IBM 6x86 MICROPROCRSSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

Introduction

Sixth-Generation Superscalar
Superpipelined Architecture

- Dual 7stage integer pipelines

- High performance on-chipPU with64-bit interface
- Operating frequencies of 100 MHz and above

- 16 KByte write-back cache

X86 Instruction Set Compatible

- Runs Windows 95, Windows NDOS, UNIX,
Novell, 0S/2, Solaris, and others

Optimum Performance for
Windows®95

- Intelligent instruction dispatch
- Out-of-order completion

- Register renaming

- Data forwarding

- Branch prediction

- Speculative execution

64-Bit Data Bus
- P54C socket compatible for quick time to market

The IBM 6x86** microprocessor is a superscalar,
superpipelined CPU that provides sixth-generation
performance for x86 software. Since the IBM 6x86
CPU is fully compatible with the x86 instruction set,
it is capable of executing a wide range of existing
operating systems and applications, including
Windows 95, DOS, Unix, Windows NT, Novell,
0S/2, and Solaris. The IBM 6x86 CPU achieves top
performance levels through the use of two optimized
superpipelined integer units and an on-chip floating
point unit. The superpipelined architecture reduces

timing constraints and allows the IBM 6x86 CPU to
operate at core frequencies starting at 100 MHz. In
addition, the IBM 6x86 CPU's integer and floating
point units are optimized for maximum instruction
throughput by using advanced architectural
techniques, including register renaming,
out-of-order execution, data forwarding, branch
prediction, and speculative execution. These design
innovations eliminate many data dependencies and
resource conflicts that provide optimum
performance for Window85 software.

IF

Instruction Address

D1
Sequence

Control

D2 D2

Instruction Data

32

Lines

AC1 AC1

Address

AC2
EX
wB

AC2
EX
wB

X Data

32

A31-A3

Bus BE7#-BEO#

Control
Unit

256 Byte Instruction 32

Line Cache

FPU

OpCode X Pipe Y Pipe Y Data

Floating Point
Queue Integer Unit 32

16 KByte Unified Cache

Data,

32
X Linear

32
Y Linear

Floating Point
Processor Address Address

Floating Point Unit 64

32

=/ D63-D0
Cache Unit 64 64
[—— CLK
X Physical Y Physical
Address Address

Memory Management Unit

[Control

Bus Interface

June 1996

© International Business Machines Corporation 1996.
Printed in the United States of America
2-96

All Rights Reserved

© Cyrix Corporation 1996.
© IBM and the IBM logo are registered trademarks of the IBM Corporation.
© Cyrix is a registered trademark of the Cyrix Corporation.
IBM Microelectronics is a trademark of the IBM Corporation.
6x86 is a trademark of Cyrix Corporation

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks of
service marks of others.

Product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

IBM Corporation

1000 River Street

Essex Junction, Vermont 05452-4299
United States of America

TABLE OF CONTENTS

1. ARCHITECTURE OVERVIEW
1.1 Major Functional Blocks. 1-1
1.2 IntegerUnit. L 1-2
1.3 CacheUnits. e 1-12
1.4 Memory ManagementUnit. 1-14
15 Floating Point Unit. o oo 115 —
1.6 Buslinterface Unit 1-16

2. PROGRAMMING INTERFACE
2.1 Processor Initialization. 2-1

2.2 Instruction SetOverview. 2-3 >
23 RegisterSets 2-4
24 SystemRegisterSet L o 2-11
25 AddressSpace 2-40
2.6 Memory AddressingMethods L. 2-41
27 MemoryCaches 2-52
2.8 Interrupts and Exceptions oL 2-55
2.9 System ManagementMode 2-63 —
210 ShutdownandHalt. 2-69 =
211 Protection. 2-71)
212 Virtual 8086 Mode 2-74
2.13 Floating Point Unit Operations. 2-75
3. BUSINTERFACE
3.1 Signal Description Table. 3-2
3.2 SignalDescriptions. 3-7 A
3.3 Functional Timing 3-25 \;_‘J
4. ELECTRICAL SPECIFICATIONS
4.1 Electrical Connections 4-1
4.2 Absolute Maximum Ratings 4-2
4.3 Recommended Operating Conditions 4-3 ,—_I
4.4 DCCharacteristics 4-4

. . — \
45 AC Characteristics 4-5 |

5. MECHANICAL SPECIFICATIONS

5.1 296-PifSPGAPackage 5-1
5.2 Thermal Characteristics 5-6
6. INSTRUCTION SET fJ
6.1 Instruction SetSummary. L 6-1 r \
6.2 GeneralInstructionFields 6-2 J
6.3 CPUIDInstruction 6-11
6.4 Instruction SetTables 6-12
6.5 FPUClockCounts i 6-29. . v

Index

List of Tables and Figures

Table Name

Figure 1-1
Figure 1-2
Figure 1-3
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19
Figure 2-20
Figure 2-21
Figure 2-22
Figure 2-23
Figure 2-24
Figure 2-25
Figure 2-26
Figure 2-27
Figure 2-28
Figure 2-29

LIST OF FIGURES

Page Number
Integer Unit. o e 1-2
Cache Unit Operations 0 i 1-13
Paging Mechanism within the Memory Management Unit 1-14
Application Register Set 2-5
General Purpose Registers 2-6
Segment Selector in Protected Mode 2-7
EFLAGS RegiSter e 2-9
System Register Set. L 2-12
Control Registers e 2-13
Descriptor Table Registers 2-15
Application and System Segment Descriptors 2-16
Gate DesCriptor. e 2-19
Task Register 2-20
32-Bit Task State Segment (TSS) Table 2-21
16-Bit Task State Segment (TSS) Table 2-22
IBM 6x86 Configuration Control Register 0 (CCRO) 2-25
IBM 6x86 Configuration Control Register 1 (CCR1) 2-26
IBM 6x86 Configuration Control Register 2 (CCR2) 2-27
IBM 6x86 Configuration Control Register 3(CCR3) 2-28
IBM 6x86 Configuration Control Register 4 (CCR4) v i v i 2-29
IBM 6x86 Configuration Control Register 5(CCR5) 2-30
Address Region Registers (ARRO-ARR7). 2-31
Region Control Register (RCRO-RCR7). ittt e e 2-34
Device Identification Register O (DIR1) 2-36
Device Identification Register 1 (DIR1) vt 2-36
Debug Registers e 2-37
Memory and I/O Address Spaces. e 2-40
Offset Address Calculation. 2-42
Real Mode Address Calculation 2-43
Protected Mode Address Calculation. 2-44
Selector Mechanism 2-44
Paging Mechanism L e 2-45

_ee==

= = === i i
IEM

LIST OF FIGURES (Continued)

Table Name Page Number
Figure 2-30 Traditional Paging Mechanism 2-46
Figure 2-31 Directory and page Table Entry (DTE and PTE)Format 2-46
Figure 2-32 TLB Test Registers 0 2-48
Figure 2-33 Variable-Size Paging Mechanism Lo 2-51
Figure 2-34 Unified Cache 2-53
Figure 2-35 Cache Test Registers. 0 e e 2-54
Figure 2-36 ErrorCode Format. o 2-62
Figure 2-37 System Management Memory Address Space. e 2-63
Figure 2-38 SMI Execution Flow Diagram. o o e 2-64
Figure 2-39 SMM Memory Space Header 2-65
Figure 2-40 SMM and Suspend Mode State Diagram 2-70
Figure 2-41 FPU Tag Word Register 0 o e 2-76
Figure 2-42 FPU Status Register 2-76
Figure 2-43 FPU Mode Control Register 2-77
Figure 3-1 IBM 6x86 Functional Signal Groupings. o v v e 3-1
Figure 3-2 RESET TIMING. o o o o e e e e e e e e e e e 3-25
Figure 3-3 IBM 6x86 CPU Bus State Diagram 3-27
Figure 3-4 Non-Pipelined Single Transfer Read Cycles 3-30
Figure 3-5 Non-Pipelined Single Transfer Write Cycles 3-31
Figure 3-6 Non-Pipelined Burst Read Cycles i i 3-33
Figure 3-7 BurstCycle with Wait States 3-34
Figure 3-8 “1+4”BurstRead Cycle e 3-35
Figure 3-9 Non-Pipelined Burst Write Cycles. 3-37
Figure 3-10 Pipelined Single Transfer Read Cycles 3-38
Figure 3-11 Pipelined Burst Rea Cycles i e 3-39
Figure 3-12 Read Cycle Followed by Pipelined Write Cycle 3-40
Figure 3-13 Interrupt Acknowledge Cycles. 3-41
Figure 3-14 SMIACT #TiMING. 0 o o e e e e e e e 3-42
Figure 3-15 SMMI/O Trap TiMiNg. o e e e e e e e 3-43
Figure 3-16 Cache Invalidation UsingBBH# 3-44
Figure 3-17 External Write Buffer Empty (EWBE#) Timing 3-45
Figure 3-18 Requesting Hold fromand Idle Bus 3-46

Vi

List of Tables and Figures

LIST OF FIGURES (Continued)

Table Name Page Number
Figure 3-19 Requesting Hold During a Non-pipelined BusCycle 3-47
Figure 3-20 Requesting Hold During a Pipelined BusCycle 3-48
Figure 3-21 Back-Off Timing 3-49
Figure 3-22 HOLD Inquiry Cycle that Hits on a Modified Line 3-51
Figure 3-23 BOFF# Inquiry Cycle that Hits on a Modified Line 3-52
Figure 3-24 AHOLD Inquiry Cycle that Hits on a Modified Line 3-53
Figure 3-25 AHOLD Inquiry Cycle DuringaLine Fill 3-54
Figure 3-26 APCHK#TIMING e e e e s 3-55
Figure 3-27 BHOLD an@HOLD Timing o o v e e e e e e e e e e e e e 3-56
Figure 3-28 CPU Upper Byte Read from 32-Bit Bus Using Scatter/Gather 3-57
Figure 3-29 CPU Upper Byte Write to 32-Bit Bus Using Scatter/Gather. 3-58
Figure 3-30 Bus Master Read from 64-Bit Memory to 32-BitBus 3-59
Figure 3-31 Bus Master Write to 64- Bit Memory from 32-BitBus 3-60
Figure 3-32 SUSP# Initiated Suspend Mode 3-61
Figure 3-33 Halt-Initiated Suspend Mode 3-62
Figure 3-34 Stopping CLK During Suspend Mode 3-63
Figure 4-1 Drive Level and Measurement Points for Switching Characteristics 4-6
Figure 4-2 CLK Timing and MeasurementPoints o 4-7
Figure 4-3 Output Valid Delay Timing. o 0 e 4-8
Figure 4-4 Output Float Delay Timing. o e e e e 4-9
Figure 4-5 Input Setup and Hold Timing. e 4-11
Figure 4-6 TCK Timing and Measurement Points i 4-12
Figure 4-7 JTAG Test TIMINGS. o e e e e e e e e 4-13
Figure 4-8 TestReset TimiNg o 4-13
Figure 5-1 296-PilsPGA Package Pin Assignments 5-1
Figure 5-2 296-PilSPGA Package. 5-4
Figure 6-1 Instruction Set Format e 6-1

Vil

_ee==
—_———— 7 =

LIST OF TABLES
Table Name Page Number
Table 1-1 Register Renaming with WAR Dependency o v v i v oo 1-5
Table 1-2 Register Renaming with WAW Dependency. o i i 1-6
Table 1-3 Example of Operand Forwarding. i 1-8
Table 1-4 Result Forwarding Example 1-9
Table 1-5 Example of Data Bypassing0 1-10
Table 2-1 Initialized Register Controls e 2-2
Table 2-2 Segment Register Selection Rules 2-8
Table 2-3 EFLAGS BitDefinitions 2-10
Table 2-4 CROBIitDefinitions. 2-14
Table 2-5 Effects of Variooous Combinations of EM,TSand MP Bits. 2-14
Table 2-6 Segment Descriptor Bit Definitions 2-17
Table 2-7 TYPEFieldwith DT=0. e e e e e e 2-17
Table 2-8 TYPE Fieldwith DT=1. e e e e e e 2-18
Table 2-9 Gate Descriptor Bit Definitions. 2-19
Table 2-10 IBM 6x86 Configuration Registers. e 2-24
Table 2-11 CCROBitDefinitions. 2-25
Table 2-12 CCRI1BitDefinitions. 2-26
Table 2-13 CCR2BitDefinitions. 2-27
Table 2-14 CCR3BitDefinitions. 2-28
Table 2-15 CCR4 BitDefinitions. 2-29
Table 2-16 CCR5 BitDefinitions. 2-30
Table 2-17 ARRO-ARR7 Registers Ind&ssignments 2-32
Table 2-18 Bit Definitions for SIZE Field 2-32
Table 2-19 RCRO-RCR7 BitDefinitions e 2-34
Table 2-20 DIRO Bit Definitions 2-36
Table 2-21 DIRL BitDefinitions 2-36
Table 2-22 DR6 and DR7 Debug Register Field Definitions. 2-38
Table 2-23 Memory Addressing Modes 2-42
Table 2-24 Directory and Page Table Entry (DTE and PTE) Bit Definitions 2-47
Table 2-25 TLB Test Register Bit Definitions 2-49
Table 2-26 TR6 Attribute BitPairs. 2-50
Table 2-27 TR6 CommandBits. e 2-50

viii

List of Tables and Figures

Table Name

Table 2-28
Table 2-29
Table 2-30
Table 2-31
Table 2-32
Table 2-33
Table 2-34
Table 2-35
Table 2-36
Table 2-37
Table 2-38
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14
Table 3-15
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6

LIST OF TABLES (Continued)

Page Number
Cache Test Register Bit Definitions 2-54
Interrupt Vector ASSignments e e 2-58
Interrupt and Exception Priorities 2-60
Exception Changes in Real Mode 2-61
Error Code Bit Definitions L 2-62
Requirements for Recognizing SM1#and SMINT. 2-64
SMM Memory Space Header. 2-66
SMM Instruction Set L e 2-67
Descriptor Types Used for Control Transfer. 2-73
FPU Status Register Bit Definitions 2-76
FPU Mode Control Register Bit Definitions 2-77
IBM 6x86 CPU Signals Sorted by SignalName 3-2
Pins Sampled During RESET 3-7
Signal States DUring RESET 3-8
Byte Enable Signal to Data Bus Byte Correlation 3-9
Parity Bit to Data Byte Correlation. e 3-10
Bus Cycle TYpesS o e 3-12
Effects of WB/WT# on Cache Line State 3-16
Signal States During Bus Hold 3-17
Scatter/Gather Cycles. e 3-20
Byte Enable Map for Scatter/.Gather Cycles., 3-21
Signal States During Suspend Mode 3-23
IBM6x86 CPUBUS States e e e 3-26
Bus State Transitions 3-28
“1+4” Burst Address SeqUENCES v i i e e e e e 3-35
Linear Burst Address SeqUeNCeS i e 3-36
Pins Connected to Internal Pull-Up and Pull-Down Resistors 4-1
Absolute Maximum Ratings 4-2
Recommended Operating Conditions 4-3
DC Characteristics (at Recommended Operating Conditions) 4-4
Drive Level and Measurement Points for Switching Characterisitics 4-6
Clock Speicifications e 4-7

—_———— =
——t———

LIST OF TABLES (Continued)
Table Name Page Number
Table 4-7 Output Valid Delays, G= 50 pF, Fase=0°Ct070°C oot 4-8
Table 4-8 Output Float Delays, G 50 pF, Fage= 0°Ct070°C. oo v vt 4-9
Table 4-9 Input Setup TimegJee=0°Ct0 70°C. it 4-10
Table 4-10 Input Hold TimesJse= 0°Ct0 70°C. o v v v vttt e e 4-10
Table 4-11 JTAG AC Specifications o o 4-12
Table 5-1 296-PiiSPGA Package Signal Names Sorted by Pin Number 5-2
Table 5-2 296-PiiBSPGA Package Pin Numbers Sorted by SignalName 5-3
Table 5-3 296-PilBPGA Package DIMensions oo v i i 5-7
Table 5-4 Thermal Resistance for SPGA Package With and Without Heatsinks 6-2
Table 6-1 Instruction Fields 6-3
Table 6-2 Instruction Prefix Summary e 6-4
Table 6-3 wField Encoding e 6-4
Table 6-4 dFieldEncoding 6-5
Table 6-5 sField Encoding 6-5
Table 6-6 eee Field Encoding 6-6
Table 6-7 mod r/mField Encoding 6-6
Table 6-8 mod r/m Field Encoding Dependentonw Field 6-7
Table 6-9 regField. 6-7
Table 6-10 sreg3 Field Encoding 6-8
Table 6-11 sreg2 Field Encoding 6-8
Table 6-12 ssField Encoding. 6-9
Table 6-13 index Field Encoding 6-9
Table 6-14 mod base Field Encoding. 6-10
Table 6-15 CPUID Data Returned When EAX=0 6-11
Table 6-16 CPUID Data Returned When EAX=1 6-11
Table 6-17 CPU Clock Count Abbreviations. 6-13
Table 6-18 Flag Abbreviations 6-13
Table 6-19 Action of Instructionon Flag. 6-13
Table 6-20 IBM 6x86 CPU Instruction Set Clock Count Summary 6-14
Table 6-21 FPU Clock Count TablébBreviations 6-29
Table 6-22 IBM 6x86-PU Instruction Set Summary 6-30

IBM 6x86 MICROPROCESSOR

Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

—
1. ARCHITECTURE The on-chip FPU allows floating point instruc-
OVERVIEW tions to execute in parallel with integer instruc-

tions and features a 64-bit data interface. The
The IBM 6x86 CPU is a leader in the sixth FPU incorporates a four-deep instruction
generation of high performance, x86-compat- queue and a four-deep store queue to facilitate
ible microprocessors. Increased performance iparallel execution.

accomplished by the use of superscalar and
superpipelined design techniques. Additionally the IBM 6x86 CPU incorporates

a low power suspend mode, stop clock capa-
The IBM 6x86 CPU is superscalar in that it bility, and system management mode (SMM)
contains two separate pipelines that allow for power sensitive applications.
multiple instructions to be processed at the
same time. The use of advanced processing
technology and the increased number of pipe-

line stages (superpipelining) allows the IBM 1.1 Major Functional
6x86 CPU to achieve clocks rates of 100 MHz Blocks
and above.

The IBM 6x86 processor consists of five major
Through the use of unique architectural functional blocks, as shown in the overall
features, the IBM 6x86rocessor eliminates block diagram on the first page of this manual:
many data dependencies and resource
conflicts, resulting in optimal performance for
both 16-bit and 32-bit x86 software.

Integer Unit
Cache Unit
¢ Memory Management Unit
The IBM 6x86 CPU contains two caches: a * Floating Point Unit
16-KByte dual-ported unified cache and a * Bus Interface Unit
256-byte instruction line cache. Since the
unified cache can store instructions and data innstructions are executed in the X and Y pipe-
any ratio, the unified cache offers a higher hit lines within the Integer Unit and also in the
rate than separate data and instruction cached-loating Point Unit (FPU). The Cache Unit
of equal size. An increase in overall stores the most recently used data and instruc-
cache-to-integer unit bandwidth is achieved bytions to allow fast access to the information by
supplementing the unified cache with a small, the Integer Unit and FPU.
high-speed, fully associative instruction line
cache. The inclusion of the instruction line
cache avoids excessive conflicts between code
and data accesses in the unified cache.

1-1

Integer Unit

12 Integer Unit

Physical addresses are calculated by the

Memory Management Unit and passed 0 Thg |nteger Unit (Figure 1-1) provides parallel
the Cache Unit and the Bus Interface Unit i ction execution using two seven-stage

(BIU). The BIU provides the interface integer pipelines. Each of the two pipelines,
between the external system board and they anq v, can process several instructions
processor’s internal execution units. simultaneously.

‘ Instruction Fetch ‘
Instruction Decode 1
In-Order
Processing Inst. Decode 2 Inst. Decode 2
‘ Address Calc. 1 ‘ ‘ Address Calc. 1 ‘
| l
‘ Address Calc. 2 ‘ ‘ Address Calc. 2 ‘
Execution ‘ ‘ Execution
Out-of-Order L J
Completion
Write-Back ‘ ‘ Write-Back ‘
X Pipeline Y Pipeline

Figure 1-1. Integer Unit

1-2

Integer Unit 1

The Integer Unit consists of the following expected to flow through the remaining pipe-
pipeline stages: line stages.
* Instruction Fetch (IF) The Address Calculation function contains two
* Instruction Decode 1 (ID1) stages, AC1 and AC2. If the instruction refers
* Instruction Decode 2 (ID2) to a memory operand, the AC1 calculates a
» Address Calculation 1 (AC1) linear memory address for the instruction.
¢ Address Calculation 2 (AC2)
« Execute (EX) The AC2 stage performs any required memory
» Write-Back (WB) management functions, cache accesses, and

register file accesses. If a floating point
The instruction decode and address calculatiofnstruction is detected by AC2, the instruction
functions are both divided into superpipelined is sent to the FPU for processing.

stages. . .
9 The Execute (EX) stage executes instructions

using the operands provided by the address
calculation stage.

The Instruction Fetch (IF) stage, shared by 114 \Wwrite-Back (WB) stage is the last 1U

both the X and Y pipelines, fetches 16 bytes Ofsiage. The WB stage stores execution results
code from the cache unit in a single clock

e A . _either to a register file within the IU or to a
cycle. Within this section, the code stream is write buffer in the cache control unit.

checked for any branch instructions that could
affect normal program sequencing. 122

121 Pipeline Stages

Out-of-Order

If an unconditional or conditional branch is Processing
detected, branch prediction logic within the IF
stage generates a predicted target address fo
the instruction. The IF stage then begins

fetching instructions at the predicted address.

']f an instruction executes faster than the
previous instruction in the other pipeline, the
instructions may complete out of order. All
instructions are processed in order, up to the
The superpipelinethstruction Decodefunc- ~ EX stage. While in the EX and WB stages,
tion contains the ID1 and ID2 stages. D1, instructions may be completed out of order.
shared by both pipelines, evaluates the code
stream provided by the IF stage and deter-
mines the number of bytes in each instruction.
Up to two instructions per clock are delivered
to the ID2 stages, one in each pipeline.

If there is a data dependency between two
instructions, the necessary hardware interlocks
are enforced to ensure correct program
execution. Even though instructions may
complete out of order, exceptions and writes
The ID2 stages decode instructions and send resulting from the instructions are always

the decoded instructions to either the X or Y issued in program order.

pipeline for execution. The particular pipeline

is chosen, based on which instructions are

already in each pipeline and how fast they are

1-3

==S5E
1.2.3 Pipeline Selection 1.24 Data Dependency

Solutions
In most cases, instructions are processed in
either pipeline and without pairing constraints When two instructions that are executing in
on the instructions. However, certain instruc- parallel require access to the same data or
tions are processed only in the X pipeline: register, one of the following types of data

. . dependencies may occur:
e Branch instructions

¢ Floating point instructions ¢ Read-After-Write (RAW)
¢ Exclusive instructions ¢ Write-After-Read (WAR)

) o) ¢ Write-After-Write (WAW)
Branch and floating point instructions may be

paired with a second instruction in the Y pipe-Data dependencies typically force serialized
line. execution of instructions. However, the IBM

)))) 6x86 CPU implements three mechanisms that
Exclusive Instructions cannot be paired with 510w parallel execution of instructions

instructions in the Y pipeline. These instruc- containing data dependencies:
tions typically require multiple memory

accesses. Although exclusive instructions may Register Renaming

not be paired, hardware from both pipelinesis Data Forwarding

used to accelerate instruction completion. » Data Bypassing
Listed below are the IBM 6x86 CPU exclusive)])]
instruction types: The following sections provide detailed exam-

ples of these mechanisms.
¢ Protected mode segment loads))
« Special register accesses 1.24.1 Register Renaming
(Control, Debug, and Test Registers)
e String instructions
e Multiply and divide
¢ |/O port accesses

« Push all (PUSHA) and pop all (POPA) ass_igned as one of the general purpose
. Int ti f d ret registers defined by the x86 architecture
niersegment Jumps, calls, and retlums e a\x, EBX, ECX, EDX, ESI, EDI, EBP, and

ESP). For each register write operation a new
physical register is selected to allow previous
data to be retained temporarily. Register
renaming effectively removes all WAW and
WAR dependencies. The programmer does not
have to consider register renaming; it is
completely transparent to both the operating
system and application software.

The IBM 6x86 CPU contains 32 physical
general purpose registers. Each of the 32
registers in the register file can be temporarily

Integer Unit 1

Example #1 - Register Renaming Eliminates Write-After-Read (WAR) Dependency

A WAR dependency exists when the first in a pair of instructions reads a logical register, and the
second instruction writes to the same logical register. This type of dependency is illustrated by the
pair of instructions shown below:

X PIPE Y PIPE
(1) MOV BX, AX (2) ADD AX, CX

BX ~AX AX ~AX +CX
Note: In this and the following examples the original instruction order is shown in parentheses.

In the absence of register renaming, the ADD instruction in the Y pipe would have to be stalled to
allow the MOV instruction in the X pipe to read the AX register.

The IBM 6x86 CPU, however, avoids the Y pipe stall (Table 1-1). As each instruction executes,
the results are placed in new physical registers to avoid the possibility of overwriting a logical
register value and to allow the two instructions to complete in parallel (or out of order) rather than
in sequence.

Table 1-1. Register Renaming with WAR Dependency

Physical Register Contents Action
Instruction
Reg0 Regl Reg2 Reg3 Reg4 Pipe
(Initial) AX BX CcX
MOV BX, AX AX CX BX X Reg3 ~ Reg0
ADD AX, CX CcX BX | AX Y | Regd— Reg0 + Reg2

Note: The representation of the MOV and ADD instructions in the final column of Table 1-1
are completely independent.

1-5

Integer Unit

Example #2 - Register Renaming Eliminates Write-After-Write (WAW) Dependency

A WAW dependency occurs when two consecutive instructions perform writes to the same
logical register. This type of dependency is illustrated by the pair of instructions shown below:

X PIPE Y PIPE
(1) ADD AX, BX (2) MOV AX, [mem]

AX < AX +BX AX < [mem]

Without register renaming, the MOV instruction in the Y pipe would have to be stalled to guar-
antee that the ADD instruction in the X pipe would write its results to the AX register first.

The IBM 6x86 CPU uses register renaming and avoids the Y pipe stall. The contents of the AX
and BX registers are placed in physical registers (Table 1-2). As each instruction executes, the
results are placed in new physical registers to avoid the possibility of overwriting a logical
register value and to allow the two instructions to complete in parallel (or out of order) rather than
in sequence.

Table 1-2. Register Renaming with WAW Dependency

Physical Register Contents Action
Instruction
Reg0 Regl Reg2 Reg3 Pipe
(Initial) AX BX
ADD AX, BX BX AX X Reg2 —~ Reg0 + Regl
MOV AX, [mem] BX AX Y Reg3 ~ [mem]

Note: All subsequent reads of the logical register AX will refer to Reg 3, the result of the MOV
instruction.

1-6

Integer Unit

1242 Data Forwarding

Register renaming alone cannot remove RAW
dependencies. The IBM 6x86 CPU uses two
types of data forwarding in conjunction with
register renaming to eliminate RAW depen-
dencies:

¢ Operand Forwarding
¢ Result Forwarding

Operand forwarding takes place when the
first in a pair of instructions performs a move
from register or memory, and the data that is
read by the first instruction is required by the
second instruction. The IBM 6x86 CPU
performs the read operation and makes the
data read available to both instructions simul-
taneously.

Result forwarding takes place when the first

in a pair of instructions performs an operation
(such as an ADD) and the result is required by
the second instruction to perform a move to a
register or memory. The IBM 6x86 CPU
performs the required operation and stores the
results of the operation to the destination of
both instructions simultaneously.

1-7

Integer Unit

Example #3 - Operand Forwarding Eliminates Read-After-Write (RAW) Dependency

A RAW dependency occurs when the first in a pair of instructions performs a write, and the
second instruction reads the same register. This type of dependency is illustrated by the pair of
instructions shown below in the X and Y pipelines:

X PIPE Y PIPE
(1) MOV AX, [mem] (2) ADD BX, AX

AX «~ [mem] BX - AX +BX

The IBM 6x86 CPU uses operand forwarding and avoids a Y pipe stall (Table 1-3). Operand
forwarding allows simultaneous execution of both instructions by first reading memory and then
making the results available to both pipelines in parallel.

Table 1-3. Example of Operand Forwarding

Physical Register Contents Action
Instruction
Reg0 Regl Reg2 Reg3 Pipe
(Initial) AX BX
MOV AX, [mem] BX AX X Reg2 — [mem]
ADD BX, AX AX BX Y Reg3<— [mem] + Regl

Operand forwarding can only occur if the first instruction does not modify its source data. In
other words, the instruction is a move type instruction (for example, MOV, POP, LEA). Operand
forwarding occurs for both register and memory operands. The size of the first instruction desti-
nation and the second instruction source must match.

Integer Unit 1

Example #4 - Result Forwarding Eliminates Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a
write, and the second instruction reads the same register. This dependency is illustrated by the
pair of instructions in the X and Y pipelines, as shown below:

X PIPE Y PIPE
(1) ADD AX, BX (2) MOV [mem], AX

AX < AX +BX [mem] — AX

The IBM 6x86 CPU uses result forwarding and avoids a Y pipe stall (Table 1-4). Instead of trans-
ferring the contents of the AX register to memory, the result of the previous ADD instruction
(Reg0 + Regl) is written directly to memory, thereby saving a clock cycle.

Table 1-4. Result Forwarding Example

Physical Register Action
Instruction Contents
Reg0 Regl Reg2 Pipe
(Initial) AX BX
ADD AX, BX BX AX X Reg2 - RegO + Regl
MOV [mem], AX BX AX Y | [mem] - Reg0 +Regl

The second instruction must be a move instruction and the destination of the second instruction
may be either a register or memory.

SEavE
1.2.43 Data Bypassing

In addition to register renaming and data forwarding, the IBM 6x86 CPU implements a third data
dependency-resolution technique called data bypassing. Data bypassing reduces the performance
penalty of those memory data RAW dependencies that cannot be eliminated by data forwarding.

Data bypassing is implemented when the first in a pair of instructions writes to memory and the
second instruction reads the same data from memory. The IBM 6x86 CPU retains the data from
the first instruction and passes it to the second instruction, thereby eliminating a memory read
cycle. Data bypassing only occurs for cacheable memory locations.

Example #1- Data Bypassing with Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a
write to memory and the second instruction reads the same memory location. This dependency is
illustrated by the pair of instructions in the X and Y pipelines as shown below:

X PIPE Y PIPE
(1) ADD [mem], AX (2) SUB BX, [mem]

[mem] —[mem] + AX BX ~ BX-[mem]

The IBM 6x86 CPU uses data bypassing and stalls the Y pipe for only one clock by eliminating
the Y pipe’s memory read cycle (Table 1-5). Instead of reading memory in the Y pipe, the result
of the previous instruction ([mem] + Reg0) is used to subtract from Regl, thereby saving a
memory access cycle.

Table 1-5. Example of Data Bypassing

Physical Register Action
. Contents
Instruction
Reg0 Regl Reg2 | Pipe
(Initial) AX BX
ADD [mem], AX AX BX X [mem] —~ [mem] + Reg0
SUB BX, [mem] AX BX Y Reg2 -~ Regl - {{mem] + Reg0}

1-10

Integer Unit 1

1.2.5 Branch Control instruction. The decision to fetch the taken or
not taken target address is based on a four-state

Branch instructions occur on average every pranch prediction algorithm.

four to six instructions in x86-compatible pro-

grams. When the normal sequential flow of a Once fetched, a conditional branch instruction

program changes due to a branch instruction, is first decoded and then dispatched to the X

the pipeline stages may stall while waiting for pipeline only. The conditional branch instruc-

the CPU to calculate, retrieve, and decode thetion proceeds through the X pipeline and is

new instruction stream. The IBM 6x86 CPU thenresolved in either the EX stage or the WB

minimizes the performance degradation and stage. The conditional branch is resolved in the

latency of branch instructions through the use EX stage, if the instruction responsible for

of branch prediction and speculative execu- setting the condition codes is completed prior

tion. to the execution of the branch. If the instruc-
tion that sets the condition codes is executed in
1.25.1 Branch Prediction parallel with the branch, the conditional

branch instruction is resolved in the WB stage.
The IBM 6x86 CPU uses a 256-entry, 4-way
set associative Branch Target Buffer (BTB) to Correctly predicted branch instructions
store branch target addresses and branch execute in a single core clock. If resolution of
prediction information. During the fetch stage, @ branch indicates that a misprediction has
the instruction stream is checked for the pres-occurred, the IBM 6x86 CPU flushes the pipe-
ence of branch instructions. If an uncondi- line and starts fetching from the correct target
tional branch instruction is encountered, the address. The IBM 6x86 CPU prefetches both
IBM 6x86 CPU accesses the BTB to check forthe predicted and the non-predicted path for
the branch instruction’s target address. If the €ach conditional branch, thereby eliminating
branch instruction’s target address is found in the cache access cycle on a misprediction. If
the BTB, the IBM 6x86 CPU begins fetching the branch is resolved in the EX stage, the
at the target address specified by the BTB. resulting misprediction latency is four cycles.
If the branch is resolved in the WB stage, the
In case of conditional branches, the BTB also |atency is five cycles.

provides history information to indicate

whether the branch is more likely to be taken Since the target address of return (RET)

or not taken. If the conditional branch instruc- instructions is dynamic rather than static, the
tion is found in the BTB, the IBM 6x86 CPU IBM 6x86 CPU caches target addresses for
begins fetching instructions at the predicted RET instructions in an eight-entry return stack
target address. If the conditional branch misse#ather than in the BTB. The return address is
in the BTB, the IBM 6x86 CPU predicts that Ppushed on the return stack during a CALL
the branch will not be taken, and instruction instruction and popped during the corre-
fetching continues with the next sequential ~ sponding RET instruction.

1-11

=S5
1.25.2 Speculative Execution 1) A branch or floating point operation

is decoded and the speculation level
The IBM 6x86 CPU is capable of speculative is already at four.

execution following a floating point instruc-

tion or predicted branch. Speculative execution 2) An exception or a fault occurs.
allows the pipelines to continuously execute
instructions following a branch without

stalling the pipelines waiting for branch reso-
lution. The same mechanism is used to execute
floating point instructions (see Section 1.5) in
parallel with integer instructions.

3) The write buffers are full.

4) An attempt is made to modify a
non-checkpointed resource (i.e.,
segment registers, system flags).

The IBM 6x86 CPU is capable of up to four 13 Cache Units

levels of speculation (i.e., combinations of The IBM 6x86 CPU employs two caches, the

four conditional branches and floating point Unified Cache and the Instruction Line Cache
operations). After generating the fetch addresa;igure 1-2)

using branch prediction, the CPU checkpoints
the machine sFate (reglst(_ers, flags, and 131 Unified Cache
processor environment), increments the specu-

lation level counter, and begins operating on hg 16.KByte unified write-back cache func-
the predicted instruction stream. tions as the primary data cache and as the
secondary instruction cache. Configured as a
four-way set-associative cache, the cache
stores up to 16 KBytes of code and data in 512
lines. The cache is dual-ported and allows any
Awo of the following operations to occur in
fparallel:

Once the branch instruction is resolved, the
CPU decreases the speculation level. For a
correctly predicted branch, the status of the
checkpointed resources is cleared. For a
branch misprediction, the IBM 6x86 processo
generates the correct fetch address and uses
checkpointed values to restore the machine , ~gqe fetch

state in a single clock. « Data read (X pipe, Y pipeline or FPU)

In order to maintain compatibility, writes that ~ ° Data write (X pipe, Y pipeline or FPU)

result from speculatively executed instructionstpo nified cache uses a pseudo-LRU replace-

are not permitted to update the cache or ment algorithm and can be configured to allo-

external memory until the appropriate branch 5o heyy fines on read misses only or on read

is resolved. Speculative execution continues 4., \write misses. More information

until one of the following conditions occurs: concerning the unified cache can be found in
Section 2.7.1 (Page 2-52).

Cache Units 1

132 Instruction Line Cache The instruction line cache uses a pseudo-LRU

o)) _replacement algorithm. To ensure proper oper-
The fully associative 256-byte instruction line

X X X ation in the case of self-modifying code, any
cache serves as the primary instruction cacheyyites to the unified cache are checked against
The instruction line cache is filled from the

< the contents of the instruction line cache. If a
unified cache through the data bus. Fetches it occurs in the instruction line cache, the

from the integer unit that hit in the instruction
line cache do not access the unified cache. If
an instruction line cache miss occurs, the
instruction line data from the unified cache is
transferred to the instruction line cache and the
integer unit, simultaneously.

appropriate line is invalidated.

Instruction Data

! |

Integer Instruction l
Unit p Address
" . .
Instruction Line Cache BDa’a
?(Y — 256-Byte Fully Associative, 8 Lines Aﬁgs:ﬁ
Pipe | Pipe <

A FPU

Data Bus 1
A T
Bus
m Interface
Unit

Unified Cache

Cache
16-KByte, 4-Way Set Associative, 512 Lines <+ Tags
X, Y
Linear
Address

Modified X, Y
Physical Addresses

Memory Management Unit

(TLB

v

——— = Dual Bus
— = Single Bus

Figure 1-2. Cache Unit Operations

E
14 Memory 1.4.1 Variable-Size Paging
Management Unit Mechanism

The Memory Management Unit (MMU), The IBM 6x86 variable-size paging

shown in Figure 1-3, translates the linear mechanism allows software to map pages
address supplied by the IU into a physical petween 4 KBytes and 4 GBytes in size. The
address to be used by the unified cache and thﬁrge contiguous memories provided by this
bus interface. Memory management proce- mechanism help avoid TLB (Translation
dures are x86 compatible, adhering to standarg gokaside Buffer) thrashing [see Section 2.6.4
paging mechanisms. (Page 2-45)] associated with some operating

The IBM 6x86 MMU includes two paging systems and applications. For example, use of

mechanisms (Figure 1-3), a traditional paging a single large page instead of a series of small

mechanism, and a IBM 6x86 variable-size 4-KByte page_s can gref_a\tly_lmpro_ve
. . performance in an application using a large
paging mechanism.

video memory buffer.

Control i:l Variable-Size Paging Mechanism |“4
Linear
Address

Lp| DrECace | |) vanms | [J=oncip
Y] i 0

el
Victim TLB —%?

] DTE . PTE — Physical Page |4
A
) » »
Directory Table Page Table Page Frame
CR3
Control Register Traditional Paging Mechanism

Figure 1-3. Paging Mechanism within the Memory Management Unit

Floating Point Unit 1

1.4.2 Traditional FPU Parallel Execution

Paging Mechanism The IBM 6x86 CPU executes integer instruc-
The traditional paging mechanism has been tions in parallel with FPU instructions. Integer
enhanced on the IBM 6x86 CPU with the addi- Instructions may complete out of order with

tion of the Directory Table Entry (DTE) cache [eSPectto the FPU instructions. The IBM 6x86
and the Victim TLB. The main TLB (Transla- CPU maintains x86 compatibility by signaling
tion Lookaside Buffer) is a direct-mapped exceptions and issuing write cycles in program

128-entry cache for page table entries. order.

As previously discussed, FPU instructions are
glways dispatched to the integer unit's X pipe-
line. The address calculation stage of the X
pipeline checks for memory management
exceptions and accesses memory operands
used by the FPU. If no exceptions are detected,
The Victim TLB stores PTEs which have been the IBM 6x86 CPU checkpoints the state of the
displaced from the main TLB due to a TLB CPU and, during AC2, dispatches the floating
miss. If a PTE access occurs while the PTE is point instruction to the FPU instruction queue.
stored in the victim TLB, the PTE in the victim The IBM 6x86 CPU can then complete any
TLB is swapped with a PTE in the main TLB. subsequent integer instructions speculatively
This has the effect of selectively increasing and out of order relative to the FPU instruction
TLB associativity. The IBM 6x86 CPU and relative to any potential FPU exceptions
updates the eight-entry fully associative victim which may occur.

TLB on an oldest entry replacement basis.

The four-entry fully associative DTE cache
stores the most recent DTE accesses. If a Pag
Table Entry (PTE) miss occurs followed by a
DTE hit, only a single memory access to the
PTE table is required.

As additional FPU instructions enter the pipe-
line, the IBM 6x86 CPU dispatches up to four
FPU instructions to the FPU instruction queue.
The IBM 6x86 Floating Point Unit (FPU) The IBM 6x86 CPU continues executing spec-
interfaces to the integer unit and the cache unitulatively and out of order, relative to the FPU
through a 64-bit bus. The IBM 6x86 FPU is queue, until the IBM 6x86 CPU encounters
x87 instruction set compatible and adheres to one of the conditions that causes speculative
the IEEE-754 standard. Since most applica- ~ execution to halt. As the FPU completes

15 Floating Point Unit

tions contain FPU instructions mixed with instructions, the speculation level decreases
integer instructions, the IBM 6x86 FPU and the checkpointed resources are available
achieves high performance by completing for reuse in subsequent operations. The IBM
integer and FPU operations in parallel. 6x86 FPU also uses a set of four write buffers

to prevent stalls due to speculative writes.

1-15

= Bus Interface Unit
16 Bus Interface Unit

The Bus Interface Unit (BIU) provides the
signals and timing required by external
circuitry. The signal descriptions and bus inter-
face timing information is provided in
Chapters 3 and 4 of this manual.

1-16

IBM 6x86 MICROPROCESSOR

Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

3

2. PROGRAMMING 2.1 Processor Initialization
INTERFACE

Programming Interface

The IBM 6x86 CPU is initialized when the
In this chapter, the internal operations of the RESET signal is asserted. The processor is
IBM 6x86 CPU are described mainly from an placed in real mode and the registers listed in
application programmer’s point of view. Table 2-1 (Page 2-2) are set to their initialized
Included in this chapter are descriptions of proralues. RESET invalidates and disables the
cessor initialization, the register set, memory cache and turns off paging. When RESET is
addressing, various types of interrupts and theasserted, the IBM 6x86 CPU terminates all local
shutdown and halt process. An overview of bus activity and all internal execution. During
real, virtual 8086, and protected operating the entire time that RESET is asserted, the inter-
modes is also included in this chapter. The FPHWal pipelines are flushed and no instruction exe-
operations are described separately at the end@ition or bus activity occurs.

the chapter.
Approximately 150 to 250 external clock cycles

This manual does not—and is not intended to-after RESET is negated, the processor begins

describe the IBM 6x86 microprocessor or its executing instructions at the top of physical

operations at the circuit level. memory (address location FFFF FFFOh). Typi-
cally, an intersegment JUMP is placed at FFFF
FFFOh. This instruction will force the processor
to begin execution in the lowest 1 MByte of
address space.

Note: The actual time depends on the clock scal-
ing in use. Also an additionafclock cycles
are needed if self-test is requested.

—_———— =
= = ===
—————— T — Instruction Set Overview
Y
Table 2-1. |Initialized Register Controls
REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS |
EAX Accumulator XXXX XXxxh 0000 0000h indicates self-test passed.
EBX Base XXXX XXxXXh
ECX Count XXXX XXxXXh
EDX Data 05 + Device ID Device ID = 31h or 33h (2X clock
Device ID = 35h or 37h (3X clock)
EBP Base Pointer XXXX XXxxh
ESI Source Index XXXX XXXXh
EDI Destination Index XXXX XXXXh
ESP Stack Pointer XXXX XXXXh
EFLAGS Flag Word 0000 0002h
EIP Instruction Pointer 0000 FFFOh
ES Extra Segment 0000h Base address set to 0000 0000h|.
Limit set to FFFFh.
CsS Code Segment FOOOh Base address g&tfé 0@Oh.
Limit set to FFFFh.
SS Stack Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.
DS Data Segment 0000h Base address set to 0000 0000h|.
Limit set to FFFFh.
FS Extra Segment 0000h Base address set to 0000 0000h|.
Limit set to FFFFh.
GS Extra Segment 0000h Base address set to 0000 0000h|.
Limit set to FFFFh.
IDTR Interrupt Descriptor Table |Base =0, Limit = 3FFh
Register
GDTR Global Descriptor Table XXXX XXXXh, xxxxh
Register
LDTR Local Descriptor Table XXXX XXXXh, xxxxh
Register
TR Task Register xxxxh
CRO Machine Status Word 6000 0010h
CR2 Control Register 2 XXXX XXXXh
CR3 Control Register 3 XXXX XXXXh
CCR (0-5) | Configuration Control (0-5) | 00h
ARR (0-7) | Address Region Registers [00h
(0-7)
RCR (0-7) | Region Control Registers (0}7) 00h
DIRO Device Identification 0 31h or 33h (2X clock)
35h or 37h (3X clock)
DIR1 Device Identification 1 Step ID + Revision ID
DR7 Debug Register 7 0000 0400h

Note: x = Undefined value

2.2
2-2

Instruction Set

Instruction Set Overview 2

Overview an operand can be overridden by placing one or
more instruction prefixes in front of the opcode.
The IBM 6x86 CPU instruction set performs For examp|e’ by using prefixes’ a 32-hit oper-
nine types of general operations: and can be used with 16-bit code, or a 16-bit
operand can be used with 32-bit code.

 Arithmetic » High-Level Language Support

* Bit Manipulation -+ Operating System Support Chapter 6 of this manual lists each instruction

* Control Transfer « Shif/Rotate in the IBM 6x86 CPU instruction set along with

* Data Transfer + String Manipulation the associated opcodes, execution clock counts,
* Floating Point and effects on the FLAGS register.

All IBM 6x86 CPU instructions operate on as 2.2.1 Lock Prefix

few as zero operands and as many as three

operands. An NOP instruction (no operation) isThe LOCK prefix may be placed before certain

an example of a zero operand instruction. Twdnstructions that read, modify, then write back

operand instructions allow the specification of to memory. The prefix asserts the LOCK# sig-
an explicit source and destination pair as part ohal to indicate to the external hardware that the
the instruction. These two operand instructiondCPU is in the process of running multiple indi-

can be divided into eight groups according to Vvisible memory accesses. The LOCK prefix

operand types: can be used with the following instructions:
« Register to Register + Register to /O Bit Test Instructions (BTS, BTR, BTC)

« Register to Memory I/O to Register Exchange Instructions (XADD, XCHG,

+ Memory to Register + Immediate Data to Register CMPXCHG)

« Memory to Memory « Immediate Datato Memory ~ One-operand Arithmetic and Logical

Instructions (DEC, INC, NEG, NOT)
An operand can be held in the instruction itself Two-operand Arithmetic and Logical

(asinthe case of animmediate operand), inone |nstructions (ADC, ADD, AND, OR,

of the processor’s registers or 1/O ports, or in SBB, SUB, XOR).

memory. Animmediate operand is prefetched

as part of the opcode for the instruction. An invalid opcode exception is generated if the

) LOCK prefix is used with any other instruction,
Operand lengths of 8, 16, or 32 bits are SUp- o ith the above instructions when no write
ported as well as 64-or 80-bit associated with operation to memory occurs (i.e., the

floating point instructions. Operand lengths of 4 ctination is a register). The LOCK# signal

8 or 32 bits are generally used when executing.5, he negated to allow weak-locking for all of
code written for 386- or 486-class (32-bit code)memory or on a regional basis. Refer to the

processors. Operand lengths of 8 or 16 bits arfescriptions of the NO-LOCK bit (within

generally used when executing existing 8086 OLCR1) and the WL bit (within RCRX) later in
80286 code (16-bit code). The default length ofig chapter.

L . ¥]
= = ===
—————— T — Register Sets
Y

23 Register Sets 231 Application

Register Set
From the programmer’s point of view there are
58 accessible registers in the IBM 6x86 CPU. The application register set, (fire 2-1, Page
These registers are grouped into two sets. Th&-5) consists of the registers most often used by
application register set contains the registers the applications programmer. These registers
frequently used by application programmers, are generally accessible and are not protected
and the system register set contains the regisfrom read or write access.

ters typically reserved for use by operating sys-)
tem programmers. TheGeneral Purpose Registecontents are

frequently modified by assembly language
The application register set is made up of geninstructions and typically contain arithmetic
eral purpose registers, segment registers, a flagnd logical instruction operands.

register, and an instruction pointer register. . .)
Segment Registersn real mode contain the

The system register set is made up of the base address for each segment. In protected
remaining registers which include control reg- mode the segment registers contain segment
isters, system address registers, debug regis- selectors. The segment selectors provide
ters, configuration registers, and test registersindexing for tables (located in memory) that
contain the base address and limit for each seg-
Each of the registers is discussed in detail in th%ent, as well as access control information.
following sections.
TheFlag Registercontains control bits used to
reflect the status of previously executed
instructions. This register also contains control
bits that affect the operation of some instructions.

Thelnstruction Pointer register points to the
next instruction that the processor will execute.
This register is automatically incremented by
the processor as execution progresses.

2-4

Register Set: 2

31

EAX (Accumulator)

EBX (Base)

ECX (Count)

EDX (Data)

ESI (Source Index)

EDI (Destination Index)

EBP (Base Pointer)

ESP (Stack Pointer)

15

General Pupose Reglsters

CS (Code Segment Selector)

SS (Stack Segment Selector)

DS (Data Segment Selector)

ES (Extra Segment Selector)

FS (Extra Segment F Selector)

GS (Exira Segment G Selector)

16 15

Segment Registers

0

\ \ P

| EIP (Instruction Pointer)

16 15

Instruction Pointer Register

0

FLAGS

| EFLAGS (Flag Register)

Flag Register

Figure 2-1. Application Register Set

2.3.2 General Purpose

Registers

An “E” prefix identifies the complete 32-bit
register. An “X” suffix without the “E” prefix
identifies the lower 16 bits of the register.

The general purpose registers are divided into)
four data registers, two pointer registers, and twdhe lower two bytes of a data register can be
index registers as shown in Figure 2-2 (Page 2-@ddressed with an “H” suffix (identifies the

TheData Registersare used by the applica-
tions programmer to manipulate data struc-
tures and to hold the results of logical and

arithmetic operations. Different portions of

upper byte) or an “L” suffix (identifies the lower
byte). The _L and _H portions of a data regis-
ters act as independent registers. For example,
if the AH regqister is written to by an instruc-
tion, the AL register bits remain unchanged.

the general data registers can be addressed by

using different names.

