MIiNIMONZ29K
Target Interface Process
MONTIP

MiniIMON29K ™ Target Interface Process: MONTIP, Release 3.0

© 1991, 1992, 1993 by Advanced Micro Devices, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
Advanced Micro Devices, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the
Rights in Technical Data and Computer Software clause at 252.227-7013. Advanced Micro Devices, Inc., 5204 E. Ben
White Blvd., Austin, TX 78741-7399.

29K, Am29000, Am29005, Am29030, Am29035, Am29050, Am29200, Am29205, Am29240, Am29243, Am29245,
EB29K, EB29030, EZ-030, MiniMON29K, SA-29200, SA-29205, SA-29240, and XRAY29K are trademarks and AMD

is a registered trademark of Advanced Micro Devices, Inc.

High C is a registered trademark of MetaWare, Inc.

MS-DOS is a registered trademark of Microsoft, Inc.

Sun is a registered trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX Software Laboratories.

YARC ATM is a trademark of YARC Systems Corporation.

Other product or brand names are used solely for identification and may be the trademarks or registered trademarks of
their respective companies.

4% The text pages of this document have been printed on recycled paper consisting of 50% recycled fiber and
'-v virgin fiber; the post-consumer waste content is 10%. These pages are recyclable.

Advanced Micro Devices, Inc.
5204 E. Ben White Blvd.
Austin, TX 78741

Contents

About MONTIP

MONTIP Software.o, i.....
MONTIP FeatUIreso] i ...
MONTIP MOUIES. ..., V...
MONTIP DocUmMENtatioN. ... Vii..
About This Manual ... Vil ...
Suggested Reference Material... viii
MONTIP Documentation Conventions................ccoooeiiiiiii i, iX
Chapter 1
Using MONTIP
Invoking MONTIP ... 1-2.
Chapter 2
Using PCSERVER
INnvOKing PCSERVER. ... 2-2
Chapter 3

Initial Communications Between MONTIP and the Target
Initial Communications Between MONTIP and the Target................... 3-1

MiniMON29K Target Interface Process: MONTIP [

Chapter 4

MiniMON29K Message Communication System

Message Communications Interface............................. 4-3
MONTIP Message SYSIeM. ... 4-5
MONTIP Message-Layer Interface......................oco L -11
MONTIP DIiVErS ... A =13
MONTIP Shared-Memory Interface Drivers.................................. 4-13
MONTIP Serial-Interface Driver.........................coci 4-17
MONTIP Parallel-Port Interface Driver..........................ooo) 4-20
MiniMON29K Target Message System............................ooo . 421
MiniMON29K TargetMessage-Layer Interface................................... 4-22
MIiniIMON29K Target Drivers..................cociiii . A=26
Target Shared-Memory Interface Drivers...................................... 4-26
Target Serial-Interface Drivers...4 -30
Chapter 5
MinIMON29K Messages
Message Checksum Tags for Serial Communications......................... 5-2
MiniMON29K Message Description... 5-5
Message STrUCTULE. 5-5
Byte Ordering. ... 5-6.
Message Definition..................... 5-6
Message Classification ... 5-7
Message-Passing Protocol.................................... 5-7
Message NUMDEIS. ... 5-9
MiniIMON29K Debug MeSSages. ... 5-15
Message O (OhRESET (Reset Processor)..................................... 5-16
Message 1 (LhEONFIG_REQ (Configuration Request).................. 5-17
Message 2 (2hBTATUS_REQ (Status Request)............................ 5-18

i MiniMON29K Target Interface Process: MONTIP

Message 3 (BhREAD_REQ (Read Request)................................. 5-19

Message 4 (AhWRITE_REQ (Write Request)................................ 5-21
Message 5 (5hBKPT_SET (Set Breakpoint).................................. 5-23
Message 6 (6hBKPT_RM (Remove Breakpoint)............................ 5-25
Message 7 (ThBKPT_STAT (Breakpoint Status)............................ 5-26
Message 8 (8hEOPY (Copy Data)........................ooo] 5-27
Message 9 (QhEILL (Fill Memory) ... 5-29
Message 10 (Ah)NIT (Initialize Target)..................................... 531
Message 11 (Bh3O (Execute Code) ..., 5-33
Message 12 (ChBTEP (Step Execution)..................ocoooiin, 5-34
Message 13 (DhBREAK (Stop Execution)................................... 5-35
Message 33 (21hEONFIG (Target Configuration).......................... 5-36
Message 34 (22h$TATUS (Target Status).................................... 5-38
Message 35 (23hREAD_ACK (Read Memory)............................. 5-41
Message 36 (24hWWRITE_ACK (Data Written).............................. 5-43
Message 37 (25hBKPT_SET_ACK (Breakpoint Set)...................... 5-44
Message 38 (26hBKPT_RM_ACK (Breakpoint Removed).............. 5-45
Message 39 (27hBKPT_STAT_ACK (Breakpoint Status)................ 5-46
Message 40 (28hCOPY_ACK (Data Copied)................................ 5-47
Message 41 (29hFILL_ACK (Memory Filled) 5-48
Message 42 (2AhINIT_ACK (Target Initialized)...........................] 5-49
Message 43 (2BhMALT (Execution Halted)................................ 5-50
Message 63 (3FhERROR (Error Detected)..................................5-5b1
Operating-System MESSageSo oo 5-52
Message 64 (40hHIF_CALL_RTN (HIF_CALL Return)................... 5-53
Message 65 (41hEHANNELO (Data at Channel 0)......................... 5-54
Message 66 (42hEHANNEL1_ACK (Channel 1 Ack)..................... 5-55
Message 67 (43hEHANNEL2_ ACK (Channel 2 Ack)..................... 5-56
Message 68 (44h3TDIN_NEEDED_ACK
(Standard Input Needed)...............c 5-57
Message 69 (45h$TDIN_MODE_ACK (Standard Input Mode)........ 5-58

MiniMON29K Target Interface Process: MONTIP ii

Message 96 (60hyIF_ CALL (HIFCall).....................................| 5-59
Message 97 (621hEHANNELO_ACK

(Channel 0 Acknowledgement) ... 5-60
Message 98 (62hEHANNEL1 (Write Channel 1)............................ 5-61
Message 99 (63hEHANNEL2 (Write Channel 2)...........................| 5-62
Message 100 (64h$TDIN_NEEDED (Standard Input Needed)..... ... 5-63
Message 101 (65h$TDIN_MODE (Standard Input Mode)............... 5-64
Appendix A
MONTIP Error Messages
MONTIP Error MESSAQES.o A2

Appendix B

MiniIMONZ29K Target Message System
MSQ.S File. B-2.

Appendix C

Target Message Drivers

SCC200.8 File ... Cc-2
SA200NW.S File.o C=-24

Index

v MiniMON29K Target Interface Process: MONTIP

Figures and Tables

Figures
Figure 0-1. MiniMON29K MONTIP with UDI-Conformant DFE,
MONDFE i ..
Figure 0-2. MiniMON29K Target Interface Process Modules............. %
Figure 2—-1. Role of PCSERVER in the MiniMON29K Product 2-1
Figure 4-1. MiniMON29K Message Communication
System Layers 4-2
Tables
Table 0-1. Notational Conventions.. iX
Table 5-1. Alphabetical List of Messages..........................o 5-9
Table 5-2. Host-to-Target Message Definitions.......................... 5-11
Table 5-3. Target-to-Host Message Definitions......................... 5-12
Table 5-4. Requestor/Acknowledgement
Message Correspondence. 5-13
Table 5-5. Memory SPaces. 5-14

MiniMON29K Target Interface Process: MONTIP Vv

&

About MONTIP

The Advanced Micro Devices (AMP) MiniMON29K ™ target interface process
(TIP), montip, is the software application program that is invoked by a debugger
front end (DFE) to communicate with a 29KFamily target system running the
MiniMON29K target-resident monitor softwamontip conforms to AMD’s
Universal Debugger Interface (UDI) and can be used with UDI-compliant
debugger front ends, such awndfe, which provides the MiniMON29K

product’s line-oriented user interfaceay29u, which provides the

XRAY29K™ product’s window-based user interfacegdb, the GNU

debugger.

This chapter first describes the features and modules ofdhép software,
then discusses the documentation associatedwaittiip.

MiniMON29K Target Interface Process: MONTIP Vil

MONTIP Software

The features of theontip software are discussed below, followed by a
description of the four modules of the program.

MONTIP Features

viii

montip is the software application program that is invoked by a debugger front
end (DFE) to communicate with a 29K Family target system running the
MiniMONZ29K target-resident monitor softwam@ontip conforms to AMD’s
Universal Debugger Interface (UDI) and can be used with UDI-compliant
debugger front ends, such awndfe, which provides the MiniMON29K
product’s line-oriented user interfacgay29u, which provides the XRAY 29K
product’s window-based user interfacegdb, the GNU debuggdr. Figure 0—1
shows the relationship betwesmontip andmondfe.

montip is the target interface process (TIP) for 29K Family-based target systems
running the MiniMON29K software, and runs on a host computer system such
as a PC or a Sthworkstation. The communications interface betwaentip
and the target is the MiniMON29K Message Communications Interface (see

for more information on the interface). This interface can be either a
shared-memory interface of PC plug-in boards, or a serial communications link
of a stand-alone board. In addition, for target systems with a parallel port,
montip supports unidirectional parallel-port communications for downloading
files from a PC.

MiniMON29K Target Interface Processor: MONTIP

JJIANOW ‘FH4Q ueWIojuoD-1an Yim diLNOW M6ZNOWIUIN “T—0 8inbiH

wnipay

R
suoneIIUNWWOoD
abessay
MEZNOWIUIN

Ian

! IEYITe!

)

, uoneounwwo)
' [euas

.

' JEYITg]

)

X Alows
' pareys
.

SIaALd
uonediunwwo)

odl
|
“ a|Npon
uoddnsg
_ 4IH
|
|
‘l_ SERIVELS
3 s|led 1an o1 _ dILNOW
o) puBWWOD | 0} s|[eD
v y 1a101d181U] 34ANOW __ - 1an walsAs
M__ 3 pueWWOoD H8AUGD _ HaAUG)D obessa
3s 34ANOIN HN6ZNOWIUIN
Tn 1
N
| |
|
J4dNOIN | dILNOI

MiniMON29K Target Interface Process: MONTIP

iX

The communications betweearontip and the application running on the target

take place using MiniMON29K messages, which are structured streams of bytes.
describes the structure and usage of the messages currently defined.)
There are two types of messages:

¢ Debug messages. The debug messages are usszhlip to communicate
with the MiniMONZ29K monitor running on the target.

¢ OS messages. The OS messages are ugsadrip to communicate with the
application or the operating system running on the target.

montip includes the serial communications drivers to send and receive messages
for both MS-DOS and UNIX systenmontip also includes the communications
drivers for the shared memory interface of the PC plug-in boards supported by
AMD. The communications interface betweanntip and the target must be
specified on the command linembntip at the time of invocation.

The MiniMON29K monitor software running on the target includes AMD’s
osbootand its host interface (HIF) kernel by default. The HIF kernel provides
some of its services usimgontip running on an intelligent host computer
systemmontip includes the support routines for the HIF kernel of AMD’s
osbootrunning on the target. These routines are used to perform I/O operations
on the host file system that are requested by the target application program.

MiniMON29K Target Interface Processor: MONTIP

MONTIP Modules

montip is made up of four modules, which are described on the following pages
and illustrated in Figure 0-2.

NOTE: In this manual, “target” refers to the target system running the
MiniMON29K monitor software—esbootand its HIF kernel, along with the
debugger. “Host” refers to the system runmimgntip.

MONTIP
UDI IPC
[I
| I
| I
| |
uDI
| o MiniMON29K Procedure |
Communications Message Call to
S@ Drivers System MONTIP <::>|Z
Service
To | Converter | To DFE
TargeiI :
| Host HIF |
| MiniMON29K Support Universal |
| Message Module Debugger |
Communications Interface
: Interface :

Figure 0-2. MiniMONZ29K Target Interface Process Modules

MiniMON29K Target Interface Process: MONTIP Xi

Xii

UDI Procedure Call to MONTIP Service Converter

This module implements the different UDI procedure calls using the services of
the Message System module. It converts the UDI data structuresitp data
structures and calls the Message System function to build the appropriate
message. The module then sends the message to the 29K Family-based target
running the MiniMONZ29K monitor software. Depending on the service
requested, this module waits for the results. The results (if any) received from
the target are put in UDI data structures and returned to the caller (debugger
front end) through the UDI layer. The actual implementation of the transmission
of the results depends on the UDI interprocess communication (IPC) mechanism
used.

MiniMON29K Message System

This module implements the services to build, send, and receive MiniMON29K
messages. It sends and receives messages using the communications handlers of
the MiniMON29K Message Communications Interface. Every message has a
message header followed by data, if applicable. The message header contains a
message-code field and a message-length field. The different message codes and
their corresponding message structures are defified in Chhpter 5. When a
MiniMON29K product message is received from the target systemtip

examines the message-code field. If the message is one of the host interface
(HIF) messagesnontip invokes the Host HIF Support Module to service the
message. Otherwismontip saves the message in its receive buffer until a UDI
procedure call requests it.

Host HIF Support

This module implements part of the run-time support provided by the HIF kernel
of osboot It is used to perform 1/O operations on the host computer’s file

system. The HIF kernel alsbootsends a HIF_CALL messagerntmntip. This
message is received and handled by this module and the results are sent back to
the HIF kernel in a HIF_CALL_RTN response message.pter 5 for

more information on the HIF_CALL and HIF_CALL_RTN messages.)

Communications Drivers

This module contains the drivers to transmit and receive character(s) through the
MiniMON29K Message Communications Interface. It includes the serial
communications handlers for MS-D®&nd UNIX® systems, and the
shared-memory handlers for AMD’s 29K Family-based PC plug-in boards (such
as the AMD EB29K" or EB29030" board).

MiniMON29K Target Interface Processor: MONTIP

MONTIP Documentation

This documentation is written for programmers usirantip to develop
applications based on a 29K Family target system running the MiniMON29K
monitor, and for programmers customizimgntip. For more information on

these microprocessors and microcontrollers, see the]list of suggested reference
materials that follows.

About This Manual

Chapter 1: “Using MONTIP” describes how to invakentip and provides
command-line syntax and descriptions of all command-line options.

Chapter 2: “Using PCSERVER” describes the set up and yseseiverto
communicate between MiniMON29K software running a 29K Family-based PC
plug-in board (such as the AMD EB29K and a remotenontip, which uses
MiniMON29K messages.

Chapter 3: “Initial Communications Between MONTIP and the Target” briefly
describes the initial messages sentriontip and the target system to establish a
synchronous connection.

Chapter 4: “MiniMON29K Message Communication System” describes how
messages are sent. The message and driver layers of the system are described, as
well as the communications interfaces supported.

Chapter 5: “MiniMON29K Messages” describes the messages usedriiip
to communicate with a target system running the MiniMON29K software.

Appendix A: “MONTIP Error Messages” describes the error messages reported
by montip to the DFE.

Appendix B: “MiniMON29K Target Message System” describes the code for the
target message system, contained imikg.sfile.

Appendix C: “Target Message Drivers” lists the filenames for the EB29K,

EB29030", EZ-030™, SA-29200" and SA-29205' target message drivers.
The code for the SA-29200 and SA-29205 driver is listed.

MiniMON29K Target Interface Process: MONTIP Xili

Suggested Reference Material

Xiv

The following reference documents may be of use toniatip software user:

¢ Am29000"and Am29005 User’'s Manualnd Data Sheet
Advanced Micro Devices, order number 16914

¢ Am29030" and Am29035 Microprocessors User's Manual and Data Sheet
Advanced Micro Devices, order number 15723

¢ Am29050" Microprocessor User’s Manual
Advanced Micro Devices, order number 14778

¢ Am29050" Data Sheet
Advanced Micro Devices, order number 15039

¢ Am29200" and Am29205 RISC Microcontroller User’s Manual and Data
Sheet
Advanced Micro Devices, order number 16362

¢ Am29240", Am29245', and Am29243 RISC Microcontrollers
User’'s Manual and Data Sheet
Advanced Micro Devices, order number 17741

e High C® 29K™ User’s Manual
Advanced Micro Devices

e High C® 29K™ Reference Manual
Advanced Micro Devices

e Host Interface (HIF) Specification
Advanced Micro Devices, order number 11014

¢ MiniIMON29K™ User Interface: MONDFE
Advanced Micro Devices, order number 18442

¢ Processor Initialization and Run-Time Services: OSBOOT
Advanced Micro Devices, order number 18275

e Programming the 29K RISC Family
by Daniel Mann, P T R Prentice-Hall, Inc. 1994

* RISC Design-Made-Ea®ypplication Guide
Advanced Micro Devices, order number 16693

» Universal Debugger Interface (UDI) Specification
Advanced Micro Devices, order number 18276

MiniMON29K Target Interface Processor: MONTIP

MONTIP Documentation Conventions

The Advanced Micro Devices maniMiniMON29K Target Interface Process:
MONTIPuses the conventions shown in the following table (unless otherwise
noted). These same conventions are used in all the 29K Family support product
manuals.

Table 0-1. Notational Conventions

Symbol Usage

Boldface Indicates that characters must be entered
exactly as shown. The alphabetic case is
significant only when indicated.

Italic Indicates a descriptive term to be replaced with a
user-specified term.

Typewriter face Indicates computer text input or output in an exam-
ple or listing.

[1 Encloses an optional argument. To include the in-

formation described within the brackets, type only
the arguments, not the brackets themselves.

{} Encloses a required argument. To include the in-
formation described within the braces, type only the
arguments, not the braces themselves.

Indicates an inclusive range.
Indicates that a term can be repeated.

Separates alternate choices in a list—only one of
the choices can be entered.

= Indicates that the terms on either side of the sign
are equivalent.

NOTE: In this manual, “target” refers to the target system running the
MiniMON29K monitor software, which includessbootand its HIF kernel,
along with the debugger. “Host” refers to the system runmiogtip.

MiniMON29K Target Interface Process: MONTIP XV

Chapter 1 &
Using MONTIP

montip is the MiniMON29K target interface process (TIP) which conforms to
the Universal Debugger Interface (UDI). It is the software application program
that interfaces to 29K Family-based hardware platforms running the
MiniMON29K target-resident monitor software.

montip is invoked by a UDI-compliant debugger front end (DFE) program, such
asmondfe. Both the DFE and the TIP run on the host computer. The
communication betweemontip, which is running on the host machine, and the
target-resident monitor software running on the 29K Family-based hardware
platform takes place using MiniMON29K product messages. These messages are
streams of bytes which are interpreted by the message system that is included
with montip and the target monitor softwdre. Chapter 5 describes the structure
and meanings of each of the various MiniMON29K product messages that are
included withmontip and the target monitor software.

The communications drivers for a shared-memory interface (for PC plug-in
boards that are supported by AMD) and for serial communications are part of
montip. The serial communications driver can support baud rates of up to 38400
bps on both MS-DOS and UNIX hosts (Eee pagé 5-2 to ensure reliable serial
communications at higher baud rates).

montip can be used with UDI-compliant debugger front end (DFE) programs
such asmondfe, which provides the MiniMON29K product’s line-oriented user
interface xray29u, which provides the XRAY29K product’s window-based user
interface; orgdb, the GNU debugger.

NOTE: Se¢ Chaptel 2 if you want to run programs from a UNIX machine on a
29K Family PC plug-in board (such as the EB29030 or EB29K Execution
Boards) located in a remote PC.

MiniMON29K Target Interface Process: MONTIP 1-1

Invoking MONTIP

1-2

Syntax:

where:

montip —ttargetinterfacd—baudbaudRatg

[-bl blockLoopcourjt[-com serialPor{ [le]

[-m messageFile[—mbuf messageBufferSize
[-parparallelPorf] [-port portAddres§—R | —P | —S]
[-r romObjectFilg [-re retried[-segsegmentAddrels
[-to timeoutLoopcount

—ttargetinterface

Specifies the type of communications interface that exists between
the host runningnontip and its target. The target is either a 29K
Family stand-alone board running the MiniMON29K
target-resident monitor software,mrserverif debugging on a
remote PC plug-in boardhontip selects the appropriate
communications driver based on the interface specified with this
parameter (s¢e Chapter 4 for more information on the drivers).

The value otargetinterfacemust be one of the followingb29k
eb03Q Icb29k, yarcrev8, serial, orparal_1. The first four values
specify that the target interface is a shared memory interface and
that it is similar to that of the EB29K, EB29030, YARC ATMor
YARC Rev. 8 PC plug-in board, respectively.

Whenserial is specifiedmontip assumes that the communications
interface uses a serial communications link. The desired baud rate
at which message transmission should take place can be specified
using the-baud option.

When running on an MS-DOS host, the target interface can be
specified aparal_1. Whenparal_1 is specifiedmontip uses a

parallel port on the PQptl: orlpt2:) to send messages to the

target, and receives the response messages from the target through
the serial port. Therefore, it requires the use of both a serial port
and a parallel port on the MS-DOS host.

mondfe provides thdip command, which can be used to enable
and disable the use of the parallel portimyntip. When the
parallel port is disablednontip uses the serial port to send and
receive messages. Thpar option can be used to specify the
parallel port to use (the defaultljg1:).

MiniMON29K Target Interface Process: MONTIP

—baudbaudRate
Specifies the baud rate to be used over the serial communications
link. The default value dfaudRatds 9600. (Sele page %2 for
information on ensuring reliable serial communications at higher
baud rates.)

—bl blockLoopcount
Specifies the loop count to decrement when waiting to receive an
arbitrary number of bytes. The default valuélkifckLoopcounis
40000.

—comserialPort
Specifies the serial port to be usednbyntip for sending
messages to, and receiving messages from, the target system. If the
parallel port option{par) is also specified on the command line,
montip sends messages to the target using the specified parallel
port and receives messages from the target using the specified
serial port. For MS-DOS hosts, the valid valuesesfalPortare
coml:andcom?2: The default value dferialPortis com1: for
MS-DOS hosts anftlev/ttya for UNIX hosts.

—le Specifies that the orientation of the target system is little endian.
Otherwisemontip assumes that the orientation of the target is big
endian.

—mmessageFile
Specifies the filename to be used to log the message transactions
that occur betweemontip and the MiniMON29K target-resident
monitor. If messageFilés not specified, no log file is created.

—mbufmessageBufferSize
Specifies the maximum size of a message to be usenbbip
when communicating with the target system. The value of
messageBufferSitgignored if it exceeds the maximum message
buffer size allowed by the target message system.

—parparallelPort
Specifies the parallel port on the PC thneintip should use to
send messages to the target. The serial port optammj must
also be specified when using this option, simaatip receives the
messages from the target through the serial port.

MiniMON29K Target Interface Process: MONTIP 1-3

—portportAddress

“R|-P|-S

—rromObjec

MiniMON29

Specifies the I/O-port base address of the PC plug-in board. The
default value oportAddresss 208h. This option is ignored when
the target interface is a serial communications link.

Specifies the desired execution mode for the downloaded
application programs when used with the AMd§boothost

interface specification (HIF) kernel provided with the

MiniMON29K product. The selected mode stays in effect for the
entire debugging session. THR option specifies physical mode,
and—P specifies protected mode. The HIF kernel provided with the
MiniMON29K monitor software implements protected mode by
using a one-to-one mapping of physical addresses to virtual
addresses using the Translation Look-Aside Buffer (TLB) registers.
The—-Soption can be used to run application programs in
supervisor mode with no translation. The default is protected mode
(=P). In cases where the processor does not support protected
mode—P has no effect.

tFile

Specifies the name of the common object file format (COFF) file,

if any, to be downloaded into the hardware platform’s writable

ROM space. The COFF file is downloaded to the target system
before it is resetnontip requires that the MiniMON29K
target-resident monitor software, along with its message system, be
downloaded and running on the target before debugging can take
place. Therefore, this option must be specified when the target is a
PC plug-in board.

The MiniMON29K target-resident monitor software provides
debugging functions which are invokedrogntip through
MiniMON29K product messages. The drivers for serial
communications and for the shared-memory interfaces of a PC
plug-in board are included withontip and the MiniMON29K
target-resident monitor software.

K Target Interface Process: MONTIP

When the-r option is specifiednontip checks the current
working directory for the specified object file. If the object file is
not found,montip searches the directories specified inghth
environment variable by replacing the last directory VilithFor
example, if thgpath environment variable is set to

¢:\29k\bin;c:\29k\lib;d:\c600\bin;

then the directoriesiontip searches for the target object to
download arec:\29k\lib, c:\29k\lib, andd:\c600\lib (in that
order).

—reretries Specifies the number of retries to perform while sending a message
to the target system. The default valueetfiesis 1000.

—segsegmentAddress
Specifies the address of the PC memory segment to be used by
montip to access the PC plug-in board’s memory. The default
value ofsegmentAddress DO0Oh. This option is ignored when the
target interface is a serial communications link.

—totimeoutLoopcount
Specifies the loop count to decrement before timing out while
waiting to receive a message from the target system. The default
value oftimeoutLoopcounis 10000.

Files
udiconfs.txt UDI configuration file for MS-DOS hosts

udi_soc UDI configuration file for UNIX hosts

NOTE: If the appropriate UDI configuration file does not reside in the working
directory of the debugger-front-end (DFE) program, an error message is posted.
To use a configuration file in another directory, defineUB#CONF

environment variable by setting it to the full path of the UDI configuration file
you want to use. AftddDICONF is defined, the DFE program looks for the

UDI configuration file in the path specified bJDICONF. If the file is not

found, the program looks for it in the working directory.

MiniMON29K Target Interface Process: MONTIP 1-5

1-6

Example
eb29k_id montip.exe —t eb29k —r eb29k.os

This entry in thaudiconfs.txt file (for MS-DOS hosts) associates the TIP ID
eb29k_id(first field) with montip, the MiniMON29K TIP. Whereb29k idis

used as the TIP ID to a UDI-compliant DFE program (engndfe), montip is
invoked and the string of optionst(@nd-r) is passed tmontip. The—t option
specifies that the target interface is similar to that of the EB29K Execution Board.
The-r option specifies the filename of the object consisting of the MiniMON29K
target-resident monitor software, message system, and theosktidvtand HIF
kernel. This common object file format (COFF) file is downloadethbwtip

before the target is reset.

Example
Icb29k_id montip.exe —t Icb29k —r Ich29k.0s —port 2A0 —seg CCO00

This entry in theudiconfs.txt file (for MS-DOS hosts) associates the TIP ID
Icb29k_id (first field) with montip, the MiniMON29K TIP. Whericb29k_id is
used as the TIP ID to a UDI-compliant DFE program (eagndfe), montip is
invoked and the string of optionst(—r, —port, and—-seg is passed tmontip.
The—t option specifies that the target interface is similar to that of the YARC
ATM PC plug-in board. Ther option specifies the filename of the object
consisting of the MiniMON29K target-resident monitor software, message
system, and the AMDsbootand HIF kernel. This common object file format
(COFF) file is downloaded byontip before the target is reset. Theort

option specifies the 1/0-port base address to be usatbhtip to communicate
with the PC plug-in board. Thesegoption specifies the segment base address
of the PC memory that should be usedvmntip to access the memory on the
PC plug-in board.

Example
serial_id AF_UNIX sock384 montip —t serial —baud 38400

This entry in theudi_socfile (for UNIX hosts) associates the TIP #erial_id
(first field) with montip, the MiniMON29K TIP. Wherserial_id is used as the
TIP ID to a UDI-compliant DFE program (e.gpndfe), montip is invoked and
the string of options-{ and—baud) is passed tmontip. The—t option specifies
that the target interface is a serial communications link ~baed option
specifies 38400 as the baud rate usethbgitip to communicate with the target.
Since no-comoption is given, the default serial paidév/ttya) will be used.

MiniMON29K Target Interface Process: MONTIP

Chapter 2 &
Using PCSERVER

pcserveris a PC software application that lets you run programs written for an
AMD 29K Family processor on a 29K Family PC plug-in board (such as the
AMD EB29K or EB29030 Execution Boards) located in a remote PC from a
UNIX machine. pcserveris not necessary when running programs on a
stand-alone board.) Once you have connected a null-modem cable from a serial
port on the remote PC to a serial port on your UNIX hmxsterveruses
MiniMON29K product messages to communicate with the target interface
processrfiontip) software running on your UNIX host.

