
Élan™SC520 Microcontroller
User’s Manual

Order #22004B

© 2001 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations
or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifi-
cations and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intel-
lectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no
liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of
merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the
body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a
situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make
changes to its products at any time without notice.

Trademarks

AMD, the AMD logo and combinations thereof, Am186, AMDebug, AMD Athlon, E86, K86, and Élan are trademarks; Am486 and Am5x86 are
registered trademarks; and FusionE86 is a service mark of Advanced Micro Devices, Inc.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corp.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

IF YOU HAVE QUESTIONS, WE’RE HERE TO HELP YOU.
The AMD customer service network includes U.S. offices, international offices, and a
customer training center. Expert technical assistance is available from the AMD worldwide
staff of field application engineers and factory support staff to answer E86™ family hardware
and software development questions.

Frequently accessed numbers are listed below. Additional contact information is listed on
the back of this manual. AMD’s WWW site lists the latest phone numbers.

Technical Support
Answers to technical questions are available online, through e-mail, and by telephone.

Go to AMD’s home page at www.amd.com and follow the Support link for the latest AMD
technical support phone numbers, software, and Frequently Asked Questions.

For technical support questions on all E86 products, send e-mail to
epd.support@amd.com (in the US and Canada) or euro.tech@amd.com (in Europe and
the UK).

You can also call the AMD Corporate Applications Hotline at:

(800) 222-9323 Toll-free for U.S. and Canada

44-(0) 1276-803-299 U.K. and Europe hotline

WWW Support
For specific information on E86 products, access the AMD home page at www.amd.com
and follow the Embedded Processors link. These pages provide information on upcoming
product releases, overviews of existing products, information on product support and tools,
and a list of technical documentation. Support tools include online benchmarking tools and
CodeKit software—tested source code example applications. Many of the technical
documents are available online in PDF form.

Questions, requests, and input concerning AMD’s WWW pages can be sent via e-mail to
webfeedback@amd.com.

Documentation and Literature Support
Data books, user’s manuals, data sheets, application notes, and product CDs are free with
a simple phone call. Internationally, contact your local AMD sales office for product literature.

To order literature, go to www.amd.com/support/literature.html or, in the US and Canada,
call (800) 222-9323.

Third-Party Support
AMD FusionE86SM program partners provide an array of products designed to meet critical time-
to-market needs. Products and solutions available include emulators, hardware and software
debuggers, board-level products, and software development tools, among others. The WWW
site and the E86™ Family Products Development Tools CD, order #21058, describe these
solutions. In addition, mature development tools and applications for the x86 platform are
widely available in the general marketplace.
Élan™SC520 Microcontroller User’s Manual iii

iv Élan™SC520 Microcontroller User’s Manual

TABLE OF CONTENTS
PREFACE INTRODUCTION XXIII
Élan™SC520 Microcontroller. xxiii
Purpose of this Manual . xxiii

Intended Audience . xxiii
Overview of this Manual . xxiii

Related Documents . xxiv
AMD Documentation . xxiv
Additional Information . xxv

Documentation Conventions . xxv

CHAPTER 1 ARCHITECTURAL OVERVIEW 1-1
1.1 Élan™SC520 Microcontroller . 1-1

1.1.1 Distinctive Characteristics . 1-1
1.2 Block Diagram . 1-2
1.3 Architectural Overview . 1-4

1.3.1 Industry-Standard x86 Architecture. 1-4
1.3.2 AMDebug™ Technology for Advanced Debugging 1-4
1.3.3 Industry-Standard PCI Bus Interface . 1-5
1.3.4 High-Performance SDRAM Controller . 1-5
1.3.5 ROM/Flash Controller . 1-5
1.3.6 Flexible Address-Mapping . 1-5
1.3.7 General-Purpose (GP) Bus Interface . 1-6
1.3.8 Clock Generation. 1-6
1.3.9 Integrated Peripherals . 1-7
1.3.10 JTAG Boundary Scan Test Interface . 1-7
1.3.11 System Testing and Debugging Features 1-8

1.4 Applications . 1-8
1.4.1 Smart Residential Gateway . 1-8
1.4.2 Thin Client . 1-8
1.4.3 Digital Set Top Box . 1-9
1.4.4 Telephone Line Concentrator . 1-9

CHAPTER 2 PIN INFORMATION 2-1
2.1 Overview. 2-1
2.2 Logic Symbols . 2-1
2.3 Signal Descriptions. 2-4

CHAPTER 3 SYSTEM INITIALIZATION 3-1
3.1 Overview. 3-1

3.1.1 Native Embedded Initialization Sequence 3-1
3.1.2 BIOS Initialization Sequence . 3-3
3.1.3 Memory-Mapped Configuration Region (MMCR) 3-3
3.1.4 Reset Event . 3-4
3.1.5 Reset Vector and Reset Segment . 3-5

3.2 Configuring the SDRAM Controller . 3-6
3.3 Identifying the CPU Core . 3-7
3.4 Setting the CPU Speed . 3-7
3.5 Configuring External GP Bus Devices . 3-7
3.6 Configuring the Pin Multiplexing . 3-8
3.7 Configuring the Programmable Address Region (PAR) Registers 3-8

3.7.1 Specifying Pages and Regions . 3-9
Élan™SC520 Microcontroller User’s Manual v

Table of Contents
3.7.2 Address Region Attributes. 3-12
3.7.2.1 Write-Protect Attribute . 3-12
3.7.2.2 Cacheability Control Attribute 3-12
3.7.2.3 Code Execution Attribute . 3-12
3.7.2.4 Performance Considerations . 3-12

3.7.3 PAR Register Priority . 3-13
3.7.4 External GP Bus Devices . 3-13

3.7.4.1 Single Device (an A/D Converter) Using
One Chip Select. 3-14

3.7.4.2 Single Device That Performs Its Own Decode. 3-14
3.7.4.3 Multiple Devices On One Chip Select 3-14

3.7.5 PCI Bus Devices . 3-15
3.7.5.1 VGA Controller on the PCI Bus 3-15
3.7.5.2 Network Adapter for Remote Program Loading 3-16

3.7.6 External ROM Devices . 3-17
3.7.6.1 Boot ROM Device Mapping for BIOS Shadowing 3-17
3.7.6.2 Two Banks of Flash for an Execute-In-Place (XIP)

Operating System . 3-17
3.7.7 SDRAM Regions . 3-18

3.7.7.1 Setting Up DMA Buffers . 3-18
3.7.7.2 Write-Protected Code Segments 3-18

3.8 Configuring the Interrupt Mapping . 3-19
3.8.1 Edge-Sensitive or Level-Triggered Interrupts 3-19
3.8.2 Interrupt Mapping . 3-19
3.8.3 Interrupt Polarity . 3-20

3.9 Configuring the Programmable I/O Pins. 3-20
3.10 Configuring the PCI Host Bridge and Arbitration 3-20
3.11 Disabling Internal Peripherals. 3-21

CHAPTER 4 SYSTEM ADDRESS MAPPING 4-1
4.1 Overview. 4-1
4.2 Registers . 4-2
4.3 Operation . 4-3

4.3.1 Programming External Memory, Buses, and Chip Selects 4-4
4.3.2 Programmable Address Region (PAR) Registers 4-5
4.3.3 Memory Space . 4-7

4.3.3.1 SDRAM Space. 4-8
4.3.3.2 ROM/Flash Space . 4-8
4.3.3.3 GP Bus Memory Space . 4-9
4.3.3.4 PCI Bus Memory Space . 4-9
4.3.3.5 Memory-Mapped Configuration Region (MMCR)

Registers Space. 4-9
4.3.4 I/O Space . 4-11

4.3.4.1 Configuration Base Address (CBAR) Register 4-11
4.3.4.2 PCI Configuration Space . 4-12
4.3.4.3 PCI I/O Space . 4-12
4.3.4.4 PC/AT-Compatible I/O Peripherals Region. 4-13
4.3.4.5 GP Bus I/O Region . 4-15

4.3.5 Configuration Information . 4-15
4.3.5.1 Configuring ROM/Flash Space 4-15
4.3.5.2 Configuring SDRAM Address Space 4-15
4.3.5.3 Configuring GP Bus Peripheral Space. 4-16
4.3.5.4 Configuring the Élan™SC520 Microcontroller

for Windows® Compatibility . 4-17
4.3.5.5 Configuring PCI Bus Devices. 4-18

4.3.6 Interrupts . 4-18
4.3.7 Software Considerations . 4-18

4.4 Initialization. 4-21
vi Élan™SC520 Microcontroller User’s Manual

Table of Contents
CHAPTER 5 CLOCK GENERATION AND CONTROL 5-1
5.1 Overview. 5-1
5.2 Block Diagram . 5-2
5.3 System Design . 5-3

5.3.1 Clock Pin Loading . 5-4
5.3.2 Selecting a Crystal . 5-4

5.3.2.1 Running the Élan™SC520 Microcontroller
at 33.333 MHz . 5-5

5.3.3 Bypassing Internal Oscillators . 5-5
5.4 Registers . 5-6
5.5 Operation . 5-7

5.5.1 Internal Clocks . 5-7
5.5.1.1 CPU . 5-7
5.5.1.2 PCI Bus . 5-7
5.5.1.3 SDRAM Controller . 5-7
5.5.1.4 ROM/Flash Interface . 5-7
5.5.1.5 GP Bus. 5-7
5.5.1.6 GP-DMA Controller . 5-8
5.5.1.7 Programmable Interval Timer. 5-8
5.5.1.8 General-Purpose Timers . 5-8
5.5.1.9 Software Timer. 5-8
5.5.1.10 Watchdog Timer. 5-8
5.5.1.11 Real-Time Clock . 5-8
5.5.1.12 UART Serial Ports . 5-8
5.5.1.13 Synchronous Serial Interface. 5-8

5.5.2 Using the CLKTIMER[CLKTEST] Pin . 5-9
5.6 Initialization. 5-9

CHAPTER 6 RESET GENERATION 6-1
6.1 Overview. 6-1
6.2 Block Diagram . 6-1
6.3 System Design . 6-2
6.4 Registers . 6-3
6.5 Operation . 6-3

6.5.1 System Reset . 6-4
6.5.2 System Reset with SDRAM Retention . 6-6
6.5.3 Soft CPU Reset . 6-7
6.5.4 GP Bus Reset . 6-7
6.5.5 PCI Reset . 6-7
6.5.6 RTC Reset . 6-7
6.5.7 Determining Reset Sources . 6-8
6.5.8 CPU A20 Gate Support . 6-8
6.5.9 Clocking Considerations . 6-8
6.5.10 Software Considerations . 6-8
6.5.11 Latency . 6-9

6.6 Initialization. 6-9
Élan™SC520 Microcontroller User’s Manual vii

Table of Contents
CHAPTER 7 Am5X86® CPU 7-1
7.1 Overview. 7-1
7.2 Block Diagram . 7-1
7.3 Registers . 7-1
7.4 Operation . 7-3

7.4.1 Floating Point Unit (FPU) . 7-3
7.4.2 Cache Memory Management . 7-4
7.4.3 Clocking Considerations . 7-4
7.4.4 Interrupts . 7-5
7.4.5 Latency . 7-5

7.5 Initialization. 7-5
7.5.1 Hard CPU Reset . 7-5
7.5.2 Soft CPU Reset . 7-5

CHAPTER 8 SYSTEM ARBITRATION 8-1
8.1 Overview. 8-1
8.2 Block Diagram . 8-1
8.3 Registers . 8-2
8.4 Operation . 8-3

8.4.1 Operating Modes . 8-3
8.4.1.1 Nonconcurrent Arbitration Mode 8-3
8.4.1.2 Concurrent Arbitration Mode . 8-4

8.4.2 CPU Bus Arbiter . 8-5
8.4.2.1 CPU Arbitration Protocol . 8-5
8.4.2.2 CPU Cache Snooping . 8-6
8.4.2.3 Accessing the PCI Host Bridge Target. 8-6
8.4.2.4 GP Bus DMA Arbitration . 8-7
8.4.2.5 Arbitration During Clock Speed Changes 8-7

8.4.3 PCI Bus Arbiter . 8-7
8.4.3.1 PCI Bus Arbitration Protocol . 8-8
8.4.3.2 Bus Parking . 8-10
8.4.3.3 Rearbitration . 8-10

8.4.4 Bus Cycles . 8-11
8.4.4.1 CPU Bus Arbitration. 8-11
8.4.4.2 CPU Bus Cache Write-Back . 8-12
8.4.4.3 CPU-to-PCI Cycle . 8-14
8.4.4.4 PCI Bus Arbitration . 8-15
8.4.4.5 PCI Bus Arbitration Parking . 8-16
8.4.4.6 Nonconcurrent Mode Arbitration 8-18

8.4.5 Interrupts . 8-19
8.4.6 Software Considerations . 8-19
8.4.7 Latency . 8-20

8.4.7.1 Simple Rotating Priority Latency 8-20
8.4.7.2 High-Priority Queue Latency . 8-21
8.4.7.3 Low-Priority Queue Latency. 8-21
8.4.7.4 CPU Latency . 8-21
8.4.7.5 Nonconcurrent Arbitration Mode Latency 8-21
8.4.7.6 Concurrent Arbitration Mode Latency 8-22
8.4.7.7 Concurrent Arbitration Mode Bus Parking Latency . . . 8-22

8.5 Initialization. 8-22

CHAPTER 9 PCI BUS HOST BRIDGE 9-1
9.1 Overview. 9-1
9.2 Block Diagram . 9-1
9.3 System Design . 9-2

9.3.1 PCI Clocking . 9-5
9.3.1.1 Running the Élan™SC520 Microcontroller

at 33.333 MHz . 9-6
viii Élan™SC520 Microcontroller User’s Manual

Table of Contents
9.4 Registers . 9-7
9.5 Operation . 9-8

9.5.1 Unsupported PCI Bus Functions . 9-8
9.5.1.1 Unsupported PCI Bus Configuration Registers 9-9

9.5.2 Configuration Information . 9-9
9.5.2.1 Generating PCI Bus Configuration Cycles. 9-10

9.5.3 Élan™SC520 Microcontroller’s Host Bridge as PCI Bus Master . 9-11
9.5.3.1 Write Posting . 9-11
9.5.3.2 Read Cycles. 9-12
9.5.3.3 Delayed Transaction Support . 9-12
9.5.3.4 Host Bridge Master Bus Cycles 9-12

9.5.4 Élan™SC520 Microcontroller’s Host Bridge as PCI Bus Target . . 9-18
9.5.4.1 PCI Host Bridge Target Address Space. 9-18
9.5.4.2 PCI Bus Command Support . 9-19
9.5.4.3 DEVSEL Timing . 9-19
9.5.4.4 Delayed Transaction Support . 9-19
9.5.4.5 Address FIFO. 9-20
9.5.4.6 PCI Host Bridge FIFOs and Prefetching 9-20
9.5.4.7 Burst Ordering . 9-21
9.5.4.8 Maintaining Data Coherency . 9-21
9.5.4.9 PCI Host Bridge Target Bus Cycles 9-22

9.5.5 Interrupts . 9-27
9.5.6 Latency . 9-28

9.5.6.1 Master Latency . 9-28
9.5.6.2 Target Latency . 9-28

9.6 Initialization. 9-29

CHAPTER 10 SDRAM CONTROLLER 10-1
10.1 Overview. 10-1
10.2 Block Diagram . 10-1
10.3 System Design . 10-1

10.3.1 SDRAM Pins . 10-5
10.3.2 SDRAM Clocking . 10-6
10.3.3 SDRAM Loading . 10-8

10.4 Registers . 10-10
10.5 Operation . 10-11

10.5.1 SDRAM Support . 10-11
10.5.2 SDRAM Addressing . 10-12

10.5.2.1 Supported SDRAM Devices. 10-13
10.5.2.2 Page Size. 10-16

10.5.3 Error Correction Code (ECC) . 10-16
10.5.4 Buffering . 10-17
10.5.5 SDRAM Control Configuration . 10-18

10.5.5.1 Refresh Control . 10-18
10.5.5.2 Drive-Strength Selection . 10-19
10.5.5.3 Write Buffer Test Mode . 10-19
10.5.5.4 Operation Mode Select . 10-20

10.5.6 SDRAM Timing Configuration . 10-20
10.5.6.1 CAS Latency (CL) . 10-20
10.5.6.2 RAS Precharge (TRP) . 10-21
10.5.6.3 RAS-to-CAS Delay (TRCD). 10-21
10.5.6.4 RAS-to-RAS or Auto-Refresh-to-RAS (TRC) 10-21
10.5.6.5 Minimum RAS (TRAS). 10-22

10.5.7 Bus Cycles . 10-22
10.5.7.1 SDRAM Burst Read Cycle . 10-22
10.5.7.2 SDRAM Write Cycle. 10-23
10.5.7.3 ECC SDRAM Cycles . 10-24
10.5.7.4 SDRAM Auto Refresh Cycle 10-26
Élan™SC520 Microcontroller User’s Manual ix

Table of Contents
10.5.7.5 SDRAM Mode Register Access Cycles 10-27
10.5.8 Interrupts . 10-27
10.5.9 Software Considerations . 10-28

10.5.9.1 ECC Errors. 10-28
10.5.9.2 Buffer Disabling During SDRAM Configuration 10-28
10.5.9.3 Write Protection . 10-28

10.5.10 Latency . 10-28
10.6 Initialization. 10-29

10.6.1 Programmable Reset . 10-29
10.6.2 SDRAM Device Initialization . 10-30

10.6.2.1 Operation Mode Select . 10-30
10.6.2.2 NOP Command . 10-31
10.6.2.3 Precharge Command. 10-31
10.6.2.4 Auto Refresh Command . 10-31
10.6.2.5 Mode Register Programming 10-31

10.6.3 Boot Process . 10-32
10.6.4 SDRAM Sizing Algorithm . 10-32

10.6.4.1 Determining the Number of Columns
for an External Bank . 10-33

10.6.4.2 Determining the Number of Internal Banks 10-34
10.6.4.3 Determining the True External Bank Ending Address 10-35

CHAPTER 11 WRITE BUFFER AND READ BUFFER 11-1
11.1 Overview. 11-1
11.2 Block Diagram . 11-2
11.3 System Design . 11-3
11.4 Registers . 11-4
11.5 Operation . 11-4

11.5.1 Write Buffer . 11-5
11.5.1.1 Write Buffer Disabled . 11-5
11.5.1.2 Write Buffer Enabled . 11-5
11.5.1.3 Write Buffer Watermark . 11-9

11.5.2 Read Buffer and the Read-Ahead Feature 11-10
11.5.2.1 Read-Ahead Feature Disabled. 11-10
11.5.2.2 Read-Ahead Feature Enabled 11-10

11.5.3 DMA Considerations . 11-11
11.5.4 PCI Considerations . 11-12

11.5.4.1 Write Cycles. 11-12
11.5.4.2 Read Cycles. 11-12

11.5.5 Software Considerations . 11-13
11.5.6 SDRAM Bandwidth Improvements . 11-13

11.6 Initialization. 11-15

CHAPTER 12 ROM/FLASH CONTROLLER 12-1
12.1 Overview. 12-1
12.2 Block Diagram . 12-2
12.3 System Design . 12-2

12.3.1 Voltage Isolation . 12-3
12.4 Registers . 12-5
12.5 Operation . 12-5

12.5.1 ROM Support . 12-5
12.5.1.1 Supported Device Types . 12-6

12.5.2 ROM Control and Timing Configuration 12-7
12.5.2.1 ROM Location . 12-7
12.5.2.2 ROM Width . 12-7
12.5.2.3 Operating Mode . 12-7
12.5.2.4 Access Timing . 12-8
x Élan™SC520 Microcontroller User’s Manual

Table of Contents
12.5.3 Bus Cycles . 12-9
12.5.3.1 Single CPU Read Access . 12-9
12.5.3.2 Page-Mode Read Access . 12-10
12.5.3.3 Cache-Line Fill . 12-11
12.5.3.4 Writing to Flash Devices . 12-11

12.5.4 Software Considerations . 12-12
12.5.4.1 Address Decoding . 12-12
12.5.4.2 Programming Flash Memory 12-12

12.5.5 Latency . 12-13
12.6 Initialization. 12-14

CHAPTER 13 GENERAL-PURPOSE BUS CONTROLLER 13-1
13.1 Overview. 13-1
13.2 Block Diagram . 13-1
13.3 System Design . 13-1

13.3.1 GP Bus Loading . 13-4
13.3.2 Voltage Translation . 13-4

13.4 Registers . 13-5
13.5 Operation . 13-6

13.5.1 Programmable Bus Interface Timing . 13-7
13.5.1.1 Timing Requirements. 13-7
13.5.1.2 Using GPRDY with Programmable Timing. 13-8
13.5.1.3 Using GP Bus Echo Mode with Programmable Timing 13-8

13.5.2 I/O-Mapped and Memory-Mapped Device Support 13-9
13.5.3 Chip Select Qualification . 13-9
13.5.4 Data Sizing and Unaligned Accesses . 13-9
13.5.5 Sharing the Address and Data Bus

with the ROM/Flash Controller . 13-10
13.5.6 GP Bus Echo Mode . 13-10
13.5.7 DMA Interface . 13-11
13.5.8 Usage Scenarios . 13-11

13.5.8.1 Compatibility with Common ISA Devices. 13-11
13.5.8.2 Interfacing with a Super I/O Controller 13-13
13.5.8.3 Interfacing with an AMD Enhanced

Serial Communications Controller (8 MHz) 13-14
13.5.9 Bus Cycles . 13-16

13.5.9.1 8-Bit Data Access of an 8-Bit I/O Device 13-16
13.5.9.2 16-Bit Data Access of a 16-Bit I/O Device 13-17
13.5.9.3 16-Bit Data Access of an 8-Bit I/O Device 13-17
13.5.9.4 32-Bit Data Access of an 8-Bit I/O Device 13-18
13.5.9.5 32-Bit Data Access of a 16-Bit I/O Device 13-18
13.5.9.6 8-Bit Data Access of a 16-Bit I/O Device 13-19
13.5.9.7 GPIOCS16 and GPMEMCS16 Timing. 13-19
13.5.9.8 Wait States. 13-20

13.5.10 Interrupts . 13-21
13.5.11 Latency . 13-21

13.5.11.1 8/16-Bit GP Bus Width . 13-21
13.5.11.2 Slow GP Bus Cycles . 13-21
13.5.11.3 Noncacheable GP Bus. 13-21

13.6 Initialization. 13-22
Élan™SC520 Microcontroller User’s Manual xi

Table of Contents
CHAPTER 14 GP BUS DMA CONTROLLER 14-1
14.1 Overview. 14-1
14.2 Block Diagram . 14-1
14.3 System Design . 14-3
14.4 Registers . 14-4

14.4.1 Memory-Mapped Registers . 14-4
14.4.2 Direct-Mapped Registers . 14-6

14.5 Operation . 14-8
14.5.1 GP-DMA Transfers . 14-8

14.5.1.1 GP-DMA Initiators . 14-9
14.5.1.2 GP-DMA Channel Mapping . 14-10

14.5.2 Operating Modes . 14-10
14.5.2.1 Normal GP-DMA Mode . 14-10
14.5.2.2 Enhanced GP-DMA Mode . 14-11

14.5.3 Addressing GP-DMA Channels . 14-11
14.5.3.1 Addressing In Normal GP-DMA Mode. 14-11
14.5.3.2 Addressing In Enhanced GP-DMA Mode 14-12

14.5.4 GP-DMA Transfer Modes . 14-12
14.5.4.1 Single Transfer Mode . 14-12
14.5.4.2 Demand Transfer Mode . 14-12
14.5.4.3 Block Transfer Mode . 14-13
14.5.4.4 Transfer Types . 14-13
14.5.4.5 Automatic Initialization Control. 14-14
14.5.4.6 Priority . 14-15
14.5.4.7 Buffer Chaining . 14-15

14.5.5 Bus Cycles . 14-16
14.5.5.1 GP Bus I/O to SDRAM. 14-16
14.5.5.2 GP-DMA Read with Cache Hit. 14-17

14.5.6 GP Bus Echo Mode . 14-17
14.5.7 Clocking Considerations . 14-18
14.5.8 Interrupts . 14-18
14.5.9 Software Considerations . 14-18
14.5.10 Latency . 14-18

14.5.10.1 Nonpreemptive Latency . 14-18
14.5.10.2 Preemptive Latency . 14-19

14.6 Initialization. 14-19
14.6.1 Example Configurations . 14-19

14.6.1.1 Configuring an 8-Bit Channel
in Normal GP-DMA Mode . 14-19

14.6.1.2 Configuring a 16-Bit Channel
in Normal GP-DMA Mode . 14-20

14.6.1.3 Configuring an 8-Bit Channel
in Enhanced GP-DMA Mode 14-20

14.6.1.4 Configuring a 16-Bit Channel
in Enhanced GP-DMA Mode 14-21

CHAPTER 15 PROGRAMMABLE INTERRUPT CONTROLLER 15-1
15.1 Overview. 15-1
15.2 Block Diagram . 15-2
15.3 System Design . 15-2
15.4 Registers . 15-4
15.5 Operation . 15-7

15.5.1 Interrupt Flow Sequence . 15-7
15.5.2 Interrupt Sources . 15-8

15.5.2.1 Hardware-Generated Interrupts 15-8
15.5.3 Interrupt Source Routing . 15-10

15.5.3.1 Polarity Inversion of Interrupt Requests 15-10
xii Élan™SC520 Microcontroller User’s Manual

Table of Contents
15.5.3.2 PC/AT Compatibility . 15-12
15.5.3.3 Floating Point Errors . 15-12
15.5.3.4 Disabling the Slave Controllers 15-13

15.5.4 Edge-Triggered or Level-Sensitive Interrupts 15-13
15.5.5 Interrupt Sharing . 15-13
15.5.6 Non-Maskable Interrupts and Routing 15-14

15.5.6.1 Sharing NMIs . 15-14
15.5.7 Priority Types . 15-16
15.5.8 Configuration Information . 15-16

15.5.8.1 Programming . 15-16
15.5.8.2 PC/AT Configuration . 15-18

15.5.9 Software Considerations . 15-18
15.5.9.1 Interrupt Sharing . 15-18
15.5.9.2 Disabling the Slave Controllers 15-19
15.5.9.3 Detecting Invalid Interrupt Requests 15-19
15.5.9.4 Floating Point Unit Error Handling 15-19

15.6 Initialization. 15-20

CHAPTER 16 PROGRAMMABLE INTERVAL TIMER 16-1
16.1 Overview. 16-1
16.2 Block Diagram . 16-1
16.3 System Design . 16-1
16.4 Registers . 16-2
16.5 Operation . 16-3

16.5.1 PIT Channel 0 . 16-3
16.5.2 PIT Channel 1 . 16-3
16.5.3 PIT Channel 2 . 16-4
16.5.4 Operating Modes . 16-4

16.5.4.1 Mode 0: Interrupt on Terminal Count 16-4
16.5.4.2 Mode 1: Hardware-Retriggerable One-Shot 16-4
16.5.4.3 Mode 2: Rate Generator . 16-5
16.5.4.4 Mode 3: Square Wave Mode . 16-5
16.5.4.5 Mode 4: Software-Triggered Strobe 16-5
16.5.4.6 Mode 5: Hardware-Triggered Strobe 16-5

16.5.5 Clocking Considerations . 16-6
16.5.5.1 Internal Clock . 16-6
16.5.5.2 External Clock . 16-6

16.5.6 Interrupts . 16-6
16.5.7 Software Considerations . 16-6

16.5.7.1 Using the PIT Clock Source in PC/AT-Compatible
 Systems . 16-6

16.6 Initialization. 16-7

CHAPTER 17 GENERAL-PURPOSE TIMERS 17-1
17.1 Overview. 17-1
17.2 Block Diagram . 17-1
17.3 System Design . 17-1
17.4 Registers . 17-2
17.5 Operation . 17-3

17.5.1 GP Timer 0 and GP Timer 1 . 17-3
17.5.2 GP Timer 2 . 17-4
17.5.3 Operating Modes . 17-4

17.5.3.1 Interrupt on Terminal Count Mode 17-4
17.5.3.2 Hardware Retrigger Mode . 17-4
17.5.3.3 Alternate Compare Mode. 17-4
17.5.3.4 Square Wave Mode . 17-4
17.5.3.5 Continuous Mode. 17-4
17.5.3.6 Prescaler Mode . 17-4
Élan™SC520 Microcontroller User’s Manual xiii

Table of Contents
17.5.4 Configuration Information . 17-5
17.5.5 Clocking Considerations . 17-5

17.5.5.1 Internal Clock . 17-5
17.5.5.2 External Clock . 17-6

17.5.6 Interrupts . 17-6
17.5.7 Software Considerations . 17-6

17.5.7.1 Combining GP Timer Count Elements. 17-6
17.5.7.2 Reading the Cascaded 32-Bit Timer 17-6

17.6 Initialization. 17-8

CHAPTER 18 SOFTWARE TIMER 18-1
18.1 Overview. 18-1
18.2 Block Diagram . 18-1
18.3 Registers . 18-2
18.4 Operation . 18-2

18.4.1 Configuration Information . 18-3
18.5 Initialization. 18-3

CHAPTER 19 WATCHDOG TIMER 19-1
19.1 Overview. 19-1
19.2 Block Diagram . 19-1
19.3 Registers . 19-2
19.4 Operation . 19-3

19.4.1 Configuration Information . 19-3
19.4.1.1 Keyed Sequences . 19-3
19.4.1.2 Interrupt Request Generation 19-4
19.4.1.3 System Reset Generation . 19-4
19.4.1.4 Time-Out Duration . 19-4

19.4.2 Interrupts . 19-5
19.4.3 AMDebug™ Technology Interface . 19-5
19.4.4 Software Considerations . 19-5

19.5 Initialization. 19-6

CHAPTER 20 REAL-TIME CLOCK 20-1
20.1 Overview. 20-1
20.2 Block Diagram . 20-1
20.3 System Design . 20-3

20.3.1 Backup Battery Considerations . 20-3
20.3.1.1 System with an External Backup Battery. 20-3
20.3.1.2 System without an External Backup Battery 20-4

20.3.2 Selecting and Interfacing a 32.768-kHz Crystal 20-5
20.3.3 Using an External RTC . 20-5

20.4 Registers . 20-6
20.5 Operation . 20-7

20.5.1 Configuration Information . 20-7
20.5.1.1 Configuring the Hour Format . 20-7
20.5.1.2 Programming the Date and Time. 20-8
20.5.1.3 Generating Periodic Interrupts 20-8
20.5.1.4 Using the Alarm Function . 20-9
20.5.1.5 Handling Year 2000 Issues . 20-9

20.5.2 Clocking Considerations . 20-9
20.5.3 Interrupts . 20-9
20.5.4 Software Considerations . 20-10

20.5.4.1 Initializing the RTC Divider Chain 20-10
20.5.4.2 Accessing the CMOS Memory. 20-10
20.5.4.3 Legacy NMI Enable Bit Moved. 20-10

20.6 Initialization. 20-10
20.6.1 RTC Reset . 20-11
xiv Élan™SC520 Microcontroller User’s Manual

Table of Contents
CHAPTER 21 UART SERIAL PORTS 21-1
21.1 Overview. 21-1
21.2 Block Diagram . 21-1
21.3 System Design . 21-2
21.4 Registers . 21-3
21.5 Operation . 21-5

21.5.1 Data Transmission . 21-6
21.5.1.1 16450-Compatible UART Mode 21-6
21.5.1.2 16550-Compatible UART Mode 21-7

21.5.2 Data Reception . 21-7
21.5.2.1 16450-Compatible UART Mode 21-7
21.5.2.2 16550-Compatible UART Mode 21-7

21.5.3 Error Handling . 21-8
21.5.3.1 Parity Error. 21-8
21.5.3.2 Framing Error . 21-8
21.5.3.3 Break Indication . 21-8
21.5.3.4 Error Reporting . 21-8

21.5.4 Configuration Information . 21-9
21.5.4.1 Baud Rate . 21-9
21.5.4.2 Hardware Flow Control . 21-9
21.5.4.3 Operating Modes . 21-9

21.5.5 DMA Interface . 21-10
21.5.5.1 Transmit DMA . 21-10
21.5.5.2 Receive DMA . 21-10

21.5.6 Clocking Considerations . 21-10
21.5.7 Interrupts . 21-10

21.5.7.1 Serial Port Interrupts . 21-12
21.5.7.2 DMA Interrupts. 21-12
21.5.7.3 Interrupt Disable. 21-13

21.6 Initialization. 21-13

CHAPTER 22 SYNCHRONOUS SERIAL INTERFACE 22-1
22.1 Overview. 22-1
22.2 Block Diagram . 22-1
22.3 System Design . 22-1
22.4 Registers . 22-2
22.5 Operation . 22-3

22.5.1 Usage Scenarios . 22-3
22.5.1.1 Four-Pin Interface . 22-3
22.5.1.2 Three-Pin Interface . 22-3

22.5.2 Configuration Information . 22-5
22.5.2.1 Bit Order. 22-5
22.5.2.2 Clock Idle State . 22-5
22.5.2.3 Clock Phase. 22-5

22.5.3 Bus Cycles . 22-5
22.5.3.1 4-Bit Read Cycle . 22-6
22.5.3.2 Burst, 16-Bit, and 32-Bit Cycles 22-7

22.5.4 Clocking Considerations . 22-7
22.5.5 Interrupts . 22-7
22.5.6 Software Considerations . 22-8

22.6 Initialization. 22-8
Élan™SC520 Microcontroller User’s Manual xv

Table of Contents
CHAPTER 23 PROGRAMMABLE INPUT/OUTPUT 23-1
23.1 Overview. 23-1
23.2 Block Diagram . 23-1
23.3 System Design . 23-2
23.4 Registers . 23-4
23.5 Operation . 23-4

23.5.1 Configuration Information . 23-5
23.5.1.1 PIO Pins and Simple Input. 23-5
23.5.1.2 PIO Pins and Simple Output . 23-5

23.5.2 Software Considerations . 23-5
23.6 Initialization. 23-6

CHAPTER 24 SYSTEM TEST AND DEBUGGING 24-1
24.1 Overview. 24-1
24.2 System Design . 24-1

24.2.1 Loading . 24-2
24.3 Registers . 24-2
24.4 Operation . 24-3

24.4.1 System Test Mode . 24-3
24.4.1.1 Pin Functions in System Test Mode. 24-3
24.4.1.2 Using the System Test Mode Interface 24-4
24.4.1.3 SDRAM Write Cycle in System Test Mode 24-4
24.4.1.4 SDRAM Read Cycle in System Test Mode 24-5
24.4.1.5 Tracing Transactions on the ROM Interface 24-5
24.4.1.6 Tracing Transactions on the GP Bus Interface 24-6

24.4.2 Write Buffer Test Mode . 24-7
24.4.2.1 Using the Write Buffer Test Mode Interface 24-7
24.4.2.2 SDRAM Write Cycle in Write Buffer Test Mode 24-8
24.4.2.3 SDRAM Read Cycle in Write Buffer Test Mode 24-8

24.4.3 Other Debugging Features . 24-10
24.4.3.1 Nonconcurrent Arbitration Mode 24-10
24.4.3.2 Echoing Integrated Peripheral Accesses

on the GP Bus . 24-10
24.4.3.3 Summary of Additional System Debugging Features. 24-10

24.4.4 Software Considerations . 24-11
24.4.5 Latency . 24-11

24.5 Initialization. 24-12

CHAPTER 25 BOUNDARY SCAN TEST INTERFACE 25-1
25.1 Overview. 25-1
25.2 Block Diagram . 25-1
25.3 System Design . 25-2

25.3.1 JTAG Pin Strapping . 25-2
25.4 Registers . 25-2
25.5 Operation . 25-2

25.5.1 Instruction Register . 25-3
25.5.1.1 Implemented Instructions. 25-3

25.5.2 Configuration Information . 25-5
25.5.2.1 Instruction Path . 25-5
25.5.2.2 Bypass Path . 25-5
25.5.2.3 Main Data Scan Path . 25-5
25.5.2.4 Serial Debug Port Data Register 25-14
25.5.2.5 Device Identification Register 25-14

25.5.3 Test Access Port (TAP) Controller . 25-15
25.5.3.1 TAP Controller States. 25-15

25.5.4 Bus Cycles . 25-19
25.5.5 Clocking Considerations . 25-20

25.6 Initialization. 25-20
xvi Élan™SC520 Microcontroller User’s Manual

Table of Contents
CHAPTER 26 AMDebug™ TECHNOLOGY 26-1
26.1 Overview. 26-1
26.2 Block Diagram . 26-2
26.3 System Design . 26-2

26.3.1 Connecting the AMDebug™ Port . 26-3
26.3.2 Mechanical Specifications for the Target Connector 26-5
26.3.3 Locating the Connector on the Target System 26-5

26.4 Operation . 26-6
26.4.1 On-Chip Trace Cache . 26-7
26.4.2 Software Performance Profiling . 26-7

INDEX Index-1
Élan™SC520 Microcontroller User’s Manual xvii

Table of Contents
LIST OF FIGURES

Figure 1-1 Élan™SC520 Microcontroller Block Diagram . 1-3
Figure 1-2 Élan™SC520 Microcontroller-Based Smart Residential Gateway

 Reference Design . 1-10
Figure 1-3 Élan™SC520 Microcontroller-Based Thin Client Reference Design 1-11
Figure 1-4 Élan™SC520 Microcontroller-Based Digital Set Top Box Reference Design 1-12
Figure 1-5 Élan™SC520 Microcontroller-Based Telephone Line Concentrator

 Reference Design . 1-13
Figure 2-1 Logic Diagram by Interface . 2-2
Figure 2-2 Logic Diagram by Default Pin Function . 2-3
Figure 3-1 Initial Near Jump Example. 3-6
Figure 3-2 Programmable Address Region (PAR) Register Format . 3-10
Figure 3-3 Programmable Address Region (PAR) Register Worksheet 3-11
Figure 4-1 Programmable Address Region (PAR) Register Format . 4-6
Figure 4-2 System Memory Map. 4-7
Figure 4-3 System I/O Map. 4-11
Figure 5-1 Clock Source Block Diagram . 5-2
Figure 5-2 System Clock Distribution Block Diagram . 5-3
Figure 5-3 Bypassing the 32.768-kHz Oscillator. 5-5
Figure 5-4 Bypassing the 33-MHz Oscillator . 5-6
Figure 5-5 Clock Routing for the CLKTEST Pin . 5-9
Figure 6-1 Reset Controller Block Diagram . 6-2
Figure 6-2 PRGRESET Timing . 6-6
Figure 6-3 Power-On Reset Sequence of Events . 6-9
Figure 7-1 Am5x86® CPU Block Diagram . 7-2
Figure 8-1 System Arbitration Block Diagram . 8-2
Figure 8-2 Skipped Master Example. 8-5
Figure 8-3 CPU Bus Rotating Priority Queue . 8-6
Figure 8-4 External PCI Master Arbitration Queues . 8-9
Figure 8-5 Host Bridge Master Arbitration Queue. 8-9
Figure 8-6 CPU Bus Arbitration . 8-11
Figure 8-7 CPU Bus Cache Write-Back . 8-13
Figure 8-8 CPU-to-PCI Cycle . 8-14
Figure 8-9 PCI Bus Arbitration . 8-15
Figure 8-10 PCI Bus Concurrent Mode Arbitration Parking . 8-16
Figure 8-11 Nonconcurrent Mode Arbitration . 8-18
Figure 8-12 Simple Rotating Priority Queue . 8-20
Figure 9-1 PCI Interface Block Diagram . 9-2
Figure 9-2 Élan™SC520 Microcontroller Connection to an External PCI Bus Target. 9-3
Figure 9-3 Élan™SC520 Microcontroller Connection to an External PCI Bus Master 9-4
Figure 9-4 Élan™SC520 Microcontroller SERR and PERR Connection 9-5
Figure 9-5 PCI Bus Clocking Example 1: Lightly Loaded System . 9-6
Figure 9-6 PCI Bus Clocking Example 2: Heavily Loaded System . 9-6
Figure 9-7 PCI Configuration Address (PCICFGADR) Register . 9-10
Figure 9-8 CPU Read Cycle to the PCI Bus . 9-13
Figure 9-9 CPU Read Cycle to the PCI Bus with External Target Retry 9-14
Figure 9-10 CPU Posted Write Cycle to the PCI Bus . 9-15
Figure 9-11 Am5x86 CPU Non-Posted Write Cycle to the PCI Bus . 9-16
Figure 9-12 CPU Write Cycles to Internal PCI Bus Configuration Registers 9-17
Figure 9-13 CPU Read Cycles from Internal PCI Bus Configuration Registers 9-18
Figure 9-14 External PCI Bus Master Posted Write to SDRAM . 9-23
Figure 9-15 External PCI Master SDRAM Read (Delayed Transaction) . 9-24
Figure 9-16 PCI Host Bridge Target Disconnect . 9-26
Figure 10-1 SDRAM Controller Block Diagram. 10-2
Figure 10-2 Detailed Block Diagram of SDRAM Controller. 10-3
Figure 10-3 SDRAM Bank Configuration . 10-4
Figure 10-4 Example Configuration of a 168-Pin SDRAM DIMM . 10-5
xviii Élan™SC520 Microcontroller User’s Manual

Table of Contents
Figure 10-5 SDRAM Clock Generation . 10-7
Figure 10-6 Alternate SDRAM Clock Generation with External Clock Driver 10-7
Figure 10-7 SDRAM Burst Read Cycle (Read-Ahead Feature Disabled) (Page Miss/Page Hit). . 10-22
Figure 10-8 SDRAM Write Cycle (Write Buffer and ECC Disabled) (Page Miss/page Hit) 10-23
Figure 10-9 SDRAM CPU Burst Write (Write Buffer and ECC Disabled) (Page Miss/Page Hit) . . 10-24
Figure 10-10 SDRAM Burst Read Cycle with ECC Enabled. 10-25
Figure 10-11 SDRAM Read-Modify-Write Cycle (for Data Write) with ECC Enabled (Page Hit). . . 10-26
Figure 10-12 SDRAM Auto Refresh Cycle . 10-27
Figure 10-13 SDRAM Mode Register Access. 10-27
Figure 11-1 Write Buffer and Read Buffer Block Diagram (SDRAM Subsystem) 11-2
Figure 11-2 Write Buffer and Read Buffer Block Diagram . 11-3
Figure 11-3 Write Buffer Merging Example. 11-7
Figure 11-4 Write Buffer Collapsing Example . 11-8
Figure 11-5 Write Buffer Read-Merging Example. 11-9
Figure 11-6 Bus Thrashing with Write Buffer Disabled and Enabled . 11-14
Figure 12-1 ROM Controller Block Diagram . 12-2
Figure 12-2 Voltage Isolation Examples . 12-4
Figure 12-3 Page-Mode ROM: Fetching Four Words from a 16-Bit ROM. 12-6
Figure 12-4 Non-Page-Mode ROM: Fetching Four Words from a 16-Bit ROM. 12-8
Figure 12-5 Page-Mode ROM: Fetching Four Doublewords (Aligned) from a 32-Bit ROM. 12-8
Figure 12-6 Page-Mode ROM: Fetching Four Doublewords (Unaligned) from an 8-Bit ROM. . . . 12-8
Figure 12-7 Multiple Accesses: Data Amounts Smaller than One Doubleword (2 Bytes)

 from an 8-Bit ROM. 12-10
Figure 12-8 Page Access for Fetching Four Doublewords from a 32-Bit ROM

 (Burst Sequence: 2-1-1-1) . 12-10
Figure 12-9 Page Access for Fetching Two Doublewords from a 16-Bit ROM 12-11
Figure 12-10 Cache-Line Fill (Fetching Four Doublewords from a 32-Bit ROM). 12-11
Figure 12-11 Word Write Cycle to Flash Memory. 12-12
Figure 13-1 GP Bus Controller System Block Diagram . 13-2
Figure 13-2 Example: Using an External Data Buffer to Address Excess Loading 13-4
Figure 13-3 Example: Using a Voltage Translator. 13-5
Figure 13-4 GP Bus Timing Format . 13-8
Figure 13-5 Élan™SC520 Microcontroller Interfacing with a Super I/O Controller 13-13
Figure 13-6 Timing Diagram of a Super I/O Interface . 13-14
Figure 13-7 Élan™SC520 Microcontroller Interfacing with an Am85C30 13-15
Figure 13-8 Timing Diagram of an Am85C30 Interface . 13-16
Figure 13-9 8-Bit Data Access of an 8-Bit I/O Device . 13-16
Figure 13-10 16-Bit Data Access of a 16-Bit I/O Device . 13-17
Figure 13-11 16-Bit Data Access of an 8-Bit I/O Device . 13-17
Figure 13-12 32-Bit Data Access of an 8-Bit I/O Device . 13-18
Figure 13-13 32-Bit Data Access of a 16-Bit I/O Device . 13-18
Figure 13-14 8-Bit Data Access of a 16-Bit I/O Device . 13-19
Figure 13-15 16-Bit Access of a 16-Bit I/O Device . 13-20
Figure 13-16 GPRDY Timing . 13-21
Figure 14-1 GP-DMA Controller Block Diagram . 14-2
Figure 14-2 Master and Slave Core Cascading Diagram . 14-3
Figure 14-3 GP-DMA Read Transfer. 14-13
Figure 14-4 GP-DMA Write Transfer . 14-14
Figure 14-5 GP-DMA Verify Transfer . 14-14
Figure 14-6 GP-DMA Read in Demand Transfer Mode . 14-16
Figure 14-7 GP-DMA Read Transfer with Cache Hit (Write-Back Cache) 14-17
Figure 15-1 Programmable Interrupt Controller (PIC) Block Diagram . 15-3
Figure 15-2 Interrupt Sources . 15-9
Figure 15-3 Interrupt Source Routing . 15-11
Figure 15-4 NMI Routing. 15-15
Figure 16-1 Programmable Interval Timer Block Diagram . 16-2
Figure 17-1 General-Purpose Timers Block Diagram. 17-2
Figure 18-1 Software Timer Block Diagram . 18-1
Élan™SC520 Microcontroller User’s Manual xix

Table of Contents
Figure 19-1 Watchdog Timer Block Diagram . 19-2
Figure 20-1 Real-Time Clock Block Diagram . 20-2
Figure 20-2 RTC Voltage Monitor Block Diagram . 20-3
Figure 20-3 Circuit with Backup Battery . 20-4
Figure 20-4 Circuit without Backup Battery. 20-5
Figure 21-1 UART Block Diagram. 21-2
Figure 21-2 UART Frame Configuration . 21-5
Figure 21-3 UART Frame Transmission . 21-5
Figure 22-1 SSI Block Diagram. 22-2
Figure 22-2 SSI Four-Pin Interface . 22-4
Figure 22-3 SSI Simultaneous Transmit and Receive. 22-4
Figure 22-4 SSI Three-Pin Interface . 22-4
Figure 22-5 SSI Typical Half-Duplex Communication, Non-Inverted Phase and Clock Modes. . . 22-4
Figure 22-6 SSI Clock Phase and Clock Idle State: Effects on Data . 22-6
Figure 22-7 SSI 4-Bit Read Cycle: Full-Duplex, Non-Inverted Phase, Non-Inverted Clock 22-6
Figure 22-8 SSI Back-to-Back Transactions for Full-duplex,

 Microwire-Compatible Configuration . 22-7
Figure 22-9 SSI Timing: TC_INT and BSY_STA Bits . 22-8
Figure 23-1 PIO Signal Block Diagram . 23-2
Figure 24-1 System Test Mode Timing During a SDRAM Write Cycle (Page Hit) 24-5
Figure 24-2 System Test Mode Timing During an SDRAM Read Cycle (Page Miss) 24-5
Figure 24-3 Write Buffer Test Mode Timing During an SDRAM Write Cycle (Page Hit) 24-8
Figure 24-4 Write Buffer Test Mode Timing During a SDRAM Read Cycle (Page Miss) 24-9
Figure 25-1 Logical Structure of Boundary Scan Register . 25-1
Figure 25-2 Serial Debug Port Data Register Format . 25-14
Figure 25-3 Device Identification Register Format . 25-14
Figure 25-4 Test Access Port Controller State Diagram . 25-15
Figure 25-5 Test Logic Operation: Data Scan. 25-19
Figure 25-6 Test Logic Operation: Instruction Scan . 25-20
Figure 26-1 AMDebug™ Technology Software Architecture. 26-2
Figure 26-2 12-Pin Connector Format . 26-4
Figure 26-3 20-Pin Serial Connector Format . 26-4
Figure 26-4 Mechanical Specifications for AMDebug™ Technology Target Connector 26-5
Figure 26-5 Locating the Target Connector . 26-6
xx Élan™SC520 Microcontroller User’s Manual

Table of Contents
LIST OF TABLES

Table 0-1 Documentation Notation .xxv
Table 2-1 Signal Descriptions Table Definitions . 2-4
Table 2-2 Signal Descriptions . 2-5
Table 3-1 CPUID Codes . 3-7
Table 3-2 Example PAR Programming: Single Device Using One Chip Select 3-14
Table 3-3 Example PAR Programming: Single Device That Performs Its Own Decode 3-14
Table 3-4 Example PAR Programming: Multiple Devices on One Chip Select 3-14
Table 3-5 Example PAR Programming: VGA Controller on the PCI Bus. 3-15
Table 3-6 Example PAR Programming: COM3 with VGA Present on the PCI Bus 3-16
Table 3-7 Example PAR Programming: Network Adapter for Remote Program Loading 3-16
Table 3-8 Example PAR Programming: Boot ROM Device Mapping for BIOS Shadowing 3-17
Table 3-9 Example PAR Programming: First Bank of Flash for XIP Operating System. 3-17
Table 3-10 Example PAR Programming: Second Bank of Flash for XIP Operating System 3-18
Table 3-11 Example PAR Programming: Setting Up DMA Buffers . 3-18
Table 3-12 Example PAR Programming: Write-Protected Code Segments 3-19
Table 4-1 Address Decoding Registers—Memory-Mapped . 4-2
Table 4-2 Address Decoding Registers—Direct-Mapped . 4-2
Table 4-3 Bus Master Address Spaces . 4-3
Table 4-4 Memory and I/O Space Summary . 4-4
Table 4-5 PC/AT Peripherals I/O Map . 4-14
Table 5-1 Clock Start-up and Lock Times . 5-2
Table 5-2 Clock Signals Shared with Other Interfaces . 5-3
Table 5-3 Timing Error as It Translates to Clock Accuracy . 5-5
Table 5-4 Clock Control Registers—Memory-Mapped . 5-6
Table 6-1 Reset Generation Registers—Memory-Mapped . 6-3
Table 6-2 Reset Generation Registers—Direct-Mapped . 6-3
Table 6-3 Élan™SC520 Microcontroller Reset Sources . 6-4
Table 6-4 States of Cores after System Reset . 6-5
Table 7-1 Am5x86® CPU Registers—Memory-Mapped . 7-1
Table 7-2 Am5x86® CPU Registers—Direct-Mapped . 7-1
Table 7-3 Cache Configuration Options . 7-4
Table 8-1 System Arbitration Registers—Memory-Mapped . 8-2
Table 9-1 PCI Host Bridge Registers—Memory-Mapped . 9-7
Table 9-2 PCI Host Bridge Registers—Direct-Mapped . 9-8
Table 9-3 PCI Host Bridge Registers—PCI Indexed . 9-8
Table 10-1 SDRAM Clock Loading Estimates Based on Device Width. 10-6
Table 10-2 Estimated Capacitance (4-Bit SDRAM Devices) . 10-8
Table 10-3 Estimated Capacitance (8-Bit SDRAM Devices) . 10-8
Table 10-4 Estimated Capacitance (16-Bit SDRAM Devices) . 10-9
Table 10-5 Estimated Capacitance (32-Bit SDRAM Devices) . 10-9
Table 10-6 SDRAM Controller Registers—Memory-Mapped . 10-10
Table 10-7 Address Mapping to MAx Signals for SDRAM Devices. 10-12
Table 10-8 SDRAM Devices Supported with Column Boundary Specification 10-13
Table 10-9 Column Address Configuration Settings for SDRAM. 10-15
Table 10-10 SDRAM Page Sizes. 10-16
Table 10-11 SDRAM Refresh Rates . 10-18
Table 10-12 Load Mode Register Settings . 10-31
Table 11-1 SDRAM Signals Shared with Other Interfaces . 11-4
Table 11-2 SDRAM Buffer Control Registers—Memory-Mapped . 11-4
Table 12-1 ROM/Flash Data Bus Connection Options . 12-1
Table 12-2 ROM Signals Shared with Other Interfaces. 12-3
Table 12-3 ROM Controller Registers—Memory-Mapped. 12-5
Table 12-4 Example: ROM Access Timing and Wait States . 12-9
Table 12-5 Accesses and ROM Width. 12-9
Table 12-6 CFGx Pinstrap Configuration Options for BOOTCS . 12-14
Élan™SC520 Microcontroller User’s Manual xxi

Table of Contents
Table 13-1 GP Bus Signals Shared with Other Interfaces. 13-3
Table 13-2 GP Bus Registers—Memory-Mapped . 13-5
Table 13-3 GP Bus Echo Mode Minimum Timing . 13-9
Table 13-4 Cross-Reference Table of ISA Signals and GP Bus Signals 13-12
Table 13-5 Example Super I/O Controller Interface Timing . 13-13
Table 13-6 Example AMD Enhanced Serial Communications Controller Interface Timing 13-15
Table 13-7 Differentiating Upper/Lower Byte Access of 16-Bit Devices 13-19
Table 13-8 Dynamic Bus Sizing Override of Programmed Data Width 13-20
Table 14-1 GP-DMA Signals Shared with Other Interfaces. 14-4
Table 14-2 GP-DMA Controller Registers—Memory-Mapped. 14-4
Table 14-3 GP-DMA Controller Registers—Direct-Mapped . 14-7
Table 14-4 Supported GP-DMA Initiator/Target Combinations . 14-9
Table 14-5 GP-DMA Channel Mapping . 14-10
Table 14-6 8-Bit GP-DMA Channel Address Generation . 14-12
Table 14-7 16-Bit GP-DMA Channel Address Generation . 14-12
Table 14-8 GP-DMA Cycle Types . 14-16
Table 15-1 Programmable Interrupt Controller Signals Shared with Other Interfaces. 15-2
Table 15-2 Programmable Interrupt Controller Registers—Memory-Mapped 15-4
Table 15-3 Programmable Interrupt Controller Registers—Direct-Mapped. 15-6
Table 15-4 PC/AT Interrupt Channel Mapping. 15-12
Table 16-1 Programmable Interval Timer Signals Shared with Other Interfaces. 16-1
Table 16-2 Programmable Interval Timer Configuration Registers—Memory-Mapped. 16-2
Table 16-3 Programmable Interval Timer Configuration Registers—Direct-Mapped 16-3
Table 16-4 PIT Internal Clock Source . 16-6
Table 16-5 PIT External Clock Source . 16-6
Table 17-1 General-Purpose Timer Signals Shared with Other Interfaces 17-1
Table 17-2 General-Purpose Timer Registers—Memory-Mapped . 17-2
Table 17-3 GP Timers Internal Clock Sources . 17-5
Table 17-4 GP Timers External Clock Sources (Using a 33.333 MHz Crystal). 17-6
Table 18-1 Software Timer Configuration Registers—Memory-Mapped. 18-2
Table 19-1 Watchdog Timer Registers—Memory-Mapped . 19-2
Table 19-2 Watchdog Timer Time-Out Duration . 19-4
Table 20-1 Real-Time Clock Registers—Memory-Mapped . 20-6
Table 20-2 Real-Time Clock Registers—Direct-Mapped. 20-6
Table 20-3 Real-Time Clock Registers—RTC Indexed . 20-6
Table 20-4 Using RATE_SEL to Specify a Periodic Interrupt Rate . 20-8
Table 21-1 UART Signals Shared with Other Interfaces . 21-2
Table 21-2 Connection of DTE to DTE . 21-3
Table 21-3 UART Registers—Memory-Mapped . 21-3
Table 21-4 UART Registers—Direct-Mapped . 21-4
Table 21-5 Baud Rates, Divisors, and Clock Source. 21-9
Table 21-6 UART Interrupt Programming Summary . 21-11
Table 21-7 Serial Port Interrupt and Interrupt Priority . 21-12
Table 22-1 Synchronous Serial Interface Registers—Memory-Mapped 22-2
Table 23-1 PIO Signals Shared with Other Interfaces . 23-3
Table 23-2 PIO Registers—Memory-Mapped . 23-4
Table 23-3 PIO Configuration Summary . 23-5
Table 24-1 System Test and Debugging Signals Shared with Other Interfaces 24-2
Table 24-2 System Test and Debugging Registers—Memory-Mapped. 24-2
Table 24-3 WBMSTR2–WBMSTR0 Pin Definition During Write Buffer Write Cycles 24-8
Table 24-4 WBMSTR2–WBMSTR0 Pin Definition During SDRAM Read Cycles 24-9
Table 25-1 Chip Test and Debugging Registers . 25-2
Table 25-2 Test Access Port Instruction Set . 25-3
Table 25-3 Main Data Scan Path. 25-5
Table 26-1 AMDebug™ Technology Connector Pins . 26-3
xxii Élan™SC520 Microcontroller User’s Manual

PREFACE
INTRODUCTION
Élan™SC520 MICROCONTROLLER
The Élan™SC520 microcontroller is a full-featured microcontroller developed for the
general embedded market. The ÉlanSC520 microcontroller combines a 32-bit, low-voltage
Am5x86® CPU with a complete set of integrated peripherals suitable for both real-time and
PC/AT-compatible embedded applications.

PURPOSE OF THIS MANUAL
This manual describes the technical features and programming interface of the ÉlanSC520
microcontroller.

Intended Audience
The Élan™SC520 Microcontroller User’s Manual, order #22004, is intended for computer
software and hardware engineers and system architects who are designing or are
considering designing systems based on the ÉlanSC520 microcontroller.

Overview of this Manual
The manual is organized into the following chapters:

■ Chapter 1 includes an architectural overview of the ÉlanSC520 microcontroller, along
with applications diagrams.

■ Chapter 2 describes the signals and pins of the ÉlanSC520 microcontroller. Logic
diagrams showing defaults and pins with shared signals are also found in this chapter.
Detailed pin state information is available in the Élan™SC520 Microcontroller Data
Sheet.

■ Chapter 3 provides an overview of system initialization and shows example
configurations.

■ Chapter 4 describes the system address mapping on the ÉlanSC520 microcontroller.

■ Chapter 5 provides information on clock generation and control.

■ Chapter 6 describes the reset sources and states of the ÉlanSC520 microcontroller.

■ Chapter 7 includes an overview of the integrated Am5x86 CPU. For additional
information about the CPU, consult the references provided in this chapter.

■ Chapter 8 describes the system arbiter on the ÉlanSC520 microcontroller, which
includes a CPU bus arbiter and a PCI bus arbiter.

■ Chapter 9 describes the PCI bus host bridge implemented on the ÉlanSC520
microcontroller.

■ Chapter 10 describes the synchronous DRAM (SDRAM) controller.

■ Chapter 11 describes the SDRAM write buffer and read buffer with read-ahead
feature.

■ Chapter 12 describes the ROM/Flash controller.
Élan™SC520 Microcontroller User’s Manual xxiii

Introduction
■ Chapter 13 describes the programmable general-purpose (GP) bus interface included
on the ÉlanSC520 microcontroller.

■ Chapter 14 describes the GP bus DMA controller.

■ Chapter 15 describes the programmable interrupt controller (PIC), which includes
three interrupt controllers.

■ Chapter 16 describes the programmable interval timer (PIT), which includes three
timers.

■ Chapter 17 describes the three general-purpose (GP) timers included on the
ÉlanSC520 microcontroller.

■ Chapter 18 describes the software timer that eases the task of keeping system time.

■ Chapter 19 describes the watchdog timer used to guard against runaway software.

■ Chapter 20 describes the real-time clock (RTC) and RTC voltage monitor included
on the ÉlanSC520 microcontroller.

■ Chapter 21 describes the two UART serial ports.

■ Chapter 22 describes the synchronous serial interface (SSI).

■ Chapter 23 describes the 32 programmable input/output (PIO) pins on the
ÉlanSC520 microcontroller.

■ Chapter 24 is a summary of the system test features found on the ÉlanSC520
microcontroller.

■ Chapter 25 describes the Joint Test Action Group (JTAG) (IEEE Std. 1149.1-1990)
boundary scan test interface features of the ÉlanSC520 microcontroller.

■ Chapter 26 provides an overview of AMDebug™ technology and the board
specifications necessary to utilize this capability, which is supported by third-party
FusionE86 vendors.

RELATED DOCUMENTS
The following documents contain additional information that will be useful in designing an
embedded application based on the ÉlanSC520 microcontroller.

AMD Documentation
In addition to this manual, the documentation set for the ÉlanSC520 microcontroller includes
the following documents:

■ Élan™SC520 Microcontroller Register Set Manual, order #22005, fully describes all the
configuration registers required to program the microcontroller.

■ Élan™SC520 Microcontroller Data Sheet, order #22003, includes complete pin lists, pin
state tables, timing and thermal characteristics, and package dimensions for the
ÉlanSC520 microcontroller.

Other information of interest:

■ The Am486® Microprocessor Software User’s Manual, order #18497, includes the
complete instruction set for the integrated Am5x86 CPU.

■ Am5x86® Microprocessor Family Data Sheet, order #19751

■ Am486® DX/DX2 Microprocessor Hardware Reference Manual, order #17965
xxiv Élan™SC520 Microcontroller User’s Manual

Introduction
■ E86 Family Products and Development Tools CD, order #21058, provides a single-
source multimedia tool for customer evaluation of AMD products, as well as FusionE86
partner tools and technologies that support the E86 family. Technical documentation is
included on the CD in PDF format.

To order literature, contact the nearest AMD sales office or call the literature center at one
of the numbers listed on the back cover of this manual. In addition, these documents are
available in PDF form on the AMD web site. To access the web site, go to www.amd.com
and follow the Embedded Processor link for information about the E86 family.

Additional Information
The following non-AMD documents and sources provide additional information that may
be of interest to ÉlanSC520 microcontroller users:

■ PCI Local Bus Specification, Revision 2.2, December 18, 1998, PCI Special Interest
Group, 800-433-5177 (US), 503-693-6360 (International), www.pcisig.com.

■ IEEE Std 1149.1-1990 Standard Test Access Port and Boundary-Scan Architecture,
(order #SH16626-NYF), Institute of Electrical and Electronic Engineers, Inc., 800-678-
4333, www.ieee.org.

■ PCI System Architecture, Mindshare, Inc., Reading, MA: Addison-Wesley, 1995, ISBN
0-201-40993-3.

■ ISA System Architecture, Mindshare, Inc., Reading, MA: Addison-Wesley, 1995, ISBN
0-201-40996-8.

■ 80486 System Architecture, Mindshare, Inc., Reading, MA: Addison-Wesley, 1995, ISBN
0-201-40994-1.

■ The Indispensable PC Hardware Book, Hans-Peter Messmer, Wokingham, England:
Addison-Wesley, 1995, ISBN 0-201-87697-3.

DOCUMENTATION CONVENTIONS
Table 0-1 lists the documentation conventions used throughout this manual.

Table 0-1 Documentation Notation

Notation Meaning

Reset Default Values

Default Value after a system reset

0 Low

1 Active or High

x No value is guaranteed

?
Determined by sources external to the ÉlanSC520
microcontroller

Read/Write Attributes

R
The bit field is read-only. A write to the register at this bit field
has no effect. The contents may or may not be changed by
hardware.
Élan™SC520 Microcontroller User’s Manual xxv

Introduction
W
The bit field is write-only. Reading this register at this bit field
does not return a meaningful value and has no side effects.

R/W
The bit field is read/write. Reading the register at this bit field
always returns the last value written. Reads have no side effects.

R/W!

The bit field is read/write with conditions. The “!” indicates that
there are side effects to using this bit. For example, reading a
bit or register might not always return the last value written. Note
that both reads and writes can have side effects. If you see a “!”,
be sure to read the bit description and programming notes.

RSV
The bit field is reserved for internal test/debug or future
expansion. This bit field should be written to 0 for normal system
operation. This bit field always returns 0 when read.

RSV!

The bit field is reserved for compatibility purposes. For example,
the bit field might be ignored during writes to maintain software
compatibility. If you see a “!”, be sure to read the bit description
and programming notes.

Reference Notation

MMCR offset 00h
ÉlanSC520 microcontroller Memory-Mapped Configuration
Region (MMCR) offset register 00h

PCI index 00h PCI indexed register 00h

Port 00h Direct-mapped I/O register 00h

RTC index 00h RTC and configuration RAM indexed register 00h

Pin Naming

{ } Pin function during hardware reset

[] Alternative pin function selected by software configuration

ROMCS1
An overbar indicates that the signal assumes the logic Low state
when asserted.

GPRESET
The absence of an overbar indicates that the signal assumes
the logic High state when asserted.

ads, hold A signal name in all lowercase indicates an internal signal.

ROMCS2–ROMCS1 Two ROM chip select signals

ROMCSx Any of the two ROM chip select signals

Numbers

b Binary number

d
Decimal number
Decimal is the default radix

Table 0-1 Documentation Notation (Continued)

Notation Meaning
xxvi Élan™SC520 Microcontroller User’s Manual

Introduction
h Hexadecimal number

x in register address
Any of several legal values; e.g., using 0xF8h for the UART
Transmit Holding register is either 02F8h or 03F8h, depending
on the UART

[X–Y]
The bit field that consists of bits X through Y.
Example: The SB_ADDR[23–16] bit field.

33 MHz

Refers to the system clock frequency being used. This can be
either 33.000 MHz or 33.333 MHz. See the Élan™SC520
Microcontroller User’s Manual for more information about clock
generation.

General

field Bit field in a register (one or more consecutive and related bits)

can It is possible to perform an action if properly configured

will A certain action is going to occur

Set the ENB bit.
Write the ENB bit to 1.
Note: The bit referred to is either in the register being described,
or the register is referred to explicitly in the surrounding text.

Clear the ENB bit.
Change the ENB bit to 0. Usually a bit is cleared by writing a 0
to it; however, some bits are cleared by writing a 1.

Reset the ENB bit.
Context-sensitive. Can refer either to resetting the bit to its
default value or to clearing the bit.

Table 0-1 Documentation Notation (Continued)

Notation Meaning
Élan™SC520 Microcontroller User’s Manual xxvii

Introduction
xxviii Élan™SC520 Microcontroller User’s Manual

CHAPTER
1 A
RCHITECTURAL OVERVIEW
1.1 Élan™SC520 MICROCONTROLLER
The Élan™SC520 microcontroller is a full-featured microcontroller developed for the
general embedded market. The ÉlanSC520 microcontroller combines a 32-bit, low-voltage
Am5x86 CPU with a complete set of integrated peripherals suitable for both real-time and
PC/AT-compatible embedded applications.

An integrated PCI host bridge, SDRAM controller, enhanced PC/AT-compatible peripherals,
and advanced debugging features provide the system designer with a wide range of on-
chip resources, allowing support for legacy devices as well as new devices available in the
current PC marketplace.

Designed for medium- to high-performance applications in the telecommunications, data
communications, and information appliance markets, the ÉlanSC520 microcontroller is
particularly well suited for applications requiring high throughput combined with low latency.

1.1.1 Distinctive Characteristics
■ Industry-standard Am5x86® CPU with floating point unit (FPU) and 16-Kbyte write-back

cache

– 100-MHz and 133-MHz operating frequencies

– Low-voltage operation (core VCC = 2.5 V)

– 5-V tolerant I/O (3.3-V output levels)

■ E86™ family of x86 embedded processors

– Part of a software-compatible family of microprocessors and microcontrollers well
supported by a wide variety of development tools

■ Integrated PCI host bridge controller leverages standard peripherals and software

– 33 MHz, 32-bit PCI bus Revision 2.2-compliant

– High-throughput 132-Mbyte/s peak transfer

– Supports up to five external PCI masters

– Integrated write-posting and read-buffering for high-throughput applications

■ Synchronous DRAM (SDRAM) controller

– Supports 16-, 64-, 128-, and 256-Mbit SDRAM.

– Supports 4 banks for a total of 256 Mbytes.

– Error Correction Code provides system reliability.

– Buffers improve read and write performance.

■ AMDebugÉ technology offers a low-cost solution for the advanced debugging
capabilities required by embedded designers.

– Allows instruction tracing during execution from the Am5x86 CPU’s internal cache

– Uses an enhanced JTAG port for low-cost debugging
Élan™SC520 Microcontroller User’s Manual 1-1

Architectural Overview
– Parallel debug port for high-speed data exchange during in-circuit emulation

■ General-purpose (GP) bus with programmable timing for 8- and 16-bit devices provides
good performance at very low cost.

■ ROM/Flash controller for 8-, 16-, and 32-bit devices

■ Enhanced PC/AT-compatible peripherals provide improved performance.

– Enhanced programmable interrupt controller (PIC) prioritizes 22 interrupt levels (up
to 15 external sources) with flexible routing.

– Enhanced DMA controller includes double buffer chaining, extended address and
transfer counts, and flexible channel routing.

– Two 16550-compatible UARTs operate at baud rates up to 1.15 Mbit/s with optional
DMA interface.

■ Standard PC/AT-compatible peripherals

– Programmable interval timer (PIT)

– Real-time clock (RTC) with battery backup capability and 114 bytes of RAM

■ Additional integrated peripherals

– Three general-purpose 16-bit timers provide flexible cascading for 32-bit operation.

– Watchdog timer guards against runaway software.

– Software timer

– Synchronous serial interface (SSI) offers full-duplex or half-duplex operation.

– Flexible address decoding for programmable memory and I/O mapping and system
addressing configuration

■ 32 programmable input/output (PIO) pins

■ Native support for pSOS, QNX, RTXC, VxWorks, and Windows® CE operating systems

■ Industry-standard BIOS support

1.2 BLOCK DIAGRAM
Figure 1-1 on page 1-3 illustrates the integrated Am5x86 CPU, bus structure, and on-chip
peripherals of the ÉlanSC520 microcontroller. Three primary interfaces are provided:

■ A high-performance, 66-MHz 32-bit synchronous DRAM (SDRAM) interface of up to 256
Mbytes is used for Am5x86 CPU code execution, as well as buffer storage of external
PCI bus masters and GP bus DMA initiators. A high-performance ROM/Flash interface
can also be connected to the SDRAM interface.

■ An industry-standard, 32-bit PCI bus is provided for high bandwidth I/O peripherals such
as local area network controllers, synchronous communications controllers, and disk
storage controllers.

■ A simple 8/16-bit, 33-MHz general-purpose bus (GP bus) provides a glueless connection
to lower bandwidth peripherals, and NVRAM, SRAM, ROM, or custom ASICs; supports
dynamic bus sizing and compatibility with many common ISA devices.

These three buses listed above are provided in all operating modes of the ÉlanSC520
microcontroller.
1-2 Élan™SC520 Microcontroller User’s Manual

Architectural Overview
In addition to these three primary interfaces, the ÉlanSC520 microcontroller also contains
internal oscillator circuitry and phase locked loop (PLL) circuitry, requiring only two simple
crystals for virtually all system clock generation.

Diagrams showing how the ÉlanSC520 microcontroller can be used in various system
designs are included in “Applications” on page 1-8.

Figure 1-1 Élan™SC520 Microcontroller Block Diagram

Read/Write Buffers
Address

 C
P

U
 B

us
 In

te
rfa

ce

Am5x86Ç
 CPU

B
us

 In
te

rf
ac

e
U

ni
t

 CPU Bus Interface

PCI
Target

PCI
Master

PCI Bus
Arbiter

CPU Bus
Arbiter

Clock
Generation

�

FIFOs and FIFO
Control

GP-DMA

A
dd

re
ss

D
at

a

C
on

tr
ol

/S
ta

tu
s

 CPU Data Bus

CPU Address Bus

CPU Control/Status Bus

GP Bus

AMDebug™
Technology and

JTAG

Request and
Grant

�

PCI Bus
PCI Requests and Grants

GP Bus
Controller

ROM/Flash
Controller

SDRAM
Controller

C
P

U

R
eq

ue
st External GP Bus

GP-DMA
Controller

Élan™SC520 Microcontroller

Programmable
Interrupt Controller

Programmable
Interval Timer

Watchdog Timer

Real-Time Clock
CMOS RAM

General-Purpose
Timers

Software
Timer

16550 UART

16550 UART

Synchronous Serial
Interface

Programmable I/O
Controls

PC/AT Compatibility
Logic

Decode
Unit
Élan™SC520 Microcontroller User’s Manual 1-3

Architectural Overview
1.3 ARCHITECTURAL OVERVIEW
The ÉlanSC520 microcontroller was designed to provide:

■ A balanced mix of high performance and low-cost interface mechanisms

■ A high-performance, industry-standard 32-bit PCI bus

■ Glueless interfacing to many 8- and 16-bit I/O peripherals and an 8- and 16-bit bus with
programmable timing

■ A cost-effective system architecture that meets a wide range of performance criteria
while retaining the lower cost of a 32-bit system

■ A high degree of leverage from present day hardware and software technologies

1.3.1 Industry-Standard x86 Architecture (Chapter 7)
The Am5x86 CPU in the ÉlanSC520 microcontroller utilizes the industry-standard x86
microprocessor instruction set that enables compatibility across a variety of performance
levels from the 16-bit Am186™ processors to the high-end AMD Athlon™ processor. Software
written for the x86 architecture family is compatible with the ÉlanSC520 microcontroller.

Other benefits of the Am5x86 CPU include:

■ Improved time-to-market and easy software migration

■ Existing availability of multiple operating systems that directly support the x86
architecture. Whether the application requires a real-time operating system (RTOS) or
one of the popular Microsoft® operating systems, the ÉlanSC520 microcontroller
provides consistent compatibility with many off-the-shelf operating systems.

■ Multiple sources of field-proven development tools

■ Integrated floating point unit (FPU) (compliant with ANSI/IEEE 754 standard)

■ 16-KByte unified cache configurable for either write-back or write-through cache mode

The Am5x86 CPU is described in Chapter 7.

1.3.2 AMDebug™ Technology for Advanced Debugging (Chapter 26)
The ÉlanSC520 microcontroller provides support for low-cost, full-featured, in-circuit
emulation capability. This in-circuit emulation support was developed at AMD specifically
to enable users to test and debug their software earlier in the design cycle. Utilizing this
capability, the software can be more extensively exercised, and at full execution speeds. It
also allows tracing during execution from the Am5x86 CPU’s internal cache.

AMDebug support provides the product design team with two different communication paths
on the ÉlanSC520 microcontroller, each of which is supported by powerful debug tools from
third-party vendors in AMD’s FusionE86 program.

■ Serial AMDebug technology uses a serial connection based on an enhanced JTAG
protocol and an inexpensive 12-pin connector that can be placed on each board design.
This low-cost solution satisfies the requirement of a large number of software developers.

■ Parallel AMDebug technology uses a parallel debug port to exchange commands and
data between the ÉlanSC520 microcontroller and the host. The higher pin count requires
that the extra signal pins be provided on a special bond-out package of the ÉlanSC520
microcontroller, which is only made available to tool developers, such as in-circuit
emulator manufacturers. The parallel AMDebug port greatly simplifies the task of
supporting high speed data exchange.
1-4 Élan™SC520 Microcontroller User’s Manual

Architectural Overview
1.3.3 Industry-Standard PCI Bus Interface (Chapter 9)
The ÉlanSC520 microcontroller provides a 33-MHz, 32-bit PCI bus Revision 2.2-compliant
host bridge interface, including integrated write-posting and read-buffering capabilities
suitable for high-throughput applications. The PCI host bridge leverages standard
peripherals and software. It also provides:

■ High throughput (132 Mbytes/s peak transfer rate)

■ Deep buffering and support for burst transactions from PCI bus masters to SDRAM

■ Flexible arbitration mechanism

■ Support for up to five external PCI masters

1.3.4 High-Performance SDRAM Controller (Chapter 10)
The ÉlanSC520 microcontroller provides an integrated SDRAM controller that supports
popular industry-standard synchronous DRAMs (SDRAM).

■ The SDRAM controller interfaces with SDRAM chips as well as with most standard
DIMMs to enable use of standard off-the-shelf memory components.

■ The SDRAM controller supports programmable timing options and provides the required
external clock.

■ Up to four 32-bit banks of SDRAM are supported with a maximum capacity of 256 Mbytes.

■ An important reliability-enhancing Error Correction Code (ECC) feature is built into the
SDRAM controller. The resultant increase in the memory content reliability enables the
ÉlanSC520 microcontroller to be effectively utilized in applications that require more
reliable operation, such as communications environments.

■ The SDRAM controller contains a write buffer and read ahead buffer subsystem that
improves both write and read performance.

■ SDRAM refresh options allow the SDRAM contents to be maintained during reset.

1.3.5 ROM/Flash Controller (Chapter 12)
The ÉlanSC520 microcontroller provides an integrated ROM controller for glueless
interfacing to ROM and Flash devices. The ÉlanSC520 microcontroller supports two types
of interfaces to such devices—a simple interface via the GP bus for 8- and 16-bit devices,
and an interface to the SDRAM memory data bus for higher performance 8-, 16-, and 32-
bit devices.

The ROM/Flash controller:

■ Reduces system cost by gluelessly interfacing static memory with up to three ROM/
Flash chip selects

■ Supports execute-in-place (XIP) operating systems for applications that require
executing out of ROM or Flash memory instead of DRAM

■ Supports high-performance page-mode devices

1.3.6 Flexible Address-Mapping (Chapter 4)
In addition to the memory management unit (MMU) within the Am5x86 CPU core, the
ÉlanSC520 microcontroller provides 16 Programmable Address Region (PAR) registers
that enable flexible placement of memory (SDRAM, ROM, Flash, SRAM, etc.) and
peripherals into the two address spaces of the Am5x86 CPU (memory address space and
I/O address space). The PAR hardware allows designers to flexibly configure both address
Élan™SC520 Microcontroller User’s Manual 1-5

Architectural Overview
spaces and place memory and/or external peripherals, as required by the application. The
internal memory-mapped configuration registers space can also be remapped to
accommodate system requirements. PAR registers also allow control of important
attributes, such as cacheability, write protection, and code execution protection for memory
resources.

1.3.7 General-Purpose (GP) Bus Interface (Chapter 13)
The ÉlanSC520 microcontroller includes a simple general-purpose (GP) bus that provides
programmable bus timing and allows the connection of 8/16-bit peripheral devices and
memory to the ÉlanSC520 microcontroller. The GP bus operates at 33 MHz, which offers
good performance at a very low interface cost.

The ÉlanSC520 microcontroller provides up to eight chip selects for external GP bus devices
such as off-the-shelf I/O peripherals, custom ASICs, and SRAM or NVRAM. The GP bus
interface supports programmable timing and dynamic bus width and cycle stretching to
accommodate a wide variety of standard peripherals, such as UARTs, 10-Mbit LAN
controller chips and serial communications controllers. Up to four external DMA channels
provide fly-by DMA transfers between peripheral devices on the GP bus and system
SDRAM.

Internally, the GP bus is used to provide a full complement of integrated peripherals, such
as a DMA controller, programmable interrupt controller, timers, and UARTs, as described
in “Integrated Peripherals” on page 1-7. These internal peripherals are designed to operate
at the full clock rate of the GP bus. The internal peripherals can also be configured to
operate in PC/AT-compatible configuration, but are generally not restricted to this
configuration.

The ÉlanSC520 microcontroller provides a way to view accesses to the internal peripherals
on the external GP bus for debugging purposes.

1.3.8 Clock Generation (Chapter 5)
The ÉlanSC520 microcontroller offers user-configurable CPU core clock speed operation
at 100 or 133 MHz for different power/performance points depending on the application.

Not all ÉlanSC520 microcontroller devices support all CPU clock rates. The maximum
supported clock rate for a device is indicated by the part number printed on the package.
The clocking circuitry can be programmed to run the device at higher than the rated speeds.
However, if an ÉlanSC520 microcontroller is programmed to run at a higher clock speed
than that for which it is rated, then erroneous operation can result, and physical damage
to the device may occur.

The ÉlanSC520 microcontroller includes on-chip oscillators and PLLs, as well as most of
the required PLL loop filter components. The ÉlanSC520 microcontroller requires two
standard crystals, one for 32.768 kHz and one for 33 MHz. All the clocks required inside
the ÉlanSC520 microcontroller are generated from these crystals. The ÉlanSC520
microcontroller also supplies the clocks for the SDRAM and PCI bus; however, external
clock buffering may be required in some systems.

Note: The ÉlanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz
crystal. In this document, the generic term “33 MHz” refers to the system clock derived from
whichever 33-MHz crystal frequency is being used in the system.
1-6 Élan™SC520 Microcontroller User’s Manual

Architectural Overview
1.3.9 Integrated Peripherals
The ÉlanSC520 microcontroller is a highly integrated single-chip CPU with a complete set
of integrated peripherals that are a superset of common PC/AT peripherals, plus a set of
memory-mapped peripherals that enhance its usability in various applications.

■ A programmable interrupt controller (PIC) (see Chapter 15) that provides the capability
to prioritize 22 interrupt levels, up to 15 of these being external sources. The PIC can
be programmed to operate in PC/AT-compatible mode, but also contains extended
features, including support for more sources and flexible routing that allows any interrupt
request to be steered to any PIC input. Interrupt requests can be programmed to
generate either non-maskable interrupt (NMI) or maskable interrupt requests.

■ An integrated DMA controller (see Chapter 14) is included for transferring data between
SDRAM and GP bus peripherals. The GP-DMA controller operates in single-cycle (fly-
by) mode for more efficient transfers. The GP-DMA controller can be programmed for
PC/AT compatibility, but also contains enhanced features:

– A double buffer-chaining mode provides a more efficient software interface.

– Extended address and transfer counts

– Flexible routing of DMA channels

■ Three general-purpose 16-bit timers (see Chapter 17) that provide flexible cascading
for extension to 32-bit operation. These timers provide the ability to configure down to
the resolution of four clock periods where the clock period is the 33-MHz clock. Timer
input and output pins provide the ability to interface with off-chip hardware.

■ A standard PC/AT-compatible programmable interval timer (PIT) (see Chapter 16) that
consists of three 16-bit timers.

■ A software timer (see Chapter 18) that eases the task of keeping system time. It provides
1-ms resolution and can also be used for performance monitoring.

■ A watchdog timer (see Chapter 19) to guard against runaway software.

■ A real-time clock (RTC) with battery backup capability (see Chapter 20). The RTC also
provides 114 bytes of battery-backed RAM for storage of configuration parameters.

■ Two integrated 16550-compatible UARTs (see Chapter 21) that provide full handshaking
capability with eight pins each. Enhancements enable the UARTs to operate at baud
rates up to 1.152 Mbits/s. The UARTs can be configured to use the integrated GP bus
DMA controller to transfer data between the serial ports and SDRAM.

■ A synchronous serial interface (SSI) that is compatible with SCP, SPI, and Microwire
slave devices (see Chapter 22). The SSI interface can be configured for either full-duplex
or half-duplex operation using a 4-wire or 3-wire interface.

■ 32 programmable I/O pins are provided (see Chapter 23). These pins are multiplexed
with other peripherals and interface functions.

■ The ÉlanSC520 microcontroller also provides PC/AT-compatible functions for control of
the a20 gate and the soft CPU reset (Ports 0060h, 0064h, 0092h).

1.3.10 JTAG Boundary Scan Test Interface (Chapter 25)
The ÉlanSC520 microcontroller provides a full JTAG test port that is compliant with IEEE
Std 1149.1-1990 for use during board testing.
Élan™SC520 Microcontroller User’s Manual 1-7

Architectural Overview
1.3.11 System Testing and Debugging Features (Chapter 24)
To facilitate debugging, the ÉlanSC520 microcontroller provides observability of many
portions of its internal operation, including:

■ A three-pin interface that can be used in either system test mode or write buffer test
mode, to aid in determining internal bus initiators of SDRAM cycles, and determining
when SDRAM data is valid on the interface. An additional mode provides observability
of integrated peripheral accesses.

■ A nonconcurrent arbitration mode to reduce debug complexity when PCI bus masters
and GP bus DMA initiators are also accessing SDRAM.

■ CPU cache control and dynamic core clock speed control under program control.

■ Ability to disable write posting and read prefetching in the SDRAM controller to simplify
tracing of SDRAM cycles.

■ Notification of memory write protection and non-executable memory region violations.

1.4 APPLICATIONS
The figures on the following pages show the ÉlanSC520 microcontroller as it might be used
in several reference design applications in the data communications, information
appliances, and telecommunication markets.

1.4.1 Smart Residential Gateway
Figure 1-2 on page 1-10 shows an ÉlanSC520 microcontroller-based Smart Resident
Gateway (SRG), which is a router for a home network between the wide area network
(WAN) (the internet) and a local area network (LAN) (an intranet of computers and
information appliances in the home). The SRG provides firewall protection of the LAN from
unauthorized access through the internet. A common internet access medium is shared
by all users on the LAN.

A variety of connections are possible for both the WAN and the LAN. For example, the WAN
connection can be a V.90 modem, cable modem, ISDN, ADSL, or Ethernet.

The LAN connection can be:

■ HomePNA—Home Phoneline Networking Alliance, an alliance with a widely endorsed
home networking specification

■ Bluetooth—a computing and telecommunications industry specification that describes
how computing devices can easily interconnect with each other and with home and
business phones and computers using a short-range wireless connection)

■ Home RF—a standard competing with Bluetooth for the interconnection of computing
devices in a LAN using radio frequency

■ Ethernet—local area network technology

■ Power line—a LAN using the AC power distribution network in a home or business to
interconnect devices. Digital information is transmitted on a high-frequency carrier signal
on top of the AC power.

1.4.2 Thin Client
Figure 1-3 on page 1-11 shows an ÉlanSC520 microcontroller-based “thin client,” which is
the modern replacement for the traditional terminal in a remote computing paradigm.
Application programs run remotely on a server, and data is warehoused on centrally
managed disks at the “server farm.” An efficient communications protocol transmits
1-8 Élan™SC520 Microcontroller User’s Manual

Architectural Overview
keyboard and mouse commands upstream and transmits video BIOS calls downstream.
The thin client renders and displays the graphics for the user.

The thin client is typically connected to an Ethernet LAN, although a remote location can
connect to a server via a WAN connection such as a modem. A minimum speed of 24 kbaud
is required for the communication protocol, unless the application is graphics-intensive, in
which case a faster connection is required.

1.4.3 Digital Set Top Box
Figure 1-4 on page 1-12 shows an ÉlanSC520 microcontroller-based digital set top box
(DSTB), which is a consumer client device that uses a television set as the display. Common
applications for the DSTB are internet access, e-mail, and streaming audio and video
content.

The minimal system includes a connection to the WAN via a modem, ADSL, or cable
modem; an output to a TV; and an InfraRed (IR) link to a remote control or wireless keyboard.
Expanded systems include DVD drives and MPEG2 decoders to deliver digital video
content. A hard drive may be employed to store video data for future replay. Keyboard,
mouse, printer, or a video camera are options that can be included.

1.4.4 Telephone Line Concentrator
Figure 1-5 on page 1-13 shows an ÉlanSC520 microcontroller-based telephone line
concentrator located in the neighborhood that converts multiple analog subscriber loops
into a high-speed digitally multiplexed line for connection to the central office switching
network.
Élan™SC520 Microcontroller User’s Manual 1-9

Architectural Overview
Figure 1-2 Élan™SC520 Microcontroller-Based Smart Residential Gateway
Reference Design

Élan™SC520 Microcontroller

G
P

 B
us

GPA25–GPA0

GPD15–GPD0

Control

MA12–MA0

MD31–MD0

Control

S
D

R
A

M

A
D

31
–A

D
0

C
on

tr
ol

P
C

ne
t™

-H
om

e

W
A

N
 In

te
rf

ac
e

A
m

79
C

97
8

32
-k

H
z

C
ry

st
al

F
la

sh
 o

r
R

O
M

PCI Bus

S
D

R
A

M
 B

us
A

D
S

L,
 C

ab
le

 M
od

em

L
A

N
 In

te
rf

ac
e

R
J-

45

33
-M

H
z

C
ry

st
al

R
J-

11

or
 V

.9
0or

R
J-

45
R

J-
11

or
1-10 Élan™SC520 Microcontroller User’s Manual

Architectural Overview
Figure 1-3 Élan™SC520 Microcontroller-Based Thin Client Reference Design

A
D

31
–A

D
0

C
on

tr
ol

Élan™SC520 Microcontroller

G
P

 B
us

Control

C
on

tr
ol

le
r

V
G

A
/L

C
D

F
la

sh

PCI Bus

S
D

R
A

M
 B

us
A

m
79

C
97

3/
A

m
79

C
97

5
P

C
ne

t™
-F

as
t I

II

S
up

er
 I/

O

P
S

/2
 K

ey
bo

ar
d

P
S

/2
 M

ou
se

P
ar

al
le

l

S
er

ia
l

C
R

T
/L

C
D

MA12–MA0

MD31–MD0

Control

S
D

R
A

M

Control

32
-k

H
z

C
ry

st
al

33
-M

H
z

C
ry

st
al

R
J-

45

L
A

N
 In

te
rf

ac
e

M
em

or
y

GPD15–GPD0

GPA25–GPA0
Élan™SC520 Microcontroller User’s Manual 1-11

Architectural Overview
Figure 1-4 Élan™SC520 Microcontroller-Based Digital Set Top Box Reference Design

F
la

shÉlan™SC520 Microcontroller

G
P

 B
us

PCI Bus

S
D

R
A

M
 B

us

E
ID

E

D
V

D
 o

r
H

D
D

C
on

tr
ol

G
P

A
1–

G
P

A
0

G
P

D
15

–G
P

D
0

MA12–MA0

MD31–MD0

Control

S
D

R
A

M

A
D

31
–A

D
0

C
on

tr
ol

N
T

S
C

/P
A

L

V
G

A

S
up

er
 I/

O

P
S

/2
 K

ey
bo

ar
d

P
S

/2
 M

ou
se

P
ar

al
le

l

IR

C
on

tr
ol

32
-k

H
z

C
ry

st
al

33
-M

H
z

C
ry

st
al

W
A

N
 In

te
rf

ac
e

A
D

S
L,

 C
ab

le
 M

od
em

or

 V
.9

0

R
J-

11

M
em

or
y

GPA25–GPA0

GPD15–GPD0

Control
1-12 Élan™SC520 Microcontroller User’s Manual

Architectural Overview
Figure 1-5 Élan™SC520 Microcontroller-Based Telephone Line Concentrator
Reference Design

Élan™SC520 Microcontroller

G
P

 B
us

S
D

R
A

M
 B

us

H
D

LC

PCM Highway

T
1

or
 E

1

(6
x

to
 1

0X
)

32
-k

H
z

C
ry

st
al

33
-M

H
z

C
ry

st
al

MA12–MA0

MD31–MD0

Control

S
D

R
A

M

Control

F
la

sh

C
on

tr
ol

M
em

or
y

IS
LI

C
A

m
79

R
24

1

Q
ua

d
IS

LA
C

A
m

79
Q

22
41

IS
LI

C
A

m
79

R
24

1

IS
LI

C
A

m
79

R
24

1

IS
LI

C
A

m
79

R
24

1

IS
LI

C
A

m
79

R
24

1

Q
ua

d
IS

LA
C

A
m

79
Q

22
41

IS
LI

C
A

m
79

R
24

1

IS
LI

C
A

m
79

R
24

1

IS
LI

C
A

m
79

R
24

1

T
1/

E
1

In
te

rf
ac

e

S
S

I

A
na

lo
g

P
ho

ne
Li

ne
s

GPD15–GPD0

GPA25–GPA0
Élan™SC520 Microcontroller User’s Manual 1-13

Architectural Overview
1-14 Élan™SC520 Microcontroller User’s Manual

CHAPTER
2
 PIN INFORMATION
2.1 OVERVIEW
The ÉlanSC520 microcontroller contains 258 signal pins plus power and ground signals.
A minimal number of signals are shared with others.

The signals are organized alphabetically within the following functional groups:

■ Synchronous DRAM controller (page 2-5)

■ ROM/Flash controller (page 2-6)

■ PCI bus (page 2-6)

■ General-purpose (GP) bus (page 2-7)

■ Serial ports (page 2-9)

■ Timers (page 2-10)

■ Clocks and reset (page 2-10)

■ Chip selects (page 2-11)

■ Programmable I/O (PIO) (page 2-11)

■ JTAG boundary scan test interface (page 2-12)

■ AMDebug interface (page 2-12)

■ System test (page 2-12)

■ Configuration (page 2-13)

■ Power (page 2-14)

2.2 LOGIC SYMBOLS
Figure 2-1 shows a logical symbol of the device, with pins grouped by function or interface.
Figure 2-2 shows a logical symbol with pins grouped by default function. Figure 2-2 also
shows pin multiplexing on the ÉlanSC520 microcontroller.
Élan™SC520 Microcontroller User’s Manual 2-1

Pin Information
Figure 2-1 Logic Diagram by Interface1

Notes:
1. Pins noted with asterisks are duplicated in this diagram to clarify which signals are used for each interface.

PCI Bus

SDRAM

Serial Ports:
 UART 1
 UART 2
 SSI

AD31–AD0

CBE3–CBE0

PAR

SERR

PERR

FRAME

TRDY

IRDY

STOP

DEVSEL

CLKPCIOUT

CLKPCIIN

RST

INTA–INTD

REQ4–REQ0

GNT4–GNT0

BA1–BA0

MD31–MD0

SCS3–SCS0

CLKMEMOUT

CLKMEMIN

SRASA–SRASB

SCASA–SCASB

SWEA–SWEB

SDQM3–SDQM0

MECC6–MECC0

SOUT2–SOUT1

SIN2–SIN1

RTS2–RTS1

CTS2–CTS1

DSR2–DSR1

DTR2–DTR1

DCD2–DCD1

RIN2–RIN1

SSI_CLK

SSI_DO

SSI_DI

GP BusGPA25–GPA0

GPD15–GPD0

GPRESET

GPIORD

GPIOWR

GPMEMRD

GPMEMWR

GPALE

GPBHE

GPRDY

GPAEN

GPTC

GPDRQ3–GPDRQ0

GPDACK3–GPDACK0

GPIRQ10–GPIRQ0

GPDBUFOE

GPIOCS16

GPMEMCS16

JTAG

AMDebug

System Test

JTAG_TRST

JTAG_TCK

JTAG_TDI

JTAG_TDO

JTAG_TMS

GPCS7–GPCS0

BOOTCS

ROMCS2–ROMCS1

ROMRD

FLASHWR

ROMBUFOE

CMDACK

BR/TC

STOP/TX

TRIG/TRACE

WBMSTR2–WBMSTR0

CF_DRAM

DATASTRB

CF_ROM_GPCS

PIO31–PIO0

TMRIN1–TMRIN0

TMROUT1–TMROUT0

Programmable
Input/Output

Timers

PITGATE2

PITOUT2

Clocks and Reset 32KXTAL2–32KXTAL1

33MXTAL2–33MXTAL1

CLKTIMER

CLKTEST

PWRGOOD

PRGRESET CFG3–CFG0

RSTLD7–RSTLD0

ConfigurationDEBUG_ENTER

INST_TRCE

AMDEBUG_DIS

BBATSEN

MD31–MD0*

GPA25–GPA0*

GPD15–GPD0*

ROM/Flash

MA12–MA0

LF_PLL1
2-2 Élan™SC520 Microcontroller User’s Manual

Pin Information
Figure 2-2 Logic Diagram by Default Pin Function1

Notes:
1. Pin names in bold indicate the default pin function. Brackets, [], indicate alternate, multiplexed functions. Braces, { }, indicate

pinstrap pins. Pins noted with asterisks are duplicated in this diagram to clarify which signals are used for each interface.

PCI Bus

SDRAM

Serial Ports:
 UART 1
 UART 2
 SSI

AD31–AD0

CBE3–CBE0

PAR

SERR

PERR

FRAME

TRDY

IRDY

STOP

DEVSEL

CLKPCIOUT

CLKPCIIN

RST

INTA–INTD

REQ4–REQ0

GNT4–GNT0

BA1–BA0

MD31–MD0

SCS3–SCS0

CLKMEMOUT

CLKMEMIN

SRASA–SRASB

SCASA–SCASB

SWEA–SWEB

SDQM3–SDQM0

MECC6–MECC0

SOUT2–SOUT1

SIN2–SIN1

RTS2–RTS1

CTS1

DSR1

DTR2–DTR1

DCD1

RIN1

SSI_CLK

SSI_DO

SSI_DI

GP Bus

ROM/Flash

GPA25 {DEBUG_ENTER}

GPD15–GPD0

GPRESET

GPIORD

GPIOWR

GPMEMRD

GPMEMWR

PIO0 [GPALE]

PIO1 [GPBHE]

PIO2 [GPRDY]

PIO3 [GPAEN]

PIO4 [GPTC]

PIO5–PIO8 [GPDRQ3–GPDRQ0]

PIO9–PIO12 [GPDACK3–GPDACK0]

PIO13–PIO23 [GPIRQ10–GPIRQ0]

PIO24 [GPDBUFOE]

PIO25 [GPIOCS16]

PIO26 [GPMEMCS16]

JTAG

AMDebug

System Test

JTAG_TRST

JTAG_TCK

JTAG_TDI

JTAG_TDO

JTAG_TMS

PIO27 [GPCS0]

BOOTCS

ROMCS2–ROMCS1 [GPCS2–GPCS1]

ROMRD

FLASHWR

ROMBUFOE

CMDACK

BR/TC

STOP/TX

TRIG/TRACE

CF_DRAM [WBMSTR2] {CFG2}

DATASTRB [WBMSTR1] {CFG1}

CF_ROM_GPCS [WBMSTR0] {CFG0}

TMRIN1–TMRIN0 [GPCS4–GPCS5]

TMROUT1–TMROUT0 [GPCS6–GPCS7]

Timers

PITGATE2 [GPCS3]

PITOUT2 {CFG3}

Clocks and Reset
32MXTAL2–32MXTAL1

LF_PLL1

CLKTIMER [CLKTEST]

PWRGOOD
PRGRESET

BBATSEN

GPA22–GPA15 {RSTLD7–RSTLD0}
GPA13–GPA0

GPA24 {INST_TRCE}

GPA23 {AMDEBUG_DIS}

PIO28 [CTS2]

PIO29 [DSR2]

PIO30 [DCD2]

PIO31 [RIN2]

MD31–MD0*

GPA25–GPA0*

GPD15–GPD0*

MA12–MA0

32KXTAL2–32KXTAL1
Élan™SC520 Microcontroller User’s Manual 2-3

Pin Information
2.3 SIGNAL DESCRIPTIONS
Table 2-1 describes the terms used in the signal description table. In general, the brackets,
[], indicate alternate, multiplexed functions, and braces, { }, indicate reset configuration
pins (pinstraps). The line over a pin name indicates an active Low signal. The word pin
refers to the physical wire; the word signal refers to the electrical signal that flows through it.

Table 2-2, “Signal Descriptions” on page 5 contains a description of the ÉlanSC520
microcontroller signals. The descriptions in Table 2-2 are organized by functional group.
Table 2-2 describes the signals that are available for each interface and which signals are
shared with others. Signal sharing is also shown in Figure 2-2.

Detailed information on pin state, including maximum load values, power-on reset default
function, reset state, power-on reset default operation, hold state, and voltage, is available
in the Élan™SC520 Microcontroller Data Sheet, order #22003. Connection and package
diagrams, as well as pin number assignments, are also included in that document.

Table 2-1 Signal Descriptions Table Definitions

Term Definition

General Terms

[] Indicates the pin alternate function; a pin defaults to the signal named without the
brackets.

{ } Indicates the reset configuration pin (pinstrap).

pin Refers to the physical wire.

signal Refers to the electrical signal that flows across a pin.

SIGNAL A line over a signal name indicates that the signal is active Low; a signal name
without a line is active High.

Signal Types

Analog Analog voltage

B Bidirectional

H High

I Input

LS Programmable to hold last state of pin

O Totem pole output

O/TS Totem pole output/three-state output

OD Open-drain output

OD-O Open-drain output or totem pole output

Osc Oscillator

PD Internal pulldown resistor (~100–150 kW)

Power Power pins

PU Internal pullup resistor (~100–150 kW)

STI Schmitt trigger input

STI-OD Schmitt trigger input or open-drain output

TS Three-state output
2-4 Élan™SC520 Microcontroller User’s Manual

Pin Information
Table 2-2 Signal Descriptions

Signal
Multiplexed

Signal Type Description

Synchronous DRAM Controller

BA1–BA0 — O Bank Address is the SDRAM bank address bus.

CLKMEMIN — I SDRAM Clock Input is the SDRAM clock return signal used to
minimize skew between the internal SDRAM clock and the
CLKMEMOUT signal provided to the SDRAM devices. This signal
compensates for buffer and load delays introduced by the board design.

CLKMEMOUT — O SDRAM Clock Output is the 66-MHz clock that provides clock
signalling for the synchronous DRAM devices. This clock may require
an external Low skew buffer for system implementations that result in
heavy loading on the SDRAM clock signal.

MA12–MA0 — O SDRAM Address is the SDRAM multiplexed address bus.

MD31–MD0 — B SDRAM Data Bus inputs data during SDRAM read cycles and outputs
data during SDRAM write cycles.

MECC6–MECC0 — B Memory Error Correction Code contains the ECC checksum
(syndrome) bits used to validate and correct data errors.

SCASA–SCASB — O Column Address Strobes are used in combination with the SRASA–
SRASB and SWEA–SWEB to encode the SDRAM command type.
SCASA and SCASB are the same signal provided on two different pins
to reduce the total load connected to CAS.
Suggested system connection:
 SCASA for SDRAM banks 0 and 1
 SCASB for SDRAM banks 2 and 3

SCS3–SCS0 — O SDRAM Chip Selects are the SDRAM chip-select outputs. These
signals are asserted to select a bank of SDRAM devices. The chip-
select signals enable the SDRAM devices to decode the commands
asserted via SRASA–SRASB, SCASA–SCASB, and SWEA–SWEB.

SDQM3–SDQM0 — O Data Input/Output Masks make SDRAM data output high-impedance
and blocks data input on SDRAM while active. Each of the four
SDQM3–SDQM0 signals is associated with one byte of four
throughout the array. Each SDQMx signal provides an input mask
signal for write accesses and an output enable signal for read
accesses.

SRASA–SRASB — O Row Address Strobes are used in combination with the SCASA–
SCASB and SWEA–SWEB to encode the SDRAM command type.
SRASA and SRASB are the same signal provided on two different pins
to reduce the total load connected to RAS.
Suggested system connection:
 SRASA for SDRAM banks 0 and 1
 SRASB for SDRAM banks 2 and 3

SWEA–SWEB — O SDRAM Memory Write Enables are used in combination with the
SRASA–SRASB and SCASA–SCASB to encode the SDRAM
command type.
SWEA and SWEB are the same signal provided on two different pins
to reduce the total load connected to WE.
Suggested system connection:
 SWEA for SDRAM banks 0 and 1
 SWEB for SDRAM banks 2 and 3
Élan™SC520 Microcontroller User’s Manual 2-5

Pin Information
ROM/Flash Controller

BOOTCS — O ROM/Flash Boot Chip Select is an active Low output that provides
the chip select for the startup ROM and/or the ROM/Flash array (BIOS,
HAL, O/S, etc.). The BOOTCS signal asserts for accesses made to the
64-Kbyte segment that contains the Am5x86 CPU boot vector:
addresses 3FF0000h–3FFFFFFh. In addition to this linear decode
region, BOOTCS asserts in response to accesses to user-
programmable address regions.

FLASHWR — O Flash Write indicates that the current cycle is a write of the selected
Flash device. When this signal is asserted, the selected Flash device
can latch data from the data bus.

GPA25–GPA0 — O General-Purpose Address Bus provides the address to the system’s
ROM/Flash devices. It is also the address bus for the GP bus devices.
Twenty-six address lines provide a maximum addressable space of 64
Mbytes for each ROM chip select.

GPD15–GPD0 — B General-Purpose Data Bus inputs data during memory and I/O read
cycles and outputs data during memory and I/O write cycles.
A reset configuration pin (CFG2) allows the GP bus to be used for the
boot chip-select ROM interface. Configuration registers are used to
select whether ROMCS2 and ROMCS1 use the GP bus data bus or
the MD data bus. The GP data bus supports 16-bit or 8-bit ROM
interfaces. Two data buses are selectable to facilitate the use of ROM
in a mixed voltage system.

MD31–MD0 — B Memory Data Bus inputs data during SDRAM read cycles and
outputs data during SDRAM write cycles. Configuration registers are
used to select whether ROMCS2 and ROMCS1 use the GP bus data
bus or the MD data bus. A reset configuration pin (CFG2) allows the
GP data bus to be used for BOOTCS. The memory data bus supports
an 8-, 16-, or 32-bit ROM interface.

ROMBUFOE — O ROM Buffer Output Enable is an optional signal used to enable a
buffer to the ROM/Flash devices if they need to be isolated from the
ÉlanSC520 microcontroller, other GP bus devices, or SDRAM system
for voltage or loading considerations. This signal asserts for all
accesses through the ROM controller. The buffer direction is controlled
by the ROMRD or FLASHWR signal.

ROMCS2 [GPCS2] O ROM/Flash Chip Selects are signals that can be programmed to be
asserted for accesses to user-programmable address regions.ROMCS1 [GPCS1] O

ROMRD — O ROM/Flash Read indicates that the current cycle is a read of the
selected ROM/Flash device. When this signal is asserted, the selected
ROM device can drive data onto the data bus.

Peripheral Component Interconnect (PCI) Bus

AD31–AD0 — B PCI Address Data Bus is the PCI time-multiplexed address/data bus.

CBE3–CBE0 — B Command or Byte-Enable Bus functions 1) as a time-multiplexed
bus command that defines the type of transaction on the AD bus,
or 2) as byte enables:
 CBE0 for AD7–AD0
 CBE1 for AD15–AD8
 CBE2 for AD23–AD16
 CBE3 for AD31–AD24

CLKPCIIN — I PCI Bus Clock Input is the 33-MHz PCI bus clock. This pin can be
connected to the CLKPCIOUT pin for systems where the ÉlanSC520
microcontroller is the source of the PCI bus clock.

Table 2-2 Signal Descriptions (Continued)

Signal
Multiplexed

Signal Type Description
2-6 Élan™SC520 Microcontroller User’s Manual

Pin Information
CLKPCIOUT — O PCI Bus Clock Output is a 33-MHz clock output for the PCI bus
devices. This signal is derived from the 33MXTAL2–33MXTAL1
interface.

DEVSEL — B Device Select is asserted by the target when it has decoded its
address as the target of the current transaction.

FRAME — B Frame is driven by the transaction initiator to indicate the start and
duration of the transaction.

GNT4–GNT0 — O Bus Grants are asserted by the ÉlanSC520 microcontroller to grant
access to the bus.

INTA–INTD — I Interrupt Requests are asserted to request an interrupt. These four
interrupts are the same type of interrupt as the GPIRQ10–GPIRQ0
signals, and they go to the same interrupt controller. They are named
INTx to match the common PCI interrupt naming convention.
Configuration registers allow inversion of these interrupt requests to
recognize active low interrupt requests. These interrupt requests can
be routed to generate NMI.

IRDY — B Initiator Ready is asserted by the current bus master to indicate that
data is ready on the bus (write) or that the master is ready to accept
data (read).

PAR — B PCI Parity is driven by the initiator or target to indicate parity on the
AD31–AD0 and CBE3–CBE0 buses.

PERR — B Parity Error is asserted to indicate a PCI bus data parity error in the
previous clock cycle.

REQ4–REQ0 — I Bus Requests are asserted by the master to request access to the
bus.

RST — O Reset is asserted to reset the PCI devices.

SERR — I System Error is used for reporting address parity errors or any other
system error where the result is catastrophic.

STOP — B Stop is asserted by the target to request that the current bus
transaction be stopped.

TRDY — B Target Ready is asserted by the currently addressed target to indicate
its ability to complete the current data phase of a transaction.

General-Purpose (GP) Bus

GPA14–GPA0 — O General-Purpose Address Bus outputs the physical memory or I/O
port address. Twenty-six address lines provide a maximum
addressable space of 64 Mbytes. This bus also provides the address
to the system’s ROM/Flash devices.

GPA15 {RSTLD0} O{I}

GPA16 {RSTLD1} O{I}

GPA17 {RSTLD2} O{I}

GPA18 {RSTLD3} O{I}

GPA19 {RSTLD4} O{I}

GPA20 {RSTLD5} O{I}

GPA21 {RSTLD6} O{I}

GPA22 {RSTLD7} O{I}

GPA23 {AMDEBUG_DIS} O{I}

GPA24 {INST_TRCE} O{I}

GPA25 {DEBUG_ENTER} O{I}

Table 2-2 Signal Descriptions (Continued)

Signal
Multiplexed

Signal Type Description
Élan™SC520 Microcontroller User’s Manual 2-7

Pin Information
[GPAEN] PIO3 O GP Bus Address Enable indicates that the current address on the
GPA25–GPA0 address bus is a memory address, and that the current
cycle is a DMA cycle. All I/O devices should use this signal in decoding
their I/O addresses and should not respond when this signal is
asserted. When GPAEN is asserted, the GPDACKx signals are used
to select the appropriate I/O device for the DMA transfer. GPAEN also
asserts when a DMA cycle is occurring internally.

[GPALE] PIO0 O GP Bus Address Latch Enable is driven at the beginning of a GP bus
cycle with valid address. This signal can be used by external devices
to latch the GP address for the current cycle.

[GPBHE] PIO1 O GP Bus Byte High Enable is driven active when data is to be
transferred on the upper 8 bits of the GP data bus.

GPD15–GPD0 — B General-Purpose Data Bus inputs data during memory and I/O read
cycles, and outputs data during memory and I/O write cycles.

[GPDACK0] PIO12 O GP Bus DMA Acknowledge can each be mapped to one of the seven
available DMA channels. They are asserted active Low to
acknowledge the corresponding DMA requests.

[GPDACK1] PIO11 O

[GPDACK2] PIO10 O

[GPDACK3] PIO9 O

[GPDBUFOE] PIO24 O GP Bus Data Bus Buffer Output Enable is used to control the output
enable on an external transceiver that may be on the GP data bus.
Using this transceiver is optional in the system design and is
necessary only to alleviate loading or voltage issues. This pin is
asserted for all external GP bus accesses. It is not asserted during
accesses to the internal peripherals even if GP bus echo mode is
enabled.
Note that if the ROM is configured to use the GP data bus, then its
bytes are not controlled by this buffer enable; they are controlled by the
ROMBUFOE signal.

[GPDRQ0] PIO8 I GP Bus DMA Request can each be mapped to one of the seven
available DMA channels. They are asserted active High to request
DMA service.

[GPDRQ1] PIO7 I

[GPDRQ2] PIO6 I

[GPDRQ3] PIO5 I

[GPIOCS16] PIO25 STI GP Bus I/O Chip-Select 16 is driven active early in the cycle by the
targeted I/O device on the GP bus to request a 16-bit I/O transfer.

GPIORD — O GP Bus I/O Read indicates that the current cycle is a read of the
currently addressed I/O device on the GP bus. When this signal is
asserted, the selected I/O device can drive data onto the data bus.

GPIOWR — O GP Bus I/O Write indicates that the current cycle is a write of the
currently addressed I/O device on the GP bus. When this signal is
asserted, the selected I/O device can latch data from the data bus.

Table 2-2 Signal Descriptions (Continued)

Signal
Multiplexed

Signal Type Description
2-8 Élan™SC520 Microcontroller User’s Manual

Pin Information
[GPIRQ0] PIO23 I GP Bus Interrupt Request can each be mapped to one of the
available interrupt channels or NMI. They are asserted when a
peripheral requires interrupt service.
Configuration registers allow inversion of these interrupt requests to
recognize active low interrupt requests. These interrupt requests can
be routed to generate NMI.

[GPIRQ1] PIO22 I

[GPIRQ2] PIO21 I

[GPIRQ3] PIO20 I

[GPIRQ4] PIO19 I

[GPIRQ5] PIO18 I

[GPIRQ6] PIO17 I

[GPIRQ7] PIO16 I

[GPIRQ8] PIO15 I

[GPIRQ9] PIO14 I

[GPIRQ10] PIO13 I

[GPMEMCS16] PIO26 STI GP Bus Memory Chip-Select 16 is driven active early in the cycle by
the targeted memory device on the GP bus to request a 16-bit
memory transfer.

[GPMEMRD] — O GP Bus Memory Read indicates that the current GP bus cycle is a
read of the selected memory device. When this signal is asserted, the
selected memory device can drive data onto the data bus.

[GPMEMWR] — O GP Bus Memory Write indicates that the current GP bus cycle is a
write of the selected memory device. When this signal is asserted, the
selected memory device can latch data from the data bus.

[GPRDY] PIO2 STI GP Bus Ready can be driven by open-drain devices. When pulled Low
during a GP bus access, wait states are inserted in the current cycle.
This pin has an internal weak pullup that should be supplemented by
a stronger external pullup for faster rise time.

GPRESET — O GP Bus Reset, when asserted, re-initializes to reset state all devices
connected to the GP bus.

[GPTC] PIO4 O GP Bus Terminal Count is driven from the internal DMA controller to
indicate that the transfer count for the currently active DMA channel
has reached zero, and that the current DMA cycle is the last transfer.

Serial Ports

CTS1
CTS2

—
PIO28

I
I

Clear To Send is driven back to the serial port to indicate that the
external data carrier equipment (DCE) is ready to accept data.

DCD1 — I Data Carrier Detect is driven back to the serial port from a piece of
DCE when it has detected a carrier signal from a communications
target.

[DCD2] PIO30 I

DSR1 — I Data Set Ready is used to indicate that the external DCE is ready to
establish a communication link with the internal serial port controller.[DSR2] PIO29 I

DTR2–DTR1 — O Data Terminal Ready indicates to the external DCE that the internal
serial port controller is ready to communicate.

RIN1 — I Ring Indicate is used by an external modem to inform the serial port
that a ring signal was detected. [RIN2] PIO31 I

RTS2–RTS1 — O Request To Send indicates to the external DCE that the internal serial
port controller is ready to send data.

SIN2–SIN1 — I Serial Data In is used to receive the serial data from the external serial
device or DCE into the internal serial port controller.

SOUT2–SOUT1 — O Serial Data Out is used to transmit the serial data from the internal
serial port controller to the external serial device or DCE.

Table 2-2 Signal Descriptions (Continued)

Signal
Multiplexed

Signal Type Description
Élan™SC520 Microcontroller User’s Manual 2-9

Pin Information
SSI_CLK — O SSI Clock is driven by the ÉlanSC520 microcontroller SSI port during
active SSI transmit or receive transactions. The idle state of the clock
and the assertion/sample edge are configurable.

SSI_DI — STI SSI Data Input receives incoming data from a peripheral device SSI
port. Data is shifted in on the opposite SSI_CLK signal edge in which
SSI_DO drives data. SSI_DO and SSI_DI can be tied together to
interface to a three-pin SSI peripheral.

SSI_DO — OD SSI Data Output drives data to a peripheral device SSI port. Data is
driven on the opposite SSI_CLK signal edge in which SSI_DI latches
data. The DO signal is normally at high-impedance when no transmit
transaction is active on the SSI port.

Timers

PITGATE2 [GPCS3] I Programmable Interval Timer 2 Gate provides control for the PIT
Channel 2.
Programmable Interval Timer 2 Output is output from the PIT
Channel 2. This signal is typically used as the PC speaker signal.

PITOUT2 {CFG3} O{I}

TMRIN0 [GPCS5] I Timer Inputs 0 and 1 can be programmed to be the control or clock
for the general-purpose (GP) timers 0 and 1. TMRIN1 [GPCS4] I

TMROUT0 [GPCS7] O Timer Outputs 0 and 1 are outputs from two of the GP timers. These
outputs can be used as pulse-width modulation signals.TMROUT1 [GPCS6] O

Clocks and Reset

32KXTAL2–
32KXTAL1

— osc 32.768-kHz Crystal Interface is used for connecting an external
crystal or oscillator to the ÉlanSC520 microcontroller. This clock
source is used to clock the real-time clock (RTC). In addition, internal
PLLs generate clocks for the timers and UARTs based on this clock
source. When an external oscillator is used, 32KXTAL1 should be
grounded and the clock source driven on 32KXTAL2.

33MXTAL2–
33MXTAL1

— osc 33-MHz Crystal Interface is the main system clock for the chip. This
clock source is used to derive the SDRAM, CPU, and PCI clocks.
When an external oscillator is used, 33MXTAL1 should be
unconnected and the clock source driven on 33MXTAL2.

[CLKTEST] CLKTIMER O Test Clock Output is a shared pin that allows many of the internal
clocks to be driven externally. CLKTEST can drive the internal clocks
of the UARTs, PLL1, PLL2, the programmable interval timer (PIT), or
the real-time clock (RTC) for testing or for driving an external device.

CLKTIMER [CLKTEST] I Timer Clock Input is a shared clock pin that can be used to input a
frequency to the programmable interval timer (PIT).

LF_PLL1 — I Loop Filter Interface is used for connecting external loop filter
components. Component values and circuit descriptions are contained
in the Élan™SC520 Microcontroller Data Sheet, order #22003.

PRGRESET — STI Programmable Reset can be programmed to reset the ÉlanSC520
microcontroller, but allow SDRAM refresh to continue during the reset.
This allows the system to be reset without losing the information stored
in SDRAM. On power-up, PRGRESET is disabled and must be
programmed to be operational. When disabled, this pin has no effect
on the ÉlanSC520 microcontroller.

PWRGOOD — STI Power Good is a reset signal that indicates to the ÉlanSC520
microcontroller that the VCC levels are within the normal operation
range. It is used to reset the entire chip and must be held Low for one
second after all VCC signals (except VCC_RTC) on the chip are High.
This signal must be returned Low before the VCC signals degrade to
put the RTC into the correct state for operation in RTC-only mode.

Table 2-2 Signal Descriptions (Continued)

Signal
Multiplexed

Signal Type Description
2-10 Élan™SC520 Microcontroller User’s Manual

Pin Information
Chip Selects

[GPCS0] PIO27 O General-Purpose Chip Select signals are for the GP bus. They can
be used for either memory or I/O accesses. These chip selects are
asserted for Am5x86 CPU accesses to the corresponding regions set
up in the Programmable Address Region (PAR) registers.

[GPCS1] ROMCS1 O

[GPCS2] ROMCS2 O

[GPCS3] PITGATE2 O

[GPCS4] TMRIN1 O

[GPCS5] TMRIN0 O

[GPCS6] TMROUT1 O

[GPCS7] TMROUT0 O

Programmable I/O (PIO)

PIO0 [GPALE] B Programmable Input/Output signals can be programmed as inputs
or outputs. When they are outputs, they can be driven High or Low by
programming bits in registers.

PIO1 [GPBHE] B

PIO2 [GPRDY] B

PIO3 [GPAEN] B

PIO4 [GPTC] B

PIO5 [GPDRQ3] B

PIO6 [GPDRQ2] B

PIO7 [GPDRQ1] B

PIO8 [GPDRQ0] B

PIO9 [GPDACK3] B

PIO10 [GPDACK2] B

PIO11 [GPDACK1] B

PIO12 [GPDACK0] B

PIO13 [GPIRQ10] B

PIO14 [GPIRQ9] B

PIO15 [GPIRQ8] B

PIO16 [GPIRQ7] B

PIO17 [GPIRQ6] B

PIO18 [GPIRQ5] B

PIO19 [GPIRQ4] B

PIO20 [GPIRQ3] B

PIO21 [GPIRQ2] B

PIO22 [GPIRQ1] B

PIO23 [GPIRQ0] B

PIO24 [GPDBUFOE] B

PIO25 [GPIOCS16] B

PIO26 [GPMEMCS16] B

PIO27 [GPCS0] B

PIO28 [CTS2] B

PIO29 [DSR2] B

PIO30 [DCD2] B

PIO31 [RIN2] B

Table 2-2 Signal Descriptions (Continued)

Signal
Multiplexed

Signal Type Description
Élan™SC520 Microcontroller User’s Manual 2-11

Pin Information
JTAG Boundary Scan Test Interface

JTAG_TCK — I Test Clock is the input clock for test access port.

JTAG_TDI — I Test Data Input is the serial input stream for input data. This pin has
a weak internal pullup resistor. It is sampled on the rising edge of
JTAG_TCK. If not driven, this input is sampled High internally.

JTAG_TDO — O/TS Test Data Output is the serial output stream for result data. It is in the
high-impedance state except when scanning is in progress.

JTAG_TMS — I Test Mode Select is an input for controlling the test access port. This
pin has a weak internal pullup resistor. If it is not driven, it is sampled
High internally.

JTAG_TRST — I JTAG Reset is the test access port (TAP) reset. This pin has a weak
internal pulldown resistor. If not driven, this input is sampled Low
internally and causes the TAP controller logic to remain in the reset
state.

AMDebug Interface

BR/TC — I Break Request/Trace Capture requests entry to AMDebug
technology mode. The AMDebug technology serial/parallel interface
can reconfigure this pin to turn instruction trace capture on or off.

CMDACK — O Command Acknowledge indicates command completion status. It is
asserted High when the in-circuit emulator logic is ready to receive
new commands from the host. It is driven Low when the in-circuit
emulator core is executing a command from the host and remains Low
until the command is completed.

STOP/TX — O Stop/Transmit is asserted High on entry to AMDebug mode. During
normal mode, this is set High when there is data to be transmitted to
the host (during operating system/application communication).

TRIG/TRACE — O Trigger/Trace triggers event to logic analyzer (optional, from Am5x86
CPU debug registers).The AMDebug technology serial/parallel
interface can reconfigure this pin to indicate the trace on or off status.

System Test

CF_DRAM [WBMSTR2]
{CFG2}

O{I} Code Fetch SDRAM, during SDRAM reads, provides code fetch
status. When Low, this indicates that the current SDRAM read is a
CPU code fetch demanded by the CPU, or a read prefetch initiated due
to a demand code fetch by the CPU. When High during reads, this
indicates that the SDRAM read is not a code fetch, and it could have
been initiated by the CPU, PCI master, or the GP bus GP-DMA
controller, either demand or prefetch. During SDRAM write cycles this
pin provides an indication of the source of the data, either GP-DMA
controller/PCI bus master or CPU. When High, this indicates that
either a GP bus DMA initiator or an external PCI bus master
contributed to the current SDRAM write cycle (the CPU may also have
contributed). A Low indicates that the CPU is the only master that
contributed to this write cycle.

CF_ROM_GPCS [WBMSTR0]
{CFG0}

O{I} Code Fetch ROM/GPCS provides an indication that the CPU is
performing a code fetch from ROM (on either the GP bus or SDRAM
data bus), or from any GPCSx pin. When Low during a read cycle (as
indicated by either GPMEMRD or ROMRD), the CPU is performing a
code fetch from ROM or a GP bus chip select. At all other times
(including writes), this signal is High.

DATASTRB [WBMSTR1]
{CFG1}

O{I} Data Strobe is a debug signal that is asserted to allow the external
system to latch SDRAM data. This can be used to trace data on the
SDRAM interface with an in-circuit emulator probe or logic analyzer.

Table 2-2 Signal Descriptions (Continued)

Signal
Multiplexed

Signal Type Description
2-12 Élan™SC520 Microcontroller User’s Manual

Pin Information
[WBMSTR0] CF_ROM_GPCS
{CFG0}

O{I} Write Buffer Master indicates which block(s) wrote to a rank in the
write buffer (during SDRAM write cycles) and which block is reading
from SDRAM (during SDRAM read cycles).
WBMSTR0, when a logical 1, indicates that the internal GP bus DMA
controller has contributed to the write buffer rank (write cycles) or is
reading from SDRAM (read cycles).

[WBMSTR1] DATASTRB
{CFG1}

O{I} WBMSTR1, when a logical 1, indicates that the PCI master has
contributed to the write buffer rank (write cycles) or is reading from
SDRAM (read cycles).

[WBMSTR2] CF_DRAM
{CFG2}

O{I} WBMSTR2, when a logical 1, it indicates that the CPU has contributed
to the write buffer rank (write cycles) or is reading from SDRAM (read
cycles).

Configuration

{AMDEBUG_DIS} GPA23 I AMDebug Disable is an active High configuration signal latched at the
assertion of Power Good (PWRGOOD). This pin has a built-in
pulldown resistor.
At Power Good assertion:

Low = Normal operation, mode can be enabled by software.
High = AMDebug mode is disabled and cannot be enabled by software.

{CFG0} CF_ROM_GPCS
[WBMSTR0]

I Configuration Inputs 3–0 are latched into the chip when PWRGOOD
is asserted. These signals are all shared with other features. These
signals have built-in pulldown resistors.
CFG0: Choose 8-, 16-, or 32-bit ROM/Flash interface for BOOTCS.

{CFG1} DATASTRB
[WBMSTR1]

I CFG1: Choose 8-, 16-, or 32-bit ROM/Flash interface for BOOTCS.

{CFG2} CF_DRAM
[WBMSTR2]

I CFG2: When Low when PWRGOOD is asserted, the ÉlanSC520
microcontroller uses the GP data bus for BOOTCS. When seen as
High during PWRGOOD assertion, the BOOTCS access is across the
SDRAM data bus. Default is Low (by a built-in pulldown resistor).

{CFG3} PITOUT2 I CFG3 (Internal AMD test mode enable): For normal ÉlanSC520
microcontroller operation, do not pull High during reset.

{DEBUG_ENTER} GPA25 I Enter AMDebug Mode is an active High configuration signal latched
at the assertion of Power Good (PWRGOOD). This pin enables the
AMDebug mode, which causes the processor to fetch and execute one
instruction from the BOOTCS device, and then enter AMDebug mode
where the CPU waits for debug commands to be delivered by the JTAG
port. This pin has a built-in pulldown resistor.
At PWRGOOD assertion:
 High = AMDebug mode enabled
 Low = Normal operation

{INST_TRCE} GPA24 I Instruction Trace is an active High configuration signal latched at the
assertion of Power Good (PWRGOOD). Enables trace record
generation from Power Good assertion. This pin has a built-in
pulldown resistor.
At PWRGOOD assertion:
 High = Trace controller enabled to output trace records
 Low = Normal operation

Table 2-2 Signal Descriptions (Continued)

Signal
Multiplexed

Signal Type Description

CFG1 CFG0 BOOTCS Data Width

0 0 8-bit

0 1 16-bit

1 x (don’t care) 32-bit
Élan™SC520 Microcontroller User’s Manual 2-13

Pin Information
{RSTLD0} GPA15 I Reset Latched Inputs are shared signals that are latched into a
register when PWRGOOD is asserted. They are used to input static
information to software (i.e., board revision). These signals have built-
in pulldown resistors.

