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IF YOU HAVE QUESTIONS, WE’RE HERE TO HELP YOU.
The AMD customer service network includes U.S. offices, international offices, and a 
customer training center. Expert technical assistance is available from the AMD worldwide 
staff of field application engineers and factory support staff to answer E86™ family hardware 
and software development questions.

Frequently accessed numbers are listed below. Additional contact information is listed on 
the back of this manual. AMD’s WWW site lists the latest phone numbers.

Technical Support
Answers to technical questions are available online, through e-mail, and by telephone.

Go to AMD’s home page at www.amd.com and follow the Support link for the latest AMD 
technical support phone numbers, software, and Frequently Asked Questions.

For technical support questions on all E86 products, send e-mail to 
epd.support@amd.com (in the US and Canada) or euro.tech@amd.com (in Europe and 
the UK).

You can also call the AMD Corporate Applications Hotline at:

(800) 222-9323 Toll-free for U.S. and Canada

44-(0) 1276-803-299 U.K. and Europe hotline

WWW Support
For specific information on E86 products, access the AMD home page at www.amd.com 
and follow the Embedded Processors link. These pages provide information on upcoming 
product releases, overviews of existing products, information on product support and tools, 
and a list of technical documentation. Support tools include online benchmarking tools and 
CodeKit software—tested source code example applications. Many of the technical 
documents are available online in PDF form. 

Questions, requests, and input concerning AMD’s WWW pages can be sent via e-mail to 
webfeedback@amd.com.

Documentation and Literature Support
Data books, user’s manuals, data sheets, application notes, and product CDs are free with 
a simple phone call. Internationally, contact your local AMD sales office for product literature. 

To order literature, go to www.amd.com/support/literature.html or, in the US and Canada, 
call (800) 222-9323.

Third-Party Support
AMD FusionE86SM program partners provide an array of products designed to meet critical time-
to-market needs. Products and solutions available include emulators, hardware and software 
debuggers, board-level products, and software development tools, among others. The WWW 
site and the E86™ Family Products Development Tools CD, order #21058, describe these 
solutions. In addition, mature development tools and applications for the x86 platform are 
widely available in the general marketplace.
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PREFACE
INTRODUCTION
Élan™SC520 MICROCONTROLLER
The Élan™SC520 microcontroller is a full-featured microcontroller developed for the 
general embedded market. The ÉlanSC520 microcontroller combines a 32-bit, low-voltage 
Am5x86® CPU with a complete set of integrated peripherals suitable for both real-time and 
PC/AT-compatible embedded applications. 

PURPOSE OF THIS MANUAL
This manual describes the technical features and programming interface of the ÉlanSC520 
microcontroller.

Intended Audience
The Élan™SC520 Microcontroller User’s Manual, order #22004, is intended for computer 
software and hardware engineers and system architects who are designing or are 
considering designing systems based on the ÉlanSC520 microcontroller.

Overview of this Manual
The manual is organized into the following chapters:

■ Chapter 1 includes an architectural overview of the ÉlanSC520 microcontroller, along 
with applications diagrams.

■ Chapter 2 describes the signals and pins of the ÉlanSC520 microcontroller. Logic 
diagrams showing defaults and pins with shared signals are also found in this chapter. 
Detailed pin state information is available in the Élan™SC520 Microcontroller Data 
Sheet.

■ Chapter 3 provides an overview of system initialization and shows example 
configurations.

■ Chapter 4 describes the system address mapping on the ÉlanSC520 microcontroller.

■ Chapter 5 provides information on clock generation and control.

■ Chapter 6 describes the reset sources and states of the ÉlanSC520 microcontroller.

■ Chapter 7 includes an overview of the integrated Am5x86 CPU. For additional 
information about the CPU, consult the references provided in this chapter.

■ Chapter 8 describes the system arbiter on the ÉlanSC520 microcontroller, which 
includes a CPU bus arbiter and a PCI bus arbiter.

■ Chapter 9 describes the PCI bus host bridge implemented on the ÉlanSC520 
microcontroller.

■ Chapter 10 describes the synchronous DRAM (SDRAM) controller.

■ Chapter 11 describes the SDRAM write buffer and read buffer with read-ahead 
feature.

■ Chapter 12 describes the ROM/Flash controller.
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■ Chapter 13 describes the programmable general-purpose (GP) bus interface included 
on the ÉlanSC520 microcontroller.

■ Chapter 14 describes the GP bus DMA controller.

■ Chapter 15 describes the programmable interrupt controller (PIC), which includes 
three interrupt controllers.

■ Chapter 16 describes the programmable interval timer (PIT), which includes three 
timers.

■ Chapter 17 describes the three general-purpose (GP) timers included on the 
ÉlanSC520 microcontroller.

■ Chapter 18 describes the software timer that eases the task of keeping system time.

■ Chapter 19 describes the watchdog timer used to guard against runaway software.

■ Chapter 20 describes the real-time clock (RTC) and RTC voltage monitor included 
on the ÉlanSC520 microcontroller.

■ Chapter 21 describes the two UART serial ports.

■ Chapter 22 describes the synchronous serial interface (SSI).

■ Chapter 23 describes the 32 programmable input/output (PIO) pins on the 
ÉlanSC520 microcontroller.

■ Chapter 24 is a summary of the system test features found on the ÉlanSC520 
microcontroller.

■ Chapter 25 describes the Joint Test Action Group (JTAG) (IEEE Std. 1149.1-1990) 
boundary scan test interface features of the ÉlanSC520 microcontroller.

■ Chapter 26 provides an overview of AMDebug™ technology and the board 
specifications necessary to utilize this capability, which is supported by third-party 
FusionE86 vendors.

RELATED DOCUMENTS
The following documents contain additional information that will be useful in designing an 
embedded application based on the ÉlanSC520 microcontroller.

AMD Documentation
In addition to this manual, the documentation set for the ÉlanSC520 microcontroller includes 
the following documents:

■ Élan™SC520 Microcontroller Register Set Manual, order #22005, fully describes all the 
configuration registers required to program the microcontroller.

■ Élan™SC520 Microcontroller Data Sheet, order #22003, includes complete pin lists, pin 
state tables, timing and thermal characteristics, and package dimensions for the 
ÉlanSC520 microcontroller.

Other information of interest:

■ The Am486® Microprocessor Software User’s Manual, order #18497, includes the 
complete instruction set for the integrated Am5x86 CPU.

■ Am5x86® Microprocessor Family Data Sheet, order #19751

■ Am486® DX/DX2 Microprocessor Hardware Reference Manual, order #17965 
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■ E86 Family Products and Development Tools CD, order #21058, provides a single-
source multimedia tool for customer evaluation of AMD products, as well as FusionE86 
partner tools and technologies that support the E86 family. Technical documentation is 
included on the CD in PDF format.

To order literature, contact the nearest AMD sales office or call the literature center at one 
of the numbers listed on the back cover of this manual. In addition, these documents are 
available in PDF form on the AMD web site. To access the web site, go to www.amd.com 
and follow the Embedded Processor link for information about the E86 family.

Additional Information
The following non-AMD documents and sources provide additional information that may 
be of interest to ÉlanSC520 microcontroller users:

■ PCI Local Bus Specification, Revision 2.2, December 18, 1998, PCI Special Interest 
Group, 800-433-5177 (US), 503-693-6360 (International), www.pcisig.com.

■ IEEE Std 1149.1-1990 Standard Test Access Port and Boundary-Scan Architecture, 
(order #SH16626-NYF), Institute of Electrical and Electronic Engineers, Inc., 800-678-
4333, www.ieee.org.

■ PCI System Architecture, Mindshare, Inc., Reading, MA: Addison-Wesley, 1995, ISBN 
0-201-40993-3.

■ ISA System Architecture, Mindshare, Inc., Reading, MA: Addison-Wesley, 1995, ISBN 
0-201-40996-8.

■ 80486 System Architecture, Mindshare, Inc., Reading, MA: Addison-Wesley, 1995, ISBN 
0-201-40994-1. 

■ The Indispensable PC Hardware Book, Hans-Peter Messmer, Wokingham, England: 
Addison-Wesley, 1995, ISBN 0-201-87697-3.

DOCUMENTATION CONVENTIONS
Table 0-1 lists the documentation conventions used throughout this manual.

Table 0-1 Documentation Notation

Notation Meaning

Reset Default Values

Default Value after a system reset

0 Low

1 Active or High

x No value is guaranteed

?
Determined by sources external to the ÉlanSC520 
microcontroller

Read/Write Attributes

R
The bit field is read-only. A write to the register at this bit field 
has no effect. The contents may or may not be changed by 
hardware.
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W
The bit field is write-only. Reading this register at this bit field 
does not return a meaningful value and has no side effects.

R/W
The bit field is read/write. Reading the register at this bit field 
always returns the last value written. Reads have no side effects.

R/W!

The bit field is read/write with conditions. The “!” indicates that 
there are side effects to using this bit. For example, reading a 
bit or register might not always return the last value written. Note 
that both reads and writes can have side effects. If you see a “!”, 
be sure to read the bit description and programming notes.

RSV
The bit field is reserved for internal test/debug or future 
expansion. This bit field should be written to 0 for normal system 
operation. This bit field always returns 0 when read.

RSV!

The bit field is reserved for compatibility purposes. For example, 
the bit field might be ignored during writes to maintain software 
compatibility. If you see a “!”, be sure to read the bit description 
and programming notes.

Reference Notation

MMCR offset 00h
ÉlanSC520 microcontroller Memory-Mapped Configuration 
Region (MMCR) offset register 00h

PCI index 00h PCI indexed register 00h

Port 00h Direct-mapped I/O register 00h

RTC index 00h RTC and configuration RAM indexed register 00h

Pin Naming

{ } Pin function during hardware reset

[ ] Alternative pin function selected by software configuration

ROMCS1
An overbar indicates that the signal assumes the logic Low state 
when asserted.

GPRESET
The absence of an overbar indicates that the signal assumes 
the logic High state when asserted.

ads, hold A signal name in all lowercase indicates an internal signal.

ROMCS2–ROMCS1 Two ROM chip select signals

ROMCSx Any of the two ROM chip select signals

Numbers

b Binary number

d
Decimal number
Decimal is the default radix

Table 0-1 Documentation Notation (Continued)

Notation Meaning
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h Hexadecimal number

x in register address
Any of several legal values; e.g., using 0xF8h for the UART 
Transmit Holding register is either 02F8h or 03F8h, depending 
on the UART

[X–Y]
The bit field that consists of bits X through Y.
Example: The SB_ADDR[23–16] bit field.

33 MHz

Refers to the system clock frequency being used. This can be 
either 33.000 MHz or 33.333 MHz. See the Élan™SC520 
Microcontroller User’s Manual for more information about clock 
generation.

General

field Bit field in a register (one or more consecutive and related bits)

can It is possible to perform an action if properly configured

will A certain action is going to occur

Set the ENB bit.
Write the ENB bit to 1.
Note: The bit referred to is either in the register being described, 
or the register is referred to explicitly in the surrounding text.

Clear the ENB bit.
Change the ENB bit to 0. Usually a bit is cleared by writing a 0 
to it; however, some bits are cleared by writing a 1.

Reset the ENB bit.
Context-sensitive. Can refer either to resetting the bit to its 
default value or to clearing the bit.

Table 0-1 Documentation Notation (Continued)

Notation Meaning
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CHAPTER
1 A
RCHITECTURAL OVERVIEW
1.1 Élan™SC520 MICROCONTROLLER
The Élan™SC520 microcontroller is a full-featured microcontroller developed for the 
general embedded market. The ÉlanSC520 microcontroller combines a 32-bit, low-voltage 
Am5x86 CPU with a complete set of integrated peripherals suitable for both real-time and 
PC/AT-compatible embedded applications. 

An integrated PCI host bridge, SDRAM controller, enhanced PC/AT-compatible peripherals, 
and advanced debugging features provide the system designer with a wide range of on-
chip resources, allowing support for legacy devices as well as new devices available in the 
current PC marketplace.

Designed for medium- to high-performance applications in the telecommunications, data 
communications, and information appliance markets, the ÉlanSC520 microcontroller is 
particularly well suited for applications requiring high throughput combined with low latency. 

1.1.1 Distinctive Characteristics
■ Industry-standard Am5x86® CPU with floating point unit (FPU) and 16-Kbyte write-back 

cache

– 100-MHz and 133-MHz operating frequencies

– Low-voltage operation (core VCC = 2.5 V) 

– 5-V tolerant I/O (3.3-V output levels)

■ E86™ family of x86 embedded processors

– Part of a software-compatible family of microprocessors and microcontrollers well 
supported by a wide variety of development tools

■ Integrated PCI host bridge controller leverages standard peripherals and software

– 33 MHz, 32-bit PCI bus Revision 2.2-compliant

– High-throughput 132-Mbyte/s peak transfer 

– Supports up to five external PCI masters

– Integrated write-posting and read-buffering for high-throughput applications

■ Synchronous DRAM (SDRAM) controller

– Supports 16-, 64-, 128-, and 256-Mbit SDRAM. 

– Supports 4 banks for a total of 256 Mbytes.

– Error Correction Code provides system reliability.

– Buffers improve read and write performance.

■ AMDebugÉ technology offers a low-cost solution for the advanced debugging 
capabilities required by embedded designers.

– Allows instruction tracing during execution from the Am5x86 CPU’s internal cache

– Uses an enhanced JTAG port for low-cost debugging
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– Parallel debug port for high-speed data exchange during in-circuit emulation

■ General-purpose (GP) bus with programmable timing for 8- and 16-bit devices provides 
good performance at very low cost.

■ ROM/Flash controller for 8-, 16-, and 32-bit devices

■ Enhanced PC/AT-compatible peripherals provide improved performance.

– Enhanced programmable interrupt controller (PIC) prioritizes 22 interrupt levels (up 
to 15 external sources) with flexible routing.

– Enhanced DMA controller includes double buffer chaining, extended address and 
transfer counts, and flexible channel routing.

– Two 16550-compatible UARTs operate at baud rates up to 1.15 Mbit/s with optional 
DMA interface.

■ Standard PC/AT-compatible peripherals 

– Programmable interval timer (PIT)

– Real-time clock (RTC) with battery backup capability and 114 bytes of RAM

■ Additional integrated peripherals

– Three general-purpose 16-bit timers provide flexible cascading for 32-bit operation.

– Watchdog timer guards against runaway software.

– Software timer

– Synchronous serial interface (SSI) offers full-duplex or half-duplex operation.

– Flexible address decoding for programmable memory and I/O mapping and system 
addressing configuration

■ 32 programmable input/output (PIO) pins

■ Native support for pSOS, QNX, RTXC, VxWorks, and Windows® CE operating systems

■ Industry-standard BIOS support

1.2 BLOCK DIAGRAM
Figure 1-1 on page 1-3 illustrates the integrated Am5x86 CPU, bus structure, and on-chip 
peripherals of the ÉlanSC520 microcontroller. Three primary interfaces are provided:

■ A high-performance, 66-MHz 32-bit synchronous DRAM (SDRAM) interface of up to 256 
Mbytes is used for Am5x86 CPU code execution, as well as buffer storage of external 
PCI bus masters and GP bus DMA initiators. A high-performance ROM/Flash interface 
can also be connected to the SDRAM interface.

■ An industry-standard, 32-bit PCI bus is provided for high bandwidth I/O peripherals such 
as local area network controllers, synchronous communications controllers, and disk 
storage controllers.

■ A simple 8/16-bit, 33-MHz general-purpose bus (GP bus) provides a glueless connection 
to lower bandwidth peripherals, and NVRAM, SRAM, ROM, or custom ASICs; supports 
dynamic bus sizing and compatibility with many common ISA devices.

These three buses listed above are provided in all operating modes of the ÉlanSC520 
microcontroller.
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In addition to these three primary interfaces, the ÉlanSC520 microcontroller also contains 
internal oscillator circuitry and phase locked loop (PLL) circuitry, requiring only two simple 
crystals for virtually all system clock generation.

Diagrams showing how the ÉlanSC520 microcontroller can be used in various system 
designs are included in “Applications” on page 1-8.

Figure 1-1 Élan™SC520 Microcontroller Block Diagram
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1.3 ARCHITECTURAL OVERVIEW
The ÉlanSC520 microcontroller was designed to provide:

■ A balanced mix of high performance and low-cost interface mechanisms

■ A high-performance, industry-standard 32-bit PCI bus 

■ Glueless interfacing to many 8- and 16-bit I/O peripherals and an 8- and 16-bit bus with 
programmable timing

■ A cost-effective system architecture that meets a wide range of performance criteria 
while retaining the lower cost of a 32-bit system

■ A high degree of leverage from present day hardware and software technologies

1.3.1 Industry-Standard x86 Architecture (Chapter 7)
The Am5x86 CPU in the ÉlanSC520 microcontroller utilizes the industry-standard x86 
microprocessor instruction set that enables compatibility across a variety of performance 
levels from the 16-bit Am186™ processors to the high-end AMD Athlon™ processor. Software 
written for the x86 architecture family is compatible with the ÉlanSC520 microcontroller.

Other benefits of the Am5x86 CPU include:

■ Improved time-to-market and easy software migration

■ Existing availability of multiple operating systems that directly support the x86 
architecture. Whether the application requires a real-time operating system (RTOS) or 
one of the popular Microsoft® operating systems, the ÉlanSC520 microcontroller 
provides consistent compatibility with many off-the-shelf operating systems. 

■ Multiple sources of field-proven development tools

■ Integrated floating point unit (FPU) (compliant with ANSI/IEEE 754 standard)

■ 16-KByte unified cache configurable for either write-back or write-through cache mode

The Am5x86 CPU is described in Chapter 7.

1.3.2 AMDebug™ Technology for Advanced Debugging (Chapter 26)
The ÉlanSC520 microcontroller provides support for low-cost, full-featured, in-circuit 
emulation capability. This in-circuit emulation support was developed at AMD specifically 
to enable users to test and debug their software earlier in the design cycle. Utilizing this 
capability, the software can be more extensively exercised, and at full execution speeds. It 
also allows tracing during execution from the Am5x86 CPU’s internal cache.

AMDebug support provides the product design team with two different communication paths 
on the ÉlanSC520 microcontroller, each of which is supported by powerful debug tools from 
third-party vendors in AMD’s FusionE86 program. 

■ Serial AMDebug technology uses a serial connection based on an enhanced JTAG 
protocol and an inexpensive 12-pin connector that can be placed on each board design. 
This low-cost solution satisfies the requirement of a large number of software developers.

■ Parallel AMDebug technology uses a parallel debug port to exchange commands and 
data between the ÉlanSC520 microcontroller and the host. The higher pin count requires 
that the extra signal pins be provided on a special bond-out package of the ÉlanSC520 
microcontroller, which is only made available to tool developers, such as in-circuit 
emulator manufacturers. The parallel AMDebug port greatly simplifies the task of 
supporting high speed data exchange.
1-4 Élan™SC520 Microcontroller User’s Manual



Architectural Overview
1.3.3 Industry-Standard PCI Bus Interface (Chapter 9)
The ÉlanSC520 microcontroller provides a 33-MHz, 32-bit PCI bus Revision 2.2-compliant 
host bridge interface, including integrated write-posting and read-buffering capabilities 
suitable for high-throughput applications. The PCI host bridge leverages standard 
peripherals and software. It also provides:

■ High throughput (132 Mbytes/s peak transfer rate)

■ Deep buffering and support for burst transactions from PCI bus masters to SDRAM

■ Flexible arbitration mechanism

■ Support for up to five external PCI masters

1.3.4 High-Performance SDRAM Controller (Chapter 10)
The ÉlanSC520 microcontroller provides an integrated SDRAM controller that supports 
popular industry-standard synchronous DRAMs (SDRAM).

■ The SDRAM controller interfaces with SDRAM chips as well as with most standard 
DIMMs to enable use of standard off-the-shelf memory components.

■ The SDRAM controller supports programmable timing options and provides the required 
external clock.

■ Up to four 32-bit banks of SDRAM are supported with a maximum capacity of 256 Mbytes. 

■ An important reliability-enhancing Error Correction Code (ECC) feature is built into the 
SDRAM controller. The resultant increase in the memory content reliability enables the 
ÉlanSC520 microcontroller to be effectively utilized in applications that require more 
reliable operation, such as communications environments.

■ The SDRAM controller contains a write buffer and read ahead buffer subsystem that 
improves both write and read performance.

■ SDRAM refresh options allow the SDRAM contents to be maintained during reset.

1.3.5 ROM/Flash Controller (Chapter 12)
The ÉlanSC520 microcontroller provides an integrated ROM controller for glueless 
interfacing to ROM and Flash devices. The ÉlanSC520 microcontroller supports two types 
of interfaces to such devices—a simple interface via the GP bus for 8- and 16-bit devices, 
and an interface to the SDRAM memory data bus for higher performance 8-, 16-, and 32-
bit devices. 

The ROM/Flash controller:

■ Reduces system cost by gluelessly interfacing static memory with up to three ROM/
Flash chip selects

■ Supports execute-in-place (XIP) operating systems for applications that require 
executing out of ROM or Flash memory instead of DRAM

■ Supports high-performance page-mode devices

1.3.6 Flexible Address-Mapping (Chapter 4)
In addition to the memory management unit (MMU) within the Am5x86 CPU core, the 
ÉlanSC520 microcontroller provides 16 Programmable Address Region (PAR) registers 
that enable flexible placement of memory (SDRAM, ROM, Flash, SRAM, etc.) and 
peripherals into the two address spaces of the Am5x86 CPU (memory address space and 
I/O address space). The PAR hardware allows designers to flexibly configure both address 
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spaces and place memory and/or external peripherals, as required by the application. The 
internal memory-mapped configuration registers space can also be remapped to 
accommodate system requirements. PAR registers also allow control of important 
attributes, such as cacheability, write protection, and code execution protection for memory 
resources.

1.3.7 General-Purpose (GP) Bus Interface (Chapter 13)
The ÉlanSC520 microcontroller includes a simple general-purpose (GP) bus that provides 
programmable bus timing and allows the connection of 8/16-bit peripheral devices and 
memory to the ÉlanSC520 microcontroller. The GP bus operates at 33 MHz, which offers 
good performance at a very low interface cost.

The ÉlanSC520 microcontroller provides up to eight chip selects for external GP bus devices 
such as off-the-shelf I/O peripherals, custom ASICs, and SRAM or NVRAM. The GP bus 
interface supports programmable timing and dynamic bus width and cycle stretching to 
accommodate a wide variety of standard peripherals, such as UARTs, 10-Mbit LAN 
controller chips and serial communications controllers. Up to four external DMA channels 
provide fly-by DMA transfers between peripheral devices on the GP bus and system 
SDRAM.

Internally, the GP bus is used to provide a full complement of integrated peripherals, such 
as a DMA controller, programmable interrupt controller, timers, and UARTs, as described 
in “Integrated Peripherals” on page 1-7. These internal peripherals are designed to operate 
at the full clock rate of the GP bus. The internal peripherals can also be configured to 
operate in PC/AT-compatible configuration, but are generally not restricted to this 
configuration.

The ÉlanSC520 microcontroller provides a way to view accesses to the internal peripherals 
on the external GP bus for debugging purposes.

1.3.8 Clock Generation (Chapter 5)
The ÉlanSC520 microcontroller offers user-configurable CPU core clock speed operation 
at 100 or 133 MHz for different power/performance points depending on the application. 

Not all ÉlanSC520 microcontroller devices support all CPU clock rates. The maximum 
supported clock rate for a device is indicated by the part number printed on the package. 
The clocking circuitry can be programmed to run the device at higher than the rated speeds. 
However, if an ÉlanSC520 microcontroller is programmed to run at a higher clock speed 
than that for which it is rated, then erroneous operation can result, and physical damage 
to the device may occur.

The ÉlanSC520 microcontroller includes on-chip oscillators and PLLs, as well as most of 
the required PLL loop filter components. The ÉlanSC520 microcontroller requires two 
standard crystals, one for 32.768 kHz and one for 33 MHz. All the clocks required inside 
the ÉlanSC520 microcontroller are generated from these crystals. The ÉlanSC520 
microcontroller also supplies the clocks for the SDRAM and PCI bus; however, external 
clock buffering may be required in some systems.

Note: The ÉlanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz 
crystal. In this document, the generic term “33 MHz” refers to the system clock derived from 
whichever 33-MHz crystal frequency is being used in the system.
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1.3.9 Integrated Peripherals
The ÉlanSC520 microcontroller is a highly integrated single-chip CPU with a complete set 
of integrated peripherals that are a superset of common PC/AT peripherals, plus a set of 
memory-mapped peripherals that enhance its usability in various applications.

■ A programmable interrupt controller (PIC) (see Chapter 15) that provides the capability 
to prioritize 22 interrupt levels, up to 15 of these being external sources. The PIC can 
be programmed to operate in PC/AT-compatible mode, but also contains extended 
features, including support for more sources and flexible routing that allows any interrupt 
request to be steered to any PIC input. Interrupt requests can be programmed to 
generate either non-maskable interrupt (NMI) or maskable interrupt requests.

■ An integrated DMA controller (see Chapter 14) is included for transferring data between 
SDRAM and GP bus peripherals. The GP-DMA controller operates in single-cycle (fly-
by) mode for more efficient transfers. The GP-DMA controller can be programmed for 
PC/AT compatibility, but also contains enhanced features:

– A double buffer-chaining mode provides a more efficient software interface.

– Extended address and transfer counts

– Flexible routing of DMA channels

■ Three general-purpose 16-bit timers (see Chapter 17) that provide flexible cascading 
for extension to 32-bit operation. These timers provide the ability to configure down to 
the resolution of four clock periods where the clock period is the 33-MHz clock. Timer 
input and output pins provide the ability to interface with off-chip hardware.

■ A standard PC/AT-compatible programmable interval timer (PIT) (see Chapter 16) that 
consists of three 16-bit timers.

■ A software timer (see Chapter 18) that eases the task of keeping system time. It provides 
1-ms resolution and can also be used for performance monitoring.

■ A watchdog timer (see Chapter 19) to guard against runaway software.

■ A real-time clock (RTC) with battery backup capability (see Chapter 20). The RTC also 
provides 114 bytes of battery-backed RAM for storage of configuration parameters.

■ Two integrated 16550-compatible UARTs (see Chapter 21) that provide full handshaking 
capability with eight pins each. Enhancements enable the UARTs to operate at baud 
rates up to 1.152 Mbits/s. The UARTs can be configured to use the integrated GP bus 
DMA controller to transfer data between the serial ports and SDRAM.

■ A synchronous serial interface (SSI) that is compatible with SCP, SPI, and Microwire 
slave devices (see Chapter 22). The SSI interface can be configured for either full-duplex 
or half-duplex operation using a 4-wire or 3-wire interface.

■ 32 programmable I/O pins are provided (see Chapter 23). These pins are multiplexed 
with other peripherals and interface functions.

■ The ÉlanSC520 microcontroller also provides PC/AT-compatible functions for control of 
the a20 gate and the soft CPU reset (Ports 0060h, 0064h, 0092h).

1.3.10 JTAG Boundary Scan Test Interface (Chapter 25)
The ÉlanSC520 microcontroller provides a full JTAG test port that is compliant with IEEE 
Std 1149.1-1990 for use during board testing.
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1.3.11 System Testing and Debugging Features (Chapter 24)
To facilitate debugging, the ÉlanSC520 microcontroller provides observability of many 
portions of its internal operation, including:

■ A three-pin interface that can be used in either system test mode or write buffer test 
mode, to aid in determining internal bus initiators of SDRAM cycles, and determining 
when SDRAM data is valid on the interface. An additional mode provides observability 
of integrated peripheral accesses.

■ A nonconcurrent arbitration mode to reduce debug complexity when PCI bus masters 
and GP bus DMA initiators are also accessing SDRAM.

■ CPU cache control and dynamic core clock speed control under program control.

■ Ability to disable write posting and read prefetching in the SDRAM controller to simplify 
tracing of SDRAM cycles.

■ Notification of memory write protection and non-executable memory region violations.

1.4 APPLICATIONS
The figures on the following pages show the ÉlanSC520 microcontroller as it might be used 
in several reference design applications in the data communications, information 
appliances, and telecommunication markets.

1.4.1 Smart Residential Gateway
Figure 1-2 on page 1-10 shows an ÉlanSC520 microcontroller-based Smart Resident 
Gateway (SRG), which is a router for a home network between the wide area network 
(WAN) (the internet) and a local area network (LAN) (an intranet of computers and 
information appliances in the home). The SRG provides firewall protection of the LAN from 
unauthorized access through the internet. A common internet access medium is shared 
by all users on the LAN. 

A variety of connections are possible for both the WAN and the LAN. For example, the WAN 
connection can be a V.90 modem, cable modem, ISDN, ADSL, or Ethernet. 

The LAN connection can be:

■ HomePNA—Home Phoneline Networking Alliance, an alliance with a widely endorsed 
home networking specification 

■ Bluetooth—a computing and telecommunications industry specification that describes 
how computing devices can easily interconnect with each other and with home and 
business phones and computers using a short-range wireless connection)

■ Home RF—a standard competing with Bluetooth for the interconnection of computing 
devices in a LAN using radio frequency 

■ Ethernet—local area network technology 

■ Power line—a LAN using the AC power distribution network in a home or business to 
interconnect devices. Digital information is transmitted on a high-frequency carrier signal 
on top of the AC power. 

1.4.2 Thin Client
Figure 1-3 on page 1-11 shows an ÉlanSC520 microcontroller-based “thin client,” which is 
the modern replacement for the traditional terminal in a remote computing paradigm. 
Application programs run remotely on a server, and data is warehoused on centrally 
managed disks at the “server farm.” An efficient communications protocol transmits 
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keyboard and mouse commands upstream and transmits video BIOS calls downstream. 
The thin client renders and displays the graphics for the user. 

The thin client is typically connected to an Ethernet LAN, although a remote location can 
connect to a server via a WAN connection such as a modem. A minimum speed of 24 kbaud 
is required for the communication protocol, unless the application is graphics-intensive, in 
which case a faster connection is required. 

1.4.3 Digital Set Top Box
Figure 1-4 on page 1-12 shows an ÉlanSC520 microcontroller-based digital set top box 
(DSTB), which is a consumer client device that uses a television set as the display. Common 
applications for the DSTB are internet access, e-mail, and streaming audio and video 
content. 

The minimal system includes a connection to the WAN via a modem, ADSL, or cable 
modem; an output to a TV; and an InfraRed (IR) link to a remote control or wireless keyboard. 
Expanded systems include DVD drives and MPEG2 decoders to deliver digital video 
content. A hard drive may be employed to store video data for future replay. Keyboard, 
mouse, printer, or a video camera are options that can be included. 

1.4.4 Telephone Line Concentrator
Figure 1-5 on page 1-13 shows an ÉlanSC520 microcontroller-based telephone line 
concentrator located in the neighborhood that converts multiple analog subscriber loops 
into a high-speed digitally multiplexed line for connection to the central office switching 
network. 
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Figure 1-2 Élan™SC520 Microcontroller-Based Smart Residential Gateway 
Reference Design
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Figure 1-3 Élan™SC520 Microcontroller-Based Thin Client Reference Design
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Figure 1-4 Élan™SC520 Microcontroller-Based Digital Set Top Box Reference Design
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Figure 1-5 Élan™SC520 Microcontroller-Based Telephone Line Concentrator 
Reference Design
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CHAPTER
2
 PIN INFORMATION
2.1 OVERVIEW
The ÉlanSC520 microcontroller contains 258 signal pins plus power and ground signals. 
A minimal number of signals are shared with others.

The signals are organized alphabetically within the following functional groups:

■ Synchronous DRAM controller (page 2-5)

■ ROM/Flash controller (page 2-6)

■ PCI bus (page 2-6)

■ General-purpose (GP) bus (page 2-7)

■ Serial ports (page 2-9)

■ Timers (page 2-10)

■ Clocks and reset (page 2-10)

■ Chip selects (page 2-11)

■ Programmable I/O (PIO) (page 2-11)

■ JTAG boundary scan test interface (page 2-12)

■ AMDebug interface (page 2-12)

■ System test (page 2-12)

■ Configuration (page 2-13)

■ Power (page 2-14)

2.2 LOGIC SYMBOLS
Figure 2-1 shows a logical symbol of the device, with pins grouped by function or interface. 
Figure 2-2 shows a logical symbol with pins grouped by default function. Figure 2-2 also 
shows pin multiplexing on the ÉlanSC520 microcontroller.
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Figure 2-1 Logic Diagram by Interface1

Notes: 
1. Pins noted with asterisks are duplicated in this diagram to clarify which signals are used for each interface.
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Figure 2-2 Logic Diagram by Default Pin Function1

Notes: 
1. Pin names in bold indicate the default pin function. Brackets, [ ], indicate alternate, multiplexed functions. Braces, { }, indicate 

pinstrap pins. Pins noted with asterisks are duplicated in this diagram to clarify which signals are used for each interface. 
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2.3 SIGNAL DESCRIPTIONS
Table 2-1 describes the terms used in the signal description table. In general, the brackets, 
[ ], indicate alternate, multiplexed functions, and braces, { }, indicate reset configuration 
pins (pinstraps). The line over a pin name indicates an active Low signal. The word pin 
refers to the physical wire; the word signal refers to the electrical signal that flows through it.

Table 2-2, “Signal Descriptions” on page 5 contains a description of the ÉlanSC520 
microcontroller signals. The descriptions in Table 2-2 are organized by functional group. 
Table 2-2 describes the signals that are available for each interface and which signals are 
shared with others. Signal sharing is also shown in Figure 2-2.

Detailed information on pin state, including maximum load values, power-on reset default 
function, reset state, power-on reset default operation, hold state, and voltage, is available 
in the Élan™SC520 Microcontroller Data Sheet, order #22003. Connection and package 
diagrams, as well as pin number assignments, are also included in that document.

Table 2-1 Signal Descriptions Table Definitions

Term Definition

General Terms

[ ] Indicates the pin alternate function; a pin defaults to the signal named without the 
brackets.

{ } Indicates the reset configuration pin (pinstrap).

pin Refers to the physical wire.

signal Refers to the electrical signal that flows across a pin.

SIGNAL A line over a signal name indicates that the signal is active Low; a signal name 
without a line is active High.

Signal Types

Analog Analog voltage

B Bidirectional

H High

I Input

LS Programmable to hold last state of pin

O Totem pole output

O/TS Totem pole output/three-state output

OD Open-drain output

OD-O Open-drain output or totem pole output

Osc Oscillator

PD Internal pulldown resistor (~100–150 kW)

Power Power pins

PU Internal pullup resistor (~100–150 kW)

STI Schmitt trigger input

STI-OD Schmitt trigger input or open-drain output

TS Three-state output
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Table 2-2 Signal Descriptions

Signal
Multiplexed 

Signal Type Description

Synchronous DRAM Controller

BA1–BA0 — O Bank Address is the SDRAM bank address bus. 

CLKMEMIN — I SDRAM Clock Input is the SDRAM clock return signal used to 
minimize skew between the internal SDRAM clock and the 
CLKMEMOUT signal provided to the SDRAM devices. This signal 
compensates for buffer and load delays introduced by the board design.

CLKMEMOUT — O SDRAM Clock Output is the 66-MHz clock that provides clock 
signalling for the synchronous DRAM devices. This clock may require 
an external Low skew buffer for system implementations that result in 
heavy loading on the SDRAM clock signal.

MA12–MA0 — O SDRAM Address is the SDRAM multiplexed address bus. 

MD31–MD0 — B SDRAM Data Bus inputs data during SDRAM read cycles and outputs 
data during SDRAM write cycles. 

MECC6–MECC0 — B Memory Error Correction Code contains the ECC checksum 
(syndrome) bits used to validate and correct data errors.

SCASA–SCASB — O Column Address Strobes are used in combination with the SRASA–
SRASB and SWEA–SWEB to encode the SDRAM command type. 
SCASA and SCASB are the same signal provided on two different pins 
to reduce the total load connected to CAS.
Suggested system connection:
  SCASA for SDRAM banks 0 and 1
  SCASB for SDRAM banks 2 and 3

SCS3–SCS0 — O SDRAM Chip Selects are the SDRAM chip-select outputs. These 
signals are asserted to select a bank of SDRAM devices. The chip-
select signals enable the SDRAM devices to decode the commands 
asserted via SRASA–SRASB, SCASA–SCASB, and SWEA–SWEB.

SDQM3–SDQM0 — O Data Input/Output Masks make SDRAM data output high-impedance 
and blocks data input on SDRAM while active. Each of the four 
SDQM3–SDQM0 signals is associated with one byte of four 
throughout the array. Each SDQMx signal provides an input mask 
signal for write accesses and an output enable signal for read 
accesses.

SRASA–SRASB — O Row Address Strobes are used in combination with the SCASA–
SCASB and SWEA–SWEB to encode the SDRAM command type.
SRASA and SRASB are the same signal provided on two different pins 
to reduce the total load connected to RAS.
Suggested system connection:
  SRASA for SDRAM banks 0 and 1
  SRASB for SDRAM banks 2 and 3

SWEA–SWEB — O SDRAM Memory Write Enables are used in combination with the 
SRASA–SRASB and SCASA–SCASB to encode the SDRAM 
command type. 
SWEA and SWEB are the same signal provided on two different pins 
to reduce the total load connected to WE.
Suggested system connection:
  SWEA for SDRAM banks 0 and 1
  SWEB for SDRAM banks 2 and 3
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Pin Information
ROM/Flash Controller

BOOTCS — O ROM/Flash Boot Chip Select is an active Low output that provides 
the chip select for the startup ROM and/or the ROM/Flash array (BIOS, 
HAL, O/S, etc.). The BOOTCS signal asserts for accesses made to the 
64-Kbyte segment that contains the Am5x86 CPU boot vector: 
addresses 3FF0000h–3FFFFFFh. In addition to this linear decode 
region, BOOTCS asserts in response to accesses to user-
programmable address regions.

FLASHWR — O Flash Write indicates that the current cycle is a write of the selected 
Flash device. When this signal is asserted, the selected Flash device 
can latch data from the data bus.

GPA25–GPA0 — O General-Purpose Address Bus provides the address to the system’s 
ROM/Flash devices. It is also the address bus for the GP bus devices. 
Twenty-six address lines provide a maximum addressable space of 64 
Mbytes for each ROM chip select.

GPD15–GPD0 — B General-Purpose Data Bus inputs data during memory and I/O read 
cycles and outputs data during memory and I/O write cycles. 
A reset configuration pin (CFG2) allows the GP bus to be used for the 
boot chip-select ROM interface. Configuration registers are used to 
select whether ROMCS2 and ROMCS1 use the GP bus data bus or 
the MD data bus. The GP data bus supports 16-bit or 8-bit ROM 
interfaces. Two data buses are selectable to facilitate the use of ROM 
in a mixed voltage system.

MD31–MD0 — B Memory Data Bus inputs data during SDRAM read cycles and 
outputs data during SDRAM write cycles. Configuration registers are 
used to select whether ROMCS2 and ROMCS1 use the GP bus data 
bus or the MD data bus. A reset configuration pin (CFG2) allows the 
GP data bus to be used for BOOTCS. The memory data bus supports 
an 8-, 16-, or 32-bit ROM interface.

ROMBUFOE — O ROM Buffer Output Enable is an optional signal used to enable a 
buffer to the ROM/Flash devices if they need to be isolated from the 
ÉlanSC520 microcontroller, other GP bus devices, or SDRAM system 
for voltage or loading considerations. This signal asserts for all 
accesses through the ROM controller. The buffer direction is controlled 
by the ROMRD or FLASHWR signal.

ROMCS2 [GPCS2] O ROM/Flash Chip Selects are signals that can be programmed to be 
asserted for accesses to user-programmable address regions.ROMCS1 [GPCS1] O

ROMRD — O ROM/Flash Read indicates that the current cycle is a read of the 
selected ROM/Flash device. When this signal is asserted, the selected 
ROM device can drive data onto the data bus.

Peripheral Component Interconnect (PCI) Bus

AD31–AD0 — B PCI Address Data Bus is the PCI time-multiplexed address/data bus. 

CBE3–CBE0 — B Command or Byte-Enable Bus functions 1) as a time-multiplexed 
bus command that defines the type of transaction on the AD bus, 
or 2) as byte enables:
  CBE0 for AD7–AD0
  CBE1 for AD15–AD8
  CBE2 for AD23–AD16
  CBE3 for AD31–AD24

CLKPCIIN — I PCI Bus Clock Input is the 33-MHz PCI bus clock. This pin can be 
connected to the CLKPCIOUT pin for systems where the ÉlanSC520 
microcontroller is the source of the PCI bus clock. 

Table 2-2 Signal Descriptions (Continued)
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Multiplexed 

Signal Type Description
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Pin Information
CLKPCIOUT — O PCI Bus Clock Output is a 33-MHz clock output for the PCI bus 
devices. This signal is derived from the 33MXTAL2–33MXTAL1 
interface. 

DEVSEL — B Device Select is asserted by the target when it has decoded its 
address as the target of the current transaction.

FRAME — B Frame is driven by the transaction initiator to indicate the start and 
duration of the transaction.

GNT4–GNT0 — O Bus Grants are asserted by the ÉlanSC520 microcontroller to grant 
access to the bus.

INTA–INTD — I Interrupt Requests are asserted to request an interrupt. These four 
interrupts are the same type of interrupt as the GPIRQ10–GPIRQ0 
signals, and they go to the same interrupt controller. They are named 
INTx to match the common PCI interrupt naming convention.
Configuration registers allow inversion of these interrupt requests to 
recognize active low interrupt requests. These interrupt requests can 
be routed to generate NMI. 

IRDY — B Initiator Ready is asserted by the current bus master to indicate that 
data is ready on the bus (write) or that the master is ready to accept 
data (read).

PAR — B PCI Parity is driven by the initiator or target to indicate parity on the 
AD31–AD0 and CBE3–CBE0 buses. 

PERR — B Parity Error is asserted to indicate a PCI bus data parity error in the 
previous clock cycle.

REQ4–REQ0 — I Bus Requests are asserted by the master to request access to the 
bus.

RST — O Reset is asserted to reset the PCI devices. 

SERR — I System Error is used for reporting address parity errors or any other 
system error where the result is catastrophic.

STOP — B Stop is asserted by the target to request that the current bus 
transaction be stopped.

TRDY — B Target Ready is asserted by the currently addressed target to indicate 
its ability to complete the current data phase of a transaction.

General-Purpose (GP) Bus

GPA14–GPA0 — O General-Purpose Address Bus outputs the physical memory or I/O 
port address. Twenty-six address lines provide a maximum 
addressable space of 64 Mbytes. This bus also provides the address 
to the system’s ROM/Flash devices.

GPA15 {RSTLD0} O{I}

GPA16 {RSTLD1} O{I}

GPA17 {RSTLD2} O{I}

GPA18 {RSTLD3} O{I}

GPA19 {RSTLD4} O{I}

GPA20 {RSTLD5} O{I}

GPA21 {RSTLD6} O{I}

GPA22 {RSTLD7} O{I}

GPA23 {AMDEBUG_DIS} O{I}

GPA24 {INST_TRCE} O{I}

GPA25 {DEBUG_ENTER} O{I}

Table 2-2 Signal Descriptions (Continued)
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Pin Information
[GPAEN] PIO3 O GP Bus Address Enable indicates that the current address on the 
GPA25–GPA0 address bus is a memory address, and that the current 
cycle is a DMA cycle. All I/O devices should use this signal in decoding 
their I/O addresses and should not respond when this signal is 
asserted. When GPAEN is asserted, the GPDACKx signals are used 
to select the appropriate I/O device for the DMA transfer. GPAEN also 
asserts when a DMA cycle is occurring internally.

[GPALE] PIO0 O GP Bus Address Latch Enable is driven at the beginning of a GP bus 
cycle with valid address. This signal can be used by external devices 
to latch the GP address for the current cycle.

[GPBHE] PIO1 O GP Bus Byte High Enable is driven active when data is to be 
transferred on the upper 8 bits of the GP data bus.

GPD15–GPD0 — B General-Purpose Data Bus inputs data during memory and I/O read 
cycles, and outputs data during memory and I/O write cycles. 

[GPDACK0] PIO12 O GP Bus DMA Acknowledge can each be mapped to one of the seven 
available DMA channels. They are asserted active Low to 
acknowledge the corresponding DMA requests.

[GPDACK1] PIO11 O

[GPDACK2] PIO10 O

[GPDACK3] PIO9 O

[GPDBUFOE] PIO24 O GP Bus Data Bus Buffer Output Enable is used to control the output 
enable on an external transceiver that may be on the GP data bus. 
Using this transceiver is optional in the system design and is 
necessary only to alleviate loading or voltage issues. This pin is 
asserted for all external GP bus accesses. It is not asserted during 
accesses to the internal peripherals even if GP bus echo mode is 
enabled.
Note that if the ROM is configured to use the GP data bus, then its 
bytes are not controlled by this buffer enable; they are controlled by the 
ROMBUFOE signal.

[GPDRQ0] PIO8 I GP Bus DMA Request can each be mapped to one of the seven 
available DMA channels. They are asserted active High to request 
DMA service.

[GPDRQ1] PIO7 I

[GPDRQ2] PIO6 I

[GPDRQ3] PIO5 I

[GPIOCS16] PIO25 STI GP Bus I/O Chip-Select 16 is driven active early in the cycle by the 
targeted I/O device on the GP bus to request a 16-bit I/O transfer.

GPIORD — O GP Bus I/O Read indicates that the current cycle is a read of the 
currently addressed I/O device on the GP bus. When this signal is 
asserted, the selected I/O device can drive data onto the data bus. 

GPIOWR — O GP Bus I/O Write indicates that the current cycle is a write of the 
currently addressed I/O device on the GP bus. When this signal is 
asserted, the selected I/O device can latch data from the data bus.

Table 2-2 Signal Descriptions (Continued)
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Pin Information
[GPIRQ0] PIO23 I GP Bus Interrupt Request can each be mapped to one of the 
available interrupt channels or NMI. They are asserted when a 
peripheral requires interrupt service.
Configuration registers allow inversion of these interrupt requests to 
recognize active low interrupt requests. These interrupt requests can 
be routed to generate NMI. 

[GPIRQ1] PIO22 I

[GPIRQ2] PIO21 I

[GPIRQ3] PIO20 I

[GPIRQ4] PIO19 I

[GPIRQ5] PIO18 I

[GPIRQ6] PIO17 I

[GPIRQ7] PIO16 I

[GPIRQ8] PIO15 I

[GPIRQ9] PIO14 I

[GPIRQ10] PIO13 I

[GPMEMCS16] PIO26 STI GP Bus Memory Chip-Select 16 is driven active early in the cycle by 
the targeted memory device on the GP bus to request a 16-bit 
memory transfer.

[GPMEMRD] — O GP Bus Memory Read indicates that the current GP bus cycle is a 
read of the selected memory device.   When this signal is asserted, the 
selected memory device can drive data onto the data bus.

[GPMEMWR] — O GP Bus Memory Write indicates that the current GP bus cycle is a 
write of the selected memory device. When this signal is asserted, the 
selected memory device can latch data from the data bus.

[GPRDY] PIO2 STI GP Bus Ready can be driven by open-drain devices. When pulled Low 
during a GP bus access, wait states are inserted in the current cycle. 
This pin has an internal weak pullup that should be supplemented by 
a stronger external pullup for faster rise time.

GPRESET — O GP Bus Reset, when asserted, re-initializes to reset state all devices 
connected to the GP bus.

[GPTC] PIO4 O GP Bus Terminal Count is driven from the internal DMA controller to 
indicate that the transfer count for the currently active DMA channel 
has reached zero, and that the current DMA cycle is the last transfer.

Serial Ports

CTS1
CTS2

—
PIO28

I
I

Clear To Send is driven back to the serial port to indicate that the 
external data carrier equipment (DCE) is ready to accept data.

DCD1 — I Data Carrier Detect is driven back to the serial port from a piece of 
DCE when it has detected a carrier signal from a communications 
target.

[DCD2] PIO30 I

DSR1 — I Data Set Ready is used to indicate that the external DCE is ready to 
establish a communication link with the internal serial port controller.[DSR2] PIO29 I

DTR2–DTR1 — O Data Terminal Ready indicates to the external DCE that the internal 
serial port controller is ready to communicate.

RIN1 — I Ring Indicate is used by an external modem to inform the serial port 
that a ring signal was detected. [RIN2] PIO31 I

RTS2–RTS1 — O Request To Send indicates to the external DCE that the internal serial 
port controller is ready to send data.

SIN2–SIN1 — I Serial Data In is used to receive the serial data from the external serial 
device or DCE into the internal serial port controller.

SOUT2–SOUT1 — O Serial Data Out is used to transmit the serial data from the internal 
serial port controller to the external serial device or DCE.

Table 2-2 Signal Descriptions (Continued)
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Pin Information
SSI_CLK — O SSI Clock is driven by the ÉlanSC520 microcontroller SSI port during 
active SSI transmit or receive transactions. The idle state of the clock 
and the assertion/sample edge are configurable.

SSI_DI — STI SSI Data Input receives incoming data from a peripheral device SSI 
port. Data is shifted in on the opposite SSI_CLK signal edge in which 
SSI_DO drives data. SSI_DO and SSI_DI can be tied together to 
interface to a three-pin SSI peripheral.

SSI_DO — OD SSI Data Output drives data to a peripheral device SSI port. Data is 
driven on the opposite SSI_CLK signal edge in which SSI_DI latches 
data. The DO signal is normally at high-impedance when no transmit 
transaction is active on the SSI port.

Timers

PITGATE2 [GPCS3] I Programmable Interval Timer 2 Gate provides control for the PIT 
Channel 2.
Programmable Interval Timer 2 Output is output from the PIT 
Channel 2. This signal is typically used as the PC speaker signal.

PITOUT2 {CFG3} O{I}

TMRIN0 [GPCS5] I Timer Inputs 0 and 1 can be programmed to be the control or clock 
for the general-purpose (GP) timers 0 and 1. TMRIN1 [GPCS4] I

TMROUT0 [GPCS7] O Timer Outputs 0 and 1 are outputs from two of the GP timers. These 
outputs can be used as pulse-width modulation signals.TMROUT1 [GPCS6] O

Clocks and Reset

32KXTAL2–
32KXTAL1

— osc 32.768-kHz Crystal Interface is used for connecting an external 
crystal or oscillator to the ÉlanSC520 microcontroller. This clock 
source is used to clock the real-time clock (RTC). In addition, internal 
PLLs generate clocks for the timers and UARTs based on this clock 
source. When an external oscillator is used, 32KXTAL1 should be 
grounded and the clock source driven on 32KXTAL2. 

33MXTAL2–
33MXTAL1

— osc 33-MHz Crystal Interface is the main system clock for the chip. This 
clock source is used to derive the SDRAM, CPU, and PCI clocks.
When an external oscillator is used, 33MXTAL1 should be 
unconnected and the clock source driven on 33MXTAL2. 

[CLKTEST] CLKTIMER O Test Clock Output is a shared pin that allows many of the internal 
clocks to be driven externally. CLKTEST can drive the internal clocks 
of the UARTs, PLL1, PLL2, the programmable interval timer (PIT), or 
the real-time clock (RTC) for testing or for driving an external device. 

CLKTIMER [CLKTEST] I Timer Clock Input is a shared clock pin that can be used to input a 
frequency to the programmable interval timer (PIT).

LF_PLL1 — I Loop Filter Interface is used for connecting external loop filter 
components. Component values and circuit descriptions are contained 
in the Élan™SC520 Microcontroller Data Sheet, order #22003. 

PRGRESET — STI Programmable Reset can be programmed to reset the ÉlanSC520 
microcontroller, but allow SDRAM refresh to continue during the reset. 
This allows the system to be reset without losing the information stored 
in SDRAM. On power-up, PRGRESET is disabled and must be 
programmed to be operational. When disabled, this pin has no effect 
on the ÉlanSC520 microcontroller. 

PWRGOOD — STI Power Good is a reset signal that indicates to the ÉlanSC520 
microcontroller that the VCC levels are within the normal operation 
range. It is used to reset the entire chip and must be held Low for one 
second after all VCC signals (except VCC_RTC) on the chip are High. 
This signal must be returned Low before the VCC signals degrade to 
put the RTC into the correct state for operation in RTC-only mode.

Table 2-2 Signal Descriptions (Continued)
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Pin Information
Chip Selects

[GPCS0] PIO27 O General-Purpose Chip Select signals are for the GP bus. They can 
be used for either memory or I/O accesses. These chip selects are 
asserted for Am5x86 CPU accesses to the corresponding regions set 
up in the Programmable Address Region (PAR) registers.

[GPCS1] ROMCS1 O

[GPCS2] ROMCS2 O

[GPCS3] PITGATE2 O

[GPCS4] TMRIN1 O

[GPCS5] TMRIN0 O

[GPCS6] TMROUT1 O

[GPCS7] TMROUT0 O

Programmable I/O (PIO)

PIO0 [GPALE] B Programmable Input/Output signals can be programmed as inputs 
or outputs. When they are outputs, they can be driven High or Low by 
programming bits in registers.

PIO1 [GPBHE] B

PIO2 [GPRDY] B

PIO3 [GPAEN] B

PIO4 [GPTC] B

PIO5 [GPDRQ3] B

PIO6 [GPDRQ2] B

PIO7 [GPDRQ1] B

PIO8 [GPDRQ0] B

PIO9 [GPDACK3] B

PIO10 [GPDACK2] B

PIO11 [GPDACK1] B

PIO12 [GPDACK0] B

PIO13 [GPIRQ10] B

PIO14 [GPIRQ9] B

PIO15 [GPIRQ8] B

PIO16 [GPIRQ7] B

PIO17 [GPIRQ6] B

PIO18 [GPIRQ5] B

PIO19 [GPIRQ4] B

PIO20 [GPIRQ3] B

PIO21 [GPIRQ2] B

PIO22 [GPIRQ1] B

PIO23 [GPIRQ0] B

PIO24 [GPDBUFOE] B

PIO25 [GPIOCS16] B

PIO26 [GPMEMCS16] B

PIO27 [GPCS0] B

PIO28 [CTS2] B

PIO29 [DSR2] B

PIO30 [DCD2] B

PIO31 [RIN2] B

Table 2-2 Signal Descriptions (Continued)

Signal
Multiplexed 

Signal Type Description
Élan™SC520 Microcontroller User’s Manual 2-11



Pin Information
JTAG Boundary Scan Test Interface

JTAG_TCK — I Test Clock is the input clock for test access port. 

JTAG_TDI — I Test Data Input is the serial input stream for input data. This pin has 
a weak internal pullup resistor. It is sampled on the rising edge of 
JTAG_TCK. If not driven, this input is sampled High internally.

JTAG_TDO — O/TS Test Data Output is the serial output stream for result data. It is in the 
high-impedance state except when scanning is in progress.

JTAG_TMS — I Test Mode Select is an input for controlling the test access port. This 
pin has a weak internal pullup resistor. If it is not driven, it is sampled 
High internally.

JTAG_TRST — I JTAG Reset is the test access port (TAP) reset. This pin has a weak 
internal pulldown resistor. If not driven, this input is sampled Low 
internally and causes the TAP controller logic to remain in the reset 
state.

AMDebug Interface

BR/TC — I Break Request/Trace Capture requests entry to AMDebug 
technology mode. The AMDebug technology serial/parallel interface 
can reconfigure this pin to turn instruction trace capture on or off.

CMDACK — O Command Acknowledge indicates command completion status. It is 
asserted High when the in-circuit emulator logic is ready to receive 
new commands from the host. It is driven Low when the in-circuit 
emulator core is executing a command from the host and remains Low 
until the command is completed.

STOP/TX — O Stop/Transmit is asserted High on entry to AMDebug mode. During 
normal mode, this is set High when there is data to be transmitted to 
the host (during operating system/application communication).

TRIG/TRACE — O Trigger/Trace triggers event to logic analyzer (optional, from Am5x86 
CPU debug registers).The AMDebug technology serial/parallel 
interface can reconfigure this pin to indicate the trace on or off status.

System Test

CF_DRAM [WBMSTR2]
{CFG2}

O{I} Code Fetch SDRAM, during SDRAM reads, provides code fetch 
status. When Low, this indicates that the current SDRAM read is a 
CPU code fetch demanded by the CPU, or a read prefetch initiated due 
to a demand code fetch by the CPU. When High during reads, this 
indicates that the SDRAM read is not a code fetch, and it could have 
been initiated by the CPU, PCI master, or the GP bus GP-DMA 
controller, either demand or prefetch. During SDRAM write cycles this 
pin provides an indication of the source of the data, either GP-DMA 
controller/PCI bus master or CPU. When High, this indicates that 
either a GP bus DMA initiator or an external PCI bus master 
contributed to the current SDRAM write cycle (the CPU may also have 
contributed). A Low indicates that the CPU is the only master that 
contributed to this write cycle.

CF_ROM_GPCS [WBMSTR0]
{CFG0}

O{I} Code Fetch ROM/GPCS provides an indication that the CPU is 
performing a code fetch from ROM (on either the GP bus or SDRAM 
data bus), or from any GPCSx pin. When Low during a read cycle (as 
indicated by either GPMEMRD or ROMRD), the CPU is performing a 
code fetch from ROM or a GP bus chip select. At all other times 
(including writes), this signal is High.

DATASTRB [WBMSTR1]
{CFG1}

O{I} Data Strobe is a debug signal that is asserted to allow the external 
system to latch SDRAM data. This can be used to trace data on the 
SDRAM interface with an in-circuit emulator probe or logic analyzer.

Table 2-2 Signal Descriptions (Continued)
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Pin Information
[WBMSTR0] CF_ROM_GPCS
{CFG0}

O{I} Write Buffer Master indicates which block(s) wrote to a rank in the 
write buffer (during SDRAM write cycles) and which block is reading 
from SDRAM (during SDRAM read cycles).
WBMSTR0, when a logical 1, indicates that the internal GP bus DMA 
controller has contributed to the write buffer rank (write cycles) or is 
reading from SDRAM (read cycles).

[WBMSTR1] DATASTRB
{CFG1}

O{I} WBMSTR1, when a logical 1, indicates that the PCI master has 
contributed to the write buffer rank (write cycles) or is reading from 
SDRAM (read cycles).

[WBMSTR2] CF_DRAM
{CFG2}

O{I} WBMSTR2, when a logical 1, it indicates that the CPU has contributed 
to the write buffer rank (write cycles) or is reading from SDRAM (read 
cycles).

Configuration

{AMDEBUG_DIS} GPA23 I AMDebug Disable is an active High configuration signal latched at the 
assertion of Power Good (PWRGOOD). This pin has a built-in 
pulldown resistor.
At Power Good assertion:

Low = Normal operation, mode can be enabled by software.
High = AMDebug mode is disabled and cannot be enabled by software.

{CFG0} CF_ROM_GPCS
[WBMSTR0]

I Configuration Inputs 3–0  are latched into the chip when PWRGOOD 
is asserted. These signals are all shared with other features. These 
signals have built-in pulldown resistors.
CFG0: Choose 8-, 16-, or 32-bit ROM/Flash interface for BOOTCS.

{CFG1} DATASTRB
[WBMSTR1]

I CFG1: Choose 8-, 16-, or 32-bit ROM/Flash interface for BOOTCS.

{CFG2} CF_DRAM
[WBMSTR2]

I CFG2: When Low when PWRGOOD is asserted, the ÉlanSC520 
microcontroller uses the GP data bus for BOOTCS. When seen as 
High during PWRGOOD assertion, the BOOTCS access is across the 
SDRAM data bus. Default is Low (by a built-in pulldown resistor).

{CFG3} PITOUT2 I CFG3 (Internal AMD test mode enable): For normal ÉlanSC520 
microcontroller operation, do not pull High during reset. 

{DEBUG_ENTER} GPA25 I Enter AMDebug Mode is an active High configuration signal latched 
at the assertion of Power Good (PWRGOOD). This pin enables the 
AMDebug mode, which causes the processor to fetch and execute one 
instruction from the BOOTCS device, and then enter AMDebug mode 
where the CPU waits for debug commands to be delivered by the JTAG 
port. This pin has a built-in pulldown resistor.
At PWRGOOD assertion:
   High = AMDebug mode enabled
   Low = Normal operation

{INST_TRCE} GPA24 I Instruction Trace is an active High configuration signal latched at the 
assertion of Power Good (PWRGOOD). Enables trace record 
generation from Power Good assertion. This pin has a built-in 
pulldown resistor.
At PWRGOOD assertion:
   High = Trace controller enabled to output trace records
   Low = Normal operation

Table 2-2 Signal Descriptions (Continued)
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Pin Information
{RSTLD0} GPA15 I Reset Latched Inputs are shared signals that are latched into a 
register when PWRGOOD is asserted. They are used to input static 
information to software (i.e., board revision). These signals have built-
in pulldown resistors.

{RSTLD1} GPA16 I

{RSTLD2} GPA17 I

{RSTLD3} GPA18 I

{RSTLD4} GPA19 I

{RSTLD5} GPA20 I

{RSTLD6} GPA21 I

{RSTLD7} GPA22 I

Power 

BBATSEN — Analog Backup Battery Sense is a pin on which real-time clock (RTC) backup 
battery voltage is sampled each time PWRGOOD is asserted. If this 
pin samples below 2.0 V, the Valid RAM and Time (VRT) bit in RTC 
index 0Dh is cleared until read. After the read, the VRT bit is set until 
BBATSEN is sensed via a subsequent PWRGOOD assertion. 
BBATSEN also provides a power-on-reset signal for the RTC when an 
RTC backup battery is applied for the first time.

VCC_ANLG — Power Analog Power Supply for the analog circuits (PLLs).

VCC_CORE — Power Power Supply for the ÉlanSC520 microcontroller core logic.

VCC_I/O — Power Power Supply to the I/O pad ring.

VCC_RTC — Power Power Supply for the real-time clock and 32-kHz oscillator.

GND — Power Digital Ground for the remaining ÉlanSC520 microcontroller core logic.

GND_ANLG — Power Analog Ground for the analog circuits.

Table 2-2 Signal Descriptions (Continued)
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CHAPTER
3
 SYSTEM INITIALIZATION
3.1 OVERVIEW
This chapter provides information and guidelines for initializing the ÉlanSC520 
microcontroller. Several source code examples of information described in this chapter are 
available on the AMD web site. This CodeKit software is tested source code for example 
applications. To obtain this software, as well as other product information and tools, access 
the AMD home page at www.amd.com and follow the Embedded Processors link.

From a software perspective, the types of systems that can be developed with the 
ÉlanSC520 microcontroller fall into two broad categories, native embedded systems and 
systems that use a BIOS1.

Of course, these are not the only types of systems that can be built with the ÉlanSC520 
microcontroller. It is quite possible to develop hybrid systems that have a BIOS but do not 
run a “desktop” operating system like Windows®, DOS, Unix, or Linux. While there are 
many possible ways to initialize the ÉlanSC520 microcontroller, any initialization sequence 
can be derived from the following two techniques. 

■ System initialization with a BIOS

■ System initialization for a native embedded system without a BIOS

For systems with a BIOS, most, or all, of the system initialization is done by the BIOS while 
the system is running in real mode. After initialization, the BIOS loads an operating system 
or application from nonvolatile media, which is generally a disk drive, but could be Flash 
memory or other media. The operating system or application begins operating in real mode 
and then may make its own transition into protected mode. Windows 95 and Windows NT® 
are examples of such operating systems. Real-time operating systems can also operate in 
this manner.

BIOS initialization can be complex. Some BIOS products may make a temporary transition 
into protected mode to perform certain operations and then revert back to real mode, before 
passing execution to an operating system or application. Such behavior is dependent on 
how the BIOS is written and the features provided and are beyond the scope of this 
discussion.

For embedded systems, the initialization sequence is usually much simpler and generally 
occurs primarily in protected mode. In this scenario, the processor comes up from a reset 
and transitions into protected mode as soon as possible. The only real-mode code in the 
system is the code required to jump from the reset vector and the execute code that causes 
the ÉlanSC520 microcontroller to transition into protected mode.

3.1.1 Native Embedded Initialization Sequence
Many systems designed with the ÉlanSC520 microcontroller are native embedded systems 
that do not have a BIOS. The software architecture for such systems can take many forms. 

1.  A BIOS is a PC software component. It is a set of real-mode code that is responsible for 
initializing the system and providing a standard set of I/O and system services used by an 
operating system and application level software. These services are provided via a standard 
interface. 
Élan™SC520 Microcontroller User’s Manual 3-1



System Initialization
Some use a commercial real-time operating system (RTOS), a custom RTOS, or a simple 
‘main loop’ or non-preemptive executive. In general, the executive or RTOS generally 
interfaces to the hardware using a hardware dependent layer called a board support 
package (BSP)1.

In general, the system initialization flow for a native embedded system follows this 
sequence:

1 < Reset event >
2 Near Jump to reset handler from the reset vector
3 Switch to simple protected mode
4 Determine the cause of the reset
5 Initialize the DRAM controller and DRAM. Size the DRAM
6 Setup a Stack and begin execution from “C” code
7 if (NOT Execute-In-Place) then 
8 Copy the Operating System to DRAM
9 Jump to the operating system’s entry point
10 Set up the Global Descriptor Table (GDT), Local Descriptor Table (LDT), 

Interrupt Descriptor Table (IDT), fault handlers, page tables, and a 
Task State Segment (TSS) for the operating system, application or 
executive.

11 Set the processor speed
12 Configure the GP bus timings
13 Configure the pin multiplexing
14 Configure the GP bus chip selects
15 Configure the Programmable Address Region (PAR) registers
16 Configure the interrupt mappings
17 Configure the programmable I/O (PIO) pins
18 Configure the PCI bus controller and arbitration mode
19 Initialize a periodic timer interrupt (if necessary)
20 Now, the BSP can initialize devices external to the ÉlanSC520 

microcontroller and otherwise continue to start the operating system, 
I/O drivers and application.

In the above example, the switch to simple protected mode (line 3) sets the processor CS 
register and the CS descriptor cache. This disables the redirection of the reset region to 
the reset segment (see “Reset Vector and Reset Segment” on page 3-5 for more 
information).

In line 3 above, the term simple protected mode means that the protected mode environment 
(GDT, LDT, IDT, and TSS) is the simplest kind possible. For example, both the LDT and 
IDT can be empty and the TSS and GDT can contain minimal information. Or, alternatively, 
the IDT can be empty. This means that exceptions cannot be handled, but this should not 
be a problem for the short period that the initialization code runs. More importantly, the TSS 
and GDT for simple protected mode can be contained in read-only memory (usually Flash) 
and do not have to be created at runtime. Once the DRAM is operational, then more 
extensive GDT, LDT, and IDT tables and one or more appropriate TSS can be setup in 
DRAM.

1. There is no standard term for this component. Other terms for BSP are OEM Adaptation 
Layer (OAL), Hardware Adaptation Layer (HAL), or Porting Layer. A BSP is like a BIOS, but is 
almost always unique to a specific executive or RTOS. This is especially true for comercially 
available RTOS products. A BSP for one vendor’s RTOS generally does not work with products 
from another vendor. Also, where a BIOS is most often a 16-bit real-mode entity, a BSP is 
usually a 32-bit protected mode entity. Lastly, operating systems and applications always 
communicate with a BIOS using software interrupts (or other run-time mechanisms), but a BSP 
is often linked directly to an executive or application to form a single executable and is called 
directly using the CALL instruction.
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Some embedded systems execute from read-only memory (usually Flash) and only use 
DRAM for data storage. This style of system architecture is supported by most RTOS 
products. This is reflected in line 7. Systems that execute out of Flash memory do not need 
to copy the operating system and/or application to DRAM.

Another interesting point is that once the DRAM controller is initialized, then the initialization 
code can setup a stack and finish the reset of its work in a high-level language (usually C).

3.1.2 BIOS Initialization Sequence
In contrast to a native embedded system, the flow of system initialization with a BIOS 
generally follows this sequence:

1 < Reset event >
2 Near Jump to reset handler from the reset vector
3 Map the Memory-Mapped Configuration Region (MMCR) to an address below 

0010FFEFh (real-mode address limit)
4 Determine the cause of the reset
5 Initialize the DRAM controller and DRAM. Size the DRAM, record in CMOS
6 Copy the BIOS into DRAM (shadowing)
7 Execute a Far Jump within the BIOS code to start execution out of the 

shadowed BIOS copy instead of the copy in ROM
8 Set up basic interrupt handlers for processor faults
9 Detect the CPU ID and display on the console
10 Set the processor speed
11 Configure the GP bus timings
12 Configure the pin multiplexing
13 Configure the GP bus chip selects
14 Configure the Programmable Address Region (PAR) registers
15 Configure the interrupt mappings
16 Configure the programmable I/O (PIO) pins
17 Configure the PCI bus controller and arbitration
18 Now, the BIOS can continue with standard PC-style system initialization

There are some important contrasts between the steps for a system with a PC BIOS and 
those for a native embedded system.

■ Steps 1 through 6 are done in real mode while executing from the reset segment before 
executing the first Far Jump (JMP) instruction. This is in contrast to the initialization for 
a native embedded system, which transitions to simple protected mode before these 
steps.

■ The Memory-Mapped Configuration Region (MMCR) needs to be mapped to a region 
below 00100000h so it is accessible by real-mode software. 32-bit protected-mode native 
embedded systems do not need to move the MMCR.

■ The remainder of the system initialization is done in real mode from the BIOS image 
running from DRAM. This is in contrast to an embedded system, which does all of its 
initialization from 32-bit protected mode (running either from DRAM or Flash).

3.1.3 Memory-Mapped Configuration Region (MMCR)
The Memory-Mapped Configuration Region (MMCR) is a 4-Kbyte area located at physical 
address FFFEF000h and contains various configuration and control registers for the 
ÉlanSC520 microcontroller. Configuring and controlling many of the device’s features 
requires accessing the MMCR registers. System initialization code for a native embedded 
system can access this region directly because most (or all) initialization takes place from 
32-bit protected mode. 
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In contrast, real-mode code cannot access physical memory above 0010FFEFh (the real-
mode addressing limit), and thus cannot access the default location of the MMCR. This 
problem is easily resolved by programming the Configuration Base Address (CBAR) register 
(Port FFFCh) to place the MMCR at an address somewhere below the real-mode 
addressing limit. This allows real-mode initialization code to directly access the MMCR. 
This is done in step 3 of the BIOS initialization sequence.

Note: Programming the Configuration Base Address (CBAR) register can place the MMCR 
at an address other than its default. However, the MMCR region is always accessible at its 
default location of FFFEF000h, regardless of how the CBAR register is programmed.

3.1.4 Reset Event
The ÉlanSC520 microcontroller has three primary classes of resets.

■ System reset (often called a hard reset or power-on reset)

■ System reset with SDRAM retention (called programmable reset)

■ Soft reset (often called warm start)

For more information on resetting the ÉlanSC520 microcontroller, see Chapter 6, “Reset 
Generation”, and “Initialization” on page 7-5.

Often, systems have a hardware reset button or other external devices that can cause a 
reset. For the ÉlanSC520 microcontroller, all of these cause a system reset. However, there 
are many ways to implement external reset logic. After a reset (of any kind), boot software 
can determine what caused the reset by examining various status bits.

A common and effective method of handling a reset is to determine the cause of the reset 
and record the event in the CMOS memory, or in some other non-volatile memory such as 
an EEPROM, non-volatile DRAM, or Flash. Debugging or diagnostic software could then 
examine and report the causes of the last few resets. This can be very helpful when trying 
to determine the cause of system problems. Note that the system could record other 
information as well; the time and date of the reset event is a good example.

When a system reset occurs (regardless of the source) internal registers and logic blocks 
are set to their power-on reset state. Therefore, if a system reset occurs, the boot software 
must initialize the system from scratch.

There is one exception to this, called programmable reset. This function is enabled via the 
PRG_RST_ENB bit in the Reset Configuration (RESCFG) register (MMCR offset D72h). 
If this bit is set, assertion of the PRGRESET pin, SYS_RST bit, watchdog timer system 
reset event, or AMDebug technology system reset event while PWRGOOD is asserted will 
result in a system reset in which the SDRAM configuration (SDRAM type, number of banks, 
refresh rate, etc.) is maintained so that the contents of SDRAM are preserved. SDRAM 
controller parameters retained include the SDRAM type, number of banks, refresh rate, 
and signal drive strength. This feature allows the system to be reset while guaranteeing 
that the contents of SDRAM are not disturbed. This can be very valuable for system 
debugging or for systems that require minimal startup time. This reset condition can be 
detected by software. Note that, once programmable reset has been enabled, all system 
resets other than PRWGOOD deassertion are converted to this type.

When a soft reset occurs, the system may be able to restart if the operating system saved 
enough state information. For example, an old 80286-style operating system (e.g., OS/2) 
causes a processor reset in order to return to real mode and call 16-bit BIOS routines. 

Note: It is important to understand that, for most systems, a soft reset does not need to 
be handled much differently than a system reset. For example, a system that does not need 
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to explicitly perform a soft restart will simply cause a system reset when a soft reset is 
detected.

Note that the watchdog timer can generate an interrupt (maskable or non-maskable) or a 
system reset, or both. Handling watchdog timer time-outs can be complex. For more 
information on how the WDT operates, see Chapter 19, “Watchdog Timer”.

3.1.5 Reset Vector and Reset Segment
Immediately after a hard or soft reset, the Am5x86 CPU core begins execution in real mode 
at the address F000:FFF0. This real-mode address is called the reset vector. While the 
reset vector is a real-mode address, it is a redirection of the physical address FFFFFFF0h, 
which is located at the top physical address of the memory device selected by BOOTCS. 
This device is called the boot ROM device.

After a hard or soft reset, the 64-Kbyte physical address space from FFFF0000 to 
FFFFFFFFh (resident in the boot ROM device) is redirected into real-mode address space 
from F000:0000 to F000:FFFF. This real-mode region is called the reset segment. The 
region in the boot ROM device is called the reset region. The code that resides in this area 
is called the reset handler.

This redirection is not performed by the addressing unit, but is an artifact of the values 
programmed into the CS descriptor cache by the CPU at reset time. After any reset, the 
CPU core sets the base value of CS Descriptor Cache register to FFFF0000h with a limit 
of 0000FFFFh (64 Kbytes). The processor CS:EIP register pair is set to F000:0000FFF0.

The redirection works because, in real mode, linear addresses for code fetches are 
generated by taking the offset in EIP and adding it to the contents of the base register in 
the CS descriptor cache. Since the paging unit is disabled at reset, these linear addresses 
map directly to physical addresses.

This simple mechanism causes both the redirection of the reset code region to the reset 
segment and the first instruction fetch to occur from the reset vector.

Note that none of the other segment registers (and internal descriptor registers) have this 
behavior. This behavior is only applicable to the CS Segment register and its internal 
descriptor cache. For more information on the configuration of the processor registers at 
reset, see the Am486® DX/DX2 Microprocessor Hardware Reference Manual, 1994 (order 
#17965).

What this means is that the artificial reset segment redirection is only active until the CPU 
executes a Far Jump (JMP) instruction. This is because a Far Jump instruction causes the 
CS Segment register to be reloaded. When a segment register is loaded in real mode, the 
processor sets the value of the corresponding descriptor cache base register to 16 times 
the new value of the segment register. Since the processor is running in real mode, the 
internal CS Descriptor registers are set to their normal real-mode values.

Since the reset vector is at F000:FFF0, there are only 16 bytes before the end of the 
segment. That is only enough for a few instructions. So, regardless of how much (or how 
little) the reset code does, the instruction at the reset vector must be a Near Jump into the 
reset region. 

For example, as shown in Figure 3-1, if the reset handler is large, then the initial Near Jump 
could be to F000:0000.
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Figure 3-1 Initial Near Jump Example

The reset vector Near Jump is not required to jump to F000:0000. It can jump anywhere 
into the reset segment. For example, if the reset handler code is only 16 Kbytes in size, it 
could jump to F000:C000, leaving more room on the boot ROM device for other code. This 
allows the reset handler to be placed right up against the reset vector, thus using the space 
in the boot ROM device more efficiently.

Note: For debugging using AMDebug technology, not only should this first Jump instruction 
be a Near Jump, it should be a Jump Near Indirect instruction, which is opcode FF/4. In-
circuit emulation and debug software that uses the internal trace cache searches for this 
opcode to aid in determining when the reset event occurred.

As much or as little of the system initialization code can take place in the reset handler 
while the system is executing from the reset segment (i.e., before the first Far Jump 
instruction). For example, a native embedded system using a 32-bit only RTOS will merely 
setup the protected mode data structures, switch to protected mode, and jump directly into 
system boot code (the boot ROM device is the device selected by BOOTCS).

In contrast, a system with a PC-style BIOS would initialize the SDRAM controller, shadow 
the BIOS to SDRAM, and then jump to the BIOS. 

3.2 CONFIGURING THE SDRAM CONTROLLER
After a system reset, the SDRAM controller configuration registers are reset to their default 
states. All the SDRAM controller banks and SDRAM refresh are disabled by default. For 
details on how to enable the SDRAM controller and the SDRAM configuration, see 
“Initialization” on page 10-29.

Note that the ÉlanSC520 microcontroller can be reset in a manner that preserves the 
operation of the SDRAM controller. This condition can be detected and handled properly 
by the SDRAM initialization code.

If the Error Correction Code (ECC) logic for SDRAM is enabled, ECC operation requires 
that SDRAM and its associated ECC memory be initialized. This is accomplished by the 
boot code, which must write to every location in SDRAM. This process initializes the ECC 
SDRAM to reflect the proper error-checking codes. If this procedure is not performed, false 
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F000:FFFF

F000:0000
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F000:C000
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errors will occur when writing data smaller than a 32-bit doubleword. For a more detailed 
discussion of ECC, see “Error Correction Code (ECC)” on page 10-16.

3.3 IDENTIFYING THE CPU CORE
Information about the integrated Am5x86 CPU core is available by reading the processor 
DX register after a system reset and by using the CPUID instruction at any time. The CPUID 
instruction is available on later model 32-bit processors from all leading x86 vendors and 
allows programs to determine information about the CPU, including the manufacturer, cache 
type, and availability of a floating point unit (FPU). By using the CPUID instruction, software 
can determine the type of CPU running the system. For example, software could detect 
that it is running on an Am5x86 CPU and perform the appropriate action.

The ÉlanSC520 Microcontroller Revision ID (REVID) register (MMCR offset 00h) can be 
used to identify the revision of the device itself.

A user-modifiable bit in the CPU’s Flags register called the ID bit indicates support of the 
CPUID instruction. The ID bit is reset to 0 at CPU hard or soft reset for compatibility with 
existing processor designs.

The results reported by the CPUID instruction reflect the state of the processor at the last 
CPU hard or soft reset. If the CPU cache write mode or core clock speed is changed, and 
if the CPU encounters a soft reset following the change, then a subsequent CPUID 
instruction will report the altered condition of the processor (i.e., the state at the time the 
soft reset occurred). After a hard CPU reset, the ÉlanSC520 microcontroller always reports 
the cache mode as write-back and the clock speed as 100 MHz.

The CPUID instruction returns encodings shown in Table 3-1. 

3.4 SETTING THE CPU SPEED
The ÉlanSC520 microcontroller is available at multiple clock speeds. By default, the 
ÉlanSC520 microcontroller core comes up from a system reset running at 100 MHz. See 
Chapter 7, “Am5x86® CPU”, for more information.

Note: Not all ÉlanSC520 microcontroller devices support all Am5x86 CPU clock rates. The 
maximum supported clock rate for a device is indicated by the part number printed on the 
package. The clocking circuitry can be programmed to run the device at higher than rated 
speeds. However, if an ÉlanSC520 microcontroller is programmed to run at a higher clock 
speed than that for which it is rated, then erroneous operation will result, and physical 
damage to the device may occur.

3.5 CONFIGURING EXTERNAL GP BUS DEVICES
Programming the ÉlanSC520 microcontroller to support external peripherals on the GP 
bus requires three steps.

1. Program the GP bus timing mechanism to control the bus timings for the device. This is 
done first so that the initial access to the device (after the chip selects and PARs are 
programmed) will function properly. The GP bus timings and bus cycles are discussed 
in “Bus Cycles” on page 13-16.

Table 3-1 CPUID Codes

CPU Clock Speed Write-Back Mode Write-Through Mode

Am5x86 CPU 100 MHz 0494h 0484h

Am5x86 CPU 133 MHz 04F4h 04E4h
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2. If needed, program the PIO pin logic to map the GP bus chip select signal and other 
control signals to a physical pin.

3. Program a PAR register to map the external peripheral into physical address space and 
to configure a chip select for the device.

For peripherals connected externally to the GP bus, the Programmable Address Region 
registers control where they are mapped into the I/O or memory address space. 
Programming and using these registers is discussed in Section 3.7.

3.6 CONFIGURING THE PIN MULTIPLEXING
The ÉlanSC520 microcontroller has several pins that are multiplexed to two functions. There 
are no pins that have three functions. Most of the pins that are multiplexed are programmable 
input/output pins (PIOs).

To program a pin that is multiplexed with a PIO, its corresponding function bit must be set 
in the PIO31–PIO16 Pin Function Select (PIOPFS31_16) register (MMCR offset C22h) or 
the PIO15–PIO0 Pin Function Select (PIOPFS15_0) register (MMCR offset C20h). 

Other pins with multiple programmable functions are all noted in Figure 2-2 on page 2-3.

3.7 CONFIGURING THE PROGRAMMABLE ADDRESS REGION (PAR) 
REGISTERS
The PAR registers provide a common programming interface to configure physical memory 
and I/O regions in an ÉlanSC520 microcontroller system. PAR registers are programmed 
by atomically writing 32-bit values. See “Programmable Address Region (PAR) Registers” 
on page 4-5 for more information on using the PAR registers. “Software Considerations” 
on page 4-18 provides other important details.

The PAR registers are used to define four characteristics.

■ Target device

■ Attributes for the address region

■ Size of the address region

■ Start address for the region

It is important to note that the PAR registers are used to define physical address regions. 
PAR registers are not used to define effective address regions or linear address regions. 
For example, an effective address (often called a logical or virtual address) gets translated 
into a linear address by the Am5x86 CPU’s segmentation unit. If the paging unit is enabled, 
then linear addresses get translated into physical addresses and placed on the CPU’s bus. 
If the paging unit is not enabled, then the mapping from linear address to physical address 
is direct (one-to-one).

Depending on how your system is set up, driver software, system software and other 
software that must be aware of physical addresses should be written to take the Am5x86 
CPU addressing modes into account. This can be an extremely complex topic and is beyond 
the scope of this chapter. 

The general format of the PAR registers is shown in Figure 3-2 on page 3-10. Provided as 
a programming aid, Figure 3-3 on page 3-11 is a blank worksheet for calculating PAR 
register values.
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3.7.1 Specifying Pages and Regions
For memory-mapped address regions, the Region Size/Start Address (SZ_ST_ADR) bit 
field in the PAR registers specifies the number of 64-Kbyte or 4-Kbyte pages for the region. 

Regions using a 64-Kbyte page size can have up to 2048 pages, for a maximum size of 
128 Mbytes. Regions using a 4-Kbyte page size can have up to 128 pages, for a maximum 
size of 512 Kbytes. 

■ To specify the number of pages for a region, the value (page count minus 1) is 
programmed into the SZ_ST_ADR field of the PAR register. 

– For example, to specify a 16-Kbyte region using a 4-Kbyte page size, the value 03h 
(0000011b) would be programmed into bits 24–18 of a PAR register, i.e., one less 
than the required number of pages. 

– To specify a page count of one, all the bits in the SZ_ST_ADR field for a PAR register 
should be cleared to 0. 

– To specify the maximum number of pages, either 2048 or 128, all the bits in the 
SZ_ST_ADR field should be set to 1. 

■ To specify the 4-Kbyte page size, the Page Size (PG_SZ) bit should be cleared to 0. For 
a 64-Kbyte page size, it should be set to 1. 

The same holds true for GP bus I/O-mapped regions. The region size field specifies the 
number of bytes in the addressable region. For example, to specify a region size of 8 bytes, 
the value 07h (0111b) should be programmed into the SZ_ST_ADR field of the PAR register. 

Note: For GP bus I/O-mapped regions, the PAR registers’ PG_SZ bit is ignored. In general, 
it should be cleared to 0 for GP bus I/O regions.
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Figure 3-2 Programmable Address Region (PAR) Register Format

31 30 29 Target Device

0 0 0 Window disabled

0 0 1 GP bus I/O

0 1 0 GP bus memory

0 1 1 PCI bus (applies to 
memory cycles to 
PAR 0–PAR 1 only)

1 0 0 BOOTCS (ROM)

1 0 1 ROMCS1

1 1 0 ROMCS2

1 1 1 SDRAM

Programmable Address Region Register

31–29 28–26 25 24–0

Target of the 
PAR Window

(TARGET)

Attribute
(ATTR)

Page Size
(PG_SZ)

Region Size/Start Address
(SZ_ST_ADR)

28 27 26 GP Bus Chip Select

0 0 0 GPCS0

0 0 1 GPCS1

0 1 0 GPCS2

0 1 1 GPCS3

1 0 0 GPCS4

1 0 1 GPCS5

1 1 0 GPCS6

1 1 1 GPCS7

28 27 26 ROM/SDRAM Attribute

0 = Write-enabled region
1 = Write-protected region

0 = Cacheable region
1 = Noncacheable region

0 = Code execution permitted
1 = Code execution denied

25 Memory Page Size

0 4-Kbyte memory page size on 4-Kbyte 
boundary, ignored for I/O cycles.

1 64-Kbyte memory page size on 64-Kbyte 
boundary, ignored for I/O cycles.

Memory
Cycle
When 
[25]=0

24–18 17–0 Size defines up to 128 
pages of 4-Kbyte size each, 
on 4-Kbyte boundary, for a 
512-Kbyte maximum window 
size.

Region Size
[6–0]

Start Address
A[29–12]

Memory
Cycle
When 
[25]=1

24–14 13–0 Size defines up to 2K pages 
of 64-Kbyte size each on 64-
Kbyte boundary, for a 128-
Mbyte maximum window 
size.

Region Size
[10–0]

Start Address
A[29–16]

I/O
Cycles
Only

24–16 15–0 Size defines up to 512 bytes 
with byte resolution in 64-
Kbyte I/O space.Region Size

[8–0]
Start Address

A[15–0]
If Target is GP bus

If Target is ROM or SDRAM
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Figure 3-3 Programmable Address Region (PAR) Register Worksheet
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3.7.2 Address Region Attributes
The address region attributes (as specified in the ATTR bit field of a PAR register) can be 
used with ROM or SDRAM regions to control how the regions can be accessed. This section 
includes some examples of how the attributes can be used with SDRAM and ROM regions.

3.7.2.1 Write-Protect Attribute

When this feature is enabled for an address region in SDRAM or ROM, an interrupt is 
generated when a write is performed to the region. This interrupt can be used to find 
problems with errant software or to help debug Flash programming code.

3.7.2.2 Cacheability Control Attribute

The Cacheability Control Attribute bit in the PAR registers provides a simple mechanism 
for controlling the caching of memory regions. This mechanism is much easier to use than 
the Am5x86 CPU’s paging unit. 

For SDRAM regions, turning off caching can be useful for regions that contain buffers used 
for DMA or for PCI bus mastering devices.

This feature is also useful for Flash regions. For some operations, it is necessary to turn 
off caching for a Flash region. An example is when a Flash device needs to be erased or 
programmed. Any time a Flash device’s internal registers need to be read or written, caching 
should be disabled for the device. For example, the Flash sector erasing code needs to poll 
the device to see when erases and other operations are complete. If caching is not turned 
off, then the software will merely continue to read the value from the processor’s cache and 
not the correct value from the device. This is also true during the Flash programming write/
verify cycle. For more information, see page 12-12.

3.7.2.3 Code Execution Attribute

Execution control works in a similar manner to the Write-Protect Attribute bit. The difference 
is that when this bit is set, any code fetches by the CPU to the defined region will cause an 
invalid opcode fetch fault to be generated. This is accomplished by returning an invalid 
opcode to the CPU, instead of the data resident in the device at the requested address.

This is very useful for debugging problems. Large areas of the address space can be 
execute-protected. For example, the Flash for a file system could be protected from code 
execution. Data reads and writes for the Flash file system would happen normally. But, if 
a code erroneously jumped into this data area, an invalid opcode fetch fault would be 
generated immediately.

3.7.2.4 Performance Considerations

It is possible to control the same attributes that the PAR registers provide using the native 
mechanisms in the Am5x86 CPU core. For example, 4-Kbyte pages can be write-protected 
using the paging unit and paging tables. Noncached regions can also be created using this 
mechanism. Execution protection can also be performed using a segmented code model 
and descriptor attributes.

Using the native x86 mechanisms will work, but using the address region attributes in a 
PAR register is easier and provides higher performance. If the CPU’s paging unit is enabled, 
the entire system takes a small performance hit because all linear address must be 
translated to physical address. Also, defining nonexecutable regions is very difficult to do 
and requires 48-bit code pointers (huge pointers) and a fully segmented 32-bit code model. 
This is a high price to pay to obtain execute-only regions. These performance penalties are 
not incurred when using the ÉlanSC520 microcontroller’s address region attribute 
mechanism.
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3.7.3 PAR Register Priority
The PAR register mechanism is a very flexible and useful one. It is designed to allow the 
system programmer to easily program the address decoding and set attributes for 
addressable regions. One feature of the PAR register system that may not be obvious from 
the examples included in this chapter is that the PAR registers have a priority mechanism. 
The highest priority PAR register is PAR 0 and the lowest priority register is PAR 15. This 
feature is not relevant unless two (or more) PAR regions overlap. If they do overlap, then 
the higher priority PAR register takes precedence.

The PAR registers are used to modify and add to the default system addressing (see 
Table 4-4 on page 4-4). Note that the system can function quite well with all of the PAR 
registers disabled. For example, a system could start-up, use a PAR register to copy the 
contents of Flash to SDRAM1, jump to the code in SDRAM, and then disable the PAR 
register used for the copy. With all the PAR registers disabled, the normal address resolution 
priorities in the system govern addressing of physical devices.

3.7.4 External GP Bus Devices
Devices on the GP bus can be addressed in two ways. Each is controlled by programming 
the PAR registers.

■ By chip select, mapping the device into memory or I/O space

■ Devices can do their own memory or I/O address decoding.

Programming a PAR register with the GP bus as the target is required to cause memory or 
I/O cycles to be forwarded to the external GP bus. This is true for devices that use chip 
selects and devices that decode their own address (generate their own chip selects). 
Programming a PAR register is necessary because, by default, memory and I/O cycles 
generated by the Am5x86 CPU that are not decoded by an internal GP bus peripheral or 
memory resources (like SDRAM, ROM, and the MMCR registers) go to the PCI bus.

For a device on the external GP bus, programming a PAR register configures the following 
characteristics:

■ Target device field—For either a GP bus memory-mapped cycle or an I/O cycle

■ Attribute field—For the particular GP bus chip select to which the device is attached

■ Memory page size field— Most peripherals use a 4-Kbyte granularity. Peripherals that 
have very large memory address spaces, such as SDRAM or ROM, might need to use 
a 64-Kbyte granularity.

■ Region size and start address

For a device that requires a chip select from the ÉlanSC520 microcontroller, the chip select 
must be mapped to a physical pin using the PIO registers. For devices that do their own 
address decoding, the PAR register must still be programmed, and the chip select should 
be chosen; however, the chip select from the PAR register does not need to be mapped to 
a physical pin.

Note: All of the internal peripherals on the GP bus are decoded at fixed locations. The 
locations for these peripherals cannot be changed by programming a PAR register. For 
example, the internal real-time clock cannot be moved to a different location. No PAR 
registers are required to access any of the internal peripheral devices on the ÉlanSC520 
microcontroller.

1. This is one way to shadow a BIOS to DRAM.
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3.7.4.1 Single Device (an A/D Converter) Using One Chip Select 

In this example, an A/D converter has four 16-bit registers that need to be mapped into 
I/O space on GPCS5 at I/O address 0500h. As shown in Table 3-2, the value to program 
into a PAR register in this case is 34070500h.

3.7.4.2 Single Device That Performs Its Own Decode

In this example, an external memory-mapped 16-color 480 x 320 pixel LCD controller 
performs its own address decoding. It needs a 128-Kbyte window mapped at 000C0000h. 
A chip select must be used (specified in the ATTR bit field of the PAR register), but it does 
not need to be mapped to an external pin. GPCS7 is used here. As shown in Table 3-3, the 
value to program into a PAR register in this case is 5E00400Ch.

3.7.4.3 Multiple Devices On One Chip Select

A single PAR register can be programmed for a larger range than is needed by a single 
peripheral. For example, consider a bank of 16 memory-mapped A/D converters, each of 
which has four 16-bit registers. An external PAL is programmed to do the address decoding 
for each individual A/D converter. The converters will be memory-mapped to a range of 
00020000–0002003Fh. The PAL generates the chip selects for each of the four converters 
by watching for the appropriate memory read and write cycles and is qualified from GPCS2 
from the ÉlanSC520 microcontroller. As shown in Table 3-4, the value to program into a 
PAR register in this case is 48000020h.

Table 3-2 Example PAR Programming: Single Device Using One Chip Select

Bit Field Value Meaning

Target Device 001b GP bus I/O space

Attribute Field 101b GPCS5

Page Size 0b Clear to 0 (this bit not applicable to I/O space)

Region Size 7h Specifies an 8-byte region size

Start Address 0500h Physical address 0500h

Table 3-3 Example PAR Programming: Single Device That Performs Its Own Decode

Bit Field Value Meaning

Target Device 010b GP bus memory space

Attribute Field 111b GPCS7

Page Size 1b 64-Kbyte granularity 

Region Size 1h Specifies two 64-Kbyte pages for a 128-Kbyte region size

Start Address 000Ch Physical address 000C0000h

Table 3-4 Example PAR Programming: Multiple Devices on One Chip Select

Bit Field Value Meaning

Target Device 010b GP bus memory space

Attribute Field 010b GPCS2

Page Size 0b 4-Kbyte granularity 

Region Size 0h One 4-Kbyte page

Start Address 20h Physical address 00020000h
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3.7.5 PCI Bus Devices
Normally, devices on the PCI bus are mapped into memory space that is above the 
configured amount of DRAM and just under 4 Gbytes (FFFEFFFFh). The ÉlanSC520 
microcontroller’s address decode logic forwards all access to these memory locations to 
the PCI bus.

Normally, memory cycles below the top address used by SDRAM are forwarded only to the 
SDRAM controller, or to the GP bus if a PAR register is appropriately programmed. However, 
for Windows and DOS compatibility, some PCI peripherals need to be mapped into SDRAM 
space. These regions usually fall below the real-mode address limit (physical address 
0010FFEFh). Devices that can require this include PCI-based VGA video cards and PCI-
based network adapters. To allow this, the first two PAR registers support the PCI bus as 
a target. Note PCI as a target can only be specified in PAR 0 and PAR 1.

For such devices, a PAR register must be programmed that allows addresses lower than 
the highest SDRAM address to be forwarded to the PCI bus. This is in addition to the normal 
PCI bus device configuration. The VGA controller example in Section 3.7.5.1 illustrates this.

Typically, all I/O space accesses above the 1-Kbyte boundary are forwarded to the PCI bus, 
and all I/O space accesses below the 1-Kbyte boundary are forwarded to the GP bus. 

■ With some minor exceptions for the CBAR and PCI configuration registers, the I/O space 
above the 1-Kbyte boundary can be redirected from the PCI to the GP bus using PAR 
registers.

■ The IO_HOLE_DEST bit in the Address Decode Control (ADDDECCTL) register (MMCR 
offset 80h) can be programmed to allow all I/O space addresses below the 1-Kbyte 
boundary that are not assigned to internal peripherals to be forwarded to the PCI bus. 

■ Note that PAR registers can still be mapped in the lower 1-Kbyte I/O space to override 
the IO_HOLE_DEST bit. This way, I/O devices in the lower 1-Kbyte space can reside 
internally to the ÉlanSC520 microcontroller, on the external GP-Bus, and on the PCI bus.

3.7.5.1 VGA Controller on the PCI Bus 

A VGA video controller’s 128 Kbytes of memory is normally mapped from 000A0000–
000BFFFFh (physical addresses). So, to support a PCI-based video controller, PAR 0 or 
PAR 1 would need to be programmed to 7200400Ah. This configures PAR 0 or PAR 1 with 
the characteristics shown in Table 3-5. The attribute fields are ignored for the PCI bus target. 
PCI regions are always writable, executable, and noncached. 

A PCI VGA video adapter also requires PCI I/O from addresses 03B0–03BBh and 03C0–
03CFh. A PAR register is not required to map these I/O locations to PCI space, but instead 
the IO_HOLES_DEST bit must be set in the Address Decode Control (ADDDECCTL) 
register (MMCR offset 80h). This has the effect of mapping all external I/O accesses to PCI 
space rather than to the GP bus. If there are no external GP bus I/O devices, then no further 

Table 3-5 Example PAR Programming: VGA Controller on the PCI Bus

Bit Field Value Meaning

Target Device 011b PCI bus

Attribute Field 000b Not applicable

Page Size 1b 64-Kbyte granularity 

Region Size 1h Specifies two 64-Kbyte pages for a 128-Kbyte region size

Start Address Ah Physical address 000A0000h
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PAR programming is required to support this configuration. Note that the internal I/O devices 
will still be correctly accessed when the IO_HOLES_DEST bit is set.

However, if any external GP bus device requires I/O addresses, then a PAR register will be 
required to allow access to this device. As an example, assume an external 16550 UART 
is used to implement a COM3 port.

The standard I/O locations for COM3 are 03E8–03EFh. As shown in Table 3-6, a PAR 
register will be required with a setting of 340703E8hto enable external GP bus accesses 
to this I/O range. In this example, GPCS5 is used as a chip enable for the external device. 
If another GPCSx is required, then appropriate changes should be made to the PAR register 
setting.

3.7.5.2 Network Adapter for Remote Program Loading 

A memory-mapped network adapter will usually reside in PCI space that is far above the 
real-mode address limit. However, to perform Remote Program Loading (RPL), often called 
network boot, over a network, the 16-bit BIOS needs to use the network adapter. To avoid 
writing 32-bit protected-mode BIOS code, PAR 0 or PAR 1 can be used to place a memory-
mapped network adapter above the real-mode address limit. For this example, it is assumed 
that the network adapter has 16 Kbytes of address space that needs to be placed at 
000B0000h. This area is noncacheable because it is PCI address space. As shown in 
Table 3-7, the value to configure PAR 0 or PAR 1 for this configuration is 600C00B0h.

Note that most network adapters will also require a small amount of PCI I/O space. The 
location of this I/O space can usually be changed through a PCI configuration register on 
the adapter and can be assigned by an operating system through plug and play functionality. 
Usually, this address can be set to any value and is typically above the 1-Kbyte I/O boundary 
affected by the IO_HOLES_DEST bit. Since I/O accesses above 400h are always sent to 
PCI space (unless overridden by a PAR register to go to the GP bus), no special programming 
is needed to allow I/O accesses for a typical PCI network adapter.

Table 3-6 Example PAR Programming: COM3 with VGA Present on the PCI Bus

Bit Field Value Meaning

Target Device 001b GP bus I/O space

Attribute Field 101b GPCS5

Page Size 0b Clear to 0 (this bit not applicable to I/O space)

Region Size 7h Specifies an 8-byte region size

Start Address 03E8h Physical address 03E8h

Table 3-7 Example PAR Programming: Network Adapter for Remote Program Loading

Bit Field Value Meaning

Target Device 011b PCI bus

Attribute Field 000b Not applicable

Page Size 0b 4-Kbyte granularity 

Region Size 03h Specifies four 4-Kbyte pages for a 16-Kbyte region size

Start Address B0h Physical address 000B0000h
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3.7.6 External ROM Devices
The PAR registers can also be used to define the addressing for ROM devices selected by 
BOOTCS, ROMCS1, and ROMCS2. ROM devices include true ROMs, EEPROM, Flash 
devices, and other similar devices. 

It is important to note that the top 64 Kbytes of the ROM device selected by BOOTCS (the 
boot device chip select) is always mapped to the physical addresses from FFFF0000–
FFFFFFFFh. This area is called the reset region. The reset region is cached, executable, 
and not write-protected. This 64-Kbyte mapping is fixed and always active, even if the boot 
ROM device is mapped to another address using a PAR register. ROM devices attached 
to BOOTCS, ROMCS1, or ROMCS2 can be mapped anywhere in physical address space 
below 40000000h (1 Gbyte).

3.7.6.1 Boot ROM Device Mapping for BIOS Shadowing

A 512-Kbyte Flash device is a common boot ROM device for systems with a BIOS. One 
way to shadow the BIOS is to map it below 00100000h so that it can be accessed by real-
mode code. This is easily done with a single PAR register. For shadowing purposes, a good 
place to park the boot ROM device is at 00001000h, which is just above the interrupt vector 
table. The value 89FC0001h configures the PAR register as shown in Table 3-8.

3.7.6.2 Two Banks of Flash for an Execute-In-Place (XIP) Operating System

A system has eight 8-Mbit byte-wide Flash devices. Four are on ROMCS1 and four on 
ROMCS2. These devices will be mapped into eight Mbytes of contiguous 32-bit address 
space from 00400000–00BFFFFFh. This requires two PAR registers because two ROM 
chip selects need to be used. This example uses PAR 4 and PAR 5. Note that in addition 
to programming the PAR registers, the ROM chip selects need to be mapped to physical 
pins.

The value A20FC040h for PAR 4 would setup ROMCS1 for the first bank of Flash. This 
configures the PAR register with the characteristics shown in Table 3-9. The value 
C20FC080h for PAR 5 would setup ROMCS2 for the first bank of Flash. This configures 
the PAR register with the characteristics shown in Table 3-10.

Table 3-8 Example PAR Programming: Boot ROM Device Mapping for BIOS Shadowing

Bit Field Value Meaning

Target Device 100b BOOTCS

Attribute Field 010b Write enable, noncacheable, code execution permitted

Page Size 0b 4-Kbyte granularity 

Region Size 7Fh Specifies 128 4-Kbyte pages for a 512-Kbyte region size

Start Address 1h Physical address 00001000h

Table 3-9 Example PAR Programming: First Bank of Flash for XIP Operating System

Bit Field Value Meaning

Target Device 101b ROMCS1

Attribute Field 000b Write enable, cacheable, code execution allowed

Page Size 1b 64-Kbyte granularity 

Region Size 3Fh Specifies sixty-four 64-Kbyte pages for a 4-Mbyte region size

Start Address 40h Physical address 00400000h
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3.7.7 SDRAM Regions
The PAR registers can also be used to define regions of SDRAM and control the read/write, 
cacheability, and execution attributes. 

3.7.7.1 Setting Up DMA Buffers

Often PCI and GP bus devices use GP-DMA or PCI bus mastering to read and write data 
directly from buffers in SDRAM. It is often useful to mark such buffers as noncached. This 
can be done using the CPU’s paging unit, but doing so is complex and may conflict with 
how an operating system uses the page tables. 

In any case, disabling caching for a region is quite simple. Setting the Cacheability Control 
Attribute (bit 27) in a PAR register defines a buffer region. For example, a 512-Kbyte region 
can be defined to store transmit and receive buffers for a fast Ethernet PCI controller. Since 
this is a data-only area, the Code Execution Attribute (bit 28) is set. 

Assuming that the region is located at physical address 00020000h, a PAR register would 
be programmed with the value F9FC0020h. This configures the PAR register with the 
characteristics shown in Table 3-11.

Of course, this is not absolutely necessary. The cache controller in the ÉlanSC520 
microcontroller always maintains the coherency between the cache and SDRAM. For buffer 
regions used by GP-DMA channels or PCI bus masters, disabling caching with a PAR 
register is more efficient and provides better bus performance than allowing the CPU to 
cache the buffer. This avoids the bus activity (and latency) involved with keeping the cache 
and the SDRAM coherent.

3.7.7.2 Write-Protected Code Segments 

In many embedded systems, all (or most) of the applications and operating system code 
is contiguous in memory. In such cases, a single PAR register can be used to write-protect 
most (or all) of the code in a system. If errant code attempted to write to the protected 
region, then an interrupt would be generated. Note that the CPU completes the write cycle, 
but the SDRAM or ROM controller (as appropriate) prevents the write from occurring at the 
device. 

Table 3-10 Example PAR Programming: Second Bank of Flash for XIP Operating System

Bit Field Value Meaning

Target Device 110b ROMCS2

Attribute Field 000b Write enable, cacheable, code execution allowed

Page Size 1b 64-Kbyte granularity 

Region Size 3Fh Specifies sixty-four 64-Kbyte pages for a 4-Mbyte region size

Start Address 80h Physical address 00800000h

Table 3-11 Example PAR Programming: Setting Up DMA Buffers

Bit Field Value Meaning

Target Device 111b SDRAM

Attribute Field 110b Write enable, noncacheable, code execution denied

Page Size 0b 4-Kbyte granularity 

Region Size 7Fh Specifies 128 4-Kbyte pages for a 512-Kbyte region size

Start Address 20h Physical address 00200000h
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Several actions could be taken, from merely preventing the write from taking place, to killing 
the offending thread, or even restarting the system. Also, the event could be recorded and/
or reported to a debugging or diagnostic interface or console port. During debugging, a 
breakpoint could be set at the front of the write-protect interrupt service routine. 

Assuming the system code resides in the first 768 Kbytes of SDRAM at address 0, the 
value E602C000h configures a PAR register with the values shown in Table 3-12.

3.8 CONFIGURING THE INTERRUPT MAPPING
The ÉlanSC520 microcontroller has very flexible interrupt routing and control capability. 
Each of the hardware interrupt sources can be mapped to any of the different interrupt 
priority levels in the programmable interrupt controller (PIC).

In contrast to a basic PC, which has fixed interrupt mappings and operation, the ÉlanSC520 
microcontroller has a very flexible interrupt management architecture. For full details on 
this system, see Chapter 15, “Programmable Interrupt Controller”. The information in 
“Interrupt Sources” on page 15-8 is of particular importance.

The following sections discuss options to be considered for the software that configures 
interrupts.

3.8.1 Edge-Sensitive or Level-Triggered Interrupts
Edge- and level-triggering can be programmed for each PIC or on an interrupt-by-interrupt 
basis. 

For example, all of the interrupts on the Slave 2 interrupt controller could be programmed 
for edge-triggered operation. 

■ Setting the S2_GINT_MODE bit in the Interrupt Control (PICICR) register (MMCR offset 
D00h) allows the LTIM bit in the Slave 2 PIC Initialization Control Word 1 (S2PICICW1) 
register (Port 0024h) to control how interrupts are triggered for that controller. 

■ If the S2_GINT_MODE bit is cleared, then the edge- or level-triggered nature is controlled 
for each interrupt input to the PIC individually using the Slave 2 PIC Interrupt Mode 
(SL2PICMODE) register (MMCR offset D04h).

3.8.2 Interrupt Mapping
Using the Interrupt Mapping registers, each interrupt source can be mapped to one of the 
interrupt channels in the PIC block, the NMI interrupt, or can be disabled as an interrupt 
input. The flexibility of the ÉlanSC520 microcontroller allows any interrupt source in the 
system to trigger either a regular interrupt or an NMI.

Table 3-12 Example PAR Programming: Write-Protected Code Segments

Bit Field Value Meaning

Target Device 111b SDRAM

Attribute Field 001b Write disable, cacheable, code execution permitted

Page Size 1b 64-Kbyte granularity 

Region Size Bh Specifies twelve 64-Kbyte pages for a 768-Kbyte region size

Start Address 0h Physical address 00000000h
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3.8.3 Interrupt Polarity
Each of the interrupt controllers can recognize either a Low-to-High edge-triggered or an 
active High level-sensitive interrupt request. To support external devices that generate 
active Low interrupt requests (either edge or level), a programmable inversion of each of 
the external interrupt requests is available. 

Many devices generate a Low-going interrupt signal using an open-collector output. These 
devices are easily supported on the ÉlanSC520 microcontroller by setting the appropriate 
bit in the Interrupt Pin Polarity (INTPINPOL) register (MMCR offset D10h). For example, if 
such a device were connected to GPIRQ8, then setting GPINT8_POL in the Interrupt Pin 
Polarity (INTPINPOL) register would program the interrupt for a Low-going interrupt input. 

It is important to ensure that the polarity values for all internal interrupt sources are 
programmed correctly at reset time.

3.9 CONFIGURING THE PROGRAMMABLE I/O PINS
An important part of the ÉlanSC520 microcontroller initialization is configuration of the 
programmable I/O (PIO) pins. These are general-purpose I/O pins that can be programmed 
as inputs or outputs. When configured as an input, the state of the input can be read using 
the PIOx_DATA bit in the PIOx Data register.

The PIO pins can also be configured as outputs by setting their corresponding direction 
bits in the PIOx Direction registers.

3.10 CONFIGURING THE PCI HOST BRIDGE AND ARBITRATION
The PCI Host Bridge must be configured and initialized before PCI operation such as 
enumeration and device configuration take place. There are two parts to the PCI host bridge 
configuration: ÉlanSC520 microcontroller-specific configuration and normal PCI bus 
configuration. 

1. Configure the PCI host bridge.

a. Program the desired ÉlanSC520 microcontroller arbitration mode, including 
concurrency mode and PCI bus master arbitration priorities, etc. See “Initialization” 
on page 8-22, for more detailed information on arbitration.

b. Program the Programmable Address Region (PAR) registers, if required. If there are 
one or two VGA video controllers, PAR 0 and PAR 1 may need to be programmed to 
place the VGA graphics memory in SDRAM space at PC-compatible locations. PAR 
0 and PAR 1 could also be used for other PCI peripherals (such as a network card) 
that require mapping below physical address 00100000h. See Chapter 4, “System 
Address Mapping”, for details on programming PCI bus memory space.

c. Program the ÉlanSC520 microcontroller-specific PCI host bridge configuration (write 
posting, retry time-out counter, interrupts, etc.). Note that write-posting must be 
disabled while operating in nonconcurrent arbitration mode. See Chapter 8, “System 
Arbitration”, for further details on nonconcurrent mode arbitration.

d. Program the standard PCI bus configuration registers. See “Configuration Information” 
on page 9-9 for more information.