PC Host Computer System(s)

User’s HIF PC Plug-In
Application Board

MiniMON29K MiniMON29K MiniMON29K MiniMON29K
Target Debugger < ¢>
'Y (DBG_CORE) PCSERVER MONTIP MONDFE
OSBOOT T

~

MiniMON29K

ImwmcC

M Universal

c essgge;_ Debugger

ommunications Interface
Interface

Figure 2-1. Role of PCSERVER in the MiniMONZ29K Product

MiniMON29K Target Interface Process: MONTIP 2-1

Invoking PCSERVER

Syntax: pcserver -romObjectFile-t targetinterface
[-B basePortAddred4—b baudRatfi—M messageRetrigs
[-m messageFile[—p serialPori[—s segmentAddreks
[T timeoui [-V]

where:

—r romObjectFile
Specifies the name of the common object file format (COFF) file
to download into the PC plug-in board’s writable ROM space.
The COFF file is downloaded to the target system before it is
resetpcserverrequires that the MiniMON29K target-resident
monitor software be downloaded and running on the target before
debugging can take place.

pcserversearches the working directory for the specified object
file. If the object file is not foundycserversearches the
directories specified in theath environment variable by
replacing the last directory withp . For example, if theath
environment variable is set to

¢:\29Kk\bin;c:\29k\lib;d:\c600\bin;

then the directoriegcserversearches for the target object to
download are:\29Kk\lib, c:\29k\lib, andd:\c600\lib (in that
order).

—ttargetinterface
Specifies the type of communications interface that exists
betweerpcserverand the 29K Family hardware platform running
the MiniMON29K target-resident monitor softwapeserver
selects the appropriate communications driver based on the
interface specified with this parameter.

The value otargetinterfacemust be one of the followingb29k
eb03Q Icb29k, oryarcrev8. These values specify that the target
interface is a shared-memory interface and that it is similar to that
of the AMD EB29K, AMD EB29030, YARC ATM, or YARC

Rev. 8 PC plug-in boards, respectively.

—B basePortAddress
Specifies the 1/O port base address of the PC plug-in board. The
default value obasePortAddresis 208h.

2-2 MiniMON29K Target Interface Process: MONTIP

—bbaudRate
Specifies the baud rate to be used over the serial communications
link between the PC hosting the 29K Family PC plug-in board
and the UNIX host runningnontip. The default value of
baudRatés 9600.

—M messageRetries
Specifies the number of retries to perform while sending a
message tmontip (running on the UNIX host). The default
value ofmessageRetriés 1000.

—mmessageFile
Specifies the filename to be used to log the message transactions
that occur betweepcserverand the MiniMON29K
target-resident monitor. thessageFilés not specified, no log file
is created.

—p serialPort
Specifies the serial port to be useddogerverfor
communication withmontip (running on the UNIX host). The
valid values okerialPortarecoml: andcomz2.. The default
value iscoml..

—ssegmentAddress
Specifies the address of the PC memory segment to be used by
pcserverto access the PC plug-in board’s memory. The default
value ofsegmentAddress DOOOh.

—Ttimeout Specifies the loop count to decrement before timing out while
waiting to receive a message fromontip (running on the UNIX
host). The default value ¢imeoutis 10000.

-V Specifies verbose mode. In this mode, all of the messages are
displayed on the screen.

Files

udiconfs.txt UDI configuration file for MS-DOS hosts

udi_soc UDI configuration file for UNIX hosts

MiniMON29K Target Interface Process: MONTIP 2-3

NOTE: If the appropriate UDI configuration file does not reside in the

working directory of the debugger-front-end (DFE) program, an error message
is posted. To use a configuration file in another directory, define the
UDICONF environment variable by setting it to the full path of the UDI
configuration file you want to use. AftefDICONF is defined, the DFE

program looks for the UDI configuration file in the path specified by
UDICONF. If the file is not found, the program looks for it in the working
directory.

Example
pcserver —t eb29k —r eb29k.os —p com1: —b 9600

In the above example, the parameter specifies that the target interface is
similar to that of the EB29K Execution Board. Freparameter specifies the
filename of the object consisting of the MiniIMON29K target-resident monitor
software, message system, and the Adbootand HIF kernel. This common
object file format (COFF) file is downloaded montip before the target is
reset. The-p option specifies the serial port to use when receiving
MiniMON29K product messages fromontip.

NOTE: The two machines must be connected through a null-modem cable.
The—-b option specifies the baud rate to use for communicationgmatitip.

MiniMON29K Target Interface Process: MONTIP

Chapter 3 &

Initial Communications Between
MONTIP and the Target

This chapter briefly describes the initial messages semiooyip and the target
system to establish a synchronous connection.

The Message System modulenedntip communicates with its peer on the target
system (sde Figure 4-1 on page 4-2). They communicate using MiniMON29K
messages, which are describdd in Chapter 5. The communications interface
between the host runnimgontip and the 29K Family-based target system
running the MiniMONZ29K monitor software can be either a shared-memory
interface of PC plug-in boards or a serial-communications link. The drivers to
transmit and receive the messages across the communications interface are
provided with the MiniMON29K product software (§ee Chagter 4 for more
information on the drivers).

When the target system is powered up, the target sends a HALT message to the
host. The HALT message is composed of six 32-hit words shown below in
hexadecimal digits:

0000002B, 00000010, 00000005, <pcO_value>, <pcl_value>, 00000000
wherepcO_valueandpcl_valueare the values of the Program Counter 0 (PCO)

and Program Counter 1 (PC1) processor special-purpose registers.

NOTE: The messages would be followed by a 32-bit checksum of the message
bytes when the communications interface is a serial communications link (see
for more information).

MiniMON29K Target Interface Process: MONTIP 3-1

3-2

When a debugger front end issues a connection requasitip, montip sends
a CONFIG_REQ message to the target. The CONFIG_REQ message is
composed of two 32-bit words shown below in hexadecimal digits:

00000001, 00000001

In response to the CONFIG_REQ message frantip, the target sends a
CONFIG message tmontip. On receipt of the CONFIG messag®ntip
reports a successful connection to the debugger front end.

From this point onmontip services the UDI requests received from the

debugger front end by sending appropriate message(s) to the target. The results
received from the message responses from the target are sent back to the
debugger front end. Thusiontip can operate with any UDI-conformant

debugger front end.

MiniMON29K Target Interface Process: MONTIP

Chapter 4 &

MIinIMONZ29K Message
Communication System

The message systemrmbntip running on the host-computer system
communicates with the message system of the monitor running on the 29K
Family-based target system. The communications take place using

MiniMON29K messages, which are structured streams of bytes. The
MiniMON29K message protocol defines an acknowledgement message for

every message, except for the initial message (HALT message) sent by the target
system when powered up. After the message systems establish a synchronous
connection (semr 3), the target behaves as the message server by
responding to the request messages receivedrromtip with

acknowledgement messages containing the results of the operation performed on
the target.

A request—acknowledge message pair denotes one complete message
transaction. The message system locks the communications channel until a
transaction is completed. After the transaction is completed, the communications
channel is freed for subsequent messages. This locking and freeing of the
communications channel is done using a message semaphore. On the host
system, the message system frees up the communications channel for subsequent
messages after receiving the acknowledgement message from the target.

The message systems on the host and target use the communication drivers to
physically send and receive the messages across the message communications
interfacel Figure 4}1 shows the MiniMON29K Message Communication System
layers—the message layer and the driver layer. The message layer provides a
device-independent interface to the communications interface. The driver layer
implements the device-dependent routines to operate the communications device
to send and receive messages. The driver layer may use the underlying
operating-system services to read and write to the communications device.

MiniMON29K Target Interface Process: MONTIP 4-1

MONTIP 29K Target System

Message Message
Message System - System Message

Layer Layer

777777777 - =
. Communication Communication ;

Driver h -— . Driver

Layer Drivers Drivers Layer
777777777 |7777777777+77777777

Message Communications Interface

Figure 4-1. MiniMON29K Message Communication System Layers

The remainder of this chapter describes the components of the MiniMON29K
message communication system:

« [“Message Communications Interface” on page 4-3

[“MONTIP Message Systern” on page 4-5

| “MONTIP Message-Layer Interfade” on page 4-11

* | “"MONTIP Drivers']on page 4-13

« | “MiniMON29K Target Message System” on page 4-21

« | “MiniMON29K Target Message-Layer Interfa¢e” on page 4-22
* [*MiniIMON29K Target Drivers| on page 4-26

NOTE: Throughout this chapter, “target” refers to the 29K Family-based target
system running the MiniMONZ29K monitor software; “host” refers to the
computer system runnirgontip.

MiniMON29K Target Interface Process: MONTIP

Message Communications Interface

The MiniMON29K target interface processontip, runs on a host computer
system, such as a PC or a Sun workstatmamtip communicates with the
29K-Family target system running MiniMON29K monitor software using
MiniMON29K messages, which are structured streams of bytes. The host and
target support (and include drivers for) the following communications interfaces:

* Shared memory interface of a PC plug-in board

In this type of interface, a data path exists between the PC host running
montip and the PC plug-in board, which allom®ntip to access the
memory on the PC plug-in board. Examples of PC plug-in boards hosting
29K Family microprocessors are: the AMD EB29K Execution Board, the
AMD EB29030 Execution Board, the YARC Rev 8 board, and the YARC
ATM (Sprinter) board.

¢ Serial communications interface of a stand-alone execution board

In this type of interface, the serial port of the host runniegtip and the

serial port of the stand-alone execution target system are connected via a
serial cable. Examples of such systems are: the AMD SA-29200
Demonstration Board hosting the Am29200 microcontroller, the AMD
SA-29205 Demonstration Board hosting the Am29205 microcontroller, and
the AMD EZ-030 Demonstration Board hosting the Am29030
MIiCroprocessor.

e Parallel port interface between a PC and a stand-alone execution board (for
MS-DOS hosts only)

In this type of interface, the parallel port of the PC is connected to the
parallel port on the stand-alone execution board via a parallel cable.
Examples of such systems are: the AMD SA-29200 Expansion Board
hosting the Am29200 or Am29205 microcontroller, and the AMD
SA-29240" board hosting the Am29240 microcontroller.

MiniMON29K Target Interface Process: MONTIP 4-3

The drivers for the different communications interface are provided with the
MiniMON29K product software. The communications drivers provide the
functions to initialize the interface, and transmit and receive message byte
streamsmontip has built-in drivers for different communications interfaces and
allows the user to select the appropriate drivers at the time of invocation. The
target monitor includes only the drivers for the communications interface of that
particular hardware system. For example, if the message communications
interface is a serial communications link, then only the serial drivers are
included in the target monitor. This helps keep the target monitor software small
and excludes redundant software which could hinder debugging.

4-4 MiniMON29K Target Interface Process: MONTIP

MONTIP Message System

The type of message communications interface that exists between the host
computer system runningontip and the 29K target system running the
MiniMON29K monitor software is specified at the timenobntip invocation.
Based on the interface type specifiemntip selects the low-level
communications drivers from a table of entries that performs the necessary
device operations to send and receive MiniMON29K messages.

The Message System modulenadntip defines a table of Target Driver
Functions (TDF), using the following data structure:

typedef struct target_dep_funcs {

char target_name[15];
INT32 (*msg_send)(union msg_t *msg_buffer, INT32
port_base);

INT32 (*msg_recv)(union msg_t *msg_buffer, INT32
port_base, INT32 mode);

INT32 (*init_comm)(INT32 port_base, INT32 mem_seq);

INT32 (*reset_comm)(INT32 port_base, INT32 mem_seq);

INT32 (*exit_comm)(INT32 port_base, INT32 mem_seq);

INT32 (*read_memory)(INT32 mspace, ADDR32 addr, BYTE
*buf, INT32 count, INT32 port_base, INT32
mem_seq);

INT32 (*write_memory)(INT32 mspace, ADDR32 addr,
BYTE *buf, INT32 count, INT32 port_base, INT32
mem_seq);

INT32 (*fill_memory)(void);

INT32 PC_port_base;

INT32 PC_mem_seg;

void (*go)(INT32 port_base, INT32 mem_seq);

} TDF;

MiniMON29K Target Interface Process: MONTIP 4-5

The different elements of the above structure are explained below.

char target_name[15]
Contains a name that identifies the particular type of
communications interface.

INT32 (*msg_send)()
Points to the function that sends the MiniMON29K message
contained in the message bufimsg_buffer. For shared memory
interfaces, th@ort_baseparameter contains the base address of
the 1/0 port on the PC on which the 29K Family-based PC plug-in
board is configured. This function call returns after the complete
message is transmitted. The return value is a 0 (zero) if the
message was successfully sent, and a —1 (minus 1) to indicate a
failure.

INT32 (*msg_recv)()
Points to the function that polls the interface and reports the receipt
of a new message from the target. The received message is stored
in msg_buffer, which must be large enough to hold the incoming
MiniMON29K message. Themodeparameter specifies whether
the polling should be blocking or nonblocking. In blocking mode,
the function waits until a message is received. In nonblocking
mode, the function times out waiting for a new message. For
shared-memory interfaces, thert_baseparameter contains the
base address of the I/0O port on the PC on which the 29K
Family-based PC plug-in board is configured. This function returns
a —1 (minus 1) if no message was received, and returns the
message number if a valid message was received in the buffer.

INT32 (*init_comm)()
Points to the function that initializes the communications interface.
For shared memory interfacgmrt_basespecifies the base
address of the I/O port to control the board, enesn_segspecifies
the segment address of the memory “window” on the PC host to
use with that 29K Family-based PC plug-in board configuration.

MiniMON29K Target Interface Process: MONTIP

INT32 (*reset_comm)()
Points to the function that resets the communications interface. For
shared-memory interfacgmrt_basespecifies the base address of
the 1/0 port to control the board, amem_segspecifies the
segment address of the memory “window” on the PC host to use
with that 29K Family-based PC plug-in board configuration.

INT32 (*exit_comm)()
Points to the function that closes the communications interface. For
shared-memory interfacgmrt_basespecifies the base address of
the 1/O port to control the board, anmem_segspecifies the
segment address of the memory “window” on the PC host to use
with that 29K Family-based PC plug-in board configuration.

INT32 (*read_memory)()
Points to the function that reads from the memory on the PC
plug-in board hosting the 29K Family microprocessor. This
function is valid only for shared-memory interfaces. This function
readscount number of bytes from the 29K Family target memory
space into the buffer pointed to BYF. The origin for the read
operation is specified by the memory space and offset specified by
themspaceandaddr parameters. Theort_baseparameter
specifies the base address of the I/O port to control the board, and
mem_segspecifies the segment address of the memory “window”
on the PC host to use with that 29K Family-based PC plug-in board
configuration. A 0 (zero) is returned if the read operation was
successful; a —1 (minus 1) if unsuccessful.

INT32 (*write_memory)()
Points to the function that writes to the memory on the PC plug-in
board hosting the 29K Family microprocessor. This function is
valid only for shared-memory interfaces. This function writes
count number of bytes from buffelbuf, to the offset and memory
space specified by treldr andmspaceparameters. The
port_baseparameter specifies the base address of the I/O port to
control the board, antiem_segspecifies the segment address of
the memory “window” on the PC host to use with that 29K
Family-based PC plug-in board configuration. A 0 (zero) is
returned if the write operation was successful; a -1 (minus 1) if
unsuccessful.

MiniMON29K Target Interface Process: MONTIP 4-7

INT32 (*fill_memory)()
Points to the function that fills, with a specified pattern, the
memory on the PC plug-in board hosting the 29K Family
microprocessor. It currently is not used by the message system.

INT32 PC_port_base
Contains the base address of the I/O port on the PC host on which
the DIP switches on the 29K Family-based PC plug-in board is
configured. This value is used only for shared- memory interfaces.

INT32 PC_mem_seg
Contains the segment address of the 16-Kbyte memory “window”
on the PC on which the 29K Family-based PC plug-in board is
configured. This value is used only for shared- memory interfaces.

void (*go)()
Points to the function that resets the 29K Family processor on the
PC plug-in board. It is used only for shared-memory interfaces.
Theport_baseparameter specifies the base address of the 1/0 port
to control the board, andem_segspecifies the segment address
of the memory “window” on the PC host to use with that 29K
Family-based PC plug-in board configuration.

A TDF array is initialized with the driver routines for the different message
communications interfaces that are supportechbgtip. The TDF entries for
the MS-DOS and UNIX systems are described on the following pages.

New communications interfaces can be added by adding an entry into the table
of driver functions.

The string (first value) in each entry is the identifier to useontip’s

command-line at the time of invocatianontip selects the corresponding
communications drivers from the TDF table defined.

MiniMON29K Target Interface Process: MONTIP

Target Driver Functions (TDF) Array on MS-DOS Systems
On MS-DOS systemsnontip uses the following table of entries for the
target-driver functions array. These entries include the support routines for
shared-memory interfaces of PC plug-in boards based on the 29K Family.

TDF TDF[] ={

"eb29030", msg_send_eb030, msg_recv_eb030,
init_comm_eb030, reset_comm_eb030,
exit_comm_eb030, read_memory_eb030,
write_memory_eb030, fill_memory_eb030, (INT32)
0x208, (INT32) 0xd000, go_eb030,

"eb030”, msg_send_eb030, msg_recv_eb030,
init_comm_eb030, reset_comm_eb030,
exit_comm_eb030, read_memory_eb030,
write_memory_eb030, fill_memory_eb030, (INT32)
0x208, (INT32) 0xd000, go_eb030,

"eb29k”, msg_send_eb29k, msg_recv_eb29k,
init_comm_eb29k, reset_comm_eb29k,
exit_comm_eb29k, read_memory_eb29k,
write_memory_eb29k, fill_memory_eb29k, (INT32)
0x208, (INT32) 0xd000, go_eb29k,

"yarcrev8”, msg_send_eb29k, msg_recv_eb29k,
init_comm_eb29k, reset_comm_eb29k,
exit_comm_eb29k, read_memory_eb29k,
write_memory_eb29k, fill_memory_eb29k, (INT32)
0x208, (INT32) 0xd000, go_eb29k,

"lcb29Kk”, msg_send_Icb29k, msg_recv_Icb29k,
init_comm_Ich29k, reset comm_Icb29k,
exit_comm_Icb29k, read_memory_Icb29k,
write_memory_lcb29k, fill_memory_Icb29k,
(INT32) 0x208, (INT32) 0xd000, go_Ich29k,

"paral_1", msg_send_parport, msg_recv_serial,
init_comm_serial, reset_comm_serial,
exit_comm_serial, read_memory_serial,
write_memory_serial, fill_memory_serial,

(INT32) -1, (INT32) -1, go_serial,

"serial”, msg_send_serial, msg_recv_serial,
init_comm_serial, reset_comm_serial,
exit_comm_serial, read_memory_serial,
write_memory_serial, fill_memory_serial,

(INT32) -1, (INT32) -1, go_serial,

!I\On

h

MiniMON29K Target Interface Process: MONTIP 4-9

4-10

The string (first value) in each entry shown identifies the communications
interface as follows:

e “eb29030" or “eb030" specifies an interface similar to that of the EB29030
PC plug-in board.

o “eb29k” specifies an interface similar to that of the EB29K PC plug-in board.

e ‘“yarcrev8” specifies an interface similar to that of the YARC Rev 8 PC
plug-in board.

¢ “lcb29k” specifies an interface similar to that of the YARC ATM (Sprinter)
PC plug-in board.

e “paral_1" specifies a unidirectional parallel communications interface for
montip to send messages (data) to the target, and a serial interfavenfip
to receive messages (data) from the target.

¢ “serial” specifies a bidirectional serial communications interface between
montip and the target.

Target Driver Functions (TDF) Array on UNIX Systems

In addition to the above entries, on UNIX systems, the target-driver-functions
array also contains the entry shown below to communicate with MiniMON29K
pcserverto execute programs on PC- hosted plug-in boards.

"pcserver”, msg_send_serial, msg_recv_serial,
init_comm_serial, reset_comm_pcserver,
exit_comm_serial, read_memory_serial,
write_memory_serial, fill_memory_serial,
(INT32) -1, (INT32) -1, go_serial,

MiniMON29K Target Interface Process: MONTIP

MONTIP Message-Layer Interface

The message layer defines two buffers to hold the incoming and outgoing

messages:
union msg_t *send_msg_buffer;
union msg_t *recv_msg_buffer;

The variablesend_msg_bufferpoints to the message buffer that is used to send
messages to the target, and the varisdde_msg_bufferpoints to the message
buffer that is used to receive messages from the target. These buffers are
accessible to the driver layer also. The buffers are allocated by the
Mini_msg_init() function, which initializes the message layer.

The message layer showirl in Figurd 4—1 on page 4-2 provides a device-
independent procedural interface to operate the message communications
interface. The message-layer functions index into the TDF array to call the
appropriate low-level functions to perform the necessary operation. These
functions are listed and described below.

INT32 Mini_msg_init(char *target_comm_name);
The message layer ofontip should be initialized before using the
message systervlini_msg_init() allocates the message buffers to
send and receive messages. Based otathet_comm_name
string, it calls the driver function from the TDF table to initialize
the communications interface. A 0 (zero) is returned on successful
initialization, and a —1 (minus 1) is returned to indicate failure.

INT32 Mini_msg_exit(void);
Mini_msg_exit() closes the communication device and deallocates

the message buffers. A return value of 0 (zero) indicates successful
completion, and a —1 (minus 1) indicates failure.

MiniMON29K Target Interface Process: MONTIP 4-11

INT32 Mini_msg_send(void);
Mini_msg_send()sends the message contained in the send buffer,
send_msg_bufferto the target. This calls the driver function to
transmit the message bytes to the target. For shared-memory
interfaces, the driver-layer function copies the message to the
target memory on the PC plug-in board, and interrupts the target
message system. For serial interface and parallel interface, the
driver-layer routines transmit the message one byte at a time to the
target, and return after the entire message is transmitted to the
target. A O (zero) is returned to indicate successful transmission of
the message, and a —1 (minus 1) is returned to indicate failure.

INT32 Mini_msg_recv(INT32 RecvMode);
Mini_msg_recv() returns a —1 (minus 1) if no new message was
received into the receive buffeecv_msg_buffer When a new
message is received, the MiniMON29K message code is returned
to the caller. Th&®ecvModeparameter can be eithBLOCK , to
indicate to wait until a message is receivedlGNBLOCK to
indicate to return if a message is not receildidi_msg_recv()
calls the driver-layer function, which handles the incoming
message bytes. For shared- memory interfaces, the driver layer
polls the mailbox address for a message interrupt from the PC
plug-in board. When a message interrupt is posted, the message is
read into the receive buffegcv_msg_buffer from the target
system memory. For serial interfaces on MS-DOS systems, each
incoming message byte interruptentip. The interrupt handler
gets the incoming byte from the device and stores it in
recv_msg_buffer For serial interfaces on UNIX systems, the
driver function uses thead() system call to receive the incoming
bytes. The bytes received are storecbtv_msg_buffer

INT32 Mini_init_comm(void);
Mini_init_comm() initializes the communications interface. Based
on the type of interface specified, the appropriate driver function
from the TDF table is invoked.

INT32 Mini_reset_comm(void);
Mini_reset_comm()resets the communications interface and
clears the message buffers. Based on the type of interface
specified, the appropriate driver function from the TDF table is
called.

4-12 MiniMON29K Target Interface Process: MONTIP

INT32 Mini_exit_comm(void);
Mini_exit_comm() closes the communications interface. Based on
the type of interface specified, the appropriate driver function from
the TDF table is called.

INT32 Mini_go_target(void);
Mini_go_target() puts the 29K Family microprocessor on the
target system in Reset mode by asserting the RESET input signal.
This is valid only for shared-memory interfaces, whemtip
downloads the ROM monitor onto the target and asserts the
RESET input signal to execute the ROM monitor.

MONTIP Drivers

The driver functions that operate the communications device interfaces
implemented iimontip are described in the sections that follow.

MONTIP Shared-Memory Interface Drivers

The interface between the PC host runmmantip and the PC plug-in board
hosting the 29K Family microprocessor is a shared-memory interface. The
interface provides some byte-wide 1/O port registers and a 16-Kbyte “window”
of memory, which is shared by both the PC host and the PC plug-in board. The
base address (start address) of the I/O port registers can be configured with the
DIP switches on the PC plug-in board. The segment address of the memory
“window” on the PC host also can be specified with the DIP switches on the PC
plug-in board. The 16-Kbyte memory “window” can be made to address the
memory on the PC plug-in board by programming the I/O port registers, thus
providing a data path between the host and the target. A bidirectional
communication path is provided by the I/O port register called the “mailbox”
register. The “mailbox” register is used by the host to interrupt the target and
vice versa, unless the interrupts are masked on the board with the DIP switches.

Refer to the hardware reference manual of the PC plug-in board for more
information on DIP switches and their uses. For MiniMON29K software, the
DIP switches must be set to enable interrupts from the PC host to the target
board, and to disable the interrupts from the target to the PC host.

MiniMON29K Target Interface Process: MONTIP 4-13

4-14

montip provides the driver routines for the following 29K Family-based PC
plug-in boards. The drivers for the AMD boards (the EB29K and the EB29030
board) are described in more detail on the following pages.

e AMD’s EB29K board

¢ AMD’s EB29030 board

¢ YARC’s Rev 8 board

¢ YARC's ATM (Sprinter) board

The I/O port base address and the segment address of the memory “window” to
use can be specified on the command linmoifitip at the time of invocation
using the-port and the-segoptions.

The EB29K and EB29030 Interface Drivers

The interface between the PC host runmmantip and AMD’s EB29K and
EB29030 boards are quite similar. The target-driver functions for the EB29K
interface and the EB29030 interface are listed in the TDF array for “eb29k” and
“eb29030” target communications types, respectively{(see pade 4-9).

The EB29K and EB29030 boards running the MiniMON29K monitor software
are controlled from the PC host runnmgntip through four byte-wide 1/0

ports and a 16-Kbyte shared-memory “window.” The I/O ports start sequentially
at offset O from the base address specified when the board is configured with
DIP switches. At offset Oh from the I/O port base is the control-port register. The
control-port register is used to send control signals from the PC to the target
board. The segment address of the 16-Kbyte shared-memory window is set by
writing to the control-port register. At offset 1h and 2h from the 1/O port base are
two address registers. The address registers are used to set the base address of
the 16-Kbyte memory “window” on the target which is mapped to the segment
address of the memory “window” on the PC host. Thus by accessing the
shared-memory window on the PC haosgntip can access any memory

location on the target board. At offset 3h from the I/O port base is the “mailbox”
register. The “mailbox” register is mapped to offset 80800000h in the EB29K
address space, and is mapped to offset 90000000h in the EB29030 address
spacemontip writes to the “mailbox” register to generate an interrupt on the
target.

The driver routines for the EB29K and EB29030 boards are described below.

MiniMON29K Target Interface Process: MONTIP

INT32 msg_send_eb29k(union msg_t *msg_ptr, INT32 port_base)

INT32 msg_send_eb030(union msg_t *msg_ptr, INT32 port_base)
Themsg_send_eb29k@ndmsg_send_eb030functions send a MiniMON29K
message to the target, and interrupt the target execution. The message contained
in msg_ptr is copied to the receive buffer on the target memory space. The
receive buffer of the target monitor is at offset 80000404h in the EB29K address
space, and at offset 404h in the EB29030 address space. After copying the
message onto the target receive buffesntip interrupts the target by writing to

the “mailbox” register. Theort_baseparameter specifies the 1/O port base
address on the PC host. A 0 (zero) is returned for successful completion,
otherwise a —1 (minus 1) is returned.

