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Introduction

IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU 

1-

The on-chip FPU allows floating point instruc-
tions to execute in parallel with integer instruc-
tions and features a 64-bit data interface. The 
FPU incorporates a four-deep instruction 
queue and a four-deep store queue to facilitate 
parallel execution.

Additionally the IBM 6x86 CPU incorporates 
a low power suspend mode, stop clock capa-
bility, and system management mode (SMM) 
for power sensitive applications.

1.1 Major Functional
Blocks

The IBM 6x86 processor consists of five major 
functional blocks, as shown in the overall 
block diagram on the first page of this manual:

• Integer Unit 
• Cache Unit
• Memory Management Unit 
• Floating Point Unit 
• Bus Interface Unit 

Instructions are executed in the X and Y pipe-
lines within the Integer Unit and also in the 
Floating Point Unit (FPU). The Cache Unit 
stores the most recently used data and instruc-
tions to allow fast access to the information by 
the Integer Unit and FPU. 

Product Overview

1. ARCHITECTURE
OVERVIEW

The IBM 6x86 CPU is a leader in the sixth 
generation of high performance, x86-compat-
ible microprocessors. Increased performance is 
accomplished by the use of superscalar and 
superpipelined design techniques. 

The IBM 6x86 CPU is superscalar in that it 
contains two separate pipelines that allow 
multiple instructions to be processed at the 
same time. The use of advanced processing 
technology and the increased number of pipe-
line stages (superpipelining) allows the IBM 
6x86 CPU to achieve clocks rates of 100 MHz 
and above. 

Through the use of unique architectural 
features, the IBM 6x86  processor eliminates 
many data dependencies and resource 
conflicts, resulting in optimal performance for 
both 16-bit and 32-bit x86 software.

The IBM 6x86 CPU contains two caches: a 
16-KByte dual-ported unified cache and a 
256-byte instruction line cache. Since the 
unified cache can store instructions and data in 
any ratio, the unified cache offers a higher hit 
rate than separate data and instruction caches 
of equal size. An increase in overall 
cache-to-integer unit bandwidth is achieved by 
supplementing the unified cache with a small, 
high-speed, fully associative instruction line 
cache. The inclusion of the instruction line 
cache avoids excessive conflicts between code 
and data accesses in the unified cache.
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Physical addresses are calculated by the 
Memory Management Unit and passed to 
the Cache Unit and the Bus Interface Unit 
(BIU). The BIU provides the interface 
between the external system board and the 
processor’s internal execution units. 

1.2 Integer Unit 

The Integer Unit (Figure 1-1) provides parallel 
instruction execution using two seven-stage 
integer pipelines. Each of the two pipelines, 
X and Y, can process several instructions 
simultaneously.

Figure 1-1. Integer Unit
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Execution

Write-Back
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Execution
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The Integer Unit consists of the following 
pipeline stages:

• Instruction Fetch (IF)
• Instruction Decode 1 (ID1)
• Instruction Decode 2 (ID2)
• Address Calculation 1 (AC1)
• Address Calculation 2 (AC2)
• Execute (EX)
• Write-Back (WB)

The instruction decode and address calculation 
functions are both divided into superpipelined 
stages.

1.2.1 Pipeline Stages

The Instruction Fetch (IF) stage, shared by 
both the X and Y pipelines, fetches 16 bytes of 
code from the cache unit in a single clock 
cycle. Within this section, the code stream is 
checked for any branch instructions that could 
affect normal program sequencing. 

If an unconditional or conditional branch is 
detected, branch prediction logic within the IF 
stage generates a predicted target address for 
the instruction. The IF stage then begins 
fetching instructions at the predicted address.

The superpipelined Instruction Decode func-
tion contains the ID1 and ID2 stages.   ID1, 
shared by both pipelines, evaluates the code 
stream provided by the IF stage and deter-
mines the number of bytes in each instruction. 
Up to two instructions per clock are delivered 
to the ID2 stages, one in each pipeline.

The ID2 stages decode instructions and send 
the decoded instructions to either the X or Y 
pipeline for execution. The particular pipeline 
is chosen, based on which instructions are 
already in each pipeline and how fast they are 

expected to flow through the remaining pipe-
line stages. 

The Address Calculation function contains two 
stages, AC1 and AC2. If the instruction refers 
to a memory operand, the AC1 calculates a 
linear memory address for the instruction. 

The AC2 stage performs any required memory 
management functions, cache accesses, and 
register file accesses. If a floating point 
instruction is detected by AC2, the instruction 
is sent to the FPU for processing. 

The Execute (EX) stage executes instructions 
using the operands provided by the address 
calculation stage.   

The Write-Back (WB) stage is the last IU 
stage. The WB stage stores execution results 
either to a register file within the IU or to a 
write buffer in the cache control unit.

1.2.2 Out-of-Order
Processing 

If an instruction executes faster than the 
previous instruction in the other pipeline, the 
instructions may complete out of order. All 
instructions are processed in order, up to the 
EX stage. While in the EX and WB stages, 
instructions may be completed out of order.

If there is a data dependency between two 
instructions, the necessary hardware interlocks 
are enforced to ensure correct program 
execution. Even though instructions may 
complete out of order, exceptions and writes 
resulting from the instructions are always 
issued in program order.
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1.2.3 Pipeline Selection

In most cases, instructions are processed in 
either pipeline and without pairing constraints 
on the instructions. However, certain instruc-
tions are processed only in the X pipeline:

• Branch instructions 
• Floating point instructions
• Exclusive instructions

Branch and floating point instructions may be 
paired with a second instruction in the Y pipe-
line. 

Exclusive Instructions cannot be paired with 
instructions in the Y pipeline. These instruc-
tions typically require multiple memory 
accesses. Although exclusive instructions may 
not be paired, hardware from both pipelines is 
used to accelerate instruction completion. 
Listed below are the IBM 6x86 CPU exclusive 
instruction types: 

• Protected mode segment loads
• Special register accesses

 (Control, Debug, and Test Registers)
• String instructions
• Multiply and divide
• I/O port accesses
• Push all (PUSHA) and pop all (POPA)
• Intersegment jumps, calls, and returns

1.2.4 Data Dependency
Solutions 

When two instructions that are executing in 
parallel require access to the same data or 
register, one of the following types of data 
dependencies may occur:

• Read-After-Write (RAW)
• Write-After-Read (WAR)
• Write-After-Write (WAW)

Data dependencies typically force serialized 
execution of instructions. However, the IBM 
6x86 CPU implements three mechanisms that 
allow parallel execution of instructions 
containing data dependencies:

• Register Renaming
• Data Forwarding
• Data Bypassing

The following sections provide detailed exam-
ples of these mechanisms.

1.2.4.1 Register Renaming

The IBM 6x86 CPU contains 32 physical 
general purpose registers. Each of the 32 
registers in the register file can be temporarily 
assigned as one of the general purpose 
registers defined by the x86 architecture 
(EAX, EBX, ECX, EDX, ESI, EDI, EBP, and 
ESP). For each register write operation a new 
physical register is selected to allow previous 
data to be retained temporarily. Register 
renaming effectively removes all WAW and 
WAR dependencies. The programmer does not 
have to consider register renaming; it is 
completely transparent to both the operating 
system and application software.
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Example #1 - Register Renaming Eliminates Write-After-Read (WAR) Dependency

A WAR dependency exists when the first in a pair of instructions reads a logical register, and the 
second instruction writes to the same logical register. This type of dependency is illustrated by the 
pair of instructions shown below: 

X PIPE Y PIPE 

(1) MOV BX, AX (2) ADD AX, CX
BX ←AX AX ←AX + CX 

Note: In this and the following examples the original instruction order is shown in parentheses.

In the absence of register renaming, the ADD instruction in the Y pipe would have to be stalled to 
allow the MOV instruction in the X pipe to read the AX register.

The IBM 6x86 CPU, however, avoids the Y pipe stall (Table 1-1). As each instruction executes, 
the results are placed in new physical registers to avoid the possibility of overwriting a logical 
register value and to allow the two instructions to complete in parallel (or out of order) rather than 
in sequence.

Table 1-1. Register Renaming with WAR Dependency

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Reg4 Pipe 

(Initial) AX BX CX

MOV BX, AX AX CX BX X Reg3 ← Reg0

ADD AX, CX CX BX AX Y Reg4 ← Reg0 + Reg2

Note: The representation of the MOV and ADD instructions in the final column of Table 1-1 
are completely independent.
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Example #2 - Register Renaming Eliminates Write-After-Write (WAW) Dependency 

A WAW dependency occurs when two consecutive instructions perform writes to the same 
logical register. This type of dependency is illustrated by the pair of instructions shown below:

X PIPE Y PIPE 

(1) ADD AX, BX (2) MOV AX, [mem] 
AX ←AX + BX AX ← [mem] 

Without register renaming, the MOV instruction in the Y pipe would have to be stalled to guar-
antee that the ADD instruction in the X pipe would write its results to the AX register first.

The IBM 6x86 CPU uses register renaming and avoids the Y pipe stall. The contents of the AX 
and BX registers are placed in physical registers (Table 1-2). As each instruction executes, the 
results are placed in new physical registers to avoid the possibility of overwriting a logical 
register value and to allow the two instructions to complete in parallel (or out of order) rather than 
in sequence.

Table 1-2. Register Renaming with WAW Dependency

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe 

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ← Reg0 + Reg1 

MOV AX, [mem] BX AX Y Reg3 ← [mem]

Note: All subsequent reads of the logical register AX will refer to Reg 3, the result of the MOV
         instruction.
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1.2.4.2 Data Forwarding 

Register renaming alone cannot remove RAW 
dependencies. The IBM 6x86 CPU uses two 
types of data forwarding in conjunction with 
register renaming to eliminate RAW depen-
dencies:

• Operand Forwarding
• Result Forwarding

Operand forwarding takes place when the 
first in a pair of instructions performs a move 
from register or memory, and the data that is 
read by the first instruction is required by the 
second instruction. The IBM 6x86 CPU 
performs the read operation and makes the 
data read available to both instructions simul-
taneously. 

Result forwarding takes place when the first 
in a pair of instructions performs an operation 
(such as an ADD) and the result is required by 
the second instruction to perform a move to a 
register or memory. The IBM 6x86 CPU 
performs the required operation and stores the 
results of the operation to the destination of 
both instructions simultaneously.
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Example #3 - Operand Forwarding Eliminates Read-After-Write (RAW) Dependency

A RAW dependency occurs when the first in a pair of instructions performs a write, and the 
second instruction reads the same register. This type of dependency is illustrated by the pair of 
instructions shown below in the X and Y pipelines:

X PIPE Y PIPE 

(1) MOV AX, [mem] (2) ADD BX, AX
AX ← [mem] BX ← AX + BX 

The IBM 6x86 CPU uses operand forwarding and avoids a Y pipe stall (Table 1-3). Operand 
forwarding allows simultaneous execution of both instructions by first reading memory and then 
making the results available to both pipelines in parallel.  

Operand forwarding can only occur if the first instruction does not modify its source data. In 
other words, the instruction is a move type instruction (for example, MOV, POP, LEA). Operand 
forwarding occurs for both register and memory operands. The size of the first instruction desti-
nation and the second instruction source must match.

Table 1-3. Example of Operand Forwarding 

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe 

(Initial) AX BX

MOV AX, [mem] BX AX X Reg2 ← [mem]

ADD BX, AX AX BX Y Reg3 ← [mem] + Reg1 
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Example #4 - Result Forwarding Eliminates Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a 
write, and the second instruction reads the same register. This dependency is illustrated by the 
pair of instructions in the X and Y pipelines, as shown below:

X PIPE Y PIPE 

(1) ADD AX, BX (2) MOV [mem], AX
AX ←AX + BX [mem] ← AX

The IBM 6x86 CPU uses result forwarding and avoids a Y pipe stall (Table 1-4). Instead of trans-
ferring the contents of the AX register to memory, the result of the previous ADD instruction 
(Reg0 + Reg1) is written directly to memory, thereby saving a clock cycle.

The second instruction must be a move instruction and the destination of the second instruction 
may be either a register or memory.

Table 1-4.  Result Forwarding Example 

Instruction

Physical Register
Contents

Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ←Reg0 + Reg1

MOV [mem], AX BX AX Y [mem] ← Reg0 +Reg1
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1.2.4.3 Data Bypassing

In addition to register renaming and data forwarding, the IBM 6x86 CPU implements a third data 
dependency-resolution technique called data bypassing. Data bypassing reduces the performance 
penalty of those memory data RAW dependencies that cannot be eliminated by data forwarding.

Data bypassing is implemented when the first in a pair of instructions writes to memory and the 
second instruction reads the same data from memory. The IBM 6x86 CPU retains the data from 
the first instruction and passes it to the second instruction, thereby eliminating a memory read 
cycle. Data bypassing only occurs for cacheable memory locations.

Example #1- Data Bypassing with Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a 
write to memory and the second instruction reads the same memory location. This dependency is 
illustrated by the pair of instructions in the X and Y pipelines as shown below:

X PIPE Y PIPE

(1) ADD [mem], AX (2) SUB BX, [mem] 
[mem] ←[mem] + AX BX ← BX - [mem]

The IBM 6x86 CPU uses data bypassing and stalls the Y pipe for only one clock by eliminating 
the Y pipe’s memory read cycle (Table 1-5). Instead of reading memory in the Y pipe, the result 
of the previous instruction ([mem] + Reg0) is used to subtract from Reg1, thereby saving a 
memory access cycle.

Table 1-5.  Example of Data Bypassing 

Instruction

Physical Register
Contents

Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD [mem], AX AX BX X [mem] ← [mem] + Reg0

SUB BX, [mem] AX BX Y Reg2 ← Reg1 - {[mem] + Reg0}
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1.2.5 Branch Control

Branch instructions occur on average every 
four to six instructions in x86-compatible pro-
grams. When the normal sequential flow of a 
program changes due to a branch instruction, 
the pipeline stages may stall while waiting for 
the CPU to calculate, retrieve, and decode the 
new instruction stream. The IBM 6x86 CPU 
minimizes the performance degradation and 
latency of branch instructions through the use 
of branch prediction and speculative execu-
tion. 

1.2.5.1 Branch Prediction 

The IBM 6x86 CPU uses a 256-entry, 4-way 
set associative Branch Target Buffer (BTB) to 
store branch target addresses and branch 
prediction information. During the fetch stage, 
the instruction stream is checked for the pres-
ence of branch instructions. If an uncondi-
tional branch instruction is encountered, the 
IBM 6x86 CPU accesses the BTB to check for 
the branch instruction’s target address. If the 
branch instruction’s target address is found in 
the BTB, the IBM 6x86 CPU begins fetching 
at the target address specified by the BTB.

In case of conditional branches, the BTB also 
provides history information to indicate 
whether the branch is more likely to be taken 
or not taken. If the conditional branch instruc-
tion is found in the BTB, the IBM 6x86 CPU 
begins fetching instructions at the predicted 
target address. If the conditional branch misses 
in the BTB, the IBM 6x86 CPU predicts that 
the branch will not be taken, and instruction 
fetching continues with the next sequential 

instruction. The decision to fetch the taken or 
not taken target address is based on a four-state 
branch prediction algorithm.

Once fetched, a conditional branch instruction 
is first decoded and then dispatched to the X 
pipeline only. The conditional branch instruc-
tion proceeds through the X pipeline and is 
then resolved in either the EX stage or the WB 
stage. The conditional branch is resolved in the 
EX stage, if the instruction responsible for 
setting the condition codes is completed prior 
to the execution of the branch. If the instruc-
tion that sets the condition codes is executed in 
parallel with the branch, the conditional 
branch instruction is resolved in the WB stage.

Correctly predicted branch instructions 
execute in a single core clock. If resolution of 
a branch indicates that a misprediction has 
occurred, the IBM 6x86 CPU flushes the pipe-
line and starts fetching from the correct target 
address. The IBM 6x86 CPU prefetches both 
the predicted and the non-predicted path for 
each conditional branch, thereby eliminating 
the cache access cycle on a misprediction. If 
the branch is resolved in the EX stage, the 
resulting misprediction latency is four cycles.  
If the branch is resolved in the WB stage, the 
latency is five cycles. 

Since the target address of return (RET) 
instructions is dynamic rather than static, the 
IBM 6x86 CPU caches target addresses for 
RET instructions in an eight-entry return stack 
rather than in the BTB. The return address is 
pushed on the return stack during a CALL 
instruction and popped during the corre-
sponding RET instruction. 
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1.2.5.2 Speculative Execution

The IBM 6x86 CPU is capable of speculative 
execution following a floating point instruc-
tion or predicted branch. Speculative execution 
allows the pipelines to continuously execute 
instructions following a branch without 
stalling the pipelines waiting for branch reso-
lution. The same mechanism is used to execute 
floating point instructions (see Section 1.5) in 
parallel with integer instructions.

The IBM 6x86 CPU is capable of up to four 
levels of speculation (i.e., combinations of 
four conditional branches and floating point 
operations).  After generating the fetch address 
using branch prediction, the CPU checkpoints 
the machine state (registers, flags, and 
processor environment), increments the specu-
lation level counter, and begins operating on 
the predicted instruction stream.

Once the branch instruction is resolved, the 
CPU decreases the speculation level.   For a 
correctly predicted branch, the status of the 
checkpointed resources is cleared. For a 
branch misprediction, the IBM 6x86 processor 
generates the correct fetch address and uses the 
checkpointed values to restore the machine 
state in a single clock. 

In order to maintain compatibility, writes that 
result from speculatively executed instructions 
are not permitted to update the cache or 
external memory until the appropriate branch 
is resolved. Speculative execution continues 
until one of the following conditions occurs:

1)  A branch or floating point operation 
is decoded and the speculation level 
is already at four. 

2)  An exception or a fault occurs.

3)  The write buffers are full.

4)  An attempt is made to modify a 
non-checkpointed resource (i.e., 
segment registers, system flags). 

1.3 Cache Units

The IBM 6x86 CPU employs two caches, the 
Unified Cache and the Instruction Line Cache 
(Figure 1-2). 

1.3.1 Unified Cache

The 16-KByte unified write-back cache func-
tions as the primary data cache and as the 
secondary instruction cache. Configured as a 
four-way set-associative cache, the cache 
stores up to 16 KBytes of code and data in 512 
lines. The cache is dual-ported and allows any 
two of the following operations to occur in 
parallel:

• Code fetch
• Data read (X pipe, Y pipeline or FPU)
• Data write (X pipe, Y pipeline or FPU)

The unified cache uses a pseudo-LRU replace-
ment algorithm and can be configured to allo-
cate new lines on read misses only or on read 
and write misses. More information 
concerning the unified cache can be found in 
Section 2.7.1 (Page 2-52).
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1.3.2 Instruction Line Cache

The fully associative 256-byte instruction line 
cache serves as the primary instruction cache. 
The instruction line cache is filled from the 
unified cache through the data bus. Fetches 
from the integer unit that hit in the instruction 
line cache do not access the unified cache. If 
an instruction line cache miss occurs, the 
instruction line data from the unified cache is 
transferred to the instruction line cache and the 
integer unit, simultaneously. 

The instruction line cache uses a pseudo-LRU 
replacement algorithm. To ensure proper oper-
ation in the case of self-modifying code, any 
writes to the unified cache are checked against 
the contents of the instruction line cache. If a 
hit occurs in the instruction line cache, the 
appropriate line is invalidated.

Figure 1-2. Cache Unit Operations
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1.4.1 Variable-Size Paging
Mechanism

The IBM 6x86 variable-size paging 
mechanism allows software to map pages 
between 4 KBytes and 4 GBytes in size. The 
large contiguous memories provided by this 
mechanism help avoid TLB (Translation 
Lookaside Buffer) thrashing [see Section 2.6.4 
(Page 2-45)] associated with some operating 
systems and applications. For example, use of 
a single large page instead of a series of small 
4-KByte pages can greatly improve 
performance in an application using a large 
video memory buffer.

1.4 Memory 
Management Unit

The Memory Management Unit (MMU), 
shown in Figure 1-3, translates the linear 
address supplied by the IU into a physical 
address to be used by the unified cache and the 
bus interface. Memory management proce-
dures are x86 compatible, adhering to standard 
paging mechanisms. 

The IBM 6x86 MMU includes two paging 
mechanisms (Figure 1-3), a traditional paging 
mechanism, and a IBM 6x86 variable-size 
paging mechanism. 

Figure 1-3.  Paging Mechanism within the Memory Management Unit
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1.4.2 Traditional
Paging Mechanism

The traditional paging mechanism has been 
enhanced on the IBM 6x86 CPU with the addi-
tion of the Directory Table Entry (DTE) cache 
and the Victim TLB. The main TLB (Transla-
tion Lookaside Buffer) is a direct-mapped 
128-entry cache for page table entries. 

The four-entry fully associative DTE cache 
stores the most recent DTE accesses. If a Page 
Table Entry (PTE) miss occurs followed by a 
DTE hit, only a single memory access to the 
PTE table is required. 

The Victim TLB stores PTEs which have been 
displaced from the main TLB due to a TLB 
miss. If a PTE access occurs while the PTE is 
stored in the victim TLB, the PTE in the victim 
TLB is swapped with a PTE in the main TLB. 
This has the effect of selectively increasing 
TLB associativity. The IBM 6x86 CPU 
updates the eight-entry fully associative victim 
TLB on an oldest entry replacement basis.

1.5 Floating Point Unit 

The IBM 6x86 Floating Point Unit (FPU) 
interfaces to the integer unit and the cache unit 
through a 64-bit bus. The IBM 6x86 FPU is 
x87 instruction set compatible and adheres to 
the IEEE-754 standard. Since most applica-
tions contain FPU instructions mixed with 
integer instructions, the IBM 6x86 FPU 
achieves high performance by completing 
integer and FPU operations in parallel.

FPU Parallel Execution 

The IBM 6x86 CPU executes integer instruc-
tions in parallel with FPU instructions. Integer 
instructions may complete out of order with 
respect to the FPU instructions. The IBM 6x86 
CPU maintains x86 compatibility by signaling 
exceptions and issuing write cycles in program 
order.

As previously discussed, FPU instructions are 
always dispatched to the integer unit’s X pipe-
line. The address calculation stage of the X 
pipeline checks for memory management 
exceptions and accesses memory operands 
used by the FPU. If no exceptions are detected, 
the IBM 6x86 CPU checkpoints the state of the 
CPU and, during AC2, dispatches the floating 
point instruction to the FPU instruction queue. 
The IBM 6x86 CPU can then complete any 
subsequent integer instructions speculatively 
and out of order relative to the FPU instruction 
and relative to any potential FPU exceptions 
which may occur. 

As additional FPU instructions enter the pipe-
line, the IBM 6x86 CPU dispatches up to four 
FPU instructions to the FPU instruction queue. 
The IBM 6x86 CPU continues executing spec-
ulatively and out of order, relative to the FPU 
queue, until the IBM 6x86 CPU encounters 
one of the conditions that causes speculative 
execution to halt. As the FPU completes 
instructions, the speculation level decreases 
and the checkpointed resources are available 
for reuse in subsequent operations. The IBM 
6x86 FPU also uses a set of four write buffers 
to prevent stalls due to speculative writes. 
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1.6 Bus Interface Unit

The Bus Interface Unit (BIU) provides the 
signals and timing required by external 
circuitry. The signal descriptions and bus inter-
face timing information is provided in 
Chapters 3 and 4 of this manual.
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IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU 

2. PROGRAMMING
INTERFACE

In this chapter, the internal operations of the 
IBM 6x86 CPU are described mainly from an 
application programmer’s point of view. 
Included in this chapter are descriptions of pro-
cessor initialization, the register set, memory 
addressing, various types of interrupts and the 
shutdown and halt process.  An overview of 
real, virtual 8086, and protected operating 
modes is also included in this chapter.  The FPU 
operations are described separately at the end of 
the chapter.

This manual does not—and is not intended to—
describe the IBM 6x86 microprocessor or its 
operations at the circuit level.

   

2.1 Processor Initialization

The IBM 6x86 CPU is initialized when the 
RESET signal is asserted.  The processor is 
placed in real mode and the registers listed in 
Table 2-1 (Page 2-2) are set to their initialized 
values.  RESET invalidates and disables the 
cache and turns off paging.  When RESET is 
asserted, the IBM 6x86 CPU terminates all local 
bus activity and all internal execution.  During 
the entire time that RESET is asserted, the inter-
nal pipelines are flushed and no instruction exe-
cution or bus activity occurs.

Approximately 150 to 250 external clock cycles 
after RESET is negated, the processor begins 
executing instructions at the top of physical 
memory (address location FFFF FFF0h).  Typi-
cally, an intersegment JUMP is placed at FFFF 
FFF0h. This instruction will force the processor 
to begin execution in the lowest 1 MByte of 
address space.

Note: The actual time depends on the clock scal-
ing in use.  Also an additional 220 clock cycles 
are needed if self-test is requested.
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2.2 Instruction Set

Table 2-1.   Initialized Register Controls

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator xxxx xxxxh 0000 0000h indicates self-test passed.

EBX Base xxxx xxxxh

ECX Count xxxx xxxxh

EDX Data 05 + Device ID Device ID = 31h or 33h (2X clock)
Device ID = 35h or 37h (3X clock)

EBP Base Pointer xxxx xxxxh

ESI Source Index xxxx xxxxh

EDI Destination Index xxxx xxxxh

ESP Stack Pointer xxxx xxxxh

EFLAGS Flag Word 0000 0002h

EIP Instruction Pointer 0000 FFF0h

ES Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

CS Code Segment F000h Base address set to FFFF 0000h.
Limit set to FFFFh.

SS Stack Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

DS Data Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

FS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

GS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

IDTR Interrupt Descriptor Table 
Register

Base = 0, Limit = 3FFh

GDTR Global Descriptor Table
 Register

xxxx xxxxh, xxxxh

LDTR Local Descriptor Table
 Register

xxxx xxxxh, xxxxh

TR Task Register xxxxh

CR0 Machine Status Word 6000 0010h

CR2 Control Register 2 xxxx xxxxh

CR3 Control Register 3 xxxx xxxxh

CCR (0-5) Configuration Control (0-5) 00h

ARR (0-7) Address Region Registers 
(0-7)

00h

RCR (0-7) Region Control Registers (0-7) 00h

DIR0 Device Identification 0 31h or 33h (2X clock)
35h or 37h  (3X clock)

DIR1 Device Identification 1 Step ID + Revision ID

DR7 Debug Register 7 0000 0400h
Note: x = Undefined value
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Overview

The IBM 6x86 CPU instruction set performs 
nine types of general operations: 

All IBM 6x86 CPU instructions operate on as 
few as zero operands and as many as three 
operands. An NOP instruction (no operation) is 
an example of a zero operand instruction.  Two 
operand instructions allow the specification of 
an explicit source and destination pair as part of 
the instruction.  These two operand instructions 
can be divided into eight groups according to 
operand types: 

An operand can be held in the instruction itself 
(as in the case of an immediate operand), in one 
of the processor’s registers or I/O ports, or in 
memory.   An immediate operand is prefetched 
as part of the opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are sup-
ported as well as 64-or 80-bit associated with 
floating point instructions.  Operand lengths of 
8 or 32 bits are generally used when executing 
code written for 386- or 486-class (32-bit code) 
processors.   Operand lengths of 8 or 16 bits are 
generally used when executing existing 8086 or 
80286 code (16-bit code).  The default length of 

• Arithmetic • High-Level Language Support

• Bit Manipulation • Operating System Support

• Control Transfer • Shift/Rotate

• Data Transfer • String Manipulation

• Floating Point

• Register to Register • Register to I/O

• Register to Memory • I/O to Register

• Memory to Register • Immediate Data to Register

• Memory to Memory • Immediate Data to Memory

an operand can be overridden by placing one or 
more instruction prefixes in front of the opcode.  
For example, by using prefixes, a 32-bit oper-
and can be used with 16-bit code, or a 16-bit 
operand can be used with 32-bit code.

Chapter 6 of this manual lists each instruction 
in the IBM 6x86 CPU instruction set along with 
the associated opcodes, execution clock counts, 
and effects on the FLAGS register.

2.2.1 Lock Prefix

The LOCK prefix may be placed before certain 
instructions that read, modify, then write back 
to memory.  The prefix asserts the LOCK# sig-
nal to indicate to the external hardware that the 
CPU is in the process of running multiple indi-
visible memory accesses.  The LOCK prefix 
can be used with the following instructions: 

Bit Test Instructions (BTS, BTR, BTC)
Exchange Instructions (XADD, XCHG, 

CMPXCHG)
One-operand Arithmetic and Logical 

Instructions (DEC, INC, NEG, NOT)
Two-operand Arithmetic and Logical 

Instructions (ADC, ADD, AND, OR, 
SBB, SUB, XOR).

An invalid opcode exception is generated if the 
LOCK prefix is used with any other instruction, 
or with the above instructions when no write 
operation to memory occurs (i.e., the 
destination is a register).  The LOCK# signal 
can be negated to allow weak-locking for all of 
memory or on a regional basis.  Refer to the 
descriptions of the NO-LOCK bit (within 
CCR1) and the WL bit (within RCRx) later in 
this chapter.
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2.3  Register Sets

From the programmer’s point of view there are 
58 accessible registers in the IBM 6x86 CPU.   
These registers are grouped into two sets.  The 
application register set contains the registers 
frequently used by application programmers, 
and the system register set contains the regis-
ters typically reserved for use by operating sys-
tem programmers.

The application register set is made up of gen-
eral purpose registers, segment registers, a flag 
register, and an instruction pointer register.

The system register set is made up of the 
remaining registers which include control reg-
isters, system address registers, debug regis-
ters, configuration registers, and test registers.

Each of the registers is discussed in detail in the 
following sections.

2.3.1 Application
Register Set

The application register set, (Figure 2-1, Page 
2-5) consists of the registers most often used by 
the applications programmer.  These registers 
are generally accessible and are not protected 
from read or write access.

The General Purpose Register contents are 
frequently modified by assembly language 
instructions and typically contain arithmetic 
and logical instruction operands.

Segment Registers in real mode contain the 
base address for each segment.  In protected 
mode the segment registers contain segment 
selectors.  The segment selectors provide 
indexing for tables (located in memory) that 
contain the base address and limit for each seg-
ment, as well as access control information.

The Flag Register contains control bits used to 
reflect the status of previously executed 
instructions.  This register also contains control 
bits that affect the operation of some instructions.  

The Instruction Pointer  register points to the 
next instruction that the processor will execute.  
This register is automatically incremented by 
the processor as execution progresses.
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Figure 2-1.  Application Register Set

2.3.2 General Purpose
Registers

The general purpose registers are divided into 
four data registers, two pointer registers, and two 
index registers as shown in Figure 2-2 (Page 2-6).

The Data Registers are used by the applica-
tions programmer to manipulate data struc-
tures and to hold the results of logical and 
arithmetic operations.  Different portions of 
the general data registers can be addressed by 
using different names. 

An “E” prefix identifies the complete 32-bit 
register.  An “X” suffix without the “E” prefix 
identifies the lower 16 bits of the register. 

The lower two bytes of a data register can be 
addressed with an “H” suffix (identifies the 
upper byte) or an “L” suffix (identifies the lower 
byte).  The _L and _H portions of a data regis-
ters act as independent registers. For example, 
if the AH register is written to by an instruc-
tion, the AL register bits remain unchanged.
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Figure 2-2.  General Purpose Registers

The IBM 6x86 CPU processor implements a 
stack using the ESP register.  This stack is 
accessed during the PUSH and POP 
instructions, procedure calls, procedure 
returns, interrupts, exceptions, and 
interrupt/exception returns.

The microprocessor automatically adjusts the 
value of the ESP during operation of these 
instructions.The EBP register may be used to 
reference data passed on the stack during 
procedure calls.  Local data may also be placed 
on the stack and referenced relative to BP.  This 
register provides a mechanism to access stack 
data in high-level languages.

The Pointer and Index Registers are listed 
below. 

SI or ESI Source Index
DI or EDI Destination Index
SP or ESP Stack Pointer
BP or EBP Base Pointer

These registers can be addressed as 16- or 
32-bit registers, with the “E” prefix indicating 
32 bits.  The pointer and index registers can be 
used as general purpose registers, however, 
some instructions use a fixed assignment of 
these registers.  For example, repeated string 
operations always use ESI as the source 
pointer, EDI as the destination pointer, and 
ECX as the counter.  The instructions using 
fixed registers include multiply and divide, I/O 
access, string operations, translate, loop, vari-
able shift and rotate, and stack operations.
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EBX (Base)

ECX (Count)

EDX (Data)
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EBP (Base Pointer)

ESP (Stack Pointer)
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2.3.3 Segment Registers and
Selectors

Segmentation provides a means of defining 
data structures inside the memory space of the 
microprocessor.  There are three basic types of 
segments: code, data, and stack.  Segments are 
used automatically by the processor to deter-
mine the location in memory of code, data, and 
stack references.

There are six 16-bit segment registers:

CS Code Segment
DS Data Segment
ES Extra Segment
SS Stack Segment
FS Additional Data Segment
GS Additional Data Segment.

In real and virtual 8086 operating modes, a seg-
ment register holds a 16-bit segment base.  The 
16-bit segment is multiplied by 16 and a 16-bit 
or 32-bit offset is then added to it to create a lin-
ear address.  The offset size is dependent on the 
current address size.  In real mode and in virtual 

8086 mode with paging disabled, the linear 
address is also the physical address.  In virtual 
8086 mode with paging enabled, the linear 
address is translated to the physical address 
using the current page tables. Paging is 
described in Section 2.6.4 (Page 2-45). 

In protected mode a segment register holds a 
Segment Selector containing a 13-bit index, a 
Table Indicator (TI) bit, and a two-bit 
Requested Privilege Level (RPL) field as 
shown in Figure 2-3.

The Index points into a descriptor table in 
memory and selects one of 8192 (213) segment 
descriptors contained in the descriptor table.

A segment descriptor is an eight-byte value 
used to describe a memory segment by defining 
the segment base, the segment limit, and access 
control information.  To address data within a 
segment, a 16-bit or 32-bit offset is added to the 
segment’s base address.  Once a segment selec-
tor has been loaded into a segment register, an 
instruction needs only to specify the segment 
register and the offset.

Figure 2-3.  Segment Selector in Protected Mode
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The Table Indicator (TI) bit of the selector 
defines which descriptor table the index points 
into.  If TI=0, the index references the Global 
Descriptor Table (GDT).  If TI=1, the index ref-
erences the Local Descriptor Table (LDT).  The 
GDT and LDT are described in more detail in 
Section 2.4.2. Protected mode addressing is dis-
cussed further in Sections 2.6.2 and 2.6.3.

The Requested Privilege Level (RPL) field in 
a segment selector is used to determine the 
Effective Privilege Level of an instruction 
(where RPL=0 indicates the most privileged 
level, and RPL=3 indicates the least privileged 
level). 

If the level requested by RPL is less than the 
Current Program Level (CPL), the RPL level is 
accepted and the Effective Privilege Level is 
changed to the RPL value.  If the level 
requested by RPL is greater than CPL, the CPL 
overrides the requested RPL and Effective Priv-
ilege Level remains unchanged. 

When a segment register is loaded with a seg-
ment selector, the segment base, segment limit 
and access rights are loaded from the descriptor 
table entry into a user-invisible or hidden por-
tion of the segment register (i.e., cached 
on-chip).  The CPU does not access the descrip-
tor table entry again until another segment reg-
ister load occurs.  If the descriptor tables are 
modified in memory, the segment registers 
must be reloaded with the new selector values 
by the software.

The processor automatically selects an implied 
(default) segment register for memory refer-
ences. Table 2-2 describes the selection rules.  
In general, data references use the selector con-
tained in the DS register, stack references use 
the SS register and instruction fetches use the 
CS register.  While some of these selections 
may be overridden, instruction fetches, stack 
operations, and the destination write of string 
operations cannot be overridden.  Special seg-
ment override instruction prefixes allow the use 
of alternate segment registers including the use 
of the ES, FS, and GS segment registers.

