
�

Processor Initialization
and Run-Time Services

OSBOOT

�

Processor Initialization and Run-Time Services: OSBOOT, Release 3.3

� 1991–1995 by Advanced Micro Devices, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Advanced
Micro Devices, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the Rights in
Technical Data and Computer Software clause at 252.227–7013. Advanced Micro Devices, Inc., 5204 E. Ben White Blvd.,
Austin, TX 78741–7399.

29K, Am29005, Am29030, Am29035, Am29040, Am29050, Am29200, Am29205, Am29240, Am29243, Am29245,
MiniMON29K and XRAY29K are trademarks of Advanced Micro Devices, Inc.
AMD and Am29000 are registered trademarks of Advanced Micro Devices, Inc.
High C is a registered trademark of MetaWare, Inc.
Other product or brand names are used solely for identification and may be the trademarks or registered trademarks of their
respective companies.

The text pages of this document have been printed on recycled paper consisting of 50% recycled fiber and 50%
virgin fiber; the post-consumer waste content is 10%. These pages are recyclable.

Advanced Micro Devices, Inc.
5204 E. Ben White Blvd.
Austin, TX 78741–7399

Processor Initialization and Run-Time Services: OSBOOT i

3

Contents

About OSBOOT
OSBOOT Documentation viii.

About This Manual viii.

Suggested Reference Material x.

Standards and Conventions xi.

Standards xi.

Conventions xii.

Chapter 1

Overview of OSBOOT
The Bootstrap Module 1-2.

The Kernel 1-2.

MiniMON29K� and OSBOOT 1-3.

About DBG_CORE 1-3.

About MONTIP 1-3.

The OSBOOT/DBG_CORE/MONTIP/DFE Environment 1-4.

Chapter 2

Using OSBOOT
OSBOOT/Simulator Model 2-2.

OSBOOT/DBG_CORE Model 2-3.

ii Processor Initialization and Run-Time Services: OSBOOT

4

Stand-Alone OSBOOT/Application Model 2-5.

Stand-Alone OSBOOT/DBG_CORE/Application Model 2-6.

Chapter 3

OSBOOT Directory and File Organization
The boot Subdirectory 3-4.

The traps Subdirectory 3-6.

Chapter 4

OSBOOT Bootstrap Module
OSBOOT Global Register Usage 4-2.

OS Start-Up and WARN Trap Handler 4-4.

OS Cold Start 4-6.

Processor Initialization 4-8.

Memory Configuration 4-13.

Data Segments Initialization 4-16.

System Initialization 4-18.

Communications Initialization 4-21.

Chapter 5

OSBOOT Trap Handlers
Protection Violation Trap Handler 5-2.

Unaligned Access Trap Handler 5-4.

Arithmetic Trap Handlers 5-7.

Chapter 6

HIF Run-Time Services
HIF Kernel Start-Up Module 6-2.

Run-Time Environment 6-5.

Processor Initialization and Run-Time Services: OSBOOT iii

5

Register Stack and Memory Stack Arrangement 6-8.

HIF Services 6-9.

Host HIF Services 6-11.

Stand-Alone OSBOOT/Application Model 6-11.

OSBOOT/Simulator Model 6-11.

OSBOOT/DBG_CORE Model and Stand-Alone
OSBOOT/DBG_CORE/Application Model 6-12.

DBG_CORE Message System Interface 6-14.

How the MiniMON29K Messages are Used 6-15.

Implementation of os_V_msg Message Interrupt Handler 6-20.

Implementation of Message Communications in HIF Kernel 6-21.

Chapter 7

Building OSBOOT or OSBOOT/DBG_CORE
Building OSBOOT for Simulators 7-4.

MS-DOS 7-5.

UNIX 7-6.

Building OSBOOT/DBG_CORE for Target Hardware Platforms 7-8.

MS-DOS 7-9.

UNIX 7-11.

Building OSBOOT for Stand-Alone Systems 7-14.

Building a Relocatable Version of OSBOOT 7-14.

Building a Relocatable Version of OSBOOT/DBG_CORE 7-16.

Building a Stand-Alone System 7-18.

OSBOOT Configuration 7-21.

Sample Linker Command File 7-25.

iv Processor Initialization and Run-Time Services: OSBOOT

6

Appendix A

Examples
Building the Stand-Alone OSBOOT/Application Model for the SE29240
Evaluation Board A-2.

Building the Stand-Alone OSBOOT/DBG_CORE/ Application Model
for the SE29040 Evaluation Board A-4.

Building the OSBOOT/Application Model to Transfer from
ROM to SRAM A-6.

Building the OSBOOT/Application Model to Transfer from
ROM to DRAM A-9.

Building OSBOOT/DBG_CORE for a System Without DRAM A-11.

Appendix B

Using the HIF IOCTL Service for Non-Blocking Reads
The Problem B-1.

The Solution B-2.

Suggested Reference B-5.

Appendix C

Defining a Trap to Switch to Supervisor Mode
Switching to Supervisor Mode C-2.

Remaining in Supervisor Mode C-2.

Example Code C-2.

Index

Processor Initialization and Run-Time Services: OSBOOT v

7

Figures and Tables

Figures
Figure 1-1. MiniMON29K Software Components 1-1.

Figure 2-1. OSBOOT/Simulator Model 2-2.

Figure 2-2. OSBOOT/DBG_CORE Model 2-4.

Figure 2-3. Stand-Alone OSBOOT/Application Model 2-5.

Figure 2-4. Stand-Alone OSBOOT/DBG_CORE/Application Model 2-6.

Figure 3-1. OSBOOT Directory and File Organization 3-3.

Figure 4-1. OSBOOT Bootstrap Module 4-1.

Figure 4-2. Processor Initialization 4-8.

Figure 4-3. Memory Configuration 4-13.

Figure 4-4. Data Segments Initialization 4-16.

Figure 4-5. System Initialization 4-18.

Figure 4-6. Communications Initialization 4-21.

Figure 6-1. HIF Kernel Start-Up Module 6-2.

Figure 6-2. Register Stack and Memory Stack Arrangement 6-8.

Figure 6-3. HIF Services Module 6-9.

Figure 6-4. OSBOOT/DBG_CORE Model and MONTIP 6-13.

Figure 7-1. OSBOOT Directory and File Organization 7-3.

Figure 7-2. Subdirectory for Simulator Versions of OSBOOT 7-4.

Figure 7-3. Naming Conventions for OSBOOT/DBG_CORE Files 7-8.

Tables
Table 0-1. Notational Conventions xiii.

Table 3-1. OSBOOT Linker Command Files 3-2.

Table 3-2. OSBOOT Source Files under boot Subdirectory 3-4.

Table 3-3. Arithmetic Trap Handler Source Files 3-7.

vi Processor Initialization and Run-Time Services: OSBOOT

8

Table 4-1. Register Definitions 4-2.

Table 4-2. Processor PRL Fields 4-10.

Table 5-1. Special Virtual Registers 5-2.

Table 5-2. Unique Protection Violation Trap Handlers 5-3.

Table 5-3. Option (OPT) Bit Definitions 5-4.

Table 5-4. Unaligned Access Combinations 5-4.

Table 5-5. Unaligned Access Unique Handlers 5-6.

Table 6-1. Registers and Symbolic Names for Run-Time Information 6-5. . .

Table 6-2. Run-Time Setup Data 6-6.

Table 7-1. OSBOOT for Simulators 7-1.

Table 7-2. Sample OSBOOT Configurations 7-2.

Table 7-3. Linker Command Files for Simulator Versions of
OSBOOT 7-5.

Table 7-4. Linker Command Filenames for Supported Targets 7-22.

Table 7-5. Configuration Parameters 7-23.

Table 7-6. Configuration Parameters 7-24.

Table 7-7. Configuration Parameters 7-25.

Processor Initialization and Run-Time Services: OSBOOT vii

9

About OSBOOT

The Advanced Micro Devices (AMD�) osboot software contains the bootstrap
module for the 29K� Family of processors. The arithmetic instruction
emulation routines for certain 29K Family instructions are part of the bootstrap
module. osboot also includes a small kernel, called the HIF kernel, that provides
the run-time support for application programs written in high-level languages. In
addition, osboot isolates the processor dependencies from the application
programs, offering a considerable decrease in design time for the developer.

osboot is ported to work with the AMD MiniMON29K� debugger core,
dbg_core. This manual describes the interactions between osboot and
dbg_core.

osboot is used as the bootstrap program by the architectural simulator, sim29,
and the instruction set simulator, isstip, in the AMD High C� 29K� and
MiniMON29K Software Development Kit.

This chapter provides an overview of the contents of the osboot documentation
and describes the formatting conventions used within it.

viii Processor Initialization and Run-Time Services: OSBOOT

10

OSBOOT Documentation
This documentation is written for advanced programmers using osboot to
develop applications for the 29K Family of microprocessors and
microcontrollers. For more information on these microprocessors and
microcontrollers, see the list of suggested reference materials that follows.

About This Manual

Chapter 1: “Overview of OSBOOT” describes the major components of the
osboot software and how it can be used to debug application programs using
29K Family microprocessors.

Chapter 2: “Using OSBOOT” describes the different ways osboot can be used.
Models are used to show the various roles that osboot can play.

Chapter 3: “OSBOOT Directory and File Organization” describes the files used
to make osboot and the directories in which they reside.

Chapter 4: “OSBOOT Bootstrap Module” describes the steps performed by the
initialization module.

Chapter 5: “OSBOOT Trap Handlers” describes the Protection Violation,
Unaligned Access, and Floating-Point Arithmetic Trap Handlers.

Chapter 6: “HIF Run-Time Services” describes the functions provided by the
osboot HIF kernel, the run-time register and memory stack arrangements, and
the implementations of the HIF services. The implementation of the HIF
services is described in the context of the three models of osboot usage.

Chapter 7: “Building OSBOOT or OSBOOT/DBG_CORE” describes the steps
involved in building osboot for simulators and the MiniMON29K debugger
core, dbg_core. Both MS-DOS and UNIX environments are discussed. The
chapter also describes the configurable link-time parameters of osboot.

Appendix A: “Examples” provides several examples of common test models
using the osboot software, both with and without dbg_core.

Processor Initialization and Run-Time Services: OSBOOT ix

11

Appendix B: “Using the HIF IOCTL Service for Non-Blocking Reads” provides
an example of how a non-blocking read can be used to create an interactive
menu that allows subsequent processing to continue while waiting for user input.

Appendix C: “Defining a Trap to Switch to Supervisor Mode” describes how to
place a 29K Family microprocessor or microcontroller in supervisor mode.

“Index” provides an index to the manual.

x Processor Initialization and Run-Time Services: OSBOOT

12

Suggested Reference Material
The following reference documents may be of use to the osboot user:

� Programming the 29K� RISC Family
by Daniel Mann, P T R Prentice-Hall, Inc. 1994.

� Am29000� and Am29005� User’s Manual and Data Sheet
Advanced Micro Devices, order number 16914.

� Am29030� and Am29035� Microprocessors User’s Manual and Data Sheet
Advanced Micro Devices, order number 15723.

� Am29040� Microprocessor Data Sheet
Advanced Micro Devices, order number 18459.

� Am29040� Microprocessor User’s Manual
Advanced Micro Devices, order number 18458.

� Am29050� Microprocessor Data Sheet
Advanced Micro Devices, order number 15039.

� Am29050� Microprocessor User’s Manual
Advanced Micro Devices, order number 14778.

� Am29200� and Am29205� RISC Microcontrollers Data Sheet
Advanced Micro Devices, order number 16361.

� Am29200� and Am29205� RISC Microcontrollers User’s Manual
Advanced Micro Devices, order number 16362.

� Am29240�, Am29245�, and Am29243� RISC Microcontrollers Data Sheet
Advanced Micro Devices, order number 17787.

� Am29240�, Am29245�, and Am29243� RISC Microcontrollers User’s Manual
Advanced Micro Devices, order number 17741.

� Harbison, Samuel P. and Guy L. Steele, Jr.: C: A Reference Manual, Second
Edition, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1987.

� Host Interface (HIF) Specification
Advanced Micro Devices, order number 11539.

Processor Initialization and Run-Time Services: OSBOOT xi

13

Standards and Conventions

Standards

This product complies with the following standards:

� ANSI C: American National Standards Institute C

Conforms to the ANSI-approved document “Programming Language C,”
document X3.159, 1989.

� COFF: AMD Common Object File Format

Conforms to the AMD-augmented version of AT&T COFF, as described in
the AMD Common Object File Format (COFF) Specification.

� HIF: AMD Host Interface

Conforms to the AMD Host Interface (HIF) Specification.

� IEEE 754, 1985

Conforms to the IEEE-approved standard for binary floating-point arithmetic.

� UDI: AMD Universal Debugger Interface

Conforms to the AMD Universal Debugger Interface (UDI) Specification.

xii Processor Initialization and Run-Time Services: OSBOOT

14

Conventions

� UNIX pathnames use a forward slash (/) to separate directories, while
MS-DOS pathnames use a backslash (\). For brevity, only the DOS backslash
is used when specifying pathnames. In some cases, code examples are
specified as either for UNIX or MS-DOS environments and the correct slash
is used.

� The following abbreviations may be used in this manual:

– LSB least significant bit

– LSW least significant word

– MSB most significant bit

– MSW most significant word

– NaN not a number

– QNaN quiet not a number

� In this manual, a data word signifies a 32-bit entity; a data halfword signifies
a 16-bit entity.

� This manual uses the notational conventions shown in Table 0-1 (unless
otherwise noted). These same conventions are used in all the 29K Family
support products manuals.

Processor Initialization and Run-Time Services: OSBOOT xiii

15

Table 0-1. Notational Conventions

Symbol Usage

Boldface Indicates that characters must be entered exactly as
shown. The alphabetic case is significant only when
indicated.

Italic Indicates a descriptive term to be replaced with a
user-specified term.

Typewriter face Indicates computer text input or output in an
example or listing.

[] Encloses an optional argument. To include the
information described within the brackets, type
only the arguments, not the brackets themselves.

{ } Encloses a required argument. To include the
information described within the braces, type only
the arguments, not the braces themselves.

.. Indicates an inclusive range.

... Indicates that a term can be repeated.

| Separates alternate choices in a list—only one of
the choices can be entered.

:= Indicates that the terms on either side of the sign
are equivalent.

Processor Initialization and Run-Time Services: OSBOOT 1-1

16

Chapter 1

Overview of OSBOOT

AMD’s osboot software, developed for the 29K Family of RISC
microprocessors and microcontrollers, is a bootstrap program that resides in the
ROM or instruction space of a 29K Family microprocessor target system.
osboot’s main function is to control the execution states of the 29K Family
microprocessor or microcontroller based on different hardware configurations.
When a target system is reset, the microprocessor begins to fetch instructions
from the osboot module in order to perform the target’s initialization process.

There are two major components in the osboot module: a configurable bootstrap
module and a small kernel for application programs. Each is described in this
chapter. In addition, this chapter describes how osboot works with dbg_core and
montip. Figure 1-1 illustrates the role of osboot in the High C 29K and
MiniMON29K Software Development Kit.

U
S
E
R

MiniMON29K
Message

Communications
Interface

UDI

Host Computer System(s) 29K Target System

User’s Application

OSBOOT (Bootstrap
Module and Kernel)

MiniMON29K
Target Debugger

DBG_CORE

MiniMON29K
mondfe

MiniMON29K
montip

Figure 1-1. MiniMON29K Software Components

1-2 Processor Initialization and Run-Time Services: OSBOOT

17

The Bootstrap Module

The bootstrap module of osboot provides the processor start-up functions, the
optional floating-point emulation routines, the routines used to configure
external memory dynamically, and the routines that provide for the RESET of
any external or internal hardware that needs to be reset. These functions take
control of the processor upon reset and perform the necessary tasks to initialize
the target system to a defined state. The process of initializing the system at
processor reset is called the bootstrap process or the cold start process. The
bootstrap module must be loaded at offset 0x0 (zero) in the ROM address space
or at offset 0x0 (zero) in the instruction address space from which the processor
initiates its first instruction fetch.

Certain arithmetic instructions (mostly floating-point operations) of the 29K
Family instruction set are not supported directly in the hardware of some
members of the 29K Family. These instructions cause a trap when they are
executed, and are emulated by the software trap routines. For more information
on the trapped operations, see the “OSBOOT Trap Handlers” chapter.

The Kernel

The kernel takes control after the completion of the bootstrap process. It creates
a single-threaded operating system environment in which programs can execute.
It provides run-time support for application programs, especially for those
written in high-level languages. In providing this support, the kernel implements
the processor-specific services defined in AMD’s Host Interface (HIF)
Specification (as opposed to file and I/O services). Processor-specific services
are those services with a task/request number over 256. Hence, this kernel is
called the HIF kernel of osboot.

Processor Initialization and Run-Time Services: OSBOOT 1-3

18

MiniMON29K and OSBOOT
AMD’s MiniMON29K software provides a means of debugging and testing 29K
Family microprocessor application programs. The two major sections of the
MiniMON29K software discussed in this manual are the debug core module
(dbg_core) and the MiniMON29K target interface process (montip). osboot
provides a simple operating system that can be linked with dbg_core to provide
an environment to develop, execute, and debug embedded applications based on
29K Family microcontroller or microprocessor targets. The following sections
provide an overview of this environment.

About DBG_CORE

dbg_core is the target-resident debugger module of the MiniMON29K product.
“Target-resident” means that dbg_core resides on the target hardware. Linking
osboot with dbg_core creates an environment in which the programmer can
develop, execute, and debug 29K Family microprocessor embedded applications
on the target itself.

About MONTIP

montip is the host-resident debugger module of the MiniMON29K product.
“Host-resident” means that montip resides on a PC or UNIX workstation (rather
than the target hardware). montip and dbg_core share a common message
system and can understand each other’s communications. The communication
system used by montip is media-independent, but has been implemented to
support serial ports and parallel ports.

montip is implemented according to AMD’s Universal Debugger Interface
(UDI) specification. To use montip for debugging, it must be connected to a
UDI-compliant Debugger Front End (DFE). DFEs provide the user interface for
the debugging process. Because of the UDI standard, the DFE is isolated from
the execution vehicle. In this way, the same debug tools can be used with a
software target, emulator, or monitor. UDI-compliant DFEs currently available
include mondfe (provided with the MiniMON29K product), XRAY29K�,
UDB�, and gdb. Other DFEs are currently in development.

1-4 Processor Initialization and Run-Time Services: OSBOOT

19

The OSBOOT/DBG_CORE/MONTIP/DFE Environment

Within the MiniMON29K product, osboot is linked with dbg_core to provide an
environment to develop, execute, and debug embedded applications on targets
based on 29K Family microprocessors. The following example (illustrated in
Figure 1-1 on page 1-1) provides a high-level overview of the interactions
between osboot, dbg_core, montip, and the DFE during the debugging process.
In Figure 1-1, mondfe is used as the DFE. A more thorough example is provided
in the “Using OSBOOT” chapter.

Suppose a user wants to view the contents of a register on the target’s 29K
Family microprocessor. Using a UDI-compliant DFE on the host computer
system, the user requests the contents of a register on the 29K Family target.
This request is passed via UDI to montip (still on the host computer system).
Upon receiving the request from the DFE, montip passes the request via
MiniMON29K messages on to the dbg_core module on the target. In turn, the
dbg_core module communicates with osboot through the debug channel to
retrieve the results of the request. The results are passed back to the user’s DFE
by reversing the process. Executing a program or setting a breakpoint from the
DFE is done in a similar manner.

The advantage of separating UDI and MiniMON29K messages is that UDI
messages can travel over (for example) an Ethernet network (local- or
wide-area), while MiniMON29K messages travel over a serial link (or parallel
link or shared memory) to the target board. This flexibility allows
communications to take place over the most convenient available media.

Processor Initialization and Run-Time Services: OSBOOT 2-1

20

Chapter 2

Using OSBOOT

The osboot software is used as the bootstrap program by the architectural
simulator, sim29, and the instruction set simulator, isstip, of AMD’s High C 29K
and MiniMON29K Software Development Kit. osboot is also a simple operating
system which is ported to the MiniMON29K debugger core, dbg_core. The
design of osboot is such that all or portions of it can be linked with application
programs to produce stand-alone systems.

The following sections briefly discuss several models using the osboot software:

� OSBOOT/Simulator Model on page 2-2

� OSBOOT/DBG_CORE Model on page 2-3

� Stand-Alone OSBOOT/Application Model on page 2-5

� Stand-Alone OSBOOT/DBG_CORE/Application Model on page 2-6

2-2 Processor Initialization and Run-Time Services: OSBOOT

21

OSBOOT/Simulator Model
The simplest implementation among those described in this chapter is the
OSBOOT/Simulator Model, shown in Figure 2-1. Because a simulator is a
software target (that is, no actual hardware is involved), osboot uses a
stripped-down version of the bootstrap module. In the model shown in
Figure 2-1, osboot neither implements routines to configure external memory
dynamically, nor does it initialize the external communications interface. In this
model, when the application program requests an I/O service, the simulator
intercepts the I/O requests to the HIF kernel and performs the necessary
operations using the services of its host operating system.

AMD provides two different simulators: the 29K Family architectural simulator
(sim29, which provides timing and statistical information about the application),
and the target interface process instruction set simulator (isstip, which runs the
program without timing or statistical information). “Building OSBOOT for
Simulators,” on page 7-4, discusses how to build the osboot module for
simulators.

 HIF
 Start-up

 HIF
 Services

Kernel
Space

User
Space

 SIMULATOR

I/O Related
Services

Other HIF
Services

 OS
 Cold Start

RESET

_ _os_coldstart

_ _hif_startup

_ _hif_kernel_trap

A
P
P
L
I
C
A
T
I
O
N

H
I
F

Figure 2-1. OSBOOT/Simulator Model

Processor Initialization and Run-Time Services: OSBOOT 2-3

22

OSBOOT/DBG_CORE Model
In the OSBOOT/DBG_CORE model shown in Figure 2-2, osboot is linked with
the MiniMON29K debugger core, dbg_core, to provide an environment to
debug, develop, and execute embedded applications on targets based on the
29K Family microprocessors.

Figure 2-2 shows the osboot bootstrap module as modified to initialize the
dbg_core message system and to install the trap handlers provided by dbg_core.
After the completion of the bootstrap process, the bootstrap module transfers
control temporarily to dbg_core to initialize the debug core by calling the
dbg_control() function inside dbg_core.

The HIF kernel of osboot is invoked when the call to the dbg_control() function
returns control to osboot. The dbg_control() function returns the application
program information in general purpose registers gr96 through gr103. The HIF
kernel uses the return values and prepares an operating environment for the
application program.

As shown in Figure 2-2, the HIF kernel performs the I/O operations requested by
the application program using the dbg_core message system. It sends a
UDI-compliant MiniMON29K message to the MiniMON29K target interface
process, montip, over a communication interface (such as a serial interface or
shared memory). The message is received by montip and is processed on an
intelligent host. montip sends a MiniMON29K message back to the HIF kernel
that contains the results of the I/O operation. Refer to the “HIF Run-Time
Services” chapter for a more detailed explanation.

In this model (shown in Figure 2-2), the osboot and dbg_core modules reside in
the ROM units of the target. The program to be tested and debugged is
downloaded to the RAM units of the target. To test and debug an application
program in this manner requires that the target hardware meet the following
minimum requirements:

� There must be a communication channel between the montip host and the
target. A PC-hosted montip supports both serial and parallel interfaces. A
UNIX workstation-hosted montip supports only serial interfaces.

� The ROM unit of the target must have at least 64 Kbyte of memory.

� The RAM units of the target must have at least 16 Kbyte of memory.

“Building OSBOOT/DBG_CORE for Hardware Platforms” on page 7-8
describes how to build the OSBOOT/DBG_CORE model.