INT32 msg_recv_eb29k(union msg_t *msg_ptr, INT32 port_base, INT32 Mode)
INT32 msg_recv_eb030(union msg_t *msg_ptr, INT32 port_base, INT32 Mode)

Themsg_recv_eb29k(andmsg_recv_eb030(junctions poll the “mailbox”

register for new incoming messages. The monitor running on the target writes
FFh to the “mailbox” register to indicate a new message in the buffer. The target
also stores the pointer to where the message is on the target memory space—at
offset 80000400h in the EB29K address space, and at offset 400h in the
EB29030 address spacasg_recv_eb29k(andmsg_recv_eb030(jead the

contents of the message from the target memory intmsige ptr buffer.

montip then writes FFh to the “mailbox” register to indicate receipt of the
message, and resets to 0 (zero) the content of offset 80000400h in the EB29K
memory space and offset 400h in EB29030 memory spaceoftidase

parameter specifies the I/O port base address on the PC hobtodibe

parameter is not used. The message code of the new message received is
returned, otherwise a —1 (minus 1) is returned to indicate no new message in the
buffer.

INT32 init_comm_eb29k(INT32 port_base, INT32 mem_seg)

INT32 init_comm_eb030(INT32 port_base, INT32 mem_seq)
Theinit_comm_eb29k()andinit_comm_eb030()functions write to the

control-port register to set the base address of the memory window on the PC
host tomem_seg The functions also write to the address registers to set the
corresponding memory window to offset Oh in the target memory space. These
functions set the control bit to enable interrupts from the PC host to the target.
Theport_baseparameter specifies the 1/0-port base address on the PC host. A0
(zero) is returned for successful completion; otherwise, a —1 (minus 1) is
returned.

MiniMON29K Target Interface Process: MONTIP 4-15

INT32 reset_comm_eb29k(INT32 port_base, INT32 mem_seq)
INT32 reset_comm_eb030(INT32 port_base, INT32 mem_seq)
Thereset_comm_eb29k(andreset_comm_eb030(junctions are the same as

theinit_comm_eb29k()andinit_comm_eb030()functions, respectively.

INT32 exit_comm_eb29k(INT32 port_base, INT32 mem_seq)

INT32 exit_comm_eb030(INT32 port_base, INT32 mem_seqg)
Theexit_comm_eb29k()andexit_comm_eb030(Junctions are defined as
empty functions that always return a 0 (zero).

INT32 read_memory_eb29k(INT32 mspace, ADDR32 addr, BYTE *data,
INT32 count, INT32 port_base, INT32 mem_seqg)

INT32 read_memory_eb030(INT32 mspace, ADDR32 addr, BYTE *data,
INT32 count, INT32 port_base, INT32 mem_seqg)

Theread_memory_eb29k(Jandread_memory_eb030(functions program the
address control registers with the offset specifieatlighr. This positions the
16-Kbyte memory “window” in the target address space from wdwret bytes
of data from the memory on the target board are read inttataduffer in the
PC host memory space. A 0 (zero) is returned if the read was performed
successfully; otherwise, a —1 (minus 1) is returned.

INT32 write_memory_eb29k(INT32 mspace, ADDR32 addr, BYTE *data,
INT32 count, INT32 port_base, INT32 mem_seqg)

INT32 write_memory_eb030(INT32 mspace, ADDR32 addr, BYTE *data,
INT32 count, INT32 port_base, INT32 mem_seq)

Thewrite_memory_eb29k()andwrite_memory_eb030()functions program

the address control registers with the offset specifiedién. This positions the
16-Kbyte memory “window” in the target address space wtauat bytes from
thedata buffer are copied from the PC host memory. A O (zero) is returned if the
write was performed successfully, otherwise a —1 (minus 1) is returned.

void go_eb29k(INT32 port_base, INT32 mem_seq)

void go_eb030(INT32 port_base, INT32 mem_seq)
Thego_eb29k()andgo_eb030(¥unctions toggle the RESET bit in the
control-port register. Writing a 1 (one) to the reset bit in the control register
resets the 29K Family microprocessor and starts execution.

INT 32 fil_memory_eb29k(void)

INT 32 fil_memory_eb030(void)

Thefil_memory_eb29k() andfil_memory_eb030()functions are defined as
empty functions that always return a 0 (zero).

4-16 MiniMON29K Target Interface Process: MONTIP

The YARC Rev 8 and YARC ATM Interface Drivers
The target-driver functions for the YARC Rev 8 and the YARC ATM interface
are listed in the TDF array for “yarcrev8” and “lcb29k” target communications

types, respectively (see page 4#-9).

MONTIP Serial-Interface Driver

The communications betweemontip running on a host computer system and a
stand-alone target execution board running the MiniMON29K monitor software
is through a serial interface. The serial port on the host computer is connected to
the serial port on the stand-alone execution board via a serial cable. The baud
rate and the host serial port thabntip should use for communications can be
specified on the command line at the time of invokirantip using the-baud
and-comoptions.

montip implements a simple serial interface with one stop bit, no parity, and 8
bits per byte. Every message is appended with a 32-bit checksum value, which is
the sum of all the bytes in the message[(see pafje 5-2 for more information on
checksums). The receiver checks the checksum received with the checksum of
the message bytes received before posting a valid message interrupt to the
message system. If the received message is valid, then an ACK message is sent
to the transmitter. If the received message is invalid, then a NACK message is
sent to the transmitter. The ACK and NACK messages are handled by the
communications driver routines. The receipt of an ACK message marks the
completion of a message transaction.

The target-driver functions for the serial interface defined in the TDF array for
the “serial” target communications type 4-9) are described below.

MiniMON29K Target Interface Process: MONTIP 4-17

INT32 msg_send_serial(union msg_t *msg_ptr, INT32 port_base)
Themsg_send_serial(Junction is used to send the MiniMON29K message
contained ifsg_ptr to the target via the serial interface. fuet _base

parameter is ignored. Timsg_send_serial(junction computes the checksum

for the message, which is the sum of all the bytes of the message. The function
appends the checksum to the end of the message. Note timeigthetr buffer

should be large enough to append a checksum at the end of the message. The
message and its checksum are then transmitted to the target using the
send_bfr_serial()function, which uses the underlying operating-system services
to transmit the message bytes. After transmitting the message and the checksum,
themsg_send_serial(Junction waits to receive an ACK message from the

target to indicate successful transmission. If an ACK message is received,
msg_send_serial(Jyeturns a 0 (zero) to indicate successful transmission of the
message. If a NACK message is receivesg_send_serial(Jesets the serial
interface and resends the message. The maximum number of attempts to resend
the message is specified by thre command-line option. A =1 (minus 1) is

returned to indicate failure during transmission of the message.

INT32 msg_recv_serial(union msg_t *msg_ptr, INT32 port_base, INT32 Mode)
Themsg_recv_serial(Jfunction is called to find out if a new message has
arrived. It returns the message received imtkg_ptr buffer. TheMode
parameter is set to eithBLOCK or NONBLOCK . WhenMode is set to
NONBLOCK , msg_recv_serial(yeturns immediately if no new message has
arrived. WherMode is set taBLOCK , msg_recv_serial(waits (blocks) until a
message is received from the target. The length of the wait can be specified
using the-bl command option. Thegort_baseparameter is ignored.

Themsg_recv_serial(Yfunction calls theecv_bfr_serial() function, which

copies the received message bytes from the underlying operating-system buffer
or the circular buffergerial_io_buffer in MS-DOS hosts) to the message

msg_ptr buffer.msg_recv_serial(returns if a complete message header (8
bytes) has not arrived.

4-18 MiniMON29K Target Interface Process: MONTIP

From the message header received, the number of bytes to follow the header is
determinedmsg_recv_serial()then callgecv_bfr_serial() to receive the

remaining bytes plus the 32-bit checksum value. The checksum of the received
message is computed and compared with the checksum value received from the
target. If the checksums are equal, an ACK message is sent to the target, and
msg_recv_serial(yeturns the message code of the received message. If the
checksums are not equal, a NACK message is sent to the target, and a —1 (minus
1) is returned to the caller to indicate failure while receiving a message from the
target.

INT32 init_comm_serial(INT32 port_base, INT32 mem_seg)
This function initializes the serial interface depending on the host used and the
options given tanontip on the command line.

On MS-DOS hosts, thieit_comm_serial() function uses the BIOS services to
initialize the serial interface. Based on the 1/O port specified tedbm option,

the 1/0O-port base address and the interrupt line for the serial communications
controller SCC8259 are determined. The serial port is initialized for the baud
rate specified on the@ontip command line. The transmit interrupt is disabled
such thamontip uses a polling loop while transmitting message bytes to the
target. The receive interrupt of the serial port is enabled to generate an interrupt
for every incoming byte from the target. Tihé_comm_serial() function

installs the serial port interrupt handiserial_int(), to handle the receive

interrupts.

void interrupt serial_int()

Theserial_int() interrupt handler buffers the incoming characters into a circular
buffer and raises a flag if the buffer overflows. The circular buffer,
serial_io_buffer, is initialized by thenit_comm_serial() function. It returns a 0
(zero) to indicate successful completion, and a —1 (minus 1) to indicate a failure
termination.

On UNIX hosts, thénit_comm_serial() function opens the serial port specified
by the—comcommand-line option for reading and writing usingdpen()

system call. The serial-port parameters such as the baud rate, character size,
parity, and number of stop bits are set usingdbt() system call. The serial

port is configured to perform nonblocking read and write operations. The serial
port input and output buffers are flushed to discard their previous contents. It
returns a 0 (zero) to indicate successful completion, and a —1 (minus 1) to
indicate failure termination.

MiniMON29K Target Interface Process: MONTIP 4-19

INT32 reset_comm_serial(INT32 port_base, INT32 mem_seqg)

On MS-DOS hosts, this function resets the circular buffer and discards the
previous contents of the buffer. This function clears any communications errors
that might have occurred and any receive interrupts that are pending to be
handled. A O (zero) is returned to indicate successful completion, and a —1
(minus 1) to indicate failure.

On UNIX hosts, this function resets the input and output buffers of the serial
port using theoctl() system call. It returns a 0 (zero) to indicate successful
completion, and a —1 (minus 1) to indicate failure termination.

INT32 exit_comm_serial(INT32 port_base, INT32 mem_seqg)

On MS-DOS hosts, this function resets the circular buffer, and installs the
original vector corresponding to the serial port. It returns a O (zero) to indicate
successful completion, and a —1 (minus 1) to indicate failure termination.

On UNIX hosts, this function resets the input and output buffers of the serial
port and closes the serial port using ¢hlese()system call. It returns a 0 (zero)
to indicate successful completion, and a —1 (minus 1) to indicate failure
termination.

read_memory_serial()

write_memory_serial()

fill_memory_serial()

The functionsvrite_memory_serial(), read_memory_serial() and
fill_memory_serial() are defined as empty functions and always return a —1
(minus 1).

void go_serial(INT32 port_base, INT32 mem_seq)
This function is an empty function and returns immediately.

MONTIP Parallel-Port Interface Driver

4-20

The parallel port interface is available for the PC only and is unidirectional
(messages are sent to the target through the parallel port and received from the
target through the serial port). Thus, the functions are the same as those
described for serial communications. The exception is the replacement of the
msg_send_seriafunction with themsg_send_parportfunction.

MiniMON29K Target Interface Process: MONTIP

MiniIMONZ29K Target Message System

The MiniMON29K message system on the target is the message server for the
debugger and the application program running on the target system. It sends
messages to and receives message fnomtip running on the host computer
system. The target message system and its communications drivers are coded in
29K assembly language. The functions do not require any processor registers to
be reserved for their use, and they execute in their own address space. The
message layer provides a device-independent interface to the message
communications interface. The driver layer implements the device-dependent
functions to send and receive message bytes across the message communications
interface. The message-layer functions and the driver functions are written
according to the AMD calling conventions.

The MiniMON29K message-layer functions are the same for all target systems.
The MiniMON29K product software includes the drivers for AMD-supported
29K Family-based target systems to send and receive messages to and from
montip running on the host. The drivers included with the MiniMON29K
product are:

e Shared-memory interface drivers for AMD’s EB29K, AMD’s EB29030,
YARC's Rev 8, and YARC'’s ATM (Sprinter) PC plug-in boards.

» Serial communications drivers for SCC8530 device on AMD’s EZ-030
stand-alone execution board, for the Am29200 on-chip serial port on AMD’s
SA-29200 stand-alone execution board, and for the Am29205 on-chip serial
port on AMD’s SA-29205 stand-alone execution board.

e Parallel-port driver to receive messages through the Am29200 or Am29205
on-chip parallel port on AMD’s SA-29200 expansion board, and through the
Am29240 on-chip parallel port on AMD’s SA-29240 board.

The appropriate drivers to support the communications interface between the
target and the host are linked together with the rest of the monitor software. The
monitor is either downloaded to the target memory as in the case of PC plug-in
boards, or is programmed in EPROMSs on the stand-alone execution boards.

MiniMON29K Target Interface Process: MONTIP 4-21

MiniIMONZ29K Target
Message-Layer Interface

The message layer defines a buffensg_rbuf, to hold the incoming messages
from montip, and a pointer,msg_next_p which gives the location where the
next received character is to be stored:

.global _msg_rbuf

_msg_rbuf: .block MSG_RBUF_SIZE
.global _msg_next p
_msg_next_p: .block 4

MSG_RBUF_SIZE gives the maximum size of the message buffer. It is the
responsibility of the host to send messages no largeMB& RBUF_SIZE
bytes._msg_next_pis updated by the driver routines as the received message
bytes are stored intansg_rbuf _msg_next_pis initialized to_msg_rbuf

during reset and after the completion of a message transagtisg. next_p
and_msg_rbufare global variables and are accessible to the driver-layer
functions.

The message layer also defines a global pointesg_sbuf_pwhich points to
the location of current message that should be sent to the host before the next
message is sent:

.global _msg_sbuf p
_msg_sbuf _p: .block 4

The_msg_sbuf_ppointer is reset to O (zero) after the message has been
successfully transmitted to the host. Thussg_sbuf pis used as a semaphore
to indicate that the message communications channel is busy when
_msg_sbuf_pis a nonzero value, or free whemsg_sbuf pis zero.

The message layer provides the following device-independent procedural
interface to the message communications interface. These functions are called by
the debugger and the operating system/application program running on the target
system, and not by the driver-layer functions.

4-22 MiniMON29K Target Interface Process: MONTIP

void msg_init(void)
This function initializes the message layer, and calls the driver
initialization routinemsg_initcomm to initialize the
communications interface. It setmsg_next_pto point to
_msg_rbufand clears themsg_sbuf psemaphore. The
msg_init() function must be called before using the message
system. The bootstrap code is required to install the necessary
interrupt vectors before calling tiesg_init() function.

int msg_send(msg_t *msg_buf);
This function sends the message contained in the buffer pointed to
by msg_bufto the host. Before calling the driver function to send
the message, it determines whether the message channel is free by
examining the msg_sbuf_pvariable. If _msg_sbuf_pis zero and
the message channel is freesg_send(Jocks the message
channel by writing the addressmbg_bufto _msg_sbuf _plt
then calls the driver function to write out the message bytes
through the message communications interface to the host. The
driver function to write the message bytes is accessed through an
indirect pointermsg_write_p, as shown below:

.extern msg_write_p ; pointer to driver write function
const gr96, msg_write_p

const gr96, msg_write_p

load 0, 0, gr96, gr96 ; get msg_write driver function
calli Ir0, gro6 ; call the driver function

nop

Thegr96 andIrO registers are saved before calling the driver
function and restored on return from the driver function. The
msg_write_ppointer is initialized by the driver initialization
routine,msg_initcomm, with the write routine defined by the
driver layer for that communications interface.

msg_send(returns a 0 (zero) if the message was sent successfully.
It returns a —1 (minus 1) to indicate failure to send the message
either due to transmission error or due to a lock on the
_msg_sbuf_psemaphore.

MiniMON29K Target Interface Process: MONTIP 4-23

4-24

int msg_wait_for(void);

This function is used to determine if the receive buffer contains a
valid message from the host that needs to be processed. It returns a
—1 (minus 1) to indicate that the receive buffer contains a valid
message, and returns a 0 (zero) to indicate that no new message is
in the receive buffer. It calls the driver function using the function
pointer,msg_wait_for_p as shown below:

.extern msg_wait_for_p ; pointer to driver

; msg_wait_for function
const gr96, msg_wait_for_p
consth gr96, msg_wait_for_p

load 0, O, gr96, gro96 ; get function address
calli Ir0, gr96 ; call driver function
nop

ThelrO register is saved before calling the driver function and is
restored on return from the driver function. Theg_wait_for_p
pointer is initialized by the driver initialization routine,
msg_initcomm, with the wait-for-message routine defined by the
driver layer for that communications interface.

When the communications interface is driven in interrupt mode,
the driver-layer function returns immediately with a return value of
0 (zero) to indicate no new message has arrived. When the
communications interface is driven in polled mode, the driver-layer
function returns only when a valid message is received in the
receive buffer, and returns a value of —1 (minus 1). The message
layer calls the driver-layer function independent of whether the
interface is in polled mode or in interrupt mode.

MiniMON29K Target Interface Process: MONTIP

msg_V_arrive
The message layer provides an entry point for the driver layer to
notify when a message has been received from the host. The
driver-receive interrupt handler posts a message interrupt to the
message system by jumping to the labedg_V_arrive, inside the
message system when a complete message is received in the
receive buffer, msg_rbuf msg_V_arriveis defined as a virtual
interrupt handler. It determines whether the message contained in
_msg_rbufis a MiniMON29K debug message or an
operating-system message. If a debug message is received, it posts
an interrupt to the debugger by jumping todbg_V_msglabel
inside the MiniMONZ29K debugger. If an operating-system
message is received, it posts an interrupt to the operating system on
the target by jumping to thes_V_msglabel inside the operating
system. Thensg_V_arrive message interrupt handler is as shown
below:

.globalmsg_V_arrive
msg_V_arrive:
const gr4, _msg_rbuf
consth gr4, _msg_rbuf
load 0, 0, gr4, gr4 ; determine message

code
cpgeu gr4,gr4, 64 ;isitan OS message
jmpt grd, os_msg ; yes, go to os_msg
const gr4,dbg_V_msg ; else
consth gr4, dbg_V_msg ; interrupt debugger
jmpi ard ;at dbg_V_msg
nop

0S_msg:

const grd4,os_V_msg ;interrupt OS
consth gr4,o0s_V_msg ;atos_V_msg
jmpi grd

nop

MiniMON29K Target Interface Process: MONTIP 4-25

MiniMONZ29K Target Drivers

The driver functions to operate the communications device interface for the
specific target hardware system are linked together with the message-layer
module. For each type of communications interface, the driver layer must define
a write function to send the messagentntip, define a message-wait-for

function to receive a message framontip (in polled mode), and define an
interrupt handler to handle message interrupts from the host.

For each target hardware system,rtisgy_initcommdriver initialization

function must be definednsg_initcommis called from thensg_init() function

in the message layer. Thesg_initcommfunction should initialize the
msg_write_pandmsg_wait_for_pfunction pointers with the appropriate
routines for the communications interface applicable to that target hardware
system.

Target Shared-Memory Interface Drivers

4-26

The drivers for the shared-memory interface of the following PC plug-in boards
are provided with the MiniMON29K product software. The drivers for the AMD
boards (the EB29K and the EB29030 board) are described in more detail on the
following pages.

e AMD’s EB29K board

e AMD’s EB29030 board

* YARC Rev 8 board

¢ YARC ATM (Sprinter) board

MiniMON29K Target Interface Process: MONTIP

The EB29K and EB29030 Message Drivers

ASM int msg_initcomm(void)

ASM is used to denote thatsg_initcommis an assembly-level label, and has
no leading underscore. Thesg_initcommfunction is called from the
message-layer initialization functiomsg_init(). The interrupt handler,

msg_intr, for the interrupt line used by the communications interface must be
installed during the bootstrap process.

Themsg_initcommfunction reads the “mailbox” register clearing any pending
interrupts. Thansg_write_pandmsg_wait_for_ppointers are then initialized
with the board-specifiezrrite andmsg_wait_for functions, which write out a
message and wait for a message, respectivelymBlge initcomm function
returns the driver version number in gr96 to the caller.

The code below shows thesg_initcommfunction for AMD’s EB29030 board.
msg_eb030_writeandmsg_eb030_wait_fomre the functions to write a
message and wait for a message for the EB29030 board, respectively. The
msg_initcommfunction for the EB29K board is similar and installs the
msg_eb29k_writeandmsg_eb29k_wait_forfunctions instead. The “mailbox”
register is at offset 90000000h for the EB29030 board, and is at offset
80800000h for the EB29K board.

MSG_INITCOMM
; return version number in gro96.

.equ COMM_VERSION,0x06

.equ mailbox,0x90000000

.extern msg_write_p

.extern msg_wait_for_p
msg_initcomm:

const gr96, mailbox

consth gr96, mailbox

load 0, 0, gr96, gro6 ; clear mail box

const gr96, save_regs
consth gr96, save_regs
store 0, 0, gr97, gr96 ;backup gr97

const gr96, msg_write_p

consth gr96, msg_write_p

const gr97, msg_eb030_write

consth gr97, msg_eb030_write

store 0, 0, gr97, gro6 ; msg_write

MiniMON29K Target Interface Process: MONTIP 4-27

const gr96, msg_wait_for p

consth gr96, msg_wait_for_p

const gr97, msg_eb030_wait_for

consth gr97, msg_eb030_wait_for

store 0, 0, gr97, gro6 ; msg_wait_for

const gr96, save_regs
consth gr96, save regs
load 0, 0, gr97, gr96 ; restore gr97

jmpi Ir0
const gr96, COMM_VERSION

ASM void msg_eb29k_write(void)

ASM void msg_eb030_write(void)

ASM is used to denote that these labels are assembly-level labels, and have no
leading underscore. Thesg_eb29k_writeandmsg_eb030_writefunctions are
called from themsg_send(¥unction. For shared-memory interfaces,
msg_send(writes a pointer, to the location of the message on the target address
space, into themsg_sbuf_psemaphore, before calling the driver write

function. The driver-layer write function posts the messageoatatip running

on the host by writing a —1 (FFh) to the “mailbox” register. This indicates to
montip that a message is ready in the buffer. Note that the DIP switches on the
board must be set such that writing to the “mailbox” register does not generate
an interrupt on the P@ontip running on the PC host polls the “mailbox”

register from the PC side until it reads a —1 (FFh), which indicates that a
message is ready to be received.

The code below shows the driver-layer write function for the EB29030 board.

MSG_EB030_WRITE
; write Oxff to mailbox, return.
.equ mailbox,0x90000000
msg_eb030_write:
const gr4, save_regs
consth gr4, save_regs
store 0,0, gro6, gr4 ; backup gro6
const gr96, save_regs+4
consth gr96, save regs+4
store 0, 0, gr97, gro6 ; backup gr97

4-28 MiniMON29K Target Interface Process: MONTIP

const gr96, mailbox
consth gr96, mailbox

constn gr97,-1 ; write Oxff to mailbox
store 0, 0, gr97, gr96 ; message ready in
; buffer.

const Qr96, save_regs+4

consth gr96, save regs+4

load 0, 0, gr97, gr96 ; restore gr97
const gr96, save_regs

consth gr96, save regs

load 0, 0, gro6, gro6 ; restore gr96
jmpi Ir0
nop

ASM int msg_eb29k_wait_for(void)

ASM int msg_eb030_wait_for(void)

ASM is used to denote that these labels are assembly-level labels, and have no
leading underscore. Timesg_eb29k_wait_forandmsg_eb030_wait_for

functions are called from thrasg_wait_for() function in the message layer. For
shared-memory interfaces, the target message drivers always receive messages
in interrupt mode. Therefore, thesg_eb29k wait_forand
msg_eb030_wait_fofunctions return immediately with a return value of O

(zero) to indicate no message in the receive buffer.

ASM void msg_intr(void)

ASM is used to denote that this label is an assembly-level label, and has no
leading underscore. The interrupt handler for shared-memory interfaces is
msg_intr, which is defined in the driver layer. The bootstrap code installs
msg_intr as the interrupt handler for interrupts from the PC host to the target.
Note thatmontip interrupts the target by writing to the “mailbox” register after
copying the message to the target address space.

The interrupt handlemsg_intr, clears the interrupt by reading the “mailbox”
register. The value read is then compared with FFh to determine winethigp
interrupted to acknowledge receipt of the message from the target, or whether a
new message was sentrpntip to the target. If the content of the “mailbox”
register is not FFh, thansg_intr posts a message interrupt to the message
system by jumping to theasg_V_arrive label inside the message layer.
msg_V_arriveis a virtual interrupt handler, which interrupts the debugger or the
operating system based on the type of the message received.

MiniMON29K Target Interface Process: MONTIP 4-29

The code below shows thesg_intr interrupt handler for the EB29030 board.
The “mailbox” register is at offset 90000000h for the EB29030 board and at
offset 80800000 for the EB29K board.

MSG_INTR
.equ mailbox,0x90000000
; interrupt vector for interrupts from PC host.

msg_intr:
const gr4, mailbox
consth gr4, mailbox
load 0, 0, gr4, gr4 ; clear interrupt,read mailbox
and gr4, gr4, OXFF ; test for new message
cpeq gré, gr4, OXFF ; compare with OxFF
jmpf gr4, msg_V_arrive ; yes, interrupt msg
system

nop

; no clear receive interrupt from montip.
const gr4, mailbox

consth gr4, mailbox

store 0, 0, gr4, grd ; clear interrupt
iret

Target Serial-Interface Drivers

4-30

The drivers for the Z8530 serial communications controller and for AMD’s 29K
Family microcontroller’s internal serial port are included with the

MiniMON29K product software. The Z8530 SCC drivers are linked with the
target monitor software for AMD’s EZ-030 board, and the Am29200 and
Am?29205 SCC drivers are linked with the target monitor software for the
SA-29200 and SA-29205 boards.

The SA-29200 and SA-29205 message driver is explained in more detail on the
following pages, and C.

NOTE: Every message is appended with a 32-bit checksum value, which is the
sum of all the bytes in the message[(see pade 5-2 for more information on
checksums).

MiniMON29K Target Interface Process: MONTIP

The SA-29200 and SA-29205 Message Driver

ASM int msg_initcomm(void)

ASM is used to denote that this label is an assembly-level label, and has no
leading underscore. Thesg_initcommfunction for the SA-29200 or SA-29205
board is called from the message-layer initialization functitgg_init(). The
interrupt handler for the interrupt line used by the Am29200 and Am29205 SCC,
serial_int, must be installed during the bootstrap processmidee initcomm
function installs thensg_scc200_writeandmsg_scc200_wait_fodriver

functions to write a message and wait for a message across the communications
interface, respectively. As the interrupt line, INTR3, used by the serial port on
the Am29200 or Am29205 microcontroller is shared by other internal
peripherals, the interrupt handlserial_int, uses a table of vectors,

intr3_V_table. The handlers for the interrupts corresponding to the Am29200 or
Am?29205 serial port are installed into this talohsg_initcommalso installs a
default handler to ignore the interrupts generated by unused peripherals.

To support parallel-port download from a PC to an SA-29200 or SA-29205
target mounted on an SA-29200 expansion board, the handler to receive a
message through the Am29200 or Am29205 parallel port is also installed.

msg_initcomm calls the routines to initialize the serial port and the parallel port
of the Am29200 or Am29205 microcontroller. It returns the version number of
the communications drivers to the caller.

The code below shows thesg_initcommroutine for the SA-29200 and
SA-29205 board.

MiniMON29K Target Interface Process: MONTIP 4-31

: MSG_INITCOMM
; return version in gr96.
.equ TXDI_OFFSET, (31-5)*4
.equ RXDI_OFFSET, (31-6)*4
.equ RXSI_OFFSET, (31-7)*4
.equ PPI_OFFSET, (31-11)*4
.externmsg_write_p
.externmsg_wait_for_p
.externmsg_scc200 _init
.externmsg_Ipt200 _init
msg_initcomm:
const gr96, save_regs
consth gr96, save_regs

store 0, 0, gr97, gro6 ; backup gr97
add groe, groe, 4

store 0, 0, gr98, gro6 ; backup gro8
add groe, groe, 4

store 0,0, Ir0, gr96 ; backup Ir0

;initialize the msg_write_p with write functions.
const gr96, msg_write_p

consth gr96, msg_write_p

const gr97, msg_scc200_write

consth gr97, msg_scc200_write

store 0,0, gr97, gro6 ; only one for now.

