
�

29K Family Simulators
Reference Manual

�

29K� Family Simulators Reference Manual, Release 3.3

� 1995 by Advanced Micro Devices, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Advanced
Micro Devices, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the Rights in
Technical Data and Computer Software clause at 252.227–7013. Advanced Micro Devices, Inc., 5204 E. Ben White Blvd.,
Austin, TX 78741–7399.

Am29000 and AMD are registered trademarks, and 29K, Am29005, Am29030, Am29035, Am29040, Am29050, Am29200,
Am29205, Am29240, Am29243, Am29245, MiniMON29K, and XRAY29K are trademarks of Advanced Micro Devices, Inc.
High C is a registered trademark of MetaWare, Inc.
Other product or brand names are used solely for identification and may be the trademarks or registered trademarks of their
respective companies.

The text pages of this document have been printed on recycled paper consisting of 50% recycled fiber and 50%
virgin fiber; the post-consumer waste content is 10%. These pages are recyclable.

Advanced Micro Devices, Inc.
5204 E. Ben White Blvd.
Austin, TX 78741–7399

29K Family Simulators Reference Manual i

3

Contents

About the 29K Family Simulators
Product Documentation vi.

About This Manual vi.

Suggested Reference Material vii.

Standards and Conventions ix.

Standards ix.

Conventions x.

Chapter 1

Using the Simulators
Using the 29K Family Simulators 1-3.

isstip 1-3.

sim29 1-4.

Invoking isstip 1-5.

Invoking sim29 1-9.

Chapter 2

ISSTIP Example
Example Tutorial For MS-DOS Hosts 2-2.

Example Tutorial For UNIX Hosts 2-5.

29K Family Simulators Reference Manualii

4

Chapter 3

29K Family Three-Bus Processor Architecture Simulation
Simulator Command-Line Syntax 3-2.

Default Configuration 3-6.

The Event File 3-8.

Specifying Constants in the Event File 3-9.

Event File Syntax 3-12.

COM — Simulator Comment 3-14.

DELTA — Enable Delta Monitor 3-15.

DUMP — Dump to Output 3-17.

LOG — Enable Log File 3-19.

ONERROR — Specify Error Action 3-22.

SET — Set Simulator Configuration 3-24.

STOP — End Simulation 3-33.

TITLE — Set Simulation Title 3-34.

Simulator I/O 3-35.

Input and Output 3-35.

The sim.out File 3-37.

Sample sim.out Listing 3-38.

Chapter 4

29K Family Two-Bus Processor Architecture Simulation
Simulator Command-Line Syntax 4-2.

The Event File 4-4.

29K Family Simulators Reference Manual iii

5

Chapter 5

29K Family Microcontroller Architecture Simulation
Simulator Command-Line Syntax 5-2.

The Event File 5-5.

Chapter 6

SIM29 OS Interface
Register Initialization 6-2.

Trap Interface 6-2.

Appendix A

Error Messages
Error Messages A-2.

Index

29K Family Simulators Reference Manualiv

6

Figures and Tables

Figures
Figure 3-1. Simple Access in Three-Bus Microprocessors 3-29.

Figure 3-2. Burst Access in Three-Bus Microprocessors 3-30.

Figure 3-3. Pipelined Access in Three-Bus Microprocessors 3-30.

Figure 3-4. First Access on Page Crossing in Paged Memory
in Three-Bus Microprocessors 3-31.

Figure 3-5. Secondary Access Within the Page in Three-Bus
Microprocessors 3-31.

Figure 3-6. Static Column Access in Three-Bus Microprocessors 3-32.

Figure 3-7. Simulator I/O 3-35.

Tables
Table 0-1. Notational Conventions xi.

Table 3-1. CFG Register Default Settings for the Three-Bus
Microprocessor Simulators 3-6.

Table 3-2. CPS Register Default Settings for the Three-Bus
Microprocessor Simulators 3-7.

Table 3-3. Three-Bus Microprocessor Simulator Events 3-13.

Table 3-4. IRAM Memory Model Access Codes and Values for
Three-Bus Microprocessor Simulation 3-25.

Table 3-5. IROM Memory Model Access Codes and Values for
Three-Bus Microprocessor Simulation 3-26.

Table 3-6. DRAM Memory Model Access Codes and Values for
Three-Bus Microprocessor Simulation 3-27.

Table 3-7. Simulator Input/Output File Assignments 3-36.

Table 6-1. General-Purpose Register Initialization 6-2.

29K Family Simulators Reference Manual v

7

About the 29K Family Simulators

The AMD� 29K� Family simulators, isstip and sim29, enable the user to
execute 29K Family processor programs on a host system, without any 29K
Family processor hardware. The following pages list and describe each chapter
in this product manual, and then discuss the standards and conventions.

29K Family Simulators Reference Manualvi

8

Product Documentation
This documentation is written for the experienced program developer, who is
assumed to have a working knowledge of the C language and the specific 29K
Family microprocessor or microcontroller being used. For further information on
a particular 29K Family microprocessor or microcontroller, see the appropriate
user’s manual.

About This Manual

Chapter 1: “Using the Simulators” describes the syntax for invoking the
instruction set simulator isstip and the architectural simulator sim29.

Chapter 2: “ISSTIP Example” provides examples of using the 29K Family
instruction set simulator, isstip, with the MiniMON29K� user interface,
mondfe.

Chapter 3: “29K Family Three-Bus Processor Architecture Simulation”
describes how to use sim29 to simulate the Am29000�, Am29005�, and
Am29050� microprocessors.

Chapter 4: “29K Family Two-Bus Processor Architecture Simulation” describes
how to use sim29 to simulate the Am29030�, Am29035�, and Am29040�
microprocessors.

Chapter 5: “29K Family Microcontroller Architecture Simulation” describes
how to use sim29 to simulate the Am29200�, Am29205�, Am29240�,
Am29243�, and Am29245� microcontrollers.

Chapter 6: “SIM29 OS Interface” discusses the simulator’s general interface to
the osboot and trap code.

Appendix A: “Error Messages” lists and explains the simulator error messages.

29K Family Simulators Reference Manual vii

9

Suggested Reference Material

The following additional reference documents may be of interest to the user:

� Am29000� and Am29005� User’s Manual and Data Sheet
Advanced Micro Devices, order number 16914.

� Am29030� and Am29035� Microprocessors User’s Manual and Data Sheet
Advanced Micro Devices, order number 15723.

� Am29040� Microprocessor Data Sheet
Advanced Micro Devices, order number 18459.

� Am29040� Microprocessor User’s Manual
Advanced Micro Devices, order number 18458.

� Am29050� Microprocessor Data Sheet
Advanced Micro Devices, order number 15039.

� Am29050� Microprocessor User’s Manual
Advanced Micro Devices, order number 14778.

� Am29200� and Am29205� RISC Microcontrollers Data Sheet
Advanced Micro Devices, order number 16361.

� Am29200� and Am29205� RISC Microcontrollers User’s Manual
Advanced Micro Devices, order number 16362.

� Am29240�, Am29245�, and Am29243� RISC Microcontrollers
Data Sheet
Advanced Micro Devices, order number 17787.

� Am29240�, Am29245�, and Am29243� RISC Microcontrollers
User’s Manual
Advanced Micro Devices, order number 17741.

� Harbison, Samuel P. and Guy L. Steele, Jr.: C: A Reference Manual, Second
Edition, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1987.

� Host Interface (HIF) Specification
Advanced Micro Devices, order number 11539.

� Kernighan, Brian W. and Dennis M. Ritchie: The C Programming Language,
First Edition. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1978.

29K Family Simulators Reference Manualviii

10

� Kernighan, Brian W. and Dennis M. Ritchie: The C Programming Language,
Second Edition. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1988.

� Programming Language C, American National Standards Institute, 311 First
St. NW, Suite 500, Washington, DC, 20001. ANSI document X3.159, 1989.
Available from Global Engineering Documents, telephone 1–800–854–7179.

� Programming the 29K� RISC Family
by Daniel Mann, P T R Prentice-Hall, Inc. 1994

29K Family Simulators Reference Manual ix

11

Standards and Conventions

Standards

This product complies with the following standards:

� COFF: AMD Common Object File Format

Conforms to the AMD-augmented version of AT&T COFF, as described in
the AMD Common Object File Format (COFF) Specification.

� HIF: AMD Host Interface

Conforms to the AMD Host Interface (HIF) Specification.

� IEEE 754, 1985

Conforms to the IEEE-approved standard for binary floating-point arithmetic.

� UDI: AMD Universal Debugger Interface

Conforms to the AMD Universal Debugger Interface (UDI) Specification.

29K Family Simulators Reference Manualx

12

Conventions

� UNIX pathnames use a forward slash (/) to separate directories, while
MS-DOS pathnames use a backslash (\). For brevity, only the DOS backslash
is used when specifying pathnames. In some cases, code examples are
specified as either for UNIX or MS-DOS environments and the correct slash
is used.

� The following abbreviations may be used in this manual:

– LSB least significant bit

– LSW least significant word

– MSB most significant bit

– MSW most significant word

– NaN not a number

– QNaN quiet not a number

� In this manual, a data word signifies a 32-bit entity; a data halfword signifies
a 16-bit entity.

� This manual uses the notational conventions shown in Table 0-1 (unless
otherwise noted). These same conventions are used in all the 29K Family
support products manuals.

29K Family Simulators Reference Manual xi

13

Table 0-1. Notational Conventions

Symbol Usage

Boldface Indicates that characters must be entered exactly as
shown. The alphabetic case is significant only when
indicated.

Italic Indicates a descriptive term to be replaced with a
user-specified term.

Typewriter face Indicates computer text input or output in an
example or listing.

[] Encloses an optional argument. To include the
information described within the brackets, type
only the arguments, not the brackets themselves.

{ } Encloses a required argument. To include the
information described within the braces, type only
the arguments, not the braces themselves.

.. Indicates an inclusive range.

... Indicates that a term can be repeated.

| Separates alternate choices in a list—only one of
the choices can be entered.

:= Indicates that the terms on either side of the sign
are equivalent.

�
�
�
�

Simulators

29K Family Simulators Reference Manual 1-1

15

Chapter 1

Using the Simulators

COFF
Utilities

Compiler Assembler

Linker

COFF
executable

COFF
object
files

Librarian

osboot

architectural
simulatorMONDFE

MONTIP

UDI

PROM

UDI

User
library
files

Toolkit
library
files

instruction
set

simulator

J1

J4

J3
J5

J6

J2

1

ADVANCED MICRO DEVICES
SA-29205 REV A

U3

Y1

U
4

U
1

U2

U5

U6

C
R

1

S
W

1

S
N

 -
0

0
1

H
M

514260JP
8

9119

A
D

VA
N

C
E

D
M

IC
R

O
D

E
V

IC
E

S

A
m

29205
R

FB
2082

©
 1992 A

M
D

T
IL

36
82

18
91

M
A

X
23

2D
92

31

x0-52B
32.000
D a l e
• 91-49

A
m

27C
010-125JC

9241

A
m

27C
010-125JC

9241

29K
Family
board

hc29 driver

.c file .s file .o file

.s file

.o file.o file

�
�
�
�

29K Family Simulators Reference Manual1-2

16

This chapter provides a brief overview of the available simulators and then
describes how to invoke each on UNIX and MS-DOS systems. (The commands
are the same for all systems.)

If the user types an incorrect command, the resulting error message is written to
the standard error device.

The return codes are as follows:

0 = success
not 0 = failure

�
�
�
�

Simulators

29K Family Simulators Reference Manual 1-3

17

Using the 29K Family Simulators
There are two simulators available for executing 29K Family application code:
the instruction set simulator, isstip, and the architectural simulator, sim29.

Both simulators support all current 29K Family microprocessors and
microcontrollers: the Am29000, Am29005, Am29030, Am29035, Am29040,
and Am29050 microprocessors, and the Am29200, Am29205, Am29240,
Am29243, and Am29245 microcontrollers.

The intended users of isstip are:

� Software engineers developing and/or debugging 29K Family applications.

The intended users of sim29 are:

� Engineers evaluating the performance of the 29K Family of microprocessors
for possible application designs.

� Board designers evaluating different memory configurations to achieve a
desired performance.

� Software developers using the profiling capabilities of sim29 to optimize their
code.

isstip

isstip is useful as an introductory evaluation platform and as a debugging tool
for many applications. Because it is hardware free, it is low cost and convenient.
Being entirely virtual can also aid significantly in debugging critical kernel or
interrupt level code, since breakpoints can be set even if interrupts are disabled.
The disadvantage is that it is not as fast as hardware, but performance is
improving, making the simulator practical for a large set of applications.

isstip is compliant with the AMD Universal Debugger Interface (UDI), so it can
be invoked from multiple debugger front ends (DFEs). Although most Target
Interface Processes (TIPs) use UDI to provide the communication between the
target and the DFE, in the case of isstip, there is no distinction between the TIP
and the target, which is the Instruction Set Simulator. All are contained in one
executable called isstip. See the UDI online documentation for more
information on UDI.

�
�
�
�

29K Family Simulators Reference Manual1-4

18

sim29

The architectural simulator program, sim29, can execute the same application
programs as isstip but rather than being used as a debugging tool, sim29 is
designed for performance estimation. sim29 models the processor pipeline,
cache, and memory latencies in order to accurately report the elapsed time for a
benchmark or application. In addition to simple cycles, several profiling
statistics are available, making the simulator useful for optimizing the
performance of applications. However, the extra modelling done by the
simulator slows its performance, making it impractical for large scale
debugging. In addition, its debugging features are limited.

sim29 is not currently UDI-based but UDI support is planned for a future
release.

Simulator options vary according to the processor being simulated. Option
variations occur due to architectural differences between processors, and because
some processors are simulated with entirely separate implementations than
others.

The simulator is implemented by several different programs. The program
invoked by the sim29 “driver” depends on which microprocessor or
microcontroller is specified. One program implements the Am29000, Am29005,
and Am29050 microprocessors. The second program implements the Am29030
and Am29035 microprocessors. The third program implements the Am29040
microprocessor, and the fourth program implements the Am29200, Am29205,
Am29240, Am29243, and Am29245 microcontrollers.

The Am29000, Am29005, and Am29050 processor program mimics the
microprocessor’s actual implementation in considerable detail, beyond the
cycle-by-cycle state defined by the microprocessor’s architecture. As such, the
performance estimates are quite accurate, but the programs execute somewhat
slower and are more prone to failure due to the increased complexity of the
program. The remaining programs (those that simulate the Am29030, Am29035,
and Am29040 microprocessors, and the Am29200, Am29205, Am29240,
Am29243, and Am29245 microcontrollers) model only those parts of the
implementation relevant to performance, namely the pipeline and memory
channel. As such, they run considerably faster than the Am29000, Am29005,
and Am29050 processor simulators, which is an important feature when
hundreds of millions of cycles are being simulated.

�
�
�
�

Simulators

29K Family Simulators Reference Manual 1-5

19

Invoking isstip

NOTE: The isstip.exe for MS-DOS hosts supplied with this product uses
extended memory on a PC. This facilitates running larger programs on the
simulator, the sizes of which are not limited by the amount of conventional
memory.

isstip is a UDI-conformant Target Interface Process (TIP) for the 29K Family
Instruction Set Simulator. It implements the Instruction Set Simulator with an
interface defined by the UDI Specification. isstip can be used with any
UDI-conformant Debugger Front End, such as mondfe or the XRAY29K�
product’s xray29u.

The isstip command and its options should be provided in the UDI
Configuration File with its entry. The format of the UDI Configuration for
UNIX (udi_soc file) and MS-DOS (udiconfs.txt file) hosts is explained in the
UDI online documentation.

The UDI Configuration File entry’s TIP ID (first field of the entry) acts as the
link between the DFE being used and isstip. The TIP ID is provided as a
command-line argument to the DFE being used. For example, the command-line
option –TIP of mondfe can be used to specify the TIP you want to use:

mondfe –D –TIP tip_id

This makes the DFEs independent of TIP-specific features and options. Please
refer to the appropriate DFE documentation for more information on DFE
command-line syntax and options.

�
�
�
�

29K Family Simulators Reference Manual1-6

20

Syntax: isstip processor [–id {0|1}] [–le] [–n] [–p |–v]
[–r boot_prog] [–sp {0|1}] [–st hexaddr] [–t] [–tm] [–ww]

NOTE: These options are case sensitive.

where:
processor Is one of: –29000, –29005, –29030, –29035, –29040, –29050,

–29200, –29205, –29240, –29243 or –29245. These options specify
which 29K Family microprocessor to simulate. Based on the option
specified, isstip downloads the default ROM file, which can be
overridden using the –r option (see the –r option for the default
files). The –n option can be used to prevent downloading of any
ROM file. Note that the processor is required and must be the first
argument specified.

–id {0|1} Specifies whether to simulate a separate Instruction and Data
address space. The default is 0, which means that the Instruction
and Data spaces are the same. This option only applies to the
Am29000, Am29005, and Am29050 processor simulators.

–le Specifies to simulate a little endian system. The default is big
endian.

–n Can be used to bring up isstip without downloading a ROM file.
This may be used if an application has its boot code already linked
into the application.