2-4 Processor Initialization and Run-Time Services: OSBOOT

23

HIF
Start-up

HIF
Services

 H
 I
 F

A
P
P
L
I
C
A
T
I
O
N

_ _hif_kernel_trap

Kernel
Space

User
Space

Communications
Drivers

MiniMON29K
Message

Communications
Interface

(UDI–compliant)

Message
System

Debugger
Core

Config
Module

I/O Related
Services

Other HIF
Services

OS
Cold Start

DBG_CORE

RESET

msg_send(char*)

_ _os_coldstart _ _hif_startup

_msg_init

dbg_control(int,OSconfig_t*)

Figure 2-2. OSBOOT/DBG_CORE Model

Processor Initialization and Run-Time Services: OSBOOT 2-5

24

Stand-Alone OSBOOT/Application Model
In the Stand-Alone OSBOOT/Application Model shown in Figure 2-3, the
application program is linked with osboot and executed from the ROM memory
space on the target system. Program information such as entry point, stack
requirements, and execution mode must be provided at compile time. The HIF
kernel requires this information to establish an operating environment for the
application. In this model, the HIF kernel uses its own communications drivers
or those provided by the application program to perform the I/O operations. The
shaded boxes shown in Figure 2-3 represent the modules specific to the
stand-alone osboot software.

This model is usually used in the final stages of testing, when the target
hardware and the application software are fully debugged and ready to be
released.

 HIF
 Start-up

 HIF
 Services

Kernel
Space

User
Space

Communications
 Drivers

I/O Related
Services

Other HIF
Services

 OS
 Cold Start

RESET

_ _os_coldstart

_ _hif_startup

_hif_kernel_trap

H
I
F

A
P
P
L
I
C
A
T
 I
O
N

Kernel I/O
 Module

__kread
__kwrite

Ext. I/F __intr_flag
__putchar_table
__recvbuf_table

Figure 2-3. Stand-Alone OSBOOT/Application Model

2-6 Processor Initialization and Run-Time Services: OSBOOT

25

Stand-Alone
OSBOOT/DBG_CORE/Application Model

The Stand-Alone OSBOOT/DBG_CORE/Application Model (shown in
Figure 2-4) provides the same functionality included in the Stand-Alone
OSBOOT/Application Model (described previously), with the addition of the
debugging and testing capabilities provided by the MiniMON29K software’s
dbg_core module.

HIF
Services

 H
 I
 F

A
P
P
L
I
C
A
T
I
O
N

Kernel
Space

User
Space

Communications
Drivers

MiniMON29K
Message

Communications
Interface (UDI–compliant)

Message
System

Debugger
Core

Config
Module

I/O Related
Services

Other HIF
Services

DBG_CORE

montip

Figure 2-4. Stand-Alone OSBOOT/DBG_CORE/Application Model

In this model, the application program is linked with the osboot/dbg_core
module and executed from ROM memory space on the target hardware. As
shown in Figure 2-4, the HIF kernel performs the I/O operations requested by
the application program using the dbg_core message system. It sends a
UDI-compliant MiniMON29K message to the MiniMON29K target interface
process, montip, over a communication interface (such as a serial interface, or
shared memory). The message is received by montip and is processed on an
intelligent host. montip sends a MiniMON29K message that contains the results
of the I/O operation back to the HIF kernel. Refer to the “HIF Run-Time
Services” chapter for a more detailed explanation.

Processor Initialization and Run-Time Services: OSBOOT 3-1

26

Chapter 3

OSBOOT Directory and File
Organization

The complete osboot source code is provided for educational and customization
purposes. However, porting osboot to new targets often only requires that
changes be made to the linker command file – no changes need to be made to
source files.

The sources of osboot are located in the 29k\src\osboot directory of the AMD
tree structure. This is the top-level directory of the osboot sources.-Figure 3-1 on
page 3-3 shows the files in the osboot directory.

The 29k\src\osboot directory contains the following make files and MS-DOS
batch files:

� UNIX make files:

– makefile.os to build osboot for simulators or to build a relocatable osboot
module to link with a stand-alone debugged application

– makefile.mon to build osboot/dbg_core for debugging applications

� MS-DOS batch files:

– makeosb.bat to build osboot for simulators or to build a relocatable
osboot module to link with a debugged stand-alone application

– makemon.bat to build osboot/dbg_core for debugging applications

The linker command files used by the make files and MS-DOS batch files to
produce relocatable objects and absolute images of osboot and osboot/dbg_core
for different targets are shown in Table 3-1.

The linker command filename extensions have the following meanings:

� .inc files produce relocatable osboot

� .mon files produce a relocatable image of osboot for linking with dbg_core

� .lnk files produce absolute objects of osboot or osboot/dbg_core

3-2 Processor Initialization and Run-Time Services: OSBOOT

27

The 29k\src\osboot directory contains two subdirectories, boot and traps,
which are explained in the sections starting on pages 3-4 and 3-6, respectively.

Table 3-1. OSBOOT Linker Command Files

Target Name Linker Command File

Relocatable
osboot

Absolute Relocatable
osboot–

dbg_core

AMD’s EB29030 eb29030.inc eb29030.lnk eb29030.mon

AMD’s EB29K eb29k.inc eb29k.lnk eb29k.mon

AMD’s EZ030 ez030.inc ez030.lnk ez030.mon

Laser29K-030 board la29030.inc la29030.lnk la29030.mon

Laser29K-200 board la29200.inc la29200.lnk la29200.mon

YARC’s ATM sprinter lcb29k.inc lcb29k.lnk lcb29k.mon

Netrom netrom.inc netrom.lnk netrom.mon

AMD’s PCEB29K pceb.inc pceb.lnk pceb.mon

AMD’s SA29030 sa29030.inc sa29030.lnk sa29030.mon

AMD’s SA29200 sa29200.inc sa29200.lnk sa29200.mon

AMD’s SA29205 sa29200.inc sa29200.lnk sa29200.mon

AMD’s SE29240 sa29240.inc sa29240.lnk sa29240.mon

AMD’s SE29040 se29040.inc se29040.lnk se29040.mon

STEP’s STEB29K steb.inc steb.lnk steb.mon

YARC’s Rev 8 yarcrev8.inc yarcrev8.lnk yarcrev8.mon

Instruction Set Simulator
(isstip) or Architectural Sim

sim.inc
sim245 inc

sim00x.lnk
(isstip) or Architectural Sim-
ulator (sim29)

sim245.inc sim03x.lnk
ulator (sim29)

sim050.lnk

sim20x.lnk

sim24x.lnk

NOTE: Some of these boards are no longer available commercially, but are still
in use. Note also that the names of some boards’ linker command files do not
correspond directly to the board’s name.

���Processor Initialization and Run-Time Services: OSBOOT

D
ire

ct
or

y
an

d
F

ile
 O

rg
an

iz
at

io
n

tr
ap

s/
bo

ot
/

os
bo

ot
/

au
til

s.
s

co
ld

st
rt

.s
eb

03
0h

w
.s

eb
29

kh
w

.s
ez

03
0h

w
.s

ge
nt

ra
ps

.s
he

ap
ba

se
.s

hi
f.s

hi
fs

er
v.

s
ho

st
hi

f.s
ki

o.
s

la
03

0h
w

.s
la

20
0h

w
.s

lc
b2

9k
hw

.s
m

em
or

y.
s

m
sg

io
.s

p_
ic

eh
w

.s
pc

eb
hw

.s
pr

oc
in

it.
s

re
gi

st
er

.s
ro

m
co

ff.
s

sa
03

0h
w

.s

sa
20

0h
w

.s
sc

c2
00

.s
sc

c8
53

0.
s

se
04

0h
w

.s
si

m
.s

si
m

24
5.

s
si

m
tr

ap
s.

s
st

ar
tu

p.
s

st
eb

hw
.s

sy
si

ni
t.s

tlb
24

x.
s

tlb
tr

ap
s.

s
ua

tr
ap

.s
yr

ev
8h

w
.s

cu
til

s.
c

fla
sh

32
.c

fla
sh

8.
c

fp
in

it.
c

hi
fv

ec
t.c

in
it2

4x
.c

si
ze

m
em

.c

eq
ua

te
s.

ah
fp

fix
up

.a
h

hi
f.a

h
hi

fs
er

v.
ah

in
tr.

ah
m

ac
ro

s.
ah

re
gi

st
er

.a
h

ro
m

co
ff.

ah
sc

c2
00

.a
h

sc
c8

53
0.

ah
st

at
s.

ah
st

da
lo

ne
.a

h
tr

ap
s.

ah

da
te

.h
pr

lin
fo

.h
st

at
s.

h
sy

m
tb

l.h
ve

ct
or

s.
h

m
ak

ef
ile

.o
s

m
ak

ef
ile

.m
on

m
ak

eo
sb

.b
at

m
ak

em
on

.b
at

eb
29

03
0.

in
c

eb
29

k.
in

c
ez

03
0.

in
c

la
29

03
0.

in
c

la
29

20
0.

in
c

lc
b2

9k
.in

c
ne

tr
om

.in
c

pc
eb

.in
c

pr
om

ic
e.

in
c

sa
29

03
0.

in
c

sa
29

20
0.

in
c

sa
29

24
0.

in
c

se
29

04
0.

in
c

st
eb

.in
c

tr
u.

in
c

tr
ud

16
.in

c
ya

rc
re

v8
.in

c
si

m
.in

c
si

m
24

5.
in

c

eb
29

03
0.

ln
k

eb
29

k.
ln

k
ez

03
0.

ln
k

la
29

03
0.

ln
k

la
29

20
0.

ln
k

lc
b2

9k
.ln

k
ne

tr
om

.ln
k

pc
eb

.ln
k

pr
om

ic
e.

ln
k

sa
29

03
0.

ln
k

sa
29

20
0.

ln
k

sa
29

24
0.

ln
k

se
29

04
0.

ln
k

st
eb

.ln
k

tr
u.

ln
k

tr
ud

16
.ln

k
ta

rc
re

v8
.ln

k
si

m
00

x.
ln

k
si

m
03

x.
ln

k
si

m
05

0.
ln

k
si

m
20

x.
ln

k
si

m
24

x.
ln

k

eb
29

03
0.

m
on

eb
29

k.
m

on
ez

03
0.

m
on

la
29

03
0.

m
on

la
29

20
0.

m
on

lc
b2

9k
.m

on
ne

tr
om

.m
on

pc
eb

.m
on

pr
om

ic
e.

m
on

sa
29

03
0.

m
on

sa
29

20
0.

m
on

sa
29

24
0.

m
on

se
29

04
0.

m
on

st
eb

.m
on

tr
u.

m
on

tr
ud

16
.m

on
ta

rc
re

v8
.m

on

re
ad

m
e.

os
b

m
ak

ef
ile

m
ak

ep
c.

ba
t

tr
_c

la
ss

.s
tr

_c
nv

t.s
tr

_c
om

p.
s

tr
_d

ad
d.

s
tr

_d
di

v.
s

tr
_d

iv
4.

s
tr

_d
m

ul
.s

tr
_d

rn
d.

s
tr

_e
xc

p.
s

tr
_f

ad
d.

s
tr

_f
di

v.
s

tr
_f

dm
ul

.s
tr

_f
m

ul
.s

tr
_f

rn
d.

s

tr
_m

ld
v.

s
tr

_p
vs

pr
.s

tr
_s

qr
t.s

tr
_d

ec
l.h

dm
ul

.s
fd

m
ul

.s
fm

ul
.s

fp
ei

ni
t.c

ua
tr

ap
.s

F
ig

ur
e

3-
1.

 O
S

B
O

O
T

 D
ire

ct
or

y
an

d
F

ile
 O

rg
an

iz
at

io
n

3-4 Processor Initialization and Run-Time Services: OSBOOT

��

The boot Subdirectory
The boot subdirectory contains the source files that implement the bootstrap
module and the HIF kernel of osboot.

The filename extensions of the source files in the 29k/src/osboot/boot directory
are explained below:

� .s indicates assembly language functions

� .ah indicates assembler header files

� .c indicates C functions

� .h indicates C header files

Table 3-2 lists the source files in the boot subdirectory and the function(s) that
they implement.

Table 3-2. OSBOOT Source Files under boot Subdirectory

Source
Filename

Function Name(s)

startup.s __os_startup

sim.s, sim245.s __os_coldstart, __os_raminit, __os_memset

coldstrt.s __os_coldstart, __os_raminit

procinit.s __os_procinit, __os_am29000_init, __os_am29005_init
__os_am29050_init, __os_am29030_init,
__os_am29035_init, __os_am29200_init,
__os_am29205_init, __os_am29240_init

init24x.c __os_am2924x_init

memory.s __os_sizememory, __os_memset

sizemem.c __os_sizemem29k

sysinit.s __os_sysinit

gentraps.s __os_warn_mm_trap, __os_unexpected_trap,
__os_illegal_op_trap, __os_trace_trap

simtraps.s __os_warn_mm_trap, __os_raminit, __os_memset,
__os_illegal_op_trap, __os_unexpected_trap,
__os_trace_trap __hif_hosthif

uatrap.s __os_ua_trap

Processor Initialization and Run-Time Services: OSBOOT 3-5

��

Source
Filename

Function Name(s)

tlbtraps.s __os_uiTLBmiss_trap, __os_udTLBmiss_trap

tlb24x.s __os_uiTLBmiss24x_trap, __os_udTLBmiss24x_trap

register.s defines the register mnemonics used

hif.s __hif_startup, __hif_flushTLB, __hif_reboot,
__hif_spillhandler, __hif_fillhandler

hifserv.s __hif_timer_trap, __hif_spill_trap, __hif_fill_trap,
__hif_kernel_trap

hosthif.s __hif_hosthif

msgio.s __hif_hosthif (uses dbg_core message system)

eb030hw.s __os_initcomm for EB29030 card

ez030hw.s __os_initcomm for EZ030 card

eb29khw.s __os_initcomm for EB29K card

la030hw.s __os_initcomm for Laser29K–030 board

la200hw.s __os_initcomm for Laser29K–200 board

lcb29khw.s __os_initcomm for YARC ATM Sprinter card

pcebhw.s __os_initcomm for PCEB29K card

sa030hw.s __os_initcomm for SA29030 board

sa200hw.s __os_initcomm for SA29200, SE29240, and SA29205
boards

se040hw.s _ os_initcomm for SE29040 board

stebhw.s __os_initcomm for STEB board

yrev8hw.s __os_initcomm for YARC Rev 8 card

kio.s __kread, __kwrite

scc200.s __scc200_init, __scc200_putchar, __scc200_getchar

scc8530.s __scc8530_init, __scc8530_putchar, __scc8530_getchar,
__scc8530_intr

3-6 Processor Initialization and Run-Time Services: OSBOOT

��

The traps Subdirectory
The traps subdirectory contains the source files that implement the trap handlers
for arithmetic operations which the processor hardware does not support directly.
It also contains the sources for the Protection Violation trap handler, which are
used to access the virtual special-purpose registers.

The following files are also included in the traps subdirectory to build a library
of trap routines:

� UNIX make file: makefile

� MS-DOS batch file: makepc.bat

The bootstrap module of osboot is linked with the trap routine library. The
necessary trap handlers are installed during the bootstrap process.

The trap handler source files and floating-point trap routine(s) are listed in
Table 3-3. The filename extensions are explained below:

� .s indicates assembly language functions

� .h indicates assembler header files

Processor Initialization and Run-Time Services: OSBOOT 3-7

��

Table 3-3. Arithmetic Trap Handler Source Files

Files Routines

fpeinit.c Floating-point emulation handlers

tr_class.s CLASS instruction emulation routine

tr_cnvt.s CONVERT instruction emulation routine

tr_comp.s FEQ, FGE, FGT, DEQ, DGE and DGT instruction
emulation routines

tr_dadd.s DADD and DSUB instruction emulation routines

tr_ddiv.s DDIV instruction emulation routines

tr_div4.s DIVIDE and DIVIDU instruction emulation
routines using Am29240� processor INTE register

tr_dmul.s DMUL instruction emulation routines using 32x32 bit
multiplier

tr_drnd.s Double-precision round/range check routines

tr_excp.s Floating-point exception trap routine

tr_fadd.s FADD and FSUB instruction emulation

tr_fdiv.s FDIV instruction emulation routine

tr_fdmul.s FDMUL instruction emulation routine

tr_fmul.s FMUL instruction emulation routine

tr_frnd.s Single-precision round/range check routine

tr_mldv.s MULTIPLY, MULTIPLU, MULTM, MULTMU,
DIVIDE and DIVIDU instruction emulation
routines

tr_pvspr.s Protection violation trap handler, __os_29kpv_trap

tr_sqrt.s SQRT instruction emulation

uatrap.s Unaligned access trap handler

NOTE: The register definitions of the mnemonics used in the files listed above
are in register.s and register.ah files in the boot subdirectory.

Processor Initialization and Run-Time Services: OSBOOT 4-1

33

Chapter 4

OSBOOT Bootstrap Module

When the target system is powered on (RESET), the processor begins to fetch
and execute instructions from offset 0x0 in ROM space or instruction space.
These instructions initialize the processor and the external target system to a
defined state. This process of bringing up the system from RESET to a defined
state is called the bootstrap process or the cold start process. The tasks
performed during the bootstrap process are implemented in the osboot bootstrap
module.

Figure 4-1 illustrates in a left-to-right sequence the tasks performed by the
osboot bootstrap module. The implementation and the associated file(s) of each
task are described in the following sections, as listed in Figure 4-1.

__os_procinit (page 4-8) __os_initcomm (page 4-21)

__os_sysinit (page 4-18)

__os_raminit (page 4-16)

__os_sizememory (page 4-13)

OS
Cold Start

Processor
Initialization

OS
Start-up

Memory
Configuration

Data Segments
Initialization

System
Initialization

Communications
Initialization

RESET __os_startup (page 4-4)

__os_coldstart (page 4-6)

Figure 4-1. OSBOOT Bootstrap Module

4-2 Processor Initialization and Run-Time Services: OSBOOT

34

OSBOOT Global Register Usage
Table 4-1 shows the registers used by osboot to implement the floating-point
emulation routines and the HIF kernel services. The files register.s and
register.ah define the symbolic register names and their associated physical
processor registers. The register.s file, when assembled and linked with other
osboot files, provides a global linkage to the registers listed in Table 4-1. The
register.ah file contains external references to each of the registers defined in
the register.s file, and is included in osboot source files containing assembler
programs.

Table 4-1. Register Definitions

Register Symbols Used Description

gr64 it0, TempReg0 Interrupt or trap handler temporary
register

gr65 it1, TempReg1 Interrupt or trap handler temporary
register

gr66 it2, TempReg2 Interrupt or trap handler temporary
register

gr67 it3, TempReg3 Interrupt or trap handler temporary
register

gr68 kt0, TempReg4 Kernel temporary register

gr69 kt1, TempReg5 Kernel temporary register

gr70 kt2, TempReg6 Kernel temporary register

gr71 kt3, TempReg7 Kernel temporary register

gr72 kt4, TempReg8 Kernel temporary register

gr73 kt5, TempReg9 Kernel temporary register

gr74 kt6, TempReg10 Kernel temporary register

gr75 kt7, TempReg11 Kernel temporary register

gr76 kt8, TempReg12 Kernel temporary register

gr77 kt9, TempReg13 Kernel temporary register

gr78 kt10, TempReg14 Kernel temporary register

gr79 kt11, TempReg15 Kernel temporary register

gr89 TimerExt Timer extension register

gr90 SpillAddrReg Spill trap handler address

Processor Initialization and Run-Time Services: OSBOOT 4-3

35

Register DescriptionSymbols Used

gr91 FillAddrReg Fill trap handler address

gr92 FPStat3 Floating-point trap handler static register

gr93 FPStat2 Floating-point trap handler static register

gr94 FPStat1 Floating-point trap handler static register

gr95 FPStat0 Floating-point trap handler static register

NOTE: Please refer to the comments in the register.ah file in the
29k/src/osboot/boot directory for further information on register usage.

4-4 Processor Initialization and Run-Time Services: OSBOOT

36

OS Start-Up and WARN Trap Handler

File
startup.s

The file startup.s implements the osboot start-up function that takes control of
the processor on RESET. It also contains the processor WARN trap handler,
which is also the Monitor Mode trap handler for the Am29050�

microprocessor. The functions implemented in the startup.s file are contained in
a single text section called Reset. The code below shows the contents of the
Reset text section. This section must be loaded and ordered at offset 0x0 in the
ROM address space or in the instruction/data memory in the linker command
file.

Functions
__os_startup, address16

External Functions
__os_coldstart, __os_warn_mm_trap

Reset Text Section
.extern __os_coldstart
.extern __os_warn_mm_trap
.sect Reset, text
.use Reset
.global __os_startup

__os_startup:
jmp __os_coldstart
nop
nop
nop

address16:
jmp __os_warn_mm_trap
nop
nop
nop
.text

Processor Initialization and Run-Time Services: OSBOOT 4-5

37

Description
The __os_startup function is the osboot start-up function. It is executed from
offset 0x0 when the processor is powered on. It invokes the __os_coldstart
routine which controls the rest of the cold start process. The __os_startup
routine must contain no more than four instructions, because it is immediately
followed by address16, which is the WARN trap handler or the Monitor Mode
trap handler of the Am29050 processor.

address16 is the WARN trap handler or the Monitor Mode trap handler for the
Am29050 microprocessor and must be aligned at offset 0x10 in ROM address
space or in instruction/data memory address space. When a WARN trap or
Monitor Mode trap occurs, the __os_warn_mm_trap routine is executed using
a direct jump (jmp) instruction.

4-6 Processor Initialization and Run-Time Services: OSBOOT

38

OS Cold Start

Files
sim.s, coldstrt.s, sim245.s

The files sim.s, sim245.s and coldstrt.s implement the __os_coldstart
function, which controls the cold start process for software targets (such as
simulators) and for hardware targets. The __os_coldstart function performs a
number of tasks to initialize the target system to a defined state. These tasks are
implemented as separate functions which are called during the cold start process.

Link-Time Constant
DMemStart

DMemStart is a link-time constant that must be defined in the linker command
file (with .lnk file extension). It defines the start of the external data memory
region of the specific target system. DMemStart is used as the starting address
for the dynamic memory sizing performed to configure the external memory
systems. It is used as the base address for the placement of the vector table. The
special-purpose register of the processor,Vector Area Base (VAB), is initialized
with this constant.

Function
__os_coldstart

External Functions
__os_procinit
__os_sizememory
__os_memset
__os_sysinit
__os_check027
__os_fpinit
__os_initcomm

Processor Initialization and Run-Time Services: OSBOOT 4-7

39

Description
The function __os_coldstart controls the cold start process. It is executed by the
OS Start-Up module after processor RESET, as shown in Figure 4-1 on page
4-1. It sets up a pseudo register stack to avoid accidental spilling and filling of
registers before calling different functions. The functions supplied with the
osboot software are designed such that spilling and filling of registers is not
required.

The special purpose register of the processor, VAB, is initialized with the value
of the DMemStart link time constant.

Several tasks are performed during the cold start process. The following list
outlines these tasks, appearing in the order in which they are executed. Each of
these tasks is described in detail in the following sections.

1. Processor Initialization—Initializes the processor special registers and
peripheral registers to a defined state. Page 4-8.

2. Memory Configuration—Dynamically sizes the available external DRAM
memory and programs the DRAM Controller accordingly. Page 4-13.

3. Data Segments Initialization—Initializes the data segments in memory,
clears the BSS sections, and, if in a standalone environment, transcribes
initialized data sections from ROM to data memory. Page 4-16.

4. System Initialization—Initializes the vector table of the system and saves
target configuration information in memory. Page 4-18.

5. Communications Initialization—Initializes the communications interface
used by the target system. This initializes the dbg_core message system in
the OSBOOT/DBG_CORE Model. Page 4-21.

The completion of the tasks listed above marks the end of the cold start process.
In the OSBOOT/DBG_CORE Model, control is temporarily transferred to the
dbg_core by calling the dbg_control() function. When dbg_control() returns,
the HIF kernel is started up.