; initialize msg_wait_for_p pointer
const gr96, msg_wait_for_p
consth gr96, msg_wait_for_p
const gr97, msg_scc200_wait_for
consth gr97, msg_scc200_wait_for
store 0,0, gr97, gro6

; initialize table with default entries.
const gr96, intr3_V_table
consth gro6, intr3_V_table
const gr97, default_intr3
consth gr97, default_intr3
const Qgr98, 32-2

$1:
store 0,0, gr97, gro6
jmpfdecgras, $1
add groe, groe, 4

4-32 MiniMON29K Target Interface Process: MONTIP

; install known handlers.

const gr96, intr3_V_table+TXDI_OFFSET
consth gro6, intr3_V_table+TXDI_OFFSET
const gr97, msg_scc200_tx_intr

consth gr97, msg_scc200_tx_intr

store 0, 0, gr97, gro6 ; X intr

const gr96, intr3_V_table+RXDI_OFFSET
consth gro6, intr3_V_table+RXDI_OFFSET
const gr97, msg_scc200_rx_intr

consth gr97, msg_scc200_rx_intr

store 0, 0, gr97, gro6 ; rxintr

const gr96, intr3_V_table+PPl_OFFSET
consth gro6, intr3_V_table+PPI_OFFSET
const gr97, msg_ppi200_intr

consth gr97, msg_ppi200_intr

store 0, 0, gr97, gr96 ; ppi intr

; initialize the peripherals.
const gr96, msg_scc200 _init
consth gr96, msg_scc200_init
calli Ir0, gro6

nop

; initialize 29200 parallel port
const gr96, msg_Ipt200_init
consth gr96, msg_Ipt200_init
calli Ir0, gro6

nop

; restore registers
const gr96, save_regs
consth gr96, save regs

load 0, 0, gr97, gr96 ; restore gr97
add gro6, gro6, 4

load 0, 0, gro8, gro6 ; restore gr98
add groe, groe, 4

load 0, 0, Ir0, gro6 ; restore Ir0
jmpi Ir0

const gr96, COMM_VERSION ; return version number

MiniMON29K Target Interface Process: MONTIP 4-33

4-34

ASM void msg_scc200_write(msg_t *msg, int nbytes)

ASM is used to denote that this label is an assembly-level label, and has no
leading underscore. Thesg_scc200_writdunction is called fronmsg_send()

to send the message contained inntisg buffer. Thenbytes parameter gives the
number of bytes to send. Whersg_scc200_writés called, it checks the

message in thmsg buffer for an ACK or NACK message. If the message is not
an ACK or NACK message, themsg_scc200_writeeomputes the checksum of

the message, and appends the checksum (32-bit value) to the end of the message.
There is no checksum for ACK and NACK messages. The total number of bytes
to write including the checksum bytes, if applicable, is stored in a static variable,
nbytes to write The value ahbytes to_ writeis decremented by one after

every byte is sent out to the host. Another static variakbgchar_p, is used to

point to the next character to be written out of the serial portn&kiehar_p

variable is initialized with the starting address of the message to send.

The first byte of the message is then transmitted out of the serial port. If the
drivers are built for interrupt driven mode, tineg_scc200_writdunction

returns after transmitting the first byte. The remaining bytes are transmitted at
the occurrence of the transmit interrupts. Tibgtes_to_writeandnextchar_p
variables are updated by the transmit interrupt handlers.

If the drivers are built for polled mode, thresg_scc200_writdunction loops
until all the message bytes are written out of the serial port.

The code below shows tinesg_scc200_writdunction for the SA-29200 and
SA-29205 board.

MiniMON29K Target Interface Process: MONTIP

;‘nsg_scczoo_write:

; Ininterrupt mode, it sends out the first character
; and returns. In this mode it is called with

; interrupts disabled. Interrupts are enabled after
; this call returns. In polled mode, it loops until

; the entire message is written.

; Called from msg_send. return via IrO.

; Ir2 — pointer to message

; Ir3 = nbytes in message.

$1:

const gr4, scc200_tmp_regs

consth gr4, scc200_tmp_regs

store 0, 0, gr96, gr4 ; backup gr96
const gr96, scc200_tmp_regs+4

consth gr96, scc200_tmp_regs+4

store 0, 0, gr97, gro6 ; backup gr97
add groe, groe, 4
store 0, 0, gr98, gro6 ; backup gro8

; set nextchar_p

const gr96, nextchar_p

consth gr96, nextchar_p

store 0,0, Ir2, gr96 ; hext char to send.

; check the type of message,

; ack/nack have no checksum

const gr96, nbytes to_write

consth gr96, nbytes_to_write

load 0, 0, gr98, Ir2

jmpt gr98, acknack_code

add gro7,1r3, 0

add gro7,1r3, 4 ; add checksum size
store 0, 0, gr97, gr96 ; write nbytes to send

; compute checksum and append to end of message.
add groe, Ir2, 4

load 0, 0, gr96, gro6 ; msg len

add groe, groe, 8 ; add msg size

sub groe, groe, 2

const gr98, 0 ; initialize checksum

load 0,1, gr97, Ir2
add gros, gr98, gro7
jmpfdecgr96, $1

add Ir2, Ir2, 1

MiniMON29K Target Interface Process: MONTIP

MSG_SCC200_WRITE

4-35

; append at Ir2

srl gr97, gr98, 24
store 0,1, gr97,Ir2

srl gr97, gro8, 16
and gro7, gr97, Oxff
add Ir2,1r2, 1

store 0, 1, gr97, Ir2

srl gro7, grog, 8
and gro7, gr97, Oxff
add Ir2, 1Ir2, 1

store 0, 1, gr97, Ir2
and gro97, gr98, Oxff
add Ir2,1r2, 1

store 0, 1, gr97, Ir2

; Start sending out the message. This layer does
; not buffer the message. Instead it relies on

; the message remaining there until it is sent. A

; semaphore msg_send_p is cleared when the

; message is sent.

; wait for transmit holding register to empty.
const gr96, SPST

tx_loop:
consth gr96, SPST
load 0, 0, gr96, gro6 ; read status
sli gr96, gr96, (31 — THRESHIft)

jmpf groe, tx_loop
const gr96, SPST

; get character from nextchar_p
const gr96, nextchar_p
consth gr96, nextchar_p

load 0, 0, gr97, gro6

load 0, 1, gr98, gro7 ;get character to send
add gro7, gr97, 1 ; update
store 0,0, gr97, gro6 ; nextchar_p++

; stuff character

const gr96, SPTH

consth gr96, SPTH

store 0, 0, gr98, gro6 ; put char

4-36 MiniMON29K Target Interface Process: MONTIP

; decrement nbytes_to_write
const gr96, nbytes to_write
consth gr96, nbytes_to_write
load 0, 0, gr97, gr96

sub gro7, gro7, 1

store 0, 0, gr97, gro6 ; hbytes_to_write—

.ifdef SERIAL_POLL

cpeq gros, gr97, 0 ; nbytes_to_write == 07?

jmpt gros, $2 ; yes, then done.
nop
jmp tx_loop
const gro6, SPST
.endif

$2:

const gr96, firstmsg_flag
consth gr96, firstmsg_flag
load 0, 0, gr96, gr96
jmpf gro6, restore_regs
const gr96, msg_sbuf p
consth gr96, msg_sbuf p
const gr97,0

store 0, 0, gr97, gro6

; clear _msg_sbuf _p for 1st msg.

const gr96, firstmsg_flag
consth gro6, firstmsg_flag
const gr97,0

store 0, 0, gr97, gro6 ; Clear firstmsg_flag

restore_regs:
.ifdef SERIAL_POLL
; clear msg_sbuf p
const gr96, msg_sbuf p
consth gr96, _msg_sbuf_p
const gr97,0

store 0, 0, gr97, gro6 ; clear msg_shuf p

.endif
; restore gr96-gro8
const gr96, scc200_tmp_regs+4
consth gr96, scc200_tmp_regs+4

load 0, 0, gr97, gr96 ; restore gr97
add groe, groe, 4
load 0, 0, gr98, gro6 ; restore gr98

const gr96, scc200_tmp_regs
consth gr96, scc200_tmp_regs
load 0, 0, gro6, gr96 ; restore gro6

MiniMON29K Target Interface Process: MONTIP

4-37

4-38

jmpi Ir0
nop

acknack_code:
store 0, 0, gr97, gr96 ; write nbytes to send
add Ir2,1r2, 4
load 0, 0, gr96, Ir2
const gr97, ack flag
consth gr97, ack_flag
jmpt groe, set_nack flag
constn grog, -1
store 0, 0, gr98, gr97 ; set ack flag

jmp tx_loop
const gr96, SPST

set_nack_flag:
const gr97, nack_flag
consth gr97, nack flag
constn gr98, -1
store 0, 0, gr98, gr97 ; set nack_flag

jmp tx_loop
const gr96, SPST

ASM int msg_scc200_wait_for(void)

ASM is used to denote that this label is an assembly-level label, and has no
leading underscore. Timsg_scc200_wait_fofunction returns immediately
when the drivers are built for interrupt mode. It returns a value of 0 (zero) to
indicate no message in the buffer. When the drivers are built for polled mode,
themsg_scc200_wait_fofunction polls the serial-port status register of the
Am29200 or Am29205 microcontroller for an incoming message byte. When a
message byte is received, the received byte is stored in the receive buffer,
_msg_rbuf The_msg_rbufreceive buffer is then examined for a valid
message. The functionalities of tmsg_scc200_wait_fofunction is similar to
the receive interrupt handler routimesg_scc200_rx_intrexplained below.

ASM void serial_int(void)

ASM is used to denote that this label is an assembly-level label, and has no
leading underscore. The interrupt handler to handle the Am29200 or Am29205
interrupts on the INTR3 line &erial_int. The bootstrap code must install
serial_int as the interrupt handler for the INTRS3 line.

MiniMON29K Target Interface Process: MONTIP

Theserial_int interrupt handler reads the Interrupt Control Register (ICT) of the
Am29200 or Am29205 microcontroller to determine the cause of the interrupt. It
then calls the appropriate handler routine fromnt@_V _table, which was
initialized by themsg_initcommfunction. The default interrupt handler,
default_intr3, is called for interrupts generated by unused peripherals.

The code below shows how tkerial_int interrupt handler is used.

; SERIAL_INT
serial_int:
; We use count of leading zeroes to determine the
; offset in the interrupt table, and branch to the
; interrupt handler.
const gr4, intr_save
consth gr4, intr_save
store 0,0, gr96, gr4 ; backup gr96
const gr96, intr_save+4
consth groe, intr_save+4
store 0, 0, gr97, gro6 ; backup gr97
const gr96, ICT
consth gro6, ICT
load 0, 0, gro6, gro6 ; read ICT
clz gro6, gro6
cpeq gr97, groe, 32
jmpt grav, $2 ; ho interrupts??
nop
sl groe, gro6, 2 ; find offset into table

const gr97, intr3_V_table
consth gr97, intr3_V_table
add gro7, gr97, gr96 ; handler address pointer

const gr96, intr_save

consth gro6, intr_save

load 0, 0, gro6, gro6 ; restore gr96
load 0, 0, gr4, gr97 ; address
const gr97, intr_save+4

consth gr97, intr_save+4
load 0, 0, gr97, gr97 ; restore gr97

MiniMON29K Target Interface Process: MONTIP 4-39

jmpi grd
nop
$2:
; restore regs
const gr96, intr_save+4
consth gr96, intr_save+4
load 0, 0, gr97, gr96 ; restore gr97
const gr96, intr_save
consth gr96, intr_save
load 0, 0, gr96, gro6 ; restore gro6
iret

The transmit interrupt handlansg_scc200_tx_intrexamines the
nbytes to_writevariable to determine if there are any more bytes to write. If
there are more bytes to write, thesg_scc200_tx_intr

1. Decrementsbytes to_writeby one.
Gets the byte pointed to bgxtchar_p.
Incrementsextchar_p by one to point to the next byte.

Sends the next character out of the serial port.

a > DN

Returns from the interrupt handler.

If no more bytes remain to be written, then the transmit interrupt routine checks
theack_flag to determine if the message just written out was an ACK message.
If an ACK message was written out, it posts an interrupt to the message system
by jumping to the labehsg_V_arrive inside the message layer. For other
messages, it simply returns from the interrupt handler.

The code below shows the transmit interrupt handler.

msg_scc200_tx_intr:
const gr4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, gr96, gr4 ; backup gr96
const gr96, intr_tmp_regs+4
consth groé, intr_tmp_regs+4

store 0, 0, gr97, gro6 ; backup gr97
add groe, groe, 4
store 0, 0, gr98, gro6 ; backup gr98

4-40 MiniMON29K Target Interface Process: MONTIP

$4:

const gr96, ICT

consth gro6, ICT

const gr97, TXDI

consth gr97, TXDI

store 0, 0, gr97, gro6 ; clear TXDI

; check for more bytes to send.
const gr96, nbytes to_write
consth gr96, nbytes_to_write
load 0, 0, gr97, gro6 ; get bytes left

cpeq gr98, gra7, 0 ; compare with zero

jmpt gros, $3 ; yes, none left check
; nack/ack

nop

; get next byte

sub gr97, gr97, 1

store 0, 0, gr97, gr96 ; nbytes_to_write—
const gr96, nextchar_p

consth gr96, nextchar_p

load 0, 0, gr97, gr96

load 0, 1, gro8, gr97 ; get character
add gr97, gro7, 1

store 0, 0, gr97, gro6 ; hextchar_p++
; stuff byte

const gr96, SPTH
consth gr96, SPTH
store 0, 0, gr98, gro6 ; put char

; restore gr96—gro8 registers.
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4

load 0, 0, gr97, gr96 ; restore gr97
add groe, groe, 4
load 0, 0, gro8, gro6 ; restore gr98

const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gro6, gro6 ; restore gr96

iret

MiniMON29K Target Interface Process: MONTIP 4-41

4-42

$3:
; check ack_flag if one just sent and clear it.
const gr96, ack_flag
consth gr96, ack flag

load 0, 0, gr97, gr96 ; get flag
jmpt gro97, valid_msg ; set, valid msg intr
nop
jmp $4
nop
valid_msg:

; clear ack_flag
const gr97,0
store 0, 0, gr97, gr96 ; clear flag

; restore gr96—gro8 registers.
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4

load 0, 0, gr97, gr96 ; restore gr97
add groe, groe, 4
load 0, 0, gr98, gro6 ; restore gro8

const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs

load 0, 0, gr96, gro6 ; restore gr96
jmp msg_V_arrive ; post interrupt to
nop ; message system

The receive interrupt handlensg_scc200_rx_intrreads the character from the
serial port and stores it where th@sg_next_pvariable is pointing to in the
receive buffer, msg_rbuf. The_msg_next_ppointer is then incremented by

one. The receive buffer is then examined to determine if a valid message has
been received. A valid message can be either a MiniMON29K message, or the
ACK or NACK message. If the receive buffer does not have the complete
message, the receive interrupt handler returns from the interrupt handler, and
waits for more incoming bytes.

If an ACK message is received, then the receive interrupt routine resets the
_msg_sbuf_psemaphore to zero, freeing up the message channel for subsequent
messages to be sent.

If a NACK message is received, then the receive interrupt routine calls the

msg_scc200_writgoutine with a pointer to the message last sent, which is
stored in a static variablemsg_lastsent_p

MiniMON29K Target Interface Process: MONTIP

If a valid MiniMON29K message is received, the receive interrupt routine
computes the checksum of the message bytes received. It then compares the
checksum computed with the checksum value received from the host. If the
checksums compare to be the same, then it callmslgescc200_writdunction

to send an ACK message to the host. If the checksums are not equal, then it calls
themsg_scc200_writdunction to send a NACK message to the host.

The code below shows the receive interrupt hanaisg, scc200_rx_intr

; MSG_SCC200_RX_INTR
msg_scc200_rx_intr:

const gré4, intr_tmp_regs

consth gr4, intr_tmp_regs

store 0,0, gr96, gr4 ; backup gro6

const gr96, intr_tmp_regs+4

consth gr96, intr_tmp_regs+4

store 0,0, gr97, gr96 ; backup gr97
add gro6, gro6, 4
store 0, 0, gr98, gr96 ; backup gr98

const gr96, ICT

consth gr96, ICT

const gr97, RXDI

consth gr97, RXDI

store 0, 0, gr97, gro6 ; clear RXDI

; receive the character and put in buffer.

const gr96, SPRB

consth gr96, SPRB

load 0,0, gr96, gro6 ; gr96 has received character

handle_rx_char:
; putin _msg_next_p location.
const gr97, _msg_next_p
consth gr97, _msg_next_p
load 0,0, gr98, gro7
store 0, 1, gr96, gr98 ; save character
add gros8, grosg, 1 ; update _msg_next_p
store 0, 0, gr98, gr97

; check the buffer for a minimon message.
const gr96, _msg_next_p
consth gr96, _msg_next_p

load 0,0, gr97, groé ; msg_next_p

const gr96, _msg_rbuf

consth gr96, _msg_rbuf ; msg_rbuf

sub gro8, gr97, gro6 ; msg_rbuf-msg_next_p =len

MiniMON29K Target Interface Process: MONTIP 4-43

cplt gr97,gr98, 8 ;len<8
jmpf gr97,check_for_msg ; no, check for message.
nop

do_iret:
; restore gr96—gro8 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4

load 0,0, gr97, gro6 ; restore gr97
add groe, gro6, 4
load 0,0, gr98, gro6 ; restore gr98

const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0,0, gr96, gro6 ; restore gr96

iret

check_for_msg:
; @ message header is in buffer.
; gr98 has total length.
; gr96 has msg_rbuf

load 0,0, gr97, gro6 ; get msg code
jmpt gr97, ack_nack_recd ; handle ack/nack msg.
nop

message.

const gr96, _msg_rbuf+4
consth gr96, _msg_rbuf+4
load 0,0, gr96, gro6 ; msg length
add groe6, gro6, 8+4
; add msg header size and checksum
cpgeu gr97, gr98, groé
; have we received all the bytes.
jmpf gr97, do_iret ; no return
nop

; compute checksum for message
const gr97, intr_tmp_regs+3*4
consth gr97, intr_tmp_regs+3*4

store 0, 0, gr99, gr97 ; backup gr99
const gr99, 0 ; initialize checksum
sub groe, gro6, 4 : sub checksum size

const gr97, _msg_rbuf
consth gr97, _msg_rbuf

4-44 MiniMON29K Target Interface Process: MONTIP

$6:

MiniMON29K Target Interface Process: MONTIP

sub groe, gro6, 2

load 0,1, gr98, gro7
add gro9, gr99, gros8
jmpfdec gro6, $6
add gr97, gro7, 1

; get checksum send by montip
load O, 1, gr96, gro7
sl| groe6, gro6, 24
add gro7, gr97, 1
load 0,1, gr98, gro7
sl| gro8, gr98, 16

or groe, groe6, grog
add gro7, gr97, 1
load 0,1, gr98, gro7
sll gro8, gro8, 8

or gro6, gro6, gro8
add gro7, gr97, 1
load 0,1, gr98, gro7
or groe, gro6, gro8

cpeq gr97, gr96, gr99 ; compare checksums
; reset msg_next_p to beginning of msg_rbuf

const gr96, _msg_rbuf
consth gr96, _msg_rbuf
const gr98, _msg_next_p
consth gr98, _msg_next_p
jmpt gr97, ack _it

; send a nack msg to montip.
; restore gr96—gr99 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4

load 0,0, gr97, gro6 ; restore gr97
add groe, gro6, 4
load 0,0, gr98, gro6 ; restore gr98
add groe, gro6, 4
load 0,0, gr99, gro6 ; restore gr99

const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0,0, gr96, gro6 ; restore gr96

; same, valid message
store 0, 0, gr96, gro8 ; reset msg_next_p

4-45

: save Ir0, Ir2, Ir3

const gr4, intr_tmp_regs

consth gr4, intr_tmp_regs

store 0,0, Ir0, gr4 ; save Ir0
const Ir0, intr_tmp_regs+4

consth Ir0, intr_tmp_regs+4

store 0, 0, Ir2, IrO : save Ir2
add IrO, Ir0, 4
store 0,0, Ir3, IrO ; save Ir3

const Ir2, nack_msg_p
consth Ir2, nack_msg_p

const 1Ir3, 8
call Ir0, msg_scc200_write
nop

const Ir0, intr_tmp_regs+4
consth Ir0, intr_tmp_regs+4

load 0,0,Ir2,Ir0 ; restore Ir2
add Ir0, Ir0, 4
load 0,0,Ir3,Ir0 ; restore Ir3

const Ir0, intr_tmp_regs
consth Ir0, intr_tmp_regs
load O0,0,Ir0,Ir0 ; restore Ir0

iret

ack_it:
; restore gr96—gra9 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4

load 0,0, gr97, groé ; restore gro7
add gro6, gr96, 4
load 0,0, gr98, gr96 ; restore gro8
add groe, gro6, 4
load 0,0, gr99, gro6 ; restore gr99

const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0,0, gr96, gro6 ; restore gr96

; send an ack to montip

:save Ir0, Ir2, Ir3

const gr4, intr_tmp_regs

consth gr4, intr_tmp_regs

store 0,0, IrO, gr4 ; save Ir0
const IrQ, intr_tmp_regs+4

consth Ir0, intr_tmp_regs+4

store 0,0, Ir2,Ir0 ; save Ir2
add Ir0, Ir0, 4
store 0,0, Ir3,Ir0 ; save Ir3

4-46 MiniMON29K Target Interface Process: MONTIP

const Ir2, ack_flag
consth Ir2, ack_flag
constn Ir3, -1

store 0,0, Ir3,Ir2 ; set ack_flag

const Ir2,ack_msg_p ; pointer to ack msg str
consth Ir2, ack_msg_p

const Ir3, 8 ; nbytes in ack msg.
call Ir0, msg_scc200_write ; sends the first character
nop ;and returns.

const Ir0, intr_tmp_regs+4
consth Ir0, intr_tmp_regs+4

load 0,0,Ir2,Ir0 : restore Ir2
add Ir0, IrO, 4
load 0,0,Ir3,Ir0 : restore Ir3

const Ir0, intr_tmp_regs

consth Ir0, intr_tmp_regs

load 0,0, Ir0, IrO ; restore IrO
iret

ack_nack_recd:
const gr96, _msg_rbuf
consth gr96, _msg_rbuf
const Qgr97, _msg_next_p
consth gr97, _msg_next_p

store 0, 0, gr96, gr97 ; initialize msg_next_p
add gro6, gro6, 4
load 0,0, gr97, groé ; get msg len field
jmpf gr97, ack_recd ; ack received.
nop

nack_recd:

; restore gr96—gr99 registers
const Qr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4

load 0,0, gr97, gro6 ; restore gr97
add groe, gro6, 4
load 0,0, gr98, gro6 ; restore gr98

const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0,0, gr96, gro6 ; restore gr96

MiniMON29K Target Interface Process: MONTIP 4-47

: save Ir0, Ir2, Ir3

const gr4, intr_tmp_regs

consth gr4, intr_tmp_regs

store 0,0, Ir0, gr4 ; save Ir0
const Ir0, intr_tmp_regs+4

consth Ir0, intr_tmp_regs+4

store 0, 0, Ir2, IrO : save Ir2
add IrO, Ir0, 4
store 0,0, Ir3, IrO ; save Ir3

const Ir2, _msg_lastsent_p ; address of msg
consth Ir2, _msg_lastsent_p

load 0,0,Ir2,Ir2

add Ir3, Ir2, 4

load 0,0,Ir3,Ir3 ; msg length

add Ir3,1r3, 8 ; msglen+msg header
call Ir0, msg_scc200_write

nop

const Ir0, intr_tmp_regs+4
consth Ir0Q, intr_tmp_regs+4

load 0,0,Ir2,Ir0 : restore Ir2
add Ir0, Ir0, 4
load 0,0,Ir3,Ir0 : restore Ir3

const Ir0, intr_tmp_regs
consth Ir0, intr_tmp_regs
load 0,0,Ir0,Ir0 ; restore Ir0

iret

ack_recd:
; clear _msg_sbuf_p semaphore
const gr96, msg_sbuf p
consth gr96, _msg_sbuf_p
const gr97,0

store 0,0, gr97, gr96 ; clear semaphore
jmp do_iret
nop

4-48 MiniMON29K Target Interface Process: MONTIP

Chapter 5 &
MIinIMONZ29K Messages

This chapter first describes an extension to the message system, which ensures
reliable serial communications at higher baud rates. The chapter then describes
the structure of the standard MiniMON29K messages, and lists each message,
grouped by type. The chapter sections are as follows:

* |“Message Checksum Tags for Serial Communicatjons” on page 5-2

* [“MiniMON29K Message Description” on page 5-5
* |“MiniMON29K Debug Message$” on page 5-15

* |“MiniMON29K Operating-System Messaggs” on page 5-52

NOTE: Throughout this chapter, “target” refers to the 29K Family-based target
system running the MiniMONZ29K monitor software; “host” refers to the
computer system runningontip.

MiniMON29K Target Interface Process: MONTIP 5-1

Message Checksum Tags for Serial
Communications

5-2

The MiniMON29K product extends the message communication protocol, when
doing serial communications, with checksums that are used to ensure reliable
serial communications at higher baud rates. This extra layer of protocol is only
used for the serial-communication drivers and is not used for the shared-memory
message-system drivers.

Protocol

Every message from either the host or target is appended with a 32-bit checksum
word. The checksum is the sum of every byte in the message including the
header.

The serial-communications drivers append a 32-bit checksum at the end of the
message. The checksum is the sum of all the bytes of the message. The receiver
of the message computes a checksum of the received message bytes and
compares it with the checksum value received. If the checksums are equal, then
the receiver sends a Checksum ACK message to acknowledge the receipt of a
valid MiniMON29K message. If the checksums are not equal, then the receiver
sends a Checksum NACK message, indicating a transmission error in the
received message. The Checksum ACK/Checksum NACK messages are used by
the communications drivers to report transmission errors and to resend messages.

Checksum ACK Message

Oxffffrff
0x00000000

Checksum NACK Message

Oxfrffffff
Oxfffffff

Implementation

The Checksum ACK/Checksum NACK messages are independent of the
MiniMON29K messages, and are handled by the communications drivers.
However, the message buffers are large enough to provide enough space at the
end of the message to hold the 32-bit message checksum.

MiniMON29K Target Interface Process: MONTIP

Example
The following example shows the messages sent and receivednehép
establishes a synchronous connection. The sequence is as follows:

Target sends a HALT message (when powered up).
Host sends a Checksum ACK.

Host sends a CONFIG_REQ message.

Target sends a Checksum ACK.

Target responds with a CONFIG message.

Host sends a Checksum ACK.

N o o~ w DN RE

A synchronous connection is established.

Target: halt message (on power up)
0000002b

0000000f

00000007

00001834

00001830

00000000

000000d6 checksum

Host: checksum ack
FFFFFFFF
00000000

Host:

00000001 config request
00000000

00000001 checksum

Target: checksum ack
FFFFFFFF
00000000

MiniMON29K Target Interface Process: MONTIP

5-3

Target: config response
00000021
00000030
00000003
05040512
00000000
00080000
00000000
00080000
00000000
00080000
00000200
0000001e
00000000
00000002
000000ae checksum

Host: checksum ack
FFFFFFFF
00000000

MiniMON29K Target Interface Process: MONTIP

MiniIMONZ29K Message Description

The message structure, byte ordering, definition, classification, passing protocol,
and numbers are described in this section.

Message Structure

The basic message takes the following form:

struct <message_name> {
INT32 code;
INT32 length;
<parameter 1>;
<parameter 2>;

<parameter n>;

k

The first field in the messagedsde This is a 32-bit integer. Each type of
message in the system is given a unique identification code. This allows the
receiver of the message to determine what sort of message is arriving even
before the entire message is read.

The second field is thengthof the parameter list. This is also a 32-bit integer,
and is measured in bytes. Tleagthis not the length of the entire message; the
codeandlengthfields are not included. For example, a message containing no
parameters haslangthof 0. The entire message, however, will have a length of
8 bytes because tleedeandlengthfields are always a part of the message.

This format provides a convenient method of transferring messages between the
target and the host.

Some systems may have restrictions on the amount of message buffer space
available. For this reason, a maximum message length is specified by the target.
It is the responsibility of the host to keep the size of the messages smaller than
this maximum message size. The target should, however, detect messages of
illegal lengths, both incoming and outgoing, and respond with the proper error
message.

