
1

MiniMON29K 
Target Interface Process

MONTIP

2

MiniMON29K� Target Interface Process: MONTIP, Release 3.0

� 1991, 1992, 1993 by Advanced Micro Devices, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
Advanced Micro Devices, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the
Rights in Technical Data and Computer Software clause at 252.227–7013. Advanced Micro Devices, Inc., 5204 E. Ben
White Blvd., Austin, TX 78741-7399.

29K, Am29000, Am29005, Am29030, Am29035, Am29050, Am29200, Am29205, Am29240, Am29243, Am29245,
EB29K, EB29030, EZ-030, MiniMON29K, SA-29200, SA-29205, SA-29240, and XRAY29K are trademarks and AMD
is a registered trademark of Advanced Micro Devices, Inc.
High C is a registered trademark of MetaWare, Inc.
MS-DOS is a registered trademark of Microsoft, Inc.
Sun is a registered trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX Software Laboratories.
YARC ATM is a trademark of YARC Systems Corporation.
Other product or brand names are used solely for identification and may be the trademarks or registered trademarks of
their respective companies.

The text pages of this document have been printed on recycled paper consisting of 50% recycled fiber and
virgin fiber; the post-consumer waste content is 10%. These pages are recyclable.

Advanced Micro Devices, Inc.
5204 E. Ben White Blvd.
Austin, TX 78741

MiniMON29K Target Interface Process: MONTIP i

3

Contents

About MONTIP
MONTIP Software ii.

MONTIP Features ii.

MONTIP Modules v.

MONTIP Documentation vii.

About This Manual vii.

Suggested Reference Material viii.

MONTIP Documentation Conventions ix.

Chapter 1

Using MONTIP
Invoking MONTIP 1–2.

Chapter 2

Using PCSERVER
Invoking PCSERVER 2–2.

Chapter 3

Initial Communications Between MONTIP and the Target
Initial Communications Between MONTIP and the Target 3–1.

ii MiniMON29K Target Interface Process: MONTIP

4

Chapter 4

MiniMON29K Message Communication System
Message Communications Interface 4–3.

MONTIP Message System 4–5.

MONTIP Message-Layer Interface 4–11.

MONTIP Drivers 4–13.

MONTIP Shared-Memory Interface Drivers 4–13.

MONTIP Serial-Interface Driver 4–17.

MONTIP Parallel-Port Interface Driver 4–20.

MiniMON29K Target Message System 4–21.

MiniMON29K Target Message-Layer Interface 4–22.

MiniMON29K Target Drivers 4–26.

Target Shared-Memory Interface Drivers 4–26.

Target Serial-Interface Drivers 4–30.

Chapter 5

MiniMON29K Messages
Message Checksum Tags for Serial Communications 5–2.

MiniMON29K Message Description 5–5.

Message Structure 5–5.

Byte Ordering 5–6.

Message Definition 5–6.

Message Classification 5–7.

Message-Passing Protocol 5–7.

Message Numbers 5–9.

MiniMON29K Debug Messages 5–15.

Message 0 (0h): RESET (Reset Processor) 5–16.

Message 1 (1h): CONFIG_REQ (Configuration Request) 5–17.

Message 2 (2h): STATUS_REQ (Status Request) 5–18.

MiniMON29K Target Interface Process: MONTIP iii

5

Message 3 (3h): READ_REQ (Read Request) 5–19.

Message 4 (4h): WRITE_REQ (Write Request) 5–21.

Message 5 (5h): BKPT_SET (Set Breakpoint) 5–23.

Message 6 (6h): BKPT_RM (Remove Breakpoint) 5–25.

Message 7 (7h): BKPT_STAT (Breakpoint Status) 5–26.

Message 8 (8h): COPY (Copy Data) 5–27.

Message 9 (9h): FILL (Fill Memory) 5–29.

Message 10 (Ah): INIT (Initialize Target) 5–31.

Message 11 (Bh): GO (Execute Code) 5–33.

Message 12 (Ch): STEP (Step Execution) 5–34.

Message 13 (Dh): BREAK (Stop Execution) 5–35.

Message 33 (21h): CONFIG (Target Configuration) 5–36.

Message 34 (22h): STATUS (Target Status) 5–38.

Message 35 (23h): READ_ACK (Read Memory) 5–41.

Message 36 (24h): WRITE_ACK (Data Written) 5–43.

Message 37 (25h): BKPT_SET_ACK (Breakpoint Set) 5–44.

Message 38 (26h): BKPT_RM_ACK (Breakpoint Removed) 5–45.

Message 39 (27h): BKPT_STAT_ACK (Breakpoint Status) 5–46.

Message 40 (28h): COPY_ACK (Data Copied) 5–47.

Message 41 (29h): FILL_ACK (Memory Filled) 5–48.

Message 42 (2Ah): INIT_ACK (Target Initialized) 5–49.

Message 43 (2Bh): HALT (Execution Halted) 5–50.

Message 63 (3Fh): ERROR (Error Detected) 5–51.

Operating-System Messages 5–52.

Message 64 (40h): HIF_CALL_RTN (HIF_CALL Return) 5–53.

Message 65 (41h): CHANNEL0 (Data at Channel 0) 5–54.

Message 66 (42h): CHANNEL1_ACK (Channel 1 Ack) 5–55.

Message 67 (43h): CHANNEL2_ACK (Channel 2 Ack) 5–56.

Message 68 (44h): STDIN_NEEDED_ACK
(Standard Input Needed) 5–57.

Message 69 (45h): STDIN_MODE_ACK (Standard Input Mode) 5–58.

iv MiniMON29K Target Interface Process: MONTIP

6

Message 96 (60h): HIF_CALL (HIF Call) 5–59.

Message 97 (61h): CHANNEL0_ACK
(Channel 0 Acknowledgement) 5–60.

Message 98 (62h): CHANNEL1 (Write Channel 1) 5–61.

Message 99 (63h): CHANNEL2 (Write Channel 2) 5–62.

Message 100 (64h): STDIN_NEEDED (Standard Input Needed) 5–63.

Message 101 (65h): STDIN_MODE (Standard Input Mode) 5–64.

Appendix A

MONTIP Error Messages
MONTIP Error Messages A–2.

Appendix B

MiniMON29K Target Message System
msg.s File B–2.

Appendix C

Target Message Drivers
scc200.s File C–2.

sa200hw.s File C–24.

Index

MiniMON29K Target Interface Process: MONTIP v

7

Figures and Tables

Figures
Figure 0–1. MiniMON29K MONTIP with UDI-Conformant DFE,

MONDFE iii.

Figure 0–2. MiniMON29K Target Interface Process Modules v.

Figure 2–1. Role of PCSERVER in the MiniMON29K Product 2–1.

Figure 4–1. MiniMON29K Message Communication
System Layers 4–2.

Tables
Table 0–1. Notational Conventions ix.

Table 5–1. Alphabetical List of Messages 5–9.

Table 5–2. Host-to-Target Message Definitions 5–11.

Table 5–3. Target-to-Host Message Definitions 5–12.

Table 5–4. Requestor/Acknowledgement
Message Correspondence 5–13.

Table 5–5. Memory Spaces 5–14.

MiniMON29K Target Interface Process: MONTIP vii

8

About MONTIP

The Advanced Micro Devices (AMD�) MiniMON29K� target interface process
(TIP), montip, is the software application program that is invoked by a debugger
front end (DFE) to communicate with a 29K� Family target system running the
MiniMON29K target-resident monitor software. montip conforms to AMD’s
Universal Debugger Interface (UDI) and can be used with UDI-compliant
debugger front ends, such as: mondfe, which provides the MiniMON29K
product’s line-oriented user interface; xray29u, which provides the
XRAY29K� product’s window-based user interface; or gdb, the GNU
debugger.

This chapter first describes the features and modules of the montip software,
then discusses the documentation associated with montip.

viii MiniMON29K Target Interface Processor: MONTIP

9

MONTIP Software
The features of the montip software are discussed below, followed by a
description of the four modules of the program.

MONTIP Features

montip is the software application program that is invoked by a debugger front
end (DFE) to communicate with a 29K Family target system running the
MiniMON29K target-resident monitor software. montip conforms to AMD’s
Universal Debugger Interface (UDI) and can be used with UDI-compliant
debugger front ends, such as: mondfe, which provides the MiniMON29K
product’s line-oriented user interface; xray29u, which provides the XRAY29K
product’s window-based user interface; or gdb, the GNU debugger. Figure 0–1
shows the relationship between montip and mondfe.

montip is the target interface process (TIP) for 29K Family-based target systems
running the MiniMON29K software, and runs on a host computer system such
as a PC or a Sun� workstation. The communications interface between montip
and the target is the MiniMON29K Message Communications Interface (see
Chapter 4 for more information on the interface). This interface can be either a
shared-memory interface of PC plug-in boards, or a serial communications link
of a stand-alone board. In addition, for target systems with a parallel port,
montip supports unidirectional parallel-port communications for downloading
files from a PC.

MiniMON29K Target Interface Process: MONTIP ix

C
om

m
un

ic
at

io
n

D
riv

er
s

S
ha

re
d

M
em

or
y

D
riv

er

S
er

ia
l

C
om

m
un

ic
at

io
n

D
riv

er

M
O

N
D

F
E

M
O

N
T

IP

M
O

N
D

F
E

C
om

m
an

d
In

te
rp

re
te

r
C

on
ve

rt
C

on
ve

rt

M
in

iM
O

N
29

K
M

es
sa

ge

S
ys

te
m

H
IF

S
up

po
rt

M
od

ul
e

U S E R

I N T E R F A C E

U
D

I

IP
C

M
ed

iu
m

U
D

I
C

al
ls

 to
M

O
N

T
IP

M
O

N
D

F
E

C
om

m
an

d
to

 U
D

I C
al

ls
S

er
vi

ce
s

M
in

iM
O

N
29

K
M

es
sa

ge
C

om
m

un
ic

at
io

ns
In

te
rf

ac
e

F
ig

ur
e

0–
1.

M
in

iM
O

N
29

K
 M

O
N

T
IP

 w
ith

 U
D

I-
C

on
fo

rm
an

t D
F

E
, M

O
N

D
F

E

x MiniMON29K Target Interface Processor: MONTIP

11

The communications between montip and the application running on the target
take place using MiniMON29K messages, which are structured streams of bytes.
(Chapter 5 describes the structure and usage of the messages currently defined.)
There are two types of messages:

� Debug messages. The debug messages are used by montip to communicate
with the MiniMON29K monitor running on the target.

� OS messages. The OS messages are used by montip to communicate with the
application or the operating system running on the target.

montip includes the serial communications drivers to send and receive messages
for both MS-DOS and UNIX systems. montip also includes the communications
drivers for the shared memory interface of the PC plug-in boards supported by
AMD. The communications interface between montip and the target must be
specified on the command line of montip at the time of invocation.

The MiniMON29K monitor software running on the target includes AMD’s
osboot and its host interface (HIF) kernel by default. The HIF kernel provides
some of its services using montip running on an intelligent host computer
system. montip includes the support routines for the HIF kernel of AMD’s
osboot running on the target. These routines are used to perform I/O operations
on the host file system that are requested by the target application program.

MiniMON29K Target Interface Process: MONTIP xi

12

MONTIP Modules

montip is made up of four modules, which are described on the following pages
and illustrated in Figure 0–2.

NOTE: In this manual, “target” refers to the target system running the
MiniMON29K monitor software—osboot and its HIF kernel, along with the
debugger. “Host” refers to the system running montip.

MONTIP

Communications
 Drivers

Host HIF
Support
 Module

UDI
Procedure

Call to
MONTIP
Service

Converter

MiniMON29K
 Message
 System

MiniMON29K
Message
Communications
Interface

UDI IPC

Universal
Debugger
Interface

To
Target

To DFE

Figure 0–2. MiniMON29K Target Interface Process Modules

xii MiniMON29K Target Interface Processor: MONTIP

13

UDI Procedure Call to MONTIP Service Converter
This module implements the different UDI procedure calls using the services of
the Message System module. It converts the UDI data structures to montip data
structures and calls the Message System function to build the appropriate
message. The module then sends the message to the 29K Family-based target
running the MiniMON29K monitor software. Depending on the service
requested, this module waits for the results. The results (if any) received from
the target are put in UDI data structures and returned to the caller (debugger
front end) through the UDI layer. The actual implementation of the transmission
of the results depends on the UDI interprocess communication (IPC) mechanism
used.

MiniMON29K Message System
This module implements the services to build, send, and receive MiniMON29K
messages. It sends and receives messages using the communications handlers of
the MiniMON29K Message Communications Interface. Every message has a
message header followed by data, if applicable. The message header contains a
message-code field and a message-length field. The different message codes and
their corresponding message structures are defined in Chapter 5. When a
MiniMON29K product message is received from the target system, montip
examines the message-code field. If the message is one of the host interface
(HIF) messages, montip invokes the Host HIF Support Module to service the
message. Otherwise, montip saves the message in its receive buffer until a UDI
procedure call requests it.

Host HIF Support
This module implements part of the run-time support provided by the HIF kernel
of osboot. It is used to perform I/O operations on the host computer’s file
system. The HIF kernel of osboot sends a HIF_CALL message to montip. This
message is received and handled by this module and the results are sent back to
the HIF kernel in a HIF_CALL_RTN response message. (See Chapter 5 for
more information on the HIF_CALL and HIF_CALL_RTN messages.)

Communications Drivers
This module contains the drivers to transmit and receive character(s) through the
MiniMON29K Message Communications Interface. It includes the serial
communications handlers for MS-DOS� and UNIX� systems, and the
shared-memory handlers for AMD’s 29K Family-based PC plug-in boards (such
as the AMD EB29K� or EB29030� board).

MiniMON29K Target Interface Process: MONTIP xiii

14

MONTIP Documentation
This documentation is written for programmers using montip to develop
applications based on a 29K Family target system running the MiniMON29K
monitor, and for programmers customizing montip. For more information on
these microprocessors and microcontrollers, see the list of suggested reference
materials that follows.

About This Manual

Chapter 1: “Using MONTIP” describes how to invoke montip and provides
command-line syntax and descriptions of all command-line options.

Chapter 2: “Using PCSERVER” describes the set up and use of pcserver to
communicate between MiniMON29K software running a 29K Family-based PC
plug-in board (such as the AMD EB29K�) and a remote montip, which uses
MiniMON29K messages.

Chapter 3: “Initial Communications Between MONTIP and the Target” briefly
describes the initial messages sent by montip and the target system to establish a
synchronous connection.

Chapter 4: “MiniMON29K Message Communication System” describes how
messages are sent. The message and driver layers of the system are described, as
well as the communications interfaces supported.

Chapter 5: “MiniMON29K Messages” describes the messages used by montip
to communicate with a target system running the MiniMON29K software.

Appendix A: “MONTIP Error Messages” describes the error messages reported
by montip to the DFE.

Appendix B: “MiniMON29K Target Message System” describes the code for the
target message system, contained in the msg.s file.

Appendix C: “Target Message Drivers” lists the filenames for the EB29K,
EB29030�, EZ-030�, SA-29200� and SA-29205� target message drivers.
The code for the SA-29200 and SA-29205 driver is listed.

xiv MiniMON29K Target Interface Processor: MONTIP

15

Suggested Reference Material

The following reference documents may be of use to the montip software user:

� Am29000�and Am29005� User’s Manual and Data Sheet
Advanced Micro Devices, order number 16914

� Am29030� and Am29035� Microprocessors User’s Manual and Data Sheet
Advanced Micro Devices, order number 15723

� Am29050�Microprocessor User’s Manual
Advanced Micro Devices, order number 14778

� Am29050� Data Sheet
Advanced Micro Devices, order number 15039

� Am29200� and Am29205� RISC Microcontroller User’s Manual and Data
Sheet
Advanced Micro Devices, order number 16362

� Am29240�, Am29245�, and Am29243� RISC Microcontrollers
User’s Manual and Data Sheet
Advanced Micro Devices, order number 17741

� High C� 29K� User’s Manual
Advanced Micro Devices

� High C� 29K� Reference Manual
Advanced Micro Devices

� Host Interface (HIF) Specification
Advanced Micro Devices, order number 11014

� MiniMON29K� User Interface: MONDFE
Advanced Micro Devices, order number 18442

� Processor Initialization and Run-Time Services: OSBOOT
Advanced Micro Devices, order number 18275

� Programming the 29K� RISC Family
by Daniel Mann, P T R Prentice-Hall, Inc. 1994

� RISC Design-Made-Easy Application Guide
Advanced Micro Devices, order number 16693

� Universal Debugger Interface (UDI) Specification
Advanced Micro Devices, order number 18276

MiniMON29K Target Interface Process: MONTIP xv

16

MONTIP Documentation Conventions

The Advanced Micro Devices manual MiniMON29K Target Interface Process:
MONTIP uses the conventions shown in the following table (unless otherwise
noted). These same conventions are used in all the 29K Family support product
manuals.

Table 0–1. Notational Conventions

Symbol Usage

Boldface Indicates that characters must be entered
exactly as shown. The alphabetic case is
significant only when indicated.

Italic Indicates a descriptive term to be replaced with a
user-specified term.

Typewriter face Indicates computer text input or output in an exam-
ple or listing.

[] Encloses an optional argument. To include the in-
formation described within the brackets, type only
the arguments, not the brackets themselves.

{ } Encloses a required argument. To include the in-
formation described within the braces, type only the
arguments, not the braces themselves.

.. Indicates an inclusive range.

... Indicates that a term can be repeated.

| Separates alternate choices in a list—only one of
the choices can be entered.

:= Indicates that the terms on either side of the sign
are equivalent.

NOTE: In this manual, “target” refers to the target system running the
MiniMON29K monitor software, which includes osboot and its HIF kernel,
along with the debugger. “Host” refers to the system running montip.

MiniMON29K Target Interface Process: MONTIP 1–1

17

Chapter 1

Using MONTIP

montip is the MiniMON29K target interface process (TIP) which conforms to
the Universal Debugger Interface (UDI). It is the software application program
that interfaces to 29K Family-based hardware platforms running the
MiniMON29K target-resident monitor software.

montip is invoked by a UDI-compliant debugger front end (DFE) program, such
as mondfe. Both the DFE and the TIP run on the host computer. The
communication between montip, which is running on the host machine, and the
target-resident monitor software running on the 29K Family-based hardware
platform takes place using MiniMON29K product messages. These messages are
streams of bytes which are interpreted by the message system that is included
with montip and the target monitor software. Chapter 5 describes the structure
and meanings of each of the various MiniMON29K product messages that are
included with montip and the target monitor software.

The communications drivers for a shared-memory interface (for PC plug-in
boards that are supported by AMD) and for serial communications are part of
montip. The serial communications driver can support baud rates of up to 38400
bps on both MS-DOS and UNIX hosts (see page 5–2 to ensure reliable serial
communications at higher baud rates).

montip can be used with UDI-compliant debugger front end (DFE) programs
such as: mondfe, which provides the MiniMON29K product’s line-oriented user
interface; xray29u, which provides the XRAY29K product’s window-based user
interface; or gdb, the GNU debugger.

NOTE: See Chapter 2 if you want to run programs from a UNIX machine on a
29K Family PC plug-in board (such as the EB29030 or EB29K Execution
Boards) located in a remote PC.

1–2 MiniMON29K Target Interface Process: MONTIP

18

Invoking MONTIP
Syntax: montip –t targetInterface [–baud baudRate]

[–bl blockLoopcount] [–com serialPort] [–le]
[–m messageFile] [–mbuf messageBufferSize]
[–par parallelPort] [–port portAddress][–R | –P | –S]
[–r romObjectFile] [–re retries][–seg segmentAddress]
[–to timeoutLoopcount]

where:
–t targetInterface

Specifies the type of communications interface that exists between
the host running montip and its target. The target is either a 29K
Family stand-alone board running the MiniMON29K
target-resident monitor software, or pcserver if debugging on a
remote PC plug-in board. montip selects the appropriate
communications driver based on the interface specified with this
parameter (see Chapter 4 for more information on the drivers).

The value of targetInterface must be one of the following: eb29k,
eb030, lcb29k, yarcrev8, serial, or paral_1. The first four values
specify that the target interface is a shared memory interface and
that it is similar to that of the EB29K, EB29030, YARC ATM�, or
YARC Rev. 8 PC plug-in board, respectively.

When serial is specified, montip assumes that the communications
interface uses a serial communications link. The desired baud rate
at which message transmission should take place can be specified
using the –baud option.

When running on an MS-DOS host, the target interface can be
specified as paral_1. When paral_1 is specified, montip uses a
parallel port on the PC (lpt1: or lpt2:) to send messages to the
target, and receives the response messages from the target through
the serial port. Therefore, it requires the use of both a serial port
and a parallel port on the MS-DOS host.

mondfe provides the tip command, which can be used to enable
and disable the use of the parallel port by montip. When the
parallel port is disabled, montip uses the serial port to send and
receive messages. The –par option can be used to specify the
parallel port to use (the default is lpt1:).

MiniMON29K Target Interface Process: MONTIP 1–3

19

–baud baudRate
Specifies the baud rate to be used over the serial communications
link. The default value of baudRate is 9600. (See page 5–2 for
information on ensuring reliable serial communications at higher
baud rates.)

–bl blockLoopcount
Specifies the loop count to decrement when waiting to receive an
arbitrary number of bytes. The default value of blockLoopcount is
40000.

–com serialPort
Specifies the serial port to be used by montip for sending
messages to, and receiving messages from, the target system. If the
parallel port option (–par) is also specified on the command line,
montip sends messages to the target using the specified parallel
port and receives messages from the target using the specified
serial port. For MS-DOS hosts, the valid values of serialPort are
com1: and com2:. The default value of serialPort is com1: for
MS-DOS hosts and /dev/ttya for UNIX hosts.

–le Specifies that the orientation of the target system is little endian.
Otherwise, montip assumes that the orientation of the target is big
endian.

–m messageFile
Specifies the filename to be used to log the message transactions
that occur between montip and the MiniMON29K target-resident
monitor. If messageFile is not specified, no log file is created.

–mbuf messageBufferSize
Specifies the maximum size of a message to be used by montip
when communicating with the target system. The value of
messageBufferSize is ignored if it exceeds the maximum message
buffer size allowed by the target message system.

–par parallelPort
Specifies the parallel port on the PC that montip should use to
send messages to the target. The serial port option (–com) must
also be specified when using this option, since montip receives the
messages from the target through the serial port.

1–4 MiniMON29K Target Interface Process: MONTIP

20

–port portAddress
Specifies the I/O-port base address of the PC plug-in board. The
default value of portAddress is 208h. This option is ignored when
the target interface is a serial communications link.

–R | –P | –S
Specifies the desired execution mode for the downloaded
application programs when used with the AMD osboot host
interface specification (HIF) kernel provided with the
MiniMON29K product. The selected mode stays in effect for the
entire debugging session. The –R option specifies physical mode,
and –P specifies protected mode. The HIF kernel provided with the
MiniMON29K monitor software implements protected mode by
using a one-to-one mapping of physical addresses to virtual
addresses using the Translation Look-Aside Buffer (TLB) registers.
The –S option can be used to run application programs in
supervisor mode with no translation. The default is protected mode
(–P). In cases where the processor does not support protected
mode, –P has no effect.

–r romObjectFile
Specifies the name of the common object file format (COFF) file,
if any, to be downloaded into the hardware platform’s writable
ROM space. The COFF file is downloaded to the target system
before it is reset. montip requires that the MiniMON29K
target-resident monitor software, along with its message system, be
downloaded and running on the target before debugging can take
place. Therefore, this option must be specified when the target is a
PC plug-in board.

The MiniMON29K target-resident monitor software provides
debugging functions which are invoked by montip through
MiniMON29K product messages. The drivers for serial
communications and for the shared-memory interfaces of a PC
plug-in board are included with montip and the MiniMON29K
target-resident monitor software.

MiniMON29K Target Interface Process: MONTIP 1–5

21

When the –r option is specified, montip checks the current
working directory for the specified object file. If the object file is
not found, montip searches the directories specified in the path
environment variable by replacing the last directory with lib . For
example, if the path environment variable is set to

c:\29k\bin;c:\29k\lib;d:\c600\bin;

then the directories montip searches for the target object to
download are: c:\29k\lib, c:\29k\lib, and d:\c600\lib (in that
order).

–re retries Specifies the number of retries to perform while sending a message
to the target system. The default value of retries is 1000.

–seg segmentAddress
Specifies the address of the PC memory segment to be used by
montip to access the PC plug-in board’s memory. The default
value of segmentAddress is D000h. This option is ignored when the
target interface is a serial communications link.

–to timeoutLoopcount
Specifies the loop count to decrement before timing out while
waiting to receive a message from the target system. The default
value of timeoutLoopcount is 10000.

Files
udiconfs.txt UDI configuration file for MS-DOS hosts

udi_soc UDI configuration file for UNIX hosts

NOTE: If the appropriate UDI configuration file does not reside in the working
directory of the debugger-front-end (DFE) program, an error message is posted.
To use a configuration file in another directory, define the UDICONF
environment variable by setting it to the full path of the UDI configuration file
you want to use. After UDICONF is defined, the DFE program looks for the
UDI configuration file in the path specified by UDICONF. If the file is not
found, the program looks for it in the working directory.

1–6 MiniMON29K Target Interface Process: MONTIP

22

Example
eb29k_id montip.exe –t eb29k –r eb29k.os

This entry in the udiconfs.txt file (for MS-DOS hosts) associates the TIP ID
eb29k_id (first field) with montip, the MiniMON29K TIP. When eb29k_id is
used as the TIP ID to a UDI-compliant DFE program (e.g., mondfe), montip is
invoked and the string of options (–t and –r) is passed to montip. The –t option
specifies that the target interface is similar to that of the EB29K Execution Board.
The –r option specifies the filename of the object consisting of the MiniMON29K
target-resident monitor software, message system, and the AMD osboot and HIF
kernel. This common object file format (COFF) file is downloaded by montip
before the target is reset.

Example
lcb29k_id montip.exe –t lcb29k –r lcb29k.os –port 2A0 –seg CC00

This entry in the udiconfs.txt file (for MS-DOS hosts) associates the TIP ID
lcb29k_id (first field) with montip, the MiniMON29K TIP. When lcb29k_id is
used as the TIP ID to a UDI-compliant DFE program (e.g., mondfe), montip is
invoked and the string of options (–t, –r, –port, and –seg) is passed to montip.
The –t option specifies that the target interface is similar to that of the YARC
ATM PC plug-in board. The –r option specifies the filename of the object
consisting of the MiniMON29K target-resident monitor software, message
system, and the AMD osboot and HIF kernel. This common object file format
(COFF) file is downloaded by montip before the target is reset. The –port
option specifies the I/O-port base address to be used by montip to communicate
with the PC plug-in board. The –seg option specifies the segment base address
of the PC memory that should be used by montip to access the memory on the
PC plug-in board.

Example
serial_id AF_UNIX sock384 montip –t serial –baud 38400

This entry in the udi_soc file (for UNIX hosts) associates the TIP ID serial_id
(first field) with montip, the MiniMON29K TIP. When serial_id is used as the
TIP ID to a UDI-compliant DFE program (e.g., mondfe), montip is invoked and
the string of options (–t and –baud) is passed to montip. The –t option specifies
that the target interface is a serial communications link. The –baud option
specifies 38400 as the baud rate used by montip to communicate with the target.
Since no –com option is given, the default serial port (/dev/ttya) will be used.