4-8 Processor Initialization and Run-Time Services: OSBOOT

40

Processor Initialization

Files
procinit.s, init20x.c, init24x.c

The procinit.s file implements the function that performs processor initialization
at cold start. During processor initialization, the timer of the processor is
disabled and some of the special registers of the processor are initialized to
defined values. In the case of the 29K Family microcontrollers, the peripheral
registers are also initialized and the devices are left disabled.

__os_am29005_init
__os_am29000_init

PRL?
Am2900x

Initialization

Processor
Initialization

Am29050
Initialization

Am2903x
Initialization

__os_procinit

Am2924x
Initialization

__os_am29050_init

__os_am29035_init
__os_am29030_init

__os_am29240_init
__os_am2924x_init

Am29040
Initialization

__os_am29040_init

Am2920x
Initialization

__os_am29200_init
__os_am29205_init
__os_am2920x_init

Figure 4-2. Processor Initialization

Function
__os_procinit

Processor Initialization and Run-Time Services: OSBOOT 4-9

41

Auxiliary Functions
__os_am29000_init
__os_am29005_init
__os_am29030_init
__os_am29035_init
__os_am29040_init
__os_am29050_init
__os_am29200_init
__os_am29205_init
__os_am2920x_init
__os_am29240_init
__os_am2924x_init

Link-Time Constants
DRCT_VALUE
init_CPS
RMCF_VALUE
RMCT_VALUE

DRCT_VALUE contains the value to initialize the DRAM Controller peripheral
register of the 29K Family microcontrollers for the target system configuration.

init_CPS contains the value to initialize the processor’s Current Processor
Status (CPS) register for the cold start process.

RMCF_VALUE contains the value to initialize the ROM Configuration
peripheral register of the 29K Family microcontroller for the target system
configuration.

RMCT_VALUE contains the value to initialize the ROM Controller peripheral
register of the 29K Family microcontrollers for the target system configuration.

Description
The __os_procinit function is called from __os_coldstart during the cold start
process. It initializes the contents of some processor special registers with
defined values. The special registers initialized are as follows:

� Current Processor Status (CPS) register

� Timer Reload (TMR) register

� Register Bank Protect (RBP) register

� Configuration (CFG) register

� Memory Management Unit (MMU) register

4-10 Processor Initialization and Run-Time Services: OSBOOT

42

The CPS register is initialized with the init_CPS value defined at link time. The
TMR register is cleared and the timer is disabled. The register bank protect
register is set to zero to protect no registers.

After initializing the CPS, TMR, and RBP registers, __os_procinit examines the
PRL field of the CFG register to determine the processor type. The PRL field of
the CFG register is the eight most-significant bits of the register. Based on the
PRL value found, the appropriate routine to perform processor-specific
initialization is called. Table 4-2 lists processor PRL fields and their function
names.

Table 4-2. Processor PRL Fields

Processor PRL Values Function Name(s)

31–27 26–24

Am29000 0 x __os_am29000_init

Am29005 0 x __os_am29005_init

Am29050 2 x __os_am29050_init

Am29035 4 x __os_am29035_init

Am29030 4 x __os_am29030_init

Am29200 5 x __os_am29200_init

Am29205 58 x __os_am29205_init

Am29240 6 x __os_am29240_init

Am29040 7 x __os_am29040_init

NOTE: x indicates these bit positions do not matter

__os_am29000_init and __os_am29005_init
The __os_am29000_init and __os_am29005_init functions perform the
following tasks:

� Initialize the MMU register for 8K page size (Am29000 only).

� Set the process ID field to 0x1.

� Disable the BTC (branch target cache) for processor revisions A and B
(Am29000 only).

� Set the VF and DW bits of the CFG register.

� Determine if the external memory system supports byte accesses.

� Update the DW bit of the CFG register.

Processor Initialization and Run-Time Services: OSBOOT 4-11

43

__os_am29050_init
The __os_am29050_init function performs the following tasks:

� Initializes the MMU register for 8K page size.

� Sets the process ID field to 0x1.

� Sets the VF and DW bits of the CFG register.

� Determines the byte-writability of the external memory system.

� Updates the DW bit of the CFG register.

__os_am29030_init and __os_am29035_init
The __os_am29030_init and __os_am29035_init functions perform the
following tasks:

� Set the CFG register to disable the cache.

� Initialize the MMU register for 8K page size.

� Set the process ID field to 0x1.

NOTE: The __os_am29030_init and __os_am29035_init functions are
defined in a separate text section named Sect030 so that they can be aligned on a
quad-word boundary at the time of linking.

__os_am29040_init
The __os_am29040_init function performs the following tasks:

� Sets the CFG register to disable both caches.

� Initializes the MMU register for 4K page size for both sets of TLBs.

� Sets the process ID field to 0x1.

__os_am29200_init , and __os_am29205_init
The __os_am29200_init, and __os_am29205_init functions perform the
following tasks:

� Initialize the ROM Controller register with the value of the RMCT_VALUE
link-time constant.

� Initialize the ROM Configuration register with the value of the
RMCF_VALUE link-time constant.

4-12 Processor Initialization and Run-Time Services: OSBOOT

44

� Initialize the DRAM Controller register with the DRCT_VALUE link-time
constant defined in the linker command file for the target system
configuration.

� Call __os_am2920x_init to perform the rest of the initialization.

__os_am29240_init
The __os_am29240_init function performs the following tasks:

� Sets the CFG register to disable both caches.

� Initializes the MMU register for 1K page size for both sets of TLBs.

� Sets the process ID field to 0x1.

� Initializes the ROM Controller register with the value of the RMCT_VALUE
link-time constant.

� Initializes the DRAM Controller register with the DRCT_VALUE link-time
constant defined in the linker command file for the target system
configuration.

� Calls __os_am2924x_init to perform the rest of the initialization.

Processor Initialization and Run-Time Services: OSBOOT 4-13

45

Memory Configuration

Files
memory.s, sizemem.c, size200.c

The memory.s file implements the function that dynamically sizes the external
DRAM memory region using a non-destructive memory sizing technique. It
programs the DRAM Configuration register on the 29K Family microcontrollers
according to the memory available and returns the total size of memory available
to the caller—in this case, the cold start process.

PRL?

Size
Memory

Memory
Configuration

Configure
DRAM Controller

__os_sizememory

Size
Memory

_os_sizemem29k
(base, start, end, size)

_os_sizemem200
(base, start, end, size)

Figure 4-3. Memory Configuration

Function
__os_sizememory

Auxiliary Functions
_os_sizemem29k(long *base, long *start, long *end, int size)
_os_sizemem200(long *base, long *start, long *end, int size)

4-14 Processor Initialization and Run-Time Services: OSBOOT

46

Link-Time Constants
DMemStart
DMemSize

DMemStart defines the base address of the external DRAM memory.
DMemSize is the maximum size of memory on the target system.

Description
The __os_sizememory function, defined in the memory.s file, is called during
the cold-start process. Based upon the value of the PRL field in the configuration
register (CFG), the function calls either __os_sizemem29k for the Am29000
Family of microprocessors, or __os_sizemem200 for the Am29000 Family of
microcontrollers and passes them the necessary input arguments.

The arguments passed to the __os_sizemem29k and __os_sizemem200
functions are derived from the DMemStart and DMemSize link-time constants
defined in the linker command file for the target system configuration.

The __os_sizemem29k function is defined in the sizemem.c file and is called
from __os_sizememory and from __os_sizemem200 to size a segment of
external memory. The first parameter, base, gives the base address of the data
memory being sized. The second parameter, start, gives the memory address
from which to begin the sizing algorithm. The third parameter, end, gives the
memory address at which to terminate the sizing algorithm. The address is
computed by adding the DMemSize value to the DMemStart value. The fourth
parameter, size, gives the size of the unit memory chip. This value is used as an
increment in the sizing algorithm.

Processor Initialization and Run-Time Services: OSBOOT 4-15

47

Sizing Algorithm
This procedure is a loop that starts with the test address initialized to the address
contained in the start parameter. It stores the test address at the test location,
writes the base address in the base location, and reads back the value from the
test location. It then compares the value read with the test address. If the values
are the same, then the next test location is computed by adding the memory chip
size specified in the size parameter, and the loop is executed again. The total size
of memory found is incremented by the memory chip size. If the values are not
the same, the loop exits, and the total memory found thus far is returned.

The __os_sizemem200 function is defined in the sizemem.c file and is called by
__os_sizememory to size the external memory and program the DRAM
configuration register of the 29K Family microcontrollers. The
__os_sizemem200 function takes the same input parameters as that of
__os_sizemem29k. It sizes each DRAM bank by calling __os_sizemem29k,
and computes the ASEL fields and AMASK fields for the bank sizes found. It
arranges the banks in descending order by size and programs the DRAM
configuration register.

4-16 Processor Initialization and Run-Time Services: OSBOOT

48

Data Segments Initialization

Files
coldstrt.s, sim.s, sim245.s

Global Symbol
RAMInit

The sim.s, sim245.s and coldstrt.s files, which implement the __os_coldstart
routine that controls the cold start process, also implement the __os_raminit
routine to transcribe program data segments from ROM to the external data
memory. This routine is inlined into the __os_coldstart function and is excluded
when building osboot for simulators. It can also be suppressed by controlling the
definition of the STANDALONE manifest on the command-line of the
assembler or compiler.

if RAMInit != 0
call gr96, RAMInit

Clear
BSS _os_memset($startof(.bss),$sizeof(.bss))

Data Segments
Initialization

.comm RAMInit, 4

__os_raminit

Figure 4-4. Data Segments Initialization

Function
__os_raminit

Processor Initialization and Run-Time Services: OSBOOT 4-17

49

Description
The __os_raminit function initializes the external data memory region as
necessary. It clears the BSS section and transcribes any initialized data section
from ROM to data memory by calling the RAMInit function produced by the
romcoff utility. It defines a BSS symbol, RAMInit . At run-time, the content of
RAMInit is read. If the value read is zero, the variable is in BSS and is
initialized to zero. If the value read is non-zero, it assumes that the function
RAMInit is linked together, and executes it.

The RAMInit function generated by the romcoff utility requires two stages of
linking the application objects with osboot. The first link produces a binary
image of the application program and osboot with text and data sections ordered
in memory as they would be during program execution. From this binary image,
the RAMInit routine is generated using the romcoff utility on the sections to be
transcribed from ROM space to the external data memory. The RAMInit routine
generated is then linked with all of the application program objects and osboot
as the second link phase. This produces a binary image from which the selected
sections (e.g., text and lit), can be used to program the EPROMs on the target
system.

4-18 Processor Initialization and Run-Time Services: OSBOOT

50

System Initialization

File
sysinit.s

The sysinit.s file implements the function that performs system initialization.
During system initialization the default trap handlers and defined trap handlers
are installed into the vector table. The __os_targetcfg global data structure,
which stores the target system configuration, is also initialized with the
appropriate values.

Initialize
Vector Table

System
Initialization

__os_sysinit

Install specific
trap handlers

__os_default_trap __os_illegal_op_trap
__os_29kpv_trap
_ _os_trace_trap
__os_uiTLBmiss_trap
__os_udTLBmiss_trap
__os_ua_trap

struct {
unsigned int IMemStart;
unsigned int IMemSize;
unsigned int DMemStart;
unsigned int DMemSize;
unsigned int RMemStart;
unsigned int RMemSize;
unsigned int am027_prl;
unsigned int os_version;
}_os_targetcfg;

Save Target
Configuration
Information

 Install
__os_default_trap
 for all entries

Figure 4-5. System Initialization

Function
__os_sysinit

Global Data Variable
__os_targetcfg

Processor Initialization and Run-Time Services: OSBOOT 4-19

51

Link-Time Constants
DMemStart
IMemStart
IMemSize
RMemStart
RMemSize
TRAPINROM

DMemStart gives the base address of the data memory region.

IMemStart and IMemSize are the start address and maximum size of
instruction memory on the target system.

RMemStart and RMemSize are the start address and maximum size of ROM
memory on the target system.

TRAPINROM specifies whether the trap handlers reside in ROM or in
instruction memory. A value of 0x2 specifies that the trap handlers reside in
ROM. A value of 0x0 specifies that the trap handlers reside in instruction
memory. Any other value may cause undefined behavior.

NOTE: Trap handlers should only be located in ROM space (that is,
TRAPINROM set to 0x2) for those 29K Family microprocessors using 3-bus
architecture. For other members of the 29K Family, trap handlers should be
located in instruction memory space (TRAPINROM set to 0x0).

Description
The __os_sysinit function is called during cold-start process to do the following:

� Install the default trap handlers

� Install trap handlers supplied with osboot

� Initialize the __os_targetcfg data structure according to the target system
configuration found

The first argument passed to the __os_sysinit function is the total size of data
memory found on the target (in register lr2).

The default trap vectors for each handler are defined by the __os_default_trap
function. The value of TRAPINROM is OR’ed with the address of the trap
handler before it is installed into the vector table.

4-20 Processor Initialization and Run-Time Services: OSBOOT

52

The specific trap vectors that are installed are the following:

� __os_illegal_op_trap as Illegal Opcode trap handler

� __os_ua_trap as Unaligned Access trap handler

� __os_29kpv_trap as Protection Violation trap handler

� __os_trace_trap as Trace trap handler

� __os_uiTLBmiss_trap or __os_uiTLBmiss24x_trap as User Mode
Instruction TLB Miss trap handler

� __os_udTLBmiss_trap or __os_uiTLBmiss24x_trap as User Mode Data
TLB Miss trap handler

The osboot data structure __os_targetcfg is also initialized with defined
link-time constants. The structure of __os_targetcfg is:

 struct {
 unsigned int IMemStart;
 unsigned int IMemSize;
 unsigned int DMemStart;
 unsigned int DMemSize;
 unsigned int RMemStart;
 unsigned int RMemSize;
 unsigned int am027_prl;
 unsigned int os_version;
 } __os_targetcfg;

The IMemStart and IMemSize fields are initialized with values of the link-time
constants IMemStart and IMemSize, respectively. The DMemStart field is
initialized with the value of the DMemStart link-time constant. The field
DMemSize is initialized with the value passed as incoming argument to
__os_sysinit (in register lr2). The RMemStart and RMemSize fields are
initialized with the values of the link-time constants RMemStart and
RMemSize, respectively. The am027_prl field is initialized to -1 (0xffffffff) to
indicate that no coprocessor is present (the default). The os_version field is
initialized with the current version of osboot.

Processor Initialization and Run-Time Services: OSBOOT 4-21

53

Communications Initialization

Files
eb030hw.s for AMD’s EB29030 PC plug-in card
eb29khw.s for AMD’s EB29K PC plug-in card.
ez030hw.s for AMD’s EZ030 stand-alone board
la030hw.s for AMD’s Laser29K–030 board
la200hw.s for AMD’s Laser29K–200 board
lcb29khw.s for YARC ATM Sprinter PC plug-in card
pcebhw.s for AMD’s PCEB29K PC plug-in card
sa030hw.s for AMD’s SA29030 stand-alone board
sa200hw.s for AMD’s SA29200, SA29205, and SE29240 stand-alone

boards
se040hw.s for AMD’s SE29040 stand-alone board
stebhw.s for STEP’s stand-alone board
yrev8hw.s for YARC Rev 8 PC plug-in card

NOTE: Some of these boards are no longer available commercially, but are still
in use.

The *hw.s files listed above implement the __os_initcomm function that
initializes the communications interface for the hardware platforms supported by
AMD. The communications interface can be either a shared memory interface
(i.e., PC plug-in cards), or serial communications link (i.e., stand-alone boards).

Install
Communications

Drivers

Communications
Initialization

__os_initcomm

Initialize
Communications

Interface

osboot/dbgcore:
msg_intr
serial_int

stand-alone–osboot:
__scc8530_intr
__am200_intr3

osboot/dbg_core:
msg_init()

stand-alone–osboot:
__scc8530_init
__scc200_init

Figure 4-6. Communications Initialization

4-22 Processor Initialization and Run-Time Services: OSBOOT

54

Function
__os_initcomm

Associated Functions
For the Stand-Alone OSBOOT/Application Model:

__scc8530_init, __scc8530_intr , __scc8530_putchar,
__scc200_init, __am200_intr3,
__scc200_tx_intr,
__scc200_rx_intr

For the OSBOOT/DBG_CORE Model:

_msg_init
msg_intr
serial_int

Description
The __os_initcomm function is called from the __os_coldstart function during
cold start to initialize the communications interface of the target system.

Stand-Alone OSBOOT/Application Model
For serial-communications interfaces, the __os_initcomm function initializes
__putchar_table with the functions to write a character out of the serial port. It
then installs the interrupt vector for the serial device into the vector table and
calls the device-specific routine to initialize the device. The
serial-communications device functions and their interrupt handlers are defined
in the scc8530.s and scc200.s files.

OSBOOT/DBG_CORE Model
In the OSBOOT/DBG_CORE Model, the __os_initcomm function installs the
interrupt vector for the dbg_core message communications interface in the
vector table. The interrupt handlers installed are msg_intr for shared memory
interface, and serial_int for serial-communications interface. The offset into the
vector table is defined as a constant in the file corresponding to the target
system.

After installing the message interrupt vector, __os_initcomm transfers control to
the _msg_init function inside the dbg_core message system. The _msg_init
function initializes the message system and then returns via lr0 to the cold-start
process.

Processor Initialization and Run-Time Services: OSBOOT 5-1

��

Chapter 5

OSBOOT Trap Handlers

This chapter describes the following osboot trap handlers:

� Protection Violation trap handler on page 5-2

� Unaligned Access trap handler on page 5-4

� Arithmetic trap handlers on page 5-7

Trap handlers can reside either in the ROM space or the instruction memory
space of a 29K Family microprocessor. The link-time constant, TRAPINROM ,
specifies where trap handlers will reside. If TRAPINROM is set to 0x2, trap
handlers are located in ROM space. If TRAPINROM is set to 0x0, trap handlers
are located in instruction memory space.

NOTE: Trap handlers should only be located in ROM space (that is,
TRAPINROM set to 0x2) for those 29K Family microprocessors using 3-bus
architecture. For other members of the 29K Family, trap handlers should be
located in instruction memory space.

5-2 Processor Initialization and Run-Time Services: OSBOOT

��

Protection Violation Trap Handler
The protection violation trap handler, __os_29kpv_trap, is defined in the
tr_pvspr.s file. The protection violation trap handler is installed on target
systems to emulate accesses to special CPU registers in the range gr160–gr164.
Registers in this range are treated as virtual registers in support of floating-point
operations. Table 5-1 lists each of these registers and its contents.

NOTE: On the Am29050 processor, these registers are actually implemented
and do not trap. These registers will also be implemented in some future
processors.

Table 5-1. Special Virtual Registers

Register Mnemonic Description

gr160 fpe Floating-point environment

gr161 inte Integer environment

gr162 fps Floating-point status

gr164 exop Exception opcode

Access to the virtual registers is provided by trapping MTSRIM , MTSR, and
MFSR instructions that reference these registers. The protection violation trap
handler receives control when an instruction references an unimplemented
register at its entry point. The trap handler performs the following steps:

1. Accesses the ops register to determine if the offending instruction is in RAM
or ROM. The trap handler accesses the instruction by loading the contents of
the address pointed to by the pc1 register.

2. Determines which of the MTSRIM , MTSR, or MFSR instructions caused
the trap. If none of these instructions caused the trap, the handler jumps to
the __os_unexpected_trap handler.

3. Jumps to the subhandler for each instruction type to decode the value to be
stored (in the case of MTSRIM and MTSR instructions), and the register
being referenced. In the case of MFSR instructions, only the register being
referenced is needed.

Processor Initialization and Run-Time Services: OSBOOT 5-3

��

4. Calls a unique handler for each case when the register number (and value, if
necessary) is determined, depending on whether the instruction intends to
move to or from the special register.

5. When the handler returns, it restores the pc0 and pc1 registers and returns to
the user program.

The unique handlers referenced by __os_29kpv_trap are listed in Table 5-2.

Table 5-2. Unique Protection Violation Trap Handlers

Name Description

EXOP_read Loads from exception opcode

EXOP_write Stores to exception opcode

FPE_read Loads from floating-point environment

FPE_write Stores to floating-point environment

FPS_read Loads from floating-point status

FPS_write Stores to floating-point status

INTE_read Loads from integer environment

INTE_write Stores to integer environment

5-4 Processor Initialization and Run-Time Services: OSBOOT

��

Unaligned Access Trap Handler
The 29K Family of microprocessors supports only byte addressing of
information loaded from or stored to memory. In the case of word or half-word
accesses, the 29K Family microprocessor either ignores or forces alignment in
most cases. The low-order two bits of an address indicate the alignment of the
data being accessed. An unaligned access is determined by the value of the OPT
bits and the two least significant bits of the address for load and store
instructions. Only accesses to instruction or data memory are checked; alignment
is ignored for coprocessor transfers. Table 5-3 defines the various OPT bits, and
Table 5-4 lists the OPT bit and address bit combinations that result in an
unaligned access.

Table 5-3. Option (OPT) Bit Definitions

AS OPT2 OPT1 OPT0 Definition

x 0 0 0 Word access

x 0 0 1 Byte access

x 0 1 0 Half-word access

0 1 0 0 Instruction ROM access

0 1 0 1 Cache control

The AS bit refers to the address space being referenced. For translated load and
store operations, the AS bit must be 0. If the AS bit is 1 for a translated load or
store operation, a protection violation occurs.

Table 5-4. Unaligned Access Combinations

 OPT2 OPT1 OPT0 A1 A0 Description

0 0 0 1 0 Unaligned word access

0 0 0 0 1 Unaligned word access

0 0 0 1 1 Unaligned word access

0 1 0 0 1 Unaligned half-word

0 1 0 1 1 Unaligned half-word

Processor Initialization and Run-Time Services: OSBOOT 5-5

��

Whether a trap occurs when an unaligned access is detected depends on the
setting of the trap unaligned (TU) bit of the cps register. If any of the conditions
indicated in Table 5-4 occur, and the TU bit is 1, the unaligned access trap
handler is invoked.

The unaligned access trap handler (in the uatrap.s file) receives control at the
entry point __os_ua_trap. The steps taken by this handler are listed below:

1. Accesses the channel control (chc) register to determine if the data being
accessed is needed and if the chc register contents are valid. If the data is not
needed, or the contents are invalid, the trap handler returns to the interrupted
program; otherwise, the handler continues.

2. Saves the contents of the Old Processor Status (ops) register, the channel
address (cha), channel data (chd), and channel control (chc) registers to the
memory stack.

3. Determines if a multiple operation is in progress (i.e., LOADM or
STOREM instruction). If a multiple operation is in progress, the contents of
pc0 and pc0+4 are saved; otherwise, the pc1 and pc0 registers are saved.

4. Saves the contents of the arithmetic logic unit status (alu) and indirect
pointer (ipa, ipb, and ipc) registers.

5. Leaves freeze mode by setting the FZ bit in the cps register to 0.

6. Sets up the cps register to reflect the contents of the ops register and the
content of the Physical Address (PA) bit from the trapped load or store
instruction, and enables all subsequent interrupts and traps (by setting the DI
and DA bits of the status to 0). This allows traps to nest, if any occur while
the subsequent operations are in progress.

7. Jumps to the subhandler based on status concerning the interrupted
instruction: user or supervisor mode; cfg register DW bit setting; and chc
register LS, ML, ST, and LA bits.

The remainder of the uatrap.s file contains the unique handlers for each of the
possible offending instructions, according to the mode in which it was executed.
Table 5-5 lists the names of the unique handlers and the instruction types for
which unaligned accesses are resolved.

When each of the unique handlers completes the load or store operation, a
common label, restore, receives control. This section of code restores the
contents of the registers saved on entry to the handler, and sets up the ops
register prior to returning to the interrupted program.