2-5

Register Sets

31 16 15 87 0

AH . |>< AL EAX (Accumulator)

BH . I>< BL EBX (Base)

oI I E—TS ECX (Count)

TR Y} EDX (Data)
SI ESI (Source Index)
DI EDI (Destination Index)
BP EBP (Base Pointer)
SP ESP (Stack Pointer)

Figure 2-2. General Purpose Registers

ThePointer and Index Registersare listed The IBM 6x86 CPU processor implements a
below. stack using the ESP register. This stack is
accessed during the PUSH and POP
SlorESI Source Index instructions, procedure calls, procedure
DI or EDI Destination Index returns, interrupts, exceptions, and
SP or ESP Stack Pointer interrupt/exception returns.
BP or EBP Base Pointer

The microprocessor automatically adjusts the
These registers can be addressed as 16- or value of the ESP during operation of these
32-bit registers, with the “E” prefix indicating instructions.The EBP register may be used to
32 bits. The pointer and index registers can bereference data passed on the stack during
used as general purpose registers, however, procedure calls. Local data may also be placed
some instructions use a fixed assignment of on the stack and referenced relative to BP. This
these registers. For example, repeated string register provides a mechanism to access stack
operations always use ESI as the source data in high-level languages.
pointer, EDI as the destination pointer, and
ECX as the counter. The instructions using
fixed registers include multiply and divide, 1/O
access, string operations, translate, loop, vari-
able shift and rotate, and stack operations.

2-6

Register Set: 2

8086 mode with paging disabled, the linear
address is also the physical address. In virtual
8086 mode with paging enabled, the linear
address is translated to the physical address
ing the current page tables. Paging is
scribed in Section 2.6.4 (Page 2-45).

2.3.3 Segment Registers and
Selectors

Segmentation provides a means of defining
data structures inside the memory space of the
microprocessor. There are three basic types d¢
segments: code, data, and stack. Segments fHBrotected mode a segment register holds a
used automatically by the processor to deter-gegment Selectocontaining a 13-bit index, a
mine the location in memory of code, data, anﬁiable Indicator (T1) bit, and a two-bit

stack references. Requested Privilege Level (RPL) field as

There are six 16-bit segment registers: shown in Figure 2-3.

TheIndex points into a descriptor table in

CSs Code Segment

DS Data Segment memory and sele_cts one of 819231)_$egment

ES Extra Segment descriptors contained in the descriptor table.

SS Stack Segment A segment descriptor is an eight-byte value

FS Additional Data Segment used to describe a memory segment by defining
GS Additional Data Segment. the segment base, the segment limit, and access

In real and virtual 8086 operating modes. a Secqntrol information. To address data within a
P 9 ’ gment, a 16-bit or 32-bit offset is added to the

ment register holds a 16-bit segment base. T Sgment’s base address. Once a segment selec-
16-bit segment is multiplied by 16 and a 16-bi g ' 9

or 32-bit offset is then added to it to create a ”nc_)r has been loaded into a segment register, an

ear address. The offset size is dependent on {Hgtructlon needs only to specify the segment

current address size. Inreal mode and in virturaqgISter and the offset.

<+— Segment Selector —
15 3210

INDEX T | RPL

8191

Lirnit
SN e IR ET

Descriptor Table

Maln Memory

Figure 2-3. Segment Selector in Protected Mode

= Register Sets
—

TheTable Indicator (TI) bit of the selector ~ When a segment register is loaded with a seg-
defines which descriptor table the index pointsnent selector, the segment base, segment limit
into. If TI=0, the index references the Global and access rights are loaded from the descriptor
Descriptor Table (GDT). If TI=1, the index reftable entry into a user-invisible or hidden por-
erences the Local Descriptor Table (LDT). Théion of the segment register (i.e., cached

GDT and LDT are described in more detail inon-chip). The CPU does not access the descrip-
Section 2.4.2. Protected mode addressing is disr table entry again until another segment reg-
cussed further in Sections 2.6.2 and 2.6.3. ister load occurs. If the descriptor tables are

il o modified in memory, the segment registers
TheRequested Perl_ege Leve(RPL) f'_eld M must be reloaded with the new selector values
a segment selector is used to determine the by the software.

Effective Privilege Level of an instruction
(where RPL=0 indicates the most privileged The processor automatically selects an implied
level, and RPL=3 indicates the least privilegeddefault) segment register for memory refer-
level). ences. Table 2-2 describes the selection rules.
. In general, data references use the selector con-
If the level requested by RPL is less than the y5ihq4 in the DS register, stack references use
Current Program Level (CPL), the RPL level ige 55 register and instruction fetches use the
accepted and the Effective Privilege Level is ~g register. While some of these selections
changed to the RPL value. If the level may be overridden, instruction fetches, stack
requested by RPL is greater than CPL, the CFL,q atigns, and the destination write of string
_overrldeS the req_uested RPL and Effective P”B’perations cannot be overridden. Special seg-
ilege Level remains unchanged. ment override instruction prefixes allow the use
of alternate segment registers including the use
of the ES, FS, and GS segment registers.

Table 2-2. Segment Register Selection Rules

IMPLIED (DEFAULT, SEGMENT OVERRIDE
TYPE OF MEMORY REFERENCE SEG(MENT) PREFIX
Code Fetch CS None
Destination of PUSH, PUSHF, INT, CALL|, SS None
PUSHA instructions
Source of POP,BPA, POPF, IRET, SS None
RET instructions
Destination of STOS, MOVS, REP STOS ES None
REP MOVS instructions
Other data references with effective
address using base registers of:
EAX, EBX, ECX, DS CS, ES, FS, GS, SS
EDX, ESI, EDI
EBP, ESP SS CS, DS, ES, FS, GS

2-8

Register Set: 2

234 Instruction Pointer 235 Flags Register
Register

The Flags Register, EFLAGS, contains status
The Instruction Pointer (EIP) register containsinformation and controls certain operations on
the offset into the current code segment of theéhe IBM 6x86 CPU microprocessor. The lower 16
next instruction to be executed. The register is ndits of this register are referred to as the FLAGS
mally incremented with each instruction execuegister that is used when executing 8086 or 80286
tion unless implicitly modified through an code. The flag bits are shown in Figure 2-4 and
interrupt, exception or an instruction that defined in Table 2-3 (Page 2-10).
changes the sequential execution flow
(e.g., IMP, CALL).

Fl/c<gs

3 2 2 2 1111111111 \
1 4}3 1 9876543210090 1876543 0
0000000000 00" [[&[[E[o ¥ K [PIPH[H[2[#[o/p[o[E 1[f

Identification -5

Alignment Check — §

Virtual 8086 Mode — §———————————
Resume Flag —D

Nested Task Flag — §
I/O Privilege Level — S

Overflow —A
Direction Flag —C
Interrupt Enable — S
Trap Flag —D
Sign Flag A
Zero Flag — A
Auxiliary Cary — A
Parity Flag — A
Carry Flag —A

A = Arithmetic Flag, D = Debug Flag, S = System Flag, C = Confrol Flag
0 or 1 Indicates Reserved

Figure 2-4. EFLAGS Register

2-9

— Register Sets
- -
Table 2-3. EFLAGS Bit Definitions

BIT

POSITION NAME FUNCTION

0 CF Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) the most
significant bit of the result occurs; cleared otherwise.

2 PF Parity Flag: Set when the low-order 8 bits of the result contain an even number of pnes;
cleared otherwise.

4 AF Auxiliary Carry Flag: Set when a carry out of (addition) or borrow into (subtraction)|bit
position 3 of the result occurs; cleared otherwise.

6 ZF Zero Flag: Set if result is zero; cleared otherwise.

7 SF Sign Flag: Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

8 TF Trap Enable Flag: Once set, a single-step interrupt occurs after the next instructio
completes execution. TF is cleared by the single-step interrupt.

9 IF Interrupt Enable Flag: When set, maskable interrupts (INTR input pin) are acknowledged
and serviced by the CPU.

10 DF Direction Flag: If DF=0, string instructions aut@rement (default) the appropriate index
registers (ESI and/or EDI). If DF=1, string instructions aigcrement the appropriate
index registers.

11 OF Overflow Flag: Set if the operation resulted in a carry or borrow into the sign bit of the
result but did not result in a carry or borrow out of the high-order bit. Also set if the
operation resulted in a carry or borrow out of the high-order bit but did not resultin g carry
or borrow into the sign bit of the result.

12,13 IOPL | I/O Privilege Level: While executing in protected mode, IOPL indicates the maximpm
current privilege level (CPL) permitted to execute 1/O instructions without generating an
exception 13 fault or consulting the 1/0 permission bit map. IOPL also indicates the
maximum CPL allowing alteration of the IF bit when new values are popped into thg
EFLAGS register.

14 NT Nested Task: While executing in protected mode, NT indicates that the execution ¢f the
current task is nested within another task.

16 RF Resume Flag: Used in conjunction with debug register breakpoints. RF is checked at
instruction boundaries before breakpoint exception processing. If set, any debug fgult is
ignored on the next instruction.

17 VM Virtual 8086 Mode: If set while in protected mode, the microprocessor switches to yirtual
8086 operation handling segment loads as the 8086 does, but generating exception {13 faults
on privileged opcodes. The VM bit can be set by the IRET instruction (if current priyilege
level=0) or by task switches at any privilege level.

18 AC Alignment Check Enable: In conjunction with the AM flag in CRO, the AC flag determines
whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults
are enabled.

21 ID Identification Bit: The ability to set and clear this bit indicates that the CPUID instruction

is supported. The ID can be modified only if the CPUID bit in CCR4 is set.

System Register Se| 2

24 System Register Set

The system register set, shown in Figure 2-5 TheConfiguration Registersare used to con-
(Page 2-12), consists of registers not generallfigure the IBM 6x86 CPU on-chip cache oper-
used by application programmers. These regigtion, power management features and System
ters are typically employed by system level Management Mode. The configuration regis-
programmers who generate operating systeméers also provide information on the CPU

and memory management programs. device type and revision.

TheControl Registerscontrol certain aspects TheDebug Registergprovide debugging facil-
of the IBM 6x86 microprocessor such as pag- ities to enable the use of data access break-
ing, coprocessor functions, and segment protecpoints and code execution breakpoints.

tion. When a paging exception occurs while TheTest Redist id hani
paging is enabled, some control registers retain ''© est Registersprovide a mechanism to

the linear address of the access that caused th&St the contents of bOt_h the on-ch_ip 16 KByte
exception. cache and the Translation Lookaside Buffer

(TLB). In the following sections, the system
TheDescriptor Table Registersand theTask register set is described in greater detail.
Registercan also be referred to as system

address or memory management registers.

These registers consist of two 48-bit and two

16-bit registers. These registers specify the

location of the data structures that control the

segmentation used by the IBM 6x86 micropro-

cessor. Segmentation is one available method

of memory management.

System Register Set

31 16 ‘1 5 0
Page Fault Linear Address Register
Page Directory Base Register
47 1615 0
\ Base Limnit
\ Base Limit
Selector
Selector
31 0
Linear Breakpolnt Address O
Linear Breakpoint Address 1
Linear Breakpoint Address 2
Linear Breakpolnt Address 3
Breakpoint Status
Breakpoint Control
7 0
CCR = Configuration Control Reglster CCRO
CCRI1
CCR2
CCR3
CCR4
7 0 23 CCR5
RCRO Address Reglon Reglster O
RCR1 Address Reglon Reglster 1
RCR2 Address Region Register 2
RCR3 Address Region Register 3
RCR4 Address Region Register 4
RCR5 Address Region Register 5
RCR6 Address Region Register 6
RCR7 Address Region Register 7

RCR = Reglon Control Reglister

31

DIRO
DIR1

CRO
CR2
CR3

GDIR
IDTR
LDTR
R

DRO
DR1
DR2
DR3
DRé6
DR7

CCRO
CCR1
CCR2
CCR3
CCR4
CCR5
ARRO
ARR1
ARR2
ARR3
ARR4
ARRS
ARR6
ARR7
DIRO
DIR1

DIR = Device Identification Reglster

0

Cache Test

Cache Test

Cache Test

TLB Test Control

TLB Test Status

TR3
TR4
TRS
TR6
TR7

Control
Registers

Descriptor
Table
Registers

Task Register

Debug
Registers

Rapleeton

ﬁee%isters

Figure 2-5. System Register Set

System Register Se| 2

24.1 Control Registers ical base address of the page directory. The
_ page directory must always be aligned to a
The Control Registers (CR0, CR2 and CR3), aseKByte page boundary, therefore, the lower 12

shown in Figure 2-6. The CRO register contairtsits of CR3 are not required to specify the base
system control bits which configure operatingaddress.

modes and indicate the general state of the CPU.

The lower 16 bits of CRO are referred to as th&R3 contains the Page Cache Disable (PCD)

Machine Status Word (MSW). The CRO bit defind Page Write Through (PWT) bits. During

initions are described in Table 2-4 and Table 2181s cycles that are not paged, the state of the

(Page 2-14). The reserved bits in CRO should i3ED bit is reflected on the PCD pin and the

be modified. PWT bit is driven on the PWT pin. These bus
cycles include interrupt acknowledge cycles

When paging is enabled and a page fault is geid all bus cycles, when paging is not enabled.

erated, the CR2 register retains the 32-bit lineahe PCD pin should be used to control caching

address of the address that caused the fault. in an external cache. The PWT pin should be

When a double page fault occurs, CR2 contaifged to control write policy in an external cache.
the address for the second fault. Register CR3

contains the 20 most significant bits of the phys- Figure 2-6. Control Registers
31 12 11 4 3 0
PP
PAGE DIRECTORY BASE REGISTER (PDBR) RESERVED BV_I_/ RESV. CR3
PAGE FAULT LINEAR ADDRESS CR2
215 1 B ResERVED reserveD N 1| 1P| 2| cro
31 30 29 18 16\ 543210
V
MSW

Table 2-4. CRO Bit Definitions

—_———— =
= = ===
—————— T — System Register Set
Y
Table 2-4. CRO Bit Definitions
BIT
poSITION | NAME FUNCTION

1 MP | Monitor Processor Extension: If MP=1 and TS=1, a WAIT instruction causes Device Not Avail-
able (DNA) fault 7. The TS bit is set to 1 on task switches by the CPU. Floating point instruc-
tions are not affected by the state of the MP bit. The MP bit should be set to one during|normal
operations.

2 EM | Emulate Processor Extension: If EM=1, all floating point instructions cause a DNA fault 7.

3 TS | Task Switched: Set whenever a task switch operation is performed. Execution of a floating
point instruction with TS=1 causes a DNA fault. If MP=1 and TS=1, a WAIT instruction also
causes a DNA fault.

4 1 Reserved: Do not attempt to modify.

5 NE | Numerics Exception. NE=1 to allow FPU exceptions to be handled byupttd6. NE=O0 if
FPU exceptions are to be handled by external interrupts.

16 WP | Write Protect: Protects read-only pages from supervisor write access. WP=0 allows a r¢ad-only
page to be written from privilege level 0-2. WP=1 forces a fault on a write to a
read-only page from any privilege level.

18 AM | Alignment Check Mask: If AM=1, the AC bit in the EFLAGS register is unmasked and allpwed
to enable alignment check faults. Setting AM=0 prevents AC faults from occurring.

29 NW | Not Write-Back: If NW=1, the on-chip cache operates in write-through mode. In write-thfough
mode, all writes (including cache hits) are issued to the external bus. If NW=0, the on-chip
cache operates in write-back mode. In write-back mode, writes are issued to the extern@al bus
only for a cache miss, a line replacement of a modified line, or as the result of a cache ihquiry
cycle.

30 CD | Cache Disable: If CD=1, no further cache line fills occur. However, data already present in the
cache continues to be used if the requested address hits in the cache. Writes continue fo update
the cache and cache invalidations due to inquiry cycles occur normally. The cache must also be
invalidated to completely disable any cache activity.

31 PG | Paging Enable Bit: If PG=1 and protected mode is enabled (PE=1), paging is enabled.| After
changing the state of PG, software must execute an unconditional branch instructidMg.g.,
CALL) to have the change take effect.

Table 2-5. Effects of Various Combinations of EM, TS, and MP Bits
CRO BIT INSTRUCTION TYPE
EM TS MP WAIT ESC
0 0 0 Execute Execute
0 0 1 Execute Execute
0 1 0 Execute Fault 7
0 1 1 Fault 7 Fault 7
1 0 0 Execute Fault 7
1 0 1 Execute Fault 7
1 1 0 Execute Fault 7
1 1 1 Fault 7 Fault 7
2.4.2 Descriptor Table

2-14

System Register Se| 2

Registers and Descriptors descriptor in the GDT (location 0) is not used by
)) the CPU and is referred to as the “null descrip-
Descriptor Table Registers tor". The GDTR is initialized using a LGDT

The Global, Interrupt, and Local Descriptor Instruction.

Table Registers (GDTR, IDTR and LDTR), The Interrupt Descriptor Table Register

shown in Figure 2-7, are used to specify the (IDTR) holds a 32-bit linear base address and
location of the data structures that control segt6-bit limit for the Interrupt Descriptor Table
mented memory management. The GDTR, (IDT). The IDT is an array of 256 interrupt
IDTR and LDTR are loaded using the LGDT, descriptors, each of which is used to point to an
LIDT and LLDT instructions, respectively. Theinterrupt service routine. Every interrupt that
values of these registers are stored using the GR&y occur in the system must have an associ-
responding store instructions. The GDTR andted entry in the IDT. The contents of the IDTR
I!Z)TR load |nstruct_|ons_ are privileged instruc- are completely visible to the programmer by
tions when operating in protected mode. Theysing a SIDT instruction. The IDTR is initialized
LDTR can only be accessed in protected mode. ysing the LIDT instruction.

TheGlobal Descriptor Table Registe(GDTR) The Local Descriptor Table Register(LDTR)
holds a 32-bit linear base address and 16-bit holds a 16-bit selector for the Local Descriptor
limit for the Global Descriptor Table (GDT). Table (LDT). The LDT is an array of up to 8192
The GDT is an array of up to 8192 8-byte 8-pyte descriptors. When the LDTR is loaded,
descriptors. When a segment register is load@ge LDTR selector indexes an LDT descriptor
from memory, the Tl bit in the segment selectahat must reside in the Global Descriptor Table
chooses either the GDT or the Local DescriptqGDT). The base address and limit are loaded
Table (LDT) to locate a descriptor. If TI = 0, theautomatically and cached from the LDT

index portion of the selector is used to locate ”ﬂéscriptor within the GDT.

descriptor within the GDT table. The contents

of the GDTR are completely visible to the pro-

grammer by using a SGDT instruction. The first

47 16 15 0
BASE ADDRESS LIMIT GDTR
BASE ADDRESS LIMIT IDTR
L
SELECTOR LDTR

Figure 2-7. Descriptor Table Registers

System Register Set

Subsequent access to entries in the LDT use tescriptors

hidden LDTR cache to obtain linear addresses.

If the LDT descriptor is modified in the GDT, There are three types of descriptors:
the LDTR must be reloaded to update the hidder

portion of the LDTR Application Segment Descriptors that

define code, data and stack segments.
When a segment register is loaded from mem-* System Segment Descriptors that define
ory, the Tl bit in the segment selector chooses ~ an LDT segment or a Task State Segment
either the GDT or the LDT to locate a segment (TSS) table described later in this text.
descriptor. If TI = 1, the index portion of the * Gate Descriptors that define task gates,
selector is used to locate a given descriptor interrupt gates, trap gates and call gates.
within the LDT. Each task in the systemmaybe = |)

pplication Segment Descriptors can be

given its own LDT, managed by the operatin T
system. The LDTs provide a method of isolat ocated in either the LDT or GDT. System Seg-
ent Descriptors can only be located in the

ing a given task’s segments from other tasks i)
the system. GDT. Dependent on_the_gate type, gate descrip-
tors may be located in either the GDT, LDT or
The LDTR can be read or written by the LLDTIDT. Figure 2-8 illustrates the descriptor format
and SLDT instructions. for both Application Segment Descriptors and
System Segment Descriptors. Table 2-6 (Page
2-17) lists the corresponding bit definitions.

31 242322 21 2019 161514 131211 87 0
A
BASE 31-24 G|D|O \I{ LMIT19-16| P | DPL ITD TYPE BASE 23-16 |+4
BASE 15-0 LIMIT 150 +0

Figure 2-8. Application and System Segment Descriptors

System Register Se| 2

Table 2-6. Segment Descriptor Bit Definitions

BIT MEMORY
posITION | OFfseT | NAME DESCRIPTION
31-24 +4 BASE | Segment base address.
7-0 +4 32-bit linear address that points to the beginning of the segment.
31-16 +0
19-16 +4 LIMIT [Segment limit.
15-0 +0
23 +4 G Limit granularity bit:
0 = byte granularity, 1 = 4 KBytes (page) granularity.
22 +4 D Default length for operands and effective addresses.
Valid for code and stack segments only: 0 = 16 bit, 1 = 32-bit.
20 +4 AVL |Segment available.
15 +4 P Segment present.
14-13 +4 DPL | Descriptor privilege level.
12 +4 DT | Descriptor type:
0 = system, 1 = application.
11-8 +4 TYPE | Segment type. See Tables 2-7 and 2-8.
Table 2-7. TYPE Field Definitions with DT = 0
TYPE
(BITS 11.-8) DESCRIPTION
0001 TSS-16 descriptor, task not busy.
0010 LDT descriptor.
0011 TSS-16 descriptor, task busy.
1001 TSS-32 descriptor, task not busy
1011 TSS-32 descriptor, task busy.

——
T
Table 2-8. TYPE Field Definitions with DT = 1
TYPE

= o Trw T & APPLICATION DECRIPTOR INFORMATION
0 0 X x | data, expand up, limit is upper bound of segment
0 1 X X | data, expand down, limit is lower bound of segment
1 0 X X | executable, non-conforming
1 1 X X | executable, conforming (runs at privilege level of calling procedurg
0 X 0 X | data, non-writable
0 X 1 X | data, writable
1 X 0 X | executable, non-readable
1 X 1 X | executable, readable
X X X 0 |not-accessed
X X X 1 |accessed

et

System Register Set] 2

Gate Descriptorsprovide protection for exe- Interrupt Gate Descriptors are used to enter a
cutable segments operating at different privi- hardware interrupt service routine. Trap Gate
lege levels. Figure 2-9 illustrates the format foPescriptors are used to enter exceptions or soft-
Gate Descriptors and Table 2-9 lists the correware interrupt service routines. Trap Gate and
sponding bit definitions. Interrupt Gate Descriptors can only be located

in the IDT.
Task Gate Descriptors are used to switch the

CPU's context during a task switch. The sele€all Gate Descriptors are used to enter a proce-

tor portion of the task gate descriptor locates dure (subroutine) that executes at the same or a

Task State Segment. These descriptors can beore privileged level. A Call Gate Descriptor

located in the GDT, LDT or IDT tables. primarily defines the procedure entry point and
the procedure’s privilege level.

31 16 15 14 1312 11 87 0

OFFSET 31-16 P ‘ DPL 0 ‘ TYPE ‘ 0 ‘ 0‘ 0‘ PARAMETERS |+4

SELECTOR 15-0 OFFSET 15-0 +0

Figure 2-9 Gate Descriptor

Table 2-9. Gate Descriptor Bit Definitions

PosBllTTlorxl MOEF'\gg NAME DESCRIPTION
31-16 +4 OFFSET Offset used during a call gate to calculate the branch target.
15-0 +0
31-16 +0 SELECTOR | Segment selector used during a call gate to calculate the branch target.
15 +4 P Segment present.
14-13 +4 DPL Descriptor privilege level.
11-8 +4 TYPE Segment type:

0100 = 16-bit call gate
0101 = task gate

0110 = 16-bit interrupt gate
0111 = 16-bit trap gate
1100 = 32-bit call gate
1110 = 32-bit interrupt gate
1111 = 32-bit trap gate.

4-0 +4 PARAMETERS Number of 32-bit parameters to copy from the caller’s stack to the called
procedure’s stack (valid for calls).

=_ System Register Set
—

243 Task Register Global Descriptor Table (GDT). The contents of
the selected descriptor are cached on-chip in the

The Task Register (TR) holds a 16-bit selectopigden portion of the TR.

for the current Task State Segment (TSS) table

as shown in Figure 2-10. The TR is loaded arlduring task switching, the processor saves the cur-

stored via the LTR and STR instructions, rent CPU state in the TSS before starting a new

respectively. The TR can only be accessed dtask. The TR points to the current TSS. The TSS

ing protected mode and can only be loaded can be either a 386/488yle 32-bit TSS

when the privilege level is 0 (most privileged). (Figure 2-11, Page 2-21) or a 286-style 16-bit TSS type

When the TR is loaded, the TR selector field (Figure 2-12, Page 2-22). An lf@rmission bit

indexes a TSS descriptor that must reside in tteap is referenced in the 32-bit TSS by the I/O
Map Base Address.

SELECTOR

Figure 2-10. Task Register

2-20

System Register Set] 2

31 16 15 0
I/O MAP BASE ADDRESS 0000000OCO0O0OODODOOD |1
00000000000000OO SELECTOR FOR TASK'S LDT
0000000000OOOOOOD GS
0000000000OOOOOO FS
0000000O0O0O0OO0OQOOO)
0oo0000O0OOOOOOOOOO SS
0000O0O00O0O0O0OOCOOOD Cs
ooo000O0OO0OOOOOOOOO ES
EDI
ESI
EBP
ESP
EBX
EDX
ECX
EAX
EFLAGS
EIP
CR3
0o00000000OOOOOOD | SSforCPL=2
ESP for CPL = 2
00000000000OO0O0O0O | SSforCPL=1
ESP for CPL = 1
ooo000O0OO0OOOOOOOOO SSforCPL=10
ESPforCPL=0
0o000000O0OOOOOOOD | BACK LINK (OLD TS5 SELECTOR)
0 = RESERVED.

+64h
+60h
+5Ch
+58h
+54h
+50h
+4Ch
+48h
+44h
+40h
+3Ch
+38h
+34h
+30h
+2Ch
+28h
+24h
+20h
+1Ch
+18h
+14h
+10h
+Ch

+8h

+4h

+0h

Figure 2-11. 32-Bit Task State Segment (TSS) Table

2-21

System Register Set

SELECTOR FOR TASK'S LDT +2Ah
DS +28h
SS +26h
(&3] +24h
ES +22h
DI +20h
S| +1Eh
BP +16h
SP +1Ah
BX +18h
DX +16h
CX +14h
AX +12h
FLAGS +10h
IP +Eh
SS FOR PRIVILEGE LEVEL 2 +Ch
SP FOR PRIVILEGE LEVEL 2 +Ah
SS FOR PRIVILEGE LEVEL 1 +8h
SP FOR PRIVILEGE LEVEL 1 +6h
SS FOR PRIVILEGE LEVEL O +4h
SP FOR PRIVILEGE LEVEL O +2h
BACK LINK (OLD TSS SELECTOR) +0h

Figure 2-12. 16-Bit Task State Segment (TSS) Table

2-22

System Register Set] 2

24.4 IBM 6x86 Configuration access their registers, the remaining registers

Registers (indexes DO-FDh) are accessible only if the
MAPEN(3-0) bits in CCR3 are setto 1h. See

A set of 24 on-chip IBM 6x86 configuration Figure 2-16 (Page 2-28) for more information

registers are used to enable features in the IBMn the MAPEN(3-0) bit locations.

6x86 CPU. These registers assign non-cached

memory areas, set up SMM, provide CPU idenlf MAPEN([3-0] = 1h, any access to indexes in

tification information and control various fea- the range 00-FFh will natreate external 1/O

tures such as cache write policy, and bus ~ bus cycles. Registers with indexes CO-CFh,

|Ocking control. There are four groups of regiS_FE, FFh are accessible regardless of the state of

ters within the IBM 6x86onfiguration register MAPEN[3-0]. If the register index number is

set: outside the CO-CFh or FE-FFh ranges, and
MAPENT[3-0] are set to Oh, external /O bus
* 6 Configuration Control Registers cycles occur. Table 2-10 (Page 2-24) lists the
(CCRx) MAPENT(3-0] values required to access each
* 8 Address Region Registers (ARRX) IBM 6x86 configuration register. All bits in
¢ 8 Region Control Registers (RCRx) the configuration registers are initialized to

* 2 Device Identification Registers (DIRX) zero following reset unless specified otherwise.

Access to the configuration registers is Valid register index numbers include COh to
achieved by writing the register index number E3h, E8h, E9h, FEh and FFh
for the configuration register to I/O port 22h. (if MAPEN[3-0] = 1).

1/0 port 23h is then used for data transfer.
2441 Configuration Control

Each I/O port 23h data transfer must be pre- Registers

ceded by a valid I/O port 22h register index

selection. Otherwise, the current 22h, and thCCRO - CCR5) control several functions,
second and later I/O port 23h operations com-including non-cacheable memory, write-back
municate through the I/O port to produce exterregions, and SMM features. A list of the con-
nal I/O cycles. All reads from I/O port 22h figuration registers is listed in Table 2-10 (Page
produce external I/O cycles. Accesses that hit2-24). The configuration registers are described
within the on-chip configuration registers do in greater detail in the following pages.

not generate external 1/0 cycles.

After reset, configuration registers with
indexes CO-CFh and FE-FFh are accessible.
To prevent potential conflicts with other
devices which may use ports 22 and 23h to

2-23

T =
i
Table 2-10. 1BM 6x86" CPU Configuration Registers
REGISTER NAVE poronvw | REEITER | Wt | "ieoco ron

Configuration Control O CCRO COh 8 X
Configuration Control 1 CCR1 Cih 8 X
Configuration Control 2 CCR2 C2h 8 X
Configuration Control 3 CCR3 C3h 8 X
Configuration Control 4 CCR4 E8h 8 1
Configuration Control 5 CCR5 E9h 8 1
Address Region 0 ARRO C4h - C6h 24 X
Address Region 1 ARR1 C7h - C9h 24 X
Address Region 2 ARR2 CAh - CC 24 X
Address Region 3 ARR3 CDh - CFh 24 X
Address Region 4 ARR4 DOh - D2h 24 1
Address Region 5 ARR5 D3h - D5h 24 1
Address Region 6 ARR6 D6h - D8h 24 1
Address Region 7 ARR7 D9h - DBH 24 1
Region Control 0 RCRO DCh 8 1

Region Control 1 RCR1 DDh 8 1

Region Control 2 RCR2 DEh 8 1

Region Control 3 RCR3 DFh 8 1

Region Control 4 RCR4 EOh 8 1
Region Control 5 RCR5 Elh 8 1
Region Control 6 RCR6 E2h 8 1
Region Control 7 RCR7 E3h 8 1
Device Identification O DIRO FEh 8 X

Device Identification 1 DIR1 FFh 8 X

Note: x = Don’t Care

2-24

System Register Set] 2

7 6 5 4 3 2 1 0

‘ Reservedl Reservedl Reservedl Reservedl Reservedl Reservedl NC1 I Reserved‘

Figure 2-13. IBM 6x86' Configuration Control Register 0 (CCRO)

Table 2-11. CCRO Bit Definitions

BIT
POSITION NAME DESCRIPTION
1 NC1 No Cache 640 KByte - 1 MByte

If = 1: Address region 640 KByte to 1 MByte is non-cacheable.
If = 0: Address region 640 KByte to 1 MByte is cacheable.

Note: Bits 0, 2 though 7 are reserved.

2-25

=_ System Register Set
—

5 4 3 2 1 0

~
o

‘ SM3 I Reservedl Reservedl NO_LOCK I Reservedl SMAC I USE_SMII Reserved‘

Figure 2-14. 1BM 6x86 Configuration Control Register 1 (CCR1)

Table 2-12. CCR1 Bit Definitions

BIT

POSITION
1 USE_SMI | Enable SMM and SMIACT# Pins

If = 1: SMI# and SMIACT# pins are enabled.

If = 0: SMI# pin ignored and SMIACT# pin is driven inactive.

2 SMAC System Management Memory Access

If = 1: Any access to addresses within M address space, access system manage-

ment memory instead of main memory. SMI# input is ignored. Used when initializing

or testing SMM merory.

If = 0: No effect on access.

4 NO_LOCK | Negate LOCK#

If = 1: All bus cycles are issued with LOCK# pin negated except page table accegsses

and interrupt acknowledge cycles. Interrupt acknowledge cycles are executed ag locked

cycles even though LOCK# is negated. With NO_LOCK set, previously noncacheable

locked cycles are executed as unlocked cycles and therefore, may be cached. This

results in higher performance. Refer to Region Control Registers for informatior] on

eliminating locked CPU bus cycles only in specific address regions.

7 SM3 SMM Address Space Address Region 3

If = 1: Address Region 3 is designatedsadM address space.

NAME DESCRIPTION

Note: If USE_SMI is set then SM3 mus also be set.
Note: Bits 0, 3, 5 and 6 are reserved.

2-26

System Register Set] 2

7 6 5 4 3 2 1 0

‘ USE_SUSPI Reservedl Reservedl WPR1 I SUSP_HLTI LOCK_NWI SADS I Reserved‘

Figure 2-15. IBM 6x86 Configuration Control Register 2 CCR2)

Table 2-13. CCR2 Bit Definitions

BIT
POSITION NAME DESCRIPTION
1 SADS Slow ADS: Fonon-pipelinned back-to-back bus cycles only

If = 1: CPU inserts an idle following sampling of BRDY# and prior to asserting AQS#.
If = 0: No idle cycles are inserted between sampling of BRDY# and assertion of ADS#.

2 LOCK_NW | Lock NW
If = 1: NW bit in CRO becomes read only and the CPU ignores any writes to the NW bit.
If = 0: NW bit in CRO can be modified.

3 SUSP_HLT| Suspend on Halt
If = 1: Execution of the HLT instruction causes the CPU to enter low power suspand
mode.

4 WPR1 Write-Protect Region 1
If = 1: Designates any cacheable accesses in 640 KByte to 1 MByte address region are
write protected.

7 USE_SUSP| Use Suspend Mode (Enable Suspend Pins)
If = 1: SUSP# and SUSPA# pins are enabled.
If = 0: SUSP# pin is ignored and SUSPA# pin floats.

Note: Bits 0,1, 5 and 6 are reserved.

2-27

=——— =
= = ===
e i 1 System Register Set
T —
7 6 5 4 3 2 1 0
MAPEN | Reservedl LINBRST | NMI_EN ISMI_LOCK

Figure 2-16. IBM 6x86 Configuration Control Register 3 CCR3)

Table 2-14. CCRS3 Bit Definitions

BIT
POSITION NAME DESCRIPTION
0 SMI_LOCK SMI Lock

If = 1: The following SMM configuration bits can only be modified while in|an

SMI service routine:

CCR1: USE_SMI, SMAC, SM3

CCR3: NMI_EN

ARRS3: Starting address and block size.

Once set, the features locked by SMI_LOCK cannot be unlocked until the
RESET pin is asserted.

1 NMI_EN NMI Enable

If = 1: NMI interrupt is recognized while servicing an SMI interrupt.

NMI_EN should be set only while in SMM, after thepappriate SMI interrup

service routine has been setup.

2 LINBRST If = 1: Use linear address sequence during burst cycles.

If = 0: Use “1 + 4” address sequence during burst cycles. The “1 + 4” address

sequence is compatible with Pentium’s burst address sequence.

4-7 MAPEN MAP Enable

If = 1h: All configuration registers are accessible.

If = Oh: Only configuration registers with indexes CO-CFh, FEh and FFh

are accessible.

Note: Bit 3 is reserved.

2-28

System Register Set] 2

n of

7 6 5 4 3 2 1 0
‘ CPUID | Reserved | Reserved | DTE_EN | Reserved | IORT
Figure 2-17. IBM 6x86 Configuration Control Register 4 CCR4)
Table 2-15. CCR4 Bit Definitions
BIT
POSITION NAME DESCRIPTION
0-2 IORT I/O Recovery Time

Specifies the minimum number of bus clocks between I/0O accesses:
Oh =1 clock delay
1h = 2 clock delay
2h = 4 clock delay
3h = 8 clock delay
4h = 16 clock delay
5h = 32 clock delay (default value after RESET)
6h = 64 clock delay
7h = no delay

4 DTE_EN Enable Directory Table Entry Cache
If = 1: the Directory Table Entry cache is enabled.

7 CPUID Enable CPUID instruction.
If = 1: the ID bit in the EFLAGS register can be modified and execution of the
CPUID instruction occurs as documented in section 6.3.
If = 0: the ID bit in the EFLAGS register can not be modified and executi
the CPUID instruction causes an invalid opcode exception.

Note: Bits 3 and bits 5 and 6 are reserved.

2-29

—_——— =
- —
e i 1 System Register Set
I Y

7 6 5 4 3 2 1 0
‘ Reserved | Reserved | ARREN | LBR1 | Reservedl Reservec{ SLoP | WT_ALLOC

Figure 2-18. IBM 6x86 Configuration Control Register 5 CCR5)
Table 2-16. CCR5 Bit Definitions
BIT
POSITION NAME DESCRIPTION
0 WT_ALLOC Write-Through Allocate

If = 1: New cache lines are allocated for read and write misses.

If = 0: New cache lines are allocated only for read misses.

1 SLOP If set, the LOOP instruction is slowed down to alppagrams with poorly
written software timing loops to function correctly. If clear, t@QP instruc
tion executes in one clock.

4 LBR1 Local Bus Region 1

If = 1: LBA# pin is asserted for all accesses to the 640 KByte to 1 MByte
address region.

5 ARREN Enable ARR Registers

If = 1: Enables all ARR registers.

If = 0: Disables the ARR registers. If SM3 is set, ARR3 is enabled regargless
of the setting of ARREN.
Note: Bits 1 through 3 and 6 though 7 are reserved.

2-30

System Register Set] 2

24.42 Address Region accesses to regions defined as non-cacheable by
Registers the RCRs, the region is not cached. The RCRs

take precedence in this case.
The Address Region Registers (ARRO - ARR7)
(Figure 2-19) are used to specify the location A register index, shown in Table 2-17 (Page
and size for the eight address regions. 2-32) is used to select one of three bytes in each

ARR.
Attributes for each address region are specified

in the Region Control Registers (RCRO-RCR7)The starting address of the ARR address region,
ARR7 and RCRY7 are used to define system selected by the START ADDRESS field, must
main memory and differ from ARRO-6 and be on a block size boundary. For example, a
RCRO-6. 128 KByte block is allowed to have a starting
address of 0 KBytes, 128 KBytes, 256 KBytes,

With non-cacheable regions defined on-chip, 44 s on.

the IBM 6x86 CPU delivers optimum perfor-

mance by using advanced techniques to elimirhe S|ZE field bit definition is listed in (Page
nate data dependencies and resource conflict®irg2). |f the SIZE field is zero, the address
its execution pipe|ir‘|es. If KEN# is active for region is of zero size and thus disabled.

START ADDRESS SIZE
Memory Address Memory Address Memory Address Size Bits
Bits A31-A24 Bits A23-A16 Bits A15-A12 3-0
7 07 07 43

Figure 2-19. Address Region Registers (ARRO - ARR7)

2-31

M
A
—
Table 2-17. ARRO - ARR7 Register Index Assignments
ARR Memory Address Memory Address Memory Address Address Region
Register (A31 - A24) (A23 - A16) (A15 - A12) Size (3-0)
ARRO C4h C5h C6h C6h
ARR1 C7h C8h C9h C%h
ARR2 CAh CBh CCh CCh
ARR3 CDh CEh CFh CFh
ARR4 DOh Dih D2h D2h
ARR5 D3h D4h D5h D5h
ARRG6 D6h D7h D8h D8h
ARR7 D9h DAh DBh DBh
Table 2-18. Bit Definitions for SIZE Field
SIZE (3.0) BLOCK SIZE SIZE (3:0) BLOCK SIZE
ARRO0-6 ARR7 ARRO0-6 ARR7
Oh Disabled Disabled 8h 512 KBytes 32 MByteq
1h 4 KBytes 256 KBytes 9h 1 MBytes 64 MBytes
2h 8 KBytes 512 KBytes Ah 2 MBytes 128 MByte$
3h 16 KBytes 1 MBytes Bh 4 MBytes 256 MByte$
4h 32 KBytes 2 MBytes Ch 8 MBytes 512 MBytes
5h 64 KBytes 4 MBytes Dh 16 MBytes 1 GBytes
6h 128 KBytes | 8 MBytes Eh 32 MBytes 2 GBytes
7h 256 KBytes | 16 MBytes Fh 4 GBytes 4 GBytes

2-32

System Register Set] 2

24.4.3 Region Control Overlapping Conditions Defined. If two
Registers regions specified by ARRX registers overlap

_ _ and conflicting attributes are specified, the fol-
The Region Control Registers (RCRO - RCR7)lowing attributes take precedence:
specify the attributes associated with the ARRx

address regions. The bit definitions for the e LBA# pin is asserted
region control registers are shown in Figure * The overlapping regions are
2-20 (Page 2-34) and in Table 2-19 (Page non-cacheable.

2-34). Cacheability, weak write ordering, weak e« Write-back is disabled

locking, write gathering, cache write policies * Writes are not gathered

and control of the LBA# pin can be activated or * Strong locking takes place
deactivated using the attribute bits. * Strong write ordering takes place

Ifan address is accessed that is notin a memory
region defined by the ARRX registers, the fol-
lowing conditions will apply:

e LBA# pin is asserted

* The memory access is cached, if KEN# is
returned asserted.

* If the memory address is cached,
write-back is enabled if WB/WT# is
returned high.

* Writes are not gathered

* Strong locking takes place

* Strong write ordering takes place

2-33

System Register Set

~
o

5 4 3 2 1 0

IReservedl Reservedl NLB | wT | WG | WL | WWO IRCD/RCE*

*Note: RCD is defined foRCR0O-RCR6. RCE is defined for RCR7.

Figure 2-20. Region Control RegistersRCR0-RCR?7)

Table 2-19. RCR0-RCR?7 Bit Definitions

RCRx PosBllTTlor\J NAME DESCRIPTION
0-6 0 RCD If = 1: Disables caching for address region specified by ARRx.
7 0 RCE If = 1: Enables caching for address region ARR7.
0-7 1 WWO If = 1: Weak write ordering for address region specified by ARRX.
0-7 2 WL If = 1: Weak locking for address region specified by ARRX.
0-7 3 WG If = 1: Write gathering for address region specified by ARRX.
0-7 4 WT If = 1: Address region specified by ARRX is write-through.
0-7 5 NLB If = 1:LBA# pin is not asserted for access to address region specified by|ARRx

Note: Bits 6 and 7 are reserved.

Region Cache Disable (RCD).Setting Therefore, this should only be enabled for mem-
RCD to a one defines the address region asory regions that are NOT sensitive to this condi-
non-cacheable. Whenever possible, the tion. WWO should not be enabled for memory
RCRs should be used to define non-cache- mapped I/0. WWO only applies to memory
able regions rather than using external regions that have been cached and designated as
address decoding and driving the KEN# pin. write-back. It also applies to previously cached
addresses even if the cache has been disabled

Region Cache Enable (RCE)Setting RCE (cp=1). Enabling WWO removes the
to a one defines the address region as cach@ite-ordering restriction and improves perfor-
able. RCE is used to define the system maifmance due to reduced pipeline stalls.
memory as cacheable memory. Itis implied
that memory outside the region is non-cacheWeak Locking (WL). Setting WL=1 enables
able. weak locking for that address region. With WL

))) enabled, all bus cycles are issued with the LOCK#
Weak Write Ordering (WWO). Setting pin negated except for page table accesses and
WWO=1 enables weak write ordering for interrupt acknowledge cycles. Interrupt acknowl-
that address region. Enabling WWO allows edge cycles are executed as locked cycles even
the IBM 6x86 CPU to issue writes in its though LOCK# is negated. With WL=1, previ-
internal cache in an order different than their gysly non-cacheable locked cycles are executed
order in the code stream. External writes a5 unlocked cycles and therefore, may be cached,
always occur in order (strong ordering). resulting in higher performance. The NO_LOCK

2-34

System Register Set] 2

bit of CCR1 enables weak locking for the entir&®/G should_ nobe used on memory regions that
address space. The WL bit allows weak lockinare sensitive to write cycle gathering. WG can
only for specific address regions. WL is inde-be enabled for both cacheable and

pendent of the cacheability of the address non-cacheable regions.

region.

J Write Through (WT). Setting WT=1 defines
Write Gathering (WG). Setting WG=1 the address region as write-through instead of
enables write gathering for the associated write-back, assuming the region is cacheable.
address region. Write gathering allows multipl®egions where system ROM are loaded (shad-
byte, word, or dword sequential address writeswed or not) should be defined as
to accumulate in the on-chip write buffer. (Aswrite-through.
instructions are executed, the results are placed
in a series of output buffers. These buffers aréBA# Not Asserted (NLB). Setting NLB=1
gathered into the finial output buffer). prevents the microprocessor from asserting the

Local Bus Access (LBA#) output pin for
When access is made to a non-sequential meseesses to that address region. The RCR
ory location or when the 8-byte buffer becomesegions may be used to define non-local bus
full, the contents of the buffer are written on thaddress regions. The LBA# pin could then be
external 64-bit data bus. Performance is asserted for all regions, except those defined by
enhanced by avoiding as many as seven merthe RCRs. The LBA# signal may be used by the
ory write cycles. external hardware (e.g., chipsets) as an indica-
tion that local bus accesses are occurring.

2-35

=_ System Register Set
—

24.4.4 Device Identification Registers

The Device Identification Registers (DIRO, DIR1) contain CPU identification, CPU stepping and
CPU revision information. Bit definitions are shown in Figure 2-21, Table 2-20, Figure 2-22 and
Table 2-21 respectively. Data in these registers cannot be changed. These registers can be read by
using I/O ports 22 and 23. The register index for DIRO is FEh and the register index for DIR1 is FFh.

7 0
| DEVID |

Figure 2-21. Device Identification Register 0 (DIRO)

Table 2-20. DIRO Bit Definitions

BIT
POSITION

7-0 DEVID | CPU Device Identification Number (read only).

NAME DESCRIPTION

7 4 3 0
| SID I RID |

Figure 2-22. Device Identification Register 1 (DIR1)

Table 2-21. DIR1 Bit Definitions

BIT
POSITION NAME DESCRIPTION

7-4 SID CPU Step Identification Number (read only).

3-0 RID CPU Reuvision Identification (read only).

2-36

System Register Set] 2

245 Debug Registers The Debug Address Registers (DR0-DR3) each
contain the linear address for one of four possi-

Six debug registers (DR0-DR3, DR6 and DR7)le breakpoints. Each breakpoint is further

shown in Figure 2-23, support debugging on thepecified by bits in the Debug Control Register

IBM 6x86 CPU. The bit definitions for the (DR7). For each breakpoint address in

debug registers are listed in Table 2-22 (PageDR0-DR3, there are corresponding fields L,

2-38). R/W, and LEN in DR7 that specify the type of

) ~ memory access associated with the breakpoint.
Memory addresses loaded in the debug regis-

ters, referred to as “breakpoints”, generate a The R/W field can be used to specify instruction

debug exception when a memory access of thgecution as well as data access breakpoints.

specified type occurs to the specified addressinstruction execution breakpoints are always

A data breakpoint can be specified for a parti¢aken before execution of the instruction that

ular kind of memory access such as a read ongatches the breakpoint.

write. Code breakpoints can also be set allow-

ing debug exceptions to occur whenever a givaérhe Debug Status Register (DR6) reflects con-

code access (execution) occurs. ditions that were in effect at the time the debug
exception occurred. The contents of the DR6

The size of the debug target can be setto 1, 2,refister are not automatically cleared by the

4 bytes. The debug registers are accessed Vigrocessor after a debug exception occurs and,

MOV instructions which can be executed onlytherefore, should be cleared by software at the

at privilege level 0. appropriate time.

133832222 383333111000breresasano

[[e g 0 0 G088 8] B8 IS 8 o

ocooooooooooo0o0o00o0 B Biojor] BIBIBIBIp
BREAKPOINT 3 LINEAR ADDRESS DR3
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 1 LINEAR ADDRESS DR
BREAKPOINT O LINEAR ADDRESS DRO

ALL BITS MARKED AS 0 OR 1 ARE RESERVED AND SHOULD NOT BE MODIFIED.

Figure 2-23. Debug Registers

2-37

=_ System Register Set
—

Code execution breakpoints may also be generated by placing the breakpoint instruction (INT 3) at
the location where control is to be regained. Additionally, the single-step feature may be enabled
by setting the TF flag in the EFLAGS register. This causes the processor to perform a debug excep-
tion after the execution of every instruction.

Table 2-22. DR6 and DR7 Debug Register Field Definitions

NUMBER
REGISTER | FIELD OF BITS DESCRIPTION
DR6 Bi 1 Bi is set by the processor if the conditions described by DRi, R/\Vi,

and LENi occurred when the debug exception occurred, even if the
breakpoint is not enabled via the Gi or Li bits.

BT 1 BT is set by the processor before entering the debug handler if & task
switch has occurred to a task with the T bit in the TSS set.

BS 1 BS is set by the processor if the debug exception was triggered py the
single-step execution mode (TF flag in EFLAGS set).

DR7 R/Wi 2 Specifies type of break for the linear address in DRO, DR1, DR3,

DR4:
00 - Break on instruction execution only
01 - Break on data writes only
10 - Not used
11 - Break on data reads or writes.

LENi 2 Specifies length of the linear address in DRO, DR1, DR3, DR4:
00 - One byte length
01 - Two byte length
10 - Not used
11 - Four byte length.

Gi 1 If set to a 1, breakpoint in DRi is globally enabled for all tasks and is
not cleared by the processor as the result of a task switch.

Li 1 If set to a 1, breakpoint in DRi is locally enabled for the current task
and is cleared by the processor as the result of a task switch.

GD 1 Global disable of debug register access. GD bit is cleared whenever a
debug exception occurs.

2-38

System Register Set] 2

2.4.6 Test Registers

The test registers can be used to test the on-chip
unified cache and to test the main TLB. The test
registers are also used to enable IBM 6x86 CPU
variable-size paging.

Test registers TR3, TR4, and TR5 are used to
test the unified cache. Use of these registers is
described with the memory caches later in this
chapter in Section 2.7.1.1.

Test registers TR6 and TR7 are used to test the
TLB. Use of these test registers is described in
Section 2.6.4.2.