2. Configure the external PCI bus devices.

In general, PCI host bridge configuration bits should not be changed except during a PCI 
bus initialization after a system or programmable reset.
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3.11 DISABLING INTERNAL PERIPHERALS
Most applications will use the ÉlanSC520 microcontroller’s internal UART devices and its 
internal real-time clock (RTC). However, some applications might need to use external 
devices mapped to these same I/O locations. To use external devices, the corresponding 
internal device must be disabled. This is necessary because these internal peripherals are 
at fixed I/O locations and cannot be re-mapped. If any internal devices are disabled, 
accesses to the I/O addresses for these peripherals are forwarded to the external GP bus.

Disabling these peripherals turns off their address decoding, so that externally connected 
peripherals can be used in their place. If the addresses cannot be externally decoded 
without a chip select, a PAR register must be mapped to allow a chip select to be asserted 
for these addresses. 

Using external devices in place of the internal ones might be necessary for several reasons. 
A common reason would be to use a multifunction external chip that has parallel ports, 
serial ports, floppy disk controller, an RTC, and other devices.

■ The internal RTC can be disabled by setting the RTC_DIS bit in the Address Decode 
Control (ADDDECCTL) register (MMCR offset 80h). 

■ UART 1 and UART 2 can be disabled by setting the UART1_DIS and UART2_DIS bits 
in the Address Decode Control (ADDDECCTL) register.

Note that, if the internal peripherals are disabled, the external peripheral’s interrupt signals 
will need to be connected to external interrupt lines, which then need to be routed to the 
appropriate interrupt channel. For example, if an external UART is used to replace UART 
2 (as COM2), then its interrupt could be connected to GPIRQ8, which would then need to 
be routed to interrupt priority P3.

Also, in this scenario, the pin used for GPIRQ8 would need to be configured as a general-
purpose IRQ (the interface function for the pin, not its default PIO function) by setting the 
PIO15_FNC bit in the PIO15–PIO0 Pin Function Select (PIOPFS15_0) register (MMCR 
offset C20h).

Note: When the internal peripherals are disabled, they are still fully functional. Disabling 
the peripherals disables the address decoding only for that device. For example, if the RTC 
is programmed to generate interrupts and then subsequently disabled, it will continue to 
generate interrupts but will no longer be accessible. Before disabling an internal peripheral, 
be sure to turn off its interrupts.
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CHAPTER
4
 SYSTEM ADDRESS MAPPING
4.1 OVERVIEW
The ÉlanSC520 microcontroller includes flexible memory and I/O address decoding with 
features for both real-time operating systems (RTOS) and systems requiring PC/AT 
functionality for Windows compatibility. Address decoding is distributed between the 
memory controllers, GP bus controller, and PCI host bridge controller. The ÉlanSC520 
microcontroller provides the following memory and I/O address mapping options.

■ The default SDRAM map is linear space starting at 00000000h through the top of 
SDRAM (defined by the total size of the SDRAM array, up to a maximum of 256 Mbytes). 

■ The default boot ROM/Flash chip select (BOOTCS pin) is mapped in a 64-Kbyte linear 
region at the top of CPU memory space from FFFF0000–FFFFFFFFh, and this entire 
ROM space can be redirected through configuration registers (address translation is not 
supported).

■ All configuration registers that do not reside in PC/AT I/O space or PCI configuration 
space are memory-mapped and are located in a 4-Kbyte region in memory address 
space from FFFEF000–FFFEFFFFh. 

– This 4-Kbyte region is called the memory-mapped configuration region (MMCR).

– The MMCR can optionally be relocated on any 4-Kbyte boundary in the lower 1-Gbyte 
region via an I/O mapped register called the Configuration Base Address (CBAR) 
register (Port FFFCh). 

– The default MMCR region in high memory (below the boot space) is visible even if it 
is aliased via the Configuration Base Address (CBAR) register.

■ The default PCI bus map is contiguous space starting directly above the top of SDRAM 
through 4 Gbytes, minus the 68 Kbytes for the boot ROM/Flash region and the MMCR.

■ 16 general-purpose Programmable Address Region (PAR) windows allow address 
mapping for a variety of applications, including operating systems requiring x86 real 
mode support. Each window allows any memory region in the lower 1-Gbyte region to 
be directed to the following resources:

– Any of three ROM chip-selects with the ability to apply cacheability, write-protection, 
and nonexecutable region attributes

– Any of eight GP bus chip-selects for external memory or I/O peripherals on the GP bus

– Two PAR registers allow cycles to be forwarded to the PCI bus for applications that 
require PCI space to be overlaid on top of SDRAM. All accesses above the top of 
SDRAM to the top of 32-bit memory space are automatically forwarded to PCI bus 
(with the exception of the ROM boot space and memory-mapped configuration space).

– Accesses in normal SDRAM space (lower 256 Mbytes) can also be redirected to ROM, 
the GP bus, or the PCI bus.

– PAR windows can be created in the SDRAM region to allow noncacheable, write-
protected, and/or nonexecutable buffers.
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■ Integrated PC/AT compatible peripherals are direct-mapped in normal PC I/O space 
(i.e., the programmable interrupt controller, programmable interval timer, GP bus DMA 
controller, RTC, and UARTs). All remaining integrated peripherals are memory-mapped 
(the watchdog timer, software timer, GP timers, and SSI).

■ As a PCI target, the PCI bus host bridge decodes normal SDRAM address space, 
allowing external PCI bus master access of the entire SDRAM space. PCI bus I/O 
accesses from PCI masters are not decoded by the PCI host bridge.

4.2 REGISTERS
Address decoding is controlled by the configuration registers listed in Table 4-1 and 
Table 4-2.

I

Table 4-1 Address Decoding Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function 

Address Decode Control ADDDECCTL 80h RTC disable, UART 1 and UART 2 disables, write 
protect violation interrupt enable, I/O hole 
access destination

Write-Protect Violation Status WPVSTA 82h Write-protect violation interrupt status, master, 
window number

Programmable Address Region 0 PAR0 88h General-purpose resource decoding

Programmable Address Region 1 PAR1 8Ch General-purpose resource decoding

Programmable Address Region 2 PAR2 90h General-purpose resource decoding

Programmable Address Region 3 PAR3 94h General-purpose resource decoding

Programmable Address Region 4 PAR4 98h General-purpose resource decoding

Programmable Address Region 5 PAR5 9Ch General-purpose resource decoding

Programmable Address Region 6 PAR6 A0h General-purpose resource decoding

Programmable Address Region 7 PAR7 A4h General-purpose resource decoding

Programmable Address Region 8 PAR8 A8h General-purpose resource decoding

Programmable Address Region 9 PAR9 ACh General-purpose resource decoding

Programmable Address Region 10 PAR10 B0h General-purpose resource decoding

Programmable Address Region 11 PAR11 B4h General-purpose resource decoding

Programmable Address Region 12 PAR12 B8h General-purpose resource decoding

Programmable Address Region 13 PAR13 BCh General-purpose resource decoding

Programmable Address Region 14 PAR14 C0h General-purpose resource decoding

Programmable Address Region 15 PAR15 C4h General-purpose resource decoding

Table 4-2 Address Decoding Registers—Direct-Mapped

Register Mnemonic
I/O 
Address Function 

Configuration Base Address CBAR FFFCh Base address for the alias of the MMCR 
registers
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4.3 OPERATION
There are three types of system bus masters supported on the ÉlanSC520 microcontroller: 
the Am5x86 CPU, the PCI bus, and the GP bus DMA controller.

As shown in Table 4-3, each of the three bus masters can access specific types of address 
space. 

■ The Am5x86 CPU and the PCI bus each implement separate memory and I/O address 
space.

■ The PCI bus further specifies a separate space for device configuration registers. 

■ The GP bus DMA controller supports fly-by transfers between GP bus devices and 
SDRAM; therefore, as a bus master, it supports memory space only.

The Am5x86 CPU and PCI bus definition support separate memory and I/O address spaces 
(I/O space is limited to 64 Kbytes on the CPU). The PCI Local Bus Specification, Revision 
2.2, further defines a separate space for configuration registers. 

The ÉlanSC520 microcontroller divides these address spaces as follows:

■ Memory space

– ROM/Flash space for data and code storage using up to three chip selects (accessible 
only by the CPU)

– SDRAM space for data and code storage

– GP bus memory space (accessible only by the CPU)

– PCI bus memory space (accessible only by the CPU and PCI bus masters)

– Internal memory-mapped configuration region (MMCR) registers (accessible only by 
the CPU)

■ I/O space

– Integrated PC/AT-compatible peripherals (accessible only by the CPU)

– Configuration Base Address (CBAR) register (Port FFFCh) to set the MMCR’s base 
address (accessible only by the CPU)

Table 4-3 Bus Master Address Spaces

Bus Master and 
Address Space SDRAM ROM

GP 
Bus

PCI 
Bus

Integrated
PC/AT

Peripherals

Integrated
Non-PC/AT
Peripherals

Memory-
Mapped

Registers
CBAR

Register

CPU Memory ✔ ✔ ✔ ✔ ✔ ✔

I/O ✔ ✔ ✔ ✔

PCI
Bus

Memory ✔ ✔

I/O ✔

Configuration1

Notes:
1. Accessed indirectly by the CPU via the PCI configuration registers in I/O space.

GP-
DMA

Memory ✔
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– GP bus I/O space (accessible only by the CPU)

– PCI bus I/O space (accessible by the CPU and PCI masters)

– PCI bus configuration space (accessible only by the CPU)

Table 4-4 summarizes the organization of memory and I/O address regions in the 
ÉlanSC520 microcontroller. 

4.3.1 Programming External Memory, Buses, and Chip Selects
Programming the external memory, buses, and chip selects on the ÉlanSC520 
microcontroller is accomplished in three steps:

1. Configure the address space and any required attributes for the specified region.

2. Configure the timing, when applicable, and any required attributes of the interface.

3. For chip selects, enable the function on the desired pin by programming the pin 
multiplexing in the PIO registers.

This chapter describes how to complete step 1. Programming the required timing and 
attributes of the external interface (i.e., SDRAM, ROM, GP bus, or PCI bus) is accomplished 
by writing to registers that control these interfaces. Finally, for chip selects, see Chapter 23, 

Table 4-4 Memory and I/O Space Summary

Device Memory Space I/O Space

SDRAM • Linear space starting at 00000000h to top 
of SDRAM (maximum 256 Mbytes)

• PAR registers define noncacheable, 
write-protected, nonexecutable regions

N/A

ROM/Flash • BOOTCS mapped to CPU boot space 
from FFFF0000–FFFFFFFFh 
(64 Kbytes)

• PAR registers define noncacheable, 
write-protected, nonexecutable regions

N/A

PCI Bus Normal Space • Default above SDRAM to top of memory 
address space (4 Gbytes), minus boot 
space (64 Kbytes) and MMCR (4 Kbytes)

• Two PAR registers can define any region 
that overlays SDRAM space

Any space not claimed by CBAR, PC/AT 
peripherals, GP bus (via PAR registers), 
or PCI configuration registers (0CF8–
0CFFh)

PCI Bus Configuration 
Space

N/A 0CF8–0CFFh

GP Bus Defined via PAR registers in lower 1 Gbyte Defined via PAR registers in lower 64 
Kbytes, except for integrated peripherals’ 
I/O space

Integrated PC/AT 
Peripherals

N/A 0000h-03FFh

MMCR Registers • Defaults to 4-Kbyte region starting at 
FFFEF000h

• CBAR can alias this to any 4-Kbyte 
boundary in lower 1 Gbyte

N/A

Configuration Base 
Address (CBAR) Register

N/A FFFC–FFFFh
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“Programmable Input/Output”, which describes enabling the actual programmable I/O (PIO) 
pins that can be shared with other functions.

4.3.2 Programmable Address Region (PAR) Registers
Programmable Address Region (PAR) registers provide a common programming interface 
to configure memory space and I/O space regions in an ÉlanSC520 microcontroller system. 
As referenced in Table 4-4, the PAR registers are primarily used to define the address 
regions of ROM and GP bus, as well as to set attributes for ROM and SDRAM regions. 

The first two PAR registers (PAR 0 and PAR 1) also allow the user to redirect CPU accesses 
that normally fall into SDRAM space to the PCI bus, for special cases that require this 
functionality. The ÉlanSC520 microcontroller provides a total of 16 PAR registers to provide 
the user with flexibility in organizing memory space and I/O space in the system. They are 
organized in a priority scheme starting with the lowest register (PAR 0). Thus, if overlapping 
regions are programmed, the lowest number PAR register takes priority. The PAR registers 
are 32 bits each and reside in the MMCR space.

Since the ÉlanSC520 microcontroller supports PC/AT-compatible peripherals, the regions 
required for these peripherals are fixed in I/O space and are not relocatable via PAR 
registers. This includes the GP bus DMA controller, the programmable interval timer (PIT), 
the programmable interrupt controller (PIC), the two 16550-compatible UARTs, the real-
time clock (RTC), and the PC/AT port logic.

Figure 4-1 illustrates the layout of the 32-bit PAR register. Note that the registers are 
organized in four sections, as follows:

■ The Target (TARGET) bit field defines the destination of the cycle (i.e., ROM, GP bus, 
etc.).

■ The Attribute (ATTR) bit field allows memory regions to be programmed with special 
conditions such as write-protection and noncacheability for ROM or SDRAM access or 
selects a specific chip select for GP bus accesses.

■ The Page Size (PG_SZ) bit defines the size of each memory page within the regions.

■ The Region Size/Start Address (SZ_ST_ADR) bit field is used to define both the 
beginning of the region and the total size of the region (in conjunction with the Page Size 
bit).

The PAR register is used to define only the actual address space for the targets; it does 
not control the parameters for timing and bus width required for ROM and GP bus devices. 
Those controls must be programmed independently in the ROM controller and GP bus 
controller configuration registers.

Note: If a PAR window is configured for PCI, AND the CBAR register is programmed to 
overlap with this PAR window, AND the PAR window is placed below the top of DRAM, the 
MMCR is not given priority over the PCI access. This configuration could result in system 
errors due to concurrence of both PCI and internal MMCR accesses.
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Figure 4-1 Programmable Address Region (PAR) Register Format

31 30 29 Target Device

0 0 0 Window disabled

0 0 1 GP bus I/O

0 1 0 GP bus memory

0 1 1 PCI bus (applies to 
memory cycles to 
PAR 0–PAR 1 only)

1 0 0 BOOTCS (ROM)

1 0 1 ROMCS1

1 1 0 ROMCS2

1 1 1 SDRAM

Programmable Address Region Register

31–29 28–26 25 24–0

Target of the 
PAR Window

(TARGET)

Attribute
(ATTR)

Page Size
(PG_SZ)

Region Size/Start Address
(SZ_ST_ADR)

28 27 26 GP Bus Chip Select

0 0 0 GPCS0

0 0 1 GPCS1

0 1 0 GPCS2

0 1 1 GPCS3

1 0 0 GPCS4

1 0 1 GPCS5

1 1 0 GPCS6

1 1 1 GPCS7

28 27 26 ROM/SDRAM Attribute

0 = Write-enabled region
1 = Write-protected region

0 = Cacheable region
1 = Noncacheable region

0 = Code execution permitted
1 = Code execution denied

25 Memory Page Size

0 4-Kbyte memory page size on 4-Kbyte 
boundary, ignored for I/O cycles.

1 64-Kbyte memory page size on 64-Kbyte 
boundary, ignored for I/O cycles.

Memory
Cycle
When 
[25]=0

24–18 17–0 Size defines up to 128 
pages of 4-Kbyte size each, 
on 4-Kbyte boundary, for a 
512-Kbyte maximum window 
size.

Region Size
[6–0]

Start Address
A[29–12]

Memory
Cycle
When 
[25]=1

24–14 13–0 Size defines up to 2K pages 
of 64-Kbyte size each on 64-
Kbyte boundary, for a 128-
Mbyte maximum window 
size.

Region Size
[10–0]

Start Address
A[29–16]

I/O
Cycles
Only

24–16 15–0 Size defines up to 512 bytes 
with byte resolution in 64-
Kbyte I/O space.Region Size

[8–0]
Start Address

A[15–0]
If Target is GP bus

If Target is ROM or SDRAM
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4.3.3 Memory Space
Memory space in the ÉlanSC520 microcontroller includes SDRAM, ROM, PCI bus, GP 
bus, and the MMCR registers. A system memory map is shown in Figure 4-2. 

■ The CPU has access to the entire memory space.

■ PCI bus masters and the GP bus DMA controller have access to SDRAM space only.

Characteristics of these memory spaces are defined in subsequent sections.

Figure 4-2 System Memory Map

Dedicated
PCI Bus
Space

Default is SDRAM up 
to amount of SDRAM 

installed. Default is PCI 
from top of configured 
amount of SDRAM to 

256 Mbytes

0FFFFFFFh

00000000h

3FFFFFFFh

FFFFFFFFh

0

256 Mbytes

1 Gbyte

4 Gbytes

This space defaults to 
SDRAM, but portions can be 
redirected to ROM, GP bus, 
or PCI bus memory via PAR 
registers; or redirected to 
MMCR space, via the CBAR 
register. ROM or SDRAM 
regions with noncacheable, 
write-protected, and/or 
execute privilege attributes 
can be also be specified with 
the PAR registers.

Accesses from PCI bus 
masters are allowed to 
installed SDRAM only.

This space defaults to PCI 
bus memory space, but 
portions can be redirected 
to ROM or GP bus via PAR 
registers. Regions with 
noncacheable, write-
protected, and/or execute-
protected ROM attributes 
can be also be specified 
with the PAR registers. Any 
unused regions in this 
space default to PCI.

This area is not decoded by 
the ÉlanSC520 
microcontroller’s host 
bridge as a target.Default PCI Bus 

Space

Can also be 
retargeted to 

ROM or GP bus

FFFF0000hBOOT ROM Space

Notes:
The boot ROM device 
connected to BOOTCS 
defaults to a 64-Kbyte region 
at the top of memory.

MMCR Space FFFEFFFFh
FFFEF000h
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4.3.3.1 SDRAM Space

SDRAM space in an ÉlanSC520 microcontroller system defaults to a linear region starting 
at the lowest 32-bit memory address (00000000h) and ending at the top of SDRAM, which 
is defined by the amount of SDRAM populated in the system and programmed in the 
SDRAM controller’s configuration registers. 

The maximum amount of SDRAM supported in an ÉlanSC520 microcontroller system is 
256 Mbytes, in various configurations between one and four physical banks. Once the 
SDRAM configuration registers are programmed and the individual banks are enabled, 
SDRAM is immediately accessible.

The ÉlanSC520 microcontroller allows special attributes to be applied to any region within 
SDRAM space. These attributes are not required for normal operation, however some 
applications can benefit from their use. Programming PAR registers for SDRAM access is 
required only if special attributes must be applied to specific SDRAM regions, as described 
below. There are three attributes that can be applied to any SDRAM region:

■ Noncacheable regions

■ Write-protected regions

■ Code execution control

In a typical system configuration, an external PCI bus master has full access to the entire 
SDRAM region. The address decoding logic in the ÉlanSC520 microcontroller’s PCI host 
bridge automatically claims cycles to this address space on the PCI bus generated by 
external PCI bus masters and causes them to be directed to SDRAM. PCI bus master 
cycles that are forwarded to the memory controller always result in an SDRAM cycle, even 
if a PAR register has been programmed to redirect the address to the GP bus or ROM. 
Also, if a PCI bus master generates a memory write cycle that is forwarded to the memory 
controller and a PAR has been programmed to write-protect the region, an SDRAM write 
cycle will occur with the SDQM signals inactive, the data will be discarded, and the data 
written into the PCI bridge FIFOs will be purged. The ÉlanSC520 microcontroller can be 
programmed to generate an interrupt in this case to notify the CPU of such write protection 
violations, and that a PCI bus master caused the violations. Any data written to the write 
buffer prior to enabling write-protection will be successfully written to SDRAM.

4.3.3.2 ROM/Flash Space

The ÉlanSC520 microcontroller supports three separate address regions for ROM/Flash, 
which are selected by the PAR registers. The BOOTCS ROM chip select must be used for 
the boot device and defaults to a 64-Kbyte linear region at the top of the 4-Gbyte CPU 
space. During the boot process, the ROM code can configure PAR registers to enable the 
entire BOOTCS ROM space and redirect it to the desired region. The default 64-Kbyte 
region is always enabled, however. The PAR register accepts separate TARGET values for 
each of the three ROM chip select regions (BOOTCS, ROMCS1, and ROMCS2). ROM 
space is accessible by the CPU only, regardless of PAR register programming.

ROM space is normally cacheable and writes to these regions are allowed (this is useful 
for Flash devices). However, PAR registers can also be used to enable specific attributes, 
such as defining noncacheability and write-protected regions.

The ÉlanSC520 microcontroller supports multiple data widths in the ROM array, as well as 
programmable timing. These characteristics are configured independently of the address 
space in the ÉlanSC520 microcontroller. See Chapter 12, “ROM/Flash Controller”, for a 
description of these features and instructions for configuring the ROM chip select timing 
and data widths.
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4.3.3.3 GP Bus Memory Space

GP bus memory space is enabled only through PAR registers and is accessible only by the 
CPU. There are eight chip selects that can be selected by the PAR registers. Note that the 
PAR registers do not allow any attributes to be defined in GP bus memory space regions, 
and GP bus memory space is always noncacheable. 

The PAR registers are used to select GP bus space and the specific chip select, but separate 
configuration registers within the GP bus controller block must be programmed to control 
the width of the data bus and the timing of the bus. There is no restriction on the mapping 
of memory address space to GP bus chip selects. For example, if a noncontiguous memory 
region is required for a specific chip select, then multiple PAR registers can be programmed 
with the same chip select as the target, but with different address ranges.

Positive address decoding is also supported on the GP bus for devices that perform their 
own address decoding and therefore do not require a chip select to be generated by the 
ÉlanSC520 microcontroller. This is accomplished simply by not choosing the corresponding 
chip select in the pin multiplexing registers when the PAR register is set up (see step 3 in 
“Programming External Memory, Buses, and Chip Selects” on page 4-4). The address and 
control signals are still generated on the GP bus.

PCI bus masters are not permitted to access the GP bus in an ÉlanSC520 microcontroller 
system. If a PCI bus master generates an address in normal SDRAM space that is claimed 
by the ÉlanSC520 microcontroller, but the region has been redirected to the GP bus via a 
PAR register, the cycle will still be sent to SDRAM and will be write-protected, regardless 
of the cycle type, and the resultant data will be discarded.

4.3.3.4 PCI Bus Memory Space

The ÉlanSC520 microcontroller’s address decoding logic automatically defaults all memory 
space above configured SDRAM to the PCI bus, with the exception of the 4-Kbyte memory-
mapped configuration space and the 64-Kbyte boot space. All CPU memory space 
accesses in this address region are redirected to the PCI bus, and the ÉlanSC520 
microcontroller does not claim accesses in this address region that are generated by PCI 
bus masters. The GP bus DMA controller cannot access this region. 

The CPU can allocate space within the lower 1 Gbyte for GP bus or ROM, overlaying and 
effectively eliminating parts of this PCI bus region. For example, a ROM device could be 
mapped in memory between the top of SDRAM and 1 Gbyte, a region that would normally 
default to PCI bus. In this case, only this particular region would be redirected to ROM, but 
the remaining region within the 4-Gbyte space would continue to be directed to the PCI bus.

Some system applications may require a region below the top of SDRAM to be redirected 
to the PCI bus. An example of this is a PCI bus video card mapped to the 000A0000h-
000BFFFFh region in a PC/AT application. In this case, a PAR register must be used to 
redirect the address from the CPU to the PCI bus instead of the SDRAM. Note that only 
PAR 0 or PAR 1 can be used to select PCI as a target.

Note: If a PAR window is configured for PCI, AND the CBAR register is programmed to 
overlap with this PAR window, AND the PAR window is placed below the top of DRAM, the 
MMCR is not given priority over the PCI access. This configuration could result in system 
errors due to concurrence of both PCI and internal MMCR accesses.

4.3.3.5 Memory-Mapped Configuration Region (MMCR) Registers Space

All integrated peripherals and configuration registers in the ÉlanSC520 microcontroller that 
are not defined as PCI bus configuration space, PC/AT peripheral configuration registers, 
or the Configuration Base Address (CBAR) register are memory-mapped in the ÉlanSC520 
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microcontroller. These registers are accessed in a 4-Kbyte region near the top of CPU 
address space at location FFFEF000h after reset, but can be additionally aliased to any 
4-Kbyte boundary within the first 1-Gbyte of memory space (between 00000000h and 
3FFFFFFFh) by performing an I/O write to the Configuration Base Address (CBAR) register. 
MMCR register space has a higher priority than the Programmable Address Region (PAR) 
registers.

See Section 4.3.4.1 for details on programming the CBAR register.

Reading unimplemented registers in this 4-Kbyte region returns indeterminate data values. 
Writing to unimplemented registers in this region has no effect.

Note: If a PAR window is configured for PCI, AND the CBAR register is programmed to 
overlap with this PAR window, AND the PAR window is placed below the top of DRAM, the 
MMCR is not given priority over the PCI access. This configuration could result in system 
errors due to concurrence of both PCI and internal MMCR accesses.

4.3.3.5.1 Integrated Memory-Mapped Peripherals
The ÉlanSC520 microcontroller’s non-PC/AT integrated peripherals are located within the 
MMCR region, instead of being I/O mapped as are the integrated PC/AT peripherals. The 
peripherals located in the memory-mapped configuration region include:

■ Am5x86 CPU extension registers

■ SDRAM controller and SDRAM buffering

■ ROM controller

■ PCI host bridge

■ System arbitration 

■ Memory and I/O space control

■ GP bus controller

■ PIO, pin multiplexing and clock control

■ Software timer

■ General-purpose timers 0, 1 and 2

■ Watchdog timer

■ Synchronous serial interface (SSI)

■ Feature enhancements to PC/AT-compatible peripherals

– Programmable interval timer (PIT) extension registers in the programmable input/
output (PIO) and programmable interrupt controller (PIC) blocks

– UART extensions

– Programmable interrupt controller (PIC) extensions

– Reset control

– GP-DMA controller extensions
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4.3.4 I/O Space
The ÉlanSC520 microcontroller’s I/O space is partitioned into five regions:

■ Configuration Base Address (CBAR) register

■ PCI bus configuration space

■ External PCI bus I/O devices

■ Integrated PC/AT-compatible peripherals

■ External GP bus I/O devices

Figure 4-3 shows the system I/O address space map for the ÉlanSC520 microcontroller. 
Each of the regions is described in the following sections.

Figure 4-3 System I/O Map

4.3.4.1 Configuration Base Address (CBAR) Register

The Configuration Base Address (CBAR) register (Port FFFCh) is a 32-bit register that is 
used to relocate the integrated memory-mapped peripherals and MMCR registers, thus 
allowing a more flexible system memory map. The CBAR is fixed in I/O space at FFFCh 
and is “keyed” to prevent accidental programming. 

The CBAR allows an alias of the memory-mapped configuration registers (MMCR) to be 
aliased anywhere in the first 1 Gbyte of address space on a 4-Kbyte boundary. The MMCR 
is always available in the memory space directly below the boot ROM space at FFFEF000h, 
but the CBAR can be programmed to optionally allow a copy of this region anywhere in the 
lower 1-Gbyte space (on a 4-Kbyte boundary).

PC/AT Peripherals
(See Table 4-5)

The “holes” default to 
external GP bus, but 
can be redirected to 

PCI bus. See 
Section 4.3.4.4

03FFh

0000h

FFFFh

0

1 Kbyte

64 Kbytes

Default PCI Bus 
Space

Can also be 
retargeted to GP bus

FFFCh
CBAR

0CFFh

0CF8h
PCI Configuration 

Registers

Default PCI Bus 
Space

Can also be 
retargeted to GP bus
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4.3.4.2 PCI Configuration Space

PCI Local Bus Specification, Revision 2.2, defines an indirect-mapped configuration space 
that occupies only eight bytes in I/O space from 0CF8–0CFFh, and this mechanism is 
supported in the ÉlanSC520 microcontroller. The PCI bus configuration scheme uses two 
32-bit I/O locations:

■ PCI Configuration Address (PCICFGADR) register (Port 0CF8h) is the address register 
where the actual address of the device’s register and the bus number is located.

■ PCI Configuration Data (PCICFGDATA) register (Port 0CFCh) is the data register where 
the data of the specific register is written to or read from.

This PCI configuration space is accessible only by the CPU in the ÉlanSC520 
microcontroller, and the I/O cycle is claimed by the PCI bus configuration register block.

As a target, the ÉlanSC520 microcontroller does not accept any PCI bus configuration 
space accesses from other PCI bus masters.

Host-bridge-specific PCI configuration registers are described in the Élan™SC520 
Microcontroller Register Set Manual, order #22005. See also the PCI Local Bus Specification, 
Revision 2.2, for details on PCI bus device configuration register programming.

4.3.4.3 PCI I/O Space

The CPU’s I/O cycles can be directed to the PCI bus for normal direct-mapped access of 
devices, with the following restrictions:

■ I/O addresses claimed by the integrated PC/AT peripherals and the CBAR cannot be 
forwarded to the PCI bus under any conditions. See the I/O map in Figure 4-3 on 
page 4-11 and Table 4-5 on page 4-14 for details of the I/O addresses that are claimed 
by the integrated peripherals. 

■ By default, the “holes” in this portion of the I/O address space (0000–03FFh) are 
forwarded to the external GP bus. The Address Decode Control (ADDDECCTL) register 
(MMCR offset 80h) can be configured to forward accesses to these holes to the PCI 
bus. A PAR register is not required for this.

■ I/O addresses implemented by PCI bus configuration space (0CFC–0CFFh) are only 
forwarded to the PCI bus as an I/O cycle when the ENABLE bit in the PCI Configuration 
Address (PCICFGADR) register is cleared to 0. Otherwise, they are forwarded as a PCI 
configuration cycle. Ports 0CF8–0CFBh are forwarded to the PCI bus as I/O transactions 
only for non-doubleword accesses to this region; otherwise, they are claimed by the host 
bridge as a PCI configuration cycle.

All other CPU I/O cycles are, by default, forwarded to the PCI bus as normal PCI I/O 
transactions. PAR registers can be enabled to direct portions of this region to the GP bus.

As a target, the ÉlanSC520 microcontroller does not accept any I/O space accesses from 
PCI bus masters.
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4.3.4.4 PC/AT-Compatible I/O Peripherals Region

The ÉlanSC520 microcontroller includes several integrated peripheral cores that are 
PC/AT compatible, including the DMA controller, programmable interrupt controller (PIC), 
programmable interval timer (PIT), UARTs, real-time clock, and various control/status 
registers. These I/O addresses are automatically decoded by the ÉlanSC520 
microcontroller’s address decoding logic and require no special setup or PAR registers. 
Table 4-5 summarizes the I/O map for these integrated peripherals.

There are holes in this region, which are I/O transactions in the lower 1-Kbyte region that 
not claimed by the ÉlanSC520 microcontroller’s internal peripherals. These addresses can 
be decoded externally, or, if a chip select is required, a PAR register can be programmed 
for these addresses.

■ By default, all of the accesses to holes in this portion of the I/O address space (0000h 
to 03FFh) are forwarded to the external GP bus.

■ To forward all accesses to the PCI bus, the IO_HOLE_DEST bit in the Address Decode 
Control (ADDDECCTL) register (MMCR offset 80h) can be set.

■ If necessary, PARx registers can be used to override sending accesses to the PCI bus 
on an individual peripheral basis. In this way, accesses for individual peripherals can be 
directed back to the external GP bus.

For example, some PCI cards (notably VGA cards) use legacy I/O locations. The 
IO_HOLE_DEST bit allows the holes to be directed to either the PCI or to the GP bus. For 
a system requiring legacy GP bus peripherals along with legacy PCI peripherals (for 
instance, a PCI VGA card and a GP bus keyboard controller), the IO_HOLE_DEST bit 
would be set to 1 to direct all accesses to the PCI bus. The legacy GP bus keyboard controller 
would then be configured via PAR registers to override this setting. See “VGA Controller 
on the PCI Bus” on page 3-15 for another discussion of this topic.

Note: If a PARx register is configured to address GP bus I/O space within a hole, accesses 
in the defined region are forwarded to the GP bus regardless of the IO_HOLE_DEST bit 
value. It is the programmer’s responsibility to ensure that external peripherals are not 
mapped over any of the ÉlanSC520 microcontroller’s internal peripherals. Normal operation 
is not guaranteed in this case. See “Disabling Internal Peripherals” on page 3-21 for more 
information about this topic.
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The ÉlanSC520 microcontroller also allows the internal UARTs and the real-time clock 
(RTC) to be disabled, for applications when an external device is preferred. This is controlled 
by configuration register bits in the Address Decode Control (ADDDECCTL) register 
(MMCR offset 80h). When these peripherals are disabled, the I/O cycle is forwarded 
externally to the GP bus. This allows connection of external devices such as a standard 
Super I/O chip.

Integrated PC/AT peripherals are not accessible by PCI bus masters.

Table 4-5 PC/AT Peripherals I/O Map

Peripheral Core I/O Address Range

Slave GP-DMA Controller 0000–000Fh

Master Interrupt Controller 0020–0021h

Slave 2 Interrupt Controller
• This controller is not defined in standard PC/AT architecture, but has been included 

in the ÉlanSC520 microcontroller to provide additional interrupt request sources

0024–0025h

Programmable Interval Timer (PIT) 0040–0043h

Keyboard Control A20M and Fast Reset (SCP)
• Accesses to these locations are always directed to the external GP bus, but are 

also snooped internally for PC/AT functions.

0060h, 0064h

System Control Port B/NMI Status
• Reads and writes to this location are directed to this register only and are not seen 

on the external GP bus

0061h

Real-Time Clock (RTC) Index/Data 0070h, 0071h

General-Purpose Scratch Registers
• These are unused locations from the original DMA Page Register file and are 

maintained for PC/AT compatibility. Writes to these locations update the 
corresponding register and are also seen on the external GP bus. Reads to the 
locations return the data from the corresponding register, but do not initiate a cycle 
on the external GP bus.

0080h
0084–0086h

0088h
008C–008Eh

General-Purpose Scratch Register
• This is an unused location from the original DMA Page Register file and is 

maintained for PC/AT compatibility. Reads and writes to this location are directed 
to this register only and are not seen on the external GP bus.

008Fh

GP-DMA Page Registers
• Reads and writes to these locations are directed to these registers only and are not 

seen on the external GP bus.

0081–0083h
0087h

0089h-008Bh

System Control Port A 0092h

Slave 1 Interrupt Controller 00A0–00A1h

Master GP Bus DMA Controller 00C0–00DEh
(even addresses only)

Floating Point Error Interrupt Clear 00F0h

UART 2 02F8–02FFh

UART 1 03F8–03FFh
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4.3.4.5 GP Bus I/O Region

The PAR registers must be used to address external I/O devices on the GP bus. GP bus 
addressing is implemented with byte granularity, to accommodate devices with very few 
registers and very fragmented I/O maps that are typically found in PC/AT-compatible 
systems. 

When programming PAR registers for GP bus I/O space, it is best to configure the space 
on doubleword boundaries. Note that when specifying unaligned byte regions for I/O access, 
the software that accesses the regions must directly address the correct byte or bytes. For 
example, if a PAR is programmed with an I/O region, and the start address is xxx1h (i.e., 
byte #1), when the CPU performs a word or doubleword access starting at xxx0h (i.e., byte 
#0), the entire doubleword access is redirected to the PCI bus (byte #1 will not be accessed 
on the GP bus as programmed). In this case, the byte requested must be directly accessed 
by the CPU at I/O address xxx1h.

This region is not accessible by PCI bus masters.

4.3.5 Configuration Information
4.3.5.1 Configuring ROM/Flash Space

There are three ROM address regions that can be defined in the ÉlanSC520 microcontroller, 
but only the BOOTCS region is absolutely required for system boot up from reset. The 
optional two regions, ROMCS1 and ROMCS2 are configured via PAR registers. BOOTCS 
configuration is described in Chapter 3, “System Initialization”. See “Programmable 
Address Region (PAR) Registers” on page 4-5 for details on PAR register programming.

4.3.5.2 Configuring SDRAM Address Space

SDRAM space is determined at boot time when the SDRAM controller’s configuration 
registers are programmed and individual banks are enabled. A typical design can perform 
an SDRAM sizing routine to determine the amount of memory installed in the system and 
write the appropriate values to the configuration registers. For example, in a system that 
contains 16 megabytes of SDRAM, initialization software defines the SDRAM address 
region from 00000000–00FFFFFFh, and all accesses to this region are forwarded to the 
SDRAM controller unless a PAR register has been programmed to overlay the region with 
MMCR, ROM, PCI bus, or GP bus space.

4.3.5.2.1 Noncacheable, Write-Protected, or Nonexecutable SDRAM Regions
In the default condition, the entire SDRAM region is cacheable and executable by the CPU, 
and read/writable by the CPU, PCI bus master, and GP bus DMA controller cycles. There 
may be some system configurations in which specific portions of SDRAM require restricted 
access which can be accomplished by enabling specific attributes. A few common examples 
follow:

■ An SDRAM region that contains only code can be marked as write-protected with an 
attribute in the PAR register. This prevents the CPU and any bus master from illegally 
writing over the code in SDRAM due to faulty programming. In addition, an interrupt can 
be generated to the CPU when a violation occurs to assist in debug of the illegal write 
condition.

■ An SDRAM region that contains only data can be marked as nonexecutable with an 
attribute in the PAR register. If a software task attempts to branch to that location and 
resume execution due to a software bug, the CPU will read an illegal opcode, forcing an 
exception. The exception handler will then facilitate debugging the program that caused 
the illegal condition.
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4.3.5.3 Configuring GP Bus Peripheral Space

Configuring space for GP bus peripherals is accomplished via PAR register programming. 
This section describes a few system configuration examples beyond the normal 
programming of chip select regions.

4.3.5.3.1 Configuring a Chip Select for Noncontiguous Memory or I/O Space
Some peripheral subsystems may require a single chip select that must be asserted in 
noncontiguous address locations. For example, an I/O device can contain multiple 
integrated functions that are each addressed at separate, noncontiguous I/O addresses 
(such as a custom ASIC). In this case multiple PAR registers can be used to define each 
individual address region, but all can be mapped to the same chip select by programming 
the TARGET field to GP bus and the ATTR field to the same chip select. This is most useful 
when working with a highly fragmented I/O map such as defined in PC/AT systems, where 
there is little unused I/O address space.

This can also be accomplished by programming a single PAR register to cover the entire 
range of addresses, which results in some wasted address space. 

4.3.5.3.2 Positive Decoding Example
Some peripherals connected to the GP bus may perform their own address decoding from 
the GP bus addresses and do not require a chip select. In this case, the same steps are 
followed for programming the configuration registers, but the pin multiplexing registers do 
not need to be programmed to allow the actual chip select to be driven on a pin, thus allowing 
the pin to be used for other functions. 

If multiple positive decoding regions are required in an application, the PAR registers for 
each reason can be programmed to map to the same unused chip select, to conserve pin 
functions.

4.3.5.3.3 Configuring the Élan™SC520 Microcontroller to Use an External Super I/O Chip
It may be desirable to connect a commercially available Super I/O chip on the GP bus in 
an ÉlanSC520 microcontroller system (for example, systems requiring a keyboard or IDE 
drive can implement this device). 

In this case, since the Super I/O implements two UARTs programmed at the same address 
as the ÉlanSC520 microcontroller’s integrated UARTs, the internal UARTs can be disabled 
to support the COM1 and COM2 ports in the Super I/O chip, if desired. In this case, when 
the CPU performs I/O accesses to the UART address regions, the cycles will be forwarded 
out to the external GP bus. Also, the Super I/O is a positive decoding device, i.e., it does 
not require a chip select because it performs the address decoding from the GP bus 
addresses. 

The I/O map for the Super I/O device is fragmented and may require the use of multiple 
PAR registers for noncontiguous addressing, as described in Section 4.3.5.3.1. If the 
fragmented I/O space unused by the Super I/O chip is not required elsewhere in the system, 
then a single PAR register can be used to map the entire range of peripherals. In this case, 
the UART address spaces would be the highest used I/O space internally in the ÉlanSC520 
microcontroller, so the Super I/O peripherals would not be in conflict, allowing a single PAR 
register to define the entire range of Super I/O peripherals from 01F0–07BEh.

See “Interfacing with a Super I/O Controller” on page 13-13, for an example of connecting 
the Super I/O chip to the ÉlanSC520 microcontroller’s GP bus.
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4.3.5.4 Configuring the Élan™SC520 Microcontroller for Windows® Compatibility

The ÉlanSC520 microcontroller can be configured to operate as a Windows compatible 
microcontroller. This section describes some of the steps that may be required to configure 
the memory and I/O addressing; however, this will vary depending on the requirements of 
the system.

4.3.5.4.1 Memory Regions Above DOS 640-Kbyte Application Space
The ÉlanSC520 microcontroller can be programmed to accommodate the legacy PC/AT-
compatible region above the DOS 640-Kbyte application space at 000A0000h area ending 
at 000FFFFFh (1 Mbyte). This space defaults to SDRAM once the SDRAM banks are 
enabled, but the PAR registers can be programmed to support the various requirements of 
systems requiring Windows compatibility. The list below outlines some of the steps to 
consider when building a memory map in the ÉlanSC520 microcontroller system for such 
compatibility.

■ Two 64-Kbyte video regions from 000A0000–000AFFFFh and 000B0000–000BFFFFh 
default to SDRAM, but can be enabled as PCI bus space for PC/AT compatible video 
cards on the PCI bus, via one of the PAR registers. The ÉlanSC520 microcontroller’s 
PCI bus host bridge (as a target) will automatically ignore accesses in this space when 
either PAR 0 or PAR 1 are programmed to overlay SDRAM regions with the PCI bus.

■ The remaining area from 000C0000–000FFFFFh is normally sub-divided in a PC/AT 
system into several different address regions for BIOS, and accesses to these regions 
can be redirected to either ROM, the GP bus, or the PCI bus by programming PAR 
registers. Most systems will not require the use of all BIOS regions defined, since many 
are for expansion ROMs intended for various plug-in cards (such as network interface 
cards). The following regions are normally defined:

– One BIOS region with 64-Kbyte granularity from 000F0000–000FFFFFh

– Four extended system BIOS regions, each with 16-Kbyte granularity from 000E00000–
000EFFFFFh

– 8 Expansion ROM regions, each with 16-Kbyte granularity, from 000C0000–
000DFFFFFh

4.3.5.4.2 Integrated Peripheral Mapping
Because the ÉlanSC520 microcontroller already provides standard PC/AT-compatible 
peripherals that use direct I/O address mapping, there are no I/O address conflicts with 
these devices. See Table 4-5 on page 4-14 for a summary of this I/O map.

The Configuration Base Address (CBAR) register (Port FFFCh) can be used to alias the 
internal memory-mapped registers and peripherals to a convenient location. For example, 
they could be mapped between 640 Kbytes and 1 Mbyte for real mode operation. The 
memory-mapped configuration region is always available in the upper CPU space 
(4 Gbytes), but the aliased location is only accessible when the CBAR is programmed and 
the ENABLE bit has been set.

4.3.5.4.3 DMA Channel and Interrupt Request Steering
The ÉlanSC520 microcontroller provides a method to route interrupt request sources and 
DMA request pins to the appropriate channels on the programmable interrupt controller 
(PIC) and the GP-DMA controller, respectively.

See Chapter 15, “Programmable Interrupt Controller”, for further information on interrupt 
request routing.

See Chapter 14, “GP Bus DMA Controller”, for further information on DMA request routing.
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4.3.5.5 Configuring PCI Bus Devices

PCI bus device configuration is accomplished in the ÉlanSC520 microcontroller with the 
standard PCI Configuration Mechanism #1, as defined in the PCI Local Bus Specification, 
Revision 2.1. This configuration requires an indirect mapped I/O scheme in which the 
address of the device is written to the PCI Configuration Address (PCICFGADR) register 
(Port 0CF8h), and the data is accessed via the PCI Configuration Data (PCICFGDATA) 
register (Port 0CFCh). See“Configuration Information” on page 9-9 for more information. 
See also the PCI Local Bus Specification, Revision 2.2.

4.3.6 Interrupts
The ÉlanSC520 microcontroller can be programmed to generate an interrupt request when 
a write protection violation occurs, providing software with a debugging mechanism to 
determine which task illegally attempted to write to the memory region marked with this 
attribute. In this case, an interrupt request is generated to the programmable interrupt 
controller (PIC) block, where the request is routed to the appropriate type of interrupt 
(maskable or non-maskable) and level, based on the programming of the configuration 
registers. The PAR window that contains the address region where the write protect violation 
occurred is latched into a register, as well as which bus owner caused the violation (CPU, 
GP-DMA controller, or PCI bus master). 

See Chapter 15, “Programmable Interrupt Controller”, for details of PIC programming.

4.3.7 Software Considerations
Since the ÉlanSC520 microcontroller provides some flexibility in defining the system 
memory and I/O map, there are a number of software considerations that must be analyzed. 
The list below describes some of the issues that must be considered when programming 
the configuration registers to define the memory and I/O space in an ÉlanSC520 
microcontroller system.

■ The Configuration Base Address (CBAR) register must be accessed as a 32-bit I/O 
register to guarantee that all bits are written at the same time. The MATCH field of the 
CBAR must be written with the correct pattern to enable or disable the MMCR alias.

■ MMCR register space has higher priority than the Programmable Address Region (PAR) 
registers.

■ The PAR registers are organized such that the lowest register (PAR 0) is the highest 
priority and the last PAR register (PAR15) is lowest priority. Therefore, if two PAR registers 
are overlaid due to programming, the lowest numbered PAR takes priority.

■ PAR registers should not be programmed to conflict with any of the fixed I/O regions, 
such as the Configuration Base Address (CBAR) register or the PCI bus configuration 
space.The ÉlanSC520 microcontroller’s address decoding does not permit PAR 
registers to overlay the integrated PC/AT peripherals.

■ In general, the PAR register start address and region size should not be programmed 
to conflict with each other. It is possible to program the PAR registers such that the region 
size is greater than the start address allows. For example, if the region size is defined 
as 64 Kbytes, but the start address is programmed to be the top of the 1-Gbyte region 
(maximum address allowed by PAR registers) minus 4 Kbytes, then the address space 
available will be the 4-Kbyte region starting at the start address.

– Subsequent access past the 1-Gbyte boundary will still be to the PCI bus

– The remaining 60-Kbyte region will not qualify as a PAR hit.
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■ When programming the PAR registers for an SDRAM region, the PAR register start 
address and region size should not conflict with the programmed value that defines the 
top of SDRAM in the system. For example, if a PAR is setup for SDRAM and the region 
size is defined as 8 Kbytes, but the start address is programmed to be the top of the 
SDRAM minus 4 Kbytes, then addresses above the top of SDRAM will not result in a hit 
for this PAR.

■ If the TARGET field of any PAR register is defined as SDRAM, but no SDRAM has been 
enabled via the SDRAM controller configuration registers, the memory space defaults 
to the PCI bus.

■ Systems that configure another memory space resource to be overlaid on top of SDRAM 
space do not have access to the SDRAM that was overlaid, since address translation 
is not supported in the ÉlanSC520 microcontroller. For example, if a PCI bus video card 
is used in the 000A0000–000AFFFFh region (as in typical PC/AT operation), the system 
will lose the 64 Kbytes of SDRAM in that region as long as the PAR register is enabled.

■ Any region that is overlaid on default SDRAM space through a PAR register or CBAR 
takes priority over the SDRAM region in the decoding block. In effect, a portion of SDRAM 
becomes inaccessible when this is done. If a PCI bus master generates an address to 
this overlaid address region, the cycles will be forwarded to SDRAM and will be write-
protected. 

■ Code execution from memory on the GP bus or the PCI bus is discouraged (after boot 
code has executed), since accesses to these spaces are not cacheable and may result 
in unacceptable latencies under some conditions. Code execution is more efficient when 
executing from SDRAM or from ROM devices that use BOOTCS, ROMCS1, or ROMCS2, 
because accesses to these resources are cacheable.

■ The ÉlanSC520 microcontroller guarantees coherency with SDRAM buffers that are 
shared between the CPU and other bus masters, but it may be beneficial to mark these 
regions as noncacheable to avoid the overhead with cache write-backs upon every 
access by the bus master. This can be accomplished by programming a PAR register 
and setting the noncacheable attribute. Cache snooping will continue; however, the 
performance impact is negligible, since there will be no write-back cycles.

■ Care must be taken when programming configuration registers that affect address 
decoding during normal system operation when either PCI bus master or GP bus DMA 
activity is occurring.

– When writing to PAR registers, verify that the ÉlanSC520 microcontroller’s PCI host 
bridge target FIFOs have been flushed and disable PCI bus master access of SDRAM 
to prevent unexpected forwarding of accesses from other masters. An example of a 
potential problem is modifying a PAR register to redirect normal SDRAM region 
accesses to the PCI bus, while a PCI bus master has already been granted the PCI 
bus. In this case, when the CPU completes the write to the PAR register, the posted 
PCI bus master access is forwarded to the SDRAM controller because the bus was 
already granted to the PCI bus master. This problem can be alleviated by disabling 
PCI bus master access to SDRAM (the default mode after reset) via the System Arbiter 
Master Enable (SYSARBMENB) register (MMCR offset 72h), and performing a read 
from an external PCI agent to flush the ÉlanSC520 microcontroller’s target FIFOs, 
before writing to configuration registers that affect address decoding.

– The CPU cache should always be flushed after the cacheability attribute is changed 
from cacheable to noncacheable for any memory region (by programming the PAR 
register), or when the cache write policy is changed from write-back to write-through.
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■ Programming the PAR register maximum region size and a page size of 64 Kbytes allows 
a space up to 128 Mbytes to be defined; however, the GP bus/ROM address pins support 
a maximum of 64 Mbytes per chip select. If a 128-Mbyte space is programmed for a GP 
bus or ROM chip select, the upper 64 Mbytes will be aliased with the lower 64-Mbyte 
region.

■ When programming PAR registers for GP bus I/O space, it is best to configure the space 
on doubleword boundaries. Note that when specifying unaligned byte regions for I/O 
access, the software that accesses the regions must directly address the correct byte 
or bytes. For example, if a PAR is programmed with an I/O region, and the start address 
is xxx1h (i.e., byte 1), when the CPU performs a word or doubleword access starting at 
xxx0h (i.e., byte 0), the entire doubleword access is redirected to the PCI bus (byte 1 
will not be accessed on the GP bus as programmed). In this case the byte requested 
must be directly accessed by the CPU at I/O address xxx1h.

■ A write-protection violation occurs when the CPU, any PCI bus master, or the GP-DMA 
controller attempts to write to any memory region that has been marked as write-
protected by a PAR register attribute. When this occurs, the cycle is always forwarded 
to SDRAM as a write cycle with the SDQM signals inactive, and the original data is 
discarded. Any data that was written to the write buffer prior to enabling write-protection 
is successfully written to SDRAM.

■ Software must include proper interrupt service routines and exception handlers when 
enabling write-protection violation interrupts and nonexecutable region attributes in the 
Address Decode Control (ADDDECCTL) register (MMCR offset 80h). Note that in the 
case of the write protection violation, the PAR register number that contains the address 
region of the violation is latched in the WPV_WINDOW bit field in the Write-Protect 
Violation Status (WPVSTA) register (MMCR offset 82h) and retained until it is cleared 
by software. The PARx window number is latched when a write-protect violation occurs. 
Subsequent write-protect violations are not captured until software clears the interrupt 
by writing a 1 to the WPV_STAT bit in the same register.

■ If two or more PAR registers are overlapping (programmed to have some address range 
in common), the write-protection exception is generated only if the higher priority PAR 
has the attribute enabled. If the lower priority PAR has the write-protect attribute enabled 
but the higher priority PAR has it disabled, then writes into the common address range 
shared by the two PAR registers will not generate an exception. This discussion applies 
to the cacheability control and code execution attributes, as well.

■ Access of ÉlanSC520 microcontroller internal configuration registers:

– All integrated PC/AT peripherals mapped to I/O space must be accessed only as 8 
bits unless otherwise specified.

– All memory-mapped integrated peripherals and configuration registers for PC/AT 
peripherals must be accessed as specified in the Élan™SC520 Microcontroller 
Register Set Manual, order #22005.

– PCI configuration registers should be accessed as 32 bits unless otherwise specified 
in the Élan™SC520 Microcontroller Register Set Manual, order #22005.
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4.4 INITIALIZATION
The ÉlanSC520 microcontroller’s address decoding is cleared to the default state by a 
system reset. 

■ The BOOTCS decoding is enabled for the 64-Kbyte region from FFFF0000–FFFFFFFFh

■ SDRAM address space is disabled.

■ All PAR registers are disabled and cleared to zeros, which means there are no external 
GP bus address spaces enabled. Note that I/O holes below 1 Kbyte will be directed to 
the external GP bus. However, no chip selects are enabled, and positive decodes would 
be required.

■ Integrated PC/AT peripheral I/O space is enabled as defined in Table 4-5 on page 4-14.

■ The Configuration Base Address (CBAR) register is addressed in I/O space at FFFCh. 
Memory-mapped configuration register space is enabled at FFFEF000–FFFEFFFFh 
(below CPU boot space address).

■ The PCI bus is disabled, and the configuration registers are defaulted to the values 
specified in PCI Local Bus Specification, Revision 2.2. PCI configuration space is 
enabled in I/O space at ports 0CF8h and 0CFCh (PCICFGADR and PCICFGDATA).

See “Programmable Address Region (PAR) Registers” on page 4-5 for information on 
configuring these registers. See “Configuration Information” on page 4-15 for additional 
detail on configuring the various address spaces included on the ÉlanSC520 
microcontroller. 
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CHAPTER
5
 CLOCK GENERATION AND CONTROL
5.1 OVERVIEW
The ÉlanSC520 microcontroller is designed to generate all of the internal and system clocks 
it requires. The ÉlanSC520 microcontroller includes on-chip oscillators and PLLs, as well 
as most of the required PLL loop filter components. 

The ÉlanSC520 microcontroller requires two standard crystals, one for 32.768 kHz and 
one for 33 MHz. All the clocks required inside the ÉlanSC520 microcontroller are generated 
from these crystals. Output clock pins are provided for selected clocks, providing up to 24 
mA of sink or source current. 

The ÉlanSC520 microcontroller also supplies the clocks for SDRAM and the PCI host 
bridge; however external clock buffering may be required in some systems.

The clocking generation and control features include:

■ RTC low-current oscillator using standard off-the-shelf 32.768-kHz crystal

■ 33-MHz oscillator using standard off-the-shelf 33-MHz crystal (33.000 or 33.333 MHz)

■ 33-MHz clock provides clocks for the integrated Am5x86 CPU and external PCI bus

■ Integrated 66-MHz PLL provides clocks for external SDRAM

■ Integrated PLLs for generating 1.1892-MHz PIT clock and 18.432-MHz UART clock

■ Integrated on-chip PLL loop filters for the 66-MHz and 36.864-MHz PLLs, eliminating 
the need for external capacitors

■ 33.333-MHz/30.000-MHz PCI Clock Output Pin, CLKPCIOUT

■ 66-MHz SDRAM Clock Output Pin, CLKMEMOUT

■ 33-MHz and 32.768-kHz oscillators bypass option

Note: The ÉlanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz 
crystal. In this document, the term “33 MHz” refers to the system clock derived from 
whichever 33-MHz crystal frequency is being used in the system.
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5.2 BLOCK DIAGRAM
Figure 5-1 shows a block diagram of the ÉlanSC520 microcontroller’s internal clocks. 
Table 5-1 shows PLL lock times and oscillator start-up times. See the Élan™SC520 
Microcontroller Data Sheet, order #22003, for timing diagrams and additional clocking 
specifications.

Figure 5-1 Clock Source Block Diagram

Table 5-1 Clock Start-up and Lock Times

Clock Source Max

32.768-kHz Oscillator 1 s

33-MHz Oscillator 10 ms

PLL1 (1.47456 MHz) 10 ms

PLL2 (36.864 MHz) 100 ms

PLL3 (66 MHz) 50 ms

 

32.768-kHz
Crystal

32.768-kHz
Oscillator

PLL2
1.47456 MHz DIV 31

DIV 2

1.1892-MHz PIT

18.432-MHz UART

33-MHz
Oscillator

PLL3

32.768-kHz SDRAM Refresh

33-MHz
Crystal

36.864 MHz

LF_PLL1

32.768-kHz RTC

Notes:
1. Includes the programmable interval timer (PIT), general-purpose timers, watchdog timer, and the software timer.

PCI

CPU

SDRAM

GP Bus

GP DMA

ROM

SSI

33 MHz

33 MHz

33 MHz

33 MHz

33 MHz

33 MHz

66 MHz

PLL1

Timers133 MHz
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5.3 SYSTEM DESIGN
Figure 5-2 shows a system block diagram of the ÉlanSC520 microcontroller’s external 
clocks. As shown in Figure 5-2, external clock drivers may be necessary when the system 
presents a large capacitive load. 

Table 5-2 lists the shared clock signals of the ÉlanSC520 microcontroller.

Figure 5-2 System Clock Distribution Block Diagram

Table 5-2 Clock Signals Shared with Other Interfaces

Default Function Alternate Function Control

CLKTIMER CLKTEST CLK_PIN_DIR bit in Clock Select (CLKSEL) register 
(MMCR offset C26h) 

 

SDRAM

66 MHz

PCI
Device

PCI 
Device

33 MHz

32KXTAL2

33MXTAL1

33MXTAL2

32KXTAL1
32.768-kHz

33-MHz
Crystal

Crystal

[CLKTEST]

CLKPCIOUT
33 MHz

CLKMEMOUT 66 MHz

CLKMEMIN

CLKPCIIN

.

.

.

Programmable

Optional

VCC_ANLG

LF_PLL1

R1

C1C2

Élan™SC520
Microcontroller

CLKTIMER/

Note : Dotted line ovals,       , signify frequency groups.

Driver

Optional
Clock
Driver

Clock
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5.3.1 Clock Pin Loading
Clock pins are designed to either source or sink 24 mA. The maximum amount of capacitive 
load that can be placed on a clock pin is determined by the required rise/fall times. 

Use the following equation to determine the maximum capacitive loading.

C = I/(dV/dt) 

where:

I = Current
dV = Voltage change
dt = Time change

As an example, suppose that the system requires a rise/fall time of 1 ns, with a voltage 
swing of 2.5 V. Then, the maximum capacitive load is: 

Cmax = 24 mA/(2.5 V/1 ns) = 9.6 pF 

Derating curves for the device are provided in the Élan™SC520 Microcontroller Data Sheet, 
order #22003.

5.3.2 Selecting a Crystal
The accuracy of the real-time clock (RTC) depends on several factors relating to crystal 
selection and board design. A clock timing budget determines the clock accuracy. The 
designer should determine the timing budget before selecting a crystal. 

There are four major contributors to a clock timing budget. 

■ Frequency Tolerance—This is the crystal calibration frequency. It states how far off the 
actual crystal frequency is from the nominal frequency. For a typical 32.768-kHz crystal 
(watch crystal), the frequency tolerance is ± 20 parts per million (ppm). Frequency 
tolerance is specified at room temperature.

■ Frequency Stability—This parameter is a measure of how much the crystal resonant 
frequency is influenced by operating temperature. For watch crystals, typical numbers 
are around –30 ppm over the temperature range. 

■ Aging—This parameter is how much the crystal resonant frequency changes with time. 
Typical aging numbers are ± 3 ppm per year.

■ Load Capacitance—The crystal is calibrated with a specific load capacitance. If the 
system load capacitance does not equal the crystal load capacitance, a timing error is 
introduced. The timing error is calculated by the following equation. 

Error = {[1 + C1/(CLxtal+Co)]1/2 – [1 +C1/(CLsystem+Co)]1/2}/ [1 + C1/(CLxtal+Co)]1/2

where:

C1 is the crystal motional capacitance
Co is the crystal static capacitance
CLxtal is the crystal load capacitance
CLsystem is the system load capacitance

For the error in ppm, multiply Error by 106.

Once the complete timing error has been calculated by adding all of the errors together, 
compare it to the initial timing budget. Table 5-3 provides a convenient translation of ppm 
to seconds per month.
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Detailed crystal specifications and further information on crystal selection can be found in 
the Élan™SC520 Microcontroller Data Sheet, order #22003.

5.3.2.1 Running the Élan™SC520 Microcontroller at 33.333 MHz

The clock that is supplied to the PCI bus (CLKPCIOUT) is exactly the same as the frequency 
of the crystal. The ÉlanSC520 microcontroller simply buffers the 33-MHz crystal input and 
provides it to the CLKPCIOUT pin. Since crystals have inaccuracies, it is possible that these 
inaccuracies cause the period of CLKPCIOUT to become marginally less than 30 ns.

It is up to the system designer to choose the accuracy of the crystal used with the ÉlanSC520 
microcontroller. The 33.000-MHz frequency provides a better guard band than the 33.333-
MHz crystal. In practice, most PCI devices can tolerate both frequencies, but it is important 
to be aware of the impact of choosing the crystal on this potential violation of the PCI bus 
specification. The PCI Local Bus Specification, Revision 2.2 requires that the minimum 
clock period be 30 ns.

5.3.3 Bypassing Internal Oscillators
The 32.768-kHz and the 33-MHz ÉlanSC520 microcontroller oscillators can be bypassed 
by connecting an external clock to the crystal pins. See Figure 5-3 and Figure 5-4 for 
suggested circuitry.

Figure 5-3 shows two resistors in series with their common node connected to 32KXTAL2. 
The value of the resistor connected to ground (R2) is 100 kW. The value of R1 depends on 
the voltage level of the external oscillator, according to the following formula:

V(32KXTAL2) = 2.5 V = R2 / (R2 + R1) * V(External Oscillator)

Figure 5-3 Bypassing the 32.768-kHz Oscillator

Table 5-3 Timing Error as It Translates to Clock Accuracy

Timing Error
(Parts per Million) Seconds/Month

± 10 ± 25.9

± 20 ± 51.8

± 30 ± 77.8

± 40 ± 103.7

± 50 ± 129.6

External
32.768-kHz 

Oscillator 32KXTAL2

32KXTAL1100 kW

Élan™SC520
Microcontroller

R2

R1 2.5-V ±10% typical
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Figure 5-4 Bypassing the 33-MHz Oscillator

5.4 REGISTERS
A summary listing of the memory-mapped configuration registers used to control the clocks 
on the ÉlanSC520 microcontroller is shown in Table 5-4. 

Table 5-4 Clock Control Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

Am5x86 CPU Control CPUCTL 02h CPU clock speed control

Software Timer Configuration SWTMRCFG C64h Crystal frequency (33.000 MHz or 33.333 MHz) 
for software timer

Clock Select CLKSEL C26h CLKTIMER[CLKTEST] pin enable, clock output 
select options (18.432 MHz or 1.8432 MHz 
UART, PLL1, PLL2, PIT, and RTC), CLKTIMER 
or CLKTEST select

GP Timer 0 Mode/Control GPTMR0CTL C72h GP Timer 0: internal clock source prescaler, 
external clock source

GP Timer 1 Mode/Control GPTMR1CTL C7Ah GP Timer 1: internal clock source prescaler, 
external clock source

UART 1 General Control
UART 2 General Control

UART1CTL
UART2CTL

CC0h, CC4h UARTx clock source: 1.8432 MHz or 18.432 
MHz

SSI Control SSICTL CD0h SSI clock speed

GP-DMA Control GPDMACTL D80h GP-DMA clock frequency: 4 MHz, 8 MHz, or 16 
MHz

External
33-MHz 
Oscillator

No Connect

33MXTAL2

33MXTAL1

Élan™SC520
Microcontroller

2.5-V ±10% typical
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5.5 OPERATION
The clocks on the ÉlanSC520 microcontroller are generated from two local oscillators.

The 32.768-kHz oscillator is used to drive PLL1 (1.47456-MHz PLL), which in turn drives 
PLL2 (36.864-MHz PLL). The 36.864-MHz clock is divided by 2 to produce the 18.432-MHz 
UART clock. It is divided by 31 to produce the 1.1892-MHz PIT clock. 

The 33-MHz oscillator produces the 33-MHz PCI and CPU clocks. The 33-MHz oscillator 
is also used to drive PLL3 (66-MHz PLL) to produce the SDRAM clock.

5.5.1 Internal Clocks

5.5.1.1 CPU

The Am5x86 CPU bus frequency in the ÉlanSC520 microcontroller is always 33 MHz; 
however, the Am5x86 CPU core frequency is programmable to be 100 MHz or 133 MHz. 
The clock speed of the Am5x86 CPU core defaults to 100 MHz, but can be changed 
dynamically via the Am5x86 CPU Control (CPUCTL) register (MMCR offset 02h). Clocking 
considerations for the Am5x86 CPU are described in “Clocking Considerations” on 
page 7-4.

The ÉlanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz crystal as 
the 33-MHz clock source. 

5.5.1.2 PCI Bus

The PCI bus system clock on the ÉlanSC520 microcontroller runs at 33 MHz. The PCI bus 
system clock (CLK) is described in “PCI Clocking” on page 9-5, as is usage of the two PCI 
bus clock pins, CLKPCIIN and CLKPCIOUT.

The CLKPCIOUT pin is a 33-MHz clock output for the PCI bus devices. This signal is derived 
from the 33MXTAL2–33MXTAL1 interface. 

Note that the ÉlanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz 
crystal. “Running the Élan™SC520 Microcontroller at 33.333 MHz” on page 5-5 details 
some important considerations in choosing a crystal for a PCI system.

5.5.1.3 SDRAM Controller

The SDRAM clock runs at 66 MHz, twice the frequency of the 33-MHz oscillator. The refresh 
rate of the SDRAM controller is derived from the 32.768-kHz clock. The flexible refresh rate 
supports a wide variety of devices.

Clocking considerations for the SDRAM controller, including the CLKMEMIN and 
CLKMEMOUT pins, are described in “SDRAM Clocking” on page 10-6.

5.5.1.4 ROM/Flash Interface

The ROM/Flash controller is clocked from the internal Am5x86 CPU bus and operates at 
33 MHz.

5.5.1.5 GP Bus

The GP-bus interfaces internally to the Am5x86 CPU and operates at 33 MHz.
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5.5.1.6 GP-DMA Controller

The GP-DMA controller can be programmed to operate at 4 MHz, 8 MHz, or 16 MHz. This 
option is specified in the GP-DMA Control (GPDMACTL) register (MMCR offset D80h). 
Note that these frequencies are derived from the 33-MHz clock. The exact frequency is an 
even fraction of the crystal (33.000-MHz or 33.333-MHz) being used in the system.

5.5.1.7 Programmable Interval Timer

The programmable interval timer (PIT) clock source can be either the derived 1.1892-MHz 
PIT clock or the CLKTIMER pin.

Note: Since the PIT clock does not run at the industry-standard 1.19318 MHz, modifications 
in software must be made to allow for this difference. See “Using the PIT Clock Source in 
PC/AT-Compatible Systems” on page 16-6 for more information.

5.5.1.8 General-Purpose Timers

The clock source for the three general-purpose timers is the 33-MHz clock. For Timer 0 
and Timer 1, the clock source can also be an external pin or a derived prescale clock. This 
option is specified in the GP Timer 0 Mode/Control (GPTMR0CTL) register (MMCR offset 
C72h) and the GP Timer 1 Mode/Control (GPTMR1CTL) register (MMCR offset C7Ah). 
Clocking considerations for the general-purpose timers are described in “Clocking 
Considerations” on page 17-5.

5.5.1.9 Software Timer

The software timer uses the 33-MHz clock. Proper configuration of the software timer 
requires the programmer to specify in the Software Timer Configuration (SWTMRCFG) 
register (MMCR offset C64h) whether a 33.000-MHz or 33.333-MHz crystal is being used 
in the system.

5.5.1.10 Watchdog Timer

The watchdog timer uses the 33-MHz clock. It supports up to a 30-second time-out period. 
The EXP_SEL field in the Watchdog Timer Control (WDTMRCTL) register (MMCR offset 
CB0h) indicates the exponent value used to calculate the time-out duration.

5.5.1.11 Real-Time Clock

The 32KXTAL2–32KXTAL1 pins are used to connect the external 32.768-kHz crystal or 
oscillator to the ÉlanSC520 microcontroller. This clock source is then used to clock the 
internal real-time clock (RTC) included on the ÉlanSC520 microcontroller.

5.5.1.12 UART Serial Ports

The UARTs each support an internal baud-rate clock of either 18.432 MHz or 1.8432 MHz. 
This frequency is programmed in the CLK_SRC bit in the UART 1 General Control 
(UART1CTL) register (MMCR offset CC0h) or the UART 2 General Control (UART2CTL) 
register (MMCR offset CC4h).

5.5.1.13 Synchronous Serial Interface

The synchronous serial interface (SSI) clock is derived from the 33-MHz clock. The 
CLK_SEL bit in the SSI Control (SSICTL) register (MMCR offset CD0h) is used to configure 
the frequency of the SSI clock (the SSI_CLK pin). The actual bit rate will vary, depending 
on whether the system is using a 33.000-MHz or a 33.333-MHz crystal.
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5.5.2 Using the CLKTIMER[CLKTEST] Pin
The CLKTIMER[CLKTEST] pin can be programmed as an input (CLKTIMER) or as an 
output (CLKTEST) in the Clock Select (CLKSEL) register (MMCR offset C26h). 

■ When programmed as an input (default), this pin can be used to provide the clock for 
the programmable interval timer (PIT) core. See “Using the PIT Clock Source in PC/AT-
Compatible Systems” on page 16-6 for more information. While the pin is being enabled 
as an input, it is synchronized to the CPU clock to prevent spurious pulses from occurring 
in the PIT core. 

■ When programmed as an output, this pin, as CLKTEST, can drive one of several of the 
internal clocks outside the microcontroller for testing or drive an external device. 
Figure 5-5 shows the available clocks that can be directed to the CLKTEST pin by 
programming the Clock Select (CLKSEL) register (MMCR offset C26h).

Note: Caution should be exercised when programming the CLKTIMER[CLKTEST] pin as 
an output, since there is no logic to avoid spurious pulses while enabling or changing clock 
frequencies. The target device should be held in reset, the CLK_TST_SEL bit field 
programmed to the correct frequency, the CLK_PIN_DIR bit set to 1 (output), and the 
CLK_PIN_ENB bit set to 1 (enabled). Then, the target device can be released from reset.

Figure 5-5 Clock Routing for the CLKTEST Pin

5.6 INITIALIZATION
The Am5x86 CPU core is reset during a system reset, and the CPU core clock frequency 
defaults to 100 MHz. A soft reset does not affect the CPU core clock frequency.

The CLKTIMER[CLKTEST] pin is disabled on reset and must be enabled via the Clock 
Select (CLKSEL) register (MMCR offset C26h) before it will function.

See Figure 5-1 on page 5-2 and Table 5-1 on page 5-2 for start-up information. See also 
Figure 6-3 on page 6-9 and the reset timing diagrams in the Élan™SC520 Microcontroller 
Data Sheet, order #22003.

PLL1 (1.47456 MHz)

PLL2 (36.864 MHz)

PIT (1.1892 MHz)

RTC (32.768 kHz)

CLKTEST

CLK_TST_SEL bits from the Clock Select Register

6:1 Mux

UART (18.432 MHz)

UART (1.8432 MHz)
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CHAPTER
6
 RESET GENERATION
6.1 OVERVIEW
Reset features of the ÉlanSC520 microcontroller include:

■ ÉlanSC520 microcontroller system reset generation via PWRGOOD pin, software 
writes, watchdog timer, and AMDebug system reset

■ ÉlanSC520 microcontroller system reset with SDRAM interface contents maintained 
(called programmable reset)

■ Hard CPU reset generation via system reset

■ Soft CPU reset generation via software writes and detection of the CPU special cycle 
type “shutdown”

■ GP bus reset generation via system reset and software writes

■ PCI bus reset generation via system reset and software writes. See Chapter 9, “PCI Bus 
Host Bridge”

■ Reset sources can be determined by software

■ Latches system-configuration data presented on the shared CFG3–CFG0 pins and static 
system board information presented on the shared RSTLD7–RSTLD0 pins at the 
assertion of the PWRGOOD pin. See Chapter 12, “ROM/Flash Controller”, for 
information in the CFGx pins.

■ System Control Processor (SCP) A20 gate and reset CPU command emulation

■ Control bit to enable AMDebug mode after the CPU has been reset

6.2 BLOCK DIAGRAM
Figure 6-1 shows a block diagram of the reset controller.
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Figure 6-1 Reset Controller Block Diagram

6.3 SYSTEM DESIGN
The POWERGOOD signal from the system board is connected to the PWRGOOD pin on 
the ÉlanSC520 microcontroller to produce CPU reset and system reset events. During the 
period required for stabilization of the power supplies and the internal oscillators, which is 
typically not less than 1 second, the POWERGOOD signal is kept deasserted. The start-
up time of the internal PLLs is typically 10 ms from the assertion of the PWRGOOD pin. 
The power-on reset waveform diagram is shown in Figure 6-3 on page 6-9.

All system resets, aside from PWRGOOD pin, are on the order of 10 ms, while soft resets 
take 16 CPU clocks.

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and 
additional timing diagrams.

Port A

cpu sreset

port92_rst

shutdown

PRGRESET

PWRGOOD

Watchdog wdt_rst

cpu reset

GP Bus

a20m

CFG3–CFG0

AMDebug system reset

RSTLD7–RSTLD0

AMDebug hard reset

Reset Configuration

Register

Pinstrap
Status

GPRESET

AMDebug on reset
rst_main

AMDebug™ 

and 

Information

To all internal
cores

PCI
Controller

RST

SCP
a20_gate

Registers port64_rst

a20_ctl

ROM
Controllerrom

AMDEBUG_DIS

INST_TRCE

DEBUG_ENTER

AMDebug

Logic

CPU

System

Élan™SC520 Microcontroller

Timer

Reset Controller

Reset

Source

Detect
config
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6.4 REGISTERS
The reset generation on the ÉlanSC520 microcontroller is controlled by the memory-
mapped registers listed in Table 6-1 and the direct-mapped registers listed in Table 6-2.

6.5 OPERATION
There are several different types of reset supported on the ÉlanSC520 microcontroller:

■ System reset

■ System reset with SDRAM retention, called programmable reset

■ Soft CPU reset

■ GP bus reset

■ PCI reset

■ RTC reset

System reset is the primary reference reset on the ÉlanSC520 microcontroller. It is 
described in “System Reset” on page 6-4.

Table 6-3 shows the ÉlanSC520 microcontroller reset sources and the functions affected.

Table 6-1 Reset Generation Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function 

Host Bridge Control HBCTL 60h PCI reset (RST)

Watchdog Timer Control WDTMRCTL CB0h Watchdog timer enable, WDT reset enable, 
interrupt flag, duration of the WDT time-out 
interval

System Board Information SYSINFO D70h System configuration data latched on RSTLD7–
RSTLD0 pins at assertion of PWRGOOD

Reset Configuration RESCFG D72h Control bits for system reset, GP bus reset 
(GPRESET), programmable SDRAM retention 
reset (PRGRESET pin enable), and AMDebug 
mode enable

Reset Status RESSTA D74h Reset source status: SCP reset, AMDebug hard 
reset detect, AMDebug system reset, watchdog 
timer time-out, CPU shutdown (soft reset), 
PRGRESET pin, and PWRGOOD pin

Table 6-2 Reset Generation Registers—Direct-Mapped

Register Mnemonic I/O Address Function 

SCP Data Port SCPDATA 60h System Control Processor (SCP) data write, a20 
gate command emulation

SCP Command Port SCPCMD 64h SCP command write, a20 gate command 
emulation, CPU reset command emulation

System Control Port A SYSCTLA 92h Soft CPU reset generation, alternate a20 control
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6.5.1 System Reset
System reset on the ÉlanSC520 microcontroller can be initiated by any of the following 
reset events:

■ PWRGOOD pin assertion

■ Software writes to the SYS_RST bit in the Reset Configuration (RESCFG) register 
(MMCR offset D72h) 

■ AMDebug system reset event

■ Watchdog timer time-out event that is enabled to generate a system reset 

On system reset, the following sequence of events occurs.

1. A system reset event is asserted.

2. Internal CPU, ÉlanSC520 microcontroller internal registers, system GP bus, and PCI 
bus resets are asserted.

3. The system reset event is deasserted. If PWRGOOD was the source of the reset, 
configuration and system board data are latched on the CFG3–CFG0 and RSTLD7–
RSTLD0 pins, respectively.

4. An RTC reset is generated if the RTC voltage monitor has detected a low RTC battery 
condition and the system reset source was PWRGOOD.

5. Internal PLL start-up time is allowed to pass.

6. Internal CPU, system GP bus, and PCI bus resets are deasserted.

The duration of the system reset is on the order of 10 ms, the start-up time of the internal 
PLLs. The GPRESET and RST pins are asserted for the 10-ms interval. 

Table 6-3 Élan™SC520 Microcontroller Reset Sources

Source
CPU 

(Hard/Soft)
GPRESET 

Pin
RST Pin 

(PCI)
Internal 

Registers Notes

PWRGOOD pin Hard ✔ ✔ ✔

PRGRESET pin Hard ✔ ✔ ✔ 1,2

Notes:
1. The PRG_RST_ENB bit must be set to enable the reset function on this pin.
2. If the PRG_RST_ENB bit is set, the SDRAM controller configuration is maintained to support system reset in which 

SDRAM contents are also maintained.

SYS_RST bit, RESCFG register Hard ✔ ✔ ✔ 2

Watchdog timer reset event Hard ✔ ✔ ✔ 2

AMDebug system reset Hard ✔ ✔ ✔ 2

CPU_RST bit, SYSCTLA register (Port 0092h) Soft 3

3. Any write of a 1 to the CPU_RST bit will cause a soft reset, regardless if the bit was previously a 1 or 0.

SCP soft reset, SCPCMD register (Port 0064h) Soft

CPU shutdown (typically caused by a triple fault) Soft

GP_RST bit, RESCFG register ✔

PCI_RST bit, HBCTL register ✔
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In response to the hard CPU reset, all internal Am5x86 CPU registers return to their reset 
state, and the contents of the CPU cache are discarded. For further information on hard 
CPU reset, see the Am486® DX/DX2 Microprocessor Hardware Reference Manual, 1994 
(order #17965).

Note: The CFG3–CFG0 and RSTLD7–RSTLD0 pins are latched only as a result of the 
assertion of the PWRGOOD signal, and not as a result of the SYS_RST bit, AMDebug 
system reset event, or watchdog timer event. 

If the ICE_ON_RST bit in the Reset Configuration (RESCFG) register is set to a 1, the 
AMDebug utility enters into AMDebug mode after system reset.

The states of the ÉlanSC520 microcontroller cores after system reset are shown in 
Table 6-4. See the “Initialization” section at the end of each chapter for more detailed 
information.

Table 6-4 States of Cores after System Reset

Core State Comment

Am5x86 CPU Enabled CPU clock frequency is set to 100 MHz. Internal 
registers and internal cache are reset. The FPU 
must be initialized with an FNINIT instruction.

System arbiter Enabled Default is nonconcurrent arbitration mode. All bus 
masters are disabled except the CPU as PCI and 
internal Am5x86 CPU bus master.

PCI host bridge master controller Enabled

PCI host bridge target controller Disabled

SDRAM controller Disabled No banks are enabled.

Write buffer and read buffer Disabled

ROM controller Enabled BOOTCS (only) is enabled at system reset

GP bus controller Enabled
External GP bus is disabled until PAR registers are 
initialized.

GP-DMA controller Enabled All channels are masked off.

Programmable interrupt controller 
(PIC)

Enabled
Interrupts are masked at the CPU. NMIs are 
disabled.

Software timer Enabled

General-purpose (GP) timers Disabled
All GP timer registers are reset to 0. Each timer must 
be programmed before it can be used.

Programmable interval timer (PIT) Disabled
Each PIT channel must be programmed before it 
can be used.

Watchdog timer (WDT) Disabled

Real-time clock (RTC) Enabled

UARTs Disabled

Synchronous serial interface (SSI) Disabled Inactive until an SSI command is written.

Programmable input/output (PIO) 
pins

Enabled
All PIO pins default to inputs and to their PIO 
function.

JTAG test access port (TAP) Enabled
JTAG_TRST should be asserted active Low to 
ensure normal operation.

AMDebug mode Enabled If the ICE_ON_RST bit in the Reset Configuration 
(RESCFG) register is set. 
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System reset is a subset of the power-on reset sequence described in “Initialization” on 
page 6-9.The only real difference between the two is that, for power-on reset, power is 
being applied to the part in addition to the reset, and the stabilization of power supplies to 
deassertion of the reset is specified. The two terms are otherwise synonymous in this 
document.

6.5.2 System Reset with SDRAM Retention
The ÉlanSC520 microcontroller is capable of performing a system reset in which the 
contents of the SDRAM system are maintained. 

This function, called programmable reset, is enabled via the PRG_RST_ENB bit in the 
Reset Configuration (RESCFG) register (MMCR offset D72h). If this bit is set, assertion of 
the PRGRESET pin, SYS_RST bit, watchdog timer system reset event, or AMDebug system 
reset event while PWRGOOD is asserted will result in a system reset in which the SDRAM 
configuration (SDRAM type, number of banks, refresh rate, etc.) is maintained so that the 
contents of SDRAM are preserved. 

Although the CFG3–CFG0 and RSTLD7–RSTLD0 pins are not latched, all other aspects 
of this type of reset are the same as a system reset.

The system reset request is arbitrated with the internal SDRAM controller to ensure that 
all SDRAM banks are idle prior to assertion of the reset. In addition, this arbitration allows 
the SDRAM controller to complete the current SDRAM cycle. Figure 6-2 shows the 
sequence of events following a PRGRESET assertion with the PRG_RST_ENB bit enabled.

Note: If a system reset request is not acknowledged by the SDRAM controller when the 
PRG_RST_ENB configuration bit is set, a normal system reset occurs. In this event, the 
PRG_RST_ENB bit is cleared. Clearing of the PRG_RST_ENB bit indicates that the 
contents of the SDRAM were not maintained.

Figure 6-2 PRGRESET Timing

Notes:
1. Reset assertion from PRGRESET assertion is approximately 32 CPU clocks. All SDRAM banks are idle.

2. The PRG_RST_ENB bit in the Reset Configuration (RESCFG) register must be enabled.

3. The signal “cpu reset” is an internal signal, shown here for reference only. It is not available as an external pin.

1

PRGRESET

cpu reset

GPRESET

RST
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6.5.3 Soft CPU Reset
A soft CPU reset is differentiated from a hard CPU reset in that soft CPU reset does not 
affect the CPU’s cache state. See “Initialization” on page 7-5 for more information about 
the differences between hard and soft CPU reset.

A soft CPU reset does not reset the ÉlanSC520 microcontroller’s internal register bits, with 
the exception of the NMI_ENB bit in the Interrupt Control (PICICR) register (MMCR offset 
D00h). A soft CPU reset does not assert the GPRESET or RST pins. For a soft CPU reset, 
the CPU’s internal sreset signal is asserted for 16 clock cycles.

There are four ways a soft CPU reset is generated on the ÉlanSC520 microcontroller:

■ A software write to the CPU_RST bit of System Control Port A (SYSCTLA) register (Port 
0092h)—Writing a 1 to this bit generates a soft reset event. Following this reset, the 
CPU_RST bit remains set until software clears it. This feature can be used by software 
as an indication that the System Control Port A (SYSCTLA) register was used to generate 
the reset. Writing a 1 to the CPU_RST bit always generates a soft reset, even if the bit 
was not cleared after a previous reset.

■ SCP Reset CPU command—A soft reset event is asserted when the CPU issues the 
standard command write of FEh to the SCP Command Port (SCPCMD) register (Port 
0064h).

■ Triple bus fault—A soft reset event is asserted in response to a CPU shutdown cycle 
due to a triple bus fault. 

■ Entering AMDebug mode—A soft reset event is also asserted in response to a soft reset 
command from the AMDebug utility. If the ICE_ON_RST bit in the Reset Configuration 
(RESCFG) register (MMCR offset D72h) is set to a 1, the AMDebug utility enters into 
AMDebug mode after a soft CPU reset.

6.5.4 GP Bus Reset
GP bus reset can be generated via a system reset or a software write. Writing a 1 to the 
GP_RST bit in the Reset Configuration (RESCFG) register (MMCR offset D72h) asserts 
the GPRESET pin. Clearing this bit to 0 deasserts the GPRESET pin.

6.5.5 PCI Reset
The PCI reset signal, RST, is generated via a system reset or software writes. Writing a 1 
to the PCI_RST bit in the Host Bridge Control (HBCTL) register (MMCR offset 60h) asserts 
the PCI RST pin. Clearing this bit to 0 deasserts the PCI RST pin.

6.5.6 RTC Reset
RTC reset occurs anytime the BBATSEN input is sampled below 2.0 V during a power-on 
reset or during a system reset where the reset source was PWRGOOD. RTC Status D 
(RTCSTAD) register (RTC index 0Dh) includes a status bit that indicates the validity of the 
contents of the RAM, time registers, and the calendar. The RTC_VRT bit is set based on 
the assertion of the internal RTC reset. 

Note that this RTC reset may or may not occur when a system reset occurs, depending on 
the reset source and the state of BBATSEN. BBATSEN also provides a reset signal for the 
RTC when an RTC backup battery is applied for the first time.
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6.5.7 Determining Reset Sources
Status bits are available in the Reset Status (RESSTA) register (MMCR offset D74h) for 
software to determine the source of reset. These bits are set when the associated event is 
detected and cleared by writing a 1. They include:

■ ICE_HRST_DET—Hard CPU reset from AMDebug logic

■ ICE_SRST_DET—AMDebug system reset

■ WDT_RST_DET—Watchdog timer time-out system reset 

■ SD_RST_DET—Soft CPU reset resulting from a detection of the CPU shutdown cycle 
due to triple fault 

■ PRGRST_DET—System reset from PRGRESET pin that resets the ÉlanSC520 
microcontroller, allows SDRAM refresh, and maintains SDRAM configuration

■ PWRGOOD_DET—System reset from PWRGOOD pin

6.5.8 CPU A20 Gate Support
The ÉlanSC520 microcontroller does not support an a20 gate input pin. In a typical PC/AT 
system, this input was driven by the external System Control Processor (SCP) in response 
to a command request that is issued by the main CPU. In the ÉlanSC520 microcontroller, 
this a20 gate command sequence is detected by internal logic, and the appropriate action 
is taken.The ÉlanSC520 microcontroller provides an additional a20 gate source in the 
System Control Port A (SYSCTLA) register (Port 0092h). These two a20 gate sources are 
logically ORed such that both sources must be deasserted to cause the CPU’s a20 output 
to be gated Low.

The SCP a20 gate command is detected when the CPU issues the standard command 
write of D1h to the SCP Command Port (SCPCMD) register (Port 0064h), followed by a 
data write to the SCP Data Port (SCPDATA) register (Port 0060h). Bit 1 of the write to the 
SCP Data Port (SCPDATA) register drives the a20 control logic. A value of 1 allows the 
CPU’s a20 signal to propagate to the core logic, while a value of 0 allows the CPU’s a20 
signal to be driven Low, as long as no other a20 gate control sources are forcing the CPU’s 
a20 signal to propagate.

In addition to the SCP a20 gate command emulation, the A20G_CTL bit in the System 
Control Port A (SYSCTLA) register (Port 0092h) can also be used for alternate a20 signal 
control. Setting the A20G_CTL bit allows the CPU’s a20 signal to be propagated to the 
system logic. Clearing this bit (default state) allows the a20 signal to be driven Low as long 
as no other a20 gate control sources are forcing the a20 signal to propagate. 

6.5.9 Clocking Considerations
As a result of an ÉlanSC520 microcontroller system reset event, the internal PLLs are re-
started. The PLL start-up time from the deassertion of the system reset source is 10 ms.

6.5.10 Software Considerations
The CPU cache, SDRAM controller write buffer, and PCI transaction queues are discarded 
as a result of a system reset.
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6.5.11 Latency
PRGRESET events must be arbitrated in the SDRAM controller to ensure that the SDRAM 
devices are in a state in which data is not lost when the PRGRESET event is propagated. 
This arbitration causes the PRGRESET event to be delayed by no more than 32 CPU clock 
periods prior to assertion of the internal and external reset signals.

6.6 INITIALIZATION
At power-on reset for the ÉlanSC520 microcontroller, the following sequence of events 
occurs. 

1. The PWRGOOD pin is deasserted.

2. The power planes come up.

3. Internal CPU, ÉlanSC520 microcontroller internal registers, system GP bus, and PCI 
bus resets are asserted.

4. PWRGOOD is asserted. Configuration and system board data are latched on the CFG3–
CFG0 and RSTLD7–RSTLD0 pins, respectively.

5. RTC reset event is generated if the RTC voltage monitor has detected a low RTC battery 
condition.

6. Internal PLLs are enabled and clocks become stable (internal PLL startup time is allowed 
to pass).

7. Internal CPU, system GP bus, and PCI bus resets are deasserted.

Figure 6-3 shows this sequence. For power-on reset, the PWRGOOD pin must be held 
deasserted for the duration of time it takes for the stabilization of the system board power 
supply output voltages and the start-up time of the internal 32-kHz and 33-MHz oscillators. 
This time is typically on the order of 1 second.

Figure 6-3 Power-On Reset Sequence of Events

Notes:
1. PWRGOOD valid from all VCC valid (except VCC_RTC) is typically 1 second.

2. PLL start-up time from PWRGOOD valid is less than 10 ms.

3. CPU reset and external resets deasserted from PWRGOOD are 10 ms.

4. Internal signals are shown for reference only; they are not available on external pins.

Valid

Valid

1

3

2

ALL VCCs

PWRGOOD

PRGRESET

cpu reset

GPRESET

RST

CFG3–CFG0

RSTLD7–RSTLD0

Internal Clocks
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CHAPTER
7 A
m5X86® CPU
7.1 OVERVIEW
The ÉlanSC520 microcontroller has an integrated Am5x86 CPU core. The features of the 
Am5x86 CPU include:

■ Operation at 100 MHz or 133 MHz, with a 33-MHz bus interface

■ 16-Kbyte unified cache configurable for either write-back or write-through cache mode

■ Integrated floating point unit (ANSI/IEEE 754 compliant)

■ On-chip debug support. See Chapter 26, “AMDebug™ Technology”, for more 
information.

7.2 BLOCK DIAGRAM
Figure 7-1 shows a block diagram of the Am5x86 CPU.

7.3 REGISTERS
The Am5x86 CPU is controlled by the registers listed in Table 7-1 and Table 7-2.

Table 7-1 Am5x86® CPU Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

ÉlanSC520 Microcontroller 
Revision ID

REVID 00h Product identification, major and minor stepping 
level 

Am5x86 CPU Control CPUCTL 02h CPU cache mode (write-through or write-back), 
CPU clock speed control

Floating Point Error Interrupt 
Mapping

FERRMAP D46h Floating point error interrupt mapping

Reset Status RESSTA D74h Reset source status: CPU shutdown (soft reset)

Table 7-2 Am5x86® CPU Registers—Direct-Mapped

Register Mnemonic I/O Address Function 

SCP Data Port SCPDATA 60h System Control Processor (SCP) data write, a20 
gate command emulation

SCP Command Port SCPCMD 64h SCP command write, a20 gate command 
emulation, CPU reset command emulation

System Control Port A SYSCTLA 92h CPU soft reset generation, alternate a20 control

Floating Point Error Interrupt 
Clear

FPUERRCLR F0h Clear FPU error interrupt
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Figure 7-1 Am5x86® CPU Block Diagram
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Am5x86® CPU
7.4 OPERATION
The ÉlanSC520 microcontroller is a highly integrated system in silicon, and the Am5x86 
CPU is central to this integration. The Am5x86 CPU is a high-performance CPU that is fully 
software-compatible with the Am486 microprocessor family. Most of the details of the 
communication between the Am5x86 CPU core and the peripherals are transparent to the 
user and are not documented here.

A full description of the operation of the Am5x86 CPU is well beyond the scope of this 
chapter. The following AMD publications are a good starting point for learning about the 
Am5x86 CPU as it has evolved over time. The oldest publication is listed first. The later 
publications enhance the original functional descriptions.

■ Am486® DX/DX2 Microprocessor Hardware Reference Manual, 1994 (order #17965)

■ Enhanced Am486® Microprocessor Family Data Sheet, 1995, (order #19225)

■ Am5x86® Microprocessor Family Data Sheet, 1996 (order #19751)

The Am5x86 CPU core in the ÉlanSC520 microcontroller is derived from the Enhanced 
Am486 family (as described in order #19225). The Am5x86 CPU enhances system 
performance by raising the maximum CPU operating frequency to 133 MHz, while 
maintaining complete compatibility with the standard Am486 CPU architecture. The 
following differences may be relevant to the user:

■ There is no provision for an L2 cache. The signals that would be needed are not brought 
out of the ÉlanSC520 microcontroller.

■ System management mode (SMM) is not supported on the ÉlanSC520 microcontroller.

■ From an Am5x86 CPU-core perspective only, the cache defaults to the write-back cache 
mode and reports this state in response to the CPUID instruction. The cache mode can 
be reconfigured to write-through mode via the Am5x86 CPU Control (CPUCTL) register 
(MMCR offset 02h).

Programs sometimes require the ability to determine the hardware on which they are 
running. The ÉlanSC520 microcontroller can be identified via the CPUID instruction and 
the ÉlanSC520 Microcontroller Revision ID (REVID) register (MMCR offset 00h). This is 
discussed in “Identifying the CPU Core” on page 3-7.

7.4.1 Floating Point Unit (FPU)
The Am5x86 CPU provides an integrated floating point unit (FPU) that operates in parallel 
with the Arithmetic Logic Unit (ALU). The FPU is useful in applications that involve more 
intensive computational complexity. The major features of the integrated FPU are:

■ Compliant with ANSI/IEEE 754 standard

■ Provides arithmetic instructions to handle various numeric data types and formats

■ Provides built-in transcendental functions for functions like sine, cosine, tangent, 
logarithms, etc.

■ Software-compatible with the 80387 (and previous) math co-processors

The FPU must be initialized with an FNINIT instruction after any system reset.
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7.4.2 Cache Memory Management
The ÉlanSC520 microcontroller contains a 16-Kbyte unified code and data cache. Cache 
operation defaults to write-back cache mode. However, this mode can be disabled by setting 
the Cache Write Mode (CACHE_WR_MODE) bit in the Am5x86 CPU Control register 
(MMCR offset 02h). Note that the cache should be flushed when switching this bit from 
write-back to write-through cache mode.

The cache that is internal to the CPU is historically referred to as the level 1 (L1) cache. 
Cache that is located external to the CPU is called level 2 (L2). The ÉlanSC520 
microcontroller does not have the control mechanism or the pins to support an L2 cache. 
The L1 cache can be configured through the standard cache configuration bits in the CPU’s 
machine status (CR0) register. The Cache Disable (CD) and Not Write-Through (NW) bits 
are decoded as shown in Table 7-3. 

If paging is enabled in the CPU, then cacheability as well as cache write policy can be 
controlled on a per-page basis via control bits in the page tables. Note that the 
CACHE_WR_MODE bit in the Am5x86 CPU Control (CPUCTL) register must be set to 
write-back cache mode for write-back behavior to occur.

Caching is controlled by the memory management subsystem on a per-access basis. For 
example, GP bus and PCI bus accesses are not cached. The programmer has control over 
which regions of memory (SDRAM and ROM) are cacheable and which are not. This is 
described in detail in Chapter 4, “System Address Mapping”.

7.4.3 Clocking Considerations
The Am5x86 CPU bus frequency in the ÉlanSC520 microcontroller is always 33 MHz. 
However, the Am5x86 CPU core frequency is programmable to be 100 MHz or 133 MHz. 
The clock speed of the Am5x86 CPU core defaults to 100 MHz, but can be changed 
dynamically via the Am5x86 CPU Control (CPUCTL) register (MMCR offset 02h). Systems 
that maintain relatively high cache hit rates benefit more from the higher core speeds, 
because they are not dependent on external bus activity for accessing ROM or SDRAM.

The clock speed change is transparent to the system, with the exception that there is 
approximately 1-ms delay to allow the Am5x86 CPU’s clock PLLs to stabilize. Following the 
clock speed configuration, the ÉlanSC520 microcontroller’s clock control logic automatically 
forces the Am5x86 CPU’s cache to be flushed, and waits for the completion of the flush 
before changing the PLLs’ frequency select (caching is also disabled for any subsequent 
memory read cycles during the flush operation). Since the CPU PLLs require approximately 
1 ms to stabilize following the speed change, all Am5x86 CPU cache snooping is suspended. 
However, since the cache was previously flushed, there are no coherency issues, PCI bus 

Table 7-3 Cache Configuration Options

CD NW Operating Mode

1 1 Cache line fills, cache write-throughs, and cache invalidations are disabled. To 
completely disable the cache, set both CD and NW to 1 and flush the cache by 
executing a WBINVD or INVD instruction. 

1 0 Cache line fills are disabled. Cache write-throughs and cache invalidations are 
enabled. This configuration allows software to disable the cache for a short time, 
then re-enable it without flushing the original contents.

0 1 Invalid setting. A general-protection exception with an error code of 0 is generated.

0 0 Cache line fills, cache write-throughs, and cache invalidations are enabled. This 
is the normal operating configuration.
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master cycles, or GP-DMA controller operations during this period. Interrupts generated to 
the Am5x86 CPU will be honored only after the Am5x86 CPU is operating again.

Once the CPU PLLs have stabilized and the new core frequency has been established, 
caching is once again enabled in the same mode as it was prior to the clock speed change. 
There are no special requirements by external system hardware or software to support 
clock speed switching. 

Note: Not all ÉlanSC520 microcontroller devices support all CPU clock rates. The 
maximum supported clock rate for a device is indicated by the part number printed on the 
package. The clocking circuitry can be programmed to run the device at higher than rated 
speeds. However, if an ÉlanSC520 microcontroller is programmed to run at a higher clock 
speed than that for which it is rated, then erroneous operation will result and physical 
damage to the device may occur.

7.4.4 Interrupts
The Am5x86 CPU receives a maskable interrupt from the programmable interrupt controller 
(PIC). The Am5x86 CPU also supports a non-maskable interrupt (NMI) input that can be 
disabled. See Chapter 15, “Programmable Interrupt Controller”, for details of both maskable 
and non-maskable interrupt sources and routing.

7.4.5 Latency 
The clock speed change is transparent to the system with the exception that there is 
approximately a 1-ms delay to allow the Am5x86 CPU’s clock PLLs to stabilize. Interrupts 
generated to the Am5x86 CPU will be honored only after the Am5x86 CPU is operating 
again.

7.5 INITIALIZATION
The Am5x86 CPU included on the ÉlanSC520 microcontroller supports two different types 
of CPU reset: hard CPU reset and soft CPU reset. Chapter 6, “Reset Generation” provides 
details of the various sources of hard and soft reset to the Am5x86 CPU. For additional 
information on Am5x86 CPU initialization, see Chapter 3, “System Initialization” and the 
references provided in “Operation” on page 7-3.

7.5.1 Hard CPU Reset
The Am5x86 CPU is reset during a hard CPU reset, and the Am5x86 CPU core clock 
frequency defaults to 100 MHz. Hard CPU reset is used to initialize the Am5x86 CPU due 
to deassertion of the PWRGOOD signal, as well as other reset sources (see Table 6-3 on 
page 6-4). Hard CPU reset resets Am5x86 CPU registers and the internal cache.

Hard CPU reset forces the microprocessor to terminate all execution and local bus activity. 
All entries into the cache are invalidated, the cache is disabled, and the FPU is reset. The 
Am5x86 CPU begins executing from the boot vector at FFFFFFF0h after system reset is 
deasserted. The core clock frequency is 100 MHz.

7.5.2 Soft CPU Reset
Soft CPU reset does not affect the CPU’s write buffers, cache, or cache mode (write-back 
or write-through). The Am5x86 CPU core clock frequency remains the same, and cache 
snooping continues unaffected during soft reset. 

Soft reset provides a method to switch from protected to real operating mode. After a soft 
CPU reset, the Am5x86 CPU begins initialization at location FFFFFFF0h. The processor 
state is the same as it is after a hard reset, except that the internal cache, the CD and NW 
bits in the Am5x86 CPU’s machine status (CR0) register, and the Am5x86 CPU’s write 
buffers retain the values they had prior to the soft reset.
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A soft reset event clears the NMI_ENB bit in the Interrupt Control (PICICR) register, disabling 
NMIs. This allows software to initialize the stack pointer before setting the NMI_ENB bit 
again after a soft reset. 
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CHAPTER
8 S
YSTEM ARBITRATION
8.1 OVERVIEW
The ÉlanSC520 microcontroller includes two arbiters. A CPU bus arbiter arbitrates between 
the Am5x86 CPU, the PCI host bridge, and the GP-DMA controller on the internal CPU 
bus. A PCI bus arbiter arbitrates between the Am5x86 CPU and up to five external PCI 
masters on the external PCI bus. The system arbiter complies with PCI Local Bus 
Specification, Revision 2.2, and complies with PCI bus transaction ordering rules.

Features of the arbitration subsystem include:

■ Supports up to five external PCI bus masters

■ Supports concurrent and nonconcurrent operating modes:

– Concurrent arbitration mode allows PCI bus arbitration to occur independently of CPU 
bus arbitration, supporting peer-to-peer operation on PCI bus simultaneously with 
CPU access of memory and GP bus.

– Nonconcurrent arbitration mode forces all masters to automatically acquire ownership 
of both PCI and CPU buses, regardless of destination of the cycles.

■ PCI bus arbiter supports two queues with rotating priority for bus mastership:

– High-priority queue supports two bus masters maximum, any masters can be 
programmed to the high-priority queue.

– Low-priority queue contains all masters not assigned to the high-priority queue.

■ CPU priority is programmable to automatically achieve bus ownership following every 
one, two, or three PCI-bus-master tenures.

■ Option for PCI bus parking on CPU or on last master in concurrent arbitration mode

■ PCI bus master request/grant pairs can be individually masked in a separate control 
register.

■ CPU bus arbiter provides an automatic Am5x86 CPU bypass that allows continued PCI 
bus and GP-DMA access of SDRAM during Am5x86 CPU clock changes and PLL 
stabilization periods.

8.2 BLOCK DIAGRAM
Figure 8-1 shows a block diagram of the system arbiter.
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Figure 8-1 System Arbitration Block Diagram

8.3 REGISTERS
The arbitration subsystem is controlled by the memory-mapped registers listed in Table 8-1.

Table 8-1 System Arbitration Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function 

System Arbiter Control SYSARBCTL 70h PCI bus parking select, concurrent arbitration 
mode enable, PCI bus grant time-out interrupt 
enable

PCI Bus Arbiter Status PCIARBSTA 71h PCI bus arbiter grant time-out identification and 
status

System Arbiter Master 
Enable

SYSARBMENB 72h Enables for PCI bus REQ4–REQ0 signals

Arbiter Priority Control ARBPRICTL 74h PCI bus arbiter rotating priority queue control
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8.4 OPERATION
The ÉlanSC520 microcontroller’s arbitration subsystem consists of two separate bus 
arbitration units for the CPU bus and the PCI bus.

■ The CPU bus arbiter arbitrates between the Am5x86 CPU, the PCI host bridge, and the 
GP-DMA controller on the internal CPU bus.

■ The PCI bus arbiter arbitrates between the Am5x86 CPU and up to five external PCI 
masters on the external PCI bus.

8.4.1 Operating Modes
The system arbiter can operate in two modes for maximum flexibility: 

■ Nonconcurrent arbitration mode

■ Concurrent arbitration mode

The two bus arbiters operate completely independently when the system is configured for 
concurrent arbitration mode, but they are interlocked when the system is configured for 
nonconcurrent arbitration mode. 

Maximum performance is typically achieved in concurrent arbitration mode, because this 
allows simultaneous PCI bus and CPU bus operation. However, some systems may benefit 
from nonconcurrent arbitration mode, especially if the system experiences data coherency 
problems due to older, non-compliant bus bridges.

The arbitration mode is specified with the CNCR_MODE_ENB bit in the System Arbiter 
Control (SYSARBCTL) register (MMCR offset 70h). System arbitration defaults to 
nonconcurrent arbitration mode after reset.

8.4.1.1 Nonconcurrent Arbitration Mode

Nonconcurrent arbitration mode forces all masters to automatically acquire ownership of 
both PCI and CPU buses, regardless of destination of the cycles. In this mode, no 
concurrency between the CPU bus and the PCI bus is allowed. External PCI masters are 
only granted the PCI bus when the host bridge has been granted the CPU bus, even for 
peer-to-peer transfers.

When an external PCI bus master requests the PCI bus, the following occurs:

1. The PCI bus arbiter samples an external PCI request asserted and asserts the host 
bridge request to the CPU bus arbiter. The PCI bus arbiter is parked on the CPU by 
default and should not be programmed to park on the last master in this mode.

2. The CPU bus arbiter samples the host bridge request asserted and grants the CPU bus 
to the host bridge at the completion of the next Am5x86 CPU cycle. The CPU bus is 
owned by the Am5x86 CPU by default, so a request to the CPU must be asserted to 
gain ownership of this bus.

PCI Host Bridge Interrupt 
Mapping

PCIHOSTMAP D14h System arbiter and PCI host bridge interrupt 
mapping to any of 22 available interrupt 
channels or NMI, PCI NMI enable control

Table 8-1 System Arbitration Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR 
Offset 
Address Function 
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3. The PCI bus arbiter sees that the host bridge has been granted the CPU bus and grants 
the PCI bus to the external PCI master requesting the PCI bus. Note that now the external 
PCI master owns both the PCI bus and the CPU bus.

In nonconcurrent arbitration mode, the PCI bus and CPU bus essentially become one bus 
where only one master is allowed on the bus at any time. Note that write-posting from the 
CPU to the PCI bus should be disabled while the arbiter is configured for nonconcurrent 
arbitration mode.

Note that there is an exception to the normal rules of non-concurrency in this mode, as 
listed in the following steps:

1. The CPU acquires both buses and performs a memory or I/O read/write of an external 
PCI target. The target issues a retry to the CPU. The PCI bus is idle due to the retry, but 
the CPU still remains active (in a wait state) on the CPU bus.

2. An external PCI bus master now asserts a request to perform a memory write to SDRAM. 
In normal nonconcurrent arbitration mode, this request would not be granted, because 
the PCI bus arbiter would be waiting to acquire ownership of the CPU bus (but the CPU 
is in a wait state waiting to retry the PCI target read). PCI bus transaction ordering 
specifies that a PCI agent cannot base the acceptance of a memory write as a target 
on the completion of a read as a master. Therefore the ÉlanSC520 microcontroller’s 
host bridge must force the CPU off the bus and allow the external master write to 
complete.

3. After asserting boff to the CPU, the arbiter grants the PCI bus to the external master, 
and the master completes its write. When the PCI bus master completes the write, the 
boff signal is deasserted and the CPU is back on the CPU bus. The original CPU-to-
PCI transaction is now retried by the ÉlanSC520 microcontroller’s host bridge master 
controller.

8.4.1.2 Concurrent Arbitration Mode

Concurrent arbitration mode allows PCI bus arbitration to occur independently of CPU bus 
arbitration, supporting peer-to-peer operation on PCI bus simultaneous with CPU access 
of memory and the GP bus. In this mode, the CPU bus arbiter and PCI bus arbiter operate 
independently. Default bus ownership for each of the two arbiters is the same as 
nonconcurrent arbitration mode. External PCI masters are granted the PCI bus without the 
host bridge being granted the CPU bus. This allows concurrent CPU bus and PCI bus 
operation. 

A few examples of concurrency are:

■ The Am5x86 CPU accessing SDRAM concurrently with an external PCI bus master 
writing data to the host bridge’s target FIFOs

■ The Am5x86 CPU or GP-DMA controller accessing SDRAM concurrently with an 
external PCI bus master accessing an external PCI bus target (peer-to-peer transfer)

■ The ÉlanSC520 microcontroller’s host bridge target controller accessing SDRAM 
concurrently with the master controller writing posted data to an external PCI target
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8.4.2 CPU Bus Arbiter
The CPU bus arbiter controls access to the internal CPU bus. This internal bus allows for:

■ Am5x86 CPU access of SDRAM, GP bus, PCI, or ROM

■ GP-DMA access of SDRAM

■ PCI host bridge access of SDRAM for external PCI master cycles

No concurrent operation is allowed on the CPU bus (e.g., Am5x86 CPU accessing the GP 
bus while the PCI host bridge is accessing SDRAM). At any time, only one master is granted 
access to the CPU bus.

8.4.2.1 CPU Arbitration Protocol

The CPU bus arbiter implements a rotating priority algorithm that guarantees each bus 
master a place in the arbitration rotation. A master becomes lowest priority in the queue 
when it receives a bus grant. A master is skipped in the rotation if its request is not asserted, 
but a lower priority master request is asserted. In this case, the skipped master becomes 
lowest priority as if it had been serviced (see Figure 8-2). 

Figure 8-2 Skipped Master Example

In the example shown in Figure 8-2, assume that M0 has just finished a transaction. In this 
case, the next master in the rotating priority queue would be M1. M1, however, is not 
requesting the bus, and M2 (a lower priority master at this time) is requesting the bus. In 
this case, M1 is skipped and the bus is granted to M2. M1 is the lowest priority master in 
the rotation after being skipped, as if it had been granted the bus. After M2 finishes its 
transaction, M0 becomes the highest priority master. 