MiniMON29K Target Interface Process: MONTIP 2–1

23

Chapter 2

Using PCSERVER

pcserver is a PC software application that lets you run programs written for an
AMD 29K Family processor on a 29K Family PC plug-in board (such as the
AMD EB29K or EB29030 Execution Boards) located in a remote PC from a
UNIX machine. (pcserver is not necessary when running programs on a
stand-alone board.) Once you have connected a null-modem cable from a serial
port on the remote PC to a serial port on your UNIX host, pcserver uses
MiniMON29K product messages to communicate with the target interface
process (montip) software running on your UNIX host.

PC

U
S
E
R

User’s HIF
Application

PC Plug-In
 Board

OSBOOT

 MiniMON29K
Target Debugger

(DBG_CORE)

MiniMON29K MiniMON29KMiniMON29K

MONTIP MONDFEPCSERVER

Host Computer System(s)

Universal
Debugger
 Interface

 MiniMON29K
Message

 Communications
 Interface

Figure 2–1. Role of PCSERVER in the MiniMON29K Product

2–2 MiniMON29K Target Interface Process: MONTIP

24

Invoking PCSERVER

Syntax: pcserver –r romObjectFile –t targetInterface
[–B basePortAddress] [–b baudRate][–M messageRetries]
[–m messageFile] [–p serialPort][–s segmentAddress]
[–T timeout] [–v]

where:
–r romObjectFile

Specifies the name of the common object file format (COFF) file
to download into the PC plug-in board’s writable ROM space.
The COFF file is downloaded to the target system before it is
reset. pcserver requires that the MiniMON29K target-resident
monitor software be downloaded and running on the target before
debugging can take place.

pcserver searches the working directory for the specified object
file. If the object file is not found, pcserver searches the
directories specified in the path environment variable by
replacing the last directory with lib . For example, if the path
environment variable is set to

c:\29k\bin;c:\29k\lib;d:\c600\bin;

then the directories pcserver searches for the target object to
download are c:\29k\lib, c:\29k\lib, and d:\c600\lib (in that
order).

–t targetInterface
Specifies the type of communications interface that exists
between pcserver and the 29K Family hardware platform running
the MiniMON29K target-resident monitor software. pcserver
selects the appropriate communications driver based on the
interface specified with this parameter.

The value of targetInterface must be one of the following: eb29k,
eb030, lcb29k, or yarcrev8. These values specify that the target
interface is a shared-memory interface and that it is similar to that
of the AMD EB29K, AMD EB29030, YARC ATM, or YARC
Rev. 8 PC plug-in boards, respectively.

–B basePortAddress
Specifies the I/O port base address of the PC plug-in board. The
default value of basePortAddress is 208h.

MiniMON29K Target Interface Process: MONTIP 2–3

25

–b baudRate
Specifies the baud rate to be used over the serial communications
link between the PC hosting the 29K Family PC plug-in board
and the UNIX host running montip. The default value of
baudRate is 9600.

–M messageRetries
Specifies the number of retries to perform while sending a
message to montip (running on the UNIX host). The default
value of messageRetries is 1000.

–m messageFile
Specifies the filename to be used to log the message transactions
that occur between pcserver and the MiniMON29K
target-resident monitor. If messageFile is not specified, no log file
is created.

–p serialPort
Specifies the serial port to be used by pcserver for
communication with montip (running on the UNIX host). The
valid values of serialPort are com1: and com2:. The default
value is com1:.

–s segmentAddress
Specifies the address of the PC memory segment to be used by
pcserver to access the PC plug-in board’s memory. The default
value of segmentAddress is D000h.

–T timeout Specifies the loop count to decrement before timing out while
waiting to receive a message from montip (running on the UNIX
host). The default value of timeout is 10000.

 –v Specifies verbose mode. In this mode, all of the messages are
displayed on the screen.

Files
udiconfs.txt UDI configuration file for MS-DOS hosts

udi_soc UDI configuration file for UNIX hosts

2–4 MiniMON29K Target Interface Process: MONTIP

26

NOTE: If the appropriate UDI configuration file does not reside in the
working directory of the debugger-front-end (DFE) program, an error message
is posted. To use a configuration file in another directory, define the
UDICONF environment variable by setting it to the full path of the UDI
configuration file you want to use. After UDICONF is defined, the DFE
program looks for the UDI configuration file in the path specified by
UDICONF. If the file is not found, the program looks for it in the working
directory.

Example
pcserver –t eb29k –r eb29k.os –p com1: –b 9600

In the above example, the –t parameter specifies that the target interface is
similar to that of the EB29K Execution Board. The –r parameter specifies the
filename of the object consisting of the MiniMON29K target-resident monitor
software, message system, and the AMD osboot and HIF kernel. This common
object file format (COFF) file is downloaded by montip before the target is
reset. The –p option specifies the serial port to use when receiving
MiniMON29K product messages from montip.

NOTE: The two machines must be connected through a null-modem cable.
The –b option specifies the baud rate to use for communications with montip.

MiniMON29K Target Interface Process: MONTIP 3–1

27

Chapter 3

Initial Communications Between
MONTIP and the Target

This chapter briefly describes the initial messages sent by montip and the target
system to establish a synchronous connection.

The Message System module of montip communicates with its peer on the target
system (see Figure 4–1 on page 4–2). They communicate using MiniMON29K
messages, which are described in Chapter 5. The communications interface
between the host running montip and the 29K Family-based target system
running the MiniMON29K monitor software can be either a shared-memory
interface of PC plug-in boards or a serial-communications link. The drivers to
transmit and receive the messages across the communications interface are
provided with the MiniMON29K product software (see Chapter 4 for more
information on the drivers).

When the target system is powered up, the target sends a HALT message to the
host. The HALT message is composed of six 32-bit words shown below in
hexadecimal digits:

0000002B, 00000010, 00000005, <pc0_value>, <pc1_value>, 00000000

where pc0_value and pc1_value are the values of the Program Counter 0 (PC0)
and Program Counter 1 (PC1) processor special-purpose registers.

NOTE: The messages would be followed by a 32-bit checksum of the message
bytes when the communications interface is a serial communications link (see
page 5–2 for more information).

3–2 MiniMON29K Target Interface Process: MONTIP

28

When a debugger front end issues a connection request to montip, montip sends
a CONFIG_REQ message to the target. The CONFIG_REQ message is
composed of two 32-bit words shown below in hexadecimal digits:

00000001, 00000001

In response to the CONFIG_REQ message from montip, the target sends a
CONFIG message to montip. On receipt of the CONFIG message, montip
reports a successful connection to the debugger front end.

From this point on, montip services the UDI requests received from the
debugger front end by sending appropriate message(s) to the target. The results
received from the message responses from the target are sent back to the
debugger front end. Thus, montip can operate with any UDI-conformant
debugger front end.

MiniMON29K Target Interface Process: MONTIP 4–1

29

Chapter 4

MiniMON29K Message
Communication System

The message system of montip running on the host-computer system
communicates with the message system of the monitor running on the 29K
Family-based target system. The communications take place using
MiniMON29K messages, which are structured streams of bytes. The
MiniMON29K message protocol defines an acknowledgement message for
every message, except for the initial message (HALT message) sent by the target
system when powered up. After the message systems establish a synchronous
connection (see Chapter 3), the target behaves as the message server by
responding to the request messages received from montip with
acknowledgement messages containing the results of the operation performed on
the target.

A request–acknowledge message pair denotes one complete message
transaction. The message system locks the communications channel until a
transaction is completed. After the transaction is completed, the communications
channel is freed for subsequent messages. This locking and freeing of the
communications channel is done using a message semaphore. On the host
system, the message system frees up the communications channel for subsequent
messages after receiving the acknowledgement message from the target.

The message systems on the host and target use the communication drivers to
physically send and receive the messages across the message communications
interface. Figure 4–1 shows the MiniMON29K Message Communication System
layers—the message layer and the driver layer. The message layer provides a
device-independent interface to the communications interface. The driver layer
implements the device-dependent routines to operate the communications device
to send and receive messages. The driver layer may use the underlying
operating-system services to read and write to the communications device.

4–2 MiniMON29K Target Interface Process: MONTIP

30

Message
System

Message
System

Communication
Drivers

Communication
Drivers

Message Communications Interface

Message
Layer

Driver
Layer

Message
Layer

Driver
Layer

MONTIP 29K Target System

Figure 4–1. MiniMON29K Message Communication System Layers

The remainder of this chapter describes the components of the MiniMON29K
message communication system:

� “Message Communications Interface” on page 4–3

� “MONTIP Message System” on page 4–5

� “MONTIP Message-Layer Interface” on page 4–11

� “MONTIP Drivers” on page 4–13

� “MiniMON29K Target Message System” on page 4–21

� “MiniMON29K Target Message-Layer Interface” on page 4–22

� “MiniMON29K Target Drivers” on page 4–26

NOTE: Throughout this chapter, “target” refers to the 29K Family-based target
system running the MiniMON29K monitor software; “host” refers to the
computer system running montip.

MiniMON29K Target Interface Process: MONTIP 4–3

31

Message Communications Interface
The MiniMON29K target interface process, montip, runs on a host computer
system, such as a PC or a Sun workstation. montip communicates with the
29K-Family target system running MiniMON29K monitor software using
MiniMON29K messages, which are structured streams of bytes. The host and
target support (and include drivers for) the following communications interfaces:

� Shared memory interface of a PC plug-in board

In this type of interface, a data path exists between the PC host running
montip and the PC plug-in board, which allows montip to access the
memory on the PC plug-in board. Examples of PC plug-in boards hosting
29K Family microprocessors are: the AMD EB29K Execution Board, the
AMD EB29030 Execution Board, the YARC Rev 8 board, and the YARC
ATM (Sprinter) board.

� Serial communications interface of a stand-alone execution board

In this type of interface, the serial port of the host running montip and the
serial port of the stand-alone execution target system are connected via a
serial cable. Examples of such systems are: the AMD SA-29200
Demonstration Board hosting the Am29200 microcontroller, the AMD
SA-29205 Demonstration Board hosting the Am29205 microcontroller, and
the AMD EZ-030 Demonstration Board hosting the Am29030
microprocessor.

� Parallel port interface between a PC and a stand-alone execution board (for
MS-DOS hosts only)

In this type of interface, the parallel port of the PC is connected to the
parallel port on the stand-alone execution board via a parallel cable.
Examples of such systems are: the AMD SA-29200 Expansion Board
hosting the Am29200 or Am29205 microcontroller, and the AMD
SA-29240� board hosting the Am29240 microcontroller.

4–4 MiniMON29K Target Interface Process: MONTIP

32

The drivers for the different communications interface are provided with the
MiniMON29K product software. The communications drivers provide the
functions to initialize the interface, and transmit and receive message byte
streams. montip has built-in drivers for different communications interfaces and
allows the user to select the appropriate drivers at the time of invocation. The
target monitor includes only the drivers for the communications interface of that
particular hardware system. For example, if the message communications
interface is a serial communications link, then only the serial drivers are
included in the target monitor. This helps keep the target monitor software small
and excludes redundant software which could hinder debugging.

MiniMON29K Target Interface Process: MONTIP 4–5

33

MONTIP Message System
The type of message communications interface that exists between the host
computer system running montip and the 29K target system running the
MiniMON29K monitor software is specified at the time of montip invocation.
Based on the interface type specified, montip selects the low-level
communications drivers from a table of entries that performs the necessary
device operations to send and receive MiniMON29K messages.

The Message System module of montip defines a table of Target Driver
Functions (TDF), using the following data structure:

typedef struct target_dep_funcs {
 char target_name[15];
 INT32 (*msg_send)(union msg_t *msg_buffer, INT32

port_base);
 INT32 (*msg_recv)(union msg_t *msg_buffer, INT32

port_base, INT32 mode);
 INT32 (*init_comm)(INT32 port_base, INT32 mem_seg);
 INT32 (*reset_comm)(INT32 port_base, INT32 mem_seg);
 INT32 (*exit_comm)(INT32 port_base, INT32 mem_seg);
 INT32 (*read_memory)(INT32 mspace, ADDR32 addr, BYTE

*buf, INT32 count, INT32 port_base, INT32
mem_seg);

 INT32 (*write_memory)(INT32 mspace, ADDR32 addr,
BYTE *buf, INT32 count, INT32 port_base, INT32
mem_seg);

 INT32 (*fill_memory)(void);
 INT32 PC_port_base;
 INT32 PC_mem_seg;
 void (*go)(INT32 port_base, INT32 mem_seg);
} TDF;

4–6 MiniMON29K Target Interface Process: MONTIP

34

The different elements of the above structure are explained below.

char target_name[15]
Contains a name that identifies the particular type of
communications interface.

INT32 (*msg_send)()
Points to the function that sends the MiniMON29K message
contained in the message buffer, msg_buffer. For shared memory
interfaces, the port_base parameter contains the base address of
the I/O port on the PC on which the 29K Family-based PC plug-in
board is configured. This function call returns after the complete
message is transmitted. The return value is a 0 (zero) if the
message was successfully sent, and a –1 (minus 1) to indicate a
failure.

INT32 (*msg_recv)()
Points to the function that polls the interface and reports the receipt
of a new message from the target. The received message is stored
in msg_buffer, which must be large enough to hold the incoming
MiniMON29K message. The mode parameter specifies whether
the polling should be blocking or nonblocking. In blocking mode,
the function waits until a message is received. In nonblocking
mode, the function times out waiting for a new message. For
shared-memory interfaces, the port_base parameter contains the
base address of the I/O port on the PC on which the 29K
Family-based PC plug-in board is configured. This function returns
a –1 (minus 1) if no message was received, and returns the
message number if a valid message was received in the buffer.

 INT32 (*init_comm)()
Points to the function that initializes the communications interface.
For shared memory interfaces, port_base specifies the base
address of the I/O port to control the board, and mem_seg specifies
the segment address of the memory “window” on the PC host to
use with that 29K Family-based PC plug-in board configuration.

MiniMON29K Target Interface Process: MONTIP 4–7

35

INT32 (*reset_comm)()
Points to the function that resets the communications interface. For
shared-memory interfaces, port_base specifies the base address of
the I/O port to control the board, and mem_seg specifies the
segment address of the memory “window” on the PC host to use
with that 29K Family-based PC plug-in board configuration.

INT32 (*exit_comm)()
Points to the function that closes the communications interface. For
shared-memory interfaces, port_base specifies the base address of
the I/O port to control the board, and mem_seg specifies the
segment address of the memory “window” on the PC host to use
with that 29K Family-based PC plug-in board configuration.

INT32 (*read_memory)()
Points to the function that reads from the memory on the PC
plug-in board hosting the 29K Family microprocessor. This
function is valid only for shared-memory interfaces. This function
reads count number of bytes from the 29K Family target memory
space into the buffer pointed to by BUF. The origin for the read
operation is specified by the memory space and offset specified by
the mspace and addr parameters. The port_base parameter
specifies the base address of the I/O port to control the board, and
mem_seg specifies the segment address of the memory “window”
on the PC host to use with that 29K Family-based PC plug-in board
configuration. A 0 (zero) is returned if the read operation was
successful; a –1 (minus 1) if unsuccessful.

INT32 (*write_memory)()
Points to the function that writes to the memory on the PC plug-in
board hosting the 29K Family microprocessor. This function is
valid only for shared-memory interfaces. This function writes
count number of bytes from buffer, buf, to the offset and memory
space specified by the addr and mspace parameters. The
port_base parameter specifies the base address of the I/O port to
control the board, and mem_seg specifies the segment address of
the memory “window” on the PC host to use with that 29K
Family-based PC plug-in board configuration. A 0 (zero) is
returned if the write operation was successful; a –1 (minus 1) if
unsuccessful.

4–8 MiniMON29K Target Interface Process: MONTIP

36

INT32 (*fill_memory)()
Points to the function that fills, with a specified pattern, the
memory on the PC plug-in board hosting the 29K Family
microprocessor. It currently is not used by the message system.

INT32 PC_port_base
Contains the base address of the I/O port on the PC host on which
the DIP switches on the 29K Family-based PC plug-in board is
configured. This value is used only for shared- memory interfaces.

INT32 PC_mem_seg
Contains the segment address of the 16-Kbyte memory “window”
on the PC on which the 29K Family-based PC plug-in board is
configured. This value is used only for shared- memory interfaces.

void (*go)()
Points to the function that resets the 29K Family processor on the
PC plug-in board. It is used only for shared-memory interfaces.
The port_base parameter specifies the base address of the I/O port
to control the board, and mem_seg specifies the segment address
of the memory “window” on the PC host to use with that 29K
Family-based PC plug-in board configuration.

A TDF array is initialized with the driver routines for the different message
communications interfaces that are supported by montip. The TDF entries for
the MS-DOS and UNIX systems are described on the following pages.

New communications interfaces can be added by adding an entry into the table
of driver functions.

The string (first value) in each entry is the identifier to use on montip’s
command-line at the time of invocation. montip selects the corresponding
communications drivers from the TDF table defined.

MiniMON29K Target Interface Process: MONTIP 4–9

37

Target Driver Functions (TDF) Array on MS-DOS Systems
On MS-DOS systems, montip uses the following table of entries for the
target-driver functions array. These entries include the support routines for
shared-memory interfaces of PC plug-in boards based on the 29K Family.

TDF TDF[] = {
”eb29030”, msg_send_eb030, msg_recv_eb030,

init_comm_eb030, reset_comm_eb030,
exit_comm_eb030, read_memory_eb030,
write_memory_eb030, fill_memory_eb030, (INT32)
0x208, (INT32) 0xd000, go_eb030,

”eb030”, msg_send_eb030, msg_recv_eb030,
init_comm_eb030, reset_comm_eb030,
exit_comm_eb030, read_memory_eb030,
write_memory_eb030, fill_memory_eb030, (INT32)
0x208, (INT32) 0xd000, go_eb030,

”eb29k”, msg_send_eb29k, msg_recv_eb29k,
init_comm_eb29k, reset_comm_eb29k,
exit_comm_eb29k, read_memory_eb29k,
write_memory_eb29k, fill_memory_eb29k, (INT32)
0x208, (INT32) 0xd000, go_eb29k,

”yarcrev8”, msg_send_eb29k, msg_recv_eb29k,
init_comm_eb29k, reset_comm_eb29k,
exit_comm_eb29k, read_memory_eb29k,
write_memory_eb29k, fill_memory_eb29k, (INT32)
0x208, (INT32) 0xd000, go_eb29k,

”lcb29k”, msg_send_lcb29k, msg_recv_lcb29k,
init_comm_lcb29k, reset_comm_lcb29k,
exit_comm_lcb29k, read_memory_lcb29k,
write_memory_lcb29k, fill_memory_lcb29k,
(INT32) 0x208, (INT32) 0xd000, go_lcb29k,

”paral_1”, msg_send_parport, msg_recv_serial,
init_comm_serial, reset_comm_serial,
exit_comm_serial, read_memory_serial,
write_memory_serial, fill_memory_serial,
(INT32) –1 , (INT32) –1, go_serial,

”serial”, msg_send_serial, msg_recv_serial,
init_comm_serial, reset_comm_serial,
exit_comm_serial, read_memory_serial,
write_memory_serial, fill_memory_serial,
(INT32) –1 , (INT32) –1, go_serial,

”\0”
};

4–10 MiniMON29K Target Interface Process: MONTIP

38

The string (first value) in each entry shown identifies the communications
interface as follows:

� “eb29030” or “eb030” specifies an interface similar to that of the EB29030
PC plug-in board.

� “eb29k” specifies an interface similar to that of the EB29K PC plug-in board.

� “yarcrev8” specifies an interface similar to that of the YARC Rev 8 PC
plug-in board.

� “lcb29k” specifies an interface similar to that of the YARC ATM (Sprinter)
PC plug-in board.

� “paral_1” specifies a unidirectional parallel communications interface for
montip to send messages (data) to the target, and a serial interface for montip
to receive messages (data) from the target.

� “serial” specifies a bidirectional serial communications interface between
montip and the target.

Target Driver Functions (TDF) Array on UNIX Systems
In addition to the above entries, on UNIX systems, the target-driver-functions
array also contains the entry shown below to communicate with MiniMON29K
pcserver to execute programs on PC- hosted plug-in boards.

”pcserver”, msg_send_serial, msg_recv_serial,
init_comm_serial, reset_comm_pcserver,
exit_comm_serial, read_memory_serial,
write_memory_serial, fill_memory_serial,
(INT32) –1 , (INT32) –1, go_serial,

MiniMON29K Target Interface Process: MONTIP 4–11

39

MONTIP Message-Layer Interface
The message layer defines two buffers to hold the incoming and outgoing
messages:

union msg_t *send_msg_buffer;
union msg_t *recv_msg_buffer;

The variable send_msg_buffer points to the message buffer that is used to send
messages to the target, and the variable recv_msg_buffer points to the message
buffer that is used to receive messages from the target. These buffers are
accessible to the driver layer also. The buffers are allocated by the
Mini_msg_init() function, which initializes the message layer.

The message layer shown in Figure 4–1 on page 4–2 provides a device-
independent procedural interface to operate the message communications
interface. The message-layer functions index into the TDF array to call the
appropriate low-level functions to perform the necessary operation. These
functions are listed and described below.

INT32 Mini_msg_init(char *target_comm_name);
The message layer of montip should be initialized before using the
message system. Mini_msg_init() allocates the message buffers to
send and receive messages. Based on the target_comm_name
string, it calls the driver function from the TDF table to initialize
the communications interface. A 0 (zero) is returned on successful
initialization, and a –1 (minus 1) is returned to indicate failure.

INT32 Mini_msg_exit(void);
Mini_msg_exit() closes the communication device and deallocates
the message buffers. A return value of 0 (zero) indicates successful
completion, and a –1 (minus 1) indicates failure.

4–12 MiniMON29K Target Interface Process: MONTIP

40

INT32 Mini_msg_send(void);
Mini_msg_send() sends the message contained in the send buffer,
send_msg_buffer, to the target. This calls the driver function to
transmit the message bytes to the target. For shared-memory
interfaces, the driver-layer function copies the message to the
target memory on the PC plug-in board, and interrupts the target
message system. For serial interface and parallel interface, the
driver-layer routines transmit the message one byte at a time to the
target, and return after the entire message is transmitted to the
target. A 0 (zero) is returned to indicate successful transmission of
the message, and a –1 (minus 1) is returned to indicate failure.

INT32 Mini_msg_recv(INT32 RecvMode);
Mini_msg_recv() returns a –1 (minus 1) if no new message was
received into the receive buffer, recv_msg_buffer. When a new
message is received, the MiniMON29K message code is returned
to the caller. The RecvMode parameter can be either BLOCK , to
indicate to wait until a message is received, or NONBLOCK to
indicate to return if a message is not received. Mini_msg_recv()
calls the driver-layer function, which handles the incoming
message bytes. For shared- memory interfaces, the driver layer
polls the mailbox address for a message interrupt from the PC
plug-in board. When a message interrupt is posted, the message is
read into the receive buffer, recv_msg_buffer, from the target
system memory. For serial interfaces on MS-DOS systems, each
incoming message byte interrupts montip. The interrupt handler
gets the incoming byte from the device and stores it in
recv_msg_buffer. For serial interfaces on UNIX systems, the
driver function uses the read() system call to receive the incoming
bytes. The bytes received are stored in recv_msg_buffer.

INT32 Mini_init_comm(void);
Mini_init_comm() initializes the communications interface. Based
on the type of interface specified, the appropriate driver function
from the TDF table is invoked.

INT32 Mini_reset_comm(void);
Mini_reset_comm() resets the communications interface and
clears the message buffers. Based on the type of interface
specified, the appropriate driver function from the TDF table is
called.

MiniMON29K Target Interface Process: MONTIP 4–13

41

INT32 Mini_exit_comm(void);
Mini_exit_comm() closes the communications interface. Based on
the type of interface specified, the appropriate driver function from
the TDF table is called.

INT32 Mini_go_target(void);
Mini_go_target() puts the 29K Family microprocessor on the
target system in Reset mode by asserting the RESET input signal.
This is valid only for shared-memory interfaces, when montip
downloads the ROM monitor onto the target and asserts the
RESET input signal to execute the ROM monitor.

MONTIP Drivers
The driver functions that operate the communications device interfaces
implemented in montip are described in the sections that follow.

MONTIP Shared-Memory Interface Drivers

The interface between the PC host running montip and the PC plug-in board
hosting the 29K Family microprocessor is a shared-memory interface. The
interface provides some byte-wide I/O port registers and a 16-Kbyte “window”
of memory, which is shared by both the PC host and the PC plug-in board. The
base address (start address) of the I/O port registers can be configured with the
DIP switches on the PC plug-in board. The segment address of the memory
“window” on the PC host also can be specified with the DIP switches on the PC
plug-in board. The 16-Kbyte memory “window” can be made to address the
memory on the PC plug-in board by programming the I/O port registers, thus
providing a data path between the host and the target. A bidirectional
communication path is provided by the I/O port register called the “mailbox”
register. The “mailbox” register is used by the host to interrupt the target and
vice versa, unless the interrupts are masked on the board with the DIP switches.

Refer to the hardware reference manual of the PC plug-in board for more
information on DIP switches and their uses. For MiniMON29K software, the
DIP switches must be set to enable interrupts from the PC host to the target
board, and to disable the interrupts from the target to the PC host.

4–14 MiniMON29K Target Interface Process: MONTIP

42

montip provides the driver routines for the following 29K Family-based PC
plug-in boards. The drivers for the AMD boards (the EB29K and the EB29030
board) are described in more detail on the following pages.

� AMD’s EB29K board

� AMD’s EB29030 board

� YARC’s Rev 8 board

� YARC’s ATM (Sprinter) board

The I/O port base address and the segment address of the memory “window” to
use can be specified on the command line of montip at the time of invocation
using the –port and the –seg options.

The EB29K and EB29030 Interface Drivers
The interface between the PC host running montip and AMD’s EB29K and
EB29030 boards are quite similar. The target-driver functions for the EB29K
interface and the EB29030 interface are listed in the TDF array for “eb29k” and
“eb29030” target communications types, respectively (see page 4–9).

The EB29K and EB29030 boards running the MiniMON29K monitor software
are controlled from the PC host running montip through four byte-wide I/O
ports and a 16-Kbyte shared-memory “window.” The I/O ports start sequentially
at offset 0 from the base address specified when the board is configured with
DIP switches. At offset 0h from the I/O port base is the control-port register. The
control-port register is used to send control signals from the PC to the target
board. The segment address of the 16-Kbyte shared-memory window is set by
writing to the control-port register. At offset 1h and 2h from the I/O port base are
two address registers. The address registers are used to set the base address of
the 16-Kbyte memory “window” on the target which is mapped to the segment
address of the memory “window” on the PC host. Thus by accessing the
shared-memory window on the PC host, montip can access any memory
location on the target board. At offset 3h from the I/O port base is the “mailbox”
register. The “mailbox” register is mapped to offset 80800000h in the EB29K
address space, and is mapped to offset 90000000h in the EB29030 address
space. montip writes to the “mailbox” register to generate an interrupt on the
target.

The driver routines for the EB29K and EB29030 boards are described below.

MiniMON29K Target Interface Process: MONTIP 4–15

43

INT32 msg_send_eb29k(union msg_t *msg_ptr, INT32 port_base)
INT32 msg_send_eb030(union msg_t *msg_ptr, INT32 port_base)
The msg_send_eb29k() and msg_send_eb030() functions send a MiniMON29K
message to the target, and interrupt the target execution. The message contained
in msg_ptr is copied to the receive buffer on the target memory space. The
receive buffer of the target monitor is at offset 80000404h in the EB29K address
space, and at offset 404h in the EB29030 address space. After copying the
message onto the target receive buffer, montip interrupts the target by writing to
the “mailbox” register. The port_base parameter specifies the I/O port base
address on the PC host. A 0 (zero) is returned for successful completion,
otherwise a –1 (minus 1) is returned.