2-39

Address Space

25 Address Space memory space can be accessed using byte,
word (16 bits), or doubleword (32 bits) format.
The IBM 6x86 CPU can directly address 64words and doublewords are stored in consecu-
KBytes of I/O space and 4 GBytes of physicalve memory bytes with the low-order byte
memory (Figure 2-24). located in the lowest address. The physical

address of a word or doubleword is the byte
Memory Address Space. Access canbe g4dress of the low-order byte.

made to memory addresses between
0000 0000h and FFFF FFh. This 4 GByte

Physical
Memory Space
/O Address Space
FFFF FFFFh FFFF FFFFh
Physlcal Memory A Norlbl
4 Ghyles ccessble
IBM 6x86
0000 FEFFh Configuration
Reglster /O
64 KBytes Space
0000 0023h
0000 000Ch 0000 000Ch <4— (0000 0022h

Figure 2-24. Memory and I/O Address Spaces

2-40

Memory Addressing Methods 2

1/0O Address Space 2.6 Memory Addressing

) Methods
The IBM 6x86 1/0 address space is accessed

using IN and OUT instructions to addresses \ith the IBM 6x86 CPU, memory can be
referred to as “ports”. The accessible /O addressed using nine different addressing
address space size is 64 KBytes and can be modes (Table 2-23, Page 2-42). These
accessed through 8-bit, 16-bit or 32-bit ports. addressing modes are used to calculate an
The execution of any IN or OUT instruction offset address often referred to as an effective
causes the M/IO# plr‘l to be driVen |OW, therebyaddressl Depending on the operating mode of
selecting the I/O space instead of memory the CPU, the offset is then combined using
space. memory management mechanisms to create a
physical address that actually addresses the

The accessible 1/0 address space ranges . :
Iﬁ)hyswal memory devices.

between locations 0000 0000h and 0000 FFFF

(64 KBytes). The I/O locations (ports) 22h and Memory management mechanisms on the IBM

23h can be used to access the IBM 6x86 gx86 CPU consist of segmentation and paging.

configuration registers. Segmentation allows each program to use
several independent, protected address
spaces. Paging supports a memory subsystem
that simulates a large address space using a
small amount of RAM and disk storage for
physical memory. Either or both of these
mechanisms can be used for management of
the IBM 6x86 CPU memory address space.

2-41

Memory Addressing Methods

Offset Mechanism

26.1

The offset mechanism computes an offset
(effective) address by adding together one or
more of three values: a base, an index and a
displacement. When present, the base is the|
value of one of the eight 32-bit general regis-
ters. The index if present, like the base, is a
value that is in one of the eight 32-bit general
purpose registers (not including the ESP
register). The index differs from the base in
that the index is first multiplied by a scale
factor of 1, 2, 4 or 8 before the summation is
made. The third component added to the
memory address calculation is the displace-
ment. The displacement is a value of up to
32-bits in length supplied as part of the instruc
tion. Figure 2-25 illustrates the calculation of
the offset address.

Index

Base Displacement

Scaling
x1, x2, x4, x8

Offset Address
(Effective Address)

Figure 2-25. Offset Address Calculation

Nine valid combinations of the base, index,
scale factor and displacement can be used with
the IBM 6x86 CPU instruction set. These
combinations are listed in Table 2-23. The
base and index both refer to contents of a
register as indicated by [Base] and [Index].

Table 2-23. MemoryAddressing Modes

ADDNFlzoEsslNG BAsE | INDEX Fifci"?i DISPL/(\E?PE)MENT OFF§EICAUDLZF;|EOSI\SI (OA)
Direct X OA =DP
Register Indirect X OA = [BASE]
Based X X OA = [BASE] + DP
Index X X OA =[INDEX] + DP
Scaled Index X X X OA = ([INDEX] * SF) + DP
Based Index X X OA = [BASE] + [INDEX]
Based Scaled Index X X X OA = [BASE] + ([INDEX] * SF)
Based Index with X X X OA = [BASE] + [INDEX] + DP
Displacement
Based Scaled Index with x X X X OA = [BASE] + ([INDEX] * SF) + DP
Displacement

2-42

Memory Addressing Methods 2

2.6.2 Memory Protected Mode Memory Addressing

Addressing
In protected mode three mechanisms calculate a

Real Mode Memory Addressing physical memory address (Figure 2-27, Page 2-44).

In real mode operation, the IBM 6x86 CPU * Offset Mechanismthat produces the
only addresses the lowest 1 MByte of memory. Offset or effective address as in real mode.
To calculate a physical memory address, the * Selector Mechanismthat produces the

16-bit segment base address located in the base address. _
selected segment register is multiplied by 16 * Optlona_IPaglng Mechanismthat trans-
and then the 16-bit offset address is added. lates a linear address to the physical

The resulting 20-bit address is then extended. ~ memory address.
Three hexadecimal zeros are added as upper,
address bits to create the 32-bit physical addresne offset and base address are added together

Figure 2-26 illustrates the real mode address 0 Produce the linear address. If paging is not
calculation. enabled, the linear address is used as the phys-

ical memory address. If paging is enabled, the
The addition of the base address and the offspaging mechanism is used to translate the
address may result in a carry. Therefore, thelinear address into the physical address. The
resulting address may actually contain up to 2affset mechanism is described earlier in this
significant address bits that can address section and applies to both real and protected
memory in the first 64 KBytes above 1 MBytemode. The selector and paging mechanisms
are described in the following paragraphs.

Offset Address 16 12

20 32 Linear Address
7 7 (Physical Address)

Selected Segment 16 20

Offset Mechanism

Figure 2-26. Real Mode Address Calculation

2-43

—— — —
I S S
— e — —
F— ;
e ——— Memory Addressing Methods
I T Y
s
Offset Mechanism 2 i
Linear
()t [opna |2, T
Segl Paging Mechanism Address

ment
@ Base
Selector Mechanism ‘/Add—ressT

Figure 2-27. Protected ModeéAddress Calculation

2.6.3 Selector Mechanism the base address, limit, and attributes of the

)) o) selected segment and is cached on the IBM
Using segmentation, memory is divided into agyge CPU as a result of loading the selector.
arbitrary number of segments, each containinghe cached descriptor contents are not visible
usually much less than thé%byte (4 GByte) 1o the programmer. When a memory reference
maximum. occurs in protected mode, the linear address is

The six segment egisters (CS, DS, S5, ES, G Y 20t e e ater 1o
and GS) each contain a 16-bit selector that is

: . the offset address. If paging is not enabled,
used when the register is loaded to locatea ., .~ . . :
. o this linear address is used as the physical
segment descriptor in either the global

descriptor table (GDT) or the local descriptor (r)neerp;iré/nag?trﬁ:ss.ellz(g:]ttérrerﬁ;ﬁ;rl#;t;ates the
table (LDT). The segment descriptor defines P ‘

SELECTOR LOAD INSTRUCTION SEGMENT REGISTER
SELECTED BY DECODED
selector 16 o) INSTRUCTION
In Segment INDEX T |RPL
Register
Segment
Register
Identification
.| Segment l
» Descriptor v
TI=0 Segment
) Register
Global Descriptor © . Segment
» Fileand —»
Table {' Descriptor Base Address
TI=1 Cache
.| Segment
”| Descliptor [

Local Descriptor
Table

Figure 2-28. Selector Mechanism

2-44

Memory Addressing Methods 2

2.6.4 Paging Mechanisms size and are aligned on 4-KByte boundaries.
_ _ _ Each entry in these tables is 32 bits in length.
The paging mechanisms (Figure 2-29) trans- The fields within the entries are detailed in

late linear addresses to their corresponding Figure 2-31 (Page 2-46) and Table 2-24 (Page
physical addresses. For traditional paging, thQ-47)_

page size is always 4 KBytes. If IBM 6x86

Variable-Size Paging is selected, a page size A single page directory table can address up to
may be as large as 4 GBytes. Use of larger 4 GBytes of virtual memory (1,024 page

page sizes allows large memory areas such at@bles—each table can select 1,024 pages and
video memory to be placed in a single page, €ach page contains 4 KBytes).

eliminating page table thrashing. Translation Lookaside Buffer (TLB) is made

Paging is activated when the PG and the PE up of three caches (Figure 2-30, Page 2-46).

bits within the CRO ist t.
'S Within the register are se » the DTE Cache caches directory table

26.4.1 Traditional Paging entries
Mechanism » the Main TLB caches page tables entries
 the Victim TLB stores PTEs that have
The traditional paging mechanism translates been evicted from the Main TLB

the 20 most significant bits of a linear address
to a physical address. The linear address is The DTE cache is a 4-entry fully associative

divided into three fields DTI, PTI, PFO cache, the main TLB is a 128-entry direct
(Figure 2-30, Page 2-46). These fields respecmapped cache and the victim TLB is an
tively select: 8-entry fully associative cache.The DTE cache
)) caches the four most recent DTEs so that
* an entry in the directory table, future TLB misses only require a single page
* anentry in the page table selected by thegpe read to calculate the physical address.
directory table _ The DTE cache is disabled following RESET
* the offset in the physical page selected byynq is enabled by setting the DTE_EN bit
the page table (CCR4 bitd). -

The directory table and all the page tables can
be considered as pages as they are 4-KBytes in

Variable-Size
Paging Mechanism —©

Linear Address I’ Physical Adafess
Traditional Paging

Mechanism

Figure 2-29. Paging Mechanisms

2-45

——
I
-— -
1 .
i e B Memory Addressing Methods
I T Y
Linear
Address + + +
1 22 21 12 11 Q
Directory Table Index Page Table Index Page Frame Offset
[(>21)] PTI) (PFO)
127
Main TLB
128 Enty 4Gb
Direct Mapped
3 0
DTE Cache
4 Entry \ 4
Fully Associative — 7
Victim TLB
Y _’ 8 Entry
Fully Associative
4Kb Kb 4 Kb
Physical Page
L DTE . o PTE
0
CR3 - 0 A | 0
Directory Table Page Table Memory
Control |
Register External Memory
Figure 2-30. Traditional Paging Mechanism
31 12 11 10 9 8 7 6 5 4 3 2 1 0
P|P|lU|W
BASE ADDRESS AVAILABLE RESERVED| D | A 8 V_I_/ é Il? P

2-46

Note: In DTE format, bit 6 is reserved

Figure 2-31. Directory and Page Table Entry (DTE and PTE) Format

Memory Addressing Methods 2

Table 2-24. Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT POSITION FIELD NAME DESCRIPTION
31-12 BASE Specifies the base address of the page or page table.
ADDRESS
11-9 - Undefined and available to the programmer.
8-7 - Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the page (P[TE
only, undefined in DTE).

5 A Accessed Flag. If set, indicates that a read access or write access has gccurred
to the page.

4 PCD Page Caching Disable Flag. If set, indicates that the page is not cachegble in
the on-chip cache.

3 PWT Page Write-Through Flag. If set, indicates that writes to the page or page tables
that hit in the on-chip cache must update both the cache and external m¢mory.

2 u/s User/Supervisor Attribute. If set (user), page is accessible at privilege lgvel 3.
If clear (supervisor), page is accessible only when €RL

1 WI/R Write/Read Attribute. If set (write), page is writable. If clear (read), page is
read only.

0 P Present Flag. If set, indicates that the page is present in RAM memory, [and
validates the remaining DTE/PTE bits. If clear, indicates that the page ig not
present in memory and the remaining DTE/PTE bits can be used by the
programmer.

For a TLB hit, the TLB eliminates accesses to is flushed whenever the CR3 register is loaded.
external directory and page tables. A particular page can be flushed from the TLB

o) by using the INVLPG instruction. This instruc-
The victim TLB increases the apparent associa-tjon also flushes the entire DTE cache.

tivity of the main TLB and helps eliminate TLB

trashing (unproductive TLB management). 2.6.4.2 Translation Lookaside

When an entry in the main TLB is replaced, a Buffer Testing

copy of the replaced entry is sent to the victim

TLB before the entry in the main TLB is over- The TLB can be tested by writing to a main TLB

written. If the victim TLB receives a hit, its followed by performing a TLB lookup (TLB

entry is swapped with a main TLB entry. read) to see if the expected contents are within
the TLB. TLB test operations are performed

The TLB must be flushed by the software whenysing test register TR6 and TR7 shown in

entries in the page tables are changed. The TLEsigure 2-32 (Page 2-48). Tables 2-25 through
2-27 list the bit definitions for TR6 and TR7.

2-47

Memory Addressing Methods

Main TLB Write . To perform a direct write to from the victim TLB or from the variable-size
a main TLB entry, the TR7 register is config- paging mechanism.

ured with the desired physical address as well . . .

as the PCD and PWT bits. The BI, HV, HD andTh_e TLB lookup |n_volves a single TR6 register
HB bits are not used. The TR6 register is thenVIte- The CMD bits are set to Ox1. The D U,
configured with the linear address, D, U, WandW’ D#, U# and W# bits are not used during
V bits. The D, U, and W bits must be comple-TLB lookups.

ments of the D#, U#, and W# bits during @ after a TLB lookup, the HV, HD and HB bits
write. When the TRG register is conﬂgured_, thein TR7 indicate which (if any) PTEs were
IBM 6x86 CPU writes the linear and physical fo,ng with the requested linear address. If a
address into the main TLB along with the A, D, 1| B entry was found for a PTE in the victim or
U, and W bits. The main TLB entry is selected, g igple size-paging cache, the Bl bit in the

by bits 12 through 18 of the linear address fieldyg 7 register will contain the index of the par-

TLB Lookup . During a TLB lookup, the IBM ticular entry. If multlpl_e entries r_espond, only
6x86 CPU queries t%e TLB with apgiven linear the HV, HD and_ HB bits are valid and all TR7
address and expected A, W, U and D values. fields are undefined.

The query returns a corresponding physical

address, and the source of the address. The

address source could be from the main TLB,

’ ADR7 (PHYSICAL ADDRESS / BC MASK) IPCD‘PWT’ BI | | HV| HD | HB | ‘TR7
31 1211 10 9 8 7 6 5 4 3 2 1 O

’ ADRG6 (LINEAR ADDRESS) | \% | D ID#I U | U#l w IW#I A | A | CMD ‘TRG
31 1211 10 9 8 7 6 5 4 3 2 1 O

[[= Reserved

Figure 2-32. TLB Test Registers

2-48

Memory Addressing Methods 2

Table 2-25.

TLB Test Register Bit Definitions

REGISTER
NAME

NAME

RANGE

DESCRIPTION

TR7

ADR7

31-12

Physical address or variable page size mechanism m
TLB lookup: data field from the TLB.
TLB write: data field written into the TLB.

PCD

11

Page-level cache disable bit (PCD).
Corresponds to the PCD bit of a page table entry.

PWT

10

Page-level cache write-through bit (PWT).
Corresponds to the PWT bit of a page table entry.

Bl

9-7

Cell index for victim TLB and block cache operations.

HV

Victim TLB hit.

HD

Main TLB hit.

HB

Variable-Size Paging Mechanism hit.

TR6

ADRG6

31-12

Linear Address.
TLB lookup: The TLB is interrogated per this address|
one and only one match occurs in the TLB, the rest of]
fields in TR6 and TR7 are updated per the matching T]|
entry.
TLB write: A TLB entry is allocated to this linear addre:

11

PTE Valid.
TLB write: If set, indicates that the TLB entry containg
valid data. If clear, target entry is invalidated.

10-9

Dirty Attribute Bit and its complement.
Refer to Table 2-26., Page 2-50.

8-7

User/Supervisor Attribute Bit and its complement.
Refer to Table 2-26., Page 2-50.

6-5

Write Protect bit and its complement.
Refer to Table 2-26., Page 2-50.

4-3

Accessed Bit and its complement.
Used for block cache entries only.
Refer to Table 2-26., Page 2-50.

CMD

2-0

Array Command Select.
Determines TLB array command.

Refer to Table 2-27, Page 2-50.

ask.

If
the
LB

o

2-49

2-50

=_—= Memory Addressing Methods
- -
Table 2-26. TR6 Attribute Bit Pairs
BIT BIT# EFFECT ON TLB LOOKUP EFFECT ON TLB WRITE

0 0 Do not match. Undefined.

0 1 If bit = 0, match. Bit is cleared.

1 0 If bit = 1, match. The bit is set.

1 1 If bit = 0 or 1, match. Undefined.

Note: “BIT” applies to A, D, U or W fields in TR6; “BIT#" applies to A#, D#, U#, or W# fields in TR6.

Table 2-27. TR6 Command Bits

CMD Command

0x0 | Direct write to main TLB.

0x1 | TLB lookup for a linear address in all arrays.

100 | Write to variable page size mask only.

110 | Write to variable page size linear and physical address fields
101 | Read variable page size mask and linear address.

111 | Read variable page size cache physical and linear address.

Note: x = don’t care

Memory Addressing Methods 2

2.6.5 Variable-Size Configuring Variable-Size PagesThe VSPM
Paging Mechanism is configured using TLB test registers, TR6 and
TR7 (These registers are also used to test the
The Variable-Size Paging Mechanism TLB). The VSPM configuration is performed
(VSPM) is an advanced alternative to in much the same manner as when writing to a

traditional paging. As shown in Figure 2-33, line of the TLB (Refer to Section 2.6.4.2.).
VSPM allows the creation of pages ranging inThe major exception to this, is that a mask field

size from 4 KBytes to 4 GBytes. The larger s written to the VSPM as part of the VSPM
page size nearly eliminates page table thrashiggnfiguration.

associated with using multiple 4-KByte pages.
The physical address, linear address, valid bit

For example, paging 1 MByte of memory and attribute bits in a main TLB write all have

requires 256 4-KByte pages using traditional the same meaning as in a main TLB read except

paging. The software not only incurs overheaghat CMD=110. The Bl field is used to select the

during setting up the 256 pages, but also incuxgspPM cell to be written.

additional overhead accessing the page tables

each time a page is not found in the on-chip A VSPM mask setup operation is performed

TLB. In contrast, a single 1-MByte page when CMD=100 and a test register write is per-

virtually eliminates the overhead. formed. During a VSPM mask setup, the TR7
address field is used as the mask field. The mask
field selectively masks linear address bits 31-12
from the VSPM tag compare. This has the
effect of allowing the VSPM to map pages
greater than 4 KBytes.

Linear
Address 4 GByte

Variable-Size Paging Mechanism

<4 GByte

Physical Page
Physical 4 9

Address 0

Memory

Figure 2-33. Variable-Sze Paging Mechanism

2-51

==5E
After a VSPM mask setup, the valid bit, 271 Unified Cache
attribute bits, and the linear address are left in MESI States

undefined states. Therefore, the VSPM mask

setup should be performed prior to other vspmT he unified cache lines are assigned one of four
operations. MESI states as determined by MESI bits stored

in tag memory. Each 32-byte cache line is
Unlike the victim and main TLBs, the VSPM divided into two 16-byte sectors. Each sector
operations make use of the accessed bit. DuringPntains its own MESI bits. The four MESI
a VSPM mask or physical address write the A states are described below:

and A# fields are written to the VSPM. Modified MESI cache lines are those that have

VSPM Reads VSPM reads are performed with Peen updated by the CPU, but the corre-

the address of the entry to be read in the Bl fiel@Ponding main memory location has not yet
of the TR7 register and with CMD=111. The Peen updated by an external write cycle. Modi-
entry’s and physical address is read into the TRB€d cache lines are referred to as dirty cache
and TR7 address fields as well as the valid bit/INes-

and attribute bits. ExclusiveMESI lines are lines that are exclu-

sive to the IBM 6x86 CPU and are not dupli-
cated within another caching agent’s cache
within the same system. A write to this cache
line may be performed without issuing an
external write cycle.

If CMD=101, the linear address, mask, valid bit
and attribute bits are read.

2.7 Memory Caches

The IBM 6x86 CPU contains two memory
caches as described in Chapter 1. The Unified
Cache acts the primary data cache, and
secondary instruction cache. The Instruction
Line Cache is the primary instruction cache an
provides a high speed instruction stream for thénvalid MESI lines are cache lines that do not
Integer Unit. contain any valid data.

SharedMES! lines may be present in another
caching agent’s cache within the same system.
A write to this cache line forces a corresponding
dexternal write cycle.

The unified cache is dual-ported allowing
simultaneous access to any two unique banks.
Two different banks may be accessed at the
same time permitting any two of the following
operations to occur in parallel:

* Code fetch
» Dataread (X pipe, Y pipe or FPU)
» Data write (X pipe, Y pipe or FPU).

2-52

Memory Caches 2

27.11 Unified Cache Testing line tag. The remaining address bits are used
to identify the specific 32-byte cache line

The unified cache can be tested through the (A11-A5), and the specific 4-byte entry within
use of TR3, TR4, and TR5 on-chip test regis-the cache line (A4-A2).

ters. Fields within these test registers identify o _ o
which area of the cache will be selected for ~ Test Initiation. A test register operation is

testing. initiated by writing to the TR5 register shown
in Figure 2-35 (Page 2-54) using a special
Cache Organization The unified cache MOV instruction. The TR5 CTL field,

(Figure 2-34) is divided into 32-bytes lines. detailed in Table 2-28 (Page 2-54), determines
This cache is divided into four sets. Since a sethe function to be performed. For cache

(as well as the cache) is smaller than main writes, the registers TR4 and TR3 must be
memory, each line in the set corresponds to initialized before a write is made to TR5. Eight
more than one line in main memory. When a 4-byte accesses are required to access a
cache line is allocated, bits A31-A12 of the complete cache line.

main memory address are stored in the cache

« 32 Bytes of Data »
SETO 128 Lines
SET 1
512 Lines
SET 2
SET 3
v
< Upper Sector ———p»|———— Lower Sector ———p»| Typical
Single
ENT ‘ ENT ‘ ENT ‘ ENT ENT ‘ ENT ‘ ENT ‘ ENT Line
ENT = 4-byte entry

Figure 2-34. Unified Cache

2-53

—_——
i —
= == =ST= Memory Caches
Y
| I SET ‘ LINE I ENT ’ CTL ‘TRS
31 1312 11 10 9 8 7 6 5 4 3 2 1 0
I TAG (CACHE TAG ADDRESS) I l MESIU’ MESIL ’ MRU ‘TR4
31 12 11 10 9 8 7 6 5 4 3 2 1 0
I DATA (CACHE DATA) ‘ TR3
31
[J= Reserved
Figure 2-35. Cache Test Registers
Table 2-28. Cache Test Register Bit Definitions
REGISTER | FIELD
NAME NAME RANGE DESCRIPTION
TR5 SET 13-12 | Cache set selection (one of four “sets”).
LINE 11-5 | Cache line selection (one of 128 lines).
ENT 4-2 Entry selection (one of eight 4-byte entries in a line).
CTL 1-0 Control field

If = 00: flush cache without invalidate

If = 01: write cache

If = 10: read cache

If = 11: no cache or test register modification

TR4 TAG 31-12 | Physical address for selected line
MESIU 7-6 If = 00, Modified Upper Sector MESI bits
If = 01, Shared Upper Sector MESI bits

If = 10, Exclusive Upper Sector MESI bits
If = 11, Invalid Upper Sector MESI bits*

MESIL 5-4 If = 00, Modified Lower Sector MESI bits
If = 01, Shared Lower Sector MESI bits
If = 10, Exclusive Lower Sector MESI bits
If = 11, Invalid Lower Sector MESI bits*

MRU 3-0 Used to determine the Least Recently Used (LRU) line.
TR3 DATA 31-0 | Data written or read during a cache test.
*Note: All 32 bytes should contain valid data before a line is marked as valid.

2-54

Interrupts and Exceptions 2

Write Operations. During a write, the TR3 281 Interrupts

DATA (32-bits) and TAG field information is

written to the address selected by the SET, External events can interrupt normal program
LINE, and ENT fields in TR5. execution by using one of the three interrupt

pins on the IBM 6x86 CPU.
Read Operations During a read, the cache

address selected by the SET, LINE and ENT * Non-maskable Interrupt (NMI pin)
fields in TR5 are used to read data into the TR3 * Maskable Interrupt (INTR pin)
DATA (32-bits) field. The TAG, MESI and * SMM Interrupt (SMI# pin).

MRU fields in TR4 are updated with the infor-
mation from the selected line. TR3 holds the
selected read data.

For most interrupts, program transfer to the
interrupt routine occurs after the current
instruction has been completed. When the
Cache Flushing A cache flush occurs during €Xecution returns to the original program, it begins
a TR5 write if the CTL field is set to zero. immediately following the last completed instruc-
During flushing, the CPU’s cache controller o

reads through all the lines in the cache. “Modi-W
fied” lines are redefined as “shared” by setting
the shared MESI bit. Clean lines are left in
their original state.

ith the exception of string operations, inter-
rupts are acknowledged between instructions.
Long string operations have interrupt windows
between memory moves that allow interrupts

28 Interrupts and to be acknowledged.

Exceptions TheNMl interrupt cannot be masked by

software and always uses interrupt vector 2 to
locate its service routine. Since the interrupt
vector is fixed and is supplied internally, no
interrupt acknowledge bus cycles are
performed. This interrupt is normally reserved
for unusual situations such as parity errors and
has priority over INTR interrupts.

The processing of either an interrupt or an
exception changes the normal sequential flow
of a program by transferring program control
to a selected service routine. Except for SMM
interrupts, the location of the selected service
routine is determined by one of the interrupt
vectors stored in the interrupt descriptor table.

Once NMI processing has started, no addi-
tional NMIs are processed until an IRET
instruction is executed, typically at the end of
the NMI service routine. If NMI is re-asserted
prior to execution of the IRET instruction, one
and only one NMI rising edge is stored and
processed after execution of the next IRET.

Hardware interrupts are generated by signal
sources external to thePO. All exceptions
(including so-called softwai@aterrupts) are
produced internally by the CPU.

2-55

Interrupts and Exceptions

During the NMI service routine, maskable 2.8.2 Exceptions

interrupts may be enabled (unmasked). If an

unmasked INTR occurs during the NMI Exceptions are generated by an interrupt
service routine, the INTR is serviced and instruction or a program error. Exceptions are

execution returns to the NMI service routine classified as traps, faults or aborts depending

following the next IRET. If a HALT instruc- on the mechanism used to report them and the

tion is executed within the NMI service restartability of the instruction that first caused

routine, the IBM 6x86 CPU restarts execution the exception.

only in response to RESET, an unmash¢tiR

or an SMM interrupt. NMI does not restart A Trap Exception is reported immediately

CPU execution under this condition. following the instruction that generated the
trap exception. Trap exceptions are generated

TheINTR interrupt is unmasked when the by execution of a software interrupt instruction

Interrupt Enable Flag (IF) in the EFLAGS (INTO, INT 3, INT n, BOUND), by a

register is set to 1. When an INTR interrupt single-step operation or by a data breakpoint.

occurs, the CPU performs two locked interrupt

acknowledge bus cycles. During the second Software interrupts can be used to simulate

cycle, the CPU reads an 8-bit vector thatis hardware interrupts. For example, an INT n

supplied by an external interrupt controller. instruction causes the processor to execute the

This vector selects one of the 256 possible interrupt service routine pointed to by the nth

interrupt handlers which will be executed in vector in the interrupt table. Execution of the

response to the interrupt. interrupt service routine occurs regardless of

.) o the state of the IF flag in the EFLAGS register.
TheSMM interrupt has higher priority than

either INTR or NMI. After SMI# is asserted, The one byte INT 3, or breakpoint interrupt
program execution is passed to an SMI servicgvector 3), is a particular case of the INT n
routine that runs in SMM address space instruction. By inserting this one byte instruc-
reserved for this purpose. The remainder of tion in a program, the user can set breakpoints
this section does not apply to the SMM inter- in the code that can be used during debug.

rupts. SMM interrupts are described in greater
detail later in this chapter. Single-step operation is enabled by setting the

TF bit in the EFLAGS register. When TF is
set, the CPU generates a debug exception
(vector 1) after the execution of every instruc-
tion. Data breakpoints also generate a debug
exception and are specified by loading the
debug registers (DR0-DR7) with the appro-
priate values.

2-56

Interrupts and Exceptions 2

A Fault Exception is reported prior to 2.8.3 Interrupt Vectors
completion of the instruction that generated
the exception. By reporting the fault prior to
instruction completion, the CPU is left in a

When the CPU services an interrupt or excep-
tion, the current program’s FLAGS, code
Segment and instruction pointer are pushed
onto the stack to allow resumption of execu-
tion of the interrupted program. In protected
mode, the processor also saves an error code
for some exceptions. Program control is then
transferred to the interrupt handler (also called
the interrupt service routine). Upon execution
of an IRET at the end of the service routine,
program execution resumes by popping from
the stack, the instruction pointer, code segment,
An Abort Exception is a type of fault excep- ~ and FLAGS.

tion that is severe enough that the CPU cannot
restart the program at the faulting instruction.
The double fault (vector 8) is the only abort
exception that occurs on the IBM 6x86 CPU.

and the effects of the faulting instruction to be
nullified. Fault exceptions include
divide-by-zero errors, invalid opcodes, page
faults and coprocessor errors. Instruction
breakpoints (vector 1) are also handled as
faults. After execution of the fault service
routine, the instruction pointer points to the
instruction that caused the fault.

Interrupt Vector Assignments

Each interrupt (except SMI#) and exception is
assigned one of 256 interrupt vector numbers
(Table 2-29). The first 32 interrupt vector
assignments are defined or reserved. INT
instructions acting as software interrupts may
use any of the interrupt vectors, 0 through 255.

2-57

Interrupts and Exceptions

Table 2-29. Interrupt Vector Assignments

INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT
1 Debug exception TRAP/FAULT*
2 NMI interrupt
3 Breakpoint TRAP
4 Interrupt on overflow TRAP
5 BOUND range exceeded FAULT
6 Invalid opcode FAULT
7 Device not available FAULT
8 Double fault ABORT
9 Reserved
10 Invalid TSS FAULT
11 Segment not present FAULT
12 Stack fault FAULT
13 General protection fault TRAP/FAULT
14 Page fault FAULT
15 Reserved
16 FPU error FAULT
17 Alignment check exception FAULT

18-31 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP

*Note: Data breakpoints and single-steps are traps. All other debug exceptions are faults.

2-58

Interrupts and Exceptions 2

In response to a maskable hardware interrupt2.8.4 Interrupt and Exception

(INTR), the IBM 6x86 CPU issues interrupt Priorities

acknowledge bus cycles used to read the vector

number from external hardware. These vectords the IBM 6x86" CPU executes instructions,
should be in the range 32 - 255 as vectors 0 - #1follows a consistent policy for prioritizing

are reserved. exceptions and hardware interrupts. The priori-
_ ties for competing interrupts and exceptions are
Interrupt Descriptor Table listed in Table 2-30 (Page 2-60). Debug traps

for the previous instruction and the next
'\ﬂwstructions always take precedence. SMM
_Iinterrupts are the next priority. When NMI and
maskable INTR interrupts are both detected at
the same instruction boundary, the IBM 6x86
microprocessor services the NMI interrupt first.

6x86 CPU to locate an entry in the interrupt
descriptor table (IDT). In real mode, each ID
entry consists of a four-byte far pointer to the
beginning of the corresponding interrupt
service routine. In protected mode, each IDT
entry is an eight-byte descriptor. The Interrupthe IBM 6x86 CPU checks for exceptions in
Descriptor Table Register (IDTR) specifies thgarallel with instruction decoding and execu-

beginning address and limit of the IDT. tion. Several exceptions can result from a
Following reset, the IDTR contains a base single instruction. However, only one excep-
address of Oh with a limit of 3FFh. tion is generated upon each attempt to execute

the instruction. Each exception service routine
. d should make the appropriate corrections to the
memory as determined by the IDTR register. instruction and then restart the instruction. In

The ”.DT may contain different types of this way, exceptions can be serviced until the
descriptors: interrupt gates, trap gates and tagk; . ction executes properly.

gates. Interrupt gates are used primarily to
enter a hardware interrupt handler. Trap gateshe IBM 6x86 CPU supports instruction restart
are generally used to enter an exception handigfer all faults, except when an instruction

or software interrupt handler. If an interrupt causes a task switch to a task whose task state
gate is used, the Interrupt Enable Flag (IF) in segment (TSS) is partially not present. A TSS
the EFLAGS register is cleared before the inteican be partially not present if the TSS is not
rupt handler is entered. Task gates are used page aligned and one of the pages where the
make the transition to a new task. TSS resides is not currently in memory.

The IDT can be located anywhere in physical

2-59

2-60

ous instruction.

———
S==
e Interrupts and Exceptions
- -
Table 2-30. Interrupt and Exception Priorities
PRIORITY DESCRIPTION NOTES
0 Warm Reset Caused by the assertion of WM_RST.
1 Debug traps and faults from pre

includes single-step trap and data breakpdints
specified in the debug registers. 1

2 Debug traps for next instruction.| Includes instruction execution breakpoints
specified in the debug registers.
3 Hardware Cache Flush Caused by the assertion of FLUSH#.
4 SMM hardware interrupt. SMM interrupts are caused by SMI# asserfed
and always have highest priority.
5 Non-maskable hardware interrupt. Caused by NMI asserted.
6 Maskable hardware interrupt. Caused by INTR asserted and IF = 1.
7 Faults resulting from fetching the Includes segment not present, general protec-
next instruction. tion fault and page fault.
8 Faults resulting from instruction | Includes illegal opcode, instruction too long,
decoding. or privilege violation.
9 WAIT instruction and TS = 1 and Device not available exception generated.
MP = 1.
10 ESC instruction and EM = 1 or |Device not available exception generated.
TS =1.
11 Floating point error exception. Caused by unmasked floating point exception
with NE = 1.
12 Segmentation faults (for each |Includes segment not present, stack fault, pnd
memory reference required by tHgeneral protection fault.
instruction) that prevent transfer
ring the entire memory operand.
13 Page Faults that prevent transfef-
ring the entire memory operand.
14 Alignment check fault.

Interrupts and Exceptions 2

285 Exceptions in Real Mode

Many of the exceptions described in Table 2-30 (Page 2-60) are not applicable in real mode.

Exceptions 10, 11, and 14 do not occur in real mode. Other exceptions have slightly different
meanings in real mode as listed in Table 2-31.

Table 2-31. Exception Changes in Real Mode

VECTOR | PROTECTED MODE FUNCTION REAL MODE FUNCTION
NUMBER

8 Double fault. Interrupt table limit overrun.
10 Invalid TSS. X
11 Segment not present. X
12 Stack fault. SS segment limit overrun.
13 General protection fault. CS, DS, ES, FS, GS segment limit ovefrun.
14 Page fault. X

Note: x = does not occur

2-61

Interrupts and Exceptions

2.8.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit error code:

Double Fault Invalid TSS
Alignment Check Segment Not Present
Page Fault Stack Fault

General Protection Fault

The error code is pushed onto the stack prior to entering the exception handler. The error code
format is shown in Figure 2-36 and the error code bit definitions are listed in Table 2-32. Bits
15-3 (selector index) are not meaningful if the error code was generated as the result of a page
fault. The error code is always zero for double faults and alignment check exceptions.

15 3 2 1 0

Selector Index S2 S1 SO0

Figure 2-36. Error Code Format

Table 2-32. Error Code Bit Definitions

SELECTOR
F%L\YUPLET INDEX Bﬁzz Bﬁ'll BlSTOo
(BITS 15-3) () () ()
Double Fault or
Alignment Check 0 0 0 0
Page Fault Reserved. Fault caused by: | Fault occurred duf-Fault occurred dur-
0 = not present page ing: ing:
1 = page-level 0 =read access 0 = supervisor acce$s
protection violation. | 1 = \rite access. | 1 = user access.
IDT Fault Index of faulty Reserved. 1 If =1, exception
IDT selector. occurred while try-
ing to invoke excep-
tion or hardware
interrupt handler.
Segment Index of faulty TI bit of faulty 0 If =1, exception
Fault selector. selector. occurred while try-
ing to invoke excep-
tion or hardware
interrupt handler.

2-62

System Management Mode| 2

29 System Management saved, SMM is entered, and program execution
Mode begins at the base of SMM address space
(Figure 2-37). Running in SMM address space,
System Management Mode (SMM) provides ahe interrupt routine does not interfere with the

additional interrupt which can be used for operating system or any application program.
system power management or software trans-

parent emulation of I/O peripherals. SMM is Eight SMM instructions have been added to the
entered using the System Management Inter-x86 instruction set that permit software initiated
rupt (SMI#) that has a higher priority than anySMM, and saving and restoring of the total CPU
other interrupt, including NMI. An SMI inter- state when in SMM mode. Two SMM pins,
rupt can also be triggered via software using &MI# and SMIACT#, support SMM functions.
SMINT instruction. After an SMI interrupt,

portions of the CPU state are automatically ~7'9ure 2-37. System '\g?)';iiemem Memory Address

Physical Potential
Memory Space SMM Address
Space
FFFF FFFFh FFFF FFFFh
Defined
SMM
Address
. 4 KBytes to
Physical Memory 4 G)Blytes Space SMIACT# Active
4 GBytes
0000 0000h 0000 0000h
Non-SMM Mode
SMIACT# Negated SMM Mode 1712604
29.1 SMM Operation

=_ System Management Mode
—

SMM operation is summarized in Figure 2-38.
Entering SMM requires the assertion of the
SMI# pin for at least two CLK periods or execu-
tion of the SMINT instruction. For the SMI# or
SMINT instruction to be recognized, the
following configuration register bits must be sef
as shown in Table 2-33. The configuration
registers are discussed in detail earlier in this
chapter.

Table 2-33. Requirements for Recognizing SMI# and

SMINT

REGISTER (Bit) SMI# SMINT
SMI CCR1 (1) 1 1
SMAC |CCR1 (2) 0 1

ARR3 | SIZE (3-0) >0 >0
SM3~ | CCR1(7) 1 1

After recognizing SMI# or SMINT and prior to
executing the SMI service routine, some of the
CPU state information is changed. Prior to
modification, this information is automatically
saved in the SMM memory space header
located at the top of SMM memory space.
After the header is saved, the CPU enters redl
mode and begins executing the SMI service
routine starting at the SMM memory base

SMI# Sampled Active or
SMINT Instruction Executed

v

CPU State Stored in SMM
Address Space Header

v

Program Flow Transfers
to SMM Address Space

v

CPU Enters Real Mode

v

Execution Begins at SMM
Address Space Base Address

v

RSM Instruction Restores CPU
State Using Header Information

v

Normal Execution Resumes

address.

2.9.2

The SMI service routine is user definable and
may contain system or power management
software. If the power management software
forces the CPU to power down, or the SMI
service routine modifies more than what is
automatically saved, the complete CPU state
information can be saved.

Figure 2-38. SMI Execution
Flow Diagram

2-64

SMM Memory Space

System Management Mode 2

Header

With every SMI interrupt or SMINT instruc-

The header contains CPU state information that
is modified when servicing an SMI interrupt.

tion, certain CPU state information is automaticluded in this information are two pointers.

cally saved in the SMM memory space headédthe Current IP points to the instruction that was
located at the top of SMM address space as executing when the SMI was detected.

shown Figure 2-39 and Table 2-34 (Page 2-66).

31 O¢
T T < ggp of SMM
DR7 Address Space
T -4h
EFLAGS
T -8h
CRO
T -Ch
Current IP
T -10h
Next IP
31 22I 21 16 15 : 0 14h
Reserved CPL |Reserved CS Selector
-18h
CS Descriptor (Bits 63-32)
T -1Ch
CS Descriptor (Bits 31-0
31 pror () 43210 20h
Reserved HIS|P|l| T Reserved
16[15 ‘ 24h
1/0 Write Data Size 1/0 Write Address
T T -28h
1/0 Write Data
T T -2Ch
ESI or EDI
-30h

Figure 2-39. SMM Memory Space Header

—_—————
= = ===

— —— R — System Management Mode
Y

The Next IP points to the instruction that will If entry into SMM was caused by an I/O trap it
be executed after exiting SMM. Also saved aris useful for the programmer to know the port

the contents of debug register 7 (DR7), the address, data size and data value associated with
extended flags register (EFLAGS), and contrdhat I/O operation. This information is also
register 0 (CRO). If SMM has been entered dwsaved in the header and is only valid for an I/O
to an I/O trap for a REP INSx or REP OUTSxwrite operation. The 1/O write information is
instruction, the Current IP and Next IP fields not restored within the CPU when executing a RSM
contain the same addresses #rell and P field instruction.

contain valid information.

Table 2-34. SMM Memory Space Header

NAME DESCRIPTION SIZE
DR7 The contents of Debug Register 7. 4 Bytes
EFLAGS The contents of Extended Flags Register. 4 Bytes
CRO The contents of Control Register 0. 4 Bytes
Current IP The address of the instruction executed prior to servicing SMI interrupt. 4|Bytes
Next IP The address of the next instruction that will be executed after exiing SMM mqde. 4 Bytes
CS Selector Code segment register selector for the current code segment. P Bytes
CPL Current privilege level for current code segment. 2 Bjts
CS Descriptor Code segment register descriptor for the current code segment. B Bytes
H If set indicates the processor was in a halt or shutdown prior to servicing the 1 Bit

SMM interrupt.

S Software SMM Entryndicator. 1 Bit

S =1, if current SMM is the result of an SMINT instruction.
S =0, if current SMM is not the result of an SMINT instruction.

P REP INSx/OUTSx Indicator. 1 Bit
P = 1 if current instruction has a REP prefix.
P = 0 if current instruction does not have a REP prefix.

| IN, INSx, OUT, or OUTSx Indicator. 1 Bit
| = 1 if current instruction performed is an /O WRITE.
| = 0 if current instruction performed is an /O READ.

1/0 Write Data Size | Indicates size of data for the trapped 1/O write. 2 Bytes

01h = byte

03h = word

OFh = dword
1/0 Write Address Processor port used for the trapped 1/O write. 2 Bytes
1/0 Write Data Data associated with the trapped 1/0 write. 4 Bytes
ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUSRydes

REP INSx instruction when one of the 1/O cycles caused an SMI# trap.

Note: INSx = INS, INSB, INSW or INSD instruction.
Note: OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.

2-66

System Management Mode 2

29.3 SMM Instructions The new SMM instructions, listed in Table 2-35,
can only be executed if:
The IBM 6x86 CPU automatically saves the
minimalamount of CPU state information 1) SMK=0
2) SM3=1

when entering SMM which allows fast SMI
service routine entry and exit. After entering 3) ARR3 SIZE > 0

the SMI service routine, the MOV, SVDC, 4) Current_P_erlIege Level = 0 .

SVLDT and SVTS instructions can be used 5) SMAC b'.t IS set or the CPUis in an

to save the complete CPU state information. SMi service routine.

If the SMI service routine modifies more than f the above conditions are not met and an
what is automatically saved or forces the CPUzttempt is made to execute an SVDC, RSDC,
to power down, the complete CPU state SVLDT, RSLDT, SVTS, RSTS, SMINT or
information must be saved. Since the CPU isrRsM instruction, an invalid opcode exception is
a static device, its internal state is retained generated. These instructions can be executed

when the input clock is stopped. Therefore, outside of defined SMM space provided the above
an entire CPU state save is not necessary conditions are met.

prior to stopping the input clock.))
The SMINT instruction may be used as a soft-

ware controlled mechanism to enter SMM.

Table 2-35. SMM Instruction Set

INSTRUCTION OPCODE FORMAT DESCRIPTION
SVDC OF 78 [mod sreg3 r/m] SVDC mem80, sreg®ave Segment Register and Descriptor
Saves reg (DS, ES, FS, GS, or SS) to mem8Q.
RSDC OF 79 [mod sreg3 r/m] RSDC sreg3, mem8®estore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from
mem80.

Use RSM to restore CS.

Note: Processing “RSDC CS, Mem80” wiloduce an
exception.

SVLDT OF 7A [mod 000 r/m] | SVLDT mem80 Save LDTR and Descripto

Saves Local Descriptor Table (LDTR) to memg0.
RSLDT OF 7B [mod 000 r/m] | RSLDT mem80 Restore LDTR and Descriptor

Restores Local Descriptor Table (LDTR) from

mem80.
SVTS OF 7C [mod 000 r/m]| SVTS mem80 Save TSR and Descriptor

Saves Task State Register (TSR) to mem80.
RSTS OF 7D [mod 000 r/m]| RSTS mem80 Restore TSR and Descriptor

Restores Task State Register (TSR) from mem80.
SMINT OF 7E SMINT Software SMM Entry

CPU enters SMM mode. CPU statéormation
is saved in SMM meuwry space header and exg
cution begins at SMM base address.

RSM OF AA RSM Resume Normal Mode

Exits SMM mode. The CPU state is restored
using the SMM memry space header and exe¢u-
tion resumes at interrupted point.
Note: mem80 = 80-binemory Ieation 2-67

=_ System Management Mode
—

Al of the SMM instructions (except RSM and The programmer must save the value of any
SMINT) save or restore 80 bits of data, allow-registers that may be changed by the SMI service
ing the saved values to include the hidden porfoutine. For data accesses immediately after

tion of the register contents. entering the SMI service routine, the programmer
must use CS as a segment override. /O port
29.4 SMM Memory Space access is possible during the routine but care must

]]) be taken to save registers modified by the 1/0
SMM memory space is defined by setting the jnstryctions. Before using a segment register, the
SM3 bit and specifying the base address and regjster and the register's descriptor cache
size of the SMM memory space in the ARR3 contents should be saved using the SVDC
register. The base address must be a multiplenstruction. While executing in the SMM space,

of the SMM memory space size. For example,execution flow can transfer to normal memory
a 32 KByte SMM memory space must be locations.

located at a 32 KByte address boundary. The
memory space size can range from 4 KBytes to Hardware interrupts, (INTRs and NMis), may
4 GBytes. be serviced during a SMI service routine. If
interrupts are to be serviced while executing in
SMM memory space accesses are always the SMM memory space, the SMM memory
non-cacheable. SMM accesses ignore the stat§pace must be within the 0 to 1 MByte address
of the A20M# input pin and drive the A20 range to guarantee proper return to the SMI
address bit to the unmasked value. service routine after handling the interrupt.

SMM memory space can be accessed while inNTRs are automatically disabled when
normal mode by setting the SMAC bit in the entering SMM since the IF flag is set to its
CCR1 register. This feature may be used to reset value. Once in SMM, the INTR can be

initialize the SMM memory space. enabled by setting the IF flag. NMl is also
)) automatically disable when entering SMM.
2.9.5 SMI Service Routine Once in SMM, NMI can be enabled by setting
Execution NMI_EN in CCR3. If NMI is not enabled, the

U into SMM. after the SMM head CPU latches one NMI event and services the
N poE entry |ntod X bal\?(()erléFeLAGS e?j S:w interrupt after NMI has been enabled or after
as been saved, the ’ »an exiting SMM through the RSM instruction.

registers are set to their reset values. The Code
Segment (CS) register is loaded with the baseWithin the SMI service routine, protected mode
as defined by the ARR3 register, and a limit of may be entered and exited as required, and real

4 GBytes. The SMI service routine then or protected mode device drivers may be
begins execution at the SMM base address in called.
real mode.

2-68

Shutdown and Halt 2

To exit the SMI service routine, a Resume 2.10 Shutdown and Halt
(RSM) instruction, rather than an IRET, is
executed. The RSM instruction causes the The Halt Instruction (HLT) stops program exe-
IBM 6x86 processor to restore the CPU state cution and prevents the processor from using the
using the SMM header information and local bus until restarted. The IBM 6x86 CPU
resume execution at the interrupted point. If tehnetgrlsszuli\s/vapf)r\;\?:rlaslusstp?é)ngI;’?]‘r(‘l)tdk(;uifst(f:‘l}(/ede and
the full CPU state was saved by the ot ;
programmer, the stored valuesyshould be SUSP_HLT bitin CCR2 is set. SMI, NMI,

' INTR with interrupts enabled (IF bit in

reloaded prior to executing the RSM instruc- EFLAGS=1), WM_RST or RESET forces the
tion using the MOV, RSDC, RSLDT and CPU out of the halt state. If interrupted, the

RSTS instructions. saved code segment and instruction pointer
CPU States Related to SMM and Suspend specify the instruction following the HLT.
Mode

Shutdown occurs when a severe error is detected
éhat prevents further processing. An NMI input

2-70) illustrates the various CPU states assocfzaN brlng the processor out of shytdown if the
ated with SMM and suspend mode. While in IDT limit is large enough to contain the NMI
the SMI service routine. the IBM 6x86 CPU interrupt vector and the stack has enough room
can enter suspend mode either by (1) executin contain the vector and flag information.

a halt (HLT) instruction or (2) by asserting the Otherwise, shutdown can only be exited by a
SUSP# input. processor reset.

The state diagram shown in Figure 2-40 (Pag

During SMM operations and while in SUSP#
initiated suspend mode, an occurrence of
SMI#, NMI, or INTR is latched. (In order for
INTR to be latched, the IF flag must be set.)
The INTR or NMl is serviced after exiting
suspend mode.

If suspend mode is entered via a HLT instruc-
tion from the operating system or application
software, the reception of an SMI# interrupt
causes the CPU to exit suspend mode and enter
SMM.

Shutdown and Halt

Suspend Mode NM 1 or INTR

Interrupt Service
(SUSPA# = 0)

Routine

Y

HLT*
NM 1 or INTR

SUSP#=0
O S/Application | Suspend Mode
SUSP#=1 =
Software < (SUSPA# = 0)
A (INTR,N Ml and S M | latched)
SMI#=0
S MINT* R S M*
Non-SMM Operations .
\‘ SMM Operations
Y
SMI Service
Routine
(SMI#=0) HLT*
Suspend Mode
(SUSPA# = 0)
IRET*

INTRorNMI IRET*

INTRand NMI

SUSP#=0 SUSP#=1

Interrupt Service

Interrupt Service
Routine

Suspend Mode Routine

(SUSPA# = 0)

* |nstructions (INTR and N M | latched)

Figure 2-40. SMM and Suspend Mode State Diagram

2-70

P

2.11 Protection 2111 Privilege Levels

Segment protection and page protection are The values for privilege levels range
safeguards built into the IBM 6x86 CPU between 0 and 3Level 0 is the highest privi-
protected mode architecture which deny unautege level (most privileged), and level 3 is the
thorized or incorrect access to selected lowest privilege level (least privileged). The
memory addresses. These safeguards allow privilege level in real mode is effectively 0.
multitasking programs to be isolated from each) o)

other and from the operating system. Page TheDescriptor Privilege Level(DPL) is the
protection is discussed earlier in this chapter. Privilege level defined for a segment in the

This section concentrates on segment protec-Segment descriptor. The DPL field specifies
tion. the minimum privilege level needed to access

the memory segment pointed to by the
Selectors and descriptors are the key elementdescriptor.
in the segment protection mechanism. The .)]
segment base address, size, and privilege levdineCurrent Privilege Level (CPL) is defined
are established by a segment descriptor. Priv@s the current task’s privilege level. The CPL
lege levels control the use of privileged of an executing task is stored |n_the hidden
instructions, 1/ instructions and access to ~ Portion of the code segment register and essen-
segments and segment descriptors. Selectordially is the DPL for the current code segment.

are used to locate segment descriptors. TheRequested Privilege Leve{RPL) speci-

Segment accesses are divided into two basic fies a selector's privilege level and is used to
types, those involving code segments (e.g., dlstl_ngwsh between th(_e privilege level of a

control transfers) and those involving data ~ foutine atually accessing memory (the CPL),
accesses. The ability of a task to access a and the privilege level of the original requestor

segment depends on the: (the RPL) of the memory access. The lesser of
the RPL and CPL is called the effective privilege
* segment type level (EPL). Therefore, if RPL=0in a
* instruction requesting access segment selector, the effective privilege level
* type of descriptor used to define the is always determined by the CPL. If RPL =3,
segment the effective privilege level is always 3 regard-
* associated privilege levels (described less of the CPL.
below).