{RSTLD1} GPA16 I

{RSTLD2} GPA17 I

{RSTLD3} GPA18 I

{RSTLD4} GPA19 I

{RSTLD5} GPA20 I

{RSTLD6} GPA21 I

{RSTLD7} GPA22 I

Power

BBATSEN — Analog Backup Battery Sense is a pin on which real-time clock (RTC) backup
battery voltage is sampled each time PWRGOOD is asserted. If this
pin samples below 2.0 V, the Valid RAM and Time (VRT) bit in RTC
index 0Dh is cleared until read. After the read, the VRT bit is set until
BBATSEN is sensed via a subsequent PWRGOOD assertion.
BBATSEN also provides a power-on-reset signal for the RTC when an
RTC backup battery is applied for the first time.

VCC_ANLG — Power Analog Power Supply for the analog circuits (PLLs).

VCC_CORE — Power Power Supply for the ÉlanSC520 microcontroller core logic.

VCC_I/O — Power Power Supply to the I/O pad ring.

VCC_RTC — Power Power Supply for the real-time clock and 32-kHz oscillator.

GND — Power Digital Ground for the remaining ÉlanSC520 microcontroller core logic.

GND_ANLG — Power Analog Ground for the analog circuits.

Table 2-2 Signal Descriptions (Continued)

Signal
Multiplexed

Signal Type Description
2-14 Élan™SC520 Microcontroller User’s Manual

CHAPTER
3
 SYSTEM INITIALIZATION
3.1 OVERVIEW
This chapter provides information and guidelines for initializing the ÉlanSC520
microcontroller. Several source code examples of information described in this chapter are
available on the AMD web site. This CodeKit software is tested source code for example
applications. To obtain this software, as well as other product information and tools, access
the AMD home page at www.amd.com and follow the Embedded Processors link.

From a software perspective, the types of systems that can be developed with the
ÉlanSC520 microcontroller fall into two broad categories, native embedded systems and
systems that use a BIOS1.

Of course, these are not the only types of systems that can be built with the ÉlanSC520
microcontroller. It is quite possible to develop hybrid systems that have a BIOS but do not
run a “desktop” operating system like Windows®, DOS, Unix, or Linux. While there are
many possible ways to initialize the ÉlanSC520 microcontroller, any initialization sequence
can be derived from the following two techniques.

■ System initialization with a BIOS

■ System initialization for a native embedded system without a BIOS

For systems with a BIOS, most, or all, of the system initialization is done by the BIOS while
the system is running in real mode. After initialization, the BIOS loads an operating system
or application from nonvolatile media, which is generally a disk drive, but could be Flash
memory or other media. The operating system or application begins operating in real mode
and then may make its own transition into protected mode. Windows 95 and Windows NT®
are examples of such operating systems. Real-time operating systems can also operate in
this manner.

BIOS initialization can be complex. Some BIOS products may make a temporary transition
into protected mode to perform certain operations and then revert back to real mode, before
passing execution to an operating system or application. Such behavior is dependent on
how the BIOS is written and the features provided and are beyond the scope of this
discussion.

For embedded systems, the initialization sequence is usually much simpler and generally
occurs primarily in protected mode. In this scenario, the processor comes up from a reset
and transitions into protected mode as soon as possible. The only real-mode code in the
system is the code required to jump from the reset vector and the execute code that causes
the ÉlanSC520 microcontroller to transition into protected mode.

3.1.1 Native Embedded Initialization Sequence
Many systems designed with the ÉlanSC520 microcontroller are native embedded systems
that do not have a BIOS. The software architecture for such systems can take many forms.

1. A BIOS is a PC software component. It is a set of real-mode code that is responsible for
initializing the system and providing a standard set of I/O and system services used by an
operating system and application level software. These services are provided via a standard
interface.
Élan™SC520 Microcontroller User’s Manual 3-1

System Initialization
Some use a commercial real-time operating system (RTOS), a custom RTOS, or a simple
‘main loop’ or non-preemptive executive. In general, the executive or RTOS generally
interfaces to the hardware using a hardware dependent layer called a board support
package (BSP)1.

In general, the system initialization flow for a native embedded system follows this
sequence:

1 < Reset event >
2 Near Jump to reset handler from the reset vector
3 Switch to simple protected mode
4 Determine the cause of the reset
5 Initialize the DRAM controller and DRAM. Size the DRAM
6 Setup a Stack and begin execution from “C” code
7 if (NOT Execute-In-Place) then
8 Copy the Operating System to DRAM
9 Jump to the operating system’s entry point
10 Set up the Global Descriptor Table (GDT), Local Descriptor Table (LDT),

Interrupt Descriptor Table (IDT), fault handlers, page tables, and a
Task State Segment (TSS) for the operating system, application or
executive.

11 Set the processor speed
12 Configure the GP bus timings
13 Configure the pin multiplexing
14 Configure the GP bus chip selects
15 Configure the Programmable Address Region (PAR) registers
16 Configure the interrupt mappings
17 Configure the programmable I/O (PIO) pins
18 Configure the PCI bus controller and arbitration mode
19 Initialize a periodic timer interrupt (if necessary)
20 Now, the BSP can initialize devices external to the ÉlanSC520

microcontroller and otherwise continue to start the operating system,
I/O drivers and application.

In the above example, the switch to simple protected mode (line 3) sets the processor CS
register and the CS descriptor cache. This disables the redirection of the reset region to
the reset segment (see “Reset Vector and Reset Segment” on page 3-5 for more
information).

In line 3 above, the term simple protected mode means that the protected mode environment
(GDT, LDT, IDT, and TSS) is the simplest kind possible. For example, both the LDT and
IDT can be empty and the TSS and GDT can contain minimal information. Or, alternatively,
the IDT can be empty. This means that exceptions cannot be handled, but this should not
be a problem for the short period that the initialization code runs. More importantly, the TSS
and GDT for simple protected mode can be contained in read-only memory (usually Flash)
and do not have to be created at runtime. Once the DRAM is operational, then more
extensive GDT, LDT, and IDT tables and one or more appropriate TSS can be setup in
DRAM.

1. There is no standard term for this component. Other terms for BSP are OEM Adaptation
Layer (OAL), Hardware Adaptation Layer (HAL), or Porting Layer. A BSP is like a BIOS, but is
almost always unique to a specific executive or RTOS. This is especially true for comercially
available RTOS products. A BSP for one vendor’s RTOS generally does not work with products
from another vendor. Also, where a BIOS is most often a 16-bit real-mode entity, a BSP is
usually a 32-bit protected mode entity. Lastly, operating systems and applications always
communicate with a BIOS using software interrupts (or other run-time mechanisms), but a BSP
is often linked directly to an executive or application to form a single executable and is called
directly using the CALL instruction.
3-2 Élan™SC520 Microcontroller User’s Manual

System Initialization
Some embedded systems execute from read-only memory (usually Flash) and only use
DRAM for data storage. This style of system architecture is supported by most RTOS
products. This is reflected in line 7. Systems that execute out of Flash memory do not need
to copy the operating system and/or application to DRAM.

Another interesting point is that once the DRAM controller is initialized, then the initialization
code can setup a stack and finish the reset of its work in a high-level language (usually C).

3.1.2 BIOS Initialization Sequence
In contrast to a native embedded system, the flow of system initialization with a BIOS
generally follows this sequence:

1 < Reset event >
2 Near Jump to reset handler from the reset vector
3 Map the Memory-Mapped Configuration Region (MMCR) to an address below

0010FFEFh (real-mode address limit)
4 Determine the cause of the reset
5 Initialize the DRAM controller and DRAM. Size the DRAM, record in CMOS
6 Copy the BIOS into DRAM (shadowing)
7 Execute a Far Jump within the BIOS code to start execution out of the

shadowed BIOS copy instead of the copy in ROM
8 Set up basic interrupt handlers for processor faults
9 Detect the CPU ID and display on the console
10 Set the processor speed
11 Configure the GP bus timings
12 Configure the pin multiplexing
13 Configure the GP bus chip selects
14 Configure the Programmable Address Region (PAR) registers
15 Configure the interrupt mappings
16 Configure the programmable I/O (PIO) pins
17 Configure the PCI bus controller and arbitration
18 Now, the BIOS can continue with standard PC-style system initialization

There are some important contrasts between the steps for a system with a PC BIOS and
those for a native embedded system.

■ Steps 1 through 6 are done in real mode while executing from the reset segment before
executing the first Far Jump (JMP) instruction. This is in contrast to the initialization for
a native embedded system, which transitions to simple protected mode before these
steps.

■ The Memory-Mapped Configuration Region (MMCR) needs to be mapped to a region
below 00100000h so it is accessible by real-mode software. 32-bit protected-mode native
embedded systems do not need to move the MMCR.

■ The remainder of the system initialization is done in real mode from the BIOS image
running from DRAM. This is in contrast to an embedded system, which does all of its
initialization from 32-bit protected mode (running either from DRAM or Flash).

3.1.3 Memory-Mapped Configuration Region (MMCR)
The Memory-Mapped Configuration Region (MMCR) is a 4-Kbyte area located at physical
address FFFEF000h and contains various configuration and control registers for the
ÉlanSC520 microcontroller. Configuring and controlling many of the device’s features
requires accessing the MMCR registers. System initialization code for a native embedded
system can access this region directly because most (or all) initialization takes place from
32-bit protected mode.
Élan™SC520 Microcontroller User’s Manual 3-3

System Initialization
In contrast, real-mode code cannot access physical memory above 0010FFEFh (the real-
mode addressing limit), and thus cannot access the default location of the MMCR. This
problem is easily resolved by programming the Configuration Base Address (CBAR) register
(Port FFFCh) to place the MMCR at an address somewhere below the real-mode
addressing limit. This allows real-mode initialization code to directly access the MMCR.
This is done in step 3 of the BIOS initialization sequence.

Note: Programming the Configuration Base Address (CBAR) register can place the MMCR
at an address other than its default. However, the MMCR region is always accessible at its
default location of FFFEF000h, regardless of how the CBAR register is programmed.

3.1.4 Reset Event
The ÉlanSC520 microcontroller has three primary classes of resets.

■ System reset (often called a hard reset or power-on reset)

■ System reset with SDRAM retention (called programmable reset)

■ Soft reset (often called warm start)

For more information on resetting the ÉlanSC520 microcontroller, see Chapter 6, “Reset
Generation”, and “Initialization” on page 7-5.

Often, systems have a hardware reset button or other external devices that can cause a
reset. For the ÉlanSC520 microcontroller, all of these cause a system reset. However, there
are many ways to implement external reset logic. After a reset (of any kind), boot software
can determine what caused the reset by examining various status bits.

A common and effective method of handling a reset is to determine the cause of the reset
and record the event in the CMOS memory, or in some other non-volatile memory such as
an EEPROM, non-volatile DRAM, or Flash. Debugging or diagnostic software could then
examine and report the causes of the last few resets. This can be very helpful when trying
to determine the cause of system problems. Note that the system could record other
information as well; the time and date of the reset event is a good example.

When a system reset occurs (regardless of the source) internal registers and logic blocks
are set to their power-on reset state. Therefore, if a system reset occurs, the boot software
must initialize the system from scratch.

There is one exception to this, called programmable reset. This function is enabled via the
PRG_RST_ENB bit in the Reset Configuration (RESCFG) register (MMCR offset D72h).
If this bit is set, assertion of the PRGRESET pin, SYS_RST bit, watchdog timer system
reset event, or AMDebug technology system reset event while PWRGOOD is asserted will
result in a system reset in which the SDRAM configuration (SDRAM type, number of banks,
refresh rate, etc.) is maintained so that the contents of SDRAM are preserved. SDRAM
controller parameters retained include the SDRAM type, number of banks, refresh rate,
and signal drive strength. This feature allows the system to be reset while guaranteeing
that the contents of SDRAM are not disturbed. This can be very valuable for system
debugging or for systems that require minimal startup time. This reset condition can be
detected by software. Note that, once programmable reset has been enabled, all system
resets other than PRWGOOD deassertion are converted to this type.

When a soft reset occurs, the system may be able to restart if the operating system saved
enough state information. For example, an old 80286-style operating system (e.g., OS/2)
causes a processor reset in order to return to real mode and call 16-bit BIOS routines.

Note: It is important to understand that, for most systems, a soft reset does not need to
be handled much differently than a system reset. For example, a system that does not need
3-4 Élan™SC520 Microcontroller User’s Manual

System Initialization
to explicitly perform a soft restart will simply cause a system reset when a soft reset is
detected.

Note that the watchdog timer can generate an interrupt (maskable or non-maskable) or a
system reset, or both. Handling watchdog timer time-outs can be complex. For more
information on how the WDT operates, see Chapter 19, “Watchdog Timer”.

3.1.5 Reset Vector and Reset Segment
Immediately after a hard or soft reset, the Am5x86 CPU core begins execution in real mode
at the address F000:FFF0. This real-mode address is called the reset vector. While the
reset vector is a real-mode address, it is a redirection of the physical address FFFFFFF0h,
which is located at the top physical address of the memory device selected by BOOTCS.
This device is called the boot ROM device.

After a hard or soft reset, the 64-Kbyte physical address space from FFFF0000 to
FFFFFFFFh (resident in the boot ROM device) is redirected into real-mode address space
from F000:0000 to F000:FFFF. This real-mode region is called the reset segment. The
region in the boot ROM device is called the reset region. The code that resides in this area
is called the reset handler.

This redirection is not performed by the addressing unit, but is an artifact of the values
programmed into the CS descriptor cache by the CPU at reset time. After any reset, the
CPU core sets the base value of CS Descriptor Cache register to FFFF0000h with a limit
of 0000FFFFh (64 Kbytes). The processor CS:EIP register pair is set to F000:0000FFF0.

The redirection works because, in real mode, linear addresses for code fetches are
generated by taking the offset in EIP and adding it to the contents of the base register in
the CS descriptor cache. Since the paging unit is disabled at reset, these linear addresses
map directly to physical addresses.

This simple mechanism causes both the redirection of the reset code region to the reset
segment and the first instruction fetch to occur from the reset vector.

Note that none of the other segment registers (and internal descriptor registers) have this
behavior. This behavior is only applicable to the CS Segment register and its internal
descriptor cache. For more information on the configuration of the processor registers at
reset, see the Am486® DX/DX2 Microprocessor Hardware Reference Manual, 1994 (order
#17965).

What this means is that the artificial reset segment redirection is only active until the CPU
executes a Far Jump (JMP) instruction. This is because a Far Jump instruction causes the
CS Segment register to be reloaded. When a segment register is loaded in real mode, the
processor sets the value of the corresponding descriptor cache base register to 16 times
the new value of the segment register. Since the processor is running in real mode, the
internal CS Descriptor registers are set to their normal real-mode values.

Since the reset vector is at F000:FFF0, there are only 16 bytes before the end of the
segment. That is only enough for a few instructions. So, regardless of how much (or how
little) the reset code does, the instruction at the reset vector must be a Near Jump into the
reset region.

For example, as shown in Figure 3-1, if the reset handler is large, then the initial Near Jump
could be to F000:0000.
Élan™SC520 Microcontroller User’s Manual 3-5

System Initialization
Figure 3-1 Initial Near Jump Example

The reset vector Near Jump is not required to jump to F000:0000. It can jump anywhere
into the reset segment. For example, if the reset handler code is only 16 Kbytes in size, it
could jump to F000:C000, leaving more room on the boot ROM device for other code. This
allows the reset handler to be placed right up against the reset vector, thus using the space
in the boot ROM device more efficiently.

Note: For debugging using AMDebug technology, not only should this first Jump instruction
be a Near Jump, it should be a Jump Near Indirect instruction, which is opcode FF/4. In-
circuit emulation and debug software that uses the internal trace cache searches for this
opcode to aid in determining when the reset event occurred.

As much or as little of the system initialization code can take place in the reset handler
while the system is executing from the reset segment (i.e., before the first Far Jump
instruction). For example, a native embedded system using a 32-bit only RTOS will merely
setup the protected mode data structures, switch to protected mode, and jump directly into
system boot code (the boot ROM device is the device selected by BOOTCS).

In contrast, a system with a PC-style BIOS would initialize the SDRAM controller, shadow
the BIOS to SDRAM, and then jump to the BIOS.

3.2 CONFIGURING THE SDRAM CONTROLLER
After a system reset, the SDRAM controller configuration registers are reset to their default
states. All the SDRAM controller banks and SDRAM refresh are disabled by default. For
details on how to enable the SDRAM controller and the SDRAM configuration, see
“Initialization” on page 10-29.

Note that the ÉlanSC520 microcontroller can be reset in a manner that preserves the
operation of the SDRAM controller. This condition can be detected and handled properly
by the SDRAM initialization code.

If the Error Correction Code (ECC) logic for SDRAM is enabled, ECC operation requires
that SDRAM and its associated ECC memory be initialized. This is accomplished by the
boot code, which must write to every location in SDRAM. This process initializes the ECC
SDRAM to reflect the proper error-checking codes. If this procedure is not performed, false

F000:FFF0

F000:FFFF

F000:0000

Near
Jump

Reset Vector

Reset
Handler

F000:C000
3-6 Élan™SC520 Microcontroller User’s Manual

System Initialization
errors will occur when writing data smaller than a 32-bit doubleword. For a more detailed
discussion of ECC, see “Error Correction Code (ECC)” on page 10-16.

3.3 IDENTIFYING THE CPU CORE
Information about the integrated Am5x86 CPU core is available by reading the processor
DX register after a system reset and by using the CPUID instruction at any time. The CPUID
instruction is available on later model 32-bit processors from all leading x86 vendors and
allows programs to determine information about the CPU, including the manufacturer, cache
type, and availability of a floating point unit (FPU). By using the CPUID instruction, software
can determine the type of CPU running the system. For example, software could detect
that it is running on an Am5x86 CPU and perform the appropriate action.

The ÉlanSC520 Microcontroller Revision ID (REVID) register (MMCR offset 00h) can be
used to identify the revision of the device itself.

A user-modifiable bit in the CPU’s Flags register called the ID bit indicates support of the
CPUID instruction. The ID bit is reset to 0 at CPU hard or soft reset for compatibility with
existing processor designs.

The results reported by the CPUID instruction reflect the state of the processor at the last
CPU hard or soft reset. If the CPU cache write mode or core clock speed is changed, and
if the CPU encounters a soft reset following the change, then a subsequent CPUID
instruction will report the altered condition of the processor (i.e., the state at the time the
soft reset occurred). After a hard CPU reset, the ÉlanSC520 microcontroller always reports
the cache mode as write-back and the clock speed as 100 MHz.

The CPUID instruction returns encodings shown in Table 3-1.

3.4 SETTING THE CPU SPEED
The ÉlanSC520 microcontroller is available at multiple clock speeds. By default, the
ÉlanSC520 microcontroller core comes up from a system reset running at 100 MHz. See
Chapter 7, “Am5x86® CPU”, for more information.

Note: Not all ÉlanSC520 microcontroller devices support all Am5x86 CPU clock rates. The
maximum supported clock rate for a device is indicated by the part number printed on the
package. The clocking circuitry can be programmed to run the device at higher than rated
speeds. However, if an ÉlanSC520 microcontroller is programmed to run at a higher clock
speed than that for which it is rated, then erroneous operation will result, and physical
damage to the device may occur.

3.5 CONFIGURING EXTERNAL GP BUS DEVICES
Programming the ÉlanSC520 microcontroller to support external peripherals on the GP
bus requires three steps.

1. Program the GP bus timing mechanism to control the bus timings for the device. This is
done first so that the initial access to the device (after the chip selects and PARs are
programmed) will function properly. The GP bus timings and bus cycles are discussed
in “Bus Cycles” on page 13-16.

Table 3-1 CPUID Codes

CPU Clock Speed Write-Back Mode Write-Through Mode

Am5x86 CPU 100 MHz 0494h 0484h

Am5x86 CPU 133 MHz 04F4h 04E4h
Élan™SC520 Microcontroller User’s Manual 3-7

System Initialization
2. If needed, program the PIO pin logic to map the GP bus chip select signal and other
control signals to a physical pin.

3. Program a PAR register to map the external peripheral into physical address space and
to configure a chip select for the device.

For peripherals connected externally to the GP bus, the Programmable Address Region
registers control where they are mapped into the I/O or memory address space.
Programming and using these registers is discussed in Section 3.7.

3.6 CONFIGURING THE PIN MULTIPLEXING
The ÉlanSC520 microcontroller has several pins that are multiplexed to two functions. There
are no pins that have three functions. Most of the pins that are multiplexed are programmable
input/output pins (PIOs).

To program a pin that is multiplexed with a PIO, its corresponding function bit must be set
in the PIO31–PIO16 Pin Function Select (PIOPFS31_16) register (MMCR offset C22h) or
the PIO15–PIO0 Pin Function Select (PIOPFS15_0) register (MMCR offset C20h).

Other pins with multiple programmable functions are all noted in Figure 2-2 on page 2-3.

3.7 CONFIGURING THE PROGRAMMABLE ADDRESS REGION (PAR)
REGISTERS
The PAR registers provide a common programming interface to configure physical memory
and I/O regions in an ÉlanSC520 microcontroller system. PAR registers are programmed
by atomically writing 32-bit values. See “Programmable Address Region (PAR) Registers”
on page 4-5 for more information on using the PAR registers. “Software Considerations”
on page 4-18 provides other important details.

The PAR registers are used to define four characteristics.

■ Target device

■ Attributes for the address region

■ Size of the address region

■ Start address for the region

It is important to note that the PAR registers are used to define physical address regions.
PAR registers are not used to define effective address regions or linear address regions.
For example, an effective address (often called a logical or virtual address) gets translated
into a linear address by the Am5x86 CPU’s segmentation unit. If the paging unit is enabled,
then linear addresses get translated into physical addresses and placed on the CPU’s bus.
If the paging unit is not enabled, then the mapping from linear address to physical address
is direct (one-to-one).

Depending on how your system is set up, driver software, system software and other
software that must be aware of physical addresses should be written to take the Am5x86
CPU addressing modes into account. This can be an extremely complex topic and is beyond
the scope of this chapter.

The general format of the PAR registers is shown in Figure 3-2 on page 3-10. Provided as
a programming aid, Figure 3-3 on page 3-11 is a blank worksheet for calculating PAR
register values.
3-8 Élan™SC520 Microcontroller User’s Manual

System Initialization
3.7.1 Specifying Pages and Regions
For memory-mapped address regions, the Region Size/Start Address (SZ_ST_ADR) bit
field in the PAR registers specifies the number of 64-Kbyte or 4-Kbyte pages for the region.

Regions using a 64-Kbyte page size can have up to 2048 pages, for a maximum size of
128 Mbytes. Regions using a 4-Kbyte page size can have up to 128 pages, for a maximum
size of 512 Kbytes.

■ To specify the number of pages for a region, the value (page count minus 1) is
programmed into the SZ_ST_ADR field of the PAR register.

– For example, to specify a 16-Kbyte region using a 4-Kbyte page size, the value 03h
(0000011b) would be programmed into bits 24–18 of a PAR register, i.e., one less
than the required number of pages.

– To specify a page count of one, all the bits in the SZ_ST_ADR field for a PAR register
should be cleared to 0.

– To specify the maximum number of pages, either 2048 or 128, all the bits in the
SZ_ST_ADR field should be set to 1.

■ To specify the 4-Kbyte page size, the Page Size (PG_SZ) bit should be cleared to 0. For
a 64-Kbyte page size, it should be set to 1.

The same holds true for GP bus I/O-mapped regions. The region size field specifies the
number of bytes in the addressable region. For example, to specify a region size of 8 bytes,
the value 07h (0111b) should be programmed into the SZ_ST_ADR field of the PAR register.

Note: For GP bus I/O-mapped regions, the PAR registers’ PG_SZ bit is ignored. In general,
it should be cleared to 0 for GP bus I/O regions.
Élan™SC520 Microcontroller User’s Manual 3-9

System Initialization
Figure 3-2 Programmable Address Region (PAR) Register Format

31 30 29 Target Device

0 0 0 Window disabled

0 0 1 GP bus I/O

0 1 0 GP bus memory

0 1 1 PCI bus (applies to
memory cycles to
PAR 0–PAR 1 only)

1 0 0 BOOTCS (ROM)

1 0 1 ROMCS1

1 1 0 ROMCS2

1 1 1 SDRAM

Programmable Address Region Register

31–29 28–26 25 24–0

Target of the
PAR Window

(TARGET)

Attribute
(ATTR)

Page Size
(PG_SZ)

Region Size/Start Address
(SZ_ST_ADR)

28 27 26 GP Bus Chip Select

0 0 0 GPCS0

0 0 1 GPCS1

0 1 0 GPCS2

0 1 1 GPCS3

1 0 0 GPCS4

1 0 1 GPCS5

1 1 0 GPCS6

1 1 1 GPCS7

28 27 26 ROM/SDRAM Attribute

0 = Write-enabled region
1 = Write-protected region

0 = Cacheable region
1 = Noncacheable region

0 = Code execution permitted
1 = Code execution denied

25 Memory Page Size

0 4-Kbyte memory page size on 4-Kbyte
boundary, ignored for I/O cycles.

1 64-Kbyte memory page size on 64-Kbyte
boundary, ignored for I/O cycles.

Memory
Cycle
When
[25]=0

24–18 17–0 Size defines up to 128
pages of 4-Kbyte size each,
on 4-Kbyte boundary, for a
512-Kbyte maximum window
size.

Region Size
[6–0]

Start Address
A[29–12]

Memory
Cycle
When
[25]=1

24–14 13–0 Size defines up to 2K pages
of 64-Kbyte size each on 64-
Kbyte boundary, for a 128-
Mbyte maximum window
size.

Region Size
[10–0]

Start Address
A[29–16]

I/O
Cycles
Only

24–16 15–0 Size defines up to 512 bytes
with byte resolution in 64-
Kbyte I/O space.Region Size

[8–0]
Start Address

A[15–0]
If Target is GP bus

If Target is ROM or SDRAM
3-10 Élan™SC520 Microcontroller User’s Manual

System Initialization
Figure 3-3 Programmable Address Region (PAR) Register Worksheet

�� � � � � � � � � � �

7DUJHW

'HYLFH
$WWULEXWH

3
D
J
H
�6
L]
H

,�2�/RFDWLRQ�%DVH5HJLRQ�6L]H��,�2�%\WHV

6WDUW�$GGUHVV���RQ���.E\WH�%RXQGDU\�5HJLRQ�6L]H����.E\WH�3DJHV

6WDUW�$GGUHVV��RQ����.E\WH�%RXQGDU\�5HJLRQ�6L]H�����.E\WH�3DJHV

%LQDU\

+H[

%LWV

)LHOGV

�� � � � � � � � � � �

7DUJHW
'HYLFH

$WWULEXWH

3
D
J
H
�6
L]
H

,�2�/RFDWLRQ�%DVH5HJLRQ�6L]H��,�2�%\WHV

6WDUW�$GGUHVV���RQ���.E\WH�%RXQGDU\�5HJLRQ�6L]H����.E\WH�3DJHV

6WDUW�$GGUHVV��RQ����%\WH�%RXQGDU\�5HJLRQ�VL]H�����.E\WH�3DJHV

%LQDU\

+H[

%LWV

)LHOGV

�� � � � � � � � � � �

7DUJHW

'HYLFH
$WWULEXWH

3
D
J
H
�6
L]
H

,�2�/RFDWLRQ�%DVH5HJLRQ�6L]H��,�2�%\WHV

6WDUW�$GGUHVV���RQ���.E\WH�%RXQGDU\�5HJLRQ�6L]H����.E\WH�3DJHV

6WDUW�$GGUHVV��RQ����.E\WH�%RXQGDU\�5HJLRQ�VL]H�����.E\WH�3DJHV

%LQDU\

+H[

%LWV

)LHOGV

�� � � � � � � � � � �

7DUJHW

'HYLFH
$WWULEXWH

3
D
J
H
�6
L]
H

,�2�/RFDWLRQ�%DVH5HJLRQ�6L]H��,�2�%\WHV

6WDUW�$GGUHVV���RQ���.E\WH�%RXQGDU\�5HJLRQ�6L]H����.E\WH�3DJHV

6WDUW�$GGUHVV��RQ����.E\WH�%RXQGDU\�5HJLRQ�VL]H�����.E\WH�3DJHV

%LQDU\

+H[

%LWV

)LHOGV
Élan™SC520 Microcontroller User’s Manual 3-11

System Initialization
3.7.2 Address Region Attributes
The address region attributes (as specified in the ATTR bit field of a PAR register) can be
used with ROM or SDRAM regions to control how the regions can be accessed. This section
includes some examples of how the attributes can be used with SDRAM and ROM regions.

3.7.2.1 Write-Protect Attribute

When this feature is enabled for an address region in SDRAM or ROM, an interrupt is
generated when a write is performed to the region. This interrupt can be used to find
problems with errant software or to help debug Flash programming code.

3.7.2.2 Cacheability Control Attribute

The Cacheability Control Attribute bit in the PAR registers provides a simple mechanism
for controlling the caching of memory regions. This mechanism is much easier to use than
the Am5x86 CPU’s paging unit.

For SDRAM regions, turning off caching can be useful for regions that contain buffers used
for DMA or for PCI bus mastering devices.

This feature is also useful for Flash regions. For some operations, it is necessary to turn
off caching for a Flash region. An example is when a Flash device needs to be erased or
programmed. Any time a Flash device’s internal registers need to be read or written, caching
should be disabled for the device. For example, the Flash sector erasing code needs to poll
the device to see when erases and other operations are complete. If caching is not turned
off, then the software will merely continue to read the value from the processor’s cache and
not the correct value from the device. This is also true during the Flash programming write/
verify cycle. For more information, see page 12-12.

3.7.2.3 Code Execution Attribute

Execution control works in a similar manner to the Write-Protect Attribute bit. The difference
is that when this bit is set, any code fetches by the CPU to the defined region will cause an
invalid opcode fetch fault to be generated. This is accomplished by returning an invalid
opcode to the CPU, instead of the data resident in the device at the requested address.

This is very useful for debugging problems. Large areas of the address space can be
execute-protected. For example, the Flash for a file system could be protected from code
execution. Data reads and writes for the Flash file system would happen normally. But, if
a code erroneously jumped into this data area, an invalid opcode fetch fault would be
generated immediately.

3.7.2.4 Performance Considerations

It is possible to control the same attributes that the PAR registers provide using the native
mechanisms in the Am5x86 CPU core. For example, 4-Kbyte pages can be write-protected
using the paging unit and paging tables. Noncached regions can also be created using this
mechanism. Execution protection can also be performed using a segmented code model
and descriptor attributes.

Using the native x86 mechanisms will work, but using the address region attributes in a
PAR register is easier and provides higher performance. If the CPU’s paging unit is enabled,
the entire system takes a small performance hit because all linear address must be
translated to physical address. Also, defining nonexecutable regions is very difficult to do
and requires 48-bit code pointers (huge pointers) and a fully segmented 32-bit code model.
This is a high price to pay to obtain execute-only regions. These performance penalties are
not incurred when using the ÉlanSC520 microcontroller’s address region attribute
mechanism.
3-12 Élan™SC520 Microcontroller User’s Manual

System Initialization
3.7.3 PAR Register Priority
The PAR register mechanism is a very flexible and useful one. It is designed to allow the
system programmer to easily program the address decoding and set attributes for
addressable regions. One feature of the PAR register system that may not be obvious from
the examples included in this chapter is that the PAR registers have a priority mechanism.
The highest priority PAR register is PAR 0 and the lowest priority register is PAR 15. This
feature is not relevant unless two (or more) PAR regions overlap. If they do overlap, then
the higher priority PAR register takes precedence.

The PAR registers are used to modify and add to the default system addressing (see
Table 4-4 on page 4-4). Note that the system can function quite well with all of the PAR
registers disabled. For example, a system could start-up, use a PAR register to copy the
contents of Flash to SDRAM1, jump to the code in SDRAM, and then disable the PAR
register used for the copy. With all the PAR registers disabled, the normal address resolution
priorities in the system govern addressing of physical devices.

3.7.4 External GP Bus Devices
Devices on the GP bus can be addressed in two ways. Each is controlled by programming
the PAR registers.

■ By chip select, mapping the device into memory or I/O space

■ Devices can do their own memory or I/O address decoding.

Programming a PAR register with the GP bus as the target is required to cause memory or
I/O cycles to be forwarded to the external GP bus. This is true for devices that use chip
selects and devices that decode their own address (generate their own chip selects).
Programming a PAR register is necessary because, by default, memory and I/O cycles
generated by the Am5x86 CPU that are not decoded by an internal GP bus peripheral or
memory resources (like SDRAM, ROM, and the MMCR registers) go to the PCI bus.

For a device on the external GP bus, programming a PAR register configures the following
characteristics:

■ Target device field—For either a GP bus memory-mapped cycle or an I/O cycle

■ Attribute field—For the particular GP bus chip select to which the device is attached

■ Memory page size field— Most peripherals use a 4-Kbyte granularity. Peripherals that
have very large memory address spaces, such as SDRAM or ROM, might need to use
a 64-Kbyte granularity.

■ Region size and start address

For a device that requires a chip select from the ÉlanSC520 microcontroller, the chip select
must be mapped to a physical pin using the PIO registers. For devices that do their own
address decoding, the PAR register must still be programmed, and the chip select should
be chosen; however, the chip select from the PAR register does not need to be mapped to
a physical pin.

Note: All of the internal peripherals on the GP bus are decoded at fixed locations. The
locations for these peripherals cannot be changed by programming a PAR register. For
example, the internal real-time clock cannot be moved to a different location. No PAR
registers are required to access any of the internal peripheral devices on the ÉlanSC520
microcontroller.

1. This is one way to shadow a BIOS to DRAM.
Élan™SC520 Microcontroller User’s Manual 3-13

System Initialization
3.7.4.1 Single Device (an A/D Converter) Using One Chip Select

In this example, an A/D converter has four 16-bit registers that need to be mapped into
I/O space on GPCS5 at I/O address 0500h. As shown in Table 3-2, the value to program
into a PAR register in this case is 34070500h.

3.7.4.2 Single Device That Performs Its Own Decode

In this example, an external memory-mapped 16-color 480 x 320 pixel LCD controller
performs its own address decoding. It needs a 128-Kbyte window mapped at 000C0000h.
A chip select must be used (specified in the ATTR bit field of the PAR register), but it does
not need to be mapped to an external pin. GPCS7 is used here. As shown in Table 3-3, the
value to program into a PAR register in this case is 5E00400Ch.

3.7.4.3 Multiple Devices On One Chip Select

A single PAR register can be programmed for a larger range than is needed by a single
peripheral. For example, consider a bank of 16 memory-mapped A/D converters, each of
which has four 16-bit registers. An external PAL is programmed to do the address decoding
for each individual A/D converter. The converters will be memory-mapped to a range of
00020000–0002003Fh. The PAL generates the chip selects for each of the four converters
by watching for the appropriate memory read and write cycles and is qualified from GPCS2
from the ÉlanSC520 microcontroller. As shown in Table 3-4, the value to program into a
PAR register in this case is 48000020h.

Table 3-2 Example PAR Programming: Single Device Using One Chip Select

Bit Field Value Meaning

Target Device 001b GP bus I/O space

Attribute Field 101b GPCS5

Page Size 0b Clear to 0 (this bit not applicable to I/O space)

Region Size 7h Specifies an 8-byte region size

Start Address 0500h Physical address 0500h

Table 3-3 Example PAR Programming: Single Device That Performs Its Own Decode

Bit Field Value Meaning

Target Device 010b GP bus memory space

Attribute Field 111b GPCS7

Page Size 1b 64-Kbyte granularity

Region Size 1h Specifies two 64-Kbyte pages for a 128-Kbyte region size

Start Address 000Ch Physical address 000C0000h

Table 3-4 Example PAR Programming: Multiple Devices on One Chip Select

Bit Field Value Meaning

Target Device 010b GP bus memory space

Attribute Field 010b GPCS2

Page Size 0b 4-Kbyte granularity

Region Size 0h One 4-Kbyte page

Start Address 20h Physical address 00020000h
3-14 Élan™SC520 Microcontroller User’s Manual

System Initialization
3.7.5 PCI Bus Devices
Normally, devices on the PCI bus are mapped into memory space that is above the
configured amount of DRAM and just under 4 Gbytes (FFFEFFFFh). The ÉlanSC520
microcontroller’s address decode logic forwards all access to these memory locations to
the PCI bus.

Normally, memory cycles below the top address used by SDRAM are forwarded only to the
SDRAM controller, or to the GP bus if a PAR register is appropriately programmed. However,
for Windows and DOS compatibility, some PCI peripherals need to be mapped into SDRAM
space. These regions usually fall below the real-mode address limit (physical address
0010FFEFh). Devices that can require this include PCI-based VGA video cards and PCI-
based network adapters. To allow this, the first two PAR registers support the PCI bus as
a target. Note PCI as a target can only be specified in PAR 0 and PAR 1.

For such devices, a PAR register must be programmed that allows addresses lower than
the highest SDRAM address to be forwarded to the PCI bus. This is in addition to the normal
PCI bus device configuration. The VGA controller example in Section 3.7.5.1 illustrates this.

Typically, all I/O space accesses above the 1-Kbyte boundary are forwarded to the PCI bus,
and all I/O space accesses below the 1-Kbyte boundary are forwarded to the GP bus.

■ With some minor exceptions for the CBAR and PCI configuration registers, the I/O space
above the 1-Kbyte boundary can be redirected from the PCI to the GP bus using PAR
registers.

■ The IO_HOLE_DEST bit in the Address Decode Control (ADDDECCTL) register (MMCR
offset 80h) can be programmed to allow all I/O space addresses below the 1-Kbyte
boundary that are not assigned to internal peripherals to be forwarded to the PCI bus.

■ Note that PAR registers can still be mapped in the lower 1-Kbyte I/O space to override
the IO_HOLE_DEST bit. This way, I/O devices in the lower 1-Kbyte space can reside
internally to the ÉlanSC520 microcontroller, on the external GP-Bus, and on the PCI bus.

3.7.5.1 VGA Controller on the PCI Bus

A VGA video controller’s 128 Kbytes of memory is normally mapped from 000A0000–
000BFFFFh (physical addresses). So, to support a PCI-based video controller, PAR 0 or
PAR 1 would need to be programmed to 7200400Ah. This configures PAR 0 or PAR 1 with
the characteristics shown in Table 3-5. The attribute fields are ignored for the PCI bus target.
PCI regions are always writable, executable, and noncached.

A PCI VGA video adapter also requires PCI I/O from addresses 03B0–03BBh and 03C0–
03CFh. A PAR register is not required to map these I/O locations to PCI space, but instead
the IO_HOLES_DEST bit must be set in the Address Decode Control (ADDDECCTL)
register (MMCR offset 80h). This has the effect of mapping all external I/O accesses to PCI
space rather than to the GP bus. If there are no external GP bus I/O devices, then no further

Table 3-5 Example PAR Programming: VGA Controller on the PCI Bus

Bit Field Value Meaning

Target Device 011b PCI bus

Attribute Field 000b Not applicable

Page Size 1b 64-Kbyte granularity

Region Size 1h Specifies two 64-Kbyte pages for a 128-Kbyte region size

Start Address Ah Physical address 000A0000h
Élan™SC520 Microcontroller User’s Manual 3-15

System Initialization
PAR programming is required to support this configuration. Note that the internal I/O devices
will still be correctly accessed when the IO_HOLES_DEST bit is set.

However, if any external GP bus device requires I/O addresses, then a PAR register will be
required to allow access to this device. As an example, assume an external 16550 UART
is used to implement a COM3 port.

The standard I/O locations for COM3 are 03E8–03EFh. As shown in Table 3-6, a PAR
register will be required with a setting of 340703E8hto enable external GP bus accesses
to this I/O range. In this example, GPCS5 is used as a chip enable for the external device.
If another GPCSx is required, then appropriate changes should be made to the PAR register
setting.

3.7.5.2 Network Adapter for Remote Program Loading

A memory-mapped network adapter will usually reside in PCI space that is far above the
real-mode address limit. However, to perform Remote Program Loading (RPL), often called
network boot, over a network, the 16-bit BIOS needs to use the network adapter. To avoid
writing 32-bit protected-mode BIOS code, PAR 0 or PAR 1 can be used to place a memory-
mapped network adapter above the real-mode address limit. For this example, it is assumed
that the network adapter has 16 Kbytes of address space that needs to be placed at
000B0000h. This area is noncacheable because it is PCI address space. As shown in
Table 3-7, the value to configure PAR 0 or PAR 1 for this configuration is 600C00B0h.

Note that most network adapters will also require a small amount of PCI I/O space. The
location of this I/O space can usually be changed through a PCI configuration register on
the adapter and can be assigned by an operating system through plug and play functionality.
Usually, this address can be set to any value and is typically above the 1-Kbyte I/O boundary
affected by the IO_HOLES_DEST bit. Since I/O accesses above 400h are always sent to
PCI space (unless overridden by a PAR register to go to the GP bus), no special programming
is needed to allow I/O accesses for a typical PCI network adapter.

Table 3-6 Example PAR Programming: COM3 with VGA Present on the PCI Bus

Bit Field Value Meaning

Target Device 001b GP bus I/O space

Attribute Field 101b GPCS5

Page Size 0b Clear to 0 (this bit not applicable to I/O space)

Region Size 7h Specifies an 8-byte region size

Start Address 03E8h Physical address 03E8h

Table 3-7 Example PAR Programming: Network Adapter for Remote Program Loading

Bit Field Value Meaning

Target Device 011b PCI bus

Attribute Field 000b Not applicable

Page Size 0b 4-Kbyte granularity

Region Size 03h Specifies four 4-Kbyte pages for a 16-Kbyte region size

Start Address B0h Physical address 000B0000h
3-16 Élan™SC520 Microcontroller User’s Manual

System Initialization
3.7.6 External ROM Devices
The PAR registers can also be used to define the addressing for ROM devices selected by
BOOTCS, ROMCS1, and ROMCS2. ROM devices include true ROMs, EEPROM, Flash
devices, and other similar devices.

It is important to note that the top 64 Kbytes of the ROM device selected by BOOTCS (the
boot device chip select) is always mapped to the physical addresses from FFFF0000–
FFFFFFFFh. This area is called the reset region. The reset region is cached, executable,
and not write-protected. This 64-Kbyte mapping is fixed and always active, even if the boot
ROM device is mapped to another address using a PAR register. ROM devices attached
to BOOTCS, ROMCS1, or ROMCS2 can be mapped anywhere in physical address space
below 40000000h (1 Gbyte).

3.7.6.1 Boot ROM Device Mapping for BIOS Shadowing

A 512-Kbyte Flash device is a common boot ROM device for systems with a BIOS. One
way to shadow the BIOS is to map it below 00100000h so that it can be accessed by real-
mode code. This is easily done with a single PAR register. For shadowing purposes, a good
place to park the boot ROM device is at 00001000h, which is just above the interrupt vector
table. The value 89FC0001h configures the PAR register as shown in Table 3-8.

3.7.6.2 Two Banks of Flash for an Execute-In-Place (XIP) Operating System

A system has eight 8-Mbit byte-wide Flash devices. Four are on ROMCS1 and four on
ROMCS2. These devices will be mapped into eight Mbytes of contiguous 32-bit address
space from 00400000–00BFFFFFh. This requires two PAR registers because two ROM
chip selects need to be used. This example uses PAR 4 and PAR 5. Note that in addition
to programming the PAR registers, the ROM chip selects need to be mapped to physical
pins.

The value A20FC040h for PAR 4 would setup ROMCS1 for the first bank of Flash. This
configures the PAR register with the characteristics shown in Table 3-9. The value
C20FC080h for PAR 5 would setup ROMCS2 for the first bank of Flash. This configures
the PAR register with the characteristics shown in Table 3-10.

Table 3-8 Example PAR Programming: Boot ROM Device Mapping for BIOS Shadowing

Bit Field Value Meaning

Target Device 100b BOOTCS

Attribute Field 010b Write enable, noncacheable, code execution permitted

Page Size 0b 4-Kbyte granularity

Region Size 7Fh Specifies 128 4-Kbyte pages for a 512-Kbyte region size

Start Address 1h Physical address 00001000h

Table 3-9 Example PAR Programming: First Bank of Flash for XIP Operating System

Bit Field Value Meaning

Target Device 101b ROMCS1

Attribute Field 000b Write enable, cacheable, code execution allowed

Page Size 1b 64-Kbyte granularity

Region Size 3Fh Specifies sixty-four 64-Kbyte pages for a 4-Mbyte region size

Start Address 40h Physical address 00400000h
Élan™SC520 Microcontroller User’s Manual 3-17

System Initialization
3.7.7 SDRAM Regions
The PAR registers can also be used to define regions of SDRAM and control the read/write,
cacheability, and execution attributes.

3.7.7.1 Setting Up DMA Buffers

Often PCI and GP bus devices use GP-DMA or PCI bus mastering to read and write data
directly from buffers in SDRAM. It is often useful to mark such buffers as noncached. This
can be done using the CPU’s paging unit, but doing so is complex and may conflict with
how an operating system uses the page tables.

In any case, disabling caching for a region is quite simple. Setting the Cacheability Control
Attribute (bit 27) in a PAR register defines a buffer region. For example, a 512-Kbyte region
can be defined to store transmit and receive buffers for a fast Ethernet PCI controller. Since
this is a data-only area, the Code Execution Attribute (bit 28) is set.

Assuming that the region is located at physical address 00020000h, a PAR register would
be programmed with the value F9FC0020h. This configures the PAR register with the
characteristics shown in Table 3-11.

Of course, this is not absolutely necessary. The cache controller in the ÉlanSC520
microcontroller always maintains the coherency between the cache and SDRAM. For buffer
regions used by GP-DMA channels or PCI bus masters, disabling caching with a PAR
register is more efficient and provides better bus performance than allowing the CPU to
cache the buffer. This avoids the bus activity (and latency) involved with keeping the cache
and the SDRAM coherent.

3.7.7.2 Write-Protected Code Segments

In many embedded systems, all (or most) of the applications and operating system code
is contiguous in memory. In such cases, a single PAR register can be used to write-protect
most (or all) of the code in a system. If errant code attempted to write to the protected
region, then an interrupt would be generated. Note that the CPU completes the write cycle,
but the SDRAM or ROM controller (as appropriate) prevents the write from occurring at the
device.

Table 3-10 Example PAR Programming: Second Bank of Flash for XIP Operating System

Bit Field Value Meaning

Target Device 110b ROMCS2

Attribute Field 000b Write enable, cacheable, code execution allowed

Page Size 1b 64-Kbyte granularity

Region Size 3Fh Specifies sixty-four 64-Kbyte pages for a 4-Mbyte region size

Start Address 80h Physical address 00800000h

Table 3-11 Example PAR Programming: Setting Up DMA Buffers

Bit Field Value Meaning

Target Device 111b SDRAM

Attribute Field 110b Write enable, noncacheable, code execution denied

Page Size 0b 4-Kbyte granularity

Region Size 7Fh Specifies 128 4-Kbyte pages for a 512-Kbyte region size

Start Address 20h Physical address 00200000h
3-18 Élan™SC520 Microcontroller User’s Manual

System Initialization
Several actions could be taken, from merely preventing the write from taking place, to killing
the offending thread, or even restarting the system. Also, the event could be recorded and/
or reported to a debugging or diagnostic interface or console port. During debugging, a
breakpoint could be set at the front of the write-protect interrupt service routine.

Assuming the system code resides in the first 768 Kbytes of SDRAM at address 0, the
value E602C000h configures a PAR register with the values shown in Table 3-12.

3.8 CONFIGURING THE INTERRUPT MAPPING
The ÉlanSC520 microcontroller has very flexible interrupt routing and control capability.
Each of the hardware interrupt sources can be mapped to any of the different interrupt
priority levels in the programmable interrupt controller (PIC).

In contrast to a basic PC, which has fixed interrupt mappings and operation, the ÉlanSC520
microcontroller has a very flexible interrupt management architecture. For full details on
this system, see Chapter 15, “Programmable Interrupt Controller”. The information in
“Interrupt Sources” on page 15-8 is of particular importance.

The following sections discuss options to be considered for the software that configures
interrupts.

3.8.1 Edge-Sensitive or Level-Triggered Interrupts
Edge- and level-triggering can be programmed for each PIC or on an interrupt-by-interrupt
basis.

For example, all of the interrupts on the Slave 2 interrupt controller could be programmed
for edge-triggered operation.

■ Setting the S2_GINT_MODE bit in the Interrupt Control (PICICR) register (MMCR offset
D00h) allows the LTIM bit in the Slave 2 PIC Initialization Control Word 1 (S2PICICW1)
register (Port 0024h) to control how interrupts are triggered for that controller.

■ If the S2_GINT_MODE bit is cleared, then the edge- or level-triggered nature is controlled
for each interrupt input to the PIC individually using the Slave 2 PIC Interrupt Mode
(SL2PICMODE) register (MMCR offset D04h).

3.8.2 Interrupt Mapping
Using the Interrupt Mapping registers, each interrupt source can be mapped to one of the
interrupt channels in the PIC block, the NMI interrupt, or can be disabled as an interrupt
input. The flexibility of the ÉlanSC520 microcontroller allows any interrupt source in the
system to trigger either a regular interrupt or an NMI.

Table 3-12 Example PAR Programming: Write-Protected Code Segments

Bit Field Value Meaning

Target Device 111b SDRAM

Attribute Field 001b Write disable, cacheable, code execution permitted

Page Size 1b 64-Kbyte granularity

Region Size Bh Specifies twelve 64-Kbyte pages for a 768-Kbyte region size

Start Address 0h Physical address 00000000h
Élan™SC520 Microcontroller User’s Manual 3-19

System Initialization
3.8.3 Interrupt Polarity
Each of the interrupt controllers can recognize either a Low-to-High edge-triggered or an
active High level-sensitive interrupt request. To support external devices that generate
active Low interrupt requests (either edge or level), a programmable inversion of each of
the external interrupt requests is available.

Many devices generate a Low-going interrupt signal using an open-collector output. These
devices are easily supported on the ÉlanSC520 microcontroller by setting the appropriate
bit in the Interrupt Pin Polarity (INTPINPOL) register (MMCR offset D10h). For example, if
such a device were connected to GPIRQ8, then setting GPINT8_POL in the Interrupt Pin
Polarity (INTPINPOL) register would program the interrupt for a Low-going interrupt input.

It is important to ensure that the polarity values for all internal interrupt sources are
programmed correctly at reset time.

3.9 CONFIGURING THE PROGRAMMABLE I/O PINS
An important part of the ÉlanSC520 microcontroller initialization is configuration of the
programmable I/O (PIO) pins. These are general-purpose I/O pins that can be programmed
as inputs or outputs. When configured as an input, the state of the input can be read using
the PIOx_DATA bit in the PIOx Data register.

The PIO pins can also be configured as outputs by setting their corresponding direction
bits in the PIOx Direction registers.

3.10 CONFIGURING THE PCI HOST BRIDGE AND ARBITRATION
The PCI Host Bridge must be configured and initialized before PCI operation such as
enumeration and device configuration take place. There are two parts to the PCI host bridge
configuration: ÉlanSC520 microcontroller-specific configuration and normal PCI bus
configuration.

1. Configure the PCI host bridge.

a. Program the desired ÉlanSC520 microcontroller arbitration mode, including
concurrency mode and PCI bus master arbitration priorities, etc. See “Initialization”
on page 8-22, for more detailed information on arbitration.

b. Program the Programmable Address Region (PAR) registers, if required. If there are
one or two VGA video controllers, PAR 0 and PAR 1 may need to be programmed to
place the VGA graphics memory in SDRAM space at PC-compatible locations. PAR
0 and PAR 1 could also be used for other PCI peripherals (such as a network card)
that require mapping below physical address 00100000h. See Chapter 4, “System
Address Mapping”, for details on programming PCI bus memory space.

c. Program the ÉlanSC520 microcontroller-specific PCI host bridge configuration (write
posting, retry time-out counter, interrupts, etc.). Note that write-posting must be
disabled while operating in nonconcurrent arbitration mode. See Chapter 8, “System
Arbitration”, for further details on nonconcurrent mode arbitration.

d. Program the standard PCI bus configuration registers. See “Configuration Information”
on page 9-9 for more information.

2. Configure the external PCI bus devices.

In general, PCI host bridge configuration bits should not be changed except during a PCI
bus initialization after a system or programmable reset.
3-20 Élan™SC520 Microcontroller User’s Manual

System Initialization
3.11 DISABLING INTERNAL PERIPHERALS
Most applications will use the ÉlanSC520 microcontroller’s internal UART devices and its
internal real-time clock (RTC). However, some applications might need to use external
devices mapped to these same I/O locations. To use external devices, the corresponding
internal device must be disabled. This is necessary because these internal peripherals are
at fixed I/O locations and cannot be re-mapped. If any internal devices are disabled,
accesses to the I/O addresses for these peripherals are forwarded to the external GP bus.

Disabling these peripherals turns off their address decoding, so that externally connected
peripherals can be used in their place. If the addresses cannot be externally decoded
without a chip select, a PAR register must be mapped to allow a chip select to be asserted
for these addresses.

Using external devices in place of the internal ones might be necessary for several reasons.
A common reason would be to use a multifunction external chip that has parallel ports,
serial ports, floppy disk controller, an RTC, and other devices.

■ The internal RTC can be disabled by setting the RTC_DIS bit in the Address Decode
Control (ADDDECCTL) register (MMCR offset 80h).

■ UART 1 and UART 2 can be disabled by setting the UART1_DIS and UART2_DIS bits
in the Address Decode Control (ADDDECCTL) register.

Note that, if the internal peripherals are disabled, the external peripheral’s interrupt signals
will need to be connected to external interrupt lines, which then need to be routed to the
appropriate interrupt channel. For example, if an external UART is used to replace UART
2 (as COM2), then its interrupt could be connected to GPIRQ8, which would then need to
be routed to interrupt priority P3.

Also, in this scenario, the pin used for GPIRQ8 would need to be configured as a general-
purpose IRQ (the interface function for the pin, not its default PIO function) by setting the
PIO15_FNC bit in the PIO15–PIO0 Pin Function Select (PIOPFS15_0) register (MMCR
offset C20h).

Note: When the internal peripherals are disabled, they are still fully functional. Disabling
the peripherals disables the address decoding only for that device. For example, if the RTC
is programmed to generate interrupts and then subsequently disabled, it will continue to
generate interrupts but will no longer be accessible. Before disabling an internal peripheral,
be sure to turn off its interrupts.
Élan™SC520 Microcontroller User’s Manual 3-21

System Initialization
3-22 Élan™SC520 Microcontroller User’s Manual

CHAPTER
4
 SYSTEM ADDRESS MAPPING
4.1 OVERVIEW
The ÉlanSC520 microcontroller includes flexible memory and I/O address decoding with
features for both real-time operating systems (RTOS) and systems requiring PC/AT
functionality for Windows compatibility. Address decoding is distributed between the
memory controllers, GP bus controller, and PCI host bridge controller. The ÉlanSC520
microcontroller provides the following memory and I/O address mapping options.

■ The default SDRAM map is linear space starting at 00000000h through the top of
SDRAM (defined by the total size of the SDRAM array, up to a maximum of 256 Mbytes).

■ The default boot ROM/Flash chip select (BOOTCS pin) is mapped in a 64-Kbyte linear
region at the top of CPU memory space from FFFF0000–FFFFFFFFh, and this entire
ROM space can be redirected through configuration registers (address translation is not
supported).

■ All configuration registers that do not reside in PC/AT I/O space or PCI configuration
space are memory-mapped and are located in a 4-Kbyte region in memory address
space from FFFEF000–FFFEFFFFh.

– This 4-Kbyte region is called the memory-mapped configuration region (MMCR).

– The MMCR can optionally be relocated on any 4-Kbyte boundary in the lower 1-Gbyte
region via an I/O mapped register called the Configuration Base Address (CBAR)
register (Port FFFCh).

– The default MMCR region in high memory (below the boot space) is visible even if it
is aliased via the Configuration Base Address (CBAR) register.

■ The default PCI bus map is contiguous space starting directly above the top of SDRAM
through 4 Gbytes, minus the 68 Kbytes for the boot ROM/Flash region and the MMCR.

■ 16 general-purpose Programmable Address Region (PAR) windows allow address
mapping for a variety of applications, including operating systems requiring x86 real
mode support. Each window allows any memory region in the lower 1-Gbyte region to
be directed to the following resources:

– Any of three ROM chip-selects with the ability to apply cacheability, write-protection,
and nonexecutable region attributes

– Any of eight GP bus chip-selects for external memory or I/O peripherals on the GP bus

– Two PAR registers allow cycles to be forwarded to the PCI bus for applications that
require PCI space to be overlaid on top of SDRAM. All accesses above the top of
SDRAM to the top of 32-bit memory space are automatically forwarded to PCI bus
(with the exception of the ROM boot space and memory-mapped configuration space).

– Accesses in normal SDRAM space (lower 256 Mbytes) can also be redirected to ROM,
the GP bus, or the PCI bus.

– PAR windows can be created in the SDRAM region to allow noncacheable, write-
protected, and/or nonexecutable buffers.
Élan™SC520 Microcontroller User’s Manual 4-1

System Address Mapping
■ Integrated PC/AT compatible peripherals are direct-mapped in normal PC I/O space
(i.e., the programmable interrupt controller, programmable interval timer, GP bus DMA
controller, RTC, and UARTs). All remaining integrated peripherals are memory-mapped
(the watchdog timer, software timer, GP timers, and SSI).

■ As a PCI target, the PCI bus host bridge decodes normal SDRAM address space,
allowing external PCI bus master access of the entire SDRAM space. PCI bus I/O
accesses from PCI masters are not decoded by the PCI host bridge.

4.2 REGISTERS
Address decoding is controlled by the configuration registers listed in Table 4-1 and
Table 4-2.

I

Table 4-1 Address Decoding Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

Address Decode Control ADDDECCTL 80h RTC disable, UART 1 and UART 2 disables, write
protect violation interrupt enable, I/O hole
access destination

Write-Protect Violation Status WPVSTA 82h Write-protect violation interrupt status, master,
window number

Programmable Address Region 0 PAR0 88h General-purpose resource decoding

Programmable Address Region 1 PAR1 8Ch General-purpose resource decoding

Programmable Address Region 2 PAR2 90h General-purpose resource decoding

Programmable Address Region 3 PAR3 94h General-purpose resource decoding

Programmable Address Region 4 PAR4 98h General-purpose resource decoding

Programmable Address Region 5 PAR5 9Ch General-purpose resource decoding

Programmable Address Region 6 PAR6 A0h General-purpose resource decoding

Programmable Address Region 7 PAR7 A4h General-purpose resource decoding

Programmable Address Region 8 PAR8 A8h General-purpose resource decoding

Programmable Address Region 9 PAR9 ACh General-purpose resource decoding

Programmable Address Region 10 PAR10 B0h General-purpose resource decoding

Programmable Address Region 11 PAR11 B4h General-purpose resource decoding

Programmable Address Region 12 PAR12 B8h General-purpose resource decoding

Programmable Address Region 13 PAR13 BCh General-purpose resource decoding

Programmable Address Region 14 PAR14 C0h General-purpose resource decoding

Programmable Address Region 15 PAR15 C4h General-purpose resource decoding

Table 4-2 Address Decoding Registers—Direct-Mapped

Register Mnemonic
I/O
Address Function

Configuration Base Address CBAR FFFCh Base address for the alias of the MMCR
registers
4-2 Élan™SC520 Microcontroller User’s Manual

System Address Mapping
4.3 OPERATION
There are three types of system bus masters supported on the ÉlanSC520 microcontroller:
the Am5x86 CPU, the PCI bus, and the GP bus DMA controller.

As shown in Table 4-3, each of the three bus masters can access specific types of address
space.

■ The Am5x86 CPU and the PCI bus each implement separate memory and I/O address
space.

■ The PCI bus further specifies a separate space for device configuration registers.

■ The GP bus DMA controller supports fly-by transfers between GP bus devices and
SDRAM; therefore, as a bus master, it supports memory space only.

The Am5x86 CPU and PCI bus definition support separate memory and I/O address spaces
(I/O space is limited to 64 Kbytes on the CPU). The PCI Local Bus Specification, Revision
2.2, further defines a separate space for configuration registers.

The ÉlanSC520 microcontroller divides these address spaces as follows:

■ Memory space

– ROM/Flash space for data and code storage using up to three chip selects (accessible
only by the CPU)

– SDRAM space for data and code storage

– GP bus memory space (accessible only by the CPU)

– PCI bus memory space (accessible only by the CPU and PCI bus masters)

– Internal memory-mapped configuration region (MMCR) registers (accessible only by
the CPU)

■ I/O space

– Integrated PC/AT-compatible peripherals (accessible only by the CPU)

– Configuration Base Address (CBAR) register (Port FFFCh) to set the MMCR’s base
address (accessible only by the CPU)

Table 4-3 Bus Master Address Spaces

Bus Master and
Address Space SDRAM ROM

GP
Bus

PCI
Bus

Integrated
PC/AT

Peripherals

Integrated
Non-PC/AT
Peripherals

Memory-
Mapped

Registers
CBAR

Register

CPU Memory ✔ ✔ ✔ ✔ ✔ ✔

I/O ✔ ✔ ✔ ✔

PCI
Bus

Memory ✔ ✔

I/O ✔

Configuration1

Notes:
1. Accessed indirectly by the CPU via the PCI configuration registers in I/O space.

GP-
DMA

Memory ✔
Élan™SC520 Microcontroller User’s Manual 4-3

System Address Mapping
– GP bus I/O space (accessible only by the CPU)

– PCI bus I/O space (accessible by the CPU and PCI masters)

– PCI bus configuration space (accessible only by the CPU)

Table 4-4 summarizes the organization of memory and I/O address regions in the
ÉlanSC520 microcontroller.

4.3.1 Programming External Memory, Buses, and Chip Selects
Programming the external memory, buses, and chip selects on the ÉlanSC520
microcontroller is accomplished in three steps:

1. Configure the address space and any required attributes for the specified region.

2. Configure the timing, when applicable, and any required attributes of the interface.

3. For chip selects, enable the function on the desired pin by programming the pin
multiplexing in the PIO registers.

This chapter describes how to complete step 1. Programming the required timing and
attributes of the external interface (i.e., SDRAM, ROM, GP bus, or PCI bus) is accomplished
by writing to registers that control these interfaces. Finally, for chip selects, see Chapter 23,

Table 4-4 Memory and I/O Space Summary

Device Memory Space I/O Space

SDRAM • Linear space starting at 00000000h to top
of SDRAM (maximum 256 Mbytes)

• PAR registers define noncacheable,
write-protected, nonexecutable regions

N/A

ROM/Flash • BOOTCS mapped to CPU boot space
from FFFF0000–FFFFFFFFh
(64 Kbytes)

• PAR registers define noncacheable,
write-protected, nonexecutable regions

N/A

PCI Bus Normal Space • Default above SDRAM to top of memory
address space (4 Gbytes), minus boot
space (64 Kbytes) and MMCR (4 Kbytes)

• Two PAR registers can define any region
that overlays SDRAM space

Any space not claimed by CBAR, PC/AT
peripherals, GP bus (via PAR registers),
or PCI configuration registers (0CF8–
0CFFh)

PCI Bus Configuration
Space

N/A 0CF8–0CFFh

GP Bus Defined via PAR registers in lower 1 Gbyte Defined via PAR registers in lower 64
Kbytes, except for integrated peripherals’
I/O space

Integrated PC/AT
Peripherals

N/A 0000h-03FFh

MMCR Registers • Defaults to 4-Kbyte region starting at
FFFEF000h

• CBAR can alias this to any 4-Kbyte
boundary in lower 1 Gbyte

N/A

Configuration Base
Address (CBAR) Register

N/A FFFC–FFFFh
4-4 Élan™SC520 Microcontroller User’s Manual

System Address Mapping
“Programmable Input/Output”, which describes enabling the actual programmable I/O (PIO)
pins that can be shared with other functions.

4.3.2 Programmable Address Region (PAR) Registers
Programmable Address Region (PAR) registers provide a common programming interface
to configure memory space and I/O space regions in an ÉlanSC520 microcontroller system.
As referenced in Table 4-4, the PAR registers are primarily used to define the address
regions of ROM and GP bus, as well as to set attributes for ROM and SDRAM regions.

The first two PAR registers (PAR 0 and PAR 1) also allow the user to redirect CPU accesses
that normally fall into SDRAM space to the PCI bus, for special cases that require this
functionality. The ÉlanSC520 microcontroller provides a total of 16 PAR registers to provide
the user with flexibility in organizing memory space and I/O space in the system. They are
organized in a priority scheme starting with the lowest register (PAR 0). Thus, if overlapping
regions are programmed, the lowest number PAR register takes priority. The PAR registers
are 32 bits each and reside in the MMCR space.

Since the ÉlanSC520 microcontroller supports PC/AT-compatible peripherals, the regions
required for these peripherals are fixed in I/O space and are not relocatable via PAR
registers. This includes the GP bus DMA controller, the programmable interval timer (PIT),
the programmable interrupt controller (PIC), the two 16550-compatible UARTs, the real-
time clock (RTC), and the PC/AT port logic.

Figure 4-1 illustrates the layout of the 32-bit PAR register. Note that the registers are
organized in four sections, as follows:

■ The Target (TARGET) bit field defines the destination of the cycle (i.e., ROM, GP bus,
etc.).

■ The Attribute (ATTR) bit field allows memory regions to be programmed with special
conditions such as write-protection and noncacheability for ROM or SDRAM access or
selects a specific chip select for GP bus accesses.

■ The Page Size (PG_SZ) bit defines the size of each memory page within the regions.

■ The Region Size/Start Address (SZ_ST_ADR) bit field is used to define both the
beginning of the region and the total size of the region (in conjunction with the Page Size
bit).

The PAR register is used to define only the actual address space for the targets; it does
not control the parameters for timing and bus width required for ROM and GP bus devices.
Those controls must be programmed independently in the ROM controller and GP bus
controller configuration registers.

Note: If a PAR window is configured for PCI, AND the CBAR register is programmed to
overlap with this PAR window, AND the PAR window is placed below the top of DRAM, the
MMCR is not given priority over the PCI access. This configuration could result in system
errors due to concurrence of both PCI and internal MMCR accesses.
Élan™SC520 Microcontroller User’s Manual 4-5

System Address Mapping
Figure 4-1 Programmable Address Region (PAR) Register Format

31 30 29 Target Device

0 0 0 Window disabled

0 0 1 GP bus I/O

0 1 0 GP bus memory

0 1 1 PCI bus (applies to
memory cycles to
PAR 0–PAR 1 only)

1 0 0 BOOTCS (ROM)

1 0 1 ROMCS1

1 1 0 ROMCS2

1 1 1 SDRAM

Programmable Address Region Register

31–29 28–26 25 24–0

Target of the
PAR Window

(TARGET)

Attribute
(ATTR)

Page Size
(PG_SZ)

Region Size/Start Address
(SZ_ST_ADR)

28 27 26 GP Bus Chip Select

0 0 0 GPCS0

0 0 1 GPCS1

0 1 0 GPCS2

0 1 1 GPCS3

1 0 0 GPCS4

1 0 1 GPCS5

1 1 0 GPCS6

1 1 1 GPCS7

28 27 26 ROM/SDRAM Attribute

0 = Write-enabled region
1 = Write-protected region

0 = Cacheable region
1 = Noncacheable region

0 = Code execution permitted
1 = Code execution denied

25 Memory Page Size

0 4-Kbyte memory page size on 4-Kbyte
boundary, ignored for I/O cycles.

1 64-Kbyte memory page size on 64-Kbyte
boundary, ignored for I/O cycles.

Memory
Cycle
When
[25]=0

24–18 17–0 Size defines up to 128
pages of 4-Kbyte size each,
on 4-Kbyte boundary, for a
512-Kbyte maximum window
size.

Region Size
[6–0]

Start Address
A[29–12]

Memory
Cycle
When
[25]=1

24–14 13–0 Size defines up to 2K pages
of 64-Kbyte size each on 64-
Kbyte boundary, for a 128-
Mbyte maximum window
size.

Region Size
[10–0]

Start Address
A[29–16]

I/O
Cycles
Only

24–16 15–0 Size defines up to 512 bytes
with byte resolution in 64-
Kbyte I/O space.Region Size

[8–0]
Start Address

A[15–0]
If Target is GP bus

If Target is ROM or SDRAM
4-6 Élan™SC520 Microcontroller User’s Manual

System Address Mapping
4.3.3 Memory Space
Memory space in the ÉlanSC520 microcontroller includes SDRAM, ROM, PCI bus, GP
bus, and the MMCR registers. A system memory map is shown in Figure 4-2.

■ The CPU has access to the entire memory space.

■ PCI bus masters and the GP bus DMA controller have access to SDRAM space only.

Characteristics of these memory spaces are defined in subsequent sections.

Figure 4-2 System Memory Map

Dedicated
PCI Bus
Space

Default is SDRAM up
to amount of SDRAM

installed. Default is PCI
from top of configured
amount of SDRAM to

256 Mbytes

0FFFFFFFh

00000000h

3FFFFFFFh

FFFFFFFFh

0

256 Mbytes

1 Gbyte

4 Gbytes

This space defaults to
SDRAM, but portions can be
redirected to ROM, GP bus,
or PCI bus memory via PAR
registers; or redirected to
MMCR space, via the CBAR
register. ROM or SDRAM
regions with noncacheable,
write-protected, and/or
execute privilege attributes
can be also be specified with
the PAR registers.

Accesses from PCI bus
masters are allowed to
installed SDRAM only.

This space defaults to PCI
bus memory space, but
portions can be redirected
to ROM or GP bus via PAR
registers. Regions with
noncacheable, write-
protected, and/or execute-
protected ROM attributes
can be also be specified
with the PAR registers. Any
unused regions in this
space default to PCI.

This area is not decoded by
the ÉlanSC520
microcontroller’s host
bridge as a target.Default PCI Bus

Space

Can also be
retargeted to

ROM or GP bus

FFFF0000hBOOT ROM Space

Notes:
The boot ROM device
connected to BOOTCS
defaults to a 64-Kbyte region
at the top of memory.

MMCR Space FFFEFFFFh
FFFEF000h
Élan™SC520 Microcontroller User’s Manual 4-7

System Address Mapping
4.3.3.1 SDRAM Space

SDRAM space in an ÉlanSC520 microcontroller system defaults to a linear region starting
at the lowest 32-bit memory address (00000000h) and ending at the top of SDRAM, which
is defined by the amount of SDRAM populated in the system and programmed in the
SDRAM controller’s configuration registers.

The maximum amount of SDRAM supported in an ÉlanSC520 microcontroller system is
256 Mbytes, in various configurations between one and four physical banks. Once the
SDRAM configuration registers are programmed and the individual banks are enabled,
SDRAM is immediately accessible.

The ÉlanSC520 microcontroller allows special attributes to be applied to any region within
SDRAM space. These attributes are not required for normal operation, however some
applications can benefit from their use. Programming PAR registers for SDRAM access is
required only if special attributes must be applied to specific SDRAM regions, as described
below. There are three attributes that can be applied to any SDRAM region:

■ Noncacheable regions

■ Write-protected regions

■ Code execution control

In a typical system configuration, an external PCI bus master has full access to the entire
SDRAM region. The address decoding logic in the ÉlanSC520 microcontroller’s PCI host
bridge automatically claims cycles to this address space on the PCI bus generated by
external PCI bus masters and causes them to be directed to SDRAM. PCI bus master
cycles that are forwarded to the memory controller always result in an SDRAM cycle, even
if a PAR register has been programmed to redirect the address to the GP bus or ROM.
Also, if a PCI bus master generates a memory write cycle that is forwarded to the memory
controller and a PAR has been programmed to write-protect the region, an SDRAM write
cycle will occur with the SDQM signals inactive, the data will be discarded, and the data
written into the PCI bridge FIFOs will be purged. The ÉlanSC520 microcontroller can be
programmed to generate an interrupt in this case to notify the CPU of such write protection
violations, and that a PCI bus master caused the violations. Any data written to the write
buffer prior to enabling write-protection will be successfully written to SDRAM.

4.3.3.2 ROM/Flash Space

The ÉlanSC520 microcontroller supports three separate address regions for ROM/Flash,
which are selected by the PAR registers. The BOOTCS ROM chip select must be used for
the boot device and defaults to a 64-Kbyte linear region at the top of the 4-Gbyte CPU
space. During the boot process, the ROM code can configure PAR registers to enable the
entire BOOTCS ROM space and redirect it to the desired region. The default 64-Kbyte
region is always enabled, however. The PAR register accepts separate TARGET values for
each of the three ROM chip select regions (BOOTCS, ROMCS1, and ROMCS2). ROM
space is accessible by the CPU only, regardless of PAR register programming.

ROM space is normally cacheable and writes to these regions are allowed (this is useful
for Flash devices). However, PAR registers can also be used to enable specific attributes,
such as defining noncacheability and write-protected regions.

The ÉlanSC520 microcontroller supports multiple data widths in the ROM array, as well as
programmable timing. These characteristics are configured independently of the address
space in the ÉlanSC520 microcontroller. See Chapter 12, “ROM/Flash Controller”, for a
description of these features and instructions for configuring the ROM chip select timing
and data widths.
4-8 Élan™SC520 Microcontroller User’s Manual

System Address Mapping
4.3.3.3 GP Bus Memory Space

GP bus memory space is enabled only through PAR registers and is accessible only by the
CPU. There are eight chip selects that can be selected by the PAR registers. Note that the
PAR registers do not allow any attributes to be defined in GP bus memory space regions,
and GP bus memory space is always noncacheable.

The PAR registers are used to select GP bus space and the specific chip select, but separate
configuration registers within the GP bus controller block must be programmed to control
the width of the data bus and the timing of the bus. There is no restriction on the mapping
of memory address space to GP bus chip selects. For example, if a noncontiguous memory
region is required for a specific chip select, then multiple PAR registers can be programmed
with the same chip select as the target, but with different address ranges.

Positive address decoding is also supported on the GP bus for devices that perform their
own address decoding and therefore do not require a chip select to be generated by the
ÉlanSC520 microcontroller. This is accomplished simply by not choosing the corresponding
chip select in the pin multiplexing registers when the PAR register is set up (see step 3 in
“Programming External Memory, Buses, and Chip Selects” on page 4-4). The address and
control signals are still generated on the GP bus.

PCI bus masters are not permitted to access the GP bus in an ÉlanSC520 microcontroller
system. If a PCI bus master generates an address in normal SDRAM space that is claimed
by the ÉlanSC520 microcontroller, but the region has been redirected to the GP bus via a
PAR register, the cycle will still be sent to SDRAM and will be write-protected, regardless
of the cycle type, and the resultant data will be discarded.

4.3.3.4 PCI Bus Memory Space

The ÉlanSC520 microcontroller’s address decoding logic automatically defaults all memory
space above configured SDRAM to the PCI bus, with the exception of the 4-Kbyte memory-
mapped configuration space and the 64-Kbyte boot space. All CPU memory space
accesses in this address region are redirected to the PCI bus, and the ÉlanSC520
microcontroller does not claim accesses in this address region that are generated by PCI
bus masters. The GP bus DMA controller cannot access this region.

The CPU can allocate space within the lower 1 Gbyte for GP bus or ROM, overlaying and
effectively eliminating parts of this PCI bus region. For example, a ROM device could be
mapped in memory between the top of SDRAM and 1 Gbyte, a region that would normally
default to PCI bus. In this case, only this particular region would be redirected to ROM, but
the remaining region within the 4-Gbyte space would continue to be directed to the PCI bus.

Some system applications may require a region below the top of SDRAM to be redirected
to the PCI bus. An example of this is a PCI bus video card mapped to the 000A0000h-
000BFFFFh region in a PC/AT application. In this case, a PAR register must be used to
redirect the address from the CPU to the PCI bus instead of the SDRAM. Note that only
PAR 0 or PAR 1 can be used to select PCI as a target.

Note: If a PAR window is configured for PCI, AND the CBAR register is programmed to
overlap with this PAR window, AND the PAR window is placed below the top of DRAM, the
MMCR is not given priority over the PCI access. This configuration could result in system
errors due to concurrence of both PCI and internal MMCR accesses.

4.3.3.5 Memory-Mapped Configuration Region (MMCR) Registers Space

All integrated peripherals and configuration registers in the ÉlanSC520 microcontroller that
are not defined as PCI bus configuration space, PC/AT peripheral configuration registers,
or the Configuration Base Address (CBAR) register are memory-mapped in the ÉlanSC520
Élan™SC520 Microcontroller User’s Manual 4-9

System Address Mapping
microcontroller. These registers are accessed in a 4-Kbyte region near the top of CPU
address space at location FFFEF000h after reset, but can be additionally aliased to any
4-Kbyte boundary within the first 1-Gbyte of memory space (between 00000000h and
3FFFFFFFh) by performing an I/O write to the Configuration Base Address (CBAR) register.
MMCR register space has a higher priority than the Programmable Address Region (PAR)
registers.

See Section 4.3.4.1 for details on programming the CBAR register.

Reading unimplemented registers in this 4-Kbyte region returns indeterminate data values.
Writing to unimplemented registers in this region has no effect.

Note: If a PAR window is configured for PCI, AND the CBAR register is programmed to
overlap with this PAR window, AND the PAR window is placed below the top of DRAM, the
MMCR is not given priority over the PCI access. This configuration could result in system
errors due to concurrence of both PCI and internal MMCR accesses.

4.3.3.5.1 Integrated Memory-Mapped Peripherals
The ÉlanSC520 microcontroller’s non-PC/AT integrated peripherals are located within the
MMCR region, instead of being I/O mapped as are the integrated PC/AT peripherals. The
peripherals located in the memory-mapped configuration region include:

■ Am5x86 CPU extension registers

■ SDRAM controller and SDRAM buffering

■ ROM controller

■ PCI host bridge

■ System arbitration

■ Memory and I/O space control

■ GP bus controller

■ PIO, pin multiplexing and clock control

■ Software timer

■ General-purpose timers 0, 1 and 2

■ Watchdog timer

■ Synchronous serial interface (SSI)

■ Feature enhancements to PC/AT-compatible peripherals

– Programmable interval timer (PIT) extension registers in the programmable input/
output (PIO) and programmable interrupt controller (PIC) blocks

– UART extensions

– Programmable interrupt controller (PIC) extensions

– Reset control

– GP-DMA controller extensions
4-10 Élan™SC520 Microcontroller User’s Manual

System Address Mapping
4.3.4 I/O Space
The ÉlanSC520 microcontroller’s I/O space is partitioned into five regions:

■ Configuration Base Address (CBAR) register

■ PCI bus configuration space

■ External PCI bus I/O devices

■ Integrated PC/AT-compatible peripherals

■ External GP bus I/O devices

Figure 4-3 shows the system I/O address space map for the ÉlanSC520 microcontroller.
Each of the regions is described in the following sections.

Figure 4-3 System I/O Map

4.3.4.1 Configuration Base Address (CBAR) Register

The Configuration Base Address (CBAR) register (Port FFFCh) is a 32-bit register that is
used to relocate the integrated memory-mapped peripherals and MMCR registers, thus
allowing a more flexible system memory map. The CBAR is fixed in I/O space at FFFCh
and is “keyed” to prevent accidental programming.

The CBAR allows an alias of the memory-mapped configuration registers (MMCR) to be
aliased anywhere in the first 1 Gbyte of address space on a 4-Kbyte boundary. The MMCR
is always available in the memory space directly below the boot ROM space at FFFEF000h,
but the CBAR can be programmed to optionally allow a copy of this region anywhere in the
lower 1-Gbyte space (on a 4-Kbyte boundary).

PC/AT Peripherals
(See Table 4-5)

The “holes” default to
external GP bus, but
can be redirected to

PCI bus. See
Section 4.3.4.4

03FFh

0000h

FFFFh

0

1 Kbyte

64 Kbytes

Default PCI Bus
Space

Can also be
retargeted to GP bus

FFFCh
CBAR

0CFFh

0CF8h
PCI Configuration

Registers

Default PCI Bus
Space

Can also be
retargeted to GP bus
Élan™SC520 Microcontroller User’s Manual 4-11

System Address Mapping
4.3.4.2 PCI Configuration Space

PCI Local Bus Specification, Revision 2.2, defines an indirect-mapped configuration space
that occupies only eight bytes in I/O space from 0CF8–0CFFh, and this mechanism is
supported in the ÉlanSC520 microcontroller. The PCI bus configuration scheme uses two
32-bit I/O locations:

■ PCI Configuration Address (PCICFGADR) register (Port 0CF8h) is the address register
where the actual address of the device’s register and the bus number is located.

■ PCI Configuration Data (PCICFGDATA) register (Port 0CFCh) is the data register where
the data of the specific register is written to or read from.

This PCI configuration space is accessible only by the CPU in the ÉlanSC520
microcontroller, and the I/O cycle is claimed by the PCI bus configuration register block.

As a target, the ÉlanSC520 microcontroller does not accept any PCI bus configuration
space accesses from other PCI bus masters.

Host-bridge-specific PCI configuration registers are described in the Élan™SC520
Microcontroller Register Set Manual, order #22005. See also the PCI Local Bus Specification,
Revision 2.2, for details on PCI bus device configuration register programming.

4.3.4.3 PCI I/O Space

The CPU’s I/O cycles can be directed to the PCI bus for normal direct-mapped access of
devices, with the following restrictions:

■ I/O addresses claimed by the integrated PC/AT peripherals and the CBAR cannot be
forwarded to the PCI bus under any conditions. See the I/O map in Figure 4-3 on
page 4-11 and Table 4-5 on page 4-14 for details of the I/O addresses that are claimed
by the integrated peripherals.

■ By default, the “holes” in this portion of the I/O address space (0000–03FFh) are
forwarded to the external GP bus. The Address Decode Control (ADDDECCTL) register
(MMCR offset 80h) can be configured to forward accesses to these holes to the PCI
bus. A PAR register is not required for this.

■ I/O addresses implemented by PCI bus configuration space (0CFC–0CFFh) are only
forwarded to the PCI bus as an I/O cycle when the ENABLE bit in the PCI Configuration
Address (PCICFGADR) register is cleared to 0. Otherwise, they are forwarded as a PCI
configuration cycle. Ports 0CF8–0CFBh are forwarded to the PCI bus as I/O transactions
only for non-doubleword accesses to this region; otherwise, they are claimed by the host
bridge as a PCI configuration cycle.

All other CPU I/O cycles are, by default, forwarded to the PCI bus as normal PCI I/O
transactions. PAR registers can be enabled to direct portions of this region to the GP bus.

As a target, the ÉlanSC520 microcontroller does not accept any I/O space accesses from
PCI bus masters.
4-12 Élan™SC520 Microcontroller User’s Manual

System Address Mapping
4.3.4.4 PC/AT-Compatible I/O Peripherals Region

The ÉlanSC520 microcontroller includes several integrated peripheral cores that are
PC/AT compatible, including the DMA controller, programmable interrupt controller (PIC),
programmable interval timer (PIT), UARTs, real-time clock, and various control/status
registers. These I/O addresses are automatically decoded by the ÉlanSC520
microcontroller’s address decoding logic and require no special setup or PAR registers.
Table 4-5 summarizes the I/O map for these integrated peripherals.

There are holes in this region, which are I/O transactions in the lower 1-Kbyte region that
not claimed by the ÉlanSC520 microcontroller’s internal peripherals. These addresses can
be decoded externally, or, if a chip select is required, a PAR register can be programmed
for these addresses.

■ By default, all of the accesses to holes in this portion of the I/O address space (0000h
to 03FFh) are forwarded to the external GP bus.

■ To forward all accesses to the PCI bus, the IO_HOLE_DEST bit in the Address Decode
Control (ADDDECCTL) register (MMCR offset 80h) can be set.

■ If necessary, PARx registers can be used to override sending accesses to the PCI bus
on an individual peripheral basis. In this way, accesses for individual peripherals can be
directed back to the external GP bus.

For example, some PCI cards (notably VGA cards) use legacy I/O locations. The
IO_HOLE_DEST bit allows the holes to be directed to either the PCI or to the GP bus. For
a system requiring legacy GP bus peripherals along with legacy PCI peripherals (for
instance, a PCI VGA card and a GP bus keyboard controller), the IO_HOLE_DEST bit
would be set to 1 to direct all accesses to the PCI bus. The legacy GP bus keyboard controller
would then be configured via PAR registers to override this setting. See “VGA Controller
on the PCI Bus” on page 3-15 for another discussion of this topic.

Note: If a PARx register is configured to address GP bus I/O space within a hole, accesses
in the defined region are forwarded to the GP bus regardless of the IO_HOLE_DEST bit
value. It is the programmer’s responsibility to ensure that external peripherals are not
mapped over any of the ÉlanSC520 microcontroller’s internal peripherals. Normal operation
is not guaranteed in this case. See “Disabling Internal Peripherals” on page 3-21 for more
information about this topic.
Élan™SC520 Microcontroller User’s Manual 4-13

System Address Mapping
The ÉlanSC520 microcontroller also allows the internal UARTs and the real-time clock
(RTC) to be disabled, for applications when an external device is preferred. This is controlled
by configuration register bits in the Address Decode Control (ADDDECCTL) register
(MMCR offset 80h). When these peripherals are disabled, the I/O cycle is forwarded
externally to the GP bus. This allows connection of external devices such as a standard
Super I/O chip.

Integrated PC/AT peripherals are not accessible by PCI bus masters.

Table 4-5 PC/AT Peripherals I/O Map

Peripheral Core I/O Address Range

Slave GP-DMA Controller 0000–000Fh

Master Interrupt Controller 0020–0021h

Slave 2 Interrupt Controller
• This controller is not defined in standard PC/AT architecture, but has been included

in the ÉlanSC520 microcontroller to provide additional interrupt request sources

0024–0025h

Programmable Interval Timer (PIT) 0040–0043h

Keyboard Control A20M and Fast Reset (SCP)
• Accesses to these locations are always directed to the external GP bus, but are

also snooped internally for PC/AT functions.

0060h, 0064h

System Control Port B/NMI Status
• Reads and writes to this location are directed to this register only and are not seen

on the external GP bus

0061h

Real-Time Clock (RTC) Index/Data 0070h, 0071h

General-Purpose Scratch Registers
• These are unused locations from the original DMA Page Register file and are

maintained for PC/AT compatibility. Writes to these locations update the
corresponding register and are also seen on the external GP bus. Reads to the
locations return the data from the corresponding register, but do not initiate a cycle
on the external GP bus.

0080h
0084–0086h

0088h
008C–008Eh

General-Purpose Scratch Register
• This is an unused location from the original DMA Page Register file and is

maintained for PC/AT compatibility. Reads and writes to this location are directed
to this register only and are not seen on the external GP bus.

008Fh

GP-DMA Page Registers
• Reads and writes to these locations are directed to these registers only and are not

seen on the external GP bus.

0081–0083h
0087h

0089h-008Bh

System Control Port A 0092h

Slave 1 Interrupt Controller 00A0–00A1h

Master GP Bus DMA Controller 00C0–00DEh
(even addresses only)

Floating Point Error Interrupt Clear 00F0h

UART 2 02F8–02FFh

UART 1 03F8–03FFh
4-14 Élan™SC520 Microcontroller User’s Manual

System Address Mapping
4.3.4.5 GP Bus I/O Region

The PAR registers must be used to address external I/O devices on the GP bus. GP bus
addressing is implemented with byte granularity, to accommodate devices with very few
registers and very fragmented I/O maps that are typically found in PC/AT-compatible
systems.

When programming PAR registers for GP bus I/O space, it is best to configure the space
on doubleword boundaries. Note that when specifying unaligned byte regions for I/O access,
the software that accesses the regions must directly address the correct byte or bytes. For
example, if a PAR is programmed with an I/O region, and the start address is xxx1h (i.e.,
byte #1), when the CPU performs a word or doubleword access starting at xxx0h (i.e., byte
#0), the entire doubleword access is redirected to the PCI bus (byte #1 will not be accessed
on the GP bus as programmed). In this case, the byte requested must be directly accessed
by the CPU at I/O address xxx1h.

This region is not accessible by PCI bus masters.

4.3.5 Configuration Information
4.3.5.1 Configuring ROM/Flash Space

There are three ROM address regions that can be defined in the ÉlanSC520 microcontroller,
but only the BOOTCS region is absolutely required for system boot up from reset. The
optional two regions, ROMCS1 and ROMCS2 are configured via PAR registers. BOOTCS
configuration is described in Chapter 3, “System Initialization”. See “Programmable
Address Region (PAR) Registers” on page 4-5 for details on PAR register programming.

4.3.5.2 Configuring SDRAM Address Space

SDRAM space is determined at boot time when the SDRAM controller’s configuration
registers are programmed and individual banks are enabled. A typical design can perform
an SDRAM sizing routine to determine the amount of memory installed in the system and
write the appropriate values to the configuration registers. For example, in a system that
contains 16 megabytes of SDRAM, initialization software defines the SDRAM address
region from 00000000–00FFFFFFh, and all accesses to this region are forwarded to the
SDRAM controller unless a PAR register has been programmed to overlay the region with
MMCR, ROM, PCI bus, or GP bus space.

4.3.5.2.1 Noncacheable, Write-Protected, or Nonexecutable SDRAM Regions
In the default condition, the entire SDRAM region is cacheable and executable by the CPU,
and read/writable by the CPU, PCI bus master, and GP bus DMA controller cycles. There
may be some system configurations in which specific portions of SDRAM require restricted
access which can be accomplished by enabling specific attributes. A few common examples
follow:

■ An SDRAM region that contains only code can be marked as write-protected with an
attribute in the PAR register. This prevents the CPU and any bus master from illegally
writing over the code in SDRAM due to faulty programming. In addition, an interrupt can
be generated to the CPU when a violation occurs to assist in debug of the illegal write
condition.

■ An SDRAM region that contains only data can be marked as nonexecutable with an
attribute in the PAR register. If a software task attempts to branch to that location and
resume execution due to a software bug, the CPU will read an illegal opcode, forcing an
exception. The exception handler will then facilitate debugging the program that caused
the illegal condition.
Élan™SC520 Microcontroller User’s Manual 4-15

System Address Mapping
4.3.5.3 Configuring GP Bus Peripheral Space

Configuring space for GP bus peripherals is accomplished via PAR register programming.
This section describes a few system configuration examples beyond the normal
programming of chip select regions.

4.3.5.3.1 Configuring a Chip Select for Noncontiguous Memory or I/O Space
Some peripheral subsystems may require a single chip select that must be asserted in
noncontiguous address locations. For example, an I/O device can contain multiple
integrated functions that are each addressed at separate, noncontiguous I/O addresses
(such as a custom ASIC). In this case multiple PAR registers can be used to define each
individual address region, but all can be mapped to the same chip select by programming
the TARGET field to GP bus and the ATTR field to the same chip select. This is most useful
when working with a highly fragmented I/O map such as defined in PC/AT systems, where
there is little unused I/O address space.

This can also be accomplished by programming a single PAR register to cover the entire
range of addresses, which results in some wasted address space.

4.3.5.3.2 Positive Decoding Example
Some peripherals connected to the GP bus may perform their own address decoding from
the GP bus addresses and do not require a chip select. In this case, the same steps are
followed for programming the configuration registers, but the pin multiplexing registers do
not need to be programmed to allow the actual chip select to be driven on a pin, thus allowing
the pin to be used for other functions.

If multiple positive decoding regions are required in an application, the PAR registers for
each reason can be programmed to map to the same unused chip select, to conserve pin
functions.

4.3.5.3.3 Configuring the Élan™SC520 Microcontroller to Use an External Super I/O Chip
It may be desirable to connect a commercially available Super I/O chip on the GP bus in
an ÉlanSC520 microcontroller system (for example, systems requiring a keyboard or IDE
drive can implement this device).

In this case, since the Super I/O implements two UARTs programmed at the same address
as the ÉlanSC520 microcontroller’s integrated UARTs, the internal UARTs can be disabled
to support the COM1 and COM2 ports in the Super I/O chip, if desired. In this case, when
the CPU performs I/O accesses to the UART address regions, the cycles will be forwarded
out to the external GP bus. Also, the Super I/O is a positive decoding device, i.e., it does
not require a chip select because it performs the address decoding from the GP bus
addresses.

The I/O map for the Super I/O device is fragmented and may require the use of multiple
PAR registers for noncontiguous addressing, as described in Section 4.3.5.3.1. If the
fragmented I/O space unused by the Super I/O chip is not required elsewhere in the system,
then a single PAR register can be used to map the entire range of peripherals. In this case,
the UART address spaces would be the highest used I/O space internally in the ÉlanSC520
microcontroller, so the Super I/O peripherals would not be in conflict, allowing a single PAR
register to define the entire range of Super I/O peripherals from 01F0–07BEh.

See “Interfacing with a Super I/O Controller” on page 13-13, for an example of connecting
the Super I/O chip to the ÉlanSC520 microcontroller’s GP bus.
4-16 Élan™SC520 Microcontroller User’s Manual

System Address Mapping
4.3.5.4 Configuring the Élan™SC520 Microcontroller for Windows® Compatibility

The ÉlanSC520 microcontroller can be configured to operate as a Windows compatible
microcontroller. This section describes some of the steps that may be required to configure
the memory and I/O addressing; however, this will vary depending on the requirements of
the system.

4.3.5.4.1 Memory Regions Above DOS 640-Kbyte Application Space
The ÉlanSC520 microcontroller can be programmed to accommodate the legacy PC/AT-
compatible region above the DOS 640-Kbyte application space at 000A0000h area ending
at 000FFFFFh (1 Mbyte). This space defaults to SDRAM once the SDRAM banks are
enabled, but the PAR registers can be programmed to support the various requirements of
systems requiring Windows compatibility. The list below outlines some of the steps to
consider when building a memory map in the ÉlanSC520 microcontroller system for such
compatibility.

■ Two 64-Kbyte video regions from 000A0000–000AFFFFh and 000B0000–000BFFFFh
default to SDRAM, but can be enabled as PCI bus space for PC/AT compatible video
cards on the PCI bus, via one of the PAR registers. The ÉlanSC520 microcontroller’s
PCI bus host bridge (as a target) will automatically ignore accesses in this space when
either PAR 0 or PAR 1 are programmed to overlay SDRAM regions with the PCI bus.

■ The remaining area from 000C0000–000FFFFFh is normally sub-divided in a PC/AT
system into several different address regions for BIOS, and accesses to these regions
can be redirected to either ROM, the GP bus, or the PCI bus by programming PAR
registers. Most systems will not require the use of all BIOS regions defined, since many
are for expansion ROMs intended for various plug-in cards (such as network interface
cards). The following regions are normally defined:

– One BIOS region with 64-Kbyte granularity from 000F0000–000FFFFFh

– Four extended system BIOS regions, each with 16-Kbyte granularity from 000E00000–
000EFFFFFh

– 8 Expansion ROM regions, each with 16-Kbyte granularity, from 000C0000–
000DFFFFFh

4.3.5.4.2 Integrated Peripheral Mapping
Because the ÉlanSC520 microcontroller already provides standard PC/AT-compatible
peripherals that use direct I/O address mapping, there are no I/O address conflicts with
these devices. See Table 4-5 on page 4-14 for a summary of this I/O map.

The Configuration Base Address (CBAR) register (Port FFFCh) can be used to alias the
internal memory-mapped registers and peripherals to a convenient location. For example,
they could be mapped between 640 Kbytes and 1 Mbyte for real mode operation. The
memory-mapped configuration region is always available in the upper CPU space
(4 Gbytes), but the aliased location is only accessible when the CBAR is programmed and
the ENABLE bit has been set.

4.3.5.4.3 DMA Channel and Interrupt Request Steering
The ÉlanSC520 microcontroller provides a method to route interrupt request sources and
DMA request pins to the appropriate channels on the programmable interrupt controller
(PIC) and the GP-DMA controller, respectively.

See Chapter 15, “Programmable Interrupt Controller”, for further information on interrupt
request routing.

See Chapter 14, “GP Bus DMA Controller”, for further information on DMA request routing.
Élan™SC520 Microcontroller User’s Manual 4-17

System Address Mapping
4.3.5.5 Configuring PCI Bus Devices

PCI bus device configuration is accomplished in the ÉlanSC520 microcontroller with the
standard PCI Configuration Mechanism #1, as defined in the PCI Local Bus Specification,
Revision 2.1. This configuration requires an indirect mapped I/O scheme in which the
address of the device is written to the PCI Configuration Address (PCICFGADR) register
(Port 0CF8h), and the data is accessed via the PCI Configuration Data (PCICFGDATA)
register (Port 0CFCh). See“Configuration Information” on page 9-9 for more information.
See also the PCI Local Bus Specification, Revision 2.2.

4.3.6 Interrupts
The ÉlanSC520 microcontroller can be programmed to generate an interrupt request when
a write protection violation occurs, providing software with a debugging mechanism to
determine which task illegally attempted to write to the memory region marked with this
attribute. In this case, an interrupt request is generated to the programmable interrupt
controller (PIC) block, where the request is routed to the appropriate type of interrupt
(maskable or non-maskable) and level, based on the programming of the configuration
registers. The PAR window that contains the address region where the write protect violation
occurred is latched into a register, as well as which bus owner caused the violation (CPU,
GP-DMA controller, or PCI bus master).

See Chapter 15, “Programmable Interrupt Controller”, for details of PIC programming.

4.3.7 Software Considerations
Since the ÉlanSC520 microcontroller provides some flexibility in defining the system
memory and I/O map, there are a number of software considerations that must be analyzed.
The list below describes some of the issues that must be considered when programming
the configuration registers to define the memory and I/O space in an ÉlanSC520
microcontroller system.

■ The Configuration Base Address (CBAR) register must be accessed as a 32-bit I/O
register to guarantee that all bits are written at the same time. The MATCH field of the
CBAR must be written with the correct pattern to enable or disable the MMCR alias.

■ MMCR register space has higher priority than the Programmable Address Region (PAR)
registers.

■ The PAR registers are organized such that the lowest register (PAR 0) is the highest
priority and the last PAR register (PAR15) is lowest priority. Therefore, if two PAR registers
are overlaid due to programming, the lowest numbered PAR takes priority.

■ PAR registers should not be programmed to conflict with any of the fixed I/O regions,
such as the Configuration Base Address (CBAR) register or the PCI bus configuration
space.The ÉlanSC520 microcontroller’s address decoding does not permit PAR
registers to overlay the integrated PC/AT peripherals.

■ In general, the PAR register start address and region size should not be programmed
to conflict with each other. It is possible to program the PAR registers such that the region
size is greater than the start address allows. For example, if the region size is defined
as 64 Kbytes, but the start address is programmed to be the top of the 1-Gbyte region
(maximum address allowed by PAR registers) minus 4 Kbytes, then the address space
available will be the 4-Kbyte region starting at the start address.

– Subsequent access past the 1-Gbyte boundary will still be to the PCI bus

– The remaining 60-Kbyte region will not qualify as a PAR hit.
4-18 Élan™SC520 Microcontroller User’s Manual

System Address Mapping
■ When programming the PAR registers for an SDRAM region, the PAR register start
address and region size should not conflict with the programmed value that defines the
top of SDRAM in the system. For example, if a PAR is setup for SDRAM and the region
size is defined as 8 Kbytes, but the start address is programmed to be the top of the
SDRAM minus 4 Kbytes, then addresses above the top of SDRAM will not result in a hit
for this PAR.

■ If the TARGET field of any PAR register is defined as SDRAM, but no SDRAM has been
enabled via the SDRAM controller configuration registers, the memory space defaults
to the PCI bus.

■ Systems that configure another memory space resource to be overlaid on top of SDRAM
space do not have access to the SDRAM that was overlaid, since address translation
is not supported in the ÉlanSC520 microcontroller. For example, if a PCI bus video card
is used in the 000A0000–000AFFFFh region (as in typical PC/AT operation), the system
will lose the 64 Kbytes of SDRAM in that region as long as the PAR register is enabled.

■ Any region that is overlaid on default SDRAM space through a PAR register or CBAR
takes priority over the SDRAM region in the decoding block. In effect, a portion of SDRAM
becomes inaccessible when this is done. If a PCI bus master generates an address to
this overlaid address region, the cycles will be forwarded to SDRAM and will be write-
protected.

■ Code execution from memory on the GP bus or the PCI bus is discouraged (after boot
code has executed), since accesses to these spaces are not cacheable and may result
in unacceptable latencies under some conditions. Code execution is more efficient when
executing from SDRAM or from ROM devices that use BOOTCS, ROMCS1, or ROMCS2,
because accesses to these resources are cacheable.

■ The ÉlanSC520 microcontroller guarantees coherency with SDRAM buffers that are
shared between the CPU and other bus masters, but it may be beneficial to mark these
regions as noncacheable to avoid the overhead with cache write-backs upon every
access by the bus master. This can be accomplished by programming a PAR register
and setting the noncacheable attribute. Cache snooping will continue; however, the
performance impact is negligible, since there will be no write-back cycles.

■ Care must be taken when programming configuration registers that affect address
decoding during normal system operation when either PCI bus master or GP bus DMA
activity is occurring.

– When writing to PAR registers, verify that the ÉlanSC520 microcontroller’s PCI host
bridge target FIFOs have been flushed and disable PCI bus master access of SDRAM
to prevent unexpected forwarding of accesses from other masters. An example of a
potential problem is modifying a PAR register to redirect normal SDRAM region
accesses to the PCI bus, while a PCI bus master has already been granted the PCI
bus. In this case, when the CPU completes the write to the PAR register, the posted
PCI bus master access is forwarded to the SDRAM controller because the bus was
already granted to the PCI bus master. This problem can be alleviated by disabling
PCI bus master access to SDRAM (the default mode after reset) via the System Arbiter
Master Enable (SYSARBMENB) register (MMCR offset 72h), and performing a read
from an external PCI agent to flush the ÉlanSC520 microcontroller’s target FIFOs,
before writing to configuration registers that affect address decoding.

– The CPU cache should always be flushed after the cacheability attribute is changed
from cacheable to noncacheable for any memory region (by programming the PAR
register), or when the cache write policy is changed from write-back to write-through.
Élan™SC520 Microcontroller User’s Manual 4-19

System Address Mapping
■ Programming the PAR register maximum region size and a page size of 64 Kbytes allows
a space up to 128 Mbytes to be defined; however, the GP bus/ROM address pins support
a maximum of 64 Mbytes per chip select. If a 128-Mbyte space is programmed for a GP
bus or ROM chip select, the upper 64 Mbytes will be aliased with the lower 64-Mbyte
region.

■ When programming PAR registers for GP bus I/O space, it is best to configure the space
on doubleword boundaries. Note that when specifying unaligned byte regions for I/O
access, the software that accesses the regions must directly address the correct byte
or bytes. For example, if a PAR is programmed with an I/O region, and the start address
is xxx1h (i.e., byte 1), when the CPU performs a word or doubleword access starting at
xxx0h (i.e., byte 0), the entire doubleword access is redirected to the PCI bus (byte 1
will not be accessed on the GP bus as programmed). In this case the byte requested
must be directly accessed by the CPU at I/O address xxx1h.

■ A write-protection violation occurs when the CPU, any PCI bus master, or the GP-DMA
controller attempts to write to any memory region that has been marked as write-
protected by a PAR register attribute. When this occurs, the cycle is always forwarded
to SDRAM as a write cycle with the SDQM signals inactive, and the original data is
discarded. Any data that was written to the write buffer prior to enabling write-protection
is successfully written to SDRAM.

■ Software must include proper interrupt service routines and exception handlers when
enabling write-protection violation interrupts and nonexecutable region attributes in the
Address Decode Control (ADDDECCTL) register (MMCR offset 80h). Note that in the
case of the write protection violation, the PAR register number that contains the address
region of the violation is latched in the WPV_WINDOW bit field in the Write-Protect
Violation Status (WPVSTA) register (MMCR offset 82h) and retained until it is cleared
by software. The PARx window number is latched when a write-protect violation occurs.
Subsequent write-protect violations are not captured until software clears the interrupt
by writing a 1 to the WPV_STAT bit in the same register.

■ If two or more PAR registers are overlapping (programmed to have some address range
in common), the write-protection exception is generated only if the higher priority PAR
has the attribute enabled. If the lower priority PAR has the write-protect attribute enabled
but the higher priority PAR has it disabled, then writes into the common address range
shared by the two PAR registers will not generate an exception. This discussion applies
to the cacheability control and code execution attributes, as well.

■ Access of ÉlanSC520 microcontroller internal configuration registers:

– All integrated PC/AT peripherals mapped to I/O space must be accessed only as 8
bits unless otherwise specified.

– All memory-mapped integrated peripherals and configuration registers for PC/AT
peripherals must be accessed as specified in the Élan™SC520 Microcontroller
Register Set Manual, order #22005.

– PCI configuration registers should be accessed as 32 bits unless otherwise specified
in the Élan™SC520 Microcontroller Register Set Manual, order #22005.
4-20 Élan™SC520 Microcontroller User’s Manual

System Address Mapping
4.4 INITIALIZATION
The ÉlanSC520 microcontroller’s address decoding is cleared to the default state by a
system reset.

■ The BOOTCS decoding is enabled for the 64-Kbyte region from FFFF0000–FFFFFFFFh

■ SDRAM address space is disabled.

■ All PAR registers are disabled and cleared to zeros, which means there are no external
GP bus address spaces enabled. Note that I/O holes below 1 Kbyte will be directed to
the external GP bus. However, no chip selects are enabled, and positive decodes would
be required.

■ Integrated PC/AT peripheral I/O space is enabled as defined in Table 4-5 on page 4-14.

■ The Configuration Base Address (CBAR) register is addressed in I/O space at FFFCh.
Memory-mapped configuration register space is enabled at FFFEF000–FFFEFFFFh
(below CPU boot space address).

■ The PCI bus is disabled, and the configuration registers are defaulted to the values
specified in PCI Local Bus Specification, Revision 2.2. PCI configuration space is
enabled in I/O space at ports 0CF8h and 0CFCh (PCICFGADR and PCICFGDATA).

See “Programmable Address Region (PAR) Registers” on page 4-5 for information on
configuring these registers. See “Configuration Information” on page 4-15 for additional
detail on configuring the various address spaces included on the ÉlanSC520
microcontroller.
Élan™SC520 Microcontroller User’s Manual 4-21

System Address Mapping
4-22 Élan™SC520 Microcontroller User’s Manual

CHAPTER
5
 CLOCK GENERATION AND CONTROL
5.1 OVERVIEW
The ÉlanSC520 microcontroller is designed to generate all of the internal and system clocks
it requires. The ÉlanSC520 microcontroller includes on-chip oscillators and PLLs, as well
as most of the required PLL loop filter components.

The ÉlanSC520 microcontroller requires two standard crystals, one for 32.768 kHz and
one for 33 MHz. All the clocks required inside the ÉlanSC520 microcontroller are generated
from these crystals. Output clock pins are provided for selected clocks, providing up to 24
mA of sink or source current.

The ÉlanSC520 microcontroller also supplies the clocks for SDRAM and the PCI host
bridge; however external clock buffering may be required in some systems.

The clocking generation and control features include:

■ RTC low-current oscillator using standard off-the-shelf 32.768-kHz crystal

■ 33-MHz oscillator using standard off-the-shelf 33-MHz crystal (33.000 or 33.333 MHz)

■ 33-MHz clock provides clocks for the integrated Am5x86 CPU and external PCI bus

■ Integrated 66-MHz PLL provides clocks for external SDRAM

■ Integrated PLLs for generating 1.1892-MHz PIT clock and 18.432-MHz UART clock

■ Integrated on-chip PLL loop filters for the 66-MHz and 36.864-MHz PLLs, eliminating
the need for external capacitors

■ 33.333-MHz/30.000-MHz PCI Clock Output Pin, CLKPCIOUT

■ 66-MHz SDRAM Clock Output Pin, CLKMEMOUT

■ 33-MHz and 32.768-kHz oscillators bypass option

Note: The ÉlanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz
crystal. In this document, the term “33 MHz” refers to the system clock derived from
whichever 33-MHz crystal frequency is being used in the system.
Élan™SC520 Microcontroller User’s Manual 5-1

Clock Generation and Control
5.2 BLOCK DIAGRAM
Figure 5-1 shows a block diagram of the ÉlanSC520 microcontroller’s internal clocks.
Table 5-1 shows PLL lock times and oscillator start-up times. See the Élan™SC520
Microcontroller Data Sheet, order #22003, for timing diagrams and additional clocking
specifications.

Figure 5-1 Clock Source Block Diagram

Table 5-1 Clock Start-up and Lock Times

Clock Source Max

32.768-kHz Oscillator 1 s

33-MHz Oscillator 10 ms

PLL1 (1.47456 MHz) 10 ms

PLL2 (36.864 MHz) 100 ms

PLL3 (66 MHz) 50 ms

32.768-kHz
Crystal

32.768-kHz
Oscillator

PLL2
1.47456 MHz DIV 31

DIV 2

1.1892-MHz PIT

18.432-MHz UART

33-MHz
Oscillator

PLL3

32.768-kHz SDRAM Refresh

33-MHz
Crystal

36.864 MHz

LF_PLL1

32.768-kHz RTC

Notes:
1. Includes the programmable interval timer (PIT), general-purpose timers, watchdog timer, and the software timer.

PCI

CPU

SDRAM

GP Bus

GP DMA

ROM

SSI

33 MHz

33 MHz

33 MHz

33 MHz

33 MHz

33 MHz

66 MHz

PLL1

Timers133 MHz
5-2 Élan™SC520 Microcontroller User’s Manual

Clock Generation and Control
5.3 SYSTEM DESIGN
Figure 5-2 shows a system block diagram of the ÉlanSC520 microcontroller’s external
clocks. As shown in Figure 5-2, external clock drivers may be necessary when the system
presents a large capacitive load.

Table 5-2 lists the shared clock signals of the ÉlanSC520 microcontroller.

Figure 5-2 System Clock Distribution Block Diagram

Table 5-2 Clock Signals Shared with Other Interfaces

Default Function Alternate Function Control

CLKTIMER CLKTEST CLK_PIN_DIR bit in Clock Select (CLKSEL) register
(MMCR offset C26h)

SDRAM

66 MHz

PCI
Device

PCI
Device

33 MHz

32KXTAL2

33MXTAL1

33MXTAL2

32KXTAL1
32.768-kHz

33-MHz
Crystal

Crystal

[CLKTEST]

CLKPCIOUT
33 MHz

CLKMEMOUT 66 MHz

CLKMEMIN

CLKPCIIN

.

.

.

Programmable

Optional

VCC_ANLG

LF_PLL1

R1

C1C2

Élan™SC520
Microcontroller

CLKTIMER/

Note : Dotted line ovals, , signify frequency groups.

Driver

Optional
Clock
Driver

Clock
Élan™SC520 Microcontroller User’s Manual 5-3

Clock Generation and Control
5.3.1 Clock Pin Loading
Clock pins are designed to either source or sink 24 mA. The maximum amount of capacitive
load that can be placed on a clock pin is determined by the required rise/fall times.

Use the following equation to determine the maximum capacitive loading.

C = I/(dV/dt)

where:

I = Current
dV = Voltage change
dt = Time change

As an example, suppose that the system requires a rise/fall time of 1 ns, with a voltage
swing of 2.5 V. Then, the maximum capacitive load is:

Cmax = 24 mA/(2.5 V/1 ns) = 9.6 pF

Derating curves for the device are provided in the Élan™SC520 Microcontroller Data Sheet,
order #22003.

5.3.2 Selecting a Crystal
The accuracy of the real-time clock (RTC) depends on several factors relating to crystal
selection and board design. A clock timing budget determines the clock accuracy. The
designer should determine the timing budget before selecting a crystal.

There are four major contributors to a clock timing budget.

■ Frequency Tolerance—This is the crystal calibration frequency. It states how far off the
actual crystal frequency is from the nominal frequency. For a typical 32.768-kHz crystal
(watch crystal), the frequency tolerance is ± 20 parts per million (ppm). Frequency
tolerance is specified at room temperature.

■ Frequency Stability—This parameter is a measure of how much the crystal resonant
frequency is influenced by operating temperature. For watch crystals, typical numbers
are around –30 ppm over the temperature range.

■ Aging—This parameter is how much the crystal resonant frequency changes with time.
Typical aging numbers are ± 3 ppm per year.

■ Load Capacitance—The crystal is calibrated with a specific load capacitance. If the
system load capacitance does not equal the crystal load capacitance, a timing error is
introduced. The timing error is calculated by the following equation.

Error = {[1 + C1/(CLxtal+Co)]1/2 – [1 +C1/(CLsystem+Co)]1/2}/ [1 + C1/(CLxtal+Co)]1/2

where:

C1 is the crystal motional capacitance
Co is the crystal static capacitance
CLxtal is the crystal load capacitance
CLsystem is the system load capacitance

For the error in ppm, multiply Error by 106.

Once the complete timing error has been calculated by adding all of the errors together,
compare it to the initial timing budget. Table 5-3 provides a convenient translation of ppm
to seconds per month.
5-4 Élan™SC520 Microcontroller User’s Manual

Clock Generation and Control
Detailed crystal specifications and further information on crystal selection can be found in
the Élan™SC520 Microcontroller Data Sheet, order #22003.

5.3.2.1 Running the Élan™SC520 Microcontroller at 33.333 MHz

The clock that is supplied to the PCI bus (CLKPCIOUT) is exactly the same as the frequency
of the crystal. The ÉlanSC520 microcontroller simply buffers the 33-MHz crystal input and
provides it to the CLKPCIOUT pin. Since crystals have inaccuracies, it is possible that these
inaccuracies cause the period of CLKPCIOUT to become marginally less than 30 ns.

It is up to the system designer to choose the accuracy of the crystal used with the ÉlanSC520
microcontroller. The 33.000-MHz frequency provides a better guard band than the 33.333-
MHz crystal. In practice, most PCI devices can tolerate both frequencies, but it is important
to be aware of the impact of choosing the crystal on this potential violation of the PCI bus
specification. The PCI Local Bus Specification, Revision 2.2 requires that the minimum
clock period be 30 ns.

5.3.3 Bypassing Internal Oscillators
The 32.768-kHz and the 33-MHz ÉlanSC520 microcontroller oscillators can be bypassed
by connecting an external clock to the crystal pins. See Figure 5-3 and Figure 5-4 for
suggested circuitry.

Figure 5-3 shows two resistors in series with their common node connected to 32KXTAL2.
The value of the resistor connected to ground (R2) is 100 kW. The value of R1 depends on
the voltage level of the external oscillator, according to the following formula:

V(32KXTAL2) = 2.5 V = R2 / (R2 + R1) * V(External Oscillator)

Figure 5-3 Bypassing the 32.768-kHz Oscillator

Table 5-3 Timing Error as It Translates to Clock Accuracy

Timing Error
(Parts per Million) Seconds/Month

± 10 ± 25.9

± 20 ± 51.8

± 30 ± 77.8

± 40 ± 103.7

± 50 ± 129.6

External
32.768-kHz

Oscillator 32KXTAL2

32KXTAL1100 kW

Élan™SC520
Microcontroller

R2

R1 2.5-V ±10% typical
Élan™SC520 Microcontroller User’s Manual 5-5

Clock Generation and Control
Figure 5-4 Bypassing the 33-MHz Oscillator

5.4 REGISTERS
A summary listing of the memory-mapped configuration registers used to control the clocks
on the ÉlanSC520 microcontroller is shown in Table 5-4.

Table 5-4 Clock Control Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

Am5x86 CPU Control CPUCTL 02h CPU clock speed control

Software Timer Configuration SWTMRCFG C64h Crystal frequency (33.000 MHz or 33.333 MHz)
for software timer

Clock Select CLKSEL C26h CLKTIMER[CLKTEST] pin enable, clock output
select options (18.432 MHz or 1.8432 MHz
UART, PLL1, PLL2, PIT, and RTC), CLKTIMER
or CLKTEST select

GP Timer 0 Mode/Control GPTMR0CTL C72h GP Timer 0: internal clock source prescaler,
external clock source

GP Timer 1 Mode/Control GPTMR1CTL C7Ah GP Timer 1: internal clock source prescaler,
external clock source

UART 1 General Control
UART 2 General Control

UART1CTL
UART2CTL

CC0h, CC4h UARTx clock source: 1.8432 MHz or 18.432
MHz

SSI Control SSICTL CD0h SSI clock speed

GP-DMA Control GPDMACTL D80h GP-DMA clock frequency: 4 MHz, 8 MHz, or 16
MHz

External
33-MHz
Oscillator

No Connect

33MXTAL2

33MXTAL1

Élan™SC520
Microcontroller

2.5-V ±10% typical
5-6 Élan™SC520 Microcontroller User’s Manual

Clock Generation and Control
5.5 OPERATION
The clocks on the ÉlanSC520 microcontroller are generated from two local oscillators.

The 32.768-kHz oscillator is used to drive PLL1 (1.47456-MHz PLL), which in turn drives
PLL2 (36.864-MHz PLL). The 36.864-MHz clock is divided by 2 to produce the 18.432-MHz
UART clock. It is divided by 31 to produce the 1.1892-MHz PIT clock.

The 33-MHz oscillator produces the 33-MHz PCI and CPU clocks. The 33-MHz oscillator
is also used to drive PLL3 (66-MHz PLL) to produce the SDRAM clock.

5.5.1 Internal Clocks

5.5.1.1 CPU

The Am5x86 CPU bus frequency in the ÉlanSC520 microcontroller is always 33 MHz;
however, the Am5x86 CPU core frequency is programmable to be 100 MHz or 133 MHz.
The clock speed of the Am5x86 CPU core defaults to 100 MHz, but can be changed
dynamically via the Am5x86 CPU Control (CPUCTL) register (MMCR offset 02h). Clocking
considerations for the Am5x86 CPU are described in “Clocking Considerations” on
page 7-4.

The ÉlanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz crystal as
the 33-MHz clock source.

5.5.1.2 PCI Bus

The PCI bus system clock on the ÉlanSC520 microcontroller runs at 33 MHz. The PCI bus
system clock (CLK) is described in “PCI Clocking” on page 9-5, as is usage of the two PCI
bus clock pins, CLKPCIIN and CLKPCIOUT.

The CLKPCIOUT pin is a 33-MHz clock output for the PCI bus devices. This signal is derived
from the 33MXTAL2–33MXTAL1 interface.

Note that the ÉlanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz
crystal. “Running the Élan™SC520 Microcontroller at 33.333 MHz” on page 5-5 details
some important considerations in choosing a crystal for a PCI system.

5.5.1.3 SDRAM Controller

The SDRAM clock runs at 66 MHz, twice the frequency of the 33-MHz oscillator. The refresh
rate of the SDRAM controller is derived from the 32.768-kHz clock. The flexible refresh rate
supports a wide variety of devices.

Clocking considerations for the SDRAM controller, including the CLKMEMIN and
CLKMEMOUT pins, are described in “SDRAM Clocking” on page 10-6.

5.5.1.4 ROM/Flash Interface

The ROM/Flash controller is clocked from the internal Am5x86 CPU bus and operates at
33 MHz.

5.5.1.5 GP Bus

The GP-bus interfaces internally to the Am5x86 CPU and operates at 33 MHz.
Élan™SC520 Microcontroller User’s Manual 5-7

Clock Generation and Control
5.5.1.6 GP-DMA Controller

The GP-DMA controller can be programmed to operate at 4 MHz, 8 MHz, or 16 MHz. This
option is specified in the GP-DMA Control (GPDMACTL) register (MMCR offset D80h).
Note that these frequencies are derived from the 33-MHz clock. The exact frequency is an
even fraction of the crystal (33.000-MHz or 33.333-MHz) being used in the system.

5.5.1.7 Programmable Interval Timer

The programmable interval timer (PIT) clock source can be either the derived 1.1892-MHz
PIT clock or the CLKTIMER pin.

Note: Since the PIT clock does not run at the industry-standard 1.19318 MHz, modifications
in software must be made to allow for this difference. See “Using the PIT Clock Source in
PC/AT-Compatible Systems” on page 16-6 for more information.

5.5.1.8 General-Purpose Timers

The clock source for the three general-purpose timers is the 33-MHz clock. For Timer 0
and Timer 1, the clock source can also be an external pin or a derived prescale clock. This
option is specified in the GP Timer 0 Mode/Control (GPTMR0CTL) register (MMCR offset
C72h) and the GP Timer 1 Mode/Control (GPTMR1CTL) register (MMCR offset C7Ah).
Clocking considerations for the general-purpose timers are described in “Clocking
Considerations” on page 17-5.

5.5.1.9 Software Timer

The software timer uses the 33-MHz clock. Proper configuration of the software timer
requires the programmer to specify in the Software Timer Configuration (SWTMRCFG)
register (MMCR offset C64h) whether a 33.000-MHz or 33.333-MHz crystal is being used
in the system.

5.5.1.10 Watchdog Timer

The watchdog timer uses the 33-MHz clock. It supports up to a 30-second time-out period.
The EXP_SEL field in the Watchdog Timer Control (WDTMRCTL) register (MMCR offset
CB0h) indicates the exponent value used to calculate the time-out duration.

5.5.1.11 Real-Time Clock

The 32KXTAL2–32KXTAL1 pins are used to connect the external 32.768-kHz crystal or
oscillator to the ÉlanSC520 microcontroller. This clock source is then used to clock the
internal real-time clock (RTC) included on the ÉlanSC520 microcontroller.

5.5.1.12 UART Serial Ports

The UARTs each support an internal baud-rate clock of either 18.432 MHz or 1.8432 MHz.
This frequency is programmed in the CLK_SRC bit in the UART 1 General Control
(UART1CTL) register (MMCR offset CC0h) or the UART 2 General Control (UART2CTL)
register (MMCR offset CC4h).

5.5.1.13 Synchronous Serial Interface

The synchronous serial interface (SSI) clock is derived from the 33-MHz clock. The
CLK_SEL bit in the SSI Control (SSICTL) register (MMCR offset CD0h) is used to configure
the frequency of the SSI clock (the SSI_CLK pin). The actual bit rate will vary, depending
on whether the system is using a 33.000-MHz or a 33.333-MHz crystal.
5-8 Élan™SC520 Microcontroller User’s Manual

Clock Generation and Control
5.5.2 Using the CLKTIMER[CLKTEST] Pin
The CLKTIMER[CLKTEST] pin can be programmed as an input (CLKTIMER) or as an
output (CLKTEST) in the Clock Select (CLKSEL) register (MMCR offset C26h).

■ When programmed as an input (default), this pin can be used to provide the clock for
the programmable interval timer (PIT) core. See “Using the PIT Clock Source in PC/AT-
Compatible Systems” on page 16-6 for more information. While the pin is being enabled
as an input, it is synchronized to the CPU clock to prevent spurious pulses from occurring
in the PIT core.

■ When programmed as an output, this pin, as CLKTEST, can drive one of several of the
internal clocks outside the microcontroller for testing or drive an external device.
Figure 5-5 shows the available clocks that can be directed to the CLKTEST pin by
programming the Clock Select (CLKSEL) register (MMCR offset C26h).

Note: Caution should be exercised when programming the CLKTIMER[CLKTEST] pin as
an output, since there is no logic to avoid spurious pulses while enabling or changing clock
frequencies. The target device should be held in reset, the CLK_TST_SEL bit field
programmed to the correct frequency, the CLK_PIN_DIR bit set to 1 (output), and the
CLK_PIN_ENB bit set to 1 (enabled). Then, the target device can be released from reset.

Figure 5-5 Clock Routing for the CLKTEST Pin

5.6 INITIALIZATION
The Am5x86 CPU core is reset during a system reset, and the CPU core clock frequency
defaults to 100 MHz. A soft reset does not affect the CPU core clock frequency.

The CLKTIMER[CLKTEST] pin is disabled on reset and must be enabled via the Clock
Select (CLKSEL) register (MMCR offset C26h) before it will function.

See Figure 5-1 on page 5-2 and Table 5-1 on page 5-2 for start-up information. See also
Figure 6-3 on page 6-9 and the reset timing diagrams in the Élan™SC520 Microcontroller
Data Sheet, order #22003.

PLL1 (1.47456 MHz)

PLL2 (36.864 MHz)

PIT (1.1892 MHz)

RTC (32.768 kHz)

CLKTEST

CLK_TST_SEL bits from the Clock Select Register

6:1 Mux

UART (18.432 MHz)

UART (1.8432 MHz)
Élan™SC520 Microcontroller User’s Manual 5-9

Clock Generation and Control
5-10 Élan™SC520 Microcontroller User’s Manual

CHAPTER
6
 RESET GENERATION
6.1 OVERVIEW
Reset features of the ÉlanSC520 microcontroller include:

■ ÉlanSC520 microcontroller system reset generation via PWRGOOD pin, software
writes, watchdog timer, and AMDebug system reset

■ ÉlanSC520 microcontroller system reset with SDRAM interface contents maintained
(called programmable reset)

■ Hard CPU reset generation via system reset

■ Soft CPU reset generation via software writes and detection of the CPU special cycle
type “shutdown”

■ GP bus reset generation via system reset and software writes

■ PCI bus reset generation via system reset and software writes. See Chapter 9, “PCI Bus
Host Bridge”

■ Reset sources can be determined by software

■ Latches system-configuration data presented on the shared CFG3–CFG0 pins and static
system board information presented on the shared RSTLD7–RSTLD0 pins at the
assertion of the PWRGOOD pin. See Chapter 12, “ROM/Flash Controller”, for
information in the CFGx pins.

■ System Control Processor (SCP) A20 gate and reset CPU command emulation

■ Control bit to enable AMDebug mode after the CPU has been reset

6.2 BLOCK DIAGRAM
Figure 6-1 shows a block diagram of the reset controller.
Élan™SC520 Microcontroller User’s Manual 6-1

Reset Generation
Figure 6-1 Reset Controller Block Diagram

6.3 SYSTEM DESIGN
The POWERGOOD signal from the system board is connected to the PWRGOOD pin on
the ÉlanSC520 microcontroller to produce CPU reset and system reset events. During the
period required for stabilization of the power supplies and the internal oscillators, which is
typically not less than 1 second, the POWERGOOD signal is kept deasserted. The start-
up time of the internal PLLs is typically 10 ms from the assertion of the PWRGOOD pin.
The power-on reset waveform diagram is shown in Figure 6-3 on page 6-9.

All system resets, aside from PWRGOOD pin, are on the order of 10 ms, while soft resets
take 16 CPU clocks.

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and
additional timing diagrams.

Port A

cpu sreset

port92_rst

shutdown

PRGRESET

PWRGOOD

Watchdog wdt_rst

cpu reset

GP Bus

a20m

CFG3–CFG0

AMDebug system reset

RSTLD7–RSTLD0

AMDebug hard reset

Reset Configuration

Register

Pinstrap
Status

GPRESET

AMDebug on reset
rst_main

AMDebug™

and

Information

To all internal
cores

PCI
Controller

RST

SCP
a20_gate

Registers port64_rst

a20_ctl

ROM
Controllerrom

AMDEBUG_DIS

INST_TRCE

DEBUG_ENTER

AMDebug

Logic

CPU

System

Élan™SC520 Microcontroller

Timer

Reset Controller

Reset

Source

Detect
config
6-2 Élan™SC520 Microcontroller User’s Manual

Reset Generation
6.4 REGISTERS
The reset generation on the ÉlanSC520 microcontroller is controlled by the memory-
mapped registers listed in Table 6-1 and the direct-mapped registers listed in Table 6-2.