The rotating queue for the CPU bus can be seen in Figure 8-3. The Am5x86 CPU is the 
default owner when no master is requesting the CPU bus and following reset. The host 
bridge becomes a bus requestor when it has posted write data from a PCI bus master, or 
it needs to perform a SDRAM read for a PCI bus master.

M0

M1M2

REQ=1REQ=0

Rotating Priority Queue

M0 is finishing its transaction; therefore its REQ and 
GNT are being deasserted

M1 not requesting the bus at the end of the M0 
transaction; thus it is skipped, and M2 gets GNT 
asserted instead

Notes:
Priority: M0, M2, M0, M1, M2, M0, M1, M2, ...
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Figure 8-3 CPU Bus Rotating Priority Queue

8.4.2.2 CPU Cache Snooping

The Am5x86 CPU includes a write-back cache that updates only the internal cache on 
memory writes from the CPU (if configured for write-back mode). When only the internal 
cache memory is updated for a memory write, the external SDRAM contains invalid data. 
Thus, snooping is required to maintain coherency when other bus masters are accessing 
SDRAM. Any time another master (GP-DMA or PCI host bridge) is accessing a SDRAM 
location that contains stale data (valid data is in Am5x86 CPU cache), the valid cache data 
must be written back to SDRAM before the other master is allowed access to the SDRAM. 
Therefore, all non-Am5x86 CPU accesses to SDRAM (both reads and writes) are snooped 
by the Am5x86 CPU. 

The Am5x86 CPU cache can be optionally configured to operate in write-through cache 
mode by setting the CACHE_WR_MODE bit in the Am5x86 CPU Control (CPUCTL) register 
(MMCR offset 02h). In this mode, both the internal cache and external memory are updated 
on memory writes. Because the external memory is updated, there are no cache data 
concurrency issues due to Am5x86 CPU memory writes. Other master write cycles are still 
snooped, however, to keep the Am5x86 CPU’s cache coherent with external memory. In 
this case, the external memory is updated, and the cache contains invalid data. The snoop 
invalidates this internal cache location to maintain coherency. There is no overhead involved 
with snooping when the cache is configured for write-through cache mode. The snoop 
happens during the cycle (no preemption, write-back, or additional wait-states are inserted).

The ÉlanSC520 microcontroller does not support dynamic cache-write policy changes.

8.4.2.3 Accessing the PCI Host Bridge Target

The PCI host bridge allows external PCI bus masters to read and write the ÉlanSC520 
microcontroller’s SDRAM. Two 64 doubleword FIFOs (one read, one write) in the 
ÉlanSC520 microcontroller’s host bridge are used to increase PCI bus performance. Once 
granted the bus by the CPU bus arbiter, the PCI host bridge target controller is allowed to 
prefetch up to 64 DWORDs (for a memory-read-multiple command), or write (memory-write 
or memory-write-and-invalidate commands) up to 64 doublewords before the bus is granted 
to another master. During this time, no other master is granted the CPU bus. The Am5x86 
CPU, however, is granted the bus during this time to write back a cache location if necessary.

CPU

GP Bus
DMA

Host 
Bridge 
Target
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8.4.2.4 GP Bus DMA Arbitration

The GP-DMA controller allows internal and external GP bus peripherals to have DMA 
access to SDRAM. There is no preemption mechanism for GP-DMA. Therefore, once a 
DMA transaction begins, no other master is granted the CPU bus until the DMA controller 
deasserts its bus request, which varies according to whether the channel is programmed 
for a single cycle transfer or a block mode transfer. See Chapter 14, “GP Bus DMA 
Controller”, for information on the various DMA modes and transactions. However, the 
Am5x86 CPU is granted the bus during this time to write back a cache location, if necessary.

8.4.2.5 Arbitration During Clock Speed Changes

The Am5x86 CPU’s internal core clock speed can be changed dynamically during operation, 
for systems that require thermal management. While the clock is changing, there is a period 
where the Am5x86 CPU cannot generate any bus cycles; therefore, cache snooping cannot 
be performed. 

To allow bus masters continued access of SDRAM during the long PLL recovery times, the 
CPU bus arbiter masks the Am5x86 CPU bus requests and allows only the PCI host bridge 
and GP-DMA controller access to the CPU bus. If no master is requesting the CPU bus, 
the CPU bus arbiter is the default owner (no master is granted the bus). 

Note that during normal operation when the Am5x86 CPU core clock is not changing, the 
Am5x86 CPU is the default owner of the CPU bus.

8.4.3 PCI Bus Arbiter
The PCI Local Bus Specification, Revision 2.2, defines a central resource known as the 
arbiter. This resource controls PCI master access to the PCI bus. The arbitration approach 
is access-based, which means a PCI master is only granted the bus when it needs 
(requests) the bus (except in the case of bus parking, discussed in “Bus Parking” on 
page 8-10). 

A simple request/grant handshake is used where each PCI master has a unique request 
(REQ) and grant (GNT) signal. PCI bus arbitration is hidden, which means arbitration for 
the next cycle occurs during the current cycle, so that no cycles are wasted due to arbitration 
(except when the bus is in the idle state and no other requests/grants are active).

The PCI bus is parked on a PCI master when the bus is idle to prevent floating signals on 
the bus. This is done by asserting a PCI master’s GNT signal, even though the PCI master 
is not requesting the bus. In turn, the PCI master turns on its output drivers, which prevents 
the bus from floating. 

The ÉlanSC520 microcontroller includes the PCI bus arbiter central resource. The 
integrated PCI bus arbiter arbitrates between the PCI host bridge (Am5x86 CPU as PCI 
master) and up to five external masters. The req/gnt signal pair for the PCI host bridge on 
the ÉlanSC520 microcontroller is internally connected to the PCI bus arbiter. Five external 
REQ/GNT pin pairs (REQ4–REQ0, GNT4–GNT0) are provided to connect external PCI 
masters to the ÉlanSC520 microcontroller’s PCI bus arbiter. In the following descriptions 
in this chapter, the term PCI bus arbiter refers to the ÉlanSC520 microcontroller’s integrated 
PCI bus arbiter.

Because the Am5x86 CPU does not burst memory-write cycles (except cache write-backs, 
which do not apply here because PCI bus memory is noncacheable in the ÉlanSC520 
microcontroller), the ÉlanSC520 microcontroller will not burst more than two consecutive 
doublewords during a CPU write to the PCI bus. Therefore, the PCI bus master latency 
timer is not provided in the ÉlanSC520 microcontroller.
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8.4.3.1 PCI Bus Arbitration Protocol

The PCI Local Bus Specification, Revision 2.2, states that the central arbiter must implement 
a fairness algorithm, which means that each potential bus master must be granted access 
to the bus independently of other requests. The PCI bus arbiter satisfies this requirement 
by implementing a rotating priority arbitration scheme that guarantees each bus master a 
place in the arbitration rotation (see Figure 8-3 on page 8-6 for information on rotating 
priority arbitration). 

Rotating priority mode alone may not provide adequate arbitration in a system where it is 
known that some PCI bus masters require more bandwidth than others. Therefore, the 
ÉlanSC520 microcontroller’s PCI bus arbiter has two rotating priority queues to 
accommodate this requirement: a high-priority queue and a low-priority queue. 

The masters in the high-priority queue are granted more bandwidth than masters in the 
low-priority queue. The high-priority queue can contain up to two PCI masters, and the low-
priority queue contains all masters that are not in the high-priority queue. The 
HI_PRI_0_SEL and HI_PRI_1_SEL bit fields in the Arbiter Priority Control (ARBPRICTL) 
register (MMCR offset 74h) are used to specify the position of each PCI master in the high-
priority queue.

Both queues have rotating priority, and one low-priority master is granted the bus for every 
rotation of the high-priority queue. After the low-priority master is granted the bus, the low-
priority queue rotates to the next low-priority master (see Figure 8-4). 

Any one or two (or none) of the ÉlanSC520 microcontroller’s PCI bus masters can be placed 
in the high-priority queue. Note that programming the same bus master for both slots in the 
high-priority queue does provide additional performance for that master. The net result of 
programming the same master in both slots of the high-priority queue is that the master is 
given tenure during both slots. If no masters are in the high-priority queue, then there is 
one rotating priority queue where each master has equal priority.

The high and low-priority queues are for external PCI bus masters, and the Am5x86 CPU 
PCI master adds an additional level of arbitration. The PCI bus arbiter can be configured 
with the CPU_PRI bit field in the Arbiter Priority Control (ARBPRICTL) register to grant the 
bus to the Am5x86 CPU after every one, two, or three external PCI transactions (where the 
external PCI master to be granted the bus is determined from the high and low-priority 
queues). This implements another rotating priority queue (see Figure 8-5). 

See the PCI Local Bus Specification, Revision 2.2, for detailed requirements of PCI bus 
arbitration.
8-8 Élan™SC520 Microcontroller User’s Manual



System Arbitration
Figure 8-4 External PCI Master Arbitration Queues

Figure 8-5 Host Bridge Master Arbitration Queue

HP0

HP1

LPx

LP0

LP1

LP2

LP3

LPn

High-Priority Queue
Low-Priority Queue

Notes:
HP0, HP1: High-priority masters
LP0, LP1, LP2, LP3, ..., LPn: Low-priority masters
LPx: Current low-priority master selected
Priority: HP0, HP1, LP0, HP0, HP1, LP1, HP0, HP1, LP2, HP0, HP1, LP3, ..., HP0, HP1, LPn

CPU

Ext
PCI

PCI

Ext
PCI

Ext

Notes:
The PCI bus arbiter is configurable to grant the bus to the host bridge after every 1, 2, or 3 external 
PCI transactions.
Priority configured for 1: CPU, Ext PCI, CPU, Ext PCI, ...
Priority configured for 2: CPU, Ext PCI, Ext PCI, CPU, Ext PCI, Ext PCI, ...
Priority configured for 3: CPU, Ext PCI, Ext PCI, Ext PCI, CPU, Ext PCI, Ext PCI, Ext PCI, ...
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8.4.3.2 Bus Parking

The PCI bus arbiter parks the bus on a PCI bus master when the bus is idle (no master is 
requesting the bus). This is required on the PCI bus to guarantee that the bus is properly 
terminated at all times. The PCI bus arbiter arbitrates for the next transaction as soon as 
the current PCI master that is granted the bus begins its transaction. 

Bus parking is configured with the BUS_PARK_SEL bit in the System Arbiter Control 
(SYSARBCTL) register (MMCR offset 70h). Note that the BUS_PARK_SEL bit must not be 
changed except during PCI bus arbiter initialization after a system of programmable reset.

8.4.3.2.1 Nonconcurrent Arbitration Mode Bus Parking
The bus should always be parked on the CPU in nonconcurrent arbitration mode. This is 
necessary to guarantee adequate CPU performance. Otherwise, the CPU would be 
required to acquire ownership of both the CPU bus and the PCI bus for each external access 
(including code fetches).

8.4.3.2.2 Concurrent Arbitration Mode Bus Parking
In concurrent arbitration mode, the PCI bus arbiter can be configured to park on the last 
master that was granted the bus or configured to always park on the Am5x86 CPU. If no 
other PCI masters are requesting the bus, the GNT to the current PCI master remains 
asserted until the current PCI master transaction completes.

A bus master that is parked can start a transaction without asserting its REQ pin (PCI bus 
protocol allows a master to start a cycle when its GNT is asserted and the bus is idle), but 
it must assert REQ if it requires multiple transactions.

When no PCI bus requests or grants are active, the arbiter retains priority established from 
the last tenure. For example, if the bus is idle and no requests or grants are active and all 
masters simultaneously request the bus, the arbiter services the master that is next in 
rotation.

8.4.3.3 Rearbitration

A PCI bus master that is granted the bus and has not started a transaction within 16 clocks 
after the bus becomes idle can be assumed to be “broken.” In this case, the PCI bus arbiter 
automatically re-arbitrates and grants the bus to the next PCI master.

An interrupt can be generated when a PCI bus master that has acquired bus ownership 
has not started a transaction within 16 clocks, and the REQ/GNT number of the “broken” 
PCI master is reported in the PCI Bus Arbiter Status (PCIARBSTA) register (MMCR offset 
71h). This allows software to disable the broken master and modify the bus parking such 
that the PCI bus is parked on the CPU.
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8.4.4 Bus Cycles
This section includes example timing diagrams showing various types of arbitration that 
may occur in the ÉlanSC520 microcontroller. Note that these are example cases only, and 
not all cases are shown. The diagrams are functionally representative in nature, and should 
not be used to infer detailed timing information. Note also that the synchronization between 
the CPU and PCI clock domains is not shown in detail.

8.4.4.1 CPU Bus Arbitration

Figure 8-6 shows CPU bus arbitration between two CPU bus masters (for clarity, this 
diagram shows only two bus masters). For additional CPU bus masters, there would be 
more arbitration signal groups and more than one CPU bus transaction could take place 
before an individual CPU bus master would be granted the bus.

Figure 8-6 CPU Bus Arbitration

Notes:
In Figure 8-6, the CPU bus master signals are labeled mst_xxx and the Am5x86 CPU signals are labeled cpu_xxx.

Snooping is not shown in this figure.

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram 
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the CPU bus arbitration cycle shown in Figure 8-6.

■ Clock #1: The Am5x86 CPU requests the bus by asserting cpu_breq. Note at this time 
that the bus is granted to some other master because cpu_hlda is asserted.

■ Clock #2: The CPU bus arbiter samples the Am5x86 CPU’s request asserted and begins 
arbitration. The CPU bus arbiter determines that the bus is free and that the Am5x86 
CPU is the next master to receive the bus, so it deasserts cpu_hold to the Am5x86 CPU. 
If the bus was not free or the Am5x86 CPU was not the next master to receive the bus, 
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cpu_breq
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cpu_hlda

cpu_ads
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cpu_hold to the Am5x86 CPU would remain asserted. In this example, another CPU bus 
master also requests the bus by asserting mst_req.

■ Clock #3: The Am5x86 CPU samples cpu_hold deasserted and deasserts cpu_hlda to 
take ownership of the bus. The Am5x86 CPU begins a cycle by asserting cpu_ads.

■ Clock #4: The CPU bus arbiter samples cpu_ads asserted and rearbitrates. The CPU 
bus arbiter determines that the bus will be granted to another master (CPU bus master) 
when the current cycle is done, so it asserts cpu_hold to the Am5x86 CPU. The Am5x86 
CPU will maintain ownership of the bus until it asserts cpu_hlda.

■ Clock #8: The Am5x86 CPU samples cpu_rdy asserted, which ends the current cycle. 
The Am5x86 CPU has also sampled cpu_hold asserted and surrenders the bus by 
asserting cpu_hlda. The Am5x86 CPU has another cycle pending, so it asserts cpu_breq 
to request access to the CPU bus.

■ Clock #9: The CPU bus arbiter samples cpu_hlda asserted from the Am5x86 CPU and 
grants the bus to the CPU bus master (the next master in the queue) by asserting mst_gnt 
to the CPU bus master.

■ Clock #10: The CPU bus master samples mst_gnt asserted and begins a cycle by 
asserting mst_ads.

■ Clock #11: The CPU bus arbiter samples mst_ads asserted and rearbitrates. The CPU 
bus arbiter determines that the bus will be granted to the Am5x86 CPU when the current 
cycle is done, so it deasserts mst_gnt to the CPU bus master. The CPU bus master will 
maintain ownership of the bus until it deasserts mst_req.

■ Clock #15: The CPU bus master samples mst_rdy asserted, which ends the current 
cycle. The CPU bus master also samples mst_gnt deasserted and surrenders the bus 
by deasserting mst_req.

■ Clock #16: The CPU bus arbiter samples mst_req deasserted from the CPU bus master, 
and grants the bus to the Am5x86 CPU by deasserting cpu_hold.

8.4.4.2 CPU Bus Cache Write-Back

Figure 8-7 shows an Am5x86 CPU cache write-back cycle. The cache must be written back 
when another CPU bus master accesses a memory location that has been modified in the 
internal Am5x86 CPU cache only (the external memory contains invalid data).
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Figure 8-7 CPU Bus Cache Write-Back

Notes:
In Figure 8-7, the CPU bus master signals are labeled mst_xxxx and the Am5x86 CPU signals are labeled cpu_xxxx.

The additional internal CPU bus interface signals shown in Figure 8-7 for write-back cycles are

• eads: External Address Strobe—Asserted by the CPU bus master to initiate a snoop by the Am5x86 CPU.

• hitm: Hit Modified Line—CPU must write back cache line to maintain coherency.

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram 
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the CPU bus cache write-back cycle shown in Figure 8-7.

■ Clock #1: The CPU bus master owns the bus (CPU bus master mst_gnt is asserted, 
Am5x86 CPU cpu_hold/cpu_hlda are asserted).

■ Clock #2: The CPU bus master initiates an inquire cycle by asserting eads to the Am5x86 
CPU.

■ Clock #4: The Am5x86 CPU asserts hitm to signal that the snoop resulted in a hit to a 
modified line. The Am5x86 CPU must perform a write-back cycle to maintain coherency.

■ Clock #5: The CPU bus master samples hitm asserted and relinquishes the bus on the 
next clock. The CPU bus arbiter deasserts cpu_hold to the Am5x86 CPU to allow the 
Am5x86 CPU to perform the write-back cycle.

■ Clock #6: The Am5x86 CPU samples cpu_hold deasserted and deasserts cpu_hlda to 
take ownership of the bus. The cpu_ads signal is asserted to begin the write-back cycle.

■ Clock #7: The CPU bus arbiter samples cpu_ads asserted and asserts cpu_hold to the 
Am5x86 CPU so that no additional cycles are generated after the write-back cycle.
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■ Clock #11: The Am5x86 CPU samples cpu_rdy, which ends the write-back cycle. The 
Am5x86 CPU has also sampled cpu_hold asserted and surrenders the bus by asserting 
cpu_hlda. 

Note: This write-back cycle is for illustration purposes only; the actual write-back cycle 
would consist of multiple data phases.

■ Clock #12: The Am5x86 CPU deasserts hitm one clock after cpu_rdy ends the write-
back cycle.

■ Clock #13: The CPU bus master samples hitm deasserted and starts the bus cycle.

8.4.4.3 CPU-to-PCI Cycle

Figure 8-8 shows an Am5x86 CPU-to-PCI bus cycle. The Am5x86 CPU cycle is either a 
read cycle or a write cycle with write posting disabled.

Figure 8-8 CPU-to-PCI Cycle

Notes:
The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram 
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the Am5x86 CPU-to-PCI cycle shown in Figure 8-8.

■ Clock #2: The Am5x86 CPU asserts breq to request the CPU bus. The CPU bus arbiter 
will grant the bus to the CPU when the current bus owner’s cycle is completed. The 
pending Am5x86 CPU cycle is to PCI.

■ Clock #3: The CPU bus arbiter deasserts cpu_hold to the Am5x86 CPU to grant the bus 
to the Am5x86 CPU. The deassertion of cpu_hold would be delayed if the CPU bus was 
not idle or if another higher priority master was requesting the CPU bus.
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■ Clock #4: The cpu_hlda signal is deasserted by the Am5x86 CPU to take ownership of 
the CPU bus, and cpu_ads is asserted to begin a cycle to PCI.

■ Clock #5: The CPU bus arbiter samples cpu_ads asserted and rearbitrates. In this 
example, a higher priority master is requesting the bus, so cpu_hold is asserted to the 
Am5x86 CPU. The Am5x86 CPU maintains ownership of the CPU bus until it completes 
its cycle and asserts cpu_hlda.

■ Clock #9: The host bridge asserts its req to the PCI bus arbiter in response to the 
Am5x86 CPU bus cycle to PCI.

■ Clock #10: The PCI bus arbiter asserts gnt to the host bridge. The assertion of gnt would 
be delayed if the bus was not idle or if another higher priority master was requesting the 
PCI bus.

■ Clock #11: The host bridge samples gnt asserted and begins the PCI transaction.

■ Clock #17: The PCI transaction is complete and the host bridge returns cpu_rdy to the 
Am5x86 CPU ending the Am5x86 CPU-to-PCI cycle.

■ Clock #18: The Am5x86 CPU samples cpu_rdy asserted ending the current cycle and 
asserts cpu_hlda to allow the next CPU bus master access to the CPU bus.

8.4.4.4 PCI Bus Arbitration

Figure 8-9 shows how the PCI bus arbiter arbitrates between two masters. Although there 
are only two PCI masters in this example, the mechanism is the same when there are more 
PCI masters. The differences are that there would be more REQ/GNT signal pairs and 
more than one PCI bus transaction could take place before an individual PCI master is 
granted the bus.

Figure 8-9 PCI Bus Arbitration

The following sequence annotates the PCI bus arbitration cycle shown in Figure 8-9.

■ Clock #2: Master 0 and master 1 simultaneously request access to the bus.
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■ Clock #3: The PCI bus arbiter samples REQ asserted and begins arbitration. Master 0 
has higher priority at this time than master 1 so the PCI bus arbiter grants the PCI bus 
to master 0.

■ Clock #4: Master 0 samples the bus idle and its GNT0 signal asserted and begins a 
transaction by asserting FRAME. Master 0 now becomes the lowest priority master in 
the rotating priority queue.

■ Clock #5: The PCI bus arbiter detects a transaction has started and rearbitrates for the 
next master. Master 1 is the now the highest priority master in the rotating priority queue, 
so the PCI bus arbiter deasserts the GNT0 for master 0 and asserts the GNT1 for 
master 1.

■ Clock #8: Master 1 samples the bus idle and its GNT1 asserted and begins a transaction 
by asserting FRAME. Master 1 now becomes the lowest priority master in the rotating 
priority queue.

■ Clock #9: No other masters are requesting the bus, so the PCI bus arbiter keeps 
asserting the GNT1 for master 1. This allows master 1 to continue the transaction, even 
after its master latency timer has expired. If another master were requesting the bus, 
the PCI bus arbiter would rearbitrate, deassert the GNT1 for master 1, and assert the 
GNT for the next master to be granted the bus.

8.4.4.5 PCI Bus Arbitration Parking

Figure 8-10 shows an example of bus parking in concurrent arbitration mode when no 
master is requesting access to the PCI bus.

In this example, the PCI bus arbiter is configured to park on the Am5x86 CPU. If the PCI 
bus arbiter is configured to park on the last master that acquired the bus, then the PCI bus 
arbiter would continue to assert the GNT to the master that had just completed a transaction.

Figure 8-10 PCI Bus Concurrent Mode Arbitration Parking

Notes:
In Figure 8-10, req/gnt are for the Am5x86 CPU.
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The following sequence annotates the PCI bus concurrent mode arbitration parking cycle 
shown in Figure 8-10.

■ Clock #2: Master 0 requests access to the bus.

■ Clock #3: The PCI bus arbiter samples REQ asserted and begins arbitration. Master 0 
is the only master requesting the bus, so the PCI bus arbiter grants the bus to master 0 
by asserting GNT0.

■ Clock #4: Master 0 samples the bus idle and its GNT0 asserted, and begins a transaction 
by asserting FRAME. Master 0 now becomes the lowest priority master in the rotating 
priority queue.

■ Clock #5: The PCI bus arbiter detects a transaction has started and begins to rearbitrate 
for the next master. Because no other masters are requesting the bus, the PCI bus arbiter 
keeps asserting the GNT0 for master 0. This allows master 0 to continue a transaction 
even after its master latency timer has expired. If another master were requesting the 
bus, the PCI bus arbiter would rearbitrate, deassert the GNT0 for master 0, and assert 
the GNT for the next master to be granted the bus.

■ Clock #7: Master 0 samples the end of the transaction. The PCI bus arbiter samples 
FRAME deasserted, signaling that this is the last data phase of the transaction. Because 
no other masters are requesting the bus, the PCI bus arbiter will now park the bus on 
the configured master (Am5x86 CPU). The PCI bus arbiter deasserts GNT0 to master 
0 and asserts gnt to the Am5x86 CPU. Note that req is not asserted. If the PCI bus 
arbiter was configured to park on the last master that acquired the bus, it would keep 
GNT0 asserted and park on master 0.

■ Clock #8: The Am5x86 CPU samples the bus idle and its gnt asserted. Note the Am5x86 
CPU does not have to start a transaction, but it does need to drive the shared PCI bus 
signals to stable values. If the Am5x86 CPU wants to start a transaction, it does not have 
to assert req and wait for gnt. It can assert FRAME and begin a transaction on any clock 
it samples gnt asserted. The master on which the PCI bus is parked has no arbitration 
latency.

■ Clock #10: Master 0 requests the bus by asserting REQ0.

■ Clock #11: The PCI bus arbiter samples REQ asserted and begins arbitration. Master 
0 is the only master requesting the bus, so the PCI bus arbiter determines that master 
0 will be the next master to be granted the bus. The PCI bus arbiter then deasserts gnt 
to the Am5x86 CPU.

■ Clock #12: The PCI bus arbiter asserts GNT0. Note the PCI bus arbiter cannot 
simultaneously deassert one master’s GNT and assert another master’s GNT when the 
bus is idle. Doing so could cause contention on the shared PCI bus signals.

■ Clock #13: Master 0 samples the bus idle and its GNT0 signal asserted and begins a 
transaction by asserting FRAME. Master 0 now becomes the lowest priority master in 
the rotating priority queue. Note that there is a two-clock arbitration latency for masters 
that are not parked on the bus when the bus is idle. This is because, when the bus is 
idle, one GNT cannot be asserted on the same clock when another GNT is deasserted. 
Therefore, GNT to the master the bus is parked on will be deasserted in one clock, and 
the GNT to the next master granted the bus will be asserted one clock later, resulting in 
a two-clock arbitration latency.
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8.4.4.6 Nonconcurrent Mode Arbitration

Figure 8-11 shows external PCI master arbitration in nonconcurrent mode. In 
nonconcurrent arbitration mode, both the CPU bus and the PCI bus are granted to the PCI 
master, regardless of the destination of the PCI transaction. 

Figure 8-11 Nonconcurrent Mode Arbitration

Notes:
The diagram includes the following internal signals:

• hb_req: PCI host bridge requesting the Am5x86 CPU bus.

• hb_gnt: PCI host bridge has been granted Am5x86 CPU bus.

The following sequence annotates the nonconcurrent mode arbitration cycle shown in 
Figure 8-11.

■ Clock #1: An external PCI master requests the PCI bus.

■ Clock #2: The PCI bus arbiter samples an external PCI request asserted and asserts 
the host bridge request to the CPU bus arbiter. The external PCI master GNT0 cannot 
be asserted until the host bridge is granted the CPU bus. If the system arbiter were 
operating in concurrent arbitration mode, the external PCI master GNT0 could be 
asserted in clock #2 because the PCI bus and the CPU bus would be operating 
independently.

■ Clock #5: The CPU bus arbiter has determined the host bridge will be granted the CPU 
bus and asserts hb_gnt to the host bridge. The assertion of hb_gnt could be delayed if 
a higher priority master was requesting the CPU bus.

■ Clock #6: The PCI bus arbiter detects the host bridge has been granted the CPU bus 
and asserts GNT0 to the external PCI master.

■ Clock #7: The CPU bus arbiter rearbitrates and determines another CPU bus master 
will be granted the bus and deasserts hb_gnt to the host bridge. The host bridge will 
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maintain ownership of the CPU bus until it deasserts hb_req. The external PCI master 
samples GNT0 asserted and asserts FRAME to begin the PCI transaction.

■ Clock #8: GNT0 is deasserted because either the external master is parked on the CPU 
or another master has requested the bus.

■ Clock #11: The host bridge samples the end of the PCI transaction and has sampled 
hb_gnt deasserted, so it deasserts hb_req to allow the next CPU bus master access to 
the CPU bus.

8.4.5 Interrupts
The system arbiter has one interrupt signal routed to the ÉlanSC520 microcontroller’s PCI 
host bridge. This interrupt source shares the interrupt controller input used by any PCI host 
bridge interrupts that are enabled in the Host Bridge Master Interrupt Control 
(HBMSTIRQCTL) register (MMCR offset 66h) register and the Host Bridge Target Interrupt 
Control (HBTGTIRQCTL) (MMCR offset 62h) register. 

The following condition can be programmed to generate an interrupt from the system arbiter. 

■ When the PCI bus arbiter has asserted a GNT in response to a request (the bus is not 
parked) and a PCI transaction was not started within 16 clocks after the bus became 
idle, per the PCI Local Bus Specification, Revision 2.2. 

The GNT_TO_INT_ENB bit in the System Arbiter Control (SYSARBCTL) register (MMCR 
offset 70h) is used to enable interrupts that are generated when the PCI bus arbiter detects 
a grant time-out. Before the GNT_TO_INT_ENB bit is set, the PCI Host Bridge Interrupt 
Mapping (PCIHOSTMAP) register (MMCR offset D14h) must be configured to route the 
interrupt to the appropriate interrupt request level and priority.

The REQ/GNT number of the PCI master that did not start a transaction is reported in the 
GNT_TO_STA bit of the PCI Bus Arbiter Status (PCIARBSTA) register (MMCR offset 71h). 
Note that the GNT_TO_STA bit is set on PCI bus arbiter grant time-outs regardless of the 
GNT_TO_INT_ENB bit value.

8.4.6 Software Considerations
The system arbiter can operate in concurrent or nonconcurrent arbitration mode (see 
“Operating Modes” on page 8-3). Write posting from the CPU to the PCI bus should be 
disabled while configured in nonconcurrent arbitration mode. When changing between 
nonconcurrent and concurrent arbitration mode, all system arbiter requests should be 
disabled, as follows: 

■ GP-DMA channels should be disabled to prevent the DMA controller from requesting 
the CPU bus.

■ External PCI bus master requests should be inhibited.

■ The Am5x86 CPU should not attempt to access the PCI bus.

A PCI bus master that does not start a transaction within 16 clocks after the bus is idle can 
be considered broken. The PCI bus arbiter checks for this condition and provides status 
on which PCI bus master GNT was asserted when this condition was detected. Software 
can read this status and disable the broken master’s REQ to the PCI bus arbiter through 
the System Arbiter Master Enable (SYSARBMENB) register (MMCR offset 72h). This 
prevents the broken master from wasting PCI bandwidth.

Note that the PCI bus arbiter does not automatically disable the broken master’s REQ signal.
Élan™SC520 Microcontroller User’s Manual 8-19



System Arbitration
8.4.7 Latency
Because the PCI bus is shared by many masters, each master incurs a latency accessing 
the bus due to other masters. This latency is determined by each master in the system and 
the arbitration algorithm. The latency contributed by each master is controlled through its 
associated master latency timer, which limits the amount of time a master is allowed for 
each transaction. When this timer expires, the current master must end its transaction and 
allow another master access to the bus. 

The ÉlanSC520 microcontroller PCI bus arbiter has two rotating priority queues and an 
Am5x86 CPU relative priority. The Am5x86 CPU does not burst on PCI, and therefore does 
not have a master latency timer. The longest transaction for the Am5x86 CPU is 16 PCI 
clocks. 

The latency contributed by the ÉlanSC520 microcontroller PCI bus arbiter can be controlled 
in the Arbiter Priority Control (ARBPRICTL) register (MMCR offset 74h) through the use of 
the high-priority queue and the relative Am5x86 CPU priority configuration.

8.4.7.1 Simple Rotating Priority Latency

In a simple one-level rotating priority queue, the maximum latency for each master would 
be the sum of all the other master latency timers in the system. 

In Figure 8-12, the maximum latency for master M0 would be the sum of the longest possible 
transactions for masters M1, M2, M3, ..., Mn. The longest transaction for each master is 
limited by its associated master latency timer, so the maximum latency for M0 would be:

master latency timer for M1 + master latency timer for M2 + master latency timer for M3 + 
... + master latency timer for Mn 

This latency would be seen by M0 when it had just completed a transaction, all other masters 
were requesting access to the bus, and each master required the bus for the entire duration 
of its associated master latency timer. 

Figure 8-12 Simple Rotating Priority Queue
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8.4.7.2 High-Priority Queue Latency

The maximum latency for a master in the high-priority queue is the sum of:

■ Master latency timer of other master in high-priority queue—This time can be decreased 
by decreasing the master latency timer of the other master in the high-priority queue, or 
this time can be eliminated by programming only one master in the high-priority queue.

■ Longest master latency timer of all masters in the low-priority queue—This can be 
decreased by decreasing the master latency timer of all masters in the low-priority queue.

■ 3 * (Am5x86 CPU maximum transaction time)

8.4.7.3 Low-Priority Queue Latency

The maximum latency for a master in the low-priority queue (note that after a low-priority 
master has completed a transaction, every PCI master will be granted the bus before the 
low-priority master will be granted the bus again) is the sum of:

■ Number of external masters * (Am5x86 CPU maximum transaction time)—The Am5x86 
CPU maximum transaction time is multiplied by the number of external masters, because 
the Am5x86 CPU is granted the bus after every external PCI transaction if the Am5x86 
CPU relative priority is configured for one external PCI master cycle. This can be 
decreased by decreasing the Am5x86 CPU relative priority (configure the relative priority 
to allow more external PCI cycles for every Am5x86 CPU PCI cycle).

■ Number of masters in the low-priority queue * (master latency timers of all masters in 
the high-priority queue)—The master latency timers of all masters in the high-priority 
queue is multiplied by the number of masters in the low-priority queue, because the high-
priority masters are granted the bus after each low-priority master grant. This time can 
be decreased by decreasing the number of masters in the high-priority queue or by 
decreasing the master latency timers of the masters in the high-priority queue.

■ Master latency timers of all masters in the low-priority queue—This time can be 
decreased by decreasing the master latency timers of the masters in the low-priority 
queue.

8.4.7.4 CPU Latency

The maximum latency for the Am5x86 CPU is:

■ 3 * (longest master latency timer of all external masters)—The master latency timer is 
multiplied by 3 because the worst case is when the Am5x86 CPU relative priority is 
configured for three external PCI master cycles for every Am5x86 CPU PCI cycle. This 
time can be decreased by decreasing the master latency timers of external masters or 
by increasing the Am5x86 CPU relative priority.

8.4.7.5 Nonconcurrent Arbitration Mode Latency

Operating in nonconcurrent arbitration mode adds to the PCI bus latency. In nonconcurrent 
arbitration mode, all PCI masters must be granted the CPU bus in addition to the PCI bus 
before a transaction can proceed. The time associated with being granted the CPU bus 
adds to each PCI master’s latency. 

The maximum latency is: 

(time for the longest Am5x86 CPU transfer) + (time for the longest GP-DMA transfer)

The longest Am5x86 CPU transfer is one cache line, and the longest GP-DMA transfer is 
programmable. This additional latency is added to the latency of each external PCI master 
as calculated in the high-priority and low-priority queues. This latency is incurred for all PCI 
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transactions, not only transactions where the ÉlanSC520 microcontroller is the PCI target. 
Note that this includes PCI bus transactions where both the master and the target are 
external PCI bus agents.

8.4.7.6 Concurrent Arbitration Mode Latency

The CPU bus adds to the PCI bus latency even when operating in concurrent arbitration 
mode. Buffering in the host bridge, however, decreases the amount of latency on the PCI 
bus due to the CPU bus. PCI transactions where the ÉlanSC520 microcontroller is not the 
target do not have any added latency due to the CPU bus. 

PCI write transactions where the ÉlanSC520 microcontroller is the target are posted in the 
host bridge. The data is not immediately written to SDRAM, but have some latency due to 
CPU bus arbitration. The external PCI master transaction, however, will be completed, and 
so the external PCI master will not see this additional latency. 

PCI read transactions where the ÉlanSC520 microcontroller is the target can be delayed 
transactions. In this case, the external PCI master requesting the data sees the latency 
added by the CPU bus arbitration. 

Other PCI transactions are allowed on the PCI bus while the host bridge is arbitrating for 
the CPU bus, and so only the external PCI master requesting the data incurs the CPU bus 
latency, not the whole PCI bus. Note that CPU bus latency is added only to external PCI 
master read transactions where the ÉlanSC520 microcontroller is the target. 

8.4.7.7 Concurrent Arbitration Mode Bus Parking Latency

There is some latency associated with bus parking. The master that is parked on the bus 
is able to begin a transaction immediately (without having to assert REQ), because its GNT 
is already asserted. All other masters have to arbitrate for the bus by asserting REQ and 
waiting for GNT. This arbitration takes two PCI clocks (see “PCI Bus Arbitration Parking” 
on page 8-16). This applies to concurrent mode arbitration only.

8.5 INITIALIZATION
The system arbiter logic and configuration is reset in response to system reset.

After reset, the system arbiter operates in nonconcurrent arbitration mode. The priority 
queue is defaulted such that REQ0 is the highest priority and REQ4 is the lowest priority, 
because no masters are configured in the high-priority queue at this time. All masters are 
disabled at reset, with the exception of the CPU as a PCI and CPU bus master.

After reset, the following initialization steps are required:

1. Enable concurrent operating mode, if desired, by setting the CNCR_MODE_ENB bit in 
the System Arbiter Control (SYSARBCTL) register (MMCR offset 70h). System 
arbitration defaults to nonconcurrent arbitration mode after reset. Note that changing 
the CNCR_MODE_ENB bit should only be done when all bus master requests are 
disabled.

2. Configure PCI bus parking with the BUS_PARK_SEL bit in the System Arbiter Control 
(SYSARBCTL) register. Note that the BUS_PARK_SEL bit should only be changed when 
the PCI bus is currently parked on the CPU. By default, the PCI bus arbiter parks on the 
Am5x86 CPU, but the arbiter can be programmed to park on the last active PCI bus 
master if operating in concurrent arbitration mode.

3. Configure PCI bus arbiter priority in the Arbiter Priority Control (ARBPRICTL) register 
(MMCR offset 74h) if any external PCI masters are to be configured in the high-priority 
queue. By default, all external masters are configured to be in the low-priority queue.
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4. Enable external PCI requests to the PCI bus arbiter in the System Arbiter Master Enable 
(SYSARBMENB) register (MMCR offset 72h). By default, all external PCI bus master 
requests are disabled.

5. Enable/Clear the PCI bus GNT time-out interrupt with the GNT_TO_INT_ENB bit in the 
System Arbiter Control (SYSARBCTL) register, if desired. By default, this interrupt 
source is disabled, but the GNT_TO_ID status bit is set in the PCI Bus Arbiter Status 
(PCIARBSTA) register (MMCR offset 71h) if a PCI bus GNT time-out is detected.
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CHAPTER
9 P
CI BUS HOST BRIDGE
9.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated PCI bus host bridge, which allows 
the microcontroller to interface with any PCI bus Revision 2.2-compliant master or target 
device. 

The PCI host bridge includes the following features:

■ 33 MHz, 32-bit PCI bus Revision 2.2-compliant

■ Peak transfer rate of 132 Mbytes/s

■ Support for delayed transactions improves PCI bus utilization

■ Support for long bursts without disconnect when the ÉlanSC520 microcontroller is a 
target (64 doublewords for both reads and writes)

■ Capable of zero wait state burst transfers as a target

■ Support for advanced PCI bus commands as a target: memory-read-line, memory-read-
multiple

■ Flexible PCI bus interrupt steering logic

■ Supports fast back-to-back transactions as a PCI bus target

According to the PCI Local Bus Specification, Revision 2.2, the initiator, or master, is the 
device that initiates the PCI transfer. The slave, or target, is the device being addressed by 
the master for the data transfer.

9.2 BLOCK DIAGRAM
The ÉlanSC520 microcontroller PCI host bridge interface is shown in Figure 9-1.
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Figure 9-1 PCI Interface Block Diagram

9.3 SYSTEM DESIGN
Figure 9-2 shows how the ÉlanSC520 microcontroller can be connected to an external PCI 
bus target device.

Figure 9-3 on page 9-4 shows how the ÉlanSC520 microcontroller can be connected to an 
external PCI bus master device. 

In each configuration, the PCI bus clock is driven from the ÉlanSC520 microcontroller on 
the CLKPCIOUT pin and may require external buffering due to system loading (see “PCI 
Clocking” on page 9-5). RST, the PCI bus reset signal, is driven from the ÉlanSC520 
microcontroller. 

The optional PCI bus target device interrupts can be connected to the PCI bus interrupt 
pins on the ÉlanSC520 microcontroller (INTA, INTB, INTC, INTD) or any of the GPIRQ10–
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GPIRQ0 pins on the GP bus. See Chapter 15, “Programmable Interrupt Controller”, for 
further information on connecting interrupt requests to the ÉlanSC520 microcontroller.

Figure 9-4 on page 9-5 shows how the PERR and SERR signals are connected to the 
ÉlanSC520 microcontroller. PERR is driven by the PCI bus device (including the host 
bridge) that is receiving data (sampling the AD31–AD0 bus during data phases). SERR is 
driven by external PCI bus devices that detect a system error. External pullups must be 
provided for PERR and SERR.

The PCI bus input and output pins of the ÉlanSC520 microcontroller are PCI bus revision 
2.2 compliant. See the PCI bus specification for information on physical loading and routing. 
The following PCI signals require pullups: FRAME, IRDY, TRDY, STOP, DEVSEL, PERR, 
and SERR. These pullups must be provided externally to the ÉlanSC520 microcontroller 
(the ÉlanSC520 microcontroller PCI bus pins do not have any termination).

The system PCI bus reset (RST) signal is sourced from the ÉlanSC520 microcontroller and 
is asynchronous to the PCI bus clock. See “Initialization” on page 9-29 for more information 
on reset. 

Figure 9-2 Élan™SC520 Microcontroller Connection to an External PCI Bus Target

PCI Target
Device

AD31–AD0

CBE3–CBE0

PAR

FRAME

IRDY

TRDY

STOP

DEVSEL

PERR

SERR

RST

CLKPCIOUT

CLKPCIIN

AD31–AD0

CBE3–CBE0

PAR

FRAME

IRDY

TRDY

STOP

DEVSEL

PERR

SERR

RST

INTA–INTD

CLK

Élan™SC520 Microcontroller

PCI Bus Host Bridge
(PCI bus master)

Notes:
1.  INT implies any of the following pins: INTA–INTD or GPIRQ10–GPIRQ0

INT1

IDSEL

Clock Buffering
(optional)
Élan™SC520 Microcontroller User’s Manual 9-3



PCI Bus Host Bridge
Figure 9-3 Élan™SC520 Microcontroller Connection to an External PCI Bus Master
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Figure 9-4 Élan™SC520 Microcontroller SERR and PERR Connection

9.3.1 PCI Clocking
The system PCI bus clock (CLK) is sourced from the ÉlanSC520 microcontroller. There 
are two PCI bus clock pins on the ÉlanSC520 microcontroller: CLKPCIIN and CLKPCIOUT. 
The CLKPCIOUT output pin drives a 33-MHz clock that is used as the system PCI bus 
clock. However, the PCI host bridge logic is clocked from the CLKPCIIN input pin. The two 
pins are provided for the PCI bus clock to minimize clock skew between the PCI host bridge 
and external PCI bus devices. 

The CLKPCIIN input pin guarantees that the PCI host bridge is driven with the same clock 
as the external PCI bus devices. Otherwise, external buffering and loading of the 
CLKPCIOUT pin could delay the clock, so that the skew between the PCI host bridge and 
external PCI bus devices would not meet the PCI bus specification. 

External buffering of CLKPCIOUT may or may not be required, depending on the system 
loading (see Figure 9-5 and Figure 9-6). The ÉlanSC520 microcontroller does not 
dynamically slow down or stop the output CLKPCIOUT clock; therefore the PCI bus 
CLKRUN pin is not supported.

The CLKPCIIN pin is specifically intended for addressing the clock skew problem. It is not 
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CLKPCIOUT pin. Driving the CLKPCIIN pin from an external source that is of a different 
frequency is also not supported.
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Figure 9-5 PCI Bus Clocking Example 1: Lightly Loaded System

Figure 9-6 PCI Bus Clocking Example 2: Heavily Loaded System

9.3.1.1 Running the Élan™SC520 Microcontroller at 33.333 MHz

The clock that is supplied to the PCI bus (CLKPCIOUT) is exactly the same as the frequency 
of the crystal. The ÉlanSC520 microcontroller simply buffers the 33-MHz crystal input and 
provides it to the CLKPCIOUT pin. Because crystals have inaccuracies, it is possible that 
these inaccuracies cause the period of CLKPCIOUT to become marginally less than 30 ns.

CLKPCIOUT

CLKPCIIN

PCI Device 0
CLK

Notes:
In this lightly loaded system, no clock buffering is required.

Élan™SC520 Microcontroller

CLKPCIOUT

CLKPCIIN

PCI Device 0
CLK

PCI Device 1
CLK

PCI Device 2
CLK

PCI Device 3
CLK

PCI Device 4
CLK

Notes:
In this heavily loaded system, clock buffering is required.

Élan™SC520 Microcontroller
9-6 Élan™SC520 Microcontroller User’s Manual



PCI Bus Host Bridge
It is up to the system designer to choose the accuracy of the crystal used with the ÉlanSC520 
microcontroller. The 33.000-MHz frequency provides a better guard band than the 33.333-
MHz crystal. In practice, most PCI devices tolerate both frequencies, but it is important to 
be aware of the impact of choosing the crystal on this potential violation of the PCI bus 
specifications. The PCI bus specification requires that the minimum clock period be 30 ns.

9.4 REGISTERS
The PCI host bridge configuration registers specific to the ÉlanSC520 microcontroller are 
memory-mapped in ÉlanSC520 microcontroller configuration space. These registers are 
listed in Table 9-1. Table 9-2 lists the direct-mapped registers used to configure the PCI 
bus host bridge. The standard PCI configuration space header registers supported on the 
ÉlanSC520 microcontroller are shown in Table 9-3 as PCI indexed registers.

Table 9-1 PCI Host Bridge Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function 

Host Bridge Control HBCTL 60h PCI reset, target FIFO purge enable, automatic 
delayed transaction enable, and master write 
posting enable

Host Bridge Target Interrupt 
Control

HBTGTIRQCTL 62h Target interrupt or NMI select and interrupt 
enables: delayed transaction time-out, address 
parity, and data parity

Host Bridge Target Interrupt 
Status

HBTGTIRQSTA 64h Target interrupt status: delayed transaction time-
out, address parity, data parity; target interrupt 
identification

Host Bridge Master Interrupt 
Control

HBMSTIRQCTL 66h Master interrupt or NMI select and interrupt 
enables: retry time-out, target abort, master 
abort, system error, received parity error, 
detected parity error

Host Bridge Master Interrupt 
Status

HBMSTIRQSTA 68h Master interrupt status: retry time-out, target 
abort, master abort, system error, received 
parity error, detected parity error; master 
command interrupt identification

Host Bridge Master Interrupt 
Address

MSTINTADD 6Ch Master address interrupt identification

Interrupt Pin Polarity INTPINPOL D10h Polarity of external interrupt sources (INTA–
INTD and GPIRQ10–GPIRQ0)

PCI Host Bridge Interrupt 
Mapping

PCIHOSTMAP D14h System arbiter and PCI Host Bridge interrupt 
mapping to any of 22 available interrupt 
channels or NMI, PCI NMI enable control

PCI Interrupt A Mapping PCIINTAMAP D30h PCI INTA mapping

PCI Interrupt B Mapping PCIINTBMAP D31h PCI INTB mapping

PCI Interrupt C Mapping PCIINTCMAP D32h PCI INTC mapping

PCI Interrupt D Mapping PCIINTDMAP D33h PCI INTD mapping
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9.5 OPERATION
The PCI host bridge on the ÉlanSC520 microcontroller has the following functionality:

■ Master controller—Allows the Am5x86 CPU to be a master on the PCI bus. The Am5x86 
CPU can generate configuration transactions to configure the PCI host bridge, as well 
as all external devices on the PCI bus. The Am5x86 CPU can also generate memory 
and I/O read and write transactions on the PCI bus.

■ Target controller—Allows external PCI bus masters to access the ÉlanSC520 
microcontroller’s SDRAM.

9.5.1 Unsupported PCI Bus Functions
The following list summarizes some of the PCI bus functionality that is not supported in the 
ÉlanSC520 microcontroller’s PCI host bridge. These functions are listed as optional in the 
PCI bus specification.

■ 66 MHz is not supported.

■ 64-bit data is not supported.

■ 64-bit addressing (dual address cycles) is not supported due to the maximum 32-bit 
address space of the Am5x86 CPU.

■ Cacheable PCI bus memory (SBDONE, SBO) is not supported.

■ The optional CLKRUN pin is not supported.

Table 9-2 PCI Host Bridge Registers—Direct-Mapped

Register Mnemonic I/O Address Function 

PCI Configuration Address PCICFGADR 0CF8h PCI configuration space enable, bus number, 
device number, function number, register 
number

PCI Configuration Data PCICFGDATA 0CFCh PCI configuration data

Table 9-3 PCI Host Bridge Registers—PCI Indexed

Register Mnemonic I/O Address Function 

Device/Vendor ID PCIDEVID CF8h/CFCh
Index 00h

Device identification, vendor identification

Status/Command PCISTACMD CF8h/CFCh
Index 04h

Parity error detected, signalled system error, 
received master abort, received target abort, 
signalled target abort, DEVSEL timing, data 
parity reported, fast back-to-back capable, 
SERR enable, parity error response, master 
enable, memory access enable, I/O space 
enable

Class Code/Revision ID PCICCREVID CF8h/CFCh
Index 08h 

Base class code, sub-class code, program 
interface type, revision identification

Header Type PCIHEADTYPE CF8h/CFCh
Index 0Eh

PCI configuration space header format

Master Retry Time-Out PCIMRETRYTO CF8h/CFCh
Index 41h

PCI master retry time-out value
9-8 Élan™SC520 Microcontroller User’s Manual



PCI Bus Host Bridge
■ The LOCK pin is an optional pin not required in most systems, because other 
mechanisms are typically employed for coherency.

■ Address/data stepping is not supported as a master due to the performance implications.

■ The ÉlanSC520 microcontroller does not support a downstream “Southbridge” device, 
because most peripherals normally included in a Southbridge are integrated into the 
ÉlanSC520 microcontroller.

■ The optional message-signalled interrupt feature described in the PCI Local Bus 
Specification, Revision 2.2, is not supported in the ÉlanSC520 microcontroller.

9.5.1.1 Unsupported PCI Bus Configuration Registers

Some standard PCI bus configuration registers are not implemented, because the 
ÉlanSC520 microcontroller is a host-to-PCI bridge and does not support some optional PCI 
functionality.

■ Base Address registers are not implemented, because the ÉlanSC520 microcontroller 
is the host PCI device. Target address space configuration is done through ÉlanSC520 
microcontroller-specific configuration (see “PCI Host Bridge Target Address Space” on 
page 9-18).

■ Latency timer and MAX_LAT, MIN_GNT are not implemented, because the ÉlanSC520 
microcontroller’s PCI host bridge does not support multiple data phase transactions as 
a master.

■ Cache line size is not implemented, because the ÉlanSC520 microcontroller PCI host 
bridge does not support cacheable PCI memory.

9.5.2 Configuration Information
The PCI host bridge can generate configuration cycles on the PCI bus.

The Configuration Mechanism #1, as defined in the PCI Local Bus Specification, Revision 
2.1, is used. The PCI Configuration Address (PCICFGADR) register resides at I/O address 
0CF8h, and the PCI Configuration Data (PCICFGDATA) register resides at I/O address 
0CFCh. The Am5x86 CPU accesses these two I/O ports to generate PCI configuration 
cycles. 

The PCI host bridge pre-drives the AD31–AD0 pins for five clocks before asserting FRAME 
when performing configuration cycles. This allows IDSEL to settle before the transaction 
starts (IDSEL signals may have a slow rise time). 

External PCI bus devices require an IDSEL pin to allow configuration from the ÉlanSC520 
microcontroller’s PCI bus host bridge. The method implemented for IDSEL generation is 
system-specific; however, the ÉlanSC520 microcontroller implements the commonly used 
practice in which the AD31–AD11 pins are asserted for IDSEL generation during the 
configuration cycles (the host bridge uses AD11). In this scheme, the AD12 is IDSEL for 
device number 1, AD13 is IDSEL for device number 2, etc. The AD pins are asserted during 
configuration cycles according to the decode of the PCI bus device; thus, this scheme is 
limited to 20 devices on the PCI bus. 

The ÉlanSC520 microcontroller’s PCI bus host bridge is hardwired to device number 0 
(AD11), and the host bridge PCI bus configuration registers are accessed through the PCI 
Configuration Address (PCICFGADR) register (Port 0CF8h) and PCI Configuration Data 
(PCICFGDATA) register (Port 0CFCh), like any external PCI device. An external PCI bus 
configuration cycle is not generated when the Am5x86 CPU configures the internal PCI 
host bridge registers. 
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The host bridge PCI bus configuration space contains only PCI bus device configuration 
header registers, as defined in the PCI bus specification. ÉlanSC520 microcontroller-
specific host bridge configuration registers are memory-mapped in ÉlanSC520 
microcontroller configuration space. See Chapter 4, “System Address Mapping”, for further 
details on memory-mapped configuration space.

9.5.2.1 Generating PCI Bus Configuration Cycles

A two-step process is required to generate a PCI bus configuration cycle.

1. First, the Am5x86 CPU must perform a 32-bit I/O write to the PCI Configuration Address 
(PCICFGADR) register (Port 0CF8h) with the following information: bus number, device 
number, function, and register number (doubleword) to be accessed (see Figure 9-7). 

2. Then, the Am5x86 CPU can perform an I/O cycle (read or write) to the PCI Configuration 
Data (PCICFGDATA) register (Port 0CFCh) to access the desired configuration register.

Figure 9-7 PCI Configuration Address (PCICFGADR) Register 

For example, to access the Status/Command (PCISTACMD) register (PCI index 04h) 
(doubleword 1) of the PCI host bridge, the following cycles are generated by the Am5x86 
CPU:

1. 32-bit I/O write to Port 0CF8h: 80000004h

– ENABLE = 1 to enable configuration space mapping

– BUS_NUM = 0 (PCI host bridge is on bus number 0)

– DEVICE_NUM = 0 (PCI host bridge is hardwired to device number 0)

– FUNCTION_NUM = 0 (PCI host bridge has only one function)

– REGISTER_NUM = 1 

– Bits 1–0 must be written 00

2. 8/16/24/32-bit I/O read/write to/from Port 0CFCh to access configuration register bytes

BUS_NUM[7–0] REGISTER_ 

31 1516 0

Bit Name Function

31 ENABLE This bit must be set to 1 to enable configuration 
space mapping.

30–24 Reserved

23–16 BUS_NUM[7–0] Bus number

15–11 DEVICE_NUM[4–0] Device number

10–8 FUNCTION_NUM[2–0] Function number

7–2 REGISTER_NUM[4–0] Register number

1–0 Reserved These bits must always be written to 00.

Reserved

30 23

DEVICE_
NUM[4–0] NUM[4–0]

12

0 0EN-

24 11 10 8 7

FUNCTION_
NUM[2–0]

0CFBh 0CFAh 0CF9h 0CF8h

ABLE
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The Master Enable (BUS_MAS) bit in the Status/Command (PCISTACMD) register (PCI 
index 04h) is always forced active. Thus, the PCI host bridge can always generate memory, 
I/O, and configuration transactions on the PCI bus to configure external PCI devices. 

To enable the host bridge as a PCI bus target device, the Memory Access Enable 
(MEM_ENB) bit in the Status/Command (PCISTACMD) register must be set. When this bit 
is set, the host bridge responds to external PCI bus master cycles that access the 
ÉlanSC520 microcontroller’s SDRAM. 

No configuration bits need to be set to access the PCI host bridge’s configuration registers 
from the Am5x86 CPU.

Note that any write access to the PCI Configuration Data (PCICFGDATA) register (Port 
0CFCh) in which the ENABLE bit of the PCI Configuration Address (PCICFGADR) register 
(Port 0CF8h) is not set is forwarded to the PCI bus as an I/O transaction. 

Any non-doubleword access to Port 0CF8h is also forwarded to the PCI bus as an I/O 
transaction.

9.5.3 Élan™SC520 Microcontroller’s Host Bridge as PCI Bus Master
The PCI host bridge allows the Am5x86 CPU to be a master on the PCI bus. The Am5x86 
CPU can generate configuration transactions to configure the host bridge, as well as all 
external devices on the PCI bus (internal PCI host bridge configuration cycles are not seen 
on the external PCI bus). The Am5x86 CPU can also generate memory and I/O read and 
write transactions on the PCI bus.

As a PCI bus master, the ÉlanSC520 microcontroller does not generate the following cycles:

■ Dual address cycles for 64-bit addressing

■ Memory-write-and-invalidate cycles (cacheable memory on the PCI bus is not 
supported)

■ Memory-read-multiple or memory-read-line cycles (the Am5x86 CPU does not generate 
long read burst transactions that may benefit from these commands)

■ Fast back-to-back cycles

■ Lock cycles (the LOCK pin is not supported)

■ Multiple data phase cycles

■ Special cycles and interrupt acknowledge cycles (these Am5x86 CPU cycles are not 
echoed on the PCI bus)

9.5.3.1 Write Posting

To increase Am5x86 CPU bandwidth utilization, memory writes to the PCI bus can be posted 
by setting the M_WPOST_ENB bit in the Host Bridge Control (HBCTL) register (MMCR 
offset 60h). This allows the Am5x86 CPU cycle to complete without incurring the PCI bus 
transaction latency. The rdy signal is returned immediately to the Am5x86 CPU, and the 
cycle completes sometime later on the PCI bus. The PCI host bridge posts only one Am5x86 
CPU write cycle to the PCI bus. Am5x86 CPU-to-PCI bus-cycle ordering is maintained, 
which means additional Am5x86 CPU cycles (both read and write) to the PCI bus incur wait 
states until a posted write cycle completes on the PCI bus. 

I/O and configuration write cycles are not posted. However, write cycles to memory-mapped 
I/O regions are not detected by the PCI host bridge, so write posting must be disabled to 
prevent the posting of memory-mapped I/O cycles. If write posting is disabled, the PCI host 
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bridge waits until the write cycle has completed on the PCI bus before returning ready to 
the Am5x86 CPU. 

Write posting should not be enabled while operating in nonconcurrent arbitration mode. 
See Chapter 8, “System Arbitration”, for further details on nonconcurrent mode arbitration.

9.5.3.2 Read Cycles

The PCI host bridge does not read ahead PCI bus memory for Am5x86 CPU read cycles. 
Each Am5x86 CPU read cycle generates a single data phase read cycle on the PCI bus, 
with only the data requested by the Am5x86 CPU being read. The PCI host bridge does 
not burst Am5x86 CPU-to-PCI-bus read cycles, because the Am5x86 CPU typically 
performs burst reads only during cache-line fills, and PCI bus memory is noncacheable. 
There are a few cases when the Am5x86 CPU may burst two doublewords (i.e., misaligned 
transfer). In this case, the PCI host bridge breaks the transfer up into single cycles on the 
PCI bus. 

9.5.3.3 Delayed Transaction Support

The PCI host bridge as a PCI master supports delayed transactions. A transaction that was 
retried repeats until completed on the PCI bus. The PCI host bridge does not make any 
distinction between a transaction that was retried and a transaction that was disconnected. 
Both types of transactions are repeated until they complete on the PCI bus. 

A programmable retry time-out counter prevents a deadlock condition due to a broken target 
on the PCI bus. The Master Retry Time-Out (M_RETRY_TO) field in the Master Retry Time-
Out (PCIMRETRYTO) register (PCI index 41h) controls this feature. When the time-out 
counter expires (a cycle was retried unsuccessfully n times on the PCI bus), the cycle is 
discarded and an interrupt can be generated. For a read cycle, the data returned is all ones. 
The Host Bridge Master Interrupt Address (MSTINTADD) register (MMCR offset 6Ch) 
contains the address of the transaction that was retried unsuccessfully. Note that the master 
retry count configuration must not be changed except during PCI bus initialization after a 
system or programmable reset.

Transaction ordering is maintained during delayed transactions. A transaction that is retried 
by an external PCI bus target must complete before any subsequent Am5x86 CPU-to-PCI 
bus transactions are generated.

9.5.3.4 Host Bridge Master Bus Cycles

This section describes in detail the cycles generated by the ÉlanSC520 microcontroller 
acting as PCI host bridge master and includes both the PCI bus and the internal Am5x86 
CPU bus. Note that these are example cases only, and not all cases are shown. The 
diagrams are functionally representative in nature, and should not be used to infer detailed 
timing information. Note also that the synchronization between the CPU and PCI clock 
domains is not shown in detail.

9.5.3.4.1 CPU Read Cycle to the PCI Bus
Figure 9-8 shows an Am5x86 CPU read cycle to the PCI bus. Figure 9-8 could also 
represent a memory, I/O or external PCI bus device configuration cycles. The first group of 
signals includes the internal Am5x86 CPU signals, the second group includes additional 
ÉlanSC520 microcontroller internal signals, and the third group includes the PCI bus 
signals. Note that the PCI bus request and grant signals are shown for convenience, but 
these are not seen externally when the Am5x86 CPU is the initiator of PCI bus transactions.
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Figure 9-8 CPU Read Cycle to the PCI Bus

The following sequence annotates the Am5x86 CPU read cycle to the PCI bus shown in 
Figure 9-8.

■ Clock #1: The Am5x86 CPU starts a read cycle to the PCI bus. 

■ Clock #2: Note that blast is asserted by the Am5x86 CPU signaling a non-burst transfer. 
If this were a burst read cycle, the Am5x86 CPU would deassert blast, but because the 
PCI host bridge returns rdy to the Am5x86 CPU instead of brdy, the Am5x86 CPU would 
break up the burst into single cycles. A posted write cycle pending in the master posted 
write buffer would delay the completion of the Am5x86 CPU read cycle.

■ Clock #6: The PCI host bridge master controller has synchronized the Am5x86 CPU 
bus request and asserts req to gain access to the PCI bus. Because the Am5x86 CPU 
is the initiator of the cycle, the bus request signal is not seen externally.

■ Clock #7: The PCI host bridge gnt signal is sampled asserted, and the PCI bus is idle, 
so FRAME is asserted to begin the PCI bus transaction. In this example, there is no 
arbitration delay (the arbiter is parked on the host bridge). If another external PCI bus 
master was granted the bus, or the bus was not idle, FRAME assertion would be delayed 
until the host bridge’s gnt was asserted and the bus was idle.

■ Clock #9: The external PCI bus target asserts TRDY, indicating that the requested data 
is available. In this example, the PCI bus target did not add any wait states to the 
transaction. A PCI bus Revision 2.2-compliant target can add up to 16 wait states that 
would delay the PCI bus transaction and subsequent Am5x86 CPU cycle completion. 
An external PCI bus target can also issue a retry that would delay the PCI bus transaction 
and subsequent Am5x86 CPU cycle completion (see Section 9.5.3.4.2).
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Notes:
The diagram includes the following internal signals:

• pcihit: Address decode signal that the current Am5x86 CPU cycle is a PCI cycle.

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram 
does not represent the full synchronization of signals between these clock domains.
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■ Clock #10: The PCI host bridge samples TRDY asserted and latches the data from the 
PCI bus.

■ Clock #13: The Am5x86 CPU bus synchronizes the end of the PCI bus cycle and asserts 
rdy to the Am5x86 CPU with the requested read data.

9.5.3.4.2 CPU Read Cycle to the PCI Bus with External Target Retry
Figure 9-9 shows an Am5x86 CPU read cycle to the PCI bus that was retried by the external 
PCI bus target. An external PCI bus target can issue a retry if it is currently busy or if the 
transaction will be completed as a delayed transaction.

Figure 9-9 CPU Read Cycle to the PCI Bus with External Target Retry

Notes:
The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram 
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the Am5x86 CPU read cycle to the PCI bus with external 
target retry shown in Figure 9-9. This example is the same as a regular read (see 
Section 9.5.3.4.1) until Clock #9.

■ Clock #9: The target asserts STOP with TRDY deasserted, signaling a retry. The target 
may add up to 16 waitstates before asserting STOP, which would delay the PCI 
transaction and Am5x86 CPU cycle completion.

■ Clock #10: The PCI host bridge master controller deasserts IRDY and ends the current 
transaction. The data requested by the Am5x86 CPU was not read because of the 
delayed transaction, so rdy is not returned to the Am5x86 CPU. The host bridge will retry 
the current transaction until data is read from the target.

■ Clock #11: The PCI host bridge asserts req to re-gain access to the PCI bus. Because 
the Am5x86 CPU is the initiator of the cycle, the bus request signal is not seen externally.

■ Clock #12: The PCI host bridge gnt signal is sampled asserted, and the PCI bus is idle, 
so FRAME is asserted to retry the PCI transaction. In this example, there is no arbitration 
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delay (the arbiter is parked on the host bridge). If another external PCI bus master was 
granted the bus or the bus was not idle, FRAME assertion would be delayed until the 
host bridge’s gnt was asserted and the bus was idle.

■ Clock #14: The PCI bus target asserts TRDY indicating the data is available.

■ Clock #15: The PCI host bridge samples TRDY asserted and latches the data from the 
PCI bus.

■ Clock #18: The Am5x86 CPU bus synchronizes the end of the PCI bus cycle and asserts 
rdy to the Am5x86 CPU with the requested read data.

9.5.3.4.3 CPU Posted Write Cycle to the PCI Bus
Figure 9-10 shows an Am5x86 CPU write cycle to the PCI bus that is posted by the PCI 
host bridge. This can only be a memory-write cycle to the PCI bus; I/O and configuration 
writes are not posted.

Figure 9-10 CPU Posted Write Cycle to the PCI Bus

Notes:
The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram 
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the Am5x86 CPU posted write cycle to the PCI bus 
shown in Figure 9-10.

■ Clock #1: The Am5x86 CPU starts a write cycle to the PCI bus. 

■ Clock #2: The PCI host bridge also asserts rdy to the Am5x86 CPU, which ends the 
Am5x86 CPU write cycle. The PCI bus transaction has been posted in the host bridge 
and will complete sometime later. If another write cycle is already pending in the posted 
write buffer, rdy will be delayed to the Am5x86 CPU until the preceding posted write has 
completed.
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■ Clock #6: The PCI host bridge master controller has synchronized the Am5x86 CPU 
bus request and asserts req to gain access to the PCI bus.

■ Clock #7: The PCI host bridge gnt signal is sampled asserted, and the PCI bus is idle, 
so FRAME is asserted to begin the PCI transaction. In this example, there is no arbitration 
delay (the arbiter is parked on the host bridge). If another external PCI master was 
granted the bus or the bus was not idle, FRAME assertion would be delayed until the 
host bridge’s gnt was asserted and the bus was idle. Because the Am5x86 CPU is the 
initiator of the cycle, the bus request signal is not seen externally.

■ Clock #9: The external PCI target asserts TRDY indicating it can accept the write data. 
In this example, the PCI target did not add any wait states to the transaction. A PCI bus 
Revision 2.2 compliant target can add up to 16 wait states that would delay the 
transaction completion. A PCI bus target can also retry the PCI transaction. In this case, 
the host bridge continues to generate the same transaction until the target returns TRDY 
to complete the transaction. See Section 9.5.3.4.2 for information on retried transactions.

■ Clock #10: The PCI host bridge samples TRDY asserted, which ends the PCI bus 
transaction.

9.5.3.4.4 CPU Non-Posted Write Cycle to the PCI Bus
Figure 9-11 shows an Am5x86 CPU memory write cycle to the PCI bus with write posting 
disabled. Figure 9-11 could represent any I/O or configuration write cycle.

Figure 9-11 Am5x86 CPU Non-Posted Write Cycle to the PCI Bus

Notes:
The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram 
does not represent the full synchronization of signals between these clock domains.
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The following sequence annotates the Am5x86 CPU non-posted write cycle to the PCI bus 
shown in Figure 9-11.

■ Clock #1: The Am5x86 CPU starts a write cycle to the PCI bus. 

■ Clock #6: The PCI host bridge master controller has synchronized the Am5x86 CPU 
bus request and asserts req to gain access to the PCI bus. Because the Am5x86 CPU 
is the initiator of the cycle, the bus request signal is not seen externally.

■ Clock #7: The PCI host bridge gnt signal is sampled asserted, and the PCI bus is idle, 
so FRAME is asserted to begin the PCI bus transaction. In this example, there is no 
arbitration delay (the arbiter is parked on the host bridge). If another external PCI bus 
master was granted the bus, or the bus was not idle FRAME assertion would be delayed 
until the host bridge’s gnt was asserted and the bus was idle. Because the Am5x86 CPU 
is the initiator of the cycle, the bus request signal is not seen externally.

■ Clock #9: The PCI target asserts TRDY, indicating it can accept the write data. In this 
example, the PCI bus target did not add any wait states to the transaction. A PCI bus 
Revision 2.2 compliant target can add up to 16 wait states that would delay the 
transaction completion. A PCI bus target can also retry the transaction. In this case, the 
host bridge continues to generate the same transaction until the target returns TRDY to 
complete the transaction. The rdy signal is not returned to the Am5x86 CPU until the 
PCI bus transaction completes. See Section 9.5.3.4.2 for information on retried 
transactions.

■ Clock #10: The PCI host bridge samples TRDY asserted, which ends the transaction.

■ Clock #12: The Am5x86 CPU bus synchronizes the end of the PCI bus cycle and asserts 
rdy to the Am5x86 CPU, which ends the write cycle.

9.5.3.4.5 PCI Bus Configuration Read/Write
Am5x86 CPU write cycles to the PCI Configuration Address (PCICFGADR) register (Port 
0CF8h) or the PCI Configuration Data (PCICFGDATA) register (Port 0CFCh) for internal 
PCI host bridge configuration complete with zero Am5x86 CPU cycle wait states (see 
Figure 9-12). 

Figure 9-12 CPU Write Cycles to Internal PCI Bus Configuration Registers

Am5x86 CPU read cycles from the PCI Configuration Address (PCICFGADR) register or 
PCI Configuration Data (PCICFGDATA) register for internal PCI host bridge configuration 
registers also complete with zero wait states (see Figure 9-13). See the read and write 
timing diagrams in Figure 9-8 through Figure 9-11 for Am5x86 CPU read and writes cycles 
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to the PCI Configuration Data (PCICFGDATA) register that access external PCI bus device 
configuration registers.

Figure 9-13 CPU Read Cycles from Internal PCI Bus Configuration Registers

9.5.4 Élan™SC520 Microcontroller’s Host Bridge as PCI Bus Target
As a target, the integrated PCI host bridge only accepts memory cycles from external PCI 
bus masters to allow accesses to the ÉlanSC520 microcontroller’s SDRAM. 

To enable the host bridge as a PCI bus target device, the Memory Access Enable 
(MEM_ENB) bit in the Status/Command (PCISTACMD) register must be set. When this bit 
is set, the PCI host bridge ignores all I/O and configuration cycles on the PCI bus and 
responds to memory cycles within the address space, as defined in Section 9.5.4.1.

9.5.4.1 PCI Host Bridge Target Address Space

Under normal conditions, the ÉlanSC520 microcontroller’s PCI host bridge responds to PCI 
bus master memory cycles in the entire SDRAM address space to allow full access of 
SDRAM from external PCI bus masters. This space is defined as a linear region, starting 
at the lowest address (00000000h) and ending at the top of SDRAM, depending on the 
amount populated in the system (a maximum of 256 Mbytes). The SDRAM controller’s 
configuration registers are programmed with the amount of SDRAM in the system during 
the initial boot process.

Some systems may require specific CPU address space that is normally defined as an 
SDRAM region to be redirected to the PCI bus. An example application is a PCI-bus-based 
VGA video card for PC/AT compatibility. In ÉlanSC520 microcontroller, this redirection is 
programmed via the first two Programmable Address Region (PAR) registers (PAR 0 and 
PAR 1). When this feature is used in a system, the ÉlanSC520 microcontroller’s PCI host 
bridge target shadows PAR 0 and PAR 1 and ignores accesses by external PCI bus masters 
in the programmed address space if they are programmed for PCI bus in the TARGET field.

See Chapter 4, “System Address Mapping”, for further details of PCI host bridge target 
address space.

Because the ÉlanSC520 microcontroller is configured as a PCI host bridge, the PCI bus 
Base Address registers normally found in the PCI bus configuration space are not 
implemented.
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9.5.4.2 PCI Bus Command Support

As a PCI bus target, the ÉlanSC520 microcontroller’s PCI host bridge treats the memory-
write-and-invalidate command the same as a memory-write cycle. When either of these 
commands is issued by a PCI bus master, the PCI host bridge and system arbitration blocks 
force the Am5x86 CPU’s integrated cache to snoop the addresses prior to writing the data 
to SDRAM. If the cache detects a modified cache line at the same address, it writes back 
and invalidates the line. If the CPU is operating in write-through cache mode, the line is 
simply invalidated and the data is written to SDRAM.

The PCI host bridge does not respond to configuration cycles or special cycles issued by 
external PCI bus masters. Interrupt acknowledge cycles and special cycles are not 
forwarded to the PCI bus.

9.5.4.3 DEVSEL Timing

When an external PCI bus master accesses the ÉlanSC520 microcontroller’s SDRAM, the 
PCI host bridge always asserts DEVSEL with medium timing (two clocks after FRAME is 
asserted). The ÉlanSC520 microcontroller does not serve as a subtractive decode agent 
on the PCI bus.

9.5.4.4 Delayed Transaction Support

External PCI bus master reads of the ÉlanSC520 microcontroller’s SDRAM can be 
configured to be delayed transactions This maximizes PCI bus efficiency by freeing up the 
bus while the initial SDRAM read request is issued to the SDRAM controller.

When the Automatic Delayed Transaction Enable (T_DLYTR_ENB) field is set in the Host 
Bridge Control (HBCTL) register (MMCR offset 60h), the PCI host bridge immediately 
issues a retry to the external PCI bus master read cycle and begins requesting the data 
from the SDRAM controller. The external PCI bus master read cycle is retried until any of 
the requested data has been read into the target read FIFO. Only the first doubleword 
requested needs to be read into the target read FIFO before the PCI host bridge completes 
the delayed transaction instead of retrying it again. After the PCI host bridge responds to 
the delayed transaction, it continues to prefetch data and provides all the data requested 
(up to 64 doublewords maximum) by the external PCI bus master without disconnecting.

When a delayed transaction read cycle is pending (waiting for the originating external PCI 
bus master to retry the transaction), all other read transactions are terminated with a retry. 
The PCI host bridge supports one outstanding delayed transaction, so these retried 
transactions are not latched. Write transactions, however, are allowed to complete and are 
placed in the PCI host bridge target write FIFO. A delayed transaction discard timer is 
provided so that a broken master does not deadlock the system. If, after 215 PCI clocks, a 
master has not retried a delayed transaction, the transaction is discarded and an interrupt 
can be optionally generated. The delayed transaction discard timer is fixed at 215 PCI clocks.

When external PCI bus master reads of ÉlanSC520 microcontroller’s SDRAM are not 
configured as automatic delayed transactions, the PCI host bridge tries to return the 
requested data to the PCI bus master without issuing a retry. Wait states are inserted into 
the transaction until the data is read from SDRAM. If the initial data cannot be returned in 
32 clocks, the PCI host bridge terminates the transaction with a retry and latches the read 
transaction as a delayed transaction to comply with the PCI Local Bus Specification, 
Revision 2.2. Note that if any data is pending in the Am5x86 CPU-to-PCI posted-write latch, 
it must be flushed before read data can be returned to an external PCI master by the PCI 
host bridge target controller. In this case, the PCI host bridge immediately retries the 
external PCI master read transaction and latches the request as a delayed transaction.
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The PCI host bridge retries any external PCI bus master write cycle when the write FIFO 
is full. The PCI host bridge retries all external PCI bus master cycles (write and read) if the 
address FIFO is full (see the Section 9.5.4.5).The PCI host bridge always disconnects after 
64 consecutive doublewords are transferred to prevent any one PCI bus master from 
monopolizing the bus and to guarantee sufficient CPU bus bandwidth. 

9.5.4.5 Address FIFO

The PCI host bridge’s target controller includes an address FIFO that keeps track of address 
and command requests made to the target controller. The address FIFO allows one 
outstanding delayed read transaction and up to four posted writes, depending on the 
ordering of the transactions. 

■ If the address FIFO is empty (no latched transactions in the target controller) and a read 
transaction is received prior to any posted writes, the read is latched and a delayed 
transaction retry is issued. After this, up to four posted writes can be latched following 
the read (for a total of five latched transactions in the FIFO). 

■ If the address FIFO contains any posted write transaction (before a read transaction is 
received), only a total of four transactions can be latched into the address FIFO. That 
is, if the first posted transaction is a write, up to four transactions can be latched into the 
address FIFO (three writes and one read, or four writes). 

■ If four posted writes reside in the address FIFO, no delayed read transactions can be 
latched. In this case, all read requests are retried (not latched into the address FIFO) 
until one of the posted writes has completed internally.

■ In all cases, only a maximum of one delayed read transaction can be latched into the 
address FIFO. If two read transactions are received, the target controller only latches 
the first one. The second (and subsequent) reads are not latched into the target 
controller, even if the address FIFO is not full.

■ Note that, even if the address FIFO is not full, but the data FIFO is already full, further 
posted writes are not accepted.

The ÉlanSC520 microcontroller’s PCI host bridge complies to the PCI Local Bus 
Specification, Revision 2.2, rules for transaction ordering to prevent deadlock conditions.

9.5.4.6 PCI Host Bridge FIFOs and Prefetching

The PCI host bridge target controller has a 64-doubleword write FIFO and posts writes from 
external PCI bus masters to SDRAM. The PCI host bridge does not insert wait states into 
an external PCI bus master write cycle by deasserting TRDY. If the write FIFO becomes 
full during an external PCI bus master write transaction, the PCI host bridge issues a 
disconnect to end the cycle. A maximum of four transfers can be posted (each transfer can 
burst multiple data phases, but the ÉlanSC520 microcontroller’s target FIFOs store a 
maximum number of 64 doublewords for all the posted writes). 

The SDRAM controller’s write buffer can byte-merge, combine, and collapse data if enabled, 
yielding additional performance of SDRAM writes from PCI bus masters. See Chapter 11, 
“Write Buffer and Read Buffer”, for further details. However, the PCI host bridge does not 
byte-merge, combine, or collapse data in the target write FIFO.
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The PCI host bridge as a target prefetches data from SDRAM in response to an external 
PCI bus master read transaction. The read buffer in the SDRAM controller should be 
enabled for optimal performance, especially during memory-read-multiple commands by 
external PCI bus masters. 

■ For memory-read and memory-read-line commands, the PCI host bridge prefetches 
data up to the next cache line (a cache line is four doublewords). 

■ Memory-read-multiple commands fill the target FIFO (64 doublewords). 

Once the PCI host bridge has been granted access to the CPU bus, it will hold the bus until 
it has prefetched up to the next cache-line boundary for memory-read and memory-read-
line commands, and 64 doublewords for memory-read-multiple commands. The PCI host 
bridge may insert wait states before asserting TRDY for the first data phase. The PCI host 
bridge can then burst one cache line with zero wait states. After each cache line, the PCI 
host bridge can insert wait states by deasserting TRDY if the target read FIFO becomes 
empty.

Note that, if the target read FIFO becomes empty after a cache-line boundary for memory-
read and memory-read-line commands or after 64 doublewords for a memory-read-multiple 
command, the PCI host bridge issues a disconnect to end the transaction.

9.5.4.7 Burst Ordering

To provide optimal CPU performance during SDRAM accesses, the ÉlanSC520 
microcontroller’s SDRAM controller is designed to support Am5x86 CPU cache-line burst 
ordering, but the PCI bus specifies linear burst ordering. Therefore, all PCI host bridge 
accesses to SDRAM are cache-line-aligned (start on a four-doubleword boundary). If the 
external PCI bus master read cycle was not cache-line-aligned, the PCI host bridge starts 
requesting the SDRAM read from the address that the master issued and generates single-
phase data cycles until it becomes cache-line-aligned. 

For example, if the external PCI bus master started a write with address 10008h and wrote 
ten doublewords, the PCI host bridge would generate single, non-burst write cycles to 
address 10008h and 1000Ch. After these two write cycles, the transaction would be cache-
line-aligned, so the PCI host bridge would complete the transaction with burst cycles.

9.5.4.8 Maintaining Data Coherency

All external PCI bus master accesses to SDRAM are snooped by the Am5x86 CPU’s cache, 
which writes back and invalidates a cache line as appropriate. If the CPU detects a hit to 
a modified line in its cache, the arbitration unit forces the PCI host bridge to relinquish the 
Am5x86 CPU bus to allow the cache line to be written back to SDRAM. If the cache is 
configured in write-through cache mode, the line is simply invalidated and the PCI host 
bridge is not forced off the bus for a write-back cycle.

In many systems that employ posting buffers, a potential data coherency problem exists 
because of the delay between an external master write transaction and when SDRAM is 
actually updated due to the write posting FIFO. The PCI bus complicates this potential 
problem when PCI-to-PCI bridges are implemented in the system.

In ÉlanSC520 microcontroller, for example, if an external master writes a block of data into 
SDRAM and then generates an interrupt request to the Am5x86 CPU to process the data, 
it is important to prevent the Am5x86 CPU from attempting to read SDRAM before the 
posted data has actually been written to SDRAM by the PCI host bridge’s posting-write 
FIFO. The PCI bus specification recommends that the CPU perform a read to the 
interrupting PCI bus device, to force all system posted write buffers to flush (including PCI 
bus bridges).
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If the PCI host bridge target read FIFOs contain data from a previous memory-read 
command that was obtained as part of a delayed transaction while a write to the same 
memory address region occurs, the read FIFOs can optionally be purged to maintain 
coherency by setting the T_PURGE_RD_ENB bit in the Host Bridge Control (HBCTL) 
register (MMCR offset 60h). The T_PURGE_RD_ENB bit must not be changed except 
during PCI bus initialization after a system or programmable reset. 

■ Memory-read and memory-read-line commands generate a purge when the write 
address is within the same cache line as the prefetched data. Note that the addresses 
do not necessarily overlap in this case. For example, a memory-read command to 5008h 
will prefetch 5008h and 500Ch. A memory-write command to 5000h will then cause a 
purge because it is in the same cache line, even though the addresses do not overlap.

■ Memory-read-multiple commands generate a purge if the write is in the same 64-
doubleword region as the prefetched data. In this case, exact addresses are compared. 
Note that a write to the same 64-doubleword region causes a purge even if the prefetch 
is not complete. If, for example, the host bridge is prefetching the 32nd doubleword on 
the Am5x86 CPU bus, and a write comes into the 53rd doubleword (or any number 
greater than 32 and less than 64, in this case), this write will cause a purge.

9.5.4.9 PCI Host Bridge Target Bus Cycles

This section describes in detail the cycles generated by an external PCI bus master for 
which the ÉlanSC520 microcontroller PCI host bridge responds, and includes both the PCI 
bus and the internal Am5x86 CPU bus. The PCI host bridge forwards cycles that are 
destined to SDRAM from the PCI bus to the Am5x86 CPU bus.

The examples shown apply primarily to concurrent arbitration mode; there are a few 
differences when operating in nonconcurrent arbitration mode. See Chapter 8, “System 
Arbitration”, for further details on the arbitration modes.

Note that these are example cases only, and not all cases are shown. The diagrams are 
functionally representative in nature, and should not be used to infer detailed timing 
information. Note also that the synchronization between the CPU and PCI clock domains 
is not shown in detail.

9.5.4.9.1 External PCI Bus Master Posted Write to SDRAM
Figure 9-14 shows an external PCI bus master writing seven doublewords to the ÉlanSC520 
microcontroller’s SDRAM. The first group of signals are the PCI bus signals, and the second 
group are internal signals.
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Figure 9-14 External PCI Bus Master Posted Write to SDRAM

The following sequence annotates the external PCI bus master posted write to SDRAM 
shown in Figure 9-14.

■ Clock #1: An external PCI master initiates a write transaction to the ÉlanSC520 
microcontroller’s SDRAM.

■ Clock #3: The PCI host bridge always asserts DEVSEL with medium timing. In this 
example, the write FIFO is not full, so TRDY is also asserted to accept the write data. If 
either the write FIFO or the address FIFO had been full, then the PCI host bridge would 
immediately issue a retry to the external master by asserting STOP instead of TRDY.

■ Clocks #4–#10:  The write FIFO is not full, so TRDY remains asserted to accept the 
write data. The PCI host bridge does not insert wait states into the PCI transaction by 
deasserting TRDY. If the FIFO becomes full during the transaction but the external PCI 
master indicates it is willing to burst more data (by keeping FRAME asserted), the host 
bridge issues a disconnect by deasserting TRDY and asserting STOP (see 
Section 9.5.4.9.3). The external master can insert wait states into the PCI transaction 
by deasserting IRDY. The host bridge is posting the write data (it will be written to SDRAM 
sometime later).

■ Clock #7:  The PCI host bridge has synchronized the first PCI data phase (Clock #4) 
and requests access to the SDRAM controller.

■ Clock #9:  The SDRAM controller is granted to the PCI host bridge and the PCI bus data 
can be written to SDRAM. The hb_gnt signal may be delayed if the Am5x86 CPU or GP-
DMA is accessing SDRAM.

1 2 3 4 5 6 7 8 9 10

address data1 data2 data3

write cmd be1 be2 be3

data4

be4

data5 data6 data7

be5 be6 be7

CLKPCIIN

ADx

CBEx

FRAME

IRDY

TRDY

DEVSEL

hb_req

hb_gnt

Notes:
The diagram includes the following internal signals:

• hb_req: PCI host bridge requesting the Am5x86 CPU bus to access the SDRAM controller.

• hb_gnt: PCI host bridge has been granted Am5x86 CPU bus and can access the SDRAM controller.

See Chapter 8, “System Arbitration”, for information on Am5x86 CPU bus arbitration.
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9.5.4.9.2 External PCI Master SDRAM Read (Delayed Transaction)
Figure 9-15 shows an external PCI bus master read transaction to the ÉlanSC520 
microcontroller’s SDRAM.

Figure 9-15 External PCI Master SDRAM Read (Delayed Transaction)

The following sequence annotates the external PCI master SDRAM read shown in 
Figure 9-15.

■ Clock #1: An external PCI bus master initiates a read transaction to ÉlanSC520 
microcontroller’s SDRAM.

■ Clock #3: The PCI host bridge target controller accepts the transaction by asserting 
DEVSEL. TRDY is not asserted, because there is no data in the target read FIFO (this 
is a new transaction).

■ Clock #4: The PCI host bridge target controller asserts STOP, signaling a retry to the 
external PCI bus master. Because no data was transferred, the external PCI bus master 
is required to retry the transaction. (This figure assumes that the ÉlanSC520 
microcontroller is configured for automatic delayed transactions.) The host bridge latches 
the transaction information and will prefetch the requested read data. This is now a 
delayed transaction, and the PCI bus master is required to relinquish bus ownership and 
re-arbitrate to retry the cycle. If there is already a previous delayed transaction pending, 
the current transaction will not be latched. Note that, in this example, STOP is asserted 
for two clock periods, because a target is required to keep this signal asserted until 
FRAME is deasserted.

■ Clock #7: The PCI host bridge has synchronized the delayed transaction request and 
requests access to the SDRAM controller to prefetch the data requested by the external 
PCI master.

■ Clock #8: The CPU bus is granted to the PCI host bridge, and the PCI bus data can be 
read from SDRAM. The hb_gnt signal may be delayed if the Am5x86 CPU or GP-DMA 
controller is accessing SDRAM. The host bridge prefetches up to the next cache line in 
response to a memory-read or memory-read-line command and up to 64 doublewords 
in response to a memory-read-multiple command.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cmd be1

address address

cmd

data1 data2 data3

be1 be2 be3

CLKPCIIN

ADx

CBEx

FRAME

IRDY

TRDY

DEVSEL

STOP

hb_req

hb_gnt
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■ Clock #12: The external PCI bus master retries the delayed transaction. While a delayed 
transaction is pending, all other read transactions are retried by the host bridge (these 
are not latched as delayed transactions). Write transactions, however, are allowed to 
complete and are put into the write FIFO. If the external PCI master retries the delayed 
transaction before the host bridge has read the first doubleword of data into the target 
read FIFO, the host bridge issues another retry to the external PCI bus master (and 
keeps issuing retries until the first doubleword of data has been read into the target read 
FIFO).

■ Clock #14: By now, the PCI host bridge has read in the first doubleword of data into the 
target read FIFO and recognizes this transaction as the pending delayed transaction. 
The host bridge asserts DEVSEL to claim the transaction.

■ Clock #16: The PCI host bridge asserts TRDY for the first data phase of the transaction. 
After the first data phase, the host bridge can burst up to the next cache-line boundary 
without adding anymore wait states. After each cache line, the PCI host bridge may 
insert wait states if the target read FIFO becomes empty.

■ Clocks #17–#19:  The external PCI master reads the data from the PCI host bridge. 
(Although the figure shows it this way, note that SDRAM having the data by Clock #17 
is quite optimistic.) The external PCI bus master can insert wait states into the transaction 
by deasserting IRDY. Clock #19 is the last data requested by the external PCI bus master 
(FRAME deasserted, IRDY asserted).

9.5.4.9.3 PCI Host Bridge Target Disconnect
Figure 9-16 shows the PCI host bridge target controller issuing a disconnect to an external 
PCI bus master. This example shows a disconnect during an external PCI bus master write 
cycle, but the mechanism is the same for external PCI bus master read cycles. The only 
difference is that Clock #2 is a turnaround cycle on AD31–AD0 bus. The PCI host bridge 
issues a disconnect if:

■ During an external PCI bus master write cycle, the write FIFO becomes full or 64 
consecutive doublewords have been written by the bus master.

■ During an external PCI bus master read cycle, the target read FIFO becomes empty— 
Note that for memory-read and memory-read-line commands, the PCI host bridge can 
burst up to the next cache-line boundary without disconnecting; for memory-read-
multiple commands, the PCI host bridge can burst 64 doublewords without 
disconnecting. If the external PCI bus master wishes to burst beyond these limits, then 
the PCI host bridge may issue a disconnect.
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Figure 9-16 PCI Host Bridge Target Disconnect

The following sequence annotates the PCI host bridge target disconnect shown in 
Figure 9-16.

■ Clock #1: An external PCI bus master initiates a write transaction to ÉlanSC520 
microcontroller SDRAM.

■ Clock #3: The PCI host bridge always asserts DEVSEL with medium timing and asserts 
TRDY, signaling it is ready to accept data (provide data for external PCI bus master 
reads).

■ Clocks #3–#4: Both TRDY and IRDY are sampled asserted, signaling a valid data phase. 
External master write data will be accepted by the PCI host bridge (or the external master 
will read data for external PCI bus master read cycles).

■ Clock #5:  The PCI host bridge write FIFO is full (or the target read FIFO is empty for 
external PCI bus master read cycles), so TRDY is deasserted and STOP is asserted, 
signaling a disconnect. Because TDRY is deasserted, Clock #5 is the last valid data 
phase. Note that FRAME is still asserted, signaling that the external PCI bus master is 
requesting to burst more data.

■ Clock #6:  The external PCI bus master deasserts FRAME in response to STOP being 
sampled asserted. Because TRDY is deasserted, this is not a valid data phase and no 
data will be transferred.

■ Clock #7:  The external PCI bus master deasserts IRDY and the PCI host bridge 
deasserts STOP and DEVSEL, ending the PCI bus transaction. The host bridge has 
synchronized the first PCI bus data phase (Clock #3) and requests access to the SDRAM 
controller.

■ Clock #9:  The CPU bus is granted to the PCI host bridge, and the PCI bus data can be 
written to SDRAM. The hb_gnt signal may be delayed if the Am5x86 CPU or GP-DMA 
controller is accessing SDRAM.

1 2 3 4 5 6 7 8 9 10

address data1 data2 data3

write cmd be1 be2 be3

CLKPCIIN

ADx

CBEx

FRAME

IRDY

TRDY

DEVSEL

STOP

hb_req

hb_gnt
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9.5.5 Interrupts
The PCI host bridge has one maskable interrupt request signal and one NMI signal routed 
to the ÉlanSC520 microcontroller’s interrupt controller. These interrupt signals are shared 
by the arbiter, and PCI master and target controllers of the host bridge. Each interrupt 
source (both master and target sources) can be individually programmed to generate a 
maskable interrupt instead of a non-maskable interrupt request.

The following conditions can be programmed to generate an interrupt by the PCI host bridge 
master controller:

■ Detected parity error during a read cycle

■ Received parity during a write cycle or during the address phase of a read cycle

■ Retry time-out counter expired

■ Cycle was terminated with master abort 

■ Cycle was terminated with target abort

■ System error (SERR) pin asserted by PCI bus device

When an interrupt is generated, the address of the cycle during which the interrupt condition 
was detected is stored in the Host Bridge Master Interrupt Address (MSTINTADD) register 
(MMCR offset 6Ch), and the command is stored in the Host Bridge Master Interrupt Status 
(HBMSTIRQSTA) register (MMCR offset 68h). If multiple interrupt conditions are pending, 
the registers store the information for the first interrupt condition only. If multiple interrupts 
are pending, there is no indication to which interrupts the Master Interrupt Command 
Identification (M_CMD_IRQ_ID) and Master Interrupt Address Identification 
(M_AD_IRQ_ID) fields correspond. Status bits in the Status/Command (PCISTACMD) 
register (PCI index 04h) are also set when error conditions are detected. These bits are 
set whenever the error condition is detected, regardless of the interrupt enable bits.

The following conditions can be programmed to generate an interrupt by the host bridge 
target controller:

■ Detected parity error during a data phase of a write cycle

■ Detected parity error during an address phase

■ Delayed transaction time-out—215 clocks have expired without an external PCI master 
retrying a delayed transaction

When an interrupt is generated, the REQ/GNT number of the PCI bus master that caused 
the error is stored in the Host Bridge Target Interrupt Status (HBTGTIRQSTA) register 
(MMCR offset 64h). If multiple interrupt conditions are pending, the Target Interrupt 
Identification (T_IRQ_ID) field stores only the information for the first interrupt condition. If 
multiple interrupts are pending, there is no indication to which interrupt the T_IRQ_ID field 
corresponds. The appropriate status bits in the Status/Command (PCISTACMD) register 
(PCI index 04h) are also set when error conditions are detected. These bits are set whenever 
the error condition is detected, regardless of the interrupt enable bits.

See Chapter 15, “Programmable Interrupt Controller”, for further details on the 
programming and routing of interrupt requests. See Chapter 8, “System Arbitration”, for 
further details on arbitration.
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9.5.6 Latency
PCI bus latency issues are described separately for the CPU and external PCI bus masters. 

■ Master latency refers to the case when the ÉlanSC520 microcontroller’s Am5x86 CPU 
is the master on the PCI bus. 

■ Target latency refers to the case when the ÉlanSC520 microcontroller is a PCI bus target 
accessed by external PCI bus masters.

9.5.6.1 Master Latency

The posted write buffer allows Am5x86 CPU memory-write cycles to complete without 
incurring the PCI bus transaction latency. Any other cycle between the CPU and the PCI 
bus (memory read, I/O write, I/O read) must complete on the PCI bus before ready is 
returned to the Am5x86 CPU. Note that write posting must be disabled while the ÉlanSC520 
microcontroller is operating in nonconcurrent arbitration mode. See Chapter 8, “System 
Arbitration”, for details on nonconcurrent mode arbitration.

The target being accessed may retry the Am5x86 CPU cycle (target busy) multiple times, 
which would delay the Am5x86 CPU. This performance penalty can be limited by 
configuration of the Am5x86 CPU using the Master Retry Time-Out (M_RETRY_TO) field 
in the Master Retry Time-Out (PCIMRETRYTO) register (PCI index 41h), which limits the 
number of times the PCI host bridge retries a transaction before returning the rdy signal to 
the Am5x86 CPU. Note that the master retry count configuration must not be changed 
except during PCI bus initialization after a system or programmable reset.

The Am5x86 CPU typically performs non-burst read transactions to the PCI bus, because 
PCI bus memory is noncacheable (write transactions to PCI are always non-burst). There 
are a few cases when the CPU bursts up to two doublewords on a read transaction. For 
simplicity, in these cases, the PCI host bridge breaks up any Am5x86 CPU burst read cycles 
into single doubleword read transactions on the PCI bus, which also slows down the Am5x86 
CPU read performance to the PCI bus. Because the PCI host bridge master controller 
performs single data phase transactions only, the master latency timer is not implemented.

9.5.6.2 Target Latency

Write posting and delayed transactions in the PCI host bridge target controller allow external 
PCI bus master cycles to complete without incurring SDRAM access latency. Without write 
posting and delayed transactions, the PCI host bridge target controller would insert wait 
states, while arbitrating for use of the SDRAM controller. 

Delayed transaction support allows this time spent arbitrating for the CPU bus and the 
SDRAM controller transaction to be reallocated to another bus master, rather than forcing 
the first bus master to remain in a long wait state period. Instead, the first bus master’s 
request is latched and placed in the delayed transaction queue for processing by the PCI 
host bridge, and the bus master is forced off of the PCI bus with a retry, at which point the 
PCI bus arbiter may grant the bus to another PCI bus master. The second PCI bus master 
could perform a peer-to-peer transfer or memory write to SDRAM while the PCI host bridge 
continues to process the first bus master’s request. 

Delayed transactions avoid the wasted bus bandwidth that may occur if the PCI host bridge’s 
response to the transaction exceeded the specified 32 PCI bus clocks (16 for non-host 
bridge devices), at which point the PCI bus master would be retried anyway (thus wasting 
16–32 PCI bus clocks).
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The concurrent nature of ÉlanSC520 microcontroller’s system architecture is such that a 
SDRAM read request from an external PCI master may be delayed. The reasons for this 
delay are:

■ The Am5x86 CPU may be currently accessing ROM, GP bus, or SDRAM.

■ The SDRAM controller may be currently servicing a SDRAM refresh.

■ A DMA transaction may be in progress between a GP-DMA initiator and SDRAM. Such 
transactions are variable in length and subject to the programmed DMA transfer mode. 
For example, in block or demand mode, the DMA transfer cannot be preempted.

Note: Large GP Bus DMA transfers in demand or block mode, or very slow GP bus cycles 
(initiated via programmable GP bus timing, or by deasserting the GPRDY signal) can cause 
the PCI host bridge target controller to violate the 10 µs memory write maximum completion 
time limit set in the PCI Local Bus Specification, Revision 2.2. In PCI bus 2.2-compliant 
designs, software must limit the length of GP bus cycles and GP bus DMA demand- or 
block-mode transfers.

Delayed transactions can increase Am5x86 CPU and GP-DMA latency to SDRAM because 
of prefetching in response to memory-read-multiple commands. For example, when a 
prefetch of 64 doublewords occurs during a PCI bus master memory-read-multiple cycle 
of the ÉlanSC520 microcontroller’s SDRAM, neither the Am5x86 CPU or the GP-DMA 
controller has access to the CPU bus. After the initial prefetch of 64 doublewords, the PCI 
host bridge relinquishes ownership of the CPU bus.

9.6 INITIALIZATION
The PCI bus RST signal, when asserted, resets the ÉlanSC520 microcontroller’s PCI host 
bridge, as well as any external PCI bus devices.

The RST signal is asserted in response to a system reset (see “System Reset” on page 6-4) 
or by setting the PCI_RST bit in the Host Bridge Control (HBCTL) register (MMCR offset 
60h). These reset sources assert and deassert the RST signal asynchronously to the PCI 
bus clock. 

When the RST signal is asserted, the PCI host bridge master controller and target controller 
state machines go to their idle states, and the host bridge FIFOs are purged. The PCI host 
bridge register bits are reset to their default states due to system reset, but the PCI_RST 
bit does not reset the PCI host bridge configuration registers or the host bridge status bits 
(see the register descriptions in the Élan™SC520 Microcontroller Register Set Manual, 
order #22005).

After reset, the PCI host bridge target controller is disabled, but the host bridge responds 
to configuration transactions from the Am5x86 CPU. Note that the PCI host bridge master 
controller is always enabled.

After reset the following steps should be taken to configure the PCI host bridge. Configure 
the PCI host bridge first; then, configure the external PCI bus devices.

1. Configure the PCI host bridge.

a. Program the desired ÉlanSC520 microcontroller arbitration mode, including 
concurrency mode and PCI bus master arbitration priorities, etc. See “Initialization” 
on page 8-22, for more detailed information on arbitration.

b. Program the Programmable Address Region (PAR) registers, if required. See 
Chapter 4, “System Address Mapping”, for details on programming PCI bus memory 
space.
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c. Program the ÉlanSC520 microcontroller-specific PCI host bridge configuration (write 
posting, retry time-out counter, interrupts, etc.). Note that write-posting must be 
disabled while operating in nonconcurrent arbitration mode. See Chapter 8, “System 
Arbitration”, for further details on nonconcurrent mode arbitration.

d. Program the standard PCI bus configuration registers. See “Configuration Information” 
on page 9-9 for more information.

2. Configure the external PCI bus devices.

In general, PCI host bridge configuration bits should not be changed except during a PCI 
bus initialization after a system or programmable reset.

A PCI bus 2.2-compliant target is not required to meet the normal initial latency time limit 
if it is accessed during the 225 clock periods (about one second) following RST signal 
deassertion. During this time, an addressed target is permitted to do any of the following:

■ Initiate a retry.

■ Claim the access and hold in wait states until ready to respond.

■ Ignore the access.

A device that ignores the access is essentially not recognized if the initialization software 
tries to configure it too soon after RST is deasserted, resulting in an incomplete system 
configuration. To support such devices, the initialization software might need to include a 
delay to ensure that 225 clock periods pass before PCI devices are configured.
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CHAPTER
10
 SDRAM CONTROLLER
10.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated SDRAM controller. 

Features include:

■ SDRAM (synchronous DRAM) support

■ 3.3-V DC 66-MHz SDRAM or faster (16 Mbit through 256 Mbit)

■ Achieves 3-1-1-1 read bursts on SDRAM (page hit for all device speed grades with 
CAS latency (CL) = 2)

■ Support for up to four banks, each bank independently programmed for size and 
symmetry (symmetric and asymmetric SDRAMs)

■ Up to 256 Mbytes of SDRAM

■ Optional SDRAM refresh during reset

■ SDRAM auto refresh

■ Error Correction Code (ECC) support (single-bit correct/multi-bit detect)

■ SDRAM write buffering that supports write-merging, write-collapsing, and read-merging

■ Read buffer with read-ahead feature for SDRAM read prefetching

■ Read-around-write support that gives read priority over posted writes when the write 
buffer is enabled

10.2 BLOCK DIAGRAM
The SDRAM controller and its interface to the system SDRAM, along with the write buffer 
and the read buffer, are shown in Figure 10-1. (The write buffer and read buffer are described 
in Chapter 11.) Figure 10-2 shows a more detailed block diagram of the SDRAM controller 
subsystem.

10.3 SYSTEM DESIGN
The SDRAM controller of the ÉlanSC520 microcontroller supports SDRAM devices only. 
Figure 10-3 illustrates the connection of the SDRAM signals from the ÉlanSC520 
microcontroller to the SDRAM banks.

Although the data bus width is only 32-bits in the ÉlanSC520 microcontroller, 64-bit (168-
pin DIMMs) memory modules can be used. Each 168-pin DIMM can be used as a pair of 
banks. By appropriately connecting the SCS3–SCS0 signals to the SDRAM DIMM module, 
168-pin modules can be used in an ÉlanSC520 microcontroller system. 

Figure 10-4 shows an example configuration of a 168-pin SDRAM DIMM used as two banks. 
For the DIMM in this example, 8-bit devices are used. A DIMM configured for ECC is not 
shown. 
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Figure 10-1 SDRAM Controller Block Diagram

Read Buffer

Write Buffer

SDRAM
A

dd
re

ss
 D

ec
od

e

C
P

U
 In

te
rfa

ce

MD31–MD0

BA1–BA0

MECC6–MECC0

SDQM3–SDQM0

CLKMEMOUT

CLKMEMIN

SCASB–SCASA

SRASB–SRASA

SWEB–SWEA

Clock Generator
66

 M
H

z
33 MHz 32 kHz

SCS3–SCS0

MA12–MA0

Controller

Élan™SC520 Microcontroller

33 MHz

32
 k

H
z

32KXTAL2–32KXTAL1
33MXTAL2–33MXTAL1
10-2 Élan™SC520 Microcontroller User’s Manual



SDRAM Controller
Figure 10-2 Detailed Block Diagram of SDRAM Controller

Notes:
SDRAM controller trace and test logic is not shown.
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Figure 10-3 SDRAM Bank Configuration

Notes:
* ECC is optional. Since the entire doubleword is always written to the SDRAM during a read-modify-write operation 
(see “Error Correction Code (ECC)” on page 10-16), any one of the four SDQM signals can be connected to the 
DQM of the device that stores the 7-bit check word. 
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D[31:24] D[23:16] D[15:8] D[7:0] 

DQM[0]

D[38:32]

CAS
RAS

DQM[1]DQM[2]DQM[3]DQM[3]*

BA1–BA0

SDQM0
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Figure 10-4 Example Configuration of a 168-Pin SDRAM DIMM

10.3.1 SDRAM Pins
The SDRAM interface pins are dedicated to supporting SDRAM devices only. 

Four chip select signals, SCS3–SCS0, are provided for independent bank selection.

The SRASA–SRASB, SCASA–SCASB, and SWEA–SWEB signals are device command 
signals that are encoded by the SDRAM controller to send a command to the SDRAM 
devices. Each device in the array must sample these signals. 

■ Since this may result in heavy loading, two SRAS and two SCAS signals are provided 
to allow splitting load capacitance on these pins among the banks. 

X8 X8 X8 X8 X8 X8 X8 X8

DQ63–DQ32 DQ31–DQ0

SCASB SCASA

SRASB

SWEB

SCS1

SRASA

SWEA

SCS0

MD31–MD0

Bank 0Bank 1

SDQM3 SDQM2 SDQM1 SDQM0

BA1–BA0
MA12–MA0,
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– For example, banks 0 and 1 can share the SRASA and SCASA signal. 

– Likewise, banks 2 and 3 can share the SRASB and the SCASB signal. 

■ Two SWE signals are also provided to alleviate single pin loading. 

– For example, banks 0 and 1 can share the SWEA signal, and banks 2 and 3 can share 
the SWEB signal. 

The four SDQM lines, SDQM3–SDQM0, provide byte masking. 

■ Each of the four SDQM3–SDQM0 signals is associated with one byte of four throughout 
the array. Each SDQMx signal provides an input mask signal for write accesses and an 
output enable signal for read accesses. 

See Figure 10-3 on page 10-4, which illustrates the connection of SDRAM signals from the 
ÉlanSC520 microcontroller to the external SDRAM banks. Since the SDRAM controller 
shares the MD31–MD0 data bus with the ROM/Flash controller, the SDRAM controller 
guarantees the SDQM3–SDQM0 signals are forced inactive to make sure the SDRAM 
devices do not contend with the ROM or Flash devices that may share the data bus.

10.3.2 SDRAM Clocking
The SDRAM device’s clock is sourced from the SDRAM controller interface of the 
ÉlanSC520 microcontroller. As shown in Figure 10-1 on page 10-2, there are two clock 
pins dedicated for the SDRAM interface. 

■ CLKMEMOUT is a 66-MHz clock. 

■ CLKMEMIN must be a direct feedback version of CLKMEMOUT. 

The SDRAM controller’s data buffers use CLKMEMIN to latch read data coming from the 
SDRAM devices. CLKMEMIN is used to compensate for delays associated with board 
loading and external buffering (to allow for read data flight time from the SDRAM device). 
The allowable delay between CLKMEMOUT and CLKMEMIN is –0.5 to +6.0 ns.

The following describes a typical scenario for SDRAM systems used with the ÉlanSC520 
microcontroller. These are general guidelines to demonstrate system considerations and 
are not intended for use as system implementations.

The CLKMEMOUT pin has a 24-mA driver and is capable of driving a 50-pF load directly, 
without requiring an external clock driver/buffer and still remain under the maximum 
allowable delay of 6 ns. A CLKMEMOUT load above 50 pF may result in delays greater 
than 6 ns that could jeopardize data integrity. The 50-pF load includes all loads presented 
to the CLKMEMOUT pin such as board routing (between CLKMEMOUT and CLKMEMIN), 
DIMM connector load, and SDRAM device load. 

Table 10-1 shows estimated bank loads as they pertain to SDRAM device data widths. As 
shown in Table 10-1, a bank composed of 4-bit devices presents a greater load to the 
CLKMEMOUT pin than a bank composed of 8-bit devices. This table does not include board 
or connector loads. 

Table 10-1 SDRAM Clock Loading Estimates Based on Device Width

Device Width

4-Bit 8-Bit 16-Bit 32-Bit

Device count (per bank) 8 4 2 1

Total SDRAM clock loading (pF) 32 16 8 4
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Figure 10-5 shows a lightly loaded system. Typically, this delay can be implemented as fast 
buffers, capacitors, series resistors, etc. or as a short.

Figure 10-5 SDRAM Clock Generation

Figure 10-6 shows an example of a two-bank SDRAM system that uses an external clock 
driver. The clock driver is used to buffer CLKMEMOUT to support the load of multiple banks 
of SDRAM. A buffered version of CLKMEMOUT is returned on CLKMEMIN to compensate 
for the clock skew presented by the clock driver.

Figure 10-6 Alternate SDRAM Clock Generation with External Clock Driver

The delays that the system designer must take into consideration are identified by this 
equation:

TAC + TSKEW + TCK_LD + TD_LD <= TCK

where:

TAC : Access time of SDRAM device (not impacted by board design)

TSKEW: The delay between CLKMEMOUT to CLKMEMIN

TCK_LD: Additional clock delay due to loading

TD_LD: Data delay due to loading

TCK: SDRAM memory clock 

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and 
additional timing diagrams.