MiniMON29K Target Interface Process: MONTIP 5-5

Byte Ordering

The MiniMON29K messages are defined as a stream of bytes. All
MiniMON29K messages are transmitted in the same byte order, or endian type,
as that of the 29K Family-based target. (Sep-teeptior} on page 1-3 if your

29K Family-based target is little endian.)

All message fields are 32 bits. The only exceptions are the arrays of bytes (data)
at the end of the messages, which require the transfer of data. This format makes
endian conversion simple.

Message Definition

The following sections contain the definition of each of the messages, including
the message structure, parameters, and possible error conditions.

The structure of the messages and all examples of code that follow will be in C.
Also, because the physical structure of the message is important, some basic data
types have been used to describe the messages. These types are:

e INT32 — This is a 32-bit integer.

¢ ADDR32 — This is a 32-bit address. This is physically represented the same
asINT32, but it is unsigned.

e BYTE — This is an 8-bit quantity, usually equivalentittsigned char

¢ BOOLEAN — This is also a 32-bit integer. FALSE is defined as 0 and
TRUE is defined as 1. A 32-bit quantity is used to maintain 32-bit word
alignment.

5-6 MiniMON29K Target Interface Process: MONTIP

Message Classification

Messages 0 through 127 are reserved for AMD’s use. These messages are
divided in the following manner:

« [Messages 0 through |63 are classified as debug messages, and are described
beginning on page 5-15. These messages are transmitted between the host
and the MiniMON29K monitor on the target. Of these, some are sent from the
host to the target and some are sent from the target to the host.

« |[Messages 64 through 1|27 are classified as operating-system messages, and are
described beginning on page 5-52. These messages are transmitted between
the host and the application/operating system running on the target. In the
default configuration of the MiniMON29K monitor, the HIF kernebsboot
transmits and receives the operating-system messages on the target.

Any message number greater than 127 may be used for custom messages.

Message-Passing Protocol

The communication between host and target takes place by passing synchronous
message pairs. Typically, the host sends a request message to the target, and the
target sends an acknowledgement back to the host. This acknowledgement
message may contain requested data, or the message may be a simple handshake
acknowledgement. If the requested action cannot be successfully completed, an
error message is returned as the acknowledgement.

The general pairing of messages is describled in Table 54 on page 5-13 and in

the sections on the individual messages that follow.

NOTE: The messages do not contain any checksum or error detection
information. It is the responsibility of the communications driver to provide
reliable, sequenced delivery of messages.

MiniMON29K Target Interface Process: MONTIP 5-7

An example of message interaction between the target and the host is shown
below. When the target system is powered up, this first message is sent:

0000002b Message 0x2b = 43 halt message
00000010 0x10 = 16 bytes follow (4 words)
00000007 Memory space |

XXXXXXXX pcO value

XXXXXXXX pcl value

00000000 trap number

The target then loops, waiting for messages from the host. Ybaetip is
invoked by a debugger front end on the host system, it sends a configuration
reguest message:

00000001 Message 0x1 = 1 config request
00000000 0x0 no bytes follow

montip then waits for an acknowledgement message from the target. When the
target receives the configuration request message, it responds with the
configuration message:

00000021 0x21 = 33 config message

00000030 0x30 = 48 bhytes of information follow (12 words)
XXXXXXXX Processor ID

00000010 Version number of debugger core

00000000 Starting address of instruction memory

0007ffff ~ Ending address of instruction memory

00000000 Starting address of data memory

0007ffff Ending address of data memory

00000000 Starting address of ROM memory

0007ffff Ending address of ROM memory

00000100 0x100 = 256 max size of target message buffer
0000000a Oxa = 10 breakpoints can be used

ffffffff ~ Coprocessor PRL. It is —1 if not present

00000002 Target OS version

Whenmontip receives the configuration message, it also has synchronized with

the target. In this waynontip and the target-resident monitor communicate by
exchanging messages.

5-8 MiniMON29K Target Interface Process: MONTIP

Message Numbers

The messages and their corresponding numeric codes are listed in the following
tables. In these tables, “host” refers to the host computer rumantip and

“target” refers to the 29K Family-based hardware platform running the
MiniMON29K monitor softward, Table 5}1 lists all the messages in alphabetical
order, with their corresponding decimal and hexadecimal number, and the page
number on which the message can be fdund. Table 5-2 lists the host-to-target
messages, with their corresponding numeric codes in both hexadecimal and
decimal notatior]. Table 5}-3 lists the target-to-host messages, with their
corresponding numeric codes in both hexadecimal and decimal notation.

lists the requestor messages in alphabetical order, with each message’s
corresponding acknowledgement message. The codes for the processor memory
spaces used in the messages are lisfed in Table 5-5.

Table 5-1. Alphabetical List of Messages

Message Decimal Hexadecimal Page
Number Number Number
[BKPT_RM| 6 6 5-25
[BKPT_RM_ACK 38 26 5-45
5 5 5-23
[BKPT SET_ACK 37 25 5-44
7 7 5-26
[BKPT _STAT ACK 39 27 5-46
13 D 5-35
65 41 5-54
[CHANNELO ACK| 97 61 5-60
98 62 5-61
[CHANNEL1 ACK 66 42 5-55
99 63 5-62
[CHANNEL2 ACK 67 43 5-56
33 21 5-36
|CONFIG_REQ 1 1 5-17
coP 8 8 5-27

MiniMON29K Target Interface Process: MONTIP 5-9

5-10

Message Decimal Hexadecimal Page
Number Number Number
[copPYy_ACH 40 28 5-47
63 3F 5-51
FIL 9 9 5-29
41 29 5-48
11 B 533
[HALT] 43 2B 5-50
96 60 5-59
[HIF CALL RTN| 64 40 5-53
10 A 5-31
INIT_ACK 42 2A 5-49
35 23 5-41
5-19
0 0 5-16
| STATUS 34 22 5-38
[STATUS_REQ 2 2 5-18
[STDIN_NEEDED 100 64 5-63
[STDIN._NEEDED ACHK 68 44 5-57
[STDIN_ MODE_ACK 69 45 5-58
101 65 5-64
12 C 5-34
36 24 5-43
| WRITE_REQ 4 4 5-21

MiniMON29K Target Interface Process: MONTIP

Table 5-2. Host-to-Target Message Definitions

Hexadecimal Decimal Number Message
Number
0 0 RESET
1 1 CONFIG_REQ
2 2 STATUS_REQ
3 3 READ_REQ
4 4 WRITE_REQ
5 5 BKPT_SET
6 6 BKPT_RM
7 7 BKPT_STAT
8 8 COPY
9 9 FILL
A 10 INIT
B 11 GO
C 12 STEP
D 13 BREAK
40 64 HIF_CALL_RTN
41 65 CHANNELO
42 66 CHANNEL1_ACK
43 67 CHANNEL2_ACK
44 68 STDIN_NEEDED_ACK
45 69 STDIN_MODE_ACK

MiniMON29K Target Interface Process: MONTIP

5-11

5-12

Table 5-3. Target-to-Host Message Definitions

Hexadecimal Decimal Number Message
Number

21 33 CONFIG
22 34 STATUS
23 35 READ_ACK
24 36 WRITE_ACK
25 37 BKPT_SET_ACK
26 38 BKPT_RM_ACK
27 39 BKPT_STAT_ACK
28 40 COPY_ACK
29 41 FILL_ACK
2A 42 INIT_ACK
2B 43 HALT
3F 63 ERROR
60 96 HIF_CALL
61 97 CHANNELO_ACK
62 98 CHANNEL1
63 99 CHANNEL2
64 100 STDIN_NEEDED
65 101 STDIN_MODE

MiniMON29K Target Interface Process: MONTIP

Table 5-4. Requestor/Acknowledgement Message Correspondence

Requestor Acknowledgement

BKPT_RM BKPT_RM_ACK

BKPT_SET BKPT_SET_ACK

BKPT_STAT BKPT_STAT_ACK

BREAK HALT

CHANNELO CHANNELO_ACK

CHANNEL1 CHANNEL1_ACK

CHANNEL2 CHANNEL2_ACK

CONFIG_REQ CONFIG

COPY COPY_ACK

FILL FILL_ACK

GO HALT, or any target-to-host
operating-system message

HIF_CALL HIF_CALL_RTN

INIT INIT_ACK

READ_REQ READ_ACK

RESET HALT

STATUS_REQ STATUS

STDIN_NEEDED STDIN_NEEDED_ACK

STDIN_MODE STDIN_MODE_ACK

STEP HALT

WRITE_REQ WRITE_ACK

Any host-to-target message ERROR

MiniMON29K Target Interface Process: MONTIP

5-13

Table 5-5. Memory Spaces

Decimal Hexadecimal Memory Space
Number Number

0 0 LOCAL_REG: Local processor register

1 1 GLOBAL_REG: Global processor register
2 2 SPECIAL_REG: Special processor register
3 3 TLB_REG: Translation lookaside buffer
4 4 COPROC_REG: Coprocessor register
5 5 I_MEM: Instruction memory
6 6 D_MEM: Data memory
7 7 |_ROM: Instruction ROM
8 8 D_ROM: Data ROM
9 9 I_O: Input/output
10 Ah |_CACHE: Instruction cache
11 Bh D_CACHE: Data cache
12 Ch PC_SPACE: PCO0, PC1
13 Dh A_SPCL_REG: User special processor register
14 Eh ABS_REG: Absolute register number
15 Fh PC_RELATIVE: PC relative offsets
254 FEh generic space

5-14 MiniMON29K Target Interface Process: MONTIP

MiniMONZ29K Debug Messages

A set of messages is defined in the following sections. These messages provide
the capability to control, probe, and modify the state of the system. With this
capability, a variety of useful host functions may be implemented.

In addition to the basic functions, some useful but nonessential primitives are
included. These primitives are included primarily as a convenience for the
developers of host code.

It should also be mentioned that the message interface to the target provides the
ability to add new functionality. This provides a natural path for extensions that
will maintain upward compatibility.

Messages 0 through 63 are classified as debug messages. These messages are
transmitted between the host and the MiniMON29K monitor on the target.

¢ Messages 0 through 31 are sent from the host to the target.

* Messages 32 through 63 are sent from the target to the host, and typically are

acknowledgements.

The debug messages are listed on the following pages, in numerical order. See
page 5-52 for tlie_operating-system mesgages.

MiniMON29K Target Interface Process: MONTIP 5-15

Message 0 (Oh):
RESET (Reset Processor)

Message
#define RESET 0

struct reset_msg_t {
INT32 code; /* 0 */
INT32 length;

h

Direction
Host-to-target

Acknowledgement
[HALT](on page 5-50)

Description

This message is used to reset the target processor. This is equivalent to resetting
the hardware manually. This message has no parameters and will always have a
lengthfield of O.

5-16 MiniMON29K Target Interface Process: MONTIP

Message 1 (1h):
CONFIG_REQ (Configuration Request)

Message
#define CONFIG_REQ 1

struct config_req_msg_t {
INT32 code; /* 1 */
INT32 length;

k

Direction
Host-to-target

Acknowledgement
(on page 5-36)

Description

This message is used to request configuration information from the target. This
message has no parameters and will always hieregthfield of 0. The target

should always respond to the CONFIG_REQ message with a CONFIG message.

For more on the information returned by CONFIG_REQ, see the description of
the CONFIG message.

MiniMON29K Target Interface Process: MONTIP 5-17

Message 2 (2h):
STATUS_REQ (Status Request)

Message
#define STATUS_REQ 2

struct status_req_msg_t{
INT32 code; /* 2 */
INT32 length;

k

Direction
Host-to-target

Acknowledgement
(on page 5-38)

Description

This message is used to get status information from the target. This message has
no parameters and will always haviemgthfield of 0. The target should always
respond to the STATUS_REQ message with a STATUS message.

The STATUS_REQ message should be distinguished from the CONFIG_REQ
message. The CONFIG_REQ message requests static configuration information,
usually concerning the hardware. The STATUS_REQ message requests run-time
statistics.

Some targets may not gather some or all of the data requested by

STATUS REQ. For more details on the information returned by the
STATUS_REQ message, see the description of the STATUS message.

5-18 MiniMON29K Target Interface Process: MONTIP

Message 3 (3h):

READ_REQ (Read Request)

Message

#define READ_REQ 3

struct read_req_msg_t {
INT32 code; /*3*
INT32 length;
INT32 memory_space;
ADDR32 address;
INT32 count;
INT32 size;

k

where:

memory_space Defines the memory space to be read. The codes used to

address

count

size

Direction

Host-to-target

specify the processor memory spaces are lisfed in Tafjle 5-5 on
page 5-14.

Is the address of the requested data in the data space. This
address is a 32-bit quantity.

Is the number of objects to read.

Is the size of the object to read in bytes (1 = byte,
2 = half word, and 4 = full word).

Acknowledgement
(on page 5-41)

MiniMON29K Target Interface Process: MONTIP 5-19

5-20

Description

This message requests that some part of the state of the target be read. The host
should never request more data than will fit in the message buffer. Larger
requests should be broken up into several READ_REQ messages. If the host
requests more data than will fit in a message buffer, an ERROR message is
returned. It is also possible that part or all of the requested memory space is not
accessible to the target processor. In this case, an ERROR message is returned to
the host.

MiniMON29K Target Interface Process: MONTIP

Message 4 (4h):

WRITE_REQ (Write Request)

Message

#define WRITE_REQ 4

struct write_req_msg_t {
INT32 code; [* 4 */
INT32 length;
INT32 memory_space;
ADDR32 address;
INT32 count;
INT32 size
BYTE data[<byte _count>];

k

where:

memory_space Defines which memory space will be modified. The codes

address

count

size

data

Direction
Host-to-target

used to specify the processor memory spaces are listed in
Table 5-5 on page 5-14.

Is the address in this memory space where the data is to be
written.

Is the size of the data array in object sizes. This information is
somewhat redundant to the message size parameter in the
message header. It is included for convenience and for
consistency with the READ_REQ message.

The size of the object in the data array (1 = byte, 2 = half
word, and 4 = full word). Count*size = total length of the
array data in bytes.

Is an array of bytes. These bytes will be written into the
appropriate memory space starting at the specified address.

MiniMON29K Target Interface Process: MONTIP 5-21

5-22

Acknowledgement

(on page 5-43)

Description

This message requests that the state of the target be modified. When the data
sent by the WRITE_REQ message is successfully written on the target, a
WRITE_ACK message is returned in acknowledgement.

It is possible that part or all of the requested memory space is not accessible to
the target processor. In this case, an ERROR message is returned to the host. If
an error condition is encountered, the host can make no assumptions about the
partial success of the request. The state of the processor may or may not have
been modified.

It is also possible that the data sent by the WRITE_REQ will overflow the
message buffer on the target. The host should be aware of the buffer size
limitations of the target, and should not send such messages. Should too large a
message be sent, however, it is the responsibility of the target to safely remove
this message from the message stream and respond with an ERROR message.

MiniMON29K Target Interface Process: MONTIP

Message 5 (5h):
BKPT_SET (Set Breakpoint)

Message
#define BKPT_SET 5

struct bkpt_set_msg_t{
INT32 code; /* 5 */
INT32 length;
INT32 memory_space;
ADDR32 bkpt_addr;
INT32 pass_count;
INT32 bkpt_type;
h

where:
memory_space Is the address space where the breakpoint is to be set. In most
cases, this will be the instruction memory of the system.

bkpt_addr Is the address of the breakpoint.

pass_count Specifies the number of times the breakpoint must be
encountered before control is passed from the application to
the monitor. Apass_counbf 1 means that a break should
occur the next time the instruction at this address is executed.

bkpt_type Specifies the type of breakpoint to set:

-1 Specifies the software breakpoint, for example,
replacing the instruction at the breakpoint location.

0Oand 1 Specify the hardware breakpoint, for example, using
the Am29050 breakpoint control registers. When 0 is
specified abkpt_typethe breakpoint comparison is
performed when instruction translation is disabled.
When 1 is specified as tidpt_typethe breakpoint
comparison is performed when instruction translation
is enabled.

MiniMON29K Target Interface Process: MONTIP 5-23

5-24

Direction
Host-to-target

Acknowledgement
[BKPT_SET_ACK (on page 5-44)

Description

This message is sent by the host to set a breakpoint in the code. While it is
possible to implement breakpoints using other primitives, BKPT_SET is
included for convenience.

This message passes three parameters to the target. If the address specified by
thememory_spacandaddressparameters is not a valid writable address, an
ERROR message will be returned.

The software predefines a limit of 48 on the number of breakpoints that can be
set on the target. If an attempt is made to set a new breakpoint when this limit
has been reached, an ERROR message will be returned to the host. When the
breakpoint is successfully set on the target, a BKPT_SET_ACK message is
returned by the target.

All positive pass_countare interpreted as “sticky” breakpointspAss_countf
0 is interpreted as a “nonsticky” breakpoint. All negative numbers signify
nonsticky breakpoints withgass_countf the absolute value of tipass_count
parameter.

MiniMON29K Target Interface Process: MONTIP

Message 6 (6h):
BKPT_RM (Remove Breakpoint)

Message
#define BKPT_RM 6

struct bkpt_rm_msg_t {
INT32 code; /* 6 */
INT32 length;
INT32 memory_space;
ADDR32 bkpt_addr;

k

where:
memory_space Is the address space where the breakpoint is to be removed.

bkpt_addr Is the address of the breakpoint.

Direction
Host-to-target

Acknowledgement
[BKPT_RM_ACK (on page 5-45)

Description

This message is used to remove a breakpoint from the system. The memory
space and address of the breakpoint are passed to the target as the only
parameters.

If the breakpoint is successfully removed, the target will respond with a

RM_BKPT_ACK message. If no known breakpoint exists at that address, the
target will respond with an ERROR message.

MiniMON29K Target Interface Process: MONTIP 5-25

Message 7 (7h):
BKPT_STAT (Breakpoint Status)

5-26

Message
#define BKPT_STAT 7

struct bkpt_stat_msg_t {
INT32 code; /* 7 */
INT32 length;
INT32 memory_space;
ADDR32 bkpt_addr;

k

where:
memory_space Is the address space of the breakpoint.

bkpt_address Is the address of the breakpoint.

Direction
Host-to-target

Acknowledgement
[BKPT_STAT ACK (on page 5-46)

Description

This message is used to request the status of a breakpoint from the target. The
memory space and address of the breakpoint are passed to the target as the only

parameters.

If the breakpoint exists, the target will respond with a BKPT_STAT_ACK
message. If no known breakpoint exists at that address, the target will respond

with an ERROR message.

This primitive typically is used to check the pass count of a breakpoint.

MiniMON29K Target Interface Process: MONTIP

Message 8 (8h):
COPY (Copy Data)

Message
#define COPY 8

struct copy_msg_t{
INT32 code; /* 8 */
INT32 length;
INT32 source_space;
ADDR32 source_addr;
INT32 dest_space;
ADDR32 dest_addr;
INT32 count;
INT32 size;

3

where:
source_space Specifies the memory space of the source data.

source_addr Is the address in this memory space of the data to be copied.

dest_space Specifies the memory space for the destination of the copy

operation.
dest_addr Specifies the address for the destination of the copy operation.
count Is a count of the number of objects to be copied from the

source to the destination.

size Specifies the size of the object in bytes to be copied (1 = byte,
2 = half word, and 4 = full word).

Direction
Host-to-target

Acknowledgement
(on page 5-47)

MiniMON29K Target Interface Process: MONTIP 5-27

5-28

Description

The COPY message is used to request that a block of memory be copied from
one memory location to another. The source and destination do not have to
reside in the same memory space.

This operation could be implemented using other primitives, but at the cost of
host-to-target bandwidth. A COPY primitive has been included for efficiency.

Some or all of the source may not be readable, or some or all of the destination
may not be writable. In either case, an ERROR message will be returned. No
assumptions should be made by the host as to the amount of data copied by an
unsuccessful operation.

MiniMON29K Target Interface Process: MONTIP

Message 9 (9h):
FILL (Fill Memory)

Message
#define FILL 9

struct fill_msg_t{
INT32 code; /* 9 */
INT32 length;
INT32 memory_space;
ADDR32 start_addr;
INT32 fill_count;
INT32 byte count;
BYTE fill_data[];

k

where:

memory_space Specifies the memory space where the FILL message will
write blocks of memory.

start_addr Specifies the beginning address of the blocks of memory to be
filled.

fill_count Specifiesghe number of bytes to be filled. Note tfiit count
is not necessarily an even multiplebyte count

byte count Specifies the number of bytes in the string.

fill_data Is a 32-hit value.

Direction

Host-to-target

Acknowledgement

FILL_ACK]|(on page 5-48)

MiniMON29K Target Interface Process: MONTIP 5-29

5-30

Description

This primitive is used to fill blocks of memory. This message could have been
built from other primitives, but a separate primitive was defined for the sake of
efficiency.

The FILL message writes a block of memoryriamory_spacbeginning at
start_addrwith copies of the byte strirfdl_data[]. The number of bytes in this
string is given byyte countThe number of bytes to be filled is given by
fill_count Note thafill_countis not necessarily an even multiplebgte count

This message represents a general form of pattern filling. Bytes may be filled in
by settingbyte counto 1, and having a single element in filedata array.
Thirty-two bit words may be filled by setting thgte_counto 4 and placing a
32-bit value in thdill_data array. Other more complicated fill patterns are
possible with the FILL primitive.

The monitor may not have write access to some or all of the memory specified
by the FILL message. In this case, the FILL message returns an ERROR
message. No assumptions may be made by the host as to the value of memory
locations involved in an unsuccessful FILL.

MiniMON29K Target Interface Process: MONTIP

Message 10 (Ah):
INIT (Initialize Target)

Message

#define INIT 10

struct init_msg_t {

where:
text_start

text_end

data_start

data_end

entry_point

INT32
INT32
ADDR32
ADDR32
ADDR32
ADDR32
ADDR32
INT32
INT32
ADDR32
INT32
ADDR32

k

code; /* 10 */
length;
text_start;
text_end;
data_start;
data_end;
entry_point;
mem_stack_size;
reg_stack_size;
arg_start;
0s_control;
highmem;

Specifies the start address in instruction memory of the code
that has been loaded for execution. This parameter is derived
from the most recently loaded COFF file.

Specifies the end address in instruction memory of the code
that has been loaded for execution. This parameter is derived
from the most recently loaded COFF file.

Specifies the start in data memory of the data. This parameter
is derived from the most recently loaded COFF file.

Specifies the end in data memory of the data. This parameter
is derived from the most recently loaded COFF file.

Is the entry point of the code. This parameter is derived from
the most recently loaded COFF file.

mem_stack_sizeThis parameter may be useful to the target, but the target is
under no obligation to use the value.

MiniMON29K Target Interface Process: MONTIP 5-31

5-32

reg_stack_size This parameter may be useful to the target, but the target is
under no obligation to use the value.

arg_start Is an address in data memory pointing to the command-line
parameters. These parameters are stored as an array of pointers
to strings. This array is terminated by a null pointer. This
array, and the associated strings, typically are loaded into data
memory by the host.

os_control Is a 32-bit coded value that is interpreted by the HIF kernel of
osbootduring the warm-start process. Seedkleootmanual
for more information.

highmem Specifies the starting address for the register stack in memory.
This is interpreted by the HIF kernel@gbootduring the
warm-start process. See th&bootmanual for more
information.

Direction
Host-to-target

Acknowledgement

INIT ACK|(on page 5-49)

Description
The INIT message is used to provide run-time information for the downloaded
application program.

MiniMON29K Target Interface Process: MONTIP

Message 11 (Bh):
GO (Execute Code)

Message
#define GO 11

struct go_msg_t {
INT32 code; /* 11 */
INT32 length;

k

Direction
Host-to-target

Acknowledgement
HALT|(on page 5-50), or any target-to-Host operating-system message

Description

The GO message is used to initiate the execution of a piece of code. The
message has no parameters. Code will begin executing according to the preset
state of the target processor.

When execution is complete, a HALT message will be returned to the host.
In some cases, it may be necessary for the host to terminate the execution of the

target code prematurely. In this case, a BREAK message may be sent before
receipt of the HALT message.

MiniMON29K Target Interface Process: MONTIP 5-33

Message 12 (Ch):
STEP (Step Execution)

Message
#define STEP 12

struct step_msg_t{
INT32 code; [* 12 */
INT32 length;
INT32 count;

h
where:
count Defines the number of instructions to be executed in the step.
A countof 1 corresponds to the execution of a single
instruction. Counts greater than 1 refer to corresponding step
sizes. Counts of 0 or less have no meaning.
Direction

Host-to-target

Acknowledgement
[HALT](on page 5-50)

Description

This message is used to step through a program. When the stepping is complete,
a STEP_ACK message is returned to the host. Note that when stepping through
multiple instructions, no trace information is returned. The instructions actually
executed will not be known to the host. If this information is desired, a series of
single steps must be executed by the host.

5-34 MiniMON29K Target Interface Process: MONTIP

Message 13 (Dh):
BREAK (Stop Execution)

Message
#define BREAK 13

struct break_msg_t {
INT32 code; /* 13 */
INT32 length;

k

Direction
Host-to-target

Acknowledgement
[HALT] (on page 5-50)

Description

The BREAK message is used to stop the execution of running code. This
message has no parameters. [Ehgthfield will always be set to 0. When the
execution of the target code has been successfully halted, a HALT message is
returned.

MiniMON29K Target Interface Process: MONTIP 5-35

Message 33 (21h):
CONFIG (Target Configuration)

5-36

Message

#define CONFIG 33

struct config_msg_t {
INT32 code; /* 33 */
INT32 length;
INT32 processor_id;
INT32 version;
ADDR32 I_mem_start;
INT32 I_mem_size;
ADDR32 D_mem_start;
INT32 D_mem_size;
ADDR32 ROM_start;
INT32 ROM_size;

INT32 max_msg_size;
INT32 max_bkpts;
INT32 coprocessor;
INT32 0S_version;

h

where:
processor_id

version

|_mem_start
|_mem_size
D_mem_start
D_mem_size
ROM_start
ROM_size

max_msg_size

Is a number that describes the target processor. It should
contain the processor identification number (PID) of the target
processor.

Specifies the version number of the MiniMON29K target
monitor software.

Specifies the starting address of the instruction memory.
Specifies the size of instruction memory in bytes.
Specifies the starting address of the data memory.
Specifies the size of data memory in bytes.

Specifies the starting address of the ROM.

Specifies the size of ROM in bytes.

Specifies the size of the target message buffer in bytes. This
parameter defines the largest message that the target will
accept.

MiniMON29K Target Interface Process: MONTIP

max_bkpts Specifies the maximum number of breakpoints supported on
the target.

coprocessor Specifies the system coprocessor. A value of —1 means that no
coprocessor is present. The only coprocessor supported by the
MiniMON29K product is the Am29027 coprocessor. If the
Am29027 coprocessor is present, this field has a value of 0.
Only one coprocessor per system is supported.

0s_version Is the target OS version number.

Direction
Target-to-host

Requestor
CONFIG_REQ (on page 5-17)

Description

This message returns configuration information from the target. If the
information concerning a particular parameter is not available, the parameter
should be set to —1. This message is sent in response to the CONFIG_REQ
message from the host.

Other system-specific parameters may be added to the end of this parameter list.
The host is expected to recognize CONFIG messages of various lengths. The
extra parameters at the end of this list of standard configuration parameters are
application specific, and will not be interpreted by the standard host interface
tools.

MiniMON29K Target Interface Process: MONTIP 5-37

Message 34 (22h):

STATUS (Target Status)

Message

#define STATUS 34

struct status_msg_t {
INT32 code; /* 34 */
INT32 length;
INT32 msgs_sent;
INT32 msgs_received,;
INT32 errors;
INT32 bkpts_hit;
INT32 bkpts_free;
INT32 traps;
INT32 fills;
INT32 spills;
INT32 cycles_hi;
INT32 cycles_lo;
INT32 reserved,;

3

where;:
msgs_sent

msgs_received

errors

bkpts_hit

Specifies the number of messages sent by the target to the
host.

Specifies the number of messages received by the target from
the host.

Specifies the number of error messages sent from the target to
the host.

