

IBM PowerPC[®]970FX RISC Microprocessor

Data Sheet

Preliminary Electrical Information

SA14-2760-07

Version 2.3

Preliminary

June 4, 2006

© Copyright International Business Machines Corporation 2005, 2006

All Rights Reserved Printed in the United States of America June 2006

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.

01 00(11.	
IBM	IBM Logo
PowerPC	PowerPC Logo
PowerPC 970	PowerPC Architecture

Other company, product and service names may be trademarks or service marks of others.

Note: All information contained in this document is subject to change without notice. Verify with your IBM field application enginner that you have the latest version of this document before finalizing a design.

The products described in this document are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result in death, bodily injury, or catastrophic property damage. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties, or give rise to any express or implied warranty. Information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

Note: This document contains information on products in the sampling and/or initial production phases of development. This information is subject to change without notice. Verify with your IBM field applications engineer that you have the latest version of this document before finalizing a design.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group 2070 Route 52, Bldg. 330 Hopewell Junction, NY 12533-6351 The IBM home page can be found at <u>http://www.ibm.com</u>

The IBM Systems and Technology Group's Microelectronics home page can be found at http://www.ibm.com/chips

June 4, 2006

About This Datasheet	9
1. General Information	11
1.1 Description	. 11
1.2 Features	. 11
1.3 PowerPC 970FX Block Diagram	. 13
1.4 Ordering and Processor Version Register	
1.4.1 Leaded Package Version	
1.4.2 Reduced-Lead Package Version	
2. General Parameters	17
3. Electrical and Thermal Characteristics	17
3.1 DC Electrical Characteristics	. 17
3.1.1 Absolute Maximum Ratings	
3.1.2 Recommended Operating Conditions	
3.1.3 Package Thermal Characteristics	
3.1.4 DC Electrical Specifications	
3.1.5 Power Consumption	
3.2 AC Electrical Characteristics	
3.3 Clock AC Specifications	
3.4 Processor-Clock Timing Relationship Between PSYNC and SYSCLK	
3.5 Processor Interconnect Specifications	
3.5.1 Electrical and Physical Specifications	
3.5.1.1 Source Synchronous Bus (SSB)	
3.5.1.2 Drive Side Characteristics	
3.5.1.3 Module-to-Module Interconnect Characteristics	
3.5.1.4 Receive Side Characteristics	
3.6 Input AC Specifications	
3.6.1 TBEN Input Pin	
•	
3.7 Asynchronous Output Specifications	
3.8 Mode Select Input Timing Specifications	
3.9 Spread Spectrum Clock Generator (SSCG)	
3.9.1 Design Considerations	
3.10 I ² C and JTAG	
3.10.1 I ² C Bus Timing Information	
3.10.2 IEEE 1149.1 AC Timing Specifications	
3.10.3 I2C and JTAG Considerations	
3.10.4 Boundary Scan Considerations	. 39
4. PowerPC 970FX Microprocessor Dimension and Physical Signal Assignments	
4.1 ESD Considerations	
4.2 Mechanical Packaging	
4.2.1 Leaded Package Version	. 40
4.2.2 Reduced-Lead Package Version	
4.2.2.1 Mechanical Specifications	
4.2.2.2 Assembly Considerations	. 44

Data Sheet	
PowerPC 970	FΧ

4.3 PowerPC 970FX Microprocessor Pinout Listings	. 50
5. System Design Information	
5.1 External Resistors	
5.2 PLL Configuration	. 57
5.2.1 Determining PLLMULT and BUS_CFG Settings	. 57
5.2.2 PLL_RANGE Configuration	. 58
5.3 PLL Power Supply Filtering	. 60
5.4 Decoupling Recommendations	
5.4.1 Using the KVPRBVDD and KVPRBGND Pins	. 61
5.5 Decoupling Layout Guide	
5.6 Input-Output Usage	. 65
5.6.1 Chip Signal I/O and Test Pins	
5.7 Thermal Management Information	. 69
5.7.1 Thermal Management pins	. 69
5.7.2 Reading Thermal Diode Calibration data via JTAG	. 69
5.7.3 Heatsink Attachment and Mounting Forces	. 71
5.8 Operational and Design Considerations	. 72
5.8.1 Power-On Reset Considerations	
5.8.2 Debugging PowerPC 970FX Power-On and Reset Sequence	. 72
5.8.3 I ² C Addressing of PowerPC 970FX	
Revision Log	73

Figure 1-1. PPC 970FX Block Diagram	13
Figure 1-2. Part Number Legend	
Figure 3-1. Clock Differential HSTL Signal	
Figure 3-2. Processor-Clock Timing Relationship Between PSYNC and SYSCLK	
Figure 3-3. Block Diagram of an SSB for a Processor Interconnect Implementation	
Figure 3-4. Typical Implementation for a Single-ended Line	
Figure 3-5. Differential Clock Termination Circuitry	
Figure 3-6. Post-IAP Eye Opening	
Figure 3-7. Asynchronous Input Timing	
Figure 3-8. HRESET and BYPASS Timing Diagram	
Figure 3-9. Spread Spectrum Clock Generator (SSCG) Modulation Profile	
Figure 3-10. JTAG Clock Input Timing Diagram	
Figure 3-11. Test Access Port Timing Diagram	
Figure 4-1. PPC 970FX Microprocessor for Mechanical Package, Leaded, for DD3.0x Parts (to 41	op and side)
Figure 4-2. PPC 970FX Microprocessor Mechanical Package, Leaded, for DD3.1x Parts (top a	and side) 42
Figure 4-3. PPC 970FX Microprocessor Bottom Surface Nomenclature of Mechanical Package CBGA Package	
Figure 4-4. PPC 970FX Microprocessor for Mechanical Package, Reduced-Lead, for DD3.0x F side)	
Figure 4-5. PPC 970FX Microprocessor Mechanical Package, Reduced-Lead, for DD3.1 Parts 46	(top and side)
Figure 4-6. PPC 970FX Microprocessor Bottom Surface Nomenclature of Reduced-Lead CBG	A Package 47
Figure 4-7. PPC 970FX Ball Placement (Top View)	
Figure 4-8. PPC 970FX Ball Placement (Bottom View)	
Figure 5-1. PLL Power Supply Filter Circuit	
Figure 5-2. Decoupling Capacitor (Decap) Locations	
Figure 5-3. PowerPC 970FX Thermal Diode Implementation	
Figure 5-4. Force Diagram for the PowerPC 970FX Package	71

Table 1-1. PPC 970FX Ordering and Processor Version Register (PVR) for the Leaded PackageVersion	14
Table 1-2. PPC 970FX Ordering and Processor Version Register (PVR) for the Reduced-Lead Package	Ver-
sion	
Table 2-1. General Parameters of the PowerPC 970FX	
Table 3-1. Absolute Maximum Ratings	. 17
Table 3-2. Recommended Operating Conditions	. 18
Table 3-3. Package Thermal Characteristics	. 18
Table 3-4. DC Electrical Specifications	. 19
Table 3-5. Power Consumption for Power-Optimized Parts	. 20
Table 3-6. Power Consumption for Power-Optimized Parts	. 21
Table 3-7. Power Consumption for Standard Parts	. 21
Table 3-8. Power Consumption for Standard Parts	. 22
Table 3-9. Clock AC Timing Specifications	. 23
Table 3-10. Processor-Clock Timing Relationship Between PSYNC and SYSCLK	. 24
Table 3-11. Processor Interconnect SSB Driver Specifications	. 27
Table 3-12. Processor Interconnect SSB PCB Trace Specifications	. 27
Table 3-13. Processor Interconnect SSB Receiver Specifications	. 28
Table 3-14. Processor Interconnect SSB Timing Parameters for the Deskew and Clock Alignment	. 28
Table 3-15. Eye-Size Requirements	. 29
Table 3-16. Input AC Timing Specifications	. 30
Table 3-17. Input AC Timing Specifications for TBEN	. 30
Table 3-18. Input AC Timing Specifications for HRESET	. 30
Table 3-19. Asynchronous Type Output Signals	. 32
Table 3-20. Asynchronous Open Drain Output Signals	. 32
Table 3-21. Asynchronous Open Drain Bidirectional (BiDi) Signals	. 32
Table 3-22. Input AC Timing Specifications	. 33
Table 3-23. Mode Select Type Input Signals	. 35
Table 3-24. Debug Pins	. 35
Table 3-25. JTAG AC Timing Specifications (Dependent on SYSCLK)	. 37
Table 4-1. Leaded and Reduced-Lead Package, Layout, and Assembly Differences	. 44
Table 4-2. Pinout Listing for the CBGA Package	. 50
Table 4-3. Voltage and Ground Assignments	. 55
Table 5-1. PowerPC 970FX Bus Configuration	. 57
Table 5-2. PowerPC 970FX PLL Configuration	. 58
Table 5-3. System Configuration - Typical Examples of Pin Settings	. 59
Table 5-4. Recommended Decoupling Capacitor Specifications	
Table 5-5. Recommended Minimum Number of Decoupling Capacitors	
Table 5-6. PowerPC 970FX Debug/Bringup Pin Settings and Information	
Table 5-7. PowerPC 970FX Pins for Manufacturing Test Only	. 64

Table 5-8. Input/Output Signal Descriptions	.65
Table 5-9. Thermal Diode Data Encoding	.70
Table 5-10. Allowable Forces on the PowerPC 970FX Package	.71

About This Datasheet

This datasheet describes the IBM PPC 970FX RISC Microprocessor. This microprocessor, also called the PPC 970FX, is a 64-bit implementation of the IBM PowerPC[®] family of reduced instruction set computer (RISC) microprocessors that are based on the PowerPC Architecture[™].

Who Should Read This Datasheet

This datasheet is intended for designers who plan to develop products using the PPC 970FX.

Related Publications

Related IBM publications include the following:

- PowerPC 970FX RISC Microprocessor Users Manual
- PowerPC 970FX Power On Reset Application Note
- PowerPC 970FX DD3.x Errata List

Other related publications include the following:

• *I2C Bus Specification.* (This document is produced by Philips Semiconductors and can be downloaded from http://www.semiconductors.philips.com.)

Conventions and Notations Used in This Datasheet

The use of overbars, for example DDEL_OUT, designates signals that are active low or the compliment of differential signals.

The following software documentation conventions are used in this manual:

- 1. Function names are written in **bold** type. For example, **np_npms_proc_register ()**.
- 2. Variables are written in italic type. For example, *enable_mode*.
- 3. Keywords and data types are shown by being written all in capitals with underlines between words. For example, OFF_DISABLED.

1. General Information

1.1 Description

The IBM PowerPC 970FX RISC Microprocessor, is a 64-bit implementation of the IBM PowerPC[®] family of reduced instruction set computer (RISC) microprocessors that are based on the PowerPC Architecture. This microprocessor, also called the PPC 970FX, includes a Vector/SIMD facility which supports high-bandwidth data processing and algorithmic-intensive computations. This microprocessor is also designed to support multiple system organizations, including desktop and low-end server applications, and uniprocessor up through four-way SMP configurations.

Note: The terms microprocessor and processor are used interchangeably in this document.

Figure 1-1 on page 13 is a block diagram of the PPC 970FX.

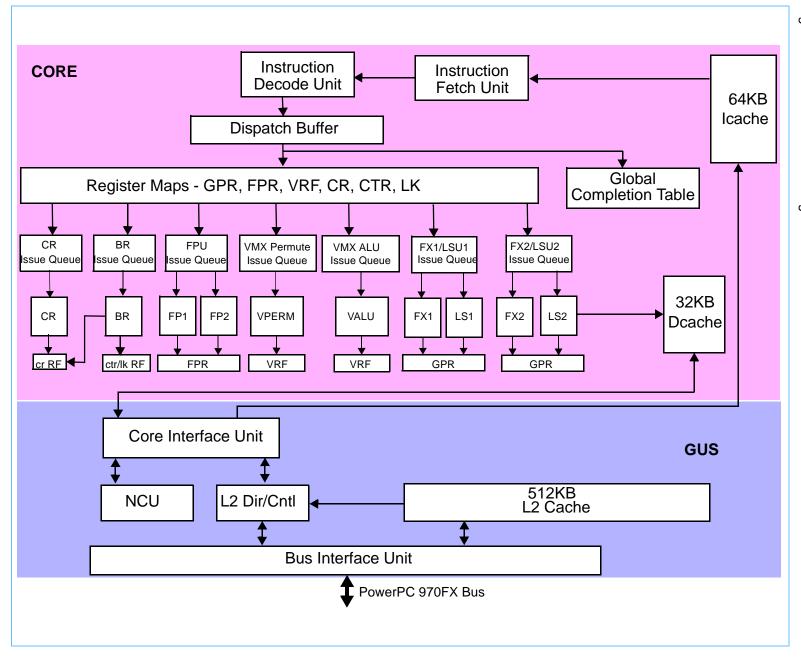
The PPC 970FX consists of three main components:

- PPC 970FX Core which includes VMX execution units
- PPC 970FX Storage subsystem which includes core interface logic, non-cacheable unit, L2 cache and controls, and the Bus Interface Unit
- PPC 970FX Pervasive Functions

This document also provides pertinent physical characteristics of the PPC 970FX single chip modules (SCM).

1.2 Features

- 64-bit implementation of the PowerPC Architecture (Version 2.01)
 - Binary compatibility for all PowerPC application level code (problem state)
 - Binary compatibility for all PowerPC application level code (problem state)
 - Support for 32-bit O/S bridge facility
 - Vector/SIMD Multimedia eXtension
- Layered implementation strategy for very high frequency operation
 - Deeply pipelined design
 - 16 stages for most fixed-point register-register operations
 - 18 stages for most load and store operations (assuming L1 Dcache hit)
 - 21 stages for most floating point operations
 - 19, 22, and 25 stages for fixed-point, complex-fixed, and floating point operations, respectively in the VALU.
 - 19 stages for VMX permute operations


- Dynamic instruction cracking for some instructions allows for simpler inner core dataflow
 - Dedicated dataflow for cracking one instruction into two internal operations
 - Microcoded templates for longer emulation sequences
- Speculative superscalar inner core organization
 - Aggressive branch prediction
 - Prediction for up to two branches per cycle
 - Support for up to 16 predicted branches in flight
 - Prediction support for branch direction and branch addresses
 - · Out of order issue of up to ten operations into 10 execution pipelines
 - Two load or store operations
 - Two fixed-point register-register operations
 - Two floating-point operations
 - One branch operation
 - One condition register operation
 - One VMX permute operation
 - One VMX ALU operation
 - In order dispatch of up to five operations into distributed issue queue structure
 - Register renaming on GPRs, FPRs, VRFs, CR Fields, XER (parts), FPSCR, VSCR, VRSAVE, Link and Count
- Large number of instructions in flight (theoretical maximum of 215 instructions)
 - Up to 16 instructions in instruction fetch unit (fetch buffer and overflow buffer)
 - Up to 32 instructions in instruction fetch buffer in instruction decode unit
 - Up to 35 instructions in 3 decode pipe stages and 4 dispatch buffers
 - Up to 100 instructions in the inner-core (after dispatch)
 - Up to 32 stores queued in the STQ (available for forwarding)
 - · Fast, selective flush of incorrect speculative instructions and results
- · Specific focus on storage latency management
 - Out-of-order and speculative issue of load operations
 - Support for up to 8 outstanding L1 cache line misses
 - Hardware initiated instruction prefetching from L2 cache
 - · Software initiated data stream prefetching
 - Support for up to 8 active streams
 - Critical word forwarding / critical sector first
 - New branch processing / prediction hints added to branch instructions
- Power management
 - Static power management
 - Software initiated doze and nap
 - Dynamic power management
 - Parts of the design stop their (hardware initiated) clocks when not in use
 - PowerTune
 - Software initiated slow down of the processor; selectable to half of the nominal operating frequency

1.3 PowerPC 970FX Block Diagram

Preliminary

Figure 1-1. PPC 970FX Block Diagram

1.4 Ordering and Processor Version Register

1.4.1 Leaded Package Version

The PowerPC 970FX has the following part numbers and Processor Version Register (PVR) values for the respective design revision levels.

Table 1-1. PPC 970FX Ordering and Processor Version Register (PVR) for the Leaded PackageVersion

Order Part Number	Frequency GHz	Revision Level	PVR	Note
IBM25PPC970FX6TB055RT	1.0	DD3.0x	0x003C0300	1
IBM25PPC970FX6TB075RT	1.2	DD3.0x	0x003C0300	1
IBM25PPC970FX6TB186ET	1.6	DD3.0x	0x003C0300	2
IBM25PPC970FX6TB267ET	1.8	DD3.0x	0x003C0300	2
IBM25PPC970FX6TB348ET	2.0	DD3.0x	0x003C0300	2
IBM25PPC970FX6TB348RT	2.0	DD3.0x	0x003C0300	1

Note 2: Refer to Table 3-7 and Table 3-8 for power and voltage rating.

Order Part Number	Frequency GHz	Revision Level	PVR	Note
IBM25PPC970FX6UB055RT	1.0	DD3.1	0x003C0301	1
IBM25PPC970FX6UB075RT	1.2	DD3.1	0x003C0301	1
IBM25PPC970FX6UB105RT	1.4	DD3.1	0x003C0301	1
IBM25PPC970FX6UB185RT	1.6	DD3.1	0x003C0301	1
IBM25PPC970FX6UB186ET	1.6	DD3.1	0x003C0301	2
IBM25PPC970FX6UB267ET	1.8	DD3.1	0x003C0301	2
IBM25PPC970FX6UB348ET	2.0	DD3.1	0x003C0301	2
IBM25PPC970FX6UB348RT	2.0	DD3.1	0x003C0301	1
IBM25PPC970FX6UB428ET	2.2	DD3.1	0x003C0301	2
IBM25PPC970FX6UB429RT	2.2	DD3.1	0x003C0301	1
Note 1: Refer to <i>Table 3-5</i> and and <i>Table 3-5</i> and and <i>Table 3-5</i> and and <i>Table 3-5</i> and a		-		

Note 1: Refer to *Table 3-5* and *Table 3-6* for power and voltage rating. **Note 2:** Refer to *Table 3-7* and *Table 3-8* for power and voltage rating.

1.4.2 Reduced-Lead Package Version

The PowerPC 970FX has the following part numbers and Processor Version Register (PVR) values for the respective design revision levels.