SDRAM

Controller
CLKMEMIN

CLKMEMOUT

Delay

SDRAM Bank

Élan™SC520
Microcontroller

SDRAM Bank
CLKMEMOUT

SDRAM

Controller

CLKMEMIN

Drivers

SDRAM Bank

Élan™SC520 
Microcontroller
Élan™SC520 Microcontroller User’s Manual 10-7



SDRAM Controller
10.3.3 SDRAM Loading
Table 10-2 through Table 10-5 show estimated capacitances for the SDRAM devices that 
the ÉlanSC520 microcontroller can support. (See Table 10-8 on page 10-13 for a listing of 
the SDRAM devices supported by ÉlanSC520 microcontroller.) The tables are broken up 
for SDRAM device data width for clarity. The purpose of these tables is to identify SDRAM 
loading as it applies to various bank configurations. The ÉlanSC520 microcontroller 
provides some flexibility in signal drive strength to allow the user to optimize performance, 
depending on the SDRAM array configuration. 

In the estimated capacitance tables, the input capacitance of SRASx, SCASx, SWEx, MAx, 
BAx, SDQMx, and SCSx for a single device was assumed to be 5 pF. 4 pF was used for 
the CLK signal. The MDx signals are assumed to be 6 pF. These tables do not account for 
board trace capacitance. It is assumed in these tables that both pins provided for a control 
signal, e.g., SRASA–SRASB, SCASA–SCASB, and SWEA–SWEB are split across banks 
evenly.

As can be seen in the tables, a 4-bank configuration of 16-bit devices has a loading of less 
than 50 pF for any signal, but for a 4-bank configuration of 4-bit devices, the capacitance 
of the interface increases. The ÉlanSC520 microcontroller provides programmable drive 
strength buffers on all address, data, and control signals to support varying SDRAM device 
loads. See “SDRAM Control Configuration” on page 10-18 for more details.

Notes:
Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.

Notes:
Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.

Table 10-2 Estimated Capacitance (4-Bit SDRAM Devices)

Number 
of 32-Bit 
Banks

CLK
Loading
(pF)

SRASx
Loading
(pF)

SCASx
Loading
(pF)

SCSx
Loading
(pF)

SWEx
Loading
(pF)

SDQMx 
Loading
(pF)

MAx/BAx
Loading
(pF)

MDx
Loading
(pF)

1 32 40 40 40 40 10 40 6

2 64 40 40 40 40 20 80 12

3 96 80 80 40 80 30 120 18

4 128 80 80 40 80 40 160 24

Table 10-3 Estimated Capacitance (8-Bit SDRAM Devices)

Number 
of 32-Bit 
Banks

CLK
Loading
(pF)

SRASx
Loading
(pF)

SCASx
Loading
(pF)

SCSx
Loading
(pF)

SWEx
Loading
(pF)

SDQMx
Loading
(pF)

MAx/BAx
Loading
(pF)

MDx
Loading
(pF)

1 16 20 20 20 20 5 20 6

2 32 20 20 20 20 10 40 12

3 48 40 40 20 40 15 60 18

4 64 40 40 20 40 20 80 24
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Notes:
Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.

Notes:
Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.

As can be seen clearly from the capacitance tables, as more SDRAM devices are connected 
to the SDRAM controller interface signals on the ÉlanSC520 microcontroller, loading on all 
these signals increases. Note that the numbers reflect only the actual device capacitance, 
and not circuit board trace or buffer capacitance.

The SDRAM controller’s data bus (MD31–MD0) is shared with the ROM/Flash controller. 
It is advisable to consider loading issues on the MD31–MD0 bus when both SDRAM and 
ROM/Flash devices are installed. Heavy loading by SDRAM and ROM/Flash devices may 
slow down the SDRAM timings and cause data corruption.

When ECC devices are not installed, it is advisable to add individual 10-Kohm pulldown 
resistors on the MECC6–MECC0 bus to prevent the bus from floating during read access.

Table 10-4 Estimated Capacitance (16-Bit SDRAM Devices)

Number 
of 32-Bit 
Banks

CLK
Loading
(pF)

SRASx
Loading
(pF)

SCASx
Loading
(pF)

SCSx
Loading
(pF)

SWEx
Loading
(pF)

SDQMx
Loading
(pF)

MAx/BAx
Loading
(pF)

MDx
Loading
(pF)

1 8 10 10 10 10 5 10 6

2 16 10 10 10 10 10 20 12

3 24 20 20 10 20 15 30 18

4 32 20 20 10 20 20 40 24

Table 10-5 Estimated Capacitance (32-Bit SDRAM Devices)

Number 
of 32-Bit 
Banks

CLK
Loading
(pF)

SRASx
Loading
(pF)

SCASx
Loading
(pF)

SCSx
Loading
(pF)

SWEx
Loading
(pF)

SDQMx
Loading
(pF)

MAx/BAx
Loading
(pF)

MDx
Loading
(pF)

1 4 5 5 5 5 5 5 6

2 8 5 5 5 5 10 10 12

3 12 10 10 5 10 15 15 18

4 16 10 10 5 10 20 20 24
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10.4 REGISTERS
A summary listing of the registers used to control the SDRAM configuration are shown in 
Table 10-6.

Table 10-6 SDRAM Controller Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function 

SDRAM Control DRCCTL 10h Operation mode select, refresh enable, refresh 
rate select, SDRAM write buffer test mode 
enable

SDRAM Timing Control DRCTMCTL 12h  RAS-to-CAS delay, RAS precharge, CAS 
latency

SDRAM Bank Configuration DRCCFG 14h Bank count select, address column width 
requirements for each bank

SDRAM Bank 0–3 Ending 
Address

DRCBENDADR 18h Independent bank ending configurations and 
enables for banks 0, 1, 2 and 3

ECC Control ECCCTL 20h ECC enable, interrupt enable for single-bit and 
multi-bit error detection

ECC Status ECCSTA 21h Single-bit and multi-bit error status

ECC Check Bit Position ECCCKBPOS 22h ECC data bit position in check bit or data bit fields

ECC Check Code Test ECCCKTEST 23h ECC check code override for test and error 
handler development

ECC Single-Bit Error Address ECCSBADD 24h Address where single-bit ECC error occurred

ECC Multi-Bit Error Address ECCMBADD 28h Address where multi-bit ECC error occurred

Drive Strength Control DSCTL C28h I/O pad drive strength for SCS3–SCS0, 
SRASA–SRASB, SCASA–SCASB, SWEA–
SWEB, SDQM3–SDQM0, MA12–MA0, BA1–
BA0, MD31–MD0, MECC6–MECC0

ECC Interrupt Mapping ECCMAP D18h ECC interrupt mapping to any of 22 available 
interrupt channels or NMI, ECC NMI enable 
control

Reset Configuration RESCFG D72h Programmable SDRAM retention reset 
(PRGRESET pin enable)

Reset Status RESSTA D74h Reset source status: PRGRESET pin
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10.5 OPERATION
The ÉlanSC520 microcontroller supports up to four 32-bit banks of SDRAM, with a 
maximum capacity of 256 Mbytes. This integrated SDRAM controller interfaces gluelessly 
to most commodity synchronous DRAM (SDRAM) devices. Mixed symmetries are 
supported across all four banks. 

The ÉlanSC520 microcontroller supports a column boundary method to accept a wide 
variety of SDRAM devices. The column boundary method requires only the device’s column 
address width to define the device’s page size and symmetry. 

The symmetry of a device refers to its organization as defined by the number of columns 
and the number of rows. 

■ A device is termed symmetric if the number of columns and rows is equal (i.e., a square 
organization). 

■ A device is termed asymmetric if the number of rows exceeds the number of columns 
(i.e., a rectangular organization). No devices exist where the number of columns exceeds 
the number of rows. 

The column boundary method allows the user to configure the ÉlanSC520 microcontroller 
to work with 16-Mbit, 64-Mbit, 128-Mbit, and 256-Mbit SDRAM densities (both 2-bank and 
4-bank internal architectures) requiring 8-bit through 11-bit column address bits. 

Error Correction Code (ECC) is also supported for SDRAM devices to ensure data integrity 
for these high-speed devices.

10.5.1 SDRAM Support
The ÉlanSC520 microcontroller sources a 66-MHz clock (CLKMEMOUT) to drive the 
SDRAM devices. An external clock driver can be used to buffer this clock output for heavily 
loaded systems. A return clock input (CLKMEMIN) is provided to control clock skew. See 
“SDRAM Clocking” on page 10-6 for detailed information on SDRAM clocking. Although 
the ÉlanSC520 microcontroller sources a 66-MHz clock, faster SDRAM devices are 
supported (83-MHz, 100-MHz, 125-MHz, etc.).

The SDRAM controller supports 16-Mbit, 64-Mbit, 128-Mbit, and 256-Mbit SDRAM 
densities with either 2-bank or 4-bank internal architectures. 

■ A CAS latency (CL) option of either 2T or 3T is supported, where T refers to a 15-ns 
clock period when a 33.333-MHz crystal is used.

■ SDRAM devices must be configured for a fixed interleaved burst length of four for reads 
and single writes.

See “SDRAM Control Configuration” on page 10-18 for detailed information on SDRAM 
configuration timing options. 

The SDRAM controller services read and write requests on behalf of:

■ Am5x86 CPU

■ PCI masters

■ GP-DMA controller

With the exception of ECC read-modify-write cycles (due to SDRAM writes of less than a 
doubleword when ECC is enabled), all read requests to SDRAM occur as a read burst of 
four cycles at the interface, regardless of the amount of data requested by a master. 
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During read-modify-write cycles, the SDRAM burst read portion of the transaction is 
terminated early by the write cycle. This is independent of the enable state of the read-
ahead feature of the read buffer, which is provided to increase read performance by 
prefetching data from SDRAM. See “Buffering” on page 10-17 for more information on the 
read buffer and associated read-ahead feature. 

Write requests to SDRAM always occur as single data transfers, regardless of the amount 
of data written by a master. When the write buffer is enabled, all write transactions to SDRAM 
are initiated by the write buffer. The write buffer features write merging, write collapsing and 
read merging. See “Buffering” on page 10-17 for more information on the write buffer.

10.5.2 SDRAM Addressing
The ÉlanSC520 microcontroller asserts one of the four chip select signals, SCS3–SCS0, 
during access to one of the four memory banks. Table 10-7 shows the SDRAM memory 
address as a function of the system address for SDRAM devices.

The mapping of the system address into memory row and column addresses is influenced 
by the column address configuration provided for each bank. 

■ On page misses, a row address followed by a column address is generated during an 
SDRAM access. 

■ On page hits, only a column address is generated during an SDRAM access. 

Table 10-7 shows the ÉlanSC520 microcontroller address mapping.

.

Notes: PC refers to SDRAM precharge signaling. BA1–BA0 are the SDRAM Bank Address signals.

Table 10-7 Address Mapping to MAx Signals for SDRAM Devices

SDRAM (16 Mbit–256 Mbit)

SDRAM Configuration
Bank 

Selection MAx Pin Mapping

Column Address 
Width BA1 BA0 12 11 10 9 8 7 6 5 4 3 2 1 0

8 2-bank Row 24 10 23 22 13 12 11 21 20 19 18 17 16 15 14

Column 24 10 PC 9 8 7 6 5 4 3 2

4-bank Row 22 10 24 23 13 12 11 21 20 19 18 17 16 15 14

Column 22 10 PC 9 8 7 6 5 4 3 2

9 2-bank Row 25 11 24 23 13 12 22 21 20 19 18 17 16 15 14

Column 25 11 PC 11 10 9 8 7 6 5 4 3 2

4-bank Row 23 11 25 24 13 12 22 21 20 19 18 17 16 15 14

Column 23 11 25 24 PC 10 9 8 7 6 5 4 3 2

10 2-bank Row 26 12 25 24 13 23 22 21 20 19 18 17 16 15 14

Column 26 12 PC 11 10 9 8 7 6 5 4 3 2

4-bank Row 24 12 26 25 13 23 22 21 20 19 18 17 16 15 14

Column 24 12 PC 11 10 9 8 7 6 5 4 3 2

11 2-bank Row 27 13 26 25 24 23 22 21 20 19 18 17 16 15 14

Column 27 13 12 PC 11 10 9 8 7 6 5 4 3 2

4-bank Row 25 13 27 26 24 23 22 21 20 19 18 17 16 15 14

Column 25 13 12 PC 11 10 9 8 7 6 5 4 3 2
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10.5.2.1 Supported SDRAM Devices

The ÉlanSC520 microcontroller supports the SDRAM organizations listed in Table 10-8. 
(Note that SDRAM devices requiring less than 11 row address bits are not supported, and 
are not included in the table.) 

This table includes all possible device organizations supported by the column boundary 
method, including those that may not be available at this time. As shown, the column 
boundary method allows the user to configure the ÉlanSC520 microcontroller to work with 
16-Mbit, 64-Mbit, 128-Mbit, and 256-Mbit SDRAM densities (both 2-bank and 4-bank 
internal architectures), requiring 8-bit through 11-bit column address bits. Note that 14-bit 
(2 internal bank) devices can be supported by connecting the BA1 pin to the most significant 
address pin of the devices.

Note that illegal device symmetries have been omitted from Table 10-8. Illegal symmetries 
are those where the column width exceeds the row width dimension.

Table 10-8 SDRAM Devices Supported with Column Boundary Specification

Column
Width Density Banks Organization Device Architecture

Device
Count

per Bank
Dimension
Row: Col

MA/BA
Width

Bank
(32-Bit)

8-bit 16 Mbit 2 4M x 4 2M x 4 x 2-banks 8 13:8 14-bit 16 Mbytes

2M x 8 1M x 8 x 2-banks 4 12:8 13-bit 8 Mbytes

1M x 16 512K x 16 x 2-banks 2 11:8 12-bit 4 Mbytes

4 4M x 4 1M x 4 x 4-banks 8 12:8 14-bit 16 Mbytes

2M x 8 512K x 8 x 4-banks 4 11:8 13-bit 8 Mbytes

64 Mbit 2 8M x 8 4M x 8 x 2-banks 4 14:8 15-bit 32 Mbytes

4M x 16 2M x 16 x 2-banks 2 13:8 14-bit 16 Mbytes

2M x 32 1M x 32 x 2-banks 1 12:8 13-bit 8 Mbytes

4 8M x 8 2M x 8 x 4-banks 4 13:8 15-bit 32 Mbytes

4M x 16 1M x 16 x 4-banks 2 12:8 14-bit 16 Mbytes

2M x 32 512K x 32 x 4-banks 1 11:8 13-bit 8 Mbytes

128 Mbit 2 8M x 16 4M x 16 x 2-banks 2 14:8 15-bit 32 Mbytes

4M x 32 2M x 32 x 2-banks 1 13:8 14-bit 16 Mbytes

4 8M x 16 2M x 16 x 4-banks 2 13:8 15-bit 32 Mbytes

4M x 32 1M x 32 x 4-banks 1 12:8 14-bit 16 Mbytes

256 Mbit 2 8M x 32 4M x 32 x 2-banks 1 14:8 15-bit 32 Mbytes

4 8M x 32 2M x 32 x 4-banks 1 13:8 15-bit 32 Mbytes
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9-bit 16 Mbit 2 4M x 4 2M x 4 x 2-banks 8 12:9 13-bit 16 Mbytes

2M x 8 1M x 8 x 2-banks 4 11:9 12-bit 8 Mbytes

4 4M x 4 1M x 4 x 4-banks 8 11:9 13-bit 16 Mbytes

64 Mbit 2 16M x 4 8M x 4 x 2-banks 8 14:9 15-bit 64 Mbytes

8M x 8 4M x 8 x 2-banks 4 13:9 14-bit 32 Mbytes

4M x 16 2M x 16 x 2-banks 2 12:9 13-bit 16 Mbytes

2M x 32 1M x 32 x 2-banks 1 11:9 12-bit 8 Mbytes

4 16M x 4 4M x 4 x 4-banks 8 13:9 15-bit 64 Mbytes

8M x 8 2M x 8 x 4-banks 4 12:9 14-bit 32 Mbytes

4M x 16 1M x 16 x 4-banks 2 11:9 13-bit 16 Mbytes

128 Mbit 2 16M x 8 8M x 8 x 2-banks 4 14:9 15-bit 64 Mbytes

8M x 16 4M x 16 x 2-banks 2 13:9 14-bit 32 Mbytes

4M x 32 2M x 32 x 2-banks 1 12:9 13-bit 16 Mbytes

4 16M x 8 4M x 8 x 4-banks 4 13:9 15-bit 64 Mbytes

8M x 16 2M x 16 x 4-banks 2 12:9 14-bit 32 Mbytes

4M x 32 1M x 32 x 4-banks 1 11:9 13-bit 16 Mbytes

256 Mbit 2 16M x 16 8M x 16 x 2-banks 2 14:9 15-bit 64 Mbytes

8M x 32 4M x 32 x 2-banks 1 13:9 14-bit 32 Mbytes

4 16M x 16 4M x 16 x 4-banks 2 13:9 15-bit 64 Mbytes

8M x 32 2M x 32 x 4-banks 1 12:9 14-bit 32 Mbytes

10-bit 16 Mbit 2 4M x 4 2M x 4 x 2-banks 8 11:10 12-bit 16 Mbytes

64 Mbit 2 16M x 4 8M x 4 x 2-banks 8 13:10 14-bit 64 Mbytes

8M x 8 4M x 8 x 2-banks 4 12:10 13-bit 32 Mbytes

4M x 16 2M x 16 x 2-banks 2 11:10 12-bit 16 Mbytes

4 16M x 4 4M x 4 x 4-banks 8 12:10 14-bit 64 Mbytes

8M x 8 2M x 8 x 4-banks 4 11:10 13-bit 32 Mbytes

128 Mbit 2 32M x 4 16M x 4 x 2-banks 8 14:10 15-bit 128 Mbytes

16M x 8 8M x 8 x 2-banks 4 13:10 14-bit 64 Mbytes

8M x 16 4M x 16 x 2-banks 2 12:10 13-bit 32 Mbytes

4M x 32 2M x 32 x 2-banks 1 11:10 12-bit 16 Mbytes

4 32M x 4 8M x 4 x 4-banks 8 13:10 15-bit 128 Mbytes

16M x 8 4M x 8 x 4-banks 4 12:10 14-bit 64 Mbytes

8M x 16 2M x 16 x 4-banks 2 11:10 13-bit 32 Mbytes

256 Mbit 2 32M x 8 16M x 8 x 2-banks 4 14:10 15-bit 128 Mbytes

16M x 16 8M x 16 x 2-banks 2 13:10 14-bit 64 Mbytes

8M x 32 4M x 32 x 2-banks 1 12:10 13-bit 32 Mbytes

4 32M x 8 8M x 8 x 4-banks 4 13:10 15-bit 128 Mbytes

16M x 16 4M x 16 x 4-banks 2 12:10 14-bit 64 Mbytes

8M x 32 2M x 32 x 4-banks 1 11:10 13-bit 32 Mbytes

Table 10-8 SDRAM Devices Supported with Column Boundary Specification (Continued)

Column
Width Density Banks Organization Device Architecture

Device
Count

per Bank
Dimension
Row: Col

MA/BA
Width

Bank
(32-Bit)
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Notes:
Not all device organizations specified in this table are available at the time of this printing.

The SDRAM Bank Configuration (DRCCFG) register (MMCR offset 14h) has one bit 
(BNKx_BNK_CNT) to specify the internal number of banks and another bit field to specify 
the column address width (BNKx_COLWDTH) of the device. Table 10-9 shows suggested 
settings for these bit fields, given a device’s column address width and internal bank count.

For example, if Bank 2 is composed of SDRAM devices organized as 2M x 8 x 4 banks (8 
Mbyte x 8) with 4096 rows and 512 columns (9-bit), by using Table 10-9, the appropriate 
bank configuration for this 4-bank device is 1b for the BNK2_BNK_CNT field and 01b for 
the BNK2_COLWDTH field of the SDRAM Bank Configuration (DRCCFG) register.

11-bit 64 Mbit 2 16M x 4 8M x 4 x 2-banks 8 12:11 13-bit 64 Mbytes

8M x 8 4M x 8 x 2-banks 4 11:11 12-bit 32 Mbytes

4 16M x 4 4M x 4 x 4-banks 8 11:11 13-bit 64 Mbytes

128 Mbit 2 32M x 4 16M x 4 x 2-banks 8 13:11 14-bit 128 Mbytes

16M x 8 8M x 8 x 2-banks 4 12:11 13-bit 64 Mbytes

8M x 16 4M x 16 x 2-banks 2 11:11 12-bit 32 Mbytes

4 32M x 4 8M x 4 x 4-banks 8 12:11 14-bit 128 Mbytes

16M x 8 4M x 8 x 4-banks 4 11:11 13-bit 64 Mbytes

256 Mbit 2 64M x 4 32M x 4 x 2-banks 8 14:11 15-bit 256 Mbytes

32M x 8 16M x 8 x 2-banks 4 13:11 14-bit 128 Mbytes

16M x 16 8M x 16 x 2-banks 2 12:11 13-bit 64 Mbytes

8M x 32 4M x 32 x 2-banks 1 11:11 12-bit 32 Mbytes

4 64M x 4 16M x 4 x 4-banks 8 13:11 15-bit 256 Mbytes

32M x 8 8M x 8 x 4-banks 4 12:11 14-bit 128 Mbytes

16M x 16 4M x 16 x 4-banks 2 11:11 13-bit 64 Mbytes

Table 10-9 Column Address Configuration Settings for SDRAM

Column Width Banks
Internal Bank Count
(BNKx_BNK_CNT)

Bank Column Address
(BNKx_COLWDTH)

8-bit 2 0b 00b

4 1b 00b

9-bit 2 0b 01b

4 1b 01b

10-bit 2 0b 10b

4 1b 10b

11-bit 2 0b 11b

4 1b 11b

Table 10-8 SDRAM Devices Supported with Column Boundary Specification (Continued)

Column
Width Density Banks Organization Device Architecture

Device
Count

per Bank
Dimension
Row: Col

MA/BA
Width

Bank
(32-Bit)
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10.5.2.2 Page Size

The page size of an SDRAM device is based on the column address width of the device. 
The ÉlanSC520 microcontroller address mapping takes advantage of the full page specified 
by the devices column address width. Table 10-10 lists the page size available based on 
the column address width specified. The page size in an SDRAM device applies for each 
internal bank.

10.5.3 Error Correction Code (ECC)
The ÉlanSC520 microcontroller supports Error Correction Code (ECC) to check the integrity 
of transactions with the system SDRAM. ECC is implemented by a modified Hamming 
code. It corrects a single-bit error and detects all two-bit (called multi-bit) errors. The memory 
array must have check bits to implement ECC. 

ECC operation requires that system memory be initialized. In this procedure, the boot code 
writes to every memory location, automatically generating valid ECC that is stored in the 
SDRAM check bits. If this procedure is not performed, errors will occur in the generation 
of the check bits when writing data smaller than a 32-bit doubleword or when reading un-
initialized data.

The ECC circuit uses a modified Hamming code to generate a 7-bit check word from the 
32-bit data word. This check word is stored along with the data word during the memory 
write cycle. During the memory read cycle, the 39-bit words from memory are processed 
by the ECC circuit to determine if errors have occurred in storing or retrieving data. 

If there is a single-bit error in the 32-bit data word or check-bits, the ECC circuit flags an 
error, latches the error-generating address along with the bit position where the error was 
detected, and passes along the corrected data word to the requesting master. It does not 
write the corrected data back out to the SDRAM. It generates a maskable interrupt signal 
when a single-bit error is detected. This maskable interrupt signal is generated even if there 
is a single-bit error in the 7-bit check word. 

Multi-bit errors are flagged but not corrected. These errors may occur in any two bits of the 
39-bit word from memory (two errors in the 32-bit data word, two errors in the 7-bit check 
word, or one error in each word). A separate non-maskable interrupt is generated by the 
ECC logic for multi-bit errors. 

These two interrupts are routed to the interrupt steering logic in the programmable interrupt 
controller. See Chapter 15, “Programmable Interrupt Controller”, for more details and 
further options.

If there is any write that is less than the full four bytes, there is a loss of performance due 
to ECC. The seven check-bits for any given ECC data field are generated over the entire 
field. In other words, all four bytes of data are taken into account in generating the seven 
check-bits associated with that data. If any changes were to occur to any of the data bytes, 
the check-bits would no longer be correct. 

Table 10-10 SDRAM Page Sizes

Column Width Page Size for 32-Bit Banks

8-bit 1 Kbyte

9-bit 2 Kbytes

10-bit 4 Kbytes

11-bit 8 Kbytes
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To avoid this, whenever a single byte is to be written to the SDRAM (or for that matter, any 
number of bytes that is less than the full doubleword), ECC first reads the whole data word, 
checks for any single- or multi-bit errors, and, if any are present, generates the 
corresponding interrupt and corrects the data (for a single-bit error), modifies the necessary 
bytes, and then generates the check-bits across the modified four bytes. Finally, the entire 
ECC word is stored back into memory. This process is called a read-modify-write operation. 
If a full doubleword is written, then there is no need for a read-modify-write cycle. Also, a 
partial doubleword write to a write-protected region does not generate a read-modify-write 
cycle.

Since seven check-bits are required for each bank of SDRAM if ECC is enabled, ECC 
cannot be supported if 168-pin (72-bit) SDRAM DIMMS are used. If a single 168-pin (72-
bit) DIMM is used for supporting two banks, then ECC cannot be enabled due to lack of 
extra check bits in the DIMM. In this case, extra SDRAM devices must be used to store the 
check-bits. 

To assist in the development of software to handle ECC single-bit and multi-bit errors, the 
ECC Check Code Test (ECCCKTEST) register (MMCR offset 23h) is provided. This register 
can be used to override the automatically-generated ECC check code with a user-provided 
check code for the following SDRAM write access.

10.5.4 Buffering
The ÉlanSC520 microcontroller includes two buffering techniques to optimize the memory 
system performance. These include the write buffer and read buffer. 

When enabled, the write buffer effectively decouples master write activity from incurring 
the SDRAM latency penalty. This, in effect, also leaves SDRAM free to satisfy a higher 
demand in read activity by all masters. In addition, the write buffer provides write merge 
and write collapse functions to better utilize FIFO storage and reduce the number of 
transactions to SDRAM. The read merge function is also provided to reduce data coherency 
overhead by eliminating the need to flush the write buffer prior to a read access. During a 
read request, should the write buffer contain more recent data than SDRAM, the data from 
the write buffer is merged with data returned from SDRAM, eliminating the need to flush 
the write buffer.

The ÉlanSC520 microcontroller supports a Read-Around-Write feature when the write 
buffer is enabled. When the write buffer is enabled, the SDRAM controller’s arbiter favors 
read activity, effectively giving read priority to SDRAM over write data that has been posted 
in the write buffer. This feature is intended to increase master read performance.

The read buffer provides two cache lines (32 bytes total) of storage for read data returned 
from SDRAM. Read requests that can be retrieved from the read buffer can be provided in 
zero wait states to the requesting master. The SDRAM controller always fetches an entire 
cache line of data from the SDRAM and stores it in the read buffer, independently of the 
amount of data requested during the master access. For example, during a read request 
from a non-bursting master (i.e., single doubleword request), the SDRAM controller fetches 
the entire cache line of data from SDRAM and stores it in the read buffer. 

The read buffer’s read-ahead function, when enabled, provides a mechanism to prefetch 
the cache line of information from SDRAM that immediately follows the requested cache 
line. This is in anticipation of future accesses to the prefetched line. The read-ahead feature 
of the read buffer enhances read burst activity by the Am5x86 CPU and external PCI master 
burst read requests. Read prefetches, when enabled, occur only for read burst transfer 
requests of two or more doublewords. Single doubleword read requests do not cause a 
read-ahead buffer prefetch of the next cache line; they only cause the cache line of the 
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demanded access to be read into the read buffer. GP-DMA read accesses are always single 
word accesses.

The read buffer is always enabled, however, the read-ahead feature and write buffer can 
be independently enabled and are disabled after a system reset or programmable reset. 
For more information on the SDRAM controller’s buffering, see Chapter 11, “Write Buffer 
and Read Buffer”.

10.5.5 SDRAM Control Configuration
The SDRAM controller provides the following control functions:

■ Refresh rate

■ Refresh enable

■ SDRAM pin drive strength

■ Write buffer test mode

■ Operation mode select

10.5.5.1 Refresh Control

To refresh the SDRAM devices, the SDRAM controller issues the Auto Refresh command. 
Since the ÉlanSC520 microcontroller is intended to support a variety of vendors, the refresh 
rate at which this command is issued is a configurable parameter. It is specified in the DRAM 
Refresh Request Speed (RFSH_SPD) bit field in the SDRAM Control (DRCCTL) register 
(MMCR offset 10h) and offers either 7.8-ms, 15.6-ms, 31.2-ms or 62.5-ms periods.

Note: Since the minimum refresh rate is 62.5 ms, which is below the maximum time between 
an Active command and a Precharge command (TRAS), the SDRAM controller does not 
support a RAS time-out feature.

The refresh rate is calculated from this equation:

Refresh Rate = Interval / Row

where:

Interval is how often a particular row must be refreshed 
Row is the number of rows within the device that must be refreshed 

Table 10-11 shows the SDRAM refresh rates and their corresponding intervals. SDRAM 
devices contain either two or four internal banks. During each refresh cycle, all internal 
SDRAM banks are refreshed simultaneously. This implies that a 2-bank architecture 
performs dual-row refresh and a 4-bank architecture performs a quad-row refresh, per 
refresh cycle.

Table 10-11 SDRAM Refresh Rates

Number of 
Rows

Refresh Rate

7.8 ms 15.6 ms 31.2 ms 62.5 ms

256 2 ms 4 ms 8 ms 16 ms

512 4 ms 8 ms 16 ms 32 ms

1024 8 ms 16 ms 32 ms 64 ms

2048 16 ms 32 ms 64 ms 128 ms

4096 32 ms 64 ms 128 ms

8192 64 ms 128 ms
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For example, if an SDRAM device is organized as 2M x 8 x 4 banks (8Mb x 8) with 4096 
rows and 512 columns and requires a 64-ms refresh interval, by using Table 10-11, the 
refresh rate is 15.6 ms.

During an SDRAM refresh period, all enabled banks are issued an Auto Refresh command. 
However, during a refresh cycle, SDRAM devices require a somewhat large amount of 
current, which could become quite large when considering a simultaneous refresh of 
multiple banks within the same clock period. To prevent this, the SDRAM controller staggers 
the bank refresh by selecting one bank at a time. This results in only one bank being issued 
an Auto Refresh command during any given clock, rather than all banks within the same 
clock. This method results in a slightly larger amount of overhead associated with refresh 
cycles, but prevents large current surges to the SDRAM banks on the system circuit board. 
Figure 10-12 on page 10-27 shows an SDRAM staggered refresh cycle.

SDRAM refresh cycles must be enabled only when the SDRAM Operation Mode Select 
specifier is in normal SDRAM mode. The Refresh Enable (RFSH_ENB) bit is located in the 
SDRAM Control (DRCCTL) register (MMCR offset 10h).

10.5.5.2 Drive-Strength Selection

The ÉlanSC520 microcontroller provides selectable drive strength options on all address, 
data and control signals to provide support for different SDRAM device loads presented by 
different system designs. 

Pins with selectable drive strength options include: 

■ MA12–MA0 (memory address)

■ BA1–BA0 (bank address)

■ MD31–MD0 (memory data)

■ MECC6–MECC0 (ECC data)

■ SCS3–SCS0

■ SDQM3–SDQM0

■ SCASA–SCASB

■ SRASA–SRASB

■ SWEA–SWEB 

With the exception of SCS3–SCS0, these pins are equipped to drive 12 mA, 18 mA or 24 
mA of current. SCS3–SCS0 drive either 18 mA or 12 mA. 

The SDRAM interface drive strength can be changed in the Drive Strength Control (DSCTL) 
register (MMCR offset C28h), which is described in the Programmable I/O section of the 
Élan™SC520 Microcontroller Register Set Manual, order #22005.

10.5.5.3 Write Buffer Test Mode

The ÉlanSC520 microcontroller supports a write buffer test mode, using the alternate 
function of the CF_ROM_GPCS, DATASTRB, and CF_DRAM pins that provide master 
contribution information. As WBMSTR2–WBMSTR0, these three pins indicate whether the 
Am5x86 CPU, PCI bus master, GP-DMA, or a combination of these (because the write 
buffer may collapse or merge write data) has contributed into the rank of the write buffer 
currently in the process of being written to SDRAM. This option is specified with the 
WB_TST_ENB bit in the SDRAM Control (DRCCTL) register (MMCR offset 10h). See 
Chapter 24, “System Test and Debugging”, for more information on the uses of these pins.
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10.5.5.4 Operation Mode Select

The ÉlanSC520 microcontroller provides an SDRAM Operation Mode Select 
(OPMODE_SEL) bit field in the SDRAM Control (DRCCTL) register (MMCR offset 10h). 
These bits are used to select a particular mode of operation of the SDRAM controller.

■ The default mode of operation is normal SDRAM mode. This is the mode in which the 
SDRAM controller must be configured for data access. 

■ The NOP, All Banks Precharge, Load Mode Register, and Auto Refresh commands 
specified by the OPMODE_SEL bit field are primarily used for SDRAM device 
initialization. 

When specifying NOP, All Banks Precharge, Load Mode Register, or Auto Refresh 
commands, the command is not actually applied to the SDRAM devices until an Am5x86 
CPU access to SDRAM occurs (either a read or write cycle).

The write buffer must be disabled prior to utilizing the NOP, All Banks Precharge, Load 
Mode Register, or Auto Refresh OPMODE_SEL bit field if the Am5x86 CPU cycle executed 
to generate these cycle types to the SDRAM devices is a write cycle. 

The All Banks Precharge command should be issued prior to bank configuration changes. 
This places the SDRAM devices in an idle state and clears the SDRAM controller’s page 
table entries. 

See “SDRAM Device Initialization” on page 10-30 for more information.

10.5.6 SDRAM Timing Configuration
The ÉlanSC520 microcontroller provides independent timing configuration for SDRAM 
devices. The following timing parameters are configurable:

■ CAS latency (CL)

■ RAS precharge (TRP)

■ RAS-to-CAS delay (TRCD)

■ RAS-to-RAS or auto-refresh-to-RAS (TRC)

Note that the write recovery time (TWR) parameter is fixed to 2T (where T refers to a 15-ns 
clock period for a 33.333-MHz crystal). 

10.5.6.1 CAS Latency (CL)

The CAS latency (CL) of an SDRAM device specifies the number of clocks between a read 
command being issued until the first piece of read data is available. After this delay, read 
data is returned on each subsequent clock. 

The ÉlanSC520 microcontroller supports CAS latency options for either 2T or 3T (where 
T refers to a 15-ns clock period for a 33.333-MHz crystal). This parameter is a configuration 
option, since some SDRAM devices have slightly better access timing when configured for 
CL = 3. The CAS_LAT bit in the SDRAM Timing Control (DRCTMCTL) register (MMCR 
offset 12h) is used to specify this value.

The CL parameter is programmed into the device with the Load Mode Register command. 
See “SDRAM Device Initialization” on page 10-30 for more information.
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10.5.6.2 RAS Precharge (TRP)

The RAS Precharge (TRP) parameter of an SDRAM device refers to the minimum period 
of time that must be met following a Precharge command until a subsequent command to 
the same bank can be issued. After TRP is met, the SDRAM device is considered to be in 
the idle state. TRP varies between device vendors and device speed grades. Even though 
the ÉlanSC520 microcontroller provides a 66-MHz SDRAM device clock, faster devices are 
supported (83-MHz, 100-MHz, 125-MHz, etc.). 

Since the ÉlanSC520 microcontroller is intended to support a variety of vendors and speed 
grades, TRP is a configurable parameter and offers either 2T, 3T, 4T or 6T timing (where T 
refers to a 15-ns clock period for a 33.333-MHz crystal). It is specified in the 
RAS_PCHG_DLY bit field of the SDRAM Timing Control (DRCTMCTL) register (MMCR 
offset 12h).

10.5.6.3 RAS-to-CAS Delay (TRCD)

The RAS-to-CAS delay parameter of an SDRAM device refers to the minimum period of 
time between the time an Active command is issued to the time a read or write command 
may be issued. This is referred to the TRCD parameter. 

Since the ÉlanSC520 microcontroller is intended to support a variety of vendors and speed 
grades, the TRCD parameter can be programmed for either 2T, 3T, or 4T timing (where T 
refers to a 15-ns clock period for a 33.333-MHz crystal). Most current SDRAM devices 
expect a minimum TRCD of 30 ns (or greater), which may be violated with a 2T setting under 
heavy loading. This parameter is specified in the RAS_CAS_DLY bit field of the SDRAM 
Timing Control (DRCTMCTL) register (MMCR offset 12h).

10.5.6.4 RAS-to-RAS or Auto-Refresh-to-RAS (TRC)

The RAS-to-RAS or auto-refresh-to-RAS parameter (TRC) of an SDRAM device refers to 
the minimum period of time between an Active command and another Active command to 
the same internal bank. It also pertains to the minimum amount of time between an Auto 
Refresh command and an Active command. 

The ÉlanSC520 microcontroller does not provide a configuration for the TRC parameter for 
the timing between an Active command and a following Active command to the same 
internal bank, since this is a function of the TRCD and TRP parameters. Two accesses to 
different rows of the same internal bank result in an Active command being issued for each 
access, but the Active command associated with the second access is always preceded 
by a Precharge Bank command. Because of the preceding Precharge Bank command for 
the second access, a combination of the TRCD and TRP parameters must provide adequate 
timing such that the TRC parameter is not violated. 

The minimum TRC for an Active command to an Active command is calculated as: 

TRC = TRCD (configuration setting in number of clocks) + TRP (configuration setting in number 
of clocks) + 2T (where T refers to a 15-ns clock period for a 33.333-MHz crystal). 

When a TRCD of 2T is specified, 1T is added to the TRC equation to enforce a minimum 
TRAS of 5T. 

TRC also applies between an Auto Refresh command and an Active command. For this, 
the ÉlanSC520 microcontroller enforces a fixed 9T timing (where T refers to a 15-ns clock 
period for a 33.333-MHz crystal) following the last Auto Refresh command of a staggered 
refresh sequence. 
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10.5.6.5 Minimum RAS (TRAS)

The minimum RAS parameter of an SDRAM device refers to the minimum period of time 
that a row must remain open. This is the period of time between an Active command and 
a Precharge command to the same internal bank. This parameter is referred to as TRAS. 

Since the ÉlanSC520 microcontroller performs single write cycles, the minimum TRAS 
occurs during write cycles. TRAS is a function of TRCD. This parameter is calculated as: 

TRAS = TRCD (configuration setting in number of clocks) + 2T (where T refers to a 15-ns 
clock period for a 33.333-MHz crystal). 

A minimum TRAS of 5T is enforced when a TRCD of 2T is specified.

10.5.7 Bus Cycles
10.5.7.1 SDRAM Burst Read Cycle

The ÉlanSC520 microcontroller always bursts up to four doublewords on a read as shown 
in Figure 10-7. The burst read to the SDRAM could occur due to any of the following reasons:

■ Am5x86 CPU read

■ Read buffer’s read-ahead prefetch

■ ÉlanSC520 microcontroller responding to PCI burst cycle as a target

■ GP-DMA 

Figure 10-7 SDRAM Burst Read Cycle (Read-Ahead Feature Disabled) (Page Miss/Page Hit)

Notes:
This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.
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10.5.7.2 SDRAM Write Cycle

With the write buffer enabled, all writes to the SDRAM come from the write buffer. With the 
write buffer disabled, the SDRAM write cycle could occur due to any of the following reasons:

■ Am5x86 CPU

■ ÉlanSC520 microcontroller responding to PCI burst cycle as target

■ GP-DMA

All the writes are configured for single write mode, with each write occurring independently. 
Am5x86 CPU non-burst write transfers are shown in Figure 10-8. An Am5x86 CPU burst 
write cycle is shown in Figure 10-9.

Figure 10-8 SDRAM Write Cycle (Write Buffer and ECC Disabled) (Page Miss/page Hit)

Notes:
This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.
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Figure 10-9 SDRAM CPU Burst Write (Write Buffer and ECC Disabled) (Page Miss/Page Hit)

Notes:
This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

10.5.7.3 ECC SDRAM Cycles

When ECC is enabled, additional overhead is necessary to compensate for ECC logic 
delays and read-modify-write cycles due to partial doubleword write cycles. The least 
amount of overhead occurs during a full doubleword write to the SDRAM. In the case of a 
read, however, the ECC has to generate the new check bits, check for any errors, and 
generate an interrupt if an error occurs. A delay of one CPU clock cycle is added for SDRAM 
read cycles with ECC enabled. With ECC enabled, read page hit burst timing of 4-1-1-1 
(where CL = 2) is achieved, compared to a 3-1-1-1 (where CL = 2) burst with ECC disabled. 
See Figure 10-10 showing the read cycles with ECC enabled. 
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Figure 10-10 SDRAM Burst Read Cycle with ECC Enabled

Notes:
This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

The ECC overhead is even higher in the case of a read-modify-write cycle, as shown in 
Figure 10-11. As shown, a write cycle with a partial doubleword requires an SDRAM read 
cycle followed by a write cycle. Note that the SDRAM read burst is terminated early by the 
write cycle. See “Error Correction Code (ECC)” on page 10-16 for details of a read-modify-
write cycle. 
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Figure 10-11 SDRAM Read-Modify-Write Cycle (for Data Write) with ECC Enabled (Page Hit)1

Notes:
1. This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

2. Contents modified with the active bytes in the write word (00AB0000). 

10.5.7.4 SDRAM Auto Refresh Cycle

Auto refresh, as shown in Figure 10-12, is used during normal operation of the SDRAM 
and is analogous to the CAS-before-RAS refresh in EDO DRAMs. This command is 
nonpersistent, so it must be issued each time a refresh is required. The internal banks will 
be precharged and idle for a minimum of the Precharge time (TRP) before the Auto Refresh 
command is applied. When the refresh cycle has completed, all the banks of the SDRAM 
will be in the precharged (idle) state. Note that this figure shows a staggered refresh cycle, 
as described in “Refresh Control” on page 10-18.

The purpose of the programmable reset in the memory controller is to maintain the state 
of the SDRAM during a reset. This allows SDRAM refreshes to occur during reset. See 
Chapter 6, “Reset Generation”, for more information.
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Figure 10-12 SDRAM Auto Refresh Cycle

10.5.7.5 SDRAM Mode Register Access Cycles

The mode register contained in the SDRAM devices is used to define the specific mode of 
operation of the SDRAM. This definition includes the selection of the burst length, burst 
type, CAS latency, operating mode, and write burst mode. An SDRAM Load Mode 
Command is shown in Figure 10-13. See “SDRAM Device Initialization” on page 10-30 for 
information on programming the mode register.

Figure 10-13 SDRAM Mode Register Access

10.5.8 Interrupts
The SDRAM controller implements Error Correction Code logic to detect and correct single-
bit errors and detect multi-bit errors. 

Separate interrupts can be generated for both single-bit error and multi-bit error detection. 
These two interrupts are routed from the SDRAM controller to the ÉlanSC520 
microcontroller’s programmable interrupt controller (PIC). 

■ These two interrupts can be individually enabled by using the MULT_INT_ENB and 
SGL_INT_ENB bits in the ECC Control (ECCCTL) register (MMCR offset 20h).

■ The interrupt signals remain asserted to the PIC until a write is performed to the 
MBIT_ERR and SBIT_ERR status bits in the ECC Status (ECCSTA) register (MMCR 
offset 21h). This write is typically performed by the interrupt handler associated with the 
interrupt.

Note: The multi-bit error interrupt, when enabled, always generates a non-maskable 
interrupt (NMI).
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10.5.9 Software Considerations

10.5.9.1 ECC Errors

The ECC logic in the SDRAM controller detects single-bit error and multi-bit errors in the 
SDRAM data being accessed. 

■ When a single-bit error is detected, a maskable interrupt is generated. See Chapter 15, 
“Programmable Interrupt Controller”, for information on steering this interrupt. 

■ When a multi-bit error is detected, a non-maskable interrupt (NMI) is generated. 

The interrupt handler should read the ECC Status (ECCSTA) register (MMCR offset 21h) 
logging the detection of a single-bit error (SBIT_ERR) or a multi-bit error (MBIT_ERR), 
depending on which interrupt signal is generated. The physical address where the error 
occurred is latched for both single-bit and multi-bit errors in the ECC Single-Bit Error Address 
(ECCSBADD) register (MMCR offset 24h) and ECC Multi-Bit Error Address (ECCMBADD) 
register (MMCR offset 28h), respectively. An encoded value of the data bit position where 
the single-bit error occurred is also latched in the ECC_CHK_POS bit field of the ECC 
Check Bit Position (ECCCKBPOS) register (MMCR offset 22h). 

All latched information pertaining to an error is latched on the first occurrence and cleared 
when the latch is re-enabled. Information for errors that occur after the first occurrence, but 
before the latch is re-enabled, are lost.

10.5.9.2 Buffer Disabling During SDRAM Configuration

Prior to altering the SDRAM configuration, the write buffer and read-ahead feature of the 
read buffer must be disabled. This is to prevent SDRAM configuration changes while a write 
buffer or read-ahead prefetch to SDRAM is in progress. During bank configuration, it is 
important to not enable an SDRAM bank with the Bank Ending Address specified as 0.

10.5.9.3 Write Protection

Regions of SDRAM can be write-protected through the use of a Programmable Attribute 
Region (PAR) register. A write-protected region allows read cycle access, however, data is 
not written to the devices during a write cycle access. When writing to a region that is write-
protected, an SDRAM write cycle still occurs; however, the SDQM3–SDQM0 data mask 
signals are active throughout the cycle to prevent the data from being written to the devices. 
If ECC is enabled and a noncomplete doubleword access is write-protected, the SDRAM 
controller does not generate a read-modify-write cycle.

10.5.10 Latency
The SDRAM controller’s write buffer and read buffer are designed to enhance the memory 
system’s bandwidth and performance. When enabled, the write buffer decouples master 
write or burst write activity from incurring the SDRAM access latency penalty along with 
the overhead associated with SDRAM refresh cycles. When enabled, the read-ahead 
feature of the read buffer decouples master read activity from incurring the SDRAM latency 
penalty on read buffer hits. For more information, see Chapter 11, “Write Buffer and Read 
Buffer”.

SDRAM devices require periodic refresh cycles to maintain data integrity within the device. 
This SDRAM activity must occur at fixed intervals as high priority requests. In the event 
that a data access request and a refresh cycle request occur at the same time, the data 
access request is stalled until the higher priority refresh cycle is complete. Devices that can 
tolerate a slower refresh period result in a system with less refresh overhead, leaving 
SDRAM free for data access requests. To support these devices, the ÉlanSC520 
microcontroller provides an adjustable refresh rate of 7.8 ms, 15.6 ms, 31.2 ms or 62.5 ms.
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When the write buffer is enabled, writes to SDRAM occur independently of any associated 
master activity until the write buffer is empty. Since the SDRAM data bus may be shared 
with the ROM/Flash controller, write-buffer writes may request concurrently with master 
requests to ROM/Flash. Should these two independent activities concurrently request 
access to the data bus, the ROM/Flash cycle takes precedence over the write-buffer write 
in favor of satisfying the requesting master. However, a ROM/Flash cycle may be temporarily 
delayed should a master request ROM/Flash access during a write-buffer write in progress. 
Furthermore, a ROM/Flash access that occurs during a read-ahead prefetch results in the 
ROM/Flash access being temporarily delayed until the read prefetch completes. See 
Chapter 12, “ROM/Flash Controller”, for information on ROM/Flash sharing the SDRAM 
data bus.

ECC results in additional latencies due to required read-modify-write cycles. The read-
modify-write cycles are necessary when incomplete doublewords are written to the SDRAM 
devices (i.e., any writes less than four bytes). Read-modify-write is required to update the 
ECC code to include the information reflected in the partial doubleword to be written. 
However, a partial doubleword write to a write-protected region does not generate a read-
modify-write cycle.

Prior to a write, the following sequence occurs:

1. The complete doubleword and ECC code is read from SDRAM and checked for errors 
(the respective interrupt is generated if an error is detected)

2. The new ECC code is generated to include the data just read and the new data to be 
written.

3. The complete modified doubleword and modified ECC code is written back into the 
SDRAM.

Should the write cycle be a complete doubleword, the ÉlanSC520 microcontroller does not 
require a read of the SDRAM first. This reduces the overhead associated with 32-bit writes 
to SDRAM. However, since a read is not performed prior to a doubleword write, the contents 
in SDRAM are not checked prior to the data being written.

10.6 INITIALIZATION

10.6.1 Programmable Reset
The ÉlanSC520 microcontroller’s SDRAM controller provides the capability to maintain the 
contents of the SDRAM during a reset event. In effect, two types of reset are supported:

■ System reset—A complete reset where the entire SDRAM controller is reset and 
contents of the SDRAM devices are lost.

■ Programmable reset—The SDRAM controller configuration is maintained and the 
contents of the SDRAM devices are also maintained by maintaining refresh cycles 
throughout the programmable reset duration.

Selection of the reset type is controlled by the PRG_RST_ENB bit in the Reset Configuration 
(RESCFG) register (MMCR offset D72h). With this bit, the PRGRESET pin can be 
programmed to reset the ÉlanSC520 microcontroller for a programmable reset. On power-
up, the PRGRESET pin is disabled and must be programmed to be operational. 

See “System Reset with SDRAM Retention” on page 6-6 for detailed information on the 
sources of these resets.

The purpose of the programmable reset in the memory controller is to maintain the state 
of the SDRAM during an ÉlanSC520 microcontroller reset. This requires SDRAM refreshes 
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to occur throughout the entire duration of the programmable reset. Upon the assertion of 
the programmable reset, the SDRAM controller arbiter lets the current SDRAM access 
complete before returning the controller state machines to their idle states. This prevents 
data corruption in the SDRAM array should the programmable reset be asserted during an 
access to SDRAM. All SDRAM controller configuration is maintained.

Note: The contents of the write buffer are discarded for both types of reset. Also, the enable 
states of the write buffer and read buffer are not maintained after a programmable reset. 
Therefore, if the write buffer and read buffer were enabled prior to the programmable reset, 
software must re-enable them after the programmable reset.

10.6.2 SDRAM Device Initialization
Section 10.6.2– Section 10.6.4 provide details on enabling the core and SDRAM 
configuration. However, prior to altering the SDRAM configuration, the write buffer and read-
ahead feature of the read buffer must be disabled. This is to prevent SDRAM configuration 
changes while a write buffer or read-ahead prefetch to SDRAM is in progress.

Refresh should be disabled anytime the SDRAM controller is not operating in normal 
SDRAM mode. SDRAM refresh cycles should only be enabled when the OPMODE_SEL 
bit field is configured for normal SDRAM mode. After the SDRAM devices are initialized 
(with refresh cycles remaining disabled), they can be reliably accessed.

If the Error Correction Code (ECC) logic for SDRAM is enabled, the ECC operation requires 
that SDRAM and its associated ECC memory be initialized. This is accomplished by the 
boot code that must write to every location in SDRAM. This process initializes the ECC 
SDRAM to reflect the proper Hamming code for its associated data. If this procedure is not 
performed, false errors will occur when reading or when writing data smaller than a 32-bit 
doubleword. See “Error Correction Code (ECC)” on page 10-16 for a more detailed 
discussion of ECC.

10.6.2.1 Operation Mode Select

SDRAM devices must be powered up and initialized in a predefined manner prior to access. 
The SDRAM controller’s SDRAM Control (DRCCTL) register (MMCR offset 10h) provides 
support for this procedure via the OPMODE_SEL field. 

■ By default, the OPMODE_SEL bit field reflects a normal SDRAM mode of operation. 
However, a normal SDRAM mode of operation refers to the mode the SDRAM controller 
must be configured in after SDRAM device initialization is complete. Normal SDRAM 
mode allows read and write accesses to occur as requested by a master. SDRAM refresh 
cycles should be enabled only when the OPMODE_SEL field is configured for normal 
SDRAM mode.

■ The other settings for the OPMODE_SEL field force all SDRAM accesses to a specific 
SDRAM command type: NOP, Precharge, Load Command, or Refresh. Setting the 
OPMODE_SEL bits to non-normal SDRAM mode results in all banks being selected 
(i.e., SCS3–SCS0 are driven active), so that the command is applied to all SDRAM 
devices in the system. 

To generate the command specified in the OPMODE_SEL field, an Am5x86 CPU read or 
write cycle must be generated to the SDRAM region. The specified command occurs at 
the SDRAM interface rather than the actual read or write cycle requested by the Am5x86 
CPU. 
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10.6.2.2 NOP Command

Once power is applied and the clock is stable, most SDRAM devices require a 100-ms delay 
prior to applying an executable command. Therefore, boot code must guarantee that 
SDRAM is not accessed immediately after reset. During this period and continuing at least 
through the end of this period, the NOP command should be applied. During initialization, 
the NOP command is enabled, with a binary pattern of 001b being written to the Operation 
Mode Select bits. An Am5x86 CPU read or write cycle must be generated to the SDRAM 
region to cause the generation of the specified command. 

10.6.2.3 Precharge Command

Once the 100-ms delay has been satisfied with at least one NOP command having been 
applied, a Precharge command should be applied to all the internal banks within a device, 
thereby placing the device in the idle state. The All Banks Precharge command can be 
enabled during initialization, with a binary pattern of 010b being written to the Operation 
Mode Select bits. In this mode, MA10 (precharge) is held high during the precharge to 
enable the All Banks Precharge. Since all banks are selected, all banks will be enabled to 
interpret this command. 

10.6.2.4 Auto Refresh Command

Once in the idle state, two Auto Refresh cycles must be performed. The Auto Refresh 
command can be enabled during initialization, with a binary pattern of 100b being written 
to the Operation Mode Select bits. The boot code must perform at least two accesses to 
SDRAM when in this mode. 

10.6.2.5 Mode Register Programming

Once the Auto Refresh cycles are complete, the SDRAM is ready for mode register 
programming. The Load Mode Register command can be enabled during initialization with 
a binary pattern of 011b being written to the OPMODE_SEL field. Since all SDRAM banks 
are selected (i.e., SCS3–SCS0 are driven active), all banks will be configured to the same 
mode. The mode register is programmed to define the SDRAM devices burst length, burst 
type, CAS latency, operating mode, and write burst mode. 

Of these five parameters, only the CAS latency parameter is configured by the user via the 
CAS_LAT bit in the SDRAM Timing Control (DRCTMCTL) register (MMCR offset 12h). The 
programmable options for CAS latency are 2T or 3T, where T = 15-ns clock period for a 
33.333-MHz crystal. The other parameters are fixed by the ÉlanSC520 microcontroller.

Table 10-12 shows the parameters and their associated settings. All bits reflecting these 
configurations are driven on the MA12–MA0 signals during a Load Mode Register 
command. Since SDRAM devices require only 12 bits for the command width, MA12 is 
driven Low during this cycle.

Table 10-12 Load Mode Register Settings

Parameter Setting Description

Burst length Four phases Always read burst four

Burst type Interleaved Follow non-linear burst

CAS latency Programmable Select either 2T or 3T (see text)

Operating mode Standard operation Defined

Write burst mode Single location Single mode
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10.6.3 Boot Process
In a closed embedded system, the designer may be able to simply choose the correct values 
to output to the configuration registers. Systems where the SDRAM parameters are not 
known at boot time present more issues. Many SDRAM considerations, such as signal 
loading, cannot be accurately determined by software. One way to deal with this issue is 
to have a staged boot process, as follows:

1. First, all timing registers are programmed to assume a worst-case system by default 
after reset.

2. Next, the SDRAM banks are tested for SDRAM existence, organization, and size. Banks 
that contain SDRAM are enabled with the correct parameters.

3. A system memory test is then performed to ensure that there are no problems. The user 
can be notified, and bad banks can be disabled, if any problems are encountered.

Since the user has control over SDRAM setup parameters, they must not be applied to the 
SDRAM array until late in the boot process, so that the setup program can always be used 
to recover the system if it becomes unbootable.

10.6.4 SDRAM Sizing Algorithm
The SDRAM sizing algorithm must alter the SDRAM configuration registers and write and 
read specific boundary SDRAM locations to determine where the SDRAM bank boundary 
exists. Data that is written and then returned on a read implies that valid SDRAM exists at 
that location. 

However, prior to accessing the SDRAM devices, the mode register for the device must be 
programmed to configure the devices before they are functional. SDRAM device 
initialization is discussed in more detail in Section 10.6.2. Note that SDRAM refresh cycles 
should only be enabled when the OPMODE_SEL bit field is configured for normal SDRAM 
mode. After the SDRAM devices are initialized (with refresh cycles remaining disabled), 
they can be reliably accessed.

The SDRAM controller provides many configuration registers with control and timing 
configuration functions. However, only a subset of these registers is required to be accessed 
during the sizing procedure. In particular, the bits associated with specifying the column 
address width, the internal bank count specifier, and the bank ending address are the most 
critical for the sizing process. 

■ The column address width is used to specify the column width of the device. 

■ The internal bank count bit specifies if the device supports either two or four internal 
banks. 

■ The SDRAM Bank 0–3 Ending Address (DRCBENDADR) register (MMCR offset 18h) 
is used to specify the physical address bank boundary. 

The column boundary method is used to accept a wide variety of SDRAM devices and 
symmetries. In configuring the symmetry of the device, this method requires only the column 
address width to be specified. Device addressing and symmetries are discussed in “SDRAM 
Addressing” on page 10-12.

It is important to point out that whenever the column address width, internal bank count, or 
bank ending address configuration is going to be changed, the All Banks Precharge 
command must be issued prior to the configuration update. The All Banks Precharge 
command can be enabled with a binary pattern of 010b being written to the OPMODE_SEL 
bit field. A cycle to SDRAM must be run for the command to take effect. The All Banks 
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Precharge command closes all open pages in the SDRAM devices, thus placing them in 
an idle state. This also forces the SDRAM controller’s page table entries to be invalidated. 

The column address requirement of the device specifies its symmetry (i.e., its usable 
number of columns, or page width, that the SDRAM controller can utilize), but does not 
specify the amount of addressable SDRAM in the 32-bit bank. The bank ending address 
is used to specify the physical address boundary of each bank. The bank ending address 
is independent of device density or device data width. During SDRAM sizing, a bank should 
never be enabled with a bank ending address of 0. The internal bank count specifier is used 
to inform the SDRAM controller of the internal bank architecture of the device, since SDRAM 
devices can contain either two or four internal banks.

■ To dynamically determine the amount of SDRAM memory in the entire system, the sizing 
algorithm must first determine the amount of SDRAM installed per each external bank. 

– To do this, the algorithm must enable one external bank at a time and start with the 
largest possible configuration for that bank, which is 11 columns, 4 internal banks, 
and 13 rows.

– If a smaller-sized SDRAM is installed in a given external bank, aliases will be created, 
and the sizing algorithm uses the aliasing to determine the actual size of the external 
SDRAM bank. 

■ Note that while SDRAM sizing is being performed, the Am5x86 CPU cache, the SDRAM 
ECC, the SDRAM write buffer, and the SDRAM read-ahead feature should all be 
disabled. 

For example, to setup external SDRAM Bank 3 to its largest possible SDRAM configuration 
setting, a value of A000h should be written into the SDRAM Bank Configuration (DRCCFG) 
register (MMCR offset 14h), and a value of FF000000h should be written into the SDRAM 
Bank 0–3 Ending Address (DRCBENDADR) register (MMCR offset 18h).

10.6.4.1 Determining the Number of Columns for an External Bank

Determining the correct number of columns for a given external bank of SDRAM can be 
accomplished by four writes and five reads of a given external bank. 

Four unique data patterns must be selected.

An example is: 

pattern1 = 0Bh
pattern2 = 0Ah
pattern3 = 09h
pattern4 = 08h

Four SDRAM memory addresses must be selected that all have the same internal bank 
and SDRAM row address bits (processor address bits 31–13 constant) and the same low 
order column address bits (processor address bits 9–0 constant), but with specially selected 
column addresses for processor address bits 12–10. 

■ The first address must have SDRAM column address bits 11, 9, and 8 (processor 
address bits 12–10) on. 

■ The second address must have SDRAM column address bit 11 (processor address bit 
12) off and SDRAM column address bits 9–8 (processor address bits 11–10) on. 

■ The third address must have SDRAM column address bits 11 and 9 (processor address 
bits 12-11) off and SDRAM column address bit 8 (processor address bit 10) on. 
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■ The final address must have SDRAM column address bits 11, 9, and 8 (processor 
address bits 12–10) off. 

There are many addresses which meet this criteria, of which one example is: 

address1 = 0E001E00h
address2 = 0E000E00h
address3 = 0E000600h
address4 = 0E000200h

Here is the sequence to determine the number of columns for a given external bank of 
SDRAM:

1. First, pattern1 is written and read back from address1. 

2. Pattern2 is written and read back from address2. 

3. Pattern3 is written and read back from address3. 

4. Pattern4 is written and read back from address4. 

5. If any of the four reads fail to produce the same pattern that was written, then either 
SDRAM does not exist for this external bank, or the SDRAM is nonfunctional, which, in 
either case, no memory is enabled and sizing continues with the next external bank. 

6. If all four reads are correct, then address1 is read once again, and the pattern that is 
returned by this read determines the true number of columns. 

Using the patterns given in the example, the value read is the number of real columns for 
the external bank.

10.6.4.2 Determining the Number of Internal Banks

Determining the correct number of internal banks and the true ending address of an external 
bank requires only five writes and seven reads of the external bank. 

Five unique data patterns must be selected. 

An example is: 

pattern5 = 3Fh
pattern6 = 1Fh
pattern7 = 0Fh
pattern8 = 07h
pattern9 = AAh

Five SDRAM memory addresses must be selected which all have the same low-order 
SDRAM row address bits, the same least significant internal bank select bit (BA0), and the 
same SDRAM column address bits (processor address bits 31–28 and 23–0 constant), but 
with specially selected row addresses for processor address bits 27–24. Processor address 
bits 27–24 is where the SDRAM rows above ROW10 are mapped in this maximum SDRAM 
configuration. 

■ The first address must have processor address bits 27–24 all on. 

■ The second address must have processor address bit 27 off and processor address bits 
26–24 on. 

■ The third address must have processor address bits 27–26 off and processor address 
bits 25-24 on. 

■ The fourth address must have processor address bits 27–25 off and processor address 
bit 24 on. 
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■ The final address must have processor address bits 27–24 all off. 

There are many addresses which meet this criteria, of which one example is: 

address5 = 0F000000h
address6 = 07000000h
address7 = 03000000h
address8 = 01000000h
address9 = 00000000h

Here is the sequence to determine the correct number of internal banks:

1. First, pattern5 is written and read back from address5. 

2. Pattern6 is written and read back from address6. 

3. Pattern7 is written and read back from address7. 

4. Pattern8 is written and read back from address8. 

5. Pattern9 is written and read back from address9. 

6. If any of these five reads fail to produce the same pattern that was written, then either 
SDRAM does not exist for this external bank, or the SDRAM is nonfunctional, which in 
either case no memory is enabled and sizing continues with the next external bank. 

7. If all five reads are correct, then the correct number of internal banks can be determined 
by reading address7 once again. 

8. If the pattern read from address7 is pattern9, then only two internal banks exist for this 
external bank. 

9. If the pattern read from address7 is pattern7 or pattern8, then four internal banks exist. 

10.If the pattern read from address7 is anything other than pattern7, pattern8, or pattern9, 
then there is no valid memory for this external bank. 

The reason pattern7 is read back from a 2-internal-bank SDRAM is because the SDRAM 
controller thinks it has two open pages, and the SDRAM has only one open page, so the 
data is retrieved erroneously from the wrong page.

10.6.4.3 Determining the True External Bank Ending Address

The true ending address can now be determined by reading adress5 again. If any value 
other than pattern5, pattern6, pattern7, or pattern8 is read, then there is no valid memory 
for this external bank. 

Here is the sequence to determine the true external bank ending address:

1. Using the values for these patterns as in the example, the value read represents the 
ending address for the external bank, if the device has 11 columns. 

2. So, this value must be shifted right by the value 11, minus the actual number of columns 
determined to exist. 

3. This value must then be incremented by 1 and ORed with 80h to be ready to be loaded 
into the appropriate byte of the SDRAM Bank 0–3 Ending Address (DRCBENDADR) 
register (MMCR offset 18h).

This process is continued until all four possible external banks have been checked.
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CHAPTER
11
 WRITE BUFFER AND READ BUFFER
11.1 OVERVIEW
The ÉlanSC520 microcontroller includes two buffering techniques to optimize the SDRAM 
system performance. These include a write buffer and a read buffer with a read-ahead 
feature. 

The write buffer provides a mechanism for all masters (Am5x86 CPU, PCI, or GP-DMA) to 
post write data with zero wait states. When enabled, the write buffer effectively decouples 
master write activity from incurring the SDRAM latency penalty. This, in effect, also allows 
SDRAM to satisfy a higher demand in read activity by all masters. In addition, the write 
buffer provides write-merging and write-collapsing functions to better utilize FIFO storage 
and reduce the total number of transactions to SDRAM. Data read-merging is also 
supported to efficiently maintain data coherency.

The read buffer provides two cache lines (32 bytes total) of storage for read data returned 
from SDRAM. The read buffer and its associated read-ahead function, when enabled, 
provide a mechanism to prefetch the cache line of information from SDRAM that 
immediately follows the requested cache line. This feature is provided in anticipation of 
future accesses to the prefetched line (spatial locality). The read buffer is always enabled; 
however, the read-ahead feature and write buffer are disabled after a system reset. 

Although both the write buffer and read-ahead feature of the read buffer are tightly 
integrated, they can be independently enabled.

Features of the write buffer include:

■ 32-level doubleword FIFO with random access capability

■ Content addressable memory (CAM) provides snoop capability

■ Zero wait state writes to non-full buffer

■ Provides write-merging, write-collapsing, and read-merging functions

■ Benefits Am5x86 CPU, PCI, and GP-DMA SDRAM write transfers

Features of the read buffer include:

■ Read buffer provides storage for two Am5x86 CPU cache lines (32 bytes total)

■ Zero wait state reads on read buffer hits

■ Read-ahead feature that, when enabled, prefetches the next cache line of information 
from SDRAM for master read requests of two or more doublewords

■ Demand doubleword start fetch

■ Benefits Am5x86 CPU, PCI, and GP-DMA SDRAM read transfers

The write buffer is expected to enhance individual write or burst write activity by all masters. 
It supplies zero wait state writes for all masters. However, the write buffer’s write-merging 
and write-collapsing features greatly enhance Am5x86 CPU, PCI, and GP-DMA 8-bit and 
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16-bit contiguous transfers, allowing multiple individual transfers to be merged into a single 
transaction to SDRAM.

The read-ahead feature of the read buffer enhances read burst activity by the Am5x86 CPU 
and external PCI master burst read requests. SDRAM cache line fills by the Am5x86 CPU 
are probably the most common read requests. These reads typically occur as cache-line 
bursts of four doubleword (32-bit) requests. PCI master burst read requests also benefit 
greatly.

Each feature can be independently configured. To maintain data coherency, the read buffer 
is invalidated during master write cycles or write buffer write cycles that hit an existing line 
in the read buffer. Data coherency during all configuration changes of the individual features 
is performed in hardware. A manual flush feature of the write buffer is provided.

11.2 BLOCK DIAGRAM
The write buffer and read buffer are integrated into the SDRAM controller’s subsystem as 
shown in Figure 11-1. Each is capable of functioning independently. A more detailed view 
of the internal write buffer and read buffer architecture is shown in Figure 11-2.

Figure 11-1 Write Buffer and Read Buffer Block Diagram (SDRAM Subsystem)
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Figure 11-2 Write Buffer and Read Buffer Block Diagram
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are not shown in this table. When enabled, the multiplexed signals shown in Table 11-1 
either disable or alter any other function that uses the same pin.

11.4 REGISTERS
The memory-mapped registers for SDRAM buffer control are shown in Table 11-2.

11.5 OPERATION
The write buffer and read buffer are two features implemented in the SDRAM controller to 
increase SDRAM performance. 

The write buffer provides a mechanism for all masters (Am5x86 CPU, PCI, or GP-DMA) to 
post write data with zero wait states, thus decoupling the master from experiencing the 
write latency penalty associated with the SDRAM. When the write buffer is enabled, all 
write activity to SDRAM is initiated by the write buffer. 

The read-ahead feature of the read buffer is designed to increase SDRAM read performance 
by prefetching the cache line following the current access, thus possibly supplying data to 
the requester with zero wait states. The read-ahead feature takes advantage of the fetch-
forward nature of the Am5x86 CPU prefetch engine (which relies on spatial locality of 
program flow) and PCI read bursts. Read prefetching (when enabled) occurs only for master 
read accesses that result in a burst of two or more doublewords. A prefetch never occurs 
for a GP-DMA request since GP-DMA read requests are never burst. However, during a 
GP-DMA read request, the remainder of the cache line is always fetched.

The write buffer provides a debug feature that, when enabled, provides contributing master 
information on external pins (WBMSTR2–WBMSTR0) during a write buffer write cycle to 
SDRAM. These pins reflect which master contributed to the write buffer level in the process 
of being written back. The contributing masters reflected could be either: Am5x86 CPU, 
PCI, or GP-DMA. Since the write buffer supports the write-merging and write-collapsing 
functions, it is possible that multiple masters contributed to the same level that is in the 
process of being written to SDRAM. See Chapter 24, “System Test and Debugging”, for 
more information on write buffer debug support.

Table 11-1 SDRAM Signals Shared with Other Interfaces

Default Signal Alternate Function Control Bit Register

CF_ROM_GPCS WBMSTR0 WB_TST_ENB SDRAM Control (DRCCTL) register 
(MMCR offset 10h) DATASTRB WBMSTR1

CF_DRAM WBMSTR2

Table 11-2 SDRAM Buffer Control Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

SDRAM Control DRCCTL 10h SDRAM write buffer test mode enable

SDRAM Buffer Control DBCTL 40h Write buffer enable, read-ahead enable, write 
buffer watermark, write buffer flush
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11.5.1 Write Buffer
The ÉlanSC520 microcontroller’s SDRAM controller contains 32 4-byte write data buffers. 
The write buffer provides benefits beyond that of a standard posting FIFO. A standard FIFO 
blindly posts data without knowledge of data that already exists within the FIFO. The write 
buffer is more efficient in that each write access is snooped. 

The snoop function is used to determine if data associated with the current address already 
exists in the FIFO. This feature allows write data to be merged or collapsed with data that 
already exists in the write buffer. This results in a reduced number of overall writes to SDRAM 
for contiguous partial doubleword writes and also more efficiently utilizes the FIFO storage. 
The snoop capability also provides the read-merging function to more efficiently handle 
data coherency overhead. It does this by not requiring a total write buffer flush before 
servicing a read cycle (which would ordinarily be required by a standard FIFO that does 
not provide snooping). 

The write buffer provides the following benefits:

■ Zero wait state write data posting (to a non-full buffer), effectively decoupling master 
write activity from SDRAM latency

■ Read-around-write support, enhanced by the read-merging function, effectively allowing 
the SDRAM controller to give read priority over buffered writes to SDRAM

■ Write-merging and write-collapsing of write data

The read-around-write feature is provided when the write buffer is enabled. It allows read 
requests to SDRAM to occur in front of, or around, write buffer requests. Write buffer 
requests are due to write data that was posted during previous master write activity and is 
migrating to SDRAM. Read-around-write is only functional when the write buffer is enabled.

11.5.1.1 Write Buffer Disabled

When the write buffer is disabled, all write and read traffic generated by any master is 
directed around the write buffer directly to SDRAM. Write data is no longer posted, and 
read cycles no longer require snooping for data coherency. If the write buffer contained 
valid data when it was disabled, it is automatically flushed (by hardware) to SDRAM as a 
top priority before SDRAM is free to service any subsequent requests. This guarantees 
data coherency. Should any master try a read or write access to SDRAM at this time, the 
cycle is stalled (via wait states) until the write buffer flush is complete. 

The write buffer can be manually flushed by setting the WB_FLUSH bit in the SDRAM Buffer 
Control (DBCTL) register (MMCR offset 40h). Write buffer flush complete status is available 
after a manual flush by reading the WB_FLUSH bit.

11.5.1.2 Write Buffer Enabled

When the write buffer is enabled, all write data by all masters are written into the write 
buffer. Data are written into SDRAM from the write buffer in FIFO fashion when the SDRAM 
controller is free to service the request. 

The snoop capability is used to enhance performance for both read and write cycles. 

■ Through the use of the snoop feature on write cycles, the write buffer can determine if 
data already exists, and, if so, it either write-merges or write-collapses the data. This 
enhances write performance through a reduction in the total number of required write 
cycles to SDRAM for contiguous writes and also makes better utilization of the physical 
storage space of the buffer. 
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■ For read cycles, the snoop feature is used to determine if data associated with the same 
address of the read request already exists in the write buffer. If data is already present, 
that data is read-merged with data being returned from SDRAM. This enhances SDRAM 
system performance by not requiring the write buffer to be flushed prior to satisfying a 
read cycle. 

Write-merging, write-collapsing, and read-merging functions are described in 
Section 11.5.1.2.1 and Section 11.5.1.2.2.

Although the write buffer and read buffer service all master SDRAM memory requests, 
SDRAM reads that fill the Am5x86 CPU cache are more common than SDRAM writes. To 
satisfy this demand and give priority read access to SDRAM, the write buffer works with 
the SDRAM controller to alleviate write overhead. This is accomplished by posting write 
data in zero wait states, effectively freeing the processor earlier to continue. Should a 
following read cycle occur, the read-around-write feature of the SDRAM controller gives 
priority to the read cycle to prevent the master from stalling. Without the snooping capability, 
the entire contents of the write buffer would have to be flushed prior to any read cycle in 
the event that more current data remains posted. Because of the snooping capability, 
needless flushes are not performed. This results in less overhead to maintain data 
coherency.

Should a read occur to an address contained in the write buffer, the write buffer merges its 
data with the data returned from SDRAM. The read-merging function maintains data 
coherency and eliminates the need to flush the write buffer.

11.5.1.2.1 Write-Merging and Write-Collapsing
When enabled, the write buffer supports write-merging and write-collapsing. 

■ Write-merging, as illustrated in Figure 11-3 on page 11-7, occurs when a sequence of 
individual writes are merged into a single doubleword that hits in the write buffer level, 
or doubleword. However, write-merging implies that the same byte location is not written 
more than once. 

■ Write-collapsing, as illustrated in Figure 11-4 on page 11-8, is very similar to the write-
merging function, with the exception that the same byte location can be written more 
than once. The write-collapsing function allows a sequence of individual writes to hit a 
single level in the write buffer, even though previous data in that doubleword can be over-
written.

These functions optimize SDRAM performance by minimizing individual writes to SDRAM. 
There are no dependencies between any doubleword in the write buffer and any of the 
masters that are capable of posting data to the write buffer. This implies that multiple masters 
may contribute to the merging or collapsing of any doubleword in the write buffer.

The terms write-merging and write-collapsing are intended to conform to the meaning as 
introduced in the PCI Local Bus Specification, Revision 2.2. 
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Figure 11-3 Write Buffer Merging Example
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Notes:
This example illustrates how four separate write cycles can be “merged” and reduced to only one 
doubleword SDRAM write transaction.
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Figure 11-4 Write Buffer Collapsing Example

11.5.1.2.2 Read-Merging
The write buffer supports read-merging. 

■ Read-merging, as illustrated in Figure 11-5 on page 11-9, occurs when a read cycle hits 
a “dirty” doubleword that currently exists in the write buffer, and the read data returned 
from SDRAM is replaced, or merged, with existing bytes from the write buffer. 

Read-merging does not negate the need for a SDRAM read cycle. Even during a read cycle 
that hits a complete dirty doubleword in the write buffer, a read cycle to SDRAM will still 
occur, but the entire doubleword from SDRAM will be replaced with the more recent 
doubleword in the write buffer. Read-merging maintains data coherency and enhances 
SDRAM performance by not requiring a flush of the write buffer contents to SDRAM before 
every read cycle. 
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Notes:
This example illustrates how existing data can be overwritten. Separate write cycles can be 
“collapsed” and reduced to only one doubleword SDRAM write transaction.
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Figure 11-5 Write Buffer Read-Merging Example
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is written into the write buffer, a new rank of storage is allocated, provided that write-merging 
or collapsing is not taking place. When a write cycle resulting in a rank being allocated 
takes place that exceeds the watermark setting, the write buffer requests service from the 
SDRAM controller to initiate write transfers to SDRAM. 

■ A higher watermark setting (i.e., 28 doublewords) allows the write buffer to acquire more 
master write data prior to requesting SDRAM controller attention than a lower watermark 
setting. If a large amount of incomplete doubleword writes (i.e., byte, word, or three byte 
write transfers) is expected from either the Am5x86 CPU, PCI, or GP-DMA, a higher 
watermark setting allows the write buffer to fill higher prior to requesting SDRAM service, 
resulting in a greater chance of write data merging or collapsing. 

■ A lower watermark setting can be used for applications that require more complete 
doublewords, and where merging/collapsing of data is less likely. This causes the write 
buffer to request SDRAM service at a lower threshold, thus reducing the chance of filling 
the write buffer. 

The write buffer watermark setting can be configured with the WB_WM bit in the SDRAM 
Buffer Control (DBCTL) register (MMCR offset 40h). A waterrmark of 16 doublewords is 
recommended. Note that the write buffer must be disabled before changing the write buffer 
watermark.
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This example illustrates a 32-bit master read of address A000000h, which causes a read hit in 
the write buffer. This causes the lower data word from the write buffer to be merged with the upper 
data word from SDRAM, to return the entire doubleword to the requesting master.
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The SDRAM controller’s arbiter supports a write buffer park feature, such that after the write 
buffer’s watermark is reached and requests SDRAM service, the SDRAM controller’s arbiter 
continues to grant the write buffer SDRAM service, until either a master read cycle is 
requested to SDRAM or a SDRAM refresh occurs. After the write buffer’s grant is removed, 
the write buffer’s watermark will need to be exceeded prior to the write buffer requesting 
SDRAM service again. This park feature allows the write buffer to utilize SDRAM access 
until a higher priority master read or an SDRAM refresh cycle is requested.

11.5.2 Read Buffer and the Read-Ahead Feature
The SDRAM controller contains eight 4-byte read data buffers. Combined, these buffers 
make up the read buffer and are designed to hold two cache lines of data returned from 
SDRAM. The read buffer is designed to increase SDRAM read performance by storing 
previously read data from SDRAM and supplying this data in zero wait states to a requesting 
master. 

The SDRAM controller always fetches an entire cache line of data from SDRAM and stores 
it in the read buffer, independently of the amount of data requested during the master 
access. For example, during a read request from a non-bursting master (i.e., single 
doubleword request), the SDRAM controller fetches the entire cache line of data from 
SDRAM and stores it in the read buffer. When the read-ahead feature of the read buffer is 
enabled and the master read access is a burst of two or more doublewords, not only is the 
requested cache line (i.e., the demanded line) of data retrieved from SDRAM, but also the 
cache line following it. 

A demand fetch implies that the SDRAM controller will be servicing the read request from 
the master as it occurs. When the read-ahead feature is enabled, a read-ahead prefetch 
only occurs for master demand burst requests of two or more doublewords. The read-ahead 
feature takes advantage of the linear forward-fetch nature of the Am5x86 CPU and PCI 
bursts. GP-DMA transfers are non-burst, and thus do not result in a prefetch. However, GP-
DMA transfers can utilize the remainder of the cache line, since all read accesses result in 
a cache line access to SDRAM.

The read buffer provides storage for two cache lines of read data and cannot be disabled. 
The read-ahead feature of the read buffer can be disabled.

11.5.2.1 Read-Ahead Feature Disabled

When the read-ahead feature is disabled, the prefetch feature of the SDRAM controller is 
disabled. All master read requests that occur to SDRAM are demand fetches and always 
result in an entire cache line of data being read from SDRAM. Even when the read-ahead 
feature is disabled, both cache lines of storage of the read buffer are still utilized and contain 
the last two demand cache line fetches.

11.5.2.2 Read-Ahead Feature Enabled

When the read-ahead feature is enabled, following cache line prefetches from SDRAM will 
occur when the read access is a burst of two or more doublewords. The prefetched cache 
line always follows the demanded cache line. Should an access result in a read buffer hit, 
the read-ahead logic will request the cache line following the access that is currently being 
supplied from the read buffer. 

The read buffer is organized as two cache lines of data and an associated address tag. On 
every read cycle these tags are compared to the read address being requested. If the 
compare results in a hit, this data is supplied to the requesting master in zero wait states. 
If, during this hit, the next cache line of data does not already exist in the read buffer, the 
prefetch logic will request it from SDRAM. Should a request result in a read buffer miss, 
the demanded read cycle request is satisfied by SDRAM, and the prefetch logic starts a 
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request to acquire the next cache line. The demanded read cycle implies that the first 
doubleword request by the master will be serviced first, such that the master can continue 
while the remainder of the cache line is prefetched.

If the read-ahead feature of the read buffer is enabled, a prefetch occurs only for master 
read access that results in a burst of two or more doublewords. Single doubleword read 
requests do not result in a read-ahead prefetch and only result in the cache line of the 
demanded access being read into the read buffer. GP-DMA read accesses are always a 
single doubleword.

To maintain coherency in the system, each cache line of the read buffer has associated 
with it a valid bit that represents the validity of the cache line. Both cache-line valid bits are 
cleared on the occurrence of master write access to SDRAM or a write buffer write access 
to SDRAM that hits a cache line currently available in the read buffer.

11.5.3 DMA Considerations
The read buffer and its associated read-ahead feature provide optimum performance for 
burst-capable masters (during read cycles) that maintain long bus tenure (with burst 
transfers of two or more doublewords). Most masters with burst capability burst forward an 
entire cache line. For these masters, the read-ahead feature provides optimum 
performance, such that the anticipated data prefetch will result in a read buffer hit. 

■ The read-ahead feature performs well during Am5x86 CPU burst reads (which usually 
result in full cache-line burst when the cache is enabled). During cache-line fills, the 
Am5x86 CPU can maintain bus tenure for more than one burst transfer, such that 
successive bursts will be satisfied by read buffer prefetch hits. 

■ Also, during PCI master read burst requests, the read-ahead feature of the read buffer 
performs equally well for PCI master tenure to SDRAM that requests a cache line of data. 

■ However, since the GP-DMA controller supports multiple channels and is capable of 
operating in either single, demand or block transfer modes, it is possible that the read 
buffer performance during GP-DMA transfers becomes dependent on the GP-DMA 
channel configurations.

As mentioned earlier, the SDRAM controller always fetches an entire cache line from 
SDRAM during a read request, even if the read-ahead feature is disabled. Since DMA 
transfers are non-burst (i.e., single doubleword requests), even if the read-ahead feature 
is enabled, only the rest of the cache line is fetched, rather than the rest of the cache line 
and the following cache line, as would be seen during burst transfers of two or more 
doublewords. 

■ A DMA channel configured for incrementing order that starts at the beginning of a cache 
line takes full advantage of read buffer hit, since all following incrementing access should 
result in a read buffer hit up to the cache-line boundary, assuming demand or block 
transfer mode. 

■ DMA transfers that are configured for decrement mode will also see a read buffer benefit, 
since the remainder of the cache line is fetched. For DMA transfers that are configured 
for decrement mode, maximum read buffer performance is seen when the first access 
is at the end of a cache-line boundary.

DMA transfer mode types can have a direct impact on read buffer performance. It would 
be ideal for the same DMA channel to hit the read buffer as much as possible during its 
tenure. 
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In a system configured with multiple active DMA channels, read buffer misses will most 
likely occur for each change of channel tenure. This is because each DMA channel accesses 
different SDRAM regions that will most likely miss the read buffer, which still contains the 
cache line of data fetched during the previous channel’s tenure. Therefore, it would be ideal 
for as many transfers to occur as possible while a particular DMA channel has access to 
SDRAM to utilize the rest of the cache line fetched during the DMA transfer’s first doubleword 
request. This implies that, in a system with many active DMA channels configured for single 
transfer mode, read buffer misses will occur that do not utilize the cache line of data fetched 
during the previous channels tenure. 

Demand and block DMA transfer modes will most likely take advantage of the rest of the 
cache-line fetches, since devices that use these modes typically have longer bus tenure, 
resulting in a higher utilization of the fetched data.

11.5.4 PCI Considerations
As a PCI target, the ÉlanSC520 microcontroller can respond to PCI master write and read 
requests to SDRAM. To facilitate large burst transfers as a PCI target, a 64-level write data 
FIFO and 64-level read data FIFO is available in the PCI target logic. 

11.5.4.1 Write Cycles

For PCI master burst writes to SDRAM, the ÉlanSC520 microcontroller can sustain zero 
wait states until the PCI target write FIFO is filled. As the FIFO is filling at the PCI interface, 
data is being removed from the FIFO and written to SDRAM. When the SDRAM controller’s 
write buffer is enabled, data can be quickly transferred from the PCI target write FIFO to 
the SDRAM write buffer in zero wait states (to a non-full write buffer), allowing the PCI target 
write FIFO to empty quickly. This prevents the PCI master from experiencing the SDRAM 
latencies, thus freeing up the PCI bus earlier. 

During PCI target write transfers to SDRAM, the Am5x86 CPU cache is snooped to maintain 
coherency. If the CPU cache is configured in write-back cache mode and a snoop results 
in a hit, the modified Am5x86 CPU cache line must be written back to memory prior to 
allowing the PCI target write transfer to take place. When the write buffer is enabled, the 
Am5x86 CPU cache-line write-back is posted to the write buffer, and the following PCI target 
write transaction collapses on top of the previously written cache-line write-back, resulting 
in a reduction in the overall number of transactions to memory.

11.5.4.2 Read Cycles

In most applications, a PCI master transfers data to SDRAM and then interrupts the 
processor when the transfer is complete. The processor then usually accesses this data in 
SDRAM. Since the write buffer supports read-merging, associated data that is still in the 
write buffer from the PCI transfer may be immediately read by the processor, without the 
overhead of first flushing the write buffer before allowing the read to occur. Also, since the 
SDRAM controller allows read-around-write activity when the write buffer is enabled, the 
processor reads are allowed to occur around writes that are posted in the write buffer, thus 
offering a performance increase to processor read requests.

During PCI master read transfers from SDRAM, the ÉlanSC520 microcontroller’s PCI target 
read FIFO is filled with data read from SDRAM. This data is then supplied to the requesting 
PCI master directly from the target’s read FIFO. Since PCI bursts are linear and forward in 
nature, the SDRAM controller’s read-ahead feature prefetches data (from SDRAM) forward 
from the PCI master’s start address. As the ÉlanSC520 microcontroller’s PCI target read 
FIFO requests data from SDRAM, it is likely that these requests will result in read buffer 
hits due to prefetching, thus providing data quickly to the PCI target read FIFO. 
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Large PCI burst requests will benefit more from the read-ahead function than short, frequent 
independent PCI read transfers. Since the Am5x86 CPU is a major requestor of SDRAM 
read accesses, short and frequent independent PCI transfers may result in read-ahead 
thrashing. For example, data prefetched for Am5x86 CPU read requests may possibly not 
be used by PCI read requests and data prefetched for the PCI request may possibly not 
be used by the Am5x86 CPU.

11.5.5 Software Considerations
The write buffer and read buffer require minimal configuration overhead. 

Data coherency is maintained in hardware during write buffer configuration changes. This 
implies that when the write buffer is disabled, the contents are automatically flushed to 
SDRAM as a high priority, prior to allowing any master activity to occur to SDRAM. Even 
though a write buffer flush occurs automatically when it is disabled, a manual write buffer 
flush control is provided for software control via the WB_FLUSH bit in the SDRAM Buffer 
Control (DBCTL) register (MMCR offset 40h). If the read-ahead feature is disabled, the 
prefetched data remains in the read buffer. 

Both the write buffer and read-ahead feature of the read buffer are disabled after a system 
reset or programmable reset. It is recommended that the write buffer be disabled prior to 
SDRAM sizing, SDRAM test, or other software activity that must have guaranteed write 
data delivery to the physical SDRAM array prior to reading. Failure to disable the write buffer 
for these usages may result in false SDRAM sizing or test indications.

Typically during SDRAM sizing or test, SDRAM is written and then read back to determine 
either if SDRAM exists at that location (during sizing) or if SDRAM is functional at that 
location (during test). Since the write buffer provides a read-merging function to reduce the 
overhead associated with maintaining data coherency, data is not forced from the write 
buffer to SDRAM prior to the read-back of the data. (This overhead would normally be 
required for non-snooping write buffers that do not support read-merging to maintain 
coherency.) Should the read occur while the associated write data is still in the write buffer, 
the correct data is read-merged with data from SDRAM, thus providing the correct read 
data even though the write data was not yet written to SDRAM. If, in this scenario, SDRAM 
was non-existent, it would appear as though it did exist, thus resulting in either an invalid 
SDRAM size or false “pass” status during a SDRAM test algorithm. If the write data migrated 
to SDRAM before the read-back, a correct indication would result. 

The write buffer must be disabled only in these scenarios where software requires 
guaranteed delivery of write data to SDRAM prior to testing. Under normal program 
execution, the write buffer and read buffer “appear” as the SDRAM storage array.

11.5.6 SDRAM Bandwidth Improvements
When enabled, the performance benefit that the write buffer offers is its ability to effectively 
decouple the master write activity from incurring the SDRAM latency penalty. This in effect 
leaves the SDRAM free to satisfy a higher demand in read activity by all masters. To further 
optimize this, when the write buffer is enabled, it allows master read requests to occur 
around write data posted in the write buffer. In effect, read cycles are given priority to SDRAM 
when the write buffer is enabled. However, there are conditions that give the write buffer 
write priority to SDRAM over reads. These are:

■ Flush priority is given to the write buffer when the write buffer configuration changes to 
disabled.

■ The user exercises the manual write buffer flush feature.
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Since the write buffer supports data read-merging, data coherency overhead is kept to a 
minimum. The write buffer’s read-merging capability is possible due to the write buffer’s 
ability to snoop its own contents during read and write cycles. In the special case of a read 
to an address contained in the write buffer, the overhead associated with flushing the entire 
contents of the write buffer to maintain data coherency is eliminated. In this case, as data 
is returned from SDRAM during the read cycle, more current data in the write buffer is 
merged into the data stream, replacing older data bytes being returned from SDRAM. This 
greatly enhances the read-around-write behavior by eliminating the overhead associated 
with flushing the write buffer to maintain coherency.

The maximum write buffer performance is seen during individual contiguous byte writes to 
SDRAM. For example, suppose the GP-DMA was performing a 64-byte block transfer from 
an 8-bit device to SDRAM. Without the write buffer, this would require 64 individual byte-
wide transfers to SDRAM. Because of the write buffer’s write data-merging capability, each 
contiguous byte could be merged to form only 16 doubleword transfers to SDRAM. This 
would reduce the total number of SDRAM writes cycles from 64 to 16 in this example.

The write buffer also improves memory system performance during heavy SDRAM write 
data thrashing between multiple masters. Since the write buffer provides zero wait state 
posting of write data, the SDRAM interface is freed up earlier to service another master’s 
request. While the next master is arbitrating for SDRAM, the write buffer can concurrently 
be writing back the data posted by previous masters. Therefore, during heavy SDRAM write 
thrashing periods by multiple masters, the write buffer can help to hide the arbitration 
overhead. This is shown in Figure 11-6.

Figure 11-6 Bus Thrashing with Write Buffer Disabled and Enabled

The maximum benefit of the read buffer’s read-ahead feature is provided during consecutive 
prefetch hits. This will most likely occur during long master burst tenure or consecutive 
bursts by the same master. For example, suppose a PCI master requests a 256-byte (64-
doubleword) read transfer from SDRAM. Since the read buffer prefetches a cache line 
forward and PCI burst transfers are linear and forward in nature, consecutive requests can 
be satisfied by data prefetched by the read-ahead feature.
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11.6 INITIALIZATION
The write buffer and read buffer are reset during a system reset. As a result of this system 
reset event, the write buffer and read-ahead feature of the read buffer are both disabled, 
and all associated state machines are returned to their idle states. 

During a programmable reset, the write buffer’s contents are reset and not maintained. The 
contents of the read buffer are maintained during a programmable reset. The write buffer 
and read-prefetch configuration are not preserved during a programmable reset. See 
Chapter 6, “Reset Generation”, for more detailed information on this type of reset.

It is recommended that, prior to SDRAM sizing and test, the write buffer be disabled to 
prevent false SDRAM sizing or test indications. It is also recommended that, during SDRAM 
sizing or test, the read-ahead feature is disabled. Having the read-ahead feature enabled 
will not result in false indications during sizing or test, but may result in a slight performance 
degradation during the SDRAM sizing or test algorithm, because read accesses are not 
consecutive in nature during sizing or test. After this period, the user is free to enable the 
write buffer and read-ahead feature when desired.
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CHAPTER
12
 ROM/FLASH CONTROLLER
12.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated ROM controller that provides a high 
performance interface to ROMs, EPROMs, and Flash devices. Improved performance is 
achieved by supporting a full 32-bit data path and advanced page-mode devices. 

Note that in this document the term ROM is used interchangeably with Flash and EPROM 
for simplicity. In addition, the term ROM is used to denote the entire bank of ROM devices 
connected to a chip select, e.g., a 32-bit ROM can be implemented as four discrete 8-bit 
ROM devices.

Features of the ROM controller include:

■ Support for a wide variety of industry standard ROMs, EPROMs, and Flash devices, 
including advanced page-mode devices.

■ Three chip selects are provided. Each chip select supports up to 64 Mbytes. 

– One chip select is dedicated to booting.

– The remaining two chip selects are optional and are multiplexed with GP bus chip 
selects. 

■ Programmable timing for both non-page-mode and page-mode devices is supported.

■ Programmable Address Region (PAR) register attributes provide code execution control, 
cacheabilitity control, and write protection for Flash devices

The ÉlanSC520 microcontroller supports 8-bit, 16-bit, and 32-bit ROM configurations.

■ The GP address bus is always used for the ROM address, but the ROM data bus can 
be connected to either the GP bus data bus or the SDRAM data bus.

■ For the boot device (BOOTCS), a set of configuration pins latched into the chip when 
PWRGOOD is asserted is used to determine the width of the ROM array and which of 
the two buses (GP bus or SDRAM interface) is used for the ROM data bus. 

– The remaining two optional chip selects are configured via configuration registers in 
the ROM controller.

■ 8-bit and 16-bit ROM configurations are supported when ROMs are connected to either 
the GP bus or the SDRAM data bus. 32-bit ROM configurations are supported only when 
ROMs are connected to the SDRAM data bus, as shown in Table 12-1.

Table 12-1 ROM/Flash Data Bus Connection Options

Data Bus 8-Bit ROM 16-Bit ROM 32-Bit ROM

GP Bus data pins Yes Yes No

SDRAM interface data pins Yes Yes Yes
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12.2 BLOCK DIAGRAM
Figure 12-1 shows a block diagram of the ROM controller.

Figure 12-1 ROM Controller Block Diagram 

12.3 SYSTEM DESIGN
See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and 
additional timing diagrams.

Configuration information for the boot device (BOOTCS), specifically the width of the ROM 
and the location of the ROM, is provided by external pinstrapping. The CFG2 pinstrapping 
defines the bus, either SDRAM or GP bus data bus, on which the ROM is located. The 
CFG1–CFG0 pins define the data width of the ROM devices. CFG2–CFG0 are latched 
when PWRGOOD is asserted. See “Initialization” on page 12-14 for more information.
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The ROMCS1 and ROMCS2 signals are provided to support two additional ROM chip 
selects. These pins are shared with general-purpose chip selects, GPCS1 and GPCS2, 
respectively, as shown in Table 12-2. When enabled, the multiplexed signals shown in 
Table 12-2 either disable or alter any other function that uses the same pin.

The ROM controller can accommodate various performance and system voltage isolation 
requirements. Depending on the operation voltage required by the ROM and the voltage 
required by other devices sharing the same bus, the ROM data pins can be connected 
either to the GP bus or to the SDRAM interface (see Figure 12-2). Note that the ROM data 
pins must connect to only one interface per chip select (i.e., the ROM data pins may not 
straddle the two buses). 

■ Devices can be placed on the SDRAM bus to gain the advantage of a 32-bit data path. 
However, care must be taken by the system designer because of SDRAM loading and 
timing issues. See “System Design” on page 10-1. 

■ Alternately, the ROM devices can be implemented on the GP bus data pins. These 
devices are limited to 8- or 16-bits. See Table 12-1 for data width connection options.

Note that the addresses for ROM devices are always provided via GP bus, independently 
of whether the data pins of the ROM are connected to the GP bus or SDRAM bus. 

12.3.1 Voltage Isolation
From the ÉlanSC520 microcontroller’s perspective, both the SDRAM bus and the GP bus 
are 5-V-tolerant and drive 3.3 V. However, an isolation buffer is necessary when using the 
same bus for 5-V ROM devices and 3.3-V SDRAM devices that are not 5-V-tolerant. For 
example, if the 3.3-V SDRAM devices are not 5-V-tolerant and share the data bus with 
5-V ROM devices, the 3.3-V SDRAM devices could be damaged during ROM read access 
if an isolation buffer is not used. 

The ROMBUFOE signal is provided to support an isolation buffer, and this signal can be 
used for devices on the SDRAM bus or the GP bus. Some scenarios for such a situation 
are shown in Figure 12-2. The ROMBUFOE signal asserts during all accesses to ROM 
devices, whether the devices are located on the SDRAM bus or the GP bus.

Note that the SDRAM controller’s read and write buffers are not utilized during accesses 
to ROM devices. This is true even if a ROM device is located on the SDRAM bus. When 
the SDRAM buffering is enabled, the ROM devices connected to the SDRAM data bus 
(MD31– MD0), must use ROMRD to control the ROM device’s data pins. In this case, the 
system design should ensure that the external device does not drive data while ROMRD 
is asserted.

When sharing the SDRAM data bus with ROM devices, the loading of the data bus requires 
careful consideration. A buffer should be used on the data bus to prevent heavy loading by 
the ROM devices. In a system that utilizes buffering of these devices, the ROMBUFOE 
signal can be used to control the buffers. Similarly, data buffers can be used on the GP bus 
to control loading issues, and the ROMBUFOE pin should still be used to control buffers in 
front of these ROM devices.

Table 12-2 ROM Signals Shared with Other Interfaces

Default Signal Alternate Function Control Bit Register

ROMCS2 GPCS2 GPCS2_SEL Chip Select Pin Function Select 
(CSPFS) register (MMCR offset C24h)ROMCS1 GPCS1 GPCS1_SEL
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If the system has ROM devices on both the SDRAM data bus and the GP bus and data 
bus buffers are used (on either bus), ROMBUFOE should be qualified with the appropriate 
ROM chip selects and ROMRD, as needed, to prevent bus conflicts. For example, when 
SDRAM buffering is enabled, the SDRAM controller could be attempting to complete posted 
writes to the SDRAM. During this time, if the Am5x86 CPU performs a read from a ROM 
device that is on the GP bus (data bus), the buffer on the SDRAM bus (which isolates the 
ROM devices from the SDRAM) activates, unless its buffer control pins were also qualified 
with the ROMCSx pin.

Figure 12-2 Voltage Isolation Examples
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12.4 REGISTERS
Table 12-3 shows the memory-mapped registers used to configure the ROM controller.

12.5 OPERATION
ROM/Flash devices in a system are typically used to store two different kinds of information: 
system configuration data and program code. These applications impose different 
constraints on how to use the ROM/Flash memory in the system. 

While it may be sufficient to load system configuration information from ROM/Flash at a 
low speed, this may be not acceptable for accessing ROM-resident code that has to be 
executed. In this case, this code has to be copied either to SDRAM or executed directly 
from ROM. (See Chapter 3, “System Initialization” for more information on shadowing.)

For copying code blocks, the ROM performance may not be critical, because it is only 
accessed once per copy operation. For the more critical situation of executing code directly 
from the ROM (e.g., an Execute-In-Place operating system), precautions have to be taken 
to ensure an accelerated ROM access even for ROM devices incapable of bursting. 

This chapter discusses different configurations and operating modes that are appropriate 
for these varying situations.

12.5.1 ROM Support
Each of the three chip selects included on the ÉlanSC520 microcontroller supports up to 
64 Mbytes. Some example configurations for each chip select are:

■ Four 1-Mbit x 8 devices on the 32-bit SDRAM data bus for a total of 4 Mbytes

■ Two banks of ROM, with each bank containing four 8-Mbit x 8 devices, providing a total 
of 64 Mbytes

■ Two banks of ROM, with each bank containing two 8-Mbit x 16 devices, providing a total 
of 64 Mbytes

■ Four banks of ROM, with each bank containing two 8-Mbit x 8 devices, providing a total 
of 64 Mbytes

Table 12-3 ROM Controller Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

BOOTCS Control BOOTCSCTL 50h BOOTCS device select (SDRAM bus or GP 
bus), device data width, device operation mode, 
subsequent access delay, first access delay

ROMCS1 Control ROMCS1CTL 54h ROMCS1 device select (SDRAM bus or GP 
bus), device data width, device operation mode, 
subsequent access delay, first access delay

ROMCS2 Control ROMCS2CTL 56h ROMCS2 device select (SDRAM bus or GP 
bus), device data width, device operation mode, 
subsequent access delay, first access delay

Chip Select Pin Function 
Select

CSPFS C24h ROMCSx or GPCSx pin function select
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ROM devices are accessible by the Am5x86 CPU only. Normal operation of the ÉlanSC520 
microcontroller is not guaranteed if an external PCI master or GP-DMA cycle results in a 
ROM access.

The addresses for ROM devices are always provided via the GP bus, independently of 
whether the data pins of the ROM are connected to the GP bus or SDRAM bus. 

The ROM controller never bus-sizes read accesses to the Am5x86 CPU. In other words, 
bs16 and bs8 are never asserted for a ROM read access. Rather, the ROM controller 
gathers as much data as the Am5x86 CPU is requesting for read accesses. To accomplish 
this, the ROM controller monitors the internal byte enable signals, be3–be0, and the 
cacheability status of the access. Based on the byte enables, the ROM controller returns 
one to four bytes for non-burst Am5x86 CPU cycles and up to an entire cache line, 16 bytes, 
for burst accesses.

The ROM controller does not support burst-write or multiple data operations during write 
cycles. Writes to ROM devices typically have no performance issues. The ROM controller 
returns rdy, rather than brdy, to the Am5x86 CPU during write operations. In addition, the 
Am5x86 CPU signals bs8 and bs16 are asserted based on data size of the selected ROM 
device.

12.5.1.1 Supported Device Types

The ROM controller supports two ROM device types:

■ Non-page-mode ROM—A ROM device that always has the same access delay, 
regardless of how much data is requested from the ROM. 

■ Advanced page-mode ROM—These devices improve performance by allowing fast 
multiple access of data within the same memory page. The ROM controller has no upper 
limit on the page size of the ROM device and works with any device that supports a page 
size of four. However, after the fourth entry in the page, the ROM controller issues a new 
initial access.The page is opened during the initial access, allowing faster data reads 
from subsequent locations within the page simply by strobing the lower address bits. 

Non-page-mode and advanced page-mode ROMs do not require a clock signal. 

Figure 12-3 illustrates a read of four words from a 16-bit advanced page-mode ROM. Note 
that the write buffer associated with the SDRAM controller has no relevance for the ROM 
controller, because it applies only to SDRAM accesses.

Figure 12-3 Page-Mode ROM: Fetching Four Words from a 16-Bit ROM
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ROMRD

BOOTCS

Initial memory page opened here

Notes:
Subsequent reads occur 
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address bits only, resulting in 
a fast access of eight bytes.

Bytes 0-1 Bytes 2-3 Bytes 4-5 Bytes 6-7
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12.5.2 ROM Control and Timing Configuration
The ÉlanSC520 microcontroller provides ROM device configuration per chip select for the 
following:

■ ROM location (on GP data bus or SDRAM data bus) 

■ ROM width (8, 16, or 32 bits)

■ Operating mode (page-mode or non-page-mode)

■ Access timing 

12.5.2.1 ROM Location

The GP bus address is always used for the ROM address, but the ROM data bus can be 
connected to either the GP bus data bus or the SDRAM data bus.

For the boot device (BOOTCS), the CFG2 pinstrap is used to determine which of the two 
buses is used for the ROM data bus. For all other ROM devices (ROMCS1 and ROMCS2), 
this configuration information must be programmed by the initialization software.

■ The DGP bit in the BOOTCS Control (BOOTCSCTL) register (MMCR offset 50h) 
contains the value latched from the CFG2 pinstrap when the PWRGOOD pin is asserted.

■ The DGP bit in the ROMCS1 and ROMCS2 control registers is used to configure the 
location of the ROM devices enabled by these two chip selects. 

12.5.2.2 ROM Width

ROM device widths of 8 bits, 16 bits, and 32 bits are supported.

The CFG1–CFG0 pinstraps are used to determine the width of the boot device (BOOTCS). 
For all other ROM devices (ROMCS1 and ROMCS2), this configuration information must 
be programmed by the initialization software.

■ The WIDTH bit field in the BOOTCS Control (BOOTCSCTL) register contains the value 
latched from the CFG1–CFG0 pinstraps when the PWRGOOD pin is asserted.

■ The WIDTH bit field in the ROMCS1 and ROMCS2 control registers is used to configure 
the width of the ROM devices enabled by these two chip selects. 

12.5.2.3 Operating Mode

The MODE bit in the control registers provided for each chip select signal is used to program 
the operating mode of the associated device. 

According to the different data delivery rates, the following operation modes are 
distinguished:

■ Non-page mode—Characterized as having the same access time for all cycles. 
Figure 12-4 shows a ROM that is capable of three wait state operation. 

■ Page mode—Provides faster timing for subsequent data that falls within the page-size 
of the ROM device. Figure 12-5 shows an advanced page-mode ROM that is capable 
of one wait state for the first access and zero wait states for subsequent accesses. 

If an unaligned access to a page-mode device is executed, i.e., when not all data are located 
in the same ROM page, a new page has to be opened, which imposes an additional delay 
(see Figure 12-6). Random access within a page is not supported.
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Figure 12-4 Non-Page-Mode ROM: Fetching Four Words from a 16-Bit ROM

Figure 12-5 Page-Mode ROM: Fetching Four Doublewords (Aligned) from a 32-Bit ROM 

Figure 12-6 Page-Mode ROM: Fetching Four Doublewords (Unaligned) from an 8-Bit ROM

12.5.2.4 Access Timing

Access timing is controlled in the BOOTCS or ROMCSx Control registers.

– The delay for the first access, used for both non-page-mode and page-mode, and 
subsequent accesses for non-page-mode is specified in the FIRST_DLY bit field.

– The delay for subsequent accesses, for page-mode only, is specified in the SUB_DLY 
bit field.

Table 12-4 shows the access timing according to the programmed wait states. These values 
can be obtained using the following formula:

AccessTime = (NumberWaitstates + 1) * Period –Setup)

where:

Period is the clock period (assume 30 ns for a 33.333-MHz crystal) 

Setup is assumed to be 20 ns. (It takes the actual setup time and the delay for address 
changes during subsequent ROM accesses into account.)
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12.5.3 Bus Cycles 
The ROM controller always returns the amount of read data requested by the Am5x86 CPU, 
i.e., brdy is returned for all read transfers from ROM. The actual number of ROM accesses 
is determined by the cacheability status of the Am5x86 CPU transfer, the number of bytes 
requested, and the width of the ROM. The minimum number of data to be transferred is 
one byte. The maximum number of data to be delivered is 16 bytes (a cache-line fill). 
Depending on the ROM width, this leads to different numbers of accesses to fetch the 
requested data (see Table 12-5).

12.5.3.1 Single CPU Read Access

Figure 12-7 shows an example for the fetching of 16-bits of data, GPD15–GPD0, from an 
8-bit non-page-mode ROM configured for one wait state. The transfer starts with a bus 
cycle initiation (i.e., ads asserted). The ROM controller then performs two ROM accesses 
and accumulates the amount of requested data prior to terminating the cycle. Note that 
only one ROM cycle would be performed had the ROM device been implemented as 16- 
or 32-bit.

Table 12-4 Example: ROM Access Timing and Wait States1

Notes:
1. This example assumes that a 33.333-MHz 
crystal is being used in the system.

Wait States Access Timing (ns)

0 10

1 40

2 70

4 130

Table 12-5 Accesses and ROM Width

ROM Width
Minimum Number of 

Accesses
Maximum Number of 

Accesses (Cache-Line Fill)

8 bit 1 16

16 bit 1 8

32 bit 1 4
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Figure 12-7 Multiple Accesses: Data Amounts Smaller than One Doubleword (2 Bytes) from 
an 8-Bit ROM

12.5.3.2 Page-Mode Read Access

The ROM controller also provides performance advantages for Am5x86 CPU burst 
operation. Further improvement can be achieved when using page-mode ROMs. An 
example is shown in Figure 12-8 for a 2-1-1-1 burst sequence, in which the first access 
requires two cycles and all subsequent accesses are performed within one cycle.

Figure 12-8 Page Access for Fetching Four Doublewords from a 32-Bit ROM 
(Burst Sequence: 2-1-1-1) 

During burst transfers to ROM devices with a data width smaller than 32 bits, the ROM 
controller executes multiple cycles to gather the requested data. During a 32-bit request to 
a 16-bit device, the ROM controller executes two 16-bit cycles. During a 32-bit request to 
an 8-bit device, the ROM controller executes four 8-bit cycles. A 32-bit request to a 16-bit 
ROM device is shown in Figure 12-9.
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Figure 12-9 Page Access for Fetching Two Doublewords from a 16-Bit ROM

12.5.3.3 Cache-Line Fill 

If a memory section is accessed that is cacheable, the ken signal is asserted to the Am5x86 
CPU indicating a cache-line fill operation. This causes the Am5x86 CPU to read four 
doublewords (16 bytes) and leads to multiple ROM accesses. A cache-line fill to a 32-bit 
ROM is depicted in Figure 12-10.

