBM 6x86 CPU
minimizes the performance degradation and
latency of branch instructions through the use
of branch prediction and speculative execu-
tion.

1.2.5.1 Branch Prediction

The IBM 6x86 CPU uses a 256-entry, 4-way
set associative Branch Target Buffer (BTB) to
store branch target addresses and branch
prediction information. During the fetch stage,
the instruction stream is checked for the pres-
ence of branch instructions. If an uncondi-
tional branch instruction is encountered, the
IBM 6x86 CPU accesses the BTB to check for
the branch instruction’s target address. If the
branch instruction’s target address is found in
the BTB, the IBM 6x86 CPU begins fetching
at the target address specified by the BTB.

In case of conditional branches, the BTB also
provides history information to indicate
whether the branch is more likely to be taken
or not taken. If the conditional branch instruc-
tion is found in the BTB, the IBM 6x86 CPU
begins fetching instructions at the predicted
target address. If the conditional branch misses
in the BTB, the IBM 6x86 CPU predicts that
the branch will not be taken, and instruction
fetching continues with the next sequential

instruction. The decision to fetch the taken or
not taken target address is based on a four-state
branch prediction algorithm.

Once fetched, a conditional branch instruction
is first decoded and then dispatched to the X
pipeline only. The conditional branch instruc-
tion proceeds through the X pipeline and is
then resolved in either the EX stage or the WB
stage. The conditional branch is resolved in the
EX stage, if the instruction responsible for
setting the condition codes is completed prior
to the execution of the branch. If the instruc-
tion that sets the condition codes is executed in
parallel with the branch, the conditional
branch instruction is resolved in the WB stage.

Correctly predicted branch instructions
execute in a single core clock. If resolution of
a branch indicates that a misprediction has
occurred, the IBM 6x86 CPU flushes the pipe-
line and starts fetching from the correct target
address. The IBM 6x86 CPU prefetches both
the predicted and the non-predicted path for
each conditional branch, thereby eliminating
the cache access cycle on a misprediction. If
the branch is resolved in the EX stage, the
resulting misprediction latency is four cycles.
If the branch is resolved in the WB stage, the
latency is five cycles.

Since the target address of return (RET)
instructions is dynamic rather than static, the
IBM 6x86 CPU caches target addresses for
RET instructions in an eight-entry return stack
rather than in the BTB. The return address is
pushed on the return stack during a CALL
instruction and popped during the corre-
sponding RET instruction.

1-12

Cache Units

1.2.5.2 Speculative Execution

The IBM 6x86 CPU is capable of speculative
execution following a floating point instruc-
tion or predicted branch. Speculative execution
allows the pipelines to continuously execute
instructions following a branch without
stalling the pipelines waiting for branch reso-
lution. The same mechanism is used to execute
floating point instructions (see Section 1.5) in
parallel with integer instructions.

The IBM 6x86 CPU is capable of up to four
levels of speculation (i.e., combinations of
four conditional branches and floating point
operations). After generating the fetch address
using branch prediction, the CPU checkpoints
the machine state (registers, flags, and
processor environment), increments the specu-
lation level counter, and begins operating on
the predicted instruction stream.

Once the branch instruction is resolved, the
CPU decreases the speculation level. For a
correctly predicted branch, the status of the
checkpointed resources is cleared. For a
branch misprediction, the IBM 6x86 processor
generates the correct fetch address and uses the
checkpointed values to restore the machine
state in a single clock.

In order to maintain compatibility, writes that
result from speculatively executed instructions
are not permitted to update the cache or
external memory until the appropriate branch
is resolved. Speculative execution continues
until one of the following conditions occurs:

1) A branch or floating point operation
is decoded and the speculation level
is already at four.

2) An exception or a fault occurs.

3) The write buffers are full.

4) An attempt is made to modify a
non-checkpointed resource (i.e.,
segment registers, system flags).

1.3 Cache Units

The IBM 6x86 CPU employs two caches, the
Unified Cache and the Instruction Line Cache
(Figure 1-2).

1.3.1 Unified Cache

The 16-KByte unified write-back cache func-
tions as the primary data cache and as the
secondary instruction cache. Configured as a
four-way set-associative cache, the cache
stores up to 16 KBytes of code and data in 512
lines. The cache is dual-ported and allows any
two of the following operations to occur in
parallel:

• Code fetch
• Data read (X pipe, Y pipeline or FPU)
• Data write (X pipe, Y pipeline or FPU)

The unified cache uses a pseudo-LRU replace-
ment algorithm and can be configured to allo-
cate new lines on read misses only or on read
and write misses. More information
concerning the unified cache can be found in
Section 2.7.1 (Page 2-52).

1-13

Cache Units 1
1.3.2 Instruction Line Cache

The fully associative 256-byte instruction line
cache serves as the primary instruction cache.
The instruction line cache is filled from the
unified cache through the data bus. Fetches
from the integer unit that hit in the instruction
line cache do not access the unified cache. If
an instruction line cache miss occurs, the
instruction line data from the unified cache is
transferred to the instruction line cache and the
integer unit, simultaneously.

The instruction line cache uses a pseudo-LRU
replacement algorithm. To ensure proper oper-
ation in the case of self-modifying code, any
writes to the unified cache are checked against
the contents of the instruction line cache. If a
hit occurs in the instruction line cache, the
appropriate line is invalidated.

Figure 1-2. Cache Unit Operations

FPU

1739503

Data Bus

Instruction Data

Set 0
Set 1

Set 2
Set 3

Integer
Unit

Bus
Interface

Unit

X
Pipe

Y
Pipe

Cache
Tags

Instruction
Address

Instruction Line Cache Data
Bypass
Aligner

IF

256-Byte Fully Associative, 8 Lines

Memory Management Unit
(TLB)

Modified X, Y
Physical Addresses

Linear
Address

Line Cache
Miss Address

= Dual Bus
= Single Bus

InstructionX, Y

Unified Cache

 16-KByte, 4-Way Set Associative, 128 Lines/Set

Instruction Line Cache

 Unified Cache

16-KByte, 4-Way Set Associative, 512 Lines

1-14

Memory Management Unit

1.4.1 Variable-Size Paging
Mechanism

The IBM 6x86 variable-size paging
mechanism allows software to map pages
between 4 KBytes and 4 GBytes in size. The
large contiguous memories provided by this
mechanism help avoid TLB (Translation
Lookaside Buffer) thrashing [see Section 2.6.4
(Page 2-45)] associated with some operating
systems and applications. For example, use of
a single large page instead of a series of small
4-KByte pages can greatly improve
performance in an application using a large
video memory buffer.

1.4 Memory
Management Unit

The Memory Management Unit (MMU),
shown in Figure 1-3, translates the linear
address supplied by the IU into a physical
address to be used by the unified cache and the
bus interface. Memory management proce-
dures are x86 compatible, adhering to standard
paging mechanisms.

The IBM 6x86 MMU includes two paging
mechanisms (Figure 1-3), a traditional paging
mechanism, and a IBM 6x86 variable-size
paging mechanism.

Figure 1-3. Paging Mechanism within the Memory Management Unit

CR3

Physical PageDTE PTE

Control Register

0

127

Variable-Size Paging Mechanism
Control

Directory Table Page Table Page Frame

DTE Cache

Victim TLB

Linear
Address

Main TLB

Traditional Paging Mechanism

= On Chip

0

7

3

0

1-15

Floating Point Unit 1

1.4.2 Traditional
Paging Mechanism

The traditional paging mechanism has been
enhanced on the IBM 6x86 CPU with the addi-
tion of the Directory Table Entry (DTE) cache
and the Victim TLB. The main TLB (Transla-
tion Lookaside Buffer) is a direct-mapped
128-entry cache for page table entries.

The four-entry fully associative DTE cache
stores the most recent DTE accesses. If a Page
Table Entry (PTE) miss occurs followed by a
DTE hit, only a single memory access to the
PTE table is required.

The Victim TLB stores PTEs which have been
displaced from the main TLB due to a TLB
miss. If a PTE access occurs while the PTE is
stored in the victim TLB, the PTE in the victim
TLB is swapped with a PTE in the main TLB.
This has the effect of selectively increasing
TLB associativity. The IBM 6x86 CPU
updates the eight-entry fully associative victim
TLB on an oldest entry replacement basis.

1.5 Floating Point Unit

The IBM 6x86 Floating Point Unit (FPU)
interfaces to the integer unit and the cache unit
through a 64-bit bus. The IBM 6x86 FPU is
x87 instruction set compatible and adheres to
the IEEE-754 standard. Since most applica-
tions contain FPU instructions mixed with
integer instructions, the IBM 6x86 FPU
achieves high performance by completing
integer and FPU operations in parallel.

FPU Parallel Execution

The IBM 6x86 CPU executes integer instruc-
tions in parallel with FPU instructions. Integer
instructions may complete out of order with
respect to the FPU instructions. The IBM 6x86
CPU maintains x86 compatibility by signaling
exceptions and issuing write cycles in program
order.

As previously discussed, FPU instructions are
always dispatched to the integer unit’s X pipe-
line. The address calculation stage of the X
pipeline checks for memory management
exceptions and accesses memory operands
used by the FPU. If no exceptions are detected,
the IBM 6x86 CPU checkpoints the state of the
CPU and, during AC2, dispatches the floating
point instruction to the FPU instruction queue.
The IBM 6x86 CPU can then complete any
subsequent integer instructions speculatively
and out of order relative to the FPU instruction
and relative to any potential FPU exceptions
which may occur.

As additional FPU instructions enter the pipe-
line, the IBM 6x86 CPU dispatches up to four
FPU instructions to the FPU instruction queue.
The IBM 6x86 CPU continues executing spec-
ulatively and out of order, relative to the FPU
queue, until the IBM 6x86 CPU encounters
one of the conditions that causes speculative
execution to halt. As the FPU completes
instructions, the speculation level decreases
and the checkpointed resources are available
for reuse in subsequent operations. The IBM
6x86 FPU also uses a set of four write buffers
to prevent stalls due to speculative writes.

1-16

Bus Interface Unit

1.6 Bus Interface Unit

The Bus Interface Unit (BIU) provides the
signals and timing required by external
circuitry. The signal descriptions and bus inter-
face timing information is provided in
Chapters 3 and 4 of this manual.

2-1

Programming Interface

IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

2. PROGRAMMING
INTERFACE

In this chapter, the internal operations of the
IBM 6x86 CPU are described mainly from an
application programmer’s point of view.
Included in this chapter are descriptions of pro-
cessor initialization, the register set, memory
addressing, various types of interrupts and the
shutdown and halt process. An overview of
real, virtual 8086, and protected operating
modes is also included in this chapter. The FPU
operations are described separately at the end of
the chapter.

This manual does not—and is not intended to—
describe the IBM 6x86 microprocessor or its
operations at the circuit level.

2.1 Processor Initialization

The IBM 6x86 CPU is initialized when the
RESET signal is asserted. The processor is
placed in real mode and the registers listed in
Table 2-1 (Page 2-2) are set to their initialized
values. RESET invalidates and disables the
cache and turns off paging. When RESET is
asserted, the IBM 6x86 CPU terminates all local
bus activity and all internal execution. During
the entire time that RESET is asserted, the inter-
nal pipelines are flushed and no instruction exe-
cution or bus activity occurs.

Approximately 150 to 250 external clock cycles
after RESET is negated, the processor begins
executing instructions at the top of physical
memory (address location FFFF FFF0h). Typi-
cally, an intersegment JUMP is placed at FFFF
FFF0h. This instruction will force the processor
to begin execution in the lowest 1 MByte of
address space.

Note: The actual time depends on the clock scal-
ing in use. Also an additional 220 clock cycles
are needed if self-test is requested.

2-2

Instruction Set Overview

2.2 Instruction Set

Table 2-1. Initialized Register Controls

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator xxxx xxxxh 0000 0000h indicates self-test passed.

EBX Base xxxx xxxxh

ECX Count xxxx xxxxh

EDX Data 05 + Device ID Device ID = 31h or 33h (2X clock)
Device ID = 35h or 37h (3X clock)

EBP Base Pointer xxxx xxxxh

ESI Source Index xxxx xxxxh

EDI Destination Index xxxx xxxxh

ESP Stack Pointer xxxx xxxxh

EFLAGS Flag Word 0000 0002h

EIP Instruction Pointer 0000 FFF0h

ES Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

CS Code Segment F000h Base address set to FFFF 0000h.
Limit set to FFFFh.

SS Stack Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

DS Data Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

FS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

GS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

IDTR Interrupt Descriptor Table
Register

Base = 0, Limit = 3FFh

GDTR Global Descriptor Table
 Register

xxxx xxxxh, xxxxh

LDTR Local Descriptor Table
 Register

xxxx xxxxh, xxxxh

TR Task Register xxxxh

CR0 Machine Status Word 6000 0010h

CR2 Control Register 2 xxxx xxxxh

CR3 Control Register 3 xxxx xxxxh

CCR (0-5) Configuration Control (0-5) 00h

ARR (0-7) Address Region Registers
(0-7)

00h

RCR (0-7) Region Control Registers (0-7) 00h

DIR0 Device Identification 0 31h or 33h (2X clock)
35h or 37h (3X clock)

DIR1 Device Identification 1 Step ID + Revision ID

DR7 Debug Register 7 0000 0400h
Note: x = Undefined value

2-3

2Instruction Set Overview

Overview

The IBM 6x86 CPU instruction set performs
nine types of general operations:

All IBM 6x86 CPU instructions operate on as
few as zero operands and as many as three
operands. An NOP instruction (no operation) is
an example of a zero operand instruction. Two
operand instructions allow the specification of
an explicit source and destination pair as part of
the instruction. These two operand instructions
can be divided into eight groups according to
operand types:

An operand can be held in the instruction itself
(as in the case of an immediate operand), in one
of the processor’s registers or I/O ports, or in
memory. An immediate operand is prefetched
as part of the opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are sup-
ported as well as 64-or 80-bit associated with
floating point instructions. Operand lengths of
8 or 32 bits are generally used when executing
code written for 386- or 486-class (32-bit code)
processors. Operand lengths of 8 or 16 bits are
generally used when executing existing 8086 or
80286 code (16-bit code). The default length of

• Arithmetic • High-Level Language Support

• Bit Manipulation • Operating System Support

• Control Transfer • Shift/Rotate

• Data Transfer • String Manipulation

• Floating Point

• Register to Register • Register to I/O

• Register to Memory • I/O to Register

• Memory to Register • Immediate Data to Register

• Memory to Memory • Immediate Data to Memory

an operand can be overridden by placing one or
more instruction prefixes in front of the opcode.
For example, by using prefixes, a 32-bit oper-
and can be used with 16-bit code, or a 16-bit
operand can be used with 32-bit code.

Chapter 6 of this manual lists each instruction
in the IBM 6x86 CPU instruction set along with
the associated opcodes, execution clock counts,
and effects on the FLAGS register.

2.2.1 Lock Prefix

The LOCK prefix may be placed before certain
instructions that read, modify, then write back
to memory. The prefix asserts the LOCK# sig-
nal to indicate to the external hardware that the
CPU is in the process of running multiple indi-
visible memory accesses. The LOCK prefix
can be used with the following instructions:

Bit Test Instructions (BTS, BTR, BTC)
Exchange Instructions (XADD, XCHG,

CMPXCHG)
One-operand Arithmetic and Logical

Instructions (DEC, INC, NEG, NOT)
Two-operand Arithmetic and Logical

Instructions (ADC, ADD, AND, OR,
SBB, SUB, XOR).

An invalid opcode exception is generated if the
LOCK prefix is used with any other instruction,
or with the above instructions when no write
operation to memory occurs (i.e., the
destination is a register). The LOCK# signal
can be negated to allow weak-locking for all of
memory or on a regional basis. Refer to the
descriptions of the NO-LOCK bit (within
CCR1) and the WL bit (within RCRx) later in
this chapter.

2-4

Register Sets

2.3 Register Sets

From the programmer’s point of view there are
58 accessible registers in the IBM 6x86 CPU.
These registers are grouped into two sets. The
application register set contains the registers
frequently used by application programmers,
and the system register set contains the regis-
ters typically reserved for use by operating sys-
tem programmers.

The application register set is made up of gen-
eral purpose registers, segment registers, a flag
register, and an instruction pointer register.

The system register set is made up of the
remaining registers which include control reg-
isters, system address registers, debug regis-
ters, configuration registers, and test registers.

Each of the registers is discussed in detail in the
following sections.

2.3.1 Application
Register Set

The application register set, (Figure 2-1, Page
2-5) consists of the registers most often used by
the applications programmer. These registers
are generally accessible and are not protected
from read or write access.

The General Purpose Register contents are
frequently modified by assembly language
instructions and typically contain arithmetic
and logical instruction operands.

Segment Registers in real mode contain the
base address for each segment. In protected
mode the segment registers contain segment
selectors. The segment selectors provide
indexing for tables (located in memory) that
contain the base address and limit for each seg-
ment, as well as access control information.

The Flag Register contains control bits used to
reflect the status of previously executed
instructions. This register also contains control
bits that affect the operation of some instructions.

The Instruction Pointer register points to the
next instruction that the processor will execute.
This register is automatically incremented by
the processor as execution progresses.

2-5

2Register Sets

Figure 2-1. Application Register Set

2.3.2 General Purpose
Registers

The general purpose registers are divided into
four data registers, two pointer registers, and two
index registers as shown in Figure 2-2 (Page 2-6).

The Data Registers are used by the applica-
tions programmer to manipulate data struc-
tures and to hold the results of logical and
arithmetic operations. Different portions of
the general data registers can be addressed by
using different names.

An “E” prefix identifies the complete 32-bit
register. An “X” suffix without the “E” prefix
identifies the lower 16 bits of the register.

The lower two bytes of a data register can be
addressed with an “H” suffix (identifies the
upper byte) or an “L” suffix (identifies the lower
byte). The _L and _H portions of a data regis-
ters act as independent registers. For example,
if the AH register is written to by an instruc-
tion, the AL register bits remain unchanged.

2-6

Register Sets

Figure 2-2. General Purpose Registers

The IBM 6x86 CPU processor implements a
stack using the ESP register. This stack is
accessed during the PUSH and POP
instructions, procedure calls, procedure
returns, interrupts, exceptions, and
interrupt/exception returns.

The microprocessor automatically adjusts the
value of the ESP during operation of these
instructions.The EBP register may be used to
reference data passed on the stack during
procedure calls. Local data may also be placed
on the stack and referenced relative to BP. This
register provides a mechanism to access stack
data in high-level languages.

The Pointer and Index Registers are listed
below.

SI or ESI Source Index
DI or EDI Destination Index
SP or ESP Stack Pointer
BP or EBP Base Pointer

These registers can be addressed as 16- or
32-bit registers, with the “E” prefix indicating
32 bits. The pointer and index registers can be
used as general purpose registers, however,
some instructions use a fixed assignment of
these registers. For example, repeated string
operations always use ESI as the source
pointer, EDI as the destination pointer, and
ECX as the counter. The instructions using
fixed registers include multiply and divide, I/O
access, string operations, translate, loop, vari-
able shift and rotate, and stack operations.

EAX (Accumulator)

EBX (Base)

ECX (Count)

EDX (Data)

ESI (Source Index)

EDI (Destination Index)

EBP (Base Pointer)

ESP (Stack Pointer)

A X

SI

DI

BP

SP

31 16 15 8 7 0

B X

C X

D X

A H

B H

C H

D H

A L

B L

C L

D L

2-7

2Register Sets

2.3.3 Segment Registers and
Selectors

Segmentation provides a means of defining
data structures inside the memory space of the
microprocessor. There are three basic types of
segments: code, data, and stack. Segments are
used automatically by the processor to deter-
mine the location in memory of code, data, and
stack references.

There are six 16-bit segment registers:

CS Code Segment
DS Data Segment
ES Extra Segment
SS Stack Segment
FS Additional Data Segment
GS Additional Data Segment.

In real and virtual 8086 operating modes, a seg-
ment register holds a 16-bit segment base. The
16-bit segment is multiplied by 16 and a 16-bit
or 32-bit offset is then added to it to create a lin-
ear address. The offset size is dependent on the
current address size. In real mode and in virtual

8086 mode with paging disabled, the linear
address is also the physical address. In virtual
8086 mode with paging enabled, the linear
address is translated to the physical address
using the current page tables. Paging is
described in Section 2.6.4 (Page 2-45).

In protected mode a segment register holds a
Segment Selector containing a 13-bit index, a
Table Indicator (TI) bit, and a two-bit
Requested Privilege Level (RPL) field as
shown in Figure 2-3.

The Index points into a descriptor table in
memory and selects one of 8192 (213) segment
descriptors contained in the descriptor table.

A segment descriptor is an eight-byte value
used to describe a memory segment by defining
the segment base, the segment limit, and access
control information. To address data within a
segment, a 16-bit or 32-bit offset is added to the
segment’s base address. Once a segment selec-
tor has been loaded into a segment register, an
instruction needs only to specify the segment
register and the offset.

Figure 2-3. Segment Selector in Protected Mode

2-8

Register Sets

The Table Indicator (TI) bit of the selector
defines which descriptor table the index points
into. If TI=0, the index references the Global
Descriptor Table (GDT). If TI=1, the index ref-
erences the Local Descriptor Table (LDT). The
GDT and LDT are described in more detail in
Section 2.4.2. Protected mode addressing is dis-
cussed further in Sections 2.6.2 and 2.6.3.

The Requested Privilege Level (RPL) field in
a segment selector is used to determine the
Effective Privilege Level of an instruction
(where RPL=0 indicates the most privileged
level, and RPL=3 indicates the least privileged
level).

If the level requested by RPL is less than the
Current Program Level (CPL), the RPL level is
accepted and the Effective Privilege Level is
changed to the RPL value. If the level
requested by RPL is greater than CPL, the CPL
overrides the requested RPL and Effective Priv-
ilege Level remains unchanged.

When a segment register is loaded with a seg-
ment selector, the segment base, segment limit
and access rights are loaded from the descriptor
table entry into a user-invisible or hidden por-
tion of the segment register (i.e., cached
on-chip). The CPU does not access the descrip-
tor table entry again until another segment reg-
ister load occurs. If the descriptor tables are
modified in memory, the segment registers
must be reloaded with the new selector values
by the software.

The processor automatically selects an implied
(default) segment register for memory refer-
ences. Table 2-2 describes the selection rules.
In general, data references use the selector con-
tained in the DS register, stack references use
the SS register and instruction fetches use the
CS register. While some of these selections
may be overridden, instruction fetches, stack
operations, and the destination write of string
operations cannot be overridden. Special seg-
ment override instruction prefixes allow the use
of alternate segment registers including the use
of the ES, FS, and GS segment registers.

Table 2-2. Segment Register Selection Rules

TYPE OF MEMORY REFERENCE
IMPLIED (DEFAULT)

SEGMENT
SEGMENT OVERRIDE

PREFIX

Code Fetch CS None

Destination of PUSH, PUSHF, INT, CALL,
 PUSHA instructions

SS None

Source of POP, POPA, POPF, IRET,
 RET instructions

SS None

Destination of STOS, MOVS, REP STOS,
 REP MOVS instructions

ES None

Other data references with effective
 address using base registers of:
 EAX, EBX, ECX,
 EDX, ESI, EDI
 EBP, ESP

DS

SS

CS, ES, FS, GS, SS

CS, DS, ES, FS, GS

2-9

2Register Sets

2.3.4 Instruction Pointer
Register

The Instruction Pointer (EIP) register contains
the offset into the current code segment of the
next instruction to be executed. The register is nor-
mally incremented with each instruction execu-
tion unless implicitly modified through an
interrupt, exception or an instruction that
changes the sequential execution flow
(e.g., JMP, CALL).

2.3.5 Flags Register

The Flags Register, EFLAGS, contains status
information and controls certain operations on
the IBM 6x86 CPU microprocessor. The lower 16
bits of this register are referred to as the FLAGS
register that is used when executing 8086 or 80286
code. The flag bits are shown in Figure 2-4 and
defined in Table 2-3 (Page 2-10).

Figure 2-4. EFLAGS Register

2-10

Register Sets

Table 2-3. EFLAGS Bit Definitions

BIT
POSITION

NAME FUNCTION

0 CF Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) the most
significant bit of the result occurs; cleared otherwise.

2 PF Parity Flag: Set when the low-order 8 bits of the result contain an even number of ones;
cleared otherwise.

4 AF Auxiliary Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) bit
position 3 of the result occurs; cleared otherwise.

6 ZF Zero Flag: Set if result is zero; cleared otherwise.

7 SF Sign Flag: Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

8 TF Trap Enable Flag: Once set, a single-step interrupt occurs after the next instruction
completes execution. TF is cleared by the single-step interrupt.

9 IF Interrupt Enable Flag: When set, maskable interrupts (INTR input pin) are acknowledged
and serviced by the CPU.

10 DF Direction Flag: If DF=0, string instructions auto-increment (default) the appropriate index
registers (ESI and/or EDI). If DF=1, string instructions auto-decrement the appropriate
index registers.

11 OF Overflow Flag: Set if the operation resulted in a carry or borrow into the sign bit of the
result but did not result in a carry or borrow out of the high-order bit. Also set if the
operation resulted in a carry or borrow out of the high-order bit but did not result in a carry
or borrow into the sign bit of the result.

12, 13 IOPL I/O Privilege Level: While executing in protected mode, IOPL indicates the maximum
current privilege level (CPL) permitted to execute I/O instructions without generating an
exception 13 fault or consulting the I/O permission bit map. IOPL also indicates the
maximum CPL allowing alteration of the IF bit when new values are popped into the
EFLAGS register.

14 NT Nested Task: While executing in protected mode, NT indicates that the execution of the
current task is nested within another task.

16 RF Resume Flag: Used in conjunction with debug register breakpoints. RF is checked at
instruction boundaries before breakpoint exception processing. If set, any debug fault is
ignored on the next instruction.

17 VM Virtual 8086 Mode: If set while in protected mode, the microprocessor switches to virtual
8086 operation handling segment loads as the 8086 does, but generating exception 13 faults
on privileged opcodes. The VM bit can be set by the IRET instruction (if current privilege
level=0) or by task switches at any privilege level.

18 AC Alignment Check Enable: In conjunction with the AM flag in CR0, the AC flag determines
whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults
are enabled.

21 ID Identification Bit: The ability to set and clear this bit indicates that the CPUID instruction
is supported. The ID can be modified only if the CPUID bit in CCR4 is set.

2-11

2System Register Set

2.4 System Register Set

The system register set, shown in Figure 2-5
(Page 2-12), consists of registers not generally
used by application programmers. These regis-
ters are typically employed by system level
programmers who generate operating systems
and memory management programs.

The Control Registers control certain aspects
of the IBM 6x86 microprocessor such as pag-
ing, coprocessor functions, and segment protec-
tion. When a paging exception occurs while
paging is enabled, some control registers retain
the linear address of the access that caused the
exception.

The Descriptor Table Registers and the Task
Register can also be referred to as system
address or memory management registers.
These registers consist of two 48-bit and two
16-bit registers. These registers specify the
location of the data structures that control the
segmentation used by the IBM 6x86 micropro-
cessor. Segmentation is one available method
of memory management.

The Configuration Registers are used to con-
figure the IBM 6x86 CPU on-chip cache oper-
ation, power management features and System
Management Mode. The configuration regis-
ters also provide information on the CPU
device type and revision.

The Debug Registers provide debugging facil-
ities to enable the use of data access break-
points and code execution breakpoints.

The Test Registers provide a mechanism to
test the contents of both the on-chip 16 KByte
cache and the Translation Lookaside Buffer
(TLB). In the following sections, the system
register set is described in greater detail.

2-12

System Register Set

Figure 2-5. System Register Set

2-13

2System Register Set

PAGE FAULT LINEAR ADDRESS

CR3

CR2

CR0

MSW

PAGE DIRECTORY BASE REGISTER (PDBR) RESV.RESERVED

31 12 11 4 3 0

P P

1RESERVED RESERVED
T E M PA WP C N

W
T

C
D

S M P EM P

01234161831 30 29

G D W
N
E

5

2.4.1 Control Registers

The Control Registers (CR0, CR2 and CR3), are
shown in Figure 2-6. The CR0 register contains
system control bits which configure operating
modes and indicate the general state of the CPU.
The lower 16 bits of CR0 are referred to as the
Machine Status Word (MSW). The CR0 bit def-
initions are described in Table 2-4 and Table 2-5
(Page 2-14). The reserved bits in CR0 should not
be modified.

When paging is enabled and a page fault is gen-
erated, the CR2 register retains the 32-bit linear
address of the address that caused the fault.
When a double page fault occurs, CR2 contains
the address for the second fault. Register CR3
contains the 20 most significant bits of the phys-

ical base address of the page directory. The
page directory must always be aligned to a
4-KByte page boundary, therefore, the lower 12
bits of CR3 are not required to specify the base
address.

CR3 contains the Page Cache Disable (PCD)
and Page Write Through (PWT) bits. During
bus cycles that are not paged, the state of the
PCD bit is reflected on the PCD pin and the
PWT bit is driven on the PWT pin. These bus
cycles include interrupt acknowledge cycles
and all bus cycles, when paging is not enabled.
The PCD pin should be used to control caching
in an external cache. The PWT pin should be
used to control write policy in an external cache.

Figure 2-6. Control Registers

Table 2-4. CR0 Bit Definitions

2-14

System Register Set

2.4.2 Descriptor Table

1 MP Monitor Processor Extension: If MP=1 and TS=1, a WAIT instruction causes Device Not Avail-
able (DNA) fault 7. The TS bit is set to 1 on task switches by the CPU. Floating point instruc-
tions are not affected by the state of the MP bit. The MP bit should be set to one during normal
operations.

2 EM Emulate Processor Extension: If EM=1, all floating point instructions cause a DNA fault 7.

3 TS Task Switched: Set whenever a task switch operation is performed. Execution of a floating
point instruction with TS=1 causes a DNA fault. If MP=1 and TS=1, a WAIT instruction also
causes a DNA fault.

4 1 Reserved: Do not attempt to modify.

5 NE Numerics Exception. NE=1 to allow FPU exceptions to be handled by interrupt 16. NE=0 if
FPU exceptions are to be handled by external interrupts.

16 WP Write Protect: Protects read-only pages from supervisor write access. WP=0 allows a read-only
page to be written from privilege level 0-2. WP=1 forces a fault on a write to a
read-only page from any privilege level.

18 AM Alignment Check Mask: If AM=1, the AC bit in the EFLAGS register is unmasked and allowed
to enable alignment check faults. Setting AM=0 prevents AC faults from occurring.

29 NW Not Write-Back: If NW=1, the on-chip cache operates in write-through mode. In write-through
mode, all writes (including cache hits) are issued to the external bus. If NW=0, the on-chip
cache operates in write-back mode. In write-back mode, writes are issued to the external bus
only for a cache miss, a line replacement of a modified line, or as the result of a cache inquiry
cycle.

30 CD Cache Disable: If CD=1, no further cache line fills occur. However, data already present in the
cache continues to be used if the requested address hits in the cache. Writes continue to update
the cache and cache invalidations due to inquiry cycles occur normally. The cache must also be
invalidated to completely disable any cache activity.

31 PG Paging Enable Bit: If PG=1 and protected mode is enabled (PE=1), paging is enabled. After
changing the state of PG, software must execute an unconditional branch instruction (e.g., JMP,
CALL) to have the change take effect.

Table 2-5. Effects of Various Combinations of EM, TS, and MP Bits

CR0 BIT INSTRUCTION TYPE

EM TS MP WAIT ESC

0 0 0 Execute Execute

0 0 1 Execute Execute

0 1 0 Execute Fault 7

0 1 1 Fault 7 Fault 7

1 0 0 Execute Fault 7

1 0 1 Execute Fault 7

1 1 0 Execute Fault 7

1 1 1 Fault 7 Fault 7

Table 2-4. CR0 Bit Definitions

BIT
POSITION

NAME FUNCTION

2-15

2System Register Set

Registers and Descriptors

Descriptor Table Registers

The Global, Interrupt, and Local Descriptor
Table Registers (GDTR, IDTR and LDTR),
shown in Figure 2-7, are used to specify the
location of the data structures that control seg-
mented memory management. The GDTR,
IDTR and LDTR are loaded using the LGDT,
LIDT and LLDT instructions, respectively. The
values of these registers are stored using the cor-
responding store instructions. The GDTR and
IDTR load instructions are privileged instruc-
tions when operating in protected mode. The
LDTR can only be accessed in protected mode.

The Global Descriptor Table Register (GDTR)
holds a 32-bit linear base address and 16-bit
limit for the Global Descriptor Table (GDT).
The GDT is an array of up to 8192 8-byte
descriptors. When a segment register is loaded
from memory, the TI bit in the segment selector
chooses either the GDT or the Local Descriptor
Table (LDT) to locate a descriptor. If TI = 0, the
index portion of the selector is used to locate the
descriptor within the GDT table. The contents
of the GDTR are completely visible to the pro-
grammer by using a SGDT instruction. The first

descriptor in the GDT (location 0) is not used by
the CPU and is referred to as the “null descrip-
tor”. The GDTR is initialized using a LGDT
instruction.

The Interrupt Descriptor Table Register
(IDTR) holds a 32-bit linear base address and
16-bit limit for the Interrupt Descriptor Table
(IDT). The IDT is an array of 256 interrupt
descriptors, each of which is used to point to an
interrupt service routine. Every interrupt that
may occur in the system must have an associ-
ated entry in the IDT. The contents of the IDTR
are completely visible to the programmer by
using a SIDT instruction. The IDTR is initialized
using the LIDT instruction.

The Local Descriptor Table Register (LDTR)
holds a 16-bit selector for the Local Descriptor
Table (LDT). The LDT is an array of up to 8192
8-byte descriptors. When the LDTR is loaded,
the LDTR selector indexes an LDT descriptor
that must reside in the Global Descriptor Table
(GDT). The base address and limit are loaded
automatically and cached from the LDT
descriptor within the GDT.

Figure 2-7. Descriptor Table Registers

BASE ADDRESS LIMIT

SELECTOR

47 16 15 0

LDTR

IDTR

GDTRBASE ADDRESS LIMIT

2-16

System Register Set

Subsequent access to entries in the LDT use the
hidden LDTR cache to obtain linear addresses.
If the LDT descriptor is modified in the GDT,
the LDTR must be reloaded to update the hidden
portion of the LDTR.

When a segment register is loaded from mem-
ory, the TI bit in the segment selector chooses
either the GDT or the LDT to locate a segment
descriptor. If TI = 1, the index portion of the
selector is used to locate a given descriptor
within the LDT. Each task in the system may be
given its own LDT, managed by the operating
system. The LDTs provide a method of isolat-
ing a given task’s segments from other tasks in
the system.

The LDTR can be read or written by the LLDT
and SLDT instructions.

Descriptors

There are three types of descriptors:

• Application Segment Descriptors that
define code, data and stack segments.

• System Segment Descriptors that define
an LDT segment or a Task State Segment
(TSS) table described later in this text.

• Gate Descriptors that define task gates,
interrupt gates, trap gates and call gates.

Application Segment Descriptors can be
located in either the LDT or GDT. System Seg-
ment Descriptors can only be located in the
GDT. Dependent on the gate type, gate descrip-
tors may be located in either the GDT, LDT or
IDT. Figure 2-8 illustrates the descriptor format
for both Application Segment Descriptors and
System Segment Descriptors. Table 2-6 (Page
2-17) lists the corresponding bit definitions.

Figure 2-8. Application and System Segment Descriptors

2-17

2System Register Set

Table 2-6. Segment Descriptor Bit Definitions

BIT
POSITION

MEMORY
OFFSET

NAME DESCRIPTION

31-24
7-0

31-16

+4
+4
+0

BASE Segment base address.
32-bit linear address that points to the beginning of the segment.

19-16
15-0

+4
+0

LIMIT Segment limit.

23 +4 G Limit granularity bit:
0 = byte granularity, 1 = 4 KBytes (page) granularity.

22 +4 D Default length for operands and effective addresses.
Valid for code and stack segments only: 0 = 16 bit, 1 = 32-bit.

20 +4 AVL Segment available.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

12 +4 DT Descriptor type:
0 = system, 1 = application.

11-8 +4 TYPE Segment type. See Tables 2-7 and 2-8.

Table 2-7. TYPE Field Definitions with DT = 0

TYPE
(BITS 11-8)

DESCRIPTION

0001 TSS-16 descriptor, task not busy.

0010 LDT descriptor.

0011 TSS-16 descriptor, task busy.

1001 TSS-32 descriptor, task not busy

1011 TSS-32 descriptor, task busy.

2-18

System Register Set

Table 2-8. TYPE Field Definitions with DT = 1

TYPE
APPLICATION DECRIPTOR INFORMATION

E C/D R/W A

0 0 x x data, expand up, limit is upper bound of segment

0 1 x x data, expand down, limit is lower bound of segment

1 0 x x executable, non-conforming

1 1 x x executable, conforming (runs at privilege level of calling procedure)

0 x 0 x data, non-writable

0 x 1 x data, writable

1 x 0 x executable, non-readable

1 x 1 x executable, readable

x x x 0 not-accessed

x x x 1 accessed

2-19

2System Register Set

System Register Set

Interrupt Gate Descriptors are used to enter a
hardware interrupt service routine. Trap Gate
Descriptors are used to enter exceptions or soft-
ware interrupt service routines. Trap Gate and
Interrupt Gate Descriptors can only be located
in the IDT.

Call Gate Descriptors are used to enter a proce-
dure (subroutine) that executes at the same or a
more privileged level. A Call Gate Descriptor
primarily defines the procedure entry point and
the procedure’s privilege level.

Figure 2-9 Gate Descriptor

Table 2-9. Gate Descriptor Bit Definitions

BIT
POSITION

MEMORY
OFFSET

NAME DESCRIPTION

31-16
15-0

+4
+0

OFFSET Offset used during a call gate to calculate the branch target.

31-16 +0 SELECTOR Segment selector used during a call gate to calculate the branch target.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

11-8 +4 TYPE Segment type:
0100 = 16-bit call gate
0101 = task gate
0110 = 16-bit interrupt gate
0111 = 16-bit trap gate
1100 = 32-bit call gate
1110 = 32-bit interrupt gate
1111 = 32-bit trap gate.

4-0 +4 PARAMETERS Number of 32-bit parameters to copy from the caller’s stack to the called
procedure’s stack (valid for calls).

Gate Descriptors provide protection for exe-
cutable segments operating at different privi-
lege levels. Figure 2-9 illustrates the format for
Gate Descriptors and Table 2-9 lists the corre-
sponding bit definitions.

Task Gate Descriptors are used to switch the
CPU’s context during a task switch. The selec-
tor portion of the task gate descriptor locates a
Task State Segment. These descriptors can be
located in the GDT, LDT or IDT tables.

2-20

System Register Set

2.4.3 Task Register

The Task Register (TR) holds a 16-bit selector
for the current Task State Segment (TSS) table
as shown in Figure 2-10. The TR is loaded and
stored via the LTR and STR instructions,
respectively. The TR can only be accessed dur-
ing protected mode and can only be loaded
when the privilege level is 0 (most privileged).
When the TR is loaded, the TR selector field
indexes a TSS descriptor that must reside in the

Global Descriptor Table (GDT). The contents of
the selected descriptor are cached on-chip in the
hidden portion of the TR.

During task switching, the processor saves the cur-
rent CPU state in the TSS before starting a new
task. The TR points to the current TSS. The TSS
can be either a 386/486-style 32-bit TSS
(Figure 2-11, Page 2-21) or a 286-style 16-bit TSS type
(Figure 2-12, Page 2-22). An I/O permission bit
map is referenced in the 32-bit TSS by the I/O
Map Base Address.

Figure 2-10. Task Register

2-21

2System Register Set

Figure 2-11. 32-Bit Task State Segment (TSS) Table

2-22

System Register Set

Figure 2-12. 16-Bit Task State Segment (TSS) Table

2-23

2System Register Set

2.4.4 IBM 6x86 Configuration
Registers

A set of 24 on-chip IBM 6x86 configuration
registers are used to enable features in the IBM
6x86 CPU. These registers assign non-cached
memory areas, set up SMM, provide CPU iden-
tification information and control various fea-
tures such as cache write policy, and bus
locking control. There are four groups of regis-
ters within the IBM 6x86 configuration register
set:

• 6 Configuration Control Registers
(CCRx)

• 8 Address Region Registers (ARRx)
• 8 Region Control Registers (RCRx)
• 2 Device Identification Registers (DIRx)

Access to the configuration registers is
achieved by writing the register index number
for the configuration register to I/O port 22h.
I/O port 23h is then used for data transfer.

Each I/O port 23h data transfer must be pre-
ceded by a valid I/O port 22h register index
selection. Otherwise, the current 22h, and the
second and later I/O port 23h operations com-
municate through the I/O port to produce exter-
nal I/O cycles. All reads from I/O port 22h
produce external I/O cycles. Accesses that hit
within the on-chip configuration registers do
not generate external I/O cycles.

After reset, configuration registers with
indexes CO-CFh and FE-FFh are accessible.
To prevent potential conflicts with other
devices which may use ports 22 and 23h to

access their registers, the remaining registers
(indexes D0-FDh) are accessible only if the
MAPEN(3-0) bits in CCR3 are set to 1h. See
Figure 2-16 (Page 2-28) for more information
on the MAPEN(3-0) bit locations.

If MAPEN[3-0] = 1h, any access to indexes in
the range 00-FFh will not create external I/O
bus cycles. Registers with indexes C0-CFh,
FE, FFh are accessible regardless of the state of
MAPEN[3-0]. If the register index number is
outside the C0-CFh or FE-FFh ranges, and
MAPEN[3-0] are set to 0h, external I/O bus
cycles occur. Table 2-10 (Page 2-24) lists the
MAPEN[3-0] values required to access each
IBM 6x86 configuration register. All bits in
the configuration registers are initialized to
zero following reset unless specified otherwise.

Valid register index numbers include C0h to
E3h, E8h, E9h, FEh and FFh
(if MAPEN[3-0] = 1).

2.4.4.1 Configuration Control
Registers

(CCR0 - CCR5) control several functions,
including non-cacheable memory, write-back
regions, and SMM features. A list of the con-
figuration registers is listed in Table 2-10 (Page
2-24). The configuration registers are described
in greater detail in the following pages.

2-24

System Register Set

Table 2-10. IBM 6x86™ CPU Configuration Registers

REGISTER NAME ACRONYM
REGISTER

INDEX
WIDTH

(Bits)

MAPEN VALUE
 NEEDED FOR

ACCESS

Configuration Control 0 CCR0 C0h 8 x

Configuration Control 1 CCR1 C1h 8 x

Configuration Control 2 CCR2 C2h 8 x

Configuration Control 3 CCR3 C3h 8 x

Configuration Control 4 CCR4 E8h 8 1

Configuration Control 5 CCR5 E9h 8 1

Address Region 0 ARR0 C4h - C6h 24 x

Address Region 1 ARR1 C7h - C9h 24 x

Address Region 2 ARR2 CAh - CCh 24 x

Address Region 3 ARR3 CDh - CFh 24 x

Address Region 4 ARR4 D0h - D2h 24 1

Address Region 5 ARR5 D3h - D5h 24 1

Address Region 6 ARR6 D6h - D8h 24 1

Address Region 7 ARR7 D9h - DBh 24 1

Region Control 0 RCR0 DCh 8 1

Region Control 1 RCR1 DDh 8 1

Region Control 2 RCR2 DEh 8 1

Region Control 3 RCR3 DFh 8 1

Region Control 4 RCR4 E0h 8 1

Region Control 5 RCR5 E1h 8 1

Region Control 6 RCR6 E2h 8 1

Region Control 7 RCR7 E3h 8 1

Device Identification 0 DIR0 FEh 8 x

Device Identification 1 DIR1 FFh 8 x

Note: x = Don’t Care

2-25

2System Register Set

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved NC1 Reserved

Figure 2-13. IBM 6x86™ Configuration Control Register 0 (CCR0)

Table 2-11. CCR0 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

1 NC1 No Cache 640 KByte - 1 MByte
If = 1: Address region 640 KByte to 1 MByte is non-cacheable.
If = 0: Address region 640 KByte to 1 MByte is cacheable.

Note: Bits 0, 2 through 7 are reserved.

2-26

System Register Set

7 6 5 4 3 2 1 0

SM3 Reserved Reserved NO_LOCK Reserved SMAC USE_SMI Reserved

Figure 2-14. IBM 6x86 Configuration Control Register 1 (CCR1)

Table 2-12. CCR1 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

1 USE_SMI Enable SMM and SMIACT# Pins
If = 1: SMI# and SMIACT# pins are enabled.
If = 0: SMI# pin ignored and SMIACT# pin is driven inactive.

2 SMAC System Management Memory Access
If = 1: Any access to addresses within the SMM address space, access system manage-
ment memory instead of main memory. SMI# input is ignored. Used when initializing
or testing SMM memory.
If = 0: No effect on access.

4 NO_LOCK Negate LOCK#
If = 1: All bus cycles are issued with LOCK# pin negated except page table accesses
and interrupt acknowledge cycles. Interrupt acknowledge cycles are executed as locked
cycles even though LOCK# is negated. With NO_LOCK set, previously noncacheable
locked cycles are executed as unlocked cycles and therefore, may be cached. This
results in higher performance. Refer to Region Control Registers for information on
eliminating locked CPU bus cycles only in specific address regions.

7 SM3 SMM Address Space Address Region 3
If = 1: Address Region 3 is designated as SMM address space.

Note: If USE_SMI is set then SM3 mus also be set.

Note: Bits 0, 3, 5 and 6 are reserved.

2-27

2System Register Set

7 6 5 4 3 2 1 0

USE_SUSP Reserved Reserved WPR1 SUSP_HLT LOCK_NW SADS Reserved

Figure 2-15. IBM 6x86 Configuration Control Register 2 (CCR2)

Table 2-13. CCR2 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

1 SADS Slow ADS: For non-pipelinned back-to-back bus cycles only
If = 1: CPU inserts an idle following sampling of BRDY# and prior to asserting ADS#.
If = 0: No idle cycles are inserted between sampling of BRDY# and assertion of ADS#.

2 LOCK_NW Lock NW
If = 1: NW bit in CR0 becomes read only and the CPU ignores any writes to the NW bit.
If = 0: NW bit in CR0 can be modified.

3 SUSP_HLT Suspend on Halt
If = 1: Execution of the HLT instruction causes the CPU to enter low power suspend
mode.

4 WPR1 Write-Protect Region 1
If = 1: Designates any cacheable accesses in 640 KByte to 1 MByte address region are
write protected.

7 USE_SUSP Use Suspend Mode (Enable Suspend Pins)
If = 1: SUSP# and SUSPA# pins are enabled.
If = 0: SUSP# pin is ignored and SUSPA# pin floats.

Note: Bits 0,1, 5 and 6 are reserved.

2-28

System Register Set

7 6 5 4 3 2 1 0

MAPEN Reserved LINBRST NMI_EN SMI_LOCK

Figure 2-16. IBM 6x86 Configuration Control Register 3 (CCR3)

Table 2-14. CCR3 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

0 SMI_LOCK SMI Lock
If = 1: The following SMM configuration bits can only be modified while in an
SMI service routine:
CCR1: USE_SMI, SMAC, SM3
CCR3: NMI_EN
ARR3: Starting address and block size.
Once set, the features locked by SMI_LOCK cannot be unlocked until the
 RESET pin is asserted.

1 NMI_EN NMI Enable
If = 1: NMI interrupt is recognized while servicing an SMI interrupt.
NMI_EN should be set only while in SMM, after the appropriate SMI interrupt
service routine has been setup.

2 LINBRST If = 1: Use linear address sequence during burst cycles.
If = 0: Use “1 + 4” address sequence during burst cycles. The “1 + 4” address
sequence is compatible with Pentium’s burst address sequence.

4 - 7 MAPEN MAP Enable
If = 1h: All configuration registers are accessible.
If = 0h: Only configuration registers with indexes C0-CFh, FEh and FFh
are accessible.

Note: Bit 3 is reserved.

2-29

2System Register Set

.

7 6 5 4 3 2 1 0

CPUID Reserved Reserved DTE_EN Reserved IORT

Figure 2-17. IBM 6x86 Configuration Control Register 4 (CCR4)

Table 2-15. CCR4 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

0 - 2 IORT I/O Recovery Time
Specifies the minimum number of bus clocks between I/O accesses:
0h = 1 clock delay
1h = 2 clock delay
2h = 4 clock delay
3h = 8 clock delay
4h = 16 clock delay
5h = 32 clock delay (default value after RESET)
6h = 64 clock delay
7h = no delay

4 DTE_EN Enable Directory Table Entry Cache
If = 1: the Directory Table Entry cache is enabled.

7 CPUID Enable CPUID instruction.
If = 1: the ID bit in the EFLAGS register can be modified and execution of the
CPUID instruction occurs as documented in section 6.3.
If = 0: the ID bit in the EFLAGS register can not be modified and execution of
the CPUID instruction causes an invalid opcode exception.

Note: Bits 3 and bits 5 and 6 are reserved.

2-30

System Register Set

7 6 5 4 3 2 1 0

Reserved Reserved ARREN LBR1 Reserved Reserved SLOP WT_ALLOC

Figure 2-18. IBM 6x86 Configuration Control Register 5 (CCR5)

Table 2-16. CCR5 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

0 WT_ALLOC Write-Through Allocate
If = 1: New cache lines are allocated for read and write misses.
If = 0: New cache lines are allocated only for read misses.

1 SLOP If set, the LOOP instruction is slowed down to allow programs with poorly
written software timing loops to function correctly. If clear, the LOOP instruc-
tion executes in one clock.

4 LBR1 Local Bus Region 1
If = 1: LBA# pin is asserted for all accesses to the 640 KByte to 1 MByte
address region.

5 ARREN Enable ARR Registers
If = 1: Enables all ARR registers.
If = 0: Disables the ARR registers. If SM3 is set, ARR3 is enabled regardless
of the setting of ARREN.

Note: Bits 1 through 3 and 6 though 7 are reserved.

2-31

2System Register Set

2.4.4.2 Address Region
Registers

The Address Region Registers (ARR0 - ARR7)
(Figure 2-19) are used to specify the location
and size for the eight address regions.

Attributes for each address region are specified
in the Region Control Registers (RCR0-RCR7).
ARR7 and RCR7 are used to define system
main memory and differ from ARR0-6 and
RCR0-6.

With non-cacheable regions defined on-chip,
the IBM 6x86 CPU delivers optimum perfor-
mance by using advanced techniques to elimi-
nate data dependencies and resource conflicts in
its execution pipelines. If KEN# is active for

accesses to regions defined as non-cacheable by
the RCRs, the region is not cached. The RCRs
take precedence in this case.

A register index, shown in Table 2-17 (Page
2-32) is used to select one of three bytes in each
ARR.

The starting address of the ARR address region,
selected by the START ADDRESS field, must
be on a block size boundary. For example, a
128 KByte block is allowed to have a starting
address of 0 KBytes, 128 KBytes, 256 KBytes,
and so on.

The SIZE field bit definition is listed in (Page
2-32). If the SIZE field is zero, the address
region is of zero size and thus disabled.