For a memory access to succeed, the effective
Data stored in a segment can be accessed onpyivilege level (EPL) must be at least as privi-
by code executing at the same or a more privileged as the descriptor privilege level (EPL
leged level. A code segment or procedure caPL). If the EPL is less privileged than the
only be called by a task executing at the sameDPL (EPL > DPL), a general protection fault
or a less privileged level. is generated. For example, if a segment has a
DPL = 2, an instruction accessing the segment
only succeeds if executed with an ERD.

2-71

:
—

2.11.2 I/O Privilege Levels 2113 Privilege Level Transfers

The 1/O Privilege Level (IOPL) allows the A task’s CPL can be changed only through
operating system executing at CPL=0 to defingntersegment control transfers using gates or
the least privileged level at which IOPL-sensi-task switches to a code segment with a different
tive instructions can unconditionally be used. privilege level. Control transfers result from
The IOPL-sensitive instructions include CLI, exception and interrupt servicing and from

IN, OUT, INS, OUTS, REP INS, REP OUTS, execution of the CALL, JMP, INT, IRET and
and STI. Modification of the IF bit in the RET instructions.

EFLAGS register is also sensitive to the I/O

privilege level. The IOPL is stored in the There are five types of control transfers that

EFLAGS register. are summarized in Table 2-36 (Page 2-73).
Control transfers can be made only when the
An 1/O permission bit map is available as operation causing the control transfer references

defined by the 32-bit Task State Segment the correct descriptor type. Any violation of
(TSS). Since each task can have its own TSSthese descriptor usage rules causes a general
access to individual processor 1/O ports can berotection fault.

granted through separate 1/0 permission bit

maps. Any control transfer that changes the CPL

within a task results in a change of stack. The
If CPL <IOPL, IOPL-sensitive operations can initial values for the stack segment (SS) and
be performed. If CPL > IOPL, a general stack pointer (ESP) for privilege levels 0, 1,
protection fault is generated if the current taskand 2 are stored in the TSS. During a CALL
is associated with a 16-bit TSS. If the currentcontrol transfer, the SS and ESP are loaded
task is associated with a 32-bit TSS and CPL with the new stack pointer and the previous
IOPL, the CPU consults the 1/0 permission stack pointer is saved on the new stack. When
bitmap in the TSS to determine on a port-by-portreturning to the original privilege level, the
basis whether or not I/O instructions (IN, RET or IRET instruction restores the less-priv-
OUT, INS, OUTS, REP INS, REP OUTS) are ileged stack.

permitted, and the remaining IOPL-sensitive

operations generate a general protection fault.

2-72

T 2

Table 2-36. Descriptor Types Used for Control Transfer

OPERATION DESCRIPTOR DESCRIPTOR
TYPE OF CONTROL TRANSFER TYPES REFERENCED TABLE
Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT or|LDT
Intersegment to the same or a more privilege@ALL Gate Call GDT or LDT
level. o Interrupt Instruction, Trap or Interrupt Gate IDT
Interrupt within task (could change CPL levelkyception, External
Interrupt
Intersegment to a less privileged level (changRET, IRET* Code Segment GDT or LDT
task CPL).
Task Switch via TSS CALL, JMP Task State Segmept GDT
Task Switch via Task Gate CALL, JMP Task Gate GDT or LDT
IRET**, Interrupt Task Gate IDT
Instruction, Exception,
External Interrupt

* NT (Nested Task bit in EFLAGS) = 0
** NT (Nested Task bit in EFLAGS) = 1

Gates 2.11.4 Initialization and
Transition to Protected
Gate descriptors provide protection for privi- Mode

lege transfers among executable segments.

Gates are used to transition to routines of the The IBM 6x86 microprocessor switches to real
same or a more privileged level. Call gates, mode immediately after RESET. While oper-
interrupt gates and trap gates are used for privi-ating in real mode, the system tables and regis-
lege transfers within a task. Task gates are usé¢elrs should be initialized. The GDTR and IDTR
to transfer between tasks. must point to a valid GDT and IDT, respectively. The

.. GDT must contain descriptors which describe
Gates conform to the standard rules of privi- ha initial code and data segments.

lege. In other words, gates can be accessed by

a task if the effective privilege level (EPL) is The processor can be placed in protected mode

the same or more privileged than the gate by setting the PE bit in the CRO register. After

descriptor’s privilege level (DPL). enabling protected mode, the CS register should
be loaded and the instruction decode queue
should be flushed by executing an intersegment
JMP. Finally, all data segment registers should
be initialized with appropriate selector values.

——
— T — Virtual 8086 Mode
— o —

2.12 Virtual 8086 Mode 2.12.2 V86 Protection

Both real mode and virtual 8086 (V86) mode All V86 tasks operate with the least amount of
are supported by the IBM 6x86 CPU allowing privilege (level 3) and are subject to all of the
execution of 8086 application programs and IBM 6x86 CPU protected mode protection
8086 operating systems. V86 mode allows thechecks. As a result, any attempt to execute a
execution of 8086-type applications, yet still privileged instruction within a V86 task results
permits use of the IBM 6x86 CPU paging in a general protection fault.

mechanism. V86 tasks run at privilege level 3.

When loaded, all segment limits are set to In V86 mode, a slightly different set of instruc-

FFFFh (64K) as in real mode. tions are sensitive to the I/O privilege level
(IOPL) than in protected mode. These instruc-
2.12.1 V86 Memory tions are: CLI, INT n, IRET, POPF, PUSHF,
Addressing and STI. The INT3, INTO and BOUND varia-

tions of the INT instruction are not IOPL
While in V86 mode, segment registers are sensitive.
used in an identical fashion to real mode. The
contents of the segment register are multiplied®?.12.3 V86 Interrupt Handling
by 16 and added to the offset to form the)
segment base linear address. The IBM 6x86 10 fully support the emulation of an 8086-type
CPU permits the operating system to select machine, interrupts in V86 mode are handled
which programs use the V86 address mecha- 88 follows. When an interrupt or exception is

nism and which programs use protected modes€rviced in V86 mode, program execution
addressing for each task. transfers to the interrupt service routine at

privilege level O (i.e., transition from V86 to
The IBM 6x86 CPU also permits the use of protected mode occurs) and the VM bit in the
paging when operating in V86 mode. Using EFLAGS register is cleared. The protected
paging, the 1-MByte address space of the V8@node interrupt service routine then determines

task can be mapped to anywhere in the if the interrupt came from a protected mode or
4-GByte linear address space of the IBM 6x86V86 application by examining the VM bit in
CPU. the EFLAGS image stored on the stack. The

)) interrupt service routine may then choose to
The paging hardware allows multiple V86)0\ the 8086 operating system to handle the
tasks to run concurrently, and provides protecinterrupt or may emulate the function of the
tion and operating system isolation. The interrupt handler. Following completion of the
paging hardware must be enabled to run interrupt service routine, an IRET instruction
multiple V86 tasks or to reIo_cate the address |astores the EFLAGS register (restores VM=1)
space of a V86 task to physical address spaceyng segment selectors and control returns to
greater than 1 MByte. the interrupted V86 task.

2-74

Floating Point Unit Operations 2

212.4 Entering and Leaving FPU Tag Word Registet The IBM 6x86

V86 Mode CPU maintains a tag word register (Figure

2-41 (Page 2-76)) comprised of two bits for

V86 mode is entered from protected mode by each physical data register. Tag Word fields
either executing an IRET instruction at CPL = assume one of four values depending on the
0 or by task switching. If an IRET is used, the contents of their associated data registers, Val-
stack must contain an EFLAGS image with id (00), Zero (01), Special (10), and Empty
VM = 1. If a task switch is used, the TSS must (11). Note: Denormal, Infinity, QNaN, SNaN
contain an EFLAGS image containing a 1 in and unsupported formats are tagged as “Spe-
the VM bit position. The POPF instruction cial”. Tag values are maintained transparently
cannot be used to enter V86 mode since the by the IBM 6x86" CPU and are only avail-
state of the VM bit is not affected. V86 mode able to the programmer indirectly through the
can only be exited as the result of an interrupt FSTENV and FSAVE instructions.
or exception. The transition out must use a)
32-bit trap or interrupt gate which must point FPU Control and Status Registers The
to a non-conforming privilege level 0 segment FPU circuitry communicates information
(DPL = 0), or a 32-bit TSS. These restrictions about its status and the results of operations to

are required to permit the trap handler to IRET the programmer via the status register. The
back to the V86 program. FPU status register is comprised of bit fields

that reflect exception status, operation execu-
213 Floating Point Unit tion stat_us, register status, operand class_;, and

comparison results. The FPU status register
bit definitions are shown in Figure 2-42

The IBM 6x86 CPU includes an on-chip FPU (Page 2-76) and Table 2-37 (Page 2-76).

that provides the user access to a complete $€The EPU Mode Control Register (MCR) is

of floating point instructions (see Chapter 6). used by the CPU to specify the operating mode

Inf_orma_tion Is passe_d to and from th? FPU of the FPU. The MCR contains bit fields

e e 12 o Wk speciy h rounding moce f e used

status register Tr’1e IBM 6x86 CPU ’also the precision by which to calculate results, and
: the exception conditions which should be re-

prowdes a data regls_ter _tag word which ported to the CPU via traps. The user controls
improves context switching and performance S . - .
precision, rounding, and exception reporting

by maintaining empty/non-empty status for b .] ; L
; . - y setting or clearing appropriate bits in the
each of the eight data registers. In addition, MCR. The FPU mode control register bit def-

registers in th? CPU co_nt_aln pointers to (a) theinitions are shown in Figure 2-43 (Page 2-77)
memory location containing the current

instruction word and (b) the memory location and Table 2-38 (Page 2-77).
containing the operand associated with the
current instruction word (if any).

Operations

=_ Floating Point Unit Operations
—

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[Tag(®) | Tag6) | Tag(s) [Tag(4) | Tag(3) | Tag(2)] Tag(1)] Tag(0}

Figure 2-41. FPU Tag Word Register

15 12 11 8 7 4 3 0
B C3S S S C2C1CO ESSFPLlJ O Z DI

Figure 2-42. FPU Status Register

Table 2-37. FPU Status Register Bit Definitions

BIT

POSITION NAME DESCRIPTION
15 B Copy of the ES bit. (ES is bit 7 in this table.)
14,10-8 C3-Co Condition code bits.
13-11 SSS Top of stack register number which points to the current TOS.
ES Error indicator. Set to 1 if an unmasked exception is detected.
SF Stack Fault or invalid register operation bit.

P Precision error exception bit.
U Underflow error exception bit.
O Overflow error exception bit.
z

D

I

Divide by zero exception bit.
Denormalized operand error exception bit.
Invalid operation exception bit.

ol |Nlw| A~

2-76

Floating Point Unit Operations 2

12 11

8 7 4 3 0

RCRCPCPQ--PU O Z DI

Figure 2-43. FPU Mode Control Register

Table 2-38. FPU Mode Control Register Bit Definitions

BIT
POSITION NAME DESCRIPTION
11-10 RC Rounding Control bits:
00 Round to nearest or even
01 Round towards minus infinity
10 Round towards plus infinity
11 Truncate
9-8 PC Precision Control bits:
00 24-bit mantissa
01 Reserved
10 53-bit mantissa
11 64-bit mantissa
5 P Precision error exception bit mask.
4 U Underflow error exception bit mask.
3 O Overflow error exception bit mask.
2 z Divide by zero exception bit mask.
1 D Denormalized operand error exception bit mask.
0 | Invalid operation exception bit mask.

3.0 IBM 6x86 BUS INTERFACE

The signals used in the IBM 6x86 CPU bus interface are described in this chapter. Figure 3-1
shows the signal directions and the major signal groupings. A description of each signal and their

IBM 6x86 MICROPROCESSOR

Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

Bus Interface

reference to the text are provided in Table 3-1 (Page 3-2).

Clock —_—
Control —
—>
Reset
—>

Address

—
Address -
Parity -]
Data
Bus
Parity

-

r

-]

Bus
Cycle
Definition

CLK
CLKMUL

RESET
WM_RST

A31-A3

BET# - BEO#

A20M#

AP
APCHK?#

D63 - D0

DP7 - DPO

6x86
CPU

PCHK#

ADS#

BRDY#
BRDYC#
NA#
SMACT#

INTR

SMi#

EWBE#
FLUSH#
KEN#
PCD

WB/WT#

BOFF#

BREQ

HLDA

AHOLD

HIT#

HITM#
INV

FERR#
IGNNE#

BHOLD
DHOLD
LBA#
QDUMPY

TRST#

je——r
jle———

Cache
[—> (conrad

Cache
F——
Coherency

l—
FPU Error
fe———

[<— | scatter
| [GetherBufier

Power
|———> [Management

E— JTAG

Figure 3-1. IBM 6x86 CPU Functional Signal Groupings

3-1

Signal Description Table

3.1 Signal Description Table

The Signal Summary Table (Table 3-1) describes the signals in their active state unless otherwise
mentioned. Signals containing slashes (/) have logic levels defined as “1/0.” For example the
signal W/R#, is defined as write when W/R#=1, and as read when W/R#=0. Signals ending with a
“#" character are active low.

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name

Signal Name Description 110 Reference

A20M# A20 Mask causes the CPU to mask (force to 0) the A20 address bit Wigput Page 3-9
driving the external address bus or performing an internal cache acdgess.
A20M# is provided to emulate the 1 MByte address wrap-around that
occurs on the 8086. Snoop addressing is not effected.

A31-A3 TheAddress Bus in conjunction with the Byte Enable signals 3-state | Page 3-9
(BE7#-BEO#), provides addresses for physical memory and external /0
devices. During cache inquiry cycles, A31-A5 are used as inputs to
perform cache line invalidations.

ADS# Address Strobebegins a memory/l/O cycle and indicates the addresg liustput | Page 3-13
(A31-A3, BE7#-BEO#) and bus cycle definition signals (CACHE#, D/C#,
LOCK#, M/IO#, PCD, PWT, SCYC, W/R#) are valid.

ADSC# Cache Address Strob@erforms the same function ADS#. Output | Pag8-13

AHOLD Address Hold allows another bus master access to the IBM 6x86 CRUnput Page 3-18
address bus for a cache inquiry cycle. In response to the assertion ¢f
AHOLD, the CPU floats AP and A31-A3 in the following clock cycle|

AP Address Parity is the even parity output signal for address lines A311ABstate | Page 3-10
(A4 and A3 are excluded). During cache inquiry cycles, AP is the /0
even-parity input to the CPU, and is sampled wit{DS# toproduce
correct parity check status on the APCHK# output.

APCHK# Address Parity Check Satus is asserted during a cache inquiry cyclg iDutput | Page 3-10
an address bus parity error has been detected. APCHK# is valid twi
clocks after EADS# is sampled active. APCHK# will remain asserted for
one clock cycle if a parity error is detected.

BE7#-BEO# | TheByte Enables in conjunction with the address lines, determine the3-state | Page 3-9
active data bytes transferred during a memory or /O bus cycle. /0

BHOLD Byte Enable Hold forces the byte enables (BE7#-BEO#) to float durindnput Page 3-20
the next clock cycle. The IBM 6x86 CPU continues to generate additjonal
bus cycles while BHOLD is asserted. While BHOLD is asserted, the pyte
enables are driven by an external source and select which data bytes are
accessed through the scatter/gather buffer. BHOLD is ignored if the
scatter/gather interface is disabled.

BOFF# Back-Off forces the IBM 6x86 CPU to abort the current bus cycle andnput Page 3-16
relinquish control of the CPU local bus during the next clock cycle. The
IBM 6x86 CPU enters the bus hold state and remains in this state uptil
BOFF# is negated.

3-2

Signal Description Table 3

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name

Description

110

Reference

BRDY#

Burst Ready indicates that the current transfer within a burst cycle, or thénput
current single transfer cycle, can be terminated. The IBM 6x86 CPU samples
BRDY# in the second and subsequent clocks of a bus cycle. BRDY# is active

during address hold states.

Page 3-13

BRDYC#

Cache Burst Readyperforms the same function as BRDY# and is logicallypput

ORed with BRDY# within the IBM 6x86 CPU.

Page 3-13

BREQ

Bus Requesis asserted by the IBM 6x86 CPU when an internal bus cygl®©iatput

pending. The IBM 6x86 CPU always asserts BREQ, along with ADS#,
during the first clock of a bus cycle. If a bus cycle is pending, BREQ is

asserted during the bus hold and address hold states. If no additional bus

cycles are pending, BREQ is negated prior to termination of the current/cycle.

Page 3-16

CACHE#

Cacheability Status indicates that a read bus cycle is a potentially Output

cacheable cycle; or that a write bus cycle is a cache line write-back or Iine

replacement burst cycle. If CACHE# is asserted for a read cycle and KEN# is
asserted by the system, the read cycle becomes a cache line fill burst gycle.

Page 3-11

CLK

Clock provides the fundamental timing for the IBM 6x86 CPU. The Input

frequency of the IBM 6x86 CPU input clock determines the operating
frequency of the CPU’s bus. External timing is defined referenced to the
rising edge of CLK.

Page 3-7

CLKMUL

TheClock Multiplier input is sampled during RESET to determine the IBNhput

6x86 CPU core operating frequency. If CLKMUL=0 or is left unconnected,
the core frequency is 2x the frequency of the CLK input. If CLKMUL=1, the

core frequency is 3x the frequency of CLK.

Page 3-7

D63-D0

Data Bussignals are three-state, bi-directional signals which provide the3-state
data path between the IBM 6x86 CPU and external memory and I/O deyi¢@s.
The data bus is only driven while a write cycle is active (state=T2). The|data

bus is floated when DHOLD is asserted.

Page 3-10

D/C#

Data/Control Status If high, indicates that the current bus cycle is an I/Q Qutput
memory data access cycle. If low, indicates a code fetch or special bus|cycle

such as a halt, prefetch, or interrupt acknowledge bus cycle. D/C# is dr|jven

valid in the same clock as ADS# is asserted.

Page 3-11

DHOLD

Data Bus Hold forces the IBM 6x86 CPU to float the data bus (D63-DO0) Input

and the data parity lines (DP7-DPO0) in the next clock. While DHOLD is

asserted, only the data and data parity buses are disabled. The current bus

cycle remains active and is completed in the normal fashion in responsg to
BRDY#. The IBM 6x86 CPU generates additional bus cycles while DHQLD

is asserted. DHOLD is ignored if the scatter/gather interface is disabled.

Page 3-21

DP7-DPO

Data Paritysignals provide parity for the data bus, one data parity bit peB-state

data byte. Even parity is driven on DP7-DPO for all data write cycles. | I/O

DP7-DPO are read by the IBM 6x86 CPU during read cycles to check for
even parity. The data parity bus is only driven while a write cycle is actiye
(state=T2).

Page 3-10

3-3

Signal Description Table

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name Description 110 Reference

EADS# External Address Strobeindicates that a valid cache inquiry address iy |nput Page 3-18
being driven on the IBM 6x86 CPU address bus (A31-A5) and AP. The|state
of INV at the time EADS# is sampled active determines the final state qf the
cache line. A cache inquiry cycle using EADS# may be run while the IBM
6x86 CPU is in the address hold or bus hold state.

EWBE# External Write Buffer Empty indicates that there are no pending write| |nput Page 3-14
cycles in the external system. EWBE# is sampled only during 1/0 and
memory write cycles. If EWBE# is negated, the IBM 6x86 CPU delays all
subsequent writes to on-chip cache lines in the “exclusive” or “modified’
state until EWBE# is asserted.

EERR# FPU Error Status indicates an unmasked floating point error has occufrgsytput | Page 3-19
FERR# is asserted during execution of the FPU instruction that caused the
error. FERR# does not float during bus hold states.

ELUSH# Cache Flushforces the IBM 6x86 CPU to flush the cache. External Input Page 3-15
interrupts and additional FLUSH# assertions are ignored during the flugh.
Cache inquiry cycles are permitted during the flush. T

HIT# Cache Hitindicates that the current cache inquiry address has been fo&r@lkjﬂ)ut Page 3-18
the cache (modified, exclusive or shared states). HIT# is valid two clogks

after EADS# is sampled active, and remains valid until the next cache inquiry
cycle.

HITM# Cache Hit Modified Data indicates that the current cache inquiry addresgutput | Page 3-18
has been found in the cache and dirty data exists in the cache line (moglified
state). The IBM 6x86 CPU does not accept additional cache inquiry cygles

while HITM# is asserted. HITM# is valid two clocks after EADS#.

HLDA Hold Acknowledgeindicates that the IBM 6x86 CPU has responded to|t@sutput | Page 3-16
HOLD input and relinquished control of the local bus. The IBM 6x86 CPU

continues to operate during bus hold as long as the on-chip cache can [satisfy
bus requests.

HOLD Hold Requestindicates that another bus master has requested control pfiet Page 3-16
CPUr's local bus.

IGNNE# Ignore Numeric Error forces the IBM 6x86 CPU to ignore any pending |nput Page 3-19
unmasked FPU errors and allows continued execution of floating point
instructions.

INTR Maskable Interrupt forces the processor to suspend execution of the | |nput Page 3-14

current instruction stream and begin execution of an interrupt service routine.
The INTR input can be masked (ignored) through the IF bit in the Flagg
Register.

INV Invalidate Requestis sampled with EADS# to determine the final state ofnput Page 3-18
the cache line in the case of a cache inquiry hit. An asserted INV directs the
processor to change the state of the cache line to “invalid”. A negated [NV

directs the processor to change the state of the cache line to “shared.”

3-4

Signal Description Table 3

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name

Description I 110

Reference

KEN#

Cache Enableallows the data being returned during the current cycle t0 heput

placed in the CPU’s cache. When the IBM 6x86 CPU is performing a
cacheable code fetch or memory data read cycle (CACHE# asserted),
KEN# is sampled asserted, the cycle is transformed into a 32-byte cacl

fill. KEN# is sampled with the first asserted BRDY# or NA# for the cycle.

and
e line

Page 3-15

LBA#

Local Bus Accessndicates that the current bus cycle is for an address
within the local bus address region. If LBA# is asserted during a CPU
cycle with BE3#-BEO# negated, the IBM 6x86 CPU automatically maps

Output
rite
the

upper DWORD of data to the lower DWORD of the data bus. LBA# floats if

scatter/gather pins are disabled.

Page 3-21

LOCK#

Lock Statusindicates that other system bus masters are denied accesg
local bus. The IBM 6x86 CPU does not enter the bus hold state in respg
HOLD while LOCK# is asserted.

+ O RSt

nse to

Page 3-11

M/IO#

Memory/IO Status. If high, indicates that the current bus cycle is a men
cycle (read or write). If low, indicates that the current bus cycle is an I/O
(read or write, interrupt acknowledge, or special cycle).

WMltput
cycle

Page 3-11

NA#

Next Addressrequests the next pending bus cycle address and cycle
definition information. If either the current or next bus cycle is alocked c
a line replacement, a write-back cycle, or if there is no pending bus cycl|

Input
cle,
e, the

IBM 6x86 CPU does not start a pipelined bus cycle regardless of the state of

NA#.

Page 3-13

NMI

Non-Maskable Interrupt Requestforces the processor to suspend
execution of the current instruction stream and begin execution of an N
interrupt service routine.

Input
MI

Page 3-14

PCD

Page Cache Disableeflects the state of the PCD page attribute bit in th
page table entry or the directory table entry. If paging is disabled, or fol
cycles that are not paged, the PCD pin is driven low. PCD is masked b
cache disable (CD) bit in CRO, and floats during bus hold states.

€Output
the

Page 3-15

PCHK#

Data Parity Checkindicates that a data bus parity error has occurre
during a read operation. PCHK# is only valid during the second clog
immediately after read data is returned to the IBM 6x86 CPU (BRD
asserted) and is inactive otherwise. Parity errors signaled by a logic
on PCHK# have no effect on processor execution.

1 Output
" p

#
low

Page 3-10

PWT

Page Write Through reflects the state of the PWT page attribute bit in
page table entry or the directory table entry. PWT pin is negated during
that are not paged, or if paging is disabled. PWT takes priority over
WB/WT#.

heutput
ycles

Page 3-15

QDUMP#

Q Buffer Dump is used to dump the contents of the scatter/gather buffeqn

onto the data bus. The data bytes specified by the byte enables (BE7#
are driven onto the data bus during the clock after QDUMP# is sample
asserted. QDUMP# is ignored if the scatter/gather pins are disabled.

BEB;;
;

Page 3-22

RESET

Resetsuspends all operations in progress and places the IBM 6x86 CP!

data in the on-chip caches is invalidated.

areset state. Reset forces the CPU to begin executing in a known staT,\.

Hiiset
[

Page 3-7

3-5

==

= "

= == ==] i
——t——— Signal Description Table

Table 3-1. IBM 6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name Description 110 Reference

scYC Split Locked Cycleindicates that the current bus cycle is part of a Output | Page 3-11
misaligned locked transfer. SCYC is defined for locked cycles only. A
misaligned transfer is defined as any transfer that crosses an 8-byte boundary.

SMI# SMM Interrupt forces the processor to save the CPU state to the top dfinput Page 3-14
SMM memory and to begin execution of the SMI service routine at the
beginning of the defined SMM memory space. An SMl is a higher-prior|ty
interrupt than an NMI.

SMIACT# SMM Interrupt Active indicates that the processor is operating in Syste@utput | Page 3-13
Management Mode. SMIACT# does not float during bus hold states.

SUSP# Suspend Requestequests that the CPU enter suspend mode. SUSP# ignpuyt Page 3-22
ignored following RESET and is enabled by setting the SUSP bit in CCR2.

SUSPA# Suspend Acknowledgendicates that the IBM 6x86 CPU has entered | output | Page 3-22
low-power suspend mode. SUSPA# floats following RESET and is engabled
by setting the SUSP bit in CCR2.

TCK Test Clock (JTAG) is the clock input used by the IBM 6x86 CPU's boundapyput Page 3-24
scan (JTAG) test logic.

TDI Test Data In (JTAG) is the serial data input used by the IBM 6x86 CPU'snput Page 3-24
boundary scan (JTAG) test logic.

TDO Test Data Out(JTAG) is the serial data output used by the IBM 6x86 CRW@Sitput | Page 3-24
boundary scan (JTAG) test logic.

™S Test Mode SelecJTAG) is the control input used by the IBM 6x86 CPUsput Page 3-24
boundary scan (JTAG) test logic.

TRST# Test Mode Rese(JTAG) initializes the IBM 6x86 CPU's boundary scan |nput Page 3-24

(JTAQG) test logic.

WB/WT# Write-Back/Write-Through is sampled during cache line fills to define thehput Page 3-15
cache line write policy. If high, the cache line write policy is write-back. (If
low, the cache line write policy is write-through. (PWT forces write-throtigh
policy when PWT=1.)

WM RST Warm Resetforces the IBM 6x86 CPU to complete the current instructipmpuyt Page 3-9
- and then places the IBM 6x86 CPU in a known state. Once WM_RST i
sampled active by the CPU, the reset sequence begins on the next instruction
boundary. WM_RST does not change the state of the configuration regjsters,
the on-chip cache, the write buffers and the FPU registers. WM_RST i
sampled during reset.

W/R# Write/Read Status If high, indicates that the current memory, or I/O bug Qutput | Page 3-11
cycle is a write cycle. If low, indicates that the current bus cycle is a rea[j
cycle.

3-6

Signal Descriptions 3

3.2 Signal Descriptions 3.2.2 Reset Control

The following paragraphs provide additional The IBM 6x86 CPU output signals are initial-
information about the IBM 6x86 CPU signals. ized to their reset states during the CPU reset
For ease of this discussion, the signals are ~ Sequence, as shown in Table 3-3 (Page 3-8).
divided into 16 functional groups as illustrated The signal states given in Table 3-3 assume
in Figure 3-1 (Page 3-1). that HOLD, AHOLD, and BOFF# are negated.

321 Clock Control Asserting RESET suspends all operations in
progress and places the IBM 6x86 CPU in a

The Clock Input (CLK) signal, supplied by the reset state. RESET is an asynchronous signal

system, is the timing reference use by the IBMbut must meet specified setup and hold times to

6x86 CPU bus interface. All external timing guarantee recognition at a particular clock

parameters are defined with respect to the CLKedge.

rising edge. The CLK signal enters the IBM

6x86 CPU where it is doubled or tripled to ~ On system power-up, RESET must be held
produce the IBM 6x86 CPU internal clock asserted for at least 1 msec after Vcc and CLK

signal. During power on, the CLK signal must have reached specified DC and AC limits. This

be running even if CLK does not meet AC delay allows the CPU's clock circuit to stabi-

specifications. lize and guarantees proper completion of the
reset sequence.

The Clock Multiplier (CLKMUL) input is

sampled during RESET to determine the During normal operation, RESET must be
CPU’s core operating frequency. If asserted for at least 15 CLK periods in order to
CLKMUL=0, the core frequency is 2x the guarantee the proper reset sequence is

frequency of the CLK input. If CLKMUL=1, executed. When RESET negates (on its falling

the core frequency is 3x the frequency of the edge), the pins listed in Table 3-2 determine if
CLK input. The CLKMUL input is connected Certain IBM 6x86 CPU functions are enabled.

to an internal pull-down resistor. Therefore, if Table 3-2. Pins Sampled During RESET
CLKMUL is left unconnected, the core
frequency defaults to 2x the input CLK. S DESCRIPTION

CLKMUL should be connected to Vss, Vcc, or

left unconnected. CLKMUL should not be FLUSH# If = 0, three-state test mode enabled
connected to a switching signal. QDUMP# | If =0, scatter/gather interface enabled.

WM_RST | If =1, built-in self test initiated.

Table 3-3. Signal States During RESET

Signal Descriptions

bins

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Ignored INTR Ignored

A31-A3 Undefined until first ADS# INV Ignored

ADSH# 1 KEN# Ignored

ADSC# 1 LBA# 1

AHOLD Recognized LOCK# 1

AP Undefined until first ADS# M/IO# Undefined until first ADS#

APCHK# 1 NA# Ignored

BE7#-BEO# Undefined until first ADS# NMI Ignored

BHOLD Ignored PCD Undefined until first ADS#

BOFF# Recognized PCHK# 1

BRDY# Ignored PWT Undefined until first ADS#

BRDYC# Ignored QDUMP# Enables scatter/gather interface

BREQ 0 RESET 1

CACHE# Undefined until first ADS# SCYC Undefined until first ADS#

D(63-0) Float SMI# Ignored

D/C# Undefined until first ADS# SMIACT# 1

DHOLD Ignored SUSP# Ignored

DP(7-0) Float SUSPA# Float

EADS# Ignored TCK Recognized

EWBE# Ignored TDI Recognized

FERR# 1 TDO Responds to TCK, TDI, TMS,
TRST#

FLUSH# Initiates three-state test mofle TMS Recognized

HIT# 1 TRST# Recognized

HITM# 1 WIR# Undefined until first ADS#

HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Initiates self-test

IGNNE# Ignored

3-8

Signal Descriptions 3

Warm Reset (WM_RST)allows the IBM The Byte Enable (BE7#-BEO#) lines are

6x86 CPU to complete the current instruction bi-directional signals that define the valid data
and then places the IBM 6x86 CPU in a knowrpytes within the 64-bit data bus. The

state. WM_RST is an asynchronous signal, bujorrelation between the enable signals and data
must meet specified setup and hold times in pytes is shown in Table 3-4.

order to guarantee recognition at a particular

CLK edge. Once WM_RST is sampled active Table 3-4. Byte Enable Signal to

by the CPU, the reset sequence begins on the Data Bus Byte Correlation

next instruction boundary.

BYTE CORRESPONDING

WM_RST differs from RESET in that the ENABLE DATABYTE
contents of the on-chip cache, the write BE7# D63-D56
buffers, the configuration registers and the BEG6# D55-D48
floating point registers contents remain BES# DA47-D40
unchanged. BE4# D39-D32
Following completion of the internal reset BE3# D31-D24
sequence, normal processor execution begins BE2# D23-D16
nd W RET are asseriod smuianeousy, |
WM_RST is ignored and RESET takes BEO# D7-DO

priority. If WM_RST is asserted at the falling
edge of RESET, built-in self test (BIST) is
initiated.

During a cache line fill, (burst read or “1+4”
burst read) the IBM 6x86 CPU expects data to
be returned as if all data bytes are enabled,
323 Address Bus regardless of the state of the byte enables.
BE7#-BEO# float during bus hold and byte
TheAddress Bus (A31-A3)ines provide the enable hold states.
physical memory and external I/O device
addresses. A31-A5 are bi-directional signals
used by the IBM 6x86 CPU to drive
addresses to both memory devices and I/O
devices. During cache inquiry cycles the IBM
6x86" CPU receives addresses from the
system using signals A31-A5.

Address Bit 20 Mask (A20M#)is an active

low input which causes the IBM 6x86 CPU to
mask (force low) physical address bit 20 when
driving the external address bus or when
performing an internal cache access. Asserting
A20M# emulates the 1 MByte address
wrap-around that occurs on the 8086. The A20
Using signals A31-A3, the IBM 6x86CPU signal is never masked during write-back

can address a 4-GByte memory address spaceycles, inquiry cycles, system management
Using signals A15-A3, the IBM 6x§6CPU address space accesses or when paging is
can address a 64-KByte I/O space through thenabled, regardless of the state of the A20M#
processor’s /O ports. During I/O accesses, input.

signals A31-A16 are driven low. A31-A3 float

during bus hold and address hold states.

Signal Descriptions

3.24 Address Parity 3.2.6 Data Parity

Address Parity (AP) is a bi-directional signal The Data Parity Bus (DP7-DP0) provides and
which provides the parity associated with receives parity data for each of the eight data
address lines A31-A5. (A4 and A3 are not bus bytes (Table 3-5). The IBM 6x86 CPU
included in the parity determination.) During generates even parity on the bus during write
IBM 6x86 CPU generated bus cycles, while theycles and accepts even parity from the system
address bus lines are driven, AP becomes anduring read cycles. DP7-DPO is driven only
output supplying even address parity. During while a write cycle is active.

cache inquiry cycles, AP becomes an input and

is sampled by EADS#. During cache inquiry

cycles, even-parity must be placed on the AP Table 3-5. Parity Bit to Data
line to guarantee an accurate result on the Byte Correlation
APCHK# (Address Parity Check Status) pin. SARTVBIT CATABVTE
Address Parity Check Status (APCHK#) is bp7 D63-D56
driven active by the CPU when an address bus DP6 D55-D48
parity error has been detected for a cache DP5 D47-D40
inquiry cycle. APCHK# is asserted two clocks DP4 D39-D32
aftlt_a(; IfEADS# |sI s?(mplled isdsderted, an_(: remains DP3 D31-D24
valid for one clock only. ress parity errors

; DP2 D23-D16
signaled by APCHK# have no effect on
processor execution. DP1 D15-D8

DPO D7-DO

3.25 Data Bus
Parity Check (PCHK#) is asserted when a
Data Bus (D63-DO0)lines carry three-state, data bus parity error is detected. Parity is
bi-directional signals between the IBM 6x86 checked during code, memory and I/O reads,
CPU and the system (i.e., external memory arahd the second interrupt acknowledge cycle.
1/0 devices). The data bus transfers data to thearity is not checked during the first interrupt
IBM 6x86 CPU during memory read, I/O readacknowledge cycle.
and interrupt acknowledge cycles. Data is

transferred from the IBM 6x86 CPU during Parity is checked for only the active data bytes
memory and /0 write cycles. as determined by the active byte enable signals

except during a cache line fill (burst read or
Data setup and hold times must be met for “1+4” burst read). During a cache line fill, the
correct read cycle operation. The data bus isIBM 6x86 CPU assumes all data bytes are valid
driven only while a write cycle is active. and parity is checked for all data bytes regard-
less of the state of the byte enables.

Signal Descriptions 3

PCHK# is valid only during the second clock involves a control function such as a halt, inter-
immediately after read data is returned to the rupt acknowledge or code fetch.

IBM 6x86 CPU (BRDY# asserted). At other i)

times PCHK# is not active. Parity errors Bus Lock (LOCK#) is an active low output

signaled by the assertion of PCHK# have no which, when asserted, indicates that other

effect on processor execution. system bus masters are denied access to control
of the CPU bus. The LOCK# signal may be
3.2.7 Bus Cycle Definition explicitly activated during bus operations by

including the LOCK prefix on certain instruc-
Each bus cycle is assigned a bus cycle type. Thiéns. LOCK# is also asserted during descriptor
bus cycle types are defined by six three-stateupdates, page table accesses, interrupt acknowl-
outputs: CACHE#, D/C#, LOCK#, M/IO#, edge sequences and when executing the XCHG
SCYC, and W/R# as listed in Table 3-6 (Pagénstruction. However, if the NO_LOCK bit in
3-12). CCR1 is set, LOCK# is asserted only during
page table accesses and interrupt acknowledge
sequences. The IBM 6x86 CPU does not enter
the bus hold state in response to HOLD while
the LOCK# output is active.

These bus cycle definition signals are driven
valid while ADS# is active. D/C#, M/IO#,
W/R#, SCYC and CACHE# remain valid until
the clock following the earliest of two signals:
NA# asserted, or the last BRDY# for the cyclememory/IO (M/IO#) distinguishes between
memory and 1/O operations. When high, this
signal indicates that the current bus cycle is a
memory read or memory write. When low,
M/10# indicates that the current bus cycle is an
1/O read, I/O write, interrupt acknowledge

Cache Cycle Indicator (CACHE#)is an cycle or special bus cycle.

output that indicates that the current bus cyclespIit Cycle (SCYC)is an active high output

is a potentially cacheable cycle (for a read), Othat indicates that the current bus cycle is part

indicates that the current bus cycle is a cacheOf a misaligned locked transfer. SCYC is

line write-back or line replacement burst cyC|edefined for locked cycles only. A misaligned

(for a write). If CACH.E# is_asserted for a readtramsfer is defined as any transfer that crosses
cycle and the KEN# input is returned active b)én 8-byte boundary

the system, the read cycle becomes a cache line
fill burst cycle. Write/Read (W/R#) distinguishes between
write and read operations. When high, this

dat d trol " When hiah. thi signal indicates that the current bus cycle is a
ata and control operations. en hign, this memory write, I/O write or a special bus cycle.

Zlgtnatl |nd|;:at(tes thaf\t the current bus,”(gc\l/(\e”:s 3When low, this signal indicates that the current
| a aDr}':lgs _erd_o ct)r r?r:ntr?r:emory ort b ' elncycle is a memory read, I/O read or interrupt
ow, indicates that the current bus cycle ;o)\ iedge cycle.

LOCK# continues asserted until after BRDY#
is returned for the last locked bus cycle. The
bus cycle definition signals float during bus
hold states.

Data/Control (D/C#) distinguishes between

== _ -
— o Signal Descriptions
Table 3-6. Bus Cycle Types
BUS CYCLE TYPE M/IO# DICH# W/R# | CACHE# | LOCK#
Interrupt Acknowledge 0 0 0 1 0
Does not occur. 0 0 0 X 1
Does not occur. 0 0 1 X 0
Special Cycles: 0 0 1 1 1
If BE(7-0)# = FEh: Shutdown
If BE(7-0)# = FDh: Flush (IVD, WBINVD)
If A4 = 0 and BE(7-0)# = FBh: Halt (HLT)
If BE(7-0)# = F7h: Write-Back (WBNVD)
If BE(7-0)# = EFh: Flush Acknowledge
(FLUSH#)
If A4 =1 and BE(7-0)# = FBh: Stop Grant
(SUSP#)
Does not occur. 0 1 X X 0
I/0 Data Read 0 1 0 1 1
1/0 Data Write 0 1 1 1 1
Does not occur. 1 0 X X 0
Cacheable Memory Code Read 1 0 0 0 1
(Burst Cycle if KEN# Returned Active)
Non-cacheable Memory Code Read 1 0 0 1 1
Does not occur. 1 0 1 X 1
Locked Memory Data Read 1 1 0 1 0
Cacheable Memory Data Read 1 1 0 0 1
(Burst Cycle if KEN# Returned Active)
Non-cacheable Memory Data Read 1 1 0 1 1
Locked Memory Write 1 1 1 1 0
Burst Memory Write 1 1 1 0 1*
(Writeback or Line Replacement)
Single Transfer Memory Write 1 1 1 1 1

Note: X = Don't Care
*Note: LOCK# continues to be asserted during a write-back cycle that occurs following an aborted (BOFF# asserted)
locked bus cycle.

Signal Descriptions 3

3.2.8 Bus Cycle Control cycle or there is no pending bus cycle, the IBM
6x86 CPU does not start a pipelined bus cycle

The bus cycle control signals (ADS#, ADSC#, regardless of the state of the NA# input.

BRDY#, BRDYC#, NA#, and SMIACTH#) .

indicate the beginning of a bus cycle and allow>YStem Management Mode Active

system hardware to control bus cycle termina{SMIACT#) is an active low output which
tion timing and address pipelining. indicates that the CPU is operating in System

Management Mode. SMIACT# is asserted in
Address Strobe (ADS#)s an active low response to the assertion of SMI# or due to
output which indicates that the CPU has drivenexecution of the SMINT instruction.
a valid address and bus cycle definition on theSMIACT# is also asserted during accesses to
appropriate output pins. ADS# floats during defined SMM memory if the SMAC bit in

bus hold states. CCRL1 is set. This bit allows access to SMM
memory while not in SMM mode and is typi-

Cache Address Strobe (ADSC#performs cally used for initialization purposes.

the same function as ADS#. ADSC# is used to

interface directly to a secondary cache While servicing an SMI# interrupt or SMINT

controller. instruction, SMIACT# remains asserted until a

RSM instruction is executed. The RSM
Burst Ready (BRDY#)is an active low input instryction causes the IBM 6xBECPU to exit
thatis driven by the system to indicate that thes\im mode and negate the SMIACT# output.
current transfer within a burst cycle or the If a cache inquiry cycle occurs while
current single transfer bus cycle can be termi-S\IACT# is active, any resulting write-back
nated. The CPU samples BRDY# in the secongycje is issued with SMIACT# asserted. This
and subsequent clocks of a cycle. BRDY#iS occurs even though the write-back cycle is
active during address hold states. intended for normal memory rather than SMM

Cache Burst Ready (BRDYC#)performs the MM
same function as BRDY# and is logically During RESET, the USE_SMI bit in CCR1 is

ORed with BRDY internally by the CPU. cleared. While USE_SMI is zero, SMIACT# is
BRDYC# is used to interface directly to a always negated. SMIACT# does not float
secondary cache controller. during bus hold states.

Next Address (NA#)is an active low input 3.2.9 Interrupt Control

that is driven by the system to request the next

pending bus cycle address and cycle definitionThe interrupt control signals (INTR, NMI,
information even though all data transfers for SMI#) allow the execution of the current
the current bus cycle are not complete. This instruction stream to be interrupted and
new bus cycle is referred to as a “pipelined” suspended.

cycle. If either the current or next bus cycle is a

locked cycle, a line replacement, a write-back

Signal Descriptions

Maskable Interrupt Request (INTR) is an System Management Interrupt Request
active high level-sensitive input which causes(SMI#) is an interrupt input with higher priority
the processor to suspend execution of the than the NMI input. SMI# is a falling edge
current instruction stream and begin executiosensitive input and is sampled on every rising
of an interrupt service routine. The INTR inpuedge of the processor input clock. Asserting
can be masked (ignored) through the IF bit inSMI# forces the processor to save the CPU

the Flags Register. state to the top of SMM memory and to begin
execution of the SMI service routine at the
When not masked, the IBM 6x86 CPU beginning of the defined SMM memory space.

responds to the INTR input by performing twoagter the processor internally acknowledges the
locked interrupt acknowledge bus cycles. gM¢ interrupt, the SMIACT# output is driven

During the second interrupt acknowledge cyclggy for the duration of the interrupt service
the IBM 6x86 CPU reads an 8-bit value, the 4 tine.

interrupt vector, from the data bus. The 8-bit

interrupt vector indicates the interrupt level thabnce SMI# servicing has started, no additional
caused generation of the INTR and is used bySMI# interrupts are processed until a RSM

the CPU to determine the beginning address ofstruction is executed. If SMI# is re-asserted
the interrupt service routine. To assure recogmirior to execution of a RSM instruction, one
tion of the INTR request, INTR must remain and only one SMI# falling edge is stored and
active until the start of the first interrupt then processed after execution of the next
acknowledge cycle. RSM. SMI# is ignored following reset and

) recognition is enabled by setting the USE_SMI
Non-Maskable Interrupt Request (NMI) isa it in CCR1.

rising edge sensitive input which causes the

processor to suspend execution of the curren8.2.10 Cache Control

instruction stream and begin execution of an

NMI interrupt service routine. The NMI inter- The cache control signals (EWBE#, FLUSH#,
rupt cannot be masked by the IF bit in the Flag§EN#, PCD, PWT, WB/WT#) are used to indi-
Register. Asserting NMI causes an interrupt cate cache status and control caching activity.

which internally supplies interrupt vector 2h to . .
the CPU core. Therefore, external interrupt Ext_ernal erte Buff_er Empty (EWBE#) IS an
active low input driven by the system to indi-

acknowledge cycles are not issued. . . .
cate when there are no pending write cycles in

Once NMI processing has started, no additionte external system. The IBM 6x86 CPU

NMIs are processed until an IRET instruction isamples EWBE# during write cycles (I/O and

executed, typically at the end of the NMI memory) only. If EWBE# is not asserted, the

service routine. If NMI is re-asserted prior to processor delays all subsequent writes to

execution of the IRET, one and only one NMIon-chip cache lines in the “exclusive” or

rising edge is stored and then processed aftermodified” state until EWBE# is asserted.
execution of the next IRET. Regardless of the state of EWBE#, all writes to

Signal Descriptions 3

the on-chip cache are delayed until any previ-a cache line fill (4 transfer burst cycle) or a
ously issued external write cycle is complete. “1+4” cache line fill. KEN# is sampled with

This ensures that external write cycles occur ithe first asserted BRDY# or NA# for the cycle.
program order and is referred to as “strong 1/O accesses, locked reads, system management
write ordering”. To enhance performance, = memory accesses and interrupt acknowledge
“weak write ordering” may be allowed for cycles are never cached.

specific address regions using the Address

Region Registers (ARRs) and Region ControfPage Cache Disable (PCD} an active high
Registers (RCRS). output that reflects the state of the PCD page

attribute bit in the page table entry or the direc-
Cache Flush (FLUSH#)is a falling edge sensi-tory table entry. If paging is disabled or for
tive input that forces the processor to cycles that are not paged, the PCD pin is driven
write-back all dirty data in the cache and thenlow. PCD is masked by the cache disable (CD)
invalidate the entire cache contents. FLUSH#bit in CRO (driven high if CD=1) and floats
need only be asserted for a single clock but during bus hold states.
must meet specified setup and hold times to

guarantee recognition at a particular clock ~ Page Write Through (PWT)is an active high
edge. output that reflects the state of the PWT page

attribute bit in the page table entry or the direc-
Once FLUSH# is sampled active, the IBM tory table entry. If paging is disabled or for
6x86" CPU begins the cache flush sequence cycles that are not paged, the PWT pin is driven
after completion of the current instruction. low. If PWT is asserted, PWT takes priority
External interrupts and additional FLUSH# over the WB/WT# input. If PWT is asserted for
requests are ignored while the cache flush is gither reads or writes, the cache line is saved in,
progress. However, cache inquiry cycles are or remains in, the shared (write-through) state.
permitted during the flush sequence. The IBMPWT floats during bus hold states.
6x86" CPU issues a flush acknowledge special))
cycle to indicate completion of the flush The Write-Back/Write-Through (WB/WT#)
sequence. If the processor is in a halt or shut{"Put allows the system to define the write
down state, FLUSH# is recognized and the policy of the on-chip cache on a line-by-line

IBM 6x86 CPU returns to the halt or shutdowrPasis. If WB/WT# is sampled high during a line
state following completion of the flush fill cycle and PWT is low, the line is defined as

sequence. If FLUSH# is active at the falling write-back a_\nd is stored_in the (_exclusivg state.
edge of RESET, the processor enters three stid/B/WT# is sampled high during a write to a
test mode. write-through cache line (shared state) and
PWT is low, the line is transitioned to
Cache Enable (KEN#)is an active low input write-back (exclusive state). If WB/WT# is
which indicates that the data being returned sampled low or PWT is high, the line is defined
during the current cycle is cacheable. When thes write-through and is stored in (line fill), or
IBM 6x86 CPU is performing a cacheable codeemains in (write), the shared state. Table 3-7
fetch or memory data read cycle and KEN# is(Page 3-16) lists the effects of WB/WT# on the
sampled asserted, the cycle is transformed ingtate of the cache line for various bus cycles.