5-6 Processor Initialization and Run-Time Services: OSBOOT

��

Table 5-5. Unaligned Access Unique Handlers

Name Instruction Type

load_u User-mode load

store_u User-mode store

loadl_u User-mode load and lock

storel_u User-mode store and lock

load_s Supervisor-mode load

store_s Supervisor-mode store

loadl_s Supervisor-mode load and lock

storel_s Supervisor-mode store and lock

loadm_u User-mode load multiple

storem_u User-mode store multiple

loadm_s Supervisor-mode load multiple

storem_s Supervisor-mode store multiple

load_hu User-mode load half-word, DW=0

store_hu User-mode store half-word, DW=0

loadl_hu User-mode load and lock half-word, DW=0

storel_hu User-mode store and lock half-word, DW=0

load_hs Supervisor-mode load half-word, DW=0

store_hs Supervisor-mode store half-word, DW=0

loadl_hs Supervisor-mode load and lock half-word, DW=0

storel_hs Supervisor-mode store and lock half-word, DW=0

load_hudw User-mode load half-word, DW=1

store_hudw User-mode store half-word, DW=1

loadl_hudw User-mode load and lock half-word, DW=1

storel_hudw User-mode store and lock half-word, DW=1

load_hsdw Supervisor-mode load half-word, DW=1

store_hsdw Supervisor-mode store half-word, DW=1

loadl_hsdw Supervisor-mode load and lock half-word, DW=1

storel_hsdw Supervisor-mode store and lock half-word, DW=1

Processor Initialization and Run-Time Services: OSBOOT 5-7

��

Arithmetic Trap Handlers
The arithmetic trap handlers provided with osboot perform floating-point and
long-integer arithmetic operations for the 29K Family of processors. The
arithmetic trap handlers emulate IEEE floating-point operations, including IEEE
integer operations. These trap handlers are not designed for optimum
floating-point performance. Instead, they provide complete object-code
compatibility with future generations of 29K Family processors. For optimum
floating-point performance, it is necessary to code in-line accelerator
instructions.

The integration of the floating-point trap handlers with an operating system
raises a number of key issues. The options available to the system integrator may
drastically affect the system performance, although no simple formula or
well-defined set of criteria exists.

The customizations required are limited to the following macros:

enter_trap_routine
exit_trap_routine

These macros perform environment control and register save/restore on entry
and/or exit to the trap handlers. The following notes are intended for those
familiar with system calling conventions and the 29K Family of microprocessors
at the register transfer level.

� Decide whether freeze mode should be turned off or on for an emulation trap.
The source code, as provided, turns off freeze mode.

� Typical operation may take 100 cycles or more. If the user’s system can
tolerate a few microseconds of frozen state, the entire operation can be done
with the freeze mode on. A freeze-mode handler is much simpler, a bit faster
(saves at least 10 cycles), and requires fewer dedicated registers.

� Decide which registers can be used by the arithmetic trap handlers. The
source code, as provided, uses a maximum number of registers for optimum
performance. However, if not enough registers are available, some registers
will have to be saved on the memory stack on entry to and restored on exit
from each trap handler.

5-8 Processor Initialization and Run-Time Services: OSBOOT

��

NOTE: The registers gr64–gr95 are reserved for the operating system and
normally are protected. These registers are not protected in systems that allow
arbitrary floating-point programs to run in supervisor mode. Therefore, since
protection of the registers is not available, code must be added to each
floating-point handler to ensure registers gr64–gr95 are not used as arguments.
Make sure that none of these registers are used elsewhere in the operating
system. If the traps are running with freeze off and interrupt on, ensure that none
of the floating-point registers overlap with registers used in any other interrupt
handlers.

� Once registers are allocated, define their assignments in the register.ah file. If
all trap handlers are to be run with freeze mode on, there is no need to save
the pc0, pc1, and ops registers.

� The information necessary to write the enter_trap_routine,
exit_trap_routine, enter_29027_trap_routine, and
exit_29027_trap_routine macros is located in the tr_decl.h file.

Changes must be made to the enter_trap_routine and exit_trap_routine
macros, depending on the system choices made. The sections below describe the
requirements for each choice.

Freeze on and all registers available
These macros are empty. The macros are shipped in this form; osboot files allow
a sufficient number of working registers.

Freeze on and not all registers free
Allocate an area of physical memory in which to save registers in the
enter_trap_routine macro and to restore the registers in the exit_trap_routine
macro.

Freeze off and all registers free
In the enter_trap_routine macro, save the ops, pc1, and pc0 registers and turn
off the freeze mode. In the exit_trap_routine macro, first turn on freeze mode
and then restore the ops, pc1, and pc0 registers.

Processor Initialization and Run-Time Services: OSBOOT 5-9

��

Freeze off, not all registers free, and physical stack
In the enter_trap_routine macro, save the ops, pc1, and pc0 registers (and any
other required registers) on the physical stack, then turn off the freeze mode. In
the exit_trap_routine macro, first turn on freeze mode and then restore all
saved registers. Remember that LOADM/STOREM instructions cannot be used
in freeze mode. This is the likely case for embedded systems where everything
runs in physical memory.

Freeze off, not all registers free, and virtual stack
In the enter_trap_routine macro, save ops, pc1, and pc0 in either registers or
physical memory. Turn on freeze mode and virtual data mapping, but leave
interrupts off. Next, switch to the virtual stack, then save the copies of ops, pc1,
pc0, and the other registers. Finally, turn on the interrupts. Do the inverse
operations in the reverse order in the exit_trap_routine macro. This is the likely
case for systems such as UNIX in which a number of user processes run in
virtual memory.

When running UNIX or a time-sharing system with shared libraries (in which
the libraries’ data pages are copy-on-write), the floating-point handlers can be
implemented efficiently in user mode, similar to the way the spill/fill traps are
implemented.

In this case, the floating-point routines cannot be passed invalid arguments, and
the floating-point registers can be in static memory data areas (with respect to
the libraries).

This approach may cause more load and store instructions than the other
strategies, but there is no need to save and restore the floating-point state across
a context switch.

Processor Initialization and Run-Time Services: OSBOOT 6-1

��

Chapter 6

HIF Run-Time Services

When osboot is used with simulators or in stand-alone applications, the HIF
kernel is invoked immediately after completion of the cold-start process. In the
OSBOOT/DBG_CORE Model, the osboot temporarily transfers control to
dbg_core by calling the dbg_control() function of dbg_core. When the
dbg_control() function returns control to osboot, the HIF kernel is invoked. The
HIF kernel start-up function is __hif_startup.

The __hif_startup function starts up the HIF kernel by initializing its data
structures, and prepares an execution environment for the user application
program. The execution from the start up of the HIF kernel to the beginning of
the execution of the user application program is the warm-start process.

This chapter describes the functions provided by the osboot HIF kernel and their
associated files.

6-2 Processor Initialization and Run-Time Services: OSBOOT

��

HIF Kernel Start-Up Module

Files
hif.s, hifvect.c

The hif.s file implements the start-up program for the HIF kernel that is called
after the completion of the cold start process. It initializes the HIF services and
creates a run-time environment for the application program.

__hif_timer_trap
__hif_spill_trap
__hif_fill_trap
__hif_kernel_trap

OS
Cold Start

HIF
Start-Up

Install
HIF Trap Vectors

Initialize HIF
Data Structures

& Registers

__hif_startup

Set Up Run-Time
Environment

Start Program
At Entry Point

__hif_regsighandler
__hif_heapptr
__hif_argvptr

rfb, rsp, rab
msp
pc0,pc1
ops

[start]

FillAddrReg
SpillAddrReg
TimerExtREg

struct {
unsigned int PgmTextStart;
unsigned int PgmTextEnd;
unsigned int PgmDataStart;
unsigned int PgmDataEnd;
unsigned int PgmEntryPoint;
unsigned int MemStackSize;
unsigned int RegStackSize;
unsigned int PgmArgvPtr;
unsigned int PgmExecMode;
unsigned int PgmRegStackStart;
}_os_targetcfg;

Figure 6-1. HIF Kernel Start-Up Module

Function
__hif_startup

Associated Function
_hif_vectinit(long *VAB, int trapinrom)

Link-Time Constant
TRAPINROM

Processor Initialization and Run-Time Services: OSBOOT 6-3

��

TRAPINROM indicates whether the trap handlers reside in ROM space or in
instruction memory space. A TRAPINROM setting of 0x2 (two) indicates that
the trap handlers reside in ROM space. A TRAPINROM setting of 0x0
indicates that the trap handlers reside in instruction memory space.

NOTE: Trap handlers should only be located in ROM space (that is,
TRAPINROM set to 0x2) for those 29K Family microprocessors using 3-bus
architecture. For other members of the 29K Family, trap handlers should be
located in instruction memory space (TRAPINROM set to 0x0).

Description
The _ _hif_startup function is invoked at the end of the cold start process. This
function calls __hif_vectinit to install the HIF vectors for Timer trap, Spill trap,
Fill trap, and the HIF kernel trap into the vector table. The vectors installed are:

__hif_timer_trap for Timer trap (0xE)
__hif_spill_trap for Spill trap (0x40)
__hif_fill_trap for Fill trap (0x41)
__hif_kernel_trap for HIF Kernel trap (0x45)

After installing the vectors, the __hif_startup function initializes the
SpillAddrReg and FillAddrReg kernel static registers defined in the register.s
file to the __hif_spillhandler and __hif_fillhandler routines, respectively. It
also initializes the TMR and TMC special purpose registers and the TimerExt
kernel static register before enabling the timer.

Next, __hif_startup initializes the data structures used by the HIF services,
including the program information contained in the __hif_pgminfo structure.
The __hif_pgminfo structure is as follows:

struct {
 unsigned int PgmTextStart;
 unsigned int PgmTextEnd;
 unsigned int PgmDataStart;
 unsigned int PgmDataEnd;
 unsigned int PgmEntryPoint;
 unsigned int PgmMemStackSize;
 unsigned int PgmRegStackSize;
 unsigned int PgmArgvPtr;
 unsigned int PgmExecMode;
 unsigned int PgmRegStackStartAddr;
} __hif_pgminfo;

6-4 Processor Initialization and Run-Time Services: OSBOOT

��

Program information is provided by the external loader or hard coded in the
software at compile time. The stdalone.ah file defines the constants used by the
software (when there is no external loader) and the _os_initpgminfo macro,
which initializes the __hif_pgminfo structure at HIF start-up time.

The data structures used by the HIF services are:

unsigned int _hif_heapptr; /* Holds the heap base address */
unsigned int _hif_argvptr; /* Holds argv pointer address */
unsigned int _hif_regsighandler;/* Holds the registered signal */

 /* handler address */

Using the target system configuration information in the __os_targetcfg
structure and the application program information in the __hif_pgminfo data
structure, this function sets up the run-time environment for the program,
including:

� Setting up the register and memory stacks at the top of the memory (high
memory)

� Setting up the OPS register for the application program

� Flushing TLBs

� Setting up the PC0 and PC1 registers to the program’s entry point

� Performing an IRETINV instruction to start program execution

Processor Initialization and Run-Time Services: OSBOOT 6-5

��

Run-Time Environment
The HIF kernel requires the information necessary to set up the run-time
environment to reside in the __hif_pgminfo and the __os_targetcfg data
structures. The __os_targetcfg data structure is initialized by the osboot
bootstrap module during cold start according to the target system configuration.
The __hif_pgminfo data structure is either initialized by the software with
predefined values or provided by the external loader that downloaded the
program. The external loader is required to provide the information to initialize
the __hif_pgminfo structure in registers gr96 through gr105.

Table 6-1 lists the registers used by the external loader to provide the program
information to the HIF kernel, and the symbolic names and addresses used by
the HIF kernel when no external loader is present. Table 6-1 explains run-time
setup data.

Table 6-1. Registers and Symbolic Names for Run-Time Information

Run-Time Setup Data External
Loader

No External Loader

User text start address gr96 PgmTextStart

User text end address gr97 etext

User data start address gr98 DMemStart

User data end address or heap base gr99 Determined at run-time

Application program’s entry point gr100 Start

Memory stack size gr101 PgmMemStackSize

Register stack size gr102 PgmRegStackSize

Argv start address gr103 Determined at run-time

Program Execution mode gr104 PgmExecMode

Register Stack Start Address gr105 PgmRegStackStart

6-6 Processor Initialization and Run-Time Services: OSBOOT

��

Table 6-2. Run-Time Setup Data

Synopsis Definition

User Text Start Address Contains the lowest address of the text region of
the object. Not used in setting up run-time
environment. Used by TLB handlers when
running in protected mode.

User Text End Address Contains the highest address of the text
region. Not used in setting up run-time
environment. Used by TLB handlers when run-
ning in protected mode.

User Data Start Address Contains the lowest address of the data
region (all nontext region). Not used in
setting up run-time environment. Used by TLB
handlers when running in protected mode.

User Data End Address/
Base

Contains the highest address of the Heap data
region (all non-text region) and the first address
of the heap. Therefore, program arguments
(argv) are included as part of the data region.
Used during setup of the run-time environment.
Used to initialize __hif_heapptr, which stores
the heap base address.

Application Program’s
Entry Point

Entry point of the program loaded. Used to ini-
tialize the program counters (PC0, PC1) when
setting up the run-time environment. Control is
then transferred to the user program at the entry
point by iret .

Memory Stack Size Contains the memory stack size.

Register Stack Size Contains the register stack size.

Argv Start Address Contains the starting address of argv. Used to
initialize __hif_argvptr, which stores the
pointer to argv.

Processor Initialization and Run-Time Services: OSBOOT 6-7

��

Synopsis Definition

Program Execution Mode Is a 32-bit value to specify the execution mode
for the application program. The following bits
are currently defined:

Bit 31 set User mode—no translation
Bit 30 set User mode—translate data

Bit 29 set User mode—translate
instruction

Bit 28 set Supervisor mode—no
translation

None set User mode—translate
instruction and data

Register Stack Start
Address

Gives the highest memory location available.
This must be set to either 0 or to the highest
memory location by the loader or by the
simulator. The register stack is set up at the top
of memory, which is also the register stack start
address.

After the run-time environment is set up, the control of the processor is
transferred to the application program at its entry point. At that time, the global
registers gr96 and gr97 are initialized with coprocessor mode information. Local
registers lr0 and lr1 are initialized to execute an exit() HIF system call if the
application program immediately returns control back to osboot.

6-8 Processor Initialization and Run-Time Services: OSBOOT

��

Register Stack and Memory Stack Arrangement

The memory stack resides directly below the register stack at the top of the data
memory (high memory).The register stack resides VARARG_SPACE bytes below
the highest addressable data memory location, and the register stack pointers
(rsp, rfb , and rab) are initialized. Both stacks grow from high to low memory
locations.

Figure 6-2 below shows the upper portion of the data memory space.

VARARG_SPACE (16*4)

Register Stack Area

 Memory
Stack Area

Heap
Area

argv
bss

data, lit
text

rsp

rab

msp

rfb

__hif_heapptr
__hif_argvptr

High Memory

Low Memory

Figure 6-2. Register Stack and Memory Stack Arrangement

Processor Initialization and Run-Time Services: OSBOOT 6-9

��

HIF Services

File
hifserv.s

The hifserv.s file implements the HIF trap routines for the Timer trap, Spill trap,
Fill trap, and the HIF kernel trap.

__intr_flag
__putchar_table
__recvbuf_table
struct {
char *front;
char *rear;
char buffer[MAXSIZE];
} recvbuf;

Communications
Driver

Kernel
I/O

Module

HIF
Services

256 to 383

I/O Related
Services

HIF Trap
Handler

Ext. I/F_

__kwrite
__kread

_ _hif_hosthif

Kernel
Space

User
Space

H
 I
F

A
P
P
L
I
C
A
T
I
O
N

_ _hif_kernel_trap

Figure 6-3. HIF Services Module

Functions
__hif_timer_trap
__hif_spill_trap
__hif_fill_trap
__hif_kernel_trap

Associated Function
__hif_hosthif

Link-Time Constants
TicksPerMillisecond
ClockFrequency

TicksPerMillisecond and ClockFrequency are defined in the .lnk linker
command file, and specify the target processor’s clock frequency. These values
are used to implement certain operating-system services.

6-10 Processor Initialization and Run-Time Services: OSBOOT

��

Description
__hif_timer_trap implements the HIF kernel’s timer interrupt handler. It resets
the interrupt and increments the Timer extension kernel static register,
TimerExt, by 1, and returns from the interrupt.

__hif_spill_trap implements the register spill trap. It sets the PC0 and PC1
registers with the address contained in the SpillAddrReg kernel static register
and returns from the interrupt. The contents of the SpillAddrReg are initialized
at HIF start-up time and can also be initialized using a HIF setvec service.

__hif_fill_trap implements the register fill trap. It sets the PC0 and PC1
registers with the address contained in the FillAddrReg kernel static register and
returns from the interrupt. The contents of the FillAddrReg are initialized at
HIF start-up time and can also be initialized using a HIF setvec service.

__hif_kernel_trap implements the HIF kernel services that are invoked by the
HIF kernel trap 0x45. (The services provided are documented in the Host
Interface (HIF) Specification document.) HIF service numbers below 256 are
implemented by a separate routine, __hif_hosthif, which may use the services
of a remote intelligent host to perform the operations. HIF services numbered
between 256 and 383 are implemented in this __hif_kernel_trap routine.

Processor Initialization and Run-Time Services: OSBOOT 6-11

��

Host HIF Services

File
hosthif.s, msgio.s, simtraps.s

The hosthif.s file implements the __hif_hostif routine for the Stand-Alone
OSBOOT/Application Model. The simtraps.s file implements the __hif_hosthif
routine for the OSBOOT/Simulator Model. The msgio.s file implements the
__hif_hosthif routine for the OSBOOT/DBG_CORE Model.

Function
__hif_hosthif

Stand-Alone OSBOOT/Application Model
In the Stand-Alone OSBOOT/Application Model, where the application is
linked with osboot and programmed into EPROMs, the host HIF services are
handled by the kernel I/O module of osboot (kio.s) or by the functions provided
by the application program itself.

OSBOOT/Simulator Model
The simulator intercepts all the host HIF service requests made by the
application program and processes them using its host operating system. It
writes the results back to the simulated memory and registers of the 29K Family
target program and resumes execution of the program.

6-12 Processor Initialization and Run-Time Services: OSBOOT

��

OSBOOT/DBG_CORE Model and
Stand-Alone
OSBOOT/DBG_CORE/Application Model

This section describes the OSBOOT/DBG_CORE Model or the stand-alone
OSBOOT/DBG_CORE/Application Model. The information in this section
applies to either model equally. In the OSBOOT/DBG_CORE Model shown in
Figure 6-4 , some of the HIF kernel services are provided with the help of an
external HIF support module in montip. The montip runs on an intelligent host
computer system and communicates with the dbg_core’s message system. It
receives requests from the HIF kernel, services them using the intelligent host
operating system, and sends the results back to the HIF kernel. The HIF kernel
uses the message system of the dbg_core to implement the host HIF services
from 0 through 255.

When the application program running in user mode issues a HIF system call, a
HIF kernel trap (0x45) is taken. The HIF kernel trap handler,__hif_kernel_trap,
determines from the service number contained in gr121 if it requires the services
of the external HIF support module in montip. The service requests that require
the support of montip are processed by the __hif_hosthif function, defined in
the msgio.s file.

At the entry point of the __hif_hosthif function:

� Global register gr121 contains the HIF service number.

� Local registers lr2 through lr4 contain HIF service arguments.

Based on the requested service, the results are returned in register gr96 (and gr97
if necessary), and the error code is returned in gr121. A logical TRUE
(0x80000000) is returned in gr121 if the service was completed successfully.
Otherwise, one of the defined HIF error codes is returned in gr121. The program
making the system call must check the value returned in gr121 before using the
results.

Processor Initialization and Run-Time Services: OSBOOT 6-13

��

HIF
Start-up

HIF
SERVICES

 H
 I
 F

A
P
P
L
I
C
A
T
I
O
N

_ _hif_kernel_trap

Kernel
Space

User
Space

MiniMON29K
Message
System

CONVERT
UDI CALLS

To
MONTIP

SERVICES

Communications
Drivers

Host HIF
Support
Module

Universal
debugger
Interface

Communications
Drivers

MiniMON29K
Message

Communications
Interface

(UDI-compliant)

MiniMON29K
Message

Communications
Interface (UDI-compliant)

Message
System

Debugger
Core

Config
Module

I/O Related
Services

Other HIF
Services

OS
Cold Start

DBG_CORE

RESET

msg_send(char*)

_ _os_coldstart

dbg_control(int,OSconfig_t*)
_ _hif_startup

msg_init()

MONTIP

T
A
R
G
E
T

 H
O
S
T

Figure 6-4. OSBOOT/DBG_CORE Model and MONTIP

6-14 Processor Initialization and Run-Time Services: OSBOOT

��

DBG_CORE Message System Interface

The __hif_hosthif function of the HIF kernel communicates with the external
HIF module in montip, which is running on an intelligent host computer system,
using MiniMON29K messages. The message structure and semantics are defined
in the Target Interface Process: MONTIP manual. The messages are transmitted
and received with the help of the services of the MiniMON29K dbg_core
message system. The dbg_core message system provides the following
interface:

msg_rbuf
msg_rbuf is the receive buffer of the dbg_core message system. Incoming
messages from montip are received by the communications interface and placed
into this buffer. The message system is notified when a valid message is
received.

msg_send(msg_t *)
The msg_send() function can be used to send a MiniMON29K message to
montip. It takes a pointer to the outgoing message as its first argument. It
returns a value of 0 (zero) in gr96 if the message was successfully sent, and a -1
(0xffffffff) if the message communications channel is busy with a previous
request.

msg_wait_for()
The msg_wait_for() function can be used to receive an incoming message. This
function waits and returns when a valid message has been received in the
message system’s receive buffer (msg_rbuf). A -1 (0xffffffff) is returned to
indicate that the receive buffer has a valid message. However, when operating in
interrupt mode, it returns 0 (zero) immediately. When the message
communications interface is interrupt-driven, the kernel is interrupted when a
new message arrives.

The HIF kernel provides the following entry point for the message system:

os_V_msg

When a new message arrives, the message system examines the message code
and interrupts the kernel if it was an OS message. The message system interrupts
by transferring control to the os_V_msg label inside the HIF kernel.

Processor Initialization and Run-Time Services: OSBOOT 6-15

��

How the MiniMON29K Messages are Used

The UDI-compliant MiniMON29K messages used by the osboot HIF kernel to
communicate with montip are described on the pages that follow.

channel1 and channel1_ack message pair
 struct channel1_msg_t {
 INT32 code; /* 98 */
 INT32 length; /* number of bytes to */

/* follow */
 BYTE data; /* 1st data byte of the */

/* message */

 };

 struct channel1_ack_msg_t {
 INT32 code; /* 66 */
 INT32 length; /* number of bytes to */

 /* follow (equals 4) */
 INT32 nbytes_written; /* num of bytes written */
 };

A channel1 message (code 98) is sent by the HIF kernel to montip when an
application program makes a HIF system call to write to the standard output
device. The message includes the bytes to be printed on the standard output
device.

The kernel then waits for a channel1_ack message response from montip
before resuming the application program. Global register gr96 is set with the
value returned in channel1_ack by montip as the number of bytes successfully
written (the nbytes_written field), and global register gr121 is set to logical
TRUE if the message was successfully sent to montip.