Table 2-2.   Segment Register Selection Rules

TYPE OF MEMORY REFERENCE
IMPLIED (DEFAULT)

SEGMENT
SEGMENT OVERRIDE 

PREFIX

Code Fetch CS None

Destination of PUSH, PUSHF, INT, CALL,
    PUSHA instructions

SS None

Source of POP, POPA, POPF, IRET,
    RET instructions

SS None

Destination of STOS, MOVS, REP STOS,
    REP MOVS instructions

ES None

Other data references with effective
    address using base registers of:
        EAX, EBX, ECX,
        EDX, ESI, EDI
        EBP, ESP

DS

SS

CS, ES, FS, GS, SS

CS, DS, ES, FS, GS
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2.3.4 Instruction Pointer
Register

The Instruction Pointer (EIP) register contains 
the offset into the current code segment of the 
next instruction to be executed.  The register is nor-
mally incremented with each instruction execu-
tion unless implicitly modified through an 
interrupt, exception or an instruction that 
changes the sequential execution flow 
(e.g., JMP, CALL).

2.3.5 Flags Register

The Flags Register, EFLAGS, contains status 
information and controls certain operations on 
the IBM 6x86 CPU microprocessor. The lower 16 
bits of this register are referred to as the FLAGS 
register that is used when executing 8086 or 80286 
code.  The flag bits are shown in Figure 2-4 and 
defined in Table 2-3 (Page 2-10).

Figure 2-4.   EFLAGS Register
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Table 2-3.   EFLAGS Bit Definitions

BIT
POSITION

NAME FUNCTION

0 CF Carry Flag:  Set when a carry out of (addition) or borrow into (subtraction) the most
significant bit of the result occurs; cleared otherwise.

2 PF Parity Flag:  Set when the low-order 8 bits of the result contain an even number of ones;
cleared otherwise.

4 AF Auxiliary Carry Flag:  Set when a carry out of (addition) or borrow into (subtraction) bit 
position 3 of the result occurs; cleared otherwise.

6 ZF Zero Flag:  Set if result is zero; cleared otherwise.

7 SF Sign Flag:  Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

8 TF Trap Enable Flag:  Once set, a single-step interrupt occurs after the next instruction
completes execution.  TF is cleared by the single-step interrupt.

9 IF Interrupt Enable Flag:  When set, maskable interrupts (INTR input pin) are acknowledged 
and serviced by the CPU.

10 DF Direction Flag:  If DF=0, string instructions auto-increment (default) the appropriate index 
registers (ESI and/or EDI).  If DF=1, string instructions auto-decrement the appropriate 
index registers.

11 OF Overflow Flag:  Set if the operation resulted in a carry or borrow into the sign bit of the 
result but did not result in a carry or borrow out of the high-order bit.  Also set if the
operation resulted in a carry or borrow out of the high-order bit but did not result in a carry 
or borrow into the sign bit of the result.

12, 13 IOPL I/O Privilege Level:  While executing in protected mode, IOPL indicates the maximum
current privilege level (CPL) permitted to execute I/O instructions without generating an 
exception 13 fault or consulting the I/O permission bit map.  IOPL also indicates the
maximum CPL allowing alteration of the IF bit when new values are popped into the 
EFLAGS register.

14 NT Nested Task:  While executing in protected mode, NT indicates that the execution of the 
current task is nested within another task.

16 RF Resume Flag:  Used in conjunction with debug register breakpoints.  RF is checked at 
instruction boundaries before breakpoint exception processing.  If set, any debug fault is 
ignored on the next instruction.

17 VM Virtual 8086 Mode:  If set while in protected mode, the microprocessor switches to virtual 
8086 operation handling segment loads as the 8086 does, but generating exception 13 faults 
on privileged opcodes.  The VM bit can be set by the IRET instruction (if current privilege 
level=0) or by task switches at any privilege level.

18 AC Alignment Check Enable:  In conjunction with the AM flag in CR0, the AC flag determines 
whether or not misaligned accesses to memory cause a fault.  If AC is set, alignment faults 
are enabled.

21 ID Identification Bit:  The ability to set and clear this bit indicates that the CPUID instruction 
is supported.  The ID can be modified only if the CPUID bit in CCR4 is set.
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2.4 System Register Set

The system register set, shown in Figure 2-5 
(Page 2-12), consists of registers not generally 
used by application programmers.  These regis-
ters are typically employed by system level 
programmers who generate operating systems 
and memory management programs.

The Control Registers control certain aspects 
of the IBM 6x86 microprocessor such as pag-
ing, coprocessor functions, and segment protec-
tion.   When a paging exception occurs while 
paging is enabled, some control registers retain 
the linear address of the access that caused the 
exception.

The Descriptor Table Registers and the Task 
Register can also be referred to as system 
address or memory management registers.  
These registers consist of two 48-bit and two 
16-bit registers.  These registers specify the 
location of the data structures that control the 
segmentation used by the IBM 6x86 micropro-
cessor.  Segmentation is one available method 
of memory management.

The Configuration Registers are used to con-
figure the IBM 6x86 CPU on-chip cache oper-
ation, power management features and System 
Management Mode.  The configuration regis-
ters also provide information on the CPU 
device type and revision.

The Debug Registers provide debugging facil-
ities to enable the use of data access break-
points and code execution breakpoints.

The Test Registers provide a mechanism to 
test the contents of both the on-chip 16 KByte 
cache and the Translation Lookaside Buffer 
(TLB).  In the following sections, the system 
register set is described in greater detail.
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Figure 2-5.   System Register Set
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2.4.1 Control Registers

The Control Registers (CR0, CR2 and CR3), are 
shown in Figure 2-6.  The CR0 register contains 
system control bits which configure operating 
modes and indicate the general state of the CPU.  
The lower 16 bits of CR0 are referred to as the 
Machine Status Word (MSW).  The CR0 bit def-
initions are described in Table 2-4 and Table 2-5 
(Page 2-14).  The reserved bits in CR0 should not 
be modified.

When paging is enabled and a page fault is gen-
erated, the CR2 register retains the 32-bit linear 
address of the address that caused the fault.  
When a double page fault occurs, CR2 contains 
the address for the second fault. Register CR3 
contains the 20 most significant bits of the phys-

ical base address of the page directory.  The 
page directory must always be aligned to a 
4-KByte page boundary, therefore, the lower 12 
bits of CR3 are not required to specify the base 
address.

CR3 contains the Page Cache Disable (PCD) 
and Page Write Through (PWT) bits.  During 
bus cycles that are not paged, the state of the 
PCD bit is reflected on the PCD pin and the 
PWT bit is driven on the PWT pin.  These bus 
cycles include interrupt acknowledge cycles 
and all bus cycles, when paging is not enabled.  
The PCD pin should be used to control caching 
in an external cache. The PWT pin should be 
used to control write policy in an external cache.

Figure 2-6.  Control Registers

Table 2-4.   CR0 Bit Definitions
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2.4.2 Descriptor Table

1 MP Monitor Processor Extension:  If MP=1 and TS=1, a WAIT instruction causes Device Not Avail-
able (DNA) fault 7.  The TS bit is set to 1 on task switches by the CPU.  Floating point instruc-
tions are not affected by the state of the MP bit.  The MP bit should be set to one during normal 
operations.

2 EM Emulate Processor Extension:  If EM=1, all floating point instructions cause a DNA fault 7.

3 TS Task Switched:  Set whenever a task switch operation is performed.  Execution of a floating 
point instruction with TS=1 causes a DNA fault.  If MP=1 and TS=1, a WAIT instruction also 
causes a DNA fault.

4 1 Reserved:  Do not attempt to modify.

5 NE Numerics Exception. NE=1 to allow FPU exceptions to be handled by interrupt 16.  NE=0 if 
FPU exceptions are to be handled by external interrupts.

16 WP Write Protect:  Protects read-only pages from supervisor write access.  WP=0 allows a read-only 
page to be written from privilege level 0-2.  WP=1 forces a fault on a write to a
read-only page from any privilege level.

18 AM Alignment Check Mask:  If AM=1, the AC bit in the EFLAGS register is unmasked and allowed 
to enable alignment check faults.  Setting AM=0 prevents AC faults from occurring.

29 NW Not Write-Back: If NW=1, the on-chip cache operates in write-through mode.  In write-through 
mode, all writes (including cache hits) are issued to the external bus. If NW=0, the on-chip 
cache operates in write-back mode.  In write-back mode, writes are issued to the external bus 
only for a cache miss, a line replacement of a modified line, or as the result of a cache inquiry 
cycle. 

30 CD Cache Disable:  If CD=1, no further cache line fills occur.  However, data already present in the 
cache continues to be used if the requested address hits in the cache.  Writes continue to update 
the cache and cache invalidations due to inquiry cycles occur normally.  The cache must also be 
invalidated to completely disable any cache activity.

31 PG Paging Enable Bit:  If PG=1 and protected mode is enabled (PE=1), paging is enabled.  After 
changing the state of PG, software must execute an unconditional branch instruction (e.g., JMP, 
CALL) to have the change take effect.

Table 2-5.  Effects of Various Combinations of EM, TS, and MP Bits

CR0 BIT INSTRUCTION TYPE

EM TS MP WAIT ESC

0 0 0     Execute     Execute

0 0 1     Execute     Execute

0 1 0     Execute     Fault 7

0 1 1     Fault 7     Fault 7

1 0 0     Execute     Fault 7

1 0 1     Execute     Fault 7

1 1 0     Execute     Fault 7

1 1 1     Fault 7     Fault 7

Table 2-4.   CR0 Bit Definitions

BIT
POSITION

NAME FUNCTION
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Registers and Descriptors

Descriptor Table Registers

The Global, Interrupt, and Local Descriptor 
Table Registers (GDTR, IDTR and LDTR), 
shown in Figure 2-7, are used to specify the 
location of the data structures that control seg-
mented memory management.  The GDTR, 
IDTR and LDTR are loaded using the LGDT, 
LIDT and LLDT instructions, respectively.  The 
values of these registers are stored using the cor-
responding store instructions.  The GDTR and 
IDTR load instructions are privileged instruc-
tions when operating in protected mode.  The 
LDTR can only be accessed in protected mode.

The Global Descriptor Table Register (GDTR) 
holds a 32-bit linear base address and 16-bit 
limit for the Global Descriptor Table (GDT).  
The GDT is an array of up to 8192 8-byte 
descriptors.  When a segment register is loaded 
from memory, the TI bit in the segment selector 
chooses either the GDT or the Local Descriptor 
Table (LDT) to locate a descriptor.  If TI = 0, the 
index portion of the selector is used to locate the 
descriptor within the GDT table.  The contents 
of the GDTR are completely visible to the pro-
grammer by using a SGDT instruction. The first 

descriptor in the GDT (location 0) is not used by 
the CPU and is referred to as the “null descrip-
tor”.  The GDTR is initialized using a LGDT 
instruction.

The Interrupt Descriptor Table Register 
(IDTR) holds a 32-bit linear base address and 
16-bit limit for the Interrupt Descriptor Table 
(IDT).  The IDT is an array of 256 interrupt 
descriptors, each of which is used to point to an 
interrupt service routine.  Every interrupt that 
may occur in the system must have an associ-
ated entry in the IDT.  The contents of the IDTR 
are completely visible to the programmer by 
using a SIDT instruction. The IDTR is initialized 
using the LIDT instruction.

The Local Descriptor Table Register (LDTR) 
holds a 16-bit selector for the Local Descriptor 
Table (LDT).  The LDT is an array of up to 8192 
8-byte descriptors.  When the LDTR is loaded, 
the LDTR selector indexes an LDT descriptor 
that must reside in the Global Descriptor Table 
(GDT).    The base address and limit are loaded 
automatically and cached from the LDT 
descriptor within the GDT. 

Figure 2-7.   Descriptor Table Registers

BASE ADDRESS LIMIT

SELECTOR

47 16 15 0

LDTR

IDTR

GDTRBASE ADDRESS LIMIT
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Subsequent access to entries in the LDT use the 
hidden LDTR cache to obtain linear addresses. 
If the LDT descriptor is modified in the GDT, 
the LDTR must be reloaded to update the hidden 
portion of the LDTR.

When a segment register is loaded from mem-
ory, the TI bit in the segment selector chooses 
either the GDT or the LDT to locate a segment 
descriptor.  If TI = 1, the index portion of the 
selector is used to locate a given descriptor 
within the LDT.  Each task in the system may be 
given its own LDT, managed by the operating 
system.  The LDTs provide a method of isolat-
ing a given task’s segments from other tasks in 
the system.

The LDTR can be read or written by the LLDT 
and SLDT instructions.

Descriptors

There are three types of descriptors:

• Application Segment Descriptors that 
define code, data and stack segments.

• System Segment Descriptors that define 
an LDT segment or a Task State Segment 
(TSS) table described later in this text.

• Gate Descriptors that define task gates, 
interrupt gates, trap gates and call gates.

Application Segment Descriptors can be 
located in either the LDT or GDT.  System Seg-
ment Descriptors can only be located in the 
GDT.  Dependent on the gate type, gate descrip-
tors may be located in either the GDT, LDT or 
IDT.  Figure 2-8 illustrates the descriptor format 
for both Application Segment Descriptors and 
System Segment Descriptors.  Table 2-6 (Page 
2-17) lists the corresponding bit definitions.

Figure 2-8.   Application and System Segment Descriptors
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Table 2-6.  Segment Descriptor Bit Definitions

BIT
POSITION

MEMORY
OFFSET

NAME DESCRIPTION

31-24
7-0

31-16

+4
+4
+0

BASE Segment base address.
32-bit linear address that points to the beginning of the segment.

19-16
15-0

+4
+0

LIMIT Segment limit.  

23 +4 G Limit granularity bit:
0 = byte granularity, 1 = 4 KBytes (page) granularity.

22 +4 D Default length for operands and effective addresses.
Valid for code and stack segments only:  0 = 16 bit, 1 = 32-bit.

20 +4 AVL Segment available.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

12 +4 DT Descriptor type:
0 = system, 1 = application.

11-8 +4 TYPE Segment type. See Tables 2-7 and 2-8.

Table 2-7.  TYPE Field Definitions with DT = 0

TYPE
(BITS 11-8)

DESCRIPTION

0001 TSS-16 descriptor, task not busy.

0010 LDT descriptor.

0011 TSS-16 descriptor, task busy.

1001 TSS-32 descriptor, task not busy

1011 TSS-32 descriptor, task busy.
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Table 2-8.  TYPE Field Definitions with DT = 1

TYPE
APPLICATION DECRIPTOR INFORMATION

E C/D R/W A

0 0 x x data, expand up, limit is upper bound of segment

0 1 x x data, expand down, limit is lower bound of segment

1 0 x x executable, non-conforming

1 1 x x executable, conforming (runs at privilege level of calling procedure)

0 x 0 x data, non-writable

0 x 1 x data, writable

1 x 0 x executable, non-readable

1 x 1 x executable, readable

x x x 0 not-accessed

x x x 1 accessed
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Interrupt Gate Descriptors are used to enter a 
hardware interrupt service routine.  Trap Gate 
Descriptors are used to enter exceptions or soft-
ware interrupt service routines.  Trap Gate and 
Interrupt Gate Descriptors can only be located 
in the IDT.

Call Gate Descriptors are used to enter a proce-
dure (subroutine) that executes at the same or a 
more privileged level.  A Call Gate Descriptor 
primarily defines the procedure entry point and 
the procedure’s privilege level.

Figure 2-9   Gate Descriptor

Table 2-9.   Gate Descriptor Bit Definitions

BIT
POSITION

MEMORY
OFFSET

NAME DESCRIPTION

31-16
15-0

+4
+0

OFFSET Offset used during a call gate to calculate the branch target.

31-16 +0 SELECTOR Segment selector used during a call gate to calculate the branch target.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

11-8 +4 TYPE Segment type:
0100 = 16-bit call gate
0101 = task gate
0110 = 16-bit interrupt gate
0111 = 16-bit trap gate
1100 = 32-bit call gate
1110 = 32-bit interrupt gate
1111 = 32-bit trap gate.

4-0 +4 PARAMETERS Number of 32-bit parameters to copy from the caller’s stack to the called 
procedure’s stack (valid for calls).

Gate Descriptors provide protection for exe-
cutable segments operating at different privi-
lege levels.  Figure 2-9 illustrates the format for 
Gate Descriptors and Table 2-9 lists the corre-
sponding bit definitions.

Task Gate Descriptors are used to switch the 
CPU’s context during a task switch.  The selec-
tor portion of the task gate descriptor locates a 
Task State Segment.  These descriptors can be 
located in the GDT, LDT or IDT tables. 
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2.4.3 Task Register

The Task Register (TR) holds a 16-bit selector 
for the current Task State Segment (TSS) table 
as shown in Figure 2-10.  The TR is loaded and 
stored via the LTR and STR instructions, 
respectively.  The TR can only be accessed dur-
ing protected mode and can only be loaded 
when the privilege level is 0 (most privileged).  
When the TR is loaded, the TR selector field 
indexes a TSS descriptor that must reside in the 

Global Descriptor Table (GDT).  The contents of 
the selected descriptor are cached on-chip in the 
hidden portion of the TR.

During task switching, the processor saves the cur-
rent CPU state in the TSS before starting a new 
task.  The TR points to the current TSS.  The TSS 
can be either a 386/486-style 32-bit TSS 
(Figure 2-11, Page 2-21) or a 286-style 16-bit TSS type 
(Figure 2-12, Page 2-22).  An I/O permission bit 
map is referenced in the 32-bit TSS by the I/O 
Map Base Address.

Figure 2-10.   Task Register
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Figure 2-11.   32-Bit Task State Segment (TSS) Table
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Figure 2-12.   16-Bit Task State Segment (TSS) Table
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2.4.4 IBM 6x86 Configuration 
Registers

A set of 24 on-chip IBM 6x86  configuration 
registers are used to enable features in the IBM 
6x86 CPU. These registers assign non-cached 
memory areas, set up SMM, provide CPU iden-
tification information and control various fea-
tures such as cache write policy, and bus 
locking control. There are four groups of regis-
ters within the IBM 6x86  configuration register 
set: 

• 6 Configuration Control Registers 
(CCRx)

• 8 Address Region Registers (ARRx)
• 8 Region Control Registers (RCRx)
• 2 Device Identification Registers (DIRx) 

Access to the configuration registers is 
achieved by writing the register index number 
for the configuration register to I/O port 22h.  
I/O port 23h is then used for data transfer.

Each I/O port 23h data transfer must be pre-
ceded by a valid I/O port 22h register index 
selection.  Otherwise, the current 22h, and  the 
second and later I/O port 23h operations com-
municate through the I/O port to produce exter-
nal I/O cycles.  All reads from I/O port 22h 
produce external I/O cycles. Accesses that hit 
within the on-chip configuration registers do 
not generate external I/O cycles. 

After reset, configuration registers with 
indexes CO-CFh and FE-FFh are accessible. 
To prevent potential conflicts with other 
devices which may use ports 22 and 23h to 

access their registers, the remaining registers 
(indexes D0-FDh) are accessible only if the 
MAPEN(3-0) bits in CCR3 are set to 1h.  See 
Figure 2-16 (Page 2-28) for more information 
on the MAPEN(3-0) bit locations.  

If MAPEN[3-0] = 1h, any access to indexes in 
the range 00-FFh will not create external I/O 
bus cycles.  Registers with indexes C0-CFh, 
FE, FFh are accessible regardless of the state of 
MAPEN[3-0].  If the register index number is 
outside the C0-CFh or FE-FFh ranges, and 
MAPEN[3-0] are set to 0h, external I/O bus 
cycles occur.  Table 2-10 (Page 2-24) lists the 
MAPEN[3-0] values required to access each 
IBM 6x86  configuration register.  All bits in 
the configuration registers are initialized to 
zero following reset unless specified otherwise.

Valid register index numbers include C0h to 
E3h, E8h, E9h, FEh and FFh 
(if MAPEN[3-0] = 1).

2.4.4.1 Configuration Control
Registers

(CCR0 - CCR5) control several functions, 
including non-cacheable memory, write-back 
regions, and SMM features.  A list of the con-
figuration registers is listed in Table 2-10 (Page 
2-24). The configuration registers are described 
in greater detail in the following pages.
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Table 2-10.   IBM 6x86™  CPU Configuration Registers

REGISTER NAME ACRONYM
REGISTER

INDEX
WIDTH

(Bits)

MAPEN VALUE
  NEEDED FOR 

ACCESS

Configuration Control 0 CCR0 C0h 8 x

Configuration Control 1 CCR1 C1h 8 x

Configuration Control 2 CCR2 C2h 8 x

Configuration Control 3 CCR3 C3h 8 x

Configuration Control 4 CCR4 E8h 8 1

Configuration Control 5 CCR5 E9h 8 1

Address Region 0 ARR0 C4h - C6h 24 x

Address Region 1 ARR1 C7h - C9h 24 x

Address Region 2 ARR2 CAh - CCh 24 x

Address Region 3 ARR3 CDh - CFh 24 x

Address Region 4 ARR4 D0h - D2h 24 1

Address Region 5 ARR5 D3h - D5h 24 1

Address Region 6 ARR6 D6h - D8h 24 1

Address Region 7 ARR7 D9h - DBh 24 1

Region Control 0 RCR0 DCh 8 1

Region Control 1 RCR1 DDh 8 1

Region Control 2 RCR2 DEh 8 1

Region Control 3 RCR3 DFh 8 1

Region Control 4 RCR4 E0h 8 1

Region Control 5 RCR5 E1h 8 1

Region Control 6 RCR6 E2h 8 1

Region Control 7 RCR7 E3h 8 1

Device Identification 0 DIR0 FEh 8 x

Device Identification 1 DIR1 FFh 8 x

Note: x = Don’t Care
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7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved NC1 Reserved

Figure 2-13.  IBM 6x86™  Configuration Control Register 0 (CCR0)

Table 2-11.  CCR0 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

1 NC1 No Cache 640 KByte - 1 MByte 
If = 1: Address region 640 KByte to 1 MByte is non-cacheable.
If = 0: Address region 640 KByte to 1 MByte is cacheable.

Note: Bits 0, 2 through 7 are reserved.
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7 6 5 4 3 2 1 0

SM3 Reserved Reserved NO_LOCK Reserved SMAC USE_SMI Reserved

Figure 2-14.  IBM 6x86  Configuration Control Register 1 (CCR1)

Table 2-12.  CCR1 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

1 USE_SMI Enable SMM and SMIACT# Pins
If = 1: SMI#  and SMIACT# pins are enabled.
If = 0: SMI# pin ignored and SMIACT# pin is driven inactive.

2 SMAC System Management Memory Access
If = 1: Any access to addresses within the SMM address space, access system manage-
ment memory instead of main memory.  SMI# input is ignored. Used when initializing 
or testing SMM memory.
If = 0: No effect on access.

4 NO_LOCK Negate LOCK#
If = 1: All bus cycles are issued with LOCK# pin negated except page table accesses 
and interrupt acknowledge cycles.  Interrupt acknowledge cycles are executed as locked 
cycles even though LOCK# is negated.  With NO_LOCK set, previously noncacheable 
locked cycles are executed as unlocked cycles and therefore, may be cached.  This 
results in higher performance.  Refer to Region Control Registers for information on 
eliminating locked CPU bus cycles only in specific address regions.

7 SM3 SMM Address Space Address Region 3
If = 1: Address Region 3 is designated as SMM address space.

Note:  If USE_SMI is set then SM3 mus also be set.

Note:  Bits 0, 3, 5 and 6 are reserved.
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7 6 5 4 3 2 1 0

USE_SUSP Reserved Reserved WPR1 SUSP_HLT LOCK_NW SADS Reserved

Figure 2-15.  IBM 6x86 Configuration Control Register 2 (CCR2)

Table 2-13.  CCR2 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

1 SADS Slow ADS: For non-pipelinned back-to-back bus cycles only
If = 1: CPU inserts an idle following sampling of BRDY# and prior to asserting ADS#.  
If = 0: No idle cycles are inserted between sampling of BRDY# and assertion of ADS#.

2 LOCK_NW Lock NW 
If = 1: NW bit in CR0 becomes read only and the CPU ignores any writes to the NW bit.
If = 0: NW bit in CR0 can be modified.

3 SUSP_HLT Suspend on Halt
If = 1: Execution of the HLT instruction causes the CPU to enter low power suspend 
mode.

4 WPR1 Write-Protect Region 1 
If = 1: Designates any cacheable accesses in 640 KByte to 1 MByte address region are 
write protected.

7 USE_SUSP Use Suspend Mode (Enable Suspend Pins)
If = 1: SUSP# and SUSPA# pins are enabled.
If = 0: SUSP# pin is ignored and SUSPA# pin floats.

Note: Bits 0,1, 5 and 6 are reserved.
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7 6 5 4 3 2 1 0

MAPEN Reserved LINBRST NMI_EN SMI_LOCK

Figure 2-16.  IBM 6x86 Configuration Control Register 3 (CCR3)

Table 2-14.  CCR3 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

0 SMI_LOCK SMI Lock 
If = 1: The following SMM configuration bits can only be modified while in an 
SMI service routine:
CCR1: USE_SMI, SMAC, SM3
CCR3:  NMI_EN
ARR3: Starting address and block size.
Once set, the features locked by SMI_LOCK cannot be unlocked until the
  RESET pin is asserted.

1 NMI_EN NMI Enable
If = 1: NMI interrupt is recognized while servicing an SMI interrupt.
NMI_EN should be set only while in SMM, after the appropriate SMI interrupt 
service routine has been setup.

2 LINBRST If = 1: Use linear address sequence during burst cycles. 
If = 0: Use “1 + 4” address sequence during burst cycles. The “1 + 4” address 
sequence is compatible with Pentium’s burst address sequence. 

4 - 7 MAPEN MAP Enable
If = 1h: All configuration registers are accessible.
If = 0h: Only configuration registers with indexes C0-CFh, FEh and FFh
are accessible.

Note: Bit 3 is reserved.
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.

  

7 6 5 4 3 2 1 0

CPUID Reserved Reserved DTE_EN Reserved IORT

Figure 2-17.  IBM 6x86 Configuration Control Register 4 (CCR4)

Table 2-15.  CCR4 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

0 - 2 IORT I/O Recovery Time
Specifies the minimum number of bus clocks between I/O accesses:
0h = 1 clock delay
1h = 2 clock delay
2h = 4 clock delay
3h = 8 clock delay
4h = 16 clock delay
5h = 32 clock delay (default value after RESET)
6h = 64 clock delay
7h = no delay

4 DTE_EN Enable Directory Table Entry Cache
If = 1: the Directory Table Entry cache is enabled.

7 CPUID Enable CPUID instruction.
If = 1: the ID bit in the EFLAGS register can be modified and execution of the 
CPUID instruction occurs as documented in section 6.3.
If = 0: the ID bit in the EFLAGS register can not be modified and execution of 
the CPUID instruction causes an invalid opcode exception.

Note: Bits 3 and bits 5 and 6 are reserved.
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7 6 5 4 3 2 1 0

Reserved Reserved ARREN LBR1 Reserved Reserved SLOP WT_ALLOC

Figure 2-18.  IBM 6x86 Configuration Control Register 5 (CCR5)

Table 2-16.  CCR5 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

0 WT_ALLOC Write-Through Allocate
If = 1: New cache lines are allocated for read and write misses. 
If = 0: New cache lines are allocated only for read misses.

1 SLOP If set, the LOOP instruction is slowed down to allow programs with poorly 
written software timing loops to function correctly.  If clear, the LOOP instruc-
tion executes in one clock.

4 LBR1 Local Bus Region 1
If = 1: LBA# pin is asserted for all accesses to the 640 KByte to 1 MByte 
address region.

5 ARREN Enable ARR Registers
If = 1: Enables all ARR registers.
If = 0: Disables the ARR registers.  If SM3 is set, ARR3 is enabled regardless 
of the setting of ARREN.

Note: Bits 1 through 3 and 6 though 7 are reserved.
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2.4.4.2 Address Region
Registers 

The Address Region Registers (ARR0 - ARR7) 
(Figure 2-19) are used to specify the location 
and size for the eight address regions. 

Attributes for each address region are specified 
in the Region Control Registers (RCR0-RCR7).  
ARR7 and RCR7 are used to define system 
main memory and differ from ARR0-6 and 
RCR0-6. 

With non-cacheable regions defined on-chip, 
the IBM 6x86 CPU delivers optimum perfor-
mance by using advanced techniques to elimi-
nate data dependencies and resource conflicts in 
its execution pipelines.  If KEN# is active for 

accesses to regions defined as non-cacheable by 
the RCRs, the region is not cached.  The RCRs 
take precedence in this case.  

A register index,  shown in Table 2-17 (Page 
2-32) is used to select one of three bytes in each 
ARR.

The starting address of the ARR address region, 
selected by the START ADDRESS field, must 
be on a block size boundary.  For example, a 
128 KByte block is allowed to have a starting 
address of 0 KBytes, 128 KBytes, 256 KBytes, 
and so on.   

The SIZE field bit definition is listed in  (Page 
2-32).  If the SIZE field is zero, the  address 
region is of zero size and thus disabled.

  

START ADDRESS SIZE

Memory Address 
 Bits A31-A24

Memory Address 
Bits A23-A16

Memory Address 
Bits A15-A12

Size Bits
 3-0

7                                                            0 7                                                           0 7                          4 3                         0

Figure 2-19.  Address Region Registers (ARR0 - ARR7) 
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Table 2-17.  ARR0 - ARR7 Register Index Assignments

ARR
Register

Memory Address
 (A31 - A24)

Memory Address 
(A23 - A16)

Memory Address
(A15 - A12)

Address Region 
Size (3 - 0)

ARR0 C4h C5h C6h C6h

ARR1 C7h C8h C9h C9h 

ARR2 CAh CBh CCh CCh 

ARR3 CDh CEh CFh CFh 

ARR4 D0h D1h D2h D2h 

ARR5 D3h D4h D5h D5h 

ARR6 D6h D7h D8h D8h 

ARR7 D9h DAh DBh DBh 

Table 2-18.  Bit Definitions for SIZE Field

SIZE (3-0)
 BLOCK SIZE

SIZE (3-0)
BLOCK SIZE

ARR0-6 ARR7 ARR0-6 ARR7

0h Disabled Disabled 8h  512 KBytes 32 MBytes

1h 4 KBytes 256 KBytes 9h 1 MBytes 64 MBytes

2h 8 KBytes 512 KBytes Ah 2 MBytes 128 MBytes

3h 16 KBytes 1 MBytes Bh 4 MBytes 256 MBytes

4h 32 KBytes 2 MBytes Ch 8 MBytes 512 MBytes

5h 64 KBytes 4 MBytes Dh 16 MBytes 1 GBytes

6h 128 KBytes 8 MBytes Eh 32 MBytes 2 GBytes

7h 256 KBytes 16 MBytes Fh  4 GBytes 4 GBytes
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2.4.4.3  Region Control
  Registers

The Region Control Registers (RCR0 - RCR7) 
specify the attributes associated with the ARRx 
address regions. The bit definitions for the 
region control registers are shown in Figure 
2-20 (Page 2-34) and in Table 2-19 (Page 
2-34).  Cacheability, weak write ordering, weak 
locking, write gathering, cache write policies 
and control of the LBA# pin can be activated or 
deactivated using the attribute bits. 

If an address is accessed that is not in a memory 
region defined by the ARRx registers, the fol-
lowing conditions will apply:

• LBA# pin is asserted
• The memory access is cached, if KEN# is 

returned asserted.
• If the memory address is cached, 

write-back is enabled if WB/WT# is 
returned high.

• Writes are not gathered
• Strong locking takes place
• Strong write ordering takes place

Overlapping Conditions Defined. If two
regions specified by ARRx registers overlap
and conflicting attributes are specified, the fol-
lowing attributes take precedence:

• LBA# pin is asserted
• The overlapping regions are 

non-cacheable.
• Write-back is disabled
• Writes are not gathered
• Strong locking takes place
• Strong write ordering takes place
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7 6 5 4 3 2 1 0

Reserved Reserved NLB WT WG WL WWO RCD / RCE*

*Note: RCD is defined for RCR0-RCR6. RCE is defined for RCR7.

Figure 2-20.  Region Control Registers (RCR0-RCR7)

Table 2-19.  RCR0-RCR7 Bit Definitions

RCRx
BIT

POSITION
NAME DESCRIPTION

0 - 6 0 RCD If = 1: Disables caching for address region specified by ARRx.
7 0 RCE If = 1: Enables caching for address region ARR7.

0 - 7 1 WWO If = 1: Weak write ordering for address region specified by ARRx.
0 - 7 2 WL If = 1: Weak locking for address region specified by ARRx.
0 - 7 3 WG If = 1: Write gathering for address region specified by ARRx.
0 - 7 4 WT If = 1: Address region specified by ARRx is write-through.
0 - 7 5 NLB If = 1:LBA# pin is not asserted for access to address region specified by ARRx

Note: Bits 6 and 7 are reserved.

Region Cache Disable (RCD).  Setting 
RCD to a one defines the address region as 
non-cacheable.  Whenever possible, the 
RCRs should be used to define non-cache-
able regions rather than using external 
address decoding and driving the KEN# pin.  

Region Cache Enable (RCE).  Setting RCE 
to a one defines the address region as cache-
able.  RCE is used to define the system main 
memory as cacheable memory.  It is implied 
that memory outside the region is non-cache-
able.  

Weak Write Ordering (WWO).   Setting 
WWO=1 enables weak write ordering for 
that address region.  Enabling WWO allows 
the IBM 6x86 CPU to issue writes in its 
internal cache in an order different than their 
order in the code stream.  External writes 
always occur in order (strong ordering). 

Therefore, this should only be enabled for mem-
ory regions that are NOT sensitive to this condi-
tion.  WWO should not be enabled for memory 
mapped I/O.  WWO only applies to memory 
regions that have been cached and designated as 
write-back.  It also applies to previously cached 
addresses even if the cache has been disabled 
(CD=1).  Enabling WWO removes the 
write-ordering restriction and  improves perfor-
mance due to reduced pipeline stalls.

Weak Locking (WL).   Setting WL=1 enables 
weak locking for that address region.  With WL 
enabled, all bus cycles are issued with the LOCK# 
pin negated except for page table accesses and 
interrupt acknowledge cycles.  Interrupt acknowl-
edge cycles are executed as locked cycles even 
though LOCK# is negated.  With WL=1, previ-
ously non-cacheable locked cycles are executed 
as unlocked cycles and therefore, may be cached, 
resulting in higher  performance.  The NO_LOCK 
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bit of CCR1 enables weak locking for the entire 
address space.  The WL bit allows weak locking 
only for specific address regions.  WL is inde-
pendent of the cacheability of the address 
region.  

Write Gathering (WG).   Setting WG=1 
enables write gathering for the associated 
address region.  Write gathering allows multiple 
byte, word, or dword sequential address writes 
to accumulate in the on-chip write buffer.  (As 
instructions are executed, the results are placed 
in a series of output buffers. These buffers are 
gathered  into the finial output buffer). 

When access is made to a non-sequential mem-
ory location or when the 8-byte buffer becomes 
full, the contents of the buffer are written on the 
external 64-bit data bus.  Performance is 
enhanced by avoiding as many as seven mem-
ory write cycles. 

WG should not be used on memory regions that 
are sensitive to write cycle gathering.  WG can 
be enabled for both cacheable and 
non-cacheable regions.  

Write Through (WT).   Setting WT=1 defines 
the address region as write-through instead of 
write-back, assuming the region is cacheable.  
Regions where system ROM are loaded (shad-
owed or not) should be defined as 
write-through.  

LBA# Not Asserted (NLB). Setting NLB=1 
prevents the microprocessor from asserting the 
Local Bus Access (LBA#) output pin for 
accesses to that address region.  The RCR 
regions may be used to define non-local bus 
address regions. The LBA# pin could then be 
asserted for all regions, except those defined by 
the RCRs.  The LBA# signal may be used by the 
external hardware (e.g., chipsets) as an indica-
tion that local bus accesses are occurring.
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2.4.4.4 Device Identification Registers

The  Device Identification Registers (DIR0, DIR1) contain CPU identification,  CPU stepping and 
CPU revision information. Bit definitions are shown in Figure 2-21, Table 2-20, Figure 2-22 and 
Table 2-21 respectively. Data in these registers cannot be changed. These registers can be read  by 
using I/O ports 22 and 23.  The register index for DIR0 is FEh and the register index for DIR1 is FFh.   

7 0
DEVID

Figure 2-21.  Device Identification Register 0 (DIR0)

Table 2-20.  DIR0 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

7 - 0 DEVID CPU Device Identification Number (read only).