Specifies the number of breakpoints hit by the target.
Breakpoints encountered in the context of pass counts are also
considered breakpoints hit. For instance, a breakpoint with a
pass count of 3 will account for three breakpoints hit in the
parameter.

5-38 MiniMON29K Target Interface Process: MONTIP

bkpts_free Specifies the number of available breakpoints on the target.
This parameter assumes that there is a limited number of
breakpoints managed by the target. If there is no limit to the
number of breakpoints available on the target, this parameter
should be set to a sufficiently large number.

traps Specifies a count of the total number of traps taken by the user
code.
fills Specifies a count of the total number of fill traps taken by the

user code. Note that a fill trap will increment the count of both
thetrapsparameter and tHdls parameter.

spills Specifies a count of the total number of spill traps taken by the
user code. Note that a spill trap will increment the count of
both thetrapsparameter and thepills parameter.

cycles_hi Specifies the high word of the count of the total number of
cycles of user code executed on the target. This number is
reset to 0 each time the target processor is reset.

cycles_lo Specifies the low word of the count of the total number of
cycles of user code executed on the target. This number is
reset to O each time the target processor is reset.

reserved Is reserved for future use.

Direction
Target-to-host

Requestor

STATUS REQ (on page 5-18)

MiniMON29K Target Interface Process: MONTIP 5-39

5-40

Description

This message returns run-time status information from the target. If the
information concerning a particular parameter is not available, that parameter

will be set to —1. This message is sent in response to the STATUS_REQ message
from the host.

Like the CONFIG message, other parameters may be added to the end of this
parameter list. The host is expected to recognize STATUS messages of various
lengths. The extra parameters at the end of this list of standard status parameters
are application specific, and will not be interpreted by the standard host interface
tools.

MiniMON29K Target Interface Process: MONTIP

Message 35 (23h):

READ_ACK (Read Memory)

Message

#define READ_ACK 35

struct read_ack _msg_t {
INT32 code; /* 35 */
INT32 length;
INT32 memory_space;
ADDR32 address;
INT32 byte count;
BYTE data[];

k

where:

memory_space Specifies the memory space of the returned data. This should

address

byte count

data

Direction
Target-to-host

match thememory_spacparameter in the READ_REQ
message.

Specifies the address of the returned data. This should match
theaddresgparameter in the READ_REQ message.

Specifies the number of bytes in the data array that is returned
in the message. This value should also matchyte count
specified in the READ_REQ message. Note that this
parameter is somewhat redundant. Bje_countould be
derived from théengthparameter in the message header. It is
included for convenience in reading the data array.

Is an array of 8-hit bytes. Data is returned as bytes because this
is the smallest accessible data element on most machines. It is
the responsibility of the host code to properly interpret the raw
data returned by this message.

MiniMON29K Target Interface Process: MONTIP 5-41

Requestor
(on page 5-19)

Description

This message returns data requested by a READ_REQ message. It may not be
possible to fulfill the READ_REQ because of a lack of message buffer space or
an inability to access the memory. In these cases, an ERROR message is
returned.

5-42 MiniMON29K Target Interface Process: MONTIP

Message 36 (24h):
WRITE_ACK (Data Written)

Message
#define WRITE_ACK 36

struct write_ack _msg_t {
INT32 code; /* 36 */
INT32 length;
INT32 memory_space;
ADDR32 address;
INT32 byte count;

k

where:
memory_space Specifies the memory space of the written data. This should
match thenemory_spacparameter in the WRITE_REQ

message.

address Specifies the address of the written data. This should match
theaddresgparameter in the WRITE_REQ message.

byte count Is the size of the data array in 8-bit bytes.

Direction

Target-to-host

Requestor

WRITE_REQ (on page 5-21)

Description
This message is sent in acknowledgement of a successful WRITE_REQ
operation.

MiniMON29K Target Interface Process: MONTIP 5-43

Message 37 (25h):
BKPT_SET_ACK (Breakpoint Set)

Message
#define BKPT_SET_ACK 37

struct bkpt_set_ack_msg_t {
INT32 code; /* 37 */
INT32 length;
INT32 memory_space;
ADDR32 address;
INT32 pass_count;

%

where:
memory_space Is the address space where the breakpoint is to be set. In most
cases, this will be the instruction memory of the system.

address Is the address of the breakpoint.

pass_count Specifies the number of times the breakpoint must be
encountered before control is passed from the application to
the monitor. Apass_countf 1 means that a break should
occur the next time the instruction at this address is executed.

Direction
Target-to-host

Requestor
BKPT SET (on page 5-23)

Description
This message acknowledges the successful setting of a breakpoint.

5-44 MiniMON29K Target Interface Process: MONTIP

Message 38 (26h):
BKPT_RM_ACK (Breakpoint Removed)

Message
#define BKPT_RM_ACK 38

struct bkpt_rm_ack _msg_t {
INT32 code; /* 38 */
INT32 length;
INT32 memory_space;
ADDR32 address;

k

where:
memory_space Specifies the memory space of the breakpoint that was
removed.

address Specifies the address of the breakpoint that was removed.

Direction
Target-to-host

Requestor
BKPT RM (on page 5-25)

Description

This message acknowledges the successful removal of a breakpoint. The
parameters for this message will have the same values as those passed to the
target in the RM_BKPT message.

MiniMON29K Target Interface Process: MONTIP 5-45

Message 39 (27h):
BKPT_STAT_ACK (Breakpoint Status)

5-46

Message
#define BKPT_STAT_ACK 39

struct bkpt_stat_ack_msg_t {

INT32 code; /* 39 */
INT32 length;

INT32 memory_space;
ADDR32 address;
INT32 pass_count;

3

where:

memory_space Specifies the same values passed to the target in the

BKPT_STAT message.

address Specifies the same values passed to the target in the
BKPT_STAT message.

pass_count Specifies the number of times the breakpoint must be
encountered before control is passed from the application to
the monitor. Apass_counbf 1 means that a break should
occur the next time the instruction at this address is executed.

Direction

Target-to-host

Requestor

BKPT_STAT (on page 5-26)

Description

This message is sent in response to the BKPT_STAT message. This message
returns the status of the breakpoint at the requested address. The primary use of
this message is to inspect thess _coundf a breakpoint.

MiniMON29K Target Interface Process: MONTIP

Message 40 (28h):
COPY_ACK (Data Copied)

Message
#define COPY_ACK 40

struct copy_ack _msg_t{
INT32 code; /* 40 */
INT32 length;
INT32 source_space;
ADDR32 source_addr;
INT32 dest_space;
ADDR32 dest_addr;
INT32 byte count;

k

where:
source_space Specifies the memory space of the source data.

source_addr Is the address in this memory space of the data to be copied.

dest_space Specifies the memory space for the destination of the copy

operation.
dest_addr Specifies the address for the destination of the copy operation.
byte count Is a count of the number of bytes to be copied from the source

to the destination.

Direction
Target-to-host

Requestor

[COPY (on page 5-27)

Description

The COPY_ACK message acknowledges that the operation requested by COPY
has completed successfully. The COPY_ACK should return the same parameters
sent by the COPY message.

MiniMON29K Target Interface Process: MONTIP 5-47

Message 41 (29h):
FILL_ACK (Memory Filled)

Message
#define FILL_ACK 41

struct fill_ack_msg_t {
INT32 code; /* 41 */
INT32 length;
INT32 memory_space;
ADDR32 start_addr;
INT32 fill_count;
INT32 byte count;

k

where:
memory_space Specifies the memory space where the FILL message will
write blocks of memory.

start_addr Specifies the beginning address of the blocks of memory to be
filled.

fill_count Specifiesghe number of bytes to be filled. Note tfiit count
is not necessarily an even multiplebgte count

byte count Specifies the number of bytes in the string.

Direction

Target-to-host

Requestor
(Ew 1] (on page 5-29)

Description
The FILL_ACK message acknowledges that a FILL message has been
successfully executed.

FILL_ACK should return the first four parameters sent by the FILL message.

Because this message serves only as an acknowledgement, the fill pattern sent
by the FILL message is not returned.

5-48 MiniMON29K Target Interface Process: MONTIP

Message 42 (2Ah):
INIT_ACK (Target Initialized)

Message
#define INIT_ACK 42

struct init_ack_msg_t{
INT32 code; [* 42 */
INT32 length;

k

Direction
Target-to-host

Requestor
[INIT](on page 5-31)

Description
The INIT_ACK message acknowledges that an INIT message has been received
by the target.

MiniMON29K Target Interface Process: MONTIP 5-49

Message 43 (2Bh):
HALT (Execution Halted)

Message
#define HALT 43

struct halt_msg_t {
INT32 code; /* 43 */
INT32 length;
INT32 memory_space;
ADDR32 pcO;
ADDR32 pcl;
INT32 trap_number;

3
where:
pcO0 Contains the value of the program counter regist@r
pcl Contains the value of the program counter register

trap_number Is the value of the trap number that caused the halt.

Direction
Target-to-host

Reqguestor
(on page 5—3@0 (on page 5—MSET (on page 5—@ STEP
(on page 5-34)

Description
The HALT message is sent to the host any time control is returned to the
monitor. It is sent in response to a GO or a STEP message.

5-50 MiniMON29K Target Interface Process: MONTIP

Message 63 (3Fh):
ERROR (Error Detected)

Message
#define ERROR 63

struct error_msg_t{
INT32 code; /* 63 */
INT32 length;
INT32 error_code;

h
where:
error_code Is a 32-bit integer containing an error code. This error code
describes the error encountered when attempting to execute a
host command.
Direction

Target-to-host

Requestor
Any host-to-target message

Description

This message is returned to the host whenever an error is encountered. An
ERROR message may be returned from any host request. This message sends a
single parameter.

MiniMON29K Target Interface Process: MONTIP 5-51

Operating-System Messages

5-52

Messages 64 through 127 are classified as operating-system messages. These
messages are transmitted between the host and the application/operating system
running on the target. In the default configuration of MiniMON29K, the HIF

kernel ofosboottransmits and receives the operating-system messages on the
target.

¢ Messages 64 through 95 are sent from the host to the target.

¢ Messages 96 through 127 are sent from the target to the host.

The operating-system messages are listed on the following pages, in numerical

order. See page 5-15 for the debug messages.

MiniMON29K Target Interface Process: MONTIP

Message 64 (40h):
HIF_CALL _RTN (HIF_CALL Return)

Message
#define HIF_CALL_RTN 64

struct hif_call_rtn_msg_t {
INT32 code; /* 64 */
INT32 length;

INT32 service_number;
INT32 gri21;

INT32 groe;

INT32 grov,

h

Direction
Host-to-target

Requestor
(on page 5-59)

Description

The HIF_CALL_RTN message is usedrgntip to return the results of the
requested HIF system call to the HIF kernel that requested it. The
service_numbeifield contains the HIF service number of the requested

operation. (See AMD’s host interface specification for more details.) The fields
grl21, gr96, and gr97 contain the results of the requested operation according to
the service requested.

MiniMON29K Target Interface Process: MONTIP 5-53

Message 65 (41h):
CHANNELO (Data at Channel 0)

Message
#define CHANNELO 65

struct channel0_msg_t {
INT32 code; /* 65 */
INT32 length;
BYTE data;

h

Direction
Host-to-target

Acknowledgement

[CHANNELO_ACK| (on page 5-60)

Description

The CHANNELO message is used by the host to send a single byte to the target.
This is typically a key pressed on the keyboard. This provides “raw” keyboard
input.

This message is acknowledged by CHANNELO_ACK.

5-54 MiniMON29K Target Interface Process: MONTIP

Message 66 (42h):
CHANNEL1_ACK (Channel 1 Ack)

Message
#define CHANNEL1_ACK 66

struct channell_ack msg_t{
INT32 code; /* 66 */
INT32 length;
INT32 nbytes;

3

Direction
Host-to-target

Rei uestor
CHANNEL1 (on page 5-61)

Description

The CHANNEL1 ACK message is used by the host to acknowledge that a
CHANNEL1 message has been read and processed. The CHANNEL1_ACK
message returns to the standard output device the number of bytes successfully
written in thenbytesparameter.

MiniMON29K Target Interface Process: MONTIP 5-55

Message 67 (43h):
CHANNELZ2_ACK (Channel 2 Ack)

Message
#define CHANNEL2_ACK 67

struct channel2_ack _msg_t {
INT32 code; /* 67 */
INT32 length;
INT32 nbytes;

h

Direction
Host-to-target

Requestor
CHANNELZ2| (on page 5-62)

Description

The CHANNEL2_ ACK message is used by the host to acknowledge that a
CHANNEL2 message has been read and processed. The CHANNEL2_ACK
message returns to the standard output device the number of bytes successfully
written in thenbytesparameter.

5-56 MiniMON29K Target Interface Process: MONTIP

Message 68 (44h):
STDIN_NEEDED_ACK (Standard Input Needed)

Message
#define STDIN_NEEDED_ACK 68

struct stdin_needed_ack_msg_t {
INT32 code; /* 68 */
INT32 length;
BYTE data;

Direction
Host-to-target

Requestor
[STDIN_NEEDED (on page 5-63)

Description

The STDIN_NEEDED_ACK message is sent in response to a request from the
target for input from the standard input device, i.e., terminal. This message is
used when the standard input mode is in synchronous and blocking mode.

The length field of the message contains the number of input characters that
follow. The data field has the first input character.

MiniMON29K Target Interface Process: MONTIP 5-57

Message 69 (45h):
STDIN_MODE_ACK (Standard Input Mode)

Message
#define STDIN_MODE_ACK 69

struct stdin_mode_ack_msg_t {
INT32 code; /* 69 */
INT32 length;
INT32 mode;

Direction
Host-to-target

Requestor
STDIN_MODE (on page 5-64)

Description

When the target sends a STDIN_MODE message to change the standard input
mode, the host sends the STDIN_MODE_ACK message in responsmotke

field of the message contains the previous input mode. AMD’s host interface
specification enumerates the mode values for the different input modes.

5-58 MiniMON29K Target Interface Process: MONTIP

Message 96 (60h):
HIF _CALL (HIF Call)

Message
#define HIF_CALL 96

struct hif_call_msg_t{
INT32
INT32
INT32
INT32
INT32
INT32

k

Direction
Target-to-host

Acknowledgement

code; /* 96 */

length;

service_number; /* gr121 */
Ir2;

Ir3;

Ir4;

[HIF_CALL RTN (on page 5-53)

Description

The HIF_CALL message is used by the HIF kernaistfootto request a HIF
operating-system service from the host. The host should perform the requested
action (if possible) and send the results in a HIF_CALL_RTN message.

MiniMON29K Target Interface Process: MONTIP 5-59

Message 97 (61h):
CHANNELO_ACK (Channel 0 Acknowledgement)

Message
#define CHANNELO_ACK 97

struct channel0_ack _msg_t {
INT32 code; /* 97 */
INT32 length;

k

Direction
Target-to-host

Requestor

CHANNELQ (on page 5-54)

Description

The CHANNELO_ACK message is used by the target to acknowledge that the
byte sent by the CHANNELO message has been received. This message has no
parameters.

5-60 MiniMON29K Target Interface Process: MONTIP

Message 98 (62h):
CHANNEL1 (Write Channel 1)

Message
#define CHANNEL1 98

struct channell _msg_t{
INT32 code; /* 98 */
INT32 length;
BYTE data(];

3

Direction
Target-to-host

Acknowledgement
[CHANNEL1 ACK (on page 5-55)

Description
The CHANNEL1 message is used by the target to write an array of bytes to the
host standard output device.

MiniMON29K Target Interface Process: MONTIP 5-61

Message 99 (63h):
CHANNELZ2 (Write Channel 2)

Message
#define CHANNEL2 99

struct channel2_msg_t{
INT32 code; /* 99 */
INT32 length;
BYTE data(];

h

Direction
Target-to-host

Acknowledgement
[CHANNEL2 ACK|(on page 5-56)

Description
The CHANNEL?2 message is used by the target to write an array of bytes to the
host standard error device.

5-62 MiniMON29K Target Interface Process: MONTIP

Message 100 (64h):
STDIN_NEEDED (Standard Input Needed)

Message
#define STDIN_NEEDED 100

struct stdin_needed_msg_t {
INT32 code; /*100 */
INT32 length;
INT32 nbytes;

3

Direction
Target-to-host

Acknowledgement
[STDIN_NEEDED_ACK (on page 5-57)

Description

When the input mode is synchronous and blocking, the operating system or
application program running on the target system sends a STDIN_NEEDED
message to the host to request user inputnbliesfield contains the

maximum number of bytes requested at this time. The host waits for input to be
available and returns the input data using the STDIN_NEEDED_ACK message.

MiniMON29K Target Interface Process: MONTIP 5-63

Message 101 (65h):
STDIN_MODE (Standard Input Mode)

Message
#define STDIN_MODE 101

struct stdin_mode_msg_t {
INT32 code; /*101*/
INT32 length;
INT32 mode;

h

Direction
Target-to-host

Acknowledgement
[STDIN_MODE_ACH (on page 5-58)

Description

This message is sent by the target to request a change in the input mode on the
standard input device. Timodefield contains the code for the input mode
requested. AMD’s host interface specification enumerates the mode values for
different input modes. The host sends a STDIN_MODE_ACK message which
contains the previous input mode.

5-64 MiniMON29K Target Interface Process: MONTIP

Appendix A a

MONTIP Error Messages

Themontip error messages are listed on the following page in order of error
number. However, note that the error message may appear differently as the
format of the error messages varies depending on the DFE being used.

MiniMON29K Target Interface Process: MONTIP A-1

MONTIP Error Messages

© 0O N O 0o~ W DN - O

el
N RO

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

MONNOoETrror: “No Error.”

MONErrCantSendMsg: “Could not send message to target.”
MONErrCantRecvMsg: “Did not receive the correct ACK from target.”
MONErrCantLoadROMfile: “Can’t load ROM file.”
MONETrrCantInitMsgSystem: “Can’t initialize the message system.”
MONErrCantBreaklnROM: “Can’t set breakpoint in ROM.”
MONErrCantResetComm: “Can’t reset communication channel.”
MONErrCantAllocBufs: “Can’t reallocate message buffers.”
MONErrUnknownBreakType: “Breakpoint type requested is not recognized.”
MONErrNoAck: “No ACK from target—timed out.”

MONErrNoSynch: “Timed out synching. No response from target.”
MONErrCantOpenCoff: “Cannot open ROM file.”

MONErrCantWriteToMem: “Cannot write to memory while downloading ROM
file.”

MONErrAbortAborted: “Ctrl-C aborted previous Ctrl-C processing.”
MONErrNullConfigString: “Null configuration string specified for connection.”
MONErrNoTargetType: “No target type specified for connection.”
MONErrOutofMemory: “Out of memory.”

MONET rErrorinit: “Error on target—trying to initialize process.”
MONETrrErrorRead: “Error on target—trying to read.”

MONETrrErrorWrite: “Error on target—trying to write.”

MONE-rrErrorCopy: “Error on target—trying to do copy.”
MONETrErrorSetBreak: “Error on target—trying to set breakpoint.”
MONETrrErrorStatBreak: “Error on target—trying to query breakpoint.”
MONETrrErrorRmBreak: “Error on target—trying to remove breakpoint.”
MONErrConfiginterrupt: “User interrupt signal received; aborting synch.”
MONErrNoConfig: “Couldn’t get target config after reset. Try again.”
MONETrrMsgInBuf: “Message received from target waiting in buffer.”
MONErrUnknownTIPCmd: “Unknown MONTIP command; exiting TIP mode.”

MiniMON29K Target Interface Process: MONTIP

Appendix B n

MinIMONZ29K Target
Message System

The code for the MiniMON29K Target Message system, contained mgges
file, is shown on the following pages.

MiniMON29K Target Interface Process: MONTIP B-1

msg.s File

TN I I NI I IIIIIIIIIIIIIIIIIIII000000090099993393333933

; This is the Message System of MiniMON29K.

1933393393333 3311300000000009999339337333333333330090000900911131933333333933
1

file "msg.s”
.ident "@(#)msg.s 1.3 93/07/06 18:14:28, Srini, AMD”

; MiniMON29K R 1.1 Version don’t know
; MiniMON29K R 2.0 Version 0x10

; MiniMON29K R 2.1 Version Ox11

; MiniMON29K R 3.0 Version 0x12

.equ MSG_VERSION, 0x12

equ MSG_RBUF_SIZE, 2048

.extern dbg_V_msg ; Debug core’s message handler
.extern os_V_msg ; OS message handler

.extern msg_write_p ; function to write out a message
.extern msg_wait_for_p ; ptr to function that waits for a msg

.extern msg_initcomm

.global _msg_version ; version of msg sys and comm drivers
.global _msg_sbuf_p ; address of the message to send
.global _msg_lastsent_p ; address of last msg sent

.global _msg_next_p ; hext char to send

.global _msg_rbuf ; message receive buffer

.global _msg_init ; init msg sys at cold start

.global _msg_send ; send valid msg to montip

.global msg_V_arrive ; get here on receiving a message
.global _msg_wait_for ; wait for message to arrive

B-2 MiniMON29K Target Interface Process: MONTIP

msg.s File continued

.macro MSG_SAVE_GLOB

const gr4, _msg_save_glob

consth gr4, _msg_save_glob

store 0, 0, gr96, gr4 ; gro6
const gr96, _msg_save_glob+4

consth gr96, _msg_save_glob+4

store 0, 0, gr97, gr96 ; gro7
add gro6, groe, 4

store 0, 0, gr98, gr96 ; gro8
.endm

.macro MSG_RESTORE_GLOB
const gr96, _msg_save_glob+4
consth gr96, _msg_save_glob+4

load 0, 0, gr97, gr96 ; gro7
add gr96, groe, 4
load 0, 0, gr98, gro6 ; grog

const gr96, _msg_save_glob
consth gr96, _msg_save_glob

load 0, 0, gr96, gr96 ; gro6
.endm

.sect msg_data, bss
.use msg_data

_msg_sbuf_p: .block 1*4

_msg_rbuf: .block MSG_RBUF_SIZE

_msg_version: .block 1*4

_msg_lastsent_p: .block 1*4

_msg_next_p: .block 1*4

_msg_save_glob: .block 3*4 ; gro6—gro8

_msg_save_loc: .block 3*4 ; Ir0=Ir2

_msg_v_save: .block 3*4 ; gr96—gro98

_msg_send_save: .block 6*4 ; Iro-Ir4
text

; initialize msg system data structures.
; msg system initialization. The actual device depends on the target system
; and is initialized by msg_initcomm function.
_msg_init:
MSG_SAVE_GLOB

const gr96, _msg_lastsent_p

consth gr96, _msg_lastsent_p

const gr97,0

store 0, 0, gr97, gro6 ; init last msg address

MiniMON29K Target Interface Process: MONTIP

B-3

msg.s File continued

const gr96, _msg_sbuf p
consth gr96, _msg_sbuf_p
store 0, 0, gr97, gr96 ; clear semaphore

const gr96, _msg_next_p

consth gr96, _msg_next_p

const gr97, _msg_rbuf

consth gr97, _msg_rbuf

store 0, 0, gr97, gr96 ; next char to send pointer

const gr96, _msg_save_loc
consth gr96, _msg_save_loc

store 0, 0, IrO, gr96 ; save IrO

const gr96, msg_initcomm ; returns version number
consth gr96, msg_initcomm

calli Ir0, gr96 ; initialize comm interface
nop

; gr96 has the comm_version number.

; initialize msg_version with msg_version|comm_version

sli gro6, gro6, 8 ; driver version

or gr96, gr96, MSG_VERSION ; append msg sys version
const gr97, _msg_version

consth gr97, _msg_version

store 0, 0, gr96, gr97 ; store for use by debug core

; restore IrO

const gr96, _msg_save_loc

consth gr96, _msg_save_loc

load 0, 0, Ir0, gro6 ; restore IrQ
MSG_RESTORE_GLOB

jmpi Ir0
nop

B—4 MiniMON29K Target Interface Process: MONTIP

msg.s File continued

msg_V_arrive:
const
consth
load
cpgeu
jmpt
dbgcore_msg:
const
consth
jmpi
nop
0S_msg:
const
consth
jmpi
nop

gr4, _msg_rbuf
gr4, _msg_rbuf
0, 0, gr4, grd
gr4, grd, 64
gr4, os_msg

gr4, dbg_V_msg
gr4, dbg_V_msg
gré

gr4, os_V_msg
gr4, os_V_msg
grd

; determine class, (first entry)
; determine class, (first entry)

;impi to dbg_V_msg

;jmpi to os_V_msg

i

; This function is used to indicate if the receive message
; buffer contains a vaild message. The return value is -1
; if the buffer is valid, and 0 if invalid.
; With a poll driven serial driver, msg_wait_for() should

; not return until the buffer contains a message for processing.

_msg_wait_for:

, save

const
consth
store

const
consth
load

calli
nop

const
consth
load

jmpi
nop

MiniMON29K Target Interface Process: MONTIP

Ir0

gr4, _msg_save_loc
grd4, _msg_save_loc

0, 0, Ir0, gr4 ;

gr96, msg_wait_for_p
gr96, msg_wait_for_p
0, 0, gr96, gro6

Ir0, gro6

Ir0, _msg_save_loc

Ir0, _msg_save_loc

0, 0, Ir0, Ir0 ;
Ir0

save Ir0

; get function address

restore IrO

; return

MSG_V_ARRIVE

MSG_WAIT_FOR

B-5

msg.s File continued

_msg_send:
; Send the message pointed to by Ir2.
; return success (—1) or failure (0) in gr96 to caller.

B—6

; check msg send semaphore
const gr96, _msg_sbuf p
consth gr96, _msg_sbuf_p

load 0, 0, gr96, gro6 ; read semaphore

cpeq groe, gr96, 0 ; compare with zero
jmpfi gr96, Ir0 ; if not zero, return failure
constn gr96, —1 ; —1 for failure

; update semaphore with address of message to send in Ir2
const gr96, _msg_sbuf p

consth gr96, _msg_sbuf_p

store 0,0, Ir2, gr96 ; update msg send semaphore

const gr96, _msg_lastsent_p
consth gr96, _msg_lastsent_p
store 0,0, Ir2, gr96 ; update msg last sent pointer

; backup some registers for temporary use.
const gr96, _msg_send_save
consth gr96, _msg_send_save

store 0, 0, IrO, gr96 ; save IrO
add gr96, groe6, 4
store 0,0, Irl, gr96 ; save Irl
add gro6, gro6, 4
store 0,0, Ir2, gr96 ; save Ir2
add gro6, gr96, 4
store 0, 0, Ir3, gr96 ; save Ir3

; send the message calling the device write function.
; offset O in write_table is dedicated for debug core.
; Ir2 = pointer to message

; Ir3 = total bytes in message.

add Ir3,1r2, 4
load 0,0,1Ir3,1r3 ; get msg length value
add Ir3,1r3, 8 ; add msg header size

const gr96, msg_write_p
consth gr96, msg_write_p

load 0, 0, gr96, gro6 ; get msg_write function.
calli Ir0, gro6 ; call msg_write
nop

MiniMON29K Target Interface Process: MONTIP

MSG_SEND

msg.s

File continued

const gr96, _msg_send_save
consth gr96, _msg_send_save

load 0, 0, Ir0, gro6 ; restore Ir0

add gro6, groe, 4

load 0, 0, 1Ir1, gro6 ; restore Irl

add gro6, groe, 4

load 0, 0, Ir2, gro6 ; restore Ir2

add gro6, groe, 4

load 0, 0, Ir3, gro6 ; restore Ir3

jmpi Ir0

const gr96, 0 ; return success

MiniMON29K Target Interface Process: MONTIP

B-7

Appendix C &
Target Message Drivers

At the time of publication, the code for the target message drivers was in the
files with the following names:

* eb29khw.sfile: Code for the EB29K target message driver
¢ eb030hw.Hfile: Code for the EB29030 target message driver
e scc8530.endez030hw.diles: Code for the EZ-030 target message driver

* [scc200Jsandsa200hwdiles: Code for the SA-29200 and SA-29205 target
message driver. The contents of these two files also are printed on the
following pages.