6-16 Processor Initialization and Run-Time Services: OSBOOT

��

channel2 and channel2_ack message pair
 struct channel2_msg_t {
 INT32 code; /* 99 */
 INT32 length; /* number of bytes to */

 /* follow */
 BYTE data; /* 1st data byte of the */

/* message */
 };

 struct channel2_ack_msg_t {
 INT32 code; /* 67 */
 INT32 length; /* number of bytes to */

 /* follow (equals 4) */
 INT32 nbytes_written;/* number of bytes */
 /* written */
 };

A channel2 message (code 99) is sent by the HIF kernel to montip when the
application program makes a HIF system call to write to the standard error
device. The message includes the bytes to be printed on the standard error
device. The kernel then waits for the channel2_ack message response from
montip before resuming the application program. Global register gr96 is set
with the value returned in channel2_ack by montip as the number of bytes
successfully written (the nbytes_written field), and global register gr121 is set
to logical TRUE if the message was successfully sent to montip.

stdin needed and stdin needed ack message pair
 struct stdin_needed_msg_t {
 INT32 code; /* 100 */
 INT32 length; /* number of bytes to */

/* follow (equals 4) */
 INT32 nbytes_needed; /* maximum num.of bytes */

/* needed */
 };
 struct stdin_needed_ack_msg_t {
 INT32 code; /* 68 */
 INT32 length; /* number of bytes to */

/* follow */
 BYTE data; /* 1st data byte of the */

/* message */
 };

Processor Initialization and Run-Time Services: OSBOOT 6-17

��

A stdin needed message (code 100) is sent by the HIF kernel to montip when
the application program makes a HIF system call to read from the standard input
device. This message is sent only when the input mode is blocking and
synchronous. The default input mode of the HIF kernel is blocking and
synchronous. The application program can change the input mode using a HIF
ioctl system call.

In synchronous input mode, the HIF kernel sends a stdin needed message to
montip requesting data from the standard input device. It then waits for a stdin
needed ack message response from montip, which includes the input data from
the standard input device. The kernel copies the input data into the application
program’s input buffer. Global register gr96 is set to the number of input bytes
received, and global register gr121 is set to logical TRUE if the message was
successfully sent to montip.

When operating in asynchronous mode, the HIF kernel and montip use the
channel0 and channel0_ack message pair to send characters, possibly
interrupting the running application program. The characters received by the
kernel are returned to the application program when it makes a HIF system call
to read from standard input.

channel0 and channel0_ack message pair
 struct channel0_msg_t {
 INT32 code; /* 65 */
 INT32 length; /* number of bytes to */

/* follow (equals 1) */
 BYTE data; /* the input byte */
 };

 struct channel0_ack_msg_t {
 INT32 code; /* 97 */
 INT32 length; /* number of bytes to */

/* follow (equals 0) */
 };

During asynchronous input mode, montip sends the characters received from the
standard input device to the HIF kernel using the channel0 message. A
channel0 message is used to send one input byte. The dbg_core message system
interrupts the HIF kernel when a channel0 message is received. The HIF kernel
stores the input data byte and saves it in a standard input device buffer. The HIF
kernel sends a channel0_ack message to montip to acknowledge the receipt,
and resumes the execution of the interrupted application program.

6-18 Processor Initialization and Run-Time Services: OSBOOT

��

stdin mode and stdin mode ack message pair
 struct stdin_mode_msg_t {
 INT32 code; /* 101 */
 INT32 length; /* number of bytes to */

/* follow (equals 4) */
 INT32 input_mode; /* requested input mode */
 };

 struct stdin_mode_ack_msg_t {
 INT32 code; /* 69 */
 INT32 length; /* number of bytes to */

/* follow */
 INT32 previous_mode; /* returns the previous */

 /* input mode */
 };

The HIF kernel sends the stdin mode message (code 101) to montip to specify
the input mode or a change in the input mode for the standard input device. The
requested input mode is coded into the input_mode field of the message. It then
waits for a stdin mode ack message response from montip, which includes the
previous mode of the standard input device. The HIF kernel saves the mode
values and resumes the execution of the application program. A stdin mode
message is used when the application program issues a HIF ioctl system call to
change the standard input mode.

Processor Initialization and Run-Time Services: OSBOOT 6-19

��

HIF call and HIF call return message pair
 struct hif_call_msg_t {
 INT32 code; /* 96 */
 INT32 length; /* number of bytes to */

/* follow (equals 16) */
 INT32 service_number;/* HIF service number */
 INT32 lr2; /* HIF service 1st input */

/* argument in lr2 */
 INT32 lr3; /* HIF service 2nd input */

/* argument in lr3 */
 INT32 lr4; /* HIF service third */

/* input argument in lr4 */
 };

 struct hif_call_rtn_msg_t {
 INT32 code; /* 64 */
 INT32 length; /* number of bytes to */

/* follow (equals 16) */
 INT32 service_number;/* HIF service number */
 INT32 gr121; /* HIF service completion*/
 /*code(TRUE or errno) */
 INT32 gr96; /* HIF service 1st return*/

/* value */
 INT32 gr97; /* HIF service second */

/* return value */
 };

When the application program issues a HIF system call to perform an I/O
operation on the file system of the host computer running montip, the HIF
kernel sends a HIF call message (code 96) to montip. The message includes the
HIF service number and up to three input arguments. The HIF services currently
defined do not take more than three input arguments. The kernel then waits for a
HIF call return message response from montip before resuming the application
program. Depending on the HIF service requested, montip may invoke the
dbg_core, which interrupts the kernel waiting for the HIF call return message.
montip sends a GO message to switch the context from dbg_core to the
interrupted kernel. It then sends the results of the HIF service in the HIF call
return message. The kernel sets global register gr121 to the completion code
sent by montip. Depending on the HIF service requested (determined from the
service_number field), the kernel sets registers gr96 and gr97 with the values
returned by montip.

6-20 Processor Initialization and Run-Time Services: OSBOOT

��

Implementation of os_V_msg Message Interrupt Handler

When the dbg_core message system receives a message for the HIF kernel, it
interrupts the kernel by transferring control at the os_V_msg label. os_V_msg is
a virtual interrupt vector and is defined in the msgio.s file. The following code
sample shows the os_V_msg interrupt handler:

os_V_msg:
 pushreg gr96, msg ; PUSH gr96
 ; check for Channel0 message (asynchronous)
 const gr96, _msg_rbuf
 consth gr96, _msg_rbuf
 load 0,0, gr96, gr96 ; get message code
 cpeq gr96, gr96,CHANNEL0_MSGCODE
 jmpt gr96, process_channel0_msg ; restores
 nop ; gr96 and msp

 ; not a channel0 message (synchronous message)
 const gr96, __hif_msgwaiting ; set the flag
 ; polled
 consth gr96, __hif_msgwaiting ; by the kernel
 ; while waiting.
 store 0, 0, gr96, gr96 ; Set to non-zero
 ; value
 popreg gr96, msp ; POP gr96
 iret

The HIF kernel waits by polling a flag (memory location), __hif_msgwaiting. It
loops and waits as long as the flag is set to zero. When a message is received,
this flag is set to a non-zero value. The kernel exits the wait loop and processes
the incoming message. As the message systems of dbg_core and montip
communicate using synchronous message pairs, the kernel assumes the new
message received to be in response for its request and returns to the application
program.

Processor Initialization and Run-Time Services: OSBOOT 6-21

��

Implementation of Message Communications in HIF
Kernel

The HIF kernel uses macros to build and send UDI-compliant MiniMON29K
messages using the dbg_core message system. The BuildHIFCallMsg macro
shown in the code sample below builds a HIF Call message (code 96) in the
buffer, bufaddr.

.macro BuildHIFCallMsg, bufaddr, tmp1, tmp2
const tmp1, bufaddr
consth tmp1, bufaddr
const tmp2, HIF_CALL_MSGCODE
store 0, 0, tmp2, tmp1 ; msg code
add tmp1, tmp1, 4
const tmp2, HIF_CALL_MSGLEN
store 0, 0, tmp2, tmp1 ; msg len
add tmp1, tmp1, 4
store 0, 0, gr121, tmp1 ; service number
add tmp1, tmp1, 4
store 0, 0, lr2, tmp1 ; lr2
add tmp1, tmp1, 4
store 0, 0, lr3, tmp1 ; lr3
add tmp1, tmp1, 4
store 0, 0, lr4, tmp1 ; lr4
.endm

The input parameters tmp1 and tmp2 to the macro are the temporary registers to
use to build the message. The HIF kernel uses the macro to build a HIF Call
message in its message buffer, __hif_msgbuf, as follows:

BuildHIFCallMsg __hif_msgbuf,gr96,gr97

The kernel saves global registers gr96 and gr97 before invoking the macro.

6-22 Processor Initialization and Run-Time Services: OSBOOT

��

Another macro, SendMessageToMontip, is defined to send the message built in
__hif_msgbuf to montip. The code below shows the definition of the
SendMessageToMontip macro.

 .macro SendMessageToMontip, bufaddr
 const lr2, bufaddr
$1:
 call lr0, _msg_send ; function of dbg_core
 ; message system
 consth lr2, bufadd
 cpeq gr96, gr96, 0 ; successfully sent?
 jmpf gr96, $1 ; no, try again.
 const lr2, bufaddr
 .endm

Before invoking the macro to send a message that has been built with
BuildHIFCallMsg , the local registers lr0, lr1, and lr2 must be saved, and
restored later.

The example below illustrates the implementation of a HIF service routine that
uses a HIF Call message.

pushreg gr96, msp ; PUSH gr96
pushreg gr97, msp ; PUSH gr96

BuildHIFCallMsg __hif_msgbuf, gr96, gr97

pushreg lr0, msp ; PUSH lr0
pushreg lr1, msp ; PUSH lr1
pushreg lr2, msp ; PUSH lr2

SendMessageToMontip __hif_msgbuf

popreg lr2, msp ; POP lr2
popreg lr1, msp ; POP lr1
popreg lr0, msp ; POP lr0

jmp _wait_for_ack ; jump to the wait routine
nop

As shown, a HIF Call message is built in the HIF message buffer,
__hif_msgbuf, and sent to montip using the dbg_core message system. After
successfully sending the message, it waits for the response message from
montip in the _wait_for_ack routine. The code sample on the following page
shows the _wait_for_ack routine, which waits for a response from montip.

Processor Initialization and Run-Time Services: OSBOOT 6-23

��

_wait_for_ack:
 SaveFZState gr96, gr97
 mtsrim chc, 0
 pushreg lr0, msp ; PUSH lr0
 pushreg lr1, msp ; PUSH lr1
 const gr96, _msg_wait_for ; returns immediately

 ; interrupt mode
 consth gr96, _msg_wait_for ; waits for message,

; polled mode
 calli lr0, gr96
 nop

 popreg lr1, msp ; POP lr1
 popreg lr0, msp ; POP lr0

 jmpt gr96, process_msg ; did _msg_wait_for
 nop ; return a message

; enable interrupts
 mfsr gr96, CPS
 andn gr96, gr96, (DI|DA)
 mtsr CPS, gr96

 ; wait for a message, poll flag
 const gr96, __hif_msgwaiting
$6:
 consth gr96, __hif_msgwaiting
 load 0, 0, gr96, gr96 ; read flag
 cpeq gr96, gr96, 0 ; compare with zero
 jmpt gr96, $6 ; yes, no message, loop
 const gr96, __hif_msgwaiting

 ; message received
process_msg:
 ; clear __hif_msgwaiting flag
 const gr96, __hif_msgwaiting
 consth gr96, __hif_msgwaiting
 const gr97, 0
 store 0, 0, gr97, gr96 ; clear flag

 ; code to process message follows
 ; the handlers restore Freeze state, gr96, gr97
 ; and memory stack

6-24 Processor Initialization and Run-Time Services: OSBOOT

��

The _wait_for_ack routine first calls the message system’s msg_wait_for()
function to receive a message. In polled mode, the msg_wait_for function waits
until a valid message is received in the buffer, msg_rbuf, and returns a -1 in
gr96. In interrupt mode, the msg_wait_for() function returns immediately with
gr96 set to 0 (zero). The return value from msg_wait_for() is checked by the
_wait_for_ack routine. If a -1 (0xffffffff) is returned, then that indicates a valid
message in the receive buffer, and the _wait_for_ack routine calls process_msg
to process the message received.

If a 0 (zero) is returned, then that indicates that the message interface interrupt
driver, and _wait_for_ack routine waits for a message interrupt. This is done by
polling the __hif_msgwaiting flag. When a message interrupt occurs, the
_wait_for_ack routine stops polling the flag and enters the process_msg
routine.

The process_msg routine processes the incoming message by extracting the
information sent by montip into gr96 and gr97, then restores the freeze mode
state earlier saved by the _wait_for_ack routine, and repairs the memory stack
altered earlier. The kernel then resumes the execution of the application
program.

Processor Initialization and Run-Time Services: OSBOOT 7-1

��

Chapter 7

Building OSBOOT or
OSBOOT/DBG_CORE

AMD’s osboot software contains the bootstrap code for the 29K Family of
microprocessors, the HIF kernel, and the instruction emulation routines for
certain arithmetic instructions of the 29K Family that may cause a trap.

The architectural simulator (sim29) and the instruction set simulator (isstip) use
osboot as the ROM bootstrap code. The following table gives the names of the
osboot binary files and their intended target processor. The simulators find the
appropriate osboot to use based upon the command-line option that specifies
which processor to simulate.

Table 7-1. OSBOOT for Simulators

Filename Target Processor

osb00x Am29000 and Am29005

osb03x Am29030 and Am29035

osb040 Am29040

osb050 Am29050

osb20x Am29200 and Am29205

osb24x Am29240 and Am29243

osb245 Am29245

osboot is also ported to operate with the MiniMON29K debugger core,
dbg_core. The linked objects of OSBOOT/DBG_CORE can be built for
different target platforms, and can be programmed into EPROMs to provide an
environment to develop, debug, and execute embedded application programs.

The batch files for MS-DOS systems and make files for UNIX systems to build
osboot and dbg_core are kept in the osboot directory.

7-2 Processor Initialization and Run-Time Services: OSBOOT

��

MS-DOS Batch Files
makeosb.bat To build osboot
makemon.bat To build osboot/dbg_core

UNIX Make Files
makefile.os To build osboot
makefile.mon To build osboot/dbg_core

The osboot directory also contains the linker command files, each of which
possess a base name corresponding to the target system for which it is intended.
The linker command files’ extensions have the following meanings:

� .inc files load object modules to build a relocatable osboot.

� .mon files load object modules to build relocatable osboot for linking with
the MiniMON29K debugger core, dbg_core.

� .lnk files are used to produce an absolute image of osboot or
osboot/dbg_core.

The sources of osboot are contained in the two subdirectories, boot and traps,
under the osboot directory (see Figure 7-1 on page 7-3).

The minimon directory, which is at the same level as the osboot directory,
contains the sources of the MiniMON29K debugger core, dbg_core. The target
subdirectory under the minimon directory contains the assembler and C
program source files.

This chapter describes how to build osboot in a number of different
configurations. Table 7-2 lists the various configurations described in each
section, along with the page number where their descriptions are found.

Table 7-2. Sample OSBOOT Configurations

This OSBOOT Configuration... Is Described Here...

Building OSBOOT for Simulators page 7-4

Building OSBOOT/DBG_CORE for Target
Hardware Platforms

page 7-8

Building OSBOOT for Stand–Alone Systems page 7-14

���Processor Initialization and Run-Time Services: OSBOOT

D
ire

ct
or

y
an

d
F

ile
 O

rg
an

iz
at

io
n

tr
ap

s/
bo

ot
/

os
bo

ot
/

au
til

s.
s

co
ld

st
rt

.s
eb

03
0h

w
.s

eb
29

kh
w

.s
ez

03
0h

w
.s

ge
nt

ra
ps

.s
he

ap
ba

se
.s

hi
f.s

hi
fs

er
v.

s
ho

st
hi

f.s
ki

o.
s

la
03

0h
w

.s
la

20
0h

w
.s

lc
b2

9k
hw

.s
m

em
or

y.
s

m
sg

io
.s

p_
ic

eh
w

.s
pc

eb
hw

.s
pr

oc
in

it.
s

re
gi

st
er

.s
ro

m
co

ff.
s

sa
03

0h
w

.s

sa
20

0h
w

.s
sc

c2
00

.s
sc

c8
53

0.
s

se
04

0h
w

.s
si

m
.s

si
m

24
5.

s
si

m
tr

ap
s.

s
st

ar
tu

p.
s

st
eb

hw
.s

sy
si

ni
t.s

tlb
24

x.
s

tlb
tr

ap
s.

s
ua

tr
ap

.s
yr

ev
8h

w
.s

cu
til

s.
c

fla
sh

32
.c

fla
sh

8.
c

fp
in

it.
c

hi
fv

ec
t.c

in
it2

4x
.c

si
ze

m
em

.c

eq
ua

te
s.

ah
fp

fix
up

.a
h

hi
f.a

h
hi

fs
er

v.
ah

in
tr.

ah
m

ac
ro

s.
ah

re
gi

st
er

.a
h

ro
m

co
ff.

ah
sc

c2
00

.a
h

sc
c8

53
0.

ah
st

at
s.

ah
st

da
lo

ne
.a

h
tr

ap
s.

ah

da
te

.h
pr

lin
fo

.h
st

at
s.

h
sy

m
tb

l.h
ve

ct
or

s.
h

m
ak

ef
ile

.o
s

m
ak

ef
ile

.m
on

m
ak

eo
sb

.b
at

m
ak

em
on

.b
at

eb
29

03
0.

in
c

eb
29

k.
in

c
ez

03
0.

in
c

la
29

03
0.

in
c

la
29

20
0.

in
c

lc
b2

9k
.in

c
ne

tr
om

.in
c

pc
eb

.in
c

pr
om

ic
e.

in
c

sa
29

03
0.

in
c

sa
29

20
0.

in
c

sa
29

24
0.

in
c

se
29

04
0.

in
c

st
eb

.in
c

tr
u.

in
c

tr
ud

16
.in

c
ya

rc
re

v8
.in

c
si

m
.in

c
si

m
24

5.
in

c

eb
29

03
0.

ln
k

eb
29

k.
ln

k
ez

03
0.

ln
k

la
29

03
0.

ln
k

la
29

20
0.

ln
k

lc
b2

9k
.ln

k
ne

tr
om

.ln
k

pc
eb

.ln
k

pr
om

ic
e.

ln
k

sa
29

03
0.

ln
k

sa
29

20
0.

ln
k

sa
29

24
0.

ln
k

se
29

04
0.

ln
k

st
eb

.ln
k

tr
u.

ln
k

tr
ud

16
.ln

k
ta

rc
re

v8
.ln

k
si

m
00

x.
ln

k
si

m
03

x.
ln

k
si

m
05

0.
ln

k
si

m
20

x.
ln

k
si

m
24

x.
ln

k

eb
29

03
0.

m
on

eb
29

k.
m

on
ez

03
0.

m
on

la
29

03
0.

m
on

la
29

20
0.

m
on

lc
b2

9k
.m

on
ne

tr
om

.m
on

pc
eb

.m
on

pr
om

ic
e.

m
on

sa
29

03
0.

m
on

sa
29

20
0.

m
on

sa
29

24
0.

m
on

se
29

04
0.

m
on

st
eb

.m
on

tr
u.

m
on

tr
ud

16
.m

on
ta

rc
re

v8
.m

on

re
ad

m
e.

os
b

m
ak

ef
ile

m
ak

ep
c.

ba
t

tr
_c

la
ss

.s
tr

_c
nv

t.s
tr

_c
om

p.
s

tr
_d

ad
d.

s
tr

_d
di

v.
s

tr
_d

iv
4.

s
tr

_d
m

ul
.s

tr
_d

rn
d.

s
tr

_e
xc

p.
s

tr
_f

ad
d.

s
tr

_f
di

v.
s

tr
_f

dm
ul

.s
tr

_f
m

ul
.s

tr
_f

rn
d.

s

tr
_m

ld
v.

s
tr

_p
vs

pr
.s

tr
_s

qr
t.s

tr
_d

ec
l.h

dm
ul

.s
fd

m
ul

.s
fm

ul
.s

fp
ei

ni
t.c

ua
tr

ap
.s

F
ig

ur
e

7-
1.

 O
S

B
O

O
T

 D
ire

ct
or

y
an

d
F

ile
 O

rg
an

iz
at

io
n

7-4 Processor Initialization and Run-Time Services: OSBOOT

91

Building OSBOOT for Simulators
Each member of the 29K Family of processors uses a specific version of osboot
as its bootstrap code. AMD provides a set of utilities that lets you build different
versions of osboot corresponding to different members of the 29K Family of
processors. Depending on the value of a command-line parameter, versions of
osboot can be built either separately or all at once. This section describes how to
build osboot for simulators on MS-DOS and UNIX systems.

Location of OSBOOT Files Built for Simulators
Versions of osboot built for simulators are stored by the build program in a
subdirectory named sim under the parent osboot directory. If the sim
subdirectory does not already exist, the build program creates it. Figure 7-1
illustrates this directory structure. In this example, the sim subdirectory contains
each possible version of osboot that can be built for simulators.

osboot/

boot/ traps/sim/

osb00x
osb03x
osb050
osb20x
osb24x
osb245

Figure 7-1. Subdirectory for Simulator Versions of OSBOOT

Linker Command Files Used to Build OSBOOT
A different linker command file is used to build osboot depending on the target
processor type. Table 7-3 lists each linker command file with its corresponding
osboot file and target processor type.

Processor Initialization and Run-Time Services: OSBOOT 7-5

92

Table 7-3. Linker Command Files for Simulator Versions of
OSBOOT

Linker Command File OSBOOT File Target Processor Type

sim00x.lnk osb00x Am29000, Am29005

sim03x.lnk osb03x Am29030, Am29035, Am29040

sim050.lnk osb050 Am29050

sim20x.lnk osb20x Am29200, Am29205

sim24x.lnk osb24x, osb25 Am29240, Am29243, Am29245

MS-DOS

The batch file to build osboot on an MS-DOS system is makeosb.bat. It is
invoked in the osboot\ directory by specifying two arguments on the command
line. The first argument must be the board-name and the second argument must
be the processor-name. The linker command file corresponding to the
processor-name specified is used for linking, as summarized in Table 7-3.

The board-name to use when building osboot for simulators is sim.

Syntax: makeosb board-name processor-name

where:
board-name

Must be:
sim For architectural and instruction set simulators

processor-name
Must be one of the following:
am2900x For Am29000 and Am29005 processors
am2903x For Am29030, Am29035, and Am29040 processors
am29050 For Am29050 processor
am2920x For Am29200 and Am29205 microcontrollers
am2924x For Am29240, Am29243, and Am29245

microcontrollers
all To build a version of osboot for all members of the

29K Family

7-6 Processor Initialization and Run-Time Services: OSBOOT

93

Example 1
To build osboot simulator files for all members of the 29K Family on an
MS-DOS system, do the following:

1. Use the cd (change directory) command to make osboot the current
directory.

2. Type the following command:
makeosb sim all

A version of osboot for simulators is built for each different target processor and
placed in the /sim directory (as in Figure 7-1 on page 7-4).

Example 2
Similarly, to build osboot simulator files for the Am29200 or Am29205 target
processor (osb20x), do the following:

1. Use the cd (change directory) command to make osboot the current
directory.

2. Type the following command:
makeosb sim am2920x

UNIX

The make file to build osboot under UNIX systems is makefile.os. It is invoked
in the osboot/ directory by defining two variables on the command line: proc
and board. The order of these definitions does not matter. The linker command
files corresponding to the definition of the proc variable are used during linking.

The board-name to specify for simulators is sim.

Syntax: make –f makefile.os board=board-name
proc=processor-name

where:
board-name

Must be:
sim For architectural and instruction set simulators

Processor Initialization and Run-Time Services: OSBOOT 7-7

94

processor-name
Must be one of the following:
am2900x For Am29000 and Am29005 processors
am2903x For Am29030 and Am29035 processors
am29040 For Am29040 processors
am29050 For Am29050 processors
am2920x For Am29200 and Am29205 microcontrollers
am2924x For Am29240, Am29243, and Am29245

microcontrollers
all To build a version of osboot for all members of the

29K Family

Example 1
To build osboot /simulator files for all members of the 29K Family on a UNIX
system, do the following:

1. Use the cd (change directory) command to make osboot the current
directory.

2. Type the following command:
make -f makefile.os board=sim proc=all

A version of osboot for simulators is built for each different target processor and
placed in the sim/ directory (as in Figure 7-1 on page 7-4).