INT32 msg_recv_eb29k(union msg_t *msg_ptr, INT32 port_base, INT32 Mode)
INT32 msg_recv_eb030(union msg_t *msg_ptr, INT32 port_base, INT32 Mode)

The msg_recv_eb29k() and msg_recv_eb030() functions poll the “mailbox”
register for new incoming messages. The monitor running on the target writes
FFh to the “mailbox” register to indicate a new message in the buffer. The target
also stores the pointer to where the message is on the target memory space—at
offset 80000400h in the EB29K address space, and at offset 400h in the
EB29030 address space. msg_recv_eb29k() and msg_recv_eb030() read the
contents of the message from the target memory into the msg_ptr buffer.
montip then writes FFh to the “mailbox” register to indicate receipt of the
message, and resets to 0 (zero) the content of offset 80000400h in the EB29K
memory space and offset 400h in EB29030 memory space. The port_base
parameter specifies the I/O port base address on the PC host. The Mode
parameter is not used. The message code of the new message received is
returned, otherwise a –1 (minus 1) is returned to indicate no new message in the
buffer.

INT32 init_comm_eb29k(INT32 port_base, INT32 mem_seg)
INT32 init_comm_eb030(INT32 port_base, INT32 mem_seg)
The init_comm_eb29k() and init_comm_eb030() functions write to the
control-port register to set the base address of the memory window on the PC
host to mem_seg. The functions also write to the address registers to set the
corresponding memory window to offset 0h in the target memory space. These
functions set the control bit to enable interrupts from the PC host to the target.
The port_base parameter specifies the I/O-port base address on the PC host. A 0
(zero) is returned for successful completion; otherwise, a –1 (minus 1) is
returned.

4–16 MiniMON29K Target Interface Process: MONTIP

44

INT32 reset_comm_eb29k(INT32 port_base, INT32 mem_seg)
INT32 reset_comm_eb030(INT32 port_base, INT32 mem_seg)
The reset_comm_eb29k() and reset_comm_eb030() functions are the same as
the init_comm_eb29k() and init_comm_eb030() functions, respectively.

INT32 exit_comm_eb29k(INT32 port_base, INT32 mem_seg)
INT32 exit_comm_eb030(INT32 port_base, INT32 mem_seg)
The exit_comm_eb29k() and exit_comm_eb030() functions are defined as
empty functions that always return a 0 (zero).

INT32 read_memory_eb29k(INT32 mspace, ADDR32 addr, BYTE *data,
INT32 count, INT32 port_base, INT32 mem_seg)

INT32 read_memory_eb030(INT32 mspace, ADDR32 addr, BYTE *data,
INT32 count, INT32 port_base, INT32 mem_seg)

The read_memory_eb29k() and read_memory_eb030() functions program the
address control registers with the offset specified in addr. This positions the
16-Kbyte memory “window” in the target address space from where count bytes
of data from the memory on the target board are read into the data buffer in the
PC host memory space. A 0 (zero) is returned if the read was performed
successfully; otherwise, a –1 (minus 1) is returned.

INT32 write_memory_eb29k(INT32 mspace, ADDR32 addr, BYTE *data,
INT32 count, INT32 port_base, INT32 mem_seg)

INT32 write_memory_eb030(INT32 mspace, ADDR32 addr, BYTE *data,
INT32 count, INT32 port_base, INT32 mem_seg)

The write_memory_eb29k() and write_memory_eb030() functions program
the address control registers with the offset specified in addr. This positions the
16-Kbyte memory “window” in the target address space where count bytes from
the data buffer are copied from the PC host memory. A 0 (zero) is returned if the
write was performed successfully, otherwise a –1 (minus 1) is returned.

void go_eb29k(INT32 port_base, INT32 mem_seg)
void go_eb030(INT32 port_base, INT32 mem_seg)
The go_eb29k() and go_eb030() functions toggle the RESET bit in the
control-port register. Writing a 1 (one) to the reset bit in the control register
resets the 29K Family microprocessor and starts execution.

INT 32 fill_memory_eb29k(void)
INT 32 fill_memory_eb030(void)
The fill_memory_eb29k() and fill_memory_eb030() functions are defined as
empty functions that always return a 0 (zero).

MiniMON29K Target Interface Process: MONTIP 4–17

45

The YARC Rev 8 and YARC ATM Interface Drivers
The target-driver functions for the YARC Rev 8 and the YARC ATM interface
are listed in the TDF array for “yarcrev8” and “lcb29k” target communications
types, respectively (see page 4–9).

MONTIP Serial-Interface Driver

The communications between montip running on a host computer system and a
stand-alone target execution board running the MiniMON29K monitor software
is through a serial interface. The serial port on the host computer is connected to
the serial port on the stand-alone execution board via a serial cable. The baud
rate and the host serial port that montip should use for communications can be
specified on the command line at the time of invoking montip using the –baud
and –com options.

montip implements a simple serial interface with one stop bit, no parity, and 8
bits per byte. Every message is appended with a 32-bit checksum value, which is
the sum of all the bytes in the message (see page 5–2 for more information on
checksums). The receiver checks the checksum received with the checksum of
the message bytes received before posting a valid message interrupt to the
message system. If the received message is valid, then an ACK message is sent
to the transmitter. If the received message is invalid, then a NACK message is
sent to the transmitter. The ACK and NACK messages are handled by the
communications driver routines. The receipt of an ACK message marks the
completion of a message transaction.

The target-driver functions for the serial interface defined in the TDF array for
the “serial” target communications type (see page 4–9) are described below.

4–18 MiniMON29K Target Interface Process: MONTIP

46

INT32 msg_send_serial(union msg_t *msg_ptr, INT32 port_base)
The msg_send_serial() function is used to send the MiniMON29K message
contained in msg_ptr to the target via the serial interface. The port_base
parameter is ignored. The msg_send_serial() function computes the checksum
for the message, which is the sum of all the bytes of the message. The function
appends the checksum to the end of the message. Note that the msg_ptr buffer
should be large enough to append a checksum at the end of the message. The
message and its checksum are then transmitted to the target using the
send_bfr_serial() function, which uses the underlying operating-system services
to transmit the message bytes. After transmitting the message and the checksum,
the msg_send_serial() function waits to receive an ACK message from the
target to indicate successful transmission. If an ACK message is received,
msg_send_serial() returns a 0 (zero) to indicate successful transmission of the
message. If a NACK message is received, msg_send_serial() resets the serial
interface and resends the message. The maximum number of attempts to resend
the message is specified by the –re command-line option. A –1 (minus 1) is
returned to indicate failure during transmission of the message.

INT32 msg_recv_serial(union msg_t *msg_ptr, INT32 port_base, INT32 Mode)

The msg_recv_serial() function is called to find out if a new message has
arrived. It returns the message received in the msg_ptr buffer. The Mode
parameter is set to either BLOCK or NONBLOCK . When Mode is set to
NONBLOCK , msg_recv_serial() returns immediately if no new message has
arrived. When Mode is set to BLOCK , msg_recv_serial() waits (blocks) until a
message is received from the target. The length of the wait can be specified
using the –bl command option. The port_base parameter is ignored.

The msg_recv_serial() function calls the recv_bfr_serial() function, which
copies the received message bytes from the underlying operating-system buffer
or the circular buffer (serial_io_buffer in MS-DOS hosts) to the message
msg_ptr buffer. msg_recv_serial() returns if a complete message header (8
bytes) has not arrived.

MiniMON29K Target Interface Process: MONTIP 4–19

47

From the message header received, the number of bytes to follow the header is
determined. msg_recv_serial() then calls recv_bfr_serial() to receive the
remaining bytes plus the 32-bit checksum value. The checksum of the received
message is computed and compared with the checksum value received from the
target. If the checksums are equal, an ACK message is sent to the target, and
msg_recv_serial() returns the message code of the received message. If the
checksums are not equal, a NACK message is sent to the target, and a –1 (minus
1) is returned to the caller to indicate failure while receiving a message from the
target.

INT32 init_comm_serial(INT32 port_base, INT32 mem_seg)
This function initializes the serial interface depending on the host used and the
options given to montip on the command line.

On MS-DOS hosts, the init_comm_serial() function uses the BIOS services to
initialize the serial interface. Based on the I/O port specified to the –com option,
the I/O-port base address and the interrupt line for the serial communications
controller SCC8259 are determined. The serial port is initialized for the baud
rate specified on the montip command line. The transmit interrupt is disabled
such that montip uses a polling loop while transmitting message bytes to the
target. The receive interrupt of the serial port is enabled to generate an interrupt
for every incoming byte from the target. The init_comm_serial() function
installs the serial port interrupt handler, serial_int(), to handle the receive
interrupts.

void interrupt serial_int()

The serial_int() interrupt handler buffers the incoming characters into a circular
buffer and raises a flag if the buffer overflows. The circular buffer,
serial_io_buffer, is initialized by the init_comm_serial() function. It returns a 0
(zero) to indicate successful completion, and a –1 (minus 1) to indicate a failure
termination.

On UNIX hosts, the init_comm_serial() function opens the serial port specified
by the –com command-line option for reading and writing using the open()
system call. The serial-port parameters such as the baud rate, character size,
parity, and number of stop bits are set using the ioctl() system call. The serial
port is configured to perform nonblocking read and write operations. The serial
port input and output buffers are flushed to discard their previous contents. It
returns a 0 (zero) to indicate successful completion, and a –1 (minus 1) to
indicate failure termination.

4–20 MiniMON29K Target Interface Process: MONTIP

48

INT32 reset_comm_serial(INT32 port_base, INT32 mem_seg)
On MS-DOS hosts, this function resets the circular buffer and discards the
previous contents of the buffer. This function clears any communications errors
that might have occurred and any receive interrupts that are pending to be
handled. A 0 (zero) is returned to indicate successful completion, and a –1
(minus 1) to indicate failure.

On UNIX hosts, this function resets the input and output buffers of the serial
port using the ioctl() system call. It returns a 0 (zero) to indicate successful
completion, and a –1 (minus 1) to indicate failure termination.

INT32 exit_comm_serial(INT32 port_base, INT32 mem_seg)
On MS-DOS hosts, this function resets the circular buffer, and installs the
original vector corresponding to the serial port. It returns a 0 (zero) to indicate
successful completion, and a –1 (minus 1) to indicate failure termination.

On UNIX hosts, this function resets the input and output buffers of the serial
port and closes the serial port using the close() system call. It returns a 0 (zero)
to indicate successful completion, and a –1 (minus 1) to indicate failure
termination.

read_memory_serial()
write_memory_serial()
fill_memory_serial()
The functions write_memory_serial(), read_memory_serial(), and
fill_memory_serial() are defined as empty functions and always return a –1
(minus 1).

void go_serial(INT32 port_base, INT32 mem_seg)
This function is an empty function and returns immediately.

MONTIP Parallel-Port Interface Driver

The parallel port interface is available for the PC only and is unidirectional
(messages are sent to the target through the parallel port and received from the
target through the serial port). Thus, the functions are the same as those
described for serial communications. The exception is the replacement of the
msg_send_serial function with the msg_send_parport function.

MiniMON29K Target Interface Process: MONTIP 4–21

49

MiniMON29K Target Message System
The MiniMON29K message system on the target is the message server for the
debugger and the application program running on the target system. It sends
messages to and receives message from montip running on the host computer
system. The target message system and its communications drivers are coded in
29K assembly language. The functions do not require any processor registers to
be reserved for their use, and they execute in their own address space. The
message layer provides a device-independent interface to the message
communications interface. The driver layer implements the device-dependent
functions to send and receive message bytes across the message communications
interface. The message-layer functions and the driver functions are written
according to the AMD calling conventions.

The MiniMON29K message-layer functions are the same for all target systems.
The MiniMON29K product software includes the drivers for AMD-supported
29K Family-based target systems to send and receive messages to and from
montip running on the host. The drivers included with the MiniMON29K
product are:

� Shared-memory interface drivers for AMD’s EB29K, AMD’s EB29030,
YARC’s Rev 8, and YARC’s ATM (Sprinter) PC plug-in boards.

� Serial communications drivers for SCC8530 device on AMD’s EZ-030
stand-alone execution board, for the Am29200 on-chip serial port on AMD’s
SA-29200 stand-alone execution board, and for the Am29205 on-chip serial
port on AMD’s SA-29205 stand-alone execution board.

� Parallel-port driver to receive messages through the Am29200 or Am29205
on-chip parallel port on AMD’s SA-29200 expansion board, and through the
Am29240 on-chip parallel port on AMD’s SA-29240 board.

The appropriate drivers to support the communications interface between the
target and the host are linked together with the rest of the monitor software. The
monitor is either downloaded to the target memory as in the case of PC plug-in
boards, or is programmed in EPROMs on the stand-alone execution boards.

4–22 MiniMON29K Target Interface Process: MONTIP

50

MiniMON29K Target
Message-Layer Interface

The message layer defines a buffer, _msg_rbuf, to hold the incoming messages
from montip, and a pointer, _msg_next_p, which gives the location where the
next received character is to be stored:

.global _msg_rbuf
_msg_rbuf: .block MSG_RBUF_SIZE

.global _msg_next_p
_msg_next_p: .block 4

MSG_RBUF_SIZE gives the maximum size of the message buffer. It is the
responsibility of the host to send messages no larger than MSG_RBUF_SIZE
bytes. _msg_next_p is updated by the driver routines as the received message
bytes are stored into _msg_rbuf. _msg_next_p is initialized to _msg_rbuf
during reset and after the completion of a message transaction. _msg_next_p
and _msg_rbuf are global variables and are accessible to the driver-layer
functions.

The message layer also defines a global pointer, _msg_sbuf_p, which points to
the location of current message that should be sent to the host before the next
message is sent:

.global _msg_sbuf_p
_msg_sbuf_p: .block 4

The _msg_sbuf_p pointer is reset to 0 (zero) after the message has been
successfully transmitted to the host. Thus, _msg_sbuf_p is used as a semaphore
to indicate that the message communications channel is busy when
_msg_sbuf_p is a nonzero value, or free when _msg_sbuf_p is zero.

The message layer provides the following device-independent procedural
interface to the message communications interface. These functions are called by
the debugger and the operating system/application program running on the target
system, and not by the driver-layer functions.

MiniMON29K Target Interface Process: MONTIP 4–23

51

void msg_init(void)
This function initializes the message layer, and calls the driver
initialization routine, msg_initcomm, to initialize the
communications interface. It sets _msg_next_p to point to
_msg_rbuf and clears the _msg_sbuf_p semaphore. The
msg_init() function must be called before using the message
system. The bootstrap code is required to install the necessary
interrupt vectors before calling the msg_init() function.

int msg_send(msg_t *msg_buf);
This function sends the message contained in the buffer pointed to
by msg_buf to the host. Before calling the driver function to send
the message, it determines whether the message channel is free by
examining the _msg_sbuf_p variable. If _msg_sbuf_p is zero and
the message channel is free, msg_send() locks the message
channel by writing the address of msg_buf to _msg_sbuf_p. It
then calls the driver function to write out the message bytes
through the message communications interface to the host. The
driver function to write the message bytes is accessed through an
indirect pointer, msg_write_p, as shown below:

.extern msg_write_p ; pointer to driver write function
const gr96, msg_write_p
const gr96, msg_write_p
load 0, 0, gr96, gr96 ; get msg_write driver function
calli lr0, gr96 ; call the driver function
nop

The gr96 and lr0 registers are saved before calling the driver
function and restored on return from the driver function. The
msg_write_p pointer is initialized by the driver initialization
routine, msg_initcomm, with the write routine defined by the
driver layer for that communications interface.

msg_send() returns a 0 (zero) if the message was sent successfully.
It returns a –1 (minus 1) to indicate failure to send the message
either due to transmission error or due to a lock on the
_msg_sbuf_p semaphore.

4–24 MiniMON29K Target Interface Process: MONTIP

52

int msg_wait_for(void);
This function is used to determine if the receive buffer contains a
valid message from the host that needs to be processed. It returns a
–1 (minus 1) to indicate that the receive buffer contains a valid
message, and returns a 0 (zero) to indicate that no new message is
in the receive buffer. It calls the driver function using the function
pointer, msg_wait_for_p, as shown below:

.extern msg_wait_for_p ; pointer to driver
; msg_wait_for function

const gr96, msg_wait_for_p
consth gr96, msg_wait_for_p
load 0, 0, gr96, gr96 ; get function address
calli lr0, gr96 ; call driver function
nop

The lr0 register is saved before calling the driver function and is
restored on return from the driver function. The msg_wait_for_p
pointer is initialized by the driver initialization routine,
msg_initcomm, with the wait-for-message routine defined by the
driver layer for that communications interface.

When the communications interface is driven in interrupt mode,
the driver-layer function returns immediately with a return value of
0 (zero) to indicate no new message has arrived. When the
communications interface is driven in polled mode, the driver-layer
function returns only when a valid message is received in the
receive buffer, and returns a value of –1 (minus 1). The message
layer calls the driver-layer function independent of whether the
interface is in polled mode or in interrupt mode.

MiniMON29K Target Interface Process: MONTIP 4–25

53

msg_V_arrive
The message layer provides an entry point for the driver layer to
notify when a message has been received from the host. The
driver-receive interrupt handler posts a message interrupt to the
message system by jumping to the label, msg_V_arrive, inside the
message system when a complete message is received in the
receive buffer, _msg_rbuf. msg_V_arrive is defined as a virtual
interrupt handler. It determines whether the message contained in
_msg_rbuf is a MiniMON29K debug message or an
operating-system message. If a debug message is received, it posts
an interrupt to the debugger by jumping to the dbg_V_msg label
inside the MiniMON29K debugger. If an operating-system
message is received, it posts an interrupt to the operating system on
the target by jumping to the os_V_msg label inside the operating
system. The msg_V_arrive message interrupt handler is as shown
below:

.global msg_V_arrive
msg_V_arrive:

const gr4, _msg_rbuf
consth gr4, _msg_rbuf
load 0, 0, gr4, gr4 ; determine message

code
cpgeu gr4, gr4, 64 ; is it an OS message
jmpt gr4, os_msg ; yes, go to os_msg
const gr4, dbg_V_msg ; else
consth gr4, dbg_V_msg ; interrupt debugger
jmpi gr4 ; at dbg_V_msg
nop

os_msg:
const gr4, os_V_msg ; interrupt OS
consth gr4, os_V_msg ; at os_V_msg
jmpi gr4
nop

4–26 MiniMON29K Target Interface Process: MONTIP

54

MiniMON29K Target Drivers
The driver functions to operate the communications device interface for the
specific target hardware system are linked together with the message-layer
module. For each type of communications interface, the driver layer must define
a write function to send the message to montip, define a message-wait-for
function to receive a message from montip (in polled mode), and define an
interrupt handler to handle message interrupts from the host.

For each target hardware system, the msg_initcomm driver initialization
function must be defined. msg_initcomm is called from the msg_init() function
in the message layer. The msg_initcomm function should initialize the
msg_write_p and msg_wait_for_p function pointers with the appropriate
routines for the communications interface applicable to that target hardware
system.

Target Shared-Memory Interface Drivers

The drivers for the shared-memory interface of the following PC plug-in boards
are provided with the MiniMON29K product software. The drivers for the AMD
boards (the EB29K and the EB29030 board) are described in more detail on the
following pages.

� AMD’s EB29K board

� AMD’s EB29030 board

� YARC Rev 8 board

� YARC ATM (Sprinter) board

MiniMON29K Target Interface Process: MONTIP 4–27

55

The EB29K and EB29030 Message Drivers
ASM int msg_initcomm(void)
ASM is used to denote that msg_initcomm is an assembly-level label, and has
no leading underscore. The msg_initcomm function is called from the
message-layer initialization function, msg_init(). The interrupt handler,
msg_intr, for the interrupt line used by the communications interface must be
installed during the bootstrap process.

The msg_initcomm function reads the “mailbox” register clearing any pending
interrupts. The msg_write_p and msg_wait_for_p pointers are then initialized
with the board-specific write and msg_wait_for functions, which write out a
message and wait for a message, respectively. The msg_initcomm function
returns the driver version number in gr96 to the caller.

The code below shows the msg_initcomm function for AMD’s EB29030 board.
msg_eb030_write and msg_eb030_wait_for are the functions to write a
message and wait for a message for the EB29030 board, respectively. The
msg_initcomm function for the EB29K board is similar and installs the
msg_eb29k_write and msg_eb29k_wait_for functions instead. The “mailbox”
register is at offset 90000000h for the EB29030 board, and is at offset
80800000h for the EB29K board.

;
––MSG_INITCOMM
; return version number in gr96.

.equ COMM_VERSION,0x06

.equ mailbox,0x90000000

.extern msg_write_p

.extern msg_wait_for_p
msg_initcomm:

const gr96, mailbox
consth gr96, mailbox
load 0, 0, gr96, gr96 ; clear mail box

const gr96, save_regs
consth gr96, save_regs
store 0, 0, gr97, gr96 ;backup gr97

const gr96, msg_write_p
consth gr96, msg_write_p
const gr97, msg_eb030_write
consth gr97, msg_eb030_write
store 0, 0, gr97, gr96 ; msg_write

4–28 MiniMON29K Target Interface Process: MONTIP

56

const gr96, msg_wait_for_p
consth gr96, msg_wait_for_p
const gr97, msg_eb030_wait_for
consth gr97, msg_eb030_wait_for
store 0, 0, gr97, gr96 ; msg_wait_for

const gr96, save_regs
consth gr96, save_regs
load 0, 0, gr97, gr96 ; restore gr97

jmpi lr0
const gr96, COMM_VERSION

ASM void msg_eb29k_write(void)
ASM void msg_eb030_write(void)
ASM is used to denote that these labels are assembly-level labels, and have no
leading underscore. The msg_eb29k_write and msg_eb030_write functions are
called from the msg_send() function. For shared-memory interfaces,
msg_send() writes a pointer, to the location of the message on the target address
space, into the _msg_sbuf_p semaphore, before calling the driver write
function. The driver-layer write function posts the message to montip running
on the host by writing a –1 (FFh) to the “mailbox” register. This indicates to
montip that a message is ready in the buffer. Note that the DIP switches on the
board must be set such that writing to the “mailbox” register does not generate
an interrupt on the PC. montip running on the PC host polls the “mailbox”
register from the PC side until it reads a –1 (FFh), which indicates that a
message is ready to be received.

The code below shows the driver-layer write function for the EB29030 board.

;
–––––––––––––––––––––––––––––––––––––MSG_EB030_WRITE
; write 0xff to mailbox, return.
.equ mailbox,0x90000000
msg_eb030_write:

const gr4, save_regs
consth gr4, save_regs
store 0, 0, gr96, gr4 ; backup gr96
const gr96, save_regs+4
consth gr96, save_regs+4
store 0, 0, gr97, gr96 ; backup gr97

MiniMON29K Target Interface Process: MONTIP 4–29

57

const gr96, mailbox
consth gr96, mailbox
constn gr97, –1 ; write 0xff to mailbox
store 0, 0, gr97, gr96 ; message ready in

; buffer.

const gr96, save_regs+4
consth gr96, save_regs+4
load 0, 0, gr97, gr96 ; restore gr97
const gr96, save_regs
consth gr96, save_regs
load 0, 0, gr96, gr96 ; restore gr96

jmpi lr0
nop

ASM int msg_eb29k_wait_for(void)
ASM int msg_eb030_wait_for(void)
ASM is used to denote that these labels are assembly-level labels, and have no
leading underscore. The msg_eb29k_wait_for and msg_eb030_wait_for
functions are called from the msg_wait_for() function in the message layer. For
shared-memory interfaces, the target message drivers always receive messages
in interrupt mode. Therefore, the msg_eb29k_wait_for and
msg_eb030_wait_for functions return immediately with a return value of 0
(zero) to indicate no message in the receive buffer.

ASM void msg_intr(void)
ASM is used to denote that this label is an assembly-level label, and has no
leading underscore. The interrupt handler for shared-memory interfaces is
msg_intr, which is defined in the driver layer. The bootstrap code installs
msg_intr as the interrupt handler for interrupts from the PC host to the target.
Note that montip interrupts the target by writing to the “mailbox” register after
copying the message to the target address space.

The interrupt handler, msg_intr, clears the interrupt by reading the “mailbox”
register. The value read is then compared with FFh to determine whether montip
interrupted to acknowledge receipt of the message from the target, or whether a
new message was sent by montip to the target. If the content of the “mailbox”
register is not FFh, then msg_intr posts a message interrupt to the message
system by jumping to the msg_V_arrive label inside the message layer.
msg_V_arrive is a virtual interrupt handler, which interrupts the debugger or the
operating system based on the type of the message received.

4–30 MiniMON29K Target Interface Process: MONTIP

58

The code below shows the msg_intr interrupt handler for the EB29030 board.
The “mailbox” register is at offset 90000000h for the EB29030 board and at
offset 80800000h for the EB29K board.

;
–––MSG_INTR

.equ mailbox,0x90000000
; interrupt vector for interrupts from PC host.
msg_intr:

const gr4, mailbox
consth gr4, mailbox
load 0, 0, gr4, gr4 ; clear interrupt,read mailbox
and gr4, gr4, 0xFF ; test for new message
cpeq gr4, gr4, 0xFF ; compare with 0xFF
jmpf gr4, msg_V_arrive ; yes, interrupt msg

system
nop
; no clear receive interrupt from montip.
const gr4, mailbox
consth gr4, mailbox
store 0, 0, gr4, gr4 ; clear interrupt
iret

Target Serial-Interface Drivers

The drivers for the Z8530 serial communications controller and for AMD’s 29K
Family microcontroller’s internal serial port are included with the
MiniMON29K product software. The Z8530 SCC drivers are linked with the
target monitor software for AMD’s EZ-030 board, and the Am29200 and
Am29205 SCC drivers are linked with the target monitor software for the
SA-29200 and SA-29205 boards.

The SA-29200 and SA-29205 message driver is explained in more detail on the
following pages, and in Appendix C.

NOTE: Every message is appended with a 32-bit checksum value, which is the
sum of all the bytes in the message (see page 5–2 for more information on
checksums).

MiniMON29K Target Interface Process: MONTIP 4–31

59

The SA-29200 and SA-29205 Message Driver
ASM int msg_initcomm(void)
ASM is used to denote that this label is an assembly-level label, and has no
leading underscore. The msg_initcomm function for the SA-29200 or SA-29205
board is called from the message-layer initialization function, msg_init(). The
interrupt handler for the interrupt line used by the Am29200 and Am29205 SCC,
serial_int, must be installed during the bootstrap process. The msg_initcomm
function installs the msg_scc200_write and msg_scc200_wait_for driver
functions to write a message and wait for a message across the communications
interface, respectively. As the interrupt line, INTR3, used by the serial port on
the Am29200 or Am29205 microcontroller is shared by other internal
peripherals, the interrupt handler, serial_int, uses a table of vectors,
intr3_V_table. The handlers for the interrupts corresponding to the Am29200 or
Am29205 serial port are installed into this table. msg_initcomm also installs a
default handler to ignore the interrupts generated by unused peripherals.

To support parallel-port download from a PC to an SA-29200 or SA-29205
target mounted on an SA-29200 expansion board, the handler to receive a
message through the Am29200 or Am29205 parallel port is also installed.

msg_initcomm calls the routines to initialize the serial port and the parallel port
of the Am29200 or Am29205 microcontroller. It returns the version number of
the communications drivers to the caller.