7 4 3 0
SID RID

Figure 2-22.  Device Identification Register 1 (DIR1)

Table 2-21.  DIR1 Bit Definitions

BIT
POSITION

NAME DESCRIPTION

7 - 4 SID CPU Step Identification Number (read only).
3 - 0 RID CPU Revision Identification (read only).
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2.4.5 Debug Registers

Six debug registers (DR0-DR3, DR6 and DR7), 
shown in Figure 2-23, support debugging on the 
IBM 6x86 CPU.  The bit definitions for the 
debug registers are listed in Table 2-22 (Page 
2-38).

Memory addresses loaded in the debug regis-
ters, referred to as “breakpoints”, generate a 
debug exception when a memory access of the 
specified type occurs to the specified address.  
A data breakpoint can be specified for a partic-
ular kind of memory access such as a read or a 
write.   Code breakpoints can also be set allow-
ing debug exceptions to occur whenever a given 
code access (execution) occurs. 

The size of the debug target can be set to 1, 2, or 
4 bytes.  The debug registers are accessed via 
MOV instructions which can be executed only 
at privilege level 0.

The Debug Address Registers (DR0-DR3) each 
contain the linear address for one of four possi-
ble breakpoints.  Each breakpoint is further 
specified by bits in the Debug Control Register 
(DR7).  For each breakpoint address in 
DR0-DR3, there are corresponding fields L, 
R/W, and LEN in DR7 that specify the type of 
memory access associated with the breakpoint. 

The R/W field can be used to specify instruction 
execution as well as data access breakpoints.  
Instruction execution breakpoints are always 
taken before execution of the instruction that 
matches the breakpoint.

The Debug Status Register (DR6) reflects con-
ditions that were in effect at the time the debug 
exception occurred.  The contents of the DR6 
register are not automatically cleared by the 
processor after a debug exception occurs and, 
therefore, should be cleared by software at the 
appropriate time. 

Figure 2-23.  Debug Registers
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Code execution breakpoints may also be generated by placing the breakpoint instruction (INT 3) at 
the location where control is to be regained.  Additionally, the single-step feature may be enabled 
by setting the TF flag in the EFLAGS register.  This causes the processor to perform a debug excep-
tion after the execution of every instruction.

Table 2-22.  DR6 and DR7 Debug Register Field Definitions

REGISTER FIELD
NUMBER
OF BITS

DESCRIPTION

DR6   Bi 1 Bi is set by the processor if the conditions described by DRi, R/Wi, 
and LENi occurred when the debug exception occurred, even if the 
breakpoint is not enabled via the Gi or Li bits.

  BT 1 BT is set by the processor before entering the debug handler if a task 
switch has occurred to a task with the T bit in the TSS set.

  BS 1 BS is set by the processor if the debug exception was triggered by the 
single-step execution mode (TF flag in EFLAGS set).

DR7   R/Wi 2 Specifies type of break for the linear address in DR0, DR1, DR3, 
DR4:
00 - Break on instruction execution only
01 - Break on data writes only
10 - Not used
11 - Break on data reads or writes.

  LENi 2 Specifies length of the linear address in DR0, DR1, DR3, DR4:
00 - One byte length
01 - Two byte length
10 - Not used
11 - Four byte length.

  Gi 1 If set to a 1, breakpoint in DRi is globally enabled for all tasks and is 
not cleared by the processor as the result of a task switch.

  Li 1 If set to a 1, breakpoint in DRi is locally enabled for the current task 
and is cleared by the processor as the result of a task switch.

  GD 1 Global disable of debug register access.  GD bit is cleared whenever a 
debug exception occurs.
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2.4.6 Test Registers

The test registers can be used to test the on-chip 
unified cache and to test the main TLB. The test 
registers are also used to enable IBM 6x86 CPU 
variable-size paging.

Test registers TR3, TR4, and TR5 are used to 
test the unified cache.  Use of these registers is 
described with the memory caches later in this 
chapter in Section 2.7.1.1.

Test registers TR6 and TR7 are used to test the 
TLB. Use of these test registers is described in
Section 2.6.4.2. 
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2.5 Address Space

The IBM 6x86 CPU can directly address  64 
KBytes of I/O space and 4 GBytes of physical 
memory (Figure 2-24).  

Memory Address Space.    Access can be 
made to memory addresses between 
0000 0000h and FFFF FFFFh. This 4 GByte 

Figure 2-24.  Memory and I/O Address Spaces

memory  space can be accessed using byte, 
word (16 bits), or doubleword (32 bits) format.  
Words and doublewords are stored in consecu-
tive memory bytes with the low-order byte 
located in the lowest address.  The physical 
address of a word or doubleword is the byte 
address of the low-order byte.
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I/O Address Space

The IBM 6x86  I/O address space is accessed 
using IN and OUT instructions to addresses 
referred to as “ports”.  The accessible I/O 
address space size is 64 KBytes and can be 
accessed through 8-bit, 16-bit or 32-bit ports.  
The execution of any IN or OUT instruction 
causes the M/IO# pin to be driven low, thereby 
selecting the I/O space instead of memory 
space.  

The accessible I/O address space ranges 
between locations 0000 0000h and 0000 FFFFh 
(64 KBytes). The I/O locations (ports) 22h and 
23h can be used to access the IBM 6x86 
configuration registers.

2.6 Memory Addressing
 Methods

With the IBM 6x86 CPU, memory can be 
addressed using nine different addressing 
modes (Table 2-23, Page 2-42).  These 
addressing modes are used to calculate an 
offset address often referred to as an effective 
address.  Depending on the operating mode of 
the CPU, the offset is then combined using 
memory management mechanisms to create a 
physical address that actually addresses the 
physical memory devices.

Memory management mechanisms on the IBM 
6x86 CPU consist of segmentation and paging.  
Segmentation allows each program to use 
several independent, protected address 
spaces.  Paging supports a memory subsystem 
that simulates a large address space using a 
small amount of RAM and disk storage for 
physical memory.  Either or both of these 
mechanisms can be used for management of 
the IBM 6x86 CPU memory address space.
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2.6.1 Offset Mechanism

The offset mechanism computes an offset 
(effective) address by adding together one or 
more of three values: a base, an index and a 
displacement.  When present, the base is the 
value of one of the eight 32-bit general regis-
ters.   The index if present, like the base, is a 
value that is in one of the eight 32-bit general 
purpose registers (not including the ESP 
register).  The index differs from the base in 
that the index is first multiplied by a scale 
factor of 1, 2, 4 or 8 before the summation is 
made.  The third component added to the 
memory address calculation is the displace-
ment.  The displacement is a value of up to 
32-bits in length supplied as part of the instruc-
tion.  Figure 2-25 illustrates the calculation of 
the offset address.

Nine valid combinations of the base, index, 
scale factor and displacement can be used with 
the IBM 6x86 CPU instruction set.  These 
combinations are listed in Table 2-23.  The 
base and index both refer to contents of a 
register as indicated by [Base] and [Index].

Figure 2-25.   Offset Address Calculation

Table 2-23.   Memory Addressing Modes

ADDRESSING
MODE

BASE INDEX
SCALE

FACTOR
(SF)

DISPLACEMENT
(DP)

OFFSET ADDRESS (OA)
CALCULATION

Direct x OA = DP

Register Indirect x OA = [BASE]

Based x x OA = [BASE] + DP

Index x x OA = [INDEX] + DP

Scaled Index x x x OA = ([INDEX] * SF) + DP

Based Index x x OA = [BASE] + [INDEX]

Based Scaled Index x x x OA = [BASE] + ([INDEX] * SF)

Based Index with
Displacement

x x x OA = [BASE] + [INDEX] + DP

Based Scaled Index with 
Displacement

x x x x OA = [BASE] + ([INDEX] * SF) + DP
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2.6.2 Memory
Addressing

Real Mode Memory Addressing

In real mode operation, the IBM 6x86 CPU 
only addresses the lowest 1 MByte of memory.  
To calculate a physical memory address, the 
16-bit segment base address located in the 
selected segment register is multiplied by 16 
and then the 16-bit offset address is added.  
The resulting 20-bit address is then extended. 
Three hexadecimal zeros are added as upper 
address bits to create the 32-bit physical address.   
Figure 2-26 illustrates the real mode address 
calculation. 

The addition of the base address and the offset 
address may result in a carry.  Therefore, the 
resulting address may actually contain up to 21 
significant address bits that can address 
memory in the first 64 KBytes above 1 MByte.

Protected Mode Memory Addressing

In protected mode three mechanisms calculate a 
physical memory address (Figure 2-27, Page 2-44).

• Offset Mechanism that produces the 
offset or effective address as in real mode.

• Selector Mechanism that produces the 
base address.

• Optional Paging Mechanism that trans-
lates a linear address to the physical 
memory address.

The offset and base address are added together 
to produce the linear address.  If paging is not 
enabled, the linear address is used as the phys-
ical memory address.  If paging is enabled, the 
paging mechanism is used to translate the 
linear address into the physical address.  The 
offset mechanism is described earlier in this 
section and applies to both real and protected 
mode.  The selector and paging mechanisms 
are described in the following paragraphs.

Figure 2-26.   Real Mode Address Calculation
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Figure 2-27.   Protected Mode Address Calculation

2.6.3 Selector Mechanism

Using segmentation, memory is divided into an 
arbitrary number of segments, each containing 
usually much less than the 232 byte (4 GByte) 
maximum.

The six segment registers (CS, DS, SS, ES, FS 
and GS) each contain a 16-bit selector that is 
used when the register is loaded to locate a 
segment descriptor in either the global 
descriptor table (GDT) or the local descriptor 
table (LDT).  The segment descriptor defines 

the base address, limit, and attributes of the 
selected segment and is cached on the IBM 
6x86 CPU as a result of loading the selector.  
The cached descriptor contents are not visible 
to the programmer.  When a memory reference 
occurs in protected mode, the linear address is 
generated by adding the segment base address 
in the hidden portion of the segment register to 
the offset address.  If paging is not enabled, 
this linear address is used as the physical 
memory address.  Figure 2-28 illustrates the 
operation of the selector mechanism.

Figure 2-28.   Selector Mechanism
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2.6.4 Paging Mechanisms

The paging mechanisms (Figure 2-29) trans-
late linear addresses to their corresponding 
physical addresses.  For traditional paging, the 
page size is always 4 KBytes.  If IBM 6x86  
Variable-Size Paging is selected, a page size 
may be as large as 4 GBytes.  Use of larger 
page sizes allows large memory areas such as 
video memory to be placed in a single page, 
eliminating page table thrashing.

Paging is activated when the PG and the PE 
bits within the CR0 register are set.  

2.6.4.1 Traditional Paging
Mechanism

The traditional paging mechanism translates 
the 20 most significant bits of a linear address 
to a physical address.  The linear address is 
divided into three fields DTI, PTI, PFO 
(Figure 2-30, Page 2-46). These fields respec-
tively select:

• an entry in the directory table, 
• an entry in the page table selected by the 

directory table 
• the offset in the physical page selected by 

the page table

The directory table and all the page tables can 
be considered as pages as they are 4-KBytes in 

size and are aligned on 4-KByte boundaries. 
Each entry in these tables is 32 bits in length. 
The fields within the entries are detailed in 
Figure 2-31 (Page 2-46) and Table 2-24 (Page 
2-47).

A single page directory table can address up to 
4 GBytes of virtual memory (1,024 page 
tables—each table can select 1,024 pages and 
each page contains 4 KBytes). 

Translation Lookaside Buffer (TLB) is made 
up of three caches (Figure 2-30, Page 2-46).   

• the DTE Cache caches directory table 
entries

• the Main TLB caches page tables entries
• the Victim TLB stores PTEs that have 

been evicted from the Main TLB

The DTE cache is a 4-entry fully associative 
cache, the main TLB is a 128-entry direct 
mapped cache and the victim TLB is an 
8-entry fully associative cache.The DTE cache 
caches the four most recent DTEs so that 
future TLB misses only require a single page 
table read to calculate the physical address.  
The DTE cache is disabled following RESET 
and is enabled by setting the DTE_EN bit 
(CCR4 bit4).  

 

Figure 2-29.  Paging Mechanisms
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Figure 2-30.  Traditional Paging Mechanism

Figure 2-31.   Directory and Page Table Entry (DTE and PTE) Format

CR3

Directory Table Index Page Table Index Page Frame Offset

31 22 21 12 11 0

Physical Page

DTE PTE

0 0 0

4 Kb4 Kb

(DTI) (PTI) (PFO)
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128 Entry
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DTE Cache
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Fully Associative

Page Table MemoryDirectory Table
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Victim TLB
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ARESERVED
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Note: In DTE format, bit 6 is reserved
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Table 2-24.   Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT POSITION FIELD NAME DESCRIPTION

31-12 BASE
ADDRESS

Specifies the base address of the page or page table.

11-9 -- Undefined and available to the programmer.

8-7 -- Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the page (PTE 
only, undefined in DTE).

5 A Accessed Flag.  If set, indicates that a read access or write access has occurred
to the page.

4 PCD Page Caching Disable Flag.  If set, indicates that the page is not cacheable in
the on-chip cache.

3 PWT Page Write-Through Flag.  If set, indicates that writes to the page or page tables 
that hit in the on-chip cache must update both the cache and external memory.

2 U/S User/Supervisor Attribute.  If set (user), page is accessible at privilege level 3. 
If clear (supervisor), page is accessible only when CPL ≤ 2.

1 W/R Write/Read Attribute.  If set (write), page is writable.  If clear (read), page is 
read only.

0 P Present Flag.  If set, indicates that the page is present in RAM memory, and
validates the remaining DTE/PTE bits.  If clear, indicates that the page is not
present in memory and the remaining DTE/PTE bits can be used by the
programmer.

For a TLB hit, the TLB eliminates accesses to 
external directory and page tables.     

The victim TLB increases the apparent associa-
tivity of the main TLB and helps eliminate TLB 
trashing (unproductive TLB management).  
When an entry in the main TLB is replaced, a 
copy of the replaced entry is sent to the victim 
TLB before the entry in the main TLB is over-
written. If the victim TLB receives a hit, its 
entry is swapped with a main TLB entry.   

The TLB must be flushed by the software when 
entries in the page tables are changed.  The TLB 

is flushed whenever the CR3 register is loaded.  
A particular page can be flushed from the TLB 
by using the INVLPG instruction. This instruc-
tion also flushes the entire DTE cache.

2.6.4.2 Translation Lookaside
Buffer Testing

The TLB can be tested by writing to a main TLB 
followed by performing a TLB lookup (TLB 
read) to see if the expected contents are within 
the TLB.  TLB test operations are performed 
using test register TR6 and TR7 shown in
Figure 2-32 (Page 2-48).  Tables 2-25 through 
2-27 list the bit definitions for TR6 and TR7. 
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Main TLB Write . To perform a direct write to 
a main TLB entry, the TR7 register is config-
ured with the desired physical address as well 
as the PCD and PWT bits.  The BI, HV, HD and 
HB bits are not used. The TR6 register is then 
configured with the linear address, D, U, W and 
V bits.  The D, U, and W bits must be comple-
ments of the D#, U#, and W# bits during a 
write.  When the TR6 register is configured, the 
IBM 6x86 CPU writes the linear and physical 
address into the main TLB along with the A, D, 
U, and W bits.  The main TLB entry is selected 
by bits 12 through 18 of the linear address field.

TLB Lookup . During a TLB lookup, the IBM 
6x86 CPU queries the TLB with a given linear 
address and expected A, W, U and D values. 
The query returns a corresponding physical 
address, and the source of the address.  The 
address source could be from the main TLB, 

from the victim TLB or from the variable-size 
paging mechanism. 

The TLB lookup involves a single TR6 register 
write. The CMD bits are set to 0x1.  The D, U, 
W, D#, U# and W# bits are not used during 
TLB lookups.

After a TLB lookup, the HV, HD and HB bits 
in TR7 indicate which (if any) PTEs were 
found with the requested linear address.  If a 
TLB entry was found for a PTE in the victim or 
variable size-paging cache, the BI bit in the 
TR7 register will contain the index of the par-
ticular entry. If multiple entries respond, only 
the HV, HD and HB bits are valid and all TR7 
fields are undefined. 

Figure 2-32.  TLB Test Registers
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Table 2-25.  TLB Test Register Bit Definitions

REGISTER
NAME

NAME RANGE DESCRIPTION

TR7 ADR7 31-12 Physical address or variable page size mechanism mask.
TLB lookup:  data field from the TLB.
TLB write:  data field written into the TLB.

PCD 11 Page-level cache disable bit (PCD).
Corresponds to the PCD bit of a page table entry.

PWT 10 Page-level cache write-through bit (PWT).
Corresponds to the PWT bit of a page table entry.

BI 9-7 Cell index for victim TLB and block cache operations.

HV 5 Victim TLB hit.

HD 4 Main TLB hit.

HB 3 Variable-Size Paging Mechanism hit.

TR6 ADR6 31-12 Linear Address.  
TLB lookup:  The TLB is interrogated per this address.  If 
one and only one match occurs in the TLB, the rest of the 
fields in TR6 and TR7 are updated per the matching TLB 
entry.
TLB write:  A TLB entry is allocated to this linear address.  

V 11 PTE Valid.
TLB write:  If set, indicates that the TLB entry contains 
valid data.  If clear, target entry is invalidated.

D, D# 10-9 Dirty Attribute Bit and its complement. 
Refer to Table 2-26., Page 2-50.

U, U# 8-7 User/Supervisor Attribute Bit and its complement.
Refer to Table 2-26., Page 2-50.

W, W# 6-5 Write Protect bit and its complement.
Refer to Table 2-26., Page 2-50.

A, A# 4-3 Accessed Bit and its complement.
Used for block cache entries only.
Refer to Table 2-26., Page 2-50.

CMD 2-0 Array Command Select.
Determines TLB array command.
Refer to Table 2-27, Page 2-50.
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Table 2-26.   TR6 Attribute Bit Pairs

BIT  BIT# EFFECT ON TLB LOOKUP EFFECT ON TLB WRITE

0 0 Do not match. Undefined.

0 1 If bit = 0, match. Bit is cleared.

1 0 If bit = 1, match. The bit is set.

1 1 If bit = 0 or 1, match. Undefined.
Note: “BIT” applies to A, D, U or W fields in TR6; “BIT#” applies to A#, D#, U#, or W# fields in TR6.

Table 2-27.  TR6 Command Bits

CMD Command

0x0 Direct write to main TLB.

0x1 TLB lookup for a linear address in all arrays.

100 Write to variable page size mask only.

110 Write to variable page size linear and physical address fields.

101 Read variable page size mask and linear address.

111 Read variable page size cache physical and linear address.
Note: x = don’t care
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2.6.5 Variable-Size
Paging Mechanism

The Variable-Size Paging Mechanism 
(VSPM) is an advanced alternative to 
traditional paging. As shown in Figure 2-33,  
VSPM allows the creation of pages ranging in 
size from 4 KBytes to 4 GBytes. The larger 
page size nearly eliminates page table thrashing 
associated with using multiple 4-KByte pages. 

For example, paging 1 MByte of memory 
requires 256 4-KByte pages using traditional 
paging.  The software not only incurs overhead 
during setting up the 256 pages, but also incurs 
additional overhead accessing the page tables 
each time a page is not found in the on-chip 
TLB.  In contrast, a single 1-MByte page 
virtually eliminates the overhead.

Configuring Variable-Size Pages. The VSPM 
is configured using TLB test registers, TR6 and 
TR7  (These registers are also used to test the 
TLB).  The VSPM configuration is performed 
in much the same manner as when writing to a 
line of the TLB (Refer to Section 2.6.4.2.).   
The major exception to this, is that a mask field 
is written to the VSPM as part of the VSPM 
configuration.

The physical address, linear address, valid bit 
and attribute bits in a main TLB write all have 
the same meaning as in a main TLB read except 
that CMD=110. The BI field is used to select the 
VSPM cell to be written.

A VSPM mask setup operation is performed 
when CMD=100 and a test register write is per-
formed.  During a VSPM mask setup, the TR7 
address field is used as the mask field. The mask 
field selectively masks linear address bits 31-12 
from the VSPM tag compare.  This has the 
effect of allowing the VSPM to map pages 
greater than 4 KBytes. 

Figure 2-33.  Variable-Size Paging Mechanism
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After a VSPM mask setup, the valid bit, 
attribute bits, and the linear address are left in 
undefined states.  Therefore, the VSPM mask 
setup should be performed prior to other VSPM 
operations.

Unlike the victim and main TLBs, the VSPM 
operations make use of the accessed bit.  During 
a VSPM mask or physical address write the A 
and A# fields are written to the VSPM.

VSPM Reads. VSPM reads are performed with 
the address of the entry to be read in the BI field 
of the TR7 register and with CMD=111. The 
entry’s and physical address is read into the TR6 
and TR7 address fields as well as the valid bit, 
and attribute bits.  

If CMD=101, the linear address, mask, valid bit 
and attribute bits are read.

2.7 Memory Caches

The IBM 6x86 CPU contains two memory 
caches as described in Chapter 1. The Unified 
Cache acts the primary data cache, and 
secondary instruction cache.  The Instruction 
Line Cache is the primary instruction cache and 
provides a high speed instruction stream for the 
Integer Unit.

The unified cache is dual-ported allowing 
simultaneous access to any two unique banks. 
Two different banks may be accessed at the 
same time permitting any two of the following 
operations to occur in parallel:

• Code fetch
• Data read (X pipe, Y pipe or FPU)
• Data write (X pipe, Y pipe or FPU).

2.7.1 Unified Cache 
MESI States

The unified cache lines are assigned one of four 
MESI states as determined by MESI bits stored 
in tag memory. Each 32-byte cache line is 
divided into two 16-byte sectors.  Each sector 
contains its own MESI bits. The four MESI 
states are described below:

Modified MESI cache lines are those that have 
been updated by the CPU, but the corre-
sponding main memory location has not yet 
been updated by an external write cycle. Modi-
fied cache lines are referred to as dirty cache 
lines.

Exclusive MESI lines are lines that are exclu-
sive to the IBM 6x86 CPU and are not dupli-
cated within another caching agent’s cache 
within the same system.  A write to this cache 
line may be performed without issuing an 
external write cycle.

Shared MESI lines may be present in another 
caching agent’s cache within the same system.  
A write to this cache line forces a corresponding 
external write cycle. 

Invalid MESI lines are cache lines that do not 
contain any valid data.
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2.7.1.1 Unified Cache Testing

The unified cache can be tested through the 
use of  TR3, TR4, and TR5 on-chip test regis-
ters. Fields within these test registers identify 
which area of the cache will be selected for 
testing.  

Cache Organization. The unified cache 
(Figure 2-34) is divided into 32-bytes lines. 
This cache is divided into four sets. Since a set 
(as well as the cache) is smaller than main 
memory, each line in the set corresponds to 
more than one line in main memory. When a 
cache line is allocated, bits A31-A12 of the 
main memory address are stored in the cache 

line tag.  The remaining address bits are used 
to identify the specific 32-byte cache line 
(A11-A5), and the specific 4-byte entry within 
the cache line (A4-A2).

Test Initiation . A test register operation is 
initiated by writing to the TR5 register shown 
in Figure 2-35 (Page 2-54) using a special 
MOV instruction. The TR5 CTL  field, 
detailed in Table 2-28 (Page 2-54), determines 
the function to be performed.  For cache 
writes, the registers TR4 and TR3 must be 
initialized before a write is made to TR5. Eight 
4-byte accesses are required to access a 
complete cache line.  

Figure 2-34.  Unified Cache
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Figure 2-35.  Cache Test Registers

Table 2-28.  Cache Test Register Bit Definitions

REGISTER
NAME

FIELD
NAME

RANGE DESCRIPTION

TR5 SET 13 - 12 Cache set selection (one of four “sets”).

LINE 11 - 5 Cache line selection (one of 128 lines).

ENT 4 - 2 Entry selection (one of eight 4-byte entries in a line).

CTL 1 - 0 Control field
If = 00: flush cache without invalidate
If = 01: write cache
If = 10: read cache
If = 11: no cache or test register modification 

TR4 TAG 31 - 12 Physical address for selected line

MESIU 7 - 6 If = 00, Modified Upper Sector MESI bits
If = 01, Shared Upper Sector MESI bits
If = 10, Exclusive Upper Sector MESI bits
If = 11, Invalid Upper Sector MESI bits*

MESIL 5 - 4 If = 00, Modified Lower Sector MESI bits
If = 01, Shared Lower Sector MESI bits
If = 10, Exclusive Lower Sector MESI bits
If = 11, Invalid Lower Sector MESI bits*

MRU 3 - 0 Used to determine the Least Recently Used (LRU) line.

TR3 DATA 31 - 0 Data written or read during a cache test.
*Note: All 32 bytes should contain valid data before a line is marked as valid.

 = Reserved

31
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DATA (CACHE DATA)

31

MESIL TR4

31

TR3

CTL

MRUTAG (CACHE TAG ADDRESS)
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Write Operations. During a write, the TR3 
DATA (32-bits) and TAG field information is 
written to the address selected by the SET, 
LINE, and ENT fields in TR5. 

Read Operations. During a read, the cache 
address selected by the SET, LINE and ENT 
fields in TR5 are used to read data into the TR3 
DATA (32-bits) field. The TAG, MESI and 
MRU fields in TR4 are updated with the infor-
mation from the selected line. TR3 holds the 
selected read data. 

Cache Flushing. A cache flush occurs during 
a TR5 write if the CTL field is set to zero. 
During flushing, the CPU’s cache controller 
reads through all the lines in the cache. “Modi-
fied” lines are redefined as “shared” by setting 
the shared MESI bit.  Clean lines are left in 
their original state.  

2.8 Interrupts and
Exceptions

The processing of either an interrupt or an 
exception changes the normal sequential flow 
of a program by transferring program control 
to a  selected service routine. Except for SMM 
interrupts, the location of the selected service 
routine  is determined by one of the interrupt 
vectors stored in the interrupt descriptor table.

Hardware interrupts are generated by signal 
sources external to the CPU.  All exceptions 
(including so-called software interrupts) are 
produced internally by the CPU.

2.8.1 Interrupts

External events can interrupt normal program 
execution by using one of the three interrupt 
pins on the IBM 6x86 CPU.

• Non-maskable Interrupt (NMI pin)
• Maskable Interrupt (INTR pin)
• SMM Interrupt (SMI# pin).

For most interrupts, program transfer to the 
interrupt routine occurs after the current 
instruction has been completed.  When the 
execution returns to the original program, it begins 
immediately following the last completed instruc-
tion.

With the exception of string operations,  inter-
rupts are acknowledged between instructions.  
Long string operations have interrupt windows 
between memory moves that allow  interrupts 
to be acknowledged.

The NMI interrupt  cannot be masked by  
software and always uses interrupt vector 2 to 
locate its service routine.  Since the interrupt 
vector is fixed and is supplied internally, no 
interrupt acknowledge bus cycles are 
performed.  This interrupt is normally reserved 
for unusual situations such as parity errors and 
has priority over INTR interrupts.

Once NMI processing has started, no addi-
tional NMIs are processed until an IRET 
instruction is executed, typically at the end of 
the NMI service routine.  If NMI is re-asserted 
prior to execution of the IRET instruction, one 
and only one NMI rising edge is stored and  
processed after execution of the next IRET.  
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2.8.2 Exceptions

Exceptions are generated by an interrupt 
instruction or a program error.  Exceptions are 
classified as traps, faults or aborts depending 
on the mechanism used to report them and the 
restartability of the instruction that first caused 
the exception. 

A Trap Exception is reported immediately 
following the instruction that generated the 
trap exception.   Trap exceptions are generated 
by execution of a software interrupt instruction  
(INTO, INT 3, INT n, BOUND), by a 
single-step operation or by a data breakpoint. 

Software interrupts can be used to simulate 
hardware interrupts.   For example, an INT n 
instruction causes the processor to execute the 
interrupt service routine pointed to by the nth 
vector in the interrupt table.  Execution of the 
interrupt service routine occurs regardless of 
the state of the IF flag in the EFLAGS register.

The one byte INT 3, or breakpoint interrupt 
(vector 3), is a particular case of the INT n 
instruction.  By inserting this one byte instruc-
tion in a program, the user can set breakpoints 
in the code that can be used during debug.

Single-step operation is enabled by setting the 
TF bit in the EFLAGS register.  When TF is 
set, the CPU generates a debug exception 
(vector 1) after the execution of every instruc-
tion.  Data breakpoints also generate a debug 
exception and are specified by loading the 
debug registers (DR0-DR7) with the appro-
priate values.

During the NMI service routine, maskable 
interrupts may be enabled (unmasked).  If an 
unmasked INTR occurs during the NMI 
service routine, the INTR is serviced and 
execution returns to the NMI service routine 
following the next IRET.   If a HALT instruc-
tion is executed within the NMI service 
routine, the IBM 6x86 CPU restarts execution 
only in response to RESET, an unmasked INTR 
or an SMM interrupt.  NMI does not restart 
CPU execution under this condition.

The INTR interrupt  is unmasked when the 
Interrupt Enable Flag (IF) in the EFLAGS 
register is set to 1.  When an INTR interrupt 
occurs, the CPU performs two locked interrupt 
acknowledge bus cycles.  During the second 
cycle, the CPU reads an 8-bit vector that is 
supplied by an external interrupt controller.  
This vector selects one of the 256 possible 
interrupt handlers which will be executed in 
response to the interrupt.

The SMM interrupt  has higher priority than 
either INTR or NMI.  After SMI# is asserted, 
program execution is passed to an SMI service 
routine that runs in SMM address space 
reserved for this purpose.  The remainder of 
this section does not apply to the SMM inter-
rupts.  SMM interrupts are described in greater 
detail later in this chapter.
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A Fault Exception is reported prior to 
completion of the instruction that generated 
the exception.   By reporting the fault prior to 
instruction completion, the CPU is left in a 
state that allows the instruction to be restarted 
and the effects of the faulting instruction to be 
nullified.  Fault exceptions include 
divide-by-zero errors, invalid opcodes, page 
faults and coprocessor errors.  Instruction 
breakpoints (vector 1) are also handled as 
faults.   After execution of the fault service 
routine, the instruction pointer points to the 
instruction that caused the fault.

An Abort Exception is a type of fault excep-
tion that is severe enough that the CPU cannot 
restart the program at the faulting instruction.  
The double fault (vector 8) is the only abort 
exception that occurs on the IBM 6x86 CPU.

2.8.3 Interrupt Vectors

When the CPU services an interrupt or excep-
tion, the current program’s FLAGS, code 
segment and instruction pointer are pushed 
onto the stack to allow resumption of execu-
tion of the interrupted program.  In protected 
mode, the processor also saves an error code 
for some exceptions.  Program control is then 
transferred to the interrupt handler (also called 
the interrupt service routine).  Upon execution 
of an IRET at the end of the service routine, 
program execution resumes by popping from 
the stack, the instruction pointer, code segment, 
and FLAGS.

Interrupt Vector Assignments

Each interrupt (except SMI#) and exception is 
assigned one of 256 interrupt vector numbers 
(Table 2-29). The first 32 interrupt vector 
assignments are defined or reserved.  INT 
instructions acting as software interrupts may 
use any of the interrupt vectors, 0 through 255.
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Table 2-29.   Interrupt Vector Assignments

INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT

1 Debug exception TRAP/FAULT*

2 NMI interrupt

3 Breakpoint TRAP

4 Interrupt on overflow TRAP

5 BOUND range exceeded FAULT

6 Invalid opcode FAULT

7 Device not available FAULT

8 Double fault ABORT

9 Reserved

10 Invalid TSS FAULT

11 Segment not present FAULT

12 Stack fault FAULT

13 General protection fault TRAP/FAULT

14 Page fault FAULT

15 Reserved

16 FPU error FAULT

17 Alignment check exception FAULT

18-31 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP
*Note: Data breakpoints and single-steps are traps.  All other debug exceptions are faults.
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In response to a maskable hardware interrupt 
(INTR), the IBM 6x86 CPU issues interrupt 
acknowledge bus cycles used to read the vector 
number from external hardware.  These vectors 
should be in the range 32 - 255 as vectors 0 - 31 
are reserved.

Interrupt Descriptor Table

The interrupt vector number is used by the IBM 
6x86 CPU to locate an entry in the interrupt 
descriptor table (IDT).  In real mode, each IDT 
entry consists of a four-byte far pointer to the 
beginning of the corresponding interrupt 
service routine. In protected mode, each IDT 
entry is an eight-byte descriptor.  The Interrupt 
Descriptor Table Register (IDTR) specifies the 
beginning address and limit of the IDT.  
Following reset, the IDTR contains a base 
address of 0h with a limit of 3FFh.  

The IDT can be located anywhere in physical 
memory as determined by the IDTR register.  
The IDT may contain different types of 
descriptors: interrupt gates, trap gates and task 
gates.  Interrupt gates are used primarily to 
enter a hardware interrupt handler.  Trap gates 
are generally used to enter an exception handler 
or software interrupt handler.  If an interrupt 
gate is used, the Interrupt Enable Flag (IF) in 
the EFLAGS register is cleared before the inter-
rupt handler is entered.  Task gates are used to 
make the transition to a new task.

2.8.4 Interrupt and Exception
Priorities

As the IBM 6x86™  CPU executes instructions, 
it follows a consistent policy for prioritizing 
exceptions and hardware interrupts. The priori-
ties for competing interrupts and exceptions are 
listed in Table 2-30 (Page 2-60).  Debug traps 
for the previous instruction and the next 
instructions always take precedence. SMM 
interrupts are the next priority.  When NMI and 
maskable INTR interrupts are both detected at 
the same instruction boundary, the IBM 6x86 
microprocessor services the NMI interrupt first. 

The IBM 6x86 CPU checks for exceptions in 
parallel with instruction decoding and execu-
tion.  Several exceptions can result from a 
single instruction.  However, only one excep-
tion is generated upon each attempt to execute 
the instruction.  Each exception service routine 
should make the appropriate corrections to the 
instruction and then restart the instruction.  In 
this way, exceptions can be serviced until the 
instruction executes properly.

The IBM 6x86 CPU supports instruction restart 
after all faults, except when an instruction 
causes a task switch to a task whose task state 
segment (TSS) is partially not present.  A TSS 
can be partially not present if the TSS is not 
page aligned and one of the pages where the 
TSS resides is not currently in memory.



2-60

Interrupts and Exceptions

Table 2-30.   Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES

0 Warm Reset Caused by the assertion of WM_RST.

1 Debug traps and faults from previ-
ous instruction.

Includes single-step trap and data breakpoints 
specified in the debug registers.

2 Debug traps for next instruction. Includes instruction execution breakpoints 
specified in the debug registers.

3 Hardware Cache Flush Caused by the assertion of FLUSH#.

4 SMM hardware interrupt. SMM interrupts are caused by SMI# asserted 
and always have highest priority.

5 Non-maskable hardware interrupt. Caused by NMI asserted.

6 Maskable hardware interrupt. Caused by INTR asserted and IF = 1.

7 Faults resulting from fetching the 
next instruction.

Includes segment not present, general protec-
tion fault and page fault.

8 Faults resulting from instruction 
decoding.

Includes illegal opcode, instruction too long, 
or privilege violation.

9 WAIT instruction and TS = 1 and 
MP = 1.

Device not available exception generated.

10 ESC instruction and EM = 1 or 
TS = 1.

Device not available exception generated.

11 Floating point error exception. Caused by unmasked floating point exception 
with NE = 1.

12 Segmentation faults (for each 
memory reference required by the 
instruction) that prevent transfer-
ring the entire memory operand.

Includes segment not present, stack fault, and 
general protection fault.

13 Page Faults that prevent transfer-
ring the entire memory operand.

14 Alignment check fault.
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2.8.5 Exceptions in Real Mode

Many of the exceptions described in Table 2-30 (Page 2-60) are not applicable in real mode.  
Exceptions 10, 11, and 14 do not occur in real mode.  Other exceptions have slightly different 
meanings in real mode as listed in Table 2-31.