START ADDRESS SIZE

Memory Address
 Bits A31-A24

Memory Address
Bits A23-A16

Memory Address
Bits A15-A12

Size Bits
 3-0

7 0 7 0 7 4 3 0

Figure 2-19. Address Region Registers (ARR0 - ARR7)

2-32

System Register Set

.

Table 2-17. ARR0 - ARR7 Register Index Assignments

ARR
Register

Memory Address
 (A31 - A24)

Memory Address
(A23 - A16)

Memory Address
(A15 - A12)

Address Region
Size (3 - 0)

ARR0 C4h C5h C6h C6h

ARR1 C7h C8h C9h C9h

ARR2 CAh CBh CCh CCh

ARR3 CDh CEh CFh CFh

ARR4 D0h D1h D2h D2h

ARR5 D3h D4h D5h D5h

ARR6 D6h D7h D8h D8h

ARR7 D9h DAh DBh DBh

Table 2-18. Bit Definitions for SIZE Field

SIZE (3-0)
 BLOCK SIZE

SIZE (3-0)
BLOCK SIZE

ARR0-6 ARR7 ARR0-6 ARR7

0h Disabled Disabled 8h 512 KBytes 32 MBytes

1h 4 KBytes 256 KBytes 9h 1 MBytes 64 MBytes

2h 8 KBytes 512 KBytes Ah 2 MBytes 128 MBytes

3h 16 KBytes 1 MBytes Bh 4 MBytes 256 MBytes

4h 32 KBytes 2 MBytes Ch 8 MBytes 512 MBytes

5h 64 KBytes 4 MBytes Dh 16 MBytes 1 GBytes

6h 128 KBytes 8 MBytes Eh 32 MBytes 2 GBytes

7h 256 KBytes 16 MBytes Fh 4 GBytes 4 GBytes

2-33

2System Register Set

2.4.4.3 Region Control
 Registers

The Region Control Registers (RCR0 - RCR7)
specify the attributes associated with the ARRx
address regions. The bit definitions for the
region control registers are shown in Figure
2-20 (Page 2-34) and in Table 2-19 (Page
2-34). Cacheability, weak write ordering, weak
locking, write gathering, cache write policies
and control of the LBA# pin can be activated or
deactivated using the attribute bits.

If an address is accessed that is not in a memory
region defined by the ARRx registers, the fol-
lowing conditions will apply:

• LBA# pin is asserted
• The memory access is cached, if KEN# is

returned asserted.
• If the memory address is cached,

write-back is enabled if WB/WT# is
returned high.

• Writes are not gathered
• Strong locking takes place
• Strong write ordering takes place

Overlapping Conditions Defined. If two
regions specified by ARRx registers overlap
and conflicting attributes are specified, the fol-
lowing attributes take precedence:

• LBA# pin is asserted
• The overlapping regions are

non-cacheable.
• Write-back is disabled
• Writes are not gathered
• Strong locking takes place
• Strong write ordering takes place

2-34

System Register Set

7 6 5 4 3 2 1 0

Reserved Reserved NLB WT WG WL WWO RCD / RCE*

*Note: RCD is defined for RCR0-RCR6. RCE is defined for RCR7.

Figure 2-20. Region Control Registers (RCR0-RCR7)

Table 2-19. RCR0-RCR7 Bit Definitions

RCRx
BIT

POSITION
NAME DESCRIPTION

0 - 6 0 RCD If = 1: Disables caching for address region specified by ARRx.
7 0 RCE If = 1: Enables caching for address region ARR7.

0 - 7 1 WWO If = 1: Weak write ordering for address region specified by ARRx.
0 - 7 2 WL If = 1: Weak locking for address region specified by ARRx.
0 - 7 3 WG If = 1: Write gathering for address region specified by ARRx.
0 - 7 4 WT If = 1: Address region specified by ARRx is write-through.
0 - 7 5 NLB If = 1:LBA# pin is not asserted for access to address region specified by ARRx

Note: Bits 6 and 7 are reserved.

Region Cache Disable (RCD). Setting
RCD to a one defines the address region as
non-cacheable. Whenever possible, the
RCRs should be used to define non-cache-
able regions rather than using external
address decoding and driving the KEN# pin.

Region Cache Enable (RCE). Setting RCE
to a one defines the address region as cache-
able. RCE is used to define the system main
memory as cacheable memory. It is implied
that memory outside the region is non-cache-
able.

Weak Write Ordering (WWO). Setting
WWO=1 enables weak write ordering for
that address region. Enabling WWO allows
the IBM 6x86 CPU to issue writes in its
internal cache in an order different than their
order in the code stream. External writes
always occur in order (strong ordering).

Therefore, this should only be enabled for mem-
ory regions that are NOT sensitive to this condi-
tion. WWO should not be enabled for memory
mapped I/O. WWO only applies to memory
regions that have been cached and designated as
write-back. It also applies to previously cached
addresses even if the cache has been disabled
(CD=1). Enabling WWO removes the
write-ordering restriction and improves perfor-
mance due to reduced pipeline stalls.

Weak Locking (WL). Setting WL=1 enables
weak locking for that address region. With WL
enabled, all bus cycles are issued with the LOCK#
pin negated except for page table accesses and
interrupt acknowledge cycles. Interrupt acknowl-
edge cycles are executed as locked cycles even
though LOCK# is negated. With WL=1, previ-
ously non-cacheable locked cycles are executed
as unlocked cycles and therefore, may be cached,
resulting in higher performance. The NO_LOCK

2-35

2System Register Set

bit of CCR1 enables weak locking for the entire
address space. The WL bit allows weak locking
only for specific address regions. WL is inde-
pendent of the cacheability of the address
region.

Write Gathering (WG). Setting WG=1
enables write gathering for the associated
address region. Write gathering allows multiple
byte, word, or dword sequential address writes
to accumulate in the on-chip write buffer. (As
instructions are executed, the results are placed
in a series of output buffers. These buffers are
gathered into the finial output buffer).

When access is made to a non-sequential mem-
ory location or when the 8-byte buffer becomes
full, the contents of the buffer are written on the
external 64-bit data bus. Performance is
enhanced by avoiding as many as seven mem-
ory write cycles.

WG should not be used on memory regions that
are sensitive to write cycle gathering. WG can
be enabled for both cacheable and
non-cacheable regions.

Write Through (WT). Setting WT=1 defines
the address region as write-through instead of
write-back, assuming the region is cacheable.
Regions where system ROM are loaded (shad-
owed or not) should be defined as
write-through.

LBA# Not Asserted (NLB). Setting NLB=1
prevents the microprocessor from asserting the
Local Bus Access (LBA#) output pin for
accesses to that address region. The RCR
regions may be used to define non-local bus
address regions. The LBA# pin could then be
asserted for all regions, except those defined by
the RCRs. The LBA# signal may be used by the
external hardware (e.g., chipsets) as an indica-
tion that local bus accesses are occurring.

2-36

System Register Set

2.4.4.4 Device Identification Registers

The Device Identification Registers (DIR0, DIR1) contain CPU identification, CPU stepping and
CPU revision information. Bit definitions are shown in Figure 2-21, Table 2-20, Figure 2-22 and
Table 2-21 respectively. Data in these registers cannot be changed. These registers can be read by
using I/O ports 22 and 23. The register index for DIR0 is FEh and the register index for DIR1 is FFh.

7 0
DEVID

Figure 2-21. Device Identification Register 0 (DIR0)

Table 2-20. DIR0 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

7 - 0 DEVID CPU Device Identification Number (read only).

7 4 3 0
SID RID

Figure 2-22. Device Identification Register 1 (DIR1)

Table 2-21. DIR1 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

7 - 4 SID CPU Step Identification Number (read only).
3 - 0 RID CPU Revision Identification (read only).

2-37

2System Register Set

2.4.5 Debug Registers

Six debug registers (DR0-DR3, DR6 and DR7),
shown in Figure 2-23, support debugging on the
IBM 6x86 CPU. The bit definitions for the
debug registers are listed in Table 2-22 (Page
2-38).

Memory addresses loaded in the debug regis-
ters, referred to as “breakpoints”, generate a
debug exception when a memory access of the
specified type occurs to the specified address.
A data breakpoint can be specified for a partic-
ular kind of memory access such as a read or a
write. Code breakpoints can also be set allow-
ing debug exceptions to occur whenever a given
code access (execution) occurs.

The size of the debug target can be set to 1, 2, or
4 bytes. The debug registers are accessed via
MOV instructions which can be executed only
at privilege level 0.

The Debug Address Registers (DR0-DR3) each
contain the linear address for one of four possi-
ble breakpoints. Each breakpoint is further
specified by bits in the Debug Control Register
(DR7). For each breakpoint address in
DR0-DR3, there are corresponding fields L,
R/W, and LEN in DR7 that specify the type of
memory access associated with the breakpoint.

The R/W field can be used to specify instruction
execution as well as data access breakpoints.
Instruction execution breakpoints are always
taken before execution of the instruction that
matches the breakpoint.

The Debug Status Register (DR6) reflects con-
ditions that were in effect at the time the debug
exception occurred. The contents of the DR6
register are not automatically cleared by the
processor after a debug exception occurs and,
therefore, should be cleared by software at the
appropriate time.

Figure 2-23. Debug Registers

2-38

System Register Set

Code execution breakpoints may also be generated by placing the breakpoint instruction (INT 3) at
the location where control is to be regained. Additionally, the single-step feature may be enabled
by setting the TF flag in the EFLAGS register. This causes the processor to perform a debug excep-
tion after the execution of every instruction.

Table 2-22. DR6 and DR7 Debug Register Field Definitions

REGISTER FIELD
NUMBER
OF BITS

DESCRIPTION

DR6 Bi 1 Bi is set by the processor if the conditions described by DRi, R/Wi,
and LENi occurred when the debug exception occurred, even if the
breakpoint is not enabled via the Gi or Li bits.

 BT 1 BT is set by the processor before entering the debug handler if a task
switch has occurred to a task with the T bit in the TSS set.

 BS 1 BS is set by the processor if the debug exception was triggered by the
single-step execution mode (TF flag in EFLAGS set).

DR7 R/Wi 2 Specifies type of break for the linear address in DR0, DR1, DR3,
DR4:
00 - Break on instruction execution only
01 - Break on data writes only
10 - Not used
11 - Break on data reads or writes.

 LENi 2 Specifies length of the linear address in DR0, DR1, DR3, DR4:
00 - One byte length
01 - Two byte length
10 - Not used
11 - Four byte length.

 Gi 1 If set to a 1, breakpoint in DRi is globally enabled for all tasks and is
not cleared by the processor as the result of a task switch.

 Li 1 If set to a 1, breakpoint in DRi is locally enabled for the current task
and is cleared by the processor as the result of a task switch.

 GD 1 Global disable of debug register access. GD bit is cleared whenever a
debug exception occurs.

2-39

2System Register Set

2.4.6 Test Registers

The test registers can be used to test the on-chip
unified cache and to test the main TLB. The test
registers are also used to enable IBM 6x86 CPU
variable-size paging.

Test registers TR3, TR4, and TR5 are used to
test the unified cache. Use of these registers is
described with the memory caches later in this
chapter in Section 2.7.1.1.

Test registers TR6 and TR7 are used to test the
TLB. Use of these test registers is described in
Section 2.6.4.2.

2-40

Address Space

2.5 Address Space

The IBM 6x86 CPU can directly address 64
KBytes of I/O space and 4 GBytes of physical
memory (Figure 2-24).

Memory Address Space. Access can be
made to memory addresses between
0000 0000h and FFFF FFFFh. This 4 GByte

Figure 2-24. Memory and I/O Address Spaces

memory space can be accessed using byte,
word (16 bits), or doubleword (32 bits) format.
Words and doublewords are stored in consecu-
tive memory bytes with the low-order byte
located in the lowest address. The physical
address of a word or doubleword is the byte
address of the low-order byte.

2-41

2Memory Addressing Methods

I/O Address Space

The IBM 6x86 I/O address space is accessed
using IN and OUT instructions to addresses
referred to as “ports”. The accessible I/O
address space size is 64 KBytes and can be
accessed through 8-bit, 16-bit or 32-bit ports.
The execution of any IN or OUT instruction
causes the M/IO# pin to be driven low, thereby
selecting the I/O space instead of memory
space.

The accessible I/O address space ranges
between locations 0000 0000h and 0000 FFFFh
(64 KBytes). The I/O locations (ports) 22h and
23h can be used to access the IBM 6x86
configuration registers.

2.6 Memory Addressing
 Methods

With the IBM 6x86 CPU, memory can be
addressed using nine different addressing
modes (Table 2-23, Page 2-42). These
addressing modes are used to calculate an
offset address often referred to as an effective
address. Depending on the operating mode of
the CPU, the offset is then combined using
memory management mechanisms to create a
physical address that actually addresses the
physical memory devices.

Memory management mechanisms on the IBM
6x86 CPU consist of segmentation and paging.
Segmentation allows each program to use
several independent, protected address
spaces. Paging supports a memory subsystem
that simulates a large address space using a
small amount of RAM and disk storage for
physical memory. Either or both of these
mechanisms can be used for management of
the IBM 6x86 CPU memory address space.

2-42

Memory Addressing Methods

2.6.1 Offset Mechanism

The offset mechanism computes an offset
(effective) address by adding together one or
more of three values: a base, an index and a
displacement. When present, the base is the
value of one of the eight 32-bit general regis-
ters. The index if present, like the base, is a
value that is in one of the eight 32-bit general
purpose registers (not including the ESP
register). The index differs from the base in
that the index is first multiplied by a scale
factor of 1, 2, 4 or 8 before the summation is
made. The third component added to the
memory address calculation is the displace-
ment. The displacement is a value of up to
32-bits in length supplied as part of the instruc-
tion. Figure 2-25 illustrates the calculation of
the offset address.

Nine valid combinations of the base, index,
scale factor and displacement can be used with
the IBM 6x86 CPU instruction set. These
combinations are listed in Table 2-23. The
base and index both refer to contents of a
register as indicated by [Base] and [Index].

Figure 2-25. Offset Address Calculation

Table 2-23. Memory Addressing Modes

ADDRESSING
MODE

BASE INDEX
SCALE

FACTOR
(SF)

DISPLACEMENT
(DP)

OFFSET ADDRESS (OA)
CALCULATION

Direct x OA = DP

Register Indirect x OA = [BASE]

Based x x OA = [BASE] + DP

Index x x OA = [INDEX] + DP

Scaled Index x x x OA = ([INDEX] * SF) + DP

Based Index x x OA = [BASE] + [INDEX]

Based Scaled Index x x x OA = [BASE] + ([INDEX] * SF)

Based Index with
Displacement

x x x OA = [BASE] + [INDEX] + DP

Based Scaled Index with
Displacement

x x x x OA = [BASE] + ([INDEX] * SF) + DP

2-43

2Memory Addressing Methods

2.6.2 Memory
Addressing

Real Mode Memory Addressing

In real mode operation, the IBM 6x86 CPU
only addresses the lowest 1 MByte of memory.
To calculate a physical memory address, the
16-bit segment base address located in the
selected segment register is multiplied by 16
and then the 16-bit offset address is added.
The resulting 20-bit address is then extended.
Three hexadecimal zeros are added as upper
address bits to create the 32-bit physical address.
Figure 2-26 illustrates the real mode address
calculation.

The addition of the base address and the offset
address may result in a carry. Therefore, the
resulting address may actually contain up to 21
significant address bits that can address
memory in the first 64 KBytes above 1 MByte.

Protected Mode Memory Addressing

In protected mode three mechanisms calculate a
physical memory address (Figure 2-27, Page 2-44).

• Offset Mechanism that produces the
offset or effective address as in real mode.

• Selector Mechanism that produces the
base address.

• Optional Paging Mechanism that trans-
lates a linear address to the physical
memory address.

The offset and base address are added together
to produce the linear address. If paging is not
enabled, the linear address is used as the phys-
ical memory address. If paging is enabled, the
paging mechanism is used to translate the
linear address into the physical address. The
offset mechanism is described earlier in this
section and applies to both real and protected
mode. The selector and paging mechanisms
are described in the following paragraphs.

Figure 2-26. Real Mode Address Calculation

2-44

Memory Addressing Methods

Figure 2-27. Protected Mode Address Calculation

2.6.3 Selector Mechanism

Using segmentation, memory is divided into an
arbitrary number of segments, each containing
usually much less than the 232 byte (4 GByte)
maximum.

The six segment registers (CS, DS, SS, ES, FS
and GS) each contain a 16-bit selector that is
used when the register is loaded to locate a
segment descriptor in either the global
descriptor table (GDT) or the local descriptor
table (LDT). The segment descriptor defines

the base address, limit, and attributes of the
selected segment and is cached on the IBM
6x86 CPU as a result of loading the selector.
The cached descriptor contents are not visible
to the programmer. When a memory reference
occurs in protected mode, the linear address is
generated by adding the segment base address
in the hidden portion of the segment register to
the offset address. If paging is not enabled,
this linear address is used as the physical
memory address. Figure 2-28 illustrates the
operation of the selector mechanism.

Figure 2-28. Selector Mechanism

2-45

2Memory Addressing Methods

2.6.4 Paging Mechanisms

The paging mechanisms (Figure 2-29) trans-
late linear addresses to their corresponding
physical addresses. For traditional paging, the
page size is always 4 KBytes. If IBM 6x86
Variable-Size Paging is selected, a page size
may be as large as 4 GBytes. Use of larger
page sizes allows large memory areas such as
video memory to be placed in a single page,
eliminating page table thrashing.

Paging is activated when the PG and the PE
bits within the CR0 register are set.

2.6.4.1 Traditional Paging
Mechanism

The traditional paging mechanism translates
the 20 most significant bits of a linear address
to a physical address. The linear address is
divided into three fields DTI, PTI, PFO
(Figure 2-30, Page 2-46). These fields respec-
tively select:

• an entry in the directory table,
• an entry in the page table selected by the

directory table
• the offset in the physical page selected by

the page table

The directory table and all the page tables can
be considered as pages as they are 4-KBytes in

size and are aligned on 4-KByte boundaries.
Each entry in these tables is 32 bits in length.
The fields within the entries are detailed in
Figure 2-31 (Page 2-46) and Table 2-24 (Page
2-47).

A single page directory table can address up to
4 GBytes of virtual memory (1,024 page
tables—each table can select 1,024 pages and
each page contains 4 KBytes).

Translation Lookaside Buffer (TLB) is made
up of three caches (Figure 2-30, Page 2-46).

• the DTE Cache caches directory table
entries

• the Main TLB caches page tables entries
• the Victim TLB stores PTEs that have

been evicted from the Main TLB

The DTE cache is a 4-entry fully associative
cache, the main TLB is a 128-entry direct
mapped cache and the victim TLB is an
8-entry fully associative cache.The DTE cache
caches the four most recent DTEs so that
future TLB misses only require a single page
table read to calculate the physical address.
The DTE cache is disabled following RESET
and is enabled by setting the DTE_EN bit
(CCR4 bit4).

Figure 2-29. Paging Mechanisms

2-46

Memory Addressing Methods

Figure 2-30. Traditional Paging Mechanism

Figure 2-31. Directory and Page Table Entry (DTE and PTE) Format

CR3

Directory Table Index Page Table Index Page Frame Offset

31 22 21 12 11 0

Physical Page

DTE PTE

0 0 0

4 Kb4 Kb

(DTI) (PTI) (PFO)

7

0

0

127

0

3

Main TLB
128 Entry

Direct Mapped

DTE Cache
4 Entry

Fully Associative

Page Table MemoryDirectory Table

0

4 Kb

4 Gb

Linear
Address

Control
Register External Memory

Victim TLB
8 Entry

Fully Associative

BASE ADDRESS AVAILABLE P
WU

D

31 012 11 9 8 123456710

ARESERVED
PP

C
D

W
T

/
S

/
R

Note: In DTE format, bit 6 is reserved

2-47

2Memory Addressing Methods

Table 2-24. Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT POSITION FIELD NAME DESCRIPTION

31-12 BASE
ADDRESS

Specifies the base address of the page or page table.

11-9 -- Undefined and available to the programmer.

8-7 -- Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the page (PTE
only, undefined in DTE).

5 A Accessed Flag. If set, indicates that a read access or write access has occurred
to the page.

4 PCD Page Caching Disable Flag. If set, indicates that the page is not cacheable in
the on-chip cache.

3 PWT Page Write-Through Flag. If set, indicates that writes to the page or page tables
that hit in the on-chip cache must update both the cache and external memory.

2 U/S User/Supervisor Attribute. If set (user), page is accessible at privilege level 3.
If clear (supervisor), page is accessible only when CPL ≤ 2.

1 W/R Write/Read Attribute. If set (write), page is writable. If clear (read), page is
read only.

0 P Present Flag. If set, indicates that the page is present in RAM memory, and
validates the remaining DTE/PTE bits. If clear, indicates that the page is not
present in memory and the remaining DTE/PTE bits can be used by the
programmer.

For a TLB hit, the TLB eliminates accesses to
external directory and page tables.

The victim TLB increases the apparent associa-
tivity of the main TLB and helps eliminate TLB
trashing (unproductive TLB management).
When an entry in the main TLB is replaced, a
copy of the replaced entry is sent to the victim
TLB before the entry in the main TLB is over-
written. If the victim TLB receives a hit, its
entry is swapped with a main TLB entry.

The TLB must be flushed by the software when
entries in the page tables are changed. The TLB

is flushed whenever the CR3 register is loaded.
A particular page can be flushed from the TLB
by using the INVLPG instruction. This instruc-
tion also flushes the entire DTE cache.

2.6.4.2 Translation Lookaside
Buffer Testing

The TLB can be tested by writing to a main TLB
followed by performing a TLB lookup (TLB
read) to see if the expected contents are within
the TLB. TLB test operations are performed
using test register TR6 and TR7 shown in
Figure 2-32 (Page 2-48). Tables 2-25 through
2-27 list the bit definitions for TR6 and TR7.

2-48

Memory Addressing Methods

Main TLB Write . To perform a direct write to
a main TLB entry, the TR7 register is config-
ured with the desired physical address as well
as the PCD and PWT bits. The BI, HV, HD and
HB bits are not used. The TR6 register is then
configured with the linear address, D, U, W and
V bits. The D, U, and W bits must be comple-
ments of the D#, U#, and W# bits during a
write. When the TR6 register is configured, the
IBM 6x86 CPU writes the linear and physical
address into the main TLB along with the A, D,
U, and W bits. The main TLB entry is selected
by bits 12 through 18 of the linear address field.

TLB Lookup . During a TLB lookup, the IBM
6x86 CPU queries the TLB with a given linear
address and expected A, W, U and D values.
The query returns a corresponding physical
address, and the source of the address. The
address source could be from the main TLB,

from the victim TLB or from the variable-size
paging mechanism.

The TLB lookup involves a single TR6 register
write. The CMD bits are set to 0x1. The D, U,
W, D#, U# and W# bits are not used during
TLB lookups.

After a TLB lookup, the HV, HD and HB bits
in TR7 indicate which (if any) PTEs were
found with the requested linear address. If a
TLB entry was found for a PTE in the victim or
variable size-paging cache, the BI bit in the
TR7 register will contain the index of the par-
ticular entry. If multiple entries respond, only
the HV, HD and HB bits are valid and all TR7
fields are undefined.

Figure 2-32. TLB Test Registers

ADR6 (LINEAR ADDRESS)

 = Reserved

V D U U# W TR6

ADR7 (PHYSICAL ADDRESS / BC MASK)

31 12 10 9 8 7 6 5

PCDPWT HV TR7BI HD

4 3 2 01

D# W#

12 10 9 8 7 6 5 4 3 2 0131

11

11

CMD

HB

A A#

2-49

2Memory Addressing Methods

Table 2-25. TLB Test Register Bit Definitions

REGISTER
NAME

NAME RANGE DESCRIPTION

TR7 ADR7 31-12 Physical address or variable page size mechanism mask.
TLB lookup: data field from the TLB.
TLB write: data field written into the TLB.

PCD 11 Page-level cache disable bit (PCD).
Corresponds to the PCD bit of a page table entry.

PWT 10 Page-level cache write-through bit (PWT).
Corresponds to the PWT bit of a page table entry.

BI 9-7 Cell index for victim TLB and block cache operations.

HV 5 Victim TLB hit.

HD 4 Main TLB hit.

HB 3 Variable-Size Paging Mechanism hit.

TR6 ADR6 31-12 Linear Address.
TLB lookup: The TLB is interrogated per this address. If
one and only one match occurs in the TLB, the rest of the
fields in TR6 and TR7 are updated per the matching TLB
entry.
TLB write: A TLB entry is allocated to this linear address.

V 11 PTE Valid.
TLB write: If set, indicates that the TLB entry contains
valid data. If clear, target entry is invalidated.

D, D# 10-9 Dirty Attribute Bit and its complement.
Refer to Table 2-26., Page 2-50.

U, U# 8-7 User/Supervisor Attribute Bit and its complement.
Refer to Table 2-26., Page 2-50.

W, W# 6-5 Write Protect bit and its complement.
Refer to Table 2-26., Page 2-50.

A, A# 4-3 Accessed Bit and its complement.
Used for block cache entries only.
Refer to Table 2-26., Page 2-50.

CMD 2-0 Array Command Select.
Determines TLB array command.
Refer to Table 2-27, Page 2-50.

2-50

Memory Addressing Methods

Table 2-26. TR6 Attribute Bit Pairs

BIT BIT# EFFECT ON TLB LOOKUP EFFECT ON TLB WRITE

0 0 Do not match. Undefined.

0 1 If bit = 0, match. Bit is cleared.

1 0 If bit = 1, match. The bit is set.

1 1 If bit = 0 or 1, match. Undefined.
Note: “BIT” applies to A, D, U or W fields in TR6; “BIT#” applies to A#, D#, U#, or W# fields in TR6.

Table 2-27. TR6 Command Bits

CMD Command

0x0 Direct write to main TLB.

0x1 TLB lookup for a linear address in all arrays.

100 Write to variable page size mask only.

110 Write to variable page size linear and physical address fields.

101 Read variable page size mask and linear address.

111 Read variable page size cache physical and linear address.
Note: x = don’t care

2-51

2Memory Addressing Methods

2.6.5 Variable-Size
Paging Mechanism

The Variable-Size Paging Mechanism
(VSPM) is an advanced alternative to
traditional paging. As shown in Figure 2-33,
VSPM allows the creation of pages ranging in
size from 4 KBytes to 4 GBytes. The larger
page size nearly eliminates page table thrashing
associated with using multiple 4-KByte pages.

For example, paging 1 MByte of memory
requires 256 4-KByte pages using traditional
paging. The software not only incurs overhead
during setting up the 256 pages, but also incurs
additional overhead accessing the page tables
each time a page is not found in the on-chip
TLB. In contrast, a single 1-MByte page
virtually eliminates the overhead.

Configuring Variable-Size Pages. The VSPM
is configured using TLB test registers, TR6 and
TR7 (These registers are also used to test the
TLB). The VSPM configuration is performed
in much the same manner as when writing to a
line of the TLB (Refer to Section 2.6.4.2.).
The major exception to this, is that a mask field
is written to the VSPM as part of the VSPM
configuration.

The physical address, linear address, valid bit
and attribute bits in a main TLB write all have
the same meaning as in a main TLB read except
that CMD=110. The BI field is used to select the
VSPM cell to be written.

A VSPM mask setup operation is performed
when CMD=100 and a test register write is per-
formed. During a VSPM mask setup, the TR7
address field is used as the mask field. The mask
field selectively masks linear address bits 31-12
from the VSPM tag compare. This has the
effect of allowing the VSPM to map pages
greater than 4 KBytes.

Figure 2-33. Variable-Size Paging Mechanism

Physical Page

0
Memory

0

< 4 GByte

4 GByte
Linear

Address

Variable-Size Paging Mechanism

Physical
Address

2-52

Memory Caches

After a VSPM mask setup, the valid bit,
attribute bits, and the linear address are left in
undefined states. Therefore, the VSPM mask
setup should be performed prior to other VSPM
operations.

Unlike the victim and main TLBs, the VSPM
operations make use of the accessed bit. During
a VSPM mask or physical address write the A
and A# fields are written to the VSPM.

VSPM Reads. VSPM reads are performed with
the address of the entry to be read in the BI field
of the TR7 register and with CMD=111. The
entry’s and physical address is read into the TR6
and TR7 address fields as well as the valid bit,
and attribute bits.

If CMD=101, the linear address, mask, valid bit
and attribute bits are read.

2.7 Memory Caches

The IBM 6x86 CPU contains two memory
caches as described in Chapter 1. The Unified
Cache acts the primary data cache, and
secondary instruction cache. The Instruction
Line Cache is the primary instruction cache and
provides a high speed instruction stream for the
Integer Unit.

The unified cache is dual-ported allowing
simultaneous access to any two unique banks.
Two different banks may be accessed at the
same time permitting any two of the following
operations to occur in parallel:

• Code fetch
• Data read (X pipe, Y pipe or FPU)
• Data write (X pipe, Y pipe or FPU).

2.7.1 Unified Cache
MESI States

The unified cache lines are assigned one of four
MESI states as determined by MESI bits stored
in tag memory. Each 32-byte cache line is
divided into two 16-byte sectors. Each sector
contains its own MESI bits. The four MESI
states are described below:

Modified MESI cache lines are those that have
been updated by the CPU, but the corre-
sponding main memory location has not yet
been updated by an external write cycle. Modi-
fied cache lines are referred to as dirty cache
lines.

Exclusive MESI lines are lines that are exclu-
sive to the IBM 6x86 CPU and are not dupli-
cated within another caching agent’s cache
within the same system. A write to this cache
line may be performed without issuing an
external write cycle.

Shared MESI lines may be present in another
caching agent’s cache within the same system.
A write to this cache line forces a corresponding
external write cycle.

Invalid MESI lines are cache lines that do not
contain any valid data.

2-53

2Memory Caches

2.7.1.1 Unified Cache Testing

The unified cache can be tested through the
use of TR3, TR4, and TR5 on-chip test regis-
ters. Fields within these test registers identify
which area of the cache will be selected for
testing.

Cache Organization. The unified cache
(Figure 2-34) is divided into 32-bytes lines.
This cache is divided into four sets. Since a set
(as well as the cache) is smaller than main
memory, each line in the set corresponds to
more than one line in main memory. When a
cache line is allocated, bits A31-A12 of the
main memory address are stored in the cache

line tag. The remaining address bits are used
to identify the specific 32-byte cache line
(A11-A5), and the specific 4-byte entry within
the cache line (A4-A2).

Test Initiation . A test register operation is
initiated by writing to the TR5 register shown
in Figure 2-35 (Page 2-54) using a special
MOV instruction. The TR5 CTL field,
detailed in Table 2-28 (Page 2-54), determines
the function to be performed. For cache
writes, the registers TR4 and TR3 must be
initialized before a write is made to TR5. Eight
4-byte accesses are required to access a
complete cache line.

Figure 2-34. Unified Cache

SET 0

SET 1

SET 2

SET 3

ENT = 4-byte entry

32 Bytes of Data

512 Lines

ENT ENT ENT ENT ENT ENT ENT ENT

Lower SectorUpper Sector

128 Lines

Typical
Single
Line

2-54

Memory Caches

Figure 2-35. Cache Test Registers

Table 2-28. Cache Test Register Bit Definitions

REGISTER
NAME

FIELD
NAME

RANGE DESCRIPTION

TR5 SET 13 - 12 Cache set selection (one of four “sets”).

LINE 11 - 5 Cache line selection (one of 128 lines).

ENT 4 - 2 Entry selection (one of eight 4-byte entries in a line).

CTL 1 - 0 Control field
If = 00: flush cache without invalidate
If = 01: write cache
If = 10: read cache
If = 11: no cache or test register modification

TR4 TAG 31 - 12 Physical address for selected line

MESIU 7 - 6 If = 00, Modified Upper Sector MESI bits
If = 01, Shared Upper Sector MESI bits
If = 10, Exclusive Upper Sector MESI bits
If = 11, Invalid Upper Sector MESI bits*

MESIL 5 - 4 If = 00, Modified Lower Sector MESI bits
If = 01, Shared Lower Sector MESI bits
If = 10, Exclusive Lower Sector MESI bits
If = 11, Invalid Lower Sector MESI bits*

MRU 3 - 0 Used to determine the Least Recently Used (LRU) line.

TR3 DATA 31 - 0 Data written or read during a cache test.
*Note: All 32 bytes should contain valid data before a line is marked as valid.

 = Reserved

31

TR5

DATA (CACHE DATA)

31

MESIL TR4

31

TR3

CTL

MRUTAG (CACHE TAG ADDRESS)

11 10 9 8 7 6 5 4 3 2 01

9 8 7 6 5 4 3 2 01

1213

LINESET ENT

11 1012

MESIU

2-55

2Interrupts and Exceptions

Write Operations. During a write, the TR3
DATA (32-bits) and TAG field information is
written to the address selected by the SET,
LINE, and ENT fields in TR5.

Read Operations. During a read, the cache
address selected by the SET, LINE and ENT
fields in TR5 are used to read data into the TR3
DATA (32-bits) field. The TAG, MESI and
MRU fields in TR4 are updated with the infor-
mation from the selected line. TR3 holds the
selected read data.

Cache Flushing. A cache flush occurs during
a TR5 write if the CTL field is set to zero.
During flushing, the CPU’s cache controller
reads through all the lines in the cache. “Modi-
fied” lines are redefined as “shared” by setting
the shared MESI bit. Clean lines are left in
their original state.

2.8 Interrupts and
Exceptions

The processing of either an interrupt or an
exception changes the normal sequential flow
of a program by transferring program control
to a selected service routine. Except for SMM
interrupts, the location of the selected service
routine is determined by one of the interrupt
vectors stored in the interrupt descriptor table.

Hardware interrupts are generated by signal
sources external to the CPU. All exceptions
(including so-called software interrupts) are
produced internally by the CPU.

2.8.1 Interrupts

External events can interrupt normal program
execution by using one of the three interrupt
pins on the IBM 6x86 CPU.

• Non-maskable Interrupt (NMI pin)
• Maskable Interrupt (INTR pin)
• SMM Interrupt (SMI# pin).

For most interrupts, program transfer to the
interrupt routine occurs after the current
instruction has been completed. When the
execution returns to the original program, it begins
immediately following the last completed instruc-
tion.

With the exception of string operations, inter-
rupts are acknowledged between instructions.
Long string operations have interrupt windows
between memory moves that allow interrupts
to be acknowledged.

The NMI interrupt cannot be masked by
software and always uses interrupt vector 2 to
locate its service routine. Since the interrupt
vector is fixed and is supplied internally, no
interrupt acknowledge bus cycles are
performed. This interrupt is normally reserved
for unusual situations such as parity errors and
has priority over INTR interrupts.

Once NMI processing has started, no addi-
tional NMIs are processed until an IRET
instruction is executed, typically at the end of
the NMI service routine. If NMI is re-asserted
prior to execution of the IRET instruction, one
and only one NMI rising edge is stored and
processed after execution of the next IRET.

2-56

Interrupts and Exceptions

2.8.2 Exceptions

Exceptions are generated by an interrupt
instruction or a program error. Exceptions are
classified as traps, faults or aborts depending
on the mechanism used to report them and the
restartability of the instruction that first caused
the exception.

A Trap Exception is reported immediately
following the instruction that generated the
trap exception. Trap exceptions are generated
by execution of a software interrupt instruction
(INTO, INT 3, INT n, BOUND), by a
single-step operation or by a data breakpoint.

Software interrupts can be used to simulate
hardware interrupts. For example, an INT n
instruction causes the processor to execute the
interrupt service routine pointed to by the nth
vector in the interrupt table. Execution of the
interrupt service routine occurs regardless of
the state of the IF flag in the EFLAGS register.

The one byte INT 3, or breakpoint interrupt
(vector 3), is a particular case of the INT n
instruction. By inserting this one byte instruc-
tion in a program, the user can set breakpoints
in the code that can be used during debug.

Single-step operation is enabled by setting the
TF bit in the EFLAGS register. When TF is
set, the CPU generates a debug exception
(vector 1) after the execution of every instruc-
tion. Data breakpoints also generate a debug
exception and are specified by loading the
debug registers (DR0-DR7) with the appro-
priate values.

During the NMI service routine, maskable
interrupts may be enabled (unmasked). If an
unmasked INTR occurs during the NMI
service routine, the INTR is serviced and
execution returns to the NMI service routine
following the next IRET. If a HALT instruc-
tion is executed within the NMI service
routine, the IBM 6x86 CPU restarts execution
only in response to RESET, an unmasked INTR
or an SMM interrupt. NMI does not restart
CPU execution under this condition.

The INTR interrupt is unmasked when the
Interrupt Enable Flag (IF) in the EFLAGS
register is set to 1. When an INTR interrupt
occurs, the CPU performs two locked interrupt
acknowledge bus cycles. During the second
cycle, the CPU reads an 8-bit vector that is
supplied by an external interrupt controller.
This vector selects one of the 256 possible
interrupt handlers which will be executed in
response to the interrupt.

The SMM interrupt has higher priority than
either INTR or NMI. After SMI# is asserted,
program execution is passed to an SMI service
routine that runs in SMM address space
reserved for this purpose. The remainder of
this section does not apply to the SMM inter-
rupts. SMM interrupts are described in greater
detail later in this chapter.

2-57

2Interrupts and Exceptions

A Fault Exception is reported prior to
completion of the instruction that generated
the exception. By reporting the fault prior to
instruction completion, the CPU is left in a
state that allows the instruction to be restarted
and the effects of the faulting instruction to be
nullified. Fault exceptions include
divide-by-zero errors, invalid opcodes, page
faults and coprocessor errors. Instruction
breakpoints (vector 1) are also handled as
faults. After execution of the fault service
routine, the instruction pointer points to the
instruction that caused the fault.

An Abort Exception is a type of fault excep-
tion that is severe enough that the CPU cannot
restart the program at the faulting instruction.
The double fault (vector 8) is the only abort
exception that occurs on the IBM 6x86 CPU.

2.8.3 Interrupt Vectors

When the CPU services an interrupt or excep-
tion, the current program’s FLAGS, code
segment and instruction pointer are pushed
onto the stack to allow resumption of execu-
tion of the interrupted program. In protected
mode, the processor also saves an error code
for some exceptions. Program control is then
transferred to the interrupt handler (also called
the interrupt service routine). Upon execution
of an IRET at the end of the service routine,
program execution resumes by popping from
the stack, the instruction pointer, code segment,
and FLAGS.

Interrupt Vector Assignments

Each interrupt (except SMI#) and exception is
assigned one of 256 interrupt vector numbers
(Table 2-29). The first 32 interrupt vector
assignments are defined or reserved. INT
instructions acting as software interrupts may
use any of the interrupt vectors, 0 through 255.

2-58

Interrupts and Exceptions

Table 2-29. Interrupt Vector Assignments

INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT

1 Debug exception TRAP/FAULT*

2 NMI interrupt

3 Breakpoint TRAP

4 Interrupt on overflow TRAP

5 BOUND range exceeded FAULT

6 Invalid opcode FAULT

7 Device not available FAULT

8 Double fault ABORT

9 Reserved

10 Invalid TSS FAULT

11 Segment not present FAULT

12 Stack fault FAULT

13 General protection fault TRAP/FAULT

14 Page fault FAULT

15 Reserved

16 FPU error FAULT

17 Alignment check exception FAULT

18-31 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP
*Note: Data breakpoints and single-steps are traps. All other debug exceptions are faults.

2-59

2Interrupts and Exceptions

In response to a maskable hardware interrupt
(INTR), the IBM 6x86 CPU issues interrupt
acknowledge bus cycles used to read the vector
number from external hardware. These vectors
should be in the range 32 - 255 as vectors 0 - 31
are reserved.

Interrupt Descriptor Table

The interrupt vector number is used by the IBM
6x86 CPU to locate an entry in the interrupt
descriptor table (IDT). In real mode, each IDT
entry consists of a four-byte far pointer to the
beginning of the corresponding interrupt
service routine. In protected mode, each IDT
entry is an eight-byte descriptor. The Interrupt
Descriptor Table Register (IDTR) specifies the
beginning address and limit of the IDT.
Following reset, the IDTR contains a base
address of 0h with a limit of 3FFh.

The IDT can be located anywhere in physical
memory as determined by the IDTR register.
The IDT may contain different types of
descriptors: interrupt gates, trap gates and task
gates. Interrupt gates are used primarily to
enter a hardware interrupt handler. Trap gates
are generally used to enter an exception handler
or software interrupt handler. If an interrupt
gate is used, the Interrupt Enable Flag (IF) in
the EFLAGS register is cleared before the inter-
rupt handler is entered. Task gates are used to
make the transition to a new task.

2.8.4 Interrupt and Exception
Priorities

As the IBM 6x86™ CPU executes instructions,
it follows a consistent policy for prioritizing
exceptions and hardware interrupts. The priori-
ties for competing interrupts and exceptions are
listed in Table 2-30 (Page 2-60). Debug traps
for the previous instruction and the next
instructions always take precedence. SMM
interrupts are the next priority. When NMI and
maskable INTR interrupts are both detected at
the same instruction boundary, the IBM 6x86
microprocessor services the NMI interrupt first.

The IBM 6x86 CPU checks for exceptions in
parallel with instruction decoding and execu-
tion. Several exceptions can result from a
single instruction. However, only one excep-
tion is generated upon each attempt to execute
the instruction. Each exception service routine
should make the appropriate corrections to the
instruction and then restart the instruction. In
this way, exceptions can be serviced until the
instruction executes properly.

The IBM 6x86 CPU supports instruction restart
after all faults, except when an instruction
causes a task switch to a task whose task state
segment (TSS) is partially not present. A TSS
can be partially not present if the TSS is not
page aligned and one of the pages where the
TSS resides is not currently in memory.

2-60

Interrupts and Exceptions

Table 2-30. Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES

0 Warm Reset Caused by the assertion of WM_RST.

1 Debug traps and faults from previ-
ous instruction.

Includes single-step trap and data breakpoints
specified in the debug registers.

2 Debug traps for next instruction. Includes instruction execution breakpoints
specified in the debug registers.

3 Hardware Cache Flush Caused by the assertion of FLUSH#.

4 SMM hardware interrupt. SMM interrupts are caused by SMI# asserted
and always have highest priority.

5 Non-maskable hardware interrupt. Caused by NMI asserted.

6 Maskable hardware interrupt. Caused by INTR asserted and IF = 1.

7 Faults resulting from fetching the
next instruction.

Includes segment not present, general protec-
tion fault and page fault.

8 Faults resulting from instruction
decoding.

Includes illegal opcode, instruction too long,
or privilege violation.

9 WAIT instruction and TS = 1 and
MP = 1.

Device not available exception generated.

10 ESC instruction and EM = 1 or
TS = 1.

Device not available exception generated.

11 Floating point error exception. Caused by unmasked floating point exception
with NE = 1.

12 Segmentation faults (for each
memory reference required by the
instruction) that prevent transfer-
ring the entire memory operand.

Includes segment not present, stack fault, and
general protection fault.

13 Page Faults that prevent transfer-
ring the entire memory operand.

14 Alignment check fault.

2-61

2Interrupts and Exceptions

2.8.5 Exceptions in Real Mode

Many of the exceptions described in Table 2-30 (Page 2-60) are not applicable in real mode.
Exceptions 10, 11, and 14 do not occur in real mode. Other exceptions have slightly different
meanings in real mode as listed in Table 2-31.

Table 2-31. Exception Changes in Real Mode

VECTOR
NUMBER

PROTECTED MODE FUNCTION REAL MODE FUNCTION

8 Double fault. Interrupt table limit overrun.

10 Invalid TSS. x

11 Segment not present. x

12 Stack fault. SS segment limit overrun.

13 General protection fault. CS, DS, ES, FS, GS segment limit overrun.

14 Page fault. x
Note: x = does not occur

2-62

Interrupts and Exceptions

2.8.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit error code:

The error code is pushed onto the stack prior to entering the exception handler. The error code
format is shown in Figure 2-36 and the error code bit definitions are listed in Table 2-32. Bits
15-3 (selector index) are not meaningful if the error code was generated as the result of a page
fault. The error code is always zero for double faults and alignment check exceptions.

Double Fault Invalid TSS

Alignment Check Segment Not Present

Page Fault Stack Fault

General Protection Fault

15 3 2 1 0

Selector Index S2 S1 S0

Figure 2-36. Error Code Format

Table 2-32. Error Code Bit Definitions

FAULT
TYPE

SELECTOR
INDEX

(BITS 15-3)

S2
(BIT 2)

S1
(BIT 1)

S0
(BIT 0)

Double Fault or
Alignment Check

0 0 0 0

Page Fault Reserved. Fault caused by:
0 = not present page
1 = page-level
protection violation.

Fault occurred dur-
ing:
0 = read access
1 = write access.

Fault occurred dur-
ing:
0 = supervisor access
1 = user access.

IDT Fault Index of faulty
IDT selector.

Reserved. 1 If = 1, exception
occurred while try-
ing to invoke excep-
tion or hardware
interrupt handler.

Segment
Fault

Index of faulty
selector.

TI bit of faulty
selector.

0 If =1, exception
occurred while try-
ing to invoke excep-
tion or hardware
interrupt handler.

 2-63

2System Management Mode

2.9 System Management
Mode

System Management Mode (SMM) provides an
additional interrupt which can be used for
system power management or software trans-
parent emulation of I/O peripherals. SMM is
entered using the System Management Inter-
rupt (SMI#) that has a higher priority than any
other interrupt, including NMI. An SMI inter-
rupt can also be triggered via software using an
SMINT instruction. After an SMI interrupt,
portions of the CPU state are automatically

saved, SMM is entered, and program execution
begins at the base of SMM address space
(Figure 2-37). Running in SMM address space,
the interrupt routine does not interfere with the
operating system or any application program.

Eight SMM instructions have been added to the
x86 instruction set that permit software initiated
SMM, and saving and restoring of the total CPU
state when in SMM mode. Two SMM pins,
SMI# and SMIACT#, support SMM functions.

Figure 2-37. System Management Memory Address
Space

2.9.1 SMM Operation

FFFF FFFFh

Physical Memory

Physical

0000 0000h

Potential

0000 0000h

FFFF FFFFh

1713604
Non-SMM Mode

SMIACT# Active
4 KBytes to

SMM Mode

4 GBytes

Memory Space SMM Address
Space

4 GBytes

SMIACT# Negated

Defined
SMM

Address
Space

2-64

System Management Mode

SMM operation is summarized in Figure 2-38.
Entering SMM requires the assertion of the
SMI# pin for at least two CLK periods or execu-
tion of the SMINT instruction. For the SMI# or
SMINT instruction to be recognized, the
following configuration register bits must be set
as shown in Table 2-33. The configuration
registers are discussed in detail earlier in this
chapter.

After recognizing SMI# or SMINT and prior to
executing the SMI service routine, some of the
CPU state information is changed. Prior to
modification, this information is automatically
saved in the SMM memory space header
located at the top of SMM memory space.
After the header is saved, the CPU enters real
mode and begins executing the SMI service
routine starting at the SMM memory base
address.

The SMI service routine is user definable and
may contain system or power management
software. If the power management software
forces the CPU to power down, or the SMI
service routine modifies more than what is
automatically saved, the complete CPU state
information can be saved.

Figure 2-38. SMI Execution
Flow Diagram

Table 2-33. Requirements for Recognizing SMI# and
SMINT

REGISTER (Bit) SMI# SMINT

SMI CCR1 (1) 1 1

SMAC CCR1 (2) 0 1

ARR3 SIZE (3-0) > 0 > 0

SM3 CCR1 (7) 1 1

2.9.2 SMM Memory Space

SMI# Sampled Active or

CPU State Stored in SMM

Program Flow Transfers

CPU Enters Real Mode

Execution Begins at SMM

RSM Instruction Restores CPU

Normal Execution Resumes

Address Space Header

to SMM Address Space

Address Space Base Address

State Using Header Information

SMINT Instruction Executed

 2-65

2System Management Mode

Header

With every SMI interrupt or SMINT instruc-
tion, certain CPU state information is automati-
cally saved in the SMM memory space header
located at the top of SMM address space as
shown Figure 2-39 and Table 2-34 (Page 2-66).

The header contains CPU state information that
is modified when servicing an SMI interrupt.
Included in this information are two pointers.
The Current IP points to the instruction that was
executing when the SMI was detected.

Figure 2-39. SMM Memory Space Header

DR7

EFLAGS

CR0

031
Top of SMM

-4h

-8h

-Ch

-10h

-14h

-18h

-1Ch

-20h

-24h

-28h

P

Current IP

Next IP

CS Selector

CS Descriptor (Bits 63-32)

CS Descriptor (Bits 31-0)

ESI or EDI

I

31 16 15 0

31 2 1 0

-2Ch

-30h

Address Space

3

S

I/O Write AddressI/O Write Data Size

I/O Write Data

16 15

2122

CPL

H

4

Reserved

Reserved

Reserved

Reserved

2-66

System Management Mode

The Next IP points to the instruction that will
be executed after exiting SMM. Also saved are
the contents of debug register 7 (DR7), the
extended flags register (EFLAGS), and control
register 0 (CR0). If SMM has been entered due
to an I/O trap for a REP INSx or REP OUTSx
instruction, the Current IP and Next IP fields
contain the same addresses and the I and P field
contain valid information.

If entry into SMM was caused by an I/O trap it
is useful for the programmer to know the port
address, data size and data value associated with
that I/O operation. This information is also
saved in the header and is only valid for an I/O
write operation. The I/O write information is
not restored within the CPU when executing a RSM
instruction.

Table 2-34. SMM Memory Space Header

NAME DESCRIPTION SIZE

DR7 The contents of Debug Register 7. 4 Bytes

EFLAGS The contents of Extended Flags Register. 4 Bytes

CR0 The contents of Control Register 0. 4 Bytes

Current IP The address of the instruction executed prior to servicing SMI interrupt. 4 Bytes

Next IP The address of the next instruction that will be executed after exiting SMM mode. 4 Bytes

CS Selector Code segment register selector for the current code segment. 2 Bytes

CPL Current privilege level for current code segment. 2 Bits

CS Descriptor Code segment register descriptor for the current code segment. 8 Bytes

H If set indicates the processor was in a halt or shutdown prior to servicing the
SMM interrupt.

1 Bit

S Software SMM Entry Indicator.
S = 1, if current SMM is the result of an SMINT instruction.
S = 0, if current SMM is not the result of an SMINT instruction.

 1 Bit

P REP INSx/OUTSx Indicator.
P = 1 if current instruction has a REP prefix.
P = 0 if current instruction does not have a REP prefix.

 1 Bit

I IN, INSx, OUT, or OUTSx Indicator.
I = 1 if current instruction performed is an I/O WRITE.
I = 0 if current instruction performed is an I/O READ.

 1 Bit

I/O Write Data Size Indicates size of data for the trapped I/O write.
 01h = byte
 03h = word
 0Fh = dword

 2 Bytes

I/O Write Address Processor port used for the trapped I/O write. 2 Bytes

I/O Write Data Data associated with the trapped I/O write. 4 Bytes

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap.