6.5 OPERATION
There are several different types of reset supported on the ÉlanSC520 microcontroller:

■ System reset

■ System reset with SDRAM retention, called programmable reset

■ Soft CPU reset

■ GP bus reset

■ PCI reset

■ RTC reset

System reset is the primary reference reset on the ÉlanSC520 microcontroller. It is
described in “System Reset” on page 6-4.

Table 6-3 shows the ÉlanSC520 microcontroller reset sources and the functions affected.

Table 6-1 Reset Generation Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

Host Bridge Control HBCTL 60h PCI reset (RST)

Watchdog Timer Control WDTMRCTL CB0h Watchdog timer enable, WDT reset enable,
interrupt flag, duration of the WDT time-out
interval

System Board Information SYSINFO D70h System configuration data latched on RSTLD7–
RSTLD0 pins at assertion of PWRGOOD

Reset Configuration RESCFG D72h Control bits for system reset, GP bus reset
(GPRESET), programmable SDRAM retention
reset (PRGRESET pin enable), and AMDebug
mode enable

Reset Status RESSTA D74h Reset source status: SCP reset, AMDebug hard
reset detect, AMDebug system reset, watchdog
timer time-out, CPU shutdown (soft reset),
PRGRESET pin, and PWRGOOD pin

Table 6-2 Reset Generation Registers—Direct-Mapped

Register Mnemonic I/O Address Function

SCP Data Port SCPDATA 60h System Control Processor (SCP) data write, a20
gate command emulation

SCP Command Port SCPCMD 64h SCP command write, a20 gate command
emulation, CPU reset command emulation

System Control Port A SYSCTLA 92h Soft CPU reset generation, alternate a20 control
Élan™SC520 Microcontroller User’s Manual 6-3

Reset Generation
6.5.1 System Reset
System reset on the ÉlanSC520 microcontroller can be initiated by any of the following
reset events:

■ PWRGOOD pin assertion

■ Software writes to the SYS_RST bit in the Reset Configuration (RESCFG) register
(MMCR offset D72h)

■ AMDebug system reset event

■ Watchdog timer time-out event that is enabled to generate a system reset

On system reset, the following sequence of events occurs.

1. A system reset event is asserted.

2. Internal CPU, ÉlanSC520 microcontroller internal registers, system GP bus, and PCI
bus resets are asserted.

3. The system reset event is deasserted. If PWRGOOD was the source of the reset,
configuration and system board data are latched on the CFG3–CFG0 and RSTLD7–
RSTLD0 pins, respectively.

4. An RTC reset is generated if the RTC voltage monitor has detected a low RTC battery
condition and the system reset source was PWRGOOD.

5. Internal PLL start-up time is allowed to pass.

6. Internal CPU, system GP bus, and PCI bus resets are deasserted.

The duration of the system reset is on the order of 10 ms, the start-up time of the internal
PLLs. The GPRESET and RST pins are asserted for the 10-ms interval.

Table 6-3 Élan™SC520 Microcontroller Reset Sources

Source
CPU

(Hard/Soft)
GPRESET

Pin
RST Pin

(PCI)
Internal

Registers Notes

PWRGOOD pin Hard ✔ ✔ ✔

PRGRESET pin Hard ✔ ✔ ✔ 1,2

Notes:
1. The PRG_RST_ENB bit must be set to enable the reset function on this pin.
2. If the PRG_RST_ENB bit is set, the SDRAM controller configuration is maintained to support system reset in which

SDRAM contents are also maintained.

SYS_RST bit, RESCFG register Hard ✔ ✔ ✔ 2

Watchdog timer reset event Hard ✔ ✔ ✔ 2

AMDebug system reset Hard ✔ ✔ ✔ 2

CPU_RST bit, SYSCTLA register (Port 0092h) Soft 3

3. Any write of a 1 to the CPU_RST bit will cause a soft reset, regardless if the bit was previously a 1 or 0.

SCP soft reset, SCPCMD register (Port 0064h) Soft

CPU shutdown (typically caused by a triple fault) Soft

GP_RST bit, RESCFG register ✔

PCI_RST bit, HBCTL register ✔
6-4 Élan™SC520 Microcontroller User’s Manual

Reset Generation
In response to the hard CPU reset, all internal Am5x86 CPU registers return to their reset
state, and the contents of the CPU cache are discarded. For further information on hard
CPU reset, see the Am486® DX/DX2 Microprocessor Hardware Reference Manual, 1994
(order #17965).

Note: The CFG3–CFG0 and RSTLD7–RSTLD0 pins are latched only as a result of the
assertion of the PWRGOOD signal, and not as a result of the SYS_RST bit, AMDebug
system reset event, or watchdog timer event.

If the ICE_ON_RST bit in the Reset Configuration (RESCFG) register is set to a 1, the
AMDebug utility enters into AMDebug mode after system reset.

The states of the ÉlanSC520 microcontroller cores after system reset are shown in
Table 6-4. See the “Initialization” section at the end of each chapter for more detailed
information.

Table 6-4 States of Cores after System Reset

Core State Comment

Am5x86 CPU Enabled CPU clock frequency is set to 100 MHz. Internal
registers and internal cache are reset. The FPU
must be initialized with an FNINIT instruction.

System arbiter Enabled Default is nonconcurrent arbitration mode. All bus
masters are disabled except the CPU as PCI and
internal Am5x86 CPU bus master.

PCI host bridge master controller Enabled

PCI host bridge target controller Disabled

SDRAM controller Disabled No banks are enabled.

Write buffer and read buffer Disabled

ROM controller Enabled BOOTCS (only) is enabled at system reset

GP bus controller Enabled
External GP bus is disabled until PAR registers are
initialized.

GP-DMA controller Enabled All channels are masked off.

Programmable interrupt controller
(PIC)

Enabled
Interrupts are masked at the CPU. NMIs are
disabled.

Software timer Enabled

General-purpose (GP) timers Disabled
All GP timer registers are reset to 0. Each timer must
be programmed before it can be used.

Programmable interval timer (PIT) Disabled
Each PIT channel must be programmed before it
can be used.

Watchdog timer (WDT) Disabled

Real-time clock (RTC) Enabled

UARTs Disabled

Synchronous serial interface (SSI) Disabled Inactive until an SSI command is written.

Programmable input/output (PIO)
pins

Enabled
All PIO pins default to inputs and to their PIO
function.

JTAG test access port (TAP) Enabled
JTAG_TRST should be asserted active Low to
ensure normal operation.

AMDebug mode Enabled If the ICE_ON_RST bit in the Reset Configuration
(RESCFG) register is set.
Élan™SC520 Microcontroller User’s Manual 6-5

Reset Generation
System reset is a subset of the power-on reset sequence described in “Initialization” on
page 6-9.The only real difference between the two is that, for power-on reset, power is
being applied to the part in addition to the reset, and the stabilization of power supplies to
deassertion of the reset is specified. The two terms are otherwise synonymous in this
document.

6.5.2 System Reset with SDRAM Retention
The ÉlanSC520 microcontroller is capable of performing a system reset in which the
contents of the SDRAM system are maintained.

This function, called programmable reset, is enabled via the PRG_RST_ENB bit in the
Reset Configuration (RESCFG) register (MMCR offset D72h). If this bit is set, assertion of
the PRGRESET pin, SYS_RST bit, watchdog timer system reset event, or AMDebug system
reset event while PWRGOOD is asserted will result in a system reset in which the SDRAM
configuration (SDRAM type, number of banks, refresh rate, etc.) is maintained so that the
contents of SDRAM are preserved.

Although the CFG3–CFG0 and RSTLD7–RSTLD0 pins are not latched, all other aspects
of this type of reset are the same as a system reset.

The system reset request is arbitrated with the internal SDRAM controller to ensure that
all SDRAM banks are idle prior to assertion of the reset. In addition, this arbitration allows
the SDRAM controller to complete the current SDRAM cycle. Figure 6-2 shows the
sequence of events following a PRGRESET assertion with the PRG_RST_ENB bit enabled.

Note: If a system reset request is not acknowledged by the SDRAM controller when the
PRG_RST_ENB configuration bit is set, a normal system reset occurs. In this event, the
PRG_RST_ENB bit is cleared. Clearing of the PRG_RST_ENB bit indicates that the
contents of the SDRAM were not maintained.

Figure 6-2 PRGRESET Timing

Notes:
1. Reset assertion from PRGRESET assertion is approximately 32 CPU clocks. All SDRAM banks are idle.

2. The PRG_RST_ENB bit in the Reset Configuration (RESCFG) register must be enabled.

3. The signal “cpu reset” is an internal signal, shown here for reference only. It is not available as an external pin.

1

PRGRESET

cpu reset

GPRESET

RST
6-6 Élan™SC520 Microcontroller User’s Manual

Reset Generation
6.5.3 Soft CPU Reset
A soft CPU reset is differentiated from a hard CPU reset in that soft CPU reset does not
affect the CPU’s cache state. See “Initialization” on page 7-5 for more information about
the differences between hard and soft CPU reset.

A soft CPU reset does not reset the ÉlanSC520 microcontroller’s internal register bits, with
the exception of the NMI_ENB bit in the Interrupt Control (PICICR) register (MMCR offset
D00h). A soft CPU reset does not assert the GPRESET or RST pins. For a soft CPU reset,
the CPU’s internal sreset signal is asserted for 16 clock cycles.

There are four ways a soft CPU reset is generated on the ÉlanSC520 microcontroller:

■ A software write to the CPU_RST bit of System Control Port A (SYSCTLA) register (Port
0092h)—Writing a 1 to this bit generates a soft reset event. Following this reset, the
CPU_RST bit remains set until software clears it. This feature can be used by software
as an indication that the System Control Port A (SYSCTLA) register was used to generate
the reset. Writing a 1 to the CPU_RST bit always generates a soft reset, even if the bit
was not cleared after a previous reset.

■ SCP Reset CPU command—A soft reset event is asserted when the CPU issues the
standard command write of FEh to the SCP Command Port (SCPCMD) register (Port
0064h).

■ Triple bus fault—A soft reset event is asserted in response to a CPU shutdown cycle
due to a triple bus fault.

■ Entering AMDebug mode—A soft reset event is also asserted in response to a soft reset
command from the AMDebug utility. If the ICE_ON_RST bit in the Reset Configuration
(RESCFG) register (MMCR offset D72h) is set to a 1, the AMDebug utility enters into
AMDebug mode after a soft CPU reset.

6.5.4 GP Bus Reset
GP bus reset can be generated via a system reset or a software write. Writing a 1 to the
GP_RST bit in the Reset Configuration (RESCFG) register (MMCR offset D72h) asserts
the GPRESET pin. Clearing this bit to 0 deasserts the GPRESET pin.

6.5.5 PCI Reset
The PCI reset signal, RST, is generated via a system reset or software writes. Writing a 1
to the PCI_RST bit in the Host Bridge Control (HBCTL) register (MMCR offset 60h) asserts
the PCI RST pin. Clearing this bit to 0 deasserts the PCI RST pin.

6.5.6 RTC Reset
RTC reset occurs anytime the BBATSEN input is sampled below 2.0 V during a power-on
reset or during a system reset where the reset source was PWRGOOD. RTC Status D
(RTCSTAD) register (RTC index 0Dh) includes a status bit that indicates the validity of the
contents of the RAM, time registers, and the calendar. The RTC_VRT bit is set based on
the assertion of the internal RTC reset.

Note that this RTC reset may or may not occur when a system reset occurs, depending on
the reset source and the state of BBATSEN. BBATSEN also provides a reset signal for the
RTC when an RTC backup battery is applied for the first time.
Élan™SC520 Microcontroller User’s Manual 6-7

Reset Generation
6.5.7 Determining Reset Sources
Status bits are available in the Reset Status (RESSTA) register (MMCR offset D74h) for
software to determine the source of reset. These bits are set when the associated event is
detected and cleared by writing a 1. They include:

■ ICE_HRST_DET—Hard CPU reset from AMDebug logic

■ ICE_SRST_DET—AMDebug system reset

■ WDT_RST_DET—Watchdog timer time-out system reset

■ SD_RST_DET—Soft CPU reset resulting from a detection of the CPU shutdown cycle
due to triple fault

■ PRGRST_DET—System reset from PRGRESET pin that resets the ÉlanSC520
microcontroller, allows SDRAM refresh, and maintains SDRAM configuration

■ PWRGOOD_DET—System reset from PWRGOOD pin

6.5.8 CPU A20 Gate Support
The ÉlanSC520 microcontroller does not support an a20 gate input pin. In a typical PC/AT
system, this input was driven by the external System Control Processor (SCP) in response
to a command request that is issued by the main CPU. In the ÉlanSC520 microcontroller,
this a20 gate command sequence is detected by internal logic, and the appropriate action
is taken.The ÉlanSC520 microcontroller provides an additional a20 gate source in the
System Control Port A (SYSCTLA) register (Port 0092h). These two a20 gate sources are
logically ORed such that both sources must be deasserted to cause the CPU’s a20 output
to be gated Low.

The SCP a20 gate command is detected when the CPU issues the standard command
write of D1h to the SCP Command Port (SCPCMD) register (Port 0064h), followed by a
data write to the SCP Data Port (SCPDATA) register (Port 0060h). Bit 1 of the write to the
SCP Data Port (SCPDATA) register drives the a20 control logic. A value of 1 allows the
CPU’s a20 signal to propagate to the core logic, while a value of 0 allows the CPU’s a20
signal to be driven Low, as long as no other a20 gate control sources are forcing the CPU’s
a20 signal to propagate.

In addition to the SCP a20 gate command emulation, the A20G_CTL bit in the System
Control Port A (SYSCTLA) register (Port 0092h) can also be used for alternate a20 signal
control. Setting the A20G_CTL bit allows the CPU’s a20 signal to be propagated to the
system logic. Clearing this bit (default state) allows the a20 signal to be driven Low as long
as no other a20 gate control sources are forcing the a20 signal to propagate.

6.5.9 Clocking Considerations
As a result of an ÉlanSC520 microcontroller system reset event, the internal PLLs are re-
started. The PLL start-up time from the deassertion of the system reset source is 10 ms.

6.5.10 Software Considerations
The CPU cache, SDRAM controller write buffer, and PCI transaction queues are discarded
as a result of a system reset.
6-8 Élan™SC520 Microcontroller User’s Manual

Reset Generation
6.5.11 Latency
PRGRESET events must be arbitrated in the SDRAM controller to ensure that the SDRAM
devices are in a state in which data is not lost when the PRGRESET event is propagated.
This arbitration causes the PRGRESET event to be delayed by no more than 32 CPU clock
periods prior to assertion of the internal and external reset signals.

6.6 INITIALIZATION
At power-on reset for the ÉlanSC520 microcontroller, the following sequence of events
occurs.

1. The PWRGOOD pin is deasserted.

2. The power planes come up.

3. Internal CPU, ÉlanSC520 microcontroller internal registers, system GP bus, and PCI
bus resets are asserted.

4. PWRGOOD is asserted. Configuration and system board data are latched on the CFG3–
CFG0 and RSTLD7–RSTLD0 pins, respectively.

5. RTC reset event is generated if the RTC voltage monitor has detected a low RTC battery
condition.

6. Internal PLLs are enabled and clocks become stable (internal PLL startup time is allowed
to pass).

7. Internal CPU, system GP bus, and PCI bus resets are deasserted.

Figure 6-3 shows this sequence. For power-on reset, the PWRGOOD pin must be held
deasserted for the duration of time it takes for the stabilization of the system board power
supply output voltages and the start-up time of the internal 32-kHz and 33-MHz oscillators.
This time is typically on the order of 1 second.

Figure 6-3 Power-On Reset Sequence of Events

Notes:
1. PWRGOOD valid from all VCC valid (except VCC_RTC) is typically 1 second.

2. PLL start-up time from PWRGOOD valid is less than 10 ms.

3. CPU reset and external resets deasserted from PWRGOOD are 10 ms.

4. Internal signals are shown for reference only; they are not available on external pins.

Valid

Valid

1

3

2

ALL VCCs

PWRGOOD

PRGRESET

cpu reset

GPRESET

RST

CFG3–CFG0

RSTLD7–RSTLD0

Internal Clocks
Élan™SC520 Microcontroller User’s Manual 6-9

Reset Generation
6-10 Élan™SC520 Microcontroller User’s Manual

CHAPTER
7 A
m5X86® CPU
7.1 OVERVIEW
The ÉlanSC520 microcontroller has an integrated Am5x86 CPU core. The features of the
Am5x86 CPU include:

■ Operation at 100 MHz or 133 MHz, with a 33-MHz bus interface

■ 16-Kbyte unified cache configurable for either write-back or write-through cache mode

■ Integrated floating point unit (ANSI/IEEE 754 compliant)

■ On-chip debug support. See Chapter 26, “AMDebug™ Technology”, for more
information.

7.2 BLOCK DIAGRAM
Figure 7-1 shows a block diagram of the Am5x86 CPU.

7.3 REGISTERS
The Am5x86 CPU is controlled by the registers listed in Table 7-1 and Table 7-2.

Table 7-1 Am5x86® CPU Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

ÉlanSC520 Microcontroller
Revision ID

REVID 00h Product identification, major and minor stepping
level

Am5x86 CPU Control CPUCTL 02h CPU cache mode (write-through or write-back),
CPU clock speed control

Floating Point Error Interrupt
Mapping

FERRMAP D46h Floating point error interrupt mapping

Reset Status RESSTA D74h Reset source status: CPU shutdown (soft reset)

Table 7-2 Am5x86® CPU Registers—Direct-Mapped

Register Mnemonic I/O Address Function

SCP Data Port SCPDATA 60h System Control Processor (SCP) data write, a20
gate command emulation

SCP Command Port SCPCMD 64h SCP command write, a20 gate command
emulation, CPU reset command emulation

System Control Port A SYSCTLA 92h CPU soft reset generation, alternate a20 control

Floating Point Error Interrupt
Clear

FPUERRCLR F0h Clear FPU error interrupt
Élan™SC520 Microcontroller User’s Manual 7-1

Am5x86® CPU
Figure 7-1 Am5x86® CPU Block Diagram

C
en

tr
al

 a
nd

P
ro

te
ct

io
n

Te
st

 U
ni

t

C
on

tr
ol

R
O

M

In
st

ru
ct

io
n

D
ec

od
e

B
ar

re
l S

hi
fte

r

A
LU

R
eg

is
te

r
F

ile

S
eg

m
en

ta
tio

n
U

ni
t

D
es

cr
ip

to
r

R
eg

is
te

rs

P
ag

in
g

U
ni

t

Tr
an

sl
at

io
n

Lo
ok

-A
si

de
B

uf
fe

r

Li
m

it
an

d
A

ttr
ib

ut
e

P
LA

C
ac

he
 U

ni
t

P
re

fe
tc

he
r

32
-B

yt
e

C
od

e
Q

ue
ue

2
x

16
 B

yt
es

A
dd

re
ss

D
riv

er
s

D
at

a
B

us
Tr

an
sc

ei
ve

rs

C
ac

he
C

on
tr

ol

Li
ne

ar
 A

dd
re

ss
 B

us

32
-B

it
D

at
a

B
us

32
-B

it
D

at
a

B
us

32

2432

202
32 32 32

12
8

M
ic

ro
-in

st
ru

ct
io

n

D
ec

od
ed

In
st

ru
ct

io
n

P
at

h

C
od

e
S

tr
ea

m

P
hy

si
ca

l
A

dd
re

ss

pc
d,

 p
w

t

32

B
as

e/
In

de
x

B
us

D
is

pl
ac

em
en

t B
us

B
us

a3
1-

a2
be

3-
be

0

d3
1-

d0

64
-B

it
In

te
ru

ni
t T

ra
ns

fe
r

B
us

A
m

5 x
86

®
 C

P
U

B
ou

nd
ar

y
S

ca
n

C
on

tr
ol

C
lo

ck
C

or
e

C
lo

ck

G
en

er
at

or

C
or

e
C

lo
ck

F
lo

at
in

g
P

oi
nt

U
ni

t

F
P

U
R

eg
is

te
r

F
ile

B
us

 C
on

tr
ol

A
M

D
eb

ug
™

10
0/

13
3

In
te

rf
ac

e

 G
en

er
at

io
n

U
ni

t

JT
A

G
_T

R
S

T
JT

A
G

_T
C

K
JT

A
G

_T
D

I
JT

A
G

_T
D

O
JT

A
G

_T
M

S

S
TO

P
/T

X
B

R
/T

C
C

M
D

A
C

K
T

R
IG

/T
R

A
C

E

ke
n ,

 fl
us

h,
ea

ds
, i

nv

16
-K

by
te

C
ac

he

 B
uf

fe
rs

C
on

tr
ol

S

ig
na

ls

Lo
gi

c

Am5x86® CPU Bus

É
la

n™
S

C
52

0
M

ic
ro

co
nt

ro
lle

r

7-2 Élan™SC520 Microcontroller User’s Manual

Am5x86® CPU
7.4 OPERATION
The ÉlanSC520 microcontroller is a highly integrated system in silicon, and the Am5x86
CPU is central to this integration. The Am5x86 CPU is a high-performance CPU that is fully
software-compatible with the Am486 microprocessor family. Most of the details of the
communication between the Am5x86 CPU core and the peripherals are transparent to the
user and are not documented here.

A full description of the operation of the Am5x86 CPU is well beyond the scope of this
chapter. The following AMD publications are a good starting point for learning about the
Am5x86 CPU as it has evolved over time. The oldest publication is listed first. The later
publications enhance the original functional descriptions.

■ Am486® DX/DX2 Microprocessor Hardware Reference Manual, 1994 (order #17965)

■ Enhanced Am486® Microprocessor Family Data Sheet, 1995, (order #19225)

■ Am5x86® Microprocessor Family Data Sheet, 1996 (order #19751)

The Am5x86 CPU core in the ÉlanSC520 microcontroller is derived from the Enhanced
Am486 family (as described in order #19225). The Am5x86 CPU enhances system
performance by raising the maximum CPU operating frequency to 133 MHz, while
maintaining complete compatibility with the standard Am486 CPU architecture. The
following differences may be relevant to the user:

■ There is no provision for an L2 cache. The signals that would be needed are not brought
out of the ÉlanSC520 microcontroller.

■ System management mode (SMM) is not supported on the ÉlanSC520 microcontroller.

■ From an Am5x86 CPU-core perspective only, the cache defaults to the write-back cache
mode and reports this state in response to the CPUID instruction. The cache mode can
be reconfigured to write-through mode via the Am5x86 CPU Control (CPUCTL) register
(MMCR offset 02h).

Programs sometimes require the ability to determine the hardware on which they are
running. The ÉlanSC520 microcontroller can be identified via the CPUID instruction and
the ÉlanSC520 Microcontroller Revision ID (REVID) register (MMCR offset 00h). This is
discussed in “Identifying the CPU Core” on page 3-7.

7.4.1 Floating Point Unit (FPU)
The Am5x86 CPU provides an integrated floating point unit (FPU) that operates in parallel
with the Arithmetic Logic Unit (ALU). The FPU is useful in applications that involve more
intensive computational complexity. The major features of the integrated FPU are:

■ Compliant with ANSI/IEEE 754 standard

■ Provides arithmetic instructions to handle various numeric data types and formats

■ Provides built-in transcendental functions for functions like sine, cosine, tangent,
logarithms, etc.

■ Software-compatible with the 80387 (and previous) math co-processors

The FPU must be initialized with an FNINIT instruction after any system reset.
Élan™SC520 Microcontroller User’s Manual 7-3

Am5x86® CPU
7.4.2 Cache Memory Management
The ÉlanSC520 microcontroller contains a 16-Kbyte unified code and data cache. Cache
operation defaults to write-back cache mode. However, this mode can be disabled by setting
the Cache Write Mode (CACHE_WR_MODE) bit in the Am5x86 CPU Control register
(MMCR offset 02h). Note that the cache should be flushed when switching this bit from
write-back to write-through cache mode.

The cache that is internal to the CPU is historically referred to as the level 1 (L1) cache.
Cache that is located external to the CPU is called level 2 (L2). The ÉlanSC520
microcontroller does not have the control mechanism or the pins to support an L2 cache.
The L1 cache can be configured through the standard cache configuration bits in the CPU’s
machine status (CR0) register. The Cache Disable (CD) and Not Write-Through (NW) bits
are decoded as shown in Table 7-3.

If paging is enabled in the CPU, then cacheability as well as cache write policy can be
controlled on a per-page basis via control bits in the page tables. Note that the
CACHE_WR_MODE bit in the Am5x86 CPU Control (CPUCTL) register must be set to
write-back cache mode for write-back behavior to occur.

Caching is controlled by the memory management subsystem on a per-access basis. For
example, GP bus and PCI bus accesses are not cached. The programmer has control over
which regions of memory (SDRAM and ROM) are cacheable and which are not. This is
described in detail in Chapter 4, “System Address Mapping”.

7.4.3 Clocking Considerations
The Am5x86 CPU bus frequency in the ÉlanSC520 microcontroller is always 33 MHz.
However, the Am5x86 CPU core frequency is programmable to be 100 MHz or 133 MHz.
The clock speed of the Am5x86 CPU core defaults to 100 MHz, but can be changed
dynamically via the Am5x86 CPU Control (CPUCTL) register (MMCR offset 02h). Systems
that maintain relatively high cache hit rates benefit more from the higher core speeds,
because they are not dependent on external bus activity for accessing ROM or SDRAM.

The clock speed change is transparent to the system, with the exception that there is
approximately 1-ms delay to allow the Am5x86 CPU’s clock PLLs to stabilize. Following the
clock speed configuration, the ÉlanSC520 microcontroller’s clock control logic automatically
forces the Am5x86 CPU’s cache to be flushed, and waits for the completion of the flush
before changing the PLLs’ frequency select (caching is also disabled for any subsequent
memory read cycles during the flush operation). Since the CPU PLLs require approximately
1 ms to stabilize following the speed change, all Am5x86 CPU cache snooping is suspended.
However, since the cache was previously flushed, there are no coherency issues, PCI bus

Table 7-3 Cache Configuration Options

CD NW Operating Mode

1 1 Cache line fills, cache write-throughs, and cache invalidations are disabled. To
completely disable the cache, set both CD and NW to 1 and flush the cache by
executing a WBINVD or INVD instruction.

1 0 Cache line fills are disabled. Cache write-throughs and cache invalidations are
enabled. This configuration allows software to disable the cache for a short time,
then re-enable it without flushing the original contents.

0 1 Invalid setting. A general-protection exception with an error code of 0 is generated.

0 0 Cache line fills, cache write-throughs, and cache invalidations are enabled. This
is the normal operating configuration.
7-4 Élan™SC520 Microcontroller User’s Manual

Am5x86® CPU
master cycles, or GP-DMA controller operations during this period. Interrupts generated to
the Am5x86 CPU will be honored only after the Am5x86 CPU is operating again.

Once the CPU PLLs have stabilized and the new core frequency has been established,
caching is once again enabled in the same mode as it was prior to the clock speed change.
There are no special requirements by external system hardware or software to support
clock speed switching.

Note: Not all ÉlanSC520 microcontroller devices support all CPU clock rates. The
maximum supported clock rate for a device is indicated by the part number printed on the
package. The clocking circuitry can be programmed to run the device at higher than rated
speeds. However, if an ÉlanSC520 microcontroller is programmed to run at a higher clock
speed than that for which it is rated, then erroneous operation will result and physical
damage to the device may occur.

7.4.4 Interrupts
The Am5x86 CPU receives a maskable interrupt from the programmable interrupt controller
(PIC). The Am5x86 CPU also supports a non-maskable interrupt (NMI) input that can be
disabled. See Chapter 15, “Programmable Interrupt Controller”, for details of both maskable
and non-maskable interrupt sources and routing.

7.4.5 Latency
The clock speed change is transparent to the system with the exception that there is
approximately a 1-ms delay to allow the Am5x86 CPU’s clock PLLs to stabilize. Interrupts
generated to the Am5x86 CPU will be honored only after the Am5x86 CPU is operating
again.

7.5 INITIALIZATION
The Am5x86 CPU included on the ÉlanSC520 microcontroller supports two different types
of CPU reset: hard CPU reset and soft CPU reset. Chapter 6, “Reset Generation” provides
details of the various sources of hard and soft reset to the Am5x86 CPU. For additional
information on Am5x86 CPU initialization, see Chapter 3, “System Initialization” and the
references provided in “Operation” on page 7-3.

7.5.1 Hard CPU Reset
The Am5x86 CPU is reset during a hard CPU reset, and the Am5x86 CPU core clock
frequency defaults to 100 MHz. Hard CPU reset is used to initialize the Am5x86 CPU due
to deassertion of the PWRGOOD signal, as well as other reset sources (see Table 6-3 on
page 6-4). Hard CPU reset resets Am5x86 CPU registers and the internal cache.

Hard CPU reset forces the microprocessor to terminate all execution and local bus activity.
All entries into the cache are invalidated, the cache is disabled, and the FPU is reset. The
Am5x86 CPU begins executing from the boot vector at FFFFFFF0h after system reset is
deasserted. The core clock frequency is 100 MHz.

7.5.2 Soft CPU Reset
Soft CPU reset does not affect the CPU’s write buffers, cache, or cache mode (write-back
or write-through). The Am5x86 CPU core clock frequency remains the same, and cache
snooping continues unaffected during soft reset.

Soft reset provides a method to switch from protected to real operating mode. After a soft
CPU reset, the Am5x86 CPU begins initialization at location FFFFFFF0h. The processor
state is the same as it is after a hard reset, except that the internal cache, the CD and NW
bits in the Am5x86 CPU’s machine status (CR0) register, and the Am5x86 CPU’s write
buffers retain the values they had prior to the soft reset.
Élan™SC520 Microcontroller User’s Manual 7-5

Am5x86® CPU
A soft reset event clears the NMI_ENB bit in the Interrupt Control (PICICR) register, disabling
NMIs. This allows software to initialize the stack pointer before setting the NMI_ENB bit
again after a soft reset.
7-6 Élan™SC520 Microcontroller User’s Manual

CHAPTER
8 S
YSTEM ARBITRATION
8.1 OVERVIEW
The ÉlanSC520 microcontroller includes two arbiters. A CPU bus arbiter arbitrates between
the Am5x86 CPU, the PCI host bridge, and the GP-DMA controller on the internal CPU
bus. A PCI bus arbiter arbitrates between the Am5x86 CPU and up to five external PCI
masters on the external PCI bus. The system arbiter complies with PCI Local Bus
Specification, Revision 2.2, and complies with PCI bus transaction ordering rules.

Features of the arbitration subsystem include:

■ Supports up to five external PCI bus masters

■ Supports concurrent and nonconcurrent operating modes:

– Concurrent arbitration mode allows PCI bus arbitration to occur independently of CPU
bus arbitration, supporting peer-to-peer operation on PCI bus simultaneously with
CPU access of memory and GP bus.

– Nonconcurrent arbitration mode forces all masters to automatically acquire ownership
of both PCI and CPU buses, regardless of destination of the cycles.

■ PCI bus arbiter supports two queues with rotating priority for bus mastership:

– High-priority queue supports two bus masters maximum, any masters can be
programmed to the high-priority queue.

– Low-priority queue contains all masters not assigned to the high-priority queue.

■ CPU priority is programmable to automatically achieve bus ownership following every
one, two, or three PCI-bus-master tenures.

■ Option for PCI bus parking on CPU or on last master in concurrent arbitration mode

■ PCI bus master request/grant pairs can be individually masked in a separate control
register.

■ CPU bus arbiter provides an automatic Am5x86 CPU bypass that allows continued PCI
bus and GP-DMA access of SDRAM during Am5x86 CPU clock changes and PLL
stabilization periods.

8.2 BLOCK DIAGRAM
Figure 8-1 shows a block diagram of the system arbiter.
Élan™SC520 Microcontroller User’s Manual 8-1

System Arbitration
Figure 8-1 System Arbitration Block Diagram

8.3 REGISTERS
The arbitration subsystem is controlled by the memory-mapped registers listed in Table 8-1.

Table 8-1 System Arbitration Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

System Arbiter Control SYSARBCTL 70h PCI bus parking select, concurrent arbitration
mode enable, PCI bus grant time-out interrupt
enable

PCI Bus Arbiter Status PCIARBSTA 71h PCI bus arbiter grant time-out identification and
status

System Arbiter Master
Enable

SYSARBMENB 72h Enables for PCI bus REQ4–REQ0 signals

Arbiter Priority Control ARBPRICTL 74h PCI bus arbiter rotating priority queue control

GP-DMA

PCI Host Bridge

SDRAM Controller

CPU

System Arbiter

C
P

U
 B

us

PCI Bus

G
N

T
4–

G
N

T
0

R
E

Q
4–

R
E

Q
0

req

gnt

GP Bus

ROM

Élan™SC520 Microcontroller

CPU Bus Arbiter

PCI Bus Arbiter
8-2 Élan™SC520 Microcontroller User’s Manual

System Arbitration
8.4 OPERATION
The ÉlanSC520 microcontroller’s arbitration subsystem consists of two separate bus
arbitration units for the CPU bus and the PCI bus.

■ The CPU bus arbiter arbitrates between the Am5x86 CPU, the PCI host bridge, and the
GP-DMA controller on the internal CPU bus.

■ The PCI bus arbiter arbitrates between the Am5x86 CPU and up to five external PCI
masters on the external PCI bus.

8.4.1 Operating Modes
The system arbiter can operate in two modes for maximum flexibility:

■ Nonconcurrent arbitration mode

■ Concurrent arbitration mode

The two bus arbiters operate completely independently when the system is configured for
concurrent arbitration mode, but they are interlocked when the system is configured for
nonconcurrent arbitration mode.

Maximum performance is typically achieved in concurrent arbitration mode, because this
allows simultaneous PCI bus and CPU bus operation. However, some systems may benefit
from nonconcurrent arbitration mode, especially if the system experiences data coherency
problems due to older, non-compliant bus bridges.

The arbitration mode is specified with the CNCR_MODE_ENB bit in the System Arbiter
Control (SYSARBCTL) register (MMCR offset 70h). System arbitration defaults to
nonconcurrent arbitration mode after reset.

8.4.1.1 Nonconcurrent Arbitration Mode

Nonconcurrent arbitration mode forces all masters to automatically acquire ownership of
both PCI and CPU buses, regardless of destination of the cycles. In this mode, no
concurrency between the CPU bus and the PCI bus is allowed. External PCI masters are
only granted the PCI bus when the host bridge has been granted the CPU bus, even for
peer-to-peer transfers.

When an external PCI bus master requests the PCI bus, the following occurs:

1. The PCI bus arbiter samples an external PCI request asserted and asserts the host
bridge request to the CPU bus arbiter. The PCI bus arbiter is parked on the CPU by
default and should not be programmed to park on the last master in this mode.

2. The CPU bus arbiter samples the host bridge request asserted and grants the CPU bus
to the host bridge at the completion of the next Am5x86 CPU cycle. The CPU bus is
owned by the Am5x86 CPU by default, so a request to the CPU must be asserted to
gain ownership of this bus.

PCI Host Bridge Interrupt
Mapping

PCIHOSTMAP D14h System arbiter and PCI host bridge interrupt
mapping to any of 22 available interrupt
channels or NMI, PCI NMI enable control

Table 8-1 System Arbitration Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR
Offset
Address Function
Élan™SC520 Microcontroller User’s Manual 8-3

System Arbitration
3. The PCI bus arbiter sees that the host bridge has been granted the CPU bus and grants
the PCI bus to the external PCI master requesting the PCI bus. Note that now the external
PCI master owns both the PCI bus and the CPU bus.

In nonconcurrent arbitration mode, the PCI bus and CPU bus essentially become one bus
where only one master is allowed on the bus at any time. Note that write-posting from the
CPU to the PCI bus should be disabled while the arbiter is configured for nonconcurrent
arbitration mode.

Note that there is an exception to the normal rules of non-concurrency in this mode, as
listed in the following steps:

1. The CPU acquires both buses and performs a memory or I/O read/write of an external
PCI target. The target issues a retry to the CPU. The PCI bus is idle due to the retry, but
the CPU still remains active (in a wait state) on the CPU bus.

2. An external PCI bus master now asserts a request to perform a memory write to SDRAM.
In normal nonconcurrent arbitration mode, this request would not be granted, because
the PCI bus arbiter would be waiting to acquire ownership of the CPU bus (but the CPU
is in a wait state waiting to retry the PCI target read). PCI bus transaction ordering
specifies that a PCI agent cannot base the acceptance of a memory write as a target
on the completion of a read as a master. Therefore the ÉlanSC520 microcontroller’s
host bridge must force the CPU off the bus and allow the external master write to
complete.

3. After asserting boff to the CPU, the arbiter grants the PCI bus to the external master,
and the master completes its write. When the PCI bus master completes the write, the
boff signal is deasserted and the CPU is back on the CPU bus. The original CPU-to-
PCI transaction is now retried by the ÉlanSC520 microcontroller’s host bridge master
controller.

8.4.1.2 Concurrent Arbitration Mode

Concurrent arbitration mode allows PCI bus arbitration to occur independently of CPU bus
arbitration, supporting peer-to-peer operation on PCI bus simultaneous with CPU access
of memory and the GP bus. In this mode, the CPU bus arbiter and PCI bus arbiter operate
independently. Default bus ownership for each of the two arbiters is the same as
nonconcurrent arbitration mode. External PCI masters are granted the PCI bus without the
host bridge being granted the CPU bus. This allows concurrent CPU bus and PCI bus
operation.

A few examples of concurrency are:

■ The Am5x86 CPU accessing SDRAM concurrently with an external PCI bus master
writing data to the host bridge’s target FIFOs

■ The Am5x86 CPU or GP-DMA controller accessing SDRAM concurrently with an
external PCI bus master accessing an external PCI bus target (peer-to-peer transfer)

■ The ÉlanSC520 microcontroller’s host bridge target controller accessing SDRAM
concurrently with the master controller writing posted data to an external PCI target
8-4 Élan™SC520 Microcontroller User’s Manual

System Arbitration
8.4.2 CPU Bus Arbiter
The CPU bus arbiter controls access to the internal CPU bus. This internal bus allows for:

■ Am5x86 CPU access of SDRAM, GP bus, PCI, or ROM

■ GP-DMA access of SDRAM

■ PCI host bridge access of SDRAM for external PCI master cycles

No concurrent operation is allowed on the CPU bus (e.g., Am5x86 CPU accessing the GP
bus while the PCI host bridge is accessing SDRAM). At any time, only one master is granted
access to the CPU bus.

8.4.2.1 CPU Arbitration Protocol

The CPU bus arbiter implements a rotating priority algorithm that guarantees each bus
master a place in the arbitration rotation. A master becomes lowest priority in the queue
when it receives a bus grant. A master is skipped in the rotation if its request is not asserted,
but a lower priority master request is asserted. In this case, the skipped master becomes
lowest priority as if it had been serviced (see Figure 8-2).

Figure 8-2 Skipped Master Example

In the example shown in Figure 8-2, assume that M0 has just finished a transaction. In this
case, the next master in the rotating priority queue would be M1. M1, however, is not
requesting the bus, and M2 (a lower priority master at this time) is requesting the bus. In
this case, M1 is skipped and the bus is granted to M2. M1 is the lowest priority master in
the rotation after being skipped, as if it had been granted the bus. After M2 finishes its
transaction, M0 becomes the highest priority master.

The rotating queue for the CPU bus can be seen in Figure 8-3. The Am5x86 CPU is the
default owner when no master is requesting the CPU bus and following reset. The host
bridge becomes a bus requestor when it has posted write data from a PCI bus master, or
it needs to perform a SDRAM read for a PCI bus master.

M0

M1M2

REQ=1REQ=0

Rotating Priority Queue

M0 is finishing its transaction; therefore its REQ and
GNT are being deasserted

M1 not requesting the bus at the end of the M0
transaction; thus it is skipped, and M2 gets GNT
asserted instead

Notes:
Priority: M0, M2, M0, M1, M2, M0, M1, M2, ...
Élan™SC520 Microcontroller User’s Manual 8-5

System Arbitration
Figure 8-3 CPU Bus Rotating Priority Queue

8.4.2.2 CPU Cache Snooping

The Am5x86 CPU includes a write-back cache that updates only the internal cache on
memory writes from the CPU (if configured for write-back mode). When only the internal
cache memory is updated for a memory write, the external SDRAM contains invalid data.
Thus, snooping is required to maintain coherency when other bus masters are accessing
SDRAM. Any time another master (GP-DMA or PCI host bridge) is accessing a SDRAM
location that contains stale data (valid data is in Am5x86 CPU cache), the valid cache data
must be written back to SDRAM before the other master is allowed access to the SDRAM.
Therefore, all non-Am5x86 CPU accesses to SDRAM (both reads and writes) are snooped
by the Am5x86 CPU.

The Am5x86 CPU cache can be optionally configured to operate in write-through cache
mode by setting the CACHE_WR_MODE bit in the Am5x86 CPU Control (CPUCTL) register
(MMCR offset 02h). In this mode, both the internal cache and external memory are updated
on memory writes. Because the external memory is updated, there are no cache data
concurrency issues due to Am5x86 CPU memory writes. Other master write cycles are still
snooped, however, to keep the Am5x86 CPU’s cache coherent with external memory. In
this case, the external memory is updated, and the cache contains invalid data. The snoop
invalidates this internal cache location to maintain coherency. There is no overhead involved
with snooping when the cache is configured for write-through cache mode. The snoop
happens during the cycle (no preemption, write-back, or additional wait-states are inserted).

The ÉlanSC520 microcontroller does not support dynamic cache-write policy changes.

8.4.2.3 Accessing the PCI Host Bridge Target

The PCI host bridge allows external PCI bus masters to read and write the ÉlanSC520
microcontroller’s SDRAM. Two 64 doubleword FIFOs (one read, one write) in the
ÉlanSC520 microcontroller’s host bridge are used to increase PCI bus performance. Once
granted the bus by the CPU bus arbiter, the PCI host bridge target controller is allowed to
prefetch up to 64 DWORDs (for a memory-read-multiple command), or write (memory-write
or memory-write-and-invalidate commands) up to 64 doublewords before the bus is granted
to another master. During this time, no other master is granted the CPU bus. The Am5x86
CPU, however, is granted the bus during this time to write back a cache location if necessary.

CPU

GP Bus
DMA

Host
Bridge
Target
8-6 Élan™SC520 Microcontroller User’s Manual

System Arbitration
8.4.2.4 GP Bus DMA Arbitration

The GP-DMA controller allows internal and external GP bus peripherals to have DMA
access to SDRAM. There is no preemption mechanism for GP-DMA. Therefore, once a
DMA transaction begins, no other master is granted the CPU bus until the DMA controller
deasserts its bus request, which varies according to whether the channel is programmed
for a single cycle transfer or a block mode transfer. See Chapter 14, “GP Bus DMA
Controller”, for information on the various DMA modes and transactions. However, the
Am5x86 CPU is granted the bus during this time to write back a cache location, if necessary.

8.4.2.5 Arbitration During Clock Speed Changes

The Am5x86 CPU’s internal core clock speed can be changed dynamically during operation,
for systems that require thermal management. While the clock is changing, there is a period
where the Am5x86 CPU cannot generate any bus cycles; therefore, cache snooping cannot
be performed.

To allow bus masters continued access of SDRAM during the long PLL recovery times, the
CPU bus arbiter masks the Am5x86 CPU bus requests and allows only the PCI host bridge
and GP-DMA controller access to the CPU bus. If no master is requesting the CPU bus,
the CPU bus arbiter is the default owner (no master is granted the bus).

Note that during normal operation when the Am5x86 CPU core clock is not changing, the
Am5x86 CPU is the default owner of the CPU bus.

8.4.3 PCI Bus Arbiter
The PCI Local Bus Specification, Revision 2.2, defines a central resource known as the
arbiter. This resource controls PCI master access to the PCI bus. The arbitration approach
is access-based, which means a PCI master is only granted the bus when it needs
(requests) the bus (except in the case of bus parking, discussed in “Bus Parking” on
page 8-10).

A simple request/grant handshake is used where each PCI master has a unique request
(REQ) and grant (GNT) signal. PCI bus arbitration is hidden, which means arbitration for
the next cycle occurs during the current cycle, so that no cycles are wasted due to arbitration
(except when the bus is in the idle state and no other requests/grants are active).

The PCI bus is parked on a PCI master when the bus is idle to prevent floating signals on
the bus. This is done by asserting a PCI master’s GNT signal, even though the PCI master
is not requesting the bus. In turn, the PCI master turns on its output drivers, which prevents
the bus from floating.

The ÉlanSC520 microcontroller includes the PCI bus arbiter central resource. The
integrated PCI bus arbiter arbitrates between the PCI host bridge (Am5x86 CPU as PCI
master) and up to five external masters. The req/gnt signal pair for the PCI host bridge on
the ÉlanSC520 microcontroller is internally connected to the PCI bus arbiter. Five external
REQ/GNT pin pairs (REQ4–REQ0, GNT4–GNT0) are provided to connect external PCI
masters to the ÉlanSC520 microcontroller’s PCI bus arbiter. In the following descriptions
in this chapter, the term PCI bus arbiter refers to the ÉlanSC520 microcontroller’s integrated
PCI bus arbiter.

Because the Am5x86 CPU does not burst memory-write cycles (except cache write-backs,
which do not apply here because PCI bus memory is noncacheable in the ÉlanSC520
microcontroller), the ÉlanSC520 microcontroller will not burst more than two consecutive
doublewords during a CPU write to the PCI bus. Therefore, the PCI bus master latency
timer is not provided in the ÉlanSC520 microcontroller.
Élan™SC520 Microcontroller User’s Manual 8-7

System Arbitration
8.4.3.1 PCI Bus Arbitration Protocol

The PCI Local Bus Specification, Revision 2.2, states that the central arbiter must implement
a fairness algorithm, which means that each potential bus master must be granted access
to the bus independently of other requests. The PCI bus arbiter satisfies this requirement
by implementing a rotating priority arbitration scheme that guarantees each bus master a
place in the arbitration rotation (see Figure 8-3 on page 8-6 for information on rotating
priority arbitration).

Rotating priority mode alone may not provide adequate arbitration in a system where it is
known that some PCI bus masters require more bandwidth than others. Therefore, the
ÉlanSC520 microcontroller’s PCI bus arbiter has two rotating priority queues to
accommodate this requirement: a high-priority queue and a low-priority queue.

The masters in the high-priority queue are granted more bandwidth than masters in the
low-priority queue. The high-priority queue can contain up to two PCI masters, and the low-
priority queue contains all masters that are not in the high-priority queue. The
HI_PRI_0_SEL and HI_PRI_1_SEL bit fields in the Arbiter Priority Control (ARBPRICTL)
register (MMCR offset 74h) are used to specify the position of each PCI master in the high-
priority queue.

Both queues have rotating priority, and one low-priority master is granted the bus for every
rotation of the high-priority queue. After the low-priority master is granted the bus, the low-
priority queue rotates to the next low-priority master (see Figure 8-4).

Any one or two (or none) of the ÉlanSC520 microcontroller’s PCI bus masters can be placed
in the high-priority queue. Note that programming the same bus master for both slots in the
high-priority queue does provide additional performance for that master. The net result of
programming the same master in both slots of the high-priority queue is that the master is
given tenure during both slots. If no masters are in the high-priority queue, then there is
one rotating priority queue where each master has equal priority.

The high and low-priority queues are for external PCI bus masters, and the Am5x86 CPU
PCI master adds an additional level of arbitration. The PCI bus arbiter can be configured
with the CPU_PRI bit field in the Arbiter Priority Control (ARBPRICTL) register to grant the
bus to the Am5x86 CPU after every one, two, or three external PCI transactions (where the
external PCI master to be granted the bus is determined from the high and low-priority
queues). This implements another rotating priority queue (see Figure 8-5).

See the PCI Local Bus Specification, Revision 2.2, for detailed requirements of PCI bus
arbitration.
8-8 Élan™SC520 Microcontroller User’s Manual

System Arbitration
Figure 8-4 External PCI Master Arbitration Queues

Figure 8-5 Host Bridge Master Arbitration Queue

HP0

HP1

LPx

LP0

LP1

LP2

LP3

LPn

High-Priority Queue
Low-Priority Queue

Notes:
HP0, HP1: High-priority masters
LP0, LP1, LP2, LP3, ..., LPn: Low-priority masters
LPx: Current low-priority master selected
Priority: HP0, HP1, LP0, HP0, HP1, LP1, HP0, HP1, LP2, HP0, HP1, LP3, ..., HP0, HP1, LPn

CPU

Ext
PCI

PCI

Ext
PCI

Ext

Notes:
The PCI bus arbiter is configurable to grant the bus to the host bridge after every 1, 2, or 3 external
PCI transactions.
Priority configured for 1: CPU, Ext PCI, CPU, Ext PCI, ...
Priority configured for 2: CPU, Ext PCI, Ext PCI, CPU, Ext PCI, Ext PCI, ...
Priority configured for 3: CPU, Ext PCI, Ext PCI, Ext PCI, CPU, Ext PCI, Ext PCI, Ext PCI, ...
Élan™SC520 Microcontroller User’s Manual 8-9

System Arbitration
8.4.3.2 Bus Parking

The PCI bus arbiter parks the bus on a PCI bus master when the bus is idle (no master is
requesting the bus). This is required on the PCI bus to guarantee that the bus is properly
terminated at all times. The PCI bus arbiter arbitrates for the next transaction as soon as
the current PCI master that is granted the bus begins its transaction.

Bus parking is configured with the BUS_PARK_SEL bit in the System Arbiter Control
(SYSARBCTL) register (MMCR offset 70h). Note that the BUS_PARK_SEL bit must not be
changed except during PCI bus arbiter initialization after a system of programmable reset.

8.4.3.2.1 Nonconcurrent Arbitration Mode Bus Parking
The bus should always be parked on the CPU in nonconcurrent arbitration mode. This is
necessary to guarantee adequate CPU performance. Otherwise, the CPU would be
required to acquire ownership of both the CPU bus and the PCI bus for each external access
(including code fetches).

8.4.3.2.2 Concurrent Arbitration Mode Bus Parking
In concurrent arbitration mode, the PCI bus arbiter can be configured to park on the last
master that was granted the bus or configured to always park on the Am5x86 CPU. If no
other PCI masters are requesting the bus, the GNT to the current PCI master remains
asserted until the current PCI master transaction completes.

A bus master that is parked can start a transaction without asserting its REQ pin (PCI bus
protocol allows a master to start a cycle when its GNT is asserted and the bus is idle), but
it must assert REQ if it requires multiple transactions.

When no PCI bus requests or grants are active, the arbiter retains priority established from
the last tenure. For example, if the bus is idle and no requests or grants are active and all
masters simultaneously request the bus, the arbiter services the master that is next in
rotation.

8.4.3.3 Rearbitration

A PCI bus master that is granted the bus and has not started a transaction within 16 clocks
after the bus becomes idle can be assumed to be “broken.” In this case, the PCI bus arbiter
automatically re-arbitrates and grants the bus to the next PCI master.

An interrupt can be generated when a PCI bus master that has acquired bus ownership
has not started a transaction within 16 clocks, and the REQ/GNT number of the “broken”
PCI master is reported in the PCI Bus Arbiter Status (PCIARBSTA) register (MMCR offset
71h). This allows software to disable the broken master and modify the bus parking such
that the PCI bus is parked on the CPU.
8-10 Élan™SC520 Microcontroller User’s Manual

System Arbitration
8.4.4 Bus Cycles
This section includes example timing diagrams showing various types of arbitration that
may occur in the ÉlanSC520 microcontroller. Note that these are example cases only, and
not all cases are shown. The diagrams are functionally representative in nature, and should
not be used to infer detailed timing information. Note also that the synchronization between
the CPU and PCI clock domains is not shown in detail.

8.4.4.1 CPU Bus Arbitration

Figure 8-6 shows CPU bus arbitration between two CPU bus masters (for clarity, this
diagram shows only two bus masters). For additional CPU bus masters, there would be
more arbitration signal groups and more than one CPU bus transaction could take place
before an individual CPU bus master would be granted the bus.

Figure 8-6 CPU Bus Arbitration

Notes:
In Figure 8-6, the CPU bus master signals are labeled mst_xxx and the Am5x86 CPU signals are labeled cpu_xxx.

Snooping is not shown in this figure.

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the CPU bus arbitration cycle shown in Figure 8-6.

■ Clock #1: The Am5x86 CPU requests the bus by asserting cpu_breq. Note at this time
that the bus is granted to some other master because cpu_hlda is asserted.

■ Clock #2: The CPU bus arbiter samples the Am5x86 CPU’s request asserted and begins
arbitration. The CPU bus arbiter determines that the bus is free and that the Am5x86
CPU is the next master to receive the bus, so it deasserts cpu_hold to the Am5x86 CPU.
If the bus was not free or the Am5x86 CPU was not the next master to receive the bus,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

clk

cpu_breq

cpu_hold

cpu_hlda

cpu_ads

cpu_rdy

mst_req

mst_gnt

mst_ads

mst_rdy
Élan™SC520 Microcontroller User’s Manual 8-11

System Arbitration
cpu_hold to the Am5x86 CPU would remain asserted. In this example, another CPU bus
master also requests the bus by asserting mst_req.

■ Clock #3: The Am5x86 CPU samples cpu_hold deasserted and deasserts cpu_hlda to
take ownership of the bus. The Am5x86 CPU begins a cycle by asserting cpu_ads.

■ Clock #4: The CPU bus arbiter samples cpu_ads asserted and rearbitrates. The CPU
bus arbiter determines that the bus will be granted to another master (CPU bus master)
when the current cycle is done, so it asserts cpu_hold to the Am5x86 CPU. The Am5x86
CPU will maintain ownership of the bus until it asserts cpu_hlda.

■ Clock #8: The Am5x86 CPU samples cpu_rdy asserted, which ends the current cycle.
The Am5x86 CPU has also sampled cpu_hold asserted and surrenders the bus by
asserting cpu_hlda. The Am5x86 CPU has another cycle pending, so it asserts cpu_breq
to request access to the CPU bus.

■ Clock #9: The CPU bus arbiter samples cpu_hlda asserted from the Am5x86 CPU and
grants the bus to the CPU bus master (the next master in the queue) by asserting mst_gnt
to the CPU bus master.

■ Clock #10: The CPU bus master samples mst_gnt asserted and begins a cycle by
asserting mst_ads.

■ Clock #11: The CPU bus arbiter samples mst_ads asserted and rearbitrates. The CPU
bus arbiter determines that the bus will be granted to the Am5x86 CPU when the current
cycle is done, so it deasserts mst_gnt to the CPU bus master. The CPU bus master will
maintain ownership of the bus until it deasserts mst_req.

■ Clock #15: The CPU bus master samples mst_rdy asserted, which ends the current
cycle. The CPU bus master also samples mst_gnt deasserted and surrenders the bus
by deasserting mst_req.

■ Clock #16: The CPU bus arbiter samples mst_req deasserted from the CPU bus master,
and grants the bus to the Am5x86 CPU by deasserting cpu_hold.

8.4.4.2 CPU Bus Cache Write-Back

Figure 8-7 shows an Am5x86 CPU cache write-back cycle. The cache must be written back
when another CPU bus master accesses a memory location that has been modified in the
internal Am5x86 CPU cache only (the external memory contains invalid data).
8-12 Élan™SC520 Microcontroller User’s Manual

System Arbitration
Figure 8-7 CPU Bus Cache Write-Back

Notes:
In Figure 8-7, the CPU bus master signals are labeled mst_xxxx and the Am5x86 CPU signals are labeled cpu_xxxx.

The additional internal CPU bus interface signals shown in Figure 8-7 for write-back cycles are

• eads: External Address Strobe—Asserted by the CPU bus master to initiate a snoop by the Am5x86 CPU.

• hitm: Hit Modified Line—CPU must write back cache line to maintain coherency.

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the CPU bus cache write-back cycle shown in Figure 8-7.

■ Clock #1: The CPU bus master owns the bus (CPU bus master mst_gnt is asserted,
Am5x86 CPU cpu_hold/cpu_hlda are asserted).

■ Clock #2: The CPU bus master initiates an inquire cycle by asserting eads to the Am5x86
CPU.

■ Clock #4: The Am5x86 CPU asserts hitm to signal that the snoop resulted in a hit to a
modified line. The Am5x86 CPU must perform a write-back cycle to maintain coherency.

■ Clock #5: The CPU bus master samples hitm asserted and relinquishes the bus on the
next clock. The CPU bus arbiter deasserts cpu_hold to the Am5x86 CPU to allow the
Am5x86 CPU to perform the write-back cycle.

■ Clock #6: The Am5x86 CPU samples cpu_hold deasserted and deasserts cpu_hlda to
take ownership of the bus. The cpu_ads signal is asserted to begin the write-back cycle.

■ Clock #7: The CPU bus arbiter samples cpu_ads asserted and asserts cpu_hold to the
Am5x86 CPU so that no additional cycles are generated after the write-back cycle.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

clk

cpu_hold

cpu_hlda

eads

hitm

cpu_ads

cpu_rdy

mst_req

mst_gnt

mst_ads

mst_rdy
Élan™SC520 Microcontroller User’s Manual 8-13

System Arbitration
■ Clock #11: The Am5x86 CPU samples cpu_rdy, which ends the write-back cycle. The
Am5x86 CPU has also sampled cpu_hold asserted and surrenders the bus by asserting
cpu_hlda.

Note: This write-back cycle is for illustration purposes only; the actual write-back cycle
would consist of multiple data phases.

■ Clock #12: The Am5x86 CPU deasserts hitm one clock after cpu_rdy ends the write-
back cycle.

■ Clock #13: The CPU bus master samples hitm deasserted and starts the bus cycle.

8.4.4.3 CPU-to-PCI Cycle

Figure 8-8 shows an Am5x86 CPU-to-PCI bus cycle. The Am5x86 CPU cycle is either a
read cycle or a write cycle with write posting disabled.

Figure 8-8 CPU-to-PCI Cycle

Notes:
The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the Am5x86 CPU-to-PCI cycle shown in Figure 8-8.

■ Clock #2: The Am5x86 CPU asserts breq to request the CPU bus. The CPU bus arbiter
will grant the bus to the CPU when the current bus owner’s cycle is completed. The
pending Am5x86 CPU cycle is to PCI.

■ Clock #3: The CPU bus arbiter deasserts cpu_hold to the Am5x86 CPU to grant the bus
to the Am5x86 CPU. The deassertion of cpu_hold would be delayed if the CPU bus was
not idle or if another higher priority master was requesting the CPU bus.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

clk

breq

cpu_hold

cpu_hlda

cpu_ads

cpu_rdy

req

gnt

FRAME

DEVSEL

IRDY

TRDY
8-14 Élan™SC520 Microcontroller User’s Manual

System Arbitration
■ Clock #4: The cpu_hlda signal is deasserted by the Am5x86 CPU to take ownership of
the CPU bus, and cpu_ads is asserted to begin a cycle to PCI.

■ Clock #5: The CPU bus arbiter samples cpu_ads asserted and rearbitrates. In this
example, a higher priority master is requesting the bus, so cpu_hold is asserted to the
Am5x86 CPU. The Am5x86 CPU maintains ownership of the CPU bus until it completes
its cycle and asserts cpu_hlda.

■ Clock #9: The host bridge asserts its req to the PCI bus arbiter in response to the
Am5x86 CPU bus cycle to PCI.

■ Clock #10: The PCI bus arbiter asserts gnt to the host bridge. The assertion of gnt would
be delayed if the bus was not idle or if another higher priority master was requesting the
PCI bus.

■ Clock #11: The host bridge samples gnt asserted and begins the PCI transaction.

■ Clock #17: The PCI transaction is complete and the host bridge returns cpu_rdy to the
Am5x86 CPU ending the Am5x86 CPU-to-PCI cycle.

■ Clock #18: The Am5x86 CPU samples cpu_rdy asserted ending the current cycle and
asserts cpu_hlda to allow the next CPU bus master access to the CPU bus.

8.4.4.4 PCI Bus Arbitration

Figure 8-9 shows how the PCI bus arbiter arbitrates between two masters. Although there
are only two PCI masters in this example, the mechanism is the same when there are more
PCI masters. The differences are that there would be more REQ/GNT signal pairs and
more than one PCI bus transaction could take place before an individual PCI master is
granted the bus.

Figure 8-9 PCI Bus Arbitration

The following sequence annotates the PCI bus arbitration cycle shown in Figure 8-9.

■ Clock #2: Master 0 and master 1 simultaneously request access to the bus.

1 2 3 4 5 6 7 8 9 10

CLKPCIIN

REQ0

GNT0

REQ1

GNT1

FRAME

IRDY

TRDY
Élan™SC520 Microcontroller User’s Manual 8-15

System Arbitration
■ Clock #3: The PCI bus arbiter samples REQ asserted and begins arbitration. Master 0
has higher priority at this time than master 1 so the PCI bus arbiter grants the PCI bus
to master 0.

■ Clock #4: Master 0 samples the bus idle and its GNT0 signal asserted and begins a
transaction by asserting FRAME. Master 0 now becomes the lowest priority master in
the rotating priority queue.

■ Clock #5: The PCI bus arbiter detects a transaction has started and rearbitrates for the
next master. Master 1 is the now the highest priority master in the rotating priority queue,
so the PCI bus arbiter deasserts the GNT0 for master 0 and asserts the GNT1 for
master 1.

■ Clock #8: Master 1 samples the bus idle and its GNT1 asserted and begins a transaction
by asserting FRAME. Master 1 now becomes the lowest priority master in the rotating
priority queue.

■ Clock #9: No other masters are requesting the bus, so the PCI bus arbiter keeps
asserting the GNT1 for master 1. This allows master 1 to continue the transaction, even
after its master latency timer has expired. If another master were requesting the bus,
the PCI bus arbiter would rearbitrate, deassert the GNT1 for master 1, and assert the
GNT for the next master to be granted the bus.

8.4.4.5 PCI Bus Arbitration Parking

Figure 8-10 shows an example of bus parking in concurrent arbitration mode when no
master is requesting access to the PCI bus.

In this example, the PCI bus arbiter is configured to park on the Am5x86 CPU. If the PCI
bus arbiter is configured to park on the last master that acquired the bus, then the PCI bus
arbiter would continue to assert the GNT to the master that had just completed a transaction.

Figure 8-10 PCI Bus Concurrent Mode Arbitration Parking

Notes:
In Figure 8-10, req/gnt are for the Am5x86 CPU.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLKPCIIN

REQ0

GNT0

req

gnt

FRAME

IRDY

TRDY
8-16 Élan™SC520 Microcontroller User’s Manual

System Arbitration
The following sequence annotates the PCI bus concurrent mode arbitration parking cycle
shown in Figure 8-10.

■ Clock #2: Master 0 requests access to the bus.

■ Clock #3: The PCI bus arbiter samples REQ asserted and begins arbitration. Master 0
is the only master requesting the bus, so the PCI bus arbiter grants the bus to master 0
by asserting GNT0.

■ Clock #4: Master 0 samples the bus idle and its GNT0 asserted, and begins a transaction
by asserting FRAME. Master 0 now becomes the lowest priority master in the rotating
priority queue.

■ Clock #5: The PCI bus arbiter detects a transaction has started and begins to rearbitrate
for the next master. Because no other masters are requesting the bus, the PCI bus arbiter
keeps asserting the GNT0 for master 0. This allows master 0 to continue a transaction
even after its master latency timer has expired. If another master were requesting the
bus, the PCI bus arbiter would rearbitrate, deassert the GNT0 for master 0, and assert
the GNT for the next master to be granted the bus.

■ Clock #7: Master 0 samples the end of the transaction. The PCI bus arbiter samples
FRAME deasserted, signaling that this is the last data phase of the transaction. Because
no other masters are requesting the bus, the PCI bus arbiter will now park the bus on
the configured master (Am5x86 CPU). The PCI bus arbiter deasserts GNT0 to master
0 and asserts gnt to the Am5x86 CPU. Note that req is not asserted. If the PCI bus
arbiter was configured to park on the last master that acquired the bus, it would keep
GNT0 asserted and park on master 0.

■ Clock #8: The Am5x86 CPU samples the bus idle and its gnt asserted. Note the Am5x86
CPU does not have to start a transaction, but it does need to drive the shared PCI bus
signals to stable values. If the Am5x86 CPU wants to start a transaction, it does not have
to assert req and wait for gnt. It can assert FRAME and begin a transaction on any clock
it samples gnt asserted. The master on which the PCI bus is parked has no arbitration
latency.

■ Clock #10: Master 0 requests the bus by asserting REQ0.

■ Clock #11: The PCI bus arbiter samples REQ asserted and begins arbitration. Master
0 is the only master requesting the bus, so the PCI bus arbiter determines that master
0 will be the next master to be granted the bus. The PCI bus arbiter then deasserts gnt
to the Am5x86 CPU.

■ Clock #12: The PCI bus arbiter asserts GNT0. Note the PCI bus arbiter cannot
simultaneously deassert one master’s GNT and assert another master’s GNT when the
bus is idle. Doing so could cause contention on the shared PCI bus signals.

■ Clock #13: Master 0 samples the bus idle and its GNT0 signal asserted and begins a
transaction by asserting FRAME. Master 0 now becomes the lowest priority master in
the rotating priority queue. Note that there is a two-clock arbitration latency for masters
that are not parked on the bus when the bus is idle. This is because, when the bus is
idle, one GNT cannot be asserted on the same clock when another GNT is deasserted.
Therefore, GNT to the master the bus is parked on will be deasserted in one clock, and
the GNT to the next master granted the bus will be asserted one clock later, resulting in
a two-clock arbitration latency.
Élan™SC520 Microcontroller User’s Manual 8-17

System Arbitration
8.4.4.6 Nonconcurrent Mode Arbitration

Figure 8-11 shows external PCI master arbitration in nonconcurrent mode. In
nonconcurrent arbitration mode, both the CPU bus and the PCI bus are granted to the PCI
master, regardless of the destination of the PCI transaction.

Figure 8-11 Nonconcurrent Mode Arbitration

Notes:
The diagram includes the following internal signals:

• hb_req: PCI host bridge requesting the Am5x86 CPU bus.

• hb_gnt: PCI host bridge has been granted Am5x86 CPU bus.

The following sequence annotates the nonconcurrent mode arbitration cycle shown in
Figure 8-11.

■ Clock #1: An external PCI master requests the PCI bus.

■ Clock #2: The PCI bus arbiter samples an external PCI request asserted and asserts
the host bridge request to the CPU bus arbiter. The external PCI master GNT0 cannot
be asserted until the host bridge is granted the CPU bus. If the system arbiter were
operating in concurrent arbitration mode, the external PCI master GNT0 could be
asserted in clock #2 because the PCI bus and the CPU bus would be operating
independently.

■ Clock #5: The CPU bus arbiter has determined the host bridge will be granted the CPU
bus and asserts hb_gnt to the host bridge. The assertion of hb_gnt could be delayed if
a higher priority master was requesting the CPU bus.

■ Clock #6: The PCI bus arbiter detects the host bridge has been granted the CPU bus
and asserts GNT0 to the external PCI master.

■ Clock #7: The CPU bus arbiter rearbitrates and determines another CPU bus master
will be granted the bus and deasserts hb_gnt to the host bridge. The host bridge will

1 2 3 4 5 6 7 8 9 10 11 12

CLKPCIIN

REQ0

GNT0

hb_req

hb_gnt

FRAME

DEVSEL

IRDY

TRDY
8-18 Élan™SC520 Microcontroller User’s Manual

System Arbitration
maintain ownership of the CPU bus until it deasserts hb_req. The external PCI master
samples GNT0 asserted and asserts FRAME to begin the PCI transaction.

■ Clock #8: GNT0 is deasserted because either the external master is parked on the CPU
or another master has requested the bus.

■ Clock #11: The host bridge samples the end of the PCI transaction and has sampled
hb_gnt deasserted, so it deasserts hb_req to allow the next CPU bus master access to
the CPU bus.

8.4.5 Interrupts
The system arbiter has one interrupt signal routed to the ÉlanSC520 microcontroller’s PCI
host bridge. This interrupt source shares the interrupt controller input used by any PCI host
bridge interrupts that are enabled in the Host Bridge Master Interrupt Control
(HBMSTIRQCTL) register (MMCR offset 66h) register and the Host Bridge Target Interrupt
Control (HBTGTIRQCTL) (MMCR offset 62h) register.

The following condition can be programmed to generate an interrupt from the system arbiter.

■ When the PCI bus arbiter has asserted a GNT in response to a request (the bus is not
parked) and a PCI transaction was not started within 16 clocks after the bus became
idle, per the PCI Local Bus Specification, Revision 2.2.

The GNT_TO_INT_ENB bit in the System Arbiter Control (SYSARBCTL) register (MMCR
offset 70h) is used to enable interrupts that are generated when the PCI bus arbiter detects
a grant time-out. Before the GNT_TO_INT_ENB bit is set, the PCI Host Bridge Interrupt
Mapping (PCIHOSTMAP) register (MMCR offset D14h) must be configured to route the
interrupt to the appropriate interrupt request level and priority.

The REQ/GNT number of the PCI master that did not start a transaction is reported in the
GNT_TO_STA bit of the PCI Bus Arbiter Status (PCIARBSTA) register (MMCR offset 71h).
Note that the GNT_TO_STA bit is set on PCI bus arbiter grant time-outs regardless of the
GNT_TO_INT_ENB bit value.

8.4.6 Software Considerations
The system arbiter can operate in concurrent or nonconcurrent arbitration mode (see
“Operating Modes” on page 8-3). Write posting from the CPU to the PCI bus should be
disabled while configured in nonconcurrent arbitration mode. When changing between
nonconcurrent and concurrent arbitration mode, all system arbiter requests should be
disabled, as follows:

■ GP-DMA channels should be disabled to prevent the DMA controller from requesting
the CPU bus.

■ External PCI bus master requests should be inhibited.

■ The Am5x86 CPU should not attempt to access the PCI bus.

A PCI bus master that does not start a transaction within 16 clocks after the bus is idle can
be considered broken. The PCI bus arbiter checks for this condition and provides status
on which PCI bus master GNT was asserted when this condition was detected. Software
can read this status and disable the broken master’s REQ to the PCI bus arbiter through
the System Arbiter Master Enable (SYSARBMENB) register (MMCR offset 72h). This
prevents the broken master from wasting PCI bandwidth.

Note that the PCI bus arbiter does not automatically disable the broken master’s REQ signal.
Élan™SC520 Microcontroller User’s Manual 8-19

System Arbitration
8.4.7 Latency
Because the PCI bus is shared by many masters, each master incurs a latency accessing
the bus due to other masters. This latency is determined by each master in the system and
the arbitration algorithm. The latency contributed by each master is controlled through its
associated master latency timer, which limits the amount of time a master is allowed for
each transaction. When this timer expires, the current master must end its transaction and
allow another master access to the bus.

The ÉlanSC520 microcontroller PCI bus arbiter has two rotating priority queues and an
Am5x86 CPU relative priority. The Am5x86 CPU does not burst on PCI, and therefore does
not have a master latency timer. The longest transaction for the Am5x86 CPU is 16 PCI
clocks.

The latency contributed by the ÉlanSC520 microcontroller PCI bus arbiter can be controlled
in the Arbiter Priority Control (ARBPRICTL) register (MMCR offset 74h) through the use of
the high-priority queue and the relative Am5x86 CPU priority configuration.

8.4.7.1 Simple Rotating Priority Latency

In a simple one-level rotating priority queue, the maximum latency for each master would
be the sum of all the other master latency timers in the system.

In Figure 8-12, the maximum latency for master M0 would be the sum of the longest possible
transactions for masters M1, M2, M3, ..., Mn. The longest transaction for each master is
limited by its associated master latency timer, so the maximum latency for M0 would be:

master latency timer for M1 + master latency timer for M2 + master latency timer for M3 +
... + master latency timer for Mn

This latency would be seen by M0 when it had just completed a transaction, all other masters
were requesting access to the bus, and each master required the bus for the entire duration
of its associated master latency timer.

Figure 8-12 Simple Rotating Priority Queue

M0

M1

M2

M3

Mn
8-20 Élan™SC520 Microcontroller User’s Manual

System Arbitration
8.4.7.2 High-Priority Queue Latency

The maximum latency for a master in the high-priority queue is the sum of:

■ Master latency timer of other master in high-priority queue—This time can be decreased
by decreasing the master latency timer of the other master in the high-priority queue, or
this time can be eliminated by programming only one master in the high-priority queue.

■ Longest master latency timer of all masters in the low-priority queue—This can be
decreased by decreasing the master latency timer of all masters in the low-priority queue.

■ 3 * (Am5x86 CPU maximum transaction time)

8.4.7.3 Low-Priority Queue Latency

The maximum latency for a master in the low-priority queue (note that after a low-priority
master has completed a transaction, every PCI master will be granted the bus before the
low-priority master will be granted the bus again) is the sum of:

■ Number of external masters * (Am5x86 CPU maximum transaction time)—The Am5x86
CPU maximum transaction time is multiplied by the number of external masters, because
the Am5x86 CPU is granted the bus after every external PCI transaction if the Am5x86
CPU relative priority is configured for one external PCI master cycle. This can be
decreased by decreasing the Am5x86 CPU relative priority (configure the relative priority
to allow more external PCI cycles for every Am5x86 CPU PCI cycle).

■ Number of masters in the low-priority queue * (master latency timers of all masters in
the high-priority queue)—The master latency timers of all masters in the high-priority
queue is multiplied by the number of masters in the low-priority queue, because the high-
priority masters are granted the bus after each low-priority master grant. This time can
be decreased by decreasing the number of masters in the high-priority queue or by
decreasing the master latency timers of the masters in the high-priority queue.

■ Master latency timers of all masters in the low-priority queue—This time can be
decreased by decreasing the master latency timers of the masters in the low-priority
queue.

8.4.7.4 CPU Latency

The maximum latency for the Am5x86 CPU is:

■ 3 * (longest master latency timer of all external masters)—The master latency timer is
multiplied by 3 because the worst case is when the Am5x86 CPU relative priority is
configured for three external PCI master cycles for every Am5x86 CPU PCI cycle. This
time can be decreased by decreasing the master latency timers of external masters or
by increasing the Am5x86 CPU relative priority.

8.4.7.5 Nonconcurrent Arbitration Mode Latency

Operating in nonconcurrent arbitration mode adds to the PCI bus latency. In nonconcurrent
arbitration mode, all PCI masters must be granted the CPU bus in addition to the PCI bus
before a transaction can proceed. The time associated with being granted the CPU bus
adds to each PCI master’s latency.

The maximum latency is:

(time for the longest Am5x86 CPU transfer) + (time for the longest GP-DMA transfer)

The longest Am5x86 CPU transfer is one cache line, and the longest GP-DMA transfer is
programmable. This additional latency is added to the latency of each external PCI master
as calculated in the high-priority and low-priority queues. This latency is incurred for all PCI
Élan™SC520 Microcontroller User’s Manual 8-21

System Arbitration
transactions, not only transactions where the ÉlanSC520 microcontroller is the PCI target.
Note that this includes PCI bus transactions where both the master and the target are
external PCI bus agents.

8.4.7.6 Concurrent Arbitration Mode Latency

The CPU bus adds to the PCI bus latency even when operating in concurrent arbitration
mode. Buffering in the host bridge, however, decreases the amount of latency on the PCI
bus due to the CPU bus. PCI transactions where the ÉlanSC520 microcontroller is not the
target do not have any added latency due to the CPU bus.

PCI write transactions where the ÉlanSC520 microcontroller is the target are posted in the
host bridge. The data is not immediately written to SDRAM, but have some latency due to
CPU bus arbitration. The external PCI master transaction, however, will be completed, and
so the external PCI master will not see this additional latency.

PCI read transactions where the ÉlanSC520 microcontroller is the target can be delayed
transactions. In this case, the external PCI master requesting the data sees the latency
added by the CPU bus arbitration.

Other PCI transactions are allowed on the PCI bus while the host bridge is arbitrating for
the CPU bus, and so only the external PCI master requesting the data incurs the CPU bus
latency, not the whole PCI bus. Note that CPU bus latency is added only to external PCI
master read transactions where the ÉlanSC520 microcontroller is the target.

8.4.7.7 Concurrent Arbitration Mode Bus Parking Latency

There is some latency associated with bus parking. The master that is parked on the bus
is able to begin a transaction immediately (without having to assert REQ), because its GNT
is already asserted. All other masters have to arbitrate for the bus by asserting REQ and
waiting for GNT. This arbitration takes two PCI clocks (see “PCI Bus Arbitration Parking”
on page 8-16). This applies to concurrent mode arbitration only.

8.5 INITIALIZATION
The system arbiter logic and configuration is reset in response to system reset.

After reset, the system arbiter operates in nonconcurrent arbitration mode. The priority
queue is defaulted such that REQ0 is the highest priority and REQ4 is the lowest priority,
because no masters are configured in the high-priority queue at this time. All masters are
disabled at reset, with the exception of the CPU as a PCI and CPU bus master.

After reset, the following initialization steps are required:

1. Enable concurrent operating mode, if desired, by setting the CNCR_MODE_ENB bit in
the System Arbiter Control (SYSARBCTL) register (MMCR offset 70h). System
arbitration defaults to nonconcurrent arbitration mode after reset. Note that changing
the CNCR_MODE_ENB bit should only be done when all bus master requests are
disabled.

2. Configure PCI bus parking with the BUS_PARK_SEL bit in the System Arbiter Control
(SYSARBCTL) register. Note that the BUS_PARK_SEL bit should only be changed when
the PCI bus is currently parked on the CPU. By default, the PCI bus arbiter parks on the
Am5x86 CPU, but the arbiter can be programmed to park on the last active PCI bus
master if operating in concurrent arbitration mode.

3. Configure PCI bus arbiter priority in the Arbiter Priority Control (ARBPRICTL) register
(MMCR offset 74h) if any external PCI masters are to be configured in the high-priority
queue. By default, all external masters are configured to be in the low-priority queue.
8-22 Élan™SC520 Microcontroller User’s Manual

System Arbitration
4. Enable external PCI requests to the PCI bus arbiter in the System Arbiter Master Enable
(SYSARBMENB) register (MMCR offset 72h). By default, all external PCI bus master
requests are disabled.

5. Enable/Clear the PCI bus GNT time-out interrupt with the GNT_TO_INT_ENB bit in the
System Arbiter Control (SYSARBCTL) register, if desired. By default, this interrupt
source is disabled, but the GNT_TO_ID status bit is set in the PCI Bus Arbiter Status
(PCIARBSTA) register (MMCR offset 71h) if a PCI bus GNT time-out is detected.
Élan™SC520 Microcontroller User’s Manual 8-23

System Arbitration
8-24 Élan™SC520 Microcontroller User’s Manual

CHAPTER
9 P
CI BUS HOST BRIDGE
9.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated PCI bus host bridge, which allows
the microcontroller to interface with any PCI bus Revision 2.2-compliant master or target
device.

The PCI host bridge includes the following features:

■ 33 MHz, 32-bit PCI bus Revision 2.2-compliant

■ Peak transfer rate of 132 Mbytes/s

■ Support for delayed transactions improves PCI bus utilization

■ Support for long bursts without disconnect when the ÉlanSC520 microcontroller is a
target (64 doublewords for both reads and writes)

■ Capable of zero wait state burst transfers as a target

■ Support for advanced PCI bus commands as a target: memory-read-line, memory-read-
multiple

■ Flexible PCI bus interrupt steering logic

■ Supports fast back-to-back transactions as a PCI bus target

According to the PCI Local Bus Specification, Revision 2.2, the initiator, or master, is the
device that initiates the PCI transfer. The slave, or target, is the device being addressed by
the master for the data transfer.

9.2 BLOCK DIAGRAM
The ÉlanSC520 microcontroller PCI host bridge interface is shown in Figure 9-1.
Élan™SC520 Microcontroller User’s Manual 9-1

PCI Bus Host Bridge
Figure 9-1 PCI Interface Block Diagram

9.3 SYSTEM DESIGN
Figure 9-2 shows how the ÉlanSC520 microcontroller can be connected to an external PCI
bus target device.

Figure 9-3 on page 9-4 shows how the ÉlanSC520 microcontroller can be connected to an
external PCI bus master device.

In each configuration, the PCI bus clock is driven from the ÉlanSC520 microcontroller on
the CLKPCIOUT pin and may require external buffering due to system loading (see “PCI
Clocking” on page 9-5). RST, the PCI bus reset signal, is driven from the ÉlanSC520
microcontroller.

The optional PCI bus target device interrupts can be connected to the PCI bus interrupt
pins on the ÉlanSC520 microcontroller (INTA, INTB, INTC, INTD) or any of the GPIRQ10–

PCI Host Bridge Controller

FIFO

PCI Bus

IR
D

Y

A
D

31
–A

D
0

F
R

A
M

E

C
B

E
3–

C
B

E
0

PA
R

T
R

D
Y

S
TO

P

D
E

V
S

E
L

P
E

R
R

S
E

R
R

G
N

T
4–

G
N

T
0

R
E

Q
4–

R
E

Q
0

PCI
Arbiter

C
LK

P
C

IO
U

T

R
S

T

IN
TA

–I
N

T
D

C
LK

P
C

IIN

Write

FIFO
Write

FIFO
Read

CPU SDRAM

Controller

Interrupt
Steering

CPU Bus

Élan™SC520 Microcontroller

PCI Master Controller PCI Target Controller
9-2 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
GPIRQ0 pins on the GP bus. See Chapter 15, “Programmable Interrupt Controller”, for
further information on connecting interrupt requests to the ÉlanSC520 microcontroller.

Figure 9-4 on page 9-5 shows how the PERR and SERR signals are connected to the
ÉlanSC520 microcontroller. PERR is driven by the PCI bus device (including the host
bridge) that is receiving data (sampling the AD31–AD0 bus during data phases). SERR is
driven by external PCI bus devices that detect a system error. External pullups must be
provided for PERR and SERR.

The PCI bus input and output pins of the ÉlanSC520 microcontroller are PCI bus revision
2.2 compliant. See the PCI bus specification for information on physical loading and routing.
The following PCI signals require pullups: FRAME, IRDY, TRDY, STOP, DEVSEL, PERR,
and SERR. These pullups must be provided externally to the ÉlanSC520 microcontroller
(the ÉlanSC520 microcontroller PCI bus pins do not have any termination).

The system PCI bus reset (RST) signal is sourced from the ÉlanSC520 microcontroller and
is asynchronous to the PCI bus clock. See “Initialization” on page 9-29 for more information
on reset.

Figure 9-2 Élan™SC520 Microcontroller Connection to an External PCI Bus Target

PCI Target
Device

AD31–AD0

CBE3–CBE0

PAR

FRAME

IRDY

TRDY

STOP

DEVSEL

PERR

SERR

RST

CLKPCIOUT

CLKPCIIN

AD31–AD0

CBE3–CBE0

PAR

FRAME

IRDY

TRDY

STOP

DEVSEL

PERR

SERR

RST

INTA–INTD

CLK

Élan™SC520 Microcontroller

PCI Bus Host Bridge
(PCI bus master)

Notes:
1. INT implies any of the following pins: INTA–INTD or GPIRQ10–GPIRQ0

INT1

IDSEL

Clock Buffering
(optional)
Élan™SC520 Microcontroller User’s Manual 9-3

PCI Bus Host Bridge
Figure 9-3 Élan™SC520 Microcontroller Connection to an External PCI Bus Master

PCI Master
Device

AD31–AD0

CBE3–CBE0

PAR

FRAME

IRDY

TRDY

STOP

DEVSEL

PERR

SERR

RST

INT1

REQx

GNTx

AD31–AD0

CBE3–CBE0

PAR

FRAME

IRDY

TRDY

STOP

DEVSEL

PERR

SERR

RST

INTA–INTD

Élan™SC520 Microcontroller

PCI Bus Host Bridge
(PCI bus target)

CLKPCIOUT

CLKPCIIN

CLK

Clock Buffering
(optional)

REQ

GNT

Notes:
1. INT implies any of the following pins: INTA–INTD or GPIRQ10–GPIRQ0
9-4 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
Figure 9-4 Élan™SC520 Microcontroller SERR and PERR Connection

9.3.1 PCI Clocking
The system PCI bus clock (CLK) is sourced from the ÉlanSC520 microcontroller. There
are two PCI bus clock pins on the ÉlanSC520 microcontroller: CLKPCIIN and CLKPCIOUT.
The CLKPCIOUT output pin drives a 33-MHz clock that is used as the system PCI bus
clock. However, the PCI host bridge logic is clocked from the CLKPCIIN input pin. The two
pins are provided for the PCI bus clock to minimize clock skew between the PCI host bridge
and external PCI bus devices.

The CLKPCIIN input pin guarantees that the PCI host bridge is driven with the same clock
as the external PCI bus devices. Otherwise, external buffering and loading of the
CLKPCIOUT pin could delay the clock, so that the skew between the PCI host bridge and
external PCI bus devices would not meet the PCI bus specification.

External buffering of CLKPCIOUT may or may not be required, depending on the system
loading (see Figure 9-5 and Figure 9-6). The ÉlanSC520 microcontroller does not
dynamically slow down or stop the output CLKPCIOUT clock; therefore the PCI bus
CLKRUN pin is not supported.

The CLKPCIIN pin is specifically intended for addressing the clock skew problem. It is not
intended to enable running the PCI host bridge with a clock that is asynchronous to the
CLKPCIOUT pin. Driving the CLKPCIIN pin from an external source that is of a different
frequency is also not supported.

PERR

SERR

PERR

SERR

PERR

SERR

PERR

SERR

PERR

SERR

PCI Device 0

PCI Device 1

PCI Device 2

PCI Device 3

PERR

SERR

PCI Device 4

Élan™SC520 Microcontroller
Élan™SC520 Microcontroller User’s Manual 9-5

PCI Bus Host Bridge
Figure 9-5 PCI Bus Clocking Example 1: Lightly Loaded System

Figure 9-6 PCI Bus Clocking Example 2: Heavily Loaded System

9.3.1.1 Running the Élan™SC520 Microcontroller at 33.333 MHz

The clock that is supplied to the PCI bus (CLKPCIOUT) is exactly the same as the frequency
of the crystal. The ÉlanSC520 microcontroller simply buffers the 33-MHz crystal input and
provides it to the CLKPCIOUT pin. Because crystals have inaccuracies, it is possible that
these inaccuracies cause the period of CLKPCIOUT to become marginally less than 30 ns.

CLKPCIOUT

CLKPCIIN

PCI Device 0
CLK

Notes:
In this lightly loaded system, no clock buffering is required.

Élan™SC520 Microcontroller

CLKPCIOUT

CLKPCIIN

PCI Device 0
CLK

PCI Device 1
CLK

PCI Device 2
CLK

PCI Device 3
CLK

PCI Device 4
CLK

Notes:
In this heavily loaded system, clock buffering is required.

Élan™SC520 Microcontroller
9-6 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
It is up to the system designer to choose the accuracy of the crystal used with the ÉlanSC520
microcontroller. The 33.000-MHz frequency provides a better guard band than the 33.333-
MHz crystal. In practice, most PCI devices tolerate both frequencies, but it is important to
be aware of the impact of choosing the crystal on this potential violation of the PCI bus
specifications. The PCI bus specification requires that the minimum clock period be 30 ns.

9.4 REGISTERS
The PCI host bridge configuration registers specific to the ÉlanSC520 microcontroller are
memory-mapped in ÉlanSC520 microcontroller configuration space. These registers are
listed in Table 9-1. Table 9-2 lists the direct-mapped registers used to configure the PCI
bus host bridge. The standard PCI configuration space header registers supported on the
ÉlanSC520 microcontroller are shown in Table 9-3 as PCI indexed registers.

Table 9-1 PCI Host Bridge Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

Host Bridge Control HBCTL 60h PCI reset, target FIFO purge enable, automatic
delayed transaction enable, and master write
posting enable

Host Bridge Target Interrupt
Control

HBTGTIRQCTL 62h Target interrupt or NMI select and interrupt
enables: delayed transaction time-out, address
parity, and data parity

Host Bridge Target Interrupt
Status

HBTGTIRQSTA 64h Target interrupt status: delayed transaction time-
out, address parity, data parity; target interrupt
identification

Host Bridge Master Interrupt
Control

HBMSTIRQCTL 66h Master interrupt or NMI select and interrupt
enables: retry time-out, target abort, master
abort, system error, received parity error,
detected parity error

Host Bridge Master Interrupt
Status

HBMSTIRQSTA 68h Master interrupt status: retry time-out, target
abort, master abort, system error, received
parity error, detected parity error; master
command interrupt identification

Host Bridge Master Interrupt
Address

MSTINTADD 6Ch Master address interrupt identification

Interrupt Pin Polarity INTPINPOL D10h Polarity of external interrupt sources (INTA–
INTD and GPIRQ10–GPIRQ0)

PCI Host Bridge Interrupt
Mapping

PCIHOSTMAP D14h System arbiter and PCI Host Bridge interrupt
mapping to any of 22 available interrupt
channels or NMI, PCI NMI enable control

PCI Interrupt A Mapping PCIINTAMAP D30h PCI INTA mapping

PCI Interrupt B Mapping PCIINTBMAP D31h PCI INTB mapping

PCI Interrupt C Mapping PCIINTCMAP D32h PCI INTC mapping

PCI Interrupt D Mapping PCIINTDMAP D33h PCI INTD mapping
Élan™SC520 Microcontroller User’s Manual 9-7

PCI Bus Host Bridge
9.5 OPERATION
The PCI host bridge on the ÉlanSC520 microcontroller has the following functionality:

■ Master controller—Allows the Am5x86 CPU to be a master on the PCI bus. The Am5x86
CPU can generate configuration transactions to configure the PCI host bridge, as well
as all external devices on the PCI bus. The Am5x86 CPU can also generate memory
and I/O read and write transactions on the PCI bus.

■ Target controller—Allows external PCI bus masters to access the ÉlanSC520
microcontroller’s SDRAM.

9.5.1 Unsupported PCI Bus Functions
The following list summarizes some of the PCI bus functionality that is not supported in the
ÉlanSC520 microcontroller’s PCI host bridge. These functions are listed as optional in the
PCI bus specification.

■ 66 MHz is not supported.

■ 64-bit data is not supported.

■ 64-bit addressing (dual address cycles) is not supported due to the maximum 32-bit
address space of the Am5x86 CPU.

■ Cacheable PCI bus memory (SBDONE, SBO) is not supported.

■ The optional CLKRUN pin is not supported.

Table 9-2 PCI Host Bridge Registers—Direct-Mapped

Register Mnemonic I/O Address Function

PCI Configuration Address PCICFGADR 0CF8h PCI configuration space enable, bus number,
device number, function number, register
number

PCI Configuration Data PCICFGDATA 0CFCh PCI configuration data

Table 9-3 PCI Host Bridge Registers—PCI Indexed

Register Mnemonic I/O Address Function

Device/Vendor ID PCIDEVID CF8h/CFCh
Index 00h

Device identification, vendor identification

Status/Command PCISTACMD CF8h/CFCh
Index 04h

Parity error detected, signalled system error,
received master abort, received target abort,
signalled target abort, DEVSEL timing, data
parity reported, fast back-to-back capable,
SERR enable, parity error response, master
enable, memory access enable, I/O space
enable

Class Code/Revision ID PCICCREVID CF8h/CFCh
Index 08h

Base class code, sub-class code, program
interface type, revision identification

Header Type PCIHEADTYPE CF8h/CFCh
Index 0Eh

PCI configuration space header format

Master Retry Time-Out PCIMRETRYTO CF8h/CFCh
Index 41h

PCI master retry time-out value
9-8 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
■ The LOCK pin is an optional pin not required in most systems, because other
mechanisms are typically employed for coherency.

■ Address/data stepping is not supported as a master due to the performance implications.

■ The ÉlanSC520 microcontroller does not support a downstream “Southbridge” device,
because most peripherals normally included in a Southbridge are integrated into the
ÉlanSC520 microcontroller.

■ The optional message-signalled interrupt feature described in the PCI Local Bus
Specification, Revision 2.2, is not supported in the ÉlanSC520 microcontroller.

9.5.1.1 Unsupported PCI Bus Configuration Registers

Some standard PCI bus configuration registers are not implemented, because the
ÉlanSC520 microcontroller is a host-to-PCI bridge and does not support some optional PCI
functionality.

■ Base Address registers are not implemented, because the ÉlanSC520 microcontroller
is the host PCI device. Target address space configuration is done through ÉlanSC520
microcontroller-specific configuration (see “PCI Host Bridge Target Address Space” on
page 9-18).

■ Latency timer and MAX_LAT, MIN_GNT are not implemented, because the ÉlanSC520
microcontroller’s PCI host bridge does not support multiple data phase transactions as
a master.

■ Cache line size is not implemented, because the ÉlanSC520 microcontroller PCI host
bridge does not support cacheable PCI memory.

9.5.2 Configuration Information
The PCI host bridge can generate configuration cycles on the PCI bus.

The Configuration Mechanism #1, as defined in the PCI Local Bus Specification, Revision
2.1, is used. The PCI Configuration Address (PCICFGADR) register resides at I/O address
0CF8h, and the PCI Configuration Data (PCICFGDATA) register resides at I/O address
0CFCh. The Am5x86 CPU accesses these two I/O ports to generate PCI configuration
cycles.

The PCI host bridge pre-drives the AD31–AD0 pins for five clocks before asserting FRAME
when performing configuration cycles. This allows IDSEL to settle before the transaction
starts (IDSEL signals may have a slow rise time).

External PCI bus devices require an IDSEL pin to allow configuration from the ÉlanSC520
microcontroller’s PCI bus host bridge. The method implemented for IDSEL generation is
system-specific; however, the ÉlanSC520 microcontroller implements the commonly used
practice in which the AD31–AD11 pins are asserted for IDSEL generation during the
configuration cycles (the host bridge uses AD11). In this scheme, the AD12 is IDSEL for
device number 1, AD13 is IDSEL for device number 2, etc. The AD pins are asserted during
configuration cycles according to the decode of the PCI bus device; thus, this scheme is
limited to 20 devices on the PCI bus.

The ÉlanSC520 microcontroller’s PCI bus host bridge is hardwired to device number 0
(AD11), and the host bridge PCI bus configuration registers are accessed through the PCI
Configuration Address (PCICFGADR) register (Port 0CF8h) and PCI Configuration Data
(PCICFGDATA) register (Port 0CFCh), like any external PCI device. An external PCI bus
configuration cycle is not generated when the Am5x86 CPU configures the internal PCI
host bridge registers.
Élan™SC520 Microcontroller User’s Manual 9-9

PCI Bus Host Bridge
The host bridge PCI bus configuration space contains only PCI bus device configuration
header registers, as defined in the PCI bus specification. ÉlanSC520 microcontroller-
specific host bridge configuration registers are memory-mapped in ÉlanSC520
microcontroller configuration space. See Chapter 4, “System Address Mapping”, for further
details on memory-mapped configuration space.

9.5.2.1 Generating PCI Bus Configuration Cycles

A two-step process is required to generate a PCI bus configuration cycle.

1. First, the Am5x86 CPU must perform a 32-bit I/O write to the PCI Configuration Address
(PCICFGADR) register (Port 0CF8h) with the following information: bus number, device
number, function, and register number (doubleword) to be accessed (see Figure 9-7).

2. Then, the Am5x86 CPU can perform an I/O cycle (read or write) to the PCI Configuration
Data (PCICFGDATA) register (Port 0CFCh) to access the desired configuration register.

Figure 9-7 PCI Configuration Address (PCICFGADR) Register

For example, to access the Status/Command (PCISTACMD) register (PCI index 04h)
(doubleword 1) of the PCI host bridge, the following cycles are generated by the Am5x86
CPU:

1. 32-bit I/O write to Port 0CF8h: 80000004h

– ENABLE = 1 to enable configuration space mapping

– BUS_NUM = 0 (PCI host bridge is on bus number 0)

– DEVICE_NUM = 0 (PCI host bridge is hardwired to device number 0)

– FUNCTION_NUM = 0 (PCI host bridge has only one function)

– REGISTER_NUM = 1

– Bits 1–0 must be written 00

2. 8/16/24/32-bit I/O read/write to/from Port 0CFCh to access configuration register bytes

BUS_NUM[7–0] REGISTER_

31 1516 0

Bit Name Function

31 ENABLE This bit must be set to 1 to enable configuration
space mapping.

30–24 Reserved

23–16 BUS_NUM[7–0] Bus number

15–11 DEVICE_NUM[4–0] Device number

10–8 FUNCTION_NUM[2–0] Function number

7–2 REGISTER_NUM[4–0] Register number

1–0 Reserved These bits must always be written to 00.

Reserved

30 23

DEVICE_
NUM[4–0] NUM[4–0]

12

0 0EN-

24 11 10 8 7

FUNCTION_
NUM[2–0]

0CFBh 0CFAh 0CF9h 0CF8h

ABLE
9-10 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
The Master Enable (BUS_MAS) bit in the Status/Command (PCISTACMD) register (PCI
index 04h) is always forced active. Thus, the PCI host bridge can always generate memory,
I/O, and configuration transactions on the PCI bus to configure external PCI devices.

To enable the host bridge as a PCI bus target device, the Memory Access Enable
(MEM_ENB) bit in the Status/Command (PCISTACMD) register must be set. When this bit
is set, the host bridge responds to external PCI bus master cycles that access the
ÉlanSC520 microcontroller’s SDRAM.

No configuration bits need to be set to access the PCI host bridge’s configuration registers
from the Am5x86 CPU.

Note that any write access to the PCI Configuration Data (PCICFGDATA) register (Port
0CFCh) in which the ENABLE bit of the PCI Configuration Address (PCICFGADR) register
(Port 0CF8h) is not set is forwarded to the PCI bus as an I/O transaction.

Any non-doubleword access to Port 0CF8h is also forwarded to the PCI bus as an I/O
transaction.

9.5.3 Élan™SC520 Microcontroller’s Host Bridge as PCI Bus Master
The PCI host bridge allows the Am5x86 CPU to be a master on the PCI bus. The Am5x86
CPU can generate configuration transactions to configure the host bridge, as well as all
external devices on the PCI bus (internal PCI host bridge configuration cycles are not seen
on the external PCI bus). The Am5x86 CPU can also generate memory and I/O read and
write transactions on the PCI bus.

As a PCI bus master, the ÉlanSC520 microcontroller does not generate the following cycles:

■ Dual address cycles for 64-bit addressing

■ Memory-write-and-invalidate cycles (cacheable memory on the PCI bus is not
supported)

■ Memory-read-multiple or memory-read-line cycles (the Am5x86 CPU does not generate
long read burst transactions that may benefit from these commands)

■ Fast back-to-back cycles

■ Lock cycles (the LOCK pin is not supported)

■ Multiple data phase cycles

■ Special cycles and interrupt acknowledge cycles (these Am5x86 CPU cycles are not
echoed on the PCI bus)

9.5.3.1 Write Posting

To increase Am5x86 CPU bandwidth utilization, memory writes to the PCI bus can be posted
by setting the M_WPOST_ENB bit in the Host Bridge Control (HBCTL) register (MMCR
offset 60h). This allows the Am5x86 CPU cycle to complete without incurring the PCI bus
transaction latency. The rdy signal is returned immediately to the Am5x86 CPU, and the
cycle completes sometime later on the PCI bus. The PCI host bridge posts only one Am5x86
CPU write cycle to the PCI bus. Am5x86 CPU-to-PCI bus-cycle ordering is maintained,
which means additional Am5x86 CPU cycles (both read and write) to the PCI bus incur wait
states until a posted write cycle completes on the PCI bus.

I/O and configuration write cycles are not posted. However, write cycles to memory-mapped
I/O regions are not detected by the PCI host bridge, so write posting must be disabled to
prevent the posting of memory-mapped I/O cycles. If write posting is disabled, the PCI host
Élan™SC520 Microcontroller User’s Manual 9-11

PCI Bus Host Bridge
bridge waits until the write cycle has completed on the PCI bus before returning ready to
the Am5x86 CPU.

Write posting should not be enabled while operating in nonconcurrent arbitration mode.
See Chapter 8, “System Arbitration”, for further details on nonconcurrent mode arbitration.

9.5.3.2 Read Cycles

The PCI host bridge does not read ahead PCI bus memory for Am5x86 CPU read cycles.
Each Am5x86 CPU read cycle generates a single data phase read cycle on the PCI bus,
with only the data requested by the Am5x86 CPU being read. The PCI host bridge does
not burst Am5x86 CPU-to-PCI-bus read cycles, because the Am5x86 CPU typically
performs burst reads only during cache-line fills, and PCI bus memory is noncacheable.
There are a few cases when the Am5x86 CPU may burst two doublewords (i.e., misaligned
transfer). In this case, the PCI host bridge breaks the transfer up into single cycles on the
PCI bus.

9.5.3.3 Delayed Transaction Support

The PCI host bridge as a PCI master supports delayed transactions. A transaction that was
retried repeats until completed on the PCI bus. The PCI host bridge does not make any
distinction between a transaction that was retried and a transaction that was disconnected.
Both types of transactions are repeated until they complete on the PCI bus.

A programmable retry time-out counter prevents a deadlock condition due to a broken target
on the PCI bus. The Master Retry Time-Out (M_RETRY_TO) field in the Master Retry Time-
Out (PCIMRETRYTO) register (PCI index 41h) controls this feature. When the time-out
counter expires (a cycle was retried unsuccessfully n times on the PCI bus), the cycle is
discarded and an interrupt can be generated. For a read cycle, the data returned is all ones.
The Host Bridge Master Interrupt Address (MSTINTADD) register (MMCR offset 6Ch)
contains the address of the transaction that was retried unsuccessfully. Note that the master
retry count configuration must not be changed except during PCI bus initialization after a
system or programmable reset.

Transaction ordering is maintained during delayed transactions. A transaction that is retried
by an external PCI bus target must complete before any subsequent Am5x86 CPU-to-PCI
bus transactions are generated.

9.5.3.4 Host Bridge Master Bus Cycles

This section describes in detail the cycles generated by the ÉlanSC520 microcontroller
acting as PCI host bridge master and includes both the PCI bus and the internal Am5x86
CPU bus. Note that these are example cases only, and not all cases are shown. The
diagrams are functionally representative in nature, and should not be used to infer detailed
timing information. Note also that the synchronization between the CPU and PCI clock
domains is not shown in detail.

9.5.3.4.1 CPU Read Cycle to the PCI Bus
Figure 9-8 shows an Am5x86 CPU read cycle to the PCI bus. Figure 9-8 could also
represent a memory, I/O or external PCI bus device configuration cycles. The first group of
signals includes the internal Am5x86 CPU signals, the second group includes additional
ÉlanSC520 microcontroller internal signals, and the third group includes the PCI bus
signals. Note that the PCI bus request and grant signals are shown for convenience, but
these are not seen externally when the Am5x86 CPU is the initiator of PCI bus transactions.
9-12 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
Figure 9-8 CPU Read Cycle to the PCI Bus

The following sequence annotates the Am5x86 CPU read cycle to the PCI bus shown in
Figure 9-8.

■ Clock #1: The Am5x86 CPU starts a read cycle to the PCI bus.

■ Clock #2: Note that blast is asserted by the Am5x86 CPU signaling a non-burst transfer.
If this were a burst read cycle, the Am5x86 CPU would deassert blast, but because the
PCI host bridge returns rdy to the Am5x86 CPU instead of brdy, the Am5x86 CPU would
break up the burst into single cycles. A posted write cycle pending in the master posted
write buffer would delay the completion of the Am5x86 CPU read cycle.

■ Clock #6: The PCI host bridge master controller has synchronized the Am5x86 CPU
bus request and asserts req to gain access to the PCI bus. Because the Am5x86 CPU
is the initiator of the cycle, the bus request signal is not seen externally.

■ Clock #7: The PCI host bridge gnt signal is sampled asserted, and the PCI bus is idle,
so FRAME is asserted to begin the PCI bus transaction. In this example, there is no
arbitration delay (the arbiter is parked on the host bridge). If another external PCI bus
master was granted the bus, or the bus was not idle, FRAME assertion would be delayed
until the host bridge’s gnt was asserted and the bus was idle.

■ Clock #9: The external PCI bus target asserts TRDY, indicating that the requested data
is available. In this example, the PCI bus target did not add any wait states to the
transaction. A PCI bus Revision 2.2-compliant target can add up to 16 wait states that
would delay the PCI bus transaction and subsequent Am5x86 CPU cycle completion.
An external PCI bus target can also issue a retry that would delay the PCI bus transaction
and subsequent Am5x86 CPU cycle completion (see Section 9.5.3.4.2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

data in

address data in

read cmd byte enables

clk

ads

cycle_info

rdy

blast

CPU Data

pcihit

ADx

CBEx

FRAME

IRDY

TRDY

DEVSEL

req

gnt

Notes:
The diagram includes the following internal signals:

• pcihit: Address decode signal that the current Am5x86 CPU cycle is a PCI cycle.

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.
Élan™SC520 Microcontroller User’s Manual 9-13

PCI Bus Host Bridge
■ Clock #10: The PCI host bridge samples TRDY asserted and latches the data from the
PCI bus.

■ Clock #13: The Am5x86 CPU bus synchronizes the end of the PCI bus cycle and asserts
rdy to the Am5x86 CPU with the requested read data.

9.5.3.4.2 CPU Read Cycle to the PCI Bus with External Target Retry
Figure 9-9 shows an Am5x86 CPU read cycle to the PCI bus that was retried by the external
PCI bus target. An external PCI bus target can issue a retry if it is currently busy or if the
transaction will be completed as a delayed transaction.

Figure 9-9 CPU Read Cycle to the PCI Bus with External Target Retry

Notes:
The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the Am5x86 CPU read cycle to the PCI bus with external
target retry shown in Figure 9-9. This example is the same as a regular read (see
Section 9.5.3.4.1) until Clock #9.

■ Clock #9: The target asserts STOP with TRDY deasserted, signaling a retry. The target
may add up to 16 waitstates before asserting STOP, which would delay the PCI
transaction and Am5x86 CPU cycle completion.

■ Clock #10: The PCI host bridge master controller deasserts IRDY and ends the current
transaction. The data requested by the Am5x86 CPU was not read because of the
delayed transaction, so rdy is not returned to the Am5x86 CPU. The host bridge will retry
the current transaction until data is read from the target.

■ Clock #11: The PCI host bridge asserts req to re-gain access to the PCI bus. Because
the Am5x86 CPU is the initiator of the cycle, the bus request signal is not seen externally.

■ Clock #12: The PCI host bridge gnt signal is sampled asserted, and the PCI bus is idle,
so FRAME is asserted to retry the PCI transaction. In this example, there is no arbitration

address

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

data in

byte enables read cmd byte enables

data in

read cmd

clk

ads

cycle_info
rdy

blast
CPU Data

pcihit

ADx

CBEx
FRAME

IRDY
TRDY

DEVSEL

STOP

req
gnt

address
9-14 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
delay (the arbiter is parked on the host bridge). If another external PCI bus master was
granted the bus or the bus was not idle, FRAME assertion would be delayed until the
host bridge’s gnt was asserted and the bus was idle.

■ Clock #14: The PCI bus target asserts TRDY indicating the data is available.

■ Clock #15: The PCI host bridge samples TRDY asserted and latches the data from the
PCI bus.

■ Clock #18: The Am5x86 CPU bus synchronizes the end of the PCI bus cycle and asserts
rdy to the Am5x86 CPU with the requested read data.

9.5.3.4.3 CPU Posted Write Cycle to the PCI Bus
Figure 9-10 shows an Am5x86 CPU write cycle to the PCI bus that is posted by the PCI
host bridge. This can only be a memory-write cycle to the PCI bus; I/O and configuration
writes are not posted.

Figure 9-10 CPU Posted Write Cycle to the PCI Bus

Notes:
The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the Am5x86 CPU posted write cycle to the PCI bus
shown in Figure 9-10.

■ Clock #1: The Am5x86 CPU starts a write cycle to the PCI bus.

■ Clock #2: The PCI host bridge also asserts rdy to the Am5x86 CPU, which ends the
Am5x86 CPU write cycle. The PCI bus transaction has been posted in the host bridge
and will complete sometime later. If another write cycle is already pending in the posted
write buffer, rdy will be delayed to the Am5x86 CPU until the preceding posted write has
completed.

1 2 3 4 5 6 7 8 9 10

address

byte enables

data out

write cmd

data out

clk

ads

cycle_info

rdy

blast

CPU Data

pcihit

ADx

CBEx

FRAME

IRDY

TRDY

DEVSEL

req

gnt
Élan™SC520 Microcontroller User’s Manual 9-15

PCI Bus Host Bridge
■ Clock #6: The PCI host bridge master controller has synchronized the Am5x86 CPU
bus request and asserts req to gain access to the PCI bus.

■ Clock #7: The PCI host bridge gnt signal is sampled asserted, and the PCI bus is idle,
so FRAME is asserted to begin the PCI transaction. In this example, there is no arbitration
delay (the arbiter is parked on the host bridge). If another external PCI master was
granted the bus or the bus was not idle, FRAME assertion would be delayed until the
host bridge’s gnt was asserted and the bus was idle. Because the Am5x86 CPU is the
initiator of the cycle, the bus request signal is not seen externally.

■ Clock #9: The external PCI target asserts TRDY indicating it can accept the write data.
In this example, the PCI target did not add any wait states to the transaction. A PCI bus
Revision 2.2 compliant target can add up to 16 wait states that would delay the
transaction completion. A PCI bus target can also retry the PCI transaction. In this case,
the host bridge continues to generate the same transaction until the target returns TRDY
to complete the transaction. See Section 9.5.3.4.2 for information on retried transactions.

■ Clock #10: The PCI host bridge samples TRDY asserted, which ends the PCI bus
transaction.

9.5.3.4.4 CPU Non-Posted Write Cycle to the PCI Bus
Figure 9-11 shows an Am5x86 CPU memory write cycle to the PCI bus with write posting
disabled. Figure 9-11 could represent any I/O or configuration write cycle.

Figure 9-11 Am5x86 CPU Non-Posted Write Cycle to the PCI Bus

Notes:
The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

1 2 3 4 5 6 7 8 9 10 11 12 13

address

byte enables

data out

data out

write cmd

clk

ads

cycle_info

rdy

blast

CPU Data

pcihit

ADx

CBEx

FRAME

IRDY

TRDY

DEVSEL

req

gnt
9-16 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
The following sequence annotates the Am5x86 CPU non-posted write cycle to the PCI bus
shown in Figure 9-11.

■ Clock #1: The Am5x86 CPU starts a write cycle to the PCI bus.

■ Clock #6: The PCI host bridge master controller has synchronized the Am5x86 CPU
bus request and asserts req to gain access to the PCI bus. Because the Am5x86 CPU
is the initiator of the cycle, the bus request signal is not seen externally.

■ Clock #7: The PCI host bridge gnt signal is sampled asserted, and the PCI bus is idle,
so FRAME is asserted to begin the PCI bus transaction. In this example, there is no
arbitration delay (the arbiter is parked on the host bridge). If another external PCI bus
master was granted the bus, or the bus was not idle FRAME assertion would be delayed
until the host bridge’s gnt was asserted and the bus was idle. Because the Am5x86 CPU
is the initiator of the cycle, the bus request signal is not seen externally.

■ Clock #9: The PCI target asserts TRDY, indicating it can accept the write data. In this
example, the PCI bus target did not add any wait states to the transaction. A PCI bus
Revision 2.2 compliant target can add up to 16 wait states that would delay the
transaction completion. A PCI bus target can also retry the transaction. In this case, the
host bridge continues to generate the same transaction until the target returns TRDY to
complete the transaction. The rdy signal is not returned to the Am5x86 CPU until the
PCI bus transaction completes. See Section 9.5.3.4.2 for information on retried
transactions.

■ Clock #10: The PCI host bridge samples TRDY asserted, which ends the transaction.

■ Clock #12: The Am5x86 CPU bus synchronizes the end of the PCI bus cycle and asserts
rdy to the Am5x86 CPU, which ends the write cycle.

9.5.3.4.5 PCI Bus Configuration Read/Write
Am5x86 CPU write cycles to the PCI Configuration Address (PCICFGADR) register (Port
0CF8h) or the PCI Configuration Data (PCICFGDATA) register (Port 0CFCh) for internal
PCI host bridge configuration complete with zero Am5x86 CPU cycle wait states (see
Figure 9-12).

Figure 9-12 CPU Write Cycles to Internal PCI Bus Configuration Registers

Am5x86 CPU read cycles from the PCI Configuration Address (PCICFGADR) register or
PCI Configuration Data (PCICFGDATA) register for internal PCI host bridge configuration
registers also complete with zero wait states (see Figure 9-13). See the read and write
timing diagrams in Figure 9-8 through Figure 9-11 for Am5x86 CPU read and writes cycles

1 2 3 4

cfg write data

clk_cpu

ads

cycle_info

rdy

Data
Élan™SC520 Microcontroller User’s Manual 9-17

PCI Bus Host Bridge
to the PCI Configuration Data (PCICFGDATA) register that access external PCI bus device
configuration registers.

Figure 9-13 CPU Read Cycles from Internal PCI Bus Configuration Registers

9.5.4 Élan™SC520 Microcontroller’s Host Bridge as PCI Bus Target
As a target, the integrated PCI host bridge only accepts memory cycles from external PCI
bus masters to allow accesses to the ÉlanSC520 microcontroller’s SDRAM.

To enable the host bridge as a PCI bus target device, the Memory Access Enable
(MEM_ENB) bit in the Status/Command (PCISTACMD) register must be set. When this bit
is set, the PCI host bridge ignores all I/O and configuration cycles on the PCI bus and
responds to memory cycles within the address space, as defined in Section 9.5.4.1.

9.5.4.1 PCI Host Bridge Target Address Space

Under normal conditions, the ÉlanSC520 microcontroller’s PCI host bridge responds to PCI
bus master memory cycles in the entire SDRAM address space to allow full access of
SDRAM from external PCI bus masters. This space is defined as a linear region, starting
at the lowest address (00000000h) and ending at the top of SDRAM, depending on the
amount populated in the system (a maximum of 256 Mbytes). The SDRAM controller’s
configuration registers are programmed with the amount of SDRAM in the system during
the initial boot process.

Some systems may require specific CPU address space that is normally defined as an
SDRAM region to be redirected to the PCI bus. An example application is a PCI-bus-based
VGA video card for PC/AT compatibility. In ÉlanSC520 microcontroller, this redirection is
programmed via the first two Programmable Address Region (PAR) registers (PAR 0 and
PAR 1). When this feature is used in a system, the ÉlanSC520 microcontroller’s PCI host
bridge target shadows PAR 0 and PAR 1 and ignores accesses by external PCI bus masters
in the programmed address space if they are programmed for PCI bus in the TARGET field.

See Chapter 4, “System Address Mapping”, for further details of PCI host bridge target
address space.

Because the ÉlanSC520 microcontroller is configured as a PCI host bridge, the PCI bus
Base Address registers normally found in the PCI bus configuration space are not
implemented.

1 2 3 4

read data

clk_cpu

ads

cycle_info

rdy

Data
9-18 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
9.5.4.2 PCI Bus Command Support

As a PCI bus target, the ÉlanSC520 microcontroller’s PCI host bridge treats the memory-
write-and-invalidate command the same as a memory-write cycle. When either of these
commands is issued by a PCI bus master, the PCI host bridge and system arbitration blocks
force the Am5x86 CPU’s integrated cache to snoop the addresses prior to writing the data
to SDRAM. If the cache detects a modified cache line at the same address, it writes back
and invalidates the line. If the CPU is operating in write-through cache mode, the line is
simply invalidated and the data is written to SDRAM.

The PCI host bridge does not respond to configuration cycles or special cycles issued by
external PCI bus masters. Interrupt acknowledge cycles and special cycles are not
forwarded to the PCI bus.

9.5.4.3 DEVSEL Timing

When an external PCI bus master accesses the ÉlanSC520 microcontroller’s SDRAM, the
PCI host bridge always asserts DEVSEL with medium timing (two clocks after FRAME is
asserted). The ÉlanSC520 microcontroller does not serve as a subtractive decode agent
on the PCI bus.

9.5.4.4 Delayed Transaction Support

External PCI bus master reads of the ÉlanSC520 microcontroller’s SDRAM can be
configured to be delayed transactions This maximizes PCI bus efficiency by freeing up the
bus while the initial SDRAM read request is issued to the SDRAM controller.

When the Automatic Delayed Transaction Enable (T_DLYTR_ENB) field is set in the Host
Bridge Control (HBCTL) register (MMCR offset 60h), the PCI host bridge immediately
issues a retry to the external PCI bus master read cycle and begins requesting the data
from the SDRAM controller. The external PCI bus master read cycle is retried until any of
the requested data has been read into the target read FIFO. Only the first doubleword
requested needs to be read into the target read FIFO before the PCI host bridge completes
the delayed transaction instead of retrying it again. After the PCI host bridge responds to
the delayed transaction, it continues to prefetch data and provides all the data requested
(up to 64 doublewords maximum) by the external PCI bus master without disconnecting.

When a delayed transaction read cycle is pending (waiting for the originating external PCI
bus master to retry the transaction), all other read transactions are terminated with a retry.
The PCI host bridge supports one outstanding delayed transaction, so these retried
transactions are not latched. Write transactions, however, are allowed to complete and are
placed in the PCI host bridge target write FIFO. A delayed transaction discard timer is
provided so that a broken master does not deadlock the system. If, after 215 PCI clocks, a
master has not retried a delayed transaction, the transaction is discarded and an interrupt
can be optionally generated. The delayed transaction discard timer is fixed at 215 PCI clocks.

When external PCI bus master reads of ÉlanSC520 microcontroller’s SDRAM are not
configured as automatic delayed transactions, the PCI host bridge tries to return the
requested data to the PCI bus master without issuing a retry. Wait states are inserted into
the transaction until the data is read from SDRAM. If the initial data cannot be returned in
32 clocks, the PCI host bridge terminates the transaction with a retry and latches the read
transaction as a delayed transaction to comply with the PCI Local Bus Specification,
Revision 2.2. Note that if any data is pending in the Am5x86 CPU-to-PCI posted-write latch,
it must be flushed before read data can be returned to an external PCI master by the PCI
host bridge target controller. In this case, the PCI host bridge immediately retries the
external PCI master read transaction and latches the request as a delayed transaction.
Élan™SC520 Microcontroller User’s Manual 9-19

PCI Bus Host Bridge
The PCI host bridge retries any external PCI bus master write cycle when the write FIFO
is full. The PCI host bridge retries all external PCI bus master cycles (write and read) if the
address FIFO is full (see the Section 9.5.4.5).The PCI host bridge always disconnects after
64 consecutive doublewords are transferred to prevent any one PCI bus master from
monopolizing the bus and to guarantee sufficient CPU bus bandwidth.

9.5.4.5 Address FIFO

The PCI host bridge’s target controller includes an address FIFO that keeps track of address
and command requests made to the target controller. The address FIFO allows one
outstanding delayed read transaction and up to four posted writes, depending on the
ordering of the transactions.

■ If the address FIFO is empty (no latched transactions in the target controller) and a read
transaction is received prior to any posted writes, the read is latched and a delayed
transaction retry is issued. After this, up to four posted writes can be latched following
the read (for a total of five latched transactions in the FIFO).

■ If the address FIFO contains any posted write transaction (before a read transaction is
received), only a total of four transactions can be latched into the address FIFO. That
is, if the first posted transaction is a write, up to four transactions can be latched into the
address FIFO (three writes and one read, or four writes).

■ If four posted writes reside in the address FIFO, no delayed read transactions can be
latched. In this case, all read requests are retried (not latched into the address FIFO)
until one of the posted writes has completed internally.

■ In all cases, only a maximum of one delayed read transaction can be latched into the
address FIFO. If two read transactions are received, the target controller only latches
the first one. The second (and subsequent) reads are not latched into the target
controller, even if the address FIFO is not full.

■ Note that, even if the address FIFO is not full, but the data FIFO is already full, further
posted writes are not accepted.

The ÉlanSC520 microcontroller’s PCI host bridge complies to the PCI Local Bus
Specification, Revision 2.2, rules for transaction ordering to prevent deadlock conditions.

9.5.4.6 PCI Host Bridge FIFOs and Prefetching

The PCI host bridge target controller has a 64-doubleword write FIFO and posts writes from
external PCI bus masters to SDRAM. The PCI host bridge does not insert wait states into
an external PCI bus master write cycle by deasserting TRDY. If the write FIFO becomes
full during an external PCI bus master write transaction, the PCI host bridge issues a
disconnect to end the cycle. A maximum of four transfers can be posted (each transfer can
burst multiple data phases, but the ÉlanSC520 microcontroller’s target FIFOs store a
maximum number of 64 doublewords for all the posted writes).

The SDRAM controller’s write buffer can byte-merge, combine, and collapse data if enabled,
yielding additional performance of SDRAM writes from PCI bus masters. See Chapter 11,
“Write Buffer and Read Buffer”, for further details. However, the PCI host bridge does not
byte-merge, combine, or collapse data in the target write FIFO.
9-20 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
The PCI host bridge as a target prefetches data from SDRAM in response to an external
PCI bus master read transaction. The read buffer in the SDRAM controller should be
enabled for optimal performance, especially during memory-read-multiple commands by
external PCI bus masters.

■ For memory-read and memory-read-line commands, the PCI host bridge prefetches
data up to the next cache line (a cache line is four doublewords).

■ Memory-read-multiple commands fill the target FIFO (64 doublewords).

Once the PCI host bridge has been granted access to the CPU bus, it will hold the bus until
it has prefetched up to the next cache-line boundary for memory-read and memory-read-
line commands, and 64 doublewords for memory-read-multiple commands. The PCI host
bridge may insert wait states before asserting TRDY for the first data phase. The PCI host
bridge can then burst one cache line with zero wait states. After each cache line, the PCI
host bridge can insert wait states by deasserting TRDY if the target read FIFO becomes
empty.

Note that, if the target read FIFO becomes empty after a cache-line boundary for memory-
read and memory-read-line commands or after 64 doublewords for a memory-read-multiple
command, the PCI host bridge issues a disconnect to end the transaction.

9.5.4.7 Burst Ordering

To provide optimal CPU performance during SDRAM accesses, the ÉlanSC520
microcontroller’s SDRAM controller is designed to support Am5x86 CPU cache-line burst
ordering, but the PCI bus specifies linear burst ordering. Therefore, all PCI host bridge
accesses to SDRAM are cache-line-aligned (start on a four-doubleword boundary). If the
external PCI bus master read cycle was not cache-line-aligned, the PCI host bridge starts
requesting the SDRAM read from the address that the master issued and generates single-
phase data cycles until it becomes cache-line-aligned.

For example, if the external PCI bus master started a write with address 10008h and wrote
ten doublewords, the PCI host bridge would generate single, non-burst write cycles to
address 10008h and 1000Ch. After these two write cycles, the transaction would be cache-
line-aligned, so the PCI host bridge would complete the transaction with burst cycles.

9.5.4.8 Maintaining Data Coherency

All external PCI bus master accesses to SDRAM are snooped by the Am5x86 CPU’s cache,
which writes back and invalidates a cache line as appropriate. If the CPU detects a hit to
a modified line in its cache, the arbitration unit forces the PCI host bridge to relinquish the
Am5x86 CPU bus to allow the cache line to be written back to SDRAM. If the cache is
configured in write-through cache mode, the line is simply invalidated and the PCI host
bridge is not forced off the bus for a write-back cycle.

In many systems that employ posting buffers, a potential data coherency problem exists
because of the delay between an external master write transaction and when SDRAM is
actually updated due to the write posting FIFO. The PCI bus complicates this potential
problem when PCI-to-PCI bridges are implemented in the system.

In ÉlanSC520 microcontroller, for example, if an external master writes a block of data into
SDRAM and then generates an interrupt request to the Am5x86 CPU to process the data,
it is important to prevent the Am5x86 CPU from attempting to read SDRAM before the
posted data has actually been written to SDRAM by the PCI host bridge’s posting-write
FIFO. The PCI bus specification recommends that the CPU perform a read to the
interrupting PCI bus device, to force all system posted write buffers to flush (including PCI
bus bridges).
Élan™SC520 Microcontroller User’s Manual 9-21

PCI Bus Host Bridge
If the PCI host bridge target read FIFOs contain data from a previous memory-read
command that was obtained as part of a delayed transaction while a write to the same
memory address region occurs, the read FIFOs can optionally be purged to maintain
coherency by setting the T_PURGE_RD_ENB bit in the Host Bridge Control (HBCTL)
register (MMCR offset 60h). The T_PURGE_RD_ENB bit must not be changed except
during PCI bus initialization after a system or programmable reset.

■ Memory-read and memory-read-line commands generate a purge when the write
address is within the same cache line as the prefetched data. Note that the addresses
do not necessarily overlap in this case. For example, a memory-read command to 5008h
will prefetch 5008h and 500Ch. A memory-write command to 5000h will then cause a
purge because it is in the same cache line, even though the addresses do not overlap.

■ Memory-read-multiple commands generate a purge if the write is in the same 64-
doubleword region as the prefetched data. In this case, exact addresses are compared.
Note that a write to the same 64-doubleword region causes a purge even if the prefetch
is not complete. If, for example, the host bridge is prefetching the 32nd doubleword on
the Am5x86 CPU bus, and a write comes into the 53rd doubleword (or any number
greater than 32 and less than 64, in this case), this write will cause a purge.

9.5.4.9 PCI Host Bridge Target Bus Cycles

This section describes in detail the cycles generated by an external PCI bus master for
which the ÉlanSC520 microcontroller PCI host bridge responds, and includes both the PCI
bus and the internal Am5x86 CPU bus. The PCI host bridge forwards cycles that are
destined to SDRAM from the PCI bus to the Am5x86 CPU bus.

The examples shown apply primarily to concurrent arbitration mode; there are a few
differences when operating in nonconcurrent arbitration mode. See Chapter 8, “System
Arbitration”, for further details on the arbitration modes.

Note that these are example cases only, and not all cases are shown. The diagrams are
functionally representative in nature, and should not be used to infer detailed timing
information. Note also that the synchronization between the CPU and PCI clock domains
is not shown in detail.

9.5.4.9.1 External PCI Bus Master Posted Write to SDRAM
Figure 9-14 shows an external PCI bus master writing seven doublewords to the ÉlanSC520
microcontroller’s SDRAM. The first group of signals are the PCI bus signals, and the second
group are internal signals.
9-22 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
Figure 9-14 External PCI Bus Master Posted Write to SDRAM

The following sequence annotates the external PCI bus master posted write to SDRAM
shown in Figure 9-14.

■ Clock #1: An external PCI master initiates a write transaction to the ÉlanSC520
microcontroller’s SDRAM.