3-15

ava
Table 3-7. Effects of WB/WT# on Bus Request (BREQ)is an active high output
Cache Line State asserted by the IBM 6x86 CPU whenever a bus
BUSCYCLE [- | we/ WRITE MESI cycle is pending internally. The IBM 6x86 CPU
TYPE WT# | POLICY STATE always asserts BREQ in the first clock of a bus
Line Fill 0 0 | Write- Shared cycle with ADS# as well as during bus hold and
through address hold states if a bus cycle is pending. If
Line Fill 0 1 | Write- Exclusiv no additional bus cycles are pending, BREQ is
back € negated prior to termination of the current
Line Fill 1 X | Write- Shared cycle.
through
Memory Write | O 0 | Write- Shared Bus Hold Request (HOLD)is an active high
(Note) through input used to indicate that another bus master
Memory 0 1 | Write- Exclusiv requests control of the CPU's local bus. After
Write (Note) back e recognizing the HOLD request and completing
Memory Write | 1 x| Write- Shared the current bus cycle or sequence of locked bus
(Note) through cycles, the IBM 6x86 CPU responds by floating
Iote: Only applies to memory wirites to addresses thavarertly the local bus and asserting the hold acknowl-
edge (HLDA) output. The bus remains granted
3.2.11 Bus Arbitration to the requesting bus master until HOLD is

negated. Once HOLD is sampled negated, the
The bus arbitration signals (BOFF#, BREQ, IBM 6x86 CPU simultaneously drives the local
HOLD, and HLDA) allow the IBM 6x86 CPU bus and negates HLDA.

to relinquish control of its local bus when)))
requested by another bus master device. Once Hold Acknowledge (HLDA) is an active high
the processor has released its bus, the bus output used to indicate that the IBM 6x86 CPU

master device can then drive the local bus ~ has responded to the HOLD input and has relin-
quished control of its local bus. Table 3-8 (Page
3-17) lists the state of all the IBM 6x86 CPU
Back-Off (BOFF#) is an active low input that signals during a bus hold state. The IBM 6x86
forces the IBM 6x86 CPU to abort the current CPU continues to operate during bus hold states
bus cycle and relinquish control of the CPU's as long as the on-chip cache can satisfy bus
local bus in the next clock. The IBM 6x86 CPU requests. HLDA is asserted until HOLD is
responds to BOFF# by entering the bus hold negated. Once HOLD is sampled negated, the
state as listed in Table 3-8 (Page 3-17). The IBM 6x86 CPU simultaneously drives the local
IBM 6x86 CPU remains in bus hold until bus and negates HLDA.

BOFF# is negated. Once BOFF# is negated, the

IBM 6x86 CPU restarts any aborted bus cycle

in its entirety. Any data returned to the IBM

6x86 CPU while BOFF# is asserted is ignored.

If BOFF# is asserted in the same clock that

ADS# is asserted, the IBM 6x86CPU may

float ADS# while in the active low state.

signals.

3-16

Signal Descriptions 3

Table 3-8. Signal States During Bus Hold

SIGNAL LINE STATE SIGNAL LINE STATE
A20M# Recognized internally INTR Recognized internally
A31-A3 Float INV Recognized

ADS# Float KEN# Ignored

ADSC# Float LBA# Float

AHOLD Ignored LOCK# Float

AP Float M/IO# Float

APCHK# Driven NA# Ignored

BE7#-BEO# Float NMI Recognized internally
BHOLD Ignored PCD Float

BOFF# Recognized PCHK# Driven

BRDY# Ignored PWT Float

BRDYC# Ignored QDUMP# Recognized

BREQ Driven RESET Recognized
CACHE# Float SCYC Float

D/C# Float SMI# Recognized

D63-D0 Float SMIACT# Driven

DHOLD Ignored SUSP# Recognized
DP7-DPO Float SUSPA# Driven

EADS# Recognized TCK Recognized

EWBE# Recognized internally TDI Recognized

FERR# Driven TDO Responds to TCK, TDI, TMS, TRST#
FLUSH# Recognized T™MS Recognized

HIT# Driven TRST# Recognized

HITM# Driven WIR# Float

HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Recognized

IGNNE# Recognized internally

Signal Descriptions

3.2.12 Cache Coherency sampled low, the final state of the cache line is
“shared”. A cache inquiry cycle using EADS#
The cache coherency signals (AHOLD, may be run while the IBM 6x86 CPU is in
EADS#, HIT#, HITM#, and INV) are used to either an address hold or bus hold state. The
initiate and monitor cache inquiry cycles. inquiry address must be driven by an external

These signals are intended to be used to ensdgyice.
cache coherency in a uni-processor environ-

ment only. Contact IBM for additional specifi-Hit on Cache Line (HIT#) is an active low

cations on maintaining coherency in a output used to indicate that the current cache

multi-processor environment. inquiry address has been found in the cache
(modified, exclusive or shared states). HIT# is

Address Hold Request (AHOLD)is an active valid two clocks after EADS# is sampled

high input which forces the IBM 6x86 CPU to active, and remains valid until the next cache

float A31-A3 and AP in the next clock cycle. inquiry cycle.

While AHOLD is asserted, only the address bus

is disabled. The current bus cycle remains Hit on Modified Data (HITM#) is an active

active and can be completed in the normal low output used to indicate that the current

fashion. The IBM 6x86 CPU does not generateache inquiry address has been found in the

additional bus cycles while AHOLD is asserte@¢ache and dirty data exists in the cache line

except write-back cycles in response to a cack@odified state). If HITM# is asserted, a

inquiry cycle. write-back cycle is issued to update external
_ memory. HITM# is valid two clocks after
External Address Strobe (EADS#)s an EADS# is sampled active, and remains asserted

active low input used to indicate to the IBM until two clocks after the last BRDY# of the
6x86 CPU that a valid cache inquiry address igrite-back cycle is sampled active. The IBM
being driven on the IBM 6x86 CPU address bugxg6 CPU does not accept additional cache
(A31-A5) and AP. The IBM 6x86 CPU checksinquiry cycles while HITM# is asserted.

the on-chip cache for this address. If the address

is present in the cache the HIT# signal is ~ Invalidate Request (INV)is an active high
asserted. If the data associated with the inquifpput used to determine the final state of the
address is “dirty” (modified state), the HITM# cache line in the case of a cache inquiry hit.
signal is also asserted. If dirty data exists, a INV is sampled with EADS#. A logic one on
write-back cycle is issued to update external INV directs the processor to change the state of
memory with the dirty data. Additional cache the cache line to “invalid”. A logic zero on
inquiry cycles are ignored while HITM# is INV directs the processor to change the state of
asserted. the cache line to “shared”.

The state of the INV pin at the time EADS# is
sampled active determines the final state of the
cache line. If INV is sampled high, the final
state of the cache line is “invalid”. If INV is

Signal Descriptions 3

3.2.13 FPU Error Interface 3.2.14 Scatter/Gather Buffer
Interface

The FPU interface signals FERR# and IGNNE#
are used to control error reporting for the The scatter/gather buffer interface signals
on-chip floating point unit. These signals are (BHOLD, DHOLD, LBA#, QDUMP#), in
typically used for a PC-compatible system conjunction with the byte enables
implementation. For other applications, FPU (BE7#-BEO#) and address hold (AHOLD), can
errors are reported to the IBM 6x86 CPU corebe used by the system hardware to transfer data
through an internal interface. to/from a 32-bit peripheral interface bus. A

. .) 64-bit buffer resides in the IBM 6x86 CPU to
Floating Point Error Status (FERR#)isan 5ggist the system in these transfers. This buffer
active low output asserted by the IBM 6x86 rqyides scatter/gather capability during four

CPU when an unmasked floating point eror itferent types of transfers as listed in Table 3-9
occurs. FERR# is asserted during execution qbage 3-20).

the FPU instruction that caused the error.
FERR# does not float during bus hold states.

Ignore Numeric Error (IGNNE#) is an active
low input which forces the IBM 6x86 CPU to
ignore any pending unmasked FPU errors and
allows continued execution of floating point
instructions. When IGNNE# is not asserted and
an unmasked FPU error is pending, the IBM
6x86 CPU only executes the following floating
point instructions: FNCLEX, FNINIT,
FNSAVE, FNSTCW, FNSTENV, and
FNSTSW#. IGNNE# is ignored when the NE
bit in CRO is setto a 1.

—_———— =
= = =
= == ===] e
——— T — Signal Descriptions
Table 3-9. Scatter/Gather Cycles
BHOLD | DHOLD | QDUMP#
CYCLE TYPE USED USED USED DATA BUS TIMING
CPU Write to 32-Bit Bus X - - Data driven 1 clock after byte enables
asserted.
CPU Read from 32-Bit Bus X -- -- Data sampled 1 clock after byte
enables asserted.
32-Bit Bus Master Write to Memory *
(1) Scatter/gather buffer load from X X -- Data sampled 1 clock after byte
32-bit bus master. enables asserted.
(2) Scatter/gather buffer write X -- X Data driven 1 clock after QDUMP#
to memory. asserted.
32-Bit Bus Master Read from Memor,
*
(1) Scatter/gather buffer load X X -- Data sampled 1 clock after byte
from memory. enables asserted.
(2) Scatter/gather buffer write to 32-hit ~ x -- X Data driven 1 clock after QDUMP#
bus master. asserted.

*Note: Bus master transfers using the scatter/gather buffer mustiagethivhile the CPU bus is in a bus hold state or an idle state. These
cycles canot occur during CPU inated bus cycles.

Byte Enable Hold (BHOLD) is an active high BHOLD is asserted by the external system
input that causes the IBM 6x86 CPU to float during scatter/gather buffer cycles. While

the byte enable outputs (BE7#-BEO#) in the BHOLD is asserted, the byte enables are

next clock. While BHOLD is asserted, only the driven by an external source and indicate

byte enables are disabled. The current bus which bytes of the data bus should be loaded
cycle remains active and can be completed ininto/written out of the scatter/gather buffer.

the normal fashion. The IBM 6x86 CPU The IBM 6x86 CPU samples the byte enables
continues to generate additional bus cycles at each rising clock edge while BHOLD is
while BHOLD is asserted, so BHOLD should asserted. Table 3-10 (Page 3-21) lists the byte
only be asserted while AHOLD is asserted. enable mappings for the scatter/gather cycles.

Table 3-10. Byte Enable Map for Scatter/Gather Cycles

CYCLE TYPE BE7-BEO# SOURCE DESTINATION
CPU Read from 32-Bit Bug CPU Data Bus Scatter/Gather Buffer

FF No Transfer No Transfer

F x 31-0 31-0

x F 31-0 63-32

X X 63-0 63-0
CPU Write to 32-Bit Bus* Scatter/Gather Buffer CPU Data Bus

FF No Transfer No Transfer

F x 31-0 31-0

x F 63-32 31-0

X X 63-0 63-0
Scatter/Gather Buffer Load| CPU Data Bus Scatter/Gather Buffer
for 32-Bit Bus Master FF No Transfer No Transfer

F x 31-0 31-0

x F 31-0 63-32

X X 63-0 63-0
Scatter/Gather Buffer Dum Scatter/Gather Buffer CPU Data Bus
using QDUMP# FF No Transfer No Transfer

F x 31-0 31-0

x F 63-32 31-0

X X 63-0 63-0
*Note: If LBA# is activeduring a CPU wite cycle with BE3-BEO# inactive, the IBEx86 CPU autmatically maps thepper

dword of data (D63-D32) to the lower dvd of the data bus (D31-DO0).

Data Bus Hold (DHOLD) is an active

high input that forces the IBM 6x86 CPU
to float the data bus lines (D63-D0) and
the data parity lines (DP7-DPO) in the next
clock. While DHOLD is asserted, only the
data and data parity buses are disabled.
The current bus cycle remains active and
is completed in the normal fashion in
response to BRDY#. The IBM 6x86 CPU
generates additional bus cycles while
DHOLD is asserted. To avoid writing
invalid data, during a write cycle, DHOLD
and BRDY# should not be asserted at the
same time,

The external system asserts DHOLD
during scatter/gather buffer load cycles

when the IBM 6x86 CPU is not the bus
master. While DHOLD is asserted, the
data bus is driven by an external source
and the information is loaded into the
scatter/gather buffer based on the state of
the byte enables (BHOLD asserted). The
data bus is sampled one clock after the
clock edge at which an active byte enable
is sampled.

Local Bus Access (LBA#) is an active low
output asserted by the IBM 6x86 CPU for
any I/O bus cycle or for any bus access
that resides within a “local bus” address
region as specified by the on-chip configu-
ration registers. LBA# is asserted during

Signal Descriptions 3

3-21

Signal Descriptions

the clock that ADS# is asserted and remains ignored following RESET and is enabled by
asserted for only one clock. LBA# is used to setting the SUSP bit in CCR2.

indicate a cycle intended to address a device

using the 32-bit peripheral bus. If LBA#is TheSuspend Acknowledge (SUSPA#utput
active during a CPU write cycle with BE(3-0)# indicates that the IBM 6x86 CPU has entered

inactive, the IBM 6x86 CPU automatically low-power suspend mode as the result of either
maps the upper dword of data to the lower ~ assertion of SUSP# or execution of a HALT
dword of the data bus. instruction. SUSPA# remains asserted until

SUSP# is negated, or until an interrupt is
Q Buffer Dump (QDUMP#) is an active low serviced if suspend mode was entered via the
input asserted by the external system to dumpHALT instruction. If SUSP# is asserted and
the contents of the scatter/gather buffer to thethen negated prior to SUSPA# assertion,
data bus. The data bytes specified by the ~ SUSPA# may toggle state after SUSP#
asserted byte enables are driven onto the datgegates.
bus during the clock after QDUMP# is
sampled asserted. QDUMP# must be asserteihe IBM 6x86 CPU accepts cache flush
at the falling edge of RESET to enable the ~ requests and cache inquiry cycles while

scatter/gather interface pins. SUSPA# is asserted. If FLUSH# is asserted,
the CPU exits the low power state and services
3.2.15 Power Management the flush request. After completion of all
Interface required write-back cycles, the CPU returns to

) the low power state. SUSPA# negates during
The two power management signals (SUSP#,tne write-back cycles. Before issuing the

SUSPA#) allow the IBM 6x86 CPU to enter yrite-pack cycle, the CPU may execute several
and exit suspend mode. The IBM 6x86 CPU (e fetches.

also enters suspend mode as the result of

executing a HALT instruction if the HALT bit If AHOLD, BOFF# or HOLD is asserted while

is set in CCR2. Suspend mode circuitry forcesSUSPA# is asserted, the CPU exits the low

the IBM 6x86 CPU to consume minimal power power state in preparation for a cache inquiry

while maintaining the entire internal CPU cycle. After completion of any required

state. write-back cycles resulting from the cache
inquiry, the CPU returns to the low power state

Suspend Request (SUSP#$ an active low only if HOLD, BOFF# and AHOLD are

input which requests that the IBM 6x86 CPU negated. SUSPA# negates during the
enter suspend mode. After recognition of an \yrjte-pack cycle.

active SUSP# input, the IBM 6x86 CPU

completes execution of the current instruction,Table 3-11 (Page 3-23) lists the IBM 6x86

any pending decoded instructions and associ-CPU signal states for suspend mode when

ated bus cycles, issues a stop grant bus cyclejnitiated by either SUSP# or the HALT instruc-

and then asserts the SUSPA# output. SUSP# ion. SUSPA# is disabled (three-state)
following RESET and is enabled by setting the
SUSP bit in CCR2.

Signal Descriptions 3

Table 3-11. Signal States During Suspend Mode

A20M# Ignored INTR Latched/Recognized

A31-A3 Driven INV Recognized

ADS# 1 KEN# Ignored

ADSC# 1 LBA# 1

AHOLD Recognized LOCK# 1

AP Driven M/IO# Driven

APCHK# 1 NA# Ignored

BE7#-BEO# Driven NMI Latched/Recognized

BHOLD Ignored PCD Driven

BOFF# Recognized PCHK# 1

BRDY# Ignored PWT Driven

BRDYC# Ignored QDUMP# Ignored

BREQ 0 RESET Recognized

CACHE# Driven SCYC Driven

D/C# Driven SMI# Latched/Recognized

D63-DO Float SMIACT# 1

DHOLD Ignored SUSP# 0/ Recognized

DP7-DPO Float SUSPA# 0

EADS# Recognized TCK Recognized

EWBE# Ignored TDI Recognized

FERR# 1 TDO Responds to TCK, TDI, TMS,
TRST#

FLUSH# Recognized TMS Recognized

HIT# Driven TRST# Recognized

HITM# 1 WIR# Driven

HLDA Driven in response to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Latched/Recognized

IGNNE# Ignored

Signal Descriptions

3.2.16 JTAG Interface

The IBM 6x86 CPU can be tested using JTAG
Interface (IEEE Std. 1149.1) boundary scan
test logic. The IBM 6x86 CPU pin state can be
set according to serial data supplied to the chip.
The IBM 6x86 CPU pin state can also be
recorded and supplied as serial data.

Test Clock (TCK) is the clock input used by
the IBM 6x86 CPU boundary scan (JTAG) test
logic. The rising edge of TCK is used to clock
control and data information into the IBM
6x86 CPU using the TMS and TDI pins. The
falling edge of TCK is used to clock data infor-
mation out of the IBM 6x86 CPU using the
TDO pin.

Test Data Input (TDI) is the serial data input
used by the IBM 6x86 CPU boundary scan
(JTAG) test logic. TDI is sampled on the rising
edge of TCK.

Test Data Output (TDO) is the serial data
output used by the IBM 6x86 CPU boundary
scan (JTAG) test logic. TDO is output on the
falling edge of TCK.

Test Mode Select (TMS)s the control input
used by the IBM 6x86 CPU boundary scan
(JTAG) test logic. TMS is sampled on the
rising edge of TCK.

Test Reset (TRST#)s an active low input
used to initialize the IBM 6x86 CPU boundary
scan (JTAG) test logic.

3-24

Functional Timing 3

33 Functional Timing the falling edge of RESET to determine if the
6x86 CPU should enter built-in self-test, enable
tri-state test mode or enable the scatter-gather
interface pins, respectively. WM_RST,

3.3.1 Reset Timing

Figure 3-2 illustrates the required RESET tin]fLUSH# and QDUMP# must be valid at least
ing for both a power-on reset and a reset th

occurs during operation. The WM_RST, o clocks prior to the RESET falling edge.
FLUSH# and QDUMP# inputs are sampled at

Reset Inactive = 2 CLKs Min.|
RESET Power-On Reset = 1 msec Min. | Reset after Power-On = 15 CLKs Min.
WM_RST VALID
FLUSH# VALID
QDUMP# VALID
I I

Note 1. ADS# asserted approximately 150-200 clocks after RESET falling edge if no built-in self-test
Note 2. ADS#asserted approximately 2+*19 clocks after RESET falling edge if built-in self-test requested.
Note 3. Output pins driven to specified RESET state a maximum of 2 CLKs after RESET rising edge.

Figure 3-2. RESET Timing

3-25

=_ Functional Timing
—

3.3.2 Bus State Definition

The 6x86 CPU bus controller supports non-pipelined and pipelined operation as well as single
transfer and burst bus cycles. During each CLK period, the bus controller exists in one of six
states as listed in Table 3-12. Each of these bus states and its associated state transitions is illus-
trated in Figure 3-3, (Page 3-27) and listed in Table 3-13, (Page 3-28).

Table 3-12. 6x86 CPU Bus States

STATE NAME DESCRIPTION

Ti Idle Clock During Ti, no bus cycles are in progress. BOFF# and RESET force fthe
bus to the idle state. The bus is always in the idle state while HLDA |s
active.

T1 First Bus Cycle Clock During the first clock of a non-pipelined bus cycle, the bus enters the T1

state. ADS# is asserted during T1 along with valid address and bus|cycle
definition information.

T2 Second and Subsequent | During the second clock of a non-pipelined bus cycle, the bus enters the
Bus Cycle Clock T2 state. The bus remains in the T2 state for subsequent clocks of the bus
cycle as long as a pipelined cycle is not initiated. During T2, valid dgta is
driven during write cycles and data is sampled during reads. BRDY# is
also sampled during T2. The bus also enters the T2 state to complete bus
cycles that were initiated as pipelined cycles but complete as the onl
outstanding bus cycle.

T12 First Pipelined Bus Cycle | During the first clock of a pipelined cycle, the bus enters the T12 staj:.
cycle

Clock During T12, data is being transferred and BRDY# is sampled for the
current cycle at the same time that ADS# is asserted and address/bi
definition information is driven for the next (pipelined) cycle.

T2P Second and Subsequent | During the second and subsequent clocks of a pipelined bus cycle where

Pipelined Bus Cycle Clock two cycles are outstanding, the bus enters the T2P state. During T2IP, data
is being transferred and BRDY# is sampled for the current cycle.
However, valid address and bus cycle definition information continugs to
be driven for the next pipelined cycle.

Td Dead Clock The bus enters the Td state if a pipelined cycle was initiated that reguires
one idle clock to turn around the direction of the data bus. Td is reqyired
for a read followed immediately by a pipelined write, and for a write
followed immediately by a pipelined read.

Functional Timing 3

P (from any state)

Figure 3-3. IBM 6x86 CPU Bus State Diagram

3-27

———
-_- I ——
- Functional Timing
Y
Table 3-13. Bus State Transitions
CURRENT | NEXT
TRANSITION STATE STATE EQUATION
A Ti Ti No Bus Cycle Pending.
B Ti T1 New or Aborted Bus Cycle Pending.
C Tl T2 Always.
D T2 T2 Not Last BRDY# and No New Bus Cycle Pending, or
Not Last BRDY# and New Bus Cycle Pending and NA#
Negated.
E T2 T1 Last BRDY# and New Bus Cycle Pending and HITM# Negated.
F T2 Ti Last BRDY# and No New Bus Cycle Pending, or
Last BRDY# and HITM# Asserted.
G T2 T12 | Not Last BRDY# and New Bus Cycle Pending and NA#
Sampled Asserted.
H T12 T2 Last BRDY# and No Dead Clock Required.
[T12 Td Last BRDY# and Dead Clock Required.
J T12 T2P | Not Last BRDY#.
K T2P T2P | Not Last BRDY#.
L T2P T2 Last BRDY# and No Dead Clock Required.
M T2P Td Last BRDY# and Dead Clock Required.
N Td T12 | New Bus Cycle Pending and NA# Sampled Asserted.
(0] Td T2 No New Bus Cycle Pending, or
New Bus Cycle Pending and NA# Negated.
P Any Ti RESET Asserted, or
State BOFF# Asserted.

Functional Timing 3

333 Non-pipelined Bus The CPU uses the data parity inputs to check
Cycles for even parity on the active data lines. If the

CPU detects an error, the parity check output

Non-pipelined bus operation may be used for(pcHk#) asserts during the second clock fol-

all bus cycle types. The term “non-pipelined”|owing the termination of the read cycle.
refers to a mode of operation where the CPU

allows only one outstanding bus cycle. In Figure 3-4 (Page 3-30) illustrates the func-
other words, the current bus cycle must com-tional timing for two non-pipelined sin-
plete before a second bus cycle is allowed to gle-transfer read cycles. Cycle 2 is a

start. potentially cacheable cycle as indicated by the
o] CACHE# output. Because this cycle is poten-
3331 Non-pipelined Single tially cacheable, the CPU samples the KEN#
Transfer Cycles input at the same clock edge that BRDY# is

asserted. If KEN# is negated, the cycle termi-
nates as shown in the diagram. If KEN# is
non-cacheable memory reads, I/O read cycle jgqerted, the CPU converts this cycle into a

and special cycles. A non-pipelined single .t cycle as described in the next section.
transfer read cycle begins with address and by a4 must be negated for non-pipelined opera-

cycle definition information driven on the bus tion. Pipelined bus cycles are described later
during the first clock (T1 state) of the bus in this chapter.

cycle. The CPU then monitors the BRDY#
input at the end of the second clock (T2 state)
If BRDY# is asserted, the CPU reads the
appropriate data and data parity lines and ter-
minates the bus cycle. If BRDY# is not active,
the CPU continues to sample the BRDY# input
at the end of each subsequent cycle (T2 states).
Each of the additional clocks is referred to as a
wait state.

Single transfer read cycles occur during

3-29

CLI

K

ADS#

Address, AP

CACHE#

WIR#

NA#

BRDY#

KEN#

DATA, DP

PCHK#

Ti T1 T2 T1 T2 T2 T2 Ti Ti Ti

\ CYCLEl/ \CYCLEZ/

X vap X VALID I

ARG Y \

NEAUANRAY

\ VALID / \ VALID /

Cycle 1. Cycle 2
Non-Cacheable, Potentially Cacheable,
0 Wait State Read 2Wait-State Read

Figure 3-4. Non-Pipelined Single Transfer Read Cycles

Functional Timing 3

Single transfer write cycles occur for writes bus cycle. Data and data parity remain valid
that are neither line replacement nor write-baduring all wait states. If the write cycle is a
cycles. The functional timing of two non-pipewrite to a valid cache location in the “shared”

lined single transfer write cycles is shown in state, the WB/WT# pin is sampled with

Figure 3-5. During a write cycle, the data andBRDY#. If WB/WT# is sampled high, the
data parity lines are outputs and are driven cache line transitions from the “shared” to the
valid during the second clock (T2 state) of théexclusive” state.

CLK

ADS#

Address, AP

CACHE#

W/R#

NA#

BRDY#

WB/WT#

DATA, DP

\ovaea/—[\oraez)/

Y VAo) VALID X
/ (.
/ (.

RO

RN __ | AT

o o
(oot —— —on —

Cycle 1:
0 Wait-State Write

Cycle 2:
2 Wait-State Write

Figure 3-5. Non-Pipelined Single Transfer Write Cycles

3-31

=_ Functional Timing
—

3.3.32 Non-pipelined Burst Each time BRDY# is sampled asserted during
Read Cycles the burst cycle, a data transfer occurs. The
CPU reads the data and data parity busses and
The 6x86 CPU uses burst read cycles to per- assigns the data to an internally generated
form cache line fills. During a burst read burst address. Although the CPU internally
cycle, four 64-bit data transfers occur to fill generates the burst address sequence, only the
one of the CPU’s 32-byte internal cache lines. first address of the burst is driven on the exter-
A non-pipelined burst read cycle begins with nal address bus. System logic must predict the
address and bus cycle definition information puyrst address sequence based on the first
driven on the bus during the first clock (T1 address. Wait states may be added to any
state) of the bus cycle. The CACHE# output istransfer within a burst by delaying the asser-
always active during a burst read cycle and is tion of BRDY# by the desired number of
driven during the T1 clock. clocks.

The CPU then monitors the BRDY# input at The CPU checks even data parity for each of

the end of the second clock (T2 state). If the four transfers within the burst. If the CPU

BRDY# is asserted, the CPU reads the data detects an error, the parity check output

and data parity and also checks the KEN# (PCHK#) asserts during the second clock fol-

input. If KEN# is negated, the CPU terminates|owing the BRDY# assertion of the data trans-

the bus cycle as a single transfer cycle. If fer.

KEN# is asserted, the CPU converts the cycle

into a burst (cache line fill) by continuing to ~ Figure 3-6 (Page 3-33) illustrates two

sample BRDY# at the end of each subsequenfion-pipelined burst read cycles. The cycles

clock. BRDY# must be asserted a total of fourshown are the fastest possible burst sequences

times to complete the burst cycle. (2-1-1-1). NA# must be negated for non-pipe-
lined operation as shown in the diagram. Pipe-

WB/WT# is sampled at the same clock edge asined bus cycles are described later in this

KEN#. In conjunction with PWT and the chapter.

on-chip configuration registers, WB/WT#

determines the MESI state of the cache line fofFigure 3-7 (Page 3-34) depicts a burst read
the current line fill. cycle with wait states. A 3-2-2-2 burst read is

shown.

Functional Timing

T T1 T2 T2 T2 T2 T1 T2 T2 T2 T2 T
ADS# CYCLE 1 CYCLE 2
Address, AP VALID X VALID X

CACHE# \ [
WIRH# \ [
NA# [AR XVXVX\'XVK\'XKVXVX'X VXHYXVV “XVXVHX XXVHVXXHX MAM AR XXXXXVXVK'Y "XXXXXX ML XXXHXXH}
BRDY# Hl‘l‘l“l A X‘XX lvl A l‘X “vlvlvx MM v'u \‘ W Wym /TXXYW

KEN# XVXXXX AMAMMAMAAAA XKXYXVK“\‘ 'IKHX

A AVATAAATAYA FTATATAYAAATATATN AT VAV

WUNMAMA X KA ‘\,X MAAAAMAAN AKX ARMAAN VXVXVX vK vl)(vl)(lXXXKKHX'X

VWAWWAWWWWWVA WYY

WB/WT# XVXXKX AN A AXA vaLD KVHXVXXVXXX'XX KOO 'XNXX AMMMALAAL vALID XX“XX“H}JX!‘XXX XXXXVKHVXV XXXXKKHX'X

A AVATATATAYA FAATATATANAATATAYA ATATAATAAY WY

{
DATA, DP DD S G D s = D D G G
PCHK# vaup X vAup X vaup (X vALID VALID [X' VALID [X VALID
Cycle 1: 2-1-1-1 Burst Read Cycle Cycle 2: 2-1-1-1 Burst Read Cycle

Figure 3-6. Non-Pipelined Burst Read Cycles

3-33

—— — —
L . ¥]
— e ——
-_— T
1 . e
e - Functional Timing
Y
Ti T1 T2 T2 T2 T2 T2 T2 T2 T2 Ti Ti
ADSH# CYCLE 1
Address, AP X VALID X
CACHE#
W/R#
BrDY# WO K a0
KEN# IMAAMAMEN AKX AXE AR KOO AR AARAAR A KKK ARAXIA A X KX AR AR K AXER KRR RRK KX KRR A XA KKK
wewT# IOOUEOOUUECUSUOCEO0O OO AL UK O OO ARG CCOODO00C KKK R K
DATA, DP IN IN IN IN
PCHK# VALID VALID VALID VALID
Cycle 1: 3-2-2-2 Burst Read Cycle 1735400
Figure 3-7. Burst Cycle with Wait States
Burst Cycle Address Sequence. ples the state of KEN#. If KEN# is active, the

CPU then performs the burst cycle with the
The IBM 6x86 CPU provides two different 54dress sequence shown in Table 3-14 (Page
address sequences for burst read cycles. 3-35). The IBM 6x86 CPU CACHE# output is
ThelBM 6x86 CPU burst cycle address not asserted during the single read cycle prior
sequence modes are referred to as “1+4” and g the burst. Therefore, CACHE# must not be
“linear”. After reset, the CPU default mode is \;ged to qualify the KEN# input to the proces-
“1+47. sor. In addition, if KEN# is returned active for
the “1” read cycle in the “1+4”, all data bytes
supplied to the CPU must be valid. The CPU
samples WB/WT# during the “1” read cycle,
and does not resample WB/WT# during the
following burst cycle. Figure 3-8 (Page 3-35)
illustrates a “1+4” burst read cycle.

In “1+4” mode, the CPU performs a single
transfer read cycle prior to the burst cycle, if
the desired first address is (...xx8). During this
single transfer read cycle, the CPU reads the
critical data. In addition, the 6x86 CPU sam-

3-34

Functional Timing 3

Table 3-14. “1+4” BurstAddress Sequences

BURST CYCLE FIRST SINGLE READ CYCLE BURST CYCLE ADDRESS
ADDRESS PRIOR TO BURST SEQUENCE
0 None 0-8-10-18
8 Address 8 0-8-10-18
10 None 10-18-0-8
18 Address 18 10-18-0-8
Ti T1 T2 T1 T2 T2 T2 T2 Ti Ti
ADS# CYCLE 1] CYCLE 2
Address, AP X ><
VALID (A4-AQ = 08h or 1i8h) JALID (A4-AD = 00h or 10h)
CACHE# \
WIR# /
NA#
BRDY#
KEN#
KEN# must be asserteld for both dycles.
WB/WT# VALID
DATA, DP IN IN >< IN X IN IN

PCHK# \VALIDJ VALID X\/ALID ><VALID ><\/ALID
I I T

Cycle 1: Single transfer read Cycle 2: 2-1-1-1 Burst Read Cycle

Figure 3-8. “1+4” Burst Read Cycle

3-35

Functional Timing

The address sequences for the 6x86 CPU's linear burst mode are shown in Table 3-15. Oper-
ating the CPU in linear burst mode minimizes processor bus activity resulting in higher sys-

tem performance. Linear burst mode can be enabled through the IBM 6x86 CPU CCR3
configuration register.

Table 3-15. Linear Burst Address Sequences

BURST CYCLE FIRST BURST CYCLE ADDRESS
ADDRESS SEQUENCE
0 0-8-10-18
8 8-10-18-0
10 10-18-0-8
18 18-0-8-10

Functional Timing 3

3.3.3.3 Burst Write Cycles As on burst read cycles, only the first address

of a burst write cycle is driven on the external
Burst write cycles occur for line replacement address bus. System logic must predict the
and write-back cycles. Burst writes are similaremaining burst address sequence based on the
to burst read cycles in that the CACHE# outpdirst address. Burst write cycles always begin
is asserted and four 64-bit data transfers occuwith a first address ending in O (signals
Burst writes differ from burst reads in that the A4-A0=0) and follow an ascending address
data and data parity lines are outputs rather thegguence for the remaining transfers
inputs. Also, KEN# and WB/WT# are not san{0-8-10-18).

pled during burst write cycles. . . o
Figure 3-9 illustrates two non-pipelined burst

Data and data parity for the first data transfer write cycles. The cycles shown are the fastest
are driven valid during the second clock (T2 possible burst sequences (2-1-1-1). As shown,
state) of the bus cycle. Once BRDY# is sam-an idle clock always exists between two

pled asserted for the first data transfer, valid back-to-back burst write cycles. Therefore, the
data and data parity for the second transfer argecond burst write cycle in a pair of

driven during the next clock cycle. The sameback-to-back burst writes is always issued as a
timing relationship between BRDY# and data non-pipelined cycle regardless of the state of
applies for the third and fourth data transfers #ise NA# input.

well. Wait states may be added to any transfer

within a burst by delaying the assertion of

BRDY# by the required number of clocks.

Ti T1 T2 T2 T2 T2 Ti* T1 T2 T2 T2 T2

e [Y

ADS# CYCLE 1 CYCLE

Hj

Address, AP X VALID (A4-A0 = 00h) X X VALID (A4-A0 = 00h)

i

CACHE#

WIR#

NA# OO0 OO0 o000 MMM)} OO0

BRDY# [NNNCCONCCCCEEECCECO0000 AR L KKK,

DATA, DP our X out X our X out our X our X outr X out
\ \ \ \ \ \ \ \

Cycle 1: 2-1-1-1 Burst Write Cycle Cycle 2: 2-1-1-1 Burst Write Cycle

*Note: Ti state always exists between two back-to-back burst write cycles.

Figure 3-9. Non-Pipelined Burst Write Cycles

3-37

=_ Functional Timing
—

3.34 Pipelined Bus Cycles mum of two clocks after NA# is sampled
asserted.

Pipelined addressing is a mode of operation

where the CPU allows up to two outstandingThe CPU latches the state of the NA# pin

bus cycles at any given time. Using pipelindaiternally. Therefore, even if a new bus cycle

addressing, the address of the first bus cycldSd10t pending internally at the time NA# was

driven on the bus and while the CPU waits féampled asserted, the CPU still issues a pipe-

the data for the first cycle, the address for a lined bus cycle if an internal bus request

second bus cycle is issued. Pipelined bus occurs prior to completion of the current bus

cycles occur for all cycle types except locke@ycle. Once NA# is sampled asserted, the state

cycles and burst write cycles. of NA# is ignored until the current bus cycle
completes. If two cycles are outstanding and

Pipelined cycles are initiated by asserting the second cycle is a read, the CPU samples

NA#. The CPU samples NA# at the end of KEN# and WB/WT# for the second cycle

each T2, T2P and Td state. KEN# and when NA# is sampled asserted.

WB/WT# are sampled at either the same clock

as NA# is active, or at the same clock as theFigure 3-10 and Figure 3-11 (Page 3-39) illus-

first BRDY# for that cycle, whichever occurstrate pipelined single transfer read cycles and

first. The CPU issues the next address a mirflipelined burst read cycles, respectively.

T T T2 T2 T12 T2 T2 T
CPU enters idle bus state because
ADS# \ craet |/ /7\ cvae2|f o bus cydle pending intemally.
Address, AP vaupy X VALID2 X
CACHE# / \ /
WIRH# \ /
NAH# IO\ A00000o0R0000N L N
erov# (0000000 \ / \ AX0R00000000COORCOCONOAC00000
KEN# sampled when NA# sampled asserted.
Ken - A by UUOOLUR0CY 0 OO g
DATA, DP {1) { u\iz }
PCHKi# \ vaup1 /[_vaup2 /
Cycle 1:Non-Cacheable, Cycle 2: Potentially Cacheable,
2 Wait State Read Pipelined Read Cycle

Figure 3-10. Pipelined Single Transfer Read Cycles

Functional Timing

Ti T1 T2 T2 T12 T2P T2 T2 T2 T2 Ti Ti
ADSH# CYCLE 1 CYCLE2
al
Address, AP VALID1 X VALID 2 X
CACHE#
W/R#
N (OO000000000OO00EON00CRONNNE0N, N AXK 100000 N e N N
BRDY# A I A ['l T A A
KEN# VAN | OOOROCI000N il RN
wewT# [N AL OO X vacio KOO SRR
[I R B A [
DATA, DP IN1 IN1 X IN1 X IN1 IN2 X IN2 X IN2 IN2
PCHK# VALID 1 | VALID 1 |[X VALID1 [VALID 1 [{ VALID 2 |{ VALID2 | VALID2 | VALID 2
Cycle 1: 2-1-1-1BurstRead Cycle Cycle 2: Pipelined Burst Read Cycle

Figure 3-11. Pipelined Burst Read Cycles

3-39

3.34.1 Pipelined
Back-to-Back
Read/Write Cycles

pipelined write cycle. Under this condition,

causing data bus contention, the CPU automat-
ically inserts a “dead” (Td) clock cycle. Dur-
ing the Td state, the data bus floats. The CPU
then drives the write data onto the bus in the
Figure 3-12 depicts a read cycle followed by afollowing clock. The CPU also inserts a Td
clock between a write cycle and a pipelined

the data bus must change from an input for thgead cycle to allow the data bus to smoothly

Functional Timing

read cycle to an output for the write cycle. In transition from an output to an input.
order to accomplish this transition without

CLK

ADS#

Address, AP

CACHE#

WI/R#

NA#

BRDY#

KEN#

DATA, DP

PCHK#

Ti T1 T2 T2 T12 T2P Td T2 Ti

C 0
CYCLE1 /(CYCLE 2
VALID 1 X VALID 2
XXX OO\ A0
SO0 000N
RO
Nt X m1 X IN1 X IN1 — OUT2:>7
VALID 1 VALID 1 VALID 1 VALID 1

Cycle 1: 2-1-1-1 Burst Read

Cycle 2: Pipelined Write

3-40

Figure 3-12. Read Cycle Followed by Pipelined Write Cycle

Functional Timing 3

3.35 Interrupt rupt acknowledge cycle. Parity is not checked
Acknowledge during the first interrupt acknowledge cycle.
Cycles

M/10#, D/IC# and W/R# are always logic low
The CPU issues interrupt acknowledge bus during interrupt acknowledge cycles. Addi-
cycles in response to an active INTR input. tionally, the address bus is driven with a value
Interrupt acknowledge cycles are single tran§f 0000 0004h for the first interrupt acknowl-
fer cycles and always occur in locked pairs &d9€ cycle and with a value of 0000 0000h for
shown in Figure 3-13. The CPU reads the the second. A minimum of one idle clock
interrupt vector from the lower eight bits of th@/Ways occurs between the two interrupt
data bus at the completion of the second inté@cknowledge cycles.

Ti Tl T2 Ti T1 T2 Ti Ti
S50 (R [VD S VD (i VD (VY (R VD (B U S W
Idle States =1 CLK Min.
ADS# \ CYCLEL |/ \ CYClE2 |/
Address X 0000 0004h X X 0000 0000h
M/I0#, \ /7
D/C#, WIR#
LOCK# \
BRDY# X0
DATA { IN IN /
‘ T
PCHK# ‘ \vaLip /
Interrupt Vector Read
During Second Interrupt
Acknowledge Cycle.

Figure 3-13. Interrupt Acknowledge Cycles

3-41

=_ Functional Timing
—

3.3.6 SMI# Interrupt Timing To facilitate using SMI# to power manage 1/O
peripherals, the 6x86 CPU implements a fea-
The CPU samples the System Management ture called I/O trapping. If the current bus
Interrupt (SMI#) input at each clock edge. Atcycle is an I/O cycle and SMI# is asserted a
the next appropriate instruction boundary, theninimum of three clocks prior to BRDY#, the
CPU recognizes the SMI# and completes all CPU immediately begins execution of the SMI
pending write cycles. The CPU then assertsservice routine following completion of the
SMIACT# and begins saving the SMM headel/O instruction. No additional instructions are
information to the SMM address space. executed prior to entering the SMI service rou-
SMIACT# remains asserted until after tine. 1/O trap timing requirements are shown
execution of a RSM instruction. Figure 3-14 in Figure 3-15 (Page 3-43).
illustrates the functional timing of the
SMIACT# signal.

oo N [N [e e
wove - TOTTOARRAOR, SVTAOAER. | T G, oo oo, 0
s\ [e T e o

1CGKMN 1CLKMW

40K !

SMIACT# N\ M . . 40K
MIN

Figure 3-14. SMIACT# Timing

3-42

Functional Timing 3

| 1/0 Cycle (Read or Write) |

TL | T2 | T2 | T2 | T2 | T2
e U VAW
Address,
Byte Enables VALID
ADS#
BRDY# XX XXX/ \
SMI# |
|<— 3 CLK Min.—»|

Figure 3-15. SMM I/O Trap Timing

3.37 Cache Control Timing The latency between when FLUSH# occurs
o and when the cache invalidation actually com-
33.7.1 Invalidating the pletes varies depending on:

Cache Using FLUSH#

(1) the state of the processor when FLUSH#
The FLUSH# input forces the CPU to is asserted,
write-back and invalidate the entire contents of (2) the number of modified cache lines,
the on-chip cache. FLUSH# is sampled at eacl{3) the number of wait states inserted during
clock edge, latched internally and then recog- the write-back cycles.
nized internally at the next instruction bound'Figure 3-16 (Page 3-44) illustrates the
ary. Once F.LUSH# IS recqgnlzed, the CPU sequence of events that occur on the bus in
issues a series of burst write cycles to response to a FLUSH# request
write-back any “modified” cache lines. The '
cache lines are invalidated as they are written
back. Following completion of the write-back
cycles, the CPU issues a flush acknowledge
special bus cycle.

3-43

Functional Timing

0

LK

L\

C
’
I
C
r
’
r
-
=
-

ADS# .y

1 c

/
-\

BRDY#
Address X Write-Back Cycle X 0000 0004h
FrusHs |\ | f
Wait for Processor Write-Back of all Modified Lines Flush Acknowledge
to Complete Current in Internal Cache Special Cycle
Instruction

Figure 3-16. Cache Invalidation Using FLUSH#

3-44

Functional Timing 3

3.3.7.2 EWBE# Timing

sample EWBE# at each clock edge until it
During memory and I/O write cycles, the asserts. Once EWBE# is asserted, all inter-
6x86" CPU samples the external write buffer nal cache writes are allowed. Through use of
empty (EWBE#) input. If EWBE# is negated, this signal, the external system may enforce
the CPU does not write any data to “exclusive’strong write ordering when external write
or “modified” internal cache lines. After sam- buffers are used. EWBE# functional timing
pling EWBE# negated, the CPU continues to is shown in Figure 3-17.

T1 T2
N AVAUAVAUAUAWAWAW AW AW AW
aps# |__|/f
WR# | [\
DATA +—_ outr)
EweE# XU _ XX
BRDY# U/
Write Cycle: No writes to E or M-State lines Writes to E or M-State lines
EWBE# sampled that hit in the internal cache. ithat hit in the internal cache
with each BRDY#. EWBE# sampled at each can complete.

clock edge.

Figure 3-17. External Write Buffer Empty (EWBE#) Timing

3-45

3.3.8 Bus Arbitration

=_ Functional Timing
—

3.3.8.1 HOLD and HLDA

An external bus master can take control of th&/sing the HOLD/HLDA handshake, an exter-

CPU's bus using either the HOLD/HLDA

nal bus master requests control of the CPU'’s

handshake signals or the back-off (BOFF#) bus by asserting the HOLD signal. In response
input. Both mechanisms force the IBM 6x86 to an active HOLD signal, the CPU completes

CPU to enter the bus hold state.

all outstanding bus cycles, enters the bus hold
state by floating the bus, and asserts the HLDA
output. The CPU remains in the bus hold state
until HOLD is negated. Figures 3-18, 3-19
(Page 3-47) and 3-20 (Page 3-48) illustrate the
timing associated with requesting HOLD dur-
ing an idle bus, during a non-pipelined bus
cycle and during a pipelined bus cycle, respec-
tively.

T i Ti Ti Ti T T2
CLK ’__ ,__/__ /—_/__/__/ —_/

ADSH# \ ~
Address) (VALD

HOLD T\

HLDA V \L

_ ‘ Min ‘
<« Min One Clock | A— 2010 Clocks >

Figure 3-18. Requesting Hold from an Idle Bus

3-46

Functional Timing 3

Tl T2 T2 Ti Ti Ti

CLK \ \ \ \ \ \
ADSH# [\ _/ \

Address D(VALID)
BRDY# \

HOLD /

HLDA /

Figure 3-19. Requesting Hold During a Non-Pipelined Bus Cycle

3-47

— e
—————— T — Functional Timing
Y

Ti 1 T2 T2 T12 T2 T2 Ti Ti Ti
ADSH \ craer)/ /'\ﬂ/ !
Address, AP X VALID 1 X VALID 2)
O WY 0000000000
srov# [OEDEORORRURKERROY 7/ \ | AR 00RO
DATA, DP T {2)
HOLD /
HLDA /

Figure 3-20. Requesting Hold During a Pipelined Bus Cycle

3-48

Functional Timing 3

3.3.8.2 Back-Off Timing

An external bus master requests immediate
control of the CPU's bus by asserting the
back-off (BOFF#) input. The CPU samples
BOFF# at each clock edge and responds by
floating the bus in the next clock cycle as
shown in Figure 3-21. The CPU remains in
the bus hold state until BOFF# is negated.

If the assertion of BOFF# interrupts a bus
cycle, the bus cycle is restarted in its entirety
following the negation of BOFF#. If KEN#

was sampled by the processor before the cycle
was aborted, it must be returned with the same
value during the restarted cycle. The state of
WB/WT# may be changed during the restarted
cycle.

If BOFF# and BRDY# are active at the same
clock edge, the CPU ignores BRDY#. Any
data returned to the CPU with the BRDY# is
also ignored. If BOFF# interrupts a burst read
cycle, the CPU does not cache any data
returned prior to BOFF#. However, this data
may be used for internal CPU execution.

T1 T2 Ti Ti T1 T2
CK \ \ \ \ \ \
e VA /]
address X VAT) { VAL
BROY# [{XXXXAXARK XX
BOFF# \ /

Figure 3-21. Back-Off Timing

3-49

= Functional Timing
—

3.3.9 Cache Inquiry Cycles If the line is in the “modified” state, the CPU
asserts both HIT# and HITM#. The CPU then
Cache inquiry cycles are issued by the systemissues a bus cycle request to write the modified
with the CPU in either a bus hold or address cache line to external memory. HITM#
hold state. Bus hold is requested by assertingremains asserted until the write-back bus cycle
either HOLD or BOFF#, and address hold is completes. No additional cache inquiry cycles
requested by asserting AHOLD. The system are accepted while HITM# is asserted. Write-
initiates the cache inquiry cycle by asserting back cycles always start at burst address 0.
the EADS# input. The system must also driveOnce the write-back cycle has completed, the
the desired inquiry address on the address CPU changes the cache line state to “invalid”
lines, and a valid state on the INV input. if the INV input was sampled logic high, or
“shared” if the INV input was sampled low.

In response to the cache inquiry cycle, the

CPU checks to see if the specified address is |n addition to checking the cache, the CPU
present in the internal cache. If the address isalso snoops the internal line fill and cache
present in the cache, the CPU checks the MEShrite-back buffers in response to a cache
state of the cache line. If the line is in the inquiry cycle. The following sections
“exclusive” or “shared” state, the CPU assertsdescribe the functional timing for cache
the HIT# output and changes the cache line inquiry cycles and the corresponding

state to “invalid” if the INV input was sampled write-back cycles for the various types of
logic high with EADS#. inquiry cycles.

Functional Timing 3

3.391 Inquiry Cycles should not be asserted until the second clock

Using HOLD/HLDA after HLDA as shown in the diagram. If the

inquiry address hits on a modified cache line,

Figure 3-22 illustrates an inquiry cycle where HIT# and HITM# are asserted during the sec-
HOLD is used to force the CPU into a bus holdnd clock following EADS#. Once HITM#
state. In this case, the system asserts HOLDasserts, the system must negate HOLD to allow
and must wait for the CPU to respond with the CPU to run the corresponding write-back
HLDA before issuing the cache inquiry cycle.cycle. The first cycle issued following nega-
To avoid address bus contention, EADS# tion of HLDA is the write-back bus cycle.

T2 Ti Ti Ti Ti Ti Ti Ti Ti T1 T2 T2 T2 T2 Ti Ti

S0 V[VD [[U Y U Y U W 0 W

ADSH \ |/

Write-Back Cycle X

BRDY# XXXXXXL M |

HOLD \

Address |From CPU} To CPU

HLDA / \

EADS# |

v AR vaco

A D AR

HIT# \

HITM# \ [

Figure 3-22. HOLD Inquiry Cycle that Hits on a Modified Line

3-51

= Functional Timing
—

3.3.92 Inquiry Cycles until the second clock edge after BOFF# as

Using BOFF# shown in the diagram. If the inquiry address
hits on a modified cache line, HIT# and HITM#

Figure 3-23 illustrates an inquiry cycle where are asserted during the second clock following

BOFF# is used to force the CPU into a bus holdEEADS#. Once HITM# asserts, the system must

state. In this case, the system asserts BOFF#negate BOFF# to allow the CPU to run the cor-

and the CPU immediately relinquishes control responding write-back cycle. The first cycle

of the bus in the next clock. To avoid address issued following negation of BOFF# is the

bus contention, EADS# should not be assertedvrite-back bus cycle.