 4 Bytes

Note: INSx = INS, INSB, INSW or INSD instruction.
Note: OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.

 2-67

2System Management Mode

2.9.3 SMM Instructions

The IBM 6x86 CPU automatically saves the
minimal amount of CPU state information
when entering SMM which allows fast SMI
service routine entry and exit. After entering
the SMI service routine, the MOV, SVDC,
SVLDT and SVTS instructions can be used
to save the complete CPU state information.
If the SMI service routine modifies more than
what is automatically saved or forces the CPU
to power down, the complete CPU state
information must be saved. Since the CPU is
a static device, its internal state is retained
when the input clock is stopped. Therefore,
an entire CPU state save is not necessary
prior to stopping the input clock.

The new SMM instructions, listed in Table 2-35,
can only be executed if:

1) SMI# = 0
2) SM3 = 1
3) ARR3 SIZE > 0
4) Current Privilege Level = 0
5) SMAC bit is set or the CPU is in an

SMI service routine.

If the above conditions are not met and an
attempt is made to execute an SVDC, RSDC,
SVLDT, RSLDT, SVTS, RSTS, SMINT or
RSM instruction, an invalid opcode exception is
generated. These instructions can be executed
outside of defined SMM space provided the above
conditions are met.

The SMINT instruction may be used as a soft-
ware controlled mechanism to enter SMM.

Table 2-35. SMM Instruction Set

INSTRUCTION OPCODE FORMAT DESCRIPTION

 SVDC 0F 78 [mod sreg3 r/m] SVDC mem80, sreg3Save Segment Register and Descriptor
Saves reg (DS, ES, FS, GS, or SS) to mem80.

 RSDC 0F 79 [mod sreg3 r/m] RSDC sreg3, mem80Restore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from
mem80.
Use RSM to restore CS.
Note: Processing “RSDC CS, Mem80” will produce an
exception.

 SVLDT 0F 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor
Saves Local Descriptor Table (LDTR) to mem80.

 RSLDT 0F 7B [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from
mem80.

 SVTS 0F 7C [mod 000 r/m] SVTS mem80 Save TSR and Descriptor
Saves Task State Register (TSR) to mem80.

 RSTS 0F 7D [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

 SMINT 0F 7E SMINT Software SMM Entry
CPU enters SMM mode. CPU state information
is saved in SMM memory space header and exe-
cution begins at SMM base address.

 RSM 0F AA RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored
using the SMM memory space header and execu-
tion resumes at interrupted point.

Note: mem80 = 80-bit memory location

2-68

System Management Mode

All of the SMM instructions (except RSM and
SMINT) save or restore 80 bits of data, allow-
ing the saved values to include the hidden por-
tion of the register contents.

2.9.4 SMM Memory Space

SMM memory space is defined by setting the
SM3 bit and specifying the base address and
size of the SMM memory space in the ARR3
register. The base address must be a multiple
of the SMM memory space size. For example,
a 32 KByte SMM memory space must be
located at a 32 KByte address boundary. The
memory space size can range from 4 KBytes to
4 GBytes.

SMM memory space accesses are always
non-cacheable. SMM accesses ignore the state
of the A20M# input pin and drive the A20
address bit to the unmasked value.

SMM memory space can be accessed while in
normal mode by setting the SMAC bit in the
CCR1 register. This feature may be used to
initialize the SMM memory space.

2.9.5 SMI Service Routine
Execution

Upon entry into SMM, after the SMM header
has been saved, the CR0, EFLAGS, and DR7
registers are set to their reset values. The Code
Segment (CS) register is loaded with the base,
as defined by the ARR3 register, and a limit of
4 GBytes. The SMI service routine then
begins execution at the SMM base address in
real mode.

The programmer must save the value of any
registers that may be changed by the SMI service
routine. For data accesses immediately after
entering the SMI service routine, the programmer
must use CS as a segment override. I/O port
access is possible during the routine but care must
be taken to save registers modified by the I/O
instructions. Before using a segment register, the
register and the register’s descriptor cache
contents should be saved using the SVDC
instruction. While executing in the SMM space,
execution flow can transfer to normal memory
locations.

Hardware interrupts, (INTRs and NMIs), may
be serviced during a SMI service routine. If
interrupts are to be serviced while executing in
the SMM memory space, the SMM memory
space must be within the 0 to 1 MByte address
range to guarantee proper return to the SMI
service routine after handling the interrupt.

INTRs are automatically disabled when
entering SMM since the IF flag is set to its
reset value. Once in SMM, the INTR can be
enabled by setting the IF flag. NMI is also
automatically disable when entering SMM.
Once in SMM, NMI can be enabled by setting
NMI_EN in CCR3. If NMI is not enabled, the
CPU latches one NMI event and services the
interrupt after NMI has been enabled or after
exiting SMM through the RSM instruction.

Within the SMI service routine, protected mode
may be entered and exited as required, and real
or protected mode device drivers may be
called.

 2-69

2Shutdown and Halt

To exit the SMI service routine, a Resume
(RSM) instruction, rather than an IRET, is
executed. The RSM instruction causes the
IBM 6x86 processor to restore the CPU state
using the SMM header information and
resume execution at the interrupted point. If
the full CPU state was saved by the
programmer, the stored values should be
reloaded prior to executing the RSM instruc-
tion using the MOV, RSDC, RSLDT and
RSTS instructions.

CPU States Related to SMM and Suspend
Mode

The state diagram shown in Figure 2-40 (Page
2-70) illustrates the various CPU states associ-
ated with SMM and suspend mode. While in
the SMI service routine, the IBM 6x86 CPU
can enter suspend mode either by (1) executing
a halt (HLT) instruction or (2) by asserting the
SUSP# input.

During SMM operations and while in SUSP#
initiated suspend mode, an occurrence of
SMI#, NMI, or INTR is latched. (In order for
INTR to be latched, the IF flag must be set.)
The INTR or NMI is serviced after exiting
suspend mode.

If suspend mode is entered via a HLT instruc-
tion from the operating system or application
software, the reception of an SMI# interrupt
causes the CPU to exit suspend mode and enter
SMM.

2.10 Shutdown and Halt

The Halt Instruction (HLT) stops program exe-
cution and prevents the processor from using the
local bus until restarted. The IBM 6x86 CPU
then issues a special Stop Grant bus cycle and
enters a low-power suspend mode if the
SUSP_HLT bit in CCR2 is set. SMI, NMI,
INTR with interrupts enabled (IF bit in
EFLAGS=1), WM_RST or RESET forces the
CPU out of the halt state. If interrupted, the
saved code segment and instruction pointer
specify the instruction following the HLT.

Shutdown occurs when a severe error is detected
that prevents further processing. An NMI input
can bring the processor out of shutdown if the
IDT limit is large enough to contain the NMI
interrupt vector and the stack has enough room
to contain the vector and flag information.
Otherwise, shutdown can only be exited by a
processor reset.

2-70

Shutdown and Halt

Figure 2-40. SMM and Suspend Mode State Diagram

O S/Application

SoftwareRESET

R S M*SMI#=0

HLT*

SUSP#=1

NM I or INTR

SUSP#=0

SUSP#=1

HLT*

INTR or N M I
IRET*

INTR and N M I

IRET*

IRET*

* Instructions

SMI# = 0

(INTR, N M I and S M I latched)

(INTR and N M I latched)

SMI Service

Suspend Mode Interrupt Service

Suspend Mode

Suspend Mode

Suspend Mode

SUSP#=0

Non-SMM Operations
SMM Operations

(SUSPA# = 0) Routine

(SUSPA# = 0)

(SUSPA# = 0)

Routine
(SMI#=0)

(SUSPA# = 0)

Interrupt Service
Routine

Interrupt Service
Routine

S MINT*

NM I or INTR

 2-71

2Protection

2.11 Protection

Segment protection and page protection are
safeguards built into the IBM 6x86 CPU
protected mode architecture which deny unau-
thorized or incorrect access to selected
memory addresses. These safeguards allow
multitasking programs to be isolated from each
other and from the operating system. Page
protection is discussed earlier in this chapter.
This section concentrates on segment protec-
tion.

Selectors and descriptors are the key elements
in the segment protection mechanism. The
segment base address, size, and privilege level
are established by a segment descriptor. Privi-
lege levels control the use of privileged
instructions, I/O instructions and access to
segments and segment descriptors. Selectors
are used to locate segment descriptors.

Segment accesses are divided into two basic
types, those involving code segments (e.g.,
control transfers) and those involving data
accesses. The ability of a task to access a
segment depends on the:

• segment type
• instruction requesting access
• type of descriptor used to define the

segment
• associated privilege levels (described

below).

Data stored in a segment can be accessed only
by code executing at the same or a more privi-
leged level. A code segment or procedure can
only be called by a task executing at the same
or a less privileged level.

2.11.1 Privilege Levels

The values for privilege levels range
between 0 and 3. Level 0 is the highest privi-
lege level (most privileged), and level 3 is the
lowest privilege level (least privileged). The
privilege level in real mode is effectively 0.

The Descriptor Privilege Level (DPL) is the
privilege level defined for a segment in the
segment descriptor. The DPL field specifies
the minimum privilege level needed to access
the memory segment pointed to by the
descriptor.

The Current Privilege Level (CPL) is defined
as the current task’s privilege level. The CPL
of an executing task is stored in the hidden
portion of the code segment register and essen-
tially is the DPL for the current code segment.

The Requested Privilege Level (RPL) speci-
fies a selector’s privilege level and is used to
distinguish between the privilege level of a
routine actually accessing memory (the CPL),
and the privilege level of the original requestor
(the RPL) of the memory access. The lesser of
the RPL and CPL is called the effective privilege
level (EPL). Therefore, if RPL = 0 in a
segment selector, the effective privilege level
is always determined by the CPL. If RPL = 3,
the effective privilege level is always 3 regard-
less of the CPL.

For a memory access to succeed, the effective
privilege level (EPL) must be at least as privi-
leged as the descriptor privilege level (EPL ≤
DPL). If the EPL is less privileged than the
DPL (EPL > DPL), a general protection fault
is generated. For example, if a segment has a
DPL = 2, an instruction accessing the segment
only succeeds if executed with an EPL ≤ 2.

2-72

Protection

2.11.2 I/O Privilege Levels

The I/O Privilege Level (IOPL) allows the
operating system executing at CPL=0 to define
the least privileged level at which IOPL-sensi-
tive instructions can unconditionally be used.
The IOPL-sensitive instructions include CLI,
IN, OUT, INS, OUTS, REP INS, REP OUTS,
and STI. Modification of the IF bit in the
EFLAGS register is also sensitive to the I/O
privilege level. The IOPL is stored in the
EFLAGS register.

An I/O permission bit map is available as
defined by the 32-bit Task State Segment
(TSS). Since each task can have its own TSS,
access to individual processor I/O ports can be
granted through separate I/O permission bit
maps.

If CPL ≤ IOPL, IOPL-sensitive operations can
be performed. If CPL > IOPL, a general
protection fault is generated if the current task
is associated with a 16-bit TSS. If the current
task is associated with a 32-bit TSS and CPL >
IOPL, the CPU consults the I/O permission
bitmap in the TSS to determine on a port-by-port
basis whether or not I/O instructions (IN,
OUT, INS, OUTS, REP INS, REP OUTS) are
permitted, and the remaining IOPL-sensitive
operations generate a general protection fault.

2.11.3 Privilege Level Transfers

A task’s CPL can be changed only through
intersegment control transfers using gates or
task switches to a code segment with a different
privilege level. Control transfers result from
exception and interrupt servicing and from
execution of the CALL, JMP, INT, IRET and
RET instructions.

There are five types of control transfers that
are summarized in Table 2-36 (Page 2-73).
Control transfers can be made only when the
operation causing the control transfer references
the correct descriptor type. Any violation of
these descriptor usage rules causes a general
protection fault.

Any control transfer that changes the CPL
within a task results in a change of stack. The
initial values for the stack segment (SS) and
stack pointer (ESP) for privilege levels 0, 1,
and 2 are stored in the TSS. During a CALL
control transfer, the SS and ESP are loaded
with the new stack pointer and the previous
stack pointer is saved on the new stack. When
returning to the original privilege level, the
RET or IRET instruction restores the less-priv-
ileged stack.

 2-73

2Protection

Table 2-36. Descriptor Types Used for Control Transfer

TYPE OF CONTROL TRANSFER
OPERATION

TYPES
DESCRIPTOR
REFERENCED

DESCRIPTOR
TABLE

Intersegment within the same privilege level. JMP, CALL, RET, IRET* Code Segment GDT or LDT

Intersegment to the same or a more privileged
level.
Interrupt within task (could change CPL level).

CALL Gate Call GDT or LDT

Interrupt Instruction,
Exception, External
Interrupt

Trap or Interrupt Gate IDT

Intersegment to a less privileged level (changes
task CPL).

RET, IRET* Code Segment GDT or LDT

Task Switch via TSS CALL, JMP Task State Segment GDT

Task Switch via Task Gate CALL, JMP Task Gate GDT or LDT

IRET**, Interrupt
Instruction, Exception,
External Interrupt

Task Gate IDT

 * NT (Nested Task bit in EFLAGS) = 0
** NT (Nested Task bit in EFLAGS) = 1

Gates

Gate descriptors provide protection for privi-
lege transfers among executable segments.
Gates are used to transition to routines of the
same or a more privileged level. Call gates,
interrupt gates and trap gates are used for privi-
lege transfers within a task. Task gates are used
to transfer between tasks.

Gates conform to the standard rules of privi-
lege. In other words, gates can be accessed by
a task if the effective privilege level (EPL) is
the same or more privileged than the gate
descriptor’s privilege level (DPL).

2.11.4 Initialization and
Transition to Protected
Mode

The IBM 6x86 microprocessor switches to real
mode immediately after RESET. While oper-
ating in real mode, the system tables and regis-
ters should be initialized. The GDTR and IDTR
must point to a valid GDT and IDT, respectively. The
GDT must contain descriptors which describe
the initial code and data segments.

The processor can be placed in protected mode
by setting the PE bit in the CR0 register. After
enabling protected mode, the CS register should
be loaded and the instruction decode queue
should be flushed by executing an intersegment
JMP. Finally, all data segment registers should
be initialized with appropriate selector values.

2-74

Virtual 8086 Mode

2.12 Virtual 8086 Mode

Both real mode and virtual 8086 (V86) mode
are supported by the IBM 6x86 CPU allowing
execution of 8086 application programs and
8086 operating systems. V86 mode allows the
execution of 8086-type applications, yet still
permits use of the IBM 6x86 CPU paging
mechanism. V86 tasks run at privilege level 3.
When loaded, all segment limits are set to
FFFFh (64K) as in real mode.

2.12.1 V86 Memory
Addressing

While in V86 mode, segment registers are
used in an identical fashion to real mode. The
contents of the segment register are multiplied
by 16 and added to the offset to form the
segment base linear address. The IBM 6x86
CPU permits the operating system to select
which programs use the V86 address mecha-
nism and which programs use protected mode
addressing for each task.

The IBM 6x86 CPU also permits the use of
paging when operating in V86 mode. Using
paging, the 1-MByte address space of the V86
task can be mapped to anywhere in the
4-GByte linear address space of the IBM 6x86
CPU.

The paging hardware allows multiple V86
tasks to run concurrently, and provides protec-
tion and operating system isolation. The
paging hardware must be enabled to run
multiple V86 tasks or to relocate the address
space of a V86 task to physical address space
greater than 1 MByte.

2.12.2 V86 Protection

All V86 tasks operate with the least amount of
privilege (level 3) and are subject to all of the
IBM 6x86 CPU protected mode protection
checks. As a result, any attempt to execute a
privileged instruction within a V86 task results
in a general protection fault.

In V86 mode, a slightly different set of instruc-
tions are sensitive to the I/O privilege level
(IOPL) than in protected mode. These instruc-
tions are: CLI, INT n, IRET, POPF, PUSHF,
and STI. The INT3, INTO and BOUND varia-
tions of the INT instruction are not IOPL
sensitive.

2.12.3 V86 Interrupt Handling

To fully support the emulation of an 8086-type
machine, interrupts in V86 mode are handled
as follows. When an interrupt or exception is
serviced in V86 mode, program execution
transfers to the interrupt service routine at
privilege level 0 (i.e., transition from V86 to
protected mode occurs) and the VM bit in the
EFLAGS register is cleared. The protected
mode interrupt service routine then determines
if the interrupt came from a protected mode or
V86 application by examining the VM bit in
the EFLAGS image stored on the stack. The
interrupt service routine may then choose to
allow the 8086 operating system to handle the
interrupt or may emulate the function of the
interrupt handler. Following completion of the
interrupt service routine, an IRET instruction
restores the EFLAGS register (restores VM=1)
and segment selectors and control returns to
the interrupted V86 task.

 2-75

2Floating Point Unit Operations

2.12.4 Entering and Leaving
V86 Mode

V86 mode is entered from protected mode by
either executing an IRET instruction at CPL =
0 or by task switching. If an IRET is used, the
stack must contain an EFLAGS image with
VM = 1. If a task switch is used, the TSS must
contain an EFLAGS image containing a 1 in
the VM bit position. The POPF instruction
cannot be used to enter V86 mode since the
state of the VM bit is not affected. V86 mode
can only be exited as the result of an interrupt
or exception. The transition out must use a
32-bit trap or interrupt gate which must point
to a non-conforming privilege level 0 segment
(DPL = 0), or a 32-bit TSS. These restrictions
are required to permit the trap handler to IRET
back to the V86 program.

2.13 Floating Point Unit
Operations

The IBM 6x86 CPU includes an on-chip FPU
that provides the user access to a complete set
of floating point instructions (see Chapter 6).
Information is passed to and from the FPU
using eight data registers accessed in a
stack-like manner, a control register, and a
status register. The IBM 6x86 CPU also
provides a data register tag word which
improves context switching and performance
by maintaining empty/non-empty status for
each of the eight data registers. In addition,
registers in the CPU contain pointers to (a) the
memory location containing the current
instruction word and (b) the memory location
containing the operand associated with the
current instruction word (if any).

FPU Tag Word Register. The IBM 6x86
CPU maintains a tag word register (Figure
2-41 (Page 2-76)) comprised of two bits for
each physical data register. Tag Word fields
assume one of four values depending on the
contents of their associated data registers, Val-
id (00), Zero (01), Special (10), and Empty
(11). Note: Denormal, Infinity, QNaN, SNaN
and unsupported formats are tagged as “Spe-
cial”. Tag values are maintained transparently
by the IBM 6x86™ CPU and are only avail-
able to the programmer indirectly through the
FSTENV and FSAVE instructions.

FPU Control and Status Registers. The
FPU circuitry communicates information
about its status and the results of operations to
the programmer via the status register. The
FPU status register is comprised of bit fields
that reflect exception status, operation execu-
tion status, register status, operand class, and
comparison results. The FPU status register
bit definitions are shown in Figure 2-42
(Page 2-76) and Table 2-37 (Page 2-76).

The FPU Mode Control Register (MCR) is
used by the CPU to specify the operating mode
of the FPU. The MCR contains bit fields
which specify the rounding mode to be used,
the precision by which to calculate results, and
the exception conditions which should be re-
ported to the CPU via traps. The user controls
precision, rounding, and exception reporting
by setting or clearing appropriate bits in the
MCR. The FPU mode control register bit def-
initions are shown in Figure 2-43 (Page 2-77)
and Table 2-38 (Page 2-77).

2-76

Floating Point Unit Operations

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Tag(7) Tag(6) Tag(5) Tag(4) Tag(3) Tag(2) Tag(1) Tag(0)

Figure 2-41. FPU Tag Word Register

15 12 11 8 7 4 3 0

B C3 S S S C2 C1 C0 ES SF P U O Z D I

Figure 2-42. FPU Status Register

Table 2-37. FPU Status Register Bit Definitions

BIT
POSITION

NAME DESCRIPTION

15 B Copy of the ES bit. (ES is bit 7 in this table.)

14, 10 - 8 C3 - C0 Condition code bits.

13 - 11 SSS Top of stack register number which points to the current TOS.

7 ES Error indicator. Set to 1 if an unmasked exception is detected.

6 SF Stack Fault or invalid register operation bit.

5 P Precision error exception bit.

4 U Underflow error exception bit.

3 O Overflow error exception bit.

2 Z Divide by zero exception bit.

1 D Denormalized operand error exception bit.

0 I Invalid operation exception bit.

 2-77

2Floating Point Unit Operations

15 12 11 8 7 4 3 0

- - - - RC RC PC PC - - P U O Z D I

Figure 2-43. FPU Mode Control Register

Table 2-38. FPU Mode Control Register Bit Definitions

BIT
POSITION

NAME DESCRIPTION

11 - 10 RC Rounding Control bits:

00 Round to nearest or even
01 Round towards minus infinity
10 Round towards plus infinity
11 Truncate

9 - 8 PC Precision Control bits:

00 24-bit mantissa
01 Reserved
10 53-bit mantissa
11 64-bit mantissa

5 P Precision error exception bit mask.

4 U Underflow error exception bit mask.

3 O Overflow error exception bit mask.

2 Z Divide by zero exception bit mask.

1 D Denormalized operand error exception bit mask.

0 I Invalid operation exception bit mask.

 3-1

Bus Interface

IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

3.0 IBM 6x86 BUS INTERFACE

The signals used in the IBM 6x86 CPU bus interface are described in this chapter. Figure 3-1
shows the signal directions and the major signal groupings. A description of each signal and their
reference to the text are provided in Table 3-1 (Page 3-2).

Figure 3-1. IBM 6x86 CPU Functional Signal Groupings

INTR

NMI
Interrupt

EWBE#

FLUSH#

KEN#

PCD
Cache

BRDYC#

ADS#

Data D63 - D0

Reset
RESET

A31 - A3

BE7# - BE0#

Address

Bus

W/R#

D/C#

M/IO#

LOCK#

SMIACT#

DP7 - DP0

PCHK#

Data

NA#

BRDY#

AHOLD

EADS#

HIT#

INV

WM_RST

Cache

PWT
Bus

Bus

Parity

Cycle
Definition

Bus
Cycle
Control

Control

Control

Coherency

SUSP#

SUSPA#
Power
Management

ADSC#

CLK

6x86

 CPU

A20M#

AP

APCHK#
Address
Parity

SCYC

CACHE#

SMI#

WB/WT#

BREQ

HOLD
Bus

HLDA

BOFF#

Arbitration

HITM#

FERR#

IGNNE#
FPU Error

DHOLD

LBA#

Scatter

QDUMP#

BHOLD

Gather Buffer

TCK

TDI

TDO

TRST#

JTAG

TMS

CLKMUL
Clock
Control

3-2

Signal Description Table

3.1 Signal Description Table

The Signal Summary Table (Table 3-1) describes the signals in their active state unless otherwise
mentioned. Signals containing slashes (/) have logic levels defined as “1/0.” For example the
signal W/R#, is defined as write when W/R#=1, and as read when W/R#=0. Signals ending with a
“#” character are active low.
.

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name

Signal Name Description I/O Reference

A20M# A20 Mask causes the CPU to mask (force to 0) the A20 address bit when
driving the external address bus or performing an internal cache access.
A20M# is provided to emulate the 1 MByte address wrap-around that
occurs on the 8086. Snoop addressing is not effected.

Input Page 3-9

A31-A3 The Address Bus, in conjunction with the Byte Enable signals
(BE7#-BE0#), provides addresses for physical memory and external I/O
devices. During cache inquiry cycles, A31-A5 are used as inputs to
perform cache line invalidations.

3-state
I/O

Page 3-9

ADS# Address Strobe begins a memory/I/O cycle and indicates the address bus
(A31-A3, BE7#-BE0#) and bus cycle definition signals (CACHE#, D/C#,
LOCK#, M/IO#, PCD, PWT, SCYC, W/R#) are valid.

Output Page 3-13

ADSC# Cache Address Strobe performs the same function as ADS#. Output Page 3-13

AHOLD Address Hold allows another bus master access to the IBM 6x86 CPU
address bus for a cache inquiry cycle. In response to the assertion of
AHOLD, the CPU floats AP and A31-A3 in the following clock cycle.

Input Page 3-18

AP Address Parity is the even parity output signal for address lines A31-A5
(A4 and A3 are excluded). During cache inquiry cycles, AP is the
even-parity input to the CPU, and is sampled with EADS# to produce
correct parity check status on the APCHK# output.

3-state
I/O

Page 3-10

APCHK# Address Parity Check Status is asserted during a cache inquiry cycle if
an address bus parity error has been detected. APCHK# is valid two
clocks after EADS# is sampled active. APCHK# will remain asserted for
one clock cycle if a parity error is detected.

Output Page 3-10

BE7#-BE0# The Byte Enables, in conjunction with the address lines, determine the
active data bytes transferred during a memory or I/O bus cycle.

3-state
I/O

Page 3-9

BHOLD Byte Enable Hold forces the byte enables (BE7#-BE0#) to float during
the next clock cycle. The IBM 6x86 CPU continues to generate additional
bus cycles while BHOLD is asserted. While BHOLD is asserted, the byte
enables are driven by an external source and select which data bytes are
accessed through the scatter/gather buffer. BHOLD is ignored if the
scatter/gather interface is disabled.

Input Page 3-20

BOFF# Back-Off forces the IBM 6x86 CPU to abort the current bus cycle and
relinquish control of the CPU local bus during the next clock cycle. The
IBM 6x86 CPU enters the bus hold state and remains in this state until
BOFF# is negated.

Input Page 3-16

 3-3

3Signal Description Table

BRDY# Burst Ready indicates that the current transfer within a burst cycle, or the
current single transfer cycle, can be terminated. The IBM 6x86 CPU samples
BRDY# in the second and subsequent clocks of a bus cycle. BRDY# is active
during address hold states.

Input Page 3-13

BRDYC# Cache Burst Ready performs the same function as BRDY# and is logically
ORed with BRDY# within the IBM 6x86 CPU.

Input Page 3-13

BREQ Bus Request is asserted by the IBM 6x86 CPU when an internal bus cycle is
pending. The IBM 6x86 CPU always asserts BREQ, along with ADS#,
during the first clock of a bus cycle. If a bus cycle is pending, BREQ is
asserted during the bus hold and address hold states. If no additional bus
cycles are pending, BREQ is negated prior to termination of the current cycle.

Output Page 3-16

CACHE# Cacheability Status indicates that a read bus cycle is a potentially
cacheable cycle; or that a write bus cycle is a cache line write-back or line
replacement burst cycle. If CACHE# is asserted for a read cycle and KEN# is
asserted by the system, the read cycle becomes a cache line fill burst cycle.

Output Page 3-11

CLK Clock provides the fundamental timing for the IBM 6x86 CPU. The
frequency of the IBM 6x86 CPU input clock determines the operating
frequency of the CPU’s bus. External timing is defined referenced to the
rising edge of CLK.

Input Page 3-7

CLKMUL The Clock Multiplier input is sampled during RESET to determine the IBM
6x86 CPU core operating frequency. If CLKMUL=0 or is left unconnected,
the core frequency is 2x the frequency of the CLK input. If CLKMUL=1, the
core frequency is 3x the frequency of CLK.

Input Page 3-7

D63-D0 Data Bus signals are three-state, bi-directional signals which provide the
data path between the IBM 6x86 CPU and external memory and I/O devices.
The data bus is only driven while a write cycle is active (state=T2). The data
bus is floated when DHOLD is asserted.

3-state
I/O

Page 3-10

D/C# Data/Control Status. If high, indicates that the current bus cycle is an I/O or
memory data access cycle. If low, indicates a code fetch or special bus cycle
such as a halt, prefetch, or interrupt acknowledge bus cycle. D/C# is driven
valid in the same clock as ADS# is asserted.

Output Page 3-11

DHOLD Data Bus Hold forces the IBM 6x86 CPU to float the data bus (D63-D0)
and the data parity lines (DP7-DP0) in the next clock. While DHOLD is
asserted, only the data and data parity buses are disabled. The current bus
cycle remains active and is completed in the normal fashion in response to
BRDY#. The IBM 6x86 CPU generates additional bus cycles while DHOLD
is asserted. DHOLD is ignored if the scatter/gather interface is disabled.

Input Page 3-21

DP7-DP0 Data Parity signals provide parity for the data bus, one data parity bit per
data byte. Even parity is driven on DP7-DP0 for all data write cycles.
DP7-DP0 are read by the IBM 6x86 CPU during read cycles to check for
even parity. The data parity bus is only driven while a write cycle is active
(state=T2).

3-state
I/O

Page 3-10

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name Description I/O Reference

3-4

Signal Description Table

EADS# External Address Strobe indicates that a valid cache inquiry address is
being driven on the IBM 6x86 CPU address bus (A31-A5) and AP. The state
of INV at the time EADS# is sampled active determines the final state of the
cache line. A cache inquiry cycle using EADS# may be run while the IBM
6x86 CPU is in the address hold or bus hold state.

Input Page 3-18

EWBE# External Write Buffer Empty indicates that there are no pending write
cycles in the external system. EWBE# is sampled only during I/O and
memory write cycles. If EWBE# is negated, the IBM 6x86 CPU delays all
subsequent writes to on-chip cache lines in the “exclusive” or “modified”
state until EWBE# is asserted.

Input Page 3-14

FERR# FPU Error Status indicates an unmasked floating point error has occurred.
FERR# is asserted during execution of the FPU instruction that caused the
error. FERR# does not float during bus hold states.

Output Page 3-19

FLUSH# Cache Flush forces the IBM 6x86 CPU to flush the cache. External
interrupts and additional FLUSH# assertions are ignored during the flush.
Cache inquiry cycles are permitted during the flush.

Input Page 3-15

HIT# Cache Hit indicates that the current cache inquiry address has been found in
the cache (modified, exclusive or shared states). HIT# is valid two clocks
after EADS# is sampled active, and remains valid until the next cache inquiry
cycle.

Output Page 3-18

HITM# Cache Hit Modified Data indicates that the current cache inquiry address
has been found in the cache and dirty data exists in the cache line (modified
state). The IBM 6x86 CPU does not accept additional cache inquiry cycles
while HITM# is asserted. HITM# is valid two clocks after EADS#.

Output Page 3-18

HLDA Hold Acknowledge indicates that the IBM 6x86 CPU has responded to the
HOLD input and relinquished control of the local bus. The IBM 6x86 CPU
continues to operate during bus hold as long as the on-chip cache can satisfy
bus requests.

Output Page 3-16

HOLD Hold Request indicates that another bus master has requested control of the
CPU’s local bus.

Input Page 3-16

IGNNE# Ignore Numeric Error forces the IBM 6x86 CPU to ignore any pending
unmasked FPU errors and allows continued execution of floating point
instructions.

Input Page 3-19

INTR Maskable Interrupt forces the processor to suspend execution of the
current instruction stream and begin execution of an interrupt service routine.
The INTR input can be masked (ignored) through the IF bit in the Flags
Register.

Input Page 3-14

INV Invalidate Request is sampled with EADS# to determine the final state of
the cache line in the case of a cache inquiry hit. An asserted INV directs the
processor to change the state of the cache line to “invalid”. A negated INV
directs the processor to change the state of the cache line to “shared.”

Input Page 3-18

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name Description I/O Reference

 3-5

3Signal Description Table

KEN# Cache Enable allows the data being returned during the current cycle to be
placed in the CPU’s cache. When the IBM 6x86 CPU is performing a
cacheable code fetch or memory data read cycle (CACHE# asserted), and
KEN# is sampled asserted, the cycle is transformed into a 32-byte cache line
fill. KEN# is sampled with the first asserted BRDY# or NA# for the cycle.

Input Page 3-15

LBA# Local Bus Access indicates that the current bus cycle is for an address
within the local bus address region. If LBA# is asserted during a CPU write
cycle with BE3#-BE0# negated, the IBM 6x86 CPU automatically maps the
upper DWORD of data to the lower DWORD of the data bus. LBA# floats if
scatter/gather pins are disabled.

Output Page 3-21

LOCK# Lock Status indicates that other system bus masters are denied access to the
local bus. The IBM 6x86 CPU does not enter the bus hold state in response to
HOLD while LOCK# is asserted.

Output Page 3-11

M/IO# Memory/IO Status. If high, indicates that the current bus cycle is a memory
cycle (read or write). If low, indicates that the current bus cycle is an I/O cycle
(read or write, interrupt acknowledge, or special cycle).

Output Page 3-11

NA# Next Address requests the next pending bus cycle address and cycle
definition information. If either the current or next bus cycle is a locked cycle,
a line replacement, a write-back cycle, or if there is no pending bus cycle, the
IBM 6x86 CPU does not start a pipelined bus cycle regardless of the state of
NA#.

Input Page 3-13

NMI Non-Maskable Interrupt Request forces the processor to suspend
execution of the current instruction stream and begin execution of an NMI
interrupt service routine.

Input Page 3-14

PCD Page Cache Disable reflects the state of the PCD page attribute bit in the
page table entry or the directory table entry. If paging is disabled, or for
cycles that are not paged, the PCD pin is driven low. PCD is masked by the
cache disable (CD) bit in CR0, and floats during bus hold states.

Output Page 3-15

PCHK# Data Parity Check indicates that a data bus parity error has occurred
during a read operation. PCHK# is only valid during the second clock
immediately after read data is returned to the IBM 6x86 CPU (BRDY#
asserted) and is inactive otherwise. Parity errors signaled by a logic low
on PCHK# have no effect on processor execution.

Output Page 3-10

PWT Page Write Through reflects the state of the PWT page attribute bit in the
page table entry or the directory table entry. PWT pin is negated during cycles
that are not paged, or if paging is disabled. PWT takes priority over
WB/WT#.

Output Page 3-15

QDUMP# Q Buffer Dump is used to dump the contents of the scatter/gather buffer
onto the data bus. The data bytes specified by the byte enables (BE7#-BE0#)
are driven onto the data bus during the clock after QDUMP# is sampled
asserted. QDUMP# is ignored if the scatter/gather pins are disabled.

Input Page 3-22

RESET Reset suspends all operations in progress and places the IBM 6x86 CPU into
a reset state. Reset forces the CPU to begin executing in a known state. All
data in the on-chip caches is invalidated.

Input Page 3-7

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name Description I/O Reference

3-6

Signal Description Table

SCYC Split Locked Cycle indicates that the current bus cycle is part of a
misaligned locked transfer. SCYC is defined for locked cycles only. A
misaligned transfer is defined as any transfer that crosses an 8-byte boundary.

Output Page 3-11

SMI# SMM Interrupt forces the processor to save the CPU state to the top of
SMM memory and to begin execution of the SMI service routine at the
beginning of the defined SMM memory space. An SMI is a higher-priority
interrupt than an NMI.

Input Page 3-14

SMIACT# SMM Interrupt Active indicates that the processor is operating in System
Management Mode. SMIACT# does not float during bus hold states.

Output Page 3-13

SUSP# Suspend Request requests that the CPU enter suspend mode. SUSP# is
ignored following RESET and is enabled by setting the SUSP bit in CCR2.

Input Page 3-22

SUSPA# Suspend Acknowledge indicates that the IBM 6x86 CPU has entered
low-power suspend mode. SUSPA# floats following RESET and is enabled
by setting the SUSP bit in CCR2.

Output Page 3-22

TCK Test Clock (JTAG) is the clock input used by the IBM 6x86 CPU's boundary
scan (JTAG) test logic.

Input Page 3-24

TDI Test Data In (JTAG) is the serial data input used by the IBM 6x86 CPU's
boundary scan (JTAG) test logic.

Input Page 3-24

TDO Test Data Out (JTAG) is the serial data output used by the IBM 6x86 CPU's
boundary scan (JTAG) test logic.

Output Page 3-24

TMS Test Mode Select (JTAG) is the control input used by the IBM 6x86 CPU's
boundary scan (JTAG) test logic.

Input Page 3-24

TRST# Test Mode Reset (JTAG) initializes the IBM 6x86 CPU's boundary scan
(JTAG) test logic.

Input Page 3-24

WB/WT# Write-Back/Write-Through is sampled during cache line fills to define the
cache line write policy. If high, the cache line write policy is write-back. If
low, the cache line write policy is write-through. (PWT forces write-through
policy when PWT=1.)

Input Page 3-15

WM_RST Warm Reset forces the IBM 6x86 CPU to complete the current instruction
and then places the IBM 6x86 CPU in a known state. Once WM_RST is
sampled active by the CPU, the reset sequence begins on the next instruction
boundary. WM_RST does not change the state of the configuration registers,
the on-chip cache, the write buffers and the FPU registers. WM_RST is
sampled during reset.

Input Page 3-9

W/R# Write/Read Status. If high, indicates that the current memory, or I/O bus
cycle is a write cycle. If low, indicates that the current bus cycle is a read
cycle.

Output Page 3-11

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name Description I/O Reference

 3-7

3Signal Descriptions

3.2 Signal Descriptions

The following paragraphs provide additional
information about the IBM 6x86 CPU signals.
For ease of this discussion, the signals are
divided into 16 functional groups as illustrated
in Figure 3-1 (Page 3-1).

3.2.1 Clock Control

The Clock Input (CLK) signal, supplied by the
system, is the timing reference use by the IBM
6x86 CPU bus interface. All external timing
parameters are defined with respect to the CLK
rising edge. The CLK signal enters the IBM
6x86 CPU where it is doubled or tripled to
produce the IBM 6x86 CPU internal clock
signal. During power on, the CLK signal must
be running even if CLK does not meet AC
specifications.

The Clock Multiplier (CLKMUL) input is
sampled during RESET to determine the
CPU’s core operating frequency. If
CLKMUL=0, the core frequency is 2x the
frequency of the CLK input. If CLKMUL=1,
the core frequency is 3x the frequency of the
CLK input. The CLKMUL input is connected
to an internal pull-down resistor. Therefore, if
CLKMUL is left unconnected, the core
frequency defaults to 2x the input CLK.
CLKMUL should be connected to Vss, Vcc, or
left unconnected. CLKMUL should not be
connected to a switching signal.

3.2.2 Reset Control

The IBM 6x86 CPU output signals are initial-
ized to their reset states during the CPU reset
sequence, as shown in Table 3-3 (Page 3-8).
The signal states given in Table 3-3 assume
that HOLD, AHOLD, and BOFF# are negated.

Asserting RESET suspends all operations in
progress and places the IBM 6x86 CPU in a
reset state. RESET is an asynchronous signal
but must meet specified setup and hold times to
guarantee recognition at a particular clock
edge.

On system power-up, RESET must be held
asserted for at least 1 msec after Vcc and CLK
have reached specified DC and AC limits. This
delay allows the CPU’s clock circuit to stabi-
lize and guarantees proper completion of the
reset sequence.

During normal operation, RESET must be
asserted for at least 15 CLK periods in order to
guarantee the proper reset sequence is
executed. When RESET negates (on its falling
edge), the pins listed in Table 3-2 determine if
certain IBM 6x86 CPU functions are enabled.

Table 3-2. Pins Sampled During RESET

SIGNAL
NAME

DESCRIPTION

FLUSH# If = 0, three-state test mode enabled.

QDUMP# If = 0, scatter/gather interface enabled.

WM_RST If = 1, built-in self test initiated.

3-8

Signal Descriptions

Table 3-3. Signal States During RESET

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Ignored INTR Ignored

A31-A3 Undefined until first ADS# INV Ignored

ADS# 1 KEN# Ignored

ADSC# 1 LBA# 1

AHOLD Recognized LOCK# 1

AP Undefined until first ADS# M/IO# Undefined until first ADS#

APCHK# 1 NA# Ignored

BE7#-BE0# Undefined until first ADS# NMI Ignored

BHOLD Ignored PCD Undefined until first ADS#

BOFF# Recognized PCHK# 1

BRDY# Ignored PWT Undefined until first ADS#

BRDYC# Ignored QDUMP# Enables scatter/gather interface pins

BREQ 0 RESET 1

CACHE# Undefined until first ADS# SCYC Undefined until first ADS#

D(63-0) Float SMI# Ignored

D/C# Undefined until first ADS# SMIACT# 1

DHOLD Ignored SUSP# Ignored

DP(7-0) Float SUSPA# Float

EADS# Ignored TCK Recognized

EWBE# Ignored TDI Recognized

FERR# 1 TDO Responds to TCK, TDI, TMS,
TRST#

FLUSH# Initiates three-state test mode TMS Recognized

HIT# 1 TRST# Recognized

HITM# 1 W/R# Undefined until first ADS#

HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Initiates self-test

IGNNE# Ignored

 3-9

3Signal Descriptions

Warm Reset (WM_RST) allows the IBM
6x86 CPU to complete the current instruction
and then places the IBM 6x86 CPU in a known
state. WM_RST is an asynchronous signal, but
must meet specified setup and hold times in
order to guarantee recognition at a particular
CLK edge. Once WM_RST is sampled active
by the CPU, the reset sequence begins on the
next instruction boundary.

WM_RST differs from RESET in that the
contents of the on-chip cache, the write
buffers, the configuration registers and the
floating point registers contents remain
unchanged.

Following completion of the internal reset
sequence, normal processor execution begins
even if WM_RST remains asserted. If RESET
and WM_RST are asserted simultaneously,
WM_RST is ignored and RESET takes
priority. If WM_RST is asserted at the falling
edge of RESET, built-in self test (BIST) is
initiated.

3.2.3 Address Bus

The Address Bus (A31-A3) lines provide the
physical memory and external I/O device
addresses. A31-A5 are bi-directional signals
used by the IBM 6x86™ CPU to drive
addresses to both memory devices and I/O
devices. During cache inquiry cycles the IBM
6x86™ CPU receives addresses from the
system using signals A31-A5.

Using signals A31-A3, the IBM 6x86™ CPU
can address a 4-GByte memory address space.
Using signals A15-A3, the IBM 6x86™ CPU
can address a 64-KByte I/O space through the
processor’s I/O ports. During I/O accesses,
signals A31-A16 are driven low. A31-A3 float
during bus hold and address hold states.

The Byte Enable (BE7#-BE0#) lines are
bi-directional signals that define the valid data
bytes within the 64-bit data bus. The
correlation between the enable signals and data
bytes is shown in Table 3-4.

During a cache line fill, (burst read or “1+4”
burst read) the IBM 6x86 CPU expects data to
be returned as if all data bytes are enabled,
regardless of the state of the byte enables.
BE7#-BE0# float during bus hold and byte
enable hold states.

Address Bit 20 Mask (A20M#) is an active
low input which causes the IBM 6x86 CPU to
mask (force low) physical address bit 20 when
driving the external address bus or when
performing an internal cache access. Asserting
A20M# emulates the 1 MByte address
wrap-around that occurs on the 8086. The A20
signal is never masked during write-back
cycles, inquiry cycles, system management
address space accesses or when paging is
enabled, regardless of the state of the A20M#
input.

Table 3-4. Byte Enable Signal to
 Data Bus Byte Correlation

BYTE
ENABLE

CORRESPONDING
DATA BYTE

BE7# D63-D56

BE6# D55-D48

BE5# D47-D40

BE4# D39-D32

BE3# D31-D24

BE2# D23-D16

BE1# D15-D8

BE0# D7-D0

3-10

Signal Descriptions

3.2.4 Address Parity

Address Parity (AP) is a bi-directional signal
which provides the parity associated with
address lines A31-A5. (A4 and A3 are not
included in the parity determination.) During
IBM 6x86 CPU generated bus cycles, while the
address bus lines are driven, AP becomes an
output supplying even address parity. During
cache inquiry cycles, AP becomes an input and
is sampled by EADS#. During cache inquiry
cycles, even-parity must be placed on the AP
line to guarantee an accurate result on the
APCHK# (Address Parity Check Status) pin.

Address Parity Check Status (APCHK#) is
driven active by the CPU when an address bus
parity error has been detected for a cache
inquiry cycle. APCHK# is asserted two clocks
after EADS# is sampled asserted, and remains
valid for one clock only. Address parity errors
signaled by APCHK# have no effect on
processor execution.

3.2.5 Data Bus

Data Bus (D63-D0) lines carry three-state,
bi-directional signals between the IBM 6x86
CPU and the system (i.e., external memory and
I/O devices). The data bus transfers data to the
IBM 6x86 CPU during memory read, I/O read,
and interrupt acknowledge cycles. Data is
transferred from the IBM 6x86 CPU during
memory and I/O write cycles.

Data setup and hold times must be met for
correct read cycle operation. The data bus is
driven only while a write cycle is active.

3.2.6 Data Parity

The Data Parity Bus (DP7-DP0) provides and
receives parity data for each of the eight data
bus bytes (Table 3-5). The IBM 6x86 CPU
generates even parity on the bus during write
cycles and accepts even parity from the system
during read cycles. DP7-DP0 is driven only
while a write cycle is active.

Parity Check (PCHK#) is asserted when a
data bus parity error is detected. Parity is
checked during code, memory and I/O reads,
and the second interrupt acknowledge cycle.
Parity is not checked during the first interrupt
acknowledge cycle.

Parity is checked for only the active data bytes
as determined by the active byte enable signals
except during a cache line fill (burst read or
“1+4” burst read). During a cache line fill, the
IBM 6x86 CPU assumes all data bytes are valid
and parity is checked for all data bytes regard-
less of the state of the byte enables.

Table 3-5. Parity Bit to Data
Byte Correlation

PARITY BIT DATA BYTE

DP7 D63-D56

DP6 D55-D48

DP5 D47-D40

DP4 D39-D32

DP3 D31-D24

DP2 D23-D16

DP1 D15-D8

DP0 D7-D0

 3-11

3Signal Descriptions

PCHK# is valid only during the second clock
immediately after read data is returned to the
IBM 6x86 CPU (BRDY# asserted). At other
times PCHK# is not active. Parity errors
signaled by the assertion of PCHK# have no
effect on processor execution.

3.2.7 Bus Cycle Definition

Each bus cycle is assigned a bus cycle type. The
bus cycle types are defined by six three-state
outputs: CACHE#, D/C#, LOCK#, M/IO#,
SCYC, and W/R# as listed in Table 3-6 (Page
3-12).

These bus cycle definition signals are driven
valid while ADS# is active. D/C#, M/IO#,
W/R#, SCYC and CACHE# remain valid until
the clock following the earliest of two signals:
NA# asserted, or the last BRDY# for the cycle.

LOCK# continues asserted until after BRDY#
is returned for the last locked bus cycle. The
bus cycle definition signals float during bus
hold states.

Cache Cycle Indicator (CACHE#) is an
output that indicates that the current bus cycle
is a potentially cacheable cycle (for a read), or
indicates that the current bus cycle is a cache
line write-back or line replacement burst cycle
(for a write). If CACHE# is asserted for a read
cycle and the KEN# input is returned active by
the system, the read cycle becomes a cache line
fill burst cycle.

Data/Control (D/C#) distinguishes between
data and control operations. When high, this
signal indicates that the current bus cycle is a
data transfer to or from memory or I/O. When
low, D/C# indicates that the current bus cycle

involves a control function such as a halt, inter-
rupt acknowledge or code fetch.

Bus Lock (LOCK#) is an active low output
which, when asserted, indicates that other
system bus masters are denied access to control
of the CPU bus. The LOCK# signal may be
explicitly activated during bus operations by
including the LOCK prefix on certain instruc-
tions. LOCK# is also asserted during descriptor
updates, page table accesses, interrupt acknowl-
edge sequences and when executing the XCHG
instruction. However, if the NO_LOCK bit in
CCR1 is set, LOCK# is asserted only during
page table accesses and interrupt acknowledge
sequences. The IBM 6x86 CPU does not enter
the bus hold state in response to HOLD while
the LOCK# output is active.

Memory/IO (M/IO#) distinguishes between
memory and I/O operations. When high, this
signal indicates that the current bus cycle is a
memory read or memory write. When low,
M/IO# indicates that the current bus cycle is an
I/O read, I/O write, interrupt acknowledge
cycle or special bus cycle.

Split Cycle (SCYC) is an active high output
that indicates that the current bus cycle is part
of a misaligned locked transfer. SCYC is
defined for locked cycles only. A misaligned
transfer is defined as any transfer that crosses
an 8-byte boundary.

Write/Read (W/R#) distinguishes between
write and read operations. When high, this
signal indicates that the current bus cycle is a
memory write, I/O write or a special bus cycle.
When low, this signal indicates that the current
cycle is a memory read, I/O read or interrupt
acknowledge cycle.

3-12

Signal Descriptions

Table 3-6. Bus Cycle Types

BUS CYCLE TYPE M/IO# D/C# W/R# CACHE# LOCK#

Interrupt Acknowledge 0 0 0 1 0

Does not occur. 0 0 0 X 1

Does not occur. 0 0 1 X 0

Special Cycles:
If BE(7-0)# = FEh: Shutdown
If BE(7-0)# = FDh: Flush (INVD, WBINVD)
If A4 = 0 and BE(7-0)# = FBh: Halt (HLT)
If BE(7-0)# = F7h: Write-Back (WBINVD)
If BE(7-0)# = EFh: Flush Acknowledge
(FLUSH#)
If A4 = 1 and BE(7-0)# = FBh: Stop Grant
(SUSP#)

0 0 1 1 1

Does not occur. 0 1 X X 0

I/O Data Read 0 1 0 1 1

I/O Data Write 0 1 1 1 1

Does not occur. 1 0 X X 0

Cacheable Memory Code Read
(Burst Cycle if KEN# Returned Active)

1 0 0 0 1

Non-cacheable Memory Code Read 1 0 0 1 1

Does not occur. 1 0 1 X 1

Locked Memory Data Read 1 1 0 1 0

Cacheable Memory Data Read
(Burst Cycle if KEN# Returned Active)

1 1 0 0 1

Non-cacheable Memory Data Read 1 1 0 1 1

Locked Memory Write 1 1 1 1 0

Burst Memory Write
(Writeback or Line Replacement)

1 1 1 0 1*

Single Transfer Memory Write 1 1 1 1 1

Note: X = Don't Care
*Note: LOCK# continues to be asserted during a write-back cycle that occurs following an aborted (BOFF# asserted)
 locked bus cycle.

 3-13

3Signal Descriptions

3.2.8 Bus Cycle Control

The bus cycle control signals (ADS#, ADSC#,
BRDY#, BRDYC#, NA#, and SMIACT#)
indicate the beginning of a bus cycle and allow
system hardware to control bus cycle termina-
tion timing and address pipelining.

Address Strobe (ADS#) is an active low
output which indicates that the CPU has driven
a valid address and bus cycle definition on the
appropriate output pins. ADS# floats during
bus hold states.

Cache Address Strobe (ADSC#) performs
the same function as ADS#. ADSC# is used to
interface directly to a secondary cache
controller.

Burst Ready (BRDY#) is an active low input
that is driven by the system to indicate that the
current transfer within a burst cycle or the
current single transfer bus cycle can be termi-
nated. The CPU samples BRDY# in the second
and subsequent clocks of a cycle. BRDY# is
active during address hold states.

Cache Burst Ready (BRDYC#) performs the
same function as BRDY# and is logically
ORed with BRDY internally by the CPU.
BRDYC# is used to interface directly to a
secondary cache controller.