MiniMON29K Target Interface Process: MONTIP C-1

scc200.s File

yy

1933393393333 3311300000000009999339337333333333330090000900911131933333333933
1

.ident "@(#)scc200.s 1.7 93/11/01 09:11:20, Srini, AMD"
file "scc200.s”
.include "stats.ah”

equ NACK_BIT, Ox1
.equ ACK_BIT, 0x2

.extern UCLK ; link time constant def in linker command file

.ifndef BAUDRATE
.equ BAUDRATE, 9600
.endif

.global msg_scc200_init

.global msg_scc200_write

.global msg_scc200_wait_for ; polled mode receive
.global msg_scc200_tx_intr

.global msg_scc200_rx_intr

.global msg_ppi200_intr

.global msg_Ipt200_init

.extern _msg_rbuf ; start of receive buffer

.extern _msg_next_p ; message receive buffer pointer
.extern _msg_lastsent_p ; address of msg last sent

.extern _msg_sbuf_p ; message send semaphore
.extern msg_V_arrive ; virtual message interrupt vector

C-2 MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

.bss
scc200_tmp_regs: .block 4*4
intr_tmp_regs: .block 4*4
poll_tmp_glob: .block 4*4 ; gr97—gr99
poll_tmp_loc: .block 3*4 ; Ir0, Ir2—Ir3
nbytes_to_write: .block 1*4
nextchar_p: .block 1*4
ack_flag: .block 1*4
nack_flag: .block 1*4
firstmsg_flag: .block 1*4
ack_msg_p: .block 2*4
nack_msg_p: .block 2*4
text

MSG_SCC200_INIT

msg_scc200_init:
; gr96, gr97, gro8 are saved before calling this.
; Returns via Ir0.
; initialize ack msg and nack msg structures.
const gr96, ack_msg_p
consth gr96, ack_msg_p
constn gr97, -1
store 0, 0, gr97, gr96 ;=1
add gro6, groe, 4
const gr97,0
store 0, 0, gr97, gr96 ;0

const gr96, nack_msg_p
consth gr96, nack_msg_p
constn gr97, -1

store 0, 0, gr97, gr96 ;=1
add gro6, groe, 4
store 0, 0, gr97, gr96 ;-1

; set the firstmsg_flag to true

const gr96, firstmsg_flag

consth gr96, firstmsg_flag

constn gr97, -1

store 0, 0, gr97, gr96 ; firstmsg_flag = TRUE

const gr97, SPCT

consth gr97, SPCT

const gr96, 0

store 0, 0, gr96, gr97 ; SPCT=0

MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

; compute baud rate

; bauddiv = UCLK/32/BAUDRATE - 1
const gr98, BAUDRATE

consth gr98, BAUDRATE

const gr96, UCLK

consth gr96, UCLK

srl gro6, gro6, 5
mtsr g, gro6

divo gro7, 0

.rep 31

div gr97, gr97, gr98
.endr

divl gro7, gr97, gr98
mfsr gr97, q

sub gro6, gra7, 1
const gr97, BAUD
consth gr97, BAUD
store 0, 0, gr96, gr97

const gr96, 0x01030000
consth gr96, 0x01030000
const gr97, SPCT
consth gr97, SPCT

0132

; bauddiv in groé

; set BAUD

; rx=intr mode, tx=intr mode
; word length=8 bits

store 0, 0, gr96, gr97 ; set rx,tx mode, wi=9bits,noparity

.ifndef SERIAL_POLL
const gr96, 0x01030101
consth gr96, 0x01030101
const gr97, SPCT
consth gr97, SPCT

; rx=intr mode, tx=intr mode
; word length=8 bits

store 0, 0, gr96, gr97 ; set rx,tx mode, wi=9bits,noparity

.endif

const gro6, ICT
consth gr96, ICT
const gr97, (PPIIRXSI|RXDI|TXDI)
consth gr97, (PPI|[RXSI|RXDI|TXDI)

store 0,0, gr97, gr96 ; reset serial port pending interrupts
jmpi Ir0
nop

C-4 MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

MSG_LPT200_INIT

msg_Ipt200_init:
; gr96, gr97, gr98 are saved before calling this.
; Returns via Ir0.
const gr96, PPCT
consth gr96, PPCT
const gr97, ((16<<TDELAY Shift)|(1<<PPCT_MODEShIft));
consth gr97, ((16<<TDELAYShift)|(1<<PPCT_MODESHift));

store 0, 0, gr97, gr96 ; 8 bits, interrupt on char
jmpi Ir0
nop

MSG_SCC200_WRITE

msg_scc200_write:
; Ininterrupt mode, it sends out the first character and returns. In this
; mode it is called with interrupts disabled. Interrupts are enabled after
; this call returns.
; In polled mode, it loops until the entire message is written.
; Called from msg_send. return via Ir0.
; Ir2 — pointer to message
; Ir3 = nbytes in message.
const gré4, scc200_tmp_regs
consth gr4, scc200_tmp_regs
store 0, 0, gr96, gr4 ; backup gr96
const gr96, scc200_tmp_regs+4
consth gr96, scc200_tmp_regs+4

store 0, 0, gr97, gr96 ; backup gr97
add gro96, groe, 4
store 0, 0, gr98, gr96 ; backup gro8

; set nextchar_p

const gr96, nextchar_p

consth gr96, nextchar_p

store 0,0, Ir2, gr96 ; hext char to send

; check the type of message, ack/nack have no checksum
const gr96, nbytes_to_write

consth gr96, nbytes_to_write

load 0, 0, gr98, Ir2

jmpt gr98, acknack_code

add gr97,1r3, 0

add oro7,1r3, 4 ; add checksum size
store 0, 0, gr97, gr96 ; write nbytes to send

MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

; compute checksum and append to end of message.
add groe6, Ir2, 4

load 0, 0, gr96, gro6 ; msg len

add gr96, gro6, 8 ; add msg size

sub gro6, groe, 2

const gr98,0 ; initialize checksum
$1:

load 0,1, 9r97,1Ir2

add gro8, gro8, gr97

jmpfdec gro6, $1

add Ir2,1Ir2, 1

; aapend at Ir2

srl gro7, gr98, 24

store 0, 1, gr97, Ir2

srl gra97, gr98, 16

and gro97, gr97, Oxff

add Ir2,Ir2, 1

store 0,1, gr97, Ir2

srl gr97, gro8, 8

and gro97, gr97, Oxff

add Ir2,1Ir2, 1

store 0,1, gr97, Ir2

and gr97, gr98, Oxff

add Ir2,1r2, 1

store 0,1, gr97, Ir2

; Start sending out the message. This layer does not buffer

; the message. Instead it relies on the message remaining

; there until it is sent. A semaphore msg_send_p is cleared

; when the message is sent.

; wait for transmit holding register to empty.

const gr96, SPST
tx_loop:

consth gr96, SPST

load 0, 0, gr96, gr96 ; read status

sl gr96, gr96, (31 — THRESHIft)

jmpf gro96, tx_loop
const gr96, SPST

C-6 MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

; get character from nextchar_p
const gr96, nextchar_p
consth gr96, nextchar_p

load 0, 0, gr97, gr96

load 0, 1, gr98, gr97 ; get character to send
add gro97, gro7, 1 ; update
store 0, 0, gr97, gr96 ; nextchar_p++

; stuff character

const gr96, SPTH

consth gr96, SPTH

store 0, 0, gr98, gr96 ; put char

; decrement nbytes_to_write

const gr96, nbytes_to_write

consth gr96, nbytes_to_write

load 0, 0, gr97, gr96

sub gr97, gra7, 1

store 0, 0, gr97, gr96 ; nbytes_to_write—

.ifdef SERIAL_POLL

.endif

cpeq gro8, gr97, 0 ; nbytes_to_write == 0?
jmpt gros, $2 ; yes, then done

nop

jmp tx_loop

const gr96, SPST

MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

$2:
const gr96, firstmsg_flag
consth gr96, firstmsg_flag
load 0, 0, gr96, gr96
jmpf gro6, restore_regs

const gr96, _msg_sbuf p
consth gr96, _msg_sbuf_p
const @r97,0

store 0, 0, gr97, gr96
const gr96, firstmsg_flag

consth gr96, firstmsg_flag
const gr97,0
store 0, 0, gr97, gr96
restore_regs:
.ifdef SERIAL_POLL
; clear msg_sbuf_p

const gr96, _msg_sbuf p
consth gr96, _msg_sbuf_p
const gr97,0

store 0, 0, gr97, gr96

.endif
; restore gr96—gr98
const
consth
load 0, 0, gr97, gr96
add gro6, gro6, 4
load 0, 0, gr98, gr96
const
consth
load 0, 0, gr96, gro6

jmpi Ir0
nop

acknack_code:
store 0, 0, gr97, gr96
add Ir2, Ir2, 4
load 0, 0, gr96, Ir2

const gr97, ack_flag
consth gr97, ack_flag

jmpt gro6, set_nack_flag
constn gr98, -1

store 0, 0, gr98, gr97

jmp tx_loop

const gr96, SPST

C-8

gro6, scc200_tmp_regs
gro6, scc200_tmp_regs

; clear _msg_sbuf_p for 1st msg

; Clear firstmsg_flag

; clear msg_sbuf_p

gr96, scc200_tmp_regs+4
gr96, scc200_tmp_regs+4

; restore gr97

; restore gr98

; restore gr96

; write nbytes to send

; set ack_flag

MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

set_nack_flag:
const gr97, nack_flag
consth gr97, nack_flag
constn gr98, -1
store 0, 0, gr98, gr97 ; set nack_flag

jmp tx_loop
const gr96, SPST

; MSG_SCC200_TX_INTR
msg_scc200_tx_intr:

const gr4, intr_tmp_regs

consth gré4, intr_tmp_regs

store 0, 0, gr96, gr4 ; backup gr96

const gr96, intr_tmp_regs+4

consth gr96, intr_tmp_regs+4

store 0,0, gr97, gr96 ; backup gr97
add gro6, groe, 4
store 0, 0, gr98, gr96 ; backup gro8

const gr96, ICT

consth gr96, ICT

const gr97, TXDI

consth gr97, TXDI

store 0, 0, gr97, gr96 ; Clear TXDI

; check for more bytes to send.
const gr96, nbytes_to_write
consth gr96, nbytes_to_write

load 0, 0, gr97, gro6 ; get bytes left

cpeq gro8, gr97, 0 ; compare with zero

jmpt gros, $3 ; yes, none left check nack/ack
nop

; get next byte

sub gro7, gro7, 1

store 0, 0, gr97, gr96 ; nbytes_to_write—
const gr96, nextchar_p

consth gr96, nextchar_p

load 0, 0, gr97, gro6

load 0, 1, gr98, gr97 ; get character
add gro97, gro7, 1
store 0, 0, gr97, gr96 ; nextchar_p++

MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

; stuff byte
const gr96, SPTH
consth gr96, SPTH

; set, valid msg intr

; post interrupt to message

; system

store 0, 0, gr98, gr96 ; put char
$4:
; restore gr96—gr98 registers.
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gro6, gr96, 4
load 0, 0, gr98, gr96 ; restore gr98
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96
iret
$3:
; check ack_flag if one just sent and clear it.
const gr96, ack_flag
consth gr96, ack_flag
load 0, 0, gr97, gro6 ; get flag
jmpt gr97, valid_msg
nop
jmp $4
nop
valid_msg:
; clear ack_flag
const gr97,0
store 0, 0, gr97, gr96 ; clear flag
; restore gr96—gr98 registers.
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4
load 0, 0, gr97, gr96 ; restore gr97
add gr96, groe6, 4
load 0, 0, gr98, gr96 ; restore gro8
const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96
jmp msg_V_arrive
nop
C-10

MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

msg_ppi200_intr:
const gré4, intr_tmp_regs
consth gr4, intr_tmp_regs
store 0, 0, gr96, gr4 ; backup gr96
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4

store 0, 0, gr97, gr96 ; backup gr97
add groe, groe, 4
store 0, 0, gr98, gr96 ; backup gro8

const gr96, ICT
consth gr96, ICT
const gr97, PPI
consth gr97, PPI
store 0, 0, gr97, gr96 ; clear PPI

; receive the character (FWT=0) and put in buffer.
const gr96, PPCT
consth gr96, PPCT

load 0, 0, gr96, gro6 ; read PPCT

sli gr97, gr96, (31-7) ; move FBUSY bit to MSB
jmpt gro7, ppi_iret ; leave character in port

nop

const gr96, PPDT ; get pdata

consth gr96, PPDT

load 0, 1, gr96, gr96 ; gr96 has received character
jmp handle_rx_char

nop

ppi_iret:
; restore register gr96—gro8
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4

load 0, 0, gr97, gr96 ; restore gr97
add gro6, gro6, 4
load 0, 0, gr98, gr96 ; restore gr98

const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

iret

MSG_PPI200_INTR

MiniMON29K Target Interface Process: MONTIP

C-11

scc200.s File continued

MSG_SCC200_RX_INTR

msg_scc200_rx_intr:

const
consth
store
const
consth
store
add
store

const
consth
const
consth
store

gr4, intr_tmp_regs
gr4, intr_tmp_regs
0, 0, gr96, gr4
gro6, intr_tmp_regs+4
gr96, intr_tmp_regs+4
0, 0, gr97, gro6

gro6, groe, 4
0, 0, gr98, gro6

groe, ICT
groe, ICT
gr97, RXDI
gr97, RXDI

0, 0, gr97, gro6

; backup gr96

; backup gro7

; backup gro8

; clear RXDI

; receive the character and put in buffer.

const
consth
load

handle_rx_char:

C-12

; put in
const
consth
load
store
add
store

gr96, SPRB
gro96, SPRB
0, 0, gr96, gro6

_msg_next_p location.

gr97, _msg_next_p

gro7, _msg_next_p
0, 0, gr98, gr97

0, 1, gr96, gro8
gro8, gr9sg, 1

0, 0, gr98, gro7

; gr96 has received character

; save character

; update _msg_next_p

; check the buffer for a minimon message.

const
consth
load
const
consth
sub

cplt
jmpf
nop

gro6, _msg_next_p
gro6, _msg_next_p
0, 0, gr97, gro6
gr96, _msg_rbuf
gr96, _msg_rbuf
gr98, gr97, gro6

gro7, gro8, 8
gr97, check_for_msg

; msg_next_p

; msg_rbuf

; msg_rbuf-msg_next_p = len

;len< 8

; o, check for message

MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

do_iret:
; restore gr96—gr98 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4

load 0, 0, gr97, gr96 ; restore gr97
add gr96, groe, 4
load 0, 0, gr98, gr96 ; restore gro8

const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gr96 ; restore gr96

iret

check_for_msg:
; a message header is in buffer.
; gr98 has total length.
; gr96 has msg_rbuf

load 0, 0, gr97, gro6 ; get msg code
jmpt gr97, ack_nack_recd ; handle ack/nack msg
nop

; message.

const gr96, _msg_rbuf+4
consth gr96, _msg_rbuf+4

load 0, 0, gr96, gro6 ; msg length

add gr96, gro6, 8+4 ; add msg header size and checksum
cpgeu gr97, gr98, gro6 ; have we received all the bytes

jmpf gr97, do_iret ; no return

nop

; compute checksum for message
const gr97, intr_tmp_regs+3*4
consth gr97, intr_tmp_regs+3*4

store 0, 0, gr99, gr97 ; backup gr99
const gr99,0 ; initialize checksum
sub gr96, groe, 4 ; sub checksum size

const gr97, _msg_rbuf
consth gr97, _msg_rbuf

sub gro6, groe, 2
$6:

load 0, 1, gr98, gr97

add gr99, gr99, gro8

jmpfdec gro6, $6

add gr97, gro7, 1

MiniMON29K Target Interface Process: MONTIP

C-13

scc200.s File continued

; get checksum send by montip
load 0, 1, gr96, gro7
sli gro6, groe, 24
add gr97, gr97, 1
load 0, 1, gr98, gr97
sli gro8, gr98, 16

or gro6, gr96, gr98
add gr97, gr97, 1
load 0, 1, gr98, gro7
sli gro8, gr9sg, 8

or gro6, gr96, gr98
add gro7,gr97, 1
load 0, 1, gr98, gro7
or gr96, gr96, gro8

cpeq gr97, gr96, gr99 ; compare checksums
; reset msg_next_p to beginning of msg_rbuf

const gr96, _msg_rbuf

consth gr96, _msg_rbuf

const gr98, _msg_next_p

consth gr98, _msg_next_p

jmpt gro7, ack_it ; same, valid message
store 0, 0, gr96, gr98 ; reset msg_next_p

; send a nack msg to montip.
; restore gr96—gr99 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4

load 0, 0, gr97, gr96 ; restore gr97
add gro6, gro6, 4
load 0, 0, gr98, gr96 ; restore gro8
add gro6, groe, 4
load 0, 0, gr99, gro6 ; restore gr99

const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gro6 ; restore gro6

; save Ir0, Ir2, Ir3

const gr4, intr_tmp_regs

consth gr4, intr_tmp_regs

store 0,0, Ir0, gr4 ; save Ir0
const IrO, intr_tmp_regs+4

consth Ir0, intr_tmp_regs+4

store 0,0,Ir2,1r0 ; save Ir2
add Ir0, Ir0, 4
store 0,0,Ir3,1r0 ; save Ir3

C-14 MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

ack _it:

const
consth
const
call
nop

const
consth
load
add
load
const
consth
load

iret

Ir2, nack_msg_p
Ir2, nack_msg_p
Ir3, 8

Ir0, msg_scc200_write

IrO, intr_tmp_regs+4
IrQ, intr_tmp_regs+4
0,0,Ir2,1Ir0

Ir0, Ir0, 4

0,0, Ir3,Ir0

Ir0, intr_tmp_regs
Ir0, intr_tmp_regs
0, 0, Ir0, Ir0

; restore gr96—gr99 registers

const
consth
load
add
load
add
load
const
consth
load

gr96, intr_tmp_regs+4
gro6, intr_tmp_regs+4

0, 0, gr97, gro6
groe, groe, 4

0, 0, gr98, gro6
gro6, groe, 4

0, 0, gr99, gro6

gr96, intr_tmp_regs

gr96, intr_tmp_regs
0, 0, gr96, gro96

; send an ack to montip
; save Ir0, Ir2, Ir3

const
consth
store
const
consth
store
add
store

const
consth
constn
store

gr4, intr_tmp_regs
grd, intr_tmp_regs
0, 0, Ir0, gr4

Ir0, intr_tmp_regs+4
IrO, intr_tmp_regs+4
0,0,1Ir2,1r0

Ir0, Ir0, 4
0,0, Ir3,Ir0

Ir2, ack_flag
Ir2, ack_flag
Ir3, -1
0,0,1r3,1Ir2

; restore Ir2

; restore Ir3

; restore Ir0

; restore gr97
; restore gr98

; restore gr99

; restore gr96

; save Ir0

; save Ir2

; save Ir3

; set ack_flag

MiniMON29K Target Interface Process: MONTIP

C-15

scc200.s File continued

const Ir2, ack_msg_p ; pointer to ack msg str
consth Ir2, ack_msg_p

const 1Ir3,8 ; nbytes in ack msg

call Ir0, msg_scc200_write ; sends the first character and
nop ; returns

const IO, intr_tmp_regs+4
consth IrQ, intr_tmp_regs+4

load 0,0,Ir2,1r0 ; restore Ir2
add Ir0, Ir0, 4
load 0,0,Ir3,Ir0 ; restore Ir3

const IrO, intr_tmp_regs

consth IrO, intr_tmp_regs

load 0, 0, Ir0, Ir0 ; restore IrQ
iret

ack_nack_recd:
const gr96, _msg_rbuf
consth gr96, _msg_rbuf
const gr97, _msg_next_p
consth gr97, _msg_next_p
store 0, 0, gr96, gr97 ; initialize msg_next_p

add gro6, gro6, 4

load 0, 0, gr97, gr96 ; get msg len field
jmpf gr97, ack_recd ; ack received
nop

nack_recd:
; restore gr96—gr99 registers
const gr96, intr_tmp_regs+4
consth gr96, intr_tmp_regs+4

load 0, 0, gr97, gr96 ; restore gr97
add gro6, gro6, 4
load 0, 0, gr98, gr96 ; restore gr98

const gr96, intr_tmp_regs
consth gr96, intr_tmp_regs
load 0, 0, gr96, gro6 ; restore gro6

C-16 MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

ack_recd:

; save Ir0, Ir2, Ir3

const gré4, intr_tmp_regs

consth gré4, intr_tmp_regs

store 0,0, Ir0, grd ; save Ir0
const IO, intr_tmp_regs+4

consth IrQ, intr_tmp_regs+4

store 0,0,Ir2,1r0 ; save Ir2
add Ir0, Ir0, 4
store 0,0,Ir3, Ir0 ; save Ir3

const Ir2, _msg_lastsent_p ; address of msg
consth Ir2, _msg_lastsent_p
load 0,0,1Ir2,1r2

add Ir3,1r2, 4

load 0,0,Ir3,1r3 ; msg length

add Ir3,1r3, 8 ; msglen+msg header
call Ir0, msg_scc200_write

nop

const IrO, intr_tmp_regs+4
consth Ir0, intr_tmp_regs+4

load 0,0,Ir2,Ir0 ; restore Ir2
add Ir0, Ir0, 4
load 0,0,Ir3,Ir0 ; restore Ir3

const IrO, intr_tmp_regs
consth Ir0, intr_tmp_regs
load 0,0, 1Ir0, Ir0 ; restore Ir0

iret

; clear _msg_sbuf_p semaphore
const gr96, _msg_sbuf p
consth gr96, _msg_sbuf_p
const @gr97,0

store 0, 0, gr97, gr96 ; clear semaphore
jmp do_iret
nop

MiniMON29K Target Interface Process: MONTIP

C-17

scc200.s File continued

MSG_SCC200_WAIT_FOR

; In interrupt mode, returns immediately.
; In polled mode, blocks until a msg is received.
; returns gr96 = 0 if no message, -1 if valid message in buffer
msg_scc200_wait_for:
.ifndef SERIAL_POLL
; simpler case — interrupt mode

jmpi Ir0
const gr96, 0 ; N0 message
.else

; block until a message is received — polled mode.

const gr96, poll_tmp_glob

consth gr96, poll_tmp_glob

store 0, 0, gr97, gro96 ; backup gr97

add gro6, gro6, 4

store 0, 0, gr98, gr96 ; backup gro8

add gro6, gr96, 4

store 0, 0, gr99, gr96 ; backup gr99
poll_loop:

; poll for a character

const gr96, SPST
$7:

consth gr96, SPST

load 0, 0, gr96, gr96 ; read SPST

sll gr96, gr96, RDRShift ; rdr bit

jmpf gro6, $7

const gr96, SPST

; from here on the code is very similar to the rx_intr code above.
; except that you don't iret for one thing, and you wait until

; @ message is received — not an ack or nack, but a message

; for the debug core to process.

; character found in receive buffer

; receive the character and put in buffer.

const gr96, SPRB

consth gr96, SPRB

load 0, 0, gr96, gr96 ; gr96 has received character

; put in _msg_next_p location.

const gr97, _msg_next_p

consth gr97, _msg_next_p

load 0, 0, gr98, gro7

store 0, 1, gr96, gr98 ; save character

add gr98, grosg, 1 ; update _msg_next_p
store 0, 0, gr98, gr97

C-18 MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

; check the buffer for a minimon message.
const gr96, _msg_next_p
consth gr96, _msg_next_p

load 0, 0, gr97, gr96 ; msg_next_p

const gr96, _msg_rbuf

consth gr96, _msg_rbuf ; msg_rbuf

sub gr98, gro7, gr96 ; msg_rbuf-msg_next_p = len
cplt gro7, gro8, 8 ;len< 8

jmpf gr97, poll_check_for_msg ; no, check for message
nop

; Not enough characters received, continue polling.

continue_poll:

jmp poll_loop
nop

poll_check_for_msg:

i

; a message header is in buffer.
; gr98 has total length.
; gr96 has msg_rbuf

load 0, 0, gr97, gro6 ; get msg code
jmpt gr97, poll_ack_nack_recd ; handle ack/nack msg
nop

; message.

const gr96, _msg_rbuf+4
consth gr96, _msg_rbuf+4

load 0, 0, gr96, groé ; msg length

add gro6, gro6, 8+4 ; add msg header size and checksum
cpgeu gr97, gr98, gro6 ; have we received all the bytes

jmpf gr97, poll_loop ; no continue polling

nop

; compute checksum for message

const gr99,0 ; initialize checksum
sub gr96, groe6, 4 ; sub checksum size
const gr97, _msg_rbuf

consth gr97, _msg_rbuf

MiniMON29K Target Interface Process: MONTIP

C-19

scc200.s File continued

sub gro6, groe, 2
$8:

load 0, 1, gr98, gro7

add gr99, gr99, gro8

jmpfdec gro6, $8

add gr97, gr97, 1

; get checksum send by montip
load 0, 1, gr96, gr97
sl gro6, groe, 24
add gro7, gr97, 1
load 0, 1, gr98, gro7
sli gro8, gr98, 16

or gro6, gr96, gr98
add gr97, gr97, 1
load 0, 1, gr98, gr97
sli gro8, grog, 8

or gro6, gr96, gr98
add gro7, gr97, 1
load 0, 1, gr98, gro7
or gro6, gr96, gr98

cpeq gro7, gr96, gr99 ; compare checksums
; reset msg_next_p to beginning of msg_rbuf

const gr96, _msg_rbuf

consth gr96, _msg_rbuf

const Qr98, _msg_next_p

consth gr98, _msg_next_p

jmpt gr97, poll_ack_it ; same, valid message
store 0, 0, gr96, gr98 ; reset msg_next_p

; send a nack msg to montip.
; save Ir0, Ir2, Ir3

const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc

store 0,0, Ir0, gr96 ; save IrQ
add gr96, groe6, 4
store 0, 0, Ir2, gr96 ; save Ir2
add gro6, gro6, 4
store 0, 0, Ir3, gr96 ; save Ir3

const Ir2, nack_msg_p

consth Ir2, nack_msg_p

const 1Ir3,8

call Ir0, msg_scc200_write ; poll mode write
nop

C-20 MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc
load 0, 0, Ir0, gr96
add gr96, groe, 4
load 0, 0, Ir2, gro6
add gro6, groe, 4
load 0, 0, Ir3, gro6

; restore IrO
; restore Ir2

; restore Ir3

; continue polling for a valid message

jmp poll_loop
nop

poll_ack_it:

; restore gr97—gr99 registers
const gr96, poll_tmp_glob
consth gr96, poll_tmp_glob
load 0, 0, gr97, gr96
add gro6, groe, 4

load 0, 0, gr98, gr96
add gro6, groe, 4

load 0, 0, gr99, gr96

; send an ack to montip

; save Ir0, Ir2, Ir3

const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc
store 0, 0, Ir0, gr96

add gro6, groe, 4
store 0,0, Ir2, gr96

add gro6, gro6, 4
store 0,0, Ir3, gr96

const Ir2, ack_flag
consth Ir2, ack_flag
constn Ir3, -1

store 0,0,1Ir3,Ir2

const Ir2, ack_msg_p
consth Ir2, ack_msg_p

const 1Ir3,8

call Ir0, msg_scc200_write
nop

MiniMON29K Target

; restore gr97
; restore gr98

; restore gr99

; save IrO
; save Ir2

; save Ir3

; set ack_flag

; pointer to ack msg str

; nbytes in ack msg
; polled mode write

Interface Process: MONTIP

C-21

scc200.s File continued

const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc

load 0, 0, Ir0, gr96 ; restore IrO

add gr96, groe6, 4

load 0, 0, Ir2, gro6 ; restore Ir2

add gro6, gro6, 4

load 0, 0, Ir3, gro6 ; restore Ir3

jmpi Ir0 ; RETURN WITH A VALID MSG
constn gr96, -1 ; TRUE

poll_ack_nack_recd:
const gr96, _msg_rbuf
consth gr96, _msg_rbuf
const gr97, _msg_next_p
consth gr97, _msg_next_p
store 0, 0, gr96, gr97 ; initialize msg_next_p

add gro6, gr96, 4

load 0, 0, gr97, gr96 ; get msg len field
jmpf gr97, poll_ack_recd ; ack received
nop

poll_nack_recd:
; save Ir0, Ir2, Ir3
; save Ir0, Ir2, Ir3
const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc

store 0,0, Ir0, gr96 ; save IrO
add gro6, gro6, 4
store 0,0, Ir2, gr96 ; save Ir2
add gro6, gro6, 4
store 0,0, Ir3, gr96 ; save Ir3

const Ir2, _msg_lastsent_p ; address of msg
consth Ir2, _msg_lastsent_p
load 0,0, Ir2,1r2

add Ir3,1r2, 4

load 0,0,Ir3,1r3 ; msg length

add Ir3,1r3, 8 ; msglen+msg header
call Ir0, msg_scc200_write ; polled write

nop

C-22 MiniMON29K Target Interface Process: MONTIP

scc200.s File continued

const gr96, poll_tmp_loc
consth gr96, poll_tmp_loc

load
add
load
add
load

jmp
nop

poll_ack_recd:
; clear _msg_sbuf_p semaphore
const gr96, _msg_sbuf p
consth gr96, _msg_sbuf_p
const gr97,0

.endif

0, 0, Ir0, gr96 ; restore IrO
gro6, groe, 4

0, 0, Ir2, gro6 ; restore Ir2
groe, groe, 4

0, 0, Ir3, gro6 ; restore Ir3
poll_loop

store 0,0, gr97, gr96 ; clear semaphore
jmp poll_loop ; continue_polling
nop

MiniMON29K Target Interface Process: MONTIP

C-23

sa200hw.s File

.ident "@(#)sa200hw.s 1.5 93/08/18 09:21:05, Srini, AMD”
file "sa200hw.s”

.include "stats.ah”

.equ COMM_VERSION, 0x06

; offsets into the intr3 vector table using CLZ
.equ TXDI_OFFSET, (31-5)*4

.equ RXDI_OFFSET, (31-6)*4

.equ RXSI_OFFSET, (31-7)*4

.equ PPI_OFFSET, (31-11)*4

.extern msg_scc200_init
.extern msg_scc200_write
.extern msg_scc200_wait_for
.extern msg_scc200_tx_intr
.extern msg_scc200_rx_intr
.extern msg_ppi200_intr
.extern msg_|pt200_init

.extern dbg_trap

.global msg_initcomm ; initialize comm interface.
.global serial_int ; serial interface interrupt handler.