Table 1-2. PPC 970FX Ordering and Processor Version Register (PVR) for the Reduced-Lead Package
Version

Order Part Number	Frequency GHz	Revision Level	PVR	Note
IBM25PPC970FX6TR055RT	1.0	DD3.0x	0x003C0300	1
IBM25PPC970FX6TR075RT	1.2	DD3.0x	0x003C0300	1
IBM25PPC970FX6TR186ET	1.6	DD3.0x	0x003C0300	2
IBM25PPC970FX6TR267ET	1.8	DD3.0x	0x003C0300	2
IBM25PPC970FX6TR348ET	2.0	DD3.0x	0x003C0300	2
IBM25PPC970FX6TR348RT	2.0	DD3.0x	0x003C0300	1
Note 1: Refer to <i>Table 3-5</i> and <i>Table 3-5</i> and <i>Table 3-7</i> a	•	0 0		·

Order Part Number	Frequency GHz	Revision Level	PVR	Note
IBM25PPC970FX6UR055RT	1.0	DD3.1	0x003C0301	1
IBM25PPC970FX6UR075RT	1.2	DD3.1	0x003C0301	1
IBM25PPC970FX6UR105RT	1.4	DD3.1	0x003C0301	1
IBM25PPC970FX6UR185RT	1.6	DD3.1	0x003C0301	1
IBM25PPC970FX6UR186ET	1.6	DD3.1	0x003C0301	2
IBM25PPC970FX6UR267ET	1.8	DD3.1	0x003C0301	2
IBM25PPC970FX6UR348ET	2.0	DD3.1	0x003C0301	2
IBM25PPC970FX6UR348RT	2.0	DD3.1	0x003C0301	1
IBM25PPC970FX6UR428ET	2.2	DD3.1	0x003C0301	2
IBM25PPC970FX6UR429RT	2.2	DD3.1	0x003C0301	1

Note 2: Refer to *Table 3-7* and *Table 3-8* for power and voltage rating.

Figure 1-2. Part Number Legend

	IBM25		
PowerPC	970 Family Member		bility Grade bing Container
Process 7	Technology		cation Temperature
Design R	evision Level		ge Specification
Package	Туре	Frequ	uency
	Process Technology	6 = 10K0 (90 nm CSOI)	7
	Design Revision Level	T = DD3.0x U = DD3.1	
	Package Type	B = 576 CBGA (Ceramic Ball Grid Array) R = 576 CBGA Pb reduced	
	Frequency	05 = 1.0 GHz 07 = 1.2 GHz 10 = 1.4 GHz 18 = 1.6 GHz 26 = 1.8 GHz 34 = 2.0 GHz 42 = 2.2 GHz	
	Voltage specification	$\begin{split} 5 &= V_{DD} \text{ is } 1.00V \\ 6 &= V_{DD} \text{ is } 1.10V \\ 7 &= V_{DD} \text{ is } 1.15V \\ 8 &= V_{DD} \text{ is } 1.25V \\ 9 &= V_{DD} \text{ is } 1.20V \end{split}$	
	Application Temperature	E = 105 °C R = 105 °C power optimized	
	Reliability Grade Shipping Container	T = Grade 3 Reliability, Tray Note 1: Automatic array recovery must be enabled as detailed in the <i>POR Application Note</i> . Note 2: Grade 3 is 100 FITs AFR (Average Failure Rate) @ $60^{\circ}C$ for 40K and 100K POH (Power-on-Hours).	

2. General Parameters

Table 2-1 provides a summary of the general parameters of the PPC 970FX.

Table 2-1. General Parameters of the PowerPC 970FX

ltem	Description	Notes				
Die Size	66.2 sq. mm					
Die Dimensions	7.07 x 9.36mm					
Transistor Count	58 Million	1				
Package 576-pin Ceramic ball grid array (CBGA), 25x25mm (1.0mm pitch)						
Note:						
1. For information only. Use of this value to calculate reliability is not valid.						

3. Electrical and Thermal Characteristics

This section provides AC and DC electrical specifications and thermal characteristics for the PPC 970FX.

3.1 DC Electrical Characteristics

The tables in this section describe the PowerPC 970FX DC electrical characteristics.

3.1.1 Absolute Maximum Ratings

Characteristic	Symbol	Value	Unit	Notes
Core supply voltage	V _{DD}	-0.3 to 1.5	V	1,3
I/O Supply voltage	OV _{DD}	-0.3 to 1.7	V	1,3
PLL supply voltage	AV _{DD}	-0.3 to 3.0	V	1,3
Input voltage	V _{IN}	-0.3 to 1.7	V	1,2
Storage temperature range	T _{STG}	-40 to 125	°C	1

Notes:

1. Functional and tested operating conditions are given in *Table 3-2. Recommended Operating Conditions on page 18.* Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed above may affect device reliability or cause permanent damage to the device.

2. This is an implied DC voltage specification. Pending further evaluation, an allowance for AC overshoot or undershoot may be accommodated beyond this input voltage specification.

3. Power supply ramping recommendations: The order does not matter as long as the supplies reach their final destination in 50ms. V_{DD} can not exceed OV_{DD} by more than 0.8V (Except for 50ms during power up/down, where it is allowed to be \leq 1.35V). OV_{DD} can not exceed V_{DD} by more than 0.8V (Except for 50ms during power up/down, where it is allowed to be \leq 1.55V). AV_{DD} can not exceed V_{DD} by more than 2.5V (Except for 50ms during power up/down, where it is allowed to be \leq 2.75V).

3.1.2 Recommended Operating Conditions

Table 3-2. Recommended Operating Conditions

Characteristic	Symbol	Value	Unit	Notes
Core supply voltage	V _{DD}	see Table 3-5, Table 3-6, Table 3- 7 and Table 3-8	V	
PLL supply voltage ¹	AV _{DD}	2.80 ± 50mV	V	
PLL supply current, max	AI _{DD}	20	mA	
I/O supply voltage	OV _{DD}	1.5 ± 50mV	V	
I/O supply current, max ²	OI _{DD}	2	А	
Input voltage	V _{IN}	GND to OV _{DD}	V	

Notes:

1. The PLL supply voltage has been adjusted to account for the maximum possible DC drop across the filter circuit. Refer to Section 5.3 "PLL Power Supply Filtering," on page 60.

2. This is the maximum I/O current. As noted in *Table 3-6. Power Consumption for Power-Optimized Parts* and *Table 3-8. Power Consumption for Standard Parts*. the actual I/O power varies between 1-3 Watts based on the speed of the PI interface, and whether the on board termination is used. Typically it is active, but in cases of the slower parts and layouts with parts in very close proximity, signal analysis may show that the PI terminations can be turned off.

3.1.3 Package Thermal Characteristics

Table 3-3. Package Thermal Characteristics

Characteristic	Symbol	Value	Unit
CBGA thermal conductance to back of die	θ _{JC}	0.1	°C/W
CBGA thermal conductance to board	θ_{JB}	5.4	°C/W

3.1.4 DC Electrical Specifications

Table 3-4. DC Electrical Specifications

Characteristic	Symbol	Volt	age	Unit	Notes
	Symbol	Minimum	Maximum	Unit	
SYSCLK, SYSCLK input high voltage	—	0.7 x OV _{DD}	OV _{DD} + 0.3	V	1
SYSCLK, SYSCLK input low voltage	—	-0.3	0.3 x OV _{DD}	V	1
Elastic Input (EI) input high voltage	VIH	(0.5 x OV _{DD}) + 0.2	—	V	2
Elastic Input (EI) input low voltage	VIL	_	(0.5 x OV _{DD}) - 0.2	V	2
Non-EI input high voltage	V _{IH}	0.7 x OV _{DD}	—	V	3
Non-EI input low voltage	VIL	—	0.3 x OV _{DD}	V	3
Elastic Output (EO) output high voltage	V _{он}	0.78 x OV _{DD}	—	V	4
Elastic Output (EO) output low voltage	V _{ol}	—	0.22 x OV _{DD}	V	4
Non-EO output high voltage, $I_{OH} = -2mA$	V _{он}	OV _{DD} - 0.2	—	V	—
Non-EO output low voltage, I _{oL} = 2mA	V _{ol}	_	0.2	V	—
Open Drain (OD) output low, IOL = 2mA (CHKSTOP, I2CGO)	V _{ol}	—	0.2	V	5
Open Drain (OD) output low, IOL = 5mA (I2C)	V _{ol}	_	0.2	V	
Input leakage current, $V_{IN} = OV_{DD}$, $V_{IN} = 0$ V	I _{IN}	_	60	μΑ	—
Hi-Z (off state) leakage current, $V_{OUT} = OV_{DD}$, $V_{OUT} = 0$ V	I _{tso}		60	μΑ	_
Input Capacitance, $V_{IN} = 0 V$, f = 1MHz	C _{IN}		5.0	pF	6

Notes: See Table 3-2 on page 18 for recommended operating conditions.

- 1. SYSCLK differential receiver requires HSTL differential signaling level. See the JEDEC HSTL standard.
- 2. See the PowerPC 970FX Users Manual, Electrical Interface section. Minimum input must meet the EYE OPENING REQUIREMENTS of the link.
- The JTAG signals TDI, TMS, and TRST do not have internal pullups; therefore, pullup must be added on the board. Pullups should be added and adjusted according to the system implementation. These input/outputs meet the DC specification in the JEDEC standard JESD8-11 for 1.5V Normal Power Supply Range.
- 4. A 100 Ω split terminator is the test load. Note a 40 Ω driver has an up level of 0.78 x OV_{DD} for V_{OH} and 0.22 x OV_{DD} at V_{OL}.
- 5. There are two open drain signals on this type of driver: CHKSTOP and I2CGO. The pullup for these nets depend on the t_{rise} time requirement, net load, and topology. The following are two bounding suggestions based on a point-to-point 50Ω net with two lengths (5cm and 61cm). A 33Ω series source terminator was added in both runs. A net of 61cm or 24 inches is recommended.

Examples: 500Ω Pullup DC Low Level 0.18V @ Receiver Trise 0.2V - 0.8V = 55ns @ 61cm Trise 0.2V - 0.8V = 10ns @ 5cm $1K\Omega$ Pullup DC Low Level 0.13V @ Receiver Trise 0.2V - 0.8V = 115ns @ 61cm Trise 0.2V - 0.8V = 20ns @ 5cm

6. Capacitance values are guaranteed by design and characterization, and are not tested.

3.1.5 Power Consumption

For recommended operating conditions, see Table 3-2 on page 18.

Table 3-5. Power Consumption for Power-Optimized Parts

				Full			F/2			
Frequency	Condition	Voltage	Power (W)	Power Int ¹ (W)	Doze Power	Nap Power	Power (W)	Doze Power	Nap Power	Notes
	Typical Average @ 65C		11	-	-	-	-	-	-	3,4
1.0 GHz	Maximum @ 85C	1.00V	13	11.3	8	6	10	6	6	3,4
	Maximum @ 105C		14	12.2	-	-	-	-	-	2,3,4
	Typical Average @ 65C		13	-	-	-	-	-	-	3,4
1.2 GHz	Maximum @ 85C	1.00V	15	13.1	8	7	11	7	6	3,4
	Maximum @ 105C		16	13.9	-	-	-	-	-	2,3,4
	Typical Average @ 65C	1.00V	15	-	-	-	-	-	-	3,4
1.4 GHz	Maximum @ 85C		18	15.7	9	7	14	7	6	3,4
	Maximum @ 105C		19	16.5	-	-	-	-	-	2,3,4
	Typical Average @ 65C		17	-	-	-	-	-	-	3,4
1.6 GHz	Maximum @ 85C	1.00V	20	17.4	11	9	15	9	7	3,4
	Maximum @ 105C		21	18.3	-	-	-	-	-	2,3,4
	Typical Average @ 65C		40	-	-	-		-	-	3,4
2.0 GHz	Maximum @ 85C	1.25V	46	40	28	20	35	21	17	3,4
	Maximum @ 105C		50	43.5	-	-		-	-	2,3,4
2.2 GHz	Typical Average @ 65C		48	-	-	-		-	-	3,4
	Maximum @ 85C	1.20V	55	47.85	36	30	46	28	25	3,4
	Maximum @ 105C]	60	52.2	-	-		-	-	2,3,4

Note: Maximum power at 85 C is the ONLY value that is guaranteed by Manufacturing Test. Values for Maximum @ 105C, Typical @ 65C, Nap, and Doze are not guaranteed by test. These values are to be used as characterization-based nominal values and are included for comparison purposes only.

Notes cited in Table rows and columns:

1. Maximum power numbers are measured by tester code that includes FP & VMX instructions. Characterization results indicate that similar power test code that is integer only is an average of 13% less. The values in this column are not tested but based on the characterization information. The FP and VMX units are automatically clock gated when not in use.

2. Maximum power is projected at the nominal V_{DD} worst case Iddq, and max temperature as specified

3. Voltage tolerance is ± 50 mV

4. These are core power only; OV_{DD} power of 1-3 Watts is not included

Throttle Back F/2								
Frequency	Condition	Voltage	Power (W)	Doze Power	Nap Power			
1.0 GHz	Maximum @ 65C	1.00V	10	6	5			
1.2 GHz	Maximum @ 65C	1.00V	11	6	5			
1.4 GHz	Maximum @ 65C	1.00V	13	7	6			
1.6 GHz	Maximum @ 65C	1.00V	14	8	7			
2.0 GHz	Maximum @ 65C	1.10V	23	11	9			
2.2 GHz	Maximum @ 65C	1.10V	33	17	15			

Table 3-6. Power Consumption for Power-Optimized Parts

Notes:

1. Maximum power at 85 C is the ONLY value that is guaranteed by Manufacturing Test. Values for Maximum @ 105C, Typical @ 65C, Nap, and Doze are not guaranteed by test. These values are to be used as characterization-based nominal values and are included for comparison purposes only.

2. Maximum power is projected at the nominal $\mathsf{V}_{\mathsf{D}\mathsf{D}}$ worst case Iddq, and max temperature as specified

3. Voltage tolerance is ± 50 mV

4. These are core power only; OV_{DD} power of 1-3 Watts is not included

			Full			F/2				
Frequency	Condition	Voltage	Power (W)	Power Int ¹	Doze Power	Nap Power	Power (W)	Doze Power	Nap Power	Notes
	Typical Average @ 65C		23		-	-	-	-	-	3,4
1.6 GHz	Maximum @ 85C	1.10V	27	23.5	17	13	21	13	11	3,4
	Maximum @ 105C		29	25.2	-	-	-	-	-	2,3,4
	Typical Average @ 65C	1.15V	30		-	-	-	-	-	3,4
1.8 GHz	Maximum @ 85C		35	30.5	21	17	27	17	15	3,4
	Maximum @ 105C		38	33.1	-	-	-	-	-	2,3,4
	Typical Average @ 65C		48		-	-	-	-	-	3,4
2.0 GHz	Maximum @ 85C	1.25V	55	47.85	38	31	46	30	27	3,4
	Maximum @ 105C		60	52.2	-	-	-	-	-	2,3,4
2.2 GHz	Typical Average @ 65C		61		-	-	-	-	-	3,4
	Maximum @ 85C	1.25V	70	60.9	49	43	62	39	37	3,4
	Maximum @ 105C		76	66.1	-	-	-	-	-	2,3,4

Table 3-7. Power Consumption for Standard Parts

Note: Maximum power at 85C is the ONLY value that is guaranteed by Manufacturing Test. Values for Maximum @ 105C, Typical @ 65C, Nap, and Doze are not guaranteed by test. These values are to be used as characterization-based nominal values and are included for comparison purposes only.

Notes cited in Table rows and columns:

- 1. Maximum power numbers are measured by tester code that includes FP & VMX instructions. Characterization results indicate that similar power test code that is integer only is an average of 13% less. The values in this column are not tested but based on the characterization information. The FP and VMX units are automatically clock gated when not in use.
- 2. Maximum power is projected at the nominal V_{DD} worst case Iddq, and max temperature as specified
- 3. Voltage tolerance is ± 50 mV
- 4. These are core power only; OV_{DD} power of 1-3 Watts is not included

	Throttle Back F/2								
Frequency	Condition	Voltage	Power (W)	Doze Power	Nap Power				
1.6 GHz	Maximum @ 65C	1.00V	15	8	7				
1.8 GHz	Maximum @ 65C	1.10V	22	13	11				
2.0 GHz	Maximum @ 65C	1.10V	29	16	13				
2.2 GHz	Maximum @ 65C	1.10V	38	19	17				

Table 3-8. Power Consumption for Standard Parts

1. Maximum power at 85 C is the ONLY value that is guaranteed by Manufacturing Test. Values for Maximum @ 105C, Typical @ 65C, Nap, and Doze are not guaranteed by test. These values are to be used as characterization-based nominal values and are included for comparison purposes only.

2. Maximum power is projected at the nominal V_{DD} worst case Iddq, and max temperature as specified

3. Voltage tolerance is ± 50mV

4. These are core power only; OV_{DD} power of 1-3 Watts is not included

3.2 AC Electrical Characteristics

This section provides the AC electrical characteristics for the PPC 970FX. After fabrication, parts are sorted by maximum processor core frequency as shown in *Section 3.3* on page 23, and tested for conformance to the AC specifications for that frequency. The processor core frequency is determined by the SYSCLK and the settings of the PLL_MULT signal.

This section only describes asynchronous and mode-select inputs and outputs. For bus timing information, see the PowerPC 970FX Users Manual.

3.3 Clock AC Specifications

Table 3-9 provides the clock AC timing specifications as defined in Figure 3-1 Clock Differential HSTL Signal.

Table 3-9. 0	Clock AC	Timing	Specifications
--------------	----------	--------	----------------

Call Out	Characteristic		lue	Unit	Notes
Number	Characteristic	Minimum	inimum Maximum		
—	SYSCLK frequency	100	300	MHz	1, 2, 4
—	SYSCLK input jitter (cycle to cycle)	—	±75	ps	4
1	SYSCLK rise and fall time	—	500	ps	3, 4
2	SYSCLK and SYSCLK input high voltage	—	OV _{DD} +0.3	V	4
3	SYSCLK and SYSCLK input low voltage	-0.3	—	V	4
4	Differential Crossing Point Voltage	$0.4 \times OV_{DD}$	0.6 x OV _{DD}	V	4
5	Differential voltage	0.385	1.6	V	4,7
—	PLL lock time	—	800	μSec	4, 6
—	Duty Cycle	40%	60%	—	—

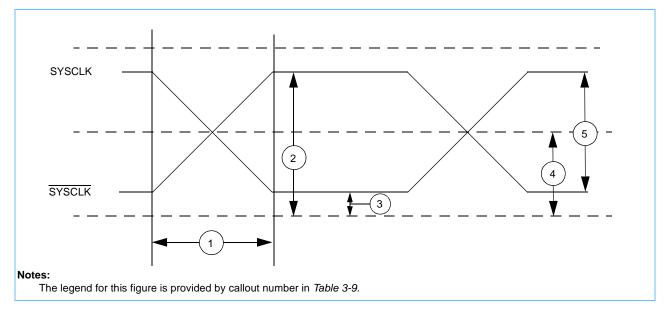
Notes:

1. Important: Processor frequency is determined by PLL_MULT and SYSCLK input frequency. PLL_RANGE(1:0) must be set to the correct values for expected processor frequency. Consult *Table 5-2. PowerPC 970FX PLL Configuration on page 58* for the allowable frequency range for these pins.