■ Clock #3: The PCI host bridge always asserts DEVSEL with medium timing. In this
example, the write FIFO is not full, so TRDY is also asserted to accept the write data. If
either the write FIFO or the address FIFO had been full, then the PCI host bridge would
immediately issue a retry to the external master by asserting STOP instead of TRDY.

■ Clocks #4–#10: The write FIFO is not full, so TRDY remains asserted to accept the
write data. The PCI host bridge does not insert wait states into the PCI transaction by
deasserting TRDY. If the FIFO becomes full during the transaction but the external PCI
master indicates it is willing to burst more data (by keeping FRAME asserted), the host
bridge issues a disconnect by deasserting TRDY and asserting STOP (see
Section 9.5.4.9.3). The external master can insert wait states into the PCI transaction
by deasserting IRDY. The host bridge is posting the write data (it will be written to SDRAM
sometime later).

■ Clock #7: The PCI host bridge has synchronized the first PCI data phase (Clock #4)
and requests access to the SDRAM controller.

■ Clock #9: The SDRAM controller is granted to the PCI host bridge and the PCI bus data
can be written to SDRAM. The hb_gnt signal may be delayed if the Am5x86 CPU or GP-
DMA is accessing SDRAM.

1 2 3 4 5 6 7 8 9 10

address data1 data2 data3

write cmd be1 be2 be3

data4

be4

data5 data6 data7

be5 be6 be7

CLKPCIIN

ADx

CBEx

FRAME

IRDY

TRDY

DEVSEL

hb_req

hb_gnt

Notes:
The diagram includes the following internal signals:

• hb_req: PCI host bridge requesting the Am5x86 CPU bus to access the SDRAM controller.

• hb_gnt: PCI host bridge has been granted Am5x86 CPU bus and can access the SDRAM controller.

See Chapter 8, “System Arbitration”, for information on Am5x86 CPU bus arbitration.
Élan™SC520 Microcontroller User’s Manual 9-23

PCI Bus Host Bridge
9.5.4.9.2 External PCI Master SDRAM Read (Delayed Transaction)
Figure 9-15 shows an external PCI bus master read transaction to the ÉlanSC520
microcontroller’s SDRAM.

Figure 9-15 External PCI Master SDRAM Read (Delayed Transaction)

The following sequence annotates the external PCI master SDRAM read shown in
Figure 9-15.

■ Clock #1: An external PCI bus master initiates a read transaction to ÉlanSC520
microcontroller’s SDRAM.

■ Clock #3: The PCI host bridge target controller accepts the transaction by asserting
DEVSEL. TRDY is not asserted, because there is no data in the target read FIFO (this
is a new transaction).

■ Clock #4: The PCI host bridge target controller asserts STOP, signaling a retry to the
external PCI bus master. Because no data was transferred, the external PCI bus master
is required to retry the transaction. (This figure assumes that the ÉlanSC520
microcontroller is configured for automatic delayed transactions.) The host bridge latches
the transaction information and will prefetch the requested read data. This is now a
delayed transaction, and the PCI bus master is required to relinquish bus ownership and
re-arbitrate to retry the cycle. If there is already a previous delayed transaction pending,
the current transaction will not be latched. Note that, in this example, STOP is asserted
for two clock periods, because a target is required to keep this signal asserted until
FRAME is deasserted.

■ Clock #7: The PCI host bridge has synchronized the delayed transaction request and
requests access to the SDRAM controller to prefetch the data requested by the external
PCI master.

■ Clock #8: The CPU bus is granted to the PCI host bridge, and the PCI bus data can be
read from SDRAM. The hb_gnt signal may be delayed if the Am5x86 CPU or GP-DMA
controller is accessing SDRAM. The host bridge prefetches up to the next cache line in
response to a memory-read or memory-read-line command and up to 64 doublewords
in response to a memory-read-multiple command.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cmd be1

address address

cmd

data1 data2 data3

be1 be2 be3

CLKPCIIN

ADx

CBEx

FRAME

IRDY

TRDY

DEVSEL

STOP

hb_req

hb_gnt
9-24 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
■ Clock #12: The external PCI bus master retries the delayed transaction. While a delayed
transaction is pending, all other read transactions are retried by the host bridge (these
are not latched as delayed transactions). Write transactions, however, are allowed to
complete and are put into the write FIFO. If the external PCI master retries the delayed
transaction before the host bridge has read the first doubleword of data into the target
read FIFO, the host bridge issues another retry to the external PCI bus master (and
keeps issuing retries until the first doubleword of data has been read into the target read
FIFO).

■ Clock #14: By now, the PCI host bridge has read in the first doubleword of data into the
target read FIFO and recognizes this transaction as the pending delayed transaction.
The host bridge asserts DEVSEL to claim the transaction.

■ Clock #16: The PCI host bridge asserts TRDY for the first data phase of the transaction.
After the first data phase, the host bridge can burst up to the next cache-line boundary
without adding anymore wait states. After each cache line, the PCI host bridge may
insert wait states if the target read FIFO becomes empty.

■ Clocks #17–#19: The external PCI master reads the data from the PCI host bridge.
(Although the figure shows it this way, note that SDRAM having the data by Clock #17
is quite optimistic.) The external PCI bus master can insert wait states into the transaction
by deasserting IRDY. Clock #19 is the last data requested by the external PCI bus master
(FRAME deasserted, IRDY asserted).

9.5.4.9.3 PCI Host Bridge Target Disconnect
Figure 9-16 shows the PCI host bridge target controller issuing a disconnect to an external
PCI bus master. This example shows a disconnect during an external PCI bus master write
cycle, but the mechanism is the same for external PCI bus master read cycles. The only
difference is that Clock #2 is a turnaround cycle on AD31–AD0 bus. The PCI host bridge
issues a disconnect if:

■ During an external PCI bus master write cycle, the write FIFO becomes full or 64
consecutive doublewords have been written by the bus master.

■ During an external PCI bus master read cycle, the target read FIFO becomes empty—
Note that for memory-read and memory-read-line commands, the PCI host bridge can
burst up to the next cache-line boundary without disconnecting; for memory-read-
multiple commands, the PCI host bridge can burst 64 doublewords without
disconnecting. If the external PCI bus master wishes to burst beyond these limits, then
the PCI host bridge may issue a disconnect.
Élan™SC520 Microcontroller User’s Manual 9-25

PCI Bus Host Bridge
Figure 9-16 PCI Host Bridge Target Disconnect

The following sequence annotates the PCI host bridge target disconnect shown in
Figure 9-16.

■ Clock #1: An external PCI bus master initiates a write transaction to ÉlanSC520
microcontroller SDRAM.

■ Clock #3: The PCI host bridge always asserts DEVSEL with medium timing and asserts
TRDY, signaling it is ready to accept data (provide data for external PCI bus master
reads).

■ Clocks #3–#4: Both TRDY and IRDY are sampled asserted, signaling a valid data phase.
External master write data will be accepted by the PCI host bridge (or the external master
will read data for external PCI bus master read cycles).

■ Clock #5: The PCI host bridge write FIFO is full (or the target read FIFO is empty for
external PCI bus master read cycles), so TRDY is deasserted and STOP is asserted,
signaling a disconnect. Because TDRY is deasserted, Clock #5 is the last valid data
phase. Note that FRAME is still asserted, signaling that the external PCI bus master is
requesting to burst more data.

■ Clock #6: The external PCI bus master deasserts FRAME in response to STOP being
sampled asserted. Because TRDY is deasserted, this is not a valid data phase and no
data will be transferred.

■ Clock #7: The external PCI bus master deasserts IRDY and the PCI host bridge
deasserts STOP and DEVSEL, ending the PCI bus transaction. The host bridge has
synchronized the first PCI bus data phase (Clock #3) and requests access to the SDRAM
controller.

■ Clock #9: The CPU bus is granted to the PCI host bridge, and the PCI bus data can be
written to SDRAM. The hb_gnt signal may be delayed if the Am5x86 CPU or GP-DMA
controller is accessing SDRAM.

1 2 3 4 5 6 7 8 9 10

address data1 data2 data3

write cmd be1 be2 be3

CLKPCIIN

ADx

CBEx

FRAME

IRDY

TRDY

DEVSEL

STOP

hb_req

hb_gnt
9-26 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
9.5.5 Interrupts
The PCI host bridge has one maskable interrupt request signal and one NMI signal routed
to the ÉlanSC520 microcontroller’s interrupt controller. These interrupt signals are shared
by the arbiter, and PCI master and target controllers of the host bridge. Each interrupt
source (both master and target sources) can be individually programmed to generate a
maskable interrupt instead of a non-maskable interrupt request.

The following conditions can be programmed to generate an interrupt by the PCI host bridge
master controller:

■ Detected parity error during a read cycle

■ Received parity during a write cycle or during the address phase of a read cycle

■ Retry time-out counter expired

■ Cycle was terminated with master abort

■ Cycle was terminated with target abort

■ System error (SERR) pin asserted by PCI bus device

When an interrupt is generated, the address of the cycle during which the interrupt condition
was detected is stored in the Host Bridge Master Interrupt Address (MSTINTADD) register
(MMCR offset 6Ch), and the command is stored in the Host Bridge Master Interrupt Status
(HBMSTIRQSTA) register (MMCR offset 68h). If multiple interrupt conditions are pending,
the registers store the information for the first interrupt condition only. If multiple interrupts
are pending, there is no indication to which interrupts the Master Interrupt Command
Identification (M_CMD_IRQ_ID) and Master Interrupt Address Identification
(M_AD_IRQ_ID) fields correspond. Status bits in the Status/Command (PCISTACMD)
register (PCI index 04h) are also set when error conditions are detected. These bits are
set whenever the error condition is detected, regardless of the interrupt enable bits.

The following conditions can be programmed to generate an interrupt by the host bridge
target controller:

■ Detected parity error during a data phase of a write cycle

■ Detected parity error during an address phase

■ Delayed transaction time-out—215 clocks have expired without an external PCI master
retrying a delayed transaction

When an interrupt is generated, the REQ/GNT number of the PCI bus master that caused
the error is stored in the Host Bridge Target Interrupt Status (HBTGTIRQSTA) register
(MMCR offset 64h). If multiple interrupt conditions are pending, the Target Interrupt
Identification (T_IRQ_ID) field stores only the information for the first interrupt condition. If
multiple interrupts are pending, there is no indication to which interrupt the T_IRQ_ID field
corresponds. The appropriate status bits in the Status/Command (PCISTACMD) register
(PCI index 04h) are also set when error conditions are detected. These bits are set whenever
the error condition is detected, regardless of the interrupt enable bits.

See Chapter 15, “Programmable Interrupt Controller”, for further details on the
programming and routing of interrupt requests. See Chapter 8, “System Arbitration”, for
further details on arbitration.
Élan™SC520 Microcontroller User’s Manual 9-27

PCI Bus Host Bridge
9.5.6 Latency
PCI bus latency issues are described separately for the CPU and external PCI bus masters.

■ Master latency refers to the case when the ÉlanSC520 microcontroller’s Am5x86 CPU
is the master on the PCI bus.

■ Target latency refers to the case when the ÉlanSC520 microcontroller is a PCI bus target
accessed by external PCI bus masters.

9.5.6.1 Master Latency

The posted write buffer allows Am5x86 CPU memory-write cycles to complete without
incurring the PCI bus transaction latency. Any other cycle between the CPU and the PCI
bus (memory read, I/O write, I/O read) must complete on the PCI bus before ready is
returned to the Am5x86 CPU. Note that write posting must be disabled while the ÉlanSC520
microcontroller is operating in nonconcurrent arbitration mode. See Chapter 8, “System
Arbitration”, for details on nonconcurrent mode arbitration.

The target being accessed may retry the Am5x86 CPU cycle (target busy) multiple times,
which would delay the Am5x86 CPU. This performance penalty can be limited by
configuration of the Am5x86 CPU using the Master Retry Time-Out (M_RETRY_TO) field
in the Master Retry Time-Out (PCIMRETRYTO) register (PCI index 41h), which limits the
number of times the PCI host bridge retries a transaction before returning the rdy signal to
the Am5x86 CPU. Note that the master retry count configuration must not be changed
except during PCI bus initialization after a system or programmable reset.

The Am5x86 CPU typically performs non-burst read transactions to the PCI bus, because
PCI bus memory is noncacheable (write transactions to PCI are always non-burst). There
are a few cases when the CPU bursts up to two doublewords on a read transaction. For
simplicity, in these cases, the PCI host bridge breaks up any Am5x86 CPU burst read cycles
into single doubleword read transactions on the PCI bus, which also slows down the Am5x86
CPU read performance to the PCI bus. Because the PCI host bridge master controller
performs single data phase transactions only, the master latency timer is not implemented.

9.5.6.2 Target Latency

Write posting and delayed transactions in the PCI host bridge target controller allow external
PCI bus master cycles to complete without incurring SDRAM access latency. Without write
posting and delayed transactions, the PCI host bridge target controller would insert wait
states, while arbitrating for use of the SDRAM controller.

Delayed transaction support allows this time spent arbitrating for the CPU bus and the
SDRAM controller transaction to be reallocated to another bus master, rather than forcing
the first bus master to remain in a long wait state period. Instead, the first bus master’s
request is latched and placed in the delayed transaction queue for processing by the PCI
host bridge, and the bus master is forced off of the PCI bus with a retry, at which point the
PCI bus arbiter may grant the bus to another PCI bus master. The second PCI bus master
could perform a peer-to-peer transfer or memory write to SDRAM while the PCI host bridge
continues to process the first bus master’s request.

Delayed transactions avoid the wasted bus bandwidth that may occur if the PCI host bridge’s
response to the transaction exceeded the specified 32 PCI bus clocks (16 for non-host
bridge devices), at which point the PCI bus master would be retried anyway (thus wasting
16–32 PCI bus clocks).
9-28 Élan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge
The concurrent nature of ÉlanSC520 microcontroller’s system architecture is such that a
SDRAM read request from an external PCI master may be delayed. The reasons for this
delay are:

■ The Am5x86 CPU may be currently accessing ROM, GP bus, or SDRAM.

■ The SDRAM controller may be currently servicing a SDRAM refresh.

■ A DMA transaction may be in progress between a GP-DMA initiator and SDRAM. Such
transactions are variable in length and subject to the programmed DMA transfer mode.
For example, in block or demand mode, the DMA transfer cannot be preempted.

Note: Large GP Bus DMA transfers in demand or block mode, or very slow GP bus cycles
(initiated via programmable GP bus timing, or by deasserting the GPRDY signal) can cause
the PCI host bridge target controller to violate the 10 µs memory write maximum completion
time limit set in the PCI Local Bus Specification, Revision 2.2. In PCI bus 2.2-compliant
designs, software must limit the length of GP bus cycles and GP bus DMA demand- or
block-mode transfers.

Delayed transactions can increase Am5x86 CPU and GP-DMA latency to SDRAM because
of prefetching in response to memory-read-multiple commands. For example, when a
prefetch of 64 doublewords occurs during a PCI bus master memory-read-multiple cycle
of the ÉlanSC520 microcontroller’s SDRAM, neither the Am5x86 CPU or the GP-DMA
controller has access to the CPU bus. After the initial prefetch of 64 doublewords, the PCI
host bridge relinquishes ownership of the CPU bus.

9.6 INITIALIZATION
The PCI bus RST signal, when asserted, resets the ÉlanSC520 microcontroller’s PCI host
bridge, as well as any external PCI bus devices.

The RST signal is asserted in response to a system reset (see “System Reset” on page 6-4)
or by setting the PCI_RST bit in the Host Bridge Control (HBCTL) register (MMCR offset
60h). These reset sources assert and deassert the RST signal asynchronously to the PCI
bus clock.

When the RST signal is asserted, the PCI host bridge master controller and target controller
state machines go to their idle states, and the host bridge FIFOs are purged. The PCI host
bridge register bits are reset to their default states due to system reset, but the PCI_RST
bit does not reset the PCI host bridge configuration registers or the host bridge status bits
(see the register descriptions in the Élan™SC520 Microcontroller Register Set Manual,
order #22005).

After reset, the PCI host bridge target controller is disabled, but the host bridge responds
to configuration transactions from the Am5x86 CPU. Note that the PCI host bridge master
controller is always enabled.

After reset the following steps should be taken to configure the PCI host bridge. Configure
the PCI host bridge first; then, configure the external PCI bus devices.

1. Configure the PCI host bridge.

a. Program the desired ÉlanSC520 microcontroller arbitration mode, including
concurrency mode and PCI bus master arbitration priorities, etc. See “Initialization”
on page 8-22, for more detailed information on arbitration.

b. Program the Programmable Address Region (PAR) registers, if required. See
Chapter 4, “System Address Mapping”, for details on programming PCI bus memory
space.
Élan™SC520 Microcontroller User’s Manual 9-29

PCI Bus Host Bridge
c. Program the ÉlanSC520 microcontroller-specific PCI host bridge configuration (write
posting, retry time-out counter, interrupts, etc.). Note that write-posting must be
disabled while operating in nonconcurrent arbitration mode. See Chapter 8, “System
Arbitration”, for further details on nonconcurrent mode arbitration.

d. Program the standard PCI bus configuration registers. See “Configuration Information”
on page 9-9 for more information.

2. Configure the external PCI bus devices.

In general, PCI host bridge configuration bits should not be changed except during a PCI
bus initialization after a system or programmable reset.

A PCI bus 2.2-compliant target is not required to meet the normal initial latency time limit
if it is accessed during the 225 clock periods (about one second) following RST signal
deassertion. During this time, an addressed target is permitted to do any of the following:

■ Initiate a retry.

■ Claim the access and hold in wait states until ready to respond.

■ Ignore the access.

A device that ignores the access is essentially not recognized if the initialization software
tries to configure it too soon after RST is deasserted, resulting in an incomplete system
configuration. To support such devices, the initialization software might need to include a
delay to ensure that 225 clock periods pass before PCI devices are configured.
9-30 Élan™SC520 Microcontroller User’s Manual

CHAPTER
10
 SDRAM CONTROLLER
10.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated SDRAM controller.

Features include:

■ SDRAM (synchronous DRAM) support

■ 3.3-V DC 66-MHz SDRAM or faster (16 Mbit through 256 Mbit)

■ Achieves 3-1-1-1 read bursts on SDRAM (page hit for all device speed grades with
CAS latency (CL) = 2)

■ Support for up to four banks, each bank independently programmed for size and
symmetry (symmetric and asymmetric SDRAMs)

■ Up to 256 Mbytes of SDRAM

■ Optional SDRAM refresh during reset

■ SDRAM auto refresh

■ Error Correction Code (ECC) support (single-bit correct/multi-bit detect)

■ SDRAM write buffering that supports write-merging, write-collapsing, and read-merging

■ Read buffer with read-ahead feature for SDRAM read prefetching

■ Read-around-write support that gives read priority over posted writes when the write
buffer is enabled

10.2 BLOCK DIAGRAM
The SDRAM controller and its interface to the system SDRAM, along with the write buffer
and the read buffer, are shown in Figure 10-1. (The write buffer and read buffer are described
in Chapter 11.) Figure 10-2 shows a more detailed block diagram of the SDRAM controller
subsystem.

10.3 SYSTEM DESIGN
The SDRAM controller of the ÉlanSC520 microcontroller supports SDRAM devices only.
Figure 10-3 illustrates the connection of the SDRAM signals from the ÉlanSC520
microcontroller to the SDRAM banks.

Although the data bus width is only 32-bits in the ÉlanSC520 microcontroller, 64-bit (168-
pin DIMMs) memory modules can be used. Each 168-pin DIMM can be used as a pair of
banks. By appropriately connecting the SCS3–SCS0 signals to the SDRAM DIMM module,
168-pin modules can be used in an ÉlanSC520 microcontroller system.

Figure 10-4 shows an example configuration of a 168-pin SDRAM DIMM used as two banks.
For the DIMM in this example, 8-bit devices are used. A DIMM configured for ECC is not
shown.
Élan™SC520 Microcontroller User’s Manual 10-1

SDRAM Controller
Figure 10-1 SDRAM Controller Block Diagram

Read Buffer

Write Buffer

SDRAM
A

dd
re

ss
 D

ec
od

e

C
P

U
 In

te
rfa

ce

MD31–MD0

BA1–BA0

MECC6–MECC0

SDQM3–SDQM0

CLKMEMOUT

CLKMEMIN

SCASB–SCASA

SRASB–SRASA

SWEB–SWEA

Clock Generator
66

 M
H

z
33 MHz 32 kHz

SCS3–SCS0

MA12–MA0

Controller

Élan™SC520 Microcontroller

33 MHz

32
 k

H
z

32KXTAL2–32KXTAL1
33MXTAL2–33MXTAL1
10-2 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
Figure 10-2 Detailed Block Diagram of SDRAM Controller

Notes:
SDRAM controller trace and test logic is not shown.

MA12–MA0

MECC6–MECC0

SDQM3–SDQM0

CLKMEMOUT

CLKMEMIN

SCASB–SCASA

SRASB–SRASA

SWEB–SWEA

MD31–MD0

SCS3–SCS0
Page/Bnk

x5_addr[27–2]

MA Gen.

Control
x5_control

66-MHz PLL

Write Buffer

be3–be0

x5_be[3–0]

data[31–0]

x5_data[31–0]

Read Buffer

ECC
Check

ECC
Gen.

x5_data[31–0]

33 MHz

BA1–BA0

Élan™SC520 Microcontroller

32 kHz

Interrupts
Élan™SC520 Microcontroller User’s Manual 10-3

SDRAM Controller
Figure 10-3 SDRAM Bank Configuration

Notes:
* ECC is optional. Since the entire doubleword is always written to the SDRAM during a read-modify-write operation
(see “Error Correction Code (ECC)” on page 10-16), any one of the four SDQM signals can be connected to the
DQM of the device that stores the 7-bit check word.

D[31:24] D[23:16] D[15:8] D[7:0]

B
an

k
3

B
an

k
1

B
an

k
2

B
an

k
0

SWEB

MA12–MA0,

MD31–MD0 MECC6–MECC0

SWEA

SDQM3–
DQM[0]

D[38:32]

SCS2

SCS1

SCS0

SCASB

SRASB

SCASA

SRASA

SCS3 CAS
RAS

DQM[1]DQM[2]DQM[3]DQM[3]*

D[31:24] D[23:16] D[15:8] D[7:0]

DQM[0]

D[38:32]

CAS
RAS

DQM[1]DQM[2]DQM[3]DQM[3]*

D[31:24] D[23:16] D[15:8] D[7:0]

DQM[0]

D[38:32]

CAS
RAS

DQM[1]DQM[2]DQM[3]DQM[3]*

D[31:24] D[23:16] D[15:8] D[7:0]

DQM[0]

D[38:32]

CAS
RAS

DQM[1]DQM[2]DQM[3]DQM[3]*

BA1–BA0

SDQM0
10-4 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
Figure 10-4 Example Configuration of a 168-Pin SDRAM DIMM

10.3.1 SDRAM Pins
The SDRAM interface pins are dedicated to supporting SDRAM devices only.

Four chip select signals, SCS3–SCS0, are provided for independent bank selection.

The SRASA–SRASB, SCASA–SCASB, and SWEA–SWEB signals are device command
signals that are encoded by the SDRAM controller to send a command to the SDRAM
devices. Each device in the array must sample these signals.

■ Since this may result in heavy loading, two SRAS and two SCAS signals are provided
to allow splitting load capacitance on these pins among the banks.

X8 X8 X8 X8 X8 X8 X8 X8

DQ63–DQ32 DQ31–DQ0

SCASB SCASA

SRASB

SWEB

SCS1

SRASA

SWEA

SCS0

MD31–MD0

Bank 0Bank 1

SDQM3 SDQM2 SDQM1 SDQM0

BA1–BA0
MA12–MA0,
Élan™SC520 Microcontroller User’s Manual 10-5

SDRAM Controller
– For example, banks 0 and 1 can share the SRASA and SCASA signal.

– Likewise, banks 2 and 3 can share the SRASB and the SCASB signal.

■ Two SWE signals are also provided to alleviate single pin loading.

– For example, banks 0 and 1 can share the SWEA signal, and banks 2 and 3 can share
the SWEB signal.

The four SDQM lines, SDQM3–SDQM0, provide byte masking.

■ Each of the four SDQM3–SDQM0 signals is associated with one byte of four throughout
the array. Each SDQMx signal provides an input mask signal for write accesses and an
output enable signal for read accesses.

See Figure 10-3 on page 10-4, which illustrates the connection of SDRAM signals from the
ÉlanSC520 microcontroller to the external SDRAM banks. Since the SDRAM controller
shares the MD31–MD0 data bus with the ROM/Flash controller, the SDRAM controller
guarantees the SDQM3–SDQM0 signals are forced inactive to make sure the SDRAM
devices do not contend with the ROM or Flash devices that may share the data bus.

10.3.2 SDRAM Clocking
The SDRAM device’s clock is sourced from the SDRAM controller interface of the
ÉlanSC520 microcontroller. As shown in Figure 10-1 on page 10-2, there are two clock
pins dedicated for the SDRAM interface.

■ CLKMEMOUT is a 66-MHz clock.

■ CLKMEMIN must be a direct feedback version of CLKMEMOUT.

The SDRAM controller’s data buffers use CLKMEMIN to latch read data coming from the
SDRAM devices. CLKMEMIN is used to compensate for delays associated with board
loading and external buffering (to allow for read data flight time from the SDRAM device).
The allowable delay between CLKMEMOUT and CLKMEMIN is –0.5 to +6.0 ns.

The following describes a typical scenario for SDRAM systems used with the ÉlanSC520
microcontroller. These are general guidelines to demonstrate system considerations and
are not intended for use as system implementations.

The CLKMEMOUT pin has a 24-mA driver and is capable of driving a 50-pF load directly,
without requiring an external clock driver/buffer and still remain under the maximum
allowable delay of 6 ns. A CLKMEMOUT load above 50 pF may result in delays greater
than 6 ns that could jeopardize data integrity. The 50-pF load includes all loads presented
to the CLKMEMOUT pin such as board routing (between CLKMEMOUT and CLKMEMIN),
DIMM connector load, and SDRAM device load.

Table 10-1 shows estimated bank loads as they pertain to SDRAM device data widths. As
shown in Table 10-1, a bank composed of 4-bit devices presents a greater load to the
CLKMEMOUT pin than a bank composed of 8-bit devices. This table does not include board
or connector loads.

Table 10-1 SDRAM Clock Loading Estimates Based on Device Width

Device Width

4-Bit 8-Bit 16-Bit 32-Bit

Device count (per bank) 8 4 2 1

Total SDRAM clock loading (pF) 32 16 8 4
10-6 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
Figure 10-5 shows a lightly loaded system. Typically, this delay can be implemented as fast
buffers, capacitors, series resistors, etc. or as a short.

Figure 10-5 SDRAM Clock Generation

Figure 10-6 shows an example of a two-bank SDRAM system that uses an external clock
driver. The clock driver is used to buffer CLKMEMOUT to support the load of multiple banks
of SDRAM. A buffered version of CLKMEMOUT is returned on CLKMEMIN to compensate
for the clock skew presented by the clock driver.

Figure 10-6 Alternate SDRAM Clock Generation with External Clock Driver

The delays that the system designer must take into consideration are identified by this
equation:

TAC + TSKEW + TCK_LD + TD_LD <= TCK

where:

TAC : Access time of SDRAM device (not impacted by board design)

TSKEW: The delay between CLKMEMOUT to CLKMEMIN

TCK_LD: Additional clock delay due to loading

TD_LD: Data delay due to loading

TCK: SDRAM memory clock

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and
additional timing diagrams.

SDRAM

Controller
CLKMEMIN

CLKMEMOUT

Delay

SDRAM Bank

Élan™SC520
Microcontroller

SDRAM Bank
CLKMEMOUT

SDRAM

Controller

CLKMEMIN

Drivers

SDRAM Bank

Élan™SC520
Microcontroller
Élan™SC520 Microcontroller User’s Manual 10-7

SDRAM Controller
10.3.3 SDRAM Loading
Table 10-2 through Table 10-5 show estimated capacitances for the SDRAM devices that
the ÉlanSC520 microcontroller can support. (See Table 10-8 on page 10-13 for a listing of
the SDRAM devices supported by ÉlanSC520 microcontroller.) The tables are broken up
for SDRAM device data width for clarity. The purpose of these tables is to identify SDRAM
loading as it applies to various bank configurations. The ÉlanSC520 microcontroller
provides some flexibility in signal drive strength to allow the user to optimize performance,
depending on the SDRAM array configuration.

In the estimated capacitance tables, the input capacitance of SRASx, SCASx, SWEx, MAx,
BAx, SDQMx, and SCSx for a single device was assumed to be 5 pF. 4 pF was used for
the CLK signal. The MDx signals are assumed to be 6 pF. These tables do not account for
board trace capacitance. It is assumed in these tables that both pins provided for a control
signal, e.g., SRASA–SRASB, SCASA–SCASB, and SWEA–SWEB are split across banks
evenly.

As can be seen in the tables, a 4-bank configuration of 16-bit devices has a loading of less
than 50 pF for any signal, but for a 4-bank configuration of 4-bit devices, the capacitance
of the interface increases. The ÉlanSC520 microcontroller provides programmable drive
strength buffers on all address, data, and control signals to support varying SDRAM device
loads. See “SDRAM Control Configuration” on page 10-18 for more details.

Notes:
Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.

Notes:
Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.

Table 10-2 Estimated Capacitance (4-Bit SDRAM Devices)

Number
of 32-Bit
Banks

CLK
Loading
(pF)

SRASx
Loading
(pF)

SCASx
Loading
(pF)

SCSx
Loading
(pF)

SWEx
Loading
(pF)

SDQMx
Loading
(pF)

MAx/BAx
Loading
(pF)

MDx
Loading
(pF)

1 32 40 40 40 40 10 40 6

2 64 40 40 40 40 20 80 12

3 96 80 80 40 80 30 120 18

4 128 80 80 40 80 40 160 24

Table 10-3 Estimated Capacitance (8-Bit SDRAM Devices)

Number
of 32-Bit
Banks

CLK
Loading
(pF)

SRASx
Loading
(pF)

SCASx
Loading
(pF)

SCSx
Loading
(pF)

SWEx
Loading
(pF)

SDQMx
Loading
(pF)

MAx/BAx
Loading
(pF)

MDx
Loading
(pF)

1 16 20 20 20 20 5 20 6

2 32 20 20 20 20 10 40 12

3 48 40 40 20 40 15 60 18

4 64 40 40 20 40 20 80 24
10-8 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
Notes:
Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.

Notes:
Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.

As can be seen clearly from the capacitance tables, as more SDRAM devices are connected
to the SDRAM controller interface signals on the ÉlanSC520 microcontroller, loading on all
these signals increases. Note that the numbers reflect only the actual device capacitance,
and not circuit board trace or buffer capacitance.

The SDRAM controller’s data bus (MD31–MD0) is shared with the ROM/Flash controller.
It is advisable to consider loading issues on the MD31–MD0 bus when both SDRAM and
ROM/Flash devices are installed. Heavy loading by SDRAM and ROM/Flash devices may
slow down the SDRAM timings and cause data corruption.

When ECC devices are not installed, it is advisable to add individual 10-Kohm pulldown
resistors on the MECC6–MECC0 bus to prevent the bus from floating during read access.

Table 10-4 Estimated Capacitance (16-Bit SDRAM Devices)

Number
of 32-Bit
Banks

CLK
Loading
(pF)

SRASx
Loading
(pF)

SCASx
Loading
(pF)

SCSx
Loading
(pF)

SWEx
Loading
(pF)

SDQMx
Loading
(pF)

MAx/BAx
Loading
(pF)

MDx
Loading
(pF)

1 8 10 10 10 10 5 10 6

2 16 10 10 10 10 10 20 12

3 24 20 20 10 20 15 30 18

4 32 20 20 10 20 20 40 24

Table 10-5 Estimated Capacitance (32-Bit SDRAM Devices)

Number
of 32-Bit
Banks

CLK
Loading
(pF)

SRASx
Loading
(pF)

SCASx
Loading
(pF)

SCSx
Loading
(pF)

SWEx
Loading
(pF)

SDQMx
Loading
(pF)

MAx/BAx
Loading
(pF)

MDx
Loading
(pF)

1 4 5 5 5 5 5 5 6

2 8 5 5 5 5 10 10 12

3 12 10 10 5 10 15 15 18

4 16 10 10 5 10 20 20 24
Élan™SC520 Microcontroller User’s Manual 10-9

SDRAM Controller
10.4 REGISTERS
A summary listing of the registers used to control the SDRAM configuration are shown in
Table 10-6.

Table 10-6 SDRAM Controller Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

SDRAM Control DRCCTL 10h Operation mode select, refresh enable, refresh
rate select, SDRAM write buffer test mode
enable

SDRAM Timing Control DRCTMCTL 12h RAS-to-CAS delay, RAS precharge, CAS
latency

SDRAM Bank Configuration DRCCFG 14h Bank count select, address column width
requirements for each bank

SDRAM Bank 0–3 Ending
Address

DRCBENDADR 18h Independent bank ending configurations and
enables for banks 0, 1, 2 and 3

ECC Control ECCCTL 20h ECC enable, interrupt enable for single-bit and
multi-bit error detection

ECC Status ECCSTA 21h Single-bit and multi-bit error status

ECC Check Bit Position ECCCKBPOS 22h ECC data bit position in check bit or data bit fields

ECC Check Code Test ECCCKTEST 23h ECC check code override for test and error
handler development

ECC Single-Bit Error Address ECCSBADD 24h Address where single-bit ECC error occurred

ECC Multi-Bit Error Address ECCMBADD 28h Address where multi-bit ECC error occurred

Drive Strength Control DSCTL C28h I/O pad drive strength for SCS3–SCS0,
SRASA–SRASB, SCASA–SCASB, SWEA–
SWEB, SDQM3–SDQM0, MA12–MA0, BA1–
BA0, MD31–MD0, MECC6–MECC0

ECC Interrupt Mapping ECCMAP D18h ECC interrupt mapping to any of 22 available
interrupt channels or NMI, ECC NMI enable
control

Reset Configuration RESCFG D72h Programmable SDRAM retention reset
(PRGRESET pin enable)

Reset Status RESSTA D74h Reset source status: PRGRESET pin
10-10 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
10.5 OPERATION
The ÉlanSC520 microcontroller supports up to four 32-bit banks of SDRAM, with a
maximum capacity of 256 Mbytes. This integrated SDRAM controller interfaces gluelessly
to most commodity synchronous DRAM (SDRAM) devices. Mixed symmetries are
supported across all four banks.

The ÉlanSC520 microcontroller supports a column boundary method to accept a wide
variety of SDRAM devices. The column boundary method requires only the device’s column
address width to define the device’s page size and symmetry.

The symmetry of a device refers to its organization as defined by the number of columns
and the number of rows.

■ A device is termed symmetric if the number of columns and rows is equal (i.e., a square
organization).

■ A device is termed asymmetric if the number of rows exceeds the number of columns
(i.e., a rectangular organization). No devices exist where the number of columns exceeds
the number of rows.

The column boundary method allows the user to configure the ÉlanSC520 microcontroller
to work with 16-Mbit, 64-Mbit, 128-Mbit, and 256-Mbit SDRAM densities (both 2-bank and
4-bank internal architectures) requiring 8-bit through 11-bit column address bits.

Error Correction Code (ECC) is also supported for SDRAM devices to ensure data integrity
for these high-speed devices.

10.5.1 SDRAM Support
The ÉlanSC520 microcontroller sources a 66-MHz clock (CLKMEMOUT) to drive the
SDRAM devices. An external clock driver can be used to buffer this clock output for heavily
loaded systems. A return clock input (CLKMEMIN) is provided to control clock skew. See
“SDRAM Clocking” on page 10-6 for detailed information on SDRAM clocking. Although
the ÉlanSC520 microcontroller sources a 66-MHz clock, faster SDRAM devices are
supported (83-MHz, 100-MHz, 125-MHz, etc.).

The SDRAM controller supports 16-Mbit, 64-Mbit, 128-Mbit, and 256-Mbit SDRAM
densities with either 2-bank or 4-bank internal architectures.

■ A CAS latency (CL) option of either 2T or 3T is supported, where T refers to a 15-ns
clock period when a 33.333-MHz crystal is used.

■ SDRAM devices must be configured for a fixed interleaved burst length of four for reads
and single writes.

See “SDRAM Control Configuration” on page 10-18 for detailed information on SDRAM
configuration timing options.

The SDRAM controller services read and write requests on behalf of:

■ Am5x86 CPU

■ PCI masters

■ GP-DMA controller

With the exception of ECC read-modify-write cycles (due to SDRAM writes of less than a
doubleword when ECC is enabled), all read requests to SDRAM occur as a read burst of
four cycles at the interface, regardless of the amount of data requested by a master.
Élan™SC520 Microcontroller User’s Manual 10-11

SDRAM Controller
During read-modify-write cycles, the SDRAM burst read portion of the transaction is
terminated early by the write cycle. This is independent of the enable state of the read-
ahead feature of the read buffer, which is provided to increase read performance by
prefetching data from SDRAM. See “Buffering” on page 10-17 for more information on the
read buffer and associated read-ahead feature.

Write requests to SDRAM always occur as single data transfers, regardless of the amount
of data written by a master. When the write buffer is enabled, all write transactions to SDRAM
are initiated by the write buffer. The write buffer features write merging, write collapsing and
read merging. See “Buffering” on page 10-17 for more information on the write buffer.

10.5.2 SDRAM Addressing
The ÉlanSC520 microcontroller asserts one of the four chip select signals, SCS3–SCS0,
during access to one of the four memory banks. Table 10-7 shows the SDRAM memory
address as a function of the system address for SDRAM devices.

The mapping of the system address into memory row and column addresses is influenced
by the column address configuration provided for each bank.

■ On page misses, a row address followed by a column address is generated during an
SDRAM access.

■ On page hits, only a column address is generated during an SDRAM access.

Table 10-7 shows the ÉlanSC520 microcontroller address mapping.

.

Notes: PC refers to SDRAM precharge signaling. BA1–BA0 are the SDRAM Bank Address signals.

Table 10-7 Address Mapping to MAx Signals for SDRAM Devices

SDRAM (16 Mbit–256 Mbit)

SDRAM Configuration
Bank

Selection MAx Pin Mapping

Column Address
Width BA1 BA0 12 11 10 9 8 7 6 5 4 3 2 1 0

8 2-bank Row 24 10 23 22 13 12 11 21 20 19 18 17 16 15 14

Column 24 10 PC 9 8 7 6 5 4 3 2

4-bank Row 22 10 24 23 13 12 11 21 20 19 18 17 16 15 14

Column 22 10 PC 9 8 7 6 5 4 3 2

9 2-bank Row 25 11 24 23 13 12 22 21 20 19 18 17 16 15 14

Column 25 11 PC 11 10 9 8 7 6 5 4 3 2

4-bank Row 23 11 25 24 13 12 22 21 20 19 18 17 16 15 14

Column 23 11 25 24 PC 10 9 8 7 6 5 4 3 2

10 2-bank Row 26 12 25 24 13 23 22 21 20 19 18 17 16 15 14

Column 26 12 PC 11 10 9 8 7 6 5 4 3 2

4-bank Row 24 12 26 25 13 23 22 21 20 19 18 17 16 15 14

Column 24 12 PC 11 10 9 8 7 6 5 4 3 2

11 2-bank Row 27 13 26 25 24 23 22 21 20 19 18 17 16 15 14

Column 27 13 12 PC 11 10 9 8 7 6 5 4 3 2

4-bank Row 25 13 27 26 24 23 22 21 20 19 18 17 16 15 14

Column 25 13 12 PC 11 10 9 8 7 6 5 4 3 2
10-12 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
10.5.2.1 Supported SDRAM Devices

The ÉlanSC520 microcontroller supports the SDRAM organizations listed in Table 10-8.
(Note that SDRAM devices requiring less than 11 row address bits are not supported, and
are not included in the table.)

This table includes all possible device organizations supported by the column boundary
method, including those that may not be available at this time. As shown, the column
boundary method allows the user to configure the ÉlanSC520 microcontroller to work with
16-Mbit, 64-Mbit, 128-Mbit, and 256-Mbit SDRAM densities (both 2-bank and 4-bank
internal architectures), requiring 8-bit through 11-bit column address bits. Note that 14-bit
(2 internal bank) devices can be supported by connecting the BA1 pin to the most significant
address pin of the devices.

Note that illegal device symmetries have been omitted from Table 10-8. Illegal symmetries
are those where the column width exceeds the row width dimension.

Table 10-8 SDRAM Devices Supported with Column Boundary Specification

Column
Width Density Banks Organization Device Architecture

Device
Count

per Bank
Dimension
Row: Col

MA/BA
Width

Bank
(32-Bit)

8-bit 16 Mbit 2 4M x 4 2M x 4 x 2-banks 8 13:8 14-bit 16 Mbytes

2M x 8 1M x 8 x 2-banks 4 12:8 13-bit 8 Mbytes

1M x 16 512K x 16 x 2-banks 2 11:8 12-bit 4 Mbytes

4 4M x 4 1M x 4 x 4-banks 8 12:8 14-bit 16 Mbytes

2M x 8 512K x 8 x 4-banks 4 11:8 13-bit 8 Mbytes

64 Mbit 2 8M x 8 4M x 8 x 2-banks 4 14:8 15-bit 32 Mbytes

4M x 16 2M x 16 x 2-banks 2 13:8 14-bit 16 Mbytes

2M x 32 1M x 32 x 2-banks 1 12:8 13-bit 8 Mbytes

4 8M x 8 2M x 8 x 4-banks 4 13:8 15-bit 32 Mbytes

4M x 16 1M x 16 x 4-banks 2 12:8 14-bit 16 Mbytes

2M x 32 512K x 32 x 4-banks 1 11:8 13-bit 8 Mbytes

128 Mbit 2 8M x 16 4M x 16 x 2-banks 2 14:8 15-bit 32 Mbytes

4M x 32 2M x 32 x 2-banks 1 13:8 14-bit 16 Mbytes

4 8M x 16 2M x 16 x 4-banks 2 13:8 15-bit 32 Mbytes

4M x 32 1M x 32 x 4-banks 1 12:8 14-bit 16 Mbytes

256 Mbit 2 8M x 32 4M x 32 x 2-banks 1 14:8 15-bit 32 Mbytes

4 8M x 32 2M x 32 x 4-banks 1 13:8 15-bit 32 Mbytes
Élan™SC520 Microcontroller User’s Manual 10-13

SDRAM Controller
9-bit 16 Mbit 2 4M x 4 2M x 4 x 2-banks 8 12:9 13-bit 16 Mbytes

2M x 8 1M x 8 x 2-banks 4 11:9 12-bit 8 Mbytes

4 4M x 4 1M x 4 x 4-banks 8 11:9 13-bit 16 Mbytes

64 Mbit 2 16M x 4 8M x 4 x 2-banks 8 14:9 15-bit 64 Mbytes

8M x 8 4M x 8 x 2-banks 4 13:9 14-bit 32 Mbytes

4M x 16 2M x 16 x 2-banks 2 12:9 13-bit 16 Mbytes

2M x 32 1M x 32 x 2-banks 1 11:9 12-bit 8 Mbytes

4 16M x 4 4M x 4 x 4-banks 8 13:9 15-bit 64 Mbytes

8M x 8 2M x 8 x 4-banks 4 12:9 14-bit 32 Mbytes

4M x 16 1M x 16 x 4-banks 2 11:9 13-bit 16 Mbytes

128 Mbit 2 16M x 8 8M x 8 x 2-banks 4 14:9 15-bit 64 Mbytes

8M x 16 4M x 16 x 2-banks 2 13:9 14-bit 32 Mbytes

4M x 32 2M x 32 x 2-banks 1 12:9 13-bit 16 Mbytes

4 16M x 8 4M x 8 x 4-banks 4 13:9 15-bit 64 Mbytes

8M x 16 2M x 16 x 4-banks 2 12:9 14-bit 32 Mbytes

4M x 32 1M x 32 x 4-banks 1 11:9 13-bit 16 Mbytes

256 Mbit 2 16M x 16 8M x 16 x 2-banks 2 14:9 15-bit 64 Mbytes

8M x 32 4M x 32 x 2-banks 1 13:9 14-bit 32 Mbytes

4 16M x 16 4M x 16 x 4-banks 2 13:9 15-bit 64 Mbytes

8M x 32 2M x 32 x 4-banks 1 12:9 14-bit 32 Mbytes

10-bit 16 Mbit 2 4M x 4 2M x 4 x 2-banks 8 11:10 12-bit 16 Mbytes

64 Mbit 2 16M x 4 8M x 4 x 2-banks 8 13:10 14-bit 64 Mbytes

8M x 8 4M x 8 x 2-banks 4 12:10 13-bit 32 Mbytes

4M x 16 2M x 16 x 2-banks 2 11:10 12-bit 16 Mbytes

4 16M x 4 4M x 4 x 4-banks 8 12:10 14-bit 64 Mbytes

8M x 8 2M x 8 x 4-banks 4 11:10 13-bit 32 Mbytes

128 Mbit 2 32M x 4 16M x 4 x 2-banks 8 14:10 15-bit 128 Mbytes

16M x 8 8M x 8 x 2-banks 4 13:10 14-bit 64 Mbytes

8M x 16 4M x 16 x 2-banks 2 12:10 13-bit 32 Mbytes

4M x 32 2M x 32 x 2-banks 1 11:10 12-bit 16 Mbytes

4 32M x 4 8M x 4 x 4-banks 8 13:10 15-bit 128 Mbytes

16M x 8 4M x 8 x 4-banks 4 12:10 14-bit 64 Mbytes

8M x 16 2M x 16 x 4-banks 2 11:10 13-bit 32 Mbytes

256 Mbit 2 32M x 8 16M x 8 x 2-banks 4 14:10 15-bit 128 Mbytes

16M x 16 8M x 16 x 2-banks 2 13:10 14-bit 64 Mbytes

8M x 32 4M x 32 x 2-banks 1 12:10 13-bit 32 Mbytes

4 32M x 8 8M x 8 x 4-banks 4 13:10 15-bit 128 Mbytes

16M x 16 4M x 16 x 4-banks 2 12:10 14-bit 64 Mbytes

8M x 32 2M x 32 x 4-banks 1 11:10 13-bit 32 Mbytes

Table 10-8 SDRAM Devices Supported with Column Boundary Specification (Continued)

Column
Width Density Banks Organization Device Architecture

Device
Count

per Bank
Dimension
Row: Col

MA/BA
Width

Bank
(32-Bit)
10-14 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
Notes:
Not all device organizations specified in this table are available at the time of this printing.

The SDRAM Bank Configuration (DRCCFG) register (MMCR offset 14h) has one bit
(BNKx_BNK_CNT) to specify the internal number of banks and another bit field to specify
the column address width (BNKx_COLWDTH) of the device. Table 10-9 shows suggested
settings for these bit fields, given a device’s column address width and internal bank count.

For example, if Bank 2 is composed of SDRAM devices organized as 2M x 8 x 4 banks (8
Mbyte x 8) with 4096 rows and 512 columns (9-bit), by using Table 10-9, the appropriate
bank configuration for this 4-bank device is 1b for the BNK2_BNK_CNT field and 01b for
the BNK2_COLWDTH field of the SDRAM Bank Configuration (DRCCFG) register.

11-bit 64 Mbit 2 16M x 4 8M x 4 x 2-banks 8 12:11 13-bit 64 Mbytes

8M x 8 4M x 8 x 2-banks 4 11:11 12-bit 32 Mbytes

4 16M x 4 4M x 4 x 4-banks 8 11:11 13-bit 64 Mbytes

128 Mbit 2 32M x 4 16M x 4 x 2-banks 8 13:11 14-bit 128 Mbytes

16M x 8 8M x 8 x 2-banks 4 12:11 13-bit 64 Mbytes

8M x 16 4M x 16 x 2-banks 2 11:11 12-bit 32 Mbytes

4 32M x 4 8M x 4 x 4-banks 8 12:11 14-bit 128 Mbytes

16M x 8 4M x 8 x 4-banks 4 11:11 13-bit 64 Mbytes

256 Mbit 2 64M x 4 32M x 4 x 2-banks 8 14:11 15-bit 256 Mbytes

32M x 8 16M x 8 x 2-banks 4 13:11 14-bit 128 Mbytes

16M x 16 8M x 16 x 2-banks 2 12:11 13-bit 64 Mbytes

8M x 32 4M x 32 x 2-banks 1 11:11 12-bit 32 Mbytes

4 64M x 4 16M x 4 x 4-banks 8 13:11 15-bit 256 Mbytes

32M x 8 8M x 8 x 4-banks 4 12:11 14-bit 128 Mbytes

16M x 16 4M x 16 x 4-banks 2 11:11 13-bit 64 Mbytes

Table 10-9 Column Address Configuration Settings for SDRAM

Column Width Banks
Internal Bank Count
(BNKx_BNK_CNT)

Bank Column Address
(BNKx_COLWDTH)

8-bit 2 0b 00b

4 1b 00b

9-bit 2 0b 01b

4 1b 01b

10-bit 2 0b 10b

4 1b 10b

11-bit 2 0b 11b

4 1b 11b

Table 10-8 SDRAM Devices Supported with Column Boundary Specification (Continued)

Column
Width Density Banks Organization Device Architecture

Device
Count

per Bank
Dimension
Row: Col

MA/BA
Width

Bank
(32-Bit)
Élan™SC520 Microcontroller User’s Manual 10-15

SDRAM Controller
10.5.2.2 Page Size

The page size of an SDRAM device is based on the column address width of the device.
The ÉlanSC520 microcontroller address mapping takes advantage of the full page specified
by the devices column address width. Table 10-10 lists the page size available based on
the column address width specified. The page size in an SDRAM device applies for each
internal bank.

10.5.3 Error Correction Code (ECC)
The ÉlanSC520 microcontroller supports Error Correction Code (ECC) to check the integrity
of transactions with the system SDRAM. ECC is implemented by a modified Hamming
code. It corrects a single-bit error and detects all two-bit (called multi-bit) errors. The memory
array must have check bits to implement ECC.

ECC operation requires that system memory be initialized. In this procedure, the boot code
writes to every memory location, automatically generating valid ECC that is stored in the
SDRAM check bits. If this procedure is not performed, errors will occur in the generation
of the check bits when writing data smaller than a 32-bit doubleword or when reading un-
initialized data.

The ECC circuit uses a modified Hamming code to generate a 7-bit check word from the
32-bit data word. This check word is stored along with the data word during the memory
write cycle. During the memory read cycle, the 39-bit words from memory are processed
by the ECC circuit to determine if errors have occurred in storing or retrieving data.

If there is a single-bit error in the 32-bit data word or check-bits, the ECC circuit flags an
error, latches the error-generating address along with the bit position where the error was
detected, and passes along the corrected data word to the requesting master. It does not
write the corrected data back out to the SDRAM. It generates a maskable interrupt signal
when a single-bit error is detected. This maskable interrupt signal is generated even if there
is a single-bit error in the 7-bit check word.

Multi-bit errors are flagged but not corrected. These errors may occur in any two bits of the
39-bit word from memory (two errors in the 32-bit data word, two errors in the 7-bit check
word, or one error in each word). A separate non-maskable interrupt is generated by the
ECC logic for multi-bit errors.

These two interrupts are routed to the interrupt steering logic in the programmable interrupt
controller. See Chapter 15, “Programmable Interrupt Controller”, for more details and
further options.

If there is any write that is less than the full four bytes, there is a loss of performance due
to ECC. The seven check-bits for any given ECC data field are generated over the entire
field. In other words, all four bytes of data are taken into account in generating the seven
check-bits associated with that data. If any changes were to occur to any of the data bytes,
the check-bits would no longer be correct.

Table 10-10 SDRAM Page Sizes

Column Width Page Size for 32-Bit Banks

8-bit 1 Kbyte

9-bit 2 Kbytes

10-bit 4 Kbytes

11-bit 8 Kbytes
10-16 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
To avoid this, whenever a single byte is to be written to the SDRAM (or for that matter, any
number of bytes that is less than the full doubleword), ECC first reads the whole data word,
checks for any single- or multi-bit errors, and, if any are present, generates the
corresponding interrupt and corrects the data (for a single-bit error), modifies the necessary
bytes, and then generates the check-bits across the modified four bytes. Finally, the entire
ECC word is stored back into memory. This process is called a read-modify-write operation.
If a full doubleword is written, then there is no need for a read-modify-write cycle. Also, a
partial doubleword write to a write-protected region does not generate a read-modify-write
cycle.

Since seven check-bits are required for each bank of SDRAM if ECC is enabled, ECC
cannot be supported if 168-pin (72-bit) SDRAM DIMMS are used. If a single 168-pin (72-
bit) DIMM is used for supporting two banks, then ECC cannot be enabled due to lack of
extra check bits in the DIMM. In this case, extra SDRAM devices must be used to store the
check-bits.

To assist in the development of software to handle ECC single-bit and multi-bit errors, the
ECC Check Code Test (ECCCKTEST) register (MMCR offset 23h) is provided. This register
can be used to override the automatically-generated ECC check code with a user-provided
check code for the following SDRAM write access.

10.5.4 Buffering
The ÉlanSC520 microcontroller includes two buffering techniques to optimize the memory
system performance. These include the write buffer and read buffer.

When enabled, the write buffer effectively decouples master write activity from incurring
the SDRAM latency penalty. This, in effect, also leaves SDRAM free to satisfy a higher
demand in read activity by all masters. In addition, the write buffer provides write merge
and write collapse functions to better utilize FIFO storage and reduce the number of
transactions to SDRAM. The read merge function is also provided to reduce data coherency
overhead by eliminating the need to flush the write buffer prior to a read access. During a
read request, should the write buffer contain more recent data than SDRAM, the data from
the write buffer is merged with data returned from SDRAM, eliminating the need to flush
the write buffer.

The ÉlanSC520 microcontroller supports a Read-Around-Write feature when the write
buffer is enabled. When the write buffer is enabled, the SDRAM controller’s arbiter favors
read activity, effectively giving read priority to SDRAM over write data that has been posted
in the write buffer. This feature is intended to increase master read performance.

The read buffer provides two cache lines (32 bytes total) of storage for read data returned
from SDRAM. Read requests that can be retrieved from the read buffer can be provided in
zero wait states to the requesting master. The SDRAM controller always fetches an entire
cache line of data from the SDRAM and stores it in the read buffer, independently of the
amount of data requested during the master access. For example, during a read request
from a non-bursting master (i.e., single doubleword request), the SDRAM controller fetches
the entire cache line of data from SDRAM and stores it in the read buffer.

The read buffer’s read-ahead function, when enabled, provides a mechanism to prefetch
the cache line of information from SDRAM that immediately follows the requested cache
line. This is in anticipation of future accesses to the prefetched line. The read-ahead feature
of the read buffer enhances read burst activity by the Am5x86 CPU and external PCI master
burst read requests. Read prefetches, when enabled, occur only for read burst transfer
requests of two or more doublewords. Single doubleword read requests do not cause a
read-ahead buffer prefetch of the next cache line; they only cause the cache line of the
Élan™SC520 Microcontroller User’s Manual 10-17

SDRAM Controller
demanded access to be read into the read buffer. GP-DMA read accesses are always single
word accesses.

The read buffer is always enabled, however, the read-ahead feature and write buffer can
be independently enabled and are disabled after a system reset or programmable reset.
For more information on the SDRAM controller’s buffering, see Chapter 11, “Write Buffer
and Read Buffer”.

10.5.5 SDRAM Control Configuration
The SDRAM controller provides the following control functions:

■ Refresh rate

■ Refresh enable

■ SDRAM pin drive strength

■ Write buffer test mode

■ Operation mode select

10.5.5.1 Refresh Control

To refresh the SDRAM devices, the SDRAM controller issues the Auto Refresh command.
Since the ÉlanSC520 microcontroller is intended to support a variety of vendors, the refresh
rate at which this command is issued is a configurable parameter. It is specified in the DRAM
Refresh Request Speed (RFSH_SPD) bit field in the SDRAM Control (DRCCTL) register
(MMCR offset 10h) and offers either 7.8-ms, 15.6-ms, 31.2-ms or 62.5-ms periods.

Note: Since the minimum refresh rate is 62.5 ms, which is below the maximum time between
an Active command and a Precharge command (TRAS), the SDRAM controller does not
support a RAS time-out feature.

The refresh rate is calculated from this equation:

Refresh Rate = Interval / Row

where:

Interval is how often a particular row must be refreshed
Row is the number of rows within the device that must be refreshed

Table 10-11 shows the SDRAM refresh rates and their corresponding intervals. SDRAM
devices contain either two or four internal banks. During each refresh cycle, all internal
SDRAM banks are refreshed simultaneously. This implies that a 2-bank architecture
performs dual-row refresh and a 4-bank architecture performs a quad-row refresh, per
refresh cycle.

Table 10-11 SDRAM Refresh Rates

Number of
Rows

Refresh Rate

7.8 ms 15.6 ms 31.2 ms 62.5 ms

256 2 ms 4 ms 8 ms 16 ms

512 4 ms 8 ms 16 ms 32 ms

1024 8 ms 16 ms 32 ms 64 ms

2048 16 ms 32 ms 64 ms 128 ms

4096 32 ms 64 ms 128 ms

8192 64 ms 128 ms
10-18 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
For example, if an SDRAM device is organized as 2M x 8 x 4 banks (8Mb x 8) with 4096
rows and 512 columns and requires a 64-ms refresh interval, by using Table 10-11, the
refresh rate is 15.6 ms.

During an SDRAM refresh period, all enabled banks are issued an Auto Refresh command.
However, during a refresh cycle, SDRAM devices require a somewhat large amount of
current, which could become quite large when considering a simultaneous refresh of
multiple banks within the same clock period. To prevent this, the SDRAM controller staggers
the bank refresh by selecting one bank at a time. This results in only one bank being issued
an Auto Refresh command during any given clock, rather than all banks within the same
clock. This method results in a slightly larger amount of overhead associated with refresh
cycles, but prevents large current surges to the SDRAM banks on the system circuit board.
Figure 10-12 on page 10-27 shows an SDRAM staggered refresh cycle.

SDRAM refresh cycles must be enabled only when the SDRAM Operation Mode Select
specifier is in normal SDRAM mode. The Refresh Enable (RFSH_ENB) bit is located in the
SDRAM Control (DRCCTL) register (MMCR offset 10h).

10.5.5.2 Drive-Strength Selection

The ÉlanSC520 microcontroller provides selectable drive strength options on all address,
data and control signals to provide support for different SDRAM device loads presented by
different system designs.

Pins with selectable drive strength options include:

■ MA12–MA0 (memory address)

■ BA1–BA0 (bank address)

■ MD31–MD0 (memory data)

■ MECC6–MECC0 (ECC data)

■ SCS3–SCS0

■ SDQM3–SDQM0

■ SCASA–SCASB

■ SRASA–SRASB

■ SWEA–SWEB

With the exception of SCS3–SCS0, these pins are equipped to drive 12 mA, 18 mA or 24
mA of current. SCS3–SCS0 drive either 18 mA or 12 mA.

The SDRAM interface drive strength can be changed in the Drive Strength Control (DSCTL)
register (MMCR offset C28h), which is described in the Programmable I/O section of the
Élan™SC520 Microcontroller Register Set Manual, order #22005.

10.5.5.3 Write Buffer Test Mode

The ÉlanSC520 microcontroller supports a write buffer test mode, using the alternate
function of the CF_ROM_GPCS, DATASTRB, and CF_DRAM pins that provide master
contribution information. As WBMSTR2–WBMSTR0, these three pins indicate whether the
Am5x86 CPU, PCI bus master, GP-DMA, or a combination of these (because the write
buffer may collapse or merge write data) has contributed into the rank of the write buffer
currently in the process of being written to SDRAM. This option is specified with the
WB_TST_ENB bit in the SDRAM Control (DRCCTL) register (MMCR offset 10h). See
Chapter 24, “System Test and Debugging”, for more information on the uses of these pins.
Élan™SC520 Microcontroller User’s Manual 10-19

SDRAM Controller
10.5.5.4 Operation Mode Select

The ÉlanSC520 microcontroller provides an SDRAM Operation Mode Select
(OPMODE_SEL) bit field in the SDRAM Control (DRCCTL) register (MMCR offset 10h).
These bits are used to select a particular mode of operation of the SDRAM controller.

■ The default mode of operation is normal SDRAM mode. This is the mode in which the
SDRAM controller must be configured for data access.

■ The NOP, All Banks Precharge, Load Mode Register, and Auto Refresh commands
specified by the OPMODE_SEL bit field are primarily used for SDRAM device
initialization.

When specifying NOP, All Banks Precharge, Load Mode Register, or Auto Refresh
commands, the command is not actually applied to the SDRAM devices until an Am5x86
CPU access to SDRAM occurs (either a read or write cycle).

The write buffer must be disabled prior to utilizing the NOP, All Banks Precharge, Load
Mode Register, or Auto Refresh OPMODE_SEL bit field if the Am5x86 CPU cycle executed
to generate these cycle types to the SDRAM devices is a write cycle.

The All Banks Precharge command should be issued prior to bank configuration changes.
This places the SDRAM devices in an idle state and clears the SDRAM controller’s page
table entries.

See “SDRAM Device Initialization” on page 10-30 for more information.

10.5.6 SDRAM Timing Configuration
The ÉlanSC520 microcontroller provides independent timing configuration for SDRAM
devices. The following timing parameters are configurable:

■ CAS latency (CL)

■ RAS precharge (TRP)

■ RAS-to-CAS delay (TRCD)

■ RAS-to-RAS or auto-refresh-to-RAS (TRC)

Note that the write recovery time (TWR) parameter is fixed to 2T (where T refers to a 15-ns
clock period for a 33.333-MHz crystal).

10.5.6.1 CAS Latency (CL)

The CAS latency (CL) of an SDRAM device specifies the number of clocks between a read
command being issued until the first piece of read data is available. After this delay, read
data is returned on each subsequent clock.

The ÉlanSC520 microcontroller supports CAS latency options for either 2T or 3T (where
T refers to a 15-ns clock period for a 33.333-MHz crystal). This parameter is a configuration
option, since some SDRAM devices have slightly better access timing when configured for
CL = 3. The CAS_LAT bit in the SDRAM Timing Control (DRCTMCTL) register (MMCR
offset 12h) is used to specify this value.

The CL parameter is programmed into the device with the Load Mode Register command.
See “SDRAM Device Initialization” on page 10-30 for more information.
10-20 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
10.5.6.2 RAS Precharge (TRP)

The RAS Precharge (TRP) parameter of an SDRAM device refers to the minimum period
of time that must be met following a Precharge command until a subsequent command to
the same bank can be issued. After TRP is met, the SDRAM device is considered to be in
the idle state. TRP varies between device vendors and device speed grades. Even though
the ÉlanSC520 microcontroller provides a 66-MHz SDRAM device clock, faster devices are
supported (83-MHz, 100-MHz, 125-MHz, etc.).

Since the ÉlanSC520 microcontroller is intended to support a variety of vendors and speed
grades, TRP is a configurable parameter and offers either 2T, 3T, 4T or 6T timing (where T
refers to a 15-ns clock period for a 33.333-MHz crystal). It is specified in the
RAS_PCHG_DLY bit field of the SDRAM Timing Control (DRCTMCTL) register (MMCR
offset 12h).

10.5.6.3 RAS-to-CAS Delay (TRCD)

The RAS-to-CAS delay parameter of an SDRAM device refers to the minimum period of
time between the time an Active command is issued to the time a read or write command
may be issued. This is referred to the TRCD parameter.

Since the ÉlanSC520 microcontroller is intended to support a variety of vendors and speed
grades, the TRCD parameter can be programmed for either 2T, 3T, or 4T timing (where T
refers to a 15-ns clock period for a 33.333-MHz crystal). Most current SDRAM devices
expect a minimum TRCD of 30 ns (or greater), which may be violated with a 2T setting under
heavy loading. This parameter is specified in the RAS_CAS_DLY bit field of the SDRAM
Timing Control (DRCTMCTL) register (MMCR offset 12h).

10.5.6.4 RAS-to-RAS or Auto-Refresh-to-RAS (TRC)

The RAS-to-RAS or auto-refresh-to-RAS parameter (TRC) of an SDRAM device refers to
the minimum period of time between an Active command and another Active command to
the same internal bank. It also pertains to the minimum amount of time between an Auto
Refresh command and an Active command.

The ÉlanSC520 microcontroller does not provide a configuration for the TRC parameter for
the timing between an Active command and a following Active command to the same
internal bank, since this is a function of the TRCD and TRP parameters. Two accesses to
different rows of the same internal bank result in an Active command being issued for each
access, but the Active command associated with the second access is always preceded
by a Precharge Bank command. Because of the preceding Precharge Bank command for
the second access, a combination of the TRCD and TRP parameters must provide adequate
timing such that the TRC parameter is not violated.

The minimum TRC for an Active command to an Active command is calculated as:

TRC = TRCD (configuration setting in number of clocks) + TRP (configuration setting in number
of clocks) + 2T (where T refers to a 15-ns clock period for a 33.333-MHz crystal).

When a TRCD of 2T is specified, 1T is added to the TRC equation to enforce a minimum
TRAS of 5T.

TRC also applies between an Auto Refresh command and an Active command. For this,
the ÉlanSC520 microcontroller enforces a fixed 9T timing (where T refers to a 15-ns clock
period for a 33.333-MHz crystal) following the last Auto Refresh command of a staggered
refresh sequence.
Élan™SC520 Microcontroller User’s Manual 10-21

SDRAM Controller
10.5.6.5 Minimum RAS (TRAS)

The minimum RAS parameter of an SDRAM device refers to the minimum period of time
that a row must remain open. This is the period of time between an Active command and
a Precharge command to the same internal bank. This parameter is referred to as TRAS.

Since the ÉlanSC520 microcontroller performs single write cycles, the minimum TRAS
occurs during write cycles. TRAS is a function of TRCD. This parameter is calculated as:

TRAS = TRCD (configuration setting in number of clocks) + 2T (where T refers to a 15-ns
clock period for a 33.333-MHz crystal).

A minimum TRAS of 5T is enforced when a TRCD of 2T is specified.

10.5.7 Bus Cycles
10.5.7.1 SDRAM Burst Read Cycle

The ÉlanSC520 microcontroller always bursts up to four doublewords on a read as shown
in Figure 10-7. The burst read to the SDRAM could occur due to any of the following reasons:

■ Am5x86 CPU read

■ Read buffer’s read-ahead prefetch

■ ÉlanSC520 microcontroller responding to PCI burst cycle as a target

■ GP-DMA

Figure 10-7 SDRAM Burst Read Cycle (Read-Ahead Feature Disabled) (Page Miss/Page Hit)

Notes:
This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

CAS latency = 2 CAS latency = 2

Rd

0 4 8 C

a b c d

Act

a b c

Row

10

Rd

e

e

Col ColBnk

Pre

clk_cpu

x5_abus

blast

x5_data_in

pghit

clk_mem

MA12–MA0,

Command

MD31–MD0 d

ads

brdy

BA1–BA0
10-22 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
10.5.7.2 SDRAM Write Cycle

With the write buffer enabled, all writes to the SDRAM come from the write buffer. With the
write buffer disabled, the SDRAM write cycle could occur due to any of the following reasons:

■ Am5x86 CPU

■ ÉlanSC520 microcontroller responding to PCI burst cycle as target

■ GP-DMA

All the writes are configured for single write mode, with each write occurring independently.
Am5x86 CPU non-burst write transfers are shown in Figure 10-8. An Am5x86 CPU burst
write cycle is shown in Figure 10-9.

Figure 10-8 SDRAM Write Cycle (Write Buffer and ECC Disabled) (Page Miss/page Hit)

Notes:
This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

Wr

0 4

a

Act

a

Row

b

b

Wr

Col

8

c

Col

c

Wr

Col

Pre

Bnk

clk_cpu

ads

x5_abus

blast

x5_data_out

brdy

pghit

clk_mem

MA12–MA0,

Command

MD31–MD0

BA1–BA0
Élan™SC520 Microcontroller User’s Manual 10-23

SDRAM Controller
Figure 10-9 SDRAM CPU Burst Write (Write Buffer and ECC Disabled) (Page Miss/Page Hit)

Notes:
This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

10.5.7.3 ECC SDRAM Cycles

When ECC is enabled, additional overhead is necessary to compensate for ECC logic
delays and read-modify-write cycles due to partial doubleword write cycles. The least
amount of overhead occurs during a full doubleword write to the SDRAM. In the case of a
read, however, the ECC has to generate the new check bits, check for any errors, and
generate an interrupt if an error occurs. A delay of one CPU clock cycle is added for SDRAM
read cycles with ECC enabled. With ECC enabled, read page hit burst timing of 4-1-1-1
(where CL = 2) is achieved, compared to a 3-1-1-1 (where CL = 2) burst with ECC disabled.
See Figure 10-10 showing the read cycles with ECC enabled.

Wr

0 4

a

Act

a

Row

b

b

Wr

Col

8

c

Col

c

Wr

Col

C

Pre

Bnk

d

10

1a

Col

Wr

d

clk_cpu

ads

x5_abus

blast

x5_data_out

brdy

pghit

clk_mem

MA12–MA0,

Command

MD31–MD0

BA1–BA0
10-24 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
Figure 10-10 SDRAM Burst Read Cycle with ECC Enabled

Notes:
This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

The ECC overhead is even higher in the case of a read-modify-write cycle, as shown in
Figure 10-11. As shown, a write cycle with a partial doubleword requires an SDRAM read
cycle followed by a write cycle. Note that the SDRAM read burst is terminated early by the
write cycle. See “Error Correction Code (ECC)” on page 10-16 for details of a read-modify-
write cycle.

CAS latency = 2

4 8 C

a b c d

0

a b c d

clk_cpu

ads

x5_abus

x5_data_in

brdy

pghit

clk_mem

MA12–MA0,

Command

MD31–MD0

MECC6–

Rd

BA1–BA0

MECC0

Col
Élan™SC520 Microcontroller User’s Manual 10-25

SDRAM Controller
Figure 10-11 SDRAM Read-Modify-Write Cycle (for Data Write) with ECC Enabled (Page Hit)1

Notes:
1. This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

2. Contents modified with the active bytes in the write word (00AB0000).

10.5.7.4 SDRAM Auto Refresh Cycle

Auto refresh, as shown in Figure 10-12, is used during normal operation of the SDRAM
and is analogous to the CAS-before-RAS refresh in EDO DRAMs. This command is
nonpersistent, so it must be issued each time a refresh is required. The internal banks will
be precharged and idle for a minimum of the Precharge time (TRP) before the Auto Refresh
command is applied. When the refresh cycle has completed, all the banks of the SDRAM
will be in the precharged (idle) state. Note that this figure shows a staggered refresh cycle,
as described in “Refresh Control” on page 10-18.

The purpose of the programmable reset in the memory controller is to maintain the state
of the SDRAM during a reset. This allows SDRAM refreshes to occur during reset. See
Chapter 6, “Reset Generation”, for more information.

CAS latency = 2

00AB0000

a

1011

Rd Wr

a2

a

clk_cpu

w/r

x5_abus

be3–be0

x5_data_out

brdy

pghit

clk_mem

MA12–MA0,

Command

MD31–MD0

MECC6–MECC0

BA1–BA0

ads

Col Col
10-26 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
Figure 10-12 SDRAM Auto Refresh Cycle

10.5.7.5 SDRAM Mode Register Access Cycles

The mode register contained in the SDRAM devices is used to define the specific mode of
operation of the SDRAM. This definition includes the selection of the burst length, burst
type, CAS latency, operating mode, and write burst mode. An SDRAM Load Mode
Command is shown in Figure 10-13. See “SDRAM Device Initialization” on page 10-30 for
information on programming the mode register.

Figure 10-13 SDRAM Mode Register Access

10.5.8 Interrupts
The SDRAM controller implements Error Correction Code logic to detect and correct single-
bit errors and detect multi-bit errors.

Separate interrupts can be generated for both single-bit error and multi-bit error detection.
These two interrupts are routed from the SDRAM controller to the ÉlanSC520
microcontroller’s programmable interrupt controller (PIC).

■ These two interrupts can be individually enabled by using the MULT_INT_ENB and
SGL_INT_ENB bits in the ECC Control (ECCCTL) register (MMCR offset 20h).

■ The interrupt signals remain asserted to the PIC until a write is performed to the
MBIT_ERR and SBIT_ERR status bits in the ECC Status (ECCSTA) register (MMCR
offset 21h). This write is typically performed by the interrupt handler associated with the
interrupt.

Note: The multi-bit error interrupt, when enabled, always generates a non-maskable
interrupt (NMI).

Nop Auto Ref. Auto Ref. Auto Ref. Auto Ref.

All Bnk.

Pre.

CLKMEMOUT

SCS0

SCS1

SCS2

SCS3

MA12–MA0,

Command

BA1–BA0

Auto Ref. Load Mode Act

Code Row

CLKMEMOUT

MA12–MA0,

Command

BA1–BA0
Élan™SC520 Microcontroller User’s Manual 10-27

SDRAM Controller
10.5.9 Software Considerations

10.5.9.1 ECC Errors

The ECC logic in the SDRAM controller detects single-bit error and multi-bit errors in the
SDRAM data being accessed.

■ When a single-bit error is detected, a maskable interrupt is generated. See Chapter 15,
“Programmable Interrupt Controller”, for information on steering this interrupt.

■ When a multi-bit error is detected, a non-maskable interrupt (NMI) is generated.

The interrupt handler should read the ECC Status (ECCSTA) register (MMCR offset 21h)
logging the detection of a single-bit error (SBIT_ERR) or a multi-bit error (MBIT_ERR),
depending on which interrupt signal is generated. The physical address where the error
occurred is latched for both single-bit and multi-bit errors in the ECC Single-Bit Error Address
(ECCSBADD) register (MMCR offset 24h) and ECC Multi-Bit Error Address (ECCMBADD)
register (MMCR offset 28h), respectively. An encoded value of the data bit position where
the single-bit error occurred is also latched in the ECC_CHK_POS bit field of the ECC
Check Bit Position (ECCCKBPOS) register (MMCR offset 22h).

All latched information pertaining to an error is latched on the first occurrence and cleared
when the latch is re-enabled. Information for errors that occur after the first occurrence, but
before the latch is re-enabled, are lost.

10.5.9.2 Buffer Disabling During SDRAM Configuration

Prior to altering the SDRAM configuration, the write buffer and read-ahead feature of the
read buffer must be disabled. This is to prevent SDRAM configuration changes while a write
buffer or read-ahead prefetch to SDRAM is in progress. During bank configuration, it is
important to not enable an SDRAM bank with the Bank Ending Address specified as 0.

10.5.9.3 Write Protection

Regions of SDRAM can be write-protected through the use of a Programmable Attribute
Region (PAR) register. A write-protected region allows read cycle access, however, data is
not written to the devices during a write cycle access. When writing to a region that is write-
protected, an SDRAM write cycle still occurs; however, the SDQM3–SDQM0 data mask
signals are active throughout the cycle to prevent the data from being written to the devices.
If ECC is enabled and a noncomplete doubleword access is write-protected, the SDRAM
controller does not generate a read-modify-write cycle.

10.5.10 Latency
The SDRAM controller’s write buffer and read buffer are designed to enhance the memory
system’s bandwidth and performance. When enabled, the write buffer decouples master
write or burst write activity from incurring the SDRAM access latency penalty along with
the overhead associated with SDRAM refresh cycles. When enabled, the read-ahead
feature of the read buffer decouples master read activity from incurring the SDRAM latency
penalty on read buffer hits. For more information, see Chapter 11, “Write Buffer and Read
Buffer”.

SDRAM devices require periodic refresh cycles to maintain data integrity within the device.
This SDRAM activity must occur at fixed intervals as high priority requests. In the event
that a data access request and a refresh cycle request occur at the same time, the data
access request is stalled until the higher priority refresh cycle is complete. Devices that can
tolerate a slower refresh period result in a system with less refresh overhead, leaving
SDRAM free for data access requests. To support these devices, the ÉlanSC520
microcontroller provides an adjustable refresh rate of 7.8 ms, 15.6 ms, 31.2 ms or 62.5 ms.
10-28 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
When the write buffer is enabled, writes to SDRAM occur independently of any associated
master activity until the write buffer is empty. Since the SDRAM data bus may be shared
with the ROM/Flash controller, write-buffer writes may request concurrently with master
requests to ROM/Flash. Should these two independent activities concurrently request
access to the data bus, the ROM/Flash cycle takes precedence over the write-buffer write
in favor of satisfying the requesting master. However, a ROM/Flash cycle may be temporarily
delayed should a master request ROM/Flash access during a write-buffer write in progress.
Furthermore, a ROM/Flash access that occurs during a read-ahead prefetch results in the
ROM/Flash access being temporarily delayed until the read prefetch completes. See
Chapter 12, “ROM/Flash Controller”, for information on ROM/Flash sharing the SDRAM
data bus.

ECC results in additional latencies due to required read-modify-write cycles. The read-
modify-write cycles are necessary when incomplete doublewords are written to the SDRAM
devices (i.e., any writes less than four bytes). Read-modify-write is required to update the
ECC code to include the information reflected in the partial doubleword to be written.
However, a partial doubleword write to a write-protected region does not generate a read-
modify-write cycle.

Prior to a write, the following sequence occurs:

1. The complete doubleword and ECC code is read from SDRAM and checked for errors
(the respective interrupt is generated if an error is detected)

2. The new ECC code is generated to include the data just read and the new data to be
written.

3. The complete modified doubleword and modified ECC code is written back into the
SDRAM.

Should the write cycle be a complete doubleword, the ÉlanSC520 microcontroller does not
require a read of the SDRAM first. This reduces the overhead associated with 32-bit writes
to SDRAM. However, since a read is not performed prior to a doubleword write, the contents
in SDRAM are not checked prior to the data being written.

10.6 INITIALIZATION

10.6.1 Programmable Reset
The ÉlanSC520 microcontroller’s SDRAM controller provides the capability to maintain the
contents of the SDRAM during a reset event. In effect, two types of reset are supported:

■ System reset—A complete reset where the entire SDRAM controller is reset and
contents of the SDRAM devices are lost.

■ Programmable reset—The SDRAM controller configuration is maintained and the
contents of the SDRAM devices are also maintained by maintaining refresh cycles
throughout the programmable reset duration.

Selection of the reset type is controlled by the PRG_RST_ENB bit in the Reset Configuration
(RESCFG) register (MMCR offset D72h). With this bit, the PRGRESET pin can be
programmed to reset the ÉlanSC520 microcontroller for a programmable reset. On power-
up, the PRGRESET pin is disabled and must be programmed to be operational.

See “System Reset with SDRAM Retention” on page 6-6 for detailed information on the
sources of these resets.

The purpose of the programmable reset in the memory controller is to maintain the state
of the SDRAM during an ÉlanSC520 microcontroller reset. This requires SDRAM refreshes
Élan™SC520 Microcontroller User’s Manual 10-29

SDRAM Controller
to occur throughout the entire duration of the programmable reset. Upon the assertion of
the programmable reset, the SDRAM controller arbiter lets the current SDRAM access
complete before returning the controller state machines to their idle states. This prevents
data corruption in the SDRAM array should the programmable reset be asserted during an
access to SDRAM. All SDRAM controller configuration is maintained.

Note: The contents of the write buffer are discarded for both types of reset. Also, the enable
states of the write buffer and read buffer are not maintained after a programmable reset.
Therefore, if the write buffer and read buffer were enabled prior to the programmable reset,
software must re-enable them after the programmable reset.

10.6.2 SDRAM Device Initialization
Section 10.6.2– Section 10.6.4 provide details on enabling the core and SDRAM
configuration. However, prior to altering the SDRAM configuration, the write buffer and read-
ahead feature of the read buffer must be disabled. This is to prevent SDRAM configuration
changes while a write buffer or read-ahead prefetch to SDRAM is in progress.

Refresh should be disabled anytime the SDRAM controller is not operating in normal
SDRAM mode. SDRAM refresh cycles should only be enabled when the OPMODE_SEL
bit field is configured for normal SDRAM mode. After the SDRAM devices are initialized
(with refresh cycles remaining disabled), they can be reliably accessed.

If the Error Correction Code (ECC) logic for SDRAM is enabled, the ECC operation requires
that SDRAM and its associated ECC memory be initialized. This is accomplished by the
boot code that must write to every location in SDRAM. This process initializes the ECC
SDRAM to reflect the proper Hamming code for its associated data. If this procedure is not
performed, false errors will occur when reading or when writing data smaller than a 32-bit
doubleword. See “Error Correction Code (ECC)” on page 10-16 for a more detailed
discussion of ECC.

10.6.2.1 Operation Mode Select

SDRAM devices must be powered up and initialized in a predefined manner prior to access.
The SDRAM controller’s SDRAM Control (DRCCTL) register (MMCR offset 10h) provides
support for this procedure via the OPMODE_SEL field.

■ By default, the OPMODE_SEL bit field reflects a normal SDRAM mode of operation.
However, a normal SDRAM mode of operation refers to the mode the SDRAM controller
must be configured in after SDRAM device initialization is complete. Normal SDRAM
mode allows read and write accesses to occur as requested by a master. SDRAM refresh
cycles should be enabled only when the OPMODE_SEL field is configured for normal
SDRAM mode.

■ The other settings for the OPMODE_SEL field force all SDRAM accesses to a specific
SDRAM command type: NOP, Precharge, Load Command, or Refresh. Setting the
OPMODE_SEL bits to non-normal SDRAM mode results in all banks being selected
(i.e., SCS3–SCS0 are driven active), so that the command is applied to all SDRAM
devices in the system.

To generate the command specified in the OPMODE_SEL field, an Am5x86 CPU read or
write cycle must be generated to the SDRAM region. The specified command occurs at
the SDRAM interface rather than the actual read or write cycle requested by the Am5x86
CPU.
10-30 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
10.6.2.2 NOP Command

Once power is applied and the clock is stable, most SDRAM devices require a 100-ms delay
prior to applying an executable command. Therefore, boot code must guarantee that
SDRAM is not accessed immediately after reset. During this period and continuing at least
through the end of this period, the NOP command should be applied. During initialization,
the NOP command is enabled, with a binary pattern of 001b being written to the Operation
Mode Select bits. An Am5x86 CPU read or write cycle must be generated to the SDRAM
region to cause the generation of the specified command.

10.6.2.3 Precharge Command

Once the 100-ms delay has been satisfied with at least one NOP command having been
applied, a Precharge command should be applied to all the internal banks within a device,
thereby placing the device in the idle state. The All Banks Precharge command can be
enabled during initialization, with a binary pattern of 010b being written to the Operation
Mode Select bits. In this mode, MA10 (precharge) is held high during the precharge to
enable the All Banks Precharge. Since all banks are selected, all banks will be enabled to
interpret this command.

10.6.2.4 Auto Refresh Command

Once in the idle state, two Auto Refresh cycles must be performed. The Auto Refresh
command can be enabled during initialization, with a binary pattern of 100b being written
to the Operation Mode Select bits. The boot code must perform at least two accesses to
SDRAM when in this mode.

10.6.2.5 Mode Register Programming

Once the Auto Refresh cycles are complete, the SDRAM is ready for mode register
programming. The Load Mode Register command can be enabled during initialization with
a binary pattern of 011b being written to the OPMODE_SEL field. Since all SDRAM banks
are selected (i.e., SCS3–SCS0 are driven active), all banks will be configured to the same
mode. The mode register is programmed to define the SDRAM devices burst length, burst
type, CAS latency, operating mode, and write burst mode.

Of these five parameters, only the CAS latency parameter is configured by the user via the
CAS_LAT bit in the SDRAM Timing Control (DRCTMCTL) register (MMCR offset 12h). The
programmable options for CAS latency are 2T or 3T, where T = 15-ns clock period for a
33.333-MHz crystal. The other parameters are fixed by the ÉlanSC520 microcontroller.

Table 10-12 shows the parameters and their associated settings. All bits reflecting these
configurations are driven on the MA12–MA0 signals during a Load Mode Register
command. Since SDRAM devices require only 12 bits for the command width, MA12 is
driven Low during this cycle.

Table 10-12 Load Mode Register Settings

Parameter Setting Description

Burst length Four phases Always read burst four

Burst type Interleaved Follow non-linear burst

CAS latency Programmable Select either 2T or 3T (see text)

Operating mode Standard operation Defined

Write burst mode Single location Single mode
Élan™SC520 Microcontroller User’s Manual 10-31

SDRAM Controller
10.6.3 Boot Process
In a closed embedded system, the designer may be able to simply choose the correct values
to output to the configuration registers. Systems where the SDRAM parameters are not
known at boot time present more issues. Many SDRAM considerations, such as signal
loading, cannot be accurately determined by software. One way to deal with this issue is
to have a staged boot process, as follows:

1. First, all timing registers are programmed to assume a worst-case system by default
after reset.

2. Next, the SDRAM banks are tested for SDRAM existence, organization, and size. Banks
that contain SDRAM are enabled with the correct parameters.

3. A system memory test is then performed to ensure that there are no problems. The user
can be notified, and bad banks can be disabled, if any problems are encountered.

Since the user has control over SDRAM setup parameters, they must not be applied to the
SDRAM array until late in the boot process, so that the setup program can always be used
to recover the system if it becomes unbootable.

10.6.4 SDRAM Sizing Algorithm
The SDRAM sizing algorithm must alter the SDRAM configuration registers and write and
read specific boundary SDRAM locations to determine where the SDRAM bank boundary
exists. Data that is written and then returned on a read implies that valid SDRAM exists at
that location.

However, prior to accessing the SDRAM devices, the mode register for the device must be
programmed to configure the devices before they are functional. SDRAM device
initialization is discussed in more detail in Section 10.6.2. Note that SDRAM refresh cycles
should only be enabled when the OPMODE_SEL bit field is configured for normal SDRAM
mode. After the SDRAM devices are initialized (with refresh cycles remaining disabled),
they can be reliably accessed.

The SDRAM controller provides many configuration registers with control and timing
configuration functions. However, only a subset of these registers is required to be accessed
during the sizing procedure. In particular, the bits associated with specifying the column
address width, the internal bank count specifier, and the bank ending address are the most
critical for the sizing process.

■ The column address width is used to specify the column width of the device.

■ The internal bank count bit specifies if the device supports either two or four internal
banks.

■ The SDRAM Bank 0–3 Ending Address (DRCBENDADR) register (MMCR offset 18h)
is used to specify the physical address bank boundary.

The column boundary method is used to accept a wide variety of SDRAM devices and
symmetries. In configuring the symmetry of the device, this method requires only the column
address width to be specified. Device addressing and symmetries are discussed in “SDRAM
Addressing” on page 10-12.

It is important to point out that whenever the column address width, internal bank count, or
bank ending address configuration is going to be changed, the All Banks Precharge
command must be issued prior to the configuration update. The All Banks Precharge
command can be enabled with a binary pattern of 010b being written to the OPMODE_SEL
bit field. A cycle to SDRAM must be run for the command to take effect. The All Banks
10-32 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
Precharge command closes all open pages in the SDRAM devices, thus placing them in
an idle state. This also forces the SDRAM controller’s page table entries to be invalidated.

The column address requirement of the device specifies its symmetry (i.e., its usable
number of columns, or page width, that the SDRAM controller can utilize), but does not
specify the amount of addressable SDRAM in the 32-bit bank. The bank ending address
is used to specify the physical address boundary of each bank. The bank ending address
is independent of device density or device data width. During SDRAM sizing, a bank should
never be enabled with a bank ending address of 0. The internal bank count specifier is used
to inform the SDRAM controller of the internal bank architecture of the device, since SDRAM
devices can contain either two or four internal banks.

■ To dynamically determine the amount of SDRAM memory in the entire system, the sizing
algorithm must first determine the amount of SDRAM installed per each external bank.

– To do this, the algorithm must enable one external bank at a time and start with the
largest possible configuration for that bank, which is 11 columns, 4 internal banks,
and 13 rows.

– If a smaller-sized SDRAM is installed in a given external bank, aliases will be created,
and the sizing algorithm uses the aliasing to determine the actual size of the external
SDRAM bank.

■ Note that while SDRAM sizing is being performed, the Am5x86 CPU cache, the SDRAM
ECC, the SDRAM write buffer, and the SDRAM read-ahead feature should all be
disabled.

For example, to setup external SDRAM Bank 3 to its largest possible SDRAM configuration
setting, a value of A000h should be written into the SDRAM Bank Configuration (DRCCFG)
register (MMCR offset 14h), and a value of FF000000h should be written into the SDRAM
Bank 0–3 Ending Address (DRCBENDADR) register (MMCR offset 18h).

10.6.4.1 Determining the Number of Columns for an External Bank

Determining the correct number of columns for a given external bank of SDRAM can be
accomplished by four writes and five reads of a given external bank.

Four unique data patterns must be selected.

An example is:

pattern1 = 0Bh
pattern2 = 0Ah
pattern3 = 09h
pattern4 = 08h

Four SDRAM memory addresses must be selected that all have the same internal bank
and SDRAM row address bits (processor address bits 31–13 constant) and the same low
order column address bits (processor address bits 9–0 constant), but with specially selected
column addresses for processor address bits 12–10.

■ The first address must have SDRAM column address bits 11, 9, and 8 (processor
address bits 12–10) on.

■ The second address must have SDRAM column address bit 11 (processor address bit
12) off and SDRAM column address bits 9–8 (processor address bits 11–10) on.

■ The third address must have SDRAM column address bits 11 and 9 (processor address
bits 12-11) off and SDRAM column address bit 8 (processor address bit 10) on.
Élan™SC520 Microcontroller User’s Manual 10-33

SDRAM Controller
■ The final address must have SDRAM column address bits 11, 9, and 8 (processor
address bits 12–10) off.

There are many addresses which meet this criteria, of which one example is:

address1 = 0E001E00h
address2 = 0E000E00h
address3 = 0E000600h
address4 = 0E000200h

Here is the sequence to determine the number of columns for a given external bank of
SDRAM:

1. First, pattern1 is written and read back from address1.

2. Pattern2 is written and read back from address2.

3. Pattern3 is written and read back from address3.

4. Pattern4 is written and read back from address4.

5. If any of the four reads fail to produce the same pattern that was written, then either
SDRAM does not exist for this external bank, or the SDRAM is nonfunctional, which, in
either case, no memory is enabled and sizing continues with the next external bank.

6. If all four reads are correct, then address1 is read once again, and the pattern that is
returned by this read determines the true number of columns.

Using the patterns given in the example, the value read is the number of real columns for
the external bank.

10.6.4.2 Determining the Number of Internal Banks

Determining the correct number of internal banks and the true ending address of an external
bank requires only five writes and seven reads of the external bank.

Five unique data patterns must be selected.

An example is:

pattern5 = 3Fh
pattern6 = 1Fh
pattern7 = 0Fh
pattern8 = 07h
pattern9 = AAh

Five SDRAM memory addresses must be selected which all have the same low-order
SDRAM row address bits, the same least significant internal bank select bit (BA0), and the
same SDRAM column address bits (processor address bits 31–28 and 23–0 constant), but
with specially selected row addresses for processor address bits 27–24. Processor address
bits 27–24 is where the SDRAM rows above ROW10 are mapped in this maximum SDRAM
configuration.

■ The first address must have processor address bits 27–24 all on.

■ The second address must have processor address bit 27 off and processor address bits
26–24 on.

■ The third address must have processor address bits 27–26 off and processor address
bits 25-24 on.

■ The fourth address must have processor address bits 27–25 off and processor address
bit 24 on.
10-34 Élan™SC520 Microcontroller User’s Manual

SDRAM Controller
■ The final address must have processor address bits 27–24 all off.

There are many addresses which meet this criteria, of which one example is:

address5 = 0F000000h
address6 = 07000000h
address7 = 03000000h
address8 = 01000000h
address9 = 00000000h

Here is the sequence to determine the correct number of internal banks:

1. First, pattern5 is written and read back from address5.

2. Pattern6 is written and read back from address6.

3. Pattern7 is written and read back from address7.

4. Pattern8 is written and read back from address8.

5. Pattern9 is written and read back from address9.

6. If any of these five reads fail to produce the same pattern that was written, then either
SDRAM does not exist for this external bank, or the SDRAM is nonfunctional, which in
either case no memory is enabled and sizing continues with the next external bank.

7. If all five reads are correct, then the correct number of internal banks can be determined
by reading address7 once again.

8. If the pattern read from address7 is pattern9, then only two internal banks exist for this
external bank.

9. If the pattern read from address7 is pattern7 or pattern8, then four internal banks exist.

10.If the pattern read from address7 is anything other than pattern7, pattern8, or pattern9,
then there is no valid memory for this external bank.

The reason pattern7 is read back from a 2-internal-bank SDRAM is because the SDRAM
controller thinks it has two open pages, and the SDRAM has only one open page, so the
data is retrieved erroneously from the wrong page.

10.6.4.3 Determining the True External Bank Ending Address

The true ending address can now be determined by reading adress5 again. If any value
other than pattern5, pattern6, pattern7, or pattern8 is read, then there is no valid memory
for this external bank.

Here is the sequence to determine the true external bank ending address:

1. Using the values for these patterns as in the example, the value read represents the
ending address for the external bank, if the device has 11 columns.

2. So, this value must be shifted right by the value 11, minus the actual number of columns
determined to exist.

3. This value must then be incremented by 1 and ORed with 80h to be ready to be loaded
into the appropriate byte of the SDRAM Bank 0–3 Ending Address (DRCBENDADR)
register (MMCR offset 18h).

This process is continued until all four possible external banks have been checked.
Élan™SC520 Microcontroller User’s Manual 10-35

SDRAM Controller
10-36 Élan™SC520 Microcontroller User’s Manual

CHAPTER
11
 WRITE BUFFER AND READ BUFFER
11.1 OVERVIEW
The ÉlanSC520 microcontroller includes two buffering techniques to optimize the SDRAM
system performance. These include a write buffer and a read buffer with a read-ahead
feature.

The write buffer provides a mechanism for all masters (Am5x86 CPU, PCI, or GP-DMA) to
post write data with zero wait states. When enabled, the write buffer effectively decouples
master write activity from incurring the SDRAM latency penalty. This, in effect, also allows
SDRAM to satisfy a higher demand in read activity by all masters. In addition, the write
buffer provides write-merging and write-collapsing functions to better utilize FIFO storage
and reduce the total number of transactions to SDRAM. Data read-merging is also
supported to efficiently maintain data coherency.

The read buffer provides two cache lines (32 bytes total) of storage for read data returned
from SDRAM. The read buffer and its associated read-ahead function, when enabled,
provide a mechanism to prefetch the cache line of information from SDRAM that
immediately follows the requested cache line. This feature is provided in anticipation of
future accesses to the prefetched line (spatial locality). The read buffer is always enabled;
however, the read-ahead feature and write buffer are disabled after a system reset.

Although both the write buffer and read-ahead feature of the read buffer are tightly
integrated, they can be independently enabled.

Features of the write buffer include:

■ 32-level doubleword FIFO with random access capability

■ Content addressable memory (CAM) provides snoop capability

■ Zero wait state writes to non-full buffer

■ Provides write-merging, write-collapsing, and read-merging functions

■ Benefits Am5x86 CPU, PCI, and GP-DMA SDRAM write transfers

Features of the read buffer include:

■ Read buffer provides storage for two Am5x86 CPU cache lines (32 bytes total)

■ Zero wait state reads on read buffer hits

■ Read-ahead feature that, when enabled, prefetches the next cache line of information
from SDRAM for master read requests of two or more doublewords

■ Demand doubleword start fetch

■ Benefits Am5x86 CPU, PCI, and GP-DMA SDRAM read transfers

The write buffer is expected to enhance individual write or burst write activity by all masters.
It supplies zero wait state writes for all masters. However, the write buffer’s write-merging
and write-collapsing features greatly enhance Am5x86 CPU, PCI, and GP-DMA 8-bit and
Élan™SC520 Microcontroller User’s Manual 11-1

Write Buffer and Read Buffer
16-bit contiguous transfers, allowing multiple individual transfers to be merged into a single
transaction to SDRAM.

The read-ahead feature of the read buffer enhances read burst activity by the Am5x86 CPU
and external PCI master burst read requests. SDRAM cache line fills by the Am5x86 CPU
are probably the most common read requests. These reads typically occur as cache-line
bursts of four doubleword (32-bit) requests. PCI master burst read requests also benefit
greatly.

Each feature can be independently configured. To maintain data coherency, the read buffer
is invalidated during master write cycles or write buffer write cycles that hit an existing line
in the read buffer. Data coherency during all configuration changes of the individual features
is performed in hardware. A manual flush feature of the write buffer is provided.

11.2 BLOCK DIAGRAM
The write buffer and read buffer are integrated into the SDRAM controller’s subsystem as
shown in Figure 11-1. Each is capable of functioning independently. A more detailed view
of the internal write buffer and read buffer architecture is shown in Figure 11-2.

Figure 11-1 Write Buffer and Read Buffer Block Diagram (SDRAM Subsystem)

Write Buffer/Read Buffer

SDRAM Controller

A
dd

re
ss

 D
ec

od
e

U
ni

t

C
P

U
 In

te
rf

ac
e

CLKMEMIN

MECC6–MECC0

SDQM3–SDQM0

CLKMEMOUT

MD31–MD0

SCASB–SCASA

SRASB–SRASA

SWEB–SWEA

SCS3–SCS0

MA12–MA0

BA1–BA0

Élan™SC520 Microcontroller

Read Buffer

Write Buffer
11-2 Élan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer
Figure 11-2 Write Buffer and Read Buffer Block Diagram

11.3 SYSTEM DESIGN
Table 11-1 shows the multiplexing of signals that are used for SDRAM trace support and
test. See Chapter 24, “System Test and Debugging”, for more information on the uses of
these pins.

The CFG2–CFG0 pinstrap functions associated with these three pins are sampled only as
a result of PWRGOOD assertion and do not affect the other functions of these pins, so they

Read-Merge

x5_wr_data[31–0]

Write Buffer

Address/Debug Tag Storage (32 ranks)

wb_data[31–0]

Address Tag

Byte Valid Bits

Master Trace Bits

wb_ad[27–2]

Byte 2

Byte 1

Data Store (32 ranks)

dram_controlx5_control

Byte 3

Byte 0

wb_be_l[3–0]x5_be[3–0]

dram_doubleword 6

doubleword 5

doubleword 7

doubleword 4

 Address Latch

x5_rd_

rd_ad

x5_ad[27–2]

WBMSTR2–WBMSTR0

rab_data[31–0]

Read Buffer

31 01

doubleword 2

doubleword 1

doubleword 3

doubleword 0

Address Tag 1

Address Tag 0

Controller

Controller

Élan™SC520 Microcontroller

data[31–0]

data[31–0]

[27–2]

SDRAM

Controller

Write Buffer/Read Buffer
Read Buffer

 Read Buffer Data Latch
Élan™SC520 Microcontroller User’s Manual 11-3

Write Buffer and Read Buffer
are not shown in this table. When enabled, the multiplexed signals shown in Table 11-1
either disable or alter any other function that uses the same pin.

11.4 REGISTERS
The memory-mapped registers for SDRAM buffer control are shown in Table 11-2.

11.5 OPERATION
The write buffer and read buffer are two features implemented in the SDRAM controller to
increase SDRAM performance.

The write buffer provides a mechanism for all masters (Am5x86 CPU, PCI, or GP-DMA) to
post write data with zero wait states, thus decoupling the master from experiencing the
write latency penalty associated with the SDRAM. When the write buffer is enabled, all
write activity to SDRAM is initiated by the write buffer.

The read-ahead feature of the read buffer is designed to increase SDRAM read performance
by prefetching the cache line following the current access, thus possibly supplying data to
the requester with zero wait states. The read-ahead feature takes advantage of the fetch-
forward nature of the Am5x86 CPU prefetch engine (which relies on spatial locality of
program flow) and PCI read bursts. Read prefetching (when enabled) occurs only for master
read accesses that result in a burst of two or more doublewords. A prefetch never occurs
for a GP-DMA request since GP-DMA read requests are never burst. However, during a
GP-DMA read request, the remainder of the cache line is always fetched.

The write buffer provides a debug feature that, when enabled, provides contributing master
information on external pins (WBMSTR2–WBMSTR0) during a write buffer write cycle to
SDRAM. These pins reflect which master contributed to the write buffer level in the process
of being written back. The contributing masters reflected could be either: Am5x86 CPU,
PCI, or GP-DMA. Since the write buffer supports the write-merging and write-collapsing
functions, it is possible that multiple masters contributed to the same level that is in the
process of being written to SDRAM. See Chapter 24, “System Test and Debugging”, for
more information on write buffer debug support.

Table 11-1 SDRAM Signals Shared with Other Interfaces

Default Signal Alternate Function Control Bit Register

CF_ROM_GPCS WBMSTR0 WB_TST_ENB SDRAM Control (DRCCTL) register
(MMCR offset 10h) DATASTRB WBMSTR1

CF_DRAM WBMSTR2

Table 11-2 SDRAM Buffer Control Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

SDRAM Control DRCCTL 10h SDRAM write buffer test mode enable

SDRAM Buffer Control DBCTL 40h Write buffer enable, read-ahead enable, write
buffer watermark, write buffer flush
11-4 Élan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer
11.5.1 Write Buffer
The ÉlanSC520 microcontroller’s SDRAM controller contains 32 4-byte write data buffers.
The write buffer provides benefits beyond that of a standard posting FIFO. A standard FIFO
blindly posts data without knowledge of data that already exists within the FIFO. The write
buffer is more efficient in that each write access is snooped.

The snoop function is used to determine if data associated with the current address already
exists in the FIFO. This feature allows write data to be merged or collapsed with data that
already exists in the write buffer. This results in a reduced number of overall writes to SDRAM
for contiguous partial doubleword writes and also more efficiently utilizes the FIFO storage.
The snoop capability also provides the read-merging function to more efficiently handle
data coherency overhead. It does this by not requiring a total write buffer flush before
servicing a read cycle (which would ordinarily be required by a standard FIFO that does
not provide snooping).

The write buffer provides the following benefits:

■ Zero wait state write data posting (to a non-full buffer), effectively decoupling master
write activity from SDRAM latency

■ Read-around-write support, enhanced by the read-merging function, effectively allowing
the SDRAM controller to give read priority over buffered writes to SDRAM

■ Write-merging and write-collapsing of write data

The read-around-write feature is provided when the write buffer is enabled. It allows read
requests to SDRAM to occur in front of, or around, write buffer requests. Write buffer
requests are due to write data that was posted during previous master write activity and is
migrating to SDRAM. Read-around-write is only functional when the write buffer is enabled.

11.5.1.1 Write Buffer Disabled

When the write buffer is disabled, all write and read traffic generated by any master is
directed around the write buffer directly to SDRAM. Write data is no longer posted, and
read cycles no longer require snooping for data coherency. If the write buffer contained
valid data when it was disabled, it is automatically flushed (by hardware) to SDRAM as a
top priority before SDRAM is free to service any subsequent requests. This guarantees
data coherency. Should any master try a read or write access to SDRAM at this time, the
cycle is stalled (via wait states) until the write buffer flush is complete.

The write buffer can be manually flushed by setting the WB_FLUSH bit in the SDRAM Buffer
Control (DBCTL) register (MMCR offset 40h). Write buffer flush complete status is available
after a manual flush by reading the WB_FLUSH bit.

11.5.1.2 Write Buffer Enabled

When the write buffer is enabled, all write data by all masters are written into the write
buffer. Data are written into SDRAM from the write buffer in FIFO fashion when the SDRAM
controller is free to service the request.

The snoop capability is used to enhance performance for both read and write cycles.

■ Through the use of the snoop feature on write cycles, the write buffer can determine if
data already exists, and, if so, it either write-merges or write-collapses the data. This
enhances write performance through a reduction in the total number of required write
cycles to SDRAM for contiguous writes and also makes better utilization of the physical
storage space of the buffer.
Élan™SC520 Microcontroller User’s Manual 11-5

Write Buffer and Read Buffer
■ For read cycles, the snoop feature is used to determine if data associated with the same
address of the read request already exists in the write buffer. If data is already present,
that data is read-merged with data being returned from SDRAM. This enhances SDRAM
system performance by not requiring the write buffer to be flushed prior to satisfying a
read cycle.

Write-merging, write-collapsing, and read-merging functions are described in
Section 11.5.1.2.1 and Section 11.5.1.2.2.

Although the write buffer and read buffer service all master SDRAM memory requests,
SDRAM reads that fill the Am5x86 CPU cache are more common than SDRAM writes. To
satisfy this demand and give priority read access to SDRAM, the write buffer works with
the SDRAM controller to alleviate write overhead. This is accomplished by posting write
data in zero wait states, effectively freeing the processor earlier to continue. Should a
following read cycle occur, the read-around-write feature of the SDRAM controller gives
priority to the read cycle to prevent the master from stalling. Without the snooping capability,
the entire contents of the write buffer would have to be flushed prior to any read cycle in
the event that more current data remains posted. Because of the snooping capability,
needless flushes are not performed. This results in less overhead to maintain data
coherency.

Should a read occur to an address contained in the write buffer, the write buffer merges its
data with the data returned from SDRAM. The read-merging function maintains data
coherency and eliminates the need to flush the write buffer.

11.5.1.2.1 Write-Merging and Write-Collapsing
When enabled, the write buffer supports write-merging and write-collapsing.

■ Write-merging, as illustrated in Figure 11-3 on page 11-7, occurs when a sequence of
individual writes are merged into a single doubleword that hits in the write buffer level,
or doubleword. However, write-merging implies that the same byte location is not written
more than once.

■ Write-collapsing, as illustrated in Figure 11-4 on page 11-8, is very similar to the write-
merging function, with the exception that the same byte location can be written more
than once. The write-collapsing function allows a sequence of individual writes to hit a
single level in the write buffer, even though previous data in that doubleword can be over-
written.

These functions optimize SDRAM performance by minimizing individual writes to SDRAM.
There are no dependencies between any doubleword in the write buffer and any of the
masters that are capable of posting data to the write buffer. This implies that multiple masters
may contribute to the merging or collapsing of any doubleword in the write buffer.

The terms write-merging and write-collapsing are intended to conform to the meaning as
introduced in the PCI Local Bus Specification, Revision 2.2.
11-6 Élan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer
Figure 11-3 Write Buffer Merging Example

88

1. DMA Write, Byte, Adrs 0FBB000, Data 88h

88

01233031

01233031

88
01233031

88
01233031

1. DMA Write, Byte, Adrs 0FBB000, Data 88h
2. DMA Write, Byte, Adrs 0FBB001, Data 92h

92

92

44

92

44

66

1. DMA Write, Byte, Adrs 0FBB000, Data 88h
2. DMA Write, Byte, Adrs 0FBB001, Data 92h
3. DMA Write, Byte, Adrs 0FBB002, Data 44h

1. DMA Write, Byte, Adrs 0FBB000, Data 88h
2. DMA Write, Byte, Adrs 0FBB001, Data 92h
3. DMA Write, Byte, Adrs 0FBB002, Data 44h
4. DMA Write, Byte, Adrs 0FBB003, Data 66h

D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[7:0]

D[15:8]

D[23:16]

D[31:24]

Notes:
This example illustrates how four separate write cycles can be “merged” and reduced to only one
doubleword SDRAM write transaction.
Élan™SC520 Microcontroller User’s Manual 11-7

Write Buffer and Read Buffer
Figure 11-4 Write Buffer Collapsing Example

11.5.1.2.2 Read-Merging
The write buffer supports read-merging.

■ Read-merging, as illustrated in Figure 11-5 on page 11-9, occurs when a read cycle hits
a “dirty” doubleword that currently exists in the write buffer, and the read data returned
from SDRAM is replaced, or merged, with existing bytes from the write buffer.

Read-merging does not negate the need for a SDRAM read cycle. Even during a read cycle
that hits a complete dirty doubleword in the write buffer, a read cycle to SDRAM will still
occur, but the entire doubleword from SDRAM will be replaced with the more recent
doubleword in the write buffer. Read-merging maintains data coherency and enhances
SDRAM performance by not requiring a flush of the write buffer contents to SDRAM before
every read cycle.

01233031

1. CPU Write, Low Word, Adrs 0A00X, Data 55AAh

AA

55

AA

55

01233031

D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[7:0]

D[15:8]

D[23:16]

D[31:24]

12

34

56

78

1. CPU Write, Low Word, Adrs 0A00X, Data 55AAh
2. CPU Write, Doubleword, Adrs 0X, Data 12345678h

EF

CD

01233031

D[7:0]

D[15:8]

D[23:16]

D[31:24] 12

34

56

78

1. CPU Write, Low Word, Adrs 0A00X, Data 55AAh
2. CPU Write, Doubleword, Adrs 0X, Data 12345678h
3. CPU Write, Low Word, Adrs 0A00X, Data CDEFh

Notes:
This example illustrates how existing data can be overwritten. Separate write cycles can be
“collapsed” and reduced to only one doubleword SDRAM write transaction.
11-8 Élan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer
Figure 11-5 Write Buffer Read-Merging Example

11.5.1.3 Write Buffer Watermark

The write buffer provides a watermark setting of either 8, 16, 24 or 28 doublewords. As data
is written into the write buffer, a new rank of storage is allocated, provided that write-merging
or collapsing is not taking place. When a write cycle resulting in a rank being allocated
takes place that exceeds the watermark setting, the write buffer requests service from the
SDRAM controller to initiate write transfers to SDRAM.

■ A higher watermark setting (i.e., 28 doublewords) allows the write buffer to acquire more
master write data prior to requesting SDRAM controller attention than a lower watermark
setting. If a large amount of incomplete doubleword writes (i.e., byte, word, or three byte
write transfers) is expected from either the Am5x86 CPU, PCI, or GP-DMA, a higher
watermark setting allows the write buffer to fill higher prior to requesting SDRAM service,
resulting in a greater chance of write data merging or collapsing.

■ A lower watermark setting can be used for applications that require more complete
doublewords, and where merging/collapsing of data is less likely. This causes the write
buffer to request SDRAM service at a lower threshold, thus reducing the chance of filling
the write buffer.

The write buffer watermark setting can be configured with the WB_WM bit in the SDRAM
Buffer Control (DBCTL) register (MMCR offset 40h). A waterrmark of 16 doublewords is
recommended. Note that the write buffer must be disabled before changing the write buffer
watermark.

78

56

D[7:0]

D[15:8]

D[23:16]

D[31:24] 12

34

CD

EF

F
B

C
0000

0000000

5678000

C
D

E
FA

00
A[27:2]
BE[3:0]

Master

SDRAMWrite Buffer (Address Segment)

Write Buffer (Data Segment)

R
ead D

ata
W

rite D
ata

A
ddress

EE001122
Read

Merge
Logic

EE00CDEF

xxxxCDEF

Notes:
This example illustrates a 32-bit master read of address A000000h, which causes a read hit in
the write buffer. This causes the lower data word from the write buffer to be merged with the upper
data word from SDRAM, to return the entire doubleword to the requesting master.

00

AA

CC

00

00FF

FE

55

11

A
000000
Élan™SC520 Microcontroller User’s Manual 11-9

Write Buffer and Read Buffer
The SDRAM controller’s arbiter supports a write buffer park feature, such that after the write
buffer’s watermark is reached and requests SDRAM service, the SDRAM controller’s arbiter
continues to grant the write buffer SDRAM service, until either a master read cycle is
requested to SDRAM or a SDRAM refresh occurs. After the write buffer’s grant is removed,
the write buffer’s watermark will need to be exceeded prior to the write buffer requesting
SDRAM service again. This park feature allows the write buffer to utilize SDRAM access
until a higher priority master read or an SDRAM refresh cycle is requested.

11.5.2 Read Buffer and the Read-Ahead Feature
The SDRAM controller contains eight 4-byte read data buffers. Combined, these buffers
make up the read buffer and are designed to hold two cache lines of data returned from
SDRAM. The read buffer is designed to increase SDRAM read performance by storing
previously read data from SDRAM and supplying this data in zero wait states to a requesting
master.

The SDRAM controller always fetches an entire cache line of data from SDRAM and stores
it in the read buffer, independently of the amount of data requested during the master
access. For example, during a read request from a non-bursting master (i.e., single
doubleword request), the SDRAM controller fetches the entire cache line of data from
SDRAM and stores it in the read buffer. When the read-ahead feature of the read buffer is
enabled and the master read access is a burst of two or more doublewords, not only is the
requested cache line (i.e., the demanded line) of data retrieved from SDRAM, but also the
cache line following it.

A demand fetch implies that the SDRAM controller will be servicing the read request from
the master as it occurs. When the read-ahead feature is enabled, a read-ahead prefetch
only occurs for master demand burst requests of two or more doublewords. The read-ahead
feature takes advantage of the linear forward-fetch nature of the Am5x86 CPU and PCI
bursts. GP-DMA transfers are non-burst, and thus do not result in a prefetch. However, GP-
DMA transfers can utilize the remainder of the cache line, since all read accesses result in
a cache line access to SDRAM.

The read buffer provides storage for two cache lines of read data and cannot be disabled.
The read-ahead feature of the read buffer can be disabled.

11.5.2.1 Read-Ahead Feature Disabled

When the read-ahead feature is disabled, the prefetch feature of the SDRAM controller is
disabled. All master read requests that occur to SDRAM are demand fetches and always
result in an entire cache line of data being read from SDRAM. Even when the read-ahead
feature is disabled, both cache lines of storage of the read buffer are still utilized and contain
the last two demand cache line fetches.

11.5.2.2 Read-Ahead Feature Enabled

When the read-ahead feature is enabled, following cache line prefetches from SDRAM will
occur when the read access is a burst of two or more doublewords. The prefetched cache
line always follows the demanded cache line. Should an access result in a read buffer hit,
the read-ahead logic will request the cache line following the access that is currently being
supplied from the read buffer.

The read buffer is organized as two cache lines of data and an associated address tag. On
every read cycle these tags are compared to the read address being requested. If the
compare results in a hit, this data is supplied to the requesting master in zero wait states.
If, during this hit, the next cache line of data does not already exist in the read buffer, the
prefetch logic will request it from SDRAM. Should a request result in a read buffer miss,
the demanded read cycle request is satisfied by SDRAM, and the prefetch logic starts a
11-10 Élan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer
request to acquire the next cache line. The demanded read cycle implies that the first
doubleword request by the master will be serviced first, such that the master can continue
while the remainder of the cache line is prefetched.

If the read-ahead feature of the read buffer is enabled, a prefetch occurs only for master
read access that results in a burst of two or more doublewords. Single doubleword read
requests do not result in a read-ahead prefetch and only result in the cache line of the
demanded access being read into the read buffer. GP-DMA read accesses are always a
single doubleword.

To maintain coherency in the system, each cache line of the read buffer has associated
with it a valid bit that represents the validity of the cache line. Both cache-line valid bits are
cleared on the occurrence of master write access to SDRAM or a write buffer write access
to SDRAM that hits a cache line currently available in the read buffer.

11.5.3 DMA Considerations
The read buffer and its associated read-ahead feature provide optimum performance for
burst-capable masters (during read cycles) that maintain long bus tenure (with burst
transfers of two or more doublewords). Most masters with burst capability burst forward an
entire cache line. For these masters, the read-ahead feature provides optimum
performance, such that the anticipated data prefetch will result in a read buffer hit.

■ The read-ahead feature performs well during Am5x86 CPU burst reads (which usually
result in full cache-line burst when the cache is enabled). During cache-line fills, the
Am5x86 CPU can maintain bus tenure for more than one burst transfer, such that
successive bursts will be satisfied by read buffer prefetch hits.

■ Also, during PCI master read burst requests, the read-ahead feature of the read buffer
performs equally well for PCI master tenure to SDRAM that requests a cache line of data.

■ However, since the GP-DMA controller supports multiple channels and is capable of
operating in either single, demand or block transfer modes, it is possible that the read
buffer performance during GP-DMA transfers becomes dependent on the GP-DMA
channel configurations.

As mentioned earlier, the SDRAM controller always fetches an entire cache line from
SDRAM during a read request, even if the read-ahead feature is disabled. Since DMA
transfers are non-burst (i.e., single doubleword requests), even if the read-ahead feature
is enabled, only the rest of the cache line is fetched, rather than the rest of the cache line
and the following cache line, as would be seen during burst transfers of two or more
doublewords.

■ A DMA channel configured for incrementing order that starts at the beginning of a cache
line takes full advantage of read buffer hit, since all following incrementing access should
result in a read buffer hit up to the cache-line boundary, assuming demand or block
transfer mode.

■ DMA transfers that are configured for decrement mode will also see a read buffer benefit,
since the remainder of the cache line is fetched. For DMA transfers that are configured
for decrement mode, maximum read buffer performance is seen when the first access
is at the end of a cache-line boundary.

DMA transfer mode types can have a direct impact on read buffer performance. It would
be ideal for the same DMA channel to hit the read buffer as much as possible during its
tenure.
Élan™SC520 Microcontroller User’s Manual 11-11

Write Buffer and Read Buffer
In a system configured with multiple active DMA channels, read buffer misses will most
likely occur for each change of channel tenure. This is because each DMA channel accesses
different SDRAM regions that will most likely miss the read buffer, which still contains the
cache line of data fetched during the previous channel’s tenure. Therefore, it would be ideal
for as many transfers to occur as possible while a particular DMA channel has access to
SDRAM to utilize the rest of the cache line fetched during the DMA transfer’s first doubleword
request. This implies that, in a system with many active DMA channels configured for single
transfer mode, read buffer misses will occur that do not utilize the cache line of data fetched
during the previous channels tenure.

Demand and block DMA transfer modes will most likely take advantage of the rest of the
cache-line fetches, since devices that use these modes typically have longer bus tenure,
resulting in a higher utilization of the fetched data.

11.5.4 PCI Considerations
As a PCI target, the ÉlanSC520 microcontroller can respond to PCI master write and read
requests to SDRAM. To facilitate large burst transfers as a PCI target, a 64-level write data
FIFO and 64-level read data FIFO is available in the PCI target logic.

11.5.4.1 Write Cycles

For PCI master burst writes to SDRAM, the ÉlanSC520 microcontroller can sustain zero
wait states until the PCI target write FIFO is filled. As the FIFO is filling at the PCI interface,
data is being removed from the FIFO and written to SDRAM. When the SDRAM controller’s
write buffer is enabled, data can be quickly transferred from the PCI target write FIFO to
the SDRAM write buffer in zero wait states (to a non-full write buffer), allowing the PCI target
write FIFO to empty quickly. This prevents the PCI master from experiencing the SDRAM
latencies, thus freeing up the PCI bus earlier.

During PCI target write transfers to SDRAM, the Am5x86 CPU cache is snooped to maintain
coherency. If the CPU cache is configured in write-back cache mode and a snoop results
in a hit, the modified Am5x86 CPU cache line must be written back to memory prior to
allowing the PCI target write transfer to take place. When the write buffer is enabled, the
Am5x86 CPU cache-line write-back is posted to the write buffer, and the following PCI target
write transaction collapses on top of the previously written cache-line write-back, resulting
in a reduction in the overall number of transactions to memory.

11.5.4.2 Read Cycles

In most applications, a PCI master transfers data to SDRAM and then interrupts the
processor when the transfer is complete. The processor then usually accesses this data in
SDRAM. Since the write buffer supports read-merging, associated data that is still in the
write buffer from the PCI transfer may be immediately read by the processor, without the
overhead of first flushing the write buffer before allowing the read to occur. Also, since the
SDRAM controller allows read-around-write activity when the write buffer is enabled, the
processor reads are allowed to occur around writes that are posted in the write buffer, thus
offering a performance increase to processor read requests.

During PCI master read transfers from SDRAM, the ÉlanSC520 microcontroller’s PCI target
read FIFO is filled with data read from SDRAM. This data is then supplied to the requesting
PCI master directly from the target’s read FIFO. Since PCI bursts are linear and forward in
nature, the SDRAM controller’s read-ahead feature prefetches data (from SDRAM) forward
from the PCI master’s start address. As the ÉlanSC520 microcontroller’s PCI target read
FIFO requests data from SDRAM, it is likely that these requests will result in read buffer
hits due to prefetching, thus providing data quickly to the PCI target read FIFO.
11-12 Élan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer
Large PCI burst requests will benefit more from the read-ahead function than short, frequent
independent PCI read transfers. Since the Am5x86 CPU is a major requestor of SDRAM
read accesses, short and frequent independent PCI transfers may result in read-ahead
thrashing. For example, data prefetched for Am5x86 CPU read requests may possibly not
be used by PCI read requests and data prefetched for the PCI request may possibly not
be used by the Am5x86 CPU.

11.5.5 Software Considerations
The write buffer and read buffer require minimal configuration overhead.

Data coherency is maintained in hardware during write buffer configuration changes. This
implies that when the write buffer is disabled, the contents are automatically flushed to
SDRAM as a high priority, prior to allowing any master activity to occur to SDRAM. Even
though a write buffer flush occurs automatically when it is disabled, a manual write buffer
flush control is provided for software control via the WB_FLUSH bit in the SDRAM Buffer
Control (DBCTL) register (MMCR offset 40h). If the read-ahead feature is disabled, the
prefetched data remains in the read buffer.

Both the write buffer and read-ahead feature of the read buffer are disabled after a system
reset or programmable reset. It is recommended that the write buffer be disabled prior to
SDRAM sizing, SDRAM test, or other software activity that must have guaranteed write
data delivery to the physical SDRAM array prior to reading. Failure to disable the write buffer
for these usages may result in false SDRAM sizing or test indications.

Typically during SDRAM sizing or test, SDRAM is written and then read back to determine
either if SDRAM exists at that location (during sizing) or if SDRAM is functional at that
location (during test). Since the write buffer provides a read-merging function to reduce the
overhead associated with maintaining data coherency, data is not forced from the write
buffer to SDRAM prior to the read-back of the data. (This overhead would normally be
required for non-snooping write buffers that do not support read-merging to maintain
coherency.) Should the read occur while the associated write data is still in the write buffer,
the correct data is read-merged with data from SDRAM, thus providing the correct read
data even though the write data was not yet written to SDRAM. If, in this scenario, SDRAM
was non-existent, it would appear as though it did exist, thus resulting in either an invalid
SDRAM size or false “pass” status during a SDRAM test algorithm. If the write data migrated
to SDRAM before the read-back, a correct indication would result.

The write buffer must be disabled only in these scenarios where software requires
guaranteed delivery of write data to SDRAM prior to testing. Under normal program
execution, the write buffer and read buffer “appear” as the SDRAM storage array.

11.5.6 SDRAM Bandwidth Improvements
When enabled, the performance benefit that the write buffer offers is its ability to effectively
decouple the master write activity from incurring the SDRAM latency penalty. This in effect
leaves the SDRAM free to satisfy a higher demand in read activity by all masters. To further
optimize this, when the write buffer is enabled, it allows master read requests to occur
around write data posted in the write buffer. In effect, read cycles are given priority to SDRAM
when the write buffer is enabled. However, there are conditions that give the write buffer
write priority to SDRAM over reads. These are:

■ Flush priority is given to the write buffer when the write buffer configuration changes to
disabled.

■ The user exercises the manual write buffer flush feature.
Élan™SC520 Microcontroller User’s Manual 11-13

Write Buffer and Read Buffer
Since the write buffer supports data read-merging, data coherency overhead is kept to a
minimum. The write buffer’s read-merging capability is possible due to the write buffer’s
ability to snoop its own contents during read and write cycles. In the special case of a read
to an address contained in the write buffer, the overhead associated with flushing the entire
contents of the write buffer to maintain data coherency is eliminated. In this case, as data
is returned from SDRAM during the read cycle, more current data in the write buffer is
merged into the data stream, replacing older data bytes being returned from SDRAM. This
greatly enhances the read-around-write behavior by eliminating the overhead associated
with flushing the write buffer to maintain coherency.

The maximum write buffer performance is seen during individual contiguous byte writes to
SDRAM. For example, suppose the GP-DMA was performing a 64-byte block transfer from
an 8-bit device to SDRAM. Without the write buffer, this would require 64 individual byte-
wide transfers to SDRAM. Because of the write buffer’s write data-merging capability, each
contiguous byte could be merged to form only 16 doubleword transfers to SDRAM. This
would reduce the total number of SDRAM writes cycles from 64 to 16 in this example.

The write buffer also improves memory system performance during heavy SDRAM write
data thrashing between multiple masters. Since the write buffer provides zero wait state
posting of write data, the SDRAM interface is freed up earlier to service another master’s
request. While the next master is arbitrating for SDRAM, the write buffer can concurrently
be writing back the data posted by previous masters. Therefore, during heavy SDRAM write
thrashing periods by multiple masters, the write buffer can help to hide the arbitration
overhead. This is shown in Figure 11-6.

Figure 11-6 Bus Thrashing with Write Buffer Disabled and Enabled

The maximum benefit of the read buffer’s read-ahead feature is provided during consecutive
prefetch hits. This will most likely occur during long master burst tenure or consecutive
bursts by the same master. For example, suppose a PCI master requests a 256-byte (64-
doubleword) read transfer from SDRAM. Since the read buffer prefetches a cache line
forward and PCI burst transfers are linear and forward in nature, consecutive requests can
be satisfied by data prefetched by the read-ahead feature.

System with Write Buffer Disabled

CPU PCI GP Bus CPUArb

ArbCPU PCI CPUArb Arb

System with Write Buffer Enabled

SDRAM access SDRAM access SDRAM access SDRAM accessArb

SDRAM access

Arb

SDRAM access

Arb

SDRAM access SDRAM access

Arb Arb

Arb Arb

Arb

GP Bus
11-14 Élan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer
11.6 INITIALIZATION
The write buffer and read buffer are reset during a system reset. As a result of this system
reset event, the write buffer and read-ahead feature of the read buffer are both disabled,
and all associated state machines are returned to their idle states.

During a programmable reset, the write buffer’s contents are reset and not maintained. The
contents of the read buffer are maintained during a programmable reset. The write buffer
and read-prefetch configuration are not preserved during a programmable reset. See
Chapter 6, “Reset Generation”, for more detailed information on this type of reset.

It is recommended that, prior to SDRAM sizing and test, the write buffer be disabled to
prevent false SDRAM sizing or test indications. It is also recommended that, during SDRAM
sizing or test, the read-ahead feature is disabled. Having the read-ahead feature enabled
will not result in false indications during sizing or test, but may result in a slight performance
degradation during the SDRAM sizing or test algorithm, because read accesses are not
consecutive in nature during sizing or test. After this period, the user is free to enable the
write buffer and read-ahead feature when desired.
Élan™SC520 Microcontroller User’s Manual 11-15

Write Buffer and Read Buffer
11-16 Élan™SC520 Microcontroller User’s Manual

CHAPTER
12
 ROM/FLASH CONTROLLER
12.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated ROM controller that provides a high
performance interface to ROMs, EPROMs, and Flash devices. Improved performance is
achieved by supporting a full 32-bit data path and advanced page-mode devices.

Note that in this document the term ROM is used interchangeably with Flash and EPROM
for simplicity. In addition, the term ROM is used to denote the entire bank of ROM devices
connected to a chip select, e.g., a 32-bit ROM can be implemented as four discrete 8-bit
ROM devices.