The code below shows the msg_initcomm routine for the SA-29200 and
SA-29205 board.

4–32 MiniMON29K Target Interface Process: MONTIP

60

; –––––––––––––––––––––––––––––––––––––––MSG_INITCOMM
; return version in gr96.

.equ TXDI_OFFSET, (31–5)*4

.equ RXDI_OFFSET, (31–6)*4

.equ RXSI_OFFSET, (31–7)*4

.equ PPI_OFFSET, (31–11)*4

.externmsg_write_p

.externmsg_wait_for_p

.externmsg_scc200_init

.externmsg_lpt200_init
msg_initcomm:

const gr96, save_regs
consth gr96, save_regs
store 0, 0, gr97, gr96 ; backup gr97
add gr96, gr96, 4
store 0, 0, gr98, gr96 ; backup gr98
add gr96, gr96, 4
store 0, 0, lr0, gr96 ; backup lr0

;initialize the msg_write_p with write functions.
const gr96, msg_write_p
consth gr96, msg_write_p
const gr97, msg_scc200_write
consth gr97, msg_scc200_write
store 0, 0, gr97, gr96 ; only one for now.

; initialize msg_wait_for_p pointer
const gr96, msg_wait_for_p
consth gr96, msg_wait_for_p
const gr97, msg_scc200_wait_for
consth gr97, msg_scc200_wait_for
store 0, 0, gr97, gr96

; initialize table with default entries.
const gr96, intr3_V_table
consth gr96, intr3_V_table
const gr97, default_intr3
consth gr97, default_intr3
const gr98, 32–2

$1:
store 0, 0, gr97, gr96
jmpfdecgr98, $1
add gr96, gr96, 4

MiniMON29K Target Interface Process: MONTIP 4–33

61

; install known handlers.
const gr96, intr3_V_table+TXDI_OFFSET
consth gr96, intr3_V_table+TXDI_OFFSET
const gr97, msg_scc200_tx_intr
consth gr97, msg_scc200_tx_intr
store 0, 0, gr97, gr96 ; tx intr

const gr96, intr3_V_table+RXDI_OFFSET
consth gr96, intr3_V_table+RXDI_OFFSET
const gr97, msg_scc200_rx_intr
consth gr97, msg_scc200_rx_intr
store 0, 0, gr97, gr96 ; rx intr

const gr96, intr3_V_table+PPI_OFFSET
consth gr96, intr3_V_table+PPI_OFFSET
const gr97, msg_ppi200_intr
consth gr97, msg_ppi200_intr
store 0, 0, gr97, gr96 ; ppi intr

; initialize the peripherals.
const gr96, msg_scc200_init
consth gr96, msg_scc200_init
calli lr0, gr96
nop

; initialize 29200 parallel port
const gr96, msg_lpt200_init
consth gr96, msg_lpt200_init
calli lr0, gr96
nop

; restore registers
const gr96, save_regs
consth gr96, save_regs
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
add gr96, gr96, 4
load 0, 0, lr0, gr96 ; restore lr0

jmpi lr0
const gr96, COMM_VERSION ; return version number

4–34 MiniMON29K Target Interface Process: MONTIP

62

ASM void msg_scc200_write(msg_t *msg, int nbytes)
ASM is used to denote that this label is an assembly-level label, and has no
leading underscore. The msg_scc200_write function is called from msg_send()
to send the message contained in the msg buffer. The nbytes parameter gives the
number of bytes to send. When msg_scc200_write is called, it checks the
message in the msg buffer for an ACK or NACK message. If the message is not
an ACK or NACK message, then msg_scc200_write computes the checksum of
the message, and appends the checksum (32-bit value) to the end of the message.
There is no checksum for ACK and NACK messages. The total number of bytes
to write including the checksum bytes, if applicable, is stored in a static variable,
nbytes_to_write. The value at nbytes_to_write is decremented by one after
every byte is sent out to the host. Another static variable, nextchar_p, is used to
point to the next character to be written out of the serial port. The nextchar_p
variable is initialized with the starting address of the message to send.

The first byte of the message is then transmitted out of the serial port. If the
drivers are built for interrupt driven mode, the msg_scc200_write function
returns after transmitting the first byte. The remaining bytes are transmitted at
the occurrence of the transmit interrupts. The nbytes_to_write and nextchar_p
variables are updated by the transmit interrupt handlers.

If the drivers are built for polled mode, the msg_scc200_write function loops
until all the message bytes are written out of the serial port.

The code below shows the msg_scc200_write function for the SA-29200 and
SA-29205 board.

MiniMON29K Target Interface Process: MONTIP 4–35

63

; –––––––––––––––––––––––––––––––––––MSG_SCC200_WRITE
msg_scc200_write:
; In interrupt mode, it sends out the first character
; and returns. In this mode it is called with
; interrupts disabled. Interrupts are enabled after
; this call returns. In polled mode, it loops until
; the entire message is written.
; Called from msg_send. return via lr0.
; lr2 – pointer to message
; lr3 = nbytes in message.

const gr4, scc200_tmp_regs
consth gr4, scc200_tmp_regs
store 0, 0, gr96, gr4 ; backup gr96
const gr96, scc200_tmp_regs+4
consth gr96, scc200_tmp_regs+4
store 0, 0, gr97, gr96 ; backup gr97
add gr96, gr96, 4
store 0, 0, gr98, gr96 ; backup gr98

; set nextchar_p
const gr96, nextchar_p
consth gr96, nextchar_p
store 0, 0, lr2, gr96 ; next char to send.

; check the type of message,
; ack/nack have no checksum
const gr96, nbytes_to_write
consth gr96, nbytes_to_write
load 0, 0, gr98, lr2
jmpt gr98, acknack_code
add gr97, lr3, 0
add gr97, lr3, 4 ; add checksum size
store 0, 0, gr97, gr96 ; write nbytes to send

; compute checksum and append to end of message.
add gr96, lr2, 4
load 0, 0, gr96, gr96 ; msg len
add gr96, gr96, 8 ; add msg size
sub gr96, gr96, 2
const gr98, 0 ; initialize checksum

$1:
load 0, 1, gr97, lr2
add gr98, gr98, gr97
jmpfdecgr96, $1
add lr2, lr2, 1

4–36 MiniMON29K Target Interface Process: MONTIP

64

; append at lr2
srl gr97, gr98, 24
store 0, 1, gr97, lr2
srl gr97, gr98, 16
and gr97, gr97, 0xff
add lr2, lr2, 1
store 0, 1, gr97, lr2
srl gr97, gr98, 8
and gr97, gr97, 0xff
add lr2, lr2, 1
store 0, 1, gr97, lr2
and gr97, gr98, 0xff
add lr2, lr2, 1
store 0, 1, gr97, lr2

; Start sending out the message. This layer does
; not buffer the message. Instead it relies on
; the message remaining there until it is sent. A
; semaphore msg_send_p is cleared when the
; message is sent.

; wait for transmit holding register to empty.
const gr96, SPST

tx_loop:
consth gr96, SPST
load 0, 0, gr96, gr96 ; read status
sll gr96, gr96, (31 – THREShift)
jmpf gr96, tx_loop
const gr96, SPST

; get character from nextchar_p
const gr96, nextchar_p
consth gr96, nextchar_p
load 0, 0, gr97, gr96
load 0, 1, gr98, gr97 ;get character to send
add gr97, gr97, 1 ; update
store 0, 0, gr97, gr96 ; nextchar_p++

; stuff character
const gr96, SPTH
consth gr96, SPTH
store 0, 0, gr98, gr96 ; put char

MiniMON29K Target Interface Process: MONTIP 4–37

65

; decrement nbytes_to_write
const gr96, nbytes_to_write
consth gr96, nbytes_to_write
load 0, 0, gr97, gr96
sub gr97, gr97, 1
store 0, 0, gr97, gr96 ; nbytes_to_write––

 .ifdef SERIAL_POLL
cpeq gr98, gr97, 0 ; nbytes_to_write == 0?
jmpt gr98, $2 ; yes, then done.
nop
jmp tx_loop
const gr96, SPST

 .endif

$2:
const gr96, firstmsg_flag
consth gr96, firstmsg_flag
load 0, 0, gr96, gr96
jmpf gr96, restore_regs
const gr96, _msg_sbuf_p
consth gr96, _msg_sbuf_p
const gr97, 0
store 0, 0, gr97, gr96

; clear _msg_sbuf_p for 1st msg.
const gr96, firstmsg_flag
consth gr96, firstmsg_flag
const gr97, 0
store 0, 0, gr97, gr96 ; clear firstmsg_flag

restore_regs:
 .ifdef SERIAL_POLL

; clear msg_sbuf_p
const gr96, _msg_sbuf_p
consth gr96, _msg_sbuf_p
const gr97, 0
store 0, 0, gr97, gr96 ; clear msg_sbuf_p

 .endif
; restore gr96–gr98
const gr96, scc200_tmp_regs+4
consth gr96, scc200_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, scc200_tmp_regs
consth gr96, scc200_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

4–38 MiniMON29K Target Interface Process: MONTIP

66

jmpi lr0
nop

acknack_code:
store 0, 0, gr97, gr96 ; write nbytes to send
add lr2, lr2, 4
load 0, 0, gr96, lr2
const gr97, ack_flag
consth gr97, ack_flag
jmpt gr96, set_nack_flag
constn gr98, –1
store 0, 0, gr98, gr97 ; set ack_flag

jmp tx_loop
const gr96, SPST

set_nack_flag:
const gr97, nack_flag
consth gr97, nack_flag
constn gr98, –1
store 0, 0, gr98, gr97 ; set nack_flag

jmp tx_loop
const gr96, SPST

ASM int msg_scc200_wait_for(void)
ASM is used to denote that this label is an assembly-level label, and has no
leading underscore. The msg_scc200_wait_for function returns immediately
when the drivers are built for interrupt mode. It returns a value of 0 (zero) to
indicate no message in the buffer. When the drivers are built for polled mode,
the msg_scc200_wait_for function polls the serial-port status register of the
Am29200 or Am29205 microcontroller for an incoming message byte. When a
message byte is received, the received byte is stored in the receive buffer,
_msg_rbuf. The _msg_rbuf receive buffer is then examined for a valid
message. The functionalities of the msg_scc200_wait_for function is similar to
the receive interrupt handler routine, msg_scc200_rx_intr, explained below.

ASM void serial_int(void)
ASM is used to denote that this label is an assembly-level label, and has no
leading underscore. The interrupt handler to handle the Am29200 or Am29205
interrupts on the INTR3 line is serial_int. The bootstrap code must install
serial_int as the interrupt handler for the INTR3 line.

MiniMON29K Target Interface Process: MONTIP 4–39

67

The serial_int interrupt handler reads the Interrupt Control Register (ICT) of the
Am29200 or Am29205 microcontroller to determine the cause of the interrupt. It
then calls the appropriate handler routine from the intr3_V_table, which was
initialized by the msg_initcomm function. The default interrupt handler,
default_intr3 , is called for interrupts generated by unused peripherals.

The code below shows how the serial_int interrupt handler is used.

; –– SERIAL_INT
serial_int:
; We use count of leading zeroes to determine the
; offset in the interrupt table, and branch to the
; interrupt handler.

const gr4, intr_save
consth gr4, intr_save
store 0, 0, gr96, gr4 ; backup gr96

const gr96, intr_save+4
consth gr96, intr_save+4
store 0, 0, gr97, gr96 ; backup gr97
const gr96, ICT
consth gr96, ICT
load 0, 0, gr96, gr96 ; read ICT
clz gr96, gr96
cpeq gr97, gr96, 32
jmpt gr97, $2 ; no interrupts??
nop
sll gr96, gr96, 2 ; find offset into table
const gr97, intr3_V_table
consth gr97, intr3_V_table
add gr97, gr97, gr96 ; handler address pointer

const gr96, intr_save
consth gr96, intr_save
load 0, 0, gr96, gr96 ; restore gr96

load 0, 0, gr4, gr97 ; address

const gr97, intr_save+4
consth gr97, intr_save+4
load 0, 0, gr97, gr97 ; restore gr97

4–40 MiniMON29K Target Interface Process: MONTIP

68

jmpi gr4
nop

$2:
; restore regs
const gr96, intr_save+4
consth gr96, intr_save+4
load 0, 0, gr97, gr96 ; restore gr97
const gr96, intr_save
consth gr96, intr_save
load 0, 0, gr96, gr96 ; restore gr96
iret

The transmit interrupt handler, msg_scc200_tx_intr, examines the
nbytes_to_write variable to determine if there are any more bytes to write. If
there are more bytes to write, then msg_scc200_tx_intr:

1. Decrements nbytes_to_write by one.

2. Gets the byte pointed to by nextchar_p.

3. Increments nextchar_p by one to point to the next byte.

4. Sends the next character out of the serial port.

5. Returns from the interrupt handler.

If no more bytes remain to be written, then the transmit interrupt routine checks
the ack_flag to determine if the message just written out was an ACK message.
If an ACK message was written out, it posts an interrupt to the message system
by jumping to the label msg_V_arrive inside the message layer. For other
messages, it simply returns from the interrupt handler.

The code below shows the transmit interrupt handler.

msg_scc200_tx_intr:
const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, gr96, gr4 ; backup gr96
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
store 0, 0, gr97, gr96 ; backup gr97
add gr96, gr96, 4
store 0, 0, gr98, gr96 ; backup gr98

MiniMON29K Target Interface Process: MONTIP 4–41

69

const gr96, ICT
consth gr96, ICT
const gr97, TXDI
consth gr97, TXDI
store 0, 0, gr97, gr96 ; clear TXDI

; check for more bytes to send.
const gr96, nbytes_to_write
consth gr96, nbytes_to_write
load 0, 0, gr97, gr96 ; get bytes left
cpeq gr98, gr97, 0 ; compare with zero
jmpt gr98, $3 ; yes, none left check

; nack/ack
nop

; get next byte
sub gr97, gr97, 1
store 0, 0, gr97, gr96 ; nbytes_to_write––
const gr96, nextchar_p
consth gr96, nextchar_p
load 0, 0, gr97, gr96
load 0, 1, gr98, gr97 ; get character
add gr97, gr97, 1
store 0, 0, gr97, gr96 ; nextchar_p++

; stuff byte
const gr96, SPTH
consth gr96, SPTH
store 0, 0, gr98, gr96 ; put char

$4:
; restore gr96–gr98 registers.
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

iret

4–42 MiniMON29K Target Interface Process: MONTIP

70

$3:
; check ack_flag if one just sent and clear it.
const gr96, ack_flag
consth gr96, ack_flag
load 0, 0, gr97, gr96 ; get flag
jmpt gr97, valid_msg ; set, valid msg intr
nop
jmp $4
nop

valid_msg:
; clear ack_flag
const gr97, 0
store 0, 0, gr97, gr96 ; clear flag

; restore gr96–gr98 registers.
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96
jmp msg_V_arrive ; post interrupt to
nop ; message system

The receive interrupt handler, msg_scc200_rx_intr, reads the character from the
serial port and stores it where the _msg_next_p variable is pointing to in the
receive buffer, _msg_rbuf. The _msg_next_p pointer is then incremented by
one. The receive buffer is then examined to determine if a valid message has
been received. A valid message can be either a MiniMON29K message, or the
ACK or NACK message. If the receive buffer does not have the complete
message, the receive interrupt handler returns from the interrupt handler, and
waits for more incoming bytes.

If an ACK message is received, then the receive interrupt routine resets the
_msg_sbuf_p semaphore to zero, freeing up the message channel for subsequent
messages to be sent.

If a NACK message is received, then the receive interrupt routine calls the
msg_scc200_write routine with a pointer to the message last sent, which is
stored in a static variable, _msg_lastsent_p.

MiniMON29K Target Interface Process: MONTIP 4–43

71

If a valid MiniMON29K message is received, the receive interrupt routine
computes the checksum of the message bytes received. It then compares the
checksum computed with the checksum value received from the host. If the
checksums compare to be the same, then it calls the msg_scc200_write function
to send an ACK message to the host. If the checksums are not equal, then it calls
the msg_scc200_write function to send a NACK message to the host.

The code below shows the receive interrupt handler, msg_scc200_rx_intr.

; ––MSG_SCC200_RX_INTR
msg_scc200_rx_intr:

const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, gr96, gr4 ; backup gr96
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
store 0, 0, gr97, gr96 ; backup gr97
add gr96, gr96, 4
store 0, 0, gr98, gr96 ; backup gr98

const gr96, ICT
consth gr96, ICT
const gr97, RXDI
consth gr97, RXDI
store 0, 0, gr97, gr96 ; clear RXDI

; receive the character and put in buffer.
const gr96, SPRB
consth gr96, SPRB
load 0, 0, gr96, gr96 ; gr96 has received character

handle_rx_char:
; put in _msg_next_p location.
const gr97, _msg_next_p
consth gr97, _msg_next_p
load 0, 0, gr98, gr97
store 0, 1, gr96, gr98 ; save character
add gr98, gr98, 1 ; update _msg_next_p
store 0, 0, gr98, gr97

; check the buffer for a minimon message.
const gr96, _msg_next_p
consth gr96, _msg_next_p
load 0, 0, gr97, gr96 ; msg_next_p
const gr96, _msg_rbuf
consth gr96, _msg_rbuf ; msg_rbuf
sub gr98, gr97, gr96 ; msg_rbuf–msg_next_p = len

4–44 MiniMON29K Target Interface Process: MONTIP

72

cplt gr97, gr98, 8 ; len < 8
jmpf gr97,check_for_msg ; no, check for message.
nop

do_iret:
; restore gr96–gr98 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

iret

check_for_msg:
; a message header is in buffer.
; gr98 has total length.
; gr96 has msg_rbuf
load 0, 0, gr97, gr96 ; get msg code
jmpt gr97, ack_nack_recd ; handle ack/nack msg.
nop

; ––
; message.

const gr96, _msg_rbuf+4
consth gr96, _msg_rbuf+4
load 0, 0, gr96, gr96 ; msg length
add gr96, gr96, 8+4

; add msg header size and checksum
cpgeu gr97, gr98, gr96

; have we received all the bytes.
jmpf gr97, do_iret ; no return
nop

; compute checksum for message
const gr97, intr_tmp_regs+3*4
consth gr97, intr_tmp_regs+3*4
store 0, 0, gr99, gr97 ; backup gr99
const gr99, 0 ; initialize checksum
sub gr96, gr96, 4 ; sub checksum size
const gr97, _msg_rbuf
consth gr97, _msg_rbuf

MiniMON29K Target Interface Process: MONTIP 4–45

73

sub gr96, gr96, 2
$6:

load 0, 1, gr98, gr97
add gr99, gr99, gr98
jmpfdec gr96, $6
add gr97, gr97, 1

; get checksum send by montip
load 0, 1, gr96, gr97
sll gr96, gr96, 24
add gr97, gr97, 1
load 0, 1, gr98, gr97
sll gr98, gr98, 16
or gr96, gr96, gr98
add gr97, gr97, 1
load 0, 1, gr98, gr97
sll gr98, gr98, 8
or gr96, gr96, gr98
add gr97, gr97, 1
load 0, 1, gr98, gr97
or gr96, gr96, gr98

cpeq gr97, gr96, gr99 ; compare checksums
; reset msg_next_p to beginning of msg_rbuf
const gr96, _msg_rbuf
consth gr96, _msg_rbuf
const gr98, _msg_next_p
consth gr98, _msg_next_p
jmpt gr97, ack_it ; same, valid message
store 0, 0, gr96, gr98 ; reset msg_next_p

; send a nack msg to montip.
; restore gr96–gr99 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
add gr96, gr96, 4
load 0, 0, gr99, gr96 ; restore gr99
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

4–46 MiniMON29K Target Interface Process: MONTIP

74

; save lr0, lr2, lr3
const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, lr0, gr4 ; save lr0
const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
store 0, 0, lr2, lr0 ; save lr2
add lr0, lr0, 4
store 0, 0, lr3, lr0 ; save lr3

const lr2, nack_msg_p
consth lr2, nack_msg_p
const lr3, 8
call lr0, msg_scc200_write
nop

const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
load 0, 0, lr2, lr0 ; restore lr2
add lr0, lr0, 4
load 0, 0, lr3, lr0 ; restore lr3
const lr0, intr_tmp_regs
consth lr0, intr_tmp_regs
load 0, 0, lr0, lr0 ; restore lr0

iret

ack_it:
; restore gr96–gr99 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
add gr96, gr96, 4
load 0, 0, gr99, gr96 ; restore gr99
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

; send an ack to montip
; save lr0, lr2, lr3
const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, lr0, gr4 ; save lr0
const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
store 0, 0, lr2, lr0 ; save lr2
add lr0, lr0, 4
store 0, 0, lr3, lr0 ; save lr3

MiniMON29K Target Interface Process: MONTIP 4–47

75

const lr2, ack_flag
consth lr2, ack_flag
constn lr3, –1
store 0, 0, lr3, lr2 ; set ack_flag

const lr2, ack_msg_p ; pointer to ack msg str
consth lr2, ack_msg_p
const lr3, 8 ; nbytes in ack msg.
call lr0, msg_scc200_write ; sends the first character
nop ; and returns.

const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
load 0, 0, lr2, lr0 ; restore lr2
add lr0, lr0, 4
load 0, 0, lr3, lr0 ; restore lr3
const lr0, intr_tmp_regs
consth lr0, intr_tmp_regs
load 0, 0, lr0, lr0 ; restore lr0
iret

; ––
ack_nack_recd:

const gr96, _msg_rbuf
consth gr96, _msg_rbuf
const gr97, _msg_next_p
consth gr97, _msg_next_p
store 0, 0, gr96, gr97 ; initialize msg_next_p

add gr96, gr96, 4
load 0, 0, gr97, gr96 ; get msg len field
jmpf gr97, ack_recd ; ack received.
nop

nack_recd:
; restore gr96–gr99 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

4–48 MiniMON29K Target Interface Process: MONTIP

76

; save lr0, lr2, lr3
const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, lr0, gr4 ; save lr0
const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
store 0, 0, lr2, lr0 ; save lr2
add lr0, lr0, 4
store 0, 0, lr3, lr0 ; save lr3

const lr2, _msg_lastsent_p ; address of msg
consth lr2, _msg_lastsent_p
load 0, 0, lr2, lr2
add lr3, lr2, 4
load 0, 0, lr3, lr3 ; msg length
add lr3, lr3, 8 ; msglen+msg header
call lr0, msg_scc200_write
nop

const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
load 0, 0, lr2, lr0 ; restore lr2
add lr0, lr0, 4
load 0, 0, lr3, lr0 ; restore lr3
const lr0, intr_tmp_regs
consth lr0, intr_tmp_regs
load 0, 0, lr0, lr0 ; restore lr0

iret

ack_recd:
; clear _msg_sbuf_p semaphore
const gr96, _msg_sbuf_p
consth gr96, _msg_sbuf_p
const gr97, 0
store 0, 0, gr97, gr96 ; clear semaphore

jmp do_iret
nop

MiniMON29K Target Interface Process: MONTIP 5–1

77

Chapter 5

MiniMON29K Messages

This chapter first describes an extension to the message system, which ensures
reliable serial communications at higher baud rates. The chapter then describes
the structure of the standard MiniMON29K messages, and lists each message,
grouped by type. The chapter sections are as follows:

� “Message Checksum Tags for Serial Communications” on page 5–2

� “MiniMON29K Message Description” on page 5–5

� “MiniMON29K Debug Messages” on page 5–15

� “MiniMON29K Operating-System Messages” on page 5–52

NOTE: Throughout this chapter, “target” refers to the 29K Family-based target
system running the MiniMON29K monitor software; “host” refers to the
computer system running montip.

5–2 MiniMON29K Target Interface Process: MONTIP

78

Message Checksum Tags for Serial
Communications

The MiniMON29K product extends the message communication protocol, when
doing serial communications, with checksums that are used to ensure reliable
serial communications at higher baud rates. This extra layer of protocol is only
used for the serial-communication drivers and is not used for the shared-memory
message-system drivers.

Protocol
Every message from either the host or target is appended with a 32-bit checksum
word. The checksum is the sum of every byte in the message including the
header.

The serial-communications drivers append a 32-bit checksum at the end of the
message. The checksum is the sum of all the bytes of the message. The receiver
of the message computes a checksum of the received message bytes and
compares it with the checksum value received. If the checksums are equal, then
the receiver sends a Checksum ACK message to acknowledge the receipt of a
valid MiniMON29K message. If the checksums are not equal, then the receiver
sends a Checksum NACK message, indicating a transmission error in the
received message. The Checksum ACK/Checksum NACK messages are used by
the communications drivers to report transmission errors and to resend messages.

Checksum ACK Message
0xffffffff
0x00000000

Checksum NACK Message
0xffffffff
0xffffffff

Implementation
The Checksum ACK/Checksum NACK messages are independent of the
MiniMON29K messages, and are handled by the communications drivers.
However, the message buffers are large enough to provide enough space at the
end of the message to hold the 32-bit message checksum.

MiniMON29K Target Interface Process: MONTIP 5–3

79

Example
The following example shows the messages sent and received when montip
establishes a synchronous connection. The sequence is as follows:

1. Target sends a HALT message (when powered up).

2. Host sends a Checksum ACK.

3. Host sends a CONFIG_REQ message.

4. Target sends a Checksum ACK.

5. Target responds with a CONFIG message.

6. Host sends a Checksum ACK.

7. A synchronous connection is established.

Target: halt message (on power up)
0000002b
0000000f
00000007
00001834
00001830
00000000
000000d6 checksum

Host: checksum ack
FFFFFFFF
00000000

Host:
00000001 config request
00000000
00000001 checksum

Target: checksum ack
FFFFFFFF
00000000

5–4 MiniMON29K Target Interface Process: MONTIP

80

Target: config response
00000021
00000030
00000003
05040512
00000000
00080000
00000000
00080000
00000000
00080000
00000200
0000001e
00000000
00000002
000000ae checksum

Host: checksum ack
FFFFFFFF
00000000

MiniMON29K Target Interface Process: MONTIP 5–5

81

MiniMON29K Message Description
The message structure, byte ordering, definition, classification, passing protocol,
and numbers are described in this section.

Message Structure

The basic message takes the following form:

struct <message_name> {
INT32 code;
INT32 length;
<parameter 1>;
<parameter 2>;

.

.

.
<parameter n>;
};

The first field in the message is code. This is a 32-bit integer. Each type of
message in the system is given a unique identification code. This allows the
receiver of the message to determine what sort of message is arriving even
before the entire message is read.

The second field is the length of the parameter list. This is also a 32-bit integer,
and is measured in bytes. The length is not the length of the entire message; the
code and length fields are not included. For example, a message containing no
parameters has a length of 0. The entire message, however, will have a length of
8 bytes because the code and length fields are always a part of the message.

This format provides a convenient method of transferring messages between the
target and the host.

Some systems may have restrictions on the amount of message buffer space
available. For this reason, a maximum message length is specified by the target.
It is the responsibility of the host to keep the size of the messages smaller than
this maximum message size. The target should, however, detect messages of
illegal lengths, both incoming and outgoing, and respond with the proper error
message.

5–6 MiniMON29K Target Interface Process: MONTIP

82

Byte Ordering

The MiniMON29K messages are defined as a stream of bytes. All
MiniMON29K messages are transmitted in the same byte order, or endian type,
as that of the 29K Family-based target. (See the –le option on page 1–3 if your
29K Family-based target is little endian.)

All message fields are 32 bits. The only exceptions are the arrays of bytes (data)
at the end of the messages, which require the transfer of data. This format makes
endian conversion simple.

Message Definition

The following sections contain the definition of each of the messages, including
the message structure, parameters, and possible error conditions.