Example 2
To build osboot/simulator files for the Am29240 target processors (osb24x and
osb245), do the following:

1. Use the cd (change directory) command to make osboot the current
directory.

2. Type the following command:
make –f makefile.os board=sim proc=am2924x

7-8 Processor Initialization and Run-Time Services: OSBOOT

95

Building OSBOOT/DBG_CORE for Target
Hardware Platforms

AMD provides a set of utilities that lets you build different versions of
osboot/dbg_core for use as the control program for different members of the
29K Family of processors. This section describes the procedures to build
osboot/dbg_core on MS-DOS and UNIX systems.

Building OSBOOT/DBG_CORE—The General Procedure
The general build procedure for osboot/dbg_core is the same for all platforms.
When creating osboot/dbg_core, you specify two command-line arguments. The
first argument specifies the target for which this version of osboot/dbg_core
will be created. The second argument specifies the 29K Family processor for
which this version of osboot/dbg_core will be created.

The board name defined on the command line indicates the linker command file
to be invoked at link time. Linker command files have the format
board_name.lnk . The build program uses the board-name specified on the
command line to establish naming conventions for the created files (and the
directories in which they are stored). When the build command is successfully
executed, the resulting osboot/dbg_core file is named board_name.os, and is
stored in a directory named board_name. For example, specifying the
board-name sa29200 on the command line causes the linker command file
sa29200.lnk to be invoked at link time. In turn, the resulting osboot/dbg_core
file, sa29200.os, is stored in the sa29200 directory. Figure 7-2 illustrates these
naming conventions. Note that the illustration uses UNIX notation to indicate
directories (forward slashes). The directory structure for an MS-DOS system is
the same, but would be indicated with leading backward slashes (\).

osboot/

boot/ traps/sa29200/
sa29200.os

sa29200.lnk

Figure 7-2. Naming Conventions for OSBOOT/DBG_CORE Files

Processor Initialization and Run-Time Services: OSBOOT 7-9

96

Using OSBOOT/DBG_CORE
Once you have built osboot/dbg_core, you can use it as follows:

� For plug-in targets, such as the EB29K PC plug-in board or the YARC Rev 8
PC plug-in board, osboot/dbg_core files are downloaded and run on the
writable ROM space of the target.

� For stand-alone targets (such as the EZ030 or SE29040 stand-alone boards),
osboot/dbg_core files can be converted to a hexadecimal file that is then
programmed to ROM. For example, the command below uses the coff2hex
program to convert the text section of the osboot/dbg_core file sa29200.os to
the Motorola S-records file sa29200.hex.

coff2hex –t –c t sa29200.os

The hexadecimal output file sa29200.hex can be used with a PROM
programmer to create a MiniMON29K target PROM.

MS-DOS

The batch file used to build osboot/dbg_core on an MS-DOS system is
makemon.bat. It is invoked in the osboot directory by specifying two
arguments on the invocation line. The first argument must be the board-name
and the second argument must be the processor-name. The linker command file
corresponding to the board-name specified is used for linking.

The third argument, when specified, must follow the correct order. The third
argument can be used to specify the baud rate to use for serial communications.

Syntax: makemon board-name processor-name [9600 | 38400]

7-10 Processor Initialization and Run-Time Services: OSBOOT

97

where:
board-name

Must be one of the following:
eb29k For AMD’s EB29K PC plug-in board
yarcrev8 For the YARC Rev 8 PC plug-in board
lcb29k For the YARC ATM (Sprinter) card
eb29030 For AMD’s EB29030 PC plug-in board
ez030 For AMD’s EZ030 stand-alone board
sa29200 For AMD’s SA29200 and SA29205 stand-alone

boards
steb For STEP’s STEB29K board
sa29240 For AMD’s SE29240 stand-alone board
se29040 For AMD’s SE29040 stand-alone board

processor-name
Must be one of the following:
am2900x For the Am29000 and Am29005 processors
am2903x For the Am29030 and Am29035 processors
am29040 For the Am29040 microprocessor
am29050 For the Am29050 processor
am2920x For the Am29200 and Am29205 microcontrollers
am2924x For Am29240, Am29243, and Am29245

microcontrollers

9600 | 38400
Must be the third argument, if specified. It specifies the baud rate
to be used for serial communications. The default is 9600.

Example 1
To build osboot/dbg_core on a PC host for the SA29200 stand-alone target
board, change directories to the osboot directory and enter:

makemon sa29200 am2920x 38400

This builds a COFF image of osboot and dbg_core for the SA29200 board and
stores it in a file called sa29200.os in the \sa29200 directory. The subdirectory
\sa29200 is created if it does not exist. The basename used for the final COFF
image file corresponds to the first argument given, which is the target board’s
name, sa29200.

The third argument, 38400, specifies the baud rate to use for serial
communications. The baud rate specified here is 38400, which overrides the
default baud rate of 9600.

Processor Initialization and Run-Time Services: OSBOOT 7-11

98

The COFF image, sa29200\sa29200.os, can be used to program EPROMs for
the sa29200 board.

Example 2
To build osboot/dbg_core on a PC host for the AMD EB29030 plug-in board,
change directories to the osboot directory and enter:

makemon eb29030 am2903x

This builds a COFF image of osboot and dbg_core for the EB29030 board and
stores it in a file called eb29030.os in the \eb29030 directory. The subdirectory
\eb29030 is created if it does not exist. The name used for the final COFF image
file corresponds to the target board’s name, EB29030.

Because the EB29030 board is a plug-in target, no baud rate needs to be
specified. Before debugging begins, the output file eb29030.os is downloaded
and run on the target.

UNIX

The make file used to build the osboot/dbg_core is makefile.mon. It is invoked
by defining two variables on the command line: proc and board. The order of
these definitions does not matter. The linker command files corresponding to the
definition of the board variable are used during linking.

Syntax: make -f makefile.mon board=board-name
proc=processor-name
[baudrate=38400 | baudrate=9600]

7-12 Processor Initialization and Run-Time Services: OSBOOT

99

where:
board-name

Must be one of the following:
eb29k For AMD’s EB29K PC plug-in board
yarcrev8 For the YARC Rev 8 PC plug-in board
lcb29k For the YARC ATM (Sprinter) card
eb29030 For AMD’s EB29030 PC plug-in board
ez030 For AMD’s EZ030 stand-alone board
sa29200 For AMD’s SA29200 and SA29205 stand-alone

boards
steb For STEP’s STEB29K board
sa29240 For AMD’s SE29240 stand-alone board
se29040 For AMD’s SE29040 stand-alone board

processor-name
Must be one of the following:
am2900x For Am29000 and Am29005 processor
am2903x For Am29030 and Am29035 processor
am29040 For Am29040 processor
am29050 For Am29050 processor
am2920x For Am29200 and Am29205 microcontrollers
am2924x For Am29240, Am29243, and Am29245

microcontrollers

baudrate=38400 | baudrate = 9600
Can be used to change the default baud rate to be used for serial
communications. The default value is 9600.

Example 1
To build osboot/dbg_core on a UNIX host for an SA29200 stand-alone target
board, change directories to the osboot directory, and enter:

make -f makefile.mon proc=am2920x board=sa29200 baudrate=9600

This builds a COFF image of osboot/dbg_core, and stores it in the sa29200.os
file. It resides in an sa29200/ directory, which is created if it does not exist.
Notice that the final image’s filename corresponds to the board specified on the
command line. The baud rate is explicitly specified as 9600.

Next, you can use the coff2hex utility to convert selected sections (usually text
sections) of the COFF file to a hex file format used to program EPROMs:

coff2hex -m -c t sa29200.os

Processor Initialization and Run-Time Services: OSBOOT 7-13

100

The sa29200.hex file contains the Motorola S-records for the text sections of
sa29200.os image to program EPROMs.

Program EPROMs on the SA29200 board with sa29200.hex and turn the power
on.

Example 2
To build osboot/dbg_core on a UNIX host for the AMD EB29030 plug-in
board, change directories to the osboot directory and enter:

make -f makefile.mon board=eb29030 proc=am2903x

This builds a COFF image of osboot and dbg_core for the EB29030 board and
stores it in a file called eb29030.os in the eb29030/ directory. The subdirectory
eb29030/ is created if it does not exist. The name of the final COFF image file
corresponds to the target board’s name, EB29030.

Because the EB29030 board is a plug-in target, no baud rate needs to be
specified. Before debugging begins, the eb29030.os output file is downloaded
and run on the target.

7-14 Processor Initialization and Run-Time Services: OSBOOT

101

Building OSBOOT for Stand-Alone Systems
This section provides instructions for building osboot for stand-alone systems.
This includes both the stand-alone osboot/application model and the
stand-alone osboot/dbg_core/application model.

Building osboot for stand-alone systems consists of linking a relocatable version
of either osboot or osboot/dbg_core to a relocatable application program. Thus,
before you can build the stand-alone system, you first need to build a relocatable
version of the application program and either osboot or osboot/dbg_core.

This section is organized as follows:

� Building a Relocatable Version of OSBOOT

� Building a Relocatable Version of OSBOOT/DBG_CORE

� Building a Stand-Alone System – This section describes how to build a
stand-alone system using the relocatable version of osboot or
osboot/dbg_core that was built in the first two sections. The procedure is the
same for either.

The “Examples” appendix provides detailed examples of how to port osboot to
some sample stand-alone systems.

Building a Relocatable Version of OSBOOT

Building a relocatable version of osboot is almost exactly the same as building a
version of osboot for simulators. You use the same DOS batch file
(makeosb.bat) or the same UNIX make file (makefile.os), and use the same
command-line arguments to specify both a processor-name and a board-name
for the version of osboot to be built. The concepts of linker command files and
file naming conventions are exactly the same as discussed in earlier sections.

The difference between building a relocatable version of osboot and any other
version of osboot is that a –DSTANDALONE argument must be specified at the
end of the command line. The –DSTANDALONE argument tells the build
program to create an incrementally linked osboot module, board-name.o. This
module can be linked with an application to produce a stand-alone system.

Processor Initialization and Run-Time Services: OSBOOT 7-15

102

Build Syntax for MS-DOS and UNIX
The batch file used to build osboot on an MS-DOS system is makeosb.bat. The
make file used to build osboot on a UNIX system is makefile.os. Both are
invoked in the osboot\ directory by specifying two arguments on the invocation
line.

DOS Syntax:
makeosb board-name processor-name –DSTANDALONE

For MS-DOS, the first argument must be the board-name and the second
argument must be the processor-name.

UNIX Syntax:
make –f makefile.os board=board-name proc=processor-name
standalone=–DSTANDALONE

where:
board-name

Must be one of the following:
ez030 For AMD’s EZ030 stand-alone board
sa29200 For AMD’s SA29200 and SA29205 stand-alone

boards
steb For STEP’s STEB29K board
sa29240 For AMD’s SE29240 stand-alone board
se29040 For AMD’s SE29040 stand-alone board

processor-name
Must be one of the following:
am2900x For the Am29000 and Am29005 processors
am2903x For the Am29030 and Am29035 processors
am29040 For the Am29040 microprocessor
am29050 For the Am29050 processor
am2920x For the Am29200 and Am29205 microcontrollers
am2924x For Am29240, Am29243, and Am29245

microcontrollers

Example 1
To build a relocatable version of osboot on a PC host for the SA29200
stand-alone target board, change directories to the osboot directory and enter:

makeosb sa29200 am2920x –DSTANDALONE

The makeosb program builds the relocatable osboot file sa29200.o and stores it
in the \sa29200 directory.

7-16 Processor Initialization and Run-Time Services: OSBOOT

103

Example 2
To build a relocatable version of osboot on a UNIX host for the AMD EZ030
board, change directories to the osboot directory and enter:

make –f makefile.os board=ez030 proc=am2903x standalone=–DSTANDALONE

The makefile program builds the relocatable osboot file ez030.o and stores it in
the /ez030 directory.

Building a Relocatable Version of OSBOOT/DBG_CORE

Building a relocatable version of osboot/dbg_core is almost exactly the same as
building a version of osboot/dbg_core for a target hardware platform. You use
the same DOS batch file (makemon.bat) or the same UNIX make file
(makefile.mon), and use the same command-line arguments to specify both a
processor name and a board name for the version of osboot/dbg_core to be
built. The concepts of linker command files and file naming conventions are
exactly the same as discussed in earlier sections.

The difference between building a relocatable version of osboot/dbg_core and
any other version of osboot/dbg_core is that a –DSTANDALONE argument
must be specified at the end of the command line. The –DSTANDALONE
argument tells the build program to create an incrementally linked
osboot/dbg_core module, osbdbg.o. This module can be linked with an
application to produce a stand-alone system.

Build Syntax for MS-DOS and UNIX
The batch file used to build osboot/dbg_core on an MS-DOS system is
makemon.bat. The make file used to build osboot on a UNIX system is
makefile.mon. Both are invoked in the osboot\ directory by specifying the
arguments summarized below on the command-line.

DOS Syntax:
makemon board-name processor-name [9600 | 38400] –DSTANDALONE

For MS-DOS, the order of the arguments must not change. The first argument
must be the board-name, the second argument must be the processor-name, the
baud rate must be the third argument, and –DSTANDALONE must be the last
argument.

Processor Initialization and Run-Time Services: OSBOOT 7-17

104

UNIX Syntax:
make –f makefile.os board=board-name proc=processor-name
[baudrate=38400 | baudrate=9600] standalone=–DSTANDALONE

On a UNIX system, the order of the arguments is not relevant. The variables
proc, board, and standalone must be defined. If the value of baudrate is not
defined, the default value of 9600 is used.

NOTE: The build command for both MS-DOS and UNIX may cause the
following error message, which can safely be ignored:

ERROR: (368) Unresolved external:
start

where:
board-name

Must be one of the following:
ez030 For AMD’s EZ030 stand-alone board
sa29200 For AMD’s SA29200 and SA29205 stand-alone

boards
steb For STEP’s STEB29K board
sa29240 For AMD’s SE29240 stand-alone board
se29040 For AMD’s SE29040 stand-alone board

processor-name
Must be one of the following:
am2900x For the Am29000 and Am29005 processors
am2903x For the Am29030 and Am29035 processors
am29040 For the Am29040 microprocessor
am29050 For the Am29050 processor
am2920x For the Am29200 and Am29205 microcontrollers
am2924x For Am29240, Am29243, and Am29245

microcontrollers

9600 | 38400
Specifies the baud rate for serial communications.

Example 1
To build a relocatable version of osboot/dbg_core on a PC host for the SA29200
stand-alone target board, change directories to the osboot directory and enter:

makemon sa29200 am2920x 9600 –DSTANDALONE

7-18 Processor Initialization and Run-Time Services: OSBOOT

105

The makeosb program builds the relocatable osboot/dbg_core file osdbg.o and
stores it in the \sa29200 directory. The baud rate for serial communications is set
to 9600.

Example 2
To build a relocatable version of osboot/dbg_core on a UNIX host for the AMD
EZ030 board, change directories to the osboot directory and enter:

make –f makefile.mon board=ez030 proc=am2903x
baudrate=38400 standalone=–DSTANDALONE

The makefile program builds the relocatable osboot/dbg_core file osdbg.o and
stores it in the /ez030 directory. The baud rate for serial communications is set to
38400.

Building a Stand-Alone System

The UNIX make files and MS-DOS batch files provided can be used to build a
relocatable object module of osboot, which can be linked with your application
program modules to produce a stand-alone system ready for programming
EPROMs. The source files contain conditional code which is included when the
manifest STANDALONE is defined on the command-line when compiling or
assembling. The code is conditionally included for convenience. The code
assumes no external loader, and therefore performs the following functions:

1. Zeroes out the BSS section and initializes data regions.

2. Assumes the start symbol to be defined as the entry point of the application
program.

3. Executes the program in user mode without any translation.

4. Uses the assembler macro $sizeof to determine the size of the data region
and sets up the heap base beyond that.

NOTE: Holes in the executable image could result in incorrect computation of
the end address of the data region.

Most of the code specific to stand-alone system development is confined to the
stdalone.ah header file, which is included in hif.s. In other places, code is
conditionally included using the .ifdef STANDALONE construction.

Processor Initialization and Run-Time Services: OSBOOT 7-19

106

The procedure to develop stand-alone systems involves the following steps:

1. Using the instructions in the previous two sections, build a relocatable
version of either osboot or osboot/dbg_core. This procedure uses the
example of a relocatable osboot module built for the EZ030 target.
Accordingly, the name of the relocatable osboot file is ez030.o. In this
example, the working directory is \osboot.

2. Compile your application program and make a relocatable object. For this
example, the object is named appl.o.

3. Edit the linker command file provided for your target to suit your particular
target application. Linker command files are named in the format
board-name.lnk. So, for this example, the linker command file is ez030.lnk.
You may need to add different data sections to the ORDER statement
ordering the data sections. Otherwise, it should not require major editing for
already known targets.

NOTE: If you want to use the LOAD command to load object modules in
the linker command file, you must specify those objects before the public
definitions of the symbols contained in the default linker command file
provided by AMD.

4. First Link: Using the edited linker command file for your target (in this
example, the ez030.lnk linker command file), link the osboot module and
your application program module using the compiler driver as shown below:

hc29 -cmdez030.lnk ez030/ez030.o appl.o -o appl.out

where appl.out contains the output.

5. Run the romcoff utility to produce the RAMInit routine to initialize data
sections. In this example, for an EZ030 target, enter:

romcoff -t -r appl.out raminit.o

where raminit.o is the relocatable output object file containing the
initialization routine. The –r option specifies that ROM space is readable; the
–t option specifies to ignore text sections of the appl.out file.
raminit.o contains routines that initialize DRAM and copy selected
information from ROM to DRAM at run time. In most cases, you will elect
to copy data sections (whose contents may be written during program
execution) from ROM to DRAM before the program executes.

7-20 Processor Initialization and Run-Time Services: OSBOOT

107

6. Second Link: Using the same edited linker command file generated for step
4 (above), relink the osboot and application modules with the newly created
raminit.o module. In this example, for an EZ030 target, enter:

hc29 -cmdez030.lnk ez030.o appl.o raminit.o -o appl.rom

where appl.rom is the file containing the image. This linkage produces the
final COFF file.

NOTE: If you are loading the object modules in the linker command file,
you may need to add the raminit.o object before creating the above link.

7. Use the coff2hex utility to convert selected sections (usually text sections) of
the COFF file to a hex file format used to program EPROMs:

coff2hex -m -c t appl.rom

The appl.hex file contains the Motorola S-records for the text sections of
appl.rom image to program EPROMs.

8. Program EPROMs with appl.hex and turn the power on.

Processor Initialization and Run-Time Services: OSBOOT 7-21

108

OSBOOT Configuration
This section describes the configurable parameters of osboot. Configurable
parameters can be defined differently according to the target system. The
parameters are all defined as link-time constants and are defined in the linker
command file. Functions of these parameters include:

� Defining the Current Processor Status Register (CPS) for the cold start
process and for user programs.

� Defining a target system’s memory configuration.

� Enabling and disabling dynamic memory sizing.

� Defining the execution location of osboot trap handlers.

� Defining the 29K Family processor’s clock frequency.

� Defining ROM wait states, page mode DRAM, and SRAM memory.

� Defining serial port characteristics.

Table 7-4 lists the linker command filenames associated with each supported
target system.

7-22 Processor Initialization and Run-Time Services: OSBOOT

109

Table 7-4. Linker Command Filenames for Supported Targets

Target System Linker Command Filename

EB29030 eb29030.lnk

EB29K eb29k.lnk

EZ030 ez030.lnk

Laser29K-030 la29030.lnk

Laser29K-200 la29200.lnk

YARC ATM Sprinter lcb29k.lnk

PCEB29K pceb.lnk

SA29030 sa29030.lnk

SE29040 se29040.lnk

SA29200 sa29200.lnk

SE29240 sa29240.lnk

SA29205 sa29200.lnk

STEP’s STEB steb.lnk

YARC Rev 8 yarcrev8.lnk

Simulators sim00x.lnk, sim03x.lnk, sim050.lnk,
sim20x.lnk, sim24x.lnk

NOTE: Some of the boards in Table 7-4 are no longer available commercially,
but are still in use. Note also that the linker command filenames for some targets
do not correspond directly to the target’s name.

The source files refer to these link-time parameters as external variables. To pass
the values defined in the command file to the source files, the linker command,
PUBLIC , must be used to define values for each parameter. The syntax of the
PUBLIC linker command is:

PUBLIC symbol = value

where symbol is a user-defined external definition symbol, and value is the value
of the symbol. The symbol names specified by the linker’s PUBLIC command
take precedence over symbol names defined during assembly.

The linker command files for the target hardware systems supported by AMD
are provided. They define the default values for those target systems.

Processor Initialization and Run-Time Services: OSBOOT 7-23

110

The list of configuration parameters that must be defined for all targets in the
linker command files is shown in Table 7-5. Some of these parameters are not
used in some target system configurations. However, they still need to be
defined to avoid getting an unresolved external link time error. The values of
symbols that are ignored or which do not apply to the target system can be zero.

Table 7-5. Configuration Parameters

Configuration Parameter Meaning

These parameters apply to both 2-bus and 3-bus microprocessors.

init_CPS The value used to initialize the CPS
register at the beginning of the cold start
process.

DMemStart The starting address of the data memory
space. This is used to initialize the VAB
register. It is also the base address used
when dynamically sizing the external data
memory at run-time. It can be the same as
IMemStart in cases where there is a
single linear memory space.

DMemSize The maximum possible size of the data
memory region.

TicksPerMillisecond This must be defined to the processor
clock frequency in ticks per millisecond. It
is used by the HIF kernel services of
osboot.

ClockFrequency This must be defined to the processor
clock frequency. It is used by the HIF
kernel services of osboot.

These parameters only apply to 3-bus microprocessors.

IMemStart The starting address of the instruction
memory space.

IMemSize The maximum possible size of the
instruction memory region.

RMemStart The starting address of the ROM address
space.

RMemSize The maximum possible size of the ROM
region.

7-24 Processor Initialization and Run-Time Services: OSBOOT

111

Configuration Parameter Meaning

TRAPINROM Set to 0x2 (two) to specify that the trap
handlers reside in the ROM address
region, or 0x0 (zero) to specify that the
trap handlers reside in the instruction
memory region. Trap handlers should only
be located in ROM space (that is,
TRAPINROM set to 0x2) for those 29K
Family microprocessors using 3-bus
architecture. For other members of the
29K Family, trap handlers should be
located in instruction memory space
(TRAPINROM set to 0x0).

This parameter only applies to 2-bus microprocessors.

EnableDRAMSizing If set to 1, DRAM memory range is deter-
mined at run time. The memory range
found is used to configure the DRAM
Controller. If set to 0, the value specified
by the DMemSize variable is used.

Table 7-6 lists the osboot configuration parameters that must be defined if the
target contains an 85C30 (Serial Communications Controller) device. If these
parameters are defined in the command file of a target system that does not
require them, they will be ignored.

Table 7-6. Configuration Parameters

Configuration Parameter Meaning

SCC8530_CHA_CONTROL This value is used as the address to access
the control register of Channel A of the
85C30 device on the target system.

SCC8530_CHB_CONTROL This value is used as the address to access
the control register of Channel B of the
85C30 device on the target system.

SCC8530_CHA_DATA This value is used as the address to access
the data register of Channel A of the
85C30 device on the target system.

Processor Initialization and Run-Time Services: OSBOOT 7-25

112

Configuration Parameter Meaning

SCC8530_CHB_DATA This value is used as the address to access
the data register of Channel B of the
85C30 device on the target system.

SCC8530_BAUD_CLK_ENBL This value specifies the enabling/disabling
of the baud rate clock generator of the
85C30 device on the target system.

Table 7-7 lists those parameters that must be defined for a microcontroller target.
These parameters initialize ROM and DRAM controllers. Because
microprocessor targets do not have ROM or DRAM controllers, these
parameters do not apply to them. However, to avoid unresolved external link
time errors, you should be sure to set them even if your target is a 29K Family
microprocessor. The values of symbols that do not apply to the target system are
ignored. They can safely be set to zero.

Table 7-7. Configuration Parameters

Configuration Parameter Meaning

RMCT_VALUE The value used to initialize the ROM
Control register of the 29K Family
microcontrollers.