Features of the ROM controller include:

■ Support for a wide variety of industry standard ROMs, EPROMs, and Flash devices,
including advanced page-mode devices.

■ Three chip selects are provided. Each chip select supports up to 64 Mbytes.

– One chip select is dedicated to booting.

– The remaining two chip selects are optional and are multiplexed with GP bus chip
selects.

■ Programmable timing for both non-page-mode and page-mode devices is supported.

■ Programmable Address Region (PAR) register attributes provide code execution control,
cacheabilitity control, and write protection for Flash devices

The ÉlanSC520 microcontroller supports 8-bit, 16-bit, and 32-bit ROM configurations.

■ The GP address bus is always used for the ROM address, but the ROM data bus can
be connected to either the GP bus data bus or the SDRAM data bus.

■ For the boot device (BOOTCS), a set of configuration pins latched into the chip when
PWRGOOD is asserted is used to determine the width of the ROM array and which of
the two buses (GP bus or SDRAM interface) is used for the ROM data bus.

– The remaining two optional chip selects are configured via configuration registers in
the ROM controller.

■ 8-bit and 16-bit ROM configurations are supported when ROMs are connected to either
the GP bus or the SDRAM data bus. 32-bit ROM configurations are supported only when
ROMs are connected to the SDRAM data bus, as shown in Table 12-1.

Table 12-1 ROM/Flash Data Bus Connection Options

Data Bus 8-Bit ROM 16-Bit ROM 32-Bit ROM

GP Bus data pins Yes Yes No

SDRAM interface data pins Yes Yes Yes
Élan™SC520 Microcontroller User’s Manual 12-1

ROM/Flash Controller
12.2 BLOCK DIAGRAM
Figure 12-1 shows a block diagram of the ROM controller.

Figure 12-1 ROM Controller Block Diagram

12.3 SYSTEM DESIGN
See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and
additional timing diagrams.

Configuration information for the boot device (BOOTCS), specifically the width of the ROM
and the location of the ROM, is provided by external pinstrapping. The CFG2 pinstrapping
defines the bus, either SDRAM or GP bus data bus, on which the ROM is located. The
CFG1–CFG0 pins define the data width of the ROM devices. CFG2–CFG0 are latched
when PWRGOOD is asserted. See “Initialization” on page 12-14 for more information.

BOOTCS ROMCS1 ROMCS2

Configuration Registers

Configuration data

be3–be0, blast,

rdy,
ROMRD

FLASHWR

BOOTCS

PAR

CPU

ROM Controller

ROMCS1*

ROMCS2*
BOOTCS
ROMCS1
ROMCS2 ROMBUFOE

Clock
cpu_clk (33 MHz)

Configuration data

wr_protect
ken

Reset Pinstrap data
for BOOTCS

CFG2–CFG0

M
u
x

rom_cycle

GPA25–GPA0

address[3–0]

G
PA

3–
G

PA
0

G
PA

25
–G

PA
4

Data Bus (GPD15–GPD0 or MD31–MD0)

brdy

�ads, w/r, x5_ad[3–2]

Élan™SC520 Microcontroller

Registers

ROM
Programmable

Timing Control

*May be multiplexed
with other pin
functions.
12-2 Élan™SC520 Microcontroller User’s Manual

ROM/Flash Controller
The ROMCS1 and ROMCS2 signals are provided to support two additional ROM chip
selects. These pins are shared with general-purpose chip selects, GPCS1 and GPCS2,
respectively, as shown in Table 12-2. When enabled, the multiplexed signals shown in
Table 12-2 either disable or alter any other function that uses the same pin.

The ROM controller can accommodate various performance and system voltage isolation
requirements. Depending on the operation voltage required by the ROM and the voltage
required by other devices sharing the same bus, the ROM data pins can be connected
either to the GP bus or to the SDRAM interface (see Figure 12-2). Note that the ROM data
pins must connect to only one interface per chip select (i.e., the ROM data pins may not
straddle the two buses).

■ Devices can be placed on the SDRAM bus to gain the advantage of a 32-bit data path.
However, care must be taken by the system designer because of SDRAM loading and
timing issues. See “System Design” on page 10-1.

■ Alternately, the ROM devices can be implemented on the GP bus data pins. These
devices are limited to 8- or 16-bits. See Table 12-1 for data width connection options.

Note that the addresses for ROM devices are always provided via GP bus, independently
of whether the data pins of the ROM are connected to the GP bus or SDRAM bus.

12.3.1 Voltage Isolation
From the ÉlanSC520 microcontroller’s perspective, both the SDRAM bus and the GP bus
are 5-V-tolerant and drive 3.3 V. However, an isolation buffer is necessary when using the
same bus for 5-V ROM devices and 3.3-V SDRAM devices that are not 5-V-tolerant. For
example, if the 3.3-V SDRAM devices are not 5-V-tolerant and share the data bus with
5-V ROM devices, the 3.3-V SDRAM devices could be damaged during ROM read access
if an isolation buffer is not used.

The ROMBUFOE signal is provided to support an isolation buffer, and this signal can be
used for devices on the SDRAM bus or the GP bus. Some scenarios for such a situation
are shown in Figure 12-2. The ROMBUFOE signal asserts during all accesses to ROM
devices, whether the devices are located on the SDRAM bus or the GP bus.

Note that the SDRAM controller’s read and write buffers are not utilized during accesses
to ROM devices. This is true even if a ROM device is located on the SDRAM bus. When
the SDRAM buffering is enabled, the ROM devices connected to the SDRAM data bus
(MD31– MD0), must use ROMRD to control the ROM device’s data pins. In this case, the
system design should ensure that the external device does not drive data while ROMRD
is asserted.

When sharing the SDRAM data bus with ROM devices, the loading of the data bus requires
careful consideration. A buffer should be used on the data bus to prevent heavy loading by
the ROM devices. In a system that utilizes buffering of these devices, the ROMBUFOE
signal can be used to control the buffers. Similarly, data buffers can be used on the GP bus
to control loading issues, and the ROMBUFOE pin should still be used to control buffers in
front of these ROM devices.

Table 12-2 ROM Signals Shared with Other Interfaces

Default Signal Alternate Function Control Bit Register

ROMCS2 GPCS2 GPCS2_SEL Chip Select Pin Function Select
(CSPFS) register (MMCR offset C24h)ROMCS1 GPCS1 GPCS1_SEL
Élan™SC520 Microcontroller User’s Manual 12-3

ROM/Flash Controller
If the system has ROM devices on both the SDRAM data bus and the GP bus and data
bus buffers are used (on either bus), ROMBUFOE should be qualified with the appropriate
ROM chip selects and ROMRD, as needed, to prevent bus conflicts. For example, when
SDRAM buffering is enabled, the SDRAM controller could be attempting to complete posted
writes to the SDRAM. During this time, if the Am5x86 CPU performs a read from a ROM
device that is on the GP bus (data bus), the buffer on the SDRAM bus (which isolates the
ROM devices from the SDRAM) activates, unless its buffer control pins were also qualified
with the ROMCSx pin.

Figure 12-2 Voltage Isolation Examples

3.3-V SDRAM

5-V ROM

5-V Peripheral

Buffer

GP Bus

SDRAM

Bus

3.3-V SDRAM

3.3-V Peripheral

3.3-V ROM

GP Bus

SDRAM

Bus

3.3-V ROM

3.3-V SDRAM

3.3-V ROM

3.3-V ROM

GP Bus

SDRAM

Bus

5-V PeripheralBuffer

ROMBUFOE

GPDBUFOE

Élan™SC520
Microcontroller

Élan™SC520
Microcontroller

Élan™SC520
Microcontroller

Notes:
Both the GP bus and the SDRAM bus can be operated at either 5 V or 3.3 V.
12-4 Élan™SC520 Microcontroller User’s Manual

ROM/Flash Controller
12.4 REGISTERS
Table 12-3 shows the memory-mapped registers used to configure the ROM controller.

12.5 OPERATION
ROM/Flash devices in a system are typically used to store two different kinds of information:
system configuration data and program code. These applications impose different
constraints on how to use the ROM/Flash memory in the system.

While it may be sufficient to load system configuration information from ROM/Flash at a
low speed, this may be not acceptable for accessing ROM-resident code that has to be
executed. In this case, this code has to be copied either to SDRAM or executed directly
from ROM. (See Chapter 3, “System Initialization” for more information on shadowing.)

For copying code blocks, the ROM performance may not be critical, because it is only
accessed once per copy operation. For the more critical situation of executing code directly
from the ROM (e.g., an Execute-In-Place operating system), precautions have to be taken
to ensure an accelerated ROM access even for ROM devices incapable of bursting.

This chapter discusses different configurations and operating modes that are appropriate
for these varying situations.

12.5.1 ROM Support
Each of the three chip selects included on the ÉlanSC520 microcontroller supports up to
64 Mbytes. Some example configurations for each chip select are:

■ Four 1-Mbit x 8 devices on the 32-bit SDRAM data bus for a total of 4 Mbytes

■ Two banks of ROM, with each bank containing four 8-Mbit x 8 devices, providing a total
of 64 Mbytes

■ Two banks of ROM, with each bank containing two 8-Mbit x 16 devices, providing a total
of 64 Mbytes

■ Four banks of ROM, with each bank containing two 8-Mbit x 8 devices, providing a total
of 64 Mbytes

Table 12-3 ROM Controller Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

BOOTCS Control BOOTCSCTL 50h BOOTCS device select (SDRAM bus or GP
bus), device data width, device operation mode,
subsequent access delay, first access delay

ROMCS1 Control ROMCS1CTL 54h ROMCS1 device select (SDRAM bus or GP
bus), device data width, device operation mode,
subsequent access delay, first access delay

ROMCS2 Control ROMCS2CTL 56h ROMCS2 device select (SDRAM bus or GP
bus), device data width, device operation mode,
subsequent access delay, first access delay

Chip Select Pin Function
Select

CSPFS C24h ROMCSx or GPCSx pin function select
Élan™SC520 Microcontroller User’s Manual 12-5

ROM/Flash Controller
ROM devices are accessible by the Am5x86 CPU only. Normal operation of the ÉlanSC520
microcontroller is not guaranteed if an external PCI master or GP-DMA cycle results in a
ROM access.

The addresses for ROM devices are always provided via the GP bus, independently of
whether the data pins of the ROM are connected to the GP bus or SDRAM bus.

The ROM controller never bus-sizes read accesses to the Am5x86 CPU. In other words,
bs16 and bs8 are never asserted for a ROM read access. Rather, the ROM controller
gathers as much data as the Am5x86 CPU is requesting for read accesses. To accomplish
this, the ROM controller monitors the internal byte enable signals, be3–be0, and the
cacheability status of the access. Based on the byte enables, the ROM controller returns
one to four bytes for non-burst Am5x86 CPU cycles and up to an entire cache line, 16 bytes,
for burst accesses.

The ROM controller does not support burst-write or multiple data operations during write
cycles. Writes to ROM devices typically have no performance issues. The ROM controller
returns rdy, rather than brdy, to the Am5x86 CPU during write operations. In addition, the
Am5x86 CPU signals bs8 and bs16 are asserted based on data size of the selected ROM
device.

12.5.1.1 Supported Device Types

The ROM controller supports two ROM device types:

■ Non-page-mode ROM—A ROM device that always has the same access delay,
regardless of how much data is requested from the ROM.

■ Advanced page-mode ROM—These devices improve performance by allowing fast
multiple access of data within the same memory page. The ROM controller has no upper
limit on the page size of the ROM device and works with any device that supports a page
size of four. However, after the fourth entry in the page, the ROM controller issues a new
initial access.The page is opened during the initial access, allowing faster data reads
from subsequent locations within the page simply by strobing the lower address bits.

Non-page-mode and advanced page-mode ROMs do not require a clock signal.

Figure 12-3 illustrates a read of four words from a 16-bit advanced page-mode ROM. Note
that the write buffer associated with the SDRAM controller has no relevance for the ROM
controller, because it applies only to SDRAM accesses.

Figure 12-3 Page-Mode ROM: Fetching Four Words from a 16-Bit ROM

- - - 0h - - - 2h - - - 4h - - - 6hGPA25–GPA0

MD31–MD0

ROMRD

BOOTCS

Initial memory page opened here

Notes:
Subsequent reads occur
within the same memory
page, by changing the lower
address bits only, resulting in
a fast access of eight bytes.

Bytes 0-1 Bytes 2-3 Bytes 4-5 Bytes 6-7
12-6 Élan™SC520 Microcontroller User’s Manual

ROM/Flash Controller
12.5.2 ROM Control and Timing Configuration
The ÉlanSC520 microcontroller provides ROM device configuration per chip select for the
following:

■ ROM location (on GP data bus or SDRAM data bus)

■ ROM width (8, 16, or 32 bits)

■ Operating mode (page-mode or non-page-mode)

■ Access timing

12.5.2.1 ROM Location

The GP bus address is always used for the ROM address, but the ROM data bus can be
connected to either the GP bus data bus or the SDRAM data bus.

For the boot device (BOOTCS), the CFG2 pinstrap is used to determine which of the two
buses is used for the ROM data bus. For all other ROM devices (ROMCS1 and ROMCS2),
this configuration information must be programmed by the initialization software.

■ The DGP bit in the BOOTCS Control (BOOTCSCTL) register (MMCR offset 50h)
contains the value latched from the CFG2 pinstrap when the PWRGOOD pin is asserted.

■ The DGP bit in the ROMCS1 and ROMCS2 control registers is used to configure the
location of the ROM devices enabled by these two chip selects.

12.5.2.2 ROM Width

ROM device widths of 8 bits, 16 bits, and 32 bits are supported.

The CFG1–CFG0 pinstraps are used to determine the width of the boot device (BOOTCS).
For all other ROM devices (ROMCS1 and ROMCS2), this configuration information must
be programmed by the initialization software.

■ The WIDTH bit field in the BOOTCS Control (BOOTCSCTL) register contains the value
latched from the CFG1–CFG0 pinstraps when the PWRGOOD pin is asserted.

■ The WIDTH bit field in the ROMCS1 and ROMCS2 control registers is used to configure
the width of the ROM devices enabled by these two chip selects.

12.5.2.3 Operating Mode

The MODE bit in the control registers provided for each chip select signal is used to program
the operating mode of the associated device.

According to the different data delivery rates, the following operation modes are
distinguished:

■ Non-page mode—Characterized as having the same access time for all cycles.
Figure 12-4 shows a ROM that is capable of three wait state operation.

■ Page mode—Provides faster timing for subsequent data that falls within the page-size
of the ROM device. Figure 12-5 shows an advanced page-mode ROM that is capable
of one wait state for the first access and zero wait states for subsequent accesses.

If an unaligned access to a page-mode device is executed, i.e., when not all data are located
in the same ROM page, a new page has to be opened, which imposes an additional delay
(see Figure 12-6). Random access within a page is not supported.
Élan™SC520 Microcontroller User’s Manual 12-7

ROM/Flash Controller
Figure 12-4 Non-Page-Mode ROM: Fetching Four Words from a 16-Bit ROM

Figure 12-5 Page-Mode ROM: Fetching Four Doublewords (Aligned) from a 32-Bit ROM

Figure 12-6 Page-Mode ROM: Fetching Four Doublewords (Unaligned) from an 8-Bit ROM

12.5.2.4 Access Timing

Access timing is controlled in the BOOTCS or ROMCSx Control registers.

– The delay for the first access, used for both non-page-mode and page-mode, and
subsequent accesses for non-page-mode is specified in the FIRST_DLY bit field.

– The delay for subsequent accesses, for page-mode only, is specified in the SUB_DLY
bit field.

Table 12-4 shows the access timing according to the programmed wait states. These values
can be obtained using the following formula:

AccessTime = (NumberWaitstates + 1) * Period –Setup)

where:

Period is the clock period (assume 30 ns for a 33.333-MHz crystal)

Setup is assumed to be 20 ns. (It takes the actual setup time and the delay for address
changes during subsequent ROM accesses into account.)

1 3 4

- - - 0h - - - 2h - - - 4h - - - 8hGPA25–GPA0

GPD15–GPD0, or

ROMRD

BOOTCS

2MD15–MD0

- - - 0h - - - 4h - - - 8h - - - ch

1 2 3 4

GPA25–GPA0

MD31–MD0

ROMRD

BOOTCS

3 4 5

2 3 4 5

2GPA25–GPA0

GPD7–GPD0, or

ROMRD

BOOTCS

Page crossing

MD7–MD0
12-8 Élan™SC520 Microcontroller User’s Manual

ROM/Flash Controller
12.5.3 Bus Cycles
The ROM controller always returns the amount of read data requested by the Am5x86 CPU,
i.e., brdy is returned for all read transfers from ROM. The actual number of ROM accesses
is determined by the cacheability status of the Am5x86 CPU transfer, the number of bytes
requested, and the width of the ROM. The minimum number of data to be transferred is
one byte. The maximum number of data to be delivered is 16 bytes (a cache-line fill).
Depending on the ROM width, this leads to different numbers of accesses to fetch the
requested data (see Table 12-5).

12.5.3.1 Single CPU Read Access

Figure 12-7 shows an example for the fetching of 16-bits of data, GPD15–GPD0, from an
8-bit non-page-mode ROM configured for one wait state. The transfer starts with a bus
cycle initiation (i.e., ads asserted). The ROM controller then performs two ROM accesses
and accumulates the amount of requested data prior to terminating the cycle. Note that
only one ROM cycle would be performed had the ROM device been implemented as 16-
or 32-bit.

Table 12-4 Example: ROM Access Timing and Wait States1

Notes:
1. This example assumes that a 33.333-MHz
crystal is being used in the system.

Wait States Access Timing (ns)

0 10

1 40

2 70

4 130

Table 12-5 Accesses and ROM Width

ROM Width
Minimum Number of

Accesses
Maximum Number of

Accesses (Cache-Line Fill)

8 bit 1 16

16 bit 1 8

32 bit 1 4
Élan™SC520 Microcontroller User’s Manual 12-9

ROM/Flash Controller
Figure 12-7 Multiple Accesses: Data Amounts Smaller than One Doubleword (2 Bytes) from
an 8-Bit ROM

12.5.3.2 Page-Mode Read Access

The ROM controller also provides performance advantages for Am5x86 CPU burst
operation. Further improvement can be achieved when using page-mode ROMs. An
example is shown in Figure 12-8 for a 2-1-1-1 burst sequence, in which the first access
requires two cycles and all subsequent accesses are performed within one cycle.

Figure 12-8 Page Access for Fetching Four Doublewords from a 32-Bit ROM
(Burst Sequence: 2-1-1-1)

During burst transfers to ROM devices with a data width smaller than 32 bits, the ROM
controller executes multiple cycles to gather the requested data. During a 32-bit request to
a 16-bit device, the ROM controller executes two 16-bit cycles. During a 32-bit request to
an 8-bit device, the ROM controller executes four 8-bit cycles. A 32-bit request to a 16-bit
ROM device is shown in Figure 12-9.

ADR+0

0

ADR+1

1

CPU clock

ads

GPA25–GPA0

GPD7–GPD0, or

brdy

blast

ROMRD

BOOTCS

Notes: An 8-bit ROM is attached to the 16-bit GP bus.

MD7–MD0

start cycle

- - - C - - - 8 - - - 4 - - - 0

CPU clock

ads

GPA25–GPA0

MD31–MD0

brdy

blast

BOOTCS

ROMRD
12-10 Élan™SC520 Microcontroller User’s Manual

ROM/Flash Controller
Figure 12-9 Page Access for Fetching Two Doublewords from a 16-Bit ROM

12.5.3.3 Cache-Line Fill

If a memory section is accessed that is cacheable, the ken signal is asserted to the Am5x86
CPU indicating a cache-line fill operation. This causes the Am5x86 CPU to read four
doublewords (16 bytes) and leads to multiple ROM accesses. A cache-line fill to a 32-bit
ROM is depicted in Figure 12-10.

Figure 12-10 Cache-Line Fill (Fetching Four Doublewords from a 32-Bit ROM)

12.5.3.4 Writing to Flash Devices

The ÉlanSC520 microcontroller supports writable Flash devices. Since Flash devices are
not intended for random write accesses, no burst-write operations are supported, i.e., rdy
is returned to the Am5x86 CPU. Figure 12-11 shows a write cycle to a Flash ROM. In
addition, for write accesses, the ROM controller bus-sizes ROM accesses to indicate the

start cycle

- - - C

0 2 0 2

- - - 8

CPU clock

ads

GPA25–GPA2

GPA1–GPA0

GPD15–GPD0, or

brdy

blast

BOOTCS

ROMRD

MD15–MD0

- - - C - - - 8 - - - 4 - - - 0

CPU clock

ads

ken

GPA25–GPA0

MD31–MD0

brdy

blast

BOOTCS

ROMRD
Élan™SC520 Microcontroller User’s Manual 12-11

ROM/Flash Controller
width of the ROM device, e.g., if a 16-bit write is performed to an 8-bit ROM, two Am5x86
CPU write cycles are generated to complete the operation.

All write access to Flash devices must occur in units no smaller than the data width of the
device. For example, 8-bit writes to a 16-bit Flash device are not allowed. Care should be
taken to also avoid 24-bit writes to 16-bit Flash devices, because this generates two Flash
cycles, one with a complete 16-bit write and another with an 8-bit write to a 16-bit Flash
device.

Figure 12-11 Word Write Cycle to Flash Memory

12.5.4 Software Considerations

12.5.4.1 Address Decoding

The ROM controller does not perform address decoding. Address decoding for chip select
generation is provided by the Programmable Address Region (PAR) registers. In addition
to the regions defined in the PAR registers, a default region from FFFF0000–FFFFFFFFh
is defined at system reset to handle early code fetches from the boot ROM. See Chapter 3,
“System Initialization”, and Chapter 4, “System Address Mapping”, for further details on
configuring the address regions for ROM chip selects and the shadowing of ROM.

12.5.4.2 Programming Flash Memory

Flash is available in 8-bit and 16-bit versions and is organized into sectors. Sectors can be
of fixed or variable size and range from 8–32 Kbytes. New, higher density Flash devices
have sector sizes of up to 256 Kbytes.

Several programmable operations can be performed on Flash devices, including sector
erase, sector protect, and programming of individual bytes.

■ The erased value of a byte is 0FFh.

■ Bits can be programmed from a 1 to a 0.

■ If any bit in a sector needs to be changed from a 0 to a 1, the entire sector must be
erased and reprogrammed.

Most Flash devices cannot be programmed while the Am5x86 CPU is fetching data from
it, requiring the programming code to reside in another device during programming. This

address

W

CPU clock

ads

GPA25–GPA0

GPD15–GPD0, or

rdy

FLASHWR

BOOTCS

MD15–MD0

bs16
12-12 Élan™SC520 Microcontroller User’s Manual

ROM/Flash Controller
is an easy restriction to overcome, because programming Flash is usually done during non-
performance critical periods, such as during user configuration. However, new “dual boot”
Flash allows fetching instructions from one portion of the device while programming or
erasing a sector in another portion.

Typically, Flash is programmed (or erased) by writing a program command sequence to an
address within the sector to be modified, followed by the erase command or the target
address and data.

An example program command sequence is:

1. Write the byte AAh to address 555h within the sector.

2. Write the byte 55h to address 2AAh within the sector.

3. Write the byte A0h to address 555h within the sector.

4. Write the actual data to the actual address. If the base of a 1-MByte boot device is at
0FFF00000h, then a programming sequence for the first sector would start at address
0FFF00555h.

The actual values and addresses used vary by device.

After issuing the command, the programming code must wait until the embedded algorithm
is complete before sending further programming requests to the Flash device. There are
several ways to determine this.

■ One way is to poll the status of a ready/busy hardware pin (which would be connected
to a PIO pin).

■ The second way is to continually read the address that was programmed, looking for
one of several indications that the event is complete.

A typical waiting period is 16 ms. Sector erase can take from 1 s to up to 10 s near the end
of the serviceable life of the device.

Both the program command sequence and the status read have implications for the use of
the ÉlanSC520 microcontroller in Flash programming applications.

First, the area being programmed must set to be noncacheable. Writing the program
command sequence does not actually change the physical addresses involved, meaning
that caching this area would yield incorrect data the next time it is read. Also, the status
read phase relies on the value of externally supplied bits to change from one read to another.
Obviously, satisfying such a read from the cache would not work. Once the programming
is complete, it is legitimate and desirable to enable caching on this region.

Another obvious implication is that programming Flash device requires a write strobe to be
connected to the device. Devices are programmed in their natural word length, meaning
that byte write enables are not required. During writes, there are minimum times for the
write strobe pulse width. These follow naturally from the total chip enable cycle time, which
would be used to determine the number of wait states to use when accessing the device
for reads, requiring no special timing modifications. Flash requires a minimum reset pulse
width of 500 ns, which is well within the ÉlanSC520 microcontroller’s minimum time.

12.5.5 Latency
ROM latency refers to the amount of time in which a ROM access can impact system
performance. For example, during an Am5x86 CPU access to ROM, no other master in the
system will be granted access to the SDRAM resource. The latency time will be mainly
affected by the width and the access time of the ROM device.
Élan™SC520 Microcontroller User’s Manual 12-13

ROM/Flash Controller
The lowest latency times can be achieved if fast 32-bit ROMs are implemented for Execute-
In-Place (XIP) operating systems or for data structures that are accessed frequently. This
ensures a rapid data transfer, which frees up the SDRAM resource for access by other
masters.

For example, if four doublewords are accessed from a 2-1-1-1 advanced page-mode ROM,
five clock cycles are required to load this data. However, loading the same amount of data
from an 8-bit, non-page-mode ROM results in 48 clock cycles, assuming two wait states
per ROM access. While the first approach promises reasonable performance, the latter
imposes a latency that is possibly unacceptable.

12.6 INITIALIZATION
The ROM controller is connected to the ÉlanSC520 microcontroller’s system reset.

The system designer must define the boot ROM configuration devices connected to
BOOTCS using pinstrapping. The CFG2–CFG0 pins provided on the ÉlanSC520
microcontroller are latched at the assertion of PWRGOOD to define the location and data
width of the boot device, as shown in Table 12-6.

■ CFG2 defines whether the boot device is located on the SDRAM data bus or GP bus
data bus.

■ CFG1–CFG0 define the data width of the boot device.

■ BOOTCS is forced active at system reset. Boot code must then initialize a Programmable
Address Region (PAR) register to decode the required space for the boot ROM device.
See “External ROM Devices” on page 3-17 for examples.

Non-boot devices that exist on ROMCS1 and ROMCS2 do not require pinstrapping and
are configured with the ROM configuration registers.

At system reset, the ROM controller is enabled for BOOTCS only. The following steps should
be taken to further configure BOOTCS and/or to enable other ROM devices.

1. Configure the ROM width, mode, access timing, and location in the BOOTCS Control
(BOOTCSCTL) register (MMCR offset 50h), the ROMCS1 Control (ROMCS1CTL)
register (MMCR offset 54h), and/or the ROMCS2 Control (ROMCS2CTL) register
(MMCR offset 56h).

2. Set up the address range and the cacheability control, write protection, and code
execution control attributes for the BOOTCS device or the ROMCSx device in the PAR
registers.

Table 12-6 CFGx Pinstrap Configuration Options for BOOTCS

CFG2 CFG1 CFG0 BOOTCS Data Width BOOTCS Location

0 0 0 8-bit GP bus

0 0 1 16-bit GP bus

1 0 0 8-bit SDRAM bus

1 0 1 16-bit SDRAM bus

1 1 x (don’t care) 32-bit SDRAM bus
12-14 Élan™SC520 Microcontroller User’s Manual

CHAPTER
13
 GENERAL-PURPOSE BUS
CONTROLLER
13.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated general-purpose bus (GP bus)
controller. The GP bus is an internal and external bus that connects 8-bit or 16-bit peripheral
devices and memory to the ÉlanSC520 microcontroller without glue logic.The GP bus
operates at 33 MHz, which provides good performance at very low interface cost.

Features of the general-purpose bus controller include:

■ Up to eight external chip selects (GPCS7–GPCS0)

■ Supports 8- and 16-bit I/O and memory cycles

■ Programmable bus interface timing

■ Dynamic bus sizing using GPIOCS16 and GPMEMCS16

■ Dynamic wait state support for external devices using GPRDY

■ Up to 64 Mbytes of memory address space per chip select

■ Supports 8- and 16-bit DMA initiators

13.2 BLOCK DIAGRAM
Figure 13-1 shows the block diagram of the GP bus controller.

13.3 SYSTEM DESIGN
Table 13-1 shows GP bus signals shared with other interfaces on the ÉlanSC520
microcontroller. The pinstrap functions associated with the GPA25–GPA14 pins are
sampled only as a result of PWRGOOD assertion and do not affect the GP bus functions
of these pins, so they are not shown in this table. When enabled, the multiplexed signals
shown in Table 13-1 either disable or alter any other function that uses the same pin.

A ROM device’s data bus can be connected to either the GP bus data bus or the SDRAM
data bus. However, the addresses for ROM devices are always provided via the GP bus,
independently of whether the data pins of the ROM are connected to the GP bus or SDRAM
bus. In either case, the ROM access shares GPA25–GPA0 with the GP bus.

For additional system diagrams using the GP bus, see “Interfacing with a Super I/O
Controller” on page 13-13 and “Interfacing with an AMD Enhanced Serial Communications
Controller (8 MHz)” on page 13-14.

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and
additional timing diagrams.
Élan™SC520 Microcontroller User’s Manual 13-1

General-Purpose Bus Controller
Figure 13-1 GP Bus Controller System Block Diagram

GP Bus
Control

State Machine

GPMEMRD

GPMEMWR

GPIORD

GPIOWR

GPDACK3–

GPTC*

GPIOCS16*
GPMEMCS16*

GPALE*

GPBHE*

GPDRQ3–

GPRDY*

GPAEN*

MUX

Programmable

WDT UART1 UART2 PICRTC

Internal GP Bus

PIO

GPCS7–

GPDRQ0*
33 MHz

m/io

r/w

GPDBUFOE*

Reset GPRESET

bs8

bs16

be3–be0

Divider

MUX

dior, diow,

gior, giow,
gmemr, gmemw,
gaen

dmemr, dmemw,
daen

Echo mode select

gp
_s

el

GPA25–GPA15**/

GPD15–GPD0

GPCS0*

Timers

GPIRQ10–
GPIRQ0,

io
r,

io
w

,
m

em
r,

m
em

w
,

From CPU:

GP-DMA

State Machine

GPDACK0*

Configuration
Registers

Programmable
Interface
Timing
Control

Élan™SC520 Microcontroller

GP Bus Controller

SSI

INTA–INTD

GP-DMA

*Multiplexed pins

GPA14–GPA0

**Has pinstrap
function
13-2 Élan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller
Table 13-1 GP Bus Signals Shared with Other Interfaces

Default
Signal

Interface or
Alternate
Function Control Bit Register

TMROUT0 GPCS7 GPCS7_SEL Chip Select Pin Function Select (CSPFS)
register (MMCR offset C24h)TMROUT1 GPCS6 GPCS6_SEL

TMRIN0 GPCS5 GPCS5_SEL

TMRIN1 GPCS4 GPCS4_SEL

PITGATE2 GPCS3 GPCS3_SEL

ROMCS2 GPCS2 GPCS2_SEL

ROMCS1 GPCS1 GPCS1_SEL

PIO27 GPCS0 PIO27_FNC PIO31–PIO16 Pin Function Select
(PIOPFS31_16) register (MMCR offset
C22h)

PIO26 GPMEMCS16 PIO26_FNC

PIO25 GPIOCS16 PIO25_FNC

PIO24 GPDBUFOE PIO24_FNC

PIO23 GPIRQ0 PIO23_FNC

PIO22 GPIRQ1 PIO22_FNC

PIO21 GPIRQ2 PIO21_FNC

PIO20 GPIRQ3 PIO20_FNC

PIO19 GPIRQ4 PIO19_FNC

PIO18 GPIRQ5 PIO18_FNC

PIO17 GPIRQ6 PIO17_FNC

PIO16 GPIRQ7 PIO16_FNC

PIO15 GPIRQ8 PIO15_FNC PIO15–PIO0 Pin Function Select
(PIOPFS15_0) register (MMCR offset
C20h)

PIO14 GPIRQ9 PIO14_FNC

PIO13 GPIRQ10 PIO13_FNC

PIO12 GPDACK0 PIO12_FNC

PIO11 GPDACK1 PIO11_FNC

PIO10 GPDACK2 PIO10_FNC

PIO9 GPDACK3 PIO9_FNC

PIO8 GPDRQ0 PIO8_FNC

PIO7 GPDRQ1 PIO7_FNC

PIO6 GPDRQ2 PIO6_FNC

PIO5 GPDRQ3 PIO5_FNC

PIO4 GPTC PIO4_FNC

PIO3 GPAEN PIO3_FNC

PIO2 GPRDY PIO2_FNC

PIO1 GPBHE PIO1_FNC

PIO0 GPALE PIO0_FNC
Élan™SC520 Microcontroller User’s Manual 13-3

General-Purpose Bus Controller
13.3.1 GP Bus Loading
As more external devices are connected to the GP bus, loading on GPA25–GPA0 and
GPD15–GPD0 will increase. Therefore, the rise time and fall time of GPA25–GPA0 and
GPD15–GPD0 will increase, and external buffers may be needed to reduce the loading.

The GP bus provides the GPDBUFOE pin for external buffer control to reduce the loading.
This signal is asserted for all accesses to external GP bus peripherals. It is not asserted
during accesses to the internal peripherals (regardless of the GP bus echo mode setting).

Figure 13-2 shows an example using an external data buffer. The GPDBUFOE pin can be
used to enable the data buffer, and the GPIORD or GPMEMRD can be qualified together
to select the direction of the data buffer. If all devices on the GP bus are only I/O-mapped
devices, the AND gate in Figure 13-2 is not required. The GPIORD pin can be used to
control the direction of the data transceiver. A similar simplification can be applied if all
devices are memory-mapped using the GPMEMRD pin.

Figure 13-2 Example: Using an External Data Buffer to Address Excess Loading

The GPIOCS16, GPMEMCS16, and GPRDY pins are typically driven by open-drain outputs
from external devices and require a strong pullup resistor (typically 1 Kohm) external to the
ÉlanSC520 microcontroller. The GPIRQx pins also require pullup resistors (typically 1
Kohm).

13.3.2 Voltage Translation
The GP bus provides 5-V- tolerant inputs and 3-V outputs, but if the external devices contain
both 3-V and 5-V devices, the GPDBUFOE pin qualified with a GPCSx signal can be used
to control the voltage translator. Figure 13-3 shows one example of using a voltage
translator.

GPD15–GPD0

GPDBUFOE

Data Bus*

XCVR

DIR

GPIORD

GPMEMRD

EN

Élan™SC520 Microcontroller

Notes:
If the GP address bus must be buffered, ensure that the buffer is always enabled.

* All GP bus peripherals connect their data to this bus.
13-4 Élan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller
Figure 13-3 Example: Using a Voltage Translator

13.4 REGISTERS
Table 13-2 shows the memory-mapped registers used to configure the GP bus controller.

Table 13-2 GP Bus Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

GP Echo Mode GPECHO C00h Echo mode enable

GP Chip Select Data Width GPCSDW C01h Individual data width select for GPCS7–GPCS0

GP Chip Select Qualification GPCSQUAL C02h Individual chip select qualification with GPIORD,
GPIOWR, GPMEMRD, or GPMEMWR

GP Chip Select Recovery
Time

GPCSRT C08h Global chip select recovery time for all GP bus
cycles. Affects all GP bus chip selects.

GP Chip Select Pulse Width GPCSPW C09h Global width selection for all chip select signals,
measured from the offset

GP Chip Select Offset GPCSOFF C0Ah Global offset time selection for all chip selects
from the beginning of the bus cycle

GP Read Pulse Width GPRDW C0Bh Width of the GPIORD and GPMEMRD signals
from the offset

GP Read Offset GPRDOFF C0Ch Offset from the beginning of the bus cycle for
GPIORD and GPMEMRD

GP Write Pulse Width GPWRW C0Dh Width of the GPIOWR and GPMEMWR signals
from the offset

GPD15–GPD0

GPDBUFOE

5-V Data

Voltage

DIR

GPIORD

GPMEMRD

EN

GPCSx

Translator

3-V Data

XCVR
Élan™SC520 Microcontroller

Notes:
GPCSx is the chip select for the 5-V peripheral.
Élan™SC520 Microcontroller User’s Manual 13-5

General-Purpose Bus Controller
13.5 OPERATION
The GP bus provides a simple interface to the integrated on-chip peripherals, as well as
external peripherals. The GP bus operates at 33 MHz.

The GP bus controller provides one fixed timing set for the internal peripherals and one
programmable timing set for the external peripherals.

Internal to the ÉlanSC520 microcontroller, the GP bus is used to provide a full complement
of integrated peripherals such as a DMA controller, programmable interrupt controller PIC),
programmable interval timer (PIT), UARTs, and real-time clock (RTC). The internal
peripherals are designed to operate at the full clock rate of the GP bus. They can also be
configured to operate in PC/AT-compatible configuration, but are generally not restricted to
this configuration.

The GP bus interface can be programmed by software to control the interface timing
between the GP bus and the external devices. The GP bus interface supports programmable
timing, dynamic data width sizing, and cycle stretching to accommodate a wide variety of
standard peripherals.

Eight chip selects are provided for external GP bus devices. They can be used for either
memory or I/O accesses. These chip selects are asserted for Am5x86 CPU accesses to
the corresponding regions set up in the Programmable Address Region (PAR) registers.

Four external DMA channels provide fly-by DMA transfers between peripheral devices on
the GP bus and system SDRAM.

GP bus accesses can be initiated only by the Am5x86 CPU or by the integrated GP bus
DMA controller. The devices on the GP bus are not cacheable from the Am5x86 CPU’s
viewpoint, to enable a simple user view of devices (memory and peripherals) that are located
on the GP bus.

GP Write Offset GPWROFF C0Eh Offset from the beginning of the bus cycle for
GPIOWR and GPMEMWR

GP ALE Pulse Width GPALEW C0Fh Width of the GPALE signal from the offset

GP ALE Offset GPALEOFF C10h Offset from the beginning of the bus cycle for
GPALE

PIO15–PIO0 Pin Function
Select

PIOPFS15_0 C20h PIO15–PIO0 or interface function select:
GPIRQ10–GPIRQ8, GPDACK3–GPDACK0,
GPDRQ3–GPDRQ3, GPTC, GPAEN, GPRDY,
GPBHE, GPALE

PIO31–PIO16 Pin Function
Select

PIOPFS31_16 C22h PIO31–PIO16 or interface function select: RIN2,
DCD2, DSR2, CTS2, GPCS0, GPMEMCS16,
GPIOCS16, GPDBUFOE, GPIRQ7–GPIRQ0

Chip Select Pin Function
Select

CSPFS C24h GPCS7–GPCS1 or alternate function select:
TMROUT1–TMROUT0, TMRIN1–TMRIN0,
PITGATE2, ROMCS2, ROMCS1

Reset Configuration RESCFG D72h Control bit for GP bus reset (GPRESET)

Table 13-2 GP Bus Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR
Offset
Address Function
13-6 Élan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller
The GP bus also provides an echo mode that is useful for debugging. If GP bus echo mode
enabled, the internal GP bus cycle is echoed out on the external pins to enable visibility of
internal cycles. Accesses to internal peripherals that are “echoed” out utilize the
programmed timing set to ensure that there is no timing conflict with other external
peripherals. Note that enabling echo mode does not affect the operation of GP-DMA
accesses or GP bus external accesses.

13.5.1 Programmable Bus Interface Timing
The bus interface timing can be programmed for the following signals:

■ Chip selects GPCS7–GPCS0

■ Read strobes GPIORD and GPMEMRD

■ Write strobes GPIOWR and GPMEMWR

■ Address latch enable GPALE

For each of these signal types, the following parameters can be programmed:

■ Offset from beginning of the bus cycle

■ Pulse width from end of the offset

■ Chip select recovery time

Figure 13-4 shows the shows the relationships between the various adjustable GP bus
timing parameters. The actual time can be calculated with the following formula:

(REG_VAL + 1) * TCLK

where:

REG_VAL = register content value

TCLK = internal clock period

The minimum offset, pulse width and recovery time is 30 ns (for a 33.333-MHz crystal),
resulting in a minimum bus cycle time of 90 ns. Since the offset, pulse width, and recovery
parameters are each 8-bit values (maximum 255), the longest bus cycle in this case is 23
ms (2(8 bits) * 30 ns * 3 registers).

13.5.1.1 Timing Requirements

The programmed timing of the chip select determines the overall length of the GP bus cycle.
Therefore, the timing parameters for the chip select must be appropriately programmed.
This is required even if the external device does not require a connection to the GPCSx pin.

■ To ensure that the command strobes (read or write) assert for the programmed time,
the programmed Offset + Pulse Width + Recovery of the chip select must be programmed
to be longer than the programmed Offset + Pulse Width of the command strobes.

■ Similarly, to ensure that GPALE is asserted for the programmed time, the programmed
Offset + Pulse Width + Recovery of the chip select must be programmed to be longer
than the programmed Offset + Pulse Width of the GPALE.

Figure 13-4 on page 13-8 illustrates how the GP bus registers control this timing adjustment
for GP bus signals.
Élan™SC520 Microcontroller User’s Manual 13-7

General-Purpose Bus Controller
Figure 13-4 GP Bus Timing Format

13.5.1.2 Using GPRDY with Programmable Timing

If the GPRDY signal is used, the bus cycle can be extended as long as required by the
peripheral. GPRDY cannot be used to terminate any bus cycle earlier than programmed.
More detailed information is provided in “Wait States” on page 13-20.

13.5.1.3 Using GP Bus Echo Mode with Programmable Timing

While GP bus echo mode is enabled, the system designer needs to ensure that the GP
bus timing is not faster than that shown in Table 13-3. The minimum GP bus timing register
values during the GP bus echo mode are shown in Table 13-3.

GPA25–GPA0

GPCSx

GPMEMRD or GPIORD

GPMEMWR or GPIOWR

GPALE

GPCSOFF + 1

GPRDOFF + 1

GPWROFF + 1

GPCSPW + 1

GPRDW + 1

GPWRW + 1

GPALEW + 1

GPCSRT + 1

Bus cycle durationBeginning of a bus cycle

GPALEOFF + 1

Address Valid

Notes:
1. Timing parameter values are in units of one internal clock period.

2. Timing parameters in the diagram can be adjusted via the corresponding GP bus registers.

3. GPCSOFF + GPCSPW + GPCSRT must be greater than or equal to GPRDOFF + GPRDW,
GPWROFF + GPWRW, or GPALEOFF + GPALEW.

4. The GPCSOFF, GPCSPW, and GPCSRT registers affect all GPCSx signals equally.

5. The abbreviations in the figure refer to these GP bus registers:

Mnemonic Register

GPCSRT GP Chip Select Recovery Time

GPCSPW GP Chip Select Pulse Width

GPCSOFF GP Chip Select Offset

GPRDW GP Read Pulse Width

GPRDOFF GP Read Offset

GPWRW GP Write Pulse Width

GPWROFF GP Write Offset

GPALEW GP ALE Pulse Width

GPALEOFF GP ALE Offset
13-8 Élan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller
:

13.5.2 I/O-Mapped and Memory-Mapped Device Support
The GP bus controller supports any combination of 8-bit and 16-bit I/O and memory-mapped
external devices.

■ If the external device is an I/O-mapped device, GPIORD and GPIOWR are used to strobe
the read and write accesses.

■ If the external device is a memory-mapped device, GPMEMRD and GPMEMWR are
used to strobe the read and write accesses.

To program I/O or memory-mapped address regions, see Chapter 4, “System Address
Mapping”, and the examples in “External GP Bus Devices” on page 3-13.

13.5.3 Chip Select Qualification
All GP bus chip selects can be qualified with the command strobes, GPIORD, GPIOWR,
GPMEMRD, or GPMEMWR, by programming the GP Chip Select Qualification
(GPCSQUAL) register (MMCR offset C02h) and the Programmable Address Region (PAR)
registers for memory or I/O device selection.

When chip select qualification is enabled, the internal chip selects are logically ANDed with
one (or both) of these command strobes. If a single command is chosen for qualification,
the corresponding chip select is not asserted for accesses of the other type. For example,
if GPMEMWR is used to exclusively qualify a chip select, that chip select is not asserted
for memory read accesses.

In a typical system environment, the command strobes are usually shorter than the chip
selects, and, in such cases, the external chip selects have timing that is identical to the
command strobes. Note that if the chip selects are internally qualified by commands, the
timing relationships between the command and chip select assertion/deassertion cannot
be guaranteed externally. For example, the chip select deassertion may lead the command
deassertion.

The qualification feature is useful for interfacing with buffer chips and transceivers without
requiring external gates or logic.

13.5.4 Data Sizing and Unaligned Accesses
The GP bus controller always operates in either 8-bit or 16-bit sizes. If the Am5x86 CPU
requests a 32-bit access from an 8-bit device or 16-bit device, the GP bus controller
responds to the Am5x86 CPU with bs8, indicating 8-bit data width, or bs16, indicating 16-
bit data width, depending on the programming of the GP Chip Select Data Width (GPCSDW)

Table 13-3 GP Bus Echo Mode Minimum Timing

Signal Type

GPCSOFF, GPRDOFF,
GPALEOFF (Offset)

Register Value1

Notes�
1. The actual time value is the register value plus 1. Times are in units of one internal clock period.

GPCSPW, GPRDW,
GPALEW

(Pulse Width)
Register Value1

GPCSRT
(Recovery Time)
Register Value1

GP chip select 1 3 1

GP read 1 3 —

GP write 1 3 —

GPALE 0 0 —
Élan™SC520 Microcontroller User’s Manual 13-9

General-Purpose Bus Controller
register (MMCR offset C01h) and the state of the GPIOCS16 and GPMEMCS16 signals.
The Am5x86 CPU then generates multiple 8-bit or 16-bit bus cycles until all 32-bit data is
accessed; thus, the size is transparent to software. This is true for read accesses and write
accesses.

If the GP Chip Select Data Width (GPCSDW) register is programmed for 8-bit data width,
assertion of external GPIOCS16 (during an I/O access) or GPMEMCS16 (during a memory
access) overrides the data width specified in the GP Chip Select Data Width (GPCSDW)
register, as discussed on page 13-19.

Unaligned address accesses (addresses that are not on the 16-bit address boundary) are
supported through the Am5x86 CPU. The Am5x86 CPU breaks an unaligned address bus
cycle into multiple bus cycles with appropriate byte enable signals (be3–be0). The GP bus
controller simply takes one Am5x86 CPU bus cycle at a time and generates one external
bus cycle at a time.

13.5.5 Sharing the Address and Data Bus with the ROM/Flash Controller
A ROM device’s data bus can be connected to either the GP bus data bus or the SDRAM
data bus.

■ When a ROM device is connected to the GP data bus, the ROM access shares both
GPD15–GPD0 and GPA25–GPA0 with the GP bus.

■ When a ROM device is connected to the SDRAM data bus, the ROM access shares
only GPA25–GPA0 with the GP bus.

This does not cause bus contention, because only the Am5x86 CPU can initiate an access
to either ROM or to the GP bus. Since the Am5x86 CPU can perform an access to only one
controller at a time, no conflict is possible.

Note that the GP bus DMA controller can initiate an access on the GP bus. Since the GP
bus DMA controller must already own the Am5x86 CPU’s bus before it can initiate an access,
once again, there can be no conflict between bus cycles initiated by the GP bus DMA
controller and ROM cycles initiated by the Am5x86 CPU.

Note that the ROM devices are cacheable, but GP bus devices are noncacheable. This is
because the ROM controller supports cacheability and has its own independent control
signals (chip selects, read strobe, and write strobe).

13.5.6 GP Bus Echo Mode
In normal operation, the integrated peripheral accesses are not visible on the external pins.
GP bus echo mode is provided to view accesses to the internal GP bus peripherals on the
external pins. This feature aids in debugging system software and boot code. This applies
to the integrated peripherals only (timers, GP-DMA controller, UARTs, SSI, RTC, etc.) and
not to the memory or PCI bus controllers.

Accesses to internal peripherals that are “echoed” out utilize the programmable timing set
to ensure that there is no timing conflict with other external peripherals. Typically, internal
peripheral bus accesses are faster than external peripherals. Therefore, when using GP
bus echo mode to debug the system, be aware that accesses to the integrated peripherals
may be occurring at slower speeds to ensure compatibility with external devices, thus
resulting in a slower system performance.

When GP bus echo mode is enabled, GPAEN is driven high during accesses from the
Am5x86 CPU to internal peripherals to prevent external devices from decoding (or
responding to) these internal peripheral accesses. In normal operation (GP bus echo mode
disabled), the GP bus controller never asserts GPAEN.
13-10 Élan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller
Note that accesses initiated by the GP bus DMA controller are not affected by enabling the
GP bus echo mode, and therefore the GP bus DMA controller still asserts GPAEN as it
does during normal operation.During an internal GPDMA access in GP bus echo mode,
the external GP bus commands, GPIORD, GPMEMRD, GPIOWR, GPMEMWR, are not
asserted. However, GPAEN is still asserted.

While GP bus echo mode is enabled, there are additional restrictions to the programmable
timing parameters that must be taken into account. These are described in “Using GP Bus
Echo Mode with Programmable Timing” on page 13-8.

13.5.7 DMA Interface
There are four DMA channels for external GP bus peripherals. The GPDRQ3–GPDRQ0
signals go directly to the GP-DMA controller, and their levels are programmable in the GP-
DMA controller. All GP-DMA control signals and timing are generated by the GP-DMA
controller, and the programmable timing in the GP bus controller does not affect the GP-
DMA cycle timing. For more information, see Chapter 14, “GP Bus DMA Controller”.

13.5.8 Usage Scenarios
13.5.8.1 Compatibility with Common ISA Devices

The GP bus is compatible with most ISA devices, but the following ISA bus features are not
supported.

■ LA23–LA17 is supported through GPA23–GPA17, but note that because the Am5x86
CPU itself does not support address pipelining, address pipelining is not supported on
the GP bus.

■ GPA25–GPA24 is added to increase the GP bus address space up to 64 Mbytes, instead
of 16 Mbytes.

■ External master access is not supported, and the ÉlanSC520 microcontroller is always
the master on the GP bus (external masters can be accommodated by the PCI bus).

■ GPIOCS16 and GPMEMCS16 do not cause the GP bus timings to change for the bus
cycles during which these signals are asserted.

■ IOCHRDY is supported via the GPRDY pin only as an input for the slave devices that
require wait states. GPRDY as an output is not supported, since there is no external
master support.

■ IOCHK is not supported, but a GPIRQx signal (mappable to a maskable or non-maskable
interrupt) can be used to report errors.

■ The REFRESH pin is not supported, because the SDRAM refresh is not echoed out to
the GP bus.

■ NOWS is not supported, due to the programmable interface timing on the GP bus.

■ BCLK and OSC are not supported, because a typical ISA interface is asynchronous.
External oscillators can be used, if needed.

■ The GP bus provides programmable bus interface timing that can be configured to
support most ISA bus devices. However, the GP bus does not support all legacy ISA
timing. See the Élan™SC520 Microcontroller Data Sheet, order #22003, for information
on the GP bus and GP-DMA timing supported by the ÉlanSC520 microcontroller.

Table 13-4 shows the cross-reference table of the ISA signals and the GP bus signals.
Élan™SC520 Microcontroller User’s Manual 13-11

General-Purpose Bus Controller
Table 13-4 Cross-Reference Table of ISA Signals and GP Bus Signals1

Notes�
1. This table does not imply that the ÉlanSC520 microcontroller is fully
compliant with all ISA timing specifications. See the Élan™SC520 Mi-
crocontroller Data Sheet, order #22003, for information on the GP bus
and GP-DMA timing supported by the ÉlanSC520 microcontroller.

ISA Signal Name GP Bus Signal Name

AEN GPAEN

BALE GPALE

BCLK (Not Supported)

DACK GPDACK

DRQ GPDRQ

IOCHK Supported through GPIRQ

IOCHRDY GPRDY

IOCS16 GPIOCS16

IOR GPIORD

IOW GPIOWR

IRQ GPIRQ

LA23–LA17 GPA23–GPA17

MASTER (Not Supported)

MEMCS16 GPMEMCS16

MEMR GPMEMRD

MEMW GPMEMWR

OSC (Not Supported)

REFRESH (Not Supported)

RSTDRV GPRESET

SA19–SA0 GPA19–GPA0

SBHE GPBHE

SD15–SD0 GPD15–GPD0

TC GPTC

(Not Supported) GPA25–GPA24
13-12 Élan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller
13.5.8.2 Interfacing with a Super I/O Controller

Figure 13-5 shows an example system diagram of the ÉlanSC520 microcontroller
interfacing with a Super I/O controller. Figure 13-6 shows the interfacing timing example.
In this example, the programmable interface timing registers can be programmed as shown
in Table 13-5, using the equation from “Programmable Bus Interface Timing” on page 13-7:

Note that the bus cycle can be stretched out by deasserting GPRDY; see “Wait States” on
page 13-20 for more information.

Figure 13-5 Élan™SC520 Microcontroller Interfacing with a Super I/O Controller

Table 13-5 Example Super I/O Controller Interface Timing1

Notes�
1. This example assumes that a 33.333-MHz crystal is being used in the system.

GP Bus
Signal Type

Offset
Register

Value

Offset
Time
(ns)

Chip
Require-
ment (ns)

Pulse
Width

Register
Value

Pulse
Width
(ns)

Chip
Require-
ment (ns)

Recovery
Time

Register
Value

Recovery
Timer
(ns)

Chip
Require-
ment (ns)

GP chip
selects

0 30 N/A 0 30 N/A 2 90 66

GP read 0 30 19 1 60 60 N/A N/A N/A

GP write 0 30 19 1 60 60 N/A N/A N/A

GPALE 0 30 N/A 0 30 N/A N/A N/A N/A

SD7–SD0

IORJ
IOWJ

SA10–SA0

MR

IOCHRDY

GPD7–GPD0

GPIORD
GPIOWR

GPA10–GPA0

GPRESET

GPRDY

DRQ3J–GPDRQx

DACK3J–

TCGPTC
IRQ7–3GPIRQx

DRQ1J

DACK1J
GPDACKx

AENGPAEN

IRQ11–9

Élan™SC520 Microcontroller
Super I/O
Élan™SC520 Microcontroller User’s Manual 13-13

General-Purpose Bus Controller
Figure 13-6 Timing Diagram of a Super I/O Interface

13.5.8.3 Interfacing with an AMD Enhanced Serial Communications Controller (8 MHz)

This slow version is depicted to illustrate an example of how the programmable timing can
be used to function with various timing requirements. Figure 13-7 shows an example system
diagram of the ÉlanSC520 microcontroller interfacing with an Am85C30 Enhanced Serial
Communications controller. Table 13-6 and Figure 13-8 show the interfacing timing
example. In this example, the programmable interface timing registers can be programmed
using the equation from “Programmable Bus Interface Timing” on page 13-7.

Address ValidGPA10–GPA0

GPCSx1

GPIORD2

GPALE

30 ns

30 ns

30 ns

60 ns+

90 ns+

120 nsBeginning of a bus cycle

(Not needed) 30 ns 30 ns

GPIOWR**

30 ns 60 ns+

GPRDY

Trdy

Read Data

Write Data

GPD7–GPD0
30 ns

GPD7–GPD0

Notes:
1. Although the chip selects are not used, the recovery time needs to be programmed.

2. GPIORD, GPIOWR, and the chip select recovery time are delayed when the GPRDY signal is deasserted.

3. This example assumes that a 33.333-MHz crystal is being used in the system.
13-14 Élan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller
Figure 13-7 Élan™SC520 Microcontroller Interfacing with an Am85C30

Table 13-6 Example AMD Enhanced Serial Communications Controller Interface Timing1

Notes�
1. This example assumes that a 33.333-MHz crystal is being used in the system.

GP Bus
Signal Type

Offset
Register

Value

Offset
Time
(ns)

Chip
Require-
ment (ns)

Pulse
Width

Register
Value

Pulse
Width
(ns)

Chip
Require-
ment (ns)

Recovery
Time

Register
Value

Recovery
Timer
(ns)

Chip
Require-
ment (ns)

GP chip
selects

2 90 0 4 150 150 0 30 3.5

GP read 2 90 70 4 150 150 N/A N/A N/A

GP write 2 90 70 4 150 150 N/A N/A N/A

GPALE 0 30 N/A 0 30 N/A N/A N/A N/A

D7–D0

RD

WR

A/B

CE

Am85C30

GPD7–GPD0

GPIORD

GPIOWR

GPA1

GPCSx

INTGPIRQx

D/CGPA0

Élan™SC520 Microcontroller
Élan™SC520 Microcontroller User’s Manual 13-15

General-Purpose Bus Controller
Figure 13-8 Timing Diagram of an Am85C30 Interface

13.5.9 Bus Cycles

13.5.9.1 8-Bit Data Access of an 8-Bit I/O Device

During an 8-bit access to 8-bit I/O devices, GPD7–GPD0 is used to transfer data between
the CPU and external devices. For an 8-bit memory-mapped I/O device, GPMEMWR and
GPMEMRD are used instead of GPIOWR and GPIORD.

Figure 13-9 shows the timing diagram of an 8-bit device access of an 8-bit I/O device.

Figure 13-9 8-Bit Data Access of an 8-Bit I/O Device

Address ValidGPA1–GPA0

GPCSx

GPIORD

GPALE

90 ns 30 ns
150 ns

270 nsBeginning of a bus cycle

(Not needed) 30 ns 30 ns

GPIOWR

90 ns 150 ns

90 ns

Read Data

Write DataGPD7–GPD0

GPD7–GPD0

Notes:
1. This example assumes that a 33.333-MHz crystal is being used in the system.

Read Data

GPA25–GPA0,

GPCSx

GPMEMRD, GPMEMWR,

GPD7–GPD0

Write Data

GPBHE

GPD7–GPD0

GPIORD, or GPIOWR
13-16 Élan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller
13.5.9.2 16-Bit Data Access of a 16-Bit I/O Device

A 16-bit data read/write access to 16-bit I/O devices are similar to the 8-bit I/O device
accesses. In 16-bit accesses, all 16 bits of GPD are used. For memory-mapped I/O
accesses, GPMEMRD and GPMEMWR are used instead of GPIORD and GPIOWR.

Figure 13-10 shows the timing diagram of 16-bit accesses of a 16-bit I/O device.

Figure 13-10 16-Bit Data Access of a 16-Bit I/O Device

13.5.9.3 16-Bit Data Access of an 8-Bit I/O Device

A 16-bit data access of an 8-bit I/O device requires two consecutive 8-bit data accesses of
the I/O device, but the consecutive 8-bit data accesses are resolved by the Am5x86 CPU
transparent to software. For memory-mapped I/O accesses, GPMEMRD and GPMEMWR
are used instead of GPIORD and GPIOWR. When the Am5x86 CPU requests a 16-bit data
access, the GP bus controller responds to the Am5x86 CPU with the bs8 signal, indicating
that the data width of the device is only 8 bits. The Am5x86 CPU then generates two
consecutive 8-bit bus cycles, and the 16-bit data access becomes two separate 8-bit data
GP bus cycles. Figure 13-11 shows the timing diagram of a 16-bit access of an 8-bit I/O
device.

Figure 13-11 16-Bit Data Access of an 8-Bit I/O Device

Read Data

GPA25–GPA0,

GPCSx

GPD15–GPD0

Write DataGPD15–GPD0

GPBHE

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR

x..x0h

1st 2nd

x..x1hGPA25–GPA0,

GPCSx

GPD7–GPD0

1st 2ndGPD7–GPD0

(for read)

(for write)

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR

GPBHE
Élan™SC520 Microcontroller User’s Manual 13-17

General-Purpose Bus Controller
13.5.9.4 32-Bit Data Access of an 8-Bit I/O Device

A 32-bit data access of an 8-bit I/O device requires four consecutive 8-bit data accesses
of the 8-bit I/O device, but the consecutive 8-bit data accesses are resolved by the Am5x86
CPU transparent to software. For memory-mapped I/O accesses, GPMEMRD and
GPMEMWR are used instead of GPIORD and GPIOWR. When the Am5x86 CPU requests
a 32-bit data access, the GP bus controller responds to the Am5x86 CPU with the bs8
signal, indicating that data width of the device is only 8 bits. The Am5x86 CPU then
generates four consecutive 8-bit bus cycles, and the 32-bit data access becomes four
separate 8-bit data GP bus cycles. Figure 13-12 shows the timing diagram of a 32-bit access
of an 8-bit I/O device.

Figure 13-12 32-Bit Data Access of an 8-Bit I/O Device

13.5.9.5 32-Bit Data Access of a 16-Bit I/O Device

A 32-bit data access of a 16-bit I/O device requires two consecutive 16-bit accesses of the
device, but the consecutive 16-bit data accesses are resolved by the Am5x86 CPU
transparent to software. For memory-mapped I/O accesses, GPMEMRD and GPMEMWR
are used instead of GPIORD and GPIOWR.

When the Am5x86 CPU requests a 32-bit data access, the GP bus controller responds to
the Am5x86 CPU with the bs16 signal, indicating that the data width of the device is only
16 bits. The Am5x86 CPU then generates two consecutive 16-bit bus cycles, and the 32-
bit data access becomes two separate 16-bit cycles on the GP bus.

Figure 13-13 shows the timing diagram of a 32-bit access of a 16-bit I/O device.

Figure 13-13 32-Bit Data Access of a 16-Bit I/O Device

1st 2nd 3rd 4th

x..x0h x..x1h x..x2h x..x3hGPA25–GPA0,

GPCSx

GPD7–GPD0

1st 2nd 3rd 4th GPD7–GPD0

(for read)

(for write)

GPBHE

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR

x..x0h

1st 2nd

x..x2hGPA25–GPA0,

GPCSx

GPD15–GPD0

1st 2ndGPD15–GPD0

GPBHE

(for write)

(for read)

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR
13-18 Élan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller
13.5.9.6 8-Bit Data Access of a 16-Bit I/O Device

The GPA0 and GPBHE signals are required to determine which byte of a 16-bit peripheral
is accessed during byte read or write cycles. Table 13-7 describes how to determine which
byte is accessed.

For memory-mapped I/O accesses, GPMEMRD and GPMEMWR are used instead of
GPIORD and GPIOWR.

Figure 13-14 shows the timing diagram of an 8-bit access of a 16-bit I/O device.

Figure 13-14 8-Bit Data Access of a 16-Bit I/O Device

13.5.9.7 GPIOCS16 and GPMEMCS16 Timing

The GP bus controller provides two methods for defining the data bus width.

■ The GP Chip Select Data Width (GPCSDW) register (MMCR offset C01h) allows each
chip select to be individually programmed for 8-bit or 16-bit data bus width.

■ The GP bus controller also supports dynamic bus sizing through the GPIOCS16 and
GPMEMCS16 pins. These pins can be used to override the programming of the data
width for the current access, as described in Table 13-8.

– The GPIOCS16 and GPMEMCS16 pins can be asserted after the address or chip
select is valid and deasserted after the address or chip select invalid.

– If one of these pins is asserted by the external devices, the GP bus controller asserts
bs16 to the Am5x86 CPU.

– Assertion of these signals does not affect the programmable interface timing.

Table 13-7 Differentiating Upper/Lower Byte Access of 16-Bit Devices

GPBHE GPA0 Cycle Description

0 0 16-bit access of 16-bit device

0 1 Upper byte access of 16-bit device

1 0 Lower byte access of either 8-bit or 16-bit device

1 1 Upper byte access of 8-bit device

x..x0h

Read Data Read Data

x..x1hGPA25–GPA0

GPCSx

GPBHE

GPD15–GPD0

Write Data Write DataGPD15–GPD0

Low Byte High Byte

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR
Élan™SC520 Microcontroller User’s Manual 13-19

General-Purpose Bus Controller
The latest assertion time for these two signals is the same as the timing for the GPRDY
deassertion time (see “GPRDY Recognition” on page 13-20).

Figure 13-15 shows the GPIOCS16 timing for a 16-bit access and an 8-bit access.

Figure 13-15 16-Bit Access of a 16-Bit I/O Device

13.5.9.8 Wait States

The ÉlanSC520 microcontroller provides two ways to insert wait states in a GP bus cycle.

■ The user can program the programmable interface timing registers to delay the timing
of GPIORD, GPMEMRD, GPIOWR, or GPMEMWR for the required number of wait state
cycles.

■ GPRDY can also be used to insert wait states dynamically on a cycle basis.

GPRDY can only be used to stretch GP bus cycles; it cannot be used to provide early
termination of the cycle. The control signals are always asserted for a minimum of the entire
period, as programmed in the timing control registers. Then, the additional delay can be
inserted by the deassertion of GPRDY.

Figure 13-16 shows the timing of GPRDY.

13.5.9.8.1 GPRDY Recognition
Assuming a 33.333-MHz crystal, the GPRDY pin must be deasserted a minimum of 45 ns
before the programmed deassertion of the command strobes and must have a minimum
deassertion (Low) width of 30 ns to insert a wait state into a GP bus cycle. Additional wait
states are inserted by extending the time in which the GPRDY pin is held deasserted. The

Table 13-8 Dynamic Bus Sizing Override of Programmed Data Width

GP Chip Select Data Width
(GPCSDW) Register Setting

GPIOCS16
GPMEMCS16 Assertion Resultant Bus Size

8-bit Deasserted 8-bit

8-bit Asserted 16-bit

16-bit Deasserted 16-bit

16-bit Asserted 16-bit

Addr

Write Data

GPA23–GPA0,

GPCSx

GPIOCS16

GPD15–GPD0

Read DataGPD15–GPD0

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR

GPBHE
13-20 Élan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller
command strobes will be deasserted after the GPRDY signal is internally synchronized and
sampled asserted by the 33-MHz clock and after the programmed pulse width value for the
strobe has expired.

Figure 13-16 GPRDY Timing

13.5.10 Interrupts
External devices that assert interrupts use the GPIRQ10–GPIRQ0 signals for this purpose.
The GPIRQx interrupt signals bypass the GP bus controller and are routed to the
programmable interrupt controller (PIC). See Chapter 15, “Programmable Interrupt
Controller”, for more information.

13.5.11 Latency

13.5.11.1 8/16-Bit GP Bus Width

Due to the smaller data width of the GP bus, 32-bit accesses from the Am5x86 CPU are
broken up into separate 8-bit or 16-bit GP bus cycles. During this time, no other Am5x86
CPU bus cycle can be generated, and neither the GP-DMA or an external PCI bus master
can access SDRAM.

13.5.11.2 Slow GP Bus Cycles

If the interface timing is programmed to have slow GP bus cycles or if GPRDY is used to
stretch cycles for long periods of time, the system performance can be affected because
the CPU bus is monopolized.

Note: Very long GP bus cycles can cause the PCI host bridge target controller to violate
the 10 µs memory write maximum completion time limit set in the PCI Local Bus
Specification, Revision 2.2. In PCI bus 2.2-compliant designs, software must limit the length
of GP bus cycles and GP-DMA demand- or block-mode transfers.

13.5.11.3 Noncacheable GP Bus

All GP bus accesses are noncacheable. Therefore, code execution out of this bus is not
recommended.

Address

Read Data

GPA25–GPA0

GPCSx

GPD15–GPD0

Write DataGPD15–GPD0

GPRDY

Notes:
The programmable timing would cause the
cycle to end here, but the GPRDY
deassertion stretches the cycle further.
GPRDY assertion then allows the cycle to
continue.

GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR
Élan™SC520 Microcontroller User’s Manual 13-21

General-Purpose Bus Controller
13.6 INITIALIZATION
The GP bus controller is reset by a system reset. The internal GP bus is enabled, as are
holes in the lower 1-Kbyte of I/O space; however, no chip selects are enabled. The external
GP bus is disabled until the Programmable Address Region (PAR) registers are initialized.

GP bus reset can be generated via a system reset or software write. Writing a 1 to the
GP_RST bit in the Reset Configuration (RESCFG) register (MMCR offset D72h) asserts
the GPRESET pin. Clearing this bit to 0 deasserts the GPRESET pin. The GPRESET pin
is only used for external GP bus peripherals. When this signal is asserted, all devices
connected to the GP bus should re-initialize to their reset state.

To enable the GP bus controller:

1. Configure the address decoding region for each chip select in the PAR registers.

2. Configure the external chip select pins in the Chip Select Pin Function Select (CSPFS)
register (MMCR offset C24h).

3. Configure the external GP bus timing in the programmable interface timing registers, as
described in this chapter.

4. Configure the data width of each chip select in the GP Chip Select Data Width
(GPCSDW) register (MMCR offset C01h).

5. Optionally, program the GP Chip Select Qualification (GPCSQUAL) register (MMCR
offset C02h) to qualify the chip select with the read or write strobes, if needed.

6. Optionally, program the GP Echo Mode (GPECHO) register (MMCR offset C00h) to
enable the GP bus echo mode, if needed.
13-22 Élan™SC520 Microcontroller User’s Manual

CHAPTER
14
 GP BUS DMA CONTROLLER
14.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated GP bus DMA (GP-DMA) controller.
The GP-DMA controller is designed to transfer data between external GP bus peripherals
and SDRAM. Transfers between the internal UART serial ports and SDRAM are also
supported. Throughout this document, the term GP-DMA refers to a DMA transaction on
the GP bus.

Features of the GP bus DMA controller include:

■ Fly-by transfers between GP bus peripherals and SDRAM

■ Support for up to seven DMA request channels (with a maximum of four external
requests)

■ Two internal UART serial ports can initiate GP-DMA transfers

■ GP-DMA controller can address all of the system SDRAM

■ In enhanced GP-DMA mode:

– Four channels are individually configurable for either 8 or 16 bits.

– Maximum transfer count is 16 M (16,777,216) transfers (using 24-bit count register).

– Channel widths default to PC/AT-compatible mode (three 16-bit, and four 8-bit).

– Buffer chaining capability

■ Variable clock modes: 4, 8, and 16 MHz

■ Transfers to and from SDRAM only. No transfers are possible to PCI, ROM, or peer GP
bus devices when using the GP-DMA controller.

Note: The GP bus DMA controller is capable of supporting most ISA DMA applications
and devices. However, not all of the legacy ISA timings are supported. See the Élan™SC520
Microcontroller Data Sheet, order #22003, for information on the GP bus and GP-DMA
timing supported by the ÉlanSC520 microcontroller.

14.2 BLOCK DIAGRAM
The GP-DMA controller consists of two DMA cores: the slave core and the master core.

■ The slave core has four 8-bit channels by default: 0, 1, 2, and 3.

■ The master core has three 16-bit channels by default: 5, 6, and 7.

■ Channel 4 must be programmed to cascade mode and must be unmasked if any of the
8-bit channels 0–3 are to be used.

■ In enhanced GP-DMA mode, Channels 3, 5, 6, and 7 are programmable to support either
8-bit or 16-bit mode.

Figure 14-1 shows a block diagram of the GP-DMA controller. Figure 14-2 shows how the
master and slave cores are connected.
Élan™SC520 Microcontroller User’s Manual 14-1

GP Bus DMA Controller
Figure 14-1 GP-DMA Controller Block Diagram

Channel

Mapping

GPTC*

dior

diow

GPAEN*

GPDRQ3–GPDRQ0

GPDACK3–GPDACK0*

rxdrq[1–0]
txdrq[1–0]

rxdack[1–0]
txdack[1–0]

GPA25–GPA0

GPD15–GPD0

GP-DMA Controller

UARTs

dramrd

dramwr

addr[27–0]

Bus

breq

bgnt

dmemw

dmemr GP Bus

daddr[27–0]

Élan™SC520 Microcontroller

Interface

Unit

Target

Control
(SDRAM)

Initiator

Control
(I/O)

GP Bus

I/O

Configuration
Registers

dack7–dack5
drq7–drq5

drq3–drq0

dack3–dack0

Master Core

Slave Core

dma_is_16

*Multiplexed pins
14-2 Élan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller
Figure 14-2 Master and Slave Core Cascading Diagram

14.3 SYSTEM DESIGN
Table 14-1 shows GP-DMA signals shared with other interfaces. When enabled, the
multiplexed signals shown in Table 14-1 either disable or alter any other function that uses
the same pin.

The GPDRQx and GPDACKx signals have programmable polarities. The default polarity
is compatible to the ISA convention.

Since the GP-DMA controller does not generate an interrupt at the end of the transfer,
system designers can externally connect GPTC to any GPIRQx to trigger an interrupt. Note
that qualifying GPTC with a specific GPDACKx signal provides a more specific interrupt.

For an application that requires a DMA transfer every fixed interval of time, a timer output
(TMROUT1 or TMROUT0) can be connected to the GPDRQx pin.

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and
additional timing diagrams.

Master Core

HLDA
HRQ

bgnt
breq

DATA[7–0]
ADDR[15–0]

CS

HLDA

HRQ
DATA[7–0]
CSdma1_cs

dma0_cs

Slave Core

gpdrq7
gpdack7

GP data

Interconnect

Logic

dior

diow

dmemr

dmemr

GPTC

GPAEN

Channel 7DRQ
DACK

Channel 6DRQ
DACK

Channel 5DRQ
DACK

Channel 4DRQ
DACK

Channel 3DRQ
DACK

Channel 2DRQ
DACK

Channel 1DRQ
DACK

Channel 0DRQ
DACK

gpdrq6
gpdack6

gpdrq5
gpdack5

gpdrq3

gpdack3

gpdrq2
gpdack2

gpdrq1

gpdack1

gpdrq0

gpdack0

ADDR[15:0]

daddr[27–0]

dma_is_16ADDR[15–0]
Élan™SC520 Microcontroller User’s Manual 14-3

GP Bus DMA Controller
14.4 REGISTERS
The GP bus DMA (GP-DMA) controller is configured using memory-mapped registers and
direct-mapped registers.

14.4.1 Memory-Mapped Registers
A summary listing of the MMCR registers used to configure the GP-DMA controller is shown
in Table 14-2. These registers provide functionality beyond the PC/AT compatibility, such
as the extended page registers, the features in the enhanced GP-DMA mode, and the ability
to route external GPDRQx and GPDACKx signals to a specific channel of the GP-DMA
controller.

Table 14-1 GP-DMA Signals Shared with Other Interfaces

PIO
(Default)
Signal

Interface
Function Control Bit Register

PIO12 GPDACK0 PIO12_FNC PIO15–PIO0 Pin Function Select
(PIOPFS15_0) register (MMCR offset C20h)PIO11 GPDACK1 PIO11_FNC

PIO10 GPDACK2 PIO10_FNC

PIO9 GPDACK3 PIO9_FNC

PIO8 GPDRQ0 PIO8_FNC

PIO7 GPDRQ1 PIO7_FNC

PIO6 GPDRQ2 PIO6_FNC

PIO5 GPDRQ3 PIO5_FNC

PIO4 GPTC PIO4_FNC

PIO3 GPAEN PIO3_FNC

Table 14-2 GP-DMA Controller Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

PIO15–PIO0 Pin Function
Select

PIOPFS15_0 C20h PIO or interface function select: GPDACK3–
GPDACK0, GPDRQ3–GPDRQ3, GPTC,
GPAEN

DMA Buffer Chaining
Interrupt Mapping

DMABCINTMAP D40h GP-DMA buffer chaining interrupt mapping

GP-DMA Control GPDMACTL D80h GP-DMA enhanced mode enable, channel
size, clock mode

GP-DMA Memory-Mapped
I/O

GPDMAMMIO D81h I/O or memory-mapped I/O channel
configuration

GP-DMA Resource Channel
Map A

GPDMAEXTCHMAPA D82h Channel mapping for GPDRQ3–GPDRQ0

GP-DMA Resource Channel
Map B

GPDMAEXTCHMAPB D84h Channel mapping for internal serial port
GP-DMA requests

GP-DMA Channel 0
Extended Page

GPDMAEXTPG0 D86h Bits 27–24 of the memory address for
Channel 0
14-4 Élan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller
GP-DMA Channel 1
Extended Page

GPDMAEXTPG1 D87h Bits 27–24 of the memory address for
Channel 1

GP-DMA Channel 2
Extended Page

GPDMAEXTPG2 D88h Bits 27–24 of the memory address for
Channel 2

GP-DMA Channel 3
Extended Page

GPDMAEXTPG3 D89h Bits 27–24 of the memory address for
Channel 3

GP-DMA Channel 5
Extended Page

GPDMAEXTPG5 D8Ah Bits 27–24 of the memory address for
Channel 5

GP-DMA Channel 6
Extended Page

GPDMAEXTPG6 D8Bh Bits 27–24 of the memory address for
Channel 6

GP-DMA Channel 7
Extended Page

GPDMAEXTPG7 D8Ch Bits 27–24 of the memory address for
Channel 7

GP-DMA Channel 3
Extended Transfer Count

GPDMAEXTTC3 D90h Bits 23–16 of Channel 3 transfer count value
(enhanced GP-DMA mode)

GP-DMA Channel 5
Extended Transfer Count

GPDMAEXTTC5 D91h Bits 23–16 of Channel 5 transfer count value
(enhanced GP-DMA mode)

GP-DMA Channel 6
Extended Transfer Count

GPDMAEXTTC6 D92h Bits 23–16 of Channel 6 transfer count value
(enhanced GP-DMA mode)

GP-DMA Channel 7
Extended Transfer Count

GPDMAEXTTC7 D93h Bits 23–16 of Channel 7 transfer count value
(enhanced GP-DMA mode)

Buffer Chaining Control GPDMABCCTL D98h Buffer chaining enables for channels 7, 6, 5,
and 3

Buffer Chaining Status GPDMABCSTA D99h Buffer chaining status for channels 7, 6, 5, and
3

Buffer Chaining Interrupt
Enable

GPDMABSINTENB D9Ah Buffer chaining interrupt enables for channels
7, 6, 5, and 3

Buffer Chaining Valid GPDMABCVAL D9Bh Valid buffer of the buffer chaining operation

GP-DMA Channel 3 Next
Address Low

GPDMANXTADDL3 DA0h Address bits 0–15 of the next data buffer in
memory used with Channel 3
(enhanced GP-DMA mode)

GP-DMA Channel 3 Next
Address High

GPDMANXTADDH3 DA2h Address bits 16–27 of the next data buffer in
memory used with Channel 3
(enhanced GP-DMA mode)

GP-DMA Channel 5 Next
Address Low

GPDMANXTADDL5 DA4h Address bits 0–15 of the next data buffer in
memory used with Channel 5
(enhanced GP-DMA mode)

GP-DMA Channel 5 Next
Address High

GPDMANXTADDH5 DA6h Address bits 16–27 of the next data buffer in
memory used with Channel 5
(enhanced GP-DMA mode)

Table 14-2 GP-DMA Controller Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR
Offset
Address Function
Élan™SC520 Microcontroller User’s Manual 14-5

GP Bus DMA Controller
14.4.2 Direct-Mapped Registers
There are seven DMA channels in the GP-DMA controller. Table 14-3 shows the direct-
mapped I/O registers that are available for each of the seven channels.

There are two DMA cores in the GP-DMA controller that are cascaded to provide the seven
DMA channels. The cores are referred to as master and slave. Table 14-3 includes the set
of the direct-mapped registers available in each of two cores. These registers program the
function of the master or slave core.

GP-DMA Channel 6 Next
Address Low

GPDMANXTADDL6 DA8h Address bits 0–15 of the next data buffer in
memory used with Channel 6
(enhanced GP-DMA mode)

GP-DMA Channel 6 Next
Address High

GPDMANXTADDH6 DAAh Address bits 16–27 of the next data buffer in
memory used with Channel 6
(enhanced GP-DMA mode)

GP-DMA Channel 7 Next
Address Low

GPDMANXTADDL7 DACh Address bits 0–15 of the next data buffer in
memory used with Channel 7
(enhanced GP-DMA mode)

GP-DMA Channel 7 Next
Address High

GPDMANXTADDH7 DAEh Address bits 16–27 of the next data buffer in
memory used with Channel 7
(enhanced GP-DMA mode)

GP-DMA Channel 3 Next
Transfer Count Low

GPDMANXTTCL3 DB0h Bits 0–15 of the next transfer count for Channel
3 when using buffer chaining
(enhanced GP-DMA mode)

GP-DMA Channel 3 Next
Transfer Count High

GPDMANXTTCH3 DB2h Bits 16–23 of the next transfer count for
Channel 3 when using buffer chaining
(enhanced GP-DMA mode)

GP-DMA Channel 5 Next
Transfer Count Low

GPDMANXTTCL5 DB4h Bits 0–15 of the next transfer count for Channel
5 when using buffer chaining
(enhanced GP-DMA mode)

GP-DMA Channel 5 Next
Transfer Count High

GPDMANXTTCH5 DB6h Bits 16–23 of the next transfer count for
Channel 5 when using buffer chaining
(enhanced GP-DMA mode)

GP-DMA Channel 6 Next
Transfer Count Low

GPDMANXTTCL6 DB8h Bits 0–15 of the next transfer count for Channel
6 when using buffer chaining
(enhanced GP-DMA mode)

GP-DMA Channel 6 Next
Transfer Count High

GPDMANXTTCH6 DBAh Bits 16–23 of the next transfer count for
Channel 6 when using buffer chaining
(enhanced GP-DMA mode)

GP-DMA Channel 7 Next
Transfer Count Low

GPDMANXTTCL7 DBCh Bits 0–15 of the next transfer count for Channel
7 when using buffer chaining
(enhanced GP-DMA mode)

GP-DMA Channel 7 Next
Transfer Count High

GPDMANXTTCH7 DBEh Bits 16–23 of the next transfer count for
Channel 7 when using buffer chaining
(enhanced GP-DMA mode)

Table 14-2 GP-DMA Controller Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR
Offset
Address Function
14-6 Élan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller
In addition to the registers used to control GP-DMA, there is a set of general-purpose
registers. These registers are decoded in the same chip select region with the page
registers.

Table 14-3 GP-DMA Controller Registers—Direct-Mapped

Register Mnemonic
I/O
Address Function

Registers for Each Channel

Channel 0 Memory Address
Channel 1 Memory Address
Channel 2 Memory Address
Channel 3 Memory Address
Channel 4 Memory Address
Channel 5 Memory Address
Channel 6 Memory Address
Channel 7 Memory Address

GPDMA0MAR
GPDMA1MAR
GPDMA2MAR
GPDMA3MAR
GPDMA4MAR
GPDMA5MAR
GPDMA6MAR
GPDMA7MAR

0000h
0002h
0004h
0006h
00C0h
00C4h
00C8h
00CCh

Memory address bits 15–0 during GP-DMA
transfers

Channel 0 Transfer Count
Channel 1 Transfer Count
Channel 2 Transfer Count
Channel 3 Transfer Count
Channel 4 Transfer Count
Channel 5 Transfer Count
Channel 6 Transfer Count
Channel 7 Transfer Count

GPDMA0TC
GPDMA1TC
GPDMA2TC
GPDMA3TC
GPDMA4TC
GPDMA5TC
GPDMA6TC
GPDMA7TC

0001h
0003h
0005h
0007h
00C2h
00C6h
00CAh
00CEh

Bits 15–0 of the transfer count for the GP-
DMA transactions

Channel 2 Page
Channel 3 Page
Channel 1 Page
Channel 0 Page
Channel 6 Page
Channel 7 Page
Channel 5 Page

GPDMA2PG
GPDMA3PG
GPDMA1PG
GPDMA0PG
GPDMA6PG
GPDMA7PG
GPDMA5PG

0081h
0082h
0083h
0087h
0089h
008Ah
008Bh

Memory address bits 23–16 or 23–17
during GP-DMA transfers

Registers for Each DMA Core (Master and Slave)

Master DMA Channel 4–7 Status
Slave DMA Channel 0–3 Status

MSTDMASTA
SLDMASTA

00D0h
0008h

GP-DMA request status and terminal count
condition for each channel.

Master DMA Channel 4–7 Control
Slave DMA Channel 0–3 Control

MSTDMACTL
SLDMACTL

00D0h
0008h

DMA controller enable, arbitration mode,
and timing control

Master Software DRQ(n) Request
Slave Software DRQ(n) Request

MSTDMASWREQ
SLDMASWREQ

00D2h
0009h

Software GP-DMA request initiated to a
specific channel

Master DMA Channel 4–7 Mask
Slave DMA Channel 0–3 Mask

MSTDMAMSK
SLDMAMSK

00D4h
000Ah

GP-DMA channel mask

Master DMA Channel 4–7 Mode
Slave DMA Channel 0–3 Mode

MSTLDMAMODE
SLDMAMODE

00D6h
000Bh

Transfer mode, transfer type, automatic
initialization, and address increment mode
for each channel

Master DMA Clear Byte Pointer
Slave DMA Clear Byte Pointer

MSTDMACBP
SLDMACBP

00D8h
000Ch

Pointer to which byte will be accessed in the
16-bit GP-DMA registers
Élan™SC520 Microcontroller User’s Manual 14-7

GP Bus DMA Controller
14.5 OPERATION
The GP-DMA controller on the ÉlanSC520 microcontroller supports the following features.

■ Only fly-by GP-DMA transfers are supported. A fly-by transfer is a transfer in which the
data is moved from an I/O device or a memory-mapped I/O device to SDRAM (GP-DMA
write), or from SDRAM to an I/O device or a memory-mapped I/O device (GP-DMA read)
in a single transaction.

■ Memory-to-memory (i.e., SDRAM-to-SDRAM) and I/O-to-I/O (peer-to-peer on the GP
bus) transfers are not supported.

■ Transfer modes supported: single, block, and demand

■ Transfer types supported: read, write, and verify

14.5.1 GP-DMA Transfers
Because the ÉlanSC520 microcontroller also supports the standard PC/AT system
architecture, the method for DMA transfer complies with the Industry Standard Architecture
(ISA) specifications. The default polarities of GPDRQx and GPDACKx are active High and
Low respectively, but they can be programmed differently.

The following general rules apply to GP-DMA transfers on the ÉlanSC520 microcontroller:

■ The GP-DMA initiator is the I/O device that asserts GPDRQx. This is always an external
I/O device (or memory -mapped I/O device) residing on the GP bus, or the internal UART
serial ports, and can be either 8 bits or 16 bits. Note that the internal UARTs must be
programmed as 8-bit channels.

■ The GP-DMA target is always system memory (SDRAM). Table 14-4 on page 14-9
shows the possible GP-DMA initiators and targets.

Master DMA Controller Reset
Slave DMA Controller Reset

MSTDMARST
SLDMARST

00DAh
000Dh

GP-DMA controller reset

Master DMA Controller Temporary
Slave DMA Controller Temporary

MSTDMATMP
SLDMATMP

00DAh
000Dh

Preserves PC/AT compatibility

Master DMA Mask Reset
Slave DMA Mask Reset

MSTDMAMSKRST
SLDMAMSKRST

00DCh
000Eh

Mask register reset to activate the
associated GP-DMA channels

Master DMA General Mask
Slave DMA General Mask

MSTDMAGENMSK
SLDMAGENMSK

00DEh
000Fh

GP-DMA channel masks

General-Purpose Registers

General Registers GPDMAGR0
GPDMAGR1
GPDMAGR2
GPDMAGR3
GPDMAGR4
GPDMAGR5
GPDMAGR6
GPDMAGR7
GPDMAGR8

0080h,
0084h–
0086h,
0088h,
008Ch–
008Fh

General-purpose R/W registers

Table 14-3 GP-DMA Controller Registers—Direct-Mapped (Continued)

Register Mnemonic
I/O
Address Function
14-8 Élan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller
■ Since the GP-DMA target is always SDRAM, the relevant address range must be
currently mapped to be system SDRAM. If that portion of the address space is not
mapped to SDRAM, erroneous operation will result. See Chapter 4, “System Address
Mapping”, for more details on how to set up the system address mapping.

■ ÉlanSC520 microcontroller does not support peer-to-peer transfers between GP bus
peripheral devices, or SDRAM-to-SDRAM.

■ In PCI bus 2.2-compliant designs, software must limit the length of GP bus DMA demand-
or block-mode transfers. Very large transfers could cause the PCI host bridge target
controller to violate the 10 µs memory write maximum completion time limit set in the
PCI Local Bus Specification, Revision 2.2.

The GP-DMA controller provides the GPAEN signal to prevent other devices residing on
the same external GP bus from decoding the address on the GPA bus. When the internal
Transfer Count register rolls from 0h to FFFFh (FFFFFFh in enhanced GP-DMA mode),
GP-DMA controller asserts GPTC to indicate the end of transfer.

14.5.1.1 GP-DMA Initiators

14.5.1.1.1 Internal UARTs
Each of the two UART serial ports on the ÉlanSC520 microcontroller can initiate DMA
transfers from its transmit channel or receive channel, or both. Since the serial ports are
8-bit devices, their DMA requests can be mapped to any of the default 8-bit channels
(channels 0–3).

■ For a read transfer, the UART asserts its request from the transmit channel (txdrq), waits
for the acknowledge (txdack), and latches the data from the low byte of the GPD15–
GPD0 bus when the I/O command is asserted (GPIOWR).

■ For a write transfer, the UART asserts its request from the receive channel (rxdrq), waits
for the acknowledge (rxdack), and places the data on the low byte of the GPD15–GPD0
bus when the I/O command is asserted (GPIORD).

For the channel connected to the internal serial port, the drq sense level must be
programmed as active High, the dack sense level must be programmed as active Low, the
write mode must be programmed for late write using the WRTSEL bit, the timing mode
must be configured for normal timing using the COMPTIM bit. This is the default
configuration. These bits are found in the Slave and Master DMA Channel x Control
(SLDMACTL and MSTDMACTL) registers. Note that internal requests from the UART serial
ports cannot be mapped to a 16-bit channel, because the UARTs support 8-bit data transfer
only.

14.5.1.1.2 External I/O Devices
An external I/O device can use any of the channels, depending on its size. Each I/O device
uses one dedicated GPDRQ/GPDACK signal pair.

■ During a read transfer, the external I/O device asserts its request (GPDRQx), waits for
the acknowledge (GPDACKx), and latches the data from the GPD bus when the I/O
command is asserted (GPIOWR).

Table 14-4 Supported GP-DMA Initiator/Target Combinations

GP-DMA Initiator Channel Size GP-DMA Target

UARTs 8 bits SDRAM

GP Bus 8 or 16 bits SDRAM
Élan™SC520 Microcontroller User’s Manual 14-9

GP Bus DMA Controller
■ For a write transfer, the external I/O device asserts its request, waits for the acknowledge,
and places the data on the GPD bus when the I/O command (GPIORD) is asserted.

14.5.1.1.3 External Memory-Mapped I/O Devices
An external device on the GP bus can be mapped into memory address space. See
Chapter 4, “System Address Mapping”, for more details. Such devices are referred to as
memory-mapped I/O devices. GP-DMA transactions to a memory-mapped I/O device are
handled in the same fashion as those to an I/O device, except that the commands used
are GPMEMRD and GPMEMWR, instead of GPIORD and GPIOWR. The GP-DMA
Memory-Mapped I/O (GPDMAMMIO) register (MMCR offset D81h) is used for this purpose.

14.5.1.2 GP-DMA Channel Mapping

GP-DMA requests can originate from the following sources:

■ Transmit and receive channels from each of two internal UART serial ports (always
8-bit) for a total of four requests

■ GP bus using GPDRQ3–GPDRQ0 and GPDACK3–GPDACK0 (8-bit or 16-bit).

Table 14-5 shows the ÉlanSC520 microcontroller resource and the GP-DMA channels to
which the resource can be mapped.

All GP-DMA channel mapping in the ÉlanSC520 microcontroller is programmable using
the two GP-DMA Resource Channel Map x (GPDMAEXTCHMAPx) registers.

14.5.2 Operating Modes
The operating mode for the GP-DMA controller is configured using the ENH_MODE_ENB
bit in the GP-DMA Control (GPDMACTL) register (MMCR offset D80h).

14.5.2.1 Normal GP-DMA Mode

Normal GP-DMA mode is the default operating mode of the GP-DMA controller. In this
mode:

■ Channels 0, 1, 2, and 3 are used for the internal UART serial ports and external 8-bit
devices.

■ Channel 5, 6, and 7 are used for any external 16-bit devices.

This mode is compatible with the PC/AT architecture.

Table 14-5 GP-DMA Channel Mapping

Microcontroller Resource

GP-DMA Channel

0 1 2 3 4 5 6 7

UART 1 transmit request ✔ ✔ ✔ ✔

UART 2 receive request ✔ ✔ ✔ ✔

UART 1 transmit request ✔ ✔ ✔ ✔

UART 2 receive request ✔ ✔ ✔ ✔

External request GPDRQ0 ✔ ✔ ✔ ✔ ✔ ✔ ✔

External request GPDRQ1 ✔ ✔ ✔ ✔ ✔ ✔ ✔

External request GPDRQ2 ✔ ✔ ✔ ✔ ✔ ✔ ✔

External request GPDRQ3 ✔ ✔ ✔ ✔ ✔ ✔ ✔
14-10 Élan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller
14.5.2.2 Enhanced GP-DMA Mode

Only channels 3, 5, 6, and 7 support enhanced GP-DMA mode. In enhanced GP-DMA
mode:

■ Each of these four channels can be configured to be either 8-bit or 16-bit channel. The
other channels (0, 1, and 2) can still be used as normal 8-bit channels in conjunction
with the enhanced GP-DMA mode channels.

■ The transfer count registers are increased to 24 bits in size, to allow counts up to 16 M
(16,777,216) fransfers.

■ The address adder is increased to 28 bits in size, eliminating the limitation of transferring
within the 64 Kbytes boundaries (128 Kbytes for 16-bit devices) in normal GP-DMA
mode.

This mode also offers the capability of chaining two noncontiguous memory buffers during
DMA transfers, as described in “Buffer Chaining” on page 14-15.

14.5.3 Addressing GP-DMA Channels
14.5.3.1 Addressing In Normal GP-DMA Mode

GP-DMA Channel 4 is used to cascade channels 0–3 from the slave core through the
master core to the CPU and is not available for data transfer. For proper operation, software
must ensure that this setting is always configured for cascading only via the TRNMOD field
in the Master DMA Channel 4–7 Mode (MSTDMAMODE) register (Port 00D6h).

14.5.3.1.1 8-Bit Transfers
Channels 0–3 support 8-bit data transfers between 8-bit I/O devices and system SDRAM.
8-bit GP-DMA can access any location within the system address space; however, the
address adder is only 16 bits wide, so 8-bit GP-DMA requests cannot cross 64-Kbyte
physical page boundaries. As shown in Table 14-6, during an 8-bit GP-DMA transfer:

■ The Slave DMA Channel x Memory Address (GPDMAxMAR) registers provide address
bits 15–0.

■ The Slave DMA Channel x Page (GPDMAxPG) registers provide address bits 23–16.

■ The GP-DMA Channel x Extended Page (GPDMAEXTPGx) registers provide bits
27–24 of the system memory address.

14.5.3.1.2 16-Bit Transfers
Channels 5–7 support 16-bit data transfers between 16-bit I/O devices and system SDRAM.
16-bit GP-DMA can access any even (word-aligned) location within the system address
space; however, the address adder is only 16 bits wide, so 16-bit GP-DMA requests cannot
cross 128-Kbyte physical page boundaries. During a 16-bit GP-DMA transfers:

■ A0 is forced to 0.

■ The Master DMA Channel x Memory Address (GPDMAxMAR) registers provide address
bits 16–1.

■ The Master DMA Channel x Page (GPDMAxPG) registers provide address bits 23–17.

■ The GP-DMA Channel x Extended Page (GPDMAEXTPGx) registers provide bits
27–24 of the system memory address.
Élan™SC520 Microcontroller User’s Manual 14-11

GP Bus DMA Controller
14.5.3.2 Addressing In Enhanced GP-DMA Mode

In enhanced GP-DMA mode, channels 3, 5, 6 and 7 are programmable to support either
8-bit transfers or 16-bit transfers.

■ When the channel is configured to be 8-bit, the address is generated as shown in
Table 14-6.

■ When the channel is configured to be 16-bit, the address is generated as shown in
Table 14-7.

■ However, when the buffer chaining feature is used, the memory address of the next data
buffer is provided directly from the channel’s Next Address register. This feature is
described in “Buffer Chaining” on page 14-15.

The size of the address adder is increased to 28 bits wide to eliminate the limitation of
64-Kbyte physical page boundaries for 8-bit transfers and 128-Kbyte physical page
boundaries for 16-bit transfers. This feature is available for channels 3, 5, 6, and 7 only.

14.5.4 GP-DMA Transfer Modes
The GP-DMA controller performs read, write, and verify operations in each of the three
transfer modes: single, demand, or block. For all three modes, the GP-DMA initiator asserts
GPDRQx and must hold it active until the assertion of GPDACKx in order to be recognized.

14.5.4.1 Single Transfer Mode

In single transfer mode, the GP-DMA controller performs one transfer each time it is granted
the Am5x86 CPU bus. The GP-DMA initiator asserts GPDRQx and holds it active as long
as it has data to be transferred. The initiator must negate its DRQx relative to the I/O
commands to ensure correct operation.

14.5.4.2 Demand Transfer Mode

In demand transfer mode, the GP-DMA initiator asserts GPDRQx and holds it active as
long as it has data to be transferred. The GP-DMA controller continues to perform GP-DMA
transfers until Terminal Count (TC) is reached or the GPDRQx is deasserted by the GP-
DMA initiator. The initiator must negate its DRQx relative to the I/O commands to ensure
correct operation.

When using demand transfer mode, if the transfer is configured for automatic initialization
control mode, GPDRQx must be deasserted prior to the assertion of GPTC in the last DMA
cycle to prevent another transfer. Otherwise, the channel is automatically masked and
requires initialization before it will respond to subsequent requests.

Table 14-6 8-Bit GP-DMA Channel Address Generation

Source
GP-DMA Channel x
Extended Page Registers

Slave DMA Channel x
Page Registers

Slave DMA Channel x
Memory Address Register

Address A27–A24 A23–A16 A15–A0

Table 14-7 16-Bit GP-DMA Channel Address Generation

Source
GP-DMA Channel x
Extended Page Registers

Master DMA Channel x
Page Registers

Master DMA Channel x
Memory Address Register

Address A27–A24 A23–A17 A16–A1, A0=0
14-12 Élan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller
14.5.4.3 Block Transfer Mode

In block transfer mode, the GP-DMA initiator asserts GPDRQ and holds it active until
acknowledged by the assertion of GPDACKx. The GP-DMA controller performs GP-DMA
transfers until TC is reached, indicating the programmed number of transfers has been
completed.

14.5.4.4 Transfer Types

Three GP-DMA transfer types are supported: read, write, and verify.

■ A read transfer, shown in Figure 14-3, consists of a memory read cycle from the address
in the current address register (concatenation of the channel’s Memory Address register,
Page register, and Extended Page register), followed by an I/O write cycle to the
associated device.

■ A write transfer, shown in Figure 14-4, consists of an I/O read cycle followed by a memory
write cycle to the address in the current address register. Depending on the GP-DMA
channel selected, the data can be 8 bits or 16 bits in width.

■ A verify transfer, shown in Figure 14-5, is either a read transfer or a write transfer, but
without the generation of the I/O and memory control signals, such as GPIORD,
GPIOWR, GPMEMRD, and GPMEMWR. A verify transfer is normally used for checking
the GP-DMA core to determine whether the address generation and control logic are
operating correctly. Data are not transferred in a verify cycle. ÉlanSC520 microcontroller
does not drive the SDRAM address out on the MA address bus during a DMA verify cycle.

Figure 14-3 GP-DMA Read Transfer

GPDACKx

daddr[27:0]

GPAEN

GPIOWR, GPMEMWR

GPD15–GPD0

GPTC

dmemr

GPDRQx

Address Valid

Data Valid
Élan™SC520 Microcontroller User’s Manual 14-13

GP Bus DMA Controller
Figure 14-4 GP-DMA Write Transfer

Figure 14-5 GP-DMA Verify Transfer

14.5.4.5 Automatic Initialization Control

When automatic initialization control mode is enabled via the AINIT bit in the Slave or Master
Channel x Mode register, the original values of the current address and current count
registers are automatically restored to the values in the base address and base count
registers of the given channel following the terminal count.

This feature is useful when data quantities of the same size are transferred to or from a
fixed buffer in SDRAM. This feature must be disabled when using buffer chaining mode;
otherwise, unexpected results may occur.

GPDACKx

daddr[27:0]

GPAEN

GPIORD, GPMEMRD

GPD15–GPD0

dmemw

GPDRQx

Address Valid

Data Valid

GPTC

GPDACKx

daddr[27:0]

GPAEN

GPD15–GPD0

dmemr

GPDRQx

GPIORD, GPMEMRD

dmemw

Address Valid

GPTC

GPIOWR, GPMEMWR
14-14 Élan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller
14.5.4.6 Priority

The GP-DMA controller offers two priority schemes for servicing multiple requests. After
the recognition of any one channel for service, the other channels are prevented from
generating DMA cycles until the current transfer has completed (i.e., the current channel’s
DACKx has deasserted).

■ The fixed priority scheme is based upon the value of channel numbers (Channel 0 is
the highest priority, Channel 7 is the lowest priority). The higher priority channel prevents
the lower priority channel from servicing the request.

■ In the rotating priority scheme, the last channel serviced becomes the lowest priority,
with the other channels rotating accordingly. This scheme is also known as the round
robin scheme.

14.5.4.7 Buffer Chaining

In enhanced GP-DMA mode, channels 3, 5, 6, and 7 allow transfer to/from two or more
data buffers in SDRAM for a single transfer request (fragmented data buffers). This feature
is known as buffer chaining. The purpose of this feature is to facilitate GP-DMA transfers
to or from non-contiguous buffers in SDRAM.

An example usage of this feature is to transfer a packet of data from SDRAM to the external
device. The packet header and the packet data might be in two noncontiguous locations in
SDRAM. By using the buffer chaining feature, users can transfer both the packet header
and packet data in one DMA transfer. Similarly, the GP-DMA controller can be used to split
up a packet header from the packet data into two SDRAM buffers when receiving packets.

Buffer chaining mode is enabled by setting the appropriate CHx_BCHN_ENB bit in the
Buffer Chaining Control (GPDMABCCTL) register (MMCR offset D98h).

1. The Next Address registers and the Next Transfer Count registers should be programmed
prior to the start of the GP-DMA cycle.

2. When the transfer count is reached, the GP-DMA controller checks the CHx_CBUF_VAL
bits in the Buffer Chaining Valid (GPDMABCVAL) register (MMCR offset D9Bh).

3. If this bit is set, the contents of the Next Address and the Next Transfer Count registers
are loaded into the internal current address and current transfer count registers,
respectively.

4. The GP-DMA controller hardware then generates a maskable or non-maskable interrupt
and clears the CHx_CBUF_VAL bits.

5. This bit indicates to software that another buffer can be set up in the chain by writing to
the Next Address and Next Transfer Count registers with new values.

6. The DMA transfer then continues until the next terminal count.

7. If the CHx_CBUF_VAL bits were not set, GP-DMA controller generates the interrupt and
also asserts GPTC to indicate the end of the chain.

Typically, buffer chaining should be used in single transfer mode, but block mode or demand
mode operation is also supported.

When using block transfer mode, the GP-DMA controller holds the bus request active until
the end of the last buffer in the chain. It is worth noting that only two buffers can be chained
at a time when using block transfer mode. Because the GP-DMA controller does not release
the GP bus during the transfer, the Next Address and Next Transfer Count cannot be
reprogrammed to link in another buffer while a GP-DMA transfer is in progress.
Élan™SC520 Microcontroller User’s Manual 14-15

GP Bus DMA Controller
The automatic initialization control mode cannot be used in conjunction with buffer chaining
mode.

14.5.5 Bus Cycles
Table 14-8 shows the four GP-DMA cycle types and the command strobes generated in
each cycle. The GP bus command strobes GPMEMRD and GPMEMWR are asserted for
memory-mapped I/O devices on this bus. The internal memory commands are not shown
in this table.

14.5.5.1 GP Bus I/O to SDRAM

Figure 14-6 shows a GP-DMA read cycle in demand transfer mode.

Figure 14-6 GP-DMA Read in Demand Transfer Mode

Table 14-8 GP-DMA Cycle Types

GP-DMA Initiator GP-DMA Target
Data Transfer Direction
(GP-DMA Cycle Type)

GP Bus Command
Strobes Generated

I/O device SDRAM I/O to memory (GP-DMA write) GPIORD

I/O device SDRAM Memory to I/O (GP-DMA read) GPIOWR

Memory-mapped
I/O device

SDRAM Memory-Mapped I/O to memory
(GP-DMA write)

GPMEMRD

Memory-mapped
I/O device

SDRAM Memory to memory-mapped I/O
(GP-DMA read)

GPMEMWR

GPDACKx

daddr[27:0]

GPAEN

GPIOWR, GPMEMWR

GPD15–GPD0

GPTC

dmemr

GPDRQx

Addr Valid

Data Valid Data Valid Data Valid

Addr Valid Addr Valid

GPDBUFOE
14-16 Élan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller
14.5.5.2 GP-DMA Read with Cache Hit

Figure 14-7 shows a read transfer with a cache hit (write-back cache).

Figure 14-7 GP-DMA Read Transfer with Cache Hit (Write-Back Cache)

14.5.6 GP Bus Echo Mode
When GP bus echo mode is enabled, GPAEN is driven high during accesses from the
Am5x86 CPU to internal peripherals to prevent external devices from decoding (or
responding to) these internal peripheral accesses. In normal operation (GP bus echo mode
disabled), the GP bus controller never asserts GPAEN.

However, accesses initiated by the GP bus DMA controller are not affected by enabling the
GP bus echo mode, and therefore the GP bus DMA controller still asserts GPAEN as it
does during normal operation. During an internal GPDMA access in GP bus echo mode,
the external GP bus commands, GPIORD, GPMEMRD, GPIOWR, GPMEMWR, are not
asserted. However, GPAEN is still asserted. For additional information about this mode,
see “GP Bus Echo Mode” on page 13-10.

GPDACKx

daddr[27:0]

GPAEN

GPIOWR,

GPD15–GPD0

GPTC

dmemr

GPDRQx

Address Valid

Data Valid

eads

hitm

hold

hlda

GPDBUFOE

GPMEMWR
Élan™SC520 Microcontroller User’s Manual 14-17

GP Bus DMA Controller
14.5.7 Clocking Considerations
The GP-DMA controller can be programmed to operate at 4 MHz, 8 MHz, or 16 MHz. This
option is specified in the GP-DMA Control (GPDMACTL) register (MMCR offset D80h).
Note that these frequencies are derived from the 33-MHz clock. The exact frequency is an
even fraction of the crystal (33.000-MHz or 33.333-MHz) being used in the system.

14.5.8 Interrupts
In normal GP-DMA mode, the GP-DMA controller does not generate interrupts, but it does
assert GPTC upon the completion of every transfer.

When buffer chaining mode is enabled, the GP-DMA controller generates a maskable or
non-maskable interrupt every time a buffer is completely transferred. This interrupt is
generated after the valid values of the Next Address and Next Transfer Count are loaded
into the internal current address and current transfer count registers, respectively. GPTC
is asserted only when there is no other buffer in the chain. When GPTC is asserted, the
interrupt is still generated.

14.5.9 Software Considerations
Channel 4 must always be set to be in cascade mode; otherwise, erroneous operation may
result. Only Channel 4 should be programmed for cascade mode. All other channels should
be programmed to be in one of the other three modes (single, demand or block).

The Memory Address and Transfer Count registers of each channel are byte-accessed.
Two consecutive byte reads or writes to the same I/O address are required when accessing
the 16-bit values of these registers. In enhanced GP-DMA mode, although the Next Address
registers and the Next Transfer Count registers are both split up into two 16-bit registers,
the Low and High words have been placed so that they can be accessed using 32-bit
instructions. Although the GP bus splits 32-bit accesses up into two 16-bit accesses (i.e.,
the setting of the low and high address will be nonatomic), this should not typically cause
any problems.

When using the buffer chaining feature in block transfer mode, the GP-DMA controller
continues to hold the bus request until the second buffer is finished. The interrupt generated
after the first buffer finishes in this case is useless to software, because the interrupt handling
routine is not able to get access to the Am5x86 CPU bus (because the GP-DMA controller
is programmed for block transfer mode).

Note that the GPDRQx signal must be deasserted before an active channel can be masked.

14.5.10 Latency

14.5.10.1 Nonpreemptive Latency

The ÉlanSC520 microcontroller implements a write buffer and a read buffer (with read-
ahead feature) to optimize SDRAM performance. These buffers can improve GP-DMA
latency during block transfer or demand transfer.

■ During a write transfer, the write buffer collects bytes (or words) from the GP bus and
writes back to SDRAM in a full doubleword. This mechanism effectively provides one-
wait-state write accesses to SDRAM, as seen from the GP-DMA controller.

■ During a read transfer, the read buffer reads the entire cache-line (16 bytes). This
effectively provides zero-wait-state read accesses from SDRAM by the GP-DMA
controller. However, since the read buffer fetches forward, GP-DMA channels that are
configured in address decrement mode experience more read buffer misses. The read
buffer does not prefetch for GP-DMA accesses because they are less than one
doubleword.
14-18 Élan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller
The operations of these buffers are described in detail in Chapter 11, “Write Buffer and
Read Buffer”.

14.5.10.2 Preemptive Latency

The following events could delay a GP-DMA acknowledgment.

■ SDRAM refresh cycle (the acknowledgment is given; however, the transfer is delayed)

■ PCI requests

■ A higher priority GP-DMA request

■ A cache write-back, if the GP-DMA target is in a dirty cache-line (the acknowledgment
is given; however, the transfer is delayed)

■ Slow transfers to ROM/GP bus

Once a demand transfer or block transfer has started, if the GP-DMA controller is trying to
read from a SDRAM region that is in the cache, the transfer is paused while a cache snoop
occurs. If the cache holds data in the cache line that the GP-DMA controller is accessing,
a cache-line write-back cycle may also occur.

14.6 INITIALIZATION
The GP-DMA controller is reset by a system reset. In addition, the slave and the master
controllers each have a software reset source, from the Slave DMA Controller Reset
(SLDMARST) register (Port 000Dh and the Master DMA Controller Reset (MSTDMARST)
register (Port 00DAh), respectively.

The GP-DMA controller is enabled after system reset, but all channels are masked off. This
is also the state after the DMA Controller Reset registers are written to. All channels default
to normal GP-DMA mode. The operating frequency defaults to 4 MHz.

14.6.1 Example Configurations

14.6.1.1 Configuring an 8-Bit Channel in Normal GP-DMA Mode

In normal GP-DMA mode, there are four 8-bit channels: 0, 1, 2, and 3. Any internal request
from the serial ports or any external request can be mapped to one of these channels. The
following steps configure an 8-bit channel.

1. Enable the DMA slave core.

2. Program Channel 4 to use cascade mode via the TRNMOD field in the Master DMA
Channel 4–7 Mode (MSTDMAMODE) register (Port 00D6h) and unmask Channel 4.

3. Program operating frequency if not using the default 4 MHz.

4. Map the request to a specific channel.

5. Program the memory address, transfer count, page address, and extended page
address of the associated channel.

6. Program DMA mode, type, address increment mode, and priority mode.

7. Unmask the channel request in the Slave DMA General Mask (SLDMAGENMSK)
register (Port 000Fh). At this point, the GP-DMA controller is ready to accept the external
request.
Élan™SC520 Microcontroller User’s Manual 14-19

GP Bus DMA Controller
14.6.1.2 Configuring a 16-Bit Channel in Normal GP-DMA Mode

In normal GP-DMA mode, there are three 16-bit channels: 5, 6 and 7. Any external request
can be mapped to one of these channels. The internal requests from the UART serial ports
cannot be mapped to a 16-bit channel because they only support 8-bit data transfer. The
following steps configure a 16-bit channel for an external request.

1. Enable the DMA master core.

2. Program the operating frequency if not using the default 4 MHz.

3. Map the external request to a specific channel.

4. Program the memory address, transfer count, page address, and extended page
address of the associated channel.

5. Program DMA mode, type, address increment mode, and priority mode.

6. Unmask the channel request in the Master DMA General Mask (MSTDMAGENMSK)
register (Port 00DEh). At this point, the GP-DMA controller is ready to accept the external
request.

14.6.1.3 Configuring an 8-Bit Channel in Enhanced GP-DMA Mode

In enhanced GP-DMA mode, channels 5, 6, and 7 can be configured to be 8-bit channels.
Any internal request from the UART serial ports can be mapped to Channel 3 for the
enhanced GP-DMA mode features. The 8-bit external devices can be mapped to channels
3, 5, 6, and 7. The following steps configure an 8-bit channel for an external request.

1. Enable the DMA slave core if using Channel 3, otherwise enable the master core.

2. If using Channel 3, program Channel 4 to use cascade mode via the TRNMOD field in
the Master DMA Channel 4–7 Mode (MSTDMAMODE) register (Port 00D6h) and
unmask Channel 4. Also, if using channels 5, 6, or 7, set the corresponding
CHx_ALT_SIZE bit in the GP-DMA Control (GPDMACTL) register (MMCR offset D80h).

3. Program the operating frequency if not using the default 4 MHz.

4. Enable enhanced GP-DMA mode.

5. Map the external request to a specific channel.

6. Program the memory address, transfer count, page address, and extended page
address of the associated channel.

7. Program the extended transfer count for any transfer larger than 64 Kbytes (optional).

8. Program DMA mode, type, address increment mode, and priority mode.

9. Program the next address, next transfer count, and enable buffer chaining mode
(optional).

10.Unmask the channel request in the General Mask register. At this point, the GP-DMA
controller is ready to accept the external request.
14-20 Élan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller
14.6.1.4 Configuring a 16-Bit Channel in Enhanced GP-DMA Mode

In enhanced GP-DMA mode, Channel 3 can be configured to be a 16-bit channel. The
16-bit external devices can be mapped to channel 3, 5, 6, and 7. The following steps
configure a 16-bit channel for an external request.

1. Enable the DMA slave core if using Channel 3, otherwise enable the master core.

2. If using Channel 3, program Channel 4 to use cascade mode via the TRNMOD field in
the Master DMA Channel 4–7 Mode (MSTDMAMODE) register (Port 00D6h) and
unmask Channel 4. Also, set the CH3_ALT_SIZE bit in the GP-DMA Control
(GPDMACTL) register (MMCR offset D80h).

3. Program the operating frequency if not using the default 4 MHz.

4. Enable enhanced GP-DMA mode.

5. Map the external request to a specific channel.

6. Program the memory address, transfer count, page address, and extended page
address of the associated channel.

7. Program the extended transfer count for any transfer larger than 128 Kbytes (optional).

8. Program DMA mode, type, address increment mode, and priority mode.

9. Program the next address, next transfer count, and enable buffer chaining mode
(optional).

10.Unmask the channel request in the General Mask register. At this point, the GP-DMA
controller is ready to accept the external request.
Élan™SC520 Microcontroller User’s Manual 14-21

GP Bus DMA Controller
14-22 Élan™SC520 Microcontroller User’s Manual

CHAPTER
15 P
C

ROGRAMMABLE INTERRUPT
ONTROLLER
15.1 OVERVIEW
The ÉlanSC520 microcontroller’s programmable interrupt controller (PIC) consists of three
industry-standard controllers, integrated with a highly programmable interrupt router.

The programmable interrupt controller is configured so that two controllers are cascaded
as slaves to a master controller that arbitrates interrupt requests from various sources to
the Am5x86 CPU. Interrupt channel 2 (IR2) and channel 5 (IR5) of the Master controller
are hard-wired to the outputs of the Slave 1 and Slave 2 controller respectively. In this
configuration, up to 22 maskable interrupt channels of different priorities are available to
the programmer.

The programmable interrupt router handles routing of the various external and internal
interrupt sources to the 22 interrupt channels of the three controllers. The interrupt router
can also be programmed to handle routing of various NMI sources to generate a non-
maskable interrupt to the CPU.

The ÉlanSC520 microcontroller’s programmable interrupt controller is designed to support
PC/AT-compatible features. Startup software can configure the programmable interrupt
router to route the sources to be used as ISA interrupts to the appropriate interrupt channels
of the Slave 1 and Master controllers.

PCI interrupts are level-sensitive, shareable, and typically implemented as open-drain
inputs. To support this, the programmable interrupt controller optionally allows the selection
of edge-triggered or level-sensitive interrupt detection on a per-channel basis, as an
alternative to the standard global selection of edge-triggered or level-sensitive detection on
all channels. This enhancement provides maximum flexibility in configuring a system
environment where mixed interrupt types are used.

Features of the ÉlanSC520 microcontroller’s programmable interrupt controller include:

■ 22 interrupt priority levels plus NMI

■ Programmable interrupt router capable of mapping interrupt sources (internal and
external) to different priorities or NMI

■ 15 general-purpose external interrupt requests (GPIRQ10–GPIRQ0 and INTA–INTD),
programmable to be edge- or level-sensitive

■ 19 internal interrupt requests programmable to be edge- or level-sensitive

■ Ability to assert any of the interrupt priority levels, including NMI, via software

■ Configurable to provide software compatibility with PC/AT interrupt controller

■ Programmable interrupt polarity inversion for external sources

■ Am5x86 CPU floating point error (ferr) interrupt clear, ignne function
Élan™SC520 Microcontroller User’s Manual 15-1

Programmable Interrupt Controller
15.2 BLOCK DIAGRAM
Figure 15-1 is a block diagram of the ÉlanSC520 microcontroller’s programmable interrupt
controller showing interrupt sources and routing.

The programmable interrupt controller consists of a system of three individual interrupt
controllers (Master, Slave 1 and Slave 2), each of which has eight interrupt channels. Two
of the interrupt channels on the Master controller are used to cascade the slave controllers.
This allows a total of 22 interrupt priority levels in the ÉlanSC520 microcontroller. The priority
levels are numbered from P1–P22 to indicate which priority levels are assigned to slave or
master controllers, with P1 being the highest and P22 the lowest priority.

15.3 SYSTEM DESIGN
Table 15-1 shows PIC signals shared with other interfaces. When enabled, the multiplexed
signals shown in Table 15-1 either disable or alter any other function that uses the same pin.

The GPIRQ10–GPIRQ0 and INTA–INTD signals are asserted when a peripheral requires
interrupt service. The dedicated INTA–INTD pins are the same type of interrupt as the
GPPIRQx signals. They are named INTx to match the common PCI interrupt naming
convention.

Table 15-1 Programmable Interrupt Controller Signals Shared with Other Interfaces

PIO
(Default)
Function

Interface
Function Control Bit Register

PIO23 GPIRQ0 PIO23_FNC PIO31–PIO16 Pin Function Select
(PIOPFS31_16) register
(MMCR offset C22h)

PIO22 GPIRQ1 PIO22_FNC

PIO21 GPIRQ2 PIO21_FNC

PIO20 GPIRQ3 PIO20_FNC

PIO19 GPIRQ4 PIO19_FNC

PIO18 GPIRQ5 PIO18_FNC

PIO17 GPIRQ6 PIO17_FNC

PIO16 GPIRQ7 PIO16_FNC

PIO15 GPIRQ8 PIO15_FNC PIO15–PIO0 Pin Function Select
(PIOPFS15_0) register (MMCR offset C20h)PIO14 GPIRQ9 PIO14_FNC

PIO13 GPIRQ10 PIO13_FNC
15-2 Élan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller
Figure 15-1 Programmable Interrupt Controller (PIC) Block Diagram

IR7 (P22)
IR6 (P21)
IR5
IR4 (P12)
IR3 (P11)
IR2
IR1 (P2)
IR0 (P1)

Master
Controller

INT

CPU

IR7 (P10)
IR6 (P9)
IR5 (P8)
IR4 (P7)
IR3 (P6)
IR2 (P5)
IR1 (P4)
IR0 (P3)

Slave 1
Controller

INT

IR7 (P20)
IR6 (P19)
IR5 (P18)
IR4 (P17)
IR3 (P16)
IR2 (P15)
IR1 (P14)
IR0 (P13)

Slave 2
Controller

INT

GPIRQ0
GPIRQ1
GPIRQ2
GPIRQ3
GPIRQ4
GPIRQ5
GPIRQ6
GPIRQ7
GPIRQ8
GPIRQ9
GPIRQ10

INTA
INTB
INTC
INTD

gp_tmr0_irq
gp_tmr1_irq
gp_tmr2_irq

pit_tmr0_irq
pit_tmr1_irq
pit_tmr2_irq

uart1_irq

rtc_irq

Timers

UARTs

RTC

WDT

SSI ssi_irq

SDRAM
ecc_irq

Control signals

Configuration
Registers

Control
Logic

Interrupt

Router

intr

nmi

wdt_irq

uart2_irq

irq_p1
irq_p2

s1_irq
P

ro
gr

am
m

ab
le

 In
ve

rs
io

n
Lo

gi
c

irq_p3
irq_p4
irq_p5
irq_p6
irq_p7
irq_p8
irq_p9
irq_p10

irq_p11
irq_p12

irq_p13
irq_p14
irq_p15
irq_p16
irq_p17
irq_p18
irq_p19
irq_p20

irq_p21
irq_p22

1

0

s2_irq 1

0

irq[22:1]_trig

pci_irqPCI Host
pci_nmiBridge

GP-DMA
gpdma_bc_irq 22

nmi_trig

s2
s5

s5

s2

ecc_nmi

nmi_out

nmi_enb

ICE

ADU wpv_irq

ice_irq

ferrferr_irq

Élan™SC520 Microcontroller

Notes:
The priorities of the 22 channels are shown, with P1 being the highest and P22 the lowest priority.

Programmable Interrupt
Controller

Numeric
Error
Logic

Arbiter
Élan™SC520 Microcontroller User’s Manual 15-3

Programmable Interrupt Controller
15.4 REGISTERS
The programmable interrupt controller (PIC) is controlled by the registers listed in Table 15-2
and Table 15-3.

Table 15-2 Programmable Interrupt Controller Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

PIO15–PIO0 Pin Function
Select

PIOPFS15_0 C20h PIO or interface function select: GPIRQ10–
GPIRQ8

PIO31–PIO16 Pin Function
Select

PIOPFS31_16 C22h PIO or interface function select: GPIRQ7–
GPIRQ0

Interrupt Control PICICR D00h Global interrupt mode enables, global NMI
enable, NMI completion control

Master PIC Interrupt Mode MPICMODE D02h Edge- or level-sensitive interrupt mode select
per channel

Slave 1 PIC Interrupt Mode SL1PICMODE D03h Edge- or level-sensitive interrupt mode select
per channel

Slave 2 PIC Interrupt Mode SL2PICMODE D04h Edge- or level-sensitive interrupt mode select
per channel

Software Interrupt 16–1
Control

SWINT16_1 D08h Software interrupt generation control (priority
levels 1–16)

Software Interrupt 22–17/NMI
Control

SWINT22_17 D0Ah Software interrupt generation control (priority
level 17–22), software NMI generation to the
CPU

Interrupt Pin Polarity INTPINPOL D10h Polarity of external interrupt sources (INTA–
INTD and GPIRQ10–GPIRQ0)

PCI Host Bridge Interrupt
Mapping

PCIHOSTMAP D14h System arbiter and PCI Host Bridge interrupt
mapping to any of 22 available interrupt
channels or NMI, PCI NMI enable control

ECC Interrupt Mapping ECCMAP D18h ECC interrupt mapping to any of 22 available
interrupt channels or NMI, ECC NMI enable
control

GP Timer 0 Interrupt Mapping GPTMR0MAP D1Ah GP Timer 0 interrupt mapping to any of 22
available interrupt channels or NMI

GP Timer 1 Interrupt Mapping GPTMR1MAP D1Bh GP Timer 1 interrupt mapping to any of 22
available interrupt channels or NMI

GP Timer 2 Interrupt Mapping GPTMR2MAP D1Ch GP Timer 2 interrupt mapping to any of 22
available interrupt channels or NMI

PIT 0 Interrupt Mapping PIT0MAP D20h PIT 0 interrupt mapping to any of 22 available
interrupt channels or NMI

PIT 1 Interrupt Mapping PIT1MAP D21h PIT 1 interrupt mapping to any of 22 available
interrupt channels or NMI

PIT 2 Interrupt Mapping PIT2MAP D22h PIT interrupt mapping to any of 22 available
interrupt channels or NMI
15-4 Élan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller
UART 1 Interrupt Mapping UART1MAP D28h UART 1 interrupt mapping to any of 22 available
interrupt channels or NMI

UART 2 Interrupt Mapping UART2MAP D29h UART 2 interrupt mapping to any of 22 available
interrupt channels or NMI

PCI Interrupt A Mapping PCIINTAMAP D30h PCI INTA mapping to any of 22 available
interrupt channels or NMI

PCI Interrupt B Mapping PCIINTBMAP D31h PCI INTB mapping to any of 22 available
interrupt channels or NMI

PCI Interrupt C Mapping PCIINTCMAP D32h PCI INTC mapping to any of 22 available
interrupt channels or NMI

PCI Interrupt D Mapping PCIINTDMAP D33h PCI INTD mapping to any of 22 available
interrupt channels or NMI

DMA Buffer Chaining
Interrupt Mapping

DMABCINTMAP D40h DMA buffer chain interrupt mapping to any of 22
available interrupt channels or NMI

SSI Interrupt Mapping SSIMAP D41h SSI interrupt mapping to any of 22 available
interrupt channels or NMI

Watchdog Timer Interrupt
Mapping

WDTMAP D42h WDT interrupt mapping to any of 22 available
interrupt channels or NMI

RTC Interrupt Mapping RTCMAP D43h RTC interrupt mapping to any of 22 available
interrupt channels or NMI

Write-Protect Violation
Interrupt Mapping

WPVMAP D44h Write-protect violation to PAR interrupt mapping
to any of 22 available interrupt channels or NMI

AMDebug Technology RX/TX
Interrupt Mapping

ICEMAP D45h AMDebug technology JTAG port receive or
transmit interrupt mapping to any of 22 available
interrupt channels or NMI

Floating Point Error Interrupt
Mapping

FERRMAP D46h Floating point error interrupt mapping to any of
22 available interrupt channels or NMI

GPIRQ0 Interrupt Mapping GP0IMAP D50h GPIRQ0 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ1 Interrupt Mapping GP1IMAP D51h GPIRQ1 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ2 Interrupt Mapping GP2IMAP D52h GPIRQ2 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ3 Interrupt Mapping GP3IMAP D53h GPIRQ3 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ4 Interrupt Mapping GP4IMAP D54h GPIRQ4 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ5 Interrupt Mapping GP5IMAP D55h GPIRQ5 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ6 Interrupt Mapping GP6IMAP D56h GPIRQ6 interrupt mapping to any of 22 available
interrupt channels or NMI

Table 15-2 Programmable Interrupt Controller Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR
Offset
Address Function
Élan™SC520 Microcontroller User’s Manual 15-5

Programmable Interrupt Controller
GPIRQ7 Interrupt Mapping GP7IMAP D57h GPIRQ7 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ8 Interrupt Mapping GP8IMAP D58h GPIRQ8 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ9 Interrupt Mapping GP9IMAP D59h GPIRQ9 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ10 Interrupt Mapping GP10IMAP D5Ah GPIRQ10 interrupt mapping to any of 22
available interrupt channels or NMI

Table 15-3 Programmable Interrupt Controller Registers—Direct-Mapped

Register Mnemonic I/O Address Function

Master PIC Interrupt Request
Slave 2 PIC Interrupt Request
Slave 1 PIC Interrupt Request

MPICIR
S2PICIR
S1PICIR

0020h
0024h
00A0h

Real-time status of interrupt request assertion

Master PIC In-Service
Slave 2 PIC In-Service
Slave 1 PIC In-Service

MPICISR
S2PICISR
S1PICISR

0020h
0024h
00A0h

Interrupt request service status

Master PIC Initialization
Control Word 1 (ICW1)
Slave 2 PIC Initialization
Control Word 1 (ICW1)
Slave 1 PIC Initialization
Control Word 1 (ICW1)

MPICICW1
S2PICICW1
S1PICICW1

0020h
0024h
00A0h

Interrupt mode, address interval, cascade or
single PIC configuration, ICW4 control

Master PIC Operation Control
Word 2 (OCW2)
Slave 2 PIC Operation
Control Word 2 (OCW2)
Slave 1 PIC Operation
Control Word 2 (OCW2)

MPICOCW2
S2PICOCW2
S1PICOCW2

0020h
0024h
00A0h

Interrupt EOI, priority rotation control, EOI level
select, control to access OCW2 and OCW3

Master PIC Operation Control
Word 3 (OCW3)
Slave 2 PIC Operation
Control Word 3 (OCW3)
Slave 1 PIC Operation
Control Word 3 (OCW3)

MPICOCW3
S2PICOCW3
S1PICOCW3

0020h
0024h
00A0h

Poll command, read register command, special
mask mode

Master PIC Initialization
Control Word 2 (ICW2)
Slave 2 PIC Initialization
Control Word 2 (ICW2)
Slave 1 PIC Initialization
Control Word 2 (ICW2)

MPICICW2
S2PICICW2
S1PICICW2

0021h
0025h
00A1h

Base interrupt vector number

Table 15-2 Programmable Interrupt Controller Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR
Offset
Address Function
15-6 Élan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller
15.5 OPERATION

15.5.1 Interrupt Flow Sequence
The following describes the typical interrupt flow sequence in a system that uses the
ÉlanSC520 microcontroller’s PIC.