The structure of the messages and all examples of code that follow will be in C.
Also, because the physical structure of the message is important, some basic data
types have been used to describe the messages. These types are:

� INT32 — This is a 32-bit integer.

� ADDR32 — This is a 32-bit address. This is physically represented the same
as INT32, but it is unsigned.

� BYTE — This is an 8-bit quantity, usually equivalent to unsigned char.

� BOOLEAN — This is also a 32-bit integer. FALSE is defined as 0 and
TRUE is defined as 1. A 32-bit quantity is used to maintain 32-bit word
alignment.

MiniMON29K Target Interface Process: MONTIP 5–7

83

Message Classification

Messages 0 through 127 are reserved for AMD’s use. These messages are
divided in the following manner:

� Messages 0 through 63 are classified as debug messages, and are described
beginning on page 5–15. These messages are transmitted between the host
and the MiniMON29K monitor on the target. Of these, some are sent from the
host to the target and some are sent from the target to the host.

� Messages 64 through 127 are classified as operating-system messages, and are
described beginning on page 5–52. These messages are transmitted between
the host and the application/operating system running on the target. In the
default configuration of the MiniMON29K monitor, the HIF kernel of osboot
transmits and receives the operating-system messages on the target.

Any message number greater than 127 may be used for custom messages.

Message-Passing Protocol

The communication between host and target takes place by passing synchronous
message pairs. Typically, the host sends a request message to the target, and the
target sends an acknowledgement back to the host. This acknowledgement
message may contain requested data, or the message may be a simple handshake
acknowledgement. If the requested action cannot be successfully completed, an
error message is returned as the acknowledgement.

The general pairing of messages is described in Table 5–4 on page 5–13 and in
the sections on the individual messages that follow.

NOTE: The messages do not contain any checksum or error detection
information. It is the responsibility of the communications driver to provide
reliable, sequenced delivery of messages.

5–8 MiniMON29K Target Interface Process: MONTIP

84

An example of message interaction between the target and the host is shown
below. When the target system is powered up, this first message is sent:

0000002b Message 0x2b = 43 halt message
00000010 0x10 = 16 bytes follow (4 words)
00000007 Memory space I
xxxxxxxx pc0 value
xxxxxxxx pc1 value
00000000 trap number

The target then loops, waiting for messages from the host. When montip is
invoked by a debugger front end on the host system, it sends a configuration
request message:

00000001 Message 0x1 = 1 config request
00000000 0x0 no bytes follow

montip then waits for an acknowledgement message from the target. When the
target receives the configuration request message, it responds with the
configuration message:

00000021 0x21 = 33 config message
00000030 0x30 = 48 bytes of information follow (12 words)
xxxxxxxx Processor ID
00000010 Version number of debugger core
00000000 Starting address of instruction memory
0007ffff Ending address of instruction memory
00000000 Starting address of data memory
0007ffff Ending address of data memory
00000000 Starting address of ROM memory
0007ffff Ending address of ROM memory
00000100 0x100 = 256 max size of target message buffer
0000000a 0xa = 10 breakpoints can be used
ffffffff Coprocessor PRL. It is –1 if not present
00000002 Target OS version

When montip receives the configuration message, it also has synchronized with
the target. In this way, montip and the target-resident monitor communicate by
exchanging messages.

MiniMON29K Target Interface Process: MONTIP 5–9

85

Message Numbers

The messages and their corresponding numeric codes are listed in the following
tables. In these tables, “host” refers to the host computer running montip and
“target” refers to the 29K Family-based hardware platform running the
MiniMON29K monitor software. Table 5–1 lists all the messages in alphabetical
order, with their corresponding decimal and hexadecimal number, and the page
number on which the message can be found. Table 5–2 lists the host-to-target
messages, with their corresponding numeric codes in both hexadecimal and
decimal notation. Table 5–3 lists the target-to-host messages, with their
corresponding numeric codes in both hexadecimal and decimal notation.
Table 5–4 lists the requestor messages in alphabetical order, with each message’s
corresponding acknowledgement message. The codes for the processor memory
spaces used in the messages are listed in Table 5–5.

Table 5–1. Alphabetical List of Messages

Message Decimal
Number

Hexadecimal
Number

Page
Number

BKPT_RM 6 6 5–25

BKPT_RM_ACK 38 26 5–45

BKPT_SET 5 5 5–23

BKPT_SET_ACK 37 25 5–44

BKPT_STAT 7 7 5–26

BKPT_STAT_ACK 39 27 5–46

BREAK 13 D 5–35

CHANNEL0 65 41 5–54

CHANNEL0_ACK 97 61 5–60

CHANNEL1 98 62 5–61

CHANNEL1_ACK 66 42 5–55

CHANNEL2 99 63 5–62

CHANNEL2_ACK 67 43 5–56

CONFIG 33 21 5–36

CONFIG_REQ 1 1 5–17

COPY 8 8 5–27

5–10 MiniMON29K Target Interface Process: MONTIP

86

Message Page
Number

Hexadecimal
Number

Decimal
Number

COPY_ACK 40 28 5–47

ERROR 63 3F 5–51

FILL 9 9 5–29

FILL_ACK 41 29 5–48

GO 11 B 5–33

HALT 43 2B 5–50

HIF_CALL 96 60 5–59

HIF_CALL_RTN 64 40 5–53

INIT 10 A 5–31

INIT_ACK 42 2A 5–49

READ_ACK 35 23 5–41

READ_REQ 3 3 5–19

RESET 0 0 5–16

STATUS 34 22 5–38

STATUS_REQ 2 2 5–18

STDIN_NEEDED 100 64 5–63

STDIN_NEEDED_ACK 68 44 5–57

STDIN_MODE_ACK 69 45 5–58

STDIN_MODE 101 65 5–64

STEP 12 C 5–34

WRITE_ACK 36 24 5–43

WRITE_REQ 4 4 5–21

MiniMON29K Target Interface Process: MONTIP 5–11

87

Table 5–2. Host-to-Target Message Definitions

Hexadecimal
Number

Decimal Number Message

0 0 RESET

1 1 CONFIG_REQ

2 2 STATUS_REQ

3 3 READ_REQ

4 4 WRITE_REQ

5 5 BKPT_SET

6 6 BKPT_RM

7 7 BKPT_STAT

8 8 COPY

9 9 FILL

A 10 INIT

B 11 GO

C 12 STEP

D 13 BREAK

40 64 HIF_CALL_RTN

41 65 CHANNEL0

42 66 CHANNEL1_ACK

43 67 CHANNEL2_ACK

44 68 STDIN_NEEDED_ACK

45 69 STDIN_MODE_ACK

5–12 MiniMON29K Target Interface Process: MONTIP

88

Table 5–3. Target-to-Host Message Definitions

Hexadecimal
Number

Decimal Number Message

21 33 CONFIG

22 34 STATUS

23 35 READ_ACK

24 36 WRITE_ACK

25 37 BKPT_SET_ACK

26 38 BKPT_RM_ACK

27 39 BKPT_STAT_ACK

28 40 COPY_ACK

29 41 FILL_ACK

2A 42 INIT_ACK

2B 43 HALT

3F 63 ERROR

60 96 HIF_CALL

61 97 CHANNEL0_ACK

62 98 CHANNEL1

63 99 CHANNEL2

64 100 STDIN_NEEDED

65 101 STDIN_MODE

MiniMON29K Target Interface Process: MONTIP 5–13

89

Table 5–4. Requestor/Acknowledgement Message Correspondence

Requestor Acknowledgement

BKPT_RM BKPT_RM_ACK

BKPT_SET BKPT_SET_ACK

BKPT_STAT BKPT_STAT_ACK

BREAK HALT

CHANNEL0 CHANNEL0_ACK

CHANNEL1 CHANNEL1_ACK

CHANNEL2 CHANNEL2_ACK

CONFIG_REQ CONFIG

COPY COPY_ACK

FILL FILL_ACK

GO HALT, or any target-to-host
operating-system message

HIF_CALL HIF_CALL_RTN

INIT INIT_ACK

READ_REQ READ_ACK

RESET HALT

STATUS_REQ STATUS

STDIN_NEEDED STDIN_NEEDED_ACK

STDIN_MODE STDIN_MODE_ACK

STEP HALT

WRITE_REQ WRITE_ACK

Any host-to-target message ERROR

5–14 MiniMON29K Target Interface Process: MONTIP

90

Table 5–5. Memory Spaces

Decimal
Number

Hexadecimal
Number

Memory Space

0 0 LOCAL_REG: Local processor register

1 1 GLOBAL_REG: Global processor register

2 2 SPECIAL_REG: Special processor register

3 3 TLB_REG: Translation lookaside buffer

4 4 COPROC_REG: Coprocessor register

5 5 I_MEM: Instruction memory

6 6 D_MEM: Data memory

7 7 I_ROM: Instruction ROM

8 8 D_ROM: Data ROM

9 9 I_O: Input/output

10 Ah I_CACHE: Instruction cache

11 Bh D_CACHE: Data cache

12 Ch PC_SPACE: PC0, PC1

13 Dh A_SPCL_REG: User special processor register

14 Eh ABS_REG: Absolute register number

15 Fh PC_RELATIVE: PC relative offsets

254 FEh generic space

MiniMON29K Target Interface Process: MONTIP 5–15

91

MiniMON29K Debug Messages
A set of messages is defined in the following sections. These messages provide
the capability to control, probe, and modify the state of the system. With this
capability, a variety of useful host functions may be implemented.

In addition to the basic functions, some useful but nonessential primitives are
included. These primitives are included primarily as a convenience for the
developers of host code.

It should also be mentioned that the message interface to the target provides the
ability to add new functionality. This provides a natural path for extensions that
will maintain upward compatibility.

Messages 0 through 63 are classified as debug messages. These messages are
transmitted between the host and the MiniMON29K monitor on the target.

� Messages 0 through 31 are sent from the host to the target.

� Messages 32 through 63 are sent from the target to the host, and typically are
acknowledgements.

The debug messages are listed on the following pages, in numerical order. See
page 5–52 for the operating-system messages.

5–16 MiniMON29K Target Interface Process: MONTIP

92

Message 0 (0h):
RESET (Reset Processor)

Message
#define RESET 0

struct reset_msg_t {
INT32 code; /* 0 */
INT32 length;
 };

Direction
Host-to-target

Acknowledgement
HALT (on page 5–50)

Description
This message is used to reset the target processor. This is equivalent to resetting
the hardware manually. This message has no parameters and will always have a
length field of 0.

MiniMON29K Target Interface Process: MONTIP 5–17

93

Message 1 (1h):
CONFIG_REQ (Configuration Request)

Message
#define CONFIG_REQ 1

struct config_req_msg_t {
INT32 code; /* 1 */
INT32 length;
};

Direction
Host-to-target

Acknowledgement
CONFIG (on page 5–36)

Description
This message is used to request configuration information from the target. This
message has no parameters and will always have a length field of 0. The target
should always respond to the CONFIG_REQ message with a CONFIG message.

For more on the information returned by CONFIG_REQ, see the description of
the CONFIG message.

5–18 MiniMON29K Target Interface Process: MONTIP

94

Message 2 (2h):
STATUS_REQ (Status Request)

Message
#define STATUS_REQ 2

struct status_req_msg_t {
INT32 code; /* 2 */
INT32 length;
};

Direction
Host-to-target

Acknowledgement
STATUS (on page 5–38)

Description
This message is used to get status information from the target. This message has
no parameters and will always have a length field of 0. The target should always
respond to the STATUS_REQ message with a STATUS message.

The STATUS_REQ message should be distinguished from the CONFIG_REQ
message. The CONFIG_REQ message requests static configuration information,
usually concerning the hardware. The STATUS_REQ message requests run-time
statistics.

Some targets may not gather some or all of the data requested by
STATUS_REQ. For more details on the information returned by the
STATUS_REQ message, see the description of the STATUS message.

MiniMON29K Target Interface Process: MONTIP 5–19

95

Message 3 (3h):
READ_REQ (Read Request)

Message
#define READ_REQ 3

struct read_req_msg_t {
INT32 code; /* 3 */
INT32 length;
INT32 memory_space;

 ADDR32 address;
INT32 count;
INT32 size;
};

where:
memory_space Defines the memory space to be read. The codes used to

specify the processor memory spaces are listed in Table 5–5 on
page 5–14.

address Is the address of the requested data in the data space. This
address is a 32-bit quantity.

count Is the number of objects to read.

size Is the size of the object to read in bytes (1 = byte,
2 = half word, and 4 = full word).

Direction
Host-to-target

Acknowledgement
READ_ACK (on page 5–41)

5–20 MiniMON29K Target Interface Process: MONTIP

96

Description
This message requests that some part of the state of the target be read. The host
should never request more data than will fit in the message buffer. Larger
requests should be broken up into several READ_REQ messages. If the host
requests more data than will fit in a message buffer, an ERROR message is
returned. It is also possible that part or all of the requested memory space is not
accessible to the target processor. In this case, an ERROR message is returned to
the host.

MiniMON29K Target Interface Process: MONTIP 5–21

97

Message 4 (4h):
WRITE_REQ (Write Request)

Message
#define WRITE_REQ 4

struct write_req_msg_t {
INT32 code; /* 4 */
INT32 length;
INT32 memory_space;
ADDR32 address;
INT32 count;
INT32 size
BYTE data[<byte_count>];
};

where:
memory_space Defines which memory space will be modified. The codes

used to specify the processor memory spaces are listed in
Table 5–5 on page 5–14.

address Is the address in this memory space where the data is to be
written.

count Is the size of the data array in object sizes. This information is
somewhat redundant to the message size parameter in the
message header. It is included for convenience and for
consistency with the READ_REQ message.

size The size of the object in the data array (1 = byte, 2 = half
word, and 4 = full word). Count*size = total length of the
array data in bytes.

data Is an array of bytes. These bytes will be written into the
appropriate memory space starting at the specified address.

Direction
Host-to-target

5–22 MiniMON29K Target Interface Process: MONTIP

98

Acknowledgement
WRITE_ACK (on page 5–43)

Description
This message requests that the state of the target be modified. When the data
sent by the WRITE_REQ message is successfully written on the target, a
WRITE_ACK message is returned in acknowledgement.

It is possible that part or all of the requested memory space is not accessible to
the target processor. In this case, an ERROR message is returned to the host. If
an error condition is encountered, the host can make no assumptions about the
partial success of the request. The state of the processor may or may not have
been modified.

It is also possible that the data sent by the WRITE_REQ will overflow the
message buffer on the target. The host should be aware of the buffer size
limitations of the target, and should not send such messages. Should too large a
message be sent, however, it is the responsibility of the target to safely remove
this message from the message stream and respond with an ERROR message.

MiniMON29K Target Interface Process: MONTIP 5–23

99

Message 5 (5h):
BKPT_SET (Set Breakpoint)

Message
#define BKPT_SET 5

struct bkpt_set_msg_t {
INT32 code; /* 5 */
INT32 length;
INT32 memory_space;
ADDR32 bkpt_addr;
INT32 pass_count;
INT32 bkpt_type;
};

where:
memory_space Is the address space where the breakpoint is to be set. In most

cases, this will be the instruction memory of the system.

bkpt_addr Is the address of the breakpoint.

pass_count Specifies the number of times the breakpoint must be
encountered before control is passed from the application to
the monitor. A pass_count of 1 means that a break should
occur the next time the instruction at this address is executed.

bkpt_type Specifies the type of breakpoint to set:

–1 Specifies the software breakpoint, for example,
replacing the instruction at the breakpoint location.

0 and 1 Specify the hardware breakpoint, for example, using
the Am29050 breakpoint control registers. When 0 is
specified as bkpt_type, the breakpoint comparison is
performed when instruction translation is disabled.
When 1 is specified as the bkpt_type, the breakpoint
comparison is performed when instruction translation
is enabled.

5–24 MiniMON29K Target Interface Process: MONTIP

100

Direction
Host-to-target

Acknowledgement
BKPT_SET_ACK (on page 5–44)

Description
This message is sent by the host to set a breakpoint in the code. While it is
possible to implement breakpoints using other primitives, BKPT_SET is
included for convenience.

This message passes three parameters to the target. If the address specified by
the memory_space and address parameters is not a valid writable address, an
ERROR message will be returned.

The software predefines a limit of 48 on the number of breakpoints that can be
set on the target. If an attempt is made to set a new breakpoint when this limit
has been reached, an ERROR message will be returned to the host. When the
breakpoint is successfully set on the target, a BKPT_SET_ACK message is
returned by the target.

All positive pass_counts are interpreted as “sticky” breakpoints. A pass_count of
0 is interpreted as a “nonsticky” breakpoint. All negative numbers signify
nonsticky breakpoints with a pass_count of the absolute value of the pass_count
parameter.

MiniMON29K Target Interface Process: MONTIP 5–25

101

Message 6 (6h):
BKPT_RM (Remove Breakpoint)

Message
#define BKPT_RM 6

struct bkpt_rm_msg_t {
INT32 code; /* 6 */
INT32 length;
INT32 memory_space;
ADDR32 bkpt_addr;
};

where:
memory_space Is the address space where the breakpoint is to be removed.

bkpt_addr Is the address of the breakpoint.

Direction
Host-to-target

Acknowledgement
BKPT_RM_ACK (on page 5–45)

Description
This message is used to remove a breakpoint from the system. The memory
space and address of the breakpoint are passed to the target as the only
parameters.

If the breakpoint is successfully removed, the target will respond with a
RM_BKPT_ACK message. If no known breakpoint exists at that address, the
target will respond with an ERROR message.

5–26 MiniMON29K Target Interface Process: MONTIP

102

Message 7 (7h):
BKPT_STAT (Breakpoint Status)

Message
#define BKPT_STAT 7

struct bkpt_stat_msg_t {
INT32 code; /* 7 */
INT32 length;
INT32 memory_space;
ADDR32 bkpt_addr;
};

where:
memory_space Is the address space of the breakpoint.

bkpt_address Is the address of the breakpoint.

Direction
Host-to-target

Acknowledgement
BKPT_STAT_ACK (on page 5–46)

Description
This message is used to request the status of a breakpoint from the target. The
memory space and address of the breakpoint are passed to the target as the only
parameters.

If the breakpoint exists, the target will respond with a BKPT_STAT_ACK
message. If no known breakpoint exists at that address, the target will respond
with an ERROR message.

This primitive typically is used to check the pass count of a breakpoint.

MiniMON29K Target Interface Process: MONTIP 5–27

103

Message 8 (8h):
COPY (Copy Data)

Message
#define COPY 8

struct copy_msg_t {
INT32 code; /* 8 */
INT32 length;
INT32 source_space;
ADDR32 source_addr;
INT32 dest_space;
ADDR32 dest_addr;
INT32 count;
INT32 size;
};

where:
source_space Specifies the memory space of the source data.

source_addr Is the address in this memory space of the data to be copied.

dest_space Specifies the memory space for the destination of the copy
operation.

dest_addr Specifies the address for the destination of the copy operation.

count Is a count of the number of objects to be copied from the
source to the destination.

size Specifies the size of the object in bytes to be copied (1 = byte,
2 = half word, and 4 = full word).

Direction
Host-to-target

Acknowledgement
COPY_ACK (on page 5–47)

5–28 MiniMON29K Target Interface Process: MONTIP

104

Description
The COPY message is used to request that a block of memory be copied from
one memory location to another. The source and destination do not have to
reside in the same memory space.

This operation could be implemented using other primitives, but at the cost of
host-to-target bandwidth. A COPY primitive has been included for efficiency.

Some or all of the source may not be readable, or some or all of the destination
may not be writable. In either case, an ERROR message will be returned. No
assumptions should be made by the host as to the amount of data copied by an
unsuccessful operation.

MiniMON29K Target Interface Process: MONTIP 5–29

105

Message 9 (9h):
FILL (Fill Memory)

Message
#define FILL 9

struct fill_msg_t {
INT32 code; /* 9 */
INT32 length;
INT32 memory_space;
ADDR32 start_addr;
INT32 fill_count;
INT32 byte_count;
BYTE fill_data[];
};

where:
memory_space Specifies the memory space where the FILL message will

write blocks of memory.

start_addr Specifies the beginning address of the blocks of memory to be
filled.

fill_count Specifies the number of bytes to be filled. Note that fill_count
is not necessarily an even multiple of byte_count.

byte_count Specifies the number of bytes in the string.

fill_data Is a 32-bit value.

Direction
Host-to-target

Acknowledgement
FILL_ACK (on page 5–48)

5–30 MiniMON29K Target Interface Process: MONTIP

106

Description
This primitive is used to fill blocks of memory. This message could have been
built from other primitives, but a separate primitive was defined for the sake of
efficiency.

The FILL message writes a block of memory in memory_space beginning at
start_addr with copies of the byte string fill_data[]. The number of bytes in this
string is given by byte_count. The number of bytes to be filled is given by
fill_count. Note that fill_count is not necessarily an even multiple of byte_count.

This message represents a general form of pattern filling. Bytes may be filled in
by setting byte_count to 1, and having a single element in the fill_data array.
Thirty-two bit words may be filled by setting the byte_count to 4 and placing a
32-bit value in the fill_data array. Other more complicated fill patterns are
possible with the FILL primitive.

The monitor may not have write access to some or all of the memory specified
by the FILL message. In this case, the FILL message returns an ERROR
message. No assumptions may be made by the host as to the value of memory
locations involved in an unsuccessful FILL.

MiniMON29K Target Interface Process: MONTIP 5–31

107

Message 10 (Ah):
INIT (Initialize Target)

Message
#define INIT 10

struct init_msg_t {
INT32 code; /* 10 */
INT32 length;
ADDR32 text_start;
ADDR32 text_end;
ADDR32 data_start;
ADDR32 data_end;
ADDR32 entry_point;
INT32 mem_stack_size;
INT32 reg_stack_size;
ADDR32 arg_start;
INT32 os_control;
ADDR32 highmem;
};

where:
text_start Specifies the start address in instruction memory of the code

that has been loaded for execution. This parameter is derived
from the most recently loaded COFF file.

text_end Specifies the end address in instruction memory of the code
that has been loaded for execution. This parameter is derived
from the most recently loaded COFF file.

data_start Specifies the start in data memory of the data. This parameter
is derived from the most recently loaded COFF file.

data_end Specifies the end in data memory of the data. This parameter
is derived from the most recently loaded COFF file.

entry_point Is the entry point of the code. This parameter is derived from
the most recently loaded COFF file.

mem_stack_sizeThis parameter may be useful to the target, but the target is
under no obligation to use the value.

5–32 MiniMON29K Target Interface Process: MONTIP

108

reg_stack_size This parameter may be useful to the target, but the target is
under no obligation to use the value.

arg_start Is an address in data memory pointing to the command-line
parameters. These parameters are stored as an array of pointers
to strings. This array is terminated by a null pointer. This
array, and the associated strings, typically are loaded into data
memory by the host.

os_control Is a 32-bit coded value that is interpreted by the HIF kernel of
osboot during the warm-start process. See the osboot manual
for more information.

highmem Specifies the starting address for the register stack in memory.
This is interpreted by the HIF kernel of osboot during the
warm-start process. See the osboot manual for more
information.

Direction
Host-to-target

Acknowledgement
INIT_ACK (on page 5–49)

Description
The INIT message is used to provide run-time information for the downloaded
application program.

MiniMON29K Target Interface Process: MONTIP 5–33

109

Message 11 (Bh):
GO (Execute Code)

Message
#define GO 11

struct go_msg_t {
INT32 code; /* 11 */
INT32 length;
};

Direction
Host-to-target

Acknowledgement
HALT (on page 5–50), or any target-to-host operating-system message

Description
The GO message is used to initiate the execution of a piece of code. The
message has no parameters. Code will begin executing according to the preset
state of the target processor.

When execution is complete, a HALT message will be returned to the host.

In some cases, it may be necessary for the host to terminate the execution of the
target code prematurely. In this case, a BREAK message may be sent before
receipt of the HALT message.

5–34 MiniMON29K Target Interface Process: MONTIP

110

Message 12 (Ch):
STEP (Step Execution)

Message
#define STEP 12

struct step_msg_t {
INT32 code; /* 12 */
INT32 length;
INT32 count;
};

where:
count Defines the number of instructions to be executed in the step.

A count of 1 corresponds to the execution of a single
instruction. Counts greater than 1 refer to corresponding step
sizes. Counts of 0 or less have no meaning.

Direction
Host-to-target

Acknowledgement
HALT (on page 5–50)

Description
This message is used to step through a program. When the stepping is complete,
a STEP_ACK message is returned to the host. Note that when stepping through
multiple instructions, no trace information is returned. The instructions actually
executed will not be known to the host. If this information is desired, a series of
single steps must be executed by the host.

MiniMON29K Target Interface Process: MONTIP 5–35

111

Message 13 (Dh):
BREAK (Stop Execution)

Message
#define BREAK 13

struct break_msg_t {
INT32 code; /* 13 */
INT32 length;
};

Direction
Host-to-target

Acknowledgement
HALT (on page 5–50)

Description
The BREAK message is used to stop the execution of running code. This
message has no parameters. The length field will always be set to 0. When the
execution of the target code has been successfully halted, a HALT message is
returned.

5–36 MiniMON29K Target Interface Process: MONTIP

112

Message 33 (21h):
CONFIG (Target Configuration)

Message
#define CONFIG 33

struct config_msg_t {
INT32 code; /* 33 */
INT32 length;
INT32 processor_id;
INT32 version;
ADDR32 I_mem_start;
INT32 I_mem_size;
ADDR32 D_mem_start;
INT32 D_mem_size;
ADDR32 ROM_start;
INT32 ROM_size;
INT32 max_msg_size;
INT32 max_bkpts;
INT32 coprocessor;
INT32 os_version;
};

where:
processor_id Is a number that describes the target processor. It should

contain the processor identification number (PID) of the target
processor.

version Specifies the version number of the MiniMON29K target
monitor software.

I_mem_start Specifies the starting address of the instruction memory.

I_mem_size Specifies the size of instruction memory in bytes.

D_mem_start Specifies the starting address of the data memory.

D_mem_size Specifies the size of data memory in bytes.

ROM_start Specifies the starting address of the ROM.

ROM_size Specifies the size of ROM in bytes.

max_msg_size Specifies the size of the target message buffer in bytes. This
parameter defines the largest message that the target will
accept.

MiniMON29K Target Interface Process: MONTIP 5–37

113

max_bkpts Specifies the maximum number of breakpoints supported on
the target.

coprocessor Specifies the system coprocessor. A value of –1 means that no
coprocessor is present. The only coprocessor supported by the
MiniMON29K product is the Am29027 coprocessor. If the
Am29027 coprocessor is present, this field has a value of 0.
Only one coprocessor per system is supported.

os_version Is the target OS version number.

Direction
Target-to-host

Requestor
CONFIG_REQ (on page 5–17)

Description
This message returns configuration information from the target. If the
information concerning a particular parameter is not available, the parameter
should be set to –1. This message is sent in response to the CONFIG_REQ
message from the host.

Other system-specific parameters may be added to the end of this parameter list.
The host is expected to recognize CONFIG messages of various lengths. The
extra parameters at the end of this list of standard configuration parameters are
application specific, and will not be interpreted by the standard host interface
tools.