Figure 12-10 Cache-Line Fill (Fetching Four Doublewords from a 32-Bit ROM)

12.5.3.4 Writing to Flash Devices

The ÉlanSC520 microcontroller supports writable Flash devices. Since Flash devices are 
not intended for random write accesses, no burst-write operations are supported, i.e., rdy 
is returned to the Am5x86 CPU. Figure 12-11 shows a write cycle to a Flash ROM. In 
addition, for write accesses, the ROM controller bus-sizes ROM accesses to indicate the 
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width of the ROM device, e.g., if a 16-bit write is performed to an 8-bit ROM, two Am5x86 
CPU write cycles are generated to complete the operation. 

All write access to Flash devices must occur in units no smaller than the data width of the 
device. For example, 8-bit writes to a 16-bit Flash device are not allowed. Care should be 
taken to also avoid 24-bit writes to 16-bit Flash devices, because this generates two Flash 
cycles, one with a complete 16-bit write and another with an 8-bit write to a 16-bit Flash 
device.

Figure 12-11 Word Write Cycle to Flash Memory

12.5.4 Software Considerations

12.5.4.1 Address Decoding

The ROM controller does not perform address decoding. Address decoding for chip select 
generation is provided by the Programmable Address Region (PAR) registers. In addition 
to the regions defined in the PAR registers, a default region from FFFF0000–FFFFFFFFh 
is defined at system reset to handle early code fetches from the boot ROM. See Chapter 3, 
“System Initialization”, and Chapter 4, “System Address Mapping”, for further details on 
configuring the address regions for ROM chip selects and the shadowing of ROM. 

12.5.4.2 Programming Flash Memory

Flash is available in 8-bit and 16-bit versions and is organized into sectors. Sectors can be 
of fixed or variable size and range from 8–32 Kbytes. New, higher density Flash devices 
have sector sizes of up to 256 Kbytes. 

Several programmable operations can be performed on Flash devices, including sector 
erase, sector protect, and programming of individual bytes. 

■ The erased value of a byte is 0FFh. 

■ Bits can be programmed from a 1 to a 0. 

■ If any bit in a sector needs to be changed from a 0 to a 1, the entire sector must be 
erased and reprogrammed. 

Most Flash devices cannot be programmed while the Am5x86 CPU is fetching data from 
it, requiring the programming code to reside in another device during programming. This 
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is an easy restriction to overcome, because programming Flash is usually done during non-
performance critical periods, such as during user configuration. However, new “dual boot” 
Flash allows fetching instructions from one portion of the device while programming or 
erasing a sector in another portion.

Typically, Flash is programmed (or erased) by writing a program command sequence to an 
address within the sector to be modified, followed by the erase command or the target 
address and data. 

An example program command sequence is:

1. Write the byte AAh to address 555h within the sector. 

2. Write the byte 55h to address 2AAh within the sector. 

3. Write the byte A0h to address 555h within the sector.

4. Write the actual data to the actual address. If the base of a 1-MByte boot device is at 
0FFF00000h, then a programming sequence for the first sector would start at address 
0FFF00555h. 

The actual values and addresses used vary by device.

After issuing the command, the programming code must wait until the embedded algorithm 
is complete before sending further programming requests to the Flash device. There are 
several ways to determine this. 

■ One way is to poll the status of a ready/busy hardware pin (which would be connected 
to a PIO pin). 

■ The second way is to continually read the address that was programmed, looking for 
one of several indications that the event is complete. 

A typical waiting period is 16 ms. Sector erase can take from 1 s to up to 10 s near the end 
of the serviceable life of the device.

Both the program command sequence and the status read have implications for the use of 
the ÉlanSC520 microcontroller in Flash programming applications.

First, the area being programmed must set to be noncacheable. Writing the program 
command sequence does not actually change the physical addresses involved, meaning 
that caching this area would yield incorrect data the next time it is read. Also, the status 
read phase relies on the value of externally supplied bits to change from one read to another. 
Obviously, satisfying such a read from the cache would not work. Once the programming 
is complete, it is legitimate and desirable to enable caching on this region.

Another obvious implication is that programming Flash device requires a write strobe to be 
connected to the device. Devices are programmed in their natural word length, meaning 
that byte write enables are not required. During writes, there are minimum times for the 
write strobe pulse width. These follow naturally from the total chip enable cycle time, which 
would be used to determine the number of wait states to use when accessing the device 
for reads, requiring no special timing modifications. Flash requires a minimum reset pulse 
width of 500 ns, which is well within the ÉlanSC520 microcontroller’s minimum time.

12.5.5 Latency
ROM latency refers to the amount of time in which a ROM access can impact system 
performance. For example, during an Am5x86 CPU access to ROM, no other master in the 
system will be granted access to the SDRAM resource. The latency time will be mainly 
affected by the width and the access time of the ROM device.
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The lowest latency times can be achieved if fast 32-bit ROMs are implemented for Execute-
In-Place (XIP) operating systems or for data structures that are accessed frequently. This 
ensures a rapid data transfer, which frees up the SDRAM resource for access by other 
masters. 

For example, if four doublewords are accessed from a 2-1-1-1 advanced page-mode ROM, 
five clock cycles are required to load this data. However, loading the same amount of data 
from an 8-bit, non-page-mode ROM results in 48 clock cycles, assuming two wait states 
per ROM access. While the first approach promises reasonable performance, the latter 
imposes a latency that is possibly unacceptable.

12.6 INITIALIZATION
The ROM controller is connected to the ÉlanSC520 microcontroller’s system reset. 

The system designer must define the boot ROM configuration devices connected to 
BOOTCS using pinstrapping. The CFG2–CFG0 pins provided on the ÉlanSC520 
microcontroller are latched at the assertion of PWRGOOD to define the location and data 
width of the boot device, as shown in Table 12-6. 

■ CFG2 defines whether the boot device is located on the SDRAM data bus or GP bus 
data bus. 

■ CFG1–CFG0 define the data width of the boot device.

■ BOOTCS is forced active at system reset. Boot code must then initialize a Programmable 
Address Region (PAR) register to decode the required space for the boot ROM device. 
See “External ROM Devices” on page 3-17 for examples.

Non-boot devices that exist on ROMCS1 and ROMCS2 do not require pinstrapping and 
are configured with the ROM configuration registers.

At system reset, the ROM controller is enabled for BOOTCS only. The following steps should 
be taken to further configure BOOTCS and/or to enable other ROM devices.

1. Configure the ROM width, mode, access timing, and location in the BOOTCS Control 
(BOOTCSCTL) register (MMCR offset 50h), the ROMCS1 Control (ROMCS1CTL) 
register (MMCR offset 54h), and/or the ROMCS2 Control (ROMCS2CTL) register 
(MMCR offset 56h).

2. Set up the address range and the cacheability control, write protection, and code 
execution control attributes for the BOOTCS device or the ROMCSx device in the PAR 
registers.

Table 12-6 CFGx Pinstrap Configuration Options for BOOTCS

CFG2 CFG1 CFG0 BOOTCS Data Width BOOTCS Location

0 0 0 8-bit GP bus

0 0 1 16-bit GP bus

1 0 0 8-bit SDRAM bus

1 0 1 16-bit SDRAM bus

1 1 x (don’t care) 32-bit SDRAM bus
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CHAPTER
13
 GENERAL-PURPOSE BUS 
CONTROLLER
13.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated general-purpose bus (GP bus) 
controller. The GP bus is an internal and external bus that connects 8-bit or 16-bit peripheral 
devices and memory to the ÉlanSC520 microcontroller without glue logic.The GP bus 
operates at 33 MHz, which provides good performance at very low interface cost.

Features of the general-purpose bus controller include:

■ Up to eight external chip selects (GPCS7–GPCS0)

■ Supports 8- and 16-bit I/O and memory cycles

■ Programmable bus interface timing 

■ Dynamic bus sizing using GPIOCS16 and GPMEMCS16

■ Dynamic wait state support for external devices using GPRDY

■ Up to 64 Mbytes of memory address space per chip select

■ Supports 8- and 16-bit DMA initiators

13.2 BLOCK DIAGRAM
Figure 13-1 shows the block diagram of the GP bus controller.

13.3 SYSTEM DESIGN
Table 13-1 shows GP bus signals shared with other interfaces on the ÉlanSC520 
microcontroller. The pinstrap functions associated with the GPA25–GPA14 pins are 
sampled only as a result of PWRGOOD assertion and do not affect the GP bus functions 
of these pins, so they are not shown in this table. When enabled, the multiplexed signals 
shown in Table 13-1 either disable or alter any other function that uses the same pin.

A ROM device’s data bus can be connected to either the GP bus data bus or the SDRAM 
data bus. However, the addresses for ROM devices are always provided via the GP bus, 
independently of whether the data pins of the ROM are connected to the GP bus or SDRAM 
bus. In either case, the ROM access shares GPA25–GPA0 with the GP bus.

For additional system diagrams using the GP bus, see “Interfacing with a Super I/O 
Controller” on page 13-13 and “Interfacing with an AMD Enhanced Serial Communications 
Controller (8 MHz)” on page 13-14.

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and 
additional timing diagrams.
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Figure 13-1 GP Bus Controller System Block Diagram
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Table 13-1 GP Bus Signals Shared with Other Interfaces

Default 
Signal

Interface or 
Alternate 
Function Control Bit Register

TMROUT0 GPCS7 GPCS7_SEL Chip Select Pin Function Select (CSPFS) 
register (MMCR offset C24h)TMROUT1 GPCS6 GPCS6_SEL

TMRIN0 GPCS5 GPCS5_SEL

TMRIN1 GPCS4 GPCS4_SEL

PITGATE2 GPCS3 GPCS3_SEL

ROMCS2 GPCS2 GPCS2_SEL

ROMCS1 GPCS1 GPCS1_SEL

PIO27 GPCS0 PIO27_FNC PIO31–PIO16 Pin Function Select 
(PIOPFS31_16) register (MMCR offset 
C22h)

PIO26 GPMEMCS16 PIO26_FNC

PIO25 GPIOCS16 PIO25_FNC 

PIO24 GPDBUFOE PIO24_FNC

PIO23 GPIRQ0 PIO23_FNC

PIO22 GPIRQ1 PIO22_FNC

PIO21 GPIRQ2 PIO21_FNC

PIO20 GPIRQ3 PIO20_FNC 

PIO19 GPIRQ4 PIO19_FNC

PIO18 GPIRQ5 PIO18_FNC

PIO17 GPIRQ6 PIO17_FNC

PIO16 GPIRQ7 PIO16_FNC 

PIO15 GPIRQ8 PIO15_FNC  PIO15–PIO0 Pin Function Select 
(PIOPFS15_0) register (MMCR offset 
C20h)

PIO14 GPIRQ9 PIO14_FNC 

PIO13 GPIRQ10 PIO13_FNC 

PIO12 GPDACK0 PIO12_FNC

PIO11 GPDACK1 PIO11_FNC 

PIO10 GPDACK2 PIO10_FNC

PIO9 GPDACK3 PIO9_FNC

PIO8 GPDRQ0 PIO8_FNC

PIO7 GPDRQ1 PIO7_FNC

PIO6 GPDRQ2 PIO6_FNC

PIO5 GPDRQ3 PIO5_FNC

PIO4 GPTC PIO4_FNC

PIO3 GPAEN PIO3_FNC

PIO2 GPRDY PIO2_FNC

PIO1 GPBHE PIO1_FNC

PIO0 GPALE PIO0_FNC
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13.3.1 GP Bus Loading
As more external devices are connected to the GP bus, loading on GPA25–GPA0 and 
GPD15–GPD0 will increase. Therefore, the rise time and fall time of GPA25–GPA0 and 
GPD15–GPD0 will increase, and external buffers may be needed to reduce the loading. 

The GP bus provides the GPDBUFOE pin for external buffer control to reduce the loading. 
This signal is asserted for all accesses to external GP bus peripherals. It is not asserted 
during accesses to the internal peripherals (regardless of the GP bus echo mode setting).

Figure 13-2 shows an example using an external data buffer. The GPDBUFOE pin can be 
used to enable the data buffer, and the GPIORD or GPMEMRD can be qualified together 
to select the direction of the data buffer. If all devices on the GP bus are only I/O-mapped 
devices, the AND gate in Figure 13-2 is not required. The GPIORD pin can be used to 
control the direction of the data transceiver. A similar simplification can be applied if all 
devices are memory-mapped using the GPMEMRD pin.

Figure 13-2 Example: Using an External Data Buffer to Address Excess Loading

The GPIOCS16, GPMEMCS16, and GPRDY pins are typically driven by open-drain outputs 
from external devices and require a strong pullup resistor (typically 1 Kohm) external to the 
ÉlanSC520 microcontroller. The GPIRQx pins also require pullup resistors (typically 1 
Kohm).

13.3.2 Voltage Translation
The GP bus provides 5-V- tolerant inputs and 3-V outputs, but if the external devices contain 
both 3-V and 5-V devices, the GPDBUFOE pin qualified with a GPCSx signal can be used 
to control the voltage translator. Figure 13-3 shows one example of using a voltage 
translator.

GPD15–GPD0

GPDBUFOE

Data Bus*

XCVR

DIR

GPIORD

GPMEMRD

EN

Élan™SC520 Microcontroller

Notes:
If the GP address bus must be buffered, ensure that the buffer is always enabled.

* All GP bus peripherals connect their data to this bus.
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Figure 13-3 Example: Using a Voltage Translator

13.4 REGISTERS
Table 13-2 shows the memory-mapped registers used to configure the GP bus controller.

Table 13-2 GP Bus Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

GP Echo Mode GPECHO C00h Echo mode enable

GP Chip Select Data Width GPCSDW C01h Individual data width select for GPCS7–GPCS0

GP Chip Select Qualification GPCSQUAL C02h Individual chip select qualification with GPIORD, 
GPIOWR, GPMEMRD, or GPMEMWR

GP Chip Select Recovery 
Time

GPCSRT C08h Global chip select recovery time for all GP bus 
cycles. Affects all GP bus chip selects.

GP Chip Select Pulse Width GPCSPW C09h Global width selection for all chip select signals, 
measured from the offset

GP Chip Select Offset GPCSOFF C0Ah Global offset time selection for all chip selects 
from the beginning of the bus cycle

GP Read Pulse Width GPRDW C0Bh Width of the GPIORD and GPMEMRD signals 
from the offset

GP Read Offset GPRDOFF C0Ch Offset from the beginning of the bus cycle for 
GPIORD and GPMEMRD

GP Write Pulse Width GPWRW C0Dh Width of the GPIOWR and GPMEMWR signals 
from the offset

GPD15–GPD0

GPDBUFOE

5-V Data

Voltage

DIR

GPIORD

GPMEMRD

EN

GPCSx

Translator

3-V Data

XCVR
Élan™SC520 Microcontroller

Notes:
GPCSx is the chip select for the 5-V peripheral.
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13.5 OPERATION
The GP bus provides a simple interface to the integrated on-chip peripherals, as well as 
external peripherals. The GP bus operates at 33 MHz. 

The GP bus controller provides one fixed timing set for the internal peripherals and one 
programmable timing set for the external peripherals.

Internal to the ÉlanSC520 microcontroller, the GP bus is used to provide a full complement 
of integrated peripherals such as a DMA controller, programmable interrupt controller PIC), 
programmable interval timer (PIT), UARTs, and real-time clock (RTC). The internal 
peripherals are designed to operate at the full clock rate of the GP bus. They can also be 
configured to operate in PC/AT-compatible configuration, but are generally not restricted to 
this configuration.

The GP bus interface can be programmed by software to control the interface timing 
between the GP bus and the external devices. The GP bus interface supports programmable 
timing, dynamic data width sizing, and cycle stretching to accommodate a wide variety of 
standard peripherals. 

Eight chip selects are provided for external GP bus devices. They can be used for either 
memory or I/O accesses. These chip selects are asserted for Am5x86 CPU accesses to 
the corresponding regions set up in the Programmable Address Region (PAR) registers.

Four external DMA channels provide fly-by DMA transfers between peripheral devices on 
the GP bus and system SDRAM. 

GP bus accesses can be initiated only by the Am5x86 CPU or by the integrated GP bus 
DMA controller. The devices on the GP bus are not cacheable from the Am5x86 CPU’s 
viewpoint, to enable a simple user view of devices (memory and peripherals) that are located 
on the GP bus.

GP Write Offset GPWROFF C0Eh Offset from the beginning of the bus cycle for 
GPIOWR and GPMEMWR

GP ALE Pulse Width GPALEW C0Fh Width of the GPALE signal from the offset

GP ALE Offset GPALEOFF C10h Offset from the beginning of the bus cycle for 
GPALE

PIO15–PIO0 Pin Function 
Select

PIOPFS15_0 C20h PIO15–PIO0 or interface function select: 
GPIRQ10–GPIRQ8, GPDACK3–GPDACK0, 
GPDRQ3–GPDRQ3, GPTC, GPAEN, GPRDY, 
GPBHE, GPALE

PIO31–PIO16 Pin Function 
Select

PIOPFS31_16 C22h PIO31–PIO16 or interface function select: RIN2, 
DCD2, DSR2, CTS2, GPCS0, GPMEMCS16, 
GPIOCS16, GPDBUFOE, GPIRQ7–GPIRQ0

Chip Select Pin Function 
Select

CSPFS C24h GPCS7–GPCS1 or alternate function select: 
TMROUT1–TMROUT0, TMRIN1–TMRIN0, 
PITGATE2, ROMCS2, ROMCS1

Reset Configuration RESCFG D72h Control bit for GP bus reset (GPRESET)

Table 13-2 GP Bus Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR 
Offset 
Address Function
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The GP bus also provides an echo mode that is useful for debugging. If GP bus echo mode 
enabled, the internal GP bus cycle is echoed out on the external pins to enable visibility of 
internal cycles. Accesses to internal peripherals that are “echoed” out utilize the 
programmed timing set to ensure that there is no timing conflict with other external 
peripherals. Note that enabling echo mode does not affect the operation of GP-DMA 
accesses or GP bus external accesses.

13.5.1 Programmable Bus Interface Timing
The bus interface timing can be programmed for the following signals:

■ Chip selects GPCS7–GPCS0

■ Read strobes GPIORD and GPMEMRD

■ Write strobes GPIOWR and GPMEMWR

■ Address latch enable GPALE

For each of these signal types, the following parameters can be programmed:

■ Offset from beginning of the bus cycle

■ Pulse width from end of the offset

■ Chip select recovery time

Figure 13-4 shows the shows the relationships between the various adjustable GP bus 
timing parameters. The actual time can be calculated with the following formula:

(REG_VAL + 1) * TCLK

where:

REG_VAL = register content value 

TCLK = internal clock period

The minimum offset, pulse width and recovery time is 30 ns (for a 33.333-MHz crystal), 
resulting in a minimum bus cycle time of 90 ns. Since the offset, pulse width, and recovery 
parameters are each 8-bit values (maximum 255), the longest bus cycle in this case is 23 
ms (2(8 bits) * 30 ns * 3 registers).

13.5.1.1 Timing Requirements

The programmed timing of the chip select determines the overall length of the GP bus cycle. 
Therefore, the timing parameters for the chip select must be appropriately programmed. 
This is required even if the external device does not require a connection to the GPCSx pin. 

■ To ensure that the command strobes (read or write) assert for the programmed time, 
the programmed Offset + Pulse Width + Recovery of the chip select must be programmed 
to be longer than the programmed Offset + Pulse Width of the command strobes.

■ Similarly, to ensure that GPALE is asserted for the programmed time, the programmed 
Offset + Pulse Width + Recovery of the chip select must be programmed to be longer 
than the programmed Offset + Pulse Width of the GPALE.

Figure 13-4 on page 13-8 illustrates how the GP bus registers control this timing adjustment 
for GP bus signals.
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Figure 13-4 GP Bus Timing Format

13.5.1.2 Using GPRDY with Programmable Timing

If the GPRDY signal is used, the bus cycle can be extended as long as required by the 
peripheral. GPRDY cannot be used to terminate any bus cycle earlier than programmed. 
More detailed information is provided in “Wait States” on page 13-20.

13.5.1.3 Using GP Bus Echo Mode with Programmable Timing

While GP bus echo mode is enabled, the system designer needs to ensure that the GP 
bus timing is not faster than that shown in Table 13-3. The minimum GP bus timing register 
values during the GP bus echo mode are shown in Table 13-3.

GPA25–GPA0

GPCSx

GPMEMRD or GPIORD

GPMEMWR or GPIOWR

GPALE

GPCSOFF + 1

GPRDOFF + 1

GPWROFF + 1

GPCSPW + 1

GPRDW + 1

GPWRW + 1

GPALEW + 1

GPCSRT + 1

Bus cycle durationBeginning of a bus cycle

GPALEOFF + 1

Address Valid

Notes:
1. Timing parameter values are in units of one internal clock period.

2. Timing parameters in the diagram can be adjusted via the corresponding GP bus registers.

3. GPCSOFF + GPCSPW + GPCSRT must be greater than or equal to GPRDOFF + GPRDW, 
GPWROFF + GPWRW, or GPALEOFF + GPALEW.

4. The GPCSOFF, GPCSPW, and GPCSRT registers affect all GPCSx signals equally.

5. The abbreviations in the figure refer to these GP bus registers:

Mnemonic Register

GPCSRT GP Chip Select Recovery Time

GPCSPW GP Chip Select Pulse Width

GPCSOFF GP Chip Select Offset

GPRDW GP Read Pulse Width

GPRDOFF GP Read Offset

GPWRW GP Write Pulse Width

GPWROFF GP Write Offset

GPALEW GP ALE Pulse Width

GPALEOFF GP ALE Offset
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:

13.5.2 I/O-Mapped and Memory-Mapped Device Support
The GP bus controller supports any combination of 8-bit and 16-bit I/O and memory-mapped 
external devices. 

■ If the external device is an I/O-mapped device, GPIORD and GPIOWR are used to strobe 
the read and write accesses.

■ If the external device is a memory-mapped device, GPMEMRD and GPMEMWR are 
used to strobe the read and write accesses.

To program I/O or memory-mapped address regions, see Chapter 4, “System Address 
Mapping”, and the examples in “External GP Bus Devices” on page 3-13.

13.5.3 Chip Select Qualification
All GP bus chip selects can be qualified with the command strobes, GPIORD, GPIOWR, 
GPMEMRD, or GPMEMWR, by programming the GP Chip Select Qualification 
(GPCSQUAL) register (MMCR offset C02h) and the Programmable Address Region (PAR) 
registers for memory or I/O device selection. 

When chip select qualification is enabled, the internal chip selects are logically ANDed with 
one (or both) of these command strobes. If a single command is chosen for qualification, 
the corresponding chip select is not asserted for accesses of the other type. For example, 
if GPMEMWR is used to exclusively qualify a chip select, that chip select is not asserted 
for memory read accesses.

In a typical system environment, the command strobes are usually shorter than the chip 
selects, and, in such cases, the external chip selects have timing that is identical to the 
command strobes. Note that if the chip selects are internally qualified by commands, the 
timing relationships between the command and chip select assertion/deassertion cannot 
be guaranteed externally. For example, the chip select deassertion may lead the command 
deassertion.

The qualification feature is useful for interfacing with buffer chips and transceivers without 
requiring external gates or logic.

13.5.4 Data Sizing and Unaligned Accesses
The GP bus controller always operates in either 8-bit or 16-bit sizes. If the Am5x86 CPU 
requests a 32-bit access from an 8-bit device or 16-bit device, the GP bus controller 
responds to the Am5x86 CPU with bs8, indicating 8-bit data width, or bs16, indicating 16-
bit data width, depending on the programming of the GP Chip Select Data Width (GPCSDW) 

Table 13-3 GP Bus Echo Mode Minimum Timing

Signal Type

GPCSOFF, GPRDOFF, 
GPALEOFF (Offset)

Register Value1

Notes�
1. The actual time value is the register value plus 1. Times are in units of one internal clock period.

GPCSPW, GPRDW, 
GPALEW 

(Pulse Width) 
Register Value1

GPCSRT
(Recovery Time) 
Register Value1

GP chip select 1 3 1

GP read 1 3 —

GP write 1 3 —

GPALE 0 0 —
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register (MMCR offset C01h) and the state of the GPIOCS16 and GPMEMCS16 signals. 
The Am5x86 CPU then generates multiple 8-bit or 16-bit bus cycles until all 32-bit data is 
accessed; thus, the size is transparent to software. This is true for read accesses and write 
accesses.

If the GP Chip Select Data Width (GPCSDW) register is programmed for 8-bit data width, 
assertion of external GPIOCS16 (during an I/O access) or GPMEMCS16 (during a memory 
access) overrides the data width specified in the GP Chip Select Data Width (GPCSDW) 
register, as discussed on page 13-19.

Unaligned address accesses (addresses that are not on the 16-bit address boundary) are 
supported through the Am5x86 CPU. The Am5x86 CPU breaks an unaligned address bus 
cycle into multiple bus cycles with appropriate byte enable signals (be3–be0). The GP bus 
controller simply takes one Am5x86 CPU bus cycle at a time and generates one external 
bus cycle at a time.

13.5.5 Sharing the Address and Data Bus with the ROM/Flash Controller
A ROM device’s data bus can be connected to either the GP bus data bus or the SDRAM 
data bus.

■ When a ROM device is connected to the GP data bus, the ROM access shares both 
GPD15–GPD0 and GPA25–GPA0 with the GP bus. 

■ When a ROM device is connected to the SDRAM data bus, the ROM access shares 
only GPA25–GPA0 with the GP bus.

This does not cause bus contention, because only the Am5x86 CPU can initiate an access 
to either ROM or to the GP bus. Since the Am5x86 CPU can perform an access to only one 
controller at a time, no conflict is possible.

Note that the GP bus DMA controller can initiate an access on the GP bus. Since the GP 
bus DMA controller must already own the Am5x86 CPU’s bus before it can initiate an access, 
once again, there can be no conflict between bus cycles initiated by the GP bus DMA 
controller and ROM cycles initiated by the Am5x86 CPU.

Note that the ROM devices are cacheable, but GP bus devices are noncacheable. This is 
because the ROM controller supports cacheability and has its own independent control 
signals (chip selects, read strobe, and write strobe).

13.5.6 GP Bus Echo Mode
In normal operation, the integrated peripheral accesses are not visible on the external pins. 
GP bus echo mode is provided to view accesses to the internal GP bus peripherals on the 
external pins. This feature aids in debugging system software and boot code. This applies 
to the integrated peripherals only (timers, GP-DMA controller, UARTs, SSI, RTC, etc.) and 
not to the memory or PCI bus controllers.

Accesses to internal peripherals that are “echoed” out utilize the programmable timing set 
to ensure that there is no timing conflict with other external peripherals. Typically, internal 
peripheral bus accesses are faster than external peripherals. Therefore, when using GP 
bus echo mode to debug the system, be aware that accesses to the integrated peripherals 
may be occurring at slower speeds to ensure compatibility with external devices, thus 
resulting in a slower system performance.

When GP bus echo mode is enabled, GPAEN is driven high during accesses from the 
Am5x86 CPU to internal peripherals to prevent external devices from decoding (or 
responding to) these internal peripheral accesses. In normal operation (GP bus echo mode 
disabled), the GP bus controller never asserts GPAEN. 
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Note that accesses initiated by the GP bus DMA controller are not affected by enabling the 
GP bus echo mode, and therefore the GP bus DMA controller still asserts GPAEN as it 
does during normal operation.During an internal GPDMA access in GP bus echo mode, 
the external GP bus commands, GPIORD, GPMEMRD, GPIOWR, GPMEMWR, are not 
asserted. However, GPAEN is still asserted. 

While GP bus echo mode is enabled, there are additional restrictions to the programmable 
timing parameters that must be taken into account. These are described in “Using GP Bus 
Echo Mode with Programmable Timing” on page 13-8.

13.5.7 DMA Interface
There are four DMA channels for external GP bus peripherals. The GPDRQ3–GPDRQ0 
signals go directly to the GP-DMA controller, and their levels are programmable in the GP-
DMA controller. All GP-DMA control signals and timing are generated by the GP-DMA 
controller, and the programmable timing in the GP bus controller does not affect the GP-
DMA cycle timing. For more information, see Chapter 14, “GP Bus DMA Controller”.

13.5.8 Usage Scenarios
13.5.8.1 Compatibility with Common ISA Devices

The GP bus is compatible with most ISA devices, but the following ISA bus features are not 
supported.

■ LA23–LA17 is supported through GPA23–GPA17, but note that because the Am5x86 
CPU itself does not support address pipelining, address pipelining is not supported on 
the GP bus.

■ GPA25–GPA24 is added to increase the GP bus address space up to 64 Mbytes, instead 
of 16 Mbytes.

■ External master access is not supported, and the ÉlanSC520 microcontroller is always 
the master on the GP bus (external masters can be accommodated by the PCI bus).

■ GPIOCS16 and GPMEMCS16 do not cause the GP bus timings to change for the bus 
cycles during which these signals are asserted.

■ IOCHRDY is supported via the GPRDY pin only as an input for the slave devices that 
require wait states. GPRDY as an output is not supported, since there is no external 
master support.

■ IOCHK is not supported, but a GPIRQx signal (mappable to a maskable or non-maskable 
interrupt) can be used to report errors.

■ The REFRESH pin is not supported, because the SDRAM refresh is not echoed out to 
the GP bus.

■ NOWS is not supported, due to the programmable interface timing on the GP bus.

■ BCLK and OSC are not supported, because a typical ISA interface is asynchronous. 
External oscillators can be used, if needed.

■ The GP bus provides programmable bus interface timing that can be configured to 
support most ISA bus devices. However, the GP bus does not support all legacy ISA 
timing. See the Élan™SC520 Microcontroller Data Sheet, order #22003, for information 
on the GP bus and GP-DMA timing supported by the ÉlanSC520 microcontroller.

Table 13-4 shows the cross-reference table of the ISA signals and the GP bus signals.
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Table 13-4 Cross-Reference Table of ISA Signals and GP Bus Signals1

Notes�
1.  This table does not imply that the ÉlanSC520 microcontroller is fully 
compliant with all ISA timing specifications. See the Élan™SC520 Mi-
crocontroller Data Sheet, order #22003, for information on the GP bus 
and GP-DMA timing supported by the ÉlanSC520 microcontroller.

ISA Signal Name GP Bus Signal Name

AEN GPAEN

BALE GPALE

BCLK (Not Supported)

DACK GPDACK

DRQ GPDRQ

IOCHK Supported through GPIRQ

IOCHRDY GPRDY

IOCS16 GPIOCS16

IOR GPIORD

IOW GPIOWR

IRQ GPIRQ

LA23–LA17 GPA23–GPA17

MASTER (Not Supported)

MEMCS16 GPMEMCS16

MEMR GPMEMRD

MEMW GPMEMWR

OSC (Not Supported)

REFRESH (Not Supported)

RSTDRV GPRESET

SA19–SA0 GPA19–GPA0

SBHE GPBHE

SD15–SD0 GPD15–GPD0

TC GPTC

(Not Supported) GPA25–GPA24
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13.5.8.2 Interfacing with a Super I/O Controller

Figure 13-5 shows an example system diagram of the ÉlanSC520 microcontroller 
interfacing with a Super I/O controller. Figure 13-6 shows the interfacing timing example. 
In this example, the programmable interface timing registers can be programmed as shown 
in Table 13-5, using the equation from “Programmable Bus Interface Timing” on page 13-7:

Note that the bus cycle can be stretched out by deasserting GPRDY; see “Wait States” on 
page 13-20 for more information.

Figure 13-5 Élan™SC520 Microcontroller Interfacing with a Super I/O Controller

Table 13-5 Example Super I/O Controller Interface Timing1

Notes�
1. This example assumes that a 33.333-MHz crystal is being used in the system.

GP Bus 
Signal Type

Offset 
Register 

Value

Offset 
Time 
(ns)

Chip 
Require-
ment (ns)

Pulse 
Width 

Register 
Value

Pulse 
Width 
(ns)

Chip 
Require-
ment (ns)

Recovery 
Time 

Register 
Value

Recovery 
Timer 
(ns)

Chip 
Require-
ment (ns)

GP chip 
selects

0 30 N/A 0 30 N/A 2 90 66

GP read 0 30 19 1 60 60 N/A N/A N/A

GP write 0 30 19 1 60 60 N/A N/A N/A

GPALE 0 30 N/A 0 30 N/A N/A N/A N/A

SD7–SD0

IORJ
IOWJ

SA10–SA0

MR

IOCHRDY

GPD7–GPD0

GPIORD
GPIOWR

GPA10–GPA0

GPRESET

GPRDY

DRQ3J–GPDRQx

DACK3J–

TCGPTC
IRQ7–3GPIRQx

DRQ1J

DACK1J
GPDACKx

AENGPAEN

IRQ11–9

Élan™SC520 Microcontroller
Super I/O
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Figure 13-6 Timing Diagram of a Super I/O Interface

13.5.8.3 Interfacing with an AMD Enhanced Serial Communications Controller (8 MHz)

This slow version is depicted to illustrate an example of how the programmable timing can 
be used to function with various timing requirements. Figure 13-7 shows an example system 
diagram of the ÉlanSC520 microcontroller interfacing with an Am85C30 Enhanced Serial 
Communications controller. Table 13-6 and Figure 13-8 show the interfacing timing 
example. In this example, the programmable interface timing registers can be programmed 
using the equation from “Programmable Bus Interface Timing” on page 13-7.

Address ValidGPA10–GPA0

GPCSx1

GPIORD2

GPALE

30 ns

30 ns

30 ns

60 ns+

90 ns+

120 nsBeginning of a bus cycle

(Not needed) 30 ns 30 ns

GPIOWR**

30 ns 60 ns+

GPRDY

Trdy

Read Data

Write Data

GPD7–GPD0
30 ns

GPD7–GPD0

Notes:
1. Although the chip selects are not used, the recovery time needs to be programmed.

2. GPIORD, GPIOWR, and the chip select recovery time are delayed when the GPRDY signal is deasserted.

3. This example assumes that a 33.333-MHz crystal is being used in the system.
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Figure 13-7 Élan™SC520 Microcontroller Interfacing with an Am85C30

Table 13-6 Example AMD Enhanced Serial Communications Controller Interface Timing1

Notes�
1. This example assumes that a 33.333-MHz crystal is being used in the system.

GP Bus 
Signal Type

Offset 
Register 

Value

Offset 
Time 
(ns)

Chip 
Require-
ment (ns)

Pulse 
Width 

Register 
Value

Pulse 
Width 
(ns)

Chip 
Require-
ment (ns)

Recovery 
Time 

Register 
Value

Recovery 
Timer 
(ns)

Chip 
Require-
ment (ns)

GP chip 
selects

2 90 0 4 150 150 0 30 3.5

GP read 2 90 70 4 150 150 N/A N/A N/A

GP write 2 90 70 4 150 150 N/A N/A N/A

GPALE 0 30 N/A 0 30 N/A N/A N/A N/A

D7–D0

RD

WR

A/B

CE

Am85C30

GPD7–GPD0

GPIORD

GPIOWR

GPA1

GPCSx

INTGPIRQx

D/CGPA0

Élan™SC520 Microcontroller
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Figure 13-8 Timing Diagram of an Am85C30 Interface

13.5.9 Bus Cycles

13.5.9.1 8-Bit Data Access of an 8-Bit I/O Device

During an 8-bit access to 8-bit I/O devices, GPD7–GPD0 is used to transfer data between 
the CPU and external devices. For an 8-bit memory-mapped I/O device, GPMEMWR and 
GPMEMRD are used instead of GPIOWR and GPIORD.

Figure 13-9 shows the timing diagram of an 8-bit device access of an 8-bit I/O device. 

Figure 13-9 8-Bit Data Access of an 8-Bit I/O Device

Address ValidGPA1–GPA0

GPCSx

GPIORD

GPALE

90 ns 30 ns
150 ns

270 nsBeginning of a bus cycle

(Not needed) 30 ns 30 ns

GPIOWR

90 ns 150 ns

90 ns

Read Data

Write DataGPD7–GPD0

GPD7–GPD0

Notes:
1. This example assumes that a 33.333-MHz crystal is being used in the system.

Read Data

GPA25–GPA0,

GPCSx

GPMEMRD, GPMEMWR,

GPD7–GPD0

Write Data

GPBHE

GPD7–GPD0

GPIORD, or GPIOWR
13-16 Élan™SC520 Microcontroller User’s Manual



General-Purpose Bus Controller
13.5.9.2 16-Bit Data Access of a 16-Bit I/O Device

A 16-bit data read/write access to 16-bit I/O devices are similar to the 8-bit I/O device 
accesses. In 16-bit accesses, all 16 bits of GPD are used. For memory-mapped I/O 
accesses, GPMEMRD and GPMEMWR are used instead of GPIORD and GPIOWR.

Figure 13-10 shows the timing diagram of 16-bit accesses of a 16-bit I/O device.

Figure 13-10 16-Bit Data Access of a 16-Bit I/O Device

13.5.9.3 16-Bit Data Access of an 8-Bit I/O Device

A 16-bit data access of an 8-bit I/O device requires two consecutive 8-bit data accesses of 
the I/O device, but the consecutive 8-bit data accesses are resolved by the Am5x86 CPU 
transparent to software. For memory-mapped I/O accesses, GPMEMRD and GPMEMWR 
are used instead of GPIORD and GPIOWR. When the Am5x86 CPU requests a 16-bit data 
access, the GP bus controller responds to the Am5x86 CPU with the bs8 signal, indicating 
that the data width of the device is only 8 bits. The Am5x86 CPU then generates two 
consecutive 8-bit bus cycles, and the 16-bit data access becomes two separate 8-bit data 
GP bus cycles. Figure 13-11 shows the timing diagram of a 16-bit access of an 8-bit I/O 
device.

Figure 13-11 16-Bit Data Access of an 8-Bit I/O Device

Read Data

GPA25–GPA0,

GPCSx

GPD15–GPD0

Write DataGPD15–GPD0

GPBHE

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR

x..x0h

1st 2nd

x..x1hGPA25–GPA0,

GPCSx

GPD7–GPD0

1st 2ndGPD7–GPD0

(for read)

(for write)

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR

GPBHE
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13.5.9.4 32-Bit Data Access of an 8-Bit I/O Device

A 32-bit data access of an 8-bit I/O device requires four consecutive 8-bit data accesses 
of the 8-bit I/O device, but the consecutive 8-bit data accesses are resolved by the Am5x86 
CPU transparent to software. For memory-mapped I/O accesses, GPMEMRD and 
GPMEMWR are used instead of GPIORD and GPIOWR. When the Am5x86 CPU requests 
a 32-bit data access, the GP bus controller responds to the Am5x86 CPU with the bs8 
signal, indicating that data width of the device is only 8 bits. The Am5x86 CPU then 
generates four consecutive 8-bit bus cycles, and the 32-bit data access becomes four 
separate 8-bit data GP bus cycles. Figure 13-12 shows the timing diagram of a 32-bit access 
of an 8-bit I/O device.

Figure 13-12 32-Bit Data Access of an 8-Bit I/O Device

13.5.9.5 32-Bit Data Access of a 16-Bit I/O Device

A 32-bit data access of a 16-bit I/O device requires two consecutive 16-bit accesses of the 
device, but the consecutive 16-bit data accesses are resolved by the Am5x86 CPU 
transparent to software. For memory-mapped I/O accesses, GPMEMRD and GPMEMWR 
are used instead of GPIORD and GPIOWR.

When the Am5x86 CPU requests a 32-bit data access, the GP bus controller responds to 
the Am5x86 CPU with the bs16 signal, indicating that the data width of the device is only 
16 bits. The Am5x86 CPU then generates two consecutive 16-bit bus cycles, and the 32-
bit data access becomes two separate 16-bit cycles on the GP bus.

Figure 13-13 shows the timing diagram of a 32-bit access of a 16-bit I/O device.

Figure 13-13 32-Bit Data Access of a 16-Bit I/O Device

1st 2nd 3rd 4th

x..x0h x..x1h x..x2h x..x3hGPA25–GPA0,

GPCSx

GPD7–GPD0

1st 2nd 3rd 4th GPD7–GPD0

(for read)

(for write)

GPBHE

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR

x..x0h

1st 2nd

x..x2hGPA25–GPA0,

GPCSx

GPD15–GPD0

1st 2ndGPD15–GPD0

GPBHE

(for write)

(for read)

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR
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13.5.9.6 8-Bit Data Access of a 16-Bit I/O Device

The GPA0 and GPBHE signals are required to determine which byte of a 16-bit peripheral 
is accessed during byte read or write cycles. Table 13-7 describes how to determine which 
byte is accessed.

For memory-mapped I/O accesses, GPMEMRD and GPMEMWR are used instead of 
GPIORD and GPIOWR. 

Figure 13-14 shows the timing diagram of an 8-bit access of a 16-bit I/O device.

Figure 13-14 8-Bit Data Access of a 16-Bit I/O Device

13.5.9.7 GPIOCS16 and GPMEMCS16 Timing

The GP bus controller provides two methods for defining the data bus width.

■ The GP Chip Select Data Width (GPCSDW) register (MMCR offset C01h) allows each 
chip select to be individually programmed for 8-bit or 16-bit data bus width.

■ The GP bus controller also supports dynamic bus sizing through the GPIOCS16 and 
GPMEMCS16 pins. These pins can be used to override the programming of the data 
width for the current access, as described in Table 13-8. 

– The GPIOCS16 and GPMEMCS16 pins can be asserted after the address or chip 
select is valid and deasserted after the address or chip select invalid. 

– If one of these pins is asserted by the external devices, the GP bus controller asserts 
bs16 to the Am5x86 CPU. 

– Assertion of these signals does not affect the programmable interface timing.

Table 13-7 Differentiating Upper/Lower Byte Access of 16-Bit Devices

GPBHE GPA0 Cycle Description

0 0 16-bit access of 16-bit device

0 1 Upper byte access of 16-bit device

1 0 Lower byte access of either 8-bit or 16-bit device

1 1 Upper byte access of 8-bit device

x..x0h

Read Data Read Data

x..x1hGPA25–GPA0

GPCSx

GPBHE

GPD15–GPD0

Write Data Write DataGPD15–GPD0

Low Byte High Byte

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR
Élan™SC520 Microcontroller User’s Manual 13-19



General-Purpose Bus Controller
The latest assertion time for these two signals is the same as the timing for the GPRDY 
deassertion time (see “GPRDY Recognition” on page 13-20).

Figure 13-15 shows the GPIOCS16 timing for a 16-bit access and an 8-bit access.

Figure 13-15 16-Bit Access of a 16-Bit I/O Device

13.5.9.8 Wait States

The ÉlanSC520 microcontroller provides two ways to insert wait states in a GP bus cycle.

■ The user can program the programmable interface timing registers to delay the timing 
of GPIORD, GPMEMRD, GPIOWR, or GPMEMWR for the required number of wait state 
cycles.

■ GPRDY can also be used to insert wait states dynamically on a cycle basis.

GPRDY can only be used to stretch GP bus cycles; it cannot be used to provide early 
termination of the cycle. The control signals are always asserted for a minimum of the entire 
period, as programmed in the timing control registers. Then, the additional delay can be 
inserted by the deassertion of GPRDY.

Figure 13-16 shows the timing of GPRDY.

13.5.9.8.1 GPRDY Recognition
Assuming a 33.333-MHz crystal, the GPRDY pin must be deasserted a minimum of 45 ns 
before the programmed deassertion of the command strobes and must have a minimum 
deassertion (Low) width of 30 ns to insert a wait state into a GP bus cycle. Additional wait 
states are inserted by extending the time in which the GPRDY pin is held deasserted. The 

Table 13-8 Dynamic Bus Sizing Override of Programmed Data Width

GP Chip Select Data Width 
(GPCSDW) Register Setting

GPIOCS16 
GPMEMCS16 Assertion Resultant Bus Size

8-bit Deasserted 8-bit

8-bit Asserted 16-bit

16-bit Deasserted 16-bit

16-bit Asserted 16-bit

Addr

Write Data

GPA23–GPA0,

GPCSx

GPIOCS16

GPD15–GPD0

Read DataGPD15–GPD0

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR

GPBHE
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command strobes will be deasserted after the GPRDY signal is internally synchronized and 
sampled asserted by the 33-MHz clock and after the programmed pulse width value for the 
strobe has expired.

Figure 13-16 GPRDY Timing

13.5.10 Interrupts
External devices that assert interrupts use the GPIRQ10–GPIRQ0 signals for this purpose. 
The GPIRQx interrupt signals bypass the GP bus controller and are routed to the 
programmable interrupt controller (PIC). See Chapter 15, “Programmable Interrupt 
Controller”, for more information.

13.5.11 Latency

13.5.11.1 8/16-Bit GP Bus Width

Due to the smaller data width of the GP bus, 32-bit accesses from the Am5x86 CPU are 
broken up into separate 8-bit or 16-bit GP bus cycles. During this time, no other Am5x86 
CPU bus cycle can be generated, and neither the GP-DMA or an external PCI bus master 
can access SDRAM.

13.5.11.2 Slow GP Bus Cycles

If the interface timing is programmed to have slow GP bus cycles or if GPRDY is used to 
stretch cycles for long periods of time, the system performance can be affected because 
the CPU bus is monopolized.

Note: Very long GP bus cycles can cause the PCI host bridge target controller to violate 
the 10 µs memory write maximum completion time limit set in the PCI Local Bus 
Specification, Revision 2.2. In PCI bus 2.2-compliant designs, software must limit the length 
of GP bus cycles and GP-DMA demand- or block-mode transfers.

13.5.11.3 Noncacheable GP Bus 

All GP bus accesses are noncacheable. Therefore, code execution out of this bus is not 
recommended.

Address

Read Data

GPA25–GPA0

GPCSx

GPD15–GPD0

Write DataGPD15–GPD0

GPRDY

Notes:
The programmable timing would cause the 
cycle to end here, but the GPRDY 
deassertion stretches the cycle further. 
GPRDY assertion then allows the cycle to 
continue.

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR
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13.6 INITIALIZATION
The GP bus controller is reset by a system reset. The internal GP bus is enabled, as are 
holes in the lower 1-Kbyte of I/O space; however, no chip selects are enabled. The external 
GP bus is disabled until the Programmable Address Region (PAR) registers are initialized.

GP bus reset can be generated via a system reset or software write. Writing a 1 to the 
GP_RST bit in the Reset Configuration (RESCFG) register (MMCR offset D72h) asserts 
the GPRESET pin. Clearing this bit to 0 deasserts the GPRESET pin. The GPRESET pin 
is only used for external GP bus peripherals. When this signal is asserted, all devices 
connected to the GP bus should re-initialize to their reset state. 

To enable the GP bus controller:

1. Configure the address decoding region for each chip select in the PAR registers.

2. Configure the external chip select pins in the Chip Select Pin Function Select (CSPFS) 
register (MMCR offset C24h).

3. Configure the external GP bus timing in the programmable interface timing registers, as 
described in this chapter.

4. Configure the data width of each chip select in the GP Chip Select Data Width 
(GPCSDW) register (MMCR offset C01h).

5. Optionally, program the GP Chip Select Qualification (GPCSQUAL) register (MMCR 
offset C02h) to qualify the chip select with the read or write strobes, if needed.

6. Optionally, program the GP Echo Mode (GPECHO) register (MMCR offset C00h) to 
enable the GP bus echo mode, if needed.
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CHAPTER
14
 GP BUS DMA CONTROLLER
14.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated GP bus DMA (GP-DMA) controller. 
The GP-DMA controller is designed to transfer data between external GP bus peripherals 
and SDRAM. Transfers between the internal UART serial ports and SDRAM are also 
supported. Throughout this document, the term GP-DMA refers to a DMA transaction on 
the GP bus.

Features of the GP bus DMA controller include:

■ Fly-by transfers between GP bus peripherals and SDRAM

■ Support for up to seven DMA request channels (with a maximum of four external 
requests) 

■ Two internal UART serial ports can initiate GP-DMA transfers

■ GP-DMA controller can address all of the system SDRAM

■ In enhanced GP-DMA mode:

– Four channels are individually configurable for either 8 or 16 bits. 

– Maximum transfer count is 16 M (16,777,216) transfers (using 24-bit count register). 

– Channel widths default to PC/AT-compatible mode (three 16-bit, and four 8-bit).

– Buffer chaining capability

■ Variable clock modes: 4, 8, and 16 MHz

■ Transfers to and from SDRAM only. No transfers are possible to PCI, ROM, or peer GP 
bus devices when using the GP-DMA controller.

Note: The GP bus DMA controller is capable of supporting most ISA DMA applications 
and devices. However, not all of the legacy ISA timings are supported. See the Élan™SC520 
Microcontroller Data Sheet, order #22003, for information on the GP bus and GP-DMA 
timing supported by the ÉlanSC520 microcontroller.

14.2 BLOCK DIAGRAM
The GP-DMA controller consists of two DMA cores: the slave core and the master core. 

■ The slave core has four 8-bit channels by default: 0, 1, 2, and 3. 

■ The master core has three 16-bit channels by default: 5, 6, and 7. 

■ Channel 4 must be programmed to cascade mode and must be unmasked if any of the 
8-bit channels 0–3 are to be used. 

■ In enhanced GP-DMA mode, Channels 3, 5, 6, and 7 are programmable to support either 
8-bit or 16-bit mode.

Figure 14-1 shows a block diagram of the GP-DMA controller. Figure 14-2 shows how the 
master and slave cores are connected.
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Figure 14-1 GP-DMA Controller Block Diagram

Channel

Mapping

GPTC*

dior

diow

GPAEN*

GPDRQ3–GPDRQ0

GPDACK3–GPDACK0*

 

rxdrq[1–0]
txdrq[1–0]

rxdack[1–0]
txdack[1–0]

GPA25–GPA0

GPD15–GPD0

GP-DMA Controller

UARTs

dramrd

dramwr

addr[27–0]

Bus

breq

bgnt

dmemw

dmemr GP Bus

daddr[27–0]

Élan™SC520 Microcontroller

Interface

Unit

Target

Control
(SDRAM)

Initiator 

Control
(I/O)

GP Bus

I/O

Configuration
Registers

dack7–dack5
drq7–drq5

drq3–drq0

dack3–dack0

Master Core

Slave Core

dma_is_16

*Multiplexed pins 
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Figure 14-2 Master and Slave Core Cascading Diagram

14.3 SYSTEM DESIGN
Table 14-1 shows GP-DMA signals shared with other interfaces. When enabled, the 
multiplexed signals shown in Table 14-1 either disable or alter any other function that uses 
the same pin.

The GPDRQx and GPDACKx signals have programmable polarities. The default polarity 
is compatible to the ISA convention. 

Since the GP-DMA controller does not generate an interrupt at the end of the transfer, 
system designers can externally connect GPTC to any GPIRQx to trigger an interrupt. Note 
that qualifying GPTC with a specific GPDACKx signal provides a more specific interrupt.

For an application that requires a DMA transfer every fixed interval of time, a timer output 
(TMROUT1 or TMROUT0) can be connected to the GPDRQx pin.

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and 
additional timing diagrams.

Master Core

HLDA
HRQ

bgnt
breq

DATA[7–0]
ADDR[15–0]

CS

HLDA

HRQ
DATA[7–0]
CSdma1_cs

dma0_cs

Slave Core

gpdrq7
gpdack7

GP data

Interconnect

Logic

dior

diow

dmemr

dmemr

GPTC

GPAEN

Channel 7DRQ
DACK

Channel 6DRQ
DACK

Channel 5DRQ
DACK

Channel 4DRQ
DACK

Channel 3DRQ
DACK

Channel 2DRQ
DACK

Channel 1DRQ
DACK

Channel 0DRQ
DACK

gpdrq6
gpdack6

gpdrq5
gpdack5

gpdrq3

gpdack3

gpdrq2
gpdack2

gpdrq1

gpdack1

gpdrq0

gpdack0

ADDR[15:0]

daddr[27–0]

dma_is_16ADDR[15–0]
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14.4 REGISTERS
The GP bus DMA (GP-DMA) controller is configured using memory-mapped registers and 
direct-mapped registers.

14.4.1 Memory-Mapped Registers
A summary listing of the MMCR registers used to configure the GP-DMA controller is shown 
in Table 14-2. These registers provide functionality beyond the PC/AT compatibility, such 
as the extended page registers, the features in the enhanced GP-DMA mode, and the ability 
to route external GPDRQx and GPDACKx signals to a specific channel of the GP-DMA 
controller.

Table 14-1 GP-DMA Signals Shared with Other Interfaces

PIO 
(Default) 
Signal

Interface 
Function Control Bit Register

PIO12 GPDACK0 PIO12_FNC PIO15–PIO0 Pin Function Select 
(PIOPFS15_0) register (MMCR offset C20h)PIO11 GPDACK1 PIO11_FNC 

PIO10 GPDACK2 PIO10_FNC 

PIO9 GPDACK3 PIO9_FNC

PIO8 GPDRQ0 PIO8_FNC

PIO7 GPDRQ1 PIO7_FNC

PIO6 GPDRQ2 PIO6_FNC

PIO5 GPDRQ3 PIO5_FNC

PIO4 GPTC PIO4_FNC

PIO3 GPAEN PIO3_FNC

Table 14-2 GP-DMA Controller Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

PIO15–PIO0 Pin Function 
Select

PIOPFS15_0 C20h PIO or interface function select: GPDACK3–
GPDACK0, GPDRQ3–GPDRQ3, GPTC, 
GPAEN

DMA Buffer Chaining 
Interrupt Mapping

DMABCINTMAP D40h GP-DMA buffer chaining interrupt mapping

GP-DMA Control GPDMACTL D80h GP-DMA enhanced mode enable, channel 
size, clock mode

GP-DMA Memory-Mapped 
I/O

GPDMAMMIO D81h I/O or memory-mapped I/O channel 
configuration

GP-DMA Resource Channel 
Map A 

GPDMAEXTCHMAPA D82h Channel mapping for GPDRQ3–GPDRQ0

GP-DMA Resource Channel 
Map B

GPDMAEXTCHMAPB D84h Channel mapping for internal serial port 
GP-DMA requests 

GP-DMA Channel 0 
Extended Page

GPDMAEXTPG0 D86h Bits 27–24 of the memory address for
Channel 0
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GP-DMA Channel 1 
Extended Page

GPDMAEXTPG1 D87h Bits 27–24 of the memory address for
Channel 1

GP-DMA Channel 2 
Extended Page

GPDMAEXTPG2 D88h Bits 27–24 of the memory address for 
Channel 2

GP-DMA Channel 3 
Extended Page

GPDMAEXTPG3 D89h Bits 27–24 of the memory address for 
Channel 3

GP-DMA Channel 5 
Extended Page

GPDMAEXTPG5 D8Ah Bits 27–24 of the memory address for
Channel 5

GP-DMA Channel 6 
Extended Page

GPDMAEXTPG6 D8Bh Bits 27–24 of the memory address for 
Channel 6

GP-DMA Channel 7 
Extended Page

GPDMAEXTPG7 D8Ch Bits 27–24 of the memory address for 
Channel 7

GP-DMA Channel 3 
Extended Transfer Count

GPDMAEXTTC3 D90h Bits 23–16 of Channel 3 transfer count value 
(enhanced GP-DMA mode)

GP-DMA Channel 5 
Extended Transfer Count

GPDMAEXTTC5 D91h Bits 23–16 of Channel 5 transfer count value 
(enhanced GP-DMA mode)

GP-DMA Channel 6 
Extended Transfer Count

GPDMAEXTTC6 D92h Bits 23–16 of Channel 6 transfer count value 
(enhanced GP-DMA mode)

GP-DMA Channel 7 
Extended Transfer Count

GPDMAEXTTC7 D93h Bits 23–16 of Channel 7 transfer count value 
(enhanced GP-DMA mode)

Buffer Chaining Control GPDMABCCTL D98h Buffer chaining enables for channels 7, 6, 5, 
and 3

Buffer Chaining Status GPDMABCSTA D99h Buffer chaining status for channels 7, 6, 5, and 
3

Buffer Chaining Interrupt 
Enable

GPDMABSINTENB D9Ah Buffer chaining interrupt enables for channels 
7, 6, 5, and 3

Buffer Chaining Valid GPDMABCVAL D9Bh Valid buffer of the buffer chaining operation

GP-DMA Channel 3 Next 
Address Low

GPDMANXTADDL3 DA0h Address bits 0–15 of the next data buffer in 
memory used with Channel 3 
(enhanced GP-DMA mode)

GP-DMA Channel 3 Next 
Address High

GPDMANXTADDH3 DA2h Address bits 16–27 of the next data buffer in 
memory used with Channel 3 
(enhanced GP-DMA mode)

GP-DMA Channel 5 Next 
Address Low

GPDMANXTADDL5 DA4h Address bits 0–15 of the next data buffer in 
memory used with Channel 5 
(enhanced GP-DMA mode)

GP-DMA Channel 5 Next 
Address High

GPDMANXTADDH5 DA6h Address bits 16–27 of the next data buffer in 
memory used with Channel 5 
(enhanced GP-DMA mode)

Table 14-2 GP-DMA Controller Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR 
Offset 
Address Function
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14.4.2 Direct-Mapped Registers
There are seven DMA channels in the GP-DMA controller. Table 14-3 shows the direct-
mapped I/O registers that are available for each of the seven channels. 

There are two DMA cores in the GP-DMA controller that are cascaded to provide the seven 
DMA channels. The cores are referred to as master and slave. Table 14-3 includes the set 
of the direct-mapped registers available in each of two cores. These registers program the 
function of the master or slave core. 

GP-DMA Channel 6 Next 
Address Low

GPDMANXTADDL6 DA8h Address bits 0–15 of the next data buffer in 
memory used with Channel 6 
(enhanced GP-DMA mode)

GP-DMA Channel 6 Next 
Address High

GPDMANXTADDH6 DAAh Address bits 16–27 of the next data buffer in 
memory used with Channel 6 
(enhanced GP-DMA mode)

GP-DMA Channel 7 Next 
Address Low

GPDMANXTADDL7 DACh Address bits 0–15 of the next data buffer in 
memory used with Channel 7 
(enhanced GP-DMA mode)

GP-DMA Channel 7 Next 
Address High

GPDMANXTADDH7 DAEh Address bits 16–27 of the next data buffer in 
memory used with Channel 7 
(enhanced GP-DMA mode)

GP-DMA Channel 3 Next 
Transfer Count Low

GPDMANXTTCL3 DB0h Bits 0–15 of the next transfer count for Channel 
3 when using buffer chaining 
(enhanced GP-DMA mode)

GP-DMA Channel 3 Next 
Transfer Count High

GPDMANXTTCH3 DB2h Bits 16–23 of the next transfer count for 
Channel 3 when using buffer chaining 
(enhanced GP-DMA mode)

GP-DMA Channel 5 Next 
Transfer Count Low

GPDMANXTTCL5 DB4h Bits 0–15 of the next transfer count for Channel 
5 when using buffer chaining 
(enhanced GP-DMA mode)

GP-DMA Channel 5 Next 
Transfer Count High

GPDMANXTTCH5 DB6h Bits 16–23 of the next transfer count for 
Channel 5 when using buffer chaining 
(enhanced GP-DMA mode)

GP-DMA Channel 6 Next 
Transfer Count Low

GPDMANXTTCL6 DB8h Bits 0–15 of the next transfer count for Channel 
6 when using buffer chaining 
(enhanced GP-DMA mode)

GP-DMA Channel 6 Next 
Transfer Count High

GPDMANXTTCH6 DBAh Bits 16–23 of the next transfer count for 
Channel 6 when using buffer chaining 
(enhanced GP-DMA mode)

GP-DMA Channel 7 Next 
Transfer Count Low

GPDMANXTTCL7 DBCh Bits 0–15 of the next transfer count for Channel 
7 when using buffer chaining 
(enhanced GP-DMA mode)

GP-DMA Channel 7 Next 
Transfer Count High

GPDMANXTTCH7 DBEh Bits 16–23 of the next transfer count for 
Channel 7 when using buffer chaining 
(enhanced GP-DMA mode)

Table 14-2 GP-DMA Controller Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR 
Offset 
Address Function
14-6 Élan™SC520 Microcontroller User’s Manual



GP Bus DMA Controller
In addition to the registers used to control GP-DMA, there is a set of general-purpose 
registers. These registers are decoded in the same chip select region with the page 
registers.

Table 14-3 GP-DMA Controller Registers—Direct-Mapped

Register Mnemonic
I/O 
Address Function

Registers for Each Channel

Channel 0 Memory Address
Channel 1 Memory Address
Channel 2 Memory Address
Channel 3 Memory Address
Channel 4 Memory Address
Channel 5 Memory Address
Channel 6 Memory Address
Channel 7 Memory Address

GPDMA0MAR
GPDMA1MAR
GPDMA2MAR
GPDMA3MAR
GPDMA4MAR
GPDMA5MAR
GPDMA6MAR
GPDMA7MAR

0000h
0002h
0004h
0006h
00C0h
00C4h
00C8h
00CCh

Memory address bits 15–0 during GP-DMA 
transfers

Channel 0 Transfer Count
Channel 1 Transfer Count
Channel 2 Transfer Count
Channel 3 Transfer Count
Channel 4 Transfer Count
Channel 5 Transfer Count
Channel 6 Transfer Count
Channel 7 Transfer Count

GPDMA0TC
GPDMA1TC
GPDMA2TC
GPDMA3TC
GPDMA4TC
GPDMA5TC
GPDMA6TC
GPDMA7TC

0001h
0003h
0005h
0007h
00C2h
00C6h
00CAh
00CEh

Bits 15–0 of the transfer count for the GP-
DMA transactions

Channel 2 Page
Channel 3 Page
Channel 1 Page
Channel 0 Page
Channel 6 Page
Channel 7 Page
Channel 5 Page

GPDMA2PG
GPDMA3PG
GPDMA1PG
GPDMA0PG
GPDMA6PG
GPDMA7PG
GPDMA5PG

0081h
0082h
0083h
0087h
0089h
008Ah
008Bh

Memory address bits 23–16 or 23–17 
during GP-DMA transfers

Registers for Each DMA Core (Master and Slave)

Master DMA Channel 4–7 Status
Slave DMA Channel 0–3 Status

MSTDMASTA
SLDMASTA

00D0h
0008h

GP-DMA request status and terminal count 
condition for each channel.

Master DMA Channel 4–7 Control
Slave DMA Channel 0–3 Control

MSTDMACTL
SLDMACTL

00D0h
0008h

DMA controller enable, arbitration mode, 
and timing control

Master Software DRQ(n) Request
Slave Software DRQ(n) Request

MSTDMASWREQ
SLDMASWREQ

00D2h
0009h

Software GP-DMA request initiated to a 
specific channel

Master DMA Channel 4–7 Mask
Slave DMA Channel 0–3 Mask

MSTDMAMSK
SLDMAMSK

00D4h
000Ah

GP-DMA channel mask

Master DMA Channel 4–7 Mode
Slave DMA Channel 0–3 Mode

MSTLDMAMODE
SLDMAMODE

00D6h
000Bh

Transfer mode, transfer type, automatic 
initialization, and address increment mode 
for each channel

Master DMA Clear Byte Pointer
Slave DMA Clear Byte Pointer

MSTDMACBP
SLDMACBP

00D8h
000Ch

Pointer to which byte will be accessed in the 
16-bit GP-DMA registers
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14.5 OPERATION
The GP-DMA controller on the ÉlanSC520 microcontroller supports the following features.

■ Only fly-by GP-DMA transfers are supported. A fly-by transfer is a transfer in which the 
data is moved from an I/O device or a memory-mapped I/O device to SDRAM (GP-DMA 
write), or from SDRAM to an I/O device or a memory-mapped I/O device (GP-DMA read) 
in a single transaction. 

■ Memory-to-memory (i.e., SDRAM-to-SDRAM) and I/O-to-I/O (peer-to-peer on the GP 
bus) transfers are not supported.

■ Transfer modes supported: single, block, and demand 

■ Transfer types supported: read, write, and verify

14.5.1 GP-DMA Transfers
Because the ÉlanSC520 microcontroller also supports the standard PC/AT system 
architecture, the method for DMA transfer complies with the Industry Standard Architecture 
(ISA) specifications. The default polarities of GPDRQx and GPDACKx are active High and 
Low respectively, but they can be programmed differently. 

The following general rules apply to GP-DMA transfers on the ÉlanSC520 microcontroller:

■ The GP-DMA initiator is the I/O device that asserts GPDRQx. This is always an external 
I/O device (or memory -mapped I/O device) residing on the GP bus, or the internal UART 
serial ports, and can be either 8 bits or 16 bits. Note that the internal UARTs must be 
programmed as 8-bit channels. 

■ The GP-DMA target is always system memory (SDRAM). Table 14-4 on page 14-9 
shows the possible GP-DMA initiators and targets. 

Master DMA Controller Reset
Slave DMA Controller Reset

MSTDMARST
SLDMARST

00DAh
000Dh

GP-DMA controller reset

Master DMA Controller Temporary
Slave DMA Controller Temporary

MSTDMATMP
SLDMATMP

00DAh
000Dh

Preserves PC/AT compatibility

Master DMA Mask Reset
Slave DMA Mask Reset

MSTDMAMSKRST
SLDMAMSKRST

00DCh
000Eh

Mask register reset to activate the 
associated GP-DMA channels

Master DMA General Mask
Slave DMA General Mask

MSTDMAGENMSK
SLDMAGENMSK

00DEh
000Fh

GP-DMA channel masks

General-Purpose Registers

General Registers GPDMAGR0
GPDMAGR1
GPDMAGR2
GPDMAGR3
GPDMAGR4
GPDMAGR5
GPDMAGR6
GPDMAGR7
GPDMAGR8

0080h, 
0084h–
0086h, 
0088h, 
008Ch–
008Fh

General-purpose R/W registers

Table 14-3 GP-DMA Controller Registers—Direct-Mapped (Continued)

Register Mnemonic
I/O 
Address Function
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■ Since the GP-DMA target is always SDRAM, the relevant address range must be 
currently mapped to be system SDRAM. If that portion of the address space is not 
mapped to SDRAM, erroneous operation will result. See Chapter 4, “System Address 
Mapping”, for more details on how to set up the system address mapping. 

■ ÉlanSC520 microcontroller does not support peer-to-peer transfers between GP bus 
peripheral devices, or SDRAM-to-SDRAM.

■ In PCI bus 2.2-compliant designs, software must limit the length of GP bus DMA demand- 
or block-mode transfers. Very large transfers could cause the PCI host bridge target 
controller to violate the 10 µs memory write maximum completion time limit set in the 
PCI Local Bus Specification, Revision 2.2.

The GP-DMA controller provides the GPAEN signal to prevent other devices residing on 
the same external GP bus from decoding the address on the GPA bus. When the internal 
Transfer Count register rolls from 0h to FFFFh (FFFFFFh in enhanced GP-DMA mode), 
GP-DMA controller asserts GPTC to indicate the end of transfer. 

14.5.1.1 GP-DMA Initiators

14.5.1.1.1 Internal UARTs
Each of the two UART serial ports on the ÉlanSC520 microcontroller can initiate DMA 
transfers from its transmit channel or receive channel, or both. Since the serial ports are 
8-bit devices, their DMA requests can be mapped to any of the default 8-bit channels 
(channels 0–3). 

■ For a read transfer, the UART asserts its request from the transmit channel (txdrq), waits 
for the acknowledge (txdack), and latches the data from the low byte of the GPD15–
GPD0 bus when the I/O command is asserted (GPIOWR). 

■ For a write transfer, the UART asserts its request from the receive channel (rxdrq), waits 
for the acknowledge (rxdack), and places the data on the low byte of the GPD15–GPD0 
bus when the I/O command is asserted (GPIORD). 

For the channel connected to the internal serial port, the drq sense level must be 
programmed as active High, the dack sense level must be programmed as active Low, the 
write mode must be programmed for late write using the WRTSEL bit, the timing mode 
must be configured for normal timing using the COMPTIM bit. This is the default 
configuration. These bits are found in the Slave and Master DMA Channel x Control 
(SLDMACTL and MSTDMACTL) registers. Note that internal requests from the UART serial 
ports cannot be mapped to a 16-bit channel, because the UARTs support 8-bit data transfer 
only. 

14.5.1.1.2 External I/O Devices
An external I/O device can use any of the channels, depending on its size. Each I/O device 
uses one dedicated GPDRQ/GPDACK signal pair. 

■ During a read transfer, the external I/O device asserts its request (GPDRQx), waits for 
the acknowledge (GPDACKx), and latches the data from the GPD bus when the I/O 
command is asserted (GPIOWR). 

Table 14-4 Supported GP-DMA Initiator/Target Combinations

GP-DMA Initiator Channel Size GP-DMA Target

UARTs 8 bits SDRAM

GP Bus 8 or 16 bits SDRAM
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■ For a write transfer, the external I/O device asserts its request, waits for the acknowledge, 
and places the data on the GPD bus when the I/O command (GPIORD) is asserted.

14.5.1.1.3 External Memory-Mapped I/O Devices
An external device on the GP bus can be mapped into memory address space. See 
Chapter 4, “System Address Mapping”, for more details. Such devices are referred to as 
memory-mapped I/O devices. GP-DMA transactions to a memory-mapped I/O device are 
handled in the same fashion as those to an I/O device, except that the commands used 
are GPMEMRD and GPMEMWR, instead of GPIORD and GPIOWR. The GP-DMA 
Memory-Mapped I/O (GPDMAMMIO) register (MMCR offset D81h) is used for this purpose.

14.5.1.2 GP-DMA Channel Mapping

GP-DMA requests can originate from the following sources:

■ Transmit and receive channels from each of two internal UART serial ports (always 
8-bit) for a total of four requests

■ GP bus using GPDRQ3–GPDRQ0 and GPDACK3–GPDACK0 (8-bit or 16-bit).

Table 14-5 shows the ÉlanSC520 microcontroller resource and the GP-DMA channels to 
which the resource can be mapped. 

All GP-DMA channel mapping in the ÉlanSC520 microcontroller is programmable using 
the two GP-DMA Resource Channel Map x (GPDMAEXTCHMAPx) registers.

14.5.2 Operating Modes
The operating mode for the GP-DMA controller is configured using the ENH_MODE_ENB 
bit in the GP-DMA Control (GPDMACTL) register (MMCR offset D80h). 

14.5.2.1 Normal GP-DMA Mode

Normal GP-DMA mode is the default operating mode of the GP-DMA controller. In this 
mode:

■ Channels 0, 1, 2, and 3 are used for the internal UART serial ports and external 8-bit 
devices. 

■ Channel 5, 6, and 7 are used for any external 16-bit devices. 

This mode is compatible with the PC/AT architecture.

Table 14-5 GP-DMA Channel Mapping

Microcontroller Resource

GP-DMA Channel

0 1 2 3 4 5 6 7

UART 1 transmit request ✔ ✔ ✔ ✔

UART 2 receive request ✔ ✔ ✔ ✔

UART 1 transmit request ✔ ✔ ✔ ✔

UART 2 receive request ✔ ✔ ✔ ✔

External request GPDRQ0 ✔ ✔ ✔ ✔ ✔ ✔ ✔

External request GPDRQ1 ✔ ✔ ✔ ✔ ✔ ✔ ✔

External request GPDRQ2 ✔ ✔ ✔ ✔ ✔ ✔ ✔

External request GPDRQ3 ✔ ✔ ✔ ✔ ✔ ✔ ✔
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14.5.2.2 Enhanced GP-DMA Mode

Only channels 3, 5, 6, and 7 support enhanced GP-DMA mode. In enhanced GP-DMA 
mode:

■ Each of these four channels can be configured to be either 8-bit or 16-bit channel. The 
other channels (0, 1, and 2) can still be used as normal 8-bit channels in conjunction 
with the enhanced GP-DMA mode channels. 

■ The transfer count registers are increased to 24 bits in size, to allow counts up to 16 M 
(16,777,216) fransfers. 

■ The address adder is increased to 28 bits in size, eliminating the limitation of transferring 
within the 64 Kbytes boundaries (128 Kbytes for 16-bit devices) in normal GP-DMA 
mode. 

This mode also offers the capability of chaining two noncontiguous memory buffers during 
DMA transfers, as described in “Buffer Chaining” on page 14-15.

14.5.3 Addressing GP-DMA Channels
14.5.3.1 Addressing In Normal GP-DMA Mode

GP-DMA Channel 4 is used to cascade channels 0–3 from the slave core through the 
master core to the CPU and is not available for data transfer. For proper operation, software 
must ensure that this setting is always configured for cascading only via the TRNMOD field 
in the Master DMA Channel 4–7 Mode (MSTDMAMODE) register (Port 00D6h).

14.5.3.1.1 8-Bit Transfers
Channels 0–3 support 8-bit data transfers between 8-bit I/O devices and system SDRAM. 
8-bit GP-DMA can access any location within the system address space; however, the 
address adder is only 16 bits wide, so 8-bit GP-DMA requests cannot cross 64-Kbyte 
physical page boundaries. As shown in Table 14-6, during an 8-bit GP-DMA transfer: 

■ The Slave DMA Channel x Memory Address (GPDMAxMAR) registers provide address 
bits 15–0. 

■ The Slave DMA Channel x Page (GPDMAxPG) registers provide address bits 23–16.

■ The GP-DMA Channel x Extended Page (GPDMAEXTPGx) registers provide bits 
27–24 of the system memory address. 

14.5.3.1.2 16-Bit Transfers
Channels 5–7 support 16-bit data transfers between 16-bit I/O devices and system SDRAM. 
16-bit GP-DMA can access any even (word-aligned) location within the system address 
space; however, the address adder is only 16 bits wide, so 16-bit GP-DMA requests cannot 
cross 128-Kbyte physical page boundaries. During a 16-bit GP-DMA transfers:

■ A0 is forced to 0.

■ The Master DMA Channel x Memory Address (GPDMAxMAR) registers provide address 
bits 16–1. 

■ The Master DMA Channel x Page (GPDMAxPG) registers provide address bits 23–17.

■ The GP-DMA Channel x Extended Page (GPDMAEXTPGx) registers provide bits 
27–24 of the system memory address. 
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14.5.3.2 Addressing In Enhanced GP-DMA Mode

In enhanced GP-DMA mode, channels 3, 5, 6 and 7 are programmable to support either 
8-bit transfers or 16-bit transfers. 

■ When the channel is configured to be 8-bit, the address is generated as shown in 
Table 14-6. 

■ When the channel is configured to be 16-bit, the address is generated as shown in 
Table 14-7. 

■ However, when the buffer chaining feature is used, the memory address of the next data 
buffer is provided directly from the channel’s Next Address register. This feature is 
described in “Buffer Chaining” on page 14-15. 

The size of the address adder is increased to 28 bits wide to eliminate the limitation of 
64-Kbyte physical page boundaries for 8-bit transfers and 128-Kbyte physical page 
boundaries for 16-bit transfers. This feature is available for channels 3, 5, 6, and 7 only.

14.5.4 GP-DMA Transfer Modes
The GP-DMA controller performs read, write, and verify operations in each of the three 
transfer modes: single, demand, or block. For all three modes, the GP-DMA initiator asserts 
GPDRQx and must hold it active until the assertion of GPDACKx in order to be recognized. 

14.5.4.1 Single Transfer Mode

In single transfer mode, the GP-DMA controller performs one transfer each time it is granted 
the Am5x86 CPU bus. The GP-DMA initiator asserts GPDRQx and holds it active as long 
as it has data to be transferred. The initiator must negate its DRQx relative to the I/O 
commands to ensure correct operation.

14.5.4.2 Demand Transfer Mode

In demand transfer mode, the GP-DMA initiator asserts GPDRQx and holds it active as 
long as it has data to be transferred. The GP-DMA controller continues to perform GP-DMA 
transfers until Terminal Count (TC) is reached or the GPDRQx is deasserted by the GP-
DMA initiator. The initiator must negate its DRQx relative to the I/O commands to ensure 
correct operation.

When using demand transfer mode, if the transfer is configured for automatic initialization 
control mode, GPDRQx must be deasserted prior to the assertion of GPTC in the last DMA 
cycle to prevent another transfer. Otherwise, the channel is automatically masked and 
requires initialization before it will respond to subsequent requests.

Table 14-6 8-Bit GP-DMA Channel Address Generation

Source
GP-DMA Channel x 
Extended Page Registers

Slave DMA Channel x 
Page Registers

Slave DMA Channel x
Memory Address Register

Address A27–A24 A23–A16 A15–A0

Table 14-7 16-Bit GP-DMA Channel Address Generation

Source
GP-DMA Channel x 
Extended Page Registers

Master DMA Channel x 
Page Registers

Master DMA Channel x
Memory Address Register

Address A27–A24 A23–A17 A16–A1, A0=0
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14.5.4.3 Block Transfer Mode

In block transfer mode, the GP-DMA initiator asserts GPDRQ and holds it active until 
acknowledged by the assertion of GPDACKx. The GP-DMA controller performs GP-DMA 
transfers until TC is reached, indicating the programmed number of transfers has been 
completed. 

14.5.4.4 Transfer Types

Three GP-DMA transfer types are supported: read, write, and verify.

■ A read transfer, shown in Figure 14-3, consists of a memory read cycle from the address 
in the current address register (concatenation of the channel’s Memory Address register, 
Page register, and Extended Page register), followed by an I/O write cycle to the 
associated device. 

■ A write transfer, shown in Figure 14-4, consists of an I/O read cycle followed by a memory 
write cycle to the address in the current address register. Depending on the GP-DMA 
channel selected, the data can be 8 bits or 16 bits in width. 

■ A verify transfer, shown in Figure 14-5, is either a read transfer or a write transfer, but 
without the generation of the I/O and memory control signals, such as GPIORD, 
GPIOWR, GPMEMRD, and GPMEMWR. A verify transfer is normally used for checking 
the GP-DMA core to determine whether the address generation and control logic are 
operating correctly. Data are not transferred in a verify cycle. ÉlanSC520 microcontroller 
does not drive the SDRAM address out on the MA address bus during a DMA verify cycle.

Figure 14-3 GP-DMA Read Transfer

GPDACKx

daddr[27:0]

GPAEN

GPIOWR, GPMEMWR

GPD15–GPD0

GPTC

dmemr

GPDRQx

Address Valid

Data Valid
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Figure 14-4 GP-DMA Write Transfer

Figure 14-5 GP-DMA Verify Transfer

14.5.4.5 Automatic Initialization Control

When automatic initialization control mode is enabled via the AINIT bit in the Slave or Master 
Channel x Mode register, the original values of the current address and current count 
registers are automatically restored to the values in the base address and base count 
registers of the given channel following the terminal count.

This feature is useful when data quantities of the same size are transferred to or from a 
fixed buffer in SDRAM. This feature must be disabled when using buffer chaining mode; 
otherwise, unexpected results may occur.

GPDACKx

daddr[27:0]

GPAEN

GPIORD, GPMEMRD

GPD15–GPD0

dmemw

GPDRQx

Address Valid

Data Valid

GPTC

GPDACKx

daddr[27:0]

GPAEN

GPD15–GPD0

dmemr

GPDRQx

GPIORD, GPMEMRD

dmemw

Address Valid

GPTC

GPIOWR, GPMEMWR
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14.5.4.6 Priority

The GP-DMA controller offers two priority schemes for servicing multiple requests. After 
the recognition of any one channel for service, the other channels are prevented from 
generating DMA cycles until the current transfer has completed (i.e., the current channel’s 
DACKx has deasserted).

■ The fixed priority scheme is based upon the value of channel numbers (Channel 0 is 
the highest priority, Channel 7 is the lowest priority). The higher priority channel prevents 
the lower priority channel from servicing the request.

■ In the rotating priority scheme, the last channel serviced becomes the lowest priority, 
with the other channels rotating accordingly. This scheme is also known as the round 
robin scheme.

14.5.4.7 Buffer Chaining

In enhanced GP-DMA mode, channels 3, 5, 6, and 7 allow transfer to/from two or more 
data buffers in SDRAM for a single transfer request (fragmented data buffers). This feature 
is known as buffer chaining. The purpose of this feature is to facilitate GP-DMA transfers 
to or from non-contiguous buffers in SDRAM. 

An example usage of this feature is to transfer a packet of data from SDRAM to the external 
device. The packet header and the packet data might be in two noncontiguous locations in 
SDRAM. By using the buffer chaining feature, users can transfer both the packet header 
and packet data in one DMA transfer. Similarly, the GP-DMA controller can be used to split 
up a packet header from the packet data into two SDRAM buffers when receiving packets. 

Buffer chaining mode is enabled by setting the appropriate CHx_BCHN_ENB bit in the 
Buffer Chaining Control (GPDMABCCTL) register (MMCR offset D98h).

1. The Next Address registers and the Next Transfer Count registers should be programmed 
prior to the start of the GP-DMA cycle. 

2. When the transfer count is reached, the GP-DMA controller checks the CHx_CBUF_VAL 
bits in the Buffer Chaining Valid (GPDMABCVAL) register (MMCR offset D9Bh). 

3. If this bit is set, the contents of the Next Address and the Next Transfer Count registers 
are loaded into the internal current address and current transfer count registers, 
respectively. 

4. The GP-DMA controller hardware then generates a maskable or non-maskable interrupt 
and clears the CHx_CBUF_VAL bits. 

5. This bit indicates to software that another buffer can be set up in the chain by writing to 
the Next Address and Next Transfer Count registers with new values. 

6. The DMA transfer then continues until the next terminal count. 

7. If the CHx_CBUF_VAL bits were not set, GP-DMA controller generates the interrupt and 
also asserts GPTC to indicate the end of the chain.

Typically, buffer chaining should be used in single transfer mode, but block mode or demand 
mode operation is also supported. 

When using block transfer mode, the GP-DMA controller holds the bus request active until 
the end of the last buffer in the chain. It is worth noting that only two buffers can be chained 
at a time when using block transfer mode. Because the GP-DMA controller does not release 
the GP bus during the transfer, the Next Address and Next Transfer Count cannot be 
reprogrammed to link in another buffer while a GP-DMA transfer is in progress.
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The automatic initialization control mode cannot be used in conjunction with buffer chaining 
mode.

14.5.5 Bus Cycles
Table 14-8 shows the four GP-DMA cycle types and the command strobes generated in 
each cycle. The GP bus command strobes GPMEMRD and GPMEMWR are asserted for 
memory-mapped I/O devices on this bus. The internal memory commands are not shown 
in this table.

14.5.5.1 GP Bus I/O to SDRAM

Figure 14-6 shows a GP-DMA read cycle in demand transfer mode.

Figure 14-6 GP-DMA Read in Demand Transfer Mode

Table 14-8 GP-DMA Cycle Types

GP-DMA Initiator GP-DMA Target
Data Transfer Direction
(GP-DMA Cycle Type)

GP Bus Command 
Strobes Generated

I/O device SDRAM I/O to memory (GP-DMA write) GPIORD

I/O device SDRAM Memory to I/O (GP-DMA read) GPIOWR

Memory-mapped 
I/O device

SDRAM Memory-Mapped I/O to memory 
(GP-DMA write)

GPMEMRD

Memory-mapped 
I/O device

SDRAM Memory to memory-mapped I/O 
(GP-DMA read)

GPMEMWR

GPDACKx

daddr[27:0]

GPAEN

GPIOWR, GPMEMWR

GPD15–GPD0

GPTC

dmemr

GPDRQx

Addr Valid

Data Valid Data Valid Data Valid

Addr Valid Addr Valid

GPDBUFOE
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14.5.5.2 GP-DMA Read with Cache Hit

Figure 14-7 shows a read transfer with a cache hit (write-back cache).

Figure 14-7 GP-DMA Read Transfer with Cache Hit (Write-Back Cache)

14.5.6 GP Bus Echo Mode
When GP bus echo mode is enabled, GPAEN is driven high during accesses from the 
Am5x86 CPU to internal peripherals to prevent external devices from decoding (or 
responding to) these internal peripheral accesses. In normal operation (GP bus echo mode 
disabled), the GP bus controller never asserts GPAEN. 

However, accesses initiated by the GP bus DMA controller are not affected by enabling the 
GP bus echo mode, and therefore the GP bus DMA controller still asserts GPAEN as it 
does during normal operation. During an internal GPDMA access in GP bus echo mode, 
the external GP bus commands, GPIORD, GPMEMRD, GPIOWR, GPMEMWR, are not 
asserted. However, GPAEN is still asserted. For additional information about this mode, 
see “GP Bus Echo Mode” on page 13-10.
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14.5.7 Clocking Considerations
The GP-DMA controller can be programmed to operate at 4 MHz, 8 MHz, or 16 MHz. This 
option is specified in the GP-DMA Control (GPDMACTL) register (MMCR offset D80h). 
Note that these frequencies are derived from the 33-MHz clock. The exact frequency is an 
even fraction of the crystal (33.000-MHz or 33.333-MHz) being used in the system.

14.5.8 Interrupts
In normal GP-DMA mode, the GP-DMA controller does not generate interrupts, but it does 
assert GPTC upon the completion of every transfer. 

When buffer chaining mode is enabled, the GP-DMA controller generates a maskable or 
non-maskable interrupt every time a buffer is completely transferred. This interrupt is 
generated after the valid values of the Next Address and Next Transfer Count are loaded 
into the internal current address and current transfer count registers, respectively. GPTC 
is asserted only when there is no other buffer in the chain. When GPTC is asserted, the 
interrupt is still generated.

14.5.9 Software Considerations
Channel 4 must always be set to be in cascade mode; otherwise, erroneous operation may 
result. Only Channel 4 should be programmed for cascade mode. All other channels should 
be programmed to be in one of the other three modes (single, demand or block).

The Memory Address and Transfer Count registers of each channel are byte-accessed. 
Two consecutive byte reads or writes to the same I/O address are required when accessing 
the 16-bit values of these registers. In enhanced GP-DMA mode, although the Next Address 
registers and the Next Transfer Count registers are both split up into two 16-bit registers, 
the Low and High words have been placed so that they can be accessed using 32-bit 
instructions. Although the GP bus splits 32-bit accesses up into two 16-bit accesses (i.e., 
the setting of the low and high address will be nonatomic), this should not typically cause 
any problems. 

When using the buffer chaining feature in block transfer mode, the GP-DMA controller 
continues to hold the bus request until the second buffer is finished. The interrupt generated 
after the first buffer finishes in this case is useless to software, because the interrupt handling 
routine is not able to get access to the Am5x86 CPU bus (because the GP-DMA controller 
is programmed for block transfer mode). 

Note that the GPDRQx signal must be deasserted before an active channel can be masked. 

14.5.10 Latency

14.5.10.1 Nonpreemptive Latency

The ÉlanSC520 microcontroller implements a write buffer and a read buffer (with read-
ahead feature) to optimize SDRAM performance. These buffers can improve GP-DMA 
latency during block transfer or demand transfer. 

■ During a write transfer, the write buffer collects bytes (or words) from the GP bus and 
writes back to SDRAM in a full doubleword. This mechanism effectively provides one-
wait-state write accesses to SDRAM, as seen from the GP-DMA controller. 

■ During a read transfer, the read buffer reads the entire cache-line (16 bytes). This 
effectively provides zero-wait-state read accesses from SDRAM by the GP-DMA 
controller. However, since the read buffer fetches forward, GP-DMA channels that are 
configured in address decrement mode experience more read buffer misses. The read 
buffer does not prefetch for GP-DMA accesses because they are less than one 
doubleword.
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The operations of these buffers are described in detail in Chapter 11, “Write Buffer and 
Read Buffer”.

14.5.10.2 Preemptive Latency

The following events could delay a GP-DMA acknowledgment.

■ SDRAM refresh cycle (the acknowledgment is given; however, the transfer is delayed)

■ PCI requests

■ A higher priority GP-DMA request

■ A cache write-back, if the GP-DMA target is in a dirty cache-line (the acknowledgment 
is given; however, the transfer is delayed)

■ Slow transfers to ROM/GP bus

Once a demand transfer or block transfer has started, if the GP-DMA controller is trying to 
read from a SDRAM region that is in the cache, the transfer is paused while a cache snoop 
occurs. If the cache holds data in the cache line that the GP-DMA controller is accessing, 
a cache-line write-back cycle may also occur. 

14.6 INITIALIZATION
The GP-DMA controller is reset by a system reset. In addition, the slave and the master 
controllers each have a software reset source, from the Slave DMA Controller Reset 
(SLDMARST) register (Port 000Dh and the Master DMA Controller Reset (MSTDMARST) 
register (Port 00DAh), respectively.

The GP-DMA controller is enabled after system reset, but all channels are masked off. This 
is also the state after the DMA Controller Reset registers are written to. All channels default 
to normal GP-DMA mode. The operating frequency defaults to 4 MHz.

14.6.1 Example Configurations

14.6.1.1 Configuring an 8-Bit Channel in Normal GP-DMA Mode

In normal GP-DMA mode, there are four 8-bit channels: 0, 1, 2, and 3. Any internal request 
from the serial ports or any external request can be mapped to one of these channels. The 
following steps configure an 8-bit channel.

1. Enable the DMA slave core.

2. Program Channel 4 to use cascade mode via the TRNMOD field in the Master DMA 
Channel 4–7 Mode (MSTDMAMODE) register (Port 00D6h) and unmask Channel 4.

3. Program operating frequency if not using the default 4 MHz.

4. Map the request to a specific channel.

5. Program the memory address, transfer count, page address, and extended page 
address of the associated channel.

6. Program DMA mode, type, address increment mode, and priority mode.

7. Unmask the channel request in the Slave DMA General Mask (SLDMAGENMSK) 
register (Port 000Fh). At this point, the GP-DMA controller is ready to accept the external 
request.
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14.6.1.2 Configuring a 16-Bit Channel in Normal GP-DMA Mode

In normal GP-DMA mode, there are three 16-bit channels: 5, 6 and 7. Any external request 
can be mapped to one of these channels. The internal requests from the UART serial ports 
cannot be mapped to a 16-bit channel because they only support 8-bit data transfer. The 
following steps configure a 16-bit channel for an external request.

1. Enable the DMA master core.

2. Program the operating frequency if not using the default 4 MHz.

3. Map the external request to a specific channel.

4. Program the memory address, transfer count, page address, and extended page 
address of the associated channel.

5. Program DMA mode, type, address increment mode, and priority mode.

6. Unmask the channel request in the Master DMA General Mask (MSTDMAGENMSK) 
register (Port 00DEh). At this point, the GP-DMA controller is ready to accept the external 
request.

14.6.1.3 Configuring an 8-Bit Channel in Enhanced GP-DMA Mode

In enhanced GP-DMA mode, channels 5, 6, and 7 can be configured to be 8-bit channels. 
Any internal request from the UART serial ports can be mapped to Channel 3 for the 
enhanced GP-DMA mode features. The 8-bit external devices can be mapped to channels 
3, 5, 6, and 7. The following steps configure an 8-bit channel for an external request.

1. Enable the DMA slave core if using Channel 3, otherwise enable the master core.

2. If using Channel 3, program Channel 4 to use cascade mode via the TRNMOD field in 
the Master DMA Channel 4–7 Mode (MSTDMAMODE) register (Port 00D6h) and 
unmask Channel 4. Also, if using channels 5, 6, or 7, set the corresponding 
CHx_ALT_SIZE bit in the GP-DMA Control (GPDMACTL) register (MMCR offset D80h).

3. Program the operating frequency if not using the default 4 MHz.

4. Enable enhanced GP-DMA mode.

5. Map the external request to a specific channel.

6. Program the memory address, transfer count, page address, and extended page 
address of the associated channel.

7. Program the extended transfer count for any transfer larger than 64 Kbytes (optional).

8. Program DMA mode, type, address increment mode, and priority mode.

9. Program the next address, next transfer count, and enable buffer chaining mode 
(optional).

10.Unmask the channel request in the General Mask register. At this point, the GP-DMA 
controller is ready to accept the external request.
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14.6.1.4 Configuring a 16-Bit Channel in Enhanced GP-DMA Mode

In enhanced GP-DMA mode, Channel 3 can be configured to be a 16-bit channel. The 
16-bit external devices can be mapped to channel 3, 5, 6, and 7. The following steps 
configure a 16-bit channel for an external request.

1. Enable the DMA slave core if using Channel 3, otherwise enable the master core.

2. If using Channel 3, program Channel 4 to use cascade mode via the TRNMOD field in 
the Master DMA Channel 4–7 Mode (MSTDMAMODE) register (Port 00D6h) and 
unmask Channel 4. Also, set the CH3_ALT_SIZE bit in the GP-DMA Control 
(GPDMACTL) register (MMCR offset D80h).

3. Program the operating frequency if not using the default 4 MHz.

4. Enable enhanced GP-DMA mode. 

5. Map the external request to a specific channel.

6. Program the memory address, transfer count, page address, and extended page 
address of the associated channel.

7. Program the extended transfer count for any transfer larger than 128 Kbytes (optional).

8. Program DMA mode, type, address increment mode, and priority mode.

9. Program the next address, next transfer count, and enable buffer chaining mode 
(optional).

10.Unmask the channel request in the General Mask register. At this point, the GP-DMA 
controller is ready to accept the external request.
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CHAPTER
15 P
C

ROGRAMMABLE INTERRUPT 
ONTROLLER
15.1 OVERVIEW
The ÉlanSC520 microcontroller’s programmable interrupt controller (PIC) consists of three 
industry-standard controllers, integrated with a highly programmable interrupt router. 

The programmable interrupt controller is configured so that two controllers are cascaded 
as slaves to a master controller that arbitrates interrupt requests from various sources to 
the Am5x86 CPU. Interrupt channel 2 (IR2) and channel 5 (IR5) of the Master controller 
are hard-wired to the outputs of the Slave 1 and Slave 2 controller respectively. In this 
configuration, up to 22 maskable interrupt channels of different priorities are available to 
the programmer. 

The programmable interrupt router handles routing of the various external and internal 
interrupt sources to the 22 interrupt channels of the three controllers. The interrupt router 
can also be programmed to handle routing of various NMI sources to generate a non-
maskable interrupt to the CPU. 

The ÉlanSC520 microcontroller’s programmable interrupt controller is designed to support 
PC/AT-compatible features. Startup software can configure the programmable interrupt 
router to route the sources to be used as ISA interrupts to the appropriate interrupt channels 
of the Slave 1 and Master controllers. 

PCI interrupts are level-sensitive, shareable, and typically implemented as open-drain 
inputs. To support this, the programmable interrupt controller optionally allows the selection 
of edge-triggered or level-sensitive interrupt detection on a per-channel basis, as an 
alternative to the standard global selection of edge-triggered or level-sensitive detection on 
all channels. This enhancement provides maximum flexibility in configuring a system 
environment where mixed interrupt types are used. 

Features of the ÉlanSC520 microcontroller’s programmable interrupt controller include:

■ 22 interrupt priority levels plus NMI

■ Programmable interrupt router capable of mapping interrupt sources (internal and 
external) to different priorities or NMI

■ 15 general-purpose external interrupt requests (GPIRQ10–GPIRQ0 and INTA–INTD), 
programmable to be edge- or level-sensitive

■ 19 internal interrupt requests programmable to be edge- or level-sensitive

■ Ability to assert any of the interrupt priority levels, including NMI, via software

■ Configurable to provide software compatibility with PC/AT interrupt controller

■ Programmable interrupt polarity inversion for external sources

■ Am5x86 CPU floating point error (ferr) interrupt clear, ignne function
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15.2 BLOCK DIAGRAM
Figure 15-1 is a block diagram of the ÉlanSC520 microcontroller’s programmable interrupt 
controller showing interrupt sources and routing. 

The programmable interrupt controller consists of a system of three individual interrupt 
controllers (Master, Slave 1 and Slave 2), each of which has eight interrupt channels. Two 
of the interrupt channels on the Master controller are used to cascade the slave controllers. 
This allows a total of 22 interrupt priority levels in the ÉlanSC520 microcontroller. The priority 
levels are numbered from P1–P22 to indicate which priority levels are assigned to slave or 
master controllers, with P1 being the highest and P22 the lowest priority. 

15.3 SYSTEM DESIGN
Table 15-1 shows PIC signals shared with other interfaces. When enabled, the multiplexed 
signals shown in Table 15-1 either disable or alter any other function that uses the same pin.

The GPIRQ10–GPIRQ0 and INTA–INTD signals are asserted when a peripheral requires 
interrupt service. The dedicated INTA–INTD pins are the same type of interrupt as the 
GPPIRQx signals. They are named INTx to match the common PCI interrupt naming 
convention.

Table 15-1 Programmable Interrupt Controller Signals Shared with Other Interfaces

PIO
(Default) 
Function

Interface 
Function Control Bit Register

PIO23 GPIRQ0 PIO23_FNC PIO31–PIO16 Pin Function Select 
(PIOPFS31_16) register 
(MMCR offset C22h)

PIO22 GPIRQ1 PIO22_FNC 

PIO21 GPIRQ2 PIO21_FNC 

PIO20 GPIRQ3 PIO20_FNC 

PIO19 GPIRQ4 PIO19_FNC 

PIO18 GPIRQ5 PIO18_FNC 

PIO17 GPIRQ6 PIO17_FNC 

PIO16 GPIRQ7 PIO16_FNC 

PIO15 GPIRQ8 PIO15_FNC PIO15–PIO0 Pin Function Select 
(PIOPFS15_0) register (MMCR offset C20h)PIO14 GPIRQ9 PIO14_FNC 

PIO13 GPIRQ10 PIO13_FNC 
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Figure 15-1 Programmable Interrupt Controller (PIC) Block Diagram
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15.4 REGISTERS
The programmable interrupt controller (PIC) is controlled by the registers listed in Table 15-2 
and Table 15-3.

Table 15-2 Programmable Interrupt Controller Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function 

PIO15–PIO0 Pin Function 
Select

PIOPFS15_0 C20h PIO or interface function select: GPIRQ10–
GPIRQ8

PIO31–PIO16 Pin Function 
Select

PIOPFS31_16 C22h PIO or interface function select: GPIRQ7–
GPIRQ0

Interrupt Control PICICR D00h Global interrupt mode enables, global NMI 
enable, NMI completion control

Master PIC Interrupt Mode MPICMODE D02h Edge- or level-sensitive interrupt mode select 
per channel

Slave 1 PIC Interrupt Mode SL1PICMODE D03h Edge- or level-sensitive interrupt mode select 
per channel

Slave 2 PIC Interrupt Mode SL2PICMODE D04h Edge- or level-sensitive interrupt mode select 
per channel

Software Interrupt 16–1 
Control

SWINT16_1 D08h Software interrupt generation control (priority 
levels 1–16)

Software Interrupt 22–17/NMI 
Control

SWINT22_17 D0Ah Software interrupt generation control (priority 
level 17–22), software NMI generation to the 
CPU

Interrupt Pin Polarity INTPINPOL D10h Polarity of external interrupt sources (INTA–
INTD and GPIRQ10–GPIRQ0)

PCI Host Bridge Interrupt 
Mapping

PCIHOSTMAP D14h System arbiter and PCI Host Bridge interrupt 
mapping to any of 22 available interrupt 
channels or NMI, PCI NMI enable control

ECC Interrupt Mapping ECCMAP D18h ECC interrupt mapping to any of 22 available 
interrupt channels or NMI, ECC NMI enable 
control

GP Timer 0 Interrupt Mapping GPTMR0MAP D1Ah GP Timer 0 interrupt mapping to any of 22 
available interrupt channels or NMI 

GP Timer 1 Interrupt Mapping GPTMR1MAP D1Bh GP Timer 1 interrupt mapping to any of 22 
available interrupt channels or NMI

GP Timer 2 Interrupt Mapping GPTMR2MAP D1Ch GP Timer 2 interrupt mapping to any of 22 
available interrupt channels or NMI

PIT 0 Interrupt Mapping PIT0MAP D20h PIT 0 interrupt mapping to any of 22 available 
interrupt channels or NMI

PIT 1 Interrupt Mapping PIT1MAP D21h PIT 1 interrupt mapping to any of 22 available 
interrupt channels or NMI

PIT 2 Interrupt Mapping PIT2MAP D22h PIT interrupt mapping to any of 22 available 
interrupt channels or NMI
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UART 1 Interrupt Mapping UART1MAP D28h UART 1 interrupt mapping to any of 22 available 
interrupt channels or NMI

UART 2 Interrupt Mapping UART2MAP D29h UART 2 interrupt mapping to any of 22 available 
interrupt channels or NMI

PCI Interrupt A Mapping PCIINTAMAP D30h PCI INTA mapping to any of 22 available 
interrupt channels or NMI

PCI Interrupt B Mapping PCIINTBMAP D31h PCI INTB mapping to any of 22 available 
interrupt channels or NMI

PCI Interrupt C Mapping PCIINTCMAP D32h PCI INTC mapping to any of 22 available 
interrupt channels or NMI

PCI Interrupt D Mapping PCIINTDMAP D33h PCI INTD mapping to any of 22 available 
interrupt channels or NMI

DMA Buffer Chaining 
Interrupt Mapping

DMABCINTMAP D40h DMA buffer chain interrupt mapping to any of 22 
available interrupt channels or NMI

SSI Interrupt Mapping SSIMAP D41h SSI interrupt mapping to any of 22 available 
interrupt channels or NMI

Watchdog Timer Interrupt 
Mapping

WDTMAP D42h WDT interrupt mapping to any of 22 available 
interrupt channels or NMI

RTC Interrupt Mapping RTCMAP D43h RTC interrupt mapping to any of 22 available 
interrupt channels or NMI

Write-Protect Violation 
Interrupt Mapping

WPVMAP D44h Write-protect violation to PAR interrupt mapping 
to any of 22 available interrupt channels or NMI

AMDebug Technology RX/TX 
Interrupt Mapping

ICEMAP D45h AMDebug technology JTAG port receive or 
transmit interrupt mapping to any of 22 available 
interrupt channels or NMI

Floating Point Error Interrupt 
Mapping

FERRMAP D46h Floating point error interrupt mapping to any of 
22 available interrupt channels or NMI

GPIRQ0 Interrupt Mapping GP0IMAP D50h GPIRQ0 interrupt mapping to any of 22 available 
interrupt channels or NMI

GPIRQ1 Interrupt Mapping GP1IMAP D51h GPIRQ1 interrupt mapping to any of 22 available 
interrupt channels or NMI

GPIRQ2 Interrupt Mapping GP2IMAP D52h GPIRQ2 interrupt mapping to any of 22 available 
interrupt channels or NMI

GPIRQ3 Interrupt Mapping GP3IMAP D53h GPIRQ3 interrupt mapping to any of 22 available 
interrupt channels or NMI

GPIRQ4 Interrupt Mapping GP4IMAP D54h GPIRQ4 interrupt mapping to any of 22 available 
interrupt channels or NMI

GPIRQ5 Interrupt Mapping GP5IMAP D55h GPIRQ5 interrupt mapping to any of 22 available 
interrupt channels or NMI

GPIRQ6 Interrupt Mapping GP6IMAP D56h GPIRQ6 interrupt mapping to any of 22 available 
interrupt channels or NMI

Table 15-2 Programmable Interrupt Controller Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR 
Offset 
Address Function 
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GPIRQ7 Interrupt Mapping GP7IMAP D57h GPIRQ7 interrupt mapping to any of 22 available 
interrupt channels or NMI

GPIRQ8 Interrupt Mapping GP8IMAP D58h GPIRQ8 interrupt mapping to any of 22 available 
interrupt channels or NMI

GPIRQ9 Interrupt Mapping GP9IMAP D59h GPIRQ9 interrupt mapping to any of 22 available 
interrupt channels or NMI

GPIRQ10 Interrupt Mapping GP10IMAP D5Ah GPIRQ10 interrupt mapping to any of 22 
available interrupt channels or NMI

Table 15-3 Programmable Interrupt Controller Registers—Direct-Mapped

Register Mnemonic I/O Address Function 

Master PIC Interrupt Request
Slave 2 PIC Interrupt Request
Slave 1 PIC Interrupt Request

MPICIR
S2PICIR
S1PICIR

0020h
0024h
00A0h

Real-time status of interrupt request assertion

Master PIC In-Service
Slave 2 PIC In-Service
Slave 1 PIC In-Service

MPICISR
S2PICISR
S1PICISR

0020h
0024h
00A0h

Interrupt request service status

Master PIC Initialization 
Control Word 1 (ICW1)
Slave 2 PIC Initialization 
Control Word 1 (ICW1)
Slave 1 PIC Initialization 
Control Word 1 (ICW1)

MPICICW1
S2PICICW1
S1PICICW1

0020h
0024h
00A0h

Interrupt mode, address interval, cascade or 
single PIC configuration, ICW4 control

Master PIC Operation Control 
Word 2 (OCW2)
Slave 2 PIC Operation 
Control Word 2 (OCW2)
Slave 1 PIC Operation 
Control Word 2 (OCW2)

MPICOCW2
S2PICOCW2
S1PICOCW2

0020h
0024h
00A0h

Interrupt EOI, priority rotation control, EOI level 
select, control to access OCW2 and OCW3

Master PIC Operation Control 
Word 3 (OCW3)
Slave 2 PIC Operation 
Control Word 3 (OCW3)
Slave 1 PIC Operation 
Control Word 3 (OCW3)

MPICOCW3
S2PICOCW3
S1PICOCW3

0020h
0024h
00A0h

Poll command, read register command, special 
mask mode

Master PIC Initialization 
Control Word 2 (ICW2)
Slave 2 PIC Initialization 
Control Word 2 (ICW2)
Slave 1 PIC Initialization 
Control Word 2 (ICW2)

MPICICW2
S2PICICW2
S1PICICW2

0021h
0025h
00A1h

Base interrupt vector number

Table 15-2 Programmable Interrupt Controller Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR 
Offset 
Address Function 
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15.5 OPERATION

15.5.1 Interrupt Flow Sequence
The following describes the typical interrupt flow sequence in a system that uses the 
ÉlanSC520 microcontroller’s PIC.

1. When a device generates an interrupt request that translates to either a rising edge or 
level High at the mapped interrupt channel, the corresponding Interrupt Request (xIR) 
register bit is set.

2. The PIC performs a check on its internal Interrupt Mask (xINTMSK) register and In-
Service (xISR) register. If this requesting interrupt is not masked off and if another 
interrupt of the same or higher priority is not in progress, the Master controller requests 
an interrupt from the CPU.

3. If the IF bit is set in the CPU’s Flags register (via the STI instruction), the CPU 
acknowledges the interrupt. At this time, the PIC places the 8-bit interrupt vector of the 
currently active highest-priority interrupt request on the data bus, and the corresponding 
In-Service (xISR) register bit is set in the PIC. If the IF bit is disabled, the interrupt is 
ignored. 

Note that the interrupt request must remain active at least until the first CPU acknowledge 
pulse occurs before it is considered as a valid interrupt request. If no interrupt request is 
active when the acknowledgement occurs, then the affected master or slave PIC returns 
the interrupt entry number associated with its IR7 input. However, in this circumstance no 
In-Service (xISR) register bit is set. This is known as the spurious interrupt condition and 
can be detected by the interrupt handler for priority level P22 (for the Master controller), 
P10 (for the Slave 1 controller), and P20 (for the Slave 2 controller). The Interrupt Request 
(xIR) register bit is always set for the duration of the interrupt request, regardless of whether 
it is a spurious or a valid interrupt request. 

Master PIC Initialization 
Control Word 3 (ICW3)
Slave 2 PIC Initialization 
Control Word 3 (ICW3)
Slave 1 PIC Initialization 
Control Word 3 (ICW3)

MPICICW3
S2PICICW3
S1PICICW3

0021h
0025h
00A1h

Slave cascading channel select (MPICICW3)

Master PIC Initialization 
Control Word 4 (ICW4)
Slave 2 PIC Initialization 
Control Word 4 (ICW4)
Slave 1 PIC Initialization 
Control Word 4 (ICW4)

MPICICW4
S2PICICW4
S1PICICW4

0021h
0025h
00A1h

Nested mode, EOI mode

Master PIC Interrupt Mask 
(OCW1)
Slave 2 PIC Interrupt Mask 
(OCW1)
Slave 1 PIC Interrupt Mask 
(OCW1)

MPICINTMSK
S2PICINTMSK
S1PICINTMSK

0021h
0025h
00A1h

Channel interrupt mask

Floating Point Error Interrupt 
Clear

FPUERRCLR F0h Clear FPU error interrupt

Table 15-3 Programmable Interrupt Controller Registers—Direct-Mapped (Continued)

Register Mnemonic I/O Address Function 
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4. The CPU reads the interrupt vector and services the interrupt corresponding to the vector 
read during the acknowledgment.

5. Before further interrupts for the same priority level can be serviced, an EOI (end-of-
interrupt must be issued to the PIC to reset the In-Service (xISR) register bit of the 
currently active interrupt. This can be done in one of two ways. 

– In automatic EOI (AEOI) mode, the In-Service (xISR) register bit is reset at the end 
of the acknowledgement cycle from the CPU. Note that AEOI mode does not support 
polling, and it can only be used in a master configuration, not in a slave configuration.

– When AEOI is disabled, the interrupt handler must clear the In-Service (xISR) register 
bit by issuing a EOI command at the end of the interrupt service routine.

For an interrupt request coming from either one of the slave controllers, the slave controller 
generates an interrupt to the Master controller and asserts its corresponding Interrupt 
Request (xIR) register bit at the Master controller. The Master controller first determines if 
there is a higher priority interrupt that is currently being serviced. If there is not, it requests 
an interrupt from the CPU, as described in step 2. Otherwise, the higher priority interrupt 
service routine continues uninterrupted until another interrupt request is received from the 
PIC.