Table 2-31.   Exception Changes in Real Mode

VECTOR 
NUMBER

PROTECTED MODE FUNCTION REAL MODE FUNCTION

8 Double fault. Interrupt table limit overrun.

10 Invalid TSS. x

11 Segment not present. x

12 Stack fault. SS segment limit overrun.

13 General protection fault. CS, DS, ES, FS, GS segment limit overrun.

14 Page fault. x
Note: x = does not occur
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2.8.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit error code:

The error code is pushed onto the stack prior to entering the exception handler. The error code 
format is shown in Figure 2-36 and the error code bit definitions are listed in Table 2-32.  Bits 
15-3 (selector index) are not meaningful if the error code was generated as the result of a page 
fault.  The error code is always zero for double faults and alignment check exceptions.

  

Double Fault Invalid TSS

Alignment Check Segment Not Present

Page Fault Stack Fault

General Protection Fault

15                   3 2 1 0

Selector Index S2 S1 S0

Figure 2-36.  Error Code Format

Table 2-32.   Error Code Bit Definitions

FAULT
TYPE

SELECTOR
INDEX

(BITS 15-3)

S2
(BIT 2)

S1
(BIT 1)

S0
(BIT 0)

Double Fault or 
Alignment Check

0 0 0 0

Page Fault Reserved. Fault caused by:
0 = not present page
1 = page-level
protection violation.

Fault occurred dur-
ing:
0 = read access
1 = write access.

Fault occurred dur-
ing:
0 = supervisor access
1 = user access.

IDT Fault Index of faulty
IDT selector.

Reserved. 1 If = 1, exception 
occurred while try-
ing to invoke excep-
tion or  hardware 
interrupt handler.

Segment
Fault

Index of faulty
selector.

TI bit of faulty
selector.

0 If =1, exception 
occurred while try-
ing to invoke excep-
tion or  hardware 
interrupt handler.
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2.9 System Management
Mode

System Management Mode (SMM) provides an 
additional interrupt which can be used for 
system power management or software trans-
parent emulation of I/O peripherals.  SMM is 
entered using the System Management Inter-
rupt (SMI#) that has a higher priority than any 
other interrupt, including NMI.  An SMI inter-
rupt can also be triggered via software using an 
SMINT instruction.   After an SMI interrupt, 
portions of the CPU state are automatically 

saved, SMM is entered, and program execution 
begins at the base of SMM address space 
(Figure 2-37).  Running in SMM address space, 
the interrupt routine does not interfere with the 
operating system or any application program.

Eight SMM instructions have been added to the 
x86 instruction set that permit software initiated 
SMM, and saving and restoring of the total CPU 
state when in SMM mode.  Two SMM pins, 
SMI# and SMIACT#, support SMM functions.

Figure 2-37.  System Management Memory Address 
Space

2.9.1 SMM Operation
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SMM operation is summarized in Figure 2-38.  
Entering SMM requires the assertion of the 
SMI# pin for at least two CLK periods or execu-
tion of the SMINT instruction.  For the SMI# or 
SMINT instruction to be recognized, the 
following configuration register bits must be set 
as shown in Table 2-33.  The configuration 
registers are discussed in detail earlier in this 
chapter.

After recognizing SMI# or SMINT and prior to 
executing the SMI service routine, some of the 
CPU state information is changed.  Prior to 
modification, this information is automatically 
saved in the SMM memory space header 
located at the top of SMM memory space.   
After the header is saved, the CPU enters real 
mode and begins executing the SMI service 
routine starting at the SMM memory base 
address. 

The SMI service routine is user definable and 
may contain system or power management 
software.  If the power management software 
forces the CPU to power down, or the SMI 
service routine modifies more than what is 
automatically saved, the complete CPU state 
information can be saved.

Figure 2-38.  SMI Execution
Flow Diagram

Table 2-33.  Requirements for Recognizing SMI# and 
SMINT

REGISTER (Bit) SMI# SMINT

SMI CCR1 (1)  1 1

SMAC CCR1 (2)  0 1

ARR3 SIZE (3-0) > 0 > 0

SM3 CCR1 (7) 1 1

2.9.2 SMM Memory Space

SMI# Sampled Active or

CPU State Stored in SMM

Program Flow Transfers

CPU Enters Real Mode

Execution Begins at SMM

RSM Instruction Restores CPU

Normal Execution Resumes

Address Space Header

to SMM Address Space

Address Space Base Address

State Using Header Information

SMINT Instruction Executed
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Header

With every SMI interrupt or SMINT instruc-
tion, certain CPU state information is automati-
cally saved in the SMM memory space header 
located at the top of SMM address space as 
shown Figure 2-39 and Table 2-34 (Page 2-66).  

The header contains CPU state information that 
is modified when servicing an SMI interrupt.  
Included in this information are two pointers.  
The Current IP points to the instruction that was 
executing when the SMI was detected.

Figure 2-39.  SMM Memory Space Header
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The Next IP points to the instruction that will 
be executed after exiting SMM.  Also saved are 
the contents of debug register 7 (DR7), the 
extended flags register (EFLAGS), and control 
register 0 (CR0).  If SMM has been entered due 
to an I/O trap for a REP INSx or REP OUTSx 
instruction, the Current IP and Next IP fields 
contain the same addresses and the I and P field 
contain valid information.

If entry into SMM was caused by an I/O trap it 
is useful for the programmer to know the port 
address, data size and data value associated with 
that I/O operation.  This information is also 
saved in the header and is only valid for an I/O 
write operation.  The I/O write information is 
not restored within the CPU when executing a RSM 
instruction.

Table 2-34.  SMM Memory Space Header

NAME DESCRIPTION SIZE

DR7 The contents of Debug Register 7.  4 Bytes

EFLAGS The contents of Extended Flags Register.  4 Bytes

CR0 The contents of Control Register 0.  4 Bytes

Current IP The address of the instruction executed prior to servicing SMI interrupt.  4 Bytes

Next IP The address of the next instruction that will be executed after exiting SMM mode.  4 Bytes

CS Selector Code segment register selector for the current code segment.  2 Bytes

CPL Current privilege level for current code segment. 2 Bits

CS Descriptor Code segment register descriptor for the current code segment.  8 Bytes

H If set indicates the processor was in a halt or shutdown prior to servicing the 
SMM interrupt.

1 Bit

S Software SMM Entry Indicator.
S = 1, if current SMM is the result of an SMINT instruction.
S = 0, if current SMM is not the result of an SMINT instruction.

 1 Bit

P REP INSx/OUTSx Indicator.
P = 1 if current instruction has a REP prefix.
P = 0 if current instruction does not have a REP prefix.

 1 Bit

I IN, INSx, OUT, or OUTSx Indicator.
I = 1 if current instruction performed is an I/O WRITE.
I = 0 if current instruction performed is an I/O READ.

 1 Bit

I/O Write Data Size Indicates size of data for the trapped I/O write.
  01h = byte
  03h = word
  0Fh = dword

 2 Bytes

I/O Write Address Processor port used for the trapped I/O write.  2 Bytes

I/O Write Data Data associated with the trapped I/O write.  4 Bytes

ESI or EDI Restored ESI or EDI value.  Used when it is necessary to repeat a REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap.

 4 Bytes

Note:  INSx = INS, INSB, INSW or INSD instruction.
Note:  OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.
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2.9.3 SMM Instructions

The IBM 6x86 CPU automatically saves the 
minimal amount of CPU state information 
when entering SMM which allows fast SMI 
service routine entry and exit.  After entering 
the SMI service routine, the MOV, SVDC, 
SVLDT and SVTS instructions can be used 
to save the complete CPU state information. 
If the SMI service routine modifies more than 
what is automatically saved or forces the CPU 
to power down, the complete CPU state 
information must be saved. Since the CPU is 
a static device, its internal state is retained 
when the input clock is stopped.  Therefore, 
an entire CPU state save is not necessary 
prior to stopping the input clock.

The new SMM instructions, listed in Table 2-35, 
can only be executed if:

1) SMI# = 0 
2) SM3 = 1  
3) ARR3 SIZE > 0 
4) Current Privilege Level = 0
5) SMAC bit is set or the CPU is in an

SMI service routine.    

If the above conditions are not met and an 
attempt is made to execute an SVDC, RSDC, 
SVLDT, RSLDT, SVTS, RSTS, SMINT or 
RSM instruction, an invalid opcode exception is 
generated. These instructions can be executed 
outside of defined SMM space provided the above 
conditions are met. 

The SMINT instruction may be used as a soft-
ware controlled mechanism to enter SMM. 

 
Table 2-35.  SMM Instruction Set

INSTRUCTION OPCODE FORMAT DESCRIPTION

   SVDC 0F 78 [mod sreg3  r/m] SVDC mem80, sreg3Save Segment Register and Descriptor
Saves reg (DS, ES, FS, GS, or SS) to mem80.

   RSDC 0F 79 [mod sreg3 r/m] RSDC sreg3, mem80Restore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from 
mem80. 
Use RSM to restore CS.  
Note:  Processing “RSDC  CS, Mem80” will produce an 
exception.

   SVLDT 0F 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor
Saves Local Descriptor Table (LDTR) to mem80.

   RSLDT 0F 7B [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from 
mem80.

   SVTS 0F 7C [mod 000 r/m] SVTS mem80 Save TSR and Descriptor
Saves Task State Register (TSR) to mem80.

   RSTS 0F 7D [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

   SMINT 0F 7E SMINT Software SMM Entry
CPU enters SMM mode.  CPU state information 
is saved in SMM memory space header and exe-
cution begins at SMM base address.

   RSM 0F AA RSM Resume Normal Mode
Exits SMM mode.  The CPU state is restored 
using the SMM memory space header and execu-
tion resumes at interrupted point.

Note:  mem80 = 80-bit memory location



2-68

System Management Mode

All of the SMM instructions (except RSM and
SMINT) save or restore 80 bits of data, allow-
ing the saved values to include the hidden por-
tion of the register contents. 

2.9.4 SMM Memory Space

SMM memory space is defined by setting the 
SM3 bit and specifying the base address and 
size of the SMM memory space in the ARR3 
register.  The base address must be a multiple 
of the SMM memory space size.  For example, 
a 32 KByte SMM memory space must be 
located at a 32 KByte address boundary. The 
memory space size can range from 4 KBytes to 
4 GBytes.

SMM memory space accesses are always 
non-cacheable.  SMM accesses ignore the state 
of the A20M# input pin and drive the A20 
address bit to the unmasked value.

SMM memory space can be accessed while in 
normal mode by setting the SMAC bit in the 
CCR1 register.   This feature may be used to 
initialize the SMM memory space.

2.9.5 SMI Service Routine
Execution

Upon entry into SMM, after the SMM header 
has been saved, the CR0, EFLAGS, and DR7 
registers are set to their reset values.  The Code 
Segment (CS) register is loaded with the base, 
as defined by the ARR3 register, and a limit of 
4 GBytes.  The SMI service routine then 
begins execution at the SMM base address in 
real mode. 

The programmer must save the value of any 
registers that may be changed by the SMI service 
routine.  For data accesses immediately after 
entering the SMI service routine, the programmer 
must use CS as a segment override.  I/O port 
access is possible during the routine but care must 
be taken to save registers modified by the I/O 
instructions.  Before using a segment register, the 
register and the register’s descriptor cache 
contents should be saved using the SVDC 
instruction.  While executing in the SMM space, 
execution flow can transfer to normal memory 
locations.

Hardware interrupts, (INTRs and NMIs), may 
be serviced during a SMI service routine.  If 
interrupts are to be serviced while executing in 
the SMM memory space, the SMM memory 
space must be within the 0 to 1 MByte address 
range to guarantee proper return to the SMI 
service routine after handling the interrupt. 

INTRs are automatically disabled when 
entering SMM since the IF flag is set to its 
reset value.  Once in SMM, the INTR can be 
enabled by setting the IF flag.  NMI is also 
automatically disable when entering SMM.  
Once in SMM, NMI can be enabled by setting 
NMI_EN in CCR3.  If NMI is not enabled, the 
CPU latches one NMI event and services the 
interrupt after NMI has been enabled or after 
exiting SMM through the RSM instruction.

Within the SMI service routine, protected mode 
may be entered and exited as required, and real 
or protected mode device drivers may be 
called.
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To exit the SMI service routine, a Resume 
(RSM) instruction, rather than an IRET, is 
executed.  The RSM instruction causes the 
IBM 6x86 processor to restore the CPU state 
using the SMM header information and 
resume execution at the interrupted point.  If 
the full CPU state was saved by the 
programmer, the stored values should be 
reloaded prior to executing the RSM instruc-
tion using the MOV, RSDC, RSLDT and 
RSTS instructions. 

CPU States Related to SMM and Suspend 
Mode

The state diagram shown in Figure 2-40  (Page 
2-70) illustrates the various CPU states associ-
ated with SMM and suspend mode.  While in 
the SMI service routine, the IBM 6x86 CPU 
can enter suspend mode either by (1) executing 
a halt (HLT) instruction or (2) by asserting the 
SUSP# input.

During SMM operations and while in SUSP# 
initiated suspend mode, an occurrence of 
SMI#, NMI, or INTR is latched.  (In order for 
INTR to be latched, the IF flag must be set.)  
The INTR or NMI is serviced after exiting 
suspend mode.

If suspend mode is entered via a HLT instruc-
tion from the operating system or application 
software, the reception of an SMI# interrupt 
causes the CPU to exit suspend mode and enter 
SMM.  

2.10 Shutdown and Halt

The Halt Instruction (HLT) stops program exe-
cution and prevents the processor from using the 
local bus until restarted.  The IBM 6x86 CPU 
then issues a special Stop Grant bus cycle and 
enters a low-power suspend mode if the 
SUSP_HLT bit in CCR2 is set. SMI, NMI, 
INTR with interrupts enabled (IF bit in 
EFLAGS=1), WM_RST or RESET forces the 
CPU out of the halt state. If interrupted, the 
saved code segment and instruction pointer 
specify the instruction following the HLT.

Shutdown occurs when a severe error is detected 
that prevents further processing.  An NMI input 
can bring the processor out of shutdown if the 
IDT limit is large enough to contain the NMI 
interrupt vector and the stack has enough room 
to contain the vector and flag information. 
Otherwise, shutdown can only be exited by a 
processor reset.
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Figure 2-40.  SMM and Suspend Mode State Diagram
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2.11 Protection

Segment protection and page protection are 
safeguards built into the IBM 6x86 CPU 
protected mode architecture which deny unau-
thorized or incorrect access to selected 
memory addresses.  These safeguards allow 
multitasking programs to be isolated from each 
other and from the operating system.  Page 
protection is discussed earlier in this chapter.  
This section concentrates on segment protec-
tion.

Selectors and descriptors are the key elements 
in the segment protection mechanism.  The 
segment base address, size, and privilege level 
are established by a segment descriptor.  Privi-
lege levels control the use of privileged 
instructions, I/O instructions and access to 
segments and segment descriptors.  Selectors 
are used to locate segment descriptors.

Segment accesses are divided into two basic 
types, those involving code segments (e.g., 
control transfers)  and those involving data 
accesses.  The ability of a task to access a 
segment depends on the:

• segment type
• instruction requesting access
• type of descriptor used to define the 

segment
• associated privilege levels (described 

below).

Data stored in a segment can be accessed only 
by code executing at the same or a more privi-
leged level.  A code segment or procedure can 
only be called by a task executing at the same 
or a less privileged level.

2.11.1 Privilege Levels

The values for privilege levels range 
between 0 and 3.  Level 0 is the highest privi-
lege level (most privileged), and level 3 is the 
lowest privilege level (least privileged).  The 
privilege level in real mode is effectively 0.

The Descriptor Privilege Level (DPL) is the 
privilege level defined for a segment in the 
segment descriptor. The DPL field specifies 
the minimum privilege level needed to access 
the memory segment pointed to by the 
descriptor. 

The Current Privilege Level (CPL) is defined 
as the current task’s privilege level.  The CPL 
of an executing task is stored in the hidden 
portion of the code segment register and essen-
tially is the DPL for the current code segment.

The Requested Privilege Level (RPL) speci-
fies a selector’s privilege level and is used to 
distinguish between the privilege level of a 
routine actually accessing memory (the CPL), 
and the privilege level of the original requestor 
(the RPL) of the memory access.  The lesser of 
the RPL and CPL is called the effective privilege 
level (EPL).  Therefore, if RPL = 0 in a 
segment selector, the effective privilege level 
is always determined by the CPL.  If RPL = 3, 
the effective privilege level is always 3 regard-
less of the CPL.

For a memory access to succeed, the effective 
privilege level (EPL) must be at least as privi-
leged as the descriptor privilege level (EPL ≤ 
DPL).  If the EPL is less privileged than the 
DPL (EPL > DPL), a general protection fault 
is generated.  For example, if a segment has a 
DPL = 2, an instruction accessing the segment 
only succeeds if executed with an EPL ≤ 2.
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2.11.2 I/O Privilege Levels

The I/O Privilege Level (IOPL) allows the 
operating system executing at CPL=0 to define 
the least privileged level at which IOPL-sensi-
tive instructions can unconditionally be used.  
The IOPL-sensitive instructions include CLI, 
IN, OUT, INS, OUTS, REP INS, REP OUTS, 
and STI.  Modification of the IF bit in the 
EFLAGS register is also sensitive to the I/O 
privilege level.  The IOPL is stored in the 
EFLAGS register.  

An I/O permission bit map is available as 
defined by the 32-bit Task State Segment 
(TSS).  Since each task can have its own TSS, 
access to individual processor I/O ports can be 
granted through separate I/O permission bit 
maps.

If CPL  ≤ IOPL, IOPL-sensitive operations can 
be performed.  If CPL > IOPL, a general 
protection fault is generated if the current task 
is associated with a 16-bit TSS.  If the current 
task is associated with a 32-bit TSS and CPL > 
IOPL, the CPU consults the I/O permission 
bitmap in the TSS to determine on a port-by-port 
basis whether or not I/O instructions (IN, 
OUT, INS, OUTS, REP INS, REP OUTS) are 
permitted, and the remaining IOPL-sensitive 
operations generate a general protection fault.

2.11.3 Privilege Level Transfers

A task’s CPL can be changed only through 
intersegment control transfers using gates or 
task switches to a code segment with a different 
privilege level.  Control transfers result from 
exception and interrupt servicing and from 
execution of the CALL, JMP, INT, IRET and 
RET instructions.

There are five types of control transfers that 
are summarized in Table 2-36  (Page 2-73).  
Control transfers can be made only when the 
operation causing the control transfer references 
the correct descriptor type.  Any violation of 
these descriptor usage rules causes a general 
protection fault.

Any control transfer that changes the CPL 
within a task results in a change of stack.  The 
initial values for the stack segment (SS) and 
stack pointer (ESP) for privilege levels 0, 1, 
and 2 are stored in the TSS.  During a CALL 
control transfer, the SS and ESP are loaded 
with the new stack pointer and the previous 
stack pointer is saved on the new stack.  When 
returning to the original privilege level, the 
RET or IRET instruction restores the less-priv-
ileged stack.
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Table 2-36.  Descriptor Types Used for Control Transfer

TYPE OF CONTROL TRANSFER
OPERATION

TYPES
DESCRIPTOR
REFERENCED

DESCRIPTOR
TABLE

Intersegment within the same privilege level. JMP, CALL, RET, IRET* Code Segment GDT or LDT

Intersegment to the same or a more privileged 
level.
Interrupt within task (could change CPL level).

CALL Gate Call GDT or LDT

Interrupt Instruction, 
Exception, External
Interrupt

Trap or Interrupt Gate IDT

Intersegment to a less privileged level (changes 
task CPL).

RET, IRET* Code Segment GDT or LDT

Task Switch via TSS CALL, JMP Task State Segment GDT

Task Switch via Task Gate CALL, JMP Task Gate GDT or LDT

IRET**, Interrupt 
Instruction, Exception, 
External Interrupt

Task Gate IDT

  * NT (Nested Task bit in EFLAGS) = 0
** NT (Nested Task bit in EFLAGS) = 1

Gates

Gate descriptors provide protection for privi-
lege transfers among executable segments.  
Gates are used to transition to routines of the 
same or a more privileged level.  Call gates, 
interrupt gates and trap gates are used for privi-
lege transfers within a task.  Task gates are used 
to transfer between tasks.

Gates conform to the standard rules of privi-
lege.  In other words, gates can be accessed by 
a task if the effective privilege level (EPL) is 
the same or more privileged than the gate 
descriptor’s privilege level (DPL).

2.11.4 Initialization and
Transition to Protected
Mode

The IBM 6x86  microprocessor switches to real 
mode immediately after RESET.  While oper-
ating in real mode, the system tables and regis-
ters should be initialized.  The GDTR and IDTR 
must point to a valid GDT and IDT, respectively. The 
GDT must contain descriptors which describe 
the initial code and data segments.

The processor can be placed in protected mode 
by setting the PE bit in the CR0 register.  After 
enabling protected mode, the CS register should 
be loaded and the instruction decode queue 
should be flushed by executing an intersegment 
JMP.  Finally, all data segment registers should 
be initialized with appropriate selector values.
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2.12 Virtual 8086 Mode

Both real mode and virtual 8086 (V86) mode 
are supported by the IBM 6x86 CPU allowing 
execution of 8086 application programs and 
8086 operating systems.  V86 mode allows the 
execution of 8086-type applications, yet still 
permits use of the IBM 6x86 CPU paging 
mechanism.  V86 tasks run at privilege level 3.  
When loaded, all segment limits are set to 
FFFFh (64K) as in real mode.

2.12.1 V86 Memory
Addressing

While in V86 mode, segment registers are 
used in an identical fashion to real mode. The 
contents of the segment register are multiplied 
by 16 and added to the offset to form the 
segment base linear address.  The IBM 6x86  
CPU permits the operating system to select 
which programs use the V86 address mecha-
nism and which programs use protected mode 
addressing for each task.

The IBM 6x86 CPU also permits the use of 
paging when operating in V86 mode.  Using 
paging, the 1-MByte address space of the V86 
task can be mapped to anywhere in the 
4-GByte linear address space of the IBM 6x86  
CPU.

The paging hardware allows multiple V86 
tasks to run concurrently, and provides protec-
tion and operating system isolation.  The 
paging hardware must be enabled to run 
multiple V86 tasks or to relocate the address 
space of a V86 task to physical address space 
greater than 1 MByte.

2.12.2 V86 Protection

All V86 tasks operate with the least amount of 
privilege (level 3) and are subject to all of the 
IBM 6x86 CPU protected mode protection 
checks.  As a result, any attempt to execute a 
privileged instruction within a V86 task results 
in a general protection fault.

In V86 mode, a slightly different set of instruc-
tions are sensitive to the I/O privilege level 
(IOPL) than in protected mode.  These instruc-
tions are:  CLI, INT n, IRET, POPF, PUSHF, 
and STI.  The INT3, INTO and BOUND varia-
tions of the INT instruction are not IOPL 
sensitive.

2.12.3 V86 Interrupt Handling

To fully support the emulation of an 8086-type 
machine, interrupts in V86 mode are handled 
as follows.   When an interrupt or exception is 
serviced in V86 mode, program execution 
transfers to the interrupt service routine at 
privilege level 0 (i.e., transition from V86 to 
protected mode occurs) and the VM bit in the 
EFLAGS register is cleared.  The protected 
mode interrupt service routine then determines 
if the interrupt came from a protected mode or 
V86 application by examining the VM bit in 
the EFLAGS image stored on the stack.  The 
interrupt service routine may then choose to 
allow the 8086 operating system to handle the 
interrupt or may emulate the function of the 
interrupt handler.  Following completion of the 
interrupt service routine, an IRET instruction 
restores the EFLAGS register (restores VM=1) 
and segment selectors and control returns to 
the interrupted V86 task. 
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2.12.4 Entering and Leaving
V86 Mode

V86 mode is entered from protected mode by 
either executing an IRET instruction at CPL = 
0 or by task switching.  If an IRET is used, the 
stack must contain an EFLAGS image with 
VM = 1.  If a task switch is used, the TSS must 
contain an EFLAGS image containing a 1 in 
the VM bit position.  The POPF instruction 
cannot be used to enter V86 mode since the 
state of the VM bit is not affected.  V86 mode 
can only be exited as the result of an interrupt 
or exception.  The transition out must use a 
32-bit trap or interrupt gate which must point 
to a non-conforming privilege level 0 segment 
(DPL = 0), or a 32-bit TSS.  These restrictions 
are required to permit the trap handler to IRET 
back to the V86 program.

2.13 Floating Point Unit
Operations

The IBM 6x86 CPU includes an on-chip FPU 
that provides the user access to a complete set 
of floating point instructions (see Chapter 6).  
Information is passed to and from the FPU 
using eight data registers accessed in a 
stack-like manner, a control register, and a 
status register.  The IBM 6x86 CPU also 
provides a data register tag word which 
improves context switching and performance 
by maintaining empty/non-empty status for 
each of the eight data registers.  In addition, 
registers in the CPU contain pointers to (a) the 
memory location containing the current 
instruction word and (b) the memory location 
containing the operand associated with the 
current instruction word (if any).

FPU Tag Word Register. The IBM 6x86 
CPU maintains a tag word register (Figure 
2-41  (Page 2-76)) comprised of two bits for 
each physical data register.  Tag Word fields 
assume one of four values depending on the 
contents of their associated data registers, Val-
id (00), Zero (01), Special (10), and Empty 
(11).  Note: Denormal, Infinity, QNaN, SNaN 
and unsupported formats are tagged as “Spe-
cial”.  Tag values are maintained transparently 
by the IBM 6x86™  CPU and are only avail-
able to the programmer indirectly through the 
FSTENV and FSAVE instructions. 

FPU Control and Status Registers.  The 
FPU circuitry communicates information 
about its status and the results of operations to 
the programmer via the status register.  The 
FPU status register is comprised of bit fields 
that reflect exception status, operation execu-
tion status, register status, operand class, and 
comparison results.  The FPU status register 
bit definitions are shown in Figure 2-42  
(Page 2-76) and Table 2-37  (Page 2-76).

The FPU Mode Control Register (MCR) is 
used by the CPU to specify the operating mode 
of the FPU.  The MCR contains bit fields 
which specify the rounding mode to be used, 
the precision by which to calculate results, and 
the exception conditions which should be re-
ported to the CPU via traps.  The user controls 
precision, rounding, and exception reporting 
by setting or clearing appropriate bits in the 
MCR.  The FPU mode control register bit def-
initions are shown in Figure 2-43  (Page 2-77) 
and Table 2-38  (Page 2-77).
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15           14 13           12 11           10 9               8 7               6 5              4 3              2 1               0

Tag(7) Tag(6) Tag(5) Tag(4) Tag(3) Tag(2) Tag(1) Tag(0)

Figure 2-41.  FPU Tag Word Register

15                  12 11                    8 7                      4 3                      0
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Figure 2-42.  FPU Status Register

Table 2-37.  FPU Status Register Bit Definitions

BIT
POSITION

NAME DESCRIPTION

15 B Copy of the ES bit. (ES is bit 7 in this table.)

14, 10 - 8 C3 - C0 Condition code bits.

13 - 11 SSS Top of stack register number which points to the current TOS.

7 ES Error indicator.  Set to 1 if an unmasked exception is detected.

6 SF Stack Fault or invalid register operation bit.

5 P Precision error exception bit.

4 U Underflow error exception bit.

3 O Overflow error exception bit.

2 Z Divide by zero exception bit.

1 D Denormalized operand error exception bit.

0 I Invalid operation exception bit.
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15                12 11                   8 7                     4 3                    0

-    -    -    - RC RC PC PC -    -    P   U O   Z   D   I

Figure 2-43.  FPU Mode Control Register

Table 2-38.  FPU Mode Control Register Bit Definitions

BIT
POSITION

NAME DESCRIPTION

11 - 10 RC Rounding Control bits:

00 Round to nearest or even
01 Round towards minus infinity
10 Round towards plus infinity
11 Truncate

9 - 8 PC Precision Control bits:

00 24-bit mantissa
01 Reserved
10 53-bit mantissa
11 64-bit mantissa

5 P Precision error exception bit mask.

4 U Underflow error exception bit mask.

3 O Overflow error exception bit mask.

2 Z Divide by zero exception bit mask.

1 D Denormalized operand error exception bit mask.

0 I Invalid operation exception bit mask.
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IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU 

3.0 IBM 6x86 BUS INTERFACE

The signals used in the IBM 6x86 CPU bus interface are described in this chapter. Figure 3-1 
shows the signal directions and the major signal groupings. A description of each signal and their 
reference to the text are provided in Table 3-1 (Page 3-2).  

Figure 3-1.  IBM 6x86 CPU Functional Signal Groupings
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3.1 Signal Description Table

The Signal Summary Table (Table 3-1) describes the signals in their active state unless otherwise 
mentioned. Signals containing slashes (/) have logic levels defined as “1/0.”  For example the 
signal W/R#, is defined as write when W/R#=1, and as read when W/R#=0. Signals ending with a 
“#” character are active low. 
. 

Table 3-1.  IBM 6x86 CPU Signals Sorted by Signal Name 

Signal Name       Description I/O Reference 

A20M# A20 Mask causes the CPU to mask (force to 0) the A20 address bit when 
driving the external address bus or performing an internal cache access. 
A20M# is provided to emulate the 1 MByte address wrap-around that 
occurs on the 8086.  Snoop addressing is not effected.

Input Page 3-9

A31-A3 The Address Bus, in conjunction with the Byte Enable signals 
(BE7#-BE0#), provides addresses for physical memory and external I/O 
devices. During cache inquiry cycles, A31-A5 are used as inputs to 
perform cache line invalidations. 

3-state 
I/O

Page 3-9 

ADS# Address Strobe begins a memory/I/O cycle and indicates the address bus 
(A31-A3, BE7#-BE0#) and bus cycle definition signals (CACHE#, D/C#, 
LOCK#, M/IO#, PCD, PWT, SCYC, W/R#) are valid. 

Output Page 3-13

ADSC# Cache Address Strobe performs the same function as ADS#. Output Page 3-13

AHOLD Address Hold  allows another bus master access to the IBM 6x86 CPU 
address bus for a cache inquiry cycle. In response to the assertion of 
AHOLD, the CPU floats AP and A31-A3 in the following clock cycle.

Input Page 3-18

AP Address Parity is the even parity output signal for address lines A31-A5 
(A4 and A3 are excluded). During cache inquiry cycles, AP is the 
even-parity input to the CPU, and is sampled with EADS# to produce 
correct parity check status on the APCHK# output.

3-state 
I/O

Page 3-10

APCHK# Address Parity Check Status is asserted during a cache inquiry cycle if 
an address bus parity error has been detected. APCHK# is valid two 
clocks after EADS# is sampled active. APCHK# will remain asserted for 
one clock cycle if a parity error is detected.

Output Page 3-10

BE7#-BE0# The Byte Enables, in conjunction with the address lines, determine the 
active data bytes transferred during a memory or I/O bus cycle. 

3-state 
I/O

Page 3-9

BHOLD Byte Enable Hold forces the byte enables (BE7#-BE0#) to float during 
the next clock cycle. The IBM 6x86 CPU continues to generate additional 
bus cycles while BHOLD is asserted. While BHOLD is asserted, the byte 
enables are driven by an external source and select which data bytes are 
accessed through the scatter/gather buffer.  BHOLD is ignored if the 
scatter/gather interface is disabled.

Input Page 3-20

BOFF# Back-Off forces the IBM 6x86 CPU to abort the current bus cycle and 
relinquish control of the CPU local bus during the next clock cycle. The 
IBM 6x86 CPU enters the bus hold state and remains in this state until 
BOFF# is negated. 

Input Page 3-16
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BRDY# Burst Ready indicates that the current transfer within a burst cycle, or the 
current single transfer cycle, can be terminated. The IBM 6x86 CPU samples 
BRDY# in the second and subsequent clocks of a bus cycle. BRDY# is active 
during address hold states.

Input Page 3-13

BRDYC# Cache Burst Ready performs the same function as BRDY# and is logically 
ORed with BRDY# within the IBM 6x86 CPU. 

Input Page 3-13

BREQ Bus Request is asserted by the IBM 6x86 CPU when an internal bus cycle is 
pending. The IBM 6x86 CPU always asserts BREQ, along with ADS#, 
during the first clock of a bus cycle. If a bus cycle is pending, BREQ is 
asserted during the bus hold and address hold states. If no additional bus 
cycles are pending, BREQ is negated prior to termination of the current cycle.

Output Page 3-16

CACHE# Cacheability Status indicates that a read bus cycle is a potentially 
cacheable cycle; or that a write bus cycle is a cache line write-back or line 
replacement burst cycle. If CACHE# is asserted for a read cycle and KEN# is 
asserted by the system, the read cycle becomes a cache line fill burst cycle.

Output Page 3-11

CLK Clock  provides the fundamental timing for the IBM 6x86 CPU. The 
frequency of the IBM 6x86 CPU input clock determines the operating 
frequency of the CPU’s bus. External timing is defined referenced to the 
rising edge of CLK.

Input Page 3-7

CLKMUL The Clock Multiplier  input is sampled during RESET to determine the IBM 
6x86 CPU core operating frequency.  If CLKMUL=0 or is left unconnected, 
the core frequency is 2x the frequency of the CLK input.  If CLKMUL=1, the 
core frequency is 3x the frequency of CLK.

Input Page 3-7

D63-D0 Data Bus signals are three-state, bi-directional signals which provide the 
data path between the IBM 6x86 CPU and external memory and I/O devices. 
The data bus is only driven while a write cycle is active (state=T2). The data 
bus is floated when DHOLD is asserted. 

3-state 
I/O

Page 3-10

D/C# Data/Control Status. If high, indicates that the current bus cycle is an I/O or 
memory data access cycle. If low, indicates a code fetch or special bus cycle 
such as a halt, prefetch, or interrupt acknowledge bus cycle. D/C# is driven 
valid in the same clock as ADS# is asserted. 

Output Page 3-11

DHOLD Data Bus Hold forces the IBM 6x86 CPU to float the data bus (D63-D0) 
and the data parity lines (DP7-DP0) in the next clock. While DHOLD is 
asserted, only the data and data parity buses are disabled. The current bus 
cycle remains active and is completed in the normal fashion in response to 
BRDY#. The IBM 6x86 CPU generates additional bus cycles while DHOLD 
is asserted. DHOLD is ignored if the scatter/gather interface is disabled.

Input Page 3-21

DP7-DP0 Data Parity signals provide parity for the data bus, one data parity bit per 
data byte. Even parity is driven on DP7-DP0 for all data write cycles. 
DP7-DP0 are read by the IBM 6x86 CPU during read cycles to check for 
even parity. The data parity bus is only driven while a write cycle is active 
(state=T2). 

3-state 
I/O

Page 3-10

Table 3-1.  IBM 6x86 CPU Signals Sorted by Signal Name  (Continued)

Signal Name       Description I/O Reference 
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EADS# External Address Strobe indicates that a valid cache inquiry address is 
being driven on the IBM 6x86 CPU address bus (A31-A5) and AP. The state 
of INV at the time EADS# is sampled active determines the final state of the 
cache line. A cache inquiry cycle using EADS# may be run while the IBM 
6x86 CPU is in the address hold or bus hold state.

Input Page 3-18

EWBE# External Write Buffer Empty  indicates that there are no pending write 
cycles in the external system. EWBE# is sampled only during I/O and 
memory write cycles. If EWBE# is negated, the IBM 6x86 CPU delays all 
subsequent writes to on-chip cache lines in the “exclusive” or “modified” 
state until EWBE# is asserted. 

Input Page 3-14

FERR# FPU Error Status indicates an unmasked floating point error has occurred. 
FERR# is asserted during execution of the FPU instruction that caused the 
error. FERR# does not float during bus hold states.

Output Page 3-19

FLUSH# Cache Flush forces the IBM 6x86 CPU to flush the cache. External 
interrupts and additional FLUSH# assertions are ignored during the flush. 
Cache inquiry cycles are permitted during the flush. 

Input Page 3-15

HIT# Cache Hit indicates that the current cache inquiry address has been found in 
the cache (modified, exclusive or shared states).  HIT# is valid two clocks 
after EADS# is sampled active, and remains valid until the next cache inquiry 
cycle.

Output Page 3-18

HITM# Cache Hit Modified Data indicates that the current cache inquiry address 
has been found in the cache and dirty data exists in the cache line (modified 
state). The IBM 6x86 CPU does not accept additional cache inquiry cycles 
while HITM# is asserted.  HITM# is  valid two clocks after EADS#.