Next Address (NA#) is an active low input
that is driven by the system to request the next
pending bus cycle address and cycle definition
information even though all data transfers for
the current bus cycle are not complete. This
new bus cycle is referred to as a “pipelined”
cycle. If either the current or next bus cycle is a
locked cycle, a line replacement, a write-back

cycle or there is no pending bus cycle, the IBM
6x86 CPU does not start a pipelined bus cycle
regardless of the state of the NA# input.

System Management Mode Active
(SMIACT#) is an active low output which
indicates that the CPU is operating in System
Management Mode. SMIACT# is asserted in
response to the assertion of SMI# or due to
execution of the SMINT instruction.
SMIACT# is also asserted during accesses to
defined SMM memory if the SMAC bit in
CCR1 is set. This bit allows access to SMM
memory while not in SMM mode and is typi-
cally used for initialization purposes.

While servicing an SMI# interrupt or SMINT
instruction, SMIACT# remains asserted until a
RSM instruction is executed. The RSM
instruction causes the IBM 6x86™ CPU to exit
SMM mode and negate the SMIACT# output.
If a cache inquiry cycle occurs while
SMIACT# is active, any resulting write-back
cycle is issued with SMIACT# asserted. This
occurs even though the write-back cycle is
intended for normal memory rather than SMM
memory.

During RESET, the USE_SMI bit in CCR1 is
cleared. While USE_SMI is zero, SMIACT# is
always negated. SMIACT# does not float
during bus hold states.

3.2.9 Interrupt Control

The interrupt control signals (INTR, NMI,
SMI#) allow the execution of the current
instruction stream to be interrupted and
suspended.

3-14

Signal Descriptions

Maskable Interrupt Request (INTR) is an
active high level-sensitive input which causes
the processor to suspend execution of the
current instruction stream and begin execution
of an interrupt service routine. The INTR input
can be masked (ignored) through the IF bit in
the Flags Register.

When not masked, the IBM 6x86 CPU
responds to the INTR input by performing two
locked interrupt acknowledge bus cycles.
During the second interrupt acknowledge cycle,
the IBM 6x86 CPU reads an 8-bit value, the
interrupt vector, from the data bus. The 8-bit
interrupt vector indicates the interrupt level that
caused generation of the INTR and is used by
the CPU to determine the beginning address of
the interrupt service routine. To assure recogni-
tion of the INTR request, INTR must remain
active until the start of the first interrupt
acknowledge cycle.

Non-Maskable Interrupt Request (NMI) is a
rising edge sensitive input which causes the
processor to suspend execution of the current
instruction stream and begin execution of an
NMI interrupt service routine. The NMI inter-
rupt cannot be masked by the IF bit in the Flags
Register. Asserting NMI causes an interrupt
which internally supplies interrupt vector 2h to
the CPU core. Therefore, external interrupt
acknowledge cycles are not issued.

Once NMI processing has started, no additional
NMIs are processed until an IRET instruction is
executed, typically at the end of the NMI
service routine. If NMI is re-asserted prior to
execution of the IRET, one and only one NMI
rising edge is stored and then processed after
execution of the next IRET.

System Management Interrupt Request
(SMI#) is an interrupt input with higher priority
than the NMI input. SMI# is a falling edge
sensitive input and is sampled on every rising
edge of the processor input clock. Asserting
SMI# forces the processor to save the CPU
state to the top of SMM memory and to begin
execution of the SMI service routine at the
beginning of the defined SMM memory space.
After the processor internally acknowledges the
SMI# interrupt, the SMIACT# output is driven
low for the duration of the interrupt service
routine.

Once SMI# servicing has started, no additional
SMI# interrupts are processed until a RSM
instruction is executed. If SMI# is re-asserted
prior to execution of a RSM instruction, one
and only one SMI# falling edge is stored and
then processed after execution of the next
RSM. SMI# is ignored following reset and
recognition is enabled by setting the USE_SMI
bit in CCR1.

3.2.10 Cache Control

The cache control signals (EWBE#, FLUSH#,
KEN#, PCD, PWT, WB/WT#) are used to indi-
cate cache status and control caching activity.

External Write Buffer Empty (EWBE#) is an
active low input driven by the system to indi-
cate when there are no pending write cycles in
the external system. The IBM 6x86 CPU
samples EWBE# during write cycles (I/O and
memory) only. If EWBE# is not asserted, the
processor delays all subsequent writes to
on-chip cache lines in the “exclusive” or
“modified” state until EWBE# is asserted.
Regardless of the state of EWBE#, all writes to

 3-15

3Signal Descriptions

the on-chip cache are delayed until any previ-
ously issued external write cycle is complete.
This ensures that external write cycles occur in
program order and is referred to as “strong
write ordering”. To enhance performance,
“weak write ordering” may be allowed for
specific address regions using the Address
Region Registers (ARRs) and Region Control
Registers (RCRs).

Cache Flush (FLUSH#) is a falling edge sensi-
tive input that forces the processor to
write-back all dirty data in the cache and then
invalidate the entire cache contents. FLUSH#
need only be asserted for a single clock but
must meet specified setup and hold times to
guarantee recognition at a particular clock
edge.

Once FLUSH# is sampled active, the IBM
6x86™ CPU begins the cache flush sequence
after completion of the current instruction.
External interrupts and additional FLUSH#
requests are ignored while the cache flush is in
progress. However, cache inquiry cycles are
permitted during the flush sequence. The IBM
6x86™ CPU issues a flush acknowledge special
cycle to indicate completion of the flush
sequence. If the processor is in a halt or shut-
down state, FLUSH# is recognized and the
IBM 6x86 CPU returns to the halt or shutdown
state following completion of the flush
sequence. If FLUSH# is active at the falling
edge of RESET, the processor enters three state
test mode.

Cache Enable (KEN#) is an active low input
which indicates that the data being returned
during the current cycle is cacheable. When the
IBM 6x86 CPU is performing a cacheable code
fetch or memory data read cycle and KEN# is
sampled asserted, the cycle is transformed into

a cache line fill (4 transfer burst cycle) or a
“1+4” cache line fill. KEN# is sampled with
the first asserted BRDY# or NA# for the cycle.
I/O accesses, locked reads, system management
memory accesses and interrupt acknowledge
cycles are never cached.

Page Cache Disable (PCD) is an active high
output that reflects the state of the PCD page
attribute bit in the page table entry or the direc-
tory table entry. If paging is disabled or for
cycles that are not paged, the PCD pin is driven
low. PCD is masked by the cache disable (CD)
bit in CR0 (driven high if CD=1) and floats
during bus hold states.

Page Write Through (PWT) is an active high
output that reflects the state of the PWT page
attribute bit in the page table entry or the direc-
tory table entry. If paging is disabled or for
cycles that are not paged, the PWT pin is driven
low. If PWT is asserted, PWT takes priority
over the WB/WT# input. If PWT is asserted for
either reads or writes, the cache line is saved in,
or remains in, the shared (write-through) state.
PWT floats during bus hold states.

The Write-Back/Write-Through (WB/WT#)
input allows the system to define the write
policy of the on-chip cache on a line-by-line
basis. If WB/WT# is sampled high during a line
fill cycle and PWT is low, the line is defined as
write-back and is stored in the exclusive state.
If WB/WT# is sampled high during a write to a
write-through cache line (shared state) and
PWT is low, the line is transitioned to
write-back (exclusive state). If WB/WT# is
sampled low or PWT is high, the line is defined
as write-through and is stored in (line fill), or
remains in (write), the shared state. Table 3-7
(Page 3-16) lists the effects of WB/WT# on the
state of the cache line for various bus cycles.

3-16

Signal Descriptions

.

3.2.11 Bus Arbitration

The bus arbitration signals (BOFF#, BREQ,
HOLD, and HLDA) allow the IBM 6x86 CPU
to relinquish control of its local bus when
requested by another bus master device. Once
the processor has released its bus, the bus
master device can then drive the local bus
signals.

Back-Off (BOFF#) is an active low input that
forces the IBM 6x86 CPU to abort the current
bus cycle and relinquish control of the CPU's
local bus in the next clock. The IBM 6x86 CPU
responds to BOFF# by entering the bus hold
state as listed in Table 3-8 (Page 3-17). The
IBM 6x86 CPU remains in bus hold until
BOFF# is negated. Once BOFF# is negated, the
IBM 6x86 CPU restarts any aborted bus cycle
in its entirety. Any data returned to the IBM
6x86 CPU while BOFF# is asserted is ignored.
If BOFF# is asserted in the same clock that
ADS# is asserted, the IBM 6x86™ CPU may
float ADS# while in the active low state.

Table 3-7. Effects of WB/WT# on
 Cache Line State

BUS CYCLE
TYPE

PWT
WB/
WT#

WRITE
POLICY

MESI
STATE

Line Fill 0 0 Write-
through

Shared

Line Fill 0 1 Write-
back

Exclusiv
e

Line Fill 1 x Write-
through

Shared

Memory Write
(Note)

0 0 Write-
through

Shared

Memory
Write (Note)

0 1 Write-
back

Exclusiv
e

Memory Write
(Note)

1 x Write-
through

Shared

Note: Only applies to memory writes to addresses that are currently
valid in the cache.

Bus Request (BREQ) is an active high output
asserted by the IBM 6x86 CPU whenever a bus
cycle is pending internally. The IBM 6x86 CPU
always asserts BREQ in the first clock of a bus
cycle with ADS# as well as during bus hold and
address hold states if a bus cycle is pending. If
no additional bus cycles are pending, BREQ is
negated prior to termination of the current
cycle.

Bus Hold Request (HOLD) is an active high
input used to indicate that another bus master
requests control of the CPU's local bus. After
recognizing the HOLD request and completing
the current bus cycle or sequence of locked bus
cycles, the IBM 6x86 CPU responds by floating
the local bus and asserting the hold acknowl-
edge (HLDA) output. The bus remains granted
to the requesting bus master until HOLD is
negated. Once HOLD is sampled negated, the
IBM 6x86 CPU simultaneously drives the local
bus and negates HLDA.

Hold Acknowledge (HLDA) is an active high
output used to indicate that the IBM 6x86 CPU
has responded to the HOLD input and has relin-
quished control of its local bus. Table 3-8 (Page
3-17) lists the state of all the IBM 6x86 CPU
signals during a bus hold state. The IBM 6x86
CPU continues to operate during bus hold states
as long as the on-chip cache can satisfy bus
requests. HLDA is asserted until HOLD is
negated. Once HOLD is sampled negated, the
IBM 6x86 CPU simultaneously drives the local
bus and negates HLDA.

 3-17

3Signal Descriptions

Table 3-8. Signal States During Bus Hold

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Recognized internally INTR Recognized internally

A31-A3 Float INV Recognized

ADS# Float KEN# Ignored

ADSC# Float LBA# Float

AHOLD Ignored LOCK# Float

AP Float M/IO# Float

APCHK# Driven NA# Ignored

BE7#-BE0# Float NMI Recognized internally

BHOLD Ignored PCD Float

BOFF# Recognized PCHK# Driven

BRDY# Ignored PWT Float

BRDYC# Ignored QDUMP# Recognized

BREQ Driven RESET Recognized

CACHE# Float SCYC Float

D/C# Float SMI# Recognized

D63-D0 Float SMIACT# Driven

DHOLD Ignored SUSP# Recognized

DP7-DP0 Float SUSPA# Driven

EADS# Recognized TCK Recognized

EWBE# Recognized internally TDI Recognized

FERR# Driven TDO Responds to TCK, TDI, TMS, TRST#

FLUSH# Recognized TMS Recognized

HIT# Driven TRST# Recognized

HITM# Driven W/R# Float

HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Recognized

IGNNE# Recognized internally

3-18

Signal Descriptions

3.2.12 Cache Coherency

The cache coherency signals (AHOLD,
EADS#, HIT#, HITM#, and INV) are used to
initiate and monitor cache inquiry cycles.
These signals are intended to be used to ensure
cache coherency in a uni-processor environ-
ment only. Contact IBM for additional specifi-
cations on maintaining coherency in a
multi-processor environment.

Address Hold Request (AHOLD) is an active
high input which forces the IBM 6x86 CPU to
float A31-A3 and AP in the next clock cycle.
While AHOLD is asserted, only the address bus
is disabled. The current bus cycle remains
active and can be completed in the normal
fashion. The IBM 6x86 CPU does not generate
additional bus cycles while AHOLD is asserted
except write-back cycles in response to a cache
inquiry cycle.

External Address Strobe (EADS#) is an
active low input used to indicate to the IBM
6x86 CPU that a valid cache inquiry address is
being driven on the IBM 6x86 CPU address bus
(A31-A5) and AP. The IBM 6x86 CPU checks
the on-chip cache for this address. If the address
is present in the cache the HIT# signal is
asserted. If the data associated with the inquiry
address is “dirty” (modified state), the HITM#
signal is also asserted. If dirty data exists, a
write-back cycle is issued to update external
memory with the dirty data. Additional cache
inquiry cycles are ignored while HITM# is
asserted.

The state of the INV pin at the time EADS# is
sampled active determines the final state of the
cache line. If INV is sampled high, the final
state of the cache line is “invalid”. If INV is

sampled low, the final state of the cache line is
“shared”. A cache inquiry cycle using EADS#
may be run while the IBM 6x86 CPU is in
either an address hold or bus hold state. The
inquiry address must be driven by an external
device.

Hit on Cache Line (HIT#) is an active low
output used to indicate that the current cache
inquiry address has been found in the cache
(modified, exclusive or shared states). HIT# is
valid two clocks after EADS# is sampled
active, and remains valid until the next cache
inquiry cycle.

Hit on Modified Data (HITM#) is an active
low output used to indicate that the current
cache inquiry address has been found in the
cache and dirty data exists in the cache line
(modified state). If HITM# is asserted, a
write-back cycle is issued to update external
memory. HITM# is valid two clocks after
EADS# is sampled active, and remains asserted
until two clocks after the last BRDY# of the
write-back cycle is sampled active. The IBM
6x86 CPU does not accept additional cache
inquiry cycles while HITM# is asserted.

Invalidate Request (INV) is an active high
input used to determine the final state of the
cache line in the case of a cache inquiry hit.
INV is sampled with EADS#. A logic one on
INV directs the processor to change the state of
the cache line to “invalid”. A logic zero on
INV directs the processor to change the state of
the cache line to “shared”.

 3-19

3Signal Descriptions

3.2.13 FPU Error Interface

The FPU interface signals FERR# and IGNNE#
are used to control error reporting for the
on-chip floating point unit. These signals are
typically used for a PC-compatible system
implementation. For other applications, FPU
errors are reported to the IBM 6x86 CPU core
through an internal interface.

Floating Point Error Status (FERR#) is an
active low output asserted by the IBM 6x86
CPU when an unmasked floating point error
occurs. FERR# is asserted during execution of
the FPU instruction that caused the error.
FERR# does not float during bus hold states.

Ignore Numeric Error (IGNNE#) is an active
low input which forces the IBM 6x86 CPU to
ignore any pending unmasked FPU errors and
allows continued execution of floating point
instructions. When IGNNE# is not asserted and
an unmasked FPU error is pending, the IBM
6x86 CPU only executes the following floating
point instructions: FNCLEX, FNINIT,
FNSAVE, FNSTCW, FNSTENV, and
FNSTSW#. IGNNE# is ignored when the NE
bit in CR0 is set to a 1.

3.2.14 Scatter/Gather Buffer
 Interface

The scatter/gather buffer interface signals
(BHOLD, DHOLD, LBA#, QDUMP#), in
conjunction with the byte enables
(BE7#-BE0#) and address hold (AHOLD), can
be used by the system hardware to transfer data
to/from a 32-bit peripheral interface bus. A
64-bit buffer resides in the IBM 6x86 CPU to
assist the system in these transfers. This buffer
provides scatter/gather capability during four
different types of transfers as listed in Table 3-9
(Page 3-20).

3-20

Signal Descriptions

Table 3-9. Scatter/Gather Cycles

CYCLE TYPE
BHOLD
USED

DHOLD
 USED

QDUMP#
 USED

DATA BUS TIMING

CPU Write to 32-Bit Bus x -- -- Data driven 1 clock after byte enables
asserted.

CPU Read from 32-Bit Bus x -- -- Data sampled 1 clock after byte
enables asserted.

32-Bit Bus Master Write to Memory *

 (1) Scatter/gather buffer load from
 32-bit bus master.

x x -- Data sampled 1 clock after byte
enables asserted.

 (2) Scatter/gather buffer write
 to memory.

x -- x Data driven 1 clock after QDUMP#
asserted.

32-Bit Bus Master Read from Memory
*

 (1) Scatter/gather buffer load
 from memory.

x x -- Data sampled 1 clock after byte
enables asserted.

 (2) Scatter/gather buffer write to 32-bit
 bus master.

x -- x Data driven 1 clock after QDUMP#
asserted.

*Note: Bus master transfers using the scatter/gather buffer must be initiated while the CPU bus is in a bus hold state or an idle state. These
cycles cannot occur during CPU initiated bus cycles.

BHOLD is asserted by the external system
during scatter/gather buffer cycles. While
BHOLD is asserted, the byte enables are
driven by an external source and indicate
which bytes of the data bus should be loaded
into/written out of the scatter/gather buffer.
The IBM 6x86 CPU samples the byte enables
at each rising clock edge while BHOLD is
asserted. Table 3-10 (Page 3-21) lists the byte
enable mappings for the scatter/gather cycles.

Byte Enable Hold (BHOLD) is an active high
input that causes the IBM 6x86 CPU to float
the byte enable outputs (BE7#-BE0#) in the
next clock. While BHOLD is asserted, only the
byte enables are disabled. The current bus
cycle remains active and can be completed in
the normal fashion. The IBM 6x86 CPU
continues to generate additional bus cycles
while BHOLD is asserted, so BHOLD should
only be asserted while AHOLD is asserted.

 3-21

3Signal Descriptions

.

Table 3-10. Byte Enable Map for Scatter/Gather Cycles

CYCLE TYPE BE7-BE0# SOURCE DESTINATION

CPU Read from 32-Bit Bus CPU Data Bus Scatter/Gather Buffer
F F No Transfer No Transfer
F x 31-0 31-0
x F 31-0 63-32
x x 63-0 63-0

CPU Write to 32-Bit Bus* Scatter/Gather Buffer CPU Data Bus
F F No Transfer No Transfer
F x 31-0 31-0
x F 63-32 31-0
x x 63-0 63-0

Scatter/Gather Buffer Load
for 32-Bit Bus Master

CPU Data Bus Scatter/Gather Buffer
F F No Transfer No Transfer
F x 31-0 31-0
x F 31-0 63-32
x x 63-0 63-0

Scatter/Gather Buffer Dump
using QDUMP#

Scatter/Gather Buffer CPU Data Bus
F F No Transfer No Transfer
F x 31-0 31-0
x F 63-32 31-0
x x 63-0 63-0

*Note: If LBA# is active during a CPU write cycle with BE3-BE0# inactive, the IBM 6x86 CPU automatically maps the upper
dword of data (D63-D32) to the lower dword of the data bus (D31-D0).

Data Bus Hold (DHOLD) is an active
high input that forces the IBM 6x86 CPU
to float the data bus lines (D63-D0) and
the data parity lines (DP7-DP0) in the next
clock. While DHOLD is asserted, only the
data and data parity buses are disabled.
The current bus cycle remains active and
is completed in the normal fashion in
response to BRDY#. The IBM 6x86 CPU
generates additional bus cycles while
DHOLD is asserted. To avoid writing
invalid data, during a write cycle, DHOLD
and BRDY# should not be asserted at the
same time,

The external system asserts DHOLD
during scatter/gather buffer load cycles

when the IBM 6x86 CPU is not the bus
master. While DHOLD is asserted, the
data bus is driven by an external source
and the information is loaded into the
scatter/gather buffer based on the state of
the byte enables (BHOLD asserted). The
data bus is sampled one clock after the
clock edge at which an active byte enable
is sampled.

Local Bus Access (LBA#) is an active low
output asserted by the IBM 6x86 CPU for
any I/O bus cycle or for any bus access
that resides within a “local bus” address
region as specified by the on-chip configu-
ration registers. LBA# is asserted during

3-22

Signal Descriptions

the clock that ADS# is asserted and remains
asserted for only one clock. LBA# is used to
indicate a cycle intended to address a device
using the 32-bit peripheral bus. If LBA# is
active during a CPU write cycle with BE(3-0)#
inactive, the IBM 6x86 CPU automatically
maps the upper dword of data to the lower
dword of the data bus.

Q Buffer Dump (QDUMP#) is an active low
input asserted by the external system to dump
the contents of the scatter/gather buffer to the
data bus. The data bytes specified by the
asserted byte enables are driven onto the data
bus during the clock after QDUMP# is
sampled asserted. QDUMP# must be asserted
at the falling edge of RESET to enable the
scatter/gather interface pins.

3.2.15 Power Management
Interface

The two power management signals (SUSP#,
SUSPA#) allow the IBM 6x86 CPU to enter
and exit suspend mode. The IBM 6x86 CPU
also enters suspend mode as the result of
executing a HALT instruction if the HALT bit
is set in CCR2. Suspend mode circuitry forces
the IBM 6x86 CPU to consume minimal power
while maintaining the entire internal CPU
state.

Suspend Request (SUSP#) is an active low
input which requests that the IBM 6x86 CPU
enter suspend mode. After recognition of an
active SUSP# input, the IBM 6x86 CPU
completes execution of the current instruction,
any pending decoded instructions and associ-
ated bus cycles, issues a stop grant bus cycle,
and then asserts the SUSPA# output. SUSP# is

ignored following RESET and is enabled by
setting the SUSP bit in CCR2.

The Suspend Acknowledge (SUSPA#) output
indicates that the IBM 6x86 CPU has entered
low-power suspend mode as the result of either
assertion of SUSP# or execution of a HALT
instruction. SUSPA# remains asserted until
SUSP# is negated, or until an interrupt is
serviced if suspend mode was entered via the
HALT instruction. If SUSP# is asserted and
then negated prior to SUSPA# assertion,
SUSPA# may toggle state after SUSP#
negates.

The IBM 6x86 CPU accepts cache flush
requests and cache inquiry cycles while
SUSPA# is asserted. If FLUSH# is asserted,
the CPU exits the low power state and services
the flush request. After completion of all
required write-back cycles, the CPU returns to
the low power state. SUSPA# negates during
the write-back cycles. Before issuing the
write-back cycle, the CPU may execute several
code fetches.

If AHOLD, BOFF# or HOLD is asserted while
SUSPA# is asserted, the CPU exits the low
power state in preparation for a cache inquiry
cycle. After completion of any required
write-back cycles resulting from the cache
inquiry, the CPU returns to the low power state
only if HOLD, BOFF# and AHOLD are
negated. SUSPA# negates during the
write-back cycle.

Table 3-11 (Page 3-23) lists the IBM 6x86
CPU signal states for suspend mode when
initiated by either SUSP# or the HALT instruc-
tion. SUSPA# is disabled (three-state)
following RESET and is enabled by setting the
SUSP bit in CCR2.

 3-23

3Signal Descriptions

Table 3-11. Signal States During Suspend Mode

SIGNAL LINE
SUSP# INITIATED/
HALT INITIATED

SIGNAL LINE
SUSP# INITIATED/
HALT INITIATED

A20M# Ignored INTR Latched/Recognized

A31-A3 Driven INV Recognized

ADS# 1 KEN# Ignored

ADSC# 1 LBA# 1

AHOLD Recognized LOCK# 1

AP Driven M/IO# Driven

APCHK# 1 NA# Ignored

BE7#-BE0# Driven NMI Latched/Recognized

BHOLD Ignored PCD Driven

BOFF# Recognized PCHK# 1

BRDY# Ignored PWT Driven

BRDYC# Ignored QDUMP# Ignored

BREQ 0 RESET Recognized

CACHE# Driven SCYC Driven

D/C# Driven SMI# Latched/Recognized

D63-D0 Float SMIACT# 1

DHOLD Ignored SUSP# 0 / Recognized

DP7-DP0 Float SUSPA# 0

EADS# Recognized TCK Recognized

EWBE# Ignored TDI Recognized

FERR# 1 TDO Responds to TCK, TDI, TMS,
TRST#

FLUSH# Recognized TMS Recognized

HIT# Driven TRST# Recognized

HITM# 1 W/R# Driven

HLDA Driven in response to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Latched/Recognized

IGNNE# Ignored

3-24

Signal Descriptions

3.2.16 JTAG Interface

The IBM 6x86 CPU can be tested using JTAG
Interface (IEEE Std. 1149.1) boundary scan
test logic. The IBM 6x86 CPU pin state can be
set according to serial data supplied to the chip.
The IBM 6x86 CPU pin state can also be
recorded and supplied as serial data.

Test Clock (TCK) is the clock input used by
the IBM 6x86 CPU boundary scan (JTAG) test
logic. The rising edge of TCK is used to clock
control and data information into the IBM
6x86 CPU using the TMS and TDI pins. The
falling edge of TCK is used to clock data infor-
mation out of the IBM 6x86 CPU using the
TDO pin.

Test Data Input (TDI) is the serial data input
used by the IBM 6x86 CPU boundary scan
(JTAG) test logic. TDI is sampled on the rising
edge of TCK.

Test Data Output (TDO) is the serial data
output used by the IBM 6x86 CPU boundary
scan (JTAG) test logic. TDO is output on the
falling edge of TCK.

Test Mode Select (TMS) is the control input
used by the IBM 6x86 CPU boundary scan
(JTAG) test logic. TMS is sampled on the
rising edge of TCK.

Test Reset (TRST#) is an active low input
used to initialize the IBM 6x86 CPU boundary
scan (JTAG) test logic.

 3-25

3Functional Timing

3.3 Functional Timing

3.3.1 Reset Timing

Figure 3-2 illustrates the required RESET tim-
ing for both a power-on reset and a reset that
occurs during operation. The WM_RST,
FLUSH# and QDUMP# inputs are sampled at

Figure 3-2. RESET Timing

the falling edge of RESET to determine if the
6x86 CPU should enter built-in self-test, enable
tri-state test mode or enable the scatter-gather
interface pins, respectively. WM_RST,
FLUSH# and QDUMP# must be valid at least
two clocks prior to the RESET falling edge.

VALID

VALID

VALID

Reset after Power-On = 15 CLKs Min.

Reset Inactive = 2 CLKs Min.

Power-On Reset = 1 msec Min.

CLK

RESET

WM_RST

FLUSH#

QDUMP#

1734900

Note 1. ADS# asserted approximately 150-200 clocks after RESET falling edge if no built-in self-test

Note 2. ADS# asserted approximately 2**19 clocks after RESET falling edge if built-in self-test requested.

Note 3. Output pins driven to specified RESET state a maximum of 2 CLKs after RESET rising edge.

Power-On Reset = 1 msec Min.

Reset Inactive = 2 CLKs Min.

Reset after Power-On = 15 CLKs Min.

3-26

Functional Timing

3.3.2 Bus State Definition

The 6x86 CPU bus controller supports non-pipelined and pipelined operation as well as single
transfer and burst bus cycles. During each CLK period, the bus controller exists in one of six
states as listed in Table 3-12. Each of these bus states and its associated state transitions is illus-
trated in Figure 3-3, (Page 3-27) and listed in Table 3-13, (Page 3-28).

Table 3-12. 6x86 CPU Bus States

STATE NAME DESCRIPTION

Ti Idle Clock During Ti, no bus cycles are in progress. BOFF# and RESET force the
bus to the idle state. The bus is always in the idle state while HLDA is
active.

T1 First Bus Cycle Clock During the first clock of a non-pipelined bus cycle, the bus enters the T1
state. ADS# is asserted during T1 along with valid address and bus cycle
definition information.

T2 Second and Subsequent
Bus Cycle Clock

During the second clock of a non-pipelined bus cycle, the bus enters the
T2 state. The bus remains in the T2 state for subsequent clocks of the bus
cycle as long as a pipelined cycle is not initiated. During T2, valid data is
driven during write cycles and data is sampled during reads. BRDY# is
also sampled during T2. The bus also enters the T2 state to complete bus
cycles that were initiated as pipelined cycles but complete as the only
outstanding bus cycle.

T12 First Pipelined Bus Cycle
Clock

During the first clock of a pipelined cycle, the bus enters the T12 state.
During T12, data is being transferred and BRDY# is sampled for the
current cycle at the same time that ADS# is asserted and address/bus cycle
definition information is driven for the next (pipelined) cycle.

T2P Second and Subsequent
Pipelined Bus Cycle Clock

During the second and subsequent clocks of a pipelined bus cycle where
two cycles are outstanding, the bus enters the T2P state. During T2P, data
is being transferred and BRDY# is sampled for the current cycle.
However, valid address and bus cycle definition information continues to
be driven for the next pipelined cycle.

Td Dead Clock The bus enters the Td state if a pipelined cycle was initiated that requires
one idle clock to turn around the direction of the data bus. Td is required
for a read followed immediately by a pipelined write, and for a write
followed immediately by a pipelined read.

 3-27

3Functional Timing

Figure 3-3. IBM 6x86 CPU Bus State Diagram

Ti

T1

T2P

TD

1741800

B

C

J

M

I

N

O

K

D

A

F

L

T2

T12

P (from any state)

E

G H

3-28

Functional Timing

Table 3-13. Bus State Transitions

TRANSITION
CURRENT

STATE
NEXT

STATE
EQUATION

A Ti Ti No Bus Cycle Pending.

B Ti T1 New or Aborted Bus Cycle Pending.

C T1 T2 Always.

D T2 T2 Not Last BRDY# and No New Bus Cycle Pending, or
Not Last BRDY# and New Bus Cycle Pending and NA#
Negated.

E T2 T1 Last BRDY# and New Bus Cycle Pending and HITM# Negated.

F T2 Ti Last BRDY# and No New Bus Cycle Pending, or
Last BRDY# and HITM# Asserted.

G T2 T12 Not Last BRDY# and New Bus Cycle Pending and NA#
Sampled Asserted.

H T12 T2 Last BRDY# and No Dead Clock Required.

I T12 Td Last BRDY# and Dead Clock Required.

J T12 T2P Not Last BRDY#.

K T2P T2P Not Last BRDY#.

L T2P T2 Last BRDY# and No Dead Clock Required.

M T2P Td Last BRDY# and Dead Clock Required.

N Td T12 New Bus Cycle Pending and NA# Sampled Asserted.

O Td T2 No New Bus Cycle Pending, or
New Bus Cycle Pending and NA# Negated.

P Any
State

Ti RESET Asserted, or
BOFF# Asserted.

 3-29

3Functional Timing

3.3.3 Non-pipelined Bus
Cycles

Non-pipelined bus operation may be used for
all bus cycle types. The term “non-pipelined”
refers to a mode of operation where the CPU
allows only one outstanding bus cycle. In
other words, the current bus cycle must com-
plete before a second bus cycle is allowed to
start.

3.3.3.1 Non-pipelined Single
Transfer Cycles

Single transfer read cycles occur during
non-cacheable memory reads, I/O read cycles,
and special cycles. A non-pipelined single
transfer read cycle begins with address and bus
cycle definition information driven on the bus
during the first clock (T1 state) of the bus
cycle. The CPU then monitors the BRDY#
input at the end of the second clock (T2 state).
If BRDY# is asserted, the CPU reads the
appropriate data and data parity lines and ter-
minates the bus cycle. If BRDY# is not active,
the CPU continues to sample the BRDY# input
at the end of each subsequent cycle (T2 states).
Each of the additional clocks is referred to as a
wait state.

The CPU uses the data parity inputs to check
for even parity on the active data lines. If the
CPU detects an error, the parity check output
(PCHK#) asserts during the second clock fol-
lowing the termination of the read cycle.

Figure 3-4 (Page 3-30) illustrates the func-
tional timing for two non-pipelined sin-
gle-transfer read cycles. Cycle 2 is a
potentially cacheable cycle as indicated by the
CACHE# output. Because this cycle is poten-
tially cacheable, the CPU samples the KEN#
input at the same clock edge that BRDY# is
asserted. If KEN# is negated, the cycle termi-
nates as shown in the diagram. If KEN# is
asserted, the CPU converts this cycle into a
burst cycle as described in the next section.
NA# must be negated for non-pipelined opera-
tion. Pipelined bus cycles are described later
in this chapter.

3-30

Functional Timing

Figure 3-4. Non-Pipelined Single Transfer Read Cycles

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2

VALID

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN

VALID

Cycle 1:

0 Wait State Read

Cycle 2:
Potentially Cacheable,
2 Wait-State Read

Non-Cacheable,

CYCLE 1 CYCLE 2

T2 T2 Ti Ti Ti

IN

VALID

 3-31

3Functional Timing

Single transfer write cycles occur for writes
that are neither line replacement nor write-back
cycles. The functional timing of two non-pipe-
lined single transfer write cycles is shown in
Figure 3-5. During a write cycle, the data and
data parity lines are outputs and are driven
valid during the second clock (T2 state) of the

bus cycle. Data and data parity remain valid
during all wait states. If the write cycle is a
write to a valid cache location in the “shared”
state, the WB/WT# pin is sampled with
BRDY#. If WB/WT# is sampled high, the
cache line transitions from the “shared” to the
“exclusive” state.

Figure 3-5. Non-Pipelined Single Transfer Write Cycles

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2

VALID

NA#

BRDY#

DATA, DP OUT

CYCLE 1 CYCLE 2

Cycle 1:
0 Wait-State Write

Cycle 2:
2 Wait-State Write

WB/WT# VALID

T2 T2 Ti

OUT

VALID

3-32

Functional Timing

Each time BRDY# is sampled asserted during
the burst cycle, a data transfer occurs. The
CPU reads the data and data parity busses and
assigns the data to an internally generated
burst address. Although the CPU internally
generates the burst address sequence, only the
first address of the burst is driven on the exter-
nal address bus. System logic must predict the
burst address sequence based on the first
address. Wait states may be added to any
transfer within a burst by delaying the asser-
tion of BRDY# by the desired number of
clocks.

The CPU checks even data parity for each of
the four transfers within the burst. If the CPU
detects an error, the parity check output
(PCHK#) asserts during the second clock fol-
lowing the BRDY# assertion of the data trans-
fer.

Figure 3-6 (Page 3-33) illustrates two
non-pipelined burst read cycles. The cycles
shown are the fastest possible burst sequences
(2-1-1-1). NA# must be negated for non-pipe-
lined operation as shown in the diagram. Pipe-
lined bus cycles are described later in this
chapter.

Figure 3-7 (Page 3-34) depicts a burst read
cycle with wait states. A 3-2-2-2 burst read is
shown.

3.3.3.2 Non-pipelined Burst
Read Cycles

The 6x86 CPU uses burst read cycles to per-
form cache line fills. During a burst read
cycle, four 64-bit data transfers occur to fill
one of the CPU’s 32-byte internal cache lines.
A non-pipelined burst read cycle begins with
address and bus cycle definition information
driven on the bus during the first clock (T1
state) of the bus cycle. The CACHE# output is
always active during a burst read cycle and is
driven during the T1 clock.

The CPU then monitors the BRDY# input at
the end of the second clock (T2 state). If
BRDY# is asserted, the CPU reads the data
and data parity and also checks the KEN#
input. If KEN# is negated, the CPU terminates
the bus cycle as a single transfer cycle. If
KEN# is asserted, the CPU converts the cycle
into a burst (cache line fill) by continuing to
sample BRDY# at the end of each subsequent
clock. BRDY# must be asserted a total of four
times to complete the burst cycle.

WB/WT# is sampled at the same clock edge as
KEN#. In conjunction with PWT and the
on-chip configuration registers, WB/WT#
determines the MESI state of the cache line for
the current line fill.

 3-33

3Functional Timing

Figure 3-6. Non-Pipelined Burst Read Cycles

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T2 T2 T1 T2 T2

VALID

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN IN

VALID

Cycle 1: 2-1-1-1 Burst Read Cycle

T2 T2 Ti

IN IN IN ININ IN

VALID VALID VALID VALID VALID VALID

Cycle 2: 2-1-1-1 Burst Read Cycle

WB/WT# VALID VALID

CYCLE 2CYCLE 1

3-34

Functional Timing

Figure 3-7. Burst Cycle with Wait States

ples the state of KEN#. If KEN# is active, the
CPU then performs the burst cycle with the
address sequence shown in Table 3-14 (Page
3-35). The IBM 6x86 CPU CACHE# output is
not asserted during the single read cycle prior
to the burst. Therefore, CACHE# must not be
used to qualify the KEN# input to the proces-
sor. In addition, if KEN# is returned active for
the “1” read cycle in the “1+4”, all data bytes
supplied to the CPU must be valid. The CPU
samples WB/WT# during the “1” read cycle,
and does not resample WB/WT# during the
following burst cycle. Figure 3-8 (Page 3-35)
illustrates a “1+4” burst read cycle.

Burst Cycle Address Sequence.

The IBM 6x86 CPU provides two different
address sequences for burst read cycles.
TheIBM 6x86 CPU burst cycle address
sequence modes are referred to as “1+4” and
“linear”. After reset, the CPU default mode is
“1+4”.

In “1+4” mode, the CPU performs a single
transfer read cycle prior to the burst cycle, if
the desired first address is (...xx8). During this
single transfer read cycle, the CPU reads the
critical data. In addition, the 6x86 CPU sam-

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T2 T2 T2 T2 T2

BRDY#

KEN#

DATA, DP

PCHK#

IN

Cycle 1: 3-2-2-2 Burst Read Cycle 1735400

T2 Ti Ti

VALID VALID VALID VALID

IN IN IN

CYCLE 1

WB/WT# VALID

 3-35

3Functional Timing

.

Table 3-14. “1+4” Burst Address Sequences

BURST CYCLE FIRST
ADDRESS

SINGLE READ CYCLE
PRIOR TO BURST

BURST CYCLE ADDRESS
 SEQUENCE

0 None 0-8-10-18

8 Address 8 0-8-10-18

10 None 10-18-0-8

18 Address 18 10-18-0-8

Figure 3-8. “1+4” Burst Read Cycle

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2 T2 T2 T2 Ti

NA#

BRDY#

DATA, DP IN

KEN# must be asserted for both cycles.

1740300

Ti

Cycle 1: Single transfer read

WB/WT#

PCHK#

VALID (A4-A0 = 08h or 18h) VALID (A4-A0 = 00h or 10h)

VALID VALID VALID VALID VALID

IN IN IN IN

CYCLE 1 CYCLE 2

KEN#

VALID

Cycle 2: 2-1-1-1 Burst Read Cycle

3-36

Functional Timing

The address sequences for the 6x86 CPU's linear burst mode are shown in Table 3-15. Oper-
ating the CPU in linear burst mode minimizes processor bus activity resulting in higher sys-
tem performance. Linear burst mode can be enabled through the IBM 6x86 CPU CCR3
configuration register.

Table 3-15. Linear Burst Address Sequences

BURST CYCLE FIRST
ADDRESS

BURST CYCLE ADDRESS
 SEQUENCE

0 0-8-10-18

8 8-10-18-0

10 10-18-0-8

18 18-0-8-10

 3-37

3Functional Timing

3.3.3.3 Burst Write Cycles

Burst write cycles occur for line replacement
and write-back cycles. Burst writes are similar
to burst read cycles in that the CACHE# output
is asserted and four 64-bit data transfers occur.
Burst writes differ from burst reads in that the
data and data parity lines are outputs rather than
inputs. Also, KEN# and WB/WT# are not sam-
pled during burst write cycles.

Data and data parity for the first data transfer
are driven valid during the second clock (T2
state) of the bus cycle. Once BRDY# is sam-
pled asserted for the first data transfer, valid
data and data parity for the second transfer are
driven during the next clock cycle. The same
timing relationship between BRDY# and data
applies for the third and fourth data transfers as
well. Wait states may be added to any transfer
within a burst by delaying the assertion of
BRDY# by the required number of clocks.

As on burst read cycles, only the first address
of a burst write cycle is driven on the external
address bus. System logic must predict the
remaining burst address sequence based on the
first address. Burst write cycles always begin
with a first address ending in 0 (signals
A4-A0=0) and follow an ascending address
sequence for the remaining transfers
(0-8-10-18).

Figure 3-9 illustrates two non-pipelined burst
write cycles. The cycles shown are the fastest
possible burst sequences (2-1-1-1). As shown,
an idle clock always exists between two
back-to-back burst write cycles. Therefore, the
second burst write cycle in a pair of
back-to-back burst writes is always issued as a
non-pipelined cycle regardless of the state of
the NA# input.

Figure 3-9. Non-Pipelined Burst Write Cycles

VALID (A4-A0 = 00h)

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T2 T2 Ti* T1 T2

VALID (A4-A0 = 00h)

NA#

BRDY#

DATA, DP OUT OUT

Cycle 1: 2-1-1-1 Burst Write Cycle 1735300

T2 T2 T2

OUT OUT OUT OUTOUT OUT

Cycle 2: 2-1-1-1 Burst Write Cycle

Ti

*Note: Ti state always exists between two back-to-back burst write cycles.

CYCLE 1 CYCLE 2

3-38

Functional Timing

3.3.4 Pipelined Bus Cycles

Pipelined addressing is a mode of operation
where the CPU allows up to two outstanding
bus cycles at any given time. Using pipelined
addressing, the address of the first bus cycle is
driven on the bus and while the CPU waits for
the data for the first cycle, the address for a
second bus cycle is issued. Pipelined bus
cycles occur for all cycle types except locked
cycles and burst write cycles.

Pipelined cycles are initiated by asserting
NA#. The CPU samples NA# at the end of
each T2, T2P and Td state. KEN# and
WB/WT# are sampled at either the same clock
as NA# is active, or at the same clock as the
first BRDY# for that cycle, whichever occurs
first. The CPU issues the next address a mini-

mum of two clocks after NA# is sampled
asserted.

The CPU latches the state of the NA# pin
internally. Therefore, even if a new bus cycle
is not pending internally at the time NA# was
sampled asserted, the CPU still issues a pipe-
lined bus cycle if an internal bus request
occurs prior to completion of the current bus
cycle. Once NA# is sampled asserted, the state
of NA# is ignored until the current bus cycle
completes. If two cycles are outstanding and
the second cycle is a read, the CPU samples
KEN# and WB/WT# for the second cycle
when NA# is sampled asserted.

Figure 3-10 and Figure 3-11 (Page 3-39) illus-
trate pipelined single transfer read cycles and
pipelined burst read cycles, respectively.

Figure 3-10. Pipelined Single Transfer Read Cycles

VALID 1

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T12 T2 T2 Ti

VALID 2

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN 1 IN 2

VALID 1 VALID 2

Cycle 1:
2 Wait State Read

Cycle 2:Potentially Cacheable,
Pipelined Read Cycle

Non-Cacheable,

CYCLE 1 CYCLE 2
CPU enters idle bus state because

no bus cycle pending internally.

KEN# sampled when NA# sampled asserted.

T2

 3-39

3Functional Timing

Figure 3-11. Pipelined Burst Read Cycles

VALID 1

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T12 T2P T2 T2 T2

VALID 2

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN 1 IN 1

VALID 1

Cycle 1: 2-1-1-1 Burst Read Cycle 1741500

T2 Ti Ti

IN 1 IN 1 IN 2 IN 2 IN 2

VALID 1 VALID 1 VALID 1 VALID 2 VALID 2 VALID 2

Cycle 2: Pipelined Burst Read Cycle

IN 2

VALID 2

CYCLE 1 CYCLE 2

WB/WT# VALID VALID

3-40

Functional Timing

3.3.4.1 Pipelined
Back-to-Back
Read/Write Cycles

Figure 3-12 depicts a read cycle followed by a
pipelined write cycle. Under this condition,
the data bus must change from an input for the
read cycle to an output for the write cycle. In
order to accomplish this transition without

causing data bus contention, the CPU automat-
ically inserts a “dead” (Td) clock cycle. Dur-
ing the Td state, the data bus floats. The CPU
then drives the write data onto the bus in the
following clock. The CPU also inserts a Td
clock between a write cycle and a pipelined
read cycle to allow the data bus to smoothly
transition from an output to an input.

Figure 3-12. Read Cycle Followed by Pipelined Write Cycle

VALID 1

CLK

ADS#

Address, AP

CACHE#

W/R#

1735700

Ti T1 T2 T2 T12 T2P Td T2 Ti

VALID 2

NA#

BRDY#

KEN#

DATA, DP

PCHK#

Cycle 1: 2-1-1-1 Burst Read Cycle 2: Pipelined Write

CYCLE 1 CYCLE 2

IN 1 IN 1IN 1 IN 1

VALID 1 VALID 1 VALID 1 VALID 1

OUT 2

 3-41

3Functional Timing

3.3.5 Interrupt
Acknowledge
Cycles

The CPU issues interrupt acknowledge bus
cycles in response to an active INTR input.
Interrupt acknowledge cycles are single trans-
fer cycles and always occur in locked pairs as
shown in Figure 3-13. The CPU reads the
interrupt vector from the lower eight bits of the
data bus at the completion of the second inter-

Figure 3-13. Interrupt Acknowledge Cycles

rupt acknowledge cycle. Parity is not checked
during the first interrupt acknowledge cycle.

M/IO#, D/C# and W/R# are always logic low
during interrupt acknowledge cycles. Addi-
tionally, the address bus is driven with a value
of 0000 0004h for the first interrupt acknowl-
edge cycle and with a value of 0000 0000h for
the second. A minimum of one idle clock
always occurs between the two interrupt
acknowledge cycles.

0000 0004h

CLK

ADS#

Address

LOCK#

1735800

Ti T1 T2 Ti T1 T2 Ti

0000 0000h

Acknowledge Cycle.

Interrupt Vector Read
During Second Interrupt

BRDY#

DATA IN IN

Idle States = 1 CLK Min.
CYCLE 1 CYCLE 2

M/IO#,

D/C#, W/R#

PCHK#

Ti

VALID

3-42

Functional Timing

3.3.6 SMI# Interrupt Timing

The CPU samples the System Management
Interrupt (SMI#) input at each clock edge. At
the next appropriate instruction boundary, the
CPU recognizes the SMI# and completes all
pending write cycles. The CPU then asserts
SMIACT# and begins saving the SMM header
information to the SMM address space.
SMIACT# remains asserted until after
execution of a RSM instruction. Figure 3-14
illustrates the functional timing of the
SMIACT# signal.

Figure 3-14. SMIACT# Timing

To facilitate using SMI# to power manage I/O
peripherals, the 6x86 CPU implements a fea-
ture called I/O trapping. If the current bus
cycle is an I/O cycle and SMI# is asserted a
minimum of three clocks prior to BRDY#, the
CPU immediately begins execution of the SMI
service routine following completion of the
I/O instruction. No additional instructions are
executed prior to entering the SMI service rou-
tine. I/O trap timing requirements are shown
in Figure 3-15 (Page 3-43).

CLK

ADS#

 BRDY#

SMI#

SMIACT#

1739900

Normal
Access

Normal
Access

SMI
Handler

Normal
Access

1 CLK MIN 1 CLK MIN
4 CLK
MIN 4 CLK

MIN

 3-43

3Functional Timing

Figure 3-15. SMM I/O Trap Timing

The latency between when FLUSH# occurs
and when the cache invalidation actually com-
pletes varies depending on:

(1) the state of the processor when FLUSH#
is asserted,

(2) the number of modified cache lines,
(3) the number of wait states inserted during

the write-back cycles.

Figure 3-16 (Page 3-44) illustrates the
sequence of events that occur on the bus in
response to a FLUSH# request.

3.3.7 Cache Control Timing

3.3.7.1 Invalidating the
Cache Using FLUSH#

The FLUSH# input forces the CPU to
write-back and invalidate the entire contents of
the on-chip cache. FLUSH# is sampled at each
clock edge, latched internally and then recog-
nized internally at the next instruction bound-
ary. Once FLUSH# is recognized, the CPU
issues a series of burst write cycles to
write-back any “modified” cache lines. The
cache lines are invalidated as they are written
back. Following completion of the write-back
cycles, the CPU issues a flush acknowledge
special bus cycle.

CLK

Address,

ADS#

BRDY#

SMI#

T1 T2 T2 T2 T2 T2

I/O Cycle (Read or Write)

3 CLK Min.

Byte Enables VALID

3-44

Functional Timing

Figure 3-16. Cache Invalidation Using FLUSH#

CLK

ADS#

BRDY#

Address

FLUSH#

Wait for Processor
to Complete Current

Instruction

Write-Back of all Modified Lines
in Internal Cache

Flush Acknowledge
Special Cycle

Write-Back Cycle 0000 0004h

 3-45

3Functional Timing

3.3.7.2 EWBE# Timing

During memory and I/O write cycles, the
6x86™ CPU samples the external write buffer
empty (EWBE#) input. If EWBE# is negated,
the CPU does not write any data to “exclusive”
or “modified” internal cache lines. After sam-
pling EWBE# negated, the CPU continues to

Figure 3-17. External Write Buffer Empty (EWBE#) Timing

sample EWBE# at each clock edge until it
asserts. Once EWBE# is asserted, all inter-
nal cache writes are allowed. Through use of
this signal, the external system may enforce
strong write ordering when external write
buffers are used. EWBE# functional timing
is shown in Figure 3-17.

CLK

ADS#

W/R#

DATA

EWBE#

Write Cycle:
EWBE# sampled
with each BRDY#.

Writes to E or M-State lines

T1 T2

BRDY#

OUT

that hit in the internal cache
can complete.

No writes to E or M-State lines
that hit in the internal cache.
EWBE# sampled at each
clock edge.

3-46

3.3.8 Bus Arbitration

An external bus master can take control of the
CPU's bus using either the HOLD/HLDA
handshake signals or the back-off (BOFF#)
input. Both mechanisms force the IBM 6x86
CPU to enter the bus hold state.

Figure 3-18. Requesting Hold from an Idle Bus

Functional Timing

3.3.8.1 HOLD and HLDA

Using the HOLD/HLDA handshake, an exter-
nal bus master requests control of the CPU’s
bus by asserting the HOLD signal. In response
to an active HOLD signal, the CPU completes
all outstanding bus cycles, enters the bus hold
state by floating the bus, and asserts the HLDA
output. The CPU remains in the bus hold state
until HOLD is negated. Figures 3-18, 3-19
(Page 3-47) and 3-20 (Page 3-48) illustrate the
timing associated with requesting HOLD dur-
ing an idle bus, during a non-pipelined bus
cycle and during a pipelined bus cycle, respec-
tively.

CLK

ADS#

Address

HOLD

Ti Ti Ti Ti Ti T1 T2

VALID

HLDA

Min One Clock
Min

Zero Clocks

 3-47

3

Figure 3-19. Requesting Hold During a Non-Pipelined Bus Cycle

Functional Timing

CLK

ADS#

Address

BRDY#

T1 T2 T2 Ti Ti Ti

VALID

HLDA

HOLD

3-48

Figure 3-20. Requesting Hold During a Pipelined Bus Cycle

Functional Timing

VALID 1

CLK

ADS#

Address, AP

Ti T1 T2

BRDY#

DATA, DP

CYCLE 1

HOLD

HLDA

T2 T12 T2 T2 Ti Ti Ti

VALID 2

IN 1 IN 2

CYCLE 2

NA#

 3-49

3

3.3.8.2 Back-Off Timing

An external bus master requests immediate
control of the CPU's bus by asserting the
back-off (BOFF#) input. The CPU samples
BOFF# at each clock edge and responds by
floating the bus in the next clock cycle as
shown in Figure 3-21. The CPU remains in
the bus hold state until BOFF# is negated.