DRCT_VALUE The value used to initialize the DRAM
Control register of the 29K Family
microcontrollers.

RMCF_VALUE The value used to initialize the ROM
Configuration register of the 29K Family
microcontrollers.

UCLK Specifies the clock frequency controlling
the UART. Used to compute the Baud
Rate Divisor.

Sample Linker Command File

To demonstrate the implementation of the parameters described in the previous
tables, the following code sample is provided. It shows the contents of the
sa29200.lnk linker command file provided with the osboot software. The
comment portions of this file have been removed to simplify reading. To see the
comment portions of this file, use a text editor to view the sa29200.lnk file in
the osboot directory.

7-26 Processor Initialization and Run-Time Services: OSBOOT

113

ALIGN ProcInit=16
ORDER Reset=0x0
ORDER ProcInit,Osbtext,.text,!text
ORDER lit,!lit
ORDER vectable=0x40000000
ORDER msg_data=0x40000400
ORDER .data,!data
ORDER OsbBss,dbg_030,dbg_bss,cfg_bss,.bss,!bss
ORDER HeapBase
ORDER .comment

; Defines initial value of CPS register
public _init_CPS=0x87F

; Defines target system’s memory configuration
public VectorBaseAddress=0x40000000
public IMemStart=0x40000000
public IMemSize=0xffffff
public DMemStart=0x40000000
public DMemSize=0xffffff
public RMemStart=0x0
public RMemSize=0xffffff

; Enables/Disables dynamic memory sizing
public EnableDRAMSizing=1

; Defines ROM wait states,page mode DRAM,SRAM memory
public RMCT_VALUE=0x03030303
public DRCT_VALUE=0x888800FF
public RMCF_VALUE=0x00f8f8f8

; Defines execution location of trap handlers
public _TRAPINROM=0

; Defines 29K Family processor clock frequency
public TicksPerMillisecond=16000
public ClockFrequency=16000000

; Defines serial port characteristics.
public UCLK=32000000
public INITBAUD=9600

public SCC8530_CHA_CONTROL=0xC0000007
public SCC8530_CHB_CONTROL=0xC0000003
public SCC8530_CHA_DATA=0xC000000F
public SCC8530_CHB_DATA=0xC000000B
public SCC8530_BAUD_CLK_ENBL=3

Processor Initialization and Run-Time Services: OSBOOT A-1

114

Appendix A

Examples

This appendix provides examples of some common osboot configuration
models. Most of the examples in this appendix follow procedures detailed
elsewhere in this manual. The appendix provides the following examples:

� Building the Stand-Alone OSBOOT/Application Model for AMD’s SE29240
board on page A-2.

� Building the Stand-Alone OSBOOT/DBG_CORE/Application Model for
AMD’s SE29040 board on page A-4.

� Building the OSBOOT/Application Model to transfer from ROM to SRAM
for testing on page A-6.

� Building the OSBOOT/Application Model to transfer from ROM to DRAM
for testing on page A-9.

� Building the OSBOOT/DBG_CORE Model for a system without DRAM on
page A-11.

A-2 Processor Initialization and Run-Time Services: OSBOOT

115

Building the Stand-Alone
OSBOOT/Application Model for the
SE29240

This example shows how to build the Stand-Alone OSBOOT/Application Model
for AMD’s SE29240 stand-alone board. This example follows the same
procedure detailed in “Building OSBOOT for Stand-Alone Systems,” starting on
page 7-14.

In this example, the baud rate used for serial communications is 9600 baud.

1. Use the cd command to change to the ...\29k\osboot directory.

2. Build a relocatable version of osboot for the SE29240 board. Use the
following command lines for MS-DOS and UNIX, respectively:

For MS-DOS:
makeosb sa29240 am2924x 9600 –DSTANDALONE

For UNIX:
make –f makefile.os board=sa29240 proc=am2924x

baudrate=9600 standalone=–DSTANDALONE

Regardless of the operating system, the build program creates the relocatable
osboot file, sa29240.o, and stores it in the directory sa29240.

3. In this example, the name of the application program is appl.c. Use the hc29
program to build a relocatable version of appl.c using the following
command:

hc29 –c –o appl.o appl.c

The hc29 program creates the relocatable application file appl.o.

4. Edit the linker command file. Because AMD provides a linker command file
to work with the SE29240 board (sa29240.lnk), there is no need to edit the
linker command file in this case. When building osboot for targets for which
AMD does not supply a custom linker command file, you will need to edit a
linker command file to work with your target.

5. First link. Use the hc29 program to link the relocatable osboot module built
in Step 2 with the relocatable application module built in Step 3 using the
following command.

hc29 –cmdsa29240.lnk sa29240/sa29240.o appl.o –o appl.out

Processor Initialization and Run-Time Services: OSBOOT A-3

116

The hc29 program creates the COFF image file appl.out. The appl.out file
represents the linkage of the relocatable osboot file, sa29240.o, and the
relocatable application file, appl.o.

6. Use the romcoff utility to create the raminit.o module for appl.out. The
raminit.o module is used to initialize DRAM and copy selected sections of
the appl.out file from ROM to DRAM before program execution starts. In
this example, raminit.o copies images of the .data and .bss sections of the
appl.out file stored in ROM to DRAM at run time. Because the –t argument
is specified in the command line below, text sections are excluded from
raminit.o . The –r option specifies that ROM space is readable. Use the
following command:

romcoff –t –l –r appl.out raminit.o

7. Second link. Use the hc29 program to link raminit.o with the relocatable
version of osboot and the relocatable version of the application program. Use
the same linker command as in Step 5, as follows:

hc29 –cmdsa29240.lnk sa29240/sa29240.o appl.o raminit.o
–o appl.rom

The hc29 program creates the appl.rom COFF file.

8. Use the coff2hex command to convert the text section of the COFF file,
appl.rom, to a hex file that can be used to program EPROMs on the target.
Use the following command syntax:

coff2hex –m –c tl appl.rom

The coff2hex command creates the hex file appl.hex. Use this file to
program EPROMs. Then, install the EPROMs on the target and turn on the
power.

A-4 Processor Initialization and Run-Time Services: OSBOOT

117

Building the Stand-Alone
OSBOOT/DBG_CORE/ Application Model
for the SE29040

This example shows how to build the Stand-Alone OSBOOT/DBG_CORE/Application
Model for AMD’s SE29040 stand-alone board. This example follows the same procedure
described in, “Building OSBOOT for Stand-Alone Systems,” starting on page 7-14.

In this example, the baud rate used for serial communications is 38400 baud.

1. Use the cd command to change to the .../29k/osboot directory.

2. Build a relocatable version of osboot/dbg_core for the SE29040 board. Use
the following command lines for MS-DOS and UNIX, respectively:

For MS-DOS:
makemon se29040 am29040 38400 –DSTANDALONE

For UNIX:
make –f makefile.mon board=se29040 proc=am29040

baudrate=38400 standalone=–DSTANDALONE

Regardless of the operating system, the build program creates the relocatable
osboot/dbg_core file, osbdbg.o, and stores it in the se29040 directory.

NOTE: The build command for both MS-DOS and UNIX may cause the
following error message, which can safely be ignored:

ERROR: (368) Unresolved external:
start

3. In this example, the name of the application program is appl.c. Use the hc29
program to build a relocatable version of appl.c using the following
command:

hc29 –c –o appl.o appl.c

The hc29 program creates the relocatable application file appl.o.

Processor Initialization and Run-Time Services: OSBOOT A-5

118

4. Edit the linker command file. Because AMD provides a linker command file
to work with the SE29040 board (se29040.lnk), there is no need to edit the
linker command file in this case. When building osboot for targets for which
AMD does not supply a custom linker command file, you will need to edit a
linker command file to work with your target.

5. First link. Use the hc29 program to link the relocatable osboot/dbg_core
module built in Step 2 with the relocatable application module built in Step 3
using the following command:

hc29 –cmdse29040.lnk se29040/osbdbg.o appl.o –o appl.out

The hc29 program creates the COFF image file appl.out. The appl.out file
represents the linkage of the relocatable osboot/dbg_core file, osbdbg.o, and
the relocatable application file, appl.o.

6. Use the romcoff utility to create the raminit.o module for appl.out. The
raminit.o module is used to initialize DRAM and copy selected sections of
the appl.out file from ROM to DRAM before program execution starts. In
this example, raminit.o copies images of the .data and .bss sections of the
appl.out file stored in ROM to DRAM at run time. Because the –t argument
is specified in the command line below, text sections are excluded from
raminit.o . The –r option specifies that ROM space is readable.
Use the following command:

romcoff –t –l –r appl.out raminit.o

7. Second link. Use the hc29 program to link raminit.o with the relocatable
version of osboot/dbg_core and the relocatable version of the application
program. Use the same linker command as in Step 5, as follows:

hc29 –cmdse29040.lnk se29040/osbdbg.o appl.o raminit.o –o appl.rom

The hc29 program creates the COFF file appl.rom.

8. Use the coff2hex command to convert the text section of the COFF file,
appl.rom, to a hex file that can be used to program EPROMs on the target.
Use the following command syntax:

coff2hex –m –c tl appl.rom

The coff2hex command creates the hex file appl.hex. Use this file to
program EPROMs. Then, install the EPROMs on the target and turn on the
power.

A-6 Processor Initialization and Run-Time Services: OSBOOT

119

Building the OSBOOT/Application Model to
Transfer from ROM to SRAM

This example shows how to build the OSBOOT/Application Model for AMD’s
SA29200 stand-alone board. In this example, however, instead of using the
linker command file as supplied for the SA29200 board, the linker command file
is edited so that the COFF file created by linking relocatable versions of osboot
and an application file can be executed from SRAM instead of ROM. Then, the
example uses the mondfe debugger front end to “yank” the COFF file to the
SRAM of the target SA29200 board for testing purposes.

This example is very similar to the procedure described in “Building OSBOOT
for Stand-Alone Systems,” starting on page 7-14.

1. Use the cd command to change to the .../29k/osboot directory.

2. Create a working directory to contain edited versions of master template files
provided by AMD. In this example, the sa2920s8 directory is created.

3. To link osboot with an application, both osboot and the application need to
be relocatable. Build a relocatable version of osboot for the SA29200 board.
Use the following command lines for MS-DOS and UNIX, respectively:

For MS-DOS:
makeosb sa29200 am29200x –DSTANDALONE

For UNIX:
make –f makefile.os board=sa29200 proc=am29200x

standalone=–DSTANDALONE

Regardless of the operating system, the build program creates the relocatable
osboot file, sa29200.o, and stores it in the sa29200 directory.

4. Edit the linker command file provided by AMD for the SA29200 board so
that the COFF application file created using this linker command file can be
run in SRAM instead of ROM. The linker command file provided by AMD
for the SA29200 board is called sa29200.lnk and is located in the osboot
directory.

a. Make a copy of the sa29200.lnk file in the working directory created in
Step 1 (sa2920s8).

Processor Initialization and Run-Time Services: OSBOOT A-7

120

b. Using a text editor, open the sa29200.lnk file and change the entry point
of the osboot module from “0x0” (ROM) to “0x80000” (SRAM). This is
done by changing the line that reads, “ORDER Reset=0x0,” to
“ORDER Reset=0x80000.” Save the file. In this example, the file is saved as
sa2920s8.lnk. You can see the contents of the unedited sa29200.lnk file in
“Sample Linker Command File,” on page 7-25.

c. First link. Use the hc29 program to build a relocatable version of the
application program to be linked with the relocatable version of osboot built
in Step 3. In this example, the name of the application file is appl.c. The
following hc29 command builds a relocatable version of appl.c (called
appl.o) and then uses the linker command file we created in Step 4b
(sa2920s8) to link appl.o with the relocatable osboot module sa29200.o:

hc29 –cmd./sa2920s8.lnk ../sa29200/sa29200.o appl.c –o sa2920s8.out

The hc29 program creates the COFF image file sa2920s8.out. The
sa2920s8.out file is the linkage of the relocatable osboot file, sa29200.o, and
the relocatable application file appl.o.

5. Use the romcoff utility to create the raminit.o module for sa2920s8.out.
The raminit.o module is used to initialize DRAM and copy selected sections
of the sa2920s8.out file from SRAM to DRAM before program execution
starts. In this example, raminit.o copies images of the .data and .bss
sections of the sa2920s8.out file stored in SRAM to DRAM at run time.
Because the –t argument is specified in the command line below, text
sections are excluded from raminit.o . The –r option specifies that ROM
space is readable.

Use the following command:

romcoff –t –l –r sa2920s8.out raminit.o

6. Second link. Use the hc29 program to link raminit.o with the relocatable
version of osboot and the relocatable version of the application program. Use
the same linker command as in Step 4

hc29 –cmdsa2920s8.lnk sa29200/sa29200.o appl.o raminit.o –o sa2920s8.rom

The hc29 program creates the COFF file sa2920s8.rom.

7. Start mondfe in Supervisor mode and “yank” the file sa2920s8.rom to
SRAM. Use the following command:

mondfe –TIP serial96S sa2920s8.rom

A-8 Processor Initialization and Run-Time Services: OSBOOT

121

For complete information on using mondfe, see the MiniMON29K User
Interface: MONDFE manual.

At this point, you can begin executing and debugging the program using
mondfe. When the program is fully debugged, the stand-alone
OSBOOT/Application program can be built and programmed to EPROMs.

Processor Initialization and Run-Time Services: OSBOOT A-9

122

Building the OSBOOT/Application Model to
Transfer from ROM to DRAM

This example shows how to build the Stand-Alone OSBOOT/Application Model
for AMD’s SA29200 stand-alone board. In this example, however, the raminit.o
module is created so that the entire OSBOOT/Application module (including
both the text and data sections) is transferred from ROM to DRAM at power-on
(or when RESET is asserted) and executed there.

This example follows the same procedure described in, “Building OSBOOT for
Stand-Alone Systems,” starting on page 7-14.

In this example, the baud rate used for serial communications is 9600 baud.

1. Use the cd command to change to the .../29k/osboot directory.

2. Build a relocatable version of osboot for the SA29200 board. Use the
following command lines for MS-DOS and UNIX, respectively:

For MS-DOS:
makeosb sa29200 am2920x 9600 –DSTANDALONE

For UNIX:
make –f makefile.os board=sa29200 proc=am2920x

baudrate=9600 standalone=–DSTANDALONE

Regardless of the operating system, the build program creates the relocatable
osboot file, sa29200.o, and stores it in the sa29200 directory.

3. In this example, the name of the application program is appl.c. Use the hc29
program to build a relocatable version of appl.c using the following
command:

hc29 –c –o appl.o appl.c

The hc29 program creates the relocatable application file appl.o.

4. Edit the linker command file. Because AMD provides a linker command file
to work with the SA29200 board (sa29200.lnk), there is no need to edit the
linker command file in this case. When building osboot for targets for which
AMD does not supply a custom linker command file, you will need to edit a
linker command file to work with your target.

A-10 Processor Initialization and Run-Time Services: OSBOOT

123

5. First link. Use the hc29 program to link the relocatable osboot module built
in Step 2 with the relocatable application module built in Step 3 using the
following command:

hc29 –cmdsa29200.lnk sa29200/sa29200.o appl.o –o appl.out

The hc29 program creates the COFF image file appl.out. The appl.out file
is the linkage of the relocatable osboot file, sa29200.o, and the relocatable
application file, appl.o.

6. Use the romcoff utility to create the raminit.o module for appl.out. The
raminit.o module is used to initialize DRAM and copy selected sections of
the appl.out file from ROM to DRAM before program execution starts. In
previous examples, the romcoff utility was used with the –t argument so that
text sections of the input file (in this case, appl.out) were not included in the
output file (raminit.o). In this example, we want the entire application to
execute from DRAM. Accordingly, we omit the –t argument from the
command line so that the entire input file is included in the output file and
will be executed from DRAM. The –r option specifies that ROM space is
readable.

Use the following command:

romcoff –r appl.out raminit.o

7. Second link. Use the hc29 program to link raminit.o with the relocatable
version of osboot and the relocatable version of the application program. Use
the following command:

hc29 –nocrt0 –cmdsa29200.lnk sa29200/sa29200.o appl.o raminit.o –o
appl.rom

Notice that this command line specifies the compiler option “–nocrt0.” This
is done to avoid compiler error messages that might occur because of the
presence of the crt0 in the raminit.o file. Because in this example raminit.o
contains the text section of appl.out, it also contains the crt0 from the first
link in Step 5. The hc29 program creates the COFF file appl.rom.

8. Use the coff2hex command to convert the COFF file, appl.rom, to a hex file
that can be used to program EPROMs on the target. Use the following
command syntax:

coff2hex –m –c t appl.rom

Processor Initialization and Run-Time Services: OSBOOT A-11

124

The coff2hex command creates the hex file appl.hex. Use this file to
program EPROMs. Then, install the EPROMs on the target and turn on the
power.

Building OSBOOT/DBG_CORE for a System
Without DRAM

This example shows how to build osboot/dbg_core for a system that does not
have any DRAM. In this example, we use an SA29200 target that has only ROM
and 512 Kbyte of byte-writable SRAM. The example demonstrates how to
customize the linker command file so that a version of osboot/dbg_core for a
system without DRAM (SRAM only) is built.

In this example, the baud rate used for serial communications is 9600 baud (the
default).

1. Use the cd command to change to the .../29k/osboot directory.

2. When the build program creates osboot/dbg_core for the SA29200 target, it
uses a linker command file that specifies the default values for configurable
parameters of osboot. AMD provides a default linker command file for the
SA29200 target called sa29200.lnk. For this example, we edit sa29200.lnk
so that the configurable parameters of osboot are set to accommodate a
target that has SRAM but no DRAM.

The following code section shows the sa29200.lnk file, as edited to support
an SRAM-only target. Each edited line is indicated by the comment field
reading “; SRAM.” A detailed explanation of each change (by line number)
follows the code section.

1 ALIGN ProcInit=16
2 ORDER Reset=0x0
3 ORDER ProcInit,Osbtext,.text,!text
4 ORDER .lit,!lit
5 ORDER vectable=0x80000 ; SRAM
6 ORDER msg_data=0x80400 ; SRAM
7 ORDER .data,!data
8 ORDER OsbBss,dbg_030,dbg_bss,cfg_bss,.bss,!bss
9 ORDER HeapBase
10 ORDER .comment

11 ; Defines initial value of CPS register
12 public _init_CPS=0x87F

A-12 Processor Initialization and Run-Time Services: OSBOOT

125

13 ; Defines target system’s memory configuration
14 public VectorBaseAddress=0x8000 ; SRAM
15 public IMemStart=0x40000000
16 public IMemSize=0xffffff
17 public DMemStart=0x80000 ; SRAM
18 public DMemSize=0x7ffff ; SRAM
19 public RMemStart=0x0
20 public RMemSize=0xffffff

11 ; Defines initial value of CPS register
12 public _init_CPS=0x87F

13 ; Defines target system’s memory configuration
14 public VectorBaseAddress=0x0x80000 ; SRAM
15 public IMemStart=0x40000000
16 public IMemSize=0xffffff
17 public DMemStart=0x80000 ; SRAM
18 public DMemSize=0x7ffff ; SRAM
19 public RMemStart=0x0
20 public RMemSize=0xffffff

21 ; Enables/Disables dynamic memory sizing
22 public EnableDRAMSizing=0 ; SRAM

23 ; Defines ROM wait states, page mode DRAM, SRAM
 memory

24 public RMCT_VALUE=0x0b030303 ; SRAM
25 public DRCT_VALUE=0x88880000 ; SRAM
26 public RMCF_VALUE=0x0008f8f8 ; SRAM

27 ; Defines execution location of trap handlers
28 public _TRAPINROM=0

29 ; Defines 29K processor clock frequency
30 public TicksPerMillisecond=16000
31 public ClockFrequency=16000000

32 ; Defines serial port characteristics.
33 public UCLK=32000000
34 public INITBAUD=9600

35 public SCC8530_CHA_CONTROL=0xC0000007
36 public SCC8530_CHB_CONTROL=0xC0000003
37 public SCC8530_CHA_DATA=0xC000000F
38 public SCC8530_CHB_DATA=0xC000000B
39 public SCC8530_BAUD_CLK_ENBL=3

Each change made to the sa29200.lnk file to support an SRAM-only target is
described by line-number below.

a. In lines 5, 6, 14, and 17, memory addresses are changed from DRAM-base
addresses to SRAM-base addresses.

Processor Initialization and Run-Time Services: OSBOOT A-13

126

b. The value of the EnableDRAMSizing variable in line 22 determines
whether dynamic memory sizing is enabled. Because dynamic memory
sizing is only supported by a DRAM system, EnableDRAMSizing is
changed to 0 (disabled). Without dynamic memory sizing available, the
system cannot determine available memory by itself. Therefore, the
DMemSize variable in line 18 must be set to the exact memory size on the
target (512 Kbyte; 0x7ffff in hex).

c. On line 24, the BWE bit (bit 27) of the RMCT register needs to be set to 1
to support byte-writable SRAM. In hex, the value of the RMCT_VALUE
variable is changed from 0x03030303 to 0x0b030303.

d. Because there is no DRAM on the target, the REFRATE (refresh rate)
field of the DRCT register is disabled and set to 0. In hex, the value of the
DRCT_VALUE variable (line 25) is changed from 0x888800FF to
0x88880000.

e. On line 26, the value of the RMCF_VALUE variable is changed from
0x00f8f8f8 to 0x0008f8f8 to define the SRAM memory bank in the RMCF
register. The value 0x0008f8f8 indicates that the starting address of the
SRAM memory on the second bank is 0x80000 and the memory size is 512
Kbyte.

Detailed information on how to set the Am29200 microcontroller’s registers
can be found in the Am29200 and Am29205 RISC Microcontroller User’s
Manual.

3. At this point, you are ready to build osboot/dbg_core for the target using the
linker command file we edited in the previous step. Use the following
command lines for MS-DOS and UNIX, respectively:

For MS-DOS:
makemon sa29200 am29200x

For UNIX:
make –f makefile.mon board=sa29200 proc=am29200x

Regardless of the operating system, the build program creates a COFF image
of osboot and dbg_core for the SA29200 target using the customized
settings in the sa29200.lnk linker command file and stores it in a file called
sa29200.os in the sa29200 directory.

A-14 Processor Initialization and Run-Time Services: OSBOOT

127

4. Use the coff2hex utility to create the hex file sa29200.hex from the COFF
file sa29200.os, as follows.

coff2hex –r –t sa29200/sa29200.os –o sa29200.hex

5. Program EPROMs with sa29200.hex and turn the power on.

Processor Initialization and Run-Time Services: OSBOOT B-1

128

Appendix B

Using the HIF IOCTL Service for
Non-Blocking Reads

The Host Interface (HIF) kernel of Release 3.0 or later of the MiniMON29K
product adds support for nonblocking read operations. This new feature allows
application programs to continue processing while waiting for input data to be
transferred. (To use this feature, MiniMON29K Release 3.0 or later must be
loaded on both the target and the host.)

This appendix shows example code that demonstrates how a nonblocking read
can be used to create an interactive menu that allows subsequent processing to
continue while waiting for user input.

The Problem

The default input mode used by the HIF kernel of the MiniMON29K product is
COOKED (0x0000), which blocks (suspends) the application program issuing a
read operation from the standard input device (terminal) until the input data has
been transferred.

While blocked mode may be effective for some applications, it makes it difficult
to implement and debug interactive menu-driven applications that require
processing to continue while waiting for user input.

B-2 Processor Initialization and Run-Time Services: OSBOOT

129

The Solution

The HIF kernel of the MiniMON29K Release 3.0 (or later) product implements
nonblocking read support for standard input devices (terminals). Using the HIF
ioctl service, the input mode of the standard input device can be changed from
COOKED to NBLOCK mode, which allows the application program to continue
processing while waiting for input data to be transferred.