Output Page 3-18

HLDA Hold Acknowledge indicates that the IBM 6x86 CPU has responded to the 
HOLD input and relinquished control of the local bus.  The IBM 6x86 CPU 
continues to operate during bus hold as long as the on-chip cache can satisfy 
bus requests.

Output Page 3-16

HOLD Hold Request indicates that another bus master has requested control of the 
CPU’s local bus. 

Input Page 3-16

IGNNE# Ignore Numeric Error  forces the IBM 6x86 CPU to ignore any pending 
unmasked FPU errors and allows continued execution of floating point 
instructions.

Input Page 3-19

INTR Maskable Interrupt  forces the processor to suspend execution of the 
current instruction stream and begin execution of an interrupt service routine. 
The INTR input can be masked (ignored) through the IF bit in the Flags 
Register. 

Input Page 3-14

INV Invalidate Request is sampled with EADS# to determine the final state of 
the cache line in the case of a cache inquiry hit. An asserted INV directs the 
processor to change the state of the cache line to “invalid”.  A negated INV 
directs the processor to change the state of the cache line to “shared.”

Input Page 3-18

Table 3-1.  IBM 6x86 CPU Signals Sorted by Signal Name  (Continued)

Signal Name       Description I/O Reference 
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KEN# Cache Enable allows the data being returned during the current cycle to be 
placed in the CPU’s cache. When the IBM 6x86 CPU is performing a 
cacheable code fetch or memory data read cycle (CACHE# asserted), and 
KEN# is sampled asserted, the cycle is transformed into a 32-byte cache line 
fill. KEN# is sampled with the first asserted BRDY# or NA# for the cycle. 

Input Page 3-15

LBA# Local Bus Access indicates that the current bus cycle is for an address 
within the local bus address region. If LBA# is asserted during a CPU write 
cycle with BE3#-BE0# negated, the IBM 6x86 CPU automatically maps the 
upper DWORD of data to the lower DWORD of the data bus. LBA# floats if 
scatter/gather pins are disabled.

Output Page 3-21

LOCK# Lock Status indicates that other system bus masters are denied access to the 
local bus. The IBM 6x86 CPU does not enter the bus hold state in response to 
HOLD while LOCK# is asserted. 

Output Page 3-11

M/IO# Memory/IO Status. If high, indicates that the current bus cycle is a memory 
cycle (read or write). If low, indicates that the current bus cycle is an I/O cycle 
(read or write, interrupt acknowledge, or special cycle). 

Output Page 3-11

NA# Next Address requests the next pending bus cycle address and cycle 
definition information. If either the current or next bus cycle is a locked cycle, 
a line replacement, a write-back cycle, or if there is no pending bus cycle, the 
IBM 6x86 CPU does not start a pipelined bus cycle regardless of the state of 
NA#.

Input Page 3-13

NMI Non-Maskable Interrupt Request forces the processor to suspend 
execution of the current instruction stream and begin execution of an NMI 
interrupt service routine. 

Input Page 3-14

PCD Page Cache Disable reflects the state of the PCD page attribute bit in the 
page table entry or the directory table entry.  If paging is disabled, or for 
cycles that are not paged, the PCD pin is driven low. PCD is masked by the 
cache disable (CD) bit in CR0, and floats during bus hold states.

Output Page 3-15

PCHK# Data Parity Check indicates that a data bus parity error has occurred 
during a read operation. PCHK# is only valid during the second clock 
immediately after read data is returned to the IBM 6x86 CPU (BRDY# 
asserted) and is inactive otherwise. Parity errors signaled by a logic low 
on PCHK# have no effect on processor execution.

Output Page 3-10

PWT Page Write Through reflects the state of the PWT page attribute bit in the 
page table entry or the directory table entry. PWT pin is negated during cycles 
that are not paged, or if paging is disabled. PWT takes priority over 
WB/WT#. 

Output Page 3-15

QDUMP# Q Buffer Dump is used to dump the contents of the scatter/gather buffer 
onto the data bus. The data bytes specified by the byte enables (BE7#-BE0#) 
are driven onto the data bus during the clock after QDUMP# is sampled 
asserted. QDUMP# is ignored if the scatter/gather pins are disabled.  

Input Page 3-22

RESET Reset suspends all operations in progress and places the IBM 6x86 CPU into 
a reset state.  Reset forces the CPU to begin executing in a known state. All 
data in the on-chip caches is invalidated.

Input Page 3-7

Table 3-1.  IBM 6x86 CPU Signals Sorted by Signal Name  (Continued)

Signal Name       Description I/O Reference 
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SCYC Split Locked Cycle indicates that the current bus cycle is part of a 
misaligned locked transfer. SCYC is defined for locked cycles only.  A 
misaligned transfer is defined as any transfer that crosses an 8-byte boundary.

Output Page 3-11

SMI# SMM Interrupt  forces the processor to save the CPU state to the top of 
SMM memory and to begin execution of the SMI service routine at the 
beginning of the defined SMM memory space. An SMI is a higher-priority 
interrupt than an NMI. 

Input Page 3-14

SMIACT# SMM Interrupt Active  indicates that the processor is operating in System 
Management Mode. SMIACT# does not float during bus hold states.

Output Page 3-13

SUSP# Suspend Request requests that the CPU enter suspend mode. SUSP# is 
ignored following RESET and is enabled by setting the SUSP bit in CCR2.

Input Page 3-22

SUSPA# Suspend Acknowledge indicates that the IBM 6x86 CPU has entered 
low-power suspend mode.   SUSPA# floats following RESET and is enabled 
by setting the SUSP bit in CCR2.

Output Page 3-22

TCK Test Clock (JTAG) is the clock input used by the IBM 6x86 CPU's boundary 
scan (JTAG) test logic. 

Input Page 3-24

TDI Test Data In (JTAG) is the serial data input used by the IBM 6x86 CPU's 
boundary scan (JTAG) test logic. 

Input Page 3-24

TDO Test Data Out (JTAG) is the serial data output used by the IBM 6x86 CPU's 
boundary scan (JTAG) test logic. 

Output Page 3-24

TMS Test Mode Select (JTAG) is the control input used by the IBM 6x86 CPU's 
boundary scan (JTAG) test logic. 

Input Page 3-24

TRST# Test Mode Reset (JTAG) initializes the IBM 6x86 CPU's boundary scan 
(JTAG) test logic. 

Input Page 3-24

WB/WT# Write-Back/Write-Through  is sampled during cache line fills to define the 
cache line write policy. If high, the cache line write policy is write-back.  If 
low, the cache line write policy is write-through.  (PWT forces write-through 
policy when PWT=1.) 

Input Page 3-15

WM_RST Warm Reset forces the IBM 6x86 CPU to complete the current instruction 
and then places the IBM 6x86 CPU in a known state. Once WM_RST is 
sampled active by the CPU, the reset sequence begins on the next instruction 
boundary. WM_RST does not change the state of the configuration registers, 
the on-chip cache, the write buffers and the FPU registers.  WM_RST is 
sampled during reset.

Input Page 3-9

W/R# Write/Read Status. If high, indicates that the current memory, or I/O bus 
cycle is a write cycle. If low, indicates that the current bus cycle is a read 
cycle. 

Output Page 3-11

Table 3-1.  IBM 6x86 CPU Signals Sorted by Signal Name  (Continued)

Signal Name       Description I/O Reference 
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3.2 Signal Descriptions

The following paragraphs provide additional 
information about the IBM 6x86 CPU signals.  
For ease of this discussion, the signals are 
divided into 16 functional groups as illustrated 
in Figure 3-1 (Page 3-1).

3.2.1 Clock Control

The Clock Input (CLK) signal, supplied by the 
system, is the timing reference use by the IBM 
6x86 CPU bus interface. All external timing 
parameters are defined with respect to the CLK 
rising edge. The CLK signal enters the IBM 
6x86 CPU where it is doubled or tripled to 
produce the IBM 6x86 CPU internal clock 
signal. During power on, the CLK signal must 
be running even if CLK does not meet AC 
specifications. 

The Clock Multiplier (CLKMUL) input is 
sampled during RESET to determine the 
CPU’s core operating frequency.  If 
CLKMUL=0, the core frequency is 2x the 
frequency of the CLK input.  If CLKMUL=1, 
the core frequency is 3x the frequency of the 
CLK input.  The CLKMUL input is connected 
to an internal pull-down resistor.  Therefore, if 
CLKMUL is left unconnected, the core 
frequency defaults to 2x the input CLK.  
CLKMUL should be connected to Vss, Vcc, or 
left unconnected.  CLKMUL should not be 
connected to a switching signal.

3.2.2 Reset Control

The IBM 6x86 CPU output signals are initial-
ized to their reset states during the CPU reset 
sequence, as shown in Table 3-3 (Page 3-8). 
The signal states given in Table 3-3 assume 
that HOLD, AHOLD, and BOFF# are negated.

Asserting RESET suspends all operations in 
progress and places the IBM 6x86 CPU in a 
reset state. RESET is an asynchronous signal 
but must meet specified setup and hold times to 
guarantee recognition at a particular clock 
edge. 

On system power-up, RESET must be held 
asserted for at least 1 msec after Vcc and CLK 
have reached specified DC and AC limits. This 
delay allows the CPU’s clock circuit to stabi-
lize and guarantees proper completion of the 
reset sequence.

During normal operation, RESET must be 
asserted for at least 15 CLK periods in order to 
guarantee the proper reset sequence is 
executed.  When RESET negates (on its falling 
edge), the pins listed in Table 3-2 determine if 
certain IBM 6x86 CPU functions are enabled.

Table 3-2. Pins Sampled During RESET

SIGNAL 
NAME

DESCRIPTION

FLUSH# If = 0, three-state test mode enabled.

QDUMP# If = 0, scatter/gather interface enabled.

WM_RST If = 1, built-in self test initiated.
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Table 3-3. Signal States During RESET 

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Ignored INTR Ignored

A31-A3 Undefined until first ADS# INV Ignored

ADS# 1 KEN# Ignored

ADSC# 1 LBA# 1

AHOLD Recognized LOCK# 1

AP Undefined until first ADS# M/IO# Undefined until first ADS#

APCHK# 1 NA# Ignored

BE7#-BE0# Undefined until first ADS# NMI Ignored

BHOLD Ignored PCD Undefined until first ADS#

BOFF# Recognized PCHK# 1

BRDY# Ignored PWT Undefined until first ADS#

BRDYC# Ignored QDUMP# Enables scatter/gather interface pins

BREQ 0 RESET 1

CACHE# Undefined until first ADS# SCYC Undefined until first ADS#

D(63-0) Float SMI# Ignored

D/C# Undefined until first ADS# SMIACT# 1

DHOLD Ignored SUSP# Ignored

DP(7-0) Float SUSPA# Float

EADS# Ignored TCK Recognized

EWBE# Ignored TDI Recognized

FERR# 1 TDO Responds to TCK, TDI, TMS, 
TRST#

FLUSH# Initiates three-state test mode TMS Recognized

HIT# 1 TRST# Recognized

HITM# 1 W/R# Undefined until first ADS#

HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Initiates self-test

IGNNE# Ignored
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Warm Reset (WM_RST) allows the IBM 
6x86 CPU to complete the current instruction 
and then places the IBM 6x86 CPU in a known 
state. WM_RST is an asynchronous signal, but 
must meet specified setup and hold times in 
order to guarantee recognition at a particular 
CLK edge. Once WM_RST is sampled active 
by the CPU, the reset sequence begins on the 
next instruction boundary.

WM_RST differs from RESET in that the 
contents of the on-chip cache, the write 
buffers, the configuration registers and the 
floating point registers contents remain 
unchanged. 

Following completion of the internal reset 
sequence, normal processor execution begins 
even if WM_RST remains asserted. If RESET 
and WM_RST are asserted simultaneously, 
WM_RST is ignored and RESET takes 
priority.  If WM_RST is asserted at the falling 
edge of RESET, built-in self test (BIST) is 
initiated. 

3.2.3 Address Bus 

The Address Bus (A31-A3) lines provide the 
physical memory and external I/O device 
addresses. A31-A5 are bi-directional signals 
used by the IBM 6x86™ CPU to drive 
addresses to both memory devices and I/O 
devices. During cache inquiry cycles the IBM 
6x86™ CPU receives addresses from the 
system using signals A31-A5. 

Using signals A31-A3, the IBM 6x86™ CPU 
can address a 4-GByte memory address space.  
Using signals A15-A3, the IBM 6x86™ CPU 
can address a 64-KByte I/O space through the 
processor’s I/O ports.  During I/O accesses, 
signals A31-A16 are driven low. A31-A3 float 
during bus hold and address hold states.

The Byte Enable (BE7#-BE0#) lines are 
bi-directional signals that define the valid data 
bytes within the 64-bit data bus.  The 
correlation between the enable signals and data 
bytes is shown in Table 3-4. 

During a cache line fill, (burst read or “1+4” 
burst read) the IBM 6x86 CPU expects data to 
be returned as if all data bytes are enabled, 
regardless of the state of the byte enables. 
BE7#-BE0# float during bus hold and byte 
enable hold states.

Address Bit 20 Mask (A20M#) is an active 
low input which causes the IBM 6x86 CPU to 
mask (force low) physical address bit 20 when 
driving the external address bus or when 
performing an internal cache access. Asserting 
A20M# emulates the 1 MByte address 
wrap-around that occurs on the 8086. The A20 
signal is never masked during write-back 
cycles, inquiry cycles, system management 
address space accesses or when paging is 
enabled, regardless of the state of the A20M# 
input.

Table 3-4.  Byte Enable Signal to
 Data Bus Byte Correlation

BYTE 
ENABLE

CORRESPONDING  
DATA BYTE

BE7# D63-D56

BE6# D55-D48

BE5# D47-D40

BE4# D39-D32

BE3# D31-D24

BE2# D23-D16

BE1# D15-D8

BE0# D7-D0
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3.2.4 Address Parity

Address Parity (AP) is a bi-directional signal 
which provides the parity associated with 
address lines A31-A5.  (A4 and A3 are not 
included in the parity determination.)  During 
IBM 6x86 CPU generated bus cycles, while the 
address bus lines are driven, AP becomes an 
output supplying even address parity. During 
cache inquiry cycles, AP becomes an input and 
is sampled by EADS#.  During cache inquiry 
cycles, even-parity must be placed on the AP 
line to guarantee an accurate result on the 
APCHK# (Address Parity Check Status) pin.

Address Parity Check Status (APCHK#) is 
driven active by the CPU when an address bus 
parity error has been detected for a cache 
inquiry cycle. APCHK# is asserted two clocks 
after EADS# is sampled asserted, and remains 
valid for one clock only.  Address parity errors 
signaled by APCHK# have no effect on 
processor execution.

3.2.5 Data Bus

Data Bus (D63-D0) lines carry three-state, 
bi-directional signals between the IBM 6x86 
CPU and the system (i.e., external memory and 
I/O devices). The data bus transfers data to the 
IBM 6x86 CPU during memory read, I/O read, 
and interrupt acknowledge cycles. Data is 
transferred from the IBM 6x86 CPU during 
memory and I/O write cycles. 

Data setup and hold times must be met for 
correct read cycle operation.  The data bus is 
driven only while a write cycle is active.

3.2.6 Data Parity

The Data Parity Bus (DP7-DP0) provides and 
receives parity data for each of the eight data 
bus bytes (Table 3-5).   The IBM 6x86 CPU 
generates even parity on the bus during write 
cycles and accepts even parity from the system 
during read cycles.  DP7-DP0 is driven only 
while a write cycle is active.

Parity Check (PCHK#) is asserted when a 
data bus parity error is detected. Parity is 
checked during code, memory and I/O reads, 
and the second interrupt acknowledge cycle.  
Parity is not checked during the first interrupt 
acknowledge cycle.

Parity is checked for only the active data bytes 
as determined by the active byte enable signals 
except during a cache line fill (burst read or 
“1+4” burst read).  During a cache line fill, the 
IBM 6x86 CPU assumes all data bytes are valid 
and parity is checked for all data bytes regard-
less of the state of the byte enables. 

Table 3-5.   Parity Bit to Data
Byte Correlation

PARITY BIT DATA BYTE  

DP7 D63-D56

DP6 D55-D48

DP5 D47-D40

DP4 D39-D32

DP3 D31-D24

DP2 D23-D16

DP1 D15-D8

DP0 D7-D0
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PCHK# is valid only during the second clock 
immediately after read data is returned to the 
IBM 6x86 CPU (BRDY# asserted).  At other 
times PCHK# is not active.  Parity errors 
signaled by the assertion of PCHK# have no 
effect on processor execution.

3.2.7 Bus Cycle Definition

Each bus cycle is assigned a bus cycle type. The 
bus cycle types are defined by six three-state 
outputs: CACHE#, D/C#, LOCK#, M/IO#, 
SCYC, and W/R# as listed in Table 3-6 (Page 
3-12).  

These bus cycle definition signals are driven  
valid while ADS# is active.  D/C#, M/IO#, 
W/R#, SCYC and CACHE# remain valid until 
the clock following the earliest of two signals: 
NA# asserted, or the last BRDY# for the cycle. 

LOCK# continues asserted until after BRDY# 
is returned for the last locked bus cycle. The 
bus cycle definition signals float during bus 
hold states.

Cache Cycle Indicator (CACHE#) is an 
output that indicates that the current bus cycle 
is a potentially cacheable cycle (for a read), or 
indicates that the current bus cycle is a cache 
line write-back or line replacement burst cycle 
(for a write). If CACHE# is asserted for a read 
cycle and the KEN# input is returned active by 
the system, the read cycle becomes a cache line 
fill burst cycle.

Data/Control (D/C#) distinguishes between 
data and control operations. When high, this 
signal indicates that the current bus cycle is a 
data transfer to or from memory or I/O. When 
low, D/C# indicates that the current bus cycle 

involves a control function such as a halt, inter-
rupt acknowledge or code fetch.

Bus Lock (LOCK#) is an active low output 
which, when asserted, indicates that other 
system bus masters are denied access to control 
of the CPU bus. The LOCK# signal may be 
explicitly activated during bus operations by 
including the LOCK prefix on certain instruc-
tions. LOCK# is also asserted during descriptor 
updates, page table accesses, interrupt acknowl-
edge sequences and when executing the XCHG 
instruction. However, if the NO_LOCK bit in 
CCR1 is set, LOCK# is asserted only during 
page table accesses and interrupt acknowledge 
sequences. The IBM 6x86 CPU does not enter 
the bus hold state in response to HOLD while 
the LOCK# output is active. 

Memory/IO (M/IO#)  distinguishes between 
memory and I/O operations. When high, this 
signal indicates that the current bus cycle is a 
memory read or memory write. When low, 
M/IO# indicates that the current bus cycle is an 
I/O read, I/O write, interrupt acknowledge 
cycle or special bus cycle.

Split Cycle (SCYC) is an active high output 
that indicates that the current bus cycle is part 
of a misaligned locked transfer. SCYC is 
defined for locked cycles only.  A misaligned 
transfer is defined as any transfer that crosses 
an 8-byte boundary.

Write/Read (W/R#) distinguishes between 
write and read operations. When high, this 
signal indicates that the current bus cycle is a 
memory write, I/O write or a special bus cycle. 
When low, this signal indicates that the current 
cycle is a memory read, I/O read or interrupt 
acknowledge cycle.
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Table 3-6.  Bus Cycle Types

BUS CYCLE TYPE M/IO# D/C# W/R# CACHE# LOCK#

Interrupt Acknowledge 0 0 0 1 0

Does not occur. 0 0 0 X 1

Does not occur. 0 0 1 X 0

Special Cycles:
If BE(7-0)# = FEh: Shutdown
If BE(7-0)# = FDh: Flush (INVD, WBINVD)
If A4 = 0 and BE(7-0)# = FBh: Halt (HLT) 
If BE(7-0)# = F7h: Write-Back (WBINVD)
If BE(7-0)# = EFh: Flush Acknowledge 
(FLUSH#)
If A4 = 1 and BE(7-0)# = FBh: Stop Grant 
(SUSP#)

0 0 1 1 1

Does not occur. 0 1 X X 0

I/O Data Read 0 1 0 1 1

I/O Data Write 0 1 1 1 1

Does not occur. 1 0 X X 0

Cacheable Memory Code Read 
(Burst Cycle if KEN# Returned Active)

1 0 0 0 1

Non-cacheable Memory Code Read 1 0 0 1 1

Does not occur. 1 0 1 X 1

Locked Memory Data Read 1 1 0 1 0

Cacheable Memory Data Read
(Burst Cycle if KEN# Returned Active)

1 1 0 0 1

Non-cacheable Memory Data Read 1 1 0 1 1

Locked Memory Write 1 1 1 1 0

Burst Memory Write
(Writeback or Line Replacement)

1 1 1 0 1*

Single Transfer Memory Write 1 1 1 1 1

Note: X = Don't Care
*Note: LOCK# continues to be asserted during a write-back cycle that occurs following an aborted (BOFF# asserted)
             locked bus cycle.
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3.2.8 Bus Cycle Control

The bus cycle control signals (ADS#, ADSC#, 
BRDY#, BRDYC#,  NA#, and SMIACT#) 
indicate the beginning of a bus cycle and allow 
system hardware to control bus cycle termina-
tion timing and address pipelining.

Address Strobe (ADS#) is an active low 
output which indicates that the CPU has driven 
a valid address and bus cycle definition on the 
appropriate output pins. ADS# floats during 
bus hold states.

Cache Address Strobe (ADSC#) performs 
the same function as ADS#. ADSC# is used to 
interface directly to a secondary cache 
controller.

Burst Ready (BRDY#) is an active low input 
that is driven by the system to indicate that the 
current transfer within a burst cycle or the 
current single transfer bus cycle can be termi-
nated. The CPU samples BRDY# in the second 
and subsequent clocks of a cycle. BRDY# is 
active during address hold states.

Cache Burst Ready (BRDYC#) performs the 
same function as BRDY# and is logically 
ORed with BRDY internally by the CPU. 
BRDYC# is used to interface directly to a 
secondary cache controller.

Next Address (NA#) is an active low input 
that is driven by the system to request the next 
pending bus cycle address and cycle definition 
information even though all data transfers for 
the current bus cycle are not complete. This 
new bus cycle is referred to as a “pipelined” 
cycle. If either the current or next bus cycle is a 
locked cycle, a line replacement, a write-back 

cycle or there is no pending bus cycle, the IBM 
6x86 CPU does not start a pipelined bus cycle 
regardless of the state of the NA# input.

System Management Mode Active 
(SMIACT#) is an active low output which 
indicates that the CPU is operating in System 
Management Mode. SMIACT# is asserted in 
response to the assertion of SMI# or due to 
execution of the SMINT instruction.   
SMIACT# is also asserted during accesses to 
defined SMM memory if the SMAC bit in 
CCR1 is set. This bit allows access to SMM 
memory while not in SMM mode and is typi-
cally used for initialization purposes.

While servicing an SMI# interrupt or SMINT 
instruction, SMIACT#  remains asserted until a 
RSM instruction is executed. The RSM 
instruction causes the IBM 6x86™ CPU to exit 
SMM mode and negate the SMIACT# output. 
If a cache inquiry cycle occurs while 
SMIACT# is active, any resulting write-back 
cycle is issued with SMIACT# asserted.  This 
occurs even though the write-back cycle is 
intended for normal memory rather than SMM 
memory.

During RESET, the USE_SMI bit in CCR1 is 
cleared. While USE_SMI is zero, SMIACT# is 
always negated. SMIACT# does not float 
during bus hold states.

3.2.9 Interrupt Control

The interrupt control signals (INTR, NMI, 
SMI#) allow the execution of the current 
instruction stream to be interrupted and 
suspended.
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Maskable Interrupt Request (INTR) is an 
active high level-sensitive input which causes 
the processor to suspend execution of the 
current instruction stream and begin execution 
of an interrupt service routine. The INTR input 
can be masked (ignored) through the IF bit in 
the Flags Register. 

When not masked, the IBM 6x86 CPU 
responds to the INTR input by performing two 
locked interrupt acknowledge bus cycles. 
During the second interrupt acknowledge cycle, 
the IBM 6x86 CPU reads an 8-bit value, the 
interrupt vector, from the data bus. The 8-bit 
interrupt vector indicates the interrupt level that 
caused generation of the INTR and is used by 
the CPU to determine the beginning address of 
the interrupt service routine. To assure recogni-
tion of the INTR request, INTR must remain 
active until the start of the first interrupt 
acknowledge cycle.

Non-Maskable Interrupt Request (NMI) is a 
rising edge sensitive input which causes the 
processor to suspend execution of the current 
instruction stream and begin execution of an 
NMI interrupt service routine. The NMI inter-
rupt cannot be masked by the IF bit in the Flags 
Register. Asserting NMI causes an interrupt 
which internally supplies interrupt vector 2h to 
the CPU core. Therefore, external interrupt 
acknowledge cycles are not issued.

Once NMI processing has started, no additional 
NMIs are processed until an IRET instruction is 
executed, typically at the end of the NMI 
service routine. If NMI is re-asserted prior to 
execution of the IRET, one and only one NMI 
rising edge is stored and then processed after 
execution of the next IRET.

System Management Interrupt Request 
(SMI#) is an interrupt input with higher priority 
than the NMI input. SMI# is a falling edge 
sensitive input and is sampled on every rising 
edge of the processor input clock. Asserting 
SMI# forces the processor to save the CPU 
state to the top of SMM memory and to begin 
execution of the SMI service routine at the 
beginning of the defined SMM memory space. 
After the processor internally acknowledges the 
SMI# interrupt, the SMIACT# output is driven 
low for the duration of the interrupt service 
routine.

Once SMI# servicing has started, no additional 
SMI# interrupts are processed until a RSM 
instruction is executed. If SMI# is re-asserted 
prior to execution of a RSM instruction, one 
and only one SMI# falling edge is stored and 
then processed after execution of the next 
RSM. SMI# is ignored following reset and 
recognition is enabled by setting the USE_SMI 
bit in CCR1.

3.2.10 Cache Control

The cache control signals (EWBE#, FLUSH#, 
KEN#, PCD, PWT, WB/WT#) are used to indi-
cate cache status and control caching activity.

External Write Buffer Empty (EWBE#) is an 
active low input driven by the system to indi-
cate when there are no pending write cycles in 
the external system. The IBM 6x86 CPU 
samples EWBE# during write cycles (I/O and 
memory) only. If EWBE# is not asserted, the 
processor delays all subsequent writes to 
on-chip cache lines in the “exclusive” or 
“modified” state until EWBE# is asserted. 
Regardless of the state of EWBE#, all writes to 
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the on-chip cache are delayed until any previ-
ously issued external write cycle is complete. 
This ensures that external write cycles occur in 
program order and is referred to as “strong 
write ordering”. To enhance performance, 
“weak write ordering” may be allowed for 
specific address regions using the Address 
Region Registers (ARRs) and Region Control 
Registers (RCRs).

Cache Flush (FLUSH#) is a falling edge sensi-
tive input that forces the processor to 
write-back all dirty data in the cache and then 
invalidate the entire cache contents. FLUSH# 
need only be asserted for a single clock but 
must meet specified setup and hold times to 
guarantee recognition at a particular clock 
edge.

Once FLUSH# is sampled active, the IBM 
6x86™ CPU begins the cache flush sequence 
after completion of the current instruction. 
External interrupts and additional FLUSH# 
requests are ignored while the cache flush is in 
progress. However, cache inquiry cycles are 
permitted during the flush sequence. The IBM 
6x86™ CPU issues a flush acknowledge special 
cycle to indicate completion of the flush 
sequence. If the processor is in a halt or shut-
down state, FLUSH# is recognized and the 
IBM 6x86 CPU returns to the halt or shutdown 
state following completion of the flush 
sequence.  If FLUSH# is active at the falling 
edge of RESET, the processor enters three state 
test mode.

Cache Enable (KEN#) is an active low input 
which indicates that the data being returned 
during the current cycle is cacheable. When the 
IBM 6x86 CPU is performing a cacheable code 
fetch or memory data read cycle and KEN# is 
sampled asserted, the cycle is transformed into 

a  cache line fill (4 transfer burst cycle) or a 
“1+4” cache line fill.  KEN# is sampled with 
the first asserted BRDY# or NA# for the cycle. 
I/O accesses, locked reads, system management 
memory accesses and interrupt acknowledge 
cycles are never cached.

Page Cache Disable (PCD) is an active high 
output that reflects the state of the PCD page 
attribute bit in the page table entry or the  direc-
tory table entry. If paging is disabled or for 
cycles that are not paged, the PCD pin is driven 
low. PCD is masked by the cache disable (CD) 
bit in CR0 (driven high if CD=1) and floats 
during bus hold states.

Page Write Through (PWT) is an active high 
output that reflects the state of the PWT page 
attribute bit in the page table entry or the direc-
tory table entry. If paging is disabled or for 
cycles that are not paged, the PWT pin is driven 
low. If PWT is asserted, PWT takes priority 
over the WB/WT# input. If PWT is asserted for 
either reads or writes, the cache line is saved in, 
or remains in, the shared (write-through) state. 
PWT floats during bus hold states. 

The Write-Back/Write-Through (WB/WT#)  
input allows the system to define the write 
policy of the on-chip cache on a line-by-line 
basis. If WB/WT# is sampled high during a line 
fill cycle and PWT is low, the line is defined as 
write-back and is stored in the exclusive state. 
If WB/WT# is sampled high during a write to a 
write-through cache line (shared state) and 
PWT is low, the line is transitioned to 
write-back (exclusive state). If WB/WT# is 
sampled low or PWT is high, the line is defined 
as write-through and is stored in (line fill), or 
remains in (write), the shared state. Table 3-7 
(Page 3-16) lists the effects of WB/WT# on the 
state of the cache line for various bus cycles.
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3.2.11 Bus Arbitration

The bus arbitration signals (BOFF#, BREQ, 
HOLD, and HLDA) allow the IBM 6x86 CPU 
to relinquish control of its local bus when 
requested by another bus master device. Once 
the processor has released its bus, the bus 
master device can then drive the local bus 
signals.

Back-Off (BOFF#) is an active low input that 
forces the IBM 6x86 CPU to abort the current 
bus cycle and relinquish control of the CPU's 
local bus in the next clock. The IBM 6x86 CPU 
responds to BOFF# by entering the bus hold 
state as listed in Table 3-8 (Page 3-17). The 
IBM 6x86 CPU remains in bus hold until 
BOFF# is negated. Once BOFF# is negated, the 
IBM 6x86 CPU restarts any aborted bus cycle 
in its entirety. Any data returned to the IBM 
6x86 CPU while BOFF# is asserted is ignored. 
If BOFF# is asserted in the same clock that 
ADS# is asserted, the IBM 6x86™ CPU may 
float ADS# while in the active low state.

Table 3-7.  Effects of WB/WT# on
          Cache Line State

BUS CYCLE 
TYPE

PWT
WB/
WT#

WRITE 
POLICY

MESI 
STATE

Line Fill 0 0 Write-
through

Shared

Line Fill 0 1 Write-
back

Exclusiv
e

Line Fill 1 x Write-
through

Shared

Memory Write
(Note)

0 0 Write-
through

Shared

Memory 
Write (Note)

0 1 Write-
back

Exclusiv
e

Memory Write
(Note)

1 x Write-
through

Shared

Note: Only applies to memory writes to addresses that are currently 
valid in the cache.

Bus Request (BREQ) is an active high output 
asserted by the IBM 6x86 CPU whenever a bus 
cycle is pending internally. The IBM 6x86 CPU 
always asserts BREQ in the first clock of a bus 
cycle with ADS# as well as during bus hold and 
address hold states if a bus cycle is pending. If 
no additional bus cycles are pending, BREQ is 
negated prior to termination of the current 
cycle.

Bus Hold Request (HOLD) is an active high 
input used to indicate that another bus master 
requests control of the CPU's local bus. After 
recognizing the HOLD request and completing 
the current bus cycle or sequence of locked bus 
cycles, the IBM 6x86 CPU responds by floating 
the local bus and asserting the hold acknowl-
edge (HLDA) output. The bus remains granted 
to the requesting bus master until HOLD is 
negated. Once HOLD is sampled negated, the 
IBM 6x86 CPU simultaneously drives the local 
bus and negates HLDA.

Hold Acknowledge (HLDA) is an active high 
output used to indicate that the IBM 6x86 CPU 
has responded to the HOLD input and has relin-
quished control of its local bus. Table 3-8 (Page 
3-17) lists the state of all the IBM 6x86 CPU 
signals during a bus hold state. The IBM 6x86 
CPU continues to operate during bus hold states 
as long as the on-chip cache can satisfy bus 
requests.   HLDA is asserted until HOLD is 
negated. Once HOLD is sampled negated, the 
IBM 6x86 CPU simultaneously drives the local 
bus and negates HLDA.
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Table 3-8.  Signal States During Bus Hold

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Recognized internally INTR Recognized internally

A31-A3 Float INV Recognized

ADS# Float KEN# Ignored

ADSC# Float LBA# Float

AHOLD Ignored LOCK# Float

AP Float M/IO# Float

APCHK# Driven NA# Ignored

BE7#-BE0# Float NMI Recognized internally

BHOLD Ignored PCD Float

BOFF# Recognized PCHK# Driven

BRDY# Ignored PWT Float

BRDYC# Ignored QDUMP# Recognized

BREQ Driven RESET Recognized

CACHE# Float SCYC Float

D/C# Float SMI# Recognized

D63-D0 Float SMIACT# Driven

DHOLD Ignored SUSP# Recognized

DP7-DP0 Float SUSPA# Driven

EADS# Recognized TCK Recognized

EWBE# Recognized internally TDI Recognized

FERR# Driven TDO Responds to TCK, TDI, TMS, TRST#

FLUSH# Recognized TMS Recognized

HIT# Driven TRST# Recognized

HITM# Driven W/R# Float

HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Recognized

IGNNE# Recognized internally
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3.2.12 Cache Coherency

The cache coherency signals (AHOLD, 
EADS#, HIT#, HITM#, and INV) are used to 
initiate and monitor cache inquiry cycles.  
These signals are intended to be used to ensure 
cache coherency in a uni-processor environ-
ment only.  Contact IBM for additional specifi-
cations on maintaining coherency in a 
multi-processor environment.

Address Hold Request (AHOLD) is an active 
high input which forces the IBM 6x86 CPU to 
float A31-A3 and AP in the next clock cycle. 
While AHOLD is asserted, only the address bus 
is disabled. The current bus cycle remains 
active and can be completed in the normal 
fashion. The IBM 6x86 CPU does not generate 
additional bus cycles while AHOLD is asserted 
except write-back cycles in response to a cache 
inquiry cycle.

External Address Strobe (EADS#) is an 
active low input used to indicate to the IBM 
6x86 CPU that a valid cache inquiry address is 
being driven on the IBM 6x86 CPU address bus 
(A31-A5) and AP. The IBM 6x86 CPU checks 
the on-chip cache for this address. If the address 
is present in the cache the HIT# signal is 
asserted. If the data associated with the inquiry 
address is “dirty” (modified state), the HITM# 
signal is also asserted. If dirty data exists, a 
write-back cycle is issued to update external 
memory with the dirty data. Additional cache 
inquiry cycles are ignored while HITM# is 
asserted.

The state of the INV pin at the time EADS# is 
sampled active determines the final state of the 
cache line. If INV is sampled high, the final 
state of the cache line is “invalid”. If INV is 

sampled low, the final state of the cache line is 
“shared”. A cache inquiry cycle using EADS# 
may be run while the IBM 6x86 CPU is in 
either an address hold or bus hold state. The 
inquiry address must be driven by an external 
device.

Hit on Cache Line (HIT#) is an active low 
output used to indicate that the current cache 
inquiry address has been found in the cache 
(modified, exclusive or shared states). HIT# is 
valid two clocks after EADS# is sampled 
active, and remains valid until the next cache 
inquiry cycle.

Hit on Modified Data (HITM#)  is an active 
low output used to indicate that the current 
cache inquiry address has been found in the 
cache and dirty data exists in the cache line 
(modified state). If HITM# is asserted, a 
write-back cycle is issued to update external 
memory. HITM# is valid two clocks after 
EADS# is sampled active, and remains asserted 
until two clocks after the last BRDY# of the 
write-back cycle is sampled active. The IBM 
6x86 CPU does not accept additional cache 
inquiry cycles while HITM# is asserted.