1. When a device generates an interrupt request that translates to either a rising edge or
level High at the mapped interrupt channel, the corresponding Interrupt Request (xIR)
register bit is set.

2. The PIC performs a check on its internal Interrupt Mask (xINTMSK) register and In-
Service (xISR) register. If this requesting interrupt is not masked off and if another
interrupt of the same or higher priority is not in progress, the Master controller requests
an interrupt from the CPU.

3. If the IF bit is set in the CPU’s Flags register (via the STI instruction), the CPU
acknowledges the interrupt. At this time, the PIC places the 8-bit interrupt vector of the
currently active highest-priority interrupt request on the data bus, and the corresponding
In-Service (xISR) register bit is set in the PIC. If the IF bit is disabled, the interrupt is
ignored.

Note that the interrupt request must remain active at least until the first CPU acknowledge
pulse occurs before it is considered as a valid interrupt request. If no interrupt request is
active when the acknowledgement occurs, then the affected master or slave PIC returns
the interrupt entry number associated with its IR7 input. However, in this circumstance no
In-Service (xISR) register bit is set. This is known as the spurious interrupt condition and
can be detected by the interrupt handler for priority level P22 (for the Master controller),
P10 (for the Slave 1 controller), and P20 (for the Slave 2 controller). The Interrupt Request
(xIR) register bit is always set for the duration of the interrupt request, regardless of whether
it is a spurious or a valid interrupt request.

Master PIC Initialization
Control Word 3 (ICW3)
Slave 2 PIC Initialization
Control Word 3 (ICW3)
Slave 1 PIC Initialization
Control Word 3 (ICW3)

MPICICW3
S2PICICW3
S1PICICW3

0021h
0025h
00A1h

Slave cascading channel select (MPICICW3)

Master PIC Initialization
Control Word 4 (ICW4)
Slave 2 PIC Initialization
Control Word 4 (ICW4)
Slave 1 PIC Initialization
Control Word 4 (ICW4)

MPICICW4
S2PICICW4
S1PICICW4

0021h
0025h
00A1h

Nested mode, EOI mode

Master PIC Interrupt Mask
(OCW1)
Slave 2 PIC Interrupt Mask
(OCW1)
Slave 1 PIC Interrupt Mask
(OCW1)

MPICINTMSK
S2PICINTMSK
S1PICINTMSK

0021h
0025h
00A1h

Channel interrupt mask

Floating Point Error Interrupt
Clear

FPUERRCLR F0h Clear FPU error interrupt

Table 15-3 Programmable Interrupt Controller Registers—Direct-Mapped (Continued)

Register Mnemonic I/O Address Function
Élan™SC520 Microcontroller User’s Manual 15-7

Programmable Interrupt Controller
4. The CPU reads the interrupt vector and services the interrupt corresponding to the vector
read during the acknowledgment.

5. Before further interrupts for the same priority level can be serviced, an EOI (end-of-
interrupt must be issued to the PIC to reset the In-Service (xISR) register bit of the
currently active interrupt. This can be done in one of two ways.

– In automatic EOI (AEOI) mode, the In-Service (xISR) register bit is reset at the end
of the acknowledgement cycle from the CPU. Note that AEOI mode does not support
polling, and it can only be used in a master configuration, not in a slave configuration.

– When AEOI is disabled, the interrupt handler must clear the In-Service (xISR) register
bit by issuing a EOI command at the end of the interrupt service routine.

For an interrupt request coming from either one of the slave controllers, the slave controller
generates an interrupt to the Master controller and asserts its corresponding Interrupt
Request (xIR) register bit at the Master controller. The Master controller first determines if
there is a higher priority interrupt that is currently being serviced. If there is not, it requests
an interrupt from the CPU, as described in step 2. Otherwise, the higher priority interrupt
service routine continues uninterrupted until another interrupt request is received from the
PIC.

There are two ways in which an interrupt request from a slave controller differs from the
interrupt sequence mentioned above. Steps 3–5 are similar in this case, but because the
Interrupt Request (xIR) register bit set by the slave output is the highest priority interrupt,
the Master controller now commands the slave controller to supply the interrupt vector to
the CPU.

The other difference is that two EOIs are required: one to the Master controller to reset its
highest priority In-Service (xISR) register bit (set by the interrupt request) and the other to
the slave to reset its highest priority In-Service (xISR) register bit. The order of these two
EOIs does not matter.

15.5.2 Interrupt Sources
The interrupt sources in the ÉlanSC520 microcontroller can be divided into four distinct
categories:

■ Externally-generated hardware interrupts from interrupt input pins

■ Internally-generated hardware interrupts from peripherals

■ Internally-generated hardware interrupts from interrupt trigger bits

■ Software interrupts (generated with the INT instructions)

This section discusses all of these except software interrupts. Note that the first two
hardware interrupt sources listed above can be mapped to the Am5x86 CPU’s NMI interrupt
input. NMI is discussed in “Non-Maskable Interrupts and Routing” on page 15-14. Software
interrupts work in the standard x86 fashion and are not discussed in this manual.

15.5.2.1 Hardware-Generated Interrupts

In the ÉlanSC520 microcontroller, there are 57 hardware interrupt sources:

■ 23 can come from control bits in the Software Interrupt 16–1 Control (SWINT16_1)
register (MMCR offset D08h) and the Software Interrupt 22–17/NMI Control
(SWINT22_17) register (MMCR offset D0Ah).

■ 15 can come from the 15 external interrupt pins (GPIRQ10–GPIRQ0 and INTA–INTD)
15-8 Élan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller
■ 19 are generated from internal peripheral sources, including:

– PCI host bridge/system arbiter (interrupt)

– PCI host bridge (NMI)

– SDRAM ECC single-bit error (interrupt)

– SDRAM ECC multi-bit error (NMI)

– Six timers (three GP timers and three PIT timers)

– Two UARTS

– GP-DMA buffer chaining

– SSI

– Watchdog timer

– RTC

– Write-protection violation in Programmable Address Region (PAR) register

– AMDebug interface JTAG port receive or transmit activity

– Floating point error

As shown in Figure 15-2 on page 15-9, of the19 internal peripheral sources:

■ 17 can be used for maskable interrupts. The two sources that cannot be configured as
a maskable interrupt are the SDRAM ECC multi-bit error NMI source and the PCI host
bridge’s separate NMI-only source.

■ 18 can be routed to the Am5x86 CPU’s NMI input. The only source that cannot be used
to generate an NMI is the SDRAM ECC single-bit error source.

The internal PCI host bridge and the SDRAM controller each generate a maskable interrupt
source and an NMI interrupt source. However, only the internal PCI host bridge interrupt
source can be mapped to generate either a maskable interrupt or an NMI. The SDRAM
controller’s maskable interrupt source cannot be mapped to generate an NMI.

Figure 15-2 Interrupt Sources

External
Sources

15

Internal

Sources

17 for maskable interrupt

Bits

23

0

1
polarity[0..14]

src_enb[0..14]

src_enb[15..31]

irq[1..22]_trig

15

17 (18 for NMI)

1 of 23

Control

Peripheral

To a specific controller’s
interrupt channel (x22)
or NMI

Trigger

(nmi_trig)

(18 for NMI)

(nmi_enb[15..32] for NMI)

(nmi_enb[0..14] for NMI)
Élan™SC520 Microcontroller User’s Manual 15-9

Programmable Interrupt Controller
15.5.3 Interrupt Source Routing
Figure 15-3 on page 15-11 shows the implementation of the interrupt router. None of the
interrupt enable signals are shared across the interrupt channels.

Each of the 32 hardware interrupt sources that come from peripherals (15 external and 17
internal) is fed into each of the 22 OR gates for the 22 interrupt channels. Each of the 22
OR gates also has an additional input from the one of the Software Interrupt x Control
(SWINTx) registers.

When set, the interrupt trigger control bits cause their associated interrupt signals to be
asserted at the PIC. These bits are under complete control of software. During normal
operation, hardware does not set or clear these bits. A reset does clear these bits.

All incoming interrupt requests are arbitrated by the interrupt controllers based on the priority
levels shown in Figure 15-1 on page 15-3, with the highest priority interrupt being serviced
first. There is a mask bit associated with each of the 22 interrupt channels, providing a
means for each interrupt channel to be masked individually.

Multiple interrupt requests can be shared on a common interrupt channel. This is discussed
further in “Interrupt Sharing” on page 15-13.

After reset, each of the interrupt sources must be mapped to the desired interrupt channel.
This is usually done by the initialization software. It can be done during normal operation
as well. The default power-on-reset state for these mapping bits is cleared; the programmer
has to specifically map the individual interrupt requests to the desired interrupt channels.

15.5.3.1 Polarity Inversion of Interrupt Requests

Since each of the three individual interrupt controllers can only recognize either a Low-to-
High edge-triggered or an active High level interrupt request, a programmable inversion is
available for each of the 15 external interrupt requests to support active Low interrupt
sources. For example, a PCI generated interrupt request that is active Low must be inverted
within the ÉlanSC520 microcontroller prior to reaching the PIC channel to which it is mapped
before the controller can recognize a valid interrupt request.

All internally-generated interrupt signals have the correct active High polarity and need no
inversion via software. These internally-generated signals include those for the GP-DMA
controller, PCI host bridge system arbiter, timers, UARTs, SSI, watchdog timer, SDRAM
controller, RTC, AMDebug technology interface, floating-point error, and address mapping,
as well as internally-generated NMI signals.
15-10 Élan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller
Figure 15-3 Interrupt Source Routing

irq_p1

pit_tmr0_irq

pit_timr1_irq

pit_tmr2_irq

gp_tmr0_irq

gp_tmr1_irq

gp_tmr2_irq

uart1_irq

uart2_irq

ecc_irq

wdt_irq

rtc_irq

0
1

GPIRQ0

polarity0

irq_p2
irq_p3

irq_p22

Channel 1 Router
Channel 2 Router

Channel 3 Router

Channel 22 Router

src_enb0

src_enb15

src_enb16

src_enb17

src_enb18

src_enb19

src_enb20

src_enb21

src_enb22

src_enb23

src_enb24

src_enb25

src_enb26

irq[1]_trig

pci_irq
src_enb27

0
1

GPIRQ10

polarity10
src_enb10

1
0

INTA

polarity11
src_enb11

1
0

INTD

polarity14
src_enb14

ssi_irq

wpv_irq
src_enb28

src_enb29

gpdma_bc_irq

ice_irq
src_enb30

src_enb31
ferr_irq

Notes:
All the 32 hardware interrupt sources are common to all the 22 channel routers. The polarity control signal per
external interrupt source is also common to all the 22 channel routers. The decoder for the enable signals is not
shown; only the decoded representation of the signals is shown. Each channel router has its unique internally-
generated hardware interrupt trigger, and only irq[1]_trig is shown for channel router 1.
Élan™SC520 Microcontroller User’s Manual 15-11

Programmable Interrupt Controller
15.5.3.2 PC/AT Compatibility

For PC/AT-compatible systems, the microcontroller hardware does not automatically map
legacy ISA interrupt signals to their respective Slave 1 and Master controllers. The user’s
software must ensure that these interrupts are routed correctly to the appropriate PC/AT-
compatible channels. Table 15-4 shows the interrupt channel assignment implemented in
a PC/AT-compatible system.

15.5.3.3 Floating Point Errors

The ÉlanSC520 microcontroller supports DOS-compatible floating point error handling via
the standard Floating Point Error Interrupt Clear (FPUERRCLR) register (Port 00F0h), as
in legacy PC/AT systems. PC/AT systems control floating point error reporting externally
through the PC’s interrupt controller, rather than through the internal CPU interrupt. In this
case, an interrupt request is generated and typically routed to IRQ13 (although it is
programmable via the ÉlanSC520 microcontroller’s PIC). This allows an interrupt handler
to write to the Floating Point Error Interrupt Clear (FPUERRCLR) register to clear the
interrupt request and force the CPU’s ignore numeric error (ignne) signal active, thus
enabling execution of floating-point instructions within the interrupt handler. Once the FPU
error condition is cleared by the handler, the floating point error (ferr) signal is deasserted,

Table 15-4 PC/AT Interrupt Channel Mapping

PC/AT-Compatible System ÉlanSC520 Microcontroller

IRQ I/O Device Priority Interrupt Source to Map

IRQ0 System Timer 0 P1 Internal (PIT 0 interrupt)

IRQ1 Keyboard interface P2 External via GPIRQx pin

IRQ21, 2

Notes:
1. In the ÉlanSC520 microcontroller’s PIC, interrupt channels 2 and 5 of the Master interrupt con-
troller are hard-wired to the outputs of Slave 1 and Slave 2 interrupt controllers, respectively. The
cascading of the slave controllers is fixed in order to simplify the system interrupt programming
model.
2. When configured for PC/AT-compatible operation, the Slave 1 interrupt controller is cascaded and
the Slave 2 controller is bypassed. In this configuration, IRQ2 is not available, and interrupt priority
P13 acts as IRQ5. For configuration details see “PC/AT Compatibility” on page 15-12.

Slave controller cascading — Cascaded from Slave 1 controller

IRQ3 UART 2 P11 Internal (UART 2 interrupt)

IRQ4 UART 1 P12 Internal (UART 1 interrupt)

IRQ51, 2 Parallel port 2 P13 External via GPIRQx pin

IRQ6 Floppy disk controller P21 External via GPIRQx pin

IRQ7 Parallel port 1 P22 External via GPIRQx pin

IRQ8 Real-time clock P3 Internal (RTC interrupt)

IRQ9 Any 8- or 16-bit ISA device P4 External via GPIRQx pin

IRQ10 Any 8- or 16-bit ISA device P5 External via GPIRQx pin

IRQ11 Any 8- or 16-bit ISA device P6 External via GPIRQx pin

IRQ12 Mouse interface P7 External via GPIRQx pin

IRQ13 Numeric coprocessor P8 Internal (floating point error interrupt)

IRQ14 Any 8- or 16-bit ISA device P9 External via GPIRQx pin

IRQ15 Any 8- or 16-bit ISA device P10 External via GPIRQx pin
15-12 Élan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller
and the internal ignne signal is subsequently deasserted. The interrupt request and ignne
signal are also cleared by a system reset.

15.5.3.4 Disabling the Slave Controllers

Each of the slave controllers can also be disabled via software, and interrupt requests can
be easily routed to the associated interrupt channels of the Master controller. For example,
if the Slave 1 controller is disabled, interrupt request irq_p3 that is hooked to the priority 3
input of the same controller is visible to the Master controller channel input IR2. Similarly,
if the Slave 2 controller is also disabled, interrupt request irq_p13 is visible to the Master
controller channel input IR5 (see Figure 15-1 on page 15-3). In other words, both of these
interrupt requests would bypass the slave controllers. In this manner, a very simple interrupt
configuration is realized via software, in which eight or fewer interrupt priorities can be
implemented using just the Master controller. As such, only one EOI needs to be generated
to minimize software overhead and improve latency of the interrupt cycle.

For more information about this topic, see “Software Considerations” on page 15-18.

15.5.4 Edge-Triggered or Level-Sensitive Interrupts
Each of the 22 interrupt priority levels can be configured as an edge-triggered or level-
sensitive interrupt. This departs from the standard implementation of the individual interrupt
controller, whereby a global bit for each controller determines the interrupt type for all the
incoming interrupt requests.

In the ÉlanSC520 microcontroller, each individual interrupt controller is enhanced to provide
this interrupt type recognition capability on a per channel basis. A bit is provided for each
of the 22 interrupt channels for interrupt type programmability. The selection between global
and per-channel interrupt mode is done via software. However, the original global bit is
retained for the individual controllers, such that all of the interrupts for each device can be
restored globally as either edge- or level-sensitive. This is useful for PC/AT compatibility,
especially for the Master and Slave 1 controllers.

Regardless of whether the controller is programmed for edge-sensitive or level-sensitive
mode, the interrupt request source must continue asserting the interrupt request until the
CPU acknowledges the interrupt. Because this acknowledgment is not viewable externally
to the ÉlanSC520 microcontroller, it is recommended that external interrupt sources provide
a mechanism through which the interrupt service routine can deassert the interrupt request
via software.

15.5.5 Interrupt Sharing
The controllers support sharing interrupt inputs from multiple interrupt sources. Interrupt
sharing is applicable to all internal and external interrupt sources. To put it simply, since
OR gates are used to map interrupt sources to interrupt channels, it is easy to map more
than one interrupt source to a single interrupt channel. This is shown in Figure 15-3.

Level-sensitive interrupt sharing is typically implemented by tying multiple interrupt outputs
using an open drain or open collector output to a single interrupt input pin. Of course, this
can be done externally to the ÉlanSC520 microcontroller in the conventional manner.

However, interrupt sharing can also be easily configured internally to the microcontroller,
merely by mapping multiple interrupt sources to the same interrupt channel. The channel’s
OR gates inherently “share” the interrupt channel among multiple interrupts. In this scenario,
an interrupt-pending status bit must be implemented in each device. All internal peripherals
have interrupt status bits.
Élan™SC520 Microcontroller User’s Manual 15-13

Programmable Interrupt Controller
Since programmable inversion of the interrupt signal is available, the external device can
generate an interrupt to the ÉlanSC520 microcontroller by either driving the interrupt
request line Low and allowing a pullup resistor to generate the rising edge or by actively
driving the line Low from its default High inactive state through a pullup resistor (as in PCI
interrupt generation).

Sharing edge-triggered interrupts in the ÉlanSC520 microcontroller is not recommended.

For more information about this topic, see “Software Considerations” on page 15-18.

15.5.6 Non-Maskable Interrupts and Routing
A unique feature of the ÉlanSC520 microcontroller’s PIC is its ability to route most of its
hardware interrupt sources via software to generate a non-maskable interrupt (NMI) to the
CPU.

■ With the exception of the internally-generated ECC interrupt from the SDRAM controller,
all the other interrupt sources can be routed to the Am5x86 CPU’s NMI input.

■ The PCI host bridge and SDRAM controller each generate a separate and distinct NMI
interrupt source to the PIC. The interrupt source can only generate an NMI and not a
maskable interrupt to the CPU.

There are 34 interrupt sources for NMI generation to the CPU:

■ 15 external interrupts

■ 18 internally-generated interrupts

■ 1 software NMI source

Figure 15-4 on page 15-15 shows the logical implementation of NMI generation in the
ÉlanSC520 microcontroller.

15.5.6.1 Sharing NMIs

NMIs can be shared in the ÉlanSC520 microcontroller. NMI sources are routed logically to
an OR gate, as shown in Figure 15-4 on page 15-15.

Each individual interrupt source is gated by an enable signal to selectively allow it to be
shared with the other interrupt sources. Each of these enable signals is controlled via the
Interrupt Mapping (xMAP) registers and is enabled by programming its interrupt routing bits
to 11111b. An NMI Enable (NMI_ENB) bit in the Interrupt Control (PICICR) register (MMCR
offset D00h) provides the mechanism to prevent all NMIs from reaching the CPU. This bit
has been moved from the PC/AT-compatible location (see “Legacy NMI Enable Bit Moved”
on page 20-10 for more details). NMIs are disabled on system and soft reset and must be
enabled via setting the NMI_ENB bit before use.

It is recommended that sharing NMIs be done using level-sensitive NMIs only. All NMIs
should be treated similarly to the maskable interrupt sources. All NMIs once asserted should
remain asserted until cleared by software. The NMI_DONE bit located in the Interrupt
Control (PICICR) register facilitates NMI sharing. This bit is visible to all NMI handlers, and
the currently executing NMI handler should clear the NMI source prior to asserting the
NMI_DONE bit. NMI handler software should write a 1 to the self-clearing NMI_DONE bit
immediately before executing the IRET instruction to exit from the handler. Setting the
NMI_DONE bit deasserts the NMI signal to the CPU for a brief time before allowing any
other pending NMI requests to be serviced, in order to satisfy NMI timing requirements of
the CPU.

Sharing edge-triggered NMIs in the ÉlanSC520 microcontroller is not recommended.
15-14 Élan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller
Figure 15-4 NMI Routing

pit_tmr0_irq

pit_tmr1_irq

pit_tmr2_irq

gp_tmr0_irq

gp_tmr1_irq

gp_tmr2_irq

uart1_irq

uart2_irq

ssi_irq

ecc_nmi

wdt_irq

rtc_irq

GPIRQ0

polarity0

GPIRQ10

polarity10

nmi_enb0

nmi_enb10

INTA

polarity11
nmi_enb11

INTD

polarity14
nmi_enb14

nmi_enb15

nmi_enb16

nmi_enb17

nmi_enb18

nmi_enb19

nmi_enb20

nmi_enb21

nmi_enb22

nmi_enb23

nmi_enb24

nmi_enb25

nmi_enb26

NMI to CPU

0
1

0
1

0

1

0

1

pci_irq

gpdma_bc_irq
nmi_enb28

nmi_enb29

nmi_trig

pci_nmi
nmi_enb27

nmi_out

nmi_enb

wpv_irq

ice_irq
nmi_enb30

nmi_enb31
ferr_irq

nmi_enb32

Notes:
The polarity control signal per external interrupt source is common to those used across the channel routers. The
gating NMI enable bits for each source are controlled via the interrupt mapping registers. The NMI conditioning logic
to implement NMI sharing is not shown in this figure
Élan™SC520 Microcontroller User’s Manual 15-15

Programmable Interrupt Controller
15.5.7 Priority Types
Each individual interrupt controller prioritizes interrupt requests by their IR number, as
shown in Figure 15-1 on page 15-3. This places IR0 as the highest priority and IR7 the
lowest, which is the default ordering.

In a cascaded environment, the full 22 priority level is as shown in Figure 15-1, with P1
being the highest and P22 the lowest priority. As a result, if two or more interrupt requests
appear simultaneously, the higher priority interrupt is serviced first and the lower priority
interrupt is pending.

The interrupt controller supports nested interrupts. The depth level of nesting affects system
performance, and the programmer must implement this with care.

The interrupt controller also supports specific and automatic rotation types.

■ In specific rotation, the lowest priority can be programmed in the individual controller,
thus fixing all the other priorities.

– For example, in Figure 15-1, if P5 is programmed to be the lowest priority, then P6 of
Slave 1 controller would be the highest priority within this controller.

– In this case, the priority order starting with the highest priority level would follow as:
P1–P2 (Master), P6–P10 (Slave 1), P3–P5 (Slave 1), P11–P12 (Master), P13–P20
(Slave 2), P21–P22 (Master). This is assuming that the Master and Slave 2 controllers
are each programmed with IR7 as the lowest priority.

– In fact, the implementation shown in Figure 15-1 is of a fixed priority scheme (with
priority ordering of P1–P22) and is a variation of the specific rotation type.

■ In automatic rotation scheme, all priority levels within the controller are treated as equal.

– In this mode, an interrupt request after being serviced receives the lowest priority, so
that the same device requesting an interrupt is queued.

– In the worst scenario, the device would have to wait until each of the seven other
devices is serviced at most one time.

15.5.8 Configuration Information

15.5.8.1 Programming

The initialization sequence of the PIC consists of writing a sequence of two to four bytes
to each controller. The first initialization byte is written to the lower address of the controller,
(020h for the Master, 0A0h for Slave 1, and 024h for Slave 2), and all subsequent initialization
bytes are written to the upper address of the controller (021h for the Master, 0A1h for Slave
1, and 025h for Slave 2).

1. The first initialization byte, the Initialization Control Word 1 (xICW1) register, notifies the
controller that an initialization sequence is starting. This register also controls the type
of interrupt-triggering (edge- or level-sensitive), whether the controller is in a cascaded
environment or alone, and whether the fourth initialization byte, the Initialization Control
Word 4 (xICW4) register, is required or not.

2. The second byte, the Initialization Control Word 2 (xICW2) register, contains the vector
offset for the controller. For PC/AT-compatible interrupts, xICW2 should be 08h for the
Master controller and 70h for the Slave 1 controller (Slave 2 is not used in PC/AT-
compatible systems).

3. The third byte, the Initialization Control Word 3 (xICW3) register is written only if xICW1
indicates that the controller is in a cascaded environment. For the Master controller, it
15-16 Élan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller
identifies which IR inputs are hooked up to slave controllers. For the slave controllers,
it identifies the IR pin on the master to which that particular slave is connected.

It is important to note that the ÉlanSC520 microcontroller’s PIC can be configured as a
stand-alone master controller, one slave cascade (either Slave 1 or Slave 2), or cascading
with both slave controllers.

– To configure it as a stand-alone Master controller where 8 or fewer interrupt requests
are available to the user, bits 2 and 5 must be cleared to 0 in the Master PIC Initialization
Control Word 3 (MPICICW3) register (Port 0021h).

– To configure it as a Slave 1 only cascade, the S2 and S5 bits must be set and cleared
respectively in the Master PIC Initialization Control Word 3 (MPICICW3) register (Port
0021h).

– For Slave 2 cascade only configuration, the S2 and S5 bits must be cleared and set
respectively in the Master PIC Initialization Control Word 3 (MPICICW3) register (Port
0021h).

– To configure cascading using both the slave controllers, the S2 and S5 bits must be
set in the Master PIC Initialization Control Word 3 (MPICICW3) register (Port 0021h).

4. Finally, the Initialization Control Word 4 (xICW4) register (written only if indicated in the
Initialization Control Word 1 (xICW1) register) controls whether EOIs are generated
manually or automatically. It also contains some bits that must always be set in the
ÉlanSC520 microcontroller.

Note that some parameters in the PIC configuration registers are fixed based on the way
the controllers are arranged in the ÉlanSC520 microcontroller.

For example, the Slave 1 PIC Initialization Control Word 3 (S1PICICW3) register (Port
00A1h) always contains 2d to indicate that Slave 1 is hooked up to IR2 on the Master
controller.

For those configuration parameters that are not fixed, software that initializes the controllers
must be very careful to accurately reflect the correct arrangements of the controllers, as
shown in Figure 15-1 on page 15-3.

For example, if neither Slave controller is being bypassed, the Master PIC Initialization
Control Word 3 (MPICICW3) register (Port 0021h) should contain 24h (or 00100100b) to
indicate that slave controllers are hooked up to its IR2 and IR5 signals.

After the interrupt controllers are initialized, any subsequent reads or writes to ports 021h,
0A1h, or 025h access the Interrupt Mask (xINTMSK) register of the Master, Slave 1, or
Slave 2 controllers. The Operation Control Word 2 (xOCW2) and Operation Control Word
3 (xOCW3) registers are accessed by writing to the appropriate ports, 020h, 0A0h, or 024h.
The controllers can be configured in various modes using these registers.

5. Initializing the Interrupt Mask (xINTMSK) register provides the masking of the interrupt
requests on a per channel basis.

6. Writing to the Operation Control Word 2 (xOCW2) register configures the various rotation
and EOI modes.

7. Finally, the Operation Control Word 3 (xOCW3) register configures the different mask
modes, controls reading of the In-Service (xISR) register or the Interrupt Request (xIR)
register, and whether the controller is to be used by software to perform polling.

The rest of the non-controller specific registers are programmed next. This includes
programming the routing of the various interrupt sources to the appropriate priority level or
Élan™SC520 Microcontroller User’s Manual 15-17

Programmable Interrupt Controller
NMI (as indicated in Figure 15-1) polarity inversion of the interrupt sources if needed,
different interrupt mode per channel, global interrupt mode enables, or master NMI enable.
These registers are listed in Table 15-2 on page 15-4.

It is recommended that EOIs be issued for all the channels prior to using the Set Interrupt-
Enable Flag (STI) instruction. This is to clear all spurious In-Service (xISR) register bits
that are potentially set during the initialization phase before enabling the CPU to accept
interrupt requests.

15.5.8.2 PC/AT Configuration

To configure the ÉlanSC520 microcontroller’s PIC to be PC/AT-compatible, the same
configuration sequence detailed in “Programming” on page 15-16 is observed with the
following exceptions:

1. The SNGL bit must be cleared to 0 in the Master PIC Initialization Control Word 1
(MPICICW1) register (Port 0020h).

2. The S2 and S5 bits must be set to 1 and cleared to 0, respectively, in the Master PIC
Initialization Control Word 3 (MPICICW3) register (Port 0021h).

3. The M_GINT_MODE and S1_GINT_MODE bits must be set to 1 in the Interrupt Control
(PICICR) register (MMCR offset D00h).

4. The base interrupt vector numbers 08h and 70h must be written for the Master and Slave
1 PIC, respectively, to the Master PIC Initialization Control Word 2 (MPICICW2) register
(Port 0021h) and the Slave 1 PIC Initialization Control Word 2 (S1PICICW2) register
(Port 00A1h). This correctly programs the T7–T3 bit field in those registers, which
corresponds to bits 7–3 of the 8-bit base interrupt vector number. This also clears the
A10–A8 bit field (bits 2–0), which should be 0 for PC-AT-compatible interrupts.

5. The SFNM and AEOI bits must be cleared to 0 in the Master PIC Initialization Control
Word 4 (MPICICW4) register (Port 0021h), and the SFNM bit must be cleared to 0 in
the Slave 1 PIC Initialization Control Word 4 (S1PICICW4) register (Port 00A1h).

6. Any interrupt sources used in the system must be mapped to appropriate interrupt
priorities via the interrupt mapping registers. Table 15-4 on page 15-12 correlates the
PC/AT IRQs and I/O devices to the ÉlanSC520 microcontroller’s interrupt priorities.

In this case, only the Slave 1 controller is cascaded to the Master controller via input IR2.
The Slave 2 controller is logically removed from the Master controller, and the highest priority
channel originally hooked to the former is now automatically routed to input IR5 of the latter,
thereby preserving the architecture of the PC/AT interrupt controller.

15.5.9 Software Considerations
15.5.9.1 Interrupt Sharing

Interrupt sharing increases system complexity and involves more software overhead.
Thorough understanding of performance implications to a system implementing interrupt
sharing is needed. For multiple interrupt requests sharing a line, the system designer needs
to be fully aware of the latency involved and the implications in interrupt sharing.

For example, in the worst case scenario, it may take an unacceptably long amount of time
before the CPU is able to service the first interrupt request hooked at the very beginning
of the interrupt chain (created during the interrupt hooking process). This problem is
compounded further if one or more interrupt requests before it are still pending. This can
be alleviated somewhat by prioritizing or re-ordering the more critical interrupt table entries
later in the chain during the interrupt hooking process.
15-18 Élan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller
Although level-sensitive interrupt sharing generally works well, implementing edge-
sensitive interrupt sharing is not recommended.

15.5.9.2 Disabling the Slave Controllers

The ÉlanSC520 microcontroller’s PIC has the flexibility to allow removal of either or both
the slave controllers logically from the cascade chain via software (see S2 and S5 bits in
the Master PIC Initialization Control Word 3 (MPICICW3) register). Disabling one or more
of the slave controllers allows configuring a system with fewer than 9 or 16 interrupt
channels.

Although the slave controllers are hard-wired to the Master controller, bypassing the slave
controllers via software during configuration could typically result in a more efficient interrupt
system, whereby only the Master controller needs to be initialized and configured. With this
configuration, only one non-specific EOI needs to be generated, instead of two, at the end
of the interrupt service routine.

When either of the slave controllers is disabled, the highest priority interrupt hooked to the
slave controllers is routed automatically to channels 2 and 5 of the Master controller,
respectively. As such, the programmer needs to be aware that mapping interrupts to the
other seven lower priority channels of the slave controller inhibits propagation of these
interrupt requests to the Master controller. Figure 15-1 on page 15-3 shows this
implementation in the ÉlanSC520 microcontroller’s PIC.

15.5.9.3 Detecting Invalid Interrupt Requests

If an interrupt request does not remain active long enough for the corresponding In-Service
(xISR) register bit to be set (a non-deterministic amount of time), the request is considered
a spurious interrupt pulse.

Spurious pulses on any of the interrupt requests cause the interrupt handler associated
with the IR7 input of the affected controller to be executed (priority level P22 for the Master
controller, P10 for the Slave 1 controller, or P20 for the Slave 2 controller). The Interrupt
Request (xIR) register bit is always set for the duration of the interrupt request, regardless
of whether it is a spurious or a valid interrupt request.

The interrupt handler associated with IR7 is required to check the In-Service (xISR) register
bit to determine if a valid interrupt request generated the interrupt. If the In-Service (xISR)
register bit is set, then a valid interrupt request is generated, and the normal routine is
executed. Otherwise, a spurious interrupt is identified and the interrupt routine exits.

In other words, spurious pulses on the interrupt requests that are shorter than a non-
deterministic duration can be filtered out by software that checks the In-Service (xISR)
register bit. Longer spurious pulses can only be detected if all interrupt sources hooked
onto a given priority level provide their own status bits.

15.5.9.4 Floating Point Unit Error Handling

To implement DOS-compatible floating-point error handling, such as is used in legacy
PC/AT systems, the Numeric Error (NE) bit in the CPU’s Control 0 (CR0) register must be
cleared. If the NE bit is set, an exception 16 will be generated instead of an external interrupt
request via the ÉlanSC520 microcontroller’s programmable interrupt controller. See the
Am486® DX/DX2 Microprocessor Hardware Reference Manual, 1994 (order #17965), for
further details on the floating point unit.
Élan™SC520 Microcontroller User’s Manual 15-19

Programmable Interrupt Controller
15.6 INITIALIZATION
The programmable interrupt controller responds only to system reset.

The Slave 1, Slave 2, and Master interrupt controllers are not affected by system reset. The
interrupt controller direct-mapped registers, once configured, retain their values during a
system reset. However, all other configuration registers default to their power-on reset states
when a system reset occurs. The interrupt router is reset, such that the interrupt requests
are gated off. This effectively disables all interrupt requests from reaching the CPU.

At system reset, the PIC is disabled.

1. Configure the Master, Slave 1, and Slave 2 controllers as described in “Configuration
Information” on page 15-16. Mask all interrupts.

2. Place an interrupt service routine at the locations corresponding to the interrupt priority
levels to be supported.

3. Enable the desired priority levels by mapping the interrupts sources to the interrupt levels
in the interrupt router and unmasking the interrupt in the corresponding interrupt
controllers. Set the IF bit in the CPU’s Flags register using the STI instruction. (NMIs
are disabled on system and soft reset and must be enabled via NMI_ENB bit before use).
15-20 Élan™SC520 Microcontroller User’s Manual

CHAPTER
16P
ROGRAMMABLE INTERVAL TIMER
16.1 OVERVIEW
The ÉlanSC520 microcontroller includes four separate timer modules: a PC/AT-compatible
programmable interval timer (PIT) with three timers, three general-purpose (GP) timers, a
software timer, and a watchdog timer. The programmable interval timer is described in this
chapter. The general-purpose timers are described in Chapter 17. The software timer is
described in Chapter 18. The watchdog timer is described in Chapter 19.

The programmable interval timer (PIT) on the ÉlanSC520 microcontroller includes three
separate timers, designed to provide PC/AT compatibility.

Features of the PIT include:

■ Three 16-bit timers, or channels

■ Clock source from either 1.1892-MHz source or an external pin. The same clock is routed
to all three channels.

■ One interrupt output for each channel

■ One external output pin for PIT Channel 2

■ Several modes of operation, including:

– Interrupt on terminal count

– Hardware-retriggerable one-shot

– Rate and square wave generation

– Hardware- and software-retriggerable strobe

16.2 BLOCK DIAGRAM
Figure 16-1 shows a block diagram of the programmable interval timer.

16.3 SYSTEM DESIGN
Table 16-1 shows the PIT signals shared with other interfaces. The pinstrap function
associated with the PITOUT2 pin is sampled only as a result of PWRGOOD assertion and
does not affect the PIT function of this pin, so it is not shown in this table. When enabled,
the multiplexed signals shown in Table 16-1 either disable or alter any other function that
uses the same pin.

Note: The CFG3 pinstrap associated with PITOUT2 is used for an AMD internal test mode.
Do not pull this pin High during reset.

Table 16-1 Programmable Interval Timer Signals Shared with Other Interfaces

Default Signal Alternate Function Control Register

CLKTIMER CLKTEST CLK_PIN_DIR Clock Select (CLKSEL) register
(MMCR offset C26h)

PITGATE2 GPCS3 GPCS3_SEL Chip Select Pin Function Select
(CSPFS) register (MMCR offset C24h)
Élan™SC520 Microcontroller User’s Manual 16-1

Programmable Interval Timer
Figure 16-1 Programmable Interval Timer Block Diagram

16.4 REGISTERS
The programmable interval timer (PIT) is configured using the registers listed in Table 16-2
and Table 16-3. The direct-mapped System Control Port B register is used to provide PC/
AT-compatible PIT functionality.

Table 16-2 Programmable Interval Timer Configuration Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

Chip Select Pin Function
Select

CSPFS C24h GPCS3 or PITGATE2 function select

Clock Select CLKSEL C26h CLKTIMER[CLKTEST] pin enable, clock output
select options (PIT), CLKTIMER select (input
clock for PIT)

PIT 0 Interrupt Mapping PIT0MAP D20h PIT 0 interrupt mapping

PIT 1 Interrupt Mapping PIT1MAP D21h PIT 1 interrupt mapping

PIT 2 Interrupt Mapping PIT2MAP D22h PIT 2 interrupt mapping

Channel 0

Channel 1

Channel 2

CLKTIMER

Programmable Interval Timer

gate 2

0061h[0]

0061h[5]

PITOUT20061h[1]

 1.1892

Always Enabled

PITGATE2

pit_tmr1_irq

pit_tmr2_irq

gate 1

PIC

Port

pit_tmr0_irq

gate 0

 B

 MHz

Élan™SC520 Microcontroller

Notes:
Port B is addressed at 0061h in I/O space.
16-2 Élan™SC520 Microcontroller User’s Manual

Programmable Interval Timer
16.5 OPERATION
The programmable interval timer provides three different timers, or channels, and six modes
of operation. Not all channels support every mode.

16.5.1 PIT Channel 0
PIT Channel 0 is used for generating interrupt requests. PIT Channel 0 can be configured
to assert interrupt priority P1 (IRQ0) to allow it to operate in PC/AT-compatible mode. See
Chapter 15, “Programmable Interrupt Controller”, for more information on interrupt steering.

PIT Channel 0 can be configured to assert IRQ0 to allow it to operate in PC/AT-compatible
mode. The gate line is tied High such that PIT Channel 0 operates in four modes only,
modes 0, 2, 3, and 4. Mode 0 is typically used for interrupts, because it remains in the High
state until restarted.

16.5.2 PIT Channel 1
The PIT Channel 1 is used as a general-purpose timer. Its output is hardwired internally to
drive an input of the programmable interrupt controller. See Chapter 15, “Programmable
Interrupt Controller” for more information on interrupt steering.

The gate line is tied High such that PIT Channel 1 also operates in four modes only, modes
0, 2, 3, and 4. Mode 0 is typically used for interrupts, because it remains in the High state
until restarted.

Table 16-3 Programmable Interval Timer Configuration Registers—Direct-Mapped

Register Mnemonic I/O Address Function

PIT Channel 0 Count PIT0CNT 0040h Current count value for Channel 0

PIT Channel 1 Count PIT1CNT 0041h Current count value for Channel 1

PIT Channel 2 Count PIT2CNT 0042h Current count value for Channel 2

PIT 0 Status PIT0STA 0040h Counter mode status, null count, output state,
latch command or read/write control setting, and
BCD setting for Channel 0

PIT 1 Status PIT1STA 0041h Counter mode status, null count, output state,
latch command or read/write control setting, and
BCD setting for Channel 1

PIT 2 Status PIT2STA 0042h Counter mode status, null count, output state,
latch command or read/write control setting, and
BCD setting for Channel 2

PIT Mode Control PITMODECTL 0043h PIT counter select or read-back command, read/
write control or counter latch command, counter
mode, BCD select

PIT Counter Latch Command PITCNTLAT 0043h Control to latch current count of the selected
channel for read-back

PIT Read-Back Command PITRDBACK 0043h Control to latch status and current count of each
channel for read-back

System Control Port B SYSCTLB 0061h PITOUT2 signal enable, status, and Channel 2
gate input control
Élan™SC520 Microcontroller User’s Manual 16-3

Programmable Interval Timer
16.5.3 PIT Channel 2
The gate line for PIT Channel 2 is controlled by the PIT_GATE2 bit in the System Control
Port B (SYSCTLB) register (Port 0061h) or the external input pin PITGATE2. PITGATE2 is
a multiplexed pin; if it is disabled, the gate line is controlled only by the PIT_GATE2 bit in
the System Control Port B (SYSCTLB) register.

The output of the PIT Channel 2 is hardwired internally on the ÉlanSC520 microcontroller
to drive an input of the programmable interrupt controller and can be read in the
PIT_OUT2_STA bit of the System Control Port B (SYSCTLB) register (Port 0061h). See
Chapter 15 for more information on interrupt steering. The output goes to the external output
pin PITOUT2 when the PIT_OUT2_ENB bit is set in the System Control Port B (SYSCTLB)
register.

PIT Channel 2 works in all six modes.

16.5.4 Operating Modes
The modes for the each PIT channel are specified in Counter Mode (CTR_MODE) bit field
in the PIT Mode Control (PITMODECTL) register (Port 0043h).

16.5.4.1 Mode 0: Interrupt on Terminal Count

In interrupt on terminal count mode,

1. When the initial count is loaded into the PIT Channel x Count (PITxCNT) register, the
output of the counter goes Low.

2. The count value decrements by one for each input clock pulse if the gate input is held
High.

3. If the gate input is held Low, count maintains its value until after a rising edge of clock
after the Gate goes High again.

4. The output of the counter is initially Low and will remain Low until the counter reaches
zero. The output then goes High until a new count or a new mode 0 control word is
loaded into the Counter.

16.5.4.2 Mode 1: Hardware-Retriggerable One-Shot

In hardware-retriggerable one-shot mode:

1. After an initial count is loaded into the PIT Channel 2 Count (PIT2CNT) register, a rising
edge on the gate signal causes the output of the counter to go Low.

2. The count value decrements with each successive clock pulse.

3. The gate trigger begins the one-shot pulse with the output going Low until the count
reaches zero.

4. Output then goes High and remains High until the clock pulse after the next trigger.

The duration of the one-shot pulse is:

Duration = Initial count * Period of the clock input

This mode is called hardware-retriggerable because, once an output pulse has started, if
a rising edge is experienced at the gate input, the counter is reloaded with the initial count
and the pulse continues until the new count expires. This mode is supported on PIT Channel
2 only.
16-4 Élan™SC520 Microcontroller User’s Manual

Programmable Interval Timer
16.5.4.3 Mode 2: Rate Generator

When programmed in rate generator mode, the counters operate as divide by n counters,
where n is the initial count.

1. The output signal starts off High until the initial count is decremented to one.

2. The output then goes Low for one clock pulse and goes High again.

3. The counter is reloaded with the initial count, and the counting sequence is repeated.

There appears one clock pulse at the output for every n clock cycles.

By default, PC/AT-compatible systems program PIT Channel 0 for this mode.

16.5.4.4 Mode 3: Square Wave Mode

In square wave mode:

1. The output of the counter has a 50% duty cycle whenever the counter is loaded with an
even count. Initially the output is High.

2. The count decrements by two with each clock cycle when the gate is held High.

3. When the count reaches zero, the output toggles state, the initial count is reloaded, and
the sequence is repeated.

The period of the output signal is:

Period = Input clock period * Initial count loaded into the counter

If the initial count is an odd number, the output is High for (n+1)/2 cycles and is Low for
(n–1)/2 cycles.

By default, PC/AT-compatible systems program PIT channels 1 and 2 to use this mode to
drive DRAM refresh and the speaker, respectively.

16.5.4.5 Mode 4: Software-Triggered Strobe

In software-triggered mode:

1. The counter automatically begins to decrement one clock pulse after it is loaded with
the initial count through software. The output signal is initially High.

2. The count decrements at the rate set by the clock input signal.

3. At the moment the terminal count is reached, the counter generates a single strobe
pulse on the output for one clock pulse duration.

4. If the counter is loaded with a count of n, then a strobe pulse is produced at the output
after n+1 clock cycles.

16.5.4.6 Mode 5: Hardware-Triggered Strobe

In hardware-triggered mode:

1. Counting begins on a Low-to-High transition of the gate signal.

2. The output remains High until the count has expired.

3. The output goes Low for one clock cycle and goes High again.

4. After writing the control word and the initial count, the counter is loaded at the next clock
pulse after the trigger.

The strobe pulse occurs n+ 1 clock pulses after the Low to High transition (trigger) on the
Gate input. This count sequence is retriggerable.
Élan™SC520 Microcontroller User’s Manual 16-5

Programmable Interval Timer
In this mode, the counter output behaves just as in mode 4, except for the triggering
mechanism. This mode is supported on PIT Channel 2 only.

16.5.5 Clocking Considerations
The PIT clock source can be either the derived 1.1892-MHz PIT clock or an external pin.
This is configured in the CLK_PIN_DIR bit in the Clock Select (CLKSEL) register (MMCR
offset C26h).

The PIT clock on the ÉlanSC520 microcontroller does not run at 1.19318 MHz, as in
PC/AT-compatible systems. See Section 16.5.7.1 for more information.

16.5.5.1 Internal Clock

16.5.5.2 External Clock

A separate external clock input pin, CLKTIMER, is provided to the PIT. Table 16-5 specifies
the external clock source frequency range for the CLKTIMER input for the PIT.

16.5.6 Interrupts
Each PIT channel provides its own interrupt to the programmable interrupt controller (PIC).
See Chapter 15, for more information on interrupt steering.

For the PIT, the interrupt request is always generated on terminal count, and it is basically
the output signal of the PIT channel. The pattern of the interrupt request signal depends
on the programmed operation mode in the channel. Modes 0 and 1 generate a Low-to-High
signal on terminal count, and they are usually used as interrupt sources.

16.5.7 Software Considerations

16.5.7.1 Using the PIT Clock Source in PC/AT-Compatible Systems

In PC/AT-compatible systems, system boot code usually programs the PIT Channel 0 Count
(PIT0CNT) register (Port 0040h) to a value of FFFFh. It relies on this periodic interrupt in
order to keep accurate time of day. Since the timer clock source is 1.1892 MHz in the
ÉlanSC520 microcontroller, the priority P1 interrupt (IRQ0) is generated every 55.11 ms.
Historically the PIT clock source has been 1.19318 MHz, and this translates into an interrupt
generation rate of 54.93 ms. This interrupt generation rate difference causes the time-
keeping function of a PC/AT-compatible system to be inaccurate.

There are two possible ways to address this issue. One method involves modifying the PIT
Channel 0 Count (PIT0CNT) register via the system boot code. The second method involves
driving the PIT from an external clock source.

■ Modifying the PIT Channel 0 Count (PIT0CNT) register—If the system boot code
programs this register to a value of FF2Bh, the desired interrupt generation rate of
54.93 ms can be achieved.

Table 16-4 PIT Internal Clock Source

Internal Clock Source Resolution Range Duration

 1.1892 MHz 841.61 ns–55.1 ms 16-bit duration

Table 16-5 PIT External Clock Source

External Clock Source Frequency Range

CLKTIMER 1.18125–1.20511 MHz
16-6 Élan™SC520 Microcontroller User’s Manual

Programmable Interval Timer
■ Driving an external 1.19318-MHz clock on the CLKTIMER pin—A system designer can
choose to supply an external clock source frequency of 1.19318 MHz on the CLKTIMER
pin. This pin must be specifically configured for this functionality by the system boot code
during the system boot process, prior to configuring the PIT. The CLK_PIN_DIR bit in
the Clock Select (CLKSEL) register (MMCR offset C26h) is used for this purpose.

16.6 INITIALIZATION
At system reset, the state of the PIT itself is undefined. The mode, count value, and output
of all channels are undefined. Each PIT channel must be programmed before it can be
used. To prevent superfluous interrupts, each PIT channel must be configured prior to
enabling interrupts on the Am5x86 CPU.

1. Write a control word into the PIT Mode Control (PITMODECTL) register (Port 0043h).

2. Write an initial count into the PIT Channel x Count (PITxCNT) register of the PIT channel
being programmed. The control word determines the format of the initial count.
Élan™SC520 Microcontroller User’s Manual 16-7

Programmable Interval Timer
16-8 Élan™SC520 Microcontroller User’s Manual

CHAPTER
17
 GENERAL-PURPOSE TIMERS
17.1 OVERVIEW
The general-purpose (GP) timers are intended for most generic timing or counting
applications, such as generating periodic interrupts and measuring or counting external
events.

Features of the general-purpose timers include:

■ Three 16-bit timers

■ Two-stage cascading of timers, to allow a maximum of two 32-bit timer/counter elements

■ Clock source from the system clock (33 MHz), an external pin, or a derived prescale
clock. The external pin and pre-scale clock are available for GP Timer 0 and GP Timer
1 only. The maximum clock is 33 MHz/4.

■ One external input pin for each timer for GP Timer 0 and GP Timer 1, used for external
event capture, pulse count, and counter reset/reload

■ One external output pin for GP Timer 0 and GP Timer 1

■ One interrupt output for each timer

■ Several modes of operation, including:

– Interrupt on terminal count

– Hardware retrigger mode

– Rate and square wave generation

– Continuous mode

17.2 BLOCK DIAGRAM
Figure 17-1 shows a block diagram of the general-purpose timers.

17.3 SYSTEM DESIGN
Table 17-1 shows the general-purpose timer signals shared with other interfaces. When
enabled, the multiplexed signals shown in Table 17-1 either disable or alter any other
function that uses the same pin.

Table 17-1 General-Purpose Timer Signals Shared with Other Interfaces

Default Signal Alternate Function Control Bit Register

TMROUT0 GPCS7 GPCS7_SEL Chip Select Pin Function Select (CSPFS)
register (MMCR offset C24h)TMROUT1 GPCS6 GPCS6_SEL

TMRIN0 GPCS5 GPCS5_SEL

TMRIN1 GPCS4 GPCS4_SEL
Élan™SC520 Microcontroller User’s Manual 17-1

General-Purpose Timers
Figure 17-1 General-Purpose Timers Block Diagram

17.4 REGISTERS
The general-purpose timers include the memory-mapped registers listed in Table 17-2.

Table 17-2 General-Purpose Timer Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

Chip Select Pin Function
Select

CSPFS C24h TMROUTx, TMRINx, or GPCSx pin function
select

GP Timers Status GPTMRSTA C70h Interrupt status and clear for all three GP timers

GP Timer 0 Mode/Control GPTMR0CTL C72h GP Timer 0 enable, permit Enable bit write,
interrupt enable, maxcount register in use,
maximum count, retrigger, internal clock source
prescaler, external clock source, alternate
compare mode, continuous mode

GP Timer 0 Count GPTMR0CNT C74h Current count value

GP Timer 0 Maxcount
Compare A

GPTMR0MAXC
MPA

C76h Maxcount value A to compare with current count

GP Timer 0 Maxcount
Compare B

GPTMR0MAXC
MPB

C78h Maxcount value B, used in the alternate mode

GP Timer 1 Mode/Control GPTMR1CTL C7Ah GP Timer 1 enable, permit Enable bit write,
interrupt enable, maxcount register in use,
maximum count, retrigger, internal clock source
prescaler, external clock source, alternate
compare mode, continuous mode

GP Timer 1 Count GPTMR1CNT C7Ch Current count value

GP Timer 0

GP Timer 1

GP Timer 2

TMROUT0

TMROUT1

TMRIN0

33 MHz

TMRIN1

33 MHz

33 MHz

clk_pre

gpt_tmr0_irq

General-Purpose Timers

PIC
gpt_tmr1_irq

gpt_tmr2_irq

Élan™SC520 Microcontroller
17-2 Élan™SC520 Microcontroller User’s Manual

General-Purpose Timers
17.5 OPERATION
The ÉlanSC520 microcontroller includes three GP timers, each of which supports several
different operating modes.

17.5.1 GP Timer 0 and GP Timer 1
GP Timers 0 and 1 can be used to count or time external events that drive the timer input
pins and to generate a variety of waveforms on the timer output pins.

The source clock for GP Timer 0 and GP Timer 1 can be configured to be one-fourth of the
Am5x86 CPU clock frequency, or it can be driven from the timer external input (TMRIN0 or
TMRIN1) whose maximum clock frequency is one-fourth of the Am5x86 CPU clock speed.
When driven from the timer’s external input pin, the timer counts the “event” of an input
transition.

GP Timer 0 and GP Timer 1 are 16-bit timers. Each of these two timers can be cascaded
as a 32-bit timer when GP Timer 2 is configured as a prescaler by setting the PSC_SEL
bit in the GP Timer x Mode/Control (GPTMRxCTL) register. (See “Combining GP Timer
Count Elements” on page 17-6.) When they are in 32-bit mode, GP timers 0 and 1 cannot
be used as 16-bit timers.

The TMRIN0 and TMRIN1 pins can be configured to be one of many functions via the use
of the configuration bits in the respective timer registers. These functions include:

■ Clock input—Configured with the EXT_CLK bit in the GP Timer x Mode/Control
(GPTMRxCTL) register

■ Enable input—Configured with both the RTG bit and EXT_CLK bit cleared to 0 in the
GP Timer x Mode/Control (GPTMRxCTL) register

■ Reset input (hardware retrigger mode)—Configured with the RTG bit set to 1 and the
EXT_CLK bit cleared to 0 in the GP Timer x Mode/Control (GPTMRxCTL) register

GP Timer 1 Maxcount
Compare A

GPTMR1MAXC
MPA

C7Eh Maxcount value A to compare with current count

GP Timer 1 Maxcount
Compare B

GPTMR1MAXC
MPB

C80h Maxcount value B, used in the alternate mode

GP Timer 2 Mode/Control GPTMR2CTL C82h GP Timer 2 enable, permit Enable bit write,
interrupt enable, maxcount register in use,
maximum count, continuous mode

GP Timer 2 Count GPTMR2CNT C84h Current count value

GP Timer 2 Maxcount
Compare A

GPTMR2MAXC
MPA

C8Eh Maxcount value to compare with current count

GP Timer 0 Interrupt Mapping GPTMR0MAP D1Ah GP Timer 0 interrupt mapping to any of 22
available interrupt channels or NMI

GP Timer 1 Interrupt Mapping GPTMR1MAP D1Bh GP Timer 1 interrupt mapping

GP Timer 2 Interrupt Mapping GPTMR2MAP D1Ch GP Timer 2 interrupt mapping

Table 17-2 General-Purpose Timer Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR
Offset
Address Function
Élan™SC520 Microcontroller User’s Manual 17-3

General-Purpose Timers
17.5.2 GP Timer 2
GP Timer 2 is a 16-bit timer that is not connected to any external pins. GP Timer 2 can be
used by software to generate interrupts, or it can be polled for real-time coding and time-
delay applications. It can also be enabled as a prescaler for GP Timer 0 and GP Timer 1.
The source clock for GP Timer 2 is always one-fourth of the Am5x86 CPU clock frequency.

17.5.3 Operating Modes

17.5.3.1 Interrupt on Terminal Count Mode

In this mode, an interrupt request is generated when the timer count value reaches a GP
Timer Maxcount Compare register value. This is configured with the INT_ENB bit in the
GP Timer x Mode/Control (GPTMRxCTL) register.

If continuous mode is enabled, the interrupt request pulse is generated continuously at a
regular interval time, and the interval duration depends on the value in the GP Timer
Maxcount Compare register.

17.5.3.2 Hardware Retrigger Mode

In hardware retrigger mode, a 0-to-1 edge transition on the TMRIN1 or TMRIN0 input pin
resets the existing GP Timer x Count (GPTMRxCNT) register value, for their respective
timers, and then counting continues. This mode is enabled by setting the RTG bit to 1 and
clearing the EXT_CLK bit to 0 in the GP Timer x Mode/Control (GPTMRxCTL) register.

17.5.3.3 Alternate Compare Mode

Using both the primary GP Timer x Maxcount Compare A (GPTMRxMAXCMPA) register
and the secondary GP Timer x Maxcount Compare B (GPTMRxMAXCMPB) register lets
the timer alternate between two maximum values. This mode is enabled with the ALT_CMP
bit in the GP Timer x Mode/Control (GPTMRxCTL) register.

In alternate compare mode, the TMROUT0 or TMROUT1 pin is High while the counter is
counting and being compared to the GP Timer x Maxcount Compare A
(GPTMRxMAXCMPA) register. The timer output pin is Low while the counter is counting
and being compared to the GP Timer x Maxcount Compare B (GPTMRxMAXCMPB)
register.

17.5.3.4 Square Wave Mode

In this mode, the TMROUT0 or TMROUT1 pin creates a waveform by indicating which of
the two GP Timer Maxcount Compare registers is currently in control. The duty cycle and
frequency of the waveform depend on the values in the alternating GP Timer Maxcount
Compare register. This mode is enabled when both the ALT_CMP and the CONT_COMP
bits are set in the GP Timer x Mode/Control (GPTMRxCTL) register.

17.5.3.5 Continuous Mode

In continuous mode, the GP Timer x Count (GPTMRxCNT) register is reset to 0 after it
reaches the value in the GP Timer x Maxcount Compare register value (A or B), and the
timer immediately begins counting again. Continuous mode is enabled by setting the
CONT_CMP bit in the GP Timer x Mode/Control (GPTMRxCTL) register.

17.5.3.6 Prescaler Mode

The internal output of GP Timer 2 can be used as the input clock source for GP timers 0
and 1. When the PSC_SEL bit is set in the GP Timer x Mode/Control (GPTMRxCTL)
register, timers 0 and 1 can be prescaled by GP Timer 2. This allows either or both GP
Timer 0 and GP Timer 1 to be cascaded as a 32-bit timer. The PSC_SEL bit is ignored
when external clocking is enabled (i.e., when the EXT_CLK bit is set).
17-4 Élan™SC520 Microcontroller User’s Manual

General-Purpose Timers
17.5.4 Configuration Information
The GP Timer x Count (GPTMRxCNT) registers contain the current value of a timer. These
registers can be read or written at any time, regardless of whether the corresponding timer
is running. The timer increments the value of the corresponding GP Timer x Count
(GPTMRxCNT) register each time a timer event occurs.

Each timer has a GP Timer x Maxcount Compare A (GPTMRxMAXCMPA) register that
defines the maximum value of the timer.

■ When the timer reaches the maximum value, it resets the GP Timer x Count
(GPTMRxCNT) register value to 0 during the same clock cycle.

■ The value in the GP Timer x Count (GPTMRxCNT) register never equals the GP Timer
x Maxcount Compare A (GPTMRxMAXCMPA) register.

In addition, timers 0 and 1 have a secondary GP Timer x Maxcount Compare B
(GPTMRxMAXCMPB) register.

■ Using both the primary GP Timer x Maxcount Compare A (GPTMRxMAXCMPA) register
and the secondary GP Timer x Maxcount Compare B (GPTMRxMAXCMPB) register
lets the timer alternate between two maximum values. This is called alternate compare
mode. It is controlled by the ALT_CMP bit in the GP Timer x Mode/Control (GPTMRxCTL)
register.

– If the timer is programmed to use both of its GP Timer Maxcount Compare registers,
and the ALT_CMP and CONT_CMP bits are set in the GP Timer x Mode/Control
(GPTMRxCTL) register, the timer output pin (TMROUT0 or TMROUT1) generates a
square waveform.

– The duty cycle and frequency of the waveform depend on the values in the alternating
GP Timer Maxcount Compare registers.

■ If the timer is programmed with the ALT_CMP bit to use only the primary GP Timer x
Maxcount Compare A (GPTMRxMAXCMPA) register, the timer output pin (TMROUT0
or TMROUT1) switches Low for a single Am5x86 CPU clock cycle after the maximum
value is reached.

17.5.5 Clocking Considerations
The clock source for the three general-purpose timers is the 33-MHz system clock. For GP
Timer 0 and GP Timer 1, the clock source can also be an external pin or a derived prescale
clock. This option is specified in the GP Timer 0 Mode/Control (GPTMR0CTL) register
(MMCR offset C72h) and the GP Timer 1 Mode/Control (GPTMR1CTL) register (MMCR
offset C7Ah).

17.5.5.1 Internal Clock

The resolution range of the internal clock depends on which 33-MHz crystal is used in the
system, as shown in Table 17-3.

Table 17-3 GP Timers Internal Clock Sources

Internal Clock Source Resolution Range Duration

33.000 MHz 121.20 ns–7.94 ms 16-bit duration

33.000 MHz 121.20 ns–520.55 seconds 32-bit duration

33.333 MHz 120.00 ns–7.86 ms 16-bit duration

33.333 MHz 120.00 ns–515.40 seconds 32-bit duration
Élan™SC520 Microcontroller User’s Manual 17-5

General-Purpose Timers
17.5.5.2 External Clock

Separate external clock input pins, TMRIN0 and TMRIN1, are provided to each of the
following two timers: GP Timer 0 and GP Timer 1, respectively. Table 17-4 specifies the
external clock source frequency range for the TMRIN0 and TMRIN1 inputs for the general-
purpose timers. The maximum frequency of the external clock is one-fourth the frequency
of the crystal used.

17.5.6 Interrupts
Each GP timer provides its own interrupt on the programmable interrupt controller (PIC).
See Chapter 15, “Programmable Interrupt Controller”, for more information on interrupt
steering.

The GP Timer x Mode/Control (GPTMRxCTL) registers for the general-purpose timers are
used to enable the timer interrupt request generation. An interrupt request is generated
when a maximum count is reached.

In the case where both Maximum Count Compare A and B registers are used, an interrupt
request is generated when the GP Timer x Count (GPTMRxCNT) register is equal to either
the value of the GP Timer x Maxcount Compare A (GPTMRxMAXCMPA) register or the
value of the GP Timer x Maxcount Compare B (GPTMRxMAXCMPB) register.

The GP Timers Status (GPTMRSTA) register (MMCR offset C70h) contains the interrupt
status information for the three general-purpose timers. A timer’s corresponding interrupt
status bit is set when that timer’s interrupt request signal is asserted and remains set until
cleared.

17.5.7 Software Considerations

17.5.7.1 Combining GP Timer Count Elements

Both GP Timer 0 and GP Timer 1 can be configured to be clocked by GP Timer 2 at the
same time. This configuration provides a maximum of two 32-bit counters. GP Timer 2 is
a common element between the two resulting 32-bit counters. The possible combinations
of the timers include:

■ GP Timer 2, GP Timer 1, and GP Timer 0 separate, resulting in three independent 16-bit
counters

■ GP Timer 2 + GP Timer 0 (as one 32-bit), with GP Timer 1 separate (as one 16-bit)

■ GP Timer 2 + GP Timer 1 (as one 32-bit), with GP Timer 0 separate (as one 16-bit)

■ GP Timer 2 + GP Timer 0 (as one 32-bit), with GP Timer 2 + GP Timer 1 (as second
32-bit), where GP Timer 2 is a common timebase

17.5.7.2 Reading the Cascaded 32-Bit Timer

When cascading GP Timer 0 or GP Timer 1 with GP Timer 2 to form a single 32-bit timer,
caution must be exercised when reading the two counter outputs in order to properly handle
rollover conditions. This is slightly complicated by the fact that there is no way to atomically
read the contents of both counters. The goal is to develop an algorithm to return the 32-bit
value of the cascaded timer at the time that the 16-bit “least significant” timer is read.

Table 17-4 GP Timers External Clock Sources (Using a 33.333 MHz Crystal)

External Clock Source Frequency Range

TMRIN0 0–8.33325 MHz

TMRIN1 0–8.33325 MHz
17-6 Élan™SC520 Microcontroller User’s Manual

General-Purpose Timers
To test for rollover, software must read both timers two times in succession, reading the
least significant timer value (i.e., GP Timer 2), followed by the most significant timer value.
A very important assumption must be made that software is able to perform these four 16-
bit reads in less one tick of the “most significant” timer. Software may have to disable
interrupts in order to meet this qualification.

For example, suppose that on the first read, the value L1 is read from the least significant
timer, and the value M1 is read from the most significant timer. Then, values of L2 and M2
are read from the least significant and most significant timers, respectively. There are three
possibilities.

17.5.7.2.1 Case 1
(M1 = M2 = 0) and (L1 > L2)

This condition indicates that the most significant timer rolled over between reading L1
and M1. In this case, the correct value to be interpreted from the most significant timer
value should be one less than the value programmed into the GP Timer x Maxcount
Compare A (GPTMRxMAXCMPA) register (when the ALT_CMP bit is 0), or the maximum
of GP Timer x Maxcount Compare A (GPTMRxMAXCMPA) register and GP Timer x
Maxcount Compare B (GPTMRxMAXCMPB) register (when the ALT_CMP bit is 1).

17.5.7.2.2 Case 2
(M2 = M1 <> 0) and (L1 > L2)

This condition indicates that the least significant timer (but not the most significant timer)
rolled over between reading M1 and L1. In this case, the correct value to be interpreted
for the most significant timer is M1–1, which was the value of the most significant timer
at the time that L1 was read.

17.5.7.2.3 Case 3
■ In all other instances, if rollover occurred, then it occurred after L1 and M1 were read,

and L1 and M1 can be used for the correct values.

17.5.7.2.4 Example 1
For example, suppose GP Timer 0 is programmed in continuous mode, clocked by the
output of GP Timer 2, with the ALT_CMP bit cleared to 0 and a value of 2000h programmed
for the GP Timer 0 Maxcount Compare A (GPTMR0MAXCMPA) register.

GP Timer 2 is programmed in continuous mode, clocked by the internal 33-MHz clock with
the GP Timer 2 Maxcount Compare A (GPTMR2MAXCMPA) register set to 8000h.

The period of GP Timer 2 is:

8000h / 33 MHz * 4 = 4 ms

The cycle time of GP Timer 0 is:

2000h * 4 ms = 32.77 s

In the example, software reads the timers in the following order:

1. GP Timer 2 = 7997h

2. GP Timer 0 = 0h

3. GP Timer 2 = 14h

4. GP Timer 0 = 0h
Élan™SC520 Microcontroller User’s Manual 17-7

General-Purpose Timers
In this example, the second value read for GP Timer 2 (14h) is less than the first value
(7997h), and both values read for GP Timer 0 are 0. So this falls under case 1, and the
correct 32-bit value of the cascaded timer is:

32764 ms + (7997h * 121.2 ns) = 32767.8 ms = 32.7678 s

17.5.7.2.5 Example 2
Suppose GP Timer 0 and GP Timer 2 are programmed as in Example 1, but the values
returned from the timers are:

1. GP Timer 2 = 7997h

2. GP Timer 0 = 15h

3. GP Timer 2 = 5h

4. GP Timer 0 = 16h

In this example, the second value read for GP Timer 2 (5h) is less than the first value
(7997h). However, because the first value read for GP Timer 0 (15h) is less than the second
value (16h), case 3 applies and the correct 32-bit value of the cascaded timer is:

15h * 4ms + 7997 * 121.2 ns = 72.772 ms

17.6 INITIALIZATION
At system reset, all the general-purpose timer registers are reset to zero. Each timer must
be programmed before it can be used.

1. Write the maximum compare count value into the GP Timer x Maxcount Compare
(GPTMR0MAXCMPx) registers.

2. Enable the counting with the desired operation and mode in the GP Timer x Mode/Control
(GPTMRxCTL) register.
17-8 Élan™SC520 Microcontroller User’s Manual

CHAPTER
18
 SOFTWARE TIMER
18.1 OVERVIEW
The software timer is intended to provide a millisecond timebase with microsecond
resolution. Ideal applications for this function include providing a system wide software
timebase, code profiling, and precise measurement of the time between events. Features
of the software timer include:

■ One 16-bit millisecond counter that increments with a period of one millisecond. This
yields a maximum duration of 65.5 seconds. Note that this timer is accurate to the
precision of the 33-MHz crystal used in the system.

■ A microsecond latch register that provides the number of microseconds since the last
time that the millisecond register was read.

■ The 16-bit millisecond counter is reset to zero when it is read.

■ The software timer can be configured to maintain an accurate time when either a 33.000-
MHz or 33.333-MHz crystal is used in the system.

18.2 BLOCK DIAGRAM
Figure 18-1 shows a block diagram of the software timer.

Figure 18-1 Software Timer Block Diagram

Microsecond33 MHz

Software Timer

/33
1 MHz

Millisecond
Counter

Rollover
Signal

Microsecond

Register
Latch

Latch

Enable

UPCTR

Élan™SC520 Microcontroller

SWTMRMILLI SWTMRMICRO

Up Counter
Élan™SC520 Microcontroller User’s Manual 18-1

Software Timer
18.3 REGISTERS
The software timer includes the registers listed in Table 18-1.

18.4 OPERATION
The software timer provides a very efficient hardware timebase for use by software. It is
designed to replace the traditional method of system timebase generation.

Traditionally, system timebase generation is accomplished by programming a timer to
generate a periodic interrupt. The interrupt service routine for this interrupt then increments
a counter each time the interrupt occurs. This value is often kept in a global variable, which
can then be accessed by other code that needs to track time. Sometimes, a procedural
interface (a function) is used to access the value of this counter. The counter maintained
by the interrupt service routine is usually set to zero at system initialization time. Thus, it
maintains the time since system boot.

The problem with this method is that it consumes a hardware timer resource. It also requires
an interrupt service routine that executes very frequently. Often the requirement to have a
higher resolution time is difficult to attain because the overhead of executing even a small
interrupt service routine many times a second is too much. It is rarely practical to provide
better than a 1-ms timebase with this technique. Also, in a system that makes extensive
use of interrupts, the timer interrupt can sometimes be missed, causing the interrupt counter
to becomes less accurate over time.

The software timer included on the ÉlanSC520 microcontroller can be used to resolve these
problems. The software timer provides a 16-bit millisecond counter (the Software Timer
Millisecond Count (SWTMRMILLI) register), a 10-bit microsecond-up counter (UPCTR),
and a latch register for the UPCTR (the Software Timer Microsecond Count
(SWTMRMICRO) register). Both counters reset to zero on system reset.

The microsecond-up counter increments at a rate of 1 MHz and rolls over on every 1000
counts (every 1 millisecond). When the microsecond-up counter rolls over, it signals the
millisecond counter to increment. When the millisecond counter is read, three things
happen:

1. The value in the Software Timer Millisecond Count (SWTMRMILLI) register (MMCR
offset C60h) is returned to software.

2. The value in the microsecond up counter is latched into the Software Timer Microsecond
Count (SWTMRMICRO) register (MMCR offset C62h).

3. The Software Timer Millisecond Count (SWTMRMILLI) register counter is reset to zero.

This operation allows software to keep track of time with no interrupt service routine.

Table 18-1 Software Timer Configuration Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

Software Timer Millisecond
Count

SWTMRMILLI C60h Current 10-bit count value (milliseconds)

Software Timer Microsecond
Count

SWTMRMICRO C62h Current latched 16-bit count value
(microseconds)

Software Timer Configuration SWTMRCFG C64h Crystal frequency (33.000 MHz or 33.333 MHz)
18-2 Élan™SC520 Microcontroller User’s Manual

Software Timer
For example, here is some example code that can be used to maintain a system timebase:

typedef unsigned long int DWORD; // an unsigned 32-bit value
typedef unsigned short int WORD: // an unsigned 16-bit value

static volatile WORD* SWTMRMILLI = 0xA0000200; // volatile is essential
static volatile WORD* SWTMRMICRO = 0xA0000202; // volatile is essential

static DWORD ticks; // the number of 1-ms ticks since system boot
// that have passed since system reset

static DWORD mics; // A running microsecond value

DWORD sys_ticks()

{
ticks += *SWTMRMILLI;
mics = *SWTMRMICRO + (ticks * 1000);
return ticks;
}

DWORD sys_mics()

{
ticks += *SWTMRMILLI;
mics = *SWTMRMICRO + (ticks * 1000);
return mics;
}

This is all the code necessary to maintain both a 32-bit microsecond and a 32-bit millisecond
timebase for an operating system or other timing needs.

18.4.1 Configuration Information
The software timer counter elements (millisecond and microsecond counts) are read-only.
The software timer is always free-running, and it does not have any input or output (external
pin or interrupt). The software timer can be configured to maintain an accurate time for
either a 33.000-MHz or a 33.333-MHz crystal.

18.5 INITIALIZATION
At system reset, the software timer begins counting up from zero.

The software timer must be initialized for operation with either 33.000 MHz or 33.333 MHz,
depending on the crystal being used in the system. This is configured with the XTAL_FREQ
bit in Software Timer Configuration (SWTMRCFG) register (MMCR offset C64h).
Élan™SC520 Microcontroller User’s Manual 18-3

Software Timer
18-4 Élan™SC520 Microcontroller User’s Manual

CHAPTER
19
 WATCHDOG TIMER
19.1 OVERVIEW
The ÉlanSC520 microcontroller includes an integrated watchdog timer (WDT).

Features of the watchdog timer include:

■ Distinct keyed write sequences are required to open the Watchdog Timer Control
(WDTMRCTL) register for reconfiguration and to reset the current count.

■ Supports up to a 30-second time-out period with a 33-MHz CPU clock

■ Programmable to generate either a system reset or an interrupt request (maskable or
non-maskable) on the first time-out. If software has not cleared an indicator bit by the
second time-out, the watchdog timer always generates a system reset instead.

■ The watchdog timer interrupt request can be programmed as maskable or non-
maskable.

■ A status flag for software to detect the watchdog timer’s interrupt request

■ ÉlanSC520 microcontroller input pins that are typically sampled at the initial power-on
reset (i.e., with the PWRGOOD input) are not sampled for a system reset due to a
watchdog timer time-out.

■ The watchdog timer counters are automatically stopped in AMDebug technology mode.

19.2 BLOCK DIAGRAM
Figure 19-1 shows a block diagram of the watchdog timer.
Élan™SC520 Microcontroller User’s Manual 19-1

Watchdog Timer
Figure 19-1 Watchdog Timer Block Diagram

19.3 REGISTERS
The watchdog timer is controlled by the memory-mapped registers listed in Table 19-1.

Table 19-1 Watchdog Timer Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

Watchdog Timer Control WDTMRCTL CB0h Watchdog timer enable, WDT reset enable,
interrupt flag, duration of the WDT time-out
interval

Watchdog Timer Count Low WDTMRCNTL CB2h Bits 15–0 of the WDT current count

Internal GP bus

cnt_reset wdt_rst

wdt_irq

ice_mode

33-MHz Clock
Clock

PIC

Reset

System

Configuration

Registers

Élan™SC520 Microcontroller

Watchdog Timer

Key
Detection

Logic

Configuration

Registers

Counter

Time-Out
19-2 Élan™SC520 Microcontroller User’s Manual

Watchdog Timer
19.4 OPERATION
The watchdog timer (WDT) can be used to regain control of the system when software fails
to respond as expected. The watchdog timer should be used in systems that require a
guaranteed recovery time from a software error.

When the watchdog timer is enabled, the counter is reset to zero automatically and starts
counting. The count increments once for every 33-MHz clock cycle. While enabled, the
software can reset the counter to zero at anytime by writing a clear keyed sequence as
described in “Keyed Sequences” on page 19-3. If the software is unable to reset the counter
before it reaches the time-out count, the watchdog timer generates an interrupt and/or a
system reset.

■ The watchdog timer can be configured to cause either an interrupt (maskable or non-
maskable) or a system reset upon time-out.

■ The watchdog timer can also be configured to generate both an interrupt and a system
reset. In this mode, the watchdog timer generates an interrupt, then starts itself over. If
it times out a second time, it generates a system reset.

A distinct keyed sequence is required to open up the Watchdog Timer Control
(WDTMRCTL) register (MMCR offset CB0h) before writes. This prevents errant code from
disabling or otherwise modifying the watchdog timer behavior. The same keyed sequence
is always used for unlocking the watchdog timer control registers.

19.4.1 Configuration Information

19.4.1.1 Keyed Sequences

All writes to the Watchdog Timer Control (WDTMRCTL) register must be preceded by a
distinct keyed sequence.

■ A data pattern of 3333h, followed by a write of CCCCh, to the Watchdog Timer Control
(WDTMRCTL) register opens up the register for a single write.

The value of the key is not written to the register but is used by internal logic to open the
register for writing. Once the ENB bit is set in the Watchdog Timer Control (WDTMRCTL)
register, a subsequent keyed sequence is required to allow any further writes to this register.

While enabled, the software can reset the counter to 0 at anytime by writing a keyed
sequence to clear the counter.

■ A data pattern of AAAAh, followed by a write of 5555h, to the Watchdog Timer Control
(WDTMRCTL) register resets the counter.

The key itself resets the counter; no further writes are necessary. It should be noted that
this clear-count key cannot be initiated while the write key is active. This would result in the
value of AAAAh being written to the register.

Watchdog Timer Count High WDTMRCNTH CB4h Bits 30–16 of the WDT current count

Watchdog Timer Interrupt
Mapping

WDTMAP D42h WDT interrupt mapping

Reset Status RESSTA D74h Reset source status: watchdog timer time-out

Table 19-1 Watchdog Timer Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR
Offset
Address Function
Élan™SC520 Microcontroller User’s Manual 19-3

Watchdog Timer
Each individual write of these keyed sequences is not required to be written back-to-back
as an atomic sequence. Any number of processor cycles, including memory and I/O reads
and writes, can be inserted between the key and the writing of data, as long as they do not
access the Watchdog Timer Control (WDTMRCTL) register.

19.4.1.2 Interrupt Request Generation

To configure interrupt request generation on the watchdog timer, software must first clear
the ENB bit in the Watchdog Timer Control (WDTMRCTL) register and then clear the
WRST_ENB bit. Once the watchdog timer times out, the interrupt request is generated.

The watchdog timer interrupt request can be programmed as maskable or non-maskable.
See Chapter 15, “Programmable Interrupt Controller”, for details on selecting a maskable
or non-maskable watchdog timer interrupt request.

If a second time-out event occurs and software has not cleared the IRQ_FLG bit asserted
by the first time-out, the watchdog timer causes a system reset instead of an interrupt
request, regardless of the setting of the WRST_ENB bit.

19.4.1.3 System Reset Generation

To configure the watchdog timer for system reset generation, software must first clear the
ENB bit and then set the WRST_ENB bit. Once the watchdog timer times out, the system
reset is generated.

19.4.1.4 Time-Out Duration

The Exponent Select (EXP_SEL) bit field in the Watchdog Timer Control (WDTMRCTL)
register indicates the exponent value used to calculate the time-out duration in the following
formula:

Duration = 2Exponent / (33 MHz crystal frequency)

where:

frequency is based on a 33-MHz incoming clock, as shown in Table 19-2.

Note that the ENB bit must be cleared to 0 before the EXP_SEL field can be written.

Notes:
Only the least significant bit set in the EXP_SEL field determines the time-out duration. For example,
setting the field to F0h results in an exponent of 27.

Table 19-2 Watchdog Timer Time-Out Duration

EXP_SEL Field Exponent 33.000 MHz 33.333 MHz

00h invalid value infinity infinity

01h 14 496 ms 492 ms

02h 24 508 ms 503 ms

04h 25 1.02 s 1.01 s

08h 26 2.03 s 2.01 s

10h 27 4.07 s 4.03 s

20h 28 8.13 s 8.05 s

40h 29 16.27 s 16.11 s

80h 30 32.54 s 32.21 s
19-4 Élan™SC520 Microcontroller User’s Manual

Watchdog Timer
19.4.2 Interrupts
An interrupt is asserted upon time-out if the watchdog timer interrupt condition is configured
accordingly in the Watchdog Timer Control (WDTMRCTL) register.

■ If the watchdog timer is configured for interrupts, the IRQ_FLG bit in the Watchdog Timer
Control (WDTMRCTL) register is set when the interrupt is generated.

■ The interrupt service routine should examine this flag to determine if the interrupt was
generated by the watchdog timer.

■ If the IRQ_FLG is set, the interrupt service routine should clear the flag by writing the
correct keyed sequence to the Watchdog Timer Control (WDTMRCTL) register and
follow by writing a 1 to this bit.

■ If the IRQ_FLG bit is not cleared when a second watchdog timer time-out occurs, a WDT
system reset is generated, rather than a second interrupt event.

Note: The IRQ_FLG bit is not cleared on a read. The bit must be cleared by writing the
correct keyed sequence to the watchdog timer before writing a 1 to the corresponding bit
position.

19.4.3 AMDebug™ Technology Interface
The AMDebug technology interface allows emulator code to run without having to deal with
possible watchdog timer time-outs. It also allows emulators to be used more effectively with
applications that enable the watchdog timer. Entering AMDebug technology mode stops
the watchdog timer counter from counting.

19.4.4 Software Considerations
If a watchdog timer time-out occurs when the timer is programmed with the WRST_ENB
bit cleared, an interrupt is generated, the time-out counter is reset, and the IRQ_FLG bit in
the Watchdog Timer Control (WDTMRCTL) register is set. If the IRQ_FLG bit is not cleared
by software before a second watchdog timer time-out, a system reset is generated,
regardless of the setting of the WRST_ENB bit. The IRQ_FLG bit can be cleared, but not
set, by software.

Generation of the internal interrupt signal on the first watchdog timer time-out can be useful
in systems where it may be possible to recover from spurious pulses, bad data, or incorrect
code. This is especially true for the case where potential data recovery is important. Such
systems should have the interrupt handler routine to ensure that it has not been corrupted
by errant code. The watchdog timer must function in all cases where the software has failed
to respond appropriately. The ÉlanSC520 microcontroller’s watchdog timer has
incorporated several features to ensure that this is the case.

■ Once software enables the watchdog timer, the registers become read-only, except for
the ENB and IRQ_FLG bits. This allows boot or monitor code to disable the watchdog
timer until the system has been configured.

■ All writes to the watchdog timer must be preceded by writes of a keyed sequence.
Detection of the keyed sequence allows a single write to the Watchdog Timer Control
(WDTMRCTL) register.

■ The watchdog timer time-out counter can only be reset by setting the ENB bit or by
writing a special clear key sequence to the Watchdog Timer Control (WDTMRCTL)
register address.

These features guarantee that the watchdog timer is not affected by errant code.
Élan™SC520 Microcontroller User’s Manual 19-5

Watchdog Timer
Although both the Watchdog Timer Count High and Low registers can be read from a single
32-bit CPU instruction, 32-bit accesses are split into two 16-bit accesses. If it is necessary
to read an accurate 32-bit value from the Watchdog Timer Counter, see Chapter 17,
“General-Purpose Timers”, for suggestions on dealing with this issue.

19.5 INITIALIZATION
At power-on reset, the watchdog timer is disabled. Software must enable it by setting the
ENB in the Watchdog Timer Control (WDTMRCTL) register. The watchdog timer time-out
count defaults to the maximum value. The WRST_ENB bit is set for generation of system
reset upon time-out. See “Configuration Information” on page 19-3.

Note that the processor does not resample external pins during a watchdog timer-generated
system reset. This means that the System Board Information (SYSINFO) register (MMCR
offset D70h), BOOTCS data bus width, and BOOTCS data bus select parameters do not
change when a watchdog timer system reset occurs. All other activities are identical to
those of a normal system reset.
19-6 Élan™SC520 Microcontroller User’s Manual

CHAPTER
20 R
EAL-TIME CLOCK
20.1 OVERVIEW
The real-time clock (RTC) included on the ÉlanSC520 microcontroller is compatible with
the MC146818A device used in PC/AT systems. The RTC consists of a time-of-day clock
with alarm and a 100-year calendar. The clock/calendar has a programmable periodic
interrupt and 114 bytes of static user RAM. The clock/calendar can be represented in either
binary or binary-coded decimal (BCD).

The RTC includes the following features:

■ PC/AT-compatible

■ Counts seconds, minutes, and hours of the day

■ Counts day of the week, date, month, and year

■ Binary or BCD representation of time, calendar, and alarm

■ 12- or 24-hour clock, with AM and PM indicator in 12-hour mode

■ Daylight saving time option

■ Automatic end-of-month recognition

■ Automatic leap year compensation

■ 14 bytes of clock and control registers

■ 114 bytes of general-purpose RAM

■ Three interrupt sources separately maskable with corresponding status bits

■ Time-of-day alarm is programmable to occur from once-per-second to once-per-day

■ Periodic interrupts can be programmed to occur at rates from 122 ms to 500 ms

■ Update-ended interrupt provides cycle status

■ Internal RTC reset signal can perform a reset on power-up

The RTC has its own power pin and reset separate from the rest of the other core supplies.
When the chip is powered off, the RTC can remain powered up and in full functional mode,
maintaining time, calendar, and user RAM data.

The RTC includes registers for time, calendar, and alarm data and four control/status
registers. The RTC Status D (RTCSTAD) register (RTC index 0Dh) has a status bit
(RTC_VRT) that indicates the validity of the contents of the RAM, time registers and the
calendar. The RTC_VRT bit is set based on the assertion of the internal RTC reset.

The RTC interrupt request is connected internally to the programmable interrupt controller
block.

20.2 BLOCK DIAGRAM
Figure 20-1 shows a block diagram of the real-time clock.
Élan™SC520 Microcontroller User’s Manual 20-1

Real-Time Clock
Figure 20-2 on page 20-3 shows a block diagram of the RTC voltage monitor. The
ÉlanSC520 microcontroller’s RTC voltage monitor is designed to signal the RTC core when
the backup battery is not installed or is low. Additionally, the voltage monitor circuit signals
the RTC core when the rest of the system is being powered down.

As shown in Figure 20-2, the voltage monitor includes a bandgap voltage generator for
precision reference voltage and a high-gain amplifier for adjusting bandgap voltage to “low-
battery” trip voltage. In addition to the backup battery monitor function, the voltage monitor
also provides a power-down signal to the RTC. This signal is used to isolate the RTC core
from the rest of the integrated peripherals. A timing diagram for this sequence is shown in
the Élan™SC520 Microcontroller Data Sheet, order #22003.

Figure 20-1 Real-Time Clock Block Diagram

Periodic Interrupt Selection
(1-of-15 Selection)

Control and Status

(4 Bytes)

Clock, Alarm
Calendar RAM

(10 Bytes)

Configuration RAM

Clock/
Calendar
Update

BCD/
Binary

Increment

Internal GP bus
interface

rtc_irq

Time Base (32.768 kHz)

1-Hz Clock

O
S

C
_C

T
L[

2–
0]

R
AT

E
_S

E
L[

3–
0]

Real-Time Clock

/32 /32

/2

(114 bytes)

P
IC

/32

Divider

/32/4

Control

V
M

R
T

C
R

T
C

 V
ol

ta
ge

 M
on

ito
r

rst_rtc

pwrdn

Élan™SC520 Microcontroller

Registers A,B,C,D
20-2 Élan™SC520 Microcontroller User’s Manual

Real-Time Clock
Figure 20-2 RTC Voltage Monitor Block Diagram

20.3 SYSTEM DESIGN

20.3.1 Backup Battery Considerations
The behavior of the RTC when the primary power supply is turned off depends on whether
or not an external backup battery is included in the system design. The RTC can be
connected to the main power plane if a backup battery is not needed in the system.

20.3.1.1 System with an External Backup Battery

If an external RTC backup battery is connected to the ÉlanSC520 microcontroller’s
VCC_RTC pin, the real-time clock (RTC) remains operational even if all the other power
supplies are turned off.

An implementation using a backup battery is shown in Figure 20-3. The primary power
source for VCC_RTC is the main power plane (VCC). D1 should be chosen so that the
forward voltage drop is small, less than 0.25 V. D1 also prevents the backup battery from
powering up the VCC power plane when the main supply is turned off.

The backup battery voltage must not exceed 3.3 V (affects the BBATSEN and VCC_RTC
pins); higher voltages may damage the ÉlanSC520 microcontroller.

The RC network composed of R1 and C2 provides a time delay for the internal circuit power-
up sequence. C1 is for high-frequency filtering purposes.

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for detailed component
specifications.

+

–

Bandgap VBG

Amplifier

BBATSEN

One
Shot

RTC Reset

Flip-
Flop

D

CK

QPWRGOOD

32 kHz

Internal RTC Power-Down

2.0 V

Voltage
Generator
Élan™SC520 Microcontroller User’s Manual 20-3

Real-Time Clock
Figure 20-3 Circuit with Backup Battery

Software can read the RTC_VRT bit in the RTC Status D (RTCSTAD) register (RTC index
0Dh) at system boot time to determine whether or not the RTC time, date, and user RAM
are still valid since the last boot. This status bit is set based on the assertion of an internal
RTC-only reset signal. In systems with external backup batteries (as shown in Figure 20-3),
the RTC is reset when the main power supply is turned off and the backup battery is either
low or is not installed.

In these systems, the VCC_RTC pin is a dedicated power supply pin for the 32.768-kHz
oscillator and the RTC.

■ When the primary system power supply is turned on, the main power plane (VCC) drives
the VCC_RTC pin through an external diode.

■ When the primary power supply is turned off or nonfunctional, VCC_RTC is driven by
the backup battery through a second external diode.

■ The on-chip voltage monitor circuit monitors the voltage level of the backup battery
through the BBATSEN pin each time the PWRGOOD signal is asserted.

■ If the backup battery is sampled below 2.0 V, the RTC logic is reset. The read-only
RTC_VRT bit is cleared and latched in this state until the bit is read. After this bit is
initially read, it always reads back a value of 1 for all subsequent reads prior to an RTC
reset.

■ When the main system power supply is off and the backup battery is initially installed,
the external RC circuit consisting of R1 and C2 causes a slow rising edge on the
BBATSEN input, and the RTC is reset.

20.3.1.2 System without an External Backup Battery

For the system that is not using an external RTC backup battery, Figure 20-4 shows how
the circuit should be designed. It uses the same RC that is needed by the battery system,
but it is now connected to VCC_RTC.

VCC_ANLG is selected as the power plane for VCC_RTC because it is a well-filtered power
plane that is well below the VCC_RTC maximum of 3.3 V.

BATT

VCC_RTC

VCC_RTC

BBATSEN

C1

D1D2

R1

C2

(3.3 V max)

10 W

Élan™SC520 Microcontroller
20-4 Élan™SC520 Microcontroller User’s Manual

Real-Time Clock
In this configuration, the RTC is reset after power-up, but is not reset by subsequent
PWRGOOD assertions.

■ The RTC is reset after a power-up—When power has been removed from the RTC, the
contents are no longer valid. In this case, the RTC is reset.

■ RTC is not reset—When a reset switch tied to PWRGOOD is pressed (VCC remains
High) and PWRGOOD reasserts with BBATSEN High, the RTC is not reset. In this case,
power did not go away, the RTC contents are still valid, and no RTC reset occurs.

Detailed component specifications for the resistor and capacitor shown in Figure 20-4 can
be found in the Élan™SC520 Microcontroller Data Sheet, order #22003.

Figure 20-4 Circuit without Backup Battery

20.3.2 Selecting and Interfacing a 32.768-kHz Crystal
See the Élan™SC520 Microcontroller Data Sheet, order #22003, for information and
detailed specifications for selecting a 32.768-kHz crystal.

20.3.3 Using an External RTC
When the ÉlanSC520 microcontroller comes out of reset, the internal RTC is enabled. If
the system application requires the use of an external RTC, the internal RTC should be
disabled during the boot process and initialization to prevent potential conflicts.

The Address Decode Control (ADDDECCTL) register (MMCR offset 80h) includes a control
bit for selecting between the internal RTC and an external RTC. Setting the RTC_DIS bit
to 1 disables the internal RTC by disabling the internal I/O decode for addresses 0070h
and 0071h. When the RTC_DIS bit is set, accesses to these addresses generate external
bus cycles, allowing the use of an external RTC module.

Disabling the internal RTC does not automatically disable the interrupt connection to the
programmable interrupt controller (PIC). If PC/AT-compatibility is required, the designer
should connect the external RTC’s interrupt request to one of the ÉlanSC520

VCC_ANLG

C1

R1

C2 Élan™SC520 Microcontroller

VCC_RTC

BBATSEN
Élan™SC520 Microcontroller User’s Manual 20-5

Real-Time Clock
microcontroller’s programmable interrupt inputs and program the interrupt steering logic to
route the request to interrupt priority P8.

Disabling the internal RTC does not disable or reset the core in any way.

See “Disabling Internal Peripherals” on page 3-21 for more information.

20.4 REGISTERS
The RTC is controlled by the configuration registers listed in Table 20-1, Table 20-2, and
Table 20-3.

Table 20-1 Real-Time Clock Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

Address Decode Control ADDDECCTL 80h RTC disable

RTC Interrupt Mapping RTCMAP D43h RTC interrupt mapping

Table 20-2 Real-Time Clock Registers—Direct-Mapped

Register Mnemonic I/O Address Function

RTC/CMOS RAM Index RTCIDX 0070h RTC index to read or write

RTC/CMOS RAM Data Port RTCDATA 0071h Data to be read or written

Table 20-3 Real-Time Clock Registers—RTC Indexed

Register Mnemonic I/O Address Function

RTC Current Second RTCCURSEC 70h/71h
Index 00h

Seconds

RTC Alarm Second RTCALMSEC 70h/71h
Index 01h

Seconds alarm

RTC Current Minute RTCCURMIN 70h/71h
Index 02h

Minutes

RTC Alarm Minute RTCALMMIN 70h/71h
Index 03h

Minutes alarm

RTC Current Hour RTCCURHR 70h/71h
Index 04h

Hours, 12- and 24-hour mode

RTC Alarm Hour RTCALMHR 70h/71h
Index 05h

Hours alarm, 12- and 24-hour mode

RTC Current Day of the Week RTCCURDOW 70h/71h
Index 06h

Day of the week

RTC Current Day of the
Month

RTCCURDOM 70h/71h
Index 07h

Day of the month

RTC Current Month RTCCURMON 70h/71h
Index 08h

Month

RTC Current Year RTCCURYR 70h/71h
Index 09h

Year
20-6 Élan™SC520 Microcontroller User’s Manual

Real-Time Clock
20.5 OPERATION
Programs can retrieve time and calendar information from the RTC by reading the
appropriate RTC index registers. Programs can also change the time, calendar, and alarm
information in the RTC by writing to these registers.

The RTC executes an update cycle once per second, assuming that the OSC_CTL bit field
in the RTC Control A (RTCCTLA) register (RTC index 0Ah) has been set to 010b and that
the SET bit in RTC Control B (RTCCTLB) register has been cleared. When the SET bit is
1, all updates are disabled, and the program can initialize the time and date registers.

With a 32.768-kHz time base, the update cycle takes 1984 ms. If a program reads these
RAM locations before the update is complete, the output is undefined. The Update-In-
Progress (UIP) status bit is set in the RTC Control A (RTCCTLA) register during this time.

There are three ways to handle nonavailability during an RTC update.

■ Use the update-ended interrupt—If enabled, this interrupt occurs after every update
cycle. This means that over 998 ms are available to read the time and date registers.

■ Use the Update-in-Progress bit (UIP) in RTC Control A (RTCCTLA) register—The UIP
bit changes once per second. The update cycle begins 244 ms after the UIP bit goes
high. This means that, if a 0 is read on the UIP bit, there are at least 244 ms before the
time or calendar data will be changed. If a 1 is read in the UIP bit, the time or calendar
data may not be valid. Note that the time allocated to read time or calendar data should
not exceed 244 ms.

■ Use a periodic interrupt to determine if an update cycle is occurring.

Note that, to ensure correct data, the time should not be set on the last day of the month
within two seconds of the rollover to the next day.

20.5.1 Configuration Information

20.5.1.1 Configuring the Hour Format

The 12/24 Hour Mode Select (HOUR_MODE_SEL) bit in the RTC Control B (RTCCTLB)
register (RTC index 0Bh) establishes whether the hour locations represent 1-to-12 or 0-to-
23. The HOUR_MODE_SEL bit can not be changed without re-initializing the RTC Current
Hour (RTCCURHR) register (RTC index 04h) and the RTC Alarm Hour (RTCALMHR)

RTC Control A RTCCTLA 70h/71h
Index 0Ah

Update status, divider chain control, and
periodic interrupt rate selection

RTC Control B RTCCTLB 70h/71h
Index 0Bh

Update override (SET); periodic interrupt, alarm
interrupt, and update-ended interrupt enables;
date mode, 24/12 hour control, and daylight
saving enable

RTC Status C RTCSTAC 70h/71h
Index 0Ch

Interrupt request, periodic interrupt, alarm
interrupt, and update-ended interrupt flags

RTC Status D RTCSTAD 70h/71h
Index 0Dh

RTC power status (BBATSEN)

General-Purpose CMOS
RAM (114 bytes)

RTCCMOS 70h/71h
Index 0E–
7Fh

General-purpose CMOS RAM bytes

Table 20-3 Real-Time Clock Registers—RTC Indexed (Continued)

Register Mnemonic I/O Address Function
Élan™SC520 Microcontroller User’s Manual 20-7

Real-Time Clock
register (RTC index 05h). When the 12-hour format is selected, the AM_PM bit and
ALM_AM_PM bit in these two respective registers represent PM when they are a 1.

20.5.1.2 Programming the Date and Time

A program can initialize the time, calendar, and alarm by writing to appropriate RAM location.

■ Before initializing the internal registers, set the SET bit in the RTC Control B (RTCCTLB)
register (RTC index 0Bh) to prevent time and calendar updates from occurring.

■ Initialize the ten locations in the selected format (binary or BCD).

■ Specify the format using the data mode (DATE_MODE) bit in the RTC Control B
(RTCCTLB) register. All time, calendar, and alarm registers must use the same data
mode, either binary or BCD.

■ Clear the SET bit to allow updates.

20.5.1.3 Generating Periodic Interrupts

Different periodic interrupt rates can be specified by programming the RATE_SEL bit field
in the RTC Control A (RTCCTLA) register, as shown in Table 20-4.

The periodic interrupt is enabled by the PER_INT_ENB bit field in the RTC Control B
(RTCCTLB) register. The PER_INT_FLG bit in the RTC Status C (RTCSTAC) register (RTC
index 0Ch) provides latched status for the RTC periodic interrupt event.

Note: The first interrupt may not occur at the programmed rate due to synchronization.

Table 20-4 Using RATE_SEL to Specify a Periodic Interrupt Rate

Periodic Interrupt Interval Frequency RATE_SEL3–0

None None 0 0 0 0

3.90625 ms 256 Hz 0 0 0 1

7.8125 ms 128 Hz 0 0 1 0

122.070 ms 8 kHz 0 0 1 1

244.14 ms 4 kHz 0 1 0 0

488.28 ms 2 kHz 0 1 0 1

976.562 ms 1 kHz 0 1 1 0

1.953125 ms 512 Hz 0 1 1 1

3.90625 ms 256 Hz 1 0 0 0

7.8125 ms 128 Hz 1 0 0 1

15.625 ms 64 Hz 1 0 1 0

31.25 ms 32 Hz 1 0 1 1

62.5 ms 16 Hz 1 1 0 0

125 ms 8 Hz 1 1 0 1

250 ms 4 Hz 1 1 1 0

500 ms 2 Hz 1 1 1 1
20-8 Élan™SC520 Microcontroller User’s Manual

Real-Time Clock
20.5.1.4 Using the Alarm Function

The three alarm bytes can be used in two different ways.

■ If the Alarm Interrupt Enable (ALM_INT_ENB) bit is set in the RTC Control B (RTCCTLB)
register, the alarm interrupt occurs at the time specified in the alarm registers.

■ If a “don’t care” state (any hexadecimal byte from C0–FFh) is written to one or more of
the three alarm registers, the alarm interrupt occurs from once per second to once per
hour.

– Setting the hour, minute, and second alarm registers with a value from C0–FFh causes
an RTC alarm event to be generated once per second.

– Setting the hours, and minutes alarm registers with a value from C0–FFh causes an
RTC alarm event to be generated once per minute.

– Setting the hours alarm registers with a value from C0–FFh causes an RTC alarm
event to be generated once per hour.

20.5.1.5 Handling Year 2000 Issues

With appropriate software support, the ÉlanSC520 microcontroller is Y2K-compliant. The
Y2K problem is handled by storing the century part of the year in the byte at 32h in the
CMOS memory. The operating system software must handle rollover of the RTC Current
Year (RTCCURYR) register (RTC index 09h).

To be Y2K-compliant, the software that sets the year must accept four-digit years. The
routine that sets the RTC stores the lower portion of the year value in the RTC Current Year
(RTCCURYR) register and the upper portion in the century CMOS memory location.

This operation is handled properly by PC-style BIOS software that supports the ÉlanSC520
microcontroller. For information on what BIOS products are supported, see the AMD web
site.

For embedded systems, a simple set of software functions supports four-digit years with
the RTC.

20.5.2 Clocking Considerations
The 32KXTAL2 and 32KXTAL1 pins are used to connect the external 32.768-kHz crystal
or oscillator to the ÉlanSC520 microcontroller. This clock source is then used to clock the
internal RTC.

For other details, see Chapter 5, “Clock Generation and Control”.

20.5.3 Interrupts
The RTC provides three different interrupt sources. All three interrupts are connected
internally to the programmable interrupt controller and can be mapped to any interrupt
channel. The three interrupt sources are:

■ Periodic Interrupt—Can be set at rates from 122 ms to 500 ms.

■ Alarm Interrupt—Can be set at rates from once-per-second to once-per-day.

■ Update-Ended Interrupt—Provides update cycle status.

These three interrupts are enabled in RTC Control B (RTCCTLB) register. The RTC interrupt
request is only active from low to high.

Before these interrupts can be used, they must be mapped to the programmable interrupt
controller. For more information, see Table 15-4 on page 15-12.
Élan™SC520 Microcontroller User’s Manual 20-9

Real-Time Clock
20.5.4 Software Considerations
20.5.4.1 Initializing the RTC Divider Chain

An RTC reset event does not initialize either the divider chain or the Internal Oscillator
Control (OSC_CTL) bit field in the RTC Control A (RTCCTLA) register (RTC index 0Ah).
The internal RTC divider chain can be reset by writing a value of 110b or 111b to the
OSC_CTL field. Writing either of these values resets the entire divider chain and disables
the timebase updates. Resetting the divider chain is not required as part of the RTC
initialization, but can be used to provide an accurate start time after initializing the timebase.
To enable the divider chain and set the proper divisor, a value of 010b should be written to
the OSC_CTL field.

20.5.4.2 Accessing the CMOS Memory

Access to CMOS RAM can be performed without any regard for RTC operations. However,
if the RTC is disabled, the CMOS RAM will be unavailable, but not lost, unless both main
and backup power to the RTC core is removed. Re-enabling the RTC will allow access to
the CMOS RAM with its contents intact.

To access CMOS memory, first write the location of the desired byte to the RTC/CMOS
RAM Index (RTCIDX) register (Port 0070h), then read the contents of that location from
the RTC/CMOS RAM Data Port (RTCDATA) register (Port 0071h), or write the desired data
byte to this data port.

20.5.4.3 Legacy NMI Enable Bit Moved

In PC/AT-compatible systems, bit 7 of the write-only RTC/CMOS RAM Index (RTCIDX)
register (Port 0070h) is used to enable non-maskable interrupts (NMIs). On the ÉlanSC520
microcontroller, this NMI_ENB bit has been moved to bit 6 of the Interrupt Control (PICICR)
register (MMCR offset D00h). Legacy software that needs to explicitly enable or disable
interrupts should be modified accordingly. However, due to the difference in nature of the
use of NMIs in legacy systems (memory parity errors and channel check) and in the
ÉlanSC520 microcontroller (mappable to any interrupt source), compatibility issues are
minimal. Writes to bit 7 of the RTC/CMOS RAM Index (RTCIDX) register (Port 0070h) on
the ÉlanSC520 microcontroller have no effect and do not affect the index of the data
accessed at the RTC/CMOS RAM Data Port (RTCDATA) register (Port 0071h).

For example:

-mov-al, 85h
-out-70h, al

and

-mov-al, 05h
-out-70h, al

Both sequences result in the contents of the RTC Alarm Hour (RTCALMHR) register (RTC
index 05h) being accessed at the RTC/CMOS RAM Data Port (RTCDATA) register.

20.6 INITIALIZATION
The real-time clock is enabled at system reset.

1. Before initializing the internal registers, disable the time and calendar updates via the
SET bit in RTC Control B (RTCCTLB) register (RTC index 0Bh).

2. Reset the RTC divider chain by writing a value of 11xb to the OSC_CTL field in the RTC
Control A (RTCCTLA) register (RTC index 0Ah).
20-10 Élan™SC520 Microcontroller User’s Manual

Real-Time Clock
3. Initialize the ten time, calendar, and alarm registers in either binary or BCD data format.

4. Specify the format in the data mode via the DATE_MODE bit in the RTC Control B
(RTCCTLB) register. All ten time, calendar, and alarm registers must use the same data
mode, either binary or BCD.

5. Enable updates via the SET bit in RTC Control B (RTCCTLB) register.

6. Enable the divider chain by programming 010b in the OSC_CTL field. Time and update
cycles will begin 500 ms after this write.

Steps 2 and 6 are necessary only if precision setting is required. Otherwise, the OSC_CTL
field can be written to 010b in step 2, and step 6 can be skipped. The first update cycle,
however, will occur at an undetermined time after updates are enabled.

When initialized, the RTC makes all updates in whatever data mode has been programmed.
To change the data mode, the ten data bytes must be re-initialized.

20.6.1 RTC Reset
The RTC is not automatically reset by a system reset. There are three conditions that trigger
an RTC reset:

■ BBATSEN drops below 2.0 V (sampled when PWRGOOD asserts)—During operation
from the main power supply, the backup battery voltage might drop below the trip voltage
(2.0 V). The RTC is not reset until a PWRGOOD assertion occurs.

■ Power is applied to VCC_RTC (at backup battery installation)—When the backup battery
is plugged in, the RTC is immediately reset.

■ No battery during power-up (sampled after PWRGOOD asserts)—If the system does
not contain a backup battery and the BBATSEN line potential is below 2.0 V, the RTC is
reset when PWRGOOD asserts.

Note that this RTC reset may or may not occur when a master power-on reset occurs,
depending on the state of BBATSEN.

If the BBATSEN signal drops below the 2.0-V reference and PWRGOOD is Low, an internal
RTC reset signal is generated to notify the user via the RTC_VRT bit (RTC index 0Dh) that
the RTC contents are no longer valid.
Élan™SC520 Microcontroller User’s Manual 20-11

Real-Time Clock
20-12 Élan™SC520 Microcontroller User’s Manual

CHAPTER
21 U
ART SERIAL PORTS
21.1 OVERVIEW
The ÉlanSC520 microcontroller includes two industry-standard 16550-compatible UARTs,
both capable of running all existing 16450 and 16550 software.

The UARTs power up in 16450-compatible UART mode (also called character mode or
non-FIFO mode). Each UART can be switched between the 16550-compatible mode (also
called FIFO mode) and 16450-compatible mode under software control. In 16550-
compatible mode, the receiver and the transmitter are each buffered with 16-byte FIFOs to
offload the CPU from repetitive service routines.

Features:

■ Full UART pinout: SOUT, SIN, CTS, RTS, DSR, DTR, RIN, and DCD for each UART

■ In 16550-compatible mode, the transmitter and receiver are each buffered with 16-byte
FIFOs

■ Full-duplex (data can be sent in both directions simultaneously)

■ DMA operation

■ Internal baud-rate clock of 18.432 MHz or 1.8432 MHz

■ Baud rates from DC to 1.152 Mbaud

– Baud-rate generator provides input clock divisor from 1 to (216–1) to create 16x clock.

■ Programmable serial interface:

– 5-, 6-, 7-, and 8-bit character sizes

– Even, odd, or no-parity bit generation and detection

– 1, 1½, or 2 stop bits

– Break generation and detection

– Each UART’s address decode can be individually disabled, allowing external devices
to be used in their place.

■ Internal Diagnostics:

– False start bit detection

– Complete status reporting capabilities

– Break, parity error, overrun error, and framing error detection

– Loopback controls for communications link fault isolation

21.2 BLOCK DIAGRAM
Figure 21-1 shows a block diagram of a single UART. The ÉlanSC520 microcontroller
includes two UARTS that function identically to each other.
Élan™SC520 Microcontroller User’s Manual 21-1

UART Serial Ports
Figure 21-1 UART Block Diagram

21.3 SYSTEM DESIGN
UART 2 shares signals with the PIO31–PIO28 signals, as shown in Table 21-1. When
enabled, the multiplexed signals shown in Table 21-1 either disable or alter any other
function that uses the same pin.

Both UARTs can work with full modem control signals (SOUTx, SINx, CTSx, RTSx, DSRx,
DTRx, RINx, and DCDx) or with two wires only (SOUTx and SINx). If only two wires are
used, the unused input port pins can be left unconnected. (There are internal pullup resistors
on these signals.)

Table 21-1 UART Signals Shared with Other Interfaces

PIO
(Default)
Function

Interface
Function Control Bit Register

PIO31 RIN2 PIO31_FNC PIO31–PIO16 Pin Function Select
(PIOPFS31_16) register (MMCR offset C22h)PIO30 DCD2 PIO30_FNC

PIO29 DSR2 PIO29_FNC

PIO28 CTS2 PIO28_FNC

Transmitter

Interrupt

Configuration

rx_dma_req

uart_irq

tx_dma_req

SOUTx

SINx

clk_uart

RTSx
CTSx

DSRx

RINx

DTRx

DCDx

DMA Control

Prescaler

(18.432 MHz)

18.432 MHz
1.8432 MHz From

clocks

To/from DMA

To PIC

Registers

out2

GP Bus

 gptc

tx_dack

Élan™SC520 Microcontroller

Modem

Control

Baud
Generator

TX Hold Register
TX FIFO

TX shift register

Receiver

RX FIFO
RX Buffer Register

RX shift register

UART

rx_dack
21-2 Élan™SC520 Microcontroller User’s Manual

UART Serial Ports
Each UART supports loopback mode. In this mode, the UART’s transmitter output is
internally connected with the receiver input. It is useful for testing the operation of a local
UART channel without affecting the states of the UART output pins and independently of
the state of the UART input pins.

When in loopback mode, RTS and DTR are internally connected to CTS and DSR,
respectively. In addition, the DTR and RTS signals are forced inactive. Therefore, hardware
flow control is inactive.

UART interrupt requests are disabled while in loopback mode.

Table 21-2 lists the connection of DTE to DTE.

21.4 REGISTERS
The UARTs are controlled by the memory-mapped registers listed in Table 21-3 and the
direct-mapped registers listed in Table 21-4.

Table 21-2 Connection of DTE to DTE

DTE DTE

SOUT SIN

SIN SOUT

CTS RTS

RTS CTS

DSR DTR

DTR DSR

RIN RIN

DCD DCD

Table 21-3 UART Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

Address Decode Control ADDDECCTL 80h UART 1 and UART 2 disables

PIO31–PIO16 Pin Function
Select

PIOPFS31_16 C22h PIO or interface function select: RIN2, DCD2,
DSR2, CTS2

Clock Select CLKSEL C26h CLKTIMER[CLKTEST] pin enable, CLKTEST
output select options (18.432 MHz or 1.8432
MHz UART), CLKTIMER or CLKTEST select

UART 1 General Control
UART 2 General Control

UART1CTL
UART2CTL

CC0h
CC4h

Clock source; receive TC interrupt and transmit
TC interrupt enables

UART 1 General Status
UART 2 General Status

UART1STA
UART2STA

CC1h
CC5h

Receive TC and transmit TC interrupts status

UART 1 FIFO Control
Shadow
UART 2 FIFO Control
Shadow

UART1FCRSHAD
UART2FCRSHAD

CC2h
CC6h

Information written to the direct-mapped UART
x FIFO Control (UARTxFCR) register

UART 1 Interrupt Mapping UART1MAP D28h UART 1 interrupt mapping
Élan™SC520 Microcontroller User’s Manual 21-3

UART Serial Ports
UART 2 Interrupt Mapping UART2MAP D29h UART 2 interrupt mapping

Table 21-4 UART Registers—Direct-Mapped

Register Mnemonic I/O Address Function

UART 1 Transmit Holding
UART 2 Transmit Holding

UART1THR
UART2THR

02F8h
03F8h

Byte to be transmitted

UART 1 Receive Buffer
UART 2 Receive Buffer

UART1RBR
UART2RBR

02F8h
03F8h

Received byte

UART 1 Baud Clock Divisor
Latch LSB
UART 2 Baud Clock Divisor
Latch LSB

UART1BCDL
UART2BCDL

02F8h
03F8h

Least significant byte of a 16-bit baud-rate clock
divisor used to generate the 16x baud clock

UART 1 Baud Clock Divisor
Latch MSB
UART 2 Baud Clock Divisor
Latch MSB

UART1BCDH
UART2BCDH

02F9h
03F9h

Most significant byte of a 16-bit baud-rate clock
divisor used to generate the 16x baud clock

UART 1 Interrupt Enable
UART 2 Interrupt Enable

UART1INTENB
UART2INTENB

02F9h
03F9h

Interrupt enables: modem status, receiver line
status, transmit holding empty, received data
available, and time-out

UART 1 Interrupt ID
UART 2 Interrupt ID

UART1INTID
UART2INTID

02FAh
03FAh

FIFO mode indication, interrupt identification,
interrupt pending status

UART 1 FIFO Control
UART 2 FIFO Control

UART1FCR
UART2FCR

02FAh
03FAh

Trigger level for received data available
interrupt, DMA mode, transmitter FIFO and
receiver FIFO clear, FIFO enable for 16550-
compatible mode

UART 1 Line Control
UART 2 Line Control

UART1LCR
UART2LCR

02FBh
03FBh

Divisor latch access (DLAB), break, stick parity,
parity, asynchronous data parity, stop, transmit/
receive word length

UART 1 Modem Control
UART 2 Modem Control

UART1MCR
UART2MCR

02FCh
03FCh

Loopback diagnostic mode, UARTx interrupt
enable, RTSx and DTRx control

UART 1 Line Status
UART 2 Line Status

UART1LSR
UART2LSR

02FDh
03FDh

FIFO error, transmitter empty indicator,
Transmitter Holding register or transmit FIFO
empty, break indicator, framing error, parity
error, overrun error, data ready

UART 1 Modem Status
UART 2 Modem Status

UART1MSR
UART2MSR

02FEh
033FEh

Real-time and latched status bits for DCDx,
RINx, DSRx and CTSx

UART 1 Scratch Pad
UART 2 Scratch Pad

UART1SCRATCH
UART2SCRATCH

02FFh
03FFh

Temporary data storage

Table 21-3 UART Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR
Offset
Address Function
21-4 Élan™SC520 Microcontroller User’s Manual

UART Serial Ports
21.5 OPERATION
Each UART performs:

■ Serial-to-parallel conversion on data characters received from a modem or a peripheral
device

■ Parallel-to-serial conversion on those data characters written by the CPU or DMA
controller

During communication, data is transmitted and received in frames. The frame format, as
well as the baud rate, must be the same on the transmitter and receiver. The frame format
is determined by the settings in the UART x Line Control (UARTxLCR) register. Each frame
begins with a start bit (Low) and ends with one, one and a half, or two stop bits (High). After
the start bit is transmitted/received, the data bits, which can be programmed to a length of
5, 6, 7 or 8 bits, are transmitted/received serially with least significant bit first.The last data
bit may be followed by an optional parity bit that is enabled using the PENB bit in the UART
x Line Control (UARTxLCR) register. The line is always held High between frames (idle
state).

■ Transmission of a frame is initiated when a byte is written to the UART x Transmit Holding
(UARTxTHR) register.

■ Reception of a frame is initiated when a start bit is received (the SIN input is driven Low
for one baud-rate clock period).

Figure 21-2 shows the frame configurations supported and the bit stream sequence for a
UART on the ÉlanSC520 microcontroller. Figure 21-3 shows an actual UART frame during
transmission with configuration of even parity, one stop bit, and eight data bits.

Figure 21-2 UART Frame Configuration

Figure 21-3 UART Frame Transmission

Each UART includes a programmable baud-rate generator that is capable of dividing the
timing reference clock input by divisors of 1 to (), and producing a 16 x clock for driving
the internal transmitter/receiver logic.

Start
Bit 5 Data Bits

Optional
6th
Data Bit

Optional
7th
Data Bit

Optional
8th
Data Bit

Optional
Parity Bit

Stop
Bit

Optional
0.5 or 2nd
Stop Bit

Baud Clock

TxD or RxD
idle 0 1 0 1 1 0 0 idle

Asynchronous transmission of 03Ah as 8 bits of data, even parity, one stop bit

1 stopparitystart

Asynchronous serial frame

Serial data

2
16

1–
Élan™SC520 Microcontroller User’s Manual 21-5

UART Serial Ports
For each UART, six handshaking signals are provided:

■ DTRx (Data Terminal Ready) output—When the signal is Low, it informs the modem set
that the UART is ready to establish a communications link. The DTRx output signal can
be asserted and deasserted by the UART x Modem Control (UARTxMCR) register.
Loopback mode operation holds DTRx in its inactive state.

■ DSRx (Data Set Ready) input—When the signal is Low, it indicates that the modem is
ready to establish the communications link with the UART. The state of the DSRx pin
can be tested in the UART x Modem Status (UARTxMSR) register. The DDSR status
bit provided in the UART x Modem Status (UARTxMSR) register indicates if the DSRx
signal has changed state since the register was last read. An interrupt can also be
generated upon DSRx change.

■ RTSx (Request-to-Send) output—When the signal is Low, it informs the modem that the
UART is ready to exchange data. The RTSx output signal can be asserted and
deasserted by the UART x Modem Control (UARTxMCR) register. Loopback mode
operation holds RTSx in its inactive state.

■ CTSx (Clear-to-Send) input—When the signal is Low, it indicates that the modem is
ready to exchange data. The state of the CTSx pin can be tested in the UART x Modem
Status (UARTxMSR) register. The DCTS status bit in the UART x Modem Status
(UARTxMSR) register indicates if the CTSx signal has changed state since the register
was last read. An interrupt can also be generated upon CTSx change.

■ DCDx (Data Carrier Detect) input—When the signal is Low, it indicates that the data
carrier has been detected by the modem and that contact between it and the other
modem is established. The state of the DCDx pin can be tested in the UART x Modem
Status (UARTxMSR) register. The DDCD status bit in the UART x Modem Status
(UARTxMSR) register indicates if the DCDx signal has changed state since the register
was last read. An interrupt can also be generated upon DCDx change.

■ RINx (Ring Indicator) input—When the signal is Low, it indicates that a telephone ringing
signal has been received by the modem. The state of the RINx pin can be tested in the
UART x Modem Status (UARTxMSR) register. The TERI status bit is also provided in
the UART x Modem Status (UARTxMSR) register indicates if the RINx signal has
changed state from asserted to deasserted since the register was last read. An interrupt
can also be generated upon RINx deassertion.

21.5.1 Data Transmission

21.5.1.1 16450-Compatible UART Mode

In 16450-compatible (non-FIFO or character) mode:

1. Data written to the UART x Transmit Holding (UARTxTHR) register is subsequently
latched into the internal transmitter shift register when the transmitter shift register is
empty.

2. Once data has been latched into the internal transmitter shift register, the Transmit
Holding Register Empty (THRE) bit in the UART x Line Status (UARTxLSR) register
goes to 1 (optionally generating a UART interrupt).

3. The application is once again permitted to write data to the UART x Transmit Holding
(UARTxTHR) register.

Note that writing to the UART x Transmit Holding (UARTxTHR) register in this mode when
the THRE bit is not set can result in incorrect data being transmitted.
21-6 Élan™SC520 Microcontroller User’s Manual

UART Serial Ports
The Transmitter Empty (TEMT) bit in the UART x Line Status (UARTxLSR) register is set
in this mode if both the UART x Transmit Holding (UARTxTHR) register and internal
transmitter shift register are empty. An application could write two bytes consecutively to
the UART x Transmit Holding (UARTxTHR) register without checking THRE if TEMT is
detected as set.

21.5.1.2 16550-Compatible UART Mode

In 16550-compatible (FIFO) mode:

1. Data written to the UART x Transmit Holding (UARTxTHR) register address is latched
into the next available FIFO location.

2. The transmit data is shifted directly out of the first FIFO entry with valid data. There are
a total of 16 bytes in the FIFO. Thus, if the TEMT bit is set, then software can safely
write 16 bytes consecutively to the UART x Transmit Holding (UARTxTHR) register
address for transmission.

The THRE (which can optionally generate an interrupt) and TEMT bits are set whenever
the last character is shifted from the FIFO and the FIFO becomes empty. If the number of
characters currently in the FIFO is unknown, software should wait for the THRE or TEMT
bit to be set before writing additional data.

21.5.2 Data Reception
21.5.2.1 16450-Compatible UART Mode

In 16450-compatible mode:

1. Received data is shifted from the SIN pin into the internal receive shift register.

2. Once an entire UART frame has been received, the character is transferred from the
internal receive shift register into the UART x Receive Buffer (UARTxRBR) register.

3. The Data Ready (DR) bit in the UART x Line Status (UARTxLSR) register is set to 1
(optionally generating an interrupt).

Note that the DR bit is cleared by a read of the UART x Receive Buffer (UARTxRBR) register.
If a second character is transferred into the UART x Receive Buffer (UARTxRBR) register
before software reads the first one (i.e., the DR bit is still set), then the Overrun Error (OE)
bit in the UART x Line Status (UARTxLSR) register is set to 1, and the first character is
destroyed. Subsequent received bytes continue to overwrite the UART x Receive Buffer
(UARTxRBR) register until software reads the UART x Receive Buffer (UARTxRBR)
register.

21.5.2.2 16550-Compatible UART Mode

In 16550-compatible mode:

1. Received data is shifted into the internal receive shift register.

2. Once an entire UART frame has been received, the character is transferred from the
internal receive shift register into the FIFO.

– If the FIFO was empty, the DR bit in the UART x Line Status (UARTxLSR) register is
set and remains set until the FIFO is completely emptied by software.

– If the received character places the FIFO above the limit indicated by the RFRT field
in the UART x FIFO Control (UARTxFCR) register and received data available
interrupts are enabled, then an interrupt is generated.

– A receive FIFO time-out interrupt occurs when this interrupt is enabled if data is present
in the FIFO and no received data have been placed into or read from the receive FIFO
Élan™SC520 Microcontroller User’s Manual 21-7

UART Serial Ports
in four character times. In 16550-compatible mode, the Overrun Error (OE) bit is set
if a new character is completely received into the shift register when the FIFO is already
100% full. Data in the FIFO is not overwritten by this overrun. However, the data in
the shift register is lost.

21.5.3 Error Handling
Received data can contain three types of abnormal conditions in addition to the overrun
error:

■ Parity errors

■ Framing errors

■ Break indications

21.5.3.1 Parity Error

A parity error indicates that the parity bit for the character in error did not match the parity
indicated by the Even Parity Select (EPS) bit, Stick Parity Enable (SP) bit, and the
Asynchronous Data Parity Enable (PENB) bit in the UART x Line Control (UARTxLCR)
register.

21.5.3.2 Framing Error

A framing error indicates that the bit following the parity bit (if parity is enabled) or following
the last data bit (if parity is not enabled) was detected to be a logic 0. To resynchronize
following this type of error, the UART assumes that the framing error was due to the next
start bit occurring too early. It samples the start bit twice (once as the erroneous stop bit of
the first character and once as the start bit of the second character) before sampling the
data for the second bit.

21.5.3.3 Break Indication

A break indication means that the received data input was detected to be 0 for a time longer
than a full UART frame (including start bit, data bits, parity, and stop bits). The character
loaded into the FIFO on a break indication is always 0, and subsequent characters are
loaded normally once the receive input returns to its idle state (high).

21.5.3.4 Error Reporting

21.5.3.4.1 16450-Compatible UART Mode
In 16450-compatible mode, the error bits (OE, PE, FE, and BI) in the UART x Line Status
(UARTxLSR) register indicate that the error was detected during reception of the current
byte in the UART x Receive Buffer (UARTxRBR) register. If receiver line status Interrupts
are enabled, any of the OE, PE, FE, or BI conditions trigger an interrupt.

21.5.3.4.2 16550-Compatible UART Mode
In 16550-compatible mode, the error bits (PE, FE, and BI) are set only when an error
condition is detected in the character at the top of the FIFO. Since reading the UART x
Receive Buffer (UARTxRBR) register causes the FIFO to advance to the next received
character, the error bits must be read from the UART x Line Status (UARTxLSR) register
prior to the data being read from the FIFO. The ERR_IN_FIFO bit in the UART x Line Status
(UARTxLSR) register can be used to detect if any of the characters in the FIFO (not just
the one at the top) had errors.