T1 Ti Ti Ti Ti Ti T1 T2 T2 T2 T2 Ti Ti Tl

r
AT AVAUAVAWAWEAERWAN AW RS R RS R R
wost [__| 7 |]
Address [From cPU} {focry} { Write-Back Cycle | [cyeer
=
srov: [T
BOFF# [| [
EADSH# Ul
v [T
\
\ /

Figure 3-23. BOFF#Inquiry Cycle that Hits on a Modified Line

Functional Timing 3

3.3.93 Inquiry Cycles AHOLD as shown in the diagram. If the
Using AHOLD inquiry address hits on a modified cache line,

the CPU asserts HIT# and HITM# during the

Figure 3-24 illustrates an inquiry cycle where second clock following EADS#. The CPU then

AHOLD is used to force the CPU into an issues the write-back cycle even if AHOLD

address hold state. In this case, the system remains asserted. ADS# for the write-back

asserts AHOLD and the CPU immediately cycle asserts two clocks after HITM# is

floats the address bus in the next clock. To asserted. To prevent the address bus and data

avoid address bus contention, EADS# shouldbus from switching simultaneously, the system

not be asserted until the second clock edge aftaust adhere to the restrictions on negation of
AHOLD as shown in Figure 3-24.

noT oTnom . T om o omom T T2 T T T T
AN AT AN AT AT ANAVANRAN AN AN RN RWANRW
post [__|f _

address | Fromeru) focr) [wesaioee)
BRDY# \ AUNHTEEEAN
Data, 0P H } { or Yoo Jour o)
AHOLD [\

EADSY L/

v o X o o
i \

T \ I

Restrictions on negating AHOLD:

1. During a write cycle, AHOLD should not be negated in the same clock that BRDY# is asserted.

2. During pipelined bus cycles, AHOLD should not be negated during the Td clock between a read cycle followed by a pipelined write cycle.
3. While HITM# is asserted, AHOLD should not be negated in the same clock that ADS# is asserted.

Figure 3-24. AHOLD Inquiry Cycle that Hits on a Modified Line

3-53

= Functional Timing
—

Figure 3-25 depicts an AHOLD inquiry cycle the data from the line fill cycle is always used
during a line fill. In this case, the write-back to complete the pending internal operation.
cycle occurs after the line fill is completed. = However, the data is not placed in the cache if
At least one idle clock exists between the final INV is sampled asserted with EADS#. The
BRDY# of the line fill and the ADS# for the data is placed in the cache in a “shared” state
write-back cycle. If the inquiry cycle hits on if INV is sampled negated.

the address of the line fill that is in progress,

T T2 T2 T2 T2 T2 T2 T TL T2 T2 T2 T2 T T
ek mmm%%%%mmmmmm
Line Fill \Write-Back Cycle]
ros# |___|f |/
Address | FromcPu } {TocPu}
srov# [N \
Data, DP {n N o N) {"out Y our Jour J our }
AHOLD [

EADSH \ L/
v (AN v o AR

HIT# \

HITM# \ /_

Note: If the inquiry cycle hits on the line fill in progress, the data from the line fill will be used to complete the pending internal operation.
The line is not placed in the cache if INV is sampled asserted with EADS#. The line is placed in the cache in a "shared"
state if INV is sampled negated with EADS#.

Figure 3-25. AHOLD Inquiry Cycle During a Line Fill

3-54

Functional Timing 3

During cache inquiry cycles, the CPU performasserts the APCHK# output if a parity error is
address parity checking using A31-A5 and thdetected. Figure 3-26 illustrates the functional
AP signal. The CPU checks for even parity atiching of the APCHK# output.

T T T T T

CLK \ \ \ \ \
EADS# _#
Address { Tocru)
AP {__Tocey)

APCHK# \ vao [/

Figure 3-26. APCHK# Timing

3-55

SEavE
3.3.10 Scatter/Gather be completed in the normal fashion. The CPU
Buffer Interface continues to generate additional bus cycles

while BHOLD is asserted, so BHOLD should
The scatter/gather buffer interface signals, in only be asserted while AHOLD is asserted.
conjunction with the byte enables and address
hold, can be used by the system hardware to Figure 3-27 also illustrates DHOLD timing.
transfer data to/from a 32-bit peripheral inter- DHOLD forces the CPU to float the data and
face bus. A 64-bit buffer resides in the CPU tdlata parity buses in the next clock. While
assist the system in these transfers. DHOLD is asserted, the current bus cycle
remains active and additional bus cycles may
As shown in Figure 3-27 when BHOLD is be generated by the CPU.
asserted the CPU floats the byte enable outputs
(BE7#-BEO#) in the next clock. While BHOLD
is asserted, only the byte enables are disabled.
The current bus cycle remains active and can

e ALV
DHOLD / \
D63-00 4 b1) -
BHOLD [\
BE7#-BEO# BEx), { BEx

Figure 3-27. BHOLD and DHOLD Timing

Functional Timing 3

Figures 3-28 and 3-29 (Page 3-58) illustrate CPU read and write cycles that access a 32-bit
device using the scatter/gather buffer.

ax [
ADS# 1/ /

LBA# \ /
D63-D32 D1 (to S/G Buffer)) D2
D31-D0 D1 D1
|
BE7#-BEC# — BE# = OxBF From CPU BE# = OxBF To CPU BE# From CPU|
BHOLD / \

BRDY# _ _/

Controller detects CPU read of BHOLD is asserted inorder to The clock following BE# = OxBFh,
upper byte to 32-bit peripheral bus issue the MUX command the CPU maps D31-DO to D63-D32
via LBA¥# and BE#s. via the BE#s (BE# =0xBFh). of the scatter/gather buffer to read byte 6.

Figure 3-28. CPUUpper Byte Read from 32-Bit Bus Using Scatter/Gather

3-57

Functional Timing

ck S
ADS# |/ L/
LBA# _ _/
D63-D32 D2 D2
D31-D0 D2| (from S/G Buflfer) I I D1
I
BE7#BEO# 4—< BE# = OXBF From CPU BE# From CPU
BHOLD
BRDY# N

Controller detects CPU write of BHOLD need not be asserted
upper byte to 32-bit peripheral bus because the CPU automatically
via LBA# and BE#s. maps D63-D32 to D31-DO when

LBA# asserted and BE3-BEO = Fh.

During the clock following BE# = 0xBFh,
the CPU maps D63-D32 to D31-DO
for transfer on 32-bit bus.

Figure 3-29. CPUUpper Byte Write to 32-Bit Bus Using Scatter/Gather

Functional Timing 3

Figures 3-30 and 3-31 (Page 3-60) illustrate bus master reads and writes between a 32-bit device

and 64-bit main memory. The CPU bus must be idle when a bus master initiates a scatter/gather
cycle.

ak [\ 4 T\

D63-D32 D2 from Memory D2
D31-DO D1 from Memory D2 from S/G Buffer)XD1 from S/G Buffer
BE7#-BEO# BE#=0x00 X BE#=0xFF X BE#=0xOF X BE#=0xF0

BHOLD | / \

pHOLD | / / \
QDUMP# \ /
Controller asserts BHOLD and DHOLD BE#=0x00 causes the 64-bit data from The controller negates DHOLD and
to transfer data from memory memory to be written into CPU's buffer. asserts BE#=0xOF followed by OxFO
to CPU's internal scatter/gather buffer. The controller negates BE# (BE=OxFF) along with QDUMP# to transfer the
so that data in the scatter/gather buffer is upper word (D2=D63-D32) followed
not corrupted and tristates the data bus by the lower word (D1=D31-DO0),

to allow for a scatter operation to proceed. respectively, to the 32-bit bus.

Figure 3-30. Bus Master Read from 64-Bit Memory to 32-Bit Bus

3-59

Functional Timing

axk { o [1 [

D32-D63 D2 (to Memory)
|
DO-D31 D2 (0 516 Buffer) XD (0 /G Buffer) D1 (to Memory)
L
BEO-BE7 BE#=0x0F X BE#=0xF0 X BE#=FFh BE#=0x00
BHOLD | / \
DHOLD | / \
QDUMP# \ /]

to transfer data

Controller asserts BHOLD and DHOLD ~ The MUX command along with aword ~ The controller relinquishes control of

to CPU's internal scatter/gather buffer. write D1 from the 32-bit bus into

from the 32-bit bus write is issued by the controller to CPU data bus, negates DHOLD and
asserts QDUMP# to dump the 64-bit data

D63-D32 of CPU's buffer followed by on to the CPU local bus for transfer to memory.

a 2nd word write to D31-DO.

Figure 3-31. Bus Master Write to 64-Bit Memory from 32-Bit Bus

Functional Timing 3

3.3.11 Power Management depending on which instructions were decoded
Interface prior to assertion of SUSP#. The minimum
time from SUSP# sampled active to SUSPA#
SUSP# Initiated Suspend Mode asserted is eight CLKs. As a maximum, the

CPU may execute up to two instructions and
The 6x86 CPU enters suspend mode when thgssociated bus cycles prior to asserting

SUSP# input is asserted and execution of the gyspa#. The time required for the CPU to

current instruction, any pending decoded geactivate SUSPA# once SUSP# has been
instructions and associated bus cycles are gampled inactive is five CLKs.

completed. A stop grant bus cycle is then
issued and the SUSPA# output is asserted. If the CPU is in a hold acknowledge state and
The CPU responds to SUSP# and asserts SUSP# is asserted, the CPU may or may not
SUSPA# only if the SUSP bit is set in the enter suspend mode depending on the state of
CCR2 configuration register. the CPU internal execution pipeline. If the

)) . CPU is in a SUSP# initiated suspend mode,
SUSP# is sampled (Figure 3-32) on the rising gne occurrence of NMI, INTR and SMI# is
edge of CLK. SUSP# must meet specified stored for execution once suspend mode is
setup and hold times to be recognized at a gyited. The 6x86 CPU also recognizes and

particular CLK edge. The time from assertion 5cknowledges the HOLD, AHOLD, BOFF#
of SUSP# to activation of SUSPA# varies and FLUSH# signals while in suspend mode.

| T™x | Tx T T T T Tx
cak /T _/ /S /S
SUSP# *
8 CLKs 3 5 CLKs
SUSPA# o

Figure 3-32. SUSP# Initiated Suspend Mode

3-61

= Functional Timing
—

HALT Initiated Suspend Mode BRDY# sampled active for the HALT bus cycle

as shown in Figure 3-33. Suspend mode is then
The CPU also enters suspend mode as a resylkitad upon recognition of an NMI, an

of executing a HALT instruction if the SUSP | ;nmasked INTR or an SMI%. SUSPA# is
HALT bit in CCR2 is set. The SUSPA# output yeactivated 10 CLKS after sampling of an
is asserted no later than 40 CLKs following active interrupt.

Non-Pipelined HALT
1 | T2 Ti Ti Ti Ti Ti Ti
S AN A L
_ P &
ADSH# /
M/IOH,
BE(, 1, 3-7)#, f
W/R# :
H
!
A3-A31, A
BE#2, DICH, I0#
. o
BRDY# \ 10 CLKs
INTR, NMI ss/
l@——40 CLKs (Max)—»}
gl JR—
SUSPA# ”)

Figure 3-33. HALT Initiated Suspend Mode

K

Stopping the Input Clock described earlier. While the CLK is stopped,

the CPU can no longer sample and respond to
Once the CPU has entered suspend mode, thgny input stimulus.

input clock (CLK) can be stopped and

restarted without loss of any internal CPU Figure 3-34 illustrates the recommended

data. The CLK input can be stopped at either aequence for stopping the CLK using SUSP# to
logic high or logic low state. initiate suspend mode. CLK may be started
prior to or following negation of the SUSP#
input. The system must allow sufficient time
for the CPU’s internal PLL to lock to the
desired frequency before exiting suspend

The CPU remains suspended until CLK is
restarted and suspend mode is exited as

mode.
‘ Tx ‘ Tx ‘ ‘ Tx ‘ Tx ‘
ax [L[L. A Y e O
% %
SUSP#

R
o}

o

SUSPA# /

N3
oA
o

Figure 3-34. Stopping CLK During Suspend Mode

3-63

IBM 6x86 MICROPROCESSOR

Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

41

s

4.0 ELECTRICAL 4.1.2 Pull-Up/Pull-Down
SPECIFICATIONS Resistors

4.1 Electrical Connections Table 4-1 lists the input pins that are internally

This section provides information on electricaﬁOnnectecj to pL_J”'Up and pull-down resistors.
he pull-up resistors are connected {g-¥nd

connections, absolute maximum ratings, th l-d ot red ta \Wh
recommended operating conditions, DC char- € pull-clown resisiors are connecte &9 en
nused, these inputs do mefuire connection

acteristics, and AC characteristics. All voltag ; Loull Il-d st Th

values in Electrical Specifications are measur external pul-up or pui-cOWresIstors. the

with respect to \ésunless otherwise noted. USP# PN IS unique in that it is co_nnected toa
pull-up resistor only when SUSP# is not

41.1 Power and Ground asserted.
Connections and
Decoupling Table 4-1. Pins Connected to Internal Pull-Up and
Testing and operating the IBM 6x86 CPU Pull-Down Resistors
requires the use of standard high frequency SIGNAL PIN NO. RESISTOR
techniques to reduce parasitic effects. The h|giRDYC# Y3 20-1Q pull-up
clock frequencies used in the IBM 6x8®U | S-KMUL Y33 20-kQ pull-down
and its output buffer circuits can cause transi o @OUMP# AL7 20-kQ pull-up
power surges when several output buffers gmls#P# A\‘Z?f B0l o
switch output levels simultaneously. These R pull-up (see tex)
A S TCK M34
effects can be minimized by filtering the DC oI NGS
power leads with low-inductance decoupling VS 532
capacitors, using low impedance wiring, and By
o . RST# 33 20-kQ pull-u
utilizing all of the \i;.c and GND pins. The Reserved (333 pui-up
IBM 6x86 CPU contains 296 pins with 53 pinsgoccrveq W35
connected to Y¥cand 53 connected todé Reserved Y35
(ground). Reserved AN35 204® pull-down

4-1

= Absolute Maximum Ratings
L

4.1.3 Unused Input Pins 4.2 Absolute Maximum

Ratings
All inputs not used by the system designer and
not listed in Table 4-1 should be connected The following table lists absolute maximum
either to ground or to 3. Connect ratings for the IBM 6x86 CPU microproces-
active-high inputs to ground through a 20 k sors. Stresses beyond those listed under Table
(x 10%) pull-down resistor and active-low 4-2 limits may cause permanent damage to the
inputs to \ic through a 20 & (+ 10%) pull-up device. These are stress ratings only and do not
resistor to prevent possible spurious operatiomply that operation under any conditions
other than those listed under “Recommended
Operating Conditions” Table 4-3 (Page 4-3) is
Pins designated NC have no internal connecE)OSSIble' Exposure to conditions beyond Table

. ! ! 4-2 may (1) reduce device reliability and (2)
tions. Pins designated RESV or RESERVEDresuIt in premature failure even when there is

should Ze I_efttdlscor:lnected._ (t?onneﬁtl;g @ no immediately apparent sign of failure.
reserved pin to a pufl-up resistor, put-cown Prolonged exposure to conditions at or near the

%bsolute maximum ratings may also result in
reduced useful life and reliability.

4.1.4 NC and Reserved Pins

pected results and possible circuit malfunc-
tions.

Table 4-2. Absolute Maximum Ratings

PARAMETER MIN MAX UNITS NOTES
Storage Temperature -65 150 °C
Supply Voltage, V¢ -0.5 4.0 \%
\oltage On Any Pin -0.5 Voc+0.5 \%
Input Clamp Current,k 10 mA Power Applied
Output Clamp Currentgk 25 mA Power Applied

4-2

Recommended Operating Conditions 4

4.3 Recommended Operating Conditions

Table 4-3 presents the recommended operating conditions for the IBM 6x86 CPU device.

Table 4-3. Recommended Operating Conditions

PARAMETER MIN MAX JUNITS NOTES

Tc Operating Case Temperature 0 7% °C Power Applipd
Vcc=3.3Vnom, Supply Voltage 3.15 3.6 \%

Vcc=3.5Vnom, Supply Voltage 3.4 3.6 \%

V| High-Level Input Voltage 2.0 55 \%

ViL Low-Level Input Voltage -0.3 0.8 \Y

loH High-Level Output Current, All outpufs -1.9 mA FVoHMIN)

loL Low-Level Output Current, All outputs 5.0 mA *FVoL (vext

4-3

4-4

DC Characteristic

Table 4-4. DC Characteristics (at Recommended Operating Conditions)

DC Characteristics

PARAMETER MIN TYP MAX U';'T NOTES
VoL Output Low Voltage
bL=5mA 0.4 \Y%
VoH Output High Voltage
bH=-1mA 2.4 \%
I Input Leakage Current +15 HA | O0<V|N<VCcC
For all pins except those
listed in Table 4-1.
llH Input Leakage Current 200 HA [VIH=24V
For all pins with internal See Table 4-1.
pull-downs.
i Input Leakage Current -400 HA | V|L=0.45V
For all pins with internal pull-ups. See Table 4-1.
loc 100 MHz 4500 | 5400 | mA | Note 1,5,6
110 MHz 4800 | 5800
120 MHz 5100 | 6100
133 MHz 5500 | 6600
150 MHz 6000 | 7000
locsm (Suspend Moded Note 1, 3,5
100 MHz 48 80 mA
110 MHz 50 83
120 MHz 51 105
133 MHz 54 115
150 MHz 60 125
locssStandby (¢
0 MHz (Suspended/CLK Stoppe 35 55 mA Note 4,5
CiN Input Capacitance 15 pF f =1 MHz, Note
Cour Output Capacitance 20 pF f=1 MHz, Note
Cilo /O Capacitance 25 pF| f=1MHz, Note
Cck CLK Capacitance 15 pF| f=1MHz, Note

NN o N

Notes:

1. Frequency (MHz) ratings refer to the internal clock frequency.

. Not 100% tested.

. Allinputs at 0.4 or ¥c- 0.4 (CMOS levels). All inputs held static except clock and all outputs unloaded

(staticdyt= 0 mA).

. Typical, measured atd¢ = 3.3 v

2
3
4. Allinputs at 0.4 or ¥ - 0.4 (CMOS levels). Allinputs held static and all outputs unloaded (stgfigrl= 0 mA).
5,
6

. Max, measured at Vcc=3.6V. Lab Testing on some devices has produced Max current draws of:

100MHz...6.05A
110MHz...6.58A
120MHz...6.95A
133MHz...7.50A
150MHz...7.11A

AC Characteristics 4

4.5 AC Characteristics are shown in Table 4-5. Input output signals

must cross these levels during testing.
Tables 4-6 through 4-11 (Pages 4-7 through

4-13) list the AC characteristics including ~ Figure 4-1 shows output delay (A and B) amput
output delays, input setup requirements, inpusetup and hold times (C and D). Input setup
hold requirements and output float delays. and hold times (C and D) are specified mini-
These measurements are based on the measims, defining the smallest acceptable
ment points identified in Figure 4-1 (Page 4-6) ar@mpling window a synchronous input signal
Figure 4-2 (Page 4-7). Thesimg clock edge must be stable for correct operation.
reference level ¥gE and other reference levels

45

———— —
= = ===

—————— T — AC Characteristics
Y

Tx
VHD -
CLK: Meer f N N
\/ILD
MAX
. Valid Valid
OUTPUTS: Output n \éspy 7§ \ker Output n+1

nmann S

VHD .
INPUTS: }é\/nsp }%{ﬂ VREF>1Z

VLD

LEGEND: A - Maximum Output Delay Specification
B - Minimum Output Delay Specification
C - Minimum Input Setup Specification
D - Minimum Input Hold Specification

Figure 4-1. Drive Level and Measurement Points for Switching Characterics.

Table 4-5. Drive Level and Measurement
Points for Switching Characteristics

VOLTAGE
SYMBOL (Volts)
VREF 1.5
VIHD 2.3
VLD 0

Note: Refer to Figure 4-1.

4-6

AC Characteristics 4

Table 4-6 Clock Specifications
Tcase= 0°C to 75C, See Figure 4-2

SYMBOL PARAMETER 50-MHz BUS | 55-MHz BUS 60-MHzBUS | .o
MIN | MAX [MIN |MAX |MIN AX
CLK Frequency 50.0 55.0 60.0 MHz
Tl CLK Period 20.0 18.0 16.67 ns
T2 CLK Period Stability +250 _250 4250 ps
T3 CLK High Time 7.00 4.00 4.00 ns
T4 CLK Low Time 7.00 4.00 4.00 ns
T5 CLK Fall Time 0.15| 200/ 0.15 150 015 150 ng
T6 CLK Rise Time 0.15| 200 0.15 150 015 150 ng

SYMBOL PARAMETER G6MHz BUS | 75-MHz BUS UNITS
MIN | MAX [MIN [MAX
CLK Frequency 66.6 75.0 MHz
T1 CLK Period 15.0 13.3 ns
T2 CLK Period Stability _250 4250 ps
T3 CLK High Time 4.00 4.00 ns
T4 CLK Low Time 4.00 4.00 ns
T5 CLK Fall Time 0.15| 1.50| 0.15 1.50 ns
T6 CLK Rise Time 0.15 1.50 0.1% 1.5 ns
|- T1 >

Viemnyy —tA#————*\\ —""""""""—1T/f—————
Veep, —f+————— X\ \\—————

Viway - ——————X\ \ - ——f———————
CLK

Figure 4-2. CLK Timing and Measurement Points

4-7

Table 4-7. Output Valid Delays
CL=50 pF, TCASE =0°C to 75°C, See Figure 4-3

50MHz BUS 55MHz BUS 60-MHz BUS | 66-MHz BUS | 75MHz BUS
SYMBOL PARAMETER UNITS
MIN [MAX [MIN |MAX |MIN AX IN [AX MIN MPAX
T7a A31-A3, 1 12 1.0 7.0 1.0 7.0 1.0 7.0 1.0 7.0 ng
BE7#-BEO#,
CACHEH#, D/CH#,
LBA#, LOCK#,
PCD, PWT, SCYC,
SMIACT#, W/R#
T7b ADS#, M/10# 1 12 1.0 7.0 1.0 7.0 14 6. 1.4 6. ng
T8 ADSC# 1 12 1.0 7.0 1.0 7.0 1.0 7. 1.0 7. n
T9 AP 1 12 1.0 8.5 1.0 8.5 1.0 8.5 1.0 8.5 ng
T10 APCHK#, PCHK#, 1 14 1.0 8.3 1.0 7.0 1.0 7.0 1.0 7.0 ng
FERR#
T11 D63-D0, DP7-DPO 1.3 12 1.3 8.5 1.3 7.5 1.3 7.9 1.0 7.9 ng
(Write)
T12a HIT# 1 12 1.0 8.0 1.0 8.0 1.0 8. 1.0 8. n
T12b HITM#, 1.1 12 1.1 6.0 1.1 6.0 1.1 6. 1.4 6. n
T13 BREQ, HLDA 1 12 1.0 8.0 1.0 8.0 1.0 8. 1.0 8. n
T14 SUSPA# 1 14 1.0 8.0 1.0 8.(1. 8.p 1.0 8.p ns
Tx TX Tx TX
CLK
MIM\ max T7-T14
OUTPUTS VALID n & w< VALID n+1

4-8

Figure 4-3. Output Valid Delay Timing.

W

Table 4-8. Output Float Delays
CL =50 pF, Tease= 0°C to 75°C, See Figure 4-5

50MHz BUS 55MHz BUS 60MHz BUS 66MHz BUS 75MHz BUS

SYMBOL PARAMETER UNITS

MIN MAX MIN MAX IN AX IN AX IN MAX

T15 A31-A3, ADSH#, 16.0 10.0 10.0 10.4 10.4
BE7#-BEO#, BREQ,
CACHE#, D/CH#,
LBA#, LOCK#, M/10#,
PCD, PWT, SCYC,
SMIACT#, W/R#

ns

T16 AP 16.0 10.0 10.9 10. 10.0 ns
T17 D63-D0, DP7-DPO 16.0 10.0 10.0 10.0 10.4 ns
(Write)
Tx Tx TX Tx
CLK

T15-T17 [MIN| MAX

OUTPUTS VALID

Figure 4-4. Output Float Delay Timing

4-9

——
= T
= == ==
_——=T= _
Table 4-9. Input Setup Times
Tease= 0°C to 75°C, See Figure 4-5
50MHz BUS | 55MHz BUS | 60MHzBUS| 66MHzBUS| 75MHz BUS
SYMBOL PARAMETER UNITS
MIN MIN MIN MIN MIN
T18 A20M#, FLUSH#, 5 5 5 5 3.3 ns
IGNNE#, SUSP#
T19 AHOLD, BHOLD, 5 5 5 5 3.3 ns
BOFF#, DHOLD,
HOLD
T20 BRDY# 5 5 5 5 3.3 ns
T21 BRDYC# 5 5 5 5 3.3 ns
T22a | A31-A3, BE7#-BEO# 5 5 5 5 3.3 ns
T22b | AP 5 5 5 5 4 ns
T22c | D63-DO (Read), 3.8 3.8 3 3 3 ns
DP7-DPO (Read)
T23 EADS#, INV 5 5 5 5 3.3 ns
T24 INTR, NMI, RESET, 5 5 5 5 3.3 ns
SMI#, WM_RST
T25 EWBE#, KEN#, NA#, 5 45 45 45 3.0 ns
WB/WT#
T26 QDUMP# 5 5 5 5 33 ns
Table 4-10. Input Hold Times
Tease= 0°C to 75°C, See Figure 4-5
50MHz BUS | 55MHz BUS | 60MHzBUS | 66MHz BUS| 75MHz BUS
SYMBOL PARAMETER UNITS
MIN MIN MIN MIN MIN
T27 A20M#, FLUSH#, 2 1 1 1 1 ns
IGNNE#, SUSP#
T28 AHOLD, BHOLD, 2 1 1 1 1 ns
BOFF#, DHOLD,
HOLD
T29 BRDY# 2 1 1 1 1 ns
T30 BRDYC# 2 1 1 1 1 ns
T3la | A31-A3, AP, 2 1 1 1 1 ns
BE7#-BEO#
T31b | D63-DO(Read), 2 2 2 2 2 ns
DP7-DPO (Read)
T32 EADS#, INV 2 1 1 1 1 ns
T33 INTR, NMI, RESET, 2 1 1 1 1 ns
SMI#, WM_RST
T34 EWBE#, KEN#, 2 1 1 1 1 ns
NA#, WB/WT#
T35 QDUMP# 2 1 1 1 1 ns

CLK

TX TX
T18-T26 | T27-T35
}<—SETUP—><— HOLD—>|

WX

A\

Tx

Tx

Figure 4-5. Input Setup and Hold Timing

4

4-11

Table 4-11. JTAG AC Specifications

SYMBOL PARAMETER ALL BUS PREQUENCIES UNITS | FIGURE
MIN MAX
TCK Frequency (MHz) 20 MHz

T36 TCK Period 50 MHz 4-6
T37 TCK High Time 25 MHz 4-6
T38 TCK Low Time 25 MHz 4-6
T39 TCK Rise Time 5 MHz 4-6
T40 TCK Fall Time 5 MHz 4-6
T41 TDO Valid Delay 3 20 MHz 4-7
T42 Non-test Outputs Valid Delay 3 20 MHZ| 4-7
T43 TDO Float Delay 25 MHz 4-7
T44 Non-test Outputs Float Delay 25 MHZ 4-7
T45 TRST# Pulse Width 40 MHz 4-8
T46 TDI, TMS Setup Time 20 MHz 4-7
T47 Non-test Inputs Setup Time 20 MHZ 4-7
T48 TDI, TMS Hold Time 13 MHz 4-7
T49 Non-test Inputs Hold Time 13 MHz 4-7

Figure 4-6. TCK Timing and Measurement Points

15V
L /
T46 T48
I
™S
1
T41 T43
<+ <“»
™0 -
T42 Ta4
<> <P
ouTPUT
SIGNALS X —
T47 T49
-l
INPUT <
SIGNALS M

Figure 4-7. JTAG Test Timings

T45
TRST# 15V

Figure 4-8. Test Reset Timing

4-13

I 5

5.0
5.1

MECHANICAL SPECIFICATIONS
296-Pin SPGA Package

The pin assignments for the IBM 6x&PUin a 296-pin SPGA package are shown in Figure 5-1.
The pins are listed by signal name in Table 5-1(Page 5-2) and by pin number in Table 5-2 (Page
5-3). Dimensions are shown in Figure 5-2 (Page 5-4) and Table 5-3 (Page 5-5).

37 36 35 34 33 32 31 30 29 28 27 26 25 24 2322 21 2019 18 1716 1514 13121110 9 8 7 6 5 4 3 2 1

O O

AN Q o] O (o] (o] (o] (o] o] (o] O (o] (o] o] o] o] O (0] AN
v8s _RESV_ A6 _ Al0 _VCTIO_VCTIO_VCCIO_VCTIO_VCCIo VCCPLL VEC _ VEC _ VG _ VEC _ VEC FLUSHX NC _ NC _ NC
AM A0 _ A4 A8 _Vv3s _vds _v8s _v3s _v3s _v3s _v3s _vBs _ VvBs _v3s _ v3s _ v8S _WIRX EADSX_ADSCX AM
A | 67000 oo AL
VSS o A3 o AT o ATL o A2 Al ATG ATS AR NG SCYC BEX (BEAX (BEDX (BEOX o NG JHITX) PYT o NG
AK A8 A% _ A5 A9 A3 Al5 Al7 Al9 RESET CIK BE7X BESX BE3X BEIX A20MX HITX _ DICX _ AP AK
o | 070 N
v3s A% _ A3 ADSX__HLDA _BREQ
AH 020" LOCKX_ VSS AH
AG | vcCio_ A2 _ A37 PCD SMIACTX VCc | AG
AF 0"® 6" g PCHAKX_ VSS AF
AE vcooo NC ° AZ3 APCHKX_ NC _ VCC AE
AD v3s _INTR o € o VSs AD
AC | vcTio_ NC _ NmI RESV JRESV) Ve AC
AB V3S _ SMIX HOLD _ VSS AB
AA | vctio cl)GNNEX YMRST WBMWTY NC . VCC AA
z vds _ NC BOFFX_ V3S z
v . e®e™o Y
VCCIO_ RESV_CLKMUL NAX BRDYCX VCC
X v3s _RESV BRDYX_ VSS X
W o W
VCCIO_ RESV SUSPAX 6x86 CPU KENX _EWBEX_ VCC
v v3s _suspx AHOLD_ V3S v
U | vctio_ vés _vctio NV GACHER, Ve u
T vSs _vctio TOP VI EW or\/u/oxc> vSs T
S | vctio RSV o RESV NC _RESV. VCC S
R vds _ NC RESV _ VSS R
Q [0} (o] o]
veCiog NC. JTRSTX FERRXRESV | VEC Q
P VSs _ TMS NC _ VSS P
N N
vcCio. TDI . TDO DP7 _ DB3 . VCC
[o] o] o] o]

M vds _ TCK D62 _ VS M
L L
VCCIo. NC .VCTIo DO . Dbl . VEC
[o] o] o] o]

K vSs _ Do D59 _ VSS K
;| e%e0™o 0™o |
VCCIO. D2 ~ NC D58 . D57 . VCC
H o ” o 0o H
vSs _ NC D56 _ VSS
s | 00" o 0™o0" o | |
vcCio. DL .. D3 D53 _ D55 . VCC
F o™ o 0™ o0™0o .
D4 . D5 DP5 _ D51 . DP6
E [(o] (o] O O o o] O E

vcCio. D6 . D7 Di2 . D46 . D49 . D52
D o] o] o] (o} o] o] o] o] o] o] o] o} o D
DP0 _ D8 _ Di2 _ DPL _ Dio _ D23 _ D2 _ D38 _ D30 _ DP3 _ D33 _ D35 _ D37 _ D39 _ DA0 _ Di4 _ D48 _ D50
c DO D0 _ Di4 _ Di7 _ D21 _ D24 _ DP2 _ D25 _ D27 _ D29 _ D31 _ D32 _ D34 _ D36 _ D38 _ DP4 _ D45 _ D47 _ NC c
B o] o] o] o] o] o] [0} o] o] o] B
Di1 _ Di3 _ Di6 _ D20 _ v3s _Vv3s _yss _ VES _v8s _vBs Vs _v3s _v3s _v8s _v3s _vSs _ Da3 _ NC
A A

NC D15 D18 D22 VCCIO VCCIO VCCIO VCCIO VCCIO VCCIO VvCC VvVCC VvCC VvCC vCeC vCcC D41 NC

37 36 35 34 33 32 31 30 29 28 27 26 2524 2322 212019 181716 151413121110 9 8 7 6 5 4 3 2 1

Figure 5-1. 296-Pin SPGA Package Pin Assignments

5-1

— — — —

= L v |

— — I — — .
S5

Table 5-1 296-Pin SPGA Package Signal Names Sorted by Pin Number

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal
A3 NC C29 D21 J35 D2 U35 Vss AE35 NC AL21 A20
A5 D41 C31 D17 J37 Vce u37 Vce AE37 Vce AL23 A18
A7 Vce C33 D14 K2 Vss V2 Vss AF2 Vss AL25 Al6
A9 Vce C35 D10 K4 D59 V4 AHOLD | AF4 PCHK# AL27 Al4
All Vce C37 D9 K34 DO V34 SUSP# AF34 A21 AL29 Al12
Al13 Vce D2 D50 K36 Vss V36 Vss AF36 Vss AL31 All
Al5 Vce D4 D48 L1 Vce w1 Vce AG1 Vce AL33 A7
Al7 Vce D6 D44 L3 D61 w3 EWBE# | AG3 SMIACT# AL35 A3
A19 Vce D8 D40 L5 D60 W5 KEN# AG5 PCD AL37 Vss
A21 Vce D10 D39 L33 Vce W33 SUSPA#| AG33 A27 AM2 ADSC#
A23 Vce D12 D37 L35 NC W35 Reserved | AG35 A24 AM4 EADS#
A25 Vce D14 D35 L37 Vce W37 Vce AG37 Vce AM6 W/R#
A27 Vce D16 D33 M2 Vss X2 Vss AH2 Vss AMS8 Vss
A29 Vce D18 DP3 M4 D62 X4 BRDY# | AH4 LOCK# AM10 Vss
A3l D22 D20 D30 M34 TCK X34 Reserved | AH34 A26 AM12 Vss
A33 D18 D22 D28 M36 Vss X36 Vss AH36 A22 AM14 Vss
A35 D15 D24 D26 N1 Vce Y1 Vce AJl BREQ AM16 Vss
A37 NC D26 D23 N3 D63 Y3 BRDYC#| AJ3 HLDA AM18 Vss
B2 NC D28 D19 N5 DP7 Y5 NA# AJ5 ADS# AM20 Vss
B4 D43 D30 DP1 N33 TDO Y33 CLKMUL| AJ33 A3l AM22 Vss
B6 Vss D32 D12 N35 TDI Y35 Reserved | AJ35 A25 AM24 Vss
B8 Vss D34 D8 N37 Vce Y37 Vcce AJ37 Vss AM26 Vss
B10 Vss D36 DPO P2 Vss z2 Vss AK2 AP AM28 Vss
B12 Vss E1l D54 P4 NC Z4 BOFF# AK4 D/C# AM30 Vss
B14 Vss E3 D52 P34 T™MS 234 NC AK6 HIT# AM32 A8
B16 Vss E5 D49 P36 Vss Z36 Vss AK8 A20M# AM34 Ad
B18 Vss E7 D46 Q1 Vce AAl Vce AK10 BE1# AM36 A30
B20 Vss E9 D42 Q3 Reserved | AA3 Reserved | AK12 BE3# AN1 NC
B22 Vss E33 D7 Q5 FERR# AA5 WB/WT# AK14 BES# AN3 NC
B24 Vss E35 D6 Q33 TRST# AA33 WM_RSTT AK16 BE7# AN5 NC
B26 Vss E37 Vce Q35 NC AA35 IGNNE#| AK18 CLK AN7 FLUSH#
B28 Vss F2 DP6 Q37 Vcce AA37 Vcce AK20 RESET AN9 Vcce
B30 D20 F4 D51 R2 Vss AB2 Vss AK22 A19 AN11 Vce
B32 D16 F6 DP5 R4 Reserved | AB4 HOLD AK24 Al7 AN13 Vce
B34 D13 F34 D5 R34 BHOLD | AB34 SMI# AK26 Al5 AN15 Vce
B36 D11 F36 D4 R36 Vss AB36 Vss AK28 Al13 AN17 Vce
Cl NC G1 Vce S1 Vcce AC1 Vcce AK30 A9 AN19 Vcce
C3 D47 G3 D55 S3 Reserved | AC3 Reserved | AK32 A5 AN21 Vce
C5 D45 G5 D53 S5 LBA# AC5 NC AK34 A29 AN23 Vce
Cc7 DP4 G33 D3 S33 Reserved | AC33 NMI AK36 A28 AN25 Vce
Cc9 D38 G35 D1 S35 DHOLD | AC35 NC ALl NC AN27 Vce
Cl1 D36 G37 Vce S37 Vce AC37 Vce AL3 PWT AN29 Vce
C13 D34 H2 Vss T2 Vss AD2 Vss AL5 HITM# AN31 A10
C15 D32 H4 D56 T4 MI/O# AD4 NC AL7 QDUMP# AN33 A6
C17 D31 H34 NC T34 Vce AD34 INTR AL9 BEO# AN35 Reserved
C19 D29 H36 Vss T36 Vss AD36 Vss AL11 BE2# AN37 Vss
c21 D27 Jl Vce Ul Vce AE1 Vce AL13 BE4#
c23 D25 J3 D57 u3 CACHE#| AE3 NC AL15 BEG6#
C25 DP2 J5 D58 us INV AES5 APCHK#| AL17 SCYC
c27 D24 J33 Reserved U33 Vcc AE33 A23 AL19 Reserved

Note: Reservegins are reserved for future use by IBM only. Pins marked NC are not internally connected.

5-2

296-Pin SPGA Package 5

Table 5-2 296-Pin SPGA Package Pin Numbers Sorted by Signal Name

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin
A3 AL35 CLKMUL Y33 D48 D4 NC AN3 Vce AA37 Vss AM12
A4 AM34 D/C# AK4 D49 E5 NC AN5 Vce AC1 Vss AM14
A5 AK32 DO K34 D50 D2 NC B2 Vce AC37 Vss AM16
A6 AN33 D1 G35 D51 F4 NC C1 Vce AE1 Vss AM18
A7 AL33 D2 J35 D52 E3 NC H34 Vce AE37 Vss AM20
A8 AM32 D3 G33 D53 G5 NC L35 Vce AG1 Vss AM22
A9 AK30 D4 F36 D54 El NC P4 Vce AG37 Vss AM24
A10 AN31 D5 F34 D55 G3 NC Q35 Vce AN11 Vss AM26
All AL31 D6 E35 D56 H4 NC Z34 Vce AN13 Vss AM28
Al12 AL29 D7 E33 D57 J3 NMI AC33 Vce AN15 Vss AM30
Al13 AK28 D8 D34 D58 J5 PCD AG5 Vce AN17 Vss AM8
Al4 AL27 D9 C37 D59 K4 PCHK# AF4 Vce AN19 Vss AN37
Al5 AK26 D10 C35 D60 L5 PWT AL3 Vce AN21 Vss B6
Al6 AL25 D11 B36 D61 L3 QDUMP# AL7 Vce AN23 Vss B8
A17 AK24 D12 D32 D62 M4 RESET AK20 Vce AN25 Vss B10
Al18 AL23 D13 B34 D63 N3 SCYC AL17 Vce AN27 Vss B12
Al19 AK22 D14 C33 DHOLD S35 Reserved AA3 Vcce AN29 Vss B14
A20 AL21 D15 A35 DPO D36 Reserved AC3 Vcce AN9 Vss B16
A20M# AKS8 D16 B32 DP1 D30 Reserved AL19 Vcce E37 Vss B18
A21 AF34 D17 C31 DP2 C25 Reserved AN35 Vcce Gl Vss B20
A22 AH36 D18 A33 DP3 D18 Reserved J33 Vcce G37 Vss B22
A23 AE33 D19 D28 DP4 Cc7 Reserved Q3 Vcce J1 Vss B24
A24 AG35 D20 B30 DP5 F6 Reserved R4 Vcce J37 Vss B26
A25 AJ35 D21 C29 DP6 F2 Reserved S3 Vcce L1 Vss B28
A26 AH34 D22 A31 DP7 N5 Reserved S33 Vcce L33 Vss H2
A27 AG33 D23 D26 EADS# AM4 Reserved W35 Vcce L37 Vss H36
A28 AK36 D24 Cc27 EWBE# W3 Reserved X34 Vce N1 Vss K2

A29 AK34 D25 Cc23 FERR# Q5 Reserved Y35 Vce N37 Vss K36
A30 AM36 D26 D24 FLUSH# AN7 SMI# AB34 Vce Q1 Vss M2
A3l AJ33 D27 c21 HIT# AK6 SMIACT# AG3 Vce Q37 Vss M36
ADS# AJ5 D28 D22 HITM# AL5 SUSP# V34 Vce S1 Vss P2
ADSC# AM2 D29 C19 HLDA AJ3 SUSPA# W33 Vce S37 Vss P36
AHOLD V4 D30 D20 HOLD AB4 TCK M34 Vce T34 Vss R2

AP AK2 D31 C17 IGNNE# AA35 TDI N35 Vce Ul Vss R36
APCHK# AE5 D32 C15 INTR AD34 TDO N33 Vce uU33 Vss T2
BEO# AL9 D33 D16 INV us TMS P34 Vce u37 Vss T36
BE1# AK10 D34 C13 KEN# W5 TRST# Q33 Vce w1 Vss u3s
BE2# AL11 D35 D14 LBA# S5 Vce A7 Vce w37 Vss V2
BE3# AK12 D36 Cl1 LOCK# AH4 Vce A9 Vce Y1 Vss V36
BE4# AL13 D37 D12 MI/O# T4 Vce All Vce Y37 Vss X2
BES# AK14 D38 C9 NA# Y5 Vce Al13 Vss AB2 Vss X36
BE6# AL15 D39 D10 NC A3 Vce Al15 Vss AB36 Vss Z2
BE7# AK16 D40 D8 NC A37 Vce Al7 Vss AD2 Vss 236
BHOLD R34 D41 A5 NC AC35 Vce A19 Vss AD36 WB/WT# AA5
BOFF# Z4 D42 E9 NC AC5 Vce A21 Vss AF2 W/R# AM6
BRDY# X4 D43 B4 NC AD4 Vce A23 Vss AF36 WM_RST AA33
BRDYC# Y3 D44 D6 NC AE3 Vce A25 Vss AH2

BREQ AJl D45 C5 NC AE35 Vce A27 Vss AJ37
CACHE# U3 D46 E7 NC AL1 Vce A29 Vss AL37
CLK AK18 D47 C3 NC AN1 Vce AAl Vss AM10

Note: Reservedgins are reserved for future use by IBM only. Pins marked NC are not internally connected.

5-3

.. B I
L1 _ |
I N S
I I S
. L& 4] .
— — — 296-Pin SPGA Package
L I |
SEATING
< D > PLANE —>
‘(D1 >‘ > L <
S1—=> 1< \L \L
© 06 0 06 6 0 0 6 6 0 06 0 0 0 0 O 0 0 O A E—
01.65 © 0 0 0 0 0 0 0 0 0 0 0o 0 o o o o o e
REF' OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ﬁ K
\L ooooo 00 o0 ooooo E2
——| o o o °© o o]
4\ o o o o©
© ° o o o o
o o o o
o o o o o o
o o o o
o o o o o o
o o © ©
o o o o o o
o o o o
o o o o o o
o o o o D
o© o ° o o o
o o o o
ooooo ooooo V
o o o o o o B=—
ooooo ooooo A
o o o o
o o o o o o
o o o o
o© © © [+ o [+
Pin C3 0 o o 06 0 L
ooooooo ° 0o 0O ooooo
v ON.OOOOoooOOOOOOOOOOOOOOOOOOOOOOOOOOO
- o o o o o o o o o © o © ° © o o o o
© o 0o o 0o 6 0 0 06 0 0 0 0 0 O 0 O O© v
0 45X CHAMFER Al k
2295 (INDEX CORNER) A2
< D >
< D3 >
< D2 >
T T
FLT
\ ® CU W HEAT
SPREADER
@ BRAZE
METALIZATION
DJ"
<-D4—>

Figure 5-2. 296-Pin SPGA Package

296-Pin SPGA Package 5

Table 5-3. 296-Pin SPGA Package Dimensions

SYMBOL MILLIMETERS

MIN MAX
A 3.00 4.20
Al 0.63 1.04
A2 251 3.10
B 0.43 0.51
D 49.28 49.91
D1 45.47 45.97
D2 31.50 Sq. 32.00 Sq.
D3 33.91 36.49
D4 6.39 8.00
El 2.41 2.67
E2 1.14 1.40
F 0.05 Diag. 0.08 Diag.
L 3.05 3.30
N 296 (Pin Count)
S1 147 | 239

5-5

Thermal Characteristics

5.2 Thermal Characteristics

The IBM 6x86 processor is designed to operate when the case temperature at the top center of the
package is between 0°C and 70°C. The maximum die (junction) tempergipg,, Bnd the

maximum ambient temperature, fiax » €an be calculated by substituting thermal resistance and
maximum values for case or junction temperature and power dissipation in the following equations:

T; =Tc + (P *6;0
Ta =T - (P *83n)
where:
Ta = Ambient temperature (°C)
T; = Average junction temperature (°C)
Tc = Case temperature at top center of package (°C)
P = Power dissipation (W)
8;c = Junction-to-case thermal resistance (°C/W)
654 = Junction-to-ambient thermal resistance (°C/W).

Table 5-4 lists the junction-to-case and case-to-ambient thermal resistances for the SPGA
package.

5-6

Thermal Characteristics 5

Table 5-4. Thermal Resistances for SPGA
Package With and Without Heatsinks

Thermal Resistance 0;c °C/W Bca °C/W
Laminar Air Flow (ft/min) 0 0 100 200 400 600 80(
1.95 x 1.95 x 0.25 Heatsink 0.9 8.4 7.4 6.0 410 3.1 2.6
1.95 x 1.95 x 0.40 Heatsink 0.9 7.7 6.6 4.9 32 2.7 2.1
1.95 x 1.95 x 0.65 Heatsink 0.9 5.9 4.7 3.2 2)1 1.7 1.4
Without Heatsink 1.4 14.7 115 9.1 7.3 7.0 6.p
Notes:

For a 6x86 processor with 1.25 x 1.25 x 0.40 inch CuW heat spreader.

Heatsinks are omni-directional pin aluminum alloy.

Features are based on standard extrusion practices for a given height.

Heatsink attachment was made with 0.006 inch of thermal grease applied between heatsink and case.
Maximum air temperature is assumed to b€ @0

5-7

IBM 6x86 MICROPROCESSOR

Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

J

6. INSTRUCTION SET 6.1 Instruction Set Summary

Instruction Set

This section summarizes the IBM 6x86 CPU Depending on the instruction, the IBM 6x86
instruction set and provides detailed informatio@PU instructions follow the general instructiol
on the instruction encodings. All instructions format shown in Figure 6-1. These instructions
are listed in the CPU Instruction Set Summaryary in length and can start at any byte address.
Table (Table 6-20, Page 6-14), and the FPU An instruction consists of one or more bytes
Instruction Set Summary Table (Table 6-22, that can include: prefix byte(s), at least one
Page 6-30). These tables provide informatioropcode byte(s), mod r/m byte, s-i-b byte,
on the instruction encoding, and the instructioaddress displacement byte(s) and immediate
clock counts for each instruction. The clock data byte(s). An instruction can be as short as
count values for both tables are based on the one byte and as long as 15 bytes. If there are
assumptions described in Section 6.3. more than 15 bytes in the instruction a general
protection fault (error code of 0) is generated.

PPPPPPPPTTTTTTT Imd RRR tmlss index basd32 |16 | 8/ nonel 32 |16 8l none
7 07 0765 32 0765320
. AN AN AN AN AN /
Y Y e hd Y Y
)] op-cod mod r/m s-i-b) address immediate
optional prefix byte(s) (one 8PtAd Bytes) byte byte displacement data
o (4,2, 1bytes, (4, 2, 1 bytes,
= prefix bit he or none) or none)
T opcode bit register and address
R = opcode bit or reg bit mode specifier

Figure 6-1. Instruction Set Format

6-1

i-__==?== Instruction Set Summary
6.2 General Instruction Fields

The fields in the general instruction format at the byte level are listed in Table 6-1.

Table 6-1. Instruction Fields

FIELD NAME DESCRIPTION WIDTH

Optional Prefix Byte(s) | Specifies segment register override, address and operand sizer more bytes
repeat elements in string instruction, LOCK# assertion.

Opcode Byte(s) Identifies instruction operation. 1 or 2 bytes
mod and r/m Byte Address mode specifier. 1 byte
s-i-b Byte Scale factor, Index and Base fields. 1 byte
Address Displacement | Address displacement operand. 1, 2 or 4 byteg
Immediate data Immediate data operand. 1, 2 or 4 bytes
6.2.1 Optional Prefix Bytes

Prefix bytes can be placed in front of any instruction. The prefix modifies the operation of the
next instruction only. When more than one prefix is used, the order is not important. There are

five type of prefixes as follows:

1. Segment Override explicitly specifies which segment register an instruction will use for
effective address calculation.

2. Address Size switches between 16- and 32-bit addressing. Selects the inverse of the
default.

3. Operand Size switches between 16- and 32-bit operand size. Selects the inverse of the
default.

4. Repeat is used with a string instruction which causes the instruction to be repeated for
each element of the string.

5. Lock is used to assert the hardware LOCK# signal during execution of the instruction.

6-2

Instruction Set Summary 6

Table 6-2 lists the encodings for each of the available prefix bytes.

Table 6-2. Instruction Prefix Summary

and

and

and

t

PREFIX ENCODING DESCRIPTION
ES: 26h Override segment default, use ES for memory operand
Cs: 2Eh Override segment default, use CS for memory oper
SS: 36h Override segment default, use SS for memory oper
DS: 3Eh Override segment default, use DS for memory operand
FS: 64h Override segment default, use FS for memory operand
GS: 65h Override segment default, use GS for memory oper
Operand Size 66h Make operand size attribute the inverse of the defgult
Address Size 67h Make address size attribute the inverse of the defau
LOCK FOh Assert LOCK# hardware signal.
REPNE F2h Repeat the following string instruction.
REP/REPE F3h Repeat the following string instruction.

6-3

Instruction Set Summary

6.2.2 Opcode Byte

The opcode field specifies the operation to be performed by the instruction. The opcode field is
either one or two bytes in length and may be further defined by additional bits in the mod r/m

byte. Some operations have more than one opcode, each specifying a different form of the opera-
tion. Some opcodes name instruction groups. For example, opcode 80h names a group of opera-
tions that have an immediate operand and a register or memory operand. The reg field may appear
in the second opcode byte or in the mod r/m byte.