Invalidate Request (INV) is an active high 
input used to determine the final state of the 
cache line in the case of a cache inquiry hit. 
INV is sampled with EADS#. A logic one on 
INV directs the processor to change the state of 
the cache line to “invalid”.    A logic zero on 
INV directs the processor to change the state of 
the cache line to “shared”. 



                                    3-19

3Signal Descriptions

3.2.13 FPU Error Interface

The FPU interface signals FERR# and IGNNE# 
are used to control error reporting for the 
on-chip floating point unit. These signals are 
typically used for a PC-compatible system 
implementation. For other applications, FPU 
errors are reported to the IBM 6x86 CPU core 
through an internal interface.

Floating Point Error Status (FERR#) is an 
active low output asserted by the IBM 6x86 
CPU when an unmasked floating point error 
occurs. FERR# is asserted during execution of 
the FPU instruction that caused the error. 
FERR# does not float during bus hold states.

Ignore Numeric Error (IGNNE#)  is an active 
low input which forces the IBM 6x86 CPU to 
ignore any pending unmasked FPU errors and 
allows continued execution of floating point 
instructions. When IGNNE# is not asserted and 
an unmasked FPU error is pending, the IBM 
6x86 CPU only executes the following floating 
point instructions: FNCLEX, FNINIT, 
FNSAVE, FNSTCW, FNSTENV, and 
FNSTSW#.  IGNNE# is ignored when the NE 
bit in CR0 is set to a 1.

3.2.14 Scatter/Gather Buffer
 Interface

The scatter/gather buffer interface signals 
(BHOLD, DHOLD, LBA#, QDUMP#), in 
conjunction with the byte enables 
(BE7#-BE0#) and address hold (AHOLD), can 
be used by the system hardware to transfer data 
to/from a 32-bit peripheral interface bus. A 
64-bit buffer resides in the IBM 6x86 CPU to 
assist the system in these transfers. This buffer 
provides scatter/gather capability during four 
different types of transfers as listed in Table 3-9 
(Page 3-20).
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Table 3-9.  Scatter/Gather Cycles

CYCLE TYPE
BHOLD 
USED

DHOLD
 USED

QDUMP#
 USED

DATA BUS TIMING

CPU Write to 32-Bit Bus x -- -- Data driven 1 clock after byte enables 
asserted.

CPU Read from 32-Bit Bus x -- -- Data sampled 1 clock after byte 
enables asserted.

32-Bit Bus Master Write to Memory *

  (1) Scatter/gather buffer load from
       32-bit bus master.

x x -- Data sampled 1 clock after byte 
enables asserted.

  (2) Scatter/gather buffer write
        to memory.

x -- x Data driven 1 clock after QDUMP# 
asserted.

32-Bit Bus Master Read from Memory 
*

 

 (1) Scatter/gather buffer load
      from memory.

x x -- Data sampled 1 clock after byte 
enables asserted.

 (2) Scatter/gather buffer write to 32-bit
      bus master.

x -- x Data driven 1 clock after QDUMP# 
asserted.

*Note:  Bus master transfers using the scatter/gather buffer must be initiated while the CPU bus is in a bus hold state or an idle state. These 
cycles cannot occur during CPU initiated bus cycles.

BHOLD is asserted by the external system 
during scatter/gather buffer cycles. While 
BHOLD is asserted, the byte enables are 
driven by an external source and indicate 
which bytes of the data bus should be loaded 
into/written out of the scatter/gather buffer. 
The IBM 6x86 CPU samples the byte enables 
at each rising clock edge while BHOLD is 
asserted. Table 3-10 (Page 3-21) lists the byte 
enable mappings for the scatter/gather cycles.

Byte Enable Hold (BHOLD) is an active high 
input that causes the IBM 6x86 CPU to float 
the byte enable outputs (BE7#-BE0#) in the 
next clock. While BHOLD is asserted, only the 
byte enables are disabled. The current bus 
cycle remains active and can be completed in 
the normal fashion. The IBM 6x86 CPU 
continues to generate additional bus cycles 
while BHOLD is asserted, so BHOLD should 
only be asserted while AHOLD is asserted.
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Table 3-10.  Byte Enable Map for Scatter/Gather Cycles

CYCLE TYPE BE7-BE0# SOURCE DESTINATION

CPU Read from 32-Bit Bus CPU Data Bus Scatter/Gather Buffer
F F No Transfer No Transfer
F x 31-0 31-0
x F 31-0 63-32
x x 63-0 63-0

CPU Write to 32-Bit Bus* Scatter/Gather Buffer CPU Data Bus
F F No Transfer No Transfer
F x 31-0 31-0
x F 63-32 31-0
x x 63-0 63-0

Scatter/Gather Buffer Load 
for 32-Bit Bus Master

CPU Data Bus Scatter/Gather Buffer
F F No Transfer No Transfer
F x 31-0 31-0
x F 31-0 63-32
x x 63-0 63-0

Scatter/Gather Buffer Dump 
using QDUMP#

Scatter/Gather Buffer CPU Data Bus
F F No Transfer No Transfer
F x 31-0 31-0
x F 63-32 31-0
x x 63-0 63-0

*Note: If LBA# is active during a CPU write cycle with BE3-BE0# inactive, the IBM 6x86 CPU automatically maps the upper 
dword of data (D63-D32) to the lower dword of the data bus (D31-D0).

Data Bus Hold (DHOLD) is an active 
high input that forces the IBM 6x86 CPU 
to float the data bus lines (D63-D0) and 
the data parity lines (DP7-DP0) in the next 
clock. While DHOLD is asserted, only the 
data and data parity buses are disabled. 
The current bus cycle remains active and 
is completed in the normal fashion in 
response to BRDY#. The IBM 6x86 CPU 
generates additional bus cycles while 
DHOLD is asserted. To avoid writing 
invalid data, during a write cycle, DHOLD 
and BRDY# should not be asserted at the 
same time, 

The external system asserts DHOLD 
during scatter/gather buffer load cycles 

when the IBM 6x86 CPU is not the bus 
master. While DHOLD is asserted, the 
data bus is driven by an external source 
and the information is loaded into the 
scatter/gather buffer based on the state of 
the byte enables (BHOLD asserted). The 
data bus is sampled one clock after the 
clock edge at which an active byte enable 
is sampled.

Local Bus Access (LBA#) is an active low 
output asserted by the IBM 6x86 CPU for 
any I/O bus cycle or for any bus access 
that resides within a “local bus” address 
region as specified by the on-chip configu-
ration registers. LBA# is asserted during 
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the clock that ADS# is asserted and remains 
asserted for only one clock. LBA# is used to 
indicate a cycle intended to address a device 
using the 32-bit peripheral bus. If LBA# is 
active during a CPU write cycle with BE(3-0)# 
inactive, the IBM 6x86 CPU automatically 
maps the upper dword of data to the lower 
dword of the data bus.

Q Buffer Dump (QDUMP#) is an active low 
input asserted by the external system to dump 
the contents of the scatter/gather buffer to the 
data bus. The data bytes specified by the 
asserted byte enables are driven onto the data 
bus during the clock after QDUMP# is 
sampled asserted.  QDUMP# must be asserted 
at the falling edge of RESET to enable the 
scatter/gather interface pins.

3.2.15 Power Management
Interface

The two power management signals (SUSP#, 
SUSPA#) allow the IBM 6x86 CPU to enter 
and exit suspend mode. The IBM 6x86 CPU 
also enters suspend mode as the result of 
executing a HALT instruction if the HALT bit 
is set in CCR2. Suspend mode circuitry forces 
the IBM 6x86 CPU to consume minimal power 
while maintaining the entire internal CPU 
state.

Suspend Request (SUSP#) is an active low 
input which requests that the IBM 6x86 CPU 
enter suspend mode. After recognition of an 
active SUSP# input, the IBM 6x86 CPU 
completes execution of the current instruction, 
any pending decoded instructions and associ-
ated bus cycles, issues a stop grant bus cycle, 
and then asserts the SUSPA# output. SUSP# is 

ignored following RESET and is enabled by 
setting the SUSP bit in CCR2.

The Suspend Acknowledge (SUSPA#) output 
indicates that the IBM 6x86 CPU has entered 
low-power suspend mode as the result of either 
assertion of SUSP# or execution of a HALT 
instruction. SUSPA# remains asserted until 
SUSP# is negated, or until an interrupt is 
serviced if suspend mode was entered via the 
HALT instruction. If SUSP# is asserted and 
then negated prior to SUSPA# assertion, 
SUSPA# may toggle state after SUSP# 
negates.

The IBM 6x86 CPU accepts cache flush 
requests and cache inquiry cycles while 
SUSPA# is asserted.  If FLUSH# is asserted, 
the CPU exits the low power state and services 
the flush request. After completion of all 
required write-back cycles, the CPU returns to 
the low power state.  SUSPA# negates during 
the write-back cycles. Before issuing the 
write-back cycle, the CPU may execute several 
code fetches.

If AHOLD, BOFF# or HOLD is asserted while 
SUSPA# is asserted, the CPU exits the low 
power state in preparation for a cache inquiry 
cycle.  After completion of any required 
write-back cycles resulting from the cache 
inquiry, the CPU returns to the low power state 
only if HOLD, BOFF# and AHOLD are 
negated. SUSPA# negates during the 
write-back cycle.

Table 3-11 (Page 3-23) lists the IBM 6x86 
CPU signal states for suspend mode when 
initiated by either SUSP# or the HALT instruc-
tion. SUSPA# is disabled (three-state) 
following RESET and is enabled by setting the 
SUSP bit in CCR2.  
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Table 3-11.  Signal States During Suspend Mode

SIGNAL LINE
SUSP# INITIATED/
HALT INITIATED 

SIGNAL LINE
SUSP# INITIATED/
HALT INITIATED

A20M# Ignored INTR Latched/Recognized

A31-A3 Driven INV Recognized

ADS# 1 KEN# Ignored

ADSC# 1 LBA# 1

AHOLD Recognized LOCK# 1

AP Driven M/IO# Driven

APCHK# 1 NA# Ignored

BE7#-BE0# Driven NMI Latched/Recognized

BHOLD Ignored PCD Driven

BOFF# Recognized PCHK# 1

BRDY# Ignored PWT Driven

BRDYC# Ignored QDUMP# Ignored

BREQ 0 RESET Recognized

CACHE# Driven SCYC Driven

D/C# Driven SMI# Latched/Recognized

D63-D0 Float SMIACT# 1

DHOLD Ignored SUSP# 0 / Recognized

DP7-DP0 Float SUSPA# 0

EADS# Recognized TCK Recognized

EWBE# Ignored TDI Recognized

FERR# 1 TDO Responds to TCK, TDI, TMS, 
TRST#

FLUSH# Recognized TMS Recognized

HIT# Driven TRST# Recognized

HITM# 1 W/R# Driven

HLDA Driven in response to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Latched/Recognized

IGNNE# Ignored
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3.2.16 JTAG Interface

The IBM 6x86 CPU can be tested using JTAG 
Interface (IEEE Std. 1149.1) boundary scan 
test logic. The IBM 6x86 CPU pin state can be 
set according to serial data supplied to the chip. 
The IBM 6x86 CPU pin state can also be 
recorded and supplied as serial data.    

Test Clock (TCK) is the clock input used by 
the IBM 6x86 CPU boundary scan (JTAG) test 
logic. The rising edge of TCK is used to clock 
control and data information into the IBM 
6x86 CPU using the TMS and TDI pins. The 
falling edge of TCK is used to clock data infor-
mation out of the IBM 6x86 CPU using the 
TDO pin.

Test Data Input (TDI)  is the serial data input 
used by the IBM 6x86 CPU boundary scan 
(JTAG) test logic. TDI is sampled on the rising 
edge of TCK.

Test Data Output (TDO) is the serial data 
output used by the IBM 6x86 CPU boundary 
scan (JTAG) test logic. TDO is output on the 
falling edge of TCK.

Test Mode Select (TMS) is the control input 
used by the IBM 6x86 CPU boundary scan 
(JTAG) test logic. TMS is sampled on the 
rising edge of TCK.

Test Reset (TRST#) is an active low input 
used to initialize the IBM 6x86 CPU boundary 
scan (JTAG) test logic. 
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3.3 Functional Timing

3.3.1 Reset Timing

Figure 3-2 illustrates the required RESET tim-
ing for both a power-on reset and a reset that 
occurs during operation.  The WM_RST, 
FLUSH# and QDUMP# inputs are sampled at 

Figure 3-2. RESET Timing

the falling edge of RESET to determine if the 
6x86 CPU should enter built-in self-test, enable 
tri-state test mode or enable the scatter-gather 
interface pins, respectively.  WM_RST, 
FLUSH# and QDUMP# must be valid at least 
two clocks prior to the RESET falling edge.

VALID

VALID

VALID

Reset after Power-On = 15 CLKs Min.

Reset Inactive = 2 CLKs Min.

Power-On Reset = 1 msec  Min.

CLK

RESET

WM_RST

FLUSH#

QDUMP#

1734900

Note 1.  ADS# asserted approximately 150-200 clocks after RESET falling edge if no built-in self-test

Note 2.  ADS# asserted approximately 2**19 clocks after RESET falling edge if built-in self-test requested.

Note 3.  Output pins driven to specified RESET state a maximum of 2 CLKs after RESET rising edge.

Power-On Reset = 1 msec Min. 

Reset Inactive = 2 CLKs Min.

Reset after Power-On = 15 CLKs Min.
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3.3.2 Bus State Definition

The 6x86 CPU bus controller supports non-pipelined and pipelined operation as well as single 
transfer and burst bus cycles.  During each CLK period, the bus controller exists in one of six 
states as listed in Table 3-12.  Each of these bus states and its associated state transitions is illus-
trated in Figure 3-3, (Page 3-27) and listed in Table 3-13, (Page 3-28). 

Table 3-12. 6x86 CPU Bus States

STATE NAME DESCRIPTION

Ti Idle Clock During Ti, no bus cycles are in progress.  BOFF# and RESET force the 
bus to the idle state.  The bus is always in the idle state while HLDA is 
active.

T1 First Bus Cycle Clock During the first clock of a non-pipelined bus cycle, the bus enters the T1 
state.  ADS# is asserted during T1 along with valid address and bus cycle 
definition information.

T2 Second and Subsequent 
Bus Cycle Clock

During the second clock of a non-pipelined bus cycle, the bus enters the 
T2 state.  The bus remains in the T2 state for subsequent clocks of the bus 
cycle as long as a pipelined cycle is not initiated.  During T2, valid data is 
driven during write cycles and data is sampled during reads.  BRDY# is 
also sampled during T2.  The bus also enters the T2 state to complete bus 
cycles that were initiated as pipelined cycles but complete as the only 
outstanding bus cycle.

T12 First Pipelined Bus Cycle 
Clock

During the first clock of a pipelined cycle, the bus enters the T12 state.  
During T12, data is being transferred and BRDY# is sampled for the 
current cycle at the same time that ADS# is asserted and address/bus cycle 
definition information is driven for the next (pipelined) cycle. 

T2P Second and Subsequent 
Pipelined Bus Cycle Clock

During the second and subsequent clocks of a pipelined bus cycle where 
two cycles are outstanding, the bus enters the T2P state.  During T2P, data 
is being transferred and BRDY# is sampled for the current cycle.  
However, valid address and bus cycle definition information continues to 
be driven for the next pipelined cycle.

Td Dead Clock The bus enters the Td state if a pipelined cycle was initiated that requires 
one idle clock to turn around the direction of the data bus.  Td is required 
for a read followed immediately by a pipelined write, and for a write 
followed immediately by a pipelined read.
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Figure 3-3.  IBM 6x86 CPU Bus State Diagram
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Table 3-13. Bus State Transitions

TRANSITION
CURRENT 

STATE
NEXT 

STATE
EQUATION

A Ti Ti No Bus Cycle Pending.

B Ti T1 New or Aborted Bus Cycle Pending.

C T1 T2 Always.

D T2 T2 Not Last BRDY# and No New Bus Cycle Pending, or
Not Last BRDY# and New Bus Cycle Pending and NA# 
Negated. 

E T2 T1 Last BRDY# and New Bus Cycle Pending and HITM# Negated.

F T2 Ti Last BRDY# and No New Bus Cycle Pending, or
Last BRDY# and HITM# Asserted.

G T2 T12 Not Last BRDY# and New Bus Cycle Pending and NA# 
Sampled Asserted.

H T12 T2 Last BRDY# and No Dead Clock Required.

I T12 Td Last BRDY# and Dead Clock Required.

J T12 T2P Not Last BRDY#.

K T2P T2P Not Last BRDY#. 

L T2P T2 Last BRDY# and No Dead Clock Required.

M T2P Td Last BRDY# and Dead Clock Required.

N Td T12 New Bus Cycle Pending and NA# Sampled Asserted.

O Td T2 No New Bus Cycle Pending, or
New Bus Cycle Pending and NA# Negated.

P Any
State

Ti RESET Asserted, or
BOFF# Asserted.
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3.3.3 Non-pipelined Bus
Cycles

Non-pipelined bus operation may be used for 
all bus cycle types.  The term “non-pipelined” 
refers to a mode of operation where the CPU 
allows only one outstanding bus cycle.  In 
other words, the current bus cycle must com-
plete before a second bus cycle is allowed to 
start.

3.3.3.1 Non-pipelined Single 
Transfer Cycles

Single transfer read cycles occur during 
non-cacheable memory reads, I/O read cycles, 
and special cycles.  A non-pipelined single 
transfer read cycle begins with address and bus 
cycle definition information driven on the bus 
during the first clock (T1 state) of the bus 
cycle.  The CPU then monitors the BRDY# 
input at the end of the second clock (T2 state).  
If BRDY# is asserted, the CPU reads the 
appropriate data and data parity lines and ter-
minates the bus cycle.  If BRDY# is not active, 
the CPU continues to sample the BRDY# input 
at the end of each subsequent cycle (T2 states).  
Each of the additional clocks is referred to as a 
wait state. 

The CPU uses the data parity inputs to check 
for even parity on the active data lines.  If the 
CPU detects an error, the parity check output 
(PCHK#) asserts during the second clock fol-
lowing the termination of the read cycle.  

Figure 3-4 (Page 3-30) illustrates the func-
tional timing for two non-pipelined sin-
gle-transfer read cycles.  Cycle 2 is a 
potentially cacheable cycle as indicated by the 
CACHE# output.  Because this cycle is poten-
tially cacheable, the CPU samples the KEN# 
input at the same clock edge that BRDY# is 
asserted.  If KEN# is negated, the cycle termi-
nates as shown in the diagram.  If KEN# is 
asserted, the CPU converts this cycle into a 
burst cycle as described in the next section.   
NA# must be negated for non-pipelined opera-
tion.  Pipelined bus cycles are described later 
in this chapter.
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Figure 3-4.  Non-Pipelined Single Transfer Read Cycles
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Single transfer write cycles occur for writes 
that are neither line replacement nor write-back 
cycles.  The functional timing of two non-pipe-
lined single transfer write cycles is shown in 
Figure 3-5.  During a write cycle, the data and 
data parity lines are outputs and are driven 
valid during the second clock (T2 state) of the 

bus cycle.  Data and data parity remain valid 
during all wait states. If the write cycle is a 
write to a valid cache location in the “shared” 
state, the WB/WT# pin is sampled with 
BRDY#.  If WB/WT# is sampled high, the 
cache line transitions from the “shared” to the 
“exclusive” state.

Figure 3-5.  Non-Pipelined Single Transfer Write Cycles
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Each time BRDY# is sampled asserted during 
the burst cycle, a data transfer occurs.  The 
CPU reads the data and data parity busses and 
assigns the data to an internally generated 
burst address.  Although the CPU internally 
generates the burst address sequence, only the 
first address of the burst is driven on the exter-
nal address bus.  System logic must predict the 
burst address sequence based on the first 
address.  Wait states may be added to any 
transfer within a burst by delaying the asser-
tion of BRDY# by the desired number of 
clocks. 

The CPU checks even data parity for each of 
the four transfers within the burst.  If the CPU 
detects an error, the parity check output 
(PCHK#) asserts during the second clock fol-
lowing the BRDY# assertion of the data trans-
fer. 

Figure 3-6 (Page 3-33) illustrates two 
non-pipelined burst read cycles.  The cycles 
shown are the fastest possible burst sequences 
(2-1-1-1).  NA# must be negated for non-pipe-
lined operation as shown in the diagram.  Pipe-
lined bus cycles are described later in this 
chapter.

Figure 3-7 (Page 3-34) depicts a burst read 
cycle with wait states. A 3-2-2-2 burst read is 
shown.

3.3.3.2 Non-pipelined Burst
Read Cycles

The 6x86 CPU uses burst read cycles to per-
form cache line fills.  During a burst read 
cycle, four 64-bit data transfers occur to fill 
one of the CPU’s 32-byte internal cache lines.  
A non-pipelined burst read cycle begins with 
address and bus cycle definition information 
driven on the bus during the first clock (T1 
state) of the bus cycle.  The CACHE# output is 
always active during a burst read cycle and is 
driven during the T1 clock. 

The CPU then monitors the BRDY# input at 
the end of the second clock (T2 state).  If 
BRDY# is asserted, the CPU reads the data 
and data parity and also checks the KEN# 
input.  If KEN# is negated, the CPU terminates 
the bus cycle as a single transfer cycle.  If 
KEN# is asserted, the CPU converts the cycle 
into a burst (cache line fill) by continuing to 
sample BRDY# at the end of each subsequent 
clock. BRDY# must be asserted a total of four 
times to complete the burst cycle.

WB/WT# is sampled at the same clock edge as 
KEN#.  In conjunction with PWT and the 
on-chip configuration registers, WB/WT# 
determines the MESI state of the cache line for 
the current line fill.
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Figure 3-6.  Non-Pipelined Burst Read Cycles
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Figure 3-7.  Burst Cycle with Wait States

ples the state of KEN#.  If KEN# is active, the 
CPU then performs the burst cycle with the 
address sequence shown in Table 3-14 (Page 
3-35).  The IBM 6x86 CPU CACHE# output is 
not asserted during the single read cycle prior 
to the burst.  Therefore, CACHE# must not be 
used to qualify the KEN# input to the proces-
sor.  In addition, if KEN# is returned active for 
the “1” read cycle in the “1+4”, all data bytes 
supplied to the CPU must be valid. The CPU 
samples WB/WT# during the “1” read cycle, 
and does not resample WB/WT# during the 
following burst cycle. Figure 3-8 (Page 3-35) 
illustrates a “1+4” burst read cycle.

Burst Cycle Address Sequence.

The IBM 6x86 CPU provides two different 
address sequences for burst read cycles.  
TheIBM 6x86 CPU burst cycle address 
sequence modes are referred to as “1+4” and 
“linear”.  After reset, the CPU default mode is 
“1+4”.

In “1+4” mode, the CPU performs a single 
transfer read cycle prior to the burst cycle, if 
the desired first address is (...xx8).  During this 
single transfer read cycle, the CPU reads the 
critical data.  In addition, the 6x86 CPU sam-
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.

Table 3-14.   “1+4” Burst Address Sequences

BURST CYCLE FIRST 
ADDRESS

SINGLE READ CYCLE 
PRIOR TO BURST

BURST CYCLE ADDRESS
 SEQUENCE

0 None 0-8-10-18

8 Address 8 0-8-10-18

10 None 10-18-0-8

18 Address 18 10-18-0-8

Figure 3-8. “1+4” Burst Read Cycle
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1740300
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The address sequences for the 6x86 CPU's linear burst mode are shown in Table 3-15.  Oper-
ating the CPU in linear burst mode minimizes processor bus activity resulting in higher sys-
tem performance.  Linear burst mode can be enabled through the IBM 6x86 CPU CCR3 
configuration register.

Table 3-15.  Linear Burst Address Sequences

BURST CYCLE FIRST 
ADDRESS

BURST CYCLE ADDRESS
 SEQUENCE

0 0-8-10-18

8 8-10-18-0

10 10-18-0-8

18 18-0-8-10
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3.3.3.3 Burst Write Cycles

Burst write cycles occur for line replacement 
and write-back cycles.  Burst writes are similar 
to burst read cycles in that the CACHE# output 
is asserted and four 64-bit data transfers occur.  
Burst writes differ from burst reads in that the 
data and data parity lines are outputs rather than 
inputs.  Also, KEN# and WB/WT# are not sam-
pled during burst write cycles.

Data and data parity for the first data transfer 
are driven valid during the second clock (T2 
state) of the bus cycle.  Once BRDY# is sam-
pled asserted for the first data transfer, valid 
data and data parity for the second transfer are 
driven during the next clock cycle.  The same 
timing relationship between BRDY# and data 
applies for the third and fourth data transfers as 
well. Wait states may be added to any transfer 
within a burst by delaying the assertion of  
BRDY# by the required number of clocks.

As on burst read cycles, only the first address 
of a burst write cycle is driven on the external 
address bus.  System logic must predict the 
remaining burst address sequence based on the 
first address.  Burst write cycles always begin 
with a first address ending in 0 (signals 
A4-A0=0) and follow an ascending address 
sequence for the remaining transfers 
(0-8-10-18).

Figure 3-9 illustrates two non-pipelined burst 
write cycles.  The cycles shown are the fastest 
possible burst sequences (2-1-1-1).  As shown, 
an idle clock always exists between two 
back-to-back burst write cycles.  Therefore, the 
second burst write cycle in a pair of 
back-to-back burst writes is always issued as a 
non-pipelined cycle regardless of the state of 
the NA# input.

Figure 3-9.  Non-Pipelined Burst Write Cycles
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3.3.4 Pipelined Bus Cycles

Pipelined addressing is a mode of operation 
where the CPU allows up to two outstanding 
bus cycles at any given time.  Using pipelined 
addressing, the address of the first bus cycle is 
driven on the bus and while the CPU waits for 
the data for the first cycle, the address for a 
second bus cycle is issued.  Pipelined bus 
cycles occur for all cycle types except locked 
cycles and burst write cycles.

Pipelined cycles are initiated by asserting 
NA#.  The CPU samples NA# at the end of 
each T2, T2P and Td state. KEN# and 
WB/WT# are sampled at either the same clock 
as NA# is active, or at the same clock as the 
first BRDY# for that cycle, whichever occurs 
first. The CPU issues the next address a mini-

mum of two clocks after NA# is sampled 
asserted. 

The CPU latches the state of the NA# pin 
internally. Therefore, even if a new bus cycle 
is not pending internally at the time NA# was 
sampled asserted, the CPU still issues a pipe-
lined bus cycle if an internal bus request 
occurs prior to completion of the current bus 
cycle. Once NA# is sampled asserted, the state 
of NA# is ignored until the current bus cycle 
completes.  If two cycles are outstanding and 
the second cycle is a read, the CPU samples 
KEN# and WB/WT# for the second cycle 
when NA# is sampled asserted.

Figure 3-10 and Figure 3-11 (Page 3-39) illus-
trate pipelined single transfer read cycles and 
pipelined burst read cycles, respectively.

Figure 3-10.  Pipelined Single Transfer Read Cycles
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Figure 3-11.  Pipelined Burst Read Cycles
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3.3.4.1 Pipelined
Back-to-Back
Read/Write Cycles

Figure 3-12 depicts a read cycle followed by a 
pipelined write cycle.  Under this condition, 
the data bus must change from an input for the 
read cycle to an output for the write cycle.  In 
order to accomplish this transition without 

causing data bus contention, the CPU automat-
ically inserts a “dead” (Td) clock cycle.  Dur-
ing the Td state, the data bus floats.  The CPU 
then drives the write data onto the bus in the 
following clock.  The CPU also inserts a Td 
clock between a write cycle and a pipelined 
read cycle to allow the data bus to smoothly 
transition from an output to an input.

Figure 3-12.   Read Cycle Followed by Pipelined Write Cycle
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3.3.5 Interrupt
Acknowledge
Cycles

The CPU issues interrupt acknowledge bus 
cycles in response to an active INTR input.  
Interrupt acknowledge cycles are single trans-
fer cycles and always occur in locked pairs as 
shown in Figure 3-13.  The CPU reads the 
interrupt vector from the lower eight bits of the 
data bus at the completion of the second inter-

Figure 3-13.  Interrupt Acknowledge Cycles

rupt acknowledge cycle.  Parity is not checked 
during the first interrupt acknowledge cycle.

M/IO#, D/C# and W/R# are always logic low 
during interrupt acknowledge cycles.  Addi-
tionally, the address bus is driven with a value 
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the second.  A minimum of one idle clock 
always occurs between the two interrupt 
acknowledge cycles. 
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3.3.6 SMI# Interrupt Timing

The CPU samples the System Management 
Interrupt (SMI#) input at each clock edge.  At 
the next appropriate instruction boundary, the 
CPU recognizes the SMI# and completes all 
pending write cycles.  The CPU then asserts 
SMIACT# and begins saving the SMM header 
information to the SMM address space.  
SMIACT# remains asserted until after 
execution of a RSM instruction. Figure 3-14 
illustrates the functional timing of the 
SMIACT# signal.

Figure 3-14.  SMIACT# Timing

To facilitate using SMI# to power manage I/O 
peripherals, the 6x86 CPU implements a fea-
ture called I/O trapping.  If the current bus 
cycle is an I/O cycle and SMI# is asserted a 
minimum of three clocks prior to BRDY#, the 
CPU immediately begins execution of the SMI 
service routine following completion of the 
I/O instruction.  No additional instructions are 
executed prior to entering the SMI service rou-
tine.  I/O trap timing requirements are shown 
in Figure 3-15 (Page 3-43).
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Figure 3-15.  SMM I/O Trap Timing

The latency between when FLUSH# occurs 
and when the cache invalidation actually com-
pletes varies depending on:

(1) the state of the processor when FLUSH# 
is asserted,

(2) the number of modified cache lines,
(3) the number of wait states inserted during 

the write-back cycles.

Figure 3-16 (Page 3-44) illustrates the 
sequence of events that occur on the bus in 
response to a FLUSH# request.

3.3.7 Cache Control Timing

3.3.7.1 Invalidating the
Cache Using FLUSH#

The FLUSH# input forces the CPU to 
write-back and invalidate the entire contents of 
the on-chip cache.  FLUSH# is sampled at each 
clock edge, latched internally and then recog-
nized internally at the next instruction bound-
ary.  Once FLUSH# is recognized, the CPU 
issues a series of burst write cycles to 
write-back any “modified” cache lines.  The 
cache lines are invalidated as they are written 
back.  Following completion of the write-back 
cycles, the CPU issues a flush acknowledge 
special bus cycle.
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Figure 3-16.  Cache Invalidation Using FLUSH#
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3.3.7.2 EWBE# Timing

During memory and I/O write cycles, the 
6x86™ CPU samples the external write buffer 
empty (EWBE#) input.  If EWBE# is negated, 
the CPU does not write any data to “exclusive” 
or “modified” internal cache lines.  After sam-
pling EWBE# negated, the CPU continues to 

Figure 3-17.  External Write Buffer Empty (EWBE#) Timing

sample EWBE# at each clock edge until it 
asserts.  Once EWBE# is asserted, all inter-
nal cache writes are allowed.  Through use of 
this signal, the external system may enforce 
strong write ordering when external write 
buffers are used.  EWBE# functional timing 
is shown in Figure 3-17.
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3.3.8 Bus Arbitration

An external bus master can take control of the 
CPU's bus using either the HOLD/HLDA 
handshake signals or the back-off (BOFF#) 
input.  Both mechanisms force the IBM 6x86 
CPU to enter the bus hold state.

Figure 3-18.  Requesting Hold from an Idle Bus

Functional Timing

3.3.8.1  HOLD and HLDA 

Using the HOLD/HLDA handshake, an exter-
nal bus master requests control of the CPU’s 
bus by asserting the HOLD signal.  In response 
to an active HOLD signal, the CPU completes 
all outstanding bus cycles, enters the bus hold 
state by floating the bus, and asserts the HLDA 
output.  The CPU remains in the bus hold state 
until HOLD is negated.  Figures 3-18, 3-19 
(Page 3-47) and 3-20 (Page 3-48) illustrate the 
timing associated with requesting HOLD dur-
ing an idle bus, during a non-pipelined bus 
cycle and during a pipelined bus cycle, respec-
tively. 
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Figure 3-19.  Requesting Hold During a Non-Pipelined Bus Cycle

Functional Timing
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Figure 3-20.  Requesting Hold During a Pipelined Bus Cycle

Functional Timing
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3.3.8.2 Back-Off Timing

An external bus master requests immediate 
control of the CPU's bus by asserting the 
back-off (BOFF#) input.  The CPU samples 
BOFF# at each clock edge and responds by 
floating the bus in the next clock cycle as 
shown in Figure 3-21.  The CPU remains in 
the bus hold state until BOFF# is negated.  

If the assertion of BOFF# interrupts a bus 
cycle, the bus cycle is restarted in its entirety 
following the negation of BOFF#.  If KEN# 

Functional Timing

Figure 3-21.  Back-Off Timing

was sampled by the processor before the cycle 
was aborted, it must be returned with the same 
value during the restarted cycle.  The state of 
WB/WT# may be changed during the restarted 
cycle.

If BOFF# and BRDY# are active at the same 
clock edge, the CPU ignores BRDY#.  Any 
data returned to the CPU with the BRDY# is 
also ignored.  If BOFF# interrupts a burst read 
cycle, the CPU does not cache any data 
returned prior to BOFF#.  However, this data 
may be used for internal CPU execution.
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3.3.9 Cache Inquiry Cycles

Cache inquiry cycles are issued by the system 
with the CPU in either a bus hold or address 
hold state.  Bus hold is requested by asserting 
either HOLD or BOFF#, and address hold is 
requested by asserting AHOLD.  The system 
initiates the cache inquiry cycle by asserting 
the EADS# input.  The system must also drive 
the desired inquiry address on the address 
lines, and a valid state on the INV input.  

In response to the cache inquiry cycle, the 
CPU checks to see if the specified address is 
present in the internal cache.  If the address is 
present in the cache, the CPU checks the MESI 
state of the cache line.  If the line is in the 
“exclusive” or “shared” state, the CPU asserts 
the HIT# output and changes the cache line 
state to “invalid” if the INV input was sampled 
logic high with EADS#.  

Functional Timing

If the line is in the “modified” state, the CPU 
asserts both HIT# and HITM#. The CPU then 
issues a bus cycle request to write the modified 
cache line to external memory.  HITM# 
remains asserted until the write-back bus cycle 
completes.  No additional cache inquiry cycles 
are accepted while HITM# is asserted.  Write-
back cycles always start at burst address 0.  
Once the write-back cycle has completed, the 
CPU changes the cache line state to “invalid” 
if the INV input was sampled logic high, or 
“shared” if the INV input was sampled low.

In addition to checking the cache, the CPU 
also snoops the internal line fill and cache 
write-back buffers in response to a cache 
inquiry cycle.   The following sections 
describe the functional timing for cache 
inquiry cycles and the corresponding 
write-back cycles for the various types of 
inquiry cycles.  
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3.3.9.1 Inquiry Cycles
Using HOLD/HLDA

Figure 3-22 illustrates an inquiry cycle where 
HOLD is used to force the CPU into a bus hold 
state.  In this case, the system asserts HOLD 
and must wait for the CPU to respond with 
HLDA before issuing the cache inquiry cycle.  
To avoid address bus contention, EADS# 

Functional Timing

Figure 3-22.  HOLD Inquiry Cycle that Hits on a Modified Line

should not be asserted until the second clock 
after HLDA as shown in the diagram.  If the 
inquiry address hits on a modified cache line, 
HIT# and HITM# are asserted during the sec-
ond clock following EADS#.  Once HITM# 
asserts, the system must negate HOLD to allow 
the CPU to run the corresponding write-back 
cycle.  The first cycle issued following nega-
tion of HLDA is the write-back bus cycle.

To CPU

CLK

ADS#

Address

BRDY#

HOLD

T2 Ti Ti Ti Ti Ti Ti Ti Ti

From CPU

EADS#

INV

HIT#

HITM#

T1 T2 T2 T2

Write-Back Cycle

T2 Ti Ti

VALID

HLDA
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3.3.9.2 Inquiry Cycles
Using BOFF#

Figure 3-23 illustrates an inquiry cycle where 
BOFF# is used to force the CPU into a bus hold 
state.  In this case, the system asserts BOFF# 
and the CPU immediately relinquishes control 
of the bus in the next clock. To avoid address 
bus contention, EADS# should not be asserted 

Functional Timing

Figure 3-23.  BOFF# Inquiry Cycle that Hits on a Modified Line

until the second clock edge after BOFF# as 
shown in the diagram.  If the inquiry address 
hits on a modified cache line, HIT# and HITM# 
are asserted during the second clock following 
EADS#.  Once HITM# asserts, the system must 
negate BOFF# to allow the CPU to run the cor-
responding write-back cycle.  The first cycle 
issued following negation of BOFF# is the 
write-back bus cycle. 