2. PPC 970FX minimum processor frequency will be determined by characterization. The minimum frequency is an estimation.

3. Rise and fall times for the SYSCLK inputs are measured from 0.4 to 1.0V.

4. Important: The data in this table is based on simulation and may be revised after hardware characterization.

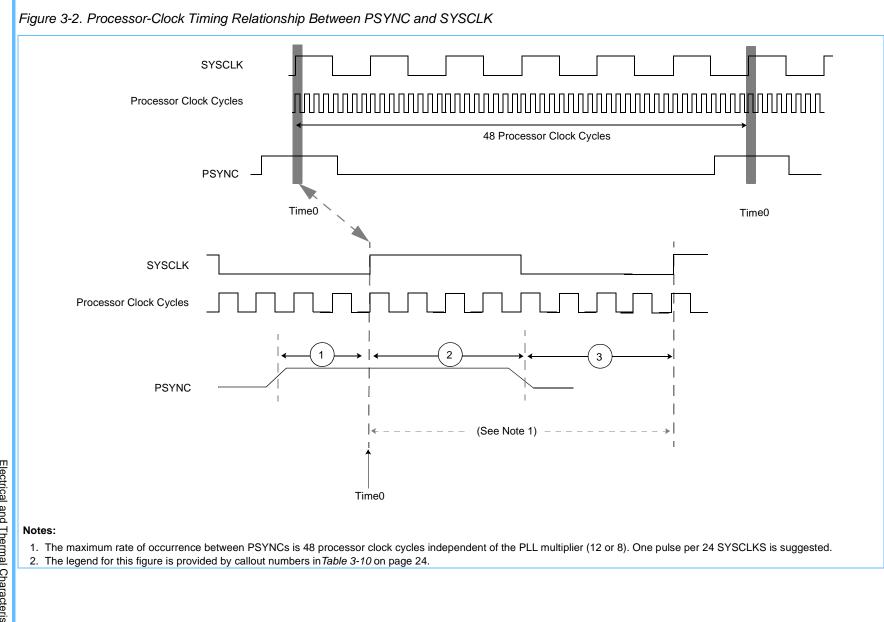

5. For a timing diagram, see Figure 3-1.

6. Guaranteed by design and not tested.

7. The differential voltage is the minimum peak to peak voltage on both the SYSCLK and SYSCLK pins (similar to what would be measured with single ended oscilloscope probes).

To determine the processor clock, multiply the SYSCLK by one of the following:

- 12 for PLL MULT = 0
- 8 for PLL_MULT = 1


For more information about the PLL configuration, see Table 5-2 on page 58.

3.4 Processor-Clock Timing Relationship Between PSYNC and SYSCLK

Table 3-10 and Figure 3-2 provide a description of the processor-clock timing relationship between PSYNC and SYSCLK.

Call Out	Characteristic		Value		Unit
Number	Characteristic		Minimum	Maximum	Onit
1	Setup time	t _{SETUP}	0.8	—	ns
2	Hold time	t _{HOLD}	0.8	—	ns
3	Guard time	t _{GUARD}	0.8	—	ns
Note: For	a timing diagram, see Figure 3-2 on page 25.				

y ıg ıg ρ ag

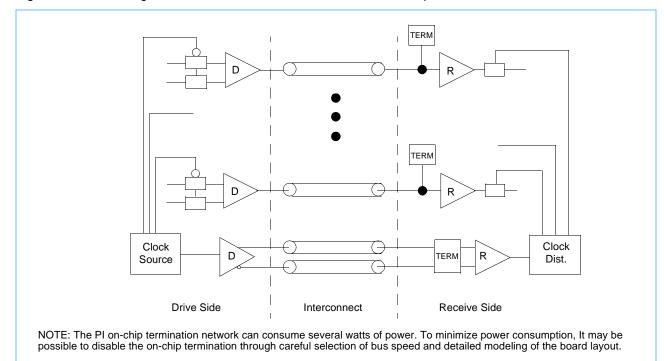
June 4, 2006

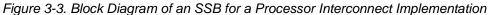
Electrical and Thermal Characteristics Page 25 of 74

Data Sheet PowerPC 970FX

Preliminary

[[....]]




3.5 Processor Interconnect Specifications

3.5.1 Electrical and Physical Specifications

3.5.1.1 Source Synchronous Bus (SSB)

Figure 3-3 depicts a representative block diagram of an SSB for a PowerPC 970FX Processor Interconnect implementation. Each SSB consists of three major subsections: the drive side, the module-to-module interconnect, and the receive side. Data is first either Balance-Coding-Method (BCM) encoded or checksummed, then clock-phase multiplexed, and finally launched from the drive side onto the module interconnect. The receive side includes far-end termination and circuitry to demultiplex, deskew data, align clocks, and synchronize the received data.

3.5.1.2 Drive Side Characteristics

Figure 3-4 shows a typical implementation for a single-ended line. The drivers are of the push-pull type with a nominal impedance (R0 of 20 ohms) that overdrives the line impedance. The nominal swing at the receiver, terminated with resistance (TR0 of 110 ohms) to each rail, is 13% OV_{DD} to 87% OV_{DD} . R0 is 20 ohms when the driver is in the low output impedance mode. The 20 ohm setting is suitable for all bus speeds. The PPC970FX has a 40 ohm nominal output impedance mode that is suitable for bus speeds below 800 MT/s in some applications.

The maximum skew between any of the outputs is 150 ps at the BGA pin. The maximum interconnect skew on the card(s) between any two outputs must be less than 150 ps. The interconnect skew on the card(s) between any two inputs must be less than 300 ps.

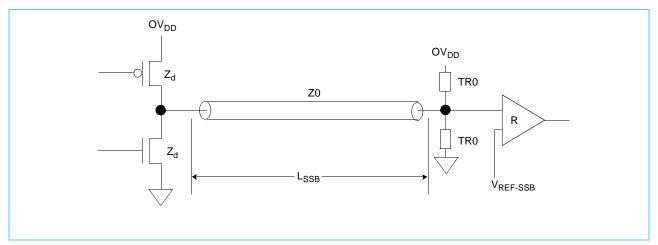


Figure 3-4. Typical Implementation for a Single-ended Line

Table 3-11. Processor Interconnect SSB Driver Specifications

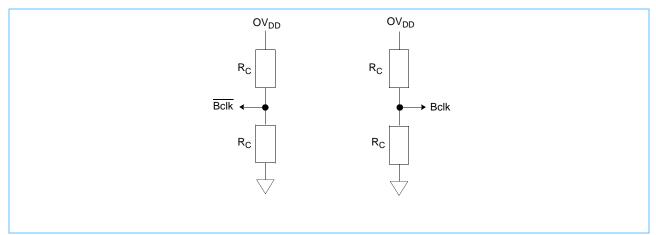
Symbol	Description	Minimum	Typical	Maximum	Units	Notes
V _{OH} DC	High output level at DC		0.87 OV _{DD}		mV	
V _{OL} DC	Low output level at DC		0.13 OV _{DD}		mV	
T _{DR}	Driver rise time	70	133	171	ps	20% to 80% of swing
T _{DF}	Driver fall time	81	155	162	ps	20% to 80% of swing
Z _D	Driver output impedance	15	20	25	Ohms	Low Ohm mode
Z _D	Driver output impedance	30	40	50	Ohms	High Ohm mode

3.5.1.3 Module-to-Module Interconnect Characteristics

All traces are to be routed as striplines or microstrip. The tolerance on trace impedance is 10%. Care must be taken when mixing transmission line styles to manage propagation delay differences. The clock delay should be longer than the longest data delay for bus speeds at or above 1.1 Gb/s or on lines above 13 cm.

Table 3-12. Processor Interconnect SSB PCB Trace Specifications

Symbol	Description	Minimum	Typical	Maximum	Units	Notes		
			Trace length			18	cm	For transfer speeds of 1.5G/s.
L _{SSB}	Trace length			22.5	cm	For transfer speeds of 1.0G/s.		
Z ₀	Trace impedance	45	50	55	Ohms			
S _{DPCB}	PCB data trace skew			150	ps			


3.5.1.4 Receive Side Characteristics

The receive side contains far-end termination circuitry as shown in *Figure 3-4* for the single-end lines. The total skew from the drive side to the module input pins on the receive side is 350ps (S_{DS} + S_{PCB}) between any two signals (clocks or data). The differential clock termination scheme is shown in *Figure 3-5*. All receivers are pseudo-differential with reference to $V_{REF-SSB}$ and with common-mode rejection of at least $0.5 \times V_{DD}$. $V_{REF-SSB}$ may be generated internally by the receive-side circuitry or may be derived from the supply voltage.

T-1-1-040	D	1		.	0
Table 3-13.	Processor	Interconnect	22R F	Receiver	Specifications

Symbol	Description	Minimum	Typical	Maximum	Units	Notes
V _{REF-SSB}	SSB reference voltage		0.5 x OV _{DD}		mV	(V _{OH} DC + V _{OL} DC)/2
Bclk _{DC}	Bus clock duty cycle	48	50	52	%	
TR0	Single-ended terminator	83	110	137	Ohms	110 +/-25%

Figure 3-5. Differential Clock Termination Circuitry

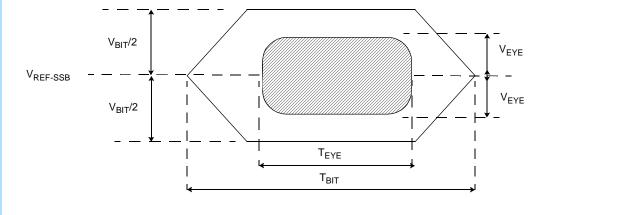

For high-performance operation, the PI supports the inclusion and operation of receive-side circuitry for clock alignment and individual bit-level deskew. An initialization alignment procedure (IAP) is activated at power-on reset (POR) for bit-level deskew and clock alignment. The IAP uses delay elements in the receive-side circuitry to first equalize the delay of the incoming data signals and then center the clock transition in the timing window. The timing parameters for the delay elements and flip-flops that register the data signals are summarized in *Table 3-14*.

Table 3-14. Processor Interconnect SSB Timing Parameters for the Deskew and	Clock Alignment
---	-----------------

Symbol	Description	Minimum	Typical	Maximum	Units	Notes
T _{BIT}	Bit time		1/(2xBclk)		ns	
T _{DED}	Delay element time increment	18	25	35	ps	Thirty-one delay elements for data
T _{DEC}	Delay element time increment	18	25	35	ps	Sixty-four delay elements for clock

Figure 3-6. Post-IAP Eye Opening

The reference level for V_{EYE} is $V_{REF-SSB}$. Horizontal (T_{EYE}) eye opening is a function of the bit time (T_{BIT}) and the earliness of the bus clock transition relative to the slowest data signal.

T / / A / F		– , , ,
Table 3-15.	Eve-Size	Requirements

Bit Rate (Mb/s)	CPU Bus Ratio	CPU Core (MHz)	Step Time (ps)	Eye Requirement (ps)	Bit Time (ps)	Eye/Bit Time	V _{EYE} (Minimum)
400	3	1200	31.9	863	2500	34.5%	150mv
450	3	1350	31.9	797	2222.2	34.5%	150mv
500	3	1500	31.9	744	2000	37.2%	150mv
500	2	1000	31.9	744	2000	37.2%	150mv
666	3	1998	27.8	605	1501.5	40.3%	150mv
666	2	1332	31.9	625	1501.5	41.6%	150mv
866	2	1732	31.9	544	1154.7	47.1%	150mv
1066	2	2132	26.0	465	938.1	49.6%	150mv

3.6 Input AC Specifications

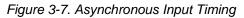
This section provides specifications for pins: INT, MCP, QACK, HRESET, SRESET, TBEN, THERM_INT, and TRIGGERIN.

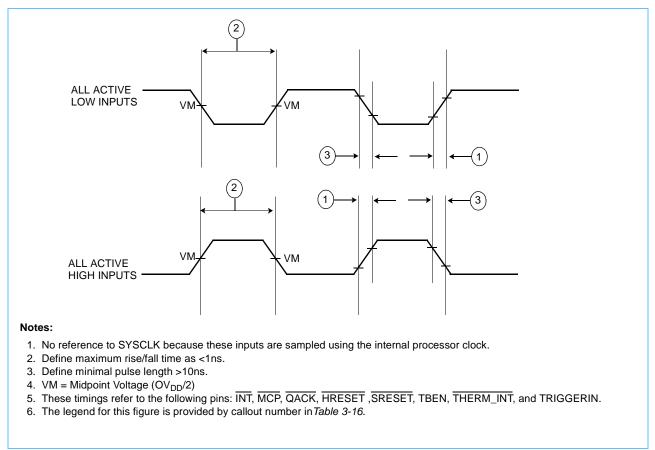
Table 3-16, Table 3-17, and Table 3-18 provide the input AC timing specifications as defined in Figure 3-7.

Table 3-16. Input AC Timing Specifications

Call Out Number	Characteristic	Value		Unit
		Minimum	Maximum	Onit
1	Rise time	—	<1	ns
2	Pulse width	10	—	ns
3	Fall time	_	<1	ns

Table 3-17. Input AC Timing Specifications for TBEN


Call Out Number	Characteristic	Value		Unit	
		Minimum	Maximum	Onit	
1	Rise time	—	<1	ns	
2	Pulse width	8*T _{full} 1	—	ns	
3	3 Fall time		<1	ns	
1. T _{full} is the clock period of the full frequency processor clock.					


Table 3-18. Input AC Timing Specifications for HRESET

Call Out Number	Characteristic	Value		Unit
		Minimum	Maximum	Offic
1	Rise time	—	<1.5	ns
2	Pulse width	50	—	ns
3	Fall time	—	<1.5	ns

Note: For bus timing information, refer to Section 3.5 of the PowerPC 970FX Users Manual.

3.6.1 TBEN Input Pin

The TBEN input pin can be used as either an enable for the internal timebase/decrementer or as an external clock input. The mode is controlled by the setting of HID0 bit 19. When this bit is 0, the timebase and decrementer update at 1/8th the processor core frequency whenever TBEN is high (traditional enable mode). When HID0 bit 19 is 1, the timebase and decrementer are clocked by the rising edge of TBEN (external clock input mode). When the external clock input mode is used the TBEN input frequency must not exceed 1/16th of the core processor's maximum frequency.

3.7 Asynchronous Output Specifications

This section describes the asynchronous outputs and bi-directionals. Timing information is not provided because these signals are launched by the internal processor clock.

Table 3-19, Table 3-20, and *Table 3-21* list the signals for the asynchronous outputs and bi-directionals (BiDi).

Table 3-19. Asynchronous Type Output Signals

Pin	Description	Comment	Pin		
ATTENTION	Attention	To service processor	AD12		
QREQ	Quiesce request	Power management	AB12		
TRIGGEROUT		Debug only	N19		
Note: No reference to SYSCLK because this output is launched by the (internal) processor clock.					

Table 3-20. Asynchronous Open Drain Output Signals

Pin	Description	Comment	Pin
12CGO	I ² C interface go	Arbitration I ² C and JTAG	N22
Notes: The rise/fall times are measured at 20 ^c No reference to SYSCLK because this Pull up resistor = TBD	% to 80% of the input signal swing. output is launched by the (internal) proc	essor clock.	

Table 3-21. Asynchronous Open Drain Bidirectional (BiDi) Signals

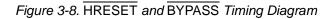
Pin	Description	Comment	Pin			
CHKSTOP		R20				
Notes: No reference to SYSCLK because this output is launched by the (internal) processor clock. Pull up resistor = TBD						

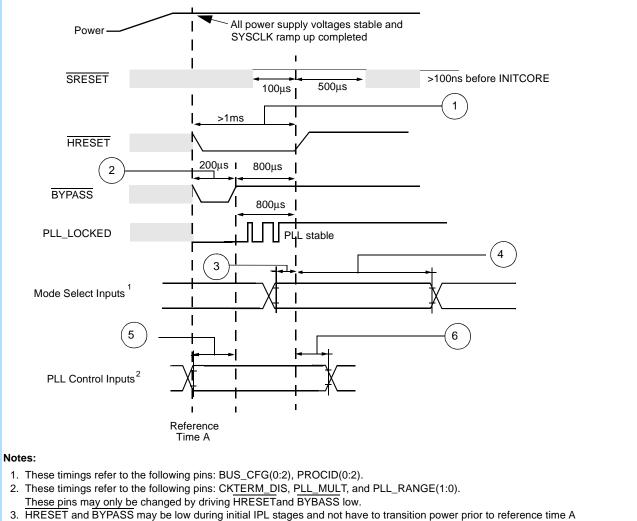
3.8 Mode Select Input Timing Specifications

This section provides timing specifications for the mode-select pins. These pins are sampled by HRESET.

Table 3-22 provides the input AC timing specifications as defined in *Figure 3-8* on page 34. The mode-select signals and debug pins are listed in *Table 3-23* on page 35 and *Table 3-24* on page 35.

Call Out Number	Characteristic	Value		Unit	Notes
		Minimum	Maximum	Offic	110165
1	HRESET Width	>1	—	ms	_
2	BYPASS Width	200	—	μs	_
3	Mode select signal setup	20	—	Processor clocks	1, 5
4	Mode select inputs hold time	1000	—	Processor clocks	1
5	PLL control signal setup	20		Processor clocks	2,3
6	PLL control inputs hold time	20		Processor clocks	2,3


Notes:


1. Mode select pins must not change level sooner than 20 processor clocks before the falling edge of HRESET and must be held for a minimum of 1000 processor clocks after the rising edge of HRESET.

2. PLL control pins must not change level earlier than 20 processor clocks before the rising edge of BYPASS and must be held for a minimum of 20 processor clocks after the rising edge of HRESET.

- 3. PLL control inputs must not change while HRESET is low.
- 4. For a timing diagram, see Figure 3-8 on page 34 and Figure 3-9 on page 36.
- 5. Guaranteed by design and not tested.

- PLL control inputs must not change while HRESET is low.
- 5. The legend for this figure is provided by callout number in Table 3-22 on page 33.