–p | –v When the –p option is specified, the execution mode of the
programs is physical mode. When –v is specified, virtual mode
execution is simulated. The TLB traps provided implement a
one-to-one mapping of physical addresses to virtual addresses. The
default mode is physical.

–r boot_progSpecifies the osboot or ROM program. The boot_prog is a full
pathname to the file. By default, the simulator will attempt to load
the appropriate boot code needed by the compiler, based on the
processor specified on the command line.

�
�
�
�

Simulators

29K Family Simulators Reference Manual 1-7

21

The default boot_prog depends on the processor specified. The
defaults are:

osb00x For –29000 and –29005
osb03x For –29030, –29035, and –29040
osb050 For –29050
osb20x For –29200 and –29205
osb24x For –29240, –29243, and –29245

When the –r option is specified, isstip first looks for boot_prog in
the current working directory. If the file is not found, the
directories specified in the PATH environment variable are
searched after replacing the last branch with lib . For example, if
PATH is:

C:\29k\bin;c:\29k\lib;d:\c600\bin;

Then the directories searched by isstip are:

C:\29k\lib and c:\29k\lib and d:\c600\lib

The code contained in this “ROM” file is downloaded and
executed by isstip before executing the application program.
Therefore, if the user’s application has the startup code in it, do not
use this option.

–sp {0|1} Specifies whether to simulate a separate ROM and Instruction
RAM space. The default is 1, which means that the ROM space is
different from Instruction RAM space. By using 0, the Instruction
RAM and ROM can be made to refer to the same address space.
This is useful when using isstip with the XRAY29K debugger.

 –st hexaddrFor special programs, this can be used to specify the address to be
used by the operating system as the highest addressable data
address. The default value of 0 is ignored by the operating system.

–t When specified, enables “trap”ping on certain instructions (like
floating-point operations), thus using the trapware installed. When
disabled, the simulator performs the necessary operation and
produces the result. The default is trap disabled, which may
improve the simulation speed for some applications.

–tm When specified, enables the Timer during simulation. The default
is Timer disabled, which provides a slight boost to simulation
speed.

–ww Specifies to simulate word-write only. The default is byte-write
allowed.

�
�
�
�

29K Family Simulators Reference Manual1-8

22

Example
A sample entry in udiconfs.txt for executing on MS-DOS hosts would be:

iss_id isstip.exe –29000

In the above entry, iss_id is any ID name of the user’s choice.

To use isstip, invoke the debugger front end, giving it the TIP ID defined in the
configuration file. Make sure that the udiconfs.txt file is either in the current
working directory, or is defined by the environment variable UDICONF. Also,
make sure that the PATH environment variable is set up so that isstip.exe and
the boot_prog for the –29000 option, osb00x, can be found. After completing
the above steps, the hello program can be run using mondfe on an MS-DOS host
by typing:

mondfe –TIP iss_id hello

The –TIP option of mondfe is used to specify which TIP ID to use from the
UDI configuration file. By specifying the TIP ID as iss_id, isstip.exe is invoked
and is passed –29000 as an argument.

�
�
�
�

Simulators

29K Family Simulators Reference Manual 1-9

23

Invoking sim29
Syntax: sim29 processor [processor_options] [–d] [–eevent_file]

[–f frequency] [–h heap_size] [–o output_file]
[–r boot_prog] [–v] [app_prog [prog_args]]

NOTE: These options are case sensitive.

where:
processor Is one of: –29000, –29005, –29030, –29035, –29040, –29050,

–29200, –29205, –29240, –29243 or –29245. These options
specify which 29K Family microprocessor to simulate. Note
that the processor is required and must be the first argument
specified.

processor_options
Are options specific to a processor and can be either
3-bus_options, 2-bus_options, or controller_options, as
described on the following pages, and in more detail in
Chapters 3, 4, and 5.

3-bus_options are for the 29K Family three-bus
microprocessors, which currently include the Am29000,
Am29005, and Am29050 processors; 2-bus_options are for the
29K Family two-bus microprocessors, which currently include
the Am29030, Am29035, and Am29040 processors; and
controller_options are for the 29K Family microcontrollers,
which currently include the Am29200, Am29205, Am29240,
Am29243, and Am29245 microcontrollers.

3-bus_options Are the options for the Am29000, Am29005, and Am29050
microprocessors:

–cfg=xx Specifies the setting of the configuration
register, where xx is a 1- to 5-digit
hexadecimal number. This setting overrides
the default setting. No run-time modification
of the configuration register is permitted if
this option is specified.

�
�
�
�

29K Family Simulators Reference Manual1-10

24

–n Does not allocate two extra words at the end
of data sections. The default is to put two
extra words at the end of data sections so
that the read-ahead library routines, str*()
and mem*(), will not try to read beyond the
end of memory.

–p range Specifies code profiling to take place in the
specified range of RAM memory space. The
range parameter is required, and it specifies
a range of hexadecimal values in the form:
1000–2ACE.

–t max_syscalls Specifies the maximum number of system
call types that will be used during the
simulation. This option is used to allocate
the array for storing the system call count
for different calls. The default is 256 types.

–x[error_code] Specifies that the simulator exits if an error
occurs for one of the enabled error_code
values. The error_code parameter is
optional, and if not given, all codes are
enabled. By default, no error codes are
enabled. When specifying codes, each must
be entered as an uppercase letter, and
multiple codes must not be separated by
spaces or tabs. Possible values for
error_code are:
A Address error occurred (e.g., out of

bounds).
K Kernel error occurred (i.e., an error

in supervisor mode).
O Illegal opcode error occurred.
F An arithmetic trap occurred (e.g.,

divide by zero).
P A protection violation occurred.
S An error in the event file occurred.

�
�
�
�

Simulators

29K Family Simulators Reference Manual 1-11

25

2-bus_options
controller_options

Are the options for the Am29030, Am29035, and Am29040
microprocessors, and the Am29200, Am29205, Am29240,
Am29243, and Am29245 microcontrollers:

–dcacheoff Disables the data cache (applies only to the
Am29040, Am29240, and Am29243
processors).

–dynmem {0|1} Dynamically allocates memory for address
references not defined by the application
Common Object File Format (COFF) file. 1
enables; 0 disables.

–help Outputs ASCII text to standard output that
briefly describes all command-line and
event-file options.

–icacheoff Disables the instruction cache.

–p Profiles opcode, PC, Load, Store, and trap
usage.

–sv Passes a parameter to osboot indicating that
the application is to run in supervisor mode.

–u Configures memory wait states and enable
caches via application software instead of
simulator options.

–d Dumps the contents of the registers at the end of simulation.

–eevent_file Specifies the simulator event input file, which is used for other
miscellaneous commands. The event_file is a full pathname to
the file.

–f frequency Specifies the CPU frequency in MHz.

–hheap_size Specifies the size of the system heap (in kilobytes). The
heap_size parameter is a decimal value. The default system
heap size is 32 Kbytes, or –h 32.

–ooutput_file Specifies the simulation summary file (sim.out is the default
name). The output_file is a full pathname to the file.

–r boot_prog Specifies the osboot or ROM program. The boot_prog is a full
pathname to the file. By default, the simulator will attempt to
load the appropriate boot code needed by the compiler, based
on the processor specified on the command line.

�
�
�
�

29K Family Simulators Reference Manual1-12

26

The default boot_prog depends on the processor specified.
The defaults are:

osb00x For –29000 and –29005 options
osb03x For –29030, –29035, and –29040 options
osb050 For –29050 option
osb20x For –29200 and –29205 options
osb24x For –29240, –29243, and –29245 options

When the –r option is specified, sim29 first looks for
boot_prog in the current working directory. If the file is not
found, the directories specified in the PATH environment
variable are searched after replacing the last branch with lib .
For example, if PATH is:

C:\29k\bin;c:\29k\lib;d:\c600\bin;

Then the directories searched by sim29 are:

C:\29k\lib and c:\29k\lib and d:\c600\lib

The code contained in this “ROM” file is downloaded and
executed by sim29 before executing the application program.
Therefore, if the user’s application has the startup code in it,
specify that application file as the boot_prog.

–v Passes a parameter to osboot which will turn on instruction
and data address virtual memory translation. This option does
not apply to the Am29200 or Am29205 microcontrollers.

app_prog Specifies the filename of the program to be simulated. The
app_prog parameter is not required if the user’s application
has boot code linked in, and the –r option is used. Otherwise,
the app_prog must be provided, and is a full pathname to the
program object file.

prog_args Specifies command-line options for the program to be
simulated. This argument is optional. Programs need not have
command-line options to execute properly.

The output generated by the simulator includes the output generated by the
program being simulated and the performance statistics, such as the number of
processor cycles simulated, and the MIPS (millions of instructions per second).

For a more extensive discussion of the options for each processor type, see
Chapters 3, 4, and 5.

�
�
�
�

Simulators

29K Family Simulators Reference Manual 1-13

27

Example
sim29 –29000 –e mysim.evt –o mysim.out myprog –Wcf

The –29000 option specifies the Am29000 microprocessor is being simulated.

The –e option specifies an event input file. The parameter following the option,
mysim.evt in this case, is the name of a file that is opened by the simulator at the
beginning of run. Events specified within this file are used to control the actions
of the simulator.

The –o option specifies that the following filename, mysim.out, be assigned as
the output file to contain a transcript of the current simulation’s results. If the –o
option is not specified, the simulator will write the transcript on the file sim.out.

The –o option is the last option in this example, and the following command-line
argument (myapp) is treated as the filename of the program whose execution is
to be simulated. The program file must be in object form, already linked to
execute in the simulator’s execution environment.

The –Wcf argument at the end of the command line represents a hypothetical
command-line argument to the myapp program. Command-line arguments for
programs whose execution is to be simulated are specified last, in the form the
program requires.

Example
sim29 –29000 –e dhry2.evt –o dhry2.out dhry2 < dhry2.in

This example illustrates how the command line would be entered for a program
that requires input from the standard input device (stdin). The angled bracket
indicates (for both MS-DOS and UNIX systems) that the standard input is to be
taken from a file whose name immediately follows (dhry2.in in this case).
Simulator options are specified first, followed by the filename of the program to
be simulated (dhry2 in this case).

Example
sim29 –29035 –r myboot –sv my_program

This example illustrates the command line entered to simulate in Am29035
processor mode using the ROM file myboot. The –sv option causes the program
to run in supervisor mode.

�
�
�
�

29K Family Simulators Reference Manual1-14

28

Example
sim29 –29050 –r myboot –cfg=b0 my_program

This example illustrates the command line entered to simulate in Am29050
microprocessor mode using the ROM file myboot. The –cfg option prevents the
simulator from setting the configuration register to the default value at start-up
and also prevents any instruction in the ROM or RAM file from setting the
configuration register. In this example, the simulator will set the configuration
register to the value 0xb0, which sets the register’s early load enable (EE), data
width (DW), and vector fetch (VF) bits.

Example
sim29 –29200 hello.lap

This example illustrates the command line to simulate the hello.lap program in
the Am29200 microcontroller. Because the –r option is not specified, the default
boot file osb20x is used.

Example
sim29 –29240 –e sim.evt test.lap

This example illustrates simulating the execution of program test.lap on the
Am29240 microcontroller using the default boot file osb24x with the memory
configuration as specified in the sim.evt file.

29K Family Simulators Reference Manual 2-1

28

Chapter 2

ISSTIP Example

This chapter provides examples of using the 29K Family instruction set
simulator, isstip, with the MiniMON29K user interface, mondfe. isstip is a
UDI-conformant Target Interface Process (TIP) that can be used with any
UDI-conformant Debugger Front End (DFE). The TIP and the DFE run as
separate processes and communicate with each other according to AMD’s
Universal Debugger Interface (UDI) Specification.

There are three items needed before simulating a program using isstip and
mondfe:

� isstip – The 29K Family Instruction Set Simulator. (Note: Unlike other TIPs,
in the case of isstip, there is no distinction between the Target Interface
Process (TIP) and the target, which is the Instruction Set Simulator. All are
contained in one executable called isstip.)

� mondfe – A UDI-conformant Debugger Front End (DFE) to issue commands.
For more information, see the mondfe documentation.

� UDI Configuration File – The communication link for mondfe and isstip.

There are two environment variables that are used if they are defined: PATH and
UDICONF. See the UDI online documentation for more information on these
environment variables.

This chapter first provides an example tutorial for MS-DOS hosts (page 2-2),
and then a tutorial for UNIX hosts (page 2-5).

29K Family Simulators Reference Manual2-2

29

Example Tutorial For MS-DOS Hosts
This tutorial assumes that High C� 29K� compiler and libraries have been
installed on the C:\ drive. Complete the following steps to set up the
environment.

1. Create a file with the following contents:

set PATH=C:\29K\BIN;%PATH%
set UDICONF=C:\29K\LIB\UDICONFS.TXT

Name this file udisetup.bat.

2. Run the batch file created above:

udisetup

Now the PATH variable is set to pick up the newly installed mondfe and
isstip from the C:\29K\BIN directory. The UDICONF variable is pointing
to the UDI configuration file, udiconfs.txt, in the C:\29K\LIB directory.

Take a few minutes to go through the udiconfs.txt file and the various
line-entries. Remember that the first column gives the ID, which is given as a
command-line argument to mondfe.

3. The line-entry from udiconfs.txt that will be used in this example is for the
ID, iss000. Here is the complete line:

iss000 isstip.exe –29000

The first column, iss000, gives the unique ID for the rest of that line. This ID
is used as a command-line argument to mondfe. The second column gives
the executable name of the TIP to use. In this case, it is isstip.exe, which is
the Instruction Set Simulator TIP. If there is no isstip.exe in the current
working directory, the PATH environment variable is searched to locate the
executable. Since the PATH has already been set up above, the isstip.exe
from the C:\29K\BIN directory will be used. (NOTE: Remove any files
named isstip.exe from the current working directory if it is not
C:\29K\BIN .) The rest of the line following “isstip.exe” gives the string of
options that will be passed to isstip.exe when it is invoked.

29K Family Simulators Reference Manual 2-3

30

The –29000 option above specifies the “ROM” file that isstip must
download (to ROM space) before executing any user commands. isstip will
search the PATH variable to locate the osboot file to download (osb00x is
the default file for the –29000 option). As per the PATH environment
variable, isstip will download the osboot file found under the C:\29K\LIB
directory, unless the osboot file exists in the current working directory. The
default settings of the rest of the options apply. Refer to page 1-6 for more
information on the different options to isstip, their meanings, and their
default values.

4. To use mondfe to invoke isstip according to the above entry, specify the
entry ID, iss000, to mondfe. The –TIP option of mondfe allows you to do
exactly that. This example uses the –D command-line option of mondfe to
start an interactive debug session. Thus, the complete command-line to use
is:

mondfe –D –TIP iss000

The default settings for the remaining command-line options apply. Refer to
the mondfe manual for more information on the various mondfe options,
their meanings, and their default values.

5. When mondfe is invoked using the above command-line, a sign-on message
similar to the following appears:

>AMD MONDFE Version: 4.3.5 IPC Version: 1.4.0 UDI Rev. 1.4.0 <

>TIP Version: 4.0.2 IPC Version: 1.3.0 UDI Rev. 1.3.0<

UDI 1.3 ISSTIP for 29K Family: ROM file: c:\29k\lib\osb00x

MONDFE.EXE>

The first line is printed by mondfe, and it gives the version number, the UDI
revision of the IPC implementation mondfe is using, and the version of the
IPC implementation itself. The second line is a formatted display of the
version numbers of the different components of isstip. The third line is a
descriptive string returned by isstip about itself. The last line displayed is the
mondfe prompt, which is MONDFE.EXE>.

29K Family Simulators Reference Manual2-4

31

6. From here on, there are two processes actually running that are transparent to
the user: the DFE (mondfe) and the instruction set simulator (isstip). The
mondfe Y (Yank) command can be used to download the program as shown
below:

MONDFE.EXE> Y hello.out
loading hello.out
Loaded TEXT section from 0x00010000 to 0x00013fb4
Loaded DATA section from 0x80003000 to 0x800033a0
Loaded LIT section from 0x800033a0 to 0x80003694
Cleared BSS section from 0x80003698 to 0x80003874
Ignoring COMMENT section (32 bytes) ...
MONDFE.EXE>

Then, type a G (Go) command to execute the program as shown below:

MONDFE.EXE> G
MONDFE.EXE>Hello, world!
Hello World Stderr!
Process exited with 0x0
MONDFE.EXE>

Use the Q (Quit) command to terminate the debug session as shown below:

MONDFE.EXE> Q
MONDFE.EXE>
Goodbye.

When exiting from the front end (using the Q command), the TIP also is
killed.

29K Family Simulators Reference Manual 2-5

32

Example Tutorial For UNIX Hosts
This tutorial assumes that High C� 29K� compiler and libraries have been
installed under the /usr directory. Complete the following steps to set up the
environment.

1. Set the PATH and UDICONF environment variables using the following
commands:

setenv PATH /usr/29k/bin:‘echo $PATH‘
setenv UDICONF /usr/29k/lib/udi_soc

Now the PATH environment variable is set to pick up the newly installed
mondfe and isstip from the /usr/29k/bin directory. The UDICONF variable
is pointing to the UDI configuration file, udi_soc, in the /usr/29k/lib
directory.

Take a few minutes to go through the udi_soc file and the various
line-entries. Remember that the first column gives the ID, which is given as a
command-line argument to mondfe.