To CPU

CLK

ADS#

Address

BRDY#

BOFF#

T1 Ti Ti Ti Ti Ti T1 T2 T2

From CPU

EADS#

INV

HIT#

HITM#

T2 T2 Ti T1

Write-Back Cycle

T2

VALID

Cycle 1

(Restarted)

Ti
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3.3.9.3 Inquiry Cycles

Using AHOLD

Figure 3-24 illustrates an inquiry cycle where 
AHOLD is used to force the CPU into an 
address hold state.  In this case, the system 
asserts AHOLD and the CPU immediately 
floats the address bus in the next clock. To 
avoid address bus contention, EADS# should 
not be asserted until the second clock edge after 

Functional Timing

Figure 3-24.  AHOLD Inquiry Cycle that Hits on a Modified Line

AHOLD as shown in the diagram.  If the 
inquiry address hits on a modified cache line, 
the CPU asserts HIT# and HITM# during the 
second clock following EADS#.  The CPU then 
issues the write-back cycle even if AHOLD 
remains asserted.  ADS# for the write-back 
cycle asserts two clocks after HITM# is 
asserted.  To prevent the address bus and data 
bus from switching simultaneously, the system 
must adhere to the restrictions on negation of 
AHOLD as shown in Figure 3-24.

To CPU

CLK

ADS#

Address

BRDY#

Data, DP

T1 T2 Ti Ti Ti Ti Ti T1 T2

From CPU

AHOLD

EADS#

INV

HIT#

T2 T2 T2 T2

Write-Back Cycle

Ti

VALID

HITM#

OUT OUT OUT OUT

Ti

Restrictions on negating AHOLD:
1.  During a write cycle, AHOLD should not be negated in the same clock that BRDY# is asserted.
2.  During pipelined bus cycles, AHOLD should not be negated during the Td clock between a read cycle followed by a pipelined write cycle.
3.  While HITM# is asserted, AHOLD should not be negated in the same clock that ADS# is asserted.
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Figure 3-25 depicts an AHOLD inquiry cycle 
during a line fill.  In this case, the write-back 
cycle occurs after the line fill is completed.  
At least one idle clock exists between the final 
BRDY# of the line fill and the ADS# for the 
write-back cycle.  If the inquiry cycle hits on 
the address of the line fill that is in progress, 

Figure 3-25.  AHOLD Inquiry Cycle During a Line Fill

Functional Timing

the data from the line fill cycle is always used 
to complete the pending internal operation.  
However, the data is not placed in the cache if 
INV is sampled asserted with EADS#.  The 
data is placed in the cache in a “shared” state 
if INV is sampled negated. 

To CPU

CLK

ADS#

Address

BRDY#

Data, DP

T1 T2 T2 T2 T2 T2 T2

From CPU

AHOLD

EADS#

INV

HIT#

VALID

HITM#

IN IN IN

Line Fill

Note: If the inquiry cycle hits on the line fill in progress, the data from the line fill will be used to complete the pending internal operation.
The line is not placed in the cache if INV is sampled asserted with EADS#.  The line is placed in the cache in a "shared"
state if INV is sampled negated with EADS#.

T1 T2 T2 T2 T2 Ti Ti

OUT OUT OUT OUTIN

Write-Back Cycle

Ti
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During cache inquiry cycles, the CPU performs 
address parity checking using A31-A5 and the 
AP signal.  The CPU checks for even parity and 

Functional Timing

Figure 3-26.   APCHK# Timing

asserts the APCHK# output if a parity error is 
detected.  Figure 3-26 illustrates the functional 
timing of the APCHK# output. 

CLK

EADS#

Address

AP

Tx Tx Tx Tx Tx

To CPU

APCHK#

To CPU

VALID
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3.3.10 Scatter/Gather
Buffer Interface

The scatter/gather buffer interface signals, in 
conjunction with the byte enables  and address 
hold, can be used by the system hardware to 
transfer data to/from a 32-bit peripheral inter-
face bus. A 64-bit buffer resides in the CPU to 
assist the system in these transfers. 

As shown in Figure 3-27 when BHOLD is 
asserted the CPU floats the byte enable outputs 
(BE7#-BE0#) in the next clock. While BHOLD 
is asserted, only the byte enables are disabled. 
The current bus cycle remains active and can 

be completed in the normal fashion. The CPU 
continues to generate additional bus cycles 
while BHOLD is asserted, so BHOLD should 
only be asserted while AHOLD is asserted.

Figure 3-27 also illustrates DHOLD timing. 
DHOLD forces the CPU to float the data and 
data parity buses in the next clock.  While 
DHOLD is asserted, the current bus cycle 
remains active and additional bus cycles may 
be generated by the CPU.

Figure 3-27. BHOLD and DHOLD Timing

Functional Timing

CLK

DHOLD

D63-D0

BHOLD

BE7#-BE0#

D1 D1

BEx BEx
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Figures 3-28 and 3-29 (Page 3-58) illustrate CPU read and write cycles  that access a 32-bit 
device using the scatter/gather buffer.  

Functional Timing

Figure 3-28.  CPU Upper Byte Read from 32-Bit Bus Using Scatter/Gather

CLK

ADS#

LBA#

D63-D32

D31-D0

BE7#-BE0# BE# = 0xBF From CPU BE# From CPU

BHOLD

BRDY#

D1 (to S/G Buffer))

D1

D2

D1

BE# = 0xBF To CPU

BHOLD is asserted in order to
issue the MUX command
via the BE#s (BE# = 0xBFh).

Controller detects CPU read of
upper byte to 32-bit peripheral bus
via LBA# and BE#s.

The clock following BE# = 0xBFh,
the CPU maps D31-D0 to D63-D32
of the scatter/gather buffer to read byte 6.
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Figure 3-29.  CPU Upper Byte Write to 32-Bit Bus Using Scatter/Gather

Functional Timing

CLK

ADS#

LBA#

D63-D32

D31-D0

BE7#-BE0# BE# = 0xBF From CPU BE# From CPU

BHOLD

BRDY#

D2

D2 (from S/G Buffer)

D2

D1

Controller detects CPU write of
upper byte to 32-bit peripheral bus
via LBA# and BE#s.

BHOLD need not be asserted
because the CPU automatically
maps D63-D32 to D31-D0 when
LBA# asserted and BE3-BE0 = Fh.

During the clock following BE# = 0xBFh,
the CPU maps D63-D32 to D31-D0
for transfer on 32-bit bus.
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Figures 3-30 and 3-31 (Page 3-60) illustrate bus master reads and writes between a 32-bit device 
and 64-bit main memory.  The CPU bus must be idle when a bus master initiates a scatter/gather 
cycle.

Functional Timing

Figure 3-30.  Bus Master Read from 64-Bit Memory to 32-Bit Bus

CLK

D63-D32

D31-D0

BE7#-BE0#

BHOLD

DHOLD

BE#=0x00 BE#=0xF0

QDUMP#

D2 from Memory

D1 from Memory

D2

D2 from S/G Buffer D1 from S/G Buffer

BE#=0x0FBE#=0xFF

Controller asserts BHOLD and DHOLD
to transfer data from memory
to CPU's internal scatter/gather buffer.

BE#=0x00 causes the 64-bit data from
memory to be written into CPU's buffer.
The controller negates BE# (BE=0xFF)
so that data in the scatter/gather buffer is
not corrupted and tristates the data bus
to allow for a scatter operation to proceed.

The controller negates DHOLD and
asserts BE#=0x0F followed by 0xF0
along with QDUMP# to transfer the
upper word (D2=D63-D32) followed
by the lower word (D1=D31-D0),
respectively, to the 32-bit bus.
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Figure 3-31.   Bus Master Write to 64-Bit Memory from 32-Bit Bus

Functional Timing

CLK

D32-D63

D0-D31

BE0-BE7

BHOLD

DHOLD

BE#=FFh

QDUMP#

D2 (to Memory)

D1 (to Memory)

BE#=0xF0BE#=0x0F

D1 (to S/G Buffer)D2 (to S/G Buffer)

BE#=0x00

Controller asserts BHOLD and DHOLD
to transfer data from the 32-bit bus
to CPU's internal scatter/gather buffer.

The MUX command along with a word
write is issued by the controller to
write D1 from the 32-bit bus into
D63-D32 of CPU's buffer followed by
a 2nd word write to D31-D0.

The controller relinquishes control of
CPU data bus, negates DHOLD and
asserts QDUMP# to dump the 64-bit data
on to the CPU local bus for transfer to memory.
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3.3.11 Power Management
Interface

SUSP# Initiated Suspend Mode

The 6x86 CPU enters suspend mode when the 
SUSP# input is asserted and execution of the 
current instruction, any pending decoded 
instructions and associated bus cycles are 
completed.   A stop grant bus cycle is then 
issued and the SUSPA# output is asserted.  
The CPU responds to SUSP# and asserts 
SUSPA# only if the SUSP bit is set in the 
CCR2 configuration register.

SUSP# is sampled (Figure 3-32) on the rising 
edge of CLK.  SUSP# must meet specified 
setup and hold times to be recognized at a 
particular CLK edge.  The time from assertion 
of SUSP# to activation of SUSPA# varies 

Figure 3-32.  SUSP# Initiated Suspend Mode

Functional Timing

depending on which instructions were decoded 
prior to assertion of SUSP#.   The minimum 
time from SUSP# sampled active to SUSPA# 
asserted is eight CLKs.  As a maximum, the 
CPU may execute up to two instructions and 
associated bus cycles prior to asserting 
SUSPA#.  The time required for the CPU to 
deactivate SUSPA# once SUSP# has been 
sampled inactive is five CLKs.

If the CPU is in a hold acknowledge state and 
SUSP# is asserted, the CPU may or may not 
enter suspend mode depending on the state of 
the CPU internal execution pipeline. If the 
CPU is in a SUSP# initiated suspend mode, 
one occurrence of NMI, INTR and SMI# is 
stored for execution once suspend mode is 
exited. The 6x86 CPU also recognizes and 
acknowledges the HOLD, AHOLD, BOFF# 
and FLUSH# signals while in suspend mode.

CLK

SUSP#

SUSPA#

Tx Tx Ti Ti Ti Ti Tx

8 CLKs 5 CLKs
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HALT Initiated Suspend Mode

The CPU also enters suspend mode as a result 
of executing a HALT instruction if the SUSP 
HALT bit in CCR2 is set.  The SUSPA# output 
is asserted no later than 40 CLKs following 

BRDY# sampled active for the HALT bus cycle 
as shown in Figure 3-33.  Suspend mode is then 
exited upon recognition of an NMI, an 
unmasked INTR or an SMI#.  SUSPA# is 
deactivated 10 CLKs after sampling of an 
active interrupt.   

Functional Timing

Figure 3-33.  HALT Initiated Suspend Mode

CLK

ADS#

M/IO#,

BRDY#

INTR, NMI

SUSPA#

T1 T2 Ti Ti Ti Ti Ti Ti

Non-Pipelined HALT

BE(0, 1, 3-7)#,
W/R#

10 CLKs

A3-A31,
BE#2, D/C#, IO#

40 CLKs (Max)
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Stopping the Input Clock

Once the CPU has entered suspend mode, the 
input clock (CLK) can be stopped and 
restarted without loss of any internal CPU 
data.  The CLK input can be stopped at either a 
logic high or logic low state.  

The CPU remains suspended until CLK is 
restarted and suspend mode is exited as 

described earlier.  While the CLK is stopped, 
the CPU can no longer sample and respond to 
any input stimulus.

Figure 3-34 illustrates the recommended 
sequence for stopping the CLK using SUSP# to 
initiate suspend mode.  CLK may be started 
prior to or following negation of the SUSP# 
input. The system must allow sufficient time 
for the CPU’s internal PLL to lock to the 
desired frequency before exiting suspend 
mode.

Figure 3-34.  Stopping CLK During Suspend Mode

CLK

SUSP#

SUSPA#

Tx Tx Tx Tx
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Electrical Specifications

 IBM 6x86 MICROPROCESSOR
 Sixth-Generation Superscalar
 Superpipelined x86-Compatible CPU 

4.0 ELECTRICAL
SPECIFICATIONS

4.1 Electrical Connections

This section provides information on electrical 
connections, absolute maximum ratings, 
recommended operating conditions, DC char-
acteristics, and AC characteristics.   All voltage 
values in Electrical Specifications are measured 
with respect to VSS unless otherwise noted.

4.1.1 Power and Ground
Connections and
Decoupling

Testing and operating the IBM 6x86 CPU 
requires the use of standard high frequency 
techniques to reduce parasitic effects.  The high 
clock frequencies used in the IBM 6x86 CPU 
and its output buffer circuits can cause transient 
power surges when several output buffers 
switch output levels simultaneously.  These 
effects can be minimized by filtering the DC 
power leads with low-inductance decoupling 
capacitors, using low impedance wiring, and by 
utilizing all of the VCC and GND pins.  The 
IBM 6x86 CPU contains 296 pins with 53 pins 
connected to VCC and 53 connected to VSS 
(ground). 

4.1.2 Pull-Up/Pull-Down
Resistors

Table 4-1 lists the input pins that are internally 
connected to pull-up and pull-down resistors.  
The pull-up resistors are connected to VCC and 
the pull-down resistors are connected to VSS.  When 
unused, these inputs do not require connection 
to external pull-up or pull-down resistors. The 
SUSP# pin is unique in that it is connected to a 
pull-up resistor only when SUSP# is not 
asserted. 
    

Table 4-1.  Pins Connected to Internal Pull-Up and 
Pull-Down Resistors

SIGNAL PIN NO. RESISTOR

BRDYC# Y3 20-kΩ pull-up
CLKMUL Y33 20-kΩ pull-down
QDUMP# AL7

20-kΩ pull-up
SMI# AB34
SUSP# V34 20-kΩ pull-up (see text)
TCK M34

20-kΩ pull-up

TDI N35

TMS P34
TRST# Q33
Reserved J33
Reserved W35
Reserved Y35
Reserved AN35 20-kΩ pull-down
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4.1.3 Unused Input Pins

All inputs not used by the system designer and 
not listed in Table 4-1 should be connected 
either to ground or to VCC.  Connect 
active-high inputs to ground through a 20 kΩ 
(± 10%) pull-down resistor and active-low 
inputs to VCC through a 20 kΩ (± 10%) pull-up 
resistor to prevent possible spurious operation.

4.1.4 NC and Reserved Pins

Pins designated NC have no internal connec-
tions.  Pins designated RESV or RESERVED 
should be left disconnected.  Connecting a 
reserved pin to a pull-up resistor, pull-down 
resistor, or an active signal could cause unex-
pected results and possible circuit malfunc-
tions.

Absolute Maximum Ratings

4.2 Absolute Maximum
Ratings

The following table lists absolute maximum 
ratings for the IBM 6x86 CPU microproces-
sors.  Stresses beyond those listed under Table 
4-2 limits may cause permanent damage to the 
device. These are stress ratings only and do not 
imply that operation under any conditions 
other than those listed under “Recommended 
Operating Conditions” Table 4-3 (Page 4-3) is 
possible.  Exposure to conditions beyond Table 
4-2 may (1) reduce device reliability and (2) 
result in premature failure even when there is 
no immediately apparent sign of failure.  
Prolonged exposure to conditions at or near the 
absolute maximum ratings may also result in 
reduced useful life and reliability.

Table 4-2.  Absolute Maximum Ratings

PARAMETER MIN MAX UNITS NOTES

Storage Temperature
Supply Voltage, VCC
Voltage On Any Pin
Input Clamp Current, IIK
Output Clamp Current, IOK

-65
-0.5
-0.5

150
4.0

VCC +0.5
10
25

°C
V
V

mA
mA

Power Applied
Power Applied
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4.3 Recommended Operating Conditions

Table 4-3 presents the recommended operating conditions for the IBM 6x86 CPU device. 

Table 4-3.  Recommended Operating Conditions

PARAMETER MIN MAX UNITS NOTES

TC   Operating Case Temperature 0 75 °C Power Applied
VCC =3.3Vnom, Supply Voltage 3.15 3.6 V
VCC =3.5Vnom, Supply Voltage 3.4 3.6 V
VIH   High-Level Input Voltage 2.0 5.5 V

VIL   Low-Level Input Voltage -0.3 0.8 V
IOH  High-Level Output Current, All outputs -1.0 mA VO=VOH (MIN)
IOL  Low-Level Output Current, All outputs 5.0 mA VO=VOL (MAX}

Recommended Operating Conditions
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4.4 DC Characteristic 

Table 4-4.  DC Characteristics (at Recommended Operating Conditions)

PARAMETER MIN TYP MAX
UNIT

S
NOTES

VOL    Output Low Voltage
          IOL = 5 mA 0.4 V
VOH   Output High Voltage
          IOH = -1 mA 2.4 V

II      Input Leakage Current
         For all pins except those
         listed in Table 4-1.

±15 µA 0 < VIN < VCC

IIH     Input Leakage Current
          For all pins with internal 
          pull-downs.

200 µA VIH = 2.4 V
See Table 4-1.

IIL      Input Leakage Current
           For all pins with internal pull-ups.

-400 µA VIL = 0.45 V
See Table 4-1.

ICC     100 MHz
            110 MHz        
            120 MHz 
            133 MHz
            150 MHz

4500
4800
5100
5500 
6000

5400
5800
6100
6600 
7000

mA Note 1, 5,6

ICCSM   (Suspend Mode ICC)
         100 MHz
         110 MHz
         120 MHz 
         133 MHz
         150 MHz

48
50
51
54
60

80
83
105
115
125

mA
Note 1, 3, 5

ICCSS Standby ICC
          0 MHz (Suspended/CLK Stopped) 35 55 mA Note 4,5
CIN Input Capacitance 15 pF f = 1 MHz, Note 2
COUT Output Capacitance 20 pF f = 1 MHz, Note 2
CIO I/O Capacitance 25 pF f = 1 MHz, Note 2
CCLK CLK Capacitance 15 pF f = 1 MHz, Note 2
Notes: 
1.  Frequency (MHz) ratings refer to the internal clock frequency.
2.  Not 100% tested.
3.  All inputs at 0.4 or VCC - 0 .4  (C M O S  leve ls) .  A l l  inpu ts h eld  s tat ic  excep t c lock  and  a l l  ou tpu ts u n loaded  
                (static IOUT =  0  m A ).
4.  All inputs at 0.4 or VCC - 0 .4  (C M O S  leve ls) .  A l l  inpu ts h eld  s tat ic  and  a l l o u tpu ts un loaded  ( sta tic  IOUT =  0  m A ).
5.  Typical, measured at VCC =  3 .3  V
6 .  M ax , m easu red  a t V cc= 3 .6V . L ab  T es tin g  on  som e  dev ices  has p ro duced  M ax  cu rr en t d r aw s o f:
   100M H z....6 .05A
   110M H z....6 .58A
   120M H z....6 .95A
   133M H z....7 .50A
   150M H z....7 .11A

DC Characteristics
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4.5 AC Characteristics

Tables 4-6 through 4-11 (Pages 4-7 through 
4-13) list the AC characteristics including 
output delays, input setup requirements, input 
hold requirements and output float delays.  
These measurements are based on the measure-
ment points identified in Figure 4-1 (Page 4-6) and 
Figure 4-2 (Page 4-7).  The rising clock edge 
reference level VREF,  and other reference levels 

are shown in Table 4-5.   Input or output signals 
must cross these levels during testing.

Figure 4-1 shows output delay (A and B) and input 
setup and hold times (C and D).  Input setup 
and hold times (C and D) are specified mini-
mums, defining the smallest acceptable 
sampling window a synchronous input signal 
must be stable for correct operation.

AC Characteristics
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Figure 4-1.  Drive Level and Measurement Points for Switching Characterics.

AC Characteristics

Table 4-5.  Drive Level and Measurement
Points for Switching Characteristics

SYMBOL
VOLTAGE

(Volts)

VREF 1.5
VIHD 2.3
VILD 0

Note: Refer to Figure 4-1.

Tx

MIN

MAX

ValidValid

A
B

CLK:

LEGEND: A - Maximum  Output  Delay  Specification

OUTPUTS:

INPUTS:

VREF VREF

VREF VREF

C

ValidVREF VREF

VIHD

VILD

D

B - Minimum  Output  Delay  Specification
C - Minimum  Input  Setup  Specification
D - Minimum  Input  Hold  Specification

Output n Output n+1

Input

VIHD

VILD
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Table 4-6.  Clock Specifications
TCASE = 0°C to 75°C, See Figure 4-2

SYMBOL PARAMETER
50-MHz BUS 55-MHz BUS 60-MHz BUS

UNITS
MIN MAX MIN MAX MIN MAX

CLK Frequency 50.0 55.0 60.0 MHz

T1 CLK Period 20.0 18.0 16.67 ns

T2 CLK Period Stability  ±250 +250 +250 ps

T3 CLK High Time 7.00 4.00 4.00 ns

T4 CLK Low Time 7.00 4.00 4.00 ns

T5 CLK Fall Time 0.15 2.00 0.15 1.50 0.15 1.50 ns

T6 CLK Rise Time 0.15 2.00 0.15 1.50 0.15 1.50 ns

SYMBOL PARAMETER
66-MHz BUS 75-MHz BUS

UNITS
MIN MAX MIN MAX

CLK Frequency 66.6 75.0 MHz

T1 CLK Period 15.0 13.3 ns

T2 CLK Period Stability +250 +250 ps

T3 CLK High Time 4.00 4.00 ns

T4 CLK Low Time 4.00 4.00 ns

T5 CLK Fall Time 0.15 1.50 0.15 1.50 ns

T6 CLK Rise Time 0.15 1.50 0.15 1.50 ns

Figure 4-2. CLK Timing and Measurement Points

T3

T6 T4

T1

T5

V

CLK

IH(MIN)

VREF

VIL(MAX)
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Table 4-7. Output Valid Delays
CL=50 pF, TCASE =0°C to 75°C, See Figure 4-3

SYMBOL PARAMETER
50MHz BUS 55MHz BUS 60-MHz BUS 66-MHz BUS 75MHz BUS

UNITS
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

T7a A31-A3, 
BE7#-BE0#, 
CACHE#, D/C#, 
LBA#, LOCK#,  
PCD, PWT, SCYC, 
SMIACT#, W/R#

1 12 1.0 7.0 1.0 7.0 1.0 7.0 1.0 7.0 ns

T7b ADS#, M/IO# 1 12 1.0 7.0 1.0 7.0 1.0 6.0 1.0 6.0 ns

T8 ADSC# 1 12 1.0 7.0 1.0 7.0 1.0 7.0 1.0 7.0 ns

T9 AP 1 12 1.0 8.5 1.0 8.5 1.0 8.5 1.0 8.5 ns

T10 APCHK#, PCHK#, 
FERR#

1 14 1.0 8.3 1.0 7.0 1.0 7.0 1.0 7.0 ns

T11 D63-D0, DP7-DP0 
(Write)

1.3 12 1.3 8.5 1.3 7.5 1.3 7.5 1.0 7.5 ns

T12a HIT# 1 12 1.0 8.0 1.0 8.0 1.0 8.0 1.0 8.0 ns

T12b HITM#, 1.1 12 1.1 6.0 1.1 6.0 1.1 6.0 1.0 6.0 ns

T13 BREQ, HLDA 1 12 1.0 8.0 1.0 8.0 1.0 8.0 1.0 8.0 ns

T14 SUSPA# 1 14 1.0 8.0 1.0 8.0 1.0 8.0 1.0 8.0 ns

Figure 4-3.  Output Valid Delay Timing.  

Tx Tx Tx Tx

CLK

MIN MAX

VALID n+1VALID n

T7 - T14

OUTPUTS
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Table 4-8.  Output Float Delays

 CL = 50 pF, Tcase = 0°C to 75°C, See Figure 4-5

SYMBOL PARAMETER
50MHz BUS 55MHz BUS 60MHz BUS 66MHz BUS 75MHz BUS

UNITS
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

T15 A31-A3, ADS#, 
BE7#-BE0#, BREQ, 
CACHE#, D/C#,  
LBA#, LOCK#, M/IO#, 
PCD, PWT, SCYC, 
SMIACT#, W/R#

16.0 10.0 10.0 10.0 10.0 ns

T16 AP 16.0 10.0 10.0 10.0 10.0 ns

T17 D63-D0, DP7-DP0 
(Write)

16.0 10.0 10.0 10.0 10.0 ns

Figure 4-4. Output Float Delay Timing

Tx Tx Tx Tx

CLK

MIN

VALID

MAXT15 - T17

OUTPUTS
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Table 4-9.  Input Setup Times 
Tcase = 0°C to 75°C, See Figure 4-5

SYMBOL PARAMETER
50MHz BUS 55MHz BUS 60MHz BUS 66MHz BUS 75MHz BUS

UNITS
MIN MIN MIN MIN MIN

T18 A20M#, FLUSH#, 
IGNNE#, SUSP#

5 5 5 5 3.3 ns

T19 AHOLD, BHOLD, 
BOFF#, DHOLD, 
HOLD

5 5 5 5 3.3 ns

T20 BRDY# 5 5 5 5 3.3 ns

T21 BRDYC# 5 5 5 5 3.3 ns

T22a
T22b
T22c

A31-A3, BE7#-BE0#
AP
D63-D0 (Read), 
DP7-DP0 (Read)

5
5

3.8

5
5

3.8

5
5
3

5
5
3

3.3
4
3

ns
ns
ns

T23 EADS#, INV 5 5 5 5 3.3 ns

T24 INTR, NMI, RESET, 
SMI#, WM_RST

5 5 5 5 3.3 ns

T25 EWBE#, KEN#, NA#, 
WB/WT#

5 4.5 4.5 4.5 3.0 ns

T26 QDUMP# 5 5 5 5 3.3 ns

Table 4-10.  Input Hold Times
Tcase = 0°C to 75°C, See Figure 4-5

SYMBOL PARAMETER
50MHz BUS 55MHz BUS 60MHz BUS 66MHz BUS 75MHz BUS

UNITS
MIN MIN MIN MIN MIN

T27 A20M#, FLUSH#, 
IGNNE#, SUSP#

2 1 1 1 1 ns

T28 AHOLD, BHOLD, 
BOFF#,  DHOLD, 
HOLD

2 1 1 1 1 ns

T29 BRDY# 2 1 1 1 1 ns

T30 BRDYC# 2 1 1 1 1 ns

T31a

T31b

A31-A3, AP, 
BE7#-BE0# 
D63-D0(Read), 
DP7-DP0 (Read)

2

2

1

2

1

2

1

2

1

2

ns

ns

T32 EADS#, INV 2 1 1 1 1 ns

T33 INTR, NMI, RESET, 
SMI#, WM_RST

2 1 1 1 1 ns

T34 EWBE#, KEN#, 
NA#, WB/WT#

2 1 1 1 1 ns

T35 QDUMP# 2 1 1 1 1 ns
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Figure 4-5. Input Setup and Hold Timing

Tx Tx Tx Tx

SETUP HOLD

CLK

T18 - T26 T27 - T35
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Table 4-11.  JTAG AC Specifications

SYMBOL PARAMETER
ALL BUS FREQUENCIES

UNITS FIGURE
MIN MAX

TCK Frequency (MHz) 20 MHz

T36 TCK Period 50 MHz 4-6

T37 TCK High Time 25 MHz 4-6

T38 TCK Low Time 25 MHz 4-6

T39 TCK Rise Time 5 MHz 4-6

T40 TCK Fall Time 5 MHz 4-6

T41 TDO Valid Delay 3 20 MHz 4-7

T42 Non-test Outputs Valid Delay 3 20 MHz 4-7

T43 TDO Float Delay 25 MHz 4-7

T44 Non-test Outputs Float Delay 25 MHz 4-7

T45 TRST# Pulse Width 40 MHz 4-8

T46 TDI, TMS Setup Time 20 MHz 4-7

T47 Non-test Inputs Setup Time 20 MHz 4-7

T48 TDI, TMS Hold Time 13 MHz 4-7

T49 Non-test Inputs Hold Time 13 MHz 4-7

Figure 4-6. TCK Timing and Measurement Points

T37

T39 T38

T36

T40

V

TCK

IH

VREF

VIL
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Figure 4-7.  JTAG Test Timings

Figure 4-8. Test Reset Timing

TCK

TDI
TMS

TDO

1.5 V

T46 T48

T41 T43

T42 T44

T47 T49

OUTPUT
SIGNALS

INPUT
SIGNALS

TRST#
T45

1.5 V
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5.0 MECHANICAL SPECIFICATIONS

5.1 296-Pin SPGA Package

The pin assignments for the IBM 6x86  CPUin a 296-pin SPGA package are shown in Figure 5-1.  
The pins are listed by signal name in Table 5-1(Page 5-2) and by pin number in Table 5-2 (Page 
5-3).  Dimensions are shown in Figure 5-2 (Page 5-4) and Table 5-3 (Page 5-5).

Figure 5-1.  296-Pin SPGA Package Pin Assignments

37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
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NCD41VCCVCCVCCVCCVCCVCCVCCIOVCCIOVCCIOVCCIOVCCIOVCCIOD22D18D15NC

NCD43VSSVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSD20D16D13D11

NCD47D45DP4D38D36D34D32D31D29D27D25DP2D24D21D17D14D10D9

D50D48D44D40D39D37D35D33DP3D30D28D26D23D19DP1D12D8DP0

D54D52D49D46D42D7D6VCCIO

DP6D51DP5D5D4

VCCD55D53

VSSD56

VCCD57D58

VSSD59

D3D1VCCIO

NCVSS

NCD2VCCIO

D0VSS

VCCD61D60

VSSD62

VCCD63DP7

VSSNC

VCCRESVFERRX

VCCIONCVCCIO

TCKVSS

TDOTDIVCCIO

TMSVSS

TRSTXNCVCCIO

VSSRESV

VCCRESVNC

VSSMI/OX

VCCCACHEXINV

VSSAHOLD

VCCEWBEXKENX

VSSBRDYX

VCCBRDYCXNAX

VSSBOFFX

VCCNCWB/WTX

VSSHOLD

NCVSS

RESVRESVVCCIO

VCCIOVSS

VCCIOVSSVCCIO

SUSPXVSS

SUSPAXRESVVCCIO

RESVVSS

CLKMULRESVVCCIO

NCVSS

WM_RSTIGNNEXVCCIO

SMIXVSS

VCCRESVRESV

VSSNC

VCCNCAPCHKX

VSSPCHKX

VCCSMIACTXPCD

VSSLOCKX

BREQHLDAADSX

NMINCVCCIO

INTRVSS

A23NCVCCIO

A21VSS

A27A24VCCIO

A26A22

A31A25VSS

APD/CXHITXA20MXBE1XBE3XBE5XBE7XCLKRESETA19A17A15A13A9A5A29A28

NCPWTHITMXNCBE0XBE2XBE4XBE6XSCYCNCA20A18A16A14A12A11A7A3VSS

ADSCXEADSXW/RXVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSA8A4A30

NCNCNCFLUSHXVCCVCCVCCVCCVCCVCCPLLVCCIOVCCIOVCCIOVCCIOVCCIOA10A6RESVVSS

 6x86 CPU
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Table 5-1.  296-Pin SPGA Package Signal Names Sorted by Pin Number

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal

A3 NC C29 D21 J35 D2 U35 Vss AE35 NC AL21 A20
A5 D41 C31 D17 J37 Vcc U37 Vcc AE37 Vcc AL23 A18
A7 Vcc C33 D14 K2 Vss V2 Vss AF2 Vss AL25 A16
A9 Vcc C35 D10 K4 D59 V4 AHOLD AF4 PCHK# AL27 A14
A11 Vcc C37 D9 K34 D0 V34 SUSP# AF34 A21 AL29 A12
A13 Vcc D2 D50 K36 Vss V36 Vss AF36 Vss AL31 A11
A15 Vcc D4 D48 L1 Vcc W1 Vcc AG1 Vcc AL33 A7
A17 Vcc D6 D44 L3 D61 W3 EWBE# AG3 SMIACT# AL35 A3
A19 Vcc D8 D40 L5 D60 W5 KEN# AG5 PCD AL37 Vss
A21 Vcc D10 D39 L33 Vcc W33 SUSPA# AG33 A27 AM2 ADSC#
A23 Vcc D12 D37 L35 NC W35 Reserved AG35 A24 AM4 EADS#
A25 Vcc D14 D35 L37 Vcc W37 Vcc AG37 Vcc AM6 W/R#
A27 Vcc D16 D33 M2 Vss X2 Vss AH2 Vss AM8 Vss
A29 Vcc D18 DP3 M4 D62 X4 BRDY# AH4 LOCK# AM10 Vss
A31 D22 D20 D30 M34 TCK X34 Reserved AH34 A26 AM12 Vss
A33 D18 D22 D28 M36 Vss X36 Vss AH36 A22 AM14 Vss
A35 D15 D24 D26 N1 Vcc Y1 Vcc AJ1 BREQ AM16 Vss
A37 NC D26 D23 N3 D63 Y3 BRDYC# AJ3 HLDA AM18 Vss
B2 NC D28 D19 N5 DP7 Y5 NA# AJ5 ADS# AM20 Vss
B4 D43 D30 DP1 N33 TDO Y33 CLKMUL AJ33 A31 AM22 Vss
B6 Vss D32 D12 N35 TDI Y35 Reserved AJ35 A25 AM24 Vss
B8 Vss D34 D8 N37 Vcc Y37 Vcc AJ37 Vss AM26 Vss
B10 Vss D36 DP0 P2 Vss Z2 Vss AK2 AP AM28 Vss
B12 Vss E1 D54 P4 NC Z4 BOFF# AK4 D/C# AM30 Vss
B14 Vss E3 D52 P34 TMS Z34 NC AK6 HIT# AM32 A8
B16 Vss E5 D49 P36 Vss Z36 Vss AK8 A20M# AM34 A4
B18 Vss E7 D46 Q1 Vcc AA1 Vcc AK10 BE1# AM36 A30
B20 Vss E9 D42 Q3 Reserved AA3 Reserved AK12 BE3# AN1 NC
B22 Vss E33 D7 Q5 FERR# AA5 WB/WT# AK14 BE5# AN3 NC
B24 Vss E35 D6 Q33 TRST# AA33 WM_RST AK16 BE7# AN5 NC
B26 Vss E37 Vcc Q35 NC AA35 IGNNE# AK18 CLK AN7 FLUSH#
B28 Vss F2 DP6 Q37 Vcc AA37 Vcc AK20 RESET AN9 Vcc
B30 D20 F4 D51 R2 Vss AB2 Vss AK22 A19 AN11 Vcc
B32 D16 F6 DP5 R4 Reserved AB4 HOLD AK24 A17 AN13 Vcc
B34 D13 F34 D5 R34 BHOLD AB34 SMI# AK26 A15 AN15 Vcc
B36 D11 F36 D4 R36 Vss AB36 Vss AK28 A13 AN17 Vcc
C1 NC G1 Vcc S1 Vcc AC1 Vcc AK30 A9 AN19 Vcc
C3 D47 G3 D55 S3 Reserved AC3 Reserved AK32 A5 AN21 Vcc
C5 D45 G5 D53 S5 LBA# AC5 NC AK34 A29 AN23 Vcc
C7 DP4 G33 D3 S33 Reserved AC33 NMI AK36 A28 AN25 Vcc
C9 D38 G35 D1 S35 DHOLD AC35 NC AL1 NC AN27 Vcc
C11 D36 G37 Vcc S37 Vcc AC37 Vcc AL3 PWT AN29 Vcc
C13 D34 H2 Vss T2 Vss AD2 Vss AL5 HITM# AN31 A10
C15 D32 H4 D56 T4 MI/O# AD4 NC AL7 QDUMP# AN33 A6
C17 D31 H34 NC T34 Vcc AD34 INTR AL9 BE0# AN35 Reserved
C19 D29 H36 Vss T36 Vss AD36 Vss AL11 BE2# AN37 Vss
C21 D27 J1 Vcc U1 Vcc AE1 Vcc AL13 BE4#
C23 D25 J3 D57 U3 CACHE# AE3 NC AL15 BE6#
C25 DP2 J5 D58 U5 INV AE5 APCHK# AL17 SCYC
C27 D24 J33 Reserved U33 Vcc AE33 A23 AL19 Reserved

Note: Reserved pins are reserved for future use by IBM only.  Pins marked NC are not internally connected.