Table 3-23. Mode Select Type Input Signals

Pin	Description	Comment	Pin
BUS_CFG(0:2)	Bus configuration	Select processor clock to bus clock ratio	AA19, AC19, AB16
CKTERM_DIS	Clock receiver termination	Disable internal clock receiver terminator	AA14
PLL_MULT	Select between multiplier 8 or 12		AA8
PLL_RANGE(1:0)	PLL range select		AA9, AB7
PROCID(0:2)	Processor ID	For multi processor environment	L19, M19, M18

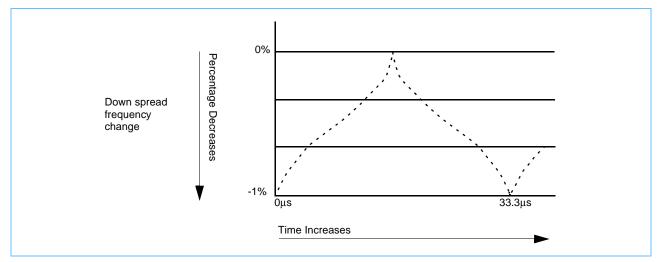
Table 3-24. Debug Pins

Pin	Description	Comment	Pin
AVP_RESET		For manufacturing test only	W23
EI_DISABLE		Turns off elasticity in the processor interface.	P20
GPULDBG	970FX debug	Pull up to OV_{DD} for debug mode, JTAG - I ² C interaction	AA22

3.9 Spread Spectrum Clock Generator (SSCG)

3.9.1 Design Considerations

When designing with the Spread Spectrum Clock Generator (SSCG), there are several design issues that must be considered as described in this section. SSCG creates a controlled amount of long-term jitter. For a receiving PLL in the PowerPC 970FX to operate in this environment, it must be able to accurately track the SSCG clock jitter.


Note: The accuracy to which the PowerPC 970FX PLL can track the SSCG clock is called the *tracking skew*.

The following SSCG configuration is recommended:

- Down spread mode, less than or equal to 1% of the maximum frequency
- A modulation frequency of 30KHz
- A cubic sweep profile, also called a *Hershey Kiss*^{™1} profile (as in a Lexmark² profile), as shown in *Figure 3-9*.

In this configuration the tracking skew is less than 100ps.

^{1.} Hershey Kiss is a trademark of Hershey Foods Corporation.

^{2.} See patent 5,631,920.

3.10 I²C and JTAG

3.10.1 I²C Bus Timing Information

The I²C bus specification can be downloaded from Philips Semiconductors web site at <u>http://semiconductors.philips.com</u>.

The PPC 970FX I²C bus is limited to a speed of 50KHz for the standard-mode timing specification and does not support the high-speed (Hs-mode) or fast-mode timing.

The PPC 970FX I²C pins are limited to OV_{DD} voltages. Level shifting and/or pullups may be required to interface to higher voltage devices. See the Philips I²C bus specifications for recommendations on level shifting and pullups.

Note: To avoid problems in determining the proper pullup resistor value, it is recommended that levelshifted 970FX I²C bus pins not be wired together with non-970FX parts in a system. Each 970FX should have its own private level shifter.

3.10.2 IEEE 1149.1 AC Timing Specifications

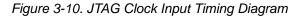
Table 3-25 provides the IEEE 1149.1 (JTAG) AC timing specifications as defined in *Figure 3-10* on page 38 and *Figure 3-11* on page 39. The five JTAG signals are as follows:

- 1. TDI
- 2. TDO
- 3. TMS
- 4. TCK
- 5. TRST

Note: The following are some of the PowerPC 970FX's non-standard IEEE AC timing implementations:

- 1. Refer to Section 3.9.3 I2C and JTAG Considerations to determine pullups/pulldowns for configuration of TCK, TDI, and TMS
- 2. Systems using multiple PowerPC 970FXs in multiprocessor configurations should not daisy chain JTAG scan chains if I2C is supported. They should connect the JTAG scan chains in parallel (TCK, TDI, etc., tied together) and use separate TMS inputs to select each 970 processor forJTAG access.
- 3. JTAG operations need the core clock to be operating usually with PLL in bypass. CLKIN and CLKIN must receive at least 16 pulses for TCK down level and 16 pulses for TCK up level.

CallOut Number	Characteristic	Minimum	Maximum	Unit	Notes
—	TCK frequency of operation	TBD	1/16	Core processor frequency	1, 5
2. Proc 3. Guai 4. Minir 5. JTAC	frequency is limited by the core processor fr essor clock cycles. ranteed by characterization and not tested. num specification guaranteed by characteriz 6 timings are dependent on an active SYSCL a timing diagram, see <i>Figure 3-10</i> on page 38	ation and not t		9.	


Table 3-25. JTAG AC Timing Specifications (Dependent on SYSCLK)

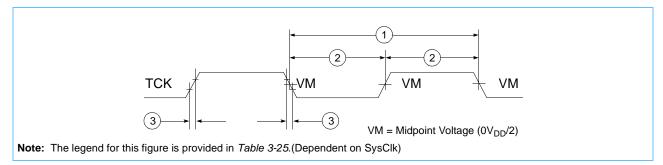

K cycle time K clock pulse width K rise and fall times	32 15		Processor clocks Processor clocks	2, 5
	15	—	Processor clocks	
K rise and fall times				2, 5
	0	2	ns	3, 5
S, TDI data setup time	0	—	ns	5
S, TDI data hold time	15	—	ns	5
K to TDO data valid	2.5	12	ns	4, 5
K to TDO high impedance	3	9	ns	3, 5
K to output data invalid (output hold)	0	—	ns	5
ł	S, TDI data hold time < to TDO data valid < to TDO high impedance	S, TDI data hold time15< to TDO data valid	S, TDI data hold time15C to TDO data valid2.5C to TDO high impedance3	S, TDI data hold time15—ns(to TDO data valid2.512ns(to TDO high impedance39ns

Table 3-25. JTAG AC Timing Specifications (Dependent on SYSCLK)

1. TCK frequency is limited by the core processor frequency.

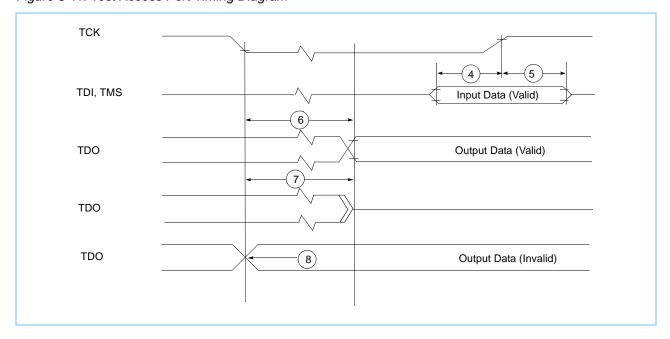

- 2. Processor clock cycles.
- 3. Guaranteed by characterization and not tested.
- 4. Minimum specification guaranteed by characterization and not tested.
- 5. JTAG timings are dependent on an active SYSCLK.
- 6. For a timing diagram, see Figure 3-10 on page 38 and Figure 3-11 on page 39.

Figure 3-11 provides the test access port timing diagram. *Figure 3-11. Test Access Port Timing Diagram*

3.10.3 I²C and JTAG Considerations

For systems using only JTAG, TDO should be pulled up (tied to OV_{DD}), and the I²C data and clock pins should also be tied to OV_{DD} . For systems using only I²C, TCK, TMS, TDO, and TDI should be pulled down. If the system needs to support both JTAG and I²C access, pulldown resistors must be implemented on the JTAG pins. These resistors maintain the proper state on the JTAG pins when I²C access is active. These pulldown resistors must be able to be overridden for JTAG operation. Additionally, the JTAG driver hardware connected to the 970FX should drive its outputs low (on TCK, TMS, TDI) when JTAG is idle. Systems using multiple PowerPC 970FXs in multiprocessor configurations should not daisy chain JTAG scan chains if I²C is supported. They should connect the JTAG scan chains in parallel (TCK, TDI, etc., tied together) and use separate TMS inputs to select each 970 processor for JTAG access.

Note: TRST should always be pulled up to OV_{DD} on the PowerPC 970FX.

3.10.4 Boundary Scan Considerations

The PowerPC 970FX does not support the BSDL standard for implementing boundary scan testing. The IBM technical library contains an application note titled *PowerPC 970FX Boundary Scan*, which describes a method of producing the equivalent function.

4. PowerPC 970FX Microprocessor Dimension and Physical Signal Assignments

IBM's PPC 970FX uses a ceramic ball grid array (CBGA) that supports 576 balls. Two different substrates are used for the PowerPC 970FX. Both packages are shown. Note that they are identically dimensioned.

4.1 ESD Considerations

Appropriate ESD handling procedures should be implemented and maintained for any facilities handling this component.

This product has been ESD tested to meet or exceed the JEDEC spec for:

- HBM Class 1B
- CDM Class II
- MM Class A.

4.2 Mechanical Packaging

4.2.1 Leaded Package Version

Figure 4-1 and *Figure 4-2* show the side and top views of the packages including the height from the top of the die to the bottom of the solder balls. *Figure 4-3* shows a bottom view of the PowerPC 970FX.

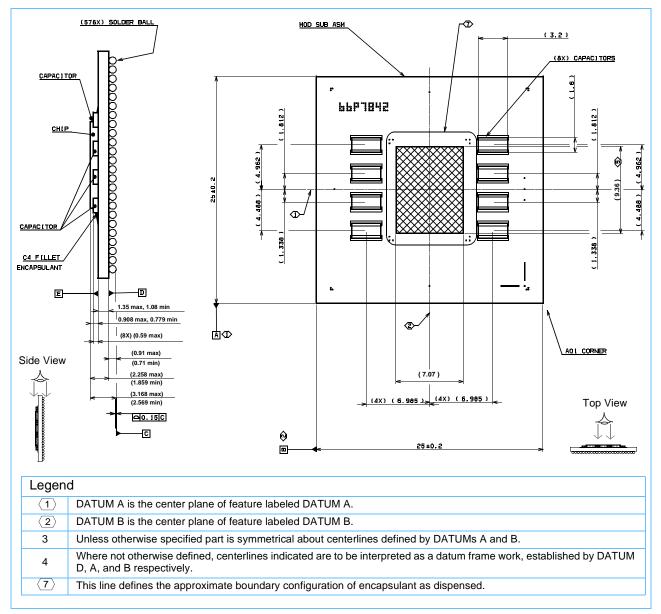
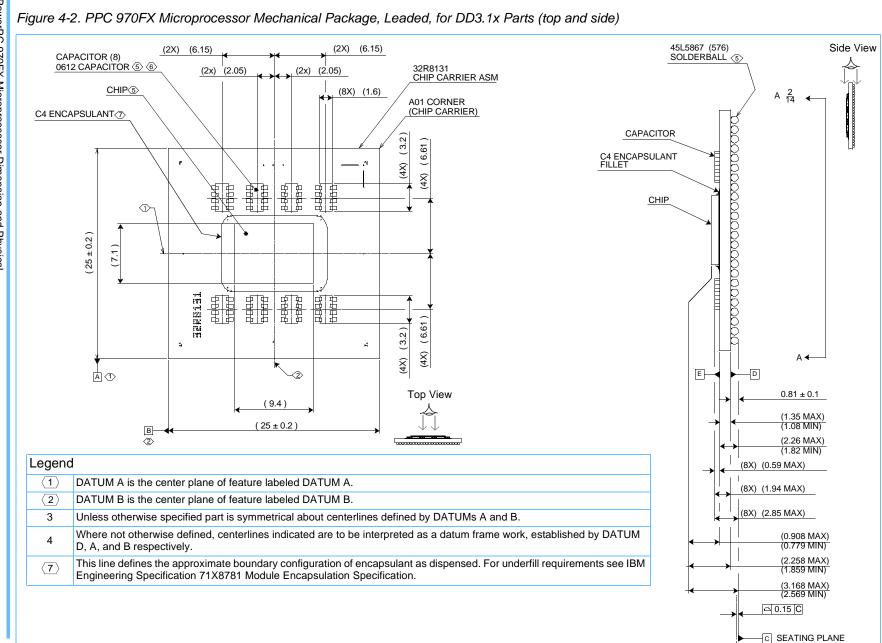



Figure 4-1. PPC 970FX Microprocessor for Mechanical Package, Leaded, for DD3.0x Parts (top and side)

PowerPC 970FX Microprocessor Dimension and Physical Signal Assignments Page 42 of 74

Preliminary

lluull

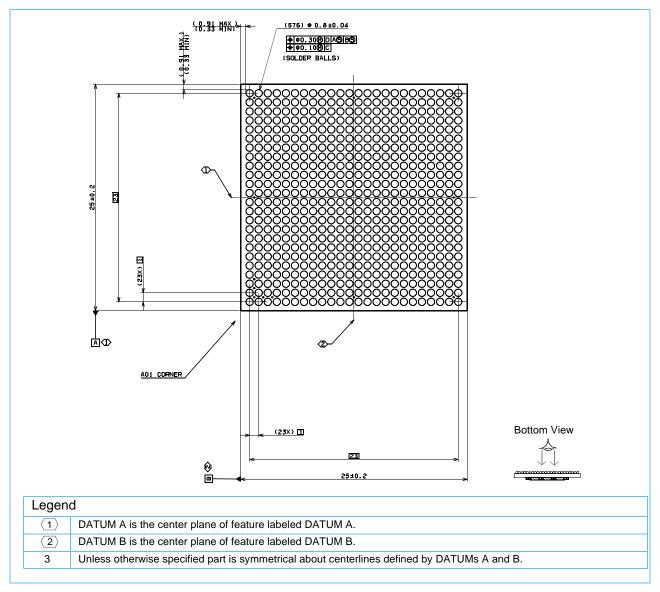


Figure 4-3. PPC 970FX Microprocessor Bottom Surface Nomenclature of Mechanical Package, Leaded, CBGA Package

4.2.2 Reduced-Lead Package Version

This section describes the reduced-lead package, as indicated by the 'R' in the Package code field of the part number. For the reduced lead package, lead-free solder is used for the substrate capacitors and the BGA balls on the bottom of the package. Standard high melting point 97Pb3Sn solder (exempted by EU RoHS legislation) is used for the C4 balls that connect the die to the substrate. The resulting module is RoHS compatible.

All Datasheet electrical specifications apply equally to standard and reduced-lead parts.

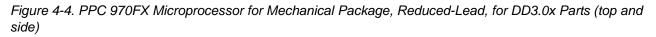
4.2.2.1 Mechanical Specifications

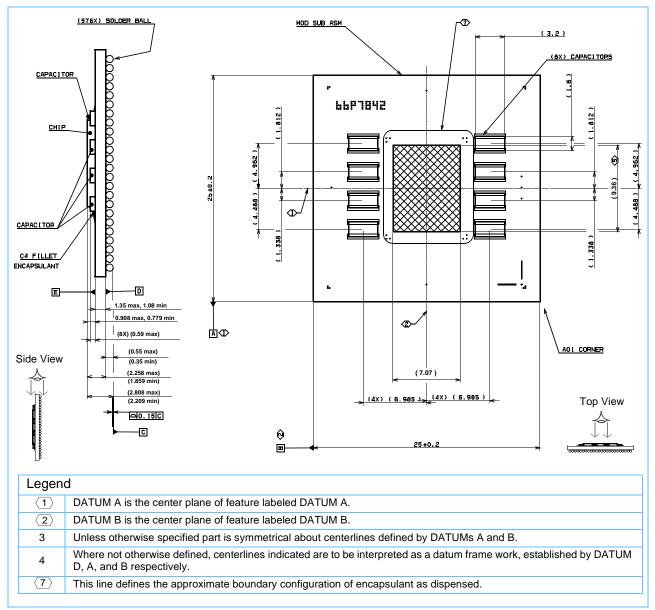
The solder balls on the bottom of the reduced-lead package are slightly smaller, which will decrease the overall module height when assembled onto a board. Heatsink solutions should be modified accordingly

Package	JEDEC MSL	Solder Ball Composition	Solder Ball Diameter	CBGA Substrate I/O Pad Diameter	Card Solder Mask Open- ing Diameter	Card Solder Screen Diameter	Card Pad Diameter
Leaded	1	Sn 10% Pb 90%	31.5 (0.80)	31.5 (0.80)	31.5 (0.80)	26.5mil open-ing in 7.5mil thick stencil, 2500- 4600 cubic mils	27.5 (0.70)
Reduced Lead	3	Sn 95.5% Ag 3.8% Cu 0.7%	25 (0.635)	31.5 (0.80)	28 (0.72)	23mil opening in 4mil thick stencil, 1400- 2000 cubic mils	24 (0.61)

-		
Table 4-1. Leaded and Reduced-Lead	Dackage Lavout	and Accomply Differences
Table 4-1. Leaved and Reduced-Leav	Γαυλάψε, μαγυμί, α	and Assembly Dimerences
		,

i parenthesis are


4.2.2.2 Assembly Considerations


The reduced-lead package is compatible with a 260C lead-free card assembly reflow profile. Refer to the INEMI Consortium, www.inemi.org, for industry-standard assembly and rework information. The coplanarity specification for the reduced-lead CBGA, like other single melt BGA packages, is 0.20 mm (8mil). The qualification testing included a lead-free water soluble solder paste with type 3 mesh size (-325/+500). The solder alloy is 95.5% Sn, 4.0% Ag, and 0.5% Cu, with a 90% metal loading. The paste viscosity range is 600 to 800 Kcps. The thickness of the stencil is 4 mils and the aperture size is 23 mil diameter. The target solder paste volume range is between 1400 to 2000 cubic mils. Achieving the correct paste volume is necessary for eliminating solder shorts and producing high reliability solder joints. The actual solder paste volume from the qualification build ranged from 1750 to 2000 cubic mils.

Another change is the JEDEC Moisture Sensitivity Level, which is MSL 3 for the reduced-lead package. Storage and assembly protocols should be modified accordingly.

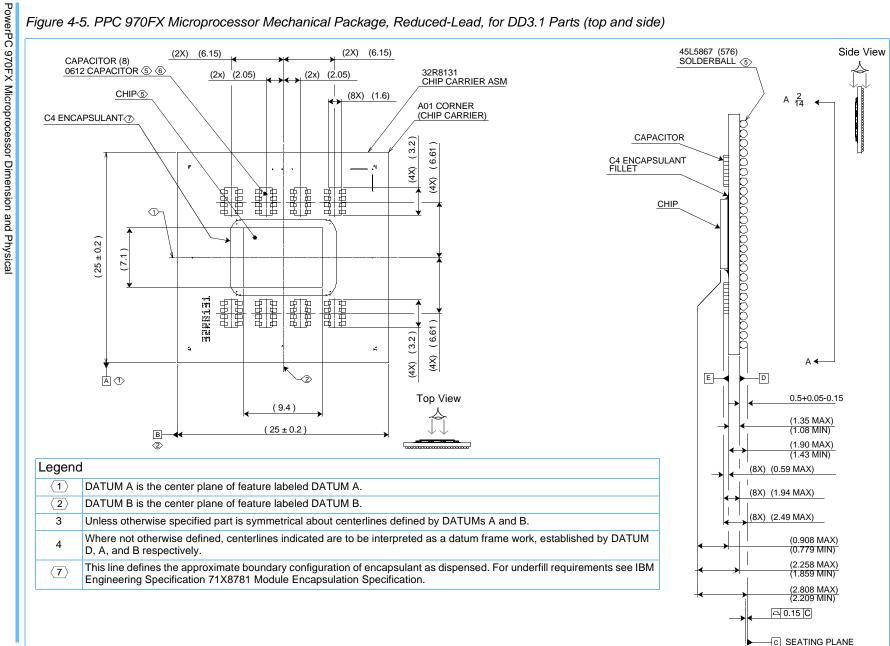


Figure 4-4 and *Figure 4-5* show the side and top views of the packages including the height from the top of the die to the bottom of the solder balls. *Figure 4-6* shows a bottom view of the PowerPC 970FX.