If the assertion of BOFF# interrupts a bus
cycle, the bus cycle is restarted in its entirety
following the negation of BOFF#. If KEN#

Functional Timing

Figure 3-21. Back-Off Timing

was sampled by the processor before the cycle
was aborted, it must be returned with the same
value during the restarted cycle. The state of
WB/WT# may be changed during the restarted
cycle.

If BOFF# and BRDY# are active at the same
clock edge, the CPU ignores BRDY#. Any
data returned to the CPU with the BRDY# is
also ignored. If BOFF# interrupts a burst read
cycle, the CPU does not cache any data
returned prior to BOFF#. However, this data
may be used for internal CPU execution.

CLK

ADS#

Address

BRDY#

T1 T2 Ti Ti T1 T2

VALID

BOFF#

VALID

3-50

3.3.9 Cache Inquiry Cycles

Cache inquiry cycles are issued by the system
with the CPU in either a bus hold or address
hold state. Bus hold is requested by asserting
either HOLD or BOFF#, and address hold is
requested by asserting AHOLD. The system
initiates the cache inquiry cycle by asserting
the EADS# input. The system must also drive
the desired inquiry address on the address
lines, and a valid state on the INV input.

In response to the cache inquiry cycle, the
CPU checks to see if the specified address is
present in the internal cache. If the address is
present in the cache, the CPU checks the MESI
state of the cache line. If the line is in the
“exclusive” or “shared” state, the CPU asserts
the HIT# output and changes the cache line
state to “invalid” if the INV input was sampled
logic high with EADS#.

Functional Timing

If the line is in the “modified” state, the CPU
asserts both HIT# and HITM#. The CPU then
issues a bus cycle request to write the modified
cache line to external memory. HITM#
remains asserted until the write-back bus cycle
completes. No additional cache inquiry cycles
are accepted while HITM# is asserted. Write-
back cycles always start at burst address 0.
Once the write-back cycle has completed, the
CPU changes the cache line state to “invalid”
if the INV input was sampled logic high, or
“shared” if the INV input was sampled low.

In addition to checking the cache, the CPU
also snoops the internal line fill and cache
write-back buffers in response to a cache
inquiry cycle. The following sections
describe the functional timing for cache
inquiry cycles and the corresponding
write-back cycles for the various types of
inquiry cycles.

 3-51

3

3.3.9.1 Inquiry Cycles
Using HOLD/HLDA

Figure 3-22 illustrates an inquiry cycle where
HOLD is used to force the CPU into a bus hold
state. In this case, the system asserts HOLD
and must wait for the CPU to respond with
HLDA before issuing the cache inquiry cycle.
To avoid address bus contention, EADS#

Functional Timing

Figure 3-22. HOLD Inquiry Cycle that Hits on a Modified Line

should not be asserted until the second clock
after HLDA as shown in the diagram. If the
inquiry address hits on a modified cache line,
HIT# and HITM# are asserted during the sec-
ond clock following EADS#. Once HITM#
asserts, the system must negate HOLD to allow
the CPU to run the corresponding write-back
cycle. The first cycle issued following nega-
tion of HLDA is the write-back bus cycle.

To CPU

CLK

ADS#

Address

BRDY#

HOLD

T2 Ti Ti Ti Ti Ti Ti Ti Ti

From CPU

EADS#

INV

HIT#

HITM#

T1 T2 T2 T2

Write-Back Cycle

T2 Ti Ti

VALID

HLDA

3-52

3.3.9.2 Inquiry Cycles
Using BOFF#

Figure 3-23 illustrates an inquiry cycle where
BOFF# is used to force the CPU into a bus hold
state. In this case, the system asserts BOFF#
and the CPU immediately relinquishes control
of the bus in the next clock. To avoid address
bus contention, EADS# should not be asserted

Functional Timing

Figure 3-23. BOFF# Inquiry Cycle that Hits on a Modified Line

until the second clock edge after BOFF# as
shown in the diagram. If the inquiry address
hits on a modified cache line, HIT# and HITM#
are asserted during the second clock following
EADS#. Once HITM# asserts, the system must
negate BOFF# to allow the CPU to run the cor-
responding write-back cycle. The first cycle
issued following negation of BOFF# is the
write-back bus cycle.

To CPU

CLK

ADS#

Address

BRDY#

BOFF#

T1 Ti Ti Ti Ti Ti T1 T2 T2

From CPU

EADS#

INV

HIT#

HITM#

T2 T2 Ti T1

Write-Back Cycle

T2

VALID

Cycle 1

(Restarted)

Ti

 3-53

3
3.3.9.3 Inquiry Cycles

Using AHOLD

Figure 3-24 illustrates an inquiry cycle where
AHOLD is used to force the CPU into an
address hold state. In this case, the system
asserts AHOLD and the CPU immediately
floats the address bus in the next clock. To
avoid address bus contention, EADS# should
not be asserted until the second clock edge after

Functional Timing

Figure 3-24. AHOLD Inquiry Cycle that Hits on a Modified Line

AHOLD as shown in the diagram. If the
inquiry address hits on a modified cache line,
the CPU asserts HIT# and HITM# during the
second clock following EADS#. The CPU then
issues the write-back cycle even if AHOLD
remains asserted. ADS# for the write-back
cycle asserts two clocks after HITM# is
asserted. To prevent the address bus and data
bus from switching simultaneously, the system
must adhere to the restrictions on negation of
AHOLD as shown in Figure 3-24.

To CPU

CLK

ADS#

Address

BRDY#

Data, DP

T1 T2 Ti Ti Ti Ti Ti T1 T2

From CPU

AHOLD

EADS#

INV

HIT#

T2 T2 T2 T2

Write-Back Cycle

Ti

VALID

HITM#

OUT OUT OUT OUT

Ti

Restrictions on negating AHOLD:
1. During a write cycle, AHOLD should not be negated in the same clock that BRDY# is asserted.
2. During pipelined bus cycles, AHOLD should not be negated during the Td clock between a read cycle followed by a pipelined write cycle.
3. While HITM# is asserted, AHOLD should not be negated in the same clock that ADS# is asserted.

3-54

Figure 3-25 depicts an AHOLD inquiry cycle
during a line fill. In this case, the write-back
cycle occurs after the line fill is completed.
At least one idle clock exists between the final
BRDY# of the line fill and the ADS# for the
write-back cycle. If the inquiry cycle hits on
the address of the line fill that is in progress,

Figure 3-25. AHOLD Inquiry Cycle During a Line Fill

Functional Timing

the data from the line fill cycle is always used
to complete the pending internal operation.
However, the data is not placed in the cache if
INV is sampled asserted with EADS#. The
data is placed in the cache in a “shared” state
if INV is sampled negated.

To CPU

CLK

ADS#

Address

BRDY#

Data, DP

T1 T2 T2 T2 T2 T2 T2

From CPU

AHOLD

EADS#

INV

HIT#

VALID

HITM#

IN IN IN

Line Fill

Note: If the inquiry cycle hits on the line fill in progress, the data from the line fill will be used to complete the pending internal operation.
The line is not placed in the cache if INV is sampled asserted with EADS#. The line is placed in the cache in a "shared"
state if INV is sampled negated with EADS#.

T1 T2 T2 T2 T2 Ti Ti

OUT OUT OUT OUTIN

Write-Back Cycle

Ti

 3-55

3

During cache inquiry cycles, the CPU performs
address parity checking using A31-A5 and the
AP signal. The CPU checks for even parity and

Functional Timing

Figure 3-26. APCHK# Timing

asserts the APCHK# output if a parity error is
detected. Figure 3-26 illustrates the functional
timing of the APCHK# output.

CLK

EADS#

Address

AP

Tx Tx Tx Tx Tx

To CPU

APCHK#

To CPU

VALID

3-56

3.3.10 Scatter/Gather
Buffer Interface

The scatter/gather buffer interface signals, in
conjunction with the byte enables and address
hold, can be used by the system hardware to
transfer data to/from a 32-bit peripheral inter-
face bus. A 64-bit buffer resides in the CPU to
assist the system in these transfers.

As shown in Figure 3-27 when BHOLD is
asserted the CPU floats the byte enable outputs
(BE7#-BE0#) in the next clock. While BHOLD
is asserted, only the byte enables are disabled.
The current bus cycle remains active and can

be completed in the normal fashion. The CPU
continues to generate additional bus cycles
while BHOLD is asserted, so BHOLD should
only be asserted while AHOLD is asserted.

Figure 3-27 also illustrates DHOLD timing.
DHOLD forces the CPU to float the data and
data parity buses in the next clock. While
DHOLD is asserted, the current bus cycle
remains active and additional bus cycles may
be generated by the CPU.

Figure 3-27. BHOLD and DHOLD Timing

Functional Timing

CLK

DHOLD

D63-D0

BHOLD

BE7#-BE0#

D1 D1

BEx BEx

 3-57

3

Figures 3-28 and 3-29 (Page 3-58) illustrate CPU read and write cycles that access a 32-bit
device using the scatter/gather buffer.

Functional Timing

Figure 3-28. CPU Upper Byte Read from 32-Bit Bus Using Scatter/Gather

CLK

ADS#

LBA#

D63-D32

D31-D0

BE7#-BE0# BE# = 0xBF From CPU BE# From CPU

BHOLD

BRDY#

D1 (to S/G Buffer))

D1

D2

D1

BE# = 0xBF To CPU

BHOLD is asserted in order to
issue the MUX command
via the BE#s (BE# = 0xBFh).

Controller detects CPU read of
upper byte to 32-bit peripheral bus
via LBA# and BE#s.

The clock following BE# = 0xBFh,
the CPU maps D31-D0 to D63-D32
of the scatter/gather buffer to read byte 6.

3-58

Figure 3-29. CPU Upper Byte Write to 32-Bit Bus Using Scatter/Gather

Functional Timing

CLK

ADS#

LBA#

D63-D32

D31-D0

BE7#-BE0# BE# = 0xBF From CPU BE# From CPU

BHOLD

BRDY#

D2

D2 (from S/G Buffer)

D2

D1

Controller detects CPU write of
upper byte to 32-bit peripheral bus
via LBA# and BE#s.

BHOLD need not be asserted
because the CPU automatically
maps D63-D32 to D31-D0 when
LBA# asserted and BE3-BE0 = Fh.

During the clock following BE# = 0xBFh,
the CPU maps D63-D32 to D31-D0
for transfer on 32-bit bus.

 3-59

3

Figures 3-30 and 3-31 (Page 3-60) illustrate bus master reads and writes between a 32-bit device
and 64-bit main memory. The CPU bus must be idle when a bus master initiates a scatter/gather
cycle.

Functional Timing

Figure 3-30. Bus Master Read from 64-Bit Memory to 32-Bit Bus

CLK

D63-D32

D31-D0

BE7#-BE0#

BHOLD

DHOLD

BE#=0x00 BE#=0xF0

QDUMP#

D2 from Memory

D1 from Memory

D2

D2 from S/G Buffer D1 from S/G Buffer

BE#=0x0FBE#=0xFF

Controller asserts BHOLD and DHOLD
to transfer data from memory
to CPU's internal scatter/gather buffer.

BE#=0x00 causes the 64-bit data from
memory to be written into CPU's buffer.
The controller negates BE# (BE=0xFF)
so that data in the scatter/gather buffer is
not corrupted and tristates the data bus
to allow for a scatter operation to proceed.

The controller negates DHOLD and
asserts BE#=0x0F followed by 0xF0
along with QDUMP# to transfer the
upper word (D2=D63-D32) followed
by the lower word (D1=D31-D0),
respectively, to the 32-bit bus.

3-60

Figure 3-31. Bus Master Write to 64-Bit Memory from 32-Bit Bus

Functional Timing

CLK

D32-D63

D0-D31

BE0-BE7

BHOLD

DHOLD

BE#=FFh

QDUMP#

D2 (to Memory)

D1 (to Memory)

BE#=0xF0BE#=0x0F

D1 (to S/G Buffer)D2 (to S/G Buffer)

BE#=0x00

Controller asserts BHOLD and DHOLD
to transfer data from the 32-bit bus
to CPU's internal scatter/gather buffer.

The MUX command along with a word
write is issued by the controller to
write D1 from the 32-bit bus into
D63-D32 of CPU's buffer followed by
a 2nd word write to D31-D0.

The controller relinquishes control of
CPU data bus, negates DHOLD and
asserts QDUMP# to dump the 64-bit data
on to the CPU local bus for transfer to memory.

 3-61

3

3.3.11 Power Management
Interface

SUSP# Initiated Suspend Mode

The 6x86 CPU enters suspend mode when the
SUSP# input is asserted and execution of the
current instruction, any pending decoded
instructions and associated bus cycles are
completed. A stop grant bus cycle is then
issued and the SUSPA# output is asserted.
The CPU responds to SUSP# and asserts
SUSPA# only if the SUSP bit is set in the
CCR2 configuration register.

SUSP# is sampled (Figure 3-32) on the rising
edge of CLK. SUSP# must meet specified
setup and hold times to be recognized at a
particular CLK edge. The time from assertion
of SUSP# to activation of SUSPA# varies

Figure 3-32. SUSP# Initiated Suspend Mode

Functional Timing

depending on which instructions were decoded
prior to assertion of SUSP#. The minimum
time from SUSP# sampled active to SUSPA#
asserted is eight CLKs. As a maximum, the
CPU may execute up to two instructions and
associated bus cycles prior to asserting
SUSPA#. The time required for the CPU to
deactivate SUSPA# once SUSP# has been
sampled inactive is five CLKs.

If the CPU is in a hold acknowledge state and
SUSP# is asserted, the CPU may or may not
enter suspend mode depending on the state of
the CPU internal execution pipeline. If the
CPU is in a SUSP# initiated suspend mode,
one occurrence of NMI, INTR and SMI# is
stored for execution once suspend mode is
exited. The 6x86 CPU also recognizes and
acknowledges the HOLD, AHOLD, BOFF#
and FLUSH# signals while in suspend mode.

CLK

SUSP#

SUSPA#

Tx Tx Ti Ti Ti Ti Tx

8 CLKs 5 CLKs

3-62

HALT Initiated Suspend Mode

The CPU also enters suspend mode as a result
of executing a HALT instruction if the SUSP
HALT bit in CCR2 is set. The SUSPA# output
is asserted no later than 40 CLKs following

BRDY# sampled active for the HALT bus cycle
as shown in Figure 3-33. Suspend mode is then
exited upon recognition of an NMI, an
unmasked INTR or an SMI#. SUSPA# is
deactivated 10 CLKs after sampling of an
active interrupt.

Functional Timing

Figure 3-33. HALT Initiated Suspend Mode

CLK

ADS#

M/IO#,

BRDY#

INTR, NMI

SUSPA#

T1 T2 Ti Ti Ti Ti Ti Ti

Non-Pipelined HALT

BE(0, 1, 3-7)#,
W/R#

10 CLKs

A3-A31,
BE#2, D/C#, IO#

40 CLKs (Max)

 3-63

3
Stopping the Input Clock

Once the CPU has entered suspend mode, the
input clock (CLK) can be stopped and
restarted without loss of any internal CPU
data. The CLK input can be stopped at either a
logic high or logic low state.

The CPU remains suspended until CLK is
restarted and suspend mode is exited as

described earlier. While the CLK is stopped,
the CPU can no longer sample and respond to
any input stimulus.

Figure 3-34 illustrates the recommended
sequence for stopping the CLK using SUSP# to
initiate suspend mode. CLK may be started
prior to or following negation of the SUSP#
input. The system must allow sufficient time
for the CPU’s internal PLL to lock to the
desired frequency before exiting suspend
mode.

Figure 3-34. Stopping CLK During Suspend Mode

CLK

SUSP#

SUSPA#

Tx Tx Tx Tx

4-1

Electrical Specifications

 IBM 6x86 MICROPROCESSOR
 Sixth-Generation Superscalar
 Superpipelined x86-Compatible CPU

4.0 ELECTRICAL
SPECIFICATIONS

4.1 Electrical Connections

This section provides information on electrical
connections, absolute maximum ratings,
recommended operating conditions, DC char-
acteristics, and AC characteristics. All voltage
values in Electrical Specifications are measured
with respect to VSS unless otherwise noted.

4.1.1 Power and Ground
Connections and
Decoupling

Testing and operating the IBM 6x86 CPU
requires the use of standard high frequency
techniques to reduce parasitic effects. The high
clock frequencies used in the IBM 6x86 CPU
and its output buffer circuits can cause transient
power surges when several output buffers
switch output levels simultaneously. These
effects can be minimized by filtering the DC
power leads with low-inductance decoupling
capacitors, using low impedance wiring, and by
utilizing all of the VCC and GND pins. The
IBM 6x86 CPU contains 296 pins with 53 pins
connected to VCC and 53 connected to VSS
(ground).

4.1.2 Pull-Up/Pull-Down
Resistors

Table 4-1 lists the input pins that are internally
connected to pull-up and pull-down resistors.
The pull-up resistors are connected to VCC and
the pull-down resistors are connected to VSS. When
unused, these inputs do not require connection
to external pull-up or pull-down resistors. The
SUSP# pin is unique in that it is connected to a
pull-up resistor only when SUSP# is not
asserted.

Table 4-1. Pins Connected to Internal Pull-Up and
Pull-Down Resistors

SIGNAL PIN NO. RESISTOR

BRDYC# Y3 20-kΩ pull-up
CLKMUL Y33 20-kΩ pull-down
QDUMP# AL7

20-kΩ pull-up
SMI# AB34
SUSP# V34 20-kΩ pull-up (see text)
TCK M34

20-kΩ pull-up

TDI N35

TMS P34
TRST# Q33
Reserved J33
Reserved W35
Reserved Y35
Reserved AN35 20-kΩ pull-down

 4-2

4.1.3 Unused Input Pins

All inputs not used by the system designer and
not listed in Table 4-1 should be connected
either to ground or to VCC. Connect
active-high inputs to ground through a 20 kΩ
(± 10%) pull-down resistor and active-low
inputs to VCC through a 20 kΩ (± 10%) pull-up
resistor to prevent possible spurious operation.

4.1.4 NC and Reserved Pins

Pins designated NC have no internal connec-
tions. Pins designated RESV or RESERVED
should be left disconnected. Connecting a
reserved pin to a pull-up resistor, pull-down
resistor, or an active signal could cause unex-
pected results and possible circuit malfunc-
tions.

Absolute Maximum Ratings

4.2 Absolute Maximum
Ratings

The following table lists absolute maximum
ratings for the IBM 6x86 CPU microproces-
sors. Stresses beyond those listed under Table
4-2 limits may cause permanent damage to the
device. These are stress ratings only and do not
imply that operation under any conditions
other than those listed under “Recommended
Operating Conditions” Table 4-3 (Page 4-3) is
possible. Exposure to conditions beyond Table
4-2 may (1) reduce device reliability and (2)
result in premature failure even when there is
no immediately apparent sign of failure.
Prolonged exposure to conditions at or near the
absolute maximum ratings may also result in
reduced useful life and reliability.

Table 4-2. Absolute Maximum Ratings

PARAMETER MIN MAX UNITS NOTES

Storage Temperature
Supply Voltage, VCC
Voltage On Any Pin
Input Clamp Current, IIK
Output Clamp Current, IOK

-65
-0.5
-0.5

150
4.0

VCC +0.5
10
25

°C
V
V

mA
mA

Power Applied
Power Applied

 4-3

4

4.3 Recommended Operating Conditions

Table 4-3 presents the recommended operating conditions for the IBM 6x86 CPU device.

Table 4-3. Recommended Operating Conditions

PARAMETER MIN MAX UNITS NOTES

TC Operating Case Temperature 0 75 °C Power Applied
VCC =3.3Vnom, Supply Voltage 3.15 3.6 V
VCC =3.5Vnom, Supply Voltage 3.4 3.6 V
VIH High-Level Input Voltage 2.0 5.5 V

VIL Low-Level Input Voltage -0.3 0.8 V
IOH High-Level Output Current, All outputs -1.0 mA VO=VOH (MIN)
IOL Low-Level Output Current, All outputs 5.0 mA VO=VOL (MAX}

Recommended Operating Conditions

 4-4

4.4 DC Characteristic

Table 4-4. DC Characteristics (at Recommended Operating Conditions)

PARAMETER MIN TYP MAX
UNIT

S
NOTES

VOL Output Low Voltage
 IOL = 5 mA 0.4 V
VOH Output High Voltage
 IOH = -1 mA 2.4 V

II Input Leakage Current
 For all pins except those
 listed in Table 4-1.

±15 µA 0 < VIN < VCC

IIH Input Leakage Current
 For all pins with internal
 pull-downs.

200 µA VIH = 2.4 V
See Table 4-1.

IIL Input Leakage Current
 For all pins with internal pull-ups.

-400 µA VIL = 0.45 V
See Table 4-1.

ICC 100 MHz
 110 MHz
 120 MHz
 133 MHz
 150 MHz

4500
4800
5100
5500
6000

5400
5800
6100
6600
7000

mA Note 1, 5,6

ICCSM (Suspend Mode ICC)
 100 MHz
 110 MHz
 120 MHz
 133 MHz
 150 MHz

48
50
51
54
60

80
83
105
115
125

mA
Note 1, 3, 5

ICCSS Standby ICC
 0 MHz (Suspended/CLK Stopped) 35 55 mA Note 4,5
CIN Input Capacitance 15 pF f = 1 MHz, Note 2
COUT Output Capacitance 20 pF f = 1 MHz, Note 2
CIO I/O Capacitance 25 pF f = 1 MHz, Note 2
CCLK CLK Capacitance 15 pF f = 1 MHz, Note 2
Notes:
1. Frequency (MHz) ratings refer to the internal clock frequency.
2. Not 100% tested.
3. All inputs at 0.4 or VCC - 0 .4 (C M O S leve ls) . A l l inpu ts h eld s tat ic excep t c lock and a l l ou tpu ts u n loaded
 (static IOUT = 0 m A).
4. All inputs at 0.4 or VCC - 0 .4 (C M O S leve ls) . A l l inpu ts h eld s tat ic and a l l o u tpu ts un loaded (sta tic IOUT = 0 m A).
5. Typical, measured at VCC = 3 .3 V
6 . M ax , m easu red a t V cc= 3 .6V . L ab T es tin g on som e dev ices has p ro duced M ax cu rr en t d r aw s o f:
 100M H z....6 .05A
 110M H z....6 .58A
 120M H z....6 .95A
 133M H z....7 .50A
 150M H z....7 .11A

DC Characteristics

 4-5

4
4.5 AC Characteristics

Tables 4-6 through 4-11 (Pages 4-7 through
4-13) list the AC characteristics including
output delays, input setup requirements, input
hold requirements and output float delays.
These measurements are based on the measure-
ment points identified in Figure 4-1 (Page 4-6) and
Figure 4-2 (Page 4-7). The rising clock edge
reference level VREF, and other reference levels

are shown in Table 4-5. Input or output signals
must cross these levels during testing.

Figure 4-1 shows output delay (A and B) and input
setup and hold times (C and D). Input setup
and hold times (C and D) are specified mini-
mums, defining the smallest acceptable
sampling window a synchronous input signal
must be stable for correct operation.

AC Characteristics

 4-6

Figure 4-1. Drive Level and Measurement Points for Switching Characterics.

AC Characteristics

Table 4-5. Drive Level and Measurement
Points for Switching Characteristics

SYMBOL
VOLTAGE

(Volts)

VREF 1.5
VIHD 2.3
VILD 0

Note: Refer to Figure 4-1.

Tx

MIN

MAX

ValidValid

A
B

CLK:

LEGEND: A - Maximum Output Delay Specification

OUTPUTS:

INPUTS:

VREF VREF

VREF VREF

C

ValidVREF VREF

VIHD

VILD

D

B - Minimum Output Delay Specification
C - Minimum Input Setup Specification
D - Minimum Input Hold Specification

Output n Output n+1

Input

VIHD

VILD

 4-7

4AC Characteristics

Table 4-6. Clock Specifications
TCASE = 0°C to 75°C, See Figure 4-2

SYMBOL PARAMETER
50-MHz BUS 55-MHz BUS 60-MHz BUS

UNITS
MIN MAX MIN MAX MIN MAX

CLK Frequency 50.0 55.0 60.0 MHz

T1 CLK Period 20.0 18.0 16.67 ns

T2 CLK Period Stability ±250 +250 +250 ps

T3 CLK High Time 7.00 4.00 4.00 ns

T4 CLK Low Time 7.00 4.00 4.00 ns

T5 CLK Fall Time 0.15 2.00 0.15 1.50 0.15 1.50 ns

T6 CLK Rise Time 0.15 2.00 0.15 1.50 0.15 1.50 ns

SYMBOL PARAMETER
66-MHz BUS 75-MHz BUS

UNITS
MIN MAX MIN MAX

CLK Frequency 66.6 75.0 MHz

T1 CLK Period 15.0 13.3 ns

T2 CLK Period Stability +250 +250 ps

T3 CLK High Time 4.00 4.00 ns

T4 CLK Low Time 4.00 4.00 ns

T5 CLK Fall Time 0.15 1.50 0.15 1.50 ns

T6 CLK Rise Time 0.15 1.50 0.15 1.50 ns

Figure 4-2. CLK Timing and Measurement Points

T3

T6 T4

T1

T5

V

CLK

IH(MIN)

VREF

VIL(MAX)

 4-8

Table 4-7. Output Valid Delays
CL=50 pF, TCASE =0°C to 75°C, See Figure 4-3

SYMBOL PARAMETER
50MHz BUS 55MHz BUS 60-MHz BUS 66-MHz BUS 75MHz BUS

UNITS
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

T7a A31-A3,
BE7#-BE0#,
CACHE#, D/C#,
LBA#, LOCK#,
PCD, PWT, SCYC,
SMIACT#, W/R#

1 12 1.0 7.0 1.0 7.0 1.0 7.0 1.0 7.0 ns

T7b ADS#, M/IO# 1 12 1.0 7.0 1.0 7.0 1.0 6.0 1.0 6.0 ns

T8 ADSC# 1 12 1.0 7.0 1.0 7.0 1.0 7.0 1.0 7.0 ns

T9 AP 1 12 1.0 8.5 1.0 8.5 1.0 8.5 1.0 8.5 ns

T10 APCHK#, PCHK#,
FERR#

1 14 1.0 8.3 1.0 7.0 1.0 7.0 1.0 7.0 ns

T11 D63-D0, DP7-DP0
(Write)

1.3 12 1.3 8.5 1.3 7.5 1.3 7.5 1.0 7.5 ns

T12a HIT# 1 12 1.0 8.0 1.0 8.0 1.0 8.0 1.0 8.0 ns

T12b HITM#, 1.1 12 1.1 6.0 1.1 6.0 1.1 6.0 1.0 6.0 ns

T13 BREQ, HLDA 1 12 1.0 8.0 1.0 8.0 1.0 8.0 1.0 8.0 ns

T14 SUSPA# 1 14 1.0 8.0 1.0 8.0 1.0 8.0 1.0 8.0 ns

Figure 4-3. Output Valid Delay Timing.

Tx Tx Tx Tx

CLK

MIN MAX

VALID n+1VALID n

T7 - T14

OUTPUTS

 4-9

4
Table 4-8. Output Float Delays

 CL = 50 pF, Tcase = 0°C to 75°C, See Figure 4-5

SYMBOL PARAMETER
50MHz BUS 55MHz BUS 60MHz BUS 66MHz BUS 75MHz BUS

UNITS
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

T15 A31-A3, ADS#,
BE7#-BE0#, BREQ,
CACHE#, D/C#,
LBA#, LOCK#, M/IO#,
PCD, PWT, SCYC,
SMIACT#, W/R#

16.0 10.0 10.0 10.0 10.0 ns

T16 AP 16.0 10.0 10.0 10.0 10.0 ns

T17 D63-D0, DP7-DP0
(Write)

16.0 10.0 10.0 10.0 10.0 ns

Figure 4-4. Output Float Delay Timing

Tx Tx Tx Tx

CLK

MIN

VALID

MAXT15 - T17

OUTPUTS

4-10

Table 4-9. Input Setup Times
Tcase = 0°C to 75°C, See Figure 4-5

SYMBOL PARAMETER
50MHz BUS 55MHz BUS 60MHz BUS 66MHz BUS 75MHz BUS

UNITS
MIN MIN MIN MIN MIN

T18 A20M#, FLUSH#,
IGNNE#, SUSP#

5 5 5 5 3.3 ns

T19 AHOLD, BHOLD,
BOFF#, DHOLD,
HOLD

5 5 5 5 3.3 ns

T20 BRDY# 5 5 5 5 3.3 ns

T21 BRDYC# 5 5 5 5 3.3 ns

T22a
T22b
T22c

A31-A3, BE7#-BE0#
AP
D63-D0 (Read),
DP7-DP0 (Read)

5
5

3.8

5
5

3.8

5
5
3

5
5
3

3.3
4
3

ns
ns
ns

T23 EADS#, INV 5 5 5 5 3.3 ns

T24 INTR, NMI, RESET,
SMI#, WM_RST

5 5 5 5 3.3 ns

T25 EWBE#, KEN#, NA#,
WB/WT#

5 4.5 4.5 4.5 3.0 ns

T26 QDUMP# 5 5 5 5 3.3 ns

Table 4-10. Input Hold Times
Tcase = 0°C to 75°C, See Figure 4-5

SYMBOL PARAMETER
50MHz BUS 55MHz BUS 60MHz BUS 66MHz BUS 75MHz BUS

UNITS
MIN MIN MIN MIN MIN

T27 A20M#, FLUSH#,
IGNNE#, SUSP#

2 1 1 1 1 ns

T28 AHOLD, BHOLD,
BOFF#, DHOLD,
HOLD

2 1 1 1 1 ns

T29 BRDY# 2 1 1 1 1 ns

T30 BRDYC# 2 1 1 1 1 ns

T31a

T31b

A31-A3, AP,
BE7#-BE0#
D63-D0(Read),
DP7-DP0 (Read)

2

2

1

2

1

2

1

2

1

2

ns

ns

T32 EADS#, INV 2 1 1 1 1 ns

T33 INTR, NMI, RESET,
SMI#, WM_RST

2 1 1 1 1 ns

T34 EWBE#, KEN#,
NA#, WB/WT#

2 1 1 1 1 ns

T35 QDUMP# 2 1 1 1 1 ns

 4-11

4

Figure 4-5. Input Setup and Hold Timing

Tx Tx Tx Tx

SETUP HOLD

CLK

T18 - T26 T27 - T35

4-12

Table 4-11. JTAG AC Specifications

SYMBOL PARAMETER
ALL BUS FREQUENCIES

UNITS FIGURE
MIN MAX

TCK Frequency (MHz) 20 MHz

T36 TCK Period 50 MHz 4-6

T37 TCK High Time 25 MHz 4-6

T38 TCK Low Time 25 MHz 4-6

T39 TCK Rise Time 5 MHz 4-6

T40 TCK Fall Time 5 MHz 4-6

T41 TDO Valid Delay 3 20 MHz 4-7

T42 Non-test Outputs Valid Delay 3 20 MHz 4-7

T43 TDO Float Delay 25 MHz 4-7

T44 Non-test Outputs Float Delay 25 MHz 4-7

T45 TRST# Pulse Width 40 MHz 4-8

T46 TDI, TMS Setup Time 20 MHz 4-7

T47 Non-test Inputs Setup Time 20 MHz 4-7

T48 TDI, TMS Hold Time 13 MHz 4-7

T49 Non-test Inputs Hold Time 13 MHz 4-7

Figure 4-6. TCK Timing and Measurement Points

T37

T39 T38

T36

T40

V

TCK

IH

VREF

VIL

 4-13

4

Figure 4-7. JTAG Test Timings

Figure 4-8. Test Reset Timing

TCK

TDI
TMS

TDO

1.5 V

T46 T48

T41 T43

T42 T44

T47 T49

OUTPUT
SIGNALS

INPUT
SIGNALS

TRST#
T45

1.5 V

 5-1

5
5.0 MECHANICAL SPECIFICATIONS

5.1 296-Pin SPGA Package

The pin assignments for the IBM 6x86 CPUin a 296-pin SPGA package are shown in Figure 5-1.
The pins are listed by signal name in Table 5-1(Page 5-2) and by pin number in Table 5-2 (Page
5-3). Dimensions are shown in Figure 5-2 (Page 5-4) and Table 5-3 (Page 5-5).

Figure 5-1. 296-Pin SPGA Package Pin Assignments

37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

AN

AM

AL

AK

AJ

AH

AG

AF

AE

AD

AC

AB

AA

Z

Y

X

W

V

U

T

S

R

Q

P

N

M

L

K

J

H

G

F

E

D

C

B

A

AN

AM

AL

AK

AJ

AH

AG

AF

AE

AD

AC

AB

AA

Z

Y

X

W

V

U

T

S

R

Q

P

N

M

L

K

J

H

G

F

E

D

C

B

A

TOP VIEW

NCD41VCCVCCVCCVCCVCCVCCVCCIOVCCIOVCCIOVCCIOVCCIOVCCIOD22D18D15NC

NCD43VSSVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSD20D16D13D11

NCD47D45DP4D38D36D34D32D31D29D27D25DP2D24D21D17D14D10D9

D50D48D44D40D39D37D35D33DP3D30D28D26D23D19DP1D12D8DP0

D54D52D49D46D42D7D6VCCIO

DP6D51DP5D5D4

VCCD55D53

VSSD56

VCCD57D58

VSSD59

D3D1VCCIO

NCVSS

NCD2VCCIO

D0VSS

VCCD61D60

VSSD62

VCCD63DP7

VSSNC

VCCRESVFERRX

VCCIONCVCCIO

TCKVSS

TDOTDIVCCIO

TMSVSS

TRSTXNCVCCIO

VSSRESV

VCCRESVNC

VSSMI/OX

VCCCACHEXINV

VSSAHOLD

VCCEWBEXKENX

VSSBRDYX

VCCBRDYCXNAX

VSSBOFFX

VCCNCWB/WTX

VSSHOLD

NCVSS

RESVRESVVCCIO

VCCIOVSS

VCCIOVSSVCCIO

SUSPXVSS

SUSPAXRESVVCCIO

RESVVSS

CLKMULRESVVCCIO

NCVSS

WM_RSTIGNNEXVCCIO

SMIXVSS

VCCRESVRESV

VSSNC

VCCNCAPCHKX

VSSPCHKX

VCCSMIACTXPCD

VSSLOCKX

BREQHLDAADSX

NMINCVCCIO

INTRVSS

A23NCVCCIO

A21VSS

A27A24VCCIO

A26A22

A31A25VSS

APD/CXHITXA20MXBE1XBE3XBE5XBE7XCLKRESETA19A17A15A13A9A5A29A28

NCPWTHITMXNCBE0XBE2XBE4XBE6XSCYCNCA20A18A16A14A12A11A7A3VSS

ADSCXEADSXW/RXVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSA8A4A30

NCNCNCFLUSHXVCCVCCVCCVCCVCCVCCPLLVCCIOVCCIOVCCIOVCCIOVCCIOA10A6RESVVSS

 6x86 CPU

5-2

Table 5-1. 296-Pin SPGA Package Signal Names Sorted by Pin Number

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal

A3 NC C29 D21 J35 D2 U35 Vss AE35 NC AL21 A20
A5 D41 C31 D17 J37 Vcc U37 Vcc AE37 Vcc AL23 A18
A7 Vcc C33 D14 K2 Vss V2 Vss AF2 Vss AL25 A16
A9 Vcc C35 D10 K4 D59 V4 AHOLD AF4 PCHK# AL27 A14
A11 Vcc C37 D9 K34 D0 V34 SUSP# AF34 A21 AL29 A12
A13 Vcc D2 D50 K36 Vss V36 Vss AF36 Vss AL31 A11
A15 Vcc D4 D48 L1 Vcc W1 Vcc AG1 Vcc AL33 A7
A17 Vcc D6 D44 L3 D61 W3 EWBE# AG3 SMIACT# AL35 A3
A19 Vcc D8 D40 L5 D60 W5 KEN# AG5 PCD AL37 Vss
A21 Vcc D10 D39 L33 Vcc W33 SUSPA# AG33 A27 AM2 ADSC#
A23 Vcc D12 D37 L35 NC W35 Reserved AG35 A24 AM4 EADS#
A25 Vcc D14 D35 L37 Vcc W37 Vcc AG37 Vcc AM6 W/R#
A27 Vcc D16 D33 M2 Vss X2 Vss AH2 Vss AM8 Vss
A29 Vcc D18 DP3 M4 D62 X4 BRDY# AH4 LOCK# AM10 Vss
A31 D22 D20 D30 M34 TCK X34 Reserved AH34 A26 AM12 Vss
A33 D18 D22 D28 M36 Vss X36 Vss AH36 A22 AM14 Vss
A35 D15 D24 D26 N1 Vcc Y1 Vcc AJ1 BREQ AM16 Vss
A37 NC D26 D23 N3 D63 Y3 BRDYC# AJ3 HLDA AM18 Vss
B2 NC D28 D19 N5 DP7 Y5 NA# AJ5 ADS# AM20 Vss
B4 D43 D30 DP1 N33 TDO Y33 CLKMUL AJ33 A31 AM22 Vss
B6 Vss D32 D12 N35 TDI Y35 Reserved AJ35 A25 AM24 Vss
B8 Vss D34 D8 N37 Vcc Y37 Vcc AJ37 Vss AM26 Vss
B10 Vss D36 DP0 P2 Vss Z2 Vss AK2 AP AM28 Vss
B12 Vss E1 D54 P4 NC Z4 BOFF# AK4 D/C# AM30 Vss
B14 Vss E3 D52 P34 TMS Z34 NC AK6 HIT# AM32 A8
B16 Vss E5 D49 P36 Vss Z36 Vss AK8 A20M# AM34 A4
B18 Vss E7 D46 Q1 Vcc AA1 Vcc AK10 BE1# AM36 A30
B20 Vss E9 D42 Q3 Reserved AA3 Reserved AK12 BE3# AN1 NC
B22 Vss E33 D7 Q5 FERR# AA5 WB/WT# AK14 BE5# AN3 NC
B24 Vss E35 D6 Q33 TRST# AA33 WM_RST AK16 BE7# AN5 NC
B26 Vss E37 Vcc Q35 NC AA35 IGNNE# AK18 CLK AN7 FLUSH#
B28 Vss F2 DP6 Q37 Vcc AA37 Vcc AK20 RESET AN9 Vcc
B30 D20 F4 D51 R2 Vss AB2 Vss AK22 A19 AN11 Vcc
B32 D16 F6 DP5 R4 Reserved AB4 HOLD AK24 A17 AN13 Vcc
B34 D13 F34 D5 R34 BHOLD AB34 SMI# AK26 A15 AN15 Vcc
B36 D11 F36 D4 R36 Vss AB36 Vss AK28 A13 AN17 Vcc
C1 NC G1 Vcc S1 Vcc AC1 Vcc AK30 A9 AN19 Vcc
C3 D47 G3 D55 S3 Reserved AC3 Reserved AK32 A5 AN21 Vcc
C5 D45 G5 D53 S5 LBA# AC5 NC AK34 A29 AN23 Vcc
C7 DP4 G33 D3 S33 Reserved AC33 NMI AK36 A28 AN25 Vcc
C9 D38 G35 D1 S35 DHOLD AC35 NC AL1 NC AN27 Vcc
C11 D36 G37 Vcc S37 Vcc AC37 Vcc AL3 PWT AN29 Vcc
C13 D34 H2 Vss T2 Vss AD2 Vss AL5 HITM# AN31 A10
C15 D32 H4 D56 T4 MI/O# AD4 NC AL7 QDUMP# AN33 A6
C17 D31 H34 NC T34 Vcc AD34 INTR AL9 BE0# AN35 Reserved
C19 D29 H36 Vss T36 Vss AD36 Vss AL11 BE2# AN37 Vss
C21 D27 J1 Vcc U1 Vcc AE1 Vcc AL13 BE4#
C23 D25 J3 D57 U3 CACHE# AE3 NC AL15 BE6#
C25 DP2 J5 D58 U5 INV AE5 APCHK# AL17 SCYC
C27 D24 J33 Reserved U33 Vcc AE33 A23 AL19 Reserved

Note: Reserved pins are reserved for future use by IBM only. Pins marked NC are not internally connected.

296-Pin SPGA Package

5-3

5
Table 5-2. 296-Pin SPGA Package Pin Numbers Sorted by Signal Name

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin
A3 AL35 CLKMUL Y33 D48 D4 NC AN3 Vcc AA37 Vss AM12
A4 AM34 D/C# AK4 D49 E5 NC AN5 Vcc AC1 Vss AM14
A5 AK32 D0 K34 D50 D2 NC B2 Vcc AC37 Vss AM16
A6 AN33 D1 G35 D51 F4 NC C1 Vcc AE1 Vss AM18
A7 AL33 D2 J35 D52 E3 NC H34 Vcc AE37 Vss AM20
A8 AM32 D3 G33 D53 G5 NC L35 Vcc AG1 Vss AM22
A9 AK30 D4 F36 D54 E1 NC P4 Vcc AG37 Vss AM24
A10 AN31 D5 F34 D55 G3 NC Q35 Vcc AN11 Vss AM26
A11 AL31 D6 E35 D56 H4 NC Z34 Vcc AN13 Vss AM28
A12 AL29 D7 E33 D57 J3 NMI AC33 Vcc AN15 Vss AM30
A13 AK28 D8 D34 D58 J5 PCD AG5 Vcc AN17 Vss AM8
A14 AL27 D9 C37 D59 K4 PCHK# AF4 Vcc AN19 Vss AN37
A15 AK26 D10 C35 D60 L5 PWT AL3 Vcc AN21 Vss B6
A16 AL25 D11 B36 D61 L3 QDUMP# AL7 Vcc AN23 Vss B8
A17 AK24 D12 D32 D62 M4 RESET AK20 Vcc AN25 Vss B10
A18 AL23 D13 B34 D63 N3 SCYC AL17 Vcc AN27 Vss B12
A19 AK22 D14 C33 DHOLD S35 Reserved AA3 Vcc AN29 Vss B14
A20 AL21 D15 A35 DP0 D36 Reserved AC3 Vcc AN9 Vss B16
A20M# AK8 D16 B32 DP1 D30 Reserved AL19 Vcc E37 Vss B18
A21 AF34 D17 C31 DP2 C25 Reserved AN35 Vcc G1 Vss B20
A22 AH36 D18 A33 DP3 D18 Reserved J33 Vcc G37 Vss B22
A23 AE33 D19 D28 DP4 C7 Reserved Q3 Vcc J1 Vss B24
A24 AG35 D20 B30 DP5 F6 Reserved R4 Vcc J37 Vss B26
A25 AJ35 D21 C29 DP6 F2 Reserved S3 Vcc L1 Vss B28
A26 AH34 D22 A31 DP7 N5 Reserved S33 Vcc L33 Vss H2
A27 AG33 D23 D26 EADS# AM4 Reserved W35 Vcc L37 Vss H36
A28 AK36 D24 C27 EWBE# W3 Reserved X34 Vcc N1 Vss K2
A29 AK34 D25 C23 FERR# Q5 Reserved Y35 Vcc N37 Vss K36
A30 AM36 D26 D24 FLUSH# AN7 SMI# AB34 Vcc Q1 Vss M2
A31 AJ33 D27 C21 HIT# AK6 SMIACT# AG3 Vcc Q37 Vss M36
ADS# AJ5 D28 D22 HITM# AL5 SUSP# V34 Vcc S1 Vss P2
ADSC# AM2 D29 C19 HLDA AJ3 SUSPA# W33 Vcc S37 Vss P36
AHOLD V4 D30 D20 HOLD AB4 TCK M34 Vcc T34 Vss R2
AP AK2 D31 C17 IGNNE# AA35 TDI N35 Vcc U1 Vss R36
APCHK# AE5 D32 C15 INTR AD34 TDO N33 Vcc U33 Vss T2
BE0# AL9 D33 D16 INV U5 TMS P34 Vcc U37 Vss T36
BE1# AK10 D34 C13 KEN# W5 TRST# Q33 Vcc W1 Vss U35
BE2# AL11 D35 D14 LBA# S5 Vcc A7 Vcc W37 Vss V2
BE3# AK12 D36 C11 LOCK# AH4 Vcc A9 Vcc Y1 Vss V36
BE4# AL13 D37 D12 MI/O# T4 Vcc A11 Vcc Y37 Vss X2
BE5# AK14 D38 C9 NA# Y5 Vcc A13 Vss AB2 Vss X36
BE6# AL15 D39 D10 NC A3 Vcc A15 Vss AB36 Vss Z2
BE7# AK16 D40 D8 NC A37 Vcc A17 Vss AD2 Vss Z36
BHOLD R34 D41 A5 NC AC35 Vcc A19 Vss AD36 WB/WT# AA5
BOFF# Z4 D42 E9 NC AC5 Vcc A21 Vss AF2 W/R# AM6
BRDY# X4 D43 B4 NC AD4 Vcc A23 Vss AF36 WM_RST AA33
BRDYC# Y3 D44 D6 NC AE3 Vcc A25 Vss AH2
BREQ AJ1 D45 C5 NC AE35 Vcc A27 Vss AJ37
CACHE# U3 D46 E7 NC AL1 Vcc A29 Vss AL37
CLK AK18 D47 C3 NC AN1 Vcc AA1 Vss AM10

Note: Reserved pins are reserved for future use by IBM only. Pins marked NC are not internally connected.

296-Pin SPGA Package

5-4

296-Pin SPGA Package

Figure 5-2. 296-Pin SPGA Package

Pin C3

2.29
1.52REF.

45X CHAMFER
(INDEX CORNER)

01.65
REF.

S1
D1

D

D

F

D

D3

D2

CU W HEAT
SPREADER

BRAZE
METALIZATION

D4

D4

SEATING
PLANE

L

E2
E1

B

A1
A2

A

5-5

5

Table 5-3. 296-Pin SPGA Package Dimensions

SYMBOL
MILLIMETERS

MIN MAX

A 3.00 4.20

A1 0.63 1.04

A2 2.51 3.10

B 0.43 0.51

D 49.28 49.91

D1 45.47 45.97

D2 31.50 Sq. 32.00 Sq.

D3 33.91 36.49

D4 6.39 8.00

E1 2.41 2.67

E2 1.14 1.40

F 0.05 Diag. 0.08 Diag.

L 3.05 3.30

N 296 (Pin Count)

S1 1.47 2.39

296-Pin SPGA Package

5-6

5.2 Thermal Characteristics

The IBM 6x86 processor is designed to operate when the case temperature at the top center of the
package is between 0°C and 70°C. The maximum die (junction) temperature, TJ MAX, and the

maximum ambient temperature, TA MAX , can be calculated by substituting thermal resistance and

maximum values for case or junction temperature and power dissipation in the following equations:

TJ = TC + (P * θJC)

TA = TJ - (P * θJA)

where:

TA = Ambient temperature (°C)

TJ = Average junction temperature (°C)

TC = Case temperature at top center of package (°C)

P = Power dissipation (W)

θJC = Junction-to-case thermal resistance (°C/W)

θJA = Junction-to-ambient thermal resistance (°C/W).

Table 5-4 lists the junction-to-case and case-to-ambient thermal resistances for the SPGA
package.

Thermal Characteristics

5-7

5
Table 5-4. Thermal Resistances for SPGA

 Package With and Without Heatsinks

Thermal Resistance θJC °C/W θCA °C/W

Laminar Air Flow (ft/min) 0 0 100 200 400 600 800

1.95 x 1.95 x 0.25 Heatsink 0.9 8.4 7.4 6.0 4.0 3.1 2.6

1.95 x 1.95 x 0.40 Heatsink 0.9 7.7 6.6 4.9 3.2 2.7 2.1

1.95 x 1.95 x 0.65 Heatsink 0.9 5.9 4.7 3.2 2.1 1.7 1.4

Without Heatsink 1.4 14.7 11.5 9.1 7.3 7.0 6.2

Notes:
For a 6x86 processor with 1.25 x 1.25 x 0.40 inch CuW heat spreader.
Heatsinks are omni-directional pin aluminum alloy.
Features are based on standard extrusion practices for a given height.
Heatsink attachment was made with 0.006 inch of thermal grease applied between heatsink and case.
Maximum air temperature is assumed to be 40 °C

Thermal Characteristics

 6-1

Instruction Set

IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

6. INSTRUCTION SET

This section summarizes the IBM 6x86 CPU
instruction set and provides detailed information
on the instruction encodings. All instructions
are listed in the CPU Instruction Set Summary
Table (Table 6-20, Page 6-14), and the FPU
Instruction Set Summary Table (Table 6-22,
Page 6-30). These tables provide information
on the instruction encoding, and the instruction
clock counts for each instruction. The clock
count values for both tables are based on the
assumptions described in Section 6.3.

6.1 Instruction Set Summary

Depending on the instruction, the IBM 6x86
CPU instructions follow the general instruction
format shown in Figure 6-1. These instructions
vary in length and can start at any byte address.
An instruction consists of one or more bytes
that can include: prefix byte(s), at least one
opcode byte(s), mod r/m byte, s-i-b byte,
address displacement byte(s) and immediate
data byte(s). An instruction can be as short as
one byte and as long as 15 bytes. If there are
more than 15 bytes in the instruction a general
protection fault (error code of 0) is generated.

Figure 6-1. Instruction Set Format

P P P P P P P P T T T T T T T T mod R R R r/m ss index base 32 16 8 none 32 16 8 none
7 0 7 0 7 6 5 3 2 0 7 6 5 3 2 0

mod r/m s-i-b

register and address

address immediate

P = prefix bit

op-code
optional prefix byte(s) (one or two bytes) byte

mode specifier

byte displacement
(4, 2, 1 bytes,

or none)

data
(4, 2, 1 bytes,

or none)
T = opcode bit
R = opcode bit or reg bit

6-2

Instruction Set Summary

6.2 General Instruction Fields

The fields in the general instruction format at the byte level are listed in Table 6-1.

6.2.1 Optional Prefix Bytes

Prefix bytes can be placed in front of any instruction. The prefix modifies the operation of the
next instruction only. When more than one prefix is used, the order is not important. There are
five type of prefixes as follows:

1. Segment Override explicitly specifies which segment register an instruction will use for
effective address calculation.

2. Address Size switches between 16- and 32-bit addressing. Selects the inverse of the
default.

3. Operand Size switches between 16- and 32-bit operand size. Selects the inverse of the
default.

4. Repeat is used with a string instruction which causes the instruction to be repeated for
each element of the string.

5. Lock is used to assert the hardware LOCK# signal during execution of the instruction.

Table 6-1. Instruction Fields

FIELD NAME DESCRIPTION WIDTH

Optional Prefix Byte(s) Specifies segment register override, address and operand size,
repeat elements in string instruction, LOCK# assertion.