All of the error bits, with the exception of the ERR_IN_FIFO bit, are cleared when the UART
x Line Status (UARTxLSR) register is read. The ERR_IN_FIFO bit is cleared when the
UART x Line Status (UARTxLSR) register is read and all data present in the FIFO is error-
free, or the FIFO becomes empty.
21-8 Élan™SC520 Microcontroller User’s Manual

UART Serial Ports
If receiver line status interrupts are enabled, any of the OE, PE, FE, or BI conditions trigger
an interrupt. Note that the ERR_IN_FIFO cannot directly generate an interrupt.

21.5.4 Configuration Information
21.5.4.1 Baud Rate

To generate the baud rate of the transfer, the UART clock is divided by a divisor value
chosen by the programmer. The UART’s baud-rate generator automatically calculates the
baud rate from the divisor value programmed into the two UART x Baud Clock Divisor Latch
MSB and LSB registers. These registers are read at initialization to set the baud rate for
the transfer. The baud rate is calculated according to the following equation:

Baudrate = clockfrequency / 16 * BAUDDIV

Here, clock frequency refers to the frequency of the main reference clock, 1.8432 MHz or
18.432 MHz. This frequency is determined by the CLKSRC bit in the UART x General
Control (UARTxCTL) register. BAUDDIV is defined by the UART x Baud Clock Divisor Latch
MSB and LSB registers. Table 21-5 lists the divisor value (in decimal and hexadecimal) to
use with each clock frequency to achieve common baud rates.

21.5.4.2 Hardware Flow Control

When the EMSI bit of the UART x Interrupt Enable (UARTxINTENB) register is set, the
modem status interrupt is enabled to facilitate the hardware flow control. The interrupts are
triggered by changes in the following control lines: CTSx, DTRx, RINx, and DCDx.

21.5.4.3 Operating Modes

16450-compatible UART mode and 16550-compatible UART mode can be setup by setting
or clearing the FIFO_ENB bit of UART x FIFO Control (UARTxFCR) register. The
ÉlanSC520 microcontroller UARTs can be switched between the 16550-compatible mode
and 16450-compatible mode under software control.

Table 21-5 Baud Rates, Divisors, and Clock Source

Baud Rate

DIV[15–0] (Decimal) DIV[15–0] (Hexadecimal)

1.8432 MHz 18.432 MHz 1.8432 MHz 18.432 MHz

300 baud 384d 3840d 0180h 0F00h

600 baud 192d 1920d 00C0h 0780h

2400 baud 48d 480d 0030h 01E0h

4800 baud 24d 240d 0018h 00F0h

7200 baud 16d 160d 000Fh 00A0h

9600 baud 12d 120d 000Ch 0078h

14.4 kbaud 8d 80d 0008h 0050h

19.2 kbaud 6d 60d 0006h 003Ch

57.6 kbaud 2d 20d 0002h 0014h

115.2 kbaud 1d 10d 0001h 000Ah

144 kbaud 8d 0008h

192 kbaud 6d 0006h

288 kbaud 4d 0004h

576 kbaud 2d 0002h

1.152 Mbaud 1d 0001h
Élan™SC520 Microcontroller User’s Manual 21-9

UART Serial Ports
When in 16550-compatible mode, the receiver and transmitter FIFO buffers can be cleared
by the RF_CLR and TF_CLR bits in the UART x FIFO Control (UARTxFCR) register,
respectively. The receiver FIFO trigger level can be programmed by RFRT field of the
UART x FIFO Control (UARTxFCR) register.

21.5.5 DMA Interface
To support higher serial data transfer rates, both UARTs support DMA. For more detailed
information on the operation of the GP-DMA controller, see Chapter 14, “GP Bus DMA
Controller”.

The ÉlanSC520 microcontroller’s DMA interface provides up to four 8-bit DMA channels to
support the two integrated UARTs. Each UART can use up to two DMA channels: one for
receive and one for transmit. DMA transfers are supported for both 16450- and 16550-
compatible modes.

The DMA controller can perform read and write operations in single cycle, demand, or block
transfer mode. However, block transfer mode is not supported for UART transfers.

21.5.5.1 Transmit DMA

The internal tx_dma_req signal from the UART is asserted whenever there is room for
another transmit character in the UART.

■ For 16450-compatible UART mode, this means that either the internal transmitter shift
register or the UART x Transmit Holding (UARTxTHR) register can accept a character.

■ For 16550-compatible mode, this means that the transmit FIFO is not full.

21.5.5.2 Receive DMA

The internal rx_dma_req signal from the UART is asserted:

■ For 16550-compatible mode, whenever the receive trigger level was reached or a time-
out has occurred. The rx_dma_req signal is made inactive when the receive FIFO is
completely empty.

■ For 16450-compatible UART mode, whenever the UART x Receive Buffer (UARTxRBR)
register contains a valid character.

For either mode, the internal rx_dma_req signal is deasserted whenever a character is
received with an error condition. This allows software to inspect the error condition before
the error status is cleared by a subsequent DMA transfer. Once software has cleared the
error status by a read of the UART x Line Status (UARTxLSR) register, the rx_dma_req is
asserted when another character is present in the UART.

21.5.6 Clocking Considerations
The clock input to the UARTs to support standard PC/AT baud selections is 1.8432 MHz.
A clock of 18.432 MHz is also provided to the UARTs for fast serial communication. This
frequency is determined by the CLK_SRC bit in the UART x General Control (UARTxCTL)
register.

21.5.7 Interrupts
Each of the two UARTs on the ÉlanSC520 microcontroller provides its own interrupt to the
programmable interrupt controller. Each ÉlanSC520 microcontroller serial port has an
internal interrupt signal that can be mapped to uart1_irq or uart2_irq. For detailed
information, see Chapter 15, “Programmable Interrupt Controller”.
21-10 Élan™SC520 Microcontroller User’s Manual

UART Serial Ports
Table 21-6 provides a summary of UART interrupt sources for both DMA and serial port
interrupts.

Interrupts generated by the UARTs are cleared in a variety of ways, depending on the
source event. For details about clearing a particular event, see the event’s status bit
description in the Élan™SC520 Microcontroller Register Set Manual, order #22005.

Table 21-6 UART Interrupt Programming Summary

Interrupt Description
Enable
Register1, 2

Notes:
1. Before any UART interrupt is enabled, the corresponding UART x Interrupt Mapping (UARTxMAP) register must
be configured to route the interrupt to the appropriate interrupt request level and priority.
2. The OUT2 bit in the UART x Modem Control (UARTxMCR) register is used as a master control for UART inter-
rupts. The OUT2 bit must be set for UART interrupts to be generated. Status bits can be read even when interrupts
are disabled.

Status
Register3

3. If two of the interrupts enabled in the UART x Interrupt Enable (UARTxINTENB) register are pending simulta-
neously, the highest-priority interrupt is identified in the INT_ID bit field of the UART x Interrupt ID (UARTxINTID)
register.

Source Event
Polled
Status Bit

Receive DMA transfer count UART x General
Control
(UARTxCTL)

UART x
General Status
(UARTxSTA)

UART x Receive TC Detected RXTC_DET

Transmit DMA transfer count UART x Transmit TC Detected TXTC_DET

Modem status change UART x Interrupt
Enable
(UARTxINTENB)

UART x
Modem Status
(UARTxMSR)

Delta data carrier detect DDCD

Trailing edge ring indicator TERI

Delta data set ready DDSR

Delta clear to send DCTS

Receiver line status UART x Line
Status
(UARTxLSR)

Break indicator BI

Framing error FE

Parity error PE

Overrun error OE

Transmitter holding register
empty

Transmit holding register (16450-
compatible mode) or transmitter
FIFO (16550-compatible mode)
empty

THRE

Received data available Data ready
(16450-compatible mode)

DR

—4

4. There are no polled-status bits for the FIFO trigger level and FIFO time-out events. These events are indicated by
the INT_ID bit field only.

FIFO trigger level reached
(16550-compatible mode)

—

FIFO time-out5

5. The FIFO time-out interrupt is enabled with the received data available interrupt by the ERDAI bit in the UART x
Interrupt Enable (UARTxINTENB) register.

FIFO time-out
(16550-compatible mode)

—

Élan™SC520 Microcontroller User’s Manual 21-11

UART Serial Ports
21.5.7.1 Serial Port Interrupts

Each serial port supports the standard UART interrupts. These include:

■ Received data available or FIFO trigger level reached

■ Transmit Holding register empty (THRE)

■ Modem status change (including clear-to-send, data-set-ready, ring indicator, data
carrier detect)

■ Line Status register receiver interrupts (including overrun error, parity error, framing error
and break interrupt)

In 16550-compatible mode, the FIFO time-out interrupt is also enabled when the received
data available interrupt is enabled.

The UART interrupt sources and their priority are shown in Table 21-7. If two interrupt
sources are pending simultaneously, the highest priority interrupt is indicated by the ID field
of the UART x Interrupt ID (UARTxINTID) register. When the interrupt source is cleared, a
subsequent read from this port returns the next highest priority interrupt source.

Note: In 16450-compatible mode, the INT_ID2 bit always reads back 0. The INT_ID bit
field is located in the UART x Interrupt ID (UARTxINTID) register.

The UART interrupts are enabled by the Interrupt Enable register and read from the UART x
Interrupt ID (UARTxINTID) register.

21.5.7.2 DMA Interrupts

Each UART can generate an interrupt when the Transfer Count (TC) signal associated with
DMA transfers is asserted. Four enable bits and four status bits are available for these
interrupts: transmit and receive Transfer Count reached for each UART. These bits are
located in the UART x General Control (UARTxCTL) and UART x General Status
(UARTxSTA) registers.

Table 21-7 Serial Port Interrupt and Interrupt Priority

INT_ID
Bit Field Description Identification Priority

000b Modem status change Fourth (Lowest)

001b Transmit holding register empty (16540-compatible
mode)/Transmit FIFO empty (16550-compatible mode)

Third

010b Received data available (16540-compatible mode)/
Receiver FIFO trigger (16550-compatible mode)

Second

011b Receive line status First (Highest)

100b Not used —

101b Not used —

110b FIFO time-out Second

111b Not used —
21-12 Élan™SC520 Microcontroller User’s Manual

UART Serial Ports
21.5.7.3 Interrupt Disable

Each UART interrupt request can be disabled (gated low) prior to the programmable
interrupt controller by clearing to 0 the OUT2 bit in the UART x Modem Control (UARTxMCR)
register. Note that setting the LOOP bit in the MCR also disables the UART interrupt request.
Therefore, interrupts are not propagated to the PIC while in loopback mode.

21.6 INITIALIZATION
At system reset, the serial port is disabled. To be enabled, it must be configured by software.

1. Configure the UART by programming the desired baud rate, character length, stop-bits,
and parity.

2. Enable interrupts and DMA operation as desired. Note that for UART interrupts to
propagate to the programmable interrupt controller, the OUT2 bit in the UART x Modem
Control (UARTxMCR) register must be set to 1.

After the UART is enabled, it powers up as a 16450-compatible device. It can be switched
between 16550-compatible mode and 16450-compatible mode under software control.

3. Enable 16550-compatible mode by setting the FIFO_ENB bit of UART x FIFO Control
(UARTxFCR) register. Note that the contents of this write-only register can be read back
in the UART x FIFO Control Shadow (UARTxFCRSHAD) register.
Élan™SC520 Microcontroller User’s Manual 21-13

UART Serial Ports
21-14 Élan™SC520 Microcontroller User’s Manual

CHAPTER
22 S
YNCHRONOUS SERIAL INTERFACE
22.1 OVERVIEW
The ÉlanSC520 microcontroller includes a synchronous serial interface (SSI). The SSI
provides efficient full-duplex and half-duplex, bidirectional communication to peripheral
devices. The interface can be used to configure and monitor the status of devices such as
ISDN transceivers, EEPROMs, SLACs, audio CODECs, LCD drivers, DSPs, etc. It can
easily communicate with slave interfaces that are compatible to Motorola’s Serial Peripheral
Interface (SPI), Motorola’s Serial Communication Port (SCP), National Semiconductor
Corporation’s Microwire, and other industry standards.

Features of the SSI include:

■ Full or half-duplex operation

■ Compatible with either four-pin or three-pin peripheral devices

■ Multiple device enables through programmable I/O (PIO) pins

■ Configurable clock idle state and phase

■ Configurable bit shifting order, most significant bit or least significant bit first

■ Programmable SSI clock speed, from 64 kHz to 8 MHz

■ Transaction complete status, available as interrupt

22.2 BLOCK DIAGRAM
A block diagram of the SSI is shown in Figure 22-1. System diagrams, as well as timing
diagrams, of a three-pin SSI interface and a four-pin SSI interface are shown on page 22-3.

22.3 SYSTEM DESIGN
Three SSI pins are provided: clock out (SSI_CLK), data out (SSI_DO), and data in (SSI_DI).
The SSI_DO signal is normally at high-impedance when no transmit transaction is active
on the SSI. An external pullup or pulldown resistor can be added to this pin, if required by
the slave device.

Most slave devices require an enable pin to be asserted during an operation and deasserted
when not in operation. PIO pins on the ÉlanSC520 microcontroller can be used for this
purpose.

Many slave SSI ports provide an interrupt output pin to the ÉlanSC520 microcontroller.
These can be routed to one of the GPIRQx pins, which are multiplexed with PIOs. See
Chapter 15, “Programmable Interrupt Controller”, and Chapter 2, “Pin Information”, for
information on external interrupts.

See the Élan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and
additional timing diagrams.
Élan™SC520 Microcontroller User’s Manual 22-1

Synchronous Serial Interface
Figure 22-1 SSI Block Diagram

22.4 REGISTERS
The memory-mapped registers shown in Table 22-1 are used to configure the SSI.

Table 22-1 Synchronous Serial Interface Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

SSI Control SSICTL CD0h SSI clock speed, interrupt enable, clock phase,
clock idle state, bit order

SSI Transmit SSIXMIT CD1h Byte or data to be shifted out to SSI_DO pin

SSI Command SSICMD CD2h Transfer command to be executed: transmit,
receive, or simultaneous transmit/receive

SSI Status SSISTA CD3h Busy status, transaction complete status

SSI Receive SSIRCV CD4h Byte or data shifted in from SSI_DI pin

SSI Interrupt Mapping SSIMAP D41h SSI interrupt mapping

Block

SSI Control Register

SSI Transmit Register

SSI Receive Register

SSI Command Register

SSI_DO

SSI_DI

SSI_CLK

SSI Status Register

PIOx

Generation
SSI Clock

shift register

shift register

Programmable Interrupt
Controller (PIC)

Internal

PIO

GP Bus

33-MHz
Clock

SSI

GPIRQx

ssi_irq

tri_do

Élan™SC520 Microcontroller
22-2 Élan™SC520 Microcontroller User’s Manual

Synchronous Serial Interface
22.5 OPERATION
Synchronous serial interface describes a port that can be implemented in several ways.
Typically, the microcontroller port is called the master and one or more peripheral device
ports are slaves.

■ The master port (ÉlanSC520 microcontroller) configures a slave by serial transmission
of slave commands, addresses, and data.

■ A slave (peripheral device) can send requested status information or data, similarly.

Options in the SSI Control (SSICTL) register (MMCR offset CD0h), along with software-
controlled device enable signals, can be used to customize the SSI port to emulate a variety
of formats. Its flexibility allows simple communication with multiple devices, reducing
software overhead.

Three commands are provided to initiate the transfer of data through the SSI. A write to the
SSI Control (SSICTL) register selects the type of cycle to execute and initiates the cycle.
The three SSI commands are:

■ Transmit-only (half-duplex)—In a transmit transaction, or cycle, the contents of the SSI
Transmit (SSIXMIT) register (MMCR offset CD1h) are serially shifted onto the SSI_DO
pin.

■ Receive-only (half-duplex)—A receive transaction shifts a byte from SSI_DI to the SSI
Receive (SSIRCV) register (MMCR offset CD4h).

■ Simultaneously transmit and receive (full-duplex)

The ÉlanSC520 microcontroller SSI is always the master and drives the clock when the
SSI command is given. Slave devices cannot drive this clock. All transactions complete
within eight clock cycles.

22.5.1 Usage Scenarios

22.5.1.1 Four-Pin Interface

A full-duplex, four-pin port has separate input and output data pins. Figure 22-2 is a block
diagram of the SSI connected to multiple four-pin slave devices. A transmit and receive
operation can take place within the same eight clocks, as shown in Figure 22-3. Many four-
pin slave ports, however, operate in half-duplex. In that case, Figure 22-5 would apply.

22.5.1.2 Three-Pin Interface

SSI_DO and SSI_DI can be externally shorted to interface three-pin peripheral devices, as
in Figure 22-4. This creates an I/O signal that matches slave I/O pins. Three-pin ports
multiplex the data output and input for half-duplex communication. A typical half-duplex
operation, as shown in Figure 22-5, is implemented with a two-byte protocol in non-inverted
phase and clock modes. The first byte sends a command/address byte to the slave, which
indicates that the data for the second byte will be transmitted or received. The slave should
begin to transmit or receive when it detects an active clock.
Élan™SC520 Microcontroller User’s Manual 22-3

Synchronous Serial Interface
Figure 22-2 SSI Four-Pin Interface

Figure 22-3 SSI Simultaneous Transmit and Receive

Figure 22-4 SSI Three-Pin Interface

Figure 22-5 SSI Typical Half-Duplex Communication, Non-Inverted Phase and Clock Modes

SSI_CLK

SSI_DO

SSI_DI

PIOx

Data in

Data out

Enable

Clock in

Data in

Data out

Clock in

Enable

PIOx

Élan™SC520 Microcontroller

Four-Pin Slave Synchronous
Serial Interface

Four-Pin Slave Synchronous
Serial Interface

PIOx

SSI_CLK

SSI_DO

SSI_DI

SSI_CLK

SSI_DO

SSI_DI

PIOx

Clock in

Data in/out

Enable

Three-Pin Slave

Serial Interface
Élan™SC520 Microcontroller Synchronous

PIOx

SSI_CLK

SSI_DO

SSI_DI
22-4 Élan™SC520 Microcontroller User’s Manual

Synchronous Serial Interface
22.5.2 Configuration Information
The MSBF_ENB, CLK_INV_ENB, and PHS_INV_ENB bits in the SSI Control (SSICTL)
register (MMCR offset CD0h) define the order of the bits, the clock idle state, and the clock
edge upon which data is transmitted/received (phase).

■ The SSI should be configured to assert SSI_DO on the same clock edge that the slave
uses to transmit.

■ SSI_DI is sampled on the opposite clock edge.

22.5.2.1 Bit Order

The SSI bit order can be changed by the SSI Most Significant Bit First Mode Enable
(MSBF_ENB) bit. A byte can be transferred with the least significant bit first (LSBF) or most
significant bit first (MSBF). MSBF mode is enabled when this bit is written to a 1. This mode
is common for input and output data.

22.5.2.2 Clock Idle State

The clock idle state is controlled by the SSI Inverted Clock Mode Enable (CLK_INV_ENB)
bit. The absolute time to drive/sample is unchanged by the CLK_INV_ENB bit.

■ When the CLK_INV_ENB bit has a value of 0, SSI_CLK idles High, then pulses Low
during a transaction.

■ If the CLK_INV_ENB bit is written to a 1, the clock idle state is Low.

22.5.2.3 Clock Phase

The clock phase, relative to the serial data, is determined by the SSI Inverted Phase Mode
Enable (PHS_INV_ENB) bit.

■ In non-inverted phase mode, data is transmitted on odd edges of the SSI clock, and
received on even edges.Therefore, the first SSI clock edge of a transaction shifts out
the first bit on SSI_DO, if writing. SSI_DI data is latched, during a receive transaction,
on even edges of the SSI clock.

■ Inverted phase mode requires that the SSI_DI signal be sampled on the first (odd) clock
edge(s). Consequently, the first bit is asserted on SSI_DO one-half an SSI clock cycle
before the first edge of SSI_CLK, and even edges afterwards.

22.5.3 Bus Cycles
The four possible combinations of CLK_INV_ENB and PHS_INV_ENB are shown in
Figure 22-6.

■ Microwire compatibility is configured when the PHS_INV_ENB, CLK_INV_ENB, and
MSBF_ENB bits are all set to 1.

■ The SSI is compatible with an SCP interface when the PHS_INV_ENB and
CLK_INV_ENB bits are cleared to 0, and the MSBF_ENB bit is set to 1.
Élan™SC520 Microcontroller User’s Manual 22-5

Synchronous Serial Interface
Figure 22-6 SSI Clock Phase and Clock Idle State: Effects on Data

22.5.3.1 4-Bit Read Cycle

A 4-bit operation can be simulated by ignoring four of the eight bits transferred. Figure 22-7
shows an example of a 4-bit read operation.

1. A full-duplex SSI command is executed in non-inverted phase, non-inverted clock, and
MSBF modes.

2. The first four bits on SSI_DO transmit a slave nibble read command.

3. The last four bits on SSI_DO can specify a four-bit NOP command, if they are not ignored
by the slave.

4. The first four bits on SSI_DI are shifted in, but can be ignored by software.

5. The last four bits on SSI_DI are the requested nibble.

6. The SSI transaction is complete one-half the SSI_CLK period after the last read edge.

Figure 22-7 SSI 4-Bit Read Cycle: Full-Duplex, Non-Inverted Phase, Non-Inverted Clock

PIOx

SSI_DI

SSI_DO

SSI_CLK

SSI_CLK

SSI_CLK

SSI_CLK

PHS_INV_ENB=0

PHS_INV_ENB=1

PHS_INV_ENB=1

PHS_INV_ENB=0

Write
Read

Transaction complete,
three-state SSI_DO

CLK_INV_ENB=0

CLK_INV_ENB=1

CLK_INV_ENB=0

CLK_INV_ENB=1

MSB LSB

PIOx

SSI_CLK

SSI_DO

SSI_DI

MSB LSB
22-6 Élan™SC520 Microcontroller User’s Manual

Synchronous Serial Interface
22.5.3.2 Burst, 16-Bit, and 32-Bit Cycles

Burst,16-bit, and 32-bit exchanges can be simulated by multiple 8-bit transactions. There
is at least one CPU clock period idle time between transactions. Additional delay between
each transaction is determined by software. Figure 22-8 shows an example of a 16-bit
operation. Two full-duplex SSI commands are executed to a Microwire-compatible
peripheral.

Figure 22-8 SSI Back-to-Back Transactions for Full-duplex,
Microwire-Compatible Configuration

22.5.4 Clocking Considerations
The SSI clock is derived from the 33-MHz clock. The CLK_SEL bit in the SSI Control
(SSICTL) register (MMCR offset CD0h) is used to configure the frequency of the SSI clock
(the SSI_CLK pin). The actual bit rate will vary, depending on whether the system is using
a 33.000-MHz or a 33.333-MHz crystal. See the Élan™SC520 Microcontroller Register Set
Manual, order #22005, for frequency selection.

22.5.5 Interrupts
An interrupt can be generated by the SSI to alert the CPU that a transaction is complete.

1. The interrupt is enabled by writing the TC_INT_ENB bit to a 1 in the SSI Control (SSICTL)
register.

2. When a transaction is complete, the BSY bit is cleared to a 0 in the SSI Status (SSISTA)
register (MMCR offset CD3h), the SSI Transaction Complete Interrupt (TC_INT) bit is
set to a 1 in the SSI Status (SSISTA) register, and an interrupt may be sent.

3. Hardware updates the SSI Status (SSISTA) register one-half an SSI clock period after
the last receive edge of a transaction (or one full SSI clock period after the last transmit
edge of a transaction, indicating that the SSI is again non-busy.

4. A 1 should be written back to the TC_INT bit to clear the bit and acknowledge the
interrupt; writing a 0 has no effect.

If the interrupt is not enabled, the SSI Status (SSISTA) register can be polled to periodically
read the BSY bit. BSY is set to a 1 when the SSI Command (SSICMD) register is loaded.

The TC_INT and BSY bit values for non-inverted and inverted phase modes are shown in
Figure 22-9.

7 0 7 0

MSB LSB MSB LSB

PIOx

SSI_CLK

SSI_DO

SSI_DI

Transaction
complete

Transaction
complete

Command Command
Élan™SC520 Microcontroller User’s Manual 22-7

Synchronous Serial Interface
Figure 22-9 SSI Timing: TC_INT and BSY_STA Bits

22.5.6 Software Considerations
A slave should be enabled (if necessary) before a transmit or receive transaction is initiated
and disabled after the transaction is complete. Software is responsible for controlling PIOs
to implement chip enable signals, including setup and hold time specifications. These pins
do not have associated SSI hardware functionality. See Chapter 23, “Programmable Input/
Output”, for descriptions of these pins.

Unreliable operation will occur if the configuration is modified or a second SSI command
is written during an active operation. Writes to the SSI Transmit (SSIXMIT) register, SSI
Control (SSICTL) register, and SSI Command (SSICMD) register should not be performed
while the SSI is busy. Software should load the SSI Transmit (SSIXMIT) register (if
necessary) before writing an SSI command. The SSI Receive (SSIRCV) register (MMCR
offset CD4h) should not be read until a receive transaction is complete.

22.6 INITIALIZATION
The SSI port is disabled during system reset, and all SSI register bits are initialized to 0.
The SSI is enabled after reset, but inactive until an SSI command is executed. Some or all
of the following steps should be taken to initiate an SSI transaction.

1. Enable/disable CPU transaction complete interrupt via the TC_INT_ENB bit in the SSI
Control (SSICTL) register.

2. Enable/disable inverted phase mode via the PHS_INV_ENB bit in the SSI Control
(SSICTL) register (MMCR offset CD0h).

3. Enable/disable inverted clock mode via the CLK_INV_ENB bit in the SSI Control
(SSICTL) register.

4. Enable/disable MSBF mode via the MSBF_ENB bit in the SSI Control (SSICTL) register.

5. Select SSI clock speed via the CLK_SEL bits in the SSI Control (SSICTL) register.

6. Enable/disable device enable pins using PIOs.

7. Write output data to the SSI Transmit (SSIXMIT) register (MMCR offset CD1h).

8. Write an SSI command to the SSI Command (SSICMD) register (MMCR offset CD2h).

9. Wait for a transaction complete interrupt or poll the SSI Status (SSISTA) register (MMCR
offset CD3h) to read BSY bit for port activity status, if the interrupt is disabled.

10.Read input data from the SSI Receive (SSIRCV) register (MMCR offset CD4h).

11.Write a 1 to the TC_INT bit in the SSI Status (SSISTA) register to clear bit and
acknowledge the interrupt, if enabled.

SSI_CLK

SSI_CLK

PHS_INV_ENB=0

PHS_INV_ENB=1

BSY=0
TC_INT=1 BSY=1

TC_INT=0
Write 1 to TC_INT

BSY=0
TC_INT=1 BSY=1

TC_INT=0

Write 1 to TC_INT

Write SSI command Write SSI command BSY=0
TC_INT=1

TC_INT=0

Write 1 to TC_INT

CLK_INV_ENB=0

CLK_INV_ENB=1
22-8 Élan™SC520 Microcontroller User’s Manual

CHAPTER
23 P
ROGRAMMABLE INPUT/OUTPUT
23.1 OVERVIEW
The ÉlanSC520 microcontroller supports 32 programmable I/O signals (PIOs) that can be
used on the system board to monitor signals or control devices that are not handled by the
other functions in the ÉlanSC520 microcontroller. These signals can be programmed to be
inputs or to be driven out High or Low as outputs.

The PIO signals can be programmed for the following functions:

■ Read as inputs (default condition after reset)

■ Driven High or Low as an output

On the ÉlanSC520 microcontroller, all of the PIOs are shared with other functions that may
not be needed in every system design, e.g., GP bus signals. This is done to give system
designers the most flexibility. For clarity, throughout this document, the two functions
available on the PIO pins are distinguished from each other as the PIO function and the
interface function.

Each of the PIO signals is terminated within the ÉlanSC520 microcontroller with either a
pullup or pulldown resistance. This feature makes system design easier by eliminating the
need for termination on the board. Each PIO signal is terminated according to the pin’s
interface function, i.e., a normally active Low signal will usually have a pullup to make it
inactive on reset. See the Élan™SC520 Microcontroller Data Sheet, order #22003, for the
termination of each PIO signal.

23.2 BLOCK DIAGRAM
Figure 23-1 is a block diagram of the PIO feature. This structure is repeated for each of the
PIOs; only one example PIO is shown in the diagram.
Élan™SC520 Microcontroller User’s Manual 23-1

Programmable Input/Output
Figure 23-1 PIO Signal Block Diagram

23.3 SYSTEM DESIGN
Because most of the PIOs share pins with other functions, designers are usually constrained
in choosing which PIO pins to use in their system designs (i.e., they may need the interface
function on their board). Choosing between PIOs and interface functions is done on a PIO
basis in the two PIOx Pin Function Select registers, as shown in Table 23-1. When enabled,
the multiplexed signals shown in Table 23-1 either disable or alter any other function that
uses the same pin.

Note: All PIOs are terminated by either pullup or pulldown resistors (depending on interface
function’s needs). The pullup and pulldown resistors are approximately 100–150 ohms. The
termination of the pin should be considered when deciding which PIO to use. For example,
if a PIO that is pulled down by default is to be used for a chip select, the internal pulldown
will have to be overridden by a stronger external pullup resistor, or else the external device
will have its chip select active at reset.

PIOx

PIO
Direction
Register

PIO
Data

Register

PIO
Pin Function

Select
Register

Interface
Function

S

Interface
Function

Gate
VCC_IO

PIO Set
Register

PIO Clear
Register

50
–

15
0

K
50

–
15

0
K

Logic

Élan™SC520 Microcontroller

Notes:
A PIO has either a pullup or pulldown resistor, but not both.
23-2 Élan™SC520 Microcontroller User’s Manual

Programmable Input/Output
After the assertion of PWRGOOD, all PIO signals default to be inputs with pullup or pulldown
resistive termination, as shown in Table 23-1. The signals must be programmed before
using them as outputs or the alternate interface function. See “Initialization” on page 23-6.

Table 23-1 PIO Signals Shared with Other Interfaces

PIO
(Default)
Function

Interface
Function

Pin Configuration
Following
System Reset Control Bit Register

PIO31 RIN2 input with pullup PIO31_FNC PIO31–PIO16 Pin Function Select
(PIOPFS31_16) register
(MMCR offset C22h)

PIO30 DCD2 input with pullup PIO30_FNC

PIO29 DSR2 input with pullup PIO29_FNC

PIO28 CTS2 input with pullup PIO28_FNC

PIO27 GPCS0 input with pullup PIO27_FNC

PIO26 GPMEMCS16 input with pullup PIO26_FNC

PIO25 GPIOCS16 input with pullup PIO25_FNC

PIO24 GPDBUFOE input with pullup PIO24_FNC

PIO23 GPIRQ0 input with pullup PIO23_FNC

PIO22 GPIRQ1 input with pullup PIO22_FNC

PIO21 GPIRQ2 input with pullup PIO21_FNC

PIO20 GPIRQ3 input with pullup PIO20_FNC

PIO19 GPIRQ4 input with pullup PIO19_FNC

PIO18 GPIRQ5 input with pullup PIO18_FNC

PIO17 GPIRQ6 input with pullup PIO17_FNC

PIO16 GPIRQ7 input with pullup PIO16_FNC

PIO15 GPIRQ8 input with pullup PIO15_FNC PIO15–PIO0 Pin Function Select
(PIOPFS15_0) register
(MMCR offset C20h)

PIO14 GPIRQ9 input with pullup PIO14_FNC

PIO13 GPIRQ10 input with pullup PIO13_FNC

PIO12 GPDACK0 input with pullup PIO12_FNC

PIO11 GPDACK1 input with pullup PIO11_FNC

PIO10 GPDACK2 input with pullup PIO10_FNC

PIO9 GPDACK3 input with pullup PIO9_FNC

PIO8 GPDRQ0 input with pulldown PIO8_FNC

PIO7 GPDRQ1 input with pulldown PIO7_FNC

PIO6 GPDRQ2 input with pulldown PIO6_FNC

PIO5 GPDRQ3 input with pulldown PIO5_FNC

PIO4 GPTC input with pullup PIO4_FNC

PIO3 GPAEN input with pullup PIO3_FNC

PIO2 GPRDY input with pullup PIO2_FNC

PIO1 GPBHE input with pullup PIO1_FNC

PIO0 GPALE input with pullup PIO0_FNC
Élan™SC520 Microcontroller User’s Manual 23-3

Programmable Input/Output
23.4 REGISTERS
A summary listing of the memory-mapped configuration registers used to control the PIO
signals is shown in Table 23-2.

23.5 OPERATION
All PIO signal pins can be programmed as inputs, outputs, or to support their interface
function (e.g., GP bus signals). They are enabled as PIO inputs at power-on reset, with
built-in pullup or pulldown resistors.

As inputs, PIOs are used by software to monitor signals from other devices. They provide
a path to bring signals into the chip that are not available through the other interfaces.

As outputs, the PIOs provide the ability for software to control external devices with signals
that can be driven High or Low.

Table 23-2 PIO Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

PIO15–PIO0 Pin Function
Select

PIOPFS15_0 C20h PIO15–PIO0 or interface function select:
GPIRQ10–GPIRQ8, GPDACK3–GPDACK0,
GPDRQ3–GPDRQ3, GPTC, GPAEN, GPRDY,
GPBHE, GPALE

PIO31–PIO16 Pin Function
Select

PIOPFS31_16 C22h PIO31–PIO16 or interface function select: RIN2,
DCD2, DSR2, CTS2, GPCS0, GPMEMCS16,
GPIOCS16, GPDBUFOE, GPIRQ7–GPIRQ0

Chip Select Pin Function
Select

CSPFS C24h GPCS7–GPCS1 or alternate function select:
TMROUTx, TMRINx, PITGATE2, ROMCS2,
ROMCS1

Clock Select CLKSEL C26h CLKTIMER[CLKTEST] pin enable, clock output
select options (18.432 MHz or 1.8432 MHz
UART, PLL1, PLL2, PIT, and RTC), CLKTIMER
or CLKTEST select

Drive Strength Control DSCTL C28h I/O pad drive strength for SCS3–SCS0,
SRASA–SRASB, SCASA–SCASB, SWEA–
SWEB, SDQM3–SDQM0, MA12–MA0, MD31–
MD0, MECC6–MECC0.

PIO15–PIO0 Direction PIODIR15_0 C2Ah PIO15–PIO0 as input or output

PIO31–PIO16 Direction PIODIR31_16 C2Ch PIO31–PIO16 as input or output

PIO15–PIO0 Data PIODATA15_0 C30h Read/write directly the state of the PIO15–PIO0
pin

PIO31–PIO16 Data PIODATA31_16 C32h Read/write directly the state of the PIO31–
PIO16 pin

PIO15–PIO0 Set PIOSET15_0 C34h Drive PIO15–PIO0 output High

PIO31–PIO16 Set PIOSET31_16 C36h Drive PIO31–PIO16 output High

PIO15–PIO0 Clear PIOCLR15_0 C38h Drive PIO15–PIO0 output Low

PIO31–PIO16 Clear PIOCLR31_16 C3Ah Drive PIO31–PIO16 output Low
23-4 Élan™SC520 Microcontroller User’s Manual

Programmable Input/Output
23.5.1 Configuration Information
23.5.1.1 PIO Pins and Simple Input

PIO pins are selected for simple input when the system powers up. The input value of the
pins can be read using the PIOx Data registers.

Only two actions disable simple input on the PIO pin:

■ Selecting the pin’s interface function

■ Setting the PIO’s PIOx_DIR bit in the PIOx Direction register to configure the PIO as an
output

23.5.1.2 PIO Pins and Simple Output

If the PIO pin's interface function has not been selected, and the PIOx_DIR is set, the PIO
will be an output. The value of the pin can be set by writing to its bit in the PIOx Set and
PIOx Clear registers, or by using the appropriate PIOx Data register.

23.5.2 Software Considerations
Table 23-3 summarizes the register settings required to configure the PIOs.

Table 23-3 PIO Configuration Summary

Function
Select

Register
Bit

Direction
Register

Bit

Data
Register

Bit
(Writes)

Set
Register

Bit

Clear
Register

Bit

Data
Register

Bit

(Reads)1

Notes:
1. The Data Register Bit (Reads) column shows the resulting state of the Data register bit and the corresponding
PIO pin.

Resulting Programmable I/O Pin Function

1 X2

2. X = Not used in this operation.

X X X ?3

3. ? = Input value. (The Data register bit state always reflects the corresponding pin state, whether input or output.)

The pin is not a PIO; it uses its interface function. The
value of the pin can be read at the Data bit, but writes to
the Direction, Data, Set, and Clear bits have no effect.

0 0 X X X ? The PIO is an input. The state of the pin can be read at
the Data bit. Writes to the Data, Set and Clear bits have
no effect.

0 1 X X 1 4

4. For a particular PIO output operation, only one of the pin’s Data, Set, or Clear bits can be used. The state of the
unused bits is not important, but subsequent writes to these bits can change the PIO pin state.

0 The PIO is an output. The 1 that is written to the Clear bit
causes this PIO pin to be driven Low. The state of the pin
can be read at the Data bit, (in this case the pin is Low).

0 1 X 1 X 1 The PIO is an output. The 1 that is written to the Set bit
causes this PIO pin to be driven High. The state of the pin
can be read at the Data bit, (in this case the pin is High).

0 1 0 X X 0 The PIO is an output. The 0 that is written to the Data bit
causes this PIO pin to be driven Low. The state of the pin
can be read at the Data bit, (in this case the pin is Low).

0 1 1 X X 1 The PIO is an output. The 1 that is written to the Data bit
causes this PIO pin to be driven High. The state of the pin
can be read at the Data bit, (in this case the pin is High).
Élan™SC520 Microcontroller User’s Manual 23-5

Programmable Input/Output
Note that although the registers to set, clear, and read the PIO pins can be accessed with
32-bit instructions, 32-bit accesses are split into two 16-bit accesses. This means, for
example, that it is impossible to simultaneously set PIO5 and PIO18. Similarly, it is
impossible to sample the state of PIO12 and PIO23 simultaneously; the 32-bit value
returned by the instruction contains two 16-bit values sampled at different times. For 32-bit
operations, the lower 16-bit word (for PIO31–PIO16) is always accessed before the upper
16-bit word (for PIO15–PIO0). The time between the two accesses is indeterminate and
based on other masters besides the CPU trying to access the bus.

23.6 INITIALIZATION
After a system reset, all of the PIO31–PIO0 signals default to be inputs with pullup or
pulldown resistive termination. The signals must be programmed before using them as
outputs or the alternate interface function.

To initialize the PIOx signals, the following steps are required:

1. Based on the specific application, determine which ÉlanSC520 microcontroller pins can
utilize the PIO function and which should be programmed as the interface function.

2. Program the PIOx Pin Function Select registers to select between the PIO function and
the interface function of each of the PIO31–PIO0 pins.

3. For pins specified as using the PIO functionality, define the PIO direction by programming
the PIOx Direction registers.

4. PIO pins that are defined as inputs can now be read via the PIOx Data registers.

5. PIO pins defined as outputs can now be written via the PIOx Data, PIOx Set, or PIOx
Clear registers.
23-6 Élan™SC520 Microcontroller User’s Manual

CHAPTER
24S
YSTEM TEST AND DEBUGGING
24.1 OVERVIEW
This chapter describes various system-level test features included in the ÉlanSC520
microcontroller. These features are useful for debugging hardware and software in an
ÉlanSC520 microcontroller-based system. Some of the system-level debugging features
are useful in conjunction with the AMDebug interface for software debugging. This
functionality is described in Chapter 26, “AMDebug™ Technology”.

The list below summarizes the functionality that has been included in the ÉlanSC520
microcontroller to facilitate system-level debugging.

■ A simple three-pin interface to aid in-circuit emulation tools with tracing external bus
activity

■ A write buffer test mode to assist in determining which bus masters contributed to the
current active write buffer write cycle on the SDRAM interface

■ A nonconcurrent arbitration mode that reduces the complexity of system transactions
when the Am5x86 CPU or PCI bus masters or GP-DMA cycles occur simultaneously

■ Echoing internal cycles and read data on the GP bus during Am5x86 CPU accesses of
internal integrated peripherals

■ Disabling the Am5x86 CPU’s integrated cache controller, controlling the cache write
policy, and specifying noncacheable memory regions

■ Controlling the clock speed of the Am5x86 CPU’s internal core

■ Disabling the SDRAM read buffer and write buffer

■ Ability to interrupt the Am5x86 CPU when an illegal memory write occurs to a write-
protected memory region, or to cause an exception when a code fetch occurs from data
memory

■ Ability to identify the source of a reset event

■ Ability to trace Error Correcting Code (ECC) errors for testing

■ Ability to override the ECC syndrome code

24.2 SYSTEM DESIGN
As shown in Table 24-1, three debugging pins on the ÉlanSC520 microcontroller operate
as either CF_DRAM, DATASTRB, and CF_ROM_GPCS, or WBMSTR2–WBMSTR0,
depending on if the ÉlanSC520 microcontroller has been configured for system test mode
(default) or write buffer test mode.

The CFG2–CFG0 pinstrap functions associated with these three pins are sampled only as
a result of PWRGOOD assertion and do not affect the other functions of these pins, so they
are not shown in this table. When enabled, the multiplexed signals shown in Table 24-1
either disable or alter any other function that uses the same pin.
Élan™SC520 Microcontroller User’s Manual 24-1

System Test and Debugging
24.2.1 Loading
When a logic analyzer is connected to the ÉlanSC520 microcontroller pins, it presents an
additional load that must be taken into consideration on critical buses, such as the SDRAM
interface. Extreme care must be taken when connecting to either the SDRAM clock or the
PCI bus clock. When external clock drivers are used on the system circuit board, it may be
best to connect to the output of a lightly loaded or unused clock driver.

24.3 REGISTERS
Table 24-2 lists the memory-mapped registers that are used to control the system-level
debugging features.

Table 24-1 System Test and Debugging Signals Shared with Other Interfaces

Default Signal Alternate Function Control Bit Register

CF_ROM_GPCS WBMSTR0 WB_TST_ENB SDRAM Control (DRCCTL) register
(MMCR offset 10h) DATASTRB WBMSTR1

CF_DRAM WBMSTR2

Table 24-2 System Test and Debugging Registers—Memory-Mapped

Register Mnemonic

MMCR
Offset
Address Function

Am5x86 CPU Control CPUCTL 02h CPU cache mode select (write-through or write-
back), CPU clock speed

SDRAM Control DRCCTL 10h System test mode (CF_DRAM, DATASTRB, and
CF_ROM_GPCS), write buffer test mode
(WBMSTR2–WBMSTR0) enable

ECC Check Code Test ECCCKTEST 23h ECC check code override for test and error
handler development

ECC Single-Bit Error Address ECCSBAD 24h Physical address of the location in SDRAM that
caused a single-bit ECC error

ECC Multi-Bit Error Address ECCMBADD 28h Physical address of the location in SDRAM that
caused a multi-bit ECC error

SDRAM Buffer Control DBCTL 40h Write buffer functions: write buffer enable, read-
ahead enable, write buffer watermark, write
buffer flush.

System Arbiter Control SYSARBCTL 70h System arbitration concurrency mode enable

Address Decode Control ADDDECCTL 80h Write-protect violation interrupt enable

Programmable Address
Region x

PAR0–PAR15 88–C4h Set noncacheable, write-protected, and non-
executable memory regions

GP Echo Mode GPECHO C00h Echo mode enable for monitoring integrated
peripheral accesses on GP bus

Reset Configuration RESCFG D72h AMDebug mode enable
24-2 Élan™SC520 Microcontroller User’s Manual

System Test and Debugging
24.4 OPERATION
The ÉlanSC520 microcontroller provides several features that are useful in a lab
environment for system-level debugging of both hardware and software. These features
can be used in conjunction with an in-circuit emulation system, but can also be used
independently to simplify some debugging activities. Many features are expected to be used
with a logic analyzer to capture system transaction information. These distinct system-level
debugging features are described in the separate sections of this chapter.

The three-pin debugging interface is a particularly useful feature of the ÉlanSC520
microcontroller. This interface operates in two different modes:

■ System test mode

■ Write buffer test mode

24.4.1 System Test Mode
System test mode is the primary use of the three-pin interface, which enables the pins to
be monitored with a logic analyzer or external in-circuit emulation system hardware to gain
important knowledge of current Am5x86 CPU cycles.

System test mode is used primarily to differentiate Am5x86 CPU code fetches from normal
memory read cycles on the SDRAM and ROM/Flash or GP bus interface. A signal
(DATASTRB) is also provided to identify when the data on the SDRAM data bus is valid.
This signal is used primarily by in-circuit emulation tools for capturing SDRAM data when
monitoring this interface.

System test mode is enabled by clearing the WB_TST_ENB bit in the SDRAM Control
(DRCCTL) register (MMCR offset 10h). System test mode is the default test mode on the
ÉlanSC520 microcontroller. The multiplexed debugging signals then operate as described
in Section 24.4.1.1.

24.4.1.1 Pin Functions in System Test Mode

24.4.1.1.1 CF_DRAM
During SDRAM read cycles, the CF_DRAM signal provides code fetch status.

■ When Low, if DATASTRB is active in the current cycle, this signal indicates that the
current SDRAM read is a CPU code fetch demanded by the CPU, or a read prefetch
initiated due to a demand code fetch by the CPU.

■ When High, this signal indicates that the SDRAM read is not a code fetch, and it could
have been initiated by the CPU, PCI master, or the GP-DMA controller, either demand
or prefetch.

During SDRAM write cycles, the CF_DRAM signal provides an indication of the source of
the data, either GP-DMA controller/PCI bus master, or CPU.

Reset Status RESSTA D74h Reset source status: SCP reset, AMDebug hard
reset detect, AMDebug system reset, watchdog
timer time-out, CPU shutdown (soft reset),
PRGRESET pin, and PWRGOOD pin

Table 24-2 System Test and Debugging Registers—Memory-Mapped (Continued)

Register Mnemonic

MMCR
Offset
Address Function
Élan™SC520 Microcontroller User’s Manual 24-3

System Test and Debugging
■ When High, this signal indicates that either a GP-DMA initiator or an external PCI bus
master contributed to the current SDRAM write cycle (the CPU may also have
contributed).

■ A Low indicates that the CPU is the only master that contributed to this write cycle.

24.4.1.1.2 DATASTRB
The DATASTRB signal is useful for the external in-circuit emulation system to latch data
from the SDRAM interface, regardless of the programmed SDRAM timing.

■ When Low, data on the SDRAM data bus is invalid.

■ When High, data on the SDRAM data bus can be latched on the next rising edge of the
CLKMEMIN signal.

24.4.1.1.3 CF_ROM_GPCS
The CF_ROM_GPCS signal can be sampled on the Low-to-High transition of the ROMRD
signal during ROM/Flash cycles or during the Low-to-High transition of GPMEMRD for
GPCS7–GPCS0 cycles.

■ The CF_ROM_GPCD signal should be sampled only when either GPMEMRD or
ROMRD is asserted.

■ When Low under these conditions, this signal indicates that the CPU is performing a
code fetch from ROM (on either the GP bus or SDRAM interface) or a GP bus memory
device.

24.4.1.2 Using the System Test Mode Interface

The system test mode interface is useful for tracing Am5x86 CPU activity on the SDRAM
and GP bus interfaces, including when the Am5x86 CPU is the initiator, when the data is
valid during SDRAM read and write cycles, and differentiating between code fetches and
data accesses. This still requires demultiplexing the BA1–BA0 and MA12–MA0 SDRAM
address bus to construct a full 28-bit address, which also requires knowledge of the
programming of some of the SDRAM controller configuration registers for device size and
symmetry. Since a data strobe is provided on the WBMSTR1 pin in this mode, detailed
knowledge of the programming of the SDRAM timing is not required. See Chapter 10,
“SDRAM Controller”, for details of SDRAM cycle timing and address multiplexing.

The CF_DRAM and CF_ROM_GPCS signals enable external determination of code fetches
from SDRAM, ROM/Flash, or any GP bus memory device. Prefetches from the SDRAM
controller’s read buffer can also be identified.

24.4.1.3 SDRAM Write Cycle in System Test Mode

Figure 24-1 illustrates the timing of a page hit SDRAM write cycle during system test mode.
To capture the CF_DRAM, BA1–BA0, MA12–MA0, and MD31–MD0 signals, the logic
analyzer or external in-circuit emulation system can use the DATASTRB signal to identify
the appropriate time to latch the information. This information must be captured on the
rising edge of CLKMEMIN when DATASTRB is sampled active. Note that DATASTRB is not
asserted during the read portion of a read-modify-write cycle that occurs for sub-doubleword
writes with ECC enabled.
24-4 Élan™SC520 Microcontroller User’s Manual

System Test and Debugging
Figure 24-1 System Test Mode Timing During a SDRAM Write Cycle (Page Hit)

24.4.1.4 SDRAM Read Cycle in System Test Mode

Figure 24-2 illustrates the timing of a page miss SDRAM read cycle (with a CAS Latency
of 2) during system test mode. To capture the CF_DRAM, BA1–BA0, MA12–MA0, and
MD31–MD0 signals, the logic analyzer or external in-circuit emulation system can use the
DATASTRB signal to identify the appropriate time to latch the information. This information
must be captured on the rising edge of CLKMEMIN when DATASTRB is sampled active.
The CAS latency timing is configured in the SDRAM Timing Control (DRCTMCTL) register
(MMCR offset 12h). The BA1–BA0 and MA12–MA0 bus can be used to determine the
physical address generated by the requesting master.

Figure 24-2 System Test Mode Timing During an SDRAM Read Cycle (Page Miss)

24.4.1.5 Tracing Transactions on the ROM Interface

Tracing transactions on the ROM interface requires only the CF_ROM_GPCS signal if it is
desired to differentiate code fetches from memory read cycles. Only the Am5x86 CPU can
be the initiator of ROM accesses. The address bus is non-multiplexed, and thus can be
read directly from the GPA25–GPA0 pins during ROM/Flash cycles. The system

Nop Wr Nop

Col

a

CLKMEMIN

BA1–BA0

MD31–MD0

DATASTRB

CF_DRAM

Valid on this clock edge

Command

MA12–MA0

Nop RdAct Nop Nop

a b c d

Row Col

CLKMEMIN

BA1–BA0

Command

MD31–MD0

DATASTRB

CF_DRAM

MA12–MA0

Notes:
CAS latency is 2.
Élan™SC520 Microcontroller User’s Manual 24-5

System Test and Debugging
configuration of the ROM array must be known, because the ROM data bus can be
connected to either the SDRAM interface data pins (MD31–MD0), or the GP bus interface
data pins (GPD15–GP0). Also, the timing of the ROM cycle will vary, depending on the
device that has been connected to each of the ROM chip selects and the programming of
the ROM controller configuration registers. The following pins can be monitored to trace
transactions on the ROM interface:

■ CF_ROM_GPCS if it is necessary to identify code fetches

■ GPA25±GPA0 ROM non-multiplexed address bus

■ GPD15±GPD0 ROM data bus, or MD31±MD0 SDRAM data bus, depending on the
programming of the ROM controller configuration registers

■ ROM chip selects BOOTCS, and optionally ROMCS1 and ROMCS2

■ ROMRD, FLASHWR control signals

See Chapter 12, “ROM/Flash Controller”, for further details of ROM interface signals and
timing to determine the appropriate time when the address and data pins are valid.

24.4.1.6 Tracing Transactions on the GP Bus Interface

Capturing transactions on the GP bus interface requires only the CF_ROM_GPCS signal
if it is desired to differentiate code fetches from memory read cycles. However, some further
signal qualification is required to filter out GP-DMA transactions from Am5x86 CPU cycles.
PCI bus masters are not permitted to initiate cycles on the GP bus. The signals required
to trace cycles on the GP bus will vary depending on the type of slave devices connected
externally.

Note that due to performance limitations of the GP bus, it is highly recommended that code
execution from this bus be avoided.

The GPAEN signal must be monitored by the GP bus devices when GP-DMA initiators are
connected on the GP bus to prevent address decoding during GP-DMA cycles. GP bus
control signals asserted when the GPAEN signal is active (High) are controlling a read or
write of a GP-DMA initiator, and the address on the GPA25±GPA0 pins are invalid. GPAEN
is also driven active during internally echoed cycles to prevent address decoding by GP
bus devices.

Since the GP bus supports several different cycle types, dynamic bus sizing, and timing
control, there are numerous signals that may be required for adequate tracing of GP bus
transactions. The following list summarizes the various signals that should be considered
for such tracing.

■ CF_ROM_GPCS if it is necessary to identify code fetches

■ GPA25±GPA0 non-multiplexed address bus

■ GPD7±GPD0 data bus for 8-bit cycles, or GPD15±GPD0 for 16-bit cycles

■ GP bus chip selects, multiplexed on ROMCS1 or ROMCS2, or PIO pins

■ GPALE, GPIORD/GPMEMRD, GPIOWR/GPMEMWR, GPAEN control signals

■ GPRDY signal for devices that dynamically stretch GP bus cycles

■ GPIOCS16 and GPMEMCS16 for devices that dynamically identify the bus width of the
target device’s cycle

See Chapter 13, “General-Purpose Bus Controller”, for details of cycle timing.
24-6 Élan™SC520 Microcontroller User’s Manual

System Test and Debugging
24.4.2 Write Buffer Test Mode
Write buffer test mode identifies which bus owners (Am5x86 CPU, PCI bus master, or GP-
DMA controller) have contributed to the current SDRAM write cycle, and which bus owner
is requesting the current SDRAM read cycle.

The ÉlanSC520 microcontroller implements a 32-rank First-In-First-Out (FIFO) write buffer
for improved memory performance. The write buffer also supports write merging and write
collapsing. Therefore, each of the 32-bit ranks and each byte within the rank can be written
by either the Am5x86 CPU, PCI bus masters, or the GP-DMA controller. For example, byte
0 and byte 1 of a write buffer rank can be written by the Am5x86 CPU, byte 2 of the same
rank can be written by a PCI bus master, and byte 3 of the same rank can be written by the
GP-DMA controller.

Although this will result in improved performance of the SDRAM subsystem, it can be
confusing when attempting system debugging with a logic analyzer, because it is impossible
to identify the source of SDRAM write cycles from the normal SDRAM interface alone. (For
more information on the write buffer, see Chapter 11, “Write Buffer and Read Buffer”.)

When write buffer test mode is enabled via the WB_TST_ENB bit in the SDRAM Control
(DRCCTL) register (MMCR offset 10h), the WBMSTR2±WBMSTR0 pins indicate whether
the Am5x86 CPU, PCI bus master, GP-DMA controller, or a combination of these has written
into a particular rank of the write buffer.

24.4.2.1 Using the Write Buffer Test Mode Interface

Sampling the WBMSTR2±WBMSTR0 pins for write buffer debugging requires external
decoding of the SDRAM interface signals to determine when write cycles are occurring on
the SDRAM interface. To provide useful information about the cycle, the BA1–BA0 and
MA12–MA0 SDRAM address bus must be demultiplexed to provide the full 28-bit memory
address, and the SRASx, SCASx, and SWEx command signals must be sampled to
differentiate reads, writes, refresh cycles, etc.

Figure 24-3 shows WBMSTR2±WBMSTR0 timing during a SDRAM write cycle. The trace
information is available one clock before the clock edge where the command is driven to
the SDRAM. This guarantees sufficient setup so the trace information can be captured on
the clock edge where the SDRAM command is sampled. It is the responsibility of the
monitoring equipment to capture the WBMSTR2±WBMSTR0 trace signals information at
the appropriate time and cycle type. This can be accomplished by monitoring the SDRAM
interface pins and decoding the SDRAM cycle type for the programmed SDRAM timing.
See Chapter 10, “SDRAM Controller”, for details on the ÉlanSC520 microcontroller’s
address multiplexing scheme and SDRAM timing and signaling.

Determining when the data is valid during SDRAM read cycles requires knowledge of the
SDRAM timing configuration, such as CAS latency, etc. See “SDRAM Read Cycle in Write
Buffer Test Mode” on page 24-8. For writes, the data is available at the time of the write.
Élan™SC520 Microcontroller User’s Manual 24-7

System Test and Debugging
24.4.2.2 SDRAM Write Cycle in Write Buffer Test Mode

Table 24-3 describes the WBMSTR2±WBMSTR0 decoding during an SDRAM write
operation.

Figure 24-3 illustrates the timing of an example of a page hit SDRAM write cycle during
write buffer test mode. To capture the WBMSTR2±WBMSTR0 pins, the logic analyzer or
external in-circuit emulation system must decode the SDRAM command and latch the
WBMSTR2±WBMSTR0 pin on the rising edge of CLKMEMIN.

Figure 24-3 Write Buffer Test Mode Timing During an SDRAM Write Cycle (Page Hit)

24.4.2.3 SDRAM Read Cycle in Write Buffer Test Mode

During read operations, the WBMSTR2±WBMSTR0 pins can be used to determine which
master is performing the current SDRAM read cycle. Although more than one of these
sources may have written to a given rank in the write buffer, only one initiator can read a
rank at any given time.

Table 24-4 describes the WBMSTR2±WBMSTR0 pins during a SDRAM read operation in
write buffer test mode. Note that SDRAM read cycles can occur with more than one of the
WBMSTR2±WBMST0 signals active during the read portion of a read-modify-write cycle.

Table 24-3 WBMSTR2±WBMSTR0 Pin Definition During Write Buffer Write Cycles

WBMSTR2±WBMSTR0 Pins

DescriptionAm5x86 CPU
PCI

Bus Master
GP-DMA

Controller

0 0 0 Reserved

0 0 1 GP-DMA contributed write data

0 1 0 PCI master contributed write data

0 1 1 PCI master and GP-DMA contributed write data

1 0 0 Am5x86 CPU contributed write data

1 0 1 Am5x86 CPU and GP-DMA contributed write data

1 1 0 Am5x86 CPU and PCI master contributed write
data

1 1 1 All masters contributed write data

CLKMEMIN

BA1–BA0

Command

MD31–MD0

Wr Nop Nop

WBMSTR2–
Sample WBMSTRx pins here

WBMSTR0

MA12–MA0
24-8 Élan™SC520 Microcontroller User’s Manual

System Test and Debugging
In this case, the WBMSTR2±WBMSTR0 pins represent which bus initiators contributed to
the rank of the write buffer that is being written to SDRAM.

Figure 24-4 illustrates the timing of a page miss SDRAM read cycle (with a CAS latency of
2) during write buffer test mode. To capture the WBMSTR2±WBMSTR0 pins during a read
cycle, the logic analyzer or external in-circuit emulation system must decode the SDRAM
read command and delay latching the WBMSTR2±WBMSTR0 pins until the appropriate
CAS latency timing is met. WBMSTR2±WBMSTR0 are captured on the rising edge of
CLKMEMIN. The CAS latency timing is configured in the SDRAM Timing Control
(DRCTMCTL) register (MMCR offset 12h). The MA12–MA0 and BA1–BA0 signals can be
used to determine the physical address generated by the requesting master.

Figure 24-4 Write Buffer Test Mode Timing During a SDRAM Read Cycle (Page Miss)

Table 24-4 WBMSTR2±WBMSTR0 Pin Definition During SDRAM Read Cycles

WBMSTR2±WBMSTR0 Pins

DescriptionAm5x86 CPU
PCI

Bus Master
GP-DMA

Controller

0 0 0 Read prefetch cycle (No master requested
read cycle)

0 0 1 GP-DMA is current read master

0 1 0 PCI master is current read master

0 1 1 Reserved

1 0 0 Am5x86 CPU is current read master

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Reserved

Nop RdAct Nop Nop

a b c d

Row Col

CPU

CLKMEMIN

BA1–BA0

MD31–MD0

WBMSTR2–
WBMSTR0

Command

MA12–MA0
Élan™SC520 Microcontroller User’s Manual 24-9

System Test and Debugging
24.4.3 Other Debugging Features on the Élan™SC520 Microcontroller
24.4.3.1 Nonconcurrent Arbitration Mode

The ÉlanSC520 microcontroller’s system arbitration is comprised of an Am5x86 CPU bus
arbiter and a PCI bus arbiter, which enables concurrent mode operation. In the concurrent
arbitration mode, transactions on the Am5x86 CPU bus and the PCI bus can occur
simultaneously. For example, a peer-to-peer PCI bus transaction can occur simultaneously
with an Am5x86 CPU transaction. The advantage of this mode is the optimal utilization of
the two buses. However, this can be confusing when attempting system debugging, because
it is difficult to trace bus activity with concurrency. Also, some system bugs can be traced
back to improper configuration during concurrent arbitration mode while both the Am5x86
CPU and external PCI bus masters are active. This occurs, for example, when the Am5x86
CPU is modifying configuration registers such as address decode registers that affect PCI
bus master operation. In this case, using nonconcurrent arbitration mode instead can assist
in tracing these problems.

At system initialization, the ÉlanSC520 microcontroller boots up in the nonconcurrent
arbitration mode until the CNCR_MODE_ENB bit in the System Arbiter Control
(SYSARBCTL) register (MMCR offset 70h) is set. For debugging purposes, it can be useful
to omit this step and remain in nonconcurrent arbitration mode. For more details, see
Chapter 8, “System Arbitration”.

24.4.3.2 Echoing Integrated Peripheral Accesses on the GP Bus

All accesses from the Am5x86 CPU to the ÉlanSC520 microcontroller’s integrated
peripherals are not externally visible, but can optionally be directly monitored on the GP
bus using GP bus echo mode. If required, a logic analyzer can be connected to the GP bus
to monitor and debug the transactions. When the GP_ECHO_ENB bit is set in the GP Echo
Mode (GPECHO) register (MMCR offset C00h), accesses to the GP-DMA controller, RTC,
internal timers, PIC, UARTs, and PIOs are echoed externally on the GP bus. During reads,
the data from the peripheral is also driven on the GP bus data lines, GPD15–GPD0.

24.4.3.3 Summary of Additional System Debugging Features

There are additional features in the ÉlanSC520 microcontroller that are not included
specifically for system debugging but can be useful during the debugging phase. These
features are described in other chapters, but are summarized below for reference.

■ The ÉlanSC520 microcontroller provides the ability to control the Am5x86 CPU’s cache
write policy with the Am5x86 CPU Control (CPUCTL) register (MMCR offset 02h) and
to disable the cache using the CPU’s machine status (CR0) register. This can be useful
in debugging some system problems when cache coherency is a problem or when
visibility of all Am5x86 CPU memory cycles are required externally. See Chapter 7,
“Am5x86® CPU”, for details on cache control.

■ The ÉlanSC520 microcontroller provides the ability to dynamically control the Am5x86
CPU’s internal clock speed in the Am5x86 CPU Control (CPUCTL) register. This is
primarily to allow thermal management, but there may be some cases when it is useful
to adjust the clock speed for debugging purposes. See Chapter 7, “Am5x86® CPU”, for
details on clock speed control.

■ The SDRAM controller’s write buffer and read buffer can be disabled by resetting the
WB_ENB bit in the SDRAM Buffer Control (DBCTL) register (MMCR offset 40h). This
can be useful during system debugging, because it prevents queued SDRAM writes and
prefetching on the SDRAM interface that can make it difficult to trace bus activity. See
Chapter 11, “Write Buffer and Read Buffer”, for details on disabling these features.
24-10 Élan™SC520 Microcontroller User’s Manual

System Test and Debugging
■ The ÉlanSC520 microcontroller’s address decode logic allows notification of violations
of write-protected memory regions, which is useful when debugging a software task that
is illegally attempting to modify a portion of memory modified as write-protected. See
Chapter 4, “System Address Mapping”, for further details on enabling this feature.

■ The ÉlanSC520 microcontroller’s address decode logic also allows notification of
violations of memory regions marked as non-executable address space. This is useful
when debugging a software task that is attempting to execute code from a portion of
memory designated for data only. See Chapter 4, “System Address Mapping”, for further
details on enabling this feature.

■ If the ICE_ON_RST bit is set in the Reset Configuration (RESCFG) register (MMCR
offset D72h), the Am5x86 CPU enters AMDebug mode whenever it is reset (immediately
after the reset sequence). The debugging tool can read the Reset Status (RESSTA)
register (MMCR offset D74h) to identify the source of the reset.

■ The programmable interrupt controller (PIC) supports many features, such as the ability
to mask specific interrupts and to force software interrupts, which can also be useful
during the system debugging phase. See Chapter 15, “Programmable Interrupt
Controller”, for details on configuring interrupts in a system.

■ To assist in the development of software to handle ECC single-bit and multi-bit errors,
the ECC Check Code Test (ECCCKTEST) register (MMCR offset 23h) is provided. This
register can be used to override the automatically-generated ECC check code with a
user-provided check code for the following SDRAM write access.

24.4.4 Software Considerations
The cache should always be flushed after the cacheability attribute for an address range
is changed from cacheable to noncacheable for any memory region (by programming a
PAR register), or when the cache write policy is changed from write-back to write-through.

Software must include proper interrupt service routines and exception handlers when
enabling write-protection violation interrupts and non-executable region attributes in the
Address Decode Control (ADDDECCTL) register (MMCR offset 80h). Note that in the case
of the write-protect violation, the address of the violation is latched in a 32-bit register and
retained until the register is cleared by software; any additional violations that occur before
the register is read will not be seen.

A write-protection violation occurs when the Am5x86 CPU, any PCI bus master, or the GP-
DMA controller attempt to write to any memory region that has been marked as write-
protected by a PAR register attribute. When this occurs, the cycle is always forwarded to
SDRAM as a write-protected cycle (the SDQM3–SDQM0 pins are forced inactive), and the
original data is discarded.

24.4.5 Latency
Some features described in this chapter to aid the debugging process may affect system
performance, and these effects should therefore be considered when enabling or disabling.
A brief list of the features and their direct affects on latency are listed.

■ Write buffer and system test modes do not affect performance, unless the SDRAM timing
has been programmed at slower speeds to accommodate external capturing of data.

■ Nonconcurrent arbitration affects PCI bus latency, the Am5x86 CPU’s latency, and the
GP-DMA controller’s latency, since ownership of both buses must be negotiated before
any transaction is allowed to begin. The effect in a system with no PCI bus masters or
GP-DMA initiators is much less, because bus acquisition is immediate.
Élan™SC520 Microcontroller User’s Manual 24-11

System Test and Debugging
■ The Am5x86 CPU’s internal cache can greatly affect system performance.

– When disabled, all Am5x86 CPU operations require an external bus cycle, which yields
significantly less bus bandwidth for PCI bus masters and GP-DMA initiators.

– When configured in write-through cache mode, all Am5x86 CPU write cycles are
forwarded to the Am5x86 CPU bus, whereas in write-back cache mode, they are only
forwarded out of the Am5x86 CPU when a cache miss or write-back/copy-back cycle
occurs. Although write-through cache mode takes much less of the bandwidth away
from PCI bus masters and GP-DMA initiators, it is significantly more than when the
cache is operating in write-back mode.

– When areas of memory are marked as noncacheable in the PAR registers, the
overhead of cache write-backs is reduced, yielding lower latency for all system bus
owners.

■ The internal Am5x86 CPU core clock speed affects overall Am5x86 CPU performance
when the Am5x86 CPU is able to execute from its internal cache. When the cache is
disabled, the effect of a higher core speed is much less, because all operations require
an external bus cycle at the fixed bus speed of 33 MHz.

■ Disabling the write buffer and read buffer may significantly affect performance, depending
on the ordering of reads and writes, and the number of PCI bus masters and the amount
of GP-DMA activity in the system. It is difficult to predict the exact effect of these buffers
on each system, because there are many dependencies. However, it should be noted
that, in some cases, a notable change in system performance will occur. This also
complicates the system debugging process, because the system bus activity profile may
be much different in the two cases.

■ Enabling interrupts for write-protect violation notification (as with all maskable interrupts),
causes a context switch to occur, which naturally imposes a reload of the Interrupt
Descriptor Table and saving the current state of the Am5x86 CPU before servicing the
interrupt. This should not be a long-term problem, because it is expected that the write
violation protection would occur only during the initial debugging phases of system
development.

■ When GP bus echoing is enabled, the access times of the integrated peripherals is
subject to the timing programmed for the external GP bus.

24.5 INITIALIZATION
The state of the ÉlanSC520 microcontroller debugging features after system reset is:

■ The WBMSTR2–WBMSTR0 pins default to system test mode, in which they assume the
function of CF_DRAM, DATASTRB, and CF_ROM_GPCS pins respectively.

■ The system arbitration defaults to nonconcurrent arbitration mode operation.

■ Echoing of integrated peripheral accesses is disabled.

■ The Am5x86 CPU’s cache is disabled and configured for write-back cache mode.

■ The Am5x86 CPU default clock speed is 100 MHz.

■ The write buffer and the read buffer are disabled.

■ The write-protection violation interrupt is disabled, and the Programmable Address
Region (PAR) registers are cleared; thus, no write-protect or non-executable memory
regions are defined.
24-12 Élan™SC520 Microcontroller User’s Manual

CHAPTER
25 B
OUNDARY SCAN TEST INTERFACE
25.1 OVERVIEW
The ÉlanSC520 microcontroller provides test and debug features compliant with IEEE
Standard Test Access Port (TAP) and Joint Test Action Group (JTAG) (IEEE Std 1149.1-
1990). The test logic is provided to test and ensure that:

■ Components function correctly

■ Interconnections between various components are correct

■ Various components interact correctly on the printed circuit board

25.2 BLOCK DIAGRAM
Figure 25-1 shows a block diagram of the Boundary Scan register of the ÉlanSC520
microcontroller.

Figure 25-1 Logical Structure of Boundary Scan Register

JTAG_TMS

JTAG_TRST

JTAG_TCK
Controller

TAP

JTAG_TDOJTAG_TDI

B/S
cell

B/S
cell

B/S
cell

B/S
cell

Boundary Scan Register

On-Chip

System
Logic

B/S
cell

Bidirectional
pins

Output pins

BSR

Control

Élan™SC520 Microcontroller

Input pins
Élan™SC520 Microcontroller User’s Manual 25-1

Boundary Scan Test Interface
25.3 SYSTEM DESIGN

25.3.1 JTAG Pin Strapping
Designers using JTAG for board continuity testing commonly expect to exercise any pin in
an arbitrary fashion. However, pinstrapping on the GPA25 pin could cause unexpected
behavior. The pinstrap on the GPA25 pin is {DEBUG_ENTER}. If, at the assertion of
PWRGOOD, {DEBUG_ENTER} is High, AMDebug mode will be enabled and the CPU will
not perform as expected. The GPA25{DEBUG_ENTER} pin cannot be High at the assertion
of PWRGOOD if the JTAG port is to be used for continuity testing.

25.4 REGISTERS
The ÉlanSC520 microcontroller contains four test data registers: Bypass register, Boundary
Scan register, Device Identification register and Serial Debug Port Data register. A fifth
register, the Instruction register, is used to specify the test to be executed and the data
register to be accessed.

The Bypass register and Boundary Scan register are serially connected to JTAG_TDI and
JTAG_TDO, with JTAG_TDI connected to the most significant bit and JTAG_TDO connected
to the least significant bit of the test data register. Data is shifted one stage (bit position
within the register) on each rising edge of the test clock (JTAG_TCK). Table 25-1 gives a
description of each register. The Serial Debug Port Data register is part of the AMDebug
utility and is physically located in the AMDebug logic. See Chapter 26, “AMDebug™
Technology”, for more information on the AMDebug interface.

25.5 OPERATION
The test and debugging features on the ÉlanSC520 microcontroller include the following
elements:

■ Pins—JTAG_TDI, JTAG_TMS, JTAG_TDO, JTAG_TCK and JTAG_TRST. In addition,
there are four pins for the AMDebug utility: CMDACK, BR/TC, STOP/TX, and TRIG/
TRACE.

■ Instruction Register (IR)—The instruction codes select the specific test or debug
operation to be performed and the test data register to be accessed.

Table 25-1 Chip Test and Debugging Registers

Register Mnemonic Function

Boundary Scan BSR A single shift register path containing the boundary scan cells that are
connected to all input and output pins of the ÉlanSC520 microcontroller.
Figure 25-1 shows the logical structure of the Boundary Scan register. Data
is transferred without inversion from JTAG_TDI to JTAG_TDO through the
Boundary Scan register during scanning. The Boundary Scan register is
affected by the EXTEST and SAMPLE/PRELOAD instructions.

Bypass BPR Provides a path from JTAG_TDI to JTAG_TDO with one clock cycle
latency.Used to bypass the chip completely while testing boards containing
many chips.

Device Identification DID A 32-bit register that contains AMD’s ID code for the ÉlanSC520
microcontroller.

Serial Debug Port Data SDPD A 38 bit register that serves as a command/status/data interface with the
Am5x86 CPU processor. Figure 25-2 on page 25-14 shows the format.

Instruction IR Determines the test that has to be executed and the data register to access.
25-2 Élan™SC520 Microcontroller User’s Manual

Boundary Scan Test Interface
■ Test Data Registers—Boundary Scan (BSR) register, Device Identification (DID)
register, Bypass (BPR) register, and Serial Debug Port Data (SDPD) register.

■ Test Access Port (TAP) controller—State-machine and control logic implementation.

The instruction and test data registers are separate shift-register paths connected in parallel
that have a common serial data input and a common serial data output connected to the
TAP signals, JTAG_TDI and JTAG_TDO, respectively.

25.5.1 Instruction Register
The Instruction register is a 4-bit register that allows instructions to be serially shifted into
the device. The instruction determines the test to be executed and the data register to be
accessed. The least significant bit is nearest the JTAG_TDO output. When the test access
port (TAP) controller is reset, the Instruction register is loaded with the default instruction
IDCODE.

25.5.1.1 Implemented Instructions
The ÉlanSC520 microcontroller supports all three mandatory boundary-scan instructions:
BYPASS, SAMPLE/PRELOAD, and EXTEST, along with three additional instructions:
IDCODE, HIGHZ and DEBUG.

Table 25-2 shows the test access port (TAP) instructions that are supported on the
ÉlanSC520 microcontroller.

25.5.1.1.1 EXTEST Instruction
The instruction code is 0000b. The EXTEST instruction allows testing of circuitry external
to the component package, typically board interconnects. It does so by driving the values
loaded into the microcontroller’s Boundary Scan register out on to the output pins
corresponding to each boundary scan cell. It then captures the values on the
microcontroller’s input pins to be loaded into their corresponding Boundary Scan register
locations. I/O pins are selected as input or output, depending on the value loaded into their
control setting locations in the Boundary Scan register. Values shifted into input latches in
the Boundary Scan register are never used by the internal logic of the ÉlanSC520
microcontroller.

Note: After using the EXTEST instruction, the ÉlanSC520 microcontroller should be reset
before normal (non-boundary scan) use to ensure the state of the ÉlanSC520
microcontroller.

Table 25-2 Test Access Port Instruction Set

Instruction IR3–IR0

EXTEST 0000

SAMPLE/PRELOAD 0001

IDCODE 0010

HIGHZ 0011

Reserved 0100

DEBUG 0101

Reserved 0110–1110

BYPASS 1111
Élan™SC520 Microcontroller User’s Manual 25-3

Boundary Scan Test Interface
25.5.1.1.2 SAMPLE/PRELOAD Instruction
The instruction code is 0001b. The SAMPLE/PRELOAD instruction performs two functions.

■ When the TAP controller is in the Capture-DR state, the SAMPLE/PRELOAD instruction
allows a “snapshot” of the normal operation of the ÉlanSC520 microcontroller without
interfering with that normal operation. The instruction causes Boundary Scan register
cells associated with outputs to sample the value being driven by the microcontroller. It
causes the cells associated with inputs to sample the value being driven into the
microcontroller. On both outputs and inputs, the sampling occurs on the rising edge of
JTAG_TCK.

■ When the TAP controller is in the Update-DR state, the SAMPLE/PRELOAD instruction
preloads data to the device pins to be driven to the board by executing the EXTEST
instruction. Data is preloaded to the pins from the Boundary Scan register on the falling
edge of JTAG_TCK.

25.5.1.1.3 IDCODE Instruction
The instruction code is 0010b. The IDCODE instruction selects the Device Identification
register to be connected to JTAG_TDI and JTAG_TDO, allowing the device identification
code to be shifted out of the device on JTAG_TDO. Note that the Device Identification
register is not altered by data being shifted in on JTAG_TDI.

25.5.1.1.4 HIGHZ Instruction
The instruction code is 0011b. The HIGHZ instruction connects the Bypass register between
JTAG_TDI and JTAG_TDO. This instruction forces all outputs to a high-impedance state.

25.5.1.1.5 BYPASS Instruction
The instruction code is 1111b. The BYPASS instruction selects the Bypass register to be
connected to JTAG_TDI or JTAG_TDO, effectively bypassing the test logic on the
ÉlanSC520 microcontroller by reducing the shift length of the device to one bit.

Note that an open circuit fault in the board-level test data path causes the Bypass register
to be selected following an instruction scan cycle due to the pullup resistor on the JTAG_TDI
input. This has been done to prevent any unwanted interference with the proper operation
of the system logic. The Instruction register can be accessed when this command is being
executed, because only the Boundary Scan register is affected during this instruction.

25.5.1.1.6 DEBUG Instruction
The instruction code is 0101. The DEBUG instruction enables a 38-bit dedicated data
register that serves as a command/status/data interface with Am5x86 CPU processor.
When the DEBUG instruction is written into the Instruction register, the serial debug shifter
is connected to the JTAG TDI–TDO serial interface. The DEBUG command and data are
loaded into and read from the serial debug shifter using the Capture-DR–Update-DR
sequence in the TAP controller state machine.

Loading the DEBUG instruction enables additional AMDebug technology signals to provide
pinpoint accuracy of external breakpoint assertion and elimination of status polling of the
JTAG serial interface. These signals are: CMDACK, BR/TC, STOP/TX and TRIG/TRACE.
25-4 Élan™SC520 Microcontroller User’s Manual

Boundary Scan Test Interface
25.5.2 Configuration Information
There are five scan paths from JTAG_TDI to JTAG_TDO in the ÉlanSC520 microcontroller:

■ Instruction path

■ Bypass path

■ Main data path through the Boundary Scan register

■ Serial Debug Port Data register

■ Device Identification register

25.5.2.1 Instruction Path

This four-cell path is used to scan into the Instruction register. This chain is loaded when
the TAP controller is driven to the states Select-IR-Scan through Update-IR. See
Figure 25-4 on page 25-15.

25.5.2.2 Bypass Path

This path bypasses the test logic on the microcontroller by reducing the shift length of the
device to one bit. Commands can still be entered in the Instruction register during this
operation.

25.5.2.3 Main Data Scan Path

Table 25-3 shows the main data scan path. The order shown is first-to-last; i.e., the first is
closest to JTAG_TDI and the last is closest to JTAG_TDO. Control cells are used to control
the enables of the three-state pads. If a 1 is shifted into the control cell, the associated pins
are three-stated or selected as inputs.

Note: Each of the shaded control cells shown in Table 25-3 contains the output enable
control for the pads listed below the control cell and before the next control cell. For
bidirectional pads, the output is listed first (closest to JTAG_TDI).

Table 25-3 Main Data Scan Path

Pad Name Scan Type Boundary Scan Order

Control 486

BA1 Output 485

BA0 Output 484

MA12 Output 483

MA11 Output 482

MA10 Output 481

MA9 Output 480

MA8 Output 479

MA7 Output 478

MA6 Output 477

MA5 Output 476

MA4 Output 475

MA3 Output 474

MA2 Output 473

MA1 Output 472

MA0 Output 471
Élan™SC520 Microcontroller User’s Manual 25-5

Boundary Scan Test Interface
Control 470

MD31 Bidirectional 468, 469

MD30 Bidirectional 466, 467

MD29 Bidirectional 464, 465

MD28 Bidirectional 462, 463

MD27 Bidirectional 460, 461

MD26 Bidirectional 458, 459

MD25 Bidirectional 456, 457

MD24 Bidirectional 454, 455

MD23 Bidirectional 452, 453

MD22 Bidirectional 450, 451

MD21 Bidirectional 448, 449

MD20 Bidirectional 446, 447

MD19 Bidirectional 444, 445

MD18 Bidirectional 442, 443

MD17 Bidirectional 440, 441

MD16 Bidirectional 438, 439

MD15 Bidirectional 436, 437

MD14 Bidirectional 434, 435

MD13 Bidirectional 432, 433

MD12 Bidirectional 430, 431

MD11 Bidirectional 428, 429

MD10 Bidirectional 426, 427

MD9 Bidirectional 424, 425

MD8 Bidirectional 422, 423

MD7 Bidirectional 420, 421

MD6 Bidirectional 418, 419

MD5 Bidirectional 416, 417

MD4 Bidirectional 414, 415

MD3 Bidirectional 412, 413

MD2 Bidirectional 410, 411

MD1 Bidirectional 408, 409

MD0 Bidirectional 406, 407

MECC6 Bidirectional 404, 405

MECC5 Bidirectional 402, 403

MECC4 Bidirectional 400, 401

MECC3 Bidirectional 398, 399

MECC2 Bidirectional 396, 397

MECC1 Bidirectional 394, 395

MECC0 Bidirectional 392, 393

Control 391

SCS3 Output 390

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
25-6 Élan™SC520 Microcontroller User’s Manual

Boundary Scan Test Interface
SCS2 Output 389

SCS1 Output 388

SCS0 Output 387

Control 386

CLKMEMOUT Output 385

CLKMEMIN Input 384

Control 383

SRASB Output 382

SRASA Output 381

Control 380

SCASB Output 379

SCASA Output 378

Control 377

SWEB Output 376

SWEA Output 375

Control 374

SDQM3 Output 373

SDQM2 Output 372

SDQM1 Output 371

SDQM0 Output 370

Control 369

BOOTCS Output 368

Control 367

ROMRD Output 366

Control 365

FLASHWR Output 364

Control 363

ROMBUFOE Output 362

Control 361

ROMCS1 Output 360

Control 359

ROMCS2 Output 358

Control 357

AD31 Bidirectional 355, 356

AD30 Bidirectional 353, 354

AD29 Bidirectional 351, 352

AD28 Bidirectional 349, 350

AD27 Bidirectional 347, 348

AD26 Bidirectional 345, 346

AD25 Bidirectional 343, 344

AD24 Bidirectional 341, 342

AD23 Bidirectional 339, 340

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
Élan™SC520 Microcontroller User’s Manual 25-7

Boundary Scan Test Interface
AD22 Bidirectional 337, 338

AD21 Bidirectional 335, 336

AD20 Bidirectional 333, 334

AD19 Bidirectional 331, 332

AD18 Bidirectional 329, 330

AD17 Bidirectional 327, 328

AD16 Bidirectional 325, 326

AD15 Bidirectional 323, 324

AD14 Bidirectional 321, 322

AD13 Bidirectional 319, 320

AD12 Bidirectional 317, 318

AD11 Bidirectional 315, 316

AD10 Bidirectional 313, 314

AD9 Bidirectional 311, 312

AD8 Bidirectional 309, 310

AD7 Bidirectional 307, 308

AD6 Bidirectional 305, 306

AD5 Bidirectional 303, 304

AD4 Bidirectional 301, 302

AD3 Bidirectional 299, 300

AD2 Bidirectional 297, 298

AD1 Bidirectional 295, 296

AD0 Bidirectional 293, 294

Control 292

CBE3 Bidirectional 290, 291

CBE2 Bidirectional 288, 289

CBE1 Bidirectional 286, 287

CBE0 Bidirectional 284, 285

Control 283

PAR Bidirectional 281, 282

SERR Input 280

Control 279

PERR Bidirectional 277, 278

Control 276

FRAME Bidirectional 274, 275

Control 273

TRDY Bidirectional 271, 272

Control 270

IRDY Bidirectional 268, 269

Control 267

STOP Bidirectional 265, 266

Control 264

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
25-8 Élan™SC520 Microcontroller User’s Manual

Boundary Scan Test Interface
DEVSEL Bidirectional 262, 263

Control 261

CLKPCIOUT Output 260

CLKPCIIN Input 259

Control 258

RST Output 257

INTD Input 256

INTC Input 255

INTB Input 254

INTA Input 253

REQ4 Input 252

REQ3 Input 251

REQ2 Input 250

REQ1 Input 249

REQ0 Input 248

Control 247

GNT4 Output 246

Control 245

GNT3 Output 244

Control 243

GNT2 Output 242

Control 241

GNT1 Output 240

Control 239

GNT0 Output 238

Control 237

GPA25 Bidirectional 235, 236

GPA24 Bidirectional 233, 234

GPA23 Bidirectional 231, 232

GPA22 Bidirectional 229, 230

GPA21 Bidirectional 227, 228

GPA20 Bidirectional 225, 226

GPA19 Bidirectional 223, 224

GPA18 Bidirectional 221, 222

GPA17 Bidirectional 219, 220

GPA16 Bidirectional 217, 218

GPA15 Bidirectional 215, 216

GPA14 Output 214

GPA13 Output 213

GPA12 Output 212

GPA11 Output 211

GPA10 Output 210

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
Élan™SC520 Microcontroller User’s Manual 25-9

Boundary Scan Test Interface
GPA9 Output 209

GPA8 Output 208

GPA7 Output 207

GPA6 Output 206

GPA5 Output 205

GPA4 Output 204

GPA3 Output 203

GPA2 Output 202

GPA1 Output 201

GPA0 Output 200

Control 199

GPD15 Bidirectional 197, 198

GPD14 Bidirectional 195, 196

GPD13 Bidirectional 193, 194

GPD12 Bidirectional 191, 192

GPD11 Bidirectional 189, 190

GPD10 Bidirectional 187, 188

GPD9 Bidirectional 185, 186

GPD8 Bidirectional 183, 184

Control 182

GPD7 Bidirectional 180, 181

GPD6 Bidirectional 178, 179

GPD5 Bidirectional 176, 177

GPD4 Bidirectional 174, 175

GPD3 Bidirectional 172, 173

GPD2 Bidirectional 170, 171

GPD1 Bidirectional 168, 169

GPD0 Bidirectional 166, 167

Control 165

GPRESET Output 164

Control 163

GPIORD Output 162

Control 161

GPIOWR Output 160

Control 159

GPMEMRD Output 158

Control 157

GPMEMWR Output 156

Control 155

PIO27 Bidirectional 153, 154

Control 152

PIO26 Bidirectional 150, 151

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
25-10 Élan™SC520 Microcontroller User’s Manual

Boundary Scan Test Interface
Control 149

PIO25 Bidirectional 147, 148

Control 146

PIO24 Bidirectional 144, 145

Control 143

PIO23 Bidirectional 141, 142

Control 140

PIO22 Bidirectional 138, 139

Control 137

PIO21 Bidirectional 135, 136

Control 134

PIO20 Bidirectional 132, 133

Control 131

PIO19 Bidirectional 129, 130

Control 128

PIO18 Bidirectional 126, 127

Control 125

PIO17 Bidirectional 123, 124

Control 122

PIO16 Bidirectional 120, 121

Control 119

PIO15 Bidirectional 117, 118

Control 116

PIO14 Bidirectional 114, 115

Control 113

PIO13 Bidirectional 111, 112

Control 110

PIO12 Bidirectional 108, 109

Control 107

PIO11 Bidirectional 105, 106

Control 104

PIO10 Bidirectional 102, 103

Control 101

PIO9 Bidirectional 99, 100

Control 98

PIO8 Bidirectional 96, 97

Control 95

PIO7 Bidirectional 93, 94

Control 92

PIO6 Bidirectional 90, 91

Control 89

PIO5 Bidirectional 87, 88

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
Élan™SC520 Microcontroller User’s Manual 25-11

Boundary Scan Test Interface
Control 86

PIO4 Bidirectional 84, 85

Control 83

PIO3 Bidirectional 81, 82

Control 80

PIO2 Bidirectional 78, 79

Control 77

PIO1 Bidirectional 75, 76

Control 74

PIO0 Bidirectional 72, 73

Control 71

SOUT1 Output 70

SIN1 Input 69

Control 68

RTS1 Output 67

CTS1 Input 66

DSR1 Input 65

Control 64

DTR1 Output 63

DCD1 Input 62

RIN1 Input 61

Control 60

SOUT2 Output 59

SIN2 Input 58

Control 57

RTS2 Output 56

Control 55

PIO28 Bidirectional 53, 54

Control 52

PIO29 Bidirectional 50, 51

Control 49

DTR2 Output 48

Control 47

PIO30 Bidirectional 45, 46

Control 44

PIO31 Bidirectional 42, 43

Control 41

SSI_CLK Output 40

SSI_DI Input 39

Control 38

SSI_DO Output 37

Control 36

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
25-12 Élan™SC520 Microcontroller User’s Manual

Boundary Scan Test Interface
Notes:
The control cell for the BA1–BA0 and MA12–MA0 pins is closest to the JTAG_TDI pin (beginning of
the boundary scan chain), and TMROUT0 is closest to the JTAG_TDO pin (end of the boundary
scan chain).

Each of the shaded control cells shown in Table 25-3 contains the output enable control for the pads
listed below the control cell and before the next control cell. For bidirectional pads, the output is listed
first (closest to JTAG_TDI).

CLKTIMER Bidirectional 34, 35

PWRGOOD Input 33

PRGRESET Input 32

Control 31

CMDACK Output 30

BR/TC Input 29

Control 28

STOP/TX Output 27

Control 26

TRIG/TRACE Output 25

Control 24

DC Bidirectional 22, 23

Control 21

DATASTRB Bidirectional 19, 20

Control 18

CPUACT Bidirectional 16, 17

Control 15

PITOUT2 Bidirectional 13, 14

Control 12

PITGATE2 Bidirectional 10, 11

Control 9

TMRIN1 Bidirectional 7, 8

Control 6

TMRIN0 Bidirectional 4, 5

Control 3

TMROUT1 Output 2

Control 1

TMROUT0 Output 0

Table 25-3 Main Data Scan Path (Continued)

Pad Name Scan Type Boundary Scan Order
Élan™SC520 Microcontroller User’s Manual 25-13

Boundary Scan Test Interface
25.5.2.4 Serial Debug Port Data Register

Figure 25-2 shows the format of the Serial Debug Port Data register. The 38-bit Serial
Debug Port Data register serves as a command/status/data interface with the Am5x86 CPU.

Figure 25-2 Serial Debug Port Data Register Format

25.5.2.5 Device Identification Register

Figure 25-3 shows the format of the Device Identification register. For the ÉlanSC520
microcontroller, the least significant 28-bits of the Device Identification register are hard-
coded to a value of 0EFF003h. The VERSION field, represented by bits 31–28, reflects the
value of the MINORSTEP field of the ÉlanSC520 Microcontroller Revision ID (REVID)
register (MMCR offset 00h).

Figure 25-3 Device Identification Register Format

Debug Data Command P F JTAG_TDOJTAG_TDI

37 56 2 01

Bit Name Function

37–6 DEBUG_DATA[31–0] Debug Data

5–2 COMMAND[3–0] Command

1 P Command pending flag status

0 F Command finished flag status

Part Number Manufacturer Identity

31 1112 0

Bit Name Function

31–28 VERSION Value of the MINORSTEP field of the
ÉlanSC520 Microcontroller Revision
ID (REVID) register

27–0 Part Number and
Manufacturer Identity

Hardcoded to 0EFF003h

Version

28 27
25-14 Élan™SC520 Microcontroller User’s Manual

Boundary Scan Test Interface
25.5.3 Test Access Port (TAP) Controller
The test access port (TAP) controller is a synchronous, finite state-machine that controls
the sequence of operations of the test logic. The TAP controller changes state in response
to the rising edge of JTAG_TCK. It can be reset to the Test-Logic-Reset state either by
holding the JTAG_TRST pin Low or by holding the JTAG_TMS pin High for five JTAG_TCK
periods.

The TAP controller state-machine is shown in Figure 25-4.

Figure 25-4 Test Access Port Controller State Diagram

25.5.3.1 TAP Controller States

25.5.3.1.1 Test-Logic-Reset State
In this state, the test logic is disabled so that normal operation of the device can continue
unhindered. This is achieved by initializing the Instruction register such that the IDCODE
instruction is loaded. No matter what the original state of the controller, the controller enters
Test-Logic-Reset state when the JTAG_TMS input is held High (1) for at least five rising
edges of JTAG_TCK. The controller remains in this state while JTAG_TMS is High. The
TAP controller is also forced to enter this state when JTAG_TRST is asserted.

Test-Logic-Reset

Run-Test/Idle

0

Select-DR-Scan

0

Capture-DR

0

1

Exit1-DR

0

Pause-DR

1

1

Update-DR

0

0

Shift-DR

Exit2-DR
0

1

1

0

Select-IR-Scan

0

Capture-IR

0

1

Exit1-IR

0

Pause-IR

1

1

Update-IR

0

0

Shift-IR

Exit2-IR
0

1

1

0

1

0

11

1 1 1

JTAG_TRST
Élan™SC520 Microcontroller User’s Manual 25-15

Boundary Scan Test Interface
The JTAG TAP controller is not reset as a function of PWRGOOD when the system is
powered up. Rather, JTAG_TRST has an internal pulldown resistor which causes the TAP
controller to reset.

25.5.3.1.2 Run-Test-Idle State
This is a controller state between scan operations. When in this state, the controller remains
in this state as long as JTAG_TMS is held Low. For instructions not causing functions to
execute during this state, no activity occurs in the test logic. The Instruction register and
all test data registers retain their previous state. When JTAG_TMS is High and a rising edge
is applied to JTAG_TCK, the controller moves to the Select-DR state.

25.5.3.1.3 Select-Data Register (DR)-Scan State
This is a temporary controller state. The test data register selected by the current instruction
retains its previous state. If JTAG_TMS is held Low and a rising edge is applied to
JTAG_TCK when in this state, the controller moves into the Capture-DR state and a scan
sequence for the selected test data register is initiated. If JTAG_TMS is held High and a
rising edge is applied to JTAG_TCK, the controller moves to the Select-IR-Scan state.

The instruction does not change in this state.

25.5.3.1.4 Capture-DR State
In this state, the Boundary Scan register captures input pin data if the current instruction
is EXTEST or SAMPLE/PRELOAD. The other test data registers, which do not have parallel
input, are not changed.

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to JTAG_TCK, the
controller enters the Exit1-DR state if JTAG_TMS is High, or the Shift-DR state if JTAG_TMS
is Low.

25.5.3.1.5 Shift-DR State
In this controller state, the test data register connected between JTAG_TDI and JTAG_TDO
as a result of the current instruction shifts data one stage toward its serial output on each
rising edge of JTAG_TCK.

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to JTAG_TCK, the
controller enters the Exit1-DR state if JTAG_TMS is High, or remains in the Shift-DR state
if JTAG_TMS is Low.

25.5.3.1.6 Exit1-DR State
This is a temporary state. While in this state, if JTAG_TMS is held High, a rising edge applied
to JTAG_TCK causes the controller to enter the Update-DR state, which terminates the
scanning process. If JTAG_TMS is held Low and a rising edge is applied to JTAG_TCK,
the controller enters the Pause-DR state.

The test data register selected by the current instruction retains its previous value during
this state. The instruction does not change in this state.

25.5.3.1.7 Pause-DR State
The pause state allows the test controller to temporarily halt the shifting of data through
the test data register in the serial path between JTAG_TDI and JTAG_TDO. An example of
using this state could be to allow a tester to reload its pin memory from disk during
application of a long test sequence.
25-16 Élan™SC520 Microcontroller User’s Manual

Boundary Scan Test Interface
The test data register selected by the current instruction retains its previous value during
this state. The instruction does not change in this state.

The controller remains in this state as long as JTAG_TMS is Low. When JTAG_TMS goes
High and a rising edge is applied to JTAG_TCK, the controller moves to the Exit2-DR state.

25.5.3.1.8 Exit2-DR State
This is a temporary state. While in this state, if JTAG_TMS is held High, a rising edge applied
to JTAG_TCK causes the controller to enter the Update-DR state, which terminates the
scanning process. If JTAG_TMS is held Low and a rising edge is applied to JTAG_TCK,
the controller enters the Shift-DR state.

The test data register selected by the current instruction retains its previous value during
this state. The instruction does not change in this state.

25.5.3.1.9 Update-DR State
The Boundary Scan register is provided with a latched parallel output to prevent changes
at the parallel output while data is shifted in response to the EXTEST and SAMPLE/
PRELOAD instructions. When the TAP controller is in this state and the Boundary Scan
register is selected, data is latched onto the parallel output of this register from the
shift-register path on the falling edge of JTAG_TCK. The data held at the latched parallel
output does not change other than in this state.

All shift-register stages in a test data register selected by the current instruction retain their
previous values during this state. The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to JTAG_TCK, the
controller enters the Select-DR State if JTAG_TMS is held High or the Run-Test/Idle State
if JTAG_TMS is held Low.

25.5.3.1.10 Select-Instruction Register (IR)-Scan State
This is a temporary controller state. The test data register selected by the current instruction
retains its previous state. If JTAG_TMS is held Low and a rising edge is applied to
JTAG_TCK when in this state, the controller moves into the Capture-IR state and a scan
sequence for the Instruction register is initiated. If JTAG_TMS is held High and a rising
edge is applied to JTAG_TCK, the controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

25.5.3.1.11 Capture-IR State
In this controller state, the shift register contained in the Instruction register loads the fixed
value 0001b on the rising edge of JTAG_TCK.

The test data register selected by the current instruction retains its previous value during
this state. The instruction does not change in this state.

When the controller is in this state and a rising edge is applied to JTAG_TCK, the controller
enters the Exit1-IR state if JTAG_TMS is held High, or the Shift-IR state if JTAG_TMS is
held Low.

25.5.3.1.12 Shift-IR State
In this state, the shift register contained in the Instruction register is connected between
JTAG_TDI and JTAG_TDO and shifts data one stage towards its serial output on each rising
edge of JTAG_TCK.

The test data register selected by the current instruction retains its previous value during
this state. The instruction does not change in this state.
Élan™SC520 Microcontroller User’s Manual 25-17

Boundary Scan Test Interface
When the controller is in this state and a rising edge is applied to JTAG_TCK, the controller
enters the Exit1-IR state if JTAG_TMS is held High, or remains in the Shift-IR state if
JTAG_TMS is held Low.

25.5.3.1.13 Exit1-IR State
This is a temporary state. In this state, if JTAG_TMS is held High, a rising edge applied to
JTAG_TCK causes the controller to enter the Update-IR state, which terminates the
scanning process. If JTAG_TMS is held Low and a rising edge is applied to JTAG_TCK,
the controller enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value during
this state. The instruction does not change in this state.

25.5.3.1.14 Pause-IR State
The pause state allows the test controller to temporarily halt the shifting of data through
the Instruction register.

The test data register selected by the current instruction retains its previous value during
this state. The instruction does not change in this state.

The controller remains in this state as long as JTAG_TMS is Low. When JTAG_TMS goes
High and a rising edge is applied to JTAG_TCK, the controller moves to the Exit2-IR state.

25.5.3.1.15 Exit2-IR State
This is a temporary state. While in this state, if JTAG_TMS is held High, a rising edge applied
to JTAG_TCK causes the controller to enter the Update-IR state, which terminates the
scanning process. If JTAG_TMS is held Low and a rising edge is applied to JTAG_TCK,
the controller enters the Shift-IR state.

The test data register selected by the current instruction retains its previous value during
this state. The instruction does not change in this state.

25.5.3.1.16 Update-IR State
The instruction shifted into the Instruction register is latched onto the parallel output from
the shift-register path on the falling edge of JTAG_TCK. When the new instruction has been
latched, it becomes the current instruction.

Test data registers selected by the current instruction retain their previous value.

When the TAP controller is in this state and a rising edge is applied to JTAG_TCK, the
controller enters the Select-DR State if JTAG_TMS is held High or Run-Test Idle state if
JTAG_TMS is held Low.
25-18 Élan™SC520 Microcontroller User’s Manual

Boundary Scan Test Interface
25.5.4 Bus Cycles
Figure 25-5 and Figure 25-6 on page 25-20 give the bus cycles information of the test logic
operation in data scan mode and instruction scan mode, respectively.

Figure 25-5 Test Logic Operation: Data Scan

JTAG_TCK

JTAG_TMS

Controller State

JTAG_TDI

Data Input to IR

IR Shift Register

Parallel Output of IR

Data Input to BSR

BSR Shift Register

Parallel Output of BSR

Register Selected

JTAG_TDO Enable

JTAG_TDO

S
elect-D

R
-S

can

R
un-T

est/Idle

C
apture-D

R

S
hift-D

R

E
xit1-D

R

P
ause-D

R

E
xit2-D

R

S
hift-D

R

E
xit1-D

R

U
pdate-D

R

R
un-T

est/Idle

S
elect-D

R
-S

can
S

elect-IR
-S

can

T
est-Logic-R

eset

Instruction IDCODE

Old Data New Data

Boundary Scan Register

Inactive Active Inactive Active Inactive
Élan™SC520 Microcontroller User’s Manual 25-19

Boundary Scan Test Interface
Figure 25-6 Test Logic Operation: Instruction Scan

25.5.5 Clocking Considerations
The targeted speed of operation for boundary scan is 25 MHz.

25.6 INITIALIZATION
The JTAG TAP controller is not reset as a function of PWRGOOD when the system is
powered up.

The test access port controller can be reset in the following ways:

■ When the JTAG_TRST pin is driven Low (0)—This resets the entire JTAG subsystem
including the Instruction register.

■ When the JTAG_TMS pin is held High (1) for at least five rising edges of JTAG_TCK—
It remains in this state while JTAG_TMS is High (1). If the TAP controller leaves the reset
state owing to an erroneous Low (0) signal on the JTAG_TMS line at the time of a rising
edge on JTAG_TCK, it returns to the reset state after JTAG_TMS is held High for three
rising edges of JTAG_TCK.

In the Test-Logic-Reset State of the TAP controller, the test logic is disabled so that normal
operation of the device can continue without any hindrance. See “Test-Logic-Reset State”
on page 25-15.

JTAG_TCK

JTAG_TMS

JTAG_TDI

Data Input to IR

IR Shift Register

Parallel Output of IR

Data Input to BSR

BSR Shift Register

Parallel Output of BSR

Register Selected

JTAG_TDO Enable

JTAG_TDO

Test-Logic-R
eset

R
un-Test/Idle

S
elect-D

R
-S

can

S
elect-IR

-S
can

C
apture-IR

S
hift-IR

E
xit1-IR

P
ause-IR

E
xit2-IR

S
hift-IR

E
xit1-IR

U
pdate-IR

R
un-Test/Idle

IDCODE New Instruction

Instruction Register

Inactive Active Inactive Active Inactive

Controller State

0001
25-20 Élan™SC520 Microcontroller User’s Manual

CHAPTER
26A
MDebug™ TECHNOLOGY
26.1 OVERVIEW
The ÉlanSC520 microcontroller supports a full-featured, high-performance in-circuit emu-
lation capability. This in-circuit emulation support was developed at AMD specifically to
enable users to test and debug their software earlier in the design cycle. Utilizing this
capability, the software can be more extensively exercised, and at full execution speeds. It
also allows tracing during execution from the Am5x86 CPU’s internal cache.

The AMDebug interface included on the ÉlanSC520 microcontroller provides the product
design team with two different communication paths, each of which is supported by powerful
debug tools from third-party vendors in AMD’s FusionE86 program. (See AMD FusionE86
partners documentation on p. iii under Third-Party Support.)

■ Serial AMDebug technology uses a serial connection based on an enhanced JTAG
protocol and an inexpensive 12-pin connector that can be placed on each board design.
This low-cost solution satisfies the requirement of a large number of software developers.

■ Parallel AMDebug technology uses a 25-pin parallel debug port to exchange commands
and data between the ÉlanSC520 microcontroller and the host. The higher pin count
requires that the extra signal pins be provided on a special bond-out package of the
ÉlanSC520 microcontroller; this package is made available only to tool developers such
as in-circuit emulator manufacturers. The parallel AMDebug port greatly simplifies the
task of supporting high-speed data exchange.

An on-chip trace controller provides trace information for reconstructing instruction execu-
tion flow in the processor. It supports tracing either to the serial AMDebug port, the bond-
out parallel port, or to an internal trace buffer.

Use of JTAG technology for conventional boundary scan testing is described in Chapter 25,
“Boundary Scan Test Interface”.
Élan™SC520 Microcontroller User’s Manual 26-1

AMDebug™ Technology
26.2 BLOCK DIAGRAM
Figure 26-1 shows a system diagram of AMDebug software architecture. Two different
configurations are shown.

Figure 26-1 AMDebug™ Technology Software Architecture

26.3 SYSTEM DESIGN
The pinstrap functions associated with the GPA25–GPA23 pins, DEBUG_ENTER,
INST_TRCE, and AMDEBUG_DIS, are sampled only as a result of PWRGOOD assertion
and do not affect the GP bus functions of these pins.

Note that AMDebug technology does not function at 133 MHz. Debugging must be per-
formed at 100 MHz.. Software tests and diagnostics can still be performed at 133 MHz if
required, but the AMDebug port will not function reliably at frequencies above 100 MHz.

Target System

Élan™SC520
Microcontroller

CPU

RAM

UART Trace
Cache

Serial Port, 12-Pin Connector, or

Low-Cost
Serial

Converter Host System
PC

Debug
Control

Software

OR

Parallel Port, 25-Pin Bond-Out

AMDebug
Logic

ROM

Trace
Capture

Plus
Parallel

Interface
26-2 Élan™SC520 Microcontroller User’s Manual

AMDebug™ Technology
26.3.1 Connecting the AMDebug™ Port
There are multiple ways of connecting the host computer to the ÉlanSC520 microcontroller’s
AMDebug port, including through a host computer’s serial port, parallel port, or via an
Ethernet connection. For specific tool and connection types, refer to AMD FusionE86 part-
ners documentation on p. iii under Third-Party Support.

At a minimum, AMDebug operation can be achieved with the four basic JTAG signal pins:
JTAG_TCK, JTAG_TMS, JTAG_TDI, and JTAG_TDO. Using JTAG pins alone, without the
advantages of additional support pins, the lowest possible cost is achieved in terms of
processor pins, but with the cost of reduced functionality. No attempt is made to multiplex
the function of the JTAG pins. Multiplexing would prevent ensuring their availability for
communication with the processor at all times and under any operating condition.

An inexpensive connector that links the PC port to the AMDebug port can be acquired to
satisfy the requirement of a large number of software developers. Connection to a target
via this simple arrangement offers considerable advantages:

■ There is no need to remove the processor to connect an in-circuit emulator-like umbilical.

■ Connection is ensured no matter what the processor packaging technology.

■ Debug communication is independent of processor or memory system clocking speeds.

There are two AMDebug connector formats specified: a 12-pin connector (Figure 26-2) and
a 20-pin connector (Figure 26-3). They differ in maximum operating frequency and number
of connector pins. They both have the same number of active signals, but the 20-pin version
has a ground wire placed between each signal wire.

.

Table 26-1 AMDebug™ Technology Connector Pins

Name I/O
External
Resistor Description

JTAG_TCK Input PU Clock for the TAP controller and the debug serial/parallel interface

JTAG_TDI Input PU Input test data and instructions

JTAG_TDO Output PU Output data; three-stated when data is not driven

JTAG_TMS Input PU Test functions and sequence of test changes

JTAG_TRST Input PU Reset the JTAG controller

SYSRESET Input PU Reset all system logic. This pin should be held Low for at least four TCK
clock cycles. SYSRESET can be ANDed directly with the PWRGOOD
signal. This enables the AMDebug control unit to drive the ÉlanSC520
microcontroller’s reset.

BR/TC Input PD Request entry to AMDebug mode/Turn instruction trace capture on-off

CMDACK Output — Acknowledge command

STOP/TX Output — Asserted High on entry to AMDebug mode; during normal mode set High

TRIG/TRACE Output — Trigger event to logic analyzer (optional, from Am486 debug registers)

PWRGOOD Output — Sample power level used by the JTAG controller driving hardware
Élan™SC520 Microcontroller User’s Manual 26-3

AMDebug™ Technology
Software development systems based on the integrated debug technology should consider:

■ Providing for at least a 12-pin connector on each board design

■ Assigning the necessary tracking from the processor’s pins supporting the AMDebug
port to the standard 12-pin connector

■ Including the small connector on production systems to enable in-field debugging

Figure 26-2 12-Pin Connector Format

When the serial connector is clocked at high speeds, e.g., above 10 MHz, there is danger
of signal cross talk. To alleviate this problem, a 20-pin serial connector format is also
available, as shown in Figure 26-3. The arrangement places a ground wire between each
signal wire. Low-cost tools based on AMDebug technology operate satisfactorily with the
12-pin connector shown in Figure 26-2, as long as cable lengths are not too long.

Figure 26-3 20-Pin Serial Connector Format

Ground

Test Clock

Test Mode Select

Test Data In

Test Data Out

Reserved for
System Reset

Sample Power Source

Command Acknowledge

Trigger Event

VGND

JTAG_TCK

JTAG_TMS

JTAG_TDI

JTAG_TDO

SYSRESET

PWRGOOD

CMDACK

BR/TC

STOP/TX

TRIG/TRACE

Keyed

1 2

12

In AMDebug Mode, Receive Data

Enter AMDebug Mode, Trace Control

Ground

Test Clock

Test Mode Select

Test Data In

Test Data Out

Reserved for
System Reset

Sample Power Source

Trigger Event

Gnd

JTAG_TCK

JTAG_TMS

JTAG_TDI

JTAG_TDO

JTAG_TRST

PWRGOOD

Gnd

Gnd

Gnd

Gnd

Keyed

1 2

20

SYSRESET

CMDACK

BR/TC

STOP/TX

Gnd

Gnd

Gnd

TRIG/TRACE

19

Test Reset

Command Acknowledge

Enter AMDebug Mode, Trace Control

In AMDebug Mode, Receive Data
26-4 Élan™SC520 Microcontroller User’s Manual

AMDebug™ Technology
26.3.2 Mechanical Specifications for the Target Connector
A target board should contain a connector with male header pins. Pin spacing is 2 mm for
both 12-pin and 20-pin formats, as shown in Figure 26-4. Debugging equipment should
support a ribbon cable equipped with a female connector for attaching to the target. The
appropriate last pin, pin 12 or pin 20, should not be installed, or, if necessary, removed at
this location. At this location the female connector on the ribbon cable is populated with a
post, which prevents the connector’s insertion in the reverse position. Compatible connec-
tors are available from Samtec, Inc. (model TMM-112-02-x-D for 12-pin), 3M, and other
companies.

Figure 26-4 Mechanical Specifications for AMDebug™ Technology Target Connector

26.3.3 Locating the Connector on the Target System
Because the AMDebug port can contain high-frequency signals, position the connector as
close to the processor as possible. However, allowances should be made for the physical
requirements of the AMDebug control unit. For systems that support JTAG-based boundary
scanning, a jumper block should be provided for isolating from the rest of the JTAG scan
chain (see Figure 26-5) the connection from the AMDebug port to the processor. This
jumper is not required by systems that only use JTAG to support AMDebug technology.
When AMDebug technology debugging is not used, the jumpers can be set to connect the
processor with the other devices forming the scan chain.

The target board should be equipped with pullup and pulldown resistors, as shown in
Figure 26-5. The signal lines driven by the female cable connector should be three-stated
before connection is established. The connection device can sense the required high volt-
age by sampling the VCC signal pin before driving the AMDebug port.

Male connector
on target board

2 mm

2 mm

Key

Side View

3.7 mm
Élan™SC520 Microcontroller User’s Manual 26-5

AMDebug™ Technology
Figure 26-5 Locating the Target Connector

26.4 OPERATION
The AMD software debugging strategy enables a range of debugging tool solutions offered
by tool providers. The AMDebug port provides for commands to be sent to the ÉlanSC520
microcontroller for processing by microcode. The AMDebug communication and data reg-
isters are used to exchange information between the target (ÉlanSC520 microcontroller)
and a host system used to control the target.

The low-cost communication path, which meets the requirements of most software devel-
opers, uses the serial connection based on the enhanced JTAG protocol. This option re-
quires very few signal pins to the processor and enables a 12-pin connector to be placed
on each board design. A PC-port-to-AMDebug-port converter can be acquired inexpen-
sively (see AMD FusionE86 partners documentation on p. iii under Third-Party Support).

The high-performance communication path, which is made available only to tool developers
such as in-circuit emulator manufacturers, uses a parallel port connection that provides
command and data exchange between the AMDebug port and the host. The higher pin
count (25 instead of 8) requires that the extra signal pins be provided on a bond-out package.
The die for both connection methods is the same. A standard parallel-interface format
greatly simplifies the task of supporting high-speed data exchange with the target processor.

The parallel access also enables execution trace data to be provided on the bond-out
parallel access pins. This is the same data that is gathered in the on-chip trace cache,
described in Section 26.4.1, except that now trace depth is limited by the external hardware
rather than the depth of the on-chip trace cache provided by the non bond-out processor.

JTAG_TCK

JTAG_TMS

JTAG_TDI

JTAG_TRST

SYSRESET

CMDACK

BR/TC

STOP/TX

TRIG/TRACE

JTAG_TDO

GND

10 kW

33 W

33 W

33 W

10 kW

VCC
Jumper setting when

 not used for debugging

JTAG_TDI on next
chip in chain

JTAG_TDO on previous
chip in chain

ÉlanSC520
Microcontroller

Bus
26-6 Élan™SC520 Microcontroller User’s Manual

AMDebug™ Technology
26.4.1 On-Chip Trace Cache
An on-chip instruction cache makes it difficult to fully trace a program’s execution path by
merely observing the external pins. Software engineers need to know a program’s address
flow without turning off the cache or in any way intrusively monitoring the processor’s
operation. The use of clock scaling and high internal clock speed make it difficult to provide
trace information to the outside world without the use of on-chip trace cache.

The AMD software debug strategy provides for a small on-chip trace cache that stores only
critical information, such as the outcome of a branch decision. The compression techniques
employed enable much of the execution path to be retained in the on-chip trace cache. The
cache can also log other information, such as operating system activity or performance-
critical parameters. On the bond-out package, the trace information can be continually
provided off-chip at system bus speeds rather than the higher internal clock speeds. This
is an advantage to the in-circuit emulator developer.

The trace cache is also useful when a multitasking operating system is employed. It is
possible to unobtrusively trace the execution of a single task, thus extending the debugging
capability beyond what is normally offered by debuggers incorporated with operating sys-
tems. This method overcomes the typically poor integration between operating systems
and external trace capture hardware, such as a logic analyzer or in-circuit emulator.

26.4.2 Software Performance Profiling
Software profiling refers to examining the execution times, frequencies, and calling patterns
of different software procedures within a complete program. A variety of techniques are
currently used, some based on statistical analysis, others based on measurements
achieved without statistical sampling. Execution times and call linkage are typically captured
by external (off-chip) instrumentation watching the system buses.

Performance profiling is an exceptionally useful tool for the software engineer trying to
optimize application execution times. When a bond-out package is used, an external hard-
ware device can be constructed to capture the necessary data. When used for instruction
tracing, the trace cache will contain more information than is necessary to perform only
profile analysis. Typically, code first must be “instrumented” before it can be analyzed.

Alternatively, to support performance profiling, the breakpoint control registers can be fur-
ther configured to start and stop a counter that measures elapsed time. When the counter
is started, it is first set to zero, and when the counter is stopped, its value is placed in the
trace cache. This scheme does not have all of the capabilities offered by a system assisted
by external (off-chip) hardware; however, no instrumentation of code is required before
profiling can commence.

In this case:

■ A breakpoint/trace control register is set to trigger (start) the counter on the entry to a
procedure.

■ A second breakpoint control register is used to stop counting when the procedure
prologue is entered.

■ A similar scheme is used to measure other parameters, such as an interrupt handler
execution times.

■ When the counter is stopped, the 16-bit count value is placed in the trace cache.

■ Post processing software is required to analyze the profile data.
Élan™SC520 Microcontroller User’s Manual 26-7

AMDebug™ Technology
The trace cache, when used to profile software, does not gather execution trace information.
When profiling, the trace cache gathers information about the execution time spent, for
example, in the selected procedure. Only one procedure can be profiled at one time. By
examining the trace cache, the minimum, average, and maximum time spent in the proce-
dure can be determined (within the limitations of the samples gathered).

A trace entry takes the form of a pair of time values. A second counter runs continually, but
is reset to zero after it is placed in the trace cache. The second counter is used to obtain
the frequency of occurrence of the procedure of interest; whereas, the first counter provides
information about the procedures execution time (duration).
26-8 Élan™SC520 Microcontroller User’s Manual

INDEX
Numerics
32KXTAL2–32KXTAL1 signals

description, 2-10
usage, 5-3, 5-8

33MXTAL2–33MXTAL1 signals
description, 2-10
usage, 2-7, 5-3

A
A10–A8 bit field, 15-18
a20 gate support, 6-8
A20G_CTL bit field, 6-8
GP bus. See general-purpose (GP) bus.
AD31–AD0 signals

description, 2-6
usage, 2-7, 9-3, 9-9

ADDDECCTL register, 4-2
address buses

general-purpose (GP) bus address bus, 2-6
PCI address bus, 2-6
ROM/Flash controller address bus, 2-6
SDRAM controller address bus, 2-5
shared buses, 13-10

Address Decode Control (ADDDECCTL) register
function, 4-2, 20-6, 21-3, 24-2
usage, 3-21, 4-12, 4-13, 4-14, 4-20, 20-5, 24-11

address mapping
bus master address spaces (table), 4-3
cacheability control, 4-15, 4-20
code execution control, 4-15, 4-20
configuration, 4-15

buses, 4-4
chip select for noncontiguous memory or

I/O, 4-16
chip selects, 4-4
external memory, 4-4
external super I/O chip, 4-16
GP bus peripheral space, 4-16
memory regions above DOS application

space, 4-17
PCI bus devices, 4-18
ROM/Flash space, 4-15
Windows® compatibility, 4-17

configuration register access, 4-20
I/O map (figure), 4-11

I/O space, 4-11
Configuration Base Address register, 4-11
GP bus I/O region, 4-15
PC/AT-compatible I/O peripherals region, 4-13
PCI configuration space, 4-12
PCI I/O space, 4-12

initialization, 4-21
interrupts, 4-18
memory and I/O space summary (table), 4-4
memory map (figure), 4-7
memory space, 4-7

GP bus memory space, 4-9
integrated memory-mapped peripherals, 4-10
memory-mapped configuration region (MMCR)

space, 4-9
PCI bus memory space, 4-9
SDRAM space, 4-8

operation, 4-3
PC/AT peripherals I/O map (table), 4-14
positive address decoding, 3-13, 4-9
positive address decoding (example), 3-14, 4-16
Programmable Address Region (PAR) registers, 4-5

PAR register format (figure), 4-6
registers, 4-2
software considerations, 4-18
write protection violation, 4-18, 4-20
write-protection violation, 4-15

AEOI bit field, 15-18
AINIT bit field, 14-14
ALM_AM_PM bit field, 20-8
ALM_INT_ENB bit field, 20-9
ALT_CMP bit field, 17-4, 17-5
AM_PM bit field, 20-8
Am486® CPU

instruction set, xxiv
Am5x86 CPU Control (CPUCTL) register

function, 5-6, 7-1, 24-2
usage, 5-7, 7-3–7-4

Am5x86® CPU
block diagram (figure), 7-2
bus arbitration, 8-3
cache

behavior during clock speed changes, 7-4
configuration options (table), 7-4
flushing, 24-11
memory management, 7-4
performance considerations, 24-12

clocking considerations, 7-4, 8-7
Élan™SC520 Microcontroller User’s Manual Index-1

Index
CPU core identification, 3-7
CPU PLL stabilization time, 7-4
CPU speed, 3-7
documentation, xxiv
floating point unit (FPU), 7-3
initialization, 7-5

hard CPU reset, 7-5
soft CPU reset, 6-7, 7-5

interrupts, 7-5
latency, 7-5
operation, 7-3
registers, 7-1

AMDebug Disable signal. See AMDEBUG_DIS signal.
AMDebug Technology RX/TX Interrupt Mapping

(ICEMAP) register
function, 15-5

AMDEBUG_DIS signal
description, 2-13
usage, 26-2

AMDebug™ technology
block diagram (figure), 26-2
on-chip trace cache, 26-7
operation, 26-6
signal descriptions, 2-12
software architecture (figure), 26-2
software performance profiling, 26-7
system design, 26-2

12-pin connector format (figure), 26-4
20-pin serial connector format (figure), 26-4
connecting the AMDebug port, 26-3
connector pins (table), 26-3
locating the target connector (figure), 26-6
target connector mechanical specifications, 26-5

Analog Ground signal. See GND_ANLG signal.
Analog Power Supply signal. See VCC_ANLG signal.
applications. See Élan™SC520 microcontroller.
Arbiter Priority Control (ARBPRICTL) register

function, 8-2
usage, 8-8, 8-20, 8-22

arbitration. See system arbitration.
ARBPRICTL register, 8-2
ATTR bit field, 3-10, 3-12, 4-5, 4-16

B
BA1–BA0 signals

control, 10-10, 10-19
description, 2-5

Backup Battery Sense signal. See BBATSEN signal.
Bank Address signals. See BA1–BA0 signals.
BBATSEN signal

description, 2-14
usage, 6-7, 20-3, 20-4, 20-7, 20-11

BI bit field, 21-8

BIOS. See system initialization.
bit fields

A10–A8, 15-18
A20G_CTL, 6-8
AEOI, 15-18
AINIT, 14-14
ALM_AM_PM, 20-8
ALM_INT_ENB, 20-9
ALT_CMP, 17-4, 17-5
AM_PM, 20-8
ATTR, 3-10, 3-12, 4-5, 4-16
BI, 21-8
BNKx_BNK_CNT, 10-15, 10-15
BNKx_COLWDTH, 10-15, 10-15
BSY, 22-7
BUS_MAS, 9-11
BUS_NUM, 9-10
BUS_PARK_SEL, 8-10, 8-22
CACHE_WR_MODE, 7-4, 8-6
CAS_LAT, 10-20, 10-31
CH3_ALT_SIZE, 14-21
CLK_INV_ENB, 22-5
CLK_PIN_DIR, 5-3, 5-9, 16-1, 16-6, 16-7
CLK_PIN_ENB, 5-9
CLK_SEL, 5-8, 22-7
CLK_SRC, 21-10
CLK_TST_SEL, 5-9
CNCR_MODE_ENB, 8-3, 8-22, 24-10
COMPTIM, 14-9
CONT_CMP, 17-4
CPU_PRI, 8-8
CPU_RST, 6-4, 6-7
CTR_MODE, 16-4
DCTS, 21-6
DDCD, 21-6
DDSR, 21-6
DEVICE_NUM, 9-10
DGP, 12-7
DR, 21-7
ECC_CHK_POS, 10-28
EMSI, 21-9
ENABLE, 4-12, 4-17, 9-10, 9-11
ENB, 19-3, 19-4, 19-6
ENH_MODE_ENB, 14-10
EPS, 21-8
ERR_IN_FIFO, 21-8
EXP_SEL, 5-8, 19-4
EXT_CLK, 17-3
FE, 21-8
FIFO_ENB, 21-9, 21-13
FIRST_DLY, 12-8
FUNCTION_NUM, 9-10
GNT_TO_ID, 8-23
GNT_TO_INT_ENB, 8-19, 8-23
GNT_TO_STA, 8-19
GP_ECHO_ENB, 24-10
GP_RST, 6-4, 6-7, 13-22
Index-2 Élan™SC520 Microcontroller User’s Manual

Index
bit fields (continued)
GPCSx_SEL, 12-3, 13-3, 16-1, 17-1
HI_PRI_0_SEL, 8-8
HI_PRI_1_SEL, 8-8
HOUR_MODE_SEL, 20-7
ICE_HRST_DET, 6-8
ICE_ON_RST, 6-5, 6-7, 24-11
ICE_SRST_DET, 6-8
INT_ENB, 17-4
IRQ_FLG, 19-4, 19-5
LOOP, 21-13
LTIM, 3-19
M_AD_IRQ_ID, 9-27
M_CMD_IRQ_ID, 9-27
M_GINT_MODE, 15-18
M_RETRY_TO, 9-12, 9-28
M_WPOST_ENB, 9-11
MATCH, 4-18
MBIT_ERR, 10-27
MEM_ENB, 9-11, 9-18
MODE, 12-7
MSBF_ENB, 22-5
MULT_INT_ENB, 10-27
NMI_DONE, 15-14
NMI_ENB, 6-7, 15-14, 15-20, 20-10
OE, 21-7, 21-8
OPMODE_SEL, 10-20, 10-30, 10-31, 10-32
OSC_CTL, 20-7, 20-10
OUT2, 21-13
PCI_RST, 6-4, 6-7, 9-29
PE, 21-8
PENB, 21-5, 21-8
PER_INT_ENB, 20-8
PER_INT_FLG, 20-8
PG_SZ, 3-9, 3-10, 4-5
PHS_INV_ENB, 22-5
PIOx_FNC, 13-3, 14-4, 15-2, 21-2, 23-3
PIT_GATE2, 16-4
PIT_OUT2_ENB, 16-4
PIT_OUT2_STA, 16-4
PRG_RST_ENB, 3-4, 6-4, 6-6, 10-29
PRGRST_DET, 6-8
PSC_SEL, 17-3
PWRGOOD_DET, 6-8
RAS_CAS_DLY, 10-21
RAS_PCHG_DLY, 10-21
RATE_SEL, 20-8
REGISTER_NUM, 9-10
RF_CLR, 21-10
RFRT, 21-7, 21-10
RFSH_ENB, 10-19
RFSH_SPD, 10-18
RTC_DIS, 3-21, 20-5
RTC_VRT, 6-7, 20-4
RTG, 17-3
S1_GINT_MODE, 15-18
S2, 15-17, 15-18, 15-19

bit fields (continued)
S2_GINT_MODE, 3-19
S5, 15-17, 15-18, 15-19
SBIT_ERR, 10-27
SD_RST_DET, 6-8
SET, 20-7
SFNM, 15-18
SGL_INT_ENB, 10-27
SNGL, 15-18
SP, 21-8
SUB_DLY, 12-8
SYS_RST, 6-4, 6-5
SZ_ST_ADR, 3-9, 3-10, 4-5
T_DLYTR_ENB, 9-19
T_IRQ_ID, 9-27
T_PURGE_RD_ENB, 9-22
T7–T3, 15-18
TARGET, 3-10, 4-5, 4-8, 4-16, 4-19, 9-18
TC_INT, 22-7
TC_INT_ENB, 22-7
TEMT, 21-7
TERI, 21-6
TF_CLR, 21-10
THRE, 21-6
TRNMOD, 14-11, 14-19
UART1_DIS, 3-21
UART2_DIS, 3-21
UIP, 20-7
WB_ENB, 24-10
WB_FLUSH, 11-5, 11-13
WB_TST_ENB, 10-19, 24-2, 24-3, 24-7
WB_WM, 11-9
WDT_RST_DET, 6-8
WIDTH, 12-7
WRST_ENB, 19-4
WRTSEL, 14-9
XTAL_FREQ, 18-3

BNKx_BNK_CNT bit field, 10-15, 10-15
BNKx_COLWDTH bit field, 10-15, 10-15
BOOTCS Control (BOOTCSCTL) register

function, 12-5
usage, 12-7, 12-14

BOOTCS signal
configuration, 12-2, 12-14
control, 3-10
description, 2-6
usage, 3-5, 3-17, 4-4, 4-7, 4-8, 4-15, 4-21,

19-6, 24-6
BOOTCSCTL register, 12-5
bootstraps

signal descriptions, 2-13
Boundary Scan (BSR) register

function, 25-2
usage, 25-3–25-5, 25-16–25-17
Élan™SC520 Microcontroller User’s Manual Index-3

Index
BR/TC signal
control, 25-4
description, 2-12

BSY bit field, 22-7
Buffer Chaining Control (GPDMABCCTL) register

function, 14-5
usage, 14-15

Buffer Chaining Interrupt Enable (GPDMABSINTENB)
register

function, 14-5
Buffer Chaining Status (GPDMABCSTA) register

function, 14-5
Buffer Chaining Valid (GPDMABCVAL) register

function, 14-5
usage, 14-15

bus arbitration. See system arbitration.
Bus Grant signals. See GNT4–GNT0 signals.
Bus Request signals. See REQ4–REQ0 signals.
BUS_MAS bit field, 9-11
BUS_NUM bit field, 9-10
BUS_PARK_SEL bit field, 8-10, 8-22
Bypass (BPR) register

function, 25-2
usage, 25-4

C
cache. See Am5x86® CPU.
CACHE_WR_MODE bit field, 7-4, 8-6
cacheability control, 3-12
CAS_LAT bit field, 10-20, 10-31
CBAR register, 4-2
CBE3–CBE0 signals

description, 2-6
usage, 2-7

CF_DRAM signal
control, 24-2
description, 2-12
usage, 10-19, 24-1, 24-3, 24-12

CF_ROM_GPCS signal
control, 24-2
description, 2-12
usage, 10-19, 24-1, 24-4, 24-5, 24-6, 24-12

CFG2–CFG0 signals
description, 2-13
usage, 2-6, 6-4, 6-6, 11-3, 12-2, 12-7, 12-14, 24-1

CFG3 signal
description, 2-13
usage, 16-1

CH3_ALT_SIZE bit field, 14-21
Chip Select Pin Function Select (CSPFS) register

function, 12-5, 13-6, 16-2, 17-2, 23-4
usage, 12-3, 13-3, 13-22, 16-1, 17-1, 23-5

chip selects. See GPCS7–GPCS0 signals.
Class Code/Revision ID (PCICCREVID) register

function, 9-8
Clear To Send signals. See CTS2–CTS1 signals.
CLK_INV_ENB bit field, 22-5
CLK_PIN_DIR bit field, 5-3, 5-9, 16-1, 16-6, 16-7
CLK_PIN_ENB bit field, 5-9
CLK_SEL bit field, 5-8, 22-7
CLK_SRC bit field, 5-8, 21-10
CLK_TST_SEL bit field, 5-9
CLKMEMIN signal

description, 2-5
usage, 10-6, 10-7, 10-11

CLKMEMOUT signal
description, 2-5
usage, 10-6, 10-7, 10-11

CLKPCIIN signal
description, 2-6
usage, 9-5

CLKPCIOUT signal
description, 2-7
usage, 5-5, 9-2, 9-5, 9-6

CLKSEL register, 5-6, 23-4
CLKTEST signal

control, 5-3, 5-6, 16-1, 16-2
description, 2-10
usage, 5-9

CLKTIMER signal
control, 5-3, 5-6, 16-1, 16-2
description, 2-10
usage, 5-8, 5-9, 16-6, 16-7

clock generation and control
block diagram (figure), 5-2
CLKTEST clock routing (figure), 5-9
CLKTEST signal, 5-9
CLKTIMER signal, 5-9
clock distribution (figure), 5-3
clock sources (figure), 5-2
clock startup and lock times (table), 5-2
initialization, 5-9
internal clocks, 5-7

CPU, 5-7
general-purpose (GP) bus, 5-7
general-purpose (GP) timers, 5-8
GP-DMA controller, 5-8
PCI bus, 5-7
programmable interval timer (PIT), 5-8
real-time clock (RTC), 5-8
ROM/Flash interface, 5-7
SDRAM controller, 5-7
software timer, 5-8
synchronous serial interface (SSI), 5-8
UART serial ports, 5-8
watchdog timer, 5-8

operation, 5-7
Index-4 Élan™SC520 Microcontroller User’s Manual

Index
PLL lock time (table), 5-2
PLLs, 5-7
registers, 5-6
signal descriptions, 2-10
system design, 5-3

bypassing 32.768-kHz oscillator (figure), 5-5
bypassing 33-MHz oscillator (figure), 5-6
bypassing internal oscillators, 2-10, 5-5
clock pin loading, 5-4
crystal selection, 5-4
shared signals (table), 5-3

timing error and clock accuracy (table), 5-5
Clock Select (CLKSEL) register

function, 5-6, 16-2, 21-3, 23-4
usage, 5-3, 5-9, 16-1, 16-6, 16-7

CMDACK signal
control, 25-4
description, 2-12

CNCR_MODE_ENB bit field, 8-3, 8-22, 24-10
code execution control, 3-12
Code Fetch ROM/GPCS signal.