PowerPC 970FX Microprocessor Dimension and Physical Signal Assignments Page 46 of 74

June 4, 2006

Preliminary

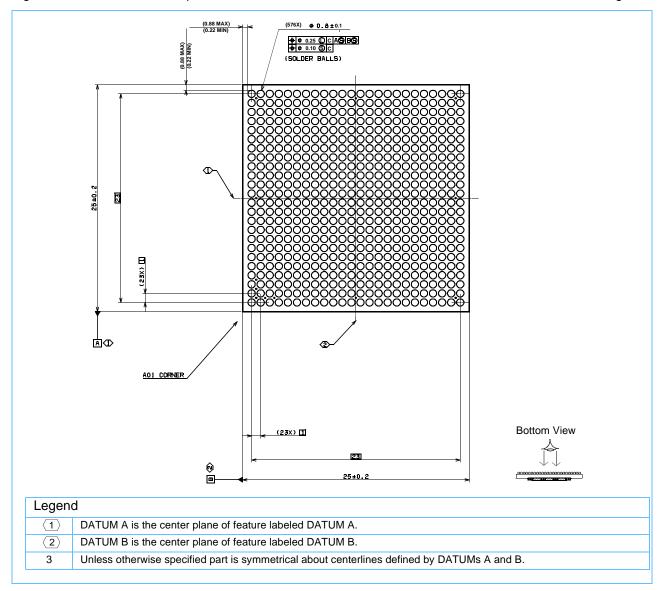


Figure 4-6. PPC 970FX Microprocessor Bottom Surface Nomenclature of Reduced-Lead CBGA Package

0								•	•	,														
AD24 GND	AD23 OV _{DD}	AD22 TMS	AD21 TCK	AD20 GND	AD19 OV _{DD}	AD18 MCP	AD17 TBEN	AD16 GND	AD15 OV _{DD}	AD14 PSYNC_ OUT	AD13 TDO	AD12 ATTENT ION	AD11 LSSD_S TOP_EN ABLE	AD10 GND	AD9 OV _{DD}	AD8 LSSD_STO PC2_ENAB LE	AD7 LSSD_STO PC2STAR_ ENABLE	AD6 GND	ads V _{DD}	AD4 GND	AD3 V _{DD}	AD2 GND	AD1 OV _{DD}	A D
AC24 BI_MOD E	AC23 GND	AC22 V _{DD}	AC21 GND	AC20 V _{DD}	AC19 BUS_CF G1	AC18 V _{DD}	AC17 GND	AC16 C1_UND _GLOBA L	AC15 C2_UND _GLOBA L	AC14 V _{DD}	AC13 GND	AC12 V _{DD}	AC11 GND	AC10 PULSE_ SEL2	AC9 PULSE_ SEL0	AC8 V _{DD}	AC7 GND	AC6 V _{DD}	GND	AC4 V _{DD}	AC3 GND	AC2 V _{DD}	AC1 GND	A C
AB24 SYNC_E NABLE	AB23 V _{DD}	AB22 GND	AB21 TDI	AB20 GND	AB19 INT	AB18 GND	AB17 V _{DD}	AB16 BUS_CF G2	AB15 V _{DD}	AB14 GND	AB13 V _{DD}	AB12 QREQ	AB11 PULSE_ SEL1	AB10 GND	AB9 V _{DD}	AB8 GND	AB7 PLL_RANG E0	AB6 RAMST OP_ENA BLE	AB5 LSSDM ODE	AB4 SRESET	AB3 V _{DD}	AB2 GND	AB1 V _{DD}	Å
AA24 OV _{DD}	AA23 GND	AA22 GPULD BG	AA21 GND	AA20 I2CCK	AA19 BUS_CF G0	AA18 V _{DD}	AA17 GND	AA16 V _{DD}	AA15 GND	AA14 CKTER M_DIS	AA13 SPARE	AA12 AFN	AA11 GND	AA10 PSYNC	AA9 PLL_RA NGE1	AA8 PLL_MULT	AA7 GND	ov _{DD}	AA5 RI	AA4 V _{DD}	AA3 GND	AA2 V _{DD}	AA1 DIODEN EG	Å
Y24 GND	V23 V _{DD}	V22 V _{DD}	Y21 I2CDT	GND	^{Y19} V _{DD}	GND	00,000	Y16 GND	V15 V _{DD}	Y14 GND	V13 OV_{DD}	GND	V11 V _{DD}	GND	^{Y9} V _{DD}	GND	V7 V _{DD}	GND	V5 V _{DD}	GND	^{ҮЗ} V_{DD}	GND	Y1 DIODEP OS	Y
W24 OV _{DD}	W23 AVP_RE SET	W22 PLLTES T	W21 GND	W20 TRST	GND	^{W18} V _{DD}	GND	^{W16} V _{DD}	GND	W14 V _{DD}	GND	W12 V_{DD}	W11 GND	w10 V _{DD}	GND	wa V _{DD}	GND	W6 V _{DD}	GND	W4	GND	W2 VDD	GND	w
V24 BYPASS	V23 PSRO0	V22 THERM _INT	V21 QACK	V20 HRESET	V19 V_{DD}	GND	V17 V_{DD}	V16 GND	V15 V _{DD}	GND	V13 V_{DD}	GND	V11 V _{DD}	V10 GND	V9 V _{DD}	GND	V7 V _{DD}	GND	V5 PSRO_ Enable	GND	V3 V _{DD}	GND	V1 V _{DD}	v
U24 DI2	GND	U22 V _{DD}	GND	U20 V _{DD}	U19 LSSD_S CAN_EN ABLE	U18 V_{DD}	GND	U16 V_{DD}	U15 GND	U14 V _{DD}	GND	U12 V_{DD}	GND	U10 V _{DD}	GND	V8 V _{DD}	GND	^{U6} V _{DD}	GND GND	U4 V _{DD}	GND	V2 VDD	GND	U
T24 GND	V _{DD}	T22 SYSCLK	OV _{DD}	T20 PLL_LO CK	T19 PLLTES TOUT	GND	т17 V_{DD}	GND	0V _{DD}	GND	T13 V _{DD}	GND	ov _{dd}	GND	т9 V_{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	T2 KVPRB GND	V _{DD}	т
R24 ANALO G_GND	GND	R22 SYSCLK	R21 GND	R20 CHKST OP	GND	^{R18} V _{DD}	GND	^{R16} V _{DD}	R15 GND	^{R14} V _{DD}	GND	^{R12} V _{DD}	R11 GND	^{R10} V _{DD}	GND	R8 V _{DD}	GND	R6 V _{DD}	GND	R4 V _{DD}	GND	R2 KVPRBV DD	R1 Z_SENS E	R
P24 AVDD	P23 V _{DD}	GND	P21 V _{DD}	P20 EI_DISA BLE	P19 V _{DD}	GND	^{Р17} ОV_{DD}	P16 GND	P15 V _{DD}	P14 GND	P13 V_{DD}	GND	P11 V _{DD}	P10 GND	P9 V _{DD}	B8 GND	P7 V _{DD}	GND	P5 V _{DD}	GND	P3 V _{DD}	P2 Z_OUT	V _{DD}	Ρ
ov _{dd}	GND	N22 I2CGO	N21 TRIGGE RIN	N20 V _{DD}	N19 TRIGGE ROUT	N18 V _{DD}	GND	N16 V _{DD}	GND	N14 V _{DD}	GND	N12 V _{DD}	GND	N10 V _{DD}	GND	V ^{N8} V _{DD}	GND	N6 V _{DD}	GND	N4 V _{DD}	N3 ADOUT0	V ^{N2} V _{DD}	N1 SPARE_ GND	N
GND	M23 V _{DD}	GND	M21 V _{DD}	GND	M19 PROCID 1	M18 PROCID 2	^{M17} V _{DD}	GND	M15 V _{DD}	GND	M13 V _{DD}	GND	M11 V _{DD}	GND	^{M9} OV_{DD}	GND	M7 V _{DD}	GND	V _{DD}	GND	M3 ADOUT4	GND	ov _{DD}	м
L24 SRIN0	GND	L22 SRIN1	L21 SRIN1	L20 V _{DD}	L19 PROCID 0	L18 V _{DD}	GND	0V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	0V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	L3 SROUT0	L2 SROUT0	L1 ADOUT3	L
K24 SRIN0	к23 V _{DD}	K22 ADIN6	K21 OV _{DD}	GND	к19 V_{DD}	GND	ov _{dd}	GND	K15 V _{DD}	K14 GND	кіз V _{DD}	GND	K11 V _{DD}	GND	кэ V _{DD}	GND	кт V _{DD}	GND	ov _{dd}	K4 ADOUT5	K3 ADOUT2	K2 ADOUT6	GND	к
J24 ADIN8	GND	J22 ADIN3	J21 ADIN1	J20 V _{DD}	GND	OV _{DD}	J17 GND	V _{DD}	GND	ov _{dd}	GND	V _{DD}	GND	00,000	GND	ov _{dd}	GND	V _{DD}	GND	V _{DD}	GND	$v_{DD}^{J^2}$	ov _{dd}	J
H24 OV _{DD}	H23 ADIN7	H22 ADIN2	H21 ADIN0	GND	н19 V_{DD}	GND	н17 V_{DD}	H16 GND	H15 V _{DD}	H14 GND	н13 V_{DD}	H12 GND	H11 V _{DD}	H10 GND	H9 V _{DD}	GND	н7 V _{DD}	GND	N5 V _{DD}	GND	H3 ADOUT7	H2 ADOUT1	H1 ADOUT8	н
G24 ADIN13	G23 GND	G22 V _{DD}	G21 ADIN11	G20 ADIN9	G19 ADIN14	618 V _{DD}	G17 GND	^{G16} V _{DD}	G15 GND	G14 V _{DD}	G13 GND	G12 V _{DD}	G11 GND	G10 V _{DD}	G9 GND	V _{DD}	G7 GND	G6 V _{DD}	G5 GND	G4 ADOUT9	G3 ADOUT1 3	G2 GND	G1 SROUT1	G
GND	F23 ADIN10	GND	F21 ADIN25	GND	^{F19} ОV_{DD}	GND	F17 V_{DD}	GND	F15 V _{DD}	F14 GND	^{F13} V _{DD}	GND	F11 V _{DD}	F10 GND	^{F9} V _{DD}	GND	ov _{dd}	GND	V _{DD}	F4 ADOUT1 1	^{F3} ОV _{DD}	F2 ADOUT1 0	F1 SROUT1	F
E24 CLKIN	GND	E22 V _{DD}	E21 ADIN22	E20 ADIN21	GND	E18 V _{DD}	GND	E16 V _{DD}	GND	E14 V _{DD}	GND	E12 ADOUT1 6	GND	E10 V _{DD}	GND	V _{DD}	GND	^{Е6} V _{DD}	GND	V _{DD}	E3 CLKOUT	E2 ADOUT1 2	ov _{dd}	E
D24 CLKIN	D23 V _{DD}	D22 ADIN12	D21 V _{DD}	D20 ADIN32	D19 V _{DD}	D18 ADIN30	D17 V_{DD}	GND	D15 ADIN18	GND	D13 V _{DD}	GND	D11 ADOUT1 5	D10 GND	09 00 00	D8 ADOUT27	D7 V _{DD}	D6 ADOUT2 3	V _{DD}	GND	D3 CLKOUT	D2 ADOUT2 6	GND	D
OV _{DD}	GND	C22 ADIN20	GND	C20 V _{DD}	C19 ADIN34	C18 ADIN35	C17 ADIN29	C16 ADIN42	C15 ADIN17	C14 ADIN28	C13 ADIN4	C12 ADOUT2 8	C11 ADOUT1 9	C10 ADOUT4 1	C9 ADOUT3 9	C8 ADOUT35	C7 ADOUT33	C6 ADOUT3 6	C5 ADOUT2 1	C4 ADOUT3 2	GND	ov _{dd}	C1 ADOUT2 0	с
B24 ADIN24	B23 ADIN23	GND	B21 ADIN31	00000000000000000000000000000000000000	B19 ADIN27	GND	B17 ADIN26	00,000	B15 ADIN15	GND	^{B13} V _{DD}	GND	0V _{DD}	B10 ADOUT1 8	GND	B8 ADOUT14	ov _{dd}	ADOUT3 0	GND	B4 ADOUT3 1	V _{DD}	ADOUT2 2	GND	в
OV _{DD}	A23 ADIN37	A22 ADIN33	A21 ADIN36	A20 ADIN38	A19 ADIN43	A18 ADIN39	A17 ADIN41	A16 ADIN19	A15 ADIN40	A14 ADIN16	A13 ADIN5	A12 ADOUT2 9	A11 ADOUT1 7	A10 ADOUT4 0	A9 ADOUT3 8	A8 ADOUT42	A7 ADOUT34	A6 ADOUT4 3	A5 ADOUT2 4	A4 ADOUT3 7	GND	A2 ADOUT2 5	ov _{dd}	A
24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

Figure 4-7. PPC 970FX Ball Placement (Top View)

Figure 4-8.	PPC 970FX	Ball Placement	(Bottom View)
1 igui 0 + 0.	11001017	Dun i luoonnont	(Doctorn view)	/