296-Pin SPGA Package
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Table 5-2.  296-Pin SPGA Package Pin Numbers Sorted by Signal Name

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin
A3 AL35 CLKMUL Y33 D48 D4 NC AN3 Vcc AA37 Vss AM12
A4 AM34 D/C# AK4 D49 E5 NC AN5 Vcc AC1 Vss AM14
A5 AK32 D0 K34 D50 D2 NC B2 Vcc AC37 Vss AM16
A6 AN33 D1 G35 D51 F4 NC C1 Vcc AE1 Vss AM18
A7 AL33 D2 J35 D52 E3 NC H34 Vcc AE37 Vss AM20
A8 AM32 D3 G33 D53 G5 NC L35 Vcc AG1 Vss AM22
A9 AK30 D4 F36 D54 E1 NC P4 Vcc AG37 Vss AM24
A10 AN31 D5 F34 D55 G3 NC Q35 Vcc AN11 Vss AM26
A11 AL31 D6 E35 D56 H4 NC Z34 Vcc AN13 Vss AM28
A12 AL29 D7 E33 D57 J3 NMI AC33 Vcc AN15 Vss AM30
A13 AK28 D8 D34 D58 J5 PCD AG5 Vcc AN17 Vss AM8
A14 AL27 D9 C37 D59 K4 PCHK# AF4 Vcc AN19 Vss AN37
A15 AK26 D10 C35 D60 L5 PWT AL3 Vcc AN21 Vss B6
A16 AL25 D11 B36 D61 L3 QDUMP# AL7 Vcc AN23 Vss B8
A17 AK24 D12 D32 D62 M4 RESET AK20 Vcc AN25 Vss B10
A18 AL23 D13 B34 D63 N3 SCYC AL17 Vcc AN27 Vss B12
A19 AK22 D14 C33 DHOLD S35 Reserved AA3 Vcc AN29 Vss B14
A20 AL21 D15 A35 DP0 D36 Reserved AC3 Vcc AN9 Vss B16
A20M# AK8 D16 B32 DP1 D30 Reserved AL19 Vcc E37 Vss B18
A21 AF34 D17 C31 DP2 C25 Reserved AN35 Vcc G1 Vss B20
A22 AH36 D18 A33 DP3 D18 Reserved J33 Vcc G37 Vss B22
A23 AE33 D19 D28 DP4 C7 Reserved Q3 Vcc J1 Vss B24
A24 AG35 D20 B30 DP5 F6 Reserved R4 Vcc J37 Vss B26
A25 AJ35 D21 C29 DP6 F2 Reserved S3 Vcc L1 Vss B28
A26 AH34 D22 A31 DP7 N5 Reserved S33 Vcc L33 Vss H2
A27 AG33 D23 D26 EADS# AM4 Reserved W35 Vcc L37 Vss H36
A28 AK36 D24 C27 EWBE# W3 Reserved X34 Vcc N1 Vss K2
A29 AK34 D25 C23 FERR# Q5 Reserved Y35 Vcc N37 Vss K36
A30 AM36 D26 D24 FLUSH# AN7 SMI# AB34 Vcc Q1 Vss M2
A31 AJ33 D27 C21 HIT# AK6 SMIACT# AG3 Vcc Q37 Vss M36
ADS# AJ5 D28 D22 HITM# AL5 SUSP# V34 Vcc S1 Vss P2
ADSC# AM2 D29 C19 HLDA AJ3 SUSPA# W33 Vcc S37 Vss P36
AHOLD V4 D30 D20 HOLD AB4 TCK M34 Vcc T34 Vss R2
AP AK2 D31 C17 IGNNE# AA35 TDI N35 Vcc U1 Vss R36
APCHK# AE5 D32 C15 INTR AD34 TDO N33 Vcc U33 Vss T2
BE0# AL9 D33 D16 INV U5 TMS P34 Vcc U37 Vss T36
BE1# AK10 D34 C13 KEN# W5 TRST# Q33 Vcc W1 Vss U35
BE2# AL11 D35 D14 LBA# S5 Vcc A7 Vcc W37 Vss V2
BE3# AK12 D36 C11 LOCK# AH4 Vcc A9 Vcc Y1 Vss V36
BE4# AL13 D37 D12 MI/O# T4 Vcc A11 Vcc Y37 Vss X2
BE5# AK14 D38 C9 NA# Y5 Vcc A13 Vss AB2 Vss X36
BE6# AL15 D39 D10 NC A3 Vcc A15 Vss AB36 Vss Z2
BE7# AK16 D40 D8 NC A37 Vcc A17 Vss AD2 Vss Z36
BHOLD R34 D41 A5 NC AC35 Vcc A19 Vss AD36 WB/WT# AA5
BOFF# Z4 D42 E9 NC AC5 Vcc A21 Vss AF2 W/R# AM6
BRDY# X4 D43 B4 NC AD4 Vcc A23 Vss AF36 WM_RST AA33
BRDYC# Y3 D44 D6 NC AE3 Vcc A25 Vss AH2
BREQ AJ1 D45 C5 NC AE35 Vcc A27 Vss AJ37
CACHE# U3 D46 E7 NC AL1 Vcc A29 Vss AL37
CLK AK18 D47 C3 NC AN1 Vcc AA1 Vss AM10

Note: Reserved pins are reserved for future use by IBM only.  Pins marked NC are not internally connected.

296-Pin SPGA Package
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296-Pin SPGA Package

Figure 5-2. 296-Pin SPGA Package
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Table 5-3.  296-Pin SPGA Package Dimensions

SYMBOL
MILLIMETERS

MIN MAX

A 3.00 4.20

A1 0.63 1.04

A2 2.51 3.10

B 0.43 0.51

D 49.28 49.91

D1 45.47 45.97

D2 31.50 Sq. 32.00 Sq.

D3 33.91 36.49

D4 6.39 8.00

E1 2.41 2.67

E2 1.14 1.40

F 0.05 Diag. 0.08 Diag.

L 3.05 3.30

N 296 (Pin Count)

S1 1.47 2.39

296-Pin SPGA Package
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5.2 Thermal Characteristics

The IBM 6x86 processor is designed to operate when the case temperature at the top center of the 
package is between 0°C and 70°C.  The maximum die (junction) temperature, TJ MAX, and the 

maximum ambient temperature, TA MAX , can be calculated by substituting thermal resistance and 

maximum values for case or junction temperature and power dissipation in the following equations:

TJ =  TC   +  (P  *  θJC)

TA =  TJ    -   (P  *  θJA)

where: 

TA =  Ambient temperature (°C)

TJ =  Average junction temperature (°C)

TC =  Case temperature at top center of package (°C)

P =  Power dissipation (W)

θJC =  Junction-to-case thermal resistance (°C/W)

θJA =  Junction-to-ambient thermal resistance (°C/W).

Table 5-4 lists the junction-to-case and case-to-ambient thermal resistances for the SPGA 
package.

 

Thermal Characteristics
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Table 5-4.  Thermal Resistances for SPGA

 Package With and Without Heatsinks

Thermal Resistance θJC °C/W θCA °C/W

Laminar Air Flow (ft/min) 0 0 100 200 400 600 800

1.95 x 1.95 x 0.25 Heatsink 0.9 8.4 7.4 6.0 4.0 3.1 2.6

1.95 x 1.95 x 0.40 Heatsink 0.9 7.7 6.6 4.9 3.2 2.7 2.1

1.95 x 1.95 x 0.65 Heatsink 0.9 5.9 4.7 3.2 2.1 1.7 1.4

Without Heatsink 1.4 14.7 11.5 9.1 7.3 7.0 6.2

Notes:
For a 6x86 processor with 1.25 x 1.25 x 0.40 inch CuW heat spreader.
Heatsinks are omni-directional pin aluminum alloy.
Features are based on standard extrusion practices for a given height.
Heatsink attachment was made with 0.006 inch of thermal grease applied between heatsink and case.
Maximum air temperature is assumed to be 40 °C

Thermal Characteristics



                 6-1

Instruction Set

IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU 

6. INSTRUCTION SET

This section summarizes the IBM 6x86 CPU 
instruction set and provides detailed information 
on the instruction encodings.  All instructions 
are listed in the CPU Instruction Set Summary 
Table (Table 6-20, Page 6-14), and the FPU 
Instruction Set Summary Table (Table 6-22, 
Page 6-30).  These tables provide information 
on the instruction encoding,  and the instruction 
clock counts for each instruction.  The clock 
count values for both tables are based on the 
assumptions described in Section 6.3.  

6.1 Instruction Set Summary

Depending on the instruction, the IBM 6x86 
CPU instructions follow the general instruction 
format shown in Figure 6-1.  These instructions 
vary in length and can start at any byte address.  
An instruction consists of one or more bytes 
that can include: prefix byte(s), at least one 
opcode byte(s), mod r/m byte, s-i-b byte, 
address displacement byte(s) and immediate 
data byte(s).   An instruction can be as short as 
one byte and as long as 15 bytes.  If there are 
more than 15 bytes in the instruction a general 
protection fault (error code of 0) is generated.

Figure 6-1.   Instruction Set Format

P  P  P  P  P  P  P  P  T  T  T  T  T  T  T  T  mod    R  R  R  r/m  ss      index     base  32    16    8    none   32     16    8   none  
7 0 7 0 7   6   5    3   2    0 7   6   5    3   2    0

mod r/m s-i-b

register and address

address immediate

P = prefix bit

op-code
optional prefix byte(s) (one or two bytes) byte

mode specifier

byte displacement
(4, 2, 1 bytes,

or none)

data
(4, 2, 1 bytes,

or none)
T = opcode bit
R = opcode bit or reg bit
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Instruction Set Summary

6.2 General Instruction Fields

The fields in the general instruction format at the byte level are listed in Table 6-1.     

6.2.1 Optional Prefix Bytes

Prefix bytes can be placed in front of any instruction.  The prefix modifies the operation of the 
next instruction only.  When more than one prefix is used, the order is not important.  There are 
five type of prefixes as follows:

1. Segment Override explicitly specifies which segment register an instruction will use for 
effective address calculation.

2. Address Size switches between 16- and 32-bit addressing.  Selects the inverse of the 
default.

3. Operand Size switches between 16- and 32-bit operand size.  Selects the inverse of the 
default.

4. Repeat is used with a string instruction which causes the instruction to be repeated for 
each element of the string.

5. Lock is used to assert the hardware LOCK# signal during execution of the instruction.

Table 6-1.  Instruction Fields

FIELD NAME DESCRIPTION WIDTH

Optional Prefix Byte(s) Specifies segment register override, address and operand size, 
repeat elements in string instruction, LOCK# assertion.

1 or more bytes

Opcode Byte(s) Identifies instruction operation. 1 or 2 bytes

mod and r/m Byte Address mode specifier. 1 byte

s-i-b Byte Scale factor, Index and Base fields. 1 byte

Address Displacement Address displacement operand. 1, 2 or 4 bytes

Immediate data Immediate data operand. 1, 2 or 4 bytes
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Table 6-2 lists the encodings for each of the available prefix bytes.

Table 6-2.  Instruction Prefix Summary

PREFIX ENCODING DESCRIPTION

ES: 26h Override segment default, use ES for memory operand

CS: 2Eh Override segment default, use CS for memory operand

SS: 36h Override segment default, use SS for memory operand

DS: 3Eh Override segment default, use DS for memory operand

FS: 64h Override segment default, use FS for memory operand

GS: 65h Override segment default, use GS for memory operand

Operand Size 66h Make operand size attribute the inverse of the default

Address Size 67h Make address size attribute the inverse of the default

LOCK F0h Assert LOCK# hardware signal.

REPNE F2h Repeat the following string instruction.

REP/REPE F3h Repeat the following string instruction.
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6.2.2 Opcode Byte

The opcode field specifies the operation to be performed by the instruction.  The opcode field is 
either one or two bytes in length and may be further defined by additional bits in the mod r/m 
byte.  Some operations have more than one opcode, each specifying a different form of the opera-
tion.  Some opcodes name instruction groups.  For example, opcode 80h names a group of opera-
tions that have an immediate operand and a register or memory operand. The reg field may appear 
in the second opcode byte or in the mod r/m byte. 

6.2.2.1 w Field

The 1-bit w field (Table 6-11) selects the operand size during 16 and 32 bit data operations.

6.2.2.2 d Field

The d field (Table 6-10) determines which operand is taken as the source operand and which 
operand is taken as the destination.

Table 6-3.  w Field Encoding

w FIELD OPERAND SIZE

16-BIT DATA OPERATIONS 32-BIT DATA OPERATIONS

0 8 Bits 8 Bits

1 16 Bits 32 Bits

Table 6-4.  d Field Encoding

d FIELD DIRECTION OF OPERATON  SOURCE OPERAND
 DESTINATION

 OPERAND

0 Register --> Register or
Register --> Memory

reg mod r/m or
mod ss-index-base

1 Register --> Register or
Memory --> Register

mod r/m or
mod ss-index-base

reg
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6.2.2.3 s Field

The s field (Table 6-10) determines the size of the immediate data field. If the S bit is set, the 
immediate field of the OP code is 8-bits wide and is sign extened to match the operand size of the 
opcode.

  

6.2.2.4 eee Field

The eee field (Table 6-6) is used to select the control, debug and test registers in the MOV instruc-
tions. The type of register and base registers selected by the eee field are listed in Table 6-6.  The 
values shown in Table 6-6 are the only valid encodings for the eee bits.

Table 6-5. s Field Encoding  

s FIELD
Immediate Field Size

8-Bit Operand Size 16-Bit Operand Size 32-Bit Operand Size

0 
(or not present)

8 bits 16 bits 32 bits

 1 8 bits 8 bits (sign extended) 8 bits (sign extended)

Table 6-6.  eee Field Encoding

eee FILED REGISTER TYPE BASE REGISTER

000 Control Register CR0

010 Control Register CR2

011 Control Register CR3

000 Debug Register DR0

001 Debug Register DR1

010 Debug Register DR2

011 Debug Register DR3

110 Debug Register DR6

111 Debug Register DR7

011 Test Register TR3

100 Test Register TR4

101 Test Register TR5

110 Test Register TR6

111 Test Register TR7
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6.2.3 mod and r/m Byte

The mod and r/m fields (Table 6-7), within the mod r/m byte, select the type of memory 
addressing to be used.  Some instructions use a fixed addressing mode (e.g., PUSH or POP) and 
therefore, these fields are not present.  Table 6-7 lists the addressing method when 16-bit addressing 
is used and a mod r/m byte is present.  Some mod r/m field encodings are dependent on the w field 
and are shown in Table 6-8 (Page 6-7). 

Table 6-7.  mod r/m Field Encoding

mod and r/m fields
16-BIT ADDRESS MODE

with mod r/m Byte

32-BIT ADDRESS MODE
with mod r/m Byte and
No s-i-b Byte Present

00 000 DS:[BX+SI] DS:[EAX]

00 001 DS:[BX+DI] DS:[ECX]

00 010 DS:[BP+SI] DS:[EDX]

00 011 DS:[BP+DI] DS:[EBX]

00 100 DS:[SI] s-i-b is present (See 6.2.4 (Page 6-9))

00 101 DS:[DI] DS:[d32]

00 110 DS:[d16] DS:[ESI]

00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX+SI+d8] DS:[EAX+d8]

01 001 DS:[BX+DI+d8] DS:[ECX+d8]

01 010 DS:[BP+SI+d8] DS:[EDX+d8]

01 011 DS:[BP+DI+d8] DS:[EBX+d8]

01 100 DS:[SI+d8] s-i-b is present (See 6.2.4 (Page 6-9))

01 101 DS:[DI+d8] SS:[EBP+d8]

01 110 SS:[BP+d8] DS:[ESI+d8]

01 111 DS:[BX+d8] DS:[EDI+d8]

10 000 DS:[BX+SI+d16] DS:[EAX+d32]

10 001 DS:[BX+DI+d16] DS:[ECX+d32]

10 010 DS:[BP+SI+d16] DS:[EDX+d32]

10 011 DS:[BP+DI+d16] DS:[EBX+d32]

10 100 DS:[SI+d16] s-i-b is present (See 6.2.4 (Page 6-9))

10 101 DS:[DI+d16] SS:[EBP+d32]

10 110 SS:[BP+d16] DS:[ESI+d32]

10 111 DS:[BX+d16] DS:[EDI+d32]

11 000-11 111 See Table 6-7 See Table 6-7
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Table 6-8.  mod r/m Field Encoding Dependent on w Field

mod r/m
16-BIT

OPERATION
w = 0

16-BIT
OPERATION

w = 1

32-BIT
OPERATION

w = 0

32-BIT
OPERATION

w = 1

11 000           AL           AX           AL          EAX

11 001           CL           CX           CL          ECX

11 010           DL           DX           DL          EDX

11 011           BL           BX           BL          EBX

11 100           AH           SP           AH          ESP

11 101           CH           BP           CH          EBP

11 110           DH           SI           DH          ESI

11 111           BH           DI           BH          EDI

6.2.3.1 reg Field

The reg field (Table 6-9) determines which general registers are to be used.  The selected register is 
dependent on whether a 16 or 32 bit operation is current and the status of the w bit.

Table 6-9.  reg Field

reg

16-BIT
OPERATION

w Field Not
Present

32-BIT
OPERATION
w Field Not

Present

16-BIT
OPERATION

w = 0

16-BIT
OPERATION

 w = 1

32-BIT
OPERATION

w = 0

32-BIT
OPERATION

w = 1

000         AX         EAX          AL AX          AL         EAX

001         CX         ECX          CL CX          CL         ECX

010         DX         EDX          DL DX          DL         EDX

011         BX         EBX          BL BX          BL         EBX

100         SP         ESP          AH SP          AH         ESP

101         BP         EBP          CH BP          CH         EBP

110         SI         ESI          DH SI          DH         ESI

111         DI         EDI          BH DI          BH         EDI
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6.2.3.2 sreg3 Field

The sreg3 field (Table 6-10) is 3-bit field that is similar to the sreg2 field, but allows use of the FS 
and GS segment registers.

6.2.3.3 sreg2 Field

The sreg2 field (Table 6-11) is a 2-bit field that allows one of the four 286-type segment registers 
to be specified.

Table 6-10.  sreg3 Field Encoding

sreg3 FIELD SEGMENT REGISTER SELECTED

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 undefined

111 undefined

Table 6-11.  sreg2 Field Encoding

sreg2 FIELD SEGMENT REGISTER SELECTED

00 ES

01 CS

10 SS

11 DS
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6.2.4 s-i-b Byte

The s-i-b fields provide scale factor, indexing and a base field for address selection.

6.2.4.1 ss Field

The ss field (Table 6-12) specifies the scale factor used in the offset mechanism for address calcu-
lation. The scale factor multiplies the index value to provide one of the components used to calcu-
late the offset address.

6.2.4.2 index Field

The index field (Table 6-13) specifies the index register used by the offset mechanism for offset 
address calculation. When no index register is used (index field = 100), the ss value must be 00 or 
the effective address is undefined.

Table 6-12. ss Field Encoding

ss FIELD SCALE FACTOR

00 x1

01 x2

01 x4

11 x8

Table 6-13.  index Field Encoding

Index FIELD INDEX REGISTER

000 EAX

001 ECX

010 EDX

011 EBX

100 none

101 EBP

110 ESI

111 EDI
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6.2.4.3 Base Field

In Table 6-7 (Page 6-6), the note “s-i-b present” for certain entries forces the use of the mod and 
base field as listed in Table 6-14.  The first two digits in the first column of Table 6-14 identifies 
the mod bits in the mod r/m byte.  The last three digits in the first column of this table identifies 
the base fields in the s-i-b byte.

Table 6-14. mod base Field Encoding

mod FIELD WITHIN
 mode/rm BYTE

base FIELD
WITHIN

s-i-b BYTE

32-BIT ADDRESS MODE
with mod r/m and
s-i-b Bytes Present

00 000 DS:[EAX+(scaled index)]

00 001 DS:[ECX+(scaled index)]

00 010 DS:[EDX+(scaled index)]

00 011 DS:[EBX+(scaled index)]

00 100 SS:[ESP+(scaled index)]

00 101 DS:[d32+(scaled index)]

00 110 DS:[ESI+(scaled index)]

00 111 DS:[EDI+(scaled index)]

01 000 DS:[EAX+(scaled index)+d8]

01 001 DS:[ECX+(scaled index)+d8]

01 010 DS:[EDX+(scaled index)+d8]

01 011 DS:[EBX+(scaled index)+d8]

01 100 SS:[ESP+(scaled index)+d8]

01 101 SS:[EBP+(scaled index)+d8]

01 110 DS:[ESI+(scaled index)+d8]

01 111 DS:[EDI+(scaled index)+d8]

10 000 DS:[EAX+(scaled index)+d32]

10 001 DS:[ECX+(scaled index)+d32]

10 010 DS:[EDX+(scaled index)+d32]

10 011 DS:[EBX+(scaled index)+d32]

10 100 SS:[ESP+(scaled index)+d32]

10 101 SS:[EBP+(scaled index)+d32]

10 110 DS:[ESI+(scaled index)+d32]

10 111 DS:[EDI+(scaled index)+d32]
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6.3 CPUID Instruction

The IBM 6x86 CPU executes the CPUID 
instruction (opcode 0FA2) as documented in 
this section only if the CPUID bit in the CCR4 
configuration register is set.  The CPUID 
instruction may be used by software to deter-
mine the vendor and type of CPU. 

When the CPUID instruction is executed with 
EAX = 0, the ASCII characters “CyrixIn-
stead” are placed in the EBX, EDX, and ECX 
registers as shown in Table 6-15:

Table 6-15.  CPUID Data
 Returned When EAX = 0

REGISTER
CONTENTS
(D31 - D0)

EBX 69 72 79 43
 i     r     y    C*

EDX 73 6E 49 78
s    n    I    x*

ECX 64 61 65 74
d    a    e    t*

*ASCII equivalent

When the CPUID instruction is executed with 
EAX = 1, EAX and EDX contain the values 
shown in Table 6-16.

Table 6-16.  CPUID Data
Returned When EAX = 1

REGISTER CONTENTS

EAX(3-0)   0

EAX(7-4)   2

EAX(11-8)   5

EAX(13-12)   0

EAX(31-14) reserved

EDX If EDX = 00, FPU not on-chip.
If EDX = 01, FPU on-chip.
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6.4 Instruction Set Tables

The IBM 6x86 CPU instruction set is 
presented in two tables: Table 6-20. “6x86 
CPU Instruction Set Clock Count Summary” 
on page 6-14 and Table 6-22. “6x86 FPU 
Instruction Set Summary” on page 6-30.  
Additional information concerning the FPU 
Instruction Set is presented on page 6-29.

6.4.1 Assumptions Made in
Determining Instruction
Clock Count

The assumptions made in determining instruc-
tion clock counts are listed below:

1. All clock counts refer to the 
internal CPU internal clock 
frequency.  For example, the clock 
counts for a clock-doubled IBM 
6x86 CPU-100 refer to 100 MHz 
clocks while the external clock is 
50 MHz.

2. The instruction has been 
prefetched, decoded and is ready 
for execution.

3. Bus cycles do not require wait 
states.

4. There are no local bus HOLD 
requests delaying processor access 
to the bus.

5. No exceptions are detected during 
instruction execution.

6. If an effective address is 
calculated, it does not use two 
general register components.  One 
register, scaling and displacement 

can be used within the clock count 
shown.  However, if the effective 
address calculation uses two 
general register components, add 
1 clock to the clock count shown.

7. All clock counts assume aligned 
32-bit memory/ IO operands.

8. If instructions access a 32-bit 
operand that crosses a 64-bit 
boundary, add 1 clock for read or 
write and add 2 clocks for read and 
write.

9. For non-cached memory accesses, 
add two clocks (IBM 6x86  CPU 
with 2x clock) or four clocks (IBM 
6x86  CPU with 3x clock). 
(Assumes zero wait state memory 
accesses).

10. Locked cycles are not cacheable.  
Therefore, using the LOCK prefix 
with an instruction adds additional 
clocks as specified in paragraph 9 
above.

11. No parallel execution of 
instructions. 

6.4.2 CPU Instruction Set
Summary Table 
Abbreviations  

The  clock counts listed in the CPU Instruction 
Set Summary Table are grouped by operating 
mode and whether there is a register/cache hit 
or a cache miss.  In some cases, more than one 
clock count is shown in a column for a given 
instruction, or a variable is used in the clock 
count.  The abbreviations used for these condi-
tions are listed in Table 6-17.
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6.4.3 CPU Instruction Set Summary Table Flags Table

The CPU Instruction Set Summary Table lists nine flags that are affected by the execution of 
instructions.  The conventions shown in Table 6-18 are used to identify the different flags.  Table 6-19 
lists the conventions used to indicate what action the instruction has on the particular flag.

Table 6-17.  CPU Clock Count Abbreviations

CLOCK COUNT SYMBOL EXPLANATION

/ Register operand/memory operand.

n Number of times operation is repeated.

L Level of the stack frame.

|
Conditional jump taken  |  Conditional jump not taken.
(e.g.  “4|1”  =  4 clocks if jump taken, 1 clock if jump not taken)

\ CPL ≤ IOPL  \  CPL > IOPL
(where CPL = Current Privilege Level, IOPL = I/O Privilege Level)

m Number of parameters passed on the stack.

Table 6-18.  Flag Abbreviations

ABBREVIATION NAME OF FLAG

OF Overflow Flag

DF Direction Flag

IF Interrupt Enable Flag

TF Trap Flag

SF Sign Flag

ZF Zero Flag

AF Auxiliary Flag

PF Parity Flag

CF Carry Flag

Table 6-19.  Action of Instruction on Flag

INSTRUCTION 
TABLE SYMBOL

ACTION

x Flag is modified by the instruction.

- Flag is not changed by the instruction.

0 Flag is reset to “0”.

1 Flag is set to “1”.

u Flag is undefined following execu-
tion of the instruction.
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6.5 FPU Clock Counts

The CPU is functionally divided into the FPU, 
and the integer unit. The FPU processes float-
ing point instructions only and does so in paral-
lel with the integer unit.  

For example, when the integer unit detects a 
floating point instruction without memory 
operands, after two clock cycles the instruction 
passes to the FPU for execution.  The integer 
unit continues to execute instructions while the 
FPU executes the floating point instruction.  If 

another FPU instruction is encountered, the 
second FPU instruction is placed in the FPU 
queue.  Up to four FPU instructions can be 
queued.  In the event of an FPU exception, 
while other FPU instructions are queued, the 
state of the CPU is saved to ensure recovery.

6.5.1 FPU Clock Count Table

The clock counts for the FPU instructions are 
listed in Table 6-19 (Page 13). The 
abbreviations used in this table are listed in 
Table 6-21.

Table 6-21.  FPU Clock Count Table Abbreviations

ABBREVIATION MEANING

n Stack register number

TOS Top of stack register pointed to by SSS in the status register.

ST(1) FPU register next to TOS

ST(n) A specific FPU register, relative to TOS

M.WI 16-bit integer operand from memory

M.SI 32-bit integer operand from memory

M.LI 64-bit integer operand from memory

M.SR 32-bit real operand from memory

M.DR 64-bit real operand from memory

M.XR 80-bit real operand from memory

M.BCD 18-digit BCD integer operand from memory

CC FPU condition code

Env Regs
Status, Mode Control and Tag Registers, Instruction Pointer and Operand 
Pointer
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Appendix

 IBM 6x86 MICROPROCESSOR
 Sixth-Generation Superscalar
 Superpipelined x86-Compatible CPU 

Ordering Information for Module Revision Level “B” Only

 

Table A-1. 6x86 Device to P-Rating Conversion

6x86 Frequency (MHz)
P-RatingBUS CORE

50 100 P120+

55 110 P133+

60 120 P150+

66 133 P166+

75 150 P200+

  IBM   6X86   -2   V2   100            G     B

 Product Line                                           Speed (MHz)=

 Product                      Voltage:
Family                        V2 =3.30V, +0.30, -0.15
                                    V7=3.50V, +/-0.10

2=2x Clock
3=3x Clock

   Package:
   G = PGA

Module Revision

     

Level

                                                                  100, 110, 120, 133 



A-2                                                                                                                          

Ordering Information for Module Revision Level “C” and Later

For more information concerning the IBM 6x86 Microprocessor, please visit our website: 
http://www.chips.ibm.com/products/x86/index.html or call 1-800-IBM-3333.

Table A-2. 6x86 Device to P-Rating Conversion

6x86 Frequency (MHz)
P-RatingBUS CORE

50 100 P120+

55 110 P133+

60 120 P150+

66 133 P166+

75 150 P200+

  IBM    6X86  -2   V2   P150      G     C

 Product Line ID                                 Performance Rating =

 

Module Revision
Level

P166+, P200+

   Package:
   G = PGA

P120+, P133+, P150+
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150MHz processor.

Revision History


	Introduction
	TABLE OF CONTENTS
	List of Tables and Figures
	LIST OF FIGURES
	LIST OF TABLES

	1.0 ARCHITECTURE OVERVIEW
	1.1 Major Functional Blocks
	1.2 Integer Unit
	1.2.1 Pipeline Stages
	1.2.2 Out-of-Order Processing
	1.2.3 Pipeline Selection
	1.2.4 Data Dependency Solutions
	1.2.4.1 Register Renaming
	1.2.4.2 Data Forwarding
	1.2.4.3 Data Bypassing

	1.2.5 Branch Control
	1.2.5.1 Branch Prediction
	1.2.5.2 Speculative Execution


	1.3 Cache Units
	1.3.1 Unified Cache
	1.3.2 Instruction Line Cache

	1.4 Memory Management Unit
	1.4.1 Variable-Size Paging Mechanism
	1.4.2 Traditional Paging Mechanism

	1.5 Floating Point Unit
	FPU Parallel Execution

	1.6 Bus Interface Unit

	2.0 PROGRAMMINGINTERFACE
	2.1 Processor Initialization
	2.2 Instruction Set
	Overview
	2.2.1 Lock Prefix

	2.3 Register Sets
	2.3.1 Application Register Set
	2.3.2 General Purpose Registers
	2.3.3 Segment Registers and Selectors
	2.3.4 Instruction Pointer Register
	2.3.5 Flags Register

	2.4 System Register Set
	2.4.1 Control Registers
	2.4.2 Registers and Descriptors
	Descriptor Table Registers
	Descriptors

	2.4.3 Task Register
	2.4.4 IBM 6x86 Configuration Registers
	2.4.4.1 Configuration Control Registers
	2.4.4.2 Address Region Registers
	2.4.4.3 Region Control Registers
	2.4.4.4 Device Identification Registers

	2.4.5 Debug Registers
	2.4.6 Test Registers

	2.5 Address Space
	2.6 Memory Addressing Methods
	2.6.1 Offset Mechanism
	2.6.2 Memory Addressing
	Real Mode Memory Addressing
	Protected Mode Memory Addressing

	2.6.3 Selector Mechanism
	2.6.4 Paging Mechanisms
	2.6.4.1 Traditional Paging Mechanism
	2.6.4.2 Translation Lookaside Buffer Testing

	2.6.5 Variable-Size Paging Mechanism

	2.7 Memory Caches
	2.7.1 Unified Cache MESI States
	2.7.1.1 Unified Cache Testing


	2.8 Interrupts and Exceptions
	2.8.1 Interrupts
	2.8.2 Exceptions
	2.8.3 Interrupt Vectors
	2.8.4 Interrupt and Exception Priorities
	2.8.5 Exceptions in Real Mode
	2.8.6 Error Codes

	2.9 System Management Mode
	2.9.1 SMM Operation
	2.9.2 SMM Memory Space
	2.9.3 SMM Instructions
	2.9.4 SMM Memory Space
	2.9.5 SMI Service Routine Execution

	2.10 Shutdown and Halt
	2.11 Protection
	2.11.1 Privilege Levels
	2.11.2 I/O Privilege Levels
	2.11.3 Privilege Level Transfers
	2.11.4 Initialization and Transition to Protected Mode

	2.12 Virtual 8086 Mode
	2.12.1 V86 Memory Addressing
	2.12.2 V86 Protection
	2.12.3 V86 Interrupt Handling
	2.12.4 Entering and Leaving V86 Mode

	2.13 Floating Point Unit Operations

	3.0 IBM 6x86 BUS INTERFACE
	3.1 Signal Description Table
	3.2 Signal Descriptions
	3.2.1 Clock Control
	3.2.2 Reset Control
	3.2.3 Address Bus
	3.2.4 Address Parity
	3.2.5 Data Bus
	3.2.6 Data Parity
	3.2.7 Bus Cycle Definition
	3.2.8 Bus Cycle Control
	3.2.9 Interrupt Control
	3.2.10 Cache Control
	3.2.11 Bus Arbitration
	3.2.12 Cache Coherency
	3.2.13 FPU Error Interface
	3.2.14 Scatter/Gather Buffer Interface
	3.2.15 Power Management Interface
	3.2.16 JTAG Interface

	3.3 Functional Timing
	3.3.1 Reset Timing
	3.3.2 Bus State Definition
	3.3.3 Non-pipelined Bus Cycles
	3.3.3.1 Non-pipelined Single Transfer Cycles
	3.3.3.2 Non-pipelined Burst Read Cycles
	3.3.3.3 Burst Write Cycles

	3.3.4 Pipelined Bus Cycles
	3.3.4.1 Pipelined Back-to-Back Read/Write Cycles

	3.3.5 Interrupt Acknowledge Cycles
	3.3.6 SMI# Interrupt Timing
	3.3.7 Cache Control Timing
	3.3.7.1 Invalidating the Cache Using FLUSH#
	3.3.7.2 EWBE# Timing

	3.3.8 Bus Arbitration
	3.3.8.1 HOLD and HLDA
	3.3.8.2 Back-Off Timing

	3.3.9 Cache Inquiry Cycles
	3.3.9.1 Inquiry Cycles Using HOLD/HLDA
	3.3.9.2 Inquiry Cycles Using BOFF#
	3.3.9.3 Inquiry Cycles Using AHOLD

	3.3.10 Scatter/Gather Buffer Interface
	3.3.11 Power ManagementInterface


	4.0 ELECTRICALSPECIFICATIONS
	4.1 Electrical Connections
	4.1.1 Power and Ground Connections and Decoupling
	4.1.2 Pull-Up/Pull-Down Resistors
	4.1.3 Unused Input Pins
	4.1.4 NC and Reserved Pins

	4.2 Absolute Maximum Ratings
	4.3 Recommended Operating Conditions
	4.4 DC Characteristic
	4.5 AC Characteristics

	5.0 MECHANICAL SPECIFICATIONS
	5.1 296-Pin SPGA Package
	5.2 Thermal Characteristics

	6.0 INSTRUCTION SET
	6.1 Instruction Set Summary
	6.2 General Instruction Fields
	6.2.1 Optional Prefix Bytes
	6.2.2 Opcode Byte
	6.2.2.1 w Field
	6.2.2.2 d Field
	6.2.2.3 s Field
	6.2.2.4 eee Field

	6.2.3 mod and r/m Byte
	6.2.3.1 reg Field
	6.2.3.2 sreg3 Field
	6.2.3.3 sreg2 Field

	6.2.4 s-i-b Byte
	6.2.4.1 ss Field
	6.2.4.2 index Field
	6.2.4.3 Base Field


	6.3 CPUID Instruction
	6.4 Instruction Set Tables
	6.4.1 Assumptions Made in Determining Instruction Clock Count
	6.4.2 CPU Instruction Set Summary Table Abbreviations
	6.4.3 CPU Instruction Set Summary Table Flags Table
	6x86 CPU Instruction Set & Clock Count Summary

	6.5 FPU Clock Counts
	6.5.1 FPU Clock Count Table


	Appendix
	Ordering Information for Module Revision Level “B” Only
	Ordering Information for Module Revision Level “C” and Later

	Index