6.2.2.1 w Field

The 1-bit w field (Table 6-11) selects the operand size during 16 and 32 bit data operations.
Table 6-3. w Field Encoding

w FIELD OPERAND SIZE
16-BIT DATA OPERATIONS 32-BIT DATA OPERATIONS
0 8 Bits 8 Bits
1 16 Bits 32 Bits
6.2.2.2 d Field

The d field (Table 6-10) determines which operand is taken as the source operand and which
operand is taken as the destination.

Table 6-4. d Field Encoding

DESTINATION
d FIELD DIRECTION OF OPERATON SOURCE OPERAND OPERAND
0 Register --> Register or reg mod r/m or
Register --> Memory mod ss-index-base
1 Register --> Register or mod r/m or reg
Memory --> Register mod ss-index-base

6-4

Instruction Set Summary 6

6.2.2.3 s Field

The s field (Table 6-10) determines the size of the immediate data field. If the S bit is set, the
immediate field of the OP code is 8-bits wide and is sign extened to match the operand size of the
opcode.

Table 6-5s Field Encoding

FIELD Immediate Field Size
S 8-Bit Operand Size 16-Bit Operand Size 32-Bit Operand Size
0 8 bits 16 bits 32 bits
(or not present)
1 8 bits 8 bits (sign extended) 8 bits (signh extended)
6.2.2.4 eee Field

The eee field (Table 6-6) is used to select the control, debug and test registers in the MOV instruc-
tions. The type of register and base registers selected by the eee field are listed in Table 6-6. The
values shown in Table 6-6 are the only valid encodings for the eee bits.

Table 6-6. eee Field Encoding

eee FILED REGISTER TYPE BASE REGISTER
000 Control Register CRO
010 Control Register CR2
011 Control Register CR3
000 Debug Register DRO
001 Debug Register DR1
010 Debug Register DR2
011 Debug Register DR3
110 Debug Register DR6
111 Debug Register DR7
011 Test Register TR3
100 Test Register TR4
101 Test Register TR5
110 Test Register TR6
111 Test Register TR7

6-5

Instruction Set Summary

6.2.3 mod and r/m Byte

The mod and r/m fields (Table 6-7), within the mod r/m byte, select the type of memory
addressing to be used. Some instructions use a fixed addressing mode (e.g., PUSH or POP) and
therefore, these fields are not present. Table 6-7 lists the addressing method when 16-bit addressing
is used and a mod r/m byte is present. Some mod r/m field encodings are dependent on the w field
and are shown in Table 6-8 (Page 6-7).

Table 6-7. mod r/m Field Encoding

mod and r/m fields 16'3JJhAn1?0DdRrI/Er§SBXSDE 3iv:?t|1TmA:)?iDr/F:nE§5teM§12E
No s-i-b Byte Present

00 000 DS:[BX+SI] DS:[EAX]
00 001 DS:[BX+DlI] DS:[ECX]
00 010 DS:[BP+SI] DS:[EDX]
00 011 DS:[BP+DI] DS:[EBX]
00 100 DS:[S]] s-i-b is present (See 6.2.4 (Page 6-9))
00 101 DS:[DI] DS:[d32]
00 110 DS:[d16] DS:[ESI]
00 111 DS:[BX] DS:[EDI]
01 000 DS:[BX+SI+d8] DS:[EAX+d8]
01 001 DS:[BX+DI+d8] DS:[ECX+d8]
01010 DS:[BP+SI+d8] DS:[EDX+d8]
01011 DS:[BP+DI+d8] DS:[EBX+d8]
01 100 DS:[SI+d8] s-i-b is present (See 6.2.4 (Page 6-9)
01101 DS:[DI+d8] SS:[EBP+d8]
01110 SS:[BP+d8] DS:[ESI+d8]
01111 DS:[BX+d8] DS:[EDI+d8]
10 000 DS:[BX+SI+d16] DS:[EAX+d32]
10 001 DS:[BX+DI+d16] DS:[ECX+d32]
10 010 DS:[BP+SI+d16] DS:[EDX+d32]
10011 DS:[BP+DI+d16] DS:[EBX+d32]
10 100 DS:[Sl+d16] s-i-b is present (See 6.2.4 (Page 6-9)
10101 DS:[DI+d16] SS:[EBP+d32]
10 110 SS:[BP+d16] DS:[ESI+d32]
10 111 DS:[BX+d16] DS:[EDI+d32]
11000-11111 | See Table 6-7 | See Table 6-7

6-6

Instruction Set Summary 6

Table 6-8. mod r/m Field Encoding Dependent on w Field

6.2.3.1

The reg field (Table 6-9) determines which general registers are to be used. The selected register is

16-BIT 16-BIT 32-BIT 32-BIT
mod r/m OPERATION OPERATION OPERATION OPERATION
w=0 w=1 w=0 w=1
11 000 AL AX AL EAX
11 001 CL CX CL ECX
11 010 DL DX DL EDX
11011 BL BX BL EBX
11100 AH SP AH ESP
11101 CH BP CH EBP
11110 DH Sl DH ESI
11111 BH DI BH EDI
reg Field

dependent on whether a 16 or 32 bit operation is current and the status of the w bit.

Table 6-9. reg Field

16-BIT 32-BIT
v | oPERATON | ovemaTon | oo | ieen s | ser
w Field Not w Field Not W=0 w=1 W=0 w=1
Present Present
000 AX EAX AL AX AL EAX
001 CX ECX CL CX CL ECX
010 DX EDX DL DX DL EDX
011 BX EBX BL BX BL EBX
100 SP ESP AH SP AH ESP
101 BP EBP CH BP CH EBP
110 Si ESI DH Si DH ESI
111 DI EDI BH DI BH EDI

6-7

Instruction Set Summary

6.2.3.2 sreg3 Field

The sreg3 field (Table 6-10) is 3-bit field that is similar to the sreg2 field, but allows use of the FS
and GS segment registers.

Table 6-10. sreg3 Field Encoding

sreg3 FIELD SEGMENT REGISTER SELECTED
000 ES
001 CSs
010 SS
011 DS
100 FS
101 GS
110 undefined
111 undefined
6.2.3.3 sreg2 Field

The sreg? field (Table 6-11) is a 2-bit field that allows one of the four 286-type segment registers
to be specified.

Table 6-11. sreg2 Field Encoding

sreg2 FIELD SEGMENT REGISTER SELECTED
00 ES
01 CS
10 SS
11 DS

6-8

Instruction Set Summary 6

6.2.4 s-i-b Byte

The s-i-b fields provide scale factor, indexing and a base field for address selection.

6.2.4.1 ss Field

The ss field (Table 6-12) specifies the scale factor used in the offset mechanism for address calcu-
lation. The scale factor multiplies the index value to provide one of the components used to calcu-
late the offset address.

Table 6-12. ss Field Encoding

ss FIELD SCALE FACTOR
00 x1
01 X2
01 X4
11 X8

6.2.4.2 index Field

The index field (Table 6-13) specifies the index register used by the offset mechanism for offset
address calculation. When no index register is used (index field = 100), the ss value must be 00 or
the effective address is undefined.

Table 6-13. index Field Encoding

Index FIELD INDEX REGISTER
000 EAX
001 ECX
010 EDX
011 EBX
100 none
101 EBP
110 ESI
111 EDI

6-9

Instruction Set Summary

6.2.4.3 Base Field

In Table 6-7 (Page 6-6), the note “s-i-b present” for certain entries forces the use of the mod and
base field as listed in Table 6-14. The first two digits in the first column of Table 6-14 identifies
the mod bits in the mod r/m byte. The last three digits in the first column of this table identifies

the base fields in the s-i-b byte.

Table 6-14. mod base Field Encoding

mod FELDWITHIN | P50 ot imang
s-i-b BYTE s-i-b Bytes Present

00 000 DS:[EAX+(scaled index)]
00 001 DS:[ECX+(scaled index)]
00 010 DS:[EDX+(scaled index)]
00 011 DS:[EBX+(scaled index)]
00 100 SS:[ESP+(scaled index)]
00 101 DS:[d32+(scaled index)]
00 110 DS:[ESI+(scaled index)]
00 111 DS:[EDI+(scaled index)]
01 000 DS:[EAX+(scaled index)+d8]
01 001 DS:[ECX+(scaled index)+d8]
01 010 DS:[EDX+(scaled index)+d8]
01 011 DS:[EBX+(scaled index)+d8]
01 100 SS:[ESP+(scaled index)+d8]
01 101 SS:[EBP+(scaled index)+d8]
01 110 DS:[ESI+(scaled index)+d8]
01 111 DS:[EDI+(scaled index)+d8]
10 000 DS:[EAX+(scaled index)+d32
10 001 DS:[ECX+(scaled index)+d32
10 010 DS:[EDX+(scaled index)+d32
10 011 DS:[EBX+(scaled index)+d32
10 100 SS:[ESP+(scaled index)+d32]
10 101 SS:[EBP+(scaled index)+d32]
10 110 DS:[ESI+(scaled index)+d32]
10 111 DS:[EDI+(scaled index)+d32]

6-10

CPUID Instruction 6

6.3 CPUID Instruction When the CPUID instruction is executed with

EAX =1, EAX and EDX contain the values
The IBM 6x86 CPU executes the CPUID shown in Table 6-16.

instruction (opcode 0FA2) as documented in
this section only if the CPUID bit in the CCR4
configuration register is set. The CPUID Table 6-16. CPUID Data
instruction may be used by software to deter- Returned When EAX = 1
mine the vendor and type of CPU.

REGISTER CONTENTS

When the CPUID instruction is executed with | EAX(3-0) 0
EAX = 0, the ASCII characters “CyrixIn- EAX(7-4) 2
stead” are placed in the EBX, EDX, and ECX [EAX(11-8) 5
registers as shown in Table 6-15: EAX(13-12) 0

EAX(31-14) reserved

EDX If EDX = 00, FPU not on-chip.

If EDX = 01, FPU on-chip.

Table 6-15. CPUID Data
Returned When EAX =0

REGISTER C(CL))';III-EISB)S
EBX 69 72 79 43
i r y C*
EDX 73 6E 4978
s n | x*
ECX 64 61 65 74
d a e t*

*ASCII equivalent

6-11

6.4

Instruction Set Tables

The IBM 6x86 CPU instruction set is
presented in two tables: Table 6-20. “6x86

CPU Instruction Set Clock Count Summary”

on page 6-14 and Table 6-22. “6x86 FPU

Instruction Set Tables

can be used within the clock count
shown. However, if the effective
address calculation uses two
general register components, add
1 clock to the clock count shown.

Instruction Set Summary” on page 6-30. 7. All clock counts assume aligned
Additional information concerning the FPU 32-bit memory/10 operands.
Instruction Set is presented on page 6-29.

8. Ifinstructions access a 32-bit

6.4.1

Assumptions Made in
Determining Instruction
Clock Count

The assumptions made in determining instruc- 9.
tion clock counts are listed below:

operand that crosses a 64-bit
boundary, add 1 clock for read or
write and add 2 clocks for read and
write.

For non-cached memory accesses,
add two clocks (IBM 6x86CPU
with 2x clock) or four clocks (IBM

1. All clock counts refer to the 6x86 CPU with 3x clock).
internal CPU internal clock (Assumes zero wait state memory
frequency. For example, the clock accesses)
counts for a clock-doubled IBM '
6x86 CPL}-lOO refer to 100 MHZ 10. Locked cycles are not cacheable.
clocks while the external clock is Therefore, using the LOCK prefix
50 MHz. with an instruction adds additional
. . clocks as specified in paragraph 9
2. The instruction has been above P paragrap
prefetched, decoded and is ready '
for execution. 11. No parallel execution of
)) instructions.
3. Bus cycles do not require wait
states. 6.4.2 CPU Instruction Set

Summary Table

4. There are no local bus HOLD Abbreviations

requests delaying processor access

to the bus. The clock counts listed in the CPU Instruction

Set Summary Table are grouped by operating
mode and whether there is a register/cache hit
or a cache miss. In some cases, more than one
clock count is shown in a column for a given
instruction, or a variable is used in the clock
count. The abbreviations used for these condi-
tions are listed in Table 6-17.

5. No exceptions are detected during
instruction execution.

6. If an effective address is
calculated, it does not use two
general register components. One
register, scaling and displacement

6-12

Instruction Set Tables 6

Table 6-17. CPU Clock Count Abbreviations

CLOCK COUNT SYMBOL

EXPLANATION

/

Register operand/memory operand.

n

Number of times operation is repeated.

L

Level of the stack frame.

Conditional jump taken | Conditional jump not taken.
(e.g. “4|1" = 4 clocks if jump taken, 1 clock if jump not taken

CPL<IOPL \ CPL > I0OPL

(where CPL = Current Privilege Level, IOPL = I/O Privilege Le

Number of parameters passed on the stack.

6.4.3 CPU Instruction Set Summary Table Flags Table

el)

The CPU Instruction Set Summary Table lists nine flags that are affected by the execution of
instructions. The conventions shown in Table 6-18 are used to identify the different flags. Table 6-19
lists the conventions used to indicate what action the instruction has on the particular flag.

Table 6-18. Flag Abbreviations

ABBREVIATION NAME OF FLAG
OF Overflow Flag
DF Direction Flag
IF Interrupt Enable Flag
TF Trap Flag
SF Sign Flag
ZF Zero Flag
AF Auxiliary Flag
PF Parity Flag
CF Carry Flag

Table 6-19. Action of Instruction on Flag

INSTRUCTION
TABLE SYMBOL

ACTION

X Flag is modified by the instruction.
- Flag is not changed by the instructi
0 Flag is reset to “0”".

1 Flag is set to “1”.

u Flag is undefined following execu-

tion of the instruction.

6-13

>
@
S
S
>
n
@
)
c
=
3]
>
=
2
£
-
o
O

pauyapun = n

(SNQ g€ *9T 'g) BIep UQ-gE SleIpaLLUl [N} = ###

pabueyoun = (snq g€ ‘91) swaoe|dsIp paubis [N} = +++ elep 1g-9T dleIpawwl = ##
payipow = x juawaoe|dsip paubis Ug-8 = + elep lg-g ayelpawwi = #
9/ 9/S [wys Baa pow] gg 40 1918169y ‘Alowa/Ia1sibay
€ € #lwy TTT pow] va 40 alelpswiw] ‘Alowsy/I81sibay
y q - - - - .. L uswajdwo) pue ugi1sal 019
9/ 9/S [wy/a1 Baa pow] €V 40 1915169y ‘Alowa/ialsibay
4 4 #lwy 00T pow] va 40 alelpswiw] ‘Alowsy/I81siBay
Y a STt s ugisal 19
v v 1 - - - - - - [6a1 11D 0 dems a1hg dvmsg
[wya Bas pow] ag 40 Aowa/iaisibay ‘1aisibay
Yy q € € - - X - - - - 9SIaN9Y g UedS YS9
[wya Bas pow] D9 40 Aowa/iaisibay ‘1aisibay
Yy q € € R S piemiod 1g ueds 4Sg
- T abuey uj J|
1NI+02 0z (g 1up) abuey jo 1N J
1T'y'6 9'q S I [wy/1 Bas pow] z9 salrepunog Aeuy ¥99yD ANNOg
w1 Bal pow] €9 Aowa/laisibay wol4
Yy e 6 1 - - X - - - - - 1ona7 aba|InlLd palsanbay 1snlpy 1d4dVY
T T ### [MOTO] 2 J01e|NWINJ2Y 0} SreIpaww|
T T Wi 00T pow] [mspQ] 8 Kiowsp/i1siBay 01 sreipawiw|
1 T [wyr 631 pow] [MT00] 2 1915169y 0] Alows N
1 T [wy1 Bas pow] [moo0] 2 Kiows |\ 01 JaisiBay
1 1 [wy1 631 1T] [MpO0] 2 181s1Bay 01 Jarsibay
y q o/ x nx x - - -0 ANV uesjood ANV
1 T ### [MOTO] O Jole|NWINodY 0] arelpawiW|
1 T ###wyl 000 pow] [mso0] 8 Kiowan/191s1Bay 0} drepaww|
1 1 [wyr Bas pow] [MT00] O J1o15169y 01 AloWwaN
1 T [wyr Ba1 pow] [Mm000] O Kiowa 0) Ja)siBoy
1 1 [wyr Bai TT] [MpoO] O J1a1s16ay 01 Jalsibay
4 q XX xx x - - - X ppv J18baiul aav
1 T ##+# [MOTO] T 101B|NWNJ2Y 0] aJelpawiw|
T T (Wi 0TO pow] [mspQ] 8 Kiowsp/i1siBay 01 sreipawiw|
1 1 [wyr Ba1 pow] [MT00] T J1o15169y 01 AloWwa
1 T [wyr Ba1 pow] [mo00] T Kiowa 0) JaysiBoy
1 1 [wyr Bai TT] [MpoO] T 1915169y 01 Jalsibay
y q X X X X X - - - X Aued yum ppy oav
L L X nxnn - - -n d€ 10e1gNS Jaye TV ISnlpY 1IDSY SYV
TZ€T T2-€T nx nx x - - -n V0 va Adniniy Jaye Xv 1snlpy 110SY WYY
L L npx nx x - - - n Y0 &d apIAIg aJojag XV 1snlpy 11DSY Avy
L L Xh xn n - - -n LE PPV Jaye v isnlpy 1I10SY VvV
3poiN Spon WH dyoed WH 8yoed
pajejold | |esy /B2y /6y 40 4d 4V 47 4S 41 41 40 40
1INNOD 1INNOD 3d02dO NOILONYLSNI
S310N MO01D IAON MO01D IAON SOvd
a312310dd av3ad

Arewiwing unoo 90|9 18S UONdNIISU| NdD 98X9°0Z-9 3|qel

6-14

2
]
S
S
5
(%))
3]
(%))
c
§e)
©
S
=
7]
£
2
o
@)

pauyapun = n

(Snd € ‘9T 'g) erep UQ-ZE SNeIPBWILI |IN) = ###

pabueyoun = - (snq g€ ‘97) swaoe|dsIp paubis [N} = +++ elep 1g-9T dlelpaliWl = ##
paypow = x Juawaoe|dsip paubis g-g = + elep 1g-g djelpawwl = #
4 4 - - - - - - - G4 Be|q A1e) ayl uswajdwo)d JND
I 0 ot 0T S 90 40 Bel4 payoums ysel Jes|d S110
w / l - - - -0 - - v Be|4 wdnusiu) Jes|d 110
L L - - - - - 0 - o4 Be|4 uonoaaq res|d @1d
T T S 84 Bel4 Aured sea0 010
b4 b4 R 66 pisompeng) 0] pJomajgnog uaAuod OAd
€ € S 86 pioM 0} 3IAg LBAUOD MED
20T %sel 98A 01 ysel 1g-Z€
74 SS1 1g-Z€ 01 y¥sel Ug-Z€
91T SS1 Mg-9T 01 Ysel Ug-z¢
00T %sel 98A 01 ysel 1g-9T
44 SS1 Hg-Z€ 01 Ysel 1g-9T
4N SS1 Hg-9T 01 sel Ug-9T
wz+0t sJed w [aAa7 abajinld 1ualaylqg 01 a1es |ed
1€ slalaweled oN abajinLd Jualayig 0} a1es |[ed
0z abajinlLd swes 0] a1es |[ed
8 S [wyr 770 pow] 44 wawbhasiaiu| 10811py|
86 %sel 98A 01 3sel Ng-Z€
0zt SS1 Mg-Z€ 01 Ysel Ng-zE
4% SS1 Mg-9T 01 Ysel Ug-z¢
96 %sel 98A 01 sel Ug-9T
81T SS1 Hg-Z€ 01 sel 1g-9T
01T SS1 Hg-9T 01 sel Ng-9T
wz+G¢ sJed w aba|inLd ualayid 01 a1es |[ed
92 slajoweled ON abajiAld Jualaylq 01 areo |ed
ST [10108]8s aba|inlld awes 01 a1es |[ed
4 € ‘19s440 [|n} paubisun] ve juswbasialu| 19a11q
€T €T [w/roTo pow] 44| wawbas uyun 10811pU| Aowsn/ilsiBay
T T +++ 83 Juswhas uynMm 10311Q
Ty q - - - - s [red sunnoians TIv0
9/S 9/S [wy1 Bas pow] gv 40 (wuoy oys) Jaisibay
€ € [wya TOT pow] va 40 Kiowa/iaisiBoy
u q S 19S pue ug1sa1 s14d
9/S 9/S [wy1 Bas pow] €9 40 l1a1si6ay ‘fows/iisiBay
€ € #lwy oTT pow] va 40 arelpaww ‘Alows/I81sibay
u q S losay pue g 1sal Y19
SPON SPON 1IIH ayde) 1IH ayde)
pa13310id 1esy /62y /63y 40 4dd 4V 47 4S 41 41 4d 40
1INNOD 1INNOD 3d02d0 NOILONYLSNI
S31ON Y2010 IA0OW | D010 IAOW SoOvV1d
a310310dd Iv3d

(panunuo))Arewwns uN0Y X20|D 18S UoNINNSUl NdD 98X9°0Z-9 a|qel

6-15

>
@
S
S
>
n
@
)
c
=
3]
>
=
2
£
-
o
O

paujapun = n

(SHq g€ ‘9T ‘8) eIep NQ-ZE SILIPALULI [N} = ###

pabueyoun = - (sug zg ‘9T) Wwawade(dsip paubis [N} = +++ elep UQ-9T dleIpaWiW] = ##
payipow = X juawaoe|dsip paubis Ug-8 = + elep lg-g ayelpawwl = #
SY-LT Sv-LT piomsjgnog
82-9T 82-9T PIOM
02-9T 02-91 a1Ag osIng
[wya TTT pow] [MTTO] 4 Kowan/ia1sibay Aq Jorejnwindoy
y'a a'q nnx x - - - - apinia (paubis) 1ebawil Al
[S S s s s s s v NeH 1H
€4T1+0T €x1+0T T < (1) 19A97
€T €T = [9Ad7
0T 0T 0 =|9Aa7]
y q -ttt s, #'## 8D aweld XJelsS MaN J8iug Y3LN3
Tv-€1 TV-€T pioma|gnog
GC-€1 GC-€T PIOM
LT-€T LT-€T 91Ag :JosIng
Alowan/i91sibay Aq Jorejnwindoy
y'a a'q - n x x - - - - [wyr 0TT pow] [mTTO] 4 apIAIg paubisun Ald
T T [Bal Tl ¢ (wioy Woys) Ja1s16ay
1 1 [wyr To0 pow] [mTTT] 4 Kiowaa1siBay
y q X X X X - - - X T Ag uswalded D3q
6 6 X X X x - - - - =14 1engns Jaye v Isnlpy rewineq sva
6 6 X X X x - - - - yx4 ppY Jaye v isnlpy [ewinad vva
b4 z T R 8@lapualIxg plomajgnog 01 PO LBAUOD JAMD
2z 2z - - - - - - - 66 ploma|qnoq 01 pIo\ LBAUOD AMD
cT et -ttt s s, ¢V 40 uonedynusp| NdO diNndd
1T 1T [wys Bas pow] [moo0] G 40 1218169y ‘Alowa
1T 1T [t6a1 2631 1T] [MO00] & 40 zlaisibay ‘TiaisIbay
X X X X - - - X abueyox3 pue aredwod OHIXJIND
Yy q S S X X X X - - - X [mTT0] vV Buins aredwod SdND
T T ### [MOTT] € 101e|NWINJ2Y 0} 3reIpawiw|
T T ### W/l TTT pow] [mso0] 8 Aowai/191s16ay 01 a1eIpaww|
T T [wya Ba1 pow] [moOT] € 1915169y 01 Alowa N
1 T [wy1 Bas pow] [MTOT] € Kiows|y 01 JaisiBay
1 1 [wyi 631 1T] [MpoT] € 181s1Bay 01 Jarsiboy
y q X X X X - - - X siabaju| asedwo) dIND
3poiN Spon WH ayoed UH 8yoed
pajsjold | |esy JSEX /63y 40 4d 4V 47 4S 41 41 40 40
1INNOD 1INNOD 3d02dO NOILONYLSNI
S310N MO01D IAON MO01D IAON SOvd
a31o03104dd av3ad

(penunuod)Arewwuns 1UN0Y %00JD 18S UONINNSU|l NdD 98X9°02-9 dlqeL

6-16

2
]
S
S
5
(%))
3]
(%))
c
§e)
©
S
=
7]
£
2
o
@)

pauyapun = n

(Snd € ‘9T 'g) erep UQ-ZE SNeIpBWILI [N} = ###

pabueyoun = - (snq g€ ‘97) swaoe|dsIp paubis [N} = +++ elep 10-9T dleIpawiwl = ##
paypow = x Juswaoe|dsip paubis 1g-g = + elep 1g-g Sjelpawwl = #
abed 1xau ay} uo panunuod
17 aye9 uy/ere deil Ag 0 863jiAd 0} 98A
c0T ajeo yse] Aq SS1 Ug-Z€ 01 98A
et ajeo yse] Aq SS1 1g-9T 01 98A
c0T alen yse] Aq 98A 01 Ysel 1d-z¢
et ares) yse| Aq SS1 Ng-zZ¢ 01 Xsel Ug-Z€
9TT ares) yse| Aq SS1 1g-9T 01 3sel Ug-9T
00T ajen yse] Ag 98A 01sel 1g-9T
cct ales) yse| Aq SS1 Ug-2¢ 01 sel Ug-9T
71T ares) yse| Aq SS1 1g-9T 01 3sel Ug-9T
h4S aba|inlLd ualayig 01 des] Jo idnusiu)
12 abajinld awes 01 dei] Jo 1dnusiu)
:3pOJN pa1osloid
6 # dO I INI
196 EXo| - 0 X - - 1dnuaiu] aremyos IN|
w'y q 8TV 14 - - - - [motT] 9 Hod O/l woyy Buls induj SNI
T T [681 0] ¥ (wioy Hoys) Jaisiboy
T T [wyr 000 pow] [mTTT] 4 Kiowsn/ia1sibay
y q X - - - X T Ag swsalou| NI
8zIvT vT [motT] 3 Hod ajqenen
8zIvT v [# [moto] 3 Hod paxid4
w - - - - - Hod O/l woyyindu| N|
1T 1T piomsignog
S S ## W) Bas pow] [Ts0T] 9 piom 8ndniniy
z191s160y 01 ajeIpaww| ynm Alowaln/ialsibay
0T 0T piomsjgnog
14 14 pilom endniniy
[wya Bala pow] 4v 40 Aowaia1sibay yum Jalsiboy
0T 0T piomsjgnog
14 14 PIOM
14 14 akg uandmnin
[wys ToT pow] [MTTO] 4 Aowaia1sibay Aq Jorenwinooy
y q X - - - X Aldninn (paubis) sabaul 1NN
3poiN 3poiN WH ayoed UH 8yoed
pajejold | |esy /B2y /6y 40 4d 4v 47 4S 41 41 4a 40
1INNOD 1INNOD 3d02dO NOILONYLSNI
S310N MO01D IAON MO01D IAON SOvd
a312310dd av3ad

(panunuo))Arewwns uN0Y X20|D 189S UonINNSUl NdD 98X9°0Z-9 a|qel

6-17

>
@
S
S
>
n
@
)
c
=
3]
>
=
2
£
-
o
O

pauyapun = n

(SHq g€ ‘9T ‘8) Iep NQ-ZE SIeIPALULI [N} = ###

pabueyoun = (sng zg ‘9T) Wwawade(dsIp paubis [N} = +++ elep UQ-9T SleIpaWiW] = ##
payipow = x juawaoe|dsip paubis 1g-8 = + elep 11g-8 alelpawwl = #
T T +++ 38 40 uswaoeldsiq |n4
T T + 3/ juswade|dsiq 1g-8
1 - - - - - - - 1918319 10N/Ienb3 Jo ssa7 uo dwng ONC/3TC
1 P +++ 08 40 Juawaoe|dsiq |IN4
T T + D/ uswaoe|dsiq 1g-8
] L fenb3 1o Jareals) JoN/ssa1 uo dwng IONC/IC
1 T +++ 8 40 Juawaoe|dsiq [N
1 T + . Juswaoe|dsiq 1g-8
1 L oJaz/ienb3 uo dwnr ze/Aac
1 T T LR + €3 0187 XD3/X2 uo dwnp ZxD3r/ZXor
T T +++ 98 40 Juawade|dsiq [N
T T + 9/ juswade|dsiq Ug-8
1 L anoqy 10N/fenb3 1o mojag uo dwng yNc/3dar
swaoeldsiq |In4
I I +++28 H0 Jawaoe|dsiq 1g-8
T T + 2. Are)n
/renb3
J St ottt m s 10 anoqy JoN/mojag uo dwing Dr/3vNe/ar
S0T)sel 98A O1ysel 1g-¢€
12T SS.1g-¢g 01ysel Hg-¢€
6TT SS.11g-9T 01 Xsel Hg-¢€
€07)sel 98A O1sel 1g-9T
14 SS.1g-¢¢ 01¥sel Hg-9T
LTT 3sel 1g-9T 01 ysel Ug-9T
9c aba|IALd 1UBIBYYIA 01 S L UIYNM
0T aba|Inlld swes 01 y)se] UIYlM
:9POIN pa1d810Id
L 9PON [eay
I IyY‘6 XX X X X X X X X 40 winlay 1dnuaiul 13Y]
€T €T o [w/1 TTT pow] TO 40 Anuz g1 srepiieaul dIANI
1 1 ZT cT o I 80 0 ayade) areplieAul dANI
LNI+ST (7 LNI) T==40}
9 9 0==d0 }l
Ele) OLNI
INI INI 20 € INI
IYT6 a'q 1 - - - - 0 x - - (panunuod)dnusiu| aremyos | NI
Elele 8poN WH ayoed UH aydsed
papajoid | [eay JSEX /63y 40 4d 4v 47 4S 41 41 40 40
1NNOD 1NNOD 3A02d0 NOILONYLSNI
S31ON D010 IAON D010 IAON SOvi1d
d310310dd v3d

(penunuod)Arewwuns 1UN0Y %00JD 18S UONINNSU|l NdD 98X9°02-9 dlqeL

6-18

2
]
S
S
5
(%))
3]
(%))
c
§e)
©
S
=
7]
£
2
o
@)

pauyapun = n

(Snd € ‘9T 'g) erep UQ-ZE SNeIPBWILI |IN) = ###

pabueyoun = - (snq g€ ‘97) swaoe|dsIp paubis [N} = +++ elep 1g-9T dlelpawiWl = ##
paypow = x Juawaoe|dsip paubis 1g-g = + elep 1g-g delpawwl = #

1 1 +++48 40 uawaoedsig |Ind4
1 1 + 4L awaoe|dsia 19-8
1 E 1818819/1ENb3 10 ssa7 10N uo dwng O¢/3INC
1 1 +++ Qa8 40 awaoe|dsig |Ind4
1 1 + a:s wawaoe|dsia 19-8
1 I lenb3 Jo Jarealn/ssa 10N uo dwng IOC/INC
1 T +++G8 40 wawaoe|dsig |Ind4
1 1 + G/ wawsaoe|dsid 19-8
1 T R R 0187 10N/fenb3 10N uo dwng ZNC/ANC
1 1 +++/8 0 swade(dsiqg N4
T T + L Juswaoeldsiq 1g-8
1 T L anoqy/fenb3 1o mojag 10N uo dwnr ye/3gNe
1 1 +++ €8 40 uswade(dsiqg N4
1 1 + €L wawaoe|dsid 19-8
Aired 10N/jenb3
1 - - - s - - - - 10 8A0qy/mojag 10N uo dwng DNC/AVL/ANC

10T %Sel 98A 01 Ysel Ng-Z€

€z1 SS11g-Z€ 01 Ysel Ng-Z€

STT SS11g-9T 01 %sel Ng-Z¢

66 %Sel 98A 01 Ysel Ng-9T

121 SS1 1g-Z€ 01 sel Ng-9T

€T SS1 19-9T 01 ¥sel 1g-9T

IT [9n87 8b8|Ind Bwes ares |[eD
L S [wyi TOT pow] 44 wawbasialu| 10811pU|

86 %Sel 98A 01 Ysel Ng-Z€

0zt SS1 1g-Z€ 01 Ysel Ng-Z€

4 SS11g-9T 01 %sel Ng-Z€

96 %Ssel 98A 01 Ysel Ng-9T

81T SS1 Mg-Z€ 01 Ysel Ng-9T

01T SS1 1g-9T 01 %sel 1g-9T

vT [9n87 8b8|Ind Bwes are9 |[eD

[10109]8s
4 T 19sy40 [|n} paubisun] v3 Juawbasialu| 19a11q
€T €T [wy oot pow] 44| wewbas uyu 108a1pUl Aows/idisiBay
T T +++ 63 juswaoe(dsiq ||n4
T T + @3 Juswaoe(dsia Ho-8
Ty q - - - - - - - - dwnr reuompuodun diNe
SPON SPON 1IIH ayde) 1IH ayde)
pa13310id 1esy /62y /63y 40 4dd 4V 47 4S 41 41 4d 40
1INNOD 1INNOD 3d02d0 NOILONYLSNI
S31ON Y2010 3A0OW | D010 IAOW SoOvV1d
a310310dd Iv3d

(panunuo))Arewwns uN0Y X20|D 189S UonINNSUl NdD 98X9°0Z-9 a|qel

6-19

>
®
£
£
>
n
@
n
c
=
5]
>
=
2
£
D
o
O

paujapun = n

(S)q 2€ ‘9T '8) BILP NG-ZE dreIpaULI [N = ###

pabueyoun = - (sng zg ‘9T) Wwawade(dsIp paubis [N} = +++ elep UQ-9T leIpaWiW] = ##
payipow = x juawaoe|dsip paubis 1g-8 = + elep 11g-8 dlelpawwl = #
] T 1 - - - - - - + 23 doo7 0N/d00718SH0 dOOT
Y q € € - s m s [mott]l v Buins peo1saon
€T €T [w/i 0TT pow] TO d0 Kiowsn/1a1s16ay wolH
Iy 2q - e o oo PIOA SNIBIS BUIydeN PO MSINT
S S [wy/1 0TO Pow] 00 d0 fiowa /1By Woi-
Fy'6 e e e e e e 19)si69y 1@ peo 1Al
I'y (g 8 8 - - - s s s s [wy/1 TTO pow] TO 40 Ja1s169y 1Al peo 1dl
[y i 14 4 - - s s s e [wys Bas pow] g8 40 S9 01 Jalulod peo S99
I'y (g 8 8 - - - s s - - [wy1 0TO pow] TO 40 181s1bay 1ao peo 1d9o7
[y i 14 4 - - - s s s e [wys Bas pow] 8 H0 S 01 I8uI0d peo S41
Iy g 14 4 - s s e [wys Bas pow] ¥O S3 0} Jaluiod peo s3I
y q ¥ v - - - - - - - - 60 Ikl 3oels ualind aAea] JAVI]
T T 1818169y x8pul Ynm
T T 1915169y X8apu| ON
s s s s - - [wyd Bai pow] as SSaIPPY SAI0YT peoT VI
Iy g 14 4 - s e e [wys Bas pow] 5O S@ 01 JaIod peo Sal
8 [wy1 631 pow] zo 40 Kiowa/a1siBay Woi-
d'fy'b e - - X - - - .- SIybry ss8999y peo] ¥yl
z 2z - - - - - - - 46 sbe|d yim Hy peoT 4HV
T T +++ 88 40 swade(dsig |Ind
1 1 + 8/ Juawaor(dsia 19-8
] - - ..o ubis uo dwnrsr
1 1 +++V8 H0 uawae|dsiq |Ind
1 1 + V. Juawaoe(dsia 19-8
] - - e e - uan3 Ayred/Anred uo dwnp3de/dr
1 1 +++08 40 Juawade|dsiq |Ind
T T + 0. Juswaoe|dsiq 1g-8
] .- - ..o MoIanQ uo dwne or
1 1 +++ 68 40 uawsde|dsiq [N
T T + 6. Juswaoe|dsiq 1g-8
i - - - - - - - ubls JoN uo dwing SNE
1 1 +++ 98 40 wswade(dsiqg N4
1 1 + 4. juawade|dsia u9-8
| .- - . oo o ppO Ared/Aired 10N uo dwng Ode/dNC
1 1 +++ T8 H0 Juawade|dsiq [N
T T + T Juswaoe|dsiq 1g-8
] - - - .- - .- MOJ}JBAQ 10N uo dwnf ONC
Elalel Elale] }H 3ydoeD WH 3ydoed
pa1d3)0id 1esy /6ay /63y 40 4dd 4V 47 4S 41 41 4d 40
INNOD INNOD 3002dO NOILONYLSNI
S31ON M¥O0T1D IAON | MD01D IAOW SoOvVI4
a3.193104d Ivay

(penunuod)Arewwuns 1UN0Y %00JD 18S UONINNSU|l NdD 98X9°02-9 dlqeL

6-20

2
]
S
S
5
(%))
3]
(%))
c
§e)
©
S
=
7]
£
2
o
@)

pauyapun = n

(Snd € ‘9T 'g) erep UQ-ZE SNeIpBWILI [N} = ###

pabueyoun = - (suqg zg ‘9T) wawaoe(dsip paubis N} = +++ elep 1g-9T dlelpawiwl = ##
payipow = x juswaoeldsip paubis 1g-g = + elep 1g-g alelpawwl = #
T T w1 Bal pow] [MTTOlg 40 Aowa/1a1sibay wouy Jalsiboy
y q I L uoISUdIX3 0197 YIM 3AOIN XZAOW
T T wyl Bas pow] [MTTTIg 40 Klowsa/1a1sibay woly 19)sibay
y q S uolsuax3 ubiS yum 8A0N XSAOW
Yy q 14 14 SRR R [mot0]l v Bus anoN SAOW
9 9 [6a1 993 TT] ¥Z 40 J181si6ay 01 2H1-941
ot 0T [6a1 993 TT] 92 40 Ld1-941 01 Ja1siboy
S S [6a1 993 TT] ¥Z -0 1815169y 01 G-€H L
ot 0T [6a1 993 TT] 92 40 G-g41 01 Jaisiboy
vT vT [6a1 993 TT] TZ 40 Ja1sibay 01 £4A-94A
9T 91 [6a1 993 TT] €2 0 £4a-94q 01 Jasibay
vT vT [6a1 993 TT] TZ 40 Ja1sibay 01 £4a-04A
9T 91 [6a1 993 TT] €2 40 £4a-04q 01 Jasifay
9 9 [6a1 993 TT] 0Z 40 1815169y 01 £40/240/040
G/G/02 G6/5/02 [6a1 993 TT] 22 40 £40/242/04D 01 Jaisibay
- - - - - - - - sbay 1s81/6nga@/|011u0D Wwoly/ol A0 AON
T T [wya gbais pow] D8 Aowa/1a1s1Bay 01 Jalsibay Juswbas
et T [wya gbais pow] 38 1915169y Juswbas o) Alowan/ialsibay
1 T +++ [MT00] V (w0} Loys) Alows|\ 01 J0IRINWNIIY
T T +++ [M000] V (wJoy 1oys) Jore|nwinaody 01 Alowa N
T T i [Baam] g (wioy woys) Jeisibay 03 drelpaww|
T T ## (Wl 000 pow] [MTTO] O Kiowsp/I1siBay 01 srelpawiw|
T T [wys Bai1 pow] [MTOT] 8 1915169y 01 Alowa/ia1sibay
T T [wys Ba1 pow] [Mo0T] 8 Aowa\ 01 Ja)siboy
T T [wyi Ba1 TT] [MpOT] 8 la1s169y 01 Ja1siBay
Fry q oo Lo ereq anolN AOW
L [wyr 10 Pow] 00 H0 Kiowa /1915169y WolH
I'l'uyd e S 1815169y >sel peoT Y11
[1'y P 14 z S N [wy1 Ba1 pow] zg -0 SS 01 J3)UI0d PRO7SST
g [wys Bas pow] €0 40 Aowa/lasiBay wol4
df'y‘'6 e - - X - - - - - Hwi uawbas peo ST
1 T T - s s s s + T3 18SJJO 3d0O0T1/Zd0O01
. T T - + 03 1940 INJOOT/ZNOO1
Spon Spon WH 8yoed WH 8yoed
paalold | [esy /B2y JeEN 40 4d 4V 47 4S 41 41 4a 40
1INNOD 1INNOD 3d00dO NOILONAILSNI
S310N MDO01D IAON MDO071D IAON Sovid
a3.10310dd av3d

(panunuo))Arewwns uN0Y X20|D 189S UonINNSUl NdD 98X9°0Z-9 a|qel

6-21

>
@
S
S
>
n
@
)
c
=
3]
>
=
2
£
-
o
O

paujapun = n

(SHq g€ ‘9T ‘8) eIep NQ-ZE SILIPALULI [N} = ###

pabueyoun = - (sng zg ‘9T) Wwawade(dsip paubis [N} = +++ elep UQ-9T SleIpaWiW] = ##
payipow = x juawaoe|dsip paubis Ug-8 = + elep 11g-8 alelpawiwl = #
9€ SS
59 S9
%9 sS4
9z S3
EL sa
32 SO
Xljold apuIanQ uswbas
99 Xij2ld 9z1s puelsadQ
19 Xljold 9zIS ssalppy
04 Xljald MDOQ71 aiempleH 1assy
w S - - s s s - S31A49 XI43dd
u'y q 6 6 X|X X X X X X X ae SOV1d ol 3oeis dod 4d0d
y q 9 9 - s s e e 19 s1a1s169y [e19ud9 ||y dod vdOd
€ T [too ebais 01] 40 ($9 ‘s4) Jas1bay uswhag
€ T [ttt 2bass 000] (sa ‘ss ‘s3) 1e1sibay wewhas
T T [BaiT] g (wioy Woys) 1a1s16ay
1 T [wy/1 000 pouw] 48 Kiowa 1915160y
Fry q - - - - e - Yoe1S Jo anjep doddOd
w'y q 82T vT - s s e - [mTTT] 9 Buns indino s1no
82/vT vT [mTTT] 3 1od 3|qenen
82/vT ¥T # [mtT0] 3 yod paxi
w S. ... uod o1 1ndino LNO
T T ### [MOTT] 0 Jore|nwinddy 01 srelpaww|
T T 44 (Wl TOO pow] [mspo] 8 Kiowsp/isisiBay 01 srepawiw|
T T [wyas Ba1 pow] [MTOT] 0 1915169y 01 AlowaN
T T [wys Ba1 pow] [MOOT] 0 Aowa 01 Ja1sibay
T T [wya 631 TT] [MpOT] 0 1815169y 01 JalsiBay
Yy q o|x n x x - - - d0 uesjoog 4O
GZT1-8 T - - - - 0 X - - 4440 apo0dO pifeAu] [eRIO OI0
y 0 1 T - e - [wy1 070 pow] [mTTO] o Juawa|dwo) ueajood LON
T T R 06 uonesado oN dON
y 0 T T XX X x X - - - X [wyr TTO pow] [MTTO] 4 Jaba| ayebaN 93N
ot 0T piomajgnoqg
14 14 piom
14 14 akg uandniniy
Aowa/ia1s1bay yum Jorejnuindoy
u a X{n n x x - - - X [wy1 00T pow] [mTTO] 4 Aldniniy paubisun ININ
SPON SPON 1IH ayde) 1IH 8ayde)
pa1d910.d 1esy /6ay /63y 40 4dd 4V 47 4S 41 41 4d 40
1INNOD 1INNOD 3d02d0 NOILONYLSNI
S31ON Y2010 A0 Y2010 IAOW SoOvV1d
a3103.10¥d Iv3d

(penunuod)Arewwuns 1UN0Y %00JD 18S UONINNSU|l NdD 98X9°02-9 dlqeL

6-22

paulepun = n (SN Z€ ‘9T ‘8) ©Iep 1G-ZE SreIpaWI [IN) = ##

pabueyoun = - (suqg zg ‘91) wawaoe(dsip paubis N} = +++ elep 1Q-9T dlelpawiwl = ##
payipow = x juswade|dsip paubis 19-8 = + elep 1g-g alelpawwl = #
14 dS 01 a1eipawiw| Buippy 1uawbasiaiu|
14 Juswbasialu|
1ona7 aba|Inld 1UBIBlIid :BPON Paldaloid
L 14 ## VO ds 01 erepawiw| Buippy uswbesiau|
A 14 a0 Juswbasialu|
14 14 ## 20 dS 01 ajeipsww] buippy Juswbas ulynm
> £ £ £ sWBaS UM
m IM'yY‘6 q - - - .- e e aunnoIgNs woll uney 134
S (Xv3a/xv/v puid)
a Y y uz+0T uz+0T X[x x x x - - - X [mTTTlv 24 Buis uUedSSYOS ANJIY
= (yovew puiH)
) Y y uz+0T uz+0T X|x x x x - - - X [mTTO0lV 24 Bus sredwod SAIND INGIN
S (Xv37xv/1v-uou puid)
5 Y (0 uz+0T uz+0T X|x x x x - - - X [mTTTlv €4 Buis uedSSYOS Ad3Y
2 uz+0T uz+0T (yorew-uou puis)
m u q X| X X X X - - - X [mtT0lv €4 Buins aredwod SAND 343
m Yy a u+0T u+0T 4- - - - - - - - [mtoTlv €4 Bus 8101SSOLS 43
o ug+8z
®) w'y q \UG+2T ug+2T S T [mTTTl9 €4 Buns INdINOSLNO d3d
u q u+6 u+6 4- - - - - - - - [moTolv €4 Buins Ao SAON 43
Yy a u+0T u+0T 4- - - - - - - - [moTTlv €4 Bums peo1sa0T 43
ug+8z
w'y q \UG+2T ug+zT - - - e e - - [motTl9 €4 Buis ndu| SNI 434
6 6 X - - - - - - - n| #[wsttopow] [mooo] D arelpawiwi Ag Alowan/ialsibay
6 6 X - - - - - - - n [wy TTO POW] [MTOO] @ 10 Aq Aiowa/ia)siBay
v v X - - - - - - - X [wy1 TT0 pow] [Mooo] a T Aq Aiowsia1siboy
u a Wbrd Aired ybnouy L srelod yoY
3 8 X - - - - - - - n| #[wuotopow] [mooo] D arelpawiwi Ag Alowsn/ialsibay
g g X - - - - - - - n [w/i oT0 pow] [MT00] @ 10 Aq Aiowa/ia)sibay
€ g X - - - - - - - X [wy1 010 pow] [Mooo] a T Aq Alowsia1siboy
y q ya1 Aued ybnouyy areloy 104
u q 4 z 1 - - - - - - 06 118169y SOV T4 ysnd 4HSNd
u q 9 9 S I 09 s1ais169y [e18ud9) ||V UsSNd YHSNd
1 T i [0s0T] 9 aleipaww|
1 T [o00 €6a1s 0T] 40 (SO ‘s1) Jaisibay uawbas
T T [otT 2ba1s 000l (sa ‘ss 'so ‘s3) Jaisibay wawbas
T T [Barg] g (wloy Hoys) Jaisibay
1 T [wyr 0TT pow] 44 Kiowa/ia1siBoy
u q S YOB)S 0O BN[eA ysnd HSNd
Elslel Elalel WH 8yoed UH 8yoed
pa13310id leay /62y /63y 40 dd 4V 4Z 4S 41 41 4ad 4O
1INNOD 1INNOD 3A02d0 NOILONYLSNI
S3I1ON MO0T1D IAON | MD01D IAOW SOvI4
a31o3aLodd Tv3ay

(panunuo))Arewwns uUN0Y X20|D 189S UonNINNSUl NdD 98X9°0Z-9 a|qel

6-23

>
@
S
S
>
n
@
)
c
=
3]
>
=
2
£
-
o
O

pauyapun = n

(SHq g€ ‘9T ‘8) Iep NQ-ZE SIeIPALULI [N} = ###

pabueyoun = - (sng zg ‘9T) Wwawade(dsIp paubis [N} = +++ elep UQ-9T dleIpaWiWl = ##
payipow = x juawaoe|dsip paubis 1g-8 = + elep 11g-g alelpawwl = #

1 T [w/1 000 pow] 06 40 Kiowa /1915169y 01

renb3 1o
" .- - oo oo 191239 J0N/SSa7 U0 9149 18S IONLIS/1L3S
T T [wy1 000 pow] ¥6 40 Kows/ie1s1Bey 01
y - - e o .o olaz/renb3 uo 81Ag 185 713S/313S
T T [w/1 000 pow] 96 -0 Kows/ia1s1B8y 01

an0qY 10N/[enb3
y ..o oL o 1o mojag uo 9149 189S YN LIS/3913S
1 T [w/1 000 pow] z6 -0 Kiowa /1915169y 01

Aired/renb3 1o anoqy
" ..o ool JoN/mojag uo 81Ag 189S 913S/AVYNLIS/913S
u q 4 4 X|x x x X - - - X m11T] W Bulis ueassyos
T T ### [MOTTIT (wuioy LoYsS) Jore|NWNJ2Y 0} ajelpawiw]
1 T ## (W TT0 powl] [msoo]8 Kiowsp/i81siBay 01 srepaww|
1 T [wyr Ba1 pow] [MTOT]T 1915169y 0] Alows N
1 T [wy1 Bas pow] [mooT]T Kiows|y 01 JaisiBay
T T [wyi 631 TT] [MpOT]T l1a1s169y 01 Jalsibay
y q X| X X X X - - - X MOoJiog yum joeingnsg ‘_wmmzc_ d9dsS
T T X X n X X - - - n # [wy TTT pow] [M000]D alelpaww Ag Alowa/ia1sibay
14 4 X X n X X - - -.n [wya TTT pow] [MTOO0]Q 10 Agq Aowsn/iaisibay
T T X X n o x x - - - X [wyi TTT pow] [mooola T Ag Aiowsn/18isibay
y q onawyINY WYBIY YIUS ¥v'S
T T X x n x x - - - n # [wy 00T pow] [M000]D aleipaww| Ag Alowa/ia1sibay
4 4 XI'x n x x - - -.n [wy1 00T pow] [mTo0]Q 10 Agq Aowsn/iaisibay
T T X x n x x - - - X [wy1 00T pow] [mooola T Ag Alowsn/181sibay
u q NBWYIIY ¥BT WIUS VS
T T X[X X x x - - - - 36 SOV Ul HY 310IS 4HVYS
s 5 9 9 o [w/1 000 pow] Az 40 101duosaQ pue ¥S1 2101S9HS1SYH
S s ov (0]% X[X X X X X X X X vV 40 BPOIN ININS WOl swnsay NSYH
s 5 9 9 S I [w/1 000 pow] 42 40 J10yduosaq pue ¥1Q7 21019 1A1SY
s q 9 9 - - - - - - - - [wy/i gbais pow] 6, d4aduosaq pue Jaisibay 1uawbas a101say DASY
T T X - - - - - - - 'n # [wy1 TOO pow] [M000]D areipaww] Ag Alowasn/isisiBay
z z X - - - - - - - n [w/1 TOO pow] [mTO0] 10 Aq Aiowsy/1a1siBay
T T X - - - - - - - X [wy1 ToO pow] [mooola T Aq Aiowsn/181sibay
u a b1y are10d Yoy
T T X - - - - - - -n # [w/1 000 pow] [M000]O ajeipaww| Aq Aowan/iasibay
z z X - - - - - - -n [wy1 000 pow] [MT00]d 10 Aq Aiowsy/1a1s1Bay
T T A o= - - - - - - X (w1 000 pow] [mooola T Aq Aiowsia1sibay
u q Yo arel0y 10d