	•								•															
A D	adı OV _{DD}	AD2 GND	ada V _{DD}	AD4 GND	^{AD5} V _{DD}	AD6 GND	AD7 LSSD_S TOPC2S TAR_EN ABLE	AD8 LSSD_S TOPC2_ ENABLE	AD9 OV _{DD}	AD10 GND	AD11 LSSD_S TOP_EN ABLE	AD12 ATTENTI ON	AD13 TDO	AD14 PSYNC_ OUT	AD15 OV _{DD}	AD16 GND	AD17 TBEN	AD18 MCP	AD19 OV _{DD}	AD20 GND	AD21 TCK	AD22 TMS	AD23 OV _{DD}	AD24 GND
A C	AC1 GND	AC2 V _{DD}	AC3 GND	AC4 V _{DD}	AC5 GND	AC6 V _{DD}	AC7 GND	AC8 V _{DD}	AC9 PULSE_ SEL0	AC10 PULSE_ SEL2	AC11 GND	AC12 V _{DD}	AC13 GND	AC14 V _{DD}	AC15 C2_UND _GLOBA L	AC16 C1_UND _GLOBA L	AC17 GND	AC18 V _{DD}	AC19 BUS_CF G1	AC20 V _{DD}	AC21 GND	AC22 V _{DD}	AC23 GND	AC24 BI_MOD E
A B	AB1 V _{DD}	AB2 GND	AB3 V _{DD}	AB4 SRESET	AB5 LSSDM ODE	AB6 RAMST OP_ENA BLE	AB7 PLL_RA NGE0	AB8 GND	AB9 V _{DD}	AB10 GND	AB11 PULSE_ SEL1	AB12 QREQ	AB13 V _{DD}	AB14 GND	AB15 V _{DD}	AB16 BUS_CF G2	ab17 V _{DD}	AB18 GND	AB19 INT	AB20 GND	AB21 TDI	AB22 GND	AB23 V _{DD}	AB24 SYNC_E NABLE
A A	AA1 DIODEN EG	AA2 V _{DD}	AA3 GND	AA4 V _{DD}	AA5 RI	ov _{DD}	AA7 GND	AA8 PLL_MU LT	AA9 PLL_RA NGE1	AA10 PSYNC	AA11 GND	AA12 AFN	AA13 SPARE	AA14 CKTER M_DIS	AA15 GND	AA16 V _{DD}	AA17 GND	^{AA18} V _{DD}	AA19 BUS_CF G0	AA20 I2CCK	AA21 GND	AA22 GPULDB G	AA23 GND	AA24 OV _{DD}
Y	Y1 DIODEP OS	GND	V3 VDD	GND	v5 V _{DD}	GND	V7 VDD	GND	v9 V _{DD}	GND	V11 V _{DD}	GND	V13 OV_{DD}	Y14 GND	Y15 V_{DD}	Y16 GND	V17 OV_{DD}	GND	Y19 V _{DD}	GND	Y21 I2CDT	Y22 V _{DD}	Y23 V _{DD}	Y24 GND
w	GND	w2 V _{DD}	GND	W4 SPARE2	GND	we V _{DD}	GND	wa V _{DD}	GND	w10 V _{DD}	W11 GND	w12 V _{DD}	GND	w14 V _{DD}	GND	^{W16} V _{DD}	GND	W18 V _{DD}	W19 GND	W20 TRST	W21 GND	W22 PLLTES T	W23 AVP_RE SET	W24 OV _{DD}
v	V1 V _{DD}	GND	V3 V _{DD}	GND	V5 PSRO_ Enable	GND	V7 V _{DD}	GND	V9 V_{DD}	GND	V11 V _{DD}	GND	V13 V_{DD}	V14 GND	V15 V_{DD}	U16 GND	V17 V _{DD}	GND	V19 V _{DD}	V20 HRESET	V21 QACK	V22 THERM_ INT	V23 PSRO0	V24 BYPASS
U	GND	U2 V _{DD}	GND	U4 V _{DD}	GND GND	U6 V _{DD}	GND	U8 V _{DD}	GND	U10 V _{DD}	GND	U12 V _{DD}	U13 GND	U14 V _{DD}	GND	U16 V _{DD}	U17 GND	U18 V _{DD}	U19 LSSD_S CAN_EN ABLE	U20 V _{DD}	GND	U22 V _{DD}	GND	U24 DI2
т	ti V _{DD}	T2 KVPRBG ND	тз V _{DD}	GND	t5 V _{DD}	GND	т7 V _{DD}	GND	т9 V_{DD}	GND	OV _{DD}	GND	т13 V_{DD}	GND	о <mark>00</mark> р	GND	T17 V _{DD}	GND	T19 PLLTES TOUT	T20 PLL_LO CK	OV _{DD}	T22 SYSCLK	T23 V _{DD}	GND
R	R1 Z_SENS E	R2 KVPRBV DD	GND	R4 V _{DD}	GND	R6 V _{DD}	GND	^{R8} V _{DD}	GND	^{R10} V _{DD}	R11 GND	^{R12} V _{DD}	GND	R14 V _{DD}	GND	^{R16} V _{DD}	GND	^{R18} V _{DD}	R19 GND	R20 CHKSTO P	GND	R22 SYSCLK	GND	R24 ANALOG _GND
Р	P1 V _{DD}	P2 Z_OUT	P3 V _{DD}	GND	P5 V _{DD}	GND	P7 V _{DD}	GND	P9 V _{DD}	GND	^{P11} V _{DD}	GND	P13 V _{DD}	GND	P15 V _{DD}	P16 GND	OV _{DD}	GND	^{P19} V _{DD}	P20 EI_DISA BLE	P21 V _{DD}	GND	P23 V _{DD}	P24 AVDD
N	N1 SPARE_ GND	V2 V _{DD}	N3 ADOUT0	V _{DD}	GND	N6 V _{DD}	GND	N8 V _{DD}	GND	N10 V _{DD}	GND	N12 V _{DD}	GND	N14 V _{DD}	GND	N16 V _{DD}	GND	N18 V _{DD}	N19 TRIGGE ROUT	N20 V _{DD}	N21 TRIGGE RIN	N22 I2CGO	GND	ov _{DD}
м	OV _{DD}	GND	M3 ADOUT4	GND	M5 V _{DD}	GND	M7 V _{DD}	GND	^{м9} ОV _{DD}	GND	M11 V _{DD}	GND	M13 V _{DD}	GND	M15 V _{DD}	GND	M17 V _{DD}	M18 PROCID 2	M19 PROCID 1	GND	M21 V _{DD}	GND	M23 V _{DD}	GND
L	L1 ADOUT3	L2 SROUT0	L3 SROUT0	l4 V _{DD}	GND	l6 V _{DD}	GND	l8 V _{DD}	GND	OV _{DD}	GND	V _{DD}	GND	V _{DD}	GND	OV _{DD}	GND	V _{DD}	L19 PROCID 0	L20 V _{DD}	L21 SRIN1	L22 SRIN1	GND	L24 SRIN0
к	GND	K2 ADOUT6	K3 ADOUT2	K4 ADOUT5	ov _{dd}	GND	к7 V _{DD}	GND	кэ V _{DD}	к10 GND	K11 V _{DD}	GND	к13 V_{DD}	GND	к15 V _{DD}	K16 GND	ov _{dd}	GND	к19 V _{DD}	K20 GND	ov _{dd}	K22 ADIN6	к23 V _{DD}	K24 SRIN0
J	ov _{dd}	V _{DD}	GND	J4 V _{DD}	GND	V _{DD}	GND	ov _{dd}	GND	J10 OV_{DD}	GND	J12 V _{DD}	GND	OV _{DD}	GND	J16 V _{DD}	J17 GND	OV _{DD}	J19 GND	J20 V _{DD}	J21 ADIN1	J22 ADIN3	GND	J24 ADIN8
н	H1 ADOUT8	H2 ADOUT1	H3 ADOUT7	GND	H5 V _{DD}	GND	N7 V _{DD}	GND	H9 V _{DD}	H10 GND	H11 V _{DD}	GND	н13 V_{DD}	H14 GND	н15 V_{DD}	H16 GND	^{H17} V _{DD}	GND	н19 V _{DD}	GND	H21 ADIN0	H22 ADIN2	H23 ADIN7	OV _{DD}
G	G1 SROUT1	G2 GND	G3 ADOUT1 3	G4 ADOUT9	G5 GND	G6 V _{DD}	G7 GND	G8 V _{DD}	G9 GND	G10 V _{DD}	G11 GND	G12 V _{DD}	G13 GND	G14 V _{DD}	G15 GND	^{G16} V _{DD}	G17 GND	^{G18} V _{DD}	G19 ADIN14	G20 ADIN9	G21 ADIN11	G22 VDD	G23 GND	G24 ADIN13
F	F1 SROUT1	F2 ADOUT1 0	о <mark>У_{DD}</mark>	F4 ADOUT1 1	V _{DD}	GND	^{F7} ОV_{DD}	GND	F9 V _{DD}	GND	^{F11} V _{DD}	F12 GND	F13 V_{DD}	GND	F15 V _{DD}	GND	^{F17} V _{DD}	GND	^{F19} ОV_{DD}	GND	F21 ADIN25	GND	F23 ADIN10	F24 GND
E	OV _{DD}	E2 ADOUT1 2	E3 CLKOUT	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	E10 V _{DD}	GND	E12 ADOUT1 6	GND	E14 V _{DD}	GND	E16 V _{DD}	GND	V _{DD}	GND	E20 ADIN21	E21 ADIN22	VDD	GND	E24 CLKIN
D	GND	D2 ADOUT2 6	D3 CLKOUT	GND	D5 V _{DD}	D6 ADOUT2 3	D7 V _{DD}	D8 ADOUT2 7	09 00 00	GND	D11 ADOUT1 5	GND	D13 V_{DD}	GND	D15 ADIN18	GND	D17 V_{DD}	D18 ADIN30	D19 V _{DD}	D20 ADIN32	D21 V _{DD}	D22 ADIN12	D23 V _{DD}	D24 CLKIN
с	C1 ADOUT2 0	OV _{DD}	GND	C4 ADOUT3 2	C5 ADOUT2 1	C6 ADOUT3 6	C7 ADOUT3 3	C8 ADOUT3 5	C9 ADOUT3 9	C10 ADOUT4 1	C11 ADOUT1 9	C12 ADOUT2 8	C13 ADIN4	C14 ADIN28	C15 ADIN17	C16 ADIN42	C17 ADIN29	C18 ADIN35	C19 ADIN34	V _{DD}	GND	C22 ADIN20	GND	OV _{DD}
в	GND	B2 ADOUT2 2	^{₿3} V _{DD}	B4 ADOUT3 1	GND	B6 ADOUT3 0	ov _{dd}	B8 ADOUT1 4	GND	B10 ADOUT1 8	OV _{DD}	B12 GND	B13 V _{DD}	B14 GND	B15 ADIN15	OV _{DD}	B17 ADIN26	B18 GND	B19 ADIN27	OV _{DD}	B21 ADIN31	GND	B23 ADIN23	B24 ADIN24
A	ov _{dd}	A2 ADOUT2 5	GND	A4 ADOUT3 7	A5 ADOUT2 4	A6 ADOUT4 3	A7 ADOUT3 4	A8 ADOUT4 2	A9 ADOUT3 8	A10 ADOUT4 0	A11 ADOUT1 7	A12 ADOUT2 9	A13 ADIN5	A14 ADIN16	A15 ADIN40	A16 ADIN19	A17 ADIN41	A18 ADIN39	A19 ADIN43	A20 ADIN38	A21 ADIN36	A22 ADIN33	A23 ADIN37	OV _{DD}
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

4.3 PowerPC 970FX Microprocessor Pinout Listings

The following table provides the pinout listing for the CBGA package.

Table 4-2. Pinout Listing for the CBGA Package

Signal Name	Pin Number	Active	I/O EI/EO ⁵	Notes
ADIN(0:43)	H21, J21, H22, J22, C13, A13, K22, H23, J24, G20, F23, G21, D22, G24, G19, B15, A14, C15, D15, A16, C22, E20, E21, B23, B24, F21, B17, B19, C14, C17, D18, B21, D20, A22, C19, C18, A21, A23, A20, A18, A15, A17, C16, A19	_	Elastic Input	
ADOUT(0:43)	N3, H2, K3, L1, M3, K4, K2, H3, H1, G4, F2, F4, E2, G3, B8, D11, E12, A11, B10, C11, C1, C5, B2, D6, A5, A2, D2, D8, C12, A12, B6, B4, C4, C7, A7, C8, C6, A4, A9, C9, A10, C10, A8, A6	_	Elastic Output	
AFN	AA12	—	—	2
ANALOG_GND	R24	—	Analog GND	
ATTENTION	AD12	High	Output	—
AVDD	P24	—	Analog V _{DD}	—
AVP_RESET_B	W23	Low	Input	1
BI_MODE_B	AC24	Low	Input	1
BUS_CFG(0:2)	AA19, AC19, AB16	—	Input	10
BYPASS_B	V24	Low	Input	—
C1_UND_GLOBAL	AC16	High	Input	—
C2_UND_GLOBAL	AC15	High	Input	—
CHKSTOP_B	R20	Low	OD BiDi	—
CKTERM_DIS	AA14	High	Input	8
CLKIN	E24	—	Elastic Input	—
CLKIN_B	D24	—	Elastic Input	—
CLKOUT	D3	—	Elastic Output	—
CLKOUT_B	E3	—	Elastic Output	—

Notes:

- 1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.
- 2. These pins are reserved for potential future use.
- 3. TCK must be tied high or low for normal machine operation. If used, TDI, TMS, and $\overline{\text{TRST}_B}$ must be pulled up to OV_{DD} .
- 4. These are test signals for factory use only and must be pulled down with a 10K resistor to GND for normal machine operation.
- 5. I = Input, O = Output, EI = Elastic Input, EO= Elastic Output. For additional information, see the *PowerPC 970FX RISC Microprocessor Users Manual*.
- 6. These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and VDD planes.
- 7. PSRO_ENABLE, Z_OUT, Z_SENSE, SPARE_GND, and SPARE2 must be tied to GND for correct operation.
- 8. CKTERM_DIS high disables SYSCLK termination.
- 9. If GPULDBG = 1 during HRESET transition from low to high: Run POR in debug mode and stop after each POR instruction. If GPULDBG = 0 during HRESET transition from low to high: Run POR at once in automatic mode and not stop after each POR instruction.

Toggling GPULDBG from 1 to 0 later on will exit POR debug mode and continue without stopping after each instruction.

Table 4-2. Pinout Listing for the CBGA Package (Continued)

Signal Name	Pin Number	Active	I/O EI/EO ⁵	Notes
DI2_B	U24	Low	Input	1
DIODENEG	AA1	_	—	—
DIODEPOS	Y1	_	—	—
EI_DISABLE	P20	High	Input	—
GND	A3, B1, B5, B9, B12, B14, B18, B22, C3, C21, C23, D1, D4, D10, D12, D14, D16, E5, E7, E9, E11, E13, E15, E17, E19, E23, F6, F8, F10, F12, F14, F16, F18, F20, F22, F24, G2, G5, G7, G9, G11, G13, G15, G17, G23, H4, H6, H8, H10, H12, H14, H16, H18, H20, J3, J5, J7, J9, J11, J13, J15, J17, J19, J23, K1, K6, K8, K10, K12, K14, K16, K18, K20, L5, L7, L9, L11, L13, L15, L17, L23, M2, M4, M6, M8, M10, M12, M14, M16, M20, M22, M24, N5, N7, N9, N11, N13, N15, N17, N23, P4, P6, P8, P10, P12, P14, P16, P18, P22, R3, R5, R7, R9, R11, R13, R15, R17, R19, R21, R23, T4, T6, T8, T10, T12, T14, T16, T18, T24, U1, U3, U5, U7, U9, U11, U13, U15, U17, U21, U23, V2, V4, V6, V8, V10, V12, V14, V16, V18, W1, W3, W5, W7, W9, W11, W13, W15, W17, W19, W21, Y2, Y4, Y6, Y8, Y10, Y12, Y14, Y16, Y18, Y20, Y24, AA3, AA7, AA11, AA15, AA17, AA21, AA23, AB2, AB8, AB10, AB14, AB18, AB20, AB22, AC1, AC3, AC5, AC7, AC11, AC13, AC17, AC21, AC23, AD2, AD4, AD6, AD10, AD16, AD20, AD24		GND	
GPULDBG	AA22	High	Input	9
HRESET_B	V20	Low	Input	-
I2CCK_B	AA20	_	OD BiDi	—
I2CDT_B	Y21	_	OD BiDi	—
I2CGO	N22	_	OD	—
INT_B	AB19	Low	Input	
KVPRBGND	T2	_	GND Test Points	6
KVPRBVDD	R2	_	V _{DD} Test Points	6

Notes:

- 1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.
- 2. These pins are reserved for potential future use.
- 3. TCK must be tied high or low for normal machine operation. If used, TDI, TMS, and TRST_B must be pulled up to OV_DD.
- 4. These are test signals for factory use only and must be pulled down with a 10K resistor to GND for normal machine operation.
- 5. I = Input, O = Output, EI = Elastic Input, EO= Elastic Output. For additional information, see the PowerPC 970FX RISC Microprocessor Users Manual.
- These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and VDD planes.
- 7. PSRO_ENABLE, Z_OUT, Z_SENSE, SPARE_GND, and SPARE2 must be tied to GND for correct operation.
- 8. CKTERM_DIS high disables SYSCLK termination.
- 9. If GPULDBG = 1 during HRESET transition from low to high: Run POR in debug mode and stop after each POR instruction.
- If GPULDBG = 0 during HRESET transition from low to high: Run POR at once in automatic mode and not stop after each POR instruction.

Toggling GPULDBG from 1 to 0 later on will exit POR debug mode and continue without stopping after each instruction.

Table 4-2. Pinout Listing for the CBGA Package (Continued)

Signal Name	Pin Number	Active	I/O EI/EO ⁵	Notes
LSSDMODE	AB5	High	Input	4
LSSD_SCAN_ENABLE	U19	High	Input	4
LSSD_STOP_ENABLE	AD11	High	Input	4
LSSD_STOPC2_ENABLE	AD8	High	Input	4
LSSD_STOPC2STAR_ENABLE	AD7	High	Input	4
MCP_B	AD18	Low	Input	-
PLL_LOCK	Т20	High	Output	—
PLL_MULT	AA8	_	Input	10
PLL_RANGE(1:0)	AA9, AB7	—	Input	10
PLLTEST	W22	High	Input	—
PLLTESTOUT	Т19	_	Output	-
PROCID(0:2)	L19, M19, M18	_	Input	_
PSRO_ENABLE	V5	—	—	7
PSRO0	V23	—	Output	_
PSYNC	AA10	—	Input	-
PSYNC_OUT	AD14	_	Output	_
PULSE_SEL(0:2)	AC9, AB11, AC10	—	Input	—
QACK_B	V21	Low	Input	-
QREQ_B	AB12	Low	Output	-
RAMSTOP_ENABLE	AB6	High	Input	4
RI_B	AA5	Low	Input	1
SPARE	AA13	—	Input	1, 2
SPARE2	W4	_	_	7
SPARE_GND	N1	_		7
SRESET_B	AB4	Low	Input	_

Notes:

1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.

2. These pins are reserved for potential future use.

3. TCK must be tied high or low for normal machine operation. If used, TDI, TMS, and TRST_B must be pulled up to OV_DD.

4. These are test signals for factory use only and must be pulled down with a 10K resistor to GND for normal machine operation.

5. I = Input, O = Output, EI = Elastic Input, EO= Elastic Output. For additional information, see the PowerPC 970FX RISC Microprocessor Users Manual.

- 6. These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and VDD planes.
- 7. PSRO_ENABLE, Z_OUT, Z_SENSE, SPARE_GND, and SPARE2 must be tied to GND for correct operation.

8. CKTERM_DIS high disables SYSCLK termination.

If GPULDBG = 1 during HRESET transition from low to high: Run POR in debug mode and stop after each POR instruction.
 If GPULDBG = 0 during HRESET transition from low to high: Run POR at once in automatic mode and not stop after each POR instruction.

Toggling GPULDBG from 1 to 0 later on will exit POR debug mode and continue without stopping after each instruction.

Table 4-2. Pinout Listing for the CBGA Package (Continued)

Signal Name	Pin Number	Active	I/O EI/EO ⁵	Notes
SRIN(0:1)	L24, L21	—	Elastic Input	
SRIN_B(0:1)	K24, L22	—	Elastic Input	_
SROUT(0:1)	L3, G1	—	Elastic Output	_
SROUT_B(0:1)	L2, F1	—	Elastic Output	_
SYNC_ENABLE	AB24	High	Input	4
SYSCLK	R22	—	Input	_
SYSCLK_B	T22	—	Input	_
TBEN	AD17	High	Input	_
ТСК	AD21	—	Input	3
TDI	AB21	_	Input	3
TDO	AD13	_	Output	_
THERM_INT_B	V22	Low	Input	_
TMS	AD22	—	Input	3
TRIGGERIN	N21	High	Input	_
TRIGGEROUT	N19	High	Output	_
TRST_B	W20	Low	Input	3
V _{DD}	B3, B13, C20, D5, D7, D13, D17, D19, D21, D23, E4, E6, E8, E10, E14, E16, E18, E22, F5, F9, F11, F13, F15, F17, G6, G8, G10, G12, G14, G16, G18, G22, H5, H7, H9, H11, H13, H15, H17, H19, J2, J4, J6, J12, J16, J20, K7, K9, K11, K13, K15, K19, K23, L4, L6, L8, L12, L14, L18, L20, M5, M7, M11, M13, M15, M17, M21, M23, N2, N4, N6, N8, N10, N12, N14, N16, N18, N20, P1, P3, P5, P7, P9, P11, P13, P15, P19, P21, P23, R4, R6, R8, R10, R12, R14, R16, R18, T1, T3, T5, T7, T9, T13, T17, T23, U2, U4, U6, U8, U10, U12, U14, U16, U18, U20, U22, V1, V3, V7, V9, V11, V13, V15, V17, V19, W2, W6, W8, W10, W12, W14, W16, W18, Y3, Y5, Y7, Y9, Y11, Y15, Y19, Y22, Y23, AA2, AA4, AA16, AA18, AB1, AB3, AB9, AB13, AB15, AB17, AB23, AC2, AC4, AC6, AC8, AC12, AC14, AC18, AC20, AC22, AD3, AD5		V _{DD}	_

Notes:

- 1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.
- 2. These pins are reserved for potential future use.
- 3. TCK must be tied high or low for normal machine operation. If used, TDI, TMS, and TRST_B must be pulled up to OV_{DD}.
- 4. These are test signals for factory use only and must be pulled down with a 10K resistor to GND for normal machine operation.
- 5. I = Input, O = Output, EI = Elastic Input, EO = Elastic Output. For additional information, see the PowerPC 970FX RISC Microprocessor Users Manual.
- 6. These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and VDD planes.
- 7. PSRO_ENABLE, Z_OUT, Z_SENSE, SPARE_GND, and SPARE2 must be tied to GND for correct operation.
- 8. CKTERM_DIS high disables SYSCLK termination.
- 9. If GPULDBG = 1 during HRESET transition from low to high: Run POR in debug mode and stop after each POR instruction. If GPULDBG = 0 during HRESET transition from low to high: Run POR at once in automatic mode and not stop after each POR instruction.