There are two ways in which an interrupt request from a slave controller differs from the 
interrupt sequence mentioned above. Steps 3–5 are similar in this case, but because the 
Interrupt Request (xIR) register bit set by the slave output is the highest priority interrupt, 
the Master controller now commands the slave controller to supply the interrupt vector to 
the CPU. 

The other difference is that two EOIs are required: one to the Master controller to reset its 
highest priority In-Service (xISR) register bit (set by the interrupt request) and the other to 
the slave to reset its highest priority In-Service (xISR) register bit. The order of these two 
EOIs does not matter.

15.5.2 Interrupt Sources
The interrupt sources in the ÉlanSC520 microcontroller can be divided into four distinct 
categories:

■ Externally-generated hardware interrupts from interrupt input pins

■ Internally-generated hardware interrupts from peripherals

■ Internally-generated hardware interrupts from interrupt trigger bits

■ Software interrupts (generated with the INT instructions)

This section discusses all of these except software interrupts. Note that the first two 
hardware interrupt sources listed above can be mapped to the Am5x86 CPU’s NMI interrupt 
input. NMI is discussed in “Non-Maskable Interrupts and Routing” on page 15-14. Software 
interrupts work in the standard x86 fashion and are not discussed in this manual.

15.5.2.1 Hardware-Generated Interrupts

In the ÉlanSC520 microcontroller, there are 57 hardware interrupt sources: 

■ 23 can come from control bits in the Software Interrupt 16–1 Control (SWINT16_1) 
register (MMCR offset D08h) and the Software Interrupt 22–17/NMI Control 
(SWINT22_17) register (MMCR offset D0Ah).

■ 15 can come from the 15 external interrupt pins (GPIRQ10–GPIRQ0 and INTA–INTD)
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■ 19 are generated from internal peripheral sources, including:

– PCI host bridge/system arbiter (interrupt)

– PCI host bridge (NMI)

– SDRAM ECC single-bit error (interrupt)

– SDRAM ECC multi-bit error (NMI)

– Six timers (three GP timers and three PIT timers)

– Two UARTS

– GP-DMA buffer chaining

– SSI

– Watchdog timer

– RTC

– Write-protection violation in Programmable Address Region (PAR) register

– AMDebug interface JTAG port receive or transmit activity

– Floating point error

As shown in Figure 15-2 on page 15-9, of the19 internal peripheral sources:

■ 17 can be used for maskable interrupts. The two sources that cannot be configured as 
a maskable interrupt are the SDRAM ECC multi-bit error NMI source and the PCI host 
bridge’s separate NMI-only source.

■ 18 can be routed to the Am5x86 CPU’s NMI input. The only source that cannot be used 
to generate an NMI is the SDRAM ECC single-bit error source.

The internal PCI host bridge and the SDRAM controller each generate a maskable interrupt 
source and an NMI interrupt source. However, only the internal PCI host bridge interrupt 
source can be mapped to generate either a maskable interrupt or an NMI. The SDRAM 
controller’s maskable interrupt source cannot be mapped to generate an NMI.

Figure 15-2 Interrupt Sources
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15.5.3 Interrupt Source Routing
Figure 15-3 on page 15-11 shows the implementation of the interrupt router. None of the 
interrupt enable signals are shared across the interrupt channels. 

Each of the 32 hardware interrupt sources that come from peripherals (15 external and 17 
internal) is fed into each of the 22 OR gates for the 22 interrupt channels. Each of the 22 
OR gates also has an additional input from the one of the Software Interrupt x Control 
(SWINTx) registers.

When set, the interrupt trigger control bits cause their associated interrupt signals to be 
asserted at the PIC. These bits are under complete control of software. During normal 
operation, hardware does not set or clear these bits. A reset does clear these bits.

All incoming interrupt requests are arbitrated by the interrupt controllers based on the priority 
levels shown in Figure 15-1 on page 15-3, with the highest priority interrupt being serviced 
first. There is a mask bit associated with each of the 22 interrupt channels, providing a 
means for each interrupt channel to be masked individually. 

Multiple interrupt requests can be shared on a common interrupt channel. This is discussed 
further in “Interrupt Sharing” on page 15-13.

After reset, each of the interrupt sources must be mapped to the desired interrupt channel. 
This is usually done by the initialization software. It can be done during normal operation 
as well. The default power-on-reset state for these mapping bits is cleared; the programmer 
has to specifically map the individual interrupt requests to the desired interrupt channels.

15.5.3.1 Polarity Inversion of Interrupt Requests

Since each of the three individual interrupt controllers can only recognize either a Low-to-
High edge-triggered or an active High level interrupt request, a programmable inversion is 
available for each of the 15 external interrupt requests to support active Low interrupt 
sources. For example, a PCI generated interrupt request that is active Low must be inverted 
within the ÉlanSC520 microcontroller prior to reaching the PIC channel to which it is mapped 
before the controller can recognize a valid interrupt request. 

All internally-generated interrupt signals have the correct active High polarity and need no 
inversion via software. These internally-generated signals include those for the GP-DMA 
controller, PCI host bridge system arbiter, timers, UARTs, SSI, watchdog timer, SDRAM 
controller, RTC, AMDebug technology interface, floating-point error, and address mapping, 
as well as internally-generated NMI signals.
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Figure 15-3 Interrupt Source Routing
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15.5.3.2 PC/AT Compatibility

For PC/AT-compatible systems, the microcontroller hardware does not automatically map 
legacy ISA interrupt signals to their respective Slave 1 and Master controllers. The user’s 
software must ensure that these interrupts are routed correctly to the appropriate PC/AT-
compatible channels. Table 15-4 shows the interrupt channel assignment implemented in 
a PC/AT-compatible system.

15.5.3.3 Floating Point Errors

The ÉlanSC520 microcontroller supports DOS-compatible floating point error handling via 
the standard Floating Point Error Interrupt Clear (FPUERRCLR) register (Port 00F0h), as 
in legacy PC/AT systems. PC/AT systems control floating point error reporting externally 
through the PC’s interrupt controller, rather than through the internal CPU interrupt. In this 
case, an interrupt request is generated and typically routed to IRQ13 (although it is 
programmable via the ÉlanSC520 microcontroller’s PIC). This allows an interrupt handler 
to write to the Floating Point Error Interrupt Clear (FPUERRCLR) register to clear the 
interrupt request and force the CPU’s ignore numeric error (ignne) signal active, thus 
enabling execution of floating-point instructions within the interrupt handler. Once the FPU 
error condition is cleared by the handler, the floating point error (ferr) signal is deasserted, 

Table 15-4 PC/AT Interrupt Channel Mapping

PC/AT-Compatible System ÉlanSC520 Microcontroller 

IRQ I/O Device Priority Interrupt Source to Map

IRQ0 System Timer 0 P1 Internal (PIT 0 interrupt)

IRQ1 Keyboard interface P2 External via GPIRQx pin

IRQ21, 2

Notes:
1. In the ÉlanSC520 microcontroller’s PIC, interrupt channels 2 and 5 of the Master interrupt con-
troller are hard-wired to the outputs of Slave 1 and Slave 2 interrupt controllers, respectively. The 
cascading of the slave controllers is fixed in order to simplify the system interrupt programming 
model. 
2. When configured for PC/AT-compatible operation, the Slave 1 interrupt controller is cascaded and 
the Slave 2 controller is bypassed. In this configuration, IRQ2 is not available, and interrupt priority 
P13 acts as IRQ5. For configuration details see “PC/AT Compatibility” on page 15-12.

Slave controller cascading — Cascaded from Slave 1 controller

IRQ3 UART 2 P11 Internal (UART 2 interrupt)

IRQ4 UART 1 P12 Internal (UART 1 interrupt)

IRQ51, 2 Parallel port 2 P13 External via GPIRQx pin

IRQ6 Floppy disk controller P21 External via GPIRQx pin

IRQ7 Parallel port 1 P22 External via GPIRQx pin

IRQ8 Real-time clock P3 Internal (RTC interrupt)

IRQ9 Any 8- or 16-bit ISA device P4 External via GPIRQx pin

IRQ10 Any 8- or 16-bit ISA device P5 External via GPIRQx pin

IRQ11 Any 8- or 16-bit ISA device P6 External via GPIRQx pin

IRQ12 Mouse interface P7 External via GPIRQx pin

IRQ13 Numeric coprocessor P8 Internal (floating point error interrupt)

IRQ14 Any 8- or 16-bit ISA device P9 External via GPIRQx pin

IRQ15 Any 8- or 16-bit ISA device P10 External via GPIRQx pin
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and the internal ignne signal is subsequently deasserted. The interrupt request and ignne 
signal are also cleared by a system reset. 

15.5.3.4 Disabling the Slave Controllers

Each of the slave controllers can also be disabled via software, and interrupt requests can 
be easily routed to the associated interrupt channels of the Master controller. For example, 
if the Slave 1 controller is disabled, interrupt request irq_p3 that is hooked to the priority 3 
input of the same controller is visible to the Master controller channel input IR2. Similarly, 
if the Slave 2 controller is also disabled, interrupt request irq_p13 is visible to the Master 
controller channel input IR5 (see Figure 15-1 on page 15-3). In other words, both of these 
interrupt requests would bypass the slave controllers. In this manner, a very simple interrupt 
configuration is realized via software, in which eight or fewer interrupt priorities can be 
implemented using just the Master controller. As such, only one EOI needs to be generated 
to minimize software overhead and improve latency of the interrupt cycle. 

For more information about this topic, see “Software Considerations” on page 15-18.

15.5.4 Edge-Triggered or Level-Sensitive Interrupts
Each of the 22 interrupt priority levels can be configured as an edge-triggered or level-
sensitive interrupt. This departs from the standard implementation of the individual interrupt 
controller, whereby a global bit for each controller determines the interrupt type for all the 
incoming interrupt requests. 

In the ÉlanSC520 microcontroller, each individual interrupt controller is enhanced to provide 
this interrupt type recognition capability on a per channel basis. A bit is provided for each 
of the 22 interrupt channels for interrupt type programmability. The selection between global 
and per-channel interrupt mode is done via software. However, the original global bit is 
retained for the individual controllers, such that all of the interrupts for each device can be 
restored globally as either edge- or level-sensitive. This is useful for PC/AT compatibility, 
especially for the Master and Slave 1 controllers. 

Regardless of whether the controller is programmed for edge-sensitive or level-sensitive 
mode, the interrupt request source must continue asserting the interrupt request until the 
CPU acknowledges the interrupt. Because this acknowledgment is not viewable externally 
to the ÉlanSC520 microcontroller, it is recommended that external interrupt sources provide 
a mechanism through which the interrupt service routine can deassert the interrupt request 
via software. 

15.5.5 Interrupt Sharing
The controllers support sharing interrupt inputs from multiple interrupt sources. Interrupt 
sharing is applicable to all internal and external interrupt sources. To put it simply, since 
OR gates are used to map interrupt sources to interrupt channels, it is easy to map more 
than one interrupt source to a single interrupt channel. This is shown in Figure 15-3.

Level-sensitive interrupt sharing is typically implemented by tying multiple interrupt outputs 
using an open drain or open collector output to a single interrupt input pin. Of course, this 
can be done externally to the ÉlanSC520 microcontroller in the conventional manner.

However, interrupt sharing can also be easily configured internally to the microcontroller, 
merely by mapping multiple interrupt sources to the same interrupt channel. The channel’s 
OR gates inherently “share” the interrupt channel among multiple interrupts. In this scenario, 
an interrupt-pending status bit must be implemented in each device. All internal peripherals 
have interrupt status bits.
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Since programmable inversion of the interrupt signal is available, the external device can 
generate an interrupt to the ÉlanSC520 microcontroller by either driving the interrupt 
request line Low and allowing a pullup resistor to generate the rising edge or by actively 
driving the line Low from its default High inactive state through a pullup resistor (as in PCI 
interrupt generation). 

Sharing edge-triggered interrupts in the ÉlanSC520 microcontroller is not recommended. 

For more information about this topic, see “Software Considerations” on page 15-18.

15.5.6 Non-Maskable Interrupts and Routing
A unique feature of the ÉlanSC520 microcontroller’s PIC is its ability to route most of its 
hardware interrupt sources via software to generate a non-maskable interrupt (NMI) to the 
CPU. 

■ With the exception of the internally-generated ECC interrupt from the SDRAM controller, 
all the other interrupt sources can be routed to the Am5x86 CPU’s NMI input. 

■ The PCI host bridge and SDRAM controller each generate a separate and distinct NMI 
interrupt source to the PIC. The interrupt source can only generate an NMI and not a 
maskable interrupt to the CPU. 

There are 34 interrupt sources for NMI generation to the CPU: 

■ 15 external interrupts

■ 18 internally-generated interrupts

■ 1 software NMI source

Figure 15-4 on page 15-15 shows the logical implementation of NMI generation in the 
ÉlanSC520 microcontroller.

15.5.6.1 Sharing NMIs

NMIs can be shared in the ÉlanSC520 microcontroller. NMI sources are routed logically to 
an OR gate, as shown in Figure 15-4 on page 15-15. 

Each individual interrupt source is gated by an enable signal to selectively allow it to be 
shared with the other interrupt sources. Each of these enable signals is controlled via the 
Interrupt Mapping (xMAP) registers and is enabled by programming its interrupt routing bits 
to 11111b. An NMI Enable (NMI_ENB) bit in the Interrupt Control (PICICR) register (MMCR 
offset D00h) provides the mechanism to prevent all NMIs from reaching the CPU. This bit 
has been moved from the PC/AT-compatible location (see “Legacy NMI Enable Bit Moved” 
on page 20-10 for more details). NMIs are disabled on system and soft reset and must be 
enabled via setting the NMI_ENB bit before use.

It is recommended that sharing NMIs be done using level-sensitive NMIs only. All NMIs 
should be treated similarly to the maskable interrupt sources. All NMIs once asserted should 
remain asserted until cleared by software. The NMI_DONE bit located in the Interrupt 
Control (PICICR) register facilitates NMI sharing. This bit is visible to all NMI handlers, and 
the currently executing NMI handler should clear the NMI source prior to asserting the 
NMI_DONE bit. NMI handler software should write a 1 to the self-clearing NMI_DONE bit 
immediately before executing the IRET instruction to exit from the handler. Setting the 
NMI_DONE bit deasserts the NMI signal to the CPU for a brief time before allowing any 
other pending NMI requests to be serviced, in order to satisfy NMI timing requirements of 
the CPU. 

Sharing edge-triggered NMIs in the ÉlanSC520 microcontroller is not recommended. 
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Figure 15-4 NMI Routing
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15.5.7 Priority Types
Each individual interrupt controller prioritizes interrupt requests by their IR number, as 
shown in Figure 15-1 on page 15-3. This places IR0 as the highest priority and IR7 the 
lowest, which is the default ordering.

In a cascaded environment, the full 22 priority level is as shown in Figure 15-1, with P1 
being the highest and P22 the lowest priority. As a result, if two or more interrupt requests 
appear simultaneously, the higher priority interrupt is serviced first and the lower priority 
interrupt is pending. 

The interrupt controller supports nested interrupts. The depth level of nesting affects system 
performance, and the programmer must implement this with care. 

The interrupt controller also supports specific and automatic rotation types.

■ In specific rotation, the lowest priority can be programmed in the individual controller, 
thus fixing all the other priorities. 

– For example, in Figure 15-1, if P5 is programmed to be the lowest priority, then P6 of 
Slave 1 controller would be the highest priority within this controller. 

– In this case, the priority order starting with the highest priority level would follow as: 
P1–P2 (Master), P6–P10 (Slave 1), P3–P5 (Slave 1), P11–P12 (Master), P13–P20 
(Slave 2), P21–P22 (Master). This is assuming that the Master and Slave 2 controllers 
are each programmed with IR7 as the lowest priority. 

– In fact, the implementation shown in Figure 15-1 is of a fixed priority scheme (with 
priority ordering of P1–P22) and is a variation of the specific rotation type.

■ In automatic rotation scheme, all priority levels within the controller are treated as equal. 

– In this mode, an interrupt request after being serviced receives the lowest priority, so 
that the same device requesting an interrupt is queued. 

– In the worst scenario, the device would have to wait until each of the seven other 
devices is serviced at most one time. 

15.5.8 Configuration Information

15.5.8.1 Programming

The initialization sequence of the PIC consists of writing a sequence of two to four bytes 
to each controller. The first initialization byte is written to the lower address of the controller, 
(020h for the Master, 0A0h for Slave 1, and 024h for Slave 2), and all subsequent initialization 
bytes are written to the upper address of the controller (021h for the Master, 0A1h for Slave 
1, and 025h for Slave 2). 

1. The first initialization byte, the Initialization Control Word 1 (xICW1) register, notifies the 
controller that an initialization sequence is starting. This register also controls the type 
of interrupt-triggering (edge- or level-sensitive), whether the controller is in a cascaded 
environment or alone, and whether the fourth initialization byte, the Initialization Control 
Word 4 (xICW4) register, is required or not. 

2. The second byte, the Initialization Control Word 2 (xICW2) register, contains the vector 
offset for the controller. For PC/AT-compatible interrupts, xICW2 should be 08h for the 
Master controller and 70h for the Slave 1 controller (Slave 2 is not used in PC/AT-
compatible systems).

3. The third byte, the Initialization Control Word 3 (xICW3) register is written only if xICW1 
indicates that the controller is in a cascaded environment. For the Master controller, it 
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identifies which IR inputs are hooked up to slave controllers. For the slave controllers, 
it identifies the IR pin on the master to which that particular slave is connected. 

It is important to note that the ÉlanSC520 microcontroller’s PIC can be configured as a 
stand-alone master controller, one slave cascade (either Slave 1 or Slave 2), or cascading 
with both slave controllers. 

– To configure it as a stand-alone Master controller where 8 or fewer interrupt requests 
are available to the user, bits 2 and 5 must be cleared to 0 in the Master PIC Initialization 
Control Word 3 (MPICICW3) register (Port 0021h). 

– To configure it as a Slave 1 only cascade, the S2 and S5 bits must be set and cleared 
respectively in the Master PIC Initialization Control Word 3 (MPICICW3) register (Port 
0021h).

– For Slave 2 cascade only configuration, the S2 and S5 bits must be cleared and set 
respectively in the Master PIC Initialization Control Word 3 (MPICICW3) register (Port 
0021h). 

– To configure cascading using both the slave controllers, the S2 and S5 bits must be 
set in the Master PIC Initialization Control Word 3 (MPICICW3) register (Port 0021h). 

4. Finally, the Initialization Control Word 4 (xICW4) register (written only if indicated in the 
Initialization Control Word 1 (xICW1) register) controls whether EOIs are generated 
manually or automatically. It also contains some bits that must always be set in the 
ÉlanSC520 microcontroller.

Note that some parameters in the PIC configuration registers are fixed based on the way 
the controllers are arranged in the ÉlanSC520 microcontroller. 

For example, the Slave 1 PIC Initialization Control Word 3 (S1PICICW3) register (Port 
00A1h) always contains 2d to indicate that Slave 1 is hooked up to IR2 on the Master 
controller. 

For those configuration parameters that are not fixed, software that initializes the controllers 
must be very careful to accurately reflect the correct arrangements of the controllers, as 
shown in Figure 15-1 on page 15-3.

For example, if neither Slave controller is being bypassed, the Master PIC Initialization 
Control Word 3 (MPICICW3) register (Port 0021h) should contain 24h (or 00100100b) to 
indicate that slave controllers are hooked up to its IR2 and IR5 signals. 

After the interrupt controllers are initialized, any subsequent reads or writes to ports 021h, 
0A1h, or 025h access the Interrupt Mask (xINTMSK) register of the Master, Slave 1, or 
Slave 2 controllers. The Operation Control Word 2 (xOCW2) and Operation Control Word 
3 (xOCW3) registers are accessed by writing to the appropriate ports, 020h, 0A0h, or 024h. 
The controllers can be configured in various modes using these registers.

5. Initializing the Interrupt Mask (xINTMSK) register provides the masking of the interrupt 
requests on a per channel basis. 

6. Writing to the Operation Control Word 2 (xOCW2) register configures the various rotation 
and EOI modes.

7. Finally, the Operation Control Word 3 (xOCW3) register configures the different mask 
modes, controls reading of the In-Service (xISR) register or the Interrupt Request (xIR) 
register, and whether the controller is to be used by software to perform polling.

The rest of the non-controller specific registers are programmed next. This includes 
programming the routing of the various interrupt sources to the appropriate priority level or 
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NMI (as indicated in Figure 15-1) polarity inversion of the interrupt sources if needed, 
different interrupt mode per channel, global interrupt mode enables, or master NMI enable. 
These registers are listed in Table 15-2 on page 15-4. 

It is recommended that EOIs be issued for all the channels prior to using the Set Interrupt-
Enable Flag (STI) instruction. This is to clear all spurious In-Service (xISR) register bits 
that are potentially set during the initialization phase before enabling the CPU to accept 
interrupt requests. 

15.5.8.2 PC/AT Configuration

To configure the ÉlanSC520 microcontroller’s PIC to be PC/AT-compatible, the same 
configuration sequence detailed in “Programming” on page 15-16 is observed with the 
following exceptions:

1. The SNGL bit must be cleared to 0 in the Master PIC Initialization Control Word 1 
(MPICICW1) register (Port 0020h).

2. The S2 and S5 bits must be set to 1 and cleared to 0, respectively, in the Master PIC 
Initialization Control Word 3 (MPICICW3) register (Port 0021h).

3. The M_GINT_MODE and S1_GINT_MODE bits must be set to 1 in the Interrupt Control 
(PICICR) register (MMCR offset D00h). 

4. The base interrupt vector numbers 08h and 70h must be written for the Master and Slave 
1 PIC, respectively, to the Master PIC Initialization Control Word 2 (MPICICW2) register 
(Port 0021h) and the Slave 1 PIC Initialization Control Word 2 (S1PICICW2) register 
(Port 00A1h). This correctly programs the T7–T3 bit field in those registers, which 
corresponds to bits 7–3 of the 8-bit base interrupt vector number. This also clears the 
A10–A8 bit field (bits 2–0), which should be 0 for PC-AT-compatible interrupts.

5. The SFNM and AEOI bits must be cleared to 0 in the Master PIC Initialization Control 
Word 4 (MPICICW4) register (Port 0021h), and the SFNM bit must be cleared to 0 in 
the Slave 1 PIC Initialization Control Word 4 (S1PICICW4) register (Port 00A1h).

6. Any interrupt sources used in the system must be mapped to appropriate interrupt 
priorities via the interrupt mapping registers. Table 15-4 on page 15-12 correlates the 
PC/AT IRQs and I/O devices to the ÉlanSC520 microcontroller’s interrupt priorities.

In this case, only the Slave 1 controller is cascaded to the Master controller via input IR2. 
The Slave 2 controller is logically removed from the Master controller, and the highest priority 
channel originally hooked to the former is now automatically routed to input IR5 of the latter, 
thereby preserving the architecture of the PC/AT interrupt controller. 

15.5.9 Software Considerations
15.5.9.1 Interrupt Sharing

Interrupt sharing increases system complexity and involves more software overhead. 
Thorough understanding of performance implications to a system implementing interrupt 
sharing is needed. For multiple interrupt requests sharing a line, the system designer needs 
to be fully aware of the latency involved and the implications in interrupt sharing. 

For example, in the worst case scenario, it may take an unacceptably long amount of time 
before the CPU is able to service the first interrupt request hooked at the very beginning 
of the interrupt chain (created during the interrupt hooking process). This problem is 
compounded further if one or more interrupt requests before it are still pending. This can 
be alleviated somewhat by prioritizing or re-ordering the more critical interrupt table entries 
later in the chain during the interrupt hooking process. 
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Although level-sensitive interrupt sharing generally works well, implementing edge-
sensitive interrupt sharing is not recommended.

15.5.9.2 Disabling the Slave Controllers

The ÉlanSC520 microcontroller’s PIC has the flexibility to allow removal of either or both 
the slave controllers logically from the cascade chain via software (see S2 and S5 bits in 
the Master PIC Initialization Control Word 3 (MPICICW3) register). Disabling one or more 
of the slave controllers allows configuring a system with fewer than 9 or 16 interrupt 
channels. 

Although the slave controllers are hard-wired to the Master controller, bypassing the slave 
controllers via software during configuration could typically result in a more efficient interrupt 
system, whereby only the Master controller needs to be initialized and configured. With this 
configuration, only one non-specific EOI needs to be generated, instead of two, at the end 
of the interrupt service routine. 

When either of the slave controllers is disabled, the highest priority interrupt hooked to the 
slave controllers is routed automatically to channels 2 and 5 of the Master controller, 
respectively. As such, the programmer needs to be aware that mapping interrupts to the 
other seven lower priority channels of the slave controller inhibits propagation of these 
interrupt requests to the Master controller. Figure 15-1 on page 15-3 shows this 
implementation in the ÉlanSC520 microcontroller’s PIC. 

15.5.9.3 Detecting Invalid Interrupt Requests

If an interrupt request does not remain active long enough for the corresponding In-Service 
(xISR) register bit to be set (a non-deterministic amount of time), the request is considered 
a spurious interrupt pulse. 

Spurious pulses on any of the interrupt requests cause the interrupt handler associated 
with the IR7 input of the affected controller to be executed (priority level P22 for the Master 
controller, P10 for the Slave 1 controller, or P20 for the Slave 2 controller). The Interrupt 
Request (xIR) register bit is always set for the duration of the interrupt request, regardless 
of whether it is a spurious or a valid interrupt request. 

The interrupt handler associated with IR7 is required to check the In-Service (xISR) register 
bit to determine if a valid interrupt request generated the interrupt. If the In-Service (xISR) 
register bit is set, then a valid interrupt request is generated, and the normal routine is 
executed. Otherwise, a spurious interrupt is identified and the interrupt routine exits. 

In other words, spurious pulses on the interrupt requests that are shorter than a non-
deterministic duration can be filtered out by software that checks the In-Service (xISR) 
register bit. Longer spurious pulses can only be detected if all interrupt sources hooked 
onto a given priority level provide their own status bits.

15.5.9.4 Floating Point Unit Error Handling

To implement DOS-compatible floating-point error handling, such as is used in legacy 
PC/AT systems, the Numeric Error (NE) bit in the CPU’s Control 0 (CR0) register must be 
cleared. If the NE bit is set, an exception 16 will be generated instead of an external interrupt 
request via the ÉlanSC520 microcontroller’s programmable interrupt controller. See the 
Am486® DX/DX2 Microprocessor Hardware Reference Manual, 1994 (order #17965), for 
further details on the floating point unit.
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15.6 INITIALIZATION
The programmable interrupt controller responds only to system reset.

The Slave 1, Slave 2, and Master interrupt controllers are not affected by system reset. The 
interrupt controller direct-mapped registers, once configured, retain their values during a 
system reset. However, all other configuration registers default to their power-on reset states 
when a system reset occurs. The interrupt router is reset, such that the interrupt requests 
are gated off. This effectively disables all interrupt requests from reaching the CPU.

At system reset, the PIC is disabled.

1. Configure the Master, Slave 1, and Slave 2 controllers as described in “Configuration 
Information” on page 15-16. Mask all interrupts.

2. Place an interrupt service routine at the locations corresponding to the interrupt priority 
levels to be supported. 

3. Enable the desired priority levels by mapping the interrupts sources to the interrupt levels 
in the interrupt router and unmasking the interrupt in the corresponding interrupt 
controllers. Set the IF bit in the CPU’s Flags register using the STI instruction. (NMIs 
are disabled on system and soft reset and must be enabled via NMI_ENB bit before use).
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CHAPTER
16P
ROGRAMMABLE INTERVAL TIMER
16.1 OVERVIEW
The ÉlanSC520 microcontroller includes four separate timer modules: a PC/AT-compatible 
programmable interval timer (PIT) with three timers, three general-purpose (GP) timers, a 
software timer, and a watchdog timer. The programmable interval timer is described in this 
chapter. The general-purpose timers are described in Chapter 17. The software timer is 
described in Chapter 18. The watchdog timer is described in Chapter 19.

The programmable interval timer (PIT) on the ÉlanSC520 microcontroller includes three 
separate timers, designed to provide PC/AT compatibility. 

Features of the PIT include:

■ Three 16-bit timers, or channels

■ Clock source from either 1.1892-MHz source or an external pin. The same clock is routed 
to all three channels.

■ One interrupt output for each channel

■ One external output pin for PIT Channel 2

■ Several modes of operation, including:

– Interrupt on terminal count

– Hardware-retriggerable one-shot

– Rate and square wave generation

– Hardware- and software-retriggerable strobe

16.2 BLOCK DIAGRAM
Figure 16-1 shows a block diagram of the programmable interval timer.

16.3 SYSTEM DESIGN
Table 16-1 shows the PIT signals shared with other interfaces. The pinstrap function 
associated with the PITOUT2 pin is sampled only as a result of PWRGOOD assertion and 
does not affect the PIT function of this pin, so it is not shown in this table. When enabled, 
the multiplexed signals shown in Table 16-1 either disable or alter any other function that 
uses the same pin.

Note: The CFG3 pinstrap associated with PITOUT2 is used for an AMD internal test mode. 
Do not pull this pin High during reset. 

Table 16-1 Programmable Interval Timer Signals Shared with Other Interfaces

Default Signal Alternate Function Control Register

CLKTIMER CLKTEST CLK_PIN_DIR Clock Select (CLKSEL) register 
(MMCR offset C26h)

PITGATE2 GPCS3 GPCS3_SEL Chip Select Pin Function Select 
(CSPFS) register (MMCR offset C24h)
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Figure 16-1 Programmable Interval Timer Block Diagram

16.4 REGISTERS
The programmable interval timer (PIT) is configured using the registers listed in Table 16-2 
and Table 16-3. The direct-mapped System Control Port B register is used to provide PC/
AT-compatible PIT functionality.

Table 16-2 Programmable Interval Timer Configuration Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

Chip Select Pin Function 
Select

CSPFS C24h GPCS3 or PITGATE2 function select

Clock Select CLKSEL C26h CLKTIMER[CLKTEST] pin enable, clock output 
select options (PIT), CLKTIMER select (input 
clock for PIT)

PIT 0 Interrupt Mapping PIT0MAP D20h PIT 0 interrupt mapping

PIT 1 Interrupt Mapping PIT1MAP D21h PIT 1 interrupt mapping

PIT 2 Interrupt Mapping PIT2MAP D22h PIT 2 interrupt mapping

Channel 0

Channel 1

Channel 2

CLKTIMER

Programmable Interval Timer

gate 2

0061h[0]

0061h[5]

PITOUT20061h[1]

 1.1892

Always Enabled

PITGATE2

pit_tmr1_irq

pit_tmr2_irq

gate 1

PIC

Port

pit_tmr0_irq

gate 0

 B

 MHz

Élan™SC520 Microcontroller

Notes:
Port B is addressed at 0061h in I/O space.
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16.5 OPERATION
The programmable interval timer provides three different timers, or channels, and six modes 
of operation. Not all channels support every mode.

16.5.1 PIT Channel 0
PIT Channel 0 is used for generating interrupt requests. PIT Channel 0 can be configured 
to assert interrupt priority P1 (IRQ0) to allow it to operate in PC/AT-compatible mode. See 
Chapter 15, “Programmable Interrupt Controller”, for more information on interrupt steering. 

PIT Channel 0 can be configured to assert IRQ0 to allow it to operate in PC/AT-compatible 
mode. The gate line is tied High such that PIT Channel 0 operates in four modes only, 
modes 0, 2, 3, and 4. Mode 0 is typically used for interrupts, because it remains in the High 
state until restarted.

16.5.2 PIT Channel 1
The PIT Channel 1 is used as a general-purpose timer. Its output is hardwired internally to 
drive an input of the programmable interrupt controller. See Chapter 15, “Programmable 
Interrupt Controller” for more information on interrupt steering. 

The gate line is tied High such that PIT Channel 1 also operates in four modes only, modes 
0, 2, 3, and 4. Mode 0 is typically used for interrupts, because it remains in the High state 
until restarted.

Table 16-3 Programmable Interval Timer Configuration Registers—Direct-Mapped

Register Mnemonic I/O Address Function

PIT Channel 0 Count PIT0CNT 0040h Current count value for Channel 0

PIT Channel 1 Count PIT1CNT 0041h Current count value for Channel 1

PIT Channel 2 Count PIT2CNT 0042h Current count value for Channel 2

PIT 0 Status PIT0STA 0040h Counter mode status, null count, output state, 
latch command or read/write control setting, and 
BCD setting for Channel 0

PIT 1 Status PIT1STA 0041h Counter mode status, null count, output state, 
latch command or read/write control setting, and 
BCD setting for Channel 1

PIT 2 Status PIT2STA 0042h Counter mode status, null count, output state, 
latch command or read/write control setting, and 
BCD setting for Channel 2

PIT Mode Control PITMODECTL 0043h PIT counter select or read-back command, read/
write control or counter latch command, counter 
mode, BCD select

PIT Counter Latch Command PITCNTLAT 0043h Control to latch current count of the selected 
channel for read-back

PIT Read-Back Command PITRDBACK 0043h Control to latch status and current count of each 
channel for read-back

System Control Port B SYSCTLB 0061h PITOUT2 signal enable, status, and Channel 2 
gate input control
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16.5.3 PIT Channel 2
The gate line for PIT Channel 2 is controlled by the PIT_GATE2 bit in the System Control 
Port B (SYSCTLB) register (Port 0061h) or the external input pin PITGATE2. PITGATE2 is 
a multiplexed pin; if it is disabled, the gate line is controlled only by the PIT_GATE2 bit in 
the System Control Port B (SYSCTLB) register.

The output of the PIT Channel 2 is hardwired internally on the ÉlanSC520 microcontroller 
to drive an input of the programmable interrupt controller and can be read in the 
PIT_OUT2_STA bit of the System Control Port B (SYSCTLB) register (Port 0061h). See 
Chapter 15 for more information on interrupt steering. The output goes to the external output 
pin PITOUT2 when the PIT_OUT2_ENB bit is set in the System Control Port B (SYSCTLB) 
register. 

PIT Channel 2 works in all six modes.

16.5.4 Operating Modes
The modes for the each PIT channel are specified in Counter Mode (CTR_MODE) bit field 
in the PIT Mode Control (PITMODECTL) register (Port 0043h). 

16.5.4.1 Mode 0: Interrupt on Terminal Count

In interrupt on terminal count mode, 

1. When the initial count is loaded into the PIT Channel x Count (PITxCNT) register, the 
output of the counter goes Low. 

2. The count value decrements by one for each input clock pulse if the gate input is held 
High. 

3. If the gate input is held Low, count maintains its value until after a rising edge of clock 
after the Gate goes High again.

4. The output of the counter is initially Low and will remain Low until the counter reaches 
zero. The output then goes High until a new count or a new mode 0 control word is 
loaded into the Counter. 

16.5.4.2 Mode 1: Hardware-Retriggerable One-Shot

In hardware-retriggerable one-shot mode:

1. After an initial count is loaded into the PIT Channel 2 Count (PIT2CNT) register, a rising 
edge on the gate signal causes the output of the counter to go Low. 

2. The count value decrements with each successive clock pulse. 

3. The gate trigger begins the one-shot pulse with the output going Low until the count 
reaches zero. 

4. Output then goes High and remains High until the clock pulse after the next trigger. 

The duration of the one-shot pulse is:

Duration = Initial count * Period of the clock input 

This mode is called hardware-retriggerable because, once an output pulse has started, if 
a rising edge is experienced at the gate input, the counter is reloaded with the initial count 
and the pulse continues until the new count expires. This mode is supported on PIT Channel 
2 only.
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16.5.4.3 Mode 2: Rate Generator

When programmed in rate generator mode, the counters operate as divide by n counters, 
where n is the initial count. 

1. The output signal starts off High until the initial count is decremented to one. 

2. The output then goes Low for one clock pulse and goes High again. 

3. The counter is reloaded with the initial count, and the counting sequence is repeated. 

There appears one clock pulse at the output for every n clock cycles.

By default, PC/AT-compatible systems program PIT Channel 0 for this mode.

16.5.4.4 Mode 3: Square Wave Mode

In square wave mode:

1. The output of the counter has a 50% duty cycle whenever the counter is loaded with an 
even count. Initially the output is High. 

2. The count decrements by two with each clock cycle when the gate is held High. 

3. When the count reaches zero, the output toggles state, the initial count is reloaded, and 
the sequence is repeated. 

The period of the output signal is:

Period = Input clock period * Initial count loaded into the counter

If the initial count is an odd number, the output is High for (n+1)/2 cycles and is Low for 
(n–1)/2 cycles. 

By default, PC/AT-compatible systems program PIT channels 1 and 2 to use this mode to 
drive DRAM refresh and the speaker, respectively.

16.5.4.5 Mode 4: Software-Triggered Strobe

In software-triggered mode: 

1. The counter automatically begins to decrement one clock pulse after it is loaded with 
the initial count through software. The output signal is initially High. 

2. The count decrements at the rate set by the clock input signal. 

3. At the moment the terminal count is reached, the counter generates a single strobe 
pulse on the output for one clock pulse duration. 

4. If the counter is loaded with a count of n, then a strobe pulse is produced at the output 
after n+1 clock cycles.

16.5.4.6 Mode 5: Hardware-Triggered Strobe

In hardware-triggered mode:

1. Counting begins on a Low-to-High transition of the gate signal. 

2. The output remains High until the count has expired. 

3. The output goes Low for one clock cycle and goes High again. 

4. After writing the control word and the initial count, the counter is loaded at the next clock 
pulse after the trigger. 

The strobe pulse occurs n+ 1 clock pulses after the Low to High transition (trigger) on the 
Gate input. This count sequence is retriggerable. 
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In this mode, the counter output behaves just as in mode 4, except for the triggering 
mechanism. This mode is supported on PIT Channel 2 only.

16.5.5 Clocking Considerations
The PIT clock source can be either the derived 1.1892-MHz PIT clock or an external pin. 
This is configured in the CLK_PIN_DIR bit in the Clock Select (CLKSEL) register (MMCR 
offset C26h). 

The PIT clock on the ÉlanSC520 microcontroller does not run at 1.19318 MHz, as in 
PC/AT-compatible systems. See Section 16.5.7.1 for more information.

16.5.5.1 Internal Clock

16.5.5.2 External Clock

A separate external clock input pin, CLKTIMER, is provided to the PIT. Table 16-5 specifies 
the external clock source frequency range for the CLKTIMER input for the PIT.

16.5.6 Interrupts
Each PIT channel provides its own interrupt to the programmable interrupt controller (PIC). 
See Chapter 15, for more information on interrupt steering.

For the PIT, the interrupt request is always generated on terminal count, and it is basically 
the output signal of the PIT channel. The pattern of the interrupt request signal depends 
on the programmed operation mode in the channel. Modes 0 and 1 generate a Low-to-High 
signal on terminal count, and they are usually used as interrupt sources.

16.5.7 Software Considerations

16.5.7.1 Using the PIT Clock Source in PC/AT-Compatible Systems

In PC/AT-compatible systems, system boot code usually programs the PIT Channel 0 Count 
(PIT0CNT) register (Port 0040h) to a value of FFFFh. It relies on this periodic interrupt in 
order to keep accurate time of day. Since the timer clock source is 1.1892 MHz in the 
ÉlanSC520 microcontroller, the priority P1 interrupt (IRQ0) is generated every 55.11 ms. 
Historically the PIT clock source has been 1.19318 MHz, and this translates into an interrupt 
generation rate of 54.93 ms. This interrupt generation rate difference causes the time-
keeping function of a PC/AT-compatible system to be inaccurate. 

There are two possible ways to address this issue. One method involves modifying the PIT 
Channel 0 Count (PIT0CNT) register via the system boot code. The second method involves 
driving the PIT from an external clock source.

■ Modifying the PIT Channel 0 Count (PIT0CNT) register—If the system boot code 
programs this register to a value of FF2Bh, the desired interrupt generation rate of 
54.93 ms can be achieved.

Table 16-4 PIT Internal Clock Source

Internal Clock Source Resolution Range Duration

 1.1892 MHz 841.61 ns–55.1 ms 16-bit duration

Table 16-5 PIT External Clock Source

External Clock Source Frequency Range

CLKTIMER 1.18125–1.20511 MHz
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■ Driving an external 1.19318-MHz clock on the CLKTIMER pin—A system designer can 
choose to supply an external clock source frequency of 1.19318 MHz on the CLKTIMER 
pin. This pin must be specifically configured for this functionality by the system boot code 
during the system boot process, prior to configuring the PIT. The CLK_PIN_DIR bit in 
the Clock Select (CLKSEL) register (MMCR offset C26h) is used for this purpose.

16.6 INITIALIZATION
At system reset, the state of the PIT itself is undefined. The mode, count value, and output 
of all channels are undefined. Each PIT channel must be programmed before it can be 
used. To prevent superfluous interrupts, each PIT channel must be configured prior to 
enabling interrupts on the Am5x86 CPU.

1. Write a control word into the PIT Mode Control (PITMODECTL) register (Port 0043h).

2. Write an initial count into the PIT Channel x Count (PITxCNT) register of the PIT channel 
being programmed. The control word determines the format of the initial count.
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CHAPTER
17
 GENERAL-PURPOSE TIMERS
17.1 OVERVIEW
The general-purpose (GP) timers are intended for most generic timing or counting 
applications, such as generating periodic interrupts and measuring or counting external 
events. 

Features of the general-purpose timers include:

■ Three 16-bit timers

■ Two-stage cascading of timers, to allow a maximum of two 32-bit timer/counter elements

■ Clock source from the system clock (33 MHz), an external pin, or a derived prescale 
clock. The external pin and pre-scale clock are available for GP Timer 0 and GP Timer 
1 only. The maximum clock is 33 MHz/4.

■ One external input pin for each timer for GP Timer 0 and GP Timer 1, used for external 
event capture, pulse count, and counter reset/reload

■ One external output pin for GP Timer 0 and GP Timer 1

■ One interrupt output for each timer

■ Several modes of operation, including:

– Interrupt on terminal count

– Hardware retrigger mode

– Rate and square wave generation

– Continuous mode

17.2 BLOCK DIAGRAM
Figure 17-1 shows a block diagram of the general-purpose timers.

17.3 SYSTEM DESIGN
Table 17-1 shows the general-purpose timer signals shared with other interfaces. When 
enabled, the multiplexed signals shown in Table 17-1 either disable or alter any other 
function that uses the same pin.

Table 17-1 General-Purpose Timer Signals Shared with Other Interfaces

Default Signal Alternate Function Control Bit Register

TMROUT0 GPCS7 GPCS7_SEL Chip Select Pin Function Select (CSPFS) 
register (MMCR offset C24h)TMROUT1 GPCS6 GPCS6_SEL

TMRIN0 GPCS5 GPCS5_SEL 

TMRIN1 GPCS4 GPCS4_SEL 
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Figure 17-1 General-Purpose Timers Block Diagram

17.4 REGISTERS
The general-purpose timers include the memory-mapped registers listed in Table 17-2.

Table 17-2 General-Purpose Timer Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

Chip Select Pin Function 
Select

CSPFS C24h TMROUTx, TMRINx, or GPCSx pin function 
select

GP Timers Status GPTMRSTA C70h Interrupt status and clear for all three GP timers

GP Timer 0 Mode/Control GPTMR0CTL C72h GP Timer 0 enable, permit Enable bit write, 
interrupt enable, maxcount register in use, 
maximum count, retrigger, internal clock source 
prescaler, external clock source, alternate 
compare mode, continuous mode

GP Timer 0 Count GPTMR0CNT C74h Current count value

GP Timer 0 Maxcount 
Compare A

GPTMR0MAXC
MPA

C76h Maxcount value A to compare with current count

GP Timer 0 Maxcount 
Compare B

GPTMR0MAXC
MPB

C78h Maxcount value B, used in the alternate mode

GP Timer 1 Mode/Control GPTMR1CTL C7Ah GP Timer 1 enable, permit Enable bit write, 
interrupt enable, maxcount register in use, 
maximum count, retrigger, internal clock source 
prescaler, external clock source, alternate 
compare mode, continuous mode

GP Timer 1 Count GPTMR1CNT C7Ch Current count value

GP Timer 0

GP Timer 1

GP Timer 2

TMROUT0

TMROUT1

TMRIN0

33 MHz

TMRIN1

33 MHz

33 MHz

clk_pre

gpt_tmr0_irq

General-Purpose Timers

PIC
gpt_tmr1_irq

gpt_tmr2_irq

Élan™SC520 Microcontroller
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17.5 OPERATION
The ÉlanSC520 microcontroller includes three GP timers, each of which supports several 
different operating modes.

17.5.1 GP Timer 0 and GP Timer 1
GP Timers 0 and 1 can be used to count or time external events that drive the timer input 
pins and to generate a variety of waveforms on the timer output pins. 

The source clock for GP Timer 0 and GP Timer 1 can be configured to be one-fourth of the 
Am5x86 CPU clock frequency, or it can be driven from the timer external input (TMRIN0 or 
TMRIN1) whose maximum clock frequency is one-fourth of the Am5x86 CPU clock speed. 
When driven from the timer’s external input pin, the timer counts the “event” of an input 
transition. 

GP Timer 0 and GP Timer 1 are 16-bit timers. Each of these two timers can be cascaded 
as a 32-bit timer when GP Timer 2 is configured as a prescaler by setting the PSC_SEL 
bit in the GP Timer x Mode/Control (GPTMRxCTL) register. (See “Combining GP Timer 
Count Elements” on page 17-6.) When they are in 32-bit mode, GP timers 0 and 1 cannot 
be used as 16-bit timers.

The TMRIN0 and TMRIN1 pins can be configured to be one of many functions via the use 
of the configuration bits in the respective timer registers. These functions include:

■ Clock input—Configured with the EXT_CLK bit in the GP Timer x Mode/Control 
(GPTMRxCTL) register

■ Enable input—Configured with both the RTG bit and EXT_CLK bit cleared to 0 in the 
GP Timer x Mode/Control (GPTMRxCTL) register

■ Reset input (hardware retrigger mode)—Configured with the RTG bit set to 1 and the 
EXT_CLK bit cleared to 0 in the GP Timer x Mode/Control (GPTMRxCTL) register

GP Timer 1 Maxcount 
Compare A

GPTMR1MAXC
MPA

C7Eh Maxcount value A to compare with current count

GP Timer 1 Maxcount 
Compare B

GPTMR1MAXC
MPB

C80h Maxcount value B, used in the alternate mode

GP Timer 2 Mode/Control GPTMR2CTL C82h GP Timer 2 enable, permit Enable bit write, 
interrupt enable, maxcount register in use, 
maximum count, continuous mode

GP Timer 2 Count GPTMR2CNT C84h Current count value

GP Timer 2 Maxcount 
Compare A

GPTMR2MAXC
MPA

C8Eh Maxcount value to compare with current count

GP Timer 0 Interrupt Mapping GPTMR0MAP D1Ah GP Timer 0 interrupt mapping to any of 22 
available interrupt channels or NMI 

GP Timer 1 Interrupt Mapping GPTMR1MAP D1Bh GP Timer 1 interrupt mapping

GP Timer 2 Interrupt Mapping GPTMR2MAP D1Ch GP Timer 2 interrupt mapping

Table 17-2 General-Purpose Timer Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR 
Offset 
Address Function
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17.5.2 GP Timer 2
GP Timer 2 is a 16-bit timer that is not connected to any external pins. GP Timer 2 can be 
used by software to generate interrupts, or it can be polled for real-time coding and time-
delay applications. It can also be enabled as a prescaler for GP Timer 0 and GP Timer 1. 
The source clock for GP Timer 2 is always one-fourth of the Am5x86 CPU clock frequency. 

17.5.3 Operating Modes

17.5.3.1 Interrupt on Terminal Count Mode

In this mode, an interrupt request is generated when the timer count value reaches a GP 
Timer Maxcount Compare register value. This is configured with the INT_ENB bit in the 
GP Timer x Mode/Control (GPTMRxCTL) register.

If continuous mode is enabled, the interrupt request pulse is generated continuously at a 
regular interval time, and the interval duration depends on the value in the GP Timer 
Maxcount Compare register.

17.5.3.2 Hardware Retrigger Mode

In hardware retrigger mode, a 0-to-1 edge transition on the TMRIN1 or TMRIN0 input pin 
resets the existing GP Timer x Count (GPTMRxCNT) register value, for their respective 
timers, and then counting continues. This mode is enabled by setting the RTG bit to 1 and 
clearing the EXT_CLK bit to 0 in the GP Timer x Mode/Control (GPTMRxCTL) register.

17.5.3.3 Alternate Compare Mode

Using both the primary GP Timer x Maxcount Compare A (GPTMRxMAXCMPA) register 
and the secondary GP Timer x Maxcount Compare B (GPTMRxMAXCMPB) register lets 
the timer alternate between two maximum values. This mode is enabled with the ALT_CMP 
bit in the GP Timer x Mode/Control (GPTMRxCTL) register.

In alternate compare mode, the TMROUT0 or TMROUT1 pin is High while the counter is 
counting and being compared to the GP Timer x Maxcount Compare A 
(GPTMRxMAXCMPA) register. The timer output pin is Low while the counter is counting 
and being compared to the GP Timer x Maxcount Compare B (GPTMRxMAXCMPB) 
register.

17.5.3.4 Square Wave Mode

In this mode, the TMROUT0 or TMROUT1 pin creates a waveform by indicating which of 
the two GP Timer Maxcount Compare registers is currently in control. The duty cycle and 
frequency of the waveform depend on the values in the alternating GP Timer Maxcount 
Compare register. This mode is enabled when both the ALT_CMP and the CONT_COMP 
bits are set in the GP Timer x Mode/Control (GPTMRxCTL) register.

17.5.3.5 Continuous Mode

In continuous mode, the GP Timer x Count (GPTMRxCNT) register is reset to 0 after it 
reaches the value in the GP Timer x Maxcount Compare register value (A or B), and the 
timer immediately begins counting again. Continuous mode is enabled by setting the 
CONT_CMP bit in the GP Timer x Mode/Control (GPTMRxCTL) register.

17.5.3.6 Prescaler Mode

The internal output of GP Timer 2 can be used as the input clock source for GP timers 0 
and 1. When the PSC_SEL bit is set in the GP Timer x Mode/Control (GPTMRxCTL) 
register, timers 0 and 1 can be prescaled by GP Timer 2. This allows either or both GP 
Timer 0 and GP Timer 1 to be cascaded as a 32-bit timer. The PSC_SEL bit is ignored 
when external clocking is enabled (i.e., when the EXT_CLK bit is set). 
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17.5.4 Configuration Information
The GP Timer x Count (GPTMRxCNT) registers contain the current value of a timer. These 
registers can be read or written at any time, regardless of whether the corresponding timer 
is running. The timer increments the value of the corresponding GP Timer x Count 
(GPTMRxCNT) register each time a timer event occurs. 

Each timer has a GP Timer x Maxcount Compare A (GPTMRxMAXCMPA) register that 
defines the maximum value of the timer. 

■ When the timer reaches the maximum value, it resets the GP Timer x Count 
(GPTMRxCNT) register value to 0 during the same clock cycle.

■ The value in the GP Timer x Count (GPTMRxCNT) register never equals the GP Timer 
x Maxcount Compare A (GPTMRxMAXCMPA) register.

In addition, timers 0 and 1 have a secondary GP Timer x Maxcount Compare B 
(GPTMRxMAXCMPB) register. 

■ Using both the primary GP Timer x Maxcount Compare A (GPTMRxMAXCMPA) register 
and the secondary GP Timer x Maxcount Compare B (GPTMRxMAXCMPB) register 
lets the timer alternate between two maximum values. This is called alternate compare 
mode. It is controlled by the ALT_CMP bit in the GP Timer x Mode/Control (GPTMRxCTL) 
register.

– If the timer is programmed to use both of its GP Timer Maxcount Compare registers, 
and the ALT_CMP and CONT_CMP bits are set in the GP Timer x Mode/Control 
(GPTMRxCTL) register, the timer output pin (TMROUT0 or TMROUT1) generates a 
square waveform. 

– The duty cycle and frequency of the waveform depend on the values in the alternating 
GP Timer Maxcount Compare registers.

■ If the timer is programmed with the ALT_CMP bit to use only the primary GP Timer x 
Maxcount Compare A (GPTMRxMAXCMPA) register, the timer output pin (TMROUT0 
or TMROUT1) switches Low for a single Am5x86 CPU clock cycle after the maximum 
value is reached.

17.5.5 Clocking Considerations
The clock source for the three general-purpose timers is the 33-MHz system clock. For GP 
Timer 0 and GP Timer 1, the clock source can also be an external pin or a derived prescale 
clock. This option is specified in the GP Timer 0 Mode/Control (GPTMR0CTL) register 
(MMCR offset C72h) and the GP Timer 1 Mode/Control (GPTMR1CTL) register (MMCR 
offset C7Ah). 

17.5.5.1 Internal Clock

The resolution range of the internal clock depends on which 33-MHz crystal is used in the 
system, as shown in Table 17-3.

Table 17-3 GP Timers Internal Clock Sources

Internal Clock Source Resolution Range Duration

33.000 MHz 121.20 ns–7.94 ms 16-bit duration

33.000 MHz 121.20 ns–520.55 seconds 32-bit duration

33.333 MHz 120.00 ns–7.86 ms 16-bit duration

33.333 MHz 120.00 ns–515.40 seconds 32-bit duration
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17.5.5.2 External Clock

Separate external clock input pins, TMRIN0 and TMRIN1, are provided to each of the 
following two timers: GP Timer 0 and GP Timer 1, respectively. Table 17-4 specifies the 
external clock source frequency range for the TMRIN0 and TMRIN1 inputs for the general-
purpose timers. The maximum frequency of the external clock is one-fourth the frequency 
of the crystal used.

 

17.5.6 Interrupts
Each GP timer provides its own interrupt on the programmable interrupt controller (PIC). 
See Chapter 15, “Programmable Interrupt Controller”, for more information on interrupt 
steering.

The GP Timer x Mode/Control (GPTMRxCTL) registers for the general-purpose timers are 
used to enable the timer interrupt request generation. An interrupt request is generated 
when a maximum count is reached. 

In the case where both Maximum Count Compare A and B registers are used, an interrupt 
request is generated when the GP Timer x Count (GPTMRxCNT) register is equal to either 
the value of the GP Timer x Maxcount Compare A (GPTMRxMAXCMPA) register or the 
value of the GP Timer x Maxcount Compare B (GPTMRxMAXCMPB) register. 

The GP Timers Status (GPTMRSTA) register (MMCR offset C70h) contains the interrupt 
status information for the three general-purpose timers. A timer’s corresponding interrupt 
status bit is set when that timer’s interrupt request signal is asserted and remains set until 
cleared.

17.5.7 Software Considerations

17.5.7.1 Combining GP Timer Count Elements

Both GP Timer 0 and GP Timer 1 can be configured to be clocked by GP Timer 2 at the 
same time. This configuration provides a maximum of two 32-bit counters. GP Timer 2 is 
a common element between the two resulting 32-bit counters. The possible combinations 
of the timers include:

■ GP Timer 2, GP Timer 1, and GP Timer 0 separate, resulting in three independent 16-bit 
counters

■ GP Timer 2 + GP Timer 0 (as one 32-bit), with GP Timer 1 separate (as one 16-bit)

■ GP Timer 2 + GP Timer 1 (as one 32-bit), with GP Timer 0 separate (as one 16-bit)

■ GP Timer 2 + GP Timer 0 (as one 32-bit), with GP Timer 2 + GP Timer 1 (as second 
32-bit), where GP Timer 2 is a common timebase

17.5.7.2 Reading the Cascaded 32-Bit Timer

When cascading GP Timer 0 or GP Timer 1 with GP Timer 2 to form a single 32-bit timer, 
caution must be exercised when reading the two counter outputs in order to properly handle 
rollover conditions. This is slightly complicated by the fact that there is no way to atomically 
read the contents of both counters. The goal is to develop an algorithm to return the 32-bit 
value of the cascaded timer at the time that the 16-bit “least significant” timer is read. 

Table 17-4 GP Timers External Clock Sources (Using a 33.333 MHz Crystal)

External Clock Source Frequency Range

TMRIN0 0–8.33325 MHz

TMRIN1 0–8.33325 MHz
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To test for rollover, software must read both timers two times in succession, reading the 
least significant timer value (i.e., GP Timer 2), followed by the most significant timer value. 
A very important assumption must be made that software is able to perform these four 16-
bit reads in less one tick of the “most significant” timer. Software may have to disable 
interrupts in order to meet this qualification. 

For example, suppose that on the first read, the value L1 is read from the least significant 
timer, and the value M1 is read from the most significant timer. Then, values of L2 and M2 
are read from the least significant and most significant timers, respectively. There are three 
possibilities.

17.5.7.2.1 Case 1
(M1 = M2 = 0) and (L1 > L2)

This condition indicates that the most significant timer rolled over between reading L1 
and M1. In this case, the correct value to be interpreted from the most significant timer 
value should be one less than the value programmed into the GP Timer x Maxcount 
Compare A (GPTMRxMAXCMPA) register (when the ALT_CMP bit is 0), or the maximum 
of GP Timer x Maxcount Compare A (GPTMRxMAXCMPA) register and GP Timer x 
Maxcount Compare B (GPTMRxMAXCMPB) register (when the ALT_CMP bit is 1).

17.5.7.2.2 Case 2
(M2 = M1 <> 0) and (L1 > L2)

This condition indicates that the least significant timer (but not the most significant timer) 
rolled over between reading M1 and L1. In this case, the correct value to be interpreted 
for the most significant timer is M1–1, which was the value of the most significant timer 
at the time that L1 was read. 

17.5.7.2.3 Case 3
■ In all other instances, if rollover occurred, then it occurred after L1 and M1 were read, 

and L1 and M1 can be used for the correct values.

17.5.7.2.4 Example 1
For example, suppose GP Timer 0 is programmed in continuous mode, clocked by the 
output of GP Timer 2, with the ALT_CMP bit cleared to 0 and a value of 2000h programmed 
for the GP Timer 0 Maxcount Compare A (GPTMR0MAXCMPA) register. 

GP Timer 2 is programmed in continuous mode, clocked by the internal 33-MHz clock with 
the GP Timer 2 Maxcount Compare A (GPTMR2MAXCMPA) register set to 8000h. 

The period of GP Timer 2 is: 

8000h / 33 MHz * 4 = 4 ms 

The cycle time of GP Timer 0 is: 

2000h * 4 ms = 32.77 s

In the example, software reads the timers in the following order:

1. GP Timer 2 = 7997h

2. GP Timer 0 = 0h

3. GP Timer 2 = 14h

4. GP Timer 0 = 0h
Élan™SC520 Microcontroller User’s Manual 17-7



General-Purpose Timers
In this example, the second value read for GP Timer 2 (14h) is less than the first value 
(7997h), and both values read for GP Timer 0 are 0. So this falls under case 1, and the 
correct 32-bit value of the cascaded timer is: 

32764 ms + (7997h * 121.2 ns) = 32767.8 ms = 32.7678 s 

17.5.7.2.5 Example 2
Suppose GP Timer 0 and GP Timer 2 are programmed as in Example 1, but the values 
returned from the timers are:

1. GP Timer 2 = 7997h

2. GP Timer 0 = 15h

3. GP Timer 2 = 5h

4. GP Timer 0 = 16h

In this example, the second value read for GP Timer 2 (5h) is less than the first value 
(7997h). However, because the first value read for GP Timer 0 (15h) is less than the second 
value (16h), case 3 applies and the correct 32-bit value of the cascaded timer is: 

15h * 4ms + 7997 * 121.2 ns = 72.772 ms

17.6 INITIALIZATION
At system reset, all the general-purpose timer registers are reset to zero. Each timer must 
be programmed before it can be used.

1. Write the maximum compare count value into the GP Timer x Maxcount Compare 
(GPTMR0MAXCMPx) registers.

2. Enable the counting with the desired operation and mode in the GP Timer x Mode/Control 
(GPTMRxCTL) register.
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CHAPTER
18
 SOFTWARE TIMER
18.1 OVERVIEW
The software timer is intended to provide a millisecond timebase with microsecond 
resolution. Ideal applications for this function include providing a system wide software 
timebase, code profiling, and precise measurement of the time between events. Features 
of the software timer include:

■ One 16-bit millisecond counter that increments with a period of one millisecond. This 
yields a maximum duration of 65.5 seconds. Note that this timer is accurate to the 
precision of the 33-MHz crystal used in the system. 

■ A microsecond latch register that provides the number of microseconds since the last 
time that the millisecond register was read.

■ The 16-bit millisecond counter is reset to zero when it is read.

■ The software timer can be configured to maintain an accurate time when either a 33.000-
MHz or 33.333-MHz crystal is used in the system.

18.2 BLOCK DIAGRAM
Figure 18-1 shows a block diagram of the software timer.

Figure 18-1 Software Timer Block Diagram
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18.3 REGISTERS
The software timer includes the registers listed in Table 18-1.

18.4 OPERATION
The software timer provides a very efficient hardware timebase for use by software. It is 
designed to replace the traditional method of system timebase generation.

Traditionally, system timebase generation is accomplished by programming a timer to 
generate a periodic interrupt. The interrupt service routine for this interrupt then increments 
a counter each time the interrupt occurs. This value is often kept in a global variable, which 
can then be accessed by other code that needs to track time. Sometimes, a procedural 
interface (a function) is used to access the value of this counter. The counter maintained 
by the interrupt service routine is usually set to zero at system initialization time. Thus, it 
maintains the time since system boot.

The problem with this method is that it consumes a hardware timer resource. It also requires 
an interrupt service routine that executes very frequently. Often the requirement to have a 
higher resolution time is difficult to attain because the overhead of executing even a small 
interrupt service routine many times a second is too much. It is rarely practical to provide 
better than a 1-ms timebase with this technique. Also, in a system that makes extensive 
use of interrupts, the timer interrupt can sometimes be missed, causing the interrupt counter 
to becomes less accurate over time.

The software timer included on the ÉlanSC520 microcontroller can be used to resolve these 
problems. The software timer provides a 16-bit millisecond counter (the Software Timer 
Millisecond Count (SWTMRMILLI) register), a 10-bit microsecond-up counter (UPCTR), 
and a latch register for the UPCTR (the Software Timer Microsecond Count 
(SWTMRMICRO) register). Both counters reset to zero on system reset. 

The microsecond-up counter increments at a rate of 1 MHz and rolls over on every 1000 
counts (every 1 millisecond). When the microsecond-up counter rolls over, it signals the 
millisecond counter to increment. When the millisecond counter is read, three things 
happen:

1. The value in the Software Timer Millisecond Count (SWTMRMILLI) register (MMCR 
offset C60h) is returned to software.

2. The value in the microsecond up counter is latched into the Software Timer Microsecond 
Count (SWTMRMICRO) register (MMCR offset C62h).

3. The Software Timer Millisecond Count (SWTMRMILLI) register counter is reset to zero.

This operation allows software to keep track of time with no interrupt service routine. 

Table 18-1 Software Timer Configuration Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

Software Timer Millisecond 
Count

SWTMRMILLI C60h Current 10-bit count value (milliseconds)

Software Timer Microsecond 
Count

SWTMRMICRO C62h Current latched 16-bit count value 
(microseconds)

Software Timer Configuration SWTMRCFG C64h Crystal frequency (33.000 MHz or 33.333 MHz)
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For example, here is some example code that can be used to maintain a system timebase:

typedef unsigned long int DWORD;          // an unsigned 32-bit value 
typedef unsigned short int WORD:         // an unsigned 16-bit value

static volatile WORD* SWTMRMILLI = 0xA0000200;    // volatile is essential 
static volatile WORD* SWTMRMICRO = 0xA0000202;    // volatile is essential 

static DWORD ticks; // the number of 1-ms ticks since system boot
// that have passed since system reset 

static DWORD mics; // A running microsecond value 

DWORD sys_ticks()

{
ticks += *SWTMRMILLI;
mics = *SWTMRMICRO + (ticks * 1000);
return ticks;
}

DWORD sys_mics()

{
ticks += *SWTMRMILLI;
mics  = *SWTMRMICRO + (ticks * 1000);
return mics;
}

This is all the code necessary to maintain both a 32-bit microsecond and a 32-bit millisecond 
timebase for an operating system or other timing needs.

18.4.1 Configuration Information
The software timer counter elements (millisecond and microsecond counts) are read-only. 
The software timer is always free-running, and it does not have any input or output (external 
pin or interrupt). The software timer can be configured to maintain an accurate time for 
either a 33.000-MHz or a 33.333-MHz crystal.

18.5 INITIALIZATION
At system reset, the software timer begins counting up from zero. 

The software timer must be initialized for operation with either 33.000 MHz or 33.333 MHz, 
depending on the crystal being used in the system. This is configured with the XTAL_FREQ 
bit in Software Timer Configuration (SWTMRCFG) register (MMCR offset C64h).
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CHAPTER
19
 WATCHDOG TIMER
19.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated watchdog timer (WDT).

Features of the watchdog timer include:

■ Distinct keyed write sequences are required to open the Watchdog Timer Control 
(WDTMRCTL) register for reconfiguration and to reset the current count.

■ Supports up to a 30-second time-out period with a 33-MHz CPU clock

■ Programmable to generate either a system reset or an interrupt request (maskable or 
non-maskable) on the first time-out. If software has not cleared an indicator bit by the 
second time-out, the watchdog timer always generates a system reset instead.

■ The watchdog timer interrupt request can be programmed as maskable or non-
maskable.

■ A status flag for software to detect the watchdog timer’s interrupt request 

■ ÉlanSC520 microcontroller input pins that are typically sampled at the initial power-on 
reset (i.e., with the PWRGOOD input) are not sampled for a system reset due to a 
watchdog timer time-out.

■ The watchdog timer counters are automatically stopped in AMDebug technology mode.

19.2 BLOCK DIAGRAM
Figure 19-1 shows a block diagram of the watchdog timer.
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Figure 19-1 Watchdog Timer Block Diagram

19.3 REGISTERS
The watchdog timer is controlled by the memory-mapped registers listed in Table 19-1.

Table 19-1 Watchdog Timer Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

Watchdog Timer Control WDTMRCTL CB0h Watchdog timer enable, WDT reset enable, 
interrupt flag, duration of the WDT time-out 
interval

Watchdog Timer Count Low WDTMRCNTL CB2h Bits 15–0 of the WDT current count
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19.4 OPERATION
The watchdog timer (WDT) can be used to regain control of the system when software fails 
to respond as expected. The watchdog timer should be used in systems that require a 
guaranteed recovery time from a software error.

When the watchdog timer is enabled, the counter is reset to zero automatically and starts 
counting. The count increments once for every 33-MHz clock cycle. While enabled, the 
software can reset the counter to zero at anytime by writing a clear keyed sequence as 
described in “Keyed Sequences” on page 19-3. If the software is unable to reset the counter 
before it reaches the time-out count, the watchdog timer generates an interrupt and/or a 
system reset. 

■ The watchdog timer can be configured to cause either an interrupt (maskable or non-
maskable) or a system reset upon time-out. 

■ The watchdog timer can also be configured to generate both an interrupt and a system 
reset. In this mode, the watchdog timer generates an interrupt, then starts itself over. If 
it times out a second time, it generates a system reset.

A distinct keyed sequence is required to open up the Watchdog Timer Control 
(WDTMRCTL) register (MMCR offset CB0h) before writes. This prevents errant code from 
disabling or otherwise modifying the watchdog timer behavior. The same keyed sequence 
is always used for unlocking the watchdog timer control registers. 

19.4.1 Configuration Information

19.4.1.1 Keyed Sequences

All writes to the Watchdog Timer Control (WDTMRCTL) register must be preceded by a 
distinct keyed sequence. 

■ A data pattern of 3333h, followed by a write of CCCCh, to the Watchdog Timer Control 
(WDTMRCTL) register opens up the register for a single write. 

The value of the key is not written to the register but is used by internal logic to open the 
register for writing. Once the ENB bit is set in the Watchdog Timer Control (WDTMRCTL) 
register, a subsequent keyed sequence is required to allow any further writes to this register.

While enabled, the software can reset the counter to 0 at anytime by writing a keyed 
sequence to clear the counter.

■ A data pattern of AAAAh, followed by a write of 5555h, to the Watchdog Timer Control 
(WDTMRCTL) register resets the counter. 

The key itself resets the counter; no further writes are necessary. It should be noted that 
this clear-count key cannot be initiated while the write key is active. This would result in the 
value of AAAAh being written to the register.

Watchdog Timer Count High WDTMRCNTH CB4h Bits 30–16 of the WDT current count

Watchdog Timer Interrupt 
Mapping

WDTMAP D42h WDT interrupt mapping

Reset Status RESSTA D74h Reset source status: watchdog timer time-out

Table 19-1 Watchdog Timer Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR 
Offset 
Address Function
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Each individual write of these keyed sequences is not required to be written back-to-back 
as an atomic sequence. Any number of processor cycles, including memory and I/O reads 
and writes, can be inserted between the key and the writing of data, as long as they do not 
access the Watchdog Timer Control (WDTMRCTL) register.

19.4.1.2 Interrupt Request Generation

To configure interrupt request generation on the watchdog timer, software must first clear 
the ENB bit in the Watchdog Timer Control (WDTMRCTL) register and then clear the 
WRST_ENB bit. Once the watchdog timer times out, the interrupt request is generated. 

The watchdog timer interrupt request can be programmed as maskable or non-maskable. 
See Chapter 15, “Programmable Interrupt Controller”, for details on selecting a maskable 
or non-maskable watchdog timer interrupt request.

If a second time-out event occurs and software has not cleared the IRQ_FLG bit asserted 
by the first time-out, the watchdog timer causes a system reset instead of an interrupt 
request, regardless of the setting of the WRST_ENB bit.

19.4.1.3 System Reset Generation

To configure the watchdog timer for system reset generation, software must first clear the 
ENB bit and then set the WRST_ENB bit. Once the watchdog timer times out, the system 
reset is generated.

19.4.1.4 Time-Out Duration

The Exponent Select (EXP_SEL) bit field in the Watchdog Timer Control (WDTMRCTL) 
register indicates the exponent value used to calculate the time-out duration in the following 
formula:

Duration = 2Exponent / (33 MHz crystal frequency)

where:

frequency is based on a 33-MHz incoming clock, as shown in Table 19-2. 

Note that the ENB bit must be cleared to 0 before the EXP_SEL field can be written.

Notes:
Only the least significant bit set in the EXP_SEL field determines the time-out duration. For example,
setting the field to F0h results in an exponent of 27.

Table 19-2 Watchdog Timer Time-Out Duration

EXP_SEL Field Exponent 33.000 MHz 33.333 MHz 

00h invalid value infinity infinity

01h 14 496 ms 492 ms

02h 24 508 ms 503 ms

04h 25 1.02 s 1.01 s

08h 26 2.03 s 2.01 s

10h 27 4.07 s 4.03 s

20h 28 8.13 s 8.05 s

40h 29 16.27 s 16.11 s

80h 30 32.54 s 32.21 s
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19.4.2 Interrupts
An interrupt is asserted upon time-out if the watchdog timer interrupt condition is configured 
accordingly in the Watchdog Timer Control (WDTMRCTL) register. 

■ If the watchdog timer is configured for interrupts, the IRQ_FLG bit in the Watchdog Timer 
Control (WDTMRCTL) register is set when the interrupt is generated. 

■ The interrupt service routine should examine this flag to determine if the interrupt was 
generated by the watchdog timer.

■ If the IRQ_FLG is set, the interrupt service routine should clear the flag by writing the 
correct keyed sequence to the Watchdog Timer Control (WDTMRCTL) register and 
follow by writing a 1 to this bit. 

■ If the IRQ_FLG bit is not cleared when a second watchdog timer time-out occurs, a WDT 
system reset is generated, rather than a second interrupt event.

Note: The IRQ_FLG bit is not cleared on a read. The bit must be cleared by writing the 
correct keyed sequence to the watchdog timer before writing a 1 to the corresponding bit 
position. 

19.4.3 AMDebug™ Technology Interface
The AMDebug technology interface allows emulator code to run without having to deal with 
possible watchdog timer time-outs. It also allows emulators to be used more effectively with 
applications that enable the watchdog timer. Entering AMDebug technology mode stops 
the watchdog timer counter from counting.

19.4.4 Software Considerations
If a watchdog timer time-out occurs when the timer is programmed with the WRST_ENB 
bit cleared, an interrupt is generated, the time-out counter is reset, and the IRQ_FLG bit in 
the Watchdog Timer Control (WDTMRCTL) register is set. If the IRQ_FLG bit is not cleared 
by software before a second watchdog timer time-out, a system reset is generated, 
regardless of the setting of the WRST_ENB bit. The IRQ_FLG bit can be cleared, but not 
set, by software.

Generation of the internal interrupt signal on the first watchdog timer time-out can be useful 
in systems where it may be possible to recover from spurious pulses, bad data, or incorrect 
code. This is especially true for the case where potential data recovery is important. Such 
systems should have the interrupt handler routine to ensure that it has not been corrupted 
by errant code. The watchdog timer must function in all cases where the software has failed 
to respond appropriately. The ÉlanSC520 microcontroller’s watchdog timer has 
incorporated several features to ensure that this is the case.

■ Once software enables the watchdog timer, the registers become read-only, except for 
the ENB and IRQ_FLG bits. This allows boot or monitor code to disable the watchdog 
timer until the system has been configured.

■ All writes to the watchdog timer must be preceded by writes of a keyed sequence. 
Detection of the keyed sequence allows a single write to the Watchdog Timer Control 
(WDTMRCTL) register.

■ The watchdog timer time-out counter can only be reset by setting the ENB bit or by 
writing a special clear key sequence to the Watchdog Timer Control (WDTMRCTL) 
register address.

These features guarantee that the watchdog timer is not affected by errant code.
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Although both the Watchdog Timer Count High and Low registers can be read from a single 
32-bit CPU instruction, 32-bit accesses are split into two 16-bit accesses. If it is necessary 
to read an accurate 32-bit value from the Watchdog Timer Counter, see Chapter 17, 
“General-Purpose Timers”, for suggestions on dealing with this issue.

19.5 INITIALIZATION
At power-on reset, the watchdog timer is disabled. Software must enable it by setting the 
ENB in the Watchdog Timer Control (WDTMRCTL) register. The watchdog timer time-out 
count defaults to the maximum value. The WRST_ENB bit is set for generation of system 
reset upon time-out. See “Configuration Information” on page 19-3.

Note that the processor does not resample external pins during a watchdog timer-generated 
system reset. This means that the System Board Information (SYSINFO) register (MMCR 
offset D70h), BOOTCS data bus width, and BOOTCS data bus select parameters do not 
change when a watchdog timer system reset occurs. All other activities are identical to 
those of a normal system reset.
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CHAPTER
20 R
EAL-TIME CLOCK
20.1 OVERVIEW
The real-time clock (RTC) included on the ÉlanSC520 microcontroller is compatible with 
the MC146818A device used in PC/AT systems. The RTC consists of a time-of-day clock 
with alarm and a 100-year calendar. The clock/calendar has a programmable periodic 
interrupt and 114 bytes of static user RAM. The clock/calendar can be represented in either 
binary or binary-coded decimal (BCD). 

The RTC includes the following features:

■ PC/AT-compatible

■ Counts seconds, minutes, and hours of the day

■ Counts day of the week, date, month, and year

■ Binary or BCD representation of time, calendar, and alarm

■ 12- or 24-hour clock, with AM and PM indicator in 12-hour mode

■ Daylight saving time option

■ Automatic end-of-month recognition

■ Automatic leap year compensation

■ 14 bytes of clock and control registers

■ 114 bytes of general-purpose RAM

■ Three interrupt sources separately maskable with corresponding status bits

■ Time-of-day alarm is programmable to occur from once-per-second to once-per-day

■ Periodic interrupts can be programmed to occur at rates from 122 ms to 500 ms

■ Update-ended interrupt provides cycle status

■ Internal RTC reset signal can perform a reset on power-up

The RTC has its own power pin and reset separate from the rest of the other core supplies. 
When the chip is powered off, the RTC can remain powered up and in full functional mode, 
maintaining time, calendar, and user RAM data.

The RTC includes registers for time, calendar, and alarm data and four control/status 
registers. The RTC Status D (RTCSTAD) register (RTC index 0Dh) has a status bit 
(RTC_VRT) that indicates the validity of the contents of the RAM, time registers and the 
calendar. The RTC_VRT bit is set based on the assertion of the internal RTC reset.

The RTC interrupt request is connected internally to the programmable interrupt controller 
block.

20.2 BLOCK DIAGRAM
Figure 20-1 shows a block diagram of the real-time clock. 
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Figure 20-2 on page 20-3 shows a block diagram of the RTC voltage monitor. The 
ÉlanSC520 microcontroller’s RTC voltage monitor is designed to signal the RTC core when 
the backup battery is not installed or is low. Additionally, the voltage monitor circuit signals 
the RTC core when the rest of the system is being powered down. 

As shown in Figure 20-2, the voltage monitor includes a bandgap voltage generator for 
precision reference voltage and a high-gain amplifier for adjusting bandgap voltage to “low-
battery” trip voltage. In addition to the backup battery monitor function, the voltage monitor 
also provides a power-down signal to the RTC. This signal is used to isolate the RTC core 
from the rest of the integrated peripherals. A timing diagram for this sequence is shown in 
the Élan™SC520 Microcontroller Data Sheet, order #22003.

Figure 20-1 Real-Time Clock Block Diagram
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Figure 20-2 RTC Voltage Monitor Block Diagram

20.3 SYSTEM DESIGN

20.3.1 Backup Battery Considerations
The behavior of the RTC when the primary power supply is turned off depends on whether 
or not an external backup battery is included in the system design. The RTC can be 
connected to the main power plane if a backup battery is not needed in the system.

20.3.1.1 System with an External Backup Battery

If an external RTC backup battery is connected to the ÉlanSC520 microcontroller’s 
VCC_RTC pin, the real-time clock (RTC) remains operational even if all the other power 
supplies are turned off. 

An implementation using a backup battery is shown in Figure 20-3. The primary power 
source for VCC_RTC is the main power plane (VCC). D1 should be chosen so that the 
forward voltage drop is small, less than 0.25 V. D1 also prevents the backup battery from 
powering up the VCC power plane when the main supply is turned off. 

The backup battery voltage must not exceed 3.3 V (affects the BBATSEN and VCC_RTC 
pins); higher voltages may damage the ÉlanSC520 microcontroller.

The RC network composed of R1 and C2 provides a time delay for the internal circuit power-
up sequence. C1 is for high-frequency filtering purposes.

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for detailed component 
specifications.
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Figure 20-3 Circuit with Backup Battery

Software can read the RTC_VRT bit in the RTC Status D (RTCSTAD) register (RTC index 
0Dh) at system boot time to determine whether or not the RTC time, date, and user RAM 
are still valid since the last boot. This status bit is set based on the assertion of an internal 
RTC-only reset signal. In systems with external backup batteries (as shown in Figure 20-3), 
the RTC is reset when the main power supply is turned off and the backup battery is either 
low or is not installed.

In these systems, the VCC_RTC pin is a dedicated power supply pin for the 32.768-kHz 
oscillator and the RTC. 

■ When the primary system power supply is turned on, the main power plane (VCC) drives 
the VCC_RTC pin through an external diode. 

■ When the primary power supply is turned off or nonfunctional, VCC_RTC is driven by 
the backup battery through a second external diode.

■ The on-chip voltage monitor circuit monitors the voltage level of the backup battery 
through the BBATSEN pin each time the PWRGOOD signal is asserted.

■ If the backup battery is sampled below 2.0 V, the RTC logic is reset. The read-only 
RTC_VRT bit is cleared and latched in this state until the bit is read. After this bit is 
initially read, it always reads back a value of 1 for all subsequent reads prior to an RTC 
reset.

■ When the main system power supply is off and the backup battery is initially installed, 
the external RC circuit consisting of R1 and C2 causes a slow rising edge on the 
BBATSEN input, and the RTC is reset.

20.3.1.2 System without an External Backup Battery 

For the system that is not using an external RTC backup battery, Figure 20-4 shows how 
the circuit should be designed. It uses the same RC that is needed by the battery system, 
but it is now connected to VCC_RTC.

VCC_ANLG is selected as the power plane for VCC_RTC because it is a well-filtered power 
plane that is well below the VCC_RTC maximum of 3.3 V.

BATT

VCC_RTC

VCC_RTC

BBATSEN

C1

D1D2

R1

C2

(3.3 V max) 

10 W
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In this configuration, the RTC is reset after power-up, but is not reset by subsequent 
PWRGOOD assertions.

■ The RTC is reset after a power-up—When power has been removed from the RTC, the 
contents are no longer valid. In this case, the RTC is reset. 

■ RTC is not reset—When a reset switch tied to PWRGOOD is pressed (VCC remains 
High) and PWRGOOD reasserts with BBATSEN High, the RTC is not reset. In this case, 
power did not go away, the RTC contents are still valid, and no RTC reset occurs.

Detailed component specifications for the resistor and capacitor shown in Figure 20-4 can 
be found in the Élan™SC520 Microcontroller Data Sheet, order #22003. 

Figure 20-4 Circuit without Backup Battery

20.3.2 Selecting and Interfacing a 32.768-kHz Crystal
See the Élan™SC520 Microcontroller Data Sheet, order #22003, for information and 
detailed specifications for selecting a 32.768-kHz crystal.

20.3.3 Using an External RTC
When the ÉlanSC520 microcontroller comes out of reset, the internal RTC is enabled. If 
the system application requires the use of an external RTC, the internal RTC should be 
disabled during the boot process and initialization to prevent potential conflicts. 

The Address Decode Control (ADDDECCTL) register (MMCR offset 80h) includes a control 
bit for selecting between the internal RTC and an external RTC. Setting the RTC_DIS bit 
to 1 disables the internal RTC by disabling the internal I/O decode for addresses 0070h 
and 0071h. When the RTC_DIS bit is set, accesses to these addresses generate external 
bus cycles, allowing the use of an external RTC module. 

Disabling the internal RTC does not automatically disable the interrupt connection to the 
programmable interrupt controller (PIC). If PC/AT-compatibility is required, the designer 
should connect the external RTC’s interrupt request to one of the ÉlanSC520 

VCC_ANLG

C1

R1

C2 Élan™SC520 Microcontroller

VCC_RTC

BBATSEN
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microcontroller’s programmable interrupt inputs and program the interrupt steering logic to 
route the request to interrupt priority P8.

Disabling the internal RTC does not disable or reset the core in any way.

See “Disabling Internal Peripherals” on page 3-21 for more information.

20.4 REGISTERS
The RTC is controlled by the configuration registers listed in Table 20-1, Table 20-2, and 
Table 20-3.

Table 20-1 Real-Time Clock Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function 

Address Decode Control ADDDECCTL 80h RTC disable

RTC Interrupt Mapping RTCMAP D43h RTC interrupt mapping

Table 20-2 Real-Time Clock Registers—Direct-Mapped

Register Mnemonic I/O Address Function 

RTC/CMOS RAM Index RTCIDX 0070h RTC index to read or write

RTC/CMOS RAM Data Port RTCDATA 0071h Data to be read or written

Table 20-3 Real-Time Clock Registers—RTC Indexed

Register Mnemonic I/O Address Function

RTC Current Second RTCCURSEC 70h/71h
Index 00h

Seconds

RTC Alarm Second RTCALMSEC 70h/71h
Index 01h

Seconds alarm

RTC Current Minute RTCCURMIN 70h/71h
Index 02h

Minutes

RTC Alarm Minute RTCALMMIN 70h/71h
Index 03h

Minutes alarm

RTC Current Hour RTCCURHR 70h/71h
Index 04h

Hours, 12- and 24-hour mode

RTC Alarm Hour RTCALMHR 70h/71h
Index 05h

Hours alarm, 12- and 24-hour mode

RTC Current Day of the Week RTCCURDOW 70h/71h
Index 06h

Day of the week

RTC Current Day of the 
Month

RTCCURDOM 70h/71h
Index 07h

Day of the month

RTC Current Month RTCCURMON 70h/71h
Index 08h

Month

RTC Current Year RTCCURYR 70h/71h
Index 09h

Year
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20.5 OPERATION
Programs can retrieve time and calendar information from the RTC by reading the 
appropriate RTC index registers. Programs can also change the time, calendar, and alarm 
information in the RTC by writing to these registers.

The RTC executes an update cycle once per second, assuming that the OSC_CTL bit field 
in the RTC Control A (RTCCTLA) register (RTC index 0Ah) has been set to 010b and that 
the SET bit in RTC Control B (RTCCTLB) register has been cleared. When the SET bit is 
1, all updates are disabled, and the program can initialize the time and date registers.

With a 32.768-kHz time base, the update cycle takes 1984 ms. If a program reads these 
RAM locations before the update is complete, the output is undefined. The Update-In-
Progress (UIP) status bit is set in the RTC Control A (RTCCTLA) register during this time. 

There are three ways to handle nonavailability during an RTC update.

■ Use the update-ended interrupt—If enabled, this interrupt occurs after every update 
cycle. This means that over 998 ms are available to read the time and date registers. 

■ Use the Update-in-Progress bit (UIP) in RTC Control A (RTCCTLA) register—The UIP 
bit changes once per second. The update cycle begins 244 ms after the UIP bit goes 
high. This means that, if a 0 is read on the UIP bit, there are at least 244 ms before the 
time or calendar data will be changed. If a 1 is read in the UIP bit, the time or calendar 
data may not be valid. Note that the time allocated to read time or calendar data should 
not exceed 244 ms.

■ Use a periodic interrupt to determine if an update cycle is occurring.

Note that, to ensure correct data, the time should not be set on the last day of the month 
within two seconds of the rollover to the next day.

20.5.1 Configuration Information

20.5.1.1 Configuring the Hour Format

The 12/24 Hour Mode Select (HOUR_MODE_SEL) bit in the RTC Control B (RTCCTLB) 
register (RTC index 0Bh) establishes whether the hour locations represent 1-to-12 or 0-to-
23. The HOUR_MODE_SEL bit can not be changed without re-initializing the RTC Current 
Hour (RTCCURHR) register (RTC index 04h) and the RTC Alarm Hour (RTCALMHR) 

RTC Control A RTCCTLA 70h/71h
Index 0Ah

Update status, divider chain control, and 
periodic interrupt rate selection

RTC Control B RTCCTLB 70h/71h
Index 0Bh

Update override (SET); periodic interrupt, alarm 
interrupt, and update-ended interrupt enables; 
date mode, 24/12 hour control, and daylight 
saving enable

RTC Status C RTCSTAC 70h/71h
Index 0Ch

Interrupt request, periodic interrupt, alarm 
interrupt, and update-ended interrupt flags

RTC Status D RTCSTAD 70h/71h
Index 0Dh

RTC power status (BBATSEN)

General-Purpose CMOS 
RAM (114 bytes)

RTCCMOS 70h/71h
Index 0E–
7Fh

General-purpose CMOS RAM bytes

Table 20-3 Real-Time Clock Registers—RTC Indexed (Continued)

Register Mnemonic I/O Address Function
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register (RTC index 05h). When the 12-hour format is selected, the AM_PM bit and 
ALM_AM_PM bit in these two respective registers represent PM when they are a 1.

20.5.1.2 Programming the Date and Time

A program can initialize the time, calendar, and alarm by writing to appropriate RAM location. 

■ Before initializing the internal registers, set the SET bit in the RTC Control B (RTCCTLB) 
register (RTC index 0Bh) to prevent time and calendar updates from occurring. 

■ Initialize the ten locations in the selected format (binary or BCD).

■ Specify the format using the data mode (DATE_MODE) bit in the RTC Control B 
(RTCCTLB) register. All time, calendar, and alarm registers must use the same data 
mode, either binary or BCD.

■ Clear the SET bit to allow updates.

20.5.1.3 Generating Periodic Interrupts

Different periodic interrupt rates can be specified by programming the RATE_SEL bit field 
in the RTC Control A (RTCCTLA) register, as shown in Table 20-4.

The periodic interrupt is enabled by the PER_INT_ENB bit field in the RTC Control B 
(RTCCTLB) register. The PER_INT_FLG bit in the RTC Status C (RTCSTAC) register (RTC 
index 0Ch) provides latched status for the RTC periodic interrupt event.

Note: The first interrupt may not occur at the programmed rate due to synchronization.

Table 20-4 Using RATE_SEL to Specify a Periodic Interrupt Rate

Periodic Interrupt Interval Frequency RATE_SEL3–0

None None 0 0 0 0

3.90625 ms 256 Hz 0 0 0 1

7.8125 ms 128 Hz 0 0 1 0

122.070 ms 8 kHz 0 0 1 1

244.14 ms 4 kHz 0 1 0 0

488.28 ms 2 kHz 0 1 0 1

976.562 ms 1 kHz 0 1 1 0

1.953125 ms 512 Hz 0 1 1 1

3.90625 ms 256 Hz 1 0 0 0

7.8125 ms 128 Hz 1 0 0 1

15.625 ms 64 Hz 1 0 1 0

31.25 ms 32 Hz 1 0 1 1

62.5 ms 16 Hz 1 1 0 0

125 ms 8 Hz 1 1 0 1

250 ms 4 Hz 1 1 1 0

500 ms 2 Hz 1 1 1 1
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20.5.1.4 Using the Alarm Function

The three alarm bytes can be used in two different ways.

■ If the Alarm Interrupt Enable (ALM_INT_ENB) bit is set in the RTC Control B (RTCCTLB) 
register, the alarm interrupt occurs at the time specified in the alarm registers.

■ If a “don’t care” state (any hexadecimal byte from C0–FFh) is written to one or more of 
the three alarm registers, the alarm interrupt occurs from once per second to once per 
hour.

– Setting the hour, minute, and second alarm registers with a value from C0–FFh causes 
an RTC alarm event to be generated once per second. 

– Setting the hours, and minutes alarm registers with a value from C0–FFh causes an 
RTC alarm event to be generated once per minute.

– Setting the hours alarm registers with a value from C0–FFh causes an RTC alarm 
event to be generated once per hour.

20.5.1.5 Handling Year 2000 Issues

With appropriate software support, the ÉlanSC520 microcontroller is Y2K-compliant. The 
Y2K problem is handled by storing the century part of the year in the byte at 32h in the 
CMOS memory. The operating system software must handle rollover of the RTC Current 
Year (RTCCURYR) register (RTC index 09h).

To be Y2K-compliant, the software that sets the year must accept four-digit years. The 
routine that sets the RTC stores the lower portion of the year value in the RTC Current Year 
(RTCCURYR) register and the upper portion in the century CMOS memory location. 

This operation is handled properly by PC-style BIOS software that supports the ÉlanSC520 
microcontroller. For information on what BIOS products are supported, see the AMD web 
site.

For embedded systems, a simple set of software functions supports four-digit years with 
the RTC.

20.5.2 Clocking Considerations
The 32KXTAL2 and 32KXTAL1 pins are used to connect the external 32.768-kHz crystal 
or oscillator to the ÉlanSC520 microcontroller. This clock source is then used to clock the 
internal RTC.

For other details, see Chapter 5, “Clock Generation and Control”.

20.5.3 Interrupts
The RTC provides three different interrupt sources. All three interrupts are connected 
internally to the programmable interrupt controller and can be mapped to any interrupt 
channel. The three interrupt sources are:

■ Periodic Interrupt—Can be set at rates from 122 ms to 500 ms.

■ Alarm Interrupt—Can be set at rates from once-per-second to once-per-day.

■ Update-Ended Interrupt—Provides update cycle status.

These three interrupts are enabled in RTC Control B (RTCCTLB) register. The RTC interrupt 
request is only active from low to high.

Before these interrupts can be used, they must be mapped to the programmable interrupt 
controller. For more information, see Table 15-4 on page 15-12.
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20.5.4 Software Considerations
20.5.4.1 Initializing the RTC Divider Chain

An RTC reset event does not initialize either the divider chain or the Internal Oscillator 
Control (OSC_CTL) bit field in the RTC Control A (RTCCTLA) register (RTC index 0Ah). 
The internal RTC divider chain can be reset by writing a value of 110b or 111b to the 
OSC_CTL field. Writing either of these values resets the entire divider chain and disables 
the timebase updates. Resetting the divider chain is not required as part of the RTC 
initialization, but can be used to provide an accurate start time after initializing the timebase. 
To enable the divider chain and set the proper divisor, a value of 010b should be written to 
the OSC_CTL field. 

20.5.4.2 Accessing the CMOS Memory

Access to CMOS RAM can be performed without any regard for RTC operations. However, 
if the RTC is disabled, the CMOS RAM will be unavailable, but not lost, unless both main 
and backup power to the RTC core is removed. Re-enabling the RTC will allow access to 
the CMOS RAM with its contents intact. 

To access CMOS memory, first write the location of the desired byte to the RTC/CMOS 
RAM Index (RTCIDX) register (Port 0070h), then read the contents of that location from 
the RTC/CMOS RAM Data Port (RTCDATA) register (Port 0071h), or write the desired data 
byte to this data port.

20.5.4.3 Legacy NMI Enable Bit Moved

In PC/AT-compatible systems, bit 7 of the write-only RTC/CMOS RAM Index (RTCIDX) 
register (Port 0070h) is used to enable non-maskable interrupts (NMIs). On the ÉlanSC520 
microcontroller, this NMI_ENB bit has been moved to bit 6 of the Interrupt Control (PICICR) 
register (MMCR offset D00h). Legacy software that needs to explicitly enable or disable 
interrupts should be modified accordingly. However, due to the difference in nature of the 
use of NMIs in legacy systems (memory parity errors and channel check) and in the 
ÉlanSC520 microcontroller (mappable to any interrupt source), compatibility issues are 
minimal. Writes to bit 7 of the RTC/CMOS RAM Index (RTCIDX) register (Port 0070h) on 
the ÉlanSC520 microcontroller have no effect and do not affect the index of the data 
accessed at the RTC/CMOS RAM Data Port (RTCDATA) register (Port 0071h).

For example:

-mov-al, 85h
-out-70h, al

and

-mov-al, 05h
-out-70h, al

Both sequences result in the contents of the RTC Alarm Hour (RTCALMHR) register (RTC 
index 05h) being accessed at the RTC/CMOS RAM Data Port (RTCDATA) register.

20.6 INITIALIZATION
The real-time clock is enabled at system reset.

1. Before initializing the internal registers, disable the time and calendar updates via the 
SET bit in RTC Control B (RTCCTLB) register (RTC index 0Bh).

2. Reset the RTC divider chain by writing a value of 11xb to the OSC_CTL field in the RTC 
Control A (RTCCTLA) register (RTC index 0Ah). 
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3. Initialize the ten time, calendar, and alarm registers in either binary or BCD data format.

4. Specify the format in the data mode via the DATE_MODE bit in the RTC Control B 
(RTCCTLB) register. All ten time, calendar, and alarm registers must use the same data 
mode, either binary or BCD.

5. Enable updates via the SET bit in RTC Control B (RTCCTLB) register.

6. Enable the divider chain by programming 010b in the OSC_CTL field. Time and update 
cycles will begin 500 ms after this write.

Steps 2 and 6 are necessary only if precision setting is required. Otherwise, the OSC_CTL 
field can be written to 010b in step 2, and step 6 can be skipped. The first update cycle, 
however, will occur at an undetermined time after updates are enabled.

When initialized, the RTC makes all updates in whatever data mode has been programmed. 
To change the data mode, the ten data bytes must be re-initialized.

20.6.1 RTC Reset
The RTC is not automatically reset by a system reset. There are three conditions that trigger 
an RTC reset:

■ BBATSEN drops below 2.0 V (sampled when PWRGOOD asserts)—During operation 
from the main power supply, the backup battery voltage might drop below the trip voltage 
(2.0 V). The RTC is not reset until a PWRGOOD assertion occurs.

■ Power is applied to VCC_RTC (at backup battery installation)—When the backup battery 
is plugged in, the RTC is immediately reset. 

■ No battery during power-up (sampled after PWRGOOD asserts)—If the system does 
not contain a backup battery and the BBATSEN line potential is below 2.0 V, the RTC is 
reset when PWRGOOD asserts.

Note that this RTC reset may or may not occur when a master power-on reset occurs, 
depending on the state of BBATSEN.

If the BBATSEN signal drops below the 2.0-V reference and PWRGOOD is Low, an internal 
RTC reset signal is generated to notify the user via the RTC_VRT bit (RTC index 0Dh) that 
the RTC contents are no longer valid.
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CHAPTER
21 U
ART SERIAL PORTS
21.1 OVERVIEW
The ÉlanSC520 microcontroller includes two industry-standard 16550-compatible UARTs, 
both capable of running all existing 16450 and 16550 software.

The UARTs power up in 16450-compatible UART mode (also called character mode or 
non-FIFO mode). Each UART can be switched between the 16550-compatible mode (also 
called FIFO mode) and 16450-compatible mode under software control. In 16550-
compatible mode, the receiver and the transmitter are each buffered with 16-byte FIFOs to 
offload the CPU from repetitive service routines.

Features:

■ Full UART pinout: SOUT, SIN, CTS, RTS, DSR, DTR, RIN, and DCD for each UART

■ In 16550-compatible mode, the transmitter and receiver are each buffered with 16-byte 
FIFOs

■ Full-duplex (data can be sent in both directions simultaneously)

■ DMA operation

■ Internal baud-rate clock of 18.432 MHz or 1.8432 MHz

■ Baud rates from DC to 1.152 Mbaud 

– Baud-rate generator provides input clock divisor from 1 to (216–1) to create 16x clock.

■ Programmable serial interface:

– 5-, 6-, 7-, and 8-bit character sizes

– Even, odd, or no-parity bit generation and detection

– 1, 1½, or 2 stop bits 

– Break generation and detection

– Each UART’s address decode can be individually disabled, allowing external devices 
to be used in their place.

■ Internal Diagnostics:

– False start bit detection

– Complete status reporting capabilities

– Break, parity error, overrun error, and framing error detection

– Loopback controls for communications link fault isolation

21.2 BLOCK DIAGRAM
Figure 21-1 shows a block diagram of a single UART. The ÉlanSC520 microcontroller 
includes two UARTS that function identically to each other. 
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Figure 21-1 UART Block Diagram

21.3 SYSTEM DESIGN
UART 2 shares signals with the PIO31–PIO28 signals, as shown in Table 21-1. When 
enabled, the multiplexed signals shown in Table 21-1 either disable or alter any other 
function that uses the same pin.

Both UARTs can work with full modem control signals (SOUTx, SINx, CTSx, RTSx, DSRx, 
DTRx, RINx, and DCDx) or with two wires only (SOUTx and SINx). If only two wires are 
used, the unused input port pins can be left unconnected. (There are internal pullup resistors 
on these signals.)

Table 21-1 UART Signals Shared with Other Interfaces

PIO
(Default) 
Function

Interface 
Function Control Bit Register

PIO31 RIN2 PIO31_FNC PIO31–PIO16 Pin Function Select 
(PIOPFS31_16) register (MMCR offset C22h)PIO30 DCD2 PIO30_FNC

PIO29 DSR2 PIO29_FNC

PIO28 CTS2 PIO28_FNC

Transmitter

Interrupt

Configuration

rx_dma_req

uart_irq

tx_dma_req

SOUTx

SINx

clk_uart 

RTSx
CTSx

DSRx

RINx

DTRx

DCDx

DMA Control

Prescaler

(18.432 MHz)

18.432 MHz
1.8432 MHz From

clocks

To/from DMA

To PIC

Registers

out2

GP Bus

 gptc

tx_dack

Élan™SC520 Microcontroller

Modem

Control

Baud 
Generator

TX Hold Register
TX FIFO

TX shift register

Receiver

RX FIFO
RX Buffer Register

RX shift register

UART

rx_dack
21-2 Élan™SC520 Microcontroller User’s Manual



UART Serial Ports
Each UART supports loopback mode. In this mode, the UART’s transmitter output is 
internally connected with the receiver input. It is useful for testing the operation of a local 
UART channel without affecting the states of the UART output pins and independently of 
the state of the UART input pins.

When in loopback mode, RTS and DTR are internally connected to CTS and DSR, 
respectively. In addition, the DTR and RTS signals are forced inactive. Therefore, hardware 
flow control is inactive.

UART interrupt requests are disabled while in loopback mode.

Table 21-2 lists the connection of DTE to DTE.

21.4 REGISTERS
The UARTs are controlled by the memory-mapped registers listed in Table 21-3 and the 
direct-mapped registers listed in Table 21-4.

Table 21-2 Connection of DTE to DTE

DTE DTE

SOUT SIN

SIN SOUT

CTS RTS

RTS CTS

DSR DTR

DTR DSR

RIN RIN

DCD DCD

Table 21-3 UART Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

Address Decode Control ADDDECCTL 80h UART 1 and UART 2 disables

PIO31–PIO16 Pin Function 
Select

PIOPFS31_16 C22h PIO or interface function select: RIN2, DCD2, 
DSR2, CTS2

Clock Select CLKSEL C26h CLKTIMER[CLKTEST] pin enable, CLKTEST 
output select options (18.432 MHz or 1.8432 
MHz UART), CLKTIMER or CLKTEST select

UART 1 General Control
UART 2 General Control

UART1CTL
UART2CTL

CC0h
CC4h

Clock source; receive TC interrupt and transmit 
TC interrupt enables

UART 1 General Status
UART 2 General Status

UART1STA
UART2STA

CC1h
CC5h

Receive TC and transmit TC interrupts status

UART 1 FIFO Control 
Shadow
UART 2 FIFO Control 
Shadow

UART1FCRSHAD
UART2FCRSHAD

CC2h
CC6h

Information written to the direct-mapped UART 
x FIFO Control (UARTxFCR) register

UART 1 Interrupt Mapping UART1MAP D28h UART 1 interrupt mapping
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UART 2 Interrupt Mapping UART2MAP D29h UART 2 interrupt mapping

Table 21-4 UART Registers—Direct-Mapped

Register Mnemonic I/O Address Function

UART 1 Transmit Holding
UART 2 Transmit Holding

UART1THR
UART2THR

02F8h
03F8h

Byte to be transmitted

UART 1 Receive Buffer
UART 2 Receive Buffer

UART1RBR
UART2RBR

02F8h
03F8h

Received byte

UART 1 Baud Clock Divisor 
Latch LSB
UART 2 Baud Clock Divisor 
Latch LSB

UART1BCDL
UART2BCDL

02F8h
03F8h

Least significant byte of a 16-bit baud-rate clock 
divisor used to generate the 16x baud clock

UART 1 Baud Clock Divisor 
Latch MSB
UART 2 Baud Clock Divisor 
Latch MSB

UART1BCDH
UART2BCDH

02F9h
03F9h

Most significant byte of a 16-bit baud-rate clock 
divisor used to generate the 16x baud clock

UART 1 Interrupt Enable
UART 2 Interrupt Enable

UART1INTENB
UART2INTENB

02F9h
03F9h

Interrupt enables: modem status, receiver line 
status, transmit holding empty, received data 
available, and time-out

UART 1 Interrupt ID
UART 2 Interrupt ID

UART1INTID
UART2INTID

02FAh
03FAh

FIFO mode indication, interrupt identification, 
interrupt pending status

UART 1 FIFO Control
UART 2 FIFO Control

UART1FCR
UART2FCR

02FAh
03FAh

Trigger level for received data available 
interrupt, DMA mode, transmitter FIFO and 
receiver FIFO clear, FIFO enable for 16550-
compatible mode

UART 1 Line Control
UART 2 Line Control

UART1LCR
UART2LCR

02FBh
03FBh

Divisor latch access (DLAB), break, stick parity, 
parity, asynchronous data parity, stop, transmit/
receive word length

UART 1 Modem Control
UART 2 Modem Control

UART1MCR
UART2MCR

02FCh
03FCh

Loopback diagnostic mode, UARTx interrupt 
enable, RTSx and DTRx control

UART 1 Line Status
UART 2 Line Status

UART1LSR
UART2LSR

02FDh
03FDh

FIFO error, transmitter empty indicator, 
Transmitter Holding register or transmit FIFO 
empty, break indicator, framing error, parity 
error, overrun error, data ready

UART 1 Modem Status
UART 2 Modem Status

UART1MSR
UART2MSR

02FEh
033FEh

Real-time and latched status bits for DCDx, 
RINx, DSRx and CTSx

UART 1 Scratch Pad
UART 2 Scratch Pad

UART1SCRATCH
UART2SCRATCH

02FFh
03FFh

Temporary data storage

Table 21-3 UART Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR 
Offset 
Address Function
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21.5 OPERATION
Each UART performs: 

■ Serial-to-parallel conversion on data characters received from a modem or a peripheral 
device 

■ Parallel-to-serial conversion on those data characters written by the CPU or DMA 
controller 

During communication, data is transmitted and received in frames. The frame format, as 
well as the baud rate, must be the same on the transmitter and receiver. The frame format 
is determined by the settings in the UART x Line Control (UARTxLCR) register. Each frame 
begins with a start bit (Low) and ends with one, one and a half, or two stop bits (High). After 
the start bit is transmitted/received, the data bits, which can be programmed to a length of 
5, 6, 7 or 8 bits, are transmitted/received serially with least significant bit first.The last data 
bit may be followed by an optional parity bit that is enabled using the PENB bit in the UART 
x Line Control (UARTxLCR) register. The line is always held High between frames (idle 
state).

■ Transmission of a frame is initiated when a byte is written to the UART x Transmit Holding 
(UARTxTHR) register.

■ Reception of a frame is initiated when a start bit is received (the SIN input is driven Low 
for one baud-rate clock period).

Figure 21-2 shows the frame configurations supported and the bit stream sequence for a 
UART on the ÉlanSC520 microcontroller. Figure 21-3 shows an actual UART frame during 
transmission with configuration of even parity, one stop bit, and eight data bits. 

Figure 21-2 UART Frame Configuration

Figure 21-3 UART Frame Transmission

Each UART includes a programmable baud-rate generator that is capable of dividing the 
timing reference clock input by divisors of 1 to ( ), and producing a 16 x clock for driving 
the internal transmitter/receiver logic.
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For each UART, six handshaking signals are provided:

■ DTRx (Data Terminal Ready) output—When the signal is Low, it informs the modem set 
that the UART is ready to establish a communications link. The DTRx output signal can 
be asserted and deasserted by the UART x Modem Control (UARTxMCR) register. 
Loopback mode operation holds DTRx in its inactive state. 

■ DSRx (Data Set Ready) input—When the signal is Low, it indicates that the modem is 
ready to establish the communications link with the UART. The state of the DSRx pin 
can be tested in the UART x Modem Status (UARTxMSR) register. The DDSR status 
bit provided in the UART x Modem Status (UARTxMSR) register indicates if the DSRx 
signal has changed state since the register was last read. An interrupt can also be 
generated upon DSRx change.

■ RTSx (Request-to-Send) output—When the signal is Low, it informs the modem that the 
UART is ready to exchange data. The RTSx output signal can be asserted and 
deasserted by the UART x Modem Control (UARTxMCR) register. Loopback mode 
operation holds RTSx in its inactive state. 

■ CTSx (Clear-to-Send) input—When the signal is Low, it indicates that the modem is 
ready to exchange data. The state of the CTSx pin can be tested in the UART x Modem 
Status (UARTxMSR) register. The DCTS status bit in the UART x Modem Status 
(UARTxMSR) register indicates if the CTSx signal has changed state since the register 
was last read. An interrupt can also be generated upon CTSx change.

■ DCDx (Data Carrier Detect) input—When the signal is Low, it indicates that the data 
carrier has been detected by the modem and that contact between it and the other 
modem is established. The state of the DCDx pin can be tested in the UART x Modem 
Status (UARTxMSR) register. The DDCD status bit in the UART x Modem Status 
(UARTxMSR) register indicates if the DCDx signal has changed state since the register 
was last read. An interrupt can also be generated upon DCDx change.

■ RINx (Ring Indicator) input—When the signal is Low, it indicates that a telephone ringing 
signal has been received by the modem. The state of the RINx pin can be tested in the 
UART x Modem Status (UARTxMSR) register. The TERI status bit is also provided in 
the UART x Modem Status (UARTxMSR) register indicates if the RINx signal has 
changed state from asserted to deasserted since the register was last read. An interrupt 
can also be generated upon RINx deassertion.

21.5.1 Data Transmission

21.5.1.1 16450-Compatible UART Mode

In 16450-compatible (non-FIFO or character) mode:

1. Data written to the UART x Transmit Holding (UARTxTHR) register is subsequently 
latched into the internal transmitter shift register when the transmitter shift register is 
empty. 

2. Once data has been latched into the internal transmitter shift register, the Transmit 
Holding Register Empty (THRE) bit in the UART x Line Status (UARTxLSR) register 
goes to 1 (optionally generating a UART interrupt). 

3. The application is once again permitted to write data to the UART x Transmit Holding 
(UARTxTHR) register. 

Note that writing to the UART x Transmit Holding (UARTxTHR) register in this mode when 
the THRE bit is not set can result in incorrect data being transmitted. 
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The Transmitter Empty (TEMT) bit in the UART x Line Status (UARTxLSR) register is set 
in this mode if both the UART x Transmit Holding (UARTxTHR) register and internal 
transmitter shift register are empty. An application could write two bytes consecutively to 
the UART x Transmit Holding (UARTxTHR) register without checking THRE if TEMT is 
detected as set.

21.5.1.2 16550-Compatible UART Mode

In 16550-compatible (FIFO) mode:

1. Data written to the UART x Transmit Holding (UARTxTHR) register address is latched 
into the next available FIFO location. 

2. The transmit data is shifted directly out of the first FIFO entry with valid data. There are 
a total of 16 bytes in the FIFO. Thus, if the TEMT bit is set, then software can safely 
write 16 bytes consecutively to the UART x Transmit Holding (UARTxTHR) register 
address for transmission.

The THRE (which can optionally generate an interrupt) and TEMT bits are set whenever 
the last character is shifted from the FIFO and the FIFO becomes empty. If the number of 
characters currently in the FIFO is unknown, software should wait for the THRE or TEMT 
bit to be set before writing additional data.