SPON SPON 1IH ayde) 1IH 8ayde)
pa1d910.d leay /6ay /63y 40 4dd 4V 47 4S 41 41 4d 40
1INNOD 1INNOD 3d02d0 NOILONYLSNI
S31ON Y2010 IA0OW | MD010 IAOW SoOvV1d
a3103.10¥d Iv3d

(penunuod)Arewwuns 1UN0Y %00JD 18S UONINNSU|l NdD 98X9°02-9 dlqeL

6-24

CPU Instruction Set Summary

pauyapun = n

(Snd € ‘9T 'g) erep UQ-ZE SNeIPBWILI [N} = ###

pabueyoun = - (sng zg '9T) Juawade(dsIp paubls |Inj = +++ elep 10-9T SleIpawill = ##
payipow = x juswaoeldsip paubis ug-g = + elep 1g-g alelpawwl = #
S S [wy1 Ba1 pow] Gv 40 10 Aq Aowan/iersibay
14 14 # [wya Ba1 pow] ¥V -0 ajeipawiw| Aq Alowsy/1eisiboy
u q x]x n x x - - -n a|gnod 11 YIUS ATHS
T T X x n x x - - - n| #[wuooT pow] [Mmooo] O alelpaww| Ag Alowa/iaisibay
4 4 X x n x x - - -n [wy1 00T pow] [MTOQ] @ 10 Aq Aowa/iisibay
1 T X' x n x x - - - X [wyr 00T pow] [moo0] a T Aq Kiowa/ia1siBay
u q 1201607 o7 WIS THS
[wyr 000 pow] TO 40 Kows /1915169y 01
4 P'd v 14 1 J81s16ay 19O 8101S 1d9S
1 T [wy1 000 pow] 86 40 Kiowa /19116y 01
u 1o ublS uo 8149 19SS 13S
1 T [w/1 000 pow] w6 40 Kiowan/1ais1Bay 01
Y - - - - - - - - usA3 Aed/Aied uo 91Ag 19S3d413S/d13S
1 1 [wy1 000 pow] 06 40 Kiowa/1aisibay 01
4 MOJIBAQ U0 81Ag 189S 013S
1 T [wy1 000 pow] 66 40 Kiowan/1aisiBay 01
4 s ubIS 10N U0 81Ag 19S SNL3S
1 1 [wy1 000 pow] g6 40 Kiowa/iaisibay 01
ppoO Awred/Anred

4 - - - - - - 10N U0 8149 18S0d13S/dNLIAS
1 1 [w/1 000 pow] 16 -0 Kiowa/1aisibay 01
4 - - - - - MO|}BAQ 10N UO 31Ag 189S ONLIS
1 1 [w/1 000 pow] 46 d0 Kiowa/iaisiBay 01

Jareaiorenbg
4 - - s 10 sS87 10N U0 81Ag 18S 913S/3INLIS
1 T [wy1 000 pow] a6 40 Kiowa/iaisibay 01

renb3 10
4 - st 19]e819/sS87 JON U0 81Ag 18S 391 3S/INLIS
1 1 [w/1 000 pow] G6 -0 Kiowa/iaisiBay 01
u - - - - - olaz 10N/[enb3 10N uo 81Ag 18S ZNL3IS/ANLIS
T T [w/1 000 pow] 26 -0 Kiowa/iaisibay 01

anoqy/fenbg
4 - - - - " 10 mojag 10N U0 8149 189S V13S/3dNLAS
T T [w/1 000 pow] €6 -0 Kiowan/iaisibay 01

A1red 10N/1enb3 1o anoqy
4 - - - " /Mojag 10N U0 814g 189S ON13IS/AVLIIAS/ANLIS
T T [w/1 000 pow] 36 -0 Kiowa/iaisibay 01

INENS)
Y - - - - s JON/fenb3 10 ssa uo a1Ag 198 HONL3IS/T LIS

Spo 3po WH 8y2ed WH ayseD
pealold | [esy 6oy /6y 40 4d 4v 47 4S 41 41 40 40
1INNOD 1INNOD 3d00dO NOILONAILSNI
S310N MDO01D IAON MDO071D IAON Sovid
a3.10310dd av3d

(panunuo))Arewwns uN0Y X20|D 189S UonINNSUl NdD 98X9°0Z-9 a|qel

6-25

>
@
S
S
>
n
@
)
c
=
3]
>
=
2
£
-
o
O

pauyapun = n

(SHq g€ ‘9T ‘8) Iep NQ-ZE SIeIPALULI [N} = ###

pabueyoun = - (sng zg ‘9T) Wwawade|dsIp paubis [N} = +++ elep UQ-9T SleIpaWiWl = ##
payipow = X juawaoe|dsip paubis 1g-8 = + elep 1g-g ayelpawwl = #
] S e d6 Asng 10N Ndd IIuN Wepn LIVM
L [wy/1 TOT Pow] 00 -0 Kiowsiaisibiay o1
d'ry'b e - - x - - - - - $S800Y SIM AJUIBA MHIA
L [wyr 00T pow] 00 40 Kiowa /1915169y 01
d‘l'y‘'6 e 1 - - X - - - - - SS90y peay AJUaA HYIA
T T ### [M0OT] V 101e|NWIN2JY pue eleq aeipawiwl|
T T ## [wyi 000 pow] [MTTO] 4 Kiowaiaisibay pue ereq areipaww]
T T [wya Baa pow] [mOT0] 8 1918169y pue Alowas/iaisibay
y q olx n x x - - - 0 sugi1sal 1S3l
S 9 VT 14 o [wy1 000 pow] 22 40 101duosaQ pue YS1 NS SIAS
S cT T i [wyr 000 pow] w2 40 loduosaq pue Y4141 eAes 1ATAS
S S| 2T 2T - L [wya gbais pow] g2 4o loiduosaq pue Jaisibay wawbas anes DAAS
T T ### [IMOTT] ¢ (w0} 10YS) J101eINWNIJY O} dreIpaww|
T T 44 (Wl TOT pow] [msoQ] 8 Kiowsp/is1siBay 01 sreipawiw|
T T [wys Ba1 pow] [MTOT] 2 191s169y 01 AlowaN
T T [wys Ba1 pow] [MoOT] 2 Aowa 01 Jalsibay
1 T [wya 631 TT] [MpOT] 2 1815163y 01 Jarsiboy
y q X x x x x - - - X 1oengns Jabau gns
14 [wy/1 TOO Pow] 00 -0 Kows/aisiBay 01
y e e Ja1s169Yy Mse] 2101S H1S
y q 14 14 1 - - - - - - - - [mToT] V BuLlS BI01ISSOLS
w L L - - - - T - - a4 Be|4 1dnusiul 189S |LS
L L - - - - - T - a4 Bej4 uonoang18S ALS
1 1 17 - - - - - - - - 64 bel4 A1reD18S 018
y J|q 9 9 o [wy1 00T pow] TO -0 PIOA SNielS aulydeN 8101S MSINS
S S SS9 i o I 3/ 40 Anu3 WINS aremyos ININS
1 [w/1 000 pow] 00 -0 Kiowa /1915169y 01
y e T JaisiBay L@ 2u01s 1ATS
14 14 [w/1 TOO pow] TO 40 Kowsiaisibiay o1
4 2q So- L oL 19)si6ay 1Al 8101S 1AIS
G G [wyi Bas pow] av 40 10 Ag Alowan/ia1sibay
14 14 # [wy1 Bai pow] OV 40 ajelpswiw| Aq Alowan/11sI6oy
y q X|x n x x - - - n 2|qnoa b1y WUS AYHS
T T X x n x x - - - n| #[wiTtoT pow][mooo] D aleipaww| Ag Alowap/ia1sibay
4 4 XI'x n x x - - -.n [wyr 10T pow] [MT00] @ 10 Agq Aowsn/iaisibay
T T X x n x x - - - X [wyr 0T pow] [moo0] @ T Aq Alowsn/181sibay
u a [e21607 WBIY BIUS UHS
3poiN 3poiN WH ayoed UH 8yoed
pajsjold | |esy JSEX /63y 40 4d 4V 47 4S 41 41 40 40
1INNOD 1INNOD 3d02dO NOILONYLSNI
S310N MO01D IAON MO01D IAON SOvd
a31o03104dd av3ad

(penunuod)Arewwuns 1UN0Y %00JD 18S UONINNSU|l NdD 98X9°02-9 dlqeL

6-26

6 'SIN220 ZT uondadxa ue ‘pajoalap sijuasaid Jou Juawhas yoels e pue papeo si JaisiBal SS ayl 4| “((uasaid 10U SO ‘'S4 ‘ST 'SA 'SD) TT
uon

Juasald, areoipul isnw Joyduosap s uawbas ay]) ne} €T uondaoxa ue ploAe 01 sajnt abajiaud ay) yum aaibe 1snw 14Q pue “1dd “1dD 9y} ‘suonelado peo| juawbas 104 I
'SIN920 ZT uondaoxa ue ‘parejoin

JB)S ® J| "UoNe|oIA SIYBlI SS929% Uk JO UOIIR|OIA JWI| JUBWBaS B Jayia 0] anp pasn ag Jouued S9 10 ‘SH ‘ST ‘sa ‘SO Ul puesado Alowaw ay) ji JN220 IIm yney €T uondaoxg 'y

:AJU0 BpOIN SSaIPPY [eNUIA paldalold 01 Aldde 1 ybnoiyr y sa1oN

'S9SS999® 3|gel Joiduosap Bulinp pauasse sI #4007 b

xiya1d DO 9y} 4o 9ouUasqe Jo 9ouasald ayl Jo ssa|piebal ‘pauasse Ajfeaiewoine st #4007)
‘puelado ay) Jo anfeA ay) uo Buipuadap ‘IN220 Aew uondaoxa uy 8

:9POIN SSaIPPY [enlIA Paldalold pue apoN SSalppy [eay o1 Ajdde 6 ybnoiy) @ sa1oN

- P
"9POIN Pa193l0ld 10} NdD Y} azifemui o} Ajrewnd s asodind si ‘apoy [eay U] "apojA [eay Ul palndaxa ag Aew uononisul siyl o

W SS Wnuw

our puoAag spuaixa A|ny Jo Ajrented Teyl apew si aoualaal puelado ue JI SpPOIA [eay Ul IN220 ||IM (Juasald 10U 10 uone|oIA Jwi| Juawbhas 3oels) Jne} gT uondaox3y "(H4444) 1w
S9 10 ‘SH ‘ST ‘S ‘SO Wnuwixew ay) puoAaq spualxa ANy Jo Ajrensed rey) apew si aoualayal puelado ue JI PO [eay Ul Ind20 [|Im (uondalold [elauab) yney €T uondaoxy 'q
‘(apoa-do pijeaur) 9 uondadaxa ul 3Nsal |[IM PO [eay Ul UoINJaxXa paldwany ‘UoidNIISUl 9POIA paldalold e SISIyl e
AjUO 8pOIN SSalppy [eay 01 Aldde 2 ybnoiyr e saloN

ruction Set Summary

%)
)
o
@)

Arewwns 188 uononJisu| Joj S|lON uononasu|

pauyapun =n (SNQ g€ ‘9T 'g) Byep NQ-2E SleIpaILUI ||N) = ##4#
pabueyoun = - (snq g€ ‘97) uswaoe|dsIp paubis [N} = +++ ®lep 1g-9T dlelpawiWl = ##
paypow = x Juawaoe|dsip paubis 1g-g = + elep 1g-g djelpawwl = #
T T ### [MOTO] € (wJoy Hoys) JoreNWINOY 0} dreIpaww|
T T ## (Wl 0TT pow] [msoo] 8 Kiowsie1s1bay 03 srelpawiw|
T T [wya Baa pow] [MTOO0] € 1915169y 01 Alowa N
T T [wya Baa pow] [mo00] € Alowsa 01 Ja1sibay
T T [wy1 Ba1 TT] [Mpoo] € 181s16ay 01 Jaysifay
y q olx n x x - - -0 HO aAIsNox3 uesjood HOX
y ¥ 14 1 - - - - - - - - .d 81Ag syersuel 1VIX
4 z [6aJ 0l6 1012|NWNJ2Y YUM Jaisibay
b4 b4 [wya Bas pow] [MTTOI8 1918169 Yyum Alowa/ia1sibay
4y ¥q St s abueyox3 DHOX
4 4 [wy1 Ba1 pow] [MO00]O 40 1a1s1bay ‘Alowsiy
4 4 [t6ai zba1 TT] [M0O00ID 40 Zlaisibay ‘TisisiBay
X[x x x x - - - X ppY pue abueyox3 aavx
1 1 ST ST 2 60 40| 8yoe) aleplfeAu| pue yoeg-allim AANIGM
Spon apon WH 8yoed IH 8yoed
pswaloid | [esy JIEEX JIE 40 d4d 4V 47 4S 41 41 4d 40
1NNOD 1INNOD 3A02d0 NOILONYLSNI
S310N 320710 3A0N Y0070 IA0ON Sovid
a310310¥d Iv3d

(panunuo))Arewwns uN0Y X20|D 189S UonINNSUl NdD 98X9°0Z-9 a|qel

6-27

CPU Instruction Set Summary

I

"Alowaw [eulaIxa 0] Saul| aYded PayIpow, [je a1um 0} palinbal $1209 J0 Jaquinu 3yl snjd UMOYS JUNOJ X209 3Y} SI IUNOD %20J0 €10} 8yl '}
:apow oreg-a1m Ul Buiresado ayoed a8yl YiM SUOONASUl UoRpIfeAUl 8yoed o) saljdde 1 810N

‘[aipuey INS
18S SI DVINS] pue 0 = 1dD PuUe ‘Q < 9zIS 4V pue pajgeus Si |INS SSajun Sind20 9 uondadxa apodado pifeAul Uy "d|geayded-uou ase adeds WINS 01 Sassadde Alowaw ||V 'S
:suononasul NINS aioads x1IAD 01 salidde s aloN

=

"IN220 ||IMm ey €T uondadxa ue Jo Wawhas apod e Jo Jwi| paulap ay) ul aq Isnw 13| 4o ‘13 ‘INI “TIvD ‘dINC B Jo uoireunsap ayl
‘ssaippe Bunels s puesado ayy Ag pale|oiA SI W %9e1s 3y} I JN2J0 |Im
1daoxa Uy "PaIndaxa Sl uondNNISUI DSJ 8y} 810§3(INJJ0 [[IM Jne} €T uoidaoxa ue ‘siybil ssadde Juawhas Jo Jwi| Juawbhas e sare|oin puesado Alowsw S,40559901d0d 8y} §|
‘pates|d si Bely 019z ay) ‘Jayres ‘uondadxa uonIvl0Id B asned 10U saop puetado 10109|8s ayl 01 Aldde se sajni abajiald o uonejoin Auy
"Ng 3d 9y} 18sa1 0} BULISEP JI OYD Ol AOIN SN "uondNIsUl siyl Aq 19sal aq Jouued (04D) MSIN 8} Jo 3G Id dyL
‘0 = 1dD # Ajuo parepdn are JalsiBal Beyy 8y Jo SpIdl INA PUB TdOI YL 1dOI eyl Jarealb si 1dD 41 parepdn 1ou si Jaisibal Beyy ayl jo 1g 41 ayL
1d0I ueys Jarealb si 1dD JI SIN220) ne} €T uondadxa uy °
‘(jans| pabajinud 1sow ayl s 0) 0 eyl Jarealb si 1dD I SiNd20 Jne} €T uondaodxa uy
‘pare|olA si 3jnJ abajiald ajgeardde ue yi ‘eT uondaoxa ue asned |Im usWbas apod Jayjoue o) Bullaal suononasul 1341 pue ‘134 ‘INI ‘“1TvD ‘dINC
'swalsAs Jossasoidiyinw ur Ayibalul 101diIdsap urelurew 0} #YD07 HasSse Ajfeairewolne ||Im uononasul siyl Ag apew 1 QT 40 1d9 ay Ul Sassadde Joiduosap juawbas |y
*afed 1xau uo panunuo)d

X Ecocauo

6-28

FPU Clock Counts 6

6.5 FPU Clock Counts another FPU instruction is encountered, the
second FPU instruction is placed in the FPU
The CPU is functionally divided into the FPU,queue. Up to four FPU instructions can be
and the integer unit. The FPU processes floalgueued. In the event of an FPU exception,
ing point instructions only and does so in paralhile other FPU instructions are queued, the
lel with the integer unit. state of the CPU is saved to ensure recovery.

For example, when the integer unit detects a6.5.1 FPU Clock Count Table

floating point instruction without memory

operands, after two clock cycles the instructiomhe clock counts for the FPU instructions are
passes to the FPU for execution. The integetisted in Table 6-19 (Page 13). The

unit continues to execute instructions while thabbreviations used in this table are listed in
FPU executes the floating point instruction. IfTable 6-21.

Table 6-21. FPU Clock Count TabléAbbreviations

ABBREVIATION MEANING
n Stack register number
TOS Top of stack register pointed to by SSS in the status register.
ST(1) FPU register next to TOS
ST(n) A specific FPU register, relative to TOS
M.WI 16-bit integer operand from memory
M.SI 32-bit integer operand from memory
M.LI 64-bit integer operand from memory
M.SR 32-bit real operand from memory
M.DR 64-bit real operand from memory
M.XR 80-bit real operand from memory
M.BCD 18-digit BCD integer operand from memory
CcC FPU ondition code
Status, Mode Control and Tag Registers, Instruction Pointer and Operand
Env Regs Pointer

6-29

vE- T SOL/¥S'W —> SOL [wp TTT Pow] 8a [eay 1q-z

vE- T SOL/¥Q'W —> SOL [wp TTT POw] 0@ [eay 1q-9

vE - vT (u1s/soL — (u)Ls [u TTTTT] 8Q 1918169y 10-08

vE - ¥2 SOL/(u)Ls — soL [u otTTTlOQ oels jo dot

pasiansy apIAId Julod Buieold YAIQS

vE - ¥2 SOl dod uayp 'SOL / (U)LS —> (U)LS [u TTTTT] 30 dod ‘apinQ ulod Buneold dAIQS

ve- T ¥S'IN/SOL —> SOL [w/roTT pow] 8a [eay 1q-z

ve- T ¥Q'W/SOL —> SOL [wproTT Pow] 0@ [eay 1q-9

vE - ¥2 (U)LS/soL — soL [u otTTT] 8G 1918169y 10-08

vE - ¥2 SOL/(u)Ls — (u)Ls [u TTTTTI OO oels jo dot

apInI Julod Buneod Aldd

14 Lm::_o&)Jels jJo QE juswaldag 94 64 131uU10d »Jels Juswaldedd.1sdo3a4d

T 910N 89S T - 26 (S01)S00 —> SOL 446 (x)s09 :uoneneAs uonduny SO0

0T-6 SO1 dod uay 1SN - SOL Aq 18s 0D [wyr TT0 Pow] 3@ J1abaul 119-9T
0T-6 SO. dod uays IM'IN - SOL Ag18s DD [wpr TT0 POow] va

0T-6 IS'N - SOL Aq 3188 0D [wyr 0TO pow] 3@ J1abajul 1g-9T

0T-6 IM'W - SOL Ag 188 0O [wyr oTO Pow] va Jabajul 1g-ze

aredwo) julod Buieol4 INODIH

Sjuswia|3 »oels oML

4 (T)LS pue sOL dod uays {(T)LS - SOL Aq18s 0D 6a3a| dod ‘aredwo) uiod Buieold ddiNODH

v SoO.L dod usyr *¥S'W - SOL Ag 188 DO [wyi TT0 pow] 8a [eay 1a-2€

v SO.L dod uayr '4Q'W - SOL Ag 188 DO [wy TT0 pow] 0@ [eay 1a-v9

v SO.L dod uays {(u)LS - SOL g 18s DO [u T TOTT] 8Q 1918169y 10-08

dod ‘aredwo juiod Buneol4 dWODH

12 YS'IN - SOL Aq18s 0O [wyi 0TO pow] 8a [eay 1a-z€

12 YQ'W - SOL Agq18s 0O [wy1 0T0 pow] 0@ [eay 1a-79

4 (U)LS - SOL Aq 188 DO [u otoTTl 8G J1ays16ay 10-08

aredwo) ulod Buneo|4 WOD4

€ suondaox3 Jes| z3aq suondaox3 fes|d X31ONL

g suondaox3 Jea|d uayl irepm z3 gaa(ge) suondaox3 Jes|d X3104

z SOL- —> soL 03 6a ubis abueyd Buieold SHOS

¥T-8 IM'IN + SOL —> SOL [w1 000 pow] 3@ Jabajul 19-9T

vT-8 IS'W +SOL —> SOL [w/1 000 pow] va J1abajul 1g-ze

ppy 1963ju] Julod Buneold aavid

6-v SO1 dod uayi iSO + (U)LS —> (U)LS [u 0oo0tT] 30 dod ‘ppv iod Buneold daav4

6-1% YS'N + SOL —> SOL [w/1 000 pow] 8a [eay ug-z€

6-1 ¥Q'N +SOL —> SOL [w 000 pow] 0@ [eay ug-9

6-v (u)1S + SOL —> soL [u 000TT] 80 J1ais168y 10-08

6-v SOL + (u)LS —> (u)Ls [u oootTlOQ 3oels jo dot

ppV Jui0d Bureold aav4

z |soLl — soL 13 64 anjeA anjosqy Buieold Sgv+

Z 910N 89S 80T - 26 Ts01¢ —> SOL 04 60 Tg uonenjea3 uonoung TAIXZ

S3LON 1NNOD MO01D NOILYY3dO 3002 dO NOILONYLSNI Ndd

fAewwns 198 uonaonisul Ndd 98X9'¢¢-9 9|qel

6-30

FPU Clock Counts 6

z uopesado oN 0d 6a uonesado ON dONH
0T-8 IM'N xSOL —> SOL [wys 10O pow] 3@ 1aBau| 1g-9T
1T-6 IS'W xSOL —> SOL [wys 100 pow] va 18Bau| Ug-z€

so. dod uayy ‘SOL x(U)LS —> (U)LS
US'N xSOL —> SOL
dA'N xSOL —> SOL

[u TootTl 3C
[wys 10O pow] 8a
[wys TOO Pow] 5@

Adniny Je681u) Julod Buneolq TINNIE
dod % Aidini Julod Buneold dININA
[eay)g-c€
[eay 19-¥9

- (U)LS xSOL —> SOL [u T ooTT] 80 1918169 19-08
- SOL x(u)LS —> (U)LS [u TootTlOQ oes Jo dot
Aldimni Juiod Buieold 1ININE
12 oe)S 0IUo 0°0 ysnd 33 6Q 0°0 =1su0D Buneo4 peol zad
v 39e)S ojuouysnd g3 6a 1=13suo) Buneol4 peo 1dQ14
4 soers oo (2)Bo7 ysnd a3 6a (z)u1 ="1su0D Buneol4 peo ZN1ATd
4 xoess ojuo (z)Y°BoT ysnd 03 6a (2¥Po7 ="1su0D Buneold peo z91a14
4 oess ojuo (0T)Bo7 ysnd 63 64 (o107 ="15u0D Buneo|4 peo 1z1d14
14 oeis oo (2)Bo ysnd va 6a (2o ="1su0D Buneold peo Iz1d74
og Klowsy —>sbay Auzg [wys 00T pow] 6a jusawuolAug Nd4 PeOT AN3ATH
v AIoWsN —> pIom BO [wy1 TOT pow] 6| J@1s1Bay [03U0D BPON Ndd PROT MOQTd
14 oels 0juo 0°T ysnd 83 6 0°'T =1suoD bupeoi4 peol TA14
9-¢ 30BIS 0JUO IM'IN USnd [wys 000 pow] 4@ 1aBau| 1g-9T
9-v »9€)1S 0JUO0 ST Usnd [wy1 000 pow] ga 19balu| 19-z¢
8-v »9®IS 0JUO TN Usnd [wys TOT pow] 4@ 18B8u| 19-79
"By Ndd 0) ereq Jebsyul peo alid
Sp- Ty oIS 0JUO @OE'W Usnd [wyr 00T pow] 4a| ‘Bay Ndd 01 eIed ADd Pad®d PeoT aT1ad
z »oels 0JUo ¥S'W usnd [wys 000 pow] 6a [eay ug-ze
z 0.IS 0JUO ¥A'IN Usnd [wy1 000 pow] aa [eay ug-¥9
4 }oBI0jUO (U)LS ysnd [u 00011l 6@ oess jo dot
6oy Nd4 01 e1eq@ peo 14

9 €34d

8 €3 ga(ge)
2z Jayuiod yoess jo doy Juawalou| /4 6Q JauIod Xoels Juawaioul d1SONIH
€ Adwz — (u)ovL [u ooottlaa 1218168y Jul0d Buneol aai4 33444
8€ - €€ SOL/IMIN —> SOL [wya TTT pow] 3@ 19b8u| 19-9T
8€ - € SOL/IS'W —> SOL [wyr TTT pow] va J1abalu| 1g-z¢

pasianay

apIAIQ Jabajul Julod Buneold HAIQIS
8€ - €€ IM'W /SOL —> SOL [wya 0T pow] 3@ 19b8u| 19-9T
8€ - € IS/ SOL —> SOL [wyr 0TT pow] va 19balu| 1g-z¢
apInIq 1aBau) Julod Buieold AldI4
vE - ¥T So.L dod uays ((u)LS/SOL —> (U)LS [u 0 TTTT] 3a|do@3dsianay apinQ ulod Buneold dHAIQS

S310N

AINNOD Y2010

NOILVd3d0O

3d05 dO

NOILONYLSNI Ndd

(panunuo)) Arewwns 189S uonoNISUl Nd- 98%9 'ZZ-9 dlqeL

6-31

z 1918169y snyels —> XV 03 =Xy 03 JeIsIBay snIeIS Ndd d10IS XV MSLSN
v 1918169y snyels —> XV Iem 03 da(geXV o1 Jaisifay snels Ndd 2101S XV MSLSH
v 1918169y snyels —> Alows N [wy TTT Pow] aa 1918109y SneIS Ndd 2101S MSLSNS
9 1918169y snyels —> Alows i wep [wyr TTT pow]aa(ae) 1918162y sMeIS Nd 8101S MSLSH
zz-2t s1aisifoy AUz —> Alowa N [wys oTT Pow] 6@ JUBWIUOJIAUT Ndd 810IS ANTLSNS
vz -1 s1gisifoy AUz —> Aows N Hem [[wyi 0TT powlealds) JusWUONIAUT Nd 810IS ANTFLSH
€ 1918162y SpON [08U0D —> AlowaIN [wyr TTT pow] 6@ fieisiBay |01U0D 8PON Nd 8101S MOLSNH
S o181y dPON [04U0D —> AlowaN e ([w/i TTT pow]ea(ge)| JeisiBay 040D SPOW NdH 810IS MOLSH
oT- L sol dod uayr 'SOL —> IM'IN [wyr TT0 POW] 4@ 1aBau) ug-9T
€T-8 sol dod usyy 'SOL —> IS'W [wyr TT0 Pow] ga 1aBaul ug-ze
€1-0T SoL doduay 'SOL —> 1T [wyr TTT POW] 4@ Jabaju| ua-+9
dogpisibay Nd4 Jebalu| 8101S d1SI4
0T-2L SOL —> IMIN [wyr 0TO Pow] 4@ Jabaju| ug-91
€1-8 SOL —> IS [wyr 01O pow] ga Jebaju| ug-ze
Ja1s16ay Nd4 Jebew| a101S L1SI4
€9- /5 SOL dod uay 'SOL —> @29’ [wyr oTT Pow] 4@ dod ‘ere @0g 2101S d1S84
4 SOL dod uay 'SOL —> S [wyr TTO POW] 6@ [eay 19-2¢
z SOL dod usyr 'SOL —> ¥A'W [wy TT0 Pow] aa [eay 19-v9
4 SOL dod uayy 'SOL —> ¥X'N [wyr TTT Pow] ga [eay 19-08
4 SOL dod uay 'SOL —> (U)LS [u TTO0TTIEGA >oels Jo doL
dod “Ja1sifiay Ndd 2101S d1SH
z SOL —> ¥S'W [wyr oTO Pow] 6@ [eay 19-z€
4 SOL —> ¥a'n [wyr 01O pow] aa [eay g-v9
4 SOL —> ¥X'W [wyr TTT Pow] ga [eay 19-08
4 SOoL —> (u)Ls [u oToTTlAQ >oels jo doL
1218169y Nd4 810)S LSH
09 - 65 SOL Jo 100@enbs —> SOL v4 60 100y arenbs uiod Bunreold L4OSH
3oess oo (dway)soD ysnd
uay} {(dwan)NIS —> SOL
T 910N 89S T9T - G¥T 'SOL —>dwa a4 6a| (x)sod B(X)uIS 'lerg uonduny SOONISH
T 910N 995 orT-9L (SOLNIS — solL 34 6a (quis :uonenenz uonound NIS
vT-L ()15 XSOL —> SOl a4 6a & Aa Aidninw Buneold 37vosd
S9- 5§ ‘arels anes [wya 01T pow] @a| Bay pue uawuUOIAUT Ndd ABS IAVSNL
19- 1S 'a]els dAeS U} ieM w1 01T pow]aa(ae)| Hay pue juswuoiAul Nd- 8AeS IAVYSH
2L-9S "ajels 2.101say [wyi 00T pow] aa| Bay pue uswuoNAUT NdH PO HOLSHH
0Z-01 (Sol)punoy —> SOL o4 64 1aBayul 01 punoy LNIANAA
T 910N 89S 62T - LTT Hoels ojuo 0T ysnd uay) (SOLNV.L —> SOL 24 64 (x)ueL :en3 uonoung NV.1dd
16-28 [(T)1s/sol]lwey —> sOL G4 6d| I3 49purewdy Julod Buneold TNIYdH
16-28 [(T)1s/sol]lwey —> sOL 84 64 Japureway julod Buireold WIHdd
€ 910N 89S 19T - L6 SO dod uay :[SOL/(T)LSINVLY —> (T)LS €4 60 (x/A)re L :fen3 uonound NV.LVdd
S3LON 1NNOD 2010 NOILYY3dO 3000 4O NOILONYLSNI Ndd

(PanuRU0D) Arewing 18S UoRONNISU| Ndd 98X9 229 Blgel

6-32

FPU Clock Counts 6

¥ 910N 995 €ET - TET SO dod uayy (SOL+T)Bo1 x(T) LS —> (T)LS 64 6a (T+X)2B07 K "feAg uonouny TdXZA1d
¥ST - G¥T SO dod uayy ((SOL)YBOT x(T)LS —> (T)LS 14 60 (x)zBo7 A "feA3 uonouny XzA1d4
9e1s oo (dwaey) yueayubis ysnd
uay} {(dway) Jusuodxa —> SOL
9T-TT 'SOL —> dway ¥4 6 uauodx3 10 X3 LOVHLXH
€ abueyox3 (U)LS < SOL [u TooTT]l 6@ SOL yum JsisiBay abueyox3 HOXS
14 SOL 40 sse|y —> 00 63 6a puesado jo sse|D Hoday VX4
4 Asnq 10u Nd4 1o} rem a6 e LIvMS
syuawa|d om) dod

4 T)1S pue SOL dod uays (1)LS - SOL Aq18s 0O 63va ‘aredwo) paispioun ddINOINH
14 SO.L dod uay (u)LS - SOL Aq18s DD [u TotTTlaQ dod ‘asedwod pasepioun dWOINH
4 (U)LS - SOL Aq18s 0O [u oottTlaq asedwo) passpioun WODINH
12 0°0-S0L4Aq18s 0O ¥3 6a 3oels jo doL isaL 1S1d
12-vT SOL-IM'N —> SOL [wys TOT pow] 3@ pasianay Jabaju] 1g-9T
621 SOL-IS'W —> SOL [wys TOT pow] va pasianay Jabaju| ug-ze

ENEVEN]
j0en0NnS Jabajul julod Burreold 4aNSIH
12-9T IM'N - SOL —> SOL [wys 00T pow] 3@ 1aBau] 1g-9T
62-¥T ISW-SOL —> SOL [wys 00T pow] va 18Bau| ug-z€
1oeA0NS JabBu| Jul0d Buireo|d4 ansid

doddsianay
6-1 S0l dod uays {(U)1S - SOL —> (U)1S [u ootTTl 30 10R1gNS JUI0d Buneold 449NSH
6-1 SOL-¥S'W —> SOL [wp 70T pow] 8a [eay 19-2¢
6-1 SOL-da'W —> SOL [wyr TOT pow] Oa [eay 19-¥9
6-7 (W1s-soL — (u1s [u TottTl 80 1918169y 19-08
6-7 SOL- (1S — soL [u oottTlOQ oes jo dot
8s19A9¥ORAANS JUl0d Buireo|d HENSS
6% SOl dod uay 'SOL - (U)LS —> (U)LS [u TottTl3Q dod ‘10enans julod Buneol4dgns4
6% YS'W-SOL —> SOL [wys 00T pow] 8@ [eay ug-ze
6 4Q'W-SOL — SOL [wys 00T pow] 5@ [eay ug-¥9
6-v (W1S-soL —> solL [u ootTTl 80 J1a1s1Boy 19-08
6-v SOL- (u)1s —> (u)1S [u TottTlOQ oes Jo dot
10eAgNS JuI0d Bunreold aNsH

S3LON 1NNOD 2010 NOILYY3dO 3000 4O NOILONYLSNI Ndd

(panunuo)) Arewwns 189S uonoNISUl Nd- 98%9 'ZZ-9 dlqeL

6-33

0
1S
5
S)
O
x
3]
o
(@]
2
o
[

*(paresauab jou are suondaoxa) IN220 Aew s)nsal a|geldipaldun pue ‘paindaxa si apoddo panIasal e |

*044d '303d ‘ad3d '0d3a ‘'va3ad '8d3ad ‘04ad ‘236d ‘g36d ‘LAeA
XUAD Aq paniasal ate sapoado Buimojoy ay L
' 910N

‘palfed st XZ1Ad feinbai pue abues Jo 10 S| SOL 4 0T SIIUN0D %I0[9 ‘TdXZ 1AL 10
910N

"ZEASOL/(T)LS # L6 SI1IUN0D 300[9 ‘NV LVdd 104
1€ 910N

'G'0 > SOL JO 8njeA 8)njosqe JI g6 S11UN0d 3209 ‘TINXZH 404
:Z 910N

yBI0 1 10 8N[eA 8INjosge JI Z8 01 T8 SI 1UN0J 4200 ‘NISH 104

"TA< SOL > PAL 26 SI1UN0J 420J0 pue PAISOL JI THT SIIUN0D %209 ‘SO 404
"abuel siy) apISINO Ji uonanpal Juswinbie 1) SJUNOD ¥I0[9 06 PPV

‘¥U> SOL JO dnjeA aInjosqEsIamoys awl ‘NV.Ldd pue SOONISH ‘NISH ,mowmuwumm
J8jurod xoe)s Jo doy ay) sjuawaldap yoels ayj 03 ysnd v

“J8jutod yoe)s Jo doy ay) siuswaloul 1oE ay) woly dod v

‘papJedsip are yax@py) o paddod senjep

‘uonndaxa 0} Joud noAe| Xoels 0} Jajal (U) LS pue SOL 0 S8duaIalel ||V

S8JON Alewwns uononasul Nd4

6-34

IBM 6x86 MICROPROCESSOR

Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

/

—

Appendix —

Ordering Information for Module Revision Level “B” Qnly

IBM 6X86 -2 V2 100 G

o

Product Line Speed (MHz)=
100, 110, 120, 133
Product Voltage:
Family V2 =3.30V, +0.30, -0.15
V7=3.50V, +/-0.10
2=2x Clock Package:
3=3x Clock G =PGA

Module Revision
Level

Table A-1. 6x86 Device to P-Rating Conversion

6x86 Frequency (MHz)

BUS CORE P-Rating
50 100 P120+
55 110 P133+
60 120 P150+
66 133 P166+
75 150 P200+

A-1

Ordering Information for Module Revision Level “C” and Later

IBM ©6X86 -2 V2 P150 G C

Product Line ID Performance Rating =
P120+, P133+, P150+
P166+, P200+

Package:
G =PGA

Module Revision
Level

Table A-2. 6x86 Device to P-Rating Conversion

6x86 Frequency (MHz)

BUS CORE P-Rating
50 100 P120+
55 110 P133+
60 120 P150+
66 133 P166+
75 150 P200+

For more information concerning the IBM 6x86 Microprocessor, please visit our website:
http://www.chips.ibm.com/products/x86/index.htimt call 1-800-1BM-3333.

A-2

I

“1+4” Burst Read Cycle
A

AC Characteristics

Address Bus

Address Region Registers (ARRX)

Address Space
Architecture Overview

B

Back-Off Timing

Branch Control

Burst Cycle Address Sequence
Burst Write Cycles

Bus Arbitration

Bus Arbitration

Bus Cycle Definition

Bus Cycle Types

Bus Cycles, Non-pipelined
Bus Hold, Signal States During
Bus Interface

Bus Interface Unit

Bus State Definition
C

Cache Coherency Signals
Cache Control

Cache Control Timing
Cache Disable
Cache Inquiry Cycles
Cache Units

Caches, Memory
CCRO Bit Definitions
CCR1 Bit Definitions
CCRZ2 Bit Definitions
CCRa3 Bit Definitions
CCRA4 Bit Definitions

INDEX
3-35 CCRS5 Bit Definitions 2-30
Clock Control 3-7
4.5 Clock Count for CPU Instructions 6-13
Clock Count for FPU Instructions 6-29
3.9 Configuration Control Registers 2-23
2.31 Control Registers 2-13
2-40 D
1 pataBus 3-10
Data Bypassing 1-10
3.49 Data Forwarding 1-7
1-11 DC Characteristics 4-4
3.34 Debug Registers 2-37
3.37 Descriptors 2-16
3-16 Descriptor Table Registers
3.46 and Descriptors 2-15
3-11 Device Identification Registers 2-36
3-12 DIRXx 2-36
3-29 E
3-17 Electrical Specifications 4-1
3-1 Error Codes 2-62
116 E\wBE# Timing 3-45
3-26 Exceptions 2-56
Exceptions in Real Mode 2-61
3-18 F
3-14 Flags Register 2-9
3-43 Floating Point Unit 1-15
2-34 " Epy Error Interface 3-19
350 epy Operations 2-75
1-12 Functional Blocks 1-1
252 Einctional Timing 3-25
2-25
226 ©
2-27 Gates and Protection 2-73
2-28
2-29

A-3

I/O Address Space 2-41
Initialization and Protected Mode 2-73
Initialization of the CPU 2-1
Instruction Fields, General 6-2
Instruction Line Cache 1-13
Instruction Pointer Register 2-9
Instruction Set Overview 2-3
Instruction Set Encodings
and Summary
Instruction Set Summary 6-1
Instruction Set Tables

Assumptions 6-12
Integer Unit 1-2
Interrupt Acknowledge Cycles 3-41
Interrupt and Exception

Priorities 2-59
Interrupt Control 3-13
Interrupt Vectors 2-57
Interrupts and Exceptions 2-55
J
JTAG Interface 3-24
L
LBA# 2-35
Lines, within the Cache 2-53
Lock Prefix 2-3
M
Maximum Ratings, Absolute 4-2
Memory Addressing 2-43
Memory Addressing Methods 2-41
Memory Management Unit 1-14
MESI States, Unified Cache 2-52
Mode State Diagram 2-70
N
NC and Reserved Pins 4-1
Non-pipelined Bus Cycles 3-29

A-4

Index

0]
Offset Mechanism 2-42
Out-of-order Processing 1-4
P
Package, Mechanical Drawing 5-4
Paging Mechanisms (Detail) 2-45
Paging Mechanisms (Introduction) 1-14
Paging - Traditional Mechanism 2-45
Paging - Variable-Size Paging
Mechanism 2-51
Pin Diagram, 296-Pin SPGA Package 5-1
Pin List, Sorted by Pin Number 5-2
Pin List, Sorted by Signal Name 5-3
Pipeline Stages 1-3
Pipelined Bus Cycles 3-38
Power and Ground Connections 4-1
Power Management Interface 3-22

Power Management Interface Timing 3-61

Privilege Level, Requested 2-8
Privilege Levels 2-71
Programming Interface 2-1

Protected Mode Address Calculation 2-44
Protection, Segment and Page 2-71
Pull-Up and Pull-Down Resistors 4-1

R

RAW Dependency Example 1-8
Recommended Operating Conditions 4-3

Region Control Registers (RCRXx) 2-33
Register Renaming 1-4
Register Sets 2-4
Registers, Control 2-13
Registers, General Purpose 2-4
Registers, 6x86 Configuration 2-23
Registers, System Set 2-11
Requested Privilege Level 2-8
Reset Control 3-7
RESET Timing 3-25

I /

S
Scatter/Gather Buffer Interface 3-19
Scatter/Gather Buffer

Interface Timing 3-56
Sectors, Cache 2-53
Segment Registers 2-7
Selector Mechanism 2-44
Selectors 2-7
Shutdown and Halt 2-69
Signal Description Table 3-2
Signal Groupings 3-1
SMI# Interrupt Timing 3-42
System Management Mode (SMM) 2-63
SMM lInstructions 2-67
SMM Memory Space 2-68
SMM Memory Space Header 2-65
SMM Operation 2-64
Stop Grant (Special Bus Cycle) 3-12
Stop Grant and SUSP# 3-22
Speculative Execution 1-12
Suspend Mode, HALT Initiated 3-62
Suspend Mode, Signal States During 3-23
System Management Mode 2-63
-
Task Register 2-20
Test Registers 2-39
Testing of the Unified Cache 2-53

Thermal Characteristics
Timing, Functional

Translation Lookaside Buffer

5-6
3-25
2-45

Translation Lookaside Buffer Testing 2-47

U

Unified Cache
Unified Cache Testing

Y

1-12
2-53

Variable-Size Paging
Mechanism

Variable-Size Paging
Mechanism

Virtual 8086 Mode

w

WAR Dependency Example
WAW Dependency Example
Weak Locking

Weak Write Ordering

Write Gathering

Write Through

A-5

1-14

2-51
2-74

1-6
2-34
2-34
2-35
2-35

Revision History

Order Number

Release Date

Description of Changes

SA14-2148-00

January 1996

First Release

150MHz processor.

SA14-2148-00 May 1996 Corrected minor errors. Ordering infof-
mation added to Appendix (pp. A-1, A-2)
SA14-2148-02 | June 1996 Added information and data related to the

	Introduction
	TABLE OF CONTENTS
	List of Tables and Figures
	LIST OF FIGURES
	LIST OF TABLES

	1.0 ARCHITECTURE OVERVIEW
	1.1 Major Functional Blocks
	1.2 Integer Unit
	1.2.1 Pipeline Stages
	1.2.2 Out-of-Order Processing
	1.2.3 Pipeline Selection
	1.2.4 Data Dependency Solutions
	1.2.4.1 Register Renaming
	1.2.4.2 Data Forwarding
	1.2.4.3 Data Bypassing

	1.2.5 Branch Control
	1.2.5.1 Branch Prediction
	1.2.5.2 Speculative Execution

	1.3 Cache Units
	1.3.1 Unified Cache
	1.3.2 Instruction Line Cache

	1.4 Memory Management Unit
	1.4.1 Variable-Size Paging Mechanism
	1.4.2 Traditional Paging Mechanism

	1.5 Floating Point Unit
	FPU Parallel Execution

	1.6 Bus Interface Unit

	2.0 PROGRAMMINGINTERFACE
	2.1 Processor Initialization
	2.2 Instruction Set
	Overview
	2.2.1 Lock Prefix

	2.3 Register Sets
	2.3.1 Application Register Set
	2.3.2 General Purpose Registers
	2.3.3 Segment Registers and Selectors
	2.3.4 Instruction Pointer Register
	2.3.5 Flags Register

	2.4 System Register Set
	2.4.1 Control Registers
	2.4.2 Registers and Descriptors
	Descriptor Table Registers
	Descriptors

	2.4.3 Task Register
	2.4.4 IBM 6x86 Configuration Registers
	2.4.4.1 Configuration Control Registers
	2.4.4.2 Address Region Registers
	2.4.4.3 Region Control Registers
	2.4.4.4 Device Identification Registers

	2.4.5 Debug Registers
	2.4.6 Test Registers

	2.5 Address Space
	2.6 Memory Addressing Methods
	2.6.1 Offset Mechanism
	2.6.2 Memory Addressing
	Real Mode Memory Addressing
	Protected Mode Memory Addressing

	2.6.3 Selector Mechanism
	2.6.4 Paging Mechanisms
	2.6.4.1 Traditional Paging Mechanism
	2.6.4.2 Translation Lookaside Buffer Testing

	2.6.5 Variable-Size Paging Mechanism

	2.7 Memory Caches
	2.7.1 Unified Cache MESI States
	2.7.1.1 Unified Cache Testing

	2.8 Interrupts and Exceptions
	2.8.1 Interrupts
	2.8.2 Exceptions
	2.8.3 Interrupt Vectors
	2.8.4 Interrupt and Exception Priorities
	2.8.5 Exceptions in Real Mode
	2.8.6 Error Codes

	2.9 System Management Mode
	2.9.1 SMM Operation
	2.9.2 SMM Memory Space
	2.9.3 SMM Instructions
	2.9.4 SMM Memory Space
	2.9.5 SMI Service Routine Execution

	2.10 Shutdown and Halt
	2.11 Protection
	2.11.1 Privilege Levels
	2.11.2 I/O Privilege Levels
	2.11.3 Privilege Level Transfers
	2.11.4 Initialization and Transition to Protected Mode

	2.12 Virtual 8086 Mode
	2.12.1 V86 Memory Addressing
	2.12.2 V86 Protection
	2.12.3 V86 Interrupt Handling
	2.12.4 Entering and Leaving V86 Mode

	2.13 Floating Point Unit Operations

	3.0 IBM 6x86 BUS INTERFACE
	3.1 Signal Description Table
	3.2 Signal Descriptions
	3.2.1 Clock Control
	3.2.2 Reset Control
	3.2.3 Address Bus
	3.2.4 Address Parity
	3.2.5 Data Bus
	3.2.6 Data Parity
	3.2.7 Bus Cycle Definition
	3.2.8 Bus Cycle Control
	3.2.9 Interrupt Control
	3.2.10 Cache Control
	3.2.11 Bus Arbitration
	3.2.12 Cache Coherency
	3.2.13 FPU Error Interface
	3.2.14 Scatter/Gather Buffer Interface
	3.2.15 Power Management Interface
	3.2.16 JTAG Interface

	3.3 Functional Timing
	3.3.1 Reset Timing
	3.3.2 Bus State Definition
	3.3.3 Non-pipelined Bus Cycles
	3.3.3.1 Non-pipelined Single Transfer Cycles
	3.3.3.2 Non-pipelined Burst Read Cycles
	3.3.3.3 Burst Write Cycles

	3.3.4 Pipelined Bus Cycles
	3.3.4.1 Pipelined Back-to-Back Read/Write Cycles

	3.3.5 Interrupt Acknowledge Cycles
	3.3.6 SMI# Interrupt Timing
	3.3.7 Cache Control Timing
	3.3.7.1 Invalidating the Cache Using FLUSH#
	3.3.7.2 EWBE# Timing

	3.3.8 Bus Arbitration
	3.3.8.1 HOLD and HLDA
	3.3.8.2 Back-Off Timing

	3.3.9 Cache Inquiry Cycles
	3.3.9.1 Inquiry Cycles Using HOLD/HLDA
	3.3.9.2 Inquiry Cycles Using BOFF#
	3.3.9.3 Inquiry Cycles Using AHOLD

	3.3.10 Scatter/Gather Buffer Interface
	3.3.11 Power ManagementInterface

	4.0 ELECTRICALSPECIFICATIONS
	4.1 Electrical Connections
	4.1.1 Power and Ground Connections and Decoupling
	4.1.2 Pull-Up/Pull-Down Resistors
	4.1.3 Unused Input Pins
	4.1.4 NC and Reserved Pins

	4.2 Absolute Maximum Ratings
	4.3 Recommended Operating Conditions
	4.4 DC Characteristic
	4.5 AC Characteristics

	5.0 MECHANICAL SPECIFICATIONS
	5.1 296-Pin SPGA Package
	5.2 Thermal Characteristics

	6.0 INSTRUCTION SET
	6.1 Instruction Set Summary
	6.2 General Instruction Fields
	6.2.1 Optional Prefix Bytes
	6.2.2 Opcode Byte
	6.2.2.1 w Field
	6.2.2.2 d Field
	6.2.2.3 s Field
	6.2.2.4 eee Field

	6.2.3 mod and r/m Byte
	6.2.3.1 reg Field
	6.2.3.2 sreg3 Field
	6.2.3.3 sreg2 Field

	6.2.4 s-i-b Byte
	6.2.4.1 ss Field
	6.2.4.2 index Field
	6.2.4.3 Base Field

	6.3 CPUID Instruction
	6.4 Instruction Set Tables
	6.4.1 Assumptions Made in Determining Instruction Clock Count
	6.4.2 CPU Instruction Set Summary Table Abbreviations
	6.4.3 CPU Instruction Set Summary Table Flags Table
	6x86 CPU Instruction Set & Clock Count Summary

	6.5 FPU Clock Counts
	6.5.1 FPU Clock Count Table

	Appendix
	Ordering Information for Module Revision Level “B” Only
	Ordering Information for Module Revision Level “C” and Later

	Index