Toggling GPULDBG from 1 to 0 later on will exit POR debug mode and continue without stopping after each instruction.

Table 4-2. Pinout Listing for the CBGA Package (Continued)

Signal Name	Pin Number	Active	I/O EI/EO ⁵	Notes
OV _{DD}	A1,A24,B7, B11, B16, B20, C2, C24, D9, E1, F3, F7, F19, H24, J1, J8, J10, J14, J18, K5, K17, K21, L10, L16, M1, M9, N24, P17, T11, T15, T21, W24, Y13, Y17, AA6, AA24, AD1, AD9, AD15, AD19, AD23	_	OV _{DD}	_
Z_OUT	P2	—	—	7
Z_SENSE	R1	—	_	7

Notes:

- 1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.
- 2. These pins are reserved for potential future use.
- 3. TCK must be tied high or low for normal machine operation. If used, TDI, TMS, and TRST_B must be pulled up to OV_DD.
- 4. These are test signals for factory use only and must be pulled down with a 10K resistor to GND for normal machine operation.
- 5. I = Input, O = Output, EI = Elastic Input, EO= Elastic Output. For additional information, see the PowerPC 970FX RISC Microprocessor Users Manual.
- 6. These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and VDD planes.
- 7. PSRO_ENABLE, Z_OUT, Z_SENSE, SPARE_GND, and SPARE2 must be tied to GND for correct operation.
- 8. CKTERM_DIS high disables SYSCLK termination.
- 9. If GPULDBG = 1 during HRESET transition from low to high: Run POR in debug mode and stop after each POR instruction. If GPULDBG = 0 during HRESET transition from low to high: Run POR at once in automatic mode and not stop after each POR instruction.
- Toggling GPULDBG from 1 to 0 later on will exit POR debug mode and continue without stopping after each instruction. 10. The PLL_MULT and PLL_RANGE bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details.

Туре	Assignments
V _{DD}	B3, B13 C20 D5, D7, D13, D17, D19, D21, D23 E4, E6, E8, E10, E14, E16, E18, E22 F5, F9, F11, F13, F15, F17 G6, G8, G10, G12, G14, G16, G18, G22 H5, H7, H9, H11, H13, H15, H17, H19 J2, J4, J6, J12, J16, J20 K7, K9, K11, K13, K15, K19, K23 L4, L6, L4, L12, L14, L18, L20 M5, M7, M11, M13, M15, M17, M21, M23 N2, N4, N6, N8, N10, N12, N14, N16, N18, N20 P1, P3, P5, P7, P9, P11, P13, P15, P19, P21, P23 R4, R6, R8, R10, R12, R14, R16, R18 T1, T3, T5, T7, T9, T13, T17, T23 U2, U4, U6, U8, U10, U12, U14, U16, U18, U20, U22 V1, V3, V7, V9, V11, V13, V15, V17, V19 W2, W6, W8, W10, W12, W14, W16, W18 Y3, Y5, Y7, Y9, Y11, Y15, Y19, Y22, Y23 AA2, AA4, AA16, AA18 AB1, AB3, AB9, AB13, AB15, AB17, AB23 AC2, AC4, AC6, AC8, AC12, AC14, AC18, AC20, AC22 AD3, AD5
OV _{DD}	A1, A24 B7, B11, B16, B20 C2, C24 D9, E1 F3, F7, F19 H24, J1, J8, J10, J14, J18, K5, K17, K21, L10, L16 M1, M9, N24 P17 T11, T15, T21 W24 Y13, Y17 AA6, AA24 AD1, AD9, AD15, AD19, AD23

Table 4-3. Voltage and Ground Assignments

Table 4-3. V	/oltage and Ground Assignments (Continued)	
--------------	--	--

Туре	Assignments
GND	A3 B1, B5, B9, B12, B14, B18, B22 C3, C21, C23 D1, D4, D10, D12, D14, D16 E5, E7, E9, E11, E13, E15, E17, E19, E23 F6, F8, F10, F12, F14, F16, F18, F20, F22, F24 G2, C5, G7, G9, G11, G13, G15, G17, G23 H4, H6, H8, H10, H12, H14, H16, H18, H20 J3, J5, J7, J9, J11, J13, J15, J17, J19, J23 K1, K6, K8, K10, K12, K14, K16, K18, K20 L5, L7, L9, L11, L13, L15, L17, L23 M2, M4, M6, M8, M10, M12, M14, M16, M20, M22, M24 N5, N7, N9, N11, N13, N15, N17, N23 P4, P6, P8, P10, P12, P14, P16, P18, P22 R3, R5, R7, R9, R11, R13, R15, R17, R19, R21, R23 T4, T6, T8, T10, T12, T14, T16, T18, T24 U1, U3, U5, U7, U9, U11, U13, U15, U17, U21, U23 V2, V4, V6, V8, V10, V12, V14, V16, V18 W1, W3, W5, W7, W9, W11, W13, W15, W17, W19, W21 Y2, Y4, Y6, Y8, Y10, Y12, Y14, Y16, Y18, Y20, Y24 A3, AA7, AA11, AA15, AA17, AA21, AA23 AB2, AB8, AB10, AB14, AB18, AB20, AB22 AC1, AC3, AC5, AC7, AC11, AC13, AC17, AC21, AC23 AD2, AD4, AD6, AD10, AD16, AD20, AD24

5. System Design Information

This section provides electrical and thermal design recommendations for successful application of the PPC 970FX.

5.1 External Resistors

The PowerPC 970FX contains no internal "pullup" resistors for any JTAG, I²C, mode select, or asynchronous inputs. System designs must include these external resistors where required. See *Table 5-6* and *Table 5-7* and *Section 3.9.3 I²C and JTAG Considerations* for information on implementing external pullups/pulldowns.

5.2 PLL Configuration

This section will help in configuring the PLL and determining SYSCLK input frequency for PPC 970FX systems.

5.2.1 Determining PLLMULT and BUS_CFG Settings

The first step is to determine the bus frequency. This parameter is a critical component of overall system performance. The bus should run as fast as your memory controller/bridge chip can support. Once you have determined your maximum bus frequency, you should select a bus multiplier ratio that will deliver the optimal processor core frequency.

Note: The PLL_MULT and PLL_RANGE bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details.

The available bus ratios are shown in *Table 5-1* on page 57. In most applications this would be the highest frequency possible for a given PowerPC 970FX part number, but other considerations (i.e. available power) may take precedence.

BUS_CFG(0:2)	Ratio	Notes
000	2:1	
001	3:1	
010	4:1	2
011	6:1	2
100	8:1	1
101	12:1	3
110	16:1	1
111	Invalid	

Table 5-1. PowerPC 970FX Bus Configuration

Note: BUS_CFG bits may be changed by SCOM commands during the POR sequence. Refer to the POR Application Note.

1. Bus ratios of 8:1 and 16:1 are not supported for Elastic Input (EI) functionality and powertune.

2. Limited PowerTune frequency scaling.

3. No PowerTune frequency scaling.

The bus frequency multiplier ratio will usually indicate the desired PLL multiplier setting. Ratios of 3 (3:1, 6:1, 12:1) should always use PLLMULT=0 (low) for a PLL multiplier of 12. The desired core frequency should be divided by 12 to determine the required input SYSCLK frequency. Ratios of 2 (2:1, 4:1, 8:1, 16:1) should always use PLLMULT=1 (high) to multiply SYSCLK by 8.

Note: Using bus frequency ratios of 3:1, 6:1 or 12:1 with PLLMULT=1 or ratios of 8:1 or 16:1 with PLLMULT=0 is not recommended. Internal clock synchronization delays may reduce performance.

After the correct BUS_CFG(0:2) and PLLMULT pin settings are determined, the required SYSCLK input frequency can be determined. The selected SYSCLK input frequency should be within the minimum/maximum frequencies specified in *Table 3-9* on page 23.

5.2.2 PLL_RANGE Configuration

The PLL VCO configuration for the PPC 970FX, using the pins PLL_RANGE1 and PLL_RANGE0, is shown in *Table 5-2*.

Table 5-2. PowerPC 970FX PLL Configuration

PLL_RANGE(1:0) Settings						
Range Name PLL_RANGE1 PLL_RANGE0 Frequency Range						
Low	0	0	Freq <u><</u> 1.2GHz			
Medium	0	1	1.2 GHz < Freq < 1.8 GHz			
High	1	0	1.8 GHz <u><</u> Freq			
Reserved	1	1	Reserved			
NI /						

Notes:

1. The PLL_MULT and PLL_RANGE(1:0) bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the 970FX *POR Application Note* for more details.

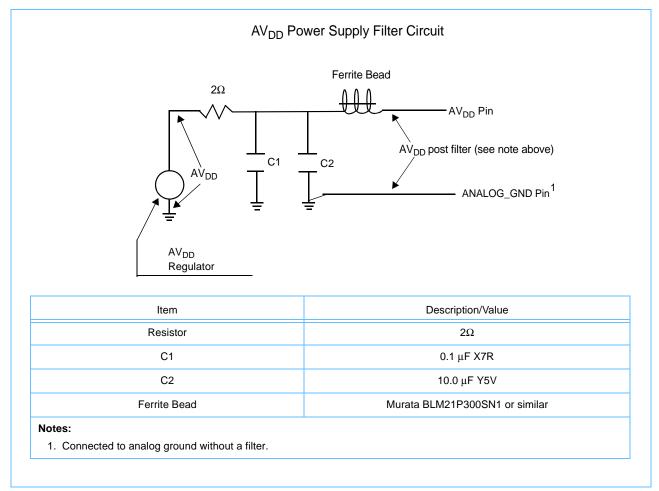
2. PLL frequency range settings are not an indicator of available PPC970FX processor speeds.

5.2.3 Typical PLL and SYSCLK Configurations

Table 5-3 provides a few examples of typical system configurations.

Table 5-3. System Configuration - Typical Examples of Pin Settings

System Configuration	BUS_CFG(0:2) Pins	PLL_RANGE(1:0) Pins	PLL_MULT Pin	SYSCLK, SYSCLK Frequency
2.2 GHz core, 1100 MHz EIO	000 (2:1)	10	1	275MHz
2.2 GHz core, 733 MHz EIO	001 (3:1)	10	0	183.3MHz
2.0 GHz core, 1000 MHz EIO	000 (2:1)	10	1	250MHz
2.0 GHz core, 667 MHz EIO	001 (3:1)	10	0	167MHz
1.8 GHz Core, 900 MHz EIO	000 (2:1)	01	1	225MHz
1.8 GHz core, 600 MHz EIO	001 (3:1)	01	0	150MHz
1.6 GHz core, 800 MHz EIO	000 (2:1)	01	1	200MHz
1.6 GHz core, 533 MHz EIO	001 (3:1)	01	0	133MHz
1.4 GHz core, 700 MHz EIO	000 (2:1)	01	1	175MHz
1.4 GHz core, 467 MHz EIO	001 (3:1)	01	0	116.7MHz
1.2 GHz core, 600MHz EIO	000 (2:1)	00	1	150MHz
1.0 GHz core, 500 MHz EIO	000 (2:1)	00	1	125MHz


5.3 PLL Power Supply Filtering

The PPC 970FX microprocessor has a separate AV_{DD} pin which provides power to the clock generation phase-locked loop.

To ensure stability of the internal clock, filter the power supplied to the AV_{DD} PLL using a circuit similar to figure 5-1. To ensure that the capacitor filters out as much noise as possible, the capacitor should be placed as close as possible to the AV_{DD} and $ANALOG_GND$ pins. The capacitor used should have minimal inductance. The ferrite bead (FB) shown in *Figure 5-1* should supply an impedance of less than 70Ω in the100-500 MHz region.

Note: AV_{DD} measured at the pins of the part should never be more than 50mV lower than the AV_{DD} voltage range specified in *Table 3-2. Recommended Operating Conditions*.

Figure 5-1. PLL Power Supply Filter Circuit

5.4 Decoupling Recommendations

Capacitor decoupling is required for the PPC 970FX. Decoupling capacitors act to reduce high frequency chip switching noise and provide localized bulk charge storage to reduce major power surge effects. Guidelines for high frequency noise decoupling will be provided. Bulk decoupling requires a more complete understanding of the system and system power architecture which precludes discussion in this document.

High frequency decoupling capacitors should be located as close as possible to the processor with low lead inductance to the ground and voltage planes.

The recommended placement of the decoupling capacitors is shown in Figure 5-2. The decoupling layout is divided into three groups:

- Group 1 is located in the center of the package and under the PPC 970FX die.
- Group 2 includes Group 1 and is located in the center of the package and under the PPC 970FX die.
- Group 3, located adjacent to Group 2 (which includes Group 1), lays under the module footprint. Vias for the decoupling capacitors should ideally be through vias with via in pad for low impedance.

The recommended decoupling capacitor specifications are provided in Table 5-4.

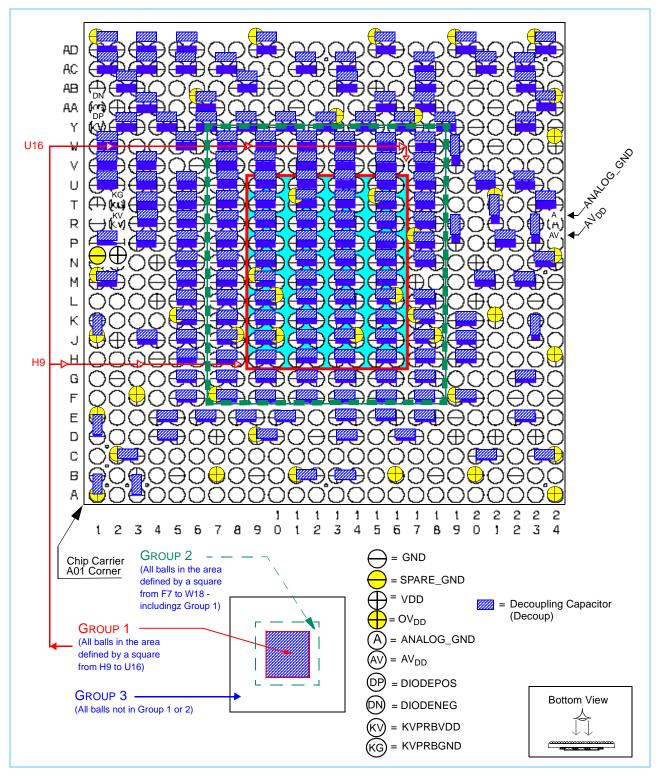
Table 5-4. Recommended Decoupling Capacitor Specifications

0402 size (1.00 x 0.50 mm)
100 nF
Y5V or X7R dielectric
10V voltage rating

The minimum recommended number of decoupling capacitors for Group 1 and Group 2 are provided in Table 5-5.

Recommer	ded Minimum Number of Decoupling Cap (See <i>Figure 5-2</i> on page 62)	acitors
Group 1 Includes all balls in the area defined by a red rectangle from H9 to U16.	Group 2 Includes all balls in the area defined by a dotted-green rectangle from F7 to W18. Also includes all balls in Group 1.	Group 3 Includes all balls on the chip not in Groups 1 and 2.
Minimum of 40: 33 V _{DD} -GND 7 OV _{DD} -GND	Minimum of 80 caps (including all 12 OV _{DD})	Minimum of 35 V _{DD} -GND Minimum of 4 OV _{DD} -GND

Add additional decoupling capacitors to improve noise performance.


5.4.1 Using the KVPRBVDD and KVPRBGND Pins

The PowerPC 970 features one pair of VDD and GND pins to assist in analyzing on-chip noise and voltage drop. These pins should not be connected into the normal VDD and GND planes, but should be brought out to test pads by traces that are as short as possible. An oscilloscope can be used on these test pads to measure on-chip VDD noise and thus to verify the decoupling and voltage regulation in a design. If these pins are not needed, they should be left unconnected.

5.5 Decoupling Layout Guide

Figure 5-2. Decoupling Capacitor (Decap) Locations

For reliable operation, it is highly recommended that the unused inputs be connected to an appropriate signal level. For example:

- Unused active low inputs should be tied to V_{DD}.
- Multiple unused active high inputs may be ganged together for convenience.
- Unused active high inputs should be connected to GND.
- Multiple unused active low inputs may be ganged together for convenience.
- All no-connect (NC) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} and GND pins of the PPC 970FX.

Table 5-6. PowerPC 970FX Debug/Bringup Pin Settings and Information

Pin Name	Pin Location	In/Out/BiDi/JTAG ¹	Resistor Pull Up/Down Setting ¹ (For Normal Operation)	Comments
AVP_RESET	W23	In	Up	
C1_UND_GLOBAL	AC16	In	Down	
C2_UND_GLOBAL	AC15	In	Down	
GPULDBG	AA22	In	Up	
I2CGO	N22	Out	Up	arbitrates between I2C and JTAG.
TBEN	AD17	In	Down	
ТСК	AD21	In-JTAG	Down	JTAG – Test Clock
TDI	AB21	In-JTAG	Down	JTAG – Test Data In
TDO	AD13	Out-JTAG	Down	JTAG – Test Data Out
TMS	AD22	In-JTAG	Down	JTAG – Test Mode Select
TRIGGERIN	N21	In	Down	
TRIGGEROUT	N19	Out	_	
TRST	W20	In-JTAG	Up	Not needed – HRESET does the cop reset function. Tie high and leave unconnected.

Notes:

1. BiDi = Bidirectional

2. Pullups should use a 10K resistor to OV_{DD} . Pulldowns should use a 10K resistor to GND.

3. For I²C or JTAG operation refer to Section 3.10.3

			•	
Notes	Pullup/Pulldown	In/Out	Pin Location	Pin Name
_	—	Out	AA12	AFN
1	Up	In	AC24	BI_MODE
1	Up	In	U24	DI2
2	Down	In	AB5	LSSDMODE
2	Down	In	U19	LSSD_SCAN_ENABLE
2	Down	In	AD8	LSSD_STOPC2_ENABLE
2	Down	In	AD7	LSSD_STOPC2STAR_ENABLE
2	Down	In	AD11	LSSD_STOP_ENABLE
2	Down	In		PLLTEST
3	Down	Out	V5	PSRO_Enable
_	—	Out	V23	PSRO0
2	Down	In	AC9, AB11, AC10	PULSE_SEL(0:2)
2	Down	In	AB6	RAMSTOP_ENABLE
1	Up	In	AA5	RI
_	—	In/Out	AA13	SPARE
3	Down	In/Out	W4	SPARE2
3	Down	In	N1	SPARE_GND
2	Down	In	AB24	SYNC_ENABLE
3	Down	In	P2	Z_OUT
3	Down	In	R1	Z_SENSE
	Down Down Down Down Up Down Down Down Down Down Down Down Down	In Out Out In In In In/Out In/Out In In In In	V5 V23 AC9, AB11, AC10 AB6 AA5 AA13 W4 N1 AB24 P2	LSSD_STOP_ENABLE PLLTEST PSRO_Enable PSRO0 PULSE_SEL(0:2) RAMSTOP_ENABLE RI SPARE SPARE2 SPARE_GND SYNC_ENABLE Z_OUT Z_SENSE

Table 5-7. PowerPC 970FX Pins for Manufacturing Test Only

Note:

Pullups should use a 10K resistor to OV_{DD}.
 Pulldowns should use a 10K resistor to GND.
 Must be tied to GND for correct operation.