2. The line-entry from udi_soc that will be used in this example is for the ID,
isstip_unix. Here is the complete line:

isstip_unix AF_UNIX sockiss -ux isstip –29000

The first column, isstip_unix, gives the unique ID for the rest of that line.
This ID is used as a command-line argument to mondfe. The second column
gives the socket address family, which is AF_UNIX . This means that both
the DFE, mondfe, and the TIP, isstip, are executing on the same machine.
The third field is the name of the socket itself. The fourth field gives the
executable name of the TIP to use. In this case, it is isstip, which is the
Instruction Set Simulator TIP. If there is no isstip in the current working
directory, the PATH environment variable is searched to locate the
executable.

Since the PATH has already been set up above, the isstip from the
/usr/29k/bin directory will be used. (NOTE: Remove any file named isstip
from the current working directory if it is not /usr/29k/bin.) The rest of the
line following “isstip” gives the string of options that will be passed to isstip
when it is invoked.

29K Family Simulators Reference Manual2-6

33

The –29000 option above specifies the ROM file that isstip must download
(to ROM space) before executing any user commands. The isstip will search
the PATH variable to locate the osboot file to download (osb00x is the
default file for the –29000 option). As per the PATH environment variable,
isstip will download the osboot file found under the /usr/29k/lib directory,
unless the osboot file exists in the current working directory. The default
settings of the rest of the options apply. Refer to page 1-6 for more
information on the different options to isstip, their meanings, and their
default values.

3. To use mondfe to invoke isstip according to the above entry, specify the
entry ID, isstip_unix, to mondfe. The –TIP option of mondfe allows you to
do exactly that. This example uses the –D command-line option of mondfe
to start an interactive debug session. Thus, the complete command-line to use
is:

mondfe –D –TIP isstip_unix

The default settings for the remaining command-line options apply. Refer to
the mondfe manual for more information on the various mondfe options,
their meanings, and their default values.

4. When mondfe is invoked using the above command-line, a sign-on message
similar to the following appears:

>AMD MONDFE Version: 4.3.5 IPC Version: 1.4.0 UDI Rev. 1.4.0 <

>TIP Version: 4.0.2 IPC Version: 1.3.1 UDI Rev. 1.3.0<

UDI 1.3 ISSTIP for 29K Family: ROM File: /usr/29k/lib/osb00x

mondfe>

The first line is printed by mondfe, and it gives the version number, the UDI
revision of the IPC implementation mondfe is using, and the version of the
IPC implementation itself. The second line is a formatted display of the
version numbers of the different components of isstip. The third line is a
descriptive string returned by isstip about itself. The last line displayed is the
mondfe prompt, which is mondfe>.

29K Family Simulators Reference Manual 2-7

34

5. From here, there are two processes actually running that are transparent to
the user: the DFE (mondfe) and the instruction set simulator (isstip). The
mondfe Y (Yank) command can be used to download the program as shown
below:

mondfe> y hello.out
loading hello.out
Loaded TEXT section from 0x00010000 to 0x00013fb4
Loaded DATA section from 0x80003000 to 0x800033a0
Loaded LIT section from 0x800033a0 to 0x80003694
Cleared BSS section from 0x80003698 to 0x80003874
Ignoring COMMENT section (32 bytes) ...
mondfe>

Then, type a G (Go) command to execute the program as shown below:

mondfe> g
mondfe>Hello, world!
Hello World Stderr!
Process exited with 0x0
mondfe>

Use the Q (Quit) command to terminate the debug session as shown below:

MONDFE.EXE> q
MONDFE.EXE>
Goodbye.

When exiting from the front end (using the Q command), the TIP also is
killed.

29K Family Simulators Reference Manual 3-1

35

Chapter 3

29K Family Three-Bus Processor
Architecture Simulation

This chapter describes how to use sim29 to simulate the Am29000, Am29005,
and Am29050 microprocessors. The following topics are discussed:

� Simulator Command-Line Syntax on page 3-2

� Default Configuration on page 3-6

� The Event File on page 3-8

� Simulator I/O on page 3-35

29K Family Simulators Reference Manual3-2

36

Simulator Command-Line Syntax
Syntax: sim29 processor [–cfg=xx] [–d][–e event_file] [–f frequency]

[–h heap_size] [–n] [–o output_file] [–p range]
[–r boot_prog] [–t max_syscalls] [–v] [–x [error_code]]
[app_prog [prog_args]]

where:
processor Is one of: –29000, –29005, or –29050. These options specify

which 29K Family three-bus microprocessor to simulate. Note
that the processor is required and must be the first argument
specified.

–cfg=xx Specifies the setting of the configuration register, where xx is a
1- to 5-digit hexadecimal number. This setting overrides the
default setting. No run-time modification of the configuration
register is permitted if this option is specified.

–d Dumps the contents of the registers at the end of simulation.

–eevent_file Specifies the simulator event input file, which is used for other
miscellaneous commands. The event_file is a full pathname to
the file.

–f frequency Specifies the CPU frequency in MHz. The default values are
25 for the Am29000 processor, 16 for the Am29005 processor,
and 40 for the Am29050 processor.

–hheap_size Specifies the size of the system heap (in kilobytes). The
heap_size parameter is a decimal value. The default system
heap size is 32 Kbytes, or –h 32.

–n Does not allocate two extra words at the end of data sections.
The default is to put two extra words at the end of data
sections so that the read-ahead library routines, str*() and
mem*(), will not try to read beyond the end of memory.

–ooutput_file Specifies the simulation summary file (sim.out is the default
name). The output_file is a full pathname to the file.

29K Family Simulators Reference Manual 3-3

37

–p range Specifies code profiling to take place in the specified range of
RAM memory space. The range parameter is required, and it
specifies a range of hexadecimal values in the form:
1000–2ACE.

–r boot_prog Specifies the osboot or ROM program. (Default is osb00x for
the Am29000 and Am29005 microprocessors, and osb050 for
the Am29050 microprocessor.) The boot_prog is a full
pathname to the file. By default, the simulator will attempt to
load the appropriate boot code needed by the compiler, based
on the processor specified on the command line. If the user’s
application has its boot code linked in, specify that application
file as the boot_prog.

–t max_syscalls Specifies the maximum number of system call types that will
be used during the simulation. This option is used to allocate
the array for storing the system call count for different calls.
The default is 256 types.

–v Passes a parameter to osboot which will turn on instruction
and data address virtual memory translation.

–x[error_code] Specifies that the simulator exits if an error occurs for one of
the enabled error_code values. The error_code parameter is
optional, and if not given, all codes are enabled. By default, no
error codes are enabled. Codes are entered in uppercase letters,
immediately following the –x option (e.g., –xAP). Possible
values for error_code are:
A Address error occurred (e.g., out of bounds).
K Kernel error occurred (i.e., an error in supervisor

mode).
O Illegal opcode error occurred.
F An arithmetic trap occurred (e.g., divide by zero).
P A protection violation occurred.
S An error in the event file occurred.

app_prog Specifies the filename of the program to be simulated. The
app_prog parameter is not required if the user’s application
has boot code linked in, and the –r option is used. Otherwise,
the app_prog must be provided, and is a full pathname to the
program object file.

29K Family Simulators Reference Manual3-4

38

prog_args Specifies command-line options for the program to be
simulated. This argument is optional. Programs need not have
command-line options to execute properly.

The output generated by the simulator includes the output generated by the
program being simulated and the performance statistics. Some of the
performance statistics are as follows: the number of processor cycles simulated;
the MIPS (millions of instructions per second); the percentage time the pipeline
was held for various reasons, such as instruction fetch wait, data fetch wait, or
LOADM/STOREM wait; register spill and fill count; histogram of different
instruction opcodes executed; and memory parameters.

Example
sim29 –29000 –e mysim.evt –o mysim.out myprog –Wcf

The –29000 option specifies the Am29000 microprocessor is being simulated.

The –e option specifies an event input file. The parameter following the option,
mysim.evt in this case, is the name of a file that is opened by the simulator at the
beginning of run. Events specified within this file are used to control the actions
of the simulator.

The –o option specifies that the following filename, mysim.out, be assigned as
the output file to contain a transcript of the current simulation’s results. If the –o
option is not specified, the simulator will write the transcript on the file sim.out.

The –o option is the last to be specified, and the following command-line
argument (myprog) is treated as the filename of the program whose execution is
to be simulated. The program file must be in object form, already linked to
execute in the simulator’s execution environment.

The –Wcf argument at the end of the command line represents a hypothetical
command-line argument to the myprog program. Command-line arguments for
programs whose execution is to be simulated are specified last, in the form the
program requires.

29K Family Simulators Reference Manual 3-5

39

Example
sim29 –29000 –e dhry2.evt –o dhry2.out dhry2 < dhry2.in

This example illustrates how the command line would be entered for a program
that requires input from the standard input device (stdin). The angled bracket
indicates (for both MS-DOS and UNIX systems) that the standard input is to be
taken from a file whose name immediately follows (dhry2.in in this case).
Simulator options are specified first, followed by the filename of the program to
be simulated (dhry2 in this case).

Example
sim29 –29050 –r myboot –cfg=b0 my_program

This example illustrates the command line entered to simulate in Am29050
microprocessor mode using the ROM file myboot. The –cfg option prevents the
simulator from setting the configuration register to the default value at start-up
and also prevents any instruction in the ROM or RAM file from setting the
configuration register. In this example, the simulator will set the configuration
register to the value 0xb0, which sets the register’s early load enable (EE), data
width (DW), and vector fetch (VF) bits.

29K Family Simulators Reference Manual3-6

40

Default Configuration
The default settings of the simulator are specified by the Configuration (CFG)
register and the Current Processor Status (CPS) register. The contents of these
registers on simulator start-up, simulating different 29K Family
microprocessors, are described in Table 3-1 and Table 3-2.

If the –cfg command-line option is used, the CFG register setting is as specified
by the option, except the PRL field, which is set by the simulator according to
the mode of simulation.

Table 3-1. CFG Register Default Settings for the Three-Bus
Microprocessor Simulators

Field Setting Description

BO 0 Bytes are numbered from left-to-right, big endian

CD1 0 Branch Target Cache enabled

CO2 0 Branch Target Cache organized as 64 entries of 4 words
each

CP 0 No coprocessor

DW 0 Byte and half-word access not permitted

EE2 1 Early loads permitted

PRL 2

32

Processor release level for Am29000 and Am29005
microprocessors
Processor release level for Am29050 processor

VF 1 Vector area is a block of 256 vector addresses

RV 0 ROM Vector Area (setting is irrelevant since VF=1)

NOTES:
1Not applicable to the Am29005 microprocessor.

2Not applicable to the Am29000 and Am29005 microprocessors.

29K Family Simulators Reference Manual 3-7

41

Table 3-2. CPS Register Default Settings for the Three-Bus
Microprocessor Simulators

Field Setting Description

MM1 0 Not monitor mode

CA 0 Coprocessor inactive

IP 0 No external interrupts pending

TE 0 Trace enabled

TP 0 No trace pending

TU 0 Unaligned access trap disabled

FZ 1 In freeze mode

LK 0 LOCK controlled by LOADSET, LOADL, and STOREL

RE 1 Instruction access from ROM

WM 0 Wait mode disabled

PD 1 Data address translation disabled

PI 1 Instruction address translation disabled

SM 1 Supervisor mode

IM 0 Interrupt mask cleared

DI 1 Interrupts enabled

DA 1 Interrupt and traps enabled

NOTE:
1Not applicable to the Am29000 and Am29005 microprocessors.

29K Family Simulators Reference Manual3-8

42

The Event File
The event file is a command file used to specify simulation control parameters,
most of which are not handled by the command line. These options primarily
consist of memory configuration and wait states.

The simulator executes a program by a combination of direct execution and
interpretation. The simulation control program is in charge at all times. A
simulated CPU clock drives the simulation. Both rising and falling edges are
simulated, and register contents become valid outputs on rising edges, while new
contents are clocked in on falling edges, in general.

In addition to reading signals from the processor clock—on which the simulator
depends to fetch, decode and execute instructions successively in the target
program—the simulator optionally will read an event file that contains 1 or more
single-line entries, each consisting of a processor clock value and a command.
The processor clock value tells the simulator when the event is to occur, and the
command specifies a task for the simulator to do at that time. Commands are
provided for entering comments into the output file, stopping the simulation at a
particular time, setting simulator parameters, showing current state information,
and the like.

29K Family Simulators Reference Manual 3-9

43

Specifying Constants in the Event File

The Am29000, Am29005, and Am29050 processor simulators will accept
constant values encoded in decimal, hexadecimal, octal, and binary format, as
well as character constants. The rules to express constants in these various
radices are straightforward. In general, they conform to similar rules for
expressing constant values in the C language, with a few exceptions.

Decimal Constants
The simulator assumes that constant values are expressed in decimal form,
unless explicitly declared otherwise. A decimal constant can be expressed either
as a contiguous series of digits in the range 0–9, or as a group of decimal digits
preceded by the prefix D or d, and enclosed within single-quote characters. In
the case where digits are enclosed within single quotes, embedded space
characters are permitted. When expressed as simple decimal integers, space
characters serve to separate values. Leading zero digits are ignored in any case.
Examples of legal decimal constants are shown below:

0 19 d’27’ d’1 3’ d’025’ 0189

Hexadecimal Constants
Traditionally, hexadecimal constants are entered by prefixing the value with the
characters 0X or 0x; however, the simulator also allows them to be entered as a
group, prefixed by H, h, X or x, and enclosed within single-quote characters.
Hexadecimal values are restricted to the characters 0–9 and A–F or a–f. In the
case where hexadecimal values are enclosed within single-quote characters,
embedded space characters are permitted. When expressed as simple
hexadecimal integers, space characters serve to separate values. Leading zero
digits are ignored in any case. Examples of legal hexadecimal constants are
shown below:

0xbE 0X H’FF’ h’7 8’ x’2a’ 0xee123

Octal Constants
Octal constants are entered by prefixing the value with the letter O or o, and
enclosing the octal digits within single-quote characters. Octal values are
restricted to sequences of digits in the range 0–7. Embedded spaces within the
octal integer value are allowed. Examples of legal octal integer values are shown
below:

O’13’ o’17 7’ O’06352’

29K Family Simulators Reference Manual3-10

44

Binary Constants
Binary constants are entered by prefixing the value with the letter B or b, and
enclosing the binary digits within single-quote characters. Binary values are
restricted to sequences of the digits 0 or 1. Embedded spaces within the binary
integer value are allowed. Alternatively, binary constant values can be expressed
by prefixing the sequence of digits with 0b or 0B, in which case, embedded
spaces are not allowed. Examples of legal binary integer values are shown
below:

B’1010 0000 1001 0101’ 0b10111000

Character Constants
Character constants consist of single-byte values, which are enclosed by
single-quote characters. The value of a character constant is taken to be its
ASCII equivalent numeric value. Each character occupies a single 8-bit byte.
Only one character can be entered in any of the legal representations; character
“strings” are not allowed.

A character may be expressed by its keyboard equivalent (e.g., A), or for control
or unprintable characters in the ASCII set, a backslash (\) character, followed by
its octal numeric equivalent is allowed. For example, the character constant \014
is assumed to represent a decimal value of 12, which is the ASCII form-feed
character.

Examples of common character constants are shown below:

’A’ ’a’ ’+’ ’*’ ’=’ ’9’ ’@’

Examples of character constants expressed using the leading backslash provision
are shown on the following line:

’\014’ ’\177’ ’\376’ ’\0’ ’\256’

29K Family Simulators Reference Manual 3-11

45

An extension to the leading backslash representation includes commonly used
control and quotation characters expressed as shown below:

\t Horizontal tab
\n Newline = linefeed
\0 ASCII NULL character
\\ Backslash
\’ Single-quote character
\” Double-quote character
\f Form-feed
\v Vertical tab
\r Return
\b Backspace

29K Family Simulators Reference Manual3-12

46

Event File Syntax

Syntax: cyclenum command

where:
cyclenum Specifies a time in processor clock cycles when the event is to be

executed by the simulator, or a + sign can be used before the time
to indicate relative time (+n cycles after the last command). All
values are integral numbers of cycles, as would be reported by the
CPU clock.

command Specifies a simulator command. These are discussed in detail in the
following pages. Each command must be completely specified on a
single line. The commands are case insensitive.

Multiple events with the same cyclenum can be specified; however, the events
must be in ascending time order in the file. That is, each entry must have an
equal or greater time value than the previous entry. Events with equal time
values are “executed” by the simulator all at once, one following the other, in the
order they occur in the file.

When the processor clock value equals an event’s cyclenum, the event command
is executed. Events that the user wishes to be executed at the beginning of the
simulation can be entered with a time value of 0. This will guarantee that they
are acted on immediately when the simulation begins.

Commands vary in composition, but each command begins with a keyword that
designates the function it performs. A command must fit on a single line in the
event file, as there is no way to continue a command from one line to another.
This does not present a problem, because all simulator commands are short.

The simulator processes events on each pass through its main loop. In this way,
the simulator can faithfully reproduce the effect of an external stimulus, or delay,
and report the resulting performance effects in the output log.

Table 3-3 shows the list of available simulator commands, and includes a short
description of each. The individual commands are fully described in the pages
that follow.