1 or more bytes

Opcode Byte(s) Identifies instruction operation. 1 or 2 bytes

mod and r/m Byte Address mode specifier. 1 byte

s-i-b Byte Scale factor, Index and Base fields. 1 byte

Address Displacement Address displacement operand. 1, 2 or 4 bytes

Immediate data Immediate data operand. 1, 2 or 4 bytes

 6-3

6Instruction Set Summary

Table 6-2 lists the encodings for each of the available prefix bytes.

Table 6-2. Instruction Prefix Summary

PREFIX ENCODING DESCRIPTION

ES: 26h Override segment default, use ES for memory operand

CS: 2Eh Override segment default, use CS for memory operand

SS: 36h Override segment default, use SS for memory operand

DS: 3Eh Override segment default, use DS for memory operand

FS: 64h Override segment default, use FS for memory operand

GS: 65h Override segment default, use GS for memory operand

Operand Size 66h Make operand size attribute the inverse of the default

Address Size 67h Make address size attribute the inverse of the default

LOCK F0h Assert LOCK# hardware signal.

REPNE F2h Repeat the following string instruction.

REP/REPE F3h Repeat the following string instruction.

6-4

Instruction Set Summary

6.2.2 Opcode Byte

The opcode field specifies the operation to be performed by the instruction. The opcode field is
either one or two bytes in length and may be further defined by additional bits in the mod r/m
byte. Some operations have more than one opcode, each specifying a different form of the opera-
tion. Some opcodes name instruction groups. For example, opcode 80h names a group of opera-
tions that have an immediate operand and a register or memory operand. The reg field may appear
in the second opcode byte or in the mod r/m byte.

6.2.2.1 w Field

The 1-bit w field (Table 6-11) selects the operand size during 16 and 32 bit data operations.

6.2.2.2 d Field

The d field (Table 6-10) determines which operand is taken as the source operand and which
operand is taken as the destination.

Table 6-3. w Field Encoding

w FIELD OPERAND SIZE

16-BIT DATA OPERATIONS 32-BIT DATA OPERATIONS

0 8 Bits 8 Bits

1 16 Bits 32 Bits

Table 6-4. d Field Encoding

d FIELD DIRECTION OF OPERATON SOURCE OPERAND
 DESTINATION

 OPERAND

0 Register --> Register or
Register --> Memory

reg mod r/m or
mod ss-index-base

1 Register --> Register or
Memory --> Register

mod r/m or
mod ss-index-base

reg

 6-5

6Instruction Set Summary

6.2.2.3 s Field

The s field (Table 6-10) determines the size of the immediate data field. If the S bit is set, the
immediate field of the OP code is 8-bits wide and is sign extened to match the operand size of the
opcode.

6.2.2.4 eee Field

The eee field (Table 6-6) is used to select the control, debug and test registers in the MOV instruc-
tions. The type of register and base registers selected by the eee field are listed in Table 6-6. The
values shown in Table 6-6 are the only valid encodings for the eee bits.

Table 6-5. s Field Encoding

s FIELD
Immediate Field Size

8-Bit Operand Size 16-Bit Operand Size 32-Bit Operand Size

0
(or not present)

8 bits 16 bits 32 bits

 1 8 bits 8 bits (sign extended) 8 bits (sign extended)

Table 6-6. eee Field Encoding

eee FILED REGISTER TYPE BASE REGISTER

000 Control Register CR0

010 Control Register CR2

011 Control Register CR3

000 Debug Register DR0

001 Debug Register DR1

010 Debug Register DR2

011 Debug Register DR3

110 Debug Register DR6

111 Debug Register DR7

011 Test Register TR3

100 Test Register TR4

101 Test Register TR5

110 Test Register TR6

111 Test Register TR7

6-6

Instruction Set Summary

6.2.3 mod and r/m Byte

The mod and r/m fields (Table 6-7), within the mod r/m byte, select the type of memory
addressing to be used. Some instructions use a fixed addressing mode (e.g., PUSH or POP) and
therefore, these fields are not present. Table 6-7 lists the addressing method when 16-bit addressing
is used and a mod r/m byte is present. Some mod r/m field encodings are dependent on the w field
and are shown in Table 6-8 (Page 6-7).

Table 6-7. mod r/m Field Encoding

mod and r/m fields
16-BIT ADDRESS MODE

with mod r/m Byte

32-BIT ADDRESS MODE
with mod r/m Byte and
No s-i-b Byte Present

00 000 DS:[BX+SI] DS:[EAX]

00 001 DS:[BX+DI] DS:[ECX]

00 010 DS:[BP+SI] DS:[EDX]

00 011 DS:[BP+DI] DS:[EBX]

00 100 DS:[SI] s-i-b is present (See 6.2.4 (Page 6-9))

00 101 DS:[DI] DS:[d32]

00 110 DS:[d16] DS:[ESI]

00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX+SI+d8] DS:[EAX+d8]

01 001 DS:[BX+DI+d8] DS:[ECX+d8]

01 010 DS:[BP+SI+d8] DS:[EDX+d8]

01 011 DS:[BP+DI+d8] DS:[EBX+d8]

01 100 DS:[SI+d8] s-i-b is present (See 6.2.4 (Page 6-9))

01 101 DS:[DI+d8] SS:[EBP+d8]

01 110 SS:[BP+d8] DS:[ESI+d8]

01 111 DS:[BX+d8] DS:[EDI+d8]

10 000 DS:[BX+SI+d16] DS:[EAX+d32]

10 001 DS:[BX+DI+d16] DS:[ECX+d32]

10 010 DS:[BP+SI+d16] DS:[EDX+d32]

10 011 DS:[BP+DI+d16] DS:[EBX+d32]

10 100 DS:[SI+d16] s-i-b is present (See 6.2.4 (Page 6-9))

10 101 DS:[DI+d16] SS:[EBP+d32]

10 110 SS:[BP+d16] DS:[ESI+d32]

10 111 DS:[BX+d16] DS:[EDI+d32]

11 000-11 111 See Table 6-7 See Table 6-7

 6-7

6Instruction Set Summary

Table 6-8. mod r/m Field Encoding Dependent on w Field

mod r/m
16-BIT

OPERATION
w = 0

16-BIT
OPERATION

w = 1

32-BIT
OPERATION

w = 0

32-BIT
OPERATION

w = 1

11 000 AL AX AL EAX

11 001 CL CX CL ECX

11 010 DL DX DL EDX

11 011 BL BX BL EBX

11 100 AH SP AH ESP

11 101 CH BP CH EBP

11 110 DH SI DH ESI

11 111 BH DI BH EDI

6.2.3.1 reg Field

The reg field (Table 6-9) determines which general registers are to be used. The selected register is
dependent on whether a 16 or 32 bit operation is current and the status of the w bit.

Table 6-9. reg Field

reg

16-BIT
OPERATION

w Field Not
Present

32-BIT
OPERATION
w Field Not

Present

16-BIT
OPERATION

w = 0

16-BIT
OPERATION

 w = 1

32-BIT
OPERATION

w = 0

32-BIT
OPERATION

w = 1

000 AX EAX AL AX AL EAX

001 CX ECX CL CX CL ECX

010 DX EDX DL DX DL EDX

011 BX EBX BL BX BL EBX

100 SP ESP AH SP AH ESP

101 BP EBP CH BP CH EBP

110 SI ESI DH SI DH ESI

111 DI EDI BH DI BH EDI

6-8

Instruction Set Summary

6.2.3.2 sreg3 Field

The sreg3 field (Table 6-10) is 3-bit field that is similar to the sreg2 field, but allows use of the FS
and GS segment registers.

6.2.3.3 sreg2 Field

The sreg2 field (Table 6-11) is a 2-bit field that allows one of the four 286-type segment registers
to be specified.

Table 6-10. sreg3 Field Encoding

sreg3 FIELD SEGMENT REGISTER SELECTED

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 undefined

111 undefined

Table 6-11. sreg2 Field Encoding

sreg2 FIELD SEGMENT REGISTER SELECTED

00 ES

01 CS

10 SS

11 DS

 6-9

6Instruction Set Summary

6.2.4 s-i-b Byte

The s-i-b fields provide scale factor, indexing and a base field for address selection.

6.2.4.1 ss Field

The ss field (Table 6-12) specifies the scale factor used in the offset mechanism for address calcu-
lation. The scale factor multiplies the index value to provide one of the components used to calcu-
late the offset address.

6.2.4.2 index Field

The index field (Table 6-13) specifies the index register used by the offset mechanism for offset
address calculation. When no index register is used (index field = 100), the ss value must be 00 or
the effective address is undefined.

Table 6-12. ss Field Encoding

ss FIELD SCALE FACTOR

00 x1

01 x2

01 x4

11 x8

Table 6-13. index Field Encoding

Index FIELD INDEX REGISTER

000 EAX

001 ECX

010 EDX

011 EBX

100 none

101 EBP

110 ESI

111 EDI

6-10

Instruction Set Summary

6.2.4.3 Base Field

In Table 6-7 (Page 6-6), the note “s-i-b present” for certain entries forces the use of the mod and
base field as listed in Table 6-14. The first two digits in the first column of Table 6-14 identifies
the mod bits in the mod r/m byte. The last three digits in the first column of this table identifies
the base fields in the s-i-b byte.

Table 6-14. mod base Field Encoding

mod FIELD WITHIN
 mode/rm BYTE

base FIELD
WITHIN

s-i-b BYTE

32-BIT ADDRESS MODE
with mod r/m and
s-i-b Bytes Present

00 000 DS:[EAX+(scaled index)]

00 001 DS:[ECX+(scaled index)]

00 010 DS:[EDX+(scaled index)]

00 011 DS:[EBX+(scaled index)]

00 100 SS:[ESP+(scaled index)]

00 101 DS:[d32+(scaled index)]

00 110 DS:[ESI+(scaled index)]

00 111 DS:[EDI+(scaled index)]

01 000 DS:[EAX+(scaled index)+d8]

01 001 DS:[ECX+(scaled index)+d8]

01 010 DS:[EDX+(scaled index)+d8]

01 011 DS:[EBX+(scaled index)+d8]

01 100 SS:[ESP+(scaled index)+d8]

01 101 SS:[EBP+(scaled index)+d8]

01 110 DS:[ESI+(scaled index)+d8]

01 111 DS:[EDI+(scaled index)+d8]

10 000 DS:[EAX+(scaled index)+d32]

10 001 DS:[ECX+(scaled index)+d32]

10 010 DS:[EDX+(scaled index)+d32]

10 011 DS:[EBX+(scaled index)+d32]

10 100 SS:[ESP+(scaled index)+d32]

10 101 SS:[EBP+(scaled index)+d32]

10 110 DS:[ESI+(scaled index)+d32]

10 111 DS:[EDI+(scaled index)+d32]

 6-11

6CPUID Instruction

6.3 CPUID Instruction

The IBM 6x86 CPU executes the CPUID
instruction (opcode 0FA2) as documented in
this section only if the CPUID bit in the CCR4
configuration register is set. The CPUID
instruction may be used by software to deter-
mine the vendor and type of CPU.

When the CPUID instruction is executed with
EAX = 0, the ASCII characters “CyrixIn-
stead” are placed in the EBX, EDX, and ECX
registers as shown in Table 6-15:

Table 6-15. CPUID Data
 Returned When EAX = 0

REGISTER
CONTENTS
(D31 - D0)

EBX 69 72 79 43
 i r y C*

EDX 73 6E 49 78
s n I x*

ECX 64 61 65 74
d a e t*

*ASCII equivalent

When the CPUID instruction is executed with
EAX = 1, EAX and EDX contain the values
shown in Table 6-16.

Table 6-16. CPUID Data
Returned When EAX = 1

REGISTER CONTENTS

EAX(3-0) 0

EAX(7-4) 2

EAX(11-8) 5

EAX(13-12) 0

EAX(31-14) reserved

EDX If EDX = 00, FPU not on-chip.
If EDX = 01, FPU on-chip.

6-12

Instruction Set Tables

6.4 Instruction Set Tables

The IBM 6x86 CPU instruction set is
presented in two tables: Table 6-20. “6x86
CPU Instruction Set Clock Count Summary”
on page 6-14 and Table 6-22. “6x86 FPU
Instruction Set Summary” on page 6-30.
Additional information concerning the FPU
Instruction Set is presented on page 6-29.

6.4.1 Assumptions Made in
Determining Instruction
Clock Count

The assumptions made in determining instruc-
tion clock counts are listed below:

1. All clock counts refer to the
internal CPU internal clock
frequency. For example, the clock
counts for a clock-doubled IBM
6x86 CPU-100 refer to 100 MHz
clocks while the external clock is
50 MHz.

2. The instruction has been
prefetched, decoded and is ready
for execution.

3. Bus cycles do not require wait
states.

4. There are no local bus HOLD
requests delaying processor access
to the bus.

5. No exceptions are detected during
instruction execution.

6. If an effective address is
calculated, it does not use two
general register components. One
register, scaling and displacement

can be used within the clock count
shown. However, if the effective
address calculation uses two
general register components, add
1 clock to the clock count shown.

7. All clock counts assume aligned
32-bit memory/ IO operands.

8. If instructions access a 32-bit
operand that crosses a 64-bit
boundary, add 1 clock for read or
write and add 2 clocks for read and
write.

9. For non-cached memory accesses,
add two clocks (IBM 6x86 CPU
with 2x clock) or four clocks (IBM
6x86 CPU with 3x clock).
(Assumes zero wait state memory
accesses).

10. Locked cycles are not cacheable.
Therefore, using the LOCK prefix
with an instruction adds additional
clocks as specified in paragraph 9
above.

11. No parallel execution of
instructions.

6.4.2 CPU Instruction Set
Summary Table
Abbreviations

The clock counts listed in the CPU Instruction
Set Summary Table are grouped by operating
mode and whether there is a register/cache hit
or a cache miss. In some cases, more than one
clock count is shown in a column for a given
instruction, or a variable is used in the clock
count. The abbreviations used for these condi-
tions are listed in Table 6-17.

 6-13

6Instruction Set Tables

6.4.3 CPU Instruction Set Summary Table Flags Table

The CPU Instruction Set Summary Table lists nine flags that are affected by the execution of
instructions. The conventions shown in Table 6-18 are used to identify the different flags. Table 6-19
lists the conventions used to indicate what action the instruction has on the particular flag.

Table 6-17. CPU Clock Count Abbreviations

CLOCK COUNT SYMBOL EXPLANATION

/ Register operand/memory operand.

n Number of times operation is repeated.

L Level of the stack frame.

|
Conditional jump taken | Conditional jump not taken.
(e.g. “4|1” = 4 clocks if jump taken, 1 clock if jump not taken)

\ CPL ≤ IOPL \ CPL > IOPL
(where CPL = Current Privilege Level, IOPL = I/O Privilege Level)

m Number of parameters passed on the stack.

Table 6-18. Flag Abbreviations

ABBREVIATION NAME OF FLAG

OF Overflow Flag

DF Direction Flag

IF Interrupt Enable Flag

TF Trap Flag

SF Sign Flag

ZF Zero Flag

AF Auxiliary Flag

PF Parity Flag

CF Carry Flag

Table 6-19. Action of Instruction on Flag

INSTRUCTION
TABLE SYMBOL

ACTION

x Flag is modified by the instruction.

- Flag is not changed by the instruction.

0 Flag is reset to “0”.

1 Flag is set to “1”.

u Flag is undefined following execu-
tion of the instruction.

6-14

CPU Instruction Set Summary
T

ab
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
 S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

L
O

C
K

C
O

U
N

T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

A
A

A
 A

S
C

II
 A

d
ju

st
 A

L
 a

ft
e

r
A

d
d

3
7

u

 -

 -

 -

 u

 u

 x

 u

 x
7

7

A
A

D
 A

S
C

II
 A

d
ju

st
 A

X
 b

e
fo

re
 D

iv
id

e
D

5
 0

A
u

 -

 -

 -

 x

 x

 u

 x

 u

7
7

A
A

M
 A

S
C

II
 A

d
ju

st
 A

X
 a

fte
r

M
u

lti
p

ly
D

4
 0

A
u

 -

 -

 -

 x

 x

 u

 x

 u

1
3

-2
1

1
3-

2
1

A
A

S
 A

S
C

II
 A

d
ju

st
 A

L
 a

fte
r

S
u

bt
ra

ct
3

F
u

 -

 -

 -

 u

 u

 x

 u

 x

7
7

A
D

C
 A

d
d

w
ith

 C
ar

ry
R

eg
is

te
r

to
 R

e
g

is
te

r
R

eg
is

te
r

to
 M

em
o

ry
M

e
m

or
y

to
 R

e
gi

st
e

r
Im

m
e

d
ia

te
 to

 R
eg

is
te

r/
M

e
m

o
ry

Im
m

e
d

ia
te

 to
 A

cc
u

m
ul

a
to

r

1
 [0

0d
w

]
[1

1
 r

e
g

 r
/m

]
1

 [0
00

w
]

[m
od

 r
e

g
 r

/m
]

1
 [0

01
w

]
[m

od
 r

e
g

 r
/m

]
8

 [0
0s

w
]

[m
o

d
01

0
 r

/m
]#

#
#

1
 [0

10
w

]
##

#

x

 -

 -

 -

 x

 x

 x

 x

 x

1 1 1 1 1

 1 1 1 1 1

b
h

A
D

D
 In

te
ge

r
A

dd
R

eg
is

te
r

to
 R

e
g

is
te

r
R

eg
is

te
r

to
 M

em
o

ry
M

e
m

or
y

to
 R

e
gi

st
e

r
Im

m
e

d
ia

te
 to

 R
eg

is
te

r/
M

e
m

o
ry

Im
m

e
d

ia
te

 to
 A

cc
u

m
ul

a
to

r

0
 [0

0d
w

]
[1

1
 r

e
g

 r
/m

]
0

 [0
00

w
]

[m
od

 r
e

g
 r

/m
]

0
 [0

01
w

]
[m

od
 r

e
g

 r
/m

]
8

 [0
0s

w
]

[m
o

d
00

0
 r

/m
]#

#
#

0
 [0

10
w

]
##

#

x

 -

 -

 -

 x

 x

 x

 x

 x

1 1 1 1 1

 1 1 1 1 1

b
h

A
N

D
 B

o
ol

e
an

 A
N

D
R

eg
is

te
r

to
 R

e
g

is
te

r
R

eg
is

te
r

to
 M

em
o

ry
M

e
m

or
y

to
 R

e
gi

st
e

r
Im

m
e

d
ia

te
 to

 R
eg

is
te

r/
M

e
m

o
ry

Im
m

e
d

ia
te

 to
 A

cc
u

m
ul

a
to

r

2
 [0

0d
w

]
[1

1
 r

e
g

 r
/m

]
2

 [0
00

w
]

[m
od

 r
e

g
 r

/m
]

2
 [0

01
w

]
[m

od
 r

e
g

 r
/m

]
8

 [0
0s

w
]

[m
o

d
10

0
 r

/m
]#

#
#

2
 [0

10
w

]
##

#

0

 -

 -

 -

 x

 x

 u

 x

 0
1 1 1 1 1

1 1 1 1 1

b
h

A
R

P
L

 A
dj

us
t

R
e

q
ue

st
e

d
 P

ri
vi

le
ge

 L
e

ve
l

F
ro

m
 R

e
gi

st
e

r/
M

e
m

o
ry

6
3

[m
od

 r
e

g
 r

/m
]

-

 -

 -

 -

 -

 x

 -

 -

 -
9

a
h

B
O

U
N

D
 C

h
e

ck
 A

rr
ay

 B
o

un
d

ar
ie

s
If

O
u

t o
f R

a
n

g
e

(I
nt

 5
)

If
In

 R
a

n
ge

6
2

[m
od

 r
e

g
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
20 11

2
0+

IN
T

1
1

b
,

e
g,

h,
j,k

,r

B
S

F
 S

ca
n

B
it

F
o

rw
a

rd
R

eg
is

te
r,

 R
e

g
is

te
r/

M
e

m
or

y
0

F
 B

C
 [m

o
d

 r
e

g
 r

/m
]

-

 -

 -

 -

 -

 x

 -

 -

 -
3

3
b

h

B
S

R
 S

ca
n

B
it

R
e

ve
rs

e
R

eg
is

te
r,

 R
e

g
is

te
r/

M
e

m
or

y
0

F
 B

D
 [m

o
d

 r
e

g
r/

m
]

-

 -

 -

 -

 -

 x

 -

 -

 -
3

3
b

h

B
S

W
A

P
 B

yt
e

 S
w

ap
0

F
 C

[1
 r

e
g]

-

 -

 -

 -

 -

 -

 -

 -

 -
4

4

B
T

 T
es

t
B

it
R

eg
is

te
r/

M
e

m
o

ry
,

Im
m

e
di

at
e

R
eg

is
te

r/
M

e
m

o
ry

,
R

e
g

is
te

r
0

F
 B

A
 [m

o
d

 1
0

0
 r

/m
]#

0
F

 A
3

[m
od

 r
e

g
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 x
2 5
/6

2 5/
6

b
h

B
T

C
 T

es
t

B
it

a
n

d
C

om
p

le
m

e
n

t
R

eg
is

te
r/

M
e

m
o

ry
,

Im
m

e
di

at
e

R
eg

is
te

r/
M

e
m

o
ry

,
R

e
g

is
te

r
0

F
 B

A
 [m

o
d

 1
1

1
 r

/m
]#

0
F

 B
B

 [m
o

d
 r

e
g

 r
/m

]

-

 -

 -

 -

 -

 -

 -

 -

 x
3 5
/6

3 5/
6

b
h

 =
 im

m
e

di
a

te
 8

-b
it

d
at

a
+

 =
 8

-b
it

si
g

ne
d

 d
is

p
la

ce
m

e
n

t
x

=
 m

od
ifi

e
d

##

=
 im

m
e

di
a

te
 1

6
-b

it
da

ta
+

+
+

 =
 f

u
ll

si
g

n
ed

 d
is

p
la

ce
m

e
n

t (
16

,
32

 b
its

)
- =

 u
n

ch
an

g
e

d
##

=

 f
u

ll
im

m
e

di
a

te
 3

2
-b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6

6-15

CPU Instruction Set Summary

B
T

R
 T

es
t

B
it

a
n

d
R

e
se

t
R

eg
is

te
r/

M
e

m
o

ry
,

Im
m

e
di

at
e

R
eg

is
te

r/
M

e
m

o
ry

,
R

e
g

is
te

r
0

F
 B

A
 [m

o
d

 1
1

0
 r

/m
]#

0
F

 B
3

[m
od

 r
eg

 r
/m

]

-

 -

 -

 -

 -

 -

 -

 -

 x
3 5
/6

3 5/
6

b
h

B
T

S
 T

e
st

 B
it

an
d

 S
et

R
eg

is
te

r/
M

e
m

o
ry

R
eg

is
te

r
(s

ho
rt

 f
or

m
)

0
F

 B
A

 [m
o

d
 1

0
1

 r
/m

]
0

F
 A

B
 [m

o
d

 r
e

g
r/

m
]

-

 -

 -

 -

 -

 -

 -

 -

 x
3 5
/6

3 5/
6

b
h

C
A

L
L

 S
ub

ro
ut

in
e

C
a

ll
D

ir
ec

t
W

ith
in

 S
e

g
m

en
t

R
eg

is
te

r/
M

e
m

o
ry

 I
nd

ire
ct

 W
ith

in
 S

e
gm

e
n

t
D

ir
ec

t
In

te
rs

e
gm

e
n

t

 C

a
ll

G
a

te
 to

 S
a

m
e

P
ri

vi
le

g
e

 C

al
l G

at
e

 to
 D

iff
e

re
n

t P
riv

ile
g

e
 N

o
 P

a
ra

m
e

te
rs

 C
a

ll
G

a
te

 to
 D

iff
e

re
n

t
P

ri
vi

le
ge

 m
 P

a
r’s

 1
6-

b
it

T
a

sk
 to

 1
6

-b
it

T
S

S

 1

6-
b

it
T

a
sk

 to
 3

2
-b

it
T

S
S

 1
6-

b
it

T
a

sk
 to

 V
8

6
 T

a
sk

 3
2-

b
it

T
a

sk
 to

 1
6

-b
it

T
S

S

 3

2-
b

it
T

a
sk

 to
 3

2
-b

it
T

S
S

 3
2-

b
it

T
a

sk
 to

 V
8

6
 T

a
sk

In
d

ire
ct

 In
te

rs
e

g
m

e
n

t

 C

a
ll

G
a

te
 to

 S
a

m
e

P
ri

vi
le

g
e

 C
a

ll
G

a
te

 to
 D

iff
e

re
n

t
P

ri
vi

le
ge

 N
o

 P
a

ra
m

e
te

rs

 C

a
ll

G
a

te
 to

 D
iff

e
re

n
t

P
ri

vi
le

ge
 L

ev
e

l m
 P

a
r’s

 1
6-

b
it

T
a

sk
 to

 1
6

-b
it

T
S

S

 1

6-
b

it
T

a
sk

 to
 3

2
-b

it
T

S
S

 1
6-

b
it

T
a

sk
 to

 V
8

6
 T

a
sk

 3
2-

b
it

T
a

sk
 to

 1
6

-b
it

T
S

S

 3

2-
b

it
T

a
sk

 to
 3

2
-b

it
T

S
S

 3
2-

b
it

T
a

sk
 to

 V
8

6
 T

a
sk

E
8

+

+
+

F
F

[m

od
 0

1
0

r/
m

]
9

A
 [

un
si

g
ne

d
 fu

ll
of

fs
et

,

 s

e
le

ct
o

r]

F
F

[m

od
 0

1
1

r/
m

]

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1
/3 3 5

1 1/
3 4 1
5

2
6

3
5

+
2m

1
10

1
18 9
6

1
12

1
20 9
8 8 2
0

3
1

4
0

+
2m

1
14

1
22

1
00

1
16

1
24

1
02

b
h

,j,
k,

r

C
B

W
 C

o
n

ve
rt

 B
yt

e
 t

o
W

o
rd

9
8

-

 -

 -

 -

 -

 -

 -

 -

 -
3

3

C
D

Q
 C

o
nv

e
rt

 D
o

u
bl

ew
or

d
 to

 Q
ua

d
w

or
d

9
9

-

 -

 -

 -

 -

 -

 -

 -

 -
2

2

C
L

C
 C

le
a

r
C

a
rr

y
F

la
g

F
8

-

 -

 -

 -

 -

 -

 -

 -

 0
1

1

C
L

D
 C

le
a

r
D

ir
e

ct
io

n
 F

la
g

F
C

-

 0

 -

 -

 -

 -

 -

 -

 -
7

7

C
L

I
C

le
a

r
In

te
rr

up
t

F
la

g
F

A
-

 -

 0

 -

 -

 -

 -

 -

 -

7
7

m

C
L

T
S

 C
le

a
r

T
a

sk
 S

w
itc

h
e

d
F

la
g

0
F

0

6
-

 -

 -

 -

 -

 -

 -

 -

 -

10
1

0
c

l

C
M

C
 C

o
m

p
le

m
e

nt
 th

e
 C

a
rr

y
F

la
g

F
5

-

 -

 -

 -

 -

 -

 -

 -

 x
2

2

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
 S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y

(C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

L
O

C
K

C
O

U
N

T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

d
at

a
+

 =
 8

-b
it

si
g

ne
d

 d
is

p
la

ce
m

e
n

t
x

=
 m

od
ifi

e
d

##

=
 im

m
e

di
a

te
 1

6
-b

it
da

ta
+

+
+

 =
 f

u
ll

si
g

n
ed

 d
is

p
la

ce
m

e
n

t (
16

,
32

 b
its

)
- =

 u
n

ch
an

g
e

d
##

=

 f
u

ll
im

m
e

di
a

te
 3

2
-b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6-16

CPU Instruction Set Summary

C
M

P
 C

om
p

a
re

 I
n

te
ge

rs
R

e
g

is
te

r
to

 R
e

g
is

te
r

R
e

g
is

te
r

to
 M

e
m

o
ry

M
e

m
or

y
to

 R
e

gi
st

e
r

Im
m

e
d

ia
te

 to
 R

eg
is

te
r/

M
e

m
o

ry
Im

m
e

d
ia

te
 to

 A
cc

u
m

ul
a

to
r

3
 [1

0d
w

]
[1

1
 r

e
g

 r
/m

]
3

 [1
01

w
]

[m
od

 r
e

g
 r

/m
]

3
 [1

00
w

]
[m

od
 r

e
g

 r
/m

]
8

 [0
0s

w
]

[m
o

d
11

1
r/

m
]

##
#

3
 [1

10
w

]
##

#

x

 -

 -

 -

 x

 x

 x

 x

 x
1 1 1 1 1

1 1 1 1 1

b
h

C
M

P
S

 C
o

m
p

ar
e

 S
tr

in
g

A
 [0

1
1w

]
x

 -

 -

 -

 x

 x

 x

 x

 x

5
5

b
h

C
M

P
X

C
H

G
 C

om
p

a
re

 a
n

d
 E

xc
h

an
g

e
R

e
g

is
te

r1
,

R
e

gi
st

e
r2

M
e

m
or

y,
 R

e
gi

st
e

r
0

F
 B

 [0
00

w
]

[1
1

 r
e

g
2

 r
e

g1
]

0
F

 B
 [0

00
w

]
[m

od
 r

e
g

 r
/m

]

x

 -

 -

 -

 x

 x

 x

 x

 x
11 11

1
1

1
1

C
P

U
ID

 C
P

U
 Id

e
nt

ifi
ca

tio
n

0
F

 A
2

-

 -

 -

 -

 -

 -

 -

 -

 -
12

1
2

C
W

D
 C

o
n

ve
rt

 W
o

rd
 to

 D
o

u
bl

ew
or

d
9

9
-

 -

 -

 -

 -

 -

 -

 -

 -

2
2

C
W

D
E

 C
o

n
ve

rt
 W

or
d

 t
o

D
ou

b
le

w
or

d
 E

xt
e

nd
e

d9
8

-

 -

 -

 -

 -

 -

 -

 -

 -
2

2

D
A

A
 D

e
ci

m
al

 A
d

ju
st

 A
L

af
te

r
A

d
d

2
7

-

 -

 -

 -

 x

 x

 x

 x

 x
9

9

D
A

S
 D

e
ci

m
a

l A
dj

us
t

A
L

 a
fte

r
S

u
bt

ra
ct

2
F

-

 -

 -

 -

 x

 x

 x

 x

 x
9

9

D
E

C
 D

e
cr

em
e

n
t b

y
1

R
e

g
is

te
r/

M
e

m
o

ry
R

e
g

is
te

r
(s

ho
rt

 f
or

m
)

F
 [1

11
w

] [
m

o
d

 0
01

 r
/m

]
4

 [1
 r

e
g

]

x

 -

 -

 -

 x

 x

 x

 x

 -
1 1

1 1

b
h

D
IV

 U
ns

ig
n

e
d

D
iv

id
e

A
cc

u
m

u
la

to
r

by
 R

e
g

is
te

r/
M

e
m

or
y

D
iv

is
or

:
B

yt
e

 W
or

d

 D

o
u

bl
e

w
o

rd

F
 [0

11
w

] [
m

o
d

 1
10

 r
/m

]
-

 -

 -

 -

 x

 x

 u

 u

 -

1
3

-1
7

1
3

-2
5

1
3

-4
1

1
3-

1
7

1
3-

2
5

1
3-

4
1

b
,e

e
,h

E
N

T
E

R
 E

nt
er

 N
e

w
 S

ta
ck

 F
ra

m
e

L
ev

e
l =

 0
L

ev
e

l =
 1

L
ev

e
l (

L)
 >

 1

C
8

 #
#

,#
-

 -

 -

 -

 -

 -

 -

 -

 -

10 13
1

0
+

L*
3

1
0

1
3

1
0+

L*
3

b
h

H
LT

 H
a

lt
F

4
-

 -

 -

 -

 -

 -

 -

 -

 -

5
5

l

ID
IV

 In
te

g
e

r
(S

ig
ne

d
)

D
iv

id
e

A
cc

u
m

u
la

to
r

by
 R

e
g

is
te

r/
M

e
m

or
y

 D

iv
is

o
r:

B

yt
e

 W
o

rd

 D

o
ub

le
w

o
rd

F
 [0

11
w

] [
m

o
d

 1
11

 r
/m

]
 -

 -

 -

 -

 x

 x

 u

 u

 -

1
6

-2
0

1
6

-2
8

1
7

-4
5

1
6-

2
0

1
6-

2
8

1
7-

4
5

b
,e

e
,h

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y (

C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

LO
C

K
C

O
U

N
T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

da
ta

+

=

 8
-b

it
si

g
ne

d
 d

is
p

la
ce

m
e

n
t

x
=

 m
od

ifi
e

d
##

=

 im
m

e
di

a
te

 1
6

-b
it

d
a

ta
+

+
+

 =
 f

ul
l s

ig
ne

d
 d

is
p

la
ce

m
e

n
t (

16
,

32
 b

its
)

- =
 u

n
ch

a
n

g
ed

##

=
 f

u
ll

im
m

ed
ia

te
 3

2-
b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6

6-17

CPU Instruction Set Summary

IM
U

L
 In

te
g

e
r

(S
ig

ne
d

)
M

ul
tip

ly
A

cc
u

m
ul

a
to

r
by

 R
e

g
is

te
r/

M
e

m
o

ry

 M
u

lti
p

lie
r:

 B
yt

e

 W
or

d

 D
o

u
bl

e
w

o
rd

R
eg

is
te

r
w

ith
 R

e
g

is
te

r/
M

e
m

o
ry

 M

u
lti

p
lie

r:
 W

or
d

 D

o
u

bl
e

w
o

rd
R

eg
is

te
r/

M
e

m
o

ry
 w

ith
 Im

m
e

d
ia

te
 to

 R
eg

is
te

r2

 M
u

lti
p

lie
r:

 W
or

d

 D
o

u
bl

e
w

o
rd

F
 [0

11
w

] [
m

o
d

 1
01

 r
/m

]

0
F

 A
F

 [
m

o
d

 r
e

g
 r

/m
]

6
 [1

0s
1

] [
m

od
 r

e
g

 r
/m

]
##

#

x

 -

 -

 -

 x

 x

 u

 u

 x

4 4 10 4 10 5 11

4 4 1
0 4 1
0 5 1
1

b
h

IN
 I

np
u

t f
ro

m
 I

/O
 P

or
t

F
ix

e
d

P
o

rt
V

a
ria

b
le

 P
o

rt
E

 [
01

0
w

] [
#

]
E

 [
11

0
w

]

-

 -

 -

 -

 -

 -

 -

 -

 -
14 14

1
4/

2
8

1
4/

2
8

m

IN
C

 I
nc

re
m

e
nt

 b
y

1
R

eg
is

te
r/

M
e

m
o

ry
R

eg
is

te
r

(s
ho

rt
 f

or
m

)
F

 [1
11

w
] [

m
o

d
 0

00
 r

/m
]

4
 [0

 r
e

g
]

x

 -

 -

 -

 x

 x

 x

 x

 -
1 1

1 1

b
h

IN
S

 In
p

ut
 S

tr
in

g
fr

om
 I/

O
 P

o
rt

6
 [1

10
w

]
-

 -

 -

 -

 -

 -

 -

 -

 -

14
1

4/
2

8
b

h
,m

IN
T

 S
of

tw
a

re
 I

nt
er

ru
p

t
IN

T
 i

P
ro

te
ct

ed
 M

o
de

:
In

te
rr

u
p

t o
r

T
ra

p
to

 S
a

m
e

 P
riv

ile
g

e
In

te
rr

u
p

t o
r

T
ra

p
to

 D
iff

e
re

n
t P

riv
ile

g
e

1
6

-b
it

T
as

k
to

 1
6

-b
it

T
S

S
 b

y
T

a
sk

 G
a

te
1

6
-b

it
T

as
k

to
 3

2
-b

it
T

S
S

 b
y

T
a

sk
 G

a
te

1
6

-b
it

T
as

k
to

 V
86

 b
y

T
a

sk
 G

a
te

1
6

-b
it

T
as

k
to

 1
6

-b
it

T
S

S
 b

y
T

a
sk

 G
a

te
3

2
-b

it
T

as
k

to
 3

2
-b

it
T

S
S

 b
y

T
a

sk
 G

a
te

3
2

-b
it

T
as

k
to

 V
86

 b
y

T
a

sk
 G

a
te

V
8

6
 to

 1
6

-b
it

T
S

S
 b

y
T

a
sk

 G
at

e
V

8
6

 to
 3

2
-b

it
T

S
S

 b
y

T
a

sk
 G

at
e

V
8

6
 to

 P
riv

ile
g

e
 0

 b
y

T
ra

p
G

a
te

/In
t G

a
te

C
on

tin
ue

d
on

 th
e

ne
xt

 p
ag

e.
..

C
D

#

-

 -

 x

 0

 -

 -

 -

 -

 -
9

2
1

3
2

1
14

1
22

1
00

1
16

1
24

1
02

1
24

1
02 4
6

b
,e

g
,j,

k,
r

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
 S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y

(C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

L
O

C
K

C
O

U
N

T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

d
at

a
+

 =
 8

-b
it

si
g

ne
d

 d
is

p
la

ce
m

e
n

t
x

=
 m

od
ifi

e
d

##

=
 im

m
e

di
a

te
 1

6
-b

it
da

ta
+

+
+

 =
 f

u
ll

si
g

n
ed

 d
is

p
la

ce
m

e
n

t (
16

,
32

 b
its

)
- =

 u
n

ch
an

g
e

d
##

=

 f
u

ll
im

m
e

di
a

te
 3

2
-b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6-18

CPU Instruction Set Summary

IN
T

 S
o

ft
w

a
re

 I
nt

er
ru

p
t (C

on
tin

u
e

d)
IN

T
 3

IN
T

O

 I

f
O

F
=

=
0

 I
f

O
F

=
=

1
 (

IN
T

 4
)

C
C

C
E

-

 -

 x

 0

 -

 -

 -

 -

 -
IN

T 6

IN
T 6

1
5+

IN
T

b
,e

g
,j,

k,
r

IN
V

D
 In

va
lid

a
te

 C
a

ch
e

0
F

0

8
-

 -

 -

 -

 -

 -

 -

 -

 -

12
1

2
t

t

IN
V

L
P

G
 In

va
lid

at
e

 T
L

B
 E

nt
ry

0
F

0

1
[m

od
 1

11
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
13

1
3

IR
E

T
 I

n
te

rr
up

t
R

e
tu

rn
R

e
a

l M
o

d
e

P
ro

te
ct

ed
 M

o
de

:

 W

ith
in

 T
a

sk
 to

 S
am

e
 P

riv
ile

g
e

 W
ith

in
 T

a
sk

 to
 D

iff
er

en
t

P
riv

ile
g

e
1

6
-b

it
T

as
k

to
 1

6
-b

it
T

a
sk

1
6

-b
it

T
as

k
to

 3
2

-b
it

T
S

S
1

6
-b

it
T

as
k

to
 V

86
 T

as
k

3
2

-b
it

T
as

k
to

 1
6

-b
it

T
S

S
3

2
-b

it
T

as
k

to
 3

2
-b

it
T

S
S

3
2

-b
it

T
as

k
to

 V
86

 T
as

k

C
F

 x

 x

 x

 x

 x

 x

 x

 x

 x

7

1
0

2
6

11
7

12
5

10
3

11
9

12
7

10
5

g
,h

,j,
k,

r

JB
/J

N
A

E
/J

C
 J

u
m

p
 o

n
B

e
lo

w
/N

ot
 A

b
o

ve
 o

r
E

qu
a

l/
C

a
rr

y
8

-b
it

D
is

pl
a

ce
m

e
nt

F
ul

l D
is

pl
a

ce
m

e
nt

7
2

 +
0

F

8
2

+
+

+

-

 -

 -

 -

 -

 -

 -

 -

 -

1 1
1 1

r

JB
E

/J
N

A
 J

um
p

 o
n

 B
e

lo
w

 o
r

E
qu

a
l/N

o
t

A
b

ov
e

8
-b

it
D

is
pl

a
ce

m
e

nt
F

ul
l D

is
pl

a
ce

m
e

nt
7

6
 +

0
F

8

6
+

+
+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

JC
X

Z
/J

E
C

X
Z

 J
um

p
on

 C
X

/E
C

X
 Z

e
ro

E
3

+

-

 -

 -

 -

 -

 -

 -

 -

 -
1

1
r

JE
/J

Z
 J

u
m

p
 o

n
E

q
ua

l/Z
e

ro
8

-b
it

D
is

pl
a

ce
m

e
nt

F
ul

l D
is

pl
a

ce
m

e
nt

7
4

 +
0

F

8
4

+
+

+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

JL
/J

N
G

E
 J

u
m

p
 o

n
Le

ss
/N

o
t

G
re

a
te

r
o

r
E

qu
a

l
8

-b
it

D
is

pl
a

ce
m

e
nt

F
ul

l D
is

pl
a

ce
m

e
nt

7
C

+

0
F

8

C
 +

+
+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

JL
E

/J
N

G
 J

u
m

p
 o

n
Le

ss
 o

r
E

qu
a

l/N
o

t
G

re
a

te
r

8
-b

it
D

is
pl

a
ce

m
e

nt
F

ul
l D

is
pl

a
ce

m
e

nt
7

E

+
0

F

8
E

 +
+

+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y (

C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

LO
C

K
C

O
U

N
T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

da
ta

+

=

 8
-b

it
si

g
ne

d
 d

is
p

la
ce

m
e

n
t

x
=

 m
od

ifi
e

d
##

=

 im
m

e
di

a
te

 1
6

-b
it

d
a

ta
+

+
+

 =
 f

ul
l s

ig
ne

d
 d

is
p

la
ce

m
e

n
t (

16
,

32
 b

its
)

- =
 u

n
ch

a
n

g
ed

##

=
 f

u
ll

im
m

ed
ia

te
 3

2-
b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6

6-19

CPU Instruction Set Summary

JM
P

 U
n

co
n

d
iti

o
n

al
 J

um
p

8
-b

it
D

is
pl

a
ce

m
e

nt
F

ul
l D

is
pl

ac
e

m
e

nt
R

eg
is

te
r/

M
e

m
o

ry
 I

nd
ire

ct
 W

ith
in

 S
e

gm
e

n
t

D
ir

ec
t

In
te

rs
e

gm
e

n
t

C

a
ll

G
a

te
 S

am
e

 P
riv

ile
g

e
 L

e
ve

l

1
6-

b
it

T
a

sk
 to

 1
6

-b
it

T
S

S

1
6-

b
it

T
a

sk
 to

 3
2

-b
it

T
S

S

1
6-

b
it

T
a

sk
 to

 V
8

6
 T

a
sk

3

2-
b

it
T

a
sk

 to
 1

6
-b

it
T

S
S

3

2-
b

it
T

a
sk

 to
 3

2
-b

it
T

S
S

3

2-
b

it
T

a
sk

 to
 V

8
6

 T
a

sk
In

di
re

ct
 In

te
rs

eg
m

en
t

C

a
ll

G
a

te
 S

am
e

 P
riv

ile
g

e
 L

e
ve

l

1
6-

b
it

T
a

sk
 to

 1
6

-b
it

T
S

S

1
6-

b
it

T
a

sk
 to

 3
2

-b
it

T
S

S

1
6-

b
it

T
a

sk
 to

 V
8

6
 T

a
sk

3

2-
b

it
T

a
sk

 to
 1

6
-b

it
T

S
S

3

2-
b

it
T

a
sk

 to
 3

2
-b

it
T

S
S

3

2-
b

it
T

a
sk

 to
 V

8
6

 T
a

sk

E
B

+

E
9

 +

+
+

F
F

 [m

o
d

10
0

 r
/m

]
E

A

 [
un

si
g

ne
d

 fu
ll

of
fs

et
,

se

le
ct

or
]

F
F

 [m

o
d

10
1

 r
/m

]

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1 1
/3 1 5

1 1 1/
3 4 1
4

1
10

1
18 9
6

1
12

1
20 9
8 7 1
7

1
13

1
21 9
9

1
15

1
23

1
01

b
h

,j,
k,

r

JN
B

/J
A

E
/J

N
C

 J
um

p
 o

n
 N

o
t B

e
lo

w
/A

b
o

ve
 o

r
E

qu
a

l/N
o

t
C

ar
ry

8
-b

it
D

is
pl

a
ce

m
e

nt
F

ul
l D

is
pl

ac
e

m
e

nt
7

3
 +

0
F

 8

3
 +

+
+

-

 -

 -

 -

 -

 -

 -

 -

 -

1 1
1 1

r

JN
B

E
/J

A
 J

um
p

 o
n

 N
o

t B
e

lo
w

 o
r

E
q

u
al

/A
b

ov
e

8
-b

it
D

is
pl

a
ce

m
e

nt
F

ul
l D

is
pl

ac
e

m
e

nt
7

7
 +

0
F

 8

7
 +

+
+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

JN
E

/J
N

Z
 J

um
p

 o
n

 N
o

t E
qu

a
l/N

o
t

Z
e

ro
8

-b
it

D
is

pl
a

ce
m

e
nt

F
ul

l D
is

pl
ac

e
m

e
nt

7
5

 +
0

F

 8
5

 +
+

+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

JN
L/

JG
E

 J
u

m
p

 o
n

N
o

t L
e

ss
/G

re
at

e
r

or
 E

qu
a

l
8

-b
it

D
is

pl
a

ce
m

e
nt

F
ul

l D
is

pl
ac

e
m

e
nt

7
D

+

0
F

 8

D
 +

+
+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

JN
LE

/J
G

 J
u

m
p

 o
n

N
o

t L
e

ss
 o

r
E

q
ua

l/G
re

a
te

r
8

-b
it

D
is

pl
a

ce
m

e
nt

F
ul

l D
is

pl
ac

e
m

e
nt

7
F

 +

0
F

 8

F
 +

+
+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
 S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y

(C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

L
O

C
K

C
O

U
N

T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

d
at

a
+

 =
 8

-b
it

si
g

ne
d

 d
is

p
la

ce
m

e
n

t
x

=
 m

od
ifi

e
d

##

=
 im

m
e

di
a

te
 1

6
-b

it
da

ta
+

+
+

 =
 f

u
ll

si
g

n
ed

 d
is

p
la

ce
m

e
n

t (
16

,
32

 b
its

)
- =

 u
n

ch
an

g
e

d
##

=

 f
u

ll
im

m
e

di
a

te
 3

2
-b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6-20

CPU Instruction Set Summary

JN
O

 J
u

m
p

on
 N

ot
 O

ve
rf

lo
w

8
-b

it
D

is
pl

a
ce

m
e

nt
F

ul
l D

is
pl

a
ce

m
e

nt
7

1
 +

0
F

8

1
+

+
+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

JN
P

/J
P

O
 J

um
p

 o
n

 N
o

t P
ar

ity
/P

a
ri
ty

 O
dd

8
-b

it
D

is
pl

a
ce

m
e

nt
F

ul
l D

is
pl

a
ce

m
e

nt
7

B

+
0

F

8
B

 +
+

+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

JN
S

Ju
m

p
 o

n
 N

o
t S

ig
n

8
-b

it
D

is
pl

a
ce

m
e

nt
F

ul
l D

is
pl

a
ce

m
e

nt
7

9
 +

0
F

8

9
+

+
+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

JO
 J

u
m

p
on

 O
ve

rf
lo

w
8

-b
it

D
is

pl
a

ce
m

e
nt

F
ul

l D
is

pl
a

ce
m

e
nt

7
0

 +
0

F

8
0

+
+

+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

JP
/J

P
E

Ju
m

p
on

 P
ar

ity
/P

a
ri
ty

 E
ve

n
8

-b
it

D
is

pl
a

ce
m

e
nt

F
ul

l D
is

pl
a

ce
m

e
nt

7
A

 +
0

F

8
A

 +
+

+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

JS
 J

um
p

 o
n

 S
ig

n
8

-b
it

D
is

pl
a

ce
m

e
nt

F
ul

l D
is

pl
a

ce
m

e
nt

7
8

 +
0

F

8
8

+
+

+

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

r

LA
H

F
 L

oa
d

 A
H

 w
ith

 F
la

gs
9

F
-

 -

 -

 -

 -

 -

 -

 -

 -

2
2

LA
R

 L
o

a
d

A
cc

es
s

R
ig

h
ts

F
ro

m
 R

e
gi

st
e

r/
M

em
o

ry
0

F

0
2

[m
od

 r
e

g
 r

/m
]

-

 -

 -

 -

 -

 x

 -

 -

 -
8

a
g

,h
,j,

p

LD
S

 L
o

ad
 P

oi
n

te
r

to
 D

S
C

5

[m
od

 r
e

g
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
2

4
b

h
,i,

j

LE
A

 L
oa

d
 E

ff
e

ct
iv

e
A

d
dr

e
ss

N
o

 In
d

ex
 R

eg
is

te
r

W
ith

 In
d

ex
 R

eg
is

te
r

8
D

 [
m

o
d

 r
e

g
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1

1 1

LE
A

V
E

 L
e

av
e

 C
u

rr
e

nt
 S

ta
ck

 F
ra

m
e

C
9

-

 -

 -

 -

 -

 -

 -

 -

 -
4

4
b

h

LE
S

 L
o

ad
 P

oi
nt

er
 t

o
 E

S
C

4

[m
od

 r
e

g
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
2

4
b

h
,i,

j

LF
S

 L
o

a
d

P
o

in
te

r
to

 F
S

0
F

B

4
 [m

o
d

re
g

r/
m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

2
4

b
h

,i,
j

LG
D

T
 L

oa
d

G
D

T
 R

e
g

is
te

r
0

F

0
1

[m
od

 0
10

 r
/m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

8
8

b
,c

h
,l

LG
S

 L
oa

d
 P

o
in

te
r

to
 G

S
0

F

B
5

 [m
o

d
re

g
r/

m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
2

4
b

h
,i,

j

LI
D

T
 L

oa
d

 ID
T

 R
e

g
is

te
r

0
F

0

1
[m

od
 0

11
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
8

8
b

,c
h

,l

LL
D

T
 L

oa
d

 L
D

T
 R

e
gi

st
e

r
F

ro
m

 R
e

gi
st

e
r/

M
em

o
ry

0
F

0

0
[m

od
 0

10
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
5

5
a

g
,h

,j,
l

LM
S

W
 L

oa
d

 M
ac

h
in

e
 S

ta
tu

s
W

o
rd

F
ro

m
 R

e
gi

st
e

r/
M

em
o

ry
0

F

0
1

[m
od

 1
10

 r
/m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

13
1

3
b

,c
h

,l

LO
D

S
 L

oa
d

 S
tr

in
g

A

[1
1

0
 w

]
-

 -

 -

 -

 -

 -

 -

 -

 -

3
3

b
h

LO
O

P
 O

ff
se

t
Lo

o
p/

N
o

 L
o

o
p

E
2

+

-

 -

 -

 -

 -

 -

 -

 -

 -
1

1
r

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y (

C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

LO
C

K
C

O
U

N
T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

da
ta

+

=

 8
-b

it
si

g
ne

d
 d

is
p

la
ce

m
e

n
t

x
=

 m
od

ifi
e

d
##

=

 im
m

e
di

a
te

 1
6

-b
it

d
a

ta
+

+
+

 =
 f

ul
l s

ig
ne

d
 d

is
p

la
ce

m
e

n
t (

16
,

32
 b

its
)