21.5.2 Data Reception
21.5.2.1 16450-Compatible UART Mode

In 16450-compatible mode:

1. Received data is shifted from the SIN pin into the internal receive shift register. 

2. Once an entire UART frame has been received, the character is transferred from the 
internal receive shift register into the UART x Receive Buffer (UARTxRBR) register.

3. The Data Ready (DR) bit in the UART x Line Status (UARTxLSR) register is set to 1 
(optionally generating an interrupt). 

Note that the DR bit is cleared by a read of the UART x Receive Buffer (UARTxRBR) register. 
If a second character is transferred into the UART x Receive Buffer (UARTxRBR) register 
before software reads the first one (i.e., the DR bit is still set), then the Overrun Error (OE) 
bit in the UART x Line Status (UARTxLSR) register is set to 1, and the first character is 
destroyed. Subsequent received bytes continue to overwrite the UART x Receive Buffer 
(UARTxRBR) register until software reads the UART x Receive Buffer (UARTxRBR) 
register.

21.5.2.2 16550-Compatible UART Mode

In 16550-compatible mode:

1. Received data is shifted into the internal receive shift register. 

2. Once an entire UART frame has been received, the character is transferred from the 
internal receive shift register into the FIFO. 

– If the FIFO was empty, the DR bit in the UART x Line Status (UARTxLSR) register is 
set and remains set until the FIFO is completely emptied by software. 

– If the received character places the FIFO above the limit indicated by the RFRT field 
in the UART x FIFO Control (UARTxFCR) register and received data available 
interrupts are enabled, then an interrupt is generated. 

– A receive FIFO time-out interrupt occurs when this interrupt is enabled if data is present 
in the FIFO and no received data have been placed into or read from the receive FIFO 
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in four character times. In 16550-compatible mode, the Overrun Error (OE) bit is set 
if a new character is completely received into the shift register when the FIFO is already 
100% full. Data in the FIFO is not overwritten by this overrun. However, the data in 
the shift register is lost.

21.5.3 Error Handling
Received data can contain three types of abnormal conditions in addition to the overrun 
error: 

■ Parity errors

■ Framing errors

■ Break indications

21.5.3.1 Parity Error

A parity error indicates that the parity bit for the character in error did not match the parity 
indicated by the Even Parity Select (EPS) bit, Stick Parity Enable (SP) bit, and the 
Asynchronous Data Parity Enable (PENB) bit in the UART x Line Control (UARTxLCR) 
register.

21.5.3.2 Framing Error

A framing error indicates that the bit following the parity bit (if parity is enabled) or following 
the last data bit (if parity is not enabled) was detected to be a logic 0. To resynchronize 
following this type of error, the UART assumes that the framing error was due to the next 
start bit occurring too early. It samples the start bit twice (once as the erroneous stop bit of 
the first character and once as the start bit of the second character) before sampling the 
data for the second bit.

21.5.3.3 Break Indication

A break indication means that the received data input was detected to be 0 for a time longer 
than a full UART frame (including start bit, data bits, parity, and stop bits). The character 
loaded into the FIFO on a break indication is always 0, and subsequent characters are 
loaded normally once the receive input returns to its idle state (high).

21.5.3.4 Error Reporting

21.5.3.4.1 16450-Compatible UART Mode
In 16450-compatible mode, the error bits (OE, PE, FE, and BI) in the UART x Line Status 
(UARTxLSR) register indicate that the error was detected during reception of the current 
byte in the UART x Receive Buffer (UARTxRBR) register. If receiver line status Interrupts 
are enabled, any of the OE, PE, FE, or BI conditions trigger an interrupt.

21.5.3.4.2 16550-Compatible UART Mode
In 16550-compatible mode, the error bits (PE, FE, and BI) are set only when an error 
condition is detected in the character at the top of the FIFO. Since reading the UART x 
Receive Buffer (UARTxRBR) register causes the FIFO to advance to the next received 
character, the error bits must be read from the UART x Line Status (UARTxLSR) register 
prior to the data being read from the FIFO. The ERR_IN_FIFO bit in the UART x Line Status 
(UARTxLSR) register can be used to detect if any of the characters in the FIFO (not just 
the one at the top) had errors. 

All of the error bits, with the exception of the ERR_IN_FIFO bit, are cleared when the UART 
x Line Status (UARTxLSR) register is read. The ERR_IN_FIFO bit is cleared when the 
UART x Line Status (UARTxLSR) register is read and all data present in the FIFO is error-
free, or the FIFO becomes empty. 
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If receiver line status interrupts are enabled, any of the OE, PE, FE, or BI conditions trigger 
an interrupt. Note that the ERR_IN_FIFO cannot directly generate an interrupt.

21.5.4 Configuration Information
21.5.4.1 Baud Rate

To generate the baud rate of the transfer, the UART clock is divided by a divisor value 
chosen by the programmer. The UART’s baud-rate generator automatically calculates the 
baud rate from the divisor value programmed into the two UART x Baud Clock Divisor Latch 
MSB and LSB registers. These registers are read at initialization to set the baud rate for 
the transfer. The baud rate is calculated according to the following equation:

Baudrate = clockfrequency / 16 * BAUDDIV

Here, clock frequency refers to the frequency of the main reference clock, 1.8432 MHz or 
18.432 MHz. This frequency is determined by the CLKSRC bit in the UART x General 
Control (UARTxCTL) register. BAUDDIV is defined by the UART x Baud Clock Divisor Latch 
MSB and LSB registers. Table 21-5 lists the divisor value (in decimal and hexadecimal) to 
use with each clock frequency to achieve common baud rates.

21.5.4.2 Hardware Flow Control 

When the EMSI bit of the UART x Interrupt Enable (UARTxINTENB) register is set, the 
modem status interrupt is enabled to facilitate the hardware flow control. The interrupts are 
triggered by changes in the following control lines: CTSx, DTRx, RINx, and DCDx.

21.5.4.3 Operating Modes

16450-compatible UART mode and 16550-compatible UART mode can be setup by setting 
or clearing the FIFO_ENB bit of UART x FIFO Control (UARTxFCR) register. The 
ÉlanSC520 microcontroller UARTs can be switched between the 16550-compatible mode 
and 16450-compatible mode under software control.

Table 21-5 Baud Rates, Divisors, and Clock Source

Baud Rate

DIV[15–0] (Decimal) DIV[15–0] (Hexadecimal)

1.8432 MHz 18.432 MHz 1.8432 MHz 18.432 MHz

300 baud 384d 3840d 0180h 0F00h

600 baud 192d 1920d 00C0h 0780h

2400 baud 48d 480d 0030h 01E0h

4800 baud 24d 240d 0018h 00F0h

7200 baud 16d 160d 000Fh 00A0h

9600 baud 12d 120d 000Ch 0078h

14.4 kbaud 8d 80d 0008h 0050h

19.2 kbaud 6d 60d 0006h 003Ch

57.6 kbaud 2d 20d 0002h 0014h

115.2 kbaud 1d 10d 0001h 000Ah

144 kbaud 8d 0008h

192 kbaud 6d 0006h

288 kbaud 4d 0004h

576 kbaud 2d 0002h

1.152 Mbaud 1d 0001h
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When in 16550-compatible mode, the receiver and transmitter FIFO buffers can be cleared 
by the RF_CLR and TF_CLR bits in the UART x FIFO Control (UARTxFCR) register, 
respectively. The receiver FIFO trigger level can be programmed by RFRT field of the 
UART x FIFO Control (UARTxFCR) register.

21.5.5 DMA Interface
To support higher serial data transfer rates, both UARTs support DMA. For more detailed 
information on the operation of the GP-DMA controller, see Chapter 14, “GP Bus DMA 
Controller”.

The ÉlanSC520 microcontroller’s DMA interface provides up to four 8-bit DMA channels to 
support the two integrated UARTs. Each UART can use up to two DMA channels: one for 
receive and one for transmit. DMA transfers are supported for both 16450- and 16550-
compatible modes.

The DMA controller can perform read and write operations in single cycle, demand, or block 
transfer mode. However, block transfer mode is not supported for UART transfers.

21.5.5.1 Transmit DMA

The internal tx_dma_req signal from the UART is asserted whenever there is room for 
another transmit character in the UART.

■ For 16450-compatible UART mode, this means that either the internal transmitter shift 
register or the UART x Transmit Holding (UARTxTHR) register can accept a character. 

■ For 16550-compatible mode, this means that the transmit FIFO is not full.

21.5.5.2 Receive DMA

The internal rx_dma_req signal from the UART is asserted:

■ For 16550-compatible mode, whenever the receive trigger level was reached or a time-
out has occurred. The rx_dma_req signal is made inactive when the receive FIFO is 
completely empty. 

■ For 16450-compatible UART mode, whenever the UART x Receive Buffer (UARTxRBR) 
register contains a valid character.

For either mode, the internal rx_dma_req signal is deasserted whenever a character is 
received with an error condition. This allows software to inspect the error condition before 
the error status is cleared by a subsequent DMA transfer. Once software has cleared the 
error status by a read of the UART x Line Status (UARTxLSR) register, the rx_dma_req is 
asserted when another character is present in the UART.

21.5.6 Clocking Considerations
The clock input to the UARTs to support standard PC/AT baud selections is 1.8432 MHz. 
A clock of 18.432 MHz is also provided to the UARTs for fast serial communication. This 
frequency is determined by the CLK_SRC bit in the UART x General Control (UARTxCTL) 
register.

21.5.7 Interrupts
Each of the two UARTs on the ÉlanSC520 microcontroller provides its own interrupt to the 
programmable interrupt controller. Each ÉlanSC520 microcontroller serial port has an 
internal interrupt signal that can be mapped to uart1_irq or uart2_irq. For detailed 
information, see Chapter 15, “Programmable Interrupt Controller”.
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Table 21-6 provides a summary of UART interrupt sources for both DMA and serial port 
interrupts.

Interrupts generated by the UARTs are cleared in a variety of ways, depending on the 
source event. For details about clearing a particular event, see the event’s status bit 
description in the Élan™SC520 Microcontroller Register Set Manual, order #22005.

Table 21-6 UART Interrupt Programming Summary

Interrupt Description
Enable
Register1, 2

Notes:
1. Before any UART interrupt is enabled, the corresponding UART x Interrupt Mapping (UARTxMAP) register must 
be configured to route the interrupt to the appropriate interrupt request level and priority. 
2. The OUT2 bit in the UART x Modem Control (UARTxMCR) register is used as a master control for UART inter-
rupts. The OUT2 bit must be set for UART interrupts to be generated. Status bits can be read even when interrupts 
are disabled.

Status
Register3

3. If two of the interrupts enabled in the UART x Interrupt Enable (UARTxINTENB) register are pending simulta-
neously, the highest-priority interrupt is identified in the INT_ID bit field of the UART x Interrupt ID (UARTxINTID) 
register.

Source Event
Polled 
Status Bit

Receive DMA transfer count UART x General 
Control 
(UARTxCTL) 

UART x 
General Status 
(UARTxSTA)

UART x Receive TC Detected RXTC_DET

Transmit DMA transfer count UART x Transmit TC Detected TXTC_DET

Modem status change UART x Interrupt 
Enable 
(UARTxINTENB)

UART x 
Modem Status 
(UARTxMSR)

Delta data carrier detect DDCD

Trailing edge ring indicator TERI

Delta data set ready DDSR

Delta clear to send DCTS

Receiver line status UART x Line 
Status 
(UARTxLSR)

Break indicator BI

Framing error FE

Parity error PE

Overrun error OE

Transmitter holding register 
empty

Transmit holding register (16450-
compatible mode) or transmitter 
FIFO (16550-compatible mode) 
empty

THRE

Received data available Data ready 
(16450-compatible mode)

DR

—4

4. There are no polled-status bits for the FIFO trigger level and FIFO time-out events. These events are indicated by 
the INT_ID bit field only.

FIFO trigger level reached
(16550-compatible mode)

—

FIFO time-out5

5. The FIFO time-out interrupt is enabled with the received data available interrupt by the ERDAI bit in the UART x 
Interrupt Enable (UARTxINTENB) register.

FIFO time-out
(16550-compatible mode)

—
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21.5.7.1 Serial Port Interrupts

Each serial port supports the standard UART interrupts. These include: 

■ Received data available or FIFO trigger level reached

■ Transmit Holding register empty (THRE)

■ Modem status change (including clear-to-send, data-set-ready, ring indicator, data 
carrier detect)

■ Line Status register receiver interrupts (including overrun error, parity error, framing error 
and break interrupt)

In 16550-compatible mode, the FIFO time-out interrupt is also enabled when the received 
data available interrupt is enabled. 

The UART interrupt sources and their priority are shown in Table 21-7. If two interrupt 
sources are pending simultaneously, the highest priority interrupt is indicated by the ID field 
of the UART x Interrupt ID (UARTxINTID) register. When the interrupt source is cleared, a 
subsequent read from this port returns the next highest priority interrupt source. 

Note: In 16450-compatible mode, the INT_ID2 bit always reads back 0. The INT_ID bit 
field is located in the UART x Interrupt ID (UARTxINTID) register.

The UART interrupts are enabled by the Interrupt Enable register and read from the UART x 
Interrupt ID (UARTxINTID) register.

21.5.7.2 DMA Interrupts

Each UART can generate an interrupt when the Transfer Count (TC) signal associated with 
DMA transfers is asserted. Four enable bits and four status bits are available for these 
interrupts: transmit and receive Transfer Count reached for each UART. These bits are 
located in the UART x General Control (UARTxCTL) and UART x General Status 
(UARTxSTA) registers.

Table 21-7 Serial Port Interrupt and Interrupt Priority

INT_ID
Bit Field Description Identification Priority

000b Modem status change Fourth (Lowest)

001b Transmit holding register empty (16540-compatible 
mode)/Transmit FIFO empty (16550-compatible mode)

Third

010b Received data available (16540-compatible mode)/
Receiver FIFO trigger (16550-compatible mode)

Second

011b Receive line status First (Highest)

100b Not used —

101b Not used —

110b FIFO time-out Second

111b Not used —
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21.5.7.3 Interrupt Disable

Each UART interrupt request can be disabled (gated low) prior to the programmable 
interrupt controller by clearing to 0 the OUT2 bit in the UART x Modem Control (UARTxMCR) 
register. Note that setting the LOOP bit in the MCR also disables the UART interrupt request. 
Therefore, interrupts are not propagated to the PIC while in loopback mode.

21.6 INITIALIZATION
At system reset, the serial port is disabled. To be enabled, it must be configured by software.

1. Configure the UART by programming the desired baud rate, character length, stop-bits, 
and parity.

2. Enable interrupts and DMA operation as desired. Note that for UART interrupts to 
propagate to the programmable interrupt controller, the OUT2 bit in the UART x Modem 
Control (UARTxMCR) register must be set to 1.

After the UART is enabled, it powers up as a 16450-compatible device. It can be switched 
between 16550-compatible mode and 16450-compatible mode under software control.

3. Enable 16550-compatible mode by setting the FIFO_ENB bit of UART x FIFO Control 
(UARTxFCR) register. Note that the contents of this write-only register can be read back 
in the UART x FIFO Control Shadow (UARTxFCRSHAD) register. 
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CHAPTER
22 S
YNCHRONOUS SERIAL INTERFACE 
22.1 OVERVIEW
The ÉlanSC520 microcontroller includes a synchronous serial interface (SSI). The SSI 
provides efficient full-duplex and half-duplex, bidirectional communication to peripheral 
devices. The interface can be used to configure and monitor the status of devices such as 
ISDN transceivers, EEPROMs, SLACs, audio CODECs, LCD drivers, DSPs, etc. It can 
easily communicate with slave interfaces that are compatible to Motorola’s Serial Peripheral 
Interface (SPI), Motorola’s Serial Communication Port (SCP), National Semiconductor 
Corporation’s Microwire, and other industry standards.

Features of the SSI include:

■ Full or half-duplex operation

■ Compatible with either four-pin or three-pin peripheral devices 

■ Multiple device enables through programmable I/O (PIO) pins

■ Configurable clock idle state and phase

■ Configurable bit shifting order, most significant bit or least significant bit first

■ Programmable SSI clock speed, from 64 kHz to 8 MHz

■ Transaction complete status, available as interrupt

22.2 BLOCK DIAGRAM
A block diagram of the SSI is shown in Figure 22-1. System diagrams, as well as timing 
diagrams, of a three-pin SSI interface and a four-pin SSI interface are shown on page 22-3.

22.3 SYSTEM DESIGN
Three SSI pins are provided: clock out (SSI_CLK), data out (SSI_DO), and data in (SSI_DI). 
The SSI_DO signal is normally at high-impedance when no transmit transaction is active 
on the SSI. An external pullup or pulldown resistor can be added to this pin, if required by 
the slave device.

Most slave devices require an enable pin to be asserted during an operation and deasserted 
when not in operation. PIO pins on the ÉlanSC520 microcontroller can be used for this 
purpose.

Many slave SSI ports provide an interrupt output pin to the ÉlanSC520 microcontroller. 
These can be routed to one of the GPIRQx pins, which are multiplexed with PIOs. See 
Chapter 15, “Programmable Interrupt Controller”, and Chapter 2, “Pin Information”, for 
information on external interrupts.

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and 
additional timing diagrams.
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Figure 22-1 SSI Block Diagram

22.4 REGISTERS
The memory-mapped registers shown in Table 22-1 are used to configure the SSI.

Table 22-1 Synchronous Serial Interface Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

SSI Control SSICTL CD0h SSI clock speed, interrupt enable, clock phase, 
clock idle state, bit order

SSI Transmit SSIXMIT CD1h Byte or data to be shifted out to SSI_DO pin

SSI Command SSICMD CD2h Transfer command to be executed: transmit, 
receive, or simultaneous transmit/receive

SSI Status SSISTA CD3h Busy status, transaction complete status

SSI Receive SSIRCV CD4h Byte or data shifted in from SSI_DI pin

SSI Interrupt Mapping SSIMAP D41h SSI interrupt mapping

Block

SSI Control Register

SSI Transmit Register

SSI Receive Register

SSI Command Register

SSI_DO

SSI_DI

SSI_CLK

SSI Status Register

PIOx

Generation
SSI Clock

shift register

shift register

Programmable Interrupt 
Controller (PIC)

Internal

PIO

GP Bus

33-MHz
Clock

SSI

GPIRQx

ssi_irq

tri_do

Élan™SC520 Microcontroller
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22.5 OPERATION
Synchronous serial interface describes a port that can be implemented in several ways. 
Typically, the microcontroller port is called the master and one or more peripheral device 
ports are slaves. 

■ The master port (ÉlanSC520 microcontroller) configures a slave by serial transmission 
of slave commands, addresses, and data. 

■ A slave (peripheral device) can send requested status information or data, similarly. 

Options in the SSI Control (SSICTL) register (MMCR offset CD0h), along with software-
controlled device enable signals, can be used to customize the SSI port to emulate a variety 
of formats. Its flexibility allows simple communication with multiple devices, reducing 
software overhead.

Three commands are provided to initiate the transfer of data through the SSI. A write to the 
SSI Control (SSICTL) register selects the type of cycle to execute and initiates the cycle. 
The three SSI commands are:

■ Transmit-only (half-duplex)—In a transmit transaction, or cycle, the contents of the SSI 
Transmit (SSIXMIT) register (MMCR offset CD1h) are serially shifted onto the SSI_DO 
pin. 

■ Receive-only (half-duplex)—A receive transaction shifts a byte from SSI_DI to the SSI 
Receive (SSIRCV) register (MMCR offset CD4h). 

■ Simultaneously transmit and receive (full-duplex)

The ÉlanSC520 microcontroller SSI is always the master and drives the clock when the 
SSI command is given. Slave devices cannot drive this clock. All transactions complete 
within eight clock cycles.

22.5.1 Usage Scenarios

22.5.1.1 Four-Pin Interface

A full-duplex, four-pin port has separate input and output data pins. Figure 22-2 is a block 
diagram of the SSI connected to multiple four-pin slave devices. A transmit and receive 
operation can take place within the same eight clocks, as shown in Figure 22-3. Many four-
pin slave ports, however, operate in half-duplex. In that case, Figure 22-5 would apply. 

22.5.1.2 Three-Pin Interface

SSI_DO and SSI_DI can be externally shorted to interface three-pin peripheral devices, as 
in Figure 22-4. This creates an I/O signal that matches slave I/O pins. Three-pin ports 
multiplex the data output and input for half-duplex communication. A typical half-duplex 
operation, as shown in Figure 22-5, is implemented with a two-byte protocol in non-inverted 
phase and clock modes. The first byte sends a command/address byte to the slave, which 
indicates that the data for the second byte will be transmitted or received. The slave should 
begin to transmit or receive when it detects an active clock.
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Figure 22-2 SSI Four-Pin Interface

Figure 22-3 SSI Simultaneous Transmit and Receive

Figure 22-4 SSI Three-Pin Interface

Figure 22-5 SSI Typical Half-Duplex Communication, Non-Inverted Phase and Clock Modes
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22.5.2 Configuration Information
The MSBF_ENB, CLK_INV_ENB, and PHS_INV_ENB bits in the SSI Control (SSICTL) 
register (MMCR offset CD0h) define the order of the bits, the clock idle state, and the clock 
edge upon which data is transmitted/received (phase).

■ The SSI should be configured to assert SSI_DO on the same clock edge that the slave 
uses to transmit. 

■ SSI_DI is sampled on the opposite clock edge. 

22.5.2.1 Bit Order

The SSI bit order can be changed by the SSI Most Significant Bit First Mode Enable 
(MSBF_ENB) bit. A byte can be transferred with the least significant bit first (LSBF) or most 
significant bit first (MSBF). MSBF mode is enabled when this bit is written to a 1. This mode 
is common for input and output data.

22.5.2.2 Clock Idle State

The clock idle state is controlled by the SSI Inverted Clock Mode Enable (CLK_INV_ENB) 
bit. The absolute time to drive/sample is unchanged by the CLK_INV_ENB bit.

■ When the CLK_INV_ENB bit has a value of 0, SSI_CLK idles High, then pulses Low 
during a transaction. 

■ If the CLK_INV_ENB bit is written to a 1, the clock idle state is Low. 

22.5.2.3 Clock Phase

The clock phase, relative to the serial data, is determined by the SSI Inverted Phase Mode 
Enable (PHS_INV_ENB) bit. 

■ In non-inverted phase mode, data is transmitted on odd edges of the SSI clock, and 
received on even edges.Therefore, the first SSI clock edge of a transaction shifts out 
the first bit on SSI_DO, if writing. SSI_DI data is latched, during a receive transaction, 
on even edges of the SSI clock. 

■ Inverted phase mode requires that the SSI_DI signal be sampled on the first (odd) clock 
edge(s). Consequently, the first bit is asserted on SSI_DO one-half an SSI clock cycle 
before the first edge of SSI_CLK, and even edges afterwards. 

22.5.3 Bus Cycles
The four possible combinations of CLK_INV_ENB and PHS_INV_ENB are shown in 
Figure 22-6.

■ Microwire compatibility is configured when the PHS_INV_ENB, CLK_INV_ENB, and 
MSBF_ENB bits are all set to 1. 

■ The SSI is compatible with an SCP interface when the PHS_INV_ENB and 
CLK_INV_ENB bits are cleared to 0, and the MSBF_ENB bit is set to 1.
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Figure 22-6 SSI Clock Phase and Clock Idle State: Effects on Data 

22.5.3.1 4-Bit Read Cycle

A 4-bit operation can be simulated by ignoring four of the eight bits transferred. Figure 22-7 
shows an example of a 4-bit read operation. 

1. A full-duplex SSI command is executed in non-inverted phase, non-inverted clock, and 
MSBF modes. 

2. The first four bits on SSI_DO transmit a slave nibble read command. 

3. The last four bits on SSI_DO can specify a four-bit NOP command, if they are not ignored 
by the slave. 

4. The first four bits on SSI_DI are shifted in, but can be ignored by software. 

5. The last four bits on SSI_DI are the requested nibble. 

6. The SSI transaction is complete one-half the SSI_CLK period after the last read edge.

Figure 22-7 SSI 4-Bit Read Cycle: Full-Duplex, Non-Inverted Phase, Non-Inverted Clock
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22.5.3.2 Burst, 16-Bit, and 32-Bit Cycles

Burst,16-bit, and 32-bit exchanges can be simulated by multiple 8-bit transactions. There 
is at least one CPU clock period idle time between transactions. Additional delay between 
each transaction is determined by software. Figure 22-8 shows an example of a 16-bit 
operation. Two full-duplex SSI commands are executed to a Microwire-compatible 
peripheral. 

Figure 22-8 SSI Back-to-Back Transactions for Full-duplex, 
Microwire-Compatible Configuration

22.5.4 Clocking Considerations
The SSI clock is derived from the 33-MHz clock. The CLK_SEL bit in the SSI Control 
(SSICTL) register (MMCR offset CD0h) is used to configure the frequency of the SSI clock 
(the SSI_CLK pin). The actual bit rate will vary, depending on whether the system is using 
a 33.000-MHz or a 33.333-MHz crystal. See the Élan™SC520 Microcontroller Register Set 
Manual, order #22005, for frequency selection.

22.5.5 Interrupts
An interrupt can be generated by the SSI to alert the CPU that a transaction is complete. 

1. The interrupt is enabled by writing the TC_INT_ENB bit to a 1 in the SSI Control (SSICTL) 
register. 

2. When a transaction is complete, the BSY bit is cleared to a 0 in the SSI Status (SSISTA) 
register (MMCR offset CD3h), the SSI Transaction Complete Interrupt (TC_INT) bit is 
set to a 1 in the SSI Status (SSISTA) register, and an interrupt may be sent. 

3. Hardware updates the SSI Status (SSISTA) register one-half an SSI clock period after 
the last receive edge of a transaction (or one full SSI clock period after the last transmit 
edge of a transaction, indicating that the SSI is again non-busy. 

4. A 1 should be written back to the TC_INT bit to clear the bit and acknowledge the 
interrupt; writing a 0 has no effect. 

If the interrupt is not enabled, the SSI Status (SSISTA) register can be polled to periodically 
read the BSY bit. BSY is set to a 1 when the SSI Command (SSICMD) register is loaded. 

The TC_INT and BSY bit values for non-inverted and inverted phase modes are shown in 
Figure 22-9.

7 0 7 0
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complete
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complete

Command Command
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Figure 22-9 SSI Timing: TC_INT and BSY_STA Bits

22.5.6 Software Considerations
A slave should be enabled (if necessary) before a transmit or receive transaction is initiated 
and disabled after the transaction is complete. Software is responsible for controlling PIOs 
to implement chip enable signals, including setup and hold time specifications. These pins 
do not have associated SSI hardware functionality. See Chapter 23, “Programmable Input/
Output”, for descriptions of these pins.

Unreliable operation will occur if the configuration is modified or a second SSI command 
is written during an active operation. Writes to the SSI Transmit (SSIXMIT) register, SSI 
Control (SSICTL) register, and SSI Command (SSICMD) register should not be performed 
while the SSI is busy. Software should load the SSI Transmit (SSIXMIT) register (if 
necessary) before writing an SSI command. The SSI Receive (SSIRCV) register (MMCR 
offset CD4h) should not be read until a receive transaction is complete.

22.6 INITIALIZATION
The SSI port is disabled during system reset, and all SSI register bits are initialized to 0. 
The SSI is enabled after reset, but inactive until an SSI command is executed. Some or all 
of the following steps should be taken to initiate an SSI transaction.

1. Enable/disable CPU transaction complete interrupt via the TC_INT_ENB bit in the SSI 
Control (SSICTL) register.

2. Enable/disable inverted phase mode via the PHS_INV_ENB bit in the SSI Control 
(SSICTL) register (MMCR offset CD0h).

3. Enable/disable inverted clock mode via the CLK_INV_ENB bit in the SSI Control 
(SSICTL) register.

4. Enable/disable MSBF mode via the MSBF_ENB bit in the SSI Control (SSICTL) register.

5. Select SSI clock speed via the CLK_SEL bits in the SSI Control (SSICTL) register.

6. Enable/disable device enable pins using PIOs.

7. Write output data to the SSI Transmit (SSIXMIT) register (MMCR offset CD1h).

8. Write an SSI command to the SSI Command (SSICMD) register (MMCR offset CD2h).

9. Wait for a transaction complete interrupt or poll the SSI Status (SSISTA) register (MMCR 
offset CD3h) to read BSY bit for port activity status, if the interrupt is disabled.

10.Read input data from the SSI Receive (SSIRCV) register (MMCR offset CD4h).

11.Write a 1 to the TC_INT bit in the SSI Status (SSISTA) register to clear bit and 
acknowledge the interrupt, if enabled.
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CHAPTER
23 P
ROGRAMMABLE INPUT/OUTPUT
23.1 OVERVIEW
The ÉlanSC520 microcontroller supports 32 programmable I/O signals (PIOs) that can be 
used on the system board to monitor signals or control devices that are not handled by the 
other functions in the ÉlanSC520 microcontroller. These signals can be programmed to be 
inputs or to be driven out High or Low as outputs.

The PIO signals can be programmed for the following functions:

■ Read as inputs (default condition after reset)

■ Driven High or Low as an output

On the ÉlanSC520 microcontroller, all of the PIOs are shared with other functions that may 
not be needed in every system design, e.g., GP bus signals. This is done to give system 
designers the most flexibility. For clarity, throughout this document, the two functions 
available on the PIO pins are distinguished from each other as the PIO function and the 
interface function.

Each of the PIO signals is terminated within the ÉlanSC520 microcontroller with either a 
pullup or pulldown resistance. This feature makes system design easier by eliminating the 
need for termination on the board. Each PIO signal is terminated according to the pin’s 
interface function, i.e., a normally active Low signal will usually have a pullup to make it 
inactive on reset. See the Élan™SC520 Microcontroller Data Sheet, order #22003, for the 
termination of each PIO signal.

23.2 BLOCK DIAGRAM
Figure 23-1 is a block diagram of the PIO feature. This structure is repeated for each of the 
PIOs; only one example PIO is shown in the diagram.
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Figure 23-1 PIO Signal Block Diagram

23.3 SYSTEM DESIGN
Because most of the PIOs share pins with other functions, designers are usually constrained 
in choosing which PIO pins to use in their system designs (i.e., they may need the interface 
function on their board). Choosing between PIOs and interface functions is done on a PIO 
basis in the two PIOx Pin Function Select registers, as shown in Table 23-1. When enabled, 
the multiplexed signals shown in Table 23-1 either disable or alter any other function that 
uses the same pin.

Note: All PIOs are terminated by either pullup or pulldown resistors (depending on interface 
function’s needs). The pullup and pulldown resistors are approximately 100–150 ohms. The 
termination of the pin should be considered when deciding which PIO to use. For example, 
if a PIO that is pulled down by default is to be used for a chip select, the internal pulldown 
will have to be overridden by a stronger external pullup resistor, or else the external device 
will have its chip select active at reset.
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Notes:
A PIO has either a pullup or pulldown resistor, but not both.
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Programmable Input/Output
After the assertion of PWRGOOD, all PIO signals default to be inputs with pullup or pulldown 
resistive termination, as shown in Table 23-1. The signals must be programmed before 
using them as outputs or the alternate interface function. See “Initialization” on page 23-6.

Table 23-1  PIO Signals Shared with Other Interfaces

PIO 
(Default) 
Function

Interface 
Function

Pin Configuration 
Following 
System Reset Control Bit Register

PIO31 RIN2 input with pullup PIO31_FNC PIO31–PIO16 Pin Function Select 
(PIOPFS31_16) register 
(MMCR offset C22h)

PIO30 DCD2 input with pullup PIO30_FNC

PIO29 DSR2 input with pullup PIO29_FNC

PIO28 CTS2 input with pullup PIO28_FNC

PIO27 GPCS0 input with pullup PIO27_FNC

PIO26 GPMEMCS16 input with pullup PIO26_FNC

PIO25 GPIOCS16 input with pullup PIO25_FNC

PIO24 GPDBUFOE input with pullup PIO24_FNC

PIO23 GPIRQ0 input with pullup PIO23_FNC

PIO22 GPIRQ1 input with pullup PIO22_FNC

PIO21 GPIRQ2 input with pullup PIO21_FNC

PIO20 GPIRQ3 input with pullup PIO20_FNC 

PIO19 GPIRQ4 input with pullup PIO19_FNC

PIO18 GPIRQ5 input with pullup PIO18_FNC

PIO17 GPIRQ6 input with pullup PIO17_FNC

PIO16 GPIRQ7 input with pullup PIO16_FNC

PIO15 GPIRQ8 input with pullup PIO15_FNC PIO15–PIO0 Pin Function Select 
(PIOPFS15_0) register 
(MMCR offset C20h)

PIO14 GPIRQ9 input with pullup PIO14_FNC 

PIO13 GPIRQ10 input with pullup PIO13_FNC

PIO12 GPDACK0 input with pullup PIO12_FNC

PIO11 GPDACK1 input with pullup PIO11_FNC 

PIO10 GPDACK2 input with pullup PIO10_FNC

PIO9 GPDACK3 input with pullup PIO9_FNC

PIO8 GPDRQ0 input with pulldown PIO8_FNC

PIO7 GPDRQ1 input with pulldown PIO7_FNC

PIO6 GPDRQ2 input with pulldown PIO6_FNC

PIO5 GPDRQ3 input with pulldown PIO5_FNC

PIO4 GPTC input with pullup PIO4_FNC

PIO3 GPAEN input with pullup PIO3_FNC

PIO2 GPRDY input with pullup PIO2_FNC

PIO1 GPBHE input with pullup PIO1_FNC

PIO0 GPALE input with pullup PIO0_FNC
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23.4 REGISTERS
A summary listing of the memory-mapped configuration registers used to control the PIO 
signals is shown in Table 23-2. 

23.5 OPERATION
All PIO signal pins can be programmed as inputs, outputs, or to support their interface 
function (e.g., GP bus signals). They are enabled as PIO inputs at power-on reset, with 
built-in pullup or pulldown resistors.

As inputs, PIOs are used by software to monitor signals from other devices. They provide 
a path to bring signals into the chip that are not available through the other interfaces.

As outputs, the PIOs provide the ability for software to control external devices with signals 
that can be driven High or Low.

Table 23-2 PIO Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function

PIO15–PIO0 Pin Function 
Select

PIOPFS15_0 C20h PIO15–PIO0 or interface function select: 
GPIRQ10–GPIRQ8, GPDACK3–GPDACK0, 
GPDRQ3–GPDRQ3, GPTC, GPAEN, GPRDY, 
GPBHE, GPALE

PIO31–PIO16 Pin Function 
Select

PIOPFS31_16 C22h PIO31–PIO16 or interface function select: RIN2, 
DCD2, DSR2, CTS2, GPCS0, GPMEMCS16, 
GPIOCS16, GPDBUFOE, GPIRQ7–GPIRQ0

Chip Select Pin Function 
Select

CSPFS C24h GPCS7–GPCS1 or alternate function select: 
TMROUTx, TMRINx, PITGATE2, ROMCS2, 
ROMCS1

Clock Select CLKSEL C26h CLKTIMER[CLKTEST] pin enable, clock output 
select options (18.432 MHz or 1.8432 MHz 
UART, PLL1, PLL2, PIT, and RTC), CLKTIMER 
or CLKTEST select

Drive Strength Control DSCTL C28h I/O pad drive strength for SCS3–SCS0, 
SRASA–SRASB, SCASA–SCASB, SWEA–
SWEB, SDQM3–SDQM0, MA12–MA0, MD31–
MD0, MECC6–MECC0.

PIO15–PIO0 Direction PIODIR15_0 C2Ah PIO15–PIO0 as input or output

PIO31–PIO16 Direction PIODIR31_16 C2Ch PIO31–PIO16 as input or output

PIO15–PIO0 Data PIODATA15_0 C30h Read/write directly the state of the PIO15–PIO0 
pin

PIO31–PIO16 Data PIODATA31_16 C32h Read/write directly the state of the PIO31–
PIO16 pin

PIO15–PIO0 Set PIOSET15_0 C34h Drive PIO15–PIO0 output High

PIO31–PIO16 Set PIOSET31_16 C36h Drive PIO31–PIO16 output High

PIO15–PIO0 Clear PIOCLR15_0 C38h Drive PIO15–PIO0 output Low

PIO31–PIO16 Clear PIOCLR31_16 C3Ah Drive PIO31–PIO16 output Low
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23.5.1 Configuration Information
23.5.1.1 PIO Pins and Simple Input

PIO pins are selected for simple input when the system powers up. The input value of the 
pins can be read using the PIOx Data registers.

Only two actions disable simple input on the PIO pin:

■ Selecting the pin’s interface function

■ Setting the PIO’s PIOx_DIR bit in the PIOx Direction register to configure the PIO as an 
output

23.5.1.2 PIO Pins and Simple Output

If the PIO pin's interface function has not been selected, and the PIOx_DIR is set, the PIO 
will be an output. The value of the pin can be set by writing to its bit in the PIOx Set and 
PIOx Clear registers, or by using the appropriate PIOx Data register.

23.5.2 Software Considerations
Table 23-3 summarizes the register settings required to configure the PIOs.

Table 23-3 PIO Configuration Summary

Function 
Select 

Register 
Bit

Direction 
Register 

Bit

Data 
Register 

Bit
(Writes)

Set 
Register 

Bit

Clear 
Register 

Bit

Data 
Register 

Bit

(Reads)1

Notes:
1. The Data Register Bit (Reads) column shows the resulting state of the Data register bit and the corresponding 
PIO pin. 

Resulting Programmable I/O Pin Function

1 X2

2. X = Not used in this operation.

X X X ?3 

3. ? = Input value. (The Data register bit state always reflects the corresponding pin state, whether input or output.)

The pin is not a PIO; it uses its interface function. The 
value of the pin can be read at the Data bit, but writes to 
the Direction, Data, Set, and Clear bits have no effect. 

0 0 X X X ? The PIO is an input. The state of the pin can be read at 
the Data bit. Writes to the Data, Set and Clear bits have 
no effect.

0 1 X X 1 4

4. For a particular PIO output operation, only one of the pin’s Data, Set, or Clear bits can be used. The state of the 
unused bits is not important, but subsequent writes to these bits can change the PIO pin state. 

0 The PIO is an output. The 1 that is written to the Clear bit 
causes this PIO pin to be driven Low. The state of the pin 
can be read at the Data bit, (in this case the pin is Low).

0 1 X 1 X 1 The PIO is an output. The 1 that is written to the Set bit 
causes this PIO pin to be driven High. The state of the pin 
can be read at the Data bit, (in this case the pin is High).

0 1 0 X X 0 The PIO is an output. The 0 that is written to the Data bit 
causes this PIO pin to be driven Low. The state of the pin 
can be read at the Data bit, (in this case the pin is Low).

0 1 1 X X 1 The PIO is an output. The 1 that is written to the Data bit 
causes this PIO pin to be driven High. The state of the pin 
can be read at the Data bit, (in this case the pin is High).
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Note that although the registers to set, clear, and read the PIO pins can be accessed with 
32-bit instructions, 32-bit accesses are split into two 16-bit accesses. This means, for 
example, that it is impossible to simultaneously set PIO5 and PIO18. Similarly, it is 
impossible to sample the state of PIO12 and PIO23 simultaneously; the 32-bit value 
returned by the instruction contains two 16-bit values sampled at different times. For 32-bit 
operations, the lower 16-bit word (for PIO31–PIO16) is always accessed before the upper 
16-bit word (for PIO15–PIO0). The time between the two accesses is indeterminate and 
based on other masters besides the CPU trying to access the bus.

23.6 INITIALIZATION
After a system reset, all of the PIO31–PIO0 signals default to be inputs with pullup or 
pulldown resistive termination. The signals must be programmed before using them as 
outputs or the alternate interface function.

To initialize the PIOx signals, the following steps are required:

1. Based on the specific application, determine which ÉlanSC520 microcontroller pins can 
utilize the PIO function and which should be programmed as the interface function.

2. Program the PIOx Pin Function Select registers to select between the PIO function and 
the interface function of each of the PIO31–PIO0 pins.

3. For pins specified as using the PIO functionality, define the PIO direction by programming 
the PIOx Direction registers.

4. PIO pins that are defined as inputs can now be read via the PIOx Data registers. 

5. PIO pins defined as outputs can now be written via the PIOx Data, PIOx Set, or PIOx 
Clear registers.
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CHAPTER
24S
YSTEM TEST AND DEBUGGING 
24.1 OVERVIEW
This chapter describes various system-level test features included in the ÉlanSC520 
microcontroller. These features are useful for debugging hardware and software in an 
ÉlanSC520 microcontroller-based system. Some of the system-level debugging features 
are useful in conjunction with the AMDebug interface for software debugging. This 
functionality is described in Chapter 26, “AMDebug™ Technology”.

The list below summarizes the functionality that has been included in the ÉlanSC520 
microcontroller to facilitate system-level debugging.

■ A simple three-pin interface to aid in-circuit emulation tools with tracing external bus 
activity

■ A write buffer test mode to assist in determining which bus masters contributed to the 
current active write buffer write cycle on the SDRAM interface

■ A nonconcurrent arbitration mode that reduces the complexity of system transactions 
when the Am5x86 CPU or PCI bus masters or GP-DMA cycles occur simultaneously

■ Echoing internal cycles and read data on the GP bus during Am5x86 CPU accesses of 
internal integrated peripherals

■ Disabling the Am5x86 CPU’s integrated cache controller, controlling the cache write 
policy, and specifying noncacheable memory regions

■ Controlling the clock speed of the Am5x86 CPU’s internal core

■ Disabling the SDRAM read buffer and write buffer

■ Ability to interrupt the Am5x86 CPU when an illegal memory write occurs to a write-
protected memory region, or to cause an exception when a code fetch occurs from data 
memory

■ Ability to identify the source of a reset event

■ Ability to trace Error Correcting Code (ECC) errors for testing

■ Ability to override the ECC syndrome code

24.2 SYSTEM DESIGN
As shown in Table 24-1, three debugging pins on the ÉlanSC520 microcontroller operate 
as either CF_DRAM, DATASTRB, and CF_ROM_GPCS, or WBMSTR2–WBMSTR0, 
depending on if the ÉlanSC520 microcontroller has been configured for system test mode 
(default) or write buffer test mode. 

The CFG2–CFG0 pinstrap functions associated with these three pins are sampled only as 
a result of PWRGOOD assertion and do not affect the other functions of these pins, so they 
are not shown in this table. When enabled, the multiplexed signals shown in Table 24-1 
either disable or alter any other function that uses the same pin.
Élan™SC520 Microcontroller User’s Manual 24-1



System Test and Debugging
24.2.1 Loading
When a logic analyzer is connected to the ÉlanSC520 microcontroller pins, it presents an 
additional load that must be taken into consideration on critical buses, such as the SDRAM 
interface. Extreme care must be taken when connecting to either the SDRAM clock or the 
PCI bus clock. When external clock drivers are used on the system circuit board, it may be 
best to connect to the output of a lightly loaded or unused clock driver.

24.3 REGISTERS
Table 24-2 lists the memory-mapped registers that are used to control the system-level 
debugging features.

Table 24-1 System Test and Debugging Signals Shared with Other Interfaces

Default Signal Alternate Function Control Bit Register

CF_ROM_GPCS WBMSTR0 WB_TST_ENB SDRAM Control (DRCCTL) register 
(MMCR offset 10h) DATASTRB WBMSTR1

CF_DRAM WBMSTR2

Table 24-2 System Test and Debugging Registers—Memory-Mapped

Register Mnemonic

MMCR 
Offset 
Address Function 

Am5x86 CPU Control CPUCTL 02h CPU cache mode select (write-through or write-
back), CPU clock speed

SDRAM Control DRCCTL 10h System test mode (CF_DRAM, DATASTRB, and 
CF_ROM_GPCS), write buffer test mode 
(WBMSTR2–WBMSTR0) enable

ECC Check Code Test ECCCKTEST 23h ECC check code override for test and error 
handler development

ECC Single-Bit Error Address ECCSBAD 24h Physical address of the location in SDRAM that 
caused a single-bit ECC error

ECC Multi-Bit Error Address ECCMBADD 28h Physical address of the location in SDRAM that 
caused a multi-bit ECC error

SDRAM Buffer Control DBCTL 40h Write buffer functions: write buffer enable, read-
ahead enable, write buffer watermark, write 
buffer flush.

System Arbiter Control SYSARBCTL 70h System arbitration concurrency mode enable

Address Decode Control ADDDECCTL 80h Write-protect violation interrupt enable

Programmable Address 
Region x

PAR0–PAR15 88–C4h Set noncacheable, write-protected, and non-
executable memory regions

GP Echo Mode GPECHO C00h Echo mode enable for monitoring integrated 
peripheral accesses on GP bus

Reset Configuration RESCFG D72h AMDebug mode enable
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24.4 OPERATION
The ÉlanSC520 microcontroller provides several features that are useful in a lab 
environment for system-level debugging of both hardware and software. These features 
can be used in conjunction with an in-circuit emulation system, but can also be used 
independently to simplify some debugging activities. Many features are expected to be used 
with a logic analyzer to capture system transaction information. These distinct system-level 
debugging features are described in the separate sections of this chapter.

The three-pin debugging interface is a particularly useful feature of the ÉlanSC520 
microcontroller. This interface operates in two different modes:

■ System test mode

■ Write buffer test mode

24.4.1 System Test Mode
System test mode is the primary use of the three-pin interface, which enables the pins to 
be monitored with a logic analyzer or external in-circuit emulation system hardware to gain 
important knowledge of current Am5x86 CPU cycles. 

System test mode is used primarily to differentiate Am5x86 CPU code fetches from normal 
memory read cycles on the SDRAM and ROM/Flash or GP bus interface. A signal 
(DATASTRB) is also provided to identify when the data on the SDRAM data bus is valid. 
This signal is used primarily by in-circuit emulation tools for capturing SDRAM data when 
monitoring this interface.

System test mode is enabled by clearing the WB_TST_ENB bit in the SDRAM Control 
(DRCCTL) register (MMCR offset 10h). System test mode is the default test mode on the 
ÉlanSC520 microcontroller. The multiplexed debugging signals then operate as described 
in Section 24.4.1.1.

24.4.1.1 Pin Functions in System Test Mode

24.4.1.1.1 CF_DRAM
During SDRAM read cycles, the CF_DRAM signal provides code fetch status. 

■ When Low, if DATASTRB is active in the current cycle, this signal indicates that the 
current SDRAM read is a CPU code fetch demanded by the CPU, or a read prefetch 
initiated due to a demand code fetch by the CPU.

■ When High, this signal indicates that the SDRAM read is not a code fetch, and it could 
have been initiated by the CPU, PCI master, or the GP-DMA controller, either demand 
or prefetch.

During SDRAM write cycles, the CF_DRAM signal provides an indication of the source of 
the data, either GP-DMA controller/PCI bus master, or CPU. 

Reset Status RESSTA D74h Reset source status: SCP reset, AMDebug hard 
reset detect, AMDebug system reset, watchdog 
timer time-out, CPU shutdown (soft reset), 
PRGRESET pin, and PWRGOOD pin

Table 24-2 System Test and Debugging Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR 
Offset 
Address Function 
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■ When High, this signal indicates that either a GP-DMA initiator or an external PCI bus 
master contributed to the current SDRAM write cycle (the CPU may also have 
contributed). 

■ A Low indicates that the CPU is the only master that contributed to this write cycle.

24.4.1.1.2 DATASTRB
The DATASTRB signal is useful for the external in-circuit emulation system to latch data 
from the SDRAM interface, regardless of the programmed SDRAM timing.

■ When Low, data on the SDRAM data bus is invalid.

■ When High, data on the SDRAM data bus can be latched on the next rising edge of the 
CLKMEMIN signal.

24.4.1.1.3 CF_ROM_GPCS
The CF_ROM_GPCS signal can be sampled on the Low-to-High transition of the ROMRD 
signal during ROM/Flash cycles or during the Low-to-High transition of GPMEMRD for 
GPCS7–GPCS0 cycles.

■ The CF_ROM_GPCD signal should be sampled only when either GPMEMRD or 
ROMRD is asserted. 

■ When Low under these conditions, this signal indicates that the CPU is performing a 
code fetch from ROM (on either the GP bus or SDRAM interface) or a GP bus memory 
device.

24.4.1.2 Using the System Test Mode Interface

The system test mode interface is useful for tracing Am5x86 CPU activity on the SDRAM 
and GP bus interfaces, including when the Am5x86 CPU is the initiator, when the data is 
valid during SDRAM read and write cycles, and differentiating between code fetches and 
data accesses. This still requires demultiplexing the BA1–BA0 and MA12–MA0 SDRAM 
address bus to construct a full 28-bit address, which also requires knowledge of the 
programming of some of the SDRAM controller configuration registers for device size and 
symmetry. Since a data strobe is provided on the WBMSTR1 pin in this mode, detailed 
knowledge of the programming of the SDRAM timing is not required. See Chapter 10, 
“SDRAM Controller”, for details of SDRAM cycle timing and address multiplexing.

The CF_DRAM and CF_ROM_GPCS signals enable external determination of code fetches 
from SDRAM, ROM/Flash, or any GP bus memory device. Prefetches from the SDRAM 
controller’s read buffer can also be identified.

24.4.1.3 SDRAM Write Cycle in System Test Mode

Figure 24-1 illustrates the timing of a page hit SDRAM write cycle during system test mode. 
To capture the CF_DRAM, BA1–BA0, MA12–MA0, and MD31–MD0 signals, the logic 
analyzer or external in-circuit emulation system can use the DATASTRB signal to identify 
the appropriate time to latch the information. This information must be captured on the 
rising edge of CLKMEMIN when DATASTRB is sampled active. Note that DATASTRB is not 
asserted during the read portion of a read-modify-write cycle that occurs for sub-doubleword 
writes with ECC enabled.
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Figure 24-1 System Test Mode Timing During a SDRAM Write Cycle (Page Hit)

24.4.1.4 SDRAM Read Cycle in System Test Mode

Figure 24-2 illustrates the timing of a page miss SDRAM read cycle (with a CAS Latency 
of 2) during system test mode. To capture the CF_DRAM, BA1–BA0, MA12–MA0, and 
MD31–MD0 signals, the logic analyzer or external in-circuit emulation system can use the 
DATASTRB signal to identify the appropriate time to latch the information. This information 
must be captured on the rising edge of CLKMEMIN when DATASTRB is sampled active. 
The CAS latency timing is configured in the SDRAM Timing Control (DRCTMCTL) register 
(MMCR offset 12h). The BA1–BA0 and MA12–MA0 bus can be used to determine the 
physical address generated by the requesting master.

Figure 24-2 System Test Mode Timing During an SDRAM Read Cycle (Page Miss)

24.4.1.5 Tracing Transactions on the ROM Interface

Tracing transactions on the ROM interface requires only the CF_ROM_GPCS signal if it is 
desired to differentiate code fetches from memory read cycles. Only the Am5x86 CPU can 
be the initiator of ROM accesses. The address bus is non-multiplexed, and thus can be 
read directly from the GPA25–GPA0 pins during ROM/Flash cycles. The system 
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configuration of the ROM array must be known, because the ROM data bus can be 
connected to either the SDRAM interface data pins (MD31–MD0), or the GP bus interface 
data pins (GPD15–GP0). Also, the timing of the ROM cycle will vary, depending on the 
device that has been connected to each of the ROM chip selects and the programming of 
the ROM controller configuration registers. The following pins can be monitored to trace 
transactions on the ROM interface:

■ CF_ROM_GPCS if it is necessary to identify code fetches

■ GPA25±GPA0 ROM non-multiplexed address bus

■ GPD15±GPD0 ROM data bus, or MD31±MD0 SDRAM data bus, depending on the 
programming of the ROM controller configuration registers

■ ROM chip selects BOOTCS, and optionally ROMCS1 and ROMCS2

■ ROMRD, FLASHWR control signals

See Chapter 12, “ROM/Flash Controller”, for further details of ROM interface signals and 
timing to determine the appropriate time when the address and data pins are valid.

24.4.1.6 Tracing Transactions on the GP Bus Interface

Capturing transactions on the GP bus interface requires only the CF_ROM_GPCS signal 
if it is desired to differentiate code fetches from memory read cycles. However, some further 
signal qualification is required to filter out GP-DMA transactions from Am5x86 CPU cycles. 
PCI bus masters are not permitted to initiate cycles on the GP bus. The signals required 
to trace cycles on the GP bus will vary depending on the type of slave devices connected 
externally.

Note that due to performance limitations of the GP bus, it is highly recommended that code 
execution from this bus be avoided.

The GPAEN signal must be monitored by the GP bus devices when GP-DMA initiators are 
connected on the GP bus to prevent address decoding during GP-DMA cycles. GP bus 
control signals asserted when the GPAEN signal is active (High) are controlling a read or 
write of a GP-DMA initiator, and the address on the GPA25±GPA0 pins are invalid. GPAEN 
is also driven active during internally echoed cycles to prevent address decoding by GP 
bus devices.

Since the GP bus supports several different cycle types, dynamic bus sizing, and timing 
control, there are numerous signals that may be required for adequate tracing of GP bus 
transactions. The following list summarizes the various signals that should be considered 
for such tracing.

■ CF_ROM_GPCS if it is necessary to identify code fetches

■ GPA25±GPA0 non-multiplexed address bus

■ GPD7±GPD0 data bus for 8-bit cycles, or GPD15±GPD0 for 16-bit cycles

■ GP bus chip selects, multiplexed on ROMCS1 or ROMCS2, or PIO pins

■ GPALE, GPIORD/GPMEMRD, GPIOWR/GPMEMWR, GPAEN control signals

■ GPRDY signal for devices that dynamically stretch GP bus cycles

■ GPIOCS16 and GPMEMCS16 for devices that dynamically identify the bus width of the 
target device’s cycle

See Chapter 13, “General-Purpose Bus Controller”, for details of cycle timing.
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24.4.2 Write Buffer Test Mode
Write buffer test mode identifies which bus owners (Am5x86 CPU, PCI bus master, or GP-
DMA controller) have contributed to the current SDRAM write cycle, and which bus owner 
is requesting the current SDRAM read cycle.

The ÉlanSC520 microcontroller implements a 32-rank First-In-First-Out (FIFO) write buffer 
for improved memory performance. The write buffer also supports write merging and write 
collapsing. Therefore, each of the 32-bit ranks and each byte within the rank can be written 
by either the Am5x86 CPU, PCI bus masters, or the GP-DMA controller. For example, byte 
0 and byte 1 of a write buffer rank can be written by the Am5x86 CPU, byte 2 of the same 
rank can be written by a PCI bus master, and byte 3 of the same rank can be written by the 
GP-DMA controller. 

Although this will result in improved performance of the SDRAM subsystem, it can be 
confusing when attempting system debugging with a logic analyzer, because it is impossible 
to identify the source of SDRAM write cycles from the normal SDRAM interface alone. (For 
more information on the write buffer, see Chapter 11, “Write Buffer and Read Buffer”.)

When write buffer test mode is enabled via the WB_TST_ENB bit in the SDRAM Control 
(DRCCTL) register (MMCR offset 10h), the WBMSTR2±WBMSTR0 pins indicate whether 
the Am5x86 CPU, PCI bus master, GP-DMA controller, or a combination of these has written 
into a particular rank of the write buffer.

24.4.2.1 Using the Write Buffer Test Mode Interface

Sampling the WBMSTR2±WBMSTR0 pins for write buffer debugging requires external 
decoding of the SDRAM interface signals to determine when write cycles are occurring on 
the SDRAM interface. To provide useful information about the cycle, the BA1–BA0 and 
MA12–MA0 SDRAM address bus must be demultiplexed to provide the full 28-bit memory 
address, and the SRASx, SCASx, and SWEx command signals must be sampled to 
differentiate reads, writes, refresh cycles, etc. 

Figure 24-3 shows WBMSTR2±WBMSTR0 timing during a SDRAM write cycle. The trace 
information is available one clock before the clock edge where the command is driven to 
the SDRAM. This guarantees sufficient setup so the trace information can be captured on 
the clock edge where the SDRAM command is sampled. It is the responsibility of the 
monitoring equipment to capture the WBMSTR2±WBMSTR0 trace signals information at 
the appropriate time and cycle type. This can be accomplished by monitoring the SDRAM 
interface pins and decoding the SDRAM cycle type for the programmed SDRAM timing. 
See Chapter 10, “SDRAM Controller”, for details on the ÉlanSC520 microcontroller’s 
address multiplexing scheme and SDRAM timing and signaling.

Determining when the data is valid during SDRAM read cycles requires knowledge of the 
SDRAM timing configuration, such as CAS latency, etc. See “SDRAM Read Cycle in Write 
Buffer Test Mode” on page 24-8. For writes, the data is available at the time of the write. 
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24.4.2.2 SDRAM Write Cycle in Write Buffer Test Mode

Table 24-3 describes the WBMSTR2±WBMSTR0 decoding during an SDRAM write 
operation.

Figure 24-3 illustrates the timing of an example of a page hit SDRAM write cycle during 
write buffer test mode. To capture the WBMSTR2±WBMSTR0 pins, the logic analyzer or 
external in-circuit emulation system must decode the SDRAM command and latch the 
WBMSTR2±WBMSTR0 pin on the rising edge of CLKMEMIN.

Figure 24-3 Write Buffer Test Mode Timing During an SDRAM Write Cycle (Page Hit)

24.4.2.3 SDRAM Read Cycle in Write Buffer Test Mode

During read operations, the WBMSTR2±WBMSTR0 pins can be used to determine which 
master is performing the current SDRAM read cycle. Although more than one of these 
sources may have written to a given rank in the write buffer, only one initiator can read a 
rank at any given time. 

Table 24-4 describes the WBMSTR2±WBMSTR0 pins during a SDRAM read operation in 
write buffer test mode. Note that SDRAM read cycles can occur with more than one of the 
WBMSTR2±WBMST0 signals active during the read portion of a read-modify-write cycle. 

Table 24-3 WBMSTR2±WBMSTR0 Pin Definition During Write Buffer Write Cycles

WBMSTR2±WBMSTR0 Pins

DescriptionAm5x86 CPU
PCI

Bus Master
GP-DMA 

Controller

0 0 0 Reserved

0 0 1 GP-DMA contributed write data

0 1 0 PCI master contributed write data

0 1 1 PCI master and GP-DMA contributed write data

1 0 0 Am5x86 CPU contributed write data

1 0 1 Am5x86 CPU and GP-DMA contributed write data

1 1 0 Am5x86 CPU and PCI master contributed write 
data

1 1 1 All masters contributed write data

CLKMEMIN

BA1–BA0

Command

MD31–MD0

Wr Nop Nop

WBMSTR2–
Sample WBMSTRx pins here

WBMSTR0

MA12–MA0
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In this case, the WBMSTR2±WBMSTR0 pins represent which bus initiators contributed to 
the rank of the write buffer that is being written to SDRAM.

Figure 24-4 illustrates the timing of a page miss SDRAM read cycle (with a CAS latency of 
2) during write buffer test mode. To capture the WBMSTR2±WBMSTR0 pins during a read 
cycle, the logic analyzer or external in-circuit emulation system must decode the SDRAM 
read command and delay latching the WBMSTR2±WBMSTR0 pins until the appropriate 
CAS latency timing is met. WBMSTR2±WBMSTR0 are captured on the rising edge of 
CLKMEMIN. The CAS latency timing is configured in the SDRAM Timing Control 
(DRCTMCTL) register (MMCR offset 12h). The MA12–MA0 and BA1–BA0 signals can be 
used to determine the physical address generated by the requesting master.

Figure 24-4 Write Buffer Test Mode Timing During a SDRAM Read Cycle (Page Miss)

Table 24-4 WBMSTR2±WBMSTR0 Pin Definition During SDRAM Read Cycles

WBMSTR2±WBMSTR0 Pins

DescriptionAm5x86 CPU
PCI

Bus Master
GP-DMA 

Controller

0 0 0 Read prefetch cycle (No master requested 
read cycle)

0 0 1 GP-DMA is current read master

0 1 0 PCI master is current read master

0 1 1 Reserved

1 0 0 Am5x86 CPU is current read master

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Reserved

Nop RdAct Nop Nop

a b c d

Row Col

CPU

CLKMEMIN

BA1–BA0

MD31–MD0

WBMSTR2–
WBMSTR0

Command

MA12–MA0
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24.4.3 Other Debugging Features on the Élan™SC520 Microcontroller
24.4.3.1 Nonconcurrent Arbitration Mode

The ÉlanSC520 microcontroller’s system arbitration is comprised of an Am5x86 CPU bus 
arbiter and a PCI bus arbiter, which enables concurrent mode operation. In the concurrent 
arbitration mode, transactions on the Am5x86 CPU bus and the PCI bus can occur 
simultaneously. For example, a peer-to-peer PCI bus transaction can occur simultaneously 
with an Am5x86 CPU transaction. The advantage of this mode is the optimal utilization of 
the two buses. However, this can be confusing when attempting system debugging, because 
it is difficult to trace bus activity with concurrency. Also, some system bugs can be traced 
back to improper configuration during concurrent arbitration mode while both the Am5x86 
CPU and external PCI bus masters are active. This occurs, for example, when the Am5x86 
CPU is modifying configuration registers such as address decode registers that affect PCI 
bus master operation. In this case, using nonconcurrent arbitration mode instead can assist 
in tracing these problems.

At system initialization, the ÉlanSC520 microcontroller boots up in the nonconcurrent 
arbitration mode until the CNCR_MODE_ENB bit in the System Arbiter Control 
(SYSARBCTL) register (MMCR offset 70h) is set. For debugging purposes, it can be useful 
to omit this step and remain in nonconcurrent arbitration mode. For more details, see 
Chapter 8, “System Arbitration”.

24.4.3.2 Echoing Integrated Peripheral Accesses on the GP Bus

All accesses from the Am5x86 CPU to the ÉlanSC520 microcontroller’s integrated 
peripherals are not externally visible, but can optionally be directly monitored on the GP 
bus using GP bus echo mode. If required, a logic analyzer can be connected to the GP bus 
to monitor and debug the transactions. When the GP_ECHO_ENB bit is set in the GP Echo 
Mode (GPECHO) register (MMCR offset C00h), accesses to the GP-DMA controller, RTC, 
internal timers, PIC, UARTs, and PIOs are echoed externally on the GP bus. During reads, 
the data from the peripheral is also driven on the GP bus data lines, GPD15–GPD0. 

24.4.3.3 Summary of Additional System Debugging Features

There are additional features in the ÉlanSC520 microcontroller that are not included 
specifically for system debugging but can be useful during the debugging phase. These 
features are described in other chapters, but are summarized below for reference.

■ The ÉlanSC520 microcontroller provides the ability to control the Am5x86 CPU’s cache 
write policy with the Am5x86 CPU Control (CPUCTL) register (MMCR offset 02h) and 
to disable the cache using the CPU’s machine status (CR0) register. This can be useful 
in debugging some system problems when cache coherency is a problem or when 
visibility of all Am5x86 CPU memory cycles are required externally. See Chapter 7, 
“Am5x86® CPU”, for details on cache control.

■ The ÉlanSC520 microcontroller provides the ability to dynamically control the Am5x86 
CPU’s internal clock speed in the Am5x86 CPU Control (CPUCTL) register. This is 
primarily to allow thermal management, but there may be some cases when it is useful 
to adjust the clock speed for debugging purposes. See Chapter 7, “Am5x86® CPU”, for 
details on clock speed control.

■ The SDRAM controller’s write buffer and read buffer can be disabled by resetting the 
WB_ENB bit in the SDRAM Buffer Control (DBCTL) register (MMCR offset 40h). This 
can be useful during system debugging, because it prevents queued SDRAM writes and 
prefetching on the SDRAM interface that can make it difficult to trace bus activity. See 
Chapter 11, “Write Buffer and Read Buffer”, for details on disabling these features.
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■ The ÉlanSC520 microcontroller’s address decode logic allows notification of violations 
of write-protected memory regions, which is useful when debugging a software task that 
is illegally attempting to modify a portion of memory modified as write-protected. See 
Chapter 4, “System Address Mapping”, for further details on enabling this feature.

■ The ÉlanSC520 microcontroller’s address decode logic also allows notification of 
violations of memory regions marked as non-executable address space. This is useful 
when debugging a software task that is attempting to execute code from a portion of 
memory designated for data only. See Chapter 4, “System Address Mapping”, for further 
details on enabling this feature.

■ If the ICE_ON_RST bit is set in the Reset Configuration (RESCFG) register (MMCR 
offset D72h), the Am5x86 CPU enters AMDebug mode whenever it is reset (immediately 
after the reset sequence). The debugging tool can read the Reset Status (RESSTA) 
register (MMCR offset D74h) to identify the source of the reset.

■ The programmable interrupt controller (PIC) supports many features, such as the ability 
to mask specific interrupts and to force software interrupts, which can also be useful 
during the system debugging phase. See Chapter 15, “Programmable Interrupt 
Controller”, for details on configuring interrupts in a system.

■ To assist in the development of software to handle ECC single-bit and multi-bit errors, 
the ECC Check Code Test (ECCCKTEST) register (MMCR offset 23h) is provided. This 
register can be used to override the automatically-generated ECC check code with a 
user-provided check code for the following SDRAM write access.

24.4.4 Software Considerations
The cache should always be flushed after the cacheability attribute for an address range 
is changed from cacheable to noncacheable for any memory region (by programming a 
PAR register), or when the cache write policy is changed from write-back to write-through.

Software must include proper interrupt service routines and exception handlers when 
enabling write-protection violation interrupts and non-executable region attributes in the 
Address Decode Control (ADDDECCTL) register (MMCR offset 80h). Note that in the case 
of the write-protect violation, the address of the violation is latched in a 32-bit register and 
retained until the register is cleared by software; any additional violations that occur before 
the register is read will not be seen.

A write-protection violation occurs when the Am5x86 CPU, any PCI bus master, or the GP-
DMA controller attempt to write to any memory region that has been marked as write-
protected by a PAR register attribute. When this occurs, the cycle is always forwarded to 
SDRAM as a write-protected cycle (the SDQM3–SDQM0 pins are forced inactive), and the 
original data is discarded.

24.4.5 Latency
Some features described in this chapter to aid the debugging process may affect system 
performance, and these effects should therefore be considered when enabling or disabling. 
A brief list of the features and their direct affects on latency are listed.

■ Write buffer and system test modes do not affect performance, unless the SDRAM timing 
has been programmed at slower speeds to accommodate external capturing of data.

■ Nonconcurrent arbitration affects PCI bus latency, the Am5x86 CPU’s latency, and the 
GP-DMA controller’s latency, since ownership of both buses must be negotiated before 
any transaction is allowed to begin. The effect in a system with no PCI bus masters or 
GP-DMA initiators is much less, because bus acquisition is immediate.
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■ The Am5x86 CPU’s internal cache can greatly affect system performance.

– When disabled, all Am5x86 CPU operations require an external bus cycle, which yields 
significantly less bus bandwidth for PCI bus masters and GP-DMA initiators.

– When configured in write-through cache mode, all Am5x86 CPU write cycles are 
forwarded to the Am5x86 CPU bus, whereas in write-back cache mode, they are only 
forwarded out of the Am5x86 CPU when a cache miss or write-back/copy-back cycle 
occurs. Although write-through cache mode takes much less of the bandwidth away 
from PCI bus masters and GP-DMA initiators, it is significantly more than when the 
cache is operating in write-back mode.

– When areas of memory are marked as noncacheable in the PAR registers, the 
overhead of cache write-backs is reduced, yielding lower latency for all system bus 
owners.

■ The internal Am5x86 CPU core clock speed affects overall Am5x86 CPU performance 
when the Am5x86 CPU is able to execute from its internal cache. When the cache is 
disabled, the effect of a higher core speed is much less, because all operations require 
an external bus cycle at the fixed bus speed of 33 MHz.

■ Disabling the write buffer and read buffer may significantly affect performance, depending 
on the ordering of reads and writes, and the number of PCI bus masters and the amount 
of GP-DMA activity in the system. It is difficult to predict the exact effect of these buffers 
on each system, because there are many dependencies. However, it should be noted 
that, in some cases, a notable change in system performance will occur. This also 
complicates the system debugging process, because the system bus activity profile may 
be much different in the two cases.

■ Enabling interrupts for write-protect violation notification (as with all maskable interrupts), 
causes a context switch to occur, which naturally imposes a reload of the Interrupt 
Descriptor Table and saving the current state of the Am5x86 CPU before servicing the 
interrupt. This should not be a long-term problem, because it is expected that the write 
violation protection would occur only during the initial debugging phases of system 
development.

■ When GP bus echoing is enabled, the access times of the integrated peripherals is 
subject to the timing programmed for the external GP bus.

24.5 INITIALIZATION
The state of the ÉlanSC520 microcontroller debugging features after system reset is:

■ The WBMSTR2–WBMSTR0 pins default to system test mode, in which they assume the 
function of CF_DRAM, DATASTRB, and CF_ROM_GPCS pins respectively.

■ The system arbitration defaults to nonconcurrent arbitration mode operation.

■ Echoing of integrated peripheral accesses is disabled.

■ The Am5x86 CPU’s cache is disabled and configured for write-back cache mode.

■ The Am5x86 CPU default clock speed is 100 MHz.

■ The write buffer and the read buffer are disabled.

■ The write-protection violation interrupt is disabled, and the Programmable Address 
Region (PAR) registers are cleared; thus, no write-protect or non-executable memory 
regions are defined.
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CHAPTER
25 B
OUNDARY SCAN TEST INTERFACE
25.1 OVERVIEW
The ÉlanSC520 microcontroller provides test and debug features compliant with IEEE 
Standard Test Access Port (TAP) and Joint Test Action Group (JTAG) (IEEE Std 1149.1-
1990). The test logic is provided to test and ensure that:

■ Components function correctly

■ Interconnections between various components are correct

■ Various components interact correctly on the printed circuit board

25.2 BLOCK DIAGRAM
Figure 25-1 shows a block diagram of the Boundary Scan register of the ÉlanSC520 
microcontroller.

Figure 25-1 Logical Structure of Boundary Scan Register

JTAG_TMS

JTAG_TRST

JTAG_TCK
Controller

TAP

JTAG_TDOJTAG_TDI

B/S
cell

B/S
cell

B/S
cell

B/S
cell

Boundary Scan Register

On-Chip

System
Logic

B/S
cell

Bidirectional
pins

Output pins

BSR

Control

Élan™SC520 Microcontroller

Input pins
Élan™SC520 Microcontroller User’s Manual 25-1



Boundary Scan Test Interface
25.3 SYSTEM DESIGN

25.3.1 JTAG Pin Strapping
Designers using JTAG for board continuity testing commonly expect to exercise any pin in 
an arbitrary fashion. However, pinstrapping on the GPA25 pin could cause unexpected 
behavior. The pinstrap on the GPA25 pin is {DEBUG_ENTER}. If, at the assertion of 
PWRGOOD, {DEBUG_ENTER} is High, AMDebug mode will be enabled and the CPU will 
not perform as expected. The GPA25{DEBUG_ENTER} pin cannot be High at the assertion 
of PWRGOOD if the JTAG port is to be used for continuity testing. 

25.4 REGISTERS
The ÉlanSC520 microcontroller contains four test data registers: Bypass register, Boundary 
Scan register, Device Identification register and Serial Debug Port Data register. A fifth 
register, the Instruction register, is used to specify the test to be executed and the data 
register to be accessed.

The Bypass register and Boundary Scan register are serially connected to JTAG_TDI and 
JTAG_TDO, with JTAG_TDI connected to the most significant bit and JTAG_TDO connected 
to the least significant bit of the test data register. Data is shifted one stage (bit position 
within the register) on each rising edge of the test clock (JTAG_TCK). Table 25-1 gives a 
description of each register. The Serial Debug Port Data register is part of the AMDebug 
utility and is physically located in the AMDebug logic. See Chapter 26, “AMDebug™ 
Technology”, for more information on the AMDebug interface.

25.5 OPERATION
The test and debugging features on the ÉlanSC520 microcontroller include the following 
elements:

■ Pins—JTAG_TDI, JTAG_TMS, JTAG_TDO, JTAG_TCK and JTAG_TRST. In addition, 
there are four pins for the AMDebug utility: CMDACK, BR/TC, STOP/TX, and TRIG/
TRACE.

■ Instruction Register (IR)—The instruction codes select the specific test or debug 
operation to be performed and the test data register to be accessed.

Table 25-1 Chip Test and Debugging Registers

Register Mnemonic Function

Boundary Scan BSR A single shift register path containing the boundary scan cells that are 
connected to all input and output pins of the ÉlanSC520 microcontroller. 
Figure 25-1 shows the logical structure of the Boundary Scan register. Data 
is transferred without inversion from JTAG_TDI to JTAG_TDO through the 
Boundary Scan register during scanning. The Boundary Scan register is 
affected by the EXTEST and SAMPLE/PRELOAD instructions.

Bypass BPR Provides a path from JTAG_TDI to JTAG_TDO with one clock cycle 
latency.Used to bypass the chip completely while testing boards containing 
many chips.

Device Identification DID A 32-bit register that contains AMD’s ID code for the ÉlanSC520 
microcontroller.

Serial Debug Port Data SDPD A 38 bit register that serves as a command/status/data interface with the 
Am5x86 CPU processor. Figure 25-2 on page 25-14 shows the format.

Instruction IR Determines the test that has to be executed and the data register to access.
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■ Test Data Registers—Boundary Scan (BSR) register, Device Identification (DID) 
register, Bypass (BPR) register, and Serial Debug Port Data (SDPD) register.

■ Test Access Port (TAP) controller—State-machine and control logic implementation.

The instruction and test data registers are separate shift-register paths connected in parallel 
that have a common serial data input and a common serial data output connected to the 
TAP signals, JTAG_TDI and JTAG_TDO, respectively.

25.5.1 Instruction Register
The Instruction register is a 4-bit register that allows instructions to be serially shifted into 
the device. The instruction determines the test to be executed and the data register to be 
accessed. The least significant bit is nearest the JTAG_TDO output. When the test access 
port (TAP) controller is reset, the Instruction register is loaded with the default instruction 
IDCODE. 

25.5.1.1 Implemented Instructions
The ÉlanSC520 microcontroller supports all three mandatory boundary-scan instructions: 
BYPASS, SAMPLE/PRELOAD, and EXTEST, along with three additional instructions: 
IDCODE, HIGHZ and DEBUG.

Table 25-2 shows the test access port (TAP) instructions that are supported on the 
ÉlanSC520 microcontroller.

25.5.1.1.1 EXTEST Instruction
The instruction code is 0000b. The EXTEST instruction allows testing of circuitry external 
to the component package, typically board interconnects. It does so by driving the values 
loaded into the microcontroller’s Boundary Scan register out on to the output pins 
corresponding to each boundary scan cell. It then captures the values on the 
microcontroller’s input pins to be loaded into their corresponding Boundary Scan register 
locations. I/O pins are selected as input or output, depending on the value loaded into their 
control setting locations in the Boundary Scan register. Values shifted into input latches in 
the Boundary Scan register are never used by the internal logic of the ÉlanSC520 
microcontroller.

Note: After using the EXTEST instruction, the ÉlanSC520 microcontroller should be reset 
before normal (non-boundary scan) use to ensure the state of the ÉlanSC520 
microcontroller.

Table 25-2 Test Access Port Instruction Set

Instruction IR3–IR0

EXTEST 0000

SAMPLE/PRELOAD 0001

IDCODE 0010

HIGHZ 0011

Reserved 0100

DEBUG 0101

Reserved 0110–1110

BYPASS 1111
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25.5.1.1.2 SAMPLE/PRELOAD Instruction
The instruction code is 0001b. The SAMPLE/PRELOAD instruction performs two functions. 

■ When the TAP controller is in the Capture-DR state, the SAMPLE/PRELOAD instruction 
allows a “snapshot” of the normal operation of the ÉlanSC520 microcontroller without 
interfering with that normal operation. The instruction causes Boundary Scan register 
cells associated with outputs to sample the value being driven by the microcontroller. It 
causes the cells associated with inputs to sample the value being driven into the 
microcontroller. On both outputs and inputs, the sampling occurs on the rising edge of 
JTAG_TCK. 

■ When the TAP controller is in the Update-DR state, the SAMPLE/PRELOAD instruction 
preloads data to the device pins to be driven to the board by executing the EXTEST 
instruction. Data is preloaded to the pins from the Boundary Scan register on the falling 
edge of JTAG_TCK.

25.5.1.1.3 IDCODE Instruction
The instruction code is 0010b. The IDCODE instruction selects the Device Identification 
register to be connected to JTAG_TDI and JTAG_TDO, allowing the device identification 
code to be shifted out of the device on JTAG_TDO. Note that the Device Identification 
register is not altered by data being shifted in on JTAG_TDI.

25.5.1.1.4 HIGHZ Instruction
The instruction code is 0011b. The HIGHZ instruction connects the Bypass register between 
JTAG_TDI and JTAG_TDO. This instruction forces all outputs to a high-impedance state.

25.5.1.1.5 BYPASS Instruction
The instruction code is 1111b. The BYPASS instruction selects the Bypass register to be 
connected to JTAG_TDI or JTAG_TDO, effectively bypassing the test logic on the 
ÉlanSC520 microcontroller by reducing the shift length of the device to one bit. 

Note that an open circuit fault in the board-level test data path causes the Bypass register 
to be selected following an instruction scan cycle due to the pullup resistor on the JTAG_TDI 
input. This has been done to prevent any unwanted interference with the proper operation 
of the system logic. The Instruction register can be accessed when this command is being 
executed, because only the Boundary Scan register is affected during this instruction.

25.5.1.1.6 DEBUG Instruction
The instruction code is 0101. The DEBUG instruction enables a 38-bit dedicated data 
register that serves as a command/status/data interface with Am5x86 CPU processor. 
When the DEBUG instruction is written into the Instruction register, the serial debug shifter 
is connected to the JTAG TDI–TDO serial interface. The DEBUG command and data are 
loaded into and read from the serial debug shifter using the Capture-DR–Update-DR 
sequence in the TAP controller state machine. 

Loading the DEBUG instruction enables additional AMDebug technology signals to provide 
pinpoint accuracy of external breakpoint assertion and elimination of status polling of the 
JTAG serial interface. These signals are: CMDACK, BR/TC, STOP/TX and TRIG/TRACE.
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25.5.2 Configuration Information
There are five scan paths from JTAG_TDI to JTAG_TDO in the ÉlanSC520 microcontroller: 

■ Instruction path

■ Bypass path

■ Main data path through the Boundary Scan register

■ Serial Debug Port Data register

■ Device Identification register

25.5.2.1 Instruction Path

This four-cell path is used to scan into the Instruction register. This chain is loaded when 
the TAP controller is driven to the states Select-IR-Scan through Update-IR. See 
Figure 25-4 on page 25-15.

25.5.2.2 Bypass Path

This path bypasses the test logic on the microcontroller by reducing the shift length of the 
device to one bit. Commands can still be entered in the Instruction register during this 
operation.

25.5.2.3 Main Data Scan Path

Table 25-3 shows the main data scan path. The order shown is first-to-last; i.e., the first is 
closest to JTAG_TDI and the last is closest to JTAG_TDO. Control cells are used to control 
the enables of the three-state pads. If a 1 is shifted into the control cell, the associated pins 
are three-stated or selected as inputs. 

Note: Each of the shaded control cells shown in Table 25-3 contains the output enable 
control for the pads listed below the control cell and before the next control cell. For 
bidirectional pads, the output is listed first (closest to JTAG_TDI).

Table 25-3 Main Data Scan Path

Pad Name Scan Type Boundary Scan Order

Control 486

BA1 Output 485

BA0 Output 484

MA12 Output 483

MA11 Output 482

MA10 Output 481

MA9 Output 480

MA8 Output 479

MA7 Output 478

MA6 Output 477

MA5 Output 476

MA4 Output 475

MA3 Output 474

MA2 Output 473

MA1 Output 472

MA0 Output 471
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Control 470

MD31 Bidirectional 468, 469

MD30 Bidirectional 466, 467

MD29 Bidirectional 464, 465

MD28 Bidirectional 462, 463

MD27 Bidirectional 460, 461

MD26 Bidirectional 458, 459

MD25 Bidirectional 456, 457

MD24 Bidirectional 454, 455

MD23 Bidirectional 452, 453

MD22 Bidirectional 450, 451

MD21 Bidirectional 448, 449

MD20 Bidirectional 446, 447

MD19 Bidirectional 444, 445

MD18 Bidirectional 442, 443

MD17 Bidirectional 440, 441

MD16 Bidirectional 438, 439

MD15 Bidirectional 436, 437

MD14 Bidirectional 434, 435

MD13 Bidirectional 432, 433

MD12 Bidirectional 430, 431

MD11 Bidirectional 428, 429

MD10 Bidirectional 426, 427

MD9 Bidirectional 424, 425

MD8 Bidirectional 422, 423

MD7 Bidirectional 420, 421

MD6 Bidirectional 418, 419

MD5 Bidirectional 416, 417

MD4 Bidirectional 414, 415

MD3 Bidirectional 412, 413

MD2 Bidirectional 410, 411

MD1 Bidirectional 408, 409

MD0 Bidirectional 406, 407

MECC6 Bidirectional 404, 405

MECC5 Bidirectional 402, 403

MECC4 Bidirectional 400, 401

MECC3 Bidirectional 398, 399

MECC2 Bidirectional 396, 397

MECC1 Bidirectional 394, 395

MECC0 Bidirectional 392, 393

Control 391

SCS3 Output 390

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
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SCS2 Output 389

SCS1 Output 388

SCS0 Output 387

Control 386

CLKMEMOUT Output 385

CLKMEMIN Input 384

Control 383

SRASB Output 382

SRASA Output 381

Control 380

SCASB Output 379

SCASA Output 378

Control 377

SWEB Output 376

SWEA Output 375

Control 374

SDQM3 Output 373

SDQM2 Output 372

SDQM1 Output 371

SDQM0 Output 370

Control 369

BOOTCS Output 368

Control 367

ROMRD Output 366

Control 365

FLASHWR Output 364

Control 363

ROMBUFOE Output 362

Control 361

ROMCS1 Output 360

Control 359

ROMCS2 Output 358

Control 357

AD31 Bidirectional 355, 356

AD30 Bidirectional 353, 354

AD29 Bidirectional 351, 352

AD28 Bidirectional 349, 350

AD27 Bidirectional 347, 348

AD26 Bidirectional 345, 346

AD25 Bidirectional 343, 344

AD24 Bidirectional 341, 342

AD23 Bidirectional 339, 340

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
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AD22 Bidirectional 337, 338

AD21 Bidirectional 335, 336

AD20 Bidirectional 333, 334

AD19 Bidirectional 331, 332

AD18 Bidirectional 329, 330

AD17 Bidirectional 327, 328

AD16 Bidirectional 325, 326

AD15 Bidirectional 323, 324

AD14 Bidirectional 321, 322

AD13 Bidirectional 319, 320

AD12 Bidirectional 317, 318

AD11 Bidirectional 315, 316

AD10 Bidirectional 313, 314

AD9 Bidirectional 311, 312

AD8 Bidirectional 309, 310

AD7 Bidirectional 307, 308

AD6 Bidirectional 305, 306

AD5 Bidirectional 303, 304

AD4 Bidirectional 301, 302

AD3 Bidirectional 299, 300

AD2 Bidirectional 297, 298

AD1 Bidirectional 295, 296

AD0 Bidirectional 293, 294

Control 292

CBE3 Bidirectional 290, 291

CBE2 Bidirectional 288, 289

CBE1 Bidirectional 286, 287

CBE0 Bidirectional 284, 285

Control 283

PAR Bidirectional 281, 282

SERR Input 280

Control 279

PERR Bidirectional 277, 278

Control 276

FRAME Bidirectional 274, 275

Control 273

TRDY Bidirectional 271, 272

Control 270

IRDY Bidirectional 268, 269

Control 267

STOP Bidirectional 265, 266

Control 264

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
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DEVSEL Bidirectional 262, 263

Control 261

CLKPCIOUT Output 260

CLKPCIIN Input 259

Control 258

RST Output 257

INTD Input 256

INTC Input 255

INTB Input 254

INTA Input 253

REQ4 Input 252

REQ3 Input 251

REQ2 Input 250

REQ1 Input 249

REQ0 Input 248

Control 247

GNT4 Output 246

Control 245

GNT3 Output 244

Control 243

GNT2 Output 242

Control 241

GNT1 Output 240

Control 239

GNT0 Output 238

Control 237

GPA25 Bidirectional 235, 236

GPA24 Bidirectional 233, 234

GPA23 Bidirectional 231, 232

GPA22 Bidirectional 229, 230

GPA21 Bidirectional 227, 228

GPA20 Bidirectional 225, 226

GPA19 Bidirectional 223, 224

GPA18 Bidirectional 221, 222

GPA17 Bidirectional 219, 220

GPA16 Bidirectional 217, 218

GPA15 Bidirectional 215, 216

GPA14 Output 214

GPA13 Output 213

GPA12 Output 212

GPA11 Output 211

GPA10 Output 210

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
Élan™SC520 Microcontroller User’s Manual 25-9



Boundary Scan Test Interface
GPA9 Output 209

GPA8 Output 208

GPA7 Output 207

GPA6 Output 206

GPA5 Output 205

GPA4 Output 204

GPA3 Output 203

GPA2 Output 202

GPA1 Output 201

GPA0 Output 200

Control 199

GPD15 Bidirectional 197, 198

GPD14 Bidirectional 195, 196

GPD13 Bidirectional 193, 194

GPD12 Bidirectional 191, 192

GPD11 Bidirectional 189, 190

GPD10 Bidirectional 187, 188

GPD9 Bidirectional 185, 186

GPD8 Bidirectional 183, 184

Control 182

GPD7 Bidirectional 180, 181

GPD6 Bidirectional 178, 179

GPD5 Bidirectional 176, 177

GPD4 Bidirectional 174, 175

GPD3 Bidirectional 172, 173

GPD2 Bidirectional 170, 171

GPD1 Bidirectional 168, 169

GPD0 Bidirectional 166, 167

Control 165

GPRESET Output 164

Control 163

GPIORD Output 162

Control 161

GPIOWR Output 160

Control 159

GPMEMRD Output 158

Control 157

GPMEMWR Output 156

Control 155

PIO27 Bidirectional 153, 154

Control 152

PIO26 Bidirectional 150, 151

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
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Control 149

PIO25 Bidirectional 147, 148

Control 146

PIO24 Bidirectional 144, 145

Control 143

PIO23 Bidirectional 141, 142

Control 140

PIO22 Bidirectional 138, 139

Control 137

PIO21 Bidirectional 135, 136

Control 134

PIO20 Bidirectional 132, 133

Control 131

PIO19 Bidirectional 129, 130

Control 128

PIO18 Bidirectional 126, 127

Control 125

PIO17 Bidirectional 123, 124

Control 122

PIO16 Bidirectional 120, 121

Control 119

PIO15 Bidirectional 117, 118

Control 116

PIO14 Bidirectional 114, 115

Control 113

PIO13 Bidirectional 111, 112

Control 110

PIO12 Bidirectional 108, 109

Control 107

PIO11 Bidirectional 105, 106

Control 104

PIO10 Bidirectional 102, 103

Control 101

PIO9 Bidirectional 99, 100

Control 98

PIO8 Bidirectional 96, 97

Control 95

PIO7 Bidirectional 93, 94

Control 92

PIO6 Bidirectional 90, 91

Control 89

PIO5 Bidirectional 87, 88

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
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Control 86

PIO4 Bidirectional 84, 85

Control 83

PIO3 Bidirectional 81, 82

Control 80

PIO2 Bidirectional 78, 79

Control 77

PIO1 Bidirectional 75, 76

Control 74

PIO0 Bidirectional 72, 73

Control 71

SOUT1 Output 70

SIN1 Input 69

Control 68

RTS1 Output 67

CTS1 Input 66

DSR1 Input 65

Control 64

DTR1 Output 63

DCD1 Input 62

RIN1 Input 61

Control 60

SOUT2 Output 59

SIN2 Input 58

Control 57

RTS2 Output 56

Control 55

PIO28 Bidirectional 53, 54

Control 52

PIO29 Bidirectional 50, 51

Control 49

DTR2 Output 48

Control 47

PIO30 Bidirectional 45, 46

Control 44

PIO31 Bidirectional 42, 43

Control 41

SSI_CLK Output 40

SSI_DI Input 39

Control 38

SSI_DO Output 37

Control 36

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
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Notes:
The control cell for the BA1–BA0 and MA12–MA0 pins is closest to the JTAG_TDI pin (beginning of
the boundary scan chain), and TMROUT0 is closest to the JTAG_TDO pin (end of the boundary
scan chain).

Each of the shaded control cells shown in Table 25-3 contains the output enable control for the pads
listed below the control cell and before the next control cell. For bidirectional pads, the output is listed
first (closest to JTAG_TDI).

CLKTIMER Bidirectional 34, 35

PWRGOOD Input 33

PRGRESET Input 32

Control 31

CMDACK Output 30

BR/TC Input 29

Control 28

STOP/TX Output 27

Control 26

TRIG/TRACE Output 25

Control 24

DC Bidirectional 22, 23

Control 21

DATASTRB Bidirectional 19, 20

Control 18

CPUACT Bidirectional 16, 17

Control 15

PITOUT2 Bidirectional 13, 14

Control 12

PITGATE2 Bidirectional 10, 11

Control 9

TMRIN1 Bidirectional 7, 8

Control 6

TMRIN0 Bidirectional 4, 5

Control 3

TMROUT1 Output 2

Control 1

TMROUT0 Output 0

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
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25.5.2.4 Serial Debug Port Data Register

Figure 25-2 shows the format of the Serial Debug Port Data register. The 38-bit Serial 
Debug Port Data register serves as a command/status/data interface with the Am5x86 CPU. 

Figure 25-2 Serial Debug Port Data Register Format

25.5.2.5 Device Identification Register

Figure 25-3 shows the format of the Device Identification register. For the ÉlanSC520 
microcontroller, the least significant 28-bits of the Device Identification register are hard-
coded to a value of 0EFF003h. The VERSION field, represented by bits 31–28, reflects the 
value of the MINORSTEP field of the ÉlanSC520 Microcontroller Revision ID (REVID) 
register (MMCR offset 00h).

Figure 25-3 Device Identification Register Format 

Debug Data Command P F JTAG_TDOJTAG_TDI

37 56 2 01

Bit Name Function

37–6 DEBUG_DATA[31–0] Debug Data

5–2 COMMAND[3–0] Command

1 P Command pending flag status

0 F Command finished flag status

Part Number Manufacturer Identity

31 1112 0

Bit Name Function

31–28 VERSION Value of the MINORSTEP field of the 
ÉlanSC520 Microcontroller Revision 
ID (REVID) register

27–0 Part Number and 
Manufacturer Identity

Hardcoded to 0EFF003h

Version

28 27
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25.5.3 Test Access Port (TAP) Controller
The test access port (TAP) controller is a synchronous, finite state-machine that controls 
the sequence of operations of the test logic. The TAP controller changes state in response 
to the rising edge of JTAG_TCK. It can be reset to the Test-Logic-Reset state either by 
holding the JTAG_TRST pin Low or by holding the JTAG_TMS pin High for five JTAG_TCK 
periods.

The TAP controller state-machine is shown in Figure 25-4.

Figure 25-4 Test Access Port Controller State Diagram

25.5.3.1 TAP Controller States

25.5.3.1.1 Test-Logic-Reset State
In this state, the test logic is disabled so that normal operation of the device can continue 
unhindered. This is achieved by initializing the Instruction register such that the IDCODE 
instruction is loaded. No matter what the original state of the controller, the controller enters 
Test-Logic-Reset state when the JTAG_TMS input is held High (1) for at least five rising 
edges of JTAG_TCK. The controller remains in this state while JTAG_TMS is High. The 
TAP controller is also forced to enter this state when JTAG_TRST is asserted. 

Test-Logic-Reset

Run-Test/Idle

0

Select-DR-Scan

0

Capture-DR

0

1

Exit1-DR

0

Pause-DR

1

1

Update-DR

0

0

Shift-DR

Exit2-DR
0

1

1

0

Select-IR-Scan

0

Capture-IR

0

1

Exit1-IR

0

Pause-IR

1

1

Update-IR

0

0

Shift-IR

Exit2-IR
0

1

1

0

1

0

11

1 1 1

JTAG_TRST
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The JTAG TAP controller is not reset as a function of PWRGOOD when the system is 
powered up. Rather, JTAG_TRST has an internal pulldown resistor which causes the TAP 
controller to reset.

25.5.3.1.2 Run-Test-Idle State
This is a controller state between scan operations. When in this state, the controller remains 
in this state as long as JTAG_TMS is held Low. For instructions not causing functions to 
execute during this state, no activity occurs in the test logic. The Instruction register and 
all test data registers retain their previous state. When JTAG_TMS is High and a rising edge 
is applied to JTAG_TCK, the controller moves to the Select-DR state.

25.5.3.1.3 Select-Data Register (DR)-Scan State
This is a temporary controller state. The test data register selected by the current instruction 
retains its previous state. If JTAG_TMS is held Low and a rising edge is applied to 
JTAG_TCK when in this state, the controller moves into the Capture-DR state and a scan 
sequence for the selected test data register is initiated. If JTAG_TMS is held High and a 
rising edge is applied to JTAG_TCK, the controller moves to the Select-IR-Scan state.

The instruction does not change in this state.

25.5.3.1.4 Capture-DR State
In this state, the Boundary Scan register captures input pin data if the current instruction 
is EXTEST or SAMPLE/PRELOAD. The other test data registers, which do not have parallel 
input, are not changed.

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to JTAG_TCK, the 
controller enters the Exit1-DR state if JTAG_TMS is High, or the Shift-DR state if JTAG_TMS 
is Low.

25.5.3.1.5 Shift-DR State
In this controller state, the test data register connected between JTAG_TDI and JTAG_TDO 
as a result of the current instruction shifts data one stage toward its serial output on each 
rising edge of JTAG_TCK.

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to JTAG_TCK, the 
controller enters the Exit1-DR state if JTAG_TMS is High, or remains in the Shift-DR state 
if JTAG_TMS is Low.

25.5.3.1.6 Exit1-DR State
This is a temporary state. While in this state, if JTAG_TMS is held High, a rising edge applied 
to JTAG_TCK causes the controller to enter the Update-DR state, which terminates the 
scanning process. If JTAG_TMS is held Low and a rising edge is applied to JTAG_TCK, 
the controller enters the Pause-DR state.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

25.5.3.1.7 Pause-DR State
The pause state allows the test controller to temporarily halt the shifting of data through 
the test data register in the serial path between JTAG_TDI and JTAG_TDO. An example of 
using this state could be to allow a tester to reload its pin memory from disk during 
application of a long test sequence.
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The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

The controller remains in this state as long as JTAG_TMS is Low. When JTAG_TMS goes 
High and a rising edge is applied to JTAG_TCK, the controller moves to the Exit2-DR state.

25.5.3.1.8 Exit2-DR State
This is a temporary state. While in this state, if JTAG_TMS is held High, a rising edge applied 
to JTAG_TCK causes the controller to enter the Update-DR state, which terminates the 
scanning process. If JTAG_TMS is held Low and a rising edge is applied to JTAG_TCK, 
the controller enters the Shift-DR state.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

25.5.3.1.9 Update-DR State
The Boundary Scan register is provided with a latched parallel output to prevent changes 
at the parallel output while data is shifted in response to the EXTEST and SAMPLE/
PRELOAD instructions. When the TAP controller is in this state and the Boundary Scan 
register is selected, data is latched onto the parallel output of this register from the 
shift-register path on the falling edge of JTAG_TCK. The data held at the latched parallel 
output does not change other than in this state.

All shift-register stages in a test data register selected by the current instruction retain their 
previous values during this state. The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to JTAG_TCK, the 
controller enters the Select-DR State if JTAG_TMS is held High or the Run-Test/Idle State 
if JTAG_TMS is held Low.

25.5.3.1.10 Select-Instruction Register (IR)-Scan State
This is a temporary controller state. The test data register selected by the current instruction 
retains its previous state. If JTAG_TMS is held Low and a rising edge is applied to 
JTAG_TCK when in this state, the controller moves into the Capture-IR state and a scan 
sequence for the Instruction register is initiated. If JTAG_TMS is held High and a rising 
edge is applied to JTAG_TCK, the controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

25.5.3.1.11 Capture-IR State
In this controller state, the shift register contained in the Instruction register loads the fixed 
value 0001b on the rising edge of JTAG_TCK.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

When the controller is in this state and a rising edge is applied to JTAG_TCK, the controller 
enters the Exit1-IR state if JTAG_TMS is held High, or the Shift-IR state if JTAG_TMS is 
held Low.

25.5.3.1.12 Shift-IR State
In this state, the shift register contained in the Instruction register is connected between 
JTAG_TDI and JTAG_TDO and shifts data one stage towards its serial output on each rising 
edge of JTAG_TCK.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.
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When the controller is in this state and a rising edge is applied to JTAG_TCK, the controller 
enters the Exit1-IR state if JTAG_TMS is held High, or remains in the Shift-IR state if 
JTAG_TMS is held Low.

25.5.3.1.13 Exit1-IR State
This is a temporary state. In this state, if JTAG_TMS is held High, a rising edge applied to 
JTAG_TCK causes the controller to enter the Update-IR state, which terminates the 
scanning process. If JTAG_TMS is held Low and a rising edge is applied to JTAG_TCK, 
the controller enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

25.5.3.1.14 Pause-IR State
The pause state allows the test controller to temporarily halt the shifting of data through 
the Instruction register.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

The controller remains in this state as long as JTAG_TMS is Low. When JTAG_TMS goes 
High and a rising edge is applied to JTAG_TCK, the controller moves to the Exit2-IR state.

25.5.3.1.15 Exit2-IR State
This is a temporary state. While in this state, if JTAG_TMS is held High, a rising edge applied 
to JTAG_TCK causes the controller to enter the Update-IR state, which terminates the 
scanning process. If JTAG_TMS is held Low and a rising edge is applied to JTAG_TCK, 
the controller enters the Shift-IR state.

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state.

25.5.3.1.16 Update-IR State
The instruction shifted into the Instruction register is latched onto the parallel output from 
the shift-register path on the falling edge of JTAG_TCK. When the new instruction has been 
latched, it becomes the current instruction.

Test data registers selected by the current instruction retain their previous value.

When the TAP controller is in this state and a rising edge is applied to JTAG_TCK, the 
controller enters the Select-DR State if JTAG_TMS is held High or Run-Test Idle state if 
JTAG_TMS is held Low.
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25.5.4 Bus Cycles
Figure 25-5 and Figure 25-6 on page 25-20 give the bus cycles information of the test logic 
operation in data scan mode and instruction scan mode, respectively.

Figure 25-5 Test Logic Operation: Data Scan
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Figure 25-6 Test Logic Operation: Instruction Scan

25.5.5 Clocking Considerations
The targeted speed of operation for boundary scan is 25 MHz.

25.6 INITIALIZATION
The JTAG TAP controller is not reset as a function of PWRGOOD when the system is 
powered up. 

The test access port controller can be reset in the following ways:

■ When the JTAG_TRST pin is driven Low (0)—This resets the entire JTAG subsystem 
including the Instruction register.

■ When the JTAG_TMS pin is held High (1) for at least five rising edges of JTAG_TCK—
It remains in this state while JTAG_TMS is High (1). If the TAP controller leaves the reset 
state owing to an erroneous Low (0) signal on the JTAG_TMS line at the time of a rising 
edge on JTAG_TCK, it returns to the reset state after JTAG_TMS is held High for three 
rising edges of JTAG_TCK.

In the Test-Logic-Reset State of the TAP controller, the test logic is disabled so that normal 
operation of the device can continue without any hindrance. See “Test-Logic-Reset State” 
on page 25-15.
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CHAPTER
26A
MDebug™ TECHNOLOGY
26.1 OVERVIEW
The ÉlanSC520 microcontroller supports a full-featured, high-performance in-circuit emu-
lation capability. This in-circuit emulation support was developed at AMD specifically to 
enable users to test and debug their software earlier in the design cycle. Utilizing this 
capability, the software can be more extensively exercised, and at full execution speeds. It 
also allows tracing during execution from the Am5x86 CPU’s internal cache.

The AMDebug interface included on the ÉlanSC520 microcontroller provides the product 
design team with two different communication paths, each of which is supported by powerful 
debug tools from third-party vendors in AMD’s FusionE86 program. (See AMD FusionE86 
partners documentation on p. iii under Third-Party Support.)

■ Serial AMDebug technology uses a serial connection based on an enhanced JTAG 
protocol and an inexpensive 12-pin connector that can be placed on each board design. 
This low-cost solution satisfies the requirement of a large number of software developers.

■ Parallel AMDebug technology uses a 25-pin parallel debug port to exchange commands 
and data between the ÉlanSC520 microcontroller and the host. The higher pin count 
requires that the extra signal pins be provided on a special bond-out package of the 
ÉlanSC520 microcontroller; this package is made available only to tool developers such 
as in-circuit emulator manufacturers. The parallel AMDebug port greatly simplifies the 
task of supporting high-speed data exchange.

An on-chip trace controller provides trace information for reconstructing instruction execu-
tion flow in the processor. It supports tracing either to the serial AMDebug port, the bond-
out parallel port, or to an internal trace buffer. 

Use of JTAG technology for conventional boundary scan testing is described in Chapter 25, 
“Boundary Scan Test Interface”.
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26.2 BLOCK DIAGRAM
Figure 26-1 shows a system diagram of AMDebug software architecture. Two different 
configurations are shown.

Figure 26-1 AMDebug™ Technology Software Architecture

26.3 SYSTEM DESIGN
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AMDebug™ Technology
26.3.1 Connecting the AMDebug™ Port
There are multiple ways of connecting the host computer to the ÉlanSC520 microcontroller’s 
AMDebug port, including through a host computer’s serial port, parallel port, or via an 
Ethernet connection. For specific tool and connection types, refer to AMD FusionE86 part-
ners documentation on p. iii under Third-Party Support.

At a minimum, AMDebug operation can be achieved with the four basic JTAG signal pins: 
JTAG_TCK, JTAG_TMS, JTAG_TDI, and JTAG_TDO. Using JTAG pins alone, without the 
advantages of additional support pins, the lowest possible cost is achieved in terms of 
processor pins, but with the cost of reduced functionality. No attempt is made to multiplex 
the function of the JTAG pins. Multiplexing would prevent ensuring their availability for 
communication with the processor at all times and under any operating condition.

An inexpensive connector that links the PC port to the AMDebug port can be acquired to 
satisfy the requirement of a large number of software developers. Connection to a target 
via this simple arrangement offers considerable advantages: 

■ There is no need to remove the processor to connect an in-circuit emulator-like umbilical.

■ Connection is ensured no matter what the processor packaging technology.

■ Debug communication is independent of processor or memory system clocking speeds.

There are two AMDebug connector formats specified: a 12-pin connector (Figure 26-2) and 
a 20-pin connector (Figure 26-3). They differ in maximum operating frequency and number 
of connector pins. They both have the same number of active signals, but the 20-pin version 
has a ground wire placed between each signal wire.

.

Table 26-1 AMDebug™ Technology Connector Pins

Name I/O
External 
Resistor Description

JTAG_TCK Input PU Clock for the TAP controller and the debug serial/parallel interface

JTAG_TDI Input PU Input test data and instructions

JTAG_TDO Output PU Output data; three-stated when data is not driven

JTAG_TMS Input PU Test functions and sequence of test changes

JTAG_TRST Input PU Reset the JTAG controller

SYSRESET Input PU Reset all system logic. This pin should be held Low for at least four TCK 
clock cycles. SYSRESET can be ANDed directly with the PWRGOOD 
signal. This enables the AMDebug control unit to drive the ÉlanSC520 
microcontroller’s reset.

BR/TC Input PD Request entry to AMDebug mode/Turn instruction trace capture on-off

CMDACK Output — Acknowledge command

STOP/TX Output — Asserted High on entry to AMDebug mode; during normal mode set High

TRIG/TRACE Output — Trigger event to logic analyzer (optional, from Am486 debug registers)

PWRGOOD Output — Sample power level used by the JTAG controller driving hardware
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Software development systems based on the integrated debug technology should consider:

■ Providing for at least a 12-pin connector on each board design

■ Assigning the necessary tracking from the processor’s pins supporting the AMDebug 
port to the standard 12-pin connector

■ Including the small connector on production systems to enable in-field debugging

Figure 26-2 12-Pin Connector Format

When the serial connector is clocked at high speeds, e.g., above 10 MHz, there is danger 
of signal cross talk. To alleviate this problem, a 20-pin serial connector format is also 
available, as shown in Figure 26-3. The arrangement places a ground wire between each 
signal wire. Low-cost tools based on AMDebug technology operate satisfactorily with the 
12-pin connector shown in Figure 26-2, as long as cable lengths are not too long.

Figure 26-3 20-Pin Serial Connector Format
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AMDebug™ Technology
26.3.2 Mechanical Specifications for the Target Connector
A target board should contain a connector with male header pins. Pin spacing is 2 mm for 
both 12-pin and 20-pin formats, as shown in Figure 26-4. Debugging equipment should 
support a ribbon cable equipped with a female connector for attaching to the target. The 
appropriate last pin, pin 12 or pin 20, should not be installed, or, if necessary, removed at 
this location. At this location the female connector on the ribbon cable is populated with a 
post, which prevents the connector’s insertion in the reverse position. Compatible connec-
tors are available from Samtec, Inc. (model TMM-112-02-x-D for 12-pin), 3M, and other 
companies.

Figure 26-4 Mechanical Specifications for AMDebug™ Technology Target Connector

26.3.3 Locating the Connector on the Target System
Because the AMDebug port can contain high-frequency signals, position the connector as 
close to the processor as possible. However, allowances should be made for the physical 
requirements of the AMDebug control unit. For systems that support JTAG-based boundary 
scanning, a jumper block should be provided for isolating from the rest of the JTAG scan 
chain (see Figure 26-5) the connection from the AMDebug port to the processor. This 
jumper is not required by systems that only use JTAG to support AMDebug technology. 
When AMDebug technology debugging is not used, the jumpers can be set to connect the 
processor with the other devices forming the scan chain.

The target board should be equipped with pullup and pulldown resistors, as shown in 
Figure 26-5. The signal lines driven by the female cable connector should be three-stated 
before connection is established. The connection device can sense the required high volt-
age by sampling the VCC signal pin before driving the AMDebug port.
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Figure 26-5 Locating the Target Connector

26.4 OPERATION
The AMD software debugging strategy enables a range of debugging tool solutions offered 
by tool providers. The AMDebug port provides for commands to be sent to the ÉlanSC520 
microcontroller for processing by microcode. The AMDebug communication and data reg-
isters are used to exchange information between the target (ÉlanSC520 microcontroller) 
and a host system used to control the target. 

The low-cost communication path, which meets the requirements of most software devel-
opers, uses the serial connection based on the enhanced JTAG protocol. This option re-
quires very few signal pins to the processor and enables a 12-pin connector to be placed 
on each board design. A PC-port-to-AMDebug-port converter can be acquired inexpen-
sively (see AMD FusionE86 partners documentation on p. iii under Third-Party Support). 

The high-performance communication path, which is made available only to tool developers 
such as in-circuit emulator manufacturers, uses a parallel port connection that provides 
command and data exchange between the AMDebug port and the host. The higher pin 
count (25 instead of 8) requires that the extra signal pins be provided on a bond-out package. 
The die for both connection methods is the same. A standard parallel-interface format 
greatly simplifies the task of supporting high-speed data exchange with the target processor. 

The parallel access also enables execution trace data to be provided on the bond-out 
parallel access pins. This is the same data that is gathered in the on-chip trace cache, 
described in Section 26.4.1, except that now trace depth is limited by the external hardware 
rather than the depth of the on-chip trace cache provided by the non bond-out processor.
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26.4.1 On-Chip Trace Cache
An on-chip instruction cache makes it difficult to fully trace a program’s execution path by 
merely observing the external pins. Software engineers need to know a program’s address 
flow without turning off the cache or in any way intrusively monitoring the processor’s 
operation. The use of clock scaling and high internal clock speed make it difficult to provide 
trace information to the outside world without the use of on-chip trace cache.

The AMD software debug strategy provides for a small on-chip trace cache that stores only 
critical information, such as the outcome of a branch decision. The compression techniques 
employed enable much of the execution path to be retained in the on-chip trace cache. The 
cache can also log other information, such as operating system activity or performance-
critical parameters. On the bond-out package, the trace information can be continually 
provided off-chip at system bus speeds rather than the higher internal clock speeds. This 
is an advantage to the in-circuit emulator developer.

The trace cache is also useful when a multitasking operating system is employed. It is 
possible to unobtrusively trace the execution of a single task, thus extending the debugging 
capability beyond what is normally offered by debuggers incorporated with operating sys-
tems. This method overcomes the typically poor integration between operating systems 
and external trace capture hardware, such as a logic analyzer or in-circuit emulator.

26.4.2 Software Performance Profiling
Software profiling refers to examining the execution times, frequencies, and calling patterns 
of different software procedures within a complete program. A variety of techniques are 
currently used, some based on statistical analysis, others based on measurements 
achieved without statistical sampling. Execution times and call linkage are typically captured 
by external (off-chip) instrumentation watching the system buses.

Performance profiling is an exceptionally useful tool for the software engineer trying to 
optimize application execution times. When a bond-out package is used, an external hard-
ware device can be constructed to capture the necessary data. When used for instruction 
tracing, the trace cache will contain more information than is necessary to perform only 
profile analysis. Typically, code first must be “instrumented” before it can be analyzed.

Alternatively, to support performance profiling, the breakpoint control registers can be fur-
ther configured to start and stop a counter that measures elapsed time. When the counter 
is started, it is first set to zero, and when the counter is stopped, its value is placed in the 
trace cache. This scheme does not have all of the capabilities offered by a system assisted 
by external (off-chip) hardware; however, no instrumentation of code is required before 
profiling can commence.