29K Family Simulators Reference Manual 3-13

47

Table 3-3. Three-Bus Microprocessor Simulator Events

Command Description Page

COM Places a comment in the simulator output file 3-14

DELTA Selects addresses and registers to monitor for changed
values

3-15

DUMP Permits dumping segment, data, instruction, TLB,
BTC, and register file contents

3-17

LOG Selects logging of instructions, floating-point unit, and
channel activity

3-19

ONERROR Specifies action to perform if an error occurs 3-22

SET Sets simulator parameters and configuration 3-24

STOP Stops the simulator 3-33

TITLE Changes the title on simulator output 3-34

29K Family Simulators Reference Manual3-14

48

COM — Simulator Comment

Syntax: cyclenum COM string

where:
cyclenum Specifies the time at which the comment should be written into the

simulator output file.

string Specifies a string of characters, up to an end of line, that is to be
written to the simulator output file.

The COM command writes a message, specified by the string parameter, to the
simulator’s output file at the designated time. This facility is useful to indicate
that a particular portion of a program has been reached, or to title succeeding
output.

Example
105233 COM ======================================
105233 COM SIMULATOR OUTPUT IN VICINITY OF BUG
105233 COM ======================================

In the example above, three comments are to be written to the simulator output
file when the simulator clock value is equal to or greater than 105233 cycles.

29K Family Simulators Reference Manual 3-15

49

DELTA — Enable Delta Monitor

Syntax: cyclenum DELTA SHOW class format address

where:

cyclenum Specifies when the DELTA command is to take place.

SHOW Specifies that the contents of the changed location are to be written
to the simulator’s output file.

class Specifies the class of data to be monitored. The class can be one of
the following:
REG Specifies a general purpose register.
DATA Specifies a data memory location.
IROM Specifies an instruction ROM location.
IRAM Specifies an instruction RAM location.
SPECIAL Specifies a special register.
PERIPHERAL Specifies a peripheral register.

format Specifies the format of the data. The format is one of the
following:
BYTE Indicates one 8-bit byte, shown in decimal.
CHAR Indicates one 8-bit byte, shown as an ASCII

character; if unprintable, a period is printed.
SHORT Indicates a 16-bit value, shown in decimal.
SHORTX Indicates a 16-bit value, shown in hexadecimal.
INT Indicates a 32-bit value, shown in decimal.
HEX Indicates a 32-bit value, shown in hexadecimal.
LONG Indicates a 32-bit value, shown in decimal.
FLOAT Indicates a single-precision floating-point value.
DOUBLE Indicates a double-precision floating-point value.
INST Indicates a 32-bit word shown as a disassembled

instruction.

address Specifies the address of the data to be monitored and displayed.
For registers, the address is an absolute register number, while for
data or instructions it is a memory address.

29K Family Simulators Reference Manual3-16

50

The DELTA command provides the means to enable checking the contents of a
specified register or memory location, watching for a change to occur. When
such a change in value occurs, the parameters to the DELTA command provide
the means to log the occurrence.

Any number of delta monitors may be active concurrently. This debugging tool
can help identify problems such as array overruns or constant values that change
during the course of execution.

Example
90000 DELTA SHOW IRAM INST 00004D70

This example illustrates enabling a delta monitor for an instruction RAM
location. The class is IRAM , the format is INST, and the address is 00004D70.
Once the delta monitor is enabled for this location, when a change occurs, the
current cycle count and the changed value are written to the simulator’s output
file.

Example
+100 delta show reg hex 96

Delta @ T=1627 exe_pc_l2=001908: Reg[0x60]=00000110
Delta @ T=1669 exe_pc_l2=000940: Reg[0x60]=0FC00020
Delta @ T=1844 exe_pc_l2=000C1C: Reg[0x60]=80003868
Delta @ T=1881 exe_pc_l2=010084: Reg[0x60]=80000000
Delta @ T=1974 exe_pc_l2=01034C: Reg[0x60]=FFFDF7A8
Delta @ T=2009 exe_pc_l2=010660: Reg[0x60]=00000000
Delta @ T=2024 exe_pc_l2=011FEC: Reg[0x60]=80000000
Delta @ T=2087 exe_pc_l2=012094: Reg[0x60]=800033AF
Delta @ T=2094 exe_pc_l2=0120B0: Reg[0x60]=800033AE
Delta @ T=2098 exe_pc_l2=0120C0: Reg[0x60]=800033AD
Delta @ T=2105 exe_pc_l2=01068C: Reg[0x60]=800033AC
Delta @ T=2107 exe_pc_l2=010694: Reg[0x60]=00000000

This example illustrates the enabling of the delta monitor on the general purpose
register 96 (gr96) 100 cycles from the last event command.

29K Family Simulators Reference Manual 3-17

51

DUMP — Dump to Output

Syntax: cyclenum DUMP {SEGINFO | REG | BTC | TLB}
cyclenum DUMP {DATA | INSTR | ROM} low high

where:
cyclenum Specifies when the dump operation is to take place.

SEGINFO Specifies that segment information from the loaded program is to
be dumped to the output file.

REG Specifies that the register file contents be dumped.

BTC Specifies that the branch-target cache be dumped. This option only
applies to the Am29000 and Am29050 microprocessors.

TLB Specifies that the Translation Lookaside Buffer registers be
dumped to the output file.

DATA Specifies that data memory from low to high addresses be dumped
to the output file.

INSTR Specifies that instruction RAM memory from low to high
addresses be dumped.

ROM Specifies that the contents of ROM from low to high addresses be
dumped.

low Specifies the beginning address, in hexadecimal, of a section of
memory.

high Specifies the ending address, in hexadecimal, of a section of
memory.

The DUMP command provides the means to write the contents of specified
processor or memory resources, in printable form, to the simulator output file.

The SEGINFO dump includes a listing of each instruction ROM or RAM
segment, and also each data RAM segment, including its beginning and ending
address in the program’s address space.

29K Family Simulators Reference Manual3-18

52

Example
80000 DUMP SEGINFO

This example illustrates dumping the segment information from the loaded file
when the simulator’s cycle count reaches 80000. An example of the information
provided by this command is shown below:

80000 DUMP SEGINFO
Instr ROM Segments:
 start_addr=00000000 end_addr=00005253
Instr RAM Segments:
 start_addr=00008000 end_addr=0000C2B3
Data RAM Segments:
 start_addr=800033A0 end_addr=8000B39F
 start_addr=80003000 end_addr=8000339B
 start_addr=80002C00 end_addr=80002C33
 start_addr=80002400 end_addr=800029DF
 start_addr=80002000 end_addr=8000211B
 start_addr=FFFEF800 end_addr=FFFF77FF
 start_addr=FFFF8000 end_addr=FFFFFFFF
 start_addr=00000000 end_addr=000003FF
 start_addr=00005258 end_addr=00005543

This output shows the instruction ROM and RAM segment information, as well
as multiple data RAM segments.

Example
80020 DUMP DATA 0 24

This example illustrates dumping the contents of data RAM memory locations
0–24 (hexadecimal). The output from executing this command (at simulator
cycle 80020) is shown below:

T=80020, DATA Memory Dump ==>
 adr=000000: 00000076
 adr=000004: 00000BB6
 adr=000008: 00000086
 adr=00000C: 0000008E
 adr=000010: 00000096
 adr=000014: 000012E6
 adr=000018: 000000A6
 adr=00001C: 000000AE
 adr=000020: 000000B6
 adr=000024: 000000BE

Each address within the specified range, and its contents, is dumped to the
simulator output file.

29K Family Simulators Reference Manual 3-19

53

LOG — Enable Log File

Syntax: cyclenum LOG { ON | OFF } { SIP | FPU | CHANNEL }

where:
cyclenum Specifies when logging is to take place.

ON | OFF Specifies enabling or disabling logging to the corresponding
“log file.” Log files are:
sip.log Contains SIP transactions.
fpu.log Contains floating-point operations.
channel.log Contains channel transactions.

SIP Specifies processor transactions, depending on the selection of the
processor type on the command line.

FPU Specifies floating-point transactions for an Am29050 processor,
when the –29050 command-line option is specified.

CHANNEL Specifies channel transactions.

The LOG command provides the ability to generate output from a particular
element of the simulation into a separate file. When the log feature is enabled,
each element (SIP, FPU, and CHANNEL) will output transaction information
to its corresponding file. SIP output goes to sip.log, FPU output goes to fpu.log,
and CHANNEL output goes to channel.log.

29K Family Simulators Reference Manual3-20

54

Example
1600 LOG ON SIP

This example illustrates logging SIP (processor) transactions to the sip.log file.
When the pipeline stalls, no log is produced for that cycle. An example of the
output contained in this file is shown below:

CYCLE # PC INST

1600 00010354 02808300 CONSTH LR3, 0x80000000 SRA=0000302C RESULT=8000302C

1601 00010610 25010188 SUB GR1, GR1, 136 SRA=FFFDF778 RESULT=FFFDF6F0

1602 00010614 5E40017E ASGEU 64, GR1, GR126 SRA=FFFDF6F0 SRB=FFFDF5B8

1603 00010618 257D7D50 SUB GR125, GR125, 80 SRA=FFFFFFA8 RESULT=FFFFFF58

1604 0001061C 15957D4C ADD LR21, GR125, 76 SRA=FFFFFF58 RESULT=FFFFFFA4

1605 00010620 1E00A795 STORE 0, LR39, LR21 SRA=FFFFFFAC SRB=FFFFFFA4

1606 00010624 1583A600 ADD LR3, LR38, 0 SRA=800033A0 RESULT=800033A0

1608 00010628 158101A0 ADD LR1, GR1, 160 SRA=FFFDF6F0 RESULT=FFFDF790

1609 0001062C 16018883 LOAD 1, LR8, LR3 SRA=6B49E27C SRB=800033A0 RESULT=FFFDF790

1610 00010630 03008900 CONST LR9, 0x0 SRA=6B49E27C RESULT=00000000

1612 00010634 03009100 CONST LR17, 0x0 SRA=6B49E27C RESULT=00000000

Each line in the sip.log file contains the time, program counter, instruction, a
symbolic disassembly of the instruction, and contents of the source registers
SRA and SRB.

Example
+100 log on channel

This example illustrates the output from the channel log. Each line provides the
following: the cycle time, the type of operation (Instruction/Data), IA/DA
indicating beginning of access operation or IR/DR/DW indicating instruction
fetch completion or data read/write completion, the address latched by the
memory system, and other pin values.

CYCLE # OPERATION INFORMATION
3084 I_Slave IA Iadr=0001038C Ireq=0 sup_us=0 mpgm=0 pia_=1 pen_=1 Ireqt=0
3084 I_Slave IR Iadr=0001038C Instr=15857D04 Ireq=0 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3085 I_Slave IR Iadr=00010390 Instr=02008201 Ireq=1 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3086 I_Slave IR Iadr=00010394 Instr=A8008079 Ireq=1 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3087 D_Slave DA Dadr=FFFDF778 Dreq_=0 sup_us=0 mpgm=0 pda_=1 pen_=1 opt=0 rw=1
3087 I_Slave IR Iadr=00010398 Instr=02808300 Ireq=1 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3087 D_Slave DR Dadr=FFFDF778 Data_r=80004630 Dbreq=1 Drdy_=0 Derr_=1 pda_=1 rw=1
3088 I_Slave IR Iadr=0001039C Instr=15010118 Ireq=1 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3089 I_Slave IR Iadr=000103A0 Instr=157D7D40 Ireq=1 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3090 I_Slave IR Iadr=000103A4 Instr=C0000080 Ireq=1 Ibreq=1 Irdy_=0 Ierr_=1 pia_=1
3091 I_Slave IA Iadr=00010578 Ireq=0 sup_us=0 mpgm=0 pia_=1 pen_=1 Ireqt=0
3091 I_Slave IR Iadr=00010578 Instr=25010180 Ireq=0 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3092 I_Slave IR Iadr=0001057C Instr=5E40017E Ireq=1 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3093 I_Slave IR Iadr=00010580 Instr=257D7D50 Ireq=1 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3094 I_Slave IR Iadr=00010584 Instr=15937D4C Ireq=1 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3095 I_Slave IR Iadr=00010588 Instr=1E00A593 Ireq=1 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3096 I_Slave IR Iadr=0001058C Instr=15810198 Ireq=1 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1
3097 I_Slave IR Iadr=00010590 Instr=03008900 Ireq=1 Ibreq=0 Irdy_=0 Ierr_=1 pia_=1

29K Family Simulators Reference Manual 3-21

55

Example
40 log on fpu

This example illustrates logging FPU of the Am29050 microprocessor. This log
gives the instruction in each of the pipes and stages of the Am29050
microprocessor. The different stages and pipes are the integer pipe (INT), add
pipe stage 1 (A1), add pipe stage 2 (A2), left shift pipe (LS), multiply pipe stage
1 (M1), multiply pipe stage 2 (M2), divide pipe (DIVIDE), and the rounder stage
(ROUNDER). If a pipe is stalled, a character C for contention or R for resource
is put in the parentheses next to each instruction.

CYCLE # PC INT A1 A2 LS M1 M2 DIVIDE ROUNDER
47 00010050 f45a6161 f45a6161() f6606063()
48 00010054 f45b6161 f45b6161() f45a6161() f6606063()
49 00010058 f6616163 f45b6161(R) f45a6161(R) f6616163() f6606063
50 0001005c 70400101 f45b6161() f6616163() f45a6161
51 00010060 70400101 f6616163() f45b6161
52 00010064 70400101 f6616163()
53 00010068 70400101 f6616163()
54 0001006c 70400101 f6616163()
55 00010070 70400101 f6616163()
56 00010074 70400101 f6616163()
57 00010078 e4826049 e4826049() f6616163()
58 0001007c a8008009 e4826049() f6616163()
59 0001007c a8008009 e4826049(R) f6616163
60 00010080 e4846149 e4846149() e4826049
61 000100a0 c0000080 e4846149()
62 000100a0 c0000080 e4846149

29K Family Simulators Reference Manual3-22

56

ONERROR — Specify Error Action

Syntax: cyclenum ONERROR { STOP | IGNORE } [error_code]

where:
cyclenum Specifies the time at which the simulator is to enable the error

action selection.

STOP Selects stopping when an error corresponding to one of the codes
occurs.

IGNORE Specifies that errors corresponding to the indicated codes are to be
ignored.

error_code An optional list of codes that enable the detection of various errors
in the simulation process. When specifying codes, each must be
entered as an uppercase letter, and multiple codes must not be
separated by spaces or tabs. Possible values for error_code are:
A Address error occurred (e.g., out of bounds).
K Kernel error occurred (i.e., an error in supervisor mode).
O Illegal opcode error occurred.
F An arithmetic trap occurred (e.g., divide by zero).
P A protection violation occurred.
S An error in the event file occurred.

If the codes parameter of the STOP or IGNORE command is missing, then all
the error codes are assumed to be enabled for this event, i.e., leaving the codes
parameter blank is the same as specifying AKOFPS.

29K Family Simulators Reference Manual 3-23

57

Example
50000 ONERROR STOP AOP

In the example above, when (and if) the simulator cycle count reaches 50000,
the simulator will enable detection of address errors (A), illegal opcodes (O),
and protection violations (P). If any of these occur on or after the specified time
(50000), the simulator will stop executing the program.

Example
50000 ONERROR IGNORE AO

This example is similar to the previous one. When (and if) the simulator cycle
count reaches 50000, the simulator will ignore detection of address errors (A),
and illegal opcodes (O). If any of these occur on or after the specified time
(50000), the simulator will continue operation, as if the error did not occur.

29K Family Simulators Reference Manual3-24

58

SET — Set Simulator Configuration

Syntax: 0 SET MEM access TO value
0 SET PAGEHEIGHT TO lines
0 SET SHARED_ID_BUS

where:
0 Specifies that these events are only valid if executed at

cyclenum=0 on the simulator’s clock. If any other time value is
given, the event is ignored, causing an error message.

MEM Indicates that the parameters are for the memory system.

access Specifies the speed and modes of various types of bus slaves, in
response to requests in their corresponding address spaces. Legal
access codes for different microprocessors are listed in
Table 3-4–Table 3-6.

value Specifies a duration or True/False value for an access parameter
(see Table 3-4–Table 3-6). Non-Boolean values represent clock
cycles required to complete the corresponding access.

PAGEHEIGHT
Controls pagination of the simulator output. The default value
is 59, but it can be set to any other convenient value. When the
number of lines on a page reaches the specified value, the
simulator outputs a form-feed (FF) character, followed by a line
that includes the current title and page number. If the
PAGEHEIGHT is set to 0, then pagination, as described above,
does not take place, and the simulator output file contents will be
contiguous, with no intervening form feed or title information.

lines Specifies the number of lines per page to set for the
PAGEHEIGHT parameter.

SHARED_ID_BUS
Indicates that the instruction and data buses, and instruction RAM
and data RAM are shared in the simulated system.