5–38 MiniMON29K Target Interface Process: MONTIP

114

Message 34 (22h):
STATUS (Target Status)

Message
#define STATUS 34

struct status_msg_t {
INT32 code; /* 34 */
INT32 length;
INT32 msgs_sent;
INT32 msgs_received;
INT32 errors;
INT32 bkpts_hit;
INT32 bkpts_free;
INT32 traps;
INT32 fills;
INT32 spills;
INT32 cycles_hi;
INT32 cycles_lo;
INT32 reserved;
};

where:
msgs_sent Specifies the number of messages sent by the target to the

host.

msgs_received Specifies the number of messages received by the target from
the host.

errors Specifies the number of error messages sent from the target to
the host.

bkpts_hit Specifies the number of breakpoints hit by the target.
Breakpoints encountered in the context of pass counts are also
considered breakpoints hit. For instance, a breakpoint with a
pass count of 3 will account for three breakpoints hit in the
parameter.

MiniMON29K Target Interface Process: MONTIP 5–39

115

bkpts_free Specifies the number of available breakpoints on the target.
This parameter assumes that there is a limited number of
breakpoints managed by the target. If there is no limit to the
number of breakpoints available on the target, this parameter
should be set to a sufficiently large number.

traps Specifies a count of the total number of traps taken by the user
code.

fills Specifies a count of the total number of fill traps taken by the
user code. Note that a fill trap will increment the count of both
the traps parameter and the fills parameter.

spills Specifies a count of the total number of spill traps taken by the
user code. Note that a spill trap will increment the count of
both the traps parameter and the spills parameter.

cycles_hi Specifies the high word of the count of the total number of
cycles of user code executed on the target. This number is
reset to 0 each time the target processor is reset.

cycles_lo Specifies the low word of the count of the total number of
cycles of user code executed on the target. This number is
reset to 0 each time the target processor is reset.

reserved Is reserved for future use.

Direction
Target-to-host

Requestor
STATUS_REQ (on page 5–18)

5–40 MiniMON29K Target Interface Process: MONTIP

116

Description
This message returns run-time status information from the target. If the
information concerning a particular parameter is not available, that parameter
will be set to –1. This message is sent in response to the STATUS_REQ message
from the host.

Like the CONFIG message, other parameters may be added to the end of this
parameter list. The host is expected to recognize STATUS messages of various
lengths. The extra parameters at the end of this list of standard status parameters
are application specific, and will not be interpreted by the standard host interface
tools.

MiniMON29K Target Interface Process: MONTIP 5–41

117

Message 35 (23h):
READ_ACK (Read Memory)

Message
#define READ_ACK 35

struct read_ack_msg_t {
INT32 code; /* 35 */
INT32 length;
INT32 memory_space;
ADDR32 address;
INT32 byte_count;
BYTE data[];
};

where:
memory_space Specifies the memory space of the returned data. This should

match the memory_space parameter in the READ_REQ
message.

address Specifies the address of the returned data. This should match
the address parameter in the READ_REQ message.

byte_count Specifies the number of bytes in the data array that is returned
in the message. This value should also match the byte_count
specified in the READ_REQ message. Note that this
parameter is somewhat redundant. The byte_count could be
derived from the length parameter in the message header. It is
included for convenience in reading the data array.

data Is an array of 8-bit bytes. Data is returned as bytes because this
is the smallest accessible data element on most machines. It is
the responsibility of the host code to properly interpret the raw
data returned by this message.

Direction
Target-to-host

5–42 MiniMON29K Target Interface Process: MONTIP

118

Requestor
READ_REQ (on page 5–19)

Description
This message returns data requested by a READ_REQ message. It may not be
possible to fulfill the READ_REQ because of a lack of message buffer space or
an inability to access the memory. In these cases, an ERROR message is
returned.

MiniMON29K Target Interface Process: MONTIP 5–43

119

Message 36 (24h):
WRITE_ACK (Data Written)

Message
#define WRITE_ACK 36

struct write_ack_msg_t {
INT32 code; /* 36 */
INT32 length;
INT32 memory_space;
ADDR32 address;
INT32 byte_count;
};

where:
memory_space Specifies the memory space of the written data. This should

match the memory_space parameter in the WRITE_REQ
message.

address Specifies the address of the written data. This should match
the address parameter in the WRITE_REQ message.

byte_count Is the size of the data array in 8-bit bytes.

Direction
Target-to-host

Requestor
WRITE_REQ (on page 5–21)

Description
This message is sent in acknowledgement of a successful WRITE_REQ
operation.

5–44 MiniMON29K Target Interface Process: MONTIP

120

Message 37 (25h):
BKPT_SET_ACK (Breakpoint Set)

Message
#define BKPT_SET_ACK 37

struct bkpt_set_ack_msg_t {
INT32 code; /* 37 */
INT32 length;
INT32 memory_space;
ADDR32 address;
INT32 pass_count;
};

where:
memory_space Is the address space where the breakpoint is to be set. In most

cases, this will be the instruction memory of the system.

address Is the address of the breakpoint.

pass_count Specifies the number of times the breakpoint must be
encountered before control is passed from the application to
the monitor. A pass_count of 1 means that a break should
occur the next time the instruction at this address is executed.

Direction
Target-to-host

Requestor
BKPT_SET (on page 5–23)

Description
This message acknowledges the successful setting of a breakpoint.

MiniMON29K Target Interface Process: MONTIP 5–45

121

Message 38 (26h):
BKPT_RM_ACK (Breakpoint Removed)

Message
#define BKPT_RM_ACK 38

struct bkpt_rm_ack_msg_t {
INT32 code; /* 38 */
INT32 length;
INT32 memory_space;
ADDR32 address;
};

where:
memory_space Specifies the memory space of the breakpoint that was

removed.

address Specifies the address of the breakpoint that was removed.

Direction
Target-to-host

Requestor
BKPT_RM (on page 5–25)

Description
This message acknowledges the successful removal of a breakpoint. The
parameters for this message will have the same values as those passed to the
target in the RM_BKPT message.

5–46 MiniMON29K Target Interface Process: MONTIP

122

Message 39 (27h):
BKPT_STAT_ACK (Breakpoint Status)

Message
#define BKPT_STAT_ACK 39

struct bkpt_stat_ack_msg_t {
INT32 code; /* 39 */
INT32 length;
INT32 memory_space;
ADDR32 address;
INT32 pass_count;
};

where:
memory_space Specifies the same values passed to the target in the

BKPT_STAT message.

address Specifies the same values passed to the target in the
BKPT_STAT message.

pass_count Specifies the number of times the breakpoint must be
encountered before control is passed from the application to
the monitor. A pass_count of 1 means that a break should
occur the next time the instruction at this address is executed.

Direction
Target-to-host

Requestor
BKPT_STAT (on page 5–26)

Description
This message is sent in response to the BKPT_STAT message. This message
returns the status of the breakpoint at the requested address. The primary use of
this message is to inspect the pass_count of a breakpoint.

MiniMON29K Target Interface Process: MONTIP 5–47

123

Message 40 (28h):
COPY_ACK (Data Copied)

Message
#define COPY_ACK 40

struct copy_ack_msg_t {
INT32 code; /* 40 */
INT32 length;
INT32 source_space;
ADDR32 source_addr;
INT32 dest_space;
ADDR32 dest_addr;
INT32 byte_count;
};

where:
source_space Specifies the memory space of the source data.

source_addr Is the address in this memory space of the data to be copied.

dest_space Specifies the memory space for the destination of the copy
operation.

dest_addr Specifies the address for the destination of the copy operation.

byte_count Is a count of the number of bytes to be copied from the source
to the destination.

Direction
Target-to-host

Requestor
COPY (on page 5–27)

Description
The COPY_ACK message acknowledges that the operation requested by COPY
has completed successfully. The COPY_ACK should return the same parameters
sent by the COPY message.

5–48 MiniMON29K Target Interface Process: MONTIP

124

Message 41 (29h):
FILL_ACK (Memory Filled)

Message
#define FILL_ACK 41

struct fill_ack_msg_t {
INT32 code; /* 41 */
INT32 length;
INT32 memory_space;
ADDR32 start_addr;
INT32 fill_count;
INT32 byte_count;
};

where:
memory_space Specifies the memory space where the FILL message will

write blocks of memory.

start_addr Specifies the beginning address of the blocks of memory to be
filled.

fill_count Specifies the number of bytes to be filled. Note that fill_count
is not necessarily an even multiple of byte_count.

byte_count Specifies the number of bytes in the string.

Direction
Target-to-host

Requestor
FILL (on page 5–29)

Description
The FILL_ACK message acknowledges that a FILL message has been
successfully executed.

FILL_ACK should return the first four parameters sent by the FILL message.
Because this message serves only as an acknowledgement, the fill pattern sent
by the FILL message is not returned.

MiniMON29K Target Interface Process: MONTIP 5–49

125

Message 42 (2Ah):
INIT_ACK (Target Initialized)

Message
#define INIT_ACK 42

struct init_ack_msg_t {
INT32 code; /* 42 */
INT32 length;
};

Direction
Target-to-host

Requestor
INIT (on page 5–31)

Description
The INIT_ACK message acknowledges that an INIT message has been received
by the target.

5–50 MiniMON29K Target Interface Process: MONTIP

126

Message 43 (2Bh):
HALT (Execution Halted)

Message
#define HALT 43

struct halt_msg_t {
INT32 code; /* 43 */
INT32 length;
INT32 memory_space;
ADDR32 pc0;
ADDR32 pc1;
INT32 trap_number;
};

where:
pc0 Contains the value of the program counter register pc0.

pc1 Contains the value of the program counter register pc1.

trap_number Is the value of the trap number that caused the halt.

Direction
Target-to-host

Requestor
BREAK (on page 5–35), GO (on page 5–33), RESET (on page 5–16) or STEP
(on page 5–34)

Description
The HALT message is sent to the host any time control is returned to the
monitor. It is sent in response to a GO or a STEP message.

MiniMON29K Target Interface Process: MONTIP 5–51

127

Message 63 (3Fh):
ERROR (Error Detected)

Message
#define ERROR 63

struct error_msg_t {
INT32 code; /* 63 */
INT32 length;
INT32 error_code;
};

where:
error_code Is a 32-bit integer containing an error code. This error code

describes the error encountered when attempting to execute a
host command.

Direction
Target-to-host

Requestor
Any host-to-target message

Description
This message is returned to the host whenever an error is encountered. An
ERROR message may be returned from any host request. This message sends a
single parameter.

5–52 MiniMON29K Target Interface Process: MONTIP

128

Operating-System Messages
Messages 64 through 127 are classified as operating-system messages. These
messages are transmitted between the host and the application/operating system
running on the target. In the default configuration of MiniMON29K, the HIF
kernel of osboot transmits and receives the operating-system messages on the
target.

� Messages 64 through 95 are sent from the host to the target.

� Messages 96 through 127 are sent from the target to the host.

The operating-system messages are listed on the following pages, in numerical
order. See page 5–15 for the debug messages.

MiniMON29K Target Interface Process: MONTIP 5–53

129

Message 64 (40h):
HIF_CALL_RTN (HIF_CALL Return)

Message
#define HIF_CALL_RTN 64

struct hif_call_rtn_msg_t {
INT32 code; /* 64 */
INT32 length;
INT32 service_number;
INT32 gr121;
INT32 gr96;
INT32 gr97;
};

Direction
Host-to-target

Requestor
HIF_CALL (on page 5–59)

Description
The HIF_CALL_RTN message is used by montip to return the results of the
requested HIF system call to the HIF kernel that requested it. The
service_number field contains the HIF service number of the requested
operation. (See AMD’s host interface specification for more details.) The fields
gr121, gr96, and gr97 contain the results of the requested operation according to
the service requested.

5–54 MiniMON29K Target Interface Process: MONTIP

130

Message 65 (41h):
CHANNEL0 (Data at Channel 0)

Message
#define CHANNEL0 65

struct channel0_msg_t {
INT32 code; /* 65 */
INT32 length;
BYTE data;
};

Direction
Host-to-target

Acknowledgement
CHANNEL0_ACK (on page 5–60)

Description
The CHANNEL0 message is used by the host to send a single byte to the target.
This is typically a key pressed on the keyboard. This provides “raw” keyboard
input.

This message is acknowledged by CHANNEL0_ACK.

MiniMON29K Target Interface Process: MONTIP 5–55

131

Message 66 (42h):
CHANNEL1_ACK (Channel 1 Ack)

Message
#define CHANNEL1_ACK 66

struct channel1_ack_msg_t {
INT32 code; /* 66 */
INT32 length;
INT32 nbytes;
};

Direction
Host-to-target

Requestor
CHANNEL1 (on page 5–61)

Description
The CHANNEL1_ACK message is used by the host to acknowledge that a
CHANNEL1 message has been read and processed. The CHANNEL1_ACK
message returns to the standard output device the number of bytes successfully
written in the nbytes parameter.

5–56 MiniMON29K Target Interface Process: MONTIP

132

Message 67 (43h):
CHANNEL2_ACK (Channel 2 Ack)

Message
#define CHANNEL2_ACK 67

struct channel2_ack_msg_t {
INT32 code; /* 67 */
INT32 length;
INT32 nbytes;
};

Direction
Host-to-target

Requestor
CHANNEL2 (on page 5–62)

Description
The CHANNEL2_ACK message is used by the host to acknowledge that a
CHANNEL2 message has been read and processed. The CHANNEL2_ACK
message returns to the standard output device the number of bytes successfully
written in the nbytes parameter.

MiniMON29K Target Interface Process: MONTIP 5–57

133

Message 68 (44h):
STDIN_NEEDED_ACK (Standard Input Needed)

Message
#define STDIN_NEEDED_ACK 68

struct stdin_needed_ack_msg_t {
INT32 code; /* 68 */
INT32 length;
BYTE data;

};

Direction
Host-to-target

Requestor
STDIN_NEEDED (on page 5–63)

Description
The STDIN_NEEDED_ACK message is sent in response to a request from the
target for input from the standard input device, i.e., terminal. This message is
used when the standard input mode is in synchronous and blocking mode.

The length field of the message contains the number of input characters that
follow. The data field has the first input character.

5–58 MiniMON29K Target Interface Process: MONTIP

134

Message 69 (45h):
STDIN_MODE_ACK (Standard Input Mode)

Message
#define STDIN_MODE_ACK 69

struct stdin_mode_ack_msg_t {
INT32 code; /* 69 */
INT32 length;
INT32 mode;

};

Direction
Host-to-target

Requestor
STDIN_MODE (on page 5–64)

Description
When the target sends a STDIN_MODE message to change the standard input
mode, the host sends the STDIN_MODE_ACK message in response. The mode
field of the message contains the previous input mode. AMD’s host interface
specification enumerates the mode values for the different input modes.

MiniMON29K Target Interface Process: MONTIP 5–59

135

Message 96 (60h):
HIF_CALL (HIF Call)

Message
#define HIF_CALL 96

struct hif_call_msg_t {
INT32 code; /* 96 */
INT32 length;
INT32 service_number; /* gr121 */
INT32 lr2;
INT32 lr3;
INT32 lr4;
};

Direction
Target-to-host

Acknowledgement
HIF_CALL_RTN (on page 5–53)

Description
The HIF_CALL message is used by the HIF kernel of osboot to request a HIF
operating-system service from the host. The host should perform the requested
action (if possible) and send the results in a HIF_CALL_RTN message.

5–60 MiniMON29K Target Interface Process: MONTIP

136

Message 97 (61h):
CHANNEL0_ACK (Channel 0 Acknowledgement)

Message
#define CHANNEL0_ACK 97

struct channel0_ack_msg_t {
INT32 code; /* 97 */
INT32 length;
};

Direction
Target-to-host

Requestor
CHANNEL0 (on page 5–54)

Description
The CHANNEL0_ACK message is used by the target to acknowledge that the
byte sent by the CHANNEL0 message has been received. This message has no
parameters.

MiniMON29K Target Interface Process: MONTIP 5–61

137

Message 98 (62h):
CHANNEL1 (Write Channel 1)

Message
#define CHANNEL1 98

struct channel1_msg_t {
INT32 code; /* 98 */
INT32 length;
BYTE data[];
};

Direction
Target-to-host

Acknowledgement
CHANNEL1_ACK (on page 5–55)

Description
The CHANNEL1 message is used by the target to write an array of bytes to the
host standard output device.

5–62 MiniMON29K Target Interface Process: MONTIP

138

Message 99 (63h):
CHANNEL2 (Write Channel 2)

Message
#define CHANNEL2 99

struct channel2_msg_t {
INT32 code; /* 99 */
INT32 length;
BYTE data[];
};

Direction
Target-to-host

Acknowledgement
CHANNEL2_ACK (on page 5–56)

Description
The CHANNEL2 message is used by the target to write an array of bytes to the
host standard error device.

MiniMON29K Target Interface Process: MONTIP 5–63

139

Message 100 (64h):
STDIN_NEEDED (Standard Input Needed)

Message
#define STDIN_NEEDED 100

struct stdin_needed_msg_t {
INT32 code; /* 100 */
INT32 length;
INT32 nbytes;
};

Direction
Target-to-host

Acknowledgement
STDIN_NEEDED_ACK (on page 5–57)

Description
When the input mode is synchronous and blocking, the operating system or
application program running on the target system sends a STDIN_NEEDED
message to the host to request user input. The nbytes field contains the
maximum number of bytes requested at this time. The host waits for input to be
available and returns the input data using the STDIN_NEEDED_ACK message.

5–64 MiniMON29K Target Interface Process: MONTIP

140

Message 101 (65h):
STDIN_MODE (Standard Input Mode)

Message
#define STDIN_MODE 101

struct stdin_mode_msg_t {
INT32 code; /* 101 */
INT32 length;
INT32 mode;
};

Direction
Target-to-host

Acknowledgement
STDIN_MODE_ACK (on page 5–58)

Description
This message is sent by the target to request a change in the input mode on the
standard input device. The mode field contains the code for the input mode
requested. AMD’s host interface specification enumerates the mode values for
different input modes. The host sends a STDIN_MODE_ACK message which
contains the previous input mode.

MiniMON29K Target Interface Process: MONTIP A–1

141

Appendix A

MONTIP Error Messages

The montip error messages are listed on the following page in order of error
number. However, note that the error message may appear differently as the
format of the error messages varies depending on the DFE being used.

A–2 MiniMON29K Target Interface Process: MONTIP

142

MONTIP Error Messages
0 MONNoError: “No Error.”

1 MONErrCantSendMsg: “Could not send message to target.”

2 MONErrCantRecvMsg: “Did not receive the correct ACK from target.”

3 MONErrCantLoadROMfile: “Can’t load ROM file.”

4 MONErrCantInitMsgSystem: “Can’t initialize the message system.”

5 MONErrCantBreakInROM: “Can’t set breakpoint in ROM.”

6 MONErrCantResetComm: “Can’t reset communication channel.”

7 MONErrCantAllocBufs: “Can’t reallocate message buffers.”

8 MONErrUnknownBreakType: “Breakpoint type requested is not recognized.”

9 MONErrNoAck: “No ACK from target—timed out.”

10 MONErrNoSynch: “Timed out synching. No response from target.”

11 MONErrCantOpenCoff: “Cannot open ROM file.”

12 MONErrCantWriteToMem: “Cannot write to memory while downloading ROM
file.”

13 MONErrAbortAborted: “Ctrl-C aborted previous Ctrl-C processing.”

14 MONErrNullConfigString: “Null configuration string specified for connection.”

15 MONErrNoTargetType: “No target type specified for connection.”

16 MONErrOutofMemory: “Out of memory.”

17 MONErrErrorInit: “Error on target—trying to initialize process.”

18 MONErrErrorRead: “Error on target—trying to read.”

19 MONErrErrorWrite: “Error on target—trying to write.”

20 MONErrErrorCopy: “Error on target—trying to do copy.”

21 MONErrErrorSetBreak: “Error on target—trying to set breakpoint.”

22 MONErrErrorStatBreak: “Error on target—trying to query breakpoint.”

23 MONErrErrorRmBreak: “Error on target—trying to remove breakpoint.”

24 MONErrConfigInterrupt: “User interrupt signal received; aborting synch.”

25 MONErrNoConfig: “Couldn’t get target config after reset. Try again.”

26 MONErrMsgInBuf: “Message received from target waiting in buffer.”

27 MONErrUnknownTIPCmd: “Unknown MONTIP command; exiting TIP mode.”

MiniMON29K Target Interface Process: MONTIP B–1

143

Appendix B

MiniMON29K Target
Message System

The code for the MiniMON29K Target Message system, contained in the msg.s
file, is shown on the following pages.

B–2 MiniMON29K Target Interface Process: MONTIP

144

msg.s File
;;
;
; This is the Message System of MiniMON29K.
;;
;

.file ”msg.s”

.ident ”@(#)msg.s 1.3 93/07/06 18:14:28, Srini, AMD”

; MiniMON29K R 1.1 Version don’t know
; MiniMON29K R 2.0 Version 0x10
; MiniMON29K R 2.1 Version 0x11
; MiniMON29K R 3.0 Version 0x12
.equ MSG_VERSION, 0x12

.equ MSG_RBUF_SIZE, 2048

.extern dbg_V_msg ; Debug core’s message handler

.extern os_V_msg ; OS message handler

.extern msg_write_p ; function to write out a message

.extern msg_wait_for_p ; ptr to function that waits for a msg

.extern msg_initcomm

.global _msg_version ; version of msg sys and comm drivers

.global _msg_sbuf_p ; address of the message to send

.global _msg_lastsent_p ; address of last msg sent

.global _msg_next_p ; next char to send

.global _msg_rbuf ; message receive buffer

.global _msg_init ; init msg sys at cold start

.global _msg_send ; send valid msg to montip

.global msg_V_arrive ; get here on receiving a message

.global _msg_wait_for ; wait for message to arrive

MiniMON29K Target Interface Process: MONTIP B–3

145

msg.s File continued

.macro MSG_SAVE_GLOB
const gr4, _msg_save_glob
consth gr4, _msg_save_glob
store 0, 0, gr96, gr4 ; gr96
const gr96, _msg_save_glob+4
consth gr96, _msg_save_glob+4
store 0, 0, gr97, gr96 ; gr97
add gr96, gr96, 4
store 0, 0, gr98, gr96 ; gr98
.endm

.macro MSG_RESTORE_GLOB
const gr96, _msg_save_glob+4
consth gr96, _msg_save_glob+4
load 0, 0, gr97, gr96 ; gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; gr98
const gr96, _msg_save_glob
consth gr96, _msg_save_glob
load 0, 0, gr96, gr96 ; gr96
.endm

.sect msg_data, bss

.use msg_data
_msg_sbuf_p: .block 1*4
_msg_rbuf: .block MSG_RBUF_SIZE
_msg_version: .block 1*4
_msg_lastsent_p: .block 1*4
_msg_next_p: .block 1*4
_msg_save_glob: .block 3*4 ; gr96–gr98
_msg_save_loc: .block 3*4 ; lr0–lr2
_msg_v_save: .block 3*4 ; gr96–gr98
_msg_send_save: .block 6*4 ; lr0–lr4

.text
; –––
; initialize msg system data structures.
; msg system initialization. The actual device depends on the target system
; and is initialized by msg_initcomm function.
_msg_init:

MSG_SAVE_GLOB

const gr96, _msg_lastsent_p
consth gr96, _msg_lastsent_p
const gr97, 0
store 0, 0, gr97, gr96 ; init last msg address

B–4 MiniMON29K Target Interface Process: MONTIP

146

msg.s File continued

const gr96, _msg_sbuf_p
consth gr96, _msg_sbuf_p
store 0, 0, gr97, gr96 ; clear semaphore

const gr96, _msg_next_p
consth gr96, _msg_next_p
const gr97, _msg_rbuf
consth gr97, _msg_rbuf
store 0, 0, gr97, gr96 ; next char to send pointer

const gr96, _msg_save_loc
consth gr96, _msg_save_loc
store 0, 0, lr0, gr96 ; save lr0

const gr96, msg_initcomm ; returns version number
consth gr96, msg_initcomm
calli lr0, gr96 ; initialize comm interface
nop

; gr96 has the comm_version number.
; initialize msg_version with msg_version|comm_version
sll gr96, gr96, 8 ; driver version
or gr96, gr96, MSG_VERSION ; append msg sys version
const gr97, _msg_version
consth gr97, _msg_version
store 0, 0, gr96, gr97 ; store for use by debug core

; restore lr0
const gr96, _msg_save_loc
consth gr96, _msg_save_loc
load 0, 0, lr0, gr96 ; restore lr0
MSG_RESTORE_GLOB

jmpi lr0
nop

MiniMON29K Target Interface Process: MONTIP B–5

147

msg.s File continued

; ––– MSG_V_ARRIVE
msg_V_arrive:

const gr4, _msg_rbuf ; determine class, (first entry)
consth gr4, _msg_rbuf ; determine class, (first entry)
load 0, 0, gr4, gr4
cpgeu gr4, gr4, 64
jmpt gr4, os_msg

dbgcore_msg:
const gr4, dbg_V_msg
consth gr4, dbg_V_msg
jmpi gr4 ;jmpi to dbg_V_msg
 nop

os_msg:
const gr4, os_V_msg
consth gr4, os_V_msg
jmpi gr4 ;jmpi to os_V_msg
 nop

;––– MSG_WAIT_FOR
; This function is used to indicate if the receive message
; buffer contains a vaild message. The return value is –1
; if the buffer is valid, and 0 if invalid.
; With a poll driven serial driver, msg_wait_for() should
; not return until the buffer contains a message for processing.
;
_msg_wait_for:

;
; save lr0
;
const gr4, _msg_save_loc
consth gr4, _msg_save_loc
store 0, 0, lr0, gr4 ; save lr0

const gr96, msg_wait_for_p
consth gr96, msg_wait_for_p
load 0, 0, gr96, gr96 ; get function address

calli lr0, gr96
nop

const lr0, _msg_save_loc
consth lr0, _msg_save_loc
load 0, 0, lr0, lr0 ; restore lr0

jmpi lr0 ; return
nop

B–6 MiniMON29K Target Interface Process: MONTIP

148

msg.s File continued

;––– MSG_SEND
_msg_send:
; Send the message pointed to by lr2.
; return success (–1) or failure (0) in gr96 to caller.

; check msg send semaphore
const gr96, _msg_sbuf_p
consth gr96, _msg_sbuf_p
load 0, 0, gr96, gr96 ; read semaphore
cpeq gr96, gr96, 0 ; compare with zero
jmpfi gr96, lr0 ; if not zero, return failure
constn gr96, –1 ; –1 for failure

; update semaphore with address of message to send in lr2
const gr96, _msg_sbuf_p
consth gr96, _msg_sbuf_p
store 0, 0, lr2, gr96 ; update msg send semaphore

const gr96, _msg_lastsent_p
consth gr96, _msg_lastsent_p
store 0, 0, lr2, gr96 ; update msg last sent pointer

; backup some registers for temporary use.
const gr96, _msg_send_save
consth gr96, _msg_send_save
store 0, 0, lr0, gr96 ; save lr0
add gr96, gr96, 4
store 0, 0, lr1, gr96 ; save lr1
add gr96, gr96, 4
store 0, 0, lr2, gr96 ; save lr2
add gr96, gr96, 4
store 0, 0, lr3, gr96 ; save lr3

; send the message calling the device write function.
; offset 0 in write_table is dedicated for debug core.
; lr2 = pointer to message
; lr3 = total bytes in message.
add lr3, lr2, 4
load 0, 0, lr3, lr3 ; get msg length value
add lr3, lr3, 8 ; add msg header size
const gr96, msg_write_p
consth gr96, msg_write_p
load 0, 0, gr96, gr96 ; get msg_write function.
calli lr0, gr96 ; call msg_write
nop

MiniMON29K Target Interface Process: MONTIP B–7

149

msg.s File continued

;
;
const gr96, _msg_send_save
consth gr96, _msg_send_save
load 0, 0, lr0, gr96 ; restore lr0
add gr96, gr96, 4
load 0, 0, lr1, gr96 ; restore lr1
add gr96, gr96, 4
load 0, 0, lr2, gr96 ; restore lr2
add gr96, gr96, 4
load 0, 0, lr3, gr96 ; restore lr3

jmpi lr0
const gr96, 0 ; return success

MiniMON29K Target Interface Process: MONTIP C–1

150

Appendix C

Target Message Drivers

At the time of publication, the code for the target message drivers was in the
files with the following names:

� eb29khw.s file: Code for the EB29K target message driver

� eb030hw.s file: Code for the EB29030 target message driver

� scc8530.s and ez030hw.s files: Code for the EZ-030 target message driver

� scc200.s and sa200hw.s files: Code for the SA-29200 and SA-29205 target
message driver. The contents of these two files also are printed on the
following pages.