See CF_ROM_GPCS signal.
Code Fetch SDRAM signal. See CF_DRAM signal.
Column Address Strobe signals.

See SCASA–SCASB signals.
Command Acknowledge signal. See CMDACK signal.
Command or Byte-Enable Bus signals.

See CBE3–CBE0 signals.
COMPTIM bit field, 14-9
configuration

signal descriptions, 2-13
Configuration Base Address (CBAR) register

function, 4-2
usage, 3-4, 4-9, 4-11, 4-17, 4-18, 4-21

Configuration Input 3 signal. See CFG3 signal.
Configuration Input signals. See CFG2–CFG0 signals.
configuration RAM

function, 20-7
CONT_CMP bit field, 17-4
CPU. See Am5x86® CPU.
CPU bus arbitration. See system arbitration.
CPU_PRI bit field, 8-8
CPU_RST bit field, 6-4, 6-7
CPUCTL register, 7-1
CSPFS register, 23-4
CTR_MODE bit field, 16-4
CTS2–CTS1 signals

control, 13-6, 21-2, 21-3, 21-4
description, 2-9, 21-6
usage, 21-2, 21-9

customer service, iii

D
data buses

boot device configuration, 12-7, 12-14
CFG2 pinstrap, 2-13
general-purpose (GP) bus data bus, 2-8
loading, 10-9, 12-3, 13-4
PCI data bus, 2-6
ROM/Flash controller data bus, 2-6
ROM/Flash controller data bus connection options

(table), 12-1
SDQMx signal behavior, 10-6
SDRAM controller data bus, 2-5
shared buses, 13-10
voltage isolation, 12-3

Data Carrier Detect signals. See DCD2–DCD1 signals.
Data Input/Output Mask signals.

See SDQM3–SDQM0 signals.
Data Set Ready signals. See DSR2–DSR1 signals.
data sheet, xxiv
Data Strobe signal. See DATASTRB signal.
Data Terminal Ready signals.

See DTR2–DTR1 signals.
DATASTRB signal

control, 24-2
description, 2-12
usage, 10-19, 24-1, 24-3, 24-4, 24-12

DBCTL register, 11-4
DCD2–DCD1 signals

control, 13-6, 21-2, 21-3, 21-4
description, 2-9, 21-6
usage, 21-2, 21-9

DCTS bit field, 21-6
DDCD bit field, 21-6
DDSR bit field, 21-6
DEBUG_ENTER signal

description, 2-13
usage, 25-2, 26-2

debugging. See chip test and debugging.
See also system test and debugging.
See also AMDebug™ technology.

Device Identification (DID) register
format, 25-14
function, 25-2
usage, 25-4, 25-14

Device Select signal. See DEVSEL signal.
Device/Vendor ID (PCIDEVID) register

function, 9-8
DEVICE_NUM bit field, 9-10
DEVSEL signal

control, 9-8
description, 2-7
timing, 9-19
usage, 9-3, 9-19
Élan™SC520 Microcontroller User’s Manual Index-5

Index
DGP bit field, 12-7
DMA Buffer Chaining Interrupt Mapping

(DMABCINTMAP) register
function, 14-4, 15-5

DMA. See GP-DMA controller.
DMABCINTMAP register, 15-5
documentation, xxiv

Élan™SC520 microcontroller documentation, xxiv
literature ordering, iii, xxv
world wide web site, iii, xxv

documentation conventions, xxv
Documentation Notation table, xxv
DR bit field, 21-7
DRAM. See SDRAM controller.
DRCBENDADR register, 10-10
DRCCFG register, 10-10
DRCCTL register, 10-10
DRCTMCTL register, 10-10
Drive Strength Control (DSCTL) register

function, 10-10, 23-4
usage, 10-19

DSCTL register, 23-4
DSR2–DSR1 signals

control, 13-6, 21-2, 21-3, 21-4
description, 2-9, 21-6
usage, 21-2

DTR2–DTR1 signals
control, 21-4
description, 2-9, 21-6
usage, 21-2, 21-9

E
ECC Check Bit Position (ECCCKBPOS) register

function, 10-10
usage, 10-28

ECC Check Code Test (ECCCKTEST) register
function, 10-10, 24-2
usage, 10-17, 24-11

ECC Control (ECCCTL) register
function, 10-10
usage, 10-27

ECC Interrupt Mapping (ECCMAP) register
function, 10-10, 15-4

ECC Multi-Bit Error Address (ECCMBADD) register
function, 10-10, 24-2
usage, 10-28

ECC Single-Bit Error Address (ECCSBADD) register
function, 10-10, 24-2
usage, 10-28

ECC Status (ECCSTA) register
function, 10-10
usage, 10-27

ECC. See SDRAM controller.
ECC_CHK_POS bit field, 10-28
ECCCKBPOS register, 10-10
ECCCKTEST register, 10-10
ECCCTL register, 10-10
ECCMAP register, 15-4
ECCMBADD register, 10-10
ECCSBADD register, 10-10
ECCSTA register, 10-10
Élan™SC520 microcontroller

applications, 1-8
digital set top box, 1-9
smart residential gateway, 1-8
telephone line concentrator, 1-9
thin client, 1-8

architectural overview, 1-4
address-mapping, 1-5
AMDebug™ technology, 1-4
clock generation, 1-6
general-purpose (GP) bus interface, 1-6
integrated peripherals, 1-7
JTAG boundary scan test interface, 1-7
PCI bus interface, 1-5
ROM/Flash controller, 1-5
SDRAM controller, 1-5
system testing and debugging features, 1-8
x86 architecture, 1-4

block diagram, 1-2
crystal specifications, xxiv
customer support, iii
distinctive characteristics, 1-1
logic diagram by default pin function, 2-3
logic diagram by interface, 2-2
package dimensions, xxiv
pin designations, xxiv
register descriptions, xxiv
thermal characteristics, xxiv
timing, xxiv

ÉlanSC520 Microcontroller Revision ID (REVID)
register

function, 7-1
usage, 25-14

EMSI bit field, 21-9
ENABLE bit field, 4-12, 4-17, 9-10, 9-11
ENB bit field, 19-3, 19-4, 19-6
ENH_MODE_ENB bit field, 14-10
Enter AMDebug Mode signal. See DEBUG_ENTER

signal.
EPS bit field, 21-8
ERR_IN_FIFO bit field, 21-8
EXP_SEL bit field, 5-8, 19-4
EXT_CLK bit field, 17-3
external oscillator, 2-10, 5-5
Index-6 Élan™SC520 Microcontroller User’s Manual

Index
F
FE bit field, 21-8
FERRMAP register, 15-5
fields. See bit fields.
FIFO_ENB bit field, 21-9, 21-13
FIRST_DLY bit field, 12-8
Flash memory. See ROM/Flash controller
FLASHWR signal

description, 2-6
usage, 24-6

Floating Point Error Interrupt Clear (FPUERRCLR)
register

function, 7-1, 15-7
usage, 15-12

Floating Point Error Interrupt Mapping (FERRMAP)
register

function, 7-1, 15-5
floating point unit (FPU), 7-3

error handling, 15-12, 15-19
system reset, 7-3

FNINIT instruction, 7-3
FPUERRCLR register, 15-7
FRAME signal

description, 2-7
usage, 9-3, 9-9

FUNCTION_NUM bit field, 9-10

G
general-purpose (GP) bus

block diagram (figure), 13-2
bus cycles, 13-16

8-bit access of 16-bit I/O device (figure), 13-19
8-bit access of 8-bit I/O device (figure), 13-16
16-bit access of 16-bit I/O device (figure), 13-17
16-bit access of 8-bit I/O device (figure), 13-17
32-bit access of 16-bit I/O device (figure), 13-18
32-bit access of 8-bit I/O device (figure), 13-18
differentiating byte accesses of 16-bit devices

(table), 13-19
GPIOCS16 and GPMEMCS16 timing, 13-19
GPRDY timing (figure), 13-21
wait states, 13-20

bus sizing, 13-19
dynamic bus sizing override (table), 13-20

chip select qualification, 13-9
configuration, 4-16
configuring external GP bus devices, 3-7, 3-13

multiple devices on one chip select, 3-14
single device performing its own decode, 3-14
single device using one chip select, 3-14

configuring Programmable Address Region x
(PARx) registers, 3-8

data sizing, 13-9

DMA interface, 13-11
echo mode, 13-8, 13-10

echo mode minimum timing (table), 13-9
GP bus reset, 6-7
I/O space, 4-15
I/O-mapped device support, 13-9
initialization, 13-22
interrupts, 13-21
ISA bus compatibility, 13-11
ISA signals and GP bus signals (table), 13-12
latency, 13-21

8/16-bit GP bus width, 13-21
noncacheable GP bus, 13-21
slow GP bus cycles, 13-21

memory space, 4-9
memory-mapped device support, 13-9
operation, 13-6
overview, 13-1
programmable timing, 13-7

GPRDY, 13-8
programmable timing format (figure), 13-8
timing requirements, 13-7

registers, 13-5
serial communications controller interface, 13-14

Am85C30 interface (figure), 13-15
Am85C30 interface timing (figure), 13-16

sharing address and data bus with
ROM/Flash, 13-10

signal descriptions, 2-7, 2-11
Super I/O controller interface, 13-13

Super I/O controller interface (figure), 13-13
Super I/O interface timing (figure), 13-14

system design, 13-1
external data buffer (figure), 13-4
loading, 13-4
shared signals (table), 13-3
voltage translation, 13-4
voltage translation example (figure), 13-5

unaligned accesses, 13-9
usage scenarios, 13-11

general-purpose (GP) timers
block diagram (figure), 17-2
cascaded 32-bit timer, 17-6
clocking considerations, 17-5

external clock sources (table), 17-6
internal clock sources (table), 17-5

configuration, 17-5
GP Timer 0, 17-3
GP Timer 1, 17-3
GP Timer 2, 17-4
initialization, 17-8
interrupts, 17-6
operating modes, 17-4

alternate compare mode, 17-4
continuous mode, 17-4
hardware retrigger mode, 17-4
interrupt on terminal count mode, 17-4
Élan™SC520 Microcontroller User’s Manual Index-7

Index
prescaler mode, 17-4
square wave mode, 17-4

operation, 17-3
registers, 17-2
signal descriptions, 2-10
software considerations, 17-6

combining GP Timer Count elements, 17-6
reading the cascaded 32-bit timer, 17-6

system design, 17-1
shared signals (table), 17-1

General-Purpose Address Bus signals.
See GPA25–GPA0 signals.

General-Purpose Chip Select signals.
See GPCS7–GPCS0 signals.

General-Purpose CMOS RAM (RTCCMOS) register
function, 20-7

General-Purpose Data Bus signals.
See GPD15–GPD0 signals.

GND signals
description, 2-14

GND_ANLG signal
description, 2-14

GNT_TO_ID bit field, 8-23
GNT_TO_INT_ENB bit field, 8-19, 8-23
GNT_TO_STA bit field, 8-19
GNT4–GNT0 signals

description, 2-7
usage, 8-7

GP ALE Offset (GPALEOFF) register
function, 13-6
usage, 13-8

GP ALE Pulse Width (GPALEW) register
function, 13-6
usage, 13-8

GP Bus Address Enable signal. See GPAEN signal.
GP Bus Address Latch Enable signal. See GPALE

signal.
GP Bus Byte High Enable signal. See GPBHE signal.
GP Bus Data Bus Buffer Output Enable signal.

See GPDBUFOE signal.
GP Bus DMA Acknowledge signals.

See GPDACK3–GPDACK0 signals.
GP Bus DMA Request signals.

See GPDRQ3–GPDRQ0 signals.
GP Bus I/O Chip-Select 16 signal.

See GPIOCS16 signal.
GP Bus I/O Read signal. See GPIORD signal.
GP Bus I/O Write signal. See GPIOWR signal.
GP Bus Interrupt Request signals.

See GPIRQ10–GPIRQ0 signals.
GP Bus Memory Chip-Select 16 signal.

See GPMEMCS16 signal.
GP Bus Memory Read signal. See GPMEMRD signal.

GP Bus Memory Write signal. See GPMEMWR signal.
GP Bus Ready signal. See GPRDY signal.
GP Bus Reset signal. See GPRESET signal.
GP Bus Terminal Count signal. See GPTC signal.
GP Chip Select Data Width (GPCSDW) register

function, 13-5
usage, 13-9, 13-19, 13-20, 13-22

GP Chip Select Offset (GPCSOFF) register
function, 13-5
usage, 13-8

GP Chip Select Pulse Width (GPCSPW) register
function, 13-5
usage, 13-8

GP Chip Select Qualification (GPCSQUAL) register
function, 13-5
usage, 13-9, 13-22

GP Chip Select Recovery Time (GPCSRT) register
function, 13-5
usage, 13-8

GP Echo Mode (GPECHO) register
function, 13-5, 24-2
usage, 13-22, 24-10

GP Read Offset (GPRDOFF) register
function, 13-5
usage, 13-8

GP Read Pulse Width (GPRDW) register
function, 13-5
usage, 13-8

GP Timer x Count (GPTMRxCNT) register
function, 17-2, 17-3
usage, 17-4

GP Timer x Interrupt Mapping (GPTMRxMAP) register
function, 15-4, 17-3

GP Timer x Maxcount Compare A
(GPTMRxMAXCMPA) register

function, 17-2, 17-3
usage, 17-4, 17-5, 17-6, 17-7, 17-8

GP Timer x Maxcount Compare B
(GPTMRxMAXCMPB) register

function, 17-2, 17-3
usage, 17-4, 17-5, 17-6, 17-8

GP Timer x Mode/Control (GPTMRxCTL) register
function, 5-6, 17-2, 17-3
usage, 5-8, 17-3, 17-4, 17-5, 17-6, 17-8

GP Timers Status (GPTMRSTA) register
function, 17-2
usage, 17-6

GP timers. See general-purpose (GP) timers.
GP Write Offset (GPWROFF) register

function, 13-6
usage, 13-8

GP Write Pulse Width (GPWRW) register
function, 13-5
usage, 13-8
Index-8 Élan™SC520 Microcontroller User’s Manual

Index
GP_ECHO_ENB bit field, 24-10
GP_RST bit field, 6-4, 6-7, 13-22
GPA25–GPA0 signals

description, 2-6, 2-7
usage, 2-8, 13-1, 13-4, 13-10, 24-5, 24-6

GPAEN signal
control, 13-3, 13-6, 14-4
description, 2-8
usage, 13-10, 14-9, 14-17, 24-6

GPALE signal
control, 13-3, 13-6
description, 2-8
usage, 13-7, 24-6

GPALEOFF register, 13-6
GPALEW register, 13-6
GPBHE signal

control, 13-3, 13-6
description, 2-8
usage, 13-19

GPCS7–GPCS0 signals
configuration, 3-13, 4-5, 4-9, 4-16, 4-20
control, 3-10, 12-3, 13-3, 13-5, 13-6, 16-2, 17-1
description, 2-11
usage, 3-10, 12-3, 13-7, 24-4

GPCSDW register, 13-5
GPCSOFF register, 13-5
GPCSPW register, 13-5
GPCSQUAL register, 13-5
GPCSRT register, 13-5
GPCSx_SEL bit field, 12-3, 13-3, 16-1, 17-1
GPD15–GPD0 signals

description, 2-8
usage, 12-9, 13-10, 14-9, 24-6, 24-10

GPDACK3–GPDACK0 signals
control, 13-3, 13-6, 14-4
description, 2-8
usage, 14-3

GPDBUFOE signal
control, 13-3, 13-6
description, 2-8
usage, 13-4

GP-DMA Channel x Extended Page (GPDMAEXTPGx)
register

function, 14-4
usage, 14-11, 14-12

GP-DMA Channel x Extended Transfer Count
(GPDMAEXTTCx) register

function, 14-5
GP-DMA Channel x Next Address High

(GPDMANXTADDHx) register
function, 14-5, 14-6
usage, 14-15, 14-18

GP-DMA Channel x Next Address Low
(GPDMANXTADDLx) register

function, 14-5, 14-6
usage, 14-15, 14-18

GP-DMA Channel x Next Transfer Count High
(GPDMANXTTCHx) register

function, 14-6
usage, 14-15, 14-18

GP-DMA Channel x Next Transfer Count Low
(GPDMANXTTCLx) register

function, 14-6
usage, 14-15, 14-18

GP-DMA Control (GPDMACTL) register
function, 5-6, 14-4
usage, 5-8, 14-10, 14-18, 14-20

GP-DMA controller
addressing GP-DMA channels, 14-11

16-bit channel address generation (table), 14-12
8-bit channel address generation (table), 14-12
enhanced GP-DMA mode, 14-12
normal GP-DMA mode, 14-11

block diagram (figure), 14-2
bus cycles, 14-16

cycle types (table), 14-16
GP bus I/O to SDRAM, 14-16
read in demand transfer mode (figure), 14-16
read transfer (figure), 14-13
read transfer with cache hit (figure), 14-17
verify transfer (figure), 14-14
write transfer (figure), 14-14

channel mapping, 14-10
channel mapping (table), 14-10
clocking considerations, 14-18
example configurations, 14-19

16-bit channel in enhanced mode, 14-21
16-bit channel in normal mode, 14-20
8-bit channel in enhanced mode, 14-20
8-bit channel in normal mode, 14-19

fly-by transfers, 14-8
GP bus echo mode, 14-17
GP bus timing, 13-11
GP-DMA initiators, 14-9

external I/O devices, 14-9
external memory-mapped I/O devices, 14-10
internal UARTs, 14-9

GP-DMA transfer modes
automatic initialization control, 14-14
block transfer mode, 14-13
buffer chaining, 14-15
demand transfer mode, 14-12
priority, 14-15
single transfer mode, 14-12
transfer types, 14-13

GP-DMA transfers, 14-8
initialization, 14-19
initiator, 14-8
initiator/target combinations supported (table), 14-9
Élan™SC520 Microcontroller User’s Manual Index-9

Index
interrupts, 14-18
latency, 14-18

nonpreemptive latency, 14-18
preemptive latency, 14-19

master and slave core cascading (figure), 14-3
operating modes, 14-10

enhanced GP-DMA mode, 14-11
normal GP-DMA mode, 14-10

operation, 14-8
overview, 14-1
PCI considerations, 14-9
peer-to-peer transfers, 14-9
registers, 14-4
signal descriptions, 2-7
software considerations, 14-18
system design, 14-3

shared signals (table), 14-4
target, 14-8
transfer modes, 14-12

GP-DMA Memory-Mapped I/O (GPDMAMMIO) register
function, 14-4
usage, 14-10

GP-DMA Resource Channel Map A
(GPDMAEXTCHMAPA) register

function, 14-4
usage, 14-10

GP-DMA Resource Channel Map B
(GPDMAEXTCHMAPB) register

function, 14-4
usage, 14-10

GPDMABCCTL register, 14-5
GPDMABCSTA register, 14-5
GPDMABCVAL register, 14-5
GPDMABSINTENB register, 14-5
GPDMACTL register, 14-4
GPDMAEXTCHMAPA register, 14-4
GPDMAEXTCHMAPB register, 14-4
GPDMAEXTPGx register, 14-4, 14-5
GPDMAEXTTCx register, 14-5
GPDMAMMIO register, 14-4
GPDMANXTADDHx register, 14-5, 14-6
GPDMANXTADDLx register, 14-5, 14-6
GPDMANXTTCHx register, 14-6
GPDMANXTTCLx register, 14-5, 14-6
GPDMAxMAR register, 14-7
GPDMAxPG register, 14-7
GPDMAxTC register, 14-7
GPDRQ3–GPDRQ0 signals

control, 13-3, 13-6, 14-4
description, 2-8
usage, 14-3, 14-10

GPECHO register, 13-5

GPIOCS16 signal
control, 13-3, 13-6
description, 2-8
timing, 13-19
usage, 13-4, 13-10, 13-11, 24-6

GPIORD signal
control, 13-5
description, 2-8
usage, 13-4, 13-7, 13-9, 13-11, 13-20, 14-9,

14-17, 24-6
GPIOWR signal

control, 13-5
description, 2-8
usage, 13-7, 13-9, 13-11, 13-20, 14-9, 24-6

GPIRQ10–GPIRQ0 signals
control, 9-7, 13-3, 13-6, 15-2, 15-4
description, 2-9
usage, 2-7, 9-2, 13-21, 15-2, 15-5, 15-8, 23-3

GPIRQx Interrupt Mapping (GPxIMAP) register
function, 15-5

GPMEMCS16 signal
control, 13-3, 13-6
description, 2-9
timing, 13-19
usage, 13-4, 13-10, 13-11, 24-6

GPMEMRD signal
control, 13-5
description, 2-9
usage, 13-4, 13-7, 13-9, 13-11, 13-20, 14-10,

14-17, 24-4, 24-6
GPMEMWR signal

control, 13-5
description, 2-9
usage, 13-7, 13-9, 13-11, 13-20, 14-10, 14-17, 24-6

GPRDOFF register, 13-5
GPRDW register, 13-5
GPRDY signal

control, 13-3, 13-6
description, 2-9
timing, 13-20
usage, 13-4, 13-8, 13-11, 13-13, 13-20, 24-6

GPRESET signal
control, 6-3, 13-6, 13-22
description, 2-9
usage, 6-4, 6-7

GPTC signal
control, 13-3, 13-6, 14-4
description, 2-9
usage, 14-3, 14-9, 14-12, 14-18

GPTMRSTA register, 17-2
GPTMRxCNT register, 17-2, 17-3
GPTMRxCTL register, 17-2, 17-3
GPTMRxMAP register, 15-4
GPTMRxMAXCMPA register, 17-2, 17-3
Index-10 Élan™SC520 Microcontroller User’s Manual

Index
GPTMRxMAXCMPB register, 17-2, 17-3
GPWROFF register, 13-6
GPWRW register, 13-5
GPxIMAP register, 15-5
Ground signal. See GND signal.

H
HBCTL register, 9-7
HBMSTIRQCTL register, 9-7
HBMSTIRQSTA register, 9-7
HBTGTIRQCTL register, 9-7
HBTGTIRQSTA register, 9-7
Header Type (PCIHEADTYPE) register

function, 9-8
HI_PRI_0_SEL bit field, 8-8
HI_PRI_1_SEL bit field, 8-8
Host Bridge Control (HBCTL) register

function, 6-3, 9-7
usage, 6-7, 9-11, 9-19, 9-22, 9-29

Host Bridge Master Interrupt Address (MSTINTADD)
register

function, 9-7
usage, 9-12, 9-27

Host Bridge Master Interrupt Control (HBMSTIRQCTL)
register

function, 9-7
usage, 8-19

Host Bridge Master Interrupt Status (HBMSTIRQSTA)
register

function, 9-7
usage, 9-27

Host Bridge Target Interrupt Control (HBTGTIRQCTL)
register

function, 9-7
usage, 8-19

Host Bridge Target Interrupt Status (HBTGTIRQSTA)
register

function, 9-7
usage, 9-27

HOUR_MODE_SEL bit field, 20-7

I
I/O map. See address mapping.
ICE_HRST_DET bit field, 6-8
ICE_ON_RST bit field, 6-5, 6-7, 24-11
ICE_SRST_DET bit field, 6-8
ICEMAP register, 15-5
initialization

See also system initialization.
address mapping, 4-21

Am5x86® CPU, 7-5
clocks, 5-9
general-purpose (GP) bus, 13-22
general-purpose (GP) timers, 17-8
GP-DMA controller, 14-19
JTAG test access port (TAP) controller, 25-20
PCI host bridge, 9-29
power-on reset, 6-9
programmable input/output (PIO), 23-6
programmable interrupt controller (PIC), 15-20
programmable interval timer (PIT), 16-7
read buffer, 11-15
real-time clock (RTC), 20-10
reset types, 6-3
ROM/Flash controller, 12-14
SDRAM controller, 10-29
software timer, 18-3
synchronous serial interface (SSI), 22-8
system arbiter, 8-22
system reset, 6-4
UART serial ports, 21-13
watchdog timer (WDT), 19-6
write buffer, 11-15

Initiator Ready signal. See IRDY signal.
INST_TRCE signal

description, 2-13
usage, 26-2

Instruction (IR) register
function, 25-2
usage, 25-3, 25-3, 25-4–25-5, 25-15, 25-17, 25-20

instruction set manual, xxiv
Instruction Trace signal. See INST_TRCE signal.
INT_ENB bit field, 17-4
INTA–INTD signals

control, 9-7
description, 2-7, 15-4
usage, 9-2, 15-2, 15-8

Interrupt Control (PICICR) register
function, 15-4
usage, 3-19, 7-6, 15-14, 15-18, 20-10

Interrupt Pin Polarity (INTPINPOL) register
function, 9-7, 15-4
usage, 3-20

Interrupt Request signals. See INTA–INTD signals.
interrupts. See programmable interrupt controller (PIC).
INTPINPOL register, 15-4
IRDY signal

description, 2-7
usage, 9-3

IRQ_FLG bit field, 19-4, 19-5
ISA bus compatibility

ISA features not supported, 13-11
ISA signals and GP bus signals (table), 13-12
Élan™SC520 Microcontroller User’s Manual Index-11

Index
J
JTAG boundary scan test interface

block diagram (figure), 25-1
board continuity testing, 25-2
Boundary Scan register (figure), 25-1
bus cycles, 25-19

data scan (figure), 25-19
instruction scan (figure), 25-20

clocking considerations, 25-20
configuration information, 25-5

bypass path, 25-5
instruction path, 25-5
main data scan path, 25-5

Device Identification register (figure), 25-14
initialization, 25-20
instruction register, 25-3

BYPASS instruction, 25-4
EXTEST instruction, 25-3
HIGHZ instruction, 25-4
IDCODE instruction, 25-4
SAMPLE/PRELOAD instruction, 25-4

main data scan path (table), 25-5
operation, 25-2
overview, 25-1
registers, 25-2
Serial Debug Port Data register (figure), 25-14
signal descriptions, 2-12
TAP controller state diagram (figure), 25-15
TAP instruction set (table), 25-3
test access port (TAP) controller, 25-15

capture-DR state, 25-16
capture-IR state, 25-17
exit1-DR state, 25-16
exit1-IR state, 25-18
exit2-DR state, 25-17
exit2-IR state, 25-18
pause-DR state, 25-16
pause-IR state, 25-18
run-test-idle state, 25-16
select-DR-scan state, 25-16
select-IR-scan state, 25-17
shift-DR state, 25-16
shift-IR state, 25-17
test-logic-reset state, 25-15
update-DR state, 25-17
update-IR state, 25-18

JTAG_TCK signal
description, 2-12
usage, 25-2, 25-4, 26-3

JTAG_TDI signal
description, 2-12
usage, 25-2, 25-4, 25-5, 26-3

JTAG_TDO signal
description, 2-12
usage, 25-2, 25-3, 25-4, 25-5, 26-3

JTAG_TMS signal
usage, 2-12, 25-15, 26-3

JTAG_TRST signal
description, 2-12
usage, 25-15

L
LF_PLL1 signal

description, 2-10
usage, 5-2

logic diagram
default pin function, 2-3
interface, 2-2

LOOP bit field, 21-13
Loop Filter Interface signal. See LF_PLL1 signal.
LTIM bit field, 3-19

M
M_AD_IRQ_ID bit field, 9-27
M_CMD_IRQ_ID bit field, 9-27
M_GINT_MODE bit field, 15-18
M_RETRY_TO bit field, 9-12, 9-28
M_WPOST_ENB bit field, 9-11
MA12–MA0 signals

control, 10-10, 10-19
description, 2-5
usage, 10-31, 24-4, 24-7, 24-9

Master DMA Channel 4–7 Control (MSTDMACTL)
register

function, 14-7
Master DMA Channel 4–7 Mask (MSTDMAMSK)

register
function, 14-7

Master DMA Channel 4–7 Mode (MSTDMAMODE)
register

function, 14-7
usage, 14-11, 14-14, 14-19

Master DMA Channel 4–7 Status (MSTDMASTA)
register

function, 14-7
Master DMA Channel x Memory Address

(GPDMAxMAR) register
function, 14-7
usage, 14-11, 14-12, 14-18

Master DMA Channel x Page (GPDMAxPG) register
function, 14-7
usage, 14-11, 14-12

Master DMA Channel x Transfer Count (GPDMAxTC)
register

function, 14-7
usage, 14-9, 14-18
Index-12 Élan™SC520 Microcontroller User’s Manual

Index
Master DMA Clear Byte Pointer (MSTDMACBP)
register

function, 14-7
Master DMA Controller Reset (MSTDMARST) register

function, 14-8
usage, 14-19

Master DMA Controller Temporary (MSTDMATMP)
register

function, 14-8
Master DMA General Mask (MSTDMAGENMSK)

register
function, 14-8
usage, 14-20

Master DMA Mask Reset (MSTDMAMSKRST) register
function, 14-8

Master PIC Initialization Control Word 1 (MPICICW1)
register

function, 15-6
usage, 15-16, 15-18

Master PIC Initialization Control Word 2 (MPICICW2)
register

function, 15-6
usage, 15-16, 15-18

Master PIC Initialization Control Word 3 (MPICICW3)
register

function, 15-7
usage, 15-16, 15-17, 15-18, 15-19

Master PIC Initialization Control Word 4 (MPICICW4)
register

function, 15-7
usage, 15-16, 15-17, 15-18

Master PIC In-Service (MPICISR) register
function, 15-6
usage, 15-17

Master PIC Interrupt Mask (MPICINTMSK) register
function, 15-7
usage, 15-17

Master PIC Interrupt Mode (MPICMODE) register
function, 15-4

Master PIC Interrupt Request (MPICIR) register
function, 15-6

Master PIC Operation Control Word 2 (MPICOCW2)
register

function, 15-6
usage, 15-17

Master PIC Operation Control Word 3 (MPICOCW3)
register

function, 15-6
usage, 15-17

Master Retry Time-Out (PCIMRETRYTO) register
function, 9-8
usage, 9-12, 9-28

Master Software DRQ(n) Request (MSTDMASWREQ)
register

function, 14-7

MATCH bit field, 4-18
MBIT_ERR bit field, 10-27
MD31–MD0 signals

control, 10-10, 10-19, 23-4
description, 2-5, 2-6
usage, 10-6, 10-9, 24-4, 24-6

MECC6–MECC0 signals
control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-9

MEM_ENB bit field, 9-11, 9-18
Memory Data Bus signals. See MD31–MD0 signals.
Memory Error Correction Code signals.

See MECC6–MECC0 signals.
memory map. See address mapping.
memory-mapped configuration region, 4-1, 4-9

memory space, 4-4
priority, 4-18
relocating, 4-11, 4-18

memory-mapped configuration region (MMCR)
integrated memory-mapped peripherals, 4-10

MMCR. See memory-mapped configuration region.
See also address mapping.

MODE bit field, 12-7
MPICICW1 register, 15-6
MPICICW2 register, 15-6
MPICICW3 register, 15-7
MPICICW4 register, 15-7
MPICINTMSK register, 15-7
MPICIR register, 15-6
MPICISR register, 15-6
MPICMODE register, 15-4
MPICOCW2 register, 15-6
MPICOCW3 register, 15-6
MSBF_ENB bit field, 22-5
MSTDMACBP register, 14-7
MSTDMACTL register, 14-7
MSTDMAGENMSK register, 14-8
MSTDMAMODE register, 14-7
MSTDMAMSK register, 14-7
MSTDMAMSKRST register, 14-8
MSTDMARST register, 14-8
MSTDMASTA register, 14-7
MSTDMASWREQ register, 14-7
MSTDMATMP register, 14-8
MSTINTADD register, 9-7
MULT_INT_ENB bit field, 10-27
Élan™SC520 Microcontroller User’s Manual Index-13

Index
N
NMI. See programmable interrupt controller (PIC).
NMI_DONE bit field, 15-14
NMI_ENB bit field, 6-7, 15-14, 15-20, 20-10

O
OE bit field, 21-7, 21-8
OPMODE_SEL bit field, 10-20, 10-30, 10-31, 10-32
OSC_CTL bit field, 20-7, 20-10
OUT2 bit field, 21-13

P
PAR signal

description, 2-7
Parity Error signal. See PERR signal.
PARx register, 4-2
PC/AT compatibility, 1-7

a20 gate support, 6-8
address mapping, 4-13
general-purpose (GP) bus configuration, 13-6
GP-DMA transfers, 14-1, 14-8
interrupt channel mapping (table), 15-12
ISA devices, 13-11
ISA signals and GP bus signals (table), 13-12
normal GP-DMA mode, 14-11
PC/AT peripherals I/O map (table), 4-14
PC/AT port logic, 6-8, 16-4
programmable interrupt controller (PIC)

configuration, 15-18
programmable interval timer (PIT) clock

source, 16-6
real-time clock (RTC), 20-5
Windows® compatibility, 4-17

PC/AT port logic
a20 gate support, 6-8
SCP Command Port register (Port 0064h), 6-8
SCP Data Port register (Port 0060h), 6-8
System Control Port A register (Port 0092h), 6-8
System Control Port B register (Port 0061h), 16-4

PCI Address Data Bus signals. See AD31–AD0 signals.
PCI Bus Arbiter Status (PCIARBSTA) register

function, 8-2
usage, 8-10, 8-19, 8-23

PCI bus arbitration. See system arbitration.
PCI Bus Clock Input signal. See CLKPCIIN signal.
PCI Bus Clock Output signal. See CLKPCIOUT signal.
PCI bus. See PCI host bridge.
PCI Configuration Address (PCICFGADR) register

format (figure), 9-10
function, 9-8
usage, 4-12, 9-9, 9-10, 9-17

PCI Configuration Data (PCICFGDATA) register
function, 9-8
usage, 4-12, 9-9, 9-10, 9-11, 9-17

PCI host bridge
arbitration, 8-3
block diagram (figure), 9-2
broken transactions, 8-19
bus arbitration, 8-3
configuration, 9-9

generating configuration cycles, 9-10
configuration space, 4-12
configuring PCI bus devices

network adapter, 3-16
VGA controller on PCI bus, 3-15

host bridge as PCI bus master, 9-11
bus cycles, 9-12

configuration read/write (figure), 9-17
CPU non-posted write cycle (figure), 9-16
CPU posted write cycle (figure), 9-15
CPU read cycle (figure), 9-12
CPU read with external target retry

(figure), 9-14
delayed transaction support, 9-12
read cycles, 9-12
write posting, 9-11

host bridge as PCI bus target, 9-18
address FIFO, 9-20
burst ordering, 9-21
bus cycles, 9-22

external master SDRAM read (figure), 9-24
external master SDRAM write (figure), 9-22
target disconnect (figure), 9-25

command support, 9-19
data coherency, 9-21
delayed transaction support, 9-19
DEVSEL timing, 9-19
FIFOs and prefetching, 9-20
target address space, 9-18

I/O space, 4-4, 4-12
initialization, 9-29
interrupts, 8-19, 9-27

delayed transaction time-out, 9-27
master abort, 9-27
parity errors, 9-27
retry time-out counter expired, 9-27
system error, 9-27
target abort, 9-27

latency, 9-28
master latency, 9-28
target latency, 9-28

memory space, 4-4, 4-9
operation, 9-8
PCI bus arbiter

bus parking, 8-7
PCI reset, 6-7
registers, 9-7
SDRAM read buffer, 11-12
Index-14 Élan™SC520 Microcontroller User’s Manual

Index
SDRAM write buffer, 11-12
signal descriptions, 2-6
system design, 9-2

clocking in heavily loaded system (figure), 9-6
clocking in lightly loaded system (figure), 9-6
crystal selection implications, 9-6
external PCI bus master connection (figure), 9-4
external PCI bus target connection (figure), 9-3
PCI clocking, 9-5
SERR and PERR connection (figure), 9-5

unsupported configuration registers, 9-9
unsupported functions, 9-8

PCI Host Bridge Interrupt Mapping (PCIHOSTMAP)
register

function, 8-3, 9-7, 15-4
usage, 8-19

PCI Interrupt A Mapping (PCIINTAMAP) register
function, 9-7, 15-5

PCI Interrupt B Mapping (PCIINTBMAP) register
function, 9-7, 15-5

PCI Interrupt C Mapping (PCIINTCMAP) register
function, 9-7, 15-5

PCI Interrupt D Mapping (PCIINTDMAP) register
function, 9-7, 15-5

PCI Parity signal. See PAR signal.
PCI_RST bit field, 6-4, 6-7, 9-29
PCIARBSTA register, 8-2
PCICCREVID register, 9-8
PCICFGADR register, 9-8
PCICFGDATA register, 9-8
PCIDEVID register, 9-8
PCIHEADTYPE register, 9-8
PCIHOSTMAP register, 15-4
PCIINTAMAP register, 15-5
PCIINTBMAP register, 15-5
PCIINTCMAP register, 15-5
PCIINTDMAP register, 15-5
PCIMRETRYTO register, 9-8
PCISTACMD register, 9-8
PE bit field, 21-8
PENB bit field, 21-5, 21-8
PER_INT_ENB bit field, 20-8
PER_INT_FLG bit field, 20-8
PERR signal

description, 2-7
usage, 9-3

PG_SZ bit field, 3-9, 3-10, 4-5
PHS_INV_ENB bit field, 22-5
PIC. See programmable interrupt controller (PIC).
PICICR register, 15-4
pins. See signals.

pinstraps
signal descriptions, 2-13

PIO functions. See programmable input/output (PIO).
PIO15–PIO0 Clear (PIOCLR15_0) register

function, 23-4
usage, 23-5

PIO15–PIO0 Data (PIODATA15_0) register
function, 23-4
usage, 23-5

PIO15–PIO0 Direction (PIODIR15_0) register
function, 23-4
usage, 23-5

PIO15–PIO0 Pin Function Select (PIOPFS15_0)
register

function, 13-6, 14-4, 15-4, 23-4
usage, 3-8, 13-3, 14-4, 15-2, 23-3, 23-5

PIO15–PIO0 Set (PIOSET15_0) register
function, 23-4
usage, 23-5

PIO31–PIO0 signals
control, 13-3, 14-4, 15-2, 21-2, 23-3
usage, 23-6

PIO31–PIO16 Clear (PIOCLR31_16) register
function, 23-4
usage, 23-5

PIO31–PIO16 Data (PIODATA31_16) register
function, 23-4
usage, 23-5

PIO31–PIO16 Direction (PIODIR31_16) register
function, 23-4
usage, 23-5

PIO31–PIO16 Pin Function Select (PIOPFS31_16)
register

function, 13-6, 15-4, 21-3, 23-4
usage, 3-8, 13-3, 15-2, 21-2, 23-3, 23-5

PIO31–PIO16 Set (PIOSET31_16) register
function, 23-4
usage, 23-5

PIOCLR15_0 register, 23-4
PIOCLR31_16 register, 23-4
PIODATA15_0 register, 23-4
PIODATA31_16 register, 23-4
PIODIR15_0 register, 23-4
PIODIR31_16 register, 23-4
PIOPFS15_0 register, 23-4
PIOPFS31_16 register, 23-4
PIOSET31_16 register, 23-4
PIOx_FNC bit field, 13-3, 14-4, 15-2, 21-2, 23-3
PIT Channel x Count (PITxCNT) register

function, 16-3
usage, 16-4, 16-6

PIT Counter Latch Command (PITCNTLAT) register
function, 16-3
Élan™SC520 Microcontroller User’s Manual Index-15

Index
PIT Mode Control (PITMODECTL) register
function, 16-3
usage, 16-4, 16-7

PIT Read-Back Command (PITRDBACK) register
function, 16-3

PIT x Interrupt Mapping (PITxMAP) register
function, 15-4, 16-2

PIT x Status (PITxSTA) register
function, 16-3

PIT. See programmable interval timer (PIT).
PIT_GATE2 bit field, 16-4
PIT_OUT2_ENB bit field, 16-4
PIT_OUT2_STA bit field, 16-4
PITCNTLAT register, 16-3
PITGATE2 signal

control, 13-3, 13-6, 16-1, 16-2, 16-4
description, 2-10

PITMODECTL register, 16-3
PITOUT2 signal

control, 16-3
description, 2-10
usage, 16-1, 16-4

PITRDBACK register, 16-3
PITxCNT register, 16-3
PITxMAP register, 15-4
PITxSTA register, 16-3
PLL. See clock generation and control. See also reset

generation.
power

signal descriptions, 2-14
Power Good signal. See PWRGOOD signal.
Power Supply signals. See VCC_CORE signal, VCC_I/

O signal, and VCC_RTC signal.
power-on reset, 6-9
PRG_RST_ENB bit field, 3-4, 6-4, 6-6, 10-29
PRGRESET signal

control, 6-3, 10-10
description, 2-10
timing (figure), 6-6
usage, 3-4, 6-4, 6-6, 6-8, 6-9, 10-10, 10-29

PRGRST_DET bit field, 6-8
Programmable Address Region x (PARx) registers

address region attributes, 3-12
cacheability control, 3-12
code execution control, 3-12
doubleword boundaries, 4-20
external GP bus devices, 3-13
external ROM devices, 3-17
format (figure), 3-10
function, 4-2, 24-2
maximum region size, 4-20
PAR register priority, 3-13
PCI bus devices, 3-15

performance considerations of attributes, 3-12
region size, 4-18
SDRAM regions, 3-18
software considerations, 4-18
specifying pages and regions, 3-9
start address, 4-18
usage, 2-11, 3-8, 3-10, 4-5, 12-14, 13-6, 13-9, 13-2

2, 15-9
worksheet (figure), 3-11
write-protection, 3-12

programmable input/output (PIO)
block diagram (figure), 23-2
configuration

configuration summary (table), 23-5
input pins, 23-5
output pins, 23-5

initialization, 23-6
operation, 23-4
overview, 23-1
PIO31–PIO0 signals, 23-4
registers, 23-4
signal descriptions, 2-11
software considerations, 23-5
system design, 23-2

shared signals (table), 23-3
Programmable Input/Output signals. See PIO31–PIO0

signals.
programmable interrupt controller (PIC)

block diagram (figure), 15-3
configuration, 15-16

PC/AT configuration, 15-18
programming, 15-16

configuring interrupt mapping, 3-19
edge-triggered or level-sensitive interrupts, 15-13
initialization, 15-20
interrupt flow sequence, 15-7
interrupt sharing, 15-13
interrupt source routing, 15-10

disabling the slave controllers, 15-13
floating point error handling, 15-12
PC/AT compatibility, 15-12
polarity inversion of interrupt requests, 15-10

interrupt source routing (figure), 15-11
interrupt sources, 15-8

hardware-generated interrupts, 15-8
interrupt sources (figure), 15-9
non-maskable interrupts and routing, 15-14

NMI routing (figure), 15-15
NMI sharing, 15-14

operation, 15-7
overview, 15-1
PC/AT interrupt channel mapping (table), 15-12
priority types, 15-16
registers, 15-4
software considerations, 15-18

detecting invalid interrupt requests, 15-19
disabling the slave controllers, 15-19
Index-16 Élan™SC520 Microcontroller User’s Manual

Index
floating point unit error handling, 15-19
interrupt sharing, 15-18

system design, 15-2
shared signals (table), 15-2

programmable interval timer (PIT)
block diagram (figure), 16-2
clocking considerations, 16-6

external clock source (table), 16-6
internal clock source (table), 16-6

initialization, 16-7
interrupts, 16-6
operating modes, 16-4

hardware-retriggerable one-shot, 16-4
hardware-triggered strobe, 16-5
interrupt on terminal count, 16-4
rate generator, 16-5
software-triggered strobe, 16-5
square wave mode, 16-5

operation, 16-3
overview, 16-1
PIT Channel 0, 16-3
PIT Channel 1, 16-3
PIT Channel 2, 16-4
registers, 16-2
signal descriptions, 2-10
software considerations, 16-6

PC/AT-compatible systems, 16-6
system design, 16-1

shared signals (table), 16-1
Programmable Interval Timer 2 Gate signal. See

PITGATE2 signal.
Programmable Interval Timer 2 Output signal. See

PITOUT2 signal.
programmable reset, 6-6, 10-29
Programmable Reset signal. See PRGRESET signal.
PSC_SEL bit field, 17-3
pulldown resistors

configuration signals, 2-13
ECC devices not installed, 10-9
internal value, 2-4
JTAG boundary scan test interface, 25-16
JTAG signals, 2-12
PIO31–PIO0 signals, 23-1–23-2
PIO31–PIO0 signals (table), 23-3
SSI devices, 22-1

pullup resistors
GP bus external pullups required, 13-4
GPRDY signal, 2-9
internal value, 2-4
JTAG boundary scan test interface, 25-4
JTAG signals, 2-12
PCI external pullups required, 9-3
PIO31–PIO0 signals, 23-1–23-2
PIO31–PIO0 signals (table), 23-3
SSI devices, 22-1
UART serial port signals, 21-2

PWRGOOD signal
description, 2-10
timing, 6-9
usage, 6-2, 6-4, 6-8, 20-5

PWRGOOD_DET bit field, 6-8

R
RAS_CAS_DLY bit field, 10-21
RAS_PCHG_DLY bit field, 10-21
RATE_SEL bit field, 20-8
read buffer. See write buffer and read buffer.
real-time clock (RTC)

block diagram (figure), 20-2
configuration, 20-7

alarm function, 20-9
date and time, 20-8
hour format, 20-7
periodic interrupts, 20-8
using RATE_SEL (table), 20-8
year 2000 issues, 20-9

disabling, 3-21
initialization, 20-10

RTC reset, 20-11
interrupts, 20-9
operation, 20-7
overview, 20-1
registers, 20-6
RTC reset, 6-7
software considerations, 20-10

accessing the CMOS memory, 20-10
initializing the RTC divider chain, 20-10
legacy NMI enable bit moved, 20-10

system design, 20-3
backup battery considerations, 20-3
circuit with backup battery (figure), 20-4
circuit without backup battery (figure), 20-5
external RTC, 20-5
selecting and interfacing a 32.768-kHz

crystal, 20-5
voltage monitor, 20-2
voltage monitor block diagram (figure), 20-3

register set manual, xxiv
REGISTER_NUM bit field, 9-10
registers

Address Decode Control (ADDDECCTL), 4-2
Am5x86 CPU Control (CPUCTL), 7-1
AMDebug Technology RX/TX Interrupt Mapping

(ICEMAP), 15-5
Arbiter Priority Control (ARBPRICTL), 8-2
BOOTCS Control (BOOTCSCTL), 12-5
Buffer Chaining Control (GPDMABCCTL), 14-5
Buffer Chaining Interrupt Enable

(GPDMABSINTENB), 14-5
Buffer Chaining Status (GPDMABCSTA), 14-5
Élan™SC520 Microcontroller User’s Manual Index-17

Index
registers (continued)
Buffer Chaining Valid (GPDMABCVAL), 14-5
Chip Select Pin Function Select (CSPFS), 23-4
Class Code/Revision ID (PCICCREVID), 9-8
Clock Select (CLKSEL), 5-6, 23-4
Configuration Base Address (CBAR), 4-2
Device/Vendor ID (PCIDEVID), 9-8
DMA Buffer Chaining Interrupt Mapping

(DMABCINTMAP), 14-4, 15-5
Drive Strength Control (DSCTL), 23-4
ECC Check Bit Position (ECCCKBPOS), 10-10
ECC Check Code Test (ECCCKTEST), 10-10
ECC Control (ECCCTL), 10-10
ECC Interrupt Mapping (ECCMAP), 15-4
ECC Multi-Bit Error Address (ECCMBADD), 10-10
ECC Single-Bit Error Address (ECCSBADD), 10-10
ECC Status (ECCSTA), 10-10
ÉlanSC520 Microcontroller Revision ID

(REVID), 7-1
Floating Point Error Interrupt Clear

(FPUERRCLR), 15-7
Floating Point Error Interrupt Mapping

(FERRMAP), 15-5
General-Purpose CMOS RAM (RTCCMOS), 20-7
GP ALE Offset (GPALEOFF), 13-6
GP ALE Pulse Width (GPALEW), 13-6
GP Chip Select Data Width (GPCSDW), 13-5
GP Chip Select Offset (GPCSOFF), 13-5
GP Chip Select Pulse Width (GPCSPW), 13-5
GP Chip Select Qualification (GPCSQUAL), 13-5
GP Chip Select Recovery Time (GPCSRT), 13-5
GP Echo Mode (GPECHO), 13-5
GP Read Offset (GPRDOFF), 13-5
GP Read Pulse Width (GPRDW), 13-5
GP Timer x Count (GPTMRxCNT), 17-2, 17-3
GP Timer x Interrupt Mapping (GPTMRxMAP), 15-4
GP Timer x Maxcount Compare A

(GPTMRxMAXCMPA), 17-2, 17-3
GP Timer x Maxcount Compare B

(GPTMRxMAXCMPB), 17-2, 17-3
GP Timer x Mode/Control

(GPTMRxCTL), 17-2, 17-3
GP Timers Status (GPTMRSTA), 17-2
GP Write Offset (GPWROFF), 13-6
GP Write Pulse Width (GPWRW), 13-5
GP-DMA Channel x Extended Page

(GPDMAEXTPGx), 14-4, 14-5
GP-DMA Channel x Extended Transfer Count

(GPDMAEXTTCx), 14-5
GP-DMA Channel x Next Address High

(GPDMANXTADDHx), 14-5, 14-6
GP-DMA Channel x Next Address Low

(GPDMANXTADDLx), 14-5, 14-6
GP-DMA Channel x Next Transfer Count High

(GPDMANXTTCHx), 14-6
GP-DMA Channel x Next Transfer Count Low

(GPDMANXTTCLx), 14-6

registers (continued)
GP-DMA Control (GPDMACTL), 14-4
GP-DMA Memory-Mapped I/O

(GPDMAMMIO), 14-4
GP-DMA Resource Channel Map A

(GPDMAEXTCHMAPA), 14-4
GP-DMA Resource Channel Map B

(GPDMAEXTCHMAPB), 14-4
GPIRQx Interrupt Mapping (GPxIMAP), 15-5
Header Type (PCIHEADTYPE), 9-8
Host Bridge Control (HBCTL), 9-7
Host Bridge Master Interrupt Address

(MSTINTADD), 9-7
Host Bridge Master Interrupt Control

(HBMSTIRQCTL), 9-7
Host Bridge Master Interrupt Status

(HBMSTIRQSTA), 9-7
Host Bridge Target Interrupt Control

(HBTGTIRQCTL), 9-7
Host Bridge Target Interrupt Status

(HBTGTIRQSTA), 9-7
Interrupt Control (PICICR), 15-4
Interrupt Pin Polarity (INTPINPOL), 15-4
Master DMA Channel 4–7 Control

(MSTDMACTL), 14-7
Master DMA Channel 4–7 Mask

(MSTDMAMSK), 14-7
Master DMA Channel 4–7 Mode

(MSTDMAMODE), 14-7
Master DMA Channel 4–7 Status

(MSTDMASTA), 14-7
Master DMA Channel x Memory Address

(GPDMAxMAR), 14-7
Master DMA Channel x Page (GPDMAxPG), 14-7
Master DMA Channel x Transfer Count

(GPDMAxTC), 14-7
Master DMA Clear Byte Pointer

(MSTDMACBP), 14-7
Master DMA Controller Reset (MSTDMARST), 14-8
Master DMA Controller Temporary

(MSTDMATMP), 14-8
Master DMA General Mask

(MSTDMAGENMSK), 14-8
Master DMA Mask Reset (MSTDMAMSKRST), 14-8
Master PIC Initialization Control Word 1

(MPICICW1), 15-6
Master PIC Initialization Control Word 2

(MPICICW2), 15-6
Master PIC Initialization Control Word 3

(MPICICW3), 15-7
Master PIC Initialization Control Word 4

(MPICICW4), 15-7
Master PIC In-Service (MPICISR), 15-6
Master PIC Interrupt Mask (MPICINTMSK), 15-7
Master PIC Interrupt Mode (MPICMODE), 15-4
Master PIC Interrupt Request (MPICIR), 15-6
Index-18 Élan™SC520 Microcontroller User’s Manual

Index
registers (continued)
Master PIC Operation Control Word 2

(MPICOCW2), 15-6
Master PIC Operation Control Word 3

(MPICOCW3), 15-6
Master Retry Time-Out (PCIMRETRYTO), 9-8
Master Software DRQ(n) Request

(MSTDMASWREQ), 14-7
PCI Bus Arbiter Status (PCIARBSTA), 8-2
PCI Configuration Address (PCICFGADR), 9-8
PCI Configuration Data (PCICFGDATA), 9-8
PCI Host Bridge Interrupt Mapping

(PCIHOSTMAP), 15-4
PCI Interrupt A Mapping (PCIINTAMAP), 15-5
PCI Interrupt B Mapping (PCIINTBMAP), 15-5
PCI Interrupt C Mapping (PCIINTCMAP), 15-5
PCI Interrupt D Mapping (PCIINTDMAP), 15-5
PIO15–PIO0 Clear (PIOCLR15_0), 23-4
PIO15–PIO0 Data (PIODATA15_0), 23-4
PIO15–PIO0 Direction (PIODIR15_0), 23-4
PIO15–PIO0 Pin Function Select

(PIOPFS15_0), 23-4
PIO15–PIO0 Set (PIOSET15_0), 23-4
PIO31–PIO16 Clear (PIOCLR31_16), 23-4
PIO31–PIO16 Data (PIODATA31_16), 23-4
PIO31–PIO16 Direction (PIODIR31_16), 23-4
PIO31–PIO16 Pin Function Select

(PIOPFS31_16), 23-4
PIO31–PIO16 Set (PIOSET31_16), 23-4
PIT Channel x Count (PITxCNT), 16-3
PIT Counter Latch Command (PITCNTLAT), 16-3
PIT Mode Control (PITMODECTL), 16-3
PIT Read-Back Command (PITRDBACK), 16-3
PIT x Interrupt Mapping (PITxMAP), 15-4
PIT x Status (PITxSTA), 16-3
Programmable Address Region x (PARx), 4-2
Reset Configuration (RESCFG), 6-3
Reset Status (RESSTA), 6-3
ROMCS1 Control (ROMCS1CTL), 12-5
ROMCS2 Control (ROMCS2CTL), 12-5
RTC Alarm Hour (RTCALMHR), 20-6
RTC Alarm Minute (RTCALMMIN), 20-6
RTC Alarm Second (RTCALMSEC), 20-6
RTC Control A (RTCCTLA), 20-7
RTC Control B (RTCCTLB), 20-7
RTC Current Day of the Month

(RTCCURDOM), 20-6
RTC Current Day of the Week

(RTCCURDOW), 20-6
RTC Current Hour (RTCCURHR), 20-6
RTC Current Minute (RTCCURMIN), 20-6
RTC Current Month (RTCCURMON), 20-6
RTC Current Second (RTCCURSEC), 20-6
RTC Current Year (RTCCURYR), 20-6
RTC Interrupt Mapping (RTCMAP), 15-5
RTC Status C (RTCSTAC), 20-7
RTC Status D (RTCSTAD), 20-7

registers (continued)
RTC/CMOS RAM Data Port (RTCDATA), 20-6
RTC/CMOS RAM Index (RTCIDX), 20-6
SCP Command Port (SCPCMD), 6-3
SCP Data Port (SCPDATA), 6-3
SDRAM Bank 0–3 Ending Address

(DRCBENDADR), 10-10
SDRAM Bank Configuration (DRCCFG), 10-10
SDRAM Buffer Control (DBCTL), 11-4
SDRAM Control (DRCCTL), 10-10
SDRAM Timing Control (DRCTMCTL), 10-10
Slave DMA Channel 0–3 Control (SLDMACTL), 14-7
Slave DMA Channel 0–3 Mask (SLDMAMSK), 14-7
Slave DMA Channel 0–3 Mode

(SLDMAMODE), 14-7
Slave DMA Channel 0–3 Status (SLDMASTA), 14-7
Slave DMA Channel x Memory Address

(GPDMAxMAR), 14-7
Slave DMA Channel x Page (GPDMAxPG), 14-7
Slave DMA Channel x Transfer Count

(GPDMAxTC), 14-7
Slave DMA Clear Byte Pointer (SLDMACBP), 14-7
Slave DMA Controller Reset (SLDMARST), 14-8
Slave DMA Controller Temporary

(SLDMATMP), 14-8
Slave DMA General Mask (SLDMAGENMSK), 14-8
Slave DMA Mask Reset (SLDMAMSKRST), 14-8
Slave Software DRQ(n) Request

(SLDMASWREQ), 14-7
Slave x PIC Initialization Control Word 1

(SxPICICW1), 15-6
Slave x PIC Initialization Control Word 2

(SxPICICW2), 15-6
Slave x PIC Initialization Control Word 3

(SxPICICW3), 15-7
Slave x PIC Initialization Control Word 4

(SxPICICW4), 15-7
Slave x PIC In-Service (SxPICISR), 15-6
Slave x PIC Interrupt Mask (SxPICINTMSK), 15-7
Slave x PIC Interrupt Mode (SLxPICMODE), 15-4
Slave x PIC Interrupt Request (SxPICIR), 15-6
Slave x PIC Operation Control Word 2

(SxPICOCW2), 15-6
Slave x PIC Operation Control Word 3

(SxPICOCW3), 15-6
Software Interrupt 16–1 Control (SWINT16_1), 15-4
Software Interrupt 22–17/NMI Control

(SWINT22_17), 15-4
Software Timer Configuration (SWTMRCFG), 18-2
Software Timer Microsecond Count

(SWTMRMICRO), 18-2
Software Timer Millisecond Count

(SWTMRMILLI), 18-2
SSI Command (SSICMD), 22-2
SSI Control (SSICTL), 22-2
SSI Interrupt Mapping (SSIMAP), 15-5
SSI Receive (SSIRCV), 22-2
Élan™SC520 Microcontroller User’s Manual Index-19

Index
registers (continued)
SSI Status (SSISTA), 22-2
SSI Transmit (SSIXMIT), 22-2
Status/Command (PCISTACMD), 9-8
System Arbiter Control (SYSARBCTL), 8-2
System Arbiter Master Enable

(SYSARBMENB), 8-2
System Board Information (SYSINFO), 6-3
System Control Port A (SYSCTLA), 6-3
System Control Port B (SYSCTLB), 16-3
UART x Baud Clock Divisor Latch LSB

(UARTxBCDL), 21-4
UART x Baud Clock Divisor Latch MSB

(UARTxBCDH), 21-4
UART x FIFO Control (UARTxFCR), 21-4
UART x FIFO Control Shadow

(UARTxFCRSHAD), 21-3
UART x General Control (UARTxCTL), 21-3
UART x General Status (UARTxSTA), 21-3
UART x Interrupt Enable (UARTxINTENB), 21-4
UART x Interrupt ID (UARTxINTID), 21-4
UART x Interrupt Mapping (UARTxMAP), 15-5
UART x Line Control (UARTxLCR), 21-4
UART x Line Status (UARTxLSR), 21-4
UART x Modem Control (UARTxMCR), 21-4
UART x Modem Status (UARTxMSR), 21-4
UART x Receive Buffer (UARTxRBR), 21-4
UART x Scratch Pad (UARTxSCRATCH), 21-4
UART x Transmit Holding (UARTxTHR), 21-4
Watchdog Timer Control (WDTMRCTL), 19-2
Watchdog Timer Count High

(WDTMRCNTH), 19-3, 19-6
Watchdog Timer Count Low (WDTMRCNTL), 19-2
Watchdog Timer Interrupt Mapping

(WDTMAP), 15-5
Write-Protect Violation Interrupt Mapping

(WPVMAP), 15-5
Write-Protect Violation Status (WPVSTA), 4-2

REQ4–REQ0 signals
control, 2-7, 8-2
usage, 8-7

Request To Send signals. See RTS2–RTS1 signals.
RESCFG register, 6-3
Reset Configuration (RESCFG) register

function, 6-3, 10-10, 13-6, 24-2
usage, 6-4, 6-5, 6-6, 6-7, 10-29, 13-22, 24-11

reset generation
a20 gate support, 6-8
block diagram (figure), 6-2
core states after system reset (table), 6-5
determining reset sources, 6-8
GP bus reset, 6-7
hard CPU reset, 7-5
initialization, 6-9
latency, 6-9
operation, 6-3

overview, 6-1
PCI reset, 6-7
PLL start-up, 6-8
PLL start-up timing (figure), 6-9
power-on reset, 6-9

power-on reset timing (figure), 6-9
PRGRESET timing (figure), 6-6
programmable reset, 6-6, 10-29
registers, 6-3
reset sources (table), 6-4
reset types, 6-3
reset vector and reset segment, 3-4
RTC reset, 6-7
signal descriptions, 2-10
soft CPU reset, 6-7, 7-5
software considerations, 6-8
system design, 6-2
system reset, 6-4
system reset with SDRAM retention, 6-6

Reset Latched Input signals.
See RSTLD7–RSTLD0 signals.

Reset signal. See RST signal.
Reset Status (RESSTA) register

function, 6-3, 7-1, 10-10, 19-3, 24-3
usage, 6-8, 24-11

RESSTA register, 6-3
REVID register, 7-1
RF_CLR bit field, 21-10
RFRT bit field, 21-7, 21-10
RFSH_ENB bit field, 10-19
RFSH_SPD bit field, 10-18
RIN2–RIN1 signals

control, 13-6, 21-2, 21-3, 21-4
description, 2-9, 21-6
usage, 21-2, 21-9

Ring Indicate signals. See RIN2–RIN1 signals.
ROM Buffer Output Enable signal.

See ROMBUFOE signal.
ROM/Flash Boot Chip Select signal.

See BOOTCS signal.
ROM/Flash Chip Select signals.

See ROMCS2–ROMCS1 signals.
ROM/Flash controller

access timing and wait states example (table), 12-9
accesses and ROM width (table), 12-9
address decoding, 12-12
block diagram (figure), 12-2
bus cycles, 12-9

2 doublewords from 16-bit ROM (figure), 12-11
4 aligned doublewords from 32-bit ROM

(figure), 12-8
4 unaligned doublewords from 8-bit ROM

(figure), 12-8
4 words from 16-bit ROM (figures), 12-8
burst access from 32-bit ROM (figure), 12-10
Index-20 Élan™SC520 Microcontroller User’s Manual

Index
cache-line fill (figure), 12-11
multiple accesses from 8-bit ROM (figure), 12-10
page-mode read access, 12-10
single CPU read access, 12-9
word write cycle to Flash memory (figure), 12-12
writing to Flash, 12-11

cacheability control, 3-12
code execution control, 3-12
configuration, 12-7

access timing, 12-8
operating mode, 12-7
ROM location, 12-7
ROM width, 12-7

configuring external ROM devices
boot device mapping for BIOS shadowing, 3-17
two Flash banks for XIP operating system, 3-17

device types supported, 12-6
initialization, 12-14

CFGx options for BOOTCS (table), 12-14
latency, 12-13
memory space, 4-4
operation, 12-5
overview, 12-1
programming Flash, 12-12
registers, 12-5
sharing address and data bus with GP bus, 13-10
signal descriptions, 2-6
software considerations, 12-12
system design, 12-2

data bus connection options (table), 12-1
shared signals (table), 12-3
voltage isolation, 12-3
voltage isolation examples (figure), 12-4

write-protection, 3-12, 3-18
ROM/Flash controller data bus, 2-8
ROM/Flash Read signal. See ROMRD signal.
ROMBUFOE signal

description, 2-6
usage, 2-8, 12-3

ROMCS1 Control (ROMCS1CTL) register
function, 12-5
usage, 12-14

ROMCS1CTL register, 12-5
ROMCS2 Control (ROMCS2CTL) register

function, 12-5
usage, 12-14

ROMCS2CTL register, 12-5
ROMCS2–ROMCS1 signals

control, 3-10, 12-3, 13-3, 13-6
description, 2-6
usage, 3-17, 4-8, 4-15, 12-3, 12-14, 24-6

ROMRD signal
description, 2-6
usage, 12-3, 24-4, 24-6

Row Address Strobe signals. See SRASA–SRASB
signals.

RST signal
control, 9-29
description, 2-7
usage, 6-4, 6-7, 9-2, 9-3, 9-29

RSTLD7–RSTLD0 signals
description, 2-14
usage, 6-3, 6-4, 6-5, 6-6

RTC. See real-time clock (RTC).
RTC Alarm Hour (RTCALMHR) register

function, 20-6
usage, 20-7, 20-10

RTC Alarm Minute (RTCALMMIN) register
function, 20-6

RTC Alarm Second (RTCALMSEC) register
function, 20-6

RTC Control A (RTCCTLA) register
function, 20-7
usage, 20-7, 20-8, 20-10

RTC Control B (RTCCTLB) register
function, 20-7
usage, 20-7, 20-9, 20-10

RTC Current Day of the Month (RTCCURDOM) register
function, 20-6

RTC Current Day of the Week (RTCCURDOW) register
function, 20-6

RTC Current Hour (RTCCURHR) register
function, 20-6
usage, 20-7

RTC Current Minute (RTCCURMIN) register
function, 20-6

RTC Current Month (RTCCURMON) register
function, 20-6

RTC Current Second (RTCCURSEC) register
function, 20-6

RTC Current Year (RTCCURYR) register
function, 20-6
usage, 20-9

RTC Interrupt Mapping (RTCMAP) register
function, 15-5

RTC Status C (RTCSTAC) register
function, 20-7

RTC Status D (RTCSTAD) register
function, 20-7
usage, 6-7, 20-4

RTC/CMOS RAM Data Port (RTCDATA) register
function, 20-6
usage, 20-10

RTC/CMOS RAM Index (RTCIDX) register
function, 20-6
usage, 20-10

RTC_DIS bit field, 3-21, 20-5
RTC_VRT bit field, 6-7, 20-4
RTCALMHR register, 20-6
Élan™SC520 Microcontroller User’s Manual Index-21

Index
RTCALMMIN register, 20-6
RTCALMSEC register, 20-6
RTCCMOS register, 20-7
RTCCTLA register, 20-7
RTCCTLB register, 20-7
RTCCURDOM register, 20-6
RTCCURDOW register, 20-6
RTCCURHR register, 20-6
RTCCURMIN register, 20-6
RTCCURMON register, 20-6
RTCCURSEC register, 20-6
RTCCURYR register, 20-6
RTCDATA register, 20-6
RTCIDX register, 20-6
RTCMAP register, 15-5
RTCSTAC register, 20-7
RTCSTAD register, 20-7
RTG bit field, 17-3
RTS2–RTS1 signals

control, 21-4
description, 2-9, 21-6
usage, 21-2

S
S1_GINT_MODE bit field, 15-18
S2 bit field, 15-17, 15-18, 15-19
S2_GINT_MODE bit field, 3-19
S5 bit field, 15-17, 15-18, 15-19
SBIT_ERR bit field, 10-27
SCASA–SCASB signals

control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-5

SCP Command Port (SCPCMD) register
function, 6-3, 7-1
usage, 6-7, 6-8

SCP Data Port (SCPDATA) register
function, 6-3, 7-1
usage, 6-8

SCPCMD register, 6-3
SCPDATA register, 6-3
SCS3–SCS0 signals

control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-1, 10-5, 10-12, 10-30

SD_RST_DET bit field, 6-8
SDQM3–SDQM0 signals

control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-6, 10-28, 24-11

SDRAM Address signals. See MA12–MA0 signals.

SDRAM Bank 0–3 Ending Address (DRCBENDADR)
register

function, 10-10
usage, 10-32, 10-33, 10-35

SDRAM Bank Configuration (DRCCFG) register
function, 10-10
usage, 10-15, 10-33

SDRAM Buffer Control (DBCTL) register
function, 11-4, 24-2
usage, 11-5, 11-9, 11-13, 24-10

SDRAM Chip Select signals. See SCS3–SCS0 signals.
SDRAM Clock Input signal. See CLKMEMIN signal.
SDRAM Clock Output signal. See CLKMEMOUT signal.
SDRAM Control (DRCCTL) register

function, 10-10, 11-4, 24-2
usage, 10-18, 10-19, 10-30, 24-2, 24-3, 24-7

SDRAM controller
addressing, 10-12

address mapping to MA (table), 10-12
page sizes (table), 10-16
SDRAM devices supported (table), 10-13
supported SDRAM devices, 10-13

block diagram (figure), 10-2
block diagram detail (figure), 10-3
buffering, 10-17
bus cycles, 10-22

auto refresh cycle (figure), 10-27
burst read cycle (figure), 10-22
burst read cycle with ECC enabled

(figure), 10-25
CPU burst write (figure), 10-24
ECC cycles, 10-24
mode register access (figure), 10-27
read-modify-write cycle with ECC (figure), 10-26
write cycle (figure), 10-23

cacheability control, 3-12
code execution control, 3-12
column address configuration (table), 10-15
configuring GP-DMA buffers with PAR

registers, 3-18
control configuration, 10-18

drive-strength selection, 10-19
operation mode select, 10-30
refresh control, 10-18
refresh rates (table), 10-18
write buffer test mode, 10-19

error correction code (ECC), 10-16, 10-27, 10-28
initialization, 10-29

boot process, 10-32
programmable reset, 10-29
SDRAM device initialization, 10-30

auto refresh command, 10-31
load mode register (table), 10-31
mode register programming, 10-31
NOP command, 10-31
Index-22 Élan™SC520 Microcontroller User’s Manual

Index
operation mode select, 10-20
precharge command, 10-31

sizing algorithm, 10-32
external bank column number, 10-33
internal bank number, 10-34
true external bank ending address, 10-35

interrupts, 10-27
multi-bit error, 10-27
single-bit error, 10-27

latency, 10-28
memory space, 4-4, 4-8
operation, 10-11
registers, 10-10
SDRAM support, 10-11
signal descriptions, 2-5
software considerations, 10-28

disabling buffers during configuration, 10-28
ECC errors, 10-28
write protection, 10-28

system design, 10-1
168-pin SDRAM DIMM configuration

(figure), 10-5
bank configuration (figure), 10-4
clock generation (figure), 10-7
clock generation with external driver

(figure), 10-7
clock loading estimates (table), 10-6
clocking, 10-6
delay calculation, 10-7
estimated capacitance (tables), 10-8
loading, 10-8
pins, 10-5

timing configuration, 10-20
auto-refresh-to-RAS (TRC), 10-21
CAS latency (CL), 10-20
minimum RAS (TRAS), 10-22
RAS precharge (TRP), 10-21
RAS-to-CAS delay (TRCD), 10-21
RAS-to-RAS, 10-21

write-protection, 3-12, 3-18
SDRAM Memory Write Enable signals. See SWEA–

SWEB signals.
SDRAM Timing Control (DRCTMCTL) register

function, 10-10
usage, 10-20, 10-31, 24-5, 24-9

Serial Data In signals. See SIN2–SIN1 signals.
Serial Data Out signals. See SOUT2–SOUT1 signals.
Serial Debug Port Data (SDPD) register

format, 25-14
function, 25-2
usage, 25-14

SERR signal
control, 9-8
description, 2-7
usage, 9-3, 9-27

SET bit field, 20-7

Set Interrupt-Enable Flag (STI)
instruction, 15-7, 15-18, 15-20

SFNM bit field, 15-18
SGL_INT_ENB bit field, 10-27
signal descriptions

AMDebug™ technology, 2-12
configuration, 2-13
descriptions (table), 2-5
general-purpose (GP) bus, 2-7, 2-11
general-purpose (GP) timers, 2-10
GP-DMA controller, 2-7
JTAG, 2-12
PCI host bridge, 2-6
power, 2-14
programmable input/output (PIO), 2-11
programmable interval timer (PIT), 2-10
reset generation, 2-10
ROM/Flash controller, 2-6
SDRAM controller, 2-5
synchronous serial interface (SSI), 2-9
UART serial ports, 2-9

signals
32KXTAL2–32KXTAL1, 2-10
33MXTAL2–33MXTAL1, 2-10
AD31–AD0, 2-6
AMDEBUG_DIS, 2-13
BA1–BA0, 2-5
BBATSEN, 2-14
BOOTCS, 2-6
BR/TC, 2-12
CBE3–CBE0, 2-6
CF_DRAM, 2-12
CF_ROM_GPCS, 2-12
CFG2–CFG0, 2-13
CFG3, 2-13
CLKMEMIN, 2-5
CLKMEMOUT, 2-5
CLKPCIIN, 2-6
CLKPCIOUT, 2-7
CLKTEST, 2-10
CLKTIMER, 2-10
CMDACK, 2-12
CTS2–CTS1, 2-9
DATASTRB, 2-12
DCD2–DCD1, 2-9
DEBUG_ENTER, 2-13
DEVSEL, 2-7
DSR2–DSR1, 2-9
DTR2–DTR1, 2-9
FLASHWR, 2-6
FRAME, 2-7
GND, 2-14
GNT4–GNT0, 2-7
GPA25–GPA0, 2-6, 2-7
GPAEN, 2-8
GPALE, 2-8
GPBHE, 2-8
Élan™SC520 Microcontroller User’s Manual Index-23

Index
signals (continued)
GPCS7–GPCS0, 2-11
GPD15–GPD0, 2-6, 2-8
GPDACK3–GPDACK0, 2-8
GPDBUFOE, 2-8
GPDRQ3–GPDRQ0, 2-8
GPIOCS16, 2-8
GPIORD, 2-8
GPIOWR, 2-8
GPIRQ10–GPIRQ0, 2-9
GPMEMCS16, 2-9
GPMEMRD, 2-9
GPMEMWR, 2-9
GPRDY, 2-9
GPRESET, 2-9
GPTC, 2-9
INST_TRCE, 2-13
INTA–INTD, 2-7
IRDY, 2-7
JTAG_TCK, 2-12
JTAG_TDI, 2-12
JTAG_TDO, 2-12
JTAG_TMS, 2-12
JTAG_TRST, 2-12
LF_PLL1, 2-10
MA12–MA0, 2-5
MD31–MD0, 2-5, 2-6
MECC6–MECC0, 2-5
PAR, 2-7
PERR, 2-7
PIO31–PIO0, 2-11
PITGATE2, 2-10
PITOUT2, 2-10
PRGRESET, 2-10
PWRGOOD, 2-10
REQ4–REQ0, 2-7
RIN2–RIN1, 2-9
ROMBUFOE, 2-6
ROMCS2–ROMCS1, 2-6
ROMRD, 2-6
RST, 2-7
RSTLD7–RSTLD0, 2-14
RTS2–RTS1, 2-9
SCASA–SCASB, 2-5
SCS3–SCS0, 2-5
SDQM3–SDQM0, 2-5
SERR, 2-7
SIN2–SIN1, 2-9
SOUT2–SOUT1, 2-9
SRASA–SRASB, 2-5
SSI_CLK, 2-10
SSI_DI, 2-10
SSI_DO, 2-10
STOP, 2-7
STOP/TX, 2-12
SWEA–SWEB, 2-5
TMRIN1–TIMIN0, 2-10

signals (continued)
TRDY, 2-7
TRIG/TRACE, 2-12
VCC_ANLG, 2-14
VCC_CORE, 2-14
VCC_I/O, 2-14
VCC_RTC, 2-14
WBMSTR2–WBMSTR0, 2-13

SIN2–SIN1 signals
description, 2-9
usage, 21-2

Slave DMA Channel 0–3 Control (SLDMACTL) register
function, 14-7

Slave DMA Channel 0–3 Mask (SLDMAMSK) register
function, 14-7

Slave DMA Channel 0–3 Mode (SLDMAMODE) register
function, 14-7
usage, 14-14

Slave DMA Channel 0–3 Status (SLDMASTA) register
function, 14-7

Slave DMA Channel x Memory Address
(GPDMAxMAR) register

function, 14-7
usage, 14-11, 14-12, 14-18

Slave DMA Channel x Page (GPDMAxPG) register
function, 14-7
usage, 14-11, 14-12

Slave DMA Channel x Transfer Count (GPDMAxTC)
register

function, 14-7
usage, 14-9, 14-18

Slave DMA Clear Byte Pointer (SLDMACBP) register
function, 14-7

Slave DMA Controller Reset (SLDMARST) register
function, 14-8
usage, 14-19

Slave DMA Controller Temporary (SLDMATMP) register
function, 14-8

Slave DMA General Mask (SLDMAGENMSK) register
function, 14-8
usage, 14-19

Slave DMA Mask Reset (SLDMAMSKRST) register
function, 14-8

Slave Software DRQ(n) Request (SLDMASWREQ)
register

function, 14-7
Slave x PIC Initialization Control Word 1 (SxPICICW1)

register
function, 15-6
usage, 3-19, 15-16

Slave x PIC Initialization Control Word 2 (SxPICICW2)
register

function, 15-6
usage, 15-16, 15-18
Index-24 Élan™SC520 Microcontroller User’s Manual

Index
Slave x PIC Initialization Control Word 3 (SxPICICW3)
register

function, 15-7
usage, 15-16, 15-17

Slave x PIC Initialization Control Word 4 (SxPICICW4)
register

function, 15-7
usage, 15-17, 15-18

Slave x PIC In-Service (SxPICISR) register
function, 15-6
usage, 15-17

Slave x PIC Interrupt Mask (SxPICINTMSK) register
function, 15-7
usage, 15-17

Slave x PIC Interrupt Mode (SLxPICMODE) register
function, 15-4
usage, 3-19

Slave x PIC Interrupt Request (SxPICIR) register
function, 15-6

Slave x PIC Operation Control Word 2 (SxPICOCW2)
register

function, 15-6
usage, 15-17

Slave x PIC Operation Control Word 3 (SxPICOCW3)
register

function, 15-6
usage, 15-17

SLDMACBP register, 14-7
SLDMAGENMSK register, 14-8
SLDMAMODE register, 14-7
SLDMAMSK register, 14-7
SLDMAMSKRST register, 14-8
SLDMARST register, 14-8
SLDMASTA register, 14-7
SLDMASWREQ register, 14-7
SLDMATMP register, 14-8
SLxPICMODE register, 15-4
SNGL bit field, 15-18
Software Interrupt 16–1 Control (SWINT16_1) register

function, 15-4
usage, 15-8

Software Interrupt 22–17/NMI Control (SWINT22_17)
register

function, 15-4
usage, 15-8

software timer
block diagram (figure), 18-1
configuration, 18-2
initialization, 18-3
operation, 18-2
overview, 18-1
registers, 18-2

Software Timer Configuration (SWTMRCFG) register
function, 5-6, 18-2
usage, 5-8, 18-3

Software Timer Microsecond Count (SWTMRMICRO)
register

function, 18-2
usage, 18-2

Software Timer Millisecond Count (SWTMRMILLI)
register

function, 18-2
usage, 18-2

SOUT2–SOUT1 signals
description, 2-9
usage, 21-2

SP bit field, 21-8
SRASA–SRASB signals

control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-5, 10-8

sreset CPU signal, 6-7
SSI. See synchronous serial interface (SSI).
SSI Clock signal. See SSI_CLK signal.
SSI Command (SSICMD) register

function, 22-2
usage, 22-7, 22-8

SSI Control (SSICTL) register
function, 5-6, 22-2
usage, 5-8, 22-3, 22-5, 22-7, 22-8

SSI Data Input signal. See SSI_DI signal.
SSI Data Output signal. See SSI_DO signal.
SSI Interrupt Mapping (SSIMAP) register

function, 15-5, 22-2
SSI Receive (SSIRCV) register

function, 22-2
usage, 22-3, 22-8

SSI Status (SSISTA) register
function, 22-2
usage, 22-7, 22-8

SSI Transmit (SSIXMIT) register
function, 22-2
usage, 22-3, 22-8

SSI_CLK signal
description, 2-10
usage, 5-8, 22-1, 22-5, 22-7

SSI_DI signal
description, 2-10
usage, 22-1, 22-3, 22-5

SSI_DO signal
description, 2-10
usage, 22-1, 22-3, 22-5

SSICMD register, 22-2
SSICTL register, 22-2
SSIMAP register, 15-5
Élan™SC520 Microcontroller User’s Manual Index-25

Index
SSIRCV register, 22-2
SSISTA register, 22-2
SSIXMIT register, 22-2
Status/Command (PCISTACMD) register

function, 9-8
usage, 9-10, 9-18, 9-27

STOP signal
description, 2-7
usage, 9-3

Stop/Transmit signal. See STOP/TX signal.
STOP/TX signal

control, 25-4
description, 2-12

SUB_DLY bit field, 12-8
SWEA–SWEB signals

control, 10-10, 10-19, 23-4
description, 2-5
usage, 10-5

SWINT16_1 register, 15-4
SWINT22_17 register, 15-4
SWT. See software timer.
SWTMRCFG register, 18-2
SWTMRMICRO register, 18-2
SWTMRMILLI register, 18-2
SxPICICW1 register, 15-6
SxPICICW2 register, 15-6
SxPICICW3 register, 15-7
SxPICICW4 register, 15-7
SxPICINTMSK register, 15-7
SxPICIR register, 15-6
SxPICISR register, 15-6
SxPICOCW2 register, 15-6
SxPICOCW3 register, 15-6
synchronous DRAM. See SDRAM controller.
synchronous serial interface (SSI)

block diagram (figure), 22-2
bus cycles, 22-5

4-bit read cycle, 22-6
burst, 16-bit, and 32-bit cycles, 22-7
clock phase and clock idle state (figure), 22-6
full-duplex, back-to-back transactions

(figure), 22-7
full-duplex, non-inverted phase, non-inverted

clock (figure), 22-6
half-duplex, non-inverted phase and clock modes

(figure), 22-4
simultaneous transmit and receive (figure), 22-4
TC_INT and BSY_STA timing (figure), 22-8

clocking considerations, 22-7
configuration, 22-5

bit order, 22-5
clock idle state, 22-5
clock phase, 22-5

initialization, 22-8
interrupts, 22-7
operation, 22-3
overview, 22-1
registers, 22-2
signal descriptions, 2-9
software considerations, 22-8
system design, 22-1

four-pin interface (figure), 22-4
three-pin interface (figure), 22-4

SYS_RST bit field, 6-4, 6-5
SYSARBCTL register, 8-2
SYSARBMENB register, 8-2
SYSCTLA register, 6-3
SYSCTLB register, 16-3
SYSINFO register, 6-3
System Arbiter Control (SYSARBCTL) register

function, 8-2, 24-2
usage, 8-3, 8-10, 8-19, 8-22, 24-10

System Arbiter Master Enable (SYSARBMENB)
register

function, 8-2
usage, 8-19, 8-23

system arbitration
arbitration mode changes, 8-19
block diagram (figure), 8-2
broken transactions, 8-19
bus cycles, 8-11

CPU bus arbitration (figure), 8-11
CPU bus cache write-back (figure), 8-12
CPU-to-PCI cycle (figure), 8-14
nonconcurrent mode arbitration (figure), 8-18
PCI bus arbitration (figure), 8-15
PCI bus arbitration parking (figure), 8-16

CPU bus arbiter, 8-5
accessing the PCI host bridge target, 8-6
arbitration protocol, 8-5
cache snooping, 8-6
clock speed changes, 8-7
GP-DMA arbitration, 8-7
rotating priority queue (figure), 8-6
skipped master example (figure), 8-5

initialization, 8-22
interrupts, 8-19
latency, 8-20

concurrent arbitration mode, 8-22
concurrent arbitration mode bus parking, 8-22
CPU, 8-21
high-priority queue, 8-21
low-priority queue, 8-21
nonconcurrent arbitration mode, 8-21
simple rotating priority, 8-20
simple rotating priority queue (figure), 8-20

operating modes, 8-3
concurrent arbitration mode, 8-4
nonconcurrent arbitration mode, 8-3
Index-26 Élan™SC520 Microcontroller User’s Manual

Index
operation, 8-3
PCI bus arbiter, 8-7

arbitration protocol, 8-8
bus parking, 8-10
external PCI master queues (figure), 8-9
host bridge master queue (figure), 8-9
rearbitration, 8-10

registers, 8-2
software considerations, 8-19
write posting, 8-19

System Board Information (SYSINFO) register
function, 6-3
usage, 19-6

System Control Port A (SYSCTLA) register
function, 6-3, 7-1
usage, 6-7, 6-8

System Control Port B (SYSCTLB) register
function, 16-3
usage, 16-4

System Error signal. See SERR signal.
system initialization

BIOS initialization sequence, 3-3
configuration register access, 4-20
CPU core identification, 3-7
CPU speed, 3-7
disabling internal peripherals, 3-21
external GP bus devices, 3-7

multiple devices on one chip select, 3-14
single device performing its own decode, 3-14
single device using one chip select, 3-14

external ROM devices
boot device mapping for BIOS shadowing, 3-17
two Flash banks for XIP operating system, 3-17

interrupt mapping, 3-19
edge-sensitive or level-triggered interrupts, 3-19
interrupt polarity, 3-20

memory-mapped configuration region (MMCR), 3-3
native embedded initialization sequence, 3-1
PCI bus devices

network adapter, 3-16
VGA controller on PCI bus, 3-15

PCI host bridge and arbitration, 3-20
pin multiplexing, 3-8
Programmable Address Region x (PARx) regions

specifying pages and regions, 3-9
Programmable Address Region x (PARx)

registers, 3-8
address region attributes, 3-12
cacheability control, 3-12
code execution control, 3-12
external GP bus devices, 3-13
external ROM devices, 3-17
format (figure), 3-10
PAR register priority, 3-13
PCI bus devices, 3-15
performance considerations of attributes, 3-12

SDRAM regions, 3-18
worksheet (figure), 3-11
write-protection, 3-12

programmable I/O pins, 3-20
reset event, 3-4
reset vector and reset segment, 3-5

initial near jump example (figure), 3-6
SDRAM regions

configuring DMA buffers, 3-18
write-protected code segments, 3-18

system reset, 6-6
system test and debugging

cache mode control, 24-10
CPU clock speed control, 24-10
disabling write buffer and read buffer, 24-10
ECC check code override, 24-11
echoing integrated peripheral accesses, 24-10
execution control violation notification, 24-11
forcing software interrupts, 24-11
initialization, 24-12
interrupt masking, 24-11
latency, 24-11
nonconcurrent arbitration mode, 24-10
operation, 24-3
overview, 24-1
registers, 24-2
reset source identification, 24-11
software considerations, 24-11
system design, 24-1

loading, 24-2
logic analyzer use, 24-2
shared signals (table), 24-2

system test mode, 24-3
pin functions, 24-3
SDRAM read cycle (figure), 24-5
SDRAM write cycle (figure), 24-4
tracing transactions on GP bus, 24-6
tracing transactions on ROM interface, 24-5

write buffer test mode, 24-7
SDRAM read cycle (figure), 24-8
SDRAM write cycle (figure), 24-8
WBMSTR2–WBMSTR0 during SDRAM read cy-

cles (table), 24-9
WBMSTR2–WBMSTR0 during write buffer write

cycles (table), 24-8
write protection violation notification, 24-11

SZ_ST_ADR bit field, 3-9, 3-10, 4-5

T
T_DLYTR_ENB bit field, 9-19
T_IRQ_ID bit field, 9-27
T_PURGE_RD_ENB bit field, 9-22
T7–T3 bit field, 15-18
TARGET bit field, 3-10, 4-5, 4-8, 4-16, 4-19, 9-18
Élan™SC520 Microcontroller User’s Manual Index-27

Index
Target Ready signal. See TRDY signal.
TC_INT bit field, 22-7
TC_INT_ENB bit field, 22-7
technical support, iii
TEMT bit field, 21-7
TERI bit field, 21-6
test access port (TAP) controller. See JTAG boundary

scan test interface.
Test Clock Output signal. See CLKTEST signal.
Test Data Input signal. See JTAG_TDI signal.
Test Data Output signal. See JTAG_TDO signal.
Test Mode Select signal. See JTAG_TMS signal.
testing. See JTAG boundary scan test interface.

See also system test and debugging.
See also AMDebug™ technology.

TF_CLR bit field, 21-10
third-party support products, iii
THRE bit field, 21-6
Timer Clock Input signal. See CLKTIMER signal.
Timer Input 0 and 1 signals.

See TMRIN1–TMRIN0 signals.
Timer Output 0 and 1 signals.

See TMROUT1–TMROUT0 signals.
TMRIN1–TIMIN0 signals

control, 13-3, 13-6, 17-1
description, 2-10
usage, 17-3, 17-4, 17-6

TMROUT1–TMROUT0 signals
control, 13-3, 13-6, 17-1
description, 2-10
usage, 14-3, 17-5

TRDY signal
description, 2-7
usage, 9-3, 9-20, 9-21

TRIG/TRACE signal
control, 25-4
description, 2-12

Trigger/Trace signal. See TRIG/TRACE signal.
TRNMOD bit field, 14-11, 14-19

U
UART serial ports

baud rates, divisors, and clock source (table), 21-9
block diagram (figure), 21-2
clocking considerations, 21-10
configuration, 21-9

baud rate, 21-9
hardware flow control, 21-9
operating modes, 21-9

data reception, 21-7
data transmission, 21-6
disabling, 3-21

DMA interface, 21-10
receive DMA, 21-10
transmit DMA, 21-10
UART as GP-DMA initiator, 14-9

error handling, 21-8
break indication, 21-8
error reporting, 21-8
framing error, 21-8
parity error, 21-8

frame configuration (figure), 21-5
frame transmission (figure), 21-5
GP-DMA channel mapping (table), 14-10
initialization, 21-13
interrupts, 21-10

DMA interrupts, 21-12
interrupt disable, 21-13
interrupt priority (table), 21-12
interrupt programming summary (table), 21-11
serial port interrupts, 21-12

operation, 21-5
overview, 21-1
registers, 21-3
signal descriptions, 2-9
system design, 21-2

connection of DTE to DTE (table), 21-3
shared signals (table), 21-2

UART x Baud Clock Divisor Latch LSB (UARTxBCDL)
register

function, 21-4
usage, 21-9

UART x Baud Clock Divisor Latch MSB (UARTxBCDH)
register

function, 21-4
usage, 21-9

UART x FIFO Control (UARTxFCR) register
function, 21-4
usage, 21-3, 21-7, 21-9, 21-10, 21-13

UART x FIFO Control Shadow (UARTxFCRSHAD)
register

function, 21-3
usage, 21-13

UART x General Control (UARTxCTL) register
function, 5-6, 21-3
usage, 5-8, 21-9, 21-10, 21-11, 21-12

UART x General Status (UARTxSTA) register
function, 21-3
usage, 21-11, 21-12

UART x Interrupt Enable (UARTxINTENB) register
function, 21-4
usage, 21-9, 21-11

UART x Interrupt ID (UARTxINTID) register
function, 21-4
usage, 21-11, 21-12

UART x Interrupt Mapping (UARTxMAP) register
function, 15-5, 21-3, 21-11
Index-28 Élan™SC520 Microcontroller User’s Manual

Index
UART x Line Control (UARTxLCR) register
function, 21-4
usage, 21-5, 21-8

UART x Line Status (UARTxLSR) register
function, 21-4
usage, 21-6, 21-7, 21-8, 21-10, 21-11

UART x Modem Control (UARTxMCR) register
function, 21-4
usage, 21-6, 21-11, 21-13

UART x Modem Status (UARTxMSR) register
function, 21-4
usage, 21-6, 21-11

UART x Receive Buffer (UARTxRBR) register
function, 21-4
usage, 21-7, 21-8, 21-10

UART x Scratch Pad (UARTxSCRATCH) register
function, 21-4

UART x Transmit Holding (UARTxTHR) register
function, 21-4
usage, 21-5, 21-6, 21-7, 21-10

UART1_DIS bit field, 3-21
UART2_DIS bit field, 3-21
UARTxBCDH register, 21-4
UARTxBCDL register, 21-4
UARTxCTL register, 21-3
UARTxFCR register, 21-4
UARTxFCRSHAD register, 21-3
UARTxINTENB register, 21-4
UARTxINTID register, 21-4
UARTxLCR register, 21-4
UARTxLSR register, 21-4
UARTxMAP register, 15-5
UARTxMCR register, 21-4
UARTxMSR register, 21-4
UARTxRBR register, 21-4
UARTxSCRATCH register, 21-4
UARTxSTA register, 21-3
UARTxTHR register, 21-4
UIP bit field, 20-7
universal asynchronous receiver/transmitter (UART).

See UART serial ports.

V
VCC_ANLG signal

description, 2-14
usage, 5-3, 20-4

VCC_CORE signal
description, 2-14

VCC_I/O signal
description, 2-14

VCC_RTC signal
usage, 2-10, 2-14, 6-9, 20-3, 20-4, 20-11

W
watchdog timer (WDT)

AMDebug™ technology interface, 19-5
block diagram (figure), 19-2
configuration, 19-3

interrupt request generation, 19-4
keyed sequences, 19-3
system reset generation, 19-4
time-out duration, 19-4

initialization, 19-6
interrupts, 19-5
operation, 19-3
overview, 19-1
registers, 19-2
software considerations, 19-5
time-out duration (table), 19-4

Watchdog Timer Control (WDTMRCTL) register
function, 6-3, 19-2
usage, 5-8, 19-3, 19-4, 19-5, 19-6

Watchdog Timer Count High (WDTMRCNTH) register
function, 19-3
usage, 19-6

Watchdog Timer Count Low (WDTMRCNTL) register
function, 19-2
usage, 19-6

Watchdog Timer Interrupt Mapping (WDTMAP) register
function, 15-5, 19-3

WB_ENB bit field, 24-10
WB_FLUSH bit field, 11-5, 11-13
WB_TST_ENB bit field, 10-19, 24-2, 24-3, 24-7
WB_WM bit field, 11-9
WBMSTR2–WBMSTR0 signals

control, 24-2
description, 2-13
usage, 10-19, 11-4, 24-1, 24-7, 24-8, 24-12

WDT. See watchdog timer (WDT).
WDT_RST_DET bit field, 6-8
WDTMAP register, 15-5
WDTMRCNTH register, 19-3, 19-6
WDTMRCNTL register, 19-2
WDTMRCTL register, 19-2
web site, iii
WIDTH bit field, 12-7
WPVMAP register, 15-5
WPVSTA register, 4-2
write buffer and read buffer

block diagram (figure), 11-2
data coherency, 11-13
disabling during SDRAM sizing or test, 11-13
Élan™SC520 Microcontroller User’s Manual Index-29

Index
DMA considerations, 11-11
initialization, 11-15
operation, 11-4
PCI considerations, 11-12

read cycles, 11-12
write cycles, 11-12

read buffer, 11-10
disabled, 11-10
enabled, 11-10

registers, 11-4
SDRAM bandwidth improvements, 11-13

bus thrashing (figure), 11-14
software considerations, 11-13
system design, 11-3

shared signals (table), 11-4
write buffer, 11-5

disabled, 11-5
enabled, 11-5
read-merging, 11-8
read-merging example (figure), 11-9
watermark, 11-9
write-collapsing, 11-6
write-collapsing example (figure), 11-8
write-merging, 11-6

Write Buffer Master signals.
See WBMSTR2–WBMSTR0 signals.

Write-Protect Violation Interrupt Mapping (WPVMAP)
register

function, 15-5
Write-Protect Violation Status (WPVSTA) register

function, 4-2
usage, 4-20

write-protection, 3-12
WRST_ENB bit field, 19-4
WRTSEL bit field, 14-9

X
XTAL_FREQ bit field, 18-3
Index-30 Élan™SC520 Microcontroller User’s Manual

	IF YOU HAVE QUESTIONS, WE’RE HERE TO HELP YOU.
	Table of Contents
	List of Figures
	List of Tables

	Introduction
	Élan™SC520 Microcontroller
	Purpose of this Manual
	Intended Audience
	Overview of this Manual
	Related Documents
	AMD Documentation
	Additional Information
	Documentation Conventions

	Ch. 1 Architectural Overview
	1.1 Élan™SC520 Microcontroller
	1.1.1 Distinctive Characteristics

	1.2 Block Diagram
	1.3 Architectural Overview
	1.3.1 Industry-Standard x86 Architecture
	1.3.2 AMDebug™ Technology for Advanced Debugging
	1.3.3 Industry-Standard PCI Bus Interface
	1.3.4 High-Performance SDRAM Controller
	1.3.5 ROM/Flash Controller
	1.3.6 Flexible Address-Mapping
	1.3.7 General-Purpose (GP) Bus Interface
	1.3.8 Clock Generation
	1.3.9 Integrated Peripherals
	1.3.10 JTAG Boundary Scan Test Interface
	1.3.11 System Testing and Debugging Features

	1.4 Applications
	1.4.1 Smart Residential Gateway
	1.4.2 Thin Client
	1.4.3 Digital Set Top Box
	1.4.4 Telephone Line Concentrator

	Ch. 2 Pin Information
	2.1 Overview
	2.2 Logic Symbols
	2.3 Signal Descriptions

	Ch. 3 System Initialization
	3.1 Overview
	3.1.1 Native Embedded Initialization Sequence
	3.1.2 BIOS Initialization Sequence
	3.1.3 Memory-Mapped Configuration Region (MMCR)
	3.1.4 Reset Event
	3.1.5 Reset Vector and Reset Segment

	3.2 Configuring the SDRAM Controller
	3.3 Identifying the CPU Core
	3.4 Setting the CPU Speed
	3.5 Configuring External GP Bus Devices
	3.6 Configuring the Pin Multiplexing
	3.7 Configuring the Programmable Address Region (PAR) Registers
	3.7.1 Specifying Pages and Regions
	3.7.2 Address Region Attributes
	3.7.2.1 Write-Protect Attribute
	3.7.2.2 Cacheability Control Attribute
	3.7.2.3 Code Execution Attribute
	3.7.2.4 Performance Considerations

	3.7.3 PAR Register Priority
	3.7.4 External GP Bus Devices
	3.7.4.1 Single Device (an A/D Converter) Using One Chip Select
	3.7.4.2 Single Device That Performs Its Own Decode
	3.7.4.3 Multiple Devices On One Chip Select

	3.7.5 PCI Bus Devices
	3.7.5.1 VGA Controller on the PCI Bus
	3.7.5.2 Network Adapter for Remote Program Loading

	3.7.6 External ROM Devices
	3.7.6.1 Boot ROM Device Mapping for BIOS Shadowing
	3.7.6.2 Two Banks of Flash for an Execute-In-Place (XIP) Operating System

	3.7.7 SDRAM Regions
	3.7.7.1 Setting Up DMA Buffers
	3.7.7.2 Write-Protected Code Segments

	3.8 Configuring the Interrupt Mapping
	3.8.1 Edge-Sensitive or Level-Triggered Interrupts
	3.8.2 Interrupt Mapping
	3.8.3 Interrupt Polarity

	3.9 Configuring the Programmable I/O Pins
	3.10 Configuring the PCI Host Bridge and Arbitration
	3.11 Disabling Internal Peripherals

	Ch. 4 System Address Mapping
	4.1 Overview
	4.2 Registers
	4.3 Operation
	4.3.1 Programming External Memory, Buses, and Chip Selects
	4.3.2 Programmable Address Region (PAR) Registers
	4.3.3 Memory Space
	4.3.3.1 SDRAM Space
	4.3.3.2 ROM/Flash Space
	4.3.3.3 GP Bus Memory Space
	4.3.3.4 PCI Bus Memory Space
	4.3.3.5 Memory-Mapped Configuration Region (MMCR) Registers Space

	4.3.4 I/O Space
	4.3.4.1 Configuration Base Address (CBAR) Register
	4.3.4.2 PCI Configuration Space
	4.3.4.3 PCI I/O Space
	4.3.4.4 PC/AT-Compatible I/O Peripherals Region
	4.3.4.5 GP Bus I/O Region

	4.3.5 Configuration Information
	4.3.5.1 Configuring ROM/Flash Space
	4.3.5.2 Configuring SDRAM Address Space
	4.3.5.3 Configuring GP Bus Peripheral Space
	4.3.5.4 Configuring the Élan™SC520 Microcontroller for Windows® Compatibility
	4.3.5.5 Configuring PCI Bus Devices

	4.3.6 Interrupts
	4.3.7 Software Considerations

	4.4 Initialization

	Ch. 5 Clock Generation and Control
	5.1 Overview
	5.2 Block Diagram
	5.3 System Design
	5.3.1 Clock Pin Loading
	5.3.2 Selecting a Crystal
	5.3.2.1 Running the Élan™SC520 Microcontroller at 33.333 MHz

	5.3.3 Bypassing Internal Oscillators

	5.4 Registers
	5.5 Operation
	5.5.1 Internal Clocks
	5.5.1.1 CPU
	5.5.1.2 PCI Bus
	5.5.1.3 SDRAM Controller
	5.5.1.4 ROM/Flash Interface
	5.5.1.5 GP Bus
	5.5.1.6 GP-DMA Controller
	5.5.1.7 Programmable Interval Timer
	5.5.1.8 General-Purpose Timers
	5.5.1.9 Software Timer
	5.5.1.10 Watchdog Timer
	5.5.1.11 Real-Time Clock
	5.5.1.12 UART Serial Ports
	5.5.1.13 Synchronous Serial Interface

	5.5.2 Using the CLKTIMER[CLKTEST] Pin

	5.6 Initialization

	Ch. 6 Reset Generation
	6.1 Overview
	6.2 Block Diagram
	6.3 System Design
	6.4 Registers
	6.5 Operation
	6.5.1 System Reset
	6.5.2 System Reset with SDRAM Retention
	6.5.3 Soft CPU Reset
	6.5.4 GP Bus Reset
	6.5.5 PCI Reset
	6.5.6 RTC Reset
	6.5.7 Determining Reset Sources
	6.5.8 CPU A20 Gate Support
	6.5.9 Clocking Considerations
	6.5.10 Software Considerations
	6.5.11 Latency

	6.6 Initialization

	Ch. 7 Am5x86® CPU
	7.1 Overview
	7.2 Block Diagram
	7.3 Registers
	7.4 Operation
	7.4.1 Floating Point Unit (FPU)
	7.4.2 Cache Memory Management
	7.4.3 Clocking Considerations
	7.4.4 Interrupts
	7.4.5 Latency

	7.5 Initialization
	7.5.1 Hard CPU Reset
	7.5.2 Soft CPU Reset

	Ch. 8 System Arbitration
	8.1 Overview
	8.2 Block Diagram
	8.3 Registers
	8.4 Operation
	8.4.1 Operating Modes
	8.4.1.1 Nonconcurrent Arbitration Mode
	8.4.1.2 Concurrent Arbitration Mode

	8.4.2 CPU Bus Arbiter
	8.4.2.1 CPU Arbitration Protocol
	8.4.2.2 CPU Cache Snooping
	8.4.2.3 Accessing the PCI Host Bridge Target
	8.4.2.4 GP Bus DMA Arbitration
	8.4.2.5 Arbitration During Clock Speed Changes

	8.4.3 PCI Bus Arbiter
	8.4.3.1 PCI Bus Arbitration Protocol
	8.4.3.2 Bus Parking
	8.4.3.3 Rearbitration

	8.4.4 Bus Cycles
	8.4.4.1 CPU Bus Arbitration
	8.4.4.2 CPU Bus Cache Write-Back
	8.4.4.3 CPU-to-PCI Cycle
	8.4.4.4 PCI Bus Arbitration
	8.4.4.5 PCI Bus Arbitration Parking
	8.4.4.6 Nonconcurrent Mode Arbitration

	8.4.5 Interrupts
	8.4.6 Software Considerations
	8.4.7 Latency
	8.4.7.1 Simple Rotating Priority Latency
	8.4.7.2 High-Priority Queue Latency
	8.4.7.3 Low-Priority Queue Latency
	8.4.7.4 CPU Latency
	8.4.7.5 Nonconcurrent Arbitration Mode Latency
	8.4.7.6 Concurrent Arbitration Mode Latency
	8.4.7.7 Concurrent Arbitration Mode Bus Parking Latency

	8.5 Initialization

	Ch. 9 PCI Bus Host Bridge
	9.1 Overview
	9.2 Block Diagram
	9.3 System Design
	9.3.1 PCI Clocking
	9.3.1.1 Running the Élan™SC520 Microcontroller at 33.333 MHz

	9.4 Registers
	9.5 Operation
	9.5.1 Unsupported PCI Bus Functions
	9.5.1.1 Unsupported PCI Bus Configuration Registers

	9.5.2 Configuration Information
	9.5.2.1 Generating PCI Bus Configuration Cycles

	9.5.3 Élan™SC520 Microcontroller’s Host Bridge as PCI Bus Master
	9.5.3.1 Write Posting
	9.5.3.2 Read Cycles
	9.5.3.3 Delayed Transaction Support
	9.5.3.4 Host Bridge Master Bus Cycles

	9.5.4 Élan™SC520 Microcontroller’s Host Bridge as PCI Bus Target
	9.5.4.1 PCI Host Bridge Target Address Space
	9.5.4.2 PCI Bus Command Support
	9.5.4.3 DEVSEL Timing
	9.5.4.4 Delayed Transaction Support
	9.5.4.5 Address FIFO
	9.5.4.6 PCI Host Bridge FIFOs and Prefetching
	9.5.4.7 Burst Ordering
	9.5.4.8 Maintaining Data Coherency
	9.5.4.9 PCI Host Bridge Target Bus Cycles

	9.5.5 Interrupts
	9.5.6 Latency
	9.5.6.1 Master Latency
	9.5.6.2 Target Latency

	9.6 Initialization

	Ch. 10 SDRAM Controller
	10.1 Overview
	10.2 Block Diagram
	10.3 System Design
	10.3.1 SDRAM Pins
	10.3.2 SDRAM Clocking
	10.3.3 SDRAM Loading

	10.4 Registers
	10.5 Operation
	10.5.1 SDRAM Support
	10.5.2 SDRAM Addressing
	10.5.2.1 Supported SDRAM Devices
	10.5.2.2 Page Size

	10.5.3 Error Correction Code (ECC)
	10.5.4 Buffering
	10.5.5 SDRAM Control Configuration
	10.5.5.1 Refresh Control
	10.5.5.2 Drive-Strength Selection
	10.5.5.3 Write Buffer Test Mode
	10.5.5.4 Operation Mode Select

	10.5.6 SDRAM Timing Configuration
	10.5.6.1 CAS Latency (CL)
	10.5.6.2 RAS Precharge (TRP)
	10.5.6.3 RAS-to-CAS Delay (TRCD)
	10.5.6.4 RAS-to-RAS or Auto-Refresh-to-RAS (TRC)
	10.5.6.5 Minimum RAS (TRAS)

	10.5.7 Bus Cycles
	10.5.7.1 SDRAM Burst Read Cycle
	10.5.7.2 SDRAM Write Cycle
	10.5.7.3 ECC SDRAM Cycles
	10.5.7.4 SDRAM Auto Refresh Cycle
	10.5.7.5 SDRAM Mode Register Access Cycles

	10.5.8 Interrupts
	10.5.9 Software Considerations
	10.5.9.1 ECC Errors
	10.5.9.2 Buffer Disabling During SDRAM Configuration
	10.5.9.3 Write Protection

	10.5.10 Latency

	10.6 Initialization
	10.6.1 Programmable Reset
	10.6.2 SDRAM Device Initialization
	10.6.2.1 Operation Mode Select
	10.6.2.2 NOP Command
	10.6.2.3 Precharge Command
	10.6.2.4 Auto Refresh Command
	10.6.2.5 Mode Register Programming

	10.6.3 Boot Process
	10.6.4 SDRAM Sizing Algorithm
	10.6.4.1 Determining the Number of Columns for an External Bank
	10.6.4.2 Determining the Number of Internal Banks
	10.6.4.3 Determining the True External Bank Ending Address

	Ch. 11 Write Buffer and Read Buffer
	11.1 Overview
	11.2 Block Diagram
	11.3 System Design
	11.4 Registers
	11.5 Operation
	11.5.1 Write Buffer
	11.5.1.1 Write Buffer Disabled
	11.5.1.2 Write Buffer Enabled
	11.5.1.3 Write Buffer Watermark

	11.5.2 Read Buffer and the Read-Ahead Feature
	11.5.2.1 Read-Ahead Feature Disabled
	11.5.2.2 Read-Ahead Feature Enabled

	11.5.3 DMA Considerations
	11.5.4 PCI Considerations
	11.5.4.1 Write Cycles
	11.5.4.2 Read Cycles

	11.5.5 Software Considerations
	11.5.6 SDRAM Bandwidth Improvements

	11.6 Initialization

	Ch. 12 ROM/Flash Controller
	12.1 Overview
	12.2 Block Diagram
	12.3 System Design
	12.3.1 Voltage Isolation

	12.4 Registers
	12.5 Operation
	12.5.1 ROM Support
	12.5.1.1 Supported Device Types

	12.5.2 ROM Control and Timing Configuration
	12.5.2.1 ROM Location
	12.5.2.2 ROM Width
	12.5.2.3 Operating Mode
	12.5.2.4 Access Timing

	12.5.3 Bus Cycles
	12.5.3.1 Single CPU Read Access
	12.5.3.2 Page-Mode Read Access
	12.5.3.3 Cache-Line Fill
	12.5.3.4 Writing to Flash Devices

	12.5.4 Software Considerations
	12.5.4.1 Address Decoding
	12.5.4.2 Programming Flash Memory

	12.5.5 Latency

	12.6 Initialization

	Ch. 13 General-Purpose Bus Controller
	13.1 Overview
	13.2 Block Diagram
	13.3 System Design
	13.3.1 GP Bus Loading
	13.3.2 Voltage Translation

	13.4 Registers
	13.5 Operation
	13.5.1 Programmable Bus Interface Timing
	13.5.1.1 Timing Requirements
	13.5.1.2 Using GPRDY with Programmable Timing
	13.5.1.3 Using GP Bus Echo Mode with Programmable Timing

	13.5.2 I/O-Mapped and Memory-Mapped Device Support
	13.5.3 Chip Select Qualification
	13.5.4 Data Sizing and Unaligned Accesses
	13.5.5 Sharing the Address and Data Bus with the ROM/Flash Controller
	13.5.6 GP Bus Echo Mode
	13.5.7 DMA Interface
	13.5.8 Usage Scenarios
	13.5.8.1 Compatibility with Common ISA Devices
	13.5.8.2 Interfacing with a Super I/O Controller
	13.5.8.3 Interfacing with an AMD Enhanced Serial Communications Controller (8 MHz)

	13.5.9 Bus Cycles
	13.5.9.1 8-Bit Data Access of an 8-Bit I/O Device
	13.5.9.2 16-Bit Data Access of a 16-Bit I/O Device
	13.5.9.3 16-Bit Data Access of an 8-Bit I/O Device
	13.5.9.4 32-Bit Data Access of an 8-Bit I/O Device
	13.5.9.5 32-Bit Data Access of a 16-Bit I/O Device
	13.5.9.6 8-Bit Data Access of a 16-Bit I/O Device
	13.5.9.7 GPIOCS16 and GPMEMCS16 Timing
	13.5.9.8 Wait States

	13.5.10 Interrupts
	13.5.11 Latency
	13.5.11.1 8/16-Bit GP Bus Width
	13.5.11.2 Slow GP Bus Cycles
	13.5.11.3 Noncacheable GP Bus

	13.6 Initialization

	Ch. 14 GP Bus DMA Controller
	14.1 Overview
	14.2 Block Diagram
	14.3 System Design
	14.4 Registers
	14.4.1 Memory-Mapped Registers
	14.4.2 Direct-Mapped Registers

	14.5 Operation
	14.5.1 GP-DMA Transfers
	14.5.1.1 GP-DMA Initiators
	14.5.1.2 GP-DMA Channel Mapping

	14.5.2 Operating Modes
	14.5.2.1 Normal GP-DMA Mode
	14.5.2.2 Enhanced GP-DMA Mode

	14.5.3 Addressing GP-DMA Channels
	14.5.3.1 Addressing In Normal GP-DMA Mode
	14.5.3.2 Addressing In Enhanced GP-DMA Mode

	14.5.4 GP-DMA Transfer Modes
	14.5.4.1 Single Transfer Mode
	14.5.4.2 Demand Transfer Mode
	14.5.4.3 Block Transfer Mode
	14.5.4.4 Transfer Types
	14.5.4.5 Automatic Initialization Control
	14.5.4.6 Priority
	14.5.4.7 Buffer Chaining

	14.5.5 Bus Cycles
	14.5.5.1 GP Bus I/O to SDRAM
	14.5.5.2 GP-DMA Read with Cache Hit

	14.5.6 GP Bus Echo Mode
	14.5.7 Clocking Considerations
	14.5.8 Interrupts
	14.5.9 Software Considerations
	14.5.10 Latency
	14.5.10.1 Nonpreemptive Latency
	14.5.10.2 Preemptive Latency

	14.6 Initialization
	14.6.1 Example Configurations
	14.6.1.1 Configuring an 8-Bit Channel in Normal GP-DMA Mode
	14.6.1.2 Configuring a 16-Bit Channel in Normal GP-DMA Mode
	14.6.1.3 Configuring an 8-Bit Channel in Enhanced GP-DMA Mode
	14.6.1.4 Configuring a 16-Bit Channel in Enhanced GP-DMA Mode

	Ch. 15 Programmable Interrupt Controller
	15.1 Overview
	15.2 Block Diagram
	15.3 System Design
	15.4 Registers
	15.5 Operation
	15.5.1 Interrupt Flow Sequence
	15.5.2 Interrupt Sources
	15.5.2.1 Hardware-Generated Interrupts

	15.5.3 Interrupt Source Routing
	15.5.3.1 Polarity Inversion of Interrupt Requests
	15.5.3.2 PC/AT Compatibility
	15.5.3.3 Floating Point Errors
	15.5.3.4 Disabling the Slave Controllers

	15.5.4 Edge-Triggered or Level-Sensitive Interrupts
	15.5.5 Interrupt Sharing
	15.5.6 Non-Maskable Interrupts and Routing
	15.5.6.1 Sharing NMIs

	15.5.7 Priority Types
	15.5.8 Configuration Information
	15.5.8.1 Programming
	15.5.8.2 PC/AT Configuration

	15.5.9 Software Considerations
	15.5.9.1 Interrupt Sharing
	15.5.9.2 Disabling the Slave Controllers
	15.5.9.3 Detecting Invalid Interrupt Requests
	15.5.9.4 Floating Point Unit Error Handling

	15.6 Initialization

	Ch. 16 Programmable Interval Timer
	16.1 Overview
	16.2 Block Diagram
	16.3 System Design
	16.4 Registers
	16.5 Operation
	16.5.1 PIT Channel 0
	16.5.2 PIT Channel 1
	16.5.3 PIT Channel 2
	16.5.4 Operating Modes
	16.5.4.1 Mode 0: Interrupt on Terminal Count
	16.5.4.2 Mode 1: Hardware-Retriggerable One-Shot
	16.5.4.3 Mode 2: Rate Generator
	16.5.4.4 Mode 3: Square Wave Mode
	16.5.4.5 Mode 4: Software-Triggered Strobe
	16.5.4.6 Mode 5: Hardware-Triggered Strobe

	16.5.5 Clocking Considerations
	16.5.5.1 Internal Clock
	16.5.5.2 External Clock

	16.5.6 Interrupts
	16.5.7 Software Considerations
	16.5.7.1 Using the PIT Clock Source in PC/AT-Compatible Systems

	16.6 Initialization

	Ch. 17 General-Purpose Timers
	17.1 Overview
	17.2 Block Diagram
	17.3 System Design
	17.4 Registers
	17.5 Operation
	17.5.1 GP Timer 0 and GP Timer 1
	17.5.2 GP Timer 2
	17.5.3 Operating Modes
	17.5.3.1 Interrupt on Terminal Count Mode
	17.5.3.2 Hardware Retrigger Mode
	17.5.3.3 Alternate Compare Mode
	17.5.3.4 Square Wave Mode
	17.5.3.5 Continuous Mode
	17.5.3.6 Prescaler Mode

	17.5.4 Configuration Information
	17.5.5 Clocking Considerations
	17.5.5.1 Internal Clock
	17.5.5.2 External Clock

	17.5.6 Interrupts
	17.5.7 Software Considerations
	17.5.7.1 Combining GP Timer Count Elements
	17.5.7.2 Reading the Cascaded 32-Bit Timer

	17.6 Initialization

	Ch. 18 Software Timer
	18.1 Overview
	18.2 Block Diagram
	18.3 Registers
	18.4 Operation
	18.4.1 Configuration Information

	18.5 Initialization

	Ch. 19 Watchdog Timer
	19.1 Overview
	19.2 Block Diagram
	19.3 Registers
	19.4 Operation
	19.4.1 Configuration Information
	19.4.1.1 Keyed Sequences
	19.4.1.2 Interrupt Request Generation
	19.4.1.3 System Reset Generation
	19.4.1.4 Time-Out Duration

	19.4.2 Interrupts
	19.4.3 AMDebug™ Technology Interface
	19.4.4 Software Considerations

	19.5 Initialization

	Ch. 20 Real-Time Clock
	20.1 Overview
	20.2 Block Diagram
	20.3 System Design
	20.3.1 Backup Battery Considerations
	20.3.1.1 System with an External Backup Battery
	20.3.1.2 System without an External Backup Battery

	20.3.2 Selecting and Interfacing a 32.768-kHz Crystal
	20.3.3 Using an External RTC

	20.4 Registers
	20.5 Operation
	20.5.1 Configuration Information
	20.5.1.1 Configuring the Hour Format
	20.5.1.2 Programming the Date and Time
	20.5.1.3 Generating Periodic Interrupts
	20.5.1.4 Using the Alarm Function
	20.5.1.5 Handling Year 2000 Issues

	20.5.2 Clocking Considerations
	20.5.3 Interrupts
	20.5.4 Software Considerations
	20.5.4.1 Initializing the RTC Divider Chain
	20.5.4.2 Accessing the CMOS Memory
	20.5.4.3 Legacy NMI Enable Bit Moved

	20.6 Initialization
	20.6.1 RTC Reset

	Ch. 21 UART Serial Ports
	21.1 Overview
	21.2 Block Diagram
	21.3 System Design
	21.4 Registers
	21.5 Operation
	21.5.1 Data Transmission
	21.5.1.1 16450-Compatible UART Mode
	21.5.1.2 16550-Compatible UART Mode

	21.5.2 Data Reception
	21.5.2.1 16450-Compatible UART Mode
	21.5.2.2 16550-Compatible UART Mode

	21.5.3 Error Handling
	21.5.3.1 Parity Error
	21.5.3.2 Framing Error
	21.5.3.3 Break Indication
	21.5.3.4 Error Reporting

	21.5.4 Configuration Information
	21.5.4.1 Baud Rate
	21.5.4.2 Hardware Flow Control
	21.5.4.3 Operating Modes

	21.5.5 DMA Interface
	21.5.5.1 Transmit DMA
	21.5.5.2 Receive DMA

	21.5.6 Clocking Considerations
	21.5.7 Interrupts
	21.5.7.1 Serial Port Interrupts
	21.5.7.2 DMA Interrupts
	21.5.7.3 Interrupt Disable

	21.6 Initialization

	Ch. 22 Synchronous Serial Interface
	22.1 Overview
	22.2 Block Diagram
	22.3 System Design
	22.4 Registers
	22.5 Operation
	22.5.1 Usage Scenarios
	22.5.1.1 Four-Pin Interface
	22.5.1.2 Three-Pin Interface

	22.5.2 Configuration Information
	22.5.2.1 Bit Order
	22.5.2.2 Clock Idle State
	22.5.2.3 Clock Phase

	22.5.3 Bus Cycles
	22.5.3.1 4-Bit Read Cycle
	22.5.3.2 Burst, 16-Bit, and 32-Bit Cycles

	22.5.4 Clocking Considerations
	22.5.5 Interrupts
	22.5.6 Software Considerations

	22.6 Initialization

	Ch. 23 Programmable Input/Output
	23.1 Overview
	23.2 Block Diagram
	23.3 System Design
	23.4 Registers
	23.5 Operation
	23.5.1 Configuration Information
	23.5.1.1 PIO Pins and Simple Input
	23.5.1.2 PIO Pins and Simple Output

	23.5.2 Software Considerations

	23.6 Initialization

	Ch. 24 System Test and Debugging
	24.1 Overview
	24.2 System Design
	24.2.1 Loading

	24.3 Registers
	24.4 Operation
	24.4.1 System Test Mode
	24.4.1.1 Pin Functions in System Test Mode
	24.4.1.2 Using the System Test Mode Interface
	24.4.1.3 SDRAM Write Cycle in System Test Mode
	24.4.1.4 SDRAM Read Cycle in System Test Mode
	24.4.1.5 Tracing Transactions on the ROM Interface
	24.4.1.6 Tracing Transactions on the GP Bus Interface

	24.4.2 Write Buffer Test Mode
	24.4.2.1 Using the Write Buffer Test Mode Interface
	24.4.2.2 SDRAM Write Cycle in Write Buffer Test Mode
	24.4.2.3 SDRAM Read Cycle in Write Buffer Test Mode

	24.4.3 Other Debugging Features on the Élan™SC520 Microcontroller
	24.4.3.1 Nonconcurrent Arbitration Mode
	24.4.3.2 Echoing Integrated Peripheral Accesses on the GP Bus
	24.4.3.3 Summary of Additional System Debugging Features

	24.4.4 Software Considerations
	24.4.5 Latency

	24.5 Initialization

	Ch. 25 Boundary Scan Test Interface
	25.1 Overview
	25.2 Block Diagram
	25.3 System Design
	25.3.1 JTAG Pin Strapping

	25.4 Registers
	25.5 Operation
	25.5.1 Instruction Register
	25.5.1.1 Implemented Instructions

	25.5.2 Configuration Information
	25.5.2.1 Instruction Path
	25.5.2.2 Bypass Path
	25.5.2.3 Main Data Scan Path
	25.5.2.4 Serial Debug Port Data Register
	25.5.2.5 Device Identification Register

	25.5.3 Test Access Port (TAP) Controller
	25.5.3.1 TAP Controller States

	25.5.4 Bus Cycles
	25.5.5 Clocking Considerations

	25.6 Initialization

	Ch. 26 AMDebug™ Technology
	26.1 Overview
	26.2 Block Diagram
	26.3 System Design
	26.3.1 Connecting the AMDebug™ Port
	26.3.2 Mechanical Specifications for the Target Connector
	26.3.3 Locating the Connector on the Target System

	26.4 Operation
	26.4.1 On-Chip Trace Cache
	26.4.2 Software Performance Profiling

	Index
	A
	Bits
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Registers
	S
	Signals
	T
	U
	V
	W
	X