- =
 u

n
ch

a
n

g
ed

##

=
 f

u
ll

im
m

ed
ia

te
 3

2-
b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6

6-21

CPU Instruction Set Summary

L
O

O
P

N
Z

/L
O

O
P

N
E

 O
ff

se
t

E
0

+

-

 -

 -

 -

 -

 -

 -

 -

 -
1

1
r

L
O

O
P

Z
/L

O
O

P
E

 O
ff

se
t

E
1

+

-

 -

 -

 -

 -

 -

 -

 -

 -
1

1
r

L
S

L
 L

o
ad

 S
e

g
m

en
t

Li
m

it
F

ro
m

 R
e

gi
st

e
r/

M
e

m
o

ry
0

F

0
3

[m
od

 r
e

g
 r

/m
]

-

 -

 -

 -

 -

 x

 -

 -

 -
8

a
g

,h
,j,

p

L
S

S
Lo

a
d

P
o

in
te

r
to

 S
S

0
F

B

2
 [m

o
d

re
g

r/
m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

2
4

a
h

,i,
j

L
T

R
 L

oa
d

 T
a

sk
 R

eg
is

te
r

F
ro

m
 R

e
gi

st
e

r/
M

e
m

o
ry

0
F

0

0
[m

od
 0

1
1

r/
m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

7
a

g
,h

,j,
l

M
O

V
 M

ov
e

 D
a

ta
R

eg
is

te
r

to
 R

e
g

is
te

r
R

eg
is

te
r

to
 M

em
o

ry
R

eg
is

te
r/

M
e

m
o

ry
 t

o
 R

e
g

is
te

r
Im

m
e

d
ia

te
 to

 R
eg

is
te

r/
M

e
m

o
ry

Im
m

e
d

ia
te

 to
 R

eg
is

te
r

(s
ho

rt
 f

o
rm

)
M

e
m

or
y

to
 A

cc
u

m
ul

a
to

r
(s

h
or

t
fo

rm
)

A
cc

u
m

ul
a

to
r

to
 M

e
m

o
ry

 (
sh

or
t

fo
rm

)
R

eg
is

te
r/

M
e

m
o

ry
 t

o
 S

e
g

m
e

nt
 R

e
g

is
te

r
S

e
gm

e
n

t R
e

g
is

te
r

to
 R

e
g

is
te

r/
M

e
m

o
ry

8
 [

1
0

dw
]

[1
1

re
g

r/
m

]
8

 [
1

0
0w

]
[m

o
d

re
g

 r
/m

]
8

 [
1

0
1w

]
[m

o
d

re
g

 r
/m

]
C

 [
01

1
w

] [
m

o
d

00
0

 r
/m

]
##

#
B

 [
w

 r
e

g
] #

##
A

 [
00

0
w

] +
+

+
A

 [
00

1
w

] +
+

+
8

E
 [m

o
d

 s
re

g
3

r/
m

]
8

C
 [m

o
d

 s
re

g3
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1/
3 1

b
h

,i,
j

M
O

V
 M

ov
e

 t
o/

fr
om

 C
o

nt
ro

l/D
e

bu
g

/T
e

st
 R

e
g

s
R

eg
is

te
r

to
 C

R
0

/C
R

2/
C

R
3

C
R

0/
C

R
2

/C
R

3
 t

o
R

e
gi

st
e

r
R

eg
is

te
r

to
 D

R
0

-D
R

3
D

R
0-

D
R

3
to

 R
e

g
is

te
r

R
eg

is
te

r
to

 D
R

6
-D

R
7

D
R

6-
D

R
7

to
 R

e
g

is
te

r
R

eg
is

te
r

to
 T

R
3

-5
T

R
3

-5
 t

o
 R

e
g

is
te

r
R

eg
is

te
r

to
 T

R
6

-T
R

7
T

R
6

-T
R

7
 to

 R
eg

is
te

r

0
F

2

2
[1

1
 e

e
e

 r
e

g
]

0
F

2

0
[1

1
 e

e
e

 r
e

g
]

0
F

2

3
[1

1
 e

e
e

 r
e

g
]

0
F

2

1
[1

1
 e

e
e

 r
e

g
]

0
F

2

3
[1

1
 e

e
e

 r
e

g
]

0
F

2

1
[1

1
 e

e
e

 r
e

g
]

0
F

2

6
[1

1
 e

e
e

 r
e

g
]

0
F

2

4
[1

1
 e

e
e

 r
e

g
]

0
F

2

6
[1

1
 e

e
e

 r
e

g
]

0
F

2

4
[1

1
 e

e
e

 r
e

g
]

-

 -

 -

 -

 -

 -

 -

 -

 -
20

/5
/5

6 16 14 16 14 10 5 10 6

2
0

/5
/5

6 1
6

1
4

1
6

1
4

1
0 5 1
0 6

l

M
O

V
S

 M
o

ve
 S

tr
in

g
A

 [
01

0
w

]
-

 -

 -

 -

 -

 -

 -

 -

 -

4
4

b
h

M
O

V
S

X
 M

o
ve

 w
ith

 S
ig

n
 E

xt
en

si
o

n
R

eg
is

te
r

fr
o

m
 R

e
gi

st
e

r/
M

em
o

ry
0

F

B
[1

1
1w

]
[m

od
 r

e
g

 r
/m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

b
h

M
O

V
Z

X
 M

o
ve

 w
ith

 Z
e

ro
 E

xt
e

n
si

on
R

eg
is

te
r

fr
o

m
 R

e
gi

st
e

r/
M

em
o

ry
0

F

B
[0

1
1w

]
[m

od
 r

e
g

 r
/m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

b
h

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
 S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y

(C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

L
O

C
K

C
O

U
N

T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

d
at

a
+

 =
 8

-b
it

si
g

ne
d

 d
is

p
la

ce
m

e
n

t
x

=
 m

od
ifi

e
d

##

=
 im

m
e

di
a

te
 1

6
-b

it
da

ta
+

+
+

 =
 f

u
ll

si
g

n
ed

 d
is

p
la

ce
m

e
n

t (
16

,
32

 b
its

)
- =

 u
n

ch
an

g
e

d
##

=

 f
u

ll
im

m
e

di
a

te
 3

2
-b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6-22

CPU Instruction Set Summary

M
U

L
 U

n
si

g
n

ed
 M

u
lti

pl
y

A
cc

u
m

u
la

to
r

w
ith

 R
e

g
is

te
r/

M
e

m
or

y

M
ul

tip
lie

r:

B
yt

e

 W
o

rd

 D
o

ub
le

w
o

rd

F
 [

0
1

1w
]

[m
od

 1
0

0
r/

m
]

x

 -

 -

 -

 x

 x

 u

 u

 x

4 4 10

4 4 1
0

b
h

N
E

G
 N

e
ga

te
 I

nt
eg

e
r

F
 [

0
1

1w
]

[m
od

 0
1

1
r/

m
]

x

 -

 -

 -

 x

 x

 x

 x

 x
1

1
b

h

N
O

P
 N

o
 O

p
e

ra
tio

n
9

0
-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

N
O

T
 B

o
ol

e
an

 C
o

m
p

le
m

e
nt

F
 [

0
1

1w
]

[m
od

 0
1

0
r/

m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
1

1
b

h

O
IO

 O
ff

ic
ia

l I
nv

a
lid

 O
p

C
o

de
0

F
 F

F
-

 -

 x

 0

 -

 -

 -

 -

 -

1
8

-
1

25

O
R

 B
o

ol
e

a
n

 O
R

R
e

g
is

te
r

to
 R

e
g

is
te

r
R

e
g

is
te

r
to

 M
e

m
o

ry
M

e
m

or
y

to
 R

e
gi

st
e

r
Im

m
e

d
ia

te
 to

 R
eg

is
te

r/
M

e
m

o
ry

Im
m

e
d

ia
te

 to
 A

cc
u

m
ul

a
to

r

0
 [

1
0

dw
]

[1
1

re
g

r/
m

]
0

 [
1

0
0w

]
[m

o
d

re
g

 r
/m

]
0

 [
1

0
1w

]
[m

o
d

re
g

 r
/m

]
8

 [
0

0
sw

] [
m

o
d

 0
01

 r
/m

]
#

##
0

 [
1

1
0w

]
#

##

0

 -

 -

 -

 x

 x

 u

 x

 0
1 1 1 1 1

1 1 1 1 1

b
h

O
U

T
 O

ut
pu

t
to

 P
o

rt
F

ix
ed

 P
o

rt
V

a
ria

b
le

 P
or

t
E

[0

11
w

]
#

E

[1
11

w
]

-

 -

 -

 -

 -

 -

 -

 -

 -
14 14

1
4/

2
8

1
4/

2
8

m

O
U

T
S

 O
u

tp
u

t S
tr

in
g

6
 [

1
1

1w
]

-

 -

 -

 -

 -

 -

 -

 -

 -
14

1
4/

2
8

b
h

,m

P
O

P
 P

o
p

V
a

lu
e

of
f S

ta
ck

R
e

g
is

te
r/

M
e

m
o

ry
R

e
g

is
te

r
(s

ho
rt

 f
or

m
)

S
e

gm
e

n
t R

e
g

is
te

r
(E

S
, S

S
,

D
S

)
S

e
gm

e
n

t R
e

g
is

te
r

(F
S

, G
S

)

8
F

[m

o
d

00
0

r/
m

]
5

 [1
 r

e
g

]
[0

00
 s

re
g

2
 1

11
]

0
F

[1

0
sr

eg
3

 0
01

]

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1 1 1

1 1 3 3

b
h

,i,
j

P
O

P
A

 P
op

 A
ll

G
en

e
ra

l R
e

g
is

te
rs

6
1

-

 -

 -

 -

 -

 -

 -

 -

 -
6

6
b

h

P
O

P
F

P
o

p
S

ta
ck

 in
to

 F
LA

G
S

9
D

x

 x

 x

 x

 x

 x

 x

 x

 x
9

9
b

h
,n

P
R

E
F

IX
 B

Y
T

E
S

A
ss

e
rt

 H
a

rd
w

a
re

 L
O

C
K

 P
re

fix
A

d
d

re
ss

 S
iz

e
 P

re
fix

O
p

e
ra

nd
 S

iz
e

 P
re

fix
S

e
gm

e
n

t O
ve

rr
id

e
 P

re
fix

 C
S

 D
S

 E
S

 F
S

 G
S

 S
S

F
0

6
7

6
6

2
E

3
E

2
6

6
4

6
5

3
6

-

 -

 -

 -

 -

 -

 -

 -

 -
m

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y (

C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

LO
C

K
C

O
U

N
T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

da
ta

+

=

 8
-b

it
si

g
ne

d
 d

is
p

la
ce

m
e

n
t

x
=

 m
od

ifi
e

d
##

=

 im
m

e
di

a
te

 1
6

-b
it

d
a

ta
+

+
+

 =
 f

ul
l s

ig
ne

d
 d

is
p

la
ce

m
e

n
t (

16
,

32
 b

its
)

- =
 u

n
ch

a
n

g
ed

##

=
 f

u
ll

im
m

ed
ia

te
 3

2-
b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6

6-23

CPU Instruction Set Summary

P
U

S
H

 P
us

h
 V

al
ue

 o
n

to
 S

ta
ck

R
eg

is
te

r/
M

e
m

o
ry

R
eg

is
te

r
(s

ho
rt

 f
or

m
)

S
e

gm
e

n
t R

e
g

is
te

r
(E

S
, C

S
,

S
S

, D
S

)
S

e
gm

e
n

t R
e

g
is

te
r

(F
S

, G
S

)
Im

m
e

d
ia

te

F
F

 [
m

o
d

 1
10

 r
/m

]
5

[0

 r
e

g]
[0

00
 s

re
g

2
 1

10
]

0
F

 [
10

 s
re

g
3

00
0

]
6

[1

0
s0

] #
##

-

 -

 -

 -

 -

 -

 -

 -

 -
1 1 1 1 1

1 1 1 1 1

b
h

P
U

S
H

A
 P

u
sh

 A
ll

G
e

ne
ra

l R
eg

is
te

rs
6

0
-

 -

 -

 -

 -

 -

 -

 -

 -

6
6

b
h

P
U

S
H

F
P

u
sh

 F
L

A
G

S
 R

e
g

is
te

r
9

C
-

 -

 -

 -

 -

 -

 -

 -

 -

2
2

b
h

R
C

L
 R

o
ta

te
 T

hr
o

u
gh

 C
ar

ry
 L

e
ft

R
eg

is
te

r/
M

e
m

o
ry

 b
y

1
R

eg
is

te
r/

M
e

m
o

ry
 b

y
C

L
R

eg
is

te
r/

M
e

m
o

ry
 b

y
Im

m
e

d
ia

te

D

[0
00

w
] [

m
o

d
 0

10
 r

/m
]

D

[0
01

w
] [

m
o

d
 0

10
 r

/m
]

C

[0
00

w
] [

m
od

 0
10

 r
/m

] #

x

 -

 -

 -

 -

 -

 -

 -

 x
u

 -

 -

 -

 -

 -

 -

 -

 x

u

 -

 -

 -

 -

 -

 -

 -

 x

3 8 8

3 8 8

b
h

R
C

R
 R

o
ta

te
 T

hr
o

u
gh

 C
a

rr
y

R
ig

h
t

R
eg

is
te

r/
M

e
m

o
ry

 b
y

1
R

eg
is

te
r/

M
e

m
o

ry
 b

y
C

L
R

eg
is

te
r/

M
e

m
o

ry
 b

y
Im

m
e

d
ia

te

D

[0
00

w
] [

m
o

d
 0

11
 r

/m
]

D

[0
01

w
] [

m
o

d
 0

11
 r

/m
]

C

[0
00

w
] [

m
od

 0
11

 r
/m

] #

x

 -

 -

 -

 -

 -

 -

 -

 x
u

 -

 -

 -

 -

 -

 -

 -

 x

u

 -

 -

 -

 -

 -

 -

 -

 x

4 9 9

4 9 9

b
h

R
E

P
 IN

S
 In

p
ut

 S
tr

in
g

F
3

 6
[1

1
0

w
]

-

 -

 -

 -

 -

 -

 -

 -

 -
12

+
5n

1
2

+
5n

\
2

8+
5

n
b

h
,m

R
E

P
 L

O
D

S
 L

oa
d

 S
tr

in
g

F
3

 A
[1

10
w

]
-

 -

 -

 -

 -

 -

 -

 -

 -

1
0+

n
1

0
+

n
b

h

R
E

P
 M

O
V

S
 M

o
ve

 S
tr

in
g

F
3

 A
[0

10
w

]
-

 -

 -

 -

 -

 -

 -

 -

 -

9
+

n
9+

n
b

h

R
E

P
 O

U
T

S
O

u
tp

u
t S

tr
in

g
F

3
 6

[1
1

1
w

]
-

 -

 -

 -

 -

 -

 -

 -

 -

12
+

5n
1

2
+

5n
\

2
8+

5
n

b
h

,m

R
E

P
 S

T
O

S
S

to
re

 S
tr

in
g

F
3

 A
[1

01
w

]
-

 -

 -

 -

 -

 -

 -

 -

 -

1
0+

n
1

0
+

n
b

h

R
E

P
E

 C
M

P
S

C
o

m
p

ar
e

 S
tr

in
g

 (
F

in
d

 n
o

n-
m

a
tc

h
)

F
3

 A
[0

11
w

]
x

 -

 -

 -

 x

 x

 x

 x

 x

10
+

2n
1

0+
2

n
b

h

R
E

P
E

 S
C

A
S

S
ca

n
 S

tr
in

g

 (

F
in

d
 n

o
n-

A
L/

A
X

/E
A

X
)

F
3

 A
[1

11
w

]
x

 -

 -

 -

 x

 x

 x

 x

 x

10
+

2n
1

0+
2

n
b

h

R
E

P
N

E
 C

M
P

S
C

o
m

p
ar

e
 S

tr
in

g

 (

F
in

d
 m

a
tc

h
)

F
2

 A
[0

11
w

]
x

 -

 -

 -

 x

 x

 x

 x

 x

10
+

2n
1

0+
2

n
b

h

R
E

P
N

E
 S

C
A

S
S

ca
n

 S
tr

in
g

 (
F

in
d

 A
L/

A
X

/E
A

X
)

F
2

 A
[1

11
w

]
x

 -

 -

 -

 x

 x

 x

 x

 x

10
+

2n
1

0+
2

n
b

h

R
E

T
 R

e
tu

rn
 fr

o
m

 S
u

br
o

u
tin

e
W

ith
in

 S
eg

m
e

n
t

W
ith

in
 S

eg
m

e
n

t A
d

di
ng

 Im
m

e
d

ia
te

 to
 S

P
In

te
rs

e
g

m
en

t
In

te
rs

e
g

m
en

t
A

dd
in

g
 Im

m
e

di
a

te
 t

o
 S

P
P

ro
te

ct
ed

 M
o

de
:

 D
iff

er
e

n
t

P
riv

ile
g

e
 L

ev
e

l
In

te
rs

e
g

m
en

t
In

te
rs

e
g

m
en

t
A

dd
in

g
 Im

m
e

di
a

te
 t

o
 S

P

C
3

C
2

##

C
B

C
A

#

#

-

 -

 -

 -

 -

 -

 -

 -

 -
3 4 4 4

3 4 7 7 2
3

2
3

b
g,

h,
j,k

,r

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
 S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y

(C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

L
O

C
K

C
O

U
N

T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

d
at

a
+

 =
 8

-b
it

si
g

ne
d

 d
is

p
la

ce
m

e
n

t
x

=
 m

od
ifi

e
d

##

=
 im

m
e

di
a

te
 1

6
-b

it
da

ta
+

+
+

 =
 f

u
ll

si
g

n
ed

 d
is

p
la

ce
m

e
n

t (
16

,
32

 b
its

)
- =

 u
n

ch
an

g
e

d
##

=

 f
u

ll
im

m
e

di
a

te
 3

2
-b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6-24

CPU Instruction Set Summary

R
O

L
 R

o
ta

te
 L

ef
t

R
e

g
is

te
r/

M
e

m
o

ry
 b

y
1

R
e

g
is

te
r/

M
e

m
o

ry
 b

y
C

L
R

e
g

is
te

r/
M

e
m

o
ry

 b
y

Im
m

e
d

ia
te

D
[0

00
w

]
[m

od
 0

0
0

r/
m

]
D

[0
01

w
]

[m
od

 0
0

0
r/

m
]

C
[0

0
0w

]
[m

od
 0

0
0

r/
m

] #

x

 -

 -

 -

 -

 -

 -

 -

 x
u

 -

 -

 -

 -

 -

 -

 -

 x

u

 -

 -

 -

 -

 -

 -

 -

 x

1 2 1

1 2 1

b
h

R
O

R
 R

o
ta

te
 R

ig
h

t
R

e
g

is
te

r/
M

e
m

o
ry

 b
y

1
R

e
g

is
te

r/
M

e
m

o
ry

 b
y

C
L

R
e

g
is

te
r/

M
e

m
o

ry
 b

y
Im

m
e

d
ia

te

D
[0

00
w

]
[m

od
 0

0
1

r/
m

]
D

[0
01

w
]

[m
od

 0
0

1
r/

m
]

C
[0

0
0w

]
[m

od
 0

0
1

r/
m

] #

x

 -

 -

 -

 -

 -

 -

 -

 x
u

 -

 -

 -

 -

 -

 -

 -

 x

u

 -

 -

 -

 -

 -

 -

 -

 x

1 2 1

1 2 1

b
h

R
S

D
C

 R
es

to
re

 S
e

gm
en

t
R

e
gi

st
e

r
a

nd
 D

e
sc

ri
p

to
r

0
F

 7
9

 [m
o

d
 s

re
g3

 r
/m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

6
6

s
s

R
S

LD
T

 R
e

st
o

re
 L

D
T

R
 a

n
d

 D
e

sc
ri

pt
or

0
F

 7
B

 [
m

od
 0

0
0

r/
m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

6
6

s
s

R
S

M
 R

e
su

m
e

 f
ro

m
 S

M
M

 M
o

de
0

F
 A

A
x

 x

 x

 x

 x

 x

 x

 x

 x

40
4

0
s

s

R
S

T
S

R
e

st
o

re
 T

S
R

 a
nd

 D
e

sc
ri
p

to
r

0
F

 7
D

 [
m

od
 0

0
0

r/
m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

6
6

s
s

S
A

H
F

 S
to

re
 A

H
 in

 F
L

A
G

S
9

E
-

 -

 -

 -

 x

 x

 x

 x

 x

1
1

S
A

L
 S

h
ift

 L
e

ft
 A

ri
th

m
et

ic
R

e
g

is
te

r/
M

e
m

o
ry

 b
y

1
R

e
g

is
te

r/
M

e
m

o
ry

 b
y

C
L

R
e

g
is

te
r/

M
e

m
o

ry
 b

y
Im

m
e

d
ia

te

D
[0

00
w

]
[m

od
 1

0
0

r/
m

]
D

[0
01

w
]

[m
od

 1
0

0
r/

m
]

C
[0

0
0w

]
[m

od
 1

0
0

r/
m

] #

x

 -

 -

 -

 x

 x

 u

 x

 x
u

 -

 -

 -

 x

 x

 u

 x

 x

u

 -

 -

 -

 x

 x

 u

 x

 x

1 2 1

1 2 1

b
h

S
A

R
 S

h
ift

 R
ig

h
t A

ri
th

m
e

tic
R

e
g

is
te

r/
M

e
m

o
ry

 b
y

1
R

e
g

is
te

r/
M

e
m

o
ry

 b
y

C
L

R
e

g
is

te
r/

M
e

m
o

ry
 b

y
Im

m
e

d
ia

te

D
[0

00
w

]
[m

od
 1

1
1

r/
m

]
D

[0
01

w
]

[m
od

 1
1

1
r/

m
]

C
[0

0
0w

]
[m

od
 1

1
1

r/
m

] #

x

 -

 -

 -

 x

 x

 u

 x

 x
u

 -

 -

 -

 x

 x

 u

 x

 x

u

 -

 -

 -

 x

 x

 u

 x

 x

1 2 1

1 2 1

b
h

S
B

B
In

te
g

e
r

S
ub

tr
a

ct
 w

ith
 B

o
rr

o
w

R
e

g
is

te
r

to
 R

e
g

is
te

r
R

e
g

is
te

r
to

 M
e

m
o

ry
M

e
m

or
y

to
 R

e
gi

st
e

r
Im

m
e

d
ia

te
 to

 R
eg

is
te

r/
M

e
m

o
ry

Im
m

e
d

ia
te

 to
 A

cc
u

m
ul

a
to

r
(s

ho
rt

 f
or

m
)

1
[1

0
d

w
] [

1
1

 r
e

g
 r

/m
]

1
[1

0
0

w
] [

m
o

d
 r

e
g

r/
m

]
1

[1
0

1
w

] [
m

o
d

 r
e

g
r/

m
]

8
[0

0
sw

]
[m

od
 0

1
1

r/
m

] #
#

#
1

[1
1

0
w

] #
#

#

x

 -

 -

 -

 x

 x

 x

 x

 x
1 1 1 1 1

1 1 1 1 1

b
h

S
C

A
S

S
ca

n
 S

tr
in

g
A

[1

1
1

w
]

x

 -

 -

 -

 x

 x

 x

 x

 x
2

2
b

h

S
E

T
B

/S
E

T
N

A
E

/S
E

T
C

 S
e

t
B

yt
e

 o
n

 B
e

lo
w

/N
ot

 A
b

o
ve

 o
r

E
qu

a
l/C

ar
ry

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

9

2
[m

od
 0

00
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

S
E

T
B

E
/S

E
T

N
A

 S
e

t B
yt

e
 o

n
B

e
lo

w
 o

r

 E

q
u

al
/N

o
t A

bo
ve

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

9

6
[m

od
 0

00
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

S
E

T
E

/S
E

T
Z

S
e

t B
yt

e
on

 E
qu

a
l/Z

e
ro

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

9

4
[m

od
 0

00
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
1

1
h

S
E

T
L/

S
E

T
N

G
E

 S
e

t B
yt

e
on

 L
e

ss
/N

o
t G

re
a

te
r

 o
r

E
q

u
al

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

9

C
 [m

o
d

00
0

 r
/m

]

-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y (

C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

LO
C

K
C

O
U

N
T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

da
ta

+

=

 8
-b

it
si

g
ne

d
 d

is
p

la
ce

m
e

n
t

x
=

 m
od

ifi
e

d
##

=

 im
m

e
di

a
te

 1
6

-b
it

d
a

ta
+

+
+

 =
 f

ul
l s

ig
ne

d
 d

is
p

la
ce

m
e

n
t (

16
,

32
 b

its
)

- =
 u

n
ch

a
n

g
ed

##

=
 f

u
ll

im
m

ed
ia

te
 3

2-
b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6

6-25

CPU Instruction Set Summary

S
E

T
LE

/S
E

T
N

G
 S

e
t B

yt
e

on
 L

e
ss

 o
r

E
q

u
al

/N
o

t

 G

re
at

er
T

o
R

e
gi

st
e

r/
M

em
o

ry
0

F

9
E

 [m
o

d
 0

00
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

S
E

T
N

B
/S

E
T

A
E

/S
E

T
N

C
 S

e
t

B
yt

e
 o

n
 N

o
t B

e
lo

w
/

 A
b

o
ve

 o
r

E
qu

a
l/N

ot
 C

a
rr

y
T

o
R

e
gi

st
e

r/
M

em
o

ry
0

F

9
3

[m
od

 0
0

0
r/

m
]

-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

S
E

T
N

B
E

/S
E

T
A

 S
e

t B
yt

e
 o

n
N

ot
 B

e
lo

w
 o

r

 E

q
u

al
/A

b
ov

e
T

o
R

e
gi

st
e

r/
M

em
o

ry
0

F

9
7

[m
od

 0
0

0
r/

m
]

-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

S
E

T
N

E
/S

E
T

N
Z

 S
e

t B
yt

e
 o

n
N

ot
 E

q
u

al
/N

o
t Z

e
ro

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

9

5
[m

od
 0

0
0

r/
m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

S
E

T
N

L
/S

E
T

G
E

 S
e

t B
yt

e
on

 N
ot

 L
e

ss
/G

re
a

te
r

 o
r

E
q

u
al

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

9

D
 [m

o
d

00
0

 r
/m

]

-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

S
E

T
N

L
E

/S
E

T
G

 S
e

t B
yt

e
on

 N
ot

 L
e

ss
 o

r

 E

q
u

al
/G

re
at

er
T

o
R

e
gi

st
e

r/
M

em
o

ry
0

F

9
F

 [
m

o
d

 0
00

 r
/m

]

-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

S
E

T
N

O
 S

e
t

B
yt

e
 o

n
N

o
t O

ve
rf

lo
w

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

9

1
[m

od
 0

0
0

r/
m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

S
E

T
N

P
/S

E
T

P
O

S
e

t
B

yt
e

 o
n

N
o

t
 P

a
ri
ty

/P
a

ri
ty

 O
d

d
T

o
R

e
gi

st
e

r/
M

em
o

ry
0

F

9
B

 [m
o

d
00

0
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

S
E

T
N

S
S

e
t B

yt
e

on
 N

ot
 S

ig
n

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

9

9
[m

od
 0

0
0

r/
m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

1
1

h

S
E

T
O

 S
e

t
B

yt
e

 o
n

O
ve

rf
lo

w
T

o
R

e
gi

st
e

r/
M

em
o

ry
0

F

9
0

[m
od

 0
0

0
r/

m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
1

1
h

S
E

T
P

/S
E

T
P

E
S

e
t

B
yt

e
 o

n
 P

a
ri
ty

/P
a

ri
ty

 E
ve

n
T

o
R

e
gi

st
e

r/
M

em
o

ry
0

F

9
A

 [m
o

d
00

0
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
1

1
h

S
E

T
S

S
e

t B
yt

e
on

 S
ig

n
T

o
R

e
gi

st
e

r/
M

em
o

ry
0

F

9
8

[m
od

 0
0

0
r/

m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
1

1
h

S
G

D
T

S
to

re
 G

D
T

 R
e

g
is

te
r

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

0

1
[m

od
 0

0
0

r/
m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

4
4

b
,c

h

S
H

L
S

h
ift

 L
e

ft
 L

o
g

ic
al

R
eg

is
te

r/
M

e
m

o
ry

 b
y

1
R

eg
is

te
r/

M
e

m
o

ry
 b

y
C

L
R

eg
is

te
r/

M
e

m
o

ry
 b

y
Im

m
e

d
ia

te

D

[0
00

w
] [

m
o

d
 1

00
 r

/m
]

D

[0
01

w
] [

m
o

d
 1

00
 r

/m
]

C

[0
00

w
] [

m
od

 1
00

 r
/m

] #

x

 -

 -

 -

 x

 x

 u

 x

 x
u

 -

 -

 -

 x

 x

 u

 x

 x

u

 -

 -

 -

 x

 x

 u

 x

 x

1 2 1

1 2 1

b
h

S
H

LD
 S

h
ift

 L
e

ft
 D

o
ub

le
R

eg
is

te
r/

M
e

m
o

ry
 b

y
Im

m
e

d
ia

te
R

eg
is

te
r/

M
e

m
o

ry
 b

y
C

L
0

F

A
4

 [m
o

d
re

g
 r

/m
] #

0
F

A

5
 [m

o
d

re
g

 r
/m

]

u

 -

 -

 -

 x

 x

 u

 x

 x
4 5

4 5

b
h

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
 S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y

(C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

L
O

C
K

C
O

U
N

T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

d
at

a
+

 =
 8

-b
it

si
g

ne
d

 d
is

p
la

ce
m

e
n

t
x

=
 m

od
ifi

e
d

##

=
 im

m
e

di
a

te
 1

6
-b

it
da

ta
+

+
+

 =
 f

u
ll

si
g

n
ed

 d
is

p
la

ce
m

e
n

t (
16

,
32

 b
its

)
- =

 u
n

ch
an

g
e

d
##

=

 f
u

ll
im

m
e

di
a

te
 3

2
-b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6-26

CPU Instruction Set Summary

S
H

R
 S

hi
ft

R
ig

ht
 L

og
ic

a
l

R
e

g
is

te
r/

M
e

m
o

ry
 b

y
1

R
e

g
is

te
r/

M
e

m
o

ry
 b

y
C

L
R

e
g

is
te

r/
M

e
m

o
ry

 b
y

Im
m

e
d

ia
te

D

[0
0

0
w

] [
m

o
d

 1
01

 r
/m

]
D

[0

0
1

w
] [

m
o

d
 1

01
 r

/m
]

C

[0
00

w
] [

m
o

d
 1

01
 r

/m
] #

x

 -

 -

 -

 x

 x

 u

 x

 x
u

 -

 -

 -

 x

 x

 u

 x

 x

u

 -

 -

 -

 x

 x

 u

 x

 x

1 2 1

1 2 1

b
h

S
H

R
D

 S
hi

ft
R

ig
ht

 D
o

ub
le

R
e

g
is

te
r/

M
e

m
o

ry
 b

y
Im

m
e

d
ia

te
R

e
g

is
te

r/
M

e
m

o
ry

 b
y

C
L

0
F

A

C
 [

m
o

d
 r

e
g

 r
/m

]
#

0
F

A

D
 [m

o
d

 r
e

g
 r

/m
]

u

 -

 -

 -

 x

 x

 u

 x

 x
4 5

4 5

b
h

S
ID

T
 S

to
re

 ID
T

 R
e

g
is

te
r

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

0

1
[m

od
 0

01
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
4

4
b

,c
h

S
LD

T
 S

to
re

 L
D

T
 R

e
gi

st
e

r
T

o
R

e
gi

st
e

r/
M

em
o

ry
0

F

0
0

[m
od

 0
00

 r
/m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

1
a

h

S
M

IN
T

 S
o

ft
w

a
re

 S
M

M
 E

n
tr

y
0

F
 7

E
-

 -

 -

 -

 -

 -

 -

 -

 -

55
5

5
s

s

S
M

S
W

 S
to

re
 M

ac
h

in
e

 S
ta

tu
s

W
o

rd
0

F

0
1

[m
od

 1
00

 r
/m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

6
6

b
,c

h

S
T

C
 S

e
t C

ar
ry

 F
la

g
F

9
-

 -

 -

 -

 -

 -

 -

 -

 1

1
1

S
T

D
 S

e
t D

ir
ec

tio
n

 F
la

g
F

D
-

 1

 -

 -

 -

 -

 -

 -

 -

7
7

S
T

I
S

e
t I

n
te

rr
u

pt
 F

la
g

F
B

-

 -

 1

 -

 -

 -

 -

 -

 -
7

7
m

S
T

O
S

S
to

re
 S

tr
in

g
A

[1

0
1

w
]

-

 -

 -

 -

 -

 -

 -

 -

 -
2

2
b

h

S
T

R
 S

to
re

 T
as

k
R

eg
is

te
r

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

0

0
[m

od
 0

01
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
4

a
h

S
U

B
In

te
g

e
r

S
ub

tr
a

ct
R

e
g

is
te

r
to

 R
e

g
is

te
r

R
e

g
is

te
r

to
 M

e
m

o
ry

M
e

m
or

y
to

 R
e

gi
st

e
r

Im
m

e
d

ia
te

 to
 R

eg
is

te
r/

M
e

m
o

ry
Im

m
e

d
ia

te
 to

 A
cc

u
m

ul
a

to
r

(s
ho

rt
 f

or
m

)

2
 [

1
0

dw
]

[1
1

re
g

r/
m

]
2

 [
1

0
0w

]
[m

o
d

re
g

 r
/m

]
2

 [
1

0
1w

]
[m

o
d

re
g

 r
/m

]
8

 [
0

0
sw

] [
m

o
d

 1
01

 r
/m

]
#

##
2

 [
1

1
0w

]
#

##

x

 -

 -

 -

 x

 x

 x

 x

 x
1 1 1 1 1

1 1 1 1 1

b
h

S
V

D
C

 S
a

ve
 S

e
g

m
en

t
R

e
g

is
te

r
a

nd
 D

e
sc

ri
p

to
r

0
F

7

8
[m

od
 s

re
g

3
r/

m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
12

1
2

s
s

S
V

LD
T

 S
a

ve
 L

D
T

R
 a

n
d

 D
e

sc
ri
pt

or
0

F

7
A

 [m
o

d
00

0
 r

/m
]

-

 -

 -

 -

 -

 -

 -

 -

 -
12

1
2

s
s

S
V

T
S

S
av

e
 T

S
R

 a
nd

 D
e

sc
ri
p

to
r

0
F

7

C
 [m

o
d

00
0

 r
/m

]
-

 -

 -

 -

 -

 -

 -

 -

 -

14
1

4
s

s

T
E

S
T

 T
e

st
 B

its
R

e
g

is
te

r/
M

e
m

o
ry

 a
n

d
 R

e
g

is
te

r
Im

m
e

d
ia

te
 D

a
ta

 a
n

d
R

e
gi

st
e

r/
M

em
o

ry
Im

m
e

d
ia

te
 D

a
ta

 a
n

d
A

cc
u

m
u

la
to

r

8
 [0

10
w

]
[m

od
 r

e
g

 r
/m

]
F

 [0
11

w
] [

m
o

d
 0

00
 r

/m
] #

##
A

 [1
0

0w
] #

##

0

 -

 -

 -

 x

 x

 u

 x

 0
1 1 1

1 1 1

b
h

V
E

R
R

 V
e

ri
fy

 R
e

a
d

A
cc

e
ss

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

0

0
[m

od
 1

00
 r

/m
]

-

 -

 -

 -

 -

 x

 -

 -

 -
7

a
g

,h
,j,

p

V
E

R
W

 V
er

ify
 W

ri
te

 A
cc

e
ss

T
o

R
e

gi
st

e
r/

M
em

o
ry

0
F

0

0
[m

od
 1

01
 r

/m
]

-

 -

 -

 -

 -

 x

 -

 -

 -
7

a
g

,h
,j,

p

W
A

IT
 W

a
it

U
n

til
 F

P
U

 N
ot

 B
u

sy
9

B
-

 -

 -

 -

 -

 -

 -

 -

 -

5
5

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y (

C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

LO
C

K
C

O
U

N
T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

da
ta

+

=

 8
-b

it
si

g
ne

d
 d

is
p

la
ce

m
e

n
t

x
=

 m
od

ifi
e

d
##

=

 im
m

e
di

a
te

 1
6

-b
it

d
a

ta
+

+
+

 =
 f

ul
l s

ig
ne

d
 d

is
p

la
ce

m
e

n
t (

16
,

32
 b

its
)

- =
 u

n
ch

a
n

g
ed

##

=
 f

u
ll

im
m

ed
ia

te
 3

2-
b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6

6-27

CPU Instruction Set Summary

In
st

ru
ct

io
n

N
ot

es
 fo

r
In

st
ru

ct
io

n
S

et
 S

um
m

ar
y

N
ot

es
 a

 th
ro

ug
h

c
ap

pl
y

to
 R

ea
l A

dd
re

ss
 M

od
e

on
ly :

a
.

T
h

is
 is

 a
 P

ro
te

ct
ed

 M
o

de
 in

st
ru

ct
io

n
.

A
tte

m
p

te
d

ex
e

cu
tio

n
 in

 R
e

a
l M

od
e

 w
ill

 r
e

su
lt

in
 e

xc
e

p
tio

n
6

(in
va

lid
 o

p
-c

o
de

).
b

.
E

xc
e

pt
io

n
 1

3
 fa

u
lt

(g
e

n
er

al
 p

ro
te

ct
io

n
)

w
ill

 o
cc

ur
 in

 R
e

a
l M

o
de

 if
 a

n
 o

pe
ra

n
d

re
fe

re
n

ce
 is

 m
a

d
e

 th
a

t p
a

rt
ia

lly
 o

r
fu

lly
 e

xt
e

nd
s

b
e

yo
n

d
th

e
 m

ax
im

u
m

 C
S

, D
S

,
E

S
, F

S
,

o
r

G
S

 s
e

gm
e

n
t

lim
it

(F
F

F
F

H
).

 E
xc

ep
tio

n
 1

2
fa

u
lt

(s
ta

ck
 s

e
gm

en
t l

im
it

vi
ol

at
io

n
 o

r
n

ot
 p

re
se

n
t)

 w
ill

 o
cc

ur
 in

 R
ea

l M
od

e
 if

 a
n

op
er

an
d

 r
e

fe
re

nc
e

is
 m

a
de

 th
a

t p
a

rt
ia

lly
 o

r
fu

lly
 e

xt
e

nd
s

be
yo

nd
 th

e
m

ax
i-

m
um

 S
S

 li
m

it.
c.

T
h

is
 in

st
ru

ct
io

n
 m

a
y

b
e

 e
xe

cu
te

d
in

 R
e

a
l M

o
de

.
In

 R
e

a
l M

od
e

, i
ts

 p
u

rp
o

se
 is

 p
ri

m
ar

ily
 to

 in
iti

a
liz

e
 th

e
 C

P
U

 fo
r

P
ro

te
ct

e
d

M
o

d
e.

d
.

 -

N
ot

es
 e

 th
ro

ug
h

g
ap

pl
y

to
 R

ea
l A

dd
re

ss
 M

od
e

an
d

P
ro

te
ct

ed
 V

irt
ua

l A
dd

re
ss

 M
od

e:
e

.
A

n
 e

xc
e

p
tio

n
 m

a
y

oc
cu

r,
 d

e
pe

n
di

ng
 o

n
 th

e
 v

al
ue

 o
f

th
e

op
e

ra
nd

.
f.

LO
C

K

is
 a

u
to

m
a

tic
al

ly
 a

ss
er

te
d,

 r
e

ga
rd

le
ss

 o
f t

he
 p

re
se

nc
e

 o
r

a
b

se
nc

e
 o

f t
h

e
 L

O
C

K
 p

re
fix

.
g

.
LO

C
K

 is

 a
ss

e
rt

e
d

 d
ur

in
g

 d
e

sc
rip

to
r

ta
b

le
 a

cc
es

se
s.

N
ot

es
 h

 t
hr

ou
gh

 r
 a

pp
ly

 to
 P

ro
te

ct
ed

 V
irt

ua
l A

dd
re

ss
 M

od
e

on
ly

:
h

.
E

xc
e

pt
io

n
 1

3
 fa

u
lt

w
ill

 o
cc

ur
 if

 t
h

e
m

em
o

ry
 o

pe
ra

n
d

in
 C

S
, D

S
,

E
S

,
F

S
,

or
 G

S
 c

an
n

ot
 b

e
us

e
d

 d
ue

 t
o

e
ith

e
r

a
 s

e
g

m
e

n
t l

im
it

vi
ol

at
io

n
or

 a
n

 a
cc

e
ss

 r
ig

h
ts

 v
io

la
tio

n
. I

f
a

 s
ta

ck
 li

m
it

is

vi
o

la
te

d,
 a

n
e

xc
e

pt
io

n
12

 o
cc

u
rs

.
i.

F
o

r
se

g
m

e
nt

 lo
a

d
op

e
ra

tio
ns

,
th

e
 C

P
L,

 R
P

L,
 a

n
d

 D
P

L
m

u
st

 a
g

re
e

 w
ith

 t
he

 p
ri

vi
le

ge
 r

u
le

s
to

 a
vo

id
 a

n
e

xc
e

pt
io

n
13

 fa
u

lt.
 T

h
e

 s
e

g
m

e
n

t’s
 d

e
sc

rip
to

r
m

u
st

 in
d

ic
a

te
 “

p
re

se
n

t”
 o

r
e

xc
ep

-
tio

n
 1

1
 (

C
S

, D
S

,
E

S
, F

S
,

G
S

 n
o

t
pr

e
se

n
t)

.
If

th
e

 S
S

 r
e

gi
st

er
 is

 lo
a

d
e

d
an

d
 a

 s
ta

ck
 s

e
gm

e
n

t n
o

t p
re

se
nt

 is
 d

e
te

ct
e

d,
 a

n
e

xc
e

pt
io

n
12

 o
cc

ur
s.

W
B

IN
V

D
 W

ri
te

-B
ac

k
a

n
d

In
va

lid
a

te
 C

a
ch

e
0

F

0
9

-

 -

 -

 -

 -

 -

 -

 -

 -
15

1

5
t

t

X
A

D
D

 E
xc

ha
n

ge
 a

n
d

 A
d

d
R

eg
is

te
r1

,
R

e
gi

st
e

r2
M

e
m

or
y,

 R
e

gi
st

e
r

0
F

 C
[0

00
w

] [
1

1
 r

e
g

2
re

g
1

]
0

F
 C

[0
00

w
] [

m
o

d
 r

e
g

 r
/m

]

x

 -

 -

 -

 x

 x

 x

 x

 x
2 2

2 2

X
C

H
G

 E
xc

ha
ng

e
R

eg
is

te
r/

M
e

m
o

ry
 w

ith
 R

e
g

is
te

r
R

eg
is

te
r

w
ith

 A
cc

u
m

u
la

to
r

8
[0

1
1

w
] [

m
o

d
 r

e
g

r/
m

]
9

[0
 r

e
g]

-

 -

 -

 -

 -

 -

 -

 -

 -
2 2

2 2

b
,f

f,
h

X
L

A
T

 T
ra

n
sl

a
te

 B
yt

e
D

7
-

 -

 -

 -

 -

 -

 -

 -

 -

4
4

h

X
O

R
 B

o
ol

ea
n

 E
xc

lu
si

ve
 O

R
R

eg
is

te
r

to
 R

e
g

is
te

r
R

eg
is

te
r

to
 M

em
o

ry
M

e
m

or
y

to
 R

e
gi

st
e

r
Im

m
e

d
ia

te
 to

 R
eg

is
te

r/
M

e
m

o
ry

Im
m

e
d

ia
te

 to
 A

cc
u

m
ul

a
to

r
(s

ho
rt

 f
or

m
)

3
 [0

0d
w

]
[1

1
 r

e
g

 r
/m

]
3

 [0
00

w
]

[m
od

 r
e

g
 r

/m
]

3
 [0

01
w

]
[m

od
 r

e
g

 r
/m

]
8

 [0
0s

w
]

[m
o

d
11

0
 r

/m
]

##
#

3
 [0

10
w

]
##

#

0

 -

 -

 -

 x

 x

 u

 x

 0
1 1 1 1 1

1 1 1 1 1

b
h

T
a

b
le

 6
-2

0
. 6

x8
6

C
P

U
 In

st
ru

ct
io

n
 S

et
 C

lo
ck

 C
ou

n
t S

um
m

ar
y

(C
o

n
tin

u
ed

)

IN
S

T
R

U
C

T
IO

N
O

P
C

O
D

E
F

LA
G

S
R

E
A

L
M

O
D

E
 C

L
O

C
K

C
O

U
N

T

P
R

O
T

E
C

T
E

D
M

O
D

E
 C

LO
C

K
C

O
U

N
T

N
O

T
E

S

O
F

 D
F

 IF
 T

F
 S

F
 Z

F
 A

F
 P

F
 C

F
R

eg
/

C
ac

he
 H

it
R

eg
/

C
ac

he
 H

it
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

 =
 im

m
e

di
a

te
 8

-b
it

d
at

a
+

 =
 8

-b
it

si
g

ne
d

 d
is

p
la

ce
m

e
n

t
x

=
 m

od
ifi

e
d

##

=
 im

m
e

di
a

te
 1

6
-b

it
da

ta
+

+
+

 =
 f

u
ll

si
g

n
ed

 d
is

p
la

ce
m

e
n

t (
16

,
32

 b
its

)
- =

 u
n

ch
an

g
e

d
##

=

 f
u

ll
im

m
e

di
a

te
 3

2
-b

it
d

a
ta

 (
8,

 1
6

,
32

 b
its

)
u

=
 u

nd
e

fin
e

d

6-28

CPU Instruction Set Summary

C
on

tin
ue

d
on

 n
ex

t p
ag

e.
..

j.
A

ll
se

gm
e

n
t d

e
sc

ri
pt

or
 a

cc
e

ss
e

s
in

 th
e

 G
D

T
 o

r
LD

T
 m

a
d

e
by

 t
hi

s
in

st
ru

ct
io

n
w

ill
 a

ut
om

a
tic

a
lly

 a
ss

e
rt

 L
O

C
K

#
 t

o
m

ai
nt

ai
n

de
sc

rip
to

r
in

te
g

rit
y

in
 m

ul
tip

ro
ce

ss
o

r
sy

st
e

m
s.

k.
JM

P
,

C
A

LL
, I

N
T

, R
E

T
,

a
n

d
IR

E
T

 in
st

ru
ct

io
ns

 r
e

fe
rr

in
g

to
 a

no
th

e
r

co
de

 s
e

g
m

en
t

w
ill

 c
au

se
 a

n
 e

xc
e

p
tio

n
13

,
if

a
n

 a
p

pl
ic

ab
le

 p
ri

vi
le

g
e

 r
u

le
 is

 v
io

la
te

d.
l.

A
n

 e
xc

e
p

tio
n

13
 f

au
lt

o
cc

u
rs

 if
 C

P
L

is
 g

re
a

te
r

th
an

 0
 (

0
 is

 th
e

 m
o

st
 p

riv
ile

g
e

d
le

ve
l).

m
.

A
n

 e
xc

e
p

tio
n

13
 f

au
lt

o
cc

u
rs

 if
 C

P
L

is
 g

re
a

te
r

th
an

 IO
P

L.
n

.
T

h
e

 IF
 b

it
of

 t
h

e
fla

g
re

gi
st

e
r

is
 n

o
t u

p
da

te
d

 if
 C

P
L

is
 g

re
a

te
r

th
an

 I
O

P
L.

 T
he

 IO
P

L
an

d
 V

M
 fi

e
ld

s
o

f
th

e
 f

la
g

re
gi

st
e

r
a

re
 u

pd
a

te
d

on
ly

 if
 C

P
L

=
 0

.
o

.
T

h
e

 P
E

 b
it

of
 th

e
 M

S
W

 (
C

R
0

)
ca

n
no

t
be

 r
e

se
t

by
 t

hi
s

in
st

ru
ct

io
n.

 U
se

 M
O

V
 in

to
 C

R
O

 if
 d

e
si

ri
ng

 t
o

re
se

t
th

e
 P

E
 b

it.
p

.
A

n
y

vi
ol

a
tio

n
 o

f p
ri

vi
le

g
e

 r
u

le
s

a
s

a
p

p
ly

 t
o

 th
e

 s
e

le
ct

o
r

o
pe

ra
n

d
do

e
s

n
ot

 c
a

us
e

 a
 P

ro
te

ct
io

n
e

xc
e

pt
io

n,
 r

a
th

e
r,

 t
he

 z
e

ro
 fl

a
g

 is
 c

le
ar

e
d

.
q

.
If

th
e

 c
o

p
ro

ce
ss

o
r’s

 m
em

o
ry

 o
p

e
ra

nd
 v

io
la

te
s

a
 s

e
gm

e
n

t l
im

it
or

 s
e

g
m

en
t a

cc
es

s
ri

gh
ts

, a
n

 e
xc

e
pt

io
n

1
3

fa
u

lt
w

ill
 o

cc
u

r
b

ef
o

re
 th

e
 E

S
C

 in
st

ru
ct

io
n

 is
 e

xe
cu

te
d.

 A
n

e
xc

e
p

tio
n

 1
2

 fa
ul

t
w

ill
 o

cc
u

r
if

th
e

 s
ta

ck
 li

m
it

is
 v

io
la

te
d

 b
y

th
e

 o
pe

ra
n

d’
s

st
a

rt
in

g
 a

d
dr

e
ss

.
r.

T
h

e
 d

e
st

in
at

io
n

of
 a

 J
M

P
,

C
A

LL
, I

N
T

, R
E

T
,

o
r

IR
E

T
 m

u
st

 b
e

 in
 t

he
 d

e
fin

e
d

 li
m

it
o

f a
 c

o
de

 s
eg

m
e

nt
 o

r
a

n
e

xc
e

p
tio

n
13

 fa
u

lt
w

ill
 o

cc
u

r.

N
ot

e
s

ap
pl

ie
s

to
 C

yr
ix

 s
pe

ci
fic

 S
M

M
 in

st
ru

ct
io

ns
:

s.
A

ll
m

e
m

o
ry

 a
cc

es
se

s
to

 S
M

M
 s

pa
ce

 a
re

 n
on

-c
a

ch
e

a
bl

e.
 A

n
 in

va
lid

 o
pc

o
de

 e
xc

e
pt

io
n

 6
 o

cc
ur

s
un

le
ss

 S
M

I
is

 e
n

a
bl

ed
 a

n
d

A
R

R
3

 s
iz

e
 >

 0
,

a
nd

 C
P

L
=

 0
 a

nd
 [S

M
A

C
 is

 s
et

 o
r

if
in

 a
n

S
M

I h
a

n
dl

er
].