29K Family Simulators Reference Manual 3-25

59

Table 3-4. IRAM Memory Model Access Codes and Values for
Three-Bus Microprocessor Simulation

Access Code Value Default Description

IDECODE 0–n 0 Cycles to decode instruction
RAM (IRAM) address

IACCESS 1–n 1 Cycles for first access of IRAM

IBACCESS 1–n 1 Cycles for burst access of IRAM

IPFACCESS 1–n 1 Cycles for first access of IRAM
in page mode

IPSACCESS 1–n 1 Cycles for secondary access of
IRAM within the page

IPBACCESS 1–n 1 Cycles for burst access of IRAM
within page

ISACCESS 1–n 1 Cycles for access of IRAM
within the static column

IPRECHARGE 0–n 0 Cycles for IRAM precharge on
page crossing

IPGSIZE 1–n 256 IRAM page size in words

ISMASK 0x00000000–
0xFFFFFFFC

0xFFFFFF00 IRAM static column address
mask, defaults to 64 words

IBURST Boolean False Specifies whether IRAM is
burstable

IPIPE Boolean False Specifies whether IRAM is
capable of pipelining

IPAGEMODE Boolean False Specifies whether IRAM is a
paged memory

ISTATCOL Boolean False Specifies whether IRAM is a
static column memory

IBANKSTART 0–n N/A Specifies the starting address of
an IRAM memory region for
different memory timings

IBANKSIZE 1–n 1 Specifies the size in bytes of an
IRAM memory region for
different memory timings

29K Family Simulators Reference Manual3-26

60

Table 3-5. IROM Memory Model Access Codes and Values for
Three-Bus Microprocessor Simulation

Access Code Value Default Description

RDECODE 0–n 0 Cycles to decode instruction
ROM (IROM) address

RACCESS 1–n 1 Cycles for first access of IROM

RBACCESS 1–n 1 Cycles for burst access of IROM

RPFACCESS 1–n 1 Cycles for first access of IROM
in page mode

RPSACCESS 1–n 1 Cycles for secondary access of
IROM within the page

RPBACCESS 1–n 1 Cycles for burst access of IROM
within page

RSACCESS 1–n 1 Cycles for access of IROM
within the static column

RPRECHARGE 0–n 0 Cycles for IROM precharge on
page crossing

RPGSIZE 1–n 256 IROM page size in words

RSMASK 0x00000000–
0xFFFFFFFC

0xFFFFFF00 IROM static column address
mask, defaults to 64 words

RBURST Boolean False Specifies whether IROM is
burstable

RPIPE Boolean False Specifies whether IROM is
capable of pipelining

RPAGEMODE Boolean False Specifies whether IROM is a
paged memory

RSTATCOL Boolean False Specifies whether IROM is a
static column memory

RBANKSTART 0–n N/A Specifies the starting address of
a ROM memory region for
different memory timings

RBANKSIZE 1–n 1 Specifies the size in bytes of a
ROM memory region for
different memory timings

29K Family Simulators Reference Manual 3-27

61

Table 3-6. DRAM Memory Model Access Codes and Values for
Three-Bus Microprocessor Simulation

Access Code Value Default Description

DDECODE 0–n 0 Cycles to decode data RAM
(DRAM) address

DRACCESS 1–n 1 Cycles for first read access of
DRAM

DWACCESS 1–n 1 Cycles for first write access of
DRAM

DBRACCESS 1–n 1 Cycles for burst read access of
DRAM

DBWACCESS 1–n 1 Cycles for burst write access of
DRAM

DPFRACCESS 1–n 1 Cycles for first read access of
DRAM in page mode

DPFWACCESS 1–n 1 Cycles for first write access of
DRAM in page mode

DPSRACCESS 1–n 1 Cycles for secondary read access
of DRAM within the page

DPSWACCESS 1–n 1 Cycles for secondary write access
of DRAM within the page

DPBRACCESS 1–n 1 Cycles for burst read access of
DRAM within page

DPBWACCESS 1–n 1 Cycles for burst write access of
DRAM within page

DSRACCESS 1–n 1 Cycles for read access of DRAM
within the static column

DSWACCESS 1–n 1 Cycles for write access of
DRAM within the static column

DPRECHARGE 0–n 0 Cycles for DRAM precharge on
page crossing

DPGSIZE 1–n 256 DRAM page size in words

DSMASK 0x00000000-
0xFFFFFFFC

0xFFFFFF00 DRAM static column address
mask, defaults to 64 words

DBURST Boolean False Specifies whether DRAM is
burstable

29K Family Simulators Reference Manual3-28

62

Access Code DescriptionDefaultValue

DPIPE Boolean False Specifies whether DRAM is
capable of pipelining

DPAGEMODE Boolean False Specifies whether DRAM is a
paged memory

DSTATCOL Boolean False Specifies whether DRAM is a
static column memory

DBANKSTART 0–n N/A Specifies the starting address of a
data memory region for different
memory timings

DBANKSIZE 1–n 1 Specifies the size in bytes of a
data memory region for different
memory timings

Table 3-4–Table 3-6 list all the memory parameters that can be set for the
Am29000, Am29005 and Am29050 microprocessors using the event file. The
memory timings specified are used for the whole memory region, if the
xBANKSTART option has not been specified. If this option has been specified,
then all the timings specified are assumed to refer to the region specified until
another xBANKSTART option has been specified for that same memory
category. The example below shows a sample memory timing event file.

Example
0 COM SETTING MEMORY TIMINGS FOR IRAM
0 SET MEM IACCESS to 2
0 SET MEM IBACCESS to 1
0 SET MEM IBURST to TRUE
0 SET MEM IPIPE to FALSE

0 COM SETTING MEMORY TIMINGS FOR IROM
0 SET MEM RACCESS to 2
0 SET MEM RBACCESS to 1
0 SET MEM RBURST to TRUE
0 SET MEM RPIPE to FALSE

0 COM SETTING MEMORY TIMINGS FOR DATA
0 SET MEM DRACCESS to 2
0 SET MEM DWACCESS to 3
0 SET MEM DBRACCESS to 1
0 SET MEM DBWACCESS to 2
0 SET MEM DBURST to TRUE

29K Family Simulators Reference Manual 3-29

63

0 COM SETTING TIMING FOR A IROM REGION 0–0X3FF
0 SET MEM RBANKSTART to 0
0 SET MEM RBANKSIZE to 1024
0 SET MEM RBURST to FALSE

0 COM SETTING TIMING FOR A DATA REGION 0X80004000–0X800043FF
0 SET MEM DBANKSTART to 0X80004000
0 SET MEM DBANKSIZE to 1024
0 SET MEM DRACCESS to 3
0 SET MEM DWACCESS to 4
0 SET MEM DBURST to FALSE

0 SET MEM RACCESS to 3

In the above example, the memory access parameters are set for the whole
region, then ROM and DATA access parameters are set for a region. The last
command to set the IROM read access time will set the read access time for the
ROM region 0–0x3FF.

Memory Timing Parameters
The memory model does not support pipelined access in the paged memory
model or static column memory model. The order of precedence for simulating
different memory modes is paged mode, static column, and pipelined memory.

Figure 3-1 through Figure 3-3 show how the memory timing parameters are
defined for the Am29000, Am29005, and Am29050 microprocessors. Decode is
the number of cycles that can be overlapped with a pending primary access.

Clock

*REQ

*RDY

decode + access (3 cycles)

Figure 3-1. Simple Access in Three-Bus Microprocessors

29K Family Simulators Reference Manual3-30

64

Clock

*BREQ

*RDY

bacess
(1 cycle)

Figure 3-2. Burst Access in Three-Bus Microprocessors

Clock

ADDR

*PDA

decode

*REQ

*RDY

decode + access

access

Figure 3-3. Pipelined Access in Three-Bus Microprocessors

29K Family Simulators Reference Manual 3-31

65

Figure 3-4 shows the first access on a page crossing with a precharge time of one
cycle and access time of two cycles.

Clock

REQ

RDY

precharge + first page access

Figure 3-4. First Access on Page Crossing in Paged Memory in
Three-Bus Microprocessors

Figure 3-5 shows secondary access within the page with an access time of two
cycles.

Clock

REQ

RDY

secondary page
access

Figure 3-5. Secondary Access Within the Page in Three-Bus
Microprocessors

29K Family Simulators Reference Manual3-32

66

Figure 3-6 shows the first and secondary access within a static column with a
decode time of one cycle, a simple access time of two cycles, and access within
the static column of two cycles.

Clock

REQ

RDY

decode + access
(3 cycles)

stat. col. access
(2 cycles)

Figure 3-6. Static Column Access in Three-Bus Microprocessors

29K Family Simulators Reference Manual 3-33

67

STOP — End Simulation

Syntax: cyclenum STOP [string]

where:
cyclenum Specifies the time at which the simulation is to be stopped.

string Specifies an optional string of characters, up to an end of line, that
is to be written to the simulator output file.

The STOP command is used to stop the simulation at the designated time, and
write the command and string to the output file.

Example
200000 STOP INFINITE LOOP PROTECTION

In the example above, when (and if) the simulator cycle count reaches 200000,
the STOP command will force the execution to terminate, and will write the
specified string to the output file. This illustrates an approach for stopping a
program that gets into an infinite loop.

29K Family Simulators Reference Manual3-34

68

TITLE — Set Simulation Title

Syntax: cyclenum TITLE string

Where:
cyclenum Specifies when the title should be changed.

string Contains the new title information to appear in the simulator output
file.

The specified title string is written at the top of each page in the simulator output
file if the PAGEHEIGHT parameter is nonzero.

Example
0 TITLE Simulation of Am29050 Processor X Windows Terminal

This example illustrates setting the title to the specified text. Because the time
associated with the command is 0, the specified title will appear on the first page
of the output file.

29K Family Simulators Reference Manual 3-35

69

Simulator I/O
The simulator input and output is described below, followed by a description of
the sim.out file and a sample sim.out listing.

Input and Output

The simulator is able to provide a variety of output, both to the on-line display
and to various files written during a simulation run. In addition, the simulator
reads commands and values from various input sources. Figure 3-7 illustrates the
input sources and output destinations that are referenced by the simulator.

Event File

*.evt

Program File

Program To
Be Run

Boot File

Optional
ROM Code

Simulator

Program

stderr

Abort
Messages

stdin / stdout

Standard
Input / Output

sim.out

Simulator
Output History

Log Files

*.log

Figure 3-7. Simulator I/O

Table 3-7 describes the command-line options and event file commands that
specify the various files and devices on which simulator input/output operations
take place.

29K Family Simulators Reference Manual3-36

70

In Table 3-7, the first column indicates whether a command-line option can be
used to select a specific filename; whether an event file command is necessary to
enable a particular type of output to one of the dedicated log files; or whether no
configuration option is available to enable, disable, or redirect standard
interactive input/output transactions.

The simulator output history, which comprises the bulk of the simulator’s output,
is written to a file called sim.out, unless another file pathname is supplied via
the sim29 –o command-line option.

Table 3-7. Simulator Input/Output File Assignments

Option File Type Assignment

–e Event input file No default event input file is assumed

–p Program profile output Simulator output file (sim.out, by default)

–r Optional ROM code file Full pathname to ROM code file

–o Simulator output file sim.out is the default assignment

event Processor log file sip.log is enabled for processor instruction
output by the LOG command in the event
input file.

event Channel log file channel.log is enabled for channel
transaction output by the LOG command
in the event input file

event FPU log file fpu.log is enabled to contain
floating-point operations by the LOG
command in the event input file (specific
to the Am29050 processor)

none Standard input device stdin is assumed to be the interactive
keyboard input device

none Standard output device stdout is assumed to be the interactive
console output device

none Standard error device stderr is assumed to be the interactive
console error output device

The LOG command can be used to enable or disable individual simulator output
logging to previously assigned log files that were specified via event file
commands.

29K Family Simulators Reference Manual 3-37

71

The sim.out File

The simulator outputs detailed statistical information about the simulation’s
performance. The detailed output begins with the command line used to invoke
the simulator, followed by the commands used in the event file (if used) and the
output from the program being simulated. Following this output is the statistical
information of the processor’s performance. Sample output from the Am29000
microprocessor simulation of a simple “HELLO WORLD!!” program follows
on the next pages.

At the end of the simulation, the registers are dumped (if requested on the
command line) followed by the total instructions executed, the number of CPU
cycles in user and supervisory mode, and the processor simulation performance
in MIPS. This output is followed by the pipeline hold information, which
provides information as to why the pipeline was held, such as waiting for an
instruction, waiting for data to be accessed, crossing a page, or waiting for
LOADM/STOREM. Then the BTC performance is output, giving the number of
accesses, hits and partial hits. Partial hits refer to when all the instructions in
target block are not valid. Following this output is the MMU performance,
instruction bus utilization, data bus utilization, register spill/fill histogram,
instruction histogram, and system call histogram. Finally, the memory
parameters used in the simulation are output along with the number of accesses
from different memory areas.

29K Family Simulators Reference Manual3-38

72

Sample sim.out Listing

AMD SIM050 ARCHITECTURAL SIMULATOR, V# 1.0–20
Cmnd line: sim050 –d –e evt.29k –o hello29k.log hello.29k
–––
0 SET PAGEHEIGHT TO 0
–––
0 COM SETTING MEMORY TIMINGS FOR IRAM
–––
0 SET MEM IACCESS to 2
–––
0 SET MEM IBACCESS to 1
–––
0 SET MEM IBURST to TRUE
–––
0 SET MEM IPIPE to FALSE
–––
0 COM SETTING MEMORY TIMINGS FOR IROM
–––
0 SET MEM RACCESS to 2
–––
0 SET MEM RBACCESS to 1
–––
0 SET MEM RBURST to TRUE
–––
0 SET MEM RPIPE to FALSE
–––
0 COM SETTING MEMORY TIMINGS FOR DATA
–––
0 SET MEM DRACCESS to 2
–––
0 SET MEM DWACCESS to 3
–––
0 SET MEM DBRACCESS to 1
–––
0 SET MEM DBWACCESS to 2
–––
0 SET MEM DBURST to TRUE
–––
0 COM SETTING TIMING FOR A IROM REGION 0–0X3FF
–––
0 SET MEM RBANKSTART to 0
–––
0 SET MEM RBANKSIZE to 1024
–––
0 SET MEM RBURST to FALSE
–––
0 COM SETTING TIMING FOR A DATA REGION 0X80004000–0X800043FF
–––
0 SET MEM DBANKSTART to 0X80004000

29K Family Simulators Reference Manual 3-39

73

Sample sim.out Listing continued

–––
0 SET MEM DBANKSIZE to 1024
HELLO WORLD!!!!
T=5997 Am29000 Simulation of ”hello.29k” complete –– successful
termination.
 pc_l2=1378C fet_pc_l2=13788 dec_pc_l2=13784 exe_pc_l2=13780
–––
 <<<<< S U M M A R Y S T A T I S T I C S >>>>>

–––––––––– Register File Contents ––––––––––

gr[01] (Stack Pointer) = ffffff88
gr[40] = 000031a0 gr[41] = 0400a103 gr[42] = 002840c0 gr[43] = 000000c0
gr[44] = 0000097c gr[45] = 00002027 gr[46] = 00001166 gr[47] = 00000002
gr[48] = 00000000 gr[49] = 00000400 gr[4a] = 00000573 gr[4b] = 80000000
gr[4c] = 000114e8 gr[4d] = 000114e4 gr[4e] = 000114e0 gr[4f] = 00000278
gr[50] = 6b49e27c gr[51] = 6b49e27c gr[52] = 6b49e27c gr[53] = 6b49e27c
gr[54] = 00010004 gr[55] = 6b49e27c gr[56] = 80004ee0 gr[57] = 6b49e27c
gr[58] = 6b49e27c gr[59] = 00000000 gr[5a] = 000100e8 gr[5b] = 00010110
gr[5c] = 6b49e27c gr[5d] = 6b49e27c gr[5e] = 6b49e27c gr[5f] = 000fc0c0
gr[60] = ffffffff gr[61] = ffffffff gr[62] = 00000002 gr[63] = 00000000
gr[64] = 00001000 gr[65] = 80004eb8 gr[66] = 80004ec4 gr[67] = 80004eb0
gr[68] = 80004ef8 gr[69] = fffffff8 gr[6a] = 00000000 gr[6b] = 6b49e27c
gr[6c] = 6b49e27c gr[6d] = 6b49e27c gr[6e] = 6b49e27c gr[6f] = 6b49e27c
gr[70] = 6b49e27c gr[71] = 6b49e27c gr[72] = 6b49e27c gr[73] = 6b49e27c
gr[74] = 00000000 gr[75] = 00000000 gr[76] = 00000002 gr[77] = 6b49e27c
gr[78] = 6b49e27c gr[79] = 00000001 gr[7a] = 800049a4 gr[7b] = 6b49e27c
gr[7c] = 6b49e27c gr[7d] = fffdf7b8 gr[7e] = fffffdb8 gr[7f] = ffffffb8

lr[00] = 00000001 lr[01] = fffdf7f4 lr[02] = 6b49e27c lr[03] = 6b49e27c
lr[04] = 6b49e27c lr[05] = 6b49e27c lr[06] = 6b49e27c lr[07] = 6b49e27c
lr[08] = 00012ed8 lr[09] = fffffe3c lr[0a] = 80004f00 lr[0b] = 80004eb0
lr[0c] = 00012f88 lr[0d] = fffffe4c lr[0e] = 00001000 lr[0f] = 80004ec4
lr[10] = 00013180 lr[11] = fffffe5c lr[12] = 00000408 lr[13] = 6b49e27c
lr[14] = 000129d4 lr[15] = fffffe78 lr[16] = 00000400 lr[17] = 800044dc
lr[18] = 00012890 lr[19] = fffffe90 lr[1a] = 00000001 lr[1b] = 80004f00
lr[1c] = 00000010 lr[1d] = 800044dc lr[1e] = 800044d8 lr[1f] = 800044e4
lr[20] = 00011574 lr[21] = fffffed0 lr[22] = 800044d4 lr[23] = ffffffff
lr[24] = 00000010 lr[25] = 00000400 lr[26] = 00000000 lr[27] = 28000000
lr[28] = 80004f10 lr[29] = 800044d8 lr[2a] = 00000010 lr[2b] = 0000008a
lr[2c] = 800044e4 lr[2d] = 6b49e27c lr[2e] = 000114b0 lr[2f] = fffffee4
lr[30] = 80004a74 lr[31] = 00000001 lr[32] = 00000010 lr[33] = 800044d4
lr[34] = 000103a0 lr[35] = ffffff88 lr[36] = 800044d4 lr[37] = 80004a64
lr[38] = 00000010 lr[39] = ffffffff lr[3a] = 6b49e27c lr[3b] = 00000010
lr[3c] = 6b49e27c lr[3d] = ffffff20 lr[3e] = 7fffffff lr[3f] = 80004f00
lr[40] = 00000000 lr[41] = 800044dc lr[42] = 800044d8 lr[43] = 800044e4
lr[44] = 0001369c lr[45] = ffffff44 lr[46] = 00000000 lr[47] = 00000000