C–2 MiniMON29K Target Interface Process: MONTIP

151

scc200.s File
;;
;
; This module implements the routines for Am29200 SCC on chip.
;;
;

.ident ”@(#)scc200.s 1.7 93/11/01 09:11:20, Srini, AMD”

.file ”scc200.s”

.include ”stats.ah”

.equ NACK_BIT, 0x1

.equ ACK_BIT, 0x2

.extern UCLK ; link time constant def in linker command file

.ifndef BAUDRATE

.equ BAUDRATE, 9600

.endif

.global msg_scc200_init

.global msg_scc200_write

.global msg_scc200_wait_for ; polled mode receive

.global msg_scc200_tx_intr

.global msg_scc200_rx_intr

.global msg_ppi200_intr

.global msg_lpt200_init

.extern _msg_rbuf ; start of receive buffer

.extern _msg_next_p ; message receive buffer pointer

.extern _msg_lastsent_p ; address of msg last sent

.extern _msg_sbuf_p ; message send semaphore

.extern msg_V_arrive ; virtual message interrupt vector

MiniMON29K Target Interface Process: MONTIP C–3

152

scc200.s File continued

.bss
scc200_tmp_regs: .block 4*4
intr_tmp_regs: .block 4*4
poll_tmp_glob: .block 4*4 ; gr97–gr99
poll_tmp_loc: .block 3*4 ; lr0, lr2–lr3
nbytes_to_write: .block 1*4
nextchar_p: .block 1*4
ack_flag: .block 1*4
nack_flag: .block 1*4
firstmsg_flag: .block 1*4
ack_msg_p: .block 2*4
nack_msg_p: .block 2*4

.text
; –– MSG_SCC200_INIT
msg_scc200_init:
; gr96, gr97, gr98 are saved before calling this.
; Returns via lr0.

; initialize ack msg and nack msg structures.
const gr96, ack_msg_p
consth gr96, ack_msg_p
constn gr97, –1
store 0, 0, gr97, gr96 ; –1
add gr96, gr96, 4
const gr97, 0
store 0, 0, gr97, gr96 ; 0

const gr96, nack_msg_p
consth gr96, nack_msg_p
constn gr97, –1
store 0, 0, gr97, gr96 ; –1
add gr96, gr96, 4
store 0, 0, gr97, gr96 ; –1

; set the firstmsg_flag to true
const gr96, firstmsg_flag
consth gr96, firstmsg_flag
constn gr97, –1
store 0, 0, gr97, gr96 ; firstmsg_flag = TRUE

const gr97, SPCT
consth gr97, SPCT
const gr96, 0
store 0, 0, gr96, gr97 ; SPCT=0

C–4 MiniMON29K Target Interface Process: MONTIP

153

scc200.s File continued

; compute baud rate
; bauddiv = UCLK/32/BAUDRATE – 1
const gr98, BAUDRATE
consth gr98, BAUDRATE
const gr96, UCLK
consth gr96, UCLK
srl gr96, gr96, 5 ; / 32
mtsr q, gr96
div0 gr97, 0
.rep 31
div gr97, gr97, gr98
.endr
divl gr97, gr97, gr98
mfsr gr97, q
sub gr96, gr97, 1 ; bauddiv in gr96
const gr97, BAUD
consth gr97, BAUD
store 0, 0, gr96, gr97 ; set BAUD

const gr96, 0x01030000 ; rx=intr mode, tx=intr mode
consth gr96, 0x01030000 ; word length=8 bits
const gr97, SPCT
consth gr97, SPCT
store 0, 0, gr96, gr97 ; set rx,tx mode, wl=9bits,noparity

 .ifndef SERIAL_POLL
const gr96, 0x01030101 ; rx=intr mode, tx=intr mode
consth gr96, 0x01030101 ; word length=8 bits
const gr97, SPCT
consth gr97, SPCT
store 0, 0, gr96, gr97 ; set rx,tx mode, wl=9bits,noparity

 .endif

const gr96, ICT
consth gr96, ICT
const gr97, (PPI|RXSI|RXDI|TXDI)
consth gr97, (PPI|RXSI|RXDI|TXDI)
store 0, 0, gr97, gr96 ; reset serial port pending interrupts

jmpi lr0
nop

MiniMON29K Target Interface Process: MONTIP C–5

154

scc200.s File continued

; –– MSG_LPT200_INIT
msg_lpt200_init:
; gr96, gr97, gr98 are saved before calling this.
; Returns via lr0.

const gr96, PPCT
consth gr96, PPCT
const gr97, ((16<<TDELAYShift)|(1<<PPCT_MODEShift));
consth gr97, ((16<<TDELAYShift)|(1<<PPCT_MODEShift));
store 0, 0, gr97, gr96 ; 8 bits, interrupt on char

jmpi lr0
nop

; ––– MSG_SCC200_WRITE
msg_scc200_write:
; In interrupt mode, it sends out the first character and returns. In this
; mode it is called with interrupts disabled. Interrupts are enabled after
; this call returns.
; In polled mode, it loops until the entire message is written.
; Called from msg_send. return via lr0.
; lr2 – pointer to message
; lr3 = nbytes in message.

const gr4, scc200_tmp_regs
consth gr4, scc200_tmp_regs
store 0, 0, gr96, gr4 ; backup gr96
const gr96, scc200_tmp_regs+4
consth gr96, scc200_tmp_regs+4
store 0, 0, gr97, gr96 ; backup gr97
add gr96, gr96, 4
store 0, 0, gr98, gr96 ; backup gr98

; set nextchar_p
const gr96, nextchar_p
consth gr96, nextchar_p
store 0, 0, lr2, gr96 ; next char to send

; check the type of message, ack/nack have no checksum
const gr96, nbytes_to_write
consth gr96, nbytes_to_write
load 0, 0, gr98, lr2
jmpt gr98, acknack_code
add gr97, lr3, 0
add gr97, lr3, 4 ; add checksum size
store 0, 0, gr97, gr96 ; write nbytes to send

C–6 MiniMON29K Target Interface Process: MONTIP

155

scc200.s File continued

; compute checksum and append to end of message.
add gr96, lr2, 4
load 0, 0, gr96, gr96 ; msg len
add gr96, gr96, 8 ; add msg size

sub gr96, gr96, 2
const gr98, 0 ; initialize checksum

$1:
load 0, 1, gr97, lr2
add gr98, gr98, gr97
jmpfdec gr96, $1
add lr2, lr2, 1

; aapend at lr2
srl gr97, gr98, 24
store 0, 1, gr97, lr2
srl gr97, gr98, 16
and gr97, gr97, 0xff
add lr2, lr2, 1
store 0, 1, gr97, lr2
srl gr97, gr98, 8
and gr97, gr97, 0xff
add lr2, lr2, 1
store 0, 1, gr97, lr2
and gr97, gr98, 0xff
add lr2, lr2, 1
store 0, 1, gr97, lr2

; Start sending out the message. This layer does not buffer
; the message. Instead it relies on the message remaining
; there until it is sent. A semaphore msg_send_p is cleared
; when the message is sent.

; wait for transmit holding register to empty.
const gr96, SPST

tx_loop:
consth gr96, SPST
load 0, 0, gr96, gr96 ; read status
sll gr96, gr96, (31 – THREShift)
jmpf gr96, tx_loop
const gr96, SPST

MiniMON29K Target Interface Process: MONTIP C–7

156

scc200.s File continued

; get character from nextchar_p
const gr96, nextchar_p
consth gr96, nextchar_p
load 0, 0, gr97, gr96
load 0, 1, gr98, gr97 ; get character to send
add gr97, gr97, 1 ; update
store 0, 0, gr97, gr96 ; nextchar_p++

; stuff character
const gr96, SPTH
consth gr96, SPTH
store 0, 0, gr98, gr96 ; put char

; decrement nbytes_to_write
const gr96, nbytes_to_write
consth gr96, nbytes_to_write
load 0, 0, gr97, gr96
sub gr97, gr97, 1
store 0, 0, gr97, gr96 ; nbytes_to_write––

 .ifdef SERIAL_POLL
cpeq gr98, gr97, 0 ; nbytes_to_write == 0?
jmpt gr98, $2 ; yes, then done
nop
jmp tx_loop
const gr96, SPST

 .endif

C–8 MiniMON29K Target Interface Process: MONTIP

157

scc200.s File continued

$2:
const gr96, firstmsg_flag
consth gr96, firstmsg_flag
load 0, 0, gr96, gr96
jmpf gr96, restore_regs
const gr96, _msg_sbuf_p
consth gr96, _msg_sbuf_p
const gr97, 0
store 0, 0, gr97, gr96 ; clear _msg_sbuf_p for 1st msg
const gr96, firstmsg_flag
consth gr96, firstmsg_flag
const gr97, 0
store 0, 0, gr97, gr96 ; clear firstmsg_flag

restore_regs:
 .ifdef SERIAL_POLL

; clear msg_sbuf_p
const gr96, _msg_sbuf_p
consth gr96, _msg_sbuf_p
const gr97, 0
store 0, 0, gr97, gr96 ; clear msg_sbuf_p

 .endif
; restore gr96–gr98
const gr96, scc200_tmp_regs+4
consth gr96, scc200_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, scc200_tmp_regs
consth gr96, scc200_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

jmpi lr0
nop

acknack_code:
store 0, 0, gr97, gr96 ; write nbytes to send
add lr2, lr2, 4
load 0, 0, gr96, lr2
const gr97, ack_flag
consth gr97, ack_flag
jmpt gr96, set_nack_flag
constn gr98, –1
store 0, 0, gr98, gr97 ; set ack_flag

jmp tx_loop
const gr96, SPST

MiniMON29K Target Interface Process: MONTIP C–9

158

scc200.s File continued

set_nack_flag:
const gr97, nack_flag
consth gr97, nack_flag
constn gr98, –1
store 0, 0, gr98, gr97 ; set nack_flag

jmp tx_loop
const gr96, SPST

; ––– MSG_SCC200_TX_INTR
msg_scc200_tx_intr:

const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, gr96, gr4 ; backup gr96
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
store 0, 0, gr97, gr96 ; backup gr97
add gr96, gr96, 4
store 0, 0, gr98, gr96 ; backup gr98

const gr96, ICT
consth gr96, ICT
const gr97, TXDI
consth gr97, TXDI
store 0, 0, gr97, gr96 ; clear TXDI

; check for more bytes to send.
const gr96, nbytes_to_write
consth gr96, nbytes_to_write
load 0, 0, gr97, gr96 ; get bytes left
cpeq gr98, gr97, 0 ; compare with zero
jmpt gr98, $3 ; yes, none left check nack/ack
nop

; get next byte
sub gr97, gr97, 1
store 0, 0, gr97, gr96 ; nbytes_to_write––
const gr96, nextchar_p
consth gr96, nextchar_p
load 0, 0, gr97, gr96
load 0, 1, gr98, gr97 ; get character
add gr97, gr97, 1
store 0, 0, gr97, gr96 ; nextchar_p++

C–10 MiniMON29K Target Interface Process: MONTIP

159

scc200.s File continued

; stuff byte
const gr96, SPTH
consth gr96, SPTH
store 0, 0, gr98, gr96 ; put char

$4:
; restore gr96–gr98 registers.
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

iret

$3:
; check ack_flag if one just sent and clear it.
const gr96, ack_flag
consth gr96, ack_flag
load 0, 0, gr97, gr96 ; get flag
jmpt gr97, valid_msg ; set, valid msg intr
nop
jmp $4
nop

valid_msg:
; clear ack_flag
const gr97, 0
store 0, 0, gr97, gr96 ; clear flag

; restore gr96–gr98 registers.
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

jmp msg_V_arrive ; post interrupt to message
nop ; system

MiniMON29K Target Interface Process: MONTIP C–11

160

scc200.s File continued

; ––– MSG_PPI200_INTR
msg_ppi200_intr:

const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, gr96, gr4 ; backup gr96
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
store 0, 0, gr97, gr96 ; backup gr97
add gr96, gr96, 4
store 0, 0, gr98, gr96 ; backup gr98

const gr96, ICT
consth gr96, ICT
const gr97, PPI
consth gr97, PPI
store 0, 0, gr97, gr96 ; clear PPI

; receive the character (FWT=0) and put in buffer.
const gr96, PPCT
consth gr96, PPCT
load 0, 0, gr96, gr96 ; read PPCT
sll gr97, gr96, (31–7) ; move FBUSY bit to MSB
jmpt gr97, ppi_iret ; leave character in port
nop
const gr96, PPDT ; get pdata
consth gr96, PPDT
load 0, 1, gr96, gr96 ; gr96 has received character

jmp handle_rx_char
nop

ppi_iret:
; restore register gr96–gr98
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

iret

C–12 MiniMON29K Target Interface Process: MONTIP

161

scc200.s File continued

; ––MSG_SCC200_RX_INTR
msg_scc200_rx_intr:

const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, gr96, gr4 ; backup gr96
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
store 0, 0, gr97, gr96 ; backup gr97
add gr96, gr96, 4
store 0, 0, gr98, gr96 ; backup gr98

const gr96, ICT
consth gr96, ICT
const gr97, RXDI
consth gr97, RXDI
store 0, 0, gr97, gr96 ; clear RXDI

; receive the character and put in buffer.
const gr96, SPRB
consth gr96, SPRB
load 0, 0, gr96, gr96 ; gr96 has received character

handle_rx_char:
; put in _msg_next_p location.
const gr97, _msg_next_p
consth gr97, _msg_next_p
load 0, 0, gr98, gr97
store 0, 1, gr96, gr98 ; save character
add gr98, gr98, 1 ; update _msg_next_p
store 0, 0, gr98, gr97

; check the buffer for a minimon message.
const gr96, _msg_next_p
consth gr96, _msg_next_p
load 0, 0, gr97, gr96 ; msg_next_p
const gr96, _msg_rbuf
consth gr96, _msg_rbuf ; msg_rbuf
sub gr98, gr97, gr96 ; msg_rbuf–msg_next_p = len

cplt gr97, gr98, 8 ; len < 8
jmpf gr97, check_for_msg ; no, check for message
nop

MiniMON29K Target Interface Process: MONTIP C–13

162

scc200.s File continued

do_iret:
; restore gr96–gr98 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

iret

check_for_msg:
; a message header is in buffer.
; gr98 has total length.
; gr96 has msg_rbuf
load 0, 0, gr97, gr96 ; get msg code
jmpt gr97, ack_nack_recd ; handle ack/nack msg
nop

; ––
; message.

const gr96, _msg_rbuf+4
consth gr96, _msg_rbuf+4
load 0, 0, gr96, gr96 ; msg length
add gr96, gr96, 8+4 ; add msg header size and checksum
cpgeu gr97, gr98, gr96 ; have we received all the bytes
jmpf gr97, do_iret ; no return
nop

; compute checksum for message
const gr97, intr_tmp_regs+3*4
consth gr97, intr_tmp_regs+3*4
store 0, 0, gr99, gr97 ; backup gr99
const gr99, 0 ; initialize checksum
sub gr96, gr96, 4 ; sub checksum size
const gr97, _msg_rbuf
consth gr97, _msg_rbuf

sub gr96, gr96, 2
$6:

load 0, 1, gr98, gr97
add gr99, gr99, gr98
jmpfdec gr96, $6
add gr97, gr97, 1

C–14 MiniMON29K Target Interface Process: MONTIP

163

scc200.s File continued

; get checksum send by montip
load 0, 1, gr96, gr97
sll gr96, gr96, 24
add gr97, gr97, 1
load 0, 1, gr98, gr97
sll gr98, gr98, 16
or gr96, gr96, gr98
add gr97, gr97, 1
load 0, 1, gr98, gr97
sll gr98, gr98, 8
or gr96, gr96, gr98
add gr97, gr97, 1
load 0, 1, gr98, gr97
or gr96, gr96, gr98

cpeq gr97, gr96, gr99 ; compare checksums
; reset msg_next_p to beginning of msg_rbuf
const gr96, _msg_rbuf
consth gr96, _msg_rbuf
const gr98, _msg_next_p
consth gr98, _msg_next_p
jmpt gr97, ack_it ; same, valid message
store 0, 0, gr96, gr98 ; reset msg_next_p

; send a nack msg to montip.
; restore gr96–gr99 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
add gr96, gr96, 4
load 0, 0, gr99, gr96 ; restore gr99
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

; save lr0, lr2, lr3
const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, lr0, gr4 ; save lr0
const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
store 0, 0, lr2, lr0 ; save lr2
add lr0, lr0, 4
store 0, 0, lr3, lr0 ; save lr3

MiniMON29K Target Interface Process: MONTIP C–15

164

scc200.s File continued

const lr2, nack_msg_p
consth lr2, nack_msg_p
const lr3, 8
call lr0, msg_scc200_write
nop

const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
load 0, 0, lr2, lr0 ; restore lr2
add lr0, lr0, 4
load 0, 0, lr3, lr0 ; restore lr3
const lr0, intr_tmp_regs
consth lr0, intr_tmp_regs
load 0, 0, lr0, lr0 ; restore lr0

iret

ack_it:
; restore gr96–gr99 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
add gr96, gr96, 4
load 0, 0, gr99, gr96 ; restore gr99
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

; send an ack to montip
; save lr0, lr2, lr3
const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, lr0, gr4 ; save lr0
const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
store 0, 0, lr2, lr0 ; save lr2
add lr0, lr0, 4
store 0, 0, lr3, lr0 ; save lr3

const lr2, ack_flag
consth lr2, ack_flag
constn lr3, –1
store 0, 0, lr3, lr2 ; set ack_flag

C–16 MiniMON29K Target Interface Process: MONTIP

165

scc200.s File continued

const lr2, ack_msg_p ; pointer to ack msg str
consth lr2, ack_msg_p
const lr3, 8 ; nbytes in ack msg
call lr0, msg_scc200_write ; sends the first character and
nop ; returns

const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
load 0, 0, lr2, lr0 ; restore lr2
add lr0, lr0, 4
load 0, 0, lr3, lr0 ; restore lr3
const lr0, intr_tmp_regs
consth lr0, intr_tmp_regs
load 0, 0, lr0, lr0 ; restore lr0
iret

; –––
ack_nack_recd:

const gr96, _msg_rbuf
consth gr96, _msg_rbuf
const gr97, _msg_next_p
consth gr97, _msg_next_p
store 0, 0, gr96, gr97 ; initialize msg_next_p

add gr96, gr96, 4
load 0, 0, gr97, gr96 ; get msg len field
jmpf gr97, ack_recd ; ack received
nop

nack_recd:
; restore gr96–gr99 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

MiniMON29K Target Interface Process: MONTIP C–17

166

scc200.s File continued

; save lr0, lr2, lr3
const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, lr0, gr4 ; save lr0
const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
store 0, 0, lr2, lr0 ; save lr2
add lr0, lr0, 4
store 0, 0, lr3, lr0 ; save lr3

const lr2, _msg_lastsent_p ; address of msg
consth lr2, _msg_lastsent_p
load 0, 0, lr2, lr2
add lr3, lr2, 4
load 0, 0, lr3, lr3 ; msg length
add lr3, lr3, 8 ; msglen+msg header
call lr0, msg_scc200_write
nop

const lr0, intr_tmp_regs+4
consth lr0, intr_tmp_regs+4
load 0, 0, lr2, lr0 ; restore lr2
add lr0, lr0, 4
load 0, 0, lr3, lr0 ; restore lr3
const lr0, intr_tmp_regs
consth lr0, intr_tmp_regs
load 0, 0, lr0, lr0 ; restore lr0

iret

ack_recd:
; clear _msg_sbuf_p semaphore
const gr96, _msg_sbuf_p
consth gr96, _msg_sbuf_p
const gr97, 0
store 0, 0, gr97, gr96 ; clear semaphore

jmp do_iret
nop

C–18 MiniMON29K Target Interface Process: MONTIP

167

scc200.s File continued

; –– MSG_SCC200_WAIT_FOR
; In interrupt mode, returns immediately.
; In polled mode, blocks until a msg is received.
; returns gr96 = 0 if no message, –1 if valid message in buffer
msg_scc200_wait_for:
 .ifndef SERIAL_POLL

; simpler case – interrupt mode
jmpi lr0
const gr96, 0 ; no message

 .else
; block until a message is received – polled mode.
const gr96, poll_tmp_glob
consth gr96, poll_tmp_glob
store 0, 0, gr97, gr96 ; backup gr97
add gr96, gr96, 4
store 0, 0, gr98, gr96 ; backup gr98
add gr96, gr96, 4
store 0, 0, gr99, gr96 ; backup gr99

poll_loop:
; poll for a character
const gr96, SPST

$7:
consth gr96, SPST
load 0, 0, gr96, gr96 ; read SPST
sll gr96, gr96, RDRShift ; rdr bit
jmpf gr96, $7
const gr96, SPST

; from here on the code is very similar to the rx_intr code above.
; except that you don’t iret for one thing, and you wait until
; a message is received – not an ack or nack, but a message
; for the debug core to process.

; character found in receive buffer
; receive the character and put in buffer.
const gr96, SPRB
consth gr96, SPRB
load 0, 0, gr96, gr96 ; gr96 has received character

; put in _msg_next_p location.
const gr97, _msg_next_p
consth gr97, _msg_next_p
load 0, 0, gr98, gr97
store 0, 1, gr96, gr98 ; save character
add gr98, gr98, 1 ; update _msg_next_p
store 0, 0, gr98, gr97

MiniMON29K Target Interface Process: MONTIP C–19

168

scc200.s File continued

; check the buffer for a minimon message.
const gr96, _msg_next_p
consth gr96, _msg_next_p
load 0, 0, gr97, gr96 ; msg_next_p
const gr96, _msg_rbuf
consth gr96, _msg_rbuf ; msg_rbuf
sub gr98, gr97, gr96 ; msg_rbuf–msg_next_p = len

cplt gr97, gr98, 8 ; len < 8
jmpf gr97, poll_check_for_msg ; no, check for message
nop

; Not enough characters received, continue polling.
continue_poll:

jmp poll_loop
nop

poll_check_for_msg:
; a message header is in buffer.
; gr98 has total length.
; gr96 has msg_rbuf
load 0, 0, gr97, gr96 ; get msg code
jmpt gr97, poll_ack_nack_recd ; handle ack/nack msg
nop

; ––
; message.

const gr96, _msg_rbuf+4
consth gr96, _msg_rbuf+4
load 0, 0, gr96, gr96 ; msg length
add gr96, gr96, 8+4 ; add msg header size and checksum
cpgeu gr97, gr98, gr96 ; have we received all the bytes

jmpf gr97, poll_loop ; no continue polling
nop

; compute checksum for message
const gr99, 0 ; initialize checksum
sub gr96, gr96, 4 ; sub checksum size
const gr97, _msg_rbuf
consth gr97, _msg_rbuf

C–20 MiniMON29K Target Interface Process: MONTIP

169

scc200.s File continued

sub gr96, gr96, 2
$8:

load 0, 1, gr98, gr97
add gr99, gr99, gr98
jmpfdec gr96, $8
add gr97, gr97, 1

; get checksum send by montip
load 0, 1, gr96, gr97
sll gr96, gr96, 24
add gr97, gr97, 1
load 0, 1, gr98, gr97
sll gr98, gr98, 16
or gr96, gr96, gr98
add gr97, gr97, 1
load 0, 1, gr98, gr97
sll gr98, gr98, 8
or gr96, gr96, gr98
add gr97, gr97, 1
load 0, 1, gr98, gr97
or gr96, gr96, gr98

cpeq gr97, gr96, gr99 ; compare checksums
; reset msg_next_p to beginning of msg_rbuf
const gr96, _msg_rbuf
consth gr96, _msg_rbuf
const gr98, _msg_next_p
consth gr98, _msg_next_p
jmpt gr97, poll_ack_it ; same, valid message
store 0, 0, gr96, gr98 ; reset msg_next_p

; send a nack msg to montip.
; save lr0, lr2, lr3
const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc
store 0, 0, lr0, gr96 ; save lr0
add gr96, gr96, 4
store 0, 0, lr2, gr96 ; save lr2
add gr96, gr96, 4
store 0, 0, lr3, gr96 ; save lr3

const lr2, nack_msg_p
consth lr2, nack_msg_p
const lr3, 8
call lr0, msg_scc200_write ; poll mode write
nop

MiniMON29K Target Interface Process: MONTIP C–21

170

scc200.s File continued

const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc
load 0, 0, lr0, gr96 ; restore lr0
add gr96, gr96, 4
load 0, 0, lr2, gr96 ; restore lr2
add gr96, gr96, 4
load 0, 0, lr3, gr96 ; restore lr3

; continue polling for a valid message
jmp poll_loop
nop

poll_ack_it:
; restore gr97–gr99 registers
const gr96, poll_tmp_glob
consth gr96, poll_tmp_glob
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
add gr96, gr96, 4
load 0, 0, gr99, gr96 ; restore gr99

; send an ack to montip
; save lr0, lr2, lr3
const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc
store 0, 0, lr0, gr96 ; save lr0
add gr96, gr96, 4
store 0, 0, lr2, gr96 ; save lr2
add gr96, gr96, 4
store 0, 0, lr3, gr96 ; save lr3

const lr2, ack_flag
consth lr2, ack_flag
constn lr3, –1
store 0, 0, lr3, lr2 ; set ack_flag

const lr2, ack_msg_p ; pointer to ack msg str
consth lr2, ack_msg_p
const lr3, 8 ; nbytes in ack msg
call lr0, msg_scc200_write ; polled mode write
nop

C–22 MiniMON29K Target Interface Process: MONTIP

171

scc200.s File continued

const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc
load 0, 0, lr0, gr96 ; restore lr0
add gr96, gr96, 4
load 0, 0, lr2, gr96 ; restore lr2
add gr96, gr96, 4
load 0, 0, lr3, gr96 ; restore lr3

jmpi lr0 ; RETURN WITH A VALID MSG
constn gr96, –1 ; TRUE

; –––
poll_ack_nack_recd:

const gr96, _msg_rbuf
consth gr96, _msg_rbuf
const gr97, _msg_next_p
consth gr97, _msg_next_p
store 0, 0, gr96, gr97 ; initialize msg_next_p

add gr96, gr96, 4
load 0, 0, gr97, gr96 ; get msg len field
jmpf gr97, poll_ack_recd ; ack received
nop

poll_nack_recd:
; save lr0, lr2, lr3
; save lr0, lr2, lr3
const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc
store 0, 0, lr0, gr96 ; save lr0
add gr96, gr96, 4
store 0, 0, lr2, gr96 ; save lr2
add gr96, gr96, 4
store 0, 0, lr3, gr96 ; save lr3

const lr2, _msg_lastsent_p ; address of msg
consth lr2, _msg_lastsent_p
load 0, 0, lr2, lr2
add lr3, lr2, 4
load 0, 0, lr3, lr3 ; msg length
add lr3, lr3, 8 ; msglen+msg header
call lr0, msg_scc200_write ; polled write
nop

MiniMON29K Target Interface Process: MONTIP C–23

172

scc200.s File continued

const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc
load 0, 0, lr0, gr96 ; restore lr0
add gr96, gr96, 4
load 0, 0, lr2, gr96 ; restore lr2
add gr96, gr96, 4
load 0, 0, lr3, gr96 ; restore lr3

jmp poll_loop
nop

poll_ack_recd:
; clear _msg_sbuf_p semaphore
const gr96, _msg_sbuf_p
consth gr96, _msg_sbuf_p
const gr97, 0
store 0, 0, gr97, gr96 ; clear semaphore

jmp poll_loop ; continue_polling
nop

 .endif

C–24 MiniMON29K Target Interface Process: MONTIP

173

sa200hw.s File
.ident ”@(#)sa200hw.s 1.5 93/08/18 09:21:05, Srini, AMD”

.file ”sa200hw.s”

.include ”stats.ah”

.equ COMM_VERSION, 0x06

; offsets into the intr3 vector table using CLZ
.equ TXDI_OFFSET, (31–5)*4
.equ RXDI_OFFSET, (31–6)*4
.equ RXSI_OFFSET, (31–7)*4
.equ PPI_OFFSET, (31–11)*4

.extern msg_scc200_init

.extern msg_scc200_write

.extern msg_scc200_wait_for

.extern msg_scc200_tx_intr

.extern msg_scc200_rx_intr

.extern msg_ppi200_intr

.extern msg_lpt200_init

.extern dbg_trap

.global msg_initcomm ; initialize comm interface.