In this case:

■ A breakpoint/trace control register is set to trigger (start) the counter on the entry to a 
procedure. 

■ A second breakpoint control register is used to stop counting when the procedure 
prologue is entered. 

■ A similar scheme is used to measure other parameters, such as an interrupt handler 
execution times. 

■ When the counter is stopped, the 16-bit count value is placed in the trace cache.

■ Post processing software is required to analyze the profile data. 
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The trace cache, when used to profile software, does not gather execution trace information. 
When profiling, the trace cache gathers information about the execution time spent, for 
example, in the selected procedure. Only one procedure can be profiled at one time. By 
examining the trace cache, the minimum, average, and maximum time spent in the proce-
dure can be determined (within the limitations of the samples gathered). 

A trace entry takes the form of a pair of time values. A second counter runs continually, but 
is reset to zero after it is placed in the trace cache. The second counter is used to obtain 
the frequency of occurrence of the procedure of interest; whereas, the first counter provides 
information about the procedures execution time (duration).
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32KXTAL2–32KXTAL1 signals
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A
A10–A8 bit field, 15-18
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A20G_CTL bit field, 6-8
GP bus. See general-purpose (GP) bus.
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ROM/Flash controller address bus, 2-6
SDRAM controller address bus, 2-5
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Address Decode Control (ADDDECCTL) register
function, 4-2, 20-6, 21-3, 24-2
usage, 3-21, 4-12, 4-13, 4-14, 4-20, 20-5, 24-11

address mapping
bus master address spaces (table), 4-3
cacheability control, 4-15, 4-20
code execution control, 4-15, 4-20
configuration, 4-15

buses, 4-4
chip select for noncontiguous memory or 

I/O, 4-16
chip selects, 4-4
external memory, 4-4
external super I/O chip, 4-16
GP bus peripheral space, 4-16
memory regions above DOS application 

space, 4-17
PCI bus devices, 4-18
ROM/Flash space, 4-15
Windows® compatibility, 4-17

configuration register access, 4-20
I/O map (figure), 4-11

I/O space, 4-11
Configuration Base Address register, 4-11
GP bus I/O region, 4-15
PC/AT-compatible I/O peripherals region, 4-13
PCI configuration space, 4-12
PCI I/O space, 4-12

initialization, 4-21
interrupts, 4-18
memory and I/O space summary (table), 4-4
memory map (figure), 4-7
memory space, 4-7

GP bus memory space, 4-9
integrated memory-mapped peripherals, 4-10
memory-mapped configuration region (MMCR) 

space, 4-9
PCI bus memory space, 4-9
SDRAM space, 4-8

operation, 4-3
PC/AT peripherals I/O map (table), 4-14
positive address decoding, 3-13, 4-9
positive address decoding (example), 3-14, 4-16
Programmable Address Region (PAR) registers, 4-5

PAR register format (figure), 4-6
registers, 4-2
software considerations, 4-18
write protection violation, 4-18, 4-20
write-protection violation, 4-15

AEOI bit field, 15-18
AINIT bit field, 14-14
ALM_AM_PM bit field, 20-8
ALM_INT_ENB bit field, 20-9
ALT_CMP bit field, 17-4, 17-5
AM_PM bit field, 20-8
Am486® CPU

instruction set, xxiv
Am5x86 CPU Control (CPUCTL) register

function, 5-6, 7-1, 24-2
usage, 5-7, 7-3–7-4

Am5x86® CPU
block diagram (figure), 7-2
bus arbitration, 8-3
cache

behavior during clock speed changes, 7-4
configuration options (table), 7-4
flushing, 24-11
memory management, 7-4
performance considerations, 24-12

clocking considerations, 7-4, 8-7
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CPU core identification, 3-7
CPU PLL stabilization time, 7-4
CPU speed, 3-7
documentation, xxiv
floating point unit (FPU), 7-3
initialization, 7-5

hard CPU reset, 7-5
soft CPU reset, 6-7, 7-5

interrupts, 7-5
latency, 7-5
operation, 7-3
registers, 7-1

AMDebug Disable signal. See AMDEBUG_DIS signal.
AMDebug Technology RX/TX Interrupt Mapping 

(ICEMAP) register
function, 15-5

AMDEBUG_DIS signal
description, 2-13
usage, 26-2

AMDebug™ technology
block diagram (figure), 26-2
on-chip trace cache, 26-7
operation, 26-6
signal descriptions, 2-12
software architecture (figure), 26-2
software performance profiling, 26-7
system design, 26-2

12-pin connector format (figure), 26-4
20-pin serial connector format (figure), 26-4
connecting the AMDebug port, 26-3
connector pins (table), 26-3
locating the target connector (figure), 26-6
target connector mechanical specifications, 26-5

Analog Ground signal. See GND_ANLG signal.
Analog Power Supply signal. See VCC_ANLG signal.
applications. See Élan™SC520 microcontroller.
Arbiter Priority Control (ARBPRICTL) register

function, 8-2
usage, 8-8, 8-20, 8-22

arbitration. See system arbitration.
ARBPRICTL register, 8-2
ATTR bit field, 3-10, 3-12, 4-5, 4-16

B
BA1–BA0 signals

control, 10-10, 10-19
description, 2-5

Backup Battery Sense signal. See BBATSEN signal.
Bank Address signals. See BA1–BA0 signals.
BBATSEN signal

description, 2-14
usage, 6-7, 20-3, 20-4, 20-7, 20-11

BI bit field, 21-8

BIOS. See system initialization.
bit fields

A10–A8, 15-18
A20G_CTL, 6-8
AEOI, 15-18
AINIT, 14-14
ALM_AM_PM, 20-8
ALM_INT_ENB, 20-9
ALT_CMP, 17-4, 17-5
AM_PM, 20-8
ATTR, 3-10, 3-12, 4-5, 4-16
BI, 21-8
BNKx_BNK_CNT, 10-15, 10-15
BNKx_COLWDTH, 10-15, 10-15
BSY, 22-7
BUS_MAS, 9-11
BUS_NUM, 9-10
BUS_PARK_SEL, 8-10, 8-22
CACHE_WR_MODE, 7-4, 8-6
CAS_LAT, 10-20, 10-31
CH3_ALT_SIZE, 14-21
CLK_INV_ENB, 22-5
CLK_PIN_DIR, 5-3, 5-9, 16-1, 16-6, 16-7
CLK_PIN_ENB, 5-9
CLK_SEL, 5-8, 22-7
CLK_SRC, 21-10
CLK_TST_SEL, 5-9
CNCR_MODE_ENB, 8-3, 8-22, 24-10
COMPTIM, 14-9
CONT_CMP, 17-4
CPU_PRI, 8-8
CPU_RST, 6-4, 6-7
CTR_MODE, 16-4
DCTS, 21-6
DDCD, 21-6
DDSR, 21-6
DEVICE_NUM, 9-10
DGP, 12-7
DR, 21-7
ECC_CHK_POS, 10-28
EMSI, 21-9
ENABLE, 4-12, 4-17, 9-10, 9-11
ENB, 19-3, 19-4, 19-6
ENH_MODE_ENB, 14-10
EPS, 21-8
ERR_IN_FIFO, 21-8
EXP_SEL, 5-8, 19-4
EXT_CLK, 17-3
FE, 21-8
FIFO_ENB, 21-9, 21-13
FIRST_DLY, 12-8
FUNCTION_NUM, 9-10
GNT_TO_ID, 8-23
GNT_TO_INT_ENB, 8-19, 8-23
GNT_TO_STA, 8-19
GP_ECHO_ENB, 24-10
GP_RST, 6-4, 6-7, 13-22
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GPCSx_SEL, 12-3, 13-3, 16-1, 17-1
HI_PRI_0_SEL, 8-8
HI_PRI_1_SEL, 8-8
HOUR_MODE_SEL, 20-7
ICE_HRST_DET, 6-8
ICE_ON_RST, 6-5, 6-7, 24-11
ICE_SRST_DET, 6-8
INT_ENB, 17-4
IRQ_FLG, 19-4, 19-5
LOOP, 21-13
LTIM, 3-19
M_AD_IRQ_ID, 9-27
M_CMD_IRQ_ID, 9-27
M_GINT_MODE, 15-18
M_RETRY_TO, 9-12, 9-28
M_WPOST_ENB, 9-11
MATCH, 4-18
MBIT_ERR, 10-27
MEM_ENB, 9-11, 9-18
MODE, 12-7
MSBF_ENB, 22-5
MULT_INT_ENB, 10-27
NMI_DONE, 15-14
NMI_ENB, 6-7, 15-14, 15-20, 20-10
OE, 21-7, 21-8
OPMODE_SEL, 10-20, 10-30, 10-31, 10-32
OSC_CTL, 20-7, 20-10
OUT2, 21-13
PCI_RST, 6-4, 6-7, 9-29
PE, 21-8
PENB, 21-5, 21-8
PER_INT_ENB, 20-8
PER_INT_FLG, 20-8
PG_SZ, 3-9, 3-10, 4-5
PHS_INV_ENB, 22-5
PIOx_FNC, 13-3, 14-4, 15-2, 21-2, 23-3
PIT_GATE2, 16-4
PIT_OUT2_ENB, 16-4
PIT_OUT2_STA, 16-4
PRG_RST_ENB, 3-4, 6-4, 6-6, 10-29
PRGRST_DET, 6-8
PSC_SEL, 17-3
PWRGOOD_DET, 6-8
RAS_CAS_DLY, 10-21
RAS_PCHG_DLY, 10-21
RATE_SEL, 20-8
REGISTER_NUM, 9-10
RF_CLR, 21-10
RFRT, 21-7, 21-10
RFSH_ENB, 10-19
RFSH_SPD, 10-18
RTC_DIS, 3-21, 20-5
RTC_VRT, 6-7, 20-4
RTG, 17-3
S1_GINT_MODE, 15-18
S2, 15-17, 15-18, 15-19

bit fields (continued)
S2_GINT_MODE, 3-19
S5, 15-17, 15-18, 15-19
SBIT_ERR, 10-27
SD_RST_DET, 6-8
SET, 20-7
SFNM, 15-18
SGL_INT_ENB, 10-27
SNGL, 15-18
SP, 21-8
SUB_DLY, 12-8
SYS_RST, 6-4, 6-5
SZ_ST_ADR, 3-9, 3-10, 4-5
T_DLYTR_ENB, 9-19
T_IRQ_ID, 9-27
T_PURGE_RD_ENB, 9-22
T7–T3, 15-18
TARGET, 3-10, 4-5, 4-8, 4-16, 4-19, 9-18
TC_INT, 22-7
TC_INT_ENB, 22-7
TEMT, 21-7
TERI, 21-6
TF_CLR, 21-10
THRE, 21-6
TRNMOD, 14-11, 14-19
UART1_DIS, 3-21
UART2_DIS, 3-21
UIP, 20-7
WB_ENB, 24-10
WB_FLUSH, 11-5, 11-13
WB_TST_ENB, 10-19, 24-2, 24-3, 24-7
WB_WM, 11-9
WDT_RST_DET, 6-8
WIDTH, 12-7
WRST_ENB, 19-4
WRTSEL, 14-9
XTAL_FREQ, 18-3

BNKx_BNK_CNT bit field, 10-15, 10-15
BNKx_COLWDTH bit field, 10-15, 10-15
BOOTCS Control (BOOTCSCTL) register

function, 12-5
usage, 12-7, 12-14

BOOTCS signal
configuration, 12-2, 12-14
control, 3-10
description, 2-6
usage, 3-5, 3-17, 4-4, 4-7, 4-8, 4-15, 4-21,

19-6, 24-6
BOOTCSCTL register, 12-5
bootstraps

signal descriptions, 2-13
Boundary Scan (BSR) register

function, 25-2
usage, 25-3–25-5, 25-16–25-17
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BR/TC signal
control, 25-4
description, 2-12

BSY bit field, 22-7
Buffer Chaining Control (GPDMABCCTL) register

function, 14-5
usage, 14-15

Buffer Chaining Interrupt Enable (GPDMABSINTENB) 
register

function, 14-5
Buffer Chaining Status (GPDMABCSTA) register

function, 14-5
Buffer Chaining Valid (GPDMABCVAL) register

function, 14-5
usage, 14-15

bus arbitration. See system arbitration.
Bus Grant signals. See GNT4–GNT0 signals.
Bus Request signals. See REQ4–REQ0 signals.
BUS_MAS bit field, 9-11
BUS_NUM bit field, 9-10
BUS_PARK_SEL bit field, 8-10, 8-22
Bypass (BPR) register

function, 25-2
usage, 25-4

C
cache. See Am5x86® CPU.
CACHE_WR_MODE bit field, 7-4, 8-6
cacheability control, 3-12
CAS_LAT bit field, 10-20, 10-31
CBAR register, 4-2
CBE3–CBE0 signals

description, 2-6
usage, 2-7

CF_DRAM signal
control, 24-2
description, 2-12
usage, 10-19, 24-1, 24-3, 24-12

CF_ROM_GPCS signal
control, 24-2
description, 2-12
usage, 10-19, 24-1, 24-4, 24-5, 24-6, 24-12

CFG2–CFG0 signals
description, 2-13
usage, 2-6, 6-4, 6-6, 11-3, 12-2, 12-7, 12-14, 24-1

CFG3 signal
description, 2-13
usage, 16-1

CH3_ALT_SIZE bit field, 14-21
Chip Select Pin Function Select (CSPFS) register

function, 12-5, 13-6, 16-2, 17-2, 23-4
usage, 12-3, 13-3, 13-22, 16-1, 17-1, 23-5

chip selects. See GPCS7–GPCS0 signals.
Class Code/Revision ID (PCICCREVID) register

function, 9-8
Clear To Send signals. See CTS2–CTS1 signals.
CLK_INV_ENB bit field, 22-5
CLK_PIN_DIR bit field, 5-3, 5-9, 16-1, 16-6, 16-7
CLK_PIN_ENB bit field, 5-9
CLK_SEL bit field, 5-8, 22-7
CLK_SRC bit field, 5-8, 21-10
CLK_TST_SEL bit field, 5-9
CLKMEMIN signal

description, 2-5
usage, 10-6, 10-7, 10-11

CLKMEMOUT signal
description, 2-5
usage, 10-6, 10-7, 10-11

CLKPCIIN signal
description, 2-6
usage, 9-5

CLKPCIOUT signal
description, 2-7
usage, 5-5, 9-2, 9-5, 9-6

CLKSEL register, 5-6, 23-4
CLKTEST signal

control, 5-3, 5-6, 16-1, 16-2
description, 2-10
usage, 5-9

CLKTIMER signal
control, 5-3, 5-6, 16-1, 16-2
description, 2-10
usage, 5-8, 5-9, 16-6, 16-7

clock generation and control
block diagram (figure), 5-2
CLKTEST clock routing (figure), 5-9
CLKTEST signal, 5-9
CLKTIMER signal, 5-9
clock distribution (figure), 5-3
clock sources (figure), 5-2
clock startup and lock times (table), 5-2
initialization, 5-9
internal clocks, 5-7

CPU, 5-7
general-purpose (GP) bus, 5-7
general-purpose (GP) timers, 5-8
GP-DMA controller, 5-8
PCI bus, 5-7
programmable interval timer (PIT), 5-8
real-time clock (RTC), 5-8
ROM/Flash interface, 5-7
SDRAM controller, 5-7
software timer, 5-8
synchronous serial interface (SSI), 5-8
UART serial ports, 5-8
watchdog timer, 5-8

operation, 5-7
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Index
PLL lock time (table), 5-2
PLLs, 5-7
registers, 5-6
signal descriptions, 2-10
system design, 5-3

bypassing 32.768-kHz oscillator (figure), 5-5
bypassing 33-MHz oscillator (figure), 5-6
bypassing internal oscillators, 2-10, 5-5
clock pin loading, 5-4
crystal selection, 5-4
shared signals (table), 5-3

timing error and clock accuracy (table), 5-5
Clock Select (CLKSEL) register

function, 5-6, 16-2, 21-3, 23-4
usage, 5-3, 5-9, 16-1, 16-6, 16-7

CMDACK signal
control, 25-4
description, 2-12

CNCR_MODE_ENB bit field, 8-3, 8-22, 24-10
code execution control, 3-12
Code Fetch ROM/GPCS signal. 

See CF_ROM_GPCS signal.
Code Fetch SDRAM signal. See CF_DRAM signal.
Column Address Strobe signals. 

See SCASA–SCASB signals.
Command Acknowledge signal. See CMDACK signal.
Command or Byte-Enable Bus signals. 

See CBE3–CBE0 signals.
COMPTIM bit field, 14-9
configuration

signal descriptions, 2-13
Configuration Base Address (CBAR) register

function, 4-2
usage, 3-4, 4-9, 4-11, 4-17, 4-18, 4-21

Configuration Input 3 signal. See CFG3 signal.
Configuration Input signals. See CFG2–CFG0 signals.
configuration RAM

function, 20-7
CONT_CMP bit field, 17-4
CPU. See Am5x86® CPU.
CPU bus arbitration. See system arbitration.
CPU_PRI bit field, 8-8
CPU_RST bit field, 6-4, 6-7
CPUCTL register, 7-1
CSPFS register, 23-4
CTR_MODE bit field, 16-4
CTS2–CTS1 signals

control, 13-6, 21-2, 21-3, 21-4
description, 2-9, 21-6
usage, 21-2, 21-9

customer service, iii

D
data buses

boot device configuration, 12-7, 12-14
CFG2 pinstrap, 2-13
general-purpose (GP) bus data bus, 2-8
loading, 10-9, 12-3, 13-4
PCI data bus, 2-6
ROM/Flash controller data bus, 2-6
ROM/Flash controller data bus connection options 

(table), 12-1
SDQMx signal behavior, 10-6
SDRAM controller data bus, 2-5
shared buses, 13-10
voltage isolation, 12-3

Data Carrier Detect signals. See DCD2–DCD1 signals.
Data Input/Output Mask signals. 

See SDQM3–SDQM0 signals.
Data Set Ready signals. See DSR2–DSR1 signals.
data sheet, xxiv
Data Strobe signal. See DATASTRB signal.
Data Terminal Ready signals. 

See DTR2–DTR1 signals.
DATASTRB signal

control, 24-2
description, 2-12
usage, 10-19, 24-1, 24-3, 24-4, 24-12

DBCTL register, 11-4
DCD2–DCD1 signals

control, 13-6, 21-2, 21-3, 21-4
description, 2-9, 21-6
usage, 21-2, 21-9

DCTS bit field, 21-6
DDCD bit field, 21-6
DDSR bit field, 21-6
DEBUG_ENTER signal

description, 2-13
usage, 25-2, 26-2

debugging. See chip test and debugging. 
See also system test and debugging. 
See also AMDebug™ technology.

Device Identification (DID) register
format, 25-14
function, 25-2
usage, 25-4, 25-14

Device Select signal. See DEVSEL signal.
Device/Vendor ID (PCIDEVID) register

function, 9-8
DEVICE_NUM bit field, 9-10
DEVSEL signal

control, 9-8
description, 2-7
timing, 9-19
usage, 9-3, 9-19
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DGP bit field, 12-7
DMA Buffer Chaining Interrupt Mapping 

(DMABCINTMAP) register
function, 14-4, 15-5

DMA. See GP-DMA controller.
DMABCINTMAP register, 15-5
documentation, xxiv

Élan™SC520 microcontroller documentation, xxiv
literature ordering, iii, xxv
world wide web site, iii, xxv

documentation conventions, xxv
Documentation Notation table, xxv
DR bit field, 21-7
DRAM. See SDRAM controller.
DRCBENDADR register, 10-10
DRCCFG register, 10-10
DRCCTL register, 10-10
DRCTMCTL register, 10-10
Drive Strength Control (DSCTL) register

function, 10-10, 23-4
usage, 10-19

DSCTL register, 23-4
DSR2–DSR1 signals

control, 13-6, 21-2, 21-3, 21-4
description, 2-9, 21-6
usage, 21-2

DTR2–DTR1 signals
control, 21-4
description, 2-9, 21-6
usage, 21-2, 21-9

E
ECC Check Bit Position (ECCCKBPOS) register

function, 10-10
usage, 10-28

ECC Check Code Test (ECCCKTEST) register
function, 10-10, 24-2
usage, 10-17, 24-11

ECC Control (ECCCTL) register
function, 10-10
usage, 10-27

ECC Interrupt Mapping (ECCMAP) register
function, 10-10, 15-4

ECC Multi-Bit Error Address (ECCMBADD) register
function, 10-10, 24-2
usage, 10-28

ECC Single-Bit Error Address (ECCSBADD) register
function, 10-10, 24-2
usage, 10-28

ECC Status (ECCSTA) register
function, 10-10
usage, 10-27

ECC. See SDRAM controller.
ECC_CHK_POS bit field, 10-28
ECCCKBPOS register, 10-10
ECCCKTEST register, 10-10
ECCCTL register, 10-10
ECCMAP register, 15-4
ECCMBADD register, 10-10
ECCSBADD register, 10-10
ECCSTA register, 10-10
Élan™SC520 microcontroller

applications, 1-8
digital set top box, 1-9
smart residential gateway, 1-8
telephone line concentrator, 1-9
thin client, 1-8

architectural overview, 1-4
address-mapping, 1-5
AMDebug™ technology, 1-4
clock generation, 1-6
general-purpose (GP) bus interface, 1-6
integrated peripherals, 1-7
JTAG boundary scan test interface, 1-7
PCI bus interface, 1-5
ROM/Flash controller, 1-5
SDRAM controller, 1-5
system testing and debugging features, 1-8
x86 architecture, 1-4

block diagram, 1-2
crystal specifications, xxiv
customer support, iii
distinctive characteristics, 1-1
logic diagram by default pin function, 2-3
logic diagram by interface, 2-2
package dimensions, xxiv
pin designations, xxiv
register descriptions, xxiv
thermal characteristics, xxiv
timing, xxiv

ÉlanSC520 Microcontroller Revision ID (REVID) 
register

function, 7-1
usage, 25-14

EMSI bit field, 21-9
ENABLE bit field, 4-12, 4-17, 9-10, 9-11
ENB bit field, 19-3, 19-4, 19-6
ENH_MODE_ENB bit field, 14-10
Enter AMDebug Mode signal. See DEBUG_ENTER 

signal.
EPS bit field, 21-8
ERR_IN_FIFO bit field, 21-8
EXP_SEL bit field, 5-8, 19-4
EXT_CLK bit field, 17-3
external oscillator, 2-10, 5-5
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F
FE bit field, 21-8
FERRMAP register, 15-5
fields. See bit fields.
FIFO_ENB bit field, 21-9, 21-13
FIRST_DLY bit field, 12-8
Flash memory. See ROM/Flash controller
FLASHWR signal

description, 2-6
usage, 24-6

Floating Point Error Interrupt Clear (FPUERRCLR) 
register

function, 7-1, 15-7
usage, 15-12

Floating Point Error Interrupt Mapping (FERRMAP) 
register

function, 7-1, 15-5
floating point unit (FPU), 7-3

error handling, 15-12, 15-19
system reset, 7-3

FNINIT instruction, 7-3
FPUERRCLR register, 15-7
FRAME signal

description, 2-7
usage, 9-3, 9-9

FUNCTION_NUM bit field, 9-10

G
general-purpose (GP) bus

block diagram (figure), 13-2
bus cycles, 13-16

8-bit access of 16-bit I/O device (figure), 13-19
8-bit access of 8-bit I/O device (figure), 13-16
16-bit access of 16-bit I/O device (figure), 13-17
16-bit access of 8-bit I/O device (figure), 13-17
32-bit access of 16-bit I/O device (figure), 13-18
32-bit access of 8-bit I/O device (figure), 13-18
differentiating byte accesses of 16-bit devices 

(table), 13-19
GPIOCS16 and GPMEMCS16 timing, 13-19
GPRDY timing (figure), 13-21
wait states, 13-20

bus sizing, 13-19
dynamic bus sizing override (table), 13-20

chip select qualification, 13-9
configuration, 4-16
configuring external GP bus devices, 3-7, 3-13

multiple devices on one chip select, 3-14
single device performing its own decode, 3-14
single device using one chip select, 3-14

configuring Programmable Address Region x 
(PARx) registers, 3-8

data sizing, 13-9

DMA interface, 13-11
echo mode, 13-8, 13-10

echo mode minimum timing (table), 13-9
GP bus reset, 6-7
I/O space, 4-15
I/O-mapped device support, 13-9
initialization, 13-22
interrupts, 13-21
ISA bus compatibility, 13-11
ISA signals and GP bus signals (table), 13-12
latency, 13-21

8/16-bit GP bus width, 13-21
noncacheable GP bus, 13-21
slow GP bus cycles, 13-21

memory space, 4-9
memory-mapped device support, 13-9
operation, 13-6
overview, 13-1
programmable timing, 13-7

GPRDY, 13-8
programmable timing format (figure), 13-8
timing requirements, 13-7

registers, 13-5
serial communications controller interface, 13-14

Am85C30 interface (figure), 13-15
Am85C30 interface timing (figure), 13-16

sharing address and data bus with 
ROM/Flash, 13-10

signal descriptions, 2-7, 2-11
Super I/O controller interface, 13-13

Super I/O controller interface (figure), 13-13
Super I/O interface timing (figure), 13-14

system design, 13-1
external data buffer (figure), 13-4
loading, 13-4
shared signals (table), 13-3
voltage translation, 13-4
voltage translation example (figure), 13-5

unaligned accesses, 13-9
usage scenarios, 13-11

general-purpose (GP) timers
block diagram (figure), 17-2
cascaded 32-bit timer, 17-6
clocking considerations, 17-5

external clock sources (table), 17-6
internal clock sources (table), 17-5

configuration, 17-5
GP Timer 0, 17-3
GP Timer 1, 17-3
GP Timer 2, 17-4
initialization, 17-8
interrupts, 17-6
operating modes, 17-4

alternate compare mode, 17-4
continuous mode, 17-4
hardware retrigger mode, 17-4
interrupt on terminal count mode, 17-4
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prescaler mode, 17-4
square wave mode, 17-4

operation, 17-3
registers, 17-2
signal descriptions, 2-10
software considerations, 17-6

combining GP Timer Count elements, 17-6
reading the cascaded 32-bit timer, 17-6

system design, 17-1
shared signals (table), 17-1

General-Purpose Address Bus signals. 
See GPA25–GPA0 signals.

General-Purpose Chip Select signals. 
See GPCS7–GPCS0 signals.

General-Purpose CMOS RAM (RTCCMOS) register
function, 20-7

General-Purpose Data Bus signals. 
See GPD15–GPD0 signals.

GND signals
description, 2-14

GND_ANLG signal
description, 2-14

GNT_TO_ID bit field, 8-23
GNT_TO_INT_ENB bit field, 8-19, 8-23
GNT_TO_STA bit field, 8-19
GNT4–GNT0 signals

description, 2-7
usage, 8-7

GP ALE Offset (GPALEOFF) register
function, 13-6
usage, 13-8

GP ALE Pulse Width (GPALEW) register
function, 13-6
usage, 13-8

GP Bus Address Enable signal. See GPAEN signal.
GP Bus Address Latch Enable signal. See GPALE 

signal.
GP Bus Byte High Enable signal. See GPBHE signal.
GP Bus Data Bus Buffer Output Enable signal. 

See GPDBUFOE signal.
GP Bus DMA Acknowledge signals. 

See GPDACK3–GPDACK0 signals.
GP Bus DMA Request signals. 

See GPDRQ3–GPDRQ0 signals.
GP Bus I/O Chip-Select 16 signal. 

See GPIOCS16 signal.
GP Bus I/O Read signal. See GPIORD signal.
GP Bus I/O Write signal. See GPIOWR signal.
GP Bus Interrupt Request signals. 

See GPIRQ10–GPIRQ0 signals.
GP Bus Memory Chip-Select 16 signal. 

See GPMEMCS16 signal.
GP Bus Memory Read signal. See GPMEMRD signal.

GP Bus Memory Write signal. See GPMEMWR signal.
GP Bus Ready signal. See GPRDY signal.
GP Bus Reset signal. See GPRESET signal.
GP Bus Terminal Count signal. See GPTC signal.
GP Chip Select Data Width (GPCSDW) register

function, 13-5
usage, 13-9, 13-19, 13-20, 13-22

GP Chip Select Offset (GPCSOFF) register
function, 13-5
usage, 13-8

GP Chip Select Pulse Width (GPCSPW) register
function, 13-5
usage, 13-8

GP Chip Select Qualification (GPCSQUAL) register
function, 13-5
usage, 13-9, 13-22

GP Chip Select Recovery Time (GPCSRT) register
function, 13-5
usage, 13-8

GP Echo Mode (GPECHO) register
function, 13-5, 24-2
usage, 13-22, 24-10

GP Read Offset (GPRDOFF) register
function, 13-5
usage, 13-8

GP Read Pulse Width (GPRDW) register
function, 13-5
usage, 13-8

GP Timer x Count (GPTMRxCNT) register
function, 17-2, 17-3
usage, 17-4

GP Timer x Interrupt Mapping (GPTMRxMAP) register
function, 15-4, 17-3

GP Timer x Maxcount Compare A 
(GPTMRxMAXCMPA) register

function, 17-2, 17-3
usage, 17-4, 17-5, 17-6, 17-7, 17-8

GP Timer x Maxcount Compare B 
(GPTMRxMAXCMPB) register

function, 17-2, 17-3
usage, 17-4, 17-5, 17-6, 17-8

GP Timer x Mode/Control (GPTMRxCTL) register
function, 5-6, 17-2, 17-3
usage, 5-8, 17-3, 17-4, 17-5, 17-6, 17-8

GP Timers Status (GPTMRSTA) register
function, 17-2
usage, 17-6

GP timers. See general-purpose (GP) timers.
GP Write Offset (GPWROFF) register

function, 13-6
usage, 13-8

GP Write Pulse Width (GPWRW) register
function, 13-5
usage, 13-8
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GP_ECHO_ENB bit field, 24-10
GP_RST bit field, 6-4, 6-7, 13-22
GPA25–GPA0 signals

description, 2-6, 2-7
usage, 2-8, 13-1, 13-4, 13-10, 24-5, 24-6

GPAEN signal
control, 13-3, 13-6, 14-4
description, 2-8
usage, 13-10, 14-9, 14-17, 24-6

GPALE signal
control, 13-3, 13-6
description, 2-8
usage, 13-7, 24-6

GPALEOFF register, 13-6
GPALEW register, 13-6
GPBHE signal

control, 13-3, 13-6
description, 2-8
usage, 13-19

GPCS7–GPCS0 signals
configuration, 3-13, 4-5, 4-9, 4-16, 4-20
control, 3-10, 12-3, 13-3, 13-5, 13-6, 16-2, 17-1
description, 2-11
usage, 3-10, 12-3, 13-7, 24-4

GPCSDW register, 13-5
GPCSOFF register, 13-5
GPCSPW register, 13-5
GPCSQUAL register, 13-5
GPCSRT register, 13-5
GPCSx_SEL bit field, 12-3, 13-3, 16-1, 17-1
GPD15–GPD0 signals

description, 2-8
usage, 12-9, 13-10, 14-9, 24-6, 24-10

GPDACK3–GPDACK0 signals
control, 13-3, 13-6, 14-4
description, 2-8
usage, 14-3

GPDBUFOE signal
control, 13-3, 13-6
description, 2-8
usage, 13-4

GP-DMA Channel x Extended Page (GPDMAEXTPGx) 
register

function, 14-4
usage, 14-11, 14-12

GP-DMA Channel x Extended Transfer Count 
(GPDMAEXTTCx) register

function, 14-5
GP-DMA Channel x Next Address High 

(GPDMANXTADDHx) register
function, 14-5, 14-6
usage, 14-15, 14-18

GP-DMA Channel x Next Address Low 
(GPDMANXTADDLx) register

function, 14-5, 14-6
usage, 14-15, 14-18

GP-DMA Channel x Next Transfer Count High 
(GPDMANXTTCHx) register

function, 14-6
usage, 14-15, 14-18

GP-DMA Channel x Next Transfer Count Low 
(GPDMANXTTCLx) register

function, 14-6
usage, 14-15, 14-18

GP-DMA Control (GPDMACTL) register
function, 5-6, 14-4
usage, 5-8, 14-10, 14-18, 14-20

GP-DMA controller
addressing GP-DMA channels, 14-11

16-bit channel address generation (table), 14-12
8-bit channel address generation (table), 14-12
enhanced GP-DMA mode, 14-12
normal GP-DMA mode, 14-11

block diagram (figure), 14-2
bus cycles, 14-16

cycle types (table), 14-16
GP bus I/O to SDRAM, 14-16
read in demand transfer mode (figure), 14-16
read transfer (figure), 14-13
read transfer with cache hit (figure), 14-17
verify transfer (figure), 14-14
write transfer (figure), 14-14

channel mapping, 14-10
channel mapping (table), 14-10
clocking considerations, 14-18
example configurations, 14-19

16-bit channel in enhanced mode, 14-21
16-bit channel in normal mode, 14-20
8-bit channel in enhanced mode, 14-20
8-bit channel in normal mode, 14-19

fly-by transfers, 14-8
GP bus echo mode, 14-17
GP bus timing, 13-11
GP-DMA initiators, 14-9

external I/O devices, 14-9
external memory-mapped I/O devices, 14-10
internal UARTs, 14-9

GP-DMA transfer modes
automatic initialization control, 14-14
block transfer mode, 14-13
buffer chaining, 14-15
demand transfer mode, 14-12
priority, 14-15
single transfer mode, 14-12
transfer types, 14-13

GP-DMA transfers, 14-8
initialization, 14-19
initiator, 14-8
initiator/target combinations supported (table), 14-9
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interrupts, 14-18
latency, 14-18

nonpreemptive latency, 14-18
preemptive latency, 14-19

master and slave core cascading (figure), 14-3
operating modes, 14-10

enhanced GP-DMA mode, 14-11
normal GP-DMA mode, 14-10

operation, 14-8
overview, 14-1
PCI considerations, 14-9
peer-to-peer transfers, 14-9
registers, 14-4
signal descriptions, 2-7
software considerations, 14-18
system design, 14-3

shared signals (table), 14-4
target, 14-8
transfer modes, 14-12

GP-DMA Memory-Mapped I/O (GPDMAMMIO) register
function, 14-4
usage, 14-10

GP-DMA Resource Channel Map A 
(GPDMAEXTCHMAPA) register

function, 14-4
usage, 14-10

GP-DMA Resource Channel Map B 
(GPDMAEXTCHMAPB) register

function, 14-4
usage, 14-10

GPDMABCCTL register, 14-5
GPDMABCSTA register, 14-5
GPDMABCVAL register, 14-5
GPDMABSINTENB register, 14-5
GPDMACTL register, 14-4
GPDMAEXTCHMAPA register, 14-4
GPDMAEXTCHMAPB register, 14-4
GPDMAEXTPGx register, 14-4, 14-5
GPDMAEXTTCx register, 14-5
GPDMAMMIO register, 14-4
GPDMANXTADDHx register, 14-5, 14-6
GPDMANXTADDLx register, 14-5, 14-6
GPDMANXTTCHx register, 14-6
GPDMANXTTCLx register, 14-5, 14-6
GPDMAxMAR register, 14-7
GPDMAxPG register, 14-7
GPDMAxTC register, 14-7
GPDRQ3–GPDRQ0 signals

control, 13-3, 13-6, 14-4
description, 2-8
usage, 14-3, 14-10

GPECHO register, 13-5

GPIOCS16 signal
control, 13-3, 13-6
description, 2-8
timing, 13-19
usage, 13-4, 13-10, 13-11, 24-6

GPIORD signal
control, 13-5
description, 2-8
usage, 13-4, 13-7, 13-9, 13-11, 13-20, 14-9,

14-17, 24-6
GPIOWR signal

control, 13-5
description, 2-8
usage, 13-7, 13-9, 13-11, 13-20, 14-9, 24-6

GPIRQ10–GPIRQ0 signals
control, 9-7, 13-3, 13-6, 15-2, 15-4
description, 2-9
usage, 2-7, 9-2, 13-21, 15-2, 15-5, 15-8, 23-3

GPIRQx Interrupt Mapping (GPxIMAP) register
function, 15-5

GPMEMCS16 signal
control, 13-3, 13-6
description, 2-9
timing, 13-19
usage, 13-4, 13-10, 13-11, 24-6

GPMEMRD signal
control, 13-5
description, 2-9
usage, 13-4, 13-7, 13-9, 13-11, 13-20, 14-10,

14-17, 24-4, 24-6
GPMEMWR signal

control, 13-5
description, 2-9
usage, 13-7, 13-9, 13-11, 13-20, 14-10, 14-17, 24-6

GPRDOFF register, 13-5
GPRDW register, 13-5
GPRDY signal

control, 13-3, 13-6
description, 2-9
timing, 13-20
usage, 13-4, 13-8, 13-11, 13-13, 13-20, 24-6

GPRESET signal
control, 6-3, 13-6, 13-22
description, 2-9
usage, 6-4, 6-7

GPTC signal
control, 13-3, 13-6, 14-4
description, 2-9
usage, 14-3, 14-9, 14-12, 14-18

GPTMRSTA register, 17-2
GPTMRxCNT register, 17-2, 17-3
GPTMRxCTL register, 17-2, 17-3
GPTMRxMAP register, 15-4
GPTMRxMAXCMPA register, 17-2, 17-3
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GPTMRxMAXCMPB register, 17-2, 17-3
GPWROFF register, 13-6
GPWRW register, 13-5
GPxIMAP register, 15-5
Ground signal. See GND signal.

H
HBCTL register, 9-7
HBMSTIRQCTL register, 9-7
HBMSTIRQSTA register, 9-7
HBTGTIRQCTL register, 9-7
HBTGTIRQSTA register, 9-7
Header Type (PCIHEADTYPE) register

function, 9-8
HI_PRI_0_SEL bit field, 8-8
HI_PRI_1_SEL bit field, 8-8
Host Bridge Control (HBCTL) register

function, 6-3, 9-7
usage, 6-7, 9-11, 9-19, 9-22, 9-29

Host Bridge Master Interrupt Address (MSTINTADD) 
register

function, 9-7
usage, 9-12, 9-27

Host Bridge Master Interrupt Control (HBMSTIRQCTL) 
register

function, 9-7
usage, 8-19

Host Bridge Master Interrupt Status (HBMSTIRQSTA) 
register

function, 9-7
usage, 9-27

Host Bridge Target Interrupt Control (HBTGTIRQCTL) 
register

function, 9-7
usage, 8-19

Host Bridge Target Interrupt Status (HBTGTIRQSTA) 
register

function, 9-7
usage, 9-27

HOUR_MODE_SEL bit field, 20-7

I
I/O map. See address mapping.
ICE_HRST_DET bit field, 6-8
ICE_ON_RST bit field, 6-5, 6-7, 24-11
ICE_SRST_DET bit field, 6-8
ICEMAP register, 15-5
initialization

See also system initialization.
address mapping, 4-21

Am5x86® CPU, 7-5
clocks, 5-9
general-purpose (GP) bus, 13-22
general-purpose (GP) timers, 17-8
GP-DMA controller, 14-19
JTAG test access port (TAP) controller, 25-20
PCI host bridge, 9-29
power-on reset, 6-9
programmable input/output (PIO), 23-6
programmable interrupt controller (PIC), 15-20
programmable interval timer (PIT), 16-7
read buffer, 11-15
real-time clock (RTC), 20-10
reset types, 6-3
ROM/Flash controller, 12-14
SDRAM controller, 10-29
software timer, 18-3
synchronous serial interface (SSI), 22-8
system arbiter, 8-22
system reset, 6-4
UART serial ports, 21-13
watchdog timer (WDT), 19-6
write buffer, 11-15

Initiator Ready signal. See IRDY signal.
INST_TRCE signal

description, 2-13
usage, 26-2

Instruction (IR) register
function, 25-2
usage, 25-3, 25-3, 25-4–25-5, 25-15, 25-17, 25-20

instruction set manual, xxiv
Instruction Trace signal. See INST_TRCE signal.
INT_ENB bit field, 17-4
INTA–INTD signals

control, 9-7
description, 2-7, 15-4
usage, 9-2, 15-2, 15-8

Interrupt Control (PICICR) register
function, 15-4
usage, 3-19, 7-6, 15-14, 15-18, 20-10

Interrupt Pin Polarity (INTPINPOL) register
function, 9-7, 15-4
usage, 3-20

Interrupt Request signals. See INTA–INTD signals.
interrupts. See programmable interrupt controller (PIC).
INTPINPOL register, 15-4
IRDY signal

description, 2-7
usage, 9-3

IRQ_FLG bit field, 19-4, 19-5
ISA bus compatibility

ISA features not supported, 13-11
ISA signals and GP bus signals (table), 13-12
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J
JTAG boundary scan test interface

block diagram (figure), 25-1
board continuity testing, 25-2
Boundary Scan register (figure), 25-1
bus cycles, 25-19

data scan (figure), 25-19
instruction scan (figure), 25-20

clocking considerations, 25-20
configuration information, 25-5

bypass path, 25-5
instruction path, 25-5
main data scan path, 25-5

Device Identification register (figure), 25-14
initialization, 25-20
instruction register, 25-3

BYPASS instruction, 25-4
EXTEST instruction, 25-3
HIGHZ instruction, 25-4
IDCODE instruction, 25-4
SAMPLE/PRELOAD instruction, 25-4

main data scan path (table), 25-5
operation, 25-2
overview, 25-1
registers, 25-2
Serial Debug Port Data register (figure), 25-14
signal descriptions, 2-12
TAP controller state diagram (figure), 25-15
TAP instruction set (table), 25-3
test access port (TAP) controller, 25-15

capture-DR state, 25-16
capture-IR state, 25-17
exit1-DR state, 25-16
exit1-IR state, 25-18
exit2-DR state, 25-17
exit2-IR state, 25-18
pause-DR state, 25-16
pause-IR state, 25-18
run-test-idle state, 25-16
select-DR-scan state, 25-16
select-IR-scan state, 25-17
shift-DR state, 25-16
shift-IR state, 25-17
test-logic-reset state, 25-15
update-DR state, 25-17
update-IR state, 25-18

JTAG_TCK signal
description, 2-12
usage, 25-2, 25-4, 26-3

JTAG_TDI signal
description, 2-12
usage, 25-2, 25-4, 25-5, 26-3

JTAG_TDO signal
description, 2-12
usage, 25-2, 25-3, 25-4, 25-5, 26-3

JTAG_TMS signal
usage, 2-12, 25-15, 26-3

JTAG_TRST signal
description, 2-12
usage, 25-15

L
LF_PLL1 signal

description, 2-10
usage, 5-2

logic diagram
default pin function, 2-3
interface, 2-2

LOOP bit field, 21-13
Loop Filter Interface signal. See LF_PLL1 signal.
LTIM bit field, 3-19

M
M_AD_IRQ_ID bit field, 9-27
M_CMD_IRQ_ID bit field, 9-27
M_GINT_MODE bit field, 15-18
M_RETRY_TO bit field, 9-12, 9-28
M_WPOST_ENB bit field, 9-11
MA12–MA0 signals

control, 10-10, 10-19
description, 2-5
usage, 10-31, 24-4, 24-7, 24-9

Master DMA Channel 4–7 Control (MSTDMACTL) 
register

function, 14-7
Master DMA Channel 4–7 Mask (MSTDMAMSK) 

register
function, 14-7

Master DMA Channel 4–7 Mode (MSTDMAMODE) 
register

function, 14-7
usage, 14-11, 14-14, 14-19

Master DMA Channel 4–7 Status (MSTDMASTA) 
register

function, 14-7
Master DMA Channel x Memory Address 

(GPDMAxMAR) register
function, 14-7
usage, 14-11, 14-12, 14-18

Master DMA Channel x Page (GPDMAxPG) register
function, 14-7
usage, 14-11, 14-12

Master DMA Channel x Transfer Count (GPDMAxTC) 
register

function, 14-7
usage, 14-9, 14-18
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Master DMA Clear Byte Pointer (MSTDMACBP) 
register

function, 14-7
Master DMA Controller Reset (MSTDMARST) register

function, 14-8
usage, 14-19

Master DMA Controller Temporary (MSTDMATMP) 
register

function, 14-8
Master DMA General Mask (MSTDMAGENMSK) 

register
function, 14-8
usage, 14-20

Master DMA Mask Reset (MSTDMAMSKRST) register
function, 14-8

Master PIC Initialization Control Word 1 (MPICICW1) 
register

function, 15-6
usage, 15-16, 15-18

Master PIC Initialization Control Word 2 (MPICICW2) 
register

function, 15-6
usage, 15-16, 15-18

Master PIC Initialization Control Word 3 (MPICICW3) 
register

function, 15-7
usage, 15-16, 15-17, 15-18, 15-19

Master PIC Initialization Control Word 4 (MPICICW4) 
register

function, 15-7
usage, 15-16, 15-17, 15-18

Master PIC In-Service (MPICISR) register
function, 15-6
usage, 15-17

Master PIC Interrupt Mask (MPICINTMSK) register
function, 15-7
usage, 15-17

Master PIC Interrupt Mode (MPICMODE) register
function, 15-4

Master PIC Interrupt Request (MPICIR) register
function, 15-6

Master PIC Operation Control Word 2 (MPICOCW2) 
register

function, 15-6
usage, 15-17

Master PIC Operation Control Word 3 (MPICOCW3) 
register

function, 15-6
usage, 15-17

Master Retry Time-Out (PCIMRETRYTO) register
function, 9-8
usage, 9-12, 9-28

Master Software DRQ(n) Request (MSTDMASWREQ) 
register

function, 14-7

MATCH bit field, 4-18
MBIT_ERR bit field, 10-27
MD31–MD0 signals

control, 10-10, 10-19, 23-4
description, 2-5, 2-6
usage, 10-6, 10-9, 24-4, 24-6

MECC6–MECC0 signals
control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-9

MEM_ENB bit field, 9-11, 9-18
Memory Data Bus signals. See MD31–MD0 signals.
Memory Error Correction Code signals. 

See MECC6–MECC0 signals.
memory map. See address mapping.
memory-mapped configuration region, 4-1, 4-9

memory space, 4-4
priority, 4-18
relocating, 4-11, 4-18

memory-mapped configuration region (MMCR)
integrated memory-mapped peripherals, 4-10

MMCR. See memory-mapped configuration region. 
See also address mapping.

MODE bit field, 12-7
MPICICW1 register, 15-6
MPICICW2 register, 15-6
MPICICW3 register, 15-7
MPICICW4 register, 15-7
MPICINTMSK register, 15-7
MPICIR register, 15-6
MPICISR register, 15-6
MPICMODE register, 15-4
MPICOCW2 register, 15-6
MPICOCW3 register, 15-6
MSBF_ENB bit field, 22-5
MSTDMACBP register, 14-7
MSTDMACTL register, 14-7
MSTDMAGENMSK register, 14-8
MSTDMAMODE register, 14-7
MSTDMAMSK register, 14-7
MSTDMAMSKRST register, 14-8
MSTDMARST register, 14-8
MSTDMASTA register, 14-7
MSTDMASWREQ register, 14-7
MSTDMATMP register, 14-8
MSTINTADD register, 9-7
MULT_INT_ENB bit field, 10-27
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N
NMI. See programmable interrupt controller (PIC).
NMI_DONE bit field, 15-14
NMI_ENB bit field, 6-7, 15-14, 15-20, 20-10

O
OE bit field, 21-7, 21-8
OPMODE_SEL bit field, 10-20, 10-30, 10-31, 10-32
OSC_CTL bit field, 20-7, 20-10
OUT2 bit field, 21-13

P
PAR signal

description, 2-7
Parity Error signal. See PERR signal.
PARx register, 4-2
PC/AT compatibility, 1-7

a20 gate support, 6-8
address mapping, 4-13
general-purpose (GP) bus configuration, 13-6
GP-DMA transfers, 14-1, 14-8
interrupt channel mapping (table), 15-12
ISA devices, 13-11
ISA signals and GP bus signals (table), 13-12
normal GP-DMA mode, 14-11
PC/AT peripherals I/O map (table), 4-14
PC/AT port logic, 6-8, 16-4
programmable interrupt controller (PIC) 

configuration, 15-18
programmable interval timer (PIT) clock 

source, 16-6
real-time clock (RTC), 20-5
Windows® compatibility, 4-17

PC/AT port logic
a20 gate support, 6-8
SCP Command Port register (Port 0064h), 6-8
SCP Data Port register (Port 0060h), 6-8
System Control Port A register (Port 0092h), 6-8
System Control Port B register (Port 0061h), 16-4

PCI Address Data Bus signals. See AD31–AD0 signals.
PCI Bus Arbiter Status (PCIARBSTA) register

function, 8-2
usage, 8-10, 8-19, 8-23

PCI bus arbitration. See system arbitration.
PCI Bus Clock Input signal. See CLKPCIIN signal.
PCI Bus Clock Output signal. See CLKPCIOUT signal.
PCI bus. See PCI host bridge.
PCI Configuration Address (PCICFGADR) register

format (figure), 9-10
function, 9-8
usage, 4-12, 9-9, 9-10, 9-17

PCI Configuration Data (PCICFGDATA) register
function, 9-8
usage, 4-12, 9-9, 9-10, 9-11, 9-17

PCI host bridge
arbitration, 8-3
block diagram (figure), 9-2
broken transactions, 8-19
bus arbitration, 8-3
configuration, 9-9

generating configuration cycles, 9-10
configuration space, 4-12
configuring PCI bus devices

network adapter, 3-16
VGA controller on PCI bus, 3-15

host bridge as PCI bus master, 9-11
bus cycles, 9-12

configuration read/write (figure), 9-17
CPU non-posted write cycle (figure), 9-16
CPU posted write cycle (figure), 9-15
CPU read cycle (figure), 9-12
CPU read with external target retry

(figure), 9-14
delayed transaction support, 9-12
read cycles, 9-12
write posting, 9-11

host bridge as PCI bus target, 9-18
address FIFO, 9-20
burst ordering, 9-21
bus cycles, 9-22

external master SDRAM read (figure), 9-24
external master SDRAM write (figure), 9-22
target disconnect (figure), 9-25

command support, 9-19
data coherency, 9-21
delayed transaction support, 9-19
DEVSEL timing, 9-19
FIFOs and prefetching, 9-20
target address space, 9-18

I/O space, 4-4, 4-12
initialization, 9-29
interrupts, 8-19, 9-27

delayed transaction time-out, 9-27
master abort, 9-27
parity errors, 9-27
retry time-out counter expired, 9-27
system error, 9-27
target abort, 9-27

latency, 9-28
master latency, 9-28
target latency, 9-28

memory space, 4-4, 4-9
operation, 9-8
PCI bus arbiter

bus parking, 8-7
PCI reset, 6-7
registers, 9-7
SDRAM read buffer, 11-12
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SDRAM write buffer, 11-12
signal descriptions, 2-6
system design, 9-2

clocking in heavily loaded system (figure), 9-6
clocking in lightly loaded system (figure), 9-6
crystal selection implications, 9-6
external PCI bus master connection (figure), 9-4
external PCI bus target connection (figure), 9-3
PCI clocking, 9-5
SERR and PERR connection (figure), 9-5

unsupported configuration registers, 9-9
unsupported functions, 9-8

PCI Host Bridge Interrupt Mapping (PCIHOSTMAP) 
register

function, 8-3, 9-7, 15-4
usage, 8-19

PCI Interrupt A Mapping (PCIINTAMAP) register
function, 9-7, 15-5

PCI Interrupt B Mapping (PCIINTBMAP) register
function, 9-7, 15-5

PCI Interrupt C Mapping (PCIINTCMAP) register
function, 9-7, 15-5

PCI Interrupt D Mapping (PCIINTDMAP) register
function, 9-7, 15-5

PCI Parity signal. See PAR signal.
PCI_RST bit field, 6-4, 6-7, 9-29
PCIARBSTA register, 8-2
PCICCREVID register, 9-8
PCICFGADR register, 9-8
PCICFGDATA register, 9-8
PCIDEVID register, 9-8
PCIHEADTYPE register, 9-8
PCIHOSTMAP register, 15-4
PCIINTAMAP register, 15-5
PCIINTBMAP register, 15-5
PCIINTCMAP register, 15-5
PCIINTDMAP register, 15-5
PCIMRETRYTO register, 9-8
PCISTACMD register, 9-8
PE bit field, 21-8
PENB bit field, 21-5, 21-8
PER_INT_ENB bit field, 20-8
PER_INT_FLG bit field, 20-8
PERR signal

description, 2-7
usage, 9-3

PG_SZ bit field, 3-9, 3-10, 4-5
PHS_INV_ENB bit field, 22-5
PIC. See programmable interrupt controller (PIC).
PICICR register, 15-4
pins. See signals.

pinstraps
signal descriptions, 2-13

PIO functions. See programmable input/output (PIO).
PIO15–PIO0 Clear (PIOCLR15_0) register

function, 23-4
usage, 23-5

PIO15–PIO0 Data (PIODATA15_0) register
function, 23-4
usage, 23-5

PIO15–PIO0 Direction (PIODIR15_0) register
function, 23-4
usage, 23-5

PIO15–PIO0 Pin Function Select (PIOPFS15_0) 
register

function, 13-6, 14-4, 15-4, 23-4
usage, 3-8, 13-3, 14-4, 15-2, 23-3, 23-5

PIO15–PIO0 Set (PIOSET15_0) register
function, 23-4
usage, 23-5

PIO31–PIO0 signals
control, 13-3, 14-4, 15-2, 21-2, 23-3
usage, 23-6

PIO31–PIO16 Clear (PIOCLR31_16) register
function, 23-4
usage, 23-5

PIO31–PIO16 Data (PIODATA31_16) register
function, 23-4
usage, 23-5

PIO31–PIO16 Direction (PIODIR31_16) register
function, 23-4
usage, 23-5

PIO31–PIO16 Pin Function Select (PIOPFS31_16) 
register

function, 13-6, 15-4, 21-3, 23-4
usage, 3-8, 13-3, 15-2, 21-2, 23-3, 23-5

PIO31–PIO16 Set (PIOSET31_16) register
function, 23-4
usage, 23-5

PIOCLR15_0 register, 23-4
PIOCLR31_16 register, 23-4
PIODATA15_0 register, 23-4
PIODATA31_16 register, 23-4
PIODIR15_0 register, 23-4
PIODIR31_16 register, 23-4
PIOPFS15_0 register, 23-4
PIOPFS31_16 register, 23-4
PIOSET31_16 register, 23-4
PIOx_FNC bit field, 13-3, 14-4, 15-2, 21-2, 23-3
PIT Channel x Count (PITxCNT) register

function, 16-3
usage, 16-4, 16-6

PIT Counter Latch Command (PITCNTLAT) register
function, 16-3
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PIT Mode Control (PITMODECTL) register
function, 16-3
usage, 16-4, 16-7

PIT Read-Back Command (PITRDBACK) register
function, 16-3

PIT x Interrupt Mapping (PITxMAP) register
function, 15-4, 16-2

PIT x Status (PITxSTA) register
function, 16-3

PIT. See programmable interval timer (PIT).
PIT_GATE2 bit field, 16-4
PIT_OUT2_ENB bit field, 16-4
PIT_OUT2_STA bit field, 16-4
PITCNTLAT register, 16-3
PITGATE2 signal

control, 13-3, 13-6, 16-1, 16-2, 16-4
description, 2-10

PITMODECTL register, 16-3
PITOUT2 signal

control, 16-3
description, 2-10
usage, 16-1, 16-4

PITRDBACK register, 16-3
PITxCNT register, 16-3
PITxMAP register, 15-4
PITxSTA register, 16-3
PLL. See clock generation and control. See also reset 

generation.
power

signal descriptions, 2-14
Power Good signal. See PWRGOOD signal.
Power Supply signals. See VCC_CORE signal, VCC_I/

O signal, and VCC_RTC signal.
power-on reset, 6-9
PRG_RST_ENB bit field, 3-4, 6-4, 6-6, 10-29
PRGRESET signal

control, 6-3, 10-10
description, 2-10
timing (figure), 6-6
usage, 3-4, 6-4, 6-6, 6-8, 6-9, 10-10, 10-29

PRGRST_DET bit field, 6-8
Programmable Address Region x (PARx) registers

address region attributes, 3-12
cacheability control, 3-12
code execution control, 3-12
doubleword boundaries, 4-20
external GP bus devices, 3-13
external ROM devices, 3-17
format (figure), 3-10
function, 4-2, 24-2
maximum region size, 4-20
PAR register priority, 3-13
PCI bus devices, 3-15

performance considerations of attributes, 3-12
region size, 4-18
SDRAM regions, 3-18
software considerations, 4-18
specifying pages and regions, 3-9
start address, 4-18
usage, 2-11, 3-8, 3-10, 4-5, 12-14, 13-6, 13-9, 13-2

2, 15-9
worksheet (figure), 3-11
write-protection, 3-12

programmable input/output (PIO)
block diagram (figure), 23-2
configuration

configuration summary (table), 23-5
input pins, 23-5
output pins, 23-5

initialization, 23-6
operation, 23-4
overview, 23-1
PIO31–PIO0 signals, 23-4
registers, 23-4
signal descriptions, 2-11
software considerations, 23-5
system design, 23-2

shared signals (table), 23-3
Programmable Input/Output signals. See PIO31–PIO0 

signals.
programmable interrupt controller (PIC)

block diagram (figure), 15-3
configuration, 15-16

PC/AT configuration, 15-18
programming, 15-16

configuring interrupt mapping, 3-19
edge-triggered or level-sensitive interrupts, 15-13
initialization, 15-20
interrupt flow sequence, 15-7
interrupt sharing, 15-13
interrupt source routing, 15-10

disabling the slave controllers, 15-13
floating point error handling, 15-12
PC/AT compatibility, 15-12
polarity inversion of interrupt requests, 15-10

interrupt source routing (figure), 15-11
interrupt sources, 15-8

hardware-generated interrupts, 15-8
interrupt sources (figure), 15-9
non-maskable interrupts and routing, 15-14

NMI routing (figure), 15-15
NMI sharing, 15-14

operation, 15-7
overview, 15-1
PC/AT interrupt channel mapping (table), 15-12
priority types, 15-16
registers, 15-4
software considerations, 15-18

detecting invalid interrupt requests, 15-19
disabling the slave controllers, 15-19
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floating point unit error handling, 15-19
interrupt sharing, 15-18

system design, 15-2
shared signals (table), 15-2

programmable interval timer (PIT)
block diagram (figure), 16-2
clocking considerations, 16-6

external clock source (table), 16-6
internal clock source (table), 16-6

initialization, 16-7
interrupts, 16-6
operating modes, 16-4

hardware-retriggerable one-shot, 16-4
hardware-triggered strobe, 16-5
interrupt on terminal count, 16-4
rate generator, 16-5
software-triggered strobe, 16-5
square wave mode, 16-5

operation, 16-3
overview, 16-1
PIT Channel 0, 16-3
PIT Channel 1, 16-3
PIT Channel 2, 16-4
registers, 16-2
signal descriptions, 2-10
software considerations, 16-6

PC/AT-compatible systems, 16-6
system design, 16-1

shared signals (table), 16-1
Programmable Interval Timer 2 Gate signal. See 

PITGATE2 signal.
Programmable Interval Timer 2 Output signal. See 

PITOUT2 signal.
programmable reset, 6-6, 10-29
Programmable Reset signal. See PRGRESET signal.
PSC_SEL bit field, 17-3
pulldown resistors

configuration signals, 2-13
ECC devices not installed, 10-9
internal value, 2-4
JTAG boundary scan test interface, 25-16
JTAG signals, 2-12
PIO31–PIO0 signals, 23-1–23-2
PIO31–PIO0 signals (table), 23-3
SSI devices, 22-1

pullup resistors
GP bus external pullups required, 13-4
GPRDY signal, 2-9
internal value, 2-4
JTAG boundary scan test interface, 25-4
JTAG signals, 2-12
PCI external pullups required, 9-3
PIO31–PIO0 signals, 23-1–23-2
PIO31–PIO0 signals (table), 23-3
SSI devices, 22-1
UART serial port signals, 21-2

PWRGOOD signal
description, 2-10
timing, 6-9
usage, 6-2, 6-4, 6-8, 20-5

PWRGOOD_DET bit field, 6-8

R
RAS_CAS_DLY bit field, 10-21
RAS_PCHG_DLY bit field, 10-21
RATE_SEL bit field, 20-8
read buffer. See write buffer and read buffer.
real-time clock (RTC)

block diagram (figure), 20-2
configuration, 20-7

alarm function, 20-9
date and time, 20-8
hour format, 20-7
periodic interrupts, 20-8
using RATE_SEL (table), 20-8
year 2000 issues, 20-9

disabling, 3-21
initialization, 20-10

RTC reset, 20-11
interrupts, 20-9
operation, 20-7
overview, 20-1
registers, 20-6
RTC reset, 6-7
software considerations, 20-10

accessing the CMOS memory, 20-10
initializing the RTC divider chain, 20-10
legacy NMI enable bit moved, 20-10

system design, 20-3
backup battery considerations, 20-3
circuit with backup battery (figure), 20-4
circuit without backup battery (figure), 20-5
external RTC, 20-5
selecting and interfacing a 32.768-kHz 

crystal, 20-5
voltage monitor, 20-2
voltage monitor block diagram (figure), 20-3

register set manual, xxiv
REGISTER_NUM bit field, 9-10
registers

Address Decode Control (ADDDECCTL), 4-2
Am5x86 CPU Control (CPUCTL), 7-1
AMDebug Technology RX/TX Interrupt Mapping 

(ICEMAP), 15-5
Arbiter Priority Control (ARBPRICTL), 8-2
BOOTCS Control (BOOTCSCTL), 12-5
Buffer Chaining Control (GPDMABCCTL), 14-5
Buffer Chaining Interrupt Enable 

(GPDMABSINTENB), 14-5
Buffer Chaining Status (GPDMABCSTA), 14-5
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registers (continued)
Buffer Chaining Valid (GPDMABCVAL), 14-5
Chip Select Pin Function Select (CSPFS), 23-4
Class Code/Revision ID (PCICCREVID), 9-8
Clock Select (CLKSEL), 5-6, 23-4
Configuration Base Address (CBAR), 4-2
Device/Vendor ID (PCIDEVID), 9-8
DMA Buffer Chaining Interrupt Mapping 

(DMABCINTMAP), 14-4, 15-5
Drive Strength Control (DSCTL), 23-4
ECC Check Bit Position (ECCCKBPOS), 10-10
ECC Check Code Test (ECCCKTEST), 10-10
ECC Control (ECCCTL), 10-10
ECC Interrupt Mapping (ECCMAP), 15-4
ECC Multi-Bit Error Address (ECCMBADD), 10-10
ECC Single-Bit Error Address (ECCSBADD), 10-10
ECC Status (ECCSTA), 10-10
ÉlanSC520 Microcontroller Revision ID 

(REVID), 7-1
Floating Point Error Interrupt Clear 

(FPUERRCLR), 15-7
Floating Point Error Interrupt Mapping 

(FERRMAP), 15-5
General-Purpose CMOS RAM (RTCCMOS), 20-7
GP ALE Offset (GPALEOFF), 13-6
GP ALE Pulse Width (GPALEW), 13-6
GP Chip Select Data Width (GPCSDW), 13-5
GP Chip Select Offset (GPCSOFF), 13-5
GP Chip Select Pulse Width (GPCSPW), 13-5
GP Chip Select Qualification (GPCSQUAL), 13-5
GP Chip Select Recovery Time (GPCSRT), 13-5
GP Echo Mode (GPECHO), 13-5
GP Read Offset (GPRDOFF), 13-5
GP Read Pulse Width (GPRDW), 13-5
GP Timer x Count (GPTMRxCNT), 17-2, 17-3
GP Timer x Interrupt Mapping (GPTMRxMAP), 15-4
GP Timer x Maxcount Compare A 

(GPTMRxMAXCMPA), 17-2, 17-3
GP Timer x Maxcount Compare B 

(GPTMRxMAXCMPB), 17-2, 17-3
GP Timer x Mode/Control 

(GPTMRxCTL), 17-2, 17-3
GP Timers Status (GPTMRSTA), 17-2
GP Write Offset (GPWROFF), 13-6
GP Write Pulse Width (GPWRW), 13-5
GP-DMA Channel x Extended Page 

(GPDMAEXTPGx), 14-4, 14-5
GP-DMA Channel x Extended Transfer Count 

(GPDMAEXTTCx), 14-5
GP-DMA Channel x Next Address High 

(GPDMANXTADDHx), 14-5, 14-6
GP-DMA Channel x Next Address Low 

(GPDMANXTADDLx), 14-5, 14-6
GP-DMA Channel x Next Transfer Count High 

(GPDMANXTTCHx), 14-6
GP-DMA Channel x Next Transfer Count Low 

(GPDMANXTTCLx), 14-6

registers (continued)
GP-DMA Control (GPDMACTL), 14-4
GP-DMA Memory-Mapped I/O 

(GPDMAMMIO), 14-4
GP-DMA Resource Channel Map A 

(GPDMAEXTCHMAPA), 14-4
GP-DMA Resource Channel Map B 

(GPDMAEXTCHMAPB), 14-4
GPIRQx Interrupt Mapping (GPxIMAP), 15-5
Header Type (PCIHEADTYPE), 9-8
Host Bridge Control (HBCTL), 9-7
Host Bridge Master Interrupt Address 

(MSTINTADD), 9-7
Host Bridge Master Interrupt Control 

(HBMSTIRQCTL), 9-7
Host Bridge Master Interrupt Status 

(HBMSTIRQSTA), 9-7
Host Bridge Target Interrupt Control 

(HBTGTIRQCTL), 9-7
Host Bridge Target Interrupt Status 

(HBTGTIRQSTA), 9-7
Interrupt Control (PICICR), 15-4
Interrupt Pin Polarity (INTPINPOL), 15-4
Master DMA Channel 4–7 Control 

(MSTDMACTL), 14-7
Master DMA Channel 4–7 Mask 

(MSTDMAMSK), 14-7
Master DMA Channel 4–7 Mode 

(MSTDMAMODE), 14-7
Master DMA Channel 4–7 Status 

(MSTDMASTA), 14-7
Master DMA Channel x Memory Address 

(GPDMAxMAR), 14-7
Master DMA Channel x Page (GPDMAxPG), 14-7
Master DMA Channel x Transfer Count 

(GPDMAxTC), 14-7
Master DMA Clear Byte Pointer 

(MSTDMACBP), 14-7
Master DMA Controller Reset (MSTDMARST), 14-8
Master DMA Controller Temporary 

(MSTDMATMP), 14-8
Master DMA General Mask 

(MSTDMAGENMSK), 14-8
Master DMA Mask Reset (MSTDMAMSKRST), 14-8
Master PIC Initialization Control Word 1 

(MPICICW1), 15-6
Master PIC Initialization Control Word 2 

(MPICICW2), 15-6
Master PIC Initialization Control Word 3 

(MPICICW3), 15-7
Master PIC Initialization Control Word 4 

(MPICICW4), 15-7
Master PIC In-Service (MPICISR), 15-6
Master PIC Interrupt Mask (MPICINTMSK), 15-7
Master PIC Interrupt Mode (MPICMODE), 15-4
Master PIC Interrupt Request (MPICIR), 15-6
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registers (continued)
Master PIC Operation Control Word 2 

(MPICOCW2), 15-6
Master PIC Operation Control Word 3 

(MPICOCW3), 15-6
Master Retry Time-Out (PCIMRETRYTO), 9-8
Master Software DRQ(n) Request 

(MSTDMASWREQ), 14-7
PCI Bus Arbiter Status (PCIARBSTA), 8-2
PCI Configuration Address (PCICFGADR), 9-8
PCI Configuration Data (PCICFGDATA), 9-8
PCI Host Bridge Interrupt Mapping 

(PCIHOSTMAP), 15-4
PCI Interrupt A Mapping (PCIINTAMAP), 15-5
PCI Interrupt B Mapping (PCIINTBMAP), 15-5
PCI Interrupt C Mapping (PCIINTCMAP), 15-5
PCI Interrupt D Mapping (PCIINTDMAP), 15-5
PIO15–PIO0 Clear (PIOCLR15_0), 23-4
PIO15–PIO0 Data (PIODATA15_0), 23-4
PIO15–PIO0 Direction (PIODIR15_0), 23-4
PIO15–PIO0 Pin Function Select 

(PIOPFS15_0), 23-4
PIO15–PIO0 Set (PIOSET15_0), 23-4
PIO31–PIO16 Clear (PIOCLR31_16), 23-4
PIO31–PIO16 Data (PIODATA31_16), 23-4
PIO31–PIO16 Direction (PIODIR31_16), 23-4
PIO31–PIO16 Pin Function Select 

(PIOPFS31_16), 23-4
PIO31–PIO16 Set (PIOSET31_16), 23-4
PIT Channel x Count (PITxCNT), 16-3
PIT Counter Latch Command (PITCNTLAT), 16-3
PIT Mode Control (PITMODECTL), 16-3
PIT Read-Back Command (PITRDBACK), 16-3
PIT x Interrupt Mapping (PITxMAP), 15-4
PIT x Status (PITxSTA), 16-3
Programmable Address Region x (PARx), 4-2
Reset Configuration (RESCFG), 6-3
Reset Status (RESSTA), 6-3
ROMCS1 Control (ROMCS1CTL), 12-5
ROMCS2 Control (ROMCS2CTL), 12-5
RTC Alarm Hour (RTCALMHR), 20-6
RTC Alarm Minute (RTCALMMIN), 20-6
RTC Alarm Second (RTCALMSEC), 20-6
RTC Control A (RTCCTLA), 20-7
RTC Control B (RTCCTLB), 20-7
RTC Current Day of the Month 

(RTCCURDOM), 20-6
RTC Current Day of the Week 

(RTCCURDOW), 20-6
RTC Current Hour (RTCCURHR), 20-6
RTC Current Minute (RTCCURMIN), 20-6
RTC Current Month (RTCCURMON), 20-6
RTC Current Second (RTCCURSEC), 20-6
RTC Current Year (RTCCURYR), 20-6
RTC Interrupt Mapping (RTCMAP), 15-5
RTC Status C (RTCSTAC), 20-7
RTC Status D (RTCSTAD), 20-7

registers (continued)
RTC/CMOS RAM Data Port (RTCDATA), 20-6
RTC/CMOS RAM Index (RTCIDX), 20-6
SCP Command Port (SCPCMD), 6-3
SCP Data Port (SCPDATA), 6-3
SDRAM Bank 0–3 Ending Address 

(DRCBENDADR), 10-10
SDRAM Bank Configuration (DRCCFG), 10-10
SDRAM Buffer Control (DBCTL), 11-4
SDRAM Control (DRCCTL), 10-10
SDRAM Timing Control (DRCTMCTL), 10-10
Slave DMA Channel 0–3 Control (SLDMACTL), 14-7
Slave DMA Channel 0–3 Mask (SLDMAMSK), 14-7
Slave DMA Channel 0–3 Mode 

(SLDMAMODE), 14-7
Slave DMA Channel 0–3 Status (SLDMASTA), 14-7
Slave DMA Channel x Memory Address 

(GPDMAxMAR), 14-7
Slave DMA Channel x Page (GPDMAxPG), 14-7
Slave DMA Channel x Transfer Count 

(GPDMAxTC), 14-7
Slave DMA Clear Byte Pointer (SLDMACBP), 14-7
Slave DMA Controller Reset (SLDMARST), 14-8
Slave DMA Controller Temporary 

(SLDMATMP), 14-8
Slave DMA General Mask (SLDMAGENMSK), 14-8
Slave DMA Mask Reset (SLDMAMSKRST), 14-8
Slave Software DRQ(n) Request 

(SLDMASWREQ), 14-7
Slave x PIC Initialization Control Word 1 

(SxPICICW1), 15-6
Slave x PIC Initialization Control Word 2 

(SxPICICW2), 15-6
Slave x PIC Initialization Control Word 3 

(SxPICICW3), 15-7
Slave x PIC Initialization Control Word 4 

(SxPICICW4), 15-7
Slave x PIC In-Service (SxPICISR), 15-6
Slave x PIC Interrupt Mask (SxPICINTMSK), 15-7
Slave x PIC Interrupt Mode (SLxPICMODE), 15-4
Slave x PIC Interrupt Request (SxPICIR), 15-6
Slave x PIC Operation Control Word 2 

(SxPICOCW2), 15-6
Slave x PIC Operation Control Word 3 

(SxPICOCW3), 15-6
Software Interrupt 16–1 Control (SWINT16_1), 15-4
Software Interrupt 22–17/NMI Control 

(SWINT22_17), 15-4
Software Timer Configuration (SWTMRCFG), 18-2
Software Timer Microsecond Count 

(SWTMRMICRO), 18-2
Software Timer Millisecond Count 

(SWTMRMILLI), 18-2
SSI Command (SSICMD), 22-2
SSI Control (SSICTL), 22-2
SSI Interrupt Mapping (SSIMAP), 15-5
SSI Receive (SSIRCV), 22-2
Élan™SC520 Microcontroller User’s Manual Index-19



Index
registers (continued)
SSI Status (SSISTA), 22-2
SSI Transmit (SSIXMIT), 22-2
Status/Command (PCISTACMD), 9-8
System Arbiter Control (SYSARBCTL), 8-2
System Arbiter Master Enable 

(SYSARBMENB), 8-2
System Board Information (SYSINFO), 6-3
System Control Port A (SYSCTLA), 6-3
System Control Port B (SYSCTLB), 16-3
UART x Baud Clock Divisor Latch LSB 

(UARTxBCDL), 21-4
UART x Baud Clock Divisor Latch MSB 

(UARTxBCDH), 21-4
UART x FIFO Control (UARTxFCR), 21-4
UART x FIFO Control Shadow 

(UARTxFCRSHAD), 21-3
UART x General Control (UARTxCTL), 21-3
UART x General Status (UARTxSTA), 21-3
UART x Interrupt Enable (UARTxINTENB), 21-4
UART x Interrupt ID (UARTxINTID), 21-4
UART x Interrupt Mapping (UARTxMAP), 15-5
UART x Line Control (UARTxLCR), 21-4
UART x Line Status (UARTxLSR), 21-4
UART x Modem Control (UARTxMCR), 21-4
UART x Modem Status (UARTxMSR), 21-4
UART x Receive Buffer (UARTxRBR), 21-4
UART x Scratch Pad (UARTxSCRATCH), 21-4
UART x Transmit Holding (UARTxTHR), 21-4
Watchdog Timer Control (WDTMRCTL), 19-2
Watchdog Timer Count High 

(WDTMRCNTH), 19-3, 19-6
Watchdog Timer Count Low (WDTMRCNTL), 19-2
Watchdog Timer Interrupt Mapping 

(WDTMAP), 15-5
Write-Protect Violation Interrupt Mapping 

(WPVMAP), 15-5
Write-Protect Violation Status (WPVSTA), 4-2

REQ4–REQ0 signals
control, 2-7, 8-2
usage, 8-7

Request To Send signals. See RTS2–RTS1 signals.
RESCFG register, 6-3
Reset Configuration (RESCFG) register

function, 6-3, 10-10, 13-6, 24-2
usage, 6-4, 6-5, 6-6, 6-7, 10-29, 13-22, 24-11

reset generation
a20 gate support, 6-8
block diagram (figure), 6-2
core states after system reset (table), 6-5
determining reset sources, 6-8
GP bus reset, 6-7
hard CPU reset, 7-5
initialization, 6-9
latency, 6-9
operation, 6-3

overview, 6-1
PCI reset, 6-7
PLL start-up, 6-8
PLL start-up timing (figure), 6-9
power-on reset, 6-9

power-on reset timing (figure), 6-9
PRGRESET timing (figure), 6-6
programmable reset, 6-6, 10-29
registers, 6-3
reset sources (table), 6-4
reset types, 6-3
reset vector and reset segment, 3-4
RTC reset, 6-7
signal descriptions, 2-10
soft CPU reset, 6-7, 7-5
software considerations, 6-8
system design, 6-2
system reset, 6-4
system reset with SDRAM retention, 6-6

Reset Latched Input signals. 
See RSTLD7–RSTLD0 signals.

Reset signal. See RST signal.
Reset Status (RESSTA) register

function, 6-3, 7-1, 10-10, 19-3, 24-3
usage, 6-8, 24-11

RESSTA register, 6-3
REVID register, 7-1
RF_CLR bit field, 21-10
RFRT bit field, 21-7, 21-10
RFSH_ENB bit field, 10-19
RFSH_SPD bit field, 10-18
RIN2–RIN1 signals

control, 13-6, 21-2, 21-3, 21-4
description, 2-9, 21-6
usage, 21-2, 21-9

Ring Indicate signals. See RIN2–RIN1 signals.
ROM Buffer Output Enable signal. 

See ROMBUFOE signal.
ROM/Flash Boot Chip Select signal. 

See BOOTCS signal.
ROM/Flash Chip Select signals. 

See ROMCS2–ROMCS1 signals.
ROM/Flash controller

access timing and wait states example (table), 12-9
accesses and ROM width (table), 12-9
address decoding, 12-12
block diagram (figure), 12-2
bus cycles, 12-9

2 doublewords from 16-bit ROM (figure), 12-11
4 aligned doublewords from 32-bit ROM 

(figure), 12-8
4 unaligned doublewords from 8-bit ROM 

(figure), 12-8
4 words from 16-bit ROM (figures), 12-8
burst access from 32-bit ROM (figure), 12-10
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cache-line fill (figure), 12-11
multiple accesses from 8-bit ROM (figure), 12-10
page-mode read access, 12-10
single CPU read access, 12-9
word write cycle to Flash memory (figure), 12-12
writing to Flash, 12-11

cacheability control, 3-12
code execution control, 3-12
configuration, 12-7

access timing, 12-8
operating mode, 12-7
ROM location, 12-7
ROM width, 12-7

configuring external ROM devices
boot device mapping for BIOS shadowing, 3-17
two Flash banks for XIP operating system, 3-17

device types supported, 12-6
initialization, 12-14

CFGx options for BOOTCS (table), 12-14
latency, 12-13
memory space, 4-4
operation, 12-5
overview, 12-1
programming Flash, 12-12
registers, 12-5
sharing address and data bus with GP bus, 13-10
signal descriptions, 2-6
software considerations, 12-12
system design, 12-2

data bus connection options (table), 12-1
shared signals (table), 12-3
voltage isolation, 12-3
voltage isolation examples (figure), 12-4

write-protection, 3-12, 3-18
ROM/Flash controller data bus, 2-8
ROM/Flash Read signal. See ROMRD signal.
ROMBUFOE signal

description, 2-6
usage, 2-8, 12-3

ROMCS1 Control (ROMCS1CTL) register
function, 12-5
usage, 12-14

ROMCS1CTL register, 12-5
ROMCS2 Control (ROMCS2CTL) register

function, 12-5
usage, 12-14

ROMCS2CTL register, 12-5
ROMCS2–ROMCS1 signals

control, 3-10, 12-3, 13-3, 13-6
description, 2-6
usage, 3-17, 4-8, 4-15, 12-3, 12-14, 24-6

ROMRD signal
description, 2-6
usage, 12-3, 24-4, 24-6

Row Address Strobe signals. See SRASA–SRASB 
signals.

RST signal
control, 9-29
description, 2-7
usage, 6-4, 6-7, 9-2, 9-3, 9-29

RSTLD7–RSTLD0 signals
description, 2-14
usage, 6-3, 6-4, 6-5, 6-6

RTC. See real-time clock (RTC).
RTC Alarm Hour (RTCALMHR) register

function, 20-6
usage, 20-7, 20-10

RTC Alarm Minute (RTCALMMIN) register
function, 20-6

RTC Alarm Second (RTCALMSEC) register
function, 20-6

RTC Control A (RTCCTLA) register
function, 20-7
usage, 20-7, 20-8, 20-10

RTC Control B (RTCCTLB) register
function, 20-7
usage, 20-7, 20-9, 20-10

RTC Current Day of the Month (RTCCURDOM) register
function, 20-6

RTC Current Day of the Week (RTCCURDOW) register
function, 20-6

RTC Current Hour (RTCCURHR) register
function, 20-6
usage, 20-7

RTC Current Minute (RTCCURMIN) register
function, 20-6

RTC Current Month (RTCCURMON) register
function, 20-6

RTC Current Second (RTCCURSEC) register
function, 20-6

RTC Current Year (RTCCURYR) register
function, 20-6
usage, 20-9

RTC Interrupt Mapping (RTCMAP) register
function, 15-5

RTC Status C (RTCSTAC) register
function, 20-7

RTC Status D (RTCSTAD) register
function, 20-7
usage, 6-7, 20-4

RTC/CMOS RAM Data Port (RTCDATA) register
function, 20-6
usage, 20-10

RTC/CMOS RAM Index (RTCIDX) register
function, 20-6
usage, 20-10

RTC_DIS bit field, 3-21, 20-5
RTC_VRT bit field, 6-7, 20-4
RTCALMHR register, 20-6
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RTCALMMIN register, 20-6
RTCALMSEC register, 20-6
RTCCMOS register, 20-7
RTCCTLA register, 20-7
RTCCTLB register, 20-7
RTCCURDOM register, 20-6
RTCCURDOW register, 20-6
RTCCURHR register, 20-6
RTCCURMIN register, 20-6
RTCCURMON register, 20-6
RTCCURSEC register, 20-6
RTCCURYR register, 20-6
RTCDATA register, 20-6
RTCIDX register, 20-6
RTCMAP register, 15-5
RTCSTAC register, 20-7
RTCSTAD register, 20-7
RTG bit field, 17-3
RTS2–RTS1 signals

control, 21-4
description, 2-9, 21-6
usage, 21-2

S
S1_GINT_MODE bit field, 15-18
S2 bit field, 15-17, 15-18, 15-19
S2_GINT_MODE bit field, 3-19
S5 bit field, 15-17, 15-18, 15-19
SBIT_ERR bit field, 10-27
SCASA–SCASB signals

control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-5

SCP Command Port (SCPCMD) register
function, 6-3, 7-1
usage, 6-7, 6-8

SCP Data Port (SCPDATA) register
function, 6-3, 7-1
usage, 6-8

SCPCMD register, 6-3
SCPDATA register, 6-3
SCS3–SCS0 signals

control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-1, 10-5, 10-12, 10-30

SD_RST_DET bit field, 6-8
SDQM3–SDQM0 signals

control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-6, 10-28, 24-11

SDRAM Address signals. See MA12–MA0 signals.

SDRAM Bank 0–3 Ending Address (DRCBENDADR) 
register

function, 10-10
usage, 10-32, 10-33, 10-35

SDRAM Bank Configuration (DRCCFG) register
function, 10-10
usage, 10-15, 10-33

SDRAM Buffer Control (DBCTL) register
function, 11-4, 24-2
usage, 11-5, 11-9, 11-13, 24-10

SDRAM Chip Select signals. See SCS3–SCS0 signals.
SDRAM Clock Input signal. See CLKMEMIN signal.
SDRAM Clock Output signal. See CLKMEMOUT signal.
SDRAM Control (DRCCTL) register

function, 10-10, 11-4, 24-2
usage, 10-18, 10-19, 10-30, 24-2, 24-3, 24-7

SDRAM controller
addressing, 10-12

address mapping to MA (table), 10-12
page sizes (table), 10-16
SDRAM devices supported (table), 10-13
supported SDRAM devices, 10-13

block diagram (figure), 10-2
block diagram detail (figure), 10-3
buffering, 10-17
bus cycles, 10-22

auto refresh cycle (figure), 10-27
burst read cycle (figure), 10-22
burst read cycle with ECC enabled 

(figure), 10-25
CPU burst write (figure), 10-24
ECC cycles, 10-24
mode register access (figure), 10-27
read-modify-write cycle with ECC (figure), 10-26
write cycle (figure), 10-23

cacheability control, 3-12
code execution control, 3-12
column address configuration (table), 10-15
configuring GP-DMA buffers with PAR 

registers, 3-18
control configuration, 10-18

drive-strength selection, 10-19
operation mode select, 10-30
refresh control, 10-18
refresh rates (table), 10-18
write buffer test mode, 10-19

error correction code (ECC), 10-16, 10-27, 10-28
initialization, 10-29

boot process, 10-32
programmable reset, 10-29
SDRAM device initialization, 10-30

auto refresh command, 10-31
load mode register (table), 10-31
mode register programming, 10-31
NOP command, 10-31
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operation mode select, 10-20
precharge command, 10-31

sizing algorithm, 10-32
external bank column number, 10-33
internal bank number, 10-34
true external bank ending address, 10-35

interrupts, 10-27
multi-bit error, 10-27
single-bit error, 10-27

latency, 10-28
memory space, 4-4, 4-8
operation, 10-11
registers, 10-10
SDRAM support, 10-11
signal descriptions, 2-5
software considerations, 10-28

disabling buffers during configuration, 10-28
ECC errors, 10-28
write protection, 10-28

system design, 10-1
168-pin SDRAM DIMM configuration 

(figure), 10-5
bank configuration (figure), 10-4
clock generation (figure), 10-7
clock generation with external driver 

(figure), 10-7
clock loading estimates (table), 10-6
clocking, 10-6
delay calculation, 10-7
estimated capacitance (tables), 10-8
loading, 10-8
pins, 10-5

timing configuration, 10-20
auto-refresh-to-RAS (TRC), 10-21
CAS latency (CL), 10-20
minimum RAS (TRAS), 10-22
RAS precharge (TRP), 10-21
RAS-to-CAS delay (TRCD), 10-21
RAS-to-RAS, 10-21

write-protection, 3-12, 3-18
SDRAM Memory Write Enable signals. See SWEA–

SWEB signals.
SDRAM Timing Control (DRCTMCTL) register

function, 10-10
usage, 10-20, 10-31, 24-5, 24-9

Serial Data In signals. See SIN2–SIN1 signals.
Serial Data Out signals. See SOUT2–SOUT1 signals.
Serial Debug Port Data (SDPD) register

format, 25-14
function, 25-2
usage, 25-14

SERR signal
control, 9-8
description, 2-7
usage, 9-3, 9-27

SET bit field, 20-7

Set Interrupt-Enable Flag (STI) 
instruction, 15-7, 15-18, 15-20

SFNM bit field, 15-18
SGL_INT_ENB bit field, 10-27
signal descriptions

AMDebug™ technology, 2-12
configuration, 2-13
descriptions (table), 2-5
general-purpose (GP) bus, 2-7, 2-11
general-purpose (GP) timers, 2-10
GP-DMA controller, 2-7
JTAG, 2-12
PCI host bridge, 2-6
power, 2-14
programmable input/output (PIO), 2-11
programmable interval timer (PIT), 2-10
reset generation, 2-10
ROM/Flash controller, 2-6
SDRAM controller, 2-5
synchronous serial interface (SSI), 2-9
UART serial ports, 2-9

signals
32KXTAL2–32KXTAL1, 2-10
33MXTAL2–33MXTAL1, 2-10
AD31–AD0, 2-6
AMDEBUG_DIS, 2-13
BA1–BA0, 2-5
BBATSEN, 2-14
BOOTCS, 2-6
BR/TC, 2-12
CBE3–CBE0, 2-6
CF_DRAM, 2-12
CF_ROM_GPCS, 2-12
CFG2–CFG0, 2-13
CFG3, 2-13
CLKMEMIN, 2-5
CLKMEMOUT, 2-5
CLKPCIIN, 2-6
CLKPCIOUT, 2-7
CLKTEST, 2-10
CLKTIMER, 2-10
CMDACK, 2-12
CTS2–CTS1, 2-9
DATASTRB, 2-12
DCD2–DCD1, 2-9
DEBUG_ENTER, 2-13
DEVSEL, 2-7
DSR2–DSR1, 2-9
DTR2–DTR1, 2-9
FLASHWR, 2-6
FRAME, 2-7
GND, 2-14
GNT4–GNT0, 2-7
GPA25–GPA0, 2-6, 2-7
GPAEN, 2-8
GPALE, 2-8
GPBHE, 2-8
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signals (continued)
GPCS7–GPCS0, 2-11
GPD15–GPD0, 2-6, 2-8
GPDACK3–GPDACK0, 2-8
GPDBUFOE, 2-8
GPDRQ3–GPDRQ0, 2-8
GPIOCS16, 2-8
GPIORD, 2-8
GPIOWR, 2-8
GPIRQ10–GPIRQ0, 2-9
GPMEMCS16, 2-9
GPMEMRD, 2-9
GPMEMWR, 2-9
GPRDY, 2-9
GPRESET, 2-9
GPTC, 2-9
INST_TRCE, 2-13
INTA–INTD, 2-7
IRDY, 2-7
JTAG_TCK, 2-12
JTAG_TDI, 2-12
JTAG_TDO, 2-12
JTAG_TMS, 2-12
JTAG_TRST, 2-12
LF_PLL1, 2-10
MA12–MA0, 2-5
MD31–MD0, 2-5, 2-6
MECC6–MECC0, 2-5
PAR, 2-7
PERR, 2-7
PIO31–PIO0, 2-11
PITGATE2, 2-10
PITOUT2, 2-10
PRGRESET, 2-10
PWRGOOD, 2-10
REQ4–REQ0, 2-7
RIN2–RIN1, 2-9
ROMBUFOE, 2-6
ROMCS2–ROMCS1, 2-6
ROMRD, 2-6
RST, 2-7
RSTLD7–RSTLD0, 2-14
RTS2–RTS1, 2-9
SCASA–SCASB, 2-5
SCS3–SCS0, 2-5
SDQM3–SDQM0, 2-5
SERR, 2-7
SIN2–SIN1, 2-9
SOUT2–SOUT1, 2-9
SRASA–SRASB, 2-5
SSI_CLK, 2-10
SSI_DI, 2-10
SSI_DO, 2-10
STOP, 2-7
STOP/TX, 2-12
SWEA–SWEB, 2-5
TMRIN1–TIMIN0, 2-10

signals (continued)
TRDY, 2-7
TRIG/TRACE, 2-12
VCC_ANLG, 2-14
VCC_CORE, 2-14
VCC_I/O, 2-14
VCC_RTC, 2-14
WBMSTR2–WBMSTR0, 2-13

SIN2–SIN1 signals
description, 2-9
usage, 21-2

Slave DMA Channel 0–3 Control (SLDMACTL) register
function, 14-7

Slave DMA Channel 0–3 Mask (SLDMAMSK) register
function, 14-7

Slave DMA Channel 0–3 Mode (SLDMAMODE) register
function, 14-7
usage, 14-14

Slave DMA Channel 0–3 Status (SLDMASTA) register
function, 14-7

Slave DMA Channel x Memory Address 
(GPDMAxMAR) register

function, 14-7
usage, 14-11, 14-12, 14-18

Slave DMA Channel x Page (GPDMAxPG) register
function, 14-7
usage, 14-11, 14-12

Slave DMA Channel x Transfer Count (GPDMAxTC) 
register

function, 14-7
usage, 14-9, 14-18

Slave DMA Clear Byte Pointer (SLDMACBP) register
function, 14-7

Slave DMA Controller Reset (SLDMARST) register
function, 14-8
usage, 14-19

Slave DMA Controller Temporary (SLDMATMP) register
function, 14-8

Slave DMA General Mask (SLDMAGENMSK) register
function, 14-8
usage, 14-19

Slave DMA Mask Reset (SLDMAMSKRST) register
function, 14-8

Slave Software DRQ(n) Request (SLDMASWREQ) 
register

function, 14-7
Slave x PIC Initialization Control Word 1 (SxPICICW1) 

register
function, 15-6
usage, 3-19, 15-16

Slave x PIC Initialization Control Word 2 (SxPICICW2) 
register

function, 15-6
usage, 15-16, 15-18
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Slave x PIC Initialization Control Word 3 (SxPICICW3) 
register

function, 15-7
usage, 15-16, 15-17

Slave x PIC Initialization Control Word 4 (SxPICICW4) 
register

function, 15-7
usage, 15-17, 15-18

Slave x PIC In-Service (SxPICISR) register
function, 15-6
usage, 15-17

Slave x PIC Interrupt Mask (SxPICINTMSK) register
function, 15-7
usage, 15-17

Slave x PIC Interrupt Mode (SLxPICMODE) register
function, 15-4
usage, 3-19

Slave x PIC Interrupt Request (SxPICIR) register
function, 15-6

Slave x PIC Operation Control Word 2 (SxPICOCW2) 
register

function, 15-6
usage, 15-17

Slave x PIC Operation Control Word 3 (SxPICOCW3) 
register

function, 15-6
usage, 15-17

SLDMACBP register, 14-7
SLDMAGENMSK register, 14-8
SLDMAMODE register, 14-7
SLDMAMSK register, 14-7
SLDMAMSKRST register, 14-8
SLDMARST register, 14-8
SLDMASTA register, 14-7
SLDMASWREQ register, 14-7
SLDMATMP register, 14-8
SLxPICMODE register, 15-4
SNGL bit field, 15-18
Software Interrupt 16–1 Control (SWINT16_1) register

function, 15-4
usage, 15-8

Software Interrupt 22–17/NMI Control (SWINT22_17) 
register

function, 15-4
usage, 15-8

software timer
block diagram (figure), 18-1
configuration, 18-2
initialization, 18-3
operation, 18-2
overview, 18-1
registers, 18-2

Software Timer Configuration (SWTMRCFG) register
function, 5-6, 18-2
usage, 5-8, 18-3

Software Timer Microsecond Count (SWTMRMICRO) 
register

function, 18-2
usage, 18-2

Software Timer Millisecond Count (SWTMRMILLI) 
register

function, 18-2
usage, 18-2

SOUT2–SOUT1 signals
description, 2-9
usage, 21-2

SP bit field, 21-8
SRASA–SRASB signals

control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-5, 10-8

sreset CPU signal, 6-7
SSI. See synchronous serial interface (SSI).
SSI Clock signal. See SSI_CLK signal.
SSI Command (SSICMD) register

function, 22-2
usage, 22-7, 22-8

SSI Control (SSICTL) register
function, 5-6, 22-2
usage, 5-8, 22-3, 22-5, 22-7, 22-8

SSI Data Input signal. See SSI_DI signal.
SSI Data Output signal. See SSI_DO signal.
SSI Interrupt Mapping (SSIMAP) register

function, 15-5, 22-2
SSI Receive (SSIRCV) register

function, 22-2
usage, 22-3, 22-8

SSI Status (SSISTA) register
function, 22-2
usage, 22-7, 22-8

SSI Transmit (SSIXMIT) register
function, 22-2
usage, 22-3, 22-8

SSI_CLK signal
description, 2-10
usage, 5-8, 22-1, 22-5, 22-7

SSI_DI signal
description, 2-10
usage, 22-1, 22-3, 22-5

SSI_DO signal
description, 2-10
usage, 22-1, 22-3, 22-5

SSICMD register, 22-2
SSICTL register, 22-2
SSIMAP register, 15-5
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SSIRCV register, 22-2
SSISTA register, 22-2
SSIXMIT register, 22-2
Status/Command (PCISTACMD) register

function, 9-8
usage, 9-10, 9-18, 9-27

STOP signal
description, 2-7
usage, 9-3

Stop/Transmit signal. See STOP/TX signal.
STOP/TX signal

control, 25-4
description, 2-12

SUB_DLY bit field, 12-8
SWEA–SWEB signals

control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-5

SWINT16_1 register, 15-4
SWINT22_17 register, 15-4
SWT. See software timer.
SWTMRCFG register, 18-2
SWTMRMICRO register, 18-2
SWTMRMILLI register, 18-2
SxPICICW1 register, 15-6
SxPICICW2 register, 15-6
SxPICICW3 register, 15-7
SxPICICW4 register, 15-7
SxPICINTMSK register, 15-7
SxPICIR register, 15-6
SxPICISR register, 15-6
SxPICOCW2 register, 15-6
SxPICOCW3 register, 15-6
synchronous DRAM. See SDRAM controller.
synchronous serial interface (SSI)

block diagram (figure), 22-2
bus cycles, 22-5

4-bit read cycle, 22-6
burst, 16-bit, and 32-bit cycles, 22-7
clock phase and clock idle state (figure), 22-6
full-duplex, back-to-back transactions 

(figure), 22-7
full-duplex, non-inverted phase, non-inverted 

clock (figure), 22-6
half-duplex, non-inverted phase and clock modes 

(figure), 22-4
simultaneous transmit and receive (figure), 22-4
TC_INT and BSY_STA timing (figure), 22-8

clocking considerations, 22-7
configuration, 22-5

bit order, 22-5
clock idle state, 22-5
clock phase, 22-5

initialization, 22-8
interrupts, 22-7
operation, 22-3
overview, 22-1
registers, 22-2
signal descriptions, 2-9
software considerations, 22-8
system design, 22-1

four-pin interface (figure), 22-4
three-pin interface (figure), 22-4

SYS_RST bit field, 6-4, 6-5
SYSARBCTL register, 8-2
SYSARBMENB register, 8-2
SYSCTLA register, 6-3
SYSCTLB register, 16-3
SYSINFO register, 6-3
System Arbiter Control (SYSARBCTL) register

function, 8-2, 24-2
usage, 8-3, 8-10, 8-19, 8-22, 24-10

System Arbiter Master Enable (SYSARBMENB) 
register

function, 8-2
usage, 8-19, 8-23

system arbitration
arbitration mode changes, 8-19
block diagram (figure), 8-2
broken transactions, 8-19
bus cycles, 8-11

CPU bus arbitration (figure), 8-11
CPU bus cache write-back (figure), 8-12
CPU-to-PCI cycle (figure), 8-14
nonconcurrent mode arbitration (figure), 8-18
PCI bus arbitration (figure), 8-15
PCI bus arbitration parking (figure), 8-16

CPU bus arbiter, 8-5
accessing the PCI host bridge target, 8-6
arbitration protocol, 8-5
cache snooping, 8-6
clock speed changes, 8-7
GP-DMA arbitration, 8-7
rotating priority queue (figure), 8-6
skipped master example (figure), 8-5

initialization, 8-22
interrupts, 8-19
latency, 8-20

concurrent arbitration mode, 8-22
concurrent arbitration mode bus parking, 8-22
CPU, 8-21
high-priority queue, 8-21
low-priority queue, 8-21
nonconcurrent arbitration mode, 8-21
simple rotating priority, 8-20
simple rotating priority queue (figure), 8-20

operating modes, 8-3
concurrent arbitration mode, 8-4
nonconcurrent arbitration mode, 8-3
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operation, 8-3
PCI bus arbiter, 8-7

arbitration protocol, 8-8
bus parking, 8-10
external PCI master queues (figure), 8-9
host bridge master queue (figure), 8-9
rearbitration, 8-10

registers, 8-2
software considerations, 8-19
write posting, 8-19

System Board Information (SYSINFO) register
function, 6-3
usage, 19-6

System Control Port A (SYSCTLA) register
function, 6-3, 7-1
usage, 6-7, 6-8

System Control Port B (SYSCTLB) register
function, 16-3
usage, 16-4

System Error signal. See SERR signal.
system initialization

BIOS initialization sequence, 3-3
configuration register access, 4-20
CPU core identification, 3-7
CPU speed, 3-7
disabling internal peripherals, 3-21
external GP bus devices, 3-7

multiple devices on one chip select, 3-14
single device performing its own decode, 3-14
single device using one chip select, 3-14

external ROM devices
boot device mapping for BIOS shadowing, 3-17
two Flash banks for XIP operating system, 3-17

interrupt mapping, 3-19
edge-sensitive or level-triggered interrupts, 3-19
interrupt polarity, 3-20

memory-mapped configuration region (MMCR), 3-3
native embedded initialization sequence, 3-1
PCI bus devices

network adapter, 3-16
VGA controller on PCI bus, 3-15

PCI host bridge and arbitration, 3-20
pin multiplexing, 3-8
Programmable Address Region x (PARx) regions

specifying pages and regions, 3-9
Programmable Address Region x (PARx) 

registers, 3-8
address region attributes, 3-12
cacheability control, 3-12
code execution control, 3-12
external GP bus devices, 3-13
external ROM devices, 3-17
format (figure), 3-10
PAR register priority, 3-13
PCI bus devices, 3-15
performance considerations of attributes, 3-12

SDRAM regions, 3-18
worksheet (figure), 3-11
write-protection, 3-12

programmable I/O pins, 3-20
reset event, 3-4
reset vector and reset segment, 3-5

initial near jump example (figure), 3-6
SDRAM regions

configuring DMA buffers, 3-18
write-protected code segments, 3-18

system reset, 6-6
system test and debugging

cache mode control, 24-10
CPU clock speed control, 24-10
disabling write buffer and read buffer, 24-10
ECC check code override, 24-11
echoing integrated peripheral accesses, 24-10
execution control violation notification, 24-11
forcing software interrupts, 24-11
initialization, 24-12
interrupt masking, 24-11
latency, 24-11
nonconcurrent arbitration mode, 24-10
operation, 24-3
overview, 24-1
registers, 24-2
reset source identification, 24-11
software considerations, 24-11
system design, 24-1

loading, 24-2
logic analyzer use, 24-2
shared signals (table), 24-2

system test mode, 24-3
pin functions, 24-3
SDRAM read cycle (figure), 24-5
SDRAM write cycle (figure), 24-4
tracing transactions on GP bus, 24-6
tracing transactions on ROM interface, 24-5

write buffer test mode, 24-7
SDRAM read cycle (figure), 24-8
SDRAM write cycle (figure), 24-8
WBMSTR2–WBMSTR0 during SDRAM read cy-

cles (table), 24-9
WBMSTR2–WBMSTR0 during write buffer write 

cycles (table), 24-8
write protection violation notification, 24-11

SZ_ST_ADR bit field, 3-9, 3-10, 4-5

T
T_DLYTR_ENB bit field, 9-19
T_IRQ_ID bit field, 9-27
T_PURGE_RD_ENB bit field, 9-22
T7–T3 bit field, 15-18
TARGET bit field, 3-10, 4-5, 4-8, 4-16, 4-19, 9-18
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Target Ready signal. See TRDY signal.
TC_INT bit field, 22-7
TC_INT_ENB bit field, 22-7
technical support, iii
TEMT bit field, 21-7
TERI bit field, 21-6
test access port (TAP) controller. See JTAG boundary 

scan test interface.
Test Clock Output signal. See CLKTEST signal.
Test Data Input signal. See JTAG_TDI signal.
Test Data Output signal. See JTAG_TDO signal.
Test Mode Select signal. See JTAG_TMS signal.
testing. See JTAG boundary scan test interface. 

See also system test and debugging. 
See also AMDebug™ technology.

TF_CLR bit field, 21-10
third-party support products, iii
THRE bit field, 21-6
Timer Clock Input signal. See CLKTIMER signal.
Timer Input 0 and 1 signals. 

See TMRIN1–TMRIN0 signals.
Timer Output 0 and 1 signals. 

See TMROUT1–TMROUT0 signals.
TMRIN1–TIMIN0 signals

control, 13-3, 13-6, 17-1
description, 2-10
usage, 17-3, 17-4, 17-6

TMROUT1–TMROUT0 signals
control, 13-3, 13-6, 17-1
description, 2-10
usage, 14-3, 17-5

TRDY signal
description, 2-7
usage, 9-3, 9-20, 9-21

TRIG/TRACE signal
control, 25-4
description, 2-12

Trigger/Trace signal. See TRIG/TRACE signal.
TRNMOD bit field, 14-11, 14-19

U
UART serial ports

baud rates, divisors, and clock source (table), 21-9
block diagram (figure), 21-2
clocking considerations, 21-10
configuration, 21-9

baud rate, 21-9
hardware flow control, 21-9
operating modes, 21-9

data reception, 21-7
data transmission, 21-6
disabling, 3-21

DMA interface, 21-10
receive DMA, 21-10
transmit DMA, 21-10
UART as GP-DMA initiator, 14-9

error handling, 21-8
break indication, 21-8
error reporting, 21-8
framing error, 21-8
parity error, 21-8

frame configuration (figure), 21-5
frame transmission (figure), 21-5
GP-DMA channel mapping (table), 14-10
initialization, 21-13
interrupts, 21-10

DMA interrupts, 21-12
interrupt disable, 21-13
interrupt priority (table), 21-12
interrupt programming summary (table), 21-11
serial port interrupts, 21-12

operation, 21-5
overview, 21-1
registers, 21-3
signal descriptions, 2-9
system design, 21-2

connection of DTE to DTE (table), 21-3
shared signals (table), 21-2

UART x Baud Clock Divisor Latch LSB (UARTxBCDL) 
register

function, 21-4
usage, 21-9

UART x Baud Clock Divisor Latch MSB (UARTxBCDH) 
register

function, 21-4
usage, 21-9

UART x FIFO Control (UARTxFCR) register
function, 21-4
usage, 21-3, 21-7, 21-9, 21-10, 21-13

UART x FIFO Control Shadow (UARTxFCRSHAD) 
register

function, 21-3
usage, 21-13

UART x General Control (UARTxCTL) register
function, 5-6, 21-3
usage, 5-8, 21-9, 21-10, 21-11, 21-12

UART x General Status (UARTxSTA) register
function, 21-3
usage, 21-11, 21-12

UART x Interrupt Enable (UARTxINTENB) register
function, 21-4
usage, 21-9, 21-11

UART x Interrupt ID (UARTxINTID) register
function, 21-4
usage, 21-11, 21-12

UART x Interrupt Mapping (UARTxMAP) register
function, 15-5, 21-3, 21-11
Index-28 Élan™SC520 Microcontroller User’s Manual



Index
UART x Line Control (UARTxLCR) register
function, 21-4
usage, 21-5, 21-8

UART x Line Status (UARTxLSR) register
function, 21-4
usage, 21-6, 21-7, 21-8, 21-10, 21-11

UART x Modem Control (UARTxMCR) register
function, 21-4
usage, 21-6, 21-11, 21-13

UART x Modem Status (UARTxMSR) register
function, 21-4
usage, 21-6, 21-11

UART x Receive Buffer (UARTxRBR) register
function, 21-4
usage, 21-7, 21-8, 21-10

UART x Scratch Pad (UARTxSCRATCH) register
function, 21-4

UART x Transmit Holding (UARTxTHR) register
function, 21-4
usage, 21-5, 21-6, 21-7, 21-10

UART1_DIS bit field, 3-21
UART2_DIS bit field, 3-21
UARTxBCDH register, 21-4
UARTxBCDL register, 21-4
UARTxCTL register, 21-3
UARTxFCR register, 21-4
UARTxFCRSHAD register, 21-3
UARTxINTENB register, 21-4
UARTxINTID register, 21-4
UARTxLCR register, 21-4
UARTxLSR register, 21-4
UARTxMAP register, 15-5
UARTxMCR register, 21-4
UARTxMSR register, 21-4
UARTxRBR register, 21-4
UARTxSCRATCH register, 21-4
UARTxSTA register, 21-3
UARTxTHR register, 21-4
UIP bit field, 20-7
universal asynchronous receiver/transmitter (UART). 

See UART serial ports.

V
VCC_ANLG signal

description, 2-14
usage, 5-3, 20-4

VCC_CORE signal
description, 2-14

VCC_I/O signal
description, 2-14

VCC_RTC signal
usage, 2-10, 2-14, 6-9, 20-3, 20-4, 20-11

W
watchdog timer (WDT)

AMDebug™ technology interface, 19-5
block diagram (figure), 19-2
configuration, 19-3

interrupt request generation, 19-4
keyed sequences, 19-3
system reset generation, 19-4
time-out duration, 19-4

initialization, 19-6
interrupts, 19-5
operation, 19-3
overview, 19-1
registers, 19-2
software considerations, 19-5
time-out duration (table), 19-4

Watchdog Timer Control (WDTMRCTL) register
function, 6-3, 19-2
usage, 5-8, 19-3, 19-4, 19-5, 19-6

Watchdog Timer Count High (WDTMRCNTH) register
function, 19-3
usage, 19-6

Watchdog Timer Count Low (WDTMRCNTL) register
function, 19-2
usage, 19-6

Watchdog Timer Interrupt Mapping (WDTMAP) register
function, 15-5, 19-3

WB_ENB bit field, 24-10
WB_FLUSH bit field, 11-5, 11-13
WB_TST_ENB bit field, 10-19, 24-2, 24-3, 24-7
WB_WM bit field, 11-9
WBMSTR2–WBMSTR0 signals

control, 24-2
description, 2-13
usage, 10-19, 11-4, 24-1, 24-7, 24-8, 24-12

WDT. See watchdog timer (WDT).
WDT_RST_DET bit field, 6-8
WDTMAP register, 15-5
WDTMRCNTH register, 19-3, 19-6
WDTMRCNTL register, 19-2
WDTMRCTL register, 19-2
web site, iii
WIDTH bit field, 12-7
WPVMAP register, 15-5
WPVSTA register, 4-2
write buffer and read buffer

block diagram (figure), 11-2
data coherency, 11-13
disabling during SDRAM sizing or test, 11-13
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DMA considerations, 11-11
initialization, 11-15
operation, 11-4
PCI considerations, 11-12

read cycles, 11-12
write cycles, 11-12

read buffer, 11-10
disabled, 11-10
enabled, 11-10

registers, 11-4
SDRAM bandwidth improvements, 11-13

bus thrashing (figure), 11-14
software considerations, 11-13
system design, 11-3

shared signals (table), 11-4
write buffer, 11-5

disabled, 11-5
enabled, 11-5
read-merging, 11-8
read-merging example (figure), 11-9
watermark, 11-9
write-collapsing, 11-6
write-collapsing example (figure), 11-8
write-merging, 11-6

Write Buffer Master signals. 
See WBMSTR2–WBMSTR0 signals.

Write-Protect Violation Interrupt Mapping (WPVMAP) 
register

function, 15-5
Write-Protect Violation Status (WPVSTA) register

function, 4-2
usage, 4-20

write-protection, 3-12
WRST_ENB bit field, 19-4
WRTSEL bit field, 14-9

X
XTAL_FREQ bit field, 18-3
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