The HIF IOCTL Service
The HIF ioctl service establishes the operation mode of a specified file or
device. It is intended to be applied primarily to terminal-like devices; however,
certain modes apply to mass-storage files or to other related input/output
devices.

In COOKED (0x0000) mode (the default input mode), when a read operation
for a terminal-like device is issued by the application program, the kernel blocks
(suspends) any further execution of the application program until the data has
been transferred. Using the HIF ioctl service, the input mode of the standard
input device can be set to NBLOCK (0x0010) mode, which specifies that
subsequent read operations be executed without suspending (blocking) the
application program issuing the read request.

The HIF READ Service
After setting standard input to NBLOCK mode, a HIF read operation on the
standard input device returns immediately to the application program. The return
value of the read service contains the number of characters currently available,
or -1 if none are available. The application program examines the return value
from the read service to determine if any input data is available. If the return
value is -1, the application program continues other processing while waiting for
the input data.

Example Code
Following is a short code example showing how the technique explained above
can be used for the creation of an interactive menu. The code in boldface
highlights the use of the HIF ioctl service.

Processor Initialization and Run-Time Services: OSBOOT B-3

130

#include <stdio.h>
#include <hif.h>
#include <stdlib.h>
showmen() {
/**/
/* The following subroutine will display a menu to standard output. The */
/* _write() HIF service was used rather than printf for the following */
/* reasons: */

/* - To show the usage of the _write() HIF service */
/* - When characters are sent to standard output using printf, the output */
/* is buffered and will not be displayed until a ’\n’ is used. */
/* Therefore, the ”Enter your selection ->” line would not appear on */
/* standard output if printf were used because there is no ’\n’ */
/* character at the end of the string */
/**/
 _write(1,”\nMenu:\n”,7);
 _write(1,”\t1) Selection #1\n”,17);
 _write(1,”\t2) Selection #2\n”,17);
 _write(1,”\t3) Exit\n”,9);
 _write(1,”\nEnter your selection -> ”,25);
}
void main() {
 /* Declare necessary variables */
 int terminate=0, proc=0;
 /* Create a 1-character buffer to hold input */
 char *input=(char *) malloc(sizeof(char));
 /* Set standard input to NBLOCK mode using the _ioctl() HIF service */
 _ioctl(0,0x0010);

 showmen();
 /***/
 /* Following is the main loop where processing occurs. The exit */
 /* condition is set by selecting the appropriate menu item. */
 /***/
 while(!terminate) {

 /**/
 /* Because standard input has been set to NBLOCK mode using the */
 /* _ioctl() HIF service, the _read() HIF service will return a negative */
 /* number if there is no input available. If there is input available, */
 /* _read() will return a non-negative number and the character read */
 /* will be contained in the input buffer. */
 /**/
 if(_read(0,input,1)>=0) {
 /* React to the input received */
 switch(input[0]) {
 case ’1’:
 printf(”\n\nYou selected choice #1.\n”);
 showmen();
 break;

B-4 Processor Initialization and Run-Time Services: OSBOOT

131

 case ’2’:
 printf(”\n\nYou selected choice #2.\n”);
 showmen();
 break;
 case ’3’:
 /* Choice #3 is to exit, so set a flag to end the main loop */
 terminate++;
 break;
 default:
 printf(”\n\nInvalid selection.\n”);
 showmen();
 break;
 }
 }
 /**/
 /* This is where the processing should be placed that is to occur while */
 /* awaiting user input. This program simply increments the variable */
 /* ”proc” to demonstrate that processing is not halted while awaiting */
 /* input from standard input. */
 /**/
 proc++;
 }
 /* We have left the main loop. Clean up and exit. */
 printf(”\n\nYou have selected exit\n”);
 printf(”The proc variable was incremented %d times.\n”,proc);
 printf(”** Note**\n”);
 printf(”The increments took place while you were interacting with the menu.\n”);
 printf(”This demonstrates processing was not halted while waiting user input.\n”);
}

In the above example, the statement to read the user input from the standard
input device (STDIN) is placed within a “while” loop, followed by the code that
should not be suspended.

The read statement is placed in an “if” clause. The return value from read
determines what action takes place. If there is valid input from STDIN, the
appropriate “case” statement is executed. If no information is available, a -1 is
returned and the “proc++” statement is executed.

Conclusion
The number of times that the proc variable is incremented in the example should
be substantially higher than the sum of the number of times that options #1 and
#2 are selected. This demonstrates that the proc variable is incremented during
the time that the interactive menu is presented.

Processor Initialization and Run-Time Services: OSBOOT B-5

132

If the value of the proc variable displayed is equal to the sum of the number of
times that options #1 and #2 are selected, the most likely cause is that a version
of MiniMON29K prior to Release 3.0 is being used on either the host or target
system.

Suggested Reference

For more information, see the Host Interface Specification.

Processor Initialization and Run-Time Services: OSBOOT C-1

133

Appendix C

Defining a Trap to Switch to
Supervisor Mode

This appendix describes how to place a 29K Family microprocessor or
microcontroller in supervisor mode.

To switch a 29K Family processor to supervisor mode, the SM bit in the Current
Processor Status (CPS) register must be set. But because the CPS register is a
protected special-purpose register, it may not be modified when the processor is
running in user mode.

However, when a trap is taken in a 29K Family processor, the processor is
placed in supervisor mode. Because of this behavior, a user-defined trap can be
used to switch the processor to supervisor mode.

C-2 Processor Initialization and Run-Time Services: OSBOOT

134

Switching to Supervisor Mode

The settrap() host interface (HIF) service can be used to define a trap. At this
point, you are in supervisor mode. However, you need the processor to remain in
supervisor mode when returning from the trap.

Remaining in Supervisor Mode

When a trap is taken, a 29K Family processor copies the contents of the CPS
register into the Old Processor Status (OPS) register. On return from this trap,
the processor copies the contents of the OPS register into the CPS register.

So, if the user-defined trap sets the SM bit in the OPS register, the contents of
OPS are copied into the CPS register on return from the trap. This keeps the
processor in supervisor mode after returning from the trap.

Example Code

The following example consists of two files, one written in C (trapit.c) and the
other written in 29K Family assembly language (mytrap.s). The file written in C
contains the call to settrap() used to install the trap handler that sets the SM bit.
Once the trap handler has been installed, an assembly language routine is called
that will cause the newly installed trap to be asserted. Any code that is executed
after this user-defined trap is asserted will execute in supervisor mode.

The 29K assembly language file contains the source code for the user-defined
trap handler as well as a function that, when called, will cause the user defined
trap to be asserted.

Processor Initialization and Run-Time Services: OSBOOT C-3

135

trapit.c
#include <stdio.h>
#include <hif.h>
extern void super_mode(void);
extern void as70(void);
void howdy() {

int i;
for(i=0;i<=10;i++) printf(”Hello!\n”);

}
main() {

_settrap(70,&super_mode);
as70();

howdy();
}

mytrap.s
.global _super_mode

_super_mode:
mfsr gr96, ops
or gr96, gr96, 0x10
mtsr ops, gr96
iret
.global _as70

_as70:
asneq 70,gr96,gr96
jmpi lr0
nop

Processor Initialization and Run-Time Services: OSBOOT Index-1

136

Index

Symbols

.inc files, 3-1, 7-2

.lnk files, 3-1, 7-2

.mon files, 3-1, 7-2

Numbers

32x32 bit multiplier, 3-6

A
absolute objects, 3-1
ack message, 6-16
alignment, 5-4
alu register, 5-5
Am29027, 3-6, 5-2, 5-8
Am29050, 4-5
Am29240, 3-6
Am29243, 3-6
ANSI C, standard, xi
arithmetic

coprocessor, 3-6
operations, 3-6

arithmetic trap handlers, 5-7

B
batch files, 3-6, 7-1, 7-5, 7-6, 7-9, 7-10,

7-14, 7-15, 7-16, 7-17
boot subdirectory, 3-4

source files and functions, 3-4
bootstrap module, 1-1–1-2, 2-2, 2-3, 3-6,

4-1, 6-5
bootstrap process, 4-1
Build HIF Call Msg, 6-22
building

osboot dbg_core model, 7-8
osboot simulators, 7-4
osboot/application for DRAM, A-9
osboot/application from ROM to SRAM,

A-6
osboot/dbg_core for no DRAM, A-11
stand-alone osboot/application for

SA29240, A-2
stand-alone osboot/dbg_core for

SE29040, A-4
stand-alone system, 7-18

byte addressing, 5-4

C
cfg register, 4-9, 4-14, 5-5

Index-2 Processor Initialization and Run-Time Services: OSBOOT

137

cha register, 5-5
channel message, 6-15, 6-16, 6-17
chc register, 5-5
chd register, 5-5
ClockFrequency parameter, 7-23
code example, 4-4, 6-20, 6-21, 6-22
COFF, standard, xi
COFF image, 7-11
cold start, 4-9, 6-1, 6-2

process, 4-1, 4-6, 4-9, 4-14, 4-19
process tasks, 4-7

cold start process, 4-16
Common Object File Format. See COFF.
communications drivers, 2-5
communications initialization, 4-7,

4-21–4-22
compile time requirements, 2-5
configuration parameters, 7-23, 7-24, 7-25
Configuration register, 4-9
cps register, 4-9, 5-5, 7-23

D
DA bit, 5-5
data memory, 6-8
data segment initialization, 4-16–4-18
dbg_control, function, 2-3
dbg_core

definition. See osboot – debugger core
model

initializing message system, 2-3, 4-7
linking, 3-1
requirements with osboot, 2-3

debugger core
building osboot for use with, 7-8–7-14
osboot model, 6-12

debugger front end, 1-3
DFE. See debugger front end
DI bit, 5-5
directory tree structure, 3-1
DMemSize parameter, 7-23

DMemStart parameter, 7-23
documentation, conventions, xii–xiv
DRAM

building osboot/application model for,
A-9

building osboot/dbg_core for systems
without, A-11

DRAM controller, 4-7
DRAM controller register, 4-9

initialization, 4-12
DRCT_VALUE parameter, 7-25
dstandalone, osboot argument, 7-14
DW bit, 5-5, 5-6
dynamic sizing, 4-13

E
EnableDRAMSizing parameter, 7-24
enter_trap_routine macro, 5-7
entry point, 2-5
environment, run-time, 6-2, 6-4
EPROMs, 4-17, 6-11, 7-11, 7-12, 7-14,

7-20
examples of osboot, A-1
execution mode, 2-5, 6-7
exit_trap_routine macro, 5-7
exop register, 5-2
EXOPread function, 5-3
EXOPwrite function, 5-3
extensions, 3-4, 3-6
external, loader, 6-5

F
filename, extensions, 3-4, 3-6, 7-2
fill trap, 6-3, 6-9, 6-10

handler address, 4-3
floating-point

emulation, 3-6, 4-2, 5-2, 5-7, 5-8

Processor Initialization and Run-Time Services: OSBOOT Index-3

138

trap handler installation, 4-7
trap handler registers, 4-3, 5-8

fpe register, 5-2
FPEread function, 5-3
FPEwrite function, 5-3
fps register, 5-2
FPSread function, 5-3
FPSwrite function, 5-3
freeze mode, 5-7, 5-8, 6-24
functional block diagram (target kernel),

3-3, 7-3
FZ bit, 5-5

G
gdb, 1-3
global registers, 6-15, 6-16, 6-17, 6-19

definition of, 4-2
HIF services, 6-12

H
halfword, definition of, xii
HIF

See also kernel for target systems
call, 6-19
kernel, 2-2, 2-3, 6-12
kernel macros, 6-21, 6-22
kernel message, 6-24
kernel services, 4-2
kernel trap, 6-3, 6-9, 6-10
return, 6-19
service request, 6-19
services, 6-2, 6-10, 6-11
standard, xi
start-up, 4-7
trap routines, 6-9
using IOCTL service, B-1

HIF Call message, example, 6-22

HIF kernel. See osboot, kernel for target
systems

High C 29K and MiniMON29K software,
standards complying with, xi

Host Interface. See HIF.

I
I/O, 2-2, 2-3, 2-5, 2-6, 6-11, 6-19
IEEE, standard, xi
IllTrap trap handler, 5-2
IMemSize parameter, 7-23
IMemStart parameter, 7-23
init CPS parameter, 7-23
inte register, 5-2
INTEread function, 5-3
interrupt mode operation, 6-24
interrupt vector, 6-20
INTEwrite function, 5-3
IOCTL service, using for non–blocking

reads, B-1
ipa register, 5-5
ipc register, 5-5
isstip, 2-2

K
kernel, 6-11

communications, 6-14, 6-15
invocation, 6-1
overview, 1-2
register fill trap, 6-10
register spill trap, 6-10
registers, 4-2
run-time environment, 6-5
services trap, 6-10
startup, 6-2
timer interrupt handler, 6-10

Index-4 Processor Initialization and Run-Time Services: OSBOOT

139

L
LA bit, 5-5
link-time parameters, 7-22
linker

command file, 7-19
command filename extensions, 3-1
command files, 3-1, 3-2, 7-4, 7-20, 7-22
commands, 7-19
sample command file, 7-25

load_hs handler, 5-6
load_hsdw handler, 5-6
load_hu handler, 5-6
load_hudw handler, 5-6
load_s handler, 5-6
load_u handler, 5-6
loader, 6-5
loadl_hs handler, 5-6
loadl_hsdw handler, 5-6
loadl_hu handler, 5-6
loadl_hudw handler, 5-6
loadl_s handler, 5-6
loadl_u handler, 5-6
LOADM instruction, 5-5, 5-9
loadm_s handler, 5-6
loadm_u handler, 5-6
local registers, HIF services, 6-12
LS bit, 5-5
LSB, definition of, xii
LSW, definition of, xii

M
macro example, 6-22
makefile.mon, 3-1, 7-11
makefile.os, 3-1, 7-6
makefiles, 3-1, 3-6, 7-1

UNIX, 3-6
makemon.bat, 3-1, 7-8
makeosb.bat, 3-1, 7-5

makepc.bat, 3-6
memory

configuration, 4-13, 7-25
high, 6-8
sizing, 4-13
stack arrangement, 6-8

memory management, register, 4-9
Memory Management Unit (MMU)

register, 4-9
memory stack, 5-7, 6-24
message interrupt vector, 4-22
MFSR instruction, 5-2
MiniMON29K

building osboot for use with, 7-8–7-14
debugger core, 2-3
MS-DOS instructions, 7-9–7-11,

7-15–7-18
UNIX instructions, 7-11–7-14

ML bit, 5-5
Models, stand-alone osboot, 4-22
models

osboot debugger core, 2-3–2-7, 4-22,
6-12

osboot–simulator, 2-2, 6-11
stand-alone dbg_core/application, 2-6
stand-alone osboot, 6-11

modes
execution, 2-5, 6-7
freeze, 5-7, 5-8
input, 6-17, 6-18
interrupt, 6-14, 6-24
monitor, 4-4
polled, 6-24
protected, 6-6
supervisor, 5-8
user, 6-12, 7-18

mondfe, 1-3
montip, 2-3, 2-6, 6-12, 6-13, 6-14, 6-15,

6-16, 6-17, 6-18, 6-19, 6-20, 6-22,
6-24

and DFEs, 1-3
MS-DOS

building osboot for debugger core, 7-8

Processor Initialization and Run-Time Services: OSBOOT Index-5

140

building osboot for simulators, 7-5
building stand-alone osboot, 7-5

MSB, definition of, xii
MSW, definition of, xii
MTSR instruction, 5-2
MTSRIM instruction, 5-2

N
NaN, definition of, xii
non-blocking reads, using HIF IOCTL

service for, B-1

O
ops register, 5-2, 5-5, 5-8
OPT bits, 5-4
OS cold start. See cold start process
OS Start-up, 4-4
osboot

and MiniMON29K, 1-3
and montip, 1-3
bootstrap module, 4-1
building, 7-1
components, 1-1
configuration, 4-1, 5-1, 6-2, 7-21–7-26
debugger core model, 2-3, 4-22–4-24,

6-11, 6-12
directory and file organization, 3-1
documentation, viii–xi
examples, A-1
kernel for target systems, 1-1
relocatable, 3-1, 7-14
relocatable with dbg_core, 7-16
run-time environment setup, 6-5
simulator model, 2-2, 6-11
sources, 3-1
stand-alone dbg_core/application model,

2-6

stand-alone model, 2-5, 6-11
standards complying with, xi
using with dbg_core, 7-9
with dbg_core and montip, 1-4

P
PA bit, 5-5
pc0 register, 5-3, 5-5, 5-8
pc1 register, 5-2, 5-5, 5-8
peripheral registers, 4-8–4-10
physical stack, 5-9
polled mode operation, 6-24
PRL field, 4-10, 4-13, 4-14
processor initialization, 4-1, 4-8
processor registers, 4-2
protection violation, 3-6, 5-2

Q
QNaN, definition of, xii

R
register

fill trap, 6-10
Register Bank Protect (RBP), 4-9
spill trap, 6-10
stack arrangement, 6-8
stack start address, 6-7
virtual, 5-2

register.ah, 4-2, 4-3
register.s, 4-2
registers

See also individual register names
virtual, 3-6

relocatable object, building, 7-14

Index-6 Processor Initialization and Run-Time Services: OSBOOT

141

relocatable object module, 7-18, 7-19
RESET code, 4-4
RESET text section, 4-4
restore entry point, 5-5
RMCF_VALUE parameter, 7-25
RMCT_VALUE parameter, 7-25
RMemSize parameter, 7-23
RMemStart parameter, 7-23
ROM

address space, 4-5
configuration register, 4-9
controller register, 4-9

ROM bootstrap module. See bootstrap
module

ROM Controller register, initialization, 4-12
run-time environment, 6-2, 6-4

S
SCC8530 BAUD CLK ENBL parameter,

7-25
SCC8530 CHA CONTROL parameter,

7-24
SCC8530 CHA DATA parameter, 7-24
SCC8530 CHB CONTROL parameter, 7-24
SCC9530 CHB DATA parameter, 7-25
serial communication interface, 4-22
sim29, 2-2
simulators

building, 3-1
building osboot for, 7-4–7-8
MS-DOS instructions, 7-5–7-6
UNIX instructions for building osboot,

7-6–7-9
sizing algorithm, 4-14
source files, arithmetic trap handlers, 3-7
special, registers, 5-3
special virtual registers, 5-2
spill trap, 6-3, 6-9, 6-10

handler address, 4-2

SRAM, building OSBOOT/Application
model for, A-6

ST bit, 5-5
stack

arrangement, 6-8
growth, 6-8
memory, 5-7, 6-24
physical, 5-9
requirements, 2-5
start address, 6-7
virtual, 5-9

stand-alone systems, building OSBOOT for,
7-14–7-21

stand-alone osboot model, 2-5, 4-22
standard error device, 6-16
standard input device, 6-17, 6-18
standard input mode, 6-18
standard output device, 6-15
standards, xi
start-up function, 4-5
Stdin Mode message, 6-18
Stdin Needed message, 6-16
store_hs handler, 5-6
store_hsdw handler, 5-6
store_hu handler, 5-6
store_hudw handler, 5-6
store_s handler, 5-6
store_u handler, 5-6
storel_hs handler, 5-6
storel_hsdw handler, 5-6
storel_hu handler, 5-6
storel_hudw handler, 5-6
storel_s handler, 5-6
storel_u handler, 5-6
STOREM instruction, 5-5, 5-9
storem_s handler, 5-6
storem_u handler, 5-6
supervisor mode, using a trap to switch to,

C-1
synchronous messages, 6-20
system initialization, 4-7, 4-18–4-21

Processor Initialization and Run-Time Services: OSBOOT Index-7

142

T
target system, 2-5

configuration, 4-18, 4-19
TicksPerMillisecond parameter, 7-23
timer

disabled, 4-8
extension register, 4-2
interrupt, 6-10
reload register, 4-9

timer trap, 6-3, 6-9, 6-10
trap, using to switch to supervisor mode,

C-1
trap handler

customization, 5-7–5-9
integration with OS, 5-7–5-9
protection violation, 5-2
unaligned, 5-5
unaligned access, 5-4–5-7

trap handlers, 2-3
arithmetic operations, 3-6, 5-7–5-10
default, 4-18, 4-19
defined, 4-18
monitor mode, 4-4
protection violation, 3-6
register usage, 4-2, 4-3
source files, 3-6–3-8
unaligned access, 5-5
WARN, 4-4

trap routines, floating-point, 3-6–3-8
TRAPINROM, 5-1, 7-24
traps subdirectory, 3-6
tree structure, 3-1
TU bit, 5-5

U
UCLK parameter, 7-25

UDI
and debugger front ends, 1-3
standard, xi

unaligned access, 5-4
unaligned trap, 5-5
Universal Debugger Interface. See UDI.
UNIX

building osboot, 7-6
building osboot for debugger core, 7-11
building osboot for simulators, 7-6
building stand-alone osboot, 7-6, 7-11
makefiles. See makefiles

V
VAB register, 4-6, 4-7, 7-23
vector, message interrupt, 4-22
vector table, 4-18, 4-19, 6-3
virtual interrupt vector, 6-20
virtual message, 6-20
virtual registers, 3-6, 5-2
virtual stack, 5-9

W
WARN trap, 4-4, 4-5
word, definition of, xii

X
XRAY29K, 1-3

	Contents
	About OSBOOT
	OSBOOT Documentation
	About This Manual
	Suggested Reference Material

	Standards and Conventions
	Standards
	Conventions

	Overview of OSBOOT
	The Bootstrap Module
	The Kernel
	MiniMON29K and OSBOOT
	About DBG_CORE
	About MONTIP
	The OSBOOT/DBG_CORE/MONTIP/DFE Environment

	Using OSBOOT
	OSBOOT/Simulator Model
	OSBOOT/DBG_CORE Model
	Stand-Alone OSBOOT/Application Model
	Stand-Alone OSBOOT/DBG_CORE/Application Model

	OSBOOT Directory and File Organization
	The boot Subdirectory
	The traps Subdirectory

	OSBOOT Bootstrap Module
	OSBOOT Global Register Usage
	OS Start-Up and WARN Trap Handler
	OS Cold Start
	Processor Initialization
	Memory Configuration
	Data Segments Initialization
	System Initialization
	Communications Initialization

	OSBOOT Trap Handlers
	Protection Violation Trap Handler
	Unaligned Access Trap Handler
	Arithmetic Trap Handlers

	HIF Run-Time Services
	HIF Kernel Start-Up Module
	Run-Time Environment
	Register Stack and Memory Stack Arrangement

	HIF Services
	Host HIF Services
	Stand-Alone OSBOOT/Application Model
	OSBOOT/Simulator Model
	OSBOOT/DBG_CORE Model and Stand-Alone OSBOOT/DBG_CORE/Application Model
	DBG_CORE Message System Interface
	How the MiniMON29K Messages are Used
	Implementation of os_V_msg Message Interrupt Handler
	Implementation of Message Communications in HIF Kernel

	Building OSBOOT or OSBOOT/DBG_CORE
	Building OSBOOT for Simulators
	MS-DOS
	UNIX

	Building OSBOOT/DBG_CORE for Target Hardware Platforms
	MS-DOS
	UNIX

	Building OSBOOT for Stand-Alone Systems
	Building a Relocatable Version of OSBOOT
	Building a Relocatable Version of OSBOOT/DBG_CORE
	Building a Stand-Alone System

	OSBOOT Configuration
	Sample Linker Command File

	Examples
	Building the Stand-Alone OSBOOT/Application Model for the SE29240
	Building the Stand-Alone OSBOOT/DBG_CORE/ Application Model for the SE29040
	Building the OSBOOT/Application Model to Transfer from ROM to SRAM
	Building the OSBOOT/Application Model to Transfer from ROM to DRAM
	Building OSBOOT/DBG_CORE for a System Without DRAM

	Using the HIF IOCTL Service for Non-Blocking Reads
	The Problem
	The Solution
	Suggested Reference

	Defining a Trap to Switch to Supervisor Mode
	Switching to Supervisor Mode
	Remaining in Supervisor Mode
	Example Code

	Index