29K Family Simulators Reference Manual3-40

74

Sample sim.out Listing continued

lr[48] = ffffffff lr[49] = 800044fa lr[4a] = 80004018 lr[4b] = 00000000
lr[4c] = 800044f0 lr[4d] = 800044f8 lr[4e] = 00013700 lr[4f] = ffffff54
lr[50] = 800044e8 lr[51] = 6b49e27c lr[52] = 00013314 lr[53] = ffffff78
lr[54] = 80004894 lr[55] = 800048a8 lr[56] = fffdf7b4 lr[57] = 00000000
lr[58] = fffffffe lr[59] = 00000000 lr[5a] = 00000004 lr[5b] = 80004e1c
lr[5c] = 00012e04 lr[5d] = ffffff88 lr[5e] = 80004a60 lr[5f] = 800044d4
lr[60] = 00012150 lr[61] = ffffff94 lr[62] = 00010160 lr[63] = ffffffa0
lr[64] = 00000000 lr[65] = 6b49e27c lr[66] = 000100c8 lr[67] = ffffffb0
lr[68] = 00000001 lr[69] = 80004ee0 lr[6a] = 80004ee8 lr[6b] = 6b49e27c
lr[6c] = 00002660 lr[6d] = ffffffb8 lr[6e] = 6b49e27c lr[6f] = 6b49e27c
lr[70] = 6b49e27c lr[71] = 6b49e27c lr[72] = 6b49e27c lr[73] = 6b49e27c
lr[74] = 6b49e27c lr[75] = 6b49e27c lr[76] = 6b49e27c lr[77] = 6b49e27c
lr[78] = 6b49e27c lr[79] = 6b49e27c lr[7a] = 6b49e27c lr[7b] = 6b49e27c
lr[7c] = 000023d0 lr[7d] = fffffff4 lr[7e] = 00000002 lr[7f] = 00000002

–––––––––– Special Registers ––––––––––

– Protected – – Protected – – Unprotected –
VAB: 00000000 TC: 00fff465 IPC: 00000188
 TR: 01ffffff IPA: 00000184
OPS: 0000086c IPB: 00000180
CPS: 0000086c PC0: 00013788
 PC1: 00013784 Q: 00000002
CFG: 02000030 PC2: 00013780 ALU: 00000278 (n)

CHA: fffdf7b4 MMU: 00000301 BP: 00000003
CHD: 80000000 LRU: 00000000 FS: 00000018
CHC: 00008180 RBP: 00000000 CR: 00000000

 CPU Frequency = 25.00MHz

 Nops:122
total instructions = 4540

User Mode: 2729 cycles (0.00010916 seconds)
Supervisor Mode: 3269 cycles (0.00013076 seconds)
Total: 5998 cycles (0.00023992 seconds)

Simulation speed: 18.92 MIPS (1.32 cycles per instruction)

–––––––––– Pipeline ––––––––––
 24.31% idle pipeline:

 15.81% Instruction Fetch Wait
 4.07% Data Transaction Wait
 0.28% Page Boundary Crossing Fetch Wait
 0.07% Unfilled BTCache Fetch Wait

29K Family Simulators Reference Manual 3-41

75

Sample sim.out Listing continued

 0.72% Load/Store Multiple Executing
 2.17% Load/Load Transaction Wait
 1.20% Pipeline Latency

Total Wait: 1458 cycles (0.00005832 seconds)

–––––––––– Branch Target Cache ––––––––––
Partial hits: 132
Branch btcache access: 2877
Branch btcache hits: 2169
Branch btcache hit ratio: 75.39%

–––––––––– Translation Lookaside Buffer ––––––––––
TLB access: 0
TLB hits: 0
TLB hit ratio: 0.00%

–––––––––– Bus Utilization ––––––––––
Inst Bus Utilization: 56.90%

 3413 Instruction Fetches

Data Bus Utilization: 12.07%
 189 Loads
 535 Stores

–––––––––– Register File Spilling/Filling ––––––––––
 0 Spills, 0 Fills

Opcode Histogram
–
 ILLEGAL: CONSTN:19 CONSTH:179 CONST:309
 MTSRIM:14 CONSTHZ: LOADL: LOADL:
 CLZ: CLZ: EXBYTE: EXBYTE:
 INBYTE: INBYTE: STOREL: STOREL:
 ADDS: ADDS: ADDU: ADDU:
 ADD:71 ADD:1161 LOAD:178 LOAD:
 ADDCS: ADDCS: ADDCU: ADDCU:
 ADDC: ADDC: STORE:515 STORE:
 SUBS: SUBS: SUBU: SUBU:
 SUB:16 SUB:53 LOADSET: LOADSET:
 SUBCS: SUBCS: SUBCU: SUBCU:
 SUBC: SUBC: CPBYTE:13 CPBYTE:
 SUBRS: SUBRS: SUBRU: SUBRU:
 SUBR: SUBR: LOADM:1 LOADM:
 SUBRCS: SUBRCS: SUBRCU: SUBRCU:
 SUBRC: SUBRC: STOREM:2 STOREM:
 CPLT:1 CPLT:1 CPLTU:6 CPLTU:5

29K Family Simulators Reference Manual3-42

76

Sample sim.out Listing continued

 CPLE: CPLE:2 CPLEU:3 CPLEU:4
 CPGT:1 CPGT: CPGTU:3 CPGTU:
 CPGE: CPGE: CPGEU:1 CPGEU:3
 ASLT: ASLT: ASLTU: ASLTU:
 ASLE: ASLE: ASLEU:24 ASLEU:
 ASGT: ASGT: ASGTU: ASGTU:
 ASGE: ASGE: ASGEU:26 ASGEU:
 CPEQ:9 CPEQ:224 CPNEQ:14 CPNEQ:28
 MUL:30 MUL:1 MULL:1 MULL:
 DIV0: DIV0:5 DIV:155 DIV:
 DIVL:5 DIVL: DIVREM:5 DIVREM:
 ASEQ: ASEQ: ASNEQ:10 ASNEQ:
 MULU: MULU: ILLEGAL: ILLEGAL:
 INHW: INHW: EXTRACT:3 EXTRACT:
 EXHW: EXHW: EXHWS: ILLEGAL:
 SLL: SLL:63 SRL:1 SRL:15
 ILLEGAL: ILLEGAL: SRA: SRA:4
 IRET:7 HALT: ILLEGAL: ILLEGAL:
 IRETINV:1 ILLEGAL: ILLEGAL: ILLEGAL:
 AND:7 AND:21 OR:81 OR:7
 XOR: XOR: XNOR: XNOR:
 NOR: NOR: NAND:1 NAND:
 ANDN:5 ANDN:31 SETIP:5 INV:1
 JMP:26 JMP: ILLEGAL: ILLEGAL:
 JMPF:184 JMPF: ILLEGAL: ILLEGAL:
 CALL:40 CALL: ORN: ORN:
 JMPT:163 JMPT: ILLEGAL: ILLEGAL:
 ILLEGAL: ILLEGAL: ILLEGAL: ILLEGAL:
 JMPFDEC:389 JMPFDEC: MFTLB: ILLEGAL:
 ILLEGAL: ILLEGAL: ILLEGAL: ILLEGAL:
 ILLEGAL: ILLEGAL: MTTLB:128 XMAC:
 JMPI:43 ILLEGAL: ILLEGAL: ILLEGAL:
 JMPFI:11 ILLEGAL: MFSR:35 ILLEGAL:
 CALLI:8 ILLEGAL: ILLEGAL: ILLEGAL:
 JMPTI:7 ILLEGAL: MTSR:32 XMSM:
 XADD: XSUB: XMUL: XDIV:
 XEQ: XGT: XGE: EMULATE:
 FMAC: DMAC: FMSM: DMSM:
 0xDC: 0xDD: MULTM: MULTMU:
MULTIPLY:1 DIVIDE: MULTIPLU: DIVIDU:
 CONVERT: SQRT: CLASS: 0xE7:
 MTACC: MFACC: FEQ: DEQ:
 FGT: DGT: FGE: DGE:
 FADD: DADD: FSUB: DSUB:
 FMUL: DMUL: FDIV: DDIV:
 0xF8: FDMUL: 0xFA: 0xFB:
 0xFC: 0xFD: 0xFE: 0xFF:

29K Family Simulators Reference Manual 3-43

77

Sample sim.out Listing continued

System Call Count Histogram
––
 EXIT 1:1 CLOSE 18:3 WRITE 20:1
 IOSTAT 26:1 SYSALLOC 257:1 GETARGS 260:1
 SETVEC 289:2

–––––– M E M O R Y S U M M A R Y ––––––

 Stack_size=00020000
 Heap_size=00008000

 I – S L A V E S U M M A R Y

 Memory Parameters for Non–banked Regions
 I_SPEED: Idecode=0 Iaccess=2 Ibaccess=1
 I_SPEED: Ipg_size=256 Iprecharge=0
 I_SPEED: Ipfaccess=1 Ipsaccess=1 Ipbaccess=1
 I_SPEED: Istat_col_mask=ffffff00 Isaccess=1
 I_SPEED: Ipipe=false Iburst=true Ipagemode=false Istatcol=false

 Memory Parameters for Non–banked Regions
 R_SPEED: Rdecode=0 Raccess=2 Rbaccess=1
 R_SPEED: Rpg_size=256 Rprecharge=0
 R_SPEED: Rpfaccess=1 Rpsaccess=1 Rpbaccess=1
 R_SPEED: Rstat_col_mask=ffffff00 Rsaccess=1
 R_SPEED: Rpipe=false Rburst=true Rpagemode=false Rstatcol=false

 ROM Bank 0 Memory Parameters
 ROM_RANGE: 00000000–000003ff
 R_SPEED: Rdecode=0 Raccess=1 Rbaccess=1
 R_SPEED: Rpg_size=256 Rprecharge=0
 R_SPEED: Rpfaccess=1 Rpsaccess=1 Rpbaccess=1
 R_SPEED: Rstat_col_mask=ffffff00 Rsaccess=1
 R_SPEED: Rpipe=false Rburst=false Rpagemode=false Rstatcol=false

 STAT’S: I_resp=2096 R_resp=1699

 D – S L A V E S U M M A R Y

 Memory Parameters for Non–banked Regions
 D_SPEED: Ddecode=0 Draccess=2 Dwaccess=3 Dbraccess=1 Dbwaccess=2
 D_SPEED: Dpg_size=256 Dprecharge=0
 D_SPEED: Dpfraccess=1 Dpfwaccess=1 Dpsraccess=1 Dpswaccess=1
 D_SPEED: Dpbraccess=1 Dpbwaccess=1
 D_SPEED: Dstat_col_mask=ffffff00 Dsraccess=1 Dswaccess=1

29K Family Simulators Reference Manual3-44

78

Sample sim.out Listing concluded

 D_SPEED: Dpipe=false Dburst=true Dpagemode=false Dstatcol=false

 DRAM Bank 0 Memory Parameters
 DRAM_RANGE: 80004000–800043ff
 D_SPEED: Ddecode=0 Draccess=1 Dwaccess=1 Dbraccess=1 Dbwaccess=1
 D_SPEED: Dpg_size=256 Dprecharge=0
 D_SPEED: Dpfraccess=1 Dpfwaccess=1 Dpsraccess=1 Dpswaccess=1
 D_SPEED: Dpbraccess=1 Dpbwaccess=1
 D_SPEED: Dstat_col_mask=ffffff00 Dsraccess=1 Dswaccess=1
 D_SPEED: Dpipe=false Dburst=false Dpagemode=false Dstatcol=false

 STAT’S: L_resp=189 S_resp=535 fault=0
–––

29K Family Simulators Reference Manual 4-1

79

Chapter 4

29K Family Two-Bus Processor
Architecture Simulation

This chapter describes how to use sim29 to simulate the Am29030, Am29035,
and Am29040 microprocessors. The syntax to invoke sim29 is described first,
followed by a discussion of the event file and its commands.

Some notable features in the Am29030 and Am29035 processor architecture
simulator are:

� 8 Kbytes (4 Kbytes for the Am29035 processor) instruction cache with valid
bit per block and quad word 0 fetched first reload strategy

� 2x internal clock option

� No integer multiplier

� No data cache

Some notable features in the Am29040 processor architecture simulator are:

� 8 Kbytes instruction cache with improved reload algorithm and 1 valid bit per
instruction

� 4 Kbytes data cache and copy back replacement algorithm for less bus traffic

� 2-cycle access time in data cache

� 2-cycle integer multiplier

� 2x internal clock option

29K Family Simulators Reference Manual4-2

80

Simulator Command-Line Syntax
Syntax: sim29 processor [–d] [–dcacheoff] [–dynmem {0|1}]

[–e event_file] [–f frequency] [–h heap_size] [–help]
[–icacheoff] [–ooutput_file] [–p] [–r boot_prog] [–sv] [–u]
[–v] [app_prog [prog_args]]

where:
processor Is one of: –29030, –29035, or –29040. These options specify

which 29K Family two-bus microprocessor to simulate. Note
that the processor is required and must be the first argument
specified.

–d Dumps the contents of the registers at the end of simulation.

–dcacheoff Disables the data cache (applies only to the Am29040
processor).

–dynmem {0|1} Dynamically allocates memory for address references not
defined by the application Common Object File Format
(COFF) file. 1 enables; 0 disables.

–eevent_file Specifies the simulator event input file, which is used for other
miscellaneous commands. The event_file is a full pathname to
the file.

–f frequency Specifies the CPU frequency in MHz. The default values are
33 for the Am29030 and Am29035 processors, and 50 for the
Am29040 processor.

–hheap_size Specifies the size of the system heap (in kilobytes). The
heap_size parameter is a decimal value. The default system
heap size is 32 Kbytes, or –h 32.

–help Outputs ASCII text to standard output that briefly describes all
command-line and event-file options.

–icacheoff Disables the instruction cache.

–ooutput_file Specifies the simulation summary file (sim.out is the default
name). The output_file is a full pathname to the file.

–p Profiles opcode, PC, Load, Store, and trap usage.

29K Family Simulators Reference Manual 4-3

81

–r boot_prog Specifies the osboot or ROM program (osb03x is the default).
The boot_prog is a full pathname to the file. By default, the
simulator will attempt to load the appropriate boot code
needed by the compiler, based on the processor specified on
the command line. If the user’s application has its boot code
linked in, specify that application file as the boot_prog.

–sv Passes a parameter to osboot indicating that the application is
to run in supervisor mode.

–u Configures memory wait states and enable caches via
application software instead of simulator options.

–v Passes a parameter to osboot which will turn on instruction
and data address virtual memory translation.

app_prog Specifies the filename of the program to be simulated. The
app_prog parameter is not required if the user’s application
has boot code linked in, and the –r option is used. Otherwise,
the app_prog must be provided, and is a full pathname to the
program object file.

prog_args Specifies command-line options for the program to be
simulated. This argument is optional. Programs need not
require command-line options to execute properly.

The output generated by the simulator includes the output generated by the
program being simulated and the performance statistics. Some of the
performance statistics are: the number of processor cycles simulated; the MIPS
(millions of instructions per second); the percentage time the pipeline was held
for various reasons, such as instruction fetch wait, data fetch wait, or
LOADM/STOREM wait; register spill and fill count; cache hit rates (where
applicable); and memory parameters.

Example
sim29 –29035 –r myboot –sv my_program

This example illustrates the command line entered to simulate in Am29035
processor mode using the ROM file myboot. The –sv option causes the program
to run in supervisor mode.

29K Family Simulators Reference Manual4-4

82

The Event File
The event file is a command file used to specify simulation control parameters,
most of which are not handled by the command line. These options primarily
consist of memory configuration and wait states.