N
ot

e
t a

pp
lie

s
to

 c
ac

he
 in

va
lid

at
io

n
in

st
ru

ct
io

ns
 w

ith
 th

e
ca

ch
e

op
er

at
in

g
in

 w
rit

e-
ba

ck
 m

od
e:

t.
T

h
e

 to
ta

l c
lo

ck
 c

o
un

t i
s

th
e

 c
lo

ck
 c

o
u

nt
 s

h
ow

n
 p

lu
s

th
e

 n
um

b
e

r
o

f c
lo

ck
s

re
qu

ire
d

 to
 w

ri
te

 a
ll

“m
od

ifi
e

d
”

ca
ch

e
 li

ne
s

to
 e

xt
e

rn
a

l m
e

m
o

ry
.

6-29

FPU Clock Counts 6
6.5 FPU Clock Counts

The CPU is functionally divided into the FPU,
and the integer unit. The FPU processes float-
ing point instructions only and does so in paral-
lel with the integer unit.

For example, when the integer unit detects a
floating point instruction without memory
operands, after two clock cycles the instruction
passes to the FPU for execution. The integer
unit continues to execute instructions while the
FPU executes the floating point instruction. If

another FPU instruction is encountered, the
second FPU instruction is placed in the FPU
queue. Up to four FPU instructions can be
queued. In the event of an FPU exception,
while other FPU instructions are queued, the
state of the CPU is saved to ensure recovery.

6.5.1 FPU Clock Count Table

The clock counts for the FPU instructions are
listed in Table 6-19 (Page 13). The
abbreviations used in this table are listed in
Table 6-21.

Table 6-21. FPU Clock Count Table Abbreviations

ABBREVIATION MEANING

n Stack register number

TOS Top of stack register pointed to by SSS in the status register.

ST(1) FPU register next to TOS

ST(n) A specific FPU register, relative to TOS

M.WI 16-bit integer operand from memory

M.SI 32-bit integer operand from memory

M.LI 64-bit integer operand from memory

M.SR 32-bit real operand from memory

M.DR 64-bit real operand from memory

M.XR 80-bit real operand from memory

M.BCD 18-digit BCD integer operand from memory

CC FPU condition code

Env Regs
Status, Mode Control and Tag Registers, Instruction Pointer and Operand
Pointer

6-30

FPU Clock Counts

T

a
bl

e
 6

-2
2.

 6
x8

6
F

P
U

 I
ns

tr
uc

tio
n

S
et

 S
um

m
a

ry

F
P

U
 IN

S
T

R
U

C
T

IO
N

O
P

 C
O

D
E

O
P

E
R

A
T

IO
N

C
LO

C
K

 C
O

U
N

T
N

O
T

E
S

F
2X

M
1

 F
u

n
ct

io
n

 E
va

lu
a

tio
n

 2x -1
F

A
B

S
 F

lo
a

tin
g

 A
b

so
lu

te
 V

a
lu

e
D

9
F

0
D

9
E

1
T

O
S

T
O

S
<--

<--

2T

O
S -

1
| T

O
S

 |
92

 -
 1

08
2

S
e

e
 N

ot
e

2

F
A

D
D

 F
lo

a
tin

g
 P

o
in

t A
d

d

T
op

 o
f

S
ta

ck

80
-b

it
R

e
gi

st
e

r
64

-b
it

R
e

a
l

32
-b

it
R

e
a

l
F

A
D

D
P

 F
lo

a
tin

g
 P

o
in

t
A

d
d

,
P

o
p

F
IA

D
D

 F
lo

a
tin

g
 P

o
in

t
In

te
g

e
r

A
d

d
32

-b
it

in
te

ge
r

16
-b

it
in

te
ge

r

D
C

[1
10

0
0

 n
]

D
8

[1
10

0
0

 n
]

D
C

[m
o

d
00

0
r/

m
]

D
8

[m
o

d
00

0
r/

m
]

D
E

[1
10

0
0

 n
]

D
A

[m
o

d
00

0
r/

m
]

D
E

[m
o

d
00

0
r/

m
]

S
T

(n
)

T
O

S
T

O
S

T
O

S
S

T
(n

)

T
O

S
T

O
S

<--

<--

<--

<--

<--

<--

<--

S
T

(n
)

+
 T

O
S

T
O

S
 +

 S
T

(n
)

T
O

S
 +

 M
.D

R
T

O
S

 +
 M

.S
R

S
T

(n
)

+
 T

O
S

; t
he

n
p

op
 T

O
S

T
O

S
 +

 M
.S

I
T

O
S

 +
 M

.W
I

4
 -

 9
4

 -
 9

4
 -

 9
4

 -
 9

4
 -

 9

8
-

14
8

-
14

F
C

H
S

 F
lo

a
tin

g
 C

h
a

n
g

e
 S

ig
n

D
9

E
0

T
O

S
<--

-
T

O
S

2

F
C

L
E

X
 C

le
a

r
E

xc
ep

tio
n

s
F

N
C

LE
X

 C
le

a
r

E
xc

e
p

tio
n

s
(9

B
)D

B
 E

2
D

B
 E

2
W

a
it

th
e

n
C

le
a

r
E

xc
e

pt
io

ns
C

le
a

r
E

xc
ep

tio
ns

5 3

F
C

O
M

 F
lo

a
tin

g
 P

o
in

t
C

o
m

p
a

re

80
-b

it
R

e
gi

st
e

r
64

-b
it

R
e

a
l

32
-b

it
R

e
a

l
F

C
O

M
P

 F
lo

a
tin

g
 P

o
in

t
C

o
m

p
a

re
,
P

o
p

80

-b
it

R
e

gi
st

e
r

64
-b

it
R

e
a

l
32

-b
it

R
e

a
l

F
C

O
M

P
P

 F
lo

a
tin

g
 P

o
in

t
C

o
m

p
a

re
,

P
o

p
T

w
o

 S
ta

ck
 E

le
m

e
n

ts
F

IC
O

M
 F

lo
a

tin
g

 P
o

in
t

C
o

m
p

a
re

32

-b
it

in
te

ge
r

16
-b

it
in

te
ge

r
F

IC
O

M
P

 F
lo

a
tin

g
 P

o
in

t
C

o
m

p
a

re

32
-b

it
in

te
ge

r
16

-b
it

in
te

ge
r

D
8

 [1
10

1
0

 n
]

D
C

 [m
od

 0
10

 r
/m

]
D

8
 [m

od
 0

10
 r

/m
]

D
8

 [1
10

1
1

 n
]

D
C

 [m
od

 0
11

 r
/m

]
D

8
 [m

od
 0

11
 r

/m
]

D
E

 D
9

D
A

 [m
od

 0
10

 r
/m

]
D

E
 [m

o
d

01
0

r/
m

]

D
A

 [m
od

 0
11

 r
/m

]
D

E
 [m

o
d

01
1

r/
m

]

C
C

 s
e

t
by

 T
O

S
 -

 S
T

(n
)

C
C

 s
e

t
by

 T
O

S
 -

 M
.D

R
C

C
 s

e
t

by
 T

O
S

 -
 M

.S
R

C
C

 s
e

t
by

 T
O

S
 -

 S
T

(n
);

 t
he

n
po

p
T

O
S

C
C

 s
e

t
by

 T
O

S
 -

 M
.D

R
;

th
en

 p
op

 T
O

S
C

C
 s

e
t

by
 T

O
S

 -
 M

.S
R

;
 th

en
 p

op
 T

O
S

C
C

 s
e

t
by

 T
O

S
 -

 S
T

(1
);

 t
he

n
po

p
T

O
S

 a
n

d
S

T
(1

)

C
C

 s
e

t
by

 T
O

S
 -

 M
.W

I
C

C
 s

e
t

by
 T

O
S

 -
 M

.S
I

C
C

 s
e

t
by

 T
O

S
 -

 M
.W

I;
 t

he
n

po
p

T
O

S
C

C
 s

e
t

by
 T

O
S

 -
 M

.S
I;

th
e

n
p

op
 T

O
S

4 4 4 4 4 4 4

9
-

10
9

-
10

9
-

10
9

-
10

F
C

O
S

 F
u

n
ct

io
n

 E
va

lu
a

tio
n

:
C

o
s(

x)
D

9
 F

F
T

O
S

<--

C

O
S

(T
O

S
)

92
 -

 1
41

S
e

e
 N

ot
e

1

F
D

E
C

S
T

P
 D

ec
re

m
e

n
t

S
ta

ck
 P

o
in

te
r

D
9

 F
6

D
ec

re
m

e
nt

 t
op

 o
f s

ta
ck

 p
oi

nt
e

r
4

F
D

IV
 F

lo
a

tin
g

 P
o

in
t

D
iv

id
e

T
op

 o
f

S
ta

ck
80

-b
it

R
e

gi
st

e
r

64
-b

it
R

e
a

l
32

-b
it

R
e

a
l

F
D

IV
P

 F
lo

a
tin

g
 P

o
in

t
D

iv
id

e
,
P

o
p

F
D

IV
R

 F
lo

a
tin

g
 P

o
in

t
D

iv
id

e
 R

ev
e

rs
e

d
T

op
 o

f
S

ta
ck

80
-b

it
R

e
gi

st
e

r
64

-b
it

R
e

a
l

32
-b

it
R

e
a

l

D
C

[1
11

1
1

 n
]

D
8

[1
11

1
0

 n
]

D
C

[m
o

d
11

0
r/

m
]

D
8

[m
o

d
11

0
r/

m
]

D
E

[1
11

1
1

 n
]

D
C

[1
11

1
0

 n
]

D
8

[1
11

1
1

 n
]

D
C

[m
o

d
11

1
r/

m
]

D
8

[m
o

d
11

1
r/

m
]

S
T

(n
)

T
O

S
T

O
S

T
O

S
S

T
(n

)

T
O

S
S

T
(n

)
T

O
S

T
O

S

<--

<--

<--

<--

<--

<--

<--

<--

<--

S
T

(n
)

/
T

O
S

T
O

S
 /

 S
T

(n
)

T
O

S
 /

 M
.D

R
T

O
S

 /
 M

.S
R

S
T

(n
)

/
T

O
S

;
th

e
n

p
op

 T
O

S

S
T

(n
)

/
T

O
S

T
O

S
 /

 S
T

(n
)

M
.D

R
 /

T
O

S
M

.S
R

 /
T

O
S

24
 -

 3
4

24
 -

 3
4

24
 -

 3
4

24
 -

 3
4

24
 -

 3
4

24
 -

 3
4

24
 -

 3
4

24
 -

 3
4

24
 -

 3
4

6

6-31

FPU Clock Counts

F
D

IV
R

P
 F

lo
a

tin
g

 P
o

in
t

D
iv

id
e

 R
ev

e
rs

e
d, P

op
F

ID
IV

 F
lo

a
tin

g
 P

o
in

t
In

te
g

e
r

D
iv

id
e

32
-b

it
In

te
ge

r
16

-b
it

In
te

ge
r

F
ID

IV
R

 F
lo

a
tin

g
 P

o
in

t I
n

te
g

e
r

D
iv

id
e

R
ev

e
rs

e
d

32

-b
it

In
te

ge
r

16
-b

it
In

te
ge

r

D
E

[1
11

1
0

 n
]

D
A

[m
od

 1
10

 r
/m

]
D

E
[m

od
 1

10
 r

/m
]

D
A

[m
od

 1
11

 r
/m

]
D

E
[m

od
 1

11
 r

/m
]

S
T

(n
)

T
O

S
T

O
S

T
O

S
T

O
S

<--

<--

<--

<--

<--

T
O

S
 /

 S
T

(n
);

 t
he

n
po

p
T

O
S

T
O

S
 /

 M
.S

I
T

O
S

 /
 M

.W
I

M
.S

I
/

T
O

S
M

.W
I /

 T
O

S

2
4

-
34

3
4

-
38

3
3

-
38

3
4

-
38

3
3

-
38

F
F

R
E

E
 F

re
e

 F
lo

a
tin

g
 P

o
in

t
R

eg
is

te
r

D
D

[1
10

0
0

 n
]

T
A

G
(n

)
<--

E

m
pt

y
3

F
IN

C
S

T
P

 In
cr

e
m

e
n

t
S

ta
ck

 P
o

in
te

r
F

IN
IT

 In
iti

a
liz

e
F

P
U

F
N

IN
IT

 I
n

iti
a

liz
e

 F
P

U

D
9

F
7

(9
B

)D
B

 E
3

D
B

 E
3

In
cr

e
m

e
nt

 t
op

 o
f s

ta
ck

 p
oi

nt
er

W

a
it

th
en

 in
iti

a
liz

e
In

iti
a

liz
e

2 8 6

F
LD

 L
o

a
d

 D
a

ta
 t

o
 F

P
U

 R
e

g
.

T
op

 o
f S

ta
ck

64
-b

it
R

ea
l

32
-b

it
R

ea
l

F
B

L
D

 L
o

a
d

 P
ac

ke
d

 B
C

D
 D

a
ta

 t
o

 F
P

U
 R

eg
.

F
IL

D
 L

o
a

d
 I

n
te

g
er

 D
a

ta
 t

o
 F

P
U

 R
e

g
.

64
-b

it
In

te
ge

r
32

-b
it

In
te

ge
r

16
-b

it
In

te
ge

r

D
9

[1
10

0
0

 n
]

D
D

[m
od

 0
00

 r
/m

]
D

9
[m

od
 0

00
 r

/m
]

D
F

[m
od

 1
00

 r
/m

]

D
F

[m
od

 1
01

 r
/m

]
D

B
[m

od
 0

00
 r

/m
]

D
F

[m
od

 0
00

 r
/m

]

P
us

h
 S

T
(n

)
on

to
 sta

ck
P

us
h

 M
.D

R
 o

n
to

 s
ta

ck
P

us
h

 M
.S

R
 o

n
to

 s
ta

ck
P

us
h

 M
.B

C
D

on

to
 s

ta
ck

P
us

h
 M

.L
I o

nt
o

st
a

ck
P

us
h

 M
.S

I o
nt

o
st

ac
k

P
us

h
 M

.W
I

on
to

 s
ta

ck

2 2 2
4

1
-

45

4
-

8
4

-
6

3
-

6

F
LD

1
 L

o
a

d
 F

lo
a

tin
g

 C
o

n
st

.=
 1

.0
D

9
E

8
P

us
h

 1
.0

 o
nt

o
st

a
ck

4

F
LD

C
W

 L
o

a
d

 F
P

U
 M

o
d

e
 C

o
n

tr
o

l R
e

g
is

te
r

F
LD

E
N

V
 L

o
a

d
 F

P
U

 E
n

vi
ro

n
m

e
n

t
D

9
[m

od
 1

01
 r

/m
]

D
9

[m
od

 1
00

 r
/m

]
C

tl
W

or
d

E
nv

 R
e

gs
<--

<--

M

e
m

or
y

M
e

m
or

y
4 30

F
LD

L2
E

 L
o

a
d

 F
lo

a
tin

g
 C

o
n

st
.=

 L
o

g 2(
e

)
F

LD
L2

T
 L

o
a

d
 F

lo
a

tin
g

 C
o

n
st

.=
 L

o
g 2(

1
0

)
F

LD
LG

2
 L

o
a

d
 F

lo
a

tin
g

 C
o

n
st

.=
 L

o
g 10

(2
)

F
LD

LN
2

 L
o

a
d

 F
lo

a
tin

g
 C

o
n

st
.=

 L
n

(2
)

F
LD

P
I

Lo
a

d
 F

lo
a

tin
g

 C
o

n
st

.=
 π

F
LD

Z
 L

o
a

d
 F

lo
a

tin
g

 C
o

n
st

.=
 0

.0

D
9

E
A

D
9

E
9

D
9

E
C

D
9

E
D

D
9

E
B

D
9

E
E

P
us

h
 L

og
2(

e)
 o

nt
o

st
a

ck
P

us
h

 L
og

2(
10

)
on

to
 s

ta
ck

P
us

h
 L

og
1

0(
2

)
on

to
 s

ta
ck

P
us

h
 L

og
e(

2)
 o

nt
o

st
ac

k
P

us
h

 π
on

to
 s

ta
ck

P
us

h
 0

.0
 o

nt
o

st
a

ck

4 4 4 4 4 4

F
M

U
L

 F
lo

a
tin

g
 P

o
in

t
M

u
lti

p
ly

T
op

 o
f S

ta
ck

80
-b

it
R

eg
is

te
r

64
-b

it
R

ea
l

32
-b

it
R

ea
l

F
M

U
LP

 F
lo

a
tin

g
 P

o
in

t M
u

ltip
ly

 &
 P

op
F

IM
U

L
F

lo
a

tin
g

 P
o

in
t

In
te

g
e

r
M

u
lti

p
ly

32
-b

it
In

te
ge

r
16

-b
it

In
te

ge
r

D
C

[1
10

0
1

 n
]

D
8

[1
10

0
1

 n
]

D
C

[m
od

 0
01

 r
/m

]
D

8
[m

od
 0

01
 r

/m
]

D
E

[1
10

0
1

 n
]

D
A

[m
od

 0
01

 r
/m

]
D

E
[m

od
 0

01
 r

/m
]

S
T

(n
)

T
O

S
T

O
S

T
O

S
S

T
(n

)

T
O

S
T

O
S

<--

<--

<--

<--

<--

<--

<--

S
T

(n
) ×

 T
O

S
T

O
S

 ×
 S

T
(n

)
T

O
S

×
M

.D
R

T
O

S
 ×

 M
.S

R
S

T
(n

) ×
 T

O
S

;
 t

he
n

p
op

 T
O

S

T
O

S
 ×

 M
.S

I
T

O
S

 ×
 M

.W
I

4
-

9
4

-
9

4
-

8
4

-
6

4
-

9

9
 -

 1
1

8
 -

 1
0

F
N

O
P

 N
o

 O
p

e
ra

tio
n

D
9

D
0

N
o

O
pe

ra
tio

n
2

T
a

bl
e

 6
-2

2.
 6

x8
6

F
P

U
 In

st
ru

ct
io

n
S

et
 S

um
m

ar
y

 (
C

on
tin

ue
d)

F
P

U
 IN

S
T

R
U

C
T

IO
N

O
P

 C
O

D
E

O
P

E
R

A
T

IO
N

C
LO

C
K

 C
O

U
N

T
N

O
T

E
S

6-32

FPU Clock Counts

F
P

A
T

A
N

 F
u

n
ct

io
n

 E
va

l:
T

a
n-1

(y
/x

)
F

P
R

E
M

 F
lo

a
tin

g
 P

o
in

t R
e

m
a

in
d

e
r

F
P

R
E

M
1

F
lo

a
tin

g
 P

o
in

t
R

e
m

a
in

d
e

r
IE

E
E

F
P

T
A

N
 F

u
n

ct
io

n
 E

va
l:

T
a

n
(x

)
F

R
N

D
IN

T
 R

o
u

n
d

 to
 I
n

te
g

er

D
9

F
3

D
9

F
8

D
9

F
5

D
9

F
2

D
9

F
C

S
T

(1
)

T
O

S
T

O
S

T
O

S
T

O
S

<--

<--

<--

<--

<--

A
T

A
N

[S
T

(1
)

/
T

O
S

];
 t

he
n

p
op

 T
O

S
R

e
m

[T
O

S
 /

 S
T

(1
)]

R
e

m
[T

O
S

 /
 S

T
(1

)]
T

A
N

(T
O

S
);

 t
he

n
pu

sh
 1

.0
 o

nt
o

st
a

ck

R
o

un
d(

T
O

S
)

97
 -

 1
61

8
2

-
91

8
2

-
91

11
7

-
12

9
1

0
-

20

S
ee

 N
ot

e
 3

S
ee

 N
ot

e
 1

F
R

S
T

O
R

 L
o

a
d

 F
P

U
 E

n
vi

ro
n

m
e

n
t

a
n

d
 R

eg
.

F
S

A
V

E
 S

a
ve

 F
P

U
 E

n
vi

ro
n

m
e

n
t

a
n

d
 R

eg
F

N
S

A
V

E
 S

a
ve

 F
P

U
 E

n
vi

ro
n

m
e

n
t

a
n

d
 R

e
g

D
D

[m
od

 1
00

 r
/m

]
(9

B
)D

D
[m

od
 1

10
 r

/m
]

D
D

[m
od

 1
10

 r
/m

]

R
es

to
re

 s
ta

te
.

W
a

it
th

en
 s

a
ve

 s
ta

te
.

S
a

ve
 s

ta
te

.

5
6

-
72

5
7

-
67

5
5

-
65

F
S

C
A

LE
 F

lo
a

tin
g

 M
u

lti
p

ly
 b

y
2n

F
S

IN
 F

u
n

ct
io

n
 E

va
lu

a
tio

n
:

S
in

(x
)

D
9

F
D

D
9

F
E

T
O

S
T

O
S

<--

<--

T
O

S
 ×

 2
(S

T
(1

))

S
IN

(T
O

S
)

7
 -

 1
4

76
 -

 1
40

S
ee

 N
ot

e
 1

F
S

IN
C

O
S

 F
u

n
ct

io
n

 E
va

l.:
 S

in
(x

)&
 C

o
s(

x)

D
9

F
B

te
m

p
T

O
S

<--

<--

T
O

S
;

S
IN

(t
e

m
p)

;
th

e
n

14
5

-
16

1
S

ee
 N

ot
e

 1

pu
sh

 C
O

S
(t

e
m

p)
 o

nt
o

st
a

ck

F
S

Q
R

T
F

lo
a

tin
g

 P
o

in
t

S
q

u
a

re
 R

o
o

t
D

9
F

A
T

O
S

<--

S

qu
a

re
 R
oo

t
of

 T
O

S
5

9
-

60

F
S

T
S

to
re

 F
P

U
 R

eg
is

te
r

T
op

 o
f S

ta
ck

80
-b

it
R

ea
l

64
-b

it
R

ea
l

32
-b

it
R

ea
l

F
S

T
P

S
to

re
 F

P
U

 R
e

g
is

te
r,

 P
o

p

T
op

 o
f S

ta
ck

80
-b

it
R

ea
l

64
-b

it
R

ea
l

32
-b

it
R

ea
l

F
B

S
T

P
S

to
re

 B
C

D
 D

a
ta

,
P

o
p

F
IS

T
 S

to
re

 I
n

te
g

e
r

F
P

U
 R

e
g

is
te

r
32

-b
it

In
te

ge
r

16
-b

it
In

te
ge

r
F

IS
T

P
 S

to
re

 I
n

te
g

er
 F

P
U

 R
e

g
is

te
r

,
P

o
p

64
-b

it
In

te
ge

r
32

-b
it

In
te

ge
r

16
-b

it
In

te
ge

r

D
D

[1
10

1
0

 n
]

D
B

[m
od

 1
11

 r
/m

]
D

D
[m

od
 0

10
 r

/m
]

D
9

[m
od

 0
10

 r
/m

]

D
B

[1
10

1
1

 n
]

D
B

[m
od

 1
11

 r
/m

]
D

D
[m

od
 0

11
 r

/m
]

D
9

[m
od

 0
11

 r
/m

]
D

F
[m

od
 1

10
 r

/m
]

D
B

[m
od

 0
10

 r
/m

]
D

F
[m

od
 0

10
 r

/m
]

D
F

[m
od

 1
11

 r
/m

]
D

B
[m

od
 0

11
 r

/m
]

D
F

[m
od

 0
11

 r
/m

]

S
T

(n
)

M
.X

R
M

.D
R

M
.S

R

S
T

(n
)

M
.X

R
M

.D
R

M
.S

R
M

.B
C

D

M
.S

I
M

.W
I

M
.L

I
M

.S
I

M
.W

I

<--

<--

<--

<--

<--

<--

<--

<--

<--

<--

<--

<--

<--

<--

T
O

S
T

O
S

T
O

S
T

O
S

T
O

S
;

 t
he

n
po

p
 T

O
S

T
O

S
;

 t
he

n
po

p
 T

O
S

T
O

S
;

 t
he

n
po

p
 T

O
S

T
O

S
;

 t
he

n
po

p
 T

O
S

T
O

S
;

 t
he

n
po

p
 T

O
S

T
O

S
T

O
S

T
O

S
;

 t
he

n
po

p
 T

O
S

T
O

S
;

 t
he

n
po

p
 T

O
S

T
O

S
;

 t
he

n
po

p
 T

O
S

2 2 2 2 2 2 2 2
5

7
-

63

8
 -

 1
3

7
 -

 1
0

1
0

-
13

8
 -

 1
3

7
 -

 1
0

F
S

T
C

W
 S

to
re

 F
P

U
 M

o
d

e
 C

o
n

tr
o

l R
e

g
is

te
r

F
N

S
T

C
W

 S
to

re
 F

P
U

 M
o

d
e

 C
o

n
tr

o
l R

e
g

is
te

r
F

S
T

E
N

V
 S

to
re

 F
P

U
 E

n
vi

ro
n

m
e

n
t

F
N

S
T

E
N

V
 S

to
re

 F
P

U
 E

n
vi

ro
n

m
en

t
F

S
T

S
W

 S
to

re
 F

P
U

 S
ta

tu
s

R
e

g
is

te
r

F
N

S
T

S
W

 S
to

re
 F

P
U

 S
ta

tu
s

R
eg

is
te

r
F

S
T

S
W

 A
X

 S
to

re
 F

P
U

 S
ta

tu
s

R
e

g
is

te
r

to
 A

X
F

N
S

T
S

W
 A

X
 S

to
re

 F
P

U
 S

ta
tu

s
R

e
g

is
te

r
to

 A
X(9

B
)D

9[
m

o
d

11
1

r/
m

]
D

9
[m

od
 1

11
 r

/m
]

(9
B

)D
9[

m
o

d
11

0
r/

m
]

D
9

[m
od

 1
10

 r
/m

]
(9

B
)D

D
[m

od
 1

11
 r

/m
]

D
D

[m
od

 1
11

 r
/m

]
(9

B
)D

F
 E

0
D

F
 E

0

W
a

it
M

e
m

or
y

M
e

m
or

y
W

a
it

M
e

m
or

y
M

e
m

or
y

W
a

it
M

e
m

or
y

M
e

m
or

y
W

ai
t

A
X

A
X

<--

<--

<--

<--

<--

<--

<--

<--

C
o

nt
ro

l M
od

e
R

e
gi

st
er

C
o

nt
ro

l M
od

e
R

e
gi

st
er

E
nv

.
 R

e
gi

st
e

rs

E
nv

.
 R

e
gi

st
e

rs

S
ta

tu
s

R
e

gi
st

e
r

S
ta

tu
s

R
e

gi
st

e
r

S
ta

tu
s

R
e

gi
st

e
r

S
ta

tu
s

R
e

gi
st

e
r

5 3
1

4
-

24
1

2
-

22
6 4 4 2

T
a

bl
e

 6
-2

2.
 6

x8
6

F
P

U
 In

st
ru

ct
io

n
S

et
 S

um
m

ar
y

 (
C

on
tin

ue
d)

F
P

U
 IN

S
T

R
U

C
T

IO
N

O
P

 C
O

D
E

O
P

E
R

A
T

IO
N

C
LO

C
K

 C
O

U
N

T
N

O
T

E
S

6

6-33

FPU Clock Counts

F
S

U
B

F
lo

a
tin

g
 P

o
in

t
S

u
b

tr
a

ct
T

op
 o

f S
ta

ck
80

-b
it

R
eg

is
te

r
64

-b
it

R
ea

l
32

-b
it

R
ea

l
F

S
U

B
P

 F
lo

a
tin

g
 P

o
in

t S
u

b
tr

a
ct

,
P

o
p

D
C

[1
11

0
1

 n
]

D
8

[1
11

0
0

 n
]

D
C

[m
od

 1
00

 r
/m

]
D

8
[m

od
 1

00
 r

/m
]

D
E

[1
11

0
1

 n
]

S
T

(n
)

T
O

S
T

O
S

T
O

S
S

T
(n

)

<--

<--

<--

<--

<--

S
T

(n
)

-
T

O
S

T
O

S
 -

 S
T

(n
)

T
O

S
 -

 M
.D

R
T

O
S

 -
 M

.S
R

S
T

(n
)

-
T

O
S

;
th

e
n

po
p

T
O

S

4
-

9
4

-
9

4
-

9
4

-
9

4
-

9

F
S

U
B

R
 F

lo
a

tin
g

 P
o

in
t

S
u

b
tr

a
ct

 R
e

ve
rs

e
T

op
 o

f S
ta

ck
80

-b
it

R
eg

is
te

r
64

-b
it

R
ea

l
32

-b
it

R
ea

l
F

S
U

B
R

P
 F

lo
a

tin
g

 P
o

in
t

S
u

b
tr

a
ct

 R
e

ve
rs

e, P
o

p
F

IS
U

B
 F

lo
a

tin
g

 P
o

in
t

In
te

g
er

 S
u

b
tr

a
ct

32
-b

it
In

te
ge

r
16

-b
it

In
te

ge
r

F
IS

U
B

R
 F

lo
a

tin
g

 P
o

in
t

In
te

g
e

r
S

u
b

tr
a

ct

R
ev

e
rs

e
32

-b
it

In
te

ge
r

R
ev

er
se

d
16

-b
it

In
te

ge
r

R
ev

er
se

d

D
C

[1
11

0
0

 n
]

D
8

[1
11

0
1

 n
]

D
C

[m
od

 1
01

 r
/m

]
D

8
[m

od
 1

01
 r

/m
]

D
E

[1
11

0
0

 n
]

D
A

[m
od

 1
00

 r
/m

]
D

E
[m

od
 1

00
 r

/m
]

D
A

[m
od

 1
01

 r
/m

]
D

E
[m

od
 1

01
 r

/m
]

T
O

S
S

T
(n

)
T

O
S

T
O

S
S

T
(n

)

T
O

S
T

O
S

T
O

S
T

O
S

<--

--
<--

<--

<--

<--

<--

--
<--

<--

<--

S
T

(n
)

-
T

O
S

T
O

S
 -

 S
T

(n
)

M
.D

R
 -

 T
O

S
M

.S
R

 -
 T

O
S

T
O

S
 -

 S
T

(n
);

 t
he

n
po

p
T

O
S

T
O

S
 -

 M
.S

I
T

O
S

 -
 M

.W
I

M
.S

I
-

T
O

S
M

.W
I -

 T
O

S

4
-

9
4

-
9

4
-

9
4

-
9

4
-

9

1
4

-
29

1
4

-
27

1
4

-
29

1
4

-
27

F
T

S
T

 T
es

t
T

o
p

 o
f

S
ta

ck
F

U
C

O
M

 U
n

o
rd

e
re

d
 C

o
m

p
a

re
F

U
C

O
M

P
 U

n
o

rd
er

e
d

 C
o

m
p

a
re

,
P

o
p

F
U

C
O

M
P

P
 U

n
o

rd
e

re
d

 C
o

m
p

a
re

,

P

o
p

 t
w

o
 e

le
m

e
n

ts

D
9

E
4

D
D

[1
11

0
0

 n
]

D
D

[1
11

0
1

 n
]

D
A

E
9

C
C

 s
e

t
by

 T
O

S
 -

 0
.0

C
C

 s
e

t
by

 T
O

S
 -

 S
T

(n
)

C
C

 s
e

t
by

 T
O

S
 -

 S
T

(n
);

 t
he

n
po

p
T

O
S

C
C

 s
e

t
by

 T
O

S
 -

 S
T

(I
);

 t
he

n
po

p
T

O
S

 a
nd

 S
T

(1
)

4 4 4 4

F
W

A
IT

 W
a

it
9B

W
a

it
fo

r
F

P
U

 n
ot

 b
us

y
2

F
X

A
M

 R
e

p
o

rt
 C

la
ss

 o
f

O
p

e
ra

n
d

D
9

E
5

C
C

<--

C

la
ss

 o
f T

O
S

4

F
X

C
H

 E
xc

h
a

n
g

e
 R

e
g

is
te

r
w

ith
 T

O
S

D
9

[1
10

0
1

 n
]

T
O

S
-<------
--->

S
T(

n)
 E

xc
ha

ng
e

3

F
X

T
R

A
C

T
 E

xt
ra

ct
 E

xp
o

n
e

n
t

D
9

F
4

te
m

p
T

O
S

<--

--
<--

T
O

S
;

e
xp

o
ne

nt
 (

te
m

p)
;

th
e

n
pu

sh
 s

ig
ni

fic
a

nt
 (

te
m

p)
 o

nt
o

st
ac

k

1
1

-
16

F
LY

2X
 F

u
n

ct
io

n
 E

va
l.

y ×
 L

o
g

2
(x

)
F

LY
2X

P
1

 F
u

n
ct

io
n

 E
va

l.
y ×

 L
o

g
2

(x
+

1
)

D
9

F
1

D
9

F
9

S
T

(1
)

S
T

(1
)

<--

<--

S
T

(1
) ×

 L
o

g 2
(T

O
S

);
 t

he
n

p
op

 T
O

S
S

T
(1

) ×
 L

o
g 2

(1
+

T
O

S
);

 t
he

n
po

p
T

O
S

14
5

-
15

4
13

1
-

13
3

S
ee

 N
ot

e
 4

T
a

bl
e

 6
-2

2.
 6

x8
6

F
P

U
 In

st
ru

ct
io

n
S

et
 S

um
m

ar
y

 (
C

on
tin

ue
d)

F
P

U
 IN

S
T

R
U

C
T

IO
N

O
P

 C
O

D
E

O
P

E
R

A
T

IO
N

C
LO

C
K

 C
O

U
N

T
N

O
T

E
S

6-34

FPU Clock Counts

F
P

U
 In

st
ru

ct
io

n
S

um
m

ar
y

N
o

te
s

A
ll

re
fe

re
nc

e
s

to
 T

O
S

 a
n

d
S

T
(n

)
re

fe
r

to
 s

ta
ck

 la
yo

ut
 p

ri
or

 t
o

e
xe

cu
tio

n
.

V
a

lu
e

s
po

p
pe

d
of

f t
he

 sta
ck

 a
re

 d
is

ca
rd

e
d.

A
 p

op
 fr

om
 t

he
 sta

ck
 in

cr
e

m
e

nt
s

th
e

to
p

 o
f s

ta
ck

 p
oi

nt
e

r.

A
 p

us
h

to
 t

he
 s

ta
ck

 d
e

cr
e

m
en

ts
 t

he
 to

p
of

 s
ta

ck
 p

o
in

te
r.

N
ot

e
1:

F
or

 F
C

O
S

, F
S

IN
, F

S
IN

C
O

S
 a

nd
 F

P
T

A
N

,
tim

e
 s

h
ow

n
is

fo

r
a

bs
ol

ut
e

va
lu

e
 o

f
T

O
S

 <
 3π/

4.

A
dd

 9
0

cl
o

ck
 c

o
un

ts
 fo

r
ar

gu
m

e
nt

 r
ed

uc
tio

n
if

o
ut

si
de

 t
hi

s
ra

ng
e

.

F
or

 F
C

O
S

, c
lo

ck
 c

ou
nt

 is
 1

41
 i

f T
O

S
 <

π/

4
a

nd
 c

lo
ck

 c
ou

nt
 is

 9
2

 if
 π/
4

 <
 T

O
S

 >
 π/

2.

F
or

 F
S

IN
, c

lo
ck

 c
ou

nt
 is

 8
1

to
 8

2
if

a
bs

ol
u

te
 v

a
lu

e
 o

f T
O

S
 <

π/

4.

N
ot

e
2:

F
or

 F
2X

M
1,

 c
lo

ck
 c

ou
n

t i
s

92
 if

 a
bs

o
lu

te
 v

a
lu

e
 o

f T
O

S
 <

 0
.5

.

N
ot

e
3:

F
or

 F
P

A
T

A
N

, c
lo

ck
 c

ou
nt

 is
 9

7
 if

 S
T

(1
)/

T
O

S
 <

π/

32
.

N
ot

e
4:

F
or

 F
Y

L
2X

P
1,

 c
lo

ck
 c

o
un

t
is

 1
70

 if
 T

O
S

 is
 o

ut
 o

f r
a

ng
e

a
nd

 r
e

gu
la

r
F

Y
L

2X
 is

 c
a

lle
d.

N
ot

e
5:

T
he

 fo
llo

w
in

g
op

co
de

s
a

re
 r

es
e

rv
e

d
by

 C
yr

ix
:

D
9D

7,
 D

9E
2,

 D
9E

7,
 D

D
F

C
, D

E
D

8,
 D

E
D

A
, D

E
D

C
, D

E
D

D
, D

E
D

E
, D

F
F

C
.

If
 a

 r
e

se
rv

e
d

op
co

d
e

is
 e

xe
cu

te
d,

 a
nd

 u
np

re
di

ct
a

bl
e

 r
e

su
lts

 m
a

y
oc

cu
r

(e
xc

e
pt

io
ns

 a
re

 n
ot

 g
e

ne
ra

te
d)

.

 A-1

Appendix

 IBM 6x86 MICROPROCESSOR
 Sixth-Generation Superscalar
 Superpipelined x86-Compatible CPU

Ordering Information for Module Revision Level “B” Only

Table A-1. 6x86 Device to P-Rating Conversion

6x86 Frequency (MHz)
P-RatingBUS CORE

50 100 P120+

55 110 P133+

60 120 P150+

66 133 P166+

75 150 P200+

 IBM 6X86 -2 V2 100 G B

 Product Line Speed (MHz)=

 Product Voltage:
Family V2 =3.30V, +0.30, -0.15
 V7=3.50V, +/-0.10

2=2x Clock
3=3x Clock

 Package:
 G = PGA

Module Revision

Level

 100, 110, 120, 133

A-2

Ordering Information for Module Revision Level “C” and Later

For more information concerning the IBM 6x86 Microprocessor, please visit our website:
http://www.chips.ibm.com/products/x86/index.html or call 1-800-IBM-3333.

Table A-2. 6x86 Device to P-Rating Conversion

6x86 Frequency (MHz)
P-RatingBUS CORE

50 100 P120+

55 110 P133+

60 120 P150+

66 133 P166+

75 150 P200+

 IBM 6X86 -2 V2 P150 G C

 Product Line ID Performance Rating =

Module Revision
Level

P166+, P200+

 Package:
 G = PGA

P120+, P133+, P150+

 A-3

A

“1+4” Burst Read Cycle 3-35

A ————————————————————

AC Characteristics 4-5

Address Bus 3-9
Address Region Registers (ARRx) 2-31
Address Space 2-40
Architecture Overview 1-1

B ————————————————————

Back-Off Timing 3-49
Branch Control 1-11
Burst Cycle Address Sequence 3-34
Burst Write Cycles 3-37
Bus Arbitration 3-16
Bus Arbitration 3-46
Bus Cycle Definition 3-11
Bus Cycle Types 3-12
Bus Cycles, Non-pipelined 3-29
Bus Hold, Signal States During 3-17
Bus Interface 3-1
Bus Interface Unit 1-16
Bus State Definition 3-26
C ————————————————————

Cache Coherency Signals 3-18
Cache Control 3-14
Cache Control Timing 3-43
Cache Disable 2-34
Cache Inquiry Cycles 3-50
Cache Units 1-12
Caches, Memory 2-52
CCR0 Bit Definitions 2-25
CCR1 Bit Definitions 2-26
CCR2 Bit Definitions 2-27
CCR3 Bit Definitions 2-28
CCR4 Bit Definitions 2-29

INDEX

CCR5 Bit Definitions 2-30
Clock Control 3-7
Clock Count for CPU Instructions 6-13
Clock Count for FPU Instructions 6-29
Configuration Control Registers 2-23
Control Registers 2-13

D ————————————————————

Data Bus 3-10
Data Bypassing 1-10
Data Forwarding 1-7
DC Characteristics 4-4
Debug Registers 2-37
Descriptors 2-16
Descriptor Table Registers
 and Descriptors 2-15
Device Identification Registers 2-36
DIRx 2-36

E ————————————————————

Electrical Specifications 4-1
Error Codes 2-62
EWBE# Timing 3-45
Exceptions 2-56
Exceptions in Real Mode 2-61
F ————————————————————

Flags Register 2-9
Floating Point Unit 1-15
FPU Error Interface 3-19
FPU Operations 2-75
Functional Blocks 1-1
Functional Timing 3-25

G ————————————————————

Gates and Protection 2-73

Index

A-4

I————————————————————

I/O Address Space 2-41
Initialization and Protected Mode 2-73
Initialization of the CPU 2-1
Instruction Fields, General 6-2
Instruction Line Cache 1-13
Instruction Pointer Register 2-9
Instruction Set Overview 2-3
Instruction Set Encodings
 and Summary
Instruction Set Summary 6-1
Instruction Set Tables
 Assumptions 6-12
Integer Unit 1-2
Interrupt Acknowledge Cycles 3-41
Interrupt and Exception
 Priorities 2-59
Interrupt Control 3-13
Interrupt Vectors 2-57
Interrupts and Exceptions 2-55

J ————————————————————

JTAG Interface 3-24

L ————————————————————

LBA# 2-35
Lines, within the Cache 2-53
Lock Prefix 2-3

M ————————————————————

Maximum Ratings, Absolute 4-2
Memory Addressing 2-43
Memory Addressing Methods 2-41
Memory Management Unit 1-14
MESI States, Unified Cache 2-52
Mode State Diagram 2-70

N ————————————————————

NC and Reserved Pins 4-1
Non-pipelined Bus Cycles 3-29

O ————————————————————

Offset Mechanism 2-42
Out-of-order Processing 1-4

P ————————————————————

Package, Mechanical Drawing 5-4
Paging Mechanisms (Detail) 2-45
Paging Mechanisms (Introduction) 1-14
Paging - Traditional Mechanism 2-45
Paging - Variable-Size Paging
 Mechanism 2-51
Pin Diagram, 296-Pin SPGA Package 5-1
Pin List, Sorted by Pin Number 5-2
Pin List, Sorted by Signal Name 5-3
Pipeline Stages 1-3
Pipelined Bus Cycles 3-38
Power and Ground Connections 4-1
Power Management Interface 3-22
Power Management Interface Timing 3-61
Privilege Level, Requested 2-8
Privilege Levels 2-71
Programming Interface 2-1
Protected Mode Address Calculation 2-44
Protection, Segment and Page 2-71
Pull-Up and Pull-Down Resistors 4-1

R ————————————————————

RAW Dependency Example 1-8
Recommended Operating Conditions 4-3
Region Control Registers (RCRx) 2-33
Register Renaming 1-4
Register Sets 2-4
Registers, Control 2-13
Registers, General Purpose 2-4
Registers, 6x86 Configuration 2-23
Registers, System Set 2-11
Requested Privilege Level 2-8
Reset Control 3-7
RESET Timing 3-25

Index

 A-5

A
S ————————————————————

Scatter/Gather Buffer Interface 3-19
Scatter/Gather Buffer
 Interface Timing 3-56
Sectors, Cache 2-53
Segment Registers 2-7
Selector Mechanism 2-44
Selectors 2-7
Shutdown and Halt 2-69
Signal Description Table 3-2
Signal Groupings 3-1
SMI# Interrupt Timing 3-42
System Management Mode (SMM) 2-63
SMM Instructions 2-67
SMM Memory Space 2-68
SMM Memory Space Header 2-65
SMM Operation 2-64
Stop Grant (Special Bus Cycle) 3-12
Stop Grant and SUSP# 3-22
Speculative Execution 1-12
Suspend Mode, HALT Initiated 3-62
Suspend Mode, Signal States During 3-23
System Management Mode 2-63

T ————————————————————

Task Register 2-20
Test Registers 2-39
Testing of the Unified Cache 2-53

Thermal Characteristics 5-6
Timing, Functional 3-25
Translation Lookaside Buffer 2-45
Translation Lookaside Buffer Testing 2-47

U ————————————————————

Unified Cache 1-12
Unified Cache Testing 2-53

V ————————————————————

Variable-Size Paging
 Mechanism 1-14
Variable-Size Paging
 Mechanism 2-51
Virtual 8086 Mode 2-74

W ———————————————————

WAR Dependency Example 1-5
WAW Dependency Example 1-6
Weak Locking 2-34
Weak Write Ordering 2-34
Write Gathering 2-35
Write Through 2-35

Index

Table 1:

Order Number Release Date Description of Changes

SA14-2148-00 January 1996 First Release

SA14-2148-00 May 1996 Corrected minor errors. Ordering infor-
mation added to Appendix (pp. A-1, A-2)

SA14-2148-02 June 1996 Added information and data related to the
150MHz processor.

Revision History

	Introduction
	TABLE OF CONTENTS
	List of Tables and Figures
	LIST OF FIGURES
	LIST OF TABLES

	1.0 ARCHITECTURE OVERVIEW
	1.1 Major Functional Blocks
	1.2 Integer Unit
	1.2.1 Pipeline Stages
	1.2.2 Out-of-Order Processing
	1.2.3 Pipeline Selection
	1.2.4 Data Dependency Solutions
	1.2.4.1 Register Renaming
	1.2.4.2 Data Forwarding
	1.2.4.3 Data Bypassing

	1.2.5 Branch Control
	1.2.5.1 Branch Prediction
	1.2.5.2 Speculative Execution

	1.3 Cache Units
	1.3.1 Unified Cache
	1.3.2 Instruction Line Cache

	1.4 Memory Management Unit
	1.4.1 Variable-Size Paging Mechanism
	1.4.2 Traditional Paging Mechanism

	1.5 Floating Point Unit
	FPU Parallel Execution

	1.6 Bus Interface Unit

	2.0 PROGRAMMINGINTERFACE
	2.1 Processor Initialization
	2.2 Instruction Set
	Overview
	2.2.1 Lock Prefix

	2.3 Register Sets
	2.3.1 Application Register Set
	2.3.2 General Purpose Registers
	2.3.3 Segment Registers and Selectors
	2.3.4 Instruction Pointer Register
	2.3.5 Flags Register

	2.4 System Register Set
	2.4.1 Control Registers
	2.4.2 Registers and Descriptors
	Descriptor Table Registers
	Descriptors

	2.4.3 Task Register
	2.4.4 IBM 6x86 Configuration Registers
	2.4.4.1 Configuration Control Registers
	2.4.4.2 Address Region Registers
	2.4.4.3 Region Control Registers
	2.4.4.4 Device Identification Registers

	2.4.5 Debug Registers
	2.4.6 Test Registers

	2.5 Address Space
	2.6 Memory Addressing Methods
	2.6.1 Offset Mechanism
	2.6.2 Memory Addressing
	Real Mode Memory Addressing
	Protected Mode Memory Addressing

	2.6.3 Selector Mechanism
	2.6.4 Paging Mechanisms
	2.6.4.1 Traditional Paging Mechanism
	2.6.4.2 Translation Lookaside Buffer Testing

	2.6.5 Variable-Size Paging Mechanism

	2.7 Memory Caches
	2.7.1 Unified Cache MESI States
	2.7.1.1 Unified Cache Testing

	2.8 Interrupts and Exceptions
	2.8.1 Interrupts
	2.8.2 Exceptions
	2.8.3 Interrupt Vectors
	2.8.4 Interrupt and Exception Priorities
	2.8.5 Exceptions in Real Mode
	2.8.6 Error Codes

	2.9 System Management Mode
	2.9.1 SMM Operation
	2.9.2 SMM Memory Space
	2.9.3 SMM Instructions
	2.9.4 SMM Memory Space
	2.9.5 SMI Service Routine Execution

	2.10 Shutdown and Halt
	2.11 Protection
	2.11.1 Privilege Levels
	2.11.2 I/O Privilege Levels
	2.11.3 Privilege Level Transfers
	2.11.4 Initialization and Transition to Protected Mode

	2.12 Virtual 8086 Mode
	2.12.1 V86 Memory Addressing
	2.12.2 V86 Protection
	2.12.3 V86 Interrupt Handling
	2.12.4 Entering and Leaving V86 Mode

	2.13 Floating Point Unit Operations

	3.0 IBM 6x86 BUS INTERFACE
	3.1 Signal Description Table
	3.2 Signal Descriptions
	3.2.1 Clock Control
	3.2.2 Reset Control
	3.2.3 Address Bus
	3.2.4 Address Parity
	3.2.5 Data Bus
	3.2.6 Data Parity
	3.2.7 Bus Cycle Definition
	3.2.8 Bus Cycle Control
	3.2.9 Interrupt Control
	3.2.10 Cache Control
	3.2.11 Bus Arbitration
	3.2.12 Cache Coherency
	3.2.13 FPU Error Interface
	3.2.14 Scatter/Gather Buffer Interface
	3.2.15 Power Management Interface
	3.2.16 JTAG Interface

	3.3 Functional Timing
	3.3.1 Reset Timing
	3.3.2 Bus State Definition
	3.3.3 Non-pipelined Bus Cycles
	3.3.3.1 Non-pipelined Single Transfer Cycles
	3.3.3.2 Non-pipelined Burst Read Cycles
	3.3.3.3 Burst Write Cycles

	3.3.4 Pipelined Bus Cycles
	3.3.4.1 Pipelined Back-to-Back Read/Write Cycles

	3.3.5 Interrupt Acknowledge Cycles
	3.3.6 SMI# Interrupt Timing
	3.3.7 Cache Control Timing
	3.3.7.1 Invalidating the Cache Using FLUSH#
	3.3.7.2 EWBE# Timing

	3.3.8 Bus Arbitration
	3.3.8.1 HOLD and HLDA
	3.3.8.2 Back-Off Timing

	3.3.9 Cache Inquiry Cycles
	3.3.9.1 Inquiry Cycles Using HOLD/HLDA
	3.3.9.2 Inquiry Cycles Using BOFF#
	3.3.9.3 Inquiry Cycles Using AHOLD

	3.3.10 Scatter/Gather Buffer Interface
	3.3.11 Power ManagementInterface

	4.0 ELECTRICALSPECIFICATIONS
	4.1 Electrical Connections
	4.1.1 Power and Ground Connections and Decoupling
	4.1.2 Pull-Up/Pull-Down Resistors
	4.1.3 Unused Input Pins
	4.1.4 NC and Reserved Pins

	4.2 Absolute Maximum Ratings
	4.3 Recommended Operating Conditions
	4.4 DC Characteristic
	4.5 AC Characteristics

	5.0 MECHANICAL SPECIFICATIONS
	5.1 296-Pin SPGA Package
	5.2 Thermal Characteristics

	6.0 INSTRUCTION SET
	6.1 Instruction Set Summary
	6.2 General Instruction Fields
	6.2.1 Optional Prefix Bytes
	6.2.2 Opcode Byte
	6.2.2.1 w Field
	6.2.2.2 d Field
	6.2.2.3 s Field
	6.2.2.4 eee Field

	6.2.3 mod and r/m Byte
	6.2.3.1 reg Field
	6.2.3.2 sreg3 Field
	6.2.3.3 sreg2 Field

	6.2.4 s-i-b Byte
	6.2.4.1 ss Field
	6.2.4.2 index Field
	6.2.4.3 Base Field

	6.3 CPUID Instruction
	6.4 Instruction Set Tables
	6.4.1 Assumptions Made in Determining Instruction Clock Count
	6.4.2 CPU Instruction Set Summary Table Abbreviations
	6.4.3 CPU Instruction Set Summary Table Flags Table
	6x86 CPU Instruction Set & Clock Count Summary

	6.5 FPU Clock Counts
	6.5.1 FPU Clock Count Table

	Appendix
	Ordering Information for Module Revision Level “B” Only
	Ordering Information for Module Revision Level “C” and Later

	Index