.global serial_int ; serial interface interrupt handler.

.global msg_write_p

.global msg_wait_for_p

.bss
msg_write_p:

.block 1*4
msg_wait_for_p:

.block 1*4
intr3_V_table:

.block 32*4 ; hold 32 interrupt vectors (max)
save_regs:

.block 3*4

MiniMON29K Target Interface Process: MONTIP C–25

174

sa200hw.s File continued

.text
; ––– MSG_INITCOMM
; return version in gr96.
msg_initcomm:

const gr96, save_regs
consth gr96, save_regs
store 0, 0, gr97, gr96 ; backup gr97
add gr96, gr96, 4
store 0, 0, gr98, gr96 ; backup gr98
add gr96, gr96, 4
store 0, 0, lr0, gr96 ; backup lr0

; initialize the msg_write_p with write functions.
const gr96, msg_write_p
consth gr96, msg_write_p
const gr97, msg_scc200_write
consth gr97, msg_scc200_write
store 0, 0, gr97, gr96 ; only one for now

; initialize msg_wait_for_p pointer
const gr96, msg_wait_for_p
consth gr96, msg_wait_for_p
const gr97, msg_scc200_wait_for
consth gr97, msg_scc200_wait_for
store 0, 0, gr97, gr96

; initialize table with default entries.
const gr96, intr3_V_table
consth gr96, intr3_V_table
const gr97, default_intr3
consth gr97, default_intr3
const gr98, 32–2

$1:
store 0, 0, gr97, gr96
jmpfdec gr98, $1
add gr96, gr96, 4

; install known handlers.
const gr96, intr3_V_table+TXDI_OFFSET
consth gr96, intr3_V_table+TXDI_OFFSET
const gr97, msg_scc200_tx_intr
consth gr97, msg_scc200_tx_intr
store 0, 0, gr97, gr96 ; tx intr

C–26 MiniMON29K Target Interface Process: MONTIP

175

sa200hw.s File continued

const gr96, intr3_V_table+RXDI_OFFSET
consth gr96, intr3_V_table+RXDI_OFFSET
const gr97, msg_scc200_rx_intr
consth gr97, msg_scc200_rx_intr
store 0, 0, gr97, gr96 ; rx intr

const gr96, intr3_V_table+PPI_OFFSET
consth gr96, intr3_V_table+PPI_OFFSET
const gr97, msg_ppi200_intr
consth gr97, msg_ppi200_intr
store 0, 0, gr97, gr96 ; ppi intr

; initialize the peripherals.
const gr96, msg_scc200_init
consth gr96, msg_scc200_init
calli lr0, gr96
nop

; initialize 29200 parallel port
const gr96, msg_lpt200_init
consth gr96, msg_lpt200_init
calli lr0, gr96
nop

; restore registers
const gr96, save_regs
consth gr96, save_regs
load 0, 0, gr97, gr96 ; restore gr97
add gr96, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
add gr96, gr96, 4
load 0, 0, lr0, gr96 ; restore lr0

jmpi lr0
const gr96, COMM_VERSION ; return version number

.bss
intr_save: .block 4*4

MiniMON29K Target Interface Process: MONTIP C–27

176

sa200hw.s File continued

.text
; –– SERIAL_INT
serial_int:
; We use count of leading zeroes to determine the offset in the interrupt
; table, and branch to the interrupt handler.

const gr4, intr_save
consth gr4, intr_save
store 0, 0, gr96, gr4 ; backup gr96
const gr96, intr_save+4
consth gr96, intr_save+4
store 0, 0, gr97, gr96 ; backup gr97

const gr96, ICT
consth gr96, ICT
load 0, 0, gr96, gr96 ; read ICT
clz gr96, gr96
cpeq gr97, gr96, 32
jmpt gr97, $2 ; no interrupts??
nop
sll gr96, gr96, 2 ; find offset into table
const gr97, intr3_V_table
consth gr97, intr3_V_table
add gr97, gr97, gr96 ; handler address pointer

const gr96, intr_save
consth gr96, intr_save
load 0, 0, gr96, gr96 ; restore gr96

load 0, 0, gr4, gr97 ; address

const gr97, intr_save+4
consth gr97, intr_save+4
load 0, 0, gr97, gr97 ; restore gr97

jmpi gr4
nop

$2:
; restore regs
const gr96, intr_save+4
consth gr96, intr_save+4
load 0, 0, gr97, gr96 ; restore gr97
const gr96, intr_save
consth gr96, intr_save
load 0, 0, gr96, gr96 ; restore gr96
iret

C–28 MiniMON29K Target Interface Process: MONTIP

177

sa200hw.s File continued

default_intr3:
; clear the interrupt and call dbg_trap

const gr96, ICT
consth gr96, ICT
load 0, 0, gr96, gr96 ; read ICT
clz gr96, gr96
cpeq gr97, gr97, gr97 ; sets most significant bit
srl gr97, gr97, gr96 ; set bit to reset
const gr96, ICT
consth gr96, ICT
store 0, 0, gr97, gr96

; restore regs
const gr96, intr_save+4
consth gr96, intr_save+4
load 0, 0, gr97, gr96 ; restore gr97
const gr96, intr_save
consth gr96, intr_save
load 0, 0, gr96, gr96 ; restore gr96

iret ; simply iret for now.

MiniMON29K Target Interface Process: MONTIP Index–1

178

Index

Symbols

/dev/ttya serial port, 1–3
_msg_next_p pointer, 4–22
_msg_rbuf buffer, 4–22
_msg_sbuf_p pointer, 4–22

A
A_SPCL_REG memory space, 5–14
ABS_REG memory space, 5–14
ACK message, 5–2
acknowledgement message, 5–7
ADDR32 data type, 5–6
address

PC memory segment used by montip,
1–5

PC memory segment used by pcserver,
2–3

B
baud rate

specifying for montip (with the –baud
option), 1–3

specifying for pcserver (with the –b
option), 2–3

BKPT_RM message, 5–25

BKPT_RM_ACK message, 5–45
BKPT_SET message, 5–23–5–24
BKPT_SET_ACK message, 5–44
BKPT_STAT message, 5–26
BKPT_STAT_ACK message, 5–46
blocking mode, 4–6
board, PC plug-in. See PC plug-in board.
BOOLEAN data type, 5–6
BREAK message, 5–35
BYTE data type, 5–6
byte ordering, 5–6

C
CHANNEL0 message, 5–54
CHANNEL0_ACK message, 5–60
CHANNEL1 message, 5–61
CHANNEL1_ACK message, 5–55
CHANNEL2 message, 5–62
CHANNEL2_ACK message, 5–56
char target_name[15], 4–6
checksums, 5–2–5–5

ACK message, 5–2
NACK message, 5–2

code field in messages, 5–5
COFF (common object file format),

downloading file (with –r option),
1–4, 2–2

com1: serial port, 1–3, 2–3
com2: serial port, 1–3, 2–3

Index–2 MiniMON29K Target Interface Process: MONTIP

179

command-line options
montip, 1–2
pcserver, 2–2

common object file format (COFF),
downloading file (with –r option),
1–4, 2–2

communication drivers
description of, 4–4
EB29030 montip driver, 4–14–4–16
EB29030 target driver, 4–27–4–30
EB29K montip driver, 4–14–4–16
EB29K target driver, 4–27–4–30
module containing, xii
montip, for, 4–13–4–20
parallel interface, for, 4–20
SA-29200 target driver, 4–31–4–48
SA-29205 target driver, 4–31–4–48
serial interface, for montip, 4–17–4–20,

4–30–4–48
shared-memory interface, for montip,

4–13–4–17
shared-memory interface, for target,

4–26–4–30
target drivers included, 4–21
target, for, 4–26–4–48, C–1–C–28
YARC montip drivers, 4–17
YARC target drivers, 4–30

communications interface
adding new, 4–8
closing, 4–13
example of synchronous connection, 5–3
exiting, pointer to, 4–7
identifying (using TDF array), 4–10
identifying type, 4–6
initial, 3–1
initializing, 4–12
initializing, pointer to, 4–6
parallel, 4–3
parallel, specifying (with –t option), 1–2
resetting, 4–12
resetting, pointer to, 4–7

serial, 4–3
serial, specifying (with –t option), 1–2
shared memory, 4–3
shared memory, specifying (with –t

option), 1–2, 2–2
specifying (with –t option), 1–2, 2–2
types supported, 4–3
valid interfaces, viii

CONF_REQ message, 5–17
CONFIG message, 3–2, 5–36–5–37
CONFIG_REQ message, composition of,

3–2
connection

successful, 3–2
synchronous, 3–1, 5–3

control signals, sending, 4–14
control-port register, 4–14
conventions, documentation, xv
COPROC_REG memory space, 5–14
COPY message, 5–27–5–28
COPY_ACK message, 5–47

D
D_CACHE memory space, 5–14
D_MEM memory space, 5–14
D_ROM memory space, 5–14
data types, for message interfaces, 5–6
debug messages. See messages, debug.
debugger front end (DFE), viii
DFE. See debugger front end.
DIP switches, setting, 4–13
documentation

conventions, xv
manual contents, xiii
reference material, xiii
users of, xiii

driver layer, overview, 4–1
drivers. See communication drivers.

MiniMON29K Target Interface Process: MONTIP Index–3

180

E
eb030hw.s file, C–1
EB29030 board

montip driver for, 4–14–4–16
target driver for, 4–27–4–30, C–1

EB29K board
montip driver for, 4–14–4–16
target driver for, 4–27–4–30, C–1

eb29khw.s file, C–1
endian, specifying big or little (with –le

option), 1–3
endian type, 5–6
ERROR message, 5–51
error messages, montip, for, A–1–A–3
examples

montip, using, 1–6
pcserver, using, 2–4
message interaction, 5–8
synchronous connection, of, 5–3

execution mode, specifying, 1–4
exit_comm_eb030() function, 4–16
exit_comm_eb29k() function, 4–16
exit_comm_serial() function, 4–20
EZ-030 target message driver, C–1
ez030hw.s file, C–1

F
files, search order, 1–5, 2–2
FILL message, 5–29–5–30
FILL_ACK message, 5–48
fill_memory_eb030() function, 4–16
fill_memory_eb29k() function, 4–16
fill_memory_serial() function, 4–20
front ends, debugger, viii

G
gdb, definition, viii
GLOBAL_REG memory space, 5–14
GO message, 5–33
go_eb030() function, 4–16
go_eb29k() function, 4–16
go_serial() function, 4–20

H
HALT message,

composition of, 3–1
description of, 5–50

handshake acknowledgement, 5–7
HIF (host interface), support for montip, xii
HIF_CALL message, 5–59
HIF_CALL_RTN message, 5–53
host, definition of, xv
host interface (HIF), support for montip, xii

I
I/O port address

specifying for montip (with –port
option), 1–4

specifying for pcserver (with –port
option), 2–2

I_CACHE memory space, 5–14
I_MEM memory space, 5–14
I_O memory space, 5–14
I_ROM memory space, 5–14

Index–4 MiniMON29K Target Interface Process: MONTIP

181

INIT message, 5–31–5–32
INIT_ACK message, 5–49
init_comm_eb030() function, 4–15
init_comm_eb29k() function, 4–15
init_comm_serial() function, 4–19
INT32 (*exit_comm)(), 4–7
INT32 (*fill_memory)(), 4–8
INT32 (*init_comm)(), 4–6
INT32 (*msg_recv)(), 4–6
INT32 (*msg_send)(), 4–6
INT32 (*read_memory)(), 4–7
INT32 (*reset_comm)(), 4–7
INT32 (*write_memory)(), 4–7
INT32 data type, 5–6
INT32 PC_mem_seg, 4–8
INT32 PC_port_base, 4–8
interface

communications. See communications
interface.

device-independent, 4–1
device-dependent, 4–1
parallel. See communications interface.
serial. See communications interface.
shared-memory. See communications

interface.
TIP. See target interface process (TIP).
UDI. See universal debugger interface

(UDI).
IPC (interprocess communication), with

UDI, xii

L
length field in messages, 5–5
LOCAL_REG memory space, 5–14
log file

between montip and target, 1–3
between pcserver and monitor, 2–3

loop count
specifying number to decrement while

waiting (with –bl), 1–3
specifying time out (with –T), 2–3
specifying time out (with –to), 1–5

lpt1: parallel port, 1–2
lpt2: parallel port, 1–2

M
mailbox register, 4–13
memory

filling, pointer to, 4–8
reading, pointer to, 4–7
window, 4–6, 4–13
writing, pointer to, 4–7

memory spaces
generic, 5–14
used in messages, 5–14

messages
acknowledgement, 5–7
alphabetical list of, 5–9–5–11
BKPT_RM, 5–25
BKPT_RM_ACK, 5–45
BKPT_SET, 5–23–5–24
BKPT_SET_ACK, 5–44
BKPT_STAT, 5–26
BKPT_STAT_ACK, 5–46
BREAK, 5–35
buffers. See message buffers.
byte ordering, 5–6
CHANNEL0, 5–54
CHANNEL0_ACK, 5–60
CHANNEL1, 5–61
CHANNEL1_ACK, 5–55
CHANNEL2, 5–62
CHANNEL2_ACK, 5–56
checksums, 5–2–5–5
classification of, 5–7
code field in, 5–5

MiniMON29K Target Interface Process: MONTIP Index–5

182

messages (continued)
communication system. See message

system.
complete transaction, 4–1
CONFIG, 5–36–5–37
CONFIG_REQ, 5–17
COPY, 5–27–5–28
COPY_ACK, 5–47
data types, 5–6
debug, 5–7, 5–15–5–51
endian type, 5–6
ERROR, 5–51
example interaction, 5–8
FILL, 5–29–5–30
FILL_ACK, 5–48
function containing base address, 4–8
function containing segment address, 4–8
GO, 5–33
HALT, 5–50
handshaking, 5–7
HIF_CALL, 5–59
HIF_CALL_RTN, 5–53
host-to-target list, 5–11
INIT, 5–31–5–32
INIT_ACK, 5–49
initial ones sent, 3–1–3–3
layer. See message layer.
length field, 5–5
maximum length, 5–5
memory spaces used in, 5–14
numbers, 5–9–5–14
operating-system, 5–7, 5–52–5–64
passing protocol, 5–7
pointers. See pointers.
READ_ACK, 5–41–5–42
READ_REQ, 5–19–5–21
receiving, 4–12
request, 5–7
requestor-to-acknowledgement list, 5–13
RESET, 5–16
semaphore, 4–1

sending, 4–12
specifying maximum size used by

montip (with –mbuf option), 1–3
STATUS, 5–38–5–40
STATUS_REQ, 5–18
STDIN_MODE, 5–64
STDIN_MODE_ACK, 5–58
STDIN_NEEDED, 5–63
STDIN_NEEDED_ACK, 5–57
STEP, 5–34
structure of, 5–5
system. See message system.
target drivers, C–1–C–28
target-to-host list, 5–12
transactions, logging (with –m option),

1–3, 2–3
WRITE_ACK, 5–43
WRITE_REQ, 5–21–5–23

message buffers
allocating, 4–11
clearing, 4–12
deallocating, 4–11
msg_buffer, 4–6

message layer
buffer (_msg_rbuf), 4–22
buffers, 4–11
montip, for, 4–11–4–13
overview, 4–1
pointers (_msg_next_p and

_msg_sbuf_p), 4–22
target, for, 4–22–4–25

message system
driver layer, 4–1
figure of, 4–2
introduction, xii
message layer, 4–1
MiniMON29K target, for, 4–21
montip, for, 4–5–4–10
overview, 4–1–4–3
target driver functions (TDF). See target

driver functions (TDF).
Mini_exit_comm() function, 4–13

Index–6 MiniMON29K Target Interface Process: MONTIP

183

Mini_go_target() function, 4–13
Mini_init_comm() function, 4–12
Mini_msg_exit() function, 4–11
Mini_msg_init() function, 4–11
Mini_msg_recv() function, 4–12
Mini_msg_send() function, 4–12
Mini_reset_comm() function, 4–12
MiniMON29K, messages, 5–1–5–64
mode

blocking (in polling), 4–6
execution, 1–4
nonblocking (in polling), 4–6
physical, 1–4
protected, 1–4
supervisor, 1–4

mondfe, definition, viii
montip

communication driver module, xii
converting UDI data structures, xii
definition, viii
documentation, xiii–xv
error messages, A–1–A–3
examples of using, 1–6
features of, viii–x
figure with mondfe, ix
host interface (HIF) support, xii
invoking, 1–2–1–6
message system module, xii
message system, for, 4–5–4–10
modules, xii
modules, figure of, xi
osboot support, xii
running on a remote PC from UNIX. See

pcserver.
software overview, viii–xii

msg.s file listing, B–1–B–8

msg_eb030_wait_for() function, 4–29
msg_eb030_write() function, 4–28–4–30
msg_eb29k_wait_for() function, 4–29
msg_eb29k_write() function, 4–28–4–30
msg_init() function, 4–23
msg_initcomm() function, 4–27–4–29,

4–31–4–34
msg_intr() function, 4–29–4–31
msg_recv_eb030() function, 4–15
msg_recv_eb29K() function, 4–15
msg_recv_serial() function, 4–18
msg_scc200_wait_for() function, 4–38
msg_scc200_write() function, 4–34–4–39
msg_send() function, 4–23
msg_send_eb030() function, 4–15
msg_send_eb29K() function, 4–15
msg_send_parport() function, 4–20
msg_send_serial() function, 4–18
msg_V_arrive label, 4–25
msg_wait_for() function, 4–24

N
NACK message, 5–2
nonblocking mode, 4–6

O
operating system, services, 4–1
operating-system messages. See messages,

operating-system.

MiniMON29K Target Interface Process: MONTIP Index–7

184

P
parallel interface

description of, 4–3
driver for, 4–20
specifying (with –t option), 1–2

parallel port
enabling and disabling (using mondfe),

1–2
limitation, 1–2
specifying (with –par option), 1–3
specifying I/O port base address (with –B

option), 2–2
specifying I/O port base address (with

–port option), 1–4
specifying PC memory address, 1–5

PATH environment variable, 1–5, 2–2
PC plug-in board

accessing memory, 1–5, 2–3
required option (–r), 1–4, 2–2
supported, 1–2, 2–2

PC plug-in board
examples of, 4–3
interface with montip, 4–3
monitor, location of, 4–21

PC_RELATIVE memory space, 5–14
PC_SPACE memory space, 5–14
pcserver

example of using, 2–4
figure illustrating, 2–1
invoking, 2–2–2–4
overview, 2–1

physical mode, 1–4
pointers

to function closing communications
interface, 4–7

to function filling memory, 4–8
to function initializing communication

interface, 4–6
to function reading from memory, 4–7
to function reporting receipt of, 4–6

to function resetting communications
interface, 4–7

to function resetting processor, 4–8
to function sending message, 4–6
to function writing to memory, 4–7

processor, resetting, 4–13
protected mode, 1–4

R
READ_ACK message, 5–41–5–42
read_memory_eb030() function, 4–16
read_memory_eb29k() function, 4–16
read_memory_serial() function, 4–20
READ_REQ message, 5–19–5–21
recv_msg buffer, 4–11
register, control port, 4–14
request message, 5–7
RESET message, 5–16
reset_comm_eb030() function, 4–16
reset_comm_eb29k() function, 4–16
reset_comm_serial() function, 4–20
retries

specifying number (with –M), 2–3
specifying number (with –re), 1–5

S
SA-29200 and SA-29205 target message

driver, C–1
SA-29200 board, target driver for,

4–31–4–48
SA-29205 board, target driver for,

4–31–4–48
sa200hw.s file, C–1–C–28
scc200.s file, C–1–C–28
scc8530.s file, C–1
searching, for files, 1–5, 2–2
send_msg buffer, 4–11

Index–8 MiniMON29K Target Interface Process: MONTIP

185

serial communications, checksums,
5–2–5–5

serial interface
description of, 4–3
montip driver for, 4–17–4–20,

4–30–4–48
specifying (with –t option), 1–2

serial port
specifying (with –com), 1–3
specifying (with –p), 2–3
valid values, 1–3, 2–3

serial_int() interrupt handler, 4–38–4–48
shared-memory interface

description of, 4–3
montip driver for, 4–13–4–17
specifying (with –t option), 1–2, 2–2
target driver for, 4–26–4–30

SPECIAL_REG memory space, 5–14
stand-alone execution board

examples of, 4–3
interface with montip, 4–3
monitor, location of, 4–21

STATUS message, 5–38–5–40
STATUS_REQ message, 5–18
STDIN_MODE message, 5–64
STDIN_MODE_ACK, 5–58
STDIN_NEEDED message, 5–63
STDIN_NEEDED_ACK, 5–57
STEP message, 5–34
supervisor mode, 1–4
synchronous connection

establishing, 3–1
example of, 5–3

syntax
montip, 1–2
pcserver, 2–2

T
target

definition of, xv
message system, for, 4–21

target driver functions (TDF)
data structure of, 4–5
on MS-DOS systems, 4–9–4–11
on UNIX systems, 4–10

target interface process (TIP), ii
target message system, file listing,

B–1–B–8
TBL_REG memory space, 5–14
TDF (target driver functions). See target

driver functions (TDF).
time out, specifying, 1–5, 2–3
TIP. See target interface process.
TLB (translation look-aside buffer) register,

1–4
translation look-aside buffer (TLB) register,

1–4

U
UDI. See universal debugger interface.
udi_soc file, 1–5, 2–3
UDICONF variable, 1–5, 2–4
udiconfs.txt file, 1–5, 2–3
universal debugger interface (UDI)

compliant debugger front ends, viii
configuration file for DOS, 1–5, 2–3
configuration file for UNIX, 1–5, 2–3
definition, viii
interprocess communication (IPC)

mechanism, xii
UNIX, running from, on a remote PC. See

pcserver.

MiniMON29K Target Interface Process: MONTIP Index–9

186

V
verbose mode, 2–3
void (*go)(), 4–8

W
WRITE_ACK message, 5–43
write_memory_eb030() function, 4–16
write_memory_eb29k() function, 4–16
write_memory_serial() function, 4–20
WRITE_REQ message, 5–21–5–23

X
xray29u, definition, viii

Y
YARC boards

montip drivers for, 4–17
target drivers for, 4–30

	Contents
	About MONTIP
	MONTIP Software
	MONTIP Features
	MONTIP Modules

	MONTIP Documentation
	About This Manual
	Suggested Reference Material
	MONTIP Documentation Conventions

	Using MONTIP
	Invoking MONTIP

	Using PCSERVER
	Invoking PCSERVER

	Initial Communications Between MONTIP and the Target
	MiniMON29K Message Communication System
	Message Communications Interface
	MONTIP Message System
	MONTIP Message-Layer Interface
	MONTIP Drivers
	MONTIP Shared-Memory Interface Drivers
	MONTIP Serial-Interface Driver
	MONTIP Parallel-Port Interface Driver

	MiniMON29K Target Message System
	MiniMON29K Target Message-Layer Interface
	MiniMON29K Target Drivers
	Target Shared-Memory Interface Drivers
	Target Serial-Interface Drivers

	MiniMON29K Messages
	Message Checksum Tags for Serial Communications
	MiniMON29K Message Description
	Message Structure
	Byte Ordering
	Message Definition
	Message Classification
	Message-Passing Protocol
	Message Numbers

	MiniMON29K Debug Messages
	Message 0 (0h): RESET (Reset Processor)
	Message 1 (1h): CONFIG_REQ (Configuration Request)
	Message 2 (2h): STATUS_REQ (Status Request)
	Message 3 (3h): READ_REQ (Read Request)
	Message 4 (4h): WRITE_REQ (Write Request)
	Message 5 (5h): BKPT_SET (Set Breakpoint)
	Message 6 (6h): BKPT_RM (Remove Breakpoint)
	Message 7 (7h): BKPT_STAT (Breakpoint Status)
	Message 8 (8h): COPY (Copy Data)
	Message 9 (9h): FILL (Fill Memory)
	Message 10 (Ah): INIT (Initialize Target)
	Message 11 (Bh): GO (Execute Code)
	Message 12 (Ch): STEP (Step Execution)
	Message 13 (Dh): BREAK (Stop Execution)
	Message 33 (21h): CONFIG (Target Configuration)
	Message 34 (22h): STATUS (Target Status)
	Message 35 (23h): READ_ACK (Read Memory)
	Message 36 (24h): WRITE_ACK (Data Written)
	Message 37 (25h): BKPT_SET_ACK (Breakpoint Set)
	Message 38 (26h): BKPT_RM_ACK (Breakpoint Removed)
	Message 39 (27h): BKPT_STAT_ACK (Breakpoint Status)
	Message 40 (28h): COPY_ACK (Data Copied)
	Message 41 (29h): FILL_ACK (Memory Filled)
	Message 42 (2Ah): INIT_ACK (Target Initialized)
	Message 43 (2Bh): HALT (Execution Halted)
	Message 63 (3Fh): ERROR (Error Detected)

	Operating-System Messages
	Message 64 (40h): HIF_CALL_RTN (HIF_CALL Return)
	Message 65 (41h): CHANNEL0 (Data at Channel 0)
	Message 66 (42h): CHANNEL1_ACK (Channel 1 Ack)
	Message 67 (43h): CHANNEL2_ACK (Channel 2 Ack)
	Message 68 (44h): STDIN_NEEDED_ACK (Standard Input Needed)
	Message 69 (45h): STDIN_MODE_ACK (Standard Input Mode)
	Message 96 (60h): HIF_CALL (HIF Call)
	Message 97 (61h): CHANNEL0_ACK (Channel 0 Acknowledgement)
	Message 98 (62h): CHANNEL1 (Write Channel 1)
	Message 99 (63h): CHANNEL2 (Write Channel 2)
	Message 100 (64h): STDIN_NEEDED (Standard Input Needed)
	Message 101 (65h): STDIN_MODE (Standard Input Mode)

	MONTIP Error Messages
	MiniMON29K Target Message System
	msg.s File

	Target Message Drivers
	scc200.s File
	sa200hw.s File

	Index