.global msg_write_p
.global msg_wait_for_p

.bss

msg_write_p:

.block 1*4

msg_wait_for_p:

.block 1*4

intr3_V_table:

.block 32*4 ; hold 32 interrupt vectors (max)

save_regs:

C-24

.block 3*4

MiniMON29K Target Interface Process: MONTIP

sa200hw.s File continued

text

; return version in gr96.
msg_initcomm:
const Qgr96, save_regs
consth gr96, save_regs

store 0, 0, gr97, gr96 ; backup gr97
add gro6, groe, 4

store 0, 0, gr98, gr96 ; backup gro8
add gro6, groe, 4

store 0,0, IrO, gr96 ; backup IrO

; initialize the msg_write_p with write functions.
const gr96, msg_write_p

consth gr96, msg_write_p

const gr97, msg_scc200_write

consth gr97, msg_scc200_write

store 0, 0, gr97, gr96 ; only one for now

; initialize msg_wait_for_p pointer
const gr96, msg_wait_for_p
consth gr96, msg_wait_for_p
const gr97, msg_scc200_wait_for
consth gr97, msg_scc200_wait_for
store 0, 0, gr97, gr96

; initialize table with default entries.
const gr96, intr3_V_table
consth gr96, intr3_V_table
const gr97, default_intr3
consth gr97, default_intr3
const Qr98, 32-2
$1:
store 0, 0, gr97, gr96
jmpfdec gros, $1
add gro6, groe, 4

; install known handlers.

const gr96, intr3_V_table+TXDI_OFFSET
consth gr96, intr3_V_table+TXDI_OFFSET
const gr97, msg_scc200_tx_intr

consth gr97, msg_scc200_tx_intr

store 0, 0, gr97, gr96 ; txintr

MSG_INITCOMM

MiniMON29K Target Interface Process: MONTIP

C-25

sa200hw.s File continued

const gr96, intr3_V_table+RXDI_OFFSET
consth gr96, intr3_V_table+RXDI_OFFSET
const gr97, msg_scc200_rx_intr

consth gr97, msg_scc200_rx_intr

store 0,0, gr97, gr96 ; rxintr

const gr96, intr3_V_table+PPI_OFFSET
consth gr96, intr3_V_table+PPI_OFFSET
const gr97, msg_ppi200_intr

consth gr97, msg_ppi200_intr

store 0, 0, gr97, gro6 ; ppi intr

; initialize the peripherals.
const gr96, msg_scc200_init
consth gr96, msg_scc200_init
calli Ir0, gro6

nop

; initialize 29200 parallel port
const gr96, msg_Ipt200 _init
consth gr96, msg_Ipt200_init
calli Ir0, gro6

nop

; restore registers
const Qgr96, save_regs
consth gr96, save_regs

load 0, 0, gr97, gr96 ; restore gr97
add gro6, gro6, 4
load 0, 0, gr98, gro6 ; restore gro8
add gro6, groe, 4
load 0, 0, Ir0, gr96 ; restore IrO
jmpi Ir0
const gr96, COMM_VERSION ; return version number
.bss
intr_save: .block 4*4

C-26 MiniMON29K Target Interface Process: MONTIP

sa200hw.s File continued

text

serial_int:

SERIAL_INT

; We use count of leading zeroes to determine the offset in the interrupt

; table, and branch to the interrupt handler.

$2:

const
consth
store
const
consth
store

const
consth
load
clz
cpeq
jmpt
nop

sll
const
consth
add

const
consth
load

load

const
consth
load

jmpi
nop

gr4, intr_save
gr4, intr_save

0, 0, gr96, gr4
gro6, intr_save+4
gr96, intr_save+4
0, 0, gr97, gro6

groe6, ICT

groe, ICT

0, 0, gr96, gro6
gro6, gr96
gr97, gr96, 32
gra7, $2

gro6, groe, 2

gr97, intr3_V_table

gro97, intr3_V_table
gr97, gr97, gr96

gro6, intr_save
gr96, intr_save
0, 0, gr96, gro6

0, 0, gr4, gr97

gr97, intr_save+4
gro97, intr_save+4
0, 0, gr97, gr97

grd

, restore regs

const
consth
load
const
consth
load
iret

gr96, intr_save+4
gro6, intr_save+4
0, 0, gr97, gro6
gro6, intr_save
gro6, intr_save
0, 0, gr96, gro6

; backup gro6

; backup gr97

;read ICT

; o interrupts??

; find offset into table

; handler address pointer

; restore gr96

; address

; restore gr97

; restore gr97

; restore gr96

MiniMON29K Target Interface Process: MONTIP

Cc-27

sa200hw.s File continued

default_intr3:
; Clear the interrupt and call dbg_trap

C-28

const gro6, ICT
consth gr96, ICT

load 0, 0, gr96, gr96 ;read ICT

clz gro6, groé

cpeq gr97, gr97, gr97 ; sets most significant bit
srl gr97, gr97, gr96 ; set bit to reset

const gr96, ICT
consth gr96, ICT
store 0, 0, gr97, gr96

; restore regs

const gr96, intr_save+4

consth gr96, intr_save+4

load 0, 0, gr97, gr96 ; restore gr97
const gr96, intr_save

consth gr96, intr_save

load 0, 0, gr96, gro6 ; restore gr96

iret ; simply iret for now.

MiniMON29K Target Interface Process: MONTIP

&

Index

Symbols

/devl/ttya serial port, 1-3
_msg_next_p pointer, 4—22
_msg_rbuf buffer, 4-22
_msg_sbuf_p pointer, 4-22

A

A_SPCL_REG memory space, 5-14
ABS_REG memory space, 5-14
ACK message, 5-2
acknowledgement message, 5-7
ADDR32 data type, 5-6

address
PC memory segment used by montip,
1-5
PC memory segment used by pcserver,
2-3
baud rate
specifying for montip (with the —baud
option), 1-3
specifying for pcserver (with the —b
option), 2-3

BKPT_RM message, 5-25

MiniMON29K Target Interface Process: MONTIP

BKPT_RM_ACK message, 5-45
BKPT_SET message, 5-23-5-24
BKPT_SET_ACK message, 5-44
BKPT_STAT message, 5-26
BKPT_STAT_ACK message, 5-46
blocking mode, 4—6

board, PC plug-inSeePC plug-in board.
BOOLEAN data type, 5-6

BREAK message, 5-35

BYTE data type, 56

byte ordering, 5-6

C

CHANNELO message, 5-54
CHANNELO_ACK message, 5-60
CHANNEL1 message, 5-61
CHANNEL1_ACK message, 5-55
CHANNEL2 message, 5-62
CHANNELZ2_ACK message, 5-56
char target_name[15], 4-6
checksums, 5-2-5-5
ACK message, 5-2
NACK message, 5-2
code field in messages, 5-5
COFF (common obiject file format),
downloading file (with —r option),
1-4,2-2
com1.: serial port, 1-3,
1-3

2-3
com2: serial port, 2-3

Index—1

command-line options serial, 4-3

montip, 1-2 serial, specifying (with —t option), 1-2
pcserver, 2—-2 shared memory, 4-3
common object file format (COFF), shared memory, specifying (with —t
downloading file (with —r option), option), 1-2, 2-2
1-4,2-2 specifying (with —t option), 1-2, 2—2
communication drivers types supported, 4-3
description of, 4-4 valid interfaces, viii
EB29030 montip driver, 4-14-4-16 CONF_REQ message, 5-17
EB29030 target driver, 4-27-4-30 CONFIG message, 3—-2, 5-36-5-37
EB29K montip driver, 4-14-4-16 CONFIG_REQ message, composition of,
EB29K target driver, 4—27-4-30 3-2
module containing, Xii connection
montip, for, 4-13-4-20 successful, 3-2
parallel interface, for, 4-20 synchronous, 3-1, 5-3
SA-29200 target driver, 4-31-4-48 control signals, sending, 4-14
SA-29205 target driver, 4-31-4-48 control-port register, 4-14
serial interface, for montip, 4-17-4-20, conventions, documentation, xv
4-30-4-48 COPROC_REG memory space, 5-14
shared-memory interface, for montip, COPY message, 5-27-5-28
4-13-4-17 COPY_ACK message, 5-47
shared-memory interface, for target,
4-26-4-30
target drivers included, 4-21
target, for, 4—26-4-48, C~1-C—-28 D
YARC montip drivers, 4-17
YARC target drivers, 4-30 D_CACHE memory space, 5-14
communications interface D_MEM memory space, 5-14
adding new, 4-8 D_ROM memory space, 5-14
closing, 4-13 data types, for message interfaces, 5-6
example of synchronous connection, 5-3 debug messageSeemessages, debug.
exiting, pointer to, 47 debugger front end (DFE), viii
identifying (using TDF array), 4-10 DFE. See debugger front end.
identifying type, 4—6 DIP switches, setting, 4-13
initial, 3—1 documentation
initializing, 4-12 conventions, xv
initializing, pointer to, 4-6 manual contents, Xiii
parallel, 4-3 reference material, xiii
parallel, specifying (with —t option), 1-2 users of, xiii
resetting, 4-12 driver layer, overview, 4-1
resetting, pointer to, 4-7 drivers.Seecommunication drivers.

Index—2 MiniMON29K Target Interface Process: MONTIP

E G

eb030hw.s file, C-1 gdb, definition, viii

EB29030 board GLOBAL_REG memory space, 5-14
montip driver for, 4-14-4-16 GO message, 5-33
target driver for, 4-27-4-30, C-1 go_eb030() function, 4-16

EB29K board go_eb29k() function, 4-16
montip driver for, 4-14-4-16 go_serial() function, 4—20

target driver for, 4-27-4-30, C-1
eb29khw.s file, C-1
endian, specifying big or little (with —le

option), 1-3 H
endian type, 5-6
ERROR message, 5-51 HALT message,
error messages, montip, for, A-1-A-3 composition of, 3-1
examples description of, 5-50
montip, using, 1-6 handshake acknowledgement, 5-7
pcserver, using, 2—4 HIF (host interface), support for montip, xii
message interaction, 5-8 HIF_CALL message, 5-59
synchronous connection, of, 5-3 HIF_CALL_RTN message, 5-53
execution mode, specifying, 1-4 host, definition of, xv
exit_comm_eb030() function, 4-16 host interface (HIF), support for montip, xii

exit_comm_eb29k() function, 4-16
exit_comm_serial() function, 4-20

EZ-030 target message driver, C-1
ez030hws file, C—1 |

I/O port address
specifying for montip (with —port

F option), 1-4

specifying for pcserver (with —port
files, search order, 1-5, 2-2 option), 2-2
FILL message, 5—-29-5-30 I|_CACHE memory space, 5-14
FILL_ACK message, 5-48 I_MEM memory space, 5-14
fill_memory_eb030() function, 4-16 I_O memory space, 5-14
fill_memory_eb29k() function, 4-16 |_ROM memory space, 5-14

fill_memory_serial() function, 4-20
front ends, debugger, viii

MiniMON29K Target Interface Process: MONTIP Index—3

INIT message, 5-31-5-32
INIT_ACK message, 5-49
init_comm_eb030() function, 4-15
init_comm_eb29k() function, 4-15
init_comm_serial() function, 4-19
INT32 (*exit_comm)(), 4—7

INT32 (*fill_memory)(), 4-8
INT32 (*init_comm)(), 4—6

INT32 (*msg_recv)(), 4-6

INT32 (*msg_send)(), 4-6

INT32 (*read_memory)(), 4-7
INT32 (*reset_comm)(), 4—7
INT32 (*write_memory)(), 4-7
INT32 data type, 56

INT32 PC_mem_seg, 4-8

INT32 PC_port_base, 4-8
interface

communicationsSeecommunications

interface.
device-independent, 4-1
device-dependent, 4-1

loop count

specifying number to decrement while

waiting (with —bl), 1-3
specifying time out (with —T), 2—3
specifying time out (with —to), 1-5

Iptl: parallel port, 1-2
Ipt2: parallel port, 1-2

M

mailbox register, 4-13
memory
filling, pointer to, 4-8
reading, pointer to, 4-7
window, 4-6, 4-13
writing, pointer to, 4-7
memory spaces
generic, 5-14
used in messages, 5-14

parallel.Seecommunications interface. messages

serial.Seecommunications interface. acknowledgement, 5-7

shared-memonseecommunications alphabetical list of, 5-9-5-11
interface. BKPT_RM, 5-25

TIP. Seetarget interface process (TIP). BKPT_RM_ACK, 5-45

UDI. Seeuniversal debugger interface BKPT_SET, 5-23-5-24

(UDl). BKPT_SET _ACK, 5-44
IPC (interprocess communication), with BKPT_STAT, 5-26
UDI, xii BKPT_STAT_ACK, 5-46
BREAK, 5-35

buffers.Seemessage buffers.
byte ordering, 5-6

L CHANNELO, 5-54
CHANNELO_ACK, 5-60

length field in messages, 5-5
LOCAL_REG memory space, 5-14
log file

between montip and target, 1-3

between pcserver and monitor, 2—3

CHANNEL1, 5-61
CHANNEL1_ACK, 5-55
CHANNEL2, 5-62
CHANNEL2_ACK, 5-56
checksums, 5-2-5-5
classification of, 5—7
code field in, 5-5

Index—4 MiniMON29K Target Interface Process: MONTIP

messages (continued) sending, 4-12

communication systengeemessage specifying maximum size used by
system. montip (with —mbuf option), 1-3

complete transaction, 4-1 STATUS, 5-38-5-40

CONFIG, 5-36-5-37 STATUS_REQ, 5-18

CONFIG_REQ, 5-17 STDIN_MODE, 5-64

COPY, 5-27-5-28 STDIN_MODE_ACK, 5-58

COPY_ACK, 5-47 STDIN_NEEDED, 5-63

data types, 5-6 STDIN_NEEDED_ACK, 5-57

debug, 5-7, 5-15-5-51 STEP, 5-34

endian type, 5-6 structure of, 5-5

ERROR, 5-51 system Seemessage system.

example interaction, 5-8 target drivers, C-1-C-28

FILL, 5-29-5-30 target-to-host list, 5-12

FILL_ACK, 5-48 transactions, logging (with —m option),

function containing base address, 4-8 1-3, 2-3

function containing segment address, 4-8 WRITE_ACK, 543

GO, 5-33 WRITE_REQ, 5-21-5-23

HALT, 5-50 message buffers

handshaking, 5-7 allocating, 4-11

HIF_CALL, 5-59 clearing, 4-12

HIF_CALL_RTN, 5-53 deallocating, 4-11

host-to-target list, 5-11 msg_buffer, 4—6

INIT, 5-31-5-32 message layer

INIT_ACK, 5-49 buffer (_msg_rbuf), 4-22

initial ones sent, 3—1-3-3 buffers, 4-11

layer.Seemessage layer. montip, for, 4-11-4-13

length field, 5-5 overview, 4-1

maximum length, 5-5 pointers (_msg_next_p and

memory spaces used in, 5-14 _msg_shuf_p), 4-22

numbers, 5-9-5-14 target, for, 4—22-4-25

operating-system, 5-7, 5-52-5-64 message system

passing protocol, 5-7 driver layer, 4-1

pointers.Seepointers. figure of, 4-2

READ_ACK, 5-41-5-42 introduction, xii

READ_REQ, 5-19-5-21 message layer, 4-1

receiving, 4-12 MiniMON29K target, for, 4-21

request, 5-7 montip, for, 4-5-4-10

requestor-to-acknowledgement list, 5-13 overview, 4—-1-4-3

RESET, 5-16 target driver functions (TDFBeetarget

semaphore, 4-1 driver functions (TDF).

Mini_exit_comm() function, 4-13

MiniMON29K Target Interface Process: MONTIP Index—5

Mini_go_target() function, 4-13
Mini_init_comm() function, 4-12
Mini_msg_exit() function, 4-11
Mini_msg_init() function, 4-11
Mini_msg_recv() function, 4—12
Mini_msg_send() function, 4-12
Mini_reset_comm() function, 4-12
MiniMON29K, messages, 5-1-5-64
mode

blocking (in polling), 4-6

execution, 1-4

nonblocking (in polling), 4-6

physical, 1-4

protected, 1-4

supervisor, 1-4
mondfe, definition, viii
montip

communication driver module, xii

converting UDI data structures, xii

definition, viii

documentation, Xiii—xv

error messages, A—1-A-3

examples of using, 1-6

features of, viii—x

figure with mondfe, ix

host interface (HIF) support, xii

invoking, 1-2-1-6

message system module, xii

message system, for, 4-5-4-10

modules, xii

modules, figure of, xi

osboot support, xii

running on a remote PC from UNI%ee

pcserver.

software overview, viii—Xxii

msg.s file listing, B-1-B—8

msg_eb030_wait_for() function, 4-29
msg_eb030_write() function, 4—-28-4-30
msg_eb29k_wait_for() function, 4—29
msg_eb29k_write() function, 4—-28-4-30
msg_init() function, 4-23
msg_initcomm() function, 4-27—-4-29,
4-31-4-34
msg_intr() function, 4-29—-4-31
msg_recv_eb030() function, 4-15
msg_recv_eb29K() function, 4-15
msg_recv_serial() function, 4-18
msg_scc200_wait_for() function, 4-38
msg_scc200_write() function, 4-34-4-39
msg_send() function, 4-23
msg_send_eb030() function, 4-15
msg_send_eb29K() function, 4-15
msg_send_parport() function, 4-20
msg_send_serial() function, 4-18
msg_V_arrive label, 4-25
msg_wait_for() function, 4—24

N

NACK message, 5-2
nonblocking mode, 4-6

O

operating system, services, 4-1

operating-system messages. See messages,

operating-system.

Index—6 MiniMON29K Target Interface Process: MONTIP

P

parallel interface

description of, 4-3

driver for, 4-20

specifying (with —t option), 1-2
parallel port

enabling and disabling (using mondfe),

1-2
limitation, 1-2
specifying (with —par option), 1-3

specifying 1/0 port base address (with —B

option), 2-2
specifying I/O port base address (with
—port option), 1-4
specifying PC memory address, 1-5
PATH environment variable, 1-5, 2—-2
PC plug-in board
accessing memory, 1-5, 2-3
required option (-r), 1-4, 2-2
supported, 1-2, 2—-2
PC plug-in board
examples of, 4-3
interface with montip, 4-3
monitor, location of, 4-21
PC_RELATIVE memory space, 5-14
PC_SPACE memory space, 5-14
pcserver
example of using, 2-4
figure illustrating, 2-1
invoking, 2—2—-2-4
overview, 2-1
physical mode, 1-4
pointers
to function closing communications
interface, 4-7
to function filling memory, 4-8
to function initializing communication
interface, 4-6
to function reading from memory, 4—7
to function reporting receipt of, 4—6

MiniMON29K Target Interface Process: MONTIP

to function resetting communications
interface, 4—7
to function resetting processor, 4—8
to function sending message, 4—6
to function writing to memory, 4—7
processor, resetting, 4-13
protected mode, 1-4

R

READ_ACK message, 5-41-5-42
read_memory_eb030() function, 4-16
read_memory_eb29k() function, 4-16
read_memory_serial() function, 4-20
READ_REQ message, 5-19-5-21
recv_msg buffer, 4-11
register, control port, 4-14
request message, 57
RESET message, 5-16
reset_comm_eb030() function, 4-16
reset_comm_eb29k() function, 4-16
reset_comm_serial() function, 4-20
retries
specifying number (with —M), 2—3
specifying number (with —re), 1-5

S

SA-29200 and SA-29205 target message

driver, C-1
SA-29200 board, target driver for,
4-31-4-48
SA-29205 board, target driver for,
4-31-4-48
sa200hw.s file, C-1-C-28
scc200.s file, C-1-C-28
scc8530.s file, C-1
searching, for files, 1-5, 2-2
send_msg buffer, 4-11

Index—7

serial communications, checksums,
5-2-5-5
serial interface
description of, 4-3
montip driver for, 4-17-4-20,
4-30-4-48
specifying (with —t option), 1-2
serial port
specifying (with —com), 1-3
specifying (with —p), 2—-3
valid values, 1-3, 2-3
serial_int() interrupt handler, 4—38—4-48
shared-memory interface
description of, 4-3
montip driver for, 4-13-4-17
specifying (with —t option), 1-2, 2—-2
target driver for, 4—26—-4-30
SPECIAL_REG memory space, 5-14
stand-alone execution board
examples of, 4-3
interface with montip, 4-3
monitor, location of, 4-21
STATUS message, 5-38-5-40
STATUS_REQ message, 5-18
STDIN_MODE message, 5-64
STDIN_MODE_ACK, 5-58
STDIN_NEEDED message, 563
STDIN_NEEDED_ACK, 5-57
STEP message, 5-34
supervisor mode, 1-4
synchronous connection
establishing, 3-1
example of, 5-3
syntax
montip, 1-2
pcserver, 2—-2

T

target
definition of, xv
message system, for, 4-21
target driver functions (TDF)
data structure of, 4-5
on MS-DOS systems, 4-9-4-11
on UNIX systems, 4-10
target interface process (TIP), ii
target message system, file listing,
B-1-B-8
TBL_REG memory space, 5-14
TDF (target driver functionspeetarget
driver functions (TDF).
time out, specifying, 1-5, 2-3
TIP. Seetarget interface process.
TLB (translation look-aside buffer) register,
1-4
translation look-aside buffer (TLB) register,
1-4

U

UDI. Seeuniversal debugger interface.

udi_soc file, 1-5, 2-3

UDICONF variable, 1-5, 2—4

udiconfs.txt file, 1-5, 2—3

universal debugger interface (UDI)
compliant debugger front ends, viii
configuration file for DOS, 1-5, 2-3
configuration file for UNIX, 1-5, 2-3
definition, viii
interprocess communication (IPC)

mechanism, xii
UNIX, running from, on a remote PGee
pcserver.

Index—8 MiniMON29K Target Interface Process: MONTIP

\% X

verbose mode, 2-3 xray29u, definition, viii
void (*go)(), 4-8

YARC boards
WRITE_ACK message, 5-43 montip drivers for, 4-17
write_memory_eb030() function, 4-16 target drivers for, 4-30

write_memory_eb29k() function, 4-16
write_memory_serial() function, 4-20
WRITE_REQ message, 5-21-5-23

MiniMON29K Target Interface Process: MONTIP Index—9

	Contents
	About MONTIP
	MONTIP Software
	MONTIP Features
	MONTIP Modules

	MONTIP Documentation
	About This Manual
	Suggested Reference Material
	MONTIP Documentation Conventions

	Using MONTIP
	Invoking MONTIP

	Using PCSERVER
	Invoking PCSERVER

	Initial Communications Between MONTIP and the Target
	MiniMON29K Message Communication System
	Message Communications Interface
	MONTIP Message System
	MONTIP Message-Layer Interface
	MONTIP Drivers
	MONTIP Shared-Memory Interface Drivers
	MONTIP Serial-Interface Driver
	MONTIP Parallel-Port Interface Driver

	MiniMON29K Target Message System
	MiniMON29K Target Message-Layer Interface
	MiniMON29K Target Drivers
	Target Shared-Memory Interface Drivers
	Target Serial-Interface Drivers

	MiniMON29K Messages
	Message Checksum Tags for Serial Communications
	MiniMON29K Message Description
	Message Structure
	Byte Ordering
	Message Definition
	Message Classification
	Message-Passing Protocol
	Message Numbers

	MiniMON29K Debug Messages
	Message 0 (0h): RESET (Reset Processor)
	Message 1 (1h): CONFIG_REQ (Configuration Request)
	Message 2 (2h): STATUS_REQ (Status Request)
	Message 3 (3h): READ_REQ (Read Request)
	Message 4 (4h): WRITE_REQ (Write Request)
	Message 5 (5h): BKPT_SET (Set Breakpoint)
	Message 6 (6h): BKPT_RM (Remove Breakpoint)
	Message 7 (7h): BKPT_STAT (Breakpoint Status)
	Message 8 (8h): COPY (Copy Data)
	Message 9 (9h): FILL (Fill Memory)
	Message 10 (Ah): INIT (Initialize Target)
	Message 11 (Bh): GO (Execute Code)
	Message 12 (Ch): STEP (Step Execution)
	Message 13 (Dh): BREAK (Stop Execution)
	Message 33 (21h): CONFIG (Target Configuration)
	Message 34 (22h): STATUS (Target Status)
	Message 35 (23h): READ_ACK (Read Memory)
	Message 36 (24h): WRITE_ACK (Data Written)
	Message 37 (25h): BKPT_SET_ACK (Breakpoint Set)
	Message 38 (26h): BKPT_RM_ACK (Breakpoint Removed)
	Message 39 (27h): BKPT_STAT_ACK (Breakpoint Status)
	Message 40 (28h): COPY_ACK (Data Copied)
	Message 41 (29h): FILL_ACK (Memory Filled)
	Message 42 (2Ah): INIT_ACK (Target Initialized)
	Message 43 (2Bh): HALT (Execution Halted)
	Message 63 (3Fh): ERROR (Error Detected)

	Operating-System Messages
	Message 64 (40h): HIF_CALL_RTN (HIF_CALL Return)
	Message 65 (41h): CHANNEL0 (Data at Channel 0)
	Message 66 (42h): CHANNEL1_ACK (Channel 1 Ack)
	Message 67 (43h): CHANNEL2_ACK (Channel 2 Ack)
	Message 68 (44h): STDIN_NEEDED_ACK (Standard Input Needed)
	Message 69 (45h): STDIN_MODE_ACK (Standard Input Mode)
	Message 96 (60h): HIF_CALL (HIF Call)
	Message 97 (61h): CHANNEL0_ACK (Channel 0 Acknowledgement)
	Message 98 (62h): CHANNEL1 (Write Channel 1)
	Message 99 (63h): CHANNEL2 (Write Channel 2)
	Message 100 (64h): STDIN_NEEDED (Standard Input Needed)
	Message 101 (65h): STDIN_MODE (Standard Input Mode)

	MONTIP Error Messages
	MiniMON29K Target Message System
	msg.s File

	Target Message Drivers
	scc200.s File
	sa200hw.s File

	Index