5.6 Input-Output Usage

Table 5-8 provides details on the input-output usage of the PowerPC 970FX signals.

5.6.1 Chip Signal I/O and Test Pins

The system signal names, debug and test pins are shown in *Table 5-8*. There are 172 total chip pads. These include three power/capacitance pins.

Table 5-8. Input/Output Signal Descriptions

Pin Name	Width	In/Out	System/Debug Function	Notes
ADIN(0:43)	44	In	System: EI Address or data and control information	—
ADOUT(0:43)	44	Out	System: Elastic Interface (EI) Address or data and control information out	—
AFN	1	Out	Pin AFN is now a spare output pin	5
ANALOG_GND	1		Analog ground	_
ATTENTION	1	Out	Debug: Signal from PowerPC 970FX	—
AV _{DD}	1	In	Analog power supply	_
AVP_RESET	1	In	Manufacturing test use only	1
BI_MODE	1	In	Dedicated manufacturing	1
BUS_CFG(0:2)	3	In	Dedicated manufacturing Bus configuration select. Select bus frequency division factor: Divide CPU clock by 2, 3, 4, 6, 8, 12 or 16. 000 = 2:1 001 = 3:1 010 = 4:1 011 = 6:1 100 = 8:1 101 = 12:1 110 = 16:1 111 = Invalid	
BYPASS	1	In	Used to bypass the PLL.	1
C1_UND_GLOBAL	1	In	Debug: adjusts C1 clock to internal latches, not used for normal operation	10
C2_UND_GLOBAL	1	In	Debug: adjusts C2 clock to internal latches, not used for normal operation	10

Notes:

1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal processor operation.

- 2. For I²C or JTAG operation, must be pull down with a 10K resistor to GND. Refer to Section 3.10.3.
- 3. Bus ratios 8:1 and 16:1 are not supported for Elastic Input (EI) functionality.
- 4. These are test signals for factory use only and must be pulled down to GND for normal processor operation.
- 5. This signal should not be connected.
- These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.
- 7. BiDi = Bidirectional.
- 8. Using the 4:1 or 12:1 ratio with multiplier of 12 will limit the use of the PowerTune to (freq)/2.

9. The PLL_MULT and PLL_RANGE(1:0) bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

Table 5-8. Input/Output Signal Descriptions (Continued)

Pin Name	Width	In/Out	System/Debug Function	Notes	
CHKSTOP	1	OD /BiDi	stem: Checkstop in/out		
CKTERM_DIS	1	In	Disable internal termination in clock receiver	—	
CLKIN CLKIN	2	In	System: EI Clock In; differential clock to the processor.	-	
CLKOUT CLKOUT	2	Out	System: EI Differential clock to the bus	_	
DI2	1	In	Dedicated Manufacturing	1	
EI_DISABLE	1	In	Debug: Disable elastic interface	—	
GPULDBG	1	In	Debug: POR debug mode select.	_	
HRESET	1	In	System: Power on reset	—	
IZCCK	1	OD /BiDi	System: I ² C signal clock		
I2CDT	1	OD /BiDi	System: I ² C interface data		
I2CGO	1	OD	Debug: Handshake signal to arbitrate JTAG/I ² C access		
INT	1	In	System: External interrupt when low		
LSSD_SCAN_ENABLE	1	In	Manufacturing test use only	4	
KVPRBVDD	1	In	V _{DD} test point	6	
KVPRBGND	1	In	GND test point	6	
LSSD_STOP_ENABLE	1	In	Manufacturing test use only		
LSSD_STOPC2_ENABLE	1	In	Manufacturing test use only		
LSSD_STOPC2STAR_ENA BLE	1	In	Manufacturing test use only		
LSSDMODE	1	In	Manufacturing test use only 4		
MCP)	1	In	System: Machine check interrupt —		

Notes:

1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal processor operation.

2. For I²C or JTAG operation, must be pull down with a 10K resistor to GND. Refer to Section 3.10.3.

3. Bus ratios 8:1 and 16:1 are not supported for Elastic Input (EI) functionality.

4. These are test signals for factory use only and must be pulled down to GND for normal processor operation.

5. This signal should not be connected.

 These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.

7. BiDi = Bidirectional.

8. Using the 4:1 or 12:1 ratio with multiplier of 12 will limit the use of the PowerTune to (freq)/2.

9. The PLL_MULT and PLL_RANGE(1:0) bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

Table 5-8. Input/Output Signal Descriptions (Continued)

Pin Name	Width	In/Out	System/Debug Function			
PLL_LOCK	1	Out	dicates PLL has locked			
PLL_MULT	1	In	lect PLL multiplication factor: = multiply ref frequency by 12 = multiply ref frequency by 8			
PLL_RANGE(1:0)	2	In	select PLL frequency range, refer to Table 5-2. PowerPC 970FX PLL onfiguration on page 58.			
PLLTEST	1	In	Manufacturing test use only	4		
PLLTESTOUT	1	Out	Measure PLL output (divide by 64)	-		
PROCID(0:1)	3	In	System: Processor id maximum eight processors	_		
PROCID(0:2)	3	In	System: Processor id maximum eight processors	_		
PSRO_Enable	1	Out	Manufacturing test use only			
PSRO0	1	Out	Manufacturing test use only			
PSYNC	1	In	System: Phase Synchronization from North Bridge			
PSYNC_OUT	1	Out	System: Phase synchronization signal for observation that processors are in sync.			
PULSE_SEL(0:2)	2	In				
QACK	1	In	System: Acknowledge of quiesce from system			
QREQ	1	Out	System: Request from processor to quiescence system (nap mode)			
RAMSTOP_ENABLE	1	In	Manufacturing test use only			
RI	1	In	Dedicated Manufacturing			
SPARE	1	In/Out				
SPARE2	1	In/Out				
SRESET	1	In	System: Soft reset	—		
SRIN(0:1)	2	In	System: El Snoop response in			

Notes:

1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal processor operation.

2. For I²C or JTAG operation, must be pull down with a 10K resistor to GND. Refer to Section 3.10.3.

- 3. Bus ratios 8:1 and 16:1 are not supported for Elastic Input (EI) functionality.
- 4. These are test signals for factory use only and must be pulled down to GND for normal processor operation.
- 5. This signal should not be connected.
- These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.
- 7. BiDi = Bidirectional.
- 8. Using the 4:1 or 12:1 ratio with multiplier of 12 will limit the use of the PowerTune to (freq)/2.

9. The PLL_MULT and PLL_RANGE(1:0) bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

Table 5-8. Input/Output Signal Descriptions (Continued)

Pin Name	Width	In/Out	System/Debug Function			
SRIN(0:1)	2	In	ystem: El Inverse of Snoop response in			
SROUT(0:1)	2	Out	stem: El Snoop Response out			
SROUT(0:1)	2	Out	System:El Inverse of Snoop Response out	—		
SYNC_ENABLE	1	In	Manufacturing test use only	4		
SYSCLK SYSCLK	2	In	System Reference clock (differential input)	_		
TBEN	1	In	System: Time base enable			
тск	1	In	JTAG: Test Clock which is separate from system clock. Controls all Test Access Port functions			
TDI	1	In	JTAG: Serial input used to feed test data and Test Access Port instructions.			
TDO	1	Out	JTAG: Serial output used to extract data from the chip under test control.			
THERM_INT	1	In	System: External thermal interrupt when low	_		
TMS	1	In	JTAG: Select used to control the operation of the JTAG state machine			
TRIGGERIN	1	In	Initiate trace collection from outside			
TRIGGEROUT	1	Out	Signal to indicate internal trace collection has begun.			
TRST	1	In	JTAG: Asynchronous Reset for the JTAG state machine.	2		

Notes:

1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal processor operation.

2. For I²C or JTAG operation, must be pull down with a 10K resistor to GND. Refer to Section 3.10.3.

3. Bus ratios 8:1 and 16:1 are not supported for Elastic Input (EI) functionality.

4. These are test signals for factory use only and must be pulled down to GND for normal processor operation.

5. This signal should not be connected.

 These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.

7. BiDi = Bidirectional.

8. Using the 4:1 or 12:1 ratio with multiplier of 12 will limit the use of the PowerTune to (freq)/2.

9. The PLL_MULT and PLL_RANGE(1:0) bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

5.7 Thermal Management Information

5.7.1 Thermal Management pins

The PowerPC 970FX features an on-board temperature sensing diode, connected to pins AA1 (DIODENEG) and Y1 (DIODEPOS).

This diode is calibrated at two points: a low temperature point and a high temperature point, both of which are relative terms. For example the low temperature point could be 30° C and the high temperature point could be 85° C or 105° C. The actual values used for this calibration are stored in the fuse data of each chip. These two temperatures are applied externally with no self heating of the die, when the diode calibration is being done. At these two temperatures, with no power applied (VDD = 0V); a current of 100μ A is forced through the diode and the voltage drop is logged. The voltages at these two temperatures is also stored in the fuse data for each chip. Using these two temperature points and their corresponding voltage a linear relationship can be developed that relates the voltage across the diode with a corresponding temperature. (Refer to Figure 5-3, "PowerPC 970FX Thermal Diode Implementation" on page 70.) The chip temperature can be determined by interpreting the voltage across the diode pins when a controlled 100μ A current is forced through the diode by an external source. See the *Thermal Diode Calibration Application Note* for more details.

Other temperature sensors or monitoring hardware may also be implemented with the PowerPC 970FX and mounted as close to the PowerPC 970FX as practical. If the external temperature-sensing hardware determines that an unsafe operating temperature has been reached, the THERM_INT input should be asserted to initiate power management or shutdown of the system.

Note: The unsafe operating temperature setting is application dependent.

5.7.2 Reading Thermal Diode Calibration data via JTAG

In order to access the Thermal Diode Calibration data stored in each processor, a sequence of JTAG commands must be issued. By using JTAG commands, the desired data displays serially on the 970FX TDO pin and can also be read using I²C. Details for reading the thermal diode data are contained under the topic, *Accessing Thermal Diode Calibration Data* in the **PowerPC 970FX POR Application Note**. The temperature values and voltage values stored as fuse data must be interpreted as shown in *Table Table 5-9. Thermal Diode Data Encoding*.

This is a one-time only procedure. It is assumed the Thermal Diode Calibration data stored in each processor will be captured and stored in system ROM for subsequent use. This procedure is not meant to be run at every system startup; since reading out this calibration data leaves the processor in an unusable state, until it is restarted.

During the power-on reset (POR) sequence, the processor comes to a WAIT state to allow the service processor to scan the MODE ring facility (address modifier 0x00C08000, 0x00C04000, or 0x00804001). It is during this WAIT state that the thermal diode data can be scanned out. Scanning the MODE ring is not necessary.

Note: For proper fuse operation, make certain that the SPARE2 and SPARE_GND pins are tied to GND.

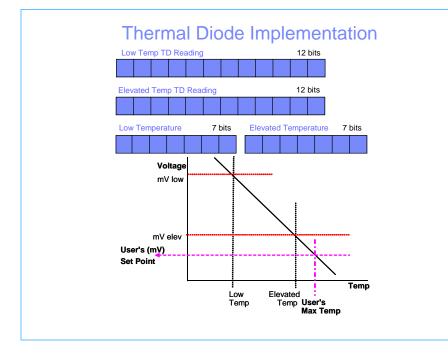


Figure 5-3. PowerPC 970FX Thermal Diode Implementation

Table 5-9.	Thermal	Diode I	Data	Encodina
10010 0 01	1110111101		Jaia	Lineeanig

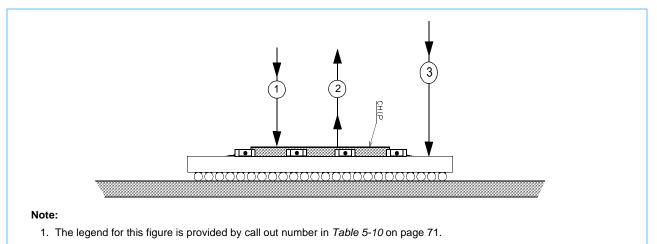
Field Name	Ring Position	Offset within First 64-Bit Read	Length in Bits	Adjustment	
temp_low	1546:1552	39:46	7	Value - 40	
temp_high	1553:1559	32:38	7	None	
voltage_low	1560:1571	20:31	12	Value/2 + 300	
voltage_high	1572:1583	8:19	12	Value/2 + 300	

Note: All values are stored LSB:MSB (bit reversed). They should be bit-swapped before applying the adjustments shown in this table. Temperatures are stored in degrees Centigrade and voltages are stored in millivolts.

5.7.3 Heatsink Attachment and Mounting Forces

Table 5-10 and *Figure 5-4* describe the allowable forces for the PowerPC 970FX package. Heatsink design should not exceed these static or dynamic forces.

Table 5-10. Allowable Forces on the PowerPC 970FX Package


Call Out Numb er	Characteristic		Symbol	Maximum	Unit ¹	Note
1	Compressive force on chip	Static	F _C	133.5	Ν	
1	Compressive force on chip	Dynamic	F _C	133.5	Ν	
2	Tensile force on chip	Static	F _T	0	Ν	
2		Dynamic	F _T	17.6	Ν	
3		Static	F _{BGA}	90.3	Ν	2
3	Compressive force on BGA balls	Dynamic	F _{BGA}	113.0	Ν	2
Note:						

1. One newton = 0.2248089 pound-force

2. The maximum force value for call-out item 3 must include the force value for call-out item 1.

 $(F_{BGA} + F_{C(Static)} < F_{BGA(Static)}$

Figure 5-4. Force Diagram for the PowerPC 970FX Package

5.8 Operational and Design Considerations

5.8.1 Power-On Reset Considerations

For additional information, see the PowerPC 970 RISC Microprocessor Power-On Reset Application Note

5.8.2 Debugging PowerPC 970FX Power-On and Reset Sequence

For additional information, see the PowerPC 970 RISC Microprocessor Power-On Reset Application Note.

5.8.3 I²C Addressing of PowerPC 970FX

The I²C address of PowerPC 970FX is specified by the binary value 0b1000ppp where ppp = the settings of the Processor ID bits PROCID(0:2). For example, if the PROCID bits are all set to 0 (pulled low), the address is 0b1000000. If the PROCID bits are set to 001, the address is 0b1000001, and so forth.

Revision Log

Revision	Modification						
June 4, 2006	 Version 2.3 Updated pin connection requirements in Table 4-2. Pinout Listing for the CBGA Package, Table 5- 7. PowerPC 970FX Pins for Manufacturing Test Only, and Table 5-8. Input/Output Signal Descriptions Added note to Section 5.7.2. 						
April 11,2006	 Version 2.2 Updated power-related values contained in <i>Table 3-2. Recommended Operating Conditions</i>, <i>Table 3-5. Power Consumption for Power-Optimized Parts</i>, <i>Table 3-7. Power Consumption for Standard Parts</i>, and <i>Table 5-2. PowerPC 970FX PLL Configuration</i> Updated power-related descriptions contained in <i>Section 4.1 ESD Considerations</i> and <i>Section 5.3 PLL Power Supply Filtering</i>. 						
October 14, 2005	 Version 2.1 Corrected F/2 values in Table 3-5. Power Consumption for Power-Optimized Parts Enhanced descriptions within Section 4.2.2 Reduced-Lead Package Version 						
September 30, 2005	 Version 2.0 Added information that describe the distinctive specifications of the Leaded package version and the Reduced-Lead package version: Under Section 1.4 Ordering and Processor Version Register, added Leaded Package Version and Reduced-Lead Package Version subsections. Reorganized Section 3.1.5 Power Consumption, to provide power consumption information for both standard and power-optimized parts in Table 3-5, Table 3-6, Table 3-7 and Table 3-8. Under Section 4.2 Mechanical Packaging, added Leaded Package Version and Reduced-Lead Package Versions. Updated Figure 5-1. PLL Power Supply Filter Circuit with current information and clarified several of the figure callouts. 						
July 15, 2005	 Version 1.0 Updated Features listing, <i>Table 1-1. PPC 970FX Ordering and Processor Version Register (PVR) for the Leaded Package Version and Figure 1-2 Part Number Legend</i> Added errata list and application note documents to <i>Related Publications</i> Updated Section 3.1.5 <i>Power Consumption,</i> modifying content and form of specification tables. Added note to <i>Figure 3-3.</i> Block Diagram of an SSB for a Processor Interconnect Implementation Updated some of the specifications in <i>Table 3-2. Processor Interconnect Implementation</i> Updated some of the specifications in <i>Section 3.5.1.2 Drive Side Characteristics</i> Extensively updated specifications in <i>Table 3-6. Power Consumption for Power-Optimized Parts</i> and <i>Table 3-7. Power Consumption for Standard Parts</i> Updated some of the specifications in <i>Table 3-1.1. Processor Interconnect SSB Driver Specifications</i> and <i>Table 3-13. Processor Interconnect SSB PCB Trace Specifications, Table 3-14. Processor Interconnect SSB Triming Parameters for the De-skew and Clock Alignment and Section 3.5.1.4 Receive Side Characteristics</i> Added <i>Table 3-17. Input AC Timing Specifications for TBEN</i> Added <i>Table 3-17. Input AC Timing Specifications for TBEN</i> Added rable <i>3-17. Input AC Timing Specifications for TBEN</i> Added rable <i>3-17. PowerC 970FX Microprocessor Dimension and Physical Signal Assignments</i> to describe both packaging types. Changed titles for <i>Figure 4-1. PPC 970FX Microprocessor Interconneal Package, Leaded, for DD3.0x Parts (top and side)</i> Updated Sol <i>A. PowerPC 970FX Microprocessor Interconneal Package, Leaded, for DD3.1x Parts (top and side)</i> Updated <i>Table 5-2. PowerPC 970FX Microprocessor Mechanical Package, Leaded, for DD3.1x Parts (top and side)</i> Updated <i>Table 5-3. PowerPC 970FX PLL Configuration</i> and <i>Table 5-3. System Configuration - Typical Examples of Pin Settings</i> Added <i>Tabl</i>						