The default event file memory model for the Am29030, Am29035, and
Am29040 processor simulators is as defined by their respective user manuals
with some optional extensions for simulating precharge and refresh effects in
DRAM, which are borrowed from the Am29240 microcontroller simulator. The
Am29030, Am29035, and Am29040 processors do not distinguish between
ROM and RAM, but they are defined by the simulator so that refresh and
precharge effects can be simulated if desired. Refresh and precharge apply only
to DRAM, not ROM.

Burst mode is driven for instruction fetching, data cache reloading, and LOADM
and STOREM operations. Page mode is driven for any memory access in the
same page as the last access, regardless of the number of cycles passed. Note
that this is a more aggressive model than that used by the 29K Family
microcontrollers, which only drive page mode for consecutive sequential
accesses.

Burst mode accesses for the Am29030, Am29035, and Am29040 processors can
be single cycle, but page mode accesses require at least 2 cycles.

Precharge and refresh are defaulted to off by the simulator, and only apply to
DRAM when used. The precharge count represents the number of cycles at the
end of a DRAM access in which the RAS line is held high after the data is
available. Because of these potential dead cycles on the memory bus, successive
requests may need to be held off the bus. See the timing diagrams for the DRAM
controller in the microcontroller user manuals for more information. The
PPrecharge parameter represents the same thing but is for page mode accesses.

The refresh rate count represents the number of cycles between the start of
refresh periods. During refresh, DRAM is unavailable for memory requests.
ROM fetches or accesses are not affected. The refresh rate is programmable in
both the processor and the simulator.

For Boolean values, typically 0, 1, TRUE, and FALSE can be entered. 0 is
equivalent to FALSE, and 1 is equivalent to TRUE.

29K Family Simulators Reference Manual 4-5

83

Syntax: [[+] cyclenum] command [; comment]

where:
+ Indicates cyclenum is relative (to be added) to the previous

cyclenum.

cyclenum Indicates the cycle time that the command is to happen. If no time
is given, it is the same as the previous time given. The simulation
starts with time equal to 0.

command Is one of the commands listed below and described in the
command syntax that follows:

DELTAMEM addr
DELTAREG reg
DUMPMEM addr [num]
DUMPREG reg
FREQUENCY num
INTCLOCKMULT num
LOGGING bool
RAMBANK addr size
RAMREAD num
RAMWRITE num
RAMBURST bool
RAMBREAD num
RAMBWRITE num
RAMPAGE bool
RAMPREAD num
RAMPWRITE num
RAMWIDTH num
RAMPRECHARGE num
RAMPPRECHARGE num
RAMREFRATE num
ROMBANK addr size
ROMREAD num
ROMWRITE num
ROMBURST bool
ROMBREAD num
ROMBWRITE num
ROMPAGE bool
ROMPREAD num
ROMPWRITE num
ROMWIDTH num
STOP

; comment Indicates the remainder of the line following the ’;’ is a comment
and is to be ignored.

29K Family Simulators Reference Manual4-6

84

Command Syntax Options
addr Is a non-negative integer, assumed to be in hexadecimal.

bool Can be 0, 1, FALSE, or TRUE.

num Is a non-negative integer.

reg Is the absolute general register number.

size Is a non-negative integer, assumed to be in hexadecimal.

DELTAMEM Reports any changes in the contents of memory at addr.

DELTAREG Reports any changes in the contents of general register
reg.

DUMPMEM Dumps num words from (hex) addr.

DUMPREG Dumps the contents of the general register reg.

FREQUENCY Sets the processor frequency to num MHz. This option is
only valid at time 0, and is overridden by any value
specified using the –sim29 –f command-line option.

INTCLOCKMULT num specifies the internal clock multiplier value.

LOGGING Specifies logging instructions to sip.log; 1 or TRUE sets
the option on, 0 or FALSE turns it off.

RAMBANK Specifies address and size of DRAM bank for memory
access timings. Subsequent RAM commands will apply to
this bank. Memory variables set prior to any RAMBANK
command apply to all memory not contained by a bank.
addr and size are in hex.

RAMREAD Specifies num cycle counts for simple DRAM read, where
num can be 1, 2, 3, or 4.

RAMWRITE Specifies num cycle counts for simple DRAM write,
where num can be 1, 2, 3, or 4.

RAMBURST Specifies DRAM burst mode; 1 or TRUE sets the option
on, 0 or FALSE turns it off.

RAMBREAD Specifies num cycle counts for burst DRAM read.

RAMBWRITE Specifies num cycle counts for burst DRAM write.

RAMPAGE Specifies DRAM page mode; 1 or TRUE sets the option
on, 0 or FALSE turns it off.

RAMPREAD Specifies num cycle counts for page mode DRAM read.

29K Family Simulators Reference Manual 4-7

85

RAMPWRITE Specifies num cycle counts for page mode DRAM write.

RAMWIDTH Specifies num bit width of DRAM memory accesses,
where num can be 8, 16, or 32.

RAMPRECHARGE
Specifies num cycle counts for DRAM precharging,
where num can be 1, 2, 3, or 4.

RAMPPRECHARGE
Specifies num cycle counts for DRAM precharging
following a page mode access, where num can be 1, 2, 3,
or 4.

RAMREFRATE Specifies the DRAM controller refresh rate (0=off), where
num is the number of cycles between refreshes.

ROMBANK Specifies the address and size of the ROM bank for
memory access timings. Subsequent ROM commands will
apply to this bank. Memory variables set prior to any
ROMBANK command apply to all memory not
contained by a bank. addr and size are in hex.

ROMREAD Specifies num cycle counts for simple ROM read, where
num can be 1, 2, 3, or 4.

ROMWRITE Specifies num cycle counts for simple ROM write, where
num can be 1, 2, 3, or 4.

ROMBURST Specifies ROM burst mode; 1 or TRUE sets the option
on, 0 or FALSE turns it off.

ROMBREAD Specifies num cycle counts for burst ROM read, where
num can be 1, 2, 3, or 4.

ROMBWRITE Specifies num cycle counts for burst ROM write, where
num can be 1, 2, 3, or 4.

ROMPAGE Specifies ROM page mode; 1 or TRUE sets the option
on, 0 or FALSE turns it off.

ROMPREAD Specifies num cycle counts for page mode ROM read,
where num can be 1, 2, 3, or 4.

ROMPWRITE Specifies num cycle counts for page mode ROM write,
where num can be 1, 2, 3, or 4.

ROMWIDTH Specifies num bit width of ROM memory accesses, where
num can be 8, 16, or 32.

STOP Stops the simulation.

29K Family Simulators Reference Manual4-8

86

Example
romread 3
romwrite 3
romburst 1 ; rom burst mode 3/2
rombread 2
rombwrite 2

0 log 1 ; log 1000 cycles
1000 log 0

stop ; now stop

This example illustrates setting the ROM memory speeds, using logging, and the
STOP command. The ROM memory speed is set to 3 cycles for the first access
and 2 for subsequent read and write burst accesses. The first 1000 cycles
executed are logged to sip.log and then the simulation is forced to terminate by
the STOP command.

29K Family Simulators Reference Manual 5-1

87

Chapter 5

29K Family Microcontroller
Architecture Simulation

This chapter describes how to use sim29 to simulate the Am29200, Am29205,
Am29240, Am29243, and Am29245 microcontrollers. The syntax to invoke
sim29 is described first, followed by a discussion of the event file and its
commands.

29K Family Simulators Reference Manual5-2

88

Simulator Command-Line Syntax
Syntax: sim29 processor [–d] [–dcacheoff] [–dynmem {0|1}]

[–e event_file] [–f frequency] [–h heap_size] [–help]
[–icacheoff] [–ooutput_file] [–p] [–r boot_prog] [–sv] [–u]
[–v] [app_prog [args]]

where:
processor Is one of: –29200, –29205, –29240, –29243 or –29245. These

options specify which 29K Family microcontroller to simulate.
Note that the processor is required and must be the first
argument specified.

–d Dumps the contents of the registers at the end of simulation.

–dcacheoff Disables the data cache.

–dynmem {0|1} Dynamically allocates memory for address references not
defined by the application Common Object File Format
(COFF) file. 1 enables; 0 disables.

–eevent_file Specifies the simulator event input file, which is used for other
miscellaneous commands. The event_file is a full pathname to
the file.

–f frequency Specifies the CPU frequency in MHz. The default values are
20 for the Am29200 and the Am29205 microcontrollers, and
33 for the Am29240, Am29243 and Am29245
microcontrollers.

–hheap_size Specifies the size of the system heap (in kilobytes). The
heap_size parameter is a decimal value. The default system
heap size is 32 Kbytes, or –h 32.

–help Outputs ASCII text to standard output that briefly describes all
command-line and event-file options.

–icacheoff Disables the instruction cache.

–ooutput_file Specifies the simulation summary file (sim.out is the default
name). The output_file is a full pathname to the file.

29K Family Simulators Reference Manual 5-3

89

–p Profiles opcode, PC, Load, Store, and trap usage.

–r boot_prog Specifies the osboot or ROM program. (Default is osb20x for
the Am29200 and Am29205 microcontrollers, and osb24x for
the Am29240, Am29243, and Am29245 microcontrollers.)
The boot_prog is a full pathname to the file. By default, the
simulator will attempt to load the appropriate boot code
needed by the compiler, based on the processor specified on
the command line. If the user’s application has its boot code
linked in, specify that application file as the boot_prog.

–sv Passes a parameter to osboot indicating that the application is
to run in supervisor mode.

–u Configures memory wait states and enable caches via
application software instead of simulator options.

–v Passes a parameter to osboot which will turn on instruction
and data address virtual memory translation. This option does
not apply to the Am29200 or Am29205 microcontrollers.

app_prog Specifies the filename of the program to be simulated. The
app_prog parameter is not required if the user’s application
has boot code linked in, and the –r option is used. Otherwise,
the app_prog must be provided, and is a full pathname to the
program object file.

prog_args Specifies command-line options for the program to be
simulated. This argument is optional. Programs need not have
command-line options to execute properly.

The output generated by the simulator includes the output generated by the
program being simulated and the performance statistics, such as the number of
cycles simulated, the MIPS (millions of instructions per second), and the cache
hit ratios.

29K Family Simulators Reference Manual5-4

90

Example
sim29 –29200 hello.lap

This example illustrates the command line to simulate the hello.lap program in
the Am29200 microcontroller. Because the –r option is not specified, the default
boot file osb20x is used.

Example
sim29 –29240 –e sim.evt test.lap

This example illustrates simulating the execution of program test.lap on the
Am29240 microcontroller using the default boot file osb24x with the memory
configuration as specified in the sim.evt file.

29K Family Simulators Reference Manual 5-5

91

The Event File
The event file is a command file used to specify simulation control parameters,
most of which are not handled by the command line. These options primarily
consist of memory configuration and wait states.

The event file memory model for the 29K Family microcontroller simulators is
as defined by the microcontroller user manuals. Page mode applies to RAM, and
burst mode applies to ROM. Burst and page mode are driven for instruction
fetching, data cache reloading, and load and store multiple operations only (i.e.,
jumps within a page-do-not-drive-page mode).

The DRAM memory speed for the Am29240, Am29243, and Am29245
microcontrollers is 2/1 (simple/page mode); and is 3/2 for the Am29200 and
Am29205 microcontrollers. The simulator allows other page mode timings for
experimentation but will issue warnings when non-hardware-supported timings
are used. ROM wait states are programmable by both processor hardware and
the simulator.

The refresh rate count represents the number of cycles between the start of
refresh periods. During refresh, DRAM is unavailable for memory requests.
ROM fetches or accesses are not affected. The refresh rate is programmable in
both the processor and the simulator.

For Boolean values, typically 0, 1, TRUE, and FALSE can be entered. 0 is
equivalent to FALSE, and 1 is equivalent to TRUE.

29K Family Simulators Reference Manual5-6

92

Syntax: [[+] cyclenum] command [; comment]

where:
+ Indicates cyclenum is relative (to be added) to the previous

cyclenum.

cyclenum Indicates the cycle time that the command is to happen. If no time
is given, it is the same as the previous time given. The simulation
starts with time equal to 0.

command Is one of the commands as listed below and described in the
command syntax that follows.

DELTAMEM addr
DELTAREG reg
DUMPMEM addr [num]
DUMPREG reg
FREQUENCY num
INTCLOCKMULT num
LOGGING bool
RAMBANK addr size
RAMREAD num
RAMWRITE num
RAMPAGE bool
RAMPREAD num
RAMPWRITE num
RAMWIDTH num
RAMREFRATE num
ROMBANK addr size
ROMREAD num
ROMWRITE num
ROMBURST bool
ROMBREAD num
ROMWIDTH num
SERIALIN {a | b} fn [baud]
SERIALOUT {a | b} fn [baud]
PARALLELIN fn [cps]
PARALLELOUT fn [cps]
STOP

; comment Indicates the remainder of the line following the ’;’ is a comment
and is to be ignored.

29K Family Simulators Reference Manual 5-7

93

where:
addr Is a non-negative integer, assumed to be in hexadecimal.

baud Is a non-negative integer.

bool Can be 0, 1, FALSE, or TRUE.

cps Is a non-negative integer representing the characters per
second.

fn Is the filename.

num Is a non-negative integer.

reg Is the absolute general register number.

size Is a non-negative integer, assumed to be in hexadecimal.

DELTAMEM Reports any changes in the contents of memory at addr.

DELTAREG Reports any changes in the contents of general register
reg.

DUMPMEM Dumps num words from (hex) addr.

DUMPREG Dumps the contents of the general register reg.

FREQUENCY Sets the processor frequency to num MHz. This option is
only valid at time 0, and is overridden by any value
specified using the sim29 –f command-line option.

INTCLOCKMULT num specifies the internal clock multiplier value.

LOGGING Specifies logging instructions to sip.log; 1 or TRUE sets
the option on, 0 or FALSE turns it off.

PARALLELIN Specifies fn as the input file for a parallel port with a
character per second transfer rate of cps.

PARALLELOUT Specifies fn as the output file for a parallel port with a
character per second transfer rate of cps.

RAMBANK Specifies address and size of DRAM bank for memory
access timings. Subsequent RAM commands will apply to
this bank. Memory variables set prior to any RAMBANK
command apply to all memory not contained by a bank.
addr and size are in hex.

RAMREAD Specifies num cycle counts for simple DRAM read, where
num can be 1, 2, 3, or 4.

RAMWRITE Specifies num cycle counts for simple DRAM write,
where num can be 1, 2, 3, or 4.

29K Family Simulators Reference Manual5-8

94

RAMPAGE Specifies DRAM page mode; 1 or TRUE sets the option
on, 0 or FALSE turns it off.

RAMPREAD Specifies num cycle counts for page mode DRAM read.

RAMPWRITE Specifies num cycle counts for page mode DRAM write.

RAMWIDTH Specifies num bit width of DRAM memory accesses,
where num can be 8, 16, or 32.

RAMREFRATE Specifies the DRAM controller refresh rate (0=off), where
num is the number of cycles between refreshes.

ROMBANK Specifies the address and size of the ROM bank for
memory access timings. Subsequent ROM commands will
apply to this bank. Memory variables set prior to any
ROMBANK command apply to all memory not
contained by a bank. addr and size are in hex.

ROMREAD Specifies num cycle counts for simple ROM read, where
num can be 1, 2, 3, or 4.

ROMWRITE Specifies num cycle counts for simple ROM write, where
num can be 1, 2, 3, or 4.

ROMBURST Specifies ROM burst mode; 1 or TRUE sets the option
on, 0 or FALSE turns it off.

ROMBREAD Specifies num cycle counts for burst ROM read, where
num can be 1, 2, 3, or 4.

ROMWIDTH Specifies num bit width of ROM memory accesses, where
num can be 8, 16, or 32.

SERIALIN Specifies fn as the input file for serial port a or b, with a
baud rate of baud.

SERIALOUT Specifies fn as the output file for serial port a or b, with a
baud rate of baud.

STOP Stops the simulation.

29K Family Simulators Reference Manual 5-9

95

Example
romread 3
romwrite 3
romburst 1 ; rom burst mode 3/2
rombread 2
rombwrite 2

0 log 1 ; log 1000 cycles
1000 log 0

stop ; now stop

This example illustrates setting the ROM memory speeds, using logging, and the
STOP command. The ROM memory speed is set to 3 cycles for the first access
and 2 for subsequent read and write burst accesses. The first 1000 cycles
executed are logged to sip.log and then the simulation is forced to terminate by
the STOP command.

29K Family Simulators Reference Manual 6-1

96

Chapter 6

SIM29 OS Interface

Conceptually, the simulator may be viewed as one of several target platforms
and debuggers supported by osboot, with several notable exceptions. For the
simulator target, there is no “debug core” and associated “message
communication” system linked in with the osboot code. All debugging and host
IO services are provided internally by the simulator, invisible to the osboot code.

For HIF IO services, this is done by intercepting those HIF traps requiring host
IO, performing the service, altering the appropriate return registers, then
continuing on with the simulation. Since no application code is actually executed
for these traps, benchmarks that involve heavy IO will not be accurate. Most
benchmarking should attempt to exclude the time for IO from the results.

A second difference the simulator has from other targets is in OS initialization.
A functional interface is provided for use by most debuggers to inform the OS of
the location of an application programs’ text and environment for execution. For
the simulator, the functional interface is not used, instead the information is put
into several global registers prior to starting the simulation at address 0 of the
OS boot code.

29K Family Simulators Reference Manual6-2

97

Register Initialization
The simulator allocates four memory segments: register stacks; memory stacks;
a heap segment; and a default vector table at address 0 for Am29000, Am29005,
and Am29050 processor simulation, at address 0xffff0000 for Am29030,
Am29035, and Am29040 microprocessor simulation, and at 0x40000000 for
Am29200, Am29205, Am29240, Am29243 and Am29245 microcontroller
simulation. These four segments are in addition to those loaded from the
executable file and ROM code (if used). The global register gr65 points to the
register stack segment, which grows down, and global register gr66 points to the
scalar stack segment (memory stack), which also grows down. The heap is
allocated 32 Kbytes (the default allocation) on a double word boundary
immediately after the program is loaded. Table 6-1 lists certain general-purpose
registers that are initialized.

Table 6-1. General-Purpose Register Initialization

Register Description

gr65 Register stack growing down

gr66 Memory stack growing down

gr99 Heap segment growing up

gr100 Program entry point

gr103 Argv pointer

gr104 User/supervisor/translation mode

lr2 Argument count (argc)

lr3 Argument pointer (argv)

Trap Interface
Special-purpose traps are available to support certain features of the high-level
programming environments. Traps 0, 2, 4, 6, 7, 12, and 13 are traps that may
cause unpredictable results if exit is not enabled on the respective error using the
“–x [codes]” option of the command line. Traps 64 and 65 are the stack spill and
fill traps, respectively. Trap 69 is the operating-system call trap. The system call
numbers that are handled by the simulator internally using the host system are 1,
17–26, 33, 49, 65, 66, and 67. System call 305 for CPU frequency is handled by
the simulator, but the other queries are expected to be handled by the trap code.
Traps 70 and 251–255 are for internal use only.

29K Family Simulators Reference Manual A-1

98

Appendix A

Error Messages

This appendix lists and describes the architectural simulator error messages.
These error messages primarily apply to the Am29000, Am29005, and
Am29050 processor architectural simulator. Error messages are listed in
alphabetical order, with explanations where appropriate.

29K Family Simulators Reference ManualA-2

99

Error Messages
� ACFMT==0

Accumulator Format field in FPE register is set to 0, which is reserved.

� Attempting to set CFG
CFG is being set, even though the –cfg command-line option has been used.

� bad magic number
The executable file has an invalid magic number.

� Can only do SET at t=0
Can use the SET command in the event file at time 0 only.

� Can only set frequency at t=0
Can use the FREQUENCY command in the event file at time 0 only.

� Can’t open event file
Could not open the event file specified. Either it does not exist or it is read
protected.

� Can’t translate address
Could not translate the address to host address space.

� cca–shift and cca in one instr undefined
Illegal usage of CCA and CCA-shift registers.

� config_l2.CP set
The Coprocessor Present (CP) bit is being set in the CFG register. Coprocessor
model not implemented.

� Could not allocate heap space
The host could not allocate memory for the heap space.

� could not translate to host address
Address specified is not within the simulated memory space.

� data exception at data address XXXX
Data address is not within the simulated data address space.

29K Family Simulators Reference Manual A-3

100

Error Messages continued

� Delta: impossible nonexistent address
The address specified in the DELTA command in the event file does not exist in
the simulated memory.

� Event file time out of order
The time specified in the event file is not in order. The time specified is less than
the previous event command.

� Expected ’to’
Missing a TO in the event file command (e.g., 0 SET MEM DRACCESS TO 2).

� Illegal address range
The address range specified is not within the simulated memory space.

� illegal opcode
An illegal opcode was encountered in the executable instruction memory.

� illegal precision
An illegal precision was specified for the floating-point instruction.

� Illegal value for IL field in CFG Register, Cache unlocked
Any attempt to set an illegal value for the IL field in the CFG register will set
the IL field to 3 in the case of Am29035 microprocessor simulation and to 0 in
the case of Am29030 microprocessor simulation, which is equivalent to
unlocking the Instruction Cache.

� Infinite wait
The processor has been stalled for more than 500 cycles due to instruction fetch
wait or data fetch wait.

� infinite wait – trap
The processor has been stalled for more than 500 cycles due to instruction fetch
wait or data fetch wait.

� instruction exception
Instruction address is not within the simulated instruction address space.

29K Family Simulators Reference ManualA-4

101

Error Messages continued

� load access type (OPT) unknown
Unknown OPT option bit setting.

� Max number of breakpoints set
The maximum number (18) of breakpoints have been used.

� missing delta option
DELTA option partially specified in the event file.

� Missing number
Missing a number for the access time or page height.

� Missing number (or +)
Missing a number or the plus sign at the beginning of the event file command.

� MMU2: TLB protection violation
TLB protection violation; proper execution bits have not been set.

� nonexistent special reg
A nonexistent special register is specified in the DELTA command in the event
file.

� object file is not executable
The executable bit in the COFF executable file has not been set.

� odd A reg on double
An odd register number is specified for source A for a double-precision
operation.

� odd B reg on double
An odd register number is specified for source B for a double-precision
operation.

� odd C reg on double
An odd register number is specified for destination C for a double-precision
operation.

29K Family Simulators Reference Manual A-5

102

Error Messages continued

� odd reg on double
An odd register number is specified for a double-precision operation.

� opt>2
The OPT bits have value greater than 2 for a write operation.

� out–of–range trap
The out-of-range trap is being taken.

� reading Cond Accin a FP instr undefined
Using CCA as a source for an FP instruction is undefined as per specification.

� Reg num out of bounds
The register number specified is out of bounds.

� section is not of type regular
The section in the executable to be simulated is not a COFF-specified type.

� set_trap in monitor mode
A trap was attempted while in monitor mode.

� sip.log write error
Could not write to sip.log file after opening for writing. Possible host system
problem such as file system being full.

� slave.log write error
Could not write to channel slave.log file after opening for writing. Possible host
system problem such as file system being full.

� store access type (OPT) unknown
Invalid OPT bit pattern for a store operation.

� TLB protection violation [data] at data address XXXX
TLB data protection violation at address XXXX.

� TLB protection violation [instr]
TLB instruction protection violation.

29K Family Simulators Reference ManualA-6

103

Error Messages continued

� trap while already in monitor mode
A trap was attempted while already in monitor mode.

� Unable to open ROM object file
ROM file specified using the –r option does not exist or is read protected.

� unknown class option
Unknown class specified in the DELTA command in the event file.

� unknown delta option
An unknown DELTA option was specified in the event file.

� Unknown DUMP option
An unknown dump option was specified in the event file.

� Unknown ONERROR option
An unknown ONERROR option was specified in the event file.

� Unknown or missing option
An unknown or missing option was specified in the event file (e.g., the STOP or
IGNORE is missing in the ONERROR command in the event file).

� unknown OS function call
An unknown HIF function call was made.

� Unknown segment type
A segment of unknown type was found when loading the application to be
simulated.

� unknown special reg
An unknown special register was specified in the DELTA command in the event
file.

� unknown type option
An unknown type was specified in the DELTA command in the event file.

� Unrecognized command
An unrecognized command was specified in the event file.

29K Family Simulators Reference Manual A-7

104

Error Messages concluded

� Unrecognized Error Code
An unrecognized error code was specified in the event file for the ONERROR
option.

� unrecoverable trap
An unrecoverable trap is being taken. The unrecoverable traps are:
Illegal Opcode
Out of Range
Coprocessor Exception
Instruction Exception
Data Exception
TLB Instruction Protection Violation
TLB Data Protection Violation

� WM bit set
The Wait Mode bit WM in the CPS is being set. This mode is not supported.

� writing Cond Acc (unshifted) in a FP instr is undefined
Using CCA as a destination in an FP instruction is undefined as per
specification.

29K Family Simulators Reference Manual Index-1

105

Index

A
access codes for sim29

DRAM memory model for 3-bus
processors, 3-27–3-29

IRAM memory model for 3-bus
processors, 3-25

IROM memory model for 3-bus
processors, 3-26

Am29000 simulation, 3-1–3-44
Am29005 simulation, 3-1–3-44
Am29030 simulation, 4-1–4-8
Am29035 simulation, 4-1–4-8
Am29040 simulation, 4-1
Am29050 simulation, 3-1–3-44
Am29200 simulation, 5-1–5-9
Am29205 simulation, 5-1–5-9
Am29240 simulation, 5-1–5-9
Am29243 simulation, 5-1–5-9
Am29245 simulation, 5-1–5-9
architectural simulator. See sim29.

B
backslash character, in event fle, 3-11
backspace character, in event file, 3-11

C
CFG register, settings for 3-bus processors,

3-6
characters, control. See control characters.
COFF, standard, ix
COM command, 3-14
Common Object File Format. See COFF.
configuration, defaults for 3-bus processors,

3-6–3-7
constants

binary, 3-10
character, 3-10–3-12
decimal, 3-9
hexadecimal, 3-9
octal, 3-9

control characters, in sim29 for 3-bus
processors, 3-11

CPS register, settings for 3-bus processors,
3-7

D
DELTA command, 3-15–3-17
DELTAMEM command

for 2-bus processors, 4-6
for microcontrollers, 5-7

29K Family Simulators Reference ManualIndex-2

106

DELTAREG command
for 2-bus processors, 4-6
for microcontrollers, 5-7

documentation
chapter list, vi
conventions, x–xii
suggested reference material, vii–ix

DUMP command, 3-17
DUMPMEM command

for 2-bus processors, 4-6
for microcontrollers, 5-7

DUMPREG command
for 2-bus processors, 4-6
for microcontrollers, 5-7

E
endian orientation, in isstip, 1-6
error messages for sim29, A-1–A-7
event file

command list, for 3-bus processors, 3-13
constants, specifying for 3-bus

processors, 3-9–3-11
for 2-bus processors, 4-4–4-8
for 3-bus processors, 3-8–3-34
for microcontrollers, 5-5–5-9
overview for 2-bus processors, 4-4
overview for 3-bus processors, 3-8
overview for microcontrollers, 5-5
syntax for 2-bus processors, 4-5
syntax for 3-bus processors, 3-12
syntax for microcontrollers, 5-6

examples
isstip invocation, 1-8
sim29 invocation, 1-13–1-15

F
form-feed character, in event file, 3-11
FREQUENCY command

for 2-bus processors, 4-6
for microcontrollers, 5-7

H
halfword, definition of, x
HIF, standard, ix
Host Interface. See HIF.

I
IEEE standard, ix
input, sim29, 3-35–3-44
instruction set simulator. See isstip.
INTCLOCKMULT command

for 2-bus processors, 4-6
for microcontrollers, 5-7

isstip
example invocation, 1-8
example tutorial for MS-DOS, 2-2–2-4
example tutorial for UNIX, 2-5–2-7
example with mondfe, 2-1
invoking, 1-5–1-8
overview, 1-3
return codes, 1-2
syntax for command line, 1-6
UDI support, 1-3
users of, 1-3

isstip.exe file, 1-5

29K Family Simulators Reference Manual Index-3

107

L
LOG command, 3-19–3-22
LOGGING command

for 2-bus processors, 4-6
for microcontrollers, 5-7

LSB, definition of, x
LSW, definition of, x

M
memory model

access codes for DRAM, 3-27–3-29
access codes for IRAM, 3-25
access codes for IROM, 3-26
memory timing parameters, 3-29–3-32

memory modes
paged mode, 3-29
pipelined memory, 3-29
static column, 3-29

MSB, definition of, x
MSW, definition of, x

N
NaN, definition of, x
newline character, in event file, 3-11
NULL character, in event file, 3-11

O
ONERROR command, 3-22–3-24
operating system, interface for sim29,

6-1–6-2
osb00x file, 1-12
osb03x file, 1-12
osb050 file, 1-12

osb20x file, 1-12
osb24x file, 1-12
output, sim29, 3-35–3-44

P
PARALLELIN command, for

microcontrollers, 5-7
PARALLELOUT command, for

microcontrollers, 5-7

Q
QNaN, definition of, x
quote character

double, 3-11
single, 3-11

R
RAMBANK command

for 2-bus processors, 4-6
for microcontrollers, 5-7

RAMBREAD command, 4-6
RAMBURST command, 4-6
RAMBWRITE command, 4-6
RAMPAGE command

for 2-bus processors, 4-6
for microcontrollers, 5-8

RAMPPRECHARGE command, 4-7
RAMPREAD command

for 2-bus processors, 4-6
for microcontrollers, 5-8

RAMPRECHARGE command, 4-7
RAMPWRITE command

for 2-bus processors, 4-7
for microcontrollers, 5-8

29K Family Simulators Reference ManualIndex-4

108

RAMREAD command
for 2-bus processors, 4-6
for microcontrollers, 5-7

RAMREFRATE command
for 2-bus processors, 4-7
for microcontrollers, 5-8

RAMWIDTH command
for 2-bus processors, 4-7
for microcontrollers, 5-8

RAMWRITE command
for 2-bus processors, 4-6
for microcontrollers, 5-7

reference material, vii–ix
registers, initialization for sim29, 6-2
return character, in event file, 3-11
return codes, for simulators, 1-2
ROM program, default files, 1-7
ROMBANK command

for 2-bus processors, 4-7
for microcontrollers, 5-8

ROMBREAD command
for 2-bus processors, 4-7
for microcontrollers, 5-8

ROMBURST command
for 2-bus processors, 4-7
for microcontrollers, 5-8

ROMBWRITE command, 4-7
ROMPAGE command, 4-7
ROMPREAD command, 4-7
ROMPWRITE command, 4-7
ROMREAD command

for 2-bus processors, 4-7
for microcontrollers, 5-8

ROMWIDTH command
for 2-bus processors, 4-7
for microcontrollers, 5-8

ROMWRITE command
for 2-bus processors, 4-7
for microcontrollers, 5-8

S
search path, in sim29, 1-12
SERIALIN command, for microcontrollers,

5-8
SERIALOUT command, for

microcontrollers, 5-8
SET command, for 3-bus processors,

3-24–3-32
sim.out file

overview, 3-37
sample listing, 3-38–3-44

sim29
2-bus processor simulation, 4-1–4-8
3-bus processor simulation, 3-1–3-44
Am29000 simulation, 3-1–3-44
Am29005 simulation, 3-1–3-44
Am29030 simulation, 4-1–4-8
Am29035 simulation, 4-1–4-8
Am29040 simulation, 4-1–4-8
Am29050 simulation, 3-1–3-44
Am29200 simulation, 5-1–5-9
Am29205 simulation, 5-1–5-9
Am29240 simulation, 5-1–5-9
Am29243 simulation, 5-1–5-9
Am29245 simulation, 5-1–5-9
command list, for 2-bus microprocessors,

4-5
command list, for 3-bus microprocessors,

3-13
command list, for microcontrollers, 5-6
commands. See names of individual

commands.
error messages, A-1–A-7
example for 2-bus processors, 4-3
examples for 3-bus processors, 3-4–3-6
examples for microcontrollers, 5-4
examples of syntax, 1-13–1-15

29K Family Simulators Reference Manual Index-5

109

input and output for 3-bus processors,
3-35–3-37

invoking, 1-9–1-14
microcontroller simulation, 5-1–5-9
OS interface, 6-1–6-2
overview, 1-4
register initialization, 6-2
return codes, 1-2
sim.out file, 3-37
syntax for 2-bus processors, 4-2–4-4
syntax for 3-bus processors, 3-2–3-5
syntax for all processors, 1-9
syntax for microcontrollers, 5-2–5-4
trap interface, 6-2
UDI support, 1-4
users of, 1-3

simulators
See also isstip, sim29.
documentation, vi
overview, 1-3–1-4
processors supported, 1-3
standards complying with, ix

standards, ix
STOP command, 3-33

for 2-bus processors, 4-7
for microcontrollers, 5-8

T
tab character

horizontal, 3-11
vertical, 3-11

TITLE command, 3-34
trap interface, 6-2

U
UDI

configuration file, 1-5
standard, ix

Universal Debugger Interface. See UDI.

W
word, definition of, x

	Contents
	About the 29K Family Simulators
	Product Documentation
	About This Manual
	Suggested Reference Material

	Standards and Conventions
	Standards
	Conventions

	Using the Simulators
	Using the 29K Family Simulators
	isstip
	sim29

	Invoking isstip
	Invoking sim29

	ISSTIP Example
	Example Tutorial For MS-DOS Hosts
	Example Tutorial For UNIX Hosts

	29K Family Three-Bus Processor Architecture Simulation
	Simulator Command-Line Syntax
	Default Configuration
	The Event File
	Specifying Constants in the Event File
	Event File Syntax
	COM — Simulator Comment
	DELTA — Enable Delta Monitor
	DUMP — Dump to Output
	LOG — Enable Log File
	ONERROR — Specify Error Action
	SET — Set Simulator Configuration
	STOP — End Simulation
	TITLE — Set Simulation Title

	Simulator I/O
	Input and Output
	The sim.out File
	Sample sim.out Listing

	29K Family Two-Bus Processor Architecture Simulation
	Simulator Command-Line Syntax
	The Event File

	29K Family Microcontroller Architecture Simulation
	Simulator Command-Line Syntax
	The Event File

	SIM29 OS Interface
	Register Initialization
	Trap Interface

	Error Messages
	Index